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Scaling detection in time series: Diffusion entropy analysis
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The methods currently used to determine the scaling exponent of a complex dynamic process described by
a time series are based on the numerical evaluation of variance. This means that all of them can be safely
applied only to the case where ordinary statistical properties hold true even if strange kinetics are involved. We
illustrate a method of statistical analysis based on the Shannon entropy of the diffusion process generated by
the time series, called diffusion entropy analysis~DEA!. We adopt artificial Gauss and Le´vy time series, as
prototypes of ordinary and anomalous statistics, respectively, and we analyze them with the DEA and four
ordinary methods of analysis, some of which are very popular. We show that the DEA determines the correct
scaling exponent even when the statistical properties, as well as the dynamic properties, are anomalous. The
other four methods produce correct results in the Gauss case but fail to detect the correct scaling in the case of
Lévy statistics.
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I. INTRODUCTION

Scale invariance has been found to hold empirically fo
number of complex systems, and the correct evaluation
the scaling exponents is of fundamental importance to as
if universality classes exist@1#. The mathematical definition
of scaling is as follows. The functionF(r 1 ,r 2 ,...) is termed
scaling invariant, if it fulfills the property

F~r 1 ,r 2 ,...!5gaF~gbr 1 ,gcr 2 ,...!. ~1!

Equation~1! means that if we scale all coordinates$r% by
means of an appropriate choice of the exponentsa,b,c, . . . ,
then we always recover the same function. The theoret
and experimental search for the correct scaling exponen
intimately related to the discovery of deviations from ord
nary statistical mechanics. This aspect emerges clearly
instance, from Ref.@2#. The author of this interesting book
with the help of dimensional analysis and regularity assum
tion, determines the values of the scaling exponents. Th
scaling exponents, however, aretrivial in the sense that the
refer to ordinary statistical mechanics.

In this paper we focus on the scaling of time series, a
consequently@3# on the scaling of diffusion processes.
fact, according to the prescription of Ref.@3# we interpret the
numbers of a time series as generating diffusion fluctuatio
thereby shifting our attention from the time series to t
probability distribution function~pdf! p(x,t), where x de-
notes the variable collecting the fluctuations. In this case
the time series is stationary, the scaling property of Eq.~1!
takes the form

p~x,t !5
1

td
FS x

tdD , ~2!

whered is the scaling exponent. Ordinary statistical mech
ics is intimately related to the central limit theorem~CLT!
1063-651X/2002/66~3!/036130~10!/$20.00 66 0361
a
of
ss

al
is

or

-
se

d

s,

if

-

@4#, thereby implying forF the Gaussian form and for th
scaling exponent the value predicted by ordinary rand
walk theory, namely,d50.5.

The main purpose of this paper is to prove that a te
nique of statistical analysis, recently introduced to estab
the thermodynamic nature of a time series of sociologic
astronomical, and biological interest@5–9#, affords a reliable
way to evaluate the scaling exponent. This method of an
sis is based on the entropy of the diffusion process and
this reason is called diffusion entropy analysis~DEA!. We
compare the DEA to the standard deviation analysis~SDA!
@10#, the detrended fluctuation analysis~DFA! @3#, the res-
caled range analysis~RRA! @11#, and to the spectral wavele
Analysis~SWA! @12#; and we show that, while all these tech
niques, some of which are very popular, can yield wro
scaling exponents, the DEA always determines the cor
value of the scaling exponentd, with satisfactory precision
This important conclusion is reached by examining artific
sequences generating Gauss and Le´vy statistics. The DEA is
the only technique yielding the correct scaling in both t
Gauss and Le´vy cases. The other techniques produce corr
results only in the Gauss case but fail to detect the cor
scalingd in the case of Le´vy statistics.

II. DIFFUSION ENTROPY ANALYSIS

It is remarkably simple to determine the scaling parame
d using the DEA. First of all, we transform the time seri
into a diffusion process whose pdfp(x,t) is estimated~Sec.
IV illustrates an algorithm to do that!. Then, we measure th
Shannon entropy of the diffusion process,

S~ t !52E
2`

1`

dx p~x,t !ln@p~x,t !#. ~3!

Let us suppose thatp(x,t) fits the scaling condition of Eq
©2002 The American Physical Society30-1
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~2! and let us plug Eq.~2! into Eq.~3!. After an easy algebra
based on changing the integration variable fromx into y
5x/td, we obtain

S~ t !5A1d ln~ t !, ~4!

where

A[2E
2`

`

dyF~y!ln@F~y!#. ~5!

Equation~4! means that the entropyS(t) increases lin-
early with ln(t) and the sloped of the resulting straight line is
the scaling coefficient. The numerical search for the sca
coefficientd is done with this property in mind. Actually, th
numerical results are expressed in a linear-log scale th
equivalent to transform the fitting curves with the formK
1d ln(t) into straight lines. It is evident that the diffusio
time t depends on the time unit adopted. However, this a
trary choice in no way affects the scaling parameter. T
adoption of a different time unit would change the curve~4!
into a new one, parallel to the original, and thus bearing
same scaling parameterd.

