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This work presents the theory of exciton coupling to photons and longitudinal optical �LO� phonons
in quantum dots �QDs� and quantum-dot molecules �QDMs�. Resonant-round trips of the exciton
between the ground �bright� and excited �dark or bright� states, mediated by the LO phonon, alter
the decay time and yield the Rabi oscillation. The initial distributions of the population in the ground
and the excited states dominate the oscillating amplitude and frequency. This property provides a
detectable signature to the information that is stored in a qubit that is made from QD or QDM, over
a wide range of temperatures T. The results herein explain the anomaly of T-dependent decay in
self-assembled InGaAs/GaAs QDMs, which has recently been experimentally identified. © 2007
American Institute of Physics. �DOI: 10.1063/1.2756621�

I. INTRODUCTION

Charge carriers that move in semiconductor quantum
dots �QDs� and quantum-dot molecules �QDMs� provide a
larger transition-dipole moment than that in atomic and mo-
lecular systems, owing to the interaction with solid-state
matter and a spatial variation of the band edge in QDs and
QDMs. This fact supports applications in quantum informa-
tion processing1 and logical operation.2,3 In such applica-
tions, the coherent manipulation of the excitonic wave func-
tion in QDs and QDMs at finite temperature is essential. The
dephasing time ��1 ns in self-assembled InGaAs/GaAs
QDs �Refs. 4–6� and QDMs �Refs. 6 and 7�� must be longer
than the manipulation time ��1 ps�,8 because the coherence
of the excitonic transition, or quantum computation, cannot
be maintained when the dephasing time is similar to or less
than the manipulation time.

In QD and QDM systems, carrier dephasing can be cat-
egorized into two parts; �1� the dephasing of the spatial wave
function of the exciton and �2� the dephasing of the internal
degrees of freedom of the exciton, such as degenerate spin
states. The former dephasing is mainly attributed to, for ex-
ample, photon and real phonon scattering, as in the so-called
excitonic decay, because the exciton cannot incoherently re-
side in a spatially confined state. The second dephasing re-
laxes the internal degrees of freedom of the exciton from one
of its degenerate states to the others, or changes the phase
relation of the state that is a superposition of degenerate
states, while preserving spatial coherence; it thus conserves
the number of excitons, as in so-called pure dephasing. In
fact, pure dephasing can also affect the decay time through,
for example, the relaxation between spin-dark and spin-
bright states according to the selection rule of photon
emission.6 Recently, both experimental and theoretical
investigations9,10 have revealed that the virtual-phonon pro-
cesses for both acoustic and optical phonons result in second
dephasing and exhibit a nonmonotonous T dependence in
rapid initial decoherence ��1 ps�.11

In principle, the charge cancellation of the identical dis-
tributions of electrons and holes in a strongly confining QD
reduces the interaction of excitons with longitudinal optical
�LO� phonons,12–14 and a large level spacing reduces the
strength of exciton scattering from real acoustic phonons.
Accordingly, a long decay is expected. However, the pres-
ence of piezoelectric fields,15 fluctuations in the shape and/or
the size of QDs,16 the Jahn–Teller effect,17 and charged point
defects18 lead to polarization of the charge distributions,
which strengthens LO phonon-exciton coupling. For the
electronic polaron,19 coherent interactions of the electron-
hole pair with a polarizable field �a real optical phonon� form
an excitonic polaron and do not contribute to phase decoher-
ence, because the dressed state is an eigenvector of the inter-
acting exciton-LO-phonon system. The resonance of an ex-
citonic polaron has been demonstrated experimentally to
exist when an energy separation between the electronic states
approaches one or several LO-phonon energies.20 Such reso-
nance is hard to occur in bulk, quantum well or quantum
wire structures, according to the phase decoherence through
the process of real acoustic phonon, which is strongly sup-
pressed in QDs and QDMs by the large spacing between
levels.

The decay may result from the emission of a photon, the
coupling of the phonon thermostat that originates in the an-
harmonicity of the crystal,19 the thermal emission of carriers
from the dots at high temperature T �Ref. 6�, and virtual
phonon processes.9–11 When the second effect is neglected,
the delta-like density of states of QD prevents k-space ther-
malization, resulting in a nearly constant decay time with
respect to T in situations in which thermal emission can be
ignored and the time scale is far from that of the pure
dephasing, because the photon emission is independent of T.
Yet, this feature differs dramatically in self-assembled
InGaAs/GaAs QDs �Ref. 21� and QDMs,6 for which the de-
cay time increases with T. This feature cannot be described
as the thermal recycling of the carriers6,22 because it almost
disappears in the InGaAs/GaAs QDs with the same structure
as used in the QDMs.6 Instead, the thermal population ofa�Electronic mail: kmhung@cc.kuas.edu.tw
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optically inactive states offers a reasonable explanation of
the increase in the decay time as with lattice temperature.

This work presents a theory of the coupling of excitons
to photons and LO phonons that are associated with dark or
weak-bright excited states to explain the anomaly.6 The the-
oretical results also reveal the time-dependent Rabi oscilla-
tion �RO� for both QD and QDM systems.23 The oscillating
frequency and the oscillating amplitude of the ROs depend
strongly on the initial distributions of the excitonic popula-
tion, which depend on the manner of excitation, as presented
in Fig. 1�a�. This property provides a detectable signature to
the information that is stored in a qubit that is made from QD
or QDM, with a long lifetime over a wide range of tempera-
tures.

Section II presents a simple model of exciton coupling to
photons and LO phonons and its corresponding Hamiltonian.
Based on the Hamiltonian, Sec. III derives the dynamics of
the exciton population in QDs/QDMs. Section IV presents
and discusses the numerical results concerning the
T-dependent decay of an exciton in QD and QDM systems.
Finally, Sec. V draws conclusions.

