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Theory of Semiconductor Quantum-Dot
Laser Dynamics

Weng W. Chow and Stephan W. Koch

Abstract—A theory for describing nonequilibrium dynamics in
a semiconductor quantum-dot laser is presented. This theory is ap-
plied to a microcavity laser with a gain region consisting of an inho-
mogeneous distribution of quantum dots, a quantum-well wetting
layer, and injection pumped bulk regions. Numerical results are
presented and the effects of spectral hole burning, plasma heating,
and many-body effects are analyzed.

Index Terms—Hot carrier, laser theory, nonequilibrium carrier
dynamics, quantum-dot lasers, semiconductor lasers.

I. INTRODUCTION

ONE OF THE interesting aspects of semiconductor
quantum-dot lasers is their potential for fast dynamical

response [1], [2]. Three factors generally determine dynamical
properties in a semiconductor laser: 1) electrical parasitics;
2) carrier transport; and 3) carrier relaxation and radiative
recombination [3]. Whereas, the modulation bandwidth in bulk
and quantum-well lasers mainly depends on factors 1) and 2)
[4], [5], the third factor 3) plays a greater role for quantum-dot
lasers [6]–[8]. This is because carrier relaxation is generally
slowed down for discrete energy levels, to the extent that
nonequilibrium effects influence dynamical behavior [9], [10].

In the literature, the dynamical behavior of semiconductor
lasers is investigated using a wide range of approaches. In terms
of analytical sophistication, on the one end of the spectrum are
simple models based on rate equations [5], [10]–[12]. Here, the
simplification is a consequence of the assumption that intraband
relaxation is sufficiently rapid to always ensure quasi-equilib-
rium conditions. As a result, such rate equation models cannot
systematically account for essential details of the relaxation pro-
cesses and nonequilibrium situations, in spite of modifications
[8], [13], [14].

On the opposite end of the spectrum of approaches are
quantum mechanical theories that treat intraband collision
processes microscopically at the level of quantum kinetic
equations. Such approaches have been carried out for bulk and
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quantum-well structures [15]–[17], and recently, extended to
quantum-dot systems [18], [19]. Their implementation requires
state-of-the-art numerical techniques and often supercomputing
resources. In practice, the system dynamics can be tracked only
for durations that are not much longer than typical intraband
relaxation times, i.e., for less than a few picoseconds. Applying
these approaches to study an injection laser [20], [21], where it
is often necessary to track slow (gigahertz) and fast (10 GHz)
components of the system’s overall dynamical response, re-
quires substantial amounts of CPU time and computer memory.
As a consequence, comprehensive studies of parameter depen-
dencies can become impractical.

This paper presents a theory that bridges the gap between
the two types of approaches. The result is a microscopically
consistent description of a quantum-dot laser, that allows one to
perform parametric studies of nonequilibrium effects on time
scales ranging from subpicosecond to nanoseconds. This is
accomplished using a semiclassical approach, where the laser
field and active medium are described by the Maxwell–semi-
conductor–Bloch equations [22]. Many-body Coulomb effects,
which we will show in this paper to be crucial for under-
standing microcavity quantum-dot laser dynamics [23], [24],
are described at the level of the screened Hartree–Fock approxi-
mation. Carrier–carrier [25] and carrier–phonon [26] collisions
are treated with the effective relaxation rate approximation,
with the effective rates estimated from the quantum mechanical
approach [18], [19], [27], [28].

While this separate treatment of screened Hartree–Fock and
collisional effects is less rigorous than the full quantum kinetic
theory, one gains from significantly reduced numerical demands
in terms of the complexity and number of coupled differential
equations. As a consequence, one can afford to treat other prop-
erties of the quantum-dot laser configuration in greater detail.
For instance, in the description of current injection and carrier
capture, the effects of the quantum-well and bulk states can be
included and the influences of spectral-hole burning and state-
filling on the inhomogeneously broadened quantum-dot distri-
bution can be taken into account. Furthermore, the quantum-dot
active medium treatment can be combined with the analysis of
quite different optical arrangements. For example, the incorpo-
ration of the active medium model into a pump-probe configura-
tion allows the modeling of time-resolved experiments yielding
a consistent connection between the values of system parame-
ters extracted from spectroscopy [7], [29], [30] and the dynam-
ical performance observed in laser experiments [6], [31].

