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Simulation of Rayleigh-Benard convection using a lattice Boltzmann method
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and Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
(Received 6 September 1996

Rayleigh-Beard convection is numerically simulated in two and three dimensions using a recently devel-
oped two-component lattice Boltzmann equatioBE) method. The density field of the second component,
which evolves according to the advection-diffusion equation of a passive scalar, is used to simulate the
temperature field. A body force proportional to the temperature is applied, and the system satisfies the Bouss-
inesq equation except for a slight compressibility. A no-slip, isothermal boundary condition is imposed in the
vertical direction, and periodic boundary conditions are used in horizontal directions. The critical Rayleigh
number for the onset of the Rayleigh+B#d convection agrees with the theoretical prediction. As the Rayleigh
number is increased higher, the steady two-dimensional convection rolls become unstable. The wavy instability
and aperiodic motion observed, as well as the Nusselt number as a function of the Rayleigh number, are in
good agreement with experimental observations and theoretical predictions. The LBE model is found to be
efficient, accurate, and numerically stable for the simulation of fluid flows with heat and mass transfer.
[S1063-651%97)06203-X

PACS numbe(s): 47.20.Bp, 05.20.Dd, 02.70.Rw

[. INTRODUCTION capability of simulating thermal effects simultaneously with
the fluid flows. Obviously the temperature distribution in a
Recently the lattice Boltzmann equati¢hBE) method flow field is of central interest in heat transfer problems. In
has been developed as a computational fluid dynamicmost geophysical flows, the temperature difference is the
(CFD) method. This method originated form a boolean fluiddriving mechanism of the motion of the fluid. More impor-
model known as the lattice gas automdt&A) [1,2] which  tantly, when part of the fluid system undergoes a phase tran-
simulates the motion of fluids by particles moving and col-sition, as in the boiling and evaporation processes, the evo-
liding on a regular lattice. The averaged fluid variables, suchution of the temperature field is directly coupled with the
as the density and velocity, were shown to satisfy equationfiuid dynamics. Since the LBE method has the most advan-
similar to the Navier-Stokes equations. The LBE method imtage in the simulation of complex fluids with multiple phases
proves this idea by following only the ensemble-averagedind phase transitions, it is necessary to develop the capabil-
distribution functions, therefore eliminating the time- ity of simulating thermodynamics with the LBE method.
consuming statistical average step in the original L{ZA In general, the simulation of thermal systems by the LBE
Simplified collision models were later used in place of themethod has not achieved the same success as that of isother-
collision operator derived from the LGA to improve both the mal flows. Theoretically, a LBE model with energy conser-
computational efficiency and the accuracy. Most noteworthyyation can be constructé¢d3,14 to yield a temperature evo-
the simple collision model of Bhatnagar, Gross, and Krookution equation at the macroscopic level. However, the
(BGK) [4] was applied to the lattice Boltzmann equation, model so obtained suffers from severe numerical instability
yielding the so-called lattice BGK mod¢b,6]. The addi- [15], especially in three dimensiori3D). Additional stabili-
tional flexibility in this approach allows the removal of the zation procedures have to be invoked to achieve stability
artifacts of the LGA, specifically the lack of Galilean invari- comparable to that of conventional CFD methods, e.g., finite
ance and the velocity dependent pressure. This method walifference schemes. Moreover, when interparticle forces are
found numerically to be at least as stable, accurate, and conmcluded as in the multiphase models, the energy conserva-
putationally efficient as traditional CFD methods for simula-tion is further complicated by the potential part of the inter-
tion of simple single-phase incompressible floyWs—9]. nal energy. For these reasons constructing a practically us-
More importantly, since fluid motion is simulated at the level able non-ideal-gas LBE model with energy conservation is
of the distribution functions, the microscopic physics of thedifficult if not impossible. Nevertheless, in many circum-
fluid particles can be incorporated easily as in other particlestances where the viscous and compressive heating effects
methods. Many complex fluid phenomena due to interparean be neglecte¢small Brinkman number limji the tem-
ticle interactions, such as capillary phenomena, multipleperature field is passively advected by the fluid flow and
phase flows, and nonlinear diffusion, can be simulated natwsbeys a much simpler passive-scalar equation. This same
rally [10-12. equation also governs the diffusion of each individual com-
In most LBE models so far, only mass and momentumponent in a fluid mixture. By taking advantage of this formal
conservation is implemented. The macroscopic equations @&nalogy between heat and mass transfer, we can simulate the
these models correspond to the Navier-Stokes equation wittemperature field as an additional component of the fluid
an ideal-gas equation of state and a constant temperaturgystem. An early two-component LGA moddlb] exhibited
However it is important and sometimes critical to have thequalitative features of thermal convections. In a previously
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developed multiple component LBE modgl7], we have be easily verified that the 2D distribution function is a de-
shown that the evolution of the concentration fields is Gal-generate case of the 3D version if the flow is two dimen-
ilean invariant and obeys Fick’s law. The diffusivity is inde- sional.
pendent of the viscosity, allowing a changeable Schmidt
number(or Prandtl number in the terminology of heat trans-
fer). This model does not implement energy conservation
and therefore has the same stability as the nonthermal LBE The multiple component LBE model with interparticle in-
models and other conventional CFD methods. By adding onteraction[10] was originally developed for simulation of
more component, the computation efficiency, either memomultiphase flows and phase transitions. The components can
rywise or timewise, is not compromised compared with thebe miscible or partially immiscible depending on the strength
approach of direct implementation of energy conservatiorof the interaction. When the interaction is weak, or in a
because fewer speeds are required for each component. single phase region of a multiphase system, this model can
In this paper, we present the simulation of the Rayleighbe used to simulate diffusion due to various driving mecha-
Benard convectiorfRBC) as an example. Due to its simplic- nisms[24]. In this model, the distribution function of each
ity and the richness of the phenomena, this problem has be@omponent evolves according to Ed). The same form of
extensively studied both theoretically and experimentallythe equilibrium distribution function given by E@) is used
[18—-22 and serves as an excellent benchmark problem fofor all the components except thatand u are calculated
numerical schemes because detailed results are available feeparately for each component. In the absence of any inter-
comparison with numerical computations. In Sec. Il, weaction and external forces, the distribution functions of all
briefly review the multiple component LBE model and thenthe components were assumed to have a common velocity,
formulated it for the simulation of the Boussinesq equationu’. The conservation of the total momentum at each collision
The implementation of the isothermal no-slip boundary con+equires that

