Annals of Mathematics

The Word Problem
Author(s): John L. Britton
Source: The Annals of Mathematics, Second Series, Vol. 77, No. 1 (Jan., 1963), pp. 16-32
Published by: Annals of Mathematics
Stable URL: http://www.jstor.org/stable/1970200
Accessed: 22/01/2010 03:03

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=annals.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Annals of Mathematics is collaborating with JSTOR to digitize, preserve and extend access to The Annals of Mathematics.

THE WORD PROBLEM

By John L. BRitton
(Received October 2, 1961)

It will be shown that the word problem for groups is unsolvable in general. Previous proofs have been given by Boone [1], [2], Higman [5], Novikov [7] and the author [4].

The starting point is the result of Post [8] that there is a semi-group given by a finite number of generators and a finite number of defining relations (i.e., a Thue system) with unsolvable word problem.

The aim has been to give a simple proof using the concepts and vocabulary of contemporary text books on group theory. Thus we use free products with amalgamated subgroups (Kurosh [6, Chap. IX]) and the theorem of Higman, B. H. Neumann and H. Neumann (Kurosh [6, Chap. $\mathrm{X}, \S 38]$) but, for example, we are precluded from using (as was done in [4]) the results of Tartakovskii [9], [10], [11] and of the author [3] which are, as yet, relatively unfamiliar.

The group whose word problem will be shown to be unsolvable is virtually the same as in Boone [2] ${ }^{1}$, but the method of proof is group-theoretical rather than combinatorial.

0. Informal discussion

Without attempting to be precise, we may distinguish between the group-theoretical and the combinatorial approaches to problems in the theory of generators and defining relations as follows. Suppose a group G is given by generators $a_{1}, a_{2}, \cdots, a_{m}$ and defining relations $A_{i}=B_{i}$ $(i=1,2, \cdots, n)$. Let U and V be words in $a_{1}, a_{2}, \cdots, a_{m}$. We know that the elements of G corresponding to U, V are equal if and only if there is a finite sequence of operations

$$
W_{1} \rightarrow W_{2} \rightarrow \cdots \rightarrow W_{k}
$$

transforming U into V, where W_{1} is U, W_{k} is V and, for $j=1,2, \cdots$, $k-1, W_{j} \rightarrow W_{j+1}$ denotes one of the following operations:
(a) cancellation: replace a word of the form $X a_{s} a_{s}^{-1} Y$ or $X a_{s}^{-1} a_{s} Y$ by $X Y$.
(b) insertion: the converse process of (a),
(c) replace a word of the form $X A_{i} Y$ by $X B_{i} Y$, or conversely.

Any argument involving such a sequence of operations may be called

[^0]combinatorial. In contrast, an argument circumventing explicit reference to a sequence of this kind, especially avoiding any mention of insertions, may be called group-theoretical.

It is not always trivial to correlate the group-theoretical and the combinatorial statements of essentially the same result. Let G^{\prime} be the group obtained from the above group G by adding the new generator t and the defining relation $a_{3} t=t a_{3}$. Let $A t=t A$ in G^{\prime}, where A is a word in a_{1}, a_{2}, \cdots, a_{m}. Then it can be shown (e.g., by Lemma 2 below) that
(i) the element A belongs to the subgroup of G generated by a_{3}; thus there is an integer h such that $A=a_{3}^{h}$ in G (hence also $A=a_{3}^{h}$ in G^{\prime}). The conclusion (i) can be stated combinatorially as follows:
(ii) $A t$ can be transformed into $t A$ by a sequence of the above kind (in G^{\prime}) without using insertions of t^{-1} (that is, operations of the form $X Y \rightarrow X t t^{-1} Y$ or $X Y \rightarrow X t^{-1} t Y$).

To see that (i) implies (ii), note that one can first transform $A t$ into $a_{3}^{h} t$, then by using the defining relation $a_{3} t=t a_{3}$ transform $a_{3}^{h} t$ into $t a_{3}^{h}$, and finally transform $t a_{3}^{h}$ into $t A$.

To show that (ii) implies (i), one first proves that a single operation, not an insertion of t^{-1}, applied to a word of the form $P t Q$ where P and Q do not involve t or t^{-1} yields $P^{\prime} t Q^{\prime}$, where $P^{-1} P^{\prime}=a_{3}^{d}$ in G and $Q Q^{\prime-1}=a_{3}^{d}$ in G, and where d is either 0,1 or -1 ; now (i) follows by a simple induction argument.

Similarly, in the proof below of Lemma 6, part (k), the statement that $\Sigma^{-1} t \Sigma$ belongs to a certain subgroup of G_{1} corresponds to the combinatorial statement that in G the word $\Sigma k \Sigma^{-1}$ can be transformed into $t \Sigma k \Sigma^{-1} t^{-1}$ without using insertions of k^{-1}; this is essentially Theorem III of Boone [2].

The conclusion of the principal lemma (Lemma 4) below is equivalent to the statement that W can be transformed into the empty word without using insertions of any p_{v}^{-1}.

It might be objected that in the proof of Lemma 7 below we have used an evidently combinatorial argument; but there we are dealing with a semi-group, not a group. However the major part of the paper concerns groups, and we use group-theoretical arguments. Indeed, from now on, there will be no further mention of insertions.

1. Preliminaries

By a word over S, where S is a finite or countable set of symbols s_{1}, s_{2}, \cdots, or a word in these symbols, we mean an expression

$$
\boldsymbol{S}_{b_{1}}^{e_{1}} \boldsymbol{S}_{b_{2}}^{e_{2}} \cdots \boldsymbol{S}_{b}^{e_{n}}
$$

where $e_{i}= \pm 1(i=1,2, \cdots, n)$. The word is positive if every e_{i} is 1 . n is called the length of the word. When $n=0$ we have the empty word 1 ; it is to be positive. $X \equiv Y$ means that the words X, Y are identical. The product of two words and the inverse of a word are defined as usual. If $W \equiv X Y Z$ then Y is a subword of W. A word over S is reduced if it contains no subword of the form $s_{b} s_{b}^{-1}$ or $s_{b}^{-1} s_{b}$. A word over S involves s_{4}, say, if it contains s_{4} or s_{4}^{-1} as a subword.

A presentation $H=(S ; D)$ consists of a set S of symbols (called generators) and a set D of formal equations (called defining relations), each of the form $X=Y$, where X, Y are words over $S . D$ is finite or countable, as is S. In a well known way, a presentation H determines a group, also denoted by H, which is unique to within isomorphism. The element of the group determined by the word W is also denoted by W.

Let $H_{1}=\left(S_{1} ; D_{1}\right)$ and $H_{2}=\left(S_{2} ; D_{2}\right)$ be presentations. We write $H_{1} \leqq H_{2}$ if $S_{1} \subset S_{2}, D_{1} \subset D_{2}$, and if for every word W over S_{1}, we have $W=1$ in H_{1} if and only if $W=1$ in $H_{2} ; H_{1}$ may then be identified with a subgroup of H_{2}.

