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The exact solution of the Schrédinger equation for the Coulomb potential is used within the scope of both
stationary and time-dependent scattering theories in order to find the parameters which determine the regular-
ization of the Rutherford cross section when the scattering angle tends to zero but the distamctne center
remains finite. The angular distribution of the particles scattered in the Coulomb field is studied on rather a
large but finite distance from the center. It is shown that the standard asymptotic representation of the wave
functions is inapplicable in the case when small scattering angles are considered. The unitary property of the
scattering matrix is analyzed and the “optical” theorem for this case is discussed. The total and transport cross
sections for scattering the particle by the Coulomb center proved to be finite values and are calculated in the
analytical form. It is shown that the effects under consideration can be important for the observed character-
istics of the transport processes in semiconductors which are determined by the electron and hole scattering by
the field of charged impurity centers.
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I. INTRODUCTION scattering angle is determined by particles with a large im-

The scattering of nonrelativistic charged particles by the?@ct Parametef3] connected with a long range character of
Coulomb center is one of the canonical problems both i€ Coulomb potential. Therefore, a small angle cone can be
classical and quantum mechanics which is known as the Rigxcluded from the consideration because of a finite transver-
therford problem. It is a generally accepted view that theS@l Widtha of the incident beam witt,~a/r [4].
differential cross sectiodo(6) of the particle scattering to ~ Other approaches are used when the mobility of charge

the solid angledQ is of the same form in both casefor carriers is calculated in impurity semiconductors. At present
example, Refs[1,2]) Brooks-Herring[5] and Conwell-Weisskopf6] models are

5 most commonly used for this problem. These models corre-
do(6) = o(6)dQ = ( @ ) dQ (1) spond to Q|ﬁerent ways of estimating the parame?[;g;; con-
2mv2) sintfer2’ nected with screening the Coulomb potential. However, such
) i estimations are only of qualitative character and some addi-
wherem and v are the particle mass and velocity, réSpec-sna| phenomenological parameter should be introduced for
tively, with parametew defining the amplitude of the Cou- 5 more precise description of the mobility as it has been
lomb potentialu(r)=a/r. - _ recently shown in the pap¢7]. Accurate calculations of the
Thus, the main measurable characteristic of the scatteringtegral values characterizing the charge carrier scattering by
process in the Coulomb field has the nonintegrable S'”9“|ari'mpurities is important because of high accuracy of measur-
ity in the limit 6— 0 (in quantum theory the singularity ex- jhg these values in real semiconductgfsr example Ref.
ists also in the scattering amplityd&ortunately, this singu- g7y Solution of this problem is of great interest also for
larity does_ not lead to any prob_lem when describing most o nalysing the electron transport in nanostructures such as
real experiments because particles are scattered by the S¥fiantum wireg9], superlattices and filmgL0], nanotubes
tems with the total zero charge. In this case the singularitiefll]_
due to the scattering centers of opposite signs are compen- Reqylarization problem for the Coulomb cross section be-
sated and the cross section proves to be regular in the entigg mes more vital in the framework of quantum theory. The
angular range. There are, however, some physical systemgater is that wave functions for the states of the continuous
where one should solve the problem of regularization wheryhactrum are accurately knowt]: they have no singulari-
calculating such integral scattering characteristics as the totg s, even in the case of a plane incident wave which corre-

Otor @nd transporr, cross sections sponds to the beam with an infinite transversal width. This
means that the singularity of the scattering amplitude is not
Utot:J do(6), oy :f (1 - cos@)do(6). (2)  anintrinsic feature of the Coulomb system within the scope

of a quantum mechanical description. It might be due to a

For example, one can mention the calculation of kineticrather incorrect description and interpretation of the
process characteristics in plasma and impurity semicondu@symptotic behavior of the wave function in this case. So,
tors or collisions of charged particles in beams. In such casebere should exist some characteristic, or “kinematic,” regu-
one should introduce some phenomenological paranfgier larization parametep, which unlike the valuef,;, is not
for cutting off the cross sectiofil) with anglesd< 6,;,, This  connected with the initial state of the system. In a general
parameter can be defined by various physical reasons. Parase the regularized cross section should depend on both
ticularly, in the framework of classical mechanics a smallparameters.

1050-2947/2004/18)/05270115)/$22.50 70052701-1 ©2004 The American Physical Society



BARYSHEVSKII, FERANCHUK, AND KATS PHYSICAL REVIEW A70, 052701(2004

It is critical to emphasize that some specific characteris- 1
tics of the Coulomb scattering problem have been widely _ >
discussed in monographs and textbooks. For example, it i
shown in book[4] that the connection between the impact
parameter and the scattering angle becomes indefinite in th
case of#=0, therefore the scattering cross section for zero
angle cannot be calculated in terms of classical dynamics. I
is also well known that a long-range character of the Cou- 2
lomb potential leads to a logarithmic distortion of the phase
in the asymptotic form of the wave functidd]. However,
the problem of the cross-section regularization has not beel
considered in these works.

This problem was first analyzed in our pap&g]. It was
shown that the standard asymptotic representation of the
wave function was not actually formed at small angles when -
considering the scattering processes by long-range potential
[U(r)~1/rs;s<3]. As a result the canonical definition of
the scattering amplitude proved to be inapplicable. In our F|G. 1. Sketch of the scattering process in the stationary
work [12] Born approximation over the potentibl(r) and  case.
the time-dependent collision theof%3] were used in order
to calculate the scattering cross section without any sing

v

Yors with charged impurities are calculated in Sec. VI, and

Li;glésﬁc\évse tfwaerrlearlj/?\er?:Etlv?/gsas%:/nvrtﬁ[]g t%aeixi?]g]rf::]:nce the results are compared with the experimental values of the
) carrier mobility in real systems.

between incident and scattered waves changed the

asymptotic form of the wave function and could be signifi- Il. NONASYMPTOTIC CALCULATION
cant under real experimental conditions even in the case of OF THE DIFFERENTIAL CROSS SECTION
some short-range potentials. FOR THE COULOMB SCATTERING

In the present paper we consider the nonasymptotic analy- _ o _
sis of the observed characteristics for the nonrelativistic Cou- Let us remember the main definitions of the scattering
lomb scattering problem outside the framework of the pertheory in terms of stationary quantum mechanics. It is well
turbation theory. We use the exact solutions of theknown[1] thatin the general case one should find the wave
Schrodinger equation in order to answer the following quesfunction of the continuous spectrui(r) as the solutions of
tions: () which “intrinsic” kinematic parameter determines the Schrédinger equation
the regularization of the Rutherford cross section in the 52
fra_lmework pf the stationary scattering theo(®) how does - —(A+K)+U®) | =0, (3)
this regularization depend on such “external” parameters as 2m
the t_rans?rs?l r\:v idth of thel.lncr]:ient wave packlet ?r effectivgnder the following asymptotic boundary conditioffég. 1
cutting off” of the potentiali(3) how can one calculate non- ¢ 5\ all the necessary notatigns
asymptotic values for the integral scattering characteristics

