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Foreword

Over the past ten to fifteen years two new techniques have yielded extremely
important contributions toward the numerical solution of nonlinear systems
of equations. These two methods have been called by various names. One
of the methods has been called the predictor-corrector or pseudo arc-length
continuation method. This method has its historical roots in the imbedding
and incremental loading methods which have been successfully used for several
decades by engineers and scientists to improve convergence properties when an
adequate starting value for an iterative method is not available. The second
method is often referred to as the simplicial or piecewise linear method. This
method has its historical roots in the Lemke-Howson algorithm for solving
nonlinear complementarity problems. The idea of complementary pivoting
has been adapted and applied to the calculation of fixed points of continuous
maps and of semi-continuous set valued maps. In this book we endeavor to
provide an easy access for scientific workers and students to the numerical
aspects of both of these methods.

As a by-product of our discussions we hope that it will become evident
to the reader that these two seemingly very distinct methods are actually
rather closely related in a number of ways. The two numerical methods have
many common features and are based on similar general principles. This holds
even for the numerical implementations. Hence we have elected to refer to
both of these methods as continuation methods. The techniques based on
predictor and corrector steps and exploiting differentiability are referred to as
“predictor-corrector continuation methods”. The techniques based on piece-
wise linear approximations are referred to as “piecewise linear continuation
methods”. Chapters 3–10 treat the predictor-corrector methods primarily,
and chapters 12–16 treat the piecewise linear methods. Chapter 11 bridges
the two approaches since it deals with a number of applications were either or
both of these numerical methods may be considered. On the other hand, it
will also become evident that when the two methods are regarded as numeri-
cal tools, there are tasks for which each tool is more appropriate. The reader
who has a particular class of problems in mind should be able to determine
from our discussions which of the two tools is preferable for his task.

This brings us to the point of discussing some of the philosophy of our
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book. It is our aim to present the basic aspects of these two rather general nu-
merical techniques, and to study their properties. In presenting formulations
for algorithms we have employed pseudo codes using a PASCAL syntax, since
it seems to us to be the clearest way of giving a description from which the
reader can directly proceed to write a program. We offer some FORTRAN
programs and numerical examples in the appendix, but these are primarily
to be regarded as illustrations. We hope that the reader will experiment with
our illustration programs and be led to make improvements and adaptations
suited to his particular applications. Our experience with students and sci-
entists on the American and European continents indicates that FORTRAN
remains to date the more widely spread programming language. We empha-
size that our programs should not be regarded as perfected library programs.

The FORTRAN code for program 5 was developed by S. Gnutzmann. It
represents a simplified version of a more complex PASCAL program which
he developed in his Ph.D. thesis. The appendix also contains a detailed de-
scription (program 6) of a sophisticated PL program SCOUT which has been
developed by H. Jürgens and D. Saupe. This program is not listed due to lim-
itations of space. However, an application of the program on an interesting
numerical example is described. We wish to thank our colleagues for these
contributions.

The codes of the above programs will also be available for a limited time
via electronic mail. Readers wishing to obtain them are requested to provide
a valid E-mail address to:

Kurt Georg
Department of Mathematics
Colorado State University
Ft. Collins, CO 80523, USA for programs 1–5

Hartmut Jürgens or Dietmar Saupe
Institut für Dynamische Systeme
Fachbereich Mathematik und Informatik
Universität Bremen
2800 Bremen 33
Federal Republic of Germany for program 6 (SCOUT)

Due to their temporary nature, we refrain from providing the current E-mail
addresses of the authors.

We include a bibliography which is rather extensive as of this date. Nev-
ertheless, we are certain that some works will inevitably have slipped by on
us. Our aim in presenting this bibliography is to present a fairly complete cat-
alogue of publications on the topic of numerical continuation methods. Hence
it has not been possible for us to cite or comment upon all of these articles in
the text of the book.



  

viii Foreword

We have in recent years lectured on the material in this book to students
of mathematics, engineering and sciences at American and European univer-
sities. Our experience suggests that a background in elementary analysis e.g.
the implicit function theorem, Taylor’s formula, etc. and elementary linear al-
gebra are adequate prerequisites for reading this book. Some knowledge from
a first course in numerical analysis may be helpful. Occasionally we need
some slightly more sophisticated tools e.g. parts of chapters 8 and 11. Such
passages can be skimmed over by the mathematically inexperienced reader
without greatly damaging the comprehension of the other parts of the book.

At this point it gives us pleasure to acknowledge the help and support
which we received during the preparation of this book. First of all to our
wives who had to tolerate much tardiness and absence during the writing. To
Anna Georg we owe special thanks for typing, learning TEX and preparing
much of the bibliography.

We received a great deal of encouragement over the years and invitations
for visits to the University of Bonn from H. Unger and to Colorado State
University from R. E. Gaines respectively. During the writing of parts of this
book both authors received support from the National Science Foundation
under grant # DMS - 8805682 and from the Deutsche Forschungsgemeinschaft
under Sonderforschungsbereich 72 at the University of Bonn. E. Allgower also
received support from the Alexander von Humboldt Foundation.

A number of our friends have been kind enough to critically read parts
of our manuscript while it was in preparation. We are grateful for the helpful
comments and corrections given by S. Gnutzmann, D. Saupe, P. Schmidt,
Y. Yamamoto. Many typos and mistakes in preliminary versions were caught
by students in our courses at Colorado State University and in the seminar
of K. Böhmer at the University of Marburg. For this we would like to make
a well deserved acknowledgment.

Eugene L. Allgower and Kurt Georg
Fort Collins, Colorado

January, 1990
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Chapter 1. Introduction

Continuation, embedding or homotopy methods have long served as useful
tools in modern mathematics. Their use can be traced back at least to such
venerated works as those of Poincaré (1881–1886), Klein (1882–1883) and
Bernstein (1910). Leray & Schauder (1934) refined the tool and presented it
as a global result in topology viz. the homotopy invariance of degree. The
use of deformations to solve nonlinear systems of equations may be traced
back at least to Lahaye (1934). The classical embedding methods may be
regarded as a forerunner of the predictor-corrector methods which we will
treat extensively in this book.

Stated briefly, a homotopy method consists of the following. Suppose
one wishes to obtain a solution to a system of N nonlinear equations in N
variables, say

(1.1) F (x) = 0 ,

where F : RN → RN is a mapping which, for purposes of beginning our
discussion we will assume is smooth. When we say a map is smooth, we shall
mean that it has as many continuous derivatives as the subsequent discussion
requires. We do this to make our statements less cumbersome. Let us consider
the situation in which very little a priori knowledge concerning zero points
of F is available. Certainly, if on the contrary a good approximation x0 of a
zero point x̄ of F is available, it is advisable to calculate x̄ via a Newton-type
algorithm defined by an iteration formula such as

(1.2) xi+1 := xi −A−1
i F (xi), i = 0, 1, . . .

where Ai is some reasonable approximation of the Jacobian F ′(xi).
Since we assume that such a priori knowledge is not available, the itera-

tion (1.2) will often fail, because poor starting values are likely to be chosen.
As a possible remedy, one defines a homotopy or deformation H : RN ×R→
RN such that

(1.3) H(x, 1) = G(x) , H(x, 0) = F (x) ,
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where G : RN → RN is a (trivial) smooth map having known zero points and
H is also smooth. Typically, one may choose a convex homotopy such as

(1.4) H(x, λ) := λG(x) + (1− λ)F (x) ,

and attempt to trace an implicitly defined curve c(s) ∈ H−1(0) from a starting
point (x1, 1) to a solution point (x̄, 0). If this succeeds, then a zero point x̄
of F is obtained. Another standard deformation which is often used is the
global homotopy

(1.5) H(x, λ) := F (x)− λF (x1) .

The reader will have realized that several questions immediately arise:

1. When is it assured that a curve c(s) ∈ H−1(0) with (x1, 1) ∈ rangec
exists and is smooth?

2. If such a curve exists, when is it assured that it will intersect the target
homotopy level λ = 0 in a finite length?

3. How can we numerically trace such a curve?

The first question is answered by the implicit function theorem, namely if
(x1, 1) is a regular zero point of H i.e. if the Jacobian H ′(x1, 1) has full
rank N , then a curve c(s) ∈ H−1(0) with initial value c(0) = (x1, 1) and
tangent ċ(0) 6= 0 will exist at least locally i.e. on some open interval around
zero. Furthermore, if zero is a regular value of H i.e. if all zero points of H
are regular points, then this curve is diffeomorphic to a circle or the real line.
This can be seen by a more sophisticated application of the implicit function
theorem as given by Milnor (1969).

The second question is linked with existence theorems in nonlinear anal-
ysis, in particular with solution techniques using deformation or degree. Gen-
erally, it is sufficient to require some boundary condition which essentially
prevents the curve from running to infinity before intersecting the homotopy
level λ = 0, or from returning back to level λ = 1, see figure 1.a.

Figure 1.a Different possibilities for the curve c(s)
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Such boundary conditions must be investigated in the context of a par-
ticular problem. In chapter 11, several such cases are discussed.

It is evident that the map H : RN×R→ RN which we first introduced as
a homotopy, could equally well have arisen as an arbitrary underdetermined
system of equations. Typical sources of such problems are discretizations
of operator equations involving a natural parameter λ, e.g. boundary value
problems, integral equations, delay-differential equations etc. In such cases,
the general theory of such problems often provides some qualitative a priori
information about the curve c(s). The numerical tracing of c(s) will yield
more qualitative and quantitative data.

The essential theme of this book is to deal extensively with the third
question. If the curve c can be parametrized with respect to the parameter λ,
then the classical embedding methods can be applied. These have been ex-
tensively surveyed by Ficken (1951), Wasserstrom (1973) and Wacker (1978).
The basic idea in these methods is explained in the following algorithm for
tracing the curve from, say λ = 1 to λ = 0.

(1.6) Embedding Algorithm. comment:

input
begin
x1 ∈ RN such that H(x1, 1) = 0; starting point

m > 0 integer; number of increments

end;
x := x1; λ := (m− 1)/m; ∆λ := 1/m;
for i = 1, . . . ,m do

begin
solve H(y, λ) = 0 iteratively for y

using x as starting value; e.g. use a Newton-type iteration (1.2)

x := y; λ := λ−∆λ;
end;

output x. solution obtained

The idea behind the embedding algorithm is quite clear: if the increment ∆λ
is chosen sufficiently small, then the iterative process will generally converge
since the starting value x will be close to the solution of H(y, λ) = 0. The
drawback of this method is clearly that it will fail when turning points of the
curve with respect to the λ parameter are encountered, see figure 1.b.

In some instances, even if the curve is parametrizable with respect to λ, it
may be necessary to choose an extremely small increment ∆λ in order for the
imbedding algorithm to succeed. The failure or poor performance of the above
embedding method can be attributed to the fact that the parameter λ may be
ill suited as a parametrization for the curve. One remedy is to consider that
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Figure 1.b Failure at turning points τ

the arclength is a natural parameter for the curve. For numerical purposes,
it is unnecessary to explicitly use the arclength parameter. It is sufficient to
merely approximate this idea e.g. using pseudo-arclength methods or merely
suitable parameter switching. However, for purposes of exposition, we use the
arclength parameter as an expedient device.

The curve c, now parametrized with respect to arclength s, may be re-
garded as the solution of an initial value problem which is obtained by differ-
entiating the equation

(1.7) H
(
c(s)

)
= 0

with respect to s:

(1.8) H ′(c)ċ = 0, ||ċ|| = 1, c(0) = (x1, 1).

The idea of using a differential equation such as (1.8) may be traced at least
to Davidenko (1953). Now it is clear that methods for numerically solving
initial value problems may be applied to (1.8). However, the reader will
suspect that this is an unnatural approach, since (1.8) seems to be a more
complicated problem than to solve (1.7). In fact, we should not lose sight of
the fact that the solution curve c consists of zero points of H, and as such it
enjoys powerful local contractive properties with respect to iterative methods
such as those of Newton-type. Hence, one is led to numerically integrate (1.8)
very coarsely and then locally use an iterative method for solving (1.7) as
a stabilizer. This will be the general idea in our descriptions of predictor-
corrector methods. Chapters 3–10 extensively describe the numerical aspects
of predictor-corrector continuation methods.

Since the late 1970’s, numerous authors have contributed to a still grow-
ing body of literature concerning the class of methods which we designate here
as predictor-corrector continuation methods. Meanwhile, Scarf (1967) gave a
numerically implementable proof of the Brouwer fixed point theorem, based
upon a complementary pivoting algorithm of Lemke & Howson (1964) and
Lemke (1965). Eaves (1972) observed that a related class of algorithms can
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be obtained by considering piecewise linear (PL) approximations of homotopy
maps. Thus the PL continuation methods began to emerge as a parallel to
the predictor-corrector methods. Although PL methods can be viewed in the
more general context of comlementary pivoting algorithms, we have elected
to concentrate on viewing them as a special class of continuation methods.

The PL methods require no smoothness of the underlying equations and
hence have, at least in theory, a more general range of applicability. In fact,
they can be used to calculate fixed points of set-valued maps. They are
more combinatorial in nature and are closely related to the topological de-
gree, see Peitgen & Prüfer (1979), Peitgen (1982) and Peitgen & Siegberg
(1981). PL continuation methods are usually considered to be less efficient
than the predictor-corrector methods when the latter are applicable, especially
in higher dimensions. The reasons for this lie in the facts that steplength adap-
tation and exploitation of special structure are more difficult to implement in
the PL methods. Chapters 12–14 extensively describe the numerical aspects
of PL methods. Chapter 15 deals with the approximation of implicitly defined
surfaces and makes use of methods involving both predictor-corrector and PL
methods. Chapter 16 presents some update methods which may be useful for
interpreting and implementing both predictor-corrector and PL methods, and
some questions regarding numerical stability are discussed.

In the text of the book, specific ideas and continuation techniques are
often described and illustrated by means of pseudo-codes using the PASCAL
syntax. Actual implementations and FORTRAN programs are left to the ap-
pendix. There we present several implementations of continuation methods
as illustrations of the discussions of the text, and also as examples that the
methods presented can be customized to solve a variety of significant prob-
lems. To illustrate the characteristics of the algorithms, each one is applied
to a simple but meaningful example. In these codes, some efficiency is sac-
rificed for the sake of simplicity and ease of understanding. In particular,
the numerical linear algebra solvers are only given to make the presentation
selfcontained. We strongly recommend that they ought to be replaced by ef-
ficient library routines. In doing so, some parts of the codes may need to be
adapted. Actually, one of our reasons for presenting these codes is to get the
reader started with implementing such methods, to experiment with them,
make them more efficient and adapt them to his particular needs.

To date a number of program packages for different purposes and appli-
cations in numerical continuation have appeared in the literature. We make
no attempt to compare them. Those of which we are aware are listed un-
der the following entries in our bibliography. Predictor-corrector codes are
found in Bank & Chan (1986), Doedel (1981), Holodniok & Kub́ıček (1984),
Kub́ıček (1976), Mejia (1986), Morgan (1987), Rheinboldt (1986), Rheinboldt
& Burkardt (1983), Seydel (1988), Watson & Fenner (1980). Piecewise linear
codes are found in Gnutzmann (1988), Jürgens & Saupe, Todd (1981).

An extensive bibliography is given at the end of the book. It has not been
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possible for us to discuss or even cite all of the listed works in the text. The
bibliography has been given in an attempt to provide an up to date collection
of the literature concerning numerical continuation methods.
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Chapter 2. The Basic Principles of Continuation
Methods

2.1 Implicitly DeÞned Curves

In the introduction some contexts were described in which underdetermined
systems of nonlinear equations H(x, λ) = 0 arose. We saw that in general,
such a system implicitly defines a curve or one-manifold of solution points.
The theme of this book is to describe methods for numerically tracing such
curves. In this chapter, we begin by describing some basic ideas. To make
the context of our discussion precise, let us make the following

(2.1.1) Assumption. H : RN+1 → RN is a smooth map.

When we say that a map is smooth we shall mean that it has as many con-
tinuous derivatives as the subsequent discussion requires. We do this merely
to eliminate complicated hypotheses which are not intrinsically important.
Under smoothness, the reader may even assume C∞ i.e. a map has continu-
ous partial derivatives of all orders.

(2.1.2) Assumption. There is a point u0 ∈ RN+1 such that:

(1) H(u0) = 0;

(2) the Jacobian matrix H ′(u0) has maximum rank i.e.

rank
(
H ′(u0)

)
= N .

Given assumptions (2.1.1) and (2.1.2), we can choose an index i, 1 ≤ i ≤ N+1,
such that the submatrix of the Jacobian H ′(u0) obtained by deleting the i th

column is non-singular. It follows from the Implicit Function Theorem that
the solution set H−1(0) can be locally parametrized with respect to the i th

co-ordinate. By a re-parametrization, we obtain the following

(2.1.3) Lemma. Under the assumptions (2.1.1) and (2.1.2), there exists a
smooth curve α ∈ J 7→ c(α) ∈ RN+1 for some open interval J containing zero
such that for all α ∈ J :

(1) c(0) = u0;
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(2) H
(
c(α)

)
= 0;

(3) rank
(
H ′
(
c(α)

))
= N ;

(4) c′(α) 6= 0.

By differentiating equation (2.1.3)(2) it follows that the tangent c′(α) satisfies
the equation

(2.1.4) H ′
(
c(α)

)
c′(α) = 0

and hence the tangent spans the one-dimensional kernel ker
(
H ′
(
c(α)

))
, or

equivalently, c′(α) is orthogonal to all rows of H ′
(
c(α)

)
. There still remains a

freedom of choice in parametrizing the curve. For our subsequent discussions,
it is convenient (but not essential) to parametrize the curve with respect to
the arclength parameter s such that

ds =

N+1∑
j=1

(
dcj(α)
dα

)2
 1

2

dα,

where cj denotes the j th co-ordinate of c.
Upon replacing α by s we obtain

||ċ(s)|| = 1, s ∈ J
for some new interval J . Here we have adopted the conventions

ċ =
dc

ds
;

||x|| = the Euclidean norm of x;

which we will use in the remainder of the book. The kernel of the Jacobian
H ′
(
c(s)

)
has exactly two vectors of unit norm which correspond to the two

possible directions of traversing the curve. In general, one will wish to traverse
the solution curve in a consistent direction. In order to specify the orientation
of traversing, we introduce the (N+1)×(N+1) augmented Jacobian matrix
defined by

(2.1.5)
(
H ′
(
c(s)

)
ċ(s)∗

)
.

Hereafter we use the notation A∗ = transpose of the matrix, column or row
A. Since the tangent ċ(s) is orthogonal to the N linearly independent rows
of the Jacobian H ′

(
c(s)

)
, it follows that the augmented Jacobian (2.1.5) is

non-singular for all s ∈ J . Hence the sign of its determinant stays constant on
J and it can be used to specify the direction in which the curve is traversed.
Let us adopt the convention to call the orientation of the curve positive
if this determinant is positive. We note in passing that this is the convention
usually adopted in differential geometry. We summarize the above discussion
in the following
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(2.1.6) Lemma. Let c(s) be the positively oriented solution curve parame-
trized with respect to arclength s which satisfies c(0) = u0 and H

(
c(s)

)
= 0

for s in some open interval J containing zero. Then for all s ∈ J , the tangent
ċ(s) satisfies the following three conditions:

(1) H ′
(
c(s)

)
ċ(s) = 0;

(2) ||ċ(s)|| = 1;

(3) det
(
H ′
(
c(s)

)
ċ(s)∗

)
> 0.

The above three conditions uniquely determine the tangent ċ(s). More gen-
erally, the preceding discussion motivates the following

(2.1.7) Definition. Let A be an N × (N + 1)-matrix with rank(A) = N .
The unique vector t(A) ∈ RN+1 satisfying the three conditions

(1) At = 0;

(2) ||t|| = 1;

(3) det
(
A
t∗

)
> 0;

is called the tangent vector induced by A.

It can be seen from the Implicit Function Theorem that the tangent
vector t(A) depends smoothly on A:

(2.1.8) Lemma. The setM of all N × (N + 1)-matrices A having maximal

rank N is an open subset of RN×(N+1), and the map A ∈ M 7→ t(A) is
smooth.

Proof. M is the set of all N × (N + 1)-matrices A such that det
(
AA∗

)
6= 0,

and this set is open since the determinant is a continuous function. The
tangent vector t(A) is locally defined by the equations(

At
1
2 t
∗t− 1

2

)
= 0.

The derivative of the left hand side with respect to t is the square matrix(
A
t∗

)
which is invertible for A ∈M and t = t(A). The conclusion now follows from
the Implicit Function Theorem.

In the context of definition (2.1.7), lemma (2.1.6) states that the solution
curve c has a derivative ċ(s) which is the tangent vector induced by the Ja-
cobian matrix H ′

(
c(s)

)
. Another way of stating this is that c(s) is the local

solution of the
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(2.1.9) Defining Initial Value Problem.

(1) u̇ = t
(
H ′(u)

)
;

(2) u(0) = u0.

In the above equation (2.1.9)(1) the right hand side is of course only defined
for points u such that the Jacobian H ′(u) has maximal rank. Let us therefore
give the following standard

(2.1.10) Definition. Let f : Rp → Rq be a smooth map. A point x ∈ Rp is
called a regular point of f if the Jacobian f ′(x) has maximal rank min{p, q}.
A value y ∈ Rq is called a regular value of f if x is a regular point of f for
all x ∈ f−1(y). Points and values are called singular if they are not regular.

Note that y is vacuously a regular value of f if y /∈ range(f). The
celebrated theorem of Sard (1942) states that almost all y ∈ Rq are regular
values of f , see (11.2.2)–(11.2.3) for the exact statements and Abraham &
Robbin (1967), Milnor (1969) or Hirsch (1976) for proofs and further details.
On the other hand, it can be easily seen that the set of regular points is open:

(2.1.11) Lemma. Let f : Rp → Rq be a smooth map. Then the set

{x ∈ Rp
∣∣ x is a regular point of f }

is open.

Proof. Consider the case p ≥ q. Then x is regular if and only if

det
(
f ′(x)f ′(x)∗

)
6= 0 ,

and the set of such x is open since the map x 7→ f ′(x) is continuous. The case
p < q is treated analogously by considering the determinant of f ′(x)∗f ′(x).

In view of lemmas (2.1.8) and (2.1.11), it is now clear that the right
hand side of the defining initial value problem (2.1.9) is a smooth vector field
defined on the open set of regular points of H. As a partial converse of the
discussion leading to (2.1.9), it is easily seen that the equation H ≡ const.
solves the differential equation:

(2.1.12) Lemma. If u(s) is a solution of the differential equation u̇ =
t
(
H ′(u)

)
, then H(u(s)) is constant.

Proof. Since the derivative of H
(
u(s)

)
with respect to s is H ′

(
u(s)

)
u̇(s), and

since the vector field t
(
H ′(u)

)
represents ker

(
H ′(u)

)
, we obtain d

dsH
(
u(s)

)
=

0 which yields the assertion.
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Since we have assumed that u0 is a regular point of H, it follows from
classical existence and uniqueness results for initial value problems [see e.g.
Hartmann (1964)] that there is a maximal interval (a, b) of existence for the
solution c(s) of (2.1.9). Hereafter, c(s) will denote this maximal solution. It is
of course possible that a = −∞ or b =∞. Since we assume that H(u0) = 0,
the initial value condition (2.1.9)(2) implies H

(
c(0)

)
= 0, and the preceding

lemma shows that all points of the solution curve are regular zero points of
H.

(2.1.13) Lemma. If −∞ < a then the curve c(s) converges to a limit point
ũ as s→ a, s > a which is a singular zero point of H. An analogous statement
holds if b <∞.

Proof. Since c(s) satisfies the defining initial value problem (2.1.9), we have

c(s1)− c(s2) =
∫ s1

s2

t
(
H ′
(
c(ξ)

))
dξ for s1, s2 ∈ (a, b).

Because the integrand has unit norm, it follows that

||c(s1)− c(s2)|| ≤ |s1 − s2| for s1, s2 ∈ (a, b).

If {sn}∞n=1 ⊂ (a, b) is a sequence such that sn → a as n→∞, then the above
inequality shows that the sequence {c(sn)}∞n=1 is Cauchy. Hence it converges
to a point ũ. By continuity it follows that H(ũ) = 0. The remaining assertion
will be shown by contradiction. Suppose that ũ is a regular point of H. Then
using the initial point u(0) = ũ in the defining initial value problem (2.1.9),
we obtain a local solution c̃(s). Since c(a + ξ) = c̃(ξ) for ξ > 0 holds by the
uniqueness of solutions, it follows that c can be extended beyond a by setting
c(a+ ξ) := c̃(ξ) for ξ ≤ 0, contradicting the maximality of the interval (a, b).

We can now state the main result of this section.

(2.1.14) Theorem. Let zero be a regular value of H. Then the curve c is
defined on all of R, and satisfies one of the following two conditions:

(1) The curve c is diffeomorphic to a circle. More precisely, there is a period
T > 0 such that c(s1) = c(s2) if and only if s1− s2 is an integer multiple
of T ;

(2) The curve c is diffeomorphic to the real line. More precisely, c is injective,
and c(s) has no accumulation point for s→ ±∞.

Proof. Since zero is a regular value, no zero point of H is singular, and by
lemma (2.1.13), c is defined on all of R. Furthermore, since the defining
differential equation (2.1.9)(1) is autonomous, its solutions are invariant under
translations, i.e. for all s0 ∈ R, the curve s 7→ c(s0 + s) is also a solution of
(2.1.9)(1). Let us now consider the two possibilities:
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(i) c is not injective. We define T := min{s > 0
∣∣ c(s) = c(0)}. By the

uniqueness of the solutions of initial value problems and by the above
mentioned translation invariance, the assertion (1) follows.

(ii) c is injective. We show assertion (2) by contradiction. Let us assume
without loss of generality that ũ is an accumulation point of c(s) as
s→∞. By continuity, H(ũ) = 0. Since ũ is a regular point of H, we can
use the initial point u(0) = ũ in the defining initial value problem (2.1.9)
to obtain a local solution c̃. By uniqueness, the two curves c and c̃ must
coincide locally, and hence there exists an s1 > 0 such that c(s1) = ũ.
Since ũ is also an accumulation point of c(s1 +s) as s→∞, and since the
curve s 7→ c(s1 + s) is also a solution curve, the above argument can be
repeated to obtain an s2 > 0 such that c(s1 + s2) = ũ. This contradicts
the injectivity of c.

A more topological and global treatment of the Implicit Function Theorem
can be found in the books of Hirsch or Milnor. For a discussion of the Implicit
Function Theorem in a Banach space context see, for example, the book by
Berger (1977). The discussion of this section can also be given in a Banach
space context, note however, that the orientation concept would need to be
otherwise formulated.

Among the main applications of tracing c we mention the numerical tasks
of solving nonlinear eigenvalue problems in finite dimensions, and the solving
of nonlinear systems of equations via homotopy deformation methods. Some
of these applications will be dealt with in detail in later chapters.

Since the solution curve c is characterized by the defining initial value
problem (2.1.9), it is evident that the numerical methods for solving initial
value problems can immediately be used to numerically trace the curve c.
This is not, however, in general an efficient approach. As our discussions of
the continuation methods in subsequent chapters will show, such approaches
ignore the contractive properties which the curve c has relative to Newton-type
iterative methods, because it is a set of zero points of H. There are essentially
two different methods for numerically tracing c which will be considered in
this book:

• Predictor-Corrector (PC) methods,
• Piecewise-Linear (PL) methods.

In the next two sections we briefly sketch the basic ideas of both methods. In
subsequent chapters, many explicit details of these methods will be discussed.
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2.2 The Basic Concepts of PC Methods

The idea in PC methods is to numerically trace the curve c of section 2.1 by
generating a sequence of points ui, i = 1, 2, . . . along the curve satisfying a
chosen tolerance criterion, say ‖H(ui)‖ ≤ ε for some ε > 0. We assume here
that a regular starting point u0 ∈ RN+1 is given such that H(u0) = 0.

It seems intuitively plain, and we shall indicate a proof in chapter 3, that
for ε > 0 sufficiently small, there is a unique parameter value si such that
the point c(si) on the curve is nearest to ui in Euclidean norm. Figure 2.2.a
portrays this assertion. We caution the reader that the figures throughout
this book must be regarded as portraying curves in RN+1, thus our points ui
cannot be regarded as lying “above” or “below” the curve c.

Figure 2.2.a The point c(si) is the best approximation to ui
on the curve c

To describe how points ui along the curve c are generated, suppose that a
point ui ∈ RN+1 has been accepted such that ||H(ui)|| ≤ ε. If ui is a regular
point of H, then the results of section 2.1 can be applied. Hence, there exists
a unique solution curve ci : J → RN+1 defined on its maximal interval of
existence J , which satisfies the initial value problem

(2.2.1)
u̇ = t

(
H ′(u)

)
;

u(0) = ui.

To obtain a new point ui+1 along c, we first make a predictor step.
Typically, a predictor step is obtained as a simple numerical integration step
for the initial value problem (2.2.1). Very commonly, an Euler predictor is
used:

(2.2.2) vi+1 = ui + ht
(
H ′(ui)

)
,

where h > 0 represents a “stepsize”. The manner in which h is to be chosen
will be discussed in detail in chapter 6. As has already been mentioned, a
powerful corrector step is available due to the fact that the solution curve
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c satisfies the equation H(u) = 0. Consequently, even for a poor predictor
point vi+1, an iterative corrector process will exhibit rapid convergence to the
solution curve c. To illustrate this, let wi+1 denote the point on c which is
nearest to vi+1, see figure 2.2.b.

Figure 2.2.b Predictor point vi+1 and corrector point ui+1

The point wi+1 solves the following optimization problem:

(2.2.3) ||wi+1 − vi+1|| = min
H(w)=0

||w − vi+1 ||.

If ui is sufficiently close to the curve c and the stepsize h is sufficiently small,
then the predictor point vi+1 will be sufficiently close to the curve c so that the
minimization problem has a unique solution wi+1. An obvious way to numeri-
cally approximate wi+1 in (2.2.3) is to utilize a Newton-like method. Suppose
that by one or two iterations of such a method we obtain a point ui+1 ap-
proximating wi+1 within a given tolerance, say ||H(ui+1)|| ≤ ε. Then ui+1 is
taken as our next point along the curve. The PC continuation method for ap-
proximating c thus consists of repeatedly performing predictor and corrector
steps such as those described above. To construct an efficient and robust PC
method which can successfully approximate complicated or difficult curves, a
number of important items remain to be carefully developed e.g.

(1) an effective step size adaptation;
(2) an efficient implementation of the corrector step;
(3) an efficient incorporation of higher order predictors;
(4) handling or approximating special points on the curve such as turning

points, bifurcation points or other points of special interest.

These problems will be dealt with in our later chapters. We again emphasize
that the PC continuation methods are considerably different than the well
known methods for the numerical integration of initial value problems which
are also called predictor-corrector methods. Although the predictor steps in
both methods are similar in nature, the corrector process in the continuation
methods thrives upon the powerful contractive properties of the solution set
H−1(0) for iterative methods such as Newton’s method. This is a property
which solution curves of general initial value problems do not enjoy, in fact
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their corrector processes converge in the limit only to an approximating point,
the approximating quality of which depends on the stepsize h.

2.3 The Basic Concepts of PL Methods

Whereas a PC method involves approximately following the exact solution
curve c of section 2.1, in a PL method, one follows exactly a piecewise-linear
curve cT which approximates c. In particular, the curve cT is a polygonal
path relative to an underlying triangulation T of RN+1. To describe how this
is done, it is necessary to introduce a definition of a triangulation of RN+1

which is adequate for PL algorithms.

(2.3.1) Definition. Let v1, v2, . . . , vj+1 ∈ RN+1, j ≤ N + 1, be affinely
independent points (i.e. vk − v1, k = 2, . . . , j + 1 are linearly independent).
The convex hull

[v1, v2, . . . , vj+1] := co{v1, v2, . . . , vj+1}

is the j-simplex in RN+1 having vertices v1, v2, . . . , vj+1. The convex hull
[w1, . . . , wr+1] of any subset {w1, . . . , wr+1} ⊂ {v1, v2, . . . , vj+1} is an r-face
of [v1, v2, . . . , vj+1].

(2.3.2) Definition. A triangulation T of RN+1 is a subdivision of RN+1

into (N + 1)-simplices such that

(1) any two simplices in T intersect in a common face, or not at all;

(2) any bounded set in RN+1 intersects only finitely many simplices in T .

Since our aim in this section is merely to give the basic ideas of a PL algorithm,
we shall defer giving constructions of triangulations until later. More details
will be given in chapter 12.

(2.3.3) Definition. For any map H : RN+1 → RN , the piecewise linear
approximation HT to H relative to the triangulation T of RN+1 is the map
which is uniquely defined by

(1) HT (v) = H(v) for all vertices of T ;

(2) for any (N + 1)-simplex σ = [v1, v2, . . . , vN+2] ∈ T , the restriction HT |σ
of HT to σ is an affine map;

As a consequence, if u =
∑N+2
i=1 αivi is a point in σ, then its barycentric co-

ordinates αi satisfy
∑N+2
i=1 αi = 1 and αi ≥ 0 for i = 1, . . . , N + 2, and since

HT is affine, we have

HT (u) = H

(
N+2∑
i=1

αivi

)
=
N+2∑
i=1

αiH(vi).
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The set H−1
T (0) contains a polygonal path cT : R → RN+1 which approxi-

mates c. Error estimates for the truncation error of such approximations will
be given in chapter 15. Tracing the path is carried out via PL-steps similar to
the steps used in linear programming methods such as the Simplex Method.
Figure 2.3.a portrays the basic idea of a PL method.

Figure 2.3.a PL path following

It is also possible to blend the two basic continuation techniques. For
example, the PL curve cT approximating cmay be used as a “global” predictor
for obtaining points on c when cT lies sufficiently near c. That is, for every
point v ∈ range(cT ) there is a nearest point w ∈ range(c) as in (2.2.3). Here
again a Newton-type iterative method may be used to perform the corrector
steps. Such a corrector process is described in a general context in section
15.2.

Let us also point out that for PL methods, a smoothness assumption
concerning H is not necessary. For certain applications the piecewise linear
path cT may still be of interest even if it does not closely approximate c.
This holds in particular in the case of homotopy methods for computing fixed
points under the hypotheses of the Kakutani fixed point theorem.

In subsequent chapters we will expand upon the ideas for implementing
both the PC and the PL methods. We will first deal with the PC methods in
chapters 3–10, and then with the PL methods in chapters 12–15.
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Chapter 3. NewtonÕs Method as Corrector

3.1 Motivation

Let zero be a regular value of the smooth map H : RN+1 → RN . We again
consider the solution curve c contained in H−1(0) defined by the initial value
problem (2.1.9), where the initial point c(0) = u0 such that H(u0) = 0 is
assumed to be given. The PC methods which were generally outlined in
section 2.2 motivate the following

(3.1.1) Generic Predictor-Corrector Method. comment:

input

begin

u ∈ RN+1 such that H(u) = 0; initial point

h > 0; initial steplength

end;

repeat

predict a point v such that predictor step

H(v) ≈ 0 and ||u− v|| ≈ h;

let w ∈ RN+1 approximately solve corrector step

min
w
{ ||v − w||

∣∣ H(w) = 0};

u := w; new point along H−1(0)

choose a new steplength h > 0; steplength adaptation

until traversing is stopped.

It was suggested that a straightforward way of solving the minimization prob-
lem

(3.1.2) min
w
{ ||v − w||

∣∣ H(w) = 0}
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in the corrector step might be a Newton-type method. In this chapter the
basic ideas for doing this will be outlined and analyzed. In chapter 6 details
concerning steplength adaptation are discussed.

As is well known, Newton’s method for solving the equation f(x) = 0
generally takes the form

xi+1 = xi − f ′(xi)−1f(xi)

where f : RN → RN is a smooth map. In the present context, the Jacobian
H ′ is not a square matrix and therefore cannot be inverted. Hence Newton’s
method has to be accordingly modified. This can be done by introducing
a certain right inverse H ′+ of H ′ which is motivated by the minimization
problem (3.1.2). Such a suitable right inverse is provided by the Moore-
Penrose inverse, which we need to introduce only for the special case of N ×
(N + 1)-matrices of maximal rank. For general discussions of the Moore-
Penrose inverse see the textbook of Golub & Van Loan (1983).

3.2 The Moore-Penrose Inverse in a Special Case

Let us consider the simplest example of an implicitly defined curve namely a
line in RN+1. More precisely, let us consider the special case of an affine map

H(u) := Au− b

where A is an N × (N + 1) matrix with maximal rank and b ∈ RN . Then the
curve c implicitly defined by the equation H(u) = 0 is a straight line. Figure
3.2.a portrays this situation.

Figure 3.2.a Minimal solution for the linear
case (3.2.1)

Since a straightforward calculation shows that the condition H(w) = 0
is equivalent to A(w − v) = −H(v), the minimization problem (3.1.2) takes
the particular form

(3.2.1) min
w
{ ||w − v||

∣∣ A(w − v) = −H(v) }
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From lemma (3.2.3) below it follows that the minimal solution w − v can
be written as w − v = −A+H(v) where A+ is the Moore-Penrose inverse
of A. Since in this special case A = H ′(v), we obtain the “Newton step”
w = v − H ′(v)+H(v). In our present context, the Moore-Penrose inverse is
given by the following

(3.2.2) Definition. Let A be an N × (N + 1) matrix with maximal rank.
Then the Moore-Penrose inverse of A is defined by A+ = A∗(AA∗)−1.

The next lemma describes the familiar normal equations for linear least
squares problems:

(3.2.3) Lemma. Let A be an N × (N + 1) matrix with maximal rank, and
let t(A) be its tangent vector, cf. (2.1.7). Then the following statements are
equivalent for all b ∈ RN and x ∈ RN+1:

(1) Ax = b and t(A)∗x = 0;
(2) x = A+b;
(3) x solves the problem: minw { ||w||

∣∣ Aw = b }.

Proof. We first observe that At(A) = 0 implies t(A)∗A∗ = 0. Using definition
(3.2.2), it can be seen by multiplying that

(3.2.4)
(

A
t(A)∗

)(
A+ , t(A)

)
= Id

holds. Statement (1) is equivalent to(
A

t(A)∗

)
x =

(
b
0

)
,

which by (3.2.4) is equivalent to (2). This shows (1)⇔ (2). To show (2)⇔ (3),
let x = A+b. The general solution of the equation Aw = b is given by
w = x + αt(A), α ∈ R. Since x and t(A) are orthogonal by (1), we have
||w||2 = ||x||2 + α2, and it is clear that w has minimal norm if and only if
w = x.

In our subsequent discussion we make use of the following properties of
the Moore-Penrose inverse. Here and in the following we denote by y ⊥ x
orthogonality, i.e. y∗x = 0, and X⊥ := {y | y ⊥ x for all x ∈ X} denotes the
orthogonal complement of X.

(3.2.5) Lemma. If A is an N × (N + 1) matrix with maximal rank, then

(1) A+A is the orthogonal projection from RN+1 onto {t(A)}⊥ = range(A∗),
i.e. A+A = Id− t(A)t(A)∗.

(2) AA+ = Id.
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(3) If B is any right inverse of A, then A+ =
(
Id− t(A)t(A)∗

)
B.

Proof. Assertion (2) follows immediately from (3.2.4). To prove (1), let us first
recall the familiar fact of linear algebra that range(A∗) = ker(A)⊥ holds, and
hence it is clear that {t(A)}⊥ = range(A∗). If x ∈ {t(A)}⊥, then x = A+Ax
by (3.2.3)(1). Since A+At(A) = 0, assertion (1) follows. To prove assertion
(3), we set B0 :=

(
Id − t(A)t(A)∗

)
B. For b ∈ RN , let x := B0b. From the

definition of B0 it follows immediately that Ax = b and t(A)∗x = 0. Now
assertion (3) is obtained from lemma (3.2.3).