Details of our nonequilibrium quantum-dot laser theory are
presented and discussed in Section II. Section III evaluates the
capability of the theory to adequately reproduce carrier capture
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Fig. 1. Quantum-dot gain structure with quantum-dot (0-D), quantum well
(2-D) and barrier (3-D) states for electrons and holes.

and relaxation processes, as described by a quantum kinetic ap-
proach. Here, we analyze the scenario where a high density of
carriers is rapidly injected into the bulk region of a device, and
examine the time evolution of optical and active medium prop-
erties. In Section IV, the theory is applied to a gain-switched
laser, which is often studied using a rate-equation model. We
examine the dependence of the laser dynamics on carrier cap-
ture and relaxation rates, showing explicitly the nonequilibrium
deviations from rate equation results. Last, in Section V we cal-
culate the modulation response of a quantum-dot laser in a wide
range spanning 1–40 GHz.

II. THEORY

The active quantum-dot-laser structure considered in our
model is depicted in Fig. 1. It consists of bulk and quantum
wells with embedded quantum dots. The quantum dots consti-
tute the gain medium, which is inhomogeneously broadened
due to the inhomogeneous size distribution of the dots in any
realistic system. Under forward bias condition, carriers are
injected into the bulk [three-dimensional (3-D)] electron and
hole states. Some of the injected carriers are then transferred
to quantum-well [two-dimensional (2-D)] states by intraband
carrier–carrier and carrier–phonon collisions. The rest either
remains in the bulk states, or is lost via electron–hole recom-
bination and/or through drift and diffusion to the electrical
contacts. Similarly, there is capture and relaxation between the
quantum-well and the quantum-dot [zero-dimensional (0-D)]
states. Since the quantum dots are the laser active medium, the
carrier populations of the dot states also change by stimulated
and spontaneous emission, as well as by nonradiative carrier
losses.

In this paper, we mainly focus on the carrier capture and re-
laxation dynamics. So as not to be distracted by multimode be-
havior, such as mode hopping and competition, we assume a
single-mode microcavity laser [23], [24]. Furthermore, we ig-
nore all transverse field effects. In this limit, the laser field equa-
tion may be written as

(1)

where is the time, is the position along the laser axis, is
the laser frequency, is the passive resonator eigenfunction,
and is a slowly varying complex electric field amplitude.
The coupled laser field and gain medium may be described by

the Maxwell–semiconductor–Bloch equations, which consist of
the reduced wave equation for the laser field, and the semicon-
ductor Bloch equations for the active region [22]. Starting with
Maxwell’s equations and using the slowly varying amplitude
and phase approximation, the reduced wave equation (in MKS
units) is

(2)

where is the cavity linewidth, is the background permit-
tivity

(3)

is the optical mode confinement factor, is the number of
quantum wells (with embedded dots) in the gain structure, and

are the width and height of a quantum-well layer, and and
are the laser beam width and height, respectively. In (2),

is the complex slowly varying polarization amplitude, defined
for one of the quantum-well layers embedding the quantum dots.
The connection between the classical optical properties and the
quantum mechanical medium aspects of the problem is deter-
mined by the optical polarization

(4)

where is the quantum-dot density in each quantum-well
layer and is the microscopic polarization amplitude.
Here, we only include the polarization contributions from
the dots since we assume that the quantum-well and bulk
transitions are appreciably detuned from the laser field. As
mentioned above, the quantum-dot distribution is inhomoge-
neously broadened because of dimensional or compositional
fluctuations. We therefore denote the electron and hole states
of the dots as and , where the subscript labels that
subgroup of quantum dots within the ensemble which has the
same electron (hole) energies and the same dipole
matrix element .

The microscopic polarization amplitude is determined
by solving the quantum mechanical semiconductor Bloch equa-
tions. For an active laser structure, these equations are derived
using a Hamiltonian for the combined system of quantum dots
and quantum well [32]

(5)

where for the moment, we ignore the bulk layers. Equation (5)
contains contributions from the free-carrier energy

(6)

the carrier–laser–field interaction energy

(7)

and the Coulomb interaction energy

(8)
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Here, and are electron annihilation and creation operators,
and are the corresponding operators for holes, and

is the free-carrier electron or hole energy. The subscripts and
superscripts refer to either quantum-dot or well states, i.e.,
or for quantum-dot states, and for quantum-well states,
where for electrons (holes) and is the in-plane
carrier momentum. Equation (8) contains the Coulomb interac-
tion energy matrix element

(9)

where is the dot or well wavefunction in the quantum-well
plane

(10)

is the Fourier transform of the screened Coulomb poten-
tial, is the 2-D bare (unscreened) Coulomb potential,
is the electron charge, is the area of the quantum well
containing the quantum dots, and is the dielectric func-
tion describing screening by the electron–hole plasma in the
quantum well. In our numerical evaluations, we evaluate
using the plasmon-pole approximation of the Lindhard formula
[22].

