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THE WORD PROBLEM

BY JOHN L. BRITTON
(Received October 2, 1961)

It will be shown that the word problem for groups is unsolvable i
general. Previous proofs have been given by Boone [1], [2], Higman [5],
Novikov [7] and the author [4].

The starting point is the result of Post [8] that there is a semi-group
given by a finite number of generators and a finite number of defining
relations (i.e., a Thue system) with unsolvable word problem.

The aim has been to give a simple proof using the concepts and vocabu-
lary of contemporary text books on group theory. Thus we use free
products with amalgamated subgroups (Kurosh [6, Chap. IX]) and the
theorem of Higman, B. H. Neumann and H. Neumann (Kurosh [6, Chap.
X, § 38]) but, for example, we are precluded from using (as was done in
[4]) the results of Tartakovskii [9], [10], [11] and of the author [3] which
are, as yet, relatively unfamiliar.

The group whose word problem will be shown to be unsolvable is virtu-
ally the same as in Boone [2], but the method of proof is group-theoretical
rather than combinatorial.

0. Informal discussion

Without attempting to be precise, we may distinguish between the
group-theoretical and the combinatorial approaches to problems in the
theory of generators and defining relations as follows. Suppose a group
G is given by generators a,, a,, +*+, @, and defining relations 4; = B;
(1=1,2,+--,m). Let Uand Vbewordsina,, @, ***, @n. We know that
the elements of G corresponding to U, V are equal if and only if there is
a finite sequence of operations

W, — Wy— e — W,

transforming U into V, where W, is U, W, is V and, for j =1,2, ---,
k — 1, W; — W, denotes one of the following operations:
(a) cancellation: replace a word of the form Xa.a;"Y or Xa'a,Yby XY.
(b) insertion: the converse process of (a),
(c) replace a word of the form XA;Y by XB,Y, or conversely.
Any argument involving such a sequence of operations may be called

1 We have deleted the generator ¢; and replaced ¢z by ¢. Our group is a quotient group
of Boone’s group.
The author is very grateful to Prof. Boone for his advice and encouragement throughout.
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THE WORD PROBLEM 17

combinatorial. Incontrast, anargument circumventing explicit reference
to a sequence of this kind, especially avoiding any mention of insertions,
may be called group-theoretical.

It is not always trivial to correlate the group-theoretical and the com-
binatorial statements of essentially the same result. Let G’ be the group
obtained from the above group G by adding the new generator ¢ and the
defining relation a,t = ta,. Let At = tA in G’, where A is a word in a,,
@y, +++, a,. Then it can be shown (e.g., by Lemma 2 below) that

(i) the element A belongs to the subgroup of G generated by a,; thus
there is an integer % such that A = a! in G (hence also A = a! in G').
The conclusion (i) can be stated combinatorially as follows:

(ii) At can be transformed into tA by a sequence of the above kind
(in G') without using insertions of ¢! (that is, operations of the form
XY—- Xtt7"Yor XY — Xt'tY).

To see that (i) implies (ii), note that one can first transform At into
a’t, then by using the defining relation a,t = ta, transform al¢ into ta?,
and finally transform ta’ into tA.

To show that (ii) implies (i), one first proves that a single operation, not
an insertion of ¢, applied to a word of the form PtQ where P and Q do
not involve ¢ or t™* yields P'tQ’, where P7'P’ = qf in G and QQ'* = af
in G, and where d is either 0,1 or —1; now (i) follows by a simple in-
duction argument.

Similarly, in the proof below of Lemma 6, part (k), the statement that
%7't3 belongs to a certain subgroup of G, corresponds to the combinatorial
statement that in G the word k=~ can be transformed into tZkZ'¢*
without using insertions of k~'; this is essentially Theorem III of Boone
12].

The conclusion of the principal lemma (Lemma 4) below is equivalent
to the statement that W can be transformed into the empty word with-
out using insertions of any p;".

It might be objected that in the proof of Lemma 7 below we have used
an evidently combinatorial argument; but there we are dealing with a
semi-group, not a group. However the major part of the paper concerns
groups, and we use group-theoretical arguments. Indeed, from now on,
there will be no further mention of insertions.

