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Rayleigh-Bénard convection in a homeotropically aligned nematic liquid crystal
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We report experimental results for convection near onset in a thin layer of a homeotropically aligned
nematic liquid crystal heated from below as a function of the temperature differenceDT and the applied
vertical magnetic fieldH. When possible, these results are compared with theoretical calculations. The experi-
ments were done with three cylindrical cells of aspect ratios@~radius!/~height!# G510.6, 6.2, and 5.0 over the
field range 8&h[H/HF&80 (HF520.9, 12.6, and 9.3 G are the Fre´edericksz fields for the three cells!. We
used the Nusselt numberN ~effective thermal conductivity! to determine the critical Rayleigh numberRc and
the nature of the transition. We analyzed digital images of the flow patterns to study the dynamics and to
determine the mean wave numbers of the convecting states. Forh less than a codimension-two fieldhct.46 the
bifurcation is subcritical and oscillatory, with traveling- and standing-wave transients. Beyondhct the bifurca-
tion is stationary and subcritical until a tricritical fieldht557.2 is reached, beyond which it is supercritical. We
analyzed the patterns to obtain the critical wave numberkc and, forh,hct , the Hopf frequencyvc . In the
subcritical range we used the early transients towards the finite-amplitude state for this purpose. The bifurca-
tion sequence as a function ofh found in the experiment confirms the qualitative aspects of the theoretical
predictions. Even quantitatively the measurements ofRc , kc , andVc are reproduced surprisingly well con-
sidering the complexity of the system. However, the value ofhct is about 10% higher than the predicted value
and the results forkc are systematically below the theory by about 2% at smallh and by as much as 7% near
hct . At hct , kc is continuous within the experimental resolution whereas the theory indicates a 7% disconti-
nuity. The theoretical tricritical fieldht

th551 is somewhat below the experimental one. The fully developed
flow aboveRc for h,hct has a very slow chaotic time dependence that is unrelated to the Hopf frequency. For
hct,h,ht the subcritical stationary bifurcation also leads to a chaotic state. The chaotic states persist upon
reducing the Rayleigh number belowRc , i.e., the bifurcation is hysteretic. Above the tricritical fieldht , we
find a bifurcation to a time independent pattern which within our resolution is nonhysteretic. However, in this
field range, there is a secondary hysteretic bifurcation that again leads to a chaotic state observable even
slightly belowRc . We discuss the behavior of the system in the high-field limit, and show that at the largest
experimental field valuesRc andkc are within 6% and 1%, respectively, of their values for an infinite field.
@S1063-651X~98!00511-X#

PACS number~s!: 61.30.2v, 47.54.1r, 47.20Bp
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I. INTRODUCTION

Convection in a thin horizontal layer of an isotropic flu
heated from below by a heat currentQW is well known as
Rayleigh-Bénard convection~RBC! @1,2#. When the fluid is
a nematic liquid crystal~NLC!, this phenomenon is altered i
interesting ways@3#. NLC molecules are long, rodlike ob
jects that are orientationally ordered relative to their nei
bors, but whose centers of mass have no positional o
@4,5#. The axis parallel to the average orientation is called
director n̂. By confining the NLC between two properl
treated parallel plates@6#, one can obtain a sample with un
form planar~parallel to the surfaces, i.e., in thex-y plane! or
homeotropic~perpendicular to the surfaces, or parallel to t
z-axis! alignment ofn̂. The alignment can be reinforced b
the application of a magnetic fieldHW parallel to the intended
direction of n̂. This is so because the diamagnetic susce
bility is anisotropic, usually being larger in the direction pa
allel to the long axis of the molecules. The phenomena
occur near the onset of convection depend on the orienta
of n̂ andHW @3#. In this paper we are concerned with a ho
PRE 581063-651X/98/58~5!/5885~13!/$15.00
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zontal layer of ahomeotropicallyaligned NLC in a vertical

magnetic field (HW 5Hêz) and heated from below. In tha

case,QW 5Qêz is parallel to n̂ when the system is in the
conduction state. At a critical temperature differen
DTc(H) the fluid will undergo a transition from conductio
to convection. The precise value ofDTc(H), the nature of
the bifurcation atDTc(H), and the pattern-formation phe
nomena beyondDTc(H) are expected to depend in interes
ing ways uponH @7–10#.

A feature common to the homeotropic NLC and to
isotropic fluid heated from below is that the system is isot
pic in the horizontal plane. Thus the convection pattern m
form with no preference being given to a particular horizo
tal axis unless the experimental apparatus introduces
asymmetry. In both cases, the convection is driven by
buoyancy force. However, the mechanism in the NLC cas
more involved@7–9#. The usual destabilization due to th
thermally induced density gradient is opposed by the st
ness of the director field, which is coupled to and distor
by any flow. Since relaxation times of the director field a
much longer than thermal relaxation times, it is possible
5885 © 1998 The American Physical Society
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director fluctuations and temperature or velocity fluctuatio
to be out of phase as they grow in amplitude. The existe
of two very different time scales and this phase shift ty
cally lead to an oscillatory instability~also known as over-
stability!, i.e., the bifurcation at which these time-period
perturbations acquire a positive growth rate is a Hopf bif
cation@7,8,11#. This case is closely analogous to convecti
in binary-fluid mixtures with a negative separation ra
@12,13#. In that case, concentration gradients oppose con
tion, and concentration diffusion has the slow and heat
fusion the fast time scale. As in the binary mixtures, t
Hopf bifurcation in the NLC case is subcritical@9,10#. For
the NLC the fully developed nonlinear state no longer is ti
periodic. Instead, the statistically stationary state above
bifurcation is one of spatiotemporal chaos with a typical tim
scale that is about two orders of magnitude slower than
theoretical inverse Hopf frequency@14#. However, it is pos-
sible to actually measure the Hopf frequency by looking
the growth or decay of small perturbations that are eit
deliberately introduced@9# or that occur spontaneously whe
the system is close to the conduction state and near the
furcation point.

A linear stability analysis of this system was carried o
by several investigators@8,15–17#. A very detailed analysis
was presented by Feng, Decker, Pesch, and Kramer~FDPK!
@10#. These authors also provided a weakly nonlinear an
sis, which allowed the distinction between subcritical a
supercritical bifurcations. Quantitative bifurcation diagram
were predicted for the nematic liquid crystal MBBA@N-~p-
methodxylbenzylidine!-p-butylaniline#. In the present work
we repeated and slightly extended the calculations for
material 5CB ~4-n-pentyl-4’-cyanobiphenyl! ~see below!
used in our experiments. Since the material parameter
MBBA and 5CB are similar, we found qualitatively the sam
bifurcation sequences as a function of the field. Here
outline briefly the theoretical results and their relationship
our experimental results.