We proceed by working in the Heisenberg picture to de-
rive the equations of motion for the microscopic polarization

, electron population
and hole population . In the screened
Hartree–Fock limit [22], we obtain the following coupled
equations [32]:

(11)

(12)

(13)

where the nonradiative and spontaneous emission carrier loss
processes are approximated by the effective rate . The terms

represent the collision contributions described later in
this section. To arrive at the above equations, we performed op-
erator rearrangements using anticommutation relations for the
carrier operators, and factorization of four-operator terms into
two-operator terms that are very similar to those performed in
the quantum-well and bulk derivations. The details of these ma-
nipulations may be found in several text books [22], [33].

Equations (11)–(13) contain contributions from many-body
interactions via a renormalized transition energy

(14)

where is similar to (9) with replaced by . The
summations in the above equation run over both quantum-well
and quantum-dot states. The Hartree–Fock contributions also
lead to a renormalization of the Rabi energy

(15)

Besides the screened Hartree–Fock contributions, the
many-body interaction gives rise to collisions that lead to
dephasing of the polarization and relaxation of the popula-
tion distributions. As discussed in the introduction, it is very
CPU-time consuming if one directly incorporates the micro-
scopic, quantum-kinetic expressions for these collision effects
into the numerical code used to treat the laser model. The
scattering coefficients in the quantum kinetic treatment involve
as many as five nested integrals over continuum states, and the
phase space needed to track the carriers grows rapidly with
integration time [18], [19], [27], [28]. In this paper, we explore
an approximation using microscopic relaxation rates in the
screened Hartree–Fock equations instead of solving the full
equations. Since these relaxation rates are computed indepen-
dent of the integration of the dynamic equations, this approach
significantly reduces the numerical demands. In contrast to the
usual effective rate treatment [5], [10]–[12], however, we retain
enough features of the quantum kinetic treatment to adequately
describe scattering effects under lasing conditions.

To proceed with our microscopic rate approximation scheme,
we now examine the results from the full microscopic theory
to identify the basic features of the relaxation processes which
we then incorporate phenomenologically into our quantum-dot
laser model. Take for example, polarization dephasing by col-
lisons. The quantum kinetic treatment shows both diagonal and
nondiagonal terms in [22]. In bulk and quantum-
well lasers, the nondiagonal contribution is important for cor-
rectly describing the lineshape of gain and absorption spectra
over a wide frequency range. Hence, it is not sufficient to model
dephasing by just taking the diagonal contribution. However,
as long as one is interested in systems under lasing conditions,
where the lasing frequency is close to gain peak and the in-
tracavity carrier density does not deviate appreciably from the
threshold value, one can approximate the combined effect of
diagonal and nondiagonal dephasing by a simple rate. Gener-
ally, this rate has to be obtained by computing absorption/gain
spectra including diagonal and nondiagonal dephasing and per-
forming a best fit to the numerical result. In this spirit, we ap-
proximate the polarization dephasing term in our quantum-dot
laser model [19]

(16)

where is the effective dephasing rate [28].
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For the equilibration of a nonequilibrium carrier distribution,
we consider, for instance, the relaxation of a nonequilibrium
electron distribution generated by an optical pulse that is reso-
nant with a bulk state transition in our system. Immediately after
the pump pulse, the electron populations in the quantum-dot,
quantum-well and bulk states, , and , respec-
tively, are driven by collisions toward distributions described by
Fermi–Dirac functions

(17)

where is the energy of the state, is the chemical potential,
is Boltzmann’s constant and is the temperature. The re-

laxation occurs on several characteristic time scales.

1) The fastest processes are carrier–carrier collisions in-
volving continuous states in the bulk and quantum-well
regions, i.e., in two (superscript 2) of the three subsystems
(bulk, well, dot). These collisions drive the respective
populations to quasi-equilibrium, so that

(18)

where the label indicates that the properties are associ-
ated with the plasma in the bulk and the quantum-well
regions. How and are determined will be dis-
cussed later. Note that we use a common reference for all
the energies and chemical potentials, which in this paper
is the bottom of the quantum well.

