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Pattern-forming instability induced by light in pure and dye-doped nematic liquid crystals
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We study theoretically the instabilities induced by a linearly polarized ordinary light wave incident at a small
oblique angle on a thin layer of homeotropically oriented nematic liquid crystal with special emphasis on the
dye-doped case. The spatially periodic Hopf bifurcation that occurs as the secondary instability after the
stationary Freedericksz transition is analyzed.
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I. INTRODUCTION of the stationary distorted state with respect to general per-
turbations in the plane of the nematic layer.
Liquid crystals(LCs) are known to demonstrate a very

rich variety of interesting optical phenomena that have been Il. THEORETICAL MODEL
studied intensively during the last two decades. A nematic . , , o
LC behaves optically as a uniaxial anisotropic medium with Ve consider a linearly polarized plane wave incident at a
the optical axis along the local molecular orientation de-Small Ob"fl‘%? angleg, on a Iz_iyer .Of dye-doped_nemanc LC
scribed by the directon(r,t). Moreover, when light propa- t.hat _has |n|t_|aIIy homeotroplq a[lgnmer@See F'g' 1 The_
gates through the nematic, its electric field exerts a torque ohght Is polarized along thg axis, i.e., we deal with an ordi-

the molecules that can induce molecular reorientation. WheHary wave. Strong anchoring of the nematic at the bound-

th . I di in the L@olarizati aries of the layer is assumed. The optical torque acting on the
erg' |s|onty ‘;? orl inary W?V.e.m the (pt(') a?za.lon %er- director is given by 7= (&q¢#/16m)(n-E*)(nXE)+c.c.,
pendicular 1o the plane containing the optical axis and Wavgypare g is the amplitude of the optical electric fielde

vecton, the initial distribution of the director becomes un- =g, (. 8,=5)—¢, is the dielectric anisotropy an (/)

stable wh_en_ the intensity of_hgh; reaches a certz_im criticalg the dielectric permittivity(at optical frequendy perpen-
value. This is the so-called light induced Freedericksz trangicjar (paralle) to n. ¢ phenomenologically describes the
sition (LIFT). The director reorientation leads to a change ofgffact of certain dye dopantg{;;= e, in a pure LG and can
birefringence and, as a consequence, the polarization ise hoth positive and negative and depends on dye concentra-
changed as light propagates through the I4gte2]. tion, molecular structures of both the host and the dye mate-

Itis known([3,4] that a periodic equilibrium configuration rials, on the wavelength of light, and on the temperature
of the nematic director can appear in a thin-film LC in the[5,6]. Obviously, the electrical part of the free energy will
magnetic or electric field induced Freedericksz transition uncontain the same factdi,¢;. The density of the free energy
der certain conditions. Our work is devoted to the search obf the dye-doped nematic LC is thus assumed in the form
analogous phenomena in the LIFT of nematic LCs including
the dye-doped case. We will show that the Hopf bifurcation . Eett
that occurs as a secondary bifurcation after the LIFT leads F=Felastic™ E'
indeed to a periodic pattern, although the mechanism is here
quite different(see the ConclusionsDoping is important where Fgjasiic= (K1/2)(V -n)2+ (K5/2) (n- V X n)2+ (K4/2)
because the LIFT threshold of a dye-doped nematic can be of (nx V X n)? is the standard Frank free energy density and
two orders of magnitude smaller than for a pure nematic. Th& ;,K,,K; are, respectively, the splay, twist, and bend elastic
nature of this anomalously low threshold was the subject otonstants of the LC7].
numerous studiesee[5,6], and references thergirhe fact
that the threshold intensity is low allows the spot size of the LC
light to be much larger than the thickness of the layer, thus a
large aspect ratio system can be realized.

