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a b s t r a c t

The diffraction of superluminal radiation fields in crystal lattices is studied. The negative mass-square of
the tachyonic wave modes affects the modulation function of diffraction gratings and the scattering
amplitude. The Bragg condition for tachyon diffraction as well as the longitudinal and transversal cross
sections are derived. Scalar and vectorial Kirchhoff identities for superluminal Proca fields are obtained
from Sommerfeld’s dipole functionals, in analogy to electromagnetic theory. These surface-integral rep-
resentations of the tachyon potential and the tachyonic field strengths are used to calculate the asymp-
totic diffracted modes and the intensity ratios. The dependence of the primary and secondary intensity
peaks on the tachyon mass is analyzed in the reciprocal lattice, and the conversion of transversal into lon-
gitudinal radiation by way of Bragg scattering is explained. Specifically, tachyonic spectral fits are per-
formed to the TeV spectra of three active galactic nuclei, H2356 � 309, 1ES 1218 + 304, and 1ES
1101 � 232, obtained with the imaging atmospheric Cherenkov detectors HESS, MAGIC, and VERITAS.
The curvature in the spectral maps of these blazars is shown to be intrinsic, generated by ultra-relativistic
electron populations in the galactic nuclei rather than by intergalactic absorption, and is reproduced by a
tachyonic cascade fit.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction current, cf. Section 2. The tachyonic Maxwell equations admit a
We investigate the diffraction of superluminal wave modes,
outlining a theory of tachyon diffraction based on Kirchhoff’s sur-
face-integral representation of Proca fields. We work out two spe-
cific examples, diffraction at plane apertures such as diffraction
gratings, and tachyonic Bragg scattering in crystal lattices. The for-
malism is developed in close analogy to electromagnetic diffrac-
tion theory, even though there are substantial differences owing
to the negative mass-square of tachyons [1–5] and the occurrence
of longitudinally polarized modes [6–8].

The negative mass-square refers to the radiation rather than the
source. This in strong contrast to the traditional approach based on
superluminal source particles emitting electromagnetic radiation
[9]. The tachyonic radiation discussed here implies superluminal
energy transfer, the radiation quanta moving faster than light, in
contrast to the rotating superluminal light sources studied in Refs.
[10–12] and the vacuum Cherenkov radiation suggested in [13–
16]. Tachyons are radiation modes, a kind of photons with negative
mass-square, coupled by minimal substitution to the electron
ll rights reserved.
static potential analogous to the Coulomb potential, but oscillating
because of the negative mass-square, and much weaker due to the
small tachyonic fine structure constant [17]. Photons can only be
radiated by accelerated charges, in contrast to tachyonic quanta,
where the emission rate primarily depends on the electronic Lor-
entz factor rather than on acceleration [18]. Here, we investigate
how the intensity peaks and scattering cross sections are affected
by the tachyon mass, and study the effect of diffraction on the
polarization of superluminal modes. We disentangle the transver-
sal and longitudinal polarization components in the spectral maps
of the BL Lacertae objects H2356 � 309, 1ES 1218 + 304, and 1ES
1101 � 232, and show that the TeV spectra of these blazars can
be fitted with tachyonic cascades radiated by the thermal electron
plasma in the active galactic nuclei. In the spectral maps, the tach-
yon–electron mass ratio enters in the cutoff energy of the cascades.

In Section 2, we discuss the tachyonic Maxwell equations in
Fourier space, including the material equations relating tachyonic
inductions and field strengths. We calculate the superluminal radi-
ation fields generated by dipole currents, and introduce dipole
functionals to derive the Kirchhoff identities for the scalar and vec-
tor potentials as well as the tachyonic field strengths. In Section 3,
we study tachyon diffraction at a plane aperture, calculate the
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asymptotic diffracted wave modes in the far-field regime, and
assemble the intensity ratios determining the conversion efficiency
from transversal to longitudinal radiation and vice versa. In Section
4, we consider the specific case of a grating aperture, and calculate
the modulation function, from which the intensity peaks of the dif-
fracted superluminal wave fields can be read off. We discuss Bragg
diffraction of tachyons in crystal lattices, in particular the effect of
the negative mass-square on the transversal and longitudinal scat-
tering cross sections. In Section 5, we perform tachyonic cascade
fits to blazar spectra, separate the transversal and longitudinal flux
components, and derive estimates of the electronic source popula-
tions in the active galactic nuclei. In Section 6, we present our con-
clusions with regard to tachyonic X-ray spectra obtained with
Bragg gratings.

2. Superluminal radiation fields

2.1. Proca equation with negative mass-square

The tachyonic radiation field in vacuum is a real vector field
with negative mass-square, satisfying the Proca equation
ð@m@m þm2

t ÞAl ¼ �jl, subject to the Lorentz condition Al;l ¼ 0 [6].
mt is the mass of the superluminal Proca field Al, and q the tachy-
onic charge carried by the subluminal electron current jl = (q, j).
In the Proca equation, the mass term is added with a positive sign,
and the sign convention for the metric defining the d’Alembertian
omom is diag(�1,1,1,1), so that m2

t > 0 is the negative mass-square
of the radiation field. The 3D version of Proca’s equation is a set of
Maxwell equations,

divBðx; tÞ ¼ 0; rotEþ @B=@t ¼ 0;

divE ¼ q�m2
t A0; rotB� @E=@t ¼ jþm2

t A;
ð2:1Þ

where the field strengths are related to the potential by
E =rA0 � oA/ot and B = rotA. The Lorentz condition, divA �
oA0/ot = 0, follows from the field equations and current conserva-
tion, div j + oq/ot = 0.

In a permeable medium, the potential and field strengths in the
inhomogeneous vacuum equations are replaced by inductions,
(A0,A) ? (C0,C), (E,B) ? (D,H), defined by material equations
[19–21]. We will mostly consider monochromatic waves,
Aðx; tÞ ¼ Âðx;xÞe�ixt þ c:c:, and analogously for the scalar poten-
tial A0, the current, charge density, field strengths, and inductions.
Fourier amplitudes are denoted by a hat. The tachyonic Maxwell
equations (2.1) read in Fourier space as

rot Ê� ixB̂ ¼ 0; div B̂ ¼ 0;

rot Ĥþ ixD̂ ¼ ĵþm2
t Ĉ; div D̂ ¼ q̂�m2

t Ĉ0;
ð2:2Þ

supplemented by material equations,

ÂðxÞ ¼ l0ðxÞĈðxÞ; Ĉ0ðxÞ ¼ e0ðxÞÂ0ðxÞ;
D̂ðx;xÞ ¼ eðxÞÊðx;xÞ; B̂ðx;xÞ ¼ lðxÞĤðx;xÞ:

ð2:3Þ

The inductive potentials ðĈ0; ĈÞ as well as D̂ and Ĥ are related to the
primary fields by frequency-dependent dielectric and magnetic per-
meabilities. In an anisotropic medium, we have to use tensorial per-
meabilities, e.g. Âi ¼ l0;ikĈk. The Fourier amplitudes of the field
strengths and potentials are connected by Ê ¼ ixÂþrÂ0 and
B̂ ¼ rot Â. Current conservation, div ĵ ¼ ixq̂, implies the Lorentz
condition div Âþ ie0l0xÂ0 ¼ 0. In a dissipative medium, the per-
mittivities (e0,e) and permeabilities (l0,l) are complex, resulting
in exponential attenuation of the wave fields [22].