2) On a slower time scale the carrier–phonon collisions
relax the quasi-equilibrium distributions in the bulk and
quantum-well regions from the temperature to the
lattice temperature

(19)

where there is now a new chemical potential for the
quasi-equilibrium distributions, because of the tempera-
ture change.

3) The even slower collisions involving discrete
quantum-dot states come into play. With the added
effects of dot-dot and dot-well carrier–carrier scattering,
we have

(20)

where the label indicates that the quantity is com-
puted involving all three (dot, well, and bulk) regions.

4) Finally, from carrier–phonon collisions, we have

(21)

Based on the above phenomenological description of electron
relaxation in our quantum-dot laser structure, and assuming that
the process is similar for the hole populations, we write for the
occupation in the quantum-dot states

(22)

where and are the effective relaxation rates for relax-
ation of the entire (dot, well, and bulk) carrier population by car-
rier–carrier and carrier–phonon collisions, respectively. In addi-
tion, we include a nonradiative loss term with an effective rate
of . Similarly, the equation of motion for the quantum-well
populations is

(23)

and for the bulk populations

(24)

where and are the effective relaxation rates for re-
laxation of the quantum-well and bulk carrier populations by
carrier–carrier and carrier–phonon collisions, respectively,
and are the effective nonradiative carrier loss rates.

The pump contribution is

(25)

where is the injected current density, , , and
are the steady state electron or hole distributions and den-

sity in the absence of a laser field, and the quantity
accounts for pump blocking due to the exclusion principle [21].

Solving (11)–(13) with the relaxation contributions given by
(22)–(24) requires knowing the Fermi–Dirac distributions at
each time step. To determine these distributions in the different
subsystems, we use the fact that the total electron and hole
density is conserved in carrier–carrier collisions, such that

(26)
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where is the areal density of dots in each of the
quantum-well layers and or is the thickness of the
barrier region. Furthermore, we introduced the total sheet (2d)
carrier densities in the quantum-dot, quantum-well, and bulk
regions,

(27)

(28)

(29)

respectively.
Besides particle number conservation, the carrier–carrier col-

lisions also conserve the total electron and hole kinetic energy,
i.e.,

(30)

In the case of carrier–phonon collisions, the total carrier density
is conserved, while energy is exchanged between the carriers
and lattice by the creation and annihilation of phonons. There-
fore, the only requirement is

(31)

where the energy exchange between carriers and lattice is taken
into account by fixing the temperature of the quasi-equilibrium
distributions to the lattice temperature .

For the situation where only the quantum-well and bulk popu-
lations are in quasi-equilibrium, the corresponding Fermi–Dirac
distributions are determined from the conditions

(32)

(33)

and

(34)

We note that in the above description, the transport of carriers
between the different regions is taken into account as an integral
part of the capture and relaxation processes due to carrier–car-
rier and carrier–phonon collisions.

During the numerical computations, (26) and (30) yield
and . Equations (32) and (33) are solved for and ,
(31) gives , and (34) yields . All the summations in
these equations have to be evaluated numerically. The gauge
we use to determine that the summations and the solutions are
performed to the necessary accuracy is to examine the extent to
which total (matter and radiation field) energy is conserved over
the span of the calculation.

In the examples presented in the later sections of this paper
we demand that the radiation field energy change by stimulated
emission equals the energy change associated with changes in
electron and hole populations to less than 2% at all times. It
is necessary that (26)–(34) are solved to the accuracy that the
left-hand side of each equation differs from the right-hand side
by less than 0.0001%, which is quite stringent. For example to
achieve this accuracy, we cannot use the analytic formula giving
the chemical potential of a 2-D plasma as a function of the
2-D density [22], because of the inaccuracy associated with the
numerical evaluation of logarithms. Roughly two thirds of the
computation time in a run is spent determining the quasi-equi-
librium functions.