Oon Oy (4) what is the analogue of the “optical” theorem Gi(F) ~ eiIZ-F’ K-F—s — %, (4)

47 Im f(0)=koy: in the case of the Coulomb potential

[1,2]? It seems to us that the answers to these questions have ) ik

an important methodical value for understanding the scatter- YilF) ~ gk 4 f(g)e—’ r>R. (5)
;

ing processes in the field of long-range potentials but have
not been discussed before. Besides, these results can also beH Kis th tor- th IR determi h
essential for some applications such as the above-mentioned erek s the wave vector, the va etermines a char-

transport processes in semiconductors with charged im urf‘—‘CteriStiC rac_jius of the potential action Wit_h the center at
ties. port p g P =0 ( R— in the case of the Coulomb figldThe wave

The paper is organized as follows. In Sec. Il the differen_functlon is supposed to be normalized to one particle, so the

tial scattering cross section is determined without anﬂux density in the incident state is
asymptotic representation of the wave function and the kine- . A - R . Ao -
matic regularization parameter is found for the Rutherford | = o —[¢(1) V(N) = NV (1) 1= —k= |,

- . . 2im m
problem. In Sec. Ill the most important integral characteris-
tics of the scattering problem are calculated. In Sec. IV the K-F— —oo. (6)
scattering operator and the conservation of the total flux are
analyzed. The time-dependent consideration of the collision The flux density in the asymptotic staf®) is divided into
process is discussed in Sec. V and the influence of the inciw0 components:
dent beam parameters and the potential screening on the ob- -
served scattering characteristics is studied. The scattering f:j I—(+j L >R )
characteristics of the carriers in nondegenerated semiconduc- "Iy '
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One of themj; (a longitudinal componentorresponds to [ a \?
the particles passed through the field without any interaction Ngif > Jo(@) i kr. (11)
and the second ong. (a radial componeptdescribes the 0
scattered particles. This results in the standard definition of It means that the asymptotic boundary conditinis not

the cross section: applicable in the entire range of the scattering angles and the
, nonasymptotic expression for the wave function should be
do(6) = {ﬂirde, used in the case of small angles. It is important to stress that
Jo this circumstance is not related to the width of an incident
beam and is conditioned by the characteristic feature of the
a(0) = |f(9)|. (8)  potential itself.

o So, the considered regularization problem for the Ruther-
_ It should be noted that the longitudinal flux also changegqq cross section within the scope of the stationary scatter-
Ji<jo, its decrease being determined by the total scattering,q theory is reduced to the analysis of the space flux distri-
cross section in accordance with the “optical” theofdn — ption in ‘terms of the well known exact solution of H@)
It is evident that definitior{8) is based on the asymptotic \yith the potentialU(r)=Ze?/r but without turning to the
mode (5) for the wave function at the observation pomt asymptotic representation of the wave function.

According to the terminology used in radio-physics and op-~“\ye il use the following form of the normalized wave
tics (for example[15]), it means that the particle should ¢ . ion [1]

leave the “near” zone, the potential action is still consider- .
able, and pass to the “far,” or “wave,” zone. The boundary yu(i) = Nek"F(+i¢, 1,i(kr _Q.F)), N = e"™é(1 7 jg),
between these zones is conditioned by the fact that the inter-

ference between incident and scattered waves becomes neg- o .
ligible, so the difference between their phases satisfies the E=—, a=7¢, v=—, (12
inequality hv m

where F(a,b,t) is the confluent hypergeometric function;
I'(t) is the gamma function; the upper sign in the formulas
corresponding to the attraction field and the lower one cor-
9> g = \/z 9) responds to the repulsion potential.
0 kr' Let us show that the flux density in the formul® cal-
o _ culated with the exact wave function can also be divided into

We suppose further that for all real collisions the condi-4,o components according to formul@) as it was done in
tion kr>1 is fulfilled. the asymptotic mode. For this purpose one can use the rep-

Itis clear that the boundary of the "wave” zone dependsesentation of the functioff as the superposition of two

both on the distance from the. center and the scattering confluent hypergeometric functions of the third genus
angle @ (Fig. 1). It means that in the general case there ISy, Aa,b,t) [16]

some part of the particle flux which cannot be described by

kr—K-F=2kr sird(0/2) > 1,

the asymptotic wave functiob) even for rather a large dis- o1 o 1 .
tancer. This property certainly does not depend on the radiusF(i'g'l"z) T T(+i9 Ui(#i¢,1iz) + Il ié:)UZ(i'f'l"Z)’
of the potential action. However, the question arises: what is

the contribution of these particles to the integral scattering _ iz -

process? When the distance from the cemtés fixed, the Uq(#i&,1,iz) = (2*¢ e ™G (£i¢,iz),

number of particles scattered to the “near” zéhe 6, can be Fa=ig)
estimated as

Gy(#i&iz) = J% e‘”u”f(l u)’—fig du
joo(0 1(F16,12) = -—] - ,
Ngir = joo(0) 65 ~ %. (10) 0 iz) iz-u
The cross section(0) is restricted for the potentials with Uy(tig 1,2) = (277 T TG(£i£,i2),

a finite action radius}, thereforeNg;; decreases quickly at a
large distance. It means that the contribution of these par-
ticles to the observed scattering characteristics is negligible * : u\“ie
for most real experiments. The detailed analysis of the “near” Ga(%ig,iz) = f e_uui'§'1<1 + E) du,
and “wave” zone formation for the scattering problem with a 0
short-range potential has been recently considered in paper .
[14]. z=(kr —kr) =kr(1 - cosé). (13
The situation changes fundamentally in the case of a long- Let us also mention the relation between these functions

range potentialR— ). The valueNg; can even increase . )
ith the dist dit tribution to the f i f th and the confluent hypergeometric functions of the second
Wi e distance and its contribution to the formation o egenusU(a,b,t) 21]

scattering flux can be significant. Particularly, a similar esti- ‘
mation in the case of the Coulomb field is of the form Us(a,b,t) =U(b - a,b, - t)e'e* ")

T(£ié)
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U,(a,b,t) =U(a,b,t)ea™, estimation can be found using the asymptotic form of the
function G; [1]:

1 oo
U(a,bt)= @ L e (1+u) ™ du. (19 |Gi(iz) = %|Gl(iz)|.