3.3 A NewtonÕs Step For Underdetermined Nonlinear
Systems

Let us now consider the general nonlinear map H : RN+1 → RN . A necessary
condition for a solution to (3.1.2) is obtained via the method of Lagrange
multipliers. Hence, if w is a solution of (3.1.2), then it satisfies the Lagrangian
equations

(3.3.1)
H(w) = 0;
w − v = H ′(w)∗λ

for some vector of multipliers λ ∈ RN . The second condition is equivalent to
w− v ∈ range

(
H ′(w)∗

)
=
{
t
(
H ′(w)

)}⊥. Thus a necessary condition for w to
solve (3.1.2) is that w satisfies the equation

(3.3.2)
H(w) = 0;

t
(
H ′(w)

)∗(w − v) = 0.

In Newton’s method, the nonlinear system (3.3.2) is solved approximately
via a linearization about v. To illustrate this, let us consider the Taylor
expansion about v:

(3.3.3)
H(w) = H(v) +H ′(v)(w − v) +O

(
||w − v||2

)
t
(
H ′(w)

)∗(w − v) = t
(
H ′(v)

)∗(w − v) +O
(
||w − v||2)

For the reader who is unfamiliar with the Landau symbol O, let us briefly
say that for our purposes it suffices to know that

f(h) = O(hm)

means that

(3.3.4) ||f(h)|| ≤ C|h|m
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for small h and a constant C > 0. If the function f in (3.3.4) depends on some
additional parameter, e.g. α, then we say that f(h) = O(hm) holds uniformly
in α if the constant C in (3.3.4) can be chosen independently of α. Local
uniformity is defined in an analogous manner. For example, the asymptotic
relationship in (3.3.3) is locally uniform in v. Our subsequent discussions
involving asymptotic arguments are to be understood in this locally uniform
sense. The reader who wishes to see more about the Landau notation may
consult a general book about it, such as de Bruijn’s book on asymptotic
analysis.

To return to our discussion, a linearization of (3.3.2) consists of neglecting
the higher order terms O(||w−v||2) of (3.3.3). As is usual in Newton’s method,
we obtain an approximation N (v) to the solution w of (3.3.2), which has a
truncation error of second order. Hence, the Newton point N (v) satisfies the
following equations:

(3.3.5)
H(v) +H ′(v)

(
N (v)− v

)
= 0;

t
(
H ′(v)

)∗(N (v)− v
)

= 0.

Using (3.2.3)(1), we are therefore led to the following

(3.3.6) Definition. Let v ∈ RN+1 be a regular point of H. Then the
Newton point N (v) for approximating the solution of (3.1.2) is given by

N (v) := v −H ′(v)+H(v).

The map N defined on the regular points of H will also be called the Newton
map.

Note that this Newton step is analogous to the classical Newton’s method,
with the only formal difference being that the Moore-Penrose inverse H ′(v)+

replaces the classical inverse.
The following algorithm sketches a particular version of the predictor-

corrector method (3.1.1) incorporating an Euler predictor step, cf. (2.2.2),
and the above described Newton’s method as a corrector.
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(3.3.7) Euler-Newton Method. comment:

input

begin

u ∈ RN+1 such that H(u) = 0; initial point

h > 0; initial steplength

end;
repeat

v := u+ ht
(
H ′(u)

)
; predictor step

repeat

w := v −H ′(v)+H(v); corrector loop

v := w;
until convergence;
u := w; new point along H−1(0)
choose a new steplength h > 0; steplength adaptation

until traversing is stopped.

3.4 Convergence Properties of NewtonÕs Method

Full theoretical discussions of Newton’s method (3.2.6) using the Moore-
Penrose inverse can be found in several text books e.g. Ortega & Rheinboldt
(1970) or Ben-Israel & Greville (1974). Since our context deals with the curve-
following problem, we confine our discussion to the case H : RN+1 → RN .

(3.4.1) Theorem. Let H : RN+1 → RN be a smooth map having zero as
a regular value. Then there exists an open neighborhood U ⊃ H−1(0) such
that the following assertions hold.

(1) The solution map v ∈ U 7→ S(v) ∈ H−1(0) such that S(v) solves the
minimization problem problem (3.1.2) is uniquely defined and smooth.

(2) For each v ∈ U , the Newton sequence
{
N i(v)

}∞
i=1

converges to a point

N∞(v) in H−1(0).
(3) The following estimates hold locally uniformly for v ∈ U :

||N 2(v)−N (v)|| = O
(
||N (v)− v||2

)
;(a)

||N∞(v)−N (v)|| = O
(
||N∞(v)− v||2

)
;(b)

||N (v)− S(v)|| = O
(
||v − S(v)||2

)
;(c)

||N∞(v)− S(v)|| = O
(
||v − S(v)||2

)
.(d)
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(4) The relation N (U) ⊂ U holds.

Proof. We shall only sketch the main points. Furnishing additional details
may be an exercise for the reader. By a standard continuity argument, the
minimization problem in (3.1.2) has at least one solution for every v, and the
map S can be defined by selecting one such solution. By (3.3.2) which was
a consequence of the method of Lagrange multipliers, the pair

(
S(v), v)

)
is a

zero point of the map R : RN+1 ×RN+1 → RN+1 defined by

R(w, v) :=
(

H(w)
t
(
H ′(w)

)∗(w − v)

)
.

For a zero point v0 ∈ H−1(0), the following partial derivative is easily calcu-
lated:

Rw(v0, v0) =
(

H ′(v0)
t
(
H ′(v0)

)∗) .
The latter matrix is the augmented Jacobian, see (2.1.7), which is nonsingular.
Since R(v0, v0) = 0, we can apply the Implicit Function Theorem and obtain
that the map v 7→ S(v) is uniquely defined and smooth on a neighborhood
U(v0) of v0 containing only regular points of H. Assertion (1) now follows by
using

U1 :=
⋃

v0∈H−1(0)

U(v0)

as the neighborhood of H−1(0).
To obtain the convergence and estimates, let us consider a fixed ṽ ∈

H−1(0). Furthermore, we choose an ε > 0 such that the closed ball

Bε := {v ∈ RN+1
∣∣ ||v − ṽ|| ≤ ε}

is contained in U1. We define the following constants for Bε:

(3.4.2)

α := max{||H ′(v)||
∣∣ v ∈ Bε};

β := max{||H ′(v)+||
∣∣ v ∈ Bε};

γ := max{||H ′′(v)||
∣∣ v ∈ Bε};

ρ := max{||
(
H ′(v)+

)′|| ∣∣ v ∈ Bε}.
To simplify our estimates below, we consider a δ > 0 such that

(3.4.3)
δ + βαδ + (βγ)(βαδ)2 ≤ ε

2
;

(βγ)(βαδ) ≤ 1
2
.
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Let v ∈ Bδ. The following estimates will show that all for all iterates N i(v) ∈
Bε holds, and hence the bounds in (3.4.2) can be applied. From Taylor’s
formula it follows that

H(v) = H(ṽ) +
∫ 1

0

H ′
(
ṽ + ξ(v − ṽ)

)
dξ (v − ṽ)

and hence by (3.4.2)

(3.4.4) ||H(v)|| ≤ α||v − ṽ|| ≤ αδ.
Also from Taylor’s formula, see e.g. Berger (1977), p.75, we have

H
(
N (v)

)
= H(v) +H ′(v)

(
N (v)− v

)
+

1
2

∫ 1

0

H ′′
(
v + ξ

(
N (v)− v

))
2(1− ξ)dξ

[
N (v)− v,N (v)− v

]
.

Using the fact that H(v) +H ′(v)
(
N (v)− v

)
= 0 and taking norms, it follows

from (3.4.2),(3.4.4) that

(3.4.5)

||H
(
N (v)

)
|| ≤ 1

2
γ||N (v)− v||2

≤ 1
2
γ||βH(v)||2

≤ 1
2
γ(βαδ)2.

This immediately implies

(3.4.6)
||N 2(v)−N (v)|| = ||H ′

(
N (v)

)+
H
(
N (v)

)
|| ≤ 1

2
βγ||N (v)− v||2

≤ 1
2
βγ(βαδ)2.

Proceeding recursively, we obtain

(3.4.7)
||H
(
N i(v)

)
|| ≤ β−1

(1
2
βγ
)2i−1(βαδ)2i ;

||N i+1(v)−N i(v)|| ≤
(1

2
βγ
)2i−1(βαδ)2i .

Summing the right hand side over i and comparing with the corresponding
geometric series yields the estimates

∞∑
i=1

(1
2
βγ
)2i−1(βαδ)2i =

(1
2
βγ
)−1

∞∑
i=1

(1
2
βγ
)2i(βαδ)2i

≤
(1

2
βγ
)−1

∞∑
i=1

(1
2
βγ
)2i(βαδ)2i

=
(1

2
βγ
)−1

(
1
2βγ

)2(βαδ)2

1−
(

1
2βγ

)2(βαδ)2

≤(βγ)(βαδ)2
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since
(

1
2βγ

)2(βαδ)2 < 1
2 follows from (3.4.3). This implies that the Newton

iterates N i(v) form a Cauchy sequence which converges to the limit point
N∞(v), and from the first inequality in (3.4.7) it follows that H

(
N∞(v)

)
= 0.

This proves assertion (2). Since the bounds we are using in (3.4.3) are locally
uniform, (3.4.6) already establishes the estimate (3)(a). We now proceed to
obtain (3)(b). The last estimates above yield

||N (v)−N∞(v)|| ≤
∞∑
i=1

||N i+1(v)−N i(v)||,

||ṽ −N∞(v)|| ≤ ||ṽ − v||+ ||v −N (v)||+ ||N (v)−N∞(v)||
≤ δ + βαδ + (βγ)(βαδ)2,

and (3.4.3) now implies that

(3.4.8) N∞(v) ∈ B ε
2
.

It is easy to see, cf. (3.4.5) that we may replace ||N (v) − v|| by βαδ in the
above estimates. This yields

||N∞(v)−N (v)|| ≤ βγ||N (v)− v||2.
From this inequality and (3.4.3) it follows that

||N∞(v)− v|| ≥ ||N (v)− v|| − ||N∞(v)−N (v)||
≥ ||N (v)− v|| − βγ||N (v)− v||2

≥ ||N (v)− v|| − βγ(βαδ)||N (v)− v||

≥ 1
2
||N (v)− v||

and consequently

(3.4.9) ||N∞(v)−N (v)|| ≤ 4βγ||N∞(v)− v||2

establishes (3)(b). To obtain (3)(c), we first note that ||v−S(v)|| ≤ ||v− ṽ|| ≤
δ ≤ ε

2 yields S(v) ∈ Bε, and hence the bound (3.4.2) apply to the estimates
below. Once again applying Taylor’s formula, we have

H(v) = H
(
S(v)

)
+H ′

(
S(v)

)(
v − S(v)

)
+

1
2

∫ 1

0

H ′′
(
S(v) + ξ

(
v − S(v)

))
2(1− ξ)dξ

[
v − S(v), v − S(v)

]
.

Since w = S(v) satisfies (3.3.2), the difference v − S(v) is orthogonal to
ker
(
H ′
(
S(v)

))
, and therefore by (3.2.5)(1) we have

v − S(v) = H ′
(
S(v)

)+
H(v)

− 1
2
H ′
(
S(v)

)+ ∫ 1

0

H ′′
(
S(v) + ξ

(
v − S(v)

))
2(1− ξ)dξ

[
v − S(v), v − S(v)

]
.
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Now subtracting the equation v −N (v) = H ′(v)+H(v) yields

N (v)− S(v) =
(
H ′
(
S(v)

)+ −H ′(v)+
)
H(v)

− 1
2
H ′
(
S(v)

)+ ∫ 1

0

H ′′
(
S(v) + ξ

(
v − S(v)

))
2(1− ξ)dξ

[
v − S(v), v − S(v)

]
.

By an argument as that in establishing (3.4.4) we obtain ||H(v)|| ≤ α||v −
S(v)||, and the bounds in (3.4.3) now yield

||N (v)− S(v)|| ≤ ρ||v − S(v)|| α||v − S(v)||+ 1
2
βγ||v − S(v)||2,

which establishes (3)(c). To prove the last estimate (3)(d), we note that

||N∞(v)− S(v)|| ≤ ||N∞(v)−N (v)||+ ||N (v)− S(v)||

and (3)(b–c) imply

||N∞(v)− S(v)|| = O
(
||N∞(v)− v||2

)
+O

(
||v − S(v)||2

)
,

and by using

||N∞(v)−v||2 ≤ ||N∞(v)−S(v)||2 + ||S(v)−v||2 +2||N∞(v)−v|| ||S(v)−v||

we obtain

||N∞(v)− S(v)|| = O
(
||N∞(v)− S(v)||+ ||S(v)− v||

)
||N∞(v)− S(v)||

+O
(
||v − S(v)||2

)
,

which implies

||N∞(v)− S(v)|| = O
(
||v − S(v)||2

)
1−O

(
||N∞(v)− S(v)||+ ||S(v)− v||

)
= O

(
||v − S(v)||2

)
,

and this proves (3)(d).
Let us finally show, that we can find an open neighborhood U of H−1(0)

which is stable under the Newton map N and such that all the convergence
properties and estimates hold for all iterates of v ∈ U . In the above discussion,
for a given ṽ ∈ H−1(0) we found ε = ε(ṽ) and δ = δ(ṽ) so that all the estimates
are satisfied on the corresponding neighborhoods Bδ(ṽ)(ṽ) and Bε(ṽ)(ṽ). We
first define the neighborhood

U2 :=
⋃

ṽ∈H−1(0)

int
(
Bδ(ṽ)(ṽ)

)
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where “int” denotes the interior. Now we set

U := {u
∣∣ u,N (u),N 2(u), . . . ∈ U2}.

It is clear that H−1(0) is contained in U , and that the asserted convergence
properties and estimates hold for all Newton iterates of v ∈ U . So it only
remains to show that U is open. Let v ∈ U . We will show that some open
neighborhood of v is also contained in U . We choose ṽ := N∞(v). It is
possible to find an open neighborhood V of ṽ so that

N i(V ) ⊂ B δ(ṽ)
2

(ṽ) for i = 0, 1, 2, . . .

For example, if η > 0 satisfies

η + βαη + (βγ)(βαη)2 ≤ δ(ṽ)
2
,

where the constants correspond to our choice ṽ := N∞(v), then the open set
V = int

(
Bη(ṽ)

)
is such a possible neighborhood, see the first inequality in

(3.4.3), which was used to obtain (3.4.8). Let k > 0 be an index such that
N i(v) ∈ V for i ≥ k. Then

{u
∣∣ u,N (u), . . . ,N k(u) ∈ U2, ,N k(u) ∈ V }

is an asserted open neighborhood of v, since it is a finite intersection of open
sets which contain v and which are contained in U by our choice of V .
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Chapter 4. Solving the Linear Systems

As has been seen in the preceding chapters, the numerical tracing of c(s) will
generally involve the frequent calculation of both the tangent vectors and the
execution of the corrector steps. This will require a sufficient amount of linear
equation solving to warrant that it be done in an efficient and carefully consid-
ered manner. Here too, we shall treat the details of numerical linear algebra
only in the context which concerns us viz. the calculation of tangent vectors
t(A), and performing the operations w = A+b where A is an N × (N + 1) ma-
trix with rank(A) = N which arise in the corrector steps. Readers interested
in further background concerning numerical linear algebra may consult such
textbooks on the subject as that of Golub & Van Loan.

In the discussion which follows, we mainly concentrate upon the QR de-
composition of A∗. Our reasons for this are that by using the QR decomposi-
tion, scaling of the dependent variable becomes unnecessary, also the method
is numerically stable without any pivoting, and it is easy to describe. The
QR decomposition of A∗ might be accomplished in different ways e.g. House-
holder transformations or Givens rotations. We have elected to describe in
detail the latter, because we will use them also later when we describe updat-
ing methods for approximating the Jacobian matrix. In the last section of the
chapter we will outline the numerical steps when using an LU decomposition
of A∗. In chapter 10 we discuss how any general linear equation solver can
be incorporated in the continuation method. This is of particular interest for
large sparse systems where a user may wish to apply a particular solver.
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4.1 Using a QR Decomposition

Let us indicate briefly how t(A) and A+ can be easily obtained once a QR
factorization of A∗ is available. We assume that A is an N × (N + 1) matrix
with rank(A) = N , and that a decomposition

A∗ = Q

(
R
0∗

)
is given, where Q is an (N + 1) × (N + 1) orthogonal matrix i.e. Q∗Q = Id,
and R is a nonsingular N × N upper triangular matrix, i.e. R[i, j] = 0 for
i > j and R[i, i] 6= 0. Hence if z denotes the last column of Q, then Az = 0
and ||z|| = 1. The question which remains, is how to choose the sign of z so
that

det
(
A
z∗

)
> 0,

in order to satisfy the orientation condition (2.1.7)(3). To answer this, note
that

(A∗, z) = Q

(
R 0
0∗ 1

)
implies

(4.1.1) det
(
A
z∗

)
= det(A∗, z) = detQdetR.

Hence, t(A) = ±z according as the determinant in (4.1.1) is positive or neg-
ative. Now, detR is the product of the diagonal elements of R, and its sign
is easily determined. Also sign detQ is usually easily obtained. For example,
if Givens rotations are used, it is equal to unity. If Householder reflections
are used, each reflection changes the sign, and so sign detQ = (−1)p where p
is the number of reflections which are involved in the factorization of A∗ by
Householder’s method. In any event, the question of determining t(A) is now
easily resolved. Note that the selection of the appropriate sign does not cost
any additional computational effort.

Let us now turn to the problem of determining the Moore-Penrose inverse.
From (3.2.2), we have A+ = A∗(AA∗)−1, and from

A∗ = Q

(
R
0∗

)
and A = (R∗, 0)Q∗

we obtain

A+ = Q

(
(R∗)−1

0∗

)
.
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Of course, as is usual in solving linear systems of equations, we do not invert
R∗, but rather we calculate w = A+b by a forward solving R∗y = b i.e.

for i := 1, . . . , N

y[i] :=

(
b[i]−

i−1∑
k=1

R[k, i]y[k]

)
/R[i, i]

and a matrix multiplication

w = Q

(
y
0

)
.

4.2 Givens Rotations for Obtaining a QR Decomposition

At this point it may be helpful to some readers if we carry out an example
of a QR decomposition for A∗. As we have already indicated, we choose to
illustrate the use of Givens rotations, since this is convenient for our later
description of updating approximations to the Jacobian. The reader who is
interested in utilizing other methods such as the fast Givens or Householder
methods, can see how to do this in section 6.3 of the book by Golub &
Van Loan. Givens rotations act only on two co-ordinates and may hence
be described by a matrix of the form

G =
(
s1 s2

−s2 s1

)

such that s2
1 + s2

2 = 1, for then GG∗ = I and detG = 1. For any vector
x ∈ R2,

Gx =
(
||x||

0

)
if s1 :=

x[1]
||x|| , s2 :=

x[2]
||x|| .

The reduction of A∗ to upper triangular form R is accomplished via a succes-
sion of Givens rotations acting on varying pairs of co-ordinates. We illustrate
this by the following pseudo code:
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(4.2.1) QR Decomposition. comment:

Q := Id; R := A∗; initialization

for i = 1 to N do

for k = i+ 1 to N + 1 do

begin

(s1, s2) := (R[i, i], R[k, i]); calculate Givens rotation

if s2 6= 0 then else: no rotation is necessary

begin

s :=
√
s2

1 + s2
2; (s1, s2) := s−1(s1, s2);(

e∗iR
e∗kR

)
:=
(
s1 s2

−s2 s1

)(
e∗iR
e∗kR

)
; Givens rotation on rows i, k

(
e∗iQ
e∗kQ

)
:=
(
s1 s2

−s2 s1

)(
e∗iQ
e∗kQ

)
; Givens rotation on rows i, k

end;
end;

Q := Q∗. to make Q consistent with the above discussion

The above illustration is given only to make our discussion complete and self-
contained. In the interest of simplicity and brevity, we have formulated it in
a slightly inefficient way. A number of improvements in efficiency could be
made, see the standard literature and library routines.

4.3 Error Analysis

In the process of performing the numerical calculations of linear algebra,
roundoff errors arise from machine arithmetic. We assume in this section
that the reader is familiar with the standard error analysis of numerical linear
algebra, see e.g. Golub & Van Loan (1983) or Stoer & Bulirsch (1980). The
standard analysis shows that the relative error of the solution to the equation
Bx = b for the square matrix B is estimated by

||∆x||
||x|| ≤ cond(B)

( ||∆B||
||B|| +

||∆b||
||b||

)
+O

(
||∆B||2 + ||∆B|| ||∆b||

)
,

where cond(B) := ||B|| ||B−1|| is the condition number of B and ||∆x||
represents the error in x etc. In this section we briefly show that an essentially
analogous result holds for underdetermined systems of equations. We note
that this is not true for overdetermined systems of equations (least squares
solutions), see the above mentioned references.
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(4.3.1) Definition. Let A be an N × (N + 1)-matrix with maximal rank N .
Then the condition number of A is defined by cond(A) := ||A|| ||A+||.

As always, || || denotes the Euclidean norm. It can be seen that ||A||2
is the largest eigenvalue of AA∗ and ||A+||−2 the smallest eigenvalue. Let
us now investigate the sensitivity of the solution x = A+b with respect to
perturbations in the entries of A and b. For the following lemma we use the
fact that the estimate

(4.3.2) (B + ∆B)−1 = B−1 −B−1(∆B)B−1 +O
(
||∆B||2

)
holds for nonsingular square matrices B and perturbations ∆B having suffi-
ciently small norm. Note that the existence of (B + ∆B)−1 is also implied.

(4.3.3) Lemma. Let A be an N × (N + 1)-matrix with maximal rank N ,
and let t := t(A) be the induced tangent. If ∆A is an N × (N + 1)-matrix
with sufficiently small norm, then (A+ ∆A) also has maximal rank, and the
following estimate holds:

(A+ ∆A)+ = A+ −A+(∆A)A+ + tt∗(∆A)∗(A+)∗A+ +O
(
||∆A||2

)
.

Proof. By definition (3.2.2) we have

(A+ ∆A)+

= (A+ ∆A)∗
[
(A+ ∆A)(A+ ∆A)∗

]−1

= (A+ ∆A)∗
[
AA∗ +A(∆A)∗ + (∆A)A∗ +O

(
||∆A||2

)]−1

= (A+ ∆A)∗
[(
AA∗

)−1 −
(
AA∗

)−1(
A(∆A)∗ + (∆A)A∗

)(
AA∗

)−1
]

+O
(
||∆A||2

)
= A+ −A+

(
A(∆A)∗ + (∆A)A∗

)(
AA∗

)−1 + (∆A)∗
(
AA∗

)−1 +O
(
||∆A||2

)
= A+ −A+(∆A)A+ +

(
Id−A+A

)
(∆A)∗

(
AA∗

)−1 +O
(
||∆A||2

)
.

Since (A+)∗A+ =
(
AA∗

)−1 by (3.2.2) and Id− A+A = tt∗ by (3.2.5)(1), the
assertion follows.

(4.3.4) Lemma. Let A be an N × (N + 1)-matrix with maximal rank N ,
and let ∆A be an N × (N + 1)-matrix with sufficiently small norm. For
b, ∆b ∈ RN , let x := A+b and x + ∆x := (A + ∆A)+(b + ∆b). Then the
following estimate holds for the relative error in x:

||∆x||
||x|| ≤ cond(A)

(
2
||∆A||
||A|| +

||∆b||
||b||

)
+O

(
||∆A||2

)
+ ||∆A|| ||∆b||

)
.
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Proof. From the preceding lemma we obtain

x+ ∆x = A+b−A+(∆A)A+b+ tt∗(∆A)∗(A+)∗A+b+A+(∆b)

+O
(
||∆A||2 + ||∆A|| ||∆b||

)
.

Now using x = A+b, ||t|| = 1 and taking norms yields

||∆x|| ≤ ||A+|| ||∆A)|| ||x||+ ||∆A|| ||A+|| ||x||+ ||A+|| ||∆b||
+O

(
||∆A||2 + ||∆A|| ||∆b||

)
.

Now we divide by ||x|| and use the estimate ||x|| ≥ ||A||−1||b|| to obtain the
assertion.

We may now refer to standard results on the roundoff errors (backward
error analysis in the sense of Wilkinson) of decomposition methods and con-
clude: if we use a QR factorization method such as the one described in the
previous section, then we can expect a relative roundoff error in the Newton
step w = u −H ′(u)+H(u) of the order of magnitude cond

(
H ′(u)

)
ε where ε

represents the relative machine error.
Let us now give an analogous error estimate discussion for the calculation

of the tangent vector.

(4.3.5) Lemma. Let A be an N × (N + 1)-matrix with maximal rank N ,
and let t := t(A) be the induced tangent. If ∆A is an N × (N + 1)-matrix
with sufficiently small norm, then the following estimate holds:

t(A+ ∆A) = t(A)−A+(∆A) t(A) +O
(
||∆A||2

)
.

Proof. We make the ansatz t(A + ∆A) = ρ
(
t(A) − A+y

)
. Since A+ is a

bijection from RN onto {t(A)}⊥, the equation has a unique solution y ∈ RN

and 0 < ρ ≤ 1. By the definition of the induced tangent, y must satisfy
the equation (A + ∆A)

(
t(A) − A+y

)
= 0 which implies

(
Id + (∆A)A+

)
y =

(∆A)t(A). Hence y = (∆A)t(A)+O
(
||∆A||2

)
. From the orthogonality t(A) ⊥

A+y, we obtain ρ−2 = 1 + ||A+y||2 = 1 + O
(
||∆A||2

)
and hence ρ = 1 +

O
(
||∆A||2

)
. The assertion now follows from the above estimates for y and ρ.

(4.3.6) Lemma. Let A be an N × (N + 1)-matrix with maximal rank N ,
and let ∆A be an N × (N + 1)-matrix with sufficiently small norm. Then the
following estimate holds for the relative error of the induced tangent vectors:

||t(A+ ∆A)− t(A)||
||t(A)|| ≤ cond(A)

||∆A||
||A|| +O

(
||∆A||2

)
.

Proof. From the previous lemma we have t(A+∆A)−t(A) = −A+(∆A)t(A)+
O
(
||∆A||2

)
. Now by taking norms and regarding that ||t(A)|| = 1, the asser-

tion follows immediately.
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Analogously to the remark following lemma (4.3.4) we conclude: if we
use a QR factorization method such as the one described in the previous
section, then we can expect a relative roundoff error in the evaluation of the
tangent t

(
H ′(u)

)
of the order of magnitude cond

(
H ′(u)

)
ε where ε represents

the relative machine error.

4.4 Scaling of the Dependent Variables

In the numerical solution of systems of equations it is sometimes advisable
for reasons of stability, to perform a scaling of the dependent variables. Then
instead of solving H(u) = 0, one solves an equivalent system

H̃(u) = DH(u)

where D is a chosen N × N diagonal matrix with positive diagonal entries.
This scaling induces a row scaling of the corresponding Jacobian

H̃ ′(u) := DH ′(u).

The aim of the row scaling is to decrease cond
(
DH ′(u)

)
.

It turns out that the QR decomposition as described in the section 4.2,
is invariant under such scaling. Indeed, if H ′(u)Q = (R∗, 0) as in section
4.1, then also DH ′(u)Q = D(R∗, 0). We note that in performing the QR
decomposition by e.g. Givens rotations as described in section 4.2, only el-
ements of the same row are compared and transformed. Thus the relative
precision with which Q and D(R∗, 0) are calculated, is actually independent
of the choice of D. Furthermore, the Newton steps are easily seen to sat-
isfy w = u − H̃ ′(u)+H̃(u) = u −H ′(u)+H(u) and hence are invariant under
such scalings. The above remarks serve to show that also from the point of
view of stability with respect to roundoff errors, there is no advantage to be
gained from different choices of scalings. Consequently, if we employ a QR
decomposition of H ′(u)∗ as described in section 4.2, then for numerical sta-
bility considerations we can conclude that the tracing of a curve in H−1(0) is
automatically performed with a scaling which is optimal with respect to

(4.4.1) inf
D

cond
(
DH ′(u)

)
.

Stated in other terms, this means that if the QR implementation for pre-
dictor and corrector steps is used, then scaling of the dependent variables is
unnecessary. Of course, when a curve in H−1(0) is being traversed, it may be
advisable to monitor the condition number, and to do this with a minimum of
computational cost. There are some reasonably fast and efficient algorithms
for estimating the condition of a triangular matrix. Since it is not our main
concern to estimate the condition very exactly, but merely to detect places
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on H−1(0) where bad conditioning occurs, we suggest using the following
measure if a QR decomposition in the above sense is used:

Let us first note that cond
(
DH ′(u)

)
= cond(DR∗), since cond(Q) = 1.

If we set D[i, i] := R[i, i]−1 for i = 1, . . . , N , then the diagonal elements of
DR∗ are all unity. If for all off-diagonal elements of DR∗ the absolute value
can be estimated by O(1), then we do not expect bad conditioning.

4.5 Using LU Decompositions

We conclude this chapter with a brief discussion of the analogous steps which
must be made when LU decompositions of the Jacobians are made instead
of the steps described in section 4.1 for QR decompositions. See also a more
recent forward error analysis given by Stummel & Hainer (1982, chapter 6)
for this case. Let us again assume that A is an N × (N + 1)-matrix with
maximal rank N . We consider a decomposition of the form

(4.5.1) PA∗ = L

(
U
0∗

)
,

where L is a lower triangular (N + 1) × (N + 1)-matrix, U is an N × N
upper triangular matrix, and P an (N + 1) × (N + 1) permutation matrix
corresponding to partial pivoting which is in general necessary to improve the
numerical stability.

Let us first consider the calculation of the tangent vector t(A). From
(4.5.1) it follows that

(4.5.2) A = (U∗, 0)L∗P.

Hence, if we set
y := P ∗(L∗)−1eN+1

then it is readily seen from (4.5.2) that Ay = 0. Of course y 6= 0, and can be
calculated by one backsolving and a permutation of its co-ordinates. Hence
t(A) = ±y/||y||, where the sign is determined by evaluating the sign of the
determinant of

(A∗, y) =
(
P ∗L

(
U
0∗

)
, P ∗(L∗)−1eN+1

)
= P ∗L

((
U
0∗

)
, L−1(L∗)−1eN+1

)
.

Since L−1(L∗)−1 is positive definite, the last entry of L−1(L∗)−1eN+1 must
be positive, and hence

(4.5.3) sign det(A∗, y) = sign det(P ) det(L) det(U).
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The right hand side is easily determined. Hence t(A) = ±y/||y|| according as
the above determinant is positive or negative.

Let us now turn to the problem of determining the Moore-Penrose inverse.
From (4.5.2) it follows that

B := P ∗(L∗)−1

(
(U∗)−1

0∗

)
is a right inverse of A, and hence A+ =

(
Id − t(A)t(A)∗

)
B by (3.2.5)(3).

Finally, let us note that a calculation of w = A+b amounts to essentially one
forward solving with U∗, one backsolving with L∗, and one scalar product for
the orthogonal projection with

(
Id− t(A)t(A)∗

)
.
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Chapter 5. Convergence of Euler-Newton-Like
Methods

In this chapter we analyze the convergence properties of an Euler-Newton
method under the simplifying assumption that a sufficiently small uniform
steplength is maintained.

5.1 An Approximate Euler-Newton Method

Let H : RN+1 → RN be a smooth map having zero as a regular value and
let H(u0) = 0. An Euler-Newton method for numerically tracing the path c
given by the defining initial value problem (2.1.9) was outlined in (3.3.7).

Often it may be preferred to save computational effort in the corrector
process by replacing the current Jacobian matrix H ′(v) or H ′(w) by an ap-
proximation, say A. First of all, because of rounding errors, we cannot in
general expect to represent H ′(v) precisely. Furthermore, we may not even
want to calculate H ′(v) at all, but we may rather prefer to approximate H ′(v)
by e.g. a difference approximation, or updating method. For this reason, we
incorporate into our illustration algorithm (5.1.1) below an approximation A
to H ′(u) satisfying ||H ′(v) − A|| ≤ ch, for a step length h > 0. In addition
to this, for reasons of numerical stability, we also find it occasionally desir-
able to incorporate a perturbation of the equation H(u) = 0, so that actually
H(u) = p is solved for some p ∈ RN such that ||p|| is small. The following
illustration algorithm is stated in an artificial form since it is meant to show
that an Euler-Newton PC method will succeed in tracing the curve c if the
uniform step size h > 0 is sufficiently small.
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(5.1.1) Illustration Algorithm. comment:

input
begin
u0 ∈ RN+1 such that H(u0) = 0; initial point

h > 0; fixed steplength

C > 0; ε > 0; constants for characterizing the approximations below

end;
u := u0; print u; points generated along H−1(0)
repeat

choose any N × (N + 1)-matrix A such that
||H ′(u)−A|| ≤ Ch and rank(A) = N ; approximate Jacobian

v := u+ ht(A); predictor step

choose any p ∈ RN such that ||p|| ≤ εh2; perturbation

w := v −A+
(
H(v)− p

)
; corrector step

u := w; print u; points generated along H−1(0)
until traversing is stopped.

5.2 A Convergence Theorem for PC Methods

The following theorem shows that a PC-method indeed approximates a solu-
tion curve if the steplength h is sufficiently small. For simplicity, we consider
the situation of algorithm (5.1.1). Analogous proofs can be given for other
versions of PC algorithms. We shall only sketch the proof by giving the main
arguments and omitting tedious technical details.

(5.2.1) Theorem. Let H : RN+1 → RN be a smooth map having zero as a
regular value and let H(u0) = 0. Denote by ch(s) the polygonal path, starting
at u0, going through all points u generated by the algorithm (5.1.1). Denote
by c(s) the corresponding curve in H−1(0) given by the defining initial value
problem (2.1.9). For definiteness, we assume that ch(0) = c(0) = u0, and
that both curves are parametrized with respect to arclength. Then, for a
given maximal arclength s0 > 0, and for given constants C, ε > 0 as in the
algorithm, there exist constants C0, γ > 0 and a maximal steplength h0 > 0
such that

(1) ||H(u)|| ≤ 2εh2 for all nodes u of ch,

(2) ||H
(
ch(s)

)
|| ≤

(
3ε+ 1

2γ
)
h2 for 0 < h ≤ h0,

(3) ||ch(s)− c(s)|| ≤ C0h
2 for 0 < h ≤ h0

holds for all s ∈ [0, s0].
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The last statement means that the arclength of the solution curve is approx-
imated by the polygonal path with order O(h2).

Proof. We only give a sketch of the proof. Let U be a compact neighborhood
of c[0, s0] which consists only of regular points of H. Adopting the notation
of (3.4.2), we define the following constants for U :

(5.2.2)

α := max{||H ′(v)||
∣∣ v ∈ U};

β := max{||H ′(v)+||
∣∣ v ∈ U};

γ := max{||H ′′(v)||
∣∣ v ∈ U}.

From the estimates below it is evident that the algorithm (5.1.1) generates
only predictor and corrector points in U for sufficiently small steplength h
and so long as the maximal arclength s0 is not exceeded.

The proof for assertion (1) proceeds by induction. Let us assume that
the estimate (1) is true for a current corrector point u. The next predictor
and corrector points are respectively

v = u+ ht(A) and w = v −A+
(
H(v)− p

)
.

We need to show that w also satisfies the estimate (1). Defining the constant
bilinear form M1 by the mean value

M1 :=
∫ 1

0

H ′′
(
u+ ξht(A)

)
2(1− ξ)dξ,

Taylor’s formula expanded about u takes the form

H(v) = H(u) + hH ′(u)t(A) +
h2

2
M1

[
t(A), t(A)

]
.

Now from
H ′(u)t(A) =

(
H ′(u)−A

)
t(A),

(5.2.2) and the induction hypothesis we obtain the estimate

(5.2.3) ||H(v)|| ≤ εh2 + Ch2 +
γ

2
h2.

Defining the mean value

M2 :=
∫ 1

0

H ′′
(
v + ξ(w − v)

)
2(1− ξ)dξ,
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Taylor’s formula expanded about v takes the form

H(w) = H(v) +H ′(v)(w − v) +
1
2
M2[w − v, w − v]

= H(v) +A(w − v) +
(
H ′(v)−A

)
(w − v) +

1
2
M2[w − v, w − v]

= p+
(
H ′(v)−A

)
(w − v) +

1
2
M2[w − v, w − v].

Taking into account the estimates

(5.2.4)



||p|| ≤ εh2;
||H ′(v)−A|| ≤ ||H ′(v)−H ′(u)||+ ||H ′(u)−A||

≤ (γ + C)h;

||A+|| ≤ ||H ′(v)+||
1− ||H ′(v)−A|| ||H ′(v)+||

≤ β

1− (C + γ)βh
; cf. lemma (5.2.8) below

||w − v|| ≤ ||A+||
(
||H(v)||+ ||p||

)
≤ ||A+||

(
1 + C +

γ

2
+ 2ε

)
h2; cf. (5.2.3)

||M2[w − v, w − v]|| ≤ γ||w − v||2;

we obtain constants C1 and C2 such that

||H(w)|| ≤ εh2 + C1h
3 + C2h

4 ≤ 2εh2

for h sufficiently small. This completes the inductive step for proving assertion
(1).

To prove assertion (2), we use the Taylor formulae

H(u) = H(uτ ) +H ′(uτ )(u− uτ ) +
1
2
A1[u− uτ , u− uτ ],

H(w) = H(uτ ) +H ′(uτ )(w − uτ ) +
1
2
A2[w − uτ , w − uτ ],

where uτ := τu+ (1− τ)w for 0 ≤ τ ≤ 1, and A1, A2 are the mean values∫ 1

0

H ′′
(
uτ + ξ(u− uτ )

)
2(1− ξ)dξ and

∫ 1

0

H ′′
(
uτ + ξ(w − uτ )

)
2(1− ξ)dξ

of H ′′ on the segments [u, uτ ] and [w, uτ ] respectively. Multiplying the first
equation by τ and the second by 1− τ , summing and taking norms yields the



O(h  )2

h(1+O(h  ))2

c(s  )1
c(s  )2

u
w

O(h  )2
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estimate

||τH(u) + (1− τ)H(w)−H
(
τu+ (1− τ)w

)
||

≤ 1
2

∥∥τA1[u− uτ , u− uτ ] + (1− τ)A2[w − uτ , w − uτ ]
∥∥

≤ 1
2
γ(h2 + 4ε2h4).

The last inequality follows from (5.2.2), assertion (1) and the Pythagoras
formula. Assertion (2) now follows from the above estimate for sufficiently
small h. This part of the proof is analogous to a more general result in (15.5.2).

To prove assertion (3), let u be a point which the algorithm (5.1.1) has
generated. Consider the respective predictor and corrector points

v = u+ ht(A), w = v −A+
(
H(v)− p

)
.

Since v − w is orthogonal to t(A), we have ||w − u||2 = ||w − v||2 + h2, and
from the estimates (5.2.4) we obtain

(5.2.5) ||w − u|| = h
(
1 +O(h2)

)
,

see figure 5.2.a. The quantity ||w−u|| represents the arclength of the polygonal
path ch between two nodes u and w.

