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Simulation of Rayleigh-Bénard convection using a lattice Boltzmann method

Xiaowen Shan
U.S. Air Force Phillips Laboratory, Hanscom Air Force Base, Massachusetts 01731

and Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
~Received 6 September 1996!

Rayleigh-Bénard convection is numerically simulated in two and three dimensions using a recently devel-
oped two-component lattice Boltzmann equation~LBE! method. The density field of the second component,
which evolves according to the advection-diffusion equation of a passive scalar, is used to simulate the
temperature field. A body force proportional to the temperature is applied, and the system satisfies the Bouss-
inesq equation except for a slight compressibility. A no-slip, isothermal boundary condition is imposed in the
vertical direction, and periodic boundary conditions are used in horizontal directions. The critical Rayleigh
number for the onset of the Rayleigh-Be´nard convection agrees with the theoretical prediction. As the Rayleigh
number is increased higher, the steady two-dimensional convection rolls become unstable. The wavy instability
and aperiodic motion observed, as well as the Nusselt number as a function of the Rayleigh number, are in
good agreement with experimental observations and theoretical predictions. The LBE model is found to be
efficient, accurate, and numerically stable for the simulation of fluid flows with heat and mass transfer.
@S1063-651X~97!06203-X#

PACS number~s!: 47.20.Bp, 05.20.Dd, 02.70.Rw
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I. INTRODUCTION

Recently the lattice Boltzmann equation~LBE! method
has been developed as a computational fluid dynam
~CFD! method. This method originated form a boolean flu
model known as the lattice gas automata~LGA! @1,2# which
simulates the motion of fluids by particles moving and c
liding on a regular lattice. The averaged fluid variables, s
as the density and velocity, were shown to satisfy equati
similar to the Navier-Stokes equations. The LBE method
proves this idea by following only the ensemble-averag
distribution functions, therefore eliminating the tim
consuming statistical average step in the original LGA@3#.
Simplified collision models were later used in place of t
collision operator derived from the LGA to improve both th
computational efficiency and the accuracy. Most notewort
the simple collision model of Bhatnagar, Gross, and Kro
~BGK! @4# was applied to the lattice Boltzmann equatio
yielding the so-called lattice BGK model@5,6#. The addi-
tional flexibility in this approach allows the removal of th
artifacts of the LGA, specifically the lack of Galilean invar
ance and the velocity dependent pressure. This method
found numerically to be at least as stable, accurate, and c
putationally efficient as traditional CFD methods for simu
tion of simple single-phase incompressible flows@7–9#.
More importantly, since fluid motion is simulated at the lev
of the distribution functions, the microscopic physics of t
fluid particles can be incorporated easily as in other part
methods. Many complex fluid phenomena due to interp
ticle interactions, such as capillary phenomena, multi
phase flows, and nonlinear diffusion, can be simulated n
rally @10–12#.

In most LBE models so far, only mass and moment
conservation is implemented. The macroscopic equation
these models correspond to the Navier-Stokes equation
an ideal-gas equation of state and a constant tempera
However it is important and sometimes critical to have
551063-651X/97/55~3!/2780~9!/$10.00
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capability of simulating thermal effects simultaneously w
the fluid flows. Obviously the temperature distribution in
flow field is of central interest in heat transfer problems.
most geophysical flows, the temperature difference is
driving mechanism of the motion of the fluid. More impo
tantly, when part of the fluid system undergoes a phase t
sition, as in the boiling and evaporation processes, the e
lution of the temperature field is directly coupled with th
fluid dynamics. Since the LBE method has the most adv
tage in the simulation of complex fluids with multiple phas
and phase transitions, it is necessary to develop the cap
ity of simulating thermodynamics with the LBE method.