II. MODEL AND HAMILTONIAN

A. Physical picture and model

The basic concept of the proposed theory can be under-
stood as follows. Consider a three-level system of a QD or

QDM that is embedded in a phonon bath, as displayed sche-
matically in Fig. 1�b�. The ground �bright� state �g� of the
exciton is coupled to its vacuum state �vac� via the emission/
absorption of a photon and coupled to the lowest excited
state �e� by LO-phonon emission/absorption. The excited
state can be a dark �or a weak bright� state in QDMs because
of the symmetric and antisymmetric splitting in a symmetric
structure3 �or the interdot exciton for an asymmetric one� but
a bright state in QDs, as shown in Fig. 1�c�. A study of
exciton-enhanced Raman scattering in bulk semiconductors
proposed the same hypothesis.24

The effect of the brightness of the excited state, associ-
ated with the phonon-assisted transition, on the decay time of
an exciton in QDs/QDMs is understood as follows. Imagine
an hourglass with a controlled gate at the vent to control the
rate of flow of sand �analogous to the optical-transition rate
of an exciton�. The hourglass has two positions—upstairs
�state �e�� and downstairs �state �g��. The gate is assumed to
be position-dependent—open �a bright exciton� downstairs
with a flow �optical transition� rate of �g, and open �bright
exciton� or closed �dark or weak-bright exciton� upstairs
with a rate �e that depends on the system. The hourglass can
be moved up and down between downstairs and upstairs
�analogous to the RO of an exciton�. The dynamics of the
hourglass depend on the external force �temperature� that
moves the hourglass to up and down between downstairs and

FIG. 1. �a� Schematic excitation pro-
cesses. �b� Three-level excitonic sys-
tem for QD or QDM; solid-wiggled
�dashed� lines denote photon �phonon�
absorption/emission. �c� Schematic
splitting of QD states into symmetric
��gs� and �es�, bright� states and anti-
symmetric ��ga� and �ea�, dark� states
for QDM.
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upstairs and on its transition rate �0 �which is analogous to
the total coupling strength between the exciton and the LO
phonon�. When the hourglass remains downstairs �analogous
to the absence of phonon-assisted transition at low T�, the
discharge time of the sand �the decay time of the exciton� is
determined solely by the flow rate �g.25 When the hourglass
moves up and down between upstairs and downstairs �such
that RO is present�, the discharge time will be governed by
the flow rates associated with both upstairs and downstairs
and by the dynamical distribution of the hourglass. In the
�high T� case in which the hourglass is downstairs for half of
the time and upstairs for the other half of the time, with an
equal probability of moving up and down, the average flow
rate is ��g+�e� /2. For �e=0 or �e��g �a fully dark or
weak-bright excited state�, it is �g /2 or double the discharge
�decay� time. Hence, a fully dark-excited state maximally
enhances the decay time, by a factor of 2. At moderate tem-
perature, the average rate has the form �NgNRO�0+��g

+NeNRO�0+��e, where NgNRO �NeNRO� denotes the initial num-
ber of excitons in state �g� ��e�� with RO removed.

Although this model is simple, it sufficiently describes
the mechanism of exciton decay by the interaction of exci-
tons and LO phonons. Spontaneous emission of a LO pho-
non by an excited exciton, which is absent when the exciton
is initially in its ground state, makes the T-dependent behav-
ior of the exciton very sensitive to its initial population dis-
tribution.

B. Sudden approximation

Two experimental excitation approaches, schematically
plotted in Fig. 1�a�, provide low excitation power to prevent
the effects of a charged exciton or biexciton that are fre-
quently used in photoluminescence �PL� experiments. The
first is �i� indirect excitation—in which excitons are initially
created on the substrate or wetting layer and then relaxed
into the states of QDs or QDMs. In such an excitation, a
nonzero distribution of the exciton population in both the
states �g� and �e� is possible. The second is �ii� direct
excitation—in which the distribution of the excitonic popu-
lation is initially determined from the frequency of the exci-
tation light source. The rise time of the number of excitons
depends on the mechanisms of carrier relaxation, optical
transition, and excitation power, as well as on the duration of
the excitation pulse.

A discussion of the rise time which is, in most cases,
much shorter than the decay time, is beyond the scope of this
work. The system is assumed promptly to respond to an ul-
trashort pulse excitation, in what is called the “sudden ap-
proximation” to avoid the complicated processes of exciton
generation and rapid initial decay. In this approximation, the
exciton abruptly appears in the system at time 0+, before
which time no transitions that would be caused by exciton-
phonon and exciton-photon interactions occurs.26 Although
the sudden approximation does not apply to a real system, it
is a good approximation when the decay time is much longer
than the rise time, such as for exciton decay in InAs/GaAs
QDs/QDMs.6 It is also useful in simplifying theoretical deri-
vation.

C. Hamiltonian

In the boson approximation, the interacting Hamiltonian
of exciton coupling to photons and LO phonons �Fröhlich
type� in a three-level system can be expressed as

HI = �
p

��pgâp
+�̂g + c.c.� + �

p

��peâp
+�̂e + c.c.�

+ �
q

��qd̂q
+�̂g

+�̂e + c.c.� , �1�

where âp
+ �âp�, d̂q

+ �d̂q�, and �̂i
+ ��̂i� are the creation �annihi-

lation� operators of the photon, the LO phonon, and the ex-
citon, respectively; �q ��pi� is the strength of coupling of the
exciton to the LO phonons �photons�. A rotationless approxi-
mation to the photon field is made, because the transition
between spin-bright and spin-dark is not a major concern in
this work. Notably, the exciton operators that are utilized in
the pairing theory of superconductors27 satisfy the algebra

��̂i,�̂ j
+� = �i,j�1 − n̂ei − n̂hi� , �2�

because of the Pauli principle, where n̂e�h�i is the number
operator of electron �hole� in the state i. Although Eq. �2� is
not in the form that is required by Bose–Einstein statistics,
the factor n̂ei+ n̂hi does not affect the physics of the dynamics
of the exciton when all orders of the resonant LO phonon are
considered �with the phonon’s momentum in the exciton
loop conserved as displayed in Fig. 1�b�, and detailed in Sec.
III E� and in the second-order approximation to the photon
correction. The definition of the exciton operator �̂i, a prod-
uct of the annihilation operators of the electron �ĉi� and the

hole �ĥi� in the state i, gives the identities that are useful in
the derivations of the equations of motion �EOM� of the
exciton

�̂i�̂i = �̂i
+�̂i

+ = �̂i
+n̂ei = �̂i

+n̂hi = n̂ei�̂i = n̂hi�̂i = 0,

��̂i, n̂ei� = ��̂i, n̂hi� = �̂i, �3�

��̂i
+, n̂ei� = ��̂i

+, n̂hi� = − �̂i
+.