III. GAUSS AND LÉ VY DIFFUSION

This section is devoted to illustrating why, in spite of th
unambiguous definition of diffusion scaling of Eq.~2!, in the
literature on time series analysis a misleading perspectiv
frequently adopted. The scaling property is usually expres
by means of

x}td. ~6!

The next step, adopted by many authors, rests on evalua
the second moment of the pdfp(x,t), ^x2(t)&. Let us see
why this procedure is correct only in the Gaussian case
the long-time limit, the variablex(t) collecting the fluctua-
tions j(t) has a time evolution equivalent to

ẋ~ t !5j~ t !. ~7!

By time integration we get

x~ t !5x~0!1E
0

t

dt8j~ t8!. ~8!

Let us imagine a set of infinitely many trajectories of t
type of that of Eq.~8!. As to the second moment^x2(t)&, we
evaluate its time evolution by squaring Eq.~8! and averaging
over all the trajectories of this set. Under the assumption
the process is stationary and that^j(t)&50, it is straightfor-
ward to obtain

^x2~ t !&5^x2~0!&12^j2&E
0

t

dt1E
0

t1
dt2Fj~t2!. ~9!

Note that to get this result we use the equilibrium correlat
function
03613
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Fj~ t1 ,t2![
^j~ t1!j~ t2!&

^j2&
. ~10!

Under the stationary condition, this correlation function d
pends only on the time difference, namely,Fj(t1 ,t2)
5Fj(ut12t2u); and this property, with the help of a suitab
change of integration variables, yields Eq.~9!.

What is the connection between second moment and s
ing? Having in mind Eq.~6!, one would be tempted to mak
the conjecture that

^x2~ t !&}t2d. ~11!

However, this conjecture is not correct in general, and to
more rigorous let us replace Eq.~11! with

^x2~ t !&}t2H. ~12!

The adoption of the symbolH rather than the symbold is
dictated by the following reasons. In general the second m
ment does not yield the correct scalingd. Therefore, it is
convenient to adopt for the information afforded by the s
ond moment a symbol different from that used in this pa
for the scaling coefficient. The authors in the field of tim
series analysis use the symbolH to denote scaling, having in
mind the popular method of Hurst. The Hurst coefficient,
the special case of fractional Brownian motion~FBM! @13#,
is, quite correctly, identified with the scaling paramet
However, there is no guarantee that the exponentH is in
general identical to the scaling coefficientd. Thus, the adop-
tion of the symbolH is also a way of warning the reader th
in some casesH might be significantly different fromd. To
prove under which conditions the equalityd5H applies, and
consequently Eq.~11! @as well as Eq.~12!# is correct, let us
notice that under the assumption that the fluctuationj(t) is
Gaussian~and with no other assumption!, we can prove that
the pdfp(x,t) fulfills the following diffusion equation:

]p~x,t !

]t
5D~ t !

]2

]x2
p~x,t !, ~13!

where

D~ t ![^j2&E
0

t

Fj~ t8!dt8. ~14!

The proof of this important result rests on the cumula
theory of Ref.@14#, and the reader can derive it from a mo
general case discussed in Ref.@15#. It is straightforward to
show that the general solution of Eq.~13!, for a set of par-
ticles initially located atx50, is

p~x,t !5
1

A2p^x2~ t !&
expS 2

x2

2^x2~ t !&
D , ~15!

where^x2(t)& is the second moment with the time evolutio
described by Eq.~9!. It is easy to show that the time
0-2
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asymptotic properties of the second moment are compa
with Eq. ~12!, with H ranging from 0 to 1. Let us conside
the case

lim
t→`

Fj~ t !}
s

tb
. ~16!

It is straightforward@16# to prove that 0<b<1 and s51
yields

H512
b

2
. ~17!

If b.1 ands51, we getH50.5. Note that the case whe
the decay of the correlation function is exponential, it cor
sponds tob5`, and so again toH50.5. In principle, this
picture is compatible with a diffusion slower than th
Brownian diffusion. This is possible whens521. This
means that the correlation function undergoes one or m
oscillations allowing it to get negative values moving fro
the initial positive valueFj(0)51. In this case Eq.~17!
holds true with 1<b<2.

Thus, we see that in the asymptotic time limit the soluti
of Eq. ~13! can be written under the form

p~x,t !5
1

A4pkt2H
expS 2

x2

4kt2HD , ~18!

with k being a constant depending on the time series un
study. The expression of Eq.~18! shows that the scaling defi
nition of Eq. ~2! is fulfilled, with d5H, while the function
F(y) keeps the Gaussian form of ordinary statistical m
chanics. This expression coincides with the FBM presc
tion @13#, the only important difference being that the FB
implies that the form of Eq.~18! holds true at all time scales
while the dynamical derivation, from Eq.~13!, makes it true
only in the asymptotic time limit.