2.2. Tachyonic dipole fields

We substitute the potential representation of the field strengths
into the inhomogeneous field equations in (2.2), and make use of
the Lorentz condition to find
Dþ e0l0x
2 þ e0

e
m2

t

� �
Â0 ¼

1
e
q̂;

Dþ elx2 þ l
l0

m2
t

� �
Âþ e

e0

l
l0
� 1

� �
rdiv Â ¼ �lĵ:

ð2:4Þ

We identify e0 = e and l0 = l, otherwise different dispersion rela-
tions are obtained for the scalar and vector potentials, implying dif-
ferent group velocities of the transversal and longitudinal modes.
On the left-hand side of (2.4), we can thus identify the squared
wave number as

k2 ¼ eðxÞlðxÞx2 þm2
t : ð2:5Þ

We consider real e, l, and a positive k2; the permeabilities may even
be negative [23], but then we restrict to a frequency range with po-
sitive squared wave numbers. The Green function inverting the
wave equations (2.4) is

ðDþ k2ÞGðx; x0;xÞ ¼ �dðx� x0Þ; ð2:6Þ

Gðx; x0;xÞ ¼ expðikjx� x0jÞ
4pjx� x0j

; k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eðxÞlðxÞx2 þm2

t

q
: ð2:7Þ

Here, Rek > 0, so that G(x,x0;x) gives retarded solutions,

ðÂ0ðx;xÞ; Âðx;xÞÞ ¼
Z

Gðx; x0;xÞ �1
e
q̂ðx0;xÞ;lĵðx0;xÞ

� �
d3x0:

ð2:8Þ

We will exclusively use the whole-space Green function (2.7), sym-
metric with respect to the first and second argument.

The field strengths are found via the potential representation
stated after (2.3). We define the bivector

gikðx; x0;xÞ :¼ dik þ
@i@k

elx2

� �
Gðx; x0; xÞ; ð2:9Þ

where both derivatives refer to x (although we may switch to the x
0

gradient if convenient, by substituting @k ! �@0k), and obtain

Êiðx;xÞ ¼ ilx
Z

gikðx; x0;xÞ̂jkðx0;xÞd3x0; ð2:10Þ

B̂ðx;xÞ ¼ �l
Z

ĵðx0;xÞ � rGðx; x0;xÞd3x0: ð2:11Þ

The gradient r refers to x, but we may replace rG ? �r0G, where
the prime indicates x

0
differentiation. The d3x

0
integration extends

over the whole space. G satisfies the radiation condition
r(ik � nr)G = G, and G ¼ Oð1=rÞ, with r=|x � x

0
| and n = (x � x

0
)/r.

We consider a dipole current and the corresponding charge
density,

ĵðxÞ ¼ pdðx� x0Þ; q̂ðxÞ ¼ 1
ix
ðprÞdðx� x0Þ; ð2:12Þ

where p denotes an arbitrary constant vector (possibly depending
on x0), the charge density being obtained from the continuity equa-
tion, cf. after (2.3). The gradient in (2.12) refers to x, but we may
substitute r? �r0, where r0 is the x0 gradient. The correspond-
ing scalar and vector potentials are

Â0ðx;xÞ ¼
i

ex
ðprÞGðx; x0;xÞ; Âðx;xÞ ¼ lGðx; x0;xÞp: ð2:13Þ

The Ê field generated by the dipole is Êiðx;xÞ ¼ ilxgikpk, or

Êðx;xÞ ¼ ilx pGðx; x0;xÞ þ pr
elx2rGðx; x0; xÞ

� �
; ð2:14Þ

and the magnetic counterpart reads

B̂ðx;xÞ ¼ �lp�rGðx; x0;xÞ ¼ lrotðpGðx; x0;xÞÞ: ð2:15Þ

(The dipole vector p is independent of x.) By making use of wave
equation (2.6) for G(x,x0;x), we write the dipole field Êðx;xÞ in
(2.14) as
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Êðx;xÞ ¼ i
ex
ðlex2 þrdivÞðpGÞ

¼ i
ex
ðrot rot�m2

t ÞðpGðx; x0;xÞÞ � dðx� x0Þp
� �

: ð2:16Þ

The substitutions r? �r0 and rot ? �rot0 can be performed
whenever convenient; the subscript zero denotes differentiation
with respect to argument x0 in the Green function. We write Ê½p�
for the field (2.14) generated by a dipole p, and analogously B̂½p�
in (2.15). If q is another arbitrary constant dipole vector, then
qÊ½p� ¼ pÊ½q�, and the same holds true for Â½p� in (2.13). We also
note the anti-symmetry qB̂½p� ¼ �pB̂½q�. If the dipole vectors q
and p depend on x rather than x0, these symmetries remain valid,
provided that the gradients and rotors are replaced by the substitu-
tions indicated after (2.16).

2.3. Kirchhoff representation of the tachyon potential and the field
strengths

We denote the singular dipole current (2.12) and the dipole
fields (2.13)–(2.16) by a subscript d, e.g. ĵd and Êd, and consider a
closed surface S around the dipole at x0. An independent second
set of fields, Ê; B̂; Â, and Â0, solves the free tachyonic Maxwell equa-
tions (2.2) inside the cavity defined by S. (These fields are supposed
to be generated by a current distribution outside the enclosure S,
but we will only be concerned with the fields in the interior.) We
define the flux functional [24,25]

Fd :¼ 1
l
ðÊ� B̂d � Êd � B̂Þ þm2

t

l
ðÂ0Âd � Âd;0ÂÞ ð2:17Þ

(as suggested by analogy to the tachyonic Poynting vector, cf. after
(3.3)), and apply the field equations as well as the potential repre-
sentation of the field strengths to find divFd ¼ �Êĵd inside the cav-
ity. The integration of the divergence over the cavity can be
expressed as a surface integral,

R
v divFdd3x = �

R
s FdndS

0
, where n

is the inward-pointing surface normal, and dS
0
= ndS

0
the surface

element. The volume integration of the d current ĵd gives
�Êðx0;xÞp, cf. (2.12). As for the surface integral, we substitute the
identities

ðÊ� B̂d½p�Þn ¼ ðn� ÊÞB̂d½p� ¼ �pB̂d½n� Ê�;
ðÊd � B̂½p�Þn ¼ �ðn� B̂ÞÊd½p� ¼ �pÊd½n� B̂�:

ð2:18Þ

Here, n(x
0
), Êðx0;xÞ, etc., depend on a point x

0
on the boundary S. The

Green’s function G(x
0
,x0;x) is symmetric with respect to an inter-

change of x
0

and x0. It is also assumed that the substitutions
r? �r0 and rot ? �rot0 are performed in the dipole fields. Final-
ly, we write x for x0 (an arbitrary point inside the cavity), and drop
the scalar multiplication with the arbitrary dipole vector p, to ob-
tain the surface-integral representation

Êðx;xÞ ¼ �rot
Z

S
Gðx; x0; xÞÊðx0;xÞ � dS0

� i
lex

ðrot rot�m2
t Þ
Z

S
Gðx; x0;xÞB̂ðx0;xÞ � dS0

þ im2
t

lex
r
Z

S
Gðx; x0;xÞÂðx0;xÞdS0

þm2
t

Z
S

Gðx; x0;xÞÂ0ðx0;xÞdS0: ð2:19Þ

Here, dS
0
= n(x

0
)dS

0
, where n(x

0
) is the unit normal vector pointing

into the interior of the cavity, and the integration dS
0

is over the
closed boundary surface S. The field strengths and potentials satisfy
the free field equations (2.2) and (2.3) (with e0 = e and l0 = l) inside
the cavity, that is, with zero current and charge density. G(x,x

