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Renormalization-group resummation of a divergent series of the perturbative wave functions
of the quantum anharmonic oscillator
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The renormalization group method is applied to obtain the asymptotic form of the wave function of the
quantum anharmonic oscillator by resumming the perturbation series. It is shown that the resummed series is
the cumulantof the naive perturbation series. Working out up to the sixth order and performing the further
resummation proposed by Bender and Bettencourt, we find that the agreement with the WKB result becomes
worse in higher orders than the fourth, at which the agreement is the best.@S0556-2821~98!50104-X#

PACS number~s!: 03.65.Ge, 02.30.Mv, 11.15.Bt, 11.15.Tk
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It is well known that naive perturbation series are div
gent or at best asymptotic series@1#. One needs to resum th
divergent series to obtain a sensible result from perturba
theory. Indeed, various resummation techniques have b
devised@1#. Recently, a unified and mechanical method
global and asymptotic analysis has been proposed by G
enfeld et al. @2#. This is called the renormalization grou
~RG! method. The unique feature of their method is to st
with naive perturbation theory and allow secular terms
appear in contrast with all previous methods@1#; adding un-
perturbed solutions to the perturbed solutions so that
secular terms vanish at a ‘‘renormalization point’’t5t0 and
then applying the RG equation, one obtains a resummed
turbation series.

Subsequently, the present author formulated the
method geometrically on the basis of the classical theory
envelopes@3#; it was indicated that the RG equation in th
manner of Gell-Mann and Low in field theory can be ide
tified as the envelope equation.

The purpose of the present work is to apply the R
method as formulated in@3# to the Schro¨dinger equation of
the quantum anharmonic oscillator~AHO! and obtain the
asymptotic form of the wave function.

The AHO is a theoretical laboratory for examining th
validity of various approximation techniques@4,5#. Recently,
Bender and Bettencourt@6# have shown that multiple-scal
perturbation theory~MSPT! can be successfully applied t
the quantum anharmonic oscillator; MSPT or the reduct
perturbation theory is known to be one of the most gene
methods in applied mathematics@1# apart from the RG
method for improving perturbative expansions@7#. They ex-
amined the Heisenberg operator equation and the~time-
independent! Schrödinger equation: The exact closed-for
solution was found for the Heisenberg equation, and
asymptotic behavior of the wave functionc(x) for large x
was constructed, which agrees with the WKB result. O
should remark here that a further resummation had to
adopted for the latter case, which is not intrinsic in MSP
and a similar method had been proposed by Ginsburg
Montroll @8#.

Actually the RG method in the manner of Goldenfe
et al. has been already applied to quantum mechanics
others@9,10#: Egusquiza and Valle Basagoiti@9# applied it to
solve the time-dependent Heisenberg equation considere
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@6#, while Frasca used it to solve the time-dependent Sch¨-
dinger equation of a two-level system. There has been, h
ever, no attempt to apply the RG method to obta
asymptotic forms of wave functions. The reason may be t
it is not trivial to identify the secular terms for the wav
functions which can be made to vanish at a ‘‘renormalizat
point’’ x5x0 . In the present work, such secular terms a
successfully identified for the ground and the first excit
states.

We shall show that the resummation of the perturbat
series of the wave functions is performed in the RG meth
more mechanically and explicitly than in MSPT: The pol
nomials f n(x) in the resummed series are explicitly given
terms of the polynomialsPn(x) obtained in the naive pertur
bation theory @6#. Furthermore, it will be found tha
(n50

` enf n(x) is thecumulantseries@11# of the naive pertur-
bation series(n50

` enPn(x). Since our method is mechanica
and easy to perform, we shall work out up to the sixth ord
in the perturbative expansion and examine how the result
Bender and Bettencourt persist or are modified in the hig
orders.

