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Surface-plasmon dispersion relations in chains of metallic nanoparticles:
An exact quasistatic calculation

Sung Yong Park and David Stroud
Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA

~Received 14 November 2003; published 29 March 2004!

We calculate the surface-plasmon dispersion relations for a periodic chain of spherical metallic nanoparticles
in an isotropic host, including all multipole modes, in a generalized tight-binding approach. For sufficiently
small particles (kd!1, wherek is the wave vector andd is the interparticle separation!, the calculation is
exact. The lowest bands differ only slightly from previous point-dipole calculations provided the particle radius
a&d/3, but differ substantially at smaller separation. We also calculate the dispersion relations for many higher
bands, and estimate the group velocityvg and the exponential decay lengthjD for energy propagation for the
lowest two bands due to single-grain damping. Fora/d50.33, the result forjD is in qualitative agreement with
experiments on gold nanoparticle chains, while for smaller separation, such asa/d50.45, vg and jD are
expected to be stronglyk dependent because of the multipole corrections. When the particles touch, we predict
percolation effects in the spectrum, and find surprising symmetry in the plasmon band structure. Finally, we
reformulate the band-structure equations for a Drude metal in the time domain, and suggest how to include
localized driving electric fields in the equations of motion.

DOI: 10.1103/PhysRevB.69.125418 PACS number~s!: 78.67.Bf, 42.79.Gn, 71.45.Gm, 73.20.Mf
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I. INTRODUCTION

Recently, it has been shown that energy can be trans
ted along a one-dimensional~1D! chain of equally spaced
metallic nanoparticles, via propagating surface-plasmon~SP!
modes.1–8 These modes are basically linear combinations
single-grain SP modes, i.e., oscillations of electronic cha
within a single grain.9 The single-grain modes are accomp
nied by an oscillating electric moment~dipole and higher! on
the grain. The electric field of this moment in turn genera
oscillating moments on neighboring spheres.

The propagating SP modes are simply traveling wave
these oscillating moments. They are characterized by w
defined dispersion relationsv(k) which relate their frequen
cies v and wave vectorsk.2,3 If the damping is sufficiently
small, the energy transmitted by these ways may trave
speeds up to 0.1c. Thus, one can imagine a variety of po
sible uses for these waves.

The calculation ofv(k) typically involves several ap
proximations. The first of these is thenear field
approximation—that is, one assumes thatkd!1, wherek is
the wave number andd the interparticle separation. This a
sumption permits the electric fieldE to be calculated in the
quasistatic limit, in whichE is expressed as the gradient of
scalar potential.

A second common approximation is that the field p
duced by a given particle at its neighbors is that of apoint
dipole. However, this second assumption is stronger than
quasistatic approximation, and becomes inaccurate when
particles are closely spaced. Under these conditions, the
sistatic fields may be modified significantly by multipol
interactions. Typically, these multipolar fields have been
cluded by numerical techniques such as finite-differe
time-domain calculations. However, it may be difficult
obtain accurate results by these numerical techniques,
0163-1829/2004/69~12!/125418~7!/$22.50 69 1254
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cause the higher multipole excitations may produce fie
which vary rapidly in space, whereas numerical studies w
insufficient discretization may not achieve adequate res
tion. Thus, an exact calculation in a simple geometry m
not only provide physical insights into this system, but a
gives useful guidelines for the validity of numerical calcul
tions in more complex geometries.

In the present work, we will show how these multipol
corrections can be calculatedexactly, using a straightforward
analytical approach. The formalism is analogous to the g
eralized tight-binding method in conventional band theory.
this approach, one constructs Bloch states from individ
atomic orbitals, and then diagonalizes the Hamiltonian m
trix in the basis of these atomic orbitals. In the surfac
plasmon analog, the individual atomic orbitals are multipo
SP oscillations for each sphere. The matrix elements nee
to calculate the Hamiltonian matrix are easily construct
especially for a periodic 1D chain of spheres. The diagon
ization needed to calculate the bands is readily carried
The entire calculation is made simpler in 1D systems,
cause the Hamiltonian matrix decomposes into sepa
blocks, one for each azimuthal quantum numberm.