As the magnetic field is increased, a subcritical Hopf
furcation line is expected to terminate atHct in a
codimension-two point~CTP! beyond that the perturbation
which first acquire a positive growth rate are at zero f
quency. Close to but beyond the CTP this stationary bifur
tion is predicted to also be subcritical. At an even high
field Ht a tricritical point~TCP! is predicted to exist beyond
which the primary bifurcation is expected to become sup
critical. To our knowledge there are no predictions about
patterns that should form beyond either the subcritical H
bifurcation below the CTP or the subcritical stationary bifu
cation between the CTP and the TCP. Although there are
explicit predictions of the patterns forH.Ht , in analogy to
isotropic fluids one might expect convection rolls above
supercritical bifurcation, unless non-Boussinesq effe
@18,19# yield a transcritical bifurcation to hexagons.

The phenomena described above were previously
plored only partially by experiment. Except for recent me
surements at relatively small fields@14#, the experiments
have been qualitative or semiquantitative@9,20#. In the
present paper we report the results of an extensive sytem
experimental investigation of this system, which covere
wide range of magnetic fieldsH. In agreement with previous
work @9,20#, we find a subcritical Hopf bifurcation at rela
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tively small H that terminates in a codimension-two poi
~CTP!. The CTP is located at a slightly higher field than t
theoretical prediction. We measured the Hopf frequen
vc(H) from visualizations of the spontaneous sma
amplitude early transients just aboveDTc . Except for the
influence of the small shift of the CTP, we foundvc(H) to
be in quantitative agreement with the theory. From the
transients, we also determined the critical wave vec
kc(H), and found it to be typically a few percent small
than the theoretical value. The reason for this small diff
ence between theory and experiment is not known. As
ported previously@14#, we found the convecting nonlinea
state forDT aboveDTc to be one of spatiotemporal chao
~STC!. Except at very smallH, its characteristic wave num
ber was smaller thankc and insensitive toH and DT. A
long-time average of the structure factor of this state w
consistent with the expected rotational invariance of the s
tem. Depending onH, the lower limit DTs at which this
chaotic state made its hysteretic transition back to the c
duction state was found to be 10 to 25% belowRc(H). The
convective heat transport was consistent with that of an
tropic fluid with an average conductivity given bylavg
5(2l'1l i)/3 wherel' andl i are the conductivities per
pendicular and parallel ton̂, respectively. This suggests
thorough randomization of the director orientations by t
flow.

Beyond the CTP we found a subcritical stationary bifu
cation, as had been predicted@10#. The finite-amplitude state
that evolved was also a state of STC, but beyond a cer
field value greater thanHct it had distinctly different proper-
ties from the chaotic state at lowerH. This difference was
clearly evident from a discontinuity~as a function ofH) of
the characteristic wave number of the nonlinear state, wh
was larger at the larger fields. There is no theoretical gu
ance for the interpretation of these experimentally obser
phenomena.

The rangeH>Ht was investigated for two cells with as
pect ratiosG56.15 and 5.01. We refer to them as cells 5 a
6, respectively~for details see Sec. III below!. We found a
primary bifurcation to a state with ahexagonalflow pattern.
Within our resolution this bifurcation was nonhysteretic a
the Nusselt numberN grew continuously from zero. The
appearance of hexagons rather than rolls is attributabl
non-Boussinesq effects@18,19#, which occur when the up-
down symmetry is lifted by variations of the fluid propertie
over the cell height. Theoretically the bifurcation to hex
gons is transcritical, and there should also be hysteresis
sociated with it. However, the hysteresis is often so sm
that it is unobservable even though hexagons are found
a substantial range@21#. At sufficiently largeDT/DTc the
hexagons become unstable with respect to rolls@19#. Since
DTc decreases with the cell thicknessd (;d23), the range
of stability of hexagons should depend on the thickness
the fluid sample. However, for thethinner fluid layer of cell
5, the existence range of hexagons was limited by a differ
secondary instability and grew from zero very near the T
to e[DT/DTc21.0.1 at the highest fields available to u
At this stability limit a hysteretic transition yielded the ch
otic state, and stationary rolls were never found. With d
creasingDT, the chaotic state persisted down toDTs some-
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PRE 58 5887RAYLEIGH-BÉNARD CONVECTION IN A . . .
what smaller thanDTc . For the thicker fluid layer of cell 6
typically DTc was about 2 °C, and hexagons were fou
only up to e.0.015 even at high fields. Fore.0.015, a
pattern of rollsnot exhibiting STC was observed, as e
pected for a weakly non-Boussinesq system. At even hig
e and consistent with the measurements in cell 5, a hyste
secondary bifurcation again yielded the chaotic state.

II. PARAMETER DEFINITIONS AND VALUES

The quantitative aspects of the instabilities are determi
by four dimensionless parameters that are formed from c
binations of the fluid properties@22#. They are @10# the
Prandtl number

s5
~a4/2!

rk i
, ~1!

the ratio between the director-relaxation time and the h
diffusion time

F5
~a4/2!k i

k33
, ~2!

the Rayleigh number

R5
agrd3DT

~a4/2!k i
, ~3!

and the dimensionless magnetic field

h5H/HF ~4!

with the Fréedericksz field

HF5
p

d
A k33

rxa
. ~5!

In these equationsa4 is one of the viscosity coefficients,k i

is the thermal diffusivity parallel ton̂, k33 is one of the
elastic constants of the director field,xa is the anisotropy of
the diamagnetic susceptibility,a is the isobaric thermal ex
pension coefficient, andg is the gravitational acceleration
The time scale of transients and pattern dynamics is m
sured in terms of the thermal diffusion time

tv5d2/k i . ~6!

Both h andR are easily varied in an experiment, and may
regarded as two independent control parameters. The a
ability of h in addition toR makes it possible to explore a
entire line of instabilities. The parametersF, s, and tv are
essentially fixed once a particular NLC and temperat
range have been chosen, and even between different N
there is not a great range at our disposal. For 5CB at 25
~the material and mean temperature used in this work!, we
haves5263 andF5461. The value oftv is typically sev-
eral minutes, but depends on the thickness of the fluid la
It is given in the next section for each of our cells. T
critical valueRc(h) of R and the fluid parameters determin
the critical temperature differenceDTc for a sample of a
given thicknessd. The realistic experimental requireme
er
tic
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that DTc. a few °C dictates that the sample thickne
should be a few mm. Typical values ofHF are 10 to 20 G.
Thus modest fields of a kGauss or so are adequate to exp
the entire range of interest.

In order to evaluateRc from DTc , h5H/HF , and the
theoretical values forRc(h),kc(h), andvc(h), we used the
material properties given in Ref.@22#. We followed closely
the calculational methods of FDPK. In order to ensure
sufficient resolution of any boundary layers we used Che
cheff modes in the Galerkin method~no more than 20 were
required!.

