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GENERALIZING THE GENERALIZED MEAN-VALUE THEOREM

ALEXANDER ABIAN
Department of Mathematics, Iowa State University, Ames, 14 50011

In what follows all functions are real-valued functions of a real variable x, and a<x<1b
where a and b are distinct real numbers.

Let f be a function having a derivative of order n = 1 at x = a. Let (7,, ,f)(x) denote the nth
Taylor polynomial of f at x = a, i.e,

n) a
(T, o)) = £(a) + f@)x—a) + -+ T ay (1)

To facilitate our exposition, we have devised the following n+2 by n+ 2 determinant
representation of (7, ,f)(x):

0 x" xn! x 1
f(a) a” an—-l a 1
“1f(a)  na"! (n—1)a"? 1 0
(T..f)(x) = T'—Z'— f"(a) n(n—1a""% (n—1)(n—2)a""? 0o ol ®
FO(a) nt 0 00

Similarly, the following n + 2 by n + 2 determinant representation is devised for the difference

f(x) = (T,,, o f)(x)

f(x) x* ox™l .o x 1
— a a® a"' - a 1

1(x) = (T,.uf )x) = m.l—f() S 6)
f™(@) nt 0 - 0 0

where the determinant appearing in (3) is obtained from that appearing in (2) by preceding it with
a minus sign and by changing 0 in its (1, 1) entry to f(x).

The above determinant representations of (7, ,f)(x) and f(x) — (T, .f)(x), which may be
interesting in their own rights, can be established without difficulty.

We prove below (using (3)) successive generalizations of the well-known Cauchy’s Generalized
Mean-Value Theorem [1, p. 108].

For the first genera.lization we assume that f and g are functions with continuous first
derivatives f’ and g’ for a < x < b and having second derivatives f and g” fora<x <b.Letus
consider a function A, given by:

hi(x)=f(x)+pg(x)+agx+r (4)
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where p, ¢, r are real numbers, and let us determine p, g, r in such a way that:
h(b) =h(a) =0 | (5)
and
hi(a) =0. (6)
Thus, p, ¢, r must satisfy the following three equations:
f(b) +pg(b)+gp+r=0
f(a) +pg(a) +qa+r=0
f(a)+pg'(a)+4q=0

from which (in view of (3)) we obtain

f(6) b 1
fa) a 1
Lo @ O i) = (1)) o
g(b) b 1 g(b) — (T, ,g)(b)
gla) a 1
g(a) 1 0

provided the denominators in (7) do not vanish.
From (4), in view of our hypothesis, it follows that 4, has a continuous first derivative 4} for
a < x < b and has a second derivative h” for a < x < b. In fact,

h"(x) = f"(x) + pg"(x). (®)
From (5), in view of Rolle’s theorem, it follows that
hi(c) =0 forsome ¢ with a <c <b. 9)

But then again from (6) and (9), in view of Rolle’s theorem, it follows that for some e with
a < e <, and therefore with a < e < b, we have h{(¢) = 0, which by (8) implies:

f'(e) +pg”(e) =0. (10)
Assuming that f and g” do not vanish simultaneously, from (10) we have
g"(e) #0. (11)

Substituting p given by (7) in (10):,( in view of (11) and (1) we obtain:
1(0) = (B N)B) _ () _JG) =)= G=a)a)
5(0) (T, )(0) ~ g'(e) ~ 5(6) —g(a) ~ (b a)g'(a) 1 oome e M A= =D

From the above it is clear (employing notation (3)) how to state and how to prove the following
generalization of the generalized Mean-Value theorem.

THEOREM. Let n =1 be a natural number and let f and g be functions with continuous nth
derivatives for a < x < b and having n + 1th derivatives f"*V and g"*V for a < x < b. Then

f(b) = (T, . f)(b) _ [P (u)
g(6) = (T,,.8)(B) g D(u)

provided the denominator on the left-hand side of equality (12) does not vanish and provided f**"
and g"*'Y do not vanish simultaneously.

for some u with a <u<b (12)
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Proof. We consider a function 4, given by:

h(x)=f(x)+pg(x)+gx"+r" '+ -+t (13)
where p, q, r,..., t are n + 2 real numbers. We determine these n + 2 real numbers in such a way
that:

ha(6) = hy(a) = Ky(a) = - = H(a) = 0, (14)

From (13) and (14) we obtain p to be equal to the negative of the left-hand side of the equality
appearing in (12). On the other hand, repeated application of Rolle’s theorem to the functions
appearing in (14) implies that #{"* P(«) = 0 for some u with a < u < b, which, in its turn, in view
of (13) implies f"* Y(u) + pg"*Y(u) = 0. From this we obtain p to be equal to the negative of
the right side of the equality appearing in (12). Thus, the theorem is proved.

REMARK. The following easy proof of a generalized L’Hospital’s rule follows immediately from
our theorem. Let f(a) = g(a) = 0, and let n + 1 be the smallest natural number for which it is no
longer true that f**D(a) = 0 = g(**V(a). Then from (12) it follows that

A0 _ 1)
x—a g(x)  g"*D(a)

where we include the case when both sides are infinite, and where we assume that the (n + 1)th
derivatives of f and g are continuous at a.
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ON THE CONVERGENCE OF HALLEY’S METHOD

G. ALEFELD
Fachbereich Mathematik, Technische Universitiit Berlin
Strasse des 17. Juni 135, 1 Berlin 12, West Germany

1. Introduction. A number of papers have been written about Halley’s method, a third-order
method for the solution of a nonlinear equation. (See, for example, [8].) For real-valued functions,
this method is usually written as

f(xk) -
ey ko ©

f(x0) —%f”(xk)m

Xp+1= X —

This method is also called the method of tangent hyperbolas, as in [3], because x, ., as given by
(0) is the intercept with the x-axis of a hyperbola that is osculatory to the curve y = f(x) at
x = x,. Construction of the appropriate hyperbola, given f(x,), f'(x,), and f”(x,), is an
interesting exercise.

Many of the authors writing on Halley’s method have, in particular, been concerned with
developing a convergence theorem similar to the so-called Newton-Kantorovich theorem. (See, for
example, [5, p. 421 ff].) The most far-reaching results can undoubtedly be found in [3], where also
a comprehensive list of references is given. Error bounds, also, are given in [3]. These reflect for
the first time the correct order of the error.

In this note we add some new results on Halley’s method for real functions. From a remark by
G. H. Brown, Jr. [2], Halley’s method can be derived by applying Newton’s method to the
function g(x) = f(x)//f’(x). The adaptation of Theorem 7.1 of Ostrowski [7] to Halley’s
method gives us results on the existence and uniqueness of a zero and on the convergence to this
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