The basic formalism necessary to carry out th
calculation10 has thus far been applied only rather sparing
because there have been few experimentally available r
izations of the ordered geometry required for this approa
It has been applied mainly to calculating the effective co
plex dielectric functionee(v) of a periodic composite me
dium, which requires the SP band structure only at Blo
vector k50. Only recently has it become possible to pr
duce well-controlled ordered metallic structures at the na
scale, and hence to generate and detect these SP wav
general wave vectors. In this paper, we describe and num
cally solve the equation necessary to calculate this b
structure in the general case ofkÞ0 in 1D systems.

Besides giving the solutions in the full multipolar cas
©2004 The American Physical Society18-1
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we also include damping of the SP modes due to los
within the individual metallic particles. For a Drude meta
these losses can be treated by including a finite relaxa
time t in the Drude dielectric function. This damping can
included approximately by adding an imaginary part to
SP frequencies. We also briefly discuss why the damping
to radiative energy losses is expected to be small. Th
losses arise from the breakdown of the quasistatic appr
mation, and can, in principle, also be approximately includ
by adding an imaginary part to the surface-plasmon
quency.

We will also present the multipolar SP equations in t
time domain for a Drude metal, where they take the form
a set of coupled second-order ordinary differential equatio
In this form, it is straightforward to include single-partic
damping~and also, in principle, radiative damping!. More-
over, one can also incorporate driving terms, arising, e
from external electric fields. These equations may thus
useful in modeling specific types of experimental prob
which produce localized time-dependent electric fields.

The remainder of this paper is organized as follows.
Sec. II, we describe the formalism needed to calculate the
band structure, and specialize to the calculation for a
chain. Section III presents numerical results in this 1D ch
system. In Sec. IV, we discuss our results, and suggest s
possible extensions to other geometries. Finally, the App
dix presents an alternative formulation of the equations
motion in the time domain, and describes how localiz
time-dependent driving electric fields can be included
these equations.

II. FORMALISM

We consider a 1D chain of spherical particles of radiusa,
separated by a distanced (d>2a). The particles are as
sumed to be arranged along thez axis with centers atz
50, 6d, 62d, . . . . Weassume that the particles and ho
have dielectric functionsem(v) and eh(v). To be definite,
we may consider the particles as metallic and the hos
insulating, but the discussion below applies to any choice
em and eh . All the formalism is given in terms of a fre
quency variables defined by

s5
1

12em /eh
. ~1!

As will be seen below, and as is discussed indirectly in R
10, all the allowed propagating SP frequencies correspon
s in the range 0<s<1, or equivalently, to2`<em /eh
<0, assuming thatem andeh are both real.

We will calculate the SP band structure in an ‘‘atomi
basisn,,,m. Here,, andm label the ‘‘angular momentum’
of the eigenfunction, andn labels the grain. Thus, the a
lowed values of these indices aren50, 61,62, . . . , ,
51,2,3, . . . , andm52,,2,11, . . . ,,. In order to calcu-
late the SP band structure in this basis, we first need
matrix elementQn,m;n8,8m8 , wherenÞn8. This matrix ele-
ment is given by~see, e.g., Ref. 10!
12541
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Qn,m;n8,8m85~21!,81m8S a

un2n8ud
D ,1,811

3S ,,8

~2,11!~2,811!
D 1/2

3
~,1,81m2m8!!

@~,1m!!~,81m8!!~,2m!!~,82m8!!#1/2

3exp@ ifb~m82m!#P,81,
m82m

~cosub!. ~2!

Here we have introducedb5(n82n)dẑ, which is the vector
separation between the grains centered atn8ẑ and nẑ, and
the polar and azimuthal anglesub andfb for this displace-
ment vector. Sinceb5bẑ, ub is either 0 orp, depending on

whetherb is positive or negative. Ifb.0, P,81,
m82m

5dm8,m ,

whereas if b,0, P,81,
m82m

5(21),81,dm8,m . Incorporating
these simplifications, we find that with

Qn,m;n8,8m85~21!,81mS a

un82nud
D ,1,811

3S ,,8

~2,11!~2,811!
D 1/2

3
~,1,8!!