Lemma 1. Let P be the free product of groups $G_{\gamma}(\gamma \in \Gamma)$ with amalgamated subgroup Q. If $x_{1}, x_{2}, \cdots, x_{k}(k \geqq 1)$ are elements of P not in the subgroup Q, each belonging to a constituent group, say $x_{i} \in G_{\gamma_{i}}(i=1,2$, \cdots, k, and if $\gamma_{j} \neq \gamma_{j+1}(j=1,2, \cdots, k-1)$, then the element $y=$ $x_{1} x_{2} \cdots x_{k}$ does not belong to Q. In particular, $y \neq 1$.

Proof. For each $\gamma \in \Gamma$ take a set of representatives of the left cosets of Q in G, such that the representative of Q is the identity element 1 . Every element z of P can now be expressed uniquely in the form

$$
z=u r_{1} r_{2} \cdots r_{n}
$$

where $u \in Q, n \geqq 0$, each r_{i} is a representative different from the identity in some constituent group, and r_{j}, r_{j+1} belong to different constituent groups $(j=1,2, \cdots, n-1) . n$ is called the weight of z.

It is easy to prove by induction that the element y in the statement of the lemma has weight k. The lemma now follows, since any element of Q has weight zero.

Lemma 2. Let $H=(S ; D)$ and

$$
H^{*}=\left(S, t ; D, t^{-1} X_{i} t=X_{i}(i \in I)\right)
$$

be presentations, where each X_{i} is a word over S. Let W be a word in the generators of H^{*} which involvest. If $W=1$ in H^{*} then W contains a subword $t^{-1} C t$ or $t C t^{-1}$, where C is a word over S, and C, regarded as an element of the group H, belongs to the subgroup X of H generated by
the $X_{i}(i \in I)$.
Proof. 1°. First we prove that $H \leqq H^{*}$, and that H^{*} is a free product with amalgamated subgroup.

Let X^{\prime} be an isomorphic copy of X. Take a presentation of X^{\prime} of the form ($x_{i}(i \in I) ; w_{j}\left(x_{i}\right)=1(j \in J)$), where x_{i} corresponds to X_{i} for each $i \in I$. Let Y be the direct product of X^{\prime} and the free cyclic group $(t ; \varnothing)$. Form the free product P of H and Y, amalgamating the subgroup X of H with the subgroup X^{\prime} of Y. Then a presentation of P is

$$
\left(S, t, x_{i}(i \in I) ; D, w_{j}\left(x_{i}\right)=1, t^{-1} x_{i} t=x_{i}, x_{i}=X_{i}(i \in I, j \in J)\right),
$$

hence another presentation of P is

$$
\left(S, t ; D, w_{j}\left(X_{i}\right)=1, t^{-1} X_{i} t=X_{i}(i \in I, j \in J)\right) .
$$

On the other hand this last presentation is a presentation of H^{*}, since we have $w_{j}\left(X_{i}\right)=1$ in H, hence also in H^{*}. Thus P is just H^{*}. Hence H is a subgroup of H^{*}, and $H \leqq H^{*}$.
2°. The lemma is obviously true if W contains a subword $t^{-1} t$ or $t t^{-1} ;$ there remains the case when W has the form

$$
W_{0} t^{a_{1}} W_{1} \cdots t^{a_{r}} W_{r},
$$

where $r \geqq 1$, each a_{i} is a non-zero integer and $W_{0}, W_{1}, \cdots, W_{r}$ are words over S of which only W_{0} and W_{r} may be empty. Each $t^{a_{i}}$ belongs to Y but not to the amalgamated subgroup X. Each W_{i} belongs to H, and may or may not belong to X. We proceed by induction on r.

If $r=1$ then $W \equiv W_{0} t^{a_{1}} W_{1}$, and since $W=1$ in H^{*} we have

$$
t^{a_{1}}=W_{0}^{-1} W_{1}^{-1} \in H \cap Y=X ;
$$

this contradiction shows that the lemma is true when $r=1$.
For the induction step, since $W=1$ in H^{*}, we have by Lemma 1 that at least one $W_{j}(1 \leqq j \leqq r-1)$ belongs to X. If a_{j} and a_{j+1} have opposite sign, we have finished. Now let a_{j} and a_{j+1} have the same sign. In H^{*},

$$
W \equiv \cdots t^{a_{j}} W_{j} t^{a_{j+1}} W_{j+1} \cdots=\cdots t^{a_{j+}+a_{j+1}} W_{j} W_{j+1} \cdots,
$$

and the induction hypothesis can be applied to the last word. Since $a_{j}+a_{j+1}$ has the same sign as both a_{j} and a_{j+1}, and since $W_{j} W_{j+1} \in X$ if and only if $W_{j+1} \in X$, we deduce that W contains a subword of the required form.

2. Stable letters. The principal lemma

Let $E=(S ; D)$ be any presentation. A presentation E^{*} is said to have stable letters $p_{v}(v \in V)$ and corresponding basis E if it has the form

$$
E^{*}=\left(S, p_{v}(v \in V) ; D, F_{i} p_{v_{i}} G_{i}=H_{i} p_{v_{i}} K_{i}(i \in I)\right)
$$

where $v_{i} \in V$ and $F_{i}, G_{i}, H_{i}, K_{i}$ are words over S, and if, for each $v \in V$, at least one of the defining relations involves p_{v}, that is, the set J_{v} of all i in I such that $v_{i}=v$ is non-empty.

We shall consider the following further conditions, in which we use the notation $A_{i} \equiv H_{i}^{-1} F_{i}, B_{i} \equiv K_{i} G_{i}^{-1}$.

The strong isomorphism condition is that there is an isomorphism of the subgroup A of the basis E generated by the $A_{i}(i \in I)$ onto the subgroup B of E generated by the $B_{i}(i \in I)$ in which $A_{i} \rightarrow B_{i}$; this implies the isomorphism condition, that for each $v \in V$ there is an isomorphism of the subgroup $A(v)$ of the basis E generated by $A_{i}\left(i \in J_{v}\right)$ onto the subgroup $B(v)$ of the basis E generated by $B_{i}\left(i \in J_{v}\right)$ such that $A_{i} \rightarrow B_{i}$.

Note. In the proofs of the two lemmas which follow, E_{1}^{*} denotes the presentation

$$
\left(S, p_{v}(v \in V) ; D, p_{v_{i}}^{-1} A_{i} p_{v_{i}}=B_{i}(i \in I)\right)
$$

Clearly, for any word $W, W=1$ in E_{1}^{*} if and only if $W=1$ in E^{*}; hence $E \leqq E_{1}^{*}$ if and only if $E \leqq E^{*}$.

Lemma 3. Let E^{*} be a presentation with certain stable letters $p_{v}(v \in V)$ and basis $E=(S ; D)$. Let the isomorphism condition be satisfied. Then $E \leqq E^{*}$.