A. Multiple component LBE model

dition is also discussed. In Sec. lll, simulation results are s s
presented and compared with theoretical and experimental , 2 MyNsUs MmN,
results. The limitation and some further extensions of this u = = o, ©)

method are discussed in Sec. IV.

where S is the number of components in the system);,

T4, and n,=3,ng are the molecular mass, the relaxation
The following single-component lattice Boltzmann equa-time, the number density of the componentrespectively,

tion with BGK collision term describes the evolution of the and m,n,u,=m,=.nJe, is the momentum of component

Il. NUMERICAL METHOD

distribution functionn,(x,t) in spacex and timet: o calculated from its distribution function?. When the
1 forceF, is applied to componernt, the momentum has to be
Na(X+e,,t+1)—ny(xt)=— ;[na(x,t)— nf,fQ)(x,t)], incremented correspondingly. This was done by replaaing

in Eq. (2) with u’"+ 7,F,/p,. The forceF, in general in-
cludes both interparticle forces and external forces. For

a=1,...pb 1) nearest-neighbor interaction, the following form of the inter-
_ . particle force was proposed as it conserves the total momen-
The set ofb vectors{e,;a=1,... b} pointing from each  {,n of the system and yields an adjustable equation of state

lattice site to its neighboring sites forms the discretized veyt the macroscopic level:

locity space of the distribution function. The macroscopic

number densityn(x,t), and velocity,u(x,t), of the fluid are

obtained frorm, asn=23n, andnu==_,n,e,. Equation(1) __ O

represents the relaxation of the distribution function to its Fo %Z? g"”za" Votxt &€, @
equilibrium valuen{®®, which is a function oh andu only.