@~,1m!! ~,81m!! ~,2m!! ~,82m!! #1/2

3S n82n

un82nu
D ,1,8

dm,m8 . ~3!

The matrix elements are diagonal inm because the one
dimensional chain is unchanged on rotation by any an
about thez axis.

Next, we define the matrix element

Q,m;,8m8~k!5 (
nÞ0

Q0,,m;n,8mexp~ inkd!dm,m8 , ~4!

where the sum runs over all positive and negative integ
exceptn50. We have used the fact that, for this periodic 1
system,Qn,m;n8,8m8 is a function only ofn2n8 and vanishes
for mÞm8. After a little algebra, using Eqs.~3! and~4!, we
obtain

Q,m;,8m8~k!5S a

dD ,1,811

(
n51

`
cos~nkd!

n,1,811
K,,,8,mdm,m8 ~5!

for ,1,8 even, and

Q,m;,8m~k!5S a

dD ,1,811

(
n51

`
sin~nkd!

n,1,811
K,,,8,mdm,m8 ~6!
8-2
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for ,1,8 odd, where

K,,,8,m52~21!,81mS ,,8

~2,11!~2,811!
D 1/2

3
~,1,8!!

@~,1m!! ~,81m!! ~,2m!! ~,82m!! #1/2
.

~7!

Finally, in terms of the matrix elementsQ,m,8m ; the SP
structure is given by

detus2Hu50, ~8!

where the ‘‘Hamiltonian’’H has matrix elements

H,m;,8m~k!5s,d,,,81Q,m;,8m~k!, ~9!

and the ‘‘atomic’’ eigenvaluess, are given by

s,5
,

2,11
. ~10!

Note thats151/3, whiles,→1/2 as,→`.
The full SP band structure at wave vectork is obtained by

diagonalizing the matrix~9!. As in conventional band theory
there are many band energies for a givenk, and one need
consider only the bands in the first Brillouin zone, i.e., in th
case, for2p/d,k<p/d, since the states at other values
k are equivalent to those in the first zone. For this o
dimensional system, the Hamiltonian breaks into sepa
blocks, one for each value ofm; this conveniently reduce
the size of the matrix which needs to be diagonalized.
nally, as in the linear combination of atomic orbital~LCAO!
method of conventional band theory, the band structure
results from this analysis is composed of bands which or
nate from various atomic orbitals. In the present case,
atomic states are multipolar SP modes associated with
individual spheres. These are degenerate at differentm ~since
the individual particles are spheres!, and have eigenvalue
s,5,/(2,11).

The band structure that results from diagonalizing the m
trix ~9! is expressed in terms of the variables. Thus, the
bands have the formsa(k), wherea labels the individual
bands. These may be converted into frequencies using
relation ~1!. This dispersion relation will take on variou
forms, according to howem ~andeh) depend onv. Here we
assume that the system consists of Drude metal particle
vacuum, so thateh51 andem(v)512vp

2/@v(v1 i /t)#. If
vpt→`, then the appropriate conversion is given by

va~k!5vpAsa~k!. ~11!

For ,51 there are three degenerate modes at freque
vp /A3, while for ,→`, the modes approach the limitin
value ofvp /A2.

If the relaxation time is finite, then the relation

s5
1

12em /eh
5

v~v1 i /t!

vp
2

~12!
12541
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can be inverted to expressv as a function ofs. For a reals,
the correspondingv has both a real and imaginary par
Thus, we can map an eigenvaluesa(k) ~wherea is a band
index! to a complexeigenvalue

va~k!5Avp
2sa~k!21/~4t2!2 i /~2t!. ~13!