Figure 5.2.a Diagram for the estimates

In theorem (3.4.1) we considered the map u 7→ S(u) where S(u) solves
the problem

min
x
{ ||u− x||

∣∣ H(x) = 0}

for u sufficiently near H−1(0). Hence, by assertion (1), the points

c(s1) := S(u) and c(s2) := S(w)

are well defined for h > 0 sufficiently small, and we obtain the estimates

(5.2.6) ||c(s1)− u|| = O(h2) and ||c(s2)− w|| = O(h2).
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Furthermore, the Lagrange equations (3.3.2) show that(
u− c(s1)

)
⊥ ċ(s1) and

(
w − c(s2)

)
⊥ ċ(s2) .

Setting ∆s := s2 − s1, and using the fact that ||ċ(s)||2 ≡ 1 implies
ċ(s) ⊥ c̈(s), Taylor’s formula yields

||c(s2)− c(s1)||2 =
∥∥∥∥∫ 1

0

ċ(s1 + ξ∆s)dξ
∥∥∥∥2

= ||ċ(s1)∆s+
1
2
c̈(s1)(∆s)2 +O

(
(∆s)3

)
||2

= (∆s)2 +O
(
(∆s)4

)
and consequently

(5.2.7) ||c(s2)− c(s1)|| = ∆s
(

1 +O
(
(∆s)2

))
.

Let us observe that the above relations immediately lead to the coarse esti-
mates

h = ∆s+O
(
(∆s)2

)
= ∆s+O(h2).

Thus it is justified to replace O(h) by O(∆s) etc. in the estimates below.
From the orthogonality relation

(
w − c(s2)

)
⊥ ċ(s2) and Taylor’s formula

we obtain(
w − c(s2)

)∗(
c(s2)− c(s1)

)
=
(
w − c(s2)

)∗(
ċ(s2)∆s+O

(
(∆s)2

))
= O

(
h2
)
O
(
(∆s)2

)
.

Similarly, (
u− c(s1)

)∗(
c(s2)− c(s1)

)
= O

(
h2
)
O
(
(∆s)2

)
.

From these estimates we obtain

||w − u||2 = ||
(
w − c(s2)

)
+
(
c(s2)− c(s1)

)
+
(
c(s1)− u

)
||2

= ||c(s2)− c(s1)||2 +O(h4).

Taking square roots and using (5.2.7) yields

||w − u|| = ||c(s2)− c(s1)||+ 1
2

O
(
h4
)

||c(s2)− c(s1)||
= ∆s

(
1 +O

(
(∆s)2

))
+O

(
h3
)

= ∆s+O
(
h3
)
.

Summing up all arclengths between the nodes of ch and using assertion (1)
yields assertion (3).
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The above proof made use of the following

(5.2.8) Lemma. Let B, E be N×(N+1)-matrices such that B has maximal
rank and ||B+|| ||E|| < 1. Then B − E has maximal rank, and

||(B − E)+|| ≤ ||B+||
1− ||B+|| ||E|| .

Proof. By the hypothesis, the Neumann series

C :=
∞∑
i=0

B+
(
EB+

)i
is well defined and generates a right inverse C of B − E. Furthermore,

||C|| ≤ ||B+||
1− ||B+|| ||E|| .

Let t := t(B − E) denote the induced tangent. From (3.2.5)(3) we have
(B − E)+ = (Id− tt∗)C, and since ||(Id− tt∗)|| = 1, the assertion follows.
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Chapter 6. Steplength Adaptations for the
Predictor

The convergence considerations of section 5.2 were carried out under the as-
sumption that the steplength of the algorithm (5.1.1) was uniformly constant
throughout. This is of course not efficient for any practical implementa-
tion. The discussion in chapter 5 did not indicate any means of choosing
the steplength h > 0. To some extent of course, the steplength strategy
depends upon the accuracy with which it is desired to numerically trace a
solution curve. In any case, an efficient algorithm for this task needs to incor-
porate an automatic strategy for controlling the steplength. In this respect
the PC methods are similar to the methods for numerically integrating initial
value problems in ordinary differential equations. Indeed, one expedient way
of tracing an implicitly defined curve c is to merely use a numerical initial
value problem solver on the defining initial value problem (2.1.9). Although
such an approach has been successfully used by some authors to solve a large
variety of practical problems in science and engineering (for some examples,
see the bibliography), the general opinion is that it is preferable to exploit
the contractive properties of the zero set H−1(0) relative to such iterative
methods as those of Newton type.

In this chapter we shall outline in detail some possible steplength strate-
gies. One of them, based upon asymptotic estimates in the mentality of initial
value solvers, is due to Georg (1983). It is simple to implement and our ex-
perience with it has been successful. Another method, due to Den Heijer &
Rheinboldt (1981) is based upon an error model for the corrector iteration.
This error model is justified by considerations from the Newton-Kantorovitch
theory. Den Heijer & Rheinboldt report results of numerical experiments uti-
lizing the error model steplength strategy. An advantage of this method is
that it has a wider range of applicability. A third class of steplength strategies
can be obtained by adapting analogues of the variable order steplength strate-
gies used in multistep methods for initial value problems see e.g. Shampine
& Gordon (1975). The method proposed by Schwetlick & Cleve (1987) is
close in spirit to this approach. Finally, Kearfott (1989–90) proposes inter-
val arithmetic techniques to determine a first order predictor which stresses
secure path following. As usual, we assume throughout this chapter that
H : RN+1 → RN is a smooth map having zero as a regular value, and for
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some initial value u0 ∈ H−1(0), we consider the smooth curve c in H−1(0)
given by the defining initial value problem (2.1.9).

6.1 Steplength Adaptation by Asymptotic Expansion

The basic idea in this approach is to observe the performance of the corrector
procedure and then to adapt the steplength h > 0 accordingly. More precisely,
suppose that a point u ∈ H−1(0) has been obtained. Suppose further that a
steplength h > 0 is given. The Euler predictor point is v(h) = u+ht

(
H ′(u)

)
.

Then a Newton type iterative corrector process is performed to generate a
next point z(h) ∈ H−1(0).

The steplength strategies which we discuss in this section are based upon
a posteriori estimates of the performance of the corrector process in order
to answer the following question: Given the manner in which the correc-
tor process starting at v(h) performed, which steplength h̃ would have been
“best” for obtaining z(h̃) from u? This “ideal” steplength h̃ is determined via
asymptotic estimates, and it is then taken as the steplength for the next pre-
dictor step. This strategy depends primarily upon two factors: the particular
predictor-corrector method being utilized, and the criteria used in deciding
what performance is considered “best”.

Let us begin with a simple example in which we describe how the rate
of contraction of the Newton process can be used to govern the steplength of
the straightforward Euler-Newton method (3.3.7). If u and v(h) are given as
above, then the first corrector point is given by

w(h) := v(h)−H ′
(
v(h)

)+
H
(
v(h)

)
.

Let us call the quotient of the first two successive Newton steps

(6.1.1) κ(u, h) :=
||H ′

(
v(h)

)+
H
(
w(h)

)
||

||H ′
(
v(h)

)+
H
(
v(h)

)
||

the contraction rate of the corrector process. Since Newton’s method is
locally quadratically convergent, it is plain that κ(u, h) will decrease (and
hence Newton’s method will become faster) if h decreases and hence v(h) ap-
proaches H−1(0). The following lemma characterizes the asymptotic behavior
of κ(u, h) with respect to h.

(6.1.2) Lemma. Suppose that

H ′′(u)
[
t
(
H ′(u)

)
, t
(
H ′(u)

)]
6= 0

(i.e. c has non-zero curvature at u), then

(6.1.3) κ(u, h) = κ2(u)h2 +O(h3)
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for some constant κ2(u) ≥ 0 which is independent of h and depends smoothly
on u.

Proof. From Taylor’s formula we have

H
(
v(h)

)
= C1(u)h2 +O(h3),

where C1(u) : =
1
2
H ′′(u)

[
t
(
H ′(u)

)
, t
(
H ′(u)

)]
,

since H(u) = 0 and H ′(u)t
(
H ′(u)

)
= 0.

Because the map u→ H ′(u)+ is smooth, we have

H ′
(
v(h)

)+ = H ′(u)+ +O(h)

and hence
H ′
(
v(h)

)+
H
(
v(h)

)
= C2(u)h2 +O(h3),

where C2(u) : = H ′(u)+C1(u).

Now

H
(
w(h)

)
= H

(
v(h)

)
−H ′

(
v(h)

)
H ′
(
v(h)

)+
H
(
v(h)

)
+

1
2
H ′′
(
v(h)

)[
H ′
(
v(h)

)+
H
(
v(h)

)
, H ′

(
v(h)

)+
H
(
v(h)

)]
+O(h5)

= C3(u)h4 +O(h5),

where C3(u) : =
1
2
H ′′(u)

[
C2(u), C2(u)

]
.

Furthermore we have

H ′
(
v(h)

)+
H
(
w(h)

)
= C4(u)h4 +O(h5),

where C4(u) : = H ′(u)+C3(u).

Finally we obtain

κ(u, h) = κ2(u)h2 +O(h3),

where κ2(u) : =
||C4(u)||
||C2(u)|| .

Note that the hypothesis implies that C1(u) 6= 0 and hence C2(u) 6= 0. The
smoothness of κ2(u) follows from the smoothness of the vectors C2(u) and
C4(u).
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In view of the asymptotic relation (6.1.3) the steplength modification h→
h̃ is now easy to explain. Assume that an Euler-Newton step has been per-
formed with steplength h. Then H ′

(
v(h)

)+
H
(
v(h)

)
and H ′

(
v(h)

)+
H
(
w(h)

)
will have been calculated and thus κ(u, h) can be obtained without any sig-
nificant additional cost. Now an a-posteriori estimate

(6.1.4) κ2(u) =
κ(u, h)
h2

+O(h)

is available.
In order to have a robust and efficient PC method we want to continually

adapt the steplength h so that a nominal prescribed contraction rate κ̃ is
maintained. The choice of κ̃ will generally depend upon the nature of the
problem at hand, and on the desired security with which we want to traverse
H−1(0). That is, the smaller κ̃ is chosen, the greater will be the security with
which the PC method will follow the curve. Once κ̃ has been chosen, we will
consider a steplength h̃ to be adequate if κ(u, h̃) ≈ κ̃. By using (6.1.1) and
(6.1.4) and neglecting higher order terms we obtain the formula

(6.1.5) h̃ = h

√
κ̃

κ(u, h)

as the steplength for the next predictor step.
There are several factors which ought to be regarded in governing the

steplength. In addition to contraction, other important factors are:

• the first corrector steplength

(6.1.6) δ(u, h) := ||H ′
(
v(h)

)+
H
(
v(h)

)
||,

which approximates the distance to the curve;
• and the angle between two consecutive steps

(6.1.7) α(u, h) := arccos
(
t
(
H ′(u)

)∗
t
(
H ′(v(h))

))
,

which is a measure of the curvature.

The following lemma may be proven in a similar fashion to (6.1.2). The proof
is in fact simpler and will be omitted.

(6.1.8) Lemma. The following asymptotic expansions hold:

δ(u, h) = δ2(u)h2 +O(h3),

α(u, h) = α1(u)h+O(h2),
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where the asymptotic constants δ2(u) and α1(u) are independent of h and
depend smoothly on u.

By fixing a nominal distance δ̃ and a nominal angle α̃, we obtain further
steplength adaptations

(6.1.9) h̃ = h

√
δ̃

δ(u, h)
and h̃ = h

α̃

α(u, h)

where δ(u, h), α(u, h) respectively, are the distance and angle which have been
measured after performing the current Euler-Newton step.

In order to formulate a safeguarded curve tracing algorithm, we recom-
mend monitoring several factors such as those outlined above. Thus, at any
point several adequate steplengths h̃ are calculated and the smallest of these
possibilities is then chosen as the steplength for the next predictor step. The
following algorithm sketches how the above described steplength adaptations
can be incorporated into an Euler-Newton method such as (3.3.7).

(6.1.10) Steplength Adaptation
Via Asymptotic Estimates. comment:

input

begin

u ∈ RN+1 such that H(u) = 0; initial point

h > 0; initial steplength

κ̃; nominal contraction rate

δ̃; nominal distance to curve

α̃; nominal angle

end;

repeat

v := u+ ht
(
H ′(u)

)
; predictor step

calculate the quantities

α(u, h), δ(u, h), κ(u, h); cf. (6.1.7), (6.1.6), (6.1.1)

repeat

w := v −H ′(v)+H(v); corrector loop

v := w;

until convergence;

f := max


√
κ(u, h)
κ̃

,

√
δ(u, h)
δ̃

,
α(u, h)
α̃

; cf. (6.1.5), (6.1.9)
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f := max{min{f, 2}, 1
2
}; deceleration factor f ∈ [

1
2
, 2]

h := h/f ; steplength adaptation using deceleration factor f

if f < 2 then u := w; new point along H−1(0) is accepted

until traversing is stopped.

The evaluation of δ(u, h) and κ(u, h) is available at essentially no additional
cost after performing the first and second steps respectively in the corrector
loop. If f = 2 i.e. if the observed quantities α(u, h), δ(u, h) or κ(u, h) exceed
a certain tolerance above the nominal values, the predictor step is repeated
with a reduced steplength. The test for f = 2 should actually be performed
within the corrector loop in order to avoid unnecessary corrector steps which
would in any event be discarded later.

We emphasize that the steplength adaptation described above make use
of the existence of an underlying asymptotic expansion such as (6.1.3) and
(6.1.8). Such asymptotic expansions vary according to the ingredients of the
particular predictor-corrector process. Let us illustrate this with an example:
If we change the corrector loop in (3.3.7) to the cord iteration

w := v −H ′(u)+H(v)

then the analogue of formula (6.1.1) would be

κ(u, h) =
||H ′(u)+H

(
w(h)

)
||

||H ′(u)+H
(
v(h)

)
||

where w(h) := v(h) −H ′(u)+H
(
v(h)

)
. It is easy to see that the asymptotic

expansion analogous to (6.1.3) would be

κ(u, h) = κ1h+O(h2)

and the analogue of the steplength adaptation (6.1.5) would be

h̃ = h
κ̃

κ(u, h)
.
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6.2 The Steplength Adaptation of Den Heijer & Rheinboldt

The steplength adaptation in section 6.1 was based on the consideration of
asymptotic expansions. The reader familiar with steplength adaptation in
numerical integration of initial value problems will have perceived that this
philosophy of steplength adaptation proceeds along similar lines. A totally
different approach has been given by Den Heijer & Rheinboldt (1981). Their
approach is based on an error model for the corrector iteration, and they con-
trol the steplength by the number of steps which are taken in the corrector
iteration until a given stopping criterion is fulfilled. This approach is a useful
alternative to the previous steplength adaptation whenever the corrector steps
may be viewed as an iterative process in which some variable number of iter-
ations may be performed at each point along the curve. Let us also note that
for this approach, it is not necessary to assume that an asymptotic expansion
holds as was done in section 6.1. We shall sketch a somewhat modified and
simplified version of the Den Heijer & Rheinboldt steplength strategy. The
modification also reflects that we view a corrector step as always being or-
thogonal to the current tangent. We begin with a description of a general PC
method in which the modified Den Heijer & Rheinboldt steplength strategy
may be used.

For a predictor point v near H−1(0), let T (v) be one step of an iterative
process for determining an approximation of the nearest point to v on H−1(0).
Then the steplength strategy is guided by the observed performance of the
corrector iterates v, T (v), T 2(v), . . . The following algorithm illustrates the
basic steps of a PC method involving the adaptation of the steplength via
an error model. The precise determination of the deceleration factor f is the
main content of the remainder of this section.

(6.2.1) Steplength Adaptation Via Error Models. comment:

input

begin

k̃ ∈ N; desired number of corrector iterations

u ∈ RN+1 such that H(u) = 0; initial point

h > 0; initial steplength

end;

repeat

v0 := u+ ht
(
H ′(u)

)
; predictor step

repeat for k = 0, 1, 2, . . .

vk+1 := T (vk); corrector loop

until convergence;
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if the corrector loop was successful then

begin

determine f
as a function of k, k̃, v0, v1, . . . , vk; see discussion below

f := max{min{f, 2}, 1
2}; deceleration factor f ∈ [ 1

2 , 2]
h := h/f ; steplength adaptation using deceleration factor f

u := vk; new point along H−1(0)
end

else h :=
h

2
; repeat predictor with reduced h

until traversing is stopped.

Since in the discussion to follow, the dependence of the various points upon
the steplength h will be of importance, let us denote the predictor point from
the current point u ∈ H−1(0) by

v0(h) = u+ ht
(
H ′(u)

)
and the subsequent corrector steps by

(6.2.2) vi+1(h) = T
(
vi(h)

)
.

Let us further suppose that for h > 0 sufficiently small, the following limit
exists and

v∞(h) := lim
i→∞

vi(h) ∈ H−1(0).

We make the following assumption concerning the iteration process T : the
angle between v0(h)− v∞(h) and t

(
H ′(u)

)
is π/2 +O(h). In other words, we

assume that the iterative corrector method T operates essentially orthogonally
to the curve c initiating at u i.e. given by the defining initial value problem

ċ = t
(
H ′(c)

)
,

c(0) = u.

It is immediately seen that also the angle between v0(h)− c(h) and t
(
H ′(u)

)
is π/2 +O(h). From this it can easily be seen that ||c(h)− v∞(h)|| = O(h3).
Since Taylor’s formula implies c(h)−v0(h) = 1

2 c̈(0)h2 +O(h3), we finally have

(6.2.3) ||v∞(h)− v0(h)|| = 1
2
||c̈(0)||h2 +O(h3).

A crucial assumption in the steplength strategy of Den Heijer & Rhein-
boldt is that an error model is available for the iterative corrector process
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(6.2.2). This means that it is assumed there exists a constant γ > 0 (which
is independent of h) such that for the modified error

(6.2.4) εi(h) := γ||v∞(h)− vi(h)||

inequalities of the following type

(6.2.5) εi+1(h) ≤ ψ
(
εi(h)

)
hold, where ψ : R→ R is a known monotone function such that ψ(0) = 0. Of
course, the error model function ψ will depend in an essential way upon
the special form of the iterative process T .

For example, when T is the unmodified Newton’s method

T (vi) = vi −H ′(vi)+H(vi),

Den Heijer & Rheinboldt suggest two models which are derived by estimates
arising from the Newton-Kantorovitch theory:

ψ(ε) =
ε2

3− 2ε
, 0 ≤ ε ≤ 1,

ψ(ε) =
ε+
√

10− ε2

5− ε2
ε2, 0 ≤ ε ≤ 1.

The idea behind such models is that more realistic error models for a particular
corrector process T lead to more realistic steplength strategies.

Suppose that for a given steplength h, a predictor step and a subsequent
iterative corrector procedure (6.2.2) stopped after k iterations yielding the
point vk(h) ≈ v∞(h). That is, we assume that a certain stopping criterion
used in Algorithm (6.2.1) is fulfilled for the first time after k > 1 iterations.
The particular form of the stopping criterion plays no role in the discussion
to follow. We may a posteriori evaluate the quotient

ω(h) :=
||vk(h)− vk−1(h)||
||vk(h)− v0(h)|| ≈

||v∞(h)− vk−1(h)||
||v∞(h)− v0(h)|| =

εk−1(h)
ε0(h)

.

Using the estimate εk−1(h) ≤ ψk−1
(
ε0(h)

)
, we obtain

ω(h) ≤ ψk−1
(
ε0(h)

)
ε0(h)

.

This motivates taking the solution ε of the equation

(6.2.6) ω(h) =
ψk−1(ε)

ε
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as an estimate for ε0(h).
Similarly to the strategy of the previous section, we now try to choose

the steplength h̃ so that the corrector process satisfies the stopping criterion
after a chosen number k̃ of iterations. Such a steplength leads to the modified
error ε0(h̃). Now we want the modified error εk̃(h̃) after k̃ iterations to be
so small that the stopping criterion is satisfied. Using the inequality εk̃(h̃) ≤
ψk̃
(
ε0(h̃)

)
, we accept the solution ε of the equation

(6.2.7) ψk̃(ε) = ψk
(
ε0(h)

)
as an estimate for ε0(h̃). Now we use the asymptotic expansion (6.2.3) to
obtain the approximation

(6.2.8) f2 =
(
h

h̃

)2

≈ ε0(h)
ε0(h̃)

which we use to determine f and in turn h̃.
We summarize the above discussion by indicating how the line

“determine f as a function of k, k̃, v0, v1, . . . , vk”

in Algorithm (6.2.1) can be specified:

(6.2.9)



ω :=
||vk − vk−1||
||vk − v0||

;

determine ε so that
ψk−1(ε)

ε
= ω;

determine ε̃ so that ψk̃(ε̃) = ψk(ε);

f :=
√
ε

ε̃
;

As an example of the above, let us consider a simple model of superlinear
convergence:

(6.2.10) ψ(ε) = εp, where p > 1.

Then (6.2.9) assumes the form

(6.2.11)



ω :=
||vk − vk−1||
||vk − v0||

;

ε = ω
1

pk−1−1 ;

ε̃ = εp
k−k̃

;

f := ω
1−pk−k̃

2(pk−1−1) ;
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An interesting case to consider in (6.2.11) is the limit p → 1, since this
may be viewed as the value for f in the case of a linear error model. By
l’Hopital’s rule

(6.2.12) lim
p→1

f = ω
k̃−k

2(k−1) .

On the other hand, we can also consider a linear model directly:

(6.2.13) εi+1(h) ≤ λεi(h)

for some λ ∈ (0, 1). A discussion similar to that above gives estimates:

ω ≈ εk−1(h)
ε0(h)

≈ λk−1ε0(h)
ε0(h)

implying λ ≈ ω 1
k−1 .

Now (6.2.7) assumes the form

λk̃ε0(h̃) ≈ λkε0(h),

implying

(6.2.14) f2 =
(
h

h̃

)2

≈ ε0(h)
ε0(h̃)

≈ λk̃−k ≈ ω
k̃−k
k−1

which again yields (6.2.12).
In practical cases, very often the contraction rate λ of the linear conver-

gence model (6.2.13) will also depend on the steplength h. For example, the
two chord methods

vi+1(h) = T
(
vi(h)

)
= vi(h)−H ′(u)+H

(
vi(h)

)
,

vi+1(h) = T
(
vi(h)

)
= vi(h)−H ′

(
v0(h)

)+
H
(
vi(h)

)
,

could be described by the error model

(6.2.15) εi+1(h) ≤ λhqεi(h)

with q = 1 and q = 2 respectively. If we use this error model in the context
of the above discussion, we obtain the following estimates:

ω ≈ εk−1(h)
ε0(h)

≈
(
λhq

)k−1
ε0(h)

ε0(h)
implies λhq ≈ ω 1

k−1 .

Now (6.2.7) assumes the form(
λh̃q

)k̃
ε0(h̃) ≈

(
λhq

)k
ε0(h).

Substituting

λ ≈ ω
1
k−1

hq
,

(
h

h̃

)2

≈ ε0(h)
ε0(h̃)

, f =
h

h̃

into the previous relation yields

(6.2.16) f2+qk̃ ≈ ω
k̃−k
k−1

from which the deceleration factor f is determined. Note that (6.2.14) and
(6.2.16) agree if q = 0.
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6.3 Steplength Strategies Involving Variable Order Predictors

In the previous sections the steplength strategies were based upon the Eu-
ler predictor, which is only of order one. This crude predictor is very often
satisfactory since it is usually used in conjunction with very strongly contract-
ing correctors such as Newton type correctors. Nevertheless, one may expect
to obtain improved efficiency in traversing by using variable order predictors
and formulating corresponding steplength strategies. The strategy which we
present here is motivated by similar strategies used in the numerical solu-
tion of initial value problems, see e.g. Shampine & Gordon (1975). Recently
Lundberg & Poore (1989) have made an implementation of such an approach.
Their numerical results show that there is often a definite benefit to be de-
rived by using higher order predictors. The main difference from the approach
given here is that they make crucial use of an accurate approximation of the
arc length as opposed to our approach using local parametrizations.

The high order predictors considered by us and also by Lundberg &
Poore (1989) are based on polynomial interpolation. In view of the stability
of Newton’s method as a corrector, it may be advantageous to use more
stable predictors. Mackens (1989) has proposed such predictors which are
based on Taylor’s formula and which are obtained by successive numerical
differentiation in a clever way. However, the gain in stability has to be paid
for by additional evaluations of the map H and additional applications of the
Moore-Penrose inverse of the Jacobian H ′ (where it may be assumed that H ′

has already been decomposed). It would be interesting to compare these two
essentially different predicting methods numerically.

The strategy presented here is based upon the requirement that we wish
to generate predictor points v such that dist

(
v,H−1(0)

)
≤ εtol for a steplength

h which is as large as possible. Here our tolerance εtol should be sufficiently
small so that the corrector procedure converges reasonably well. In many
cases, a user may have difficulty forcasting a suitable tolerance a priori. On
the other hand, there is no need for this tolerance to be fixed throughout the
continuation process. We will show at the end of this section how the ideas
of the previous section can be used for adapting εtol.

Let us begin the discussion by considering a typical situation in which the
points u0, u1, . . ., un along the solution curve c in H−1(0) have already been
generated. In certain versions of the continuation method, also the tangents
t0 := t

(
H ′(u0)

)
, . . ., tn := t

(
H ′(un)

)
are evaluated. The idea is to use an

interpolating polynomial Pq of degree q with coefficients in RN+1 in order to
obtain a predictor point Pq(h) from the current point un which satisfies the
above tolerance requirement. The expectation is that by increasing the order
q a larger steplength h will be permitted. On the other hand, due to the
instability of polynomial extrapolation, there is clearly a limit for the order
q which can be permitted, and this limit may depend on the local properties
of the solution curve. The choice of the steplength and the order of the next
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predictor point Pq(h) will be based on the a priori estimates

(6.3.1) ||Pq+1(h)− Pq(h)|| ≈ dist
(
Pq(h), H−1(0)

)
.

In order to use the interpolating polynomial Pq, we need to express it
in terms of a suitable parameter ξ. Naturally, the arclength parameter s
which we always consider for theoretical discussions would be ideal to use,
see Lundberg & Poore (1989). However, for purposes of exposition, we shall
avoid the additional complexity of obtaining precise numerical approximations
of the arclength si such that c(si) = ui. We therefore propose to use a local
parametrization ξ induced by the current approximation t ≈ t

(
H ′(un)

)
, which

does not need to be very accurate. We assume however, that the normalization
||t|| = 1 holds. This local parametrization c(ξ) is defined as the locally unique
solution of the system

(6.3.2)
H(u) = 0,

t∗
(
un + ξt− u

)
= 0,

for ξ in some open interval containing zero. It follows immediately that

(6.3.3) c(ξi) = ui where ξi = t∗
(
ui − un).

Differentiating (6.3.2) with respect to ξ yields

(6.3.4)
dc(ξ)
dξ

=
ċ(s)
t∗ċ(s)

.

If the tangents ti at the points ui are available for use, we may form a Hermite
interpolating polynomial Pq. Otherwise, a standard interpolating polynomial
using Newton’s formula is generated. For details concerning interpolating
polynomials, we refer the reader to standard textbooks e.g. Stoer & Bulirsch
(1980).

(6.3.5) Interpolating Formulae.
The interpolating polynomial which does not use the tangents ti is given by
the Newton formula

Pn,q(h) = c[ξn] + c[ξn, ξn−1](h− ξn) + c[ξn, ξn−1, ξn−2](h− ξn)(h− ξn−1)

+ . . .+ c[ξn, . . . , ξn−q](h− ξn) · · · (h− ξn−q+1),

where the coefficients are the divided differences which are obtained from the
table:

ξn c[ξn]
ξn−1 c[ξn−1] c[ξn, ξn−1]
ξn−2 c[ξn−2] c[ξn−1, ξn−2] c[ξn, ξn−1, ξn−2]

...
...

...
...

. . .
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The interpolating polynomial which uses the tangents ti is given by the Her-
mite formula

Pn,2i+2(h) = c[ξn] + c[ξn, ξn](h− ξn) + c[ξn, ξn, ξn−1](h− ξn)2 + . . .

+ c[ξn, ξn, . . . , ξn−i, ξn−i, ξn−i−1](h− ξn)2 · · · (h− ξn−i)2,

Pn,2i+1(h) = c[ξn] + c[ξn, ξn](h− ξn) + c[ξn, ξn, ξn−1](h− ξn)2 + . . .

+ c[ξn, ξn, . . . , ξn−i, ξn−i](h− ξn)2 · · · (h− ξn−i−1)2(h− ξn−i),

where the divided differences are obtained from the table:

ξn c[ξn]
ξn c[ξn] c[ξn, ξn]
ξn−1 c[ξn−1] c[ξn, ξn−1] c[ξn, ξn, ξn−1]
ξn−1 c[ξn−1] c[ξn−1, ξn−1] c[ξn, ξn−1, ξn−1] c[ξn, ξn, ξn−1, ξn−1]

...
...

...
...

...
. . .

The entries of the tables are given by

ξi := t∗(ui − un)
c[ξ] := ui

c[ξi, ξi] =
dc(ξi)
dξ

:=
ti
t∗ti

c[ξi, . . . , ξj ] :=
c[ξi, . . . , ξj+1]− c[ξi−1, . . . , ξj ]

ξi − ξj
for i > j, ξi 6= ξj .

For simplicity, we will now confine the presentation of the steplength
strategy to the case of the Newton formula. The discussion for the Hermite
formula proceeds analogously. Motivated by the remarks leading to (6.3.1)
we take the term

(6.3.6) e(h, n, q) := ||c[ξn, . . . , ξn−q−1]||(h− ξn) · · · (h− ξn−q)

as an estimate for dist
(
Pn,q(h), H−1(0)

)
. The error term e(h, n, q) is a polyno-

mial of degree q+ 1 which is strictly increasing for h > 0. Since e(0, n, q) = 0,
the equation

(6.3.7) e(hn,q, n, q) = εtol

has exactly one solution hn,q > 0. This solution can be easily approximated
e.g. via the secant method using the starting points

h = 0 and h =

(
εtol

||c[ξn, . . . , ξn−q−1]||

) 1
q+1

.
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Due to instability of high order polynomial interpolation, the typical behavior
of the solutions (6.3.7) will be that

(6.3.8) hn,1 < hn,2 < · · · < hn,q ≥ hn,q+1

holds for some q ≥ 1. The basic idea of the present steplength and or-
der adaptation is to choose the order q and the steplength h̃ = hn,q in the
next predictor step according to (6.3.8). However, some stabilizing safeguards
should also be employed. We suggest a safeguard such as allowing at most a
doubling of the previous steplength h i.e.

(6.3.9) h̃ := min{2h, hn,q}.

Furthermore, to increase the stability of the predictors, we will in fact take
the lowest order i such that e(h̃, n, i) ≤ εtol. If a predictor-corrector step is
rejected, we repeat it with a reduced steplength h̃ := h/2. Again we will take
the lowest possible order as above.

Let us describe how, in analogy to the steplength adaptation of Den Heijer
& Rheinboldt of the previous section, the tolerance εtol may be adapted at
each step in order to obtain a desired uniform number k̃ of corrector iterates
during the traversing. Let us again adopt the notation of section 6.2. Upon
rereading the discussion leading to (6.2.9) it is clear that the ratio ε/ε̃ in (6.2.9)
estimates the ratio between an observed distance and a desired distance to
the solution curve. Consequently, we forecast the tolerance via the formula

(6.3.10) εtol := εtol

ε̃

ε
.

We finally summarize the discussion of this section in the following algorithm.
As in section 6.2, we assume that the iterative corrector procedure is given by
the corrector operator T , and that the function ψ describes an error model
for T .
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(6.3.11) Steplength and Order Adaptation
Via Interpolation. comment:

input
begin
k̃ ∈ N; desired number of corrector iterations

εtol; initial tolerance for predictor

qmax; maximal order for predictor

u0, u1 ∈ H−1(0); initial points

end;
h := ||u1 − u0||; initial steplength

for n = 1, 2, 3, . . . do begin of PC loop

begin

t :=
un − un−1

||un − un−1||
; approximate tangent

q := 1; initial order

if n = 1 then go to 1;
while q < qmax and q < n− 1 do

begin
if e(2h, n, q) < εtol then see (6.3.5) – (6.3.6)

begin h := 2h; go to 1; end;
solve e(hn,q, n, q) = εtol for hn,q;
if q > 1 and hn,q−1 ≥ hn,q then

begin q := q − 1; h := hn,q−1; go to 1; end;
q := q + 1;
end;

h := hn,q;
1: v0 := Pn,q(h); predictor step, see (6.3.5)

repeat for k := 0, 1, 2, . . .
vk+1 := T (vk); corrector loop

until convergence;
if the corrector loop was successful then

begin
if k = 1 then f := 1

2

else
begin

ω :=
||vk − vk−1||
||vk − v0||

;
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determine ε so that
ψk−1(ε)

ε
= ω;

determine ε̃ so that ψk̃(ε̃) = ψk(ε);

f :=
ε

ε̃
;

end;
f := max{min{f, 2}, 1

2}; factor f ∈ [ 1
2 , 2]

εtol :=
εtol

f
; adaptation of εtol

u := vk; new point along H−1(0)
end

else h :=
h

2
; repeat predictor with reduced h

end.
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Chapter 7. Predictor-Corrector Methods Using
Updating

In iterative methods for numerically finding zero-points of a smooth map
F : RN → RN it is often preferable to avoid the costly recalculation and
decomposition of the Jacobian F ′ at each iteration by using an approxima-
tion to F ′. This results in sacrificing quadratic convergence in exchange for
a superlinear convergence which is nearly as good, or a rather fast rate of
linear convergence. When N is of at least moderate size, or F ′ is otherwise
cumbersome to calculate, this trade-off is usually to be preferred. It is rea-
sonable to expect that the same situation should also hold in the corrector
step of the predictor-corrector methods for numerically tracing H−1(0) where
H : RN+1 → RN is a smooth map. Indeed, since the corrector process needs
to be performed essentially at every predicted point, the possibility of saving
computational effort in the corrector process becomes even more attractive
for the predictor-corrector curve tracing methods.

In this chapter we will describe how to incorporate an analogue of Broy-
den’s update method into a predictor-corrector algorithm. In preparation for
this, we shall first recall the Broyden update method for solving the zero-point
problem F (x) = 0, and examine some of its aspects. For a general reference
on update methods we suggest the book of Dennis & Schnabel (1983) or the
review article by Dennis & Moré (1977).

7.1 BroydenÕs ÒGood Ó Update Formula

Suppose that F : RN → RN is a smooth map and that F (x̄) = 0 with F ′(x̄)
having maximal rank N . It is well-known (also see section 3.3) that Newton’s
method

xn+1 = xn − F ′(xn)−1F (xn), n = 0, 1, . . .

is locally quadratically convergent i.e.

||xn+1 − x̄|| = O
(
||xn − x̄||2

)
for x0 sufficiently near x̄. Even when an adequate x0 has been chosen, there
remains the drawback that after every iteration the Jacobian matrix F ′(xn)
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needs to be calculated and a new matrix decomposition has to be obtained in
order to solve the linear system

F ′(xn)sn = −F (xn)

for sn = xn+1 − xn. On the other hand, if an approximate Jacobian is
held fixed, say for example A := F ′(x0), a familiar Newton-Chord method is
obtained:

xn+1 = xn −A−1F (xn).

This method offers the advantage that A stays fixed. Thus, once the matrix
decomposition for A has been obtained, further iterations may be cheaply
carried out. The drawback of the Newton-Chord method is that the local
convergence is only linear. That is,

||xn+1 − x̄|| ≤ κ||xn − x̄|| for some κ ∈ (0, 1)

when x0 is sufficiently near x̄ and A is sufficiently near F ′(x̄). If A = F ′(x0)
is taken, it is easy to show that κ = O

(
||x̄− x0||

)
. Thus the contraction rate

κ will become much better when x0 is chosen near the solution point x̄.
The method of Broyden (1965) involves the use of previously calculated

data to iteratively improve the quality of the approximation A ≈ F ′(xn)
via successive rank-one updates. A more general class of update methods
usually called Quasi-Newton methods, have since been developed, which take
into account possible special structure of the Jacobian F ′ such as positive
definiteness, symmetry or sparseness. For surveys of these methods we refer
the reader to the above mentioned literature. It is possible to prove local
superlinear convergence of a large class of these methods under the standard
hypotheses for Newton’s method, see Dennis & Walker (1981).

For general purpose updates, i.e. when no special structure is present, the
consensus of opinion appears to be that the so-called “good formula” of Broy-
den remains the favorite rank-one update available. For this reason we will
confine our discussion of update methods for curve-following to an analogue
of Broyden’s “good formula”. Similar but more complicated extensions of the
discussion below can be given for the case that special structure is present,
see also Bourji & Walker (1987), Walker (1990).

Let us motivate our discussion by reviewing the Broyden update formula
for solving F (x) = 0 via a Newton-type method where F : RN → RN is a
smooth map. From Taylor’s formula, we have

(7.1.1) F ′(xn)(xn+1 − xn) = F (xn+1)− F (xn) +O
(
||xn+1 − xn||2

)
.

By neglecting the higher order term in (7.1.1), and setting

(7.1.2) sn := xn+1 − xn, yn := F (xn+1)− F (xn),
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we obtain the secant equation

(7.1.3) Asn = yn ,

which should be satisfied (at least to first order) by an approximate Jacobian
A ≈ F ′(xn).

When Newton-type steps

(7.1.4) xn+1 = xn −A−1
n F (xn)

are performed using some approximate Jacobian An ≈ F ′(xn), it is natural
to require that the next approximate Jacobian An+1 should satisfy the secant
equation

(7.1.5) An+1sn = yn ,

since the data sn and yn are already available. Clearly, the equation (7.1.5)
does not uniquely determine An+1, since it involves N equations in N2 un-
knowns. An additional natural consideration is that if An was a “good”
approximation to F ′(xn), then this quality ought to be incorporated in for-
mulating subsequent approximations. This leads to the idea of obtaining An+1

from An by the least change principle i.e. among all matrices A satisfying
the secant equation, we choose the one with the smallest “distance” from An.
Thus we are led to the following

(7.1.6) Definition of Broyden’s “good update formula”. We define
the updated approximate Jacobian An+1 as the solution of the problem

min
A
{||A−An||F

∣∣∣ Asn = yn}.

The norm || · ||F is the Frobenius norm:

||A||F =
( N∑

i,j=1

(
A[i, j]

)2) 1
2

.

This is a simple matrix norm which enables the minimization for (7.1.6) to be
done row-wise. A straightforward calculation (using orthogonal projections)
shows that the solution to (7.1.6) is given explicitly by

(7.1.7) An+1 = An +
yn −Ansn
||sn||2

s∗n ,

which is generally referred to as Broyden’s “good” update formula.
The following theorem shows the superlinear convergence of Broyden’s

modification of Newton’s method. Our proof will essentially follow that of
Dennis & Moré (1974). We give the following proof in some detail in order
to emphasize the fact that the superlinear convergence of Broyden’s method
is a surprising result, since ||An − F ′(xn)|| → 0 as n → ∞ need not neces-
sarily hold. Similarly, in the context of numerically following a curve H−1(0)
with the exclusive use of analogous Broyden updates, there is little hope for
maintaining a good approximation of the Jacobian H ′ without taking further
measures. We will discuss this point again in section 7.2.



      

64 7. Predictor-Corrector Methods Using Updating

(7.1.8) Theorem (Broyden). Let F : RN → RN be a smooth map and
let x̄ ∈ RN be a regular zero point of F . Suppose

xn+1 = xn −A−1
n F (xn)

is the Newton-type method where An is updated according to Broyden’s for-
mula (7.1.7). If x0 is sufficiently near x̄, and if A0 is sufficiently near F ′(x0),
then the sequence {xn} converges superlinearly to x̄ i.e.

||xn+1 − x̄||
||xn − x̄||

→ 0 as n→∞.

