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Surface optical phonons in a triaxial ellipsoidal quantum dot
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The surface optical phonon eigenmodes in ellipsoidal quantum dots were calculated using the dielectric-
continuum model. The problem is exactly solvable in terms of ellipsoidal coordinates and the eigenmodes are
written in terms of Lamé polynomials. A study of the mode frequency dependence on the shape of the dots is
carried out. This represents a generalization over earlier work on spheres and spheroids. Differences in the
results obtained using an optically active and an optically passive host is presented. The size independence of
the mode frequencies for a quantum dot of arbitrary shape is proven.

DOI: 10.1103/PhysRevB.70.075401 PACS nunier63.22+m

I. INTRODUCTION shape. It was reported that the size independence of the

In a three-dimensional, periodic ionic crystal, it is known €igenfrequencies for the sphere did not carry over to the
that, in the long-wavelength limit, there are transverse optiSPheroid? though we will show this to be incorrect.
cal (TO) and longitudinal optica(LO) phonon modes, with In this paper, we extend earlier work on spheres and sphe-
the LO phonon at a higher energy. It was later establishe#pids to triaxial ellipsoids. For practical applications this is
that, in a finite crystal, surface opticéO) modes also ap- €ssential since even a spheroid might not represent all the
pear in addition to the confined bulk modes. While there"spherical” QD’s being grown. An ellipsoid is the simplest
were earlier results, the most convincing calculation wagegion bounded by a one-coordinate surface that reduces to a
probably the work of Fuchs and Klieweon a finite slab. An  spheroid and a sphere. It is also the last unsolved simple
excellent review of the early works was provided by Ruppinshape. We are particularly interested in the shape dependence
and Englmart. of the SO mode frequencies and in the difference between

The simplest treatment that works in the long-wavelengttising models of an optically active and of an optically pas-
limit is the so-called continuum electrostafias dielectric- ~ Sive host. In the process, we have also established the size
continuum model(DCM), whereby the optical vibrational independence of the problem.
modes are treated in terms of the associated electrostatic
fields(solutions of the Laplace equatipand subject to elec-
trostatic boundary conditions. There are limitations to the
model(such as consideration of mechanical boundary condi- A. Dielectric continuum model
tions) but it has been shown to be appropriate for certain
physical properties such as frequendiesd will therefore
be used here without further justification. Retardation effect
(polaritong will also not be considered here. Long-range
Coulomb forces in ionic crystals make the solutions shap
and size dependent in general. A description of this in term
of curvilinear coordinates was given by Englman and
Ruppin? This was found to be the case for finite rectangular
slabs and circular cylindefsa comparison between theor o o :
and Raman—scatterirxllg experiment%f modes in the latter cyasaedd't'onal barrier-like SO modgsvhere the frequencies fall

was recently achievetiHowever, they also found that the within the rest-strahl region of the barrier materidh the

eigenfrequencies  for spherical  crystals are  siz CM, we start with the standard electrostatic equations in
the absence of free charges

independent:® It is known that the only three-dimensional
shapeqdquantum dotQD)] that can be solved exactly have
one-coordinate surfackgspheres, spheroids, and ellipsgids
and variations thereofsuch as a shell structyr&® The
spherical dot was solved by Englman and RugdgirThe E=-V ¢(r), (2
spheroidal dot has also been studiéchowever, one work

used an optically active host while the other used an optiwhereD is the electric displacemert is the electric field,
cally passive one. The motivation for the latter study was thexnd ¢ is the scalar potential. The fields originate from the
widespread growth of QDs and the fact that an attemptedelative displacement of the ions in a unit cell. The constitu-
growth of a spherical dot might often result in a nonsphericative relation gives

II. THEORY

We first present a summary of the DCM. The model is
é’;\pplied to a QD of isotropic dielectric material embedded in
an infinite-volumed dielectric host material. We will first
Jreat the host as optically inactivée., with a constant di-
glectric constant this is appropriate for isolated QDs. We
will then show how to account for optically active hosts; this
problem for other shapes was studied by Knipp and
Reinecke:19Treating the host as optically active will lead to

V-D=0, (1)
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D = eye(w)E, 3) lil. LAPLACE’S EQUATION IN ELLIPSOIDAL
COORDINATES

wheree(w) is the polariton dielectric functidh A. Ellipsoidal coordinates

= "’Eo
e(w) = E(w)wz——szo' 4)