This paper is organized as follows. In Sec. Il we present SRR ISR |
the theoretical description of our problem. In Sec. Il we @/‘V
perform the linear stability analysis of the homeotropic state
that gives the threshold for the LIFT. The numerical method E,
of calculating the stationary distorted state is described in
Sec. IV. Finally, in Sec. V, we do the linear stability analysis

n-EJ%, (6N

0 L

FIG. 1. Geometry of the setup: linearly polarized light along the
y direction incident at anglgs, on a nematic LC layer with the
*On leave from the Research Institute for Particle and Nucleadirectorng|z (homeotropic state The components of the directar
Physics of the Hungarian Academy of Sciences, Budapest, Hurare described in terms of the anglésp (6= ¢=0 in the homeo-
gary. tropic state.
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We first assume that the director components depend onlyopic state will cease to be stable above some critical inten-

on z,t. We introduce the angleg(z,t) and ¢(z,t) (see Fig.
1) so thatn=(sin#,cosdsine,cosfcose). Using the stan-
dard variational principl¢1] and taking the dissipation func-
tion in the formR=(y/2)n?, wherey is an effective rota-
tional viscosity, the equations of motion fa#(z,t) and
¢(z,t) can be derived.

In addition we need Maxwell's equations to determine the

sity of the incident light. The reorientation of the LC leads to
modification of the electric field polarization inside the LC
owing to the fact that it becomes an inhomogeneous aniso-
tropic medium.

Ill. STABILITY ANALYSIS OF THE HOMEOTROPIC
STATE

electric field. These equations contain the complex dielectric

tensor that depends on the director components
2

In EQ. (2) ya=1v,—v), wherey, andy are the imaginary
parts of the dielectric permittivity foE perpendicular and
parallel ton, respectively. They describe the absorption ef-

gij=(e tiy)dj+(eativanin;.

We first perform the linear stability analysis of the homeo-
tropic state f=¢=0). The linearized equation of motion
for ¢(z,t) has the following simple form:

(at+0)
167

yoo=Kzd5p+ (2|Eqy|?@+ET,Eqy+E,ES).

)

fect by the dye, so they vanish in pure LCs. The magnetic
anisotropy at optical frequencies can be neglected. Since thgere Eoy is they component of the electric field amplitude

components of the dielectric tensor depend onzleeordi-

for the undistorted nemati¢homeotropic orientationand

nate only, we may use the stratified medium approach fog. s thez component of the field that is caused by nematic

describing wave propagatid2]. We write the electric and
magnetic fields in the formE(r,t)=3[E(z,t)e'SokoXe it
+c.c]H(r,t)=[H(zt)e'sk*e “t+cc], where kg

= w/c is the wave number in vacuum asg=sin(8y). Here
E(z,t),H(z,t) are amplitudes that vary slowly in time com-
pared tow ! and obey the equation

——=ik,D¥, 3
dz 0 ( )
where
Ex
_ H
y
V= 4
Ey
—H,
and
2
E v S S Ev,S
_ ©xz 0 l——o yz >0 0
€27z €7z €27z
2
Exz €xz50 Exz€yz 0
_ ExxT L - Exy
D(z)= €22 €22 €22
0 0 0 1
2
_ Exz8yz _syzso Eyz o 0
8xy s < Syy_s_ SO
7z 2z 7z
)

The z component of the electric field can be found from the
following relation:

(6)

We will examine the casé.:>0 so that the preferred ori-

reorientation(calculated to the first order ip). It is easily
seen that in the undistorted LC the light maintains its polar-
ization inside the layer, so that we have only one nonzero
component of the electric fieIEOy(z)=Eoe'kzZ, wherek,
=kRe+ik,mzk0\/sL—sg+iyLko/(Z\/si—soz) (terms  of
the order of[ y, /(sl—sg)]2 in k, are neglected because
v, <e,) and Eq is the amplitude of the incident electric
field. In the linear approximatio® remains zero. Straight-
forward calculations yield the following equation f&x,(z)
from Eqgs.(3)—(6):

d’E,,
dZ

X[e, +ea—SoFi(Yat ¥ )Es,TK3(eativa)

dz(‘PEOy)
dz?

