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Experimental study of critical exponents of electrical conductivity
in a two-dimensional continuum percolation system

A. Okazaki, K. Horibe, K. Maruyama, and S. Miyazima
Department of Engineering Physics, Chubu University, Kasugai, Aichi, 487-8501, Japan
(Received 29 September 1999

In this paper an experimental study is presented for critical exponents of electrical conductivity in an inverse
Swiss-cheese model. Filled circles are drawn on random positions of square paper in drawing inkXvith an
plotter, and electrical resistance between both opposite sides is measured automatically by the use of general
purpose interface bus system. Electrical conductivity is obtained from the inverse of the electrical resistance.
Electrical conductivity in a bond process is also measured with the same system. It is confirmed that the critical
exponent of electrical conductivity of a continuum two-dimensional inverse Swiss-cheese model is different
from that of a discrete one.

PACS numbses): 64.60.Ak, 68.35.Rh, 75.40.Cx

I. INTRODUCTION In this paper, experiments on both continuum and discrete
inverse Swiss-cheese models are carried out based on the
The percolation problerfil—5] is an important model that single set of an experimental apparatus. As a result, it is
indicates critical phenomena and retains various applicabiliconfirmed that the critical exponent of electrical conductivity
ties that spread over various fields, such as disease propaga-a continuum inverse Swiss-cheese model is different from
tion in orchards, oil recovery in oil wells, random networks that of a discrete system, which is obtained within the same
in cities, and so on. Critical exponents of discrete percolatiorexperimental precision.
models on a lattice have been almost clarified, but those of
continuum models are not clarified well. Halpegnal. [6]
predicted that some of the critical exponents in the con-
tinuum percolation models might be different from those in  In the case of an experiment of a Swiss-cheese model
the conventional discrete percolation models. We carried ollSCM), holes are punched randomly in a sheet of conductive
a numerical simulation on a Swiss-cheese m¢@dgbnd in-  material [8]. On the other hand, an inverse Swiss-cheese
dicated that the value of the critical exponenfor the cor-  model (ISCM) can be obtained by putting conductive mate-
relation length of a two-dimensional continuum percolationrial on a nonconductive sheet. We take notice of the fact that
problem is different from the value of a discrete model. The
Swiss-cheese model is a percolation model with randomly
placed uniform spherical voids. The next problem is to iden-
tify the reason for the theoretical difference, but it seems to
be difficult to do that. Therefore, it is the main purpose of
this paper to confirm the difference of the critical exponents
between the continuum model and the discrete one with the
experiment, although the reason for the theoretical difference
between the discrete model and the continuum one is not
clear.

II. EXPERIMENTAL APPARATUS

(b) Discrete model

FIG. 2. Experimental sample¢a) Continuum modelib) dis-
FIG. 1. Experimental apparatus. crete model.
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FIG. 3. The variation of the electrical conductivity of continuum
percolation modelsr with the area ratiqp. () d=8 mm; (b) d

=4 mm;(c)d=2 mm.

PRE 61

120
° Continuum Model
)

5. 100 [
g o 2mm
2 | o
*g' 80 ° 4mm 000332
= 4 8mm 08
2 & 28
5 60| & 222
8] <>°°° 2@.32
= 40 } & o
E °o°° gggﬂ
§ 20
m

0 PR

0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

Area Ratio p

FIG. 4. The variation of the electrical conductivity of con-
tinuum percolation models with the area ragtiorhe average values
of o over 20 experimental trials fod=2, 4, and 8 mm are de-
picted.

and the area ratip, which is the ratio of the black parts to
the planeABCD, is calculated.(5) Electrical resistancéR
between both opposite sidé8 andCD is measured by the
use of the ohm meter, which is connected to the computer
with GP-IB (general purpose interface Busystem. The
measurement is repeated ten times during 0.5 seconds, and
the average value is obtained Rs(6) The area ratigp and

the electrical resistancR are written in a file of the com-
puter. (7) The steps from(2) to (6) are repeated until the
planeABCD is covered with filled circles.

In the case of a bond model, location of an occupied bond
is determined by a random number, and the occupied patio
which is the ratio of the number of occupied bonds to that of
the whole bonds, is calculated by the computer.

