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ABSTRACT
With a newly derived equation of state (EOS) of dense matter, we construct zero-temperature

compact-star models in hydrostatic equilibrium, for central densities 1.0¹o
c
/o

N
¹ 10.0 (o

N
\ 2.575 ]

1014 g cm~3 is the nuclear saturation density). Based on SkyrmeÏs concept of baryons as solitons (of Ðnite
extent) in the meson Ðeld, the new EOS represents a Ñuid of Skyrmions coupled to a dilaton Ðeld
(associated with the glueball of quantum chromodynamics) and a vector meson Ðeld (coupled to the
baryon number). We Ðnd stable conÐgurations to exist for and they are mostly Ñuid (theo

c
/o

N
¹ 5.0,

Skyrmion Ñuid) ; we thus name them ““ Skyrmion stars. ÏÏ The outer region of the star (the crust, for den-
sities below the nuclear saturation density) is constructed using the EOS of Baym, Pethick, and Suther-
land and accounts on average for 15% of the total mass of the star. Their masses and radii are 0.5 ¹

and 11.0 km ¹ R¹ 15.3 km, respectively. The new EOS describes a Ñuid of SkyrmionsM/M
_

¹ 2.95
with a unique behavior at high densities. The Skyrmions shrink as the density increases, allowing for a
high compression of matter near the core of the star and thus greater gravitational binding energy. The
heaviest stars, which can then withstand greater centrifugal forces, are expected to rotate the fastest in
our model. Much of this interesting behavior is inherent in the glueball potential, with its negative con-
tribution to the pressure acting to bind the system; the Skyrmion responds in a nonlinear fashion by
shrinking (a result of Skyrmions having structure). Skyrmion stars are fundamentally di†erent from
quark stars ; the quark degrees of freedom are integrated out, leaving only meson degrees of freedom.
Furthermore, unlike boson/soliton stars where the soliton describes the global structure of the star, Skyr-
mion stars can be looked at as being made of fermionic soliton objects.
Subject headings : dense matter È elementary particles È equation of state È stars : interiors È

stars : rotation

1. INTRODUCTION

The role that the equation of state (EOS) of dense matter
plays in astrophysics has long been the subject of detailed
theoretical and numerical investigations (Glendenning
1989 ; Weber & Weigel 1989 ; Lattimer & Swesty 1991 ;
Brown & Bethe 1994 ; Pethick et al. 1995 ; Baldo, Bombaci,
& Burgio 1997 ; Prakash et al. 1997 ; Akmal, Pandhari-
pande, & Ravenhall 1998 ; Shen et al. 1998 ; to cite only few).
These investigations have largely been motivated by the fact
that the behavior of matter at nuclear densities and above is
not yet well constrained by experiment or observation.
Matter in the cores of neutron stars possesses densities
ranging from a few times the density of normal nuclear
matter to about an order of magnitude higher, depending
on the star mass. At present, hundreds of pulsars are
known, and the discovery of new ones is rather frequent.
This is accompanied by an impressive growth rate of the
body of observed pulsar data, which one can use to con-
front the many theoretical/numerical EOSs so far proposed.

In this paper, we shall apply a new EOS to the study of
the structure of compact stars. The new EOS used is based
on SkyrmeÏs concept of baryons as solitons. Skyrme (1962),
by constructing a model of pion interactions consisting of a
conventional model of weak meson interactions, found that
in his model the meson Ðelds contained points in space
where there was a ““ topological knot.ÏÏ These structures
turned out to be ““ topological solitons ÏÏ (solitons of Ðnite
extent whose number is always conserved), which Skyrme
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identiÐed as baryons. Our interest in such a model arose
from its recent revival due to its possible connection to
quantum chromodynamics (QCD). It appears that a model
of nuclei and nuclear matter based on Skyrmions might be
better related to more fundamental theories of matter. This
is especially appealing because of its mathematical simpli-
city, compared with the difficulty of solving QCD explicitly.

Our goal is then twofold : to check to see if the EOS
derived from a current variation of the Skyrme model can
reproduce the properties of observed compact models and,
if the EOS fails in this Ðrst attempt, to put constraints on
the Skyrme model on the basis of that failure. In ° 2, we
introduce the reader to the basic concept of Skyrmions as
topological solitons and their identiÐcation as single
baryons. The recent revival of the Skyrme model and its
plausible derivation from fundamental QCD is presented.
In ° 3, we explain how Skyrmions can constitute a Ñuid
based on a mean Ðeld approach and develop the corre-
sponding EOS. We go on in ° 4 to construct the corre-
sponding models of compact stars, which we call
““ Skyrmion stars,ÏÏ and compare those models with obser-
vations. We conclude in ° 5.

