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Experimental study of critical exponents of electrical conductivity
in a two-dimensional continuum percolation system

A. Okazaki, K. Horibe, K. Maruyama, and S. Miyazima
Department of Engineering Physics, Chubu University, Kasugai, Aichi, 487-8501, Japan

~Received 29 September 1999!

In this paper an experimental study is presented for critical exponents of electrical conductivity in an inverse
Swiss-cheese model. Filled circles are drawn on random positions of square paper in drawing ink with anX-Y
plotter, and electrical resistance between both opposite sides is measured automatically by the use of general
purpose interface bus system. Electrical conductivity is obtained from the inverse of the electrical resistance.
Electrical conductivity in a bond process is also measured with the same system. It is confirmed that the critical
exponent of electrical conductivity of a continuum two-dimensional inverse Swiss-cheese model is different
from that of a discrete one.

PACS number~s!: 64.60.Ak, 68.35.Rh, 75.40.Cx
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I. INTRODUCTION

The percolation problem@1–5# is an important model tha
indicates critical phenomena and retains various applica
ties that spread over various fields, such as disease prop
tion in orchards, oil recovery in oil wells, random networ
in cities, and so on. Critical exponents of discrete percola
models on a lattice have been almost clarified, but thos
continuum models are not clarified well. Halperinet al. @6#
predicted that some of the critical exponents in the c
tinuum percolation models might be different from those
the conventional discrete percolation models. We carried
a numerical simulation on a Swiss-cheese model@7# and in-
dicated that the value of the critical exponentn for the cor-
relation length of a two-dimensional continuum percolati
problem is different from the value of a discrete model. T
Swiss-cheese model is a percolation model with rando
placed uniform spherical voids. The next problem is to ide
tify the reason for the theoretical difference, but it seems
be difficult to do that. Therefore, it is the main purpose
this paper to confirm the difference of the critical expone
between the continuum model and the discrete one with
experiment, although the reason for the theoretical differe
between the discrete model and the continuum one is
clear.

FIG. 1. Experimental apparatus.
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In this paper, experiments on both continuum and discr
inverse Swiss-cheese models are carried out based on
single set of an experimental apparatus. As a result, i
confirmed that the critical exponent of electrical conductiv
of a continuum inverse Swiss-cheese model is different fr
that of a discrete system, which is obtained within the sa
experimental precision.

II. EXPERIMENTAL APPARATUS

In the case of an experiment of a Swiss-cheese mo
~SCM!, holes are punched randomly in a sheet of conduc
material @8#. On the other hand, an inverse Swiss-che
model ~ISCM! can be obtained by putting conductive mat
rial on a nonconductive sheet. We take notice of the fact t

FIG. 2. Experimental samples.~a! Continuum model;~b! dis-
crete model.
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most drawing ink transmits electricity, and that an expe
ment of ISCM can be carried out by drawing filled circles
tracing paper with anX-Y plotter.

Figure 1 shows an experimental apparatus which is m
up of a personal computer, anX-Y plotter, and an ohm
meter. Sample patterns of continuum and discrete models
shown in Figs. 2~a! and 2~b!, respectively. Filled circles and
bonds are drawn in a rectangular planeABCD. The filled
rectangles at the both ends are the terminals for meas
ment. The procedure of measurement for a continuum mo
is as follows:~1! A seed of random numbers is determine
~2! Coordinates of the center of a circle are determined
random numbers.~3! A filled circle in drawing ink is drawn
on white tracing paper with theX-Y plotter. ~4! The same
figure is also shown on the graphic display of the compu

FIG. 3. The variation of the electrical conductivity of continuu
percolation modelss with the area ratiop. ~a! d58 mm; ~b! d
54 mm; ~c! d52 mm.
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and the area ratiop, which is the ratio of the black parts t
the planeABCD, is calculated.~5! Electrical resistanceR
between both opposite sidesAB andCD is measured by the
use of the ohm meter, which is connected to the compu
with GP-IB ~general purpose interface bus! system. The
measurement is repeated ten times during 0.5 seconds
the average value is obtained asR. ~6! The area ratiop and
the electrical resistanceR are written in a file of the com-
puter. ~7! The steps from~2! to ~6! are repeated until the
planeABCD is covered with filled circles.

In the case of a bond model, location of an occupied bo
is determined by a random number, and the occupied ratip,
which is the ratio of the number of occupied bonds to that
the whole bonds, is calculated by the computer.

III. EXPERIMENTAL RESULTS

Figure 3 shows the variations of the electrical conduct
ity s with the area ratiop for continuum percolation models
Electrical conductivity is calculated from the inverse of t
electrical resistanceR. Owing to the use of drawing ink, the
temperature and the humidity in the laboratory affect m
sured values of the electrical resistance a little, and value
the electrical conductivity are different from each other ev
if the values of the seeds are the same. Therefore we nor
ized the value of the electrical conductivity. In the case o
continuum model, it takes too much time until the pla
ABCD is covered with small filled circles. We ceased t
measurement afterp50.905, and selected the value ofs for
p50.9 as a standard of normalization. The value of electr
resistanceR for p50.9 was several MV.

Figures 3~a!, 3~b!, and 3~c! show the results of about 2
samples for the diameter of filled circlesd58 mm, d

FIG. 4. The variation of the electrical conductivitys of con-
tinuum percolation models with the area ratiop. The average values
of s over 20 experimental trials ford52, 4, and 8 mm are de
picted.

TABLE I. The average value and the standard deviation of cr
cal exponentm and the threshold valuepc for the continuum per-
colation models are given.