When the Rutherford cross section is calculated by meansherefore approximatiofil6) can be used in the entire range
of the standard definition this representation enables one tef the scattering angles.
find the asymptotic form of the wave function within the  This representation permits one to find the scattering flux
limit z>1 [1]. This case corresponds to the “wave” zonej, directed to the observation point along the vectavith-
when the functiond, transforms to the spherical wave and out using the asymptotic forigb) of the wave function. As a
the functionU, tends to the plane wave. However, both theseresult the scattering cross section can be estimated in the
functions are also well defined in the “near” zofe<1)  entire range of the angle&in the following way:
when they can be calculated by means of the following series

2 H
[16]: o,(6)d6 = sin 62 f d(p]j—scda
0 0
o 1 o _
Uy(xig 1jiz) = Er(ilg) F(i¢,1,i2) = 2¢ sinh(mé)e” ™G, (zi£,12)|%r? sin 6 d6.
17
e121'r§_ ( )
+————|[2 In(i2) ¥ i7m coth(7wé) —im One can see that the differential cross sectiqqé) is
2 finite for any angles in spite of the fact that the function
+ 2019 TF (i€ 1,i2) G4(xi¢,iz) has a logarithmic singularity at a zero angle as it
. follows from Eq.(15) . But there is a nontrivial dependence
D [(mzif) A — of this value on the distance between the center and the ob-
= r(iié)(mg)Z["b(m— 1£) = l2i¢) servation point because of a long-range action of the poten-

tial on the particle. The result of this action at small angles
) (“near” zong is not confined to varying the phase of the
+2i(1) = 2p(m+ 1)]('Z)m) : scattering amplitude as it happens for the asymptotic range
of angles(“wave” zong [1].
If one considers the behavior of the functiGr(zi&,iz) in
relation to the scattering angle, the “kinematic” paraméger
for regularizing the Rutherford cross section can be naturally
introduced. The asymptotic range of angles corresponding to

Uy(2i&,1,iz) = %F(l ¥ ig){ F(xi& 1,i2)

F2mé _ «, » . . ..
- ez—il([z In (iz) ¥ i coth(mé) - imr the “wave” zone is actually defined by the condition
™ -
. o z:kr—k-F:Ekr02>1,
+2(xi§JF(xi& 1,i2) 2
o I(mzig . 5
"22 Taigmp AMmE 19 - U0 0> 6o= \/%<1, o1,
+2(1) - 2¢(m+ 1)](iz)m> } , (15) . aﬁ e s
0

wherey(t) is the logarithmic derivative of the gamma func-

fi Here a dimensionless valueis introduced as a conve-
ion.

. . ) nient variable for the angles comparable with the width of
When representatiorni13) is used in formula(6) one  (he “near” zone. Certainly, in the range xo$ 1 the standard

should take into account only the derivatives of the expogymntotic representation of the integral in the definition of
nents because the conditiokis>1; z~1 are supposed to be 14 function G, (2i&,iz) results in formula(l) with a new

fulfilled. For example, variable

—i e \(i2) elkr[kG + 5 G (IZ)} \2(|(|’)3/2 a \?1
(r >[ 1= 1 1 o,(0) =27 k 2 =8 m?) 7 x> 1.
) 1
= e'krkGl{l +O(E>] . (16 (19
It is well known that the interference between the scatter-
This estimation is evident for the “near” and “intermedi- ing flux and the flux directed along the initial velocity of the

ate” zones of the scattering anglé8< 6,,z<1). On the particle is not taken into account within the scope of any
other hand, in the “far” zond#> 6,,z>1) the following  quantum scattering theory based on the solutions of the sta-
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FIG. 2. The ratio of the scattered flyx; to
the incident flux densityy. Solid line, the case of
attractive potential; dashed line, the case of repul-
sive one; dotted line, the Rutherford flux.
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tionary Schrodinger equatidid]. So, in order to use formula incident flux. It permits one to find the leading terms of the
(17) in the range ok<<1 corresponding to the “near” zone, differential scattering cross section at small angles using se-
one should compare it with the angle width of the zoneries (15)
where the above mentioned interference is still valid. It is

clear that the angle width of such an “interference” zone does

not depend on the dynamics of the interaction between the
particle and the field. It is defined only by a transversal width

a of the incident particle wave packet. With this transversal

width of the wave packet, the incident particles have the Figure 2 compares the accurate and asymptotic scattered
angle divergencd,,, conditioned by the uncertainty relation (Rutherford fluxes for different values of the variabieand

3/2
1(0) = 8\2¢e" sinh m)x(In x)ZrTE. (23)
N

which can be estimated as follows: the parameteg. It must be kept in mind that the behavior of
the nonasymptotic flux in the “near” zone for scattering by
6 ~ 1 (20) attractive and repulsive centers is quite different to that of the

" ka’ Rutherford cross sectiofl) which is independent of the po-

e . tential sign for any value of. One can see that the regular-
It means that one can dlstmgu[sh the scattermg flux fron1zed differential cross sectiofl7) in the “near” zone is, in
the incident one if the_ angular_W|dth of the "near” zone 'S fact, noninvariant relative to the sign of the charge if the
more than the uncertainty relatig@0): parameteré=1. It should be noted that the effect of a
2 kad slightly different interaction of the charge carriers with the
Ot < 0< 0y = \/k: —>1, r<ka. (21 impurities of different signs is well known in the semicon-
r ductor physics. It is usually analyzed in terms of the Friedel
We will see below(Sec. I\V) that these inequalities are sum rule[18] based on the partial expansion of the scattering
fulfilled for the distancer, when one can neglect by the amplitude in the series of orbital momenta.
spread of the wave packet. This condition is usually implied ~As it follows from Eq.(23), the scattering flux in the case
in the time-dependent theory of collisiof$3]. A detailed of the attractive potential varies rather slowly with the in-
analysis of the fluxes will also be considered in Sec. IV, butcrease of the parametér but it increases exponentially in
now one can estimate the contribution of the “interference’the case of the repulsion. Such behavior of the cross section
zone to the integral scattering characteristics which in outakes place only over a narrow angle doméda) and com-
case unlike the asymptotic analysis are finite values. Therepensates the exponential decrease of the flux along the line
fore, the ratio of the particle fluxes scattered into the “inter-6=0 which is well known for the repulsive potentigl].
ference” and “near” zones can be estimated as

. | ) 2
o=t o)de f ’ oy(6)do~ ( mt) _ IIl. INTEGRAL CHARACTERISTICS FOR THE
Jaif b ke COULOMB SCATTERING PROBLEM
<1. (22

Let us now calculate the integral scattering characteristics

It remains small under standard conditions of the collisionfor the problem under consideration. According to ELj7)
theory[13], and one can analyze the distribution of the fluxthe nonasymptotic expression for the total cross section is
density in the “near” zone neglecting its interference with thedetermined by the following integral:
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the total scattering cross section as the function of
40 5 the parameteg for the cases of repulsion and
1 attraction.
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i ) _ o cal meaning of this result if one takes into account that ac-
o= | 2€ sini(mg)e” ™G (£i& iz)|*r* sin 6 do. cording to the above analysfsee Eq.(21)] the distance is
0

restricted by the inequality< ka? which is actually fulfilled
(24) for real experimental conditiond3]. As a result the maxi-
mal value of the total cross section is

