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Magnetic-field dependence of the exciton energy in a quantum disk
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The ground-state energy and binding energy of an exciton, confined in a quantum disk, are calculated as a
function of an external magnetic field. The confinement potential is a hard wall of finite height. The diamag-
netic shift is investigated for magnetic fields up to 40 T. Our results are appliedAd, InAs/Al,Ga _,As
self-assembled quantum dots, and good agreement with experiments is obtained if we assume that the light
hole is involved in the exciton formation. Furthermore, we investigated the influence of the dot size on the
diamagnetic shift by changing the disk radius. The exciton excited states are found as a function of the
magnetic field. The relative angular momentum is not a good quantum number and its value changes with the
magnetic field strength.
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[. INTRODUCTION dots. Therefore, we believe that our quantum disk model is a
reasonable first-order approximation to such self-assembled
Recently, there has been much interest in the study oflots. Here we present a theoretical study of the effect of an
quantum dots, which are structures in which the charge ca€xternal magnetic field on the properties of an exciton in the
riers are confined in all three dimensions. Especially the selfquantum disk, fully taking into account the Coulomb inter-
assembled quantum dbtare considered to be very promis- action between the electron and the hole. The ground-state
ing for possible applications, such as quantum dot lesersenergy and binding energy of the exciton are studied as a
due to their large confinement energy and high optical qua|funCti0n of the magnetic field. This allows us to determine
ity. The dots are formed by the Stranski-Krastanow growttthe diamagnetic shift of the exciton, which we find in very
mode in which a material, e.g., JAl;_,As, is deposited on good agre%ment with the experimentally observed shift by
another material with a substantially different lattice param-Wanget al=~ In most of the previous theoretical work , this
eter, e.g., AlGa,_,As> The lattice mismatch, which is re- diamagnetic shift was only determined for very low values of
quired for this growth process, is typically about 4%hi- the magnetic field, where the confinement energy is larger
tially, the growth is two dimension4PD), but after a critical ~ than_the cyclotron energy, and could be approximated by
thickness of a few monolayers, coherent islands are forme@(p?)B*/8u.**"**In our calculations, we consider magnetic
due to strain effects. The shape of the formed islands is ndtelds up to 40 T. For such large magnetic fields, the weak-
well known, but is expected to resemble a lens or a pyramidfield approximation is no longer valid, because now the cy-
The density, size, and shape of the dots are strongly depeflotron energy overcomes the confinement energy and the
dent on the growth conditions. Typical sizes of dots varyParticles will act rather as free particles in a magnetic ftéld.
between the basis size of 7 and 20 nm and a height of a fe¥/e find that the magnetic field dependence of the diamag-
nanometers. The density of the dots is of the ordemnetic shift can be very closely approximated BB%/(1
10 em 22 +aB). To be able to make a valid comparison between
The properties of confined excitons have been the subje¢beory and experiment, we considered for our simulations
of many theoretical studies. Bryanused variational and INossAlossAs quantum dots, which were experimentally
configuration-interaction representations to study excitons istudied by Wangt al**
quantum boxes. Later, matrix diagonalization techniques The paper is organized as follows. In Sec. II, we present
were used to study the exciton energy in a quantum dot witlthe theoretical model and explain our method of solution.
parabolic confinement potential. Song and Ulleaudied the  The results for the exciton ground state and the comparison
effect of noncircular Symmetric structures, and Ha|onen\Nith the experimental results of Ref. 11 are presented in Sec.
et al’ studied the influence of a magnetic field. More re-Ill. In Sec. IV, we describe the effect of changing the disk
cently, Pereyra and Ullainvestigated magnetic-field and radius on the exciton energy and diamagnetic shift. The re-
quantum confinement asymmetry effects on excitons, agaifults for the exciton energy spectrum are presented in Sec. V.
for the case of parabolic confinement. These studies haveur results are summarized in Sec. VI.
shown a strong competition between the quantum dot size,
Coulomb interaction, and magnetic confinement. II. THEORETICAL MODEL
In the present work, we model the quantum dots by a o . o
quantum disk with a hard-wall confinement of finite hefght ~ The Hamiltonian describing our system is given by
and include the mass mismatch between the dot and barrier )
material. In experimentally realized samples of self-
assembled dots one has typically a variation of sizes between H= ]Zl Hj(r) +Ve(ri=ra), 1)
the dots of a few percent, and a gradient in the alloy content
was found recently® as well as variations in the shape of the with
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with E the eigenenergy, for brevity denotes the coordinates
Vi), @ (z1,25,p1p5), Vi is the matrix element of the Coulomb in-
teraction

| O D P
Hi‘(pi cAi)ZmJ-(r)(pj ¢

where the indice§=1,2 correspond to the electron and the )
hole with masseam;,m,, respectively,V;(p;,z)=0 (p; Vi (y) = — e_ i
<R,|z|<d/2), V| , (otherwisg is the confinement potential =T

with R the radius of the quantum disk amdits thickness,

pj=\/xj-2+yj2, V(r)=—¢€%€r|, andg;=Fe. Here and be- ™ e ile

low the upper and lower sign correspond to electron and XZ f odep T )
hole, respectively. For convenience we will sometimes also 0 \/(21_22) +pitps—2p1p; COL P)
use the notations,h instead of 1,2. We allow for a differ- (7)

ence in mass between the dot region and the region outside
the dot:m;(r)=m, ; inside the disk anen;(r)=m, ; outside andLm=2I,TpL 1 is the total number of angular harmonics in
the disk. In our numerical work, we used the following val- the expansion.

ues for the physical parameters=12.71, m,, .= 0.076m,, A common technique to solve the eigenvalue problem is
My o=0.097Mg, My, =M, ,=0.45m,, Veo:258 meV, and to use an expansion of the wave function in a suitable set of

Vi ,=172 meV, which are typical for the basis functions. For the typical sizes of the quantum disks