1. Preliminaries

By a word over S, where S is a finite or countable set of symbols
S, 8y, **+, Or a word in these symbols, we mean an expression

€ 2 €
shsiy -+ sy



18 JOHN L. BRITTON

wheree; = +1 (1 =1,2, ---, n). The word is positive if every ¢; is1l. n
is called the length of the word. When n = 0 we have the empty word 1;
it is to be positive. X = Y means that the words X, Y are identical. The
product of two words and the inverse of a word are defined as usual. If
W = XYZ then Y is a subword of W. A word over S is reduced if it
contains no subword of the form s,s;* or s;'s,. A word over S involves s,,
say, if it contains s, or s;* as a subword.

A presentation H = (S; D) consists of a set S of symbols (called gener-
ators) and a set D of formal equations (called defining relations), each of
the form X = Y, where X, Y are words over S. D is finite or countable,
asis S. In a well known way, a presentation H determines a group, also
denoted by H, which is unique to within isomorphism. The element of
the group determined by the word W is also denoted by W.

Let H, = (S,; D)) and H, = (S,; D,) be presentations. We write H, < H,
if S, 8,, D,c D,, and if for every word W over S,, we have W =1 in
H, if and only if W = 1 in H,; H, may then be identified with a subgroup
of H,.

LEMMA 1. Let P be the free product of groups Gy € ') with amalga-
mated subgroup Q. If x,, x, +--, x, (k = 1) are elements of P not in the
subgroup Q, each belonging to a constituent group, say x;€G,; (t =1, 2,
ceny k), and if Vi #FVin(G=1,2,+++,k — 1), then the element y =
2,2, -+ » , does not belong to Q. In particular, y + 1.

Proor. For each v e T take a set of representatives of the left cosets
of @ in G, such that the representative of @Q is the identity element 1.
Every element z of P can now be expressed uniquely in the form

Z=UTrTyee Ty,

where u € Q, n = 0, each 7; is a representative different from the identity
in some constituent group, and r;, r;., belong to different constituent
groups (j = 1,2, -+-,n — 1). nis called the weight of z.

It is easy to prove by induction that the element y in the statement of
the lemma has weight k. The lemma now follows, since any element of
Q has weight zero.

LEMMA 2. Let H = (S; D) and
H* =(S,t; D, tX;t = Xy(iel))

be presentations, where each X; is a word over S. Let W be a word in
the generators of H* which involvest. If W =1 1in H* then W contains
a subword t—'Ct or tCt™*, where C is a word over S, and C, regarded as
an element of the group H, belongs to the subgroup X of H generated by
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the X; (v e I).

Proor. 1°. First we prove that H < H*, and that H* is a free product
with amalgamated subgroup.

Let X' be an isomorphic copy of X. Take a presentation of X’ of the
form (x;(i € I); wi(z;) = 1(4 € J)), where x; corresponds to X; for each
1€ I. Let Y be the direct product of X’ and the free cyclic group (¢; ).
Form the free product P of H and Y, amalgamating the subgroup X of
H with the subgroup X’ of Y. Then a presentation of P is

(S, t,x(iel); D, wix;) =1, t 7t =z, &, = X(ie [, je J)),
hence another presentation of P is
(S, t; D, wi(X;) =1,t7X;t = X(iel,jeJ)).

On the other hand this last presentation is a presentation of H*, since we
have w,;(X;) = 1in H, hence also in H*. Thus P is just H*. Hence H
is a subgroup of H*, and H = H*.

2°. The lemma is obviously true if W contains a subword ¢t or tt7%;
there remains the case when W has the form

Wotaiﬂfl oo tor Wr s

where » = 1, each a; is a non-zero integer and W,, W, ---, W, are words
over S of which only W, and W, may be empty. Each ¢* belongs to ¥
but not to the amalgamated subgroup X. Each W, belongs to H, and may
or may not belong to X. We proceed by induction on 7.

If »r =1then W= Wit“W, and since W =1 in H* we have

th =W WileHNY = X;

this contradiction shows that the lemma is true when r = 1.

For the induction step, since W =1 in H*, we have by Lemma 1 that
at least one W,(1 <7 < r — 1) belongs to X. If a;and a,,, have opposite
sign, we have finished. Now let a; and a;,, have the same sign. In H*,

W= oo t9WaWn W, eee = oo t9r W, Wiy o

’

and the induction hypothesis can be applied to the last word. Since
@; + a;4, has the same sign as both a; and a;.,, and since W;W;,, e X if

and only if W;,, € X, we deduce that W contains a subword of the required
form.

