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a b s t r a c t

The stochastic resonance in a bias monostable system subject to frequency mixing force
and multiplicative and additive noise is investigated. Based on the adiabatic elimination
theory, the analytic expressions of the signal-to-noise ratio (SNR) for the fundamental and
higher harmonics are obtained. It is shown that the SNR is a non-monotonic function of
the intensities of the multiplicative and additive noise, as well as the system parameter.
Moreover, the SNR for the fundamental harmonic decreaseswith the increase of the system
bias,while the SNR for the higher harmonics behaves non-monotonically as the systembias
varies.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Stochastic resonance (SR) is a phenomenon arising due to the entanglement between noise and non-linearity of a
system, in which the strength of a suitably defined output signal is maximum for optimum non-zero noise intensity [1].
The study of stochastic resonance in a bistable systemwith several periodic forces has attracted great attention [2–5]. Landa
and McClitock [2] found the vibrational resonance in an over-damped bistable system only subject to two periodic fields.
Gitterman [3] developed the theoretical results of a bistable oscillator driven by two periodic forces. Grigorenko et al. [4,5]
investigated the response of a bistable system with a frequency mixing force. Strier et al. [6] presented an analytical study
of the enhancement of the signal-to-noise ratio (SNR) in a monostable non-harmonic potential. They made use of the exact
expression for the diffusion propagator obtained in a previous work, and found a monotonically increasing response with
the noise amplitude. For the first time, they provided a cut-off to such an increase, which prevents a probability leakage out
of the system. Conventional SR is a non-linear effect that accounts for the optimum response of a dynamical system to an
external force at certain noise intensity. The SR in a broad sense means the non-monotonic behavior of the output signal as
a function of some characteristics of the noise (noise intensity or noise correlation time) or of a periodic force (amplitude or
frequency).
In actual systems there are a lot of monostable systems [7–15], including chemical, electronic, physical and biological

systems. Dykman et al. [7] and Evstigneev et al. [9] investigated the SR in amonostable over-damped system based on linear
response theory. Stocks et al. investigated the zero-dispersion stochastic resonance (ZDSR) in a monostable system [14,15],
for which the dependence of eigenfrequency upon energy has an extremum. It is well known that the multiplicative noise
often plays a different role on the output of a system, with respect to the additive noise. Therefore, the investigation of the
response of a monostable system driven by multiplicative noise is of great significance. In this paper, based on the adiabatic
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approximation theory, we study the SR in a bias monostable system driven by two periodic forces as well as multiplicative
and additive white noise.

2. The monostable system and its signal-to-noise ratio

Consider an over-damped monostable system [8] with multiplicative and additive noise described by the following
Langevin equation:

ẋ = −ax3 + xξ(t)+ η(t)+ f (t)+ b,
f (t) = A1 cos(Ω1t)+ A2 cos(Ω2t), (1)

where a > 0 is a system parameter, and b is a constant force, denoting the bias of the monostable system. The noise terms
ξ(t) and η(t) are uncorrelated noise with zero mean and they are characterized by their variance〈[

ξ(t1)
η(t1)

] [
ξ(t2) η(t2)

]〉
= δ(t1 − t2)

[
2D 0
0 2P

]
. (2)

Here D and P are the intensities of the multiplicative and additive noise, respectively.
According to Eqs. (1) and (2), the corresponding Fokker–Plank equation of the monostable system, Eq. (1), can be written

as

∂ρ(x, t)
∂t

= −
∂

∂t
[F(x, t)ρ(x, t)]+

∂2

∂x2
[G(x)ρ(x, t)] , (3)

where

F(x, t) = Dx− ax3 + f (t)+ b, G(x) = Dx2 + P. (4)

We assume that the external force frequency is so small that there is enough time for the system to reach the local
equilibrium during the period of the external force, i.e., we make the assumption that the system satisfies the adiabatic
approximation condition [16]. The asymptotic long-time distribution function can be derived from Eqs. (3) and (4) in the
adiabatic limit, i.e.,

ρst(x) =
C

[G(x)]1/2
exp

[
−
V (x)
D

]
, (5)

where C is the normalization constant, and V (x) is the rectified potential function, which has the form

V (x) =
∫ x

−∞

D
[
−U ′(x)+ f (t)+ b

]
G(x)

dx, (6)

with

U ′(x) =
dU
dx
= ax3 − Dx. (7)

From Eqs. (6) and (7), one can see that, for the case of D 6= 0, i.e., in the presence of multiplicative noise, the monostable
system (1) can thus be regarded as an equivalent bistable system, i.e., corresponding to the so-called two-state model [16],
with xu = 0 and x± = ±

√
D/a being the unstable and stable states of the equivalent bistable system. Under the adiabatic

limit condition, the transition rates out of x± can be obtained by

N±(t) =

∣∣[U ′′(xu)U ′′(x±)]∣∣1/2
2π

exp
[
−
V (xu)− V (x±)

