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Renormalization-group resummation of a divergent series of the perturbative wave functions
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The renormalization group method is applied to obtain the asymptotic form of the wave function of the
guantum anharmonic oscillator by resumming the perturbation series. It is shown that the resummed series is
the cumulantof the naive perturbation series. Working out up to the sixth order and performing the further
resummation proposed by Bender and Bettencourt, we find that the agreement with the WKB result becomes
worse in higher orders than the fourth, at which the agreement is the[ 86566-282(198)50104-X

PACS numbeis): 03.65.Ge, 02.30.Mv, 11.15.Bt, 11.15.Tk

It is well known that naive perturbation series are diver-[6], while Frasca used it to solve the time-dependent Schro
gent or at best asymptotic serigd. One needs to resum the dinger equation of a two-level system. There has been, how-
divergent series to obtain a sensible result from perturbatioever, no attempt to apply the RG method to obtain
theory. Indeed, various resummation techniques have beeasymptotic forms of wave functions. The reason may be that
devised[1]. Recently, a unified and mechanical method forit is not trivial to identify the secular terms for the wave
global and asymptotic analysis has been proposed by Goldunctions which can be made to vanish at a “renormalization
enfeld et al. [2]. This is called the renormalization group point” x=Xy. In the present work, such secular terms are
(RG) method. The unique feature of their method is to startsuccessfully identified for the ground and the first excited
with naive perturbation theory and allow secular terms tostates.
appear in contrast with all previous methdds$, adding un- We shall show that the resummation of the perturbation
perturbed solutions to the perturbed solutions so that theeries of the wave functions is performed in the RG method
secular terms vanish at a “renormalization point2t, and  more mechanically and explicitly than in MSPT: The poly-
then applying the RG equation, one obtains a resummed penomialsf,(x) in the resummed series are explicitly given in
turbation series. terms of the polynomial®,(x) obtained in the naive pertur-

Subsequently, the present author formulated the R®ation theory [6]. Furthermore, it will be found that
method geometrically on the basis of the classical theory of*_,e"f,(x) is thecumulantseries[11] of the naive pertur-
envelopeq3]; it was indicated that the RG equation in the pation serie€"_,e"P,(x). Since our method is mechanical
manner of Gell-Mann and Low in field theory can be iden-and easy to perform, we shall work out up to the sixth order
tified as the envelope equation. in the perturbative expansion and examine how the results of

The purpose of the present work is to apply the RGender and Bettencourt persist or are modified in the higher
method as formulated if8] to the Schrdinger equation of grders.
the quantum anharmonic oscillatéhHO) and obtain the Our Hamiltonian for the anharmonic oscillator is given by
asymptotic form of the wave function. [12]

The AHO is a theoretical laboratory for examining the
validity of various approximation techniqug$,5]. Recently,
Bender and Bettencouf6] have shown that multiple-scale
perturbation theory(MSPT) can be successfully applied to
the quantum anharmonic oscillator; MSPT or the reductiveand we consider the following Schiimger equation
perturbation theory is known to be one of the most general
methods in applied mathemati¢d] apart from the RG (H=E)y(x)=0, (2)
method for improving perturbative expansidiig. They ex-
amined the Heisenberg operator equation and (tiree-
independent Schralinger equation: The exact closed-form
solution was found for the Heisenberg equation, and th
asymptotic behavior of the wave functiaf(x) for large x
was constructed, which agrees with the WKB result. One 3
should remark here that a further resummation had to be (x)~exp{ — \e|x|*/6}. )
adopted for the latter case, which is not intrinsic in MSPT
and a similar method had been proposed by Ginsburg and/e shall examine how the perturbation theory can reproduce
Montroll [8]. the WKB behavior or not, as was done[i.

