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Electron–optical-phonon scattering rates in spherical CdSe quantum dots
in an external magnetic field
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We calculate electron-phonon relaxation rates in CdSe spherical quantum dots in the presence of the quan-
tizing magnetic field. The calculated scattering rates include the contributions of the confined and surface
optical modes as obtained from the dielectric continuum model. The electron states are calculated within the
strong-perturbation approximation. The effects of the competing contributions of the magnetic and spatial
confinement on the optical-phonon scattering rates are studied. The enhancement of the scattering rates in the
strong magnetic fields regime and the possibility of tuning efficient scattering channels are also discussed.
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The interaction between electrons and phonons is an
portant ingredient for any realistic discussion of the opti
properties of quantum dots.1–4 It has considerable relevanc
in determining the fast carrier dynamics at small semic
ductor devices and in the study of radiative transitions
photonic devices. In semiconductor quantum dots not o
the electronic levels but also the lattice vibrational mod
become fully discrete due to the three-dimensional confi
ment. It has been found that the LO-phonon spectrum i
spherical quantum dot consists of confined and surf
modes, the latter being directly associated with the in
faces. Klein et al.,5 based on a dielectric continuum a
proach, have derived expressions for the eigenfunctions
responding to the confined and surface phonon modes
have obtained the electron-phonon coupling Hamiltonian
these modes. Additionally, a phenomenological treatm
that includes the coupling between mechanical phonon
placement and electrostatic potential has also been repor6

In this work, for reasons of simplicity, we will describe th
phonon modes within the dielectric continuum model.

The magnetic effects in quantum dots have been stu
both experimentally7–10 and theoretically.11–13 Interesting re-
sults were obtained in several optical properties like exci
fine structure, Zeeman splitting, and Landau level formati
While for the quantum wells and wires the effect of a ma
netic field on the electron-phonon interaction has been s
ied in great detail, the discussion of the same effects
spherical quantum dots is just starting. We report
electron-phonon scattering rate calculation in spherical qu
tum dots under an applied magnetic field.

The presence of an axial magnetic field produces ma
two effects:~i! the magnetic field generates additional qua
tization rules which modify the optic properties of the nan
structures,~ii ! the external magnetic field modifies the spat
symmetry of the wave functions and, in consequence,
duces important variations to the electronic overlap. A
direct consequence, this induced cylindrical symmetry,
perimposed to the spatial spherical symmetry of the d
introduces emission of new phonon modes in the electr
phonon scattering, and the modifications in the scatte
rates are related to the deformation of the wave function
this new mixed symmetry. The change in the quantization
produced by the magnetic field, allows the appearance
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new scattering channels and opens the possibility of adj
ing optical properties by appropriate choices of the values
the field. The aim of the present work is to study t
electron-phonon scattering rates in spherical quantum do
the presence of a magnetic field in thez direction.

In order to calculate the electron wave functions and
ergy spectrum, we explore the ideas in the stron
perturbation approach proposed by Jiang15 and successfully
used in the calculation of the magnetic effects on exciton
impurity binding energies13,16 in spherical quantum dots
This method permits us to solve problems that involve m
than one potential profile in the Hamiltonian and where
perturbationcan be comparable to the unperturbed Ham
tonian. The calculation scheme is based on the transfor
tion of Hamiltonian systemH by choosing a wave function
in the formc5f exp(2g), wheref is the exact solution of
unperturbed contribution andg is a function that can be
found by a minimization procedure. After the transformatio
the new Hamiltonian can be treated by the usual perturba
theory.

The Hamiltonian for an electron in a spherical quantu
dot of radiusR and in the presence of an external magne
field parallel to thez direction can be written as

H52
\2

2m*
¹21

vB

2
Lz1

1

8
m* vB

2r 2sin2u1V~r !, ~1!

wherevB5(eB/m* c) is the cyclotron frequency,Lz is thez
component of the angular momentum operator, andV is the
potential of confinement. We consider the termV8
5 1

8 m* vB
2r 2sin2u as the perturbation if compared with th

exactly soluble problem

H052
\2

2m*
¹21

vB

2
Lz1V~r !. ~2!

The analytical eigenfunctions ofH0 are given by

fL,M5AL j L~kr !YL
M~u,f!, ~3!