0
;x) is

the Green function (2.7), where x ranges inside the cavity, and the
integration is over the surface variable x
0
. The rotor and gradient re-

fer to x. The potentials Âðx0;xÞ and Â0ðx0;xÞ in the surface integrals
can be replaced by field strengths (via substitution of the field equa-
tions), and the operator ðrot rot�m2

t Þ by ðlex2 þrdivÞ, cf. (2.16).
We use Â0 ¼ �ð1=m2

t ÞdivÊ to obtain the Kirchhoff identity for
the scalar potential,

Â0ðx;xÞ ¼ �
i

lex
div

Z
S

Gðx; x0;xÞB̂ðx0;xÞ � dS0

� div
Z

S
Gðx; x0;xÞÂ0ðx0;xÞdS0

þ ik2

lex

Z
S

Gðx; x0; xÞÂðx0;xÞdS0: ð2:20Þ

The differential operators rot, div, and r refer to variable x in the
Green’s function. The Kirchhoff identity for the vector potential is
found by means of ixÂ ¼ Ê�rÂ0,

Âðx;xÞ ¼ i
x

rot
Z

S
Gðx; x0;xÞÊðx0;xÞ � dS0

�
Z

S
Gðx; x0;xÞB̂ðx0;xÞ � dS0

� r
Z

S
Gðx; x0; xÞÂðx0;xÞdS0

� i
x
ðrot rot� lex2Þ

Z
S

Gðx; x0; xÞÂ0ðx0;xÞdS0; ð2:21Þ

where we may substitute ðm2
t þrdivÞ for (rot rot�lex2). The anal-

ogous surface-integral representation of the magnetic field is ob-
tained via B̂ ¼ rotÂ,

B̂ðx;xÞ ¼ i
x

rot rot
Z

S
Gðx; x0;xÞÊðx0;xÞ � dS0

� rot
Z

S
Gðx; x0; xÞB̂ðx0;xÞ � dS0

� i
x

m2
t rot

Z
S

Gðx; x0;xÞÂ0ðx0;xÞdS0; ð2:22Þ

where rot rot = (k2 +rdiv). These identities follow from the electric
field strength (2.19), by applying the field equations or potential
representation, without actually solving differential equations. We
also note that the Green function in these identities is the whole-
space Green function (2.7), and is not required to satisfy any partic-
ular boundary conditions on the closed surface S, for technical sim-
plicity. Therefore, these identities are only valid for solutions of the
field equations, so that the boundary values cannot be arbitrarily
prescribed. In the next section, however, we will prescribe bound-
ary conditions, and convince ourselves that the fields calculated
by means of the above Kirchhoff identities are asymptotic solutions
of the free tachyonic Maxwell equations (2.2). This is in fact the
practical use of these identities: Even though they will not give ex-
act solutions for arbitrary boundary values, the resulting fields may
well be approximate solutions in the far-field regime, which has to
be checked on a case-by-case basis, by substitution into the field
equations.

3. Fraunhofer diffraction of superluminal radiation at a plane
aperture

3.1. Tachyonic energy flux

As in Section 2.2, we put e0 = e and l0 = l. When studying dif-
fraction in the far-field limit [26,27], it suffices to use the dipole
approximation |x � x

0
| � r(1 � nx

0
/r), where r = |x| and n = x/r, so

that (for large r and |x
0
| = O(1))

Gðx; x0;xÞ � 1
4pr

expðikðxÞðr � nx0ÞÞ; rG � iknG: ð3:1Þ
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We consider an enclosure defined by a hemisphere in the upper
half-space. The radius of this hemisphere will ultimately be ex-
panded to infinity, so that the enclosure is just the upper half-space,
bounded by the (x,y) plane with inward-pointing normal vector
e3 = (0,0,1). We consider an aperture A in the (x,y) plane, centered
at the coordinate origin, and an incoming plane-wave propagating
in the lower half-space towards the aperture. The wave diffracted
through the aperture into the upper half-space is obtained from
the Kirchhoff identities Eq. (2.19)–(2.22), where we identify the
(x,y) plane with the boundary surface S. At the perfectly conducting
boundary, the complement of the aperture, we assume zero poten-
tials and field strengths, and in the aperture A we use the incoming
plane wave as boundary value. The mentioned hemisphere (defin-
ing a finite cavity as an intermediate step) does not give a contribu-
tion to the surface integrals when expanded to infinity, as the
Green’s function satisfies the radiation condition, cf. after (2.11).

To find the energy flux carried by polarized superluminal modes
incident upon the aperture, we use a plane-wave ansatz in the
tachyonic Maxwell equations (2.2) (with vanishing charge and cur-
rent, as well as e0 = e and l0 = l), Âðx;xÞ ¼ AðkÞeikx, and analo-
gously for the scalar potential and the field strengths. Here,
k = k(x)k0, where k is the wave number in the Green function
(2.7), and k0 a constant unit vector. The transversality condition
is Âk0 ¼ 0, and the set of transversal modes reads

k0ÂT ¼ 0; ÂT
0 ¼ 0; ÊT ¼ ixÂT; B̂T ¼ ikðxÞk0 � ÂT: ð3:2Þ

If the product Âk0 does not vanish, then the modes are longitudinal,

ÂL ¼ ðÂLk0Þk0; ÂL
0 ¼ �

kðxÞ
elx

k0ÂL; ÊL ¼ m2
t

ielx
ÂL; B̂L ¼ 0:

ð3:3Þ

We substitute these plane-wave solutions into the tachyonic Poyn-
ting vector S ¼ E�Hþm2

t A0C [28], and perform a time average, to
obtain the transversal and longitudinal components of the energy
flux,

hSTi ¼ 2k
l

xjÂTj2k0; hSLi ¼ 2k
l2e

m2
t

x
jÂLj2k0: ð3:4Þ

Here, real permeabilities and a positive wave number k(x) are
implied.

3.2. Polarized superluminal modes: conversion of transversal into
longitudinal tachyons by diffraction

We consider an incident transversal plane wave, propagating in
the lower half-space toward the aperture A in the (x,y) plane. The
Fourier amplitude of the vector potential is ÂT

in ¼ AT
ineikx;AT

ink0 ¼ 0,
cf. (3.2). By making use of the Kirchhoff identity (2.19) and the lim-
it procedure outlined after (3.1), we find the leading asymptotic or-
der (r ?1, Fraunhofer regime [29]) of the diffracted wave in the
upper half-space as

Êoutðx;xÞ � xkM
eikr

4pr
ððe3nÞAT

in � ðA
T
innÞe3 þ ðe3k0ÞAT

in

� ðe3AT
inÞk0 þ ðe3AT

inÞðk0nÞn� ðe3k0ÞðAT
innÞnÞ

þm2
t kM

lex
eikr

4pr
ððe3AT

inÞðk0nÞn� ðe3k0ÞðAT
innÞn

� ðe3AT
inÞnÞ: ð3:5Þ

The notation is explained in Section 3.1; the modulation factor is

M :¼
Z

A
expðikðk0 � nÞx0Þdx0dy0; ð3:6Þ

where x
0
= (x

0
,y
0
,z
0
= 0) [20]. The scalar potential reads, cf. (2.20),
Â0;outðx;xÞ �
ik2M
lex

eikr

4pr
ððe3AT

inÞ � ðnk0Þðe3AT
inÞ þ ðnAT

inÞðe3k0ÞÞ;

