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Magnetic-field dependence of the exciton energy in a quantum disk
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The ground-state energy and binding energy of an exciton, confined in a quantum disk, are calculated as a
function of an external magnetic field. The confinement potential is a hard wall of finite height. The diamag-
netic shift is investigated for magnetic fields up to 40 T. Our results are applied to InyAl12yAs/AlxGa12xAs
self-assembled quantum dots, and good agreement with experiments is obtained if we assume that the light
hole is involved in the exciton formation. Furthermore, we investigated the influence of the dot size on the
diamagnetic shift by changing the disk radius. The exciton excited states are found as a function of the
magnetic field. The relative angular momentum is not a good quantum number and its value changes with the
magnetic field strength.
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I. INTRODUCTION

Recently, there has been much interest in the study
quantum dots, which are structures in which the charge
riers are confined in all three dimensions. Especially the s
assembled quantum dots1 are considered to be very promi
ing for possible applications, such as quantum dot lase2

due to their large confinement energy and high optical qu
ity. The dots are formed by the Stranski-Krastanow grow
mode in which a material, e.g., InyAl12yAs, is deposited on
another material with a substantially different lattice para
eter, e.g., AlxGa12xAs.3 The lattice mismatch, which is re
quired for this growth process, is typically about 4%.4 Ini-
tially, the growth is two dimensional~2D!, but after a critical
thickness of a few monolayers, coherent islands are form
due to strain effects. The shape of the formed islands is
well known, but is expected to resemble a lens or a pyram
The density, size, and shape of the dots are strongly de
dent on the growth conditions. Typical sizes of dots va
between the basis size of 7 and 20 nm and a height of a
nanometers. The density of the dots is of the or
1011 cm22.2

The properties of confined excitons have been the sub
of many theoretical studies. Bryant5 used variational and
configuration-interaction representations to study exciton
quantum boxes. Later, matrix diagonalization techniq
were used to study the exciton energy in a quantum dot w
parabolic confinement potential. Song and Ulloa6 studied the
effect of noncircular symmetric structures, and Halon
et al.7 studied the influence of a magnetic field. More r
cently, Pereyra and Ulloa8 investigated magnetic-field an
quantum confinement asymmetry effects on excitons, ag
for the case of parabolic confinement. These studies h
shown a strong competition between the quantum dot s
Coulomb interaction, and magnetic confinement.

In the present work, we model the quantum dots by
quantum disk with a hard-wall confinement of finite heigh9

and include the mass mismatch between the dot and ba
material. In experimentally realized samples of se
assembled dots one has typically a variation of sizes betw
the dots of a few percent, and a gradient in the alloy con
was found recently,10 as well as variations in the shape of th
0163-1829/2001/63~20!/205311~12!/$20.00 63 2053
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dots. Therefore, we believe that our quantum disk model
reasonable first-order approximation to such self-assem
dots. Here we present a theoretical study of the effect of
external magnetic field on the properties of an exciton in
quantum disk, fully taking into account the Coulomb inte
action between the electron and the hole. The ground-s
energy and binding energy of the exciton are studied a
function of the magnetic field. This allows us to determi
the diamagnetic shift of the exciton, which we find in ve
good agreement with the experimentally observed shift
Wanget al.11 In most of the previous theoretical work , th
diamagnetic shift was only determined for very low values
the magnetic field, where the confinement energy is lar
than the cyclotron energy, and could be approximated
e2^r2&B2/8m.11–13In our calculations, we consider magnet
fields up to 40 T. For such large magnetic fields, the we
field approximation is no longer valid, because now the
clotron energy overcomes the confinement energy and
particles will act rather as free particles in a magnetic field14

We find that the magnetic field dependence of the diam
netic shift can be very closely approximated bybB2/(1
1aB). To be able to make a valid comparison betwe
theory and experiment, we considered for our simulatio
In0.55Al0.45As quantum dots, which were experimental
studied by Wanget al.11

The paper is organized as follows. In Sec. II, we pres
the theoretical model and explain our method of solutio
The results for the exciton ground state and the compar
with the experimental results of Ref. 11 are presented in S
III. In Sec. IV, we describe the effect of changing the di
radius on the exciton energy and diamagnetic shift. The
sults for the exciton energy spectrum are presented in Sec
Our results are summarized in Sec. VI.

II. THEORETICAL MODEL

The Hamiltonian describing our system is given by

H5(
j 51

2

H j~r j !1Vc~r12r2!, ~1!

with
©2001 The American Physical Society11-1
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H j5S pj2
qj

c
A j D 1

2mj~r ! S pj2
qj

c
A j D1Vj~r j !, ~2!

where the indicesj 51,2 correspond to the electron and t
hole with massesm1 ,m2, respectively,Vj (r j ,zj )50 (r j
,R,uzj u,d/2), Vj ,o ~otherwise! is the confinement potentia
with R the radius of the quantum disk andd its thickness,
r j5Axj

21yj
2, Vc(r )52e2/eur u, andqj57e. Here and be-

low the upper and lower sign correspond to electron a
hole, respectively. For convenience we will sometimes a
use the notationse,h instead of 1,2. We allow for a differ
ence in mass between the dot region and the region ou
the dot:mj (r )5mw, j inside the disk andmj (r )5mb, j outside
the disk. In our numerical work, we used the following va
ues for the physical parameters:e512.71, mw,e50.076m0 ,
mb,e50.097m0 , mw,h5mb,h50.45m0 , Ve,o5258 meV, and
Vh,o5172 meV, which are typical for the
In0.55Al0.45As/Al0.35Ga0.65As system.

Using cylindrical coordinatesr j5(zj ,r j ,f j ) the one-
particle Hamiltonian takes the form

H j52
\2

2 S ]

]zj

1

mj

]

]zj
1

1

r j

]

]r j

r j

mj

]

]r j
1

1

r j
2mj

]2

]f j
2D

7
i

2
\vc, j

]

]f j
1

1

8
mjvc, j

2 r j
21Vj~zj ,r j !, ~3!

wherevc, j5eB/mjc are the electron and hole cyclotron fr
quencies and the vector potential is taken in the symmetr

gaugeAÄ1
2 Bref .