INg 55Al g 4AS/Al g 3G ay ssAS System. considered here, the exciton binding energy is much smaller
Using cylindrical coordinates;=(z;,p;,¢;) the one- than the confinement energy. As a consequence, a natural
particle Hamiltonian takes the form choice is to take the eigenfunctior.j%i of the one-particle

Hamiltonian. But for our present problem such an approach

20 9 1 g 10 p 0 1 2 runs into obstacles because of the enormous number of basis

H=-5|lo—t—— o —+ —0—— functions that are required to obtain the binding energy with
2\ dzym; oz, pj dp; M dpj - pfmy; 9} sufficient accuracy. Indeed, using the one-particle eigenfunc-
. s 1 tions for different values of the angular momentunand
Il—hwc ot —mngjpjz-i'Vj(Zj ), (3)  Quantum number=1, ..., one has to calculate,|* ma-
2 Mgy 8 ’ trix elements of the Hamiltonian. In the present case of hard

wall confinement, the one dimensional eigenfunctions are
wherew, ;=eB/m;c are the electron and hole cyclotron fre- topo complicated in order to obtain an analytical expression
quencies and the vector potential is taken in the symmetricgbr the Coulomb matrix elements. Therefore, a numerical
gaugeA=%Bpe¢. integration procedure has to be used on the space grid with
The one-particle wave functions are separablesize Ny=(KxN)?, whereK, N are the numbers of grid
‘Ifj(z,p,qS):(l/\/ﬁ)e”d’g} (zj.pj), where 1=0,+1, points for the longitudinal and transverse directions, respec-
+2,... is theangular momentum, and the wave functionstively. In principle, the difficulties in the calculation of the

g} ((z;,p;) are eigenfunctions of the Hamiltonian Coulomb matrix elements can be avoided by applying an
' appropriate basis, for instance, the nonorthogonal Gaussian

basis, which is widely employed in quantum-chemical simu-
lations. But in this case there is an increase of the number of
functions that are needed, leading to difficulties with diago-
nalizing a largel | >X L |2 nonsparse matrix. Note that for
an arbitrary basis, the numbeéri,i, is determined by the
number of one-particle wave functions in the longitudinal
(i,) and the radial i() directions. The total number of op-
where the index denotes the eigenenergies Idg. As a  erations depends crucially on the considered number of sub-
consequence of the axial symmetry of our problem, there ibandsi, in the z direction. For a small ratial/R of the

no coupling between the wave functions with different val-longitudinal to transverse size of the quantum disk as given
ues of the total angular momentum Therefore, we can before, we can limit ourself by taking only one subbantf
construct the exciton wave functiol, with fixed total mo-

mentumL as the linear combination A. 3D exciton problem

o ﬁ2616’+13pj(9+ﬁ2|2+|h
= — 4 — = +—hw~

1 453
+§mjwc,jpj+vj(zj,f)j): 4

- For arbitrary values of the ratid/R we present a numeri-
W\ (Fy,Fp) = z P (x) el B1= 6 +1(L2 01+ 42) | (5 cal technique based on the use of a finite difference sch_eme.
S Letz, (k=1,... K) andp, (n=1,... N) be some nonuni-
form space grid in the longitudinal and transverse directions
where the functions/'(x) obey the Schidinger equation for both electron and hole coordinates. Using the appropriate
symmetry conditions for the ground-state wave function in
2 Im , , the longitudinal directiond/dz;(z;=0)=0 we can limit
> Hilo+ 2 Ve (¢ (0 =E¥'(x), (6 ourselves to the regiog;>0. Thus, the first point of the
=1 "=l grid corresponds t@=0. The upper £x>d/2) and right
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(pn>R) boundaries of the simulation region correspond to
the barrier region where the wave function and its derivatives

go to zero. Therefore, the Neumann conditieng dz;=0,

dyl dp;=0 are employed for these boundaries. To obtain the
finite difference scheme for the one-particle Hamiltonian, in-
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T Zk+1/2 Pn+1/2
V}('”=hzvklhp,ﬁf dzf Vi(z,p)p dp.

Zk—1/2 Pn—1/2

Once a finite difference Hamiltoniami =&, |,/ 37_;H|

cluding the discontinuous behavior of the particle mass and-Vg' duu/ has been constructed, we have to develop a
external potential, we integrate the expression over theechnique to obtain the ground state of the sparse mhitrix

square g 1p<z<Zyii, Pn-12<p<pn+12), Where the

Here 6; j is the unit matrix, indexM denotes all indexes

subgrids with noninteger indexes are determined by the relazorresponding to the space grid. Note that the number of

tions

the derivatives of the wave functiody/dz(z=2z. 1)
= (1= W) (21— 20,9 Ip(p=pn+ 112) = (Pn+ 21— )/

(pn+1— pn) We obtain the following finite difference scheme

for the one-particle Hamiltonian:

(H: w)k,n: - a]kyn’;kar in— Clj(’n‘//kfl,n_ b]kyn'/fk,nJrl
—d¥ "y s 1+ P Y, ©®)
with the coefficients

al = A2 UM+ UM 22— 2 ),
ak=1n_q, (9a)
PN = A2 LM+ 1l ™ 12( 2 — Z) Dy
ck=Kn_q, (9b)
b} = ppy— g 2L+ UM )2 py— p- 1)y,
b}(,n:lZO, (90

d}('nisznJrl/th( 1/m}(,}n+ 1/m|j(};n+1)/2(pn+l_ Pn)hp,n ,

df" =0, (9d)
k,n kn+bkn+ kn+dkn+ h2|2 _,_Iﬁ k,n
pln=3ak King ok K, + ok
J J J J J zpﬁmlj('n 2 C,j
1 kng k2 2 k,n
+ oM (o)) prt Vi, (9¢)

g8 !