III. EXPERIMENTAL APPARATUS AND SAMPLE
PREPARATION

The apparatus used in this work was described previou
@23,14#. We made measurements using three circular cell
different thicknesses, identified as cells 4, 5, and 6@24#. The
thickness and radius wered53.94 mm, r 541.9 mm for
cell 4, d56.60 mm, r 540.6 mm for cell 5, andd
58.88 mm,r 544.5 mm for cell 6. The corresponding ra
dial aspect ratiosG[r /d were 10.6, 6.15, and 5.01. The flui
was~5CB!. All experiments were performed at a mean te
perature of 25.6°C. The vertical thermal diffusion time w
tv5139, 383, and 694 s, andHF was 20.1, 12.6, and 9.34 G
for cells 4, 5, and 6, respectively. Despite the longer ti
scales involved for experiments in the thicker cells, cells
and 6 had an advantage over cell 4 due to the smaller fi
strengths and temperature differences required to perform
measurements. To ensure homeotropic alignment near
surfaces of the top and bottom plates of both cells, a surf
treatment with lecithin@6,14# was applied.

Defect-free homeotropic samples were prepared by ap
ing a magnetic field while cooling the bath, and thus t
sapphire top plate of the sample, from above the isotrop
nematic transition temperatureTNI to T,TNI . During this
process, the bottom plate naturally lagged behind, and
an adverse density gradient existed. In the nematic-isotro
two-phase region even the relatively small thermal gradie
associated with small cooling rates induced convection@25#.
When the cooling was too rapid and the field too small t
led to a nematic sample with defects which remained froz
By using cooling rates of 1 °C/hour in the presence of a fi
of h>17 over the temperature interval 36 to 34 °C (TNI
535.1 °C) and annealing at 34 °C for an hour or two t
defects healed and a defect-free homeotropic sample c
be prepared. Further cooling could then be at least ten ti
as rapid without introducing new defects because the thre
old for convection in the nematic phase is large. Before e
experimental run, the procedure was repeated.

The critical temperature differences for the onset of co
vection were determined from heat-transport measureme
These are usually expressed in terms of the Nusselt num

N[leff /l i , ~7!

wherel i is the conductivity of the homeotropically aligne
sample@23#, and

leff[2Qd/DT ~8!

is the effective conductivity and contains contributions fro
diffusive heat conduction and from hydrodynamic-flow a
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vection. Measurements ofN were made by determining th
heat currentQ required to holdDT constant. At eachDT, the
heat current and temperature of the bath and bottom p
were measured at 1 min intervals for three to five hou
when typically all transients had died out.

In addition to heat-flow measurements, we also visuali
the convective flow patterns. The homeotropic samples w
translucent even ford as large as several mm. It was ju
about possible to see features of the bottom plate in typ
ambient lighting. Any director distortion by convection rol
or domain walls generated opaque regions with enhan
diffuse scattering, which were easily visible. It should
kept in mind that the optical signal in the images has a co
plicated relationship to the hydrodynamic flow fields, a
that quantitative information about velocity- or temperatu
field amplitudes could not be obtained. Such quantities as
wave vector of the patterns or frequencies of travel
convection-rolls could of course be determined quant
tively.

The samples were illuminated from above by a circu
fluorescent light. Digital images were taken from above b
video camera, which was interfaced to a computer. Typic
50 to 200 images were averaged to improve the signa
noise ratio. Averaged images were divided by an appropr
reference image to reduce the influence of lateral variati
in illumination and of other optical imperfections. Some im
ages were processed further by filtering in Fourier space

IV. RESULTS

A. Nusselt numbers and critical Rayleigh numbers

Figure 1 showsN for cell 5 as a function ofDT for two
field strengthsh515 andh550. The open circles were ob
tained with increasing, and the solid circles with decreas

FIG. 1. Examples of the Nusselt number as a function ofDT for
cell 5. The upper figure is forh515 and the lower one is forh
550. Open circles were taken with increasing and solid circles w
decreasingDT. The transitions between conduction and convect
are indicated by the arrows.
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DT. For the lower fields (h,20) N decreased below on
when convection started. This can be understood becaus
convecting sample has a distorted director with a compon
perpendicular toQW . The contribution from this component t
the conductivity corresponds tol' , which is less than the
conductivityl i of the homeotropic case@23#. It turns out that
for small fields the direct hydrodynamic contribution to th
heat flux is smaller than the decrease in the heat flux du
the director distortion by the flow. For the higher fields (h
.35), N remained above one in the convecting state. Th
with the higher fields the hydrodynamic contribution to t
heat flux is greater than the decrease in the heat flux du
any distortion of the director. Both examples in Fig. 1 de
onstrate the predicted and previously observed@9,14,20# hys-
teretic nature of the bifurcation, i.e., asDT was decreased
the conduction state was reached at a value ofDT equal to
DTs,DTc .

From data like those in Fig. 1, critical temperature diffe
encesDTc were determined with an uncertainty of less th
1%. The corresponding Rayleigh numbers are shown in
2 as a function ofh2. The open circles were obtained in ce
4, the filled ones in cell 5. The good agreement between
two data sets confirms the expected scaling of the field w
HF . It also shows that using the fluid properties at the me
temperature does not lead to systematic errors inRc even for
cell 4 whereDTc is over 10 °C. One sees thatRc is quadratic
in h at smallh, as is expected because the system should
invariant under a change of the field direction. The solid li
follows the theoretical prediction and agreement betwe
theory and experiment is excellent.

Results forRc over our full experimental field range ar
shown as a function ofh in Fig. 3. Here we include data
taken with cell 6 as open squares. The data forRc reveal a
sharp maximum ath544.3. We interpret this field value a
the codimension-two pointhct and indicate it in Fig. 3 by the
dashed vertical line. The solid line in the figure is the the
retical prediction forRc , evaluated for the properties of ou
sample. For the entire rangeh,hct , the theoretical result is
in excellent agreement with the data. However, the the
giveshct541.8, which is slightly lower than the experimen
tal value. Abovehct the measurements ofRc are systemati-
cally larger than the calculation, although the largest discr
ancy is only about 4%.

The triangles in Fig. 3 show the lower limit of existenc
~the ‘‘saddle-node’’ Rayleigh numberRs) of the finite-

h
n

FIG. 2. Critical Rayleigh numbers for the onset of convection
a function ofh2. Open and filled symbols were obtained in cells
and 5, respectively. The line is the theoretical prediction.
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PRE 58 5889RAYLEIGH-BÉNARD CONVECTION IN A . . .
amplitude convecting state as determined from data
those in Fig. 1. They suggest that the tricritical bifurcation
located nearh559, which is larger than the theoretical
calculated valueht.51. However, we will return later to the
best estimate ofht .