Proof. By the theorem ${ }^{2}$ of Higman, Neumann and Neumann (see Kurosh [6, Ch. X, §38, Lemma 2], there is a group E_{0} containing E and elements $p_{v}(v \in V)$ such that $p_{v}^{-1} A_{i} p_{v}=B_{i}$ whenever $v \in V$ and $i \in J_{v}$; equivalently, $p_{v_{i}}^{-1} A_{i} p_{v_{i}}=B_{i}$ for all $i \in I$. Clearly we may assume that E_{0} is generated by E and the elements $p_{v}(v \in V)$. It is now clear that a presentation of E_{0} can be obtained from E_{1}^{*} by adding (a possibly empty set of) further defining relations. Now let W be a word over S. If $W=1$ in E_{1}^{*}, then $W=1$ in E_{0}, and since E is a subgroup of E_{0}, it follows that $W=1$ in E. Conversely, it is trivial that $W=1$ in E implies $W=1$ in E_{1}^{*}. Hence $E \leqq E_{1}^{*}$, so that $E \leqq E^{*}$.

Lemma 4. (The principal lemma). Let E be a presentation with stable letters $p_{v}(v \in V)$ and basis $E=(S ; D)$. Let the isomorphism condition be satisfied. In the notation of the first three paragraphs of this section, if $W=1$ in E^{*}, where W is a word involving at least one stable letter, then W contains a subword
$p_{v}^{-1} C p_{v}$, where C belongs to $A(v)$ and hence to A,
or

[^1]$p_{v} C p_{v}^{-1}$, where C belongs to $B(v)$ and hence to B;
in both cases C is a word over S.
Note. (i) This lemma for one stable letter was proved in [4], but an extra condition was needed.
(ii) A word C over S clearly belongs to the subgroup A of E if and only if there exist $i_{1}, i_{2}, \cdots, i_{r}$ in $I(r \geqq 0)$ and integers $e_{1}, e_{2}, \cdots, e_{r}$, each being either 1 or -1 , such that
$$
C=A_{i_{1}}^{e_{1}} A_{i_{2}}^{e_{2}} \cdots A_{i_{r}}^{e_{r}} \text { in } E .
$$

Sometimes we prefer to write (with a change of notation) $C A_{i_{1}}^{e_{1}} \cdots A_{i_{r}}^{e_{r}}=$ 1 in E.
(iii) In $\S \S 3,4$ the strong isomorphism condition is always satisfied.

Proof. 1°. We first prove the lemma in the case that there is only one stable letter, p. Since $W=1$ in E^{*}, we have $W=1$ in

$$
E_{1}^{*}=\left(S, p ; D, p^{-1} A_{i} p=B_{i}(i \in I)\right) ;
$$

and we have to prove that W contains a subword $p^{-1} C p(C \in A)$ or $p C p^{-1}$ $(C \in B), C$ being a word over S. This is certainly true if W contains a subword $p^{-1} p$ or $p p^{-1}$; there remains the case when W has the form

$$
W \equiv W_{0} p^{a_{1}} W_{1} \cdots p^{a_{r}} W_{r}
$$

where $r \geqq 1$, each a_{i} is a non-zero integer and $W_{0}, W_{1}, \cdots, W_{r}$ are words over S of which only W_{0} and W_{r} may be empty.

By Lemma $3, E=(S ; D) \leqq E^{*}$, so $E \leqq E_{1}^{*}$. Hence, obviously, $E \leqq H$, where

$$
H=\left(S, q ; D, q^{-1} A_{i} q=B_{i}(i \in I)\right)
$$

With Lemma 2 in mind, consider

$$
H^{*}=\left(S, q, t ; D, q^{-1} A_{i} q=B_{i}, t^{-1} B_{i} t=B_{i}(i \in I)\right)
$$

Adding the new generator p and the defining relation $p=q t$ we see that H^{*} is isomorphic to K, where

$$
K=\left(S, q, t, p ; D, q^{-1} A_{i} q=B_{i}, p=q t, p^{-1} A_{i} p=B_{i}(i \in I)\right) .
$$

Since K contains all generators and defining relations of E_{1}^{*}, we have $W=1$ in K. Hence

$$
W_{0}(q t)^{a_{1}} W_{1} \cdots(q t)^{a_{r}} W_{r}=1
$$

in K, and hence in H^{*}. By Lemma 2 this word contains a subword $t^{e} \mathrm{Ct}^{-e}$ ($e= \pm 1$) where C belongs to the subgroup of H generated by the B_{i}. Since $E \leqq H$, this means that $C \in B$. If $e=1, C$ has the form W_{j} for some $j(1 \leqq j \leqq r-1)$ and we have finished. If $e=-1$ then C has the
form $q^{-1} W_{j} q$ for some j, and we have $q^{-1} W_{j} q \in B$, hence $W_{j} \in q B q^{-1}=A$.
2°. Now consider the general case. Denote the elements of the index set V by $1,2,3, \cdots$. Let $D(v)$ consist of the defining relations $p_{v_{i}}^{-1} A_{i} p_{v_{i}}=$ B_{i} of E_{1}^{*} such that $i \in J_{v}$ (that is, $v_{i}=v$). Since $W=1$ in E_{1}^{*} we have $W=1$ in E_{r} for some r, where

$$
E_{r}=\left(S, p_{1}, p_{2}, \cdots, p_{r} ; D, D(1), D(2), \cdots, D(r)\right)
$$

It is straightforward to prove that $E \leqq E_{1} \leqq E_{2} \leqq \cdots$. Choosing s maximal so that W involves p_{s}, we deduce that $W=1$ in E_{s}. Now p_{s} is a stable letter for E_{s}, the basis being E_{s-1}, hence W contains a subword $p_{s}^{e} C p_{s}^{-e}$ where for example $e=1$ and C belongs to the subgroup of E_{s-1} (hence of E) generated by $B_{i}\left(i \in J_{s}\right)$. If C is a word over S we have finished, but if C involves some of p_{1}, \cdots, p_{s-1} then $C=C^{\prime}$ in E_{s-1} where C^{\prime} is a word over S, namely a product of $B_{i}^{ \pm 1}$ where $i \in J_{s}$. Thus $C C^{\prime-1}=1$ in E_{s-1} and, by an induction hypothesis $C C^{\prime-1}$ (hence C and hence W) contains a subword of the required type.

3. The semi-group T and the group G

Let T be a semi-group with generators

$$
s_{b}, q_{a} \quad(b=1,2, \cdots, M ; a=0,1,2, \cdots, N)
$$

and defining relations

$$
\Sigma_{i}=\Gamma_{i} \quad(i=1,2, \cdots, P)
$$

where each Σ_{i} and Γ_{i} is a special word, i.e., a word of the form $S q_{a} S^{\prime}$ where S and S^{\prime} are positive words in $s_{1}, s_{2}, \cdots, s_{M}$. Thus if U, V are positive words in the generators of T then $U=V$ in T if and only if U can be transformed into V by a finite sequence of elementary transformations, each of the form

$$
X \Sigma_{i} Y \rightarrow X \Gamma_{i} Y \quad \text { or } \quad X \Gamma_{i} Y \rightarrow X \Sigma_{i} Y
$$

We shall denote q_{0} also by q.
From Post [8] we have (cf. Appendix (I)),
Lemma 5. For a certain choice of T, it is recursively unsolvable to determine for an arbitrary special word Σ whether or not $\Sigma=q$ in T.