The one-particle wave functions are separab
C j (z,r,f)5(1/A2p)eil fj j ,i

l (zj ,r j ), where l 50,61,
62, . . . is theangular momentum, and the wave functio
j j ,i

l (zj ,r j ) are eigenfunctions of the Hamiltonian

H j
l 52

\2

2 S ]

]zj

1

mj

]

]zj
1

1

r j

]

]r j

r j

mj

]

]r j
D1

\2l 2

2mjr j
2

6
l

2
\vc, j

1
1

8
mjvc, j

2 r j
21Vj~zj ,r j !, ~4!

where the indexi denotes the eigenenergies ofH j
l . As a

consequence of the axial symmetry of our problem, ther
no coupling between the wave functions with different v
ues of the total angular momentumL. Therefore, we can
construct the exciton wave functionCL with fixed total mo-
mentumL as the linear combination

CL~r1 ,r2!5 (
l 52 l m

l m

c l~x!ei ( l /2)(f12f2)1 i (L/2)(f11f2), ~5!

where the functionsc l(x) obey the Schro¨dinger equation

(
j 51

2

H j
l c l~x!1 (

l 852 l m

l m

VC
l 2 l 8~x!c l 8~x!5Ec l~x!, ~6!
20531
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with E the eigenenergy, for brevityx denotes the coordinate
(z1 ,z2 ,r1,r2), VC

l is the matrix element of the Coulomb in
teraction

Vc
l ~x!52

e2

e

1

2p

3( E
0

2p

0df
e2 i l f

A~z12z2!
21r1

21r2
222r1r2 cos~f!

,

~7!

andLm52l m11 is the total number of angular harmonics
the expansion.

A common technique to solve the eigenvalue problem
to use an expansion of the wave function in a suitable se
basis functions. For the typical sizes of the quantum di
considered here, the exciton binding energy is much sma
than the confinement energy. As a consequence, a na
choice is to take the eigenfunctionsj j ,i

l of the one-particle
Hamiltonian. But for our present problem such an approa
runs into obstacles because of the enormous number of b
functions that are required to obtain the binding energy w
sufficient accuracy. Indeed, using the one-particle eigenfu
tions for different values of the angular momentuml and
quantum numberi 51, . . . ,I , one has to calculateLmI 4 ma-
trix elements of the Hamiltonian. In the present case of h
wall confinement, the one dimensional eigenfunctions
too complicated in order to obtain an analytical express
for the Coulomb matrix elements. Therefore, a numeri
integration procedure has to be used on the space grid
size Ng5(K3N)2, where K, N are the numbers of grid
points for the longitudinal and transverse directions, resp
tively. In principle, the difficulties in the calculation of th
Coulomb matrix elements can be avoided by applying
appropriate basis, for instance, the nonorthogonal Gaus
basis, which is widely employed in quantum-chemical sim
lations. But in this case there is an increase of the numbe
functions that are needed, leading to difficulties with diag
nalizing a largeLmI 23LmI 2 nonsparse matrix. Note that fo
an arbitrary basis, the numberI 5 i zi r is determined by the
number of one-particle wave functions in the longitudin
( i z) and the radial (i r) directions. The total number of op
erations depends crucially on the considered number of s
bands i z in the z direction. For a small ratiod/R of the
longitudinal to transverse size of the quantum disk as gi
before, we can limit ourself by taking only one subband.15,16

A. 3D exciton problem

For arbitrary values of the ratiod/R we present a numeri
cal technique based on the use of a finite difference sche
Let zk (k51, . . . ,K) andrn (n51, . . . ,N) be some nonuni-
form space grid in the longitudinal and transverse directio
for both electron and hole coordinates. Using the appropr
symmetry conditions for the ground-state wave function
the longitudinal direction]c/]zj (zj50)50 we can limit
ourselves to the regionzj.0. Thus, the first point of thez
grid corresponds toz50. The upper (zK.d/2) and right
1-2
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(rN.R) boundaries of the simulation region correspond
the barrier region where the wave function and its derivati
go to zero. Therefore, the Neumann conditions]c/]zj50,
]c/]r j50 are employed for these boundaries. To obtain
finite difference scheme for the one-particle Hamiltonian,
cluding the discontinuous behavior of the particle mass
external potential, we integrate the expression over
square (zk21/2,z,zk11/2, rn21/2,r,rn11/2), where the
subgrids with noninteger indexes are determined by the r
tions zk11/25(zk111zk)/2,rn11/25(rn111rn)/2,z21/2
5r21/250. Substituting the finite difference expressions
the derivatives of the wave function]c/]z(z5zk11/2)
5(ck112ck)/(zk112zk),]c/]r(r5rn11/2)5(cn112cn)/
(rn112rn) we obtain the following finite difference schem
for the one-particle Hamiltonian:

~Ĥ j
l c!k,n52aj

k,nck11,n2cj
k,nck21,n2bj

k,nck,n11

2dj
k,nck,n211pj

k,nck,n , ~8!

with the coefficients

aj
kÞ1,n5\2~1/mjz

k,n11/mjz
k21,n!/2~zk2zk21!hz,k ,

aj
k51,n50, ~9a!

cj
kÞK,n5\2~1/mjz

k,n11/mjz
k11,n!/2~zk112zk!hz,k ,

cj
k5K,n50, ~9b!

bj
k,nÞ15rn21/2\

2~1/mj r
k,n11/mj r

k,n21!/2~rn2rn21!hr,n ,

bj
k,n5150, ~9c!

dj
k,nÞN5rn11/2\

2~1/mj r
k,n11/mj r

k,n11!/2~rn112rn!hr,n ,

dj
k,n5N50, ~9d!

pj
k,n5aj

k,n1bj
k,n1cj

k,n1dj
k,n1

\2l 2

2rn
2mj

k,n
6

l

2
\vc, j

k,n

1
1

8
mj

k,n~vc, j
k,n!2rn

21Vj
k,n , ~9e!