The degree to which the rate approximation scheme is con-
sistent with the results of fully microscopic calculations (e.g.,
[22, Figs. 4.2–4.5]) depends on the detailed situation consid-
ered in the simulation. In particular, the relevant configurations
should not involve very large deviations from quasi-equilibrium.
It is also desirable that the effective relaxation times are suf-
ficiently different from one another so that the relaxation be-
havior shows distinct properties of the different stages described
earlier. This is generally true with collisions involving the con-
tinuous quantum-well and bulk states, where the effective car-
rier–carrier relaxation rate under lasing condition is an
order of magnitude larger than the effective carrier–phonon re-
laxation rate [16]. For the collisions involving discrete

states, the effective rates and can be over an order

of magnitude slower than and [9], [10], [18], [19].
To close this section, we explain the procedure used to de-

termine the effective relaxation rates used in our simulations.
For the bulk and quantum-well regions, we take the rates
and that enable our model to best reproduce the micro-
scopically calculated relaxation of a locally perturbed carrier
distribution (spectral bump or hole) back to a Fermi–Dirac dis-
tribution. As shown in [28], one obtains good overall agreement
even though at any given time during the relaxation process,
there are slight differences in the shape of the spectral bump
or hole. These differences, however, only marginally influence
the nonequilibrium gain under the respective conditions. Typ-
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ical room temperature effective relaxation rates extracted from
microscopic calculations are approximately 1 to 2 10 s
for carrier–carrier collisions, and approximately 0.2 to 1 10
s for carrier–phonon collisions [15], [16], [21], [28].

Unfortunately, a similarly systematic comparison between
approximate and microscopic treatments for a quantum-dot
structure is currently not possible because we still do not have
a fully consistent numerical analysis of a complete microscopic
model for the inhomogeneously broadened quantum-dot struc-
ture shown in Fig. 1. Without such a comparison, the effective
relaxation rates and are obtained by using the real
parts of the scattering coefficients in the second Born ap-
proximation for carrier–carrier and carrier–phonon collisions,
respectively [18], [19]. Presently there is some uncertainty
concerning these values within the range 10 s to 10 s
for room temperature [18], [19]. Therefore, we present results
for different rates.

III. NONEQUILIBRIUM GAIN EFFECTS

To evaluate the theory, we consider a single-mode laser
operating with a gain structure consisting of five 3-nm-thick
In Ga As quantum-well layers, where each layer contains
a density of 10 cm In Ga As quantum dots. The
quantum wells are separated by 6-nm GaAs barriers and the
entire structure is cladded by Al Ga As bulk layers. We
approximate the quantum-dot shape by a 3-nm-high, 30-nm-di-
ameter cylindrical disk. Using theory and assuming
separation of variables in growth and radial directions [34], the
calculated electronic structure contains one electron and one
hole quantum-dot bound state with 1.074 eV energy separation
and nm dipole matrix element. Other input parameters
are s s [28], and
mode confinement factor. A normal distribution is used to
describe the inhomogeneous broadening in the quantum dots.
For example, the quantum-dot carrier density is

(35)

where

(36)

is the average quantum-dot energy in the th state. For
the following calculations, we choose a standard deviation

meV. We note that the present treatment of inho-
mogeneous broadening is an improvement over the often used
statistical averaging of the homogeneously broadened results
[35]. There, one generally assumes equal carrier density in
ensemble, whereas here, the ensemble has the possibility to
relax to a common chemical potential, where the system has a
distribution of different carrier densities.

First, we wish to confirm that our theory can reasonably
accurately reproduce features expected of the optical response
under nonequilibrium conditions. For this test, we calculate
the changes in laser output due a current spike. Initially, the
laser is operating continuous wave (CW) at five times above
threshold with injection current density A/cm . The
input parameters are those given in the previous paragraph
together with s and s for

Fig. 2. Time dependence of (a) laser intensity and injection current and (b)
laser gain.

the scattering rates involving quantum-dot states [18], [19],
and s for optical resonator linewidth. The current
pulse, which is chosen to accentuate nonequilibrium effects
rather than for experimental practicality, peaks at kA/cm
with 1 ps rise and fall times and 60-ps duration [dashed curve,
Fig. 2(a)]. In Fig. 2(a), the solid curve shows the changes in
laser output intensity, which has the following interesting fea-
tures: 1) dip in intensity immediately after the onset of current
pulse; 2) decrease in laser output prior to the end of the current
pulse; and 3) appearance of a second optical pulse after termi-
nation of the current pulse. These features are consistent with
the temporal behavior of the laser gain, as plotted in Fig. 2(b).
Fig. 2(b) further shows the clamping of the steady-state gain at
the optical resonator linewidth s .