In general, the simulation of thermal systems by the LB
method has not achieved the same success as that of iso
mal flows. Theoretically, a LBE model with energy conse
vation can be constructed@13,14# to yield a temperature evo
lution equation at the macroscopic level. However, t
model so obtained suffers from severe numerical instab
@15#, especially in three dimensions~3D!. Additional stabili-
zation procedures have to be invoked to achieve stab
comparable to that of conventional CFD methods, e.g., fin
difference schemes. Moreover, when interparticle forces
included as in the multiphase models, the energy conse
tion is further complicated by the potential part of the inte
nal energy. For these reasons constructing a practically
able non-ideal-gas LBE model with energy conservation
difficult if not impossible. Nevertheless, in many circum
stances where the viscous and compressive heating ef
can be neglected~small Brinkman number limit!, the tem-
perature field is passively advected by the fluid flow a
obeys a much simpler passive-scalar equation. This s
equation also governs the diffusion of each individual co
ponent in a fluid mixture. By taking advantage of this form
analogy between heat and mass transfer, we can simulat
temperature field as an additional component of the fl
system. An early two-component LGA model@16# exhibited
qualitative features of thermal convections. In a previou
2780 © 1997 The American Physical Society
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55 2781SIMULATION OF RAYLEIGH-BÉNARD CONVECTION . . .
developed multiple component LBE model@17#, we have
shown that the evolution of the concentration fields is G
ilean invariant and obeys Fick’s law. The diffusivity is ind
pendent of the viscosity, allowing a changeable Schm
number~or Prandtl number in the terminology of heat tran
fer!. This model does not implement energy conservat
and therefore has the same stability as the nonthermal
models and other conventional CFD methods. By adding
more component, the computation efficiency, either mem
rywise or timewise, is not compromised compared with
approach of direct implementation of energy conservat
because fewer speeds are required for each component

In this paper, we present the simulation of the Rayleig
Bénard convection~RBC! as an example. Due to its simplic
ity and the richness of the phenomena, this problem has b
extensively studied both theoretically and experimenta
@18–22# and serves as an excellent benchmark problem
numerical schemes because detailed results are availab
comparison with numerical computations. In Sec. II, w
briefly review the multiple component LBE model and th
formulated it for the simulation of the Boussinesq equati
The implementation of the isothermal no-slip boundary c
dition is also discussed. In Sec. III, simulation results
presented and compared with theoretical and experime
results. The limitation and some further extensions of t
method are discussed in Sec. IV.

II. NUMERICAL METHOD

The following single-component lattice Boltzmann equ
tion with BGK collision term describes the evolution of th
distribution functionna(x,t) in spacex and timet:

na~x1ea ,t11!2na~x,t !52
1

t
@na~x,t !2na

~eq!~x,t !#,

a51, . . . ,b ~1!

The set ofb vectors$ea ;a51, . . . ,b% pointing from each
lattice site to its neighboring sites forms the discretized
locity space of the distribution function. The macroscop
number density,n(x,t), and velocity,u(x,t), of the fluid are
obtained fromna asn5(ana andnu5(anaea . Equation~1!
represents the relaxation of the distribution function to
equilibrium value,na

(eq) , which is a function ofn andu only.
The choice ofna

(eq) has to ensure that the macroscopic flu
equation obtained from Eq.~1! by the Chapman-Enskog ca
culation @23# agrees with the Navier-Stokes equations. T
functional form ofna

(eq) depends on the structure of the la
tice and is usually not uniquely determined. For square
cubic lattices in 2D and 3D, the following form ofna

(eq) was
shown to yield Navier-Stokes equations by Qianet al. @6#:

na
~eq!5wanF113ea•u1

9

2
~ea•u!22

3u•u

2 G . ~2!

Herewa is a function ofueau and depends on the number
speeds included in the model. In the present work, 9 and
velocities are used in 2D and 3D computations, respectiv
Thewa’s were given as 4/9, 1/9, and 1/36 forueau50,1,A2 in
2D and 2/9, 1/9, and 1/72 forueau50,1,A3 in 3D @6#. It can
l-

t
-
n
E
e
-
e
n

-

en
y
r
for

.
-
e
tal
s

-

-

s

e

d

5
y.

be easily verified that the 2D distribution function is a d
generate case of the 3D version if the flow is two dime
sional.