D. Coupling strengths of photons

In the dipole approximation,28 the coupling strength of
the exciton to the photon has the form

�pi = i
eEi

�
	 2��

�r�pV
� · 
	i�r��r�	i�r�� , �4�

where Ei and 	i�r� are the exciton energies of the state i and
its associated wave function �in relative coordinate�, respec-
tively; � is the polarization vector of the photon field; �p is
the photon frequency of mode p; e is the bare electron
charge, and �r is the relative dielectric constant of the mate-
rial of the dot. The coupling strength, Eq. �4�, gives the emis-
sion rate28

023111-3 K.-M. Hung J. Appl. Phys. 102, 023111 �2007�

Downloaded 07 Oct 2009 to 129.8.242.67. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp



2�i =
4

3

e2�i
3

�r�c3 �
	i�r�	i��2, �5�

where �i=Ei /�, c is the speed of light, and �i is as defined in
Sec. III D. In a disk-like parabolic QD with identical con-
finement strengths �l and �t for both electrons and holes in
the longitudinal and transverse directions, respectively, and
based on the assumption that the dot is much smaller than the
Bohr radius of the exciton, i.e., �l ,�t�VCoul with the
Coulomb potential VCoul, the exciton’s dipole moment �DM�
may be written as �di��e � 
	i�r��r�	i�r�� � =elc, where lc

=	� /�t

* is the effective cyclotron radius of the exciton and


* is its reduced mass.
The optical properties of the ground and first-excited

states of a QDM can be demonstrated as follows. Consider a
coupled-QD system with bare electron �hole� energies Ee1�h1�
and Ee2�h2� associated with dots 1 and 2, respectively, and
with a tunnel strength te�h� between the dots. The tunneling t
and the Coulomb interaction mix the single-QD states of
both electron ��i�e, i denotes the dot 1 or 2� and hole ��i�h�. In
the regime in which confinement and tunnel splitting are
predominant over the Coulomb effect, a narrow barrier, the
energies of the ground, the excited state of the electron
�hole�, and their associated wave functions, can be approxi-
mated as

Ee�h�,g = 1/2��Ee�h�1 + Ee�h�2� � 	�Ee�h�
2 + 4te�h�

2 � , �6�

�g�e�h� =
1

	1 + e�h�
2

�e�h��1�e�h� + �2�e�h�� , �7�

and

Ee�h�,ex = 1/2��Ee�h�1 + Ee�h�2� ± 	�Ee�h�
2 + 4te�h�

2 � , �8�

�ex�e�h� =
1

	1 + �e�h�
2

��e�h��1�e�h� + �2�e�h�� , �9�

respectively, where Ee�h�1=��le�h� /2+��te�h�, e�h�

= ��Ee�h�±	�Ee�h�
2 +4te�h�

2 � /2te�h�, �e�h�= ��Ee�h�

�	�Ee�h�
2 +4te�h�

2 � /2te�h�, �Ee�h�=Ee�h�2−Ee�h�1, and �le�h�

and �te�h� are the confinement strengths of the electron �hole�
in the growth and transverse directions. The QDM states of
the exciton may have the forms of �S1�= �g�e�g�h, �S2�
= �g�e�ex�h, �S3�= �ex�e�g�h, and �S4�= �ex�e�ex�h. In the
double-oscillator approximation and Ee�h�1 ,Ee�h�2��Ee�h�,
where �Ee�h� is determined mainly by the fluctuation of the
dot’s height, the tunneling strength of the electron �hole� can
be estimated by te�h�=exp�−�e�h�

2 ���le�h��e�h� /	� with the di-
mensionless distance �e�h�=a / le�h� between the oscillator

centers at ±a, le�h�=	� /me�hl�
* �le�h�, and me�hl�

* as the effective
mass of an electron �of a hole in the growth direction�.28

The DMs of these states, including the effect of indirect
exciton, can be written as

�dS1� = e
��1 + eh�lc + 	lc

2 + 4a2�e + h�C exp�− 2a2/�le
2 + lh

2���
	1 + e

2	1 + h
2

, �10�

�dS2� = e
��1 + e�h�lc + 	lc

2 + 4a2�e + �h�C exp�− 2a2/�le
2 + lh

2���
	1 + e

2	1 + �h
2

, �11�

�dS3� = e
��1 + �eh�lc + 	lc

2 + 4a2��e + h�C exp�− 2a2/�le
2 + lh

2���
	1 + �e

2	1 + h
2

, �12�

�dS4� = e
��1 + �e�h�lc + 	lc

2 + 4a2��e + �h�C exp�− 2a2/�le
2 + lh

2���
	1 + �e

2	1 + �h
2

, �13�

where the effective confined strength �t of the exciton can be
estimated from �t=	�me

*�te
2 +mht

* �th
2 � / �me

*+mht
* �, C

=	2lelh / �le
2+ lh

2�, and mht
* is the effective mass of a hole in the

transverse direction. The first term in Eqs. �10�–�13� results
from the effect of the intradot �direct� exciton while the sec-
ond term is associated with the interdot �indirect� exciton.
The confinement strengths of an electron �hole� in growth
and transverse directions can be approximated by �le�h�

=	8Vco�bo� /me�hl�
* h2 and �te�h�=	8Vco�bo� /me�ht�

* R2, respec-
tively, where Vco�bo� is the conduction �valence� band offset,
h is the height of the dot, and R is the radius of the dot.

For me
*=0.081m0, mhl

* =0.34m0, mht
* =0.153m0, Vco

=0.68 eV, Vbo=0.1 eV, Eg�dot�=0.73 eV, h=3.5 nm, R

=17 nm, and �Eh=−�Ee /5, Figs. 2 and 3 plot the calculated
energy levels of the exciton and their DMs in terms of �Ee