An explanation for the laser dynamical behavior can be
found in Figs. 3 and 4. First, Fig. 3(a) depicts the time de-
pendence of the plasma temperature , where we note an
increase in plasma temperature immediately after the onset
of the current pulse. This temperature increase is due to the
thermalization of injected carriers via carrier–carrier scattering.
Since carriers injected into the bulk layer have an energy above
the quantum-dot and most quantum-well states, on the average,
they lose energy during scattering. To conserve total energy,
carriers in the quantum-dot and low-lying quantum-well states
scatter into higher energy states. This redistribution of carriers
has the effect of heating the plasma, which is a well known
phenomenon in quantum kinetic treatments [20]. A higher
temperature leads to lower gain [Fig. 2(b)], and consequently,
lower laser intensity [solid curve, Fig. 2(a)].

Eventually, the laser output rises above its CW value. This
increase can be attributed both to carrier–phonon scattering,
which cools the plasma via energy transfer to the lattice, and
to the ongoing increase in carrier density due to the contin-
uing higher level of current injection. However, the laser output
reaches a peak before the end of the current pulse. The subse-
quent decrease in laser output while the carrier density is still
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Fig. 3. Time dependence of (a) plasma temperature and (b) detuning.

Fig. 4. Time dependence of electron populations in (a) the quantum-dot and
quantum-well regions and (b) in the bulk part of the structure .

rising is caused by many-body effects. Fig. 3(b) is a plot of the
detuning between the peak of the inhomogeneous quantum-dot
distribution and the lasing energy. We picked a detuning that
is approximately zero for CW operation, so that the laser op-
erates at the gain maximum. Immediately after the onset of the
current pulse, the increases in quantum-dot and quantum-well
populations [Fig. 4(a)] change the many-body bandgap renor-
malization, which detunes the laser away from the gain max-
imum. Because we considered operation in a microcavity with
optical resonances spaced apart wider than the quantum-dot in-
homogeneous linewidth, the detuning leads to a decrease in the
laser output instead of the mode hopping expected in a multi-
mode laser.

Many-body effects are amplified over those in a quantum-
well laser for two reasons. First, the rapid injection of carriers
together with the slow carrier relaxation between quantum well
and quantum dots lead to a population bottleneck that causes
considerable build-up of quantum-well population. Comparison

of the two curves in Fig. 4(a) clearly shows a large difference
between quantum well and quantum dots in the rate of carrier
density increase. Second, in contrast to quantum-well or bulk
lasers, many-body effects in a quantum-dot structure are more
dependent on nonlasing states than lasing states [32]. This is
because in a quantum-dot structure, the lasing states are discrete,
and therefore, are more limited in coupling via the Coulomb
interaction. The net result is a bandgap renormalization that is
largely unchecked by population clamping.

Upon termination of the current pulse, the carrier densities
in the different regions begin to decrease. This reverses the
bandgap renormalization, which causes the laser frequency
to move toward gain peak. The gain continues to be above
the CW value because of the influx of carriers stored in the
quantum well into the quantum dots. As long as the increase in
gain due to the shift toward gain peak exceeds the decrease in
gain due to depletion of carriers in the quantum dots, the laser
output increases. The second intensity peak occurs where the
two processes balance each other. Thereafter, the laser output
decreases to its CW value.

Several features visible in Fig. 4 illustrate the nonequilibrium
character of laser behavior. The sharp dip in quantum-dot carrier
density at ps is a consequence of the plasma heating as
discussed earlier. The abrupt increase and decrease in the bulk
carrier density [Fig. 4(b)], showing the extent to which the bulk
population can follow the current pulse, and their absence in the
quantum-well and quantum-dot curves in Fig. 4(a) suggests that
the carriers in the different regions are not in equilibrium with
one another. Last, the lack of population clamping indicates the
presence of kinetic holes.