where hz,k5zk11/22zk21/2, hr,n5(rn11/2
2 2rn21/2

2 )/2. Due
to the discontinuity of the mass and the external potentia
the disk boundary, special care must be taken in the ch
of the expression for its grid values. In the expressions
averaged value of the massesmjz

k,n ,mj r
k,n ,mj

k,n and potential
Vj

k,n are determined by the following relations:

~mjz
k,n!215hr,n

21E
rn21/2

rn11/2
rmj

21~z5zk ,r!dr,

~mj r
k,n!215hz,n

21E
zn21/2

zn11/2
mj

21~z,r5rn!dz,

~mj
k,n!215hz,k

21hr,n
21E

zk21/2

zk11/2
dzE

rn21/2

rn11/2
rmj

21~z,r!dr,
20531
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Vj
k,n5hz,k

21hr,n
21E

zk21/2

zk11/2
dzE

rn21/2

rn11/2
Vj~z,r!r dr.

Once a finite difference HamiltonianĤ5d l ,l 8( j 51
2 Ĥ j

l

1Vc
l ,l 8dM ,M8 has been constructed, we have to develop

technique to obtain the ground state of the sparse matrixĤ.
Here d i , j is the unit matrix, indexM denotes all indexes
corresponding to the space grid. Note that the numbe
nonzero elements of the matrixĤ is only proportional to
Lm

2 Ng . This is a key distinction from the commonly accept
expansion over basis functions, where this number increa
as the second power with the number of functions. Howev
the size of our matrix is still large and therefore direct diag
nalization methods are not suitable for solving our proble
The best approach to find only the lowest eigenvalueEg and
eigenvectorC is the inverse iteration method, where the e
genvectorC i at the i th stage of the iteration is obtained b
solving the following equation:

~Ĥ2ld l ,l 8dM ,M8!C̄
i5C i 21, ~10!

with the subsequent normalization

C i5C̄ i /A^C̄ i ,C̄ i&, ~11!

where the bracketŝ,& stand for scalar multiplication. The
eigenenergy is obtained in the usual wayEg

i 5^C i ,ĤC i&.
The value of the parameterl,Eg is chosen such that a
minimum absolute value of the matrix (Ĥ2ld l ,l 8dM ,M8)
corresponds to the ground state of the matrixĤ. There exist
many numerical relaxation techniques to solve the bound
value problem. Using standard methods one has to solve
equation with good precision at each stage of the inve
iteration procedure. Here, we propose a technique that g
eralizes in fact the commonly accepted Gauss-Se
methods17 with inverse iterations. The value of the eigenve
tor C i for the mesh points (l ,m5k1 ,n1 ,k2 ,n2) is obtained
by using the following relation:

C i5~C i 211a i 21Q11Q2!Y S (
j 51

2

pj1Vc
ll 2l D ,

~12!

where

Q15(
j 51

2

~cjC i 21
kj 11

1djC i 21
nj 11

!2 (
l 8. l

l m

Vc
l ,l 8C i 21

l 8 ,

~13a!

Q25(
j 51

2

~ajC i
kj 21

1bjC i
nj 21

!2 (
l 5 l m

l , l 8

Vc
l ,l 8C i

l 8 . ~13b!

For the ground stateC̄ i5C i 21 /(Eg2l), we found that the
maximum rate of convergency is realized by using the f
lowing values of the parameters:a iÞ151/(Eg

i 2l) and
a i 5151.
1-3
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B. 2D exciton problem

For quantum disks with large radiusR@d we use the
adiabatic approach, a technique that was already success
applied in Refs. 15 and 18. Within this approach, we c
write the wave function as

c l~x!5c1~z1!c2~z2!c l~r1 ,r2!, ~14!

wherec j (zj ) corresponds to the ground state of the longi
dinal Hamiltonian

Hz, j52
\2

2

]

]zj

1

mj

]

]zj
1Vj ,z~zj !, ~15!

for electrons (j 51) and holes (j 52), respectively. Since the
wave function penetrates only slightly into the barrier reg
in the radial direction, the longitudinal behavior of the effe
tive massesmj and the confinement potentialsVj ,z can, to
high accuracy, be approximated bymj ,z5mj (z,r j50), Vj ,z
5Vj (z,r j50). Then the wave function of the ground sta
has a simple form inside the disk,c j (uzu,d/2)5cos(kjz),
and outside the disk,c j (uzu.d/2)5exp(2kjuzu), where kj

5A2mw, jE0,z j/\ and k j5A2mb, j (Vo, j2E0,z j)/\. The
energy of the ground stateE0,z j is obtained from the conti-
nuity of the wave function and conservation of the cu
rent m21]c/]z at the boundary (uzu5d). Substituting
expression~14! into the Schro¨dinger equation and integra
ing out the zj coordinates by taking the averag
^c1(z1)c2(z2)uHuc1(z1)c2(z2)&5H2D, we obtain the effec-
tive two-dimensional Hamiltonian

H2D5(
j 51

2 F S pj2
qj

c
A j D 1

2mj8~rj !
S pj2

qj

c
A j D1Vj8~rj !G

1Vc8~r12r2!, ~16!

wherepj52 i\]/]rj , Vj8(r j )5Vj (zj50,r j )2E0,z j , mj8(r j

.R)5mb, j ,

1

m8~r j,R!
5

1

mw, j
E

0

d/2

dzj uc j~zj !u21
1

mb, j
E

d/2

`

dzj uc j~zj !u2,

~17!

and the effective Coulomb interaction is

Vc8~r!52
e2

e E2`

`

dz1dz2

uc1~z1!u2uc2~z2!u2

A~z12z2!21uru2
. ~18!