IIl. EXPERIMENTAL RESULTS

Figure 3 shows the variations of the electrical conductiv-
ity o with the area ratig for continuum percolation models.
Electrical conductivity is calculated from the inverse of the
electrical resistancR. Owing to the use of drawing ink, the
temperature and the humidity in the laboratory affect mea-
sured values of the electrical resistance a little, and values of
the electrical conductivity are different from each other even
if the values of the seeds are the same. Therefore we normal-
ized the value of the electrical conductivity. In the case of a
continuum model, it takes too much time until the plane
ABCD is covered with small filled circles. We ceased the
measurement aftgr=0.905, and selected the value @ffor

most drawing ink transmits electricity, and that an experi-p:_o-g as a standard of normalization. The value of electrical
ment of ISCM can be carried out by drawing filled circles oneSistanceR for p=0.9 was several 2.

tracing paper with aiX-Y plotter.

Figures 3a), 3(b), and 3c) show the results of about 20

Figure 1 shows an experimental apparatus which is made@mples for the diameter of filled circle$=8 mm, d

up of a personal computer, aX-Y plotter, and an ohm

meter. Sample patterns of continuum and discrete models are TABLE I. The average value and the standard deviation of criti-

shown in Figs. 2a) and 2b), respectively. Filled circles and
bonds are drawn in a rectangular plaA8CD. The filled
rectangles at the both ends are the terminals for measure-
ment. The procedure of measurement for a continuum model
is as follows:(1) A seed of random numbers is determined.
(2) Coordinates of the center of a circle are determined by
random numberg3) A filled circle in drawing ink is drawn

on white tracing paper with thX-Y plotter. (4) The same
figure is also shown on the graphic display of the computer, 8 mm

cal exponentu and the threshold valup, for the continuum per-
colation models are given.

Continuum model

Critical exponent  Threshold value  Sample
M Pc
2mm 1.76£0.09 0.63:0.03 16
4 mm 1.78-0.04 0.63-0.04 18
1.8G-0.05 0.55-0.05 18
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FIG. 5. An example of curve fitting of experimental data and a (©) /= 2.5mm i~

log-log plot diagram. The vertical axis is the conductivity and the o

horizontal one ig-p, in the logarithmic scale. 80 |

=4 mm, andd=2 mm, respectively. We defined the ratio
of the area of the plandBCD to that of a circle as the
system size. The decrease of the diamdteorresponds the
increase of the system size. The electrical conductivity
increases with the increase of the area rptiSince the paths
from the sideAB to CD are different in each sample, the
values ofc vary with the samples even if the valuespmpére
the same. However, the difference of the length of the path is FIG. 6. The variation of the electrical conductivity of bond per-
short near the threshold value, so the dispersionsois colation modelss with the occupied ratigp. (&) =10 mm(a 10
small. Figure 4 shows the average valuesrafor d=2, 4,  X10 square latticg (b) =5 mm (a 20<20 square lattice (c) |
and 8 mm. The threshold valye increases with the increase =2.5 mm(a 40<40 square lattice
of the system size. Referring to our numerical simulation fo
a continuum Swiss-cheese mofié], the threshold value for
the infinite system is 0.685.

In order to obtain the critical exponept of the electrical are correlation indices.

condu_ctivity, dat"’.‘ shown in Fig. 3 are plotted _in a log-log Table | shows the averages and the standard deviations of
plot diagram againstp(—pc), wherep, is determined S0 8s he critical exponeniw and the threshold valup, of the

to obtain a straight fitting line by the use of the method ofgectrical conductivity of continuum models. In the pioneer-
least squares. The slope of the straight line gives the criticahg research, where the difference between the disrete and
exponentu. This procedure is illustrated in Figs(@ and  the continuum percolation model was clearly pointed out, it
5(b). The variation ofo with p is not smooth as in Fig.(8). s reported that the critical exponents of electrical conductiv-
Also, o sometimes increases rapidly because of the joiningty in a two-dimensional continuum system is the same as
of two percolated clusters. In order to avoid that the criticalthose in a discrete system and that the value i @.3How-
exponent be affected by a few special data, the experimentaler, the values ofc shown in Table | are larger than 4/3.
data is approximated by a polynomial or an exponential In order to prove that the difference pf is not induced

Electrical Conductivity o

0.50

0.60

0.70 0.80
Occupied Ratio p

0.90 1.00

rfunction. Figure ®) shows a log-log plot diagram that is
drawn with the values ofs calculated from the above-
mentioned function. The values & in Figs. 5a) and 3b)
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TABLE Il. The average value and the standard deviation of

critical exponentw and the threshold valup. for the bond perco- A
lation models are given. ’Y
7

Discrete model A !\
Critical exponent  Threshold value  Sample
M Pc [ ]