_ _.2 2
where h, =21~ 2172, Npn=(Pns 12— Pr-12)/2. Due

21127 (Zkr 112 12,pn1 12= (P 1 F P0) 12,2112
=p-1,=0. Substituting the finite difference expressions for

nonzero elements of the matrit is only proportional to
rang . This is a key distinction from the commonly accepted
expansion over basis functions, where this number increases
as the second power with the number of functions. However,
the size of our matrix is still large and therefore direct diago-
nalization methods are not suitable for solving our problem.
The best approach to find only the lowest eigenvéyend
eigenvector¥ is the inverse iteration method, where the ei-
genvector¥' at theith stage of the iteration is obtained by
solving the following equation:

(H_)\5|’|/5M’M/)q—fi:\1,iil, (10)

with the subsequent normalization

V=W NP, (11
where the bracket$,) stand for scalar multiplication. The
eigenenergy is obtained in the usual waly=(¥' HW').

The value of the parametet<Ey is chosen such that a
minimum absolute value of the matri>d:|(—)\5,,|,5M,M,)
corresponds to the ground state of the matttixThere exist
many numerical relaxation techniques to solve the boundary
value problem. Using standard methods one has to solve the
equation with good precision at each stage of the inverse
iteration procedure. Here, we propose a technique that gen-
eralizes in fact the commonly accepted Gauss-Seidel
methods’ with inverse iterations. The value of the eigenvec-
tor W' for the mesh pointsl(m=k;,n;,k,,n,) is obtained

by using the following relation:

2
‘I’i:(q’i—l“‘ai—l@l"'@z)/ (21 pj+V!—>\),
=
(12

to the discontinuity of the mass and the external potential at
the disk boundary, special care must be taken in the choic&here

of the expression for its grid values. In the expressions the
,m" and potential

n k,n

averaged value of the masse#z' ,mj,
V}"” are determined by the following relations:

Pn+1/2

k,ny—1_,—1 -1/5_

(mjz ) _hp,nf pm; (z=2z,p)dp,
Pn—1/2

Zn+1/2

(m,-k'p“)’1=h£,§J

Zn—-1/2

ZK+1/2 Pn+1/2 1
dz pm; (z,p)dp,

Zk—1/2 Pn—1/2

m; Y(z,p=pn)dz

(M)~ t=h,ch, p

2 Im
®1:,21 (Wi b rdwith— > Vil
= ">

(139

1<’

2
0,=2, (Wi +p Wi h— > vi'wl (13
=1 =

m

For the ground stataiz\lfi_ll(Eg—)\), we found that the
maximum rate of convergency is realized by using the fol-
lowing values of the parameterm#l:ll(Eb—)\) and
[ 1 .
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B. 2D exciton problem

For quantum disks with large radiu8>d we use the
adiabatic approach, a technique that was already successfully
applied in Refs. 15 and 18. Within this approach, we can
write the wave function as

W (X)=1(21) ¥a(22) Y1 (p1.p2)s (14

where;(z;) corresponds to the ground state of the longitu-
dinal Hamiltonian

HZ’J_ 2 (92J mJ (9ZJ +VJ'Z(Z])7 (15)
for electrons [=1) and holesj=2), respectively. Since the
wave function penetrates only slightly into the barrier region
in the radial direction, the longitudinal behavior of the effec-
tive massesn; and the confinement potential§ , can, to
high accuracy, be approximated by ,=m;(z,p;=0), V; ,
=Vj(z,p;=0). Then the wave function of the ground state
has a simple form inside the disky;(|z|<d/2)=cosk;2),
and outside the disky;(|z|>d/2)=exp(-«;|Z), wherek;
=\2my, Eo /i and «j=2my, (Vo ;—Eq,)/h. The FIG. 1. Side view of the quantum disk together with the electron

energy of the ground statg,,; is obtained from the conti- (solid curve$ and hole (dashed curvesprobability distribution
nuity of the wave function and conservation of the cur-along the p,z=0) and the p=0,z) direction.

rent m 19y/9z at the boundary |¢|=d). Substituting

expression(14) into the Schrdinger equation and integrat- have found that for our parameters of the quantum dRsk,
ing out the z coordinates by taking the average =g 95nm andi=3.22 nm, the valug/=1.675 nm gave the
(¥1(21) ¥o(22) |H|91(21) ¥2(22)) = H?®, we obtain the effec-  pest fit to the results obtained from direct numerical calcula-
tive two-dimensional Hamiltonian tion of the effective two-dimensional Coulomb potential.
The other parameters of the two-dimensional Hamiltonian

InAlAs
AlGaAs

2
Ho= S (pj— 9 A (p,—— 9 Aj) V! (pp) are EOVZ?= 116.06 meV, Eo,lzh: 38.13 meV,, V!.=141.94
I ¢ 2m/(p) c meV, V/,=133.87 meV,m,,=0.080n,, m/,=0.097m,
m;,,= My, = 0.45m,, where indicese and h correspond to
+Ve(p1—p2), (16)  electron and hole, respectively. The numerical diagonaliza-
. , , tion technique for the 2D Hamiltonian was presented alread

>R):mb1j,

IIl. RESULTS AND DISCUSSION FOR THE EXCITON

1 1 fdlz 1 (e
= dzj| ¢ (z)|>+ —f dz| ¢ (z))|?,
m'(p;<R) M, il43(2)] M. J dr2 il4i(z)] GROUND STATE

0 b,jJd
(17) We have calculated the exciton ground-state energy and
and the effective Coulomb interaction is exciton binding energy as a function of an applied magnetic
field. We used for our simulations the physical parameters of
2 o |(20) |2 tra(25) |2 the Inys5Al0 45AS self-assembled quantum dots, used in the
, e P1(20)|7|P2(25) : o e .
Vi(p)=——| dzdz > 5. (18 experiment by Wangt al.~ The studied disks have a height
€)= V(z1=25)+ | pl of 3.22 nm and a radius of 8.95 nm. The other parameters