2. Stable letters. The principal lemma

Let E = (S; D) be any presentation. A presentation E* is said to have
stable letters p,(v € V) and corresponding basis E if it has the form
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E* =(S,pve V); D, Fp,G: = Hip, K(ie ),

where v, € Vand F}, G, H;, K; are words over S, and if, for each ve V,
at least one of the defining relations involves p,, that is, the set J, of all
1 in I such that v; = v is non-empty.

We shall consider the following further conditions, in which we use the
notation A, = H;'F;,, B, = K,G7".

The strong isomorphism condition is that there is an isomorphism of
the subgroup A of the basis E generated by the A;(i € I) onto the sub-
group B of E generated by the B;(i € I)in which A; — B;; this implies the
1somorphism condition, that for each v e V there is an isomorphism of
the subgroup A(v) of the basis E generated by A;(7 € J,) onto the sub-
group B(v) of the basis £ generated by B,(t € J,) such that A; — B;.

Note. In the proofs of the two lemmas which follow, E* denotes the
presentation

(S, p(ve V); D, p;}Ap,, = BlieI)) .

Clearly, for any word W, W = 1 in E* if and only if W = 1in E'*; hence
E < Erifandonlyif £ < E*.

LEMMA 3. Let E* be a presentation with certain stable letters p,(ve V)
and basits E = (S; D). Let the isomorphism condition be satisfied. Then
E < E*.

ProoF. By the theorem? of Higman, Neumann and Neumann (see
Kurosh [6, Ch. X, § 38, Lemma, 2], there is a group E, containing £ and
elements p,(ve V) such that p,;'4,p, = B; whenever ve V and 1€ J,;
equivalently, p,}A;p,, = B; for all 1 € I. Clearly we may assume that E,
is generated by E and the elements p,(ve V). It is now clear that a
presentation of E, can be obtained from E* by adding (a possibly empty
set of) further defining relations. Now let W be a word over S. If W =1
in E*, then W = 1 in E,, and since E is a subgroup of E|, it follows that
W = 11in E. Conversely, it is trivial that W = 1 in E implies W =1 in
E*. Hence E < E*,sothat E = E*.

LEMMA 4. (The principal lemma). Let E be a presentation with stable
letters p, (ve V) and basis E = (S; D). Let the isomorphism condition
be satisfied. In the notation of the first three paragraphs of this section,
if W=11in E*, where W is a word involving at least one stable letter,
then W contains a subword

0, 'Cp,, where C belongs to A(v) and hence to A ,
or

2 Lemma 3 is essentially a re-statement of this theorem.
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0,Cp;", where C belongs to B(v) and hence to B ;

in both cases C is a word over S.

Note. (i) This lemma for one stable letter was proved in [4], but an
extra condition was needed.

(ii) A word C over S clearly belongs to the subgroup A of E if and
only if there exist 4,, ¢, ++-, 7, in I (» = 0) and integerse, ¢,, + -+, ¢,, each
being either 1 or —1, such that

C=A3Az--- A7 in E .

Sometimes we prefer to write (with a change of notation) CAs « -+ Ay =
1lin F.

(iii) In §§ 3, 4 the strong isomorphism condition is always satisfied.
PRrOOF. 1°. We first prove the lemma in the case that there is only one
stable letter, p. Since W = 1in E*, we have W =1 in

Er =(S,p; D, p"'Ap = B(iel));
and we have to prove that W contains a subword p~'Cp(C € A) or pCp~!

(Ce B), C being a word over S. This is certainly true if W contains a
subword p~'p or pp~'; there remains the case when W has the form

W = Wop'HWl cee p“rWr ,

where » = 1, each a, is a non-zero integer and W,, W,, - .., W, are words
over S of which only W, and W, may be empty.

By Lemma 3, F = (S; D) < E*, so E < E*. Hence, obviously, £ < H,
where

H=(S,¢; D, q'Aq = B(iel).
With Lemma 2 in mind, consider
H*=(S,q,t;D,q'A,qg = B, tBt = B(iel)).
Adding the new generator p and the defining relation p = qt we see that
H* is isomorphic to K, where
K=(S,q,t,p;D,q'Aig = B, p = qt, p7*A;p = B(ieI)).
Since K contains all generators and defining relations of E*, we have
W =1in K. Hence
Wity W, -« (qt)»W, = 1

in K, and hence in H*. By Lemma 2 this word contains a subword ¢*Ct—*
(e = 1) where C belongs to the subgroup of H generated by the B,.
Since E < H, this means that Ce B. If ¢ =1, C has the form W, for
some j (1 = j < r — 1) and we have finished. If ¢ = —1 then C has the
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form ¢7'W;q for some j, and we have g W,q € B, hence W;e qBq™ = A.