and 2a �the distance between the dots�, respectively. For a
symmetric structure, i=1 and �i=−1, the DMs of the states
�S2� and �S3� become zero, representing a dark-exciton state,
as presented in Fig. 2�a�. �Ee increases with the asymmetry
and the distribution of the ground state of the electrons and
holes tends toward lower energy, while that of the excited
state tends toward higher energy. These inhomogeneous dis-
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tributions of the electrons and holes increase the DMs of �S2�
and �S3�. The coupling between the dots declines exponen-
tially with the interdot distance at long distances, as plotted
in Fig. 3�c�, and the energy differences between �S1� and �S2�
and between �S3� and �S4� reasonably reduce to �Eh, as plot-
ted in Fig. 3�b�. In this situation, the exciton states �S1� and
�S4� approach the state of an isolated QD and their DMs
reduce to the DMs of the QD; states �S2� and �S3� become a
pure indirect exciton and their DMs approach zero, as plotted
in Fig. 3�a�, because the interdot wave function overlap of
the electron and hole approaches zero. At short distances, the
tunnel splitting, which exceeds the energy difference caused
by the asymmetry of the dots, Fig. 3�c�, dominates the DMs
of the states �S2� and �S3�. Then, the property of the system
tends toward that of the symmetric system, and the DMs of
the states �S2� and �S3� shrink, as plotted in Fig. 3�a�. An
increase in the tunneling strength increases the gaps between
these four states, as presented in Fig. 3�b�. Figure 4 plots the
transition rates of these four states with respect to the inter-
dot distance for �Ee=15 meV and �Eh=3 meV. The figure
clearly demonstrates that the transition rates of both states
�S2� and �S3� are one order smaller than those of states �S1�

and �S4� over a wide range of distances. Therefore, the life-
time of these states is much longer than that of states of �S1�
and �S4�. Notably, the transition rate of state �S1� is nearly
double that of the single QD ��0.61 
eV�, which is the
value �1.16 
eV at an interdot distance of �2.5 nm be-
cause of the contribution of the indirect exciton. The transi-
tion rate of QDM �QD� yields an exciton decay time of
�0.57 ns ��1.1 ns�. The calculated results reveal that the
model used herein is qualitatively correct.

E. Coupling strengths of LO phonons

In the estimation of LO-phonon coupling strength, LO
phonons that are considered to be confined in a cubic quan-
tum box of size � with a pressure-free boundary condition.
The coupling strength �q of mode q has the form29

�q =
4e

�q�
	���LO

�3 � 1

��

−
1

�0
sin�qxx�sin�qyy�sin�qzz� ,

�14�

where �� and �0 are the high frequency and static dielectric
constants of the material of the dot. The total coupling
strength has been estimated for GaAs QD �Ref. 29� to be

�0 = 	�
q

�q
2 =

0.35��LO

	�
. �15�

For InAs QD, the factor 0.35 is simply rescaled by ���
−1

−�0
−1�InAs/ ���

−1−�0
−1�GaAs and takes the value �0.374. For �

�8.56 nm, which corresponds to the volume of a QD of
diameter 20 nm and height 2 nm, and ��LO=36 meV, the
total strength is estimated to be �4.6 meV. This result will
be used in later discussions.

III. EQUATIONS OF MOTION

A. Approximation

The kinetics of the system can be described by a set of
master equations that are obtained by applying the EOM
approach

FIG. 2. Calculated �a� DMs and �b� exciton energies in terms of �Ee for the
states �S1� �solid�, �S2� �dash�, �S3� �dot�, and �S4� �dash-dot� at an interdot
distance of 5 nm.

FIG. 3. Calculated �a� DMs, �b� tunneling strengths, and �c� exciton energies
with respect to interdot distance in states �S1� �solid�, �S2� �dash�, �S3� �dot�,
and �S4� �dash-dot� for �Ee=15 meV.

FIG. 4. Calculated transition rates with respect to interdot distance in the
states �S1� �solid�, �S2� �dash�, �S3� �dot�, and �S4� �dash-dot� for �Ee

=15 meV.
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i�t
Ô� = 
�Ô,Ĥ�� , �16�

to the density operators of exciton, photon, and phonon �in
units of �=1�, and by taking the thermal average over the
operator and the commutator. In the derivation of these equa-
tions, the following approximations are made:

�1� The small interacting strength between excitons and
photons allows the optical transitions to be approxi-
mated to the second order, meaning to the orders of
��pg�2 and ��pe�2. In such an approximation, the terms
associated with nonconserved photon momentum, such
as 
¯âp

+âp��, and with multiple-photon processes, such
as 
¯âp

+âp�
+ �, are ignored.

�2� The terms with multiple poles, such as 1/ ��s−�a�
+ i����s−�b�+ i�� in the s plane �a dual space in the
Laplace transformation�, that are well separated, i.e.,
��a−�b��� with � being the broadening width, are ne-
glected.

�3� In the case of low-power excitation, where only one ex-
citon is present in the system, the terms with multiple-
exciton processes, such as 
¯�̂g�̂e�, 
¯�̂g

+n̂ee�, and

¯�̂g

+�̂g�̂e�, are truncated.

Under these approximations, the equation set can be
solved analytically.

B. EOMs of density matrix

To describe the time evolution of the densities with mul-
tiple varieties, Eq. �16� is first applied to the lowest-order
diagonal elements of the densities, yielding the equations

i�t
âp
+âp� = �pi
âp

+�̂i� − �pi
* 
�̂i

+âp� , �17�

i�t
�̂g
+�̂g� = − �pg
âp

+�̂g� + �pg
* 
�̂g

+âp� + �1
d̂1
+�̂g

+�̂e�

− �1
*
d̂1�̂e

+�̂g� , �18�

i�t
�̂e
+�̂e� = − �pe
âp

+�̂e� + �pe
* 
�̂e

+âp� − �1
d̂1
+�̂g

+�̂e�

+ �1
*
d̂1�̂e

+�̂g� . �19�

The repeated subscripts that do not appear in the left-hand
side of the EOMs imply a summation over the subscripts,

such as �pi
âp
+�̂i�=�p,i�pi
âp

+�̂i� and �1
d̂1
+�̂g

+�̂e�
=�q1

�q1

d̂q1

+ �̂g
+�̂e�. The time evolution of the diagonal densi-

ties by the mechanisms of particle transition generates the
off-diagonal densities in Eqs. �17�–�19�. The dynamics of the
off-diagonal densities are determined by applying Eq. �16�
again to these newly generated terms, yielding