Actually the RG method in the manner of Goldenfeld As preliminaries, we first apply the Bender-Wu method
et al. has been already applied to quantum mechanics bj14] for performing Rayleigh-Schringer (RS) perturbative
others[9,10]: Egusquiza and Valle Basagdifl] applied itto  expansion. The wave function and the eigenvalue are both
solve the time-dependent Heisenberg equation considered @xpanded as power series of

H=p%+ 3 x2+ % ex?, (1)

with the boundary conditiony(+«)=0. We shall confine
ourselves to the ground state for the moment. WKB analysis
%hows that for large,
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* © First we try to obtain the wave functiogi(x;x,) around
P(X)~ >, €y, (x) and E(e)~ >, €"E,. (4)  aninitial pointx=xg, in a perturbative way,
n=0 n=0
We take the boundary values, hence the normalization as (X Xo)~ 2 €"2,(X;Xo) and E(e)~ >, €"E,,
n=0 n=0
Yo(0)=1 and y,-,(0)=0. 5 (12
The lowest-order solution reads with the initial or boundary conditio(BC) at x=X;:
yo(x)=e ¥ and E,=1/2. (6) P (Xo;X0) =W(Xo). (13
The higher-order terms with=1 are written as We suppose that the boundary valM#x,) is always on an
i exact solution of Eq(2). W(x,) may be also expanded in a
ya(x)=e"X"P (x), (7)  power series OF:
where P,(x) is a polynomial. It is readily shown that the ’”
polynomials satisfy the recursion relation: W(XO):nZ:o €"Wh(Xo). (14
X4 n—-1 ]
P"(x)=XP/(X)= —P, _1(X)— P.(X)E, .. (8 If we stop at, say, theNth order, we will have
nl nl 4 "t 1'20 i(0)En-, SN €"z,(x)= N (x;xo) which is valid only locally at

. ) . . . X~Xq. However, one may take another point of view as
This equation determines the polynomials and the eigenvakows: Geometrically, we have a family of curves

uesE,, successively. Here it should be remarked thdtx) %w(N)(X;XO)}XO parametrized with,, and each curve of the

in Eq. (7) may be identified as a secular term because it is il is a good approximation arouncx,. Then, if each

product of the unperturbed solution and a function that in- . : X .
creases as goes large curve is continued smoothly, the resultant curve will be valid

; ; - o in a global domain ofk. This is nothing else than to con-
Th.e. EIgenVSIUEE” are given by the COI’]dI'[IOAfBO|VabI|It;/ struct the envelope of the family of curves. More specifi-
condition  [Z_dxyy(X)hF(x)=0, where h=(d/dx)

- 4 ’ ) g cally, we only have to determine the boundary values
_—xd/dx and F(x) is an arbltra_ry function with which the W, (%) SO that the perturbative solutions aroune x, form
integral converges. Thus one finds

an envelope. This is the basic strategy of the RG method
4 n—1 described geometrically. Furthermore, to be as accurate as
X—Pn,l(x)— 2 Pi(X)En_|- possible, the lowest valud/y(Xxq) should_approximate the

4 j=1 exact valuey(xgy,Xg) as close as possible, &V, ~1(Xo)

(9)  should be made as small as possible.

) _ ) ) Let us perform the above program. First, we note that the
Note thatE, is determined in terms of only the polynomials |owest-order solution may be written as

P;(x) with j<sn—1.

1 ©
E =—J dxyp(X
n 2\/; Cw yO( )

With these eigenvalues; (j<n), the polynomialP,(x) zo(x;xo)zA(xo)e*XZ"", (15)
is determined by E(8). The general form of the polynomial
is expressed gb] and Ey=1/2; we have made it explicit that the amplitude
n A(Xg) may be dependent oxy. The choice of the lowest-
X%\ ¥ order solution implies that we have also chosen the boundary
Pr(X)=2, Coil - 7) : (10 Laive as
where the coefficien€,, , satisfies a recursion relation Wo(Xg) =A(xo)e‘xc2>’4. (16)
2kCp k+Cpogk—2= —(k+1)(2k+1)Cpy k41 The higher-order terms with=1 may be written as
n—-1
2
+ > CjCn_j1, (11) Z,(XiX0) = A(Xg) € ¥ MQp(X;Xo), (17)
=1 " ’

whereQ,(X;Xp) is a polynomial ofx, dependent o). It is
with C,;=E,. The recursion relation is solved for loW readily shown that the polynomials satisfy the same recur-
with givenn. The polynomialsP,(X) up to the six order are  sjon relation Eq(8) as P,(x). However, since we want to
presented irf6], which we refer to. make the boundary valu&/y(x,) as close to the exact one as