Our Hamiltonian for the anharmonic oscillator is given b
@12#

H5p21 1
4 x21 1

4 ex4, ~1!

and we consider the following Schro¨dinger equation

~H2E!c~x!50, ~2!

with the boundary conditionc(6`)50. We shall confine
ourselves to the ground state for the moment. WKB analy
shows that for largex,

c~x!;exp$2Aeuxu3/6%. ~3!

We shall examine how the perturbation theory can reprod
the WKB behavior or not, as was done in@6#.

As preliminaries, we first apply the Bender-Wu meth
@14# for performing Rayleigh-Schro¨dinger ~RS! perturbative
expansion. The wave function and the eigenvalue are b
expanded as power series ofe:
R2035 © 1998 The American Physical Society
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c~x!; (
n50

`

enyn~x! and E~e!; (
n50

`

enEn . ~4!

We take the boundary values, hence the normalization a

y0~0!51 and yn>1~0!50. ~5!

The lowest-order solution reads

y0~x!5e2x2/4 and E051/2. ~6!

The higher-order terms withn>1 are written as

yn~x!5e2x2/4Pn~x!, ~7!

where Pn(x) is a polynomial. It is readily shown that th
polynomials satisfy the recursion relation:

Pn9~x!2xPn8~x!5
x4

4
Pn21~x!2 (

j 50

n21

Pj~x!En2 j . ~8!

This equation determines the polynomials and the eigen
uesEn successively. Here it should be remarked thatyn(x)
in Eq. ~7! may be identified as a secular term because it
product of the unperturbed solution and a function that
creases asx goes large.

The eigenvaluesEn are given by the condition~solvability
condition! *2`

` dxy0(x)ĥF(x)50, where ĥ5(d/dx)2

2xd/dx and F(x) is an arbitrary function with which the
integral converges. Thus one finds

En5
1

2Ap
E

2`

`

dxy0~x!Fx4

4
Pn21~x!2 (

j 51

n21

Pj~x!En2 j G .

~9!

Note thatEn is determined in terms of only the polynomia
Pj (x) with j <n21.

With these eigenvaluesEj ( j <n), the polynomialPn(x)
is determined by Eq.~8!. The general form of the polynomia
is expressed as@6#

Pn~x!5 (
k51

2n

Cn,kS 2
x2

2 D k

, ~10!

where the coefficientCn,k satisfies a recursion relation

2kCn,k1Cn21,k2252~k11!~2k11!Cn,k11

1 (
j 51

n21

Cj ,kCn2 j ,1, ~11!

with Cn,15En . The recursion relation is solved for lowk
with givenn. The polynomialsPn(x) up to the six order are
presented in@6#, which we refer to.

Now we apply the renormalization group method to
sum the perturbation series obtained above. We shall pre
the method so that it becomes clear that the notion of en
lopes is intrinsically related to the method@3#: We shall also
make it clear that the RG method concerns with the bou
ary conditions in conformity with the general property of t
RG methods as emphasized by Shirkov@13#.
l-

a
-

-
ent
e-

-

First we try to obtain the wave functionc(x;x0) around
an initial pointx5x0 in a perturbative way,

c~x;x0!; (
n50

`

enzn~x;x0! and E~e!; (
n50

`

enEn ,

~12!

with the initial or boundary condition~BC! at x5x0 :

c~x0 ;x0!5W~x0!. ~13!

We suppose that the boundary valueW(x0) is always on an
exact solution of Eq.~2!. W(x0) may be also expanded in
power series ofe:

W~x0!5 (
n50

`

enWn~x0!. ~14!

If we stop at, say, theNth order, we will have
(n50

N enzn(x)[c (N)(x;x0) which is valid only locally at
x;x0 . However, one may take another point of view
follows: Geometrically, we have a family of curve
$c (N)(x;x0)%x0

parametrized withx0 , and each curve of the

family is a good approximation aroundx5x0 . Then, if each
curve is continued smoothly, the resultant curve will be va
in a global domain ofx. This is nothing else than to con
struct the envelope of the family of curves. More spec
cally, we only have to determine the boundary valu
Wn(x0) so that the perturbative solutions aroundx5x0 form
an envelope. This is the basic strategy of the RG met
described geometrically. Furthermore, to be as accurat
possible, the lowest valueW0(x0) should approximate the
exact valuec(x0 ,x0) as close as possible, orWn>1(x0)
should be made as small as possible.