A. Multiple component LBE model

The multiple component LBE model with interparticle in
teraction @10# was originally developed for simulation o
multiphase flows and phase transitions. The components
be miscible or partially immiscible depending on the stren
of the interaction. When the interaction is weak, or in
single phase region of a multiphase system, this model
be used to simulate diffusion due to various driving mec
nisms @24#. In this model, the distribution function of eac
component evolves according to Eq.~1!. The same form of
the equilibrium distribution function given by Eq.~2! is used
for all the components except thatn and u are calculated
separately for each component. In the absence of any in
action and external forces, the distribution functions of
the components were assumed to have a common velo
u8. The conservation of the total momentum at each collis
requires that

u85 (
s51

S
msnsus

ts
Y (

s51

S
msns

ts
, ~3!

whereS is the number of components in the system;ms ,
ts, and ns5(ana

s are the molecular mass, the relaxatio
time, the number density of the components, respectively,
andmsnsus5ms(ana

sea is the momentum of componen
s calculated from its distribution functionna

s . When the
forceFs is applied to components, the momentum has to b
incremented correspondingly. This was done by replacinu
in Eq. ~2! with u81tsFs /rs . The forceFs in general in-
cludes both interparticle forces and external forces.
nearest-neighbor interaction, the following form of the inte
particle force was proposed as it conserves the total mom
tum of the system and yields an adjustable equation of s
at the macroscopic level:

Fs52cs(
s̄
Gss̄(

a
cs̄~x1ea!ea , ~4!

wherecs is an arbitrary function of the number density
thesth component.

In the most general multiple component LBE model w
interparticle interaction and external forces, there are th
types of diffusions due to different driving mechanisms@24#.
They areordinary diffusion, pressure diffusion, and forced
diffusion. With the equilibrium distribution functions given
by Eq. ~2!, the pressure diffusion does not appear; if a co
mon acceleration is applied to all the components, nam
Fs5rsg, forced diffusion is also absent. The only type
diffusion left is the ordinary diffusion due to concentratio
gradients which obeys Fick’s law. In addition, a compone
e.g., componentS, can be made to behave as a passive sc
by setting its molecular mass to zero together with its int
action with all the other components, namelymS→0 and
GsS→0 for s51, . . . ,S21. This component will not con-
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2782 55XIAOWEN SHAN
tribute to the total momentum of the mixture. It is simp
advected ‘‘passively’’ and diffuses into the main flow, ha
ing no effect on the flow.

For the study of the RBC, we employ a two-compone
system; component 1 represents the motion of the fluid
component 2 simulates a passive temperature field. The
tribution functions of the two components evolve accord
to Eqs. ~1! and ~2!, with u in Eq. ~2! being replaced by
u11tsg for both components. Since the molecular masse
the two components no longer appear in the dynamic eq
tions, they are set to unity. The density and the fluid veloc
are calculated from the distribution function of componen
asr5(ana

1 andu5u11g/2 ~cf. Ref. @17#!. They satisfy the
following equations:

]r

]t
1¹•~ru!50, ~5!

]u

]t
1u•¹u52

¹p

r
1n¹2u1g, ~6!

where the pressurep is related tor by the equation of state
p5 1

3r1 3
2G11c2(r). In the simulation of RBC, it is sufficien

to setG1150. The kinematic viscosityn is given by

n5
1

3 S t12
1

2D ~7!

as in the ordinary LBE models. The number density of
second component satisfies the following diffusion equat
@24#:

]n2
]t

1¹•~n2u!5¹•~D¹n2!. ~8!