ð3:7Þ
and the vector potential, cf. (2.21),

Âoutðx;xÞ � �ikM
eikr

4pr
ððe3nÞAT

in � ðA
T
innÞe3 þ ðe3k0ÞAT

in

� ðe3AT
inÞk0 þ ðe3AT

inÞnÞ: ð3:8Þ

The magnetic field strength is found as, cf. (2.22),

B̂outðx;xÞ � k2M
eikr

4pr
ðe3 � AT

in � ððe3 � AT
inÞnÞn

þ ðn� AT
inÞðe3k0Þ � ðn� k0Þðe3AT

inÞÞ: ð3:9Þ

When calculating the intensity of the diffracted superluminal flux,
we need the transversal and longitudinal projections of the vector
potential, that is ejÂout and nÂout, respectively. Here, ej and n = x/r
constitute the orthonormal triad defining the outgoing linear polar-
izations, n being the unit wave vector of the outgoing spherical
wave. The incident transversal wave is linearly polarized,
AT

in ¼ e0;iA
T
in; the transversal linear polarization vectors e0,1 and e0,2

of the incoming wave are real and define with its unit wave vector
k0 an orthonormal triad, so that k0 = e0,1 � e0,2 cyclically.

As for the outgoing transversal polarization vectors ej of the dif-
fracted wave in the upper half-space, we choose two real vectors
e1,2 orthogonal to n, so that e1 lies in the plane generated by n
and the incident unit wave vector k0,

e2 ¼
n� k0

jn� k0j
; e1 ¼ e2 � n ¼ k0 � nðnk0Þ

jn� k0j
: ð3:10Þ

We note n = e1 � e2, and |n � k0|2 = 1 � (nk0)2. The scalar products
of the transversal polarization vectors of the incoming and outgoing
waves read

e2e0;1 ¼
ne0;2

jn� k0j
; e2e0;2 ¼ �

ne0;1

jn� k0j
;

e1e0;i ¼ �
ðne0;iÞðnk0Þ
jn� k0j

;
X

i;k

jeie0;kj2 ¼ 1þ ðnk0Þ2:
ð3:11Þ

The longitudinal polarization vectors of the in- and outgoing waves
are the unit wave vectors k0 and n, respectively. The angular
parametrization of these products is done with polar coordinates
in the coordinate frame defined by the right-handed triad e0,1,
e0,2, and k0 of the incoming wave. Thus, nk0 = cosh, ne0,1 = cosu
sinh, and ne0,2 = sinusinh, and dX = sinhdhdu is the solid angle
element. Accordingly, |n � k0| = sinh, and

e1e0;1 ¼ � cos h cos u; e1e0;2 ¼ � cos h sin u;
e2e0;1 ¼ sin u; e2e0;2 ¼ � cos u:

ð3:12Þ

The e3 projection of the outgoing polarization triad is related to the
e3 projection of the incoming triad as

ne3 ¼ e0;1e3 sin h cos uþ e0;2e3 sin h sin uþ k0e3 cos h;

e1e3 ¼ �e0;1e3 cos h cos u� e0;2e3 cos h sinuþ k0e3 sin h;

e2e3 ¼ e0;1e3 sinu� e0;2e3 cos u:
ð3:13Þ

The angular parametrization of the polarized components of the dif-
fracted wave (3.8) can readily be performed by substitution of these
scalar products. The transversal ej projections of (3.8) read

ejÂoutðx;x; e0;iÞ � �ikMAT
in

eikr

4pr
ððe0;iejÞðe3nþ e3k0Þ

� ðe0;inÞðe3ejÞ � ðe0;ie3Þðk0ejÞÞ: ð3:14Þ

The polarization vector of the incident wave, AT
in ¼ e0;iA

T
in, is indi-

cated as argument. The longitudinal projection of the outgoing
wave (3.8) is
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nÂoutðx;x; e0;iÞ � �ikMAT
in

eikr

4pr
ððe0;inÞðe3k0Þ þ ðe0;ie3Þð1� k0nÞÞ:

ð3:15Þ

We consider the special case where the incoming wave vector is
normal to the plane of incidence. As k0 = e3, the angular parametri-
zation of the cross sections greatly simplifies, but the above param-
etrization of the polarization triads can be used for any other
incident wave vector as well. On performing the average over the
initial transversal polarizations and a summation over the transver-
sal outgoing polarizations, we obtain, cf. (3.14),

jÂj2T!T :¼ 1
2

X
i;j

jejÂoutðx;x; e0;iÞj2 � k2
jMj2 AT

in

			 			2
ð4prÞ2

ð1þ cos hÞ2;

ð3:16Þ

where we usedX
i;j

ððe0;iejÞð1þ k0nÞ � ðe0;inÞðk0ejÞÞ2 ¼ 2ð1þ cos hÞ2: ð3:17Þ

The angular parametrization of the longitudinal outgoing compo-
nent (3.15) at normal incidence k0 = e3 reads

jÂj2T!L :¼ 1
2

X
i

jnÂoutðx;x; e0;iÞj2 �
k2

2

jMj2 AT
in

			 			2
ð4prÞ2

sin2 h: ð3:18Þ

These averages suffice to calculate the intensity ratios determining
the conversion efficiency, cf. (3.25).

In the far-field limit, the outgoing spherical waves are struc-
tured as [28]

ÂT;L
outðx;xÞ �

1
4pr

expðikðxÞrÞ̂JT;Lðx;xÞ þ O
1
r2

� �
; ð3:19Þ

where nĴT ¼ 0 and ĴL ¼ nðnĴLÞ. The amplitudes ĴT;L are slowly vary-
ing in the space coordinates, so that we find the leading asymptotic
order of the tachyonic field strengths and the scalar potential as

ÊT
out � ixÂT

out; B̂T
out � ikn� ÂT

out; ÂT
0;out � Oð1=r2Þ;

ÊL
out �

m2
t

ixel
ÂL

out; B̂L
out � O

1
r2

� �
; ÂL

0;out � �
k

xel
nÂL

out:
ð3:20Þ

The transversal component ÂT
out is an arbitrary complex linear com-

bination of the two linear polarization components ejðejÂoutÞ, cf.
(3.14). The plane-wave counterpart to (3.20) is stated in (3.2) and
(3.3). The time-averaged superluminal flux vectors hST;Li can be
assembled with these asymptotic spherical waves as done in (3.4)
for plane waves. The transversal and longitudinal components of
the diffracted energy flux are

ST
out

D E
ij
¼ 2k

l
xjejÂoutðe0;iÞj2n; SL

out

D E
i
¼ 2k

l2e
m2

t

x
jnÂoutðe0;iÞj2n;

ð3:21Þ

where we substitute the amplitudes (3.14) and (3.15). The sub-
scripts i and j refer to the respective incoming and outgoing trans-
versal polarization states. These averages are obtained from the
asymptotic time-averaged Poynting vectors, cf. after (3.3),

hSTi � ð1=lÞÊT � B̂T� þ c:c:; hSLi � �ðm2
t =lÞÂL

0ÂL� þ c:c: ð3:22Þ

The diffracted flux components are to be compared to the flux car-
ried by the incident transversal plane wave, cf. (3.4),

ST
in

D E
¼ 2k

l
x AT

in

			 			2k0: ð3:23Þ

As for the outgoing flux vectors (3.21), we perform the same aver-
age/summation over the transversal polarizations as done in
(3.16) and (3.18). The ratio of the outgoing flux transversally or lon-
gitudinally diffracted into the solid angle element dX and the trans-
versal flux incident upon the aperture area is found as

drT!T :¼
ST

out

D E
nr2dX

ST
in

D E
e3areaðAÞ

; drT!L :¼
SL

out

D E
nr2dX

ST
in

D E
e3areaðAÞ

: ð3:24Þ

These are dimensionless intensity ratios, cross sections divided by
the aperture area. On substituting the averages (3.16) and (3.18),
we find the intensity ratios for the diffraction of transversal
radiation,

drT!T ¼
Â
			 			2

T!T
r2dX

AT
in

			 			2areaðAÞ
; drT!L ¼

m2
t

lex2

Â
			 			2

T!L
r2dX

AT
in

			 			2areaðAÞ
: ð3:25Þ

Diffraction of transversal wave fields generates longitudinal modes,
the conversion efficiency being determined by the ratio drT?L/
(drT?T + drT?L).

