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The surface optical phonon eigenmodes in ellipsoidal quantum dots were calculated using the dielectric-
continuum model. The problem is exactly solvable in terms of ellipsoidal coordinates and the eigenmodes are
written in terms of Lamé polynomials. A study of the mode frequency dependence on the shape of the dots is
carried out. This represents a generalization over earlier work on spheres and spheroids. Differences in the
results obtained using an optically active and an optically passive host is presented. The size independence of
the mode frequencies for a quantum dot of arbitrary shape is proven.
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I. INTRODUCTION

In a three-dimensional, periodic ionic crystal, it is known
that, in the long-wavelength limit, there are transverse opti-
cal (TO) and longitudinal optical(LO) phonon modes, with
the LO phonon at a higher energy. It was later established
that, in a finite crystal, surface optical(SO) modes also ap-
pear in addition to the confined bulk modes. While there
were earlier results, the most convincing calculation was
probably the work of Fuchs and Kliewer1 on a finite slab. An
excellent review of the early works was provided by Ruppin
and Englman.2

The simplest treatment that works in the long-wavelength
limit is the so-called continuum electrostatics2 or dielectric-
continuum model(DCM), whereby the optical vibrational
modes are treated in terms of the associated electrostatic
fields (solutions of the Laplace equation) and subject to elec-
trostatic boundary conditions. There are limitations to the
model(such as consideration of mechanical boundary condi-
tions) but it has been shown to be appropriate for certain
physical properties such as frequencies,3 and will therefore
be used here without further justification. Retardation effects
(polaritons) will also not be considered here. Long-range
Coulomb forces in ionic crystals make the solutions shape
and size dependent in general. A description of this in terms
of curvilinear coordinates was given by Englman and
Ruppin.4 This was found to be the case for finite rectangular
slabs and circular cylinders;5 a comparison between theory
and Raman-scattering experiment of modes in the latter case
was recently achieved.6 However, they also found that the
eigenfrequencies for spherical crystals are size
independent.4,5 It is known that the only three-dimensional
shapes[quantum dot(QD)] that can be solved exactly have
one-coordinate surfaces4 (spheres, spheroids, and ellipsoids)
and variations thereof(such as a shell structure).4,5 The
spherical dot was solved by Englman and Ruppin.4,5 The
spheroidal dot has also been studied;7,8 however, one work
used an optically active host while the other used an opti-
cally passive one. The motivation for the latter study was the
widespread growth of QDs and the fact that an attempted
growth of a spherical dot might often result in a nonspherical

shape. It was reported that the size independence of the
eigenfrequencies for the sphere did not carry over to the
spheroid8,9 though we will show this to be incorrect.

In this paper, we extend earlier work on spheres and sphe-
roids to triaxial ellipsoids. For practical applications this is
essential since even a spheroid might not represent all the
“spherical” QD’s being grown. An ellipsoid is the simplest
region bounded by a one-coordinate surface that reduces to a
spheroid and a sphere. It is also the last unsolved simple
shape. We are particularly interested in the shape dependence
of the SO mode frequencies and in the difference between
using models of an optically active and of an optically pas-
sive host. In the process, we have also established the size
independence of the problem.

II. THEORY

A. Dielectric continuum model

We first present a summary of the DCM. The model is
applied to a QD of isotropic dielectric material embedded in
an infinite-volumed dielectric host material. We will first
treat the host as optically inactive(i.e., with a constant di-
electric constant); this is appropriate for isolated QDs. We
will then show how to account for optically active hosts; this
problem for other shapes was studied by Knipp and
Reinecke.7,10Treating the host as optically active will lead to
additional barrier-like SO modes(where the frequencies fall
within the rest-strahl region of the barrier material). In the
DCM, we start with the standard electrostatic equations in
the absence of free charges

