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It is well recognized that the transmittance of Anderson localized systems decays exponentially on
average with sample size, showing large fluctuations brought up by extremely rare occurrences of
necklaces of resonantly coupled states, possessing almost unity transmission. We show here that in a
one-dimensional (1D) random photonic system with resonant layers these fluctuations appear to be very
regular and have a period defined by the localization length � of the system. We stress that necklace states
are the origin of these well-defined oscillations. We predict that in such a random system efficient
transmission channels form regularly each time the increasing sample length fits so-called optimal-order
necklaces and demonstrate the phenomenon through numerical experiments. Our results provide new
insight into the physics of Anderson localization in random systems with resonant units.
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Anderson localization [1] is an interference phenome-
non which rules the transport in a wide class of disordered
materials [2–6]. It has the characteristic that in a disor-
dered medium the system eigenfunctions localize at a
length scale, called the localization length, �, when the
sample size becomes larger than the latter. In the Anderson
localization regime the transmittance T (conductance) of
such a system is governed by tunneling events and gener-
ally decays exponentially on average with increasing the
sample thickness L,

 hTi � exp
�
�
L
�

�
: (1)

The average transmittance, however, often shows huge
fluctuations, which originally were attributed to states
localized at the center of samples. Later, Pendry [7] and
Tartakovskii et al. [8] independently argued that these
fluctuations are caused by exceedingly rare occurrences,
resonantly coupled and delocalized through the sample
states, called necklaces, of almost unity transmission.
The number of resonances in necklaces was predicted to
grow as

����
L
p

with increasing sample thickness, while the
probability of such events to occur should reduce exponen-
tially as exp��L1=2� [7].

Experimental evidences for necklaces have been re-
ported recently in 1D random dielectric systems at both
optical [4,9] and microwave frequencies [10]. Time-
resolved light propagation studies revealed the multireso-
nance character of necklaces [4], while interferometric
phase measurements allowed the quantification of the
necklace order (number of coupled resonances) through
phase jumps of �-multiples [9]. In Ref. [10], necklaces
were observed through multipeaked extended field distri-
butions of overlapped quasimodes of an open dissipative
waveguide filled with random dielectric slabs.

Still Pendry predicted that a trade-off between the ex-
pected number of states hybridizing to form a necklace

band in a sample length L and the increasingly low proba-
bility of their occurrences should lead to a reduced number
of necklace resonances. This reduction then should result
in the formation of optimal-order necklaces [7]. Very
recently, the question of how optimal-order necklaces
form in 1D random dielectric stacks of resonant layers
was addressed [11]. It was shown through numerical stud-
ies that the optimal necklace order m shifts gradually
towards higher orders with increasing the sample size.
By assuming an optimal length scale l0 � �� for the
most efficient coupling between two distinct resonances,
it follows that m should increase by one each time the
sample length increases by l0 (the significance of � will be
addressed in the following). It suggests that each time the
sample thickness fits integer multiples of l0 (i.e., m �
L=��), the sample transmittance hTi, averaged over
many realizations, will be high. Such an assumption natu-
rally brings up several questions: what is the system trans-
mittance for sample lengths ml0 < L< �m� 1�l0? Should
hTi show a minimum? What is more intriguing, it follows
immediately: should the transmission show periodic
fluctuations?

In this Letter we predict and demonstrate through nu-
merical calculations the existence of such oscillations in a
1D random stack of resonant dielectric layers. We state that
these oscillations are due to the existence of necklaces,
which periodically appear to be efficiently transmitting.
Our theoretical model, developed for an oscillating trans-
mittance decay reproduces very well the numerical results.

First, we address two characteristic parameters � and �,
which define the optimal distance l0 for the most efficient
coupling between spatially distinct and resonant states. In a
periodic 1D superlattice of coupled resonators (known as
CROW structures) a flat and almost unity transmission
band forms around the resonant energy, when the admit-
tance of the unit cell (from resonance to resonance)
matches that of the environment and its closest resonance
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(actually, the product of admittances on both sample inter-
faces) [12]. These admittances are functions of refractive
index ratio of dielectric layers in the power of the number
of half-wavelength periods. For chosen indices, these pe-
riod numbers are scalable: e.g., choosing ��=2�N
periods between the environment and the 1st resonance
and �N�� �N� periods for the inter-resonance region, for
the unity transmission in a CROW miniband one obtains
always �: 2��=2� � 1:1. This relation can be expressed in
wave-function decay length units �0, obtaining l0 � ��0

for intercavity spacing and ��=2��0 for environment-1st-
resonance distance.