In Fig. 5, the solid curves depict the kinetic holes in the
quantum-dot electron population at different times and the
dashed curves show the normal distribution used to repre-
sent the spectral distribution of the inhomogeneously broadened
quantum-dot states. Fig. 5(a) shows the presence of a broad
kinetic hole in the carrier distribution due to the CW lasing
and prior to the current pulse. A population shift toward lower
energy is clearly visible by comparing the solid and dashed
curves. This shift is a consequence of the higher population
in the lower energy states in the inhomogeneous distribution.
During the pulse, there is an the overall red shift of the dot
states and a transient vanishing of the kinetic hole. This is
illustrated in Fig. 5(b), which depicts the quantum-dot electron
distribution at the time when the detuning is maximum, and
consequently, the laser output is minimum. Also at this time,
the gain has dropped below the lasing threshold value. Fig. 5(c)
is a plot of the quantum-dot electron population distribution
at ps, which is at the second output maximum. Now,
a deep hole is again burned close to the center of the carrier
distribution.

IV. GAIN SWITCHING

Gain switching is a good example of an experimental sit-
uation where nonequilibrium effects are likely to be present.
Fig. 6 shows the time evolution of output intensity for the laser
considered in the previous sections, when a kA/cm
injection current is applied at . The two curves illustrate
the dependence of the quantum-dot laser switch-on behavior on
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Fig. 5. Quantum-dot electron populations (solid curves) at times (a) t = 80 ps,
(b) 163 ps, and (c) 280 ps. For reference, the dashed curve is the inhomogeneous
quantum-dot state distribution.

scattering rates. Rates for relaxation within quantum-dot states,
as well as relaxation and capture between quantum-dot and
quantum-well states have be obtained from quantum-kinetic
calculations [18], [19]. The results indicate that these rates can
vary over an order of magnitude, depending on experimental
conditions. In this section, we use two sets of relaxation rates
that represent the upper and lower limits. We consider the
case of weakly confined quantum dots, e.g., In Ga As
quantum dots in a GaAs quantum well, (henceforth, referred
to as shallow-dot case), where relaxation rates are typically in
the high range of s and s
[36]. Also, we consider the case of strongly confined quantum
dots, e.g., InAs quantum dots in a In Ga As quantum well,
(deep-dot case), where the relaxation rates are typically in the
low range of s and s [36].
In Fig. 6, the solid and dashed curves correspond to the shallow
and deep dot cases, respectively.

One factor causing the difference in dynamical behavior,
specifically the absence of a gain-switch peak with the deep
dots, is the difference in coupling between quantum-well
and quantum-dot populations. For the shallow-dot case, both
quantum-dot and quantum-well populations directly support the
lasing transition. One sees this from the solid curves Fig. 7(a)
and (b), showing that population overshoot and clamping in the
quantum-dot and quantum-well populations are synchronized.
In contrast, the dashed curves in Fig. 7(a) and (b) indicate
that the quantum-well and quantum-dot population dynamics
are largely decoupled for the deep-dot case. The slower but
more constant influx of carriers from the quantum well to the

Fig. 6. Laser switch-on behaviors for shallow (solid curve) and deep (dashed
curve) quantum dots.

Fig. 7. Time dependence of (a) quantum-dot and (b) quantum-well electron
densities for shallow (solid curve), and deep (dashed curve) quantum dots.

Fig. 8. (a) Electron occupation versus energy for deep quantum dots. The
solid curve is the actual distribution n , the dashed and dotted-dashed curves
are the Fermi–Dirac functions f("; � ; T ) and f("; � ; T ). (b) Electron
occupationn versus energy for shallow (dashed curve), and deep (solid curve)
quantum dots.

quantum dots damps the relaxation oscillation necessary for a
gain-switch spike to occur.

Further evidence of differences in the extent of nonequilib-
rium effects may be seen in Fig. 8(a). The solid curve shows the
energy dependence of the actual electron population in the en-
tire gain structure for the deep-dot situation at time ps,
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Fig. 9. Quantum-dot laser modulation response for shallow (solid curve), and
deep (dashed curve) quantum dots.

which is after steady state is reached. The energy is referenced
to the unexcited quantum-well bandedge. Clearly visible is a ki-
netic hole within the inhomogeneous quantum-dot distribution
and centered at the laser energy. Also plotted are the asymp-
totic Fermi–Dirac distributions and
reached via carrier–carrier and carrier–phonon collisions, re-
spectively. Differences between the solid and dashed curves in-
dicate deviations from quasi-equilibrium conditions, and differ-
ences between the dashed and dot-dashed curves indicate the
extent of plasma heating. The pronounced spectral hole indi-
cates considerable gain saturation. Fig. 8(b) compares the elec-
tron populations for the two different quantum-dot structures.
The difference between the curves, especially at the high en-
ergy side of the laser energy, indicates the significant difference
in the number of carriers contributing to the lasing transition
in the two cases. Both spectral holes have basically identical
depth, but the hole width is much wider for the high relaxation
rate case. Carriers outside the spectral hole do not contribute to
the laser transition. Therefore, the narrower spectral hole in the
calculations for the deep-dot case means that less carriers are
available to support a gain-switched pulse.