Let G be the group with generators

$$
s_{b}, q_{a}, k, t, x, y, l_{i}, r_{i}
$$

and defining relations

$$
\left.\left.\begin{array}{c}
s_{b} y=y y s_{b}, \quad x s_{b}=s_{b} x x, \\
s_{b} l_{i}=y l_{i} y s_{b}, \quad r_{i} s_{b}=s_{b} x r_{i} x, \\
\Sigma_{i}=l_{i} \Gamma_{i} r_{i}, \\
=l_{i} t, \quad t y=y t, \\
r_{i} k=k r_{i}, \quad x k=k x, \\
\left(q^{-1} t q\right) k=k\left(q^{-1} t q\right),
\end{array}\right\} G_{1}, \quad G_{2}\right\} G_{3} G_{4}
$$

where $b=1,2, \cdots, M ; a=0,1, \cdots, N ; i=1,2, \cdots, P$.
We shall prove the following two lemmas.
Lemma 6. If Σ is a special word and

$$
\begin{equation*}
\left(\Sigma^{-1} t \Sigma\right) k=k\left(\Sigma^{-1} t \Sigma\right) \text { in } G \tag{1}
\end{equation*}
$$

then $\Sigma=q$ in T.
Lemma 7. Conversely if Σ is a special word and $\Sigma=q$ in T then (1) holds.

It will follow that
Theorem. The word problem for G is unsolvable.
Proof of Lemma 7. 1°. Suppose that for the special word $\Sigma, \Sigma=q$ in T. We first prove that $\Sigma=L q R$ in G, where L is a word in l_{i}, y, and R is a word in r_{i}, x. There is a sequence of elementary transformations

$$
\Sigma \equiv W_{1} \rightarrow W_{2} \rightarrow \cdots \rightarrow W_{n} \equiv q
$$

where for each $j=1,2, \cdots, n-1$, one of the words W_{j}, W_{j+1} has the form $X \Sigma_{i} Y$ and the other has the form $X \Gamma_{i} Y$. Since Σ is a special word, all of $W_{1}, W_{2}, \cdots, W_{n}$ are special, so that X and Y are positive words in the s_{b}. Hence, by repeated use of the defining relations $s_{b} y=y y s_{b}, s_{b} l_{i}=$ $y l_{i} y s_{b}$, we see that $X l_{i}=L^{\prime} X$ in G for some word L^{\prime} in l_{i}, y; similarly, $r_{i} Y=Y R^{\prime}$ for some word R^{\prime} in r_{i}, x. Therefore

$$
X \Sigma_{i} Y=X l_{i} \Gamma_{i} r_{i} Y=L^{\prime} X \Gamma_{i} Y R^{\prime},
$$

so that $W_{j}=L_{j} W_{j+1} R_{j}$ where L_{j} is a word in l_{i}, y, and R_{j} is a word in r_{i}, x. The result follows if we take $L \equiv L_{1} L_{2} \cdots L_{n-1}, R \equiv R_{n-1} \cdots R_{2} R_{1}$.
2°. In G we have (proving (1))

$$
\begin{aligned}
\left(\Sigma^{-1} t \Sigma\right) k & =R^{-1} q^{-1} L^{-1} t L q R k=R^{-1} q^{-1} t q k R=R^{-1} k q^{-1} t q R \\
& =k R^{-1} q^{-1} L^{-1} t L q R=k\left(\Sigma^{-1} t \Sigma\right) .
\end{aligned}
$$

4. Completion of the proof

To complete the proof that the word problem for G in unsolvable, it remains to prove Lemma 6. The proof is in five parts, called $(k),(t),(z)$,
$(l),(s)$. Throughout the proof, Σ is to be a fixed special word for which (1) holds.
$\operatorname{Part}(k) . k$ is a stable letter for G, the basis being the group G_{1} whose defining relations consist of those defining relations of G indicated above, and whose generators are those of G, less k. Now (1) gives

$$
k^{-1}\left(\Sigma^{-1} t \Sigma\right) k \Sigma^{-1} t^{-1} \Sigma=1 \text { in } G ;
$$

nence by Lemma 4 (or Lemma 2) we have that $\Sigma^{-1} t \Sigma$ belongs to the subgroup of G_{1} generated by $r_{i}, x, q^{-1} t q(i=1, \cdots, P)$. By Note (ii) after the statement of Lemma 4, there exist $\varphi_{1}, \cdots, \varphi_{n}$ and e_{1}, \cdots, e_{n} such that

$$
\begin{equation*}
\Sigma^{-1} t \Sigma \varphi_{1}^{e_{1}} \cdots \varphi_{n}^{e_{n}}=1 \text { in } G_{1} \tag{2}
\end{equation*}
$$

where $n \geqq 0$, each $e_{j}= \pm 1$, and each φ_{j} is one of $r_{i}, x, q^{-1} t q$. We shall assume that n is minimal.
$\operatorname{Part}(t) . t$ is a stable letter for G_{1}, the basis being the group G_{2} whose defining relations are indicated above and whose generators are those of G, less k, t. Denoting the left side of (2) by W, Lemma 4 (or Lemma 2) shows that W contains a subword $t^{e} C t^{-e}(e= \pm 1)$, where C belongs to the subgroup of G_{2} generated by $l_{i}, y(i=1, \cdots, P)$. Thus $C=L$ in G_{2}, for some word L in l_{i}, y. We shall prove that, in G_{2},

$$
\begin{equation*}
\Sigma=L q R \tag{3}
\end{equation*}
$$

for some word R in r_{i}, x. (This result corresponds to Boone [2, Th. VI, p. 219].)

Case 1. t^{e} is the displayed t in (2) and t^{-e} occurs in some factor $\varphi_{j}^{e j}$. Here $e=1$ and C has the form $\Sigma R^{\prime} q^{-1}$, where R^{\prime} is a word in r_{i}, x, so (3) follows.

Case 2. t^{e} occurs in $\varphi_{a}^{e_{a}}$ and t^{-e} occurs in $\varphi_{b}^{e_{b}}(a<b)$. Here $W \equiv$ $\cdots\left(q^{-1} t^{e} q\right) R^{\prime}\left(q^{-1} t^{-e} q\right) \cdots$, where R^{\prime} is a word in r_{i}, x, hence $C \equiv q R^{\prime} q^{-1}$. In view of the defining relations $t l_{i}=l_{i} t, t y=y t$, we have, in G_{1},

$$
t^{e} q R^{\prime} q^{-1} t^{-e} \equiv t^{e} C t^{-e}=t^{e} L t^{-e}=L=C \equiv q R^{\prime} q^{-1} ;
$$

hence

$$
W=\cdots q^{-1} q R^{\prime} q^{-1} q \cdots=\cdots R^{\prime} \cdots,
$$

so that we have reduced by two the number of factors $\varphi_{j}^{e s}$ in (2); this contradicts the assumption that n is minimal in (2).
$\operatorname{Part}(z)$. Let us write the defining relations $\Sigma_{i}=\Gamma_{i}$ of T in more detail as $F_{i} q_{s_{i}} G_{i}=H_{i} q_{g_{i}} K_{i}$, and the fixed word Σ as $F q_{s} G$.

