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A mathematical formalism suitable for a treatment of nonradiative multiphonon transitions in semiconductor
quantum dots is developed. An analytical expression for the temperature dependence of the transition rate is
derived.
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Recently an interest in multiphonon nonradiative transi-
tions has emerged because they might be responsible for the
fast intraband relaxation in semiconductor quantum dots.1

Such transitions seem to be particularly important in lead
chalcogenides nanocrystals, where competitive Auger-like
processes are inhibited due to very similar electron and hole
effective masses in lead salts.1

There are two principal methods employed in the theory
of nonradiative transitions in solids and molecules. The first
is based on the quasiclassical evaluation of the thermoacti-
vated tunneling probabilities and was extensively reviewed
by Ioselevich and Rashba2 and by Abakumov et al.3 The
second is the multiphonon transition method first applied to
nonradiative processes in the pioneering paper by Huang and
Rhys4 and developed in numerous consecutive studies �for a
review of early work see Ref. 5�. Both treatments were
mainly applied to problems of �i� charge carrier capture by or
emission from a deep center, and �ii� self-trapping or autolo-
calization of quasiparticles resulting in the formation of
strongly coupled polarons. In these problems, one of the two
electronic states is localized and the other is delocalized. For
this class of problems the quasiclassical method was found to
be much more flexible than the multiphonon transition one,
especially in the case of the self-trapping problems for which
the applicability of the multiphonon transition method was
questioned.2 The restrictions of the multiphonon transition
method that prevent it from being used in these kinds of
problems are the assumption of the parabolicity of the vibra-
tional potential and the coincidence of the vibrational fre-
quencies in the initial and final states. However, when both
the final and the initial states of the electron or exciton are
localized �which is the case of transitions between different
states of an electron bound at a deep center or between dif-
ferent confined states of an exciton in a quantum dot� and the
electron-phonon coupling is not too strong, these assump-
tions are justified and applied in the overwhelming majority
of studies. In this paper we choose the multiphonon transi-
tion method because of its integrity and validity for the entire
temperature range.

In the theory of Huang and Rhys,4 the so-called Condon
approximation was used involving an inconsistent and con-
sequently impermissible application of the perturbation
method in its treatment of the electron-phonon interaction
diagonal in the electronic states.6 This inconsistency was first
noticed by Kovarskii7 and later addressed by Ridley.8 How-
ever, as it was recognized by Ridley9 and Huang,6 these stud-

ies imply “extremely laborious calculations”9 and involve
“very complicated mathematics.”6 A final clarification came
with the paper by Huang,6 who proved an important theorem
about the matrix elements of the so-called nonadiabaticity
operator �see also Ref. 9�. This theorem states that the matrix
elements of the nonadiabaticity operator nondiagonal in the
electronic states are equal to the analogous matrix elements
of the operator of the electron-phonon interaction. Below, we
show that this theorem allows one to find the nonradiative
transition rate using a rather simple mathematical formalism
that is standard for quantum tunneling problems �see, e.g.,
Ref. 10�. The result we obtain is found in the same order in
the electron-phonon interaction nondiagonal in the electronic
states as the original result by Huang and Rhys4 but is free of
the inconsistency introduced by the Condon approximation.

The Hamiltonian describing multiphonon nonradiative
transitions between the two discrete electron �or exciton� lev-
els, with unperturbed energies �1 and �2, can be represented
as H=H0+V. Here

H0 = �
�

��b�
†b� �1�

��=1� is the phonon Hamiltonian in the electronic state with
the energy �2 �Ref. 11� �the index � enumerates different
phonon modes�,

V = ��1 + �
�

���b�
† + b���c†c + �2d†d

+ �
�

��1�A��2	c†d�b�
† + b�� + H.c.
 , �2�

c†�d†� is the creation operator of the electronic state of the
energy �1 ��2�, A��b�

† +b�� is the operator of the linear elec-
tron coupling with the phonon mode �, and ����1�A��1	
− �2�A��2	.12 In writing such a Hamiltonian, we go beyond
the so-called Condon approximation employed in the pio-
neering paper by Huang and Rhys,4,13 thus incorporating re-
sults of the later studies.6,9 The nondiagonal matrix elements
between the two electronic states result from nonadiabaticity
of the electron-phonon system9 and act as a trigger for the
multiphonon nonradiative relaxation processes whose prob-
abilities are determined by the overlap between vibrational
wave functions in the upper and lower electronic states gov-
erned by the parameter ��. Note that Eq. �2� is similar to the
Hamiltonians used in quantum tunneling problems; it empha-
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sizes connections between the multiphonon transition
method and the method of the quasiclassical evaluation of
the thermoactivated tunneling probabilities.

