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Photocurrent in nanostructures with asymmetric antidots: Exactly solvable model
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The steady current induced by electromagnetic field in a 2D system with asymmetric scatterers is studied.
The scatterers are assumed to be oriented cuts with one diffusive and another specular sides. Besides, the
existence of isotropic impurity scatterers is assumed. This simple model simulates the lattice of half-disk which
have been studied numerically recently. The model allows the exact solution in the framework of the kinetic
equation. The direct current is expressed via the second-order response in electric field. The photogalvanic
tensor contains both responses to linear and circular polarization of electromagnetic field. The model possesses
nonanalyticity with regards to the rate of impurity scattering.
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I. INTRODUCTION

Nowadays technology allows to fabricate artificial arrays
of antidot scatterers which form superlattices in semiconduc-
tor heterostructures with a two dimensional electron gas
�2DES� �see, e.g., Refs. 1–4 and references therein�. The size
of antidots can be varied from a few microns to a few tens of
nanometers at a typical electron density ne�1012 cm−2. Su-
perlattices with circular antidots �disks�, known as the Galton
board,5 have been realized in experiments.1–4 The math-
ematical theorems of Sinai guarantee that the classical dy-
namics of electrons in such structures is chaotic.6 The effects
of chaotic dynamics and contributions of unstable periodic
orbits on electron conductivity have been clearly seen ex-
perimentally. They were also analyzed by theoretical meth-
ods and numerical simulations in great detail.7 The irradia-
tion of such superlattices by a microwave field8 opens
interesting possibilities for microwave control of electron
current in nanostructures. These systems of relatively large
period are classical, and the periodic potential is the source
of electron scattering.

Unlike arrays of symmetric antidots, studied experimen-
tally in early works, more sophisticated systems were for a
long time out of attention. Meanwhile, systems without in-
version symmetry are capable to rectify the electric current.
The stationary current in homogeneous media affected by
light in the absence of any dc voltage called the photogal-
vanic effect �PGE� was studied since the end of the
seventies.9–14 Similar direct current caused by temporal irre-
versibility due to simultaneous action of two electromagnetic
fields with frequencies � and 2� is known as the coherent
photogalvanic effect �CPGE�.15

Appearance of directed transport without obvious directed
forces is also known as ratchet effect which has a long his-
tory. For example, the behavior of a ratchet under the influ-
ence of thermal fluctuations was considered in the textbook
by Feynman, Leighton, and Sands16 in connection with the
problem of reversibility in statistical mechanics. Recently the
ratchet problem attracted a great interest of the scientific
community.17,18 In fact the photogalvanic effect corresponds
to a ratchet subjected to weak alternating force with zero
mean. Such ratchets have been observed in various physical

19–21
systems including Josephson junction arrays, cold
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atoms,22 macroporous silicon membranes,23 microfluidic
channels,24 and other systems. The growing interest to ratch-
ets is strongly stimulated by their possible applications to
biological systems.17,25 In this sense the artificial asymmetric
nanostructures, as those discussed in Refs. 26–28 and here,
can serve as a prototype for understanding of photocurrent
properties in biomolecules. The results obtained for ratchets
induced by microwave fields in nanostructures can be also
used for understanding of directed transport created by ac
fields in molecular electronics.29

Relatively recently an artificial lattice of asymmetric an-
tidots �triangles� participating in transport as scatterers of
electrons was realized experimentally. It exhibited the direct
current induced by alternating electric field.30 The effect of
such type was considered theoretically in Ref. 31 by means
of the classical kinetic equation for the system with weak
asymmetric periodic lateral potential.

Another case of superlattices of asymmetric antidots �se-
midisks oriented in one direction or the semidisk Galton
board� has been proposed and analyzed theoretically26–28 by
simulations of motion of a particle subjected to alternating
force with zero means and collisions with hard-wall antidots.
It has been shown that a microwave radiation creates the
directed flow of electrons. The velocity of this flow v f is
proportional to a friction coefficient while the direction of
current depends on the microwave polarization. The directed
transport induced by a microwave field appears also for an
ensemble of noninteracting particles in a thermal equilibrium
at temperature T. This effect is absent in structures with cir-
cular antidots due to symmetry conservation. Recently, se-
midisk Galton board realized experimentally32 exhibited the
rectification of high-frequency electric field.