Let H_{2} be the free product of G_{2} and the infinite cyclic group ($z ; \varnothing$). Then (3) holds in H_{2}. To H_{2} add superfluous generators $p_{a}(a=0,1, \cdots, N)$
and corresponding defining relations $p_{a}=q_{a} z^{-1}$. In the remaining defining relations of H_{2}, we may replace every q_{a} by $p_{a} z$. The generators q_{a} are now superfluous; removing them with the defining relations $p_{a}=q_{a} z^{-1}$, we obtain a presentation for H_{2} whose generators are $z, s_{b}, p_{a}, x, y, l_{i}, r_{i}$, and whose defining relations are those of G_{2} with q_{a} replaced everywhere by $p_{a} z$. Thus instead of $\Sigma_{i}=l_{i} \Gamma_{i} r_{i}$ we now have

$$
F_{i} p_{s_{i}} z G_{i}=l_{i} H_{i} p_{g_{i}} z K_{i} r_{i} ;
$$

and instead of (3), we have (writing p for p_{0})

$$
\begin{equation*}
E p_{\mathrm{s}} z G=L p z R \text { in } H_{2} \tag{4}
\end{equation*}
$$

z is a stable letter for H_{2}, the basis being the group G_{3} whose defining relations have been given earlier, and whose generators are $s_{b}, p_{a}, x, y, l_{i}, r_{i}$. The isomorphism condition is satisfied if the mapping $A_{i} \rightarrow B_{i}$ generates an isomorphism between two subgroups of G_{3}, where

$$
A_{i} \equiv p_{g_{i}}^{-1} H_{i}^{-1} l_{i}^{-1} F_{i} p_{s_{i}}, \quad B_{i} \equiv K_{i} r_{i} G_{i}^{-1}
$$

In fact, both subgroups are free. For example, if

$$
\begin{equation*}
A_{v_{1}}^{e_{1}} \cdots A_{v_{m}^{m}}^{e_{m}^{m}}=1 \text { in } G_{3} \tag{5}
\end{equation*}
$$

then, adding defining relations $s_{b}=p_{a}=x=y=r_{i}=1$, we deduce that

$$
l_{v_{1}}^{-e_{1}} \cdots l_{v_{m}}^{-e_{m}}=1
$$

in the free group with generators l_{i}. Hence j exists such that $v_{j}=v_{j+1}$ and $e_{j}=-e_{j+1}$, which means that two factors cancel in (5).

Note that $z^{-1} A_{i} z=B_{i}$ in H_{2}. Now (4) gives

$$
R^{-1} z^{-1}\left(p^{-1} L^{-1} F p_{s}\right) z G=1 \text { in } H_{2},
$$

so by Lemma 4 and Note (ii) following it, $p^{-1} L^{-1} F p_{s}$ belongs to the subgroup of the basis G_{3} generated by $A_{i}(i=1,2, \cdots, P)$, or equivalently $v_{1}, \cdots, v_{n}, e_{1}, \cdots, e_{n}$ exist such that

$$
\begin{equation*}
\left(p^{-1} L^{-1} F p_{s}\right) A_{v_{1}}^{e_{1}} \cdots A_{v_{n}^{n}}^{e_{n}}=1 \text { in } G_{3}, \tag{6}
\end{equation*}
$$

where $1 \leqq v_{j} \leqq P$ and $e_{j}= \pm 1$.
Further, since $z^{-1} A_{i} z=B_{i}$, (6) gives

$$
z^{-1}\left(p^{-1} L^{-1} F p_{s}\right) z B_{v_{1}}^{e_{1}} \cdots B_{v_{n}}^{e_{n}^{n}}=1 \text { in } H_{2},
$$

hence

$$
\begin{equation*}
R G^{-1} B_{v_{1}}^{e_{1}} \cdots B_{v_{n}}^{e_{n}}=1 \text { in } H_{2} . \tag{7}
\end{equation*}
$$

In fact, equation (7) is true in G_{3}. This follows from Lemma 3, since the left hand side of (7) does not involve z, which is a stable letter for H_{2} with
basis G_{3}.
To prove Lemma 6 it is evidently sufficient to prove
Lemma 8. Let $\Sigma \equiv F q_{s} G$ be any special word. If v_{1}, \cdots, v_{n} and e_{1}, \cdots, e_{n} and words L (in l_{i}, y), $R\left(\right.$ in $\left.r_{i}, x\right)$ exist such that (6) and (7) hold, then, in the semi-group T, Σ can be transformed into q by a sequence of at most n elementary transformations.

Proof. We use induction on n. If $n=0$, then by adding defining relations $x=y=l_{i}=r_{i}=1$ we obtain, from (6), (7),

$$
p^{-1} F p_{s}=1 \text { and } G^{-1}=1
$$

in the free group on generators s_{b}, p_{a}. Hence $G \equiv 1, F \equiv 1$ and $p_{s} \equiv p$ (that is, $s=0$), so we have

$$
\Sigma \equiv F q_{s} G \equiv q_{0} \equiv q ;
$$

and the lemma is true.
For the induction step, we may assume that L is of minimal length in (6) and that R is of minimal length in (7). Assume also that Σ can not be transformed into q by at most n elementary transformations in T. We have to obtain a contradiction. First consider (6):

Part (l). If we add the defining relations $r_{i}=x=1$ to G_{3}, we obtain the group

$$
G_{3}^{L}=\left(s_{b}, p_{a}, y, l_{i} ; s_{b} y=y y s_{b}, s_{b} l_{i}=y l_{i} y s_{b}\right),
$$

and (6) holds in G_{3}^{L}. The letters l_{i} are stable for this group, the basis being

$$
G_{4}^{L}=\left(s_{b}, p_{a}, y ; s_{b} y=y y s_{b}\right) .
$$

Lemma 4 will be available if the mapping $y^{-1} s_{b} \rightarrow y s_{b}(b=1,2, \cdots, M)$ generates an isomorphism between two subgroups, say M_{1} and M_{2} respectively, of G_{4}^{L}. In fact, both M_{1}, M_{2} are free. For example, considering M_{2}, if $\left(y s_{b_{1}}\right)^{e_{1}} \cdots\left(y s_{b_{m}}\right)^{e_{m}}=1$ in G_{4}^{L}, then by adding the defining relation $y=1$ to G_{4}^{L}, we deduce that $s_{b_{1}}^{e_{1}} \cdots s_{b_{m}^{m}}^{\varepsilon_{m}}=1$ in the free group on s_{b}, p_{a}. Hence j exists such that $b_{j}=b_{j+1}, e_{j}=-e_{j+1}$.