The problem is exactly solvable if one uses ellipsoidal
coordinates. The ellipsoidal coordinate system is one of the
most general orthogonal curvilinear coordinate systems; in-
where e(=) is the so-called high-frequency dielectric con- deed, it degenerates into the ten other systems the Laplace
stant due to electronic polarization ang, (wro) is the LO  equation is simply separable in Refs. 12 and 13. It is related
(TO) long-wavelength(angulay frequency. Putting Egs. to the Cartesian coordinates in the following manner:

(1)—(3) together gives ( fi — )V é% - )l §§ - a?)l2

e(w)quS =0. (5) (a2 _ CZ)l/Z(aZ _ b2)1/2 ’
The solution B (fi _ b2)l/2(§§ _ b2)1’2(§§ - p?)12
E(w) - 0’ (6) - (b2 _ C2)1/2([02 _ a2)1/2 ’
leads to bulk-like confined LO phonons. The solution (& - AVYE - )M Z - A2
V24=0, ) = @- -z 9)
gives the SO phonon modes. By applying the boundary conWith
ditions of continuity ofE, andD , at the interfaces between L>a>&E>b>E>c. (10)

the two media, one can solve for the eigenfrequencies. ) ) )
One set off, &, & corresponds to eight cartesian points. In

general,a, b, c can take on any values subject to the con-

vention given in Eq(10). It turns out the values are fixed
There has been some confusion in the literature about thghen space is partitioned by an ellipsoid. Thus, let the car-

size dependence or not of the SO phonon moddesian coordinates of the points of intersection of the ellip-

frequencie$:>7° Thus, Englman and Rupgineferred to a  soid with the cartesian axes begt+yy, +z,. Then

size and shape dependence, they found a size depen@ence

B. Scale invariance

¢ ! ISy : (gz_ a?)l2=

the cylinder radiug for a cylindrical wir€@ but not for a 0 Xo:

sphere, and Comasat al® recently reported that the mode

frequencies for spheroids do depend on size. On the other (é%—bz)m:)’o,

hand, Knipp and Reineckéad advanced that there is a size

independence for any shape due solely to the long range (&5-cA) =g, (11)

nature of the Coulomb force.

In fact, the size independence can be mathematically dé¥Nerééo is the value of¢, on the ellipsoidal surfacgrecall
rived for any three-dimensional shape using the Laplacéhatf1 alqne deflnes_an e_zII|p50|daI surfgc/e observe that
equation, together with the electromagnetic boundary condith€ orderinga>b> c impliesz,>y,>X,. There are four un-
tions. To wit, if one rescales the coordinatesar’, the KNOWNS on the left-hand side of Egll), three constants
Laplace equation is invariant given on the right-hand side. We, therefore, have the freedom

to set one of the unknowns; we choase0 as is commonly
V'2¢(ar’) =0. done??
When comparing this coordinate system to the spherical
The size dependence reported for wires can be explained ksystem, theg; variable can be described as the radial com-
the fact that one is only scaling two of the three coordinatesponent while&, andé; are the angular components. Thus, the
This can also be seen explicitly by noting that the potentialolume of an ellipsoid withé; =&, has the simple form
field, as a function of only th& andy coordinategwith z

i o fi i 4 R
along the wire axig no longer satisfies the Laplace equation; Vo= \/ 2_ 22 _p?. 12
rather, it now satisfies a Helmholtz equafidn elipse™ "3 &0V 0 & (12
Viyd(xy) ~KC(xy) =0, ®)
where ¢(r)=¢(x,y)e*?. Rescalingx andy (e.g., x=RX,y B. Separation of Laplace’s equation
=RY') requires a rescaling of the wave number as wiell Laplace’s equation is separable in this coordinate system

=kR) in order to maintain the invariance of the Helmholtz yielding three identical ordinary differential equations. Let

equation. The apparent size dependence for spheroids re- _
ported by Comaset al? is incorrect and will be clarified Pér £2:80) = Xa(E)Xa %ol &), (13
latter. then we hav&1°
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d?X; 5 § dX

az? Lg?—az) * (§f-b2)]d_§i
-m(m+1)£2+q

+[(§?— 2><§3—b2>]x‘:°’

for i=1,2,3.This is known as Lamé’s equation. Note that

(14)

we have three equations, each with its own domain. The

equations have regular singular pointgat+b, +a,«. Nev-
ertheless, they share the same two separation constants
and g. Thus, all three solutions must be well behaved for
givenm andg. This implies we need solutions well behaved
for the whole domain € & <.