The choice ofn{*™® has to ensure that the macroscopic fluid where y, is an arbitrary function of the number density of
equation obtained from Eq1) by the Chapman-Enskog cal- hea ,th gomponent.

culation[23] agrees with the Navier-Stokes equations. The |, the most general multiple component LBE model with
functional form ofn{*¥ depends on the structure of the lat- interparticle interaction and external forces, there are three
tice and is usually not uniquely determined. For square angpes of diffusions due to different driving mechanisf24].
cubic lattices in 2D and 3D, the following form uﬁf“) was  They areordinary diffusion pressure diffusionand forced

shown to yield Navier-Stokes equations by Qetral. [6]: diffusion With the equilibrium distribution functions given
9 3 by Eq. (2), the pressure diffusion does not appear; if a com-
u-u ion i i
(eq) 136Ut (eu)2— mon acceleration is applied to all the components, namely
Na ™ =Wah 1+3€,-u 2(9"’1 W 2 | @ F,=p,0, forced diffusion is also absent. The only type of

diffusion left is the ordinary diffusion due to concentration
Herew, is a function of|e,| and depends on the number of gradients which obeys Fick’s law. In addition, a component,
speeds included in the model. In the present work, 9 and 1B.g., componer, can be made to behave as a passive scalar
velocities are used in 2D and 3D computations, respectivelyby setting its molecular mass to zero together with its inter-
Thew,'s were given as 4/9, 1/9, and 1/36 ﬂ%l=0,1,\/§ in  action with all the other components, namehs—0 and
2D and 2/9, 1/9, and 1/72 fde,|=0,1,/3 in 3D[6]. tcan  G,s—0 for =1, ... S—1. This component will not con-
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tribute to the total momentum of the mixture. It is simply ancy force is in the opposite direction of the gravity. As the
advected “passively” and diffuses into the main flow, hav- temperature difference between the two boundaries is raised
ing no effect on the flow. above a certain threshold, the static conductive state becomes
For the study of the RBC, we employ a two-componentunstable, and convection occurs abruptly.
system; component 1 represents the motion of the fluid and The well-known Boussinesq approximation is often used
component 2 simulates a passive temperature field. The dig the study of natural convection. With this approximation,
tribution functions of the two components evolve accordingthe material properties are assumed to be independent of
to Egs. (1) and (2), with u in Eq. (2) being replaced by temperature except in the body force term, where the fluid
u; + 7.9 for both components. Since the molecular masses aflensityp is assumed to be a linear function of the tempera-
the two components no longer appear in the dynamic equature, namelyp/p.,,=1+8(T—T.,). Herep,, andT,, are the
tions, they are set to unity. The density and the fluid velocitydensity and temperature at the reference point, Anihe
are calculated from the distribution function of component 1constant thermal expansion coefficient. The gravitational
aszianj1 andu=u;+g/2 (cf. Ref.[17]). They satisfy the force is thereforep..g+ p..gB(T—T.). After absorbing the
following equations: first term into the pressure, the effective body force is lin-
early proportional to the temperature variation.

19_P+V (pu)=0 5) The Boussinesqg equation can be simulated with the two-
at PR component LBE model by making the external gravitational
accelerationg, in Eq.(6) a linear function of the temperature
au \% ) 0, i.e.,g= —g#e,, whereeg, is the unit vector in the vertical
5y Tu-Vu=- 7+ vVau+tg, (6)  direction andg a parameter controlling the strength of the

force. In Cartesian coordinates, {,z), the lattices are of the
where the pressune is related top by the equation of state sizesL, XL, andL,XL,XL, in 2D and 3D, respectively.
p=3p+ 3G114%(p). In the simulation of RBC, it is sufficient The periodic boundary condition is used in thendy di-
to setG;;=0. The kinematic viscosity is given by rections, and the following no-slip, isothermal boundary con-
dition is used in the direction:

1 1
v=3|n"3 (7 u=0, =0, z=0,
11
as in the ordinary LBE models. The number density of the U=0 9=1 z=L
second component satisfies the following diffusion equation ' ' z
[24]: Since the LBE fluid is always compressible, an externally
an applied force will cause a density variation. This compress-
_2+V.(n2u)zv.(an2)_ (8)  ible effect can be eliminated by absorbing into the pressure
ot term the part of the body force that corresponds to the body

force in the static conductive state, yielding the following net

The temperature field can be simulated by the density field external acceleration:

n,. When the compressibility is negligible as in the small
Mach number limit, the velocity field is approximately z
divergence-free and the temperature field satisfies the follow- g=- 9( 0— L_) €. 12
ing “passive-scalar” equation: z
In the conductive state the above external force vanishes and