The imaginary part describes the damping of this mode
to the finite lifetime of the surface plasmons in the individu
spheres. Ifvpt@1, this damping is small, and the shift du
to the damping~as embodied in the factor 1/t2 within the
square root! is even smaller. Note that we have not includ
radiative damping in this expression. In contrast to sing
particle damping, the radiative damping depends on the
ticle size, being greater for larger particles. For 10 nm rad
gold spheres, it has been estimated that only 1.5% of the
damping rate is due to radiative damping.11 Also, according
to Refs. 3 and 4, the radiative damping should be small
particles of such a size because of strong near-field inte
tions.

In the Appendix, we present an alternative formulation
the equations of motion in the time domain to obtain the
band structure, assuming a Drude dielectric function. In t
formulation, which has the advantage that it can deal w
localized time-dependent driving electric fields, these rad
tive corrections could easily be included, as has been
cussed, for example, in Ref. 3.

In order to compare with experiment, we will consid
two more quantities which can be obtained from the disp
sion relationv(k): First, the k-dependent group velocity
vg(k) is given by the relation

vg~k![
dv

dk
, ~14!

and can be easily computed numerically, givenv(k). Sec-
ond, we can also use Eqs.~13! and ~14! to estimate the en-
ergy loss from a plasmon propagating along a chain, whic
important in applications. For this purpose, we define ene
decay lengthsjD(k) for the lowest longitudinal and trans
verse modes, as the distance over which the energy de
in the wave amplitude decreases by a factor exp(21). If the
complex band frequency is denotedv1(k)1 iv2(k), then
jD(k) is defined by

jD~k!

d
5

vg~k!

2v2d
5

1

2v2

dv~k!

d~kd!
. ~15!

Note that in the case of the Drude approximation, the ima
nary part of the complex band frequency does not depend
k, and thusjD is just proportional tovg(k).

III. NUMERICAL RESULTS

We have diagonalized the matrix~9! to obtain the surface-
plasmon band structure for various values of the param
a/d. We include all bands up to,580, which is sufficient to
insure convergence ofsa(k) to within 1%. The results are
shown in Fig. 1. For comparison, we also show the results
8-3
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SUNG YONG PARK AND DAVID STROUD PHYSICAL REVIEW B69, 125418 ~2004!
truncating the Hamiltonian matrix at,51. In this latter case
the Hamiltonian matrix is a diagonal 333 matrix with ele-
ments

H1m;1m~k!5
1

3
1S a

dD 3

(
n51

`
cos~nkd!

n3
K1,1,m , ~16!

where K1,1,0524/3 and K1,1,6152/3. The corresponding
plasmon bands, expressed assa(k), are shown as open
square (m50) and circle (m561) in Fig. 1. If we use the
Drude expressionsva

2(k)5vp
2sa(k), then these correspon

exactly to the dipolar SP band structures obtained in Re
This behavior is as expected, since when we retain only
,51 terms in the Hamiltonian, we are neglecting all t
quasistatic contributions except the dipole fields.

As is evident, the plasmon bands take on quite a differ
form when the higher values of, are included in the Hamil-

FIG. 1. Dispersion relationss(k) for the surface-plasmon band
propagating along a chain of spherical nanoparticles of dielec
function em in a host of dielectric functioneh , plotted vs wave
vector k. ~a! a/d50.25, ~b! a/d50.33, ~c! a/d50.4, ~d! a/d
50.45, ~e! a/d50.49, ~f! a/d50.5 ~spheres touching!. The solid
and dashed curves correspond tom50 andm561, respectively,
for the full band structure, incorporating all bands up to,580, as
obtained diagonalizing the full Hamiltonian matrix@Eq. ~9!#. The
open squares (m50) and circles (m561) denote calculations fo
the ,51 modes in the dipole approximation. Note that them
561 modes are degenerate.
12541
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tonian matrix. For small values ofa/d ~i.e., a/d&0.3), the
lowest three bands are very similar to the bands obtai
when only the,51 matrix elements are included. This b
havior is not surprising, since at these values ofa/d the
matrix elements connecting the,51 states to those of highe
, are quite small, for any value ofk. This smallness origi-

nates in the factors of (a/d),1,811 which appear in all the
expressions for the matrix elements. The smallest factor c
necting,51 to higher, is (a/d)4 for kÞ0, and (a/d)5 for
k50. Thus, for relatively small values ofa/d, these con-
necting matrix elements are substantially smaller than
diagonal ones.