The conditiond5H, correct in the case of FBM, is vio
lated in general. A very popular example is given by t
Lévy flight @17,18#. Let us illustrate here the special case
symmetric Lévy flight. Let us consider that at any time ste
a one-dimensional random walker can make jumps by a
tance j, whose probability densityl(j) has the Fourier
transform of the forml̂(k)5exp(2bukum21). Here 1<m
<3 andb denotes the strength of the resulting diffusion p
cess. According to the generalized central limit theor
~GCLT! @19#, the resulting diffusion process yields a p
p(x,t), whose Fourier transformp̂(k,t) reads

p̂~k,t !5exp~2bukum21t !. ~19!

Note thatuku}1/uxu. Thus, Eq.~19! shows that in this case
the scalingd is given by

d5
1

m21
. ~20!

On the other hand, it is known@17# that the pdfp(x,t) yields
slow tails proportional to 1/uxum, thereby implying diverging
03613
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second moments form,3. It is evident that in this case th
propertyd5H is broken, and that the numerical determin
tion itself of H is an ill-posed problem.

Instantaneous jumps of arbitrarily large intensity a
somewhat unrealistic. For this reason the authors of R
@20–22# made the assumption that it takes the random wa
a time proportional to the jump intensity to make a giv
jump. This process is called Le´vy walk. Furthermore, the
condition that the distribution of jumps intensities has
ready the Le´vy stable form is released and replaced by
inverse-power-law distribution. To generate Le´vy walk we
refer here to the algorithm of Ref.@6#. This algorithm is
based on drawing first the random numberst i ’s, i
51,2, . . . ,with the probability densityc(t) given by

c~t!5~m21!
Tm21

~T1t!m
, ~21!

whereT is a positive constant. This is the simplest analytic
form ensuring at large times an inverse power law and
ting, at the same time, the normalization condition that
necessary to interpret it as a probability density. Note that
also set the physical conditionm.2, ensuring the existenc
of a finite first moment, namely, the mean time of this d
tribution, ^t&. The meaning of the parameterT is made clear
by the relation

^t&5
T

m22
. ~22!

This means that the parameterT serves the purpose of keep
ing under control the mean timêt&, which can be made a
large as we wish in two different ways, the first being ma
ing m as close as possible to 2, and the second being ass
ing to T very large values that compensate an indexm sig-
nificantly greater than 2, but smaller than 3. The seco
requirement is due to the fact thatm53 is the border with
the Gaussian basin of attraction@6#. To generate Le´vy walk
we cannot cross this border. Note that the artificial sequen
that we generate to show the different techniques of anal
in action are obtained, as we shall see in Sec. VI, from
discrete version of this algorithm. We associate each t
interval t i to a numbersi , equal to either11 or 21, ac-
cording to a coin tossing prescription. We calleventthe ran-
dom drawing of the pair$t i ,si%. The first event takes plac
at t50. The random walker moves with constant velocityW,
ahead or backwards, according to whethers1 is equal to11
or to 21. At time t5t1 the random walker can change d
rection or keep moving in the same direction, according
whethers2 has a sign opposite or equal to that ofs1. We
keep using the same prescription at timest11t2 , t11t2
1t3, and so on. We consider a time scale characterized
the property

t@^t&. ~23!

It is evident that the number of events that occurred prior
a given timet is given by
0-3
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n5F t

^t&G , ~24!

with @a# denoting the integer part ofa. Consequently, at a
given time t@^t&, the positionx occupied by the random
walker is given by the superposition of many highly corr
lated fluctuationsj i , of intensity W, or of n uncorrelated
variablesj i5t isi . Using the latter perspective, we have th
the probability distribution functionl(j) given by

l~j!5
1

2W
cS j

WD , ~25!

the analytical form of the functionc being given by Eq.~21!.
By applying again the GCLT@19#, we obtain the Le´vy sta-
tistics, and, of course, the same scaling prescription as th
Eq. ~20!.

Lévy walk serves the very useful purpose of explaini
why the emergence of the Le´vy statistics does not imply a
total failure of the methods relating scaling to variance.
this case, in fact, the second moment is finite, and this pr
erty does not depend on the lack of sufficient statistics
depends on the fact that no jump can occur with a length
intensity larger thanWt. In this specific case, the renew
theory @23# prescribes that the correlation functionFj(t) is
related to the waiting time distributionc(t) by the important
equation

Fj~ t !5
1

^t&Et

1`

~ t82t !c~ t8!dt8. ~26!

From this important relation, using Eq.~21!, we derive the
following analytical expression forFj(t):

Fj~ t !5S T

t1TD b

, ~27!

with

b5m22. ~28!

At this stage we are equipped to derive the asymptotic pr
erties of the pdf second moment. The existence of the co
lation function of Eq.~27! allows us to use again Eq.~9! so
as to reach quickly the conclusion that

H5
42m

2
. ~29!