Using a Gaussian shape for the longitudinal wave function ofvere already given above. Figure 1 shows the probability
the ground state, the authors of Ref. 19 have obtained afistribution of the electrorfsolid curve$ and hole(dashed

analytical approximation to the effective Coulomb potential CUrves [ i(r) |2, ife:h1 for the ground state along;(
=0,p) and perpendicularz{p=0) to the disk under consid-

p? ) eration. Along thep direction, the electron and hole are con-

2
e
epz""/zKo — (19 fined within the disk, but along the direction, there is ap-

Ve(p)=——
€ \/EV preciable penetration into the barrier material.
wherekK is the modified Bessel function. For a system with N Fig. 2 the exciton ground-state energy is plotted as a
infinite barriers the valug=0.27® gives the best fit to the function of the magnetic field. This ground-state energy is
effective Coulomb potential. As a consequence of the pendiven by
etration of the electron and hole into the barrier region, the
value of y/d increases with decreasing disk thickness. We Eo=E°+E"+ Eqye, (20
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FIG. 3. The diamagnetic shift of the exciton energy as a func-
tion of an external magnetic field. The curves are our theoretical

full 3D

- - - - adiabatic with correlation

adiabatic without correlation 1

150 . L

results within different approximations and the squares are the ex-
perimental results of Wanet al. (Ref. 11).

20 30

40

B (T) that for the ground-state energsee main figure Note that
the inclusion of correlation increases the binding energy at
FIG. 2. The exciton ground-state energy as a function of theB=0 T with 14.5% while the full 3D treatment of the prob-
magnetic field. The solid curve shows the result obtained within thdem further increases the binding energy with 13.6%.
full 3D treatment, whereas the dashed and dotted curves are the From our calculation of the exciton ground-state energy,
result for the adiabatic approximation, respectively, with and with-we can easily determine the diamagnetic shift of the exciton,
out correlation. In the inset, the exciton binding energy is plottedwhich is defined byAE=E(B)—E(B=0). The result is
The same curve conventions are used as in the main figure. shown in Fig. 3, where the curves indicate our calculated
results for the three cases, as mentioned above, and the
whereE® andE" are the single electron and hole energiessquares are the experimental results, as obtained by Wang
respectively, ancE,. is the exciton binding energy. The etal!' From the comparison between the different ap-
solid curve shows the result of the full 3D treatment of theproaches and experiment, we notide for B<8 T all three
problem, whereas the dashed and dotted curves are calcsipproaches give practically the same result, which agrees
lated using the adiabatic approximation. For the latter caseerfectly with experiment,2) whenB is increased above 8 T
we make a distinction between the cases with and withoughe three theoretical approaches have the same qualiftive
correlation. For the case without correlation, the COU|Omhjependence, but there are small quantitative differences in
interaction is calculated using the single-particle electron anghe slope of the curves, ari@) in the high-field regime, i.e.,
hole wave functions: B>20 T, our theoretical results substantially underestimate
the experimental result. The masses used for these calcula-
<¢e¢h 1 ‘¢e¢h>. (21) tions were the ones given by Wamrg al. in Ref. -11 My, e
[re= Tl =0.076ng, My =0.097ny, m,=0.45m), and it is clear
The total exciton wave function was used in order to calcuin@t here the heavy-hole mass was used. However, in Ref. 20
late the energy with correlation it was argued that for a magnetic field normal to the sample
plane, the light-hole mass should be used. Because the dot
e2< o height is much smaller than the dot radius, heavy-hole char-
JR— l,b i
€

E ¢
exc €

Eexc= — acter is expected in the growth direction for the ground hole

[re=rl state and light-hole character for in-plane motion. Including
Figure 2 shows an enhancement of the ground-state energiye effects of strain, they find for InAs dots tha,
with increasing magnetic field for all three cases. The corre=0.055n, and m,=0.1m,. Combining this with values for
lation energy, which is given by the difference between theAlAs,?* we find by linear interpolation to the material
dotted and dashed curve, is 3.4 meV =0 T and in-  Ings5Alg45AS values of 0.08@, and 0.2n, for, respectively,
creases to 4.4 meV fd=40 T. the electron and the hole mass. The result for the diamag-
The inset shows the exciton binding energy as a functiometic shift in this case is depicted as the dot-dashed curve in
of the magnetic field. Again we see an increase for increasFig. 3. This result is in very good agreement with the experi-
ing magnetic field as expected. This is not surprising, bemental results.
cause by applying higher magnetic fields the particles are In previous theoretical work, only the exciton energy and
more confined, they are closer to each other and therefor@ave function aB=0 were considered, from which the dia-
more tightly bound, which implies an increase of the bindingmagnetic shift can be calculated &¥E=8B?, where 3
energy. The assignment of the different curves is the same ase?(p?)/8u and (p?) is the mean quadratic electron-hole

«/fe'“> : (22
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distance. This is a good approximation in the case of low 5.5 1.50
magnetic fields, when the magnetic confinement is much [ 1 I (o)
lower than the confinement due to the quantum dot. How- PRk
ever, for higher magnetic fields, the magnetic confinement R N\ CEE I et o]
becomes more important. Then the quadratic dependence ¢ 50 11451 T
the energy shift on the magnetic field will change into a ! I
linear dependence, due to the formation of Landau levels. Ir§ 1E X L
this case the energy shift becomaE=7%(w,+ wc ), asl 121 PR ]
where w.;=eB/m; is the cyclotron frequency. With this I ] - il
knowledge, one can construct the function i { vir ]
2 S <p§>"2 { 1.0 " B
N ey sof L ]
1+aB’ ] . . T 0.9F T .. """" -
which interpolates between the small and large magnetic- ¢ 10 20 30 40 0 10 20 30 40
field behavior and wherg and « are taken as fitting param- B (M) BM

eters. This formula gives for low magnetic field3-¢0) the
already known expressiohE = B2, and for high magnetic
fields B— =) AE=(B/a)B. It turns out that Eq( 23) gives

an extremely good fit to the numerical results of Fig. 3 for

B=6.37 /%eVT_Z and a=3.06<10"° T_.l- We found  pand-gap energy between the two materials\ By =450
that the fitted curve reproduces the solid curve in Fig. 3nev. For the total exciton energy, we now fif=1.634

so well that they cannot be discriminated. We also calculategv+0_15326,\(0.17939\):1_787 e\(1.8133 eV using re-