Now we apply the renormalization group method to re-possible, we impose the boundary condition as
sum the perturbation series obtained above. We shall present

the method so that it becomes clear that the notion of enve- Zn(X0:;X0) =Wh(Xg) =0 or Qn(Xo;X0)=0,  (18)
lopes is intrinsically related to the methf8l: We shall also

make it clear that the RG method concerns with the boundfor n=1.

ary conditions in conformity with the general property of the  SinceQ4(X;X,) satisfies the same equationRgx) does,
RG methods as emphasized by Shirk@gd). one readily obtains
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Q1(X;Xg) =P1(X) = P1(Xo), (19

which satisfies the boundary conditi@BC) Eq. (18). Notice
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Y(Xg1X0) = Wo(X0) = A(xg)e 34, (26)

One may say that now we have obtained a family of

that a constant is the solution of the homogeneous equatio@urves{z,b(x;xo)}xo with x, parametrizing the curves. If

The second-order equation now reads

2
X4

QZ(x;xo)—XQé(x;xo)=(ZPl(X)—JEO Pi(X)E,;

Xo<X<Xg+AXx with Ax being sufficiently small, the wave
functions (X;Xg) and ¢ (x;xo+Ax) should give the same
value atx, i.e.,

4 P(X;Xg) = (X;Xg+ AX). (27
B Pl(XO)(Z_ El)' (20 Taking the limitAx—0 this condition is found to yield that
One can verify tha€, is given Eq.(9). Since Eq.(20) is di(X;Xo) 3
linear and the inhomogeneous part is a linear combination of dxo =0. (28)
those forP,(x) and P,(x), Q,(X;Xo) is given by a linear o™X

combination ofP,(x) andP4(x):

Q2(X;X0) = (P2(X) — P2(Xg)) — P1(X) (P1(X) — Pl(XO)()él)

which satisfies the BCQ,(Xq;Xp)=0. One finds that

Qs(x;x,) satisfies
4 3
X
Q3(XX0) =XQ5(X;Xo) = ( 7 P2(x) _,Zo Pj(x)En_j)

N
—P1(Xo) a P1(x)

2
—go Pj(x)Enj) —[P2(Xo)

4
_Pl(Xo)z](Z_E1>- (22

One can see that the inhomogeneous part is again composed
of a linear combination of those fdt,,(x) (n=1,2,3). Thus

the solution satisfying the BC is found to be

Q3(X;Xg) =P3(Xx) — P3(Xg) = P1(Xo) [P2(X) — P2(Xg) ]
—[P2(Xo) = P1(X0)?I[P1(X) = P1(X0)]. (23

We remark thak; is the same as that obtained @g(x).
Repeating the procedure, one finds tga(x;x,) are ex-
pressed in terms d?;(x) (j=<n). For instance,

Q4(X;Xg) = P4(X) = P4(Xo) = P1(X0) [P3(X) = P3(Xo)]
—[Pa(Xo) = P1(X0)?1[ P2(X) = P2(Xo)]
—[P3(X0) = 2P1(X0) P2(X0) + P1(X0)*][ P1(x)
—Pi(Xo)]. (24)