This result is, in fact, obtained by plugging Eq.~28! into Eq.
~17!. There is no reason to identifyH with d, in this case.
Rather, if we trust the GCLT and, consequently, the sca
prescription of Eq.~20!, we see thatd is related toH by

d5
1

322H
. ~30!

We shall prove that the DEA detects this correct scaling;
methods resting on variance cannot, even if the exponenH
they detect has an interesting physical meaning. This ph
03613
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cal meaning changes from case to case and depends on
the statistics of the process and the walking rule adopte
change the time series into a diffusion process.

IV. THE DIFFUSION ALGORITHM

In Sec. II, the DEA was illustrated adopting a continuo
picture. The analysis of time series implies the adoption o
discrete picture. This is so because, in practice, we hav
analyze a sequence ofN numbers ofj i , with i 51, . . . ,N.
We derive from this sequence the largest possible numbe
diffusing trajectories with the method of a mobile window
~integer! length t. In fact, we select an integer numbert,
fitting the condition 1<t<N. This integer number plays th
rule of the diffusion time. Therefore, for the only purpose
simplifying the notation, we adopt the same symbol ‘‘t ’’
adopted for the continuous diffusion time in the previo
sections. For any given diffusion timet, we can findN2t
11 subsequences defined by

j i
(s)[j i 1s with s50, . . . ,N2t. ~31!

For any of these subsequences, we build up thesth diffusion
trajectory, defined by the position

x(s)~ t !5(
i 51

t

j i
(s)5(

i 51

t

j i 1s . ~32!

We can also imagine a collection ofN2t11 particles, with
the valuex(s)(t) denoting the position of thesth particle at
the timet. In other words, we imaginex(s)(t) as the position
of a particle that, at regular intervals of time, has been jum
ing forward or backward according to the values of the c
responding subsequences of Eq.~31!. This means that the
particle, before reaching the position that it holds at timet,
has been makingt jumps. The jump made at thei th step has
the intensityuj i

(s)u, and is forward or backward according t
whether the numberj i

(s) is positive or negative. We adopt
perspective inspired to Brownian motion~random walker!
for the tutorial purpose of illustrating how the diffusion a
gorithm works. Actually, the ultimate task of this algorith
is to express in a quantitative way the departure of the
served process from the statistical properties of the ordin
Brownian motion.

We are now ready to evaluate the entropy of this diffus
process. To do that we have to partition thex axis into cells
of size e. We count how many particles are found in th
samej th cell at a given timet. We denote this number by
Nj (t). Then we use this number to determine the probabi
that a particle can be found in thej th cell at timet, pj (t), by
means of

pj~ t ![
Nj~ t !

~N2t11!
. ~33!

At this stage the entropy of the diffusion process at timet is
determined, and reads
0-4
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S~ t !52(
j

pj~ t !ln@pj~ t !#. ~34!

The easiest way to proceed with the choice of the cell size
is to assume it to be a fraction of the square root of
variance of the fluctuation,j( i ), and consequently, indepen
dent of t.

V. THE METHODS OF ANALYSIS BASED ON VARIANCE

In this section, to make easier for the reader to apprec
the benefits afforded by the adoption of the DEA, we revi
four alternative methods of time series analysis. The
three methods are very popular, and are all related~to a
somewhat different extent! to the first one, based on the d
rect evaluation of variance.

Standard deviation analysis. SDA is probably the mos
natural method of variance detection. This method was u
for instance, in Ref.@10#. The starting point is given by the
diffusion algorithm of Sec. IV, Eq.~32!. All trajectories start
from the originx(t50)50. With increasing timet, the sub-
sequences generate a diffusion process. At each discrete
t, it is possible to calculate the standard deviation on
trajectory position with the well-known expression

D~ t !5
A(

s50

N2t

@x(s)~ t !2 x̄~ t !#2

N2t
, ~35!

where x̄(t) is the average on the positions of theN2t11
particles at timet. We note that the prescription illustrated
Sec. IV to define that the trajectories of this diffusion proce
are based on overlapping windows. This means that the
jectories are not totally independent of one another. In p
ciple, we can also adopt a nonoverlapping window meth
In this case the largest trajectory that we can build up w
the whole sequence is divided intoL5@N/t# smaller trajec-
tories of sizet ~as done earlier, with the symbol@a# denoting
the integer part ofa). Thus, the quantityD(t) can be re-
ferred to many trajectories totally independent of each ot
This is the advantage of using many nonoverlapping w
dows. However, nonoverlapping windows generate a num
of trajectories much smaller than when using the overlapp
window method, and, consequently, statistics is poorer t
that with the method of overlapping windows. We prefer
work with rich statistics; therefore, in this paper we use
method of overlapping windows.

According to the traditional wisdom of the methods bas
on variance, the existence of scaling is assessed by ob
ing, with numerical methods, the following property:

D~ t !}tH. ~36!