0—6+u-V¢9=V-(DV 0), (9) the densit_y field is homoge_neous. o _
at For a given the system size, the characteristic velocity, the
o o Grashof number, the Rayleigh number, and the Prandtl num-
where the diffusivity,D, is given by ber are determined by the three parametersr,, andg in
1 1 the LBE model as the following:
D= § 7'2(1+9g22(//2dl//2/d n,)— 5 . (10) gLf gLZ
ve=1Vgl, Gr=-—%, R=GrPr=——_,
The diffusivity can be tuned independently of the viscosity v v
by changing eitherr, or the interaction strengttg,,. For v 271
simplicity, G,, is also set to zero in the present simulation. Pr=— =—% = (13
The LBE model is a much simplified version of that[i0] D 27-1

since no interparticle interaction is used. The Prandtl number is determined by the two relaxation

times used for the two components. Given the two basic
characteristic dimensionless numbers Pr &dhere is an

In the most common form of RBC, a thin layer of viscous extra degree of freedom in determining, 7,, andg. How-
fluid is confined between two horizontal rigid boundariesever, to ensure that the Mach number is smallhas to be
maintained at different temperatures. When the fluid has &ept small. Once . is chosen, all the parameters in the LBE
positive thermal expansion coefficient, and the gravity is inmodel are determined by the two dimensionless numBers
the same direction of the temperature gradient, the net buoynd Pr.

B. Simulation of the Rayleigh-Beard convection
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C. Implementation of the boundary conditions Using Eq.(2) and noticing that the velocity only has a com-

To implement the isothermal, no-slip boundary condition,pc.’(r"ee)nt parallel to the wall, we can find easily that
we must ensure that, at the boundary, the component simiN=" = N'/6, independent of the local velocity. Heneis the
lating the fluid flow has zero velocity, and the componentdensity at thgth position. From the second part of Hg4),
simulating the temperature field has fixed density. The mas¢e haveN!, + N =nl/3. For any three consecutiyevalues,
flux of the second component represents the heat transpdhere are a total of seven equations relating the six variables
through the boundaries. Usually the LGA and LBE methods\’. to the three density values. On eliminatiNg from the
implement the no-slip boundary condition by reversing theseven equations, we finch2=n!~1+nJ*1; namely, the den-
direction of the incoming particles at the boundary, yieldingsity profile is linear inz as the diffusion equation predicts.
zero averaged velocity. This simple “bounce-back” method At the boundary sites, we must have
was found to be inaccuraf@5,26. In the present work, it
results in errors of up to 50% in the critical Rayleigh num- Ngz N9/3—N° . (16)
ber. More accurate and general methods have been devel-
oped to implement velocity boundary conditions in complex| the computation, the isothermal boundary condition is
geometry27-29. These methods usually involve additional jmplemented by computing the distribution function ele-
computation at the boundary sites. _Here, because t.he boungients in the groupﬁ according to the following equation:
aries are flat planes, both the velocity and the density bound-
ary conditions can be implemented more efficiently.

When analyzing various implementations of boundary
conditions, exact solutions in some simple cases are found to o ] )
be very usefu[28,30. For simplicity, we consider the time- and then updating it using E¢l). Herea andb are any pair
independent one-dimensional situation. All variables depengf indices such thag, ande, are mirror images of each other
only on z, the coordinate perpendicular to the wall, so thatWith respect to the boundary. In addition to satisfying Eq.
the spatial dependence can be noted by a single superscript?- this scheme is also compatible with the no-slip bound-
j, starting from 0 at the lower boundary. The elements of thé''y condition.
distribution fun.ctionsn'a can be classified into three groups,

n'., n_, andn), according to the sign of,-e,. Equation Il. SIMULATION RESULTS
(1) reduces to the following simple form:

nJ=2w,n—ny, (17)

We present the simulation results in this section. The two
) ) 1 . ) ) ) basic characteristic dimensionless numbers are the Rayleigh
nt—nl=—=[nl.—nl*¥] and n)=nf*®. (14  numberR and the Prandtl number Pr. The velocity and time
T reported hereafter are in the unitsigfand the characteristic
time, L,/v., respectively. The diffusion time;=L2%/D is
We assume the distribution functions at all sites includingVP'R in these units.
the boundary sites are updated uniformly using E§4). At
the lower boundary sites, the group$ andn$ are unspeci- A. Onset of Rayleigh-Beard instability
fied. The only available information about the bulk of the
fluid is n® , from which,n? is to be constructed according to
some updating scheme so that a certain hydrodynam
boundary condition is satisfied at the macroscopic level. Th
“bounce-back” scheme simply sets;=n{ for any a and