We write the electronic wave function as

��t� = �û�t�c† + v̂�t�d†
�0	 , �3�

where �0	 is the electronic vacuum and û�t�, v̂�t� are the
operators acting on the phonon subsystem. The wave func-
tion �3� satisfies the Schrödinger equation in the interaction
representation �with respect to the Hamiltonian �1�
,

i
���t�

�t
= V̂�t���t� , �4�

with the initial conditions

û�t = 0� = 0, v̂�t = 0� = 1. �5�

Substituting Eqs. �1�–�3� into Eq. �4�, we obtain the system
of the coupled differential equations,

�i
�û

�t
= ��1 + D̂�t�
û + �

�

�1�A��2	�b�e−i��t + b�
†ei��t�v̂ ,

i
�v̂
�t

= �2v̂ + �
�

�2�A��1	�b�e−i��t + b�
†ei��t�û ,




�6�

where

D̂�t� = �
�

���b�e−i��t + b�
†ei��t� . �7�

Let us introduce the auxiliary operator û0�t� as the solution
of the following Cauchy problem:

i
�û0

�t
= D̂�t�û0, û0�t = 0� = 1.

Using the Feynman procedure for disentangling exponential
operators,14 we obtain

û0�t� = exp��
�

��

��

�1 − ei��t�b�
† + �

�

��

��

�e−i��t − 1�b�

+ �
�

��2

��
2 �i��t − i sin ��t�� . �8�

The first of the equations �6� can then be written as

i
�

�t
�û0

−1û� = �1û0
−1û + û0

−1�
�

�1�A��2	�b�e−i��t + b�
†ei��t�v̂ ,

and the system �6� with the initial conditions �5� can be
represented as a system of equivalent integral equations:

û�t� = − iû0�t�e−i�1t�
0

t

dt0 ei�1t0û0
−1�t0��

�

�1�A��2	

��b�e−i��t0 + b�
†ei��t0�v̂�t0� ,

v̂�t� = e−i�2t − ie−i�2t�
0

t

dt0 ei�2t0�
�

�2�A��1	

��b�e−i��t0 + b�
†ei��t0�û�t0� , �9�

In the lowest order in �1�A��2	, v̂�t��e−i�2t. Substituting this
into the first of the equations �9�, we obtain an explicit ex-
pression for û�t� to be substituted into the following expres-
sion for the transition rate:

W2→1 = lim
t→	

1

t

Tr
exp�− 
H0
û†�t�û�t��
Tr
exp�− 
H0
�

� lim
t→	

1

t
�û†�t�û�t�	 ,

�10�

where 
 is the inverse temperature in energy units. The av-
erage here is taken over the initial states of the phonon sub-
system at t=0. It is assumed that these states are equilibrium
states. We also have taken into account that at t=0, there is
no interaction-induced re-normalization of the phonon states
since the electronic level �1	 is empty �see Eq. �5�
. In evalu-
ating W2→1, we encounter a correlation function of the form

U����t1,t0� = ��b��e
−i���t1 + b��

† ei���t1�û0�t1�û0
†�t0�

��b�e−i��t0 + b�
†ei��t0�	 . �11�

It is convenient to rewrite it as

U����t1,t0� =
d2

da1da2
�
�exp�a1b��e

−i���t1
exp�a1b��
† ei���t1
û0�t1�

�û0
†�t0�exp�a2b�e−i��t0
exp�a2b�

†ei��t0
	��a1=a2=0. �12�

Using the following properties of arbitrary linear combina-
tions A, B, C, D of the Bose operators b� and b�

†:

eAeBeCeD = eA+Be�A,B
/2eCeD = ¯

= eA+B+C+De�A,B
/2e�A+B,C
/2e�A+B+C,D
/2,

�exp C	 = exp�1

2
�C2	� ,

and Eq. �12�, the function U����t1 , t0�=U����t1− t0� can be
easily evaluated. We obtain
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U������ = exp��
�

��2

��
2 �i��� − i sin ��� + �2n̄� + 1��cos ���

− 1�
� � ������

�����
��cos ��� − 1� − i�2n̄�

+ 1�sin ���
��cos ���� − 1�

− i�2n̄�� + 1�sin ����
 + 
�,����2n̄� + 1�cos ���

− i sin ���
� , �13�

where n̄�= �e
�� −1�−1 is the Planckian factor. Introducing
the Huang-Rhys factor S=����� /���2, assuming that all the
phonon modes have the same frequency �0 and using the
identity

ez cos � = �
l=−	

	

Il�z�eil�,

where Il�z� is the modified Bessel function of order l, we can
rewrite Eq. �13� in the form

U������ = ������

�0
2 ��n̄ + 1�2e−2i�0� + n̄2e2i�0� + 1 − 2n̄�n̄ + 1�

− 2�n̄ + 1�e−i�0� + 2n̄ei�0�
 + 
�,����n̄ + 1�e−i�0�

+ n̄ei�0�
�eiS�0� �
l=−	

	

Rle
−il�0�, �14�

where

Rl = exp�− �2n̄ + 1�S
exp�
l�0

2
�Il„2S�n̄�n̄ + 1�… .

The summation over l can be replaced by the frequency in-
tegration

�
l=−	

	

→
1

�0
�

−	

	

d�, l�0 → � .

Then, substituting Eq. �14� into the expression for the tran-
sition rate following from Eq. �10�:

W2→1 = �
�,��

�1�A��2	�2�A���1	�
−	

	

d� U������ei��2−�1��,

�15�

we obtain

W2→1 =
2�

�0

Y��n̄ + 1�2Rp−2 + n̄2Rp+2 + �1 − 2n̄�n̄ + 1��Rp

− 2�n̄ + 1�Rp−1 + 2n̄Rp+1
 + Z��n̄ + 1�Rp−1 + n̄Rp+1
� ,

�16�

where p�0=�2−�1+�0S is the energy separation between
the two electronic levels �the value of �0 should be adjusted
so that p is an integer�, p is the number of emitted phonons,
Z=����1�A��2	�2, and Y =������1�A��2	�2�A���1	����� /�0

2.

In the limit p→	, the asymptotic behavior of Rp can be
reproduced quasiclassically.15 Therefore, the quasiclassical
picture3,15 can be employed for a qualitative understanding
of the results. However, the interplay between different terms
in Eq. �16� can be important for certain choices of param-
eters, and in this aspect our result is different from that of
Huang and Rhys.4 Our formulation of the problem allows
one to trace where this difference comes from13 �see Appen-
dix�.

Note that some authors16–18 totally neglect the matrix el-
ements of the electron-phonon interaction diagonal in the
electronic states. Within our formalism this means that for all
phonon modes, ��=0. In this case, S=0 and Rl=
l,0. Substi-
tuting Eq. �14� into Eq. �15�, one obtains in this limit the
Fermi golden rule, which was the starting point of Refs.
16–18. Only processes involving emission or absorption of a
single phonon are possible in this limit leading to a so-called
phonon bottleneck. This once again emphasizes the impor-
tance of the proper treatment of the electron-phonon interac-
tion diagonal in the electronic states, as it was highlighted by
Huang.6

In order to illustrate our results, in Fig. 1 we plotted re-
laxation time corresponding to the rate given by Eq. �16� as
a function of temperature for the following values of param-
eters: p�0=165 meV, p=9, Z= �2.5 meV�2, Y =Z ·S, and for
different values of the Huang-Rhys factor: S=2 �solid line�,
S=3 �dashed line�, and S=5 �dotted line�. At high tempera-
tures, relaxation is due to thermal activation and relaxation
time decreases rapidly with temperature increase. At low
temperatures, relaxation is dominated by quantum tunneling
and relaxation time changes slowly with a temperature in-
crease. The stronger is electron-phonon coupling �the larger
is S�, the more efficient is quantum tunneling. Therefore,
more pronounced temperature dependencies are obtained for
smaller values of S.

In conclusion, we have developed a simple mathematical
formalism, allowing one to treat nonradiative transitions
within the multiphonon transition method. We derived an
analytical expression for the temperature dependence of the
transition rate under standard assumptions.