D

]
= N±0 exp [∓kf (t)] , (8)

where N±0 denotes the characteristic switching frequency of the equivalent bistable system when it is only driven by
multiplicative and additive noise, which is given by

N±0 =
D
√
2π
exp

[
−
1Φ

2D
∓ kb

]
, (9)

with

k =
1
√
DP
arctan

(
D
√
aP

)
, 1Φ =

(
D+

aD
P

)
ln
(
D2

aP
+ 1

)
− D. (10)
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The occupation probabilities n± of the equivalent bistable system satisfy the following master equation:[
dn+/dt
dn−/dt

]
=

[
−N+(t) N−(t)
N+(t) −N−(t)

] [
n+
n−

]
. (11)

Based on the adiabatic elimination theory [16], one can expand Eq. (8) in series with the small parameter ε = kf (t) : n± =
n±0+n±1+n±2+· · · ,N± = N±0+N±1+N±2+· · ·. Here n±i and N±i include corresponding powers in ε, i.e., they include
[kf (t)]i, i = 0, 1, 2, . . .. Combining with Eq. (11), one obtains

dn+0
dt
= 0 = N−0 − [N+0 + N−0]n+0, (12)

dn+1
dt
=
N+0N−1 − N−0N+1
N+0 + N−0

− [N+0 + N−0]n+1, (13)

dn+2
dt
= −[N+1 + N−1]n+1 − [N+0 + N−0]n+2. (14)

By solving Eqs. (12)–(14), the expressions of n±1 and n±2 can be obtained. The averaged autocorrelation function is given by

〈x(t)x(t + τ0)〉avg =
Ω

2π

∫ 2π/Ω

0
lim

t0→−∞

[
x2
+
n+(t + τ0|x+, t)n+(t|x0, t0)+ x+x−n+(t + τ0|x−, t)n−(t|x0, t0)

+ x+x−n−(t + τ0|x+, t)n+(t|x0, t0)+ x2−n−(t + τ0|x−, t)n−(t|x0, t0)
]
dt. (15)

By performing the Fourier transform of the autocorrelation function, one can get the expression of the power spectrumwith
only one periodic component A1 6= A, A2 = 0,

S(ω) = SS(Ω1)δ(ω −Ω1)+ SN(ω,Ω1), (16)

where

SS(Ω1) =
4πDα2

a
(
µ2 +Ω21

) , SN(ω,Ω1) =
4Dµ

a
(
µ2 + ω2

) [ 1
[cosh(bk)]2

−
2α2

µ2 +Ω21

]
, (17)

with

α =
A1Dk

√
2π cosh(bk)

exp
(
−
1Φ

2D

)
, µ =

√
2D cosh(bk)

π
exp

(
−
1Φ

2D

)
. (18)

Here SS(Ω1) is the power density connected with the output signal, and SN(ω,Ω1) is the power spectrum associated with
the noise background. The signal-to-noise ratio (SNR) for the fundamental harmonic, defined as the ratio between the power
density of the signal and the noise background, is

snr1 =
SS(Ω1)

SN(ω = Ω1,Ω1)
. (19)

Similarly, the expressions of the SNR for higher harmonics (i.e., the case where forces A1 and A2 are not equal to zero) are
obtained in the case of weak modulation force, i.e., N+0 + N−0 � Ω1,Ω2:

snr2(ω = Ω1 +Ω2) =
πA21A

2
2k
6D3 tanh2(bk)

√
2 cosh(bk)

exp
(
−
1Φ

2D

)

×

[
1−

2D2A21k
2 exp(−1Φ/D)

π [ω2 + 2D2 exp(−1Φ/D) cosh2(bk)/π2]

]−1
(20)

and

snr3(ω = Ω1 + 2Ω2) =

√
2πA21A

4
2k
8D3 tanh2[1+ 3 tanh2(bk)]
cosh(bk)

exp
(
−
1Φ

2D

)

×

[
1−

2D2A21k
2 exp(−1Φ/D)

π [ω2 + 2D2 exp(−1Φ/D) cosh2(bk)/π2]

]−1
. (21)
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Fig. 1. Signal-to-noise ratio snr1 as a function of multiplicative noise intensity D for b = 0.5, P = 0.15, A1 = 0.3, andΩ1 = 0.2, with different values of
the parameter a.

Fig. 2. Signal-to-noise ratio snr1 as a function of multiplicative noise intensity D for a = 0.5, P = 0.15, A1 = 0.3, andΩ1 = 0.2, with different values of
asymmetry b.