Using a Gaussian shape for the longitudinal wave function
the ground state, the authors of Ref. 19 have obtained
analytical approximation to the effective Coulomb potent

Vc8~r!52
e2

e

1

A2pg
er2/4g2

K0S r2

4g2D , ~19!

whereK0 is the modified Bessel function. For a system w
infinite barriers the valueg50.277d gives the best fit to the
effective Coulomb potential. As a consequence of the p
etration of the electron and hole into the barrier region,
value of g/d increases with decreasing disk thickness. W
20531
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have found that for our parameters of the quantum diskR
58.95 nm andd53.22 nm, the valueg51.675 nm gave the
best fit to the results obtained from direct numerical calcu
tion of the effective two-dimensional Coulomb potentia
The other parameters of the two-dimensional Hamilton
are E0,ze5116.06 meV, E0,zh538.13 meV, Voe8 5141.94
meV, Voh8 5133.87 meV,mwe8 50.080m0 , mbe8 50.097m0 ,
mwh8 5mbh8 50.45m0, where indicese and h correspond to
electron and hole, respectively. The numerical diagonal
tion technique for the 2D Hamiltonian was presented alre
in Ref. 15.

III. RESULTS AND DISCUSSION FOR THE EXCITON
GROUND STATE

We have calculated the exciton ground-state energy
exciton binding energy as a function of an applied magne
field. We used for our simulations the physical parameters
the In0.55Al0.45As self-assembled quantum dots, used in
experiment by Wanget al.11 The studied disks have a heigh
of 3.22 nm and a radius of 8.95 nm. The other parame
were already given above. Figure 1 shows the probab
distribution of the electron~solid curves! and hole~dashed
curves! uc i(r i)u2, i 5e,h, for the ground state along (z
50,r) and perpendicular (z,r50) to the disk under consid
eration. Along ther direction, the electron and hole are co
fined within the disk, but along thez direction, there is ap-
preciable penetration into the barrier material.

In Fig. 2 the exciton ground-state energy is plotted a
function of the magnetic field. This ground-state energy
given by

E05Ee1Eh1Eexc, ~20!

FIG. 1. Side view of the quantum disk together with the electr
~solid curves! and hole ~dashed curves! probability distribution
along the (r,z50) and the (r50,z) direction.
1-4
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whereEe and Eh are the single electron and hole energi
respectively, andEexc is the exciton binding energy. Th
solid curve shows the result of the full 3D treatment of t
problem, whereas the dashed and dotted curves are c
lated using the adiabatic approximation. For the latter ca
we make a distinction between the cases with and with
correlation. For the case without correlation, the Coulo
interaction is calculated using the single-particle electron
hole wave functions:

Eexc52
e2

e K cechU 1

ure2rhu UcechL . ~21!

The total exciton wave function was used in order to cal
late the energy with correlation

Eexc52
e2

e K ce,hU 1

ure2rhu Uce,hL . ~22!

Figure 2 shows an enhancement of the ground-state en
with increasing magnetic field for all three cases. The co
lation energy, which is given by the difference between
dotted and dashed curve, is 3.4 meV forB50 T and in-
creases to 4.4 meV forB540 T.

The inset shows the exciton binding energy as a func
of the magnetic field. Again we see an increase for incre
ing magnetic field as expected. This is not surprising,
cause by applying higher magnetic fields the particles
more confined, they are closer to each other and there
more tightly bound, which implies an increase of the bindi
energy. The assignment of the different curves is the sam

FIG. 2. The exciton ground-state energy as a function of
magnetic field. The solid curve shows the result obtained within
full 3D treatment, whereas the dashed and dotted curves are
result for the adiabatic approximation, respectively, with and w
out correlation. In the inset, the exciton binding energy is plott
The same curve conventions are used as in the main figure.
20531
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that for the ground-state energy~see main figure!. Note that
the inclusion of correlation increases the binding energy
B50 T with 14.5% while the full 3D treatment of the prob
lem further increases the binding energy with 13.6%.

From our calculation of the exciton ground-state ener
we can easily determine the diamagnetic shift of the excit
which is defined byDE5E(B)2E(B50). The result is
shown in Fig. 3, where the curves indicate our calcula
results for the three cases, as mentioned above, and
squares are the experimental results, as obtained by W
et al.11 From the comparison between the different a
proaches and experiment, we notice~1! for B,8 T all three
approaches give practically the same result, which agr
perfectly with experiment,~2! whenB is increased above 8 T
the three theoretical approaches have the same qualitatiB
dependence, but there are small quantitative difference
the slope of the curves, and~3! in the high-field regime, i.e.,
B.20 T, our theoretical results substantially underestim
the experimental result. The masses used for these calc
tions were the ones given by Wanget al. in Ref. 11 (mw,e
50.076m0 , mb,e50.097m0 , mh50.45m0), and it is clear
that here the heavy-hole mass was used. However, in Re
it was argued that for a magnetic field normal to the sam
plane, the light-hole mass should be used. Because the
height is much smaller than the dot radius, heavy-hole ch
acter is expected in the growth direction for the ground h
state and light-hole character for in-plane motion. Includi
the effects of strain, they find for InAs dots thatme
50.055m0 andmh50.1m0. Combining this with values for
AlAs,21 we find by linear interpolation to the materia
In0.55Al0.45As values of 0.080m0 and 0.2m0 for, respectively,
the electron and the hole mass. The result for the diam
netic shift in this case is depicted as the dot-dashed curv
Fig. 3. This result is in very good agreement with the expe
mental results.

In previous theoretical work, only the exciton energy a
wave function atB50 were considered, from which the dia
magnetic shift can be calculated asDE5bB2, where b
5e2^r2&/8m and ^r2& is the mean quadratic electron-ho

e
e
he
-
.