[, teati(yatv)] +kg(8L+i’h)

X (e, +iy )eEqyt(eativya) =0. (8)

Substituting E;,(z) into Eqg. (8) in the form E;,(2)
=E(z)e’*# and taking into account th&,L>1 (L is the
width of the layey, a first-order ordinary differential equa-
tion for E(z) can be derived. Keeping in mind thgt,(0)
=0 we eventually obtain from Eqé7) and(8) the following
integro-differential equation fog:

dep(z,t) _( L)Zﬂzgo(z,t) (Trk)
o @ .z Pl
z TK (TR
Xfo ¥ co T(Z —2)|+sin T(Z -2)

Xe(’lT/L)gk(Z,—Z)(p(Z/,t)dzl + @(Z,t)]e_ZK'mZ,

9

entation corresponds to the director parallel to the electric

field n||E. Since in our geometry initially L E, the homeo-

where ¢, &, «, and r are parameters defined as
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L Sg8ak0 ’yLz
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In the parameters defined above only the linear terms in

va,y, were kept f,,y, <1). The parameter is the char-
acteristic time of the director motion anpd=1/1., wherel is
the intensity of the incident light anid is defined as

| w2 c(e, +e,)Ky
© L €aveL?m ’

I, coincides with the threshold intensity of the LIFT for a
pure nematic §=1,y, =y =0) at perpendicular incidence
[2]. Then Eq.(9) reduces to the one obtained in RES].

We use a two-mode expansion with respecttfor the
angle ¢ with the boundary conditiong(z=0)=¢(z=L)
=0: ¢(z,t)=A.(t)sin(mzL)+A(t)sin(2mz/L), where A;

n=(gat)/e,. (10)
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andA, are time-dependent amplitudes. This is motivated by
the fact that the distorted state is asymmetric with respect to
the center of the layer because of absorption and the pertur-
bation of the light polarization inside the layer. Therefore we
have to include at least one mode that is symmetric and one
mode that is antisymmetric with respect to the center of the

layer. After projecting Eq(9) onto the trial functions we
have a system of two equations for the modgsandA,,

dAl dA2
Ot Lq1A1+ LA, Tat LoA1+ LAy, (1D

where the elements of the matri&; depend on material
parameters and the control parametgrand « (which is
proportional tos(z,). We look for solutions proportional to
exp(ot), whereo is the growth rate. The procedure of deriv-

ing £;; is straightforward but the expressions for these ele- /

ments are too long to be presented here.
The stability diagram in thek,p) plane can now be cal-

culated for any given material parameters of the LC. As an A B P

example we consider the nematic 5@Bentylcyanobiphe-
nyl) doped with the dye ADlanthraquinone derivative) ht

0.1% concentration. We used the following values of

material parameters at the temperatuie=24°: «,
=42 cm 1,n,=1.532,=190 cm 1,n,=1.71 (absorption

coefficients and refractive indices of the ordinary and ex-

traordinary light, respectively A =633 nm (wavelength of
lase), (=58 [6], y=0.845dyn s/chK,;=0.64
%10 dynK,=0.42x 10 © dyn,K;=0.86x10"° dyn [9];
the calculations are made for a layer of gén thickness. For
these parameters.=33.21 W/cnt,7=2.49 s. It is easy to
show the following relations:y, =ayn,/Kg,ya=(aene
— agny)/kg,e, =n2,e,=n2—n2 (neglecting terms of the
order of[y, /(g, —s3)1?).

) /

0.015 r /

00t Y.

0.005 r /

FIG. 2. (a) Stability diagram of the homeotropic and stationary
distorted states in thex(p) plane.H is the region of the homeo-
tropic state. SD is the region of the stationary distorted state
bounded toward large by the secondary Hopf bifurcatiofash-
dotted ling. TB is the Takens-Bogdanov poirih) Solid and dashed
lines correspond to those (). The dot-dashed lines are obtained
when the absorption effect is neglectéd). The secondary instabil-

ity for small angles of incidence. PoinésandB show the instabili-
ties of the stationary distorted state for perpendicular incidence of
the light withn,(z)=0 andn,(z)#0 correspondingly.
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The stability diagram is depicted in Fig(&. The solid  representation in terms of eigenfunctionsiyf. The eigen-

line corresponds to a stationary bifurcatioRe(o) =Im(o) value prOblerfDo;FaiZi is solved by the eigenvalues
=0] and the dashed one corresponds to a Hopf bifurcation