Omax= 27Ta2§2|i(§). (29

One can use a new varial#dn this integral
2kr

_ 2r
Tor= | & sml"(wg)e*”ﬂGl(ﬂ§,|2)|2?dz, (29 It means that the maximal cross section is proportional to
0 the area of the transversal section of the incident particles
and represent it as the sum of two integrals beam. It is quite natural because of a long range character of
- the Coulomb potential when finally all the particles of the
%Fﬁg sinr(wg)e:”g{f |G,(+i&,iz)[?dz beam are scattered with the probability depending on the
k 0 dimensionless parametér When the detector is situated a

w smaller distance from the center, it will register a fewer
_J |Gl(ii§,iz)|2dz}. (26) numl_)e_r of the scattered pa_rticles depending.on o
okr It is important to emphasize that the considered peculiari-
, ) , ties of the Coulomb problem should be taken into account
In the second integral the asymptotic representation fopny for small angle scattering experiments for the potential
the functionG, (13) can be used over the whole integration \ithoyt screening and the processes depending on the inte-
interval gral scattering characteristics. In other cases our results com-
et mE(1 7 j¢) pletely coincide with the standard Rutherford consideration.
— Now let us consider another integral characteristic of the
scattering process, namely, the transport cross section which
thus leading to the following simple result: is a very important quantity for a lot of applications. It is
" e determined by the formula

l,= 2—kr§ei’*§ sinh(7é) |G1(zi¢,iz)|?dz= —. o
Oty —j

Gl(i|§,|2) = iz

2kr k? 2¢ sinh(mé)e™ ™|G,(£i£,iz)|?r? sin (1 — cosh)dé.

(27) °

The order of this integral beingr)™* in comparison with (30
the first integral, its contribution to the total cross section can If one uses the variablein this integral and comes back
be neglected. This permits one to find how the valyyg  to the hypergeometric function of the second genus (&0).
depends on the most essential parameters of the problem transforms itself as follows:

2 27 _
Tiot = %rfzh_r(f), Oy = :_§e+W§A¥(§),
* 2kr
1,(&) = e:”s‘f |Uy(1+i¢,1,iz)%dz (29) Al(e) = f |U(1+i¢,1,iz)°z dz (31)
0 0

Here we again use the canonical form for the confluent The integrand function for the transport cross section is
hypergeometric function of the second gerili§], the uni-  essentially suppressed in the range of small angles in com-
versal functiond.(¢) depending only on the variabfe They  parison with the total cross section. Therefaerg is deter-
are found by the converging integrals and can be easily caimined only by the logarithm of the distance to the observa-
culated numerically. Figure 3 shows the results. tion point whereasaoy, is proportional to this distance.

As distinct from the standard scattering theory for theBesides, this function decreases rather slowly for largad
short-range potentials, the regularized total cross section farne cannot use the trick analogous to E2f) for oy,. Nev-
the Coulomb field depends on the distancéetween the ertheless, a series of transformations of the intelj_fag)
detector and scattering center. One can understand the phypiermits one to find the analytical dependence on the coordi-
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10 o ;5 transport cross section for the cases of attraction
7.5 : and repulsion. Solid line, the case of attraction;
5 2 dashed line, the case of repulsion.
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nater with the accuracy of the ordékr)™. Let us divide the  the universal functions (&) =[(k?/2m&) oy, —In(2kr)].

integral into two parts in the following way:
IV. SCATTERING OPERATOR AND CONSERVATION

1 2kr
OF THE FLUX WITHIN SCOPE
tr — i i2)|2 - i i-)|2
Al(§= Jo U(1+i&1,iz)|°z dz+ L U1 Fi¢&1,i2)|°z dz OF THE STATIONARY THEORY

If one uses the asymptotic formula for the hypergeometrig As it follows _from the resqlts_; of the preceding section_ the
function [16] Integral scattering characteristics calculated on the basis of a

nonasymptotic consideration increase with the distance

+mé . . . . .
o e _ from the center to the observation point. At the first sight it
2 _ 3
U2 £ié Liz)" = b +0(@7), seems that this can contradict the conservation of the particle

) o o ) total flux whenr becomes rather large. However, let us show
the second term in this integral is identically transformed 4 this dependence expresses only the fact that the potential

2kr o S 2kr ormg influences the scattering process at any distance from the
f JU(L+ig1,iz)]2- ) z d2+f = dz. center but the scattering flux remains considerably less than
1 1 the integral incident flux at any. For a qualitative analysis

Here the second integral is easily calculated analyticallyon® should take into account that within the scope of the
but now the integrand expression in the first one decreasedationary scattering theory the quantum state of the incident
rather quickly and the estimation analogous to &) can particle is described by a plane wave. Then the total incident

be used: flux Jg through_the sphere 01_‘ radiuscorresponding to the
. - observation point can be estimated as follows:
e ”
f {IU(ltig,l,iZ)lz— 2 ]Z dz- [IU(liif,l,iZ)l2 Jo= jomr2.
1 2kr
- Then the ratio of the scattering and incident integral
_€ }z dz fluxes is
2
‘ Jts%t Oyt _ 27 2
_ ) o Z_GJ”Té .—27:W§|i<1. (34)
U(1+i&1,iz)| 2 z dz Jo
1

It is also important to consider this problem more pre-
+O[(kn™1]. (32)  cisely. It is known[1] that in the quantum theory of scatter-
As a result the transport cross section is defined by well"9 with short-range potentials the optl_cal theorem is the.

) i consequence of the total flux conservation when the ampli-
converged integrals: ) ) -
tude of scattering at a zero angle is a finite value. We use the
_2nge ™| (1 s same approacfil] in order to find the consequence of this
=T 2 U1 +i§,1i2)[z dz condition for the case of a nonasymptotic analysis of the
0 Coulomb scattering.
* a2 etmé - Let us represent the general solution of the Schrodinger
+ U +ig 1iz)]" - 2 |% dz+ e ™ In(2kr) equation for the case of the elastic scattering as the linear
! combination of the functiongl2) with arbitrary coefficients

®(A) which determine the probability amplitudes to find the
state with the wave vectde=kn in the initial packet:

272
=22 05(0 + In(2kn),

1 — >
|§(§)=e”§<f U(1 £i¢,1,i2)|%z dz ‘I’(F)—J<1>(ﬁ)¢k(F)dQﬁ

0

+é

+fw{|u(1ii§,1,iz)|2—e;2 }z dz). (33

1

=N f O(R)EN NV E(+i £ 1,ikr(1 - A -[7)dQs

) eikr
Figure 4 shows the results of a numerical calculation of =f<1>(ﬁ)l(2)i'§

T(£i¢)