The exponentH is interpreted as the scaling exponent.
discussed in Sec. III, there is no guarantee that this expo
coincides with the genuine scalingd. This is the reason why
with all the methods of analysis of this section we shall u
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the symbolH to denote the result of the statistical analys
To assess whether this is the true scaling or not, it is ne
sary to also use the DEA.

Rescaled range analysis. RRA was introduced by Hurst in
1965@11#, mainly for the purpose of studying the water sto
age of the Nile River. Int years, the average influx is

^j& t5
1

t (
i 51

t

j i . ~37!

The amount of water accumulated in the reservoir int years
is

x~ t,t!5(
i 51

t

~j i2^j& t!. ~38!

The reservoir neither overflows nor empties during the
riod of t years if its storage capacity is larger than the diffe
ence,R(t), between the maximum and minimum amounts
water contained in the reservoir.R(t) is

R~ t !5 max
1<t<t

x~ t,t!2 min
1<t<t

x~ t,t!. ~39!

For getting a dimensionless value, Hurst dividedR(t) by the
standard deviationS(t) of the data during thet years:

S~ t !5A1

t (
i 51

t

~j i2^j& t!
2. ~40!

Hurst observed that many phenomena are very well
scribed by the following scaling relation:

R~ t !

S~ t !
}tH. ~41!

The exponentH ~denoted by the letterK by Hurst! was
called Hurst exponent, and consequently denoted by the
ter H, by Mandelbrot@13#.

Detrended fluctuation analysis. DFA was introduced in
1994 by the authors of Ref.@3#. Since 1994, hundreds o
papers analyzing fractal properties of time series with
DFA have been published. In summary, DFA works as f
lows. Given a time sequence$j i% ( i 51, . . . ,N), the DFA is
based upon the following steps. First, the entire sequenc
lengthN is integrated, thereby leading to

xl5(
i 51

l

~j i2^j&!, ~42!

where

^j&5
1

N (
i 51

N

j i , ~43!

with l being an integer number whose maximum value isN.
Second, the resulting time series is divided into@N/t# non-
overlapping boxes. The numbert, which indicates the size o
the box and plays a rule analogous to the diffusion time, is
integer much smaller thanN. A local trend is defined for each
0-5
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box by fitting the data in the box. The linear least-squares
may be done with a polynomial function of ordern>0 @24#.
Let xl(t) be the local trend built with boxes of sizet. Third,
a detrended walk is defined as the difference between
original walk and the local trend given by the linear lea
squares fit according to the following relation:

Xl~ t !5xl2xl~ t !. ~44!

Finally, the mean squared displacement of the detren
walk is calculated, that is,

FD
2 ~ t !5

1

N (
l 51

N

@Xl~ t !#2. ~45!

The application of this method of analysis to a number
complex systems~see, for instance, Refs.@3,24#! shows that

FD~ t !}tH. ~46!

Again, according to the traditional wisdom of the metho
based on variance, the exponentH is considered to be a
scaling exponent. Thus, the extent of the departure from
ordinary condition of Brownian motion is given byuH
20.5u.0.

Spectral wavelet analysis. SWA is a new and powerfu
method for studying the fractal properties of variance@12#.
SWA decomposes the sample variance of a time series
scale-by-scalebasis. Wavelet transform makes use of scal
waveletsc̃t,t(u), localized in time and frequency. The wav
let frequency is given by a scaling coefficientt that mea-
sures the width of the wavelet. The position of the wavele
space is given byt, with u being the space variable. Tw
typical wavelets widely used are the Haar wavelet and
sombrero wavelet@12#.

Given a signalj(u), the continuous wavelet transform
defined by

W~t,t !5E
2`

`

c̃t,t~u!j~u!du. ~47!

The original signal can be recovered from its continuo
wavelet transform via

j~u!5
1

Cc̃
E

0

`F E
2`

`

W~t,t !c̃t,t~u!dtG dt

t2
, ~48!

whereCc̃ is a constant that depends on the wavelet, see
@12# for details. Finally, it is possible to prove that

E
2`

`

j2~u!du5
1

Cc̃
E

0

`F E
2`

`

W2~t,t !dtGdt

t2
[E

0

`

SW~t!dt.

~49!

The functionW2(t,t)/t2 defines an energy density functio
that decomposes the energy across different scales and t
Equation ~49! is the wavelet equivalent to the Parseva
theorem in the traditional Fourier analysis. The functi
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SW(t), defined by Eq.~49!, is the wavelet spectral densit
function that gives the contribution to energy at the scalet.

From Ref.@12#, we derive that SWA applied to studying
noisy sequence$j i%, at the scalet, yields

SW~t!}ta. ~50!

The exponenta is related to the variance scaling exponentH
in the same way as in the conventional Fourier analy
Therefore,a52H21 for the SWA of the noise, anda
52H for the SWA of the integral of the noise. The conne
tion with the methods of scaling detection based on varia
is evident.