i�t
âp
+�̂g� � �Eg − �p�
âp

+�̂g� + �pg
* 
âp

+âp� − �pg
* 
�̂g

+�̂g�

+ �1
d̂1
+âp

+�̂e� , �20�

i�t
âp
+�̂e� � �Ee − �p�
âp

+�̂e� + �pe
* 
âp

+âp� − �pe
* 
�̂e

+�̂e�

+ �1
*
d̂

1
âp

+�̂g� , �21�

i�t
d̂1
+�̂g

+�̂e� � �Ee − Eg − �LO�
d̂1
+�̂g

+�̂e� + �2
*
d̂1

+d̂2�̂g
+�̂g�

− �2
*
d̂2d̂1

+�̂e
+�̂e� − �pg
d̂1

+âp
+�̂e�

+ �pe
* 
d̂1

+�̂g
+âp� , �22�

i�t
d̂1
+âp

+�̂e� � �Ee − �p − �LO�
d̂1
+âp

+�̂e� + �pe
* 
d̂1

+âp
+âp�

− �pe
* 
d̂1

+�̂e
+�̂e� + �2

*
d̂1
+d̂2âp

+�̂g�

− �pg
* 
d̂1

+�̂g
+�̂e� � �Ee − �p − �LO�
d̂1

+âp
+�̂e�

+ �2
*
d̂1

+d̂2âp
+�̂g� − �pg

* 
d̂1
+�̂g

+�̂e� , �23�

where �p ��LO� denotes the photon �LO-phonon� energy and
Ei is the energy of the bare exciton in state i. In the deriva-
tion, the approximation described in the last section and the
identities of Eq. �3� are applied. Notably, the EOMs for the
off-diagonal densities have a nonzero pole in the first term of
these equations. The terms 
d1

+ap
+ap� and 
d1

+�g
+�g� in Eq. �23�

can be easily verified to have poles at �LO, which differs
substantially from the pole Ee−�p−�LO for 
d1

+ap
+�e�. They

can thus be ignored due to the approximation rule �2�.
At first glance, the EOMs seem likely to be endless be-

cause the new higher-order terms are generated when Eq.
�16� is repeatedly applied to the new terms. Fortunately, re-
currence relations apply to the endless EOMs under the ap-
proximations that are made herein. They are

i�t
�d̂•d̂•
+� jâp

+âp� = �pi
�d̂•d̂•
+� jâp

+�̂i� − �pi
* 
�d̂•d̂•

+� j�̂i
+âp� ,

�24�

i�t
�d̂•
+d̂•� jâp

+âp� = �pi
�d̂•
+d̂•� jâp

+�̂i� − �pi
* 
�d̂•

+d̂•� j�̂i
+âp� ,

�25�

i�t
�d̂•
+d̂•� j�̂g

+�̂g� = − �pg
�d̂•
+d̂•� jâp

+�̂g� + �pg
* 
�d̂•

+d̂•� j�̂g
+âp�

+ �2j+1
�d̂•
+d̂•� jd̂2j+1

+ �̂g
+�̂e�

− �2j+1
* 
d̂2j+1�d̂•

+d̂•� j�̂e
+�̂g� , �26�

i�t
�d̂•d̂•
+� j�̂e

+�̂e� = − �pe
�d̂•d̂•
+� jâp

+�̂e� + �pe
* 
�d̂•d̂•

+� j�̂e
+âp�

− �2j+1
d̂2j+1
+ �d̂•d̂•

+� j�̂g
+�̂e�

+ �2j+1
* 
�d̂•d̂•

+� jd̂2j+1�̂e
+�̂g� , �27�

i�t
�d̂•
+d̂•� jd̂2j+1

+ �̂g
+�̂e� = �Ee − Eg − �LO�

�
�d̂•
+d̂•� jd̂2j+1

+ �̂g
+�̂e�

− �pg
�d̂•
+d̂•� jd̂2j+1

+ âp
+�̂e�

+ �pe
* 
�d̂•

+d̂•� jd̂2j+1
+ �̂g

+âp�

+ �2j+2
* 
�d̂•

+d̂•� j+1�̂g
+�̂g�

− �2j+2
* 
�d̂•d̂•

+� j+1�̂e
+�̂e� , �28�
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i�t
�d̂•
+d̂•� jâp

+�̂g� = �Eg − �p�
�d̂•
+d̂•� jâp

+�̂g�

+ �pg
* 
�d̂•

+d̂•� jâp
+âp� − �pg

* 
�d̂•
+d̂•� j�̂g

+�̂g�

+ �2j+1
�d̂•
+d̂•� jd̂2j+1

+ âp
+�̂e� , �29�

i�t
�d̂•d̂•
+� jâp

+�̂e� = �Ee − �p�
�d̂•d̂•
+� jâp

+�̂e�

+ �pe
* 
�d̂•d̂•

+� jâp
+âp� − �pe

* 
�d̂•d̂•
+� j�̂e

+�̂e�

+ �2j+1
* 
�d̂•d̂•

+� jd̂2j+1âp
+�̂g� , �30�

i�t
�d̂•
+d̂•� jd̂2j+1

+ âp
+�̂e� = �Ee − �p − �LO�
�d̂•

+d̂•� jd̂2j+1
+ âp

+�̂e�

+ �2j+2
* 
�d̂•

+d̂•� j+1âp
+�̂g�

− �pg
* 
�d̂•

+d̂•� jd̂2j+1
+ �̂g

+�̂e� , �31�

i�t
�d̂•
+d̂•� jd̂2j+1

+ �̂g
+âp� = ��p − Eg − �LO�

�
�d̂•
+d̂•� jd̂2j+1

+ �̂g
+âp�

− �2j+2
* 
�d̂•d̂•

+� j+1�̂e
+âp�

+ �pe
�d̂•
+d̂•� jd̂2j+1

+ �̂g
+�̂e� , �32�

with �d̂•
+d̂•� j = d̂1

+d̂2¯ d̂2j−1
+ d̂2j. For j=0, Eqs. �24�–�27� be-

come Eqs. �17�–�19�. Solving these equations with a proper
initial condition yields the time evolution of the population
densities.

C. Initial conditions

The initial conditions on the densities govern the solu-
tions to Eqs. �24�–�32�. In the sudden approximation, the
Hamiltonian changes abruptly because of the sudden change
in the populations at t=0 and the wave function is therefore
expected not to change much at the initial time and the sys-
tem is expected to remain in approximate equilibrium. In this
situation, the thermal average of the off-diagonal densities
approaches zero,30 while the diagonal densities have the
form, for example,


�d̂•
+d̂•� j�̂i

+�̂i�0 = �•,•
�d̂•
+d̂•� j�0Ni�0� . �33�

The delta function with the subscript • means that the phonon
operators have to be paired in all possible combinations,
such as for the term with four phonon operators30

�•,•
d̂1
+d̂2d̂3

+d̂4�0 = ��1,2�3,4 + �1,4�2,3�
d̂1
+d̂2d̂3

+d̂4�0

= �1,2�3,4NB
2 + �1,4�2,3NB�1 + NB� �34�

with Planck’s distribution NB and the initial number of pho-
tons �excitons� Np�0��
âp

+âp�0 �Ni�0��
�̂i
+�̂i�0�. The first

term in Eq. �34� results from the direct LO-phonon process,
while the second results from the exchange LO-phonon pro-
cess.