¹ ·D = 0, s1d

E = − ¹ fsr d, s2d

whereD is the electric displacement,E is the electric field,
and f is the scalar potential. The fields originate from the
relative displacement of the ions in a unit cell. The constitu-
tive relation gives
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D = e0esvdE, s3d

whereesvd is the polariton dielectric function11

esvd = es`d
v2 − vLO

2

v2 − vTO
2 , s4d

where es`d is the so-called high-frequency dielectric con-
stant due to electronic polarization andvLO svTOd is the LO
(TO) long-wavelength (angular) frequency. Putting Eqs.
(1)–(3) together gives

esvd¹2f = 0. s5d

The solution

esvd = 0, s6d

leads to bulk-like confined LO phonons. The solution

¹2f = 0, s7d

gives the SO phonon modes. By applying the boundary con-
ditions of continuity ofEi andD' at the interfaces between
the two media, one can solve for the eigenfrequencies.

B. Scale invariance

There has been some confusion in the literature about the
size dependence or not of the SO phonon mode
frequencies.4,5,7,9 Thus, Englman and Ruppin4 referred to a
size and shape dependence, they found a size dependence(on
the cylinder radius) for a cylindrical wire5 but not for a
sphere, and Comaset al.9 recently reported that the mode
frequencies for spheroids do depend on size. On the other
hand, Knipp and Reinecke7 had advanced that there is a size
independence for any shape due solely to the long range
nature of the Coulomb force.

In fact, the size independence can be mathematically de-
rived for any three-dimensional shape using the Laplace
equation, together with the electromagnetic boundary condi-
tions. To wit, if one rescales the coordinatesr =ar 8, the
Laplace equation is invariant

¹82fsar 8d = 0.

The size dependence reported for wires can be explained by
the fact that one is only scaling two of the three coordinates.
This can also be seen explicitly by noting that the potential
field, as a function of only thex and y coordinates(with z
along the wire axis), no longer satisfies the Laplace equation;
rather, it now satisfies a Helmholtz equation10

¹x,y
2 fsx,yd − k2fsx,yd = 0, s8d

where fsr d=fsx,ydeikz. Rescalingx and y (e.g., x=Rx8 ,y
=Ry8) requires a rescaling of the wave number as wellsk8
=kRd in order to maintain the invariance of the Helmholtz
equation. The apparent size dependence for spheroids re-
ported by Comaset al.9 is incorrect and will be clarified
latter.

III. LAPLACE’S EQUATION IN ELLIPSOIDAL
COORDINATES

A. Ellipsoidal coordinates

The problem is exactly solvable if one uses ellipsoidal
coordinates. The ellipsoidal coordinate system is one of the
most general orthogonal curvilinear coordinate systems; in-
deed, it degenerates into the ten other systems the Laplace
equation is simply separable in Refs. 12 and 13. It is related
to the Cartesian coordinates in the following manner:

x =
sj1

2 − a2d1/2sj2
2 − a2d1/2sj3

2 − a2d1/2

sa2 − c2d1/2sa2 − b2d1/2 ,

y =
sj1

2 − b2d1/2sj2
2 − b2d1/2sj3

2 − b2d1/2

sb2 − c2d1/2sb2 − a2d1/2 ,

z=
sj1

2 − c2d1/2sj2
2 − c2d1/2sj3

2 − c2d1/2

sa2 − c2d1/2sb2 − c2d1/2 , s9d

with

j1 . a . j2 . b . j3 . c. s10d

One set ofj1, j2, j3 corresponds to eight cartesian points. In
general,a, b, c can take on any values subject to the con-
vention given in Eq.(10). It turns out the values are fixed
when space is partitioned by an ellipsoid. Thus, let the car-
tesian coordinates of the points of intersection of the ellip-
soid with the cartesian axes be ±x0, ±y0, ±z0. Then

sj0
2 − a2d1/2 = x0,

sj0
2 − b2d1/2 = y0,

sj0
2 − c2d1/2 = z0, s11d

wherej0 is the value ofj1 on the ellipsoidal surface(recall
that j1 alone defines an ellipsoidal surface). We observe that
the orderinga.b.c impliesz0.y0.x0. There are four un-
knowns on the left-hand side of Eqs.(11), three constants
given on the right-hand side. We, therefore, have the freedom
to set one of the unknowns; we choosec=0 as is commonly
done.12