The critical Rayleigh number at which the static conduc-
tive state becomes unstable was given by the linear stability
'ﬁweory and confirmed by laboratory observations. The static
fonductive state is found to first become unstable to the dis-
e . Pa” turbance of the wave numbéy = 3.117 in thex-y plane
b satisfying &,=—&,. Obviously this in general does not \yhen the Rayleigh number exceeds the critical valu®of
satisfy Eqs(14) with u=0 at the boundary. However, if we _ 1707 762 If thedeviation from the Boussinesq approxi-
use the “bounce-back” scheme to calculate the groln  mation is small, the convection occurs in the form of two-
namely we sehg=np for anya andb satisfyinge,=—&,,  dimensional rolls. Since the development of the instability is
and calculating n} using Egs. (14 with u=0 and very slow at near-critical Rayleigh numbers, the computation
n=6=n° in the computation oﬁ?r(eq), the no-slip boundary has to be carried out for a long time before stable convection
condition will be satisfied. Here the summation is over all theis fully developed. Because the first unstable disturbance is
elements in the group. two dimensional, we conduct the near-critical simulations

The isothermal boundary condition is imposed by fixingprimarily in 2D to save CPU time. The results were com-
the density of the second component at specified values gpared with 3D simulation results for some typical cases.
the boundaries. In the time-independent one-dimensional With periodic boundary condition, the wave number in
situation, the density profile of the passively convected comx-y plane can only take discretized values given by
ponent can be exactly solved from E¢s4). We sum all the

elements of the distribution in each of the groups and note K 2:(& 2+(ﬂ>2 N, ny=0,1.2 (18)
the sum as\N, ==n’. . By summing Eqgs(14) we find 27L, Ly Ly B Yo et
In 2D, the aspect rati, /L, has to be a multiplication of
NIZIoNL = — E[Nj — Ni(ea (15) 2m/k. to accommodate the disturbance of the wave number
* * Tt T k.. Of course this can only be satisfied approximately on a
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FIG. 1. Typical time histories of the peak vertical velocity in2D  FIG. 3. Growth rates of the instability are found to depend lin-
simulation during the onset of the instability. The Rayleigh numbersearly on the Rayleigh number neg. The symbols are the results
are slightly above its critical valu®, . Other parameters aret, ~ of measurement from the time history of the peak vertical velocity,
m,=1, and the system size is 1850. The solid straight lines are and the straight lines are fitted through the data points. The exact
drawn by least-squares fitting, the slope of which gives the growtteritical Rayleigh number is obtained by extrapolating the data to the
rates of the instability. zero growth rate. Three sets of simulations with different values of
7, were performed to determine the effects of differepton the
accuracy. The simulations were performed on a 2DXB lattice

uniform lattice. In the near-critical computation, unless oth- )
and is for P=1.

erwise specified, we chodg=27L,/k. to save computa-
tion cost. ] )
To measure the critical Rayleigh number, computation®f using different values of,. All other parameters were the
were started from the static conductive state at several dif@me in these simulations. A solid straight line is fitted
ferent Rayleigh numbers close R.. An initial small per- through the data points for each set of data. The intersections
turbation was applied to the density field. The growth rate®f the lines with thex axis give the Rayleigh numbers cor-
of the disturbance were then measured and extrapolated f§SPonding to neutral stability. It is to be seen that near the
obtain the Rayleigh number corresponding to zero growttffitical Rayleigh number, using & other than unity, tends
rate. to change the growth rates, which causes an error in the
Shown in Fig. 1 are the typical time histories of the maxi- Prediction of the critical Rayleigh number.
mum velocities in thez direction for three slightly above _We have also measured the critical Rayleigh number for
critical Rayleigh numbers of 1720, 1735, and 1750, respecdifferent Prandtl numbers and with different system sizes.
tively. The other parameters are=Pr, r,=1, andL,=50 for  1he measurement results and the parameters used are sum-
all three runs. The peak velocity is found to grow exponen/narized in Table I. The biggest error seems to have been
tially and then saturate at a finite amplitude. The steady-statg2used by using a large value in the computation. Fortu-
isotherms and the velocity field are shown in Fig. 2 for theNately, this does not impose a significant limitation on the
simulation withR=1750. The growth rates were measuredrange of physical parameters that can be simulated, because
with least-squares fitting in the exponential growth stagefor @ given Rayleigh number;, andr, can always be kept
The fitting results are shown as the straight lines. small by using a smaly. . o
The measured growth rates were plotted against the Ray- Shown in the first part of Table | are five otherwise iden-
leigh number in Fig. 3. Three sets of simulations witn ~ tical runs with different system sizes. The time history of the

—0.55, 1, and 1.5 were performed to investigate the accuradje@k vertical velocity in these runs are plotted in Fig. 4. In
e plot, the starting times were adjusted so that the initial

TABLE |. Critical Rayleigh number obtained by extrapolating
growth rate data at slightly supercritical Rayleigh numbers.

