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Abstract

We analyze the band gap spectra of two-dimensional anisotropic photonic crystals created by a hexagonal lattice of rods covered by
an interfacial layer (e.g. tellurium tubes). Using the plane-wave numerical expansion method, we study the modification of the band gap
spectrum when the rods are infiltrated with other material, and discuss the optimization strategies leading to the maximum value of the
absolute band gap.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Photonic band gap materials (also known as photonic
crystals) are expected to revolutionize the fields of inte-
grated optics and micro-photonics due to an efficient con-
trol of the electromagnetic radiation they provide, in such
a way as semiconductors control the behaviors of the elec-
tron [1,2]. One of the key properties of photonic crystals
is their ability to trap light for certain frequency ranges
due to the existence of absolute photonic band gaps in the
propagation spectra. Engineering the value of the absolute
band gaps is crucial for a design of useful optical devices
based on the light trapping and reflection in such structures.

Most of the studies of the absolute band gaps in
two-dimensional photonic crystals have been restricted by
engineering the lattice geometry (e.g. triangular, square,
or hexagonal) or by a change of the shape, cross-section,
and orientation of the elementary units of the structure,
i.e. rods or holes. To the best of our knowledge, only a
few recent studies addressed the important issue how an
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additional interfacial (or cladding) layer affects the values
and properties of photonic gaps [3–5]. In particular, it
was noticed that such interfacial layers can appear around
holes in macro-porous silicon after etching, and they can
have a dramatic effect of the properties of the band gap
spectra of photonic crystals [4]. In addition, the use of tel-
lurium hollow rods [5] may have a dramatic effect of the
absolute band gap due to the properties of the photonic
crystals made of anisotropic dielectrics [6].

More recently, the interest in the study of the properties
of complex photonic crystals with interfacial layers has
been enhanced by the effort to model the void-based pho-
tonic crystals created by a femtosecond laser-driven
micro-explosion method where a change in the refractive
index in the region surrounding the void dots that form
the bcc structures is verified experimentally [7]. In addition,
the recently suggested class of the so-called annular pho-
tonic crystals [8], where dielectric rods are embedded into
air holes of larger radius, fit the same category of complex
structures where the air space can be regarded as an addi-
tional, interfacial layer.

The aim of this paper is twofold. First, we extend the
previously published results by studying an important case
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of hexagonal two-dimensional photonic crystals created by
a lattice of hollow dielectric rods, also assuming that the
hollow rods are filled by another material. Second, we con-
sider the hollow rods made of tellurium and study how the
anisotropy of the dielectric material can affect the band gap
properties and the value of the absolute band gap.

2. Lattice and model description

To determine absolute PBGs in periodic dielectric struc-
tures, we study the propagation of light from Maxwell’s
equations. In inhomogeneous dielectric materials the Max-
well’s equation for the magnetic field yields [9,10]:

r� 1

eð~rÞr � Hð~rÞ
� �

¼ x2

c2
Hð~rÞ ð1Þ

where x is the frequency of light and c is the light velocity.
The dielectric constant eð~rÞ is a periodic function of~r in x–y

plane and satisfies the condition eð~r þ~RÞ ¼ eð~rÞ, ~R denotes
real space lattice vectors. Since eð~rÞ is periodic, we can use
Bloch’s theorem to expand the Hð~rÞ as a sum of plane
waves [9,11]:

Hð~rÞ ¼
X
~G

X2

k¼1

h~G;kêkeið~kþ~GÞ�~r ð2Þ

where~k is a wave vector in the first Brillouin zone and ~G is
a 2D reciprocal lattice vector, êk ðk ¼ 1; 2Þ are orthogonal

unit vectors perpendicular to~k þ ~G. So, Eq. (1) is expressed
as a linear matrix equation for the dispersion of EM waves
[12]:X
~G0

H~G; ~G0

h~G0;1

h~G0;2

 !
¼ x2

c2

h~G;1
h~G;2

 !
ð3Þ

where

H~G; ~G0 ¼ j~k þ ~Gk~k þ ~G0jgð~G� ~G0Þ
ê2 � ê02 �ê2 � ê01
�ê1 � ê02 ê1 � ê01

� �
ð4Þ
Fig. 1. Model of a 2D hexagonal structure of circular anisotropic Te rods c
background eb and the first Brillouin zone.
gð~GÞ is the Fourier transform of the inverse of eð~rÞ, and
plays a key role in determination of photonic band struc-
ture. We study a periodic array of dielectric rods that their
extension direction is parallel to the z-axis and the intersec-
tion of these rods with the x–y plane form a 2D periodic
dielectric structure. In this case, the Fourier coefficients
are given by

gð~GÞ ¼ 1

X

Z
cell

e�1ð~rÞe�i~G�~r d~r ð5Þ

Here we designate the surface of unit cell by X. In a 2D pho-
tonic crystal ~k þ ~G is in the x–y plane for all ~G, so we can
choose all ê1 and ê2 vectors parallel to the z direction and
in the x–y plane, respectively. In this case ê2 � ê01 ¼ ê1 � ê02 ¼
0. For light incident perpendicular to the rod axis, the ma-
trix Eq. (4) decouple into two scalar problems, correspond-
ing to two polarizations. In the case of E-polarization (Eð~rÞ
is parallel to the rod axis), h~G;1 ¼ 0 for all ~G and we haveX
~G0

j~k þ ~Gk~k þ ~G0jgð~G� ~G0Þh~G0 ;2 ¼
x2

c2
h~G;2 ð6Þ

For the H-polarization (Hð~rÞ is in the rod axis), h~G;2 ¼ 0 for
all ~G and the eigenvalue equation becomesX
~G0