When comparing this coordinate system to the spherical
system, thej1 variable can be described as the radial com-
ponent whilej2 andj3 are the angular components. Thus, the
volume of an ellipsoid withj1=j0 has the simple form

Vellipse=
4p

3
j0

Îj0
2 − a2Îj0

2 − b2. s12d

B. Separation of Laplace’s equation

Laplace’s equation is separable in this coordinate system
yielding three identical ordinary differential equations. Let

fsj1,j2,j3d = X1sj1dX2sj2dX3sj3d, s13d

then we have12–15
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d2Xi

dj i
2 + F ji

sj i
2 − a2d

+
ji

sj i
2 − b2dGdXi

dji

+ F − msm+ 1dj i
2 + q

sj i
2 − a2dsj i

2 − b2dGXi = 0, s14d

for i =1,2,3.This is known as Lamé’s equation. Note that
we have three equations, each with its own domain. The
equations have regular singular points atji = ±b, ±a,`. Nev-
ertheless, they share the same two separation constantsm
and q. Thus, all three solutions must be well behaved for
givenm andq. This implies we need solutions well behaved
for the whole domain 0,ji ,`.

C. Series solutions

The solutions of these equations can be expressed as a
series expansion.12 There are three ways of developing a se-
ries solution. One is to set(with z standing for one of
j1, j2, j3):

Xszd = o
n

dnzn. s15d

Another possible solution is of the form

Xszd = Îz2 − a2Bszd or Îz2 − b2Bszd, s16d

whereBszd is a series function. Yet another is

Xszd = Îz2 − a2Îz2 − b2Bszd. s17d

Since they lead to different recurrence relations, we do not
list the latter here. The infinite series expansions converge up
to the nearest singularity, eitherz=a or z=b. However, ifm
is chosen to be an integer and ifq has a polynomial relation
to a andb then we may obtain polynomial solutions which
are convergent up to infinity. It is these solutions, known as
Lamé polynomialssEm

p d and the related polynomials of the
second kindsFm

p d, which are of primary interest. For eachm
value, there ares2m+1d p values. Indeed, in the limit of
large j0, the ellipsoid approaches a sphere of radiusr ,j0,
and m becomes the separation constantl in spherical polar
coordinates. A few of the lowest functions are shown in Fig.
1. The full solution to Laplace’s equation is then a product of
the Lamé polynomials known as ellipsoidal harmonics. Due
to the requirement for finiteness of the three polynomials
simultaneously, the product function consists of the same
three Lamé polynomials.

IV. SO PHONON MODES

The electrostatic potential for a SO mode is given by

f = HAm
pEm

p sj1dEm
p sj2dEm

p sj3d j1 ø j0,

Bm
pFm

p sj1dEm
p sj2dEm

p sj3d j1 . j0.
s18d

For both f and Ei to be continuous at the boundary, the
constantBm

p must satisfy

Bm
p = Am

p Em
p sj0d

Fm
p sj0d

. s19d

Now we solve for the boundary condition onD', giving

Am
p e1Em

p8sj0d = Am
p e2

Em
p sj0d

Fm
p sj0d

Fm
p8sj0d, s20d

wheree1 se2d is the dielectric function inside(outside) the
ellipsoid. Rewriting this equation gives

e1

e2
=

Em
p sj0dFm

p8sj0d
Em

p8sj0dFm
p sj0d

; fmpsj0d. s21d

Note that the right-hand side of Eq.(21) is only a function of
the shape and size of the QD, and not on the model for the
dielectric functions. If we make the substitutione2=eD, the
dielectric function of the surrounding medium, ande1
=e1svmpd, then by using the boundary condition onD' and
Eq. (4), one arrives at