Let us perform the above program. First, we note that
lowest-order solution may be written as

z0~x;x0!5A~x0!e2x2/4, ~15!

and E051/2; we have made it explicit that the amplitud
A(x0) may be dependent onx0 . The choice of the lowest-
order solution implies that we have also chosen the bound
value as

W0~x0!5A~x0!e2x0
2/4. ~16!

The higher-order terms withn>1 may be written as

zn~x;x0!5A~x0!e2x2/4Qn~x;x0!, ~17!

whereQn(x;x0) is a polynomial ofx, dependent onx0 . It is
readily shown that the polynomials satisfy the same rec
sion relation Eq.~8! as Pn(x). However, since we want to
make the boundary valueW0(x0) as close to the exact one a
possible, we impose the boundary condition as

zn~x0 ;x0!5Wn~x0!50 or Qn~x0 ;x0!50, ~18!

for n>1.
SinceQ1(x;x0) satisfies the same equation asP1(x) does,

one readily obtains
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Q1~x;x0!5P1~x!2P1~x0!, ~19!

which satisfies the boundary condition~BC! Eq. ~18!. Notice
that a constant is the solution of the homogeneous equa
The second-order equation now reads

Q29~x;x0!2xQ28~x;x0!5S x4

4
P1~x!2(

j 50

2

Pj~x!En2 j D
2P1~x0!S x4

4
2E1D . ~20!

One can verify thatE2 is given Eq.~9!. Since Eq.~20! is
linear and the inhomogeneous part is a linear combinatio
those forP2(x) and P1(x), Q2(x;x0) is given by a linear
combination ofP2(x) andP1(x):

Q2~x;x0!5„P2~x!2P2~x0!…2P1~x0!„P1~x!2P1~x0!…,
~21!

which satisfies the BCQ2(x0 ;x0)50. One finds that
Q3(x;x0) satisfies

Q39~x;x0!2xQ38~x;x0!5S x4

4
P2~x!2(

j 50

3

Pj~x!En2 j D
2P1~x0!S x4

4
P1~x!

2(
j 50

2

Pj~x!En2 j D 2@P2~x0!

2P1~x0!2#S x4

4
2E1D . ~22!

One can see that the inhomogeneous part is again comp
of a linear combination of those forPn(x) (n51,2,3). Thus
the solution satisfying the BC is found to be

Q3~x;x0!5P3~x!2P3~x0!2P1~x0!@P2~x!2P2~x0!#

2@P2~x0!2P1~x0!2#@P1~x!2P1~x0!#. ~23!

We remark thatE3 is the same as that obtained forP3(x).
Repeating the procedure, one finds thatQn(x;x0) are ex-

pressed in terms ofPj (x) ( j <n). For instance,

Q4~x;x0!5P4~x!2P4~x0!2P1~x0!@P3~x!2P3~x0!#

2@P2~x0!2P1~x0!2#@P2~x!2P2~x0!#

2@P3~x0!22P1~x0!P2~x0!1P1~x0!3#@P1~x!

2P1~x0!#. ~24!

Thus we obtain the approximate solution valid arou
x;x0

c~x;x0!;A~x0!e2x2/4(
n50

`

enQn~x;x0!, ~25!

which satisfies the boundary condition
n.

of

sed

c~x0 ;x0!5W0~x0!5A~x0!e2x0
2/4. ~26!

One may say that now we have obtained a family
curves $c(x;x0)%x0

with x0 parametrizing the curves. I

x0,x,x01Dx with Dx being sufficiently small, the wave
functionsc(x;x0) and c(x;x01Dx) should give the same
value atx, i.e.,

c~x;x0!5c~x;x01Dx!. ~27!