whereYL
M are the spherical harmonics,L andM are the val-

ues of the orbital momentum and its projection, respectiv
j L(x) are the spherical Bessel function andAL is its normal-
©2002 The American Physical Society01-1



rre

a
io
e

I
, t
p-
e
b
ld

ca
an

or
rg

e
al
en
a

ng
he
ro
e

rin
ic

e
ut
lik
e
ur
th
th
he

an
ac
ob
he
ca

non
di-

pe

po-

e
n

his
lex

can
en-

the

of

eri-
um-

n
n

si-
and
ng

e

-
ed
er-

dSe
s
pa-
ass

ined

BRIEF REPORTS PHYSICAL REVIEW B 65 113301
ization constant for the dot. The energy spectrum co
sponding to unperturbed HamiltonianH0 is given by

E(0)5
\2

2m*
knL

2 1
M

2
\vB , ~4!

where we have considered a parabolic energy dispersion
our discussion will assume the infinite confinement situat
where the carrier envelope function vanishes at the surfac
dot, therefore each wave vectorknL is obtained from the
condition j L(knLR)50. Since we are considering II-V
quantum dots embedded in an amorphous glass matrix
assumption of infinitely high barriers is a well justified a
proximation. For the dot sizes and the excited energy lev
considered in this work, the effects of finite barrier can
negligible.17 More marked effects in the eigenstates wou
appear for sizes smaller than 30 Å . In the case of dots
glass matrix, an additional factor that limits the theoreti
treatment of the finite barrier is the impossibility to define
exact value for the effective mass in the glass material.

Using the idea proposed in the strong-perturbation the
we obtain the first-order correction to the unperturbed ene
as

E(1)}E e22g~fL,M* ¹g•¹fL,M !dr . ~5!

It is important to note that Eq.~1! has a nonseparabl
character due to the impossibility of writing the full potenti
V8 in terms of a single coordinate or as the sum of indep
dent coordinates. The presence of the magnetic field bre
the spherical symmetry of the initial problem by introduci
a cylindrical shape to the potential that will compete with t
spherical confinement potential as the value of the cyclot
radius becomes comparable toR. Some approaches hav
been used to describe this problem: Kimet al.18 obtained an
analytic expression for the electronic spectrum conside
that the electron only moves on the surface of the spher
potential. Nomuraet al.12 applied full diagonalization and
calculated the exciton and absorption spectrum. This num
cal method, although efficient, demands a great comp
tional effort. Some fast-convergence numerical methods
the boundary-element method19 could also be used to solv
this problem numerically. The strong-perturbation proced
used in this work allows us to obtain a good approach for
electronic spectrum and wave functions, especially for
few lowest energy levels that we will use to calculate t
phonon emission rates.

In the quantum dot phonon problem, the eigenmodes
their eigenfrequencies have to be found by taking into
count the boundary conditions and the symmetry of the pr
lem. Following the dielectric continuum approximation, t
electron-optical phonon interaction Hamiltonian in spheri
semiconductor quantum dots as derived from Fro¨hlich inter-
action is given by5

Hn5(
Q

\vnCn~Q!@fn~Q!anQ1H.c.#, ~6!
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where H.c. stands for Hermitian conjugate. The indexQ rep-
resents all necessary quantum numbers to specify a pho
state including phonon wave vector and discrete mode in
ces,n5C andS to denote the confined and the surface-ty
LO phonon, respectively. Also,an is the annihilation opera-
tor for phonons in the modeQ, and Cn are the electron-
phonon coupling coefficients. The phonon electrostatic
tentials can be written asfC5 j l(qR)Yl

m(V) for confined
modes andfS5(r /R) lYl

m(V) for surface modes, where th
values for q are obtained from the boundary conditio
j l(qR)50 at the quantum dot radiusR.

Notice that the dielectric continuum approach, used in t
work, does not include phonon dispersions as other comp
treatments,6 where several size-dependent frequencies
coexist. Therefore all LO-confined optical modes are deg
erated and display a single bulk LO frequencyvLO , whereas
the frequencies of the surface modes will depend only on
quantum numberl, as

vS
25F e0l 1eD~ l 11!

e`l 1eD~ l 11!GvTO
2 , ~7!

whereeD is the frequency-independent dielectric constant
the surrounding medium,e0 and e` are the static and the
high-frequency dielectric constants, respectively. For sph
cal dots, these phonon frequencies are independent of n
ber m and their values satisfy the relationvTO,vS,vLO .

We calculate the rateW for an electron scattered from a
initial statek to a final statek8, accompanied by the emissio
of an optical phonon in the modeQ with frequencyvn . By
using the Fermi’s golden rule we can write

Wk→k85
2p

\
uMk→k8~Q!u2d~Ek2Ek82\vn!, ~8!

whereM(Q) are the matrix elements of the allowed tran
tions. We use the approach proposed by Vurgaftman
Singh14 which allows us to include the spectral broadeni
of the electronic spectra due to a finite energy-level lifetim
t. In order to evaluate the expression~8!, we replace the
delta function by a Lorentzian line-shape function1,2

d~Ek2Ek82\vn!→ 1

p F G/2

~Ek2Ek82\vn!21~G/2!2G ,

~9!

whereG5\/t is the linewidth andt is taken to be the re-
ciprocal of the scattering rateW. The set of coupled equa
tions for the scattering rate and for the linewidth are solv
numerically, in an iterative procedure, until a chosen conv
gence condition is achieved.