D. EOMs in S plane

Solving the differential Eqs. �24�–�32� is facilitating by
transforming them into an algebraic problem by

applying the Laplace transformation, defined as N̄�s�
=�0

�N�t�exp�−st�dt, with the initial conditions that were
stated in the preceding section. Laplace transforms of the
equations yield

is
�d̂•d̂•
+� jap

+ap� = i�•,•
�d̂•d̂•
+� jâp

+âp�0 + �pe
�d̂•d̂•
+� jâp

+�̂e�

− �pe
* 
�d̂•d̂•

+� j�̂e
+âp� , �24��

is
�d̂•
+d̂•� jâp

+âp� = i�•,•
�d̂•
+d̂•� jâp

+âp�0 + �pg
�d̂•
+d̂•� jâp

+�̂g�

− �pg
* 
�d̂•

+d̂•� j�̂g
+âp� , �25��

is
�d̂•
+d̂•� j�̂g

+�̂g� = i�•,•
�d̂•
+d̂•� j�̂g

+�̂g�0 − �pg
�d̂•
+d̂•� jâp

+�̂g�

+ �pg
* 
�d̂•

+d̂•� j�̂g
+âp�

+ �2j+1
�d̂•
+d̂•� jd̂2j+1

+ �̂g
+�̂e�

− �2j+1
* 
d̂2j+1�d̂•

+d̂•� j�̂e
+�̂g� , �26��

is
�d̂•d̂•
+� j�̂e

+�̂e� = i�•,•
�d̂•d̂•
+� j�̂e

+�̂e�0 − �pe
�d̂•d̂•
+� jâp

+�̂e�

+ �pe
* 
�d̂•d̂•

+� j�̂e
+âp�

− �2j+1
d̂2j+1
+ �d̂•d̂•

+� j�̂g
+�̂e�

+ �2j+1
* 
�d̂•d̂•

+� jd̂2j+1�̂e
+�̂g� , �27��

is
�d̂•
+d̂•� jd̂2j+1

+ �̂g
+�̂e� = �Ee − Eg − �LO�
�d̂•

+d̂•� jd̂2j+1
+ �̂g

+�̂e�

− �pg
�d̂•
+d̂•� jd̂2j+1

+ âp
+�̂e�

+ �pe
* 
�d̂•

+d̂•� jd̂2j+1
+ �̂g

+âp�

+ �2j+2
* 
�d̂•

+d̂•� j+1�̂g
+�̂g�

− �2j+2
* 
�d̂•d̂•

+� j+1�̂e
+�̂e� , �28��

is
�d̂•
+d̂•� jâp

+�̂g� = �Eg − �p�
�d̂•
+d̂•� jâp

+�̂g�

+ �pg
* 
�d̂•

+d̂•� jâp
+âp� − �pg

* 
�d̂•
+d̂•� j�̂g

+�̂g�

+ �2j+1
�d̂•
+d̂•� jd̂2j+1

+ âp
+�̂e� , �29��

is
�d̂•d̂•
+� jâp

+�̂e� = �Ee − �p�
�d̂•d̂•
+� jâp

+�̂e�

+ �pe
* 
�d̂•d̂•

+� jâp
+âp� − �pe

* 
�d̂•d̂•
+� j�̂e

+�̂e�

+ �2j+1
* 
�d̂•d̂•

+� jd̂2j+1âp
+�̂g� , �30��

is
�d̂•
+d̂•� jd̂2j+1

+ âp
+�̂e� = �Ee − �p − �LO�
�d̂•

+d̂•� jd̂2j+1
+ âp

+�̂e�

+ �2j+2
* 
�d̂•

+d̂•� j+1âp
+�̂g�

− �pg
* 
�d̂•

+d̂•� jd̂2j+1
+ �̂g

+�̂e� , �31��
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is
�d̂•
+d̂•� jd̂2j+1

+ �̂g
+âp� = ��p − Eg − �LO�
�d̂•

+d̂•� jd̂2j+1
+ �̂g

+âp� − �2j+2
* 
�d̂•d̂•

+� j+1�̂e
+âp� + �pe
�d̂•

+d̂•� jd̂2j+1
+ �̂g

+�̂e� . �32��

Algebraically solving these equations yields the density matrix in the s domain.
In indirect excitation, the initial number of photons with the energies around the ground and excited states of the exciton

is zero, i.e., Np�0�=0. This condition yields the solutions to Eqs. �26�� and �27�� with the recurrence relations between the
orders j and j+1,


�d̂•
+d̂•� j�̂g

+�̂g� =
�•,•
�d̂•

+d̂•� j�0Ng�0�
�s + 2�g�

−
2�2j+1

* �2j+2�s + �g + �e��
�d̂•
+d̂•� j+1�̂g

+�̂g� − 
�d̂•d̂•
+� j+1�̂e

+�̂e��
�s + 2�g���s + �g + �e�2 + �Ee − Eg − �LO − ENg + ENe�2�

, �35�


�d̂•d̂•
+� j�̂e

+�̂e� =
�•,•
�d̂•d̂•

+� j�0Ne�0�
�s + 2�e�

+
2�2j+1

* �2j+2�s + �g + �e��
�d̂•
+d̂•� j+1�̂g

+�̂g� − 
�d̂•d̂•
+� j+1�̂e

+�̂e��
�s + 2�e���s + �g + �e�2 + �Ee − Eg − �LO − ENg + ENe�2�

, �36�

where the optical-transition rate is defined as �g�e�
�Re��p�pg�e�

2 / �s− i�Eg�e�−�p��� and the renormalization en-
ergy that is produced by the excitonic polaron coupling to the
photons is given by ENg�e�=Im��p�pg�e�

2 / �s− i�Ee�g�−�p

−�LO���.