2. SKYRMIONS AND QCD

QCD is the fundamental theory of strong interactions. It
describes the interactions between quarks, which in turn
should imply the interactions between nucleons (composed
of quarks). Unfortunately, this inference is not arrived at
easily and to date has not been derived. Instead, we must
rely on either e†ective Ðeld theories or models to bind
quarks into nucleons (we refer the interested reader to
Bhaduri 1988).
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The difficulty arises in how the quarks interact. Free,
isolated quarks are not seen experimentally, which implies
that quarks are conÐned. If one tries to pull two quarks
apart, the interaction between them gets stronger as the
separation increases, not weaker as it would in electromag-
netism (for comparison). This e†ect of increasing force with
increasing separation can be modeled in a theory where
there is more than one charge that a quark can carry. (In
electromagnetism, there is only the one type of charge.)
These distinct charges are called ““ color,ÏÏ and we denote the
number of colors by We have signiÐcant evidence nowN

c
.

indicating that provides a good representation ofN
c
\ 3

the strong interaction. In this theory, the force carrier is
called a gluon (in electromagnetism it is the photon), and
the gluons can actually carry color charge themselves.
These are unusual properties that ultimately lead, we
believe, to conÐnement.

Our attempts to understand the connection between
QCD and nuclear physics rely, as mentioned earlier, on
models and e†ective theories. One interesting approach was
taken by Ït Hooft (1974). He found that in the limit of a large
number of colors (large could be used as anN

c
), 1/N

cexpansion parameter. In this limit, QCD simpliÐes a great
deal, and Ït Hooft went on to show that at large QCD isN

c
,

equivalent to a local Ðeld theory of mesons and ““ glueballs ÏÏ
(bound states of gluons, without quarks), with an e†ective
interaction between them of order 1/N

c
.

The second step was taken by Witten (1979). Assuming
conÐnement, he showed that baryons in large QCDN

cbehave much like solitons in a weakly coupled local Ðeld
theory of mesons. In this limit, baryon masses scale as N

c
\

1/g2, where g is the strength of the meson coupling, while
baryon sizes are on the order of 1. Solitons in weakly
coupled theories have masses that scale as 1/g2 and sizes
that tend to constants as g tends to zero. Even though the
mesons are weakly interacting, the solitons interact strong-
ly, as do baryons in QCD.

At this time, it was realized that a model that incorpor-
ated these large e†ects was already in existence. SkyrmeN

c(1962) constructed a model of pion interactions consisting
of a conventional model of weak meson interactions plus an
additional (higher order) term thought to take into account
indirect e†ects of heavier mesons like the o meson. Skyrme
found that his model contained ““ topologically nontrivial ÏÏ
conÐgurations of the meson Ðelds, namely, topological soli-
tons, which Skyrme identiÐed as baryons. Note the simi-
larities here to what W itten described as the nature of mesons
and baryons in large QCD. Further study showed thatN

cwhile the mesons themselves were bosons, these topological
solitons behaved as fermions (e.g., Witten 1983a, 1983b).
Furthermore, topological solitons have a quantized topo-
logical charge, which could be identiÐed as the baryon
number B.

There are, of course, no guarantees that the Skyrme
model is the correct representation of large QCD. Fur-N

cthermore, we can ask whether the large limit is evenN
crelevant to the real world, where Nonetheless, theN

c
\ 3.

connections are intriguing enough that the model warrants
study on its predictions of hadronic interactions. Accord-
ingly, in the last decade, there has been a large body of
research on these solitons, or Skyrmions, especially by those
interested in applying the Skyrme model to systems of many
nucleons, aiming at the description of nuclei (Ka� lbermann
1997 and references therein).

These models belong to a class of e†ective models that
treat the baryon stabilization (and hence the baryon
structure) and the interaction between baryons on the same
footing. There is no main di†erence between the stabiliza-
tion and the interaction mechanism.