C. Series solutions

The solutions of these equations can be expressed as
series expansiott. There are three ways of developing a se-
ries solution. One is to sefwith z standing for one of

&, &, &)

X(2) =2, d,z". (15)
n
Another possible solution is of the form
X(2)=VZ2-a’B(z) or Z-b’B(2), (16)
whereB(z) is a series function. Yet another is
X(2) =\Z2-a*\Z2 - b’B(2). (17)

Since they lead to different recurrence relations, we do no
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FIG. 1. A few Lamé functions both inside and outside an ellip-
soid: (m,p)=(1,0),(1,1,(1,2.

EP
R 60 = Roerr
m\S0.

where €; (e,) is the dielectric function insidéoutside the
ellipsoid. Rewriting this equation gives

_ ER(&)FR (&) _
€& EN(&FN&)

Fin (&), (20)

€1

frmp(€0).- (21)

t

list the latter here. The infinite series expansions converge upJote that the right-hand side of E@1) is only a function of

to the nearest singularity, eithera or z=b. However, ifm
is chosen to be an integer andgihas a polynomial relation
to a andb then we may obtain polynomial solutions which

he shape and size of the QD, and not on the model for the
dielectric functions. If we make the substitutiep=¢p, the
dielectric function of the surrounding medium, arg

are convergent up to infinity. It is these solutions, known as™ €1(@mp), then by using the boundary condition n and

Lamé polynomials ER) and the related polynomials of the
second kindFP), which are of primary interest. For eaah
value, there ard2m+1) p values. Indeed, in the limit of
large &, the ellipsoid approaches a sphere of radiusé,
and m becomes the separation constatim spherical polar

Eq. (4), one arrives at

by €0) = € Tmgléo)

= . 22
o ) — € Tl o) 22

This relation defines the allowed modes of vibration in terms

coordinates. A few of the lowest functions are shown in Fig.of the shape and size of the QD, in agreement with a similar
1. The full solution to Laplace’s equation is then a product ofye|ation found for quantum dots with oblate and prolate sphe-
the Lame polynomials known as ellipsoidal harmonics. Duéqjdal geometrie$.It should be noted that unlike the case of
to the requirement for finiteness of the three polynomialshe spherical dot, and similar to the case of the prolate/
simultaneously, the product function consists of the sam@pate spheroid, the parametgrof the QD is a determining

three Lamé polynomials.
IV. SO PHONON MODES

The electrostatic potential for a SO mode is given by

factor in solving for the allowed frequencies. Indeed, this has
led Comas and co-workérgo mistakenly claim that the fre-
guencies are size dependent for sphergidsir Figs. 1 and

2). However, changing, changes not just the size but also
the shape; an ellipsoid becomes more sphericaiyam-

creasegsee Eq(9)] and similar considerations apply to the
case of the spheroid. Their plots of mode frequencies versus
& (their Figs. 1 and Ris, therefore, not an indication of size
dependence but rather shape dependence. Thus, the explicit
dependence 04, in Eq. (22) must be properly interpreted.

As a check we have carried out numerical calculati@ssng
parameters reported in the next subsegtion the ellipsoid
whereby &, was changed but the shape was kept constant
(this is possible for the ellipsoid by changing théa ratio

(18)

{A&E&(&) ENEEN(E) &= b,
B%F%(fl)qu(gz)Epm(ga) &> &.

For both ¢ and E; to be continuous at the boundary, the
constantB, must satisfy

En(&)
Fh(&)

Now we solve for the boundary condition @, , giving

p
m

=Aq (19
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simultz_aneously and we found no change in the mode fre- w2 _ me(0) + (m+ 1)ep
guencies. = me(@) + (m+ Dex

It is expected that, at large radial values, the allowed fre- @10 )+ ( Jéo
guencies of an ellipsoid should converge to those of th¢_ooking furt_her at_the results of the_ sphere, we see that there
spherical case. If we take the E{,‘lmfmp(fo)i is a theoretical minimum and maximum

me(0) + (m+ 1ep

(24)

r‘IriTO me() + (M+ 1)ep L (25
o Em@FR() | €5 ~(m+E™  m+l
o EN(EFR(E) megt  £g™? m jim M@ M+ Dep _eOrep 0
(23) m—x Me(®) +(M+ Dep  €() + €p