ð~k þ ~GÞ � ð~k þ ~G0Þgð~G� ~G0Þh~G0;1 ¼
x2

c2
h~G;1 ð7Þ

The structure under consideration and the corresponding
first Brillouin zone is shown in Fig. 1. We have considered
a hexagonal structure of circular shape rods with dielectric
constant er of inner rod and anisotropic outer shell, embed-
ded periodically in a background of dielectric constant eb.
The anisotropic outer shell layer has two different princi-
ple-refractive indices as ordinary-refractive index no and
extraordinary-refractive index ne.

We assume that the extraordinary axis is parallel to the
z-axis. In this configuration, the eigenequations for the
E- and H-polarization modes are the same as those for
onsist of an inner rod with dielectric constant er embedded in a uniform
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Fig. 2. Photonic band structure for hexagonal lattice of solid Te rods in
air background at optimum value of q2 = 0.33a for E-polarization (solid)
and H-polarization (dashed) modes.
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Fig. 3. Photonic band structure for hexagonal lattice of Te rods in air
background at optimum values of q1 = 0.13a and q2 = 0.33a for
E-polarization (solid) and H-polarization (dashed) modes.

Table 1
Maximum absolute PBG width Dx and the corresponding lower and
upper frequencies (x1,x2) for Optimum inner rod radius q1 at different
core dielectric constant er

er q1�opt/a Dx(2pc/a) x1(2pc/a) x2(2pc/a)

1 0.13 0.0458 0.4942 0.54
5 0.23 0.0531 0.3888 0.4418

10 0.23 0.0643 0.3384 0.4027
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the isotropic photonic crystals, except that the dielectric
indices of anisotropic outer shell are ne and no for E- and
H-polarizations, respectively. The Corresponding dielectric
constant is expressed as

1

eð~rÞ ¼
1

eb

þ 1

er

� 1

eb

� �X
i

X
~R

P rodð~r � ui �~RÞ

þ 1

ee;o

� 1

eb

� �X
i

X
~R

P shell ~r � ui �~R
� �

ð8Þ

where ee ¼ n2
e and eo ¼ n2

o, Prod and Pshell describe the prob-
ability of finding the inner rod and shell, respectively, and
can be expressed as

P rodð~rÞ ¼
1; ~r 2 Rrod

0; ~r 62 Rrod

�
P shellð~rÞ ¼

1; ~r 2 Rshell

0; ~r 62 Rshell

�
ð9Þ

where Rrod and Rshell are the regions in the x–y plane de-
fined by the cross-section of the inner rod and outer shell,
respectively. The unit cell of hexagonal lattice contain two
rods located at positions u1 and u2, where u = u1 = �u2 =
a(0, 1), and a is lattice constant. The Fourier transform of
e�1ð~rÞ for structures with a unit cell including some identi-
cal cylinders located at ui positions, is given by

gð~GÞ ¼ 1

eb

d~G;0 þ Sð~GÞgcð~GÞ ð10Þ

where Sð~GÞ is the structure factor

Sð~GÞ ¼
X

j

e�i~G�uj ð11Þ

and gcð~GÞ correspond to the Fourier transform for a cylin-
der centered at the origin. For the hexagonal structure of
shelled circular rods, the Fourier coefficients can be written
as

gð~GÞ ¼

1
eb
þ 2pq2

1

X
1
er
� 1

eb

	 

þ 2p

X ðq2
2 � q2

1Þ 1
ee;o
� 1

eb

	 

; ~G ¼ 0

4p
XG cosð~G � uÞ 1

er
� 1

eb

	 

q1J 1ðq1GÞ

n
þ 1

ee;o
� 1

eb

	 

½q2J 1ðq2GÞ � q1J 1ðq1GÞ�

o
; ~G 6¼ 0

8>>>><
>>>>:

ð12Þ

where J1(x) is the Bessel function of the first kind. q1 and q2

are the radius of the inner rod and the outer radius of the
shell layer, respectively.
15 0.23 0.0688 0.3094 0.3782
18 0.24 0.0698 0.299 0.3689
20 0.24 0.072 0.2901 0.3621
25 0.26 0.0777 0.2698 0.3475
27 0.265 0.0798 0.2622 0.3420
28 0.265 0.0795 0.26 0.3395
30 0.265 0.076 0.2586 0.3346
35 0.3 0.063 0.2552 0.3182
40 0.33 0.0503 0.2516 0.3019
43 0.33 0.0436 0.2496 0.2931
3. Results and discussion

For this study a 2D hexagonal photonic crystal of circu-
lar rods consisting of an inner rod with dielectric constant
er and anisotropic outer shell aligned in a uniform back-
ground with dielectric constant eb has been considered.