For our calculations of scattering rates we assume a C
spherical quantum dot with radiusR embedded in a glas
matrix, and use an infinite potential barrier. The material
rameters used in our calculations are: the effective m
m* 50.13m0, the dielectric constantse059.56, e`56.23
and eD52.25, the bulk phonon energy\vLO526.0 meV.
The calculations are performed atT;0 K. The temperature
dependence of the one-phonon emission rate is determ
from W5W0(nB11), where nB is the Bose distribution
1-2



b
v-
-
ta

ro
io
on
or
im

t

ne

a

a
it

th

ne
th
th
et

dii
ches

nd
nce.
en-
in
the

ag-

e
on-
s of

nal
ag-
e

o-
-

to
-

ty
in

the
end

e be-

in-
the
r to
so-
tial
n-

etic
lec-

ill
tial
ve
An
for
-
ic-
for

are
e of
on
re-

ns

s f
l

BRIEF REPORTS PHYSICAL REVIEW B 65 113301
function andW0 is the scattering rate forT50 K. In the
temperature regime below 50 K, we have\vn@kT and Bose
function is small, therefore the effect of temperature can
considered as negligible. We will identify the electronic le
els by the quantum numberM and we restrict our calcula
tions to treat only transitions between the first excited s
M50,61 and the ground stateM50. To discuss higher
level relaxation, it is necessary to consider multiphonon p
cesses. These processes can involve one-phonon emiss
several LO and LA modes, as well as two-phonon emissi
(LO6LA).20 These processes are not included in this w
and are specially important for the high-temperature reg
and for larger dot sizes. For simplicity, we have chosen
label the transition11→0 (21→0) as DM51 (DM5
21).

The calculated electronic relaxation rates due to confi
~solid lines! and surface~dashed lines! modes as a function
of the dot radius for transitionsDM51 andDM521 are
shown in the Figs. 1~a! and~b!, respectively. The effects of
magnetic field on transitions between states withDM50 are
negligible and will not be shown here. The calculated sc
tering rates can include contributions of the optic modes w
l .1, and this establishes an important difference with
free magnetic-field problem where only the model 51 can
contribute to the scattering processes.2 It is important to em-
phasize that the selection rules for transitions involving o
phonon emission in spherical quantum dots are given by
total angular momentum conservation. The change in
symmetry of the wave functions, as induced by the magn
field, will include the transitions withlÞ1.

FIG. 1. Scattering rates due to confined and surface mode
transitions: ~a! DM51 and ~b! DM521 for a CdSe spherica
quantum dot as function of the dot radius.
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As expected, we observe efficient scattering for dot ra
such that the separation between the levels involved mat
the energy of the emitted phonon (DE2\vn50, resonant
condition!. The transition rates progressively broaden a
decrease when the energy moves away from the resona
To interpret our results it is necessary to analyze the dep
dence of the transition energy with the magnetic field. With
the range of considered magnetic fields, the energy of
transition DM51 (DM521) is almost linear and with
positive ~negative! slope as the value ofB increases. This
implies that the resonance peak for the transitionDM51
moves toward a larger dot radius as the intensity of the m
netic field increases, and this effect is illustrated in Fig. 1~a!.
The opposite effect can be observed in Fig. 1~b! for the tran-
sition DM521. The magnetic-field induced shifts of th
resonance peak allow us to select the most efficient phon
scattering process in a wide range of dot sizes. The effect
the diamagnetic term, proportional toB2 in the Hamiltonian
~1!, are important for high magnetic fields (B.15 T). An-
other important characteristic of our results is the additio
broadening in the scattering rate peaks induced by the m
netic field. This broadening is particularly important for th
transitionsDM51. This behavior can be explained by n
ticing that the transition probability per unit time in a two
level system is, in general, proportional
uMu2/AuMu21@DE(B)#2, whereDE(B) represents the tran
sition energy with emission of a phonon\vn in presence of
a magnetic fieldB. Therefore any change in the intensi
produced by the magnetic field will also cause variations
the broadening of the peak transition rate. It is clear that
increase or decrease of the peak broadening will dep
strongly on the sign of the termDM\vC . Additionally, we
observe for transitionsDM51, the intensity of the scattering
decreases as the magnetic field increases. The opposit
havior is observed for transitionsDM521. The transition
probability is proportional to the electron-phonon overlap
tegral, thus a close look on the variation in the shape of
wave function with the field becomes necessary in orde
explain the behavior of the peak intensity close to the re
nance. It is clear that the combination of magnetic and spa
confinements will determine the value of the overlap. In ge
eral, when the spatial confinement is strong, the magn
field produces an additional spatial confinement of the e
tronic wave functions. Thus the confined phonon modes w
have larger overlap integrals. In situations of weak spa
confinement, the magnetic field shrinks the carrier wa
function producing the decrease of the overlap integral.
increment in the overlap of up to 5% can be observed
quantum dots with radiusR,100 Å and a decrease of ap
proximately 10% in dots larger than 100 Å . The magnet
field effects on the electron-phonon overlap are similar
surface modes.