3. THE MEAN FIELD SKYRMION FLUID

In order to discuss a many-body system of Skyrmions, we
follow the approach of (1997). In the so-calledKa� lbermann
dilute Ñuid approximation, analogous to the mean Ðeld
theory of pointlike baryons, one treats Skyrmions as essen-
tially free particles interacting with a medium that carries
the information of density and temperature.2 The associ-
ated Ðelds are the dilaton Ðeld, parameterized by p, and the
vector meson Ðeld u. The dilaton Ðeld is associated with the
glueball of QCD and originates from discussions of broken
scale invariance (see Coleman 1985 for a discussion), while
the vector meson Ðeld couples to the baryon number and
helps maintain saturation in nuclear matter. Since the mass
of the dilaton is large, we can neglect Ñuctuations in the
dilaton Ðeld, even inside the Skyrmion.

In the approximation of a Ñuid of free Skyrmions, one
demands that there is no overlap between the Skyrmion
proÐle functions, and one further assumes that the proÐle
drops to zero at a distance smaller than the inter-Skyrmion
separation. These approximations ensure that the baryon
number is quantized as an integer.

3.1. Properties of the Fluid
The Lagrangian for the Skyrmion in the presence of p

and u Ðelds is discussed, in detail, in (1997).Ka� lbermann
We are concerned with the equations for the energy density
and the mean Ðeld equations for u and p.

The association of p with broken scale invariance means
that one can show that it is only necessary to solve the
equations of motion for a single free Skyrmion and then
rescale the u Ðeld and the radial distance by the simple
scaling law

r ] e~p0r , u] e~p0u , (1)

where the mean Ðeld value. Furthermore, thep0\ SpT,
static mass scales as

M \ M0 ep0 , (2)

where is the mass for the mass of a single freeM0 p0\ 0,
Skyrmion.

At Ðnite temperature, the energy of N Skyrmions per unit
volume (parameterized by the density, in the mean Ðeldo

V
)

approximation is given by

E
V

\ 2g
N

P d3p
(2n)3 E

p
(n

p
] n6

p
) ] Vp(p0)

[ 1
2

e2p0mu2 u02] g
V

u0 o
V

(3)

(in all of this section we adopt natural units with + \ c\ 1),
where for neutron matter and for symmetricg

N
\ 1 g

N
\ 2

2 Skyrmion-Skyrmion interactions are neglected, and consequently
there are no potential terms depending on the coordinates of each baryon.
There remains only the kinetic energy term for each individual Skyrmion.
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nuclear matter representing the isospin degrees of freedom,
and

E
p
\ Jp2] e2p0M02 (4)

is the contribution to energy of a single Skyrmion ; p is the
SkyrmionÏs momentum, the vector meson mass, andmu

n
p
\
A
exp

v
p
[ k
kT

] 1
B~1

, (5)

n6
p
\
A
exp

v
p
] k
kT

] 1
B~1

(6)

parameterize the single particle and antiparticle distribu-
tion functions with andv

p
\ E

p
] g

V
u0 v6

p
\ E

p
[ g

V
u0.Here is the strength of the coupling of the u meson tog

Vbaryons (Skyrmions), while

o
V

\ 2g
N

P d3p
(2n)3 (n

p
[ n6

p
) . (7)

In equation (3), is the dilaton potential, which we willVpdiscuss in ° 3.2 when Ðtting parameters to the saturation
properties of nuclear matter.

Here we further simplify our work by considering only
T \ 0 physics,3 that is, and Mini-n

p
\#(pF[ p) n6

p
\ 0.

mizing the energy density with respect to the mean Ðeld
expectation values yields the equations of motion

0 \ LE
V

Lp0
\ 2g

N

P d3p
(2n)3

LE
p

Lp0
] dVp

dp0
[ mu2 e2p0u02 , (8)

0 \ LE
V

Lu0
\ mu2 e2p0u0[ g

V
g
N

pF3
3n2 , (9)

with

pF\
A 3
g
N

n2o
B1@3

, (10)

the Fermi density simply obtained by integrating equation
(7).

The pressure of such an ensemble at T \ 0 is then given
as

P
V

\ o
V
2 L(E

V
/o

V
)

Lo
V

. (11)

The contribution of the vector meson Ðeld (u) to the pres-
sure grows with density and is positive ; the(u0P o

V
)

dilaton potential V (p) gives a negative contribution to the
pressure, acting to bind the system. As we show in ° 3.3,
these behaviors are crucial to understanding the behavior of
the Skyrmion Ñuid at di†erent nuclear densities.