B using the expressioB=e?(p®)/8u fcz)r B—0, which  gpectively the heavyflight-) hole mass. From Ref. 11, we
resulted into the valugs=8.89 ueVT “. This value is  know that the band-gap difference between the dot and the
substantially higher than the one found by fitting. In the othetyarrier material, corrected for strain effects, A€ =430
limit, we compareAE=(8/a)B with AE=fiw.=(%€/u)B,  meV. This means that the band gap of the dot material has
where u=memy/(me+my) is the effective exciton mass jncreased by 20 meV. For the total exciton energy, this gives
in In,Al;_yAs. Such a calculation givesie/u=1.69 s the final result oE=1.81 eV using the heavy-hole mass
X107 eV T *, which is smaller than the fitted valu/«  and E=1.83 eV using the light-hole mass. In the experi-
=2.08<107% eVT % The fitted results within the adia- ments, forB=0 T, the value ofE=1.894 eV was found,
batic approximation with and without correlation are respecyyhjch gives reasonable agreement with our theoretical result
tively, B=7.56 ueVT ?, Bla=152x10"% eVT ' and in view of the fact that the composition of the alloy in the dot
B=7.79 peVT ? Bla=2.75<10"% eVT % Using the can, for example, not be uniform, the dot size is not known
light-hole mass instead of the heavy-hole mass, we findyith high accuracy, etc.

respectively, the following fitted and calculated results: Next, we investigated the effect of an applied magnetic
B=8.84 ueVT ? pla=2.351 meVT' and B=14.08 field on the exciton characteristics, using the parameters cor-

pneVT 2 Bla=1.96 meVT™ responding to the solid curve in Fig. 3. First we considered
In the above calculations we investigated the adiabati¢he one-particle characteristi¢g?)'2, (z2)'2 (p2)*2 and

shift, which is a relative quantity, and therefore in the calcu-<pﬁ>1/z where z,z, and p.,py, are the electron and hole

lation of the ground-state energy, the band gap was not i, ginates along the axis and in the plane, respectively.
cluded. But when we want to compare the experimental €xThe resyits are shown in Fig. 4 and were calculated using the
citation energy, the band gap of the disk material is needed| 3p approach. The figure shows clearly the squeezing of
ForB=0 T, using the heavy-hole mass, we found a groundyne exciton due to the magnetic field, especially for the in-

_ h _ -
state energy oE=E°+E"+E¢=152.2 meV, using Eq. pjane direction. The mean quadratic electron-hole separa-
(20). For the case of the light-hole mass, which gave a bettef, o (p2)Y2 and (Z2)Y2 give an idea of the size of the

e e

agreement with the experimental results, the ground-state e Xciton. We defineg,=|p,— pr| andze,=|z.—z,|. Notice

ergy atB=0 T is 178.5 meV. To obtain the total excitation that the size of the exciton is comparable to the disk size. We

gnevr\?y, as mle?ls%re%m ghotolummescince eﬁperl(;r:jer(ljts, ©-8ee a more substantial decrease with increasing magnetic
y Wanget al,™ the band-gap enerdy, has to be added 10 g0 than for the single-particle wave function, which agrees

this equation: with the increased binding of the exciton.
_ e, gh In Fig. 5 the percentage of the electr@ight scale in Fig.

E=E+E+Eoct By 24 5) and hole(left scale in Fig. 5 wave function in the dot is
For our study, we considered glgAl 5 45AS/Alg 3:Gay 6sAS  shown with varying magnetic field. Both the results for the
guantum dots. Without strain, the band-gap energy of the da@2D case with correlation and the full 3D treatment were cal-
material was obtained by linear interpolation between theculated. More than 90% of the hole is inside the dot while
result for InAs Ey=0.41 eV) and AlAs (E4=3.13 eV, only 71— 73 % of the electron is inside the dot. With increas-
which results inE;=1.634 eV, whereas we found for the ing magnetic field both the electron and hole become more
barrier material tha€,=2.083 eV?? The difference in  confined inside the dot, indicating further squeezing due to

FIG. 4. The extent of the electron, the hole, and the exciton as a
function of the magnetic field, along the radi{a) and longitudinal
(b) direction, respectively.
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FIG. 5. The percentage of the wave function in the dot as a
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the hole(left axig). The solid curves are the result for the 2D case 5 —mm——"7—T—1—
with correlation; the dashed curves are the result obtained within [
the full 3D treatment. i Hole —— B=0T

the magnetic field. For the hole, we observe a flattening of
the curve at very high magnetic fields, both for the 3D cal-
culation and for the 2D case. For high magnetic fields, the
hole wave function is in the direction totally confined in
the dot. However, there is still some extent of the wave func-
tion outside the dot in the direction. But since the magnetic
field has almost no influence on ttedirection, applying
higher magnetic fields will not cause a further increase of the
amount of the wave function inside the dot, and there will
always be a small part of the wave function outside the dot.
Figures 6a) and 6b) are contour plots of the density dis- i
tribution, of the electron and hole, respectively, alongacross ¢ 1t 2 3 4 5 6 7 8 9 10 M
section in the middle of the quantum dot perpendicular to the
y direction. The electron density is defined as

) ]

FIG. 6. Contour plot of théa) electron andb) hole density in a
plane through the center of the quantum dot with $ze8.95 nm
andd=3.22 nm. The plot shows only one quarter of the total space.