Measurements similar to those shown in Fig. 3 were m
by Salán and Ferna´ndez-Vela@20# ~SF!, using the nematic
liquid crystal MBBA. Their results are shown in Fig. 4, to
gether with the theoretical curve for that case@26#. The data
and the curve illustrate that there are significant quantita
differences between the bifurcation lines of different nem
ics. In Fig. 4 the experimental points lie on average ab
25% above the theoretical curve, and the lower hyster
limit is further below the bifurcation line than we found fo
5CB.

The equilibration times after each temperature step u
by SF were 30 min, which is a factor of six to ten shor
than those of our experiments. In addition the tempera
steps of SF were a factor of two larger than ours, yieldin
difference in the average rate of change of the temperatur
a factor of 12 or more. Looking for an explanation of th
difference between the experimental and theoreticalRc re-
vealed in Fig. 4, we conducted one run with equilibrati
times similar to those of SF, but using our 5CB sample
gave the plusses in Fig. 3. As can be seen, these resul
not differ significantly from the data taken with our usu

FIG. 3. Critical Rayleigh numbersRc and saddle-node Rayleig
numbersRs over the experimentally accessible field range. T
open circles, filled circles, and open squares areRc for cells 4, 5,
and 6, respectively. The open and filled triangles areRs for cells 4
and 5, respectively. The dashed line indicates the location of
codimension-two point as found experimentally. The solid line
the theoretical prediction forRc . The plusses ath535 were ob-
tained with short equilibration times and cell 5~see text!.

FIG. 4. Results forRc and Rs from Ref. @20# obtained with
MBBA. The theoretical curve forRc was computed from typica
fluid properties of MBBA@26#.
e
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longer equilibration times. Thus we have no explanation
the difference between the SF data forRc and the theoretica
curve. However, the agreement between our runs with
different equilibration times implies that our usual expe
mental procedure yielded quasi-static results.

B. Hopf frequency and critical wave vector

Once the critical Rayleigh numbers were measured, a
tailed analysis of the patterns could be undertaken. At fi
we will characterize the Hopf bifurcation forh below hct .
Since in that field range the bifurcation is subcritical, we h
to use the small-amplitude transients to determinevc and
kc . Figure 5 shows images from cell 5 that are characteri
of these patterns. They were taken at the times~in units of
tv5383 s) indicated in each figure after the pattern initia
became visible. This typically occurred around 1 h aftere
was raised from below zero to around 0.015. Inspection
successive images revealed that the transients could be e
traveling or standing waves, sometimes with both occurr
at different locations in the same cell. In the top left image
Fig. 5, a location is indicated at which a time series of t
pixel intensity was acquired. This time series is shown
Fig. 6 along with its corresponding power spectrum. T
length of the time series was limited by the rapid growth
the pattern to its finite-amplitude steady state. Because
this, only a small number of periods could be obtained bef
the finite-amplitude state was reached. Thus to avoid er
associated with incommensurate sampling, the data w
windowed before its Fourier transform was evaluated. T
process was repeated at several pixel locations in the
The signal from the second harmonic was often found to
stronger than that from the fundamental. Thus it was use
calculate the frequency. The frequencies at different lo
tions generally were within 1% of each other, and were
eraged to determine the critical Hopf frequencyvc .

e

FIG. 5. A sequence of images of the travelling or standing wa
transients forh532 ande50.015 in cell 5. The number in eac
image corresponds to the time, in units oftv , that elapsed since
flow first became visible. A time series of the pixel intensity w
taken at the location marked in the top left image.
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5890 PRE 58LEIF THOMAS, WERNER PESCH, AND GUENTER AHLERS
The dependence uponh of the measuredvc is compared
with theory in Fig. 7. The arrow indicates the location of t
theoretical codimension-two point while the dashed line r
resents the experimental determination ofhct . As can be
seen, away from the codimension-two point the agreem
with the measurements is excellent. In accordance w
theory, the experimentalvc changes discontinuously to zer
at hct , above which the bifurcation is stationary.

By evaluating the Fourier transforms of images such
those in Fig. 5, the critical wave numberkc of the patterns
could be measured. The transforms were based on the ce
parts of the images by using the filter functionW(r )5$1
1cos@(p)(r /r 0)#%/2 for r ,r 0 andW(r )50 for r .r 0 . Here
r o was set equal to 85% of the sample radius. Time ave
ing the square of the modulus of the transforms over
length of the time series yielded the structure factor^S(k)&.

FIG. 6. The upper figure is the time series of the pixel intens
at the location shown in the top left image of Fig. 5. The low
figure is the power spectrum of that time series. The mean
quency calculated from the solid circles was used to determine
Hopf frequency.

FIG. 7. The Hopf frequencyvc as a function ofh. Open and
filled circles are for cells 4 and 5, respectively. Open squares are
cell 6. The solid line is the theoretical prediction forvc . The
dashed line~arrow! indicates the location of the codimension-tw
point as found experimentally~theoretically!.
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Figure 8 shows the azimuthal average^S(k)& of ^S(k)& for
the run ath532. We used a weighted average of the thr
points nearest the peak of the second harmonic of^S(k)& to
calculatekc .

Figure 9 displays the results forkc for all h together with
the theoretical analysis. Forh,hct the measured critica
wave number of the transients is systematically smaller t
the theoretical one. When the codimension-two point is
proached, the experimental wave numbers make a sm
rather than discontinuous transition to those associated
the stationary bifurcation, whereas the theory predicts a
discontinuity ofkc at hct . The reason for these discrepanci
is as yet unknown. Abovehct , the agreement between th
experimental and theoretical wave numbers is excellent.

As shown explicitly forRc in Fig. 2, Rc ,vc , andkc are
proportional toh2 for small h.

C. Nonlinear state below the tricritical field hct

Because of the subcritical nature of the bifurcation forh
,hct a finite-amplitude state develops directly at onset. T
time dependence and spatial structure of this state are
different from that of the small-amplitude transient state. T
first two rows of Fig. 10 show typical images of the patter
from cell 5 that are characteristic of the fully developed flo
They are from a single experimental run with constant ex
nal conditions. They were taken at the times indicated

y
r
-

he

or

FIG. 8. The azimuthal average of the time-averaged struc
factor^S(k)& of the travelling/standing wave transients ath532 for
cell 5. The mean wavenumber calculated from the solid circles
used as the critical wave number.