Run no. Ly Pr T1 T R¢ Error
1 50 1 1 1 1707.11  0.04%
2 30 1 1 1 1706.96  0.05%
3 20 1 1 1 1706.87  0.05%
4 10 1 1 1 1716.96  0.54%
5 50 0.1 1 5.5 1715.75 0.47%
6 50 100 1 0.505 1707.21 0.03%
FIG. 2. Steady-state isotherms and velocity field in a two-7 50 1 0.55 0.55 1713.84  0.36%
dimensional simulation with the Rayleigh number of 1750. Thesg 50 1 1.5 1.5 1688.49 1.13%

resolution is 10k 50.
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FIG. 4. Time histories of the peak vertical velocity for different  FIG. 6. The steady-state Nusselt number as function of the Ray-
system sizes. It is to be seen that the simulation results converge fétgigh number in 2D simulations. The LBE results agree with that of
system sizek ,>20. The peak velocity in the 3D simulation has the Clever and Busse for Rayleigh number less than 20 000.

same growth during the early development of the instability and . .
saturates at the same level. The 3D effects peak arband20. convection cells, the superposition of the most unstable
mode k=k.) oriented in thex andy directions, and reaches

its maximum neat=1320[Fig. 5b)]. The fully developed

perturbation levels are the same for all five runs. It can be nvection rolls oriented in one direction seem to SUDDrESS
seen that the convergence is fast and differences between t 2 . . Supp
e orthogonal rolls and the final convection pattern is purely

runs withL,> 20 are insignificant. e . )
Also shown in Fig. 4 is the result of a 3D simulation on atW0 dimensiona[Fig. 5(d)].
128x128x 32 lattice with the same parameters. The growth

rate in the early stage is the same as that in the 2D simula- ) ] ] )
tions. However, the peak velocity overshoots before it satu- The two-dimensional convection pattern characterized by

rates at the same level. Figure 5 displays a series of snafﬁ? rolls is unstable at higher Rayleigh numbers. As the Ray-
shots of the temperature distribution onyag plane lying in ~ 1€igh number is being increased, a series of transitions to
the middle between the two walls at the tintesl047, 1320, More complicated states occur, and the form of the convec-

1524, and 2273. The grey scales from the darkest to thtion becomes both three-dimensional and time dependent,
brightest represent the temperature in the range 0.408nd eventually turbulent at very high Rayleigh number. De-

<< 0.597. The instability starts in the form of an array of tailed numerical simulation of all the complicated transitions
and the different forms of convection requires a large amount

of computation. This is because the form of the convection
depends on both the initial condition and the boundary con-
ditions. A large number of runs have to be performed to
cover the parameter space. In addition, the computation has
to be carried out for a long time due to the large differences
among the time scales in the problem. Here we only present
the simulation results for a few typical situations at moderate
Rayleigh numbers due to the limitation of computer re-
sources.

A two-dimensional simulation at high Rayleigh numbers
was performed on a 10450 lattice with a Prandtl number of
0.71. The simulation was started from the static conductive
state, beginning wittR=2000. After the steady state was
reached, the Rayleigh number was raised step by step to
higher values. The Nusselt numbers measured at the steady
states are plotted in Fig. 6 against the Rayleigh number. The
simulation results of Clever and Busg#l] are also plotted
; _ ; ' - for comparison. Agreement is found at Rayleigh numbers
i less than 20 000. At higher Rayleigh numbers, the LBE

simulation has a lower heat transport. We have raised the

c d
i . Rayleigh number to values as high a$ 16r the same reso-
FIG. 5. Greyscale plot of temperature distribution on the mid-lution. Unlike the thermal LBE mode[15], the present
plane between the two walls &g) t=1047, (b) t=1320,(c) t=  model remains numerically stable.
1524, and(d) t=2273. The gray scales from the darkest to the =~ Shown in Fig. 7 are the steady-state isotherms for some
brightest are mapped to the temperature range 6:4630.597. typical Rayleigh numbers. As the Rayleigh number is in-
The system size is LxLy=128, Lz=32. creased, the temperature gradient near the boundary becomes