The temperature fieldu can be simulated by the density fie
n2. When the compressibility is negligible as in the sm
Mach number limit, the velocity field is approximate
divergence-free and the temperature field satisfies the foll
ing ‘‘passive-scalar’’ equation:

]u

]t
1u•¹u5¹•~D¹u!, ~9!

where the diffusivity,D, is given by

D5
1

3 Ft2~119G22c2dc2 /dn2!2
1

2G . ~10!

The diffusivity can be tuned independently of the viscos
by changing eithert2 or the interaction strength,G22. For
simplicity, G22 is also set to zero in the present simulatio
The LBE model is a much simplified version of that in@10#
since no interparticle interaction is used.

B. Simulation of the Rayleigh-Bénard convection

In the most common form of RBC, a thin layer of visco
fluid is confined between two horizontal rigid boundari
maintained at different temperatures. When the fluid ha
positive thermal expansion coefficient, and the gravity is
the same direction of the temperature gradient, the net bu
t
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ancy force is in the opposite direction of the gravity. As t
temperature difference between the two boundaries is ra
above a certain threshold, the static conductive state beco
unstable, and convection occurs abruptly.

The well-known Boussinesq approximation is often us
in the study of natural convection. With this approximatio
the material properties are assumed to be independen
temperature except in the body force term, where the fl
densityr is assumed to be a linear function of the tempe
ture, namelyr/r`511b(T2T`). Herer` andT` are the
density and temperature at the reference point, andb the
constant thermal expansion coefficient. The gravitatio
force is thereforer`g1r`gb(T2T`). After absorbing the
first term into the pressure, the effective body force is l
early proportional to the temperature variation.

The Boussinesq equation can be simulated with the t
component LBE model by making the external gravitation
acceleration,g, in Eq.~6! a linear function of the temperatur
u, i.e.,g52guez , whereez is the unit vector in the vertica
direction andg a parameter controlling the strength of th
force. In Cartesian coordinates (x,y,z), the lattices are of the
sizesLx3Lz and Lx3Ly3Lz in 2D and 3D, respectively
The periodic boundary condition is used in thex and y di-
rections, and the following no-slip, isothermal boundary co
dition is used in thez direction:

u50, u50, z50,
~11!

u50, u51, z5Lz.

Since the LBE fluid is always compressible, an externa
applied force will cause a density variation. This compre
ible effect can be eliminated by absorbing into the press
term the part of the body force that corresponds to the b
force in the static conductive state, yielding the following n
external acceleration:

g52gS u2
z

Lz
Dez . ~12!

In the conductive state the above external force vanishes
the density field is homogeneous.

For a given the system size, the characteristic velocity,
Grashof number, the Rayleigh number, and the Prandtl n
ber are determined by the three parameterst1, t2, andg in
the LBE model as the following:

vc5AgLz, Gr5
gLz

3

n2
, R5GrPr5

gLz
3

nD ,

Pr5
n

D5
2t121

2t221
. ~13!

The Prandtl number is determined by the two relaxat
times used for the two components. Given the two ba
characteristic dimensionless numbers Pr andR, there is an
extra degree of freedom in determiningt1, t2, andg. How-
ever, to ensure that the Mach number is small,vc has to be
kept small. Oncevc is chosen, all the parameters in the LB
model are determined by the two dimensionless numberR
and Pr.
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55 2783SIMULATION OF RAYLEIGH-BÉNARD CONVECTION . . .
C. Implementation of the boundary conditions

To implement the isothermal, no-slip boundary conditio
we must ensure that, at the boundary, the component s
lating the fluid flow has zero velocity, and the compone
simulating the temperature field has fixed density. The m
flux of the second component represents the heat trans
through the boundaries. Usually the LGA and LBE metho
implement the no-slip boundary condition by reversing
direction of the incoming particles at the boundary, yieldi
zero averaged velocity. This simple ‘‘bounce-back’’ meth
was found to be inaccurate@25,26#. In the present work, it
results in errors of up to 50% in the critical Rayleigh num
ber. More accurate and general methods have been d
oped to implement velocity boundary conditions in comp
geometry@27–29#. These methods usually involve addition
computation at the boundary sites. Here, because the bo
aries are flat planes, both the velocity and the density bou
ary conditions can be implemented more efficiently.