3.3. Intensity ratios for the conversion of longitudinal into transversal
radiation

We consider an incident longitudinal plane wave,
ÂL

in ¼ AL
ineikx;AL

in ¼ k0AL
in, cf. (3.3), and proceed analogously to the

transversal case in Section 3.2. Employing the surface integrals
(2.19)–(2.22), we find the diffracted electric field strength in the
Fraunhofer regime,

Êoutðx;xÞ��
m2

t kM
lex

eikr

4pr
ððe3nÞAL

in�ðA
L
innÞe3þðe3AL

inÞnþðk0AL
inÞe3Þ;

ð3:26Þ
the scalar potential,

Â0;outðx;xÞ �
ik2M
lex

eikr

4pr
ððe3AL

inÞ þ ðk0AL
inÞðe3nÞÞ; ð3:27Þ

the vector potential,

Âoutðx;xÞ � �ikM
eikr

4pr
ððe3AL

inÞnþ ðk0AL
inÞðe3nÞnÞ

þ i
m2

t kM
lex2

eikr

4pr
ððe3nÞAL

in � ðA
L
innÞe3

þ ðk0AL
inÞe3 � ðk0AL

inÞðe3nÞnÞ; ð3:28Þ

and the magnetic field strength

B̂outðx;xÞ��
m2

t k2M
lex2

eikr

4pr
ðe3�AL

in�ððe3�AL
inÞnÞnþðn�e3Þðk0AL

inÞÞ:

ð3:29Þ

The transversal polarization components of the diffracted vector po-
tential Âout in (3.28) read, cf. (3.14),

ejÂoutðx;x;k0Þ � i
m2

t kMAL
in

lex2

eikr

4pr
ððe3nÞðk0ejÞ þ ðe3ejÞð1� k0nÞÞ;

ð3:30Þ
where we explicitly indicate the incoming longitudinal polarization
k0 as argument. The outgoing longitudinal component is

nÂoutðx;x;k0Þ � �ikMAL
in

eikr

4pr
ðe3k0 þ e3nÞ: ð3:31Þ

The angular parametrization is explained in (3.11)–(3.13). At
normal incidence k0 = e3, we find e2Âout ¼ 0 and, cf. (3.16),

Â
			 			2

L!T
:¼ je1Âoutðx;x;k0Þj2 �

m4
t k2

l2e2x4

jMj2 AL
in

			 			2
ð4prÞ2

sin2 h: ð3:32Þ
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The transversally diffracted radiation is thus linearly polarized. The
squared longitudinal component (3.31) is parametrized as, cf.
(3.18),

Â
			 			2

L!L
:¼ jnÂoutðx;x;k0Þj2 � k2

jMj2 AL
in

			 			2
ð4prÞ2

ð1þ cos hÞ2: ð3:33Þ

Regarding the energy flux, we note the polarized outgoing Poynting
vectors, cf. (3.21),

ST
out

D E
j
¼ 2k

l
xjejÂoutðk0Þj2n; SL

out

D E
¼ 2k

l2e
m2

t

x
jnÂoutðk0Þj2n;

ð3:34Þ

the incoming longitudinal flux vector, cf. (3.4),

SL
in

D E
¼ 2k

l2e
m2

t

x
AL

in

			 			2k0; ð3:35Þ

and the intensity ratios for the conversion of longitudinal radiation,
cf. (3.24),

drL!T :¼
ST

out

D E
nr2dX

SL
in

D E
e3areaðAÞ

; drL!L :¼
SL

out

D E
nr2dX

SL
in

D E
e3areaðAÞ

: ð3:36Þ

The conversion efficiency of longitudinal radiation into linearly
polarized transversal tachyons is thus determined by the ratios,
cf. (3.25),

drL!T ¼
lex2

m2
t

Â
			 			2

L!T
r2dX

AL
in

			 			2areaðAÞ
; drL!L ¼

Â
			 			2

L!L
r2dX

AL
in

			 			2areaðAÞ
; ð3:37Þ

with the squared amplitude projections (3.32) and (3.33)
substituted.

4. Tachyonic Bragg scattering

4.1. Diffraction gratings: negative mass-square and Bragg condition

We start with a grating defined as an array of 2N + 1 slits paral-
lel to the e2 axis (y coordinate). The slits are rectangles of (large)
height 2b and width 2a. The x coordinate along e1 ranges in equi-
distantly spaced intervals [nd � a,nd + a], where n = �N, . . .,0, . . .,N,
and d > 2a. The y coordinate of this grating aperture ranges in
[�b,b], and the modulation function (3.6) factorizes accordingly as

M ¼
Z b

�b
expðikq2y0Þdy0

XN

n¼�N

Z ndþa

nd�a
expðikq1x0Þdx0; ð4:1Þ

where q1,2 := (k0 � n)e1,2. We note the identity

XN

n¼�N

expð2ignÞ ¼ sinðgð2N þ 1ÞÞ
sin g

; ð4:2Þ

as well as two limit definitions of the delta function,
d(1),(2)(x,b ?1) = d(x), where

dð1Þðx;bÞ :¼
1

2p

Z b

�b
eixtdt¼ sinðbxÞ

px
; dð2Þðx;bÞ :¼

p
b

d2
ð1Þðx;bÞ¼

sin2ðbxÞ
pbx2 :

ð4:3Þ

The modulation factor of the grating can thus be written as

M ¼ 4pa
sinðgð2N þ 1ÞÞ

sin g
sinð2ag=dÞ

2ag=d
dð1Þðkq2; bÞ; ð4:4Þ

where g := kq1d/2. In the squared modulation factor, we substitute
d2
ð1Þ ¼ ðb=pÞdð2Þðkq2; bÞ. The area of the aperture is 4(2N + 1)ab. In

the intensity ratios (3.25) and (3.37), the b factors in area(A) and
d2
ð1Þ cancel, so that the height of the slits only enters in d(2)(kq2,b).

Thus the b ?1 limit is well defined and gives d(kq2). The principal
maxima of M2 are determined by the interference factor, the square
of the first ratio in (4.4). They are located at g = np for integer n. In
between the principal intensity maxima, there are secondary ones,
separated by zeros located at g = np/(2N + 1), where n is integer but
not a multiple of 2N + 1. The square of the second ratio in (4.4)
attenuates the maxima at large g. However, since 2a/d < 1, it does
not significantly affect the location of the maxima. The principal
maxima occur at g = np, which we may write, with k = 2p/k, as a
Bragg condition k0e1 � ne1 = nk/d. We consider normal incidence
k0 = e3, and choose the transversal polarization vectors along the
coordinate axes, e0,i = ei. In the (e1,k0) plane orthogonal to the slits,
we then have u = 0 and ne1 = sinh, so that the principal maxima are
recovered at scattering angles defined by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þm2

t

p
sin h ¼ 2pn=d,

with integer n.