In periodic superlattices with broken symmetry [13], the
efficient resonant transmission channel forms when
�=� � 2:5. This is explained by the fact that other reso-
nances (originally absent in a CROW), spectrally close but
out of the resonant energy, decrease the intercavity barrier
through a contribution from the tails of the spectral lines;
therefore, they impose a larger separation of resonances for
an efficient coupling. With this analogy, through this study
we introduce similar parameters for a disordered system
with resonant layers.

Let us consider a finite length random sample which has
the ‘‘right thickness’’ to fit optimally two resonances at
some frequency. Assuming two characteristic distances
��=2�� (for an efficient mode coupling to the environment)
and �� for the optimal coupling between two resonances,
the right thickness condition for a second order necklace
reads as L����� � m� 1 � 1 [11]. The sample transmission
will be high due to an efficient tunneling-through channel
in the sample. Upon increasing the thickness, the efficiency
of second order necklaces will diminish. While it will
become more probable for third order necklaces to appear,
they will not be optimal ones unless the sample thickness is
not enough to fit three resonances, i.e., L����� < 2. Thus, in

the range 1< L���
�� < 2, the transmittance will stay low

and will increase again when the sample thickness fits an
optimal third order necklace. This increasing-decreasing
scenario will continue periodically with increasing sample
length.

Locating necklaces spectrally is an effortful task and
requires many realizations of disorder. Knowing at which
frequency the necklace should appear could facilitate such
study. One way to overcome the problem is to study
positional random multilayer systems composed of
quarter-wave thick dielectric materials. The advantage of
such systems is that their transmittance spectra almost
always possesses at least one state at the resonant fre-
quency; hence, necklaces become more probable to form.
Thus, we choose to study 1D binary random structures
built by resonant nonabsorbing dielectric layers of A and
B type (refractive indices nA and nB, respectively). The
positional randomness is introduced by giving each layer a
0.5 probability to be of type A or B. Layer thicknesses dA
and dB were chosen by imposing a quarter-wave condition,
nAdA � nBdB � �0=4 (�0 � 1:5 �m in this study).

The transmission spectra of random structures were
calculated numerically through the transfer matrix method
[14]. For each sample thickness 103 realizations of ran-
domness were performed and the average of integrated
transmittance in a narrow frequency range around c=�0

was recorded. In Fig. 1 we plot the results of numerical
calculations (open circles) for three different pairs of re-
fractive indices, nA=nB. In particular, we chose 1:5=3
[Fig. 1(a)], 1:5=3:5 [Fig. 1(b)], and 1:1=3:5 [Fig. 1(c)].
The localization length for each case was independently
obtained from the negative slope of lnhTi � �L=�, calcu-
lated (not reported) for three random multistacks with
nonresonant layers but similar refractive index contrasts
[15].

We indeed observe periodic fluctuations in transmission.
From Fig. 1 we appreciate immediately the regular oscil-
lations appearing in the mean transmission with increasing
sample thickness. In all cases the transmission drops ex-
ponentially while a periodically oscillating envelope is
superimposed to this decay.

Next, we try to model this interesting behavior in order
to reproduce the periodic oscillations. As a starting point,
we assume that the transmission, given by Eq. (1), is
modulated by some periodic function of sample length

FIG. 1 (color online). The logarithm of average transmission
decay as a function of sample thickness: (a) refractive indices
nA=nB � 1:5=3, (b) 1:5=3:5, and (c) 1:1=3:5. The results of
numerical calculations (open circles) show regular oscillations
for thicker samples and are well reproduced by theoretical fits
through Eq. (4) (oscillating line). The straight lines show the
classical exponential decays. Dashed vertical lines indicate the
optimal sample thicknesses that fit efficiently transmitting mth
order necklaces, with the leftmost one for m � 2 in all plots.
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 hT0i � hTi�some periodic function�: (2)

For the modulating term we choose a cosine function
with an argument ��L; �� � 2�L���

�� . This way cos�
reaches maxima each time the sample length fits an
optimal-order necklace. With this, Eq. (2) now reads

 hT0i � hTi
�

1� f�L; ��
�

1� cos
�
2�

L� ��
��

���
; (3)

where f�L; �� is a fitting function to reproduce the increase
in the oscillations amplitude with increasing sample
length. The modulating term in Eq. (3) provides that T0 �
T when the cosine approaches its minima; thus, it considers
the case without the contribution from necklaces. The
logarithm of the average transmission, after small simpli-
fication, looks as

 lnhT0i � �
L
�
� ln

�
1� f�L; ��cos2

�
�
L� ��
��

��
: (4)

We have plotted in Fig. 1 for all three cases the logarithm
of the classical transmission T (red straight lines) and
lnhT0i (black oscillating lines). The slopes were fitted using
corresponding � values, obtained from samples with non-
resonant layers. The parameters � � 6:8 and � � 2 were
then independently adjusted to fit, respectively, the oscil-
lations period and their peak positions on the L axis
(similar to those reported in Ref. [11]). As mentioned in
the beginning, we observe an even more increased �=�
ratio, which is 3.4 now. We explain this further increase by
the fact that contrary to a superlattice with broken symme-
try, when both spatial and energetic positions of contribut-
ing resonances are known exactly, here many more
randomly distributed resonances contribute to the reduc-
tion of inter-resonance barriers, resulting to higher � val-
ues for similar environment coupling �.