Taking the limitDx→0 this condition is found to yield tha

dc~x;x0!

dx0
U

x05x

50. ~28!

Notice that whenDx→0, x→x0 . This is the basic equation
of our method. This is nothing, but the condition to constru
theenvelopeof the perturbative wave functions valid aroun
x;x0 . It is apparent that the equation has the same form
the renormalization group equation, hence the name of
RG method. The equation gives a condition whichA(x0)
must satisfy

dA

dx
5A~x!

d

dx0
(
n50

`

en
„2Qn~x;x0!…U

x05x

. ~29!

Defining f n(x) by

2
d

dx0
Qn~x;x0!U

x05x

5
d fn~x!

dx
, ~30!

one obtains

A~x!5 Ā•expF (
n50

`

enf n~x!G . ~31!

With this solution, the global solutioncE(x) is given by the
boundary value by construction:

cE~x!5W0~x!5A~x!e2x2/45 Ā expS 2
x2

4
1 (

n51

`

enf n~x!D .

~32!

This is one of the main results of the present paper.
f n(x)’s are easily calculated in terms ofPn(x), and we

have

f 1~x!5P1~x!52
3

8
x22

1

16
x4, ~33!

f 2~x!5P2~x!2
1

2
P1~x!25

21

16
x21

11

64
x41

1

96
x6,

f 3~x!5P3~x!2P1~x!P2~x!1
1

3
P1~x!3,

52
333

32
x22

45

32
x42

21

192
x62

1

256
x8,
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f 4~x!5P4~x!2P1~x!P2~x!2
1

2
P2~x!21P1~x!2P2~x!

2
1

4
P1~x!4,

5
30885

256
x21

8669

512
x41

1159

768
x61

163

2048
x81

x10

512
,

f 5~x!5P5~x!2P1~x!P4~x!2P2~x!P3~x!1P1~x!P2~x!2

2P1~x!3P2~x!1P1~x!2P3~x!1
1

5
P1~x!5,

52
916731

512
x22

33171

128
x42

6453

256
x62

823

512
x8

2
319

5120
x102

7

6144
x12,

f 6~x!5P6~x!2P1~x!P5~x!2P2~x!P4~x!1P1~x!2P4~x!

2
1

2
P3~x!212P1~x!P2~x!P3~x!2P1~x!3P3~x!

1
1

3
P2~x!32

3

2
P1~x!2P2~x!21P1~x!4P2~x!

2
1

6
P1~x!6,

5
65518401

2048
x21

19425763

4096
x41

752825

1536
x6

1
43783

4096
x81

3481

2048
x101

1255

24576
x121

3

4096
x14,

and so on.f 1(x); f 3(x) coincide with the results in@6#,
where explicit expressions off n(x) are given only forn<3.
It is interesting that the polynomialsf n(x) are given in terms
of Pn(x) appearing in the naive perturbative expansion i
closed form.

Here learned readers may have suspected thatf i(x)’s
( i 51,2,3,. . . ) are the cumulant @11# of the sum
(n50

` enPn(x) in the sense that

(
n50

`

enPn~x!;expF (
n50

`

enf n~x!G . ~34!

In fact, this is the case. When a functionC(j) of j is given
by C(j)5(n50

` jn/n! •mn , thenth cumulantln is defined by
ln C(j)5(n50

` jn/n!•ln . Expanding lnC(j)5ln(11jm11

j2/2•m21 . . . ), one finds that l15m1 , l25m22m1
2 ,

l35m323m1m212m1
2 , l45m424m1m323m2

2112m1
2m2

26m1
4 , l5524m1

5260m1
3m2130m1m2

2120m1
2m3210m2m3

25m1m41m5 , l652120m1
61360m1

4m22270m1
2m2

21

30m2
32120m1

3m31120m1m2m3 2 10m3
2130m1

2m4215m2m4

26m1m51m6 , and so on. Puttingmn5n! Pn andln5n! f n ,
one sees that the relation Eq.~33! betweenPn and f n is
reproduced. In short, the RG method based on the cons
a

c-

tion of an envelope certainly resums the perturbation se
of the wave function and the resultant expression is given
terms of the cumulants of the naive perturbation series.