Thus we obtain the approximate solution valid around

X"\’XO
¢<x;xo>~A<xo)e*X2’4r§0 "Qu(XiXo), (25

which satisfies the boundary condition

Notice that whemAx— 0, x—Xq. This is the basic equation

of our method. This is nothing, but the condition to construct
the envelopeof the perturbative wave functions valid around
X~Xg. It is apparent that the equation has the same form as
the renormalization group equation, hence the name of the
RG method. The equation gives a condition whi&fxg)
must satisfy

oo

dA_ d 2 . '
&_A(X)d_xo 2 € (—Qn(x;X%g)) (29
X0:X
Defining f(x) by
d _ 3 df,(x)
- d_XOQn(X!XO) XO:X_ dX ’ (30)
one obtains
A(x)zﬁexp[ 20 € (x) |. (31)

With this solution, the global solutioig(X) is given by the
boundary value by construction:

2 o]
Pe(X) =Woq(X) =A(x)e‘xz/4=A_exp( - XZ + 21 ann(x)) .
(32

This is one of the main results of the present paper.
f,(x)’s are easily calculated in terms &%f,(x), and we
have

1

T y4
65" (33

3
f00=Py(x) =~ gx*

; b 1P 2_21 2, 11 ay 1 6
2(X)=P5(x) 2 1(X) _1_6X ax %X,

1
f3(X) =P3(X) = P1(X)P2(X) + 3 P1(x)%,

333 . 45 21 1
2 T4 b 8
32° 7 32° T 192% X

- 256
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1 tion of an envelope certainly resums the perturbation series
fa(X)=Pa(x) = P1(X)P2(X)— 5 P(X)%+ P1(X)?P2(X) of the wave function and the resultant expression is given in
terms of the cumulants of the naive perturbation series.
Now let us examine how the WKB result E) can be

—ZP1(X)4' constructed from the perturbation series obtained above.
Bender and Bettencourt found that if all terms beyond
30885 8669 1159 163 10 (1/512)*x1° are neglected, the sum of the highest power
= >z X2+ 513 x4+ 68 x5+ 2048X8+ 50> terms inf;(x) (j=<4) is nicely rewritten as
2 x? 0 17 50 5 a6 AT )"
f5(X)=Pg(X) = P1(X)P4(X) = P2(X)P3(X) + P1(X) Py(X) -7 1+2ex+ 1€ X"+ € X°+ 1150° X ,
(35

1
—P1(X)%P,(X) + P1(X)?P3(x) + z P1(x)®,
S which behaves for large as

__91673l, 3317l, 6453, 823 4 — Je|x|3/4(1152/47 8= \[e|x|3/5.96663  (36)
512 128 256 512
in an excellent agreement with the WKB result. How about
319 o, 7 o, the higher orders. In the fifth order, the sum of the highest
T 51200 6144 powers may be rewritten by neglecting all terms beyond

7e°x191286 as

2
X
-7+ ex?l4— e2x*124+ €3x8/64— €*x8/128

fo(X)=Pg(X) = P1(X) Ps(X) = Po(X)P4(X) + P1(X)?P4(X)

1
5 P3(X)2+2P1(X)P2(X) P3(X) — P1(x)*P3(X)

+7€5x191286
1 3 3 2 2 4
+§P2(X) —§P1(X) P2(X)“+ P1(X)"Pa(X) x2 L 5 , 115,
~— Z + EEX + 4—86 X
1
—=P1(x)°, 35 15 4459 v10
6 S 3,6, ~ 4,8 5,,10
+326X+646X+1646086X . (37
_ 9551840¢ 2. 19425763 4t 752825 ¢ For largex, the coefficient of— \e|x|® is
~ 2048 X" 2006 X " 1536 % gex. €
/10__
43783 , 3481, 1255 . 3, 4(164608/4459"/1=5.73827, (39)
X X x4 ) )
4096 2048 24576X 4096 which deviates from 6 more than the fourth-order result. The

o ) ) sixth order becomes worse: The sum of the highest powers is
and so on.f,(x)~f3(x) coincide with the results 6],  rewritten as

where explicit expressions df,(x) are given only fom=3.