Gy(ti&iz)
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ikri-n’

ikr

Fig L ) ? AR’ = : e+ (mégHit In krq
+(2) F(iig)GZ(ilg'lz) dQy, (n,n’) 2l (18 (
—-R-A)TG[+igikr(1-A-/)].  (36)
n = E, z=kr(1-n-n"), (35) It is more convenient to rewrite this expression in terms of
r the hypergeometric function of the second genus
whered(); is the element of the solid angle in the direction B -
of the vector. A= |e*(”’2)§f e?U(+i¢ 1,iz)dz,
In accordance with the physical interpretation of the con- 0

tributions made by the functiong,;, G, to the total wave _ _
function (12), the first term in Eq(35) describes that part of k(1 +i¢)

the integral scattering operatfit] which corresponds to the f(n.n") = 27T (i)

formation of the scattering wave. The term, proportional to (37)
the function G,, describes the deformation of the wave

packet conditioned by changing the plane wave in the CouNow the function is represented as the superposition of the
lomb field. One can estimate the second term by the samicoming and outgoing spherical waves and this permits one
method that was used for proving the “optical” theorem into introduce the scattering matrjt] as the following inte-
the case of a short-range potentjdl. If the conditionkr gral operator:

>1 is fulfilled, the main contributions to this integral are . .

made by small intervals near the points of stationary phases S(A,A") = A + f(R,R'). (38)

when integrating oven. These points correspond to the vec- Here 8- - is th it t hich ds to th
tors N;=-f’ and f,=f’'. Near the first point the variable €re o5 IS the unit operator which corresponds to the

~2kr is very large. Therefore one can use the asymptotidV@ve passed without any scattering and the paranfets-

expression for the functiof,(+i¢,iz) and the integrand has €S the change in its amplitudia the case of a short-range
no singularities in this case. As a result the contribution rgPotential A=1 [1)). TJ:e integral over the angles from the
the integral from the domain close to this point defines thescattering operatorf (i, n")f(i",A)di’ exactly coincides
converged spherical wave with a standard logarithmic distorwith the expression for the total cross secti@8), multi-
tion of its phasg1] plied by k?/472. A long-range character of the potential is
reflected in the fact that the scattering matrix elements de-
pend on the coordinatedue to the distortion of the front of
a spherical wave. However, it is very important to introduce
o o ) this operator because it defines the kernel of the collision
When estimating the contribution to the integral from thejyteqgral in the kinetic equations describing various transport
second point of the stationary phase corresponding to thgrocesse§20]. But if one uses such operator in the collision
scattering at small angles one should take into account thaktegral for one-particle distribution function the additional
the functionG,(+ié,iz) has a logarithmic singularity at the 4yeraging over the coordinate should be fulfilled. The depen-
point z=0. Nevertheless, rather a smooth weight functiongence of the functiorf(i7’,R) on the coordinate is rather
®(n) can be removed from the integral at the paistn’. It gmooth, therefore the valuein this function can be substi-

e (MEY(L ¥ ig1,-ikr(1-A-A").

e—ikriig In 2kr

~2mi———d(-n).
kr

leads to the following estimation: tuted as an average distance between the scattering centers, if
ke w the correlation between these centers can be negléstsd
~ 27 d(R)e* (T ——— f (2) 772G, (+i €, iz)dz below Sec. V). An analogous substitution was used in some
k(&) [ Jo generally accepted models for the regularization of the trans-

w0 port cross section of the scattering by charged impurities in
_J (z)”fe‘iZGz(iig,iz)dz}. semiconductor$5,6]. A
2kr The unitary property of the matri§(n,n’) leads to the

The second integral in this expression can be omitted®Ptic@!” theorem for short-range potentigls]. But if one
within the limit kr>1 and the initial wave function is repre- US€S this condition for the Coulomb potential, because the

sented in the form: operatorf(ﬁ,ﬁ’) has a logarithmic singularity at coinciding
k=i I 2 " arguments one should define the method fo[ calculating the
V() = 2 d(= ) - Zwie_|:Aq)(ﬁ!) integral from the product of singular functiorigi,fi’) and
kr kr Sin in the operatorSS'. It means actually that the

A asymptotic estimation of the integral in E§6) is unaccept-
+J f(n, ﬁ’)q)(ﬁ)dﬁ] able for the operator which is quadratic over the scattering
matrix. Therefore, let us analyze separately the flux conser-
R vation considering the following integral:

A= TG

- Fiéqiz +i&iz)dz, > 2 e
fo (2)7'5e7*Gy(2i&,iz)dz I:fde_j(mzf[f.j(ﬁ)]r dQ;,
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N o= -, One can estimate the integrals from the confluent hyper-
in= ﬁ{‘l' (NVW(N) =W (NVY (N}, (39 geometric functions within the limikr>1 by means of the
following approach. The integral on the left side of E4_2)
with the total wave functiori35). can be identically transformed
Using the superpositio85) in formula (39) one can take ok "

into account the completeness of the coefficieh(g). Then J :J IF(i&,1,iz)|?dz=lim f IF|2e %z

the integration along all directions in this integral is equiva- ! 0 o 50| Jo

lent to the integral from the ﬂuj?St calculated by means of a o

general formula(39) but with stationary wave functions - f

Yi(r) defined by Eq(12) (for definiteness, let us consider the

attractive potential

|F|2e“9zdz] . (43
2kr

The parametes— 0 is introduced for the regularization of

- haée™ | - ) - 5 both integrals at an upper limit. The asymptotic form of the
Jsi) = m sinh g KIF(i£ 1,i(kr—k-)| function F can be used in the second term and the first term
can be expressed by the hypergeometric function

B §<IZ— k;)lm(FFD}, F(a,B,v,2) using the formulasee, for exampl§l])

J()\):f e 2" (e, y,k2)F(a', v,k 2)dz
0

L ) - _ Q_f ) ) .
VF(|§,1,|(kr—k-F))—§(k kr)F(|§+1,2,|(kr k-r)) :F(y))\“+“"7()\—k)‘“()\—k’)‘“'

-7 , kk'
= §<k kr)Fl. (40) XF[a,a ,'y,m . (44
Generally speaking, the valliés equal to zero identically When the integrals from the functions with different sec-
because of the flux conservation for the stationary scatteringnd arguments are calculated, the following recursion rela-
problem. The “optical” theorem follows from this condition tion can be usegl16]:
if an asymptotic form5) for the wave function can be used
[1]. But in the considered probls:m this condition means that Fla+1,y+1,72)= Z[F(a+ 1,%,2) - F(a,7,2)].
the flux directed along the vectér(it determines the change z
in the intensity oj the incident wayeand the scattering flux Let us give also the leading terms of the asymptotic ex-
along the vector are related as follows: pansions for the functions andF; which are used for cal-

f . . culating the integrals with the limit&kr, )
dQs(k - M|FGE L,i(kr —k- )2

—i& L2 2 F a2
R s g(1+|§))
F(i&1,i2) {—I‘ (1 . +—222

. . (1-i9)
=& dQxk-n- k)Im(FFl). (41) i7itei? ]