Proof. Let us begin with the obvious remark that if xn = xn+1 for some n,
then clearly xn = x̄ = xn+1, and hence the assertion concerning the order of
convergence is meaningless.Consequently, we assume hereafter

sn = xn+1 − xn 6= 0 for n = 0, 1, 2, . . .

Thus the Broyden update (7.1.7) is well defined for all n.
Let us adopt the following notation:

(7.1.9)



xk+1 := xk −A−1
k F (xk)

sk := xk+1 − xk
yk := F (xk+1)− F (xk)

Ak+1 := Ak +
(yk −Aksk)s∗k
||sk||2

A := F ′(x̄)
εk := xk − x̄
Ek := Ak −A

From (7.1.9) we have

(7.1.10)

Ek+1 = Ak+1 −A

= Ak −A+
(yk −Aksk)s∗k
||sk||2

= Ak −A+
(A−Ak)sks

∗
k

||sk||2
+

(yk −Ask)s∗k
||sk||2

= Ek

(
I − sks

∗
k

||sk||2
)

+
(yk −Ask)s∗k
||sk||2

Furthermore, from (7.1.9) and the mean value theorem we obtain

(7.1.11)

yk −Ask = F (xk+1)− F (xk)− F ′(x̄)(xk+1 − xk)

=
∫ 1

0

[
F ′(xk + ξsk)− F ′(x̄)

]
skdξ

= O
(
||εk||+ ||εk+1||

)
sk .



     

7.1 Broyden’s “Good ” Update Formula 65

The last equation follows from the smoothness of F ′ and the inequality

(7.1.12) ||xk + ξsk − x̄|| ≤ ||εk||+ ||εk+1|| for ξ ∈ [0, 1],

which is easy to establish. From (7.1.10) and (7.1.11), we have

(7.1.13) Ek+1 = Ek

(
I − sks

∗
k

||sk||2
)

+O
(
||εk||+ ||εk+1||

)
.

Our next step is to prove the following

(7.1.14) Claim. For every C > 0, there exist ε, δ > 0 such that

(7.1.15) ||x̄−
(
x−B−1F (x)

)
|| ≤ 1

2
||x̄− x||

whenever

(7.1.16) ||B −A|| ≤ δ + 3Cε and ||x− x̄|| ≤ ε.

The above claim is intuitively clear, since it describes the local linear
convergence of Newton-type methods. We prove (7.1.14) using the Taylor
formula

F (x) = F (x)− F (x̄) = F ′(x̄)(x− x̄) +O
(
||x− x̄||2

)
.

Hence

B−1F (x) = B−1F ′(x̄)(x− x̄) +O
(
||x− x̄||2

)
= B−1B(x− x̄) +O

(
||B − F ′(x̄)|| · ||x− x̄||

)
+O

(
||x− x̄||2

)
.

Since the constants implied by the Landau symbols are all locally uniform,
the claim (7.1.14) follows easily.

We choose C > 0, ε > 0, δ > 0 such that (7.1.14–16) holds and also
(7.1.13) holds in the specific form

(7.1.17)
∥∥∥Ek+1 − Ek

(
I − sks

∗
k

||sk||2
)∥∥∥ ≤ C(||εk||+ ||εk+1||

)
for ||x̄ − xk|| ≤ ε and ||x̄ − xk+1|| ≤ ε. Now we are able to give a precise
meaning to the hypothesis that x0 and A0 are “sufficiently near” x̄ and A
respectively. Let us show that under the assumptions

(7.1.18) ||A0 −A|| ≤ δ and ||x̄− x0|| ≤ ε
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the hypothesis (7.1.16) of claim (7.1.14) holds. This is accomplished by show-
ing the following estimates via induction:

(7.1.19)


||Ei|| = ||Ai −A|| ≤ δ + 3Cε

(1
2

+
1
4

+ · · ·+ 1
2i
)
,

||εi|| = ||xi − x̄|| ≤
ε

2i
.

By (7.1.18), this assertion holds for i = 0. Then by the inductive hypothesis
(7.1.19), the conditions (7.1.16) are verified for x = xi and B = Ai, and hence
(7.1.15) implies

||xi+1 − x̄|| ≤
1
2
||xi − x̄|| ≤

ε

2i+1
.

Furthermore, by (7.1.17) we have

||Ai+1 −A|| ≤ ||Ai −A||+ C
(
||εi||+ ||εi+1||

)
≤ δ + 3Cε

(1
2

+
1
4

+
1
2i
)

+ C
( ε

2i
+ · · ·+ ε

2i+1

)
= δ + 3Cε

(1
2

+
1
4

+ · · ·+ 1
2i+1

)
.

This completes the inductive proof of (7.1.19). Next we note the fact that the
corresponding rows of the two matrices

Ek

(
I − sks

∗
k

||sk||2
)

and Ek
sks
∗
k

||sk||2

are orthogonal to each other. Hence, applying the Pythagoras equation on
(7.1.13), we obtain for the Frobenius norms

||Ek+1||2F = ||Ek||2F −
||Eksk||2
||sk||2

+O
(
||εk||+ ||εk+1||

)
.

Now by summing up both sides with respect to k and using (7.1.19), we have

(7.1.20)
∞∑
k=0

( ||Eksk||
||sk||

)2

<∞,

since ||Ek+1||F and ||Ek||F remain bounded and the asymptotic term is sum-
mable. From (7.1.20) we have

(7.1.21)
||Eksk||
||sk||

→ 0 as k →∞.
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Since Eksk = (Ak−A)sk = (Ak−A)(xk+1−xk) and Ak(xk+1−xk) = −F (xk)
from the Newton step, we have

Eksk + F (xk) +Ask = 0

and hence

(7.1.22) Eksk + F (xk+1) +Ask − yk = 0.

From (7.1.11), we obtain

||Ask − yk||
||sk||

→ 0 as k →∞.

Hence by (7.1.21–22), we have

(7.1.23)
||F (xk+1)||
||sk||

→ 0 as k →∞.

On the other hand, from

(7.1.24)
F (xk) = F (xk)− F (x̄) = F ′(x̄)εk

+
1
2

∫ 1

0

F ′′(x̄+ ξεk)2(1− ξ) dξ [εk, εk]

we obtain the estimate

||F (xk)|| ≥ ||F ′(x̄)−1||−1 ||εk||+O
(
||εk||2

)
.

Now for ε sufficiently small, (7.1.23) implies

(7.1.25)
||εk+1||
||sk||

→ 0 as k →∞.

On the other hand,

||sk|| = ||xk+1 − xk|| ≤ ||εk+1||+ ||εk||

implies
||εk+1||
||sk||

≥ ||εk+1||
||εk+1||+ ||εk||

=
1

1 + ||εk|| / ||εk+1||
.

Hence (7.1.25) implies

||εk||
||εk+1||

→ ∞ as k →∞,

or equivalently,
||εk+1||
||εk||

→ 0 as k →∞,

which concludes the proof of (7.1.8).



      

68 7. Predictor-Corrector Methods Using Updating

7.2 Broyden Updates Along a Curve

In this section we develop an update method for approximating a curve of
zero points in H−1(0), which is analogous to the Broyden method for approx-
imating an isolated zero point discussed in the previous section. We assume
that H : RN+1 → RN is a smooth map and zero is a regular value of H. To
begin our discussion, let us suppose we are given two approximate zero-points
un, un+1 ∈ RN+1 and the corresponding values H(un), H(un+1). Analogously
to our discussion in section 7.1, we set

(7.2.1)
sn := un+1 − un
yn := H(un+1)−H(un)

and we consider an analogous secant equation

(7.2.2) Asn = yn

where A ≈ H ′(un) is an approximate Jacobian. The corresponding Broyden
update on the points un, un+1 is given by

(7.2.3) An+1 := An +
(yn −Ansn)s∗n
||sn||2

.

Let us begin by introducing a generic predictor-corrector algorithm employing
Broyden’s update method.

(7.2.4) Generic Euler-Newton Method Using Updates. comment:

input
begin
u ∈ RN+1 such that H(u) = 0; initial point

A ≈ H ′(u); initial approximate Jacobian

h > 0; initial stepsize

end;
repeat
v := u+ ht(A); predictor step

update A on u, v; see (7.2.3)

w := v −A+H(v); corrector step

update A on v, w; see (7.2.3)

u := w; new approximate along H−1(0)
choose a new stepsize h > 0; stepsize adaptation

until traversing is stopped.
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The first remark we have to make concerning algorithm (7.2.4) is that it does
not generate a reliable approximation of the Jacobian H ′(u) i.e. a relation
such as

||A−H ′(u)|| = O(h),

which we assumed in our previous convergence analysis, see (5.2.1), does not
hold in general. In our discussion of section 7.1 it was already seen that the
Jacobian is not necessarily well approximated by the update formula. The
reason behind this is that we are in general not assured that the update data
spans the whole space sufficiently well. To put this more precisely, let S denote
the (N + 1)× k-matrix, whose columns have unit norm and indicate the last
k directions in which the update formula was used in algorithm (7.2.4). Then
the condition

cond(SS∗) < C

for some C > 0 independent of h and of whichever last k directions S are taken,
is sufficient to ensure the convergence of algorithm (7.2.4) for h sufficiently
small, in the sense of (5.2.1), see chapter 4 of Georg (1982) for a sketch of a
proof. However, it is unrealistic to expect that this condition will in general
be satisfied. Rather than to present the very technical proof of the above
mentioned convergence, let us instead describe how this difficulty may be
circumvented. We begin our discussion with a study of some of the properties
of the Broyden update defined in (7.2.3). Let us recall a well known fact
concerning the determinant of a special rank one update matrix.

(7.2.5) Lemma. Let u, v ∈ RN . Then

det(Id + uv∗) = 1 + v∗u.

Proof. For u = 0 or v = 0, the result is trivial. Let us first assume that
v∗u 6= 0. If w1, . . . , wN−1 is any linearly independent set of vectors which are
orthogonal to v 6= 0 then (Id +uv∗)wi = wi for i = 1, . . . , N −1, and so λ = 1
is an eigenvalue of Id + uv∗ of multiplicity N − 1. Furthermore,

(I + uv∗)u = u+ uv∗u = (1 + v∗u)u

shows that λ = 1 + v∗u is also an eigenvalue of Id + uv∗. The result now
follows from the fact that the determinant is equal to the product of the
eigenvalues. The exceptional case v∗u = 0 can be treated by using the fact
that the determinant is a continuous function of u.

The following theorem furnishes a number of properties of the Broyden
update which will be used for curve tracing.
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(7.2.6) Theorem. Suppose wn ∈ RN , vn ∈ RN+1 and An is an N×(N+1)-
matrix with rankAn = N . Define:

An+1 := An + wnv
∗
n,

Dn := 1 + v∗nA
+
nwn ,

tn := t(An),

and assume Dn 6= 0. Then:

(1) rankAn+1 = N,

(2) tn+1 = ρn(tn −
v∗ntn
Dn

A+
nwn) for some ρn ∈ R with |ρn| ∈ (0, 1],

(3) A+
n+1 = (Id− tn+1t

∗
n+1)

(
Id− A+

nwnv
∗
n

Dn

)
A+
n ,

(4) det
(
An+1

t∗n+1

)
=
Dn

ρn
det
(
An
t∗n

)
.

Proof. Ad (1): As in the proof of the well-known Sherman-Morrison formula,
we have

(An + wnv
∗
n)
(
A+
n −

A+
nwnv

∗
nA

+
n

1 + v∗nA
+
nwn

)
= Id + wnv

∗
nA

+
n −

wnv
∗
nA

+
n

1 + v∗nA
+
nwn

− wn(v∗nA
+
nwn)v∗nA

+
n

1 + v∗nA
+
nwn

= Id + wnv
∗
nA

+
n −

(1 + v∗nA
+
nwn

1 + v∗nA
+
nwn

)
(wnv

∗
nA

+
n )

= Id.

From this it follows that An+1 has a right inverse, namely

(7.2.7) An+1

(
Id− A+

nwnv
∗
n

Dn

)
A+
n = Id,

and assertion (1) is proven.
Ad(2): Analogously to the previous calculation we have

An+1

(
tn −

v∗ntnA
+
nwn

Dn

)
= An(Id +A+

nwnv
∗
n)
(
tn −

v∗ntnA
+
nwn

1 + v∗nA
+
nwn

)
= An

(
tn + v∗ntnA

+
nwn −

v∗ntnA
+
nwn

1 + v∗nA
+
nwn

− A+
nwn(v∗nA

+
nwn)(v∗ntn)

1 + v∗nA
+
nwn

)
= An

(
tn + v∗ntnA

+
nwn − v∗ntn

(1 + v∗nA
+
nwn

1 + v∗nA
+
nwn

)
A+
nwn

)
= Antn = 0.
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Now by normalizing with

ρn = ±
∥∥tn − v∗ntnA

+
nwn

Dn

∥∥−1

we have

(7.2.8) tn+1 = ρn
(
tn −

v∗ntnA
+
nwn

Dn

)
.

Since by (3.2.4), t∗nA
+
n = 0, the right hand side of (7.2.8) is the sum of two

orthogonal vectors, one of which viz. tn has norm equal to unity, we have
|ρn| ≤ 1. On the other hand, ρn 6= 0, since Dn 6= 0.
Ad (3): Multiplying (7.2.7) by A+

n+1 and applying (3.2.5)(1) yields

A+
n+1 = A+

n+1An+1

(
Id− A+

nwnv
∗
n

Dn

)
A+
n

= (Id− tn+1t
∗
n+1)

(
Id− A+

nwnv
∗
n

Dn

)
A+
n .

Ad (4): It is easy to calculate from (2) and (3) that(
An+1

t∗n+1

)(
Id− A+

nwnv
∗
n

Dn

)
(A+

n , tn) =
(

Id 0
∗ ρ−1

n

)
holds. Taking determinants of both sides and using (7.2.5) we have

det
[(

An+1

t∗n+1

)(
Id− A+

nwnv
∗
n

Dn

)
(A+

n , tn)
]

= det
(
An+1

t∗n+1

)(
1− Dn − 1

Dn

)
det(A+

n , tn)

= ρ−1
n .

Hence

det
(
An+1

t∗n+1

)
det(A+

n , tn) =
Dn

ρn
.

Assertion (4) now follows from (3.2.4).

The preceding discussion shows that the orientation of the new tangent
vector is obtained by setting signρn = signDn. The above formulae could be
implemented in an Euler-Newton method based on updates such as (7.2.4).
However, we usually prefer to update a decomposition of An, see chapter 16
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for details. Using the above notation, the Broyden update formula on the
points un, un+1 uses the following data:

(7.2.9)
wn =

H(un+1)−H(un)−An(un+1 − un)
||un+1 − un||

,

vn =
un+1 − un
||un+1 − un||

.

In (7.2.4), two types of updates arise, namely predictor updates and corrector
updates. For the predictor update we have un+1 = un+htn and consequently

(7.2.10)
wn =

H(un+1)−H(un)
h

,

vn = tn .

Then v∗nA
+
n = 0 implies Dn = 1 and

A+
n+1 = (Id− tn+1t

∗
n+1)A+

n .

From this it is clear that updates based only upon predictor steps cannot
in general provide reasonable approximations of the Jacobian H ′. For the
corrector update we have un+1 = un − A+

nH(un) and consequently (7.2.6)
implies

(7.2.11)
wn =

H(un+1)
||A+

nH(un)|| ,

vn = − A+
nH(un)

||A+
nH(un)|| .

In this case, v∗ntn = 0 and hence tn+1 = ±tn. From this it is again clear that
updates based only upon corrector steps cannot provide reasonable approxi-
mations of the Jacobian H ′. As a consequence of (7.2.11) we have

(7.2.12) ||A+
nwn|| =

||A+
nH(un+1)||
||A+

nH(un)|| .

The vector A+
nwn arises naturally in the corrector update formula, and its

norm gives a reasonable measure for the contraction rate of the corrector
step. If this rate is large, then this may be attributed to one of two factors:
either the predictor point was too far from H−1(0) or the Jacobian H ′ is
poorly approximated by An. Often the first of these two possibilities is easy
to check. Hence (7.2.12) affords us an empirical measure of the quality of the
approximation of the Jacobian.
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Let us return to the basic issue of algorithm (7.2.4), namely to assure
that a good approximation of the Jacobian is maintained. To do this, we may
be guided by a device proposed by Powell (1970) in which he suggests mon-
itoring the directions of the differences contributing to the updates. In our
context, this amounts to monitoring whether the condition number cond(SS∗)
discussed prior to (7.2.5) is sufficiently small. Instead of following Powell’s
approach of introducing additional directions, we combine a stepsize adapta-
tion with several tests, the most important being the measuring of the above
contraction rate (7.2.12). If the criteria of the tests are satisfied, the algorithm
performs a successive predictor-corrector step with increased stepsize. If how-
ever, the criteria are not satisfied, the predictor-corrector step is repeated with
reduced stepsize. In both cases, the predictor and corrector update formulae
are applied. This enables the method to generally update an approximation
of the Jacobian in directions which are most needed. The following specific
version of algorithm (7.2.4) incorporates these considerations.

(7.2.13) Euler-Newton Method
Using Updating And Steplength Adaptation. comment:

input

begin

u ∈ RN+1 such that H(u) = 0; initial point

A ≈ H ′(u); initial approximate Jacobian

h > 0; initial stepsize

δ0 > 0; minimal residual

δ1 > δ0; maximal residual

κ ∈ (0, 1); maximal contraction

γ ∈ (0,
π

2
); maximal angle

end;
repeat

1: s := t(A); save tangent

v := u+ ht(A); predictor step

A := A+ h−1
(
H(v)−H(u)

)
t(A)∗; predictor update

if cos−1
(
s∗t(A)

)
< γ or ||A+H(v)|| ≥ δ1 then angle, residual test

begin h :=
h

2
; go to 1; end;

if ||A+H(v)|| ≤ δ0 then perturbation

choose p such that ||A+
(
H(v)− p

)
|| = δ0

else p := 0;
w := v −A+

(
H(v)− p

)
; corrector step
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A := A+ ||w − v||−2
(
H(w)− p

)
(w − v)∗; corrector update

if ||A+
(
H(v)− p

)
||−1||A+

(
H(w)− p

)
|| > κ then contraction test

begin h :=
h

2
; go to 1; end;

u := w; h := 2h; PC step accepted

until traversing is stopped.

Let us again emphasize that usually an implementation of the above algorithm
updates some decomposition of the matrix A at each step. For details on such
update methods we refer to chapter 16. The perturbation term p in the above
algorithm serves several purposes. The main purpose is to prevent numerical
instability in the corrector update formula due to cancellation of digits. As a
general rule for choosing δ0, one may require that v−w should carry at least
half as many significant digits as the computer arithmetic carries. Another
purpose of the perturbation p is to safeguard the algorithm against intrinsic
instabilities such as those arising from singular points on the curve e.g. bifur-
cation points. In fact, the above algorithm will usually bifurcate off at simple
bifurcation points. This is discussed further in chapter 8.

Several versions of the above algorithm have been implemented and tested
on a variety of problems, see e.g. Georg (1981–82). At least for non-sparse
problems, they turned out to be very efficient. It should be noted that an
iteration of the corrector step has not been incorporated. This needs only to
be done if it is wished to follow the curve closely. However, one additional
corrector step could easily be performed at low cost since A+

(
H(w) − p

)
is

calculated in the “contraction test”. Sometimes it may be desired to calculate
some special points on a curve in H−1(0) exactly. The discussion for doing
this is taken up in chapter 9.

Let us again emphasize that it is important that although a predictor
or corrector point may not be accepted, because it may not satisfy the test
criteria, the update information which it contributes to approximating the
Jacobian is nevertheless utilized. Finally, let us point out that the essential
feature of the above algorithm is that it updates along the curve as well as in
the corrector steps. This is to be distinguished from Euler-Newton methods
where the Jacobian is precisely calculated at the predictor point, and updates
are only used to accelerate the Newton-type corrector iteration. In this case,
proofs of superlinear convergence have been given by Bourji & Walker (1987),
see also Walker (1990).
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Chapter 8. Detection of Bifurcation Points
Along a Curve

8.1 Simple Bifurcation Points

Up to this point we have always assumed that zero is a regular value of the
smooth mapping H : RN+1 → RN . In the case that H represents a mapping
arising from a discretization of an operator of the form H : E1 × R → E2

where E1 and E2 represent appropriate Banach spaces, it is often of interest to
approximate bifurcation points of the equation H = 0. It is often possible to
choose the discretization H in such a way that also the resulting discretized
equation H = 0 has a corresponding bifurcation point. Under reasonable
non-degeneracy assumptions it is possible to obtain error estimates for the
bifurcation point of the original problem H = 0. We shall not pursue such
estimates here and refer the reader to the papers of Brezzi & Rappaz & Raviart
and Beyn.

Our aim in this chapter is to investigate bifurcation points of the dis-
cretized equation H = 0. We will show how certain types of bifurcation
points along a solution curve c(s) can be detected, and having detected a bi-
furcation point, how one can numerically switch from c(s) onto a bifurcating
branch. Usually, bifurcation points are defined in a Banach space context, see
for example the book of Chow & Hale. Higher order bifurcations often arise
from symmetries with respect to certain group operations, see the books of
Golubitsky & Schaeffer (1985) and Golubitsky & Stewart & Schaeffer (1988).
These symmetries can also be exploited numerically, see e.g. Cliffe & Jepson &
Spence (1985), Cliffe & Spence (1985), Cliffe & Winters (1986), Healey (1988),
Dellnitz & Werner (1989). Since we are primarily concerned with bifurcation
in the numerical curve following context, we confine our discussion to the case
of the equation H = 0 where H : RN+1 → RN is sufficiently smooth. How-
ever, we note that the theoretical discussion below will essentially extend to
the Banach space context if we assume that H is also a Fredholm operator
of index one. This holds automatically in the case H : RN+1 → RN . Dis-
cretization errors of bifurcation problems have been analyzed by Beyn (1980),
Brezzi & Rappaz & Raviart (1980–1981), Crouzeix & Rappaz (1989).
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Some of the fundamental results on the constructive aspects of bifurca-
tion theory and the numerical solution of bifurcation problems are due to
Keller (1970), see also Keener & Keller (1974) and Keller (1977). The recent
literature on the numerical treatment of bifurcation is very extensive. For an
introduction into the field we suggest the lecture notes of Keller (1987). For
surveys and bibliography we suggest Mittelmann & Weber (1980), Kub́ıček &
Marek (1983), Küpper & Mittelmann & Weber (1984), Küpper & Seydel &
Troger (1987). Some scientists related to the Theoretical Physics Division at
the Harwell Laboratory in England have published extensive applications of
numerical bifurcation techniques to classical problems in fluid dynamics, see
the bibliography under Cliffe, Riley, Winters. Computer programs for numer-
ical bifurcation currently available are for example given in Doedel (1986),
Kub́ıček & Marek (1983), Rheinboldt (1986), Seydel (1988). Some authors,
see e.g. Deuflhard (1979), propose basing the calculation of bifurcation or
turning points on the failure of the corrector procedure. We cannot recom-
mend such an approach.

In view of the extensive literature we will only touch upon the problem
here, and we will confine our discussion to the task of detecting a simple bifur-
cation point along c(s) and effecting a branch switching numerically. We will
see that the detection of simple bifurcation points requires only minor modi-
fications of algorithms such as (3.3.7). Let us begin by defining a bifurcation
point.

(8.1.1) Definition. Let H : RN+1 → RN be sufficiently smooth. Suppose
that c : J → RN+1 is a smooth curve, defined on an open interval J containing
zero, and parametrized (for reasons of simplicity) with respect to arc length
such that H

(
c(s)

)
= 0 for s ∈ J . The point c(0) is called a bifurcation point

of the equation H = 0 if there exists an ε > 0 such that every neighborhood
of c(0) contains zero-points z of H which are not on c(−ε, ε).

An immediate consequence of this definition is that a bifurcation point
of H = 0 must be a singular point of H. Hence the Jacobian H ′

(
c(0)

)
must

have a kernel of dimension at least two. We consider the simplest case:

(8.1.2) Assumption. ū is a zero point of the smooth map H : RN+1 → RN

such that dimkerH ′(ū) = 2.

We now describe the Liapunov-Schmidt reduction in the above finite
dimensional context. Let us introduce the decompositions

(8.1.3)

RN+1 = E1 ⊕ E2 and RN = F1 ⊕ F2, where

E1 := kerH ′(ū), E2 := E⊥1 ,

F2 := rangeH ′(ū), F1 := F⊥2 , and
dimE1 = 2, dimE2 = N − 1, dimF1 = 1, dimF2 = N − 1.
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Thus we may decompose H into the form

(8.1.4) H(u) = H(u1, u2) =
(
H1(u1, u2)
H2(u1, u2)

)
where ui ∈ Ei and Hi : Ei → Fi, i = 1, 2. From the above choice of decom-
positions, we have

H ′(u) =
(
∂1H1(u1, u2) ∂2H1(u1, u2)
∂1H2(u1, u2) ∂2H2(u1, u2)

)
and in particular,

(8.1.5) H ′(ū) =
(

0 0
0 ∂2H2(ū1, ū2)

)
.

Here ∂1, ∂2 denote the partial derivative operators with respect to the param-
eters of E1, E2 respectively.

Note that ∂2H2(ū) is a nonsingular (N − 1)× (N − 1)-matrix. Since the
equation H2(ū1, ū2) = 0 has the solution point (u1, u2) = (ū1, ū2), by the
implicit function theorem, there exist neighborhoods U1 of ū1 in E1 and U2

of ū2 in E2 and a smooth map ϕ : U1 → U2 such that

(8.1.6) H2(u1, u2) = 0 if and only if u2 = ϕ(u1).

holds for all u1 ∈ U1, u2 ∈ U2. Thus, we have a local parametrization of
the equation H2(u1, u2) = 0 in terms of the variable u1 in the 2-dimensional
space E1. Consequently, for all u1 ∈ U1, u2 ∈ U2, the equation H(u) = 0 is
equivalent to u2 = ϕ(u1) and H1

(
u1, u2) = 0, or

(8.1.7) b(u1) := H1

(
u1, ϕ(u1)

)
= 0.

This is called the bifurcation equation for H(u) = 0 at the singular point
ū.

We now want to obtain for the present context a characterization of
simple bifurcation points, which is analogous to that of Crandall & Rabinowitz
(1971). By differentiating the equation H2

(
u1, ϕ(u1)

)
= 0 arising from (8.1.6)

we have by the chain rule

∂1H2(ū) + ∂2H2(ū)ϕ′(ū1) = 0.

Since ∂1H2(ū) = 0 and ∂2H2(ū) is nonsingular, it follows that

(8.1.8) ϕ′(ū1) = 0.
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Differentiating b(u1) = H1

(
u1, ϕ(u1)

)
twice we obtain for u =

(
u1, ϕ(u1)

)
,

b′(u1) = ∂1H1(u) + ∂2H1(u)ϕ′(u1),

b′′(u1) = ∂2
1H1(u) + 2∂1∂2H1(u)ϕ′(u1)

+ ∂2
2H1(u)

[
ϕ′(u1), ϕ′(u1)

]
+ ∂2H1(u)ϕ′′(u1).

Setting u1 := ū1 and taking into account that ϕ′(ū1) = 0, ∂1H1(ū) = 0,
∂2H1(ū) = 0, we obtain

(8.1.9) b(ū1) = 0, b′(ū1) = 0, b′′(ū1) = ∂2
1H1(ū).

The simplest (generic) case is that the 2 × 2 Hessian matrix b′′(ū1) is non-
singular i.e. both eigenvalues are different from zero. We use the following
2-dimensional version of a celebrated theorem of Morse, see e.g. the book
Hirsch (1976), p.145., in order to characterize the local structure of the solu-
tion set b−1(0).

(8.1.10) Lemma. Let ū1 ∈ R2, and let b : R2 → R be a smooth function
such that b(ū1) = 0, b′(ū1) = 0 and the Hessian b′′(ū1) has nonzero eigenvalues
λ1, λ2. Then there are open neighborhoods U of 0 ∈ R2 and V of ū1 ∈ R2

and a diffeomorphism ψ : U → V such that ψ(0) = ū1 and b
(
ψ(ξ1, ξ2)

)
=

λ1ξ
2
1 + λ2ξ

2
2 where (ξ1, ξ2) ∈ U .

If both eigenvalues have the same sign, then ū1 is an isolated zero point
of b and consequently ū is an isolated zero point of H. Such points are of no
interest to us, since they cannot be obtained by traversing a solution curve
of the equation H = 0. If the eigenvalues are of opposite sign, then the local
structure of b−1(0) near ū1 and consequently the local structure of H−1(0)
near ū are described by two curves, intersecting transversely at ū1 and ū
respectively. By a transverse intersection we mean that the two corresponding
tangents are linearly independent. Let e ∈ RN , e 6= 0 be a vector which spans
F1 =

(
rangeH ′(ū)

)⊥ = kerH ′(ū)∗. Then the component mapH1 corresponds
to e∗H, and the preceding discussion motivates the following

(8.1.11) Definition. Let H : RN+1 → RN be sufficiently smooth. A point
ū ∈ RN+1 is called a simple bifurcation point of the equation H = 0 if
the following conditions hold:

(1) H(ū) = 0,

(2) dimkerH ′(ū) = 2,

(3) e∗H ′′(ū) (kerH ′(ū)
)2 has one positive and one negative eigenvalue,

where e spans kerH ′(ū)∗.

The result of the preceding discussion can now be summarized in the
following
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(8.1.12) Theorem. Let ū ∈ RN+1 be a simple bifurcation point of the
equation H = 0. Then there exist two smooth curves c1(s), c2(s) ∈ RN+1,
parametrized with respect to arclength s, defined for s ∈ (−ε, ε) and ε suffi-
ciently small, such that the following holds:

(1) H
(
ci(s)

)
= 0, i ∈ {1, 2}, s ∈ (−ε, ε),

(2) ci(0) = ū, i ∈ {1, 2},
(3) ċ1(0), ċ2(0) are linearly independent,

(4) H−1(0) coincides locally with range(c1) ∪ range(c2), more precisely: ū is
not in the closure of H−1(0) \

(
range(c1) ∪ range(c2)

)
.

Using the notation of (8.1.11) and (8.1.12), let us differentiate the equation
e∗H

(
ci(s)

)
= 0 for i ∈ {1, 2} twice and evaluate the result at s = 0. We then

obtain
e∗H ′′(ū)

[
ċi(0), ċi(0)

]
+ e∗H ′(ū)c̈i(0) = 0.

Since e spans kerH ′(ū)∗, the second term vanishes, and we are led to the
following lemma which characterizes the tangents of the two curves at the
bifurcation point ū up to an obvious freedom of orientation.

(8.1.13) Lemma. Let ū ∈ RN+1 be a simple bifurcation point of the equa-
tion H = 0. Under the notation of (8.1.11) and (8.1.12), we obtain

(1) kerH ′(ū) = span{ċ1(0), ċ2(0)},
(2) e∗H ′′(ū)

[
ċi(0), ċi(0)

]
= 0 for i ∈ {1, 2}.

The following theorem furnishes a criterion for detecting a simple bifurcation
point when traversing one of the curves ci.

(8.1.14) Theorem. Let ū ∈ RN+1 be a simple bifurcation point of the
equation H = 0. Under the notation of (8.1.11) and (8.1.12), the determinant
of the following augmented Jacobian

det
(
H ′
(
ci(s)

)
ċi(s)

∗

)
changes sign at s = 0 for i ∈ {1, 2}.
Proof. We treat the case i = 1. It is more convenient for the proof to use the
matrix:

A(s) :=
(

ċ1(s)∗

H ′
(
c1(s)

)) .
Consider an orthogonal (N + 1)× (N + 1)-matrix V = (v1, . . . , vN+1) where
v1 := ċ1(0), span{v1, v2} = kerH ′(ū), and an orthogonal N ×N -matrix W =
(w1, . . . , wN ) where w1 := e spans kerH ′(ū)∗ as in (8.1.11). Since

ċ1(s)∗vj = ċ1(0)∗vj +O(s),

w∗kH
′(c1(s)

)
vj = w∗kH

′(ū)vj + w∗kH
′′(ū)

[
ċ1(0), vj

]
s+O(s2),
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we obtain:

(8.1.15)
(

1 0∗

0 W ∗

)
A(s)V =

 1 +O(s) O(s) O(s)
O(s2) ρs+O(s2) O(s)
O(s) O(s) B +O(s)

 .

The (N−1)×(N−1) block matrix B in (8.1.15) is nonsingular, see (8.1.5) and
the remarks thereafter. The scalar ρ in (8.1.15) is given as the off-diagonal
entry of the following symmetric 2× 2-matrix(

e∗H ′′(ū)[v1, v1] e∗H ′′(ū)[v1, v2]
e∗H ′′(ū)[v2, v1] e∗H ′′(ū)[v2, v2]

)
.

Since this matrix is nonsingular, cf. (8.1.11)(3), and since the diagonal entry
e∗H ′′(ū)[v1, v1] vanishes, cf. (8.1.13), it follows that ρ 6= 0. Now by performing
Gaussian elimination upon the first two columns of (8.1.15), we obtain a
reduced form  1 +O(s) O(1) O(s)

0 ρs+O(s2) O(s)
0 0 B +O(s)


which clearly has a determinant of the form

ρdet(B)s+O(s2).

It follows that the determinant of A(s) changes sign at s = 0.

Theorem (8.1.14) implies that when traversing a solution curve c(s) ∈
H−1(0), a simple bifurcation point is detected by a change in the orientation.
Figure 8.1.a illustrates this. The arrows in the figure show the orientation.

Figure 8.1.a Encountering a simple bifurcation point ū
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Conversely, suppose that a smooth curve c(s) ∈ H−1(0) is traversed and
that c(0) is an isolated singular point of H such that

det
(
H ′
(
c(s)

)
ċ(s)∗

)
changes sign at s = 0. Using a standard argument in degree theory, see
Krasnosel’skĭı(1964) or Rabinowitz (1971), it can be shown that c(0) is a bi-
furcation point of H = 0. However c(0) is not necessarily a simple bifurcation
point.

We next present an argument similar to that of Keller (1977) to show that
an Euler-Newton type continuation method “jumps over” a simple bifurcation
point. To this end, we give the following lemma which basically states that
a small truncated cone with vertex ū, axis ċ1(0) and aperture δ is contained
in the region of attraction of the Newton corrector method, cf. figure (8.1.b).
We shall only give the main ideas of the proof and omit some of the tedious
technical details.

Figure 8.1.b The cone of attraction of the Newton corrector

(8.1.16) Lemma. Let ū ∈ RN+1 be a simple bifurcation point of the equa-
tion H = 0. Under the notation of (8.1.11) and (8.1.12), there exist an open
neighborhood U of {u ∈ H−1(0)

∣∣ u is a regular point of H}, and positive
numbers ε, δ such that

(1) the conclusion of theorem (3.4.1) holds;

(2) ū+
(
ċ1(0) + z

)
s ∈ U for 0 < |s| < ε and z ∈ RN+1 with ||z|| < δ.

Outline of Proof. The proof of the first part is analogous to that of theorem
(3.4.1) but it is even more technical and will be omitted. The main ideas of
the proof of the second part involve asymptotic estimates of H, H ′, . . . at

u := ū+
(
ċ1(0) + z

)
s.
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We use the same notation as in the proof of (8.1.14). The first two estimates
are immediate consequences of the Taylor formula and the results in (8.1.12–
15):

W ∗H(u) =
(
O(||z||s2) +O(s3)
O(||z||s) +O(s2)

)
;

W ∗H ′(u)V =
(
O(s2) +O(||z||s) ρs+O(||z||s+ s2) O(s)

O(s) O(s) B +O(s)

)
.

The following estimate for the tangent vector t
(
H ′(u)

)
is obtained by directly

solving H ′(u)τ = 0, τ [1] = 1 for τ in the previous equation and normalizing
t
(
H ′(u)

)
= ±τ/||τ ||:

V ∗t
(
H ′(u)

)
=

±1 +O(s2) +O(||z||s) +O(||z||2)
O(s) +O(||z||)

O(s)

 .

The next estimate is obtained from the previous estimates by a Gauss-Jordan
reduction: (

t
(
H ′(u)

)∗
V

W ∗H ′(u)V

)−1

= 1 +O(s2) +O(||z||s) +O(||z||2) O(1) +O(||z||)s−1 O(s) +O(||z||)
O(s) +O(||z||) ρ−1s−1 +O(1) O(1)

O(s) O(1) B−1 +O(s)

 .

In the above inverse, the first column again represents the tangent vector, and
the remaining submatrix yields an estimate for the Moore-Penrose inverse:

V ∗H ′(u)+W =

O(1) +O(||z||)s−1 O(s) +O(||z||)
ρ−1s−1 +O(1) O(1)

O(1) B−1 +O(s)

 .

Combining the above results, we obtain the following estimate for a Newton
step:

V ∗H ′(u)+H(u) =

O(||z||s2) +O(s3) +O(||z||2s)
O(||z||s) +O(s2)
O(||z||s) +O(s2)

 .

From all the above formulae, the following crucial norm estimates are ob-
tained:

||H ′(u)+|| =
(
|ρ|−1 + ||z||

)
|s|−1 +O(1),

||H ′(u)+H(u)|| = O(||z|||s|) +O(s2),

sup
||z||≤δ

||H ′′(u)|| sup
||z||≤δ

||H ′(u)+|| sup
||z||≤δ

||H ′(u)+H(u)|| → 0 as δ, |s| → 0.

The asserted convergence of Newton’s method now can be shown by using a
standard Newton-Kantorovich type argument, see e.g. Ortega & Rheinboldt
(1970), p. 421.
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To summarize the discussion of this section, we have seen that an Euler-
Newton type continuation method as sketched in (3.3.7) detects simple bi-
furcation points on the curve c(s) which is being traversed, when a change
in

sign det
(
H ′
(
c(s)

)
ċ(s)∗

)
occurs. Depending upon the method used to perform the decomposition of
the Jacobian, the above orientation can often be calculated at very small
additional cost. The Euler-Newton algorithm generally has no difficulty in
“jumping over” i.e. proceeding beyond the bifurcation point ū. That is, for
sufficiently small steplength h, the predictor point will fall into the “cone of
attraction” of the Newton corrector. If it is wished, the simple bifurcation
point ū can be approximated precisely. We leave this discussion for Chapter
9, where the general question of calculating special points along a curve is
addressed.

The following algorithm indicates the adaptations which must be made in
order to proceed beyond a bifurcation point on a curve which is currently being
traversed. Steplength adaptations and strategies for accepting or rejecting
predictor-corrector steps are omitted since they have been treated previously.

(8.1.17) Jumping Over A Bifurcation Point. comment:

input
begin
u ∈ RN+1 such that H(u) = 0; initial point

h > 0; initial steplength

ω ∈ {+1,−1}; initial orientation of traversing

end;
repeat
v := u+ hωt

(
H ′(u)

)
; predictor step

repeat
v := v −H ′(v)+H(v); corrector loop

until convergence;
adapt steplength h;
if t
(
H ′(u)

)∗
t
(
H ′(v)

)
< 0 then test for bifurcation point

begin
ω := −ω; reverses orientation of curve

print “bifurcation point between”, u, “and”, v, “encountered”;
end;

u := v; new point along H−1(0)
until traversing is stopped.
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In the corrector procedure, the Jacobian H ′(v) can be replaced by an approx-
imation. Thus a chord method may be implemented. We emphasize however,
that it is necessary to obtain a good approximation of the Jacobian at least
once at the predictor point since otherwise the local convergence of the
Newton corrector iterations cannot be guaranteed when jumping over a simple
bifurcation point. As an example, let us consider a predictor step

v0 := u+ hωt(A0) with A0 ≈ H ′(u)

and a successive Broyden corrector iteration

vi+1 := vi −A+
i H(vi) where Ai+1 := Ai −

H(vi+1)
(
A+
i H(vi)

)∗
||A+

i H(vi)||2
.