In Refs. 26–28 the properties of photocurrent in asymmet-
ric nanostructures have been explained on the basis of heu-
ristic arguments and extensive numerical simulations. How-
ever, the analytical theory of the effect still needs to be
developed. This aim is reached in this paper with the help of
a kinetic equation approach applied to a specific model of
asymmetric scatterers �cuts model�. This approach allows us
to obtain analytical dependence of photocurrent properties on
system parameters.
©2006 The American Physical Society-1
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II. KINETIC EQUATION APPROACH

Here we study a simple model of anisotropic 2D artificial
scatterers, which permits the analytical consideration in the
framework of kinetic equation approximation and leads to
the PGE. The kinetic equation was used in a number of pa-
pers devoted to photogalvanic effect. Unlike the particle dy-
namics method, this way suggests the developed chaos pic-
ture where ergodicity of motion is achieved. At the same
time it is free from the voluntary assumptions about the par-
ticle friction used in Refs. 26 and 27.

The system under consideration contains randomly dis-
tributed oriented scatterers. The scatterers are assumed to be
segments of the length D oriented along the y axis; one side
�left� of the segment is specular and the other side is diffu-
sive �see Fig. 1�. The concentration of scatterers N is suppos-
edly low: ND2�1. In this approximation the kind of spatial
distribution of scatterers �random or periodic� is of no impor-
tance. Besides, to limit the possible divergency of the result
we include isotropic impurity scattering into our model.

This system can be considered as a simplification of the
semicircle model studied in Refs. 26 and 27. In fact, the
diffusive side of the cut scatters particles like round side of
the semicircle, if not to pay attention to the difference be-
tween randomized �in our case� and deterministic �in semi-
circle case� motion. The advantage of “cuts” model is its
exact solvability.

The kinetic equation reads as

�f

�t
+ F̂f = Î f , �1�

where f�p ,�� is the distribution function, p= p�cos � , sin ��
is the electron momentum. The term �F̂f� represents the ac-
tion of electric field E�t�=Re�E�e−i�t� of the electromagnetic
wave with the complex amplitude E�=E−�

*

F̂ �
1

2
F̂�ei�t + c.c. = − e�Ex�cos �

�

�p
−

sin �

p

�

��
�

+ Ey�sin �
�

�p
+

cos �

p

�

��
�� . �2�

As it will be seen further, the acceleration in the y direction
cannot be limited by the scattering on segments only because
electrons moving in this direction do not relax. This is why
we have not restricted our consideration by the collisions

FIG. 1. Considered model system. Cuts have specular left sides
and diffusive right sides. This produces anisotropy of scattering
resulting in the photocurrent.
with cuts only but have also taken into account the impurity
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scattering. Hence the collision integral Î f � Îi f + Îcf is as-

sumed to consist of impurity-induced Îi and segment-induced

Îc collision integrals. The segment-induced collision integral

Îcf = 	
0

2�

d��
W���,��f�p,��� − W��,���f�p,��� �3�

is determined by the scattering probability on the cuts
W��� ,��.

The collision integral should conserve the number of elec-
trons and vanish for any isotropic distribution function.
These conditions imply 
we keep in mind that the number of
electrons colliding with the cut is proportional to
�pD /m�cos ���

W���,�� =
1

�

cos ����cos ���	��� + � − ��

− 1
2 cos �� cos ���cos ����− cos ���� , �4�

where �= �DNv�−1 is the corresponding characteristic time,
��x� is the Heaviside function; the first and the second terms
in the square brackets correspond to the specular reflection
on the left side and diffusive scattering on the right side of a
cut, respectively.

The impurity scattering is suggested to be isotropic

Îi f = −
1

�i
�f − �f
� , �5�

where �¯
 means average over angles, �i is the relaxation
time corresponding to additional isotropic scattering.