When analyzing various implementations of bounda
conditions, exact solutions in some simple cases are foun
be very useful@28,30#. For simplicity, we consider the time
independent one-dimensional situation. All variables dep
only on z, the coordinate perpendicular to the wall, so th
the spatial dependence can be noted by a single supers
j , starting from 0 at the lower boundary. The elements of
distribution functionsna

j can be classified into three group
n1
j , n2

j , andn0
j , according to the sign ofea•ez . Equation

~1! reduces to the following simple form:

n6
j612n6

j 52
1

t
@n6

j 2n6
j ~eq!# and n0

j 5n0
j ~eq! . ~14!

We assume the distribution functions at all sites includ
the boundary sites are updated uniformly using Eqs.~14!. At
the lower boundary sites, the groupsn1

0 andn0
0 are unspeci-

fied. The only available information about the bulk of th
fluid is n2

0 , from which,n1
1 is to be constructed according t

some updating scheme so that a certain hydrodyna
boundary condition is satisfied at the macroscopic level. T
‘‘bounce-back’’ scheme simply setsna

15nb
0 for any a and

b satisfying ea52eb . Obviously this in general does no
satisfy Eqs.~14! with u50 at the boundary. However, if w
use the ‘‘bounce-back’’ scheme to calculate the groupn1

0 ,
namely we setna

05nb
0 for any a andb satisfyingea52eb ,

and calculating n1
1 using Eqs. ~14! with u50 and

n56(n2
0 in the computation ofn1

0(eq), the no-slip boundary
condition will be satisfied. Here the summation is over all t
elements in the group.

The isothermal boundary condition is imposed by fixi
the density of the second component at specified value
the boundaries. In the time-independent one-dimensio
situation, the density profile of the passively convected co
ponent can be exactly solved from Eqs.~14!. We sum all the
elements of the distribution in each of the groups and n
the sum asN6

j 5(n6
j . By summing Eqs.~14! we find

N6
j612N6

j 52
1

t
@N6

j 2N6
j ~eq!#. ~15!
,
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Using Eq.~2! and noticing that the velocity only has a com
ponent parallel to the wall, we can find easily th
N6
j (eq)5nj /6, independent of the local velocity. Herenj is the

density at thej th position. From the second part of Eq.~14!,
we haveN1

j 1N2
j 5nj /3. For any three consecutivej values,

there are a total of seven equations relating the six varia
N6
j to the three density values. On eliminatingN6

j from the
seven equations, we find 2nj5nj211nj11; namely, the den-
sity profile is linear inz as the diffusion equation predicts.

At the boundary sites, we must have

N1
0 5N0/32N2

0 . ~16!

In the computation, the isothermal boundary condition
implemented by computing the distribution function el
ments in the groupn1

0 according to the following equation

na
052wan2nb

0 , ~17!

and then updating it using Eq.~1!. Herea andb are any pair
of indices such thatea andeb are mirror images of each othe
with respect to the boundary. In addition to satisfying E
~16!, this scheme is also compatible with the no-slip boun
ary condition.

III. SIMULATION RESULTS

We present the simulation results in this section. The t
basic characteristic dimensionless numbers are the Rayl
numberR and the Prandtl number Pr. The velocity and tim
reported hereafter are in the units ofvc and the characteristic
time, Lz /vc , respectively. The diffusion timetd5Lz

2/D is
APrR in these units.