E. Analytical solutions

Equations �35� and �36� can be solved step by step, start-
ing from the lowest-order equations, j=0. The equations for
each order are terminated at the first �initial� term that is
governed by the initial conditions for that order, and the
other terms will be related to its higher-order ones. Many
combinations for the initial term of j�1 exist as described in
Sec. III C. The choice of combinations depends on the initial
term in the last order. For example, one combination �1,2

��1,2
d̂1
+d̂2�0� of the initial term exists only to the first order;

two combinations �1,2�3,4 and �1,4�2,3 exist to the second
order—and so on to the higher orders. If the contribution
from the initial term of j=1 is considered, then the exchange
term ��1,4�2,3� of j=2 disappears. By analogy, only one com-
bination exists, and is

�•,•
�d̂•
+d̂•� j�0 = �1,2�3,4 ¯ �2j−1,2j
d̂1

+d̂2d̂3
+d̂4 ¯ d̂2j−1

+ d̂2j�0

= �1,2�3,4 ¯ �2j−1,2jNB
j ,

in counting the contribution from every order that is smaller
than j. Since the exciton interacts with the LO phonon such
that the exciton emits and then absorbs the same phonon
coherently, this phonon is called a resonant phonon.

Iterative substitution of Eqs. �35� and �36� for the order
j+1 into the equations for order j yields

N̄g�s� = 
�̂g
+�̂g� = PgNg�0� − 2Pg

2Q�1,2�1
*�2�
d̂1

+d̂2�0Ng�0�

− 
d̂1d̂2
+�0Ne�0��

+ 4Pg
3Q2�1,2�3,4�1

*�2�3
*�4�
d̂1

+d̂2d̂3
+d̂4�0Ng�0�

− 
d̂1d̂2
+d̂3d̂4

+�0Ne�0�� − + ¯ �37�

and

N̄e�s� = 
�̂e
+�̂e� = PeNe�0� + 2Pe

2Q�1,2�1
*�2�
d̂1

+d̂2�0Ng�0�

− 
d̂1d̂2
+�0Ne�0��

+ 4Pe
3Q2�1,2�3,4�1

*�2�3
*�4�
d̂1

+d̂2d̂3
+d̂4�0Ng�0�

− 
d̂1d̂2
+d̂3d̂4

+�0Ne�0�� − + ¯ , �38�

where Pi�1/ �s+2�i� and Q��s+�g+�e� / ��s+�g+�e�2

+�2� with the detuning energy ��Ee−Eg−�LO−ENg+ENe.
Applying the aforementioned initial conditions and the

identity 1 / �1+x�=1−x+x2− +¯ to Eqs. �37� and �38� yields

N̄g�s� and N̄e�s� in Dyson’s form

N̄g�s� = Ng�0�
Pg�1 + �0

2PeQNB�
1 + �Pg + Pe��0

2QNB

+ Ne�0�
PgPe�0

2Q�1 + NB�
1 + �Pg + P�e�0

2Q�1 + NB�
�39�

and

N̄e�s� = Ne�0�
Pe�1 + �0

2PgQ�1 + NB��
1 + �Pg + Pe��0

2Q�1 + NB�

+ Ng�0�
PgPe�0

2QNB

1 + �Pg + Pe��0
2QNB

, �40�

with the total strength �0= ��q��q�2�1/2 of the interaction of
the exciton with all LO-phonon modes. The term s+�e+�g

in the denominator of Q usually is negligible, and keeping
this term results in RO, because its value �of the order of
micro-electron-volts� is typically much smaller than � �of
the order of milli-electron-volts� for InGaAs/GaAs QDs and
QDMs. Such an approximation, which is equivalent to re-
moving the RO by filtering out the high-frequency signal in
the responses of time-resolved PL �TRPL�, yields �0

2Q
�2�s+�e+�g��2 with the dimensionless strength ���0 /�.
Notably, the square of � times the phonon distribution NB is
the number of LO phonons that clothe an exciton.31

For T=0, Eqs. �39� and �40� reduce to
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N̄g�s� = Ng�0�Pg + Ne�0�
PgPe�0

2Q

1 + �Pg + Pe��0
2Q

�41�

and

N̄e�s� = Ne�0�
Pe�1 + �0

2PgQ�
1 + �Pg + Pe��0

2Q
, �42�

where the spontaneous emission gives a nonzero dependence

on Ne�0� for both N̄g�s� and N̄e�s�. For Ng�0�=1 and Ne�0�
=0, the decay rate is 2�g and the RO disappears. For
Ng�0�=0 and Ne�0�=1, the decay rate approximates �g+�e

as �→�, which can be easily checked by removing RO, and
the RO occurs for �0�0. Since the optical transition rates
are much smaller than the phonon transition rate, the angular
frequency of RO for T�0 has the simple form that is ob-
tained by setting �g=�e=0,

�RO = 	�2 + 4NB�0
2 �43�

for Ng�0�=1 and Ne�0�=0 and

�RO = 	�2 + 4�1 + NB��0
2 �44�

for Ng�0�=0 and Ne�0�=1. The oscillating frequency of RO
in the latter case is less sensitive to T than it is in the former
case.

IV. NUMERICAL RESULTS AND DISCUSSIONS

The TRPL intensity of the line feature of state �i� can be
related to the excitonic density Ni�t� by S�t�� �Ni�t��2. Inverse
Laplace transforms of Eqs. �39� and �40� yield the time evo-
lutions of Ng�t� and Ne�t�, respectively. The extreme dissimi-
larity between the decay time and the oscillating period of
RO makes displaying both the time decay and the period in
one figure difficult. An unusual transition rate �g=0.1 meV
of the state �g� is used in the calculation of Fig. 5 to demon-
strate these features without loss of generality. In the figure,
the ROs appear coherently with a phase separation � be-

tween Ng and Ne, because the exciton that is coherently me-
diated by the LO phonons moves up and down between these
states. The periods of oscillations for both Ng�0�=0 and
Ne�0�=1 �Fig. 5�a�� and Ng�0�=1 and Ne�0�=0 �Fig. 5�b��
are consistent with the results calculated from Eqs. �43� and
�44�. Their values are estimated to be �0.16 and �0.83 ps,
respectively. The increase in temperature increases the tran-
sition probability and thus increases the amplitude and fre-
quency of oscillation. The figure also reveals the numerical
results for Ne�t� �dot� and Ng�t� �dash-dot� when the RO is
removed. These results well describe the time decay of the
excitonic densities and are used to extract the decay time by
simple-exponential fitting.