2_ e,h 2 Results are shown foB=0 T (solid curve$ and forB=40 T
|¢e(peize)| fdzhf dph|¢ (peazevphvzh)| (25 (dashed curves

and similarly for the hole. The solid curves show the result
for the case oB=0 T, whereas the dashed curves are the
result forB=40 T. The dashed square indicates the position We investigated the effect of the size of the disk on the
of the disk, which is only one-fourth of the actual disk size. exciton binding energy, which is depicted in Fig. 7 for the
Due to the magnetic field, we see an increase in the densityase with the full 3D treatment, for the parameters corre-
inside the dot, both for electrons and holes. Along the sponding to the solid curve in Fig. 3. When varying the disk
direction the particles become more centered in the middle ofadius fromR=1 nm up toR= 15 nm(the dot thickness was
the dot due to the squeezing by the applied magnetic fieldixed tod=3.22 nm), we see initially a strong increase of the
However in thez direction, it seems at first sight that there is exciton energy by more than a factor of 2 and beydéhd

an expansion instead of the expected squeezing, but a closen 5 nm it decreases slowly for increasiRgln the “large”

look (by normalizing the function to its central valuells us R region, the binding energy increases for decreasing disk
that this is not the case. Of course, the magnetic field isadius due to the larger confinement of the electron and hole
applied along the axis and has no direct influence on the wave function. The electron and hole are forced to sit closer
exciton behavior in the direction. In thep direction, how-  to each other, which leads to an enhancement of the binding
ever, the magnetic field brings the electron and hole closegnergy. This behavior continues until the disk radius reaches
together. This implies a stronger interaction and we expeci value ofR=2.5 nm, where the binding energy reaches a
that this effect should also be seen in théirection. This is maximum value OEEXC: 47 meV. The decrease in the bind-
also the case for the mean quadratic hdi)"?> and ing energy with decreasingis due to the fact that the wave
electron-hole separatigz2,)*/? (see Fig. 4, which decrease function of the particles start to spill over into the barrier
as a function of the magnetic field. material, i.e., the electron and the hole become less confined,

IV. EFFECT OF CHANGING THE DISK RADIUS
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FIG. 7. The exciton binding energy as a function of the disk  FIG. 9. Electron-hole separation in taelirection as a function
radiusR for a disk thickness ofl=3.22 nm. Results are shown for of R The inset shows the radial electron-hole separation as a func-
two magnetic fields as indicated. tion of R.

which leads to a much smaller interaction and therefore &he exciton energy. This is the region of dot size where the
lower binding energy. This is due to the competition betweerconfinement potential is able to strongly confine the electron
the confinement kinetic energy and the barrier material poand hole to a small region in space.
tential energy. This is confirmed by Fig. 8, where the per- We also investigated the effect of varyirlg on the
centage of the electron and hole wave function inside the datlectron-hole separation, both in theand in thez direction.
is shown as function of the disk radius. FlRE-6 nm these Figure 9 shows the result fdz2,)"/% and we see a rather
percentages increase very slowly with increasRgWe  high starting value aR=1 nm, decreasing strongly for in-
never reach 100% because of the substantial penetration ofeasingR. This high value at smaR follows from the fact
the wave function in the barrier material along théirection  that a large part of the wave function is outside the dot, so
(the thickness of the dot is only=3.22 nn). Note that for the particles are not really confined anymore, which means
R=1 nm less than 2% of the electron wave function butthat they are farther away from each other. The inset of Fig.
24% of the hole wave function is inside the dot. 9 shows the electron-hole separation in ghdirection. Also
The effect of a magnetic field on the dot size dependencéere, we start with a high value at very smallfollowed by
of the exciton energy is also shown in Fig. 7 for the case of strong decrease and a minimum focpy =3.12 nm atR
B=40 T. Notice that the largest dependence is found for =3 nm. Further increasing, we find again an enhancement
very small and very larg®. In both situations the confine- of (p2 Y2 which initially is linear inR, but for R>12 nm

ment of the electron and hole is smallest, and consequentiftarts to level off and reaches a constant value in the limit
the ratio between the magnetic energy and the confinemepf_, o

energy is largest. For intermediate dot size, i.e., 3<tin The low-magnetic-field diamagnetic coefficien
<7 nm we observe the smallest effect of a magnetic field on- eX(p2.)/(8u), can be obtained from the results of Figs. 8

and 9, whereu is the effective exciton mass. The result is

W77 71 shown in Fig. 10 and we see a similar behavior as for the
g 80 | | I T T T T T T T T T T T T T
[0 L
£ aof ]
£ i
= 60 L [
S [
5 ~ 30F -
=] L Jd | r
3 40 F
© > [
= S 20f ]
o 20t - -
= —&— electron [S=%
k) --#-hole
2 ol 4 10 - 4
n 1 n 1 1 n 1 1 n 1 1
o 2 4 6 8 10 12 14 16 A
R (nm) 0 [ 1 N 1 . 1 N 1 N 1 . 1 N 1

FIG. 8. The percentage of the electr(olid curvg and hole R (nm)
(dashed curvewave function in the dot as a function of the disk
radiusR. Symbols are the calculated points and the curve is a guide FIG. 10. The diamagnetic coefficieftas a function of the disk
to the eye. radiusR for d=3.22 nm.
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FIG. 11. The effective electror(solid curvé and exciton FIG. 12. The exciton energy states for different values of the
(dashed curvemasses as a function of the disk radris radial quantum numbeN, as a function of the magnetic field for

L=0. Four different disk radii are considergd) R=8.95 nm,(b)

radial electron-hole separatigimset of Fig. 9. When calcu- R=5 nm,(¢) R=15 nm, and(d) R=30 nm.
lating 8, we took into account the variation of the effective ) ] o
exciton masg with varying disk radius. The effective mass diminishing of the anticrossing for larger diskSigs. 12b)

is defined as and 12c)].
To study the anticrossing more closely, we considered the
1 1 1 disk with R=8.95 nm andd=3.22 nm(parameters corre-
; = He + m_h (263 sponding to the dashed/dotted curve in Fig. 3 were useait
_ the 2D problem, the radial part of the exciton wave function
with for a fixedL can be written agsee also Ref. 15
i: 1_Pw+ Pw ' (26b) k=kp n=k, I:—lr,n
Me  Mep  Mew Wpep)= 2 2 2
k=1 n=1 I=ln

wherem, ,=0.097n, and m,,,=0.076n, are the effective
electron masses in, respectively, the barrier and the well and %!