When a/d*0.35, the interband matrix elements start
become substantial. When this happens, the shapes o
lowest bands start to depart significantly from the pur
dipolar form seen for smallera/d. As is evident, by the time
a/d→1/2, the band structures of the lowest bands are
altered that they no longer bear any obvious relation to th
dipolar band shapes. Precisely ata/d51/2, the lowest state
at k50 reaches the limiting values50. This behavior is a
percolation effect: whena/d51/2, the two neighboring
spheres just touch, and the entire line of spheres beco
one connected chain. Thus, one might expect that the low
eigenvalues of this chain would resemble that of a very lo
cylinder, which indeed has as its lowest eigenvalues50.

The band structure also acquires a striking symmetry n
a/d51/2. First, there appears to be a nearly perfect refl
tion symmetry about the lines51/2. In addition, there is
another reflection symmetry about the linek5p/(2d), i.e.,
at the middle value ofk in the first Brillouin zone. As par-
ticular examples of these symmetries, there appear to be
genvalues ofs50 ands51 at k5p/d, just as there are a
k50. We do not fully understand the reasons for these sy
metries. Thes;0 eigenvalue atk5p/d apparently corre-
sponds to a longitudinal mode~dipole moment of the sphere
parallel to thez axis! in which each sphere oscillates 180
out of phase with its neighbors. The multitude of modes n
s51/2 presumably originate in the high-, ‘‘atomic’’ modes,
which have eigenvalues approachings51/2.

In Fig. 2, we show the eigenvalues of the two lowe
bands atk50 plotted as a function ofa/d. Here, the lowest
band corresponds to longitudinal mode (m50) and the sec-
ond lowest band to degenerate transverse modes (m561).
We performed two different calculations: In the first calcu
tion, shown as open circles and squares, we assumed
dipole approximation and included only the,51 part of the
Hamiltonian matrix. This calculation corresponds to t
tight-binding approximation used in Ref. 3. In the secon
we included all bands up to,580, which is sufficient to
ensure the convergence of these two bands, as in Fig. 1,
this inclusion of the higher multipoles starts to make a s
stantial difference fora/d*0.35.

The inset to Fig. 2 shows the splittingDs between the
longitudinal and transverse modes atk50, plotted as a func-
tion of a/d. In the dipole approximation~dashed line!, this
splitting increases monotonically asa/d increases.12 How-
ever, as shown by the solid line in the inset, when the hig

ic
8-4
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SURFACE-PLASMON DISPERSION RELATIONS IN . . . PHYSICAL REVIEW B69, 125418 ~2004!
multipoles are included, the splitting reaches a maxim
neara/d50.46, then decreases again.

In order to compare with experiment, one needs to re
press the band structure as dispersion relations forv(k)
rather thans(k), using Eq.~1!. With the resultingv(k), we
can also obtainvg(k) from Eq. ~14! and jD from Eq. ~15!.
We show the resulting dispersion relationsv(k)/vp in Fig.
3~a!, and the resultingjD(k) andvg(k) in Fig. 3~b! for the
lowest longitudinal and transverse bands as a function ofkd.
We denote these results as open square and circle fora/d
50.33, the value used in experiments, and also as solid
dashed lines fora/d50.45, which is near the maximum o
the splittingD ’s. In order to calculatev(k)/vp , we choose
vp56.7931015 rad/s andt54 fs, as used in Ref. 7. Thi
choice allows us to compare the present result fora/d
50.33 with those given in Refs. 5 and 7.