VI. ARTIFICIAL SEQUENCE ANALYSIS

In this section we verify the theoretical predictions of t
previous sections about the pdf scaling exponentd and the
variance scaling exponentH by using artificial sequences o
53106 data. With the help of artificial time series, we com
pare the methods of analysis based on variance with
DEA. We prove that the DEA always determines the tr
scaling d, whereas the variance based methods detect
true scaling only in the Gaussian case. Thus, in the L´vy
case, only the DEA reveals the true scaling.

A. Gauss statistics: fractional Brownian diffusion

Fractional Brownian diffusion is produced by fraction
Gaussian noise. For historical reasons, we generate a
series$j i% of N data by using the original algorithm by Man
delbrot, which can be found in work of Feders@25#. Other
more recent algorithms are suggested in Refs.@12,26#. Cho-
sen a value ofHP@0,1#, let $u i% be a set of Gaussian ran
dom variables with unit variance and zero mean. The disc
fractional Brownian increment is given by

j i5
m2H

G~H10.5! H (j 51

m

j H20.5u11m(M1 i )2 j

1 (
j 51

m(M21)

@~m1 j !H20.52 j H20.5#u11m(M211 i )2 j J ,

whereM is an integer that should be moderately large, andm
indicates the number of the fractional steps for each u
time. In the simulation, good results are obtained withM
51000 andm510. The time series$j i% is then used for
generating a diffusion process with the trajectories~32!.

According to the theoretical arguments of Sec. III, w
expect d5H in this case. To confirm this expectation b
means of the statistical analysis, we generate five differ
sequences with the following values ofH: ~1! H50.8, ~2!
H50.6, ~3! H50.5, ~4! H50.4, and~5! H50.2. We ana-
lyze these sequences with the SDA~Fig. 1! and with the
DEA ~Fig. 2!. The results of the numerical analysis ful
confirm our expectation. Let us see all this in more det
For illustration convenience, in Fig. 1 we plotD(t)/D(1)
against the diffusion timet, whereD(t) is the standard de
viation defined by Eq.~35!. With this choice, att51 all the
0-6
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numerical results yield, in the ordinate axis, the same va
equal to the unity. For the same reason, in Fig. 2, we plot
entropy differenceS(t)2S(1), thereby making all five nu-
merical curves depart from the same ordinate value at
51. In both figures the straight lines are the results o
fitting procedure, based onf D(t)5KDtH in Fig. 1, and on
f S(t)5KS1d ln(t), in Fig. 2. These fitting functions becom
straight lines due to the log-log representation adopted
Fig. 1 and to the linear-log representation adopted in Fig
The parametersH of the straight lines of Fig. 1 and th
parametersd of the straight lines of Fig. 2 coincide, curve b
curve, with the actual values ofH used to generate the art
ficial FBM sequences. The good fits of Figs. 1 and 2 pro
that the conditionH5d is verified for FBM. The constants
KD andKS are fitting parameters.

FIG. 1. SDA acting on five time series of fractional Brownia
noise of Sec. VI A. We plotD(t)/D(1) against the diffusion timet.
The straight lines of this log-log representation are fitting functio
with the form f D(t)5KDtH. From the top to the bottom we have~1!
H50.8, ~2! H50.6, ~3! H50.5, ~4! H50.4, and~5! H50.2.

FIG. 2. DEA of the five time series of fractional Brownian noi
of Sec. VI A. For illustration convenience, in ordinate we plot t
entropy incrementS(t)2S(1) as a function of diffusion timet. The
straight lines of this linear-log representation are fitting functio
with the form f S(t)5KS1d ln(t). From the top to the bottom we
have ~1! d50.8, ~2! d50.6, ~3! d50.5, ~4! d50.4, and~5! d
50.2.
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It is remarkable that for all the values ofH the parameters
KD andKS are very close to one and zero, respectively. T
is a consequence of an important property that the statis
analysis of times series should properly take into accou
The short-time regime is a kind of dynamic regime and
scaling regime is a kind of thermodynamic regime. It tak
time for a transition from the dynamic to the thermodynam
regime. Only in the case of a transition time equal to ze
that is, in the presence of an ideal FBM, the two fittin
parameters areKD51 andKS50. Figures 1 and 2 show tha
for small values ofH, for exampleH50.2, the transition
regime becomes more extended in time. We note that at
small value ofH the diffusion process becomes significan
antipersistent. This might be a physical property where
Mandelbrot algorithm that we are adopting does not satis
torily reproduce the ideal condition of FBM.