We shall solve the kinetic equation �1� in the second order
on electric field. In the elastic approximation the collision
operator is degenerate because its action on the isotropic
function gives zero; thus this operator has eigenfunctions
with zero eigenvalue and the solution of Eq. �1� is ambigu-
ous. However, if to project the Hilbert space of distribution
functions on the subspace with zero angular average, the
corresponding projection of the scattering operator becomes
nondegenerate. So if to consider only the distribution func-
tions with zero mean, the elastic scattering operator remains
nondegenerate and can be treated as full relaxation operator.
Inelastic scattering controls only isotropic part of the distri-
bution function which �if it is weaker than elastic one� has no
impact on the PGE.

In the second order on alternating electric field the steady
current density is described by the phenomenological expres-
sion

ji = 
ijkE�,jE−�,k. �6�

The symmetry of the considered system allows the following
nonzero components of the photogalvanic tensor 
ijk:


xxx,
xyy,
yxy = 
yyx
* . �7�

From Eq. �6� it follows that components 
xxx and 
xyy are
real. The same is valid for all components of 
ijk in the static
limit ��=0�.

Equation �6� is specified as
2 2
jx = 
xxx�Ex� + 
xyy�Ey� ,
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jy = Re�
yxy��ExEy
* + Ex

*Ey� + Im�
yxy�
EE*�z. �8�

The components 
xxx, 
xyy, and Re�
yxy� determine the re-
sponse to the linear-polarized light. For linear polarization
along x or y axes the current flows along x direction; the
current in y direction appears for tilted linear-polarized elec-
tric field. In the case of circular polarization the y component
of the current is determined by Im�
yxy� �the circular photo-
galvanic effect� and by the sign of the rotation, while x com-
ponent of the current is the sum of responses to x and y linear
polarized light and does not depend on the sign of 
EE*�z.
Notice that the circular photogalvanic effect vanishes if the
frequency �→0.

The formal solution of Eq. �1� in the second order in
electric field is

f2 = � �

�t
− Î�−1

F̂� �

�t
− Î�−1

F̂f0, �9�

where f0=1/ 
exp��−�� /T+1�−1 is the equilibrium distribu-
tion function ��= p2 /2m�, � is the chemical potential, T is
the temperature. The kernel of the inverse operator in fre-
quency representation G���� ,�� satisfies the equation �−i�

+ Î�G��� ,���=	��−��� which can be solved exactly

G���,��� = − �� 	�� − ���
�cos �� + 


+
�cos ��

2

cos2 �� − 
 cos ����− cos ���
��cos �� + 
���cos ��� + 
�2
1 − ��
��

+
��− cos ��

��cos �� + 
�2�− cos �	�� + �� − ��

+ 
 cos �
cos2 �� − 
��− cos ���cos ��

2��cos ��� + 
�2
1 − ��
�� �� .

�10�

Here 
=−i��+� /�i

��x� = − �x + 2 −
1

1 − x2 − x23 − 2x2

1 − x2 ��1,x� . �11�

The functions ��n ,
� denote the integrals expressing

through elementary functions
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��n,x� = 	
0

�/2 dt

�cos t + x�n ,

��1,x� = −
2

�1 − x2
arctanh� − 1 + x

�1 − x2� . �12�

The stationary part of the correction f2 can be written as

f̄2 = 1
4Ĝ0�F̂�Ĝ−�F̂−� + F̂−�Ĝ�F̂��f0, Ĝ0 � Ĝ�=0. �13�

The static current reads

ji = − 2e	 d2p

�2��2vi f̄2. �14�

The photogalvanic tensor is expressed via partial tensor 
̃ijk
for electrons with given p


ijk =
e3

2m�2	
0

�

dp�2�− �
�f0

��
�
̃ijk. �15�

In the degenerate case the partial tensor itself determines the
total tensor 
ijk


ijk�T = 0,�F� = 
0�
̃ijk�p=pF
, �16�

where 
0=e3 / �4�2N2D2vF�, vF= pF /m, pF is the Fermi mo-
mentum, �F= pF

2 /2m is the Fermi energy. At finite tempera-
tures T


ijk�T,�� =	 d��−
�f0

��
�
ijk�T = 0,�F = �� . �17�

The dimensionless tensor 
̃ijk can be presented as a function
of parameters �=� /�i and 
=�− i� ��=���.