FIG. 9. The characteristic wave numbers of the observed
terns as a function ofh. Circles: The wave number of the smal
amplitude transients. Triangles: The wave numberkn of the fully
developed spatially and temporally chaotic flow, as measured c
to the onset of such flows. Open and filled symbols were obtai
in cells 4 and 5, respectively.



tio
e-
g
c

or
th
is

10
re
ot

ta
io
m

t

ok
a

m
ta
i

t i
n
ar

ller
n-

ed
wn

o a
ern.
n-
us-

the

ow
of

the

wo
ug-

inst
e
n
rly
s,
s-
id,

to

l

ic
ry-

on-
on

be-
t of

on

uc
e

an

ient
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each image, in units oftv5383 s, which had elapsed sincee
had been raised from below zero to 0.014. The convec
rolls of the fully developed flow show an irregular time d
pendence, with typical time scales around 100 times lon
than the inverse Hopf frequencies of the transients. One
see that the ‘‘chaotic’’ behavior is associated with the f
mation of defects and the continuous reorientation of
convection rolls. This continuous reorientation of the rolls
evident in the rightmost image in the bottom row of Fig.
~labeled ‘‘Avg’’ !. It shows the time average of the structu
factor. The average involved 75 images taken over a t
time period of 724tv ~over three days!. It is seen to contain
contributions at all angles, consistent with the idea of a s
tistically stationary process of nonperiodic pattern evolut
and with the expected rotational symmetry of the syste
Similar results for cell 4 have been shown previously@14#.

Whenh was increased abovehct , the nature of the pattern
at first did not change noticeably. For instance, as eviden
Fig. 9, the characteristic wave number of the pattern~as de-
noted by the triangles! remained close to 3.4 forh<55. Over
this field range the patterns of the fully developed flow lo
similar to those illustrated in Fig. 10, i.e., they exhibit sp
tiotemporal chaos.

It is instructive to examine the transients that lead fro
the small amplitude to the finite-amplitude statistically s
tionary state. This is done in Fig. 11. Here the number
each image gives the time, in units oftv , which had elapsed
sinceDT was raised slightly~1.4%! aboveDTc . At t54.7
small-amplitude transients like those in Fig. 5 are eviden
part of the cell. Byt59.4 these had filled the cell and grow
to a saturated amplitude. At this stage they formed ne

FIG. 10. Top two rows: a sequence of images taken with c
stant external conditions (h550, e50.014) for cell 5. The time
elapsed sincee was raised from below zero~in units of tv5383s) is
given in the top left corner of each image. Bottom row: The str
ture factor of two of the images shown above, and the averag
the structure factor of 75 images spanning a time interval of 724tv .
The structure factor was obtained using a Hanning window,
thus is dominated by the patterns near the cell center.
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straight parallel rolls with a wave number that was sma
than kc . However, these straight rolls turned out to be u
stable to a zig-zag instability. In the end, this instability l
to the spatially and temporally disordered pattern as sho
in Fig. 10. Thus, we see that a secondary instability led t
chaotic state rather than to a new time-independent patt
This phenomenon most likely is similar to the one encou
tered in very early experiments on spatiotemporal chaos
ing liquid helium @27,28#, where ordinary RB convection
became chaotically time dependent, most likely because
secondary skewed-varicose instability@29# was crossed.

Heat-transport measurements of the fully developed fl
are shown in Fig. 12 for several field values as a function
e. They illustrate the evolution withh of the hysteretic na-
ture of the bifurcation. As can be seen also in Fig. 3,
hysteresisuesu increased withh for h,hct from about 10% at
the low fields to nearly 25% close to the codimension-t
point. Above this point the hysteresis decreased and s
gested the existence of a tricritical point nearht.59 ~see
below for more detail about the tricritical region!.

When the Nusselt numbers in Fig. 12 are plotted aga
the Rayleigh numberR, they fall on or approach a singl
curve independent ofh. This suggests that the convectio
in the chaotic state is sufficiently vigorous to achieve nea
complete randomization of the director orientation
regardless ofh. In that case one would expect that the sy
tem should behave approximately like an isotropic flu
with an averaged conductivitylavg5(2l'1l i)/3. Thus we
plot in Fig. 13 a modified Nusselt numberÑ given by the
ratio of the effective conductivity of the convecting state
lavg as a function ofRavg, whereRavg is computed using
kavg5lavg/rCP in Eq. ~3! rather thank i . At all but the
highest fields~where the primary bifurcation is supercritica!
the data reach the common curve. At smallRavg, this curve
extrapolates toÑ51 nearRavg51708 ~the cross in the fig-
ure!, which is the critical Rayleigh number of an isotrop
fluid. An analogous behavior has been observed in bina
mixture convection with negative separation ratiosC @30#,
where the bifurcation is also subcritical. In that case the c
vective flow achieves thorough mixing of the concentrati
field andN approaches a curve that is independent ofC. In
both cases the mixing achieved by the flow can persist
cause of the existence of a slow time scale, namely, tha

-

-
of

d

FIG. 11. A temporal succession of images during the trans
leading from conduction to convection whenDT was raised slightly
aboveDTc for cell 5. The field wash550. The numbers are the
elapsed time, in units oftv , since the threshold was exceeded.
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5892 PRE 58LEIF THOMAS, WERNER PESCH, AND GUENTER AHLERS
director or concentration relaxation.
Further support for the idea that the chaotic flow in so

respects can be approximated by isotropic-fluid convectio
found in Fig. 9, where forh&55 the wave vectors~triangles!
are independent ofh and much closer to the critical valu
kc

iso53.117 than to the critical valueskc(h) of the anisotropic
system~circles in Fig. 9!. Exact agreement withkc

iso would of
course not be expected even for a genuine isotropic fl
because of the finite flow amplitude and various wa
number-selection processes.

Lastly we note that an extrapolation of the data in Fig.
to Ñ51 andRavg51708 yields an initial slopeS̃1 of Ñ21
5S̃1(Ravg/170821) of about 0.6. For a laterally infinite sys
tem of straight rolls in an isotropic fluid with a large Prand
number one expectsS1.1.43@31#. However, experiments in
finite systems with modest aspect ratios@32# have always
yielded smaller values, usually in the range of 0.6 to 1. P
ticularly when many defects are present, as in our case,
would expect the heat transport to be suppressed relativ
that of a perfect straight-roll structure.

D. Tricritical region and beyond

This section is devoted to the phenomena that occur n
the tricritical field h5ht . At first the Nusselt numbers an

FIG. 12. Nusselt-number measurements for cell 5 illustrating
variation of the size of the hysteresis loop between conduction
convection withh. The number in the upper left corner of each p
is the field h. Open circles were taken with increasing and so
circles with decreasingDT. The arrows show the values ofes

[Rs /Rc21.
e
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id
e

3
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the patterns are described and the corresponding bifurca
diagram is given. Further subsections deal with the prec
determination ofht and with hexagons observed near thres
old for h.ht .

1. Nusselt numbers and patterns

From the measurements of the Nusselt number~see Fig.
12! there is clear evidence of a tricritical fieldht , above
which the primary bifurcation is supercritical. For instanc
for h.60, measurements ofN revealed no hysteresis at th
primary bifurcation and within our resolutionN grew con-
tinuously from one beyondDTc . This is exemplified for cell
5 andh563 in Fig. 14. The open~solid! circles correspond
to the stable states reached by increasing~decreasing! DT
@33#. This behavior ofN stands in sharp contrast to th
shown in Fig. 12 for lower fields.