Continuum model
d Critical exponent

m
Threshold value

pc

Sample

2 mm 1.7660.09 0.6360.03 16
4 mm 1.7860.04 0.6360.04 18
8 mm 1.8060.05 0.5560.05 18
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54 mm, andd52 mm, respectively. We defined the rat
of the area of the planeABCD to that of a circle as the
system size. The decrease of the diameterd corresponds the
increase of the system size. The electrical conductivitys
increases with the increase of the area ratiop. Since the paths
from the sideAB to CD are different in each sample, th
values ofs vary with the samples even if the values ofp are
the same. However, the difference of the length of the pat
short near the threshold value, so the dispersion ofs is
small. Figure 4 shows the average values ofs for d52, 4,
and 8 mm. The threshold valuepc increases with the increas
of the system size. Referring to our numerical simulation
a continuum Swiss-cheese model@7#, the threshold value for
the infinite system is 0.685.

In order to obtain the critical exponentm of the electrical
conductivity, data shown in Fig. 3 are plotted in a log-l
plot diagram against (p2pc), wherepc is determined so as
to obtain a straight fitting line by the use of the method
least squares. The slope of the straight line gives the crit
exponentm. This procedure is illustrated in Figs. 5~a! and
5~b!. The variation ofs with p is not smooth as in Fig. 5~a!.
Also, s sometimes increases rapidly because of the join
of two percolated clusters. In order to avoid that the criti
exponent be affected by a few special data, the experime
data is approximated by a polynomial or an exponen

FIG. 5. An example of curve fitting of experimental data and
log-log plot diagram. The vertical axis is the conductivity and t
horizontal one isp-pc in the logarithmic scale.
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function. Figure 5~b! shows a log-log plot diagram that i
drawn with the values ofs calculated from the above
mentioned function. The values ofR in Figs. 5~a! and 5~b!
are correlation indices.

Table I shows the averages and the standard deviation
the critical exponentm and the threshold valuepc of the
electrical conductivity of continuum models. In the pionee
ing research, where the difference between the disrete
the continuum percolation model was clearly pointed out
is reported that the critical exponents of electrical conduc
ity in a two-dimensional continuum system is the same
those in a discrete system and that the value is 4/3@9#. How-
ever, the values ofm shown in Table I are larger than 4/3.

In order to prove that the difference ofm is not induced

FIG. 6. The variation of the electrical conductivity of bond pe
colation modelss with the occupied ratiop. ~a! l 510 mm ~a 10
310 square lattice!; ~b! l 55 mm ~a 20320 square lattice!; ~c! l
52.5 mm~a 40340 square lattice!.
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from the characteristics of the experimental apparatus its
we carried out the same experiment on a discrete system
confirmed the appropriateness of the results on a contin
model. Figures 6~a!, 6~b!, and 6~c! show the variation of the
electrical conductivitys of bond percolation models with th
occupied ratiop for l 510 mm, 5 mm, and 2.5 mm, wherel
is the length of the bond andp is the ratio of the number o
bonds to the total of all lattices. In the case ofl 52.5 mm,
the number of lattices is 1600 (540340). In these figures
the value ofs for p51.0 is selected as the standard of no
malization.

Table II shows the averages and the standard deviat
of the critical exponentm and the threshold valuepc for the
bond percolation models. These values are also obtaine
the use of the above-mentioned method. As is well kno
the threshold value of bond percolation on a square lattic
pc50.5 and the critical exponent ism54/3 @10#. The value
of the critical exponentm for l 510 mm, 5 mm, and 2.5 mm
are 1.41, 1.32, and 1.28, respectively. These values are
than those for the continuum models shown in Table I a
are also close to 4/3. Therefore, it is considered that
critical exponent of electrical conductivity of the invers
Swiss-cheese model is different from that of the discrete s
tem.

Although it is quite difficult to give a theoretical interpre
tation for the difference of the exponents in detail here, a
identifying the reason is our next problem, we can mak
rough prediction as follows. Figure 7 shows the neck geo
etry in the ISCM.d is the width of the overlapped part,D is
the length of the constricted region, andA is a projection.D
is related tod by D52(da)1/2, wherea is the radius of a
circle. Fenget al. have shown that the strength of a bond
overlapd could be described byD3D, and they have re-
placed the neck with a square bond whose length and w
areD @9#. As a result, they have predicted that the expon

TABLE II. The average value and the standard deviation
critical exponentm and the threshold valuepc for the bond perco-
lation models are given.

Discrete model
l Critical exponent

m
Threshold value

pc

Sample

2.5 mm 1.2860.07 0.4860.01 12
5 mm 1.3260.08 0.4760.04 28

10 mm 1.4160.04 0.4160.05 25
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of the electrical conductivity for a two-dimensional co
tinuum inverse Swiss-cheese model lay in the same uni
sality class as bond percolation. In their discussion the in
ence of the projectionA was not taken into consideration
This assumption may be correct as long as the value oD
closes to that of the diameter 2a. But the area of percolated
clusters is small near the percolation threshold, so the va
of d and D are small in comparison with the diameter 2a.
Since the influence of the projectionA on electrical conduc-
tion seems to increase with the decrease ofD, contrary to the
prediction made by Fenget al., the exponent of the electrica
conductivity for the continuum inverse Swiss-cheese per
lation model may be different from that for the discre
model.

IV. CONCLUSION

It is shown that electrical conductivity in an invers
Swiss-cheese model can be measured easily with anX-Y
plotter and GP-IB system. The critical exponents of the el
trical conductivitym, which we obtained experimentally, ar
m51.76– 1.80 for continuum models andm51.28– 1.41 for
discrete models. Comparing these experimental results,
considered that the critical exponent of electrical conduc
ity of a continuum inverse Swiss-cheese model is differ
from that of a discrete system.
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FIG. 7. Neck geometry in the inverse Swiss-cheese model.
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