The band structure of 2D photonic crystal is obtained
numerically by solving Eqs. (6) and (7). A total of 441
plane waves were used in these calculations, which ensures
sufficient convergence for the frequencies of interest. Our
main goal here is to study the modification of the band
gap spectrum and the value of the absolute band gap when
the thickness of outer shell layer varies, as well as when the
rods are infiltrated with other materials.
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We have chosen Te as the anisotropic outer shell, which
has a positive uniaxial crystal with principle indices of
ne = 6.2 and no = 4.8. The dielectric constant of back-
ground is eb = 1. In this structure two geometrical param-
eters q1 and q2 are treated as adjustable parameters to
obtain the maximum absolute PBG.
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Fig. 4. Width of absolute photonic band gaps versus inner rod radius q1 for
(a) er = 10, (b) er = 20, (c) er = 27, (d) er = 30 and (e) er = 43 at fixed value of
First we consider the case when q1 = 0 (solid Te rods),
i.e., there is no core dielectric constant. Fig. 2 shows the
photonic band structure for optimum value of q2 =
0.33a. This frequency spectrum displays several absolute
PBGs, and a relatively large one at lower frequency with
maximum normalized width of Dx = 0.0287(2pc/a) which
lies between 0.278 and 0.3068(2pc/a) frequencies.
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hexagonal lattice of Te rods consist of different core dielectric constants:
q2 = 0.33a.
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At next step, the inner space of rods is filled with other
materials. In this case, for a given value of er, the inner rod
radius q1 is optimized to obtain the maximum absolute
PBG at optimum value of q2 = 0.33a. As an example, the
frequency spectrum in the case of hollow Te rods, er = 1,
with optimum inner rod radius of q1 = 0.13a is shown in
Fig. 3. The largest absolute PBG reaches its maximum nor-
malized width of Dx = 0.0458(2pc/a) and lies between
0.4942 and 0.54(2pc/a) frequencies. So, compared with
the case of solid Te rods, the maximum absolute PBG
has been increased and shifted to higher normalized
frequencies.

Finally, we study how the filling of inner space of the Te
rods with different dielectric constants may change the size
and position of the maximum absolute PBG. This achieved
by optimizing the inner rod radius q1 for different values of
er as listed in Table 1.

Table 1 shows the calculated normalized maximum
absolute PBG width, Dx, and its corresponding lower and
upper frequencies (x1 and x2) at fixed optimum value of
q2 = 0.33a for several values of er with related optimum
inner rod radius q1�opt. It can be seen that by increasing
the magnitude of core dielectric constant, er, the maximum
absolute PBG occurs at low frequency region and the opti-
mum inner rod radius, q1�opt, increases slowly. Also, it can
be seen that for er > 35 the optimum value of inner rod
radius reaches the optimum value of outer rod radius
(q1 = q2), i.e. the outer shell completely disappears. Fig. 4
summarizes the results for some values of the core dielectric
constants of er = 10, 20, 27, 30, and 43. This figure shows
the normalized width of the all absolute PBGs as a function
of the inner rod radius q1 at optimum outer radius of
q2 = 0.33a for a given inner dielectric constant er. It can
be seen that as the value of er increases, the position of
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Fig. 5. Width of maximum absolute PBG as a function of inner rod radius
q1 for different core dielectric constants at optimum value of q2 = 0.33a.
the maximum absolute PBG shifts towards higher values
of q1 and occurs at low frequency regions. Also, it can be
seen that by increasing the value of er, the width of maxi-
mum absolute PBG increases and reaches its maximum
at er = 27, as shown in Fig. 4(c). For er > 27 the width of
maximum absolute PBG decreases and occurs at higher
values of q1, where for er > 35 it occurs at q1 = q2 and
the outer shell completely disappears (Fig. 4(d) and (e)).
The main result is that the greatest absolute PBG with nor-
malized width of Dx = 0.0798(2pc/a) is achieved for
er = 27 at optimum inner rod radius of q1 = 0.265a which
lies between 0.2622 and 0.3420(2pc/a) frequencies.

Also, for the purposes of comparison, in Fig. 5 the nor-
malized width of the maximum absolute PBG is plotted
versus the inner rod radius, q1, for several values of er.
4. Conclusion

In conclusion, we have analyzed band gap spectra of
two-dimensional anisotropic photonic crystals created by
a hexagonal lattice of rods covered by an interfacial layer
(e.g. thin tellurium tubes). Using the plane-wave numerical
expansion method, we have studied different aspects of the
modification of the band gap spectrum when the thickness
of covering layer varies, as well as when the tubes are
infiltrated with other material. We have discussed and
demonstrated several optimization strategies leading to
the maximum value of the absolute band gap in such aniso-
tropic photonic crystals.
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