FIG. 3. The diamagnetic shift of the exciton energy as a fu
tion of an external magnetic field. The curves are our theoret
results within different approximations and the squares are the
perimental results of Wanget al. ~Ref. 11!.
1-5
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distance. This is a good approximation in the case of l
magnetic fields, when the magnetic confinement is m
lower than the confinement due to the quantum dot. Ho
ever, for higher magnetic fields, the magnetic confinem
becomes more important. Then the quadratic dependenc
the energy shift on the magnetic field will change into
linear dependence, due to the formation of Landau levels
this case the energy shift becomesDE5\(vc,e1vc,h),
where vc,i5eB/mi is the cyclotron frequency. With this
knowledge, one can construct the function

DE5
bB2

11aB
, ~23!

which interpolates between the small and large magne
field behavior and whereb anda are taken as fitting param
eters. This formula gives for low magnetic fields (B→0) the
already known expressionDE5bB2, and for high magnetic
fields (B→`) DE5(b/a)B. It turns out that Eq.~ 23! gives
an extremely good fit to the numerical results of Fig. 3
b56.37 meV T22 and a53.0631023 T21. We found
that the fitted curve reproduces the solid curve in Fig
so well that they cannot be discriminated. We also calcula
b using the expressionb5e2^r2&/8m for B→0, which
resulted into the valueb58.89 meV T22. This value is
substantially higher than the one found by fitting. In the oth
limit, we compareDE5(b/a)B with DE5\vc5(\e/m)B,
where m5memh /(me1mh) is the effective exciton mas
in InyAl12yAs. Such a calculation gives\e/m51.69
31023 eV T21, which is smaller than the fitted valueb/a
52.0831023 eV T21. The fitted results within the adia
batic approximation with and without correlation are resp
tively, b57.56 meV T22, b/a51.5231023 eV T21 and
b57.79 meV T22, b/a52.7531023 eV T21. Using the
light-hole mass instead of the heavy-hole mass, we fi
respectively, the following fitted and calculated resul
b58.84 meV T22, b/a52.351 meV T21 and b514.08
meV T22, b/a51.96 meV T21.

In the above calculations we investigated the adiab
shift, which is a relative quantity, and therefore in the calc
lation of the ground-state energy, the band gap was no
cluded. But when we want to compare the experimental
citation energy, the band gap of the disk material is need
For B50 T, using the heavy-hole mass, we found a grou
state energy ofE5Ee1Eh1Eexc5152.2 meV, using Eq.
~20!. For the case of the light-hole mass, which gave a be
agreement with the experimental results, the ground-state
ergy atB50 T is 178.5 meV. To obtain the total excitatio
energy, as measured in photoluminescence experiments,
by Wanget al.,11 the band-gap energyEg has to be added to
this equation:

E5Ee1Eh1Eexc1Eg . ~24!

For our study, we considered In0.55Al0.45As/Al0.35Ga0.65As
quantum dots. Without strain, the band-gap energy of the
material was obtained by linear interpolation between
result for InAs (Eg50.41 eV! and AlAs (Eg53.13 eV!,
which results inEg51.634 eV, whereas we found for th
barrier material thatEg52.083 eV.22,23 The difference in
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band-gap energy between the two materials isDEg5450
meV. For the total exciton energy, we now findE51.634
eV10.1532eV~0.1793eV!51.787 eV~1.8133 eV! using re-
spectively the heavy-~light-! hole mass. From Ref. 11, w
know that the band-gap difference between the dot and
barrier material, corrected for strain effects, isDEg5430
meV. This means that the band gap of the dot material
increased by 20 meV. For the total exciton energy, this gi
us the final result ofE51.81 eV using the heavy-hole mas
and E51.83 eV using the light-hole mass. In the expe
ments, forB50 T, the value ofE51.894 eV was found,
which gives reasonable agreement with our theoretical re
in view of the fact that the composition of the alloy in the d
can, for example, not be uniform, the dot size is not kno
with high accuracy, etc.

Next, we investigated the effect of an applied magne
field on the exciton characteristics, using the parameters
responding to the solid curve in Fig. 3. First we conside
the one-particle characteristics^ze

2&1/2, ^zh
2&1/2, ^re

2&1/2, and
^rh

2&1/2, where ze ,zh and re ,rh are the electron and hol
coordinates along thez axis and in the plane, respectivel
The results are shown in Fig. 4 and were calculated using
full 3D approach. The figure shows clearly the squeezing
the exciton due to the magnetic field, especially for the
plane direction. The mean quadratic electron-hole sep
tions ^reh

2 &1/2 and ^zeh
2 &1/2 give an idea of the size of the

exciton. We definedreh5ure2rhu andzeh5uze2zhu. Notice
that the size of the exciton is comparable to the disk size.
see a more substantial decrease with increasing mag
field than for the single-particle wave function, which agre
with the increased binding of the exciton.

In Fig. 5 the percentage of the electron~right scale in Fig.
5! and hole~left scale in Fig. 5! wave function in the dot is
shown with varying magnetic field. Both the results for t
2D case with correlation and the full 3D treatment were c
culated. More than 90% of the hole is inside the dot wh
only 71273 % of the electron is inside the dot. With increa
ing magnetic field both the electron and hole become m
confined inside the dot, indicating further squeezing due

FIG. 4. The extent of the electron, the hole, and the exciton a
function of the magnetic field, along the radial~a! and longitudinal
~b! direction, respectively.
1-6
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MAGNETIC-FIELD DEPENDENCE OF THE EXCITON . . . PHYSICAL REVIEW B63 205311
the magnetic field. For the hole, we observe a flattening
the curve at very high magnetic fields, both for the 3D c
culation and for the 2D case. For high magnetic fields,
hole wave function is in ther direction totally confined in
the dot. However, there is still some extent of the wave fu
tion outside the dot in thez direction. But since the magneti
field has almost no influence on thez direction, applying
higher magnetic fields will not cause a further increase of
amount of the wave function inside the dot, and there w
always be a small part of the wave function outside the d

Figures 6~a! and 6~b! are contour plots of the density dis
tribution, of the electron and hole, respectively, along a cr
section in the middle of the quantum dot perpendicular to
y direction. The electron density is defined as

uce~re ,ze!u25E dzhE drhuce,h~re ,ze ,rh ,zh!u2 ~25!

and similarly for the hole. The solid curves show the res
for the case ofB50 T, whereas the dashed curves are
result forB540 T. The dashed square indicates the posit
of the disk, which is only one-fourth of the actual disk siz
Due to the magnetic field, we see an increase in the den
inside the dot, both for electrons and holes. Along ther
direction the particles become more centered in the middl
the dot due to the squeezing by the applied magnetic fi
However in thez direction, it seems at first sight that there
an expansion instead of the expected squeezing, but a c
look ~by normalizing the function to its central value! tells us
that this is not the case. Of course, the magnetic field
applied along thez axis and has no direct influence on th
exciton behavior in thez direction. In ther direction, how-
ever, the magnetic field brings the electron and hole clo
together. This implies a stronger interaction and we exp
that this effect should also be seen in thez direction. This is
also the case for the mean quadratic hole^zh

2&1/2 and
electron-hole separation̂zeh

2 &1/2 ~see Fig. 4!, which decrease
as a function of the magnetic field.