Now let us examine how the WKB result Eq.~3! can be
constructed from the perturbation series obtained abo
Bender and Bettencourt found that if all terms beyo
(1/512)e4x10 are neglected, the sum of the highest pow
terms in f j (x) ( j <4) is nicely rewritten as

2
x2

4 S 112ex21
17

12
e2x41

5

12
e3x61

47

1152
e4x8D 1/8

,

~35!

which behaves for largex as

2Aeuxu3/4~1152/47!1/8.Aeuxu3/5.96663 ~36!

in an excellent agreement with the WKB result. How abo
the higher orders. In the fifth order, the sum of the high
powers may be rewritten by neglecting all terms beyo
7e5x10/1286 as

2
x2

4
~11ex2/42e2x4/241e3x6/642e4x8/128

17e5x10/1286!

;2
x2

4 S 11
5

2
ex21

115

48
e2x4

1
35

32
e3x61

15

64
e4x81

4459

164608
e5x10D 1/10

. ~37!

For largex, the coefficient of2Aeuxu3 is

4~164608/4459!1/10.5.73827, ~38!

which deviates from 6 more than the fourth-order result. T
sixth order becomes worse: The sum of the highest powe
rewritten as

2
x2

4 S 113ex21
29

8
e2x41

9

4
e3x61

577

768
e4x8

1
67621

493824
e5x101

1324349

35555328
e6x12D 1/12

, ~39!

which makes the coefficient of2Aeuxu3 for largex

4~35555328/1324349!1/12.5.26181. ~40!

In summary, we have successfully applied the RG meth
as formulated in@3# to the Schro¨dinger equation of the quan
tum anharmonic oscillator~AHO!: The naive perturbation
series of the wave function are resummed by the RG eq
tion. We have seen that the resummation is performed in
RG method more mechanically and explicitly than in MSP
We have shown that the resummed series(n50

` enf n(x) is the
cumulantof the naive perturbation series. We have work
out up to the sixth order in the perturbative expansion a
found the following: Although the sum of the highest pow
in f n(x) can be organized so that it becomes asymptotic
proportional toAeuxu3 as was done in@6,8#, the coefficient of
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it reaches the closest value to 6, the WKB result, in
fourth order, then goes away monotonously from the clos
value in the higher orders. This is plausible because the c
vergence radius of the perturbation series is zero; the cu
lant series should be at best an asymptotic series. We rem
that the RG method as developed here can be also appli
the first excited state; it is, however, unlikely that the meth
can be used to the higher excited states beyond the firs
cited state.

We stress that the method presented here can imp
perturbative wave functions for all cases where naive per
bative solutions of Bender-Wu type are given. It means t
the RG method combined with the Bender-Wu perturbat
method constitutes a new powerful method for improvi
perturbative wave functions. We hope to report on appli
tions of the present method to other quantum systems an
a possible extension to quantum field theory in forthcom
papers; we remark that the amplitudeA(x0) in Eq. ~15! cor-
responds to the wave function renormalization constant.
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Finally, we mention that a variational perturbation meth
called the delta-expansion method@15# has been extende
for obtaining wave functions@16#. The key ingredient of the
extension is to construct an envelope of a set of perturba
wave functions as in the RG method, butwith a variational
parameter. In this method, although the basic equation c
not be solved analytically but only numerically, uniform
valid wave functions with correct asymptotic behavior a
obtained in the first-order perturbation even for strong c
plings and for excited states. In the present method, the b
equations are solved analytically, and the asymptotic form
the wave function is constructed explicitly, although a fu
ther resummation devised in@6,8# is needed for obtaining the
asymptotic form. In this sense, the two methods are com
mentary.
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