vmp
2

vTO
2 =

es0d − eD fmpsj0d
es`d − eD fmpsj0d

. s22d

This relation defines the allowed modes of vibration in terms
of the shape and size of the QD, in agreement with a similar
relation found for quantum dots with oblate and prolate sphe-
roidal geometries.9 It should be noted that unlike the case of
the spherical dot, and similar to the case of the prolate/
oblate spheroid, the parameterj0 of the QD is a determining
factor in solving for the allowed frequencies. Indeed, this has
led Comas and co-workers9 to mistakenly claim that the fre-
quencies are size dependent for spheroids(their Figs. 1 and
2). However, changingj0 changes not just the size but also
the shape; an ellipsoid becomes more spherical asj0 in-
creases[see Eq.(9)] and similar considerations apply to the
case of the spheroid. Their plots of mode frequencies versus
j0 (their Figs. 1 and 2) is, therefore, not an indication of size
dependence but rather shape dependence. Thus, the explicit
dependence onj0 in Eq. (22) must be properly interpreted.
As a check we have carried out numerical calculations(using
parameters reported in the next subsection) for the ellipsoid
wherebyj0 was changed but the shape was kept constant
(this is possible for the ellipsoid by changing theb/a ratio

FIG. 1. A few Lamé functions both inside and outside an ellip-
soid: sm,pd=s1,0d ,s1,1d ,s1,2d.
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simultaneously) and we found no change in the mode fre-
quencies.

It is expected that, at large radial values, the allowed fre-
quencies of an ellipsoid should converge to those of the
spherical case. If we take the limj0→`fmpsj0d:

lim
j0→`

Em
p sj0dFm8

psj0d
Em

p8sj0dFm
p sj0d

=
j 0

m

mj 0
m−1

− sm+ 1dj 0
−m−2

j 0
−m−1 = −

m+ 1

m
.

s23d

Using this in Eq. (22), we get the same solution as the
spherical QD. Moreover, just like the spherical QD, the al-
lowed frequencies are dependant upon one separation con-
stantsmd:

vmp
2

vTO
2 =

mes0d + sm+ 1deD

mes`d + sm+ 1deD
. s24d

Looking further at the results of the sphere, we see that there
is a theoretical minimum and maximum

lim
m→0

mes0d + sm+ 1deD

mes`d + sm+ 1deD
= 1, s25d

lim
m→`

mes0d + sm+ 1deD

mes`d + sm+ 1deD
=

es0d + eD

es`d + eD
. s26d

This implies that the ellipsoid must also be bound by the
same frequencies in the limitj0→`. What is more, both the
prolate spheroid and the oblate spheroid frequencies are
bound by these same two limits.9

For an optically active host, the SO mode frequencies are
given by

vmp
2 =

− sṽLO
2 + ṽTO

2 d ± ÎsṽLO
2 + ṽTO

2 d2 − 4se8 − fmpdsvLO,1
2 vTO,2

2 e8 − fmpvLO,2
2 vTO,1

2 d
2se8 − fmpd

, s27d

where

ṽLO
2 = vLO,2

2 fmp− e8vLO,1
2 , ṽTO

2 = vTO,1
2 fmp− e8vTO,2

2 ,

s28d

e8 =
e1s`d
e2s`d

.

V. CALCULATIONS

We carried out explicit calculations to investigate
the shape dependence of the eigenfrequencies. For concrete-
ness, we consider a GaAs QD embedded in an AlAs
host. The parameters needed were taken from Knipp
and Reinecke:7 v LO,1=292 cm−1, v TO,1=268 cm−1, e1s`d
=10.89,v LO,2=404 cm−1, v TO,2=362 cm−1, e2s`d=8.16.
The nonoverlapping reststrahl regions of the two materials
leads to distinct dot-like and barrier-like interface modes
where the frequencies fall within the reststrahl region of the
appropriate material.7

The lowest mode hassm,pd=s0,0d. This corresponds to a
constant potential inside the dot and, therefore, no electric
field insidesE0

08=0d. Equation(20) becomes

e2E0
0sj0dF0

0sj0d8 = 0. s29d

Now12

F 0
0sj1d =E

j1

` dx
Îsx2 − a2dsx2 − b2d

=
1

a
sn−1S a

j1
,
b

a
D .