A. Onset of Rayleigh-Bénard instability

The critical Rayleigh number at which the static condu
tive state becomes unstable was given by the linear stab
theory and confirmed by laboratory observations. The st
conductive state is found to first become unstable to the
turbance of the wave numberkc 5 3.117 in thex-y plane
when the Rayleigh number exceeds the critical value ofRc
51707.762. If thedeviation from the Boussinesq approx
mation is small, the convection occurs in the form of tw
dimensional rolls. Since the development of the instability
very slow at near-critical Rayleigh numbers, the computat
has to be carried out for a long time before stable convec
is fully developed. Because the first unstable disturbanc
two dimensional, we conduct the near-critical simulatio
primarily in 2D to save CPU time. The results were com
pared with 3D simulation results for some typical cases.

With periodic boundary condition, the wave number
x-y plane can only take discretized values given by

S k

2pLz
D 25S nxLxD

2

1S nyLyD
2

, nx ,ny50,1,2, . . . . ~18!

In 2D, the aspect ratioLx /Lz has to be a multiplication of
2p/kc to accommodate the disturbance of the wave num
kc . Of course this can only be satisfied approximately o
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2784 55XIAOWEN SHAN
uniform lattice. In the near-critical computation, unless o
erwise specified, we choseLx.2pLz /kc to save computa-
tion cost.

To measure the critical Rayleigh number, computatio
were started from the static conductive state at several
ferent Rayleigh numbers close toRc . An initial small per-
turbation was applied to the density field. The growth ra
of the disturbance were then measured and extrapolate
obtain the Rayleigh number corresponding to zero gro
rate.

Shown in Fig. 1 are the typical time histories of the ma
mum velocities in thez direction for three slightly above
critical Rayleigh numbers of 1720, 1735, and 1750, resp
tively. The other parameters are Pr51, t151, andLz550 for
all three runs. The peak velocity is found to grow expone
tially and then saturate at a finite amplitude. The steady-s
isotherms and the velocity field are shown in Fig. 2 for t
simulation withR51750. The growth rates were measur
with least-squares fitting in the exponential growth sta
The fitting results are shown as the straight lines.

The measured growth rates were plotted against the R
leigh number in Fig. 3. Three sets of simulations witht1
50.55, 1, and 1.5 were performed to investigate the accu

FIG. 1. Typical time histories of the peak vertical velocity in 2
simulation during the onset of the instability. The Rayleigh numb
are slightly above its critical value,Rc . Other parameters are Pr51,
t151, and the system size is 101350. The solid straight lines are
drawn by least-squares fitting, the slope of which gives the gro
rates of the instability.

FIG. 2. Steady-state isotherms and velocity field in a tw
dimensional simulation with the Rayleigh number of 1750. T
resolution is 101350.
-

s
if-

s
to
h

-

c-

-
te

.

y-

cy

of using different values oft1. All other parameters were th
same in these simulations. A solid straight line is fitt
through the data points for each set of data. The intersect
of the lines with thex axis give the Rayleigh numbers co
responding to neutral stability. It is to be seen that near
critical Rayleigh number, using at1 other than unity, tends
to change the growth rates, which causes an error in
prediction of the critical Rayleigh number.

We have also measured the critical Rayleigh number
different Prandtl numbers and with different system siz
The measurement results and the parameters used are
marized in Table I. The biggest error seems to have b
caused by using a larget value in the computation. Fortu
nately, this does not impose a significant limitation on t
range of physical parameters that can be simulated, bec
for a given Rayleigh number,t1 andt2 can always be kep
small by using a smallg.

Shown in the first part of Table I are five otherwise ide
tical runs with different system sizes. The time history of t
peak vertical velocity in these runs are plotted in Fig. 4.
the plot, the starting times were adjusted so that the ini

s

h

-

FIG. 3. Growth rates of the instability are found to depend l
early on the Rayleigh number nearRc . The symbols are the result
of measurement from the time history of the peak vertical veloc
and the straight lines are fitted through the data points. The e
critical Rayleigh number is obtained by extrapolating the data to
zero growth rate. Three sets of simulations with different values
t1 were performed to determine the effects of differentt1 on the
accuracy. The simulations were performed on a 2D 101350 lattice
and is for Pr51.