Since
(
A+
i H(vi)

)∗
t(Ai) = 0, it follows from (7.2.6)(4) that

det
(

Ai+1

t(Ai+1)∗

)
=
Di

ρi
det
(

Ai
t(Ai)

∗

)
where t(Ai+1) = ρit(Ai) with ρi = ±1 and

Di = 1−
(
A+
i H(vi+1)

)∗(
A+
i H(vi)

)
||A+

i H(vi)||2
.

However, if the step has jumped over a simple bifurcation point, we expect a
change of orientation i.e. ρi = −1, and this can only occur if Di < 0, which
implies

||A+
i H(vi+1)||
||A+

i H(vi)||
> 1.

Hence the Newton step is not contractive. Thus we cannot expect that the
corrector process will converge when we have jumped over a bifurcation point
if a chord method is employed which uses a Jacobian approximation from the
“wrong side” of the bifurcation point.

8.2 Switching Branches Via Perturbation

In the previous section we have seen that it is possible to detect and jump over
simple bifurcation points while numerically tracing a solution curve c1(s) ∈
H−1(0) via an Euler-Newton method. The more difficult task is to numerically
branch off onto the second solution curve c2(s) at the detected bifurcation
point ū. The simplest device for branching off numerically rests upon the
Sard theorem (11.2.3). If a small perturbation vector p ∈ RN is chosen at
random, then the probability that p is a regular value of H is unity. Of course,
in this case H−1(p) has no bifurcation point. This situation is illustrated in
figure 8.2.a.



H   (0)
-1

H   (p)
-1

H   (0)
-1

H   (p)
-1

u-

8.2 Switching Branches Via Perturbation 85

Figure 8.2.a Global perturbation of a simple bifurcation point

Since p ∈ RN is chosen so that ||p|| is small, the solution sets H−1(0) and
H−1(p) are close together. On H−1(p), no change of orientation can occur.
Therefore, corresponding solution curves in H−1(p) must branch off near the
bifurcation point ū. There are essentially two approaches which can be taken
with the use of perturbations.

(8.2.1) Global perturbation. One can incorporate a perturbation p of
the curve following problem H(u) = 0 at the outset and follow the curve
H(u) = p throughout. By the Sard theorem (11.2.3), with probability unity,
the corresponding solution curves cp(s) will contain no bifurcation points at
all. This approach has recently been used by Glowinski & Keller & Reinhart
(1984). As we shall see in our later discussion of piecewise linear methods,
the global perturbation approach has analogous qualitative properties with
respect to bifurcations as the piecewise linear methods for tracing implicitly
defined curves. In the piecewise linear methods, this is achieved by consider-
ing lexicographically positive matrices, see (12.3.2). Hence, branching off is
automatic at simple bifurcation points, however detection of the presence of
a bifurcation point is more difficult.

(8.2.2) Monitoring the solution branches via local perturbations. In
contrast to the global perturbation approach, one may traverse along a curve
c1(s) ∈ H−1(0) and monitor for changes in orientation as in (8.1.17). When a
bifurcation point has been detected between two corrector points u and w, a
local perturbation vector p can be chosen and the nearby curve cp(s) ∈ H−1(p)
may be traversed in the reversed direction starting at the solution wp of

(8.2.3) min
wp
{||wp − w||

∣∣ H(wp) = p}.

After the local perturbation has served its purpose for branching off, it can be
shut off. A similar technique was described by Georg (1981). Such a process of
handling bifurcation is best done interactively. The following is an algorithm
illustrating this technique.
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(8.2.4) Interactive Tracing Of Bifurcation Branches. comment:

input
begin
u ∈ RN+1 such that H(u) ≈ 0; initial point

ω ∈ {+1,−1}; initial orientation of traversing

end;
1: enter interactive input

begin
initial steplength h;
arclength α to be traversed;
perturbation vector p;
σ ∈ {true, false}; logical variable for stopping

ρ ∈ {true, false}; logical variable —

end; for reversing the direction of traversing

if σ = true then quit;
if ρ = true then ω := −ω;
repeat
u := u−H ′(u)+

(
H(u)− p

)
; initial corrector steps, cf. (8.2.3)

until convergence;
repeat start of predictor-corrector loop

v := u+ hωt
(
H ′(u)

)
; predictor step

repeat
v := v −H ′(v)+

(
H(v)− p

)
; corrector steps

until convergence;
if t
(
H ′(u)

)∗
t
(
H ′(v)

)
< 0 then test for bifurcation point

begin
ω := −ω; reverses orientation of curve

print “bifurcation point encountered”;
u := v;
go to 1;
end;

u := v;
α := α− h; countdown of arclength

adapt steplength h;
until α < 0;
go to 1.
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8.3 Branching Off Via the Bifurcation Equation

Although the branching off from c1(s) onto c2(s) via perturbation techniques
works effectively, this approach can have some shortcommings. In general, it
cannot be decided in advance which of the two possible directions along c2(s)
will be taken. Furthermore, if the perturbation vector p is not chosen correctly
(and it is not always clear how this is to be done), one may still have some
difficulty in tracing H−1(p). The solution set H−1(0) can be approximated
near the bifurcation point ū only after c2(s) has been found by a perturbation
technique. That is, one may follow c2(s) backwards and jump over ū again
along c2(s).

To obtain on approximation of H−1(0) near a simple bifurcation point
ū, we now show how the theoretical results of section 8.1 can be numeri-
cally realized. Most of the papers which deal with the numerical treatment
of simple bifurcation points involve such a numerical realization. Papers of
such a nature are those of Keller (1977) and Rheinboldt (1978), see also the
lecture notes of Keller (1987). In this section, we give a sketch of how a nu-
merical analogue of the characterization of simple bifurcation points may be
implemented in a way which is numerically stable, and does not require much
computational effort. We will do this by outlining the essential steps, namely:

1. Approximation of a bifurcation point ū;
2. Approximation of the kernels kerH ′(ū) and kerH ′(ū)∗;
3. Approximation of the bifurcation equation;
4. Approximation of the tangents ċ1 and ċ2 at ū.

Step 1: Approximation of a bifurcation point ū. Assume that a solu-
tion curve c1(s) ∈ H−1(0) is currently being traversed. As has been noted in
(8.1.14), the presence of a simple bifurcation point c1(s̄) will be signalled by
a change of sign of the functional

(8.3.1) f(u) := det
(

H ′(u)
t
(
H ′(u)

)∗)
when traversing along c1(s) past s̄. Of course in any implementation, the
step size needs to be sufficiently small that not more than one bifurcation
point is jumped over. The bifurcation point c1(s̄) = ū can be approximated
by calculating a solution of the scalar equation f

(
c1(s)

)
= 0. As has been

noted previously, the determinant (8.3.1) can be calculated with very little
computational effort once a decomposition of H ′(u) has been obtained, see
e.g. (4.1.1) or (4.5.3). We may use the technique described in chapter 9 to
calculate the solution of f

(
c1(s)

)
= 0. Some care has to be taken in doing

this, since ū is actually a singular point of H. Nonetheless, a (superlinearly
convergent) secant method for approximating s̄ and thereby c1(s̄) = ū, gives
accurate results.
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Step 2: Approximation of the kernels kerH ′(ū) and kerH ′(ū)∗. We
now assume that an approximation ũ of a simple bifurcation point ū has been
obtained. To approximate kerH ′(ū) and kerH ′(ū)∗, we need to calculate
two vectors τ1, τ2 ∈ RN+1 such that kerH ′(ū) = span{τ1, τ2} and a vector
e ∈ RN such that kerH ′(ū)∗ = span{e}. The task is complicated by the fact
that we should not assume that the approximation ũ of the bifurcation point
ū is precise. In addition, we should not assume that the Jacobian H ′(ũ) is
precisely approximated.

The approximation of τ1 is easy, since by step 1, an approximation of
the tangent ċ1(s̄) for c1(s̄) = ũ is already known. So we may set τ1 = ċ1(s̄).
Ideally, assuming τ1 ∈ kerH ′(ū), a τ2 could be obtained by solving

(8.3.2)
(
H ′(ū)
τ∗1

)
τ2 = 0, ||τ2|| = 1.

A solution of (8.3.2) exists since H ′(ū) has a 2-dimensional kernel. However,
since everything is only approximated, this approach has to be modified. So
instead we calculate τ2 by solving the minimization problem

(8.3.3) min
τ2
{||H ′(ũ)τ2||2 + (τ∗1 τ2)2

∣∣∣ ||τ2|| = 1}.

To solve (8.3.3), let us set

(8.3.4) A :=
(
H ′(ũ)
τ∗1

)
.

It can be seen that the solution of (8.3.3) is a unit eigenvector τ2 of A∗A which
corresponds to the smallest eigenvalue λ. Solving for τ2 can be performed by
the classical inverse iteration method, cf. Stoer & Bulirsch (1980), p. 356.
Of course the matrix A has a bad condition number, since it approximates
a singular matrix. However, since kerH ′(ū) is two-dimensional, the matrix
A∗A should have only one eigenvalue which is close to zero. Thus, the inverse
iteration method is numerically stable, see Peters & Wilkinson (1979). In
fact, the smaller λ is, the faster the method converges.

In a similar fashion, the vector e spanning kerH ′(ū)∗ can be approxi-
mated by the eigenvector of H ′(ũ)H ′(ũ)∗ corresponding to the smallest eigen-
value λ, i.e. by the solution of

(8.3.5) min
e
{||H ′(ũ)∗e||

∣∣∣ ||e|| = 1}.

Here too, the inverse iteration method may be utilized.
Let us sketch how τ1, τ2 and e may be calculated if a QR decomposition

H ′(ũ)∗ = Q

(
R
0∗

)
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is given. In this case, one basis vector of kerH ′(ũ) is given by the last column
of Q i.e. τ1 := QeN+1. It is now easily seen that τ2 is a solution of (8.3.3) if
and only if

τ2 = Q

(
y
0

)
and y ∈ RN solves

min
y
{||R∗y||

∣∣∣ ||y|| = 1}.

On the other hand, ||H ′(ũ)∗e|| = ||Re||, and hence both problems (8.3.3) and
(8.3.5) can be solved by utilizing the same triangular matrix R. We sketch
how to do this in the following algorithm.

(8.3.6) Inverse Iteration
For Approximating kerH ′(ũ) And kerH ′(ũ)∗. comment:

input H ′(ũ)∗ = Q

(
R
0∗

)
; QR decomposition

τ1 := QeN+1;

find solution k of mink |R[k, k]|;
y := ek; starting vector

repeat

x := R−1y;
x := x

||x|| ; inverse iteration w.r.t. RR∗

y := (R∗)−1x;
y := y

||y|| ; inverse iteration w.r.t. R∗R

until convergence;

τ2 := Q

(
y
0

)
; e := x;

print τ1, τ2, e. output

Step 3: Approximation of the bifurcation equation. Assume that an
approximation ũ of the bifurcation point ū is given, that τ1, τ2 approximately
span kerH ′(ũ), and that e approximately spans kerH ′(ũ)∗. The crucial equa-
tion to be solved is the bifurcation equation (8.1.7). To this end, we need to
approximate the symmetric 2× 2-matrix with entries

(8.3.7) α[i, j] :=
(
e∗H ′′(ũ)[τi, τj ]

)
i, j = 1, 2.

For this purpose we use difference formulae for approximating the second
order partial derivatives

(8.3.8) α[i, j] = ∂i∂jg(0, 0)
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where the function g : R2 → R is given by

(8.3.9) g(ξ1, ξ2) := e∗H(ũ+ ξ1τ1 + ξ2τ2).

We use the following difference formulae:

∂2
1g(0, 0) := ε−2

[
g(ε, 0)− 2g(0, 0) + g(−ε, 0)

]
+O(ε2);

∂2
2g(0, 0) := ε−2

[
g(0, ε)− 2g(0, 0) + g(0,−ε)

]
+O(ε2);

∂1∂2g(0, 0) :=
1
4
ε−2
[
g(ε, ε) + g(−ε,−ε)− g(ε,−ε)− g(−ε, ε)

]
+O(ε2);

∂2∂1g(0, 0) := ∂1∂2g(0, 0).

As usual, the meshsize ε needs to be chosen so as to counterbalance between
the truncation error and the cancellation error. In many cases,

ε ≈ 3
√

relative machine error

is a suitable choice, see (10.3.24–27) for a justification. Hence, the bifurcation
equation (8.1.7) can be approximated by a quadratic equation arising from
the Hessian (8.3.7) obtained via 8 evaluations of H.

Step 4: Approximation of the tangents ċ1 and ċ2 at ū. According
to (8.1.13)(2), a tangent vector t for a bifurcating branch of solutions ci(s̄)
satisfies the equation

(8.3.10) e∗H ′′(ū)[t, t] = 0.

Hence by setting t = ξ1τ1 + ξ2τ2, we solve the approximation to (8.3.10)
obtained via step 3:

(8.3.11) α[1, 1]ξ2 + 2α[1, 2]ξ1ξ2 + α[2, 2]ξ2
2 = 0.

If the symmetric 2× 2 α-matrix has one positive and one negative eigenvalue
(which is to be expected in the case that ū is a simple bifurcation point), then
we obtain two linearly independent solutions of (8.3.11) which approximate
the two tangents ċ1(0) and ċ2(0) (up to a scalar multiple). One tangent direc-
tion will readily be identified with the tangent ċ1(s̄) of the currently traversed
curve c1 (if the approximations are any good), and the other tangent gives
us a predictor direction in order to traverse the branch of solutions c2 which
at ū bifurcates from our currently traversed solution curve c1. Note that the
computational cost of the above technique consists mainly of a decomposition
of H ′(ũ), several solvings of linear systems using this decomposition, and sev-
eral computations of the map H(u) at points u near ū. The above four steps
illustrate that the theory of simple bifurcation points in the sense of Crandall
& Rabinowitz is also numerically implementable. For an up to date survey on
numerical treatment of bifurcation problems, we refer the reader to literature
cited at the beginning of this chapter.
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Chapter 9. Calculating Special Points of the
Solution Curve

9.1 Introduction

One of the main purposes of numerical continuation methods concerns the
accurate determination of certain points on a smooth curve c(s) in H−1(0),
which are of special interest. The following are some examples.

In the applications dealing with homotopy methods, the equation
H(x, λ) = 0 for x ∈ RN and λ ∈ R generally has a known starting point
(x0, λ0). The homotopy path c(s) passes through this point, and we seek a
point (x̄, λ̄) on c(s) such that H(x̄, λ̄) = 0 for a certain value λ̄ of the homo-
topy parameter λ. Examples of applications of homotopy methods are given
in chapter 11.

(9.1.1) Turning points in H−1(0) may be of interest when the equation
represents a branch of solutions for a nonlinear eigenvalue problem involving
the eigenvalue parameter λ. Such points are characterized by the fact that
λ has a local extremum on H−1(0). In physics and engineering applications,
a turning point can signify a change in the stability of the solutions. A
vast literature exists for calculating turning points, the following papers are a
sample: Chan (1984), Griewank & Reddien (1984), Kikuchi (1979), Mehlem &
Rheinboldt (1982), Moore & Spence (1980), Pönisch & Schwetlick (1981–82),
Schwetlick (1984), Ushida & Chua (1984).

(9.1.2) Simple bifurcation points have already been discussed in de-
tail in chapter 8. There we showed how to detect the presence of such points
along the curve c. It may also be of interest to accurately approximate a
bifurcation point. They may also arise in nonlinear eigenvalue problems and
are of great interest since they usually represent points at which the stability
of the solutions changes.

To unify our discussion, let f : range c → R be a smooth functional.
There are two general types of special points on the curve c which we shall
consider:
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(9.1.3) Zero points. In this case we seek points c(s) such that f
(
c(s)

)
= 0.

The homotopy method is such a case if we set f(x, λ) := λ − λ̄. Simple
bifurcation points are another such case if we set e.g.

f
(
c(s)

)
:= det

(
H ′
(
c(s)

)
ċ(s)∗

)
.

(9.1.4) Extremal points. In this case we seek extreme points (usually
maxima or minima) of f

(
c(s)

)
. Turning points are such a case if we set

f(x, λ) := λ. Certain regularization methods may also be formulated as
determining a turning point on an implicitly defined curve. For general refer-
ences on regularization methods see Tikhonov & Arsenin (1977) or Groetsch
(1984). We now treat these two general cases in greater detail.

9.2 Calculating Zero Points f(c(s))=0

Let H : RN+1 → RN be a smooth map, let c(s) ∈ H−1(0) be a smooth
solution curve parametrized with respect to arclength (for the sake of con-
venience), and let f : range c → R be a smooth functional. Suppose that
some point c(sn) has been found which is an approximate zero point of f . For
example, it would be reasonable to take c(sn) as an approximate zero point
if a predictor-corrector method produced two successive points c(sn−1) and
c(sn) such that f

(
c(sn−1)

)
f
(
c(sn)

)
< 0. Then it is reasonable to replace the

usual steplength adaptation used to traverse the curve c by a Newton-type
steplength adaptation which is motivated by the following one-dimensional
Newton method for solving the equation f

(
c(s)

)
= 0:

(9.2.1) sn+1 = sn −
f
(
c(sn)

)
f ′
(
c(sn)

)
ċ(sn)

.

Here we use the convention

f ′ =
(
∂f

∂u1

, . . . ,
∂f

∂uN+1

)
.

Equation (9.2.1) suggests that we can take the new steplength

(9.2.2) h := − f
(
c(sn)

)
f ′
(
c(sn)

)
ċ(sn)

at u := c(sn) in order to obtain a predictor point v = u + ht
(
H ′(u)

)
, which

should lead to a better approximation of a zero point of f on c.
The following algorithm illustrates for a simple Euler-Newton method

how a standard steplength adaptation can be switched to the above Newton-
type steplength adaptation in order to approximate a zero point of f on c
while traversing c.
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(9.2.3) Newton Steplength Adaptation. comment:

input
begin
u ∈ RN+1 such that H(u) = 0; initial point

hmin > 0; minimal steplength

h > hmin; initial steplength

end;
ν := false; logical variable for switching to —

repeat Newton-type steplength adaptation

v := u+ ht
(
H ′(u)

)
; predictor step

repeat
v := v −H ′(v)+H(v); corrector loop

until convergence;
if f(u)f(v) ≤ 0 then ν := true; switching to Newton-type —

if ν = true then h := − f(v)
f ′(v)t

(
H ′(v)

) steplength adaptation

else choose a new steplength h > 0; see chapter 6

u := v; new point along H−1(0)
until |h| < hmin .

A sufficient condition for a sequence of points u produced by the algorithm
(9.2.3) to converge to a solution ū of

H(u) = 0
f(u) = 0

is that the steplength h be sufficiently small and

det
(
H ′(ū)
f ′(ū)

)
6= 0 .

Under these assumptions quadratic convergence can be shown.
Algorithm (9.2.3) requires the quantity

d

ds
f
(
c(s)

)
= f ′

(
c(s)

)
ċ(s),

and this may be inconvenient to obtain. As an example, we saw in chapter 8
that bifurcation points c(s̄) are points where

f
(
c(s)

)
= det

(
H ′
(
c(s)

)
ċ(s)∗

)
= 0
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holds. In this case, furnishing d
dsf
(
c(s)

)
would be undesirable, since it would

require at least formally, the calculation of H ′′. Thus it is reasonable to
formulate the secant analogue of (9.2.1) which leads to the following Newton-
type steplength adaptation:

(9.2.4) h := − f(v)
f(v)− f(u)

h ,

which replaces the corresponding formula in (9.2.3). Of course, this reduces
the above mentioned quadratic convergence to superlinear convergence, as is
typical for the one-dimensional secant method.

For the case of calculating a simple bifurcation point, care should be
taken since the augmented matrix(

H ′(u)
t
(
H ′(u)

)∗)
is ill-conditioned near the bifurcation point, and hence the corrector iteration
encounters instabilities. But the above mentioned superlinear convergence of
the secant method generally overcomes this difficulty since the instability gen-
erally only manifests itself at a predictor point which can already be accepted
as an adequate approximation of the bifurcation point.

Obviously, if one zero point ū of the functional f on the curve c has
been approximated, the predictor-corrector method can be restarted in order
to seek additional zero points. In this case, the line of the algorithm (9.2.3)
where the logical variable ν occurs should be activated only after the first
accepted predictor-corrector step. This measure simply safeguards against
returning to the already known zero point.

9.3 Calculating Extremal Points minsf((c(s))

The aim in this section is to give some specific details for calculating an
extremal point on a curve c(s) ∈ H−1(0) for a smooth functional f : range c→
R. Clearly, a necessary condition which must hold at a local extremum c(s̄)
of f is that the equation

(9.3.1) f ′
(
c(s)

)
ċ(s) = 0

holds. Following the same motivation as in section 9.2, we can formulate the
analogous switchover to a Newton-type steplength adaptation:

h := − f ′
(
c(s)

)
ċ(s)

f ′
(
c(s)c̈(s) + f ′′

(
c(s)

)[
ċ(s), ċ(s)

] ,
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where c(s) is the point currently approximated on c, see (9.2.3). Let us use
the notation v = c(s), v̇ = ċ(s) = t

(
H ′(v)

)
and v̈ = c̈(s). Then we have:

(9.3.2) h := − f ′(v)v̇
f ′(v)v̈ + f ′′(v)[v̇, v̇]

.

The task which remains with this formula is that a numerical approximation
of v̈ is needed. To obtain such an approximation, let us differentiate the
equation H

(
c(s)

)
≡ 0. We obtain H ′(v)v̇ = 0 and

(9.3.3) H ′′(v)[v̇, v̇] +H ′(v)v̈ = 0.

Now ||ċ(s)||2 ≡ 1 yields
v̇∗v̈ = 0.

This shows that v̈ is orthogonal to kerH ′(v), and we obtain from (9.3.3) and
(3.2.3)(1–2):

(9.3.4) v̈ = −H ′(v)+H ′′(v)[v̇, v̇].

To approximate H ′′(v)[v̇, v̇] we can use the centered difference formula

(9.3.5)
H(v + εv̇)− 2H(v) +H(v − εv̇)

ε2
= H ′′(v)[v̇, v̇] +O(ε2).

Now (9.3.4–5) provides an approximation of v̈ in the Newton-type steplength
adaptation (9.3.2). If necessary, an extrapolation method may be used to
obtain higher precision approximations of v̈.

The following example illustrates this approach for the case of calculating
a turning point with respect to the last co-ordinate i.e. f(x, λ) = λ in the
case of a nonlinear eigenvalue problem H(x, λ) = 0. Then f(v) = e∗N+1v =
v[N + 1], and the special form of (9.3.2) becomes

(9.3.6) h := − v̇[N + 1]
v̈[N + 1]

.

A second method for calculating a local extremal point of f
(
c(s)

)
is to

use a secant steplength adaptation applied to equation (9.3.1). Analogously to
the discussion in section 9.2 we obtain the Newton-type steplength adaptation

(9.3.7) h := − f ′(v)v̇
f ′(v)v̇ − f ′(u)u̇

h.

The advantage of using (9.3.7) in (9.2.3) is that the need to calculate v̈ is
avoided. Under analogous assumptions to those following (9.2.3) superlinear
convergence of the sequence u generated by the algorithm to a local extremum
of f

(
c(s)

)
can be proven.
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Chapter 10. Large Scale Problems

10.1 Introduction

As has been pointed out occasionally in the previous chapters, one of the
primary applications of continuation methods involves the numerical solution
of nonlinear eigenvalue problems. Such problems are likely to have arisen
from a discretization of an operator equation in a Banach space context, and
involving an additional “eigenvalue” parameter. Some examples were touched
upon in Chapter 8. As a result of the discretization and the wish to maintain a
reasonably low truncation error, the corresponding finite dimensional problem
H(u) = 0 where H : RN+1 → RN , may require that N be quite large. This
then leads to the task of solving large scale continuation problems.

The area in which perhaps the greatest amount of experience concerning
large scale continuation methods exists is structural mechanics, see e.g. Rhein-
boldt (1986) and the further references cited therein. Recently too, there has
been work on combining continuation methods with multigrid methods for
solving large scale continuation problems arising from discretization of ellip-
tic problems via finite differences, see e.g. Chan & Keller (1982), Bank &
Chan (1983), Chan (1984), Mittelmann (1984), and some further literature
cited therein. Another area where large scale continuation problems have been
treated concerns finite element discretizations of elliptic problems, which are
then combined with a conjugate gradient solver in the continuation algorithm,
see Glowinski & Keller & Reinhart (1985). If the classical elimination theory
of algebra is applied to the problem of finding the real zero points of systems
of polynomials, large systems with special structure and sparsity arise. This
is touched upon in section 11.6.

It seems clear that an endless variety of combinations can be made of
continuation algorithms and sparse solvers. In view of this, we will discuss
how in general any sparse solver process can be incorporated into the general
scheme of continuation methods which we have been describing, and then
indicate more specifically how to incorporate a conjugate gradient method.
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10.2 General Large Scale Solvers

When dealing with large systems of equations in the context of continuation
methods, it is very advisable to determine the general structure and sparseness
properties of H ′(u), and to exploit them. It may thereby become possible
to incorporate into the continuation method a special linear solver process
possessing much better efficiency than any general linear solver (such as a
QL decomposition) applied to the same problem. Such special solvers might
be generically described as follows: Given H ′(u) and some vector e ∈ RN+1

which is not yet specified, we have an “efficient” method for obtaining the
solution x ∈ RN+1 for the linear system

(10.2.1)
H ′(u)x = y,

e∗x = 0,

whenever y ∈ RN is given. Among such methods might be linear conju-
gate gradient methods, direct factorization methods exploiting bandedness or
sparseness, multigrid, SOR, etc.

The choice of the vector e in (10.2.1) may be regarded as representing a
local parametrization, which usually is changed in the process of numerically
traversing a solution curve. Of primary importance in the choice of e is its
influence upon the condition of the coefficient matrix in (10.2.1) viz. we should
require that

(10.2.2) cond
(
H ′(u)
e∗

)
≈
√

cond
(
H ′(u)H ′(u)∗

)
are approximately of the same order. Intuitively speaking, the vector e should
be as parallel as possible to kerH ′(u).

Very typical is the following

(10.2.3) Example. Let e = ei ∈ RN+1 be the i th standard unit vector,
1 ≤ i ≤ N + 1. Then the linear system (10.2.1) reduces to

H ′i(u)xi = y,

x[i] = 0

where x[i] denotes the ith co-ordinate of x, H ′i(u) is obtained from H ′(u) by
deleting the i th column, and finally xi is obtained from x by deleting the i th

co-ordinate.

The above choice for e has frequently been used by several authors. The
choice of index i may be governed by the following motivation. To conform
with the requirement (10.2.2), choose i as the maximal index with respect to

(10.2.4) max
i
{ e∗i t

(
H ′(u)

) ∣∣ i = 1, 2, . . . , N + 1}.
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Of course, at any currently calculated point un, the tangent vector t
(
H ′(un)

)
might not be available yet, so one might take instead i as the maximal index
with respect to

(10.2.5) max
i
{ e∗i t

(
H ′(un−1)

) ∣∣ i = 1, 2, . . . , N + 1}.

The use of (10.2.5) has been advocated by Rheinboldt (1980).
We now want to show that given some efficient method for solving the

system (10.2.1), then also the Euler step t
(
H ′(u)

)
and the Newton step u −

H ′(u)+H(u) can be cheaply computed. For convenience, let us denote by

x = By

the solution operator of (10.2.1). We emphasize that the (N+1)×N -matrix B
is not explicitly given, but instead we have some efficient means of calculating
the result x = By.

Let us first investigate the determination of the tangent vector t
(
H ′(u)

)
.

By the definition of B, (10.2.1) implies H ′(u)x = H ′(u)By = y and e∗x =
e∗By = 0 for any y ∈ RN and hence

(10.2.6)
H ′(u)B = Id;

e∗B = 0∗.

If we set

(10.2.7) τ := e−BH ′(u)e

then H ′(u)τ = H ′(u)e−H ′(u)e = 0 by (10.2.6). Furthermore e∗τ = e∗e > 0
implies τ 6= 0. Hence

(10.2.8) t
(
H ′(u)

)
= ± τ

||τ ||

gives us the tangent vector. We note that the cost of calculating τ and hence
t
(
H ′(u)

)
requires essentially one calculation of H ′(u)e ( which is free in the

case of e = ith standard vector ) and one solving of (10.1.1) i.e. x := BH ′(u)e.
In most applications, the choice of sign in (10.2.8) will be clear from the

context e.g. we take the tangent which has a small angle with a previously ob-
tained tangent along the curve. Occasionally, it may be desirable to explicitly
calculate the sign of

det
(
H ′(u)
τ∗

)
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in order to obtain accurate information on the orientation of the curve, e.g. one
may wish to check whether a simple bifurcation point has been encountered
along the curve. To determine this sign, we note that

(
H ′(u)
τ∗

)
(B, τ) =

(
Id 0
τ∗B τ∗τ

)
,

(
H ′(u)
e∗

)
(B, τ) =

(
Id 0
0 e∗τ

)

and τ∗τ ≥ e∗τ = e∗e > 0 imply

(10.2.9) sign det
(
H ′(u)
τ∗

)
= sign det

(
H ′(u)
e∗

)
.

In many cases, the right hand side is immediately available from the “efficient”
linear equation solver we have chosen for (10.2.1).

Let us now consider how we can perform an operation involving the
Moore-Penrose inverse. Using the tangent vector t

(
H ′(u)

)
which we already

obtained in the previous step, from (10.2.6) and (3.2.5)(3) it is readily seen
that

H ′(u)+ =
[
Id− t

(
H ′(u)

)
t
(
H ′(u)

)∗]
B.

Hence, once t
(
H ′(u)

)
has been obtained, the cost of calculating w := H ′(u)+y

amounts to one solving of (10.2.1) i.e. x = By, and then calculating w =
x−

[
t
(
H ′(u)

)∗
x
]
t
(
H ′(u)

)
which is essentially the cost of one scalar product.

Let us summarize the above discussion in the form of a pseudo code by
sketching an example of a continuation method where the predictor step is
given by Euler’s method and the corrector consists of a simplified Newton
method (Chord Method). It is assumed that a “fast linear equation solver”
in the above sense has been selected.
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(10.2.10) Euler-Newton Method With Fast Linear Solver. comment:

input

begin

u ∈ RN+1 such that H(u) = 0; initial point

h > 0; initial steplength

e ∈ RN+1; vector for local parametrization

end;

repeat

solve

{
H ′(u)τ = H ′(u)e
e∗τ = 0

}
for τ ; apply fast solver

τ := e− τ ; t :=
τ

||τ || ; tangent vector

fix orientation of t;

v := u+ ht; Euler predictor

repeat corrector loop

solve

{
H ′(u)z = H(v)
e∗z = 0

}
for z; apply fast solver

z := z − (t∗z)t; orthogonal projection

v := v − z; corrector point

until ||z|| is sufficiently small;

u := v; new point along H−1(0)

choose a new steplength h > 0; steplength adaptation

choose a new direction e ∈ RN+1; the angle between e and t —

until traversing is stopped. should be small

We have seen that any special linear solver can be cheaply and conveniently
incorporated into the general Euler-Newton continuation method. In the next
section we shall discuss as a particular example, some of the details concerning
the integration of conjugate gradient methods into the numerical continuation
procedure.
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10.3 Nonlinear Conjugate Gradient Methods as Correctors

As we have already noted in the preceding sections, there are a number of
candidates for combining special methods for solving large linear systems hav-
ing special structure with numerical continuation methods. Among the ones
which immediately come to mind are: multigrid, successive over relaxation
and conjugate gradient methods. We choose to illustrate this point with conju-
gate gradient methods, because we regard them as being particularly versatile
and important in this context. The only reference known to us to date using
a combination of continuation and nonlinear conjugate gradient methods is
the paper of Glowinski & Keller & Reinhart (1985), concerning the solution of
certain nonlinear elliptic boundary value problems. Our discussion here will
be somewhat more general.

We begin with a description of the nonlinear conjugate gradient method
of Polak & Ribière (1969). This choice is based upon reports [ cf. Powell (1977)
or Bertsekas (1984) ] that in numerical practice it has generally yielded the
best results. To outline the method, let us assume that the problem to be
solved is

(10.3.1) min
u
{ϕ(u)

∣∣ u ∈ RN }

where ϕ : RN → R is a smooth nonlinear functional, usually having an
isolated local minimal point ū which we desire to approximate.

The simplest example is a uniformly convex quadratic functional ϕ de-
fined by

(10.3.2) ϕ(u) =
1
2
u∗Au− u∗b

where b ∈ RN and A is a positive definite N ×N -matrix. Recalling that we
have adopted the convention ∇ϕ = (ϕ′)∗ for the gradient of ϕ, it is consistent
to denote the Hessian of ϕ by ∇ϕ′. In the above example (10.3.2), we therefore
have ∇ϕ(u) = Au − b and ∇ϕ′(u) = A. The solution ū to (10.3.1) for this
functional ϕ is then clearly the solution ū = A−1b of the linear equation
Au = b. The following is an outline of the conjugate gradient method due to
Polak & Ribière (1969).
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(10.3.3) Conjugate Gradient Algorithm. comment:

input u0 ∈ RN ; initial point

g0 := ∇ϕ(u0); d0 := g0; calculate initial gradients

repeat for n = 0, 1, . . .
ρn := arg minρ>0 ϕ(un − ρdn); line search

un+1 := un − ρndn;
gn+1 := ∇ϕ(un+1);

γn :=

[
(gn+1 − gn)∗gn+1

]
||gn||2

;

dn+1 := gn + γndn; new conjugate gradient

until convergence.

Since our aim here is merely to make an application of a conjugate gradient
method — and especially, in the context of an underdetermined nonlinear sys-
tem of equations — we will not give a detailed account concerning conjugate
gradient methods for nonlinear problems. However, we shall recall some of
their properties. For more details we suggest the books of Fletcher (1980),
Gill & Murray & Wright (1981), Hestenes (1980), McCormick (1983) or Polak
(1971) and the survey paper of Stoer (1983).

The main theoretical justification of the conjugate gradient algorithm
lies in its properties when ϕ(u) is a uniformly convex quadratic functional as
in (10.3.2). In this special case the algorithm becomes the familiar conjugate
gradient method due to Hestenes & Stiefel (1952) for solving the linear system
Au = b. For more discussion of this case, we suggest the books of Golub &
Van Loan (1983) or Stoer & Bulirsch (1980).

In the special case (10.3.2) we obtain the following result for the choice
of the steplength ρn in (10.3.3):

(10.3.4) Lemma. Let ϕ be a uniformly convex quadratic form. Then the
following statements are equivalent:

(1) ρn is a solution of the problem min
ρ∈R

ϕ(un − ρdn) ;

(2) ϕ′(un − ρndn)dn = 0;

(3)
[
ϕ′(un)− ρnd∗n∇ϕ′(un)

]
dn = 0;

(4) ρn =
ϕ′(un)dn

d∗n∇ϕ′(un)dn
.

The proof of the above lemma is immediate from the fact that∇ϕ′ is a constant
positive definite matrix and (3) represents the Taylor expansion for ϕ′(un −
ρndn)dn about un. The following theorem is the main result on conjugate
gradient methods:
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(10.3.5) Theorem. Let ϕ be a uniformly convex quadratic form. Let λ1 >
λ2 > · · · > λk be an enumeration of all distinct eigenvalues of the Hessian
∇ϕ′. Then

(1) the conjugate gradient algorithm (10.3.3) stops with the solution ū in k
steps if the computations are exact;

(2) ||un − ū|| ≤ 2
(√

κ− 1√
κ+ 1

)n
||u0 − ū|| ;

where κ = ||∇ϕ′|| ||∇ϕ′−1|| = λ1/λk is the condition number of the Hessian
of ϕ.

The conclusion to be drawn from the above theorem is that initially, the
convergence of the conjugate gradient method may be slow because of (2),
but by the kth step a very substantial improvement in the approximation of
the solution has been obtained. This appears to hold even in the general
case where the functional ϕ is no longer quadratic. To be more specific, let
us assume that ū is a local minimal solution point of the problem (10.3.1)
at which the Hessian ∇ϕ′(ū) is positive definite. There are several results
concerning the convergence of the conjugate gradient method which essentially
state that local superlinear convergence towards ū holds, see e.g. Cohen (1972)
or McCormick & Ritter (1974). However it appears that as of this date, the
convergence results are somewhat unsatisfactory. One of the difficulties is
that there are various possibilities for obtaining the factors γn in (10.3.3), the
one presented here is due to Polak & Ribière (1969). Another difficulty is
that in practice, we do not want to perform a very precise one-dimensional
minimization in (10.3.3) in order to obtain an acceptable ρn since this is
costly. Most of the convergence rate proofs require cyclic reloading i.e. setting
γn = 0 after every N steps. The general idea of such proofs involves the
approximation of ϕ(u) via Taylor’s formula by

ϕ(u) ≈ ϕ(ū) + ϕ′(ū)(u− ū) + (u− ū)∗∇ϕ′(ū)(u− ū),

and then to use the convergence result (10.3.5) for the quadratic case. Actu-
ally, even in the quadratic case, because of the presence of rounding errors,
we cannot expect that (1) will occur. Instead, we should regard the conju-
gate gradient method even in this case as an iterative method which makes a
substantial improvement after k steps.

The ideal situation in (2) would occur when the condition number κ =
1 i.e. when all the eigenvalues of ∇ϕ′ are equal. Intuitively, the next best
situation would occur when the eigenvalues have as few “cluster points” as
possible. We use this observation to motivate the idea of preconditioning
for the conjugate gradient method. For more details (in case of a quadratic
functional) the reader may refer to Golub & Van Loan (1983). Let us make
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the change of co-ordinates

(10.3.6) ũ = Bu

where B is an as yet unspecified nonsingular N ×N -matrix. We set

ϕ̃(ũ) := ϕ(B−1ũ) = ϕ(u)

and consider the conjugate gradient method (10.3.3) for the new functional
ϕ̃. It follows that

∇ϕ̃(ũ) = (B∗)−1∇ϕ(ũ);

∇ϕ̃′(ũ) = (B∗)−1∇ϕ′(ũ)B−1.

In view of theorem (10.3.5) we would ideally like to choose B such that

(B∗)−1∇ϕ′(ũn)B−1 = Id

at the current approximation point ũn i.e. we would like to have the Cholesky
factorization

∇ϕ′(ũn) = B∗B.

Using the above formulae for this choice of B, it is easily seen that the new
gradient is obtained by transforming the Newton direction via the above tran-
formation (10.3.6):

∇ϕ̃(ũn) = B∇ϕ′(ũn)−1∇ϕ(ũn).

Hence, this extreme case of preconditioning gives us a Newton-like step. If we
recall however, that the Hessian ∇ϕ′(ũn) was to have been large and sparse,
it is perhaps inefficient to perform the complete Cholesky factorization of
∇ϕ′(ũn) merely for the purpose of attaining the optimal conditioning. It is
reasonable to compromise somewhat on the improvement of the conditioning
in order to maintain a low computational cost when performing a step of
the conjugate gradient method. For this purpose the strategy of incomplete
Cholesky factorization may be adopted viz. one only calculates the entries of
B for which the corresponding entries of the Hessian ∇ϕ′(ũn) are nonzero, and
one regards all other entries of B as being equal to zero, see e.g. Gill & Mur-
ray & Wright (1981) and the papers on preconditioning cited therein. The
incomplete Cholesky factorization is not always numerically stable. Manteuf-
fel (1979) identifies classes of positive definite matrices for which incomplete
Cholesky factorization is stable.