2°. Now consider the general case. Denote the elements of the index
set Vby1,2,3,--.. Let D(v) consist of the defining relations p;;'4;p,, =
B; of E* such that ¢ € J, (that is, v; = v). Since W =1 in E* we have
W = 1in E, for some r, where

Er = (Sy D1y Dy ==, pr;Dy D(l)y D(z)’ Tty D(T)) .

It is straightforward to prove that F < E, < E, < -... Choosing s maxi-
mal so that W involves p,, we deduce that W =1 in E,. Now p; is a
stable letter for E,, the basis being E,_,, hence W contains a subword
p:Cp;¢ where for example ¢ = 1 and C belongs to the subgroup of E,_,
(hence of E) generated by B;(ieJ,). If C is a word over S we have
finished, but if C involves some of p,, -+, p,_, then C = C'in E,_, where
C'is a word over S, namely a product of B#' whereieJ,. ThusCC'' =1
in E,_, and, by an induction hypothesis CC’~* (hence C and hence W)
contains a subword of the required type.

3. The semi-group T and the group G

Let T be a semi-group with generators

S5y Qa ®=12++,M;0a=0,1,2, ---,N)
and defining relations
=1 (7:=1,2,---,P)

where each Z; and T; is a special word, i.e., a word of the form Sq,S’
where S and S’ are positive words in s, 8,, -+, 8. Thus if U, V are
positive words in the generators of T then U = Vin T if and only if U
can be transformed into V by a finite sequence of elementary transfor-
mations, each of the form

X35, Y—-XY or XI'Y—- X3 Y.

We shall denote ¢, also by q.
From Post [8] we have (cf. Appendix (I)),

LEMMA 5. For a certain choice of T, it is recursively unsolvable to
determine for an arbitrary special word = whether or not = = q in T.

Let G be the group with generators
sb’ qar k; t; my y’ liy Ti

and defining relations
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Y = Yys, , xS, = S, , } G 1G,
sl = ylys,, 18, = s,er.@ G, "’
G,
% =L, , )
tli:lit’ ty:?/t,
T,‘k = k’ri y xk = kx y

(a7t = k(g7'tq) ,
where b =1,2, .-+, M; a =0,1,---,N; i =1,2, ..., P.

,

We shall prove the following two lemmas.
LEMMA 6. If 3 is a special word and
(1) E 2k = k(=Zt2) in G
then = = q wn T.

LEMMA 7. Conversely if = is a special word and = = q in T then (1)
holds.

It will follow that

THEOREM. The word problem for G is umsolvable.

ProoF oF LEMMA 7. 1°. Suppose that for the special word 3, = = ¢
in T. We first prove that = = LqR in G, where L is a word in 1,, ¥, and
R is a word in 7;, x. There is a sequence of elementary transformations

S=W,— W= - W,=q

where for each j = 1,2, -+-,n — 1, one of the words W;, W;,, has the
form X=,;Y and the other has the form XT,Y. Since 3 is a special word,
all of W,, W,, --., W, are special, so that X and Y are positive words in

the s,. Hence, by repeated use of the defining relations s,y = yys,, s,l;, =
ylys,, we see that X, = L'X in G for some word L’ in I, y; similarly,
;Y = YR’ for some word R’ in r;, x. Therefore

XY =XII'wrY=LXT,YR',

so that W; = L;W;,,R; where L; is a word in l;, y, and R, is a word in
r;, €. The result follows if we take L = L,L,+-- L,_,, R=R,_, --- R,R,.
2°. In G we have (proving (1))
(2t2)k = R~'q¢7'L 'tLqRk = R'q 'tqkR = R 'kq'tqR
= kR7'q7'LtLqR = k(Z7't3) .

4. Completion of the proof

To complete the proof that the word problem for G in unsolvable, it
remains to prove Lemma 6. The proof is in five parts, called (k), ®), (2),
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(1), (s). Throughout the proof, X is to be a fixed special word for which
(1) holds.