On the other hand, the rates for surface phonons
smaller than for confined modes as a direct consequenc
the behavior of radial overlap integrals. The surface phon
potentials are strongly localized at the interface region, the
fore they couple weakly with the carrier wave functio
which are mainly localized inside the dot.

or
1-3
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BRIEF REPORTS PHYSICAL REVIEW B 65 113301
For larger radii (R.300 Å ), the total scattering rat
~confined1 interface! for zero magnetic field converges t
the CdSe bulk scattering ratesWb . The rates forB50 pre-
sented in our previous work2 show more clearly this conver
gence. Following Ridley,21 we have estimated the bulk CdS
scattering rateWb53.5 31012 s21.

Furthermore, we will compare the calculated scatter
rates with the free magnetic-field rates, and this gives a di
measure of the effects of the magnetic confinement and thB
dependence of the transition energy on the scattering ra
For high magnetic fields, these effects can be better il
trated in Fig. 2 where we display the ratioW(B)/W(0),
whereW(B) is the total scattering rate in presence of ma
netic fieldB andW(0) is the total scattering rate in absen
of field. For the transitions considered in this work, stro
fields produce more remarkable changes on the scatte
rates. For instance, at 25 T theDM51 transition of the

FIG. 2. Ratio of the scattering rates in a magnetic fieldW(B)
and free magnetic-field ratesW(0) as function of the dot radius
Confined and surface modes contributions are included. S
~dashed! lines are forDM51 (DM521) transition.
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magnetic scattering rate can be up to ten times larger than
free magnetic-field rate.

Finally, the inclusion of the acoustic modes in the calc
lation is an important aspect that should be considered
future work. It has been shown that atB50, the contribu-
tions of acoustic modes to the scattering rates
significant.1,20 In our previous work,1 we have studied the
dependence of ripple mechanism~RM! and deformation po-
tential ~DP! with the quantum dot size as well as their co
tributions to the electron–acoustic-phonon scattering rate
discussed above, an external magnetic field modifies
electron-phonon overlap integral. By noting the nature of
RM coupling ~dominant for small size dots!, we expected
stronger changes in the rates in the presence of the mag
field. The rates due to DP~important for large dot sizes!
would not be modified significantly by the field. Addition
ally, the dependence of the transition energy withB opens
alternatives to adjusting size ranges where the RM or DP
dominant. Obviously, the effects of the glass matrix on
acoustic-mode frequencies should be taken into account

In conclusion, we have discussed the effects of the m
netic field on the interaction of the electrons with confin
and surface optical phonons in CdSe spherical quantum d
Our calculations show that the scattering rates are sens
to the applied magnetic field and that alternative scatter
channels can become efficient by magnetic tuning in a w
range of dot radius. Using a simple expression that rela
the scattering rates with the transition energy, we have
plained the additional peak broadening induced by the m
netic field. Finally, we discussed how the magnetic fie
modifies the carrier wave functions and produces an
hancement in the scattering rates. This effect is particula
important at high magnetic fields.
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Nacional de Desenvolvimento Cientı´fico e Tecnolo´gico
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17L. Bányai and S. W. Koch,Semiconductor Quantum Dots, Series

on Atomic, Molecular and Optical Physics~World Scientific
Publishing Co. Pte. Ltd., Singapore, 1993!.

18D.-S. Kim et al., Phys. Rev. Lett.68, 1002~1992!.
19P. A. Knipp and T. L. Reinecke, Phys. Rev. B54, 1880~1996!.
20T. Inoshita and H. Sakaki, Phys. Rev. B46, 7260~1992!.
21B. K. Ridley, Quantum Processes in Semiconductors, 3rd. ~Ox-

ford Science Publications, Oxford, 1993!.
1-4