The numerical data confirm that in all three cases the
transmission drops exponentially with increasing sample
size. However, over about L � 20� a clear deviation from
a pure exponential starts. We observe an oscillatory behav-
ior in the transmission decay, with a continuous increase in
the oscillations amplitude [16]. The latter is explained by
the fact that in thick samples the role of necklaces becomes
much important in supporting a higher-on average trans-
mission. We note, that using Eq. (4) for the same (�,�)-set
and considering only the slope values � for calculated data
in the range L< 20�, the oscillations period and their
minima-maxima positions on the L axis were reproduced
quite nicely for all three cases [17]. Data fitting procedures
have verified that in all cases the oscillating function given
by Eq. (4) provides better fits than the pure exponential
one as for the whole thickness range, as well as only over
L> 20�.

As a general result, following from Eq. (4), we show in
Fig. 2 a three-dimensional plot of the average transmission
as a function of localization length � and the sample
thickness L. The oscillating surface plot is periodic in L,
while not periodic in �, as it follows from the definition

of the cosine argument � [Eq. (3)]. Three lnhT0�L�i
curves, corresponding to � values of 3:2 �m, 3:7 �m,
and 5:8 �m, are plotted over the surface. In the top graph
of Fig. 2 the transmission intensity map, related to the
continuous surface plot, is shown as well.

Inspired by these results, we decided to look in more
detail at an arbitrarily chosen minimum of the mean trans-
mission and the next maximum. For this, we chose the case
nA=nB � 1:5=3:5 and performed 100 other realizations of
disorder at sample thicknesses of 144 �m and 157 �m
[arrow marks in Fig. 1(b)]. These, respectively, correspond
to the transmission minimum for m � 5:5 and the next
maximum for m � 6. We look at the number of reso-
nances, hybridizing to form a necklace, and plot their
counts in histograms of Fig. 3. For a more complete analy-
sis, we plot in the top panels of Fig. 3 the average trans-
mission for all observed necklaces.

First of all, we observe that the histograms have different
maxima, namely, at the oscillation minimum (m � 5:5, left
panel) still fifth order necklaces dominate, while at the
transmission maximum (m � 6, right panel) sixth and
seventh orders become much frequent. Moreover, from
the top panels we see that for m � 5:5 case, the average
transmission has a maximum of hTi � 7� 10�3 both for
the fifth and sixth order necklaces. This is consistent with
our initial prediction: necklaces built up by five or six

FIG. 2 (color online). A three-dimensional plot of the average
transmission as a function of the localization length (refractive
index contrast) and sample thickness, calculated through Eq. (4)
for � � 6:8 and � � 2. The oscillating lines over the surface
plot correspond to lnhT0�L�i curves for � � 3:2 �m, 3:7 �m,
and 5:8 �m. The top graph plots the transmission intensity map.
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resonances contribute similarly to the system transmission,
since the sample length is neither optimal for m � 5, nor
for m � 6. On the contrary, from the top-right panel in
Fig. 3 we see that at the oscillation maximum sixth order
necklaces have an average transmission of �0:2, which is
about 30 times higher than in the previous case. This is
again to confirm that the sample is thick enough now to fit
optimally sixth order necklaces, or in other words, when
necklaces with m � 6 occur, they are the most efficiently
transmitting ones.

In conclusion, we predict and demonstrate in numerical
experiments periodic oscillations in the average transmis-
sion of an Anderson localized 1D random optical system
with resonant units. Our theoretical model reproduces well
the numerically calculated periodic oscillations of trans-
mission and shows that necklaces of resonantly coupled
states are responsible for these. Necklaces can appear
efficiently transmitting each time the sample size fits an
optimal number degenerate in energy resonances. These
results provide a new insight into the physics of Anderson
localization.
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FIG. 3 (color online). Calculated histograms of optical neckla-
ces and their corresponding transmissions (top panels) in the
random sample with nA=nB � 1:5=3:5. The average transmis-
sion at an oscillation maximum (right panels) is almost 30 times
higher than that of the preceding minimum (left panels), and is
supported by higher order necklaces.
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