Part (k). k is a stable letter for G, the basis being the group G, whose
defining relations consist of those defining relations of G indicated above,
and whose generators are those of G, less k. Now (1) gives

E(E2)kzt7"'2 =11in G ;

aence by Lemma 4 (or Lemma 2) we have that ='tZ belongs to the sub-
group of G, generated by r,, z,q 'tq (i =1, ---, P). By Note (ii) after
the statement of Lemma 4, there exist ¢, -++, ¢, and e,, -« -, e, such that

(2) 2Zpt s o =11n G, ,

where n = 0, each ¢; = &1, and each ¢, is one of r,, x, ¢"'tq. We shall
assume that % is minimal.

Part (t). tis a stable letter for G,, the basis being the group G, whose
defining relations are indicated above and whose generators are those of
G, less k, t. Denoting the left side of (2) by W, Lemma 4 (or Lemma 2)
shows that W contains a subword t°Ct (¢ = +1), where C belongs to the
subgroup of G, generated by I,,y (1 =1, -+, P). Thus C = L in G,, for
some word L in l;, y. We shall prove that, in G,,

(3) S = LqR
for some word R in 7;, x. (This result corresponds to Boone [2, Th. VI,
p. 219].)

Case 1. t°is the displayed ¢ in (2) and ¢~ occurs in some factor @3,
Here ¢ = 1 and C has the form SR'q™?, where R’ is a word in 7;, «, so (3)
follows.

Case 2. t° occurs in @i and t° occurs in @ (a < b). Here W =
<+ (qg7't*q)R'(¢7't™°q) - -+, where R' is a word in r;, x, hence C = qR’q™".
In view of the defining relations tl;, = I;t, ty = yt, we have, in G,

tqR'q't* =t°Ct* =t'Lt*=L=C=qR'q";
hence
W= ... q—lqR’q—lq cee = eoe RN e ,

so that we have reduced by two the number of factors @%/ in (2); this
contradicts the assumption that n is minimal in (2).

Part (2). Let us write the defining relations =; = T'; of T in more detail
as Fiq,G: = Hq, K;, and the fixed word X as Fq,G.

Let H, be the free product of G, and the infinite cyclic group (2; @).
Then (3) holds in H,. To H, add superfluous generators p,(a = 0,1, -++, N)
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and corresponding defining relations p, = ¢,2~!. In the remaining defining
relations of H,, we may replace every q, by ».2. The generators ¢, are
now superfluous; removing them with the defining relations p, = q,27%,
we obtain a presentation for H, whose generators are z, s,, ., %, ¥, L;, i,
and whose defining relations are those of G, with ¢, replaced everywhere
by p.z. Thus instead of =, = [;,I';r; we now have

Fip,2G; = LHp,zK.7; ;
and instead of (3), we have (writing p for p,)
(4) Epz2G = LpzR in H, .

2 is a stable letter for H,, the basis being the group G, whose defining
relations have been given earlier, and whose generators are s,, p,, €, 9, 1;, 7;.
The isomorphism condition is satisfied if the mapping A; — B; generates
an isomorphism between two subgroups of G,, where

A; = p,H 7' Fip,, , B; = Kr,Gi*.
In fact, both subgroups are free. For example, if
(5) At eer Aim =1 in G,
then, adding defining relations s, = p, = # = y = r; = 1, we deduce that
Loeeelym=1

in the free group with generators I;. Hence j exists such that v; = v;4,
and e; = —e;,,, which means that two factors cancel in (5).
Note that z7'4,z = B; in H,. Now (4) gives

Rz (p'L'Fp,)2G =1 in H,,

so by Lemma 4 and Note (ii) following it, p—*L~'F'p, belongs to the sub-
group of the basis G, generated by A4;(1 = 1,2, ---, P), or equivalently
Vy, v, U, €, * 0+, €, €xist such that

(6) (p“L“Fps)Af}} e Az: =1 in G3 ’

where 1 < v; < Pand ¢; = +1.
Further, since z27'A;2 = B;, (6) gives

2 (p'L'Fp)eB} -+ B;»=1in H,,
hence
(7) RG'By+-- Bi»=11in H,.