of the homeotropic stafeRe(o) =0,Im(c) #0]. These lines a,=—a;=\e, — SO?,

divide the (x,p) plane into a stable and an unstable region of

the homeotropic alignment. They join in a so-called Takens- (e, +e,— 5(2))8L

Bogdanov point where def) =Tr(£)=0. B=-a=\ g ie (13

There are two differences compared to the case of a pure )
LC. First, the enhancement of the orientational optical non@nd €igenvectors

linearity described by the parametgteads to a “renormal- 0 Fasle

ization” of the threshold intensitysee Eq.(10)]. [However, . 0 o 1

since Fig. 2a) is plotted with the renormalized threshold a = _ . Q34— (14
intensity, this does not change the appearance of the stability | Fla ' 0

diagram] Second, the absorption gives rise to the attenuation 1 0

of the field inside the nematic. This results in a shift of thewe introduce the metric tensor

line of primary instability to the region of higher intensities

as is shown in Fig. (). From this figure one can see the 0 1 00

guantitative difference between the case when the absorption 10 0 O

is neglected(dot-dashed lingsand when the absorption is M= (15)
taken into accountsolid and dashed lingsNote that the 0 001

critical intensity p,,, for perpendicular incidence thus be- 0 01 0

comes larger than 1.

It must be noted that we supposed that the nematic i£0 define a scalar product between these vectors. With such a
maintained at constant temperature. Actually, due to the pregbetric the eigenvectors are orthogonal to one another:
ence of the absorbing dye, the nematic will be heated by thEiTMaJ: 6ijNi, whereN; is the “norm” of vector ;. The
light [10]. We have estimated the maximum temperature difmatrix D, is expressed by means of the vectarsas D
ference ooeuringsdethe et SCB Uoed W 1S 48—, (N . The four vectors e te polariza

tion of four “proper” waves that propagate inside the layer

dimensional since we considered a plane Wavr the without changing their state of polarization in the case of

;gnrg]jg tgfdgtﬁgsgfri:th?’;]— rj?eo Vl\éle ﬁnfn;h$hd|£fer§rlc;i W:Sall homeotropic alignment. The magnitudesapfgive the indi-
4 WREeIns. thusw usualy-os of refraction of these waves. Two of these vectors

neglect the temperature dependence of the material param-~ — :
eters and we took them to be constant across the layer. @1 (@2) correspond to backwarfforward) propagating or-
dinary waves and the other twe; («,) correspond to back-

IV. STATIONARY DISTORTED STATE ward (forward) propagating extraordinary waves. The contri-
bution of the backward waves is negligibly small because the
After the homeotropic state looses stability via a station-dielectric properties of the nematic change little on the spa-
ary bifurcation_(at not too Iarge_ angle of incidencehe d_i- tial scale of the wavelengtfi2]. Thus we can expar@(z)
rector settles in a stationary distorted state. One obtains thes follows:
stationaryz-dependent reorientation of the director by varia-
tion of the free energy densityt) with n defined in terms of @(z)z bz(z)eikoazzgz+ b4(z)e‘koa4zz4 (16)
the angled, ¢. This gives us two ordinary second-order dif-
ferential equations fo#(z) and¢(z) (now these angles can and write Eq.(3) in terms of the amplitude®,(z) and
be of arbitrary magnitude We will not display them here 0a(2),
because they are long and are obtained straightforwardly. db, ik
These equations contain the field components that obey -2 0
Maxwell’s equations(3). It is convenient to write Eq(3) dz N
using the Oldano formalismill]. Following [12] we write

[P2yz)by+bye kolr2ma02p, (7)],

; db, ik _
the matrixD [see Eq.(5)] asD=Dy+D,(z), where d_z4: N_:[P44(Z)b4+bzeflko(a4fa2)zP42(z)], 17)
s _
0 1--—1% 0 © where Py;(z) = axMD,(2) «; are the matrix elements db,
Lo between the eigenvectors
Do=| € 0 0 0 (12 ,
€., €0 6)%sin(¢)?
0 0 0o 1 2= . —,
0 0 e -2 0 azle. +e,co86)°cod ¢)]
ande, =&, +iy, .ea=e,+iv,. The matrixD, contains the  p_ _p, — [a, Sin(8) — cog 6)Cog @) So]sin ¢)cos )€,
z-dependent angleg and ¢. It is convenient to introduce a aye, +e,cog h)%coq ¢)?]
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5 e[ {a, sin(#)2—sin(26)cod ¢)so} (e, +e,)a,+ e, sa{cog #)2cog ¢)2— 1}] 18
“ e, (e, +ey)[e, +e,c08 0)%cos ¢)?]