First, we compare our results fora/d50.33 with experi-
ment. Fora/d50.33, the result of the full calculation fo
v(k) is not significantly different from the dipole approx
mation, since multipole effects produce only a minor alt
ation to the lowest bands in this case. However, the multip
effects can be seen much more clearly in thek-dependent
group velocityvg(k) for these bands, and this quantity ca
be easily computed numerically, using thev(k) shown in
Fig. 3~a!. In contrast to the result from the dipole approx
mation of Ref. 3, the maximum invg for a/d50.33 does not
occur atk5p/(2d), but instead aroundk5p/(4d), when
the multipolar corrections are included. However, if we a
sume d575 nm, vp56.7931015 rad/s, andt54 fs as in
Ref. 7, themagnitudeof the maximumvg for the longitudi-
nal (m50) mode is approximately 1.93107 m/s, which is
close to the result of Ref. 7, while the magnitude ofvg for
the transverse (m561) modes is slightly larger than th
value (1.13107 m/s) estimated in Ref. 7. Also, the values
jD in the lowest longitudinal and transverse modes fora/d
50.33 are comparable to the experimental values for gold
given in Ref. 6.

FIG. 2. Eigenvaluess(k) for the lowest two bands of the ban
structure shown in Fig. 1 atk50, evaluated as a function ofa/d.
Solid and dashed curves correspond tom50 andm561, respec-
tively, for full multipole calculations. Open squares (m50) and
circles (m561) are point-dipole calculations. Inset: SplittingDs
between lowestm561 andm50 bands atk50 as calculated in
the dipole approximation~open squares! and using full Hamiltonian
matrix ~solid line!.
12541
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For a/d50.45, which is near the maximum of the spli
ting Ds, the multipole corrections to the band structure
much greater. Asa/d approaches the maximum splitting b
tween longitudinal (m50) and transverse (m561) modes,
the variation ofvg with k becomes nonmonotonic. In contra
to the dipole approximation, which gives a maximum gro
velocity atk5p/(2d), our exact calculation actually gives
local minimumin vg for this value ofk ~for both polariza-
tions!. As can be seen from Fig. 3~b!, vg(k) has, in fact, two
maxima as a function ofk for this separation, for both lon
gitudinal and transverse modes. The maximum estimated
ponential decay length shown in Fig. 3~b!, for the optimum
k, corresponds to anm50 wave, and is about three time
larger than that fora/d50.33. But this decay length is ca
culated for a wave withk vector corresponding to the max
mum group velocity. The actualvg is stronglyk dependent,
especially for the largera/d. Thus, a typical wave, which
would likely propagate as a packet of many different wa
vectors, would likely have a quite different decay length, a
also would probably not decay exponentially. It is possib
that thisk dependence is related to the nonexponential spa
decay of SP’s found in the numerical simulations of Ref.

We have not commented thus far about the role of
higher SP bands. For values ofa/d greater than about 0.33

FIG. 3. ~a! Dispersion relationsv(k) for the lowest two bands
in a chain of metallic nanoparticles ata/d50.33 or 0.45. The solid
(m50) and dashed (m561) lines correspond toa/d50.45; the
open squares (m50) and circles (m561), to a/d50.33. The
curves are computed using the full Hamiltonian up to,580, using
a Drude dielectric function for the metal.~b! Energy decay lengths
jD , in units of the lattice constantd, and corresponding group
velocities vg in units of vpd, plotted vskd for the lowest two
bands, assuminga/d50.33 or 0.45. The labeling of the curve
follows the notation of Fig. 3~a!.
8-5
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SUNG YONG PARK AND DAVID STROUD PHYSICAL REVIEW B69, 125418 ~2004!
most of these bands are nearly dispersionless, with eigen
uessa(k);1/2. The SP modes corresponding to these ba
will thus propagate with very small group velocityvg,a
5dva(k)/dk, and are likely to contribute very little to en
ergy transport along the chain.

IV. DISCUSSION

In this work, we have calculated the surface-plasmon d
persion relations for a one-dimensional chain of spher
particles in a uniform host. In contrast to previous work,
have included all the multipolar terms in our calculati
within the quasistatic approximation. We find that the dipo
approximation is reasonably accurate fora/d<1/3, but be-
comes increasingly inaccurate for largera/d. When a/d
→1/2, the lowest band shapes are entirely different from
point-dipole predictions. Thus, an accurate comparison
theory to experiment should take into account these cor
tions, whena/d exceeds about 1/3.