4.2. Tachyon diffraction in crystal lattices: transversal and longitudinal
scattering cross sections

We consider a monochromatic superluminal radiation mode,
Eðx; tÞ ¼ Êðx;xÞe�ixt þ c:c:, hitting a crystal lattice, and apply this
field to the electron density of the crystal. This generates a tachy-
onic current j(x, t) = qne(x)v(t), where ne(x) is the periodic electron
density in the crystal lattice. The velocity of the electrons carrying
tachyonic charge q is determined by m _v ¼ qE. (In the Heaviside–
Lorentz system, q2=ð4p�hcÞ � 1:0� 10�13, estimated from Lamb
shifts in hydrogenic ions [17].) In dipole approximation, we may
neglect the spatial dependence of the amplitude Ê, so that
vðtÞ ¼ v̂ðxÞe�ixt þ c:c: with v̂ðxÞ ¼ iqÊ=ðxmÞ. We thus find the
Fourier amplitude of the current jðx; tÞ ¼ ĵe�ixt þ c:c: as [19]

ĵðx;xÞ ¼ iq2

mx
neðxÞÊðx;xÞ: ð4:5Þ

The inhomogeneous field equations in (2.2) read

rot B̂þ ixÊ ¼ ĵþm2
t Â; div Ê ¼ q̂�m2

t Â0; ð4:6Þ

where we have put e0 = e = 1 and l0 = l = 1 (vacuum permeabilities
in the Heaviside–Lorentz system). The charge density follows from
current conservation, q̂ ¼ �ði=xÞdiv ĵ. The tachyonic radiation
fields generated by current (4.5) in the crystal lattice can be split
into transversally and longitudinally polarized components ÂT;L, like
the diffracted waves (3.19). We are interested in the asymptotic
radiation fields outside the crystal, determined by the current trans-
form [28]

Ĵðx;xÞ :¼
Z

dx0̂jðx0;xÞ expð�ikðxÞnx0Þ; ð4:7Þ

where kðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þm2

t

p
is the tachyonic wave number (2.5). The

projections of Ĵðx;xÞ onto a right-handed triad of polarization vec-
tors e1,2 and n of the radiation field are

ĴTðiÞðx;xÞ :¼ eiðei Ĵðx;xÞÞ; ĴTðx;xÞ :¼ ĴTð1Þ þ ĴTð2Þ;

ĴLðx;xÞ :¼ nðnĴðx;xÞÞ; Ĵ ¼ ĴT þ ĴL:
ð4:8Þ

Here, n = x/r is the coordinate unit vector used as longitudinal
polarization vector, and ei = 1,2(x) are real transversal polarization
vectors defining two degrees of linear polarization, so that ei and
n constitute an orthonormal triad, which we choose as in (3.10).
The outgoing transversal and longitudinal field components are sta-
ted in (3.19) and (3.20), where we put e = l = 1, replace the super-
script T by T(i), and substitute ĴTðiÞ;L as defined in (4.7) and (4.8).

We further specify the wave field incident upon the crystal as a
plane wave Êðx;xÞ ¼ EinðkÞeikx, cf. before (3.2), generating the cur-
rent ĵðx;xÞ in (4.5). The polarized components ĴTðiÞ;Lðx;xÞ of the
current transform (4.7) are thus found as
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ĴTðiÞ ¼ iq2

mx
Fðk;nÞðEineiÞei; ĴL ¼ iq2

mx
Fðk;nÞðEinnÞn;

ĴT ¼ iq2

mx
Fðk;nÞðEin � ðEinnÞnÞ;

ð4:9Þ

where F(k,n) denotes the scattering amplitude

Fðk;nÞ :¼
Z

dx0neðx0Þ expðiðk� kðxÞnÞx0Þ: ð4:10Þ

By making use of (3.19) and (3.20), we obtain the asymptotic outgo-
ing field strengths,

ÊTðiÞ
outðx;xÞ � �

q2

m
eikðxÞr

4pr
Fðk;nÞðEineiÞei;

ÊL
outðx;xÞ �

q2

m
m2

t

x2

eikðxÞr

4pr
Fðk;nÞðEinnÞn:

ð4:11Þ

As for the cross sections, we start with the transversal and longitu-
dinal flux vectors STðiÞ;L

D E
in (3.22), and substitute the scattered

fields (3.19) and (3.20),

STðiÞ
out

D E
� 2xkðxÞ
ð4prÞ2

ĴTðiÞ
			 			2n; SL

out

D E
� 2m2

t

ð4prÞ2
kðxÞ
x

ĴL
			 			2n: ð4:12Þ

The squared current amplitudes (4.9) read

ĴTðiÞ
			 			2 � q4

m2x2 jFj
2jEineij2; ĵJLj2 � q4

m2x2 jFj
2jEinnj2;

ĴT
			 			2 � q4

m2x2 jFj
2ðjEinj2 � jEinnj2Þ:

ð4:13Þ

The total transversal flux hSTi is obtained by adding the transversal
polarization components hSTðiÞi, which amounts to replacing the lin-
early polarized current transforms ĴTðiÞ

			 			2 in (4.12) by ĴT
			 			2 in (4.13),

according to (4.8).
We also need the flux density of the incident plane wave,

Âðx;xÞ ¼ AinðkÞeikx; Êðx;xÞ ¼ EinðkÞeikx, decomposed into trans-
versal and longitudinal components, cf. (3.2) and (3.3). The flux
carried by the transversal component, k0ÂT ¼ 0; ÊT ¼ ixÂT, reads,
cf. (3.4),

ST
in

D E
¼ 2xkðxÞ AT

in

			 			2k0 ¼ 2
kðxÞ
x

ET
in

			 			2k0: ð4:14Þ

The longitudinal energy flux is determined by the amplitudes
ÂL ¼ ðÂLk0Þk0 and ÊL ¼ �im2

t ÂL=x,

SL
in

D E
¼ 2m2

t
kðxÞ
x

AL
in

			 			2k0 ¼ 2
xkðxÞ

m2
t

EL
in

			 			2k0: ð4:15Þ

The transversal cross section for superluminal Bragg diffraction is
thus found as

drT ¼
ST

out

D E			 			
ST

in

D E			 			 r2dX � q4

ð4pÞ2
jFj2

m2 1�
ET

inn
			 			2

ET
in

			 			2
0
B@

1
CAdX; ð4:16Þ

where the solid angle element dX is centered at the outgoing wave

vector k
0
= k(x)n. We may replace the factor ð1� ET

inn
			 			2= ET

in

			 			2Þ by

sin2h, where h is the angle between ET
in and k

0
. If the incident trans-

versal radiation is unpolarized, we have to replace sin2h by the aver-
age (1 + cos2#)/2, where # is the scattering angle between the in-
and outgoing wave vectors k and k