The advantage of the syste(h?7) is that we now have figures represent the state slightly below the secondary
only two equations for the “slow” amplitude®,(z) and instability.
b,(z). So, we have a system of coupled ordinary differential
equations foré(z),¢(z),b,(z), and by(z) with boundary
conditions 6|,-¢; =¢|,—0.=0, and initial conditions
by|,—0=Ag,bal,—0=0. HereA, can be related to the nor-
malized intensityp defined in the preceding sectiok, Next we have performed a linear stability analysis of the
=873(e,+ sl)(ei—sg-i-iyi)p/(sasl 7). distorted stationary state with respect to spatially periodic
The system of “nematic and field” equationvith  perturbations in the plane of the nematic layer. We write
boundary conditionsis invariant under the transformation
[0,¢,Ex,Ey]—[0,—¢,Ex,—E,] owing to the reflection
symmetry with respect to thg direction. Since the primary
instability breaks this symmetry, two different distorted
states exist, which are mutual images under this transforma-— it o
tion. For perpendicular incidence of the light there is an ad-¥ =Vo+ V1= 224 (bi(2) + Sby(2)e (T PY)) gkt o
ditional reflection symmetry with respect to thedirection ' (19)
and, as a consequence, the system of equations is also
invariant under the transformation[6,¢,E, ,E]— ) o )
[—6,0,—E,.E,]. where én and éby are small spatially periodic perturbation
The system of equations can only be solved numericallywith wave numbers and p; o is the growth rate.
For this purpose we introduced the new variables From the equatiom®=1 follows thatng- Sn=0. Thus
d6é/dz de/dz to transform our set of equations to a systemthere are only two independent componentssof We ob-
of six first-order equations, which was solved by the shoottained two linear equations fain,(z) and én(z) that con-
ing method. To guarantee that we obtain the solution whictain én,(z),ony(2) itself, their z derivatives up to second
originates from the homeotropic state we started with intenorder andéb, 4(z) with complicated coefficients depending
sities only slightly above the threshold. Then, we incregsed on the stationary distorted statg(z),b, 4(z). Also, we de-
slightly and used the values af6/dz|,—y,de/dZ,—, ob- composed the matrixD (see (5)) as D=Dy+D,(2)
tained in the previous step as an initial guess. This proceduré D1(dn), where the matrice®,,D,(2z) correspond to the
allowed us to derive the profile¥z),¢(z),b,(z), andb,(z) stationary state and were defined in the preceding section,
for any k andp above threshold. and the matriXD,(n) depends linearly odn. After linear-
The director and field distributions fop=2.0 andB, ization of Eq.(3) the equations fobb, 4 can be obtained,
=11° («x=0.375) are shown in Figs. 3 and 4. In the follow-
ing section we will show that foikk=0.375 the stationary 1 . . . .
distorted state becomes unstable ggt=2.01, thus these

V. STABILITY ANALYSIS OF THE STATIONARY
DISTORTED STATE

n=ny(z)+ n(X,y,z,t)=nNg(z) + dn(z)e 1 (@x*Tpy),

0.15 T T T T 08 | i
IeJ?
0.1 0.6 F E(2) 1

0.05

04t 1
0
02
-0.05
0
0 0.2 0.4 0.6 0.8 1
o . . . . Z/L
0 0.2 0.4 0.6 0.8 1 . . ) . .
Z/L FIG. 4. Distortion of the field components inside the nematic

layer for the stationary distorted statp=2.08,=11°). E, is
FIG. 3. Profiles of the director componemtg,n, for the sta-  small compared td,,E, and is not depicteds, is the amplitude
tionary distorted state at=2.0 andBy=11° (k=0.375). of the incident electric field.
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d(dbs(z)) ik A 1.2 — . . . . . .
— = N—;’( Sb,P 5o+ Sbeikola=a2zp, 4y PLL)
1 -
4 bAeiko(araz)Zp(zi))'
08
d(dhy(z)) ik . 206 |
Tdr T, (0 Pk by °
04
+h,eko@mazpllyp, Py (20)
02
where PY= o] MD, e, are the matrix elements d; with oLl — —
kj — aMU1a; 1 ! 0 0l 02 03 04 05 06 07
respect to the eigenvectof$4) and theP,; were defined in ©
Eq. (18). . .
We have linearized the E¢B) substitutingy in the form FIG. 5. Dimensionless Hopf frequendy.r for the secondary