FIG. 5. The percentage of the wave function in the dot a
function of the magnetic field, both for the electron~right axis! and
the hole~left axis!. The solid curves are the result for the 2D ca
with correlation; the dashed curves are the result obtained wi
the full 3D treatment.
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IV. EFFECT OF CHANGING THE DISK RADIUS

We investigated the effect of the size of the disk on t
exciton binding energy, which is depicted in Fig. 7 for th
case with the full 3D treatment, for the parameters cor
sponding to the solid curve in Fig. 3. When varying the d
radius fromR51 nm up toR515 nm~the dot thickness was
fixed tod53.22 nm!, we see initially a strong increase of th
exciton energy by more than a factor of 2 and beyondR
.2.5 nm it decreases slowly for increasingR. In the ‘‘large’’
R region, the binding energy increases for decreasing d
radius due to the larger confinement of the electron and h
wave function. The electron and hole are forced to sit clo
to each other, which leads to an enhancement of the bind
energy. This behavior continues until the disk radius reac
a value ofR.2.5 nm, where the binding energy reaches
maximum value ofEexc547 meV. The decrease in the bind
ing energy with decreasingR is due to the fact that the wav
function of the particles start to spill over into the barri
material, i.e., the electron and the hole become less confi

a

in

FIG. 6. Contour plot of the~a! electron and~b! hole density in a
plane through the center of the quantum dot with sizeR58.95 nm
andd53.22 nm. The plot shows only one quarter of the total spa
Results are shown forB50 T ~solid curves! and for B540 T
~dashed curves!.
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K. L. JANSSENS, F. M. PEETERS, AND V. A. SCHWEIGERT PHYSICAL REVIEW B63 205311
which leads to a much smaller interaction and therefor
lower binding energy. This is due to the competition betwe
the confinement kinetic energy and the barrier material
tential energy. This is confirmed by Fig. 8, where the p
centage of the electron and hole wave function inside the
is shown as function of the disk radius. ForR.6 nm these
percentages increase very slowly with increasingR. We
never reach 100% because of the substantial penetratio
the wave function in the barrier material along thez direction
~the thickness of the dot is onlyd53.22 nm!. Note that for
R51 nm less than 2% of the electron wave function b
24% of the hole wave function is inside the dot.

The effect of a magnetic field on the dot size depende
of the exciton energy is also shown in Fig. 7 for the case
B540 T. Notice that the largestB dependence is found fo
very small and very largeR. In both situations the confine
ment of the electron and hole is smallest, and conseque
the ratio between the magnetic energy and the confinem
energy is largest. For intermediate dot size, i.e., 3 nm,R
,7 nm we observe the smallest effect of a magnetic field

FIG. 7. The exciton binding energy as a function of the d
radiusR for a disk thickness ofd53.22 nm. Results are shown fo
two magnetic fields as indicated.

FIG. 8. The percentage of the electron~solid curve! and hole
~dashed curve! wave function in the dot as a function of the dis
radiusR. Symbols are the calculated points and the curve is a gu
to the eye.
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the exciton energy. This is the region of dot size where
confinement potential is able to strongly confine the elect
and hole to a small region in space.

We also investigated the effect of varyingR on the
electron-hole separation, both in ther and in thez direction.
Figure 9 shows the result for̂zeh

2 &1/2, and we see a rathe
high starting value atR51 nm, decreasing strongly for in
creasingR. This high value at smallR follows from the fact
that a large part of the wave function is outside the dot,
the particles are not really confined anymore, which me
that they are farther away from each other. The inset of F
9 shows the electron-hole separation in ther direction. Also
here, we start with a high value at very smallR, followed by
a strong decrease and a minimum ofA^reh

2 &53.12 nm atR
.3 nm. Further increasingR, we find again an enhanceme
of ^reh

2 &1/2, which initially is linear inR, but for R.12 nm
starts to level off and reaches a constant value in the li
R→`.

The low-magnetic-field diamagnetic coefficientb
5e2^reh

2 &/(8m), can be obtained from the results of Figs.
and 9, wherem is the effective exciton mass. The result
shown in Fig. 10 and we see a similar behavior as for

e

FIG. 9. Electron-hole separation in thez direction as a function
of R. The inset shows the radial electron-hole separation as a f
tion of R.

FIG. 10. The diamagnetic coefficientb as a function of the disk
radiusR for d53.22 nm.
1-8
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MAGNETIC-FIELD DEPENDENCE OF THE EXCITON . . . PHYSICAL REVIEW B63 205311
radial electron-hole separation~inset of Fig. 9!. When calcu-
lating b, we took into account the variation of the effectiv
exciton massm with varying disk radius. The effective mas
is defined as

1

m
5

1

me
1

1

mh
, ~26a!

with

1

me
5

12Pw

me,b
1

Pw

me,w
, ~26b!

whereme,b50.097m0 and me,w50.076m0 are the effective
electron masses in, respectively, the barrier and the well
Pw is the probability to find the electron in the well. In Fig
8 we showed that there is a considerable change ofPw for
varyingR, and this will have an effect onme andm. For the
hole we have the same mass in and outside the well,
thereforemh50.45m0 is independent ofR. In Fig. 11, the
evolution ofme andm is depicted as a function ofR. We see
that for very small disks, where most of the wave function
outside the dot, the value ofme converges tome,b as ex-
pected. For larger disk radii, this value decreases and foR
→` it reaches the limitme50.0809m0, which is larger than
me,w due to the penetration of the electron along thez direc-
tion in the barrier because of the small thickness of the d