P,, is the probability to find the electron in the well. In Fig. CraRicu+yePe)Rn -l on)
8 we showed that there is a considerable changepfor
varying R, and this will have an effect om, and .. For the
hole we have the same mass in and outside the well, angherek andn correspond to the energy levels of the one-
thereforem;,= 0.45m, is independent oR. In Fig. 11, the particle problem of electron and hole, resp.ect-lvely, aisl
evolution ofm, and u is depicted as a function & We see the relative angular momentum. The s indicates that
that for very small disks, where most of the wave function isOnly even values of the relative angular momenturare
outside the dot, the value ah, converges tam,,, as ex- taken wherl is even, and odd values otherwise. By studying

pected. For larger disk radii, this value decreases an®for the values of the coefficient€,,,, we could distinguish

— oo it reaches the limitn,=0.0809n,, which is larger than which one-particle states contribute most to the total exciton
me,w due to the penetration of the electron a|0ng Zihbrec- state. In F|g 1&), the Symbols on the curves indicate the

tion in the barrier because of the small thickness of the diskdominant term contributing to E¢27). The inset in Fig.
13(b) gives the [,n) value corresponding to the different

V. EXCITON ENERGY SPECTRUM symbols. Notice thak remains 1, whilen can have higher
values, which implies that the hole excited states are mixed
The higher radial excited statebl¢ 0) for angular mo- into the exciton wave function. The single-particle hole
mentumL =0 are calculated within the adiabatic approxima-states have lower energy, due to its higher effective mass.
tion. The result for a disk with radiuR=8.95 nm and thick- Notice that when we connect each symbol by a line, we
nessd=3.22 nm is shown in Fig. 43), which clearly shows obtain intersecting levels. Such a spectrum would be ob-
the appearance of an anticrossing of levels for hidter- tained if (,k,n) would be conserved quantities. Because of
states, and the energy scale for such states is also substdhe electron-hole interaction the differerti,n) single par-
tially larger than for the angular momentum states. This anticle states are mixed, which leads to the anticrossing of the
ticrossing is due to the fact that we consider a fixed angulalevels. Because is a conserved quantity, crossings between
momentumL for all states, which is a conserved quantity. differentN states are prohibited, and therefore, for a fiked
The states with fixed are nondegenerate. Again we consid-the system is forced to go to a differedtk,n) state.
ered cases of different disk radii and we observe an enhance- The symbols in Fig. 1&) indicate only the dominant term
ment of the anticrossing for smaller diskSig. 12b)] and a  in Eq. (27), while the total summation considers typically

X gl (112)(¢1= b2) +i(LI2)($1+ b2) (27
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404 (1,2 o (21) A i . .
[ > (1.2) A * (-3,1) (0); bution than the other important stéde We see strong dips
30 o 10 20 30 a0 atB=12 T andB=20 T, which indicate the mixing between,
B (T) respectively, (0,1,3)(1,1,1) and (1,1,1¢-(0,1,3). Com-

parison with Fig. 18) shows that these magnetic field val-

FIG. 13. (a) The higher excited radial states fler=8.95 nm and ues mark also the anticrossings b_etween, respectl\.NaIy,
d=3.22 nm. The symbols indicate thef) value of the most im- —4—N=5 andN=5—N=6. The height of the peaks is an
portant single-particle state, wherés the relative angular momen- indication of the stability of the state. BA=15T, e.g., we
tum andn is the radial hole quantum numbéb) The percentage of S€€ a very strong peak, whereasBat 24 T, only a small
the contribution of the most important state as a function of thepeak appears. Comparing with Fig.(&Bwe learn that, at the
magnetic field. region between 20 and 30 T, there is a strong anticrossing

and, although the system passes through the (0,1,3) state,
about 750 terms. In Fig. 18) we show how large the con- this state never becomes really important.
tribution of the dominant term is relative to the total sum of In the above discussion, we indicated the states with

all terms. This percentage is defined as (I,k,n), wherel is an integer number. However, the relative
angular momenturhis not a good quantum number, because
C:(n|2 the operatot, does not commute with the Hamiltonian and
percentage= —— X 100. (280  more specifically with the Coulomb interaction. Therefore
2 |C:<n|2 the expectation value of the operatby=(%/i)d/d(¢p,
k.n,l — ¢,) is expected not to be an integer. In Fig. 14 the expec-

tation value(l,) is depicted for the differenN states as a

In Fig. 13b) we only show the result for the case Bf  fncion of the magnetic field, whexg,) is calculated by

=1,2,5 in order not to overload the figure. We want to em-
phasize that, as a function of the magnetic field, the contri- o

bution of the dominant term, which can differ with increas- (I)= 2 1|Cy2. (29

. . X . . I,k,n

ing magnetic field, is shown and not the evolution of the

contribution of a particular state. Fbr=1, the (0,1,1) state Notice that(l,) tends to approach an integer valughen
appears to be very stable, as it stays between 85% and 95%ne of the terms in the sum of Eg27) dominates. The
This means that there is very little mixing with other states.transition between states with differenis continuous. The

The (0,1,2) state foN=2 is also very stable at low fields, more stable a state, the better it approaches an integer value
but fromB=20 T, the percentage drops, which indicates thal. The result forN=7, e.g., starts fron{l ,)=0 atB=0 T,
another state is becoming important and serious mixing octhen increases up to about O47&nd atB=10 T, drops down
curs. Finally atB=35 T the (—1,1,1) state becomes most to —1.8: until B=20 T, where it starts to increase again,
important, which can also be seen in Fig.(@3 Now the  more slowly now, up tdl,)=0.9 for B=25 T, until finally
percentage of the contribution of this-(,1,1) state is plot- atB=40 T it drops to less thar 2.5:. This agrees very well

ted and we see an increase wighAlso for N=5, the tran-  with the predicted integer values fbin Fig. 13a). For other
sitions between the successive states are clearly visible frold states, the agreement might be less good, which is due to
Fig. 13b). Each dip corresponds to a transition to anotherthe stronger mixing with other states.