Thus,F 0
0sj1d8 has no zeroes and Eq.(29) requirese2=0. This

cannot happen for a passive dielectric outside the QD and,

therefore, thes0,0d mode is absent in such a case. For an
optically active dielectric outside, the mode is allowed and
has frequencyv LO,2. Our result for the ellipsoid is consistent
with earlier results for the sphere.2,7 For an isolated sphere or
one embedded in a passive dielectric, thel =0 mode does not
exist. With an optically active dielectric outside, the electric
field of the l =0 mode falls as 1/r 2, which is the same be-
haviour as forF 0

0sj1d8 for largej1.
The shape dependence of all the threes1,pd modes are

given in Fig. 2. The twofold(threefold) degeneracy of the
spheroid(sphere) is lifted but, more importantly, the shape
dependence is in general different. Inside the QD, the lowest
mode, withsm,pd=s1,0d, can be written as

f1
0 , E1

0sj1dE1
0sj2dE1

0sj3d = abz. s30d

It is known in the literature as an ellipsoidal harmonic of the
second species.12 The electric field only has az component
which is constant inside the QD but decaying outside. Re-
sults for the eigenfrequencies are shown in Fig. 2 for both
the optically active(left and middle panels) and optically
passive(right panel) hosts. The frequency is plotted as a
function of the fractional difference between the smallest mi-
nor axis and the major axis

x0

z0
=

Îj 1
2 − a2

j1
= a. s31d

In the calculations,j1 is kept constant at 100 anda de-
creased(from right to left in Fig. 2). The effect is equivalent
to leavinga constant and increasingj1 (which would make
the ellipsoid more spheroidal). This leads to one of the
curves in the figure for a givenb value. Also, all the sphe-
roidal limits lead to prolate spheroids. On the same figure,
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the other axis is then changed(hence, the multiple curves)
until one approaches a sphere

y0

z0
=

Îj 1
2 − b2

j1
= b. s32d

Thus, the sphere is the limiting case ofa=b=1. The hori-
zontal line is the frequency limit of a sphere and it is seen
that the results for the ellipsoid do converge to that. Thel

=1 mode of the sphere has dot-like and barrier-like modes
with frequencies 275.3 and 389.6 cm−1 for the active-host
case, and a value of 277.8 cm−1 for the passive-host case.
Thus, treating the host as a passive medium raises the fre-
quency. We also observe that the numerical results for the
ellipsoid are bounded betweenv TO and fe s0d+eD /es`d
+eDgTO as found earlier. The shape dependence for spheroids
was obtained by Comaset al.8,9 They found that the behav-
iors are quite different for the prolate and oblate spheroids.

FIG. 2. Frequencies of thesm,pd=s1,0ds1,1d ,s1,2d ,s2,4d SO modes(top to bottom) as a function of asymmetry using optically active
host (left two panels, left for barrier-like modes, middle for dot-like modes), and a constant host dielectric constant(right panel). Note the
different vertical scale for the barrier modes(left panel). The dot is spherical in the limita ,b→1. The horizontal lines are the exact spherical
results.
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For example, for thel =1 andl =2 modes(corresponding to
the same values ofm for the ellipsoid but note that the sec-
ond index for the spheroid is not the same as the second
index for the ellipsoid), they found that thef1,0g and f2,1g
modes(we use square brackets for the spheroidal modes)
converge to the spherical results from earlier for the oblate
spheroid but, for the prolate spheroid, this behavior is dis-
played by thef1,1g, f2,1g, and f2,2g modes. For the ellip-
soid, thes1,1d ands2,4d modes converge from above. In the
spheroidal limit, we obtain that the frequency does not cross
the spherical value(in agreement with Ref. 9), but it can do
so for the ellipsoid.