FIG. 1. �Color online� Temperature dependence of the relaxation
time for the following values of parameters: p�0=165 meV, p=9,
Z= �2.5 meV�2, Y =Z ·S, and for different values of the Huang-Rhys
factor: S=2 �solid line�, S=3 �dashed line�, and S=5 �dotted line�.
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APPENDIX: DERIVATION OF THE HUANG-RHYS
FORMULA

In this appendix we show how the original formula of
Huang and Rhys4 can be derived within our formalism.13 In
this case the transition rate is given by an equation similar to
Eq. �15�,

W̃2→1 = �
�,��

B�B����
−	

	

d� Ũ������ei��2−�1��, �A1�

with

Ũ����t1,t0� = ��b��
† ei���t1 − b��e

−i���t1�û0�t1�û0
†�t0�

��b�e−i��t0 − b�
†ei��t0�	 . �A2�

For Ũ����t1 , t0�= Ũ����t1− t0�, we obtain

Ũ������ = exp��
�

��2

��
2 �i��� − i sin ��� + �2n̄� + 1��cos ���

− 1�
� � ������

�����
�i sin ���

+ �2n̄� + 1��1 − cos ����
�i sin ���� + �2n̄�� + 1�

��1 − cos �����
 + 
�,����2n̄� + 1�cos ���

− i sin ���
� �A3�

�compare to Eq. �13�
. The substitution of Eq. �A3� into Eq.
�A1� leads to the original result of Huang and Rhys,4

W̃2→1 =
2�

�0

Ỹ��n̄ + 1�2Rp−2 + n̄2Rp+2 + „2n̄�n̄ + 1�

+ �2n̄ + 1�2
…Rp − 2�2n̄ + 1��n̄ + 1�Rp−1

− 2�2n̄ + 1�n̄Rp+1
 + Z̃��n̄ + 1�Rp−1 + n̄Rp+1
� ,

�A4�

where Z̃=���B��2, Ỹ =�����B
�B��*����� /�0

2. Comparing
B� to �1�A��2	 we see13 that this formula underestimates the
transition rate by the factor of p2.6–9

1 R. D. Schaller, J. M. Pietryga, S. V. Goupalov, M. A. Petruska, S.
A. Ivanov, and V. I. Klimov �unpublished�.

2 A. S. Ioselevich and E. I. Rashba, in Quantum Tunneling in Con-
densed Media, edited by Yu. Kagan and A. J. Leggett �North-
Holland, Amsterdam 1992�.

3 V. N. Abakumov, V. I. Perel, and I. N. Yassievich, Nonradiative
Recombination in Semiconductors �North-Holland, Amsterdam
1991�.

4 K. Huang and A. Rhys, Proc. R. Soc. London, Ser. A 204, 406
�1950�.

5 Yu. E. Perlin, Usp. Fiz. Nauk 80, 553 �1963� �Sov. Phys. Usp. 6,
542 �1964�
.

6 K. Huang, Sci. Sin. 24, 27 �1981�.
7 V. A. Kovarskii, Fiz. Tverd. Tela �Leningrad� 4, 1636 �1962�

�Sov. Phys. Solid State 4, 1200 �1962�
.
8 B. K. Ridley, J. Phys. C 11, 2323 �1978�.
9 B. K. Ridley, Quantum Processes in Semiconductors �Clarendon,

Oxford, 1999�, Chap. 6.

10 L. I. Glazman and R. I. Shekhter, Zh. Eksp. Teor. Fiz. 94, 292
�1988� �Sov. Phys. JETP 67, 163 �1988�
.

11 This implies that, on the configuration diagram, the minimum of
the vibrational potential for the state �2	 lies on the vertical axis.

12 Strictly speaking, our definitions of the state �2	 and eigenstates of
the Hamiltonian H0 imply that �2�A��2	=0. We keep �2�A��2	 in
the definition of �� in order to emphasize that the corresponding
Huang-Rhys factor �introduced later in the text� is different from
the Huang-Rhys factors governing phonon-assisted optical tran-
sitions in quantum dots.

13 The results of Ref. 4 can be reproduced if the following changes
in the Hamiltonian �2� are made: �1�A��2	c†d�b�

† +b��
→B�c†d�b�−b�

†�, where B�����1�A��2	 / ��2−�1�.
14 R. P. Feynman, Phys. Rev. 84, 108 �1951�.
15 T. Markvart, J. Phys. C 14, L895 �1981�.
16 U. Bockelmann and G. Bastard, Phys. Rev. B 42, 8947 �1990�.
17 U. Bockelmann, Phys. Rev. B 48, R17637 �1993�.
18 T. Inoshita and H. Sakaki, Phys. Rev. B 46, R7260 �1992�.

BRIEF REPORTS PHYSICAL REVIEW B 72, 073301 �2005�

073301-4