It is interesting that the polynomiafg(x) are given in terms x2 5. 29, , 9 5 577 ,

of P,(x) appearing in the naive perturbative expansion in a — 7| 11 3exTH o eXTH e+ SoeX

closed form. 1

_ Here learned readers may have suspected th{a)’'s N 67621 5,10, 1324349 6,12 39
(i=1,2,3,..) are the cumulant [11] of the sum 4938245 35555328 ’

Sh_0€"P(x) in the sense that
which makes the coefficient of \/e|x|* for largex

©

ZO e”Pn(x)~ex;{ > €"fu(x)

: (34 4(35555328/132434%1°~5.26181. (40)

n=0

In summary, we have successfully applied the RG method
o ) . as formulated if3] to the Schrdinger equation of the quan-
byC(§)=§n:0§“/n! “Hno thenth.cumulant)\n is defined by tum anharmonic oscillatofAHO): The naive perturbation
InzC(g)zznzognln! ‘Ap. Expanding IrC(g):In(1+§,u12+ series of the wave function are resummed by the RG equa-
§92- ppt...), one finds that A;=p;, Apy=u2—p1,  tion. We have seen that the resummation is performed in the
Na=pa— 3ot 215, Ng=pa—4pipua—3u5+12uiu,  RG method more mechanically and explicitly than in MSPT.
—6u], Ns=24u3—60uiu,+30u 5+ 20utus—10usus  We have shown that the resummed seB&s  e"f ,(x) is the
5 pgt s, Ne=—120us+360utm,—270uiu3+  cumulantof the naive perturbation series. We have worked
30u3—120ud s+ 120w  popms — 10us+30uus—15u,m,  OUL U to the sixth order in the perturbative expansion and
—6uu5+ 1, and so on. Putting,,=n!P, and\,=n!f,,  found the following: Although the sum of the highest power
one sees that the relation E@3) betweenP, and f, is in f,(x) can be organized so that it becomes asymptotically
reproduced. In short, the RG method based on the construproportional to\/§|x|3 as was done if6,8], the coefficient of

In fact, this is the case. When a functi@{¢) of ¢is given
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it reaches the closest value to 6, the WKB result, in the Finally, we mention that a variational perturbation method
fourth order, then goes away monotonously from the closestalled the delta-expansion methptl5] has been extended
value in the higher orders. This is plausible because the corfer obtaining wave functiongl6]. The key ingredient of the
vergence radius of the perturbation series is zero; the cumigxtension is to construct an envelope of a set of perturbative
lant series should be at best an asymptotic series. We remafiqve functions as in the RG method, with a variational
that the RG method as developed here can be also app"echArameter In this method, although the basic equation can
the first excited state; it is, however, unlikely that the methodyot pe solved analytically but only numerically, uniformly
can be used to the higher excited states beyond the first e¥zjig wave functions with correct asymptotic behavior are
cited state. _ obtained in the first-order perturbation even for strong cou-
We stress that the method presented here can improv§lings and for excited states. In the present method, the basic
per_turbatlve_ wave functions for all cases where naive perturéquations are solved analytically, and the asymptotic form of
bative solutions of Bender-Wu type are given. It means thajhe wave function is constructed explicitly, although a fur-
the RG method combined with the Bender-Wu perturbationper resummation devised 6,8] is needed for obtaining the

method constitutes a new powerful method for improvingasymptotic form. In this sense, the two methods are comple-
perturbative wave functions. We hope to report on app"ca'mentary.

tions of the present method to other quantum systems and on

a possible extension to quantum field theory in forthcoming This work was partially supported by the Grants-in-Aid of
papers; we remark that the amplitudéx,) in Eq. (15) cor-  the Japanese Ministry of Education, Science and Culture
responds to the wave function renormalization constant.  (No. 0964037Y.

[1]C. M. Bender and S. A. Orszaghdvanced Mathematical [7] We are aware that MSPT was applied to quantum mechanical

Methods for Scientists and EngineetlcGraw-Hill, New problems earlier by Frasca; M. Frasca, Nuovo CimenttOR
York, 1978. 915(1992; 109 603 (1999.