We have repeated the calculations for higher ellipsoidal
harmonics. Similar behavior to them=1 modes is observed
in the bounds and convergence to the sphere for, for ex-
ample, thes2,pd modes except fors2,4d. For the latter, we
obtain the shape dependence given in Fig. 2. Indeed, a non-
monotonic shape dependence is obtained when one is away
from the sphere and spheroid. Similar results had been re-
ported for the spheroids9 (for example, thef2,2g mode of the
oblate spheroid) but near the spherical limit. Hence, this is a
distinctive behavior of the SO phonon mode frequencies in
triaxial ellipsoidal QDs. Finally, thel =2 mode of the sphere
has dot-like and barrier-like modes with frequencies 274.0
and 392.1 cm−1 for the active-host case, and a value of
279.5 cm−1 for the passive-host case. Overall, both the opti-
cally passive and active host models lead to dot-like modes
that have similar shape dependence of the frequencies.

VI. CONCLUSIONS

The size independence of surface optical phonon mode
frequencies in quantum dots has been shown analytically in
order to reconcile apparently contradictory results in the lit-
erature. We have evaluated the eigenfrequencies and eigen-
modes of surface optical phonons in ellipsoidal quantum dots
using both an optically passive and active host. The degen-
eracies present in the spherical and spheroidal cases are re-
moved. Mode frequencies both above and below the spheri-
cal values have been obtained. Thes2,4d mode is found to
be the lowest mode displaying a nonmonotonic shape depen-
dence of the frequency. An optically active host has little
impact on the shape dependence of the dot-like modes and
introduces additional barrier-like modes that generally have
the opposite shape behaviour compared to the dot-like
modes.
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APPENDIX: GAUSS-LEGENDRE QUADRATURE

Gaussian quadratures are a simple yet powerful tool in
numerical integration. Quadratures work by assigning
weights to values of the function in the integrand at nodal
points. Using this method the integration becomes a summa-
tion as given later

E
a

b

fsxd ] x . o
k=1

N

wk fsxkd. sA1d

The placement of the nodal points is not arbitrary with loca-
tions determined by the number of nodes and the size of the
interval. The result is a very good approximation.

Generally a Gauss-Laguerre quadrature would be used for
integrations overf0,`g, however, in the casea,b<j0 this
method fails to accurately converge. Instead we used a
Gauss-Legrendre quadrature over smaller subintervals with
the transformx=1/t, as suggested by Garmier and Barriot,16

to avoid further approximations. We chose to use an eight
node quadrature due to its simplicity and smaller computa-
tional requirements. A listing of the node locations and
weights can be found in Table I or for a more indepth under-
standing of quadratures the reader is suggested to Atkinson.17

The Gauss-Laguerre quadrature is defined over the inter-
val f−1,1g. To accomodate other intervals we use a mapping
M : f−1,1g→ fun,un+1g as defined later

Msxd =
a + b

2
+

xsb − ad
2

, sA2d

E
a

b

fsxd ] x = Sun+1 − un

2
D

3E
−1

1

fF sun + un+1d + ysun+1 − und
2

G ] y.

sA3d

Thus, our algorithm becomes

s2m+ 1dEm
p sj0dE

j0

` ] x
Îsx2 − a2dsx2 − b2dfEm

p sxdg2
sA4d

=s2m+ 1dEm
p sj0d

3o
i=1

N E
ui

ui+1 t 2m ] t
Îs1 − a2t 2ds1 − b2t 2dfEm

p stdg2
sA5d

TABLE I. Gauss-Legendre quadrature.

Weights Nodes

0.1012285363 ±0.9602898565

0.2223810345 ±0.7966664774

0.3137066459 ±0.5255324099

0.3626837834 ±0.1834346425
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=s2m+ 1dEm
p sj0do

i=1

N

o
j=1

N8

wj
sui,j − ui,j+1d

2

3
ui,j

2m

Îs1 − a2ui,j
2 ds1 − b2ui,j

2 dfEm
p sui,jdg2

, sA6d

such that

ø
n=1

`

fun,un+1g = f0,j 0
−1g, sA7d

whereui,j denotes thej th node of theith subinterval.
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