instability versusk. PointsA and B are the Hopf frequencies at

(19). In principle we should have started from Maxwell's "™ : s
points A and B depicted in Fig. &).

equations because the field perturbations containdepen-
dence. However, this is a very good approximation because
the corrections are of the ordgrky,p/ko<<1. the critical wave vectors will beq:,p.) and @Qc,—Pc)-

To solve the eigenvalue problem far we expand Thus two different traveling waves with critical vectors
ony (2),6b, () with respect toz in systems of functions (dc,=pc) can be realized depending on which stationary
which satisfy the boundary condition&alerkin methoyl  state will be selected after the homeotropic state loses stabil-
For én the boundary conditions ar@n, |,—o, =0, thus we ity.
write sn= 3, A sin(mkZL). Clearly the boundary conditions An interesting situation arises in the limit of normal inci-
for the perturbations of the field amplitudes afb, 4,-,  dence. One might expect that f@—0 the wave number
=0. One can see that at=0,L the right-hand side of the d.—0, since in this limit the external symmetry breaking in
system(20) vanishes so one also hd§sb, 4)/dz|,—o, =0. the x direction vanishes. However, this turned out not to be
Therefore we used the expansiéh=3 B, sir[7nZ(2L)].  the case. The reason is that then another stationary instability
This set of functions is complete but not orthogonal. We havdhat spontaneously breaksreflection symmetry intervenes
to truncate these expansions to a finite number of modes. the primary and the Hopf bifurcation. For the parameters of

We have solved the eigenvalue problem numerically toour computation one hagy,=1.11p.;=1.13 [point A in
find the neutral surfacgy(q,p) (for given angleBy) which  Fig. 2(c)] andp,=1.17[point B in Fig. 2(c)]. One now has
is defined by the condition Re(q,p)]=0. The number of four symmetry-degenerate states and consequently four trav-
Galerkin modes was chosen such that the accuracy of treling waves with critical wave vectorsqqc, = pc). In some
calculated eigenvalues was better than 0.0We took six
modes fo_r5n and forjq_/ mo_des fo_er). T_he minimum of this o 041 qL o 04 02
surface gives the critical intensigy, = min, po(q,p) and the ‘ ' ‘ " :
critical wave vector g.,p.). SinceQ).=Im(o) turned out to
be nonzero at the minimum, the instability corresponds to a
Hopf bifurcation. The branch of the secondary Hopf instabil-
ity is depicted as the dash-dotted line in Figa)2and for
small angles of incidence in Fig(@. It is interesting to note
the following tendencies: as the incident angig increases
the critical intensity also increases, but the director and field
deformations at the secondary instability decrease.

The dimensionless Hopf frequen€y,.r ( is defined in
Sec. Ill) versusk is shown in Fig. 5. Figure 6 shows a
typical contour plot of the neutral surfapg(q,p). The point
(gcL,pcl) in this figure is the minimum of the surface and
as is seen the bifurcation is inhomogeneous with some criti-

cal vector @ ,pc)aﬁﬁ. This means that traveling waves are
expected to appeap. is only slightly below the homoge-
neous thresholgho(q=0,p=0), which was calculated be-
fore for the pure LJ12,13. FIG. 6. Contour lines for the surfaggp,q) correspond tq3,