Besides the Nusselt number the analysis of the patte
gives important additional insight in particular with respe

e
d

FIG. 13. Nusselt-number measurements for cell 5, normali
by the averaged conductivitylavg[(2l'1l i)/3, as a function of
the Rayleigh numberRavg computed withkavg[lavg/rCP . The
data are forh515 ~open circles!, 25 ~solid circles!, 35 ~open
squares!, 45 ~solid squares!, 50 ~open triangles!, and 55~solid tri-
angles!. The diamonds are forh564, which is in the supercritica
region. Here the solid diamonds are for the hexagons or rolls, wh
form supercritically, and the open ones are for the chaotic fin
amplitude state, which forms via a secondary bifurcation~see Fig.
19 below!. The cross corresponds to the critical Rayleigh num
Rc51708 of an isotropic fluid.

FIG. 14. Nusselt-number measurements forh563 and cell 5
illustrating the supercritical nature of the bifurcation characteris
of the high fields. Open circles were taken with increasing and s
circles with decreasingDT.
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to secondary transitions. In Fig. 15 all the available inform
tion has been condensed in a bifurcation diagram for
vicinity of the tricritical point.

At first we will focus on the wedge labeled Rolls/He
where time-independent convection is stable. For both ce
and 6, a seemingly supercritical primary bifurcation led to
hexagonal pattern. For cell 5 this pattern is shown in Fig.
The range ofe over which the hexagons were stable differ
in the two cells. In cell 5, hexagons remained stable up
Rn(h) ~solid squares in Fig. 15! for the entire range ofh. At
Rn(h) a transition to a spatially and temporally chaotic r
pattern with a lower characteristic wave number occurr
For h,75 this transition was distinguished by a jump inN
as well as the onset of time dependence ofN, as illustrated
in Fig. 17. The upper figure gives the steady-stateN and
shows the jump aten[Rn /Rc21. The lower figure is the
time series ofN obtained in the same run. Heree was held

FIG. 15. Bifurcation diagram in the region of theR-h plane
close to the tricritical point. Solid circles: primary bifurcation. Sol
triangles: Rs . Solid squares: hysteretic secondary bifurcation
chaotic convection. Shaded areas labeledkn53.4, 3.6, and 3.9 cor-
respond to chaotic regimes with different mean wave numbers.
wedge-shaped area labeled Rolls/Hex shows the parameter
over which time-independent convection is stable. For cell 5,
pattern is hexagonal in this entire region. For cell 6, the patter
hexagonal in this region fore<0.015. For largere but still in this
region it consists of time-independent rolls.

FIG. 16. Image of the hexagonal flow in cell 5 forh565 and
e50.01. The pattern was essentially the same over the entire
tence range of hexagons.
-
e

5
a
.

o

.

constant for a 5 hperiod at each of the eleven successive
increasing values. The data show thatN is steady below and
time dependent aboveen(h). For h>75 the discontinuity in
N was no longer pronounced, but a transition to time dep
dence still occurred aten(h). Thus, depending on the field
either of these two indicators was used to determine the
cation ofen(h). In the thicker cell 6, a transition from hexa
gons to rolls occurred neare.0.015, independent of field
strength. This transition was not associated with a mea
able change in the wave number, a jump inN, or a time
dependence ofN. A further increase ofe again led to a
transition aten(h) from steady rolls to the chaotic state, co
sistent with the cell 6 experiments. The results foren(h)
obtained in cells 5 and 6 are shown in Fig. 18 as circles
triangles respectively.

he
nge
e
is

is-

FIG. 17. Nusselt-number measurements forh561 in cell 5. The
upper figure illustrates the dependence of the Nusselt number oe.
The dotted line indicatesen , where the transition from hexagons t
rolls occurred whenDT was increased. The lower figure illustrate
the dependence of the Nusselt number on time. Time is measur
units of 5 h, i.e., the time between steps ine.

FIG. 18. Values ofen(h) where a transition to a spatially an
temporally chaotic state occurred. Circles and triangles were
tained in cells 5 and 6, respectively. The lines represent a fit o
quadratic polynomial in (h/hn21) to the data. The fits extrapolat
to zero athn558.360.7 for cell 5 andhn55863 for cell 6.
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On the basis of the usual Landau equation for a tricriti
bifurcation, one would expect the hysteresis to grow gra
ally ash is reduced belowht . However, within our resolu-
tion this was not the case and a hysteretic primary bifur
tion to a chaotic state occurred immediately belowht .
Indeed, the secondary bifurcation lineen(h) for h.ht met
the primary bifurcation line atht within experimental reso-
lution, as can be seen already in Fig. 15.

It is shown more explicitly in Fig. 18, where the rangeen
of time-independent patterns vanishes nearh558. Fitting a
quadratic polynomial in (h/hn21) to en(h) yields hn
558.360.7 ~cell 5! and hn55863 ~cell 6! for the field
whereen vanishes. Within error, these values agree with
tricritical field obtained from the slope of the Nusselt numb
~see the next section!.The bifurcation forh.ht is supercriti-
cal but the amplitude at constante.0 diverges ash ap-
proachesht from above. Since secondary bifurcations occ
at finite values of the amplitude, we expecten(h) to vanish
at ht . Therefore theen measurements provide a relative
precise lower limitht557.6 for the tricritical field.

The secondary bifurcation aten is strongly hysteretic. As
illustrated in Fig. 19, whene was decreased frome>en , a
transition back to hexagons did not occur. Instead, the c
otic state persisted to values ofe slightly below zero, at
which point the conduction state was reached~see also the
solid triangles in Fig. 15!. In a separate section we will com
back to the hexagons.

2. Determination of the tricritical point

As h approaches the tricritical point from above, the in
tial slopeS1,r of N for rolls is expected to diverge as 1/(h
2ht). For cell 6, we estimatedS1,r(h) from data for e
*0.015 where rolls were observed. At a givenh, S1,r was
determined by fitting the polynomial

N511S1,re1S2,re
2 ~9!

with e5DT/DTc21 to the data. The parametersDTc , S1,r ,
andS2,r were adjusted in the fit. Figure 20 shows the dep
dence of 1/S1,r uponh as solid circles. The fitting procedur
did not yield highly accurate values because the Nusselt
for e,0.015 had to be excluded; thus the error bars forS1,r
are relatively large. The line is a fit of a quadratic polynom
in (h/ht21) to the results for 1/S1,r(h). This fit indicates the
tricritical point to be atht557.262.6.