3.2. Fitting Symmetric Nuclear Matter Properties
Once more following (1997), four freeKa� lbermann

parameters and i\ 1, 4) are added to the conventional(a
idilaton potential, parameters that are required to reproduce

3 To a Ðrst approximation, the matter in neutron stars is in its ground
state, its thermal energy is very small on the scale of typical excitation
energies, and it may be assumed to be at T \ 0.

nuclear matter phenomenology.4 It is

Vp\ B[1] e4 p(4 p [ 1)]] B[a1(e~p[ 1)] a2(ep [ 1)

] a3(e2 p[ 1)] a4(e3 p [ 1)] , (12)

with the ““ bag constant ÏÏ BD (240 MeV)4. Terms of the
form enp are added to the potential to satisfy the anomaly
condition, namely,

dVp
dp

\ 0 (13)

at p \ 0, implying The parameters ofa1\ a2 ] 2a3] 3a4.5the dilaton potential are constrained by demanding that at
the saturation density of nuclear matter (o0 \ 0.154
baryons fm~3), the properties of nuclear matter are recov-
ered. For our purposes, we chose the e†ective mass

the compressibility K \ 270 MeV,M*/M0\ M/M0\ 0.6,
and a binding energy per nucleon of 16 MeV.(M [ E

V
/o

V
)

On Ðtting to these properties, we Ðnd6

a1 \ [1.69898 , a2\ [25.7806 ,

a3 \ 29.2369 , a4\ [11.464 , (14)

and

g
V

\ 7.54272 . (15)

Figure 1a shows the binding energy per nucleon as a
function of the density. In all Ðgures, the solid lines are for
symmetric nuclear matter while the dotted lines(g

N
\ 1.0),

are for pure neutron matter Figure 1b shows the(g
N

\ 2.0).
Skyrmion e†ective mass (M*) as a function of density. In the
Walecka model, and many others similar to it, the nucleon
e†ective mass decreases as a function of density. This is not
the case in the Skyrmion Ñuid model. The minimum e†ec-
tive mass arises here at a density of around for1.2o0 g

N
\

1.0. The reason for this di†erence can be traced back to the
dynamics dictated by the dilaton, especially to the modiÐed
trace anomaly potential, as explained in theKa� lbermann:
dilatonÏs attractive contribution to the mass is limited, while
the u meson repulsion grows in direct proportion to the
nuclear matter density (eq. [9]). The solution of the nuclear
matter equations then tends to push the dilaton toward
positive values in order to fulÐll the scaling properties of the
model (eqs. [1]È[2]). This has serious consequences on the
type of compact objects constructed and brings us to the
discussion of the softness of our EOS.

3.3. Softness and Sti†ness of the Skyrmion EOS
Figure 2a shows the pressure as a function of density for

our EOS for the two cases of (pure neutron matter ;g
N

\ 1
solid line) and (symmetric matter ; dotted line). Alsog

N
\ 2

shown is a sample of the EOS for symmetric nuclear matter
described in the literature (Glendenning 1989 ; Weber &

4 There is also the possibility of modifying the u Ðeld potential (see
1997 and references therein).Ka� lbermann

5 One chooses the term multiplied by to have a negative power of pa1in order to avoid the introduction of a second minimum in the potential for
p ¹ 0. The only sensible minimum, then, remains the one at p \ 0.

6 We note that these results di†er substantially from those of
1997. However, there are a number of typographical errors inKa� lbermann

that paper concerning the equations for the properties of saturated nuclear
matter, making it difficult to compare our results with his.
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FIG. 1.È(a) Binding energy per nucleon, as a function of the central
density. In all Ðgures, the solid line is for pure neutron matter (g

N
\ 1.0),

while the dotted line is for symmetric nuclear matter (b) E†ec-(g
N

\ 2.0).
tive Skyrmion mass M* as a function of density for T \ 0.

Weigel 1989 ; Baldo et al. 1997 ; Prakash et al. 1997 ; Shen et
al. 1998). All EOSs have been Ðtted to reproduce nuclear
matter parameters at saturation density.

Note that for high densities, our pressure is the highest ;
our EOS is the sti†est one. One would expect it, then, to
construct compact objects that are even more massive than
those constructed using the standard EOS, like those in

FIG. 2.È(a) Pressure as a function of the central density for T \ 0 in
our model, as compared with a sample of four symmetric matter EOSs
(Glendenning 1989 ; Weber & Weigel 1989 ; Baldo et al. 1997 ; Prakash et
al. 1997 ; Shen et al. 1998). Our EOS is plotted for the two cases of g

N
\ 1.0

(pure neutron matter) and (symmetric matter). (b) Speed of soundg
N

\ 2.0
as a function of density. The causality condition is not violated.