As was pointed out in Sec. IV, for nonzegy there are  =11° (x=0.375). The critical intensity ip.=2.01 with the criti-
two symmetry-degenerate stationary distorted states. Clearbal wave vector @.L,p.L)=(0.11~0.06); po(q=0,p=0)—p,
the two neutral surfaces are related by changing —p and  =1.5x10"3.
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0.3 ' without transverse degrees of freedom, which is the first step
L a) towards complex behavior. In model$2,13 and simula-
e - K /K=0.9 tions[14], a gluing bifurcation was found above the second-
ary Hopf instability, which is a homoclinic bifurcation that
restores the symmetry broken by the Freedericksz transition.
N This gluing bifurcation was recently observed experimentaly
\\ AN [15]. After this first gluing, complex nonlinear behavior and
~o N eventually chaos was observed in both theory, simulation and
01r SN 1 experimen{16]. An analogous gluing bifurcation should ex-
= BN ist also in the case of the spatially extended system.
RN The behavior of the system in the vicinity of this gluing
bifurcation can, however, be radically different from what
%3 03 07 09 was observed in the experimefit5]. In the spatially con-
K,/K, strained systenti.e., the director oscillation induced by a
narrow beam as observed in the experimentge observes
______ 3 stochastic behavior in the vicinity of the first gluing only as
pcL L e a consequence of experimental noise. It has been shown,
- - however[17] that any spatially extended system, which pos-

] sesses a homogeneous limit cy¢rehich is stable with re-
spect to homogeneous perturbatiphecomes unstable as it
approaches a homoclinic bifurcation. This instability is either
a phase instability, or a finite-wavelength period-doubling
instability. On these grounds one can expect to observe very
--=-- K,/K,=0.9 complicated behavidiprobably spatiotemporal chaads our
-—— K/K=06 ] system already at the threshold intensity of the first gluing.
— K,/K=03 As opposed to the previous case, this would be true deter-
ministic chaos, not merely stochasticity due to noise.

oz K — K/K,=03

-0.05

-0.15

-02 L L I
0.3 0.5 0.7 0.9

K/K,

FIG. 7. Critical wave numbeng. ,p. versusK, /K for different VI. CONCLUSION
ratiosK, /K3 (Bo=11°).

We have found the threshold of the LIFT for the homeo-
tropic state and the threshold of the secondary instability of

the stationary distorted state in a nematic LC, including the

further investigations we have changed the ratios betweeH . L .
. . . ye-doped case, for different incident angles of the light. In
the elastic constants keeping other material parameters con:

stant and saw the following tendency: the larger the anisotParticular, we have demonstrated that the stationary distorted

ropy of the constants, the deeper the minimum of the surfacgt_ate loses stability in an inhomogeneous Hopf bifurcation
ith some nonzero critical wave number that leads to the

becomes and the larger the magnitudes of the critical wav¥ ; ) '
numbergsee Figs. @), 7(b)]. The absolute error of the di- formation of traveling waves in the plane of the layer. _
mensionless critical wave numbegsL,p.L depicted in this Qur rgsult d.emonstrates a general fgature of Hopf blf_ur—
figure is less than I In the one-constant approximation Cations in spayally extendgd systems v_\/lth broken reflection
the bifurcation is homogeneougd,p.=0) for any x. This symmetry, as is the case in the LIFT-distorted state. Except
latter can be easily proved analytically. Perturbation theoryor SPecial cases, such as those where the reflection symme-
can be used to investigatgp dependence of the critical try can be re_zs_tored by_ going into a moving frame, the neutral
eigenvalue of an arbitrary stationary state. The calculation§Urface exhibits the signature of the broken symmetry. Con-
shows, that the perturbation of the eigenvalue-ig®+ ¢2. sequently, ag.=p.=0 the neutral surface does not have a
From Figs. Ta), 7(b) one can see thaf.L,p.L~0.1. This stationary point and thus cannc_;t have a minimum. This gen-
means that the period of the structure/2|, , 27/ p.~ 60L eral _featu_re was apparently first noted in the context of
—0.3 cm. Thus in an experiment the spot size of the light©action-diffusion systemigi8].
must be rather large in order to observe the traveling waves.
Finally we remark on the behavior of the system in the
nonlinear regime above the Hopf bifurcation. This system
without transverse degrees of freedom has been studied ex- ACKNOWLEDGMENTS
tensively, and various regimes of complex behavior have
been discovered. The bifurcation studied in this work marks We wish to thank A.P. Krekhov for helpful discussions.
the transition to simple periodic oscillations in the systemThis work was supported by DFG Grant No. KR690/16-1.
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