0
. In the longitudinal cross

section,

drL ¼
SL

out

D E			 			
SL

in

D E			 			 r2dX � q4

ð4pÞ2
m4

t

x4

jFj2

m2

EL
inn

			 			2
EL

in

			 			2 dX; ð4:17Þ

we may replace the EL
in ratio by cos2#.
In the scattering amplitude F(k,n), cf. (4.10), we write k
0

for
k(x)n, and substitute the Fourier series neðxÞ ¼

P
nGeiGx over the

reciprocal lattice G,

Fðk;nÞ ¼
X

G

nG

Z
dx0 expðiðGþ k� k0Þx0Þ: ð4:18Þ

We may replace G by �G in the individual terms. The integrals in
(4.18) are taken over the crystal volume, and give a sizeable contri-
bution only if k � k

0
very nearly coincides with a reciprocal lattice

vector. We thus arrive at the Laue condition k � k
0
= G, so that the

respective integral just gives the crystal volume. We square
k
0
= k � G to arrive at 2kG = |G|2, which is the diffraction condition

for the incident wave vector. Alternatively, |G| = |k
0 � k| =

2k sin(#/2), with scattering angle # as above. The parallel lattice
planes of the direct lattice orthogonal to a fixed G are equidistantly
spaced, at distance d = 2p/|G0|, where G0 is the shortest reciprocal
lattice vector parallel to G, the latter being an integer multiple of
G0, |G| = n|G0|, cf., e.g., Ref. [30]. Replacing the wave number by fre-
quency via the dispersion relation k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þm2

t

p
, we find the Bragg

condition for tachyon diffraction,

d sin
#

2
¼ npffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þm2
t

p : ð4:19Þ

The angle #/2 is the glancing angle between lattice plane and wave
vector; incidence and reflection angle coincide as in the electromag-
netic case, irrespectively of the polarization. Owing to the negative
mass-square, tachyonic Bragg diffraction can only occur at wave-
lengths k = 2p/k < 2d, where d is usually a few Å. This matches well
with the tachyonic Compton wavelength of 2p/mt � 5.7Å [17],
which is the maximal wavelength attainable by tachyonic vacuum
modes.

5. Tachyonic flare spectra of TeV blazars

Figs. 1–3 depict tachyonic cascade fits to the TeV spectra of the
c-ray blazars H2356 � 309, 1ES 1218 + 304, and 1ES 1101 � 232,
obtained with imaging air Cherenkov telescopes [31]. The cascades
are plots of the E2-rescaled flux densities

E2 dNT;L

dE
¼ x

4pd2 hp
T;LðxÞi; ð5:1Þ

where d is the distance to the source, and hpT;Lðx ¼ E=�hÞi the tachy-
onic spectral density of a uniformly moving charge [8],

pT;LðxÞ ¼ aqm2
t x

x2 þm2
t

c2 �mt

m
x
mt

c� 1
4

m2
t

m2
� 1þx2

m2
t

� �
DT;L


 �
1

c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 1

p ;

ð5:2Þ

averaged over a thermal electron distribution. The superscripts T
and L indicate the transversal and longitudinal polarization compo-
nents defined by DT ¼ 1�m2

t =ð2m2Þ and DL = 0. c is the electronic
Lorentz factor, and aq the tachyonic fine structure constant. We
use the Heaviside–Lorentz system, so that aq ¼ q2=ð4p�hcÞ �
1:0� 10�13 and mt � 2.15 keV/c2, as inferred from Lamb-shift
estimates [17]. The tachyon–electron mass ratio is mt/m � 1/238,
and a spectral cutoff occurs at

xmaxðcÞ ¼ mt lt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 1

q
� 1

2
mt

m
c

� �
; lt :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

4
m2

t

m2

r
: ð5:3Þ

Only frequencies in the range 0 6 x 6 xmaxðcÞ can be radiated by a
uniformly moving charge, the tachyonic spectral densities pT,L(x)
being cut off at the break frequency xmax. A positive xmax(c) re-
quires Lorentz factors exceeding the threshold lt.

The average hpT;LðxÞi defining the differential flux (5.1) is
taken over thermal ultra-relativistic electron distributions dq /



Fig. 1. Spectral map of the BL Lac object H2356 � 309. HESS data points from Ref. [31]. The solid line T + L depicts the E2-scaled differential tachyon flux dNT+L/dE, obtained by
adding the flux densities q1,2 of two electron populations, cf. (5.1). The transversal (T) and longitudinal (L) flux densities dNT,L/dE add up to the total unpolarized flux T + L. The
exponential decay of the cascades q1,2 sets in at about Ecut � (mt/m)kT, cf. after (5.2), implying cutoffs at 0.84 TeV for the q1 cascade and 92 GeV for q2. The v2 fit is done with
the unpolarized tachyon flux T + L, and subsequently split into transversal and longitudinal components. Temperature and number count of the electron populations are
recorded in Table 1.

Fig. 2. Spectral map of the blazar 1ES 1218 + 304. MAGIC data points from Ref. [35], VERITAS points from Ref. [36]. The upper flux limit in the 0.1–0.2 TeV interval is based on
STACEE observations in 2006 and 2007 [37]. The spectral fit T + L = q1 + q2 is performed with the electron distributions quoted in Table 1; the polarized flux components are
labeled T and L. The q1 cascade is cut at Ecut � 0.28 TeV, and q2 at 46 GeV. Comparing to the BL Lac in Fig. 1, located at a lower redshift, there is no indication of absorption in
the spectral slope. The electron densities generating the cascades q1,2 are thermal in either case. The spectral curvature is intrinsic, caused by the Boltzmann factor of the
electron populations in the galactic nucleus.
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e�bc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 1

p
cdc; b ¼ m=ðkTÞ. The least-squares fit is performed

with the total unpolarized flux density dNT+L = dNT + dNL. The cas-
cades are labeled q1,2 in the figures, and the parameters of the elec-
tron populations generating them are listed in Table 1. The details
of the spectral fitting have been explained in Ref. [32]. The electron
count is calculated as ne � 5:75� 1055n̂d2½Mpc�, where n̂ defines
the tachyonic flux amplitude extracted from the fit. The cutoff
parameter of the thermal cascades is related to the electron tem-
perature by kT[TeV] � 5.11 � 10�7/b, and the internal energy esti-
mates of the source populations in Table 1 are obtained from
U[erg] � 2.46 � 10�6ne/b. The distance estimates of the active
galactic nuclei are based on d � cz/H0, with c/H0 � 4.4 � 103 Mpc.
Hence, d[Mpc] � 4.4 � 103z, and ne � 1:1� 1063n̂z2, cf. Table 1.

Fig. 1 shows the tachyonic spectral map of the blazar
H2356 � 309 at redshift z � 0.165 [31]. TeV c-ray spectra of bla-
zars are usually assumed to be generated by inverse Compton scat-
tering, which results in a flux of TeV photons thought to be
partially absorbed by interaction with infrared background pho-
tons, so that the intrinsic spectrum has to be reconstructed on
the basis of intergalactic absorption models. By contrast, the extra-
galactic tachyon flux is not attenuated by interaction with the
background light, there is no absorption of tachyonic c-rays.