In our results neara/d51/2 we see conspicuous percol
tion effects. Specifically, thek50 mode approaches zero fre
quency for a chain of Drude spheres in an insulating h
Furthermore, whena/d→1/2, the entire band structur
shows remarkable reflection symmetry, both aroundk
5p/(2d) and around the frequency midpoint ats51/2. We
do not presently understand the reasons for this symme

Besides producing shape distortions in the lowest ban
the present calculations also lead to an infinite numbe
higher propagating SP bands. We believe, however,
these will contribute little to energy propagation, becau
they are characterized by much lower group velocities t
the lowest two bands.

Our calculations in Fig. 3 have, of course, been carr
out in the Drude approximation. As mentioned earlier,
used values of 1/t andvp as best fits to experiments on bu
gold, as described in Ref. 7. In actuality, the complex diel
tric functions of silver, and especially gold, have substan
interband contributions, and cannot be described by a Dr
dielectric function in the visible. An accurate translation
the SP band structure from the variables to the variable
em(v)/eh should use this more accurate dielectric functio
e.g., by using a fit of the experimentalem(v) to a sum of
free-electron and Lorentz oscillator parts. This more com
cated procedure might somewhat change the plasmon
structures, especially for gold. Another possible complicat
is that, in typical experiments, the nanoparticle chains
laid down on a substrate, whose dielectric constant diff
from that of vacuum. Thus, the chain is not really embedd
in a homogeneous dielectric. Some workers have taken
complication into account by treating the host as homo
neous but with a dielectric function which is an average o
the air and substrate dielectric functions.5 Once again, this
correction, if included, would also modify the calculated S
band structure.

The present work could be readily be generalized
higher dimensions, e.g., to an ordered layer of spheres
posited on a substrate. This extension should be straigh
ward, since the matrix elements required are the sam
used here. The same approach could also be applied to
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ticles of different shapes, e.g., ellipsoids or short cylinde
although the calculation of the single-particle eigenstates
the overlap integrals might be more difficult. We plan
carry out some of these extensions in the near future.
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APPENDIX: FORMULATION IN THE TIME DOMAIN

If the small spherical particles are described by a Dru
dielectric function, the SP band structure can be also
tained, in perhaps a more intuitive way, by writing down
set of coupled equations of motion intime for the multipole
moments. We first introduce the scalar quantitiesqn,m , de-
fined as the (,m)th multipole moment of thenth particle.
Then, in the absence of damping, the coupled equation
motion can be written in the form

q̈n,m52v,m
2 qn,m1vp

2 ( 8
,8m8n8

Qn,m;n8,8m8qn8,8m8 ,

~A1!

where the prime over the sum indicates a sum only over
grainsn8Þn. For spherical grains, the single-grain resona
frequencies are given by

v,m
2 5

,

2,11
vp

2 , ~A2!

and the coupling constantsQn,m;n8,8m8 are given by Eq.~3!.
Equation~A1! is readily solved for the eigenfrequencies b
substituting assumed solutions of the form

qn,m~ t !5Re@q,mexp~ inkd2 ivat !# ~A3!

into Eq.~A1!. Hereq,m is the amplitude of the (,m)th mul-
tipole in a propagating mode of wave vectork. With this
substitution, Eq.~A1! reduces to a set of coupled homog
neous linear algebraic equations. A solution is obtained if
determinant of the matrix of coefficients vanishes. This co
dition is equivalent to that of Eqs.~8!, ~9!, and~11!.

Equation~A1! has a straightforward physical interpret
tion. The right-hand side of Eq.~A1! describes two contribu-
tions to the force acting on the multipole momentqn,m . The
first term is the restoring force due to charge motion within
single particle. The second term on the right comes from
electric fields of all the multipole fields from the other pa
ticles, evaluated at the position of thenth particle. Damping
is easily included in Eq.~A1! by adding to the right-hand
side the term2q̇n,m /t. To obtain solutions in the presenc
of damping, we assume the form~A3! but with a complex
frequencyva(k)5v11 iv2. The resultingva(k) is given
by Eq. ~13!.