V. EXCITON ENERGY SPECTRUM

The higher radial excited states (NÞ0) for angular mo-
mentumL50 are calculated within the adiabatic approxim
tion. The result for a disk with radiusR58.95 nm and thick-
nessd53.22 nm is shown in Fig. 12~a!, which clearly shows
the appearance of an anticrossing of levels for higheN
states, and the energy scale for such states is also sub
tially larger than for the angular momentum states. This
ticrossing is due to the fact that we consider a fixed ang
momentumL for all states, which is a conserved quanti
The states with fixedL are nondegenerate. Again we cons
ered cases of different disk radii and we observe an enha
ment of the anticrossing for smaller disks@Fig. 12~b!# and a

FIG. 11. The effective electron~solid curve! and exciton
~dashed curve! masses as a function of the disk radiusR.
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diminishing of the anticrossing for larger disks@Figs. 12~b!
and 12~c!#.

To study the anticrossing more closely, we considered
disk with R58.95 nm andd53.22 nm ~parameters corre
sponding to the dashed/dotted curve in Fig. 3 were used!. For
the 2D problem, the radial part of the exciton wave functi
for a fixedL can be written as~see also Ref. 15!

c~re ,rh!5 (
k51

k5kn

(
n51

n5kn

( 8
l 5 l m

l 52 l m

3Ckn
l Rk,(L1 l )/2~re!Rn,(L2 l )/2~rh!

3ei ( l /2)(f12f2)1 i (L/2)(f11f2), ~27!

wherek and n correspond to the energy levels of the on
particle problem of electron and hole, respectively, andl is
the relative angular momentum. The sum(8 indicates that
only even values of the relative angular momentuml are
taken whenL is even, and odd values otherwise. By studyi
the values of the coefficientsCkn

l , we could distinguish
which one-particle states contribute most to the total exci
state. In Fig. 13~a!, the symbols on the curves indicate th
dominant term contributing to Eq.~27!. The inset in Fig.
13~b! gives the (l ,n) value corresponding to the differen
symbols. Notice thatk remains 1, whilen can have higher
values, which implies that the hole excited states are mi
into the exciton wave function. The single-particle ho
states have lower energy, due to its higher effective m
Notice that when we connect each symbol by a line,
obtain intersecting levels. Such a spectrum would be
tained if (l ,k,n) would be conserved quantities. Because
the electron-hole interaction the different (l ,k,n) single par-
ticle states are mixed, which leads to the anticrossing of
levels. BecauseL is a conserved quantity, crossings betwe
differentN states are prohibited, and therefore, for a fixedN,
the system is forced to go to a different (l ,k,n) state.

The symbols in Fig. 13~a! indicate only the dominant term
in Eq. ~27!, while the total summation considers typical

FIG. 12. The exciton energy states for different values of
radial quantum numberN, as a function of the magnetic field fo
L50. Four different disk radii are considered:~a! R58.95 nm,~b!
R55 nm, ~c! R515 nm, and~d! R530 nm.
1-9
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K. L. JANSSENS, F. M. PEETERS, AND V. A. SCHWEIGERT PHYSICAL REVIEW B63 205311
about 750 terms. In Fig. 13~b! we show how large the con
tribution of the dominant term is relative to the total sum
all terms. This percentage is defined as

percentage5
uCkn

l u2

(
k,n,l

uCkn
l u2

3100. ~28!

In Fig. 13~b! we only show the result for the case ofN
51,2,5 in order not to overload the figure. We want to e
phasize that, as a function of the magnetic field, the con
bution of the dominant term, which can differ with increa
ing magnetic field, is shown and not the evolution of t
contribution of a particular state. ForN51, the (0,1,1) state
appears to be very stable, as it stays between 85% and
This means that there is very little mixing with other stat
The (0,1,2) state forN52 is also very stable at low fields
but fromB520 T, the percentage drops, which indicates t
another state is becoming important and serious mixing
curs. Finally atB535 T the (21,1,1) state becomes mo
important, which can also be seen in Fig. 13~a!. Now the
percentage of the contribution of this (21,1,1) state is plot-
ted and we see an increase withB. Also for N55, the tran-
sitions between the successive states are clearly visible
Fig. 13~b!. Each dip corresponds to a transition to anoth
state with a consecutive anticrossing of the energy levels
dip indicates strong mixing between two or even three sta
where the dominant state gives only a slightly higher con

FIG. 13. ~a! The higher excited radial states forR58.95 nm and
d53.22 nm. The symbols indicate the (l ,n) value of the most im-
portant single-particle state, wherel is the relative angular momen
tum andn is the radial hole quantum number.~b! The percentage o
the contribution of the most important state as a function of
magnetic field.
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bution than the other important state~s!. We see strong dips
atB512 T andB520 T, which indicate the mixing between
respectively, (0,1,3)↔(1,1,1) and (1,1,1)↔(0,1,3). Com-
parison with Fig. 13~a! shows that these magnetic field va
ues mark also the anticrossings between, respectivelyN
54↔N55 andN55↔N56. The height of the peaks is a
indication of the stability of the state. AtB515 T, e.g., we
see a very strong peak, whereas atB524 T, only a small
peak appears. Comparing with Fig. 13~a! we learn that, at the
region between 20 and 30 T, there is a strong anticross
and, although the system passes through the (0,1,3) s
this state never becomes really important.

In the above discussion, we indicated the states w
( l ,k,n), wherel is an integer number. However, the relativ
angular momentuml is not a good quantum number, becau
the operatorl z does not commute with the Hamiltonian an
more specifically with the Coulomb interaction. Therefo
the expectation value of the operatorl z5(\/ i )]/](f1
2f2) is expected not to be an integer. In Fig. 14 the exp
tation value^ l z& is depicted for the differentN states as a
function of the magnetic field, wherêl z& is calculated by

^ l z&5 (
l ,k,n

l uCkn
l u2. ~29!