In fact, equation (7) is true in G;. This follows from Lemma 3, since the
left hand side of (7) does not involve z, which is a stable letter for H, with
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basis G,.
To prove Lemma 6 it is evidently sufficient to prove

LemMMA 8. Let = = Fq,G be any special word. If v, «--, v, and e,
oo, e, and words L (tn l;,y), R (in r;, x) exist such that (6) and (7) hold,
then, in the semi-group T, = can be transformed into q by a sequence of
at most n elementary transformations.

Proor. We use induction on n. If n = 0, then by adding defining
relations x = y = I, = r, = 1 we obtain, from (6), (7),

p—les = 1 and G_1 - 1

in the free group on generators s,, p,. Hence G =1, F =1 and p, = p
(that is, s = 0), so we have

2=FqG=q,=q;

and the lemma is true.

For the induction step, we may assume that L is of minimal length in
(6) and that R is of minimal length in (7). Assume also that = can not be
transformed into ¢ by at most n elementary transformations in 7. We
have to obtain a contradiction. First consider (6):

Part (1). If we add the defining relations r; = ¢ = 1 to G,, we obtain
the group

G5 = (S1y Doy U, Lis $sY = yysy, sil; = yliys,) ,
and (6) holds in Gf. The letters I; are stable for this group, the basis
being
Gi = (83, Pu, U; $sY = YYS,) .

Lemma 4 will be available if the mapping y's, —ys, (b =1, 2, ---, M)
generates an isomorphism between two subgroups, say M, and M, re-
spectively, of Gi. In fact, both M,, M, are free. For example, consider-
ing M,, if (ys,) « - - (¥s,,)™ = 1in G}, then by adding the defining relation
y =1 to Gf, we deduce that sj! --- si» =1 in the free group on s,, p,.

Hence j exists such that b; = b;,,, ¢; = —e;,,.
Therefore since » > 0 the left side of (6) contains a subword 1:Cl;*¢,
C being a word in s;, p,, ¥, where either ¢ = —1 and C belongs to M, or

¢ = 1 and C belongs to M,.

Case 1. This subword is a subword of Fp, A3 -+ Ajr. Then I3 occurs
in A3 say and [;¢ occurs in Ayt Thusv; =1 =v;,,ande; = —e = —e;.,.
Therefore

es es J— eq 7 —_—
AyAyr =1 and also Bv;B,f;;ll =1.
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By the induction hypothesis, 3 can be transformed into g in at most
n — 2 steps, contrary to one of our assumptions.

Case 2. The subword is a subword of p~'L~'. Here C is a word in y
only. Since L~ is reduced, C has the form »* where the integer k is not
zero. C = y* belongs to M, or M,. We shall prove that y* = 1 in G,.

Suppose y* € M,, the other case being similar. Thus

Y' =) s (s, ) in GE L
Put y = 1; then

1=sf1...8fr

in the free group on generators s,, p,. Hence » = 0, or two letters cancel.
It follows that ¥* = 1 in G, hence y* = 1 in G,.

Thus Case 2 leads to the contradiction that the L~ in (6) can be re-
placed by L'~ of smaller length.

Case 3. The remaining case is when I¢ occurs in L' and ;¢ occurs in
Ajl. Here e =e¢,and 7 = v,. Thus either

e,=1, C=YFpp,]H " and Ce M,,
or
e, = —1, C=YFpp;'F;" and Ce M, ,
Y being a word in y only.
We shall consider the case e, = 1 only; the other case is similar.
First we have s = 9., (=g,); for if we put s, = y = 1, then the state-

ment C € M, becomes: psp;; = 1 in the free group on generators p,.
Hence b, «++,b,,d,, -+, d, exist such that

(8) YFH(ys,)" -+ (y,) = 1 in GF ,

where 1 <b, < M,d; = +1(j=1,2,---,7). We assume that r is
minimal in (8); it can be zero.

Part (s). The s, are stable letters for GZ, the basis being the free group
on generators p,, ¥. The isomorphism condition is satisfied if the mapping
Yy — Y generates an isomorphism between two subgroups of this free
group (namely the cyclic subgroups generated by * and %); but this is so.

The reader is reminded that, in (8), F and H, are positive words
(possibly empty) in the s,, and Yis a word in y only. We shall prove that
F has the form F = UH, (i.e., the form UH,), for some word U. Now
positive words W, F’, H! in the s, certainly exist such that F = F’ w,
H; = H/W, and we suppose W has maximal length, so it is sufficient to
prove that H = 1. Assume that H! = 1.