To continue our motivational discussion, let us now suppose that instead
of using the quadratic functional (10.3.2) to solve the linear equations Au = b,
we use

(10.3.7) ϕ(u) =
1
2
||Au− b||2
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in the minimization problem (10.3.1) where A is an N × (N + 1)-matrix with
maximal rank, b ∈ RN is given and u varies now in RN+1. We obtain

ϕ(u) =
1
2
||Au− b||2;

∇ϕ(u) = A∗(Au− b);
∇ϕ′(u) = A∗A.

The first major difference from the previous discussion which we may note is
that the solutions of (10.3.1) are not isolated but consist of a 1-dimensional
linear space, and the Hessian ∇ϕ′ = A∗A is not positive definite. However, by
examining the conjugate gradient method (10.3.3), we observe immediately
that all changes uN+1 − uN lie in the N -dimensional linear space rangeA∗ =
(kerA)⊥. Consequently, we may regard the entire algorithm (10.3.3) as if it
is taking place in a hyperplane parallel to rangeA∗. However, on rangeA∗,
the matrix A∗A is in fact positive definite. Thus, the earlier discussion for
quadratic functionals applies again and we obtain from theorem (10.3.5) the

(10.3.8) Corollary. Let ϕ be the convex quadratic form (10.3.7). Let λ1 >
λ2 > · · · > λk be an enumeration of all nonzero distinct eigenvalues of the
Hessian ∇ϕ′(u) = A∗A. Then

(1) the conjugate gradient algorithm (10.3.3) stops after k steps at the solu-
tion ū such that ū− u0 ∈ rangeA∗, if the computations are exact;

(2) ||un − ū|| ≤ 2
(√

κ− 1√
κ+ 1

)n
||u0 − ū|| ;

where κ = ||AA∗|| ||(AA∗)−1|| = λ1/λk is the condition number of the non-
singular N ×N -matrix AA∗.

We note in passing that A∗A and AA∗ have the same nonzero eigenval-
ues with the same multiplicities. This is a standard fact in linear algebra. A
useful preconditioning is now given in a way slightly different from (10.3.6).
The same minimal solution points are also obtained by the following trans-
formation of ϕ:

(10.3.9) ϕ̃(u) =
1
2
||L−1(Au− b)||2

where L is again an as yet unspecified nonsingular N ×N -matrix. Then we
have

∇ϕ̃(u) = A∗(L∗)−1L−1(Au− b);
∇ϕ̃′(u) = A∗(LL∗)−1A.

Again, in view of corollary (10.3.8) we would ideally wish to choose L so that

LL∗ = AA∗
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for then
∇ϕ̃′(u) = A∗(AA∗)−1A = A+A

is the orthogonal projection onto rangeA∗, cf. (3.2.5)(1), and hence has one
eigenvalue equal to 0 and N eigenvalues equal to 1. Thus if a QL factorization
of A were available, so that AQ = (L, 0), then

LL∗ = AQQ∗A∗ = AA∗

and hence this L would serve ideally as a transformation in (10.3.8). Of
course, it is not intended to actually obtain the QL factorization of A as in
our discussions in the preceding chapters, for then we would be abandoning
the advantages offered by sparse solvers. Instead, analogously to the previous
discussion concerning incomplete Cholesky factorization, one could obtain an
L via a corresponding “incomplete QL factorization” of A, and then use this
L as the transformation in (10.3.8). We shall give some further discussion of
this below.

Let us now finally turn to the case which actually concerns us viz.

(10.3.10) min
u

1
2
||H(u)||2

where H : RN+1 → RN is a smooth map characterizing a solution curve
H(u) = 0. That is, in the context of (10.3.1), we are now considering the
functional

(10.3.11) ϕ(u) :=
1
2
||H(u)||2.

The solutions of (10.3.10) form a 1-manifold if 0 is a regular value of H. We
have

∇ϕ(u) = H ′(u)∗H(u);

∇ϕ′(u) = H ′(u)∗H ′(u) +O
(
||H(u)||

)
.

Hence the gradient ∇ϕ(u) = H ′(u)∗H(u) is orthogonal to the tangent vector
t
(
H ′(u)

)
. This motivates the idea for implementing the conjugate gradient

method (10.3.3) as a corrector into a continuation method. Analogously to
the case when the minimization problem has isolated solutions at which the
Hessian is positive definite, we may expect local superlinear convergence of
the conjugate gradient method (10.3.3) also for the functional (10.3.10). The
solution will be a point ū ∈ H−1(0) which is essentially nearest to the start-
ing point u0. Our conjecture that superlinear convergence should occur is at
this point only a conjecture. To our knowledge, no proof of this exists. We
propose the above conjugate gradient method as a reasonable corrector pro-
cedure nevertheless, provided once again, that an effective preconditioning
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is incorporated. In the present context, as a generalization of the precon-
ditioning (10.3.9), this is now easy to describe. We consider the following
transformation of ϕ:

(10.3.12) ϕ̃(u) =
1
2
||L−1H(u)||2

where again L is an as yet unspecified nonsingular N ×N -matrix. Then we
have

∇ϕ̃(u) = H ′(u)∗(LL∗)−1H(u);(10.3.13)
∇ϕ̃′(u) = H ′(u)∗(LL∗)−1H ′(u) +O

(
||H(u)||

)
.(10.3.14)

If we assume that our continuation method furnishes predictor points which
are already near H−1(0), we may neglect the O

(
||H(u)||

)
term in (10.3.13).

More precisely,

(10.3.15) H(u) = 0 ⇒ ∇ϕ̃′(u) = H ′(u)∗(LL∗)−1H ′(u).

Thus, from corollary (10.3.8) and the discussion after (10.3.9), an ideal choice
would be an L such that

(10.3.16) LL∗ = H ′(u)H ′(u)∗

is the Cholesky decomposition for some current point u near the solution curve
C ⊂ H−1(0). We then have

∇ϕ̃(u) = H ′(u)∗(LL∗)−1H(u)

= H ′(u)∗(H ′(u)H ′(u)∗)−1H(u)
= H ′(u)+H(u),

cf. (3.2.2). Hence in this case, the gradient ∇ϕ̃(u) = H ′(u)+H(u) coincides
with the usual Newton direction which has been used as a corrector in previous
chapters.

Of course, if we really want to use the Cholesky decomposition (10.3.16)
which can be obtained via a QL factorization of H ′(u), cf. the discussion
after (10.3.9), then we would relinquish whatever advantage sparseness may
have offered. Thus, we want to determine L also with a small computational
expense and in such a way that linear equations LL∗x = y are cheaply solved
for x.

Let us describe the idea of the QL analogue of the incomplete Cholesky
factorization by means of an example. Let us suppose that H ′(u) has a band
structure with the exception of the last column e.g.

(10.3.17) H ′(u) =


x x 0 0 0 0 x
x x x 0 0 0 x
0 x x x 0 0 x
0 0 x x x 0 x
0 0 0 x x x x
0 0 0 0 x x x

 .



     

108 10. Large Scale Problems

ThenH ′(u)∗ is transformed to upper triangular form via e. g. Givens rotations
so that

H ′(u)∗ =



x x 0 0 0 0
x x x 0 0 0
0 x x x 0 0
0 0 x x x 0
0 0 0 x x x
0 0 0 0 x x
x x x x x x


−→



x x x z z z
0 x x x z z
0 0 x x x z
0 0 0 x x x
0 0 0 0 x x
0 0 0 0 0 x
0 0 0 0 0 0


=
(
L∗

0∗

)
.

The incomplete QL factorization would yield an upper triangular matrix L∗

except that the elements designated by z are not calculated, but instead are
set equal to zero. In general, if H ′(u) has k nonzero bands, then L should
have k nonzero bands too.

We now outline an algorithm which incorporates a conjugate gradient
corrector.

(10.3.18) Secant – Conjugate Gradient Algorithm. comment:

input

begin

u ∈ RN+1; approximate point on H−1(0)
t ∈ RN+1; approximation to t

(
H ′(u)

)
h > 0; steplength

end;
repeat

v := u+ ht; predictor step

calculate LL∗ ≈ H ′(v)H ′(v)∗ preconditioner

such that L is lower triangular;
gv := H ′(v)∗(LL∗)−1H(v); d := gv; gradients

repeat corrector loop

ρ̄ :≈ arg min
ρ≥0

1
2
||L−1H(v − ρd)||2;

w := v − ρ̄d; corrector step

gw := H ′(w)∗(LL∗)−1H(w); new gradient

γ :=
(gw − gv)∗gw
||gv||2

;

d := gw + γd; new conjugate gradient

v := w; gv := gw;
until convergence;
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adapt steplength h > 0; see chapter 6

t :=
(w − u)
||w − u|| ; approximation to t

(
H ′(w)

)
u := w; new point approximately on H−1(0)

until traversing is stopped.

We conclude this chapter with a number of remarks concerning details and
modifications of the above algorithm. First of all, if the evaluation of H ′(w) is
very costly, one may prefer to hold it fixed in the corrector loop. Furthermore,
let us mention several possibilities for solving the line search problem

(10.3.19) min
ρ≥0
||L−1H(v − ρd)||2.

Recalling (10.3.4), let us approximate the functional ϕ̃(v−ρd), which is to be
minimized, by its truncated Taylor expansion:

ϕ̃(v)− ρϕ̃′(v)d+
1
2
ρ2d∗∇ϕ̃(v)′d.

This is minimized exactly when

(10.3.20) ρ =
ϕ̃′(v)d

d∗∇ϕ̃(v)′d

provided ∇ϕ̃(v)′ is positive definite. In particular, for

ϕ̃(v − ρd) =
1
2
||L−1H(v − ρd)||2

we have

(10.3.21) ϕ̃′(v)d = H(v)∗(LL∗)−1H ′(v)d = g∗vd

and

d∗∇ϕ̃(v)′d = d∗H ′(v)∗(LL∗)−1H ′(v)d+O( ||H(v)|| ||d|| )
≈ ||L−1H ′(v)d||2.(10.3.22)

Furthermore, since the evaluation of H ′(v)d may be costly for large scale
problems, an inexpensive approximation of H ′(v)d may be made by using the
central difference formula

H ′(v)d = (2ε)−1

(
H(v + ε

d

||d|| )−H(v − ε d

||d|| )
)
||d||

+O(ε2||d||)(10.3.23)
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for an appropriate discretization step ε > 0. Now items (10.3.21) – (10.3.23)
can be used in (10.3.20) to approximate the solution ρ̄ of (10.3.19). Let us
finally note that this approach will require three evaluations of H viz. at v
and v ± εd/||d||. We discuss below how an appropriate value for ε may be
determined.

A second possibility for solving (10.3.19) is to merely use a standard
line search algorithm which does not require the evaluation of ∇ϕ̃ such as a
quadratic fit or golden section algorithm. For more details on such meth-
ods any standard book on nonlinear optimization may be consulted e.g. Mc-
Cormick (1983). The disadvantage of this approach is that it may require
many evaluations of L−1H.

Usually, the predictor-corrector steps of a continuation method are per-
formed in such a way that all generated points are close to the solution curve
in H−1(0). Hence, the quadratic approximation considered in (10.3.20) will
give good results in the situation which we are presently considering. Thus we
recommend the first approach using (10.3.20) – (10.3.23) for solving (10.3.19).
We therefore only carry out an error analysis concerning the approximation
(10.3.23) for determining the choice of ε. Hence let us consider the general
approximation

(10.3.24) ψ′(0) ≈ (2ε)−1
(
ψ(ε)− ψ(−ε)

)
where ψ : R→ R is some smooth function. We must take two kinds of errors
into consideration viz. the cancellation error and the truncation error. If we
denote by δ the relative machine error, then the cancellation error for the
difference in (10.3.24) can essentially be estimated by

(10.3.25)
2Cδ
2ε

.

Here we assume that the function ψ can be calculated within a precision Cδ
where C is a typical magnitude for ψ. Of course, this assumption may not
hold for all types of functions. The leading term of the truncation error of
the above approximation (10.3.24) is easily obtained by Taylor’s expansion:

(10.3.26)
|ψ(3)(0)|

6
ε2.

Hence the optimal choice of ε is obtained by minimizing the sum of the esti-
mates (10.3.25) and (10.3.26). This yields

ε3 =
C

3|ψ(3)(0)|δ.

If we neglect the factors which are likely to be O(1), we finally obtain

(10.3.27) ε ≈ 3
√
δ.
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Recently, some classes of generalized conjugate direction methods have
been developed to solve N ×N systems of linear equations Mx = b where the
matrix M is not necessarily assumed to be positive definite or even symmetric,
see Dennis & Turner (1987) for a unifying approach of convergence results.
The generalized minimal residual algorithm of Saad & Schultz (1986), see also
the more stable version of Walker (1988), seems to be of particular interest in
our context, since it only uses multiplications by M . If we take

M =
(
H ′(u)
t∗

)
,

where t is some suitable approximation of t
(
H ′(u)

)
e.g. given by a secant,

then it is easy to program a multiplication Mx. In fact, the multiplication
H ′(u)x may be approximated by a forward or central difference formula for
the directional derivative as in (10.3.23), so that one multiplication by M es-
sentially involves one scalar product and one or two evaluations of the map H.
The authors are currently investigating, how this linear solver should best be
installed into the iterative Newton-type corrector process of (10.2.10). When
this has been determined, it may turn out to be superior to using the nonlin-
ear conjugate gradient method as a corrector as described in (10.3.18). The
HOMPACK continuation package, see Watson & Billups & Morgan (1987), in-
corporates separate routines for dense and sparse Jacobians. Irani & Ribbens
& Walker & Watson & Kamat (1989) implement and compare several precon-
ditioned gradient variations in the context of HOMPACK.
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Chapter 11. Numerically Implementable
Existence Proofs

11.1 Preliminary Remarks

Existence theorems are among the most frequently invoked theorems of math-
ematics since they assure that a solution to some equation exists. Some of the
celebrated examples are the fundamental theorem of algebra, the fixed point
theorems of Banach, Brouwer, Leray & Schauder, and Kakutani. With the
exception of the Banach fixed point theorem, the classical statements of the
above theorems merely assert the existence of a fixed point or a zero point of
a map, but their traditional proofs in general do not offer any means of ac-
tually obtaining the fixed point or zero point. Many of the classical proofs of
fixed point theorems can be given via the concept of the Brouwer degree. We
will not need this concept in our subsequent discussions. However, for read-
ers wishing to read up on degree theory we can suggest the books of Amann
(1974), Berger (1977), Cronin (1964), Deimling (1974) or Schwartz (1969).

Although many fixed point theorems are formulated in the context of
maps on Banach spaces, our discussions will be primarily confined to finite
dimensional spaces since we are mainly concerned with numerically calculating
solution points. The following statement and proof of the well-known Leray &
Schauder fixed point theorem gives a sample of the degree-theoretical proof.

(11.1.1) Theorem. Let

(1) f : RN → RN be a continuous map; (for simplicity we assume f to be
defined on all of RN )

(2) Ω ⊂ RN be an open, bounded, non-empty set;

(3) p ∈ Ω;

(4) λ(f(x)− p) 6= (x− p) for all λ ∈ [0, 1), x ∈ ∂Ω.

Then there exists a fixed point x0 ∈ Ω of f such that f(x0) = x0.

Proof. We can assume that f(x) 6= x for all x ∈ ∂Ω for otherwise we would
already have a fixed point. Thus (4) also holds for λ = 1. Let us define a
homotopy map

H : RN × [0, 1]→ RN
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by H(x, λ) := (x − p) − λ(f(x) − p). Then deg(H(·, λ),Ω, 0) is well-defined
and it remains constant with respect to λ. Since deg(H(·, 0),Ω, 0) = 1, then
deg(H(·, 1),Ω, 0) = 1. Hence there is at least one x0 ∈ Ω such that H(x0, 1) =
0, i.e. f(x0) = x0.

The above proof is not “constructive” as such, since it doesn’t tell us
how to obtain x0. However, it can be made constructive if we are able to
numerically trace the implicitly defined curve H−1(0) from λ = 0 to λ = 1.
Since we have described in the previous chapters numerical techniques for
tracing such curves when f is smooth, the above proof can be made to be
“constructive” or “implementable”.

The idea that one could replace degree arguments by considering the
inverse images of points of mappings was the theme of the book by Milnor
(1965). The thought of actually numerically tracing inverse images of points
came somewhat later although Haselgrove (1961) had already outlined the
main ideas for doing it. The first numerically implementable proofs of the
Brouwer fixed point theorem given by Scarf (1967) and Kuhn (1969) were
not restricted to smooth maps f and were based more upon the Sperner’s
lemma approach to proving the Brouwer fixed point theorem, such as in the
paper of Knaster & Kuratowski & Mazurkiewicz (1929). Eaves (1972) gave a
“PL algorithm” which can be regarded as an implementation of the homotopy
approach. The “restart method” of Merrill (1972) also may be considered to
represent a homotopy approach.

A proof of the Brouwer fixed point theorem for smooth f involving the
nonretraction proof of Hirsch (1963) and the tracing of the inverse image of
a point for a mapping was given by Kellogg & Li & Yorke (1976). A proof
using the numerical tracing of a homotopy curve was given by Chow & Mallet-
Paret & Yorke (1978). In the latter approaches a general version of the Sard’s
theorem

(
see e.g. the books of Abraham & Robbins (1967) or Hirsch (1976)

)
played a crucial role for ruling out the presence of singular points on the
homotopy paths. For the case that f is a smooth map the efficient predictor-
corrector methods outlined in the earlier chapters are immediately available
for numerically tracing a homotopy path.

For general discussions concerning the correspondence between degree
arguments and numerical continuation algorithms we suggest the following
articles: Alexander & Yorke (1978); Garcia & Zangwill (1979), (1981); Peitgen
(1982). Further references are also cited in these articles. Finite-dimensional
discretizations of continuation methods in Banach spaces have been studied
by Brezzi & Rapaz & Raviart (1980), (1981), (1982).

Since the appearance of the constructive proofs of the Brouwer fixed point
theorem many other constructive existence proofs have been described. To
give a partial enumeration of just a few such examples we mention:
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• antipodal theorems such as the Borsuk & Ulam theorem have been con-
structively proven in Alexander & Yorke (1978), Allgower & Georg
(1980), Barany (1980), Meyerson & Wright (1979) and Todd & Wright
(1980);

• fixed point theorems for multivalued maps such as the Kakutani theorem
have been constructively proven in Eaves (1971), Eaves & Saigal (1972),
Merrill (1972), Todd (1976) and Allgower & Georg (1980);

• economic equilibria existence has been constructively proven by Scarf &
Hansen (1973);

• constructive existence proofs for nonlinear complementarity problems
have been given by Eaves (1971), Kojima (1974), Kojima & Saigal (1979);

• implementable proofs of the fundamental theorem of algebra have been
given by Chow & Mallet-Paret & Yorke (1978), Drexler (1977), Kojima
& Nishino & Arima (1979), Kuhn (1974);

• continuation methods for finding all solutions to a system of complex
polynomial equations have been published by Chow & Mallet-Paret &
Yorke (1979), Garcia & Li (1980), Garcia & Zangwill (1979), Kojima &
Mizuno (1983), Morgan (1983), (1987), Rosenberg (1983), Wright (1985);

• continuation methods for linking several solutions of a system of equa-
tions have been studied by Peitgen & Prüfer (1979), Jürgens & Peitgen
& Saupe (1980), Allgower & Georg (1980), (1983) and Diener (1986),
(1987).

11.2 An Example of an Implementable Existence Theorem

The specific example we give in this section is similar to a discussion given
by Chow & Mallet-Paret & Yorke (1978). It deals with the case of smooth
maps. We begin with the following

(11.2.1) Assumptions.

(1) f : RN → RN is a C∞-map ;

(2) Ω ⊂ RN is bounded, open and non-empty;

(3) p ∈ Ω;

(4) 0 is a regular value of Id− f .

We have made the last assumption (4) in order to simplify the subsequent
discussions. It is not difficult to discuss the general case along the same lines,
but this would involve more technical details, see the remarks at the end of
this section.

We will make repeated use of the following general version of Sard’s
theorem for maps with additional parameters, see e.g. Abraham & Robbin
(1967) or Hirsch (1976). Yomdin (1990) has given a version of Sard’s theorem
which is adapted for numerical purposes.
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(11.2.2) Sard’s Theorem. Let A, B, C be C∞-manifolds of finite dimen-
sions with dimA ≥ dimC, and let F : A × B → C be a C∞-map. Assume
that c ∈ C is a regular value of F i.e. for F (a, b) = c we have that the total
derivative F ′(a, b) : TaA× TbB → TcC has maximal rank. Here TaA denotes
the tangent space of A at a etc. Then for almost all b ∈ B (in the sense of
some Lebesgue measure on B) the restricted map F (·, b) : A → C has c as a
regular value.

Note that a value c ∈ C which is not in the range of F is by definition
a regular value. The following standard version of Sard’s theorem can be
obtained as a special case:

(11.2.3) Sard’s Theorem. Let A, C be C∞-manifolds of finite dimensions
such that dimA ≥ dimC, and let F : A→ C be a C∞-map. Then almost all
c ∈ C are regular values of F .

Let us define a homotopy map H : RN ×R× Ω→ RN by

(11.2.4) H(x, λ, p) := x− p− λ(f(x)− p).

For the “trivial level” λ = 0 we obtain the “trivial map” H(x, 0, p) = x − p
which has the unique zero point p, our “starting point”. On the “target level”
λ = 1 we obtain the “target map” H(x, 1, p) = x − f(x) whose zero points
are our points of interest i.e. the fixed points of f . The Jacobian of (11.2.4)
with respect to all variables (x, λ, p) is given by

(11.2.5) H ′(x, λ, p) = (Id− λf ′(x), p− f(x), (λ− 1)Id).

From (11.2.1) and (11.2.5) it follows that 0 is a regular value of H. In fact,
the first N columns of (11.2.5) are linearly independent for H(x, λ, p) = 0
and λ = 1 due to (11.2.1)(4), and clearly the last N columns of (11.2.5) are
linearly independent for λ 6= 1. Consequently, by Sard’s theorem (11.2.2) we
can conclude the following

(11.2.6) Proposition. For almost all p ∈ Ω (in the sense of N-dimensional
Lebesgue measure) 0 is a regular value of the restricted map H(·, ·, p).

In view of this statement it is now reasonable to make the following

(11.2.7) Assumption. Let us assume that the starting point p ∈ Ω is chosen
in accordance with (11.2.6) i.e. in such a way that 0 is a regular value of the
map H(·, ·, p).

As a consequence of the preceding remarks let us give the following

(11.2.8) Summary. For our choice of the starting point p ∈ Ω, the con-
nected component Cp of H(·, ·, p)−1(0) which contains the point (p, 0) rep-

resents a smooth curve s 7→
(
x(s), λ(s)

)
which can be regarded as being

parametrized with respect to arclength s. That is
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(1) Cp =
{(
x(s), λ(s)

) ∣∣ s ∈ R
}

;

(2)
(
x(0), λ(0)

)
= (p, 0);

(3) furthermore, all points of Cp are regular points of the map H(·, ·, p).

We may now of course numerically trace the curve Cp by one of the predictor-
corrector continuation methods described in some of our earlier chapters. A
few items remain to be verified to see how a predictor-corrector method can
be implemented. As far as the initial tangent vector is concerned, we can
differentiate the equationH

(
x(s), λ(s), p

)
= 0 and evaluate the result at s = 0.

Using (11.2.4) and (11.2.8)(2) we obtain

ẋ(0) + λ̇(0)
(
p− f(p)

)
= 0.

Hence the initial tangent vector is given by(
ẋ(0)
λ̇(0)

)
= α

(
f(p)− p

1

)
for some constant α. Since also ||ẋ(0)||2 + |λ̇(0)|2 = 1 must hold, we have

(11.2.9)
(
ẋ(0)
λ̇(0)

)
= ±

(
1 + ||f(p)− p||2

)− 1
2

(
f(p)− p

1

)
.

Finally, since we want to numerically trace the curve Cp in the positive λ-
direction, we must choose the positive sign in (11.2.9).

Now we see that at s = 0 i.e. at the starting point
(
x(0), λ(0)

)
the curve

Cp is transverse to RN ×{0} i.e. not tangential to the hyperplane RN ×{0}.
From (11.2.4) it follows that H(·, ·, p)−1(0) intersects RN ×{0} only at (p, 0),
and since Cp is transverse to RN × {0}, we have

(11.2.10) Cp ≡ R

i.e. Cp is homeomorphic to R, because H(·, ·, p)−1(0) consists only of com-
ponents which are homeomorphic either to R or to the unit circle S1 ⊂ R2.
Using (11.2.8) it is now easy to see that

(11.2.11) Cp ∩
[(

Ω× {1}
)
∪
(
∂Ω× (0, 1)

)]
6= ∅

i.e. the curve Cp hits the boundary of Ω×(0, 1) at some other point which is not
on the trivial level RN × {0}. The validity of (11.2.11) could be proven from
elementary facts about ordinary differential equations concerning the maximal
interval of existence of a solution (“a curve cannot just end”). However, we
will argue as follows. If (11.2.11) did not hold, then

Cp =
{(
x(s), λ(s)

) ∣∣ s ∈ R
}
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would have an accumulation point (x0, λ0) ∈ Ω × [0, 1] for s → ∞, i.e.
there would exists a sequence {sn}n∈N ⊂ R with limn→∞ sn = ∞ and
limn→∞

(
x(sn), λ(sn)

)
= (x0, λ0). Then H(x0, λ0, p) = 0, because H is con-

tinuous. Since 0 is a regular value of H(·, ·, p), the 1-manifold H(·, ·, p)−1(0)
can be parametrized ( say ) with respect to arclength in a neighborhood of
(x0, λ0). Since Cp is a connected component of H(·, ·, p)−1(0), it must contain
this parametrized curve near (x0, λ0). On the other hand, (x0, λ0) is an ac-
cumulation point for s→∞, and we conclude that Cp contains a closed loop,
a contradiction to (11.2.10).

To assert the existence of a fixed point of f it is necessary to make an
additional hypothesis concerning the behavior of f on the boundary ∂Ω. We
shall call this an LS boundary condition since it is similar to the condition of
Leray & Schauder (1934) for infinite dimensional Banach spaces:

(11.2.12) λ
(
f(x)− p

)
6= (x− p) for x ∈ ∂Ω and 0 ≤ λ < 1.

This LS condition implies

Cp ∩
(
∂Ω× (0, 1)

)
= ∅,

and from (11.2.11) we conclude

Cp ∩
(
Ω× {1}

)
6= ∅.

Thus f has at least one fixed point. As a consequence of the preceding dis-
cussion we can conclude that a fixed point of f can be numerically obtained
by tracing Cp until the target level λ = 1 is reached.

If all of the above hypotheses are fulfilled except the assumption that 0
is a regular value of Id − f , cf. (11.2.1)(4), then the above argument does
not work. The statement (11.2.6) can be modified in such a way that 0 is a
regular value of the restricted map

(x, λ) ∈ RN ×
(
R \ {1}

)
7−→ H(x, λ, p)

for almost all choices of the starting value p ∈ Ω. Hence λ = 1 may possibly
be an exceptional level. In this case, let

Cp =
{(
x(s), λ(s)

) ∣∣ 0 ≤ s < s0

}
, s0 ∈ (0,∞] , s = arclength ,

denote the connected component of{
(x, λ)

∣∣ H(x, λ, p) = 0, x ∈ RN, 0 ≤ λ < 1
}

which contains (p, 0). Only Cp∩
(
Ω×{1}

)
6= ∅ can be shown, i.e. the curve Cp

still reaches the target level λ = 1 at some point (x0, 1) such that f(x0) = x0,
but only in the limit s → s0. More precisely,

(
x(s), λ(s)

)
has at least one

accumulation point (x0, λ0) for s→ s0, and it is not hard to see that we must
have λ0 = 1 and f(x0) = x0 ∈ Ω for all such accumulation points. Let us
indicate some possibilities.
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(1) The curve Cp may end at the target level λ = 1 at some point(
x(s0), λ(s0)

)
= (x0, 1)

such that f(x0) = x0. It may happen that x0 is not a regular point of
Id− f but however (x0, 1) is a regular point of the homotopy map H. In
that case λ̇(s0) = 0 i.e. the tangent vector is in RN × {0}.

(2) The curve
(
x(s), λ(s)

)
may oscillate toward Ω × {1} as s → s0 = ∞.

The set of accumulation points can be a singleton or a more complicated
set of fixed points of f . The reader may construct some examples which
demonstrate this.

In the next section we relate the above general discussion to the classical
Brouwer fixed point theorem.

11.3 Several Implementations for Obtaining Brouwer Fixed
Points

The implementation by Kellogg & Li & Yorke (1976) for obtaining a Brouwer
fixed point was based upon Hirsch’s theoretical proof using non-retractibility
(1963). In this section we will describe the ideas of the Kellogg & Li & Yorke
implementation and show that their approach is much nearer to the homotopy
approach outlined in section 11.2 than it might appear at first glance. The
main differences actually lie in certain technical considerations such as the
numerical stability of the methods.

Let us begin this discussion with a simple hypothesis for the Brouwer
fixed point theorem for smooth maps:

(11.3.1) Assumption.

(1) f : RN → RN is a C∞-map;

(2) Ω = {x ∈ RN
∣∣ ||x|| < 1} is the standard unit ball;

(3) f(RN ) ⊂ Ω;

(4) 0 is a regular value of Id− f .

Again, the somewhat stronger assumption (4) is made in order to simplify
the subsequent discussion. It is clear that (11.3.1) implies the LS condition
(11.2.12) for any starting point p ∈ Ω and hence it follows that f has a fixed
point which can be numerically traced as described in section 11.2. Kellogg
& Li & Yorke however originally used a different approach. They defined a
map Ĥ in the following way:

(11.3.2) Definition. Let C = {x ∈ RN
∣∣ f(x) = x} be the fixed point set

of f . Then Ĥ : Ω \ C −→ ∂Ω is defined by Ĥ(x) = f(x) + µ(x)
(
x − f(x)

)
where µ(x) > 0 is so chosen that ||Ĥ(x)|| = 1.



x

f(x)

p

11.3 Several Implementations for Obtaining Brouwer Fixed Points 119

Figure 11.3.a The retraction

map Ĥ(x) = p

Figure 11.3.a illustrates how p = Ĥ(x) is obtained. The idea now is to
trace the component Ĉp ⊂ Ĥ−1(p) which contains the starting point p ∈ ∂Ω
inward into Ω until a fixed point of f is reached. A straightforward application
of Sard’s theorem (11.2.3) shows that almost all points p ∈ ∂Ω are regular
values of Ĥ. It is therefore natural to make the following

(11.3.3) Assumption. Let the starting point p ∈ ∂Ω be a regular value of
Ĥ.

Let us investigate the tracing of the curve Ĉp more precisely. Clearly, for
any x ∈ ∂Ω we have Ĥ(x) = x and µ(x) = 1. Thus

(i) either Ĉp returns back to the boundary ∂Ω at a point x = Ĥ(x) = p,
(ii) or Ĉp tends to the fixed point set C where the map Ĥ is not defined.

Let us show that case (i) is impossible. We assume, as we always do if con-
venient, that the curve Ĉp is parametrized according to arclength s. Using
the general assumptions (11.3.1) on f , it is readily seen that case (i) implies
that the curve Ĉp = {x(s)

∣∣ s ∈ R} is a closed loop which touches ∂Ω from
the inside at the point p. We obtain the tangent by differentiating the equa-
tion f

(
x(s)

)
+ µ(s)

(
x(s)− f

(
x(s)

))
= p, cf. (11.3.2), with respect to s. For

p = x(s0) and ṗ := ẋ(s0) we thus obtain µ(s0) = 1 and µ̇(s0)(p−f(p))+ṗ = 0.
Since ||ṗ|| = 1, ṗ is a nonzero multiple of p− f(p). But f(p) ∈ Ω implies that
p − f(p) cannot be tangent to the boundary ∂Ω at p, and we have a contra-
diction. Hence, case (i) is impossible.

Thus, following the curve

Ĉp =
{
x(s)

∣∣ 0 ≤ s < s0

}
, s0 ∈ (0,∞]

inward into Ω, any accumulation point of x(s) as s → s0 is a fixed point of
f . Also, since an accumulation point x0 is an isolated fixed point of f by
our assumption (11.3.1)(4) it is possible to show that lims→s0 x(s) = x0. In
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this sense, the Brouwer fixed point theorem is implementable by a numer-
ical predictor-corrector continuation method if the above mild assumptions
(11.3.1) and (11.3.3) are verified.

From the numerical standpoint this approach has a serious disadvantage:
as can be seen from the definition of Ĥ (11.3.2) , see also Figure 11.3.a, for
x near the fixed point set C the evaluation of Ĥ(x) becomes numerically
unstable. Let show that this effect can be overcome. More exactly, we will
show that the same connected component Ĉp can be defined via a different
map H̃, which can be evaluated in a numerically stable way even for points
x which are near the fixed point set C.

Before doing this, let us examine the relationship of the Kellogg & Li &
Yorke method with the standard homotopy method outlined in section 11.2.
For the Kellogg & Li & Yorke method, following Ĉp ⊂ Ĥ−1(p) involves dealing
with the equation

(11.3.4) f(x) + µ
(
x− f(x)

)
= p ,

where x ∈ Ω and µ ≥ 0 are so taken that (11.3.4) is satisfied for the chosen
p ∈ ∂Ω. By taking µ = (1 − λ)−1 we obtain a corresponding homotopy
equation H(x, λ, p) = 0 where H : Ω×R× ∂Ω→ RN is defined by

(11.3.5) H(x, λ, p) = (x− p)− λ
(
f(x)− p

)
.

We can now see that (11.3.5) corresponds exactly to the homotopy (11.2.4).
The only difference is that we take p ∈ ∂Ω instead of p ∈ Ω. Let us assume
that 0 is a regular value of H(·, ·, p). In section 11.2 we saw that a smooth
curve of finite arclength in H−1(0) connects the point (p, 0) to a point (x0, 1)
such that x0 is a fixed point of f if we make the additional hypothesis that the
fixed points of f are regular points of Id− f . The reader may verify that the
arguments in section 11.2 can be modified in such a way that the case p ∈ ∂Ω
is also covered, provided the LS condition (11.2.12) is modified to read

(11.3.6)
(1) x− p 6= λ

(
f(x)− p

)
if λ ∈ (0, 1), x ∈ ∂Ω, x 6= p ;

(2) 0 6= f(p)− p points into Ω .

In order for the statement (11.3.6)(2) to have any meaning it is necessary
to assume that (Ω, ∂Ω) forms a smooth manifold with boundary, but for
Ω = {x ∈ RN

∣∣ ||x|| < 1} this is certainly satisfied (remember that we take
|| · || = || · ||2 if not otherwise specified). Figure 11.3.b illustrates this modified
situation. Let us note that also the LS conditions (11.3.6) are implied by
our general hypothesis (11.3.1). Condition (11.3.6)(1) can be verified in the
following way: if x − p = λ

(
f(x) − p

)
for some λ ∈ (0, 1) and some x ∈ ∂Ω,

then ||f(x)|| > 1.
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Figure 11.3.b Homotopy path from the
boundary

Our argument in section 11.2 showed that due to the LS condition given
in (11.2.12), the component Cp ⊂ H(·, ·, p)−1

(
0
)

traced from (p, 0) in the
direction of increasing λ could exit the cylinder Ω × R only after reaching
the level λ = 1. Although we are now starting from the boundary ∂Ω× {0},
the same reasoning applies here. By (11.3.6)(2) we trace Cp from (p, 0) into
Ω×R, which is the direction of increasing λ.

Let us now summarize the relationship between the Kellogg & Li & Yorke
method and the standard homotopy method of section 11.2 using an initial
point p in the boundary ∂Ω: The x-component of Cp (i.e. the projection of Cp
onto any λ-hyperplane) coincides with Ĉp. The particular parametrizations
of these two curves may of course be different. We note in passing that it is
technically more complicated to obtain a regularity result for (11.3.5) in the
sense of (11.2.6) when considering starting points p which vary only over the
boundary ∂Ω.

One of the obvious differences between the standard homotopy method
and the Kellogg & Li & Yorke method is that the latter works with one
less variable. However, we note that the λ-variable in (11.3.5) can also be
eliminated: It is clear that

p∗
(
f(x)− p

)
6= 0

under our assumptions (11.3.1). Hence, if the homotopy equation

H(λ, x, p) = x− p− λ
(
f(x)− p

)
= 0

holds for x ∈ RN and λ ∈ R, then

(11.3.7) λ(x, p) =
p∗(x− p)

p∗
(
f(x)− p

) .
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The elimination step (11.3.7) would be particularly simple if p were cho-
sen to be a unit co-ordinate vector. The preceding leads to a third implemen-
tation: Let the map H̃ : RN × ∂Ω→ RN be defined by

(11.3.8) H̃(x, p) := x− p− λ(x, p)
(
f(x)− p

)
.

Actually, for fixed p ∈ ∂Ω, the range of H̃(·, p) is contained in the tangent
space {p}⊥ of ∂Ω at p. Here {p}⊥ denotes the linear space {x ∈ RN

∣∣ p∗x = 0}
which is orthogonal to p. The Jacobian of H̃ i.e. the partial derivative of
H̃(x, p) with respect to x is obtained by a routine calculation:

(11.3.9) H̃x(x, p) =

(
Id−

(
f(x)− p

)
p∗

p∗
(
f(x)− p

)) (Id− λ(x, p)f ′(x)
)
.

Since
inf

x∈RN

∣∣ p∗(f(x)− p
)∣∣ > 0

holds by our assumption (11.3.1)(3), we see from the above equations that the
evaluations of H̃(x, p) and H̃x(x, p), which would be required for a predictor-
corrector tracing of H̃(x, p) = 0, can be performed in a numerically stable
way. The following theorem, cf. Allgower & Georg (1988), assures that it is
in general appropriate to assume that H̃(·, p) has 0 as a regular value:

(11.3.10) Theorem. For almost all p ∈ ∂Ω, the homotopy map H̃(·, p) :
RN → {p}⊥ has 0 as a regular value.

Now let us contrast the three methods we have just discussed.

(1) The standard homotopy method, cf. (11.2.4): Trace the component Cp ⊂
H−1(0) where p ∈ Ω, (p, 0) ∈ Cp and the homotopy map H : RN ×R→
RN is given by H(x, λ) = x− p− λ

(
f(x)− p

)
.

(2) The Kellogg & Li & Yorke method, cf. (11.3.4): Trace the component
Ĉp ⊂ Ĥ−1(p). Here p ∈ ∂Ω, p ∈ Ĉp and the homotopy map Ĥ : RN \C →
∂Ω is given by Ĥ(x, λ) = f(x)+µ(x)

(
x−f(x)

)
where µ(x) > 0 is chosen

such that Ĥ(x, λ) ∈ ∂Ω i.e. µ(x) is the positive solution of the quadratic
equation

µ2 ||x− f(x)||2 + 2µf(x)∗
(
x− f(x)

)
+ ||f(x)||2 = 1.

(3) A numerically stable version of the Kellogg & Li & Yorke method, cf.
(11.3.7): Trace the component C̃p ⊂ H̃−1(0). Here p ∈ ∂Ω, p ∈ C̃p and
the homotopy map H̃ : RN → {p}⊥ is given by H̃(x, λ) = x − p −
λ(x)

(
f(x)− p

)
where λ(x) is chosen such that H̃(x, λ) ∈ {p}⊥ i.e.