III. ANALYTICAL RESULTS

Substituting the stationary part of the distribution function
�13� into the expression �14� and using the Green function
�10� we find after integration

̃xxx�
,�� = 
B��� − B�
���1 −
��

2
+

�4 + �
 − 2�3


�
 − ��2 ��1,�� −
�
 − 2�
3 + 
4

�
 − ��2 ��1,
� + 
2
2 − 1


 − �
��2,
��

+ B���B�
��−
��

2
−

2���4 − �
 − 3�3
 − 
2 + 4�2
2�
�
 − ��3 ��1,�� +

2


4 + �2�− 1 + 4
2� − ��
 + 3
3��
�
 − ��3 ��1,
�

−
�2��3 + 
 − 2�2
�

�
 − ��2 ��2,�� +

2

 − 4
3 + ��− 4 + 7
2��

�
 − ��2 ��2,
� +
2
3�− 1 + 
2�


 − �
��3,
�� + c.c., �18�
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̃xyy = 1 − 3B��� +
��
4B��� − 1�

2
+ 
3�3
 − �4 − �
 + 
2 − 2�2
2 + B����5�4 + 3�
 − 15�3
 − 3
2 + 10�2
2��

���1,��
�
 − ��3

+


�2 − �
 − 2�2
2 + 3�
3 − 
4 + B����3�
 − 3�2 + 10�2
2 − 15�
3 + 5
4����1,
�

�
 − ��3 +
�2B�����3 + 
 − 2�2
���2,��

�
 − ��2

+

2
� − 
 − �
2 + 
3 + B����4
 − 5� + 8�
2 − 7
3����2,
�

�
 − ��2 +
2
3B����
2 − 1���3,
�


 − �
, �19�


̃yxy�
,�� = †�� − 
�„− 2�
 + �2��� − 
��− 1 + 
2� + ��− 
 + �
2 + ��� − 3
�
��� + 
��1,
�
− ��
� + 2�2�1 + �
��− 1 + 2
2�

+ �3�� − 2�
2� + 2�
�2 + 2�
 − 3
2 − 2�
3� + 4�
3�− 1 + 
2���1,
��

+ ��� − 2
���1,��
− 2�− 1 + �2�
 − ��− 1 + 2�2��− 1 + 
��1 + 
� + 2
�− 
2 + �2�− 1 + 2
2�����1,
��‡

��2�� − 
�2
� + 
 − �
2 + 
�− 3 + 2
2���1,
���−1

− � 1

2�� − 
�3 ��� − 
�
− 8 + ��3 − 2�2�1 + �
� + �
�10 + �
�� − 2
�5 + 2
 − 3�2
 − 3�4
 + ��2 − 4
2�

+ �3�− 1 + 6
2����1,�� + 2
− �
�− 2 + 
2��� + �2
�− 2 + 3
2� + �
�2 − 5
2 + 
4����1,
���*

. �20�
The function B�
� is given by

B�
� =
1

2

�− 1 + 
2�
− � + 2
��1,
��
� + 
 − �
2 + ��1,
�
�2
2 − 3�

. �21�

The quantity 
̃xxx has a static ��→0� limit


̃xxx��,�� = − �B���2
� − 8���1,�� + 2�− 1 + 6�2���2,��

+ 4��1 − 2�2���3,�� + 2�2��2 − 1���4,��� .

�22�

If additionally �→0


̃xxx��,�� �
1

6
−

1

3�
� ln��/2� − �

�4 + 3�2�
12�

+ ¯ . �23�

The case of a clean sample gives the limit 1 /6. The positive
slope of the function 
̃xxx�� ,�� change to negative at very
low numerical value of ��2 exp�−1−3�2 /4�. This behavior
is plotted on the inset in Fig. 2.