B. Lévy statistics: flight and walk diffusion

We generate a sequence of pairs$r i ,si%, with i
51,2, . . . . Thenumbers$r i% are the integer part of the time
t i generated by the algorithm of Ref.@6#, yielding the prob-
ability density of Eq.~21!. We select for all the artificial
sequences the valueT51. It must be pointed out that thi
choice for the value ofT is adopted to ensure a transition
the scaling regime as fast as possible. The asymptotic t
limit predicted by the theoretical remarks of Sec. III remai
unchanged. The mean time^t& of Eq. ~22! has to be referred
to a kind of effective value ofT, i.e. T(e f f) , and so does the
correlation function of Eq.~27!. It is not worth defining the
exact value ofT(e f f) , since this does not have any significa
consequence on the asymptotic time limit. As illustrated
Sec. III, the numberssi hold either11 or 21, according to
the coin tossing prescription. We can use the seque
$r i ,si% to generate both Le´vy flight and Lévy walk.

Lévy flight is obtained by changing the original sequen
of pairs $r i ,si% into the new sequence$j i%, where j i
[sir i . Notice that this means that the probability dens
does not have the Le´vy form. However, thanks to the GCLT
@19#, after a few time steps the resulting pdfp(x,t) is ex-
pected to get the Le´vy form of Eq. ~19!.

Lévy walk is obtained by building up the sequence$j i% as
follows. We assign to the firstr 1 sites of this sequence th
valueWs1, to the nextr 2 sites the valueWs2, and so on. As
explained in Sec. III, the Le´vy flight and the Le´vy walk, in
the asymptotic time limit have the same scaling, given

s

s

TABLE I. Theoretical relation between the waiting time distr
bution power exponentm, the variance scaling exponentH, and the
pdf scaling exponentd.

m H d

2.2 0.90 0.833
2.4 0.80 0.714
2.5 0.75 0.667
2.6 0.70 0.625
2.8 0.60 0.556
0-7
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Eq. ~20!. However, the Le´vy walk is expected to result in a
given H, predicted by Eq.~29!.

For the illustration purposes of this paper, we realize fi
sequences to generate Le´vy flight and five sequences to gen
erate Lévy walk. This is done by assigning to the distributio
of Eq. ~21! the following values form: ~1! m52.8, ~2! m
52.6, ~3! m52.5, ~4! m52.4, and~5! m52.2. In Table I we
have reported for reader’s convenience the values ofd and
H, which according to the theory of Sec. III correspond
each of the five values ofm used for the numerical check
The theoretical prescriptions used are Eq.~22! for d and Eq.
~31! for H.

Figure 3 shows the DEA at work on the time series g
erating Lévy flight. The straight lines are fitting functions o
the form f S(t)5KS1d ln(t). As in Fig. 2, these fitting func-
tions become straight lines due to the adoption of a linear

FIG. 3. DEA of the five Le´vy flight time series of Sec. VI B. The
straight lines of this linear-log representation are fitting functio
with the form f S(t)5KS1d ln(t). From the top to the bottom we
have ~1! d50.833, KS52.25; ~2! d50.714, KS52.15; ~3! d
50.667,KS52.11; ~4! d50.625,KS52.15; and~5! d50.556,KS

52.15.

FIG. 4. SDA of the five Le´vy flight time series of Sec. VI B. The
straight lines of this log-log representation are fitting functions w
the form f D(t)5KD tH. From the top to the bottom we have~1!
H50.5, KD5190; ~2! H50.5, KD529; ~3! H50.5, KD516; ~4!
H50.5, KD59.5; and~5! H50.5, KD54.1.
03613
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representation. The values of the parametersd coincide with
the theoretical prediction of Table I. Figures 4 and 5 illustra
the results of the SDA and RRA, respectively, applied to
same five time series of Fig. 3. For these figures we ado
log-log representation, and consequently fitting functio
with the form f D(t)5KDtH that become straight lines in thi
representation. Both figures yield forH a value independen
of m. This value isH50.5 in all cases. According to th
traditional wisdom, this would suggest the wrong conclus
that we are in the presence of ordinary Brownian motion.
are not, and the DEA is warning us that this would be
wrong conclusion. The reason for this misleading resul
that these techniques are determined by both the finite v
of the variance, due to statistical limitation, and the mem
ryless nature of the sequence$r i%. The smaller the paramete
m, the smaller the variance, as shown by Fig. 4. The R

s
FIG. 5. RRA of the five Le´vy flight time series of Sec. VI B. All

the five cases fitted by the straight line of this log-log representa
are fitting functions with the formf D(t)5KDtH, with KD51.1 and
H50.5.

FIG. 6. DEA of the five Le´vy walk time series of Sec. VI B. The
straight lines of this linear-log representation are fitting functio
with the form f S(t)5KS1d ln(t). From the top to the bottom we
have ~1! d50.833, KS50.35; ~2! d50.714, KS50.93; ~3! d
50.667,KS51.05; ~4! d50.625,KS51.15; and~5! d50.556,KS

51.25.
0-8
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eliminates this spreading, due to the fact that it normali
the data by dividing by the standard deviation.