3. Discussion and results

Multiplicative noise can play a crucial role on the system response. Because of the dependence of the multiplicative
noise ξ(t) on the state variable x of the system, the multiplicative noise can affect the structure of the system. From
Eqs. (6) and (7), one can see that with the presence of multiplicative noise ξ(t), the potential function of system (1) becomes
a bistable one, i.e., the multiplicative noise has an effect upon the system’s potential function. We introduce a multiplicative
noise in this paper, and find a non-monotonic behavior of SNR as a function of themultiplicative noise intensity, which is not
mentioned in Refs. [7–15]. In Fig. 1, we show the dependence of the SNR for the fundamental harmonic on themultiplicative
noise intensity D for different values of the system parameter a. As seen in Fig. 1, snr1 is a non-monotonic function of the
multiplicative noise intensity; amaximum exists on the curve of the curve of snr1, i.e., the conventional stochastic resonance
occurs. Moreover, the SNR is a non-monotonic function of the system parameter a, as shown in Fig. 1; the maximum value
of the SNR for a = 0.4 is higher than those for both a = 0.1 and a = 0.8, i.e., SR in a broad sense occurs.
The bias b can be also considered as the asymmetry of the monostable potential. Because of the introduction of the

multiplicative noise, the monostable system thus can be regarded as a bistable one. One can see that, from Eq. (4), for the
case b = 0, the equivalent bistable system is a symmetric system,while for b 6= 0 it is an asymmetric system.We investigate
the effect of the asymmetry of the monostable system in Fig. 2. As shown in the figure, snr1 decreases with the increase of
the asymmetry b, which means that the SNR for the fundamental harmonic behaves monotonically as b varies. Our results
are consistent with what was observed by Bouzat andWio [17] in bistable systems with additive noise. In addition, one can
see that the position of the maximummoves to the left with the increment of the asymmetry b.
In Fig. 3, we show the influence of the additive noise strength P on the output snr1 for different values of the system

bias b. We observed clearly the conventional stochastic resonance in the monostable system. Moreover, snr1 decreases
monotonically with the increase of the bias b, which is a similar effect to that shown in Fig. 2. The position of the maximum
moves to the right with the increment of the bias b.
In Fig. 4, we plot the signal-to-noise ratio snr2 for the higher harmonic ω = Ω1 +Ω2 as a function of the multiplicative

noise intensityDwith different values of the systemparameter a. snr2 also shows non-monotonic behaviorwith the increase
of the multiplicative noise intensity D. In addition, snr2 is a non-monotonic function of the parameter a.
The effect of additive noise strength P on the SNR snr2 with different values of b for higher harmonics ω = Ω1 + Ω2 is

illustrated in Fig. 5. There is a single peak in the curve and the SR phenomenon appears. Moreover, the maximum value of
snr2 for b = 0.1 is slower than those for both b = 0.4 and b = 0.6. Therefore, snr2 behaves non-monotonically with the
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Fig. 3. Signal-to-noise ratio snr1 as a function of additive noise intensity P for a = 1,D = 0.3,A1 = 0.3, andΩ1 = 0.2,with different values of asymmetry b.

Fig. 4. Signal-to-noise ratio snr2 as a function of multiplicative noise intensity D for b = 0.8, P = 0.05, A1 = 0.3,Ω1 = 0.2, A2 = 0.2, andΩ2 = 0.1, with
different values of parameter a.

Fig. 5. Signal-to-noise ratio snr2 as a function of additive noise intensity P for a = 1, D = 0.2, A1 = 0.2,Ω1 = 0.3, A2 = 0.1, andΩ2 = 0.1, with different
values of asymmetry b.

increase of b, which is different from the effect shown in Fig. 2, because the bias affects the fundamental signal-to-noise
ratio snr1 monotonically.
In Figs. 6 and 7, we analyze the influence of the multiplicative noise intensity D and additive noise intensity P on the

SNR snr3 for the higher harmonic ω = 2Ω1 +Ω2, respectively. As seen in Fig. 6, the bias b affects snr3 non-monotonically,
too, which is similar to the effect on snr2. In addition, from Fig. 7, one can see that the SNR snr3 for the higher harmonic
ω = 2Ω1 +Ω2 is also a non-monotonic function of the additive noise intensity P and the parameter a.

4. Conclusions

A previous study [8] showed that the SNR of monostable systems increases monotonically with the increase of noise
intensity. In the present paper we introduce a multiplicative noise term in the monostable system; the system therefore
becomes a bistable one. Our results show that the SNR is a non-monotonic function of the noise intensity (bothmultiplicative
noise and additive noise). In addition, the output SNR shows non-monotonic behavior when it is plotted versus the system
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Fig. 6. Signal-to-noise ratio snr3 as a function of multiplicative noise intensity D for a = 0.5, P = 0.05,Ω2 = 0.1, A1 = 0.2,Ω1 = 0.3, and A2 = 0.1 with
different values of asymmetry b.

Fig. 7. Signal-to-noise ratio snr3 as a function of additive noise intensity P for b = 0.8, D = 0.2, A1 = 0.2, Ω1 = 0.3, A2 = 0.1, and Ω2 = 0.1, with
different values of parameter a.

parameter a. For the fundamental harmonic, the output snr1 decreases with the increase of the bias b, while for the higher
harmonics, the outputs of snr2 and snr3 behave non-monotonically as the asymmetry b varies.
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