If �→�


̃xxx�� − i�,�� �
�

8�3 + ¯ . �24�

If the frequency goes to infinity


̃xxx��,� + i�� =
1

�2F��� ,

F��� =
��

, if � → 0,

4
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F��� =
�

24�
, if � → � . �25�

The function F��� has the maximum equal to 0.0717 at �
=0.455. For finite � and �→0 
̃xxx→0.

The static limit of 
̃xyy is given by


̃xyy��,�� = − 
2�2���2 − 1�2 + ��1 + 2�4 − 6�2� + 2�� + 2�5

− 2�3� + ��1,���8�6 − 16�4 − 6�3 + 11�2�

+ 4�3�2�4 − 4�2 + 3��2�1,����2��2 − 1�
� + �

− ��2 + ���1,���2�2 − 3���−1, �26�

which yields

FIG. 2. The dependence of 
̃xxx on the parameter �=� /�i for
different frequencies �=��=1,0.3,0.1,0.03,0 �marked on
curves�; 
0=e3 / �4�2vFN2D2�. Inset: The dependence of 
̃xxx for
small values of the parameter � at �=0. The sign of the curve slope

changes at very low � in accord with the asymptotic Eq. �23�.
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̃xyy��,�� � −
1

2
+

�

2�
�3 ln

�

2
+ 3 + 2�2� + ¯ if � → 0.

�27�

The function 
̃xyy�� ,�� 
similarly to 
̃xxx�� ,��� has a singu-
larity at �=0 and changes the sign of slope at very low �.
For large � we have

For small and large � this gives
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̃xyy�� + i�,�� � −
5�

24�3 + ¯ if � → � . �28�

If �→0


̃xyy�� + i�,�� � − ��� 1 + 2�2

2��1 + �2
− 1� . �29�

˜
The high-frequency behavior of 
xyy��+ i� ,�� is

̃xyy �
�2�1 − �2�

2�2

3� − 4� − 2�2� − 2��2 + 2�2�3 + �8��2 − � + 4�3 − 8��4���1,�� + 8�3��2 − 1���1,��2

���2 − 1� − � + ��3 − 2�2���1,��
, �30�
with asymptotics


̃xyy � −
�2

2�2�3 + ln
�

2
�¯ for � � 1, �31�

and


̃xyy �
�

24��2 + ¯ for � � � � 1. �32�

In the static limit the component 
̃yxy takes the form


yxy��,�� =
1

6�2��2 − 1�3„2��2 − 1�
2�4 − 1 − �2 + 3�2��1,���

− 3�2���2 − 1�
16�2 − 11 − 8�4 + 4����2 − 1�2�

+ �15�2 − 6 − 20�4 + 8�6���1,���B���… . �33�

For small or large values of � we have


̃yxy��,�� � −
1

3�2 + ¯ if � � 1,


̃yxy��,�� � −
�

3�3 + ¯ if � � 1. �34�

For large �

Re�
̃yxy� �
F1���

�2 , Im�
̃yxy� �
F2���

�3 , �35�

F1��� = −
1

4
�20 − 48�2 + �2�1 − 4�2� + 6���− 1 + 4�2�

+ 2
26�2 − 4 − 24�4 + ���4�2 − 3����1,��� , �36�

F2��� =
1

24

�2�3� − 12�3� − 96���2 − 4� + 2��25 − 88�2

+ 24�4� − 2��144 + 9�� − 224�2 − 12��3

+ 48�4���1,��� . �37�
Re�
̃yxy� �
1

�2�− 5 −
�2

4
− 2 ln� �

2
��, if � → 0,

Re�
̃yxy� � −
�

6�2�
, if � → � . �38�

Im�
̃yxy� �
1

�3�25�

12
+ ��16 +

�2

8
+ 12 ln

�

2
��, if � → 0,

Im�
̃yxy� �
1

�3� �

12
+

76

45�
�, if � → � . �39�

IV. NUMERICAL RESULTS AND DISCUSSION

Figures 2–6 represent all components of 
̃ijk calculated
according Eqs. �18�–�20� at T=0 versus parameter �=� /�i
for different frequencies. These curves show the dependen-
cies of 
ijk on the rate of impurity scattering. The sign of
coefficient 
̃xxx is positive, while the other coefficients
change sign. In accord with the found asymptotics all com-