Figures 6–10 refer to the time series generating Le´vy
walk. Figure 6 illustrates the result of the DEA. As in Figs.
and 3, the straight lines are fitting functions of the for
f S(t)5KS1d ln(t), made linear by the adoption of a linea
log representation, and, again the parametersd coincide with
the theoretical prediction of Table I. Figures 7, 8, and 9
lustrate the results of RRA, SDA, and DFA, respectively. F
all these figures we adopt the log-log representation, a
consequently we change into straight lines the fitting fu
tions with the formf D(t)5KD tH. Finally, Fig. 10 shows the
results of SWA. The SWA is made upon the integral of t
signal and in the ordinate the square root ofSW(t) is plotted.
In this way, we can adopt fitting functions with the for
f W(t)5KWtH for Fig. 7. In all four cases the parameterH
corresponds to the theoretical value ofH of Table I. Still

FIG. 7. RRA of the five Le´vy walk time series of Sec. VI B. The
straight lines of this log-log representation are fitting functions w
the form f D(t)5KDtH. From the top to the bottom we have~1!
H50.9, KD50.15; ~2! H50.8, KD50.25; ~3! H50.75, KD

50.75; ~4! H50.7, KD50.39; and~5! H50.6, KD50.62.

FIG. 8. SDA of the five Le´vy walk time series of Sec. VI B. The
straight lines of this log-log representation are fitting functions w
the form f D(t)5KDtH. From the curve with highest slope to th
with lowest slope we have~1! H50.9, KD50.45; ~2! H50.8, KD

50.48; ~3! H50.75, KD50.53; ~4! H50.7, KD50.6; and~5! H
50.6, KD50.7.
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more important than this, is the fact that for the samem all
four techniques yield the same value ofH, as the fitting
curves show, thereby supporting our conviction that they
different forms of the same technique of analysis, and t
this technique of analysis is reliable only in the FBM cas
On the other hand, we notice that the values ofd and the
values ofH reported in Table I fit the condition of Eq.~30!,
and this is a strong evidence that the statistics generate
the time series is Le´vy statistics. This means that the di
agreement between the scaling exponentd detected by the
DEA and the exponentH detected by the variance techniqu
of analysis can be used for the important purpose of defin
the nature of statistics generated by strange kinetics.

FIG. 9. DFA of the five Le´vy walk time series of Sec. VI B. The
straight lines of this log-log representation are fitting functions w
the form f D(t)5KD tH. From the curve with highest slope to tha
with lowest slope we have~1! H50.9, KD50.043; ~2! H50.8,
KD50.067; ~3! H50.75,KD50.082; ~4! H50.7, KD50.104; and
~5! H50.6, KD50.15.

FIG. 10. SWA of the five Le´vy walk time series of Sec. VI B.
The straight lines of this log-log representation are fitting functio
with the form f W(t)5KWtH. From the curve with highest slope t
that with lowest slope we have~1! H50.9, KW50.115; ~2! H
50.8, KW50.15; ~3! H50.75, KW50.17; ~4! H50.7, KW50.2;
and ~5! H50.6, KW50.23. The wavelet spectral density is calc
lated using the maximum overlap discrete wavelet transform@8#
with the DaubechiesH4 discrete wavelet.
0-9
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VII. SIGNIFICANCE OF THE RESULTS OBTAINED

This paper affords the compelling evidence that the D
is the only method leading in all conditions to the detect
of the correct scaling exponentd. In the case of a sequenc
of random numbers, which according to the GCLT sho
result in an anomalous scaling, the popular Hurst met
would lead to the wrong conclusion that the process
served is equivalent to the ordinary Brownian motion. All t
traditional methods would lead to quite correct conclusio
only in the case of Gaussian statistics, a condition that d
not mean, of course, ordinary Brownian diffusion, as ma
evident by the FBM theory of Mandelbrot. It is also evide
that these traditional methods ought not to be abando
even if they have to be used with caution. The results of S
VI B prove that the departure ofd from H is a clear indica-
tion of the occurrence of Le´vy statistics. More generally, th
departure of the traditional methods from the DEA findi
might be used to shed light on statistics as well as on dyn
v

or

n-

-

E

-
n-
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ics. Paraphrasing the title of a recent paper@27#, ‘‘Do strange
kinetics imply unusual thermodynamics?’’, we can say th
one of the basic problems concerning complex system
that of establishing if anomalous diffusion~strange kinetics!
is compatible or not with ordinary Gaussian distribution~ori-
nary thermodynamics!. In statistical mechanics, thermody
namics is used to establish the most plausible form of eq
librium distribution, thereby implying that the transitio
from an out-of-equilibrium initial condition to the final equ
librium condition is thought of as a transition from dynami
to thermodynamics. We consider the scaling regime a
form of equilibrium, and consequently as a thermodynam
equilibrium. If we look at the results of this paper from
within this perspective, we can conclude that FBM is
example of strange kinetics compatible with ordinary th
modynamics. We can thus conclude that the joint use of D
and techniques of analysis based on variance can as
when strange kinetics force the complex system to de
from ordinary thermodynamics.
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