As it is shown above, the integrals over the angles for the 4 |’
Coulomb scattering problem include an essential contribu- o . )
tion defined by the “near” zone. Therefore, both parts of Eq. . _ Fig+1,2i7) = ie” e 7't ( &1 +I§))
(41) depend on the coordinateand the standard asymptotic 1 T r1-ié z
expressions for the “optical” theorem are unacceptable be- Jitaiz 1-i
cause the total cross section and the scattering amplitude at - e. ( - & 'f)ﬂ_
zero angle tend to infinity in this case. But if one shows that I(1+i§ z

the leading terms of Eq41) are equal within the limit of ; . ;
larger (kr>1) it can be considered as the analog of the; As a resuilt the leading term on the left side of &49) is

. : in the form
“optical” theorem for the Coulomb potential.

In order to prove this let us use a new variable for the _ _m_fsinh wé 1),

integrals in Eq(41) Ji=e : 2kr+26-. | &
- d L\ - 2ikr=20€ In 2k
z=kr—-Kk-F, Sin9d9:—z, +Re<T(1+I§)e ikr=2i¢ In r)} +O<i>_
ke r(-ié) (kr)?

and transform them as follows: (45)

o (*Mz , o This value determines the variation of the flux directed

. [F(i¢ 1,iz)]*dz= . UFIP+ €ImF(=1£,1,-12)F(€  Ziong the incident wave vector and it increases linearly with

the distance from the scattering center similarly to the total
+1,2jz)]}dz (42)  cross section. As mentinoed abd#y. (40)], this increase is
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not connected with the increase of the particle flux but onlyR;, depending on the properties of the medium where the
describes the distorted part of the wave front which extendsollision occurs. Therefore, in the general case the problem
together withr because of a long-range character of the po-is characterized by some additional parameters that can be

tential.
Calculating the integral

1 2kr
J,= —f IF(i&1,i2)%z dz
krJo

by a similar method leads to the following result:

l =g 7Tgsinh rs
22

2| of_3_ i
p: {2kr+kr[§< > Re (1 +i¢)

+In 2kr> - R% ra +i§)e‘2‘.kf—2i§ In 2kr)”
I'(=i¢)

4@], 48

where /() is the logarithmic derivative oF function [16].
The last integral in Eq42)

2kr
= k—fJ zIm[F(-i&1,-iz)F(ié+1,2jz)]dz
0

g 2kr

=—= RF(-i&1,-iz)F(ié+1,1,z)]dz, (47)
krJg

transforms itself as follows:

Jg = %e—wéﬂ;g{gm +Rey(l+i¢) —In 2kr]
T
1 (1 +ige2ki-2¢ 2kr> {i]
* zRe( r-ig O G|

(48)

Substituting Eqs(45)—48) for Eq. (42) shows that the
latter is satisfied with the considered accuracy. Besides, one
can see that the left side of E@2) corresponds to the total
cross sectiori28), and the right side of Eq42) corresponds
to the imaginary part of the scattering operat®8) with i

considered as external paramet@®). So, one should esti-
mate the conditions under which KP are more important for
the cross section regularization than EP. One will take into
account the two most essential EP: the screening afgle
and the incident angle parametgy;, depending on the wave
packet transversal width and defining the interference zone
between the incident and scattered waiges also Sec.)IA
simple estimation of these parameters leads to

1 1
@1 One=72- (50)

ka
The kinematic regularization is evidently most essential if
the angle width of the “near” zone is larger than the charac-
teristic angle intervals connected with EP, i.e., the following
conditions are fulfilled

kR ka?

60 > 05, T > 1, 00 > Gint, T > 1 (51)

0s=

The first inequality depends on the screening mechanism
and should be analyzed for each concrete system as it will be
shown below(Sec. V) for the scattering by impurities in
semiconductors. In order to take into account the finite size
of the wave packet in the second inequality in Esfl) one
should use the time-dependent theory of collisi¢h3,12,
which will be considered in this section.

Let us suppose that the initial state of the particle at the
momentt=0 is defined by the wave packet in the following
form:

Wi(F,0) = f A6 (G - K)EITT0 = gk TG (|7 - ),

G(p) = f dpP(p)er, (52

wherery is the coordinate corresponding to the initial posi-

=f’. So, one can consider this calculation as the proof of théion of the wave packe®P(p) are the probability amplitudes

“optical” theorem for the Coulomb scattering problem.

V. THE WAVE PACKET PROPAGATION
IN THE COULOMB FIELD

As it follows from the results of the preceding sections,
the regularization of the Rutherford cross section is deter

mined by the characteristic angle

2
Op= \/% (49)

of the wave vector distribution near the cerken the initial
state;G(p) is the function which describes the form of the
localized wave packet in the coordinate spftd.

In order to describe the evolution of the wave paqk)
it should be expanded in the solutions of the stationary
Schrédinger equation with the Coulomb potenfia®] (for
definiteness let us consider the attractive potential

i(P) = N, Li(kr =K - )]

In standard scattering experimeriig. 5 the initial po-
sition of the wave packet corresponds to the conditign

which corresponds to the boundary of the “near” zone and is>—. In this case the stationary wave functig(r) coin-

consider as the kinematic paramet®&®) of the system.

cides with the plane wavid 3] and the expansion oF(f", 0)

However, in real scattering experiments the incident particlén the functionsyi(r) includes the same coefficients as in the

is actually represented by the localized wave padké.

formula (52), with the accuracy of the terms being of the

Besides, the Coulomb potential is screened at some distanceder |z,|™%, due to the logarithmic distortion of the wave
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some moment. It demonstrates two essential results which
actually represent the basis for using the quantum mechani-
cal stationary scattering theory for describing the collisions
between real particle§l3]. First, the overlapping of the
fluxes corresponding to the inciddie first term in formula
(56)] and scattering particles should be taken into account if
N they are indistinguishable because of the uncertainty correla-
tion for the incident wave packe},.=1/ka. It means that the
width 6, of the “near” zone should be greater than this value.
Besides, the scattering flux is localized in the spherical layer
with the average radius=|ry+vt| and width~a. The angu-
lar distribution of the scattering particle within the limits of
this layer is fully determined by the scattering amplitude
f(6,) calculated on the basis of the stationary theory.
The expansiong4) can be used in the integr@b) if the
) ) _ integrand has no singularities in the range of the variable
front in the Coulomb field1]. As a result the wave function yariation. This condition is not satisfied for the asymptotic
describing the wave packet state of an arbitrary moment ofgrm (5) in the case of the Coulomb field because the Ruth-
time is of the following form: erford amplitude includes unintegrable singularity. Let us
R i show, however, that the representation of the wave packet
W(F,t) =f dgd(q - k)9 oeméd/ 2 (1 —i&)F(i &, L,i(ar similar to formula(56) also holds for the Coulomb problem
if the expansion(56) is made on the basis of nonasymptotic
_q’_f’))e—ihqztIZm' (53) :%p;lr.esentatior(ls) for the confluent hypergeometric func-