Let us replace F and H;* in (8) by F’ and H/ respectively; we obtain
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a true equation in G which we label (8'). At least one stable letter occurs
in (8') so, by Lemma 4, the left hand side contains a subword J = s;Cs;®,
where C is a word in p,,y. But (8') involves no letters p,, hence C is a

word in ¥ only; and either ¢ = —1 and C is a word in %?, or e = 1 and C
isa word in y. J can not be a subword in (ys, )" --- (ys,)* since r is
minimal. s; can not occur in H'™, since if it did we would have e = —1,

and s;¢ = s, would occur in (ysy)"; hence d, = 1. Thus C = y which is
not a word in %°. It follows that s; occurs in F”, s; ¢ occurs in H/™*, and C
is empty. Thus the last letter of F’ is the inverse of the first letter of
H;, contrary to the assumption that W is of maximal length.

Thus we have proved about equation (6) that if e, = 1, then F has the
form UH, for some word U. Dually, we can prove that in (7), if ¢, = 1
then G has the form VK, for some word V~'. This dual argument
will now be outlined briefly.

Adding I, =y = 1, (7) holds in

GT = (8, Da, T, T35 TS, = STEL, 1,8, = S,X7:%) .

The letters r, are stable, the basis being G = (s,, p., z; xs, = s,zx). By
Lemma 4, the left hand side of (7) contains a subword »{C'r;” (1 £ h < P)
where C’ is a word in s,, p,,  and either f = —1 and C’ belongs to the
subgroup of G generated by the s,x, or f = 1 and C’ belongs to the sub-
group generated by the s,x . If this subword is a subword of G*B;1- - B;»,
then following Case 1 we obtain the contradiction that = ean be trans-
formed into ¢ in at most » — 2 steps. If the subword is a subword of R,
we contradict the assumption that R has minimal length in (7). The re-
maining case is when 7] occurs in R and r;” occurs in B;:. Here f= —1
and 2 = v,. C’ then has the form XG'K,, where X is a word in z only,
and instead of (8) we have, say,

XG'K,(8,,2)" +++ (sp,2) =1 in Gf .
It is now easy to follow the previous argument and obtain G = V'K,
for some word V!, as required.

We recall that it has also been proved that in (6) the subscripts, s, v,
are connected by the equation s = g,. Denoting v, by ¢, we have

3 =FqG = UH;q.K,V = UH4q, K.V .

Put 3* = UFyq,,G;V. Then in T, the word = can be transformed into =*
by one elementary transformation. Write F'* = UF, and G* = G,V so
that 3* = F*q,,G*. In G, we have

(p7'L'Fp,)A3t = p'L7'UH;p, A;
= p'L'UH;p,(ps;'H; ;' Fip,)) = p' LUl Fip,, .
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Since U is a positive word in the s,, a word L, in [;, ¥ exists such that
the last word is equal in G, to

p'Ly'UFp,, = p7 Ly F*p,, .
Thus (6) becomes
(6%) (p7'Ly'F*p, Az -+« A» =1 in G, .
Similarly, in G,,
RG™B;y = RV 'K;'B; = RV 'K 'K,r,G;*
=RV 7'rG*= RVG:'= RG*,
for some word R, in 7;, . Thus (7) becomes
(™) (RG*MB2+++ B;»=1in G, .

By the induction hypothesis 3* = F*q,G* can be transformed into ¢
in at most n — 1 steps. But = can be transformed into 3* in one step,
hence 3 can be transformed into ¢ in at most n steps. This completes
the induction step for the case ¢, = 1.

When e, = —1 only slight changes have to be made. We find that, in (6),
F = UF, and s = s,;; in (7), G* = VG, (for some words U, V). The
definitions of =*, F'*, G* in this case are

=* = UHy, K,V , F* = UH, , G*=K, V.

This completes the proof of Lemma 8, and hence of the theorem.

Appendix

(I) A remark on Lemma 5. In [8] Post describes a semi-group with
generators s,, «+-, 8,, h, q,, *++, ¢z, and a finite number of defining re-
lations A; = B;, where each A, and B, has one of the forms (1) Sg¢,S’, 2)
hSq.S’, (3) Sq.S’h, where S, S’ are possibly empty words in 81, ***, Sp,
and, for each ¢, A; and B; have the same form. In this semi-group, which
we call 1", it is recursively unsolvable to determine if an arbitrary word
of the form ASq,S’h is equal to the fixed word hqg..h. If we now make
the notational change = s,,,,, and add the new generator g, with the
defining relation hqy..h = q,, we obtain Lemma 5, though in a different
notation.