FIG. 3. The behavior of 
xyy as function of �. For large � the
component 
xyy→0. For all finite frequencies � the coefficient 
xyy

tends to zero for �→0. If �=0 and �→0
xyy→0.5. Inset: The
dependence of 
xyy on � for large �. The behavior of 
xyy at small

� accords with the Eqs. �30�–�32�.
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ponents tend to zero for �→� and exhibit nonanalytical be-
havior at �=0.

Asymptotic behavior 
̃��−3 �or 
��−1� at large � follows
from the odd dependence of the current on the asymmetric
scattering on the cuts that results in the proportionality of the
current to the scattering rate on cuts for low their concentra-
tion. This asymptotics corresponds to the case of weak asym-
metric scattering usually considered in the theory of PGE.

The value 
̃ijk�0,0� depends on the order of limit �→0,
1 /�i→0: for example, 
̃xxx→1/6 if first �→0 next 1 /�i
→0, otherwise 
̃xxx→0. Such behavior results from the ab-
sence of relaxation of electrons moving along y axis. The
state with px=0 plays role of a drain for electrons. These
electrons do not participate in the transport along x axis, but
due to absence of relaxation they accumulate in the state
px=0; this suppresses the distribution function with finite px,
and jx→0. On the contrary, the transport along y axis di-
verges due to the same reason.

For linear polarized electric field the signs of current com-
ponents depend on the direction of polarization. Physically,
this can be explained by the effective increase of the mean-
squared component of electron momentum along field and
subsequent increase �decrease� of scattering on the cuts. Let
electron with a momentum p= �±p ,0� impacts with a cut.
The change of momentum are equal to −2p for an electron
with the momentum p= �p ,0� and �1+2/��p for an electron

FIG. 4. The dependence of linear photogalvanic coefficient
Re�
̃yxy� on � for the same parameters � as in Fig. 2. For finite
frequency 
̃yxy has a finite limit at �→0.

FIG. 5. The dependence of circular photogalvanic coefficient
˜
Im�
yxy� for the same parameters � as in Fig. 2.
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with the opposite momentum, respectively. In equilibrium
this change is compensated by the contributions of other
electrons. But the increase of the mean-squared component
of electron momentum along field gives the finite positive
contribution to the total current. The acceleration of an elec-
tron by the field in y direction increases y component of the
momentum and produces the opposite direction of jx.

The values of coefficients 
yxy are essentially larger than

xxx and 
xyy. It is a consequence of the fact that the motion
along y direction is collisionless unless the impurity scatter-
ing is taken into account. Obviously, the difference is more
pronounced at low �.

It is useful to calculate the possible maximal PGE coeffi-
cient. From said above it follows that this maximum is
achieved for the component Re�
yxy� at low frequencies �
�1/�i and for clean material �i��. In the case of linear
polarized light we have

jy = −
1

48�
neevF� eEli

�F
�2

sin 2� , �40�

where ne is the electron concentration, li=vF�i, � is the angle
of electric field with respect to the x direction. The estima-
tion gives the value jy �10−5 A/cm for li=10−3 cm, ni
=1012 cm−2, vF�107 cm/s.

We have restricted ourselves by the classical consider-
ation only. Two quantum factors have not been taken into
account: comparability of �� with characteristic electron en-
ergies, the Fermi energy and the temperature, and the quan-
tum corrections to conductivity. It should be emphasized that
in used approximation the PGE in the metal case does not
depend on the temperature in the low temperature limit be-
cause the momentum relaxation in metal is temperature in-
dependent �unlike energy relaxation�. Despite the involve-
ment of energy relaxation into the control on the distribution
function, the current in the second order in electric field is
determined by the contributions which do not depend on
energy relaxation. This is not the case in the limit of zero
impurity concentration or/and zero frequency: the nonana-
lytic behavior of photogalvanic tensor can be limited by in-
elastic scattering taking into account.