V. MODULATION RESPONSE

As discussed in the introduction, a challenge for the theory is
to describe the dynamical response of a quantum-dot laser over a
continuous band of modulation frequencies, ranging from where
the rate equation approximation is valid to where nonequilib-
rium effects are present. The curves in Fig. 9 demonstrate the
ability of the present theory to meet this challenge. They are
computed using a sinusoidally varying injection current

(37)

The laser modulation response at frequency is the difference
between the maximum and minimum laser intensities, with the
low frequency response normalized to unity. Limiting ourselves
to the linear regime, we consider a small modulation depth of

.
Assuming laser operation at five times above threshold and

considering the same two quantum-dot structures as in the
previous section, we obtain the modulation response curves
shown in Fig. 9. The solid curve is for the shallow-dot (faster
relaxation rates) case, while the dashed curve is for the deep-dot
(slower relaxation rates) case. For the shallow dots, the modu-
lation response remains relatively flat up to 10 GHz and then

Fig. 10. (Top to bottom) Time dependence of (a) injection current, (b) bulk,
(c) quantum-well, and (d) quantum-dot electron densities, and (e) laser intensity
for deep quantum dots. The dashed lines indicate the successive time delays
between the various properties.

drops off sharply. Unlike a typical bulk and quantum-well laser
modulation response, there is strong damping of relaxation
oscillations, resulting in the absence of a peak in the modu-
lation response curve at the relaxation oscillation frequency.
We find the bandwidth and damping to be relatively strongly
depend on the confinement factor. Dynamical performance is
limited by the a small modal differential gain due to a low
dot density, suggesting the importance of gain saturation (gain
compression) effects, consistent with the explanation given
for recent experimental results [1], [2]. As is the case with
gain switching, nonequilibrium effects are negligible for this
shallow-dot structure, with the carrier populations over the
entire modulation bandwidth relatively well approximated by
Fermi–Dirac distributions.

The dashed curve in Fig. 9 shows that for the deep dots, the
modulation response degrades appreciably past 1 GHz. Like the
shallow-dot case, dynamical performance is limited by gain sat-
uration. However, additionally, time varying spectral holes are
present in both electron and hole populations, indicating the
presence of nonequilibrium effects. The situation is very sim-
ilar to that described in Fig. 8. The slow quantum-dot relax-
ation gives rise to a lag in response of the quantum-dot elec-
tron and hole populations to the injection current variation. This
may be seen in Fig. 10, which shows the time dependences of
electron densities in the different regions for a 10-GHz modu-
lation frequency. Fig. 10(a) and (b) demonstrate that the bar-
rier electron density directly follows the current modulation.
However, the response of the quantum-dot and quantum-well

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 30, 2009 at 04:32 from IEEE Xplore.  Restrictions apply.



504 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 41, NO. 4, APRIL 2005

electron densities lags noticeably, as is evident by comparing
Fig. 10(c) and (d) to (b). The relatively large delay (separation of
the density maxima) of approximately 20 ps indicates a problem
in effectively transmitting temporal information from the injec-
tion current to the quantum-well and quantum-dot populations.
Fig. 10(e) shows the modulated laser output, which is notice-
ably out of sync with the injection current.

VI. CONCLUSION

In summary, nonequilibrium effects can play an important
role in the semiconductor quantum-dot laser dynamical be-
havior because scattering rates involving quantum-dot states
may be relatively slow. To describe such effects, we presented
and evaluated a theory, where the time evolutions of the laser
field and quantum-dot gain medium are described according
to the Maxwell–semiconductor–Bloch equations. Many-body
Coulomb effects are included at the level of the screened
Hartree–Fock approximation, and the relaxation and capture of
carrier populations due to carrier–carrier and carrier–phonon
collisions are treated in the effective relaxation rate approxima-
tion. Examples are presented that demonstrate the capabilities
of the theory in describing the effects of population transfer
between different regions of the heterostructures, spectral hole
burning in the inhomogeneous quantum-dot distributions, and
plasma heating.
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