FIG. 19. Nusselt-number measurements forh564 in cell 5.
Open circles were taken with increasing and solid circles with
creasingDT. The dotted line indicatesen .
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In order to compare the theory with the measureme
aboveht , we calculatedS1,r using the properties of 5CB
The results for 1/S1,r are shown as a dashed line in Fig. 2
There is quite reasonable agreement with the experime
data for h*60, particularly when it is considered that th
initial slope ofN in finite systems usually is smaller than th
theoretical value for the infinite system. However, the the
yields a tricritical fieldht

th551, which differs significantly
from the experimental estimates. We note that this differe
is in the same direction as and somewhat larger than
corresponding one for the codimension-two point. We ha
no explanation for this difference.

3. Hexagons

In this section we will discuss in more detail the hexag
nal patterns. Hexagonal patterns at onset may be attribut
to departures of the physical system from the Oberbe
Boussinesq~OB! approximation@18,19#, i.e., to a variations
of the fluid properties over the imposed temperature ran
For isotropic fluids it has been shown that non-OB effe
lead to hexagons at a transcritical~hysteretic! primary bifur-
cation @19,21#. Below onset, forea<e<0, both hexagons
and the conduction state are stable. Above onset, hexa
are stable for 0<e<e r . For e r<e<eb hexagons and rolls
are both stable, while fore>eb only rolls are stable. When
the thickness of the fluid layer is increased,DTc is reduced
and thus departures from the OB approximation beco
smaller. Thus the range ofe over which hexagons are stab
is reduced when the thickness of the fluid layer is increas
as seen in the experiment by comparing cells 5 and 6.

A stability analysis of RBC with non-OB effects in a ho
meotropically aligned NLC has not yet been carried out a
would be very tedious. Thus, in order to obtain at leas
qualitative idea of the expected range of stable hexagons
used the theoretical results for the isotropic fluid with t

-
FIG. 20. The dependence onh of the reciprocal of the initial

slopeS1 of the Nusselt number as obtained from a fit of the data
Eq. ~9!. The open circles are 1/S1,h for cell 5, and the filled ones are
1/S1,r for cell 6. For cell 5, data over the range 0,e,en were used,
and the pattern was hexagonal. For cell 6, data over the ra
0.015,e,en were used, and the pattern was one of rolls. The so
line represents a fit of a quadratic polynomial in (h/ht21) to the
cell 6 S1,r data. The fieldht557.262.6, where 1/S1,r for cell 6
extrapolates to zero, is interpreted to be the tricritical point. T
theoretical results for 1/S1,r are given by the dashed line. They yie
a tricritical point atht

th551. The theoretical results for 1/S1,h are
given by the dash-dotted line. The location of the codimension-
point is given by the solid~experimental! and dashed~theoretical!
short vertical lines.
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fluid properties of 5CB. The values ofea , etc. are deter-
mined by a parameterP, which was defined by Busse@19#
and is given by P5S i 50

4 g iPi , with g052Dr/r, g1

5Da/2a, g25Dn/n, g35Dl/l, andg45DCP /CP . Here
r is the density,a the thermal expansion coefficient,n the
kinematic viscosity,l the conductivity, andCP the heat ca-
pacity. The quantitiesDr, etc. are the differences in the va
ues of the properties at the bottom~hot! and top~cold! end of
the cell. Forl we usedl i , and forn we useda4 /2r. The
coefficientsPi in the equation forP are given by Busse@19#.
However, here we use the more recent results@34# for large
Prandtl numbersP052.676, P1526.631, P252.765, P3
59.540, andP4526.225 whereP3 differs significantly
from the earlier calculation.

At the fields where the hexagons were observed, the t
perature difference across cell 5~cell 6! was close to
5.05 °C (2.07 °C). At these temperature differences, we
tainedP521.5, ea521.731024, e r51.531022, and eb
55.331022 for cell 5. For cell 6 the values areP520.6,
ea522.831025, e r52.531023, andeb58.731023. From
these estimates, it follows that the hysteresis of sizeea is too
small to be noticeable in either cell with our resolution. T
largest value ofe at which hexagons could exist in cell
would bee58.731023. However, we observe hexagons
exist to nearly twice this value. If the same is true for t
thinner cell, the hexagon-roll transition attributable
non-OB effects should happen at a value ofe greater than
en(h) for the field range over which the experiments we
performed. Thus, instead of leading to a time independ
state, as observed in cell 6, the hexagon-roll transition
preceded by a transition to a state exhibiting spatio-temp
chaos aten .

The hexagonal pattern may be regarded as a superpos
of three sets of rolls with amplitudesAi , i 51,2,3, corre-
sponding to the three basis vectors at angles of 120° to e

FIG. 21. The critical Rayleigh number as a function of 1/h2.
The solid line was calculated using the parameters of Ref.@22#. The
open triangle isRc,` from Eq. ~13!. The solid triangle is the many
mode numerical result forRc,` . The solid circles are from cell 5
and the open squares are from cell 6. The vertical bars indicate
location of the codimension-two point~right bar! and the tricritical
point ~left bar!. The plusses, crosses, and dashed line show w
happens to the data and the theoretical curve if the viscositya4 is
increased by 7.5%.
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other. According to the Landau model@13# the steady-state
amplitudesAi are determined by

eA11 1
2 b~A2

21A3
2!2g11A1

32g12A1A2
22g13A1A3

250
~10!

and the corresponding cyclic permutation fori 52,3. Since
all amplitudes are expected to be equal in hexagonsA1
5A25A35A), one has

eA1bA22~g12g̃!A350, ~11!

where g is the self-coupling coefficientg11 and g̃ is the
cross-coupling coefficientg125g13. Because of the term
bA2, the bifurcation is transcritical and thus hysteretic. Ho
ever, as we discussed above and as is shown, for instanc
the data in Fig. 14, this effect is not resolved in the expe
ment because the coefficientb ~which is determined byP) is
too small. Thus we neglect the termbA2, and have to a good
approximation

N2153A25
3e

g12g̃
. ~12!

At the tricritical pointg vanishes asg5g0(h2ht). How-
ever, there is no reason whyg̃ should vanish also atht .
Thus, one would expect the slopeS1,h53/(g12g̃) of N near
e50 to remain finite atht and equal to 3/2g̃. To test this
idea, we fittedN for cell 5 over thee range where hexagon
were observed~i.e., up toen) to an equation like Eq.~9!.
Since data quite close to threshold could be used, the re
for S1,h are much more precise than those for cell 6. They
given in Fig. 20 as open circles. One can see that 1/S1,h is
non-zero atht . It extrapolates to zero nearh553, which is
well below ht557.262.6. Unfortunately the relatively large

he

at

FIG. 22. The critical wave number as a function of 1/h2. The
solid line was calculated using the parameters of Ref.@22#. The
open triangle iskc,` from Eq. ~13!. The solid triangle is the many
mode numerical result forkc,` . The vertical bars indicate the loca
tion of the codimension-two point~right bar! and the tricritical point
~left bar!. The dashed line shows what happens to the theore
curve if the viscositya4 is increased by 7.5%~the data forkc

remain unchanged!.
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uncertainty ofht andS1,r prevents the accurate determinati
of g̃. At ht , we find g̃53/2S1,h.0.3. With increasingh, g̃
also increases. For instance, the data in Fig. 20 suggest
g̃53/2S1,h21/2S1,r.0.8 for h566.