Therefore since $n>0$ the left side of (6) contains a subword $l_{i}^{e}{ }_{i}{ }_{i}^{-e}$, C being a word in s_{b}, p_{a}, y, where either $e=-1$ and C belongs to M_{1}, or $e=1$ and C belongs to M_{2}.

Case 1. This subword is a subword of $F p_{s} A_{v_{1}}^{e_{1}} \cdots A_{v_{n}}^{e_{n}}$. Then l_{i}^{e} occurs in $A_{v_{j}}^{e_{j}}$ say and l_{i}^{-e} occurs in $A_{v_{j}+1}^{e_{j+1}}$. Thus $v_{j}=i=v_{j+1}$ and $e_{j}=-e=-e_{j+1}$. Therefore

$$
A_{v_{j}^{j}}^{e_{j}} A_{v_{j+1}^{e_{j}+1}}=1 \quad \text { and also } \quad B_{v_{j}}^{e_{j}} B_{v_{j+1}}^{e_{i+1}}=1 .
$$

By the induction hypothesis, Σ can be transformed into q in at most $n-2$ steps, contrary to one of our assumptions.

Case 2. The subword is a subword of $p^{-1} L^{-1}$. Here C is a word in y only. Since L^{-1} is reduced, C has the form y^{k} where the integer k is not zero. $C \equiv y^{k}$ belongs to M_{1} or M_{2}. We shall prove that $y^{k}=1$ in G_{3}.
Suppose $y^{k} \in M_{1}$, the other case being similar. Thus

$$
y^{k}=\left(y^{-1} s_{b_{1}}\right)^{a_{1}} \cdots\left(y^{-1} s_{b_{r}}\right)^{a_{r}} \text { in } G_{\star}^{L}
$$

Put $y=1$; then

$$
1=s_{b_{1}}^{d_{1}} \cdots s_{b_{r}}^{d_{r}}
$$

in the free group on generators s_{b}, p_{a}. Hence $r=0$, or two letters cancel. It follows that $y^{k}=1$ in G_{4}^{L}, hence $y^{k}=1$ in G_{3}.

Thus Case 2 leads to the contradiction that the L^{-1} in (6) can be replaced by $L^{\prime-1}$ of smaller length.

Case 3. The remaining case is when l_{i}^{e} occurs in L^{-1} and l_{i}^{-e} occurs in $A_{v_{1}}^{e_{1}}$. Here $e=e_{1}$ and $i=v_{1}$. Thus either

$$
e_{1}=1, \quad C \equiv Y F p_{s} p_{g_{i}}^{-1} H_{i}^{-1} \text { and } C \in M_{2},
$$

or

$$
e_{1}=-1, \quad C \equiv Y F p_{s} p_{s_{i}}^{-1} F_{i}^{-1} \text { and } C \in M_{1}
$$

Y being a word in y only.
We shall consider the case $e_{1}=1$ only; the other case is similar.
First we have $s=g_{v_{1}}\left(=g_{i}\right)$; for if we put $s_{b}=y=1$, then the statement $C \in M_{2}$ becomes: $p_{s} p_{g_{i}}^{-1}=1$ in the free group on generators p_{a}.

Hence $b_{1}, \cdots, b_{r}, d_{1}, \cdots, d_{r}$ exist such that

$$
\begin{equation*}
Y F H_{i}^{-1}\left(y s_{b_{1}}\right)^{a_{1}} \cdots\left(y s_{b_{r}}\right)^{a_{r}}=1 \text { in } G_{4}^{L}, \tag{8}
\end{equation*}
$$

where $1 \leqq b_{j} \leqq M, d_{j}= \pm 1(j=1,2, \cdots, r)$. We assume that r is minimal in (8); it can be zero.
$\operatorname{Part}(s)$. The s_{b} are stable letters for G_{4}^{L}, the basis being the free group on generators p_{a}, y. The isomorphism condition is satisfied if the mapping $y y \rightarrow y$ generates an isomorphism between two subgroups of this free group (namely the cyclic subgroups generated by y^{2} and y); but this is so.

The reader is reminded that, in (8), F and H_{i} are positive words (possibly empty) in the s_{b}, and Y is a word in y only. We shall prove that F has the form $F \equiv U H_{v_{1}}$ (i.e., the form $U H_{i}$), for some word U. Now positive words $W, F^{\prime}, H_{i}^{\prime}$ in the s_{b} certainly exist such that $F \equiv F^{\prime} W$, $H_{i} \equiv H_{i}^{\prime} W$, and we suppose W has maximal length, so it is sufficient to prove that $H_{i}^{\prime} \equiv 1$. Assume that $H_{i}^{\prime} \equiv 1$.

Let us replace F and H_{i}^{-1} in (8) by F^{\prime} and $H_{i}^{\prime-1}$ respectively; we obtain
a true equation in G_{4}^{L} which we label (8^{\prime}). At least one stable letter occurs in (8^{\prime}) so, by Lemma 4, the left hand side contains a subword $J \equiv s_{b}^{e} C s_{b}^{-e}$, where C is a word in p_{a}, y. But (8^{\prime}) involves no letters p_{a}, hence C is a word in y only; and either $e=-1$ and C is a word in y^{2}, or $e=1$ and C is a word in $y . J$ can not be a subword in $\left(y s_{b_{1}}\right)^{a_{1}} \cdots\left(y s_{b_{r}}\right)^{a_{r}}$ since r is minimal. s_{b}^{e} can not occur in $H_{i}^{\prime-1}$, since if it did we would have $e=-1$, and $s_{b}^{-e} \equiv s_{b}$ would occur in $\left(y s_{b_{1}}\right)^{a_{1}}$; hence $d_{1}=1$. Thus $C \equiv y$ which is not a word in y^{2}. It follows that s_{b}^{e} occurs in F^{\prime}, s_{b}^{-e} occurs in $H_{i}^{\prime-1}$, and C is empty. Thus the last letter of F^{\prime} is the inverse of the first letter of $H_{i}^{\prime-1}$, contrary to the assumption that W is of maximal length.

Thus we have proved about equation (6) that if $e_{1}=1$, then F has the form $U H_{v_{1}}$ for some word U. Dually, we can prove that in (7), if $e_{1}=1$ then G^{-1} has the form $V^{-1} K_{v_{1}}^{-1}$ for some word V^{-1}. This dual argument will now be outlined briefly.