An appealing feature of Eq.~A1! is that one can easily
add a driving term. For example, if a uniform electr
8-6
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field En(t) is applied to thenth grain, the interaction
energy between that field and thenth grain would be
H852pn•En(t), wherepn is the dipole moment of thenth
grain. To calculate the force on thenth grain, we writepn
5qxn , whereq is the total electronic charge in thenth grain,
andxn is its displacement from its equilibrium position. Th
interaction energy between this charge and the app
field is thus 2qxn•En(t). The corresponding force o
the charge is justqE5M ẍn , where M is the total mass
of the electronic charge in the grain. Thus,p̈n5qẍn

5q2/ME5(4pa3nee
2/3me)E5(a3vp

2/3)E, where me

53M /(4pa3ne) is the electron mass,e53q/(4pa3ne) is
the magnitude of the electron charge,ne is the electron den-
sity, andvp

254pnee
2/me is the squared plasma frequency

Finally, to incorporate the damping and driving terms in
the right-hand side of Eq.~A1!, we express the applied elec
tric field in terms of the spherical componentsm50 andm
561. Thus, we write En,1,0(t)5En,z(t), En,1,61(t)
5En,x(t)6En,y(t). We then obtain the following equation
of motion:
et

.P
gg

. B

.

.

12541
d

q̈n,m52v,m
2 qn,m2

1

t
q̇n,m1

vp
2a3

3
En,1,m~ t !d,,1

1vp
2 ( 8

n8,8m8

Qn,m;n8,8m8qn8,8m8 . ~A4!

Equation~A4! is generalization of the equations writte
down in Ref. 3 which include all multipole moments, with
the quasistatic approximation, and single-grain damp
within the Drude approximation. They also include the e
fects of a uniform but time-dependent electric field applied
the nth nanoparticle.

Finally, we note that we have not included radiative c
rections to the calculated SP bands. However, the pre
work could also be extended beyond the quasistatic appr
mation to include radiative corrections, in a simple mann
by adding an additional imaginary part to the eigenvalu
These corrections could easily be included within the dip
approximation, as has been discussed, for example, in Re
.

nn,
1M. Quinten, A. Leitner, J.R. Krenn, and F.R. Ausenegg, Opt. L
23, 1331~1998!.

2J.R. Krenn, A. Dereux, J.C. Weeber, E. Bourillot, Y. Lacroute, J
Goudonnet, G. Schider, W. Gotschy, A. Leitner, F.R. Ausene
and C. Girard, Phys. Rev. Lett.82, 2590~1999!.

3M.L. Brongersma, J.W. Hartman, and H.A. Atwater, Phys. Rev
62, R16356~2000!.

4S.A. Maier, M.L. Brongersma, P.G. Kik, S. Meltzer, A.A.G
Requicha, and H.A. Atwater, Adv. Mater.~Weinheim, Ger.! 13,
1501 ~2001!.

5S.A. Maier, P.G. Kik, and H.A. Atwater, Appl. Phys. Lett.81,
1714~2002!; S.A. Maier, M.L. Brongersma, P.G. Kik, and H.A
Atwater, Phys. Rev. B65, 193408~2002!.
t.

.
,

6S.A. Maier, P.G. Kik, H.A. Atwater, S. Meltzer, E. Harel, B.G
Koel, and A.A.G. Requicha, Nat. Mater.2, 229 ~2003!; J.R.
Krenn, ibid. 2, 210 ~2003!.

7S.A. Maier, P.G. Kik, and H.A. Atwater, Phys. Rev. B67, 205402
~2003!.

8S.K. Gray and T. Kupka, Phys. Rev. B68, 045415~2003!.
9See, e.g., U. Kreibig and M. Vollmer,Optical Properties of Metal

Clusters~Springer-Verlag, Berlin, 1995!, p. 23.
10D.J. Bergman, Phys. Rev. B19, 2359~1979!.
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