Figure 2. However, this is not the case here. It was men-
tioned in ° 3.2 that the nucleon e†ective mass increases
above a certain density. This is a result of a decrease in the
magnitude of the mean dilaton Ðeld The scaling rela-p0.
tions of equation (1) would then also imply that the Skyr-
mion begins to shrink. This is reminiscent of the behavior of
the Skyrmion interaction at short range (high density) that
is known to be repulsive and strong. This peculiarity allows
for exotic behavior of matter at high densities (there will be
more on this in ° 5).

3.4. Causality
Finally, special relativity requires that the sound velocity

in dense matter be not larger than c. At T \ 0, this is equiv-
alent to

dP
do

\ 1 . (16)

Figure 2b clearly shows that our EOS does not violate the
causality condition.

4. NONROTATING SKYRMION STARS

We proceed now to construct models for nonrotating
stars using the EOS developed above. This is done by inte-
grating the general relativistic equation of hydrostatic
balance

dP(r)
dr

\ [G[o(r) ] P(r)/c2][m(r) ] 4nr3P(r)/c2]
r2[1[ 2Gm(r)/rc2] ,

(17)

dm(r)
dr

\ 4nr2o(r) (18)

(Tolman 1934 ; Oppenheimer & Volkov 1939), where G is
the gravitational constant, P is the pressure, o is the density,
and m(r) the enclosed gravitational mass. The gravitational
mass of the star is then given by

M
G

\
P
0

R
dr 4nr2o(r) , (19)

while the total baryon number is

B\
P
0

R
dr 4nr2 n(r)

[1[ 2Gm(r)/rc2]1@2 . (20)

Here n(r) is the baryon number density,

n(r) \ o(r)
m

A
[ B

N
, (21)

where is the baryonic mass and is the (nuclear)m
A

B
Nbinding energy per nucleon. The baryon mass of the star

becomes with the total binding energy of theM
A

\ m
A

B,
star deÐned as The radius of the starB.E.\ (M

A
[ M

G
)c2.

is determined by

P(R) \ 0 . (22)

Introducing the new variables

r \ RSc, _ r6 , m\ M
_

m6 , o \ o
N

o6 , p \ o
N

c2p6 ,

(23)

where is the solar mass, the SunÏsM
_

RSc,_\ 2GM
_
/c2,

Schwarzschild radius, and baryons fm~3, theo
N

\ 0.154
nuclear saturation density, equations (17) and (18), are
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rewritten as

dP1 (r6 )
dr6

\ [1
2

[o6 (r6 )] P1 (r6 )][m6 (r6 )] fr6 3P1 (r6 )]
r6 2[1 [ m6 (r6 )/r6 ]

, (24)

dm6 (r6 )
dr6

\ fr6 2o6 (r6 ) , (25)

with From now on, for simplicity, wef\ 4nRSc,_3 o
N
/M

_
.

drop the bars, keeping in mind that our quantities hence-
forth represent dimensionless variables.

Equations (24) and (25) are readily integrated numerically
for our given EOS to construct the pressure proÐle P(r) and,
from this, the mass density proÐle o(r). The single integra-
tion constant the pressure at the center of the star, com-P

c
,

pletely speciÐes the solution. The actual numerical
integration was done by a Ðve-point Runge-Kutta
sequence. Each integration step yields a value of P(r), and
the value of o(r) was constructed from the numerical EOS
by interpolating o as functions of P. Note that in our model,
equations (8) and (9) (mean Ðeld equations) must be used at
each time step to interpolate p and u as a function of o.

4.1. Crust Region
For ease of computation, we have adopted the sub-

nuclear EOS of Baym, Pethick, & Sutherland (1971, here-
after BPS) for all the hydrostatic models we have built. The
crustal mass (deÐned as the matter exterior to the uniform

Ñuid of neutrons, protons, and electrons)7 depends strongly
on the density at which the transition to the uniform Ñuid
phase occurs. Lorenz, Ravendhall, & Pethick (1993), for
example, found that the transition (where nuclei disappear
and the matter becomes uniform) occurs at about 0.6o

N
.