This implies that the ellipsoid must also be bound by the
same frequencies in the lim§— . What is more, both the
Using this in Eq.(22), we get the same solution as the prolate spheroid and the oblate spheroid frequencies are
spherical QD. Moreover, just like the spherical QD, the al-pbound by these same two limits.
lowed frequencies are dependant upon one separation con- For an optically active host, the SO mode frequencies are

stant(m): given by
|
~ ~ = =
2 _ T~ (@F0 + Do) = V(@Fo + ©%6)* — A€ — fmp)(wfo,l‘l%o,zf' - fmp“’EO,Zw‘%O,l)
W= : , (27)
2(e' = frnp)
[
where therefore, the(0,0) mode is absent in such a case. For an
=2 _ 2 . 9 =2 _ 2 . 2 optically active dielectric outside, the mode is allowed and
W0~ ®o2lmp™ € o @ro= @To,1Tmp™ € Wr0,2: has frequency o ,. Our result for the ellipsoid is consistent

(28 with earlier results for the sphefé.For an isolated sphere or
one embedded in a passive dielectric, Ith® mode does not
€() exist. With an optically active dielectric outside, the electric
‘= field of thel=0 mode falls as Ir/%, which is the same be-
haviour as forF (&)’ for large &,.
The shape dependence of all the thféep) modes are
V. CALCULATIONS given in Fig. 2. The twofoldthreefold degeneracy of the

We carried out explicit calculations to investigate E)hermd(sphere Is lifted but, more importantly, the shape

: ; ependence is in general different. Inside the QD, the lowest
the shape dependence of the eigenfrequencies. For concre ade, with(m, p)=(1,0), can be written as
ness, we consider a GaAs QD embedded in an AlAs ’ ' T
host. The parameters needed were taken from Knipp ¢(l’~ Eg(gl)Eg(§2)E(1)(§3) —abz (30)
and Reinecké: w| 1=292 cn?, wrp =268 ¢, €(x)
=10.89,w 0 ,=404 cm?, w1 ,=362 cn?, e)()=8.16.

<7 €(») .

It is known in the literature as an ellipsoidal harmonic of the
iaisecond speci€€. The electric field only has a component
leads to distinct dot-like and barrier-like interface modesWhICh Is constant inside th_e QD but decaylng_ outside. Re-

sults for the eigenfrequencies are shown in Fig. 2 for both

here the frequencies fall within the reststrahl region of the
\;vppropriatermqauterizill.s Wi Sts g the optically active(left and middle panejsand optically

The lowest mode hasn,p)=(0,0). This corresponds to a passive(right pane) hosts. The frequency is plotted as a

constant potential inside the dot and, therefore, no eIectriI:unCtion of the fractional difference between the smallest mi-
field inside(EY’ =0). Equation(20) becomes hor axis and the major axis

[¢2_ 2
eES(E)FY(£0)' = 0. (29 o_ama (31)
Nowl2 4 &1
In the calculations; is kept constant at 100 and de-

FO(¢,) = ” dx 21 fab creasedfrom right to left in Fig. 3. The effect is equivalent
o) = [(x2 — 22)(x2 — p2) asn ‘a)’ to leavinga constant and increasing (which would make

& V(x*—a’)(x*-b%) & nga . .
the ellipsoid more spheroidal This leads to one of the
Thus,Fg(gl)’ has no zeroes and E@9) requirese,=0. This  curves in the figure for a giveh value. Also, all the sphe-
cannot happen for a passive dielectric outside the QD andpidal limits lead to prolate spheroids. On the same figure,
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FIG. 2. Frequencies of th@n,p)=(1,01(1,1),(1,2),(2,4) SO modegtop to bottom as a function of asymmetry using optically active
host(left two panels, left for barrier-like modes, middle for dot-like modesd a constant host dielectric constéight pane). Note the
different vertical scale for the barrier modgsft pane). The dot is spherical in the limit, 3— 1. The horizontal lines are the exact spherical

results.

the other axis is then changédence, the multiple curves

until one approaches a sphere

Yo_ E-B_

Zy & b

Thus, the sphere is the limiting case @£ 3=1.

=1 mode of the sphere has dot-like and barrier-like modes

with frequencies 275.3 and 389.6 thfor the active-host
case, and a value of 277.8 chifor the passive-host case.