B. Higher Rayleigh number
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FIG. 7. Two-dimensional simulation. Iso-
therms at steady states as the Rayleigh number is
raised gradually to(a) 10 000, (b) 20 000, (c)

30 000, andd) 50 000.

sharper; the ascending and descending fluid sheets becorftem the static plots. To reveal the details of the oscillation,
narrower, and the area in the interior of the fluid with athe scale has been enlarged and the time history of the Nus-
reversed temperature gradient becomes wider. selt number replotted in this section. The slow decay of the
The steady-state solutions were obtained by raising th@mplitude of the oscillation might be an indication that in
Rayleigh number gradually after the convection roll was esagreement with other workef81,32, the Rayleigh number
tablished at a lower Rayleigh number. It was found howevepf 6000 is very close to the threshold at which the convection
that if the simulation is started from the static conductivepecomes time dependent. The evolution of the convection
state withR=50 000, the system will evolve into an oscilla- pattern became more and more complicated and oscillations
tory state. The dominant wavelength is half of that in thegs nore frequencies were involved as the Rayleigh number
steady-state solutions shown in Fig. 7, and the ascending angL < increased. AR=30 000 and 50 000, although the time
descending fluid sheets swing back and forth with a period ofyistory of the Nusselt number appeared to be quite chaotic,
0.174 ,/v.. The isotherms at the beginning, the quarter, théne temperature field plotted in Fig. 10 still poses rather regu-
half, and three-quarters of one oscillation period are showf,; giryctures and patterns. Simulations at higher Rayleigh
in Fig. 8. This oscillation does not occur in simulations with ,,mber would require higher resolution. A detailed investi-
R< 30 000. gation of the transitions in RBC as the Rayleigh number is

Three-dimensional simulations were performed for thejncreased requires a large number of runs and is certainly
same Prandtl number and Rayleigh numbers on $eyond the scope of the present work.

128x128x 32 lattice. Again, the computation was started
from the static state witiR=6000. Shown in Fig. 9 is the

time history of the Nusselt number as the Rayleigh number
was raised step by step to the values shown on the top of the In this paper, we presented a method of simulating tem-
graph. Greyscale plots of temperature distributions on th@erature evolution in fluid systems using the multiple com-
midplane at some typical times for different Rayleigh num-ponent LBE model. By simulating the temperature field us-
bers are shown in Fig. 10. The 2D convection rolls haveng an additional component, we are able to avoid the
already exhibited some wavy instability R=6000. How-  numerical instability plaguing the thermal LBE models. The
ever, the amplitude of the oscillation is so small that thealgorithm is simple, and the requirement on computational
deformation of the convection rolls is difficult to be detectedresources is twice of that for a nonthermal LBE code. As an

V. CONCLUSIONS AND DISCUSSIONS

F

LT

FIG. 8. Isotherms in 2D simulation. The
simulation was started from the static conductive
state withR = 50 000. The system evolves into
an oscillatory state. The isotherms are takefagt
the beginning,(b) one-quarter(c) half, and(d)
three-quarters of one oscillation period.
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FIG. 9. Time history of the Nusselt number in a 3D simulation
as the Rayleigh number is increased step by step at times indicated
by the vertical dashed lines. For the first segment, the scale has been (c)
adjusted to the range of 2.08 to 2.082 and the Nusselt number
replotted.

Nusselt Number

example, we studied the Rayleigh+Bed convection using
this method. The results agree very well with theoretical pre-
dictions and experimental observations both at near-critical
and moderate Rayleigh numbers.

The density of the additional component satisfies a :
passive-scalar equation. In the simulation of the Boussinesq k
equations, the external force is made to be a linear function :
of this passive scalar. However, this passive-scalar can rep- (e) )
resent other properties of the fluid satisfying more compli-
cated equations. More importantly, when the equation of FIG. 10. Greyscale plots of typical temperature distribution on
state is coupled with this passive scalar, the dynamic proce$ge midplane between the two walls for Rayleigh numiai6000,
of phase transition can be simulated. We defer the discussidk) 8000, (c) 10 000,(d) 20 000,(e) 30 000, andf) 50 000.
of the details to a future publication.
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