They concluded that the mass of matter in the crust is only
half as large as previously estimated, on the assumption
that nuclei dissolve at approximately nuclear matter
density, as found by BPS. However, the choice of the EOS
in this regime is of little consequence to our work/
conclusion. We do, however, refer the interested reader to
Pethick & Ravenhall (1995) for the key role played by the
crust in the study of the evolution of the neutron stars.

4.2. Comparison with Observations
While constructing Skyrmion stars, we keep in mind the

constraints on the EOS inferred by observations of neutron
stars.

4.2.1. Mass

Figure 3a shows the resulting stellar masses as a function
of the central density. The maximum-mass (minimum-mass)
Skyrmion star is 2.9 (0.5 for symmetric nuclearM

_
M

_
)

matter and 2.95 (0.7 for pure neutron(g
N

\ 2.0) M
_

M
_

)
matter Our maximum mass exceeds the(g

N
\ 1.0). Mmax

7 See BPS for the details of the constituents of the crust.

FIG. 3.È(a) Mass vs. central density for zero-temperature nonrotating Skyrmion stars in hydrostatic equilibrium. (b) Radius vs. central density for
zero-temperature nonrotating Skyrmion stars in hydrostatic equilibrium. (c) The mass-radius plane. The dashed line corresponds to the upper bound for the
surface redshift of neutron stars with causal EOSs ; M/R¹ 0.71 (see ° 4.2.3).
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largest of the observed neutron star masses ; that is, Mmax º
1.44 as it should. Stars with central densitiesM

_
, o ¹o

c(where for symmetric nuclear matter, ando
c
\ 4.5 g

N
\ 2.0

for pure neutron matter, and represento
c
\ 5.0 g

N
\ 1.0)

stable Skyrmion stars, while conÐgurations with central
densities are unstable toward small pertur-o ºo

c
(Mmax)bations and are thought to form black holes.

4.2.2. Radius

Figure 3b shows the resulting stellar radii as a function of
the central density. The range of radii is 11.0 km ¹ R¹ 15.0
km for symmetric nuclear matter and 11.8 km¹ R¹ 15.3
km for pure neutron matter. Until recently, direct radius
determinations for neutron stars were nonexistent. Walter
& Matthews (1997), with the discovery of the optical
counterpart of isolated neutron stars, were able to infer an
upper limit on the object radius. They estimate Rmax\km, based on the fact that the upper limit to the14(D/130)
distance to the object (D¹ 130 pc) is reasonably certain
(although the true distance to the isolated neutron star is
still unknown). The size of our constructed objects are in
good agreement with these observations for as long as
Dº 90 pc, a notion still to be conÐrmed.

4.2.3. T he Mass-Radius Plane

Figure 3c represents the mass-radius plane for the Skyr-
mion stars constructed here. In this Ðgure and in the rest of
the Ðgures, only stable conÐgurations with (or M ¹o ¹ o

care shown. ConÐgurations with a mass higher thanMmax) can be shown to be unstable with respect to smallMmaxradial perturbationsÈand therefore could not exist in the
universe. The dashed line corresponds to the upper bound
for the surface redshift of neutron stars with causal EOS,

calculated by Lindblom (1984). The region inz
s,max\ 0.85,

the M-R plane allowed by the general theory of relativity
and causality thus corresponds, according to Lindblom, to
M/R¹ 0.71.

4.2.4. Binding Energy

Estimates of the energy released in neutrinos from the SN
1987A explosion places a restriction on the EOS that the
B.E.º (2È4)] 1053 ergs or B.E.º (0.1È0.3) c2M

_(Burrows & Lattimer 1986, for example). Nearly all (up to
99%) of the binding energy of a neutron star is released in
the form of neutrinos during the birth of a neutron star. The
computed total binding energy for the Skyrmion stars con-
structed here (Fig. 4a) show no disagreement with obser-
vations. The total number of baryons is shown in Figure 4b.