Adding $l_{i}=y=1$, (7) holds in

$$
G_{3}^{R}=\left(s_{b}, p_{a}, x, r_{i} ; x s_{b}=s_{b} x x, r_{i} s_{b}=s_{b} x r_{i} x\right) .
$$

The letters r_{i} are stable, the basis being $G_{4}^{R}=\left(s_{b}, p_{a}, x ; x s_{b}=s_{b} x x\right)$. By Lemma 4, the left hand side of (7) contains a subword $r_{h}^{f} C^{\prime} r_{h}^{-\int}(1 \leqq h \leqq P)$ where C^{\prime} is a word in s_{b}, p_{a}, x and either $f=-1$ and C^{\prime} belongs to the subgroup of G_{4}^{R} generated by the $s_{b} x$, or $f=1$ and C^{\prime} belongs to the subgroup generated by the $s_{b} x^{-1}$. If this subword is a subword of $G^{-1} B_{v_{1}}^{e_{1}} \cdots B_{v_{n}^{e_{n}}}$, then following Case 1 we obtain the contradiction that Σ can be transformed into q in at most $n-2$ steps. If the subword is a subword of R, we contradict the assumption that R has minimal length in (7). The remaining case is when \boldsymbol{r}_{h}^{f} occurs in R and \boldsymbol{r}_{h}^{-f} occurs in $B_{v_{1}}^{c_{1}}$. Here $f=-1$ and $h=v_{1}$. C^{\prime} then has the form $X G^{-1} K_{h}$, where X is a word in x only, and instead of (8) we have, say,

$$
X G^{-1} K_{h}\left(s_{b_{1}} x\right)^{\alpha_{1}} \cdots\left(s_{b_{r}} x\right)^{a_{r}}=1 \text { in } G_{4}^{R} .
$$

It is now easy to follow the previous argument and obtain $G^{-1} \equiv V^{-1} K_{h}$ for some word V^{-1}, as required.

We recall that it has also been proved that in (6) the subscripts, s, v_{1} are connected by the equation $s=g_{v_{1}}$. Denoting v_{1} by i, we have

$$
\Sigma \equiv F q_{s} G \equiv U H_{i} q_{s} K_{i} V \equiv U H_{i} q_{q_{i}} K_{i} V .
$$

Put $\Sigma^{*} \equiv U F_{i} q_{s_{i}} G_{i} V$. Then in T, the word Σ can be transformed into Σ^{*} by one elementary transformation. Write $F^{*} \equiv U F_{i}$ and $G^{*} \equiv G_{i} V$ so that $\Sigma^{*} \equiv F^{*} q_{s_{i}} G^{*}$. In G_{3} we have

$$
\begin{aligned}
\left(p^{-1} L^{-1} F p_{s}\right) A_{v_{1}^{e_{1}}} & \equiv p^{-1} L^{-1} U H_{i} p_{q_{i}} A_{i} \\
& \equiv p^{-1} L^{-1} U H_{i} p_{v_{i}}\left(p_{g_{1}}^{-1} H_{i}^{-1} l_{i}^{-1} F_{i} p_{s_{i}}\right)=p^{-1} L^{-1} U l_{i}^{-1} F_{i} p_{s_{i}} .
\end{aligned}
$$

Since U is a positive word in the s_{b}, a word L_{0} in l_{i}, y exists such that the last word is equal in G_{3} to

$$
p^{-1} L_{0}^{-1} U F p_{s_{i}} \equiv p^{-1} L_{0}^{-1} F^{*} p_{s_{i}} .
$$

Thus (6) becomes

$$
\begin{equation*}
\left(p^{-1} L_{0}^{-1} F^{*} p_{s_{i}}\right) A_{v_{2}^{2}}^{e_{2}} \cdots A_{v_{n}^{n}}^{e_{n}}=1 \text { in } G_{3} . \tag{*}
\end{equation*}
$$

Similarly, in G_{3},

$$
\begin{aligned}
R G^{-1} B_{v_{1}^{1}}^{e_{1}} & \equiv R V^{-1} K_{i}^{-1} B_{i} \equiv R V^{-1} K_{i}^{-1} K_{i} r_{i} G_{i}^{-1} \\
& =R V^{-1} r_{i} G_{i}^{-1}=R_{0} V^{-1} G_{i}^{-1} \equiv R_{0} G^{*-1},
\end{aligned}
$$

for some word R_{0} in r_{i}, x. Thus (7) becomes

$$
\begin{equation*}
\left(R_{0} G^{*-1}\right) B_{v_{2}}^{e_{2}} \cdots B_{v_{n}}^{e_{n}}=1 \text { in } G_{3} . \tag{7*}
\end{equation*}
$$

By the induction hypothesis $\Sigma^{*} \equiv F^{*} q_{s_{t}} G^{*}$ can be transformed into q in at most $n-1$ steps. But Σ can be transformed into Σ^{*} in one step, hence Σ can be transformed into q in at most n steps. This completes the induction step for the case $e_{1}=1$.

When $e_{1}=-1$ only slight changes have to be made. We find that, in (6), $F \equiv U F_{v_{1}}$ and $s=s_{v_{1}}$; in (7), $G^{-1} \equiv V^{-1} G_{v_{1}}^{-1}$ (for some words U, V^{-1}). The definitions of Σ^{*}, F^{*}, G^{*} in this case are

$$
\Sigma^{*} \equiv U H_{i} q_{q_{i}} K_{i} V, \quad F^{*} \equiv U H_{i}, \quad G^{*} \equiv K_{i} V
$$

This completes the proof of Lemma 8, and hence of the theorem.

Appendix

(I) A remark on Lemma 5. In [8] Post describes a semi-group with generators $s_{1}, \cdots, s_{m}, h, q_{1}, \cdots, q_{R+2}$ and a finite number of defining relations $A_{i}=B_{i}$, where each A_{i} and B_{i} has one of the forms (1) $S q_{a} S^{\prime}$, (2) $h S q_{a} S^{\prime}$, (3) $S q_{a} S^{\prime} h$, where S, S^{\prime} are possibly empty words in s_{1}, \cdots, s_{m}, and, for each i, A_{i} and B_{i} have the same form. In this semi-group, which we call $T^{\prime \prime}$, it is recursively unsolvable to determine if an arbitrary word of the form $h S q_{a} S^{\prime} h$ is equal to the fixed word $h q_{R+2} h$. If we now make the notational change $h=s_{m+1}$, and add the new generator q_{0} with the defining relation $h q_{R+2} h=q_{0}$, we obtain Lemma 5 , though in a different notation.
(II) The referee has pointed out that, in Lemma 5, one may take all the generators q_{a} to be equal (i.e., $N=0$). If this is done, the introduction of the generator z in Part (z) of $\S 4$ can be avoided, and there are one or two simplifications later in the proof.
To see this, add to the semi-group T^{\prime} in (I) the new generator v and,
in each defining relation such that A_{i} and B_{i} have type (3), replace h by v; we obtain a new semi-group T_{1}. Call a word of T_{1} special if it has the form $h S q_{a} S^{\prime} v$. It is easily deduced that in T_{1} it is recursively unsolvable to determine for an arbitrary special word Σ whether or not $\Sigma=h q_{R+2} v$ in T_{1}. Now let T_{2} be obtained from T_{1} by adding the defining relation $h q_{R+2} v=1$. Then, for any special word Σ of $T_{1}, \Sigma=h q_{R+2} v$ in T_{1} if and only if $\Sigma=1$ in T_{2}. (If $\Sigma=1$ in T_{2}, one first shows that the last elementary transformation, if any, of the form "Replace $X Y$ by $X h q_{R+2} v Y$ " can be dispensed with.) Let us re-name the generators of $T_{2}, x_{k}(k=$ $1,2, \cdots, K)$ and the defining relations $C_{j}=D_{j}(j=1,2, \cdots, J)$. Let T_{3} be the semigroup whose generators are x_{k}, q and whose defining relations are $q C_{j}=q D_{j}, q x_{k}=x_{k} q(k=1,2, \cdots, K ; j=1,2, \cdots, J)$. It is easily shown (cf. Boone [2, Th. X, p. 250]) that $\Sigma=1$ in T_{2} if and only if $q \Sigma=q$ in T_{3}. Thus T_{3} has the desired properties that Lemma 5 is true for it and $N=0$.
(III) The referee has asked whether or not Lemma 4 could be generalized to cover the case when E^{*} has the form