[2] N. Goldenfeld, O. Martin, and Y. Oono, J. Sci. Compiit4 [8] C. A. Ginsburg and E. W. Montroll, J. Math. Phys9, 336
(1989; N. Goldenfeld, O. Martin, Y. Oono, and F. Liu, Phys. (1978.
Rev. Lett. 64, 1361 (1990; N. D. Goldenfeld,Lectures on [9]I. L. Egusquiza and M. A. Valle Basagoiti, Report No.
Phase Transitions and the Renormalization Grg@pldison- hep-th/9611143, 1996.

Wesley, Reading, MA, 1992L. Y. Chen, N. Goldenfeld, Y. [10] M. Frasca, Phys. Rev. A6, 1548(1997.

Oono, and G. Paquette, Physica 204 111 (1994; G. [11] For example, see R. Kubo, M. Toda, and N. HashitsuBte;
Paquette, L. Y. Chen, N. Goldenfeld, and Y. Oono, Phys. Rev. tistical Physics Il Nonequilibrium Statistical Mechanjcnd
Lett. 72, 76 (1994; L.-Y. Chen, N. Goldenfeld, and Y. Oono, ed. (Springer, New York, 1996

ibid. 73, 1311(1994; Phys. Rev. B54, 376(1996. For recent  [12] We use the notations of Bender and Bettencoéiltfor later
developments, see for example, R. Graham, Phys. Rev. Lett. comparison.

76, 2185(1996; S. Sasa, Physica D08 45 (1997); K. Mat- [13] The fact that the RG in general concerns with initial or bound-
suba and K. Nozaki, patt-sol/9702001, patt-sol/9703004; H. J.  ary conditions was emphasized by Shirkov; D. V. Shirkov,

de Vega and J. F. J Salgado, Phys. Re\6@)6524(1997). Russian Math. Survey49:5, 155 (1994); hep-th/9602024; V.
[3] T. Kunihiro, Prog. Theor. Phy€4, 503 (1995; 95, 835E) F. Kovalev, V. V. Pustovalov, and D. V. Shirkov,
(1996; Jpn. J. Ind. Appl. Math14, 51 (1997; Prog. Theor. hep-th/9706056, J. Math. Phyo be published

Phys.97, 179 (1997; see also, a comprehensive review; T. [14] C. M. Bender and T. T. Wu, Phys. Re%84, 1231 (1969;
Kunihiro, patt-sol/9709003, which is a refinement of the argu- Phys. Rev. D7, 1620(1973.
ment given in the previous papers where the fact that the RG15] The following is some of recent articles from which one can

method is a theory manipulating initial conditions were not trace the enormous number of references related to this
fully recognized. method; C. Arvanitis, H. F. Jones, and C. S. Parker, Phys. Rev.
[4] Large Order Behavior of Perturbation Thegrgdited by J. C. D 52, 3704(1995; W. Janke and H. Kleinert, Phys. Rev. Lett.
Le Guillou and J. Zinn-Justin, Current Physics—Sources and 75, 2787 (1999; E. J. Weniger,ibid. 77, 2859 (1996; H.
Comments, Vol. ANorth-Holland, Amsterdam, 1990 Kleinert, Path Integrals in Quantum Mechanics, Statistical
[5] G. A. Arteca, F. M. Fernadez, and E. A. Castrd,arge Order and Polymer Physi¢s2nd ed.(World Scientific, Singapore,
Perturbation Theory and Summation Methods in Quantum Me- 1995.
chanics(Springer-Verlag, Berlin, 1990 [16] T. Hatsuda, T. Kunihiro, and T. Tanaka, Phys. Rev. Le&.
[6] C. M. Bender and L. M. A. Bettencourt, Phys. Rev. L&, 3229 (1997; see also S. K. Kauffman and S. M. Perez, J.

4114(1996; Phys. Rev. D54, 7710(1996. Phys. A17, 2027(1984.