A J

FIG. 5. Sketch of distribution of the probability density corre-
sponding to the wave packgi6) at some momerit

As it is thoroughly analyzed in the monograph3] the
wave packet extensiofdiffraction) can be neglected during Tt = | dada
the interaction in real scattering experiments. This corre- Kry= aP(q

sponds to the following approximation in the integrand ex- -

pression in formulg53): _ E)e-iq-rOe:(w/agq[(Zq)igqrf_ )Gl(i £piZg)
G-k=p p<k "L, 55, g=g=2 47 “
- = y < y —_— = U s f—3 = -, ) iq-r )
2m 2m q ﬁv + (zq)_|§ql—‘e(lg )Gz(igq,izq):|e—lﬁq2t/2m,
5k q
q~—~|<+('°k ), (54) o
Zy=qr—=q-r. (57)

where v=fik/m is the group velocity of the center of the  The functionsG; , are rather smooth and integrable. One

wave packet coinciding with the velocity of classical par-can use expansiofb4) for their arguments if the following

ticles. condition is satisfied within the regiag <1, the latter being
Let us briefly remember the results of the time-dependengf the most essential variation of these functions:

collision theory for the case of a short-range potential when

the asymptotic forn(5) of the stationary wave function can R K R
be used for analyzing the wave packet evolutjh8] ZEp\r.-r)= pro,, (58)
_ S | .,
w60 = [ ae@- e 14 () S e 1 (1) k&
:—><—>, —=<1. (59
(55) kr \ka r

where 6, is the angle between the vectajsand qrir. It coincides with the above mentioned estimat{&i) made

Now one can use expansio(t4) and find the following on the basis of the qualitative analysis. It should also be
result for the function®(i",t) emphasized that the same inequality permits one to neglect

the extension of the wave packet during the colligib8]:

- eikr
V1) = eXG(F - y—ut) + f(0k)—G( r=-rop 1 a\2 ka2
r k 92:—><—), —=<1. (60)

r r

kr
P 12
) g Krogmihkcuzm, (56) As a result the function§, , in formula (57) can be re-
moved out of the integral with the arguments corresponding
Figure 5 shows schematically the distribution of the prob-to the center of the wave packet and this leads to the expres-
ability density corresponding to the wave packé6) at sion

- ot
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gk K with the chargez, ;=1 are important e being the absolute
WU = | (2 %——G,(i&,iz)G| | r— - - vt value of the electron charge.

g k In general case the valug is determined by both ther-
_ enE-F mally excited carriers and carriers due to impurities. Semi-
+ (20 M———G,(i &,iz) G(|F - Ty conductors with a wide forbidden zone are analyzed in paper

(g [7] and the valuen, can be estimated as
_ 17t|)] eI(7r/2)§kei—I2-FOe—ihkzt/2m' z.=kr - K-T. Ne= 21Ny —Zon,=n,
for the considered low temperature.

(61) Let us also introduce another parameter which is more

It means that the scattering process in the Coulomb fiel¢mmon in semlconductor physids: is compensation and
ysually has quite a small value=0.17]

can be considered on the basis of the stationary theory asi

takes place in the case of a short-range potential. Besides, the n nK n,
incident and scattered wave packets are extending in space m=-——>, Mm=5 /5, K=—. (63
. . . . Zl - KZZ Zl - KZZ nl
separately excluding an unessential domain of their overlap-
ping. It is well known [17] that the Coulomb potential screen-

ing in semiconductors is defined by several factors. On the

one hand, there is a static dielectric constaconditioned by

the electrons from the valency band which does not change a

long-range character of the potential. On the other hand, the
It is important to consider a specific physical systemDebye screening of the potential by free electrasholeg

where the described peculiarities of the scattering process ileads to its cut off at the distan¢a7]

the Coulomb field can appear for some observed character-

VI. CALCULATION OF CHARGE CARRIER MOBILITY
IN EXTRINSIC SEMICONDUCTORS

istics. According to the estimatiofbl), they are possible if R = ekgT (64)
the following inequality is fulfilled: 4me’n,’
kR§ wherekg is Boltzmann constant; is the crystal temperature;
—>1. (62) ne is the concentration of free charge carri¢esectrons in

' the conduction band fon-type semiconductors or holes in

HereRs is the screening radius of the Coulomb potential in athe valence band fgp-type semiconductoys
medium and it depends on the screening mechanism in the The average distanaebetween scattering centers and the
system. The value is defined by the distance between the characteristic were vector for the carriers in form(8a) can
scattering center and the detector or by the average distanbe estimated as
between two subsequent collisions if the scattering operator = —
(32) is used for describing of kinetic processes in the system. r=nl3 k= V2ZmE - v3m kgT
In the present paper the nonasymptotic scattering theory ’ h o
will be used for analyzing of charge carrier mobility in ex- . £y . .
- . ; with m" being the carrier effective mass.

trinsic semiconductors at low temperature. In this case the o L

: . . . As a result conditior{62) leads to the following inequal-
concentration of the impurity centers determines both the,
type of the carriers and their concentration and also the maiﬁy'
contribution to the resistance of the semicondu€iaf. The (Bem")Y2(kgT)32
problem has been recently analyzed in detail in pgpeand T Aanhn?® >1, (65
the results of various phenomenological models for regular-
ization of the Rutherford cross section are compared wittwhich is fulfilled in the entire range of the density and tem-
experimental datf7]. It is shown that the widely used mod- perature considered ifv].
els of Brooks-Herring5], and Conwell-Weisskodi] do not In most applications the theoretical estimation of the car-
completely describe the experimental dependence of the maier mobility is based on the approximation of the relaxation
bility on temperature and impurity concentration. The au-time 7 and Maxwell’s velocity distribution. It leads to the
thors of papef7] fitted the experimental data much better by following formula (for definitenessn-type semiconductors
means of an additional phenomenological parameter, havingre considered17]:
the physical meaning of the characteristic collision time.

e

Such parameter seems to take into account partly the influ- w=—(7), (66)
ence of the “near” zongsee Sec. )lon the formation of the m

scattered flux. So, the regularization of the scattering prob- .

lem in the Coulomb field is of interest not only as the meth- I N T e 32 —ElkaT
odological problem but also as the applied one. ()= {fo Eve "8 . HE)E¥% st (67)