2.5 mm 1.28:0.07 0.48-0.01 12 N
5 mm 1.32£0.08 0.470.04 28 A
10 mm 1.41x0.04 0.4x0.05 25

from the characteristics of the experimental apparatus itself, FIG. 7. Neck geometry in the inverse Swiss-cheese model.
we carried out the same experiment on a discrete system and
confirmed the appropriateness of the results on a continuu@f the electrical conductivity for a two-dimensional con-
model. Figures @), 6(b), and &c) show the variation of the tinuum inverse Swiss-cheese model lay in the same univer-
electrical conductivityr of bond percolation models with the sality class as bond percolation. In their discussion the influ-
occupied ratigp for |I=10 mm, 5 mm, and 2.5 mm, whete ence of the projectioA was not taken into consideration.
is the length of the bond angis the ratio of the number of This assumption may be correct as long as the valua of
bonds to the total of all lattices. In the caselef2.5 mm, closes to that of the diametea2But the area of percolated
the number of lattices is 1600=(40x 40). In these figures, clusters is small near the percolation threshold, so the values
the value ofo for p=1.0 is selected as the standard of nor-of & andA are small in comparison with the diametea.2
malization. Since the influence of the projectighnon electrical conduc-
Table Il shows the averages and the standard deviatiorf#n seems to increase with the decreasa ofontrary to the
of the critical exponent. and the threshold valug, for the  prediction made by Fenet al, the exponent of the electrical
bond percolation models. These values are also obtained g@nductivity for the continuum inverse Swiss-cheese perco-
the use of the above-mentioned method. As is well knownlation model may be different from that for the discrete
the threshold value of bond percolation on a square lattice ignodel.
p.=0.5 and the critical exponent jg=4/3[10]. The value
of the critical exponeni for [ =10 mm, 5 mm, and 2.5 mm V. CONCLUSION
are 1.41, 1.32, and 1.28, respectively. These values are less
than those for the continuum models shown in Table | and It is shown that electrical conductivity in an inverse
are also close to 4/3. Therefore, it is considered that th&wiss-cheese model can be measured easily wittX-ah
critical exponent of electrical conductivity of the inverse plotter and GP-IB system. The critical exponents of the elec-
Swiss-cheese model is different from that of the discrete sysiical conductivityu, which we obtained experimentally, are
tem. pu=1.76—1.80 for continuum models apd=1.28-1.41 for
Although it is quite difficult to give a theoretical interpre- discrete models. Comparing these experimental results, it is
tation for the difference of the exponents in detail here, and:onsidered that the critical exponent of electrical conductiv-
identifying the reason is our next problem, we can make aty of a continuum inverse Swiss-cheese model is different
rough prediction as follows. Figure 7 shows the neck geomifrom that of a discrete system.
etry in the ISCM.é is the width of the overlapped pad, is
the length of the constricted region, aAds a projectionA
is related tod by A=2(sa)*?, wherea is the radius of a
circle. Fenget al. have shown that the strength of a bond of The authors gratefully acknowledge the support of the
overlap 6 could be described by XA, and they have re- Nitto Foundation and Research Institute for Information Sci-
placed the neck with a square bond whose length and widtence of Chubu University. We also thank Professor S. Havlin
areA [9]. As a result, they have predicted that the exponenfor stimulating discussions.

ACKNOWLEDGMENTS

[1] S.R. Broadbent and J.M. Hammersley, Proc. Cambridge Phi-[6] B.l. Halperin, S. Feng, and P.N. Sen, Phys. Rev. |%tt2391

los. Soc.53, 629(1957. (1985.
[2] V.K.S. Shante and S. Kirkpatrick, Adv. Phy&0, 325(1971). [7] A. Okazaki, K. Maruyama, K. Okumura, Y. Hasegawa, and S.
[3] D. Stauffer, Introduction to Percolation TheoryTaylor & Miyazima, Phys. Rev. B4, 3389(1996.
Francis, London, 1985 [8] L. Benguigui, Phys. Rev. Let63, 2028(1984.
[4] T. Odagakintroduction to Percolation Physig§hokabo, To- [9] S. Feng, B.l. Halperin, and P.N. Sen, Phys. Rev3® 197
kyo, 1993. (1987.

[5] S. Miyazima, K. Maruyama, and K. Okumura, J. Phys. Soc.[10] A. Bunde and S. HavlinFractals and Disordered Systems
Jpn.60, 2805(1997). (Springer-Verlag, Berlin, 1991