The quantum corrections suppress the low temperature
transport and should lead to the temperature dependence of

FIG. 6. Asymptotics of photogalvanic coefficient 
̃yxy

=F1��� /�2+ iF2��� /�3 for large �, according to the Eqs. �36� and
�37�.
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the effect. Both modeling of Refs. 26 and 27 and the present
theory neglect quantum corrections. Thereupon, the tempera-
ture dependence of steady current in Refs. 26 and 27 is not
clear. The approach of these papers used a friction force
essentially depending on the excess electron energy. Possi-
bly, it is the reason of the temperature dependence. It should
be mentioned that the quantum corrections are of less impor-
tance in high-mobility samples utilized usually in experi-
ments with antidots.

V. COMPARISON WITH NUMERICAL SIMULATIONS

In this section we compare our results with the simula-
tions of the flow velocity of a particle colliding with
semidisks.28 We consider the model used here as a simplifi-
cation of the semidisks model of Ref. 28. The essential dif-
ferences between approaches of Ref. 28 and the present pa-
per are: periodic or random distribution of asymmetric
scatterers, deterministic or chaotic character of electron scat-
tering on antidots and motion between them, and absence or
presence of the gas approximation. However, the case of low
density of semidisks and weak friction corresponds to the gas
approximation because the scattering randomizes the motion
well enough, and the results of both approaches should be in
accordance with each other.

Another important difference between two models is the
finite cross section of semidisk compared with zero y cross
section of the cut that provides strong angular dependence of
relaxation rate �cos �. However, the ordered distribution of
semidisks like rectangular or hexagonal lattice possesses the
“corridors” along which the relaxation vanishes as cosine of
the angle towards the corridor axis. This is just the same
dependence as in the case of cuts. Hence, our model can be
treated as a simulation of semidisk model.

Figure 6 in Ref. 28 shows approximate quadratic depen-
dence of the flow velocity on the alternating field what
agrees with the second order in field approximation used in
the present paper.

The dependence Fig. 7 from Ref. 28 demonstrates the

drop of the flow velocity with the growth of the semidisk

V. G. Plyukhin, Pis’ma Zh. Eksp. Teor. Fiz. 53, 407 �1991�

205206
size. This behavior qualitatively corresponds to the drop

xxx→0 for �→0 �Fig. 2 of the present paper�. At the same
time there is no drop in this figure for large �→� following
from the present paper.

The dependence of the flow velocity on the distance be-
tween semidisk centers �Fig. 8 from Ref. 28� can be treated
as rescaled dependence of 
xxx on the mean free time �
which in the present case vanishes both for �→0 and �
→� �Fig. 2 of the present paper�.

The dependence of the flow velocity �Fig. 9 in Ref. 28� on
the impurity scattering also has a drop for �i→0, like ex-
pected from the Eq. �24�, but there is no drop in this figure
for large �i.

Hence, there is a partial qualitative accordance between
the present results and computer simulations of Ref. 28. The
origin of discrepancy needs additional study.

VI. CONCLUSIONS

The considered system of oriented asymmetric scatterers-
cuts has 
xxx, 
xyy, and 
yxy nonzero components of photo-
galvanic tensor. The linear photogalvanic effect is deter-
mined by 
xxx, 
xyy, and Re�
yxy�. The circular-polarized
illumination causes only the response of the y component of
current determined by Im�
yxy�. The static limit of the cur-
rent in impurity-free system is ambiguous, depending on
value of the product of frequency to the impurity mean-free
time. The x component of the current is limited and in the
impurity-free system tends to zero, while the y component
tends to infinity. This is explained by the accumulation of
electrons in the state with zero x component of momentum.
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