Let us consider an extrinsic semiconductor with the donor
concentrations); and accepton, in the charge stateg;e Here the relaxation time is supposed to be averaged on the
and Z,e, respectively(in most real structures the impurities energy of carriers with Maxwell’s distribution.
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It is known[19] that if several scattering mechanisms take As a result the following expression for carrier mobility
place(e.g., the scattering by donors and acceptdosobtain  can be obtained:
a more accurate result the additional averaging on the types

of scattering centers should be fulfilled: - 2%2e(kgT)>? f xoe™ dx. (71)
B™30326m2n ) ) 2o (%) + KZol (%)
£ = T(EI(E)
gt 7(E) + (E)’ The integrals over energies can be estimated in a standard
way [6]: smoothly changing functions can be taken out of the
1 integrals with the argument=3 when the energy distribu-

1 (E) = P (68)  tion function has its maximum value. This leads to the fol-

201,

lowing analytical expression for the mobility:
here the indexes 1,2 correspond to the scattering by donors
a toron " et 2"2E(2, = KZ,) (keT)*?

and acceptorspy , is the transport cross section for the e _ 5 2 (72
cases of attraction and repulsion. In accordance with Sec. I 72mY2n[Z2 5] (3ksT) + KZ507 »(3ksT)]
these values are defined by the formulas it 22,21 it transforms as follows:
22 ¥ mép (2K
1,2 % f U1 £i£ 51022 dz _ 2722(1 ~K) (kgT) 73
’ g 72 m™12n[ o} (3keT) + Koy 5(3ksT)]’
(69)

We can compare this with the analogous formula in the
The more accurate formula than in E83) is used here framework of Conwell-Weisskopf mod§6]
because in this case the conditikre1 cannot be fulfilled. 7022 32
The interaction parameters between carriers and scattering How= 271 - K)(kgT) _
centers in the considered cases are the following: cw 3eksT(1 —K)1’3>2>
Ze[n(1 +K)]M¥3

Z, £

fl,Z(E) = e‘ﬁv (74)

%3m0 (1 + K)In(l + (

and the static dielectric constant of the crystal is taken into The results of the calculation using Eq33) and their
account. comparison with Conwell-Weisskopf model results are
According to formulag69) the transport cross section de- shown in Fig. 6. The same figure shows that the dependence
pends on the potential charge as distinct from its calculatio®f the mobility on the temperature and the compensakion
with the Rutherford cross section. A similar effg¢phase in our consideration differs greatly from the results of
shift”) is well known for extrinsic semiconductors and is Conwell-Weisskopf mod€6] based on the Rutherford cross
considered usually by means of the Fridel sum fag. An  section with the phenomenological regularization. In prin-
indefinite parameter is included in Eq(69) . If the valuex.  Ciple, such difference can be revealed in some experiments.
is calculated in the totally microscopic way it should be av-
eraged on the space distribution of the impurities in the
sample. It is equivalent to the integration of expressios)
by r taking into account Eq(69). However, the transport  |n this paper we have studied the question whether the
cross section has a smooth logarithmic behaviar ahich  nonintegrable singularity of the Rutherford scattering cross
can be substituted in Eq69) as the average distance be- section is an intrinsic feature of the Coulomb problem or one
tween the impurities with the considered accuracy. Then theould avoid it following the rigorous rules of the quantum

VII. CONCLUSIONS

value r=0.5n " can be used in Eq69) similar to both  mechanical scattering theory. The reason for this question is
models[5] and [6]. . N in the obvious contradiction between the behavior of the ex-
It is convenient to define the auxiliary valwg so that  act wave function of the particle in the Coulomb field
2 . - - -
Oy = 2w%o{r. Yil(F) = e (1 7 1R TF[+ig Li(kr =k - D],

. . and its asymptotic form

Then a nonasymptotic calculation leads to ymp

ikr

2kry NP2 4 e

O't'rlz:e*“fl,zf U(ltig o 1i2)zdz (70 Pi(r) = €T+ 1(0) o
0

which is used in the standard scattering theory.

with the values The former expression is finite within the whole space in
(Z, - KZ)13 (Z, - KZy)1B contrast to the latter one which tends to infinity along the line
re= T ogB ra= W 0#=0. The answer to the above question is the following: the

reason for the singularity in the cross section for a long range
which are defined by one-half of the average distance beCoulomb potential is not physical but is due to an improper
tween donors and acceptors, respectively. mathematical use of the asymptotic representation for the

052701-13



BARYSHEVSKII, FERANCHUK, AND KATS

p(mA7'c)
60-
50-
40-
30
201
10

—(3)
---(74)

T T -3
4x10” 8x10® n(m’)
6a

—(73)
---(74)

1x1' o'

p(miv'c™
100+

80-
60-
40
20

2x10™ 3x10" K
6b

—(3)

50

FIG. 6. Comparison of the mobilities calculated with the nonas-
ymptotic transport cross sectigsolid line) and in the framework of
the Conwell-Weisskopf modétlashed ling (a) Dependence on the
impurity concentratiom, (b) on the compensatioli, and(c) on the
temperaturel. The following parameters are usetl=78, e=10,

m=0.2my, andK=0.15.

wave function in the “near” zone which is determined by the
cone with the angled,=2/kr alongk (Fig. 1). If one cal-

60 70 80 90 100 T(K)
6¢c
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of angles. This leads to the regularization of the Coulomb

scattering problem and permits one to calculate the finite

value for the total and transport cross sections and consider
the analog of the “optical” theorem for this case. One of the

main results of the paper is expressed in form@® for the

total cross section that is different for attractive and repulsive

potentials

2
To= e E1(0),

with well-defined functiond.(¢) of the dimensionless pa-
rameter of the Coulomb interactigf€?/#v.

The most unusual feature of the regularized cross section
is its dependence on the distarrcbetween the detector and
the scattering center. The physical meaning of this result be-
comes clear if one takes into account than in real scattering
experiments the flux of incident particles is represented by
the wave packet with the transversal widthand the stan-
dard interpretation of the scattering data is possible under the
condition that the diffraction extension of the wave packet is
negligible [13]. This leads to the restriction for the distance
r <ka? which is actually fulfilled for real experimental con-
ditions [13]. As a result the maximal value of the total cross
section is

Omax— 2773-262' ().

It means that the maximal cross section is proportional to
the area of the transversal section of the incident particles
beam: because of a long range character of the Coulomb
potential all particles of the beam are eventually scattered
with the probability depending on the paramegelSo, it is
quite natural that when the detector is situated at a smaller
distancer from the center, it will register a fewer number of
the scattered particles dependingron

It is important to emphasize that the considered peculiari-
ties of the Coulomb problem should be taken into account
only for the small angle scattering experiments for the po-
tential without any screening and the processes depending on
the integral scattering characteristics. In other cases our re-
sults completely coincide with the standard Rutherford con-
sideration.
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