The experimental results for 1/S1,h cannot agree quantita
tively with the theory because we already know thatht

th is
lower than the experimental value. Nevertheless we ca
lated 1/S1,h , and give it in Fig. 20 as the dash-dotted lin
We see that the relationship between 1/S1,h and 1/S1,r is quite
similar in theory and experiment.

E. The high-field limit of Rc and kc

It is highly probable that there exists a high-field regim
where the convection phenomena become independent o
field since the director is then frozen in the homeotro
configuration. It is instructive to examine whether the expe
mental data extend to sufficiently high fields to fully reve
this behavior. Building on the results of FDPK@10#, one can
show that in a one-mode approximation the neutral curve
the limit h→` is given by

Rc,`~k!5
~l' /l i!k

21p2

2k2I 1
2 F2I 2k2S 2h1

a4
1

2h2

a4
1

2a1

a4
D

1k4
2h2

a4
1b4

2h1

a4
G . ~13!

Here h15(a41a52a2)/2 and h25(a31a41a6)/2 are
Miesowicz viscosity coefficients@4#, and I 150.697 38,
I25212.3026, andb51.5056p. This leads toRc,`(kc)
53090.6 andkc,`54.294. Using many modes, one obtai
numericallyRc,`(kc)53056.6 andkc,`54.328, close to the

FIG. 23. Time sequences of the spatially and temporally cha
flow for R54000 and at different values ofh for cell 5. The images
in each row were taken at the field indicated in the leftmost ima
Time increases from left to right. Images were taken in one h
intervals. The wave numbers of the patterns areh547: kn

53.4, h556: kn53.6, h557.5: kn53.9.
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one-mode result. One can see that only the viscosities e
into Rc,` , and not the elastic constants. This is so beca
the director is held rigid by the field.Rc,` is larger than the
isotropic-fluid value because of the additional viscous int
action between the flow and the rigid director field.

In the high-field limit, we obtain

Rc5Rc,`1R1 /h21O~h24!. ~14!

The coefficientR1 has not been calculated in detail, but
proportional tok33

21 . The fact that at order 1/h2 elastic con-
stants enter suggests the beginning of some director dis
tion by the flow.

In Figs. 21 and 22 we show the experimental data a
theoretical results as a function ofh22. The one-mode high-
field limits Rc,` and kc,` are shown in the figures as ope
triangles. The corresponding numerical many-mode res
are given as solid triangles. The experimental data forRc and
kc are consistent with the expected dependence onh, but
respectively fall about 4% above and 1% below the calcu
tion. The data forRc andkc at the highest experimental fiel
h.80 are already within about 6% and 1%, respectively,
the infinite-field value. Thus it seems unlikely that qualit
tively new phenomena could be discovered by measurem
at even higher fields.

We examined whether the small difference between
theory and the experiment could be removed by small adj
ments in the values of the fluid properties. We found that
increase by 7.5% ofa4 yielded the plusses and crosses f
the data in Fig. 21 and the dashed lines in Figs. 21 and
~the data forkc in Fig. 22 are not affected by changinga4).
The adjustment ofa4 produced an excellent fit for bothkc
andRc . However, it spoiled the excellent agreement forRc
along the oscillatory branch below the codimension-t
point shown in Fig. 3 and did not significantly reduce t
difference between calculation and experiment forkc at
small h which is shown in Fig. 9. Various other attempts
adjust the fluid properties used in the theoretical calculati
were unsuccessful in yielding improved overall agreem
between theory and experiment over the entire field rang

F. Nonlinear states at high fields

Beyond the codimension-two point the finite-amplitu
flow was split into three regions distinguished by their ch
acteristic wave numberskn.3.4,3.6 and 3.9. These region
are shown in Fig. 15. Figure 23 shows some character
patterns. Qualitatively the patterns appear similar, each
hibiting spatiotemporal chaos. The transitions between th
state depended on bothh and R. They were determined by
measuring the change inkn ash was varied at a given Ray
leigh number. As already mentioned above, to our kno
edge there are no theoretical predictions for these patter
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PRE 58 5897RAYLEIGH-BÉNARD CONVECTION IN A . . .
@1# H. Bénard, Rev. Gen. Sci. Pure Appl.11, 1261 ~1900!; Ann.
Chim. Phys.23, 62 ~1901!.

@2# A large literature pertaining to this field has evolved. Partic
larly useful as introductions to early work are the reviews
E. L. Koschmieder, Adv. Chem. Phys.26, 177 ~1974!; and in
Order and Fluctuations in Equilibrium and Nonequilibrium
Statistical Mechanics, XVIIth International Solvay Confer-
ence, edited by G. Nicolis, G. Dewel, and J. W. Turner~Wiley,
New York, 1981!, p. 168; and by F. Busse, inHydrodynamic
Instabilities and the Transition to Turbulence,edited by H. L.
Swinney and J. P. Gollub~Springer, Berlin, 1981!, p. 97; and
in The Fluid Mechanics of Astrophysics and Geophysics, Vol.
4: Mantle Convection, Plate Tectonics, and Global Dynami,
edited by W. R. Peltier~Gordon and Breach, New York 1989!.

@3# For reviews of convection in NLCs, see, for instance,
Dubois-Violette, G. Durand, E. Guyon, P. Manneville, and
Pieranski, inSolid State Physics, edited by L. Liebert~Aca-
demic, New York, 1978!, Suppl. 14; and P. J. Barratt, Liq
Cryst.4, 223~1989!; and L. Kramer and W. Pesch, Annu. Re
Fluid Mech.27, 515~1995!; and G. Ahlers, inPattern Forma-
tion in Liquid Crystals, edited by L. Kramer and A. Buka
~Springer, Berlin 1996!.

@4# P. G. de Gennes and J. Prost,The Physics of Liquid Crystals,
2nd ed.~Clarendon Press, Oxford, 1993!.

@5# L. M. Blinov, Electro-Optical and Magneto-Optical Proper
ties of Liquid Crystals~Wiley, New York, 1983!.

@6# J. Cognard, Mol. Cryst. Liq. Cryst. Suppl. Ser.1 ~1982!.
@7# H. Lekkerkerker, J. Phys.~France! Lett. 38, 277 ~1977!.
@8# H. Lekkerkerker, J. Phys.~Paris!, Colloq. 40, C3 ~1979!.
@9# E. Guyon, P. Pieranski, and J. Salan, J. Fluid Mech.93, 65

~1979!.
@10# Q. Feng, W. Decker, W. Pesch, and L. Kramer, J. Phys. I2,

1303 ~1992!.
@11# For a summary of bifurcation types, see, for instance, App
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