Notice that^ l z& tends to approach an integer valuel when
one of the terms in the sum of Eq.~27! dominates. The
transition between states with differentl is continuous. The
more stable a state, the better it approaches an integer v
l. The result forN57, e.g., starts from̂l z&50 at B50 T,
then increases up to about 0.75\ and atB510 T, drops down
to 21.8\ until B520 T, where it starts to increase agai
more slowly now, up tô l z&50.9\ for B525 T, until finally
atB540 T it drops to less than22.5\. This agrees very well
with the predicted integer values forl in Fig. 13~a!. For other
N states, the agreement might be less good, which is du
the stronger mixing with other states.

Finally, we considered the energy states for different v
ues of the total angular momentumL within the adiabatic
approximation. The result for a disk with radiusR58.95 nm

e

FIG. 14. The expectation value of the relative angular mom
tum operatorl z as a function of the magnetic field, forL50 and
different N states.
1-10
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MAGNETIC-FIELD DEPENDENCE OF THE EXCITON . . . PHYSICAL REVIEW B63 205311
and thicknessd53.22 nm is shown in Fig. 15~a! for the
lowest radial stateN51. Notice that forB50 T, the states
with L and2L are degenerate, which is lifted by a magne
field. The corresponding splitting is the well-known Zeem
splitting. For a smaller disk radius,R55 nm, all energies are
shifted to higher values, the splitting between the ene
levels is larger, and the Zeeman splitting is increased@Fig.
15~b!#. When increasing disk radiusR, i.e., R515 nm and
R530 nm, the difference between the different angular m
mentum levels decreases and the energy shifts to lower
ues@Figs. 15~c! and 15~d!#. As in the previous case of dif
ferent N states, here we also studied which single-parti
( l ,k,n) states are most important in the sum of Eq.~27! and
the percentage of their contribution. Figure 16~a! denotes, for
a disk with radiusR58.95 nm and thicknessd53.22 nm,
the energies of the differentL states, and the symbols ind
cate which (l ,n) state is most important at a particular val
of the magnetic field. Note that here bothk andn remain 1.
In Fig. 16~b! the percentage contribution of the particul
( l ,k,n) state is depicted. We see a transition occurring
the L521,22 and23 states. This follows also from Fig
17, where the expectation value^ l z& of the relative angular
momentum operator is plotted. For theL50,1,2,3 states,̂l z&
remains quite constant, whereas for the otherL states,̂ l z&
decreases towards a lower value ofl. Because the total an
gular momentum is a conserved quantity, energy levels
responding to differentL values are allowed to cross; they d
not mix.

VI. CONCLUSIONS

We calculated the ground-state energy~and the excited
states!, the binding energy, and the diamagnetic shift of
exciton in a quantum disk with radiusR and thicknessd for
a hard wall confinement potential of finite height. The ma
mismatch between the dot material and the surrounding
terial was taken into account. Our calculation is based on
finite difference technique, where we used three differ
theoretical approaches, which include the electron-hole

FIG. 15. The exciton energy states for different values of
total angular momentumL, as a function of the magnetic field. Fou
different disk radii are considered:~a! R58.95 nm~b! R55 nm,~c!
R515 nm, and~d! R530 nm.
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relation on different levels. The 3D treatment is valid f
arbitrary values ofR andd and provides an ‘‘exact numeri
cal’’ treatment of the exciton problem. ForR@d, the adia-
batic approach is applicable and here we distinguish
cases with and without correlation. The latter only uses
single-particle wave functions in order to calculate the ex
ton binding energy, whereas the first uses the total exc
wave function.

Under the influence of an external applied magnetic fi
up to 40 T, we find an increase of the exciton ground-st
energy and binding energy. The electron-hole separa
shows a squeezing of the exciton due to the magnetic fi

e

FIG. 16. ~a! The energy states for different total angular m
mentumL for a disk withR58.95 nm andd53.22 nm. The sym-
bols indicate the dominant single-particle (l ,n) states and~b! gives
the percentage of the contribution of this term to the total wa
function.

FIG. 17. The expectation valuêl z& for the differentL states as
a function of the magnetic fields.
1-11
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This can also be seen from the electron and hole densitie
and around the dot. Our theoretical results of the diamagn
shift are in very good agreement with the experimental
sults of Ref. 11 if we assume that the light hole is involved
the exciton. This gives credibility to our modeling of sel
assembled dots by a quantum disk, at least for the diam
netic shift of the exciton energy.

When considering a varying disk radiusR, we found a
strongly decreasing exciton binding energy with decreas
R for very smallR values, which indicates that the dots a
too small to confine the exciton. This explanation is corrob
rated by an investigation of the radial electron-hole sepa
tion and of the percentage of the wave function in the d
which indeed shows that, for very smallR, a large part of the
wave function is situated outside the dot. In the largeR re-
gime the exciton binding energy decreases with increasinR
and approaches a constant value forR→`. In the presence
of an applied magnetic field, the exciton binding energy a
proaches a constant value for large disks much earlier t
for the B50 T case, indicating that the dot confinement
dominated by the magnetic confinement.

Results for higher excited radial states,N.0, show an
anticrossing of levels that is more pronounced for small
radius. The total angular momentumL is a conserved quan
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tity. The relative angular momentuml, however, is not a
good quantum number. Because of the coupling between
electron and the hole, the exciton wave function is a lin
combination of all possible one-particle wave functions. W
investigated which (l ,k,n) states contribute most and ho
large its contribution is to the total exciton wave functio
Furthermore we investigated the expectation value of
relative angular momentum operatorl z , which is not quan-
tized and varies with the magnetic field. The degeneracy
the different total angular momentum states is lifted due
the presence of the confinement potential and the Zee
splitting. This splitting decreases with increasing dot rad
R. Also here we investigated the contribution of the on
particle states to the total exciton wave function. The ene
states with different total angular momentumL can cross
with varying magnetic field, becauseL is a good quantum
number.
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