The amplitude and frequency of the RO depend remark-
ably on the initial distribution of the excitonic population.
For Ng�0�=1 and Ne�0�=0, the resonant-round trip of the
exciton between �g� and �e� is stimulated and continued by
repeatedly absorbing and emitting a LO phonon with the
momentum q of the phonon. In this case, the amplitude and
frequency are very sensitive to T and � �see Fig. 6�; both
increase with T, because an increase in the number of
phonons around the exciton increases the probability of
phonon-assisted transition. In the calculation of Fig. 6, the
parameters of �0=4.6 meV and �g�0.355 
eV �for a wide
range �10 meV of detuning energy�, estimated in Sec. II
with an interdot distance �4.2 nm, are used. At high T, an
identical occupation probability in both states causes the am-
plitude to approach its maximum 0.5 because of particle con-
servation Ng�0�+Ne�0�=1 for only one exciton in the system.
For Ng�0�=0 and Ne�0�=1, the exciton that is initially in the
excited state moves down and up between the states by spon-
taneously emitting a LO phonon and, then, absorbing this
phonon. The spontaneous emission of the LO phonon causes
the resonant-round trips even at T=0. In this case, the am-
plitude and frequency are insensitive to T and �.

Simple-exponential fitting is used to extract the decay
time from the curves calculated from Eqs. �39� and �40� with
RO removed, to determine the decay times for these systems.

FIG. 5. Time evolution of the excitonic densities in the ground state �dash�
and the excited state �solid� with the parameters of �LO=36 meV, �g

=0.1 meV, �e=0.5�g, �0=3 meV, �=1 meV, and the initial conditions of
�a� Ng�0�=0 and Ne�0�=1 and �b� Ng�0�=1 and Ne�0�=0 at T=95 K. The
calculated angular frequencies for the conditions of �a� and �b� are, respec-
tively, �6.12 meV/� and �1.2 meV/�. The dot �dash-dot� line displays
the density of Ne�t� �Ng�t�� with RO removed for �=3.

FIG. 6. �Color online� Oscillating frequency �gray� and oscillating ampli-
tude �black� of the RO with the parameters of �g=0.355 
eV, �e=0, �0

=4.6 meV for �=0.1 meV �solid�, 2.1 meV �dash�, 4.1 meV �dot�, and 6.1
meV �dash-dot� with the initial conditions of Ng�0�=1 and Ne�0�=0 and for
�=0.1 meV �short dash� and 6.1 meV �short dash-dot� with the conditions
of Ng�0�=0 and Ne�0�=1.
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In the limit �=0 and/or T=0 with the exciton initially in the
state �g�, zero phonon decouples these states, and the decay
rate of the exciton is solely determined by the spontaneous-
emission �SE� rate �g of the state �g�. At finite T and ��0,
the exciton distribution dominates the decay rate, which
takes the form NgNRO�0+��g+NeNRO�0+��e. In the limit �
→� and/or T→�, the exciton has a probability �0.5 of
staying either state �g� and �e� with the decay rate ��g

+�e� /2. The decay rate is one half of the SE rate �or double
its corresponding decay time� for a fully dark state �e=0 and
slightly changes for �e=0.9�g. In an excited state that is
brighter than the ground state, such as 2�g, the decay rate
increases to three halves of the SE rate. Figure 7 presents all
of these features. Since the brightness of the excited state of
a QDM system vanishes for a symmetric structure or is weak
for an asymmetric structure, the maximal increase in its de-
cay time at high T approaches 2. This result is comparable
with the experimental value, which slightly exceeds 2 �solid
square in Fig. 8�. This result is different from that for QD
systems, in which the brightness of the excited state is simi-
lar to that of the ground state. Therefore, a change in the
decay time �solid triangle� with T is not conspicuous. The
experimental data also show a rapid decease in decay time as
T�100 K for both QD and QDM, because of thermal emis-
sion of the carriers from the QD/QDM, which is neglected in
this investigation.

V. CONCLUSION

The theory of exciton coupling to photons and LO
phonons in QDs/QDMs was derived. Resonant-round trips of
excitons between the ground and excited states, mediated by
LO phonons, alter the decay time and produce a RO. The
decay time depends strongly on the brightness of the excited
state: a dark state enhances the decay time �as for QDMs�,
and a bright state reduces the decay time �as for QDs�. It also
depends strongly on the detuning energy between the states.
A three-level system that is mediated by a one-phonon pro-
cess maximally enhances the decay time by a factor of 2. In
the strong coupling regime, multiple levels with multiple-

phonon processes must be considered, since the manifold
loops of polaron resonance that are mediated by multiple
phonons can also affect the decay time. For example, two
forms of polaron resonance involve a two-phonon process, as
schematically plotted in Fig. 9. In the first �Fig. 9�a��, the
exciton takes more time than in the three-level system to
make a resonant-round trip between the states �g�, �e1� and
�e2�. At high T and/or in the strong coupling region, the
identical probabilities ��1/3� that the exciton is in these
states reduces the decay rate to one-third that at zero-T. The
second �Fig. 9�b�� form of resonance reduces the decay rate
to not less than that in the three-level system, because the
exciton has a probability of �1/2 of remaining in state �g�
and a probability of �1/4 of being in each of the states �e1�
and �e2�. In conclusion, the increase in the excitonic decay
time in QDs/QDMs is caused by the overall effect of mul-
tiple weak-bright excited states or that of a major state with
weak-optical transition and a small detuning energy. More-

FIG. 7. Decay time as a function of T and �e for �=1.12 �dash�, �=2.19
�dot�, and �=46 �solid� with the initial conditions of Ng�0�=1 and Ne�0�
=0.

FIG. 8. Changes in decay time relative to that of T=0 as a function of T and
�e for �=5.11 �dash-dot-dot�, �=6.57 �dash-dot�, �=9.2 �dot�, �=15.3
�dash�, and �=46 �solid�, with the initial conditions of Ng�0�=1 and
Ne�0�=0. The solid square �triangle� denotes the experimental results of
InGaAs QDMs �Ref. 6� �InGaAs QDs� �Ref. 6�.

FIG. 9. Schematic four-level system.
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over, the population-dependent amplitude and frequency of
RO provide a detectable signature to the information that is
stored in QD/QDM systems for a wide range of tempera-
tures. This signature is useful in quantum information pro-
cessing.
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