λ(x) =
p∗(x− p)

p∗
(
f(x)− p

) .
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The advantage of the standard homotopy method (1) is that we are free to
choose p ∈ Ω and thus possibly select a good starting guess for a fixed point.
The advantage of the other two methods is that the co-ordinates µ or λ are
implicit and thus we can perform our calculations with N instead of N + 1
variables. The particular choice p ∈ ∂Ω implies that the x-component of Cp in
method (1) coincides with Ĉp and C̃p of methods (2) and (3) respectively, the
parametrizations may of course be different. The components Ĉp and C̃p of
methods (2) and (3) are the same. Under the Kellogg & Li & Yorke method
(3) the curve Ĉp has singularities at the fixed points of f which lie on Ĉp.
However, as can be seen by our discussion of method (3), if the fixed points
are regular points of Id− f e.g. under our assumption (11.3.1)(4), then these
singularities are removable. A more serious drawback from the standpoint
of numerical implementation is that the singularity of the fixed points for
method (2) implies a numerically unstable calculation of the map Ĥ near the
fixed points of f . For the application of a predictor-corrector method such as
those discussed in the preceding chapters, a stable evaluation is needed. The
initial values for the curve C̃p

x(0) = p; ẋ(0) =
f(p)− p
||f(p)− p||

can be obtained by differentiating the homotopy equation x−p−λ
(
f(x)−p

)
=

0 with respect to arclength and evaluating for x = p and λ = 0.

11.4 Global Newton and Global Homotopy Methods

Newton’s method is a favorite method for numerically calculating a zero point
of a (nonlinear) C∞-map G : RN → RN . Recall that Newton’s method is
expressed as an iterative relation of the form

(11.4.1)
xn+1 = xn −G′(xn)−1G(xn), n = 0, 1, . . . ;

x0 = p {starting point}.

As is well known, this method may diverge if the starting point p is not
sufficiently near to a zero point x̄ of G. Often one would like to determine
whether a certain open bounded region Ω ⊂ RN contains a zero point x̄ of G
and furthermore, for which starting values p this solution x̄ can be obtained
by Newton’s method. The so-called global Newton methods offer a possibility
of answering such questions.

One may interpret (11.4.1) as the numerical integration of the differential
equation

(11.4.2) ẋ = −G′(x)−1G(x)
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using Euler’s method with unit step size and initial point p. The idea of using
the flow (11.4.2) to find zero points of G was exploited by Branin (1972).
Smale (1976) gave boundary conditions on ∂Ω under which he could show,
see theorem (11.4.8) below, that the flow (11.4.2) leads to a zero point x̄ of
G in Ω. Thus a numerically implementable existence theorem is obtained
by integrating (11.4.2) using an appropriate starting point p ∈ ∂Ω. Such
numerical methods have been referred to as global Newton methods. In
this section we will explore this and some related ideas.

First of all, let us note that in order to overcome simple singular points of
G the equation for the flow defined by (11.4.2) can be modified by multiplying
the right hand side by detG′(x). Nevertheless, near such singular points of
G the evaluation of the right hand side remains numerically unstable. Keller
(1978) observed that solutions of (11.4.2) can also be obtained from a homo-
topy equation which he consequently named the global homotopy method.
Independently, Garcia and Gould (1978), (1980) obtained similar results. The
global homotopy method involves tracing the curve defined by the equation

(11.4.3) G(x)− λG(p) = 0

starting from (x, λ) = (p, 1) ∈ ∂Ω×{1} inward into Ω×R. If the level Ω×{0}
is encountered, then a zero point of G has been found.

For an autonomous differential equation, changing the parameter of dif-
ferentiation amounts to multiplying the right hand side by some smooth func-
tion of the new parameter. Say for example, s is replaced by s(ξ) in the
differential equation

d

ds
x(s) = f

(
x(s)

)
.

Then
d

dξ
x
(
s(ξ)

)
=

d

dξ
s(ξ) f

(
x
(
s(ξ)

))
.

Keeping this in mind, let us now differentiate (11.4.3) with respect to
say, arclength s. We obtain

G′(x)ẋ− λ̇G(p) = 0.

Substituting λ−1G(x) for G(p) yields

ẋ = (λ̇/λ)G′(x)−1G(x).

Hence we see that (11.4.2) and the x-component of (11.4.3) have the same
solution curve — only the parametrizations are different. This holds so long
as no singular point or zero point of G is encountered. However the global
homotopy (11.4.3) handles such singularities in a more natural way. Hence
we choose to present Keller’s approach in our subsequent discussion. Let us
now introduce the assumptions for this section.
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(11.4.4) Assumptions.

(1) G : RN → RN is a C∞-map;

(2) Ω ⊂ RN is open and bounded and ∂Ω is a connected C∞-submanifold of
RN ;

(3) 0 is a regular value of G;

(4) G(p) 6= 0 for p ∈ ∂Ω;

(5) the Jacobian G′(p) is nonsingular for p ∈ ∂Ω;

(6) the Newton direction −G′(p)−1G(p) is not tangent to ∂Ω at p.

The assumptions (11.4.4)(4)-(6) are Smale’s boundary conditions. Let us
define the global homotopy H : RN ×R× ∂Ω −→ RN by

(11.4.5) H(x, λ, p) := G(x)− λG(p).

Since p varies over the (N−1)-dimensional surface ∂Ω, it is somewhat difficult
to apply Sard’s theorem (11.2.2). This task was achieved by Percell (1980).
We state his theorem under our somewhat stronger assumptions (11.4.4).

(11.4.6) Theorem. [ Percell (1980) ]
Let Ω ⊂ RN and G : RN → RN satisfy the assumptions (11.4.4). Then for
almost all p ∈ ∂Ω the global homotopy H(·, ·, p) : RN ×R→ RN defined by
(11.4.5) has 0 as a regular value.

Hence, it is again reasonable to make the following

(11.4.7) Assumption. Let the starting point p ∈ ∂Ω be chosen in accor-
dance with (11.4.6) i.e. in such a way that 0 is a regular value of the map
H(·, ·, p).

As was already mentioned, the global homotopy method overcomes the
numerical instabilities arising in the global Newton method near singular
points of G. Keller (1978) has shown that this approach also leads to a
simple geometrical proof of the following

(11.4.8) Theorem. [ Smale (1976) ]
Let Ω ⊂ RN and G : RN → RN satisfy the assumptions (11.4.4) and let
p ∈ ∂Ω satisfy the assumption (11.4.7). Let Cp be the connected component

of
{

(x, λ)
∣∣ x ∈ RN , λ ∈ R, H(x, λ, p) = 0

}
which contains (p, 1). Let

s ∈ R 7→
(
x(s), λ(s)

)
be a parametrization of Cp according to arclength s

such that

(1) x(0) = p, λ(0) = 1;

(2) ẋ(0) points into Ω.

Then there is a parameter s0 > 0 such that

(3) x(s) ∈ Ω for 0 < s < s0;
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(4) x(s0) ∈ ∂Ω;

(5) λ(s0) < 0.

Consequently, the curve Cp hits the target level Ω× {0} in an odd number of
points (x̄, 0) ∈ Ω× {0} with G(x̄) = 0.

Proof. Since ∂Ω is connected, c.f. (11.4.4)(2), we can assume without loss of
generality that the Newton direction

(*) −G′(p)−1G(p) always points into Ω for p ∈ ∂Ω.

The other case i.e. that the Newton direction −G′(p)−1G(p) always points
out of Ω for p ∈ ∂Ω, is treated in a similar way by switching a couple of signs.
We differentiate the homotopy equation

(a) G
(
x(s)

)
− λ(s)G(p),

and by substituting λ(s)−1G
(
x(s)

)
for G(p) obtain

(b) λ(s) 6= 0⇒ G′
(
x(s)

)
ẋ(s)− λ̇(s)

λ(s)
G
(
x(s)

)
= 0.

Since ẋ(0) points into Ω and λ(0) = 1, the boundary condition (∗) and (b)
imply

(c) λ̇(0) < 0.

Since G(p) 6= 0 and Ω is bounded, we see that the set

{λ | G(x) = λG(p), x ∈ Ω}
is bounded. Hence the curve Cp must exit from Ω × R at some parameter
s0 > 0. All that remains to be shown is that

(d) λ(s0) < 0.

Since ẋ(s0) points out of Ω, the boundary condition (∗) and (b) imply that

(e)
λ̇(s0)
λ(s0)

> 0.

Now consider the augmented Jacobian

A(s) :=
(
G′
(
x(s)

)
−G(p)

ẋ(s)∗ λ̇(s)

)
of the homotopy (11.4.5). We obtain

A(s)
(

Id ẋ(s)
0∗ λ̇(s)

)
=
(
G′
(
x(s)

)
0

ẋ(s)∗ 1

)
and consequently

(f) detA(s) λ̇(s) = detG′
(
x(s)

)
.

By (11.4.4)(5) and since ∂Ω is connected, the function detG′(x) does not
change sign on ∂Ω. On the other hand, the function detA(s) does not change
sign along the path Cp. Consequently (c) and (f) imply λ̇(s0) < 0, and from
(e) we obtain the result (d). Hence the conclusion of the theorem follows.
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Remarks.

• Given the assumptions (11.4.4)(1)-(3), the subsequent boundary condi-
tions (11.4.4)(4)-(6) can be shown to hold for a sufficiently small ball Ω
around a zero point of G. Thus, in a certain sense the above theorem
generalizes the well-known Newton-Kantorovitch type theorems which
discuss the local convergence of Newton’s method, cf. Ortega & Rhein-
boldt (1970).

• If the global Newton method is implemented by numerically integrating
(11.4.2), the evaluation of the right hand side can become numerically
unstable. The global homotopy method of Keller (1978) overcomes this
instability at the mild cost of increasing the dimension of the problem by
one parameter.

We now indicate briefly how the numerical stability obtained by Keller can
also be maintained without increasing the dimension, cf. Allgower & Georg
(1988). We multiply (11.4.3) by G(p)∗ and obtain

(11.4.9) λ(x, p) =
G(p)∗G(x)
||G(p)||2 .

This leads to a new homotopy H̃ : RN × ∂Ω→ RN defined by

(11.4.10) H̃(x, p) = G(x)− λ(x, p)G(p).

Note that the range of H̃(·, p) is contained in {G(p)}⊥. We calculate

(11.4.11) H̃x(x, p) =
(

Id− G(p)G(p)∗

||G(p)||2
)
G′(x)

which is the orthogonal projection of the Jacobian G′(x) onto the tangent
space {G(p)}⊥. Thus we see again that the evaluations of H̃(x, p) and H̃x(x, p)
which would be required for a predictor-corrector tracing of H̃(x, p) = 0 are
numerically stable. We conclude this section with an analogue of theorem
(11.3.10).

(11.4.12) Theorem. Let Ω ⊂ RN and G : RN → RN satisfy the assump-
tions (11.4.4). Then for almost all p ∈ ∂Ω, the homotopy map H̃(·, p) : RN →
{G(p)}⊥ defined by (11.4.9) – (11.4.10) has 0 as a regular value.
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11.5 Multiple Solutions

In theorem (11.4.8) it was observed that the global homotopy method might
actually yield more than one zero point of the map G in a bounded region
Ω. This raises the question whether one might be able to compute more zero
points of G in Ω beside those which lie on the global homotopy path defined
by H(x, λ, p) := G(x)− λG(p) = 0 for some fixed initial point p ∈ ∂Ω.

To be more precise, let us suppose that Ω ⊂ RN is an open bounded
region, and that G : RN → RN is a smooth map having a zero point z0 ∈ Ω.
The task is now to find additional zero points of G in Ω provided they exist.
One method which has often been used for handling this problem is deflation,
see e.g. Brown & Gearhart (1971). In this method a deflated map G1 :
RN \ {z0} → RN is defined by

(11.5.1) G1(x) := G(x)/||x− z0||.

One then applies an iterative method to try to find a zero of G1. There are
still a number of choices to be made viz.

• the choice of deflation functionals e.g. l2, l∞ norms or a “gradient defla-
tion” studied by Brown & Gearhart;

• the choice of iterative solution e.g. Newton-like methods as described in
Ortega & Rheinboldt (1970);

• the choice of starting value x0 for the iterative method e.g. often the same
x0 is used which initially led to the zero point z0.

The deflation device can be repeatedly applied by setting

Gk(x) :=
G(x)∏k−1

j=0 ||x− zj ||

where z0, . . . , zk−1 are zeros of G which have previously been found. Numer-
ical experience with deflation has shown that it is often a matter of seeming
chance whether one obtains an additional solution and if one is obtained, it
is very often not the one which is nearest to z0.

By utilizing homotopy-type methods we can give some conditions which
will guarantee the existence of an additional solution. This additional solution
will lie on a homotopy path, and we also obtain results on the topological index
of zero points which are successively obtained on this path. We illustrate
this approach with a discussion of the “d-homotopy”. Let us consider the
homotopy map Hd : RN ×R→ R defined by

(11.5.2) Hd(x, λ) := G(x)− λd

where d ∈ RN is some fixed vector with d 6= 0. Since we assume that a zero
point z0 is already given, we have Hd(z0, 0) = 0. Let us further assume 0 is
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a regular value of G. Then it follows from Sard’s theorem (11.2.2) that 0 is
also a regular value of Hd for almost all d ∈ RN . Let us note here that the
homotopy Hd is more general than the global homotopy (11.4.5), since d need
not belong to the range of G. In order to assure that the curve C ⊂ H−1

d (0)
which contains (z0, 0) again reaches the level λ = 0, we need as usual to impose
a boundary condition. The following proposition uses a boundary condition
which is motivated by a simple degree consideration and has frequently been
successfully used.

(11.5.3) Proposition. Let the following hypotheses hold:

(1) G : RN → RN is a smooth map with regular value 0;

(2) d ∈ RN \{0} is a point such that the homotopy Hd also has regular value
0;

(3) Ω ⊂ RN is a bounded open set which contains a (known) initial zero
point z0 of G;

(4) the boundary condition Hd(x, λ) = G(x)−λd 6= 0 holds for all x ∈ ∂Ω,
λ ∈ R;

Then the curve C ⊂ H−1
d (0) which contains (z0, 0) intersects the level Ω×{0}

an even number of times in points (zi, 0), i = 0, . . . , n, at which G(zi) = 0.

Proof. The boundary condition (11.5.3)(4) implies that the curve C lies strict-
ly inside the cylinder ∂Ω ×R. A solution (x, λ) ∈ C satisfies G(x) = λd and
x ∈ Ω, and hence |λ| = ||G(x)||/||d|| remains bounded. Recalling that C is
homeomorphic either to the line R or to the circle S1, it follows that C ' S1.
Since 0 is a regular value ofG, it is easily seen that C intersects the level Ω×{0}
transversely, and the assertion of the above proposition follows immediately.

It is evident that the boundary condition can be relaxed.

(11.5.4) Corollary. The conclusion of the above proposition (11.5.3) re-
mains true if the boundary condition (4) is replaced by either of

(4-1) Hd(x, λ) = G(x)− λd 6= 0 for all x ∈ ∂Ω, λ ≥ 0;

(4-2) Hd(x, λ) = G(x)− λd 6= 0 for all x ∈ ∂Ω, λ ≤ 0.

Proof. We consider only the first case (4-1). If (x, λ) ∈ C is a solution with
λ ≥ 0, the same argument as in the above proof shows that λ = ||G(x)||/||d||
remains bounded. Hence, starting at a solution point and traversing the curve
only in positive λ-direction gives the desired assertion.

To set the discussion forth we now need the following definition which
describes the topological index of a zero point of a map in a very simple case.
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(11.5.5) Definition. Let z0 be a zero point of the smooth map G : RN →
RN such that detG′(z0) 6= 0. Then the index of z0 is defined to be the sign
of detG′(z0).

(11.5.6) Corollary. Any two zero points of G which are consecutively ob-
tained by traversing the curve C have opposite index.

Proof. Let s ∈ R 7→
(
x(s), λ(s)

)
∈ RN+1 be a parametrization of C according

to arclength s. Differentiating

Hd

(
x(s), λ(s)

)
= G

(
x(s)

)
− λ(s)d = 0

we obtain
G′
(
x(s)

)
ẋ(s)− λ̇(s)d = 0

and hence (
G′
(
x(s)

)
−d

ẋ(s)∗ λ̇(s)

)(
Id ẋ(s)
0∗ λ̇(s)

)
=
(
G′
(
x(s)

)
0

ẋ(s)∗ 1

)
.

We note that the left matrix in the latter equation is the augmented Jacobian
of Hd. Its determinant is of constant sign on C. Hence by the product rule of
determinants we obtain that λ̇(s) and detG′

(
x(s)

)
change signs at exactly the

same points s ∈ R. Let
(
x(s1), 0

)
and

(
x(s2), 0

)
be two consecutive solution

points on C. It is clear that they are traversed in opposite λ-directions, i.e.
λ̇(s1)λ̇(s2) < 0 and the assertion of the corollary follows.

(11.5.7) Example. To give an illustration of how corollary (11.5.5) can be
applied, we consider a system of equations arising from a discretization of a
nonlinear elliptic boundary value problem

Lu(ξ) = µf(u(ξ)), ξ ∈ D;
u(ξ) = 0, ξ ∈ ∂D.

Here D ⊂ Rm is a bounded domain, L is a linear elliptic differential operator,
and f is a smooth nonlinear function which is bounded from below and satisfies

lim
u→∞

f(u)
u

=∞.

Problems of this general form are discussed in the survey paper of Amann
(1976), the problem from which our particular example derives has been dis-
cussed by Ambrosetti & Hess (1980).

Discretizations of the above problem in general take the form

(11.5.8) G(x) := Ax− µF (x) = 0
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where A is a positive definite N ×N -matrix such that A−1 has only positive
entries, and F : RN → RN is a smooth map whose co-ordinates are bounded
from below by a constant −C < 0 and satisfy

lim
x[i]→∞

F (x)[i]
x[i]

=∞.

From the contraction principle it follows for small µ > 0 that the fixed
point iteration

xk+1 = A−1F (xk), x0 = 0

converges to a zero point z0 of G. We choose a directional vector d ∈ RN

whose co-ordinates are all positive, and a set

Ω := {x ∈ RN
∣∣ ||x||∞ < β}

where β > 0 is chosen so large that the following conditions are satisfied:

β > µC||A−1||∞;

F (x)[i] >
β

µa
for x[i] = β and all i.

In the latter inequality a > 0 denotes the smallest entry of A−1. Both in-
equalities can be satisfied, because of the assumptions on F .

Let us show that for the above choices the boundary condition (11.5.4)(4-
1) is satisfied. If x ∈ ∂Ω, then either x[i] = −β or x[i] = β for some co-ordinate
i. In the first case we estimate

A−1
(
G(x)− λd

)
[i] = −β − µA−1F (x)[i]− λA−1d[i]

≤ −β + µC||A−1||∞ < 0.

In the second case we obtain

A−1
(
G(x)− λd

)
[i] = β − µA−1F (x)[i]− λA−1d[i]

≤ β − µaF (x)[i] < 0.

Hence, in both cases we have G(x) − λd 6= 0 for λ ≥ 0. This application of
the d-homotopy makes it possible to reach an additional solution z1 via the
homotopy equation

Ax− µF (x)− λd = 0

for a fixed µ and varying λ. We emphasize that z0, z1 do not necessarily lie
on the same solution branch of the equation

Ax− µF (x) = 0
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for varying µ. Hence, the d-homotopy can permit moving between disjoint
solution branches of the nonlinear eigenvalue problem (11.5.8). Such possibil-
ities of moving between disjoint branches were discussed in a general context
by Jürgens & Peitgen & Saupe (1980).

We conclude this section with a few remarks concerning the relationship
between deflation and homotopy methods, see Allgower & Georg (1983) for a
more detailed discussion. In the context of the discussion of deflation (11.5.1)
let us consider the global homotopy H :

(
RN \ {z0}

)
×R→ RN defined by

(11.5.9) H(x, λ) := G1(x)− λG1(x0).

In view of our discussions following (11.4.2), performing Newton’s method on
G1 starting at x0 amounts to a particular integration of the global homotopy
(11.5.9) and also starting at (x0, 1). Thus we see that in general successive
deflation will at best produce the zeros of G which lie on H−1(0). However,
because of the “crudeness” of the Newton steps, some iterate may get far
enough away from H−1(0) that the Newton method might diverge or possibly
accidently converge to a zero point not on H−1(0). Numerical experience,
see Brown & Gearhart (1971), with deflation confirms the above analysis
in the sense that in general zero points which are successively obtained via
deflation have opposite index, and zero points which are in close proximity
are not successively obtained if they have the same index. Recently Diener
(1985), (1986) has given some conditions under which all of the zero points of
certain maps can be linked on a single global homotopy path. However, the
hypotheses concerning such maps appear to be severely restrictive.

11.6 Polynomial Systems

In the preceding section we considered the task of computing multiple zero
points of general smooth maps. In the case of complex polynomial systems it
is actually possible to compute (at least in principle) all of the zero points by
means of homotopy methods. This subject has received considerable attention
in recent years. The book of Morgan (1987) deals exclusively with this topic,
using the smooth path tracing approach. It also contains most of the up to
date references on this approach and a number of interesting applications to
robotics and other fields.

We begin our discussion with the simplest general case viz. a complex
polynomial P : C → C. As is well known from the fundamental theorem of
algebra, P has exactly n = degP zero points if one accounts for multiplici-
ties. Let us indicate how these zero points can be computed. Our discussion
essentially follows an argument of Chow & Mallet-Paret & Yorke (1978).

Suppose P (z) = zn +
∑n−1
j=0 ajz

j is a monic polynomial whose n zero
points are to be calculated. Choosing Q(z) = zn+b0 where b0 6= 0 is arbitrary,
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we form the convex homotopy H : C× [0, 1]→ C defined by

(11.6.1)

H(z, λ) = (1− λ)Q(z) + λP (z)

= zn + λ

n−1∑
j=1

ajz
j + (1− λ)b0 + λa0.

In the case of complex differentiation, we regard the complex field C as
a corresponding 2-dimensional real space. Hence, if f(z) is a holomorphic
function, we consider its derivative as a 2× 2-matrix

f ′(z) =
(
ux uy
vx vy

)
=
(
ux uy
−uy ux

)
where we write the real and imaginary parts as f(z) = u(x, y) + iv(x, y)
and z = x + iy. The latter equality is obtained from the Cauchy-Riemann
equations.

The derivative of the right hand side of (11.6.1) with respect to (z, λ, b0)
is (

(1− λ)Q′(z) + λP ′(z) , −b0 +
∑n−1
j=0 ajz

j , (1− λ)IdC

)
and, in the above context, it can be identified with a real 2 × 5-matrix. By
Sard’s theorem (11.2.2), zero is a regular value of the restricted map

H̃ : (z, λ) ∈ C× [0, 1) 7−→ H(z, λ) ∈ C

for almost all b0 ∈ C. Let us assume in the following that b0 is so chosen.
The level λ = 1 must be excluded in case the polynomial P has a multiple
root.

At λ = 0, H̃(z, 0) = zn + b0 has n distinct roots z1, . . . , zn ∈ C. For
each root zj , j = 1, . . . , n the component Cj ⊂ H̃−1(0) containing (zj , 0) is a
smooth curve which may be parametrized according to arclength

s ∈ Ij 7→
(
zj(s), λj(s)

)
∈ C× (−∞, 1)

such that zj(0) = zj , λj(0) = 0 and λ̇j(0) > 0. As in the above, the Jacobian

H̃ ′(z, λ) =
(

(1− λ)Q′(z) + λP ′(z) , −b0 +
∑n−1
j=0 ajz

j

)
can be considered as a real 2× 3-matrix. By our choice of b0, it has maximal
rank two for (z, λ) ∈ H̃−1(0). Since by the Cauchy-Riemann equations, the
leading 2 × 2-submatrix can only have rank 0 or 2, its determinant does not
vanish. Differentiating the equation H̃

(
zj(s), λj(s)

)
= 0 with respect to s
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we obtain λ̇j(s) > 0 for all s ∈ Ij by an argument analogous to the proof of
(11.5.6). Thus the homotopy parameter λj(s) is strictly increasing.

We now want to establish a boundary condition. Let us recall the fol-
lowing classical result concerning polynomials, see e.g. Marden (1949): If
p(z) =

∑n
j=0 cjz

j = 0, then

|z| < 1 + max
k 6=n

∣∣∣∣ ckcn
∣∣∣∣ .

In the present case for H as defined in (11.6.1), from H
(
zj(s), λj(s)

)
= 0 we

obtain
|zj(s)| < M1 +M2|λj(s)|

for some constants M1,M2 > 0.
It now is clear that the curves Cj are all disjoint and penetrate each level

λ < 1 transversely. By continuity, if λj(s)→ 1 then zj(s)→ z̃j for some root
z̃j of P . For λ ≈ 1 the homotopy H(z, λ) = P (z) + (1 − λ)

(
P (z) + Q(z)

)
represents just a small perturbation of P (z). Since H(z, λ) has n distinct
roots for λ < 1, a classical perturbation result of complex analysis implies: if
z̃j is a root of P with multiplicity mj then exactly mj curves Cj converge to
it in the above sense. However, only in the case of simple roots do the curves
intersect the level λ = 1 transversely. The preceding discussion suggests how
one could implement a predictor-corrector method for calculating all complex
roots of a polynomial. Some authors, e.g. Kuhn (1974), (1977) and Kojima
& Nishino & Arima (1979) have used piecewise-linear methods instead.

Let us stress that we do not claim that the above numerical methods
are the most efficient methods to calculate roots of a polynomial. There
are some popular methods in use, e.g. the method of Jenkins & Traub or
Laguerre’s method, which are usually combined with a deflation type process
in order to obtain all roots. In fact, little effort has been made to compare
the homotopy approach with these “direct methods”. We refer the reader to
standard books on numerical analysis, especially Henrici (1974), (1977) or to
some of the library programs in current use such as IMSL. If the coefficients
of the polynomial are real, one may be interested in only calculating the real
roots. This can be done very efficiently using the idea of Sturm sequences,
see e.g. Heindel (1971) or Collins & Loos (1976).

We gave the preceding discussion primarily as an introduction, since it
suggests how we can proceed to find all of the zero points of a system of com-
plex polynomials P : Cn → Cn. The task is substantially more complicated
than the case n = 1, because the equation P (z1, . . . , zn) = 0 may have a
continuum of solutions or no solution at all. To illustrate these situations we
give some simple examples. The system

(11.6.2)
z1 + z2 = 0

z1 + z2 + 1 = 0



     

11.6 Polynomial Systems 135

has no solutions at all. The system

(11.6.3)
z2

1 − 25 = 0
z1z2 − z1 − 5z2 + 5 = 0

has {(−5, 1)} ∪ {(z1, z2) ∈ C2 | z1 = 5} as its complete solution set. Let us
introduce some important notions arising in the theory of polynomial systems.
If a term of the kth component Pk has the form

azr11 z
r2
2 · · · zrnn ,

then its degree is r1+r2+. . .+rn. The degree dk of Pk is the maximum of the
degrees of its terms. The homogeneous part P̂ of P is obtained by deleting
in each component Pk all terms having degree less than dk. The homoge-
nization P̃ of P is obtained by multiplying each term of each component Pk
with an appropriate power zr0 such that its degree is dk. For example, the
polynomial system

(11.6.4)(1)
z3

1 − z1 = 0

z2
1z2 + 1 = 0

has the homogeneous part

(11.6.4)(2)
z3

1 = 0

z2
1z2 = 0

and the homogenization

(11.6.4)(3)
z3

1 − z2
0z1 = 0

z2
1z2 + z3

0 = 0
.

Note that the homogenization P̃ : Cn+1 → Cn involves one more variable. If

(w0, . . . , wn) 6= 0

is a zero point of P̃ , then the entire ray

[w0 : · · · : wn] := {(ξw0, . . . , ξwn)
∣∣ ξ ∈ C}

consists of zero points of P̃ . Usually, [w0 : · · · : wn] is regarded as a point in
the complex projective space CPn. There are two cases to consider:

(1) The solution [w0 : · · · : wn] intersects the hyperplane z0 = 0 transversely
i.e. without loss of generality w0 = 1. This corresponds to a zero point
(w1, . . . , wn) of P . Conversely, each zero point (w1, . . . , wn) of P corre-
sponds to a solution [1 : w1 : · · · : wn] of P̃ .

(2) The solution [w0 : · · · : wn] lies in the hyperplane z0 = 0 i.e. w0 = 0. This
corresponds to a nontrivial solution [w1 : · · · : wn] of the homogeneous
part P̂ , and such solutions are called zero points of P at infinity.

For example, the system (11.6.2) has only the solution [0 : 1 : −1] at infinity.
The system (11.6.4) has the two solutions [1 : ±1 : −1] and in addition the
solution [0 : 0 : 1] at infinity.
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As in the case of one variable, it is possible to define the multiplicity of
a solution. However, this is a more complicated matter than it was in one
dimension and requires some deeper ideas of algebra and analysis. We will
give a brief sketch for doing this. If [w0 : · · · : wn] is an isolated solution of
the homogenization P̃ (z0, . . . , zn) = 0 with respect to the topology of CPn,
we can define a multiplicity of [w0 : · · · : wn] in two different ways. However,
it is not a trivial exercise to show that these definitions are equivalent.

(1) Consider a co-ordinate wk which is different from zero. Without loss of
generality we can assume wk = 1. If we fix the variable zk = 1 in the the
homogenization P̃ (z0, . . . , zn) = 0, then we have n complex equations in
n complex variables or 2n real equations in 2n real variables with the
complex solution zj = wj , j = 0, . . . , n, j 6= k. The multiplicity is now
defined by the local topological degree of this solution, see e.g. Milnor
(1968). It can be shown that this definition is independent of the special
choice of the non-vanishing co-ordinate wk.

(2) As above, consider a co-ordinate wk = 1. Again, we fix the variable
zk = 1 in the homogenization P̃ (z0, . . . , zn) = 0, and after a translation
obtain new equations

F (z0, . . . , ẑk, . . . , zn) := P̃ (z0 + w0, . . . , 1, . . . , zn + wn) = 0

in the variables z0, . . . , ẑk, . . . , zn where ̂ denotes omission of the term
beneath it. These new equations have a zero point at the origin. Now,
the multiplicity of the solution is defined as the dimension of the quotient

C
[
[z0, . . . , ẑk, . . . , zn]

]
(F1, . . . , F̂k, . . . , Fn)

where C
[
[z0, . . . , ẑk, . . . , zn]

]
is the usual power series ring and the symbol

(F1, . . . , F̂k, . . . , Fn) denotes the ideal generated by the corresponding
polynomials F1, . . . , F̂k, . . . , Fn, see e.g. Fulton (1984) or van der Waerden
(1953). It can be shown that also this definition is independent of the
special choice of the non-vanishing co-ordinate wk.

The higher dimensional analogue of the fundamental theorem of algebra is
Bezout’s theorem, which states that the number of zero points of P , counting
their multiplicities, equals the product d1d2 · · · dn, provided all solutions are
isolated.

As an illustration, let us examine example (11.6.2) which had the three
isolated solutions [1 : ±1 : −1] and [0 : 0 : 1]. According to Bezout’s theorem,
this system has nine roots. It is routine to see that detP ′(z) 6= 0 at the zero
points (±1,−1). Hence they are simple, and by Bezout’s theorem the zero
point at infinity has multiplicity seven. Let us show that this is true using
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the second definition of multiplicity. Setting z2 = 1 in the homogenization
(11.6.4)(3) we obtain

(11.6.4)(4)
z3

1 − z2
0z1 = 0

z2
1 + z3

0 = 0.

Since z3
1 − z2

0z1 = z1(z1 + z0)(z1 − z0), a factorization theorem yields

dim
C
[
[z0, z1]

]
(z3

1 − z2
0z1 , z

2
1 + z3

0)
= dim

C
[
[z0, z1]

]
(z1 , z

2
1 + z3

0)
+ dim

C
[
[z0, z1]

]
(z1 + z0 , z

2
1 + z3

0)

+ dim
C
[
[z0, z1]

]
(z1 − z0 , z

2
1 + z3

0)
= 3 + 2 + 2.

An attempt to treat the polynomial system for n > 1 by means of a homo-
topy H similar to (11.6.1) requires more care than in the case n = 1 since
some solution paths may go to infinity. It is a trickier matter to construct
perturbations which simultaneously yield zero as a regular value of H for all
levels λ < 1 and also properly control the paths going to infinity.

A simple remedy for this problem was proposed by Garcia & Zangwill
(1979). They use the homotopy

H(z1, . . . , zn, λ) = (1− λ)
(
zdk+1
k − bk

)
+ λP (z1, . . . , zn).

It is routine to check that zero is a regular value of the restricted homotopy

z1, . . . , zn ∈ C, λ ∈ (−∞, 1) 7−→ H(z1, . . . , zn, λ)

for almost all vectors (b1, . . . , bn) ∈ Cn. Since the homogeneous part of H
has no nontrivial zero for λ < 1, the (d1 + 1) · · · (dn + 1), solution paths
starting at the level λ = 0 can go off to infinity only for λ → 1. Using
the Cauchy-Riemann equations as in the 1-dimensional case, it can be shown
that all solution paths are increasing with respect to the λ-co-ordinate. By a
standard perturbation argument, it is also clear that all isolated zero points
of P can be obtained in this way. However, this method has the disadvantage
of introducing (d1 + 1) · · · (dn + 1) − d1 · · · dn additional extraneous solution
paths which diverge to infinity.

Chow & Mallet-Paret & Yorke (1979) introduced the following homotopy

Hk(z1, . . . , zn, λ) = (1− λ)
(
zdkk − bk

)
+ λP (z1, . . . , zn) + λ(1− λ)

n∑
j=1

aj,kz
dk
j
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for k = 1, . . . , n. They showed by using Sard type arguments that for almost
all bk, aj,k ∈ C in the sense of 2n(n + 1)-dimensional Lebesgue measure, the
restricted homotopy

z1, . . . , zn ∈ C, λ ∈ (−∞, 1) 7−→ H(z1, . . . , zn, λ)

has zero as a regular value, and that d1 · · · dn solution paths starting at the
level λ = 0 cannot go off to infinity unless λ → 1. Also, by a perturbation
argument, all isolated zero points of P can be obtained in this way.

A third method has been proposed by Wright (1985). He considers the
following homotopy involving the homogenization P̃ of P

Hk(z1, . . . , zn, λ) = (1− λ)
(
akz

dk
k − bkz

dk
0

)
+ λP̃ (z0, . . . , zn).

He shows that for almost all coefficients ak, bk ∈ C the restricted homotopies

z0, . . . , ẑk, . . . , zn ∈ C, λ ∈ (−∞, 1) 7−→ H(z0, . . . , 1, . . . , zn, λ)

for k = 0, . . . , n have regular value zero. Hence, for fixed λ < 1, the homoge-
neous polynomial H has exactly d1 · · · dn simple zero points in the projective
space CPn. Thus, in this approach solutions at infinity are treated no differ-
ently than finite solutions. The solution curves are traced in the projective
space CPn, and from the numerical point of view we have the slight drawback
that occasionally a chart in CPn has to be switched.

Recently, attention has been given to the task of trying to formulate
homotopies which eliminate the sometimes wasteful effort involved in trac-
ing paths which go to solutions of P (z1, . . . , zn) = 0 at infinity. Work in
this direction has been done by Morgan & Sommese (1986) and by Li &
Sauer & Yorke (1987). Morgan (1986) and Morgan & Sommese (1987) de-
scribe the easily implemented “projective transformation” which allows the
user to avoid the drawback of changing co-ordinate charts on CPn. Morgan &
Sommese (1988) shows how to exploit relations among the system coefficients,
via “coefficient parameter continuation”. Such relations occur commonly in
engineering problems, as described in Wampler & Morgan & Sommese (1988).
Li & Sauer (1987) investigate the application of homotopy methods for the
solution of nonlinear matrix eigenvalue problems. The use of homotopy meth-
ods for solving analytic systems of equations has been considered by Carr &
Mallet-Paret (1983), Allgower (1984) and Allgower & Georg (1983). Morgan
& Sommese & Wampler (1989) combine a homotopy method with contour
integrals to calculate singular solutions to nonlinear analytic systems.

We conclude this section with some remarks about “direct methods” for
finding all roots of a system of polynomials. This idea seems to go back to
Kronecker, see e.g. van der Waerden (1953), who observed that the resultant
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of polynomials can be used, at least in theory, as a device to eliminate vari-
ables in the polynomial system, somewhat similarly to the method of Gauss
elimination for linear systems. Let us briefly indicate how this is done. Let

(11.6.5)

p(x) =
n∑
i=0

pix
i and

q(x) =
m∑
i=0

qix
i

be two polynomials in the variable x with coefficients pi, qi respectively, and
let us assume that n ≤ m. The resultant r(p, q) is defined as the determinant
of the so-called Sylvester matrix which is constructed from the coefficients pi
and qi. We illustrate this construction for the special case n = 3 and m = 5:

(11.6.6) r(p, q) := det



p3 p2 p1 p0 0 0 0 0
0 p3 p2 p1 p0 0 0 0
0 0 p3 p2 p1 p0 0 0
0 0 0 p3 p2 p1 p0 0
0 0 0 0 p3 p2 p1 p0

q5 q4 q3 q2 q1 q0 0 0
0 q5 q4 q3 q2 q1 q0 0
0 0 q5 q4 q3 q2 q1 q0


.

If Gauss elimination is used to cancel the entry q5 in row 6 via subtracting a
q5/p3 multiple of row 1, then parallel operations can be performed for rows
7, 2 and rows 8, 3. This procedure can be repeated. As a result, we obtain a
new matrix with the same determinant:

(11.6.7) r(p, q) := det



p3 p2 p1 p0 0 0 0 0
0 p3 p2 p1 p0 0 0 0
0 0 p3 p2 p1 p0 0 0
0 0 0 p3 p2 p1 p0 0
0 0 0 0 p3 p2 p1 p0

0 0 0 q′2 q1 q0 0 0
0 0 0 0 q′2 q1 q0 0
0 0 0 0 0 q′2 q1 q0


.

The lower right hand 5× 5-matrix can be rearranged:

(11.6.8) r(p, q) := det



p3 p2 p1 p0 0 0 0 0
0 p3 p2 p1 p0 0 0 0
0 0 p3 p2 p1 p0 0 0
0 0 0 q′2 q1 q0 0 0
0 0 0 0 q′2 q1 q0 0
0 0 0 0 0 q′2 q1 q0

0 0 0 p3 p2 p1 p0 0
0 0 0 0 p3 p2 p1 p0


.
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Now the same sort of procedure can be repeated on the lower right hand
5×5-matrix. This process can be repeated until the matrix has been reduced
to upper triangular form.

The important feature of the resultant is that r(p, q) vanishes at common
zero points of p and q. The algorithm as sketched above for the calculation
of the resultant is essentially equivalent to the Euclidean algorithm which
calculates the greatest common divisor. Numerous modifications have been
performed, see e.g. Barnett (1974). Of special importance is the case that the
coefficients are in some integral domain, in particular that they are themselves
polynomials over some other variables. This case is relevant for the present
discussion. Efficient algorithms for the calculation of multivariate polynomial
resultants have been given, e.g. Collins (1967).

Let us now sketch the elimination procedure via the resultant. Let

(11.6.9)

P1(z1, . . . , zn) = 0
...

Pn(z1, . . . , zn) = 0

be a polynomial system of equations. We can consider P1, . . . , Pn as poly-
nomials in the one variable zn with coefficients in C[z1, . . . , zn−1]. Conse-
quently, we can consider the resultants r(P1, P2), . . . , r(P1, Pn) which are in
C[z1, . . . , zn−1], i.e. they can be considered as polynomials in the variables
z1, . . . , zn−1. Proceeding recursively we ultimately reach a single polynomial
R1 in z1. It has the property that it vanishes at all points z1 which are the
first co-ordinates of the zeros of the system (11.6.9). Continuing to proceed
in a fashion analogous to the Gaussian elimination method for linear systems,
we may for example now perform a “backsolving” process. That is, inserting
each of the roots of R1 into one of the resultants involving only the variables
z1 and z2, we can solve for the second co-ordinates of the zero points. Thus
backsolving recursively, we obtain a set of points containing the zero points
of the polynomial system. Now the actual zero points can be obtained by a
final testing. A similar algorithm using (exact) integer arithmetic has been
developed by Collins (1971), see also Ojika (1982).