TABLE I. Critical Rayleigh number obtained by extrapolatin
growth rate data at slightly supercritical Rayleigh numbers.

Run no. Ly Pr t1 t2 Rc Error

1 50 1 1 1 1707.11 0.04%
2 30 1 1 1 1706.96 0.05%
3 20 1 1 1 1706.87 0.05%
4 10 1 1 1 1716.96 0.54%
5 50 0.1 1 5.5 1715.75 0.47%
6 50 100 1 0.505 1707.21 0.03%
7 50 1 0.55 0.55 1713.84 0.36%
8 50 1 1.5 1.5 1688.49 1.13%
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55 2785SIMULATION OF RAYLEIGH-BÉNARD CONVECTION . . .
perturbation levels are the same for all five runs. It can
seen that the convergence is fast and differences betwee
runs withLz. 20 are insignificant.

Also shown in Fig. 4 is the result of a 3D simulation on
1283128332 lattice with the same parameters. The grow
rate in the early stage is the same as that in the 2D sim
tions. However, the peak velocity overshoots before it sa
rates at the same level. Figure 5 displays a series of s
shots of the temperature distribution on anx-y plane lying in
the middle between the two walls at the timest51047, 1320,
1524, and 2273. The grey scales from the darkest to
brightest represent the temperature in the range 0.
,u, 0.597. The instability starts in the form of an array

FIG. 4. Time histories of the peak vertical velocity for differe
system sizes. It is to be seen that the simulation results converg
system sizesLz.20. The peak velocity in the 3D simulation has th
same growth during the early development of the instability a
saturates at the same level. The 3D effects peak aroundt51320.

FIG. 5. Greyscale plot of temperature distribution on the m
plane between the two walls at,~a! t51047, ~b! t51320, ~c! t5
1524, and~d! t52273. The gray scales from the darkest to t
brightest are mapped to the temperature range 0.403,u,0.597.
The system size is Lx5Ly5128, Lz532.
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convection cells, the superposition of the most unsta
mode (k5kc) oriented in thex andy directions, and reache
its maximum neart51320 @Fig. 5~b!#. The fully developed
convection rolls oriented in one direction seem to suppr
the orthogonal rolls and the final convection pattern is pur
two-dimensional@Fig. 5~d!#.

B. Higher Rayleigh number

The two-dimensional convection pattern characterized
the rolls is unstable at higher Rayleigh numbers. As the R
leigh number is being increased, a series of transitions
more complicated states occur, and the form of the conv
tion becomes both three-dimensional and time depend
and eventually turbulent at very high Rayleigh number. D
tailed numerical simulation of all the complicated transitio
and the different forms of convection requires a large amo
of computation. This is because the form of the convect
depends on both the initial condition and the boundary c
ditions. A large number of runs have to be performed
cover the parameter space. In addition, the computation
to be carried out for a long time due to the large differenc
among the time scales in the problem. Here we only pres
the simulation results for a few typical situations at moder
Rayleigh numbers due to the limitation of computer r
sources.

A two-dimensional simulation at high Rayleigh numbe
was performed on a 101350 lattice with a Prandtl number o
0.71. The simulation was started from the static conduc
state, beginning withR52000. After the steady state wa
reached, the Rayleigh number was raised step by ste
higher values. The Nusselt numbers measured at the st
states are plotted in Fig. 6 against the Rayleigh number.
simulation results of Clever and Busse@31# are also plotted
for comparison. Agreement is found at Rayleigh numb
less than 20 000. At higher Rayleigh numbers, the L
simulation has a lower heat transport. We have raised
Rayleigh number to values as high as 106 for the same reso-
lution. Unlike the thermal LBE model@15#, the present
model remains numerically stable.