(32)

Thus, treating the host as a passive medium raises the fre-
quency. We also observe that the numerical results for the

ellipsoid are bounded betweearo and [e(0)+ep/ e()

The hori-

+€eplro as found earlier. The shape dependence for spheroids

zontal line is the frequency limit of a sphere and it is seenwas obtained by Comaat al®® They found that the behav-
that the results for the ellipsoid do converge to that. The iors are quite different for the prolate and oblate spheroids.
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TABLE |. Gauss-Legendre quadrature. ACKNOWLEDGMENTS
Weights Nodes This work was supported by an NSF CAREER award
(NSF Grant No. 998405%nd a Balslev awar@enmark.
0.1012285363 +0.9602898565
0.2223810345 +0.7966664774
0.3137066459 +0.5255324099 APPENDIX: GAUSS-LEGENDRE QUADRATURE
0.3626837834 +0.1834346425

Gaussian quadratures are a simple yet powerful tool in
numerical integration. Quadratures work by assigning
weights to values of the function in the integrand at nodal
For example, for thé=1 andl=2 modes(corresponding to  Points. Using this method the integration becomes a summa-
the same values of for the ellipsoid but note that the sec- tion as given later
ond index for the spheroid is not the same as the second
index for the ellipsoigl they found that th¢1,0] and[2, 1] b N
modes(we use square brackets for the spheroidal mpdes f f(0) ax = > Wi F(xy). (AL)
converge to the spherical results from earlier for the oblate a k=1
spheroid but, for the prolate spheroid, this behavior is dis-
played by thg1,1], [2,1], and[2,2] modes. For the ellip- The placement of the nodal points is not arbitrary with loca-
soid, the(1,1) and(2,4) modes converge from above. In the tions determined by the number of nodes and the size of the
spheroidal limit, we obtain that the frequency does not crosgltérval. The resuilt is a very good approximation.

the spherical valuéin agreement with Ref.)9but it can do Generally a Gauss-Laguerre quadrature would be used for
so for the ellipsoid. integrations ovef0,], however, in the casa,b= &, this

We have repeated the calculations for higher ellipsoidaMethod fails to accurately converge. Instead we used a
harmonics. Similar behavior to the=1 modes is observed Gauss-Legrendre quadrature over smaller subintervals with

in the bounds and convergence to the sphere for, for e he transformx=1/, as suggested by Garmier and Bartfot,

ample, the(2,p) modes except fof2,4). For the latter, we o avoid further approximations. We chose to use an eight
btp' ’th h’p d q pLtote, 2. Fio. 2. Ind d node quadrature due to its simplicity and smaller computa-
obtain the shape dependence given in Fig. 2. Indeed, a Nof, 5| requirements. A listing of the node locations and

’ . Weights can be found in Table | or for a more indepth under-
from the sphere and spheroid. Similar results had been reganging of quadratures the reader is suggested to Atkison.
ported for the spheroidgfor example, th¢2,2] mode of the The Gauss-Laguerre quadrature is defined over the inter-
oblate SpherODjbut near the Spherical limit. Hence, this is a val [_1, 1] To accomodate other intervals we use a mapp|ng
distinctive behavior of the SO phonon mode frequencies inv:[-1,1]—[u,,u..,] as defined later
triaxial ellipsoidal QDs. Finally, thé=2 mode of the sphere
has dot-like and barrier-like modes with frequencies 274.0
and 392.1 cmt for the active-host case, and a value of M(x):ﬂ)+ x(b-a)
279.5 cm? for the passive-host case. Overall, both the opti- 2 2
cally passive and active host models lead to dot-like modes
that have similar shape dependence of the frequencies.

P Un+1 ~ Un

J f(x) 9x= (T)
a
XJl f|: (un + l-jn+1) + Y(Un+1 - un) ay.

The size independence of surface optical phonon mode a1 2
frequencies in quantum dots has been shown analytically in
order to reconcile apparently contradictory results in the lit-
erature. We have evaluated the eigenfrequencies and eigen-
modes of surface optical phonons in ellipsoidal quantum dotd hus, our algorithm becomes
using both an optically passive and active host. The degen-
eracies present in the spherical and spheroidal cases are re- o IX
moved. Mode frequencies both above and below the spheri- (2m+ DEP (&) e
cal values have been obtained. Tt 4) mode is found to g V(X" = a)(x" = b)[Eq(x)]
be the lowest mode displaying a nonmonotonic shape depen-
dence of the frequency. An optically active host has little
impact on the shape dependence of the dot-like modes and =(2m+ DER(&o)
introduces additional barrier-like modes that generally have N J

, (A2)

VI. CONCLUSIONS

(A3)

(A4)

Ujtq t2m J t

the opposite shape behaviour compared to the dot-like
modes. i=1

u V(A -at?) (1 -pA)ERDT A%
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N N (U= U ia) such that
=(@m+ DER(E) 2 2w -
i=1j=1 nUl[unrun+1] = [01561]1 (A7)
u?m
X7 2,2 ' 2 2 2’ (AB) . . :
V(1 -a%up;) (1 - b?up)[ER(u; )] whereu; ; denotes thgth node of theith subinterval.
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