state with a consecutive anticrossing of the energy levels. A Finally, we considered the energy states for different val-
dip indicates strong mixing between two or even three stateges of the total angular momentumwithin the adiabatic
where the dominant state gives only a slightly higher contri-approximation. The result for a disk with radiRs=8.95 nm
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total angular momenturh, as a function of the magnetic field. Four S 60
different disk radii are considereth) R=8.95 nm(b) R=5 nm,(c) % L
R=15 nm, andd) R=30 nm. Q 50
and thicknessd=3.22 nm is shown in Fig. 18) for the 40

lowest radial statédN=1. Notice that forB=0 T, the states
with L and—L are degenerate, which is lifted by a magnetic B(M

ﬂel.d'.The Correspondlng Sp“mr.]g is the well-known .Zeeman FIG. 16. (a) The energy states for different total angular mo-
splitting. For a smaller disk radiuR=5 nm, all energies are ..+ for a disk withR=8.95 nm andi=3.22 nm. The sym-
shifted to higher values, the splitting between the €Nerg¥ols indicate the dominant single-particler() states andb) gives

levels is larger, and the Zeeman splitting is increa$d.  the percentage of the contribution of this term to the total wave
15(b)]. When increasing disk radiug, i.e., R=15 nm and  fynction.

R=30 nm, the difference between the different angular mo-

mentum levels decreases and the energy shifts to lower vaje|ation on different levels. The 3D treatment is valid for
ues[Figs. 1%c) and 18d)]. As in the previous case of dif- arbjtrary values oR andd and provides an “exact numeri-
ferentN states, here we also studied which single-particleca|” treatment of the exciton problem. F&sd, the adia-
(1,k,n) states are most important in the sum of B2jf) and  patic approach is applicable and here we distinguish the
the percentage of their contribution. Figurgd6denotes, for  cases with and without correlation. The latter only uses the
a disk with radiusR=8.95 nm and thicknesd=3.22 nm,  single-particle wave functions in order to calculate the exci-
the energies of the differertt states, and the symbols indi- ton binding energy, whereas the first uses the total exciton
cate which (,n) state is most important at a particular value wave function.

of the magnetic field. Note that here bdttandn remain 1. Under the influence of an external applied magnetic field
In Fig. 16b) the percentage contribution of the particular yp to 40 T, we find an increase of the exciton ground-state
(I,k,n) state is depicted. We see a transition occurring fofenergy and binding energy. The electron-hole separation

theL=—1,-2 and -3 states. This follows also from Fig. shows a squeezing of the exciton due to the magnetic field.
17, where the expectation valg,) of the relative angular

momentum operator is plotted. For the=0,1,2,3 stateg ,) 1.0 = . . .
remains quite constant, whereas for the othestates(!,)
decreases towards a lower valueloBecause the total an- 0SF ]
gular momentum is a conserved quantity, energy levels cor- T2
responding to differenit values are allowed to cross; they do = =
; S -3
not mix. S ]
A -1]
VI. CONCLUSIONS Vo0 e ]
2
We calculated the ground-state enel@yd the excited A5F ]
stateg, the binding energy, and the diamagnetic shift of an
exciton in a quantum disk with radil® and thicknessl for 2.0 fTTTTTI R —— '-=3
a hard wall confinement potential of finite height. The mass 0 10 ' 20 ' 30 40

mismatch between the dot material and the surrounding ma-
terial was taken into account. Our calculation is based on the
finite difference technique, where we used three different FIG. 17. The expectation valug,) for the differentL states as
theoretical approaches, which include the electron-hole cora function of the magnetic fields.

B(M
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This can also be seen from the electron and hole densities tity. The relative angular momentuiy however, is not a
and around the dot. Our theoretical results of the diamagnetigood quantum number. Because of the coupling between the
shift are in very good agreement with the experimental re€lectron and the hole, the exciton wave function is a linear
sults of Ref. 11 if we assume that the light hole is involved incombination of all possible one-particle wave functions. We
the exciton. This gives credibility to our modeling of self- investigated which I(k,n) states contribute most and how
assembled dots by a quantum disk, at least for the diamagdarge its contribution is to the total exciton wave function.
netic shift of the exciton energy. Furthermore we investigated the expectation value of the
When considering a varying disk radii® we found a relative angular momentum operatgr, which is not quan-
strongly decreasing exciton binding energy with decreasingized and varies with the magnetic field. The degeneracy of
R for very smallR values, which indicates that the dots arethe different total angular momentum states is lifted due to
too small to confine the exciton. This explanation is corrobothe presence of the confinement potential and the Zeeman
rated by an investigation of the radial electron-hole separasplitting. This splitting decreases with increasing dot radius
tion and of the percentage of the wave function in the dotR. Also here we investigated the contribution of the one-
which indeed shows that, for very sm&l| a large part of the particle states to the total exciton wave function. The energy
wave function is situated outside the dot. In the laRyee-  states with different total angular momentumcan cross
gime the exciton binding energy decreases with increaRing with varying magnetic field, becaudeis a good quantum
and approaches a constant value Rer . In the presence number.
of an applied magnetic field, the exciton binding energy ap-
proaches a constant value for large disks much earlier than
for the B=0 T case, indicating that the dot confinement is
dominated by the magnetic confinement. Part of this work is supported by the Flemish Science
Results for higher excited radial statédé>0, show an Foundation(FWO-VI), BOF-GOA, and IUAP-IV. K.L.J. is
anticrossing of levels that is more pronounced for small dosupported by IWT and V.A.S. was supported by DWTC.
radius. The total angular momentumis a conserved quan- Discussions with Dr. M. Hayne are gratefully acknowledged.
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