(II) The referee has pointed out that, in Lemma 5, one may take all
the generators g, to be equal (i.e., N = 0). If thisis done, the introduction
of the generator z in Part (2) of § 4 can be avoided, and there are one or
two simplifications later in the proof.

To see this, add to the semi-group 7" in (I) the new generator v and,
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in each defining relation such that A; and B; have type (3), replace & by
v; we obtain a new semi-group 7,. Call a word of T special if it has the
form ASq,S’v. It is easily deduced that in T, it is recursively unsolvable
to determine for an arbitrary special word = whether or not 3 = hqg.,v
in T,. Now let T, be obtained from 7T, by adding the defining relation
hqe+v = 1. Then, for any special word = of T\, = = hqr.,v in T, if and
onlyif 3=11in T,. (If =1 in T, one first shows that the last ele-
mentary transformation, if any, of the form “Replace XY by Xhqz.,vY”
can be dispensed with.) Let us re-name the generators of T, z, (k =
1,2, ..., K) and the defining relations C; = D; (§ = 1,2, ---,J). Let T,
be the semigroup whose generators are z,, ¢ and whose defining relations
are qC; =qDj,qe, =29 (k=1,2,---,K;5=1,2,---,J). It is easily
shown (cf. Boone [2, Th. X, p. 250]) that = = 1 in T}, if and only if ¢= = ¢
in T;. Thus T, has the desired properties that Lemma 5 is true for it and
N=0.

(III) The referee has asked whether or not Lemma 4 could be gener-
alized to cover the case when E* has the form

8* = (Sy pv(v S V); Dr Fipv‘Gi = Htpw‘K1(1’ € I)) )
where now w; need not equal v;. Such a generalization is provided by
Theorem A below.
First we need a definition. Let T, U be words over S and let v, we V.

We say that T'p, produces p, U if the word T, can be transformed into
2, U by a sequence of operations of the form

XAipvt Y- Xp,BY or XA7'p,Y-— Xp,B'Y,

where X, Y are arbitrary words and, as in § 2, A; = H;'F,, B, = K,G;.

If Tp, produces p, U, it is readily shown that T is a word in the A;
(tel), say T = w(A,), and U is the corresponding word w(B;) in the B,.
Further, it is obvious that Tp, = p,U in £*.

THEOREM A. If the strong isomorphism condition holds, and if W =1
m E*, where W involves at least one letter p,(ve V), then W contains a
subword (i) p;'Cp, or (ii) p,Cp;*, where C is a word over S. In case (i)
C 1s equal wn the basis (S; D) to a word w(4,;) and w(A;)p, produces
P,W(B;). In case (ii) C ts equal in the basis to a word w(B;) and, again,
w(A;)p, produces p,w(B;).

REMARKS. 1. The proof of Theorem A is fairly straightforward. The
theorem can be reduced to Lemma 4 by making use of the idea that, if
we choose one defining relation Fip,,G;= H;p,,K; such that v; # w;, then
we can eliminate the generator p,, from £* by means of this defining
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relation, the equation W = 1 being modified accordingly.

2. Theorem A is true if we replace the strong isomorphism condition
by the following weaker condition. Call 4, 5 € I equivalent if Dy, = Dy, in
the free group obtained from £* by putting all letters in S equal to 1.
The new condition is that, for each equivalence class J, the mapping
A; — Bi(i € J) generates an isomorphism between two subgroups of the
basis.

3. The example &* = (S, p,, p,; D, Fp,G = Hp,K) shows that even the
weak condition is not necessary for Theorem A to be true. The weakest
possible condition, at any rate when V, I are finite, would be a formali-
zation of the statement “If £* is reduced by Tietze transformations to
the form of E*, then the isomorphism condition of § 2 is satisfied.”

4. Part (2) of § 4 would be simplified by having Theorem A in the place
of Lemma 4, but only slightly so. The construction involving the new
generator z would be avoided; but, apart from this, there would hardly
be any saving.

5. The conclusion of Theorem A clearly implies that, in the language
of § 0, W can be transformed into the empty word without using insertions
of any p;*. The converse can be proved.
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