Fig. 3. Spectral map of the BL Lac object 1ES 1101 � 232. HESS flux points from Ref. [38]. The plots are labeled as in Figs. 1 and 2. The q1 cascade is cut at 1.6 TeV and q2 at
0.21 TeV. The parameters of the electron populations are listed in Table 1. The spectral slope is steeper than that of 1ES 1218 + 304 in Fig. 2, even though these blazars have
almost identical redshifts, which suggests that the shape of the plotted density E2dNT+L/dE is intrinsic rather than affected by intergalactic absorption; tachyonic c-rays do not
interact with background photons.
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Apparently, the curvature present in the TeV spectra of blazars is
not correlated with distance, at least there is no evidence to that
effect if we compare the spectral slopes in Figs. 1–3 to the spectral
maps of other flaring active galactic nuclei such as the BL Lacertae
objects (BL Lacs) H1426 + 428 (z � 0.129, 570 Mpc) and 1ES
1959 + 650 (z � 0.047, 210 Mpc) in Ref. [33], the blazars 1ES
0229 + 200 (z � 0.140, 620 Mpc) and 1ES 0347� 121 (z � 0.188,
830 Mpc) in Ref. [32], and the quasar 3C 279 (z � 0.538, 2.4 Gpc)
in Ref. [34]. Fig. 2 shows the tachyonic spectral fit of the BL Lac
1ES 1218 + 304 at z � 0.182 [35–37], and Fig. 3 the spectral map
of the blazar 1ES 1101 � 232 at z � 0.186 [38]. There is no correla-
tion between redshift and spectral curvature visible. The curvature
in the spectral maps of BL Lacs is intrinsic, generated by the super-
luminal spectral densities of the thermal electron plasma in the ac-
tive galactic nuclei [39].

6. Conclusion: tachyonic X-rays and Bragg spectrometers

We have outlined a diffraction theory of superluminal wave
fields based on Kirchhoff identities, cf. Section 2, and discussed
Table 1
Electronic source distributions qi generating the tachyonic cascade spectra of the
active galactic nuclei in Figs. 1–3. Each qi stands for a thermal ultra-relativistic
Maxwell–Boltzmann density with cutoff parameter b in the Boltzmann factor, cf. after
(5.3). n̂ determines the amplitude of the tachyon flux generated by the electron
density qi, from which the electron count ne / d2 is inferred at the indicated distance.
d is the distance to the blazar, estimated from the redshift z. kT is the temperature and
U the internal energy of the electron populations qi, cf. Ref. [42]. The distance
estimates do not affect the spectral maps in Figs. 1–3, but the electronic source count
ne. Each cascade depends on two fitting parameters b and n̂, extracted from the v2 fit
T + L in the figures.

b n̂ d (Mpc) ne kT (TeV) U (1060 erg)

H2356 � 309
q1 2.5 � 10�9 4.6 � 10�5 z � 0.165 1.4 � 1057 200 1.4
q2 2.3 � 10�8 3.6 � 10�4 730 1.1 � 1058 22 1.2
1ES 1218 + 304
q1 7.7 � 10�9 3.7 � 10�4 z � 0.182 1.4 � 1058 66 4.5
q2 4.7 � 10�8 2.9 � 10�3 800 1.1 � 1059 11 5.8
1ES 1101 � 232
q1 1.3 � 10�9 3.2 � 10�5 z � 0.186 1.2 � 1057 390 2.3
q2 1.0 � 10�8 2.1 � 10�4 820 8.0 � 1057 51 2.0
the specific case of tachyonic Bragg diffraction, first with regard
to a grating aperture and then in crystal lattices, cf. Section 4.
We analyzed the effect of diffraction on the polarization of tach-
yons, cf. Section 3, and separated the transversal and longitudinal
flux components in the spectral maps of c-ray blazars, cf. Section
5. A more detailed summary is given in the Introduction. Here,
we briefly sketch how the negative mass-square shows in tachyon-
ic X-ray spectra obtained with Bragg spectrometers.

Tachyonic spectral fits are based on the En-scaled flux density,
cf. (5.1),

En dN
dE
¼ xn�1

4pd2 hpðxÞi; ð6:1Þ

where hpðxÞi is the unpolarized tachyonic spectral density pT + pL in
(5.2), averaged over thermal [40,41] or nonthermal [42,43] elec-
tronic source populations. The exponent n is a conveniently chosen
real power: Observational spectra are usually plotted as differential
count rate dN/dE (counts per unit time, unit area, and unit energy),
or differential energy flux EdN/dE (which gives the power radiated if
integrated over the respective energy band), or as E2-rescaled differ-
ential flux E2dN/dE (energy per unit time and unit area, adopted in
Section 5). If a Bragg spectrometer is used, the primary quantity
measured is the flux depending on wavelength rather than energy
[44]. The energy parametrization in experimental plots is done with
the assumed photonic relation k = 2p/x, which substantially differs
from the tachyonic dispersion relation k ¼ 2p=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þm2

t

p
in the

X-ray bands, due to the tachyon mass of 2.15 keV. Therefore, we
have to reparametrize the experimental spectra with the tachyonic
dispersion relation before comparing to EndN/dE in (6.1).

To this end, we start with an experimental plot of the (assumed
photonic) spectral density dP=dk ¼ ~pphðkÞ, parametrized by wave-
length as inferred from the Bragg condition 2d sinð#=2Þ ¼ nk. The
power radiated over a finite range of wavelengths is
P ¼

R kmax

kmin
~pphðkÞdk. We reparametrize with energy via the photonic

dispersion relation k = 2p/xph,

P ¼
Z xph;max

xph;min

pphðxphÞdxph; pphðxphÞ :¼ 2p
x2

ph

~pphð2p=xphÞ; ð6:2Þ

where xph,min = 2p/kmax, and analogously for xph,max. (Photon fre-
quencies are denoted by a subscript ph, to distinguish them from



R. Tomaschitz / Optics Communications 282 (2009) 1710–1719 1719
their tachyonic counterpart.) By contrast, if the tachyonic dispersion
relation k ¼ 2p=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þm2

t

p
is used for the energy parametrization,

we find P ¼
Rxmax

xmin
pðxÞdx, where

pðxÞ :¼ 2px
ðx2 þm2

t Þ
3=2

~pph 2pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þm2

t

p
 !

¼ xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þm2

t

p pphð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þm2

t

q
Þ: ð6:3Þ

This observationally determined tachyonic spectral density p(x) is
to be fitted with the tachyonic spectral average hpðxÞi in (6.1). More
generally, if the photonic spectral density f ph

n ðxphÞ :¼ xn�1
ph pphðxphÞ

is plotted, the tachyonic density fn(x) := xn�1p(x) is recovered as

fnðxÞ ¼
xn

ðx2 þm2
t Þ

n=2 f ph
n ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þm2

t

q
Þ: ð6:4Þ

Tachyonic and photonic frequencies are related by x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

ph �m2
t

q
.

This apparently requires xph P mt, which is not a severe restriction,
as the condition k < 2d for Bragg scattering in a crystal amounts to
roughly the same, cf. the end of Section 4.2.

We consider a set of photonic data points ðxph;i; f
ph
n ðxph;iÞÞ la-

beled by index i. These flux points are inferred from Bragg diffrac-
tion, that is, from the wavelength of the incident quanta, and
subsequently parametrized by frequency via the photonic disper-
sion relation. If a tachyonic spectral fit based on density (6.1) is
performed, we have to use instead the tachyonic dispersion rela-
tion for the energy parametrization. In effect, the photonic data
points ðxph;i; f

ph
n ðxph;iÞÞ are mapped into tachyonic points (xi,

fn(xi)) by

xi ¼ xph;i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�m2

t =x2
ph;i

q
;

f nðxiÞ ¼ ð1�m2
t =x

2
ph;iÞ

n=2f ph
n ðxph;iÞ: ð6:5Þ

This rescaling applies to X-ray spectra obtained from diffraction
gratings. Regarding the spectral maps in Figs. 1–3, there is no need
for a rescaling of the flux data, as the negative mass-square in the
dispersion relation is negligible in the c-ray bands.
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