4.2.5. Gravitational Redshift

Figure 4c shows the gravitational redshift of photons
emitted radially from the Skyrmion star surface with wave-
length which will be detected far from the star withj

s
,

wavelength j= :

z
s
\ j=[ j

s
j
s

\
A
1 [ M

R
B~1@2[ 1 . (26)

The value of can be determined by measuring the redshiftz
sof a given emission or absorption line in the spectrum of the

surface radiation of the object.
To complete this section, Figure 5a shows the density

proÐle for a 1 and a 2 model for symmetric matterM
_

M
_(dotted line) and for pure neutron matter (solid line). Figure

5b shows the amount of mass in the outer region of the star :

FIG. 4.È(a) Binding energy vs. gravitational mass. (b) Total number of
nucleons vs. gravitational mass. (c) Gravitational redshift vs. gravitational
mass.

the crust region (constructed using the EOS of BPS; see
° 4.1). On average, more than 80% of the mass in the stellar
interior has density and constitutes the dense Skyr-o [ o

Nmion Ñuid interior.

5. DISCUSSION AND CONCLUSION

In this work, we have considered a new EOS of dense
matter based on a Ñuid of Skyrmions coupled to the dilaton
Ðeld and the u meson. Our interest in such a model is the

FIG. 5.È(a) Density proÐles for 1 and 2 models of Skyrmion stars.M
_(b) Crustal mass fraction. The crust is deÐned as the subnuclear region

where the EOS of BPS has been adopted (see the discussion in ° 4.1).
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consequence of its recent revival and its plausible link to
low-energy QCD. Most importantly, the Skyrmion Ñuid
model is mathematically more tractable than QCD. We
have constructed zero-temperature compact-star models in
hydrostatic equilibrium. We found stable conÐgurations to
exist for central densities Their masses ando

c
/o

N
¹ 5.0.

radii are and 11.0 km ¹ R¹ 15.3 km,0.5¹M/M
_

¹ 2.95
respectively. In our model, we predict the heaviest Skyr-
mion stars to rotate the fastest (Ouyed & Butler 1999). This
is the result of the shrinkage of the Skyrmions as the density
increases, allowing for high central compression of matter
near the core of the star and thus greater gravitational
binding energy. Much of this interesting behavior arises
from the nature of the dilaton Ðeld, whose attractive contri-
bution to the mass is limited, unlike the u meson repulsive
contribution, which grows in direct proportion to the
density. In fact, this behavior of the dilaton Ðeld does not
necessarily arise only in models of Skyrmions but could be
studied elsewhere.

5.1. Skyrmions Stars and ““Exotic ÏÏ Stars
While Skyrmion stars form their constituent baryons as

topological solitons using pion (boson) Ðelds, they are not
boson/soliton stars (e.g., Jetzer 1992 ; Lee & Pang 1992),
where the soliton is a global structure over the scale of the
star. Skyrmion stars, however, could be looked at in the
context of fermion soliton stars (Lee & Pang 1987) or
fermion Q stars (Bahcall, Lynn, & Selipsky 1989). In these
models, pointlike fermions interact with scalar boson Ðelds,
which have a topological structure. These do not, however,
demonstrate the rescaling properties that we see in Skyr-
mion stars at high densities because of the dilaton Ðeld, a
result of Skyrmions having structure. Furthermore, we
should also note that Skyrmion stars are not quark stars
(Haensel, Zdunik, & Schae†er 1986 ; Alcock, Farhi, &
Olinto 1986). While the Skyrme model might be a represen-
tation of QCD at large the quark degrees of freedom areN

c
,

integrated out, and mesons are the fundamental degrees of
freedom.

5.2. Quantum Skyrmion
The classical treatment of the Skyrmion is still question-

able. For example, the static soliton solutions can be shown
to be unstable against radial collapse because of the Derrick
instability (Derrick 1964) ; the energy collapses to zero as
the Skyrmion shrinks (note that in our treatment of the
Skyrmion Ñuid, the u meson provides additional terms to
the Lagrangian, which then gives stable Skyrmions).
However, it has been shown that the Skyrmion is stable if its
radial extent and its orientation in space are treated as
quantum variables (Abdalla & Preston 1996 and references
therein).8 One other problem that arises as a consequence of
the classical approach is the absence of a distinction
between neutron and proton interactions. Further study
would be required for the fully quantized Skyrme model, so
that neutron and proton interactions are distinguished and
a symmetry energy can arise.

In the end, despite the fact that there are no guarantees
that our model is a correct representation of nuclear matter,
it is surprisingly successful in reproducing most of the
properties of observed compact stars. This might be an indi-
cation that it warrants more detailed study.
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8 Taking account of these features gives a good value of the axial coup-
ling constant that controls the neutron lifetime (A. H. Abdalla & M. A.
Preston 1999, private communication).
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