Shown in Fig. 7 are the steady-state isotherms for so
typical Rayleigh numbers. As the Rayleigh number is
creased, the temperature gradient near the boundary bec

for

d

-

FIG. 6. The steady-state Nusselt number as function of the R
leigh number in 2D simulations. The LBE results agree with that
Clever and Busse for Rayleigh number less than 20 000.
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FIG. 7. Two-dimensional simulation. Iso
therms at steady states as the Rayleigh numbe
raised gradually to~a! 10 000, ~b! 20 000, ~c!
30 000, and~d! 50 000.
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sharper; the ascending and descending fluid sheets be
narrower, and the area in the interior of the fluid with
reversed temperature gradient becomes wider.

The steady-state solutions were obtained by raising
Rayleigh number gradually after the convection roll was
tablished at a lower Rayleigh number. It was found howe
that if the simulation is started from the static conduct
state withR550 000, the system will evolve into an oscilla
tory state. The dominant wavelength is half of that in t
steady-state solutions shown in Fig. 7, and the ascending
descending fluid sheets swing back and forth with a period
0.174Lz /vc . The isotherms at the beginning, the quarter,
half, and three-quarters of one oscillation period are sho
in Fig. 8. This oscillation does not occur in simulations w
R<30 000.

Three-dimensional simulations were performed for
same Prandtl number and Rayleigh numbers on
1283128332 lattice. Again, the computation was start
from the static state withR56000. Shown in Fig. 9 is the
time history of the Nusselt number as the Rayleigh num
was raised step by step to the values shown on the top o
graph. Greyscale plots of temperature distributions on
midplane at some typical times for different Rayleigh nu
bers are shown in Fig. 10. The 2D convection rolls ha
already exhibited some wavy instability atR56000. How-
ever, the amplitude of the oscillation is so small that t
deformation of the convection rolls is difficult to be detect
me
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from the static plots. To reveal the details of the oscillatio
the scale has been enlarged and the time history of the N
selt number replotted in this section. The slow decay of
amplitude of the oscillation might be an indication that
agreement with other workers@31,32#, the Rayleigh number
of 6000 is very close to the threshold at which the convect
becomes time dependent. The evolution of the convec
pattern became more and more complicated and oscillat
of more frequencies were involved as the Rayleigh num
was increased. AtR530 000 and 50 000, although the tim
history of the Nusselt number appeared to be quite chao
the temperature field plotted in Fig. 10 still poses rather re
lar structures and patterns. Simulations at higher Rayle
number would require higher resolution. A detailed inves
gation of the transitions in RBC as the Rayleigh number
increased requires a large number of runs and is certa
beyond the scope of the present work.

IV. CONCLUSIONS AND DISCUSSIONS

In this paper, we presented a method of simulating te
perature evolution in fluid systems using the multiple co
ponent LBE model. By simulating the temperature field u
ing an additional component, we are able to avoid
numerical instability plaguing the thermal LBE models. T
algorithm is simple, and the requirement on computatio
resources is twice of that for a nonthermal LBE code. As
ve
o

FIG. 8. Isotherms in 2D simulation. The
simulation was started from the static conducti
state withR 5 50 000. The system evolves int
an oscillatory state. The isotherms are taken at~a!
the beginning,~b! one-quarter,~c! half, and ~d!
three-quarters of one oscillation period.
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example, we studied the Rayleigh-Be´nard convection using
this method. The results agree very well with theoretical p
dictions and experimental observations both at near-crit
and moderate Rayleigh numbers.

The density of the additional component satisfies
passive-scalar equation. In the simulation of the Boussin
equations, the external force is made to be a linear func
of this passive scalar. However, this passive-scalar can
resent other properties of the fluid satisfying more com
cated equations. More importantly, when the equation
state is coupled with this passive scalar, the dynamic pro
of phase transition can be simulated. We defer the discus
of the details to a future publication.
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