$$
\mathcal{E}^{*}=\left(S, p_{v}(v \in V) ; D, F_{i} p_{v_{i}} G_{i}=H_{i} p_{w_{i}} K_{i}(i \in I)\right),
$$

where now w_{i} need not equal v_{i}. Such a generalization is provided by Theorem A below.

First we need a definition. Let T, U be words over S and let $v, w \in V$. We say that $T p_{v}$ produces $p_{w} U$ if the word $T p_{v}$ can be transformed into $p_{w} U$ by a sequence of operations of the form

$$
X A_{i} p_{v_{i}} Y \rightarrow X p_{w_{i}} B_{i} Y \text { or } X A_{i}^{-1} p_{w_{i}} Y \rightarrow X p_{v_{i}} B_{i}^{-1} Y
$$

where X, Y are arbitrary words and, as in § $2, A_{i} \equiv H_{i}^{-1} F_{i}, B_{i} \equiv K_{i} G_{i}^{-1}$.
If $T p_{v}$ produces $p_{w} U$, it is readily shown that T is a word in the A_{i} ($i \in I$), say $T \equiv w\left(A_{i}\right)$, and U is the corresponding word $w\left(B_{i}\right)$ in the B_{i}. Further, it is obvious that $T p_{v}=p_{w} U$ in \mathcal{E}^{*}.

Theorem A. If the strong isomorphism condition holds, and if $W=1$ in \mathcal{E}^{*}, where W involves at least one letter $p_{v}(v \in V)$, then W contains a subword (i) $p_{w}^{-1} C p_{v}$ or (ii) $p_{w} C p_{v}^{-1}$, where C is a word over S. In case (i) C is equal in the basis $(S ; D)$ to a word $w\left(A_{i}\right)$ and $w\left(A_{i}\right) p_{v}$ produces $p_{w} w\left(B_{i}\right)$. In case (ii) C is equal in the basis to a word $w\left(B_{i}\right)$ and, again, $w\left(A_{i}\right) p_{v}$ produces $p_{w} w\left(B_{i}\right)$.

Remarks. 1. The proof of Theorem A is fairly straightforward. The theorem can be reduced to Lemma 4 by making use of the idea that, if we choose one defining relation $F_{i} p_{v_{i}} G_{i}=H_{i} p_{w_{i}} K_{i}$ such that $v_{i} \neq w_{i}$, then we can eliminate the generator $p_{v_{i}}$ from \mathcal{E}^{*} by means of this defining
relation, the equation $W=1$ being modified accordingly.
2. Theorem A is true if we replace the strong isomorphism condition by the following weaker condition. Call $i, j \in I$ equivalent if $p_{v_{6}}=p_{v_{j}}$ in the free group obtained from \mathcal{E}^{*} by putting all letters in S equal to 1 . The new condition is that, for each equivalence class J, the mapping $A_{i} \rightarrow B_{i}(i \in J)$ generates an isomorphism between two subgroups of the basis.
3. The example $\mathcal{E}^{*}=\left(S, p_{1}, p_{2} ; D, F p_{1} G=H p_{2} K\right)$ shows that even the weak condition is not necessary for Theorem A to be true. The weakest possible condition, at any rate when V, I are finite, would be a formalization of the statement "If \mathcal{E}^{*} is reduced by Tietze transformations to the form of E^{*}, then the isomorphism condition of $\S 2$ is satisfied."
4. Part (z) of $\S 4$ would be simplified by having Theorem A in the place of Lemma 4, but only slightly so. The construction involving the new generator z would be avoided; but, apart from this, there would hardly be any saving.
5. The conclusion of Theorem A clearly implies that, in the language of $\S 0, W$ can be transformed into the empty word without using insertions of any p_{v}^{-1}. The converse can be proved.

University of ILLINOIS

References

1. W. W. Boone, Certain simple unsolvable problems of group theory, Nederl. Akad Wetensch. Ser. A

Part I, 57 (1954), 231-237;
Part II, 57 (1954), 492-497;
Part III, 58 (1955), 252-256;
Part IV, 58 (1955), 571-577;
Part V, 60 (1957), 22-27;
Part VI, 60 (1957), 227-232.
2. —, The word problem, Ann. of Math., 70 (1959), 207-265.
3. J. L. Britton, Solution of the word problem for certain types of groups, Proc. Glasgow Math. Assoc.

Part I, Vol. III (1956), 45-54;
Part II, Vol. III (1957), 68-90.
4. —_ The word problem for groups, Proc. London Math. Soc. (3), 8 (1958), 493506.
5. G. Higman, Subgroups of finitely presented groups, in publication.
6. A. G. Kurosh, The Theory of Groups, Vol. II, Chelsea Publishing Co., 1956.
7. P. S. Novikov, On the algorithmic unsolvability of the word problem in group theory (Russian), Trudy Mat. Inst. Steklov, no. 44, 1955. (An English translation is available: American Math. Soc. Translation.)
8. E. L Post, Recursive unsolvability of a problem of Thue, J. Symb. Logic, 12 (1947), 1-11.
9. V. A. Tartakovskil, The sieve method in group theory, Mat. Sbornik, N. S. 25 (67) (1949), 3-50.
10. -, Application of the sieve method to the solution of the word problem for certain types of groups, Mat. Sbornik, N. S. 25 (67) (1949), 251-274.
11. -, Solution of the word problem for groups with a k-reduced basis for $k>6$, Isvestiya Akad. Nauk, SSSR, Ser. Mat., 13 (1949), 483-494.
(American Math. Soc. Translation no. 60 (1952) is a translation of 9, 10, 11.)

[^0]: ${ }^{1}$ We have deleted the generator t_{1} and replaced t_{2} by t. Our group is a quotient group of Boone's group.

 The author is very grateful to Prof. Boone for his advice and encouragement throughout.

[^1]: ${ }^{2}$ Lemma 3 is essentially a re-statement of this theorem.