It seems that to date the above direct methods and the homotopy meth-
ods have not been contrasted against each other. An obvious advantage of
the direct methods is that it is possible to solve for only real zero points if the
coefficients in (11.6.9) are real. Thus, if one is only interested in obtaining real
zero points, it is possible to avoid tracing a large number of irrelevant paths
which might arise in the homotopy method. This also pertains to solutions at
infinity. On the other hand, the direct methods may incur serious numerical
instability problems and extremely high degrees in the resultants. Recently,
Lazard (1981) has given a new direct method based on deeper results in al-
gebraic geometry which may make it possible to alleviate these drawbacks.
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11.7 Nonlinear Complementarity

Let us next give a brief discussion of the nonlinear complementarity problem
(NLCP), which is stated in the following form:

(11.7.1) The Nonlinear Complementarity Problem (NLCP). Let g :
RN → RN be a continuous map. Find an x ∈ RN such that

(1) x ∈ RN
+ ; (2) g(x) ∈ RN

+ ; (3) x∗g(x) = 0.

Here R+ denotes the set of non-negative real numbers, and below we also

denote the set of positive real numbers by R++. If g(0) ∈ RN
+ , then x = 0 is

a trivial solution to the problem. Hence this trivial case is always excluded
and the additional assumption

(4) g(0) /∈ RN
+

is made.

Nonlinear complementarity problems arise in nonlinear programming,
suitable discretizations of variational inequalities and the determination of
economic equilibria. Our reasons for including this topic here also stem from
the historical fact that the papers of Lemke & Howson (1964) and Lemke
(1965) gave an algorithm for solving the linear complementarity problem
(where g(x) = Ax + b is affine) by using complementary pivoting steps.
These ideas were then utilized by Scarf (1967) in his constructive proof of
the Brouwer fixed point theorem. These two papers in turn initiated a grat
deal of research on complementary pivoting and piecewise linear fixed point
algorithms. We cannot delve very deeply into the interrelationship between
the NLCP and continuation methods. The following articles and books touch
on this topic: Balinski & Cottle (1978), Cottle (1972), Doup & van der Elzen
& Talman (1986), Eaves (1971), (1976), (1978), (1983) Eaves & Scarf (1976),
Eaves & Gould & Peitgen & Todd (1983), Fisher & Gould (1974), Fisher
& Tolle (1977), Garcia & Zangwill (1981), Gould & Tolle (1983), van der
Heyden (1980), Karamardian (1977), Kojima (1975), (1978), van der Laan
& Talman (1985), Lüthi (1976), Megiddo (1978), Megiddo & Kojima (1977),
Saigal (1976), Saigal & Simon (1973), Scarf & Hansen (1973), Talman & Van
der Heyden (1983), Todd (1976), Watson (1979).

We begin with a useful

(11.7.2) Definition. For x ∈ RN we define the positive part x+ ∈ RN
+ by

x+[i] = max{x[i], 0} for i = 1, . . . , N and the negative part x− ∈ RN
+ by

x− = (−x)+. The following formulas are then obvious:

(1) x = x+ − x−; (2) (x+)∗(x−) = 0.

The next proposition which is not difficult to prove gives a simple and
elegant equivalence between an NLCP and a zero point problem, cf. Megiddo
& Kojima (1977):
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(11.7.3) Proposition. Let us define f : RN → RN by f(z) = g(z+) − z−.
If x is a solution of the NLCP (11.7.1) then z := x− g(x) is a zero point of f .
Conversely, if z is a zero point of f , then x := z+ solves the NLCP (11.7.1).

As a consequence of the above proposition, we are naturally led to intro-
duce the homotopy H : RN × [0, 1]→ RN defined by

(11.7.4)
H(z, λ) = (1− λ)z + λ

(
g(z+)− z−

)
= z + λ

(
g(z+)− z+

)
in order to numerically solve the NLCP problem. In analogy to our discussion
after (11.2.12) we need to establish a boundary condition

(11.7.5) H(z, λ) 6= 0 for z ∈ ∂Ω, λ ∈ [0, 1]

for a suitable open bounded neighborhood Ω ⊂ RN of 0, in order to assure the
success of this approach. We will derive (11.7.5) from a coercivity condition
which is typically used to guarantee the existence of a solution of (11.7.1):

(11.7.6) Coercivity Condition. Let V ⊂ RN be a bounded open neigh-
borhood of 0. Then a coercivity condition for g on ∂Ω can be stated in the
following way:

x∗g(x) > 0 for all x ∈ ∂V such that x ∈ RN
+ .

To see how (11.7.5) can be obtained from (11.7.6), let us choose a constant

α > β := max{||g(x)||∞ + ||x||∞
∣∣ x ∈ V , x ∈ RN

+}
and define

Ω := {z ∈ RN
∣∣ ||z−||∞ < α, z+ ∈ V }.

Then there are only two possibilities to consider for a point z ∈ ∂Ω and
λ ∈ [0, 1]:

(1)

z[i] = −α for some i =⇒
H(z, λ)[i] = z[i] + λ

(
g(z+)[i]− z+[i]

)
= −α+ λg(z+)[i] ≤ −α+ β < 0.

(2)

z+ ∈ ∂V =⇒
(z+)∗H(z, λ) = (z+)∗

[
(1− λ)z + λ

(
g(z+)− z−

)]
= (1− λ)||z+||2 + λ(z+)∗g(z+) > 0.

In both cases, the boundary condition (11.7.5) follows immediately. At this
point we would normally try to give some argument that 0 is a regular value of
H and that the curve C ⊂ H−1(0) containing (0, 0) is a smooth curve which,
because of (11.7.5), reaches a point (z̄, 1) such that f(z̄) = 0. However, in the
present case, since H is not smooth, we can only assert that C is a continuum,
cf. Browder (1960) or Rabinowitz (1971) for general techniques to prove such
connectedness assertions. The problem which remains is to discuss how to
numerically implement a “tracing” of such continua. There are essentially
three methods available:
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(1) The piecewise linear or complementary pivoting methods can be viewed
as a numerical tool to trace such continua. This observation is essentially
due to Eaves (1971), (1972). In chapter 13 we show how the NLCP
problem can be solved by some standard PL homotopy methods. More
generally, PL methods may be viewed as numerical realizations of Leray-
Schauder degree theory, as has been observed by Peitgen & Prüfer (1979),
see also Peitgen (1982).

(2) As was shown by Alexander & Kellogg & Li & Yorke (1979), it is possible
to construct a theory of piecewise smooth maps, including a version of the
implicit function theorem and a Sard type theorem. Then H−1(0) can be
traced by a predictor-corrector type algorithm where some minor updates
have to be performed whenever a new piece of smoothness is encountered,
see Kojima (1981) and Kojima & Hirabayashi (1984). To our knowledge,
little work has been done concerning numerical implementations of this
approach.

(3) It is possible to construct a more sophisticated homotopy H̃(z, λ) than
(11.7.4) such that the restriction to RN × (−∞, 1) is smooth and such
that H̃(·, 1) = f(z). Then standard numerical continuation methods can
be used for a numerical tracing of H̃−1(0), cf. Watson (1979) for more
details.

In (1979), Khachiyan started a new class of polynomial time algorithms for
solving the linear programming problem. Karmarkar (1984) subsequently gave
a much noted polynomial time algorithm based upon projective rescaling. Gill
& Murray & Saunders & Tomlin & Wright (1986) noted that Karmarkar’s al-
gorithm is equivalent to a projected Newton barrier method which in turn
is closely related to a recent class of polynomial time methods involving a
continuation method, namely the tracing of the “path of centers”. This last
idea can be generalized to quadratic programming problems, and both linear
and nonlinear complementarity problems. For details, we refer to e.g. Gon-
zaga (1987), Jarre & Sonnevend & Stoer (1987), Kojima & Mizuno & Noma
(1987), Kojima & Mizuno & Yoshise (1987), Megiddo (1986), Renegar (1988),
Sonnevend & Stoer (1988), Tanabe (1987). As an example, we outline the
continuation approach of Kojima & Mizuno & Noma for tracing the path of
centers for the general nonlinear complementarity problem (11.7.1). For the
case of the linear complementarity problem, Mizuno & Yoshise & Kikuchi
(1988) present several implementations and report computational experience
which confirms the polynomial complexity.

The above mentioned continuation method actually turns out to be the
global homotopy method, cf. section 11.4, for a map G : R2N → R2N defined
by

(11.7.7) G(x, y) :=
(

diag(x)y
g(x)− y

)
for x, y ∈ RN ,
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where diag(x) denotes the N ×N diagonal matrix whose diagonal entries are
the components of x. Note that the NLCP (11.7.1) can equivalently be stated
as the zero point problem

(11.7.8) G(x, y) = 0, x, y ∈ RN
+ .

To solve this zero point problem, we introduce the global homotopy

(11.7.9) H(x, y, λ) := G(x, y)− λG(x1, y1),

where

x1, y1 ∈ RN
++

are chosen starting points. Let us assume that g is a uniform P-function
on RN

+ , i.e. there exists an α > 0 such that

(11.7.10) max
i=1,...,N

e∗i diag
(
g(u)− g(v)

)
(u− v) ≥ α||u− v||2

holds for all u, v ∈ RN
+ . Then, using results of Moré (1974), it can be seen

that the homotopy equation

H(x, y, λ) = 0

has exactly one solution
(
x(λ), y(λ)

)
∈ R2N

+ for every λ ≥ 0, and the map

λ ∈ [0, 1] 7→
(
x(λ), y(λ)

)
∈ R2N

+

is a continuous curve which can be traced from the initial point
(
x(1), y(1)

)
downto the unique solution

(
x(0), y(0)

)
of the NLCP (11.7.1). In the special

case of a linear complementarity problem, Kojima & Mizuno & Yoshise (1987)
indicated a way to trace this curve to λ = 0 in polynomial time.
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11.8 Critical Points and Continuation Methods

Among the applications of numerical continuation methods is the calculation
of critical points of a smooth mapping f : RN → R. In general, one chooses
a smooth mapping g : RN → R with known regular critical points a ∈ RN

i.e. ∇g(a) = 0 for the gradient and the Hessian ∇g′(a) has full rank. One then
formulates a smooth homotopy map H : RN+1 → RN such that

H(x, 0) = ∇g(x) and H(x, 1) = ∇f(x).

Typically, one uses the convex homotopy

(11.8.1) H(λ, x) := (1− λ)∇g(x) + λ∇f(x).

The numerical aspect then consists of tracing a smooth curve

c(s) =
(
λ(s), x(s)

)
∈ H−1(0)

with starting point c(0) = (0, a) for some given critical point a of g, and
starting tangent ċ(0) =

(
λ̇(0), ẋ(0)

)
with λ̇(0) > 0. The aim of course is to

trace the curve c until the homotopy level λ = 1 is reached, at which a critical
point of f is obtained. If all critical points of f are regular, then by Sard’s
theorem (11.2.2) it is generally possible to make a choice of g such that zero
is a regular value of H. The following result of Allgower & Georg (1980)
indicates that the continuation method has an appealing property which can
permit targeting critical points having a specific Morse index.

(11.8.2) Theorem. Let f, g : RN → R be smooth functions and let H
be the convex homotopy of (11.8.1) which has zero as a regular value. Let
c(s) =

(
λ(s), x(s)

)
∈ H−1(0) be the smooth curve obtained by the defining

initial value problem

ċ(s) = σt
(
H ′(c(s))

)
,

c(0) = (0, a),

where a is a regular critical point of g and σ ∈ {+1,−1} is a fixed orientation.
Suppose that λ(s) is increasing for s ∈ [0, s̄], λ(s̄) = 1, and that the critical
point b := x(s̄) of ∇f is regular. Then the critical points a, b of g and f
respectively, have the same Morse index i.e. the Hessians ∇g′(a) and ∇f ′(b)
have the same number of negative eigenvalues.

Proof. From the defining initial value problem we obtain(
λ̇(s) ẋ(s)∗

Hλ

(
c(s)

)
Hx

(
c(s)

))( λ̇(s)
ẋ(s)

)
=
(

1
0

)
,
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where subindices indicate partial derivatives. This implies that

(11.8.3)
(

λ̇(s) ẋ(s)∗

Hλ

(
c(s)

)
Hx

(
c(s)

))( λ̇(s) 0∗

ẋ(s) Id

)
=
(

1 ẋ(s)∗

0 Hx

(
c(s)

)) .

Since the determinant of the augmented Jacobian never changes sign, cf.
(2.1.5), it follows from the above equation that detHx

(
c(s)

)
changes sign

exactly when λ̇(s) changes sign. The latter does not occur, and Hx

(
c(s)

)
can have at most one eigenvalue equal to zero, since all points c(s) are
regular points of H. Using a result of perturbation theory, cf. Dunford &
Schwartz (1963), namely that an isolated eigenvalue of the symmetric matrix
Hx

(
c(s)

)
depends smoothly on s, we conclude that Hx(0, a) = ∇g′(a) and

Hx(1, b) = ∇f ′(b) have the same number of negative eigenvalues.

The drawback to applying the above theorem is that in general it is dif-
ficult to choose the initial function g so that the curve c has a monotone λ
co-ordinate and reaches the level λ = 1 in finite arclength. It has been ob-
served by Allgower & Georg (1983), Allgower (1984) and Keller (1988) that
turning points in the λ co-ordinate lead to bifurcation points in a setting of
complex extension. Hence by considering the complexification of the homo-
topy map (and thereby doubling the number of variables), it is possible to
extract a piecewise smooth curve which is always increasing in λ. It is never-
theless not assured that such a curve will reach λ = 1 unless some boundary
condition such as

H(z, t) 6= 0 for z ∈ ∂Ω, t ∈ [0, 1]

is assumed for a suitable open bounded neighborhood Ω ⊂ RN of a. Further-
more, only real solutions correspond to critical points, and hence the method
is only successful if a real solution is reached at level λ = 1. Even if the latter
is achieved, the Morse index is not necessarily preserved if bifurcations have
been traversed. Let us now briefly outline this approach.

We go into a more general setting and assume that H : R×RN → RN

is a smooth homotopy. The important assumption which we need to make is
that H is real analytic in the variables x. Hence it is meaningful to replace x in
H(λ, x) by z ∈ CN . In the following we use the notation z = x+iy for z ∈ CN ,
where x, y ∈ RN denote the real and imaginary parts of z respectively. Note
that H(λ, z) = H(λ, z) since H is real analytic. Let us define the real and
imaginary parts Hr, Hi : R×RN ×RN → RN by

(11.8.4)
Hr(λ, x, y) :=

1
2
(
H(λ, z) +H(λ, z)

)
,

Hi(λ, x, y) :=
−i
2
(
H(λ, z)−H(λ, z)

)
,
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and the map Ĥ : R×RN ×RN → RN ×RN by

(11.8.5) Ĥ(λ, x, y) :=
(
Hr(λ, x, y)
−Hi(λ, x, y)

)
.

Let ĉ : s 7→
(
λ(s), x(s), y(s)

)
be a smooth curve in Ĥ−1(0), where for simplic-

ity s is an arclength parameter. Differentiating Ĥ
(
λ(s), x(s), y(s)

)
= 0 with

respect to s yields

(11.8.6) ( Ĥλ Ĥx Ĥy )

 λ̇
ẋ
ẏ

 =
(

0
0

)
.

From (11.8.4) we obtain the Cauchy-Riemann equations

(11.8.7) Hr
y = −Hi

x and Hi
y = Hr

x .

By using these and augmenting (11.8.6) in an obvious way, we obtain

(11.8.8)
(
λ̇ ẋ∗ ẏ∗

Ĥλ Ĥx Ĥy

) λ̇ 0∗ 0∗

ẋ Id 0
ẏ 0 Id

 =

 1 ẋ∗ ẏ∗

0 Hr
x −Hi

x

0 −Hi
x −Hr

x


and

(11.8.9) λ̇ det
(
λ̇ ẋ ẏ
Ĥλ Ĥx Ĥy

)
= det

(
Hr
x −Hi

x

−Hi
x −Hr

x

)
= det Ĥ(x,y) .

The Cauchy-Riemann equations (11.8.7) show that

Ĥ(x,y) =
(
Hr
x −Hi

x

−Hi
x −Hr

x

)
,

and hence Ĥ(x,y) is symmetric. Furthermore, if µ is an eigenvalue of Ĥ(x,y)

having a corresponding eigenvector
(
u
v

)
, then so is −µ an eigenvalue having

a corresponding eigenvector
(
v
−u
)
. Hence the eigenvalues of Ĥ(x,y) occur in

symmetric pairs about zero, and det Ĥ(x,y) never changes sign. Consequently,
if U is a neighborhood of a parameter value s̄ such that ĉ(s) are regular points
of Ĥ for s ∈ U , s 6= s̄, then (11.8.9) shows that λ̇

(
ĉ(s)

)
changes sign at s = s̄

if and only if

det
(
λ̇ ẋ∗ ẏ∗

Ĥλ Ĥx Ĥy

)
ĉ(s)

does. Hence, a turning point of ĉ with respect to the λ parameter is also a
bifurcation point of the equation Ĥ = 0. Let us now show that in the case of
a real solution curve, the corresponding bifurcation point must be simple in
the sense of (8.1.11).
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(11.8.10) Proposition. Under the above assumptions, let the curve s 7−→
ĉ(s) =

(
λ(s), x(s), 0

)
be a “real” solution curve of Ĥ−1(0) such that the

point
(
λ(s̄), x(s̄)

)
is a regular point of the real homotopy H. Suppose that(

λ(s̄), x(s̄)
)

is a simple turning point of the equation H = 0 i.e. λ̇(s̄) = 0 and

λ̈(s̄) 6= 0. Then ĉ(s̄) is a simple bifurcation point of the equation Ĥ = 0.

Proof. Since H is real analytic, it is easy to see that

(11.8.11) Hi
x(λ, x, 0) = 0 , Hi

xx(λ, x, 0) = 0 , Hi
λ(λ, x, 0) = 0 ,

etc. holds for x ∈ RN and λ ∈ R. Hence, using the Cauchy-Riemann equa-
tions (11.8.7), the augmented Jacobian takes the form

(11.8.12)
(
λ̇ ẋ∗ ẏ∗

Ĥλ Ĥx Ĥy

)
ĉ(s̄)

=

 0 ẋ∗ 0∗

Hr
λ Hr

x 0
0 0 −Hr

x


ĉ(s̄)

.

Since the rank of (
0 ẋ∗

Hλ Hx

)
(
λ(s̄), x(s̄)

)
is N + 1, we conclude that rankHr

x

(
ĉ(s̄)

)
≥ N − 1. On the other hand,

the defining differential equation (11.8.6) implies that Hr
x

(
ĉ(s̄)

)
ẋ(s̄) = 0, and

hence rankHr
x

(
ĉ(s̄)

)
= N − 1. Therefore the matrix in (11.8.12) has rank

2N , and the Jacobian Ĥ ′
(
ĉ(s̄)

)
has a two-dimensional kernel spanned by the

vectors  0
ẋ(s̄)

0

 ,

 0
0

ẋ(s̄)

 .

It remains to show that the non-degeneracy conditions for the second deriva-
tives hold, cf. (8.1.11)(3). Let e span the kernel of Hr

x

(
ĉ(s̄)

)∗. Then
(

0
e

)
spans

the kernel of Ĥ ′
(
ĉ(s̄)

)∗. Furthermore,

(11.8.13) e∗Hr
λ

(
ĉ(s̄)

)
6= 0

since otherwise the above kernel would not have dimension one. We have to
investigate whether the bilinear form

(ξ, η) 7−→ (0, e∗)Ĥ ′′
(
ĉ(s̄)

)ξ
 0
ẋ(s̄)

0

 , η

 0
0

ẋ(s̄)


has one positive and one negative eigenvalue. Using (11.8.11) and the Cauchy-
Riemann equations (11.8.7), a straightforward calculation shows that the
above bilinear form reduces to

(11.8.14) (ξ, η) 7−→ 2ξη e∗Hi
xy

(
ĉ(s̄)

)
[ẋ(s̄), ẋ(s̄)] .
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It is clear that the simple bilinear form (11.8.14) has one positive and one
negative eigenvalue if and only if

(11.8.15) e∗Hi
xy

(
ĉ(s̄)

)
[ẋ(s̄), ẋ(s̄)] 6= 0 .

To show this, let us differentiate the equation e∗H
(
λ(s), x(s)

)
= 0 twice.

Using the facts e∗Hx

(
λ(s̄), x(s̄)

)
= 0, Hx

(
λ(s̄), x(s̄)

)
ẋ(s̄) = 0 and λ̇(s̄) = 0,

we obtain

e∗Hλ

(
λ(s̄), x(s̄)

)
λ̈(s̄) + e∗Hxx

(
λ(s̄), x(s̄)

)
[ẋ(s̄), ẋ(s̄)] = 0 .

Since λ̈(s̄) 6= 0, we can conclude from (11.8.13) that e∗Hxx

(
λ(s̄), x(s̄)

)
6= 0.

Now (11.8.15) follows from the Cauchy-Riemann equations (11.8.7).

Let us finally show that at bifurcation points at which one of the two
solution branches is real, the corresponding curvatures are of opposite sign,
and hence at such points a choice of following branches is available so that
the λ co-ordinate is increasing.

(11.8.16) Proposition. Under the assumptions of (11.8.10), let us now de-
note the “real” solution curve in Ĥ−1(0) by c1(s) =:

(
λ1(s), x1(s), 0

)
and

the bifurcating solution curve in Ĥ−1(0) by c2(s) =:
(
λ̃(s), x2(s), y2(s)

)
. The

curves are defined for s near s̄, and ū := c1(s̄) = c2(s̄) is the bifurcation point.

Then λ̈1(s̄) = −λ̈2(s̄).

Proof. Let us denote by c(s) =:
(
λ̃(s), x(s), y(s)

)
either of the two solution

curves c1 or c2. Differentiating Ĥ
(
c(s)

)
= 0 twice with respect to s and taking

λ(s̄) = 0 into account yields

(11.8.17)
Ĥλ(ū)λ̈(s̄) + Ĥxx(ū)[ẋ(s̄), ẋ(s̄)] + 2Ĥxy(ū)[ẋ(s̄), ẏ(s̄)] +

Ĥyy(ū)[ẏ(s̄), ẏ(s̄)] + Ĥx(ū)ẍ(s̄) + Ĥy(ū)ÿ(s̄) = 0 .

Let e span the kernel of Hr
x

(
ĉ(s̄)

)∗ as in the previous proof. Multiplying
(11.8.17) from the left with (e∗, 0) and taking the properties (11.8.7) and
(11.8.11) into account, we obtain

(11.8.18) e∗Hr
λ(ū)λ̈(s̄) + e∗Hr

xx(ū)[ẋ(s̄), ẋ(s̄)] + e∗Hr
yy(ū)[ẏ(s̄), ẏ(s̄)] = 0 .

Since

(11.8.19) ċ1(s̄) =
(
0, ẋ1(s̄), 0

)
holds, it can be seen from (11.8.14) and (8.1.13) that

(11.8.20) ċ2(s̄) =
(
0, 0,±ẋ1(s̄)

)
.

Substituting (11.8.19–20) into (11.8.18) we obtain

(11.8.21)
e∗Hr

λ(ū)λ̈1(s̄) + e∗Hr
xx(ū)[ẋ1(s̄), ẋ1(s̄)] = 0 ,

e∗Hr
λ(ū)λ̈2(s̄) + e∗Hr

yy(ū)[ẋ1(s̄), ẋ1(s̄)] = 0 ,

respectively. Since e∗Hr
λ(ū) 6= 0, see (11.8.13), and since Hr

xx(ū) = −Hr
yy(ū)

by (11.8.7), the assertion follows.
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More general studies of the behavior of critical points in parametric op-
timization are to be found in the books of Jongen & Jonker & Twilt. Also
semi-infinite problems can in principle be regarded as parametric optimization
problems, see e.g. Jongen & Zwier.
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Chapter 12. PL Continuation Methods

12.1 Introduction

In previous chapters we assumed that the map H : RN+1 → RN was smooth,
that zero was a regular value, and that H−1(0) was a collection of disjoint
smooth curves which could be numerically traced using PC-methods. Now
we will discuss piecewise linear (PL) methods which can again be viewed as
curve tracing methods, but the map H can now be arbitrary. The map H is
approximated by a piecewise linear map HT which affinely interpolates H at
the nodes of a triangulation T of RN+1. The PL methods trace the piecewise
linear 1-manifold H−1

T (0). A connected component of the piecewise linear
1-manifold consists of a polygonal path which is obtained by successively
stepping through certain “transverse” (N + 1)-dimensional simplices of the
triangulation. Although the PL method works for arbitrary maps, only under
some smoothness assumptions on H can one obtain truncation error estimates
in terms of the meshsize of the underlying triangulation. In order to be able to
discuss these methods it is necessary to introduce a few combinatorial ideas.
The first notions we need are those of a simplex and a triangulation.

(12.1.1) Definition. A set of points {v1, v2, . . . , vk+1} in Rm is said to be
affinely independent (also called in general position) if the following matrix
has full rank i.e. if its columns are linearly independent:

(12.1.2)
(

1 1 . . . 1
v1 v2 . . . vk+1

)
.

Equivalently, v1, v2, . . ., vk+1 are affinely independent if the differences v2−v1,
v3 − v1, . . ., vk+1 − v1 are linearly independent vectors in Rm. Note that one
point is always affinely independent.

The notion of a simplex is basic for the description of PL methods.

(12.1.3) Definition. For any set of k + 1 affinely independent points

{v1, v2, . . . , vk+1}



vertex

facet
edge
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we define the k-dimensional simplex with vertices {v1, v2, . . . , vk+1} to be
the convex hull

(12.1.4)

{
v =

k+1∑
i=1

αivi

∣∣∣∣∣ α1 ≥ 0, α2 ≥ 0, . . . , αk+1 ≥ 0,
k+1∑
i=1

αi = 1

}
.

Usually we will denote such simplices by Greek letters such as σ or τ , and in
particular by [v1, v2, . . . , vk+1] if we want to be specific about the vertices of
(12.1.4). To abbreviate our notation, a k-dimensional simplex is often called
a k-simplex. Note that a 0-simplex is a singleton. The above coefficients
α1, . . . , αk+1 are usually called the barycentric co-ordinates of v with
respect to the affine basis v1, v2, . . . , vk+1.

(12.1.5) Definition. Let σ = [v1, v2, . . . , vk+1] be a k-simplex and let 1 ≤
l ≤ k + 1. If {w1, w2, . . . , wl+1} ⊂ {v1, v2, . . . , vk+1} is a subset of vertices
of σ, we call the l-simplex τ = [w1, w2, . . . , wl+1] an l-dimensional face of σ,
or simply an l-face. Of particular interest are:

(1) the 0-faces which are singletons containing one vertex of σ;

(2) the 1-faces which are also called the edges of σ;

(3) the (k − 1)-faces which are called the facets of σ.

The latter play an important role in PL methods and are obtained by dropping
just one vertex of σ, say vi. Let us denote by the symbol ˆ the deletion of the
element beneath it. Then the facet τ = [v1, . . . , v̂i, . . . , vk+1] of σ is called
the facet of σ lying opposite the vertex vi of σ. An important point of σ is

its the barycenter (k + 1)−1
∑k+1
i=1 vi.

Figure 12.1.a A simplex of dimension 3

A simple example of a triangulation is obtained by triangulating the
whole Euclidean space.

(12.1.6) Definition. Let T be a non-empty family of (N + 1)-simplices in
RN+1. We call T a triangulation of RN+1 if



B

A

C

E

D
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(1) ⋃
σ∈T

σ = RN+1;

(2) the intersection σ1∩σ2 of two simplices σ1, σ2 ∈ T is empty or a common
face of both simplices;

(3) the family T is locally finite i.e. any compact subset of RN+1 meets only
finitely many simplices σ ∈ T .

Figure 12.1.b illustrates cases where condition (12.1.6)(2) is satisfied and not
satisfied, respectively.

Figure 12.1.b The simplices [A,B,D] and [C,D,E] meet in [C,D] which is
an edge of [C,D,E] but not of [A,B,D]

(12.1.7) Definition. Let T be a triangulation of RN+1, and let 0 ≤ k ≤
N + 1. We denote by

T k := {τ | τ is a k-face of some simplex σ ∈ T }

the family of all k-faces in T . Of special interest are the singletons T 0 which
contain the vertices or nodes of T , and the facets T N of T . Naturally, we
identify T = T N+1. Two simplices σ1, σ2 ∈ T are called adjacent if they
meet in a common facet.

Triangulations are not stored in a computer by storing each individual
simplex. Instead, only a current simplex is stored, together with information
about how to obtain adjacent simplices as needed. The steps from one simplex
to an adjacent one are called “pivoting steps”. They are basic for the
dynamics of PL methods. The following lemma prepares their introduction.

(12.1.8) Lemma. Let T be a triangulation of RN+1. Consider a simplex
σ ∈ T and let τ be a facet of σ. Then there is a unique simplex σ̃ ∈ T such
that

(1) σ̃ 6= σ;

(2) τ is a facet of σ̃.

Proof. Let H ⊂ RN+1 denote the hyperplane which contains the facet τ of
σ. Then σ must lie on one side of H; let us call this side the “left” side of



v~

v
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H. Consider a straight line s ∈ R 7→ c(s) ∈ RN+1 such that c(0) is a point
in the relative interior of τ and such that the tangent ċ(0) points into the
“right” side of H. By the properties (1) and (3) in the definition (12.1.6) of a
triangulation, there must exist at least one simplex σ̃ ∈ T which contains the
interval {c(s) | 0 ≤ s ≤ ε} for some small ε > 0. By property (2) the simplex
σ̃ must meet σ in the common facet τ . Of course, σ̃ lies on the “right” side of
H. Finally, we observe that two simplices in T which have the same facet τ
and lie on the same side of H must have a common interior point and hence
coincide. This shows the uniqueness of the simplex σ̃.

(12.1.9) Definition. Let σ = [v1, v2, . . . , vN+2] be an (N + 1)-simplex of

a triangulation T of RN+1, and let τ = [v1, . . . , v̂i, . . . , vN+2] be the facet
of σ lying opposite the vertex vi. By the preceding lemma, there must exist
a unique node ṽi i.e. [ṽi] ∈ T 0 which is different from vi and such that σ̃ =
[v1, . . . , ṽi, . . . , vN+2] ∈ T . The passage from σ to σ̃ is called a pivoting step.
We say that the vertex vi of σ is pivoted into ṽi, and that the simplex σ is
pivoted into the simplex σ̃ across the facet τ .

Figure 12.1.c The vertex v is pivoted into the vertex ṽ

(12.1.10) Example. A following simple triangulation T of RN+1 which
has been frequently used for computational purposes was already considered
by Coxeter (1934) and Freudenthal (1942), see also Todd (1976). We will
call this triangulation Freudenthal’s triangulation. The nodes of T are
those vectors v ∈ RN+1 which have integer co-ordinates v[i] ∈ Z for i =
1, 2, . . . , N + 1. An (N + 1)-simplex σ ⊂ RN+1 belongs to the triangulation
T if the following rules are obeyed:

(1) the vertices of σ are nodes of T in the above sense;
(2) the vertices of σ can be ordered in such a way, say σ = [v1, v2, . . . , vN+2]

that they are given by the following cyclic recursion formula

vi+1 = vi + uπ(i), i = 1, . . . , N + 1

v1 = vN+2 + uπ(N+2),

where u1, . . . , uN+1 is the unit basis of RN+1, uN+2 := −
∑N+1
i=1 ui and

π : {1, . . . , N + 2} → {1, . . . , N + 2}



v
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is a permutation.

From the description of the pivoting rules below it is quite evident that these
conditions define a triangulation T of RN+1. The formal proof is however
somewhat technical, and we refer the reader to Todd (1976). The following
diagram indicates how the vertices of a simplex σ are obtained:

uπ(i−2) uπ(i−1) uπ(i) uπ(i+1)

σ : . . . −→ vi−1 −→ vi −→ vi+1 −→ . . .

Then it is easy to see that the following diagram describes how the vertex vi
is pivoted into the vertex ṽi:

uπ(i−2) uπ(i) uπ(i−1) uπ(i+1)

σ̃ : . . . −→ vi−1 −→ ṽi −→ vi+1 −→ . . .

i.e. the directional vectors uπ(i−1) and uπ(i) are just switched.

Figure 12.1.d The vertex v is pivoted
into the vertex ṽ by reflection

This fact can also be expressed by the cyclic formulae

(12.1.11)
ṽi = vi−1 − vi + vi+1 , i = 2, . . . , N + 1,
ṽ1 = vN+2 − v1 + v2 ,

ṽN+2 = vN+1 − vN+2 + v1 ,

which shows that ṽi is obtained by reflecting vi across the center of the edge
[vi−1, vi+1] etc. This pivoting rule is to be understood in a cyclic way i.e. 0
has to be replaced by N + 2 and N + 3 has to be replaced by 1. It is easily
programmed and has been called pivoting by reflection, cf. Allgower & Georg
(1977). Figure 12.1.d illustrates a pivot by reflection. It has the advantage of
being invariant under affine transformations, hence any triangulation which
is obtained from Freudenthal’s triangulation by some affine transformation
obeys the above pivoting rule. Coxeter (1934) classified all triangulations T
of RN+1 which are invariant under reflections across the hyperplanes which
are generated by the N -faces of T .

We summarize these facts in the following proposition, which was given
in Allgower & Georg (1977).
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(12.1.12) Proposition. Let σ = [v1, v2, . . . , vN+2] ⊂ RN+1 be an (N + 1)-
simplex, and denote by T the family of all simplices which are obtained from
σ by a repeated use of the pivoting rule (12.1.11). Then T is a triangulation
of RN+1, in fact T is some affine image of Freudenthal’s triangulation.

12.2 PL Approximations

Let H : RN+1 → RN be a map. We do not need any smoothness or continuity
assumptions concerning H, unless we want to make precise statements about
the truncation errors of the corresponding PL approximation. Given a trian-
gulation T of RN+1, we intend to approximate the components of H−1(0) by
using only the values of H on the nodes of T . This leads us to the following

(12.2.1) Definition. Let H : RN+1 → RN be a map, let T be a triangu-
lation of RN+1, and let τ = [v1, v2, . . . , vk+1] ∈ T k be a k-face of T where
0 ≤ k ≤ N + 1.

(1) By Hτ : τ → RN we denote the uniquely defined affine map which
coincides with H on the vertices vi of τ . Using the notation of (12.1.4),
we have

Hτ (v) :=
k+1∑
i=1

αiH(vi) for v =
k+1∑
i=1

αivi .

(2) Let tng(τ) (“tangent space of τ”) denote the linear space which contains
all differences w1 − w2 with w1, w2 ∈ τ . Then the Jacobian of Hτ is the
linear map H ′τ : tng(τ) → RN obtained by H ′τ (w1 − w2) = Hτ (w1) −
Hτ (w2) for w1, w2 ∈ τ . Since Hτ is affine, there is no ambiguity in this
definition i.e. Hτ (w1)−Hτ (w2) = Hτ (w̃1)−Hτ (w̃2) for w1−w2 = w̃1−w̃2.

(3) Finally, the PL approximation of H is obtained as the union

HT =
⋃
σ∈T

Hσ

i.e. HT (v) = Hσ(v) for v ∈ σ and σ ∈ T . There is no ambiguity in this
definition, since it can be easily seen that Hσ1

(v) = Hσ2
(v) for v ∈ σ1∩σ2.

As in the case of smooth maps, it is also possible to avoid degenerate cases for
PL maps by introducing corresponding concepts of regular points and regular
values, cf. chapter 2.

(12.2.2) Definition. A point x ∈ RN+1 is called a regular point of the
PL map HT if and only if

(a) x is not contained in any lower dimensional face τ ∈ T k for k < N ;
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(b) H ′σ has maximal rank for all σ ∈ T N ∪ T N+1 such that x ∈ σ.

A value y ∈ RN is a regular value of HT if all points in H−1
T (y) are regular.

By definition, y is vacuously a regular value if it is not contained in the range
of HT . If a point is not regular it is called singular. Analogously, if a value
is not regular it is called singular.

The perturbation arising in the following discussion can be viewed as a specific
analogue for PL maps of the general perturbation c used in Sard’s theorem
(11.2.3), cf. Eaves (1976) and Peitgen & Siegberg (1981). For ε > 0, let us
use the symbol

(12.2.3) ~ε :=

 ε1

...
εN


to denote the corresponding “ε-vector”.

(12.2.4) Proposition. For any compact subset C ⊂ RN+1 there are at most
finitely many ε > 0 such that C ∩ H−1

T (~ε) contains a singular point of HT .
Consequently, ~ε is a regular value of HT for almost all ε > 0.

Proof. Let us assume that τ = [v1, . . . , vk+1] ∈ T k is a face for some k ∈
{0, 1, . . . , N+1} which contains solutions zj ∈ H−1

T (~εj) for j = 1, 2, . . . , N+1
such that

ε1 > ε2 > · · · > εN+1 > 0 .

By using the notation

zj =
k+1∑
i=1

αj,i vi ∈ τ ,

definition (12.2.1) leads to the equations

(12.2.5)



k+1∑
i=1

αj,iH(vi) = ~εj ;

k+1∑
i=1

αj,i = 1;

αj,i ≥ 0 for i = 1, 2, . . . , k + 1.
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We introduce the matrices

L(τ) :=
(

1 . . . 1
H(v1) . . . H(vk+1)

)
;

A2 :=

 α1,1 . . . αN+1,1

...
. . .

...
α1,k+1 . . . αN+1,k+1

 ;

A3 :=
(

1 . . . 1
~ε1 . . . ~εN+1

)
.

L(τ) is called the labeling matrix of H with respect to τ . The equations
(12.2.5) can now be written as

(12.2.6) L(σ)A2 = A3.

Since A3 is a nonsingular Van der Monde matrix, it follows that rankL(σ) =
N + 1. This implies k ≥ N . Furthermore, it is an easy exercise to see that

rankL(τ) = rankH ′τ + 1 .

Hence, rankH ′τ = N . Now definition (12.2.2) implies that not all points
z1, z2, . . . , zN+1 can be singular. The assertion now follows from the facts that
a triangulation is locally finite, cf. (12.1.6)(3), and that RN+1 is a countable
union of compact sets.

The ε-perturbation in (12.2.4) allows us to handle situations of degener-
acy. This concept leads to the notion of lexicographically positive inverses of
the labeling matrices, see section 12.4. Charnes (1952) seems to have been the
first to use this idea in order to handle degeneracies in linear programming.

Figure 12.2.a The polygonal path

H−1
T (0)

We make use of the PL approximation HT of H by considering the ap-
proximation H−1

T (0) of the solution manifold H−1(0). Except for degenera-
cies, we expect H−1

T (0) to be a polygonal path with nodes on the N -faces
τ ∈ T N of the triangulation T , see figure 12.2.a for an illustration.
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The PL continuation algorithm consists of successively generating these
nodes of H−1

T (0) by steps which are similar to the pivoting steps in linear
programming. Of course, this heuristic description seems to only make sense
for smooth H. As we will see later however, the resulting combinatorial
methods also have interesting applications in more general situations.

12.3 A PL Algorithm for Tracing H(u) = 0

Let us begin the description of the features of the PL continuation algorithm
by pointing out the relationship between the ε-perturbation in (12.2.4) and
the use of lexicographically positive matrices for dealing with degeneracies say,
in the Simplex Method of linear programming, cf. Dantzig (1963). Again, we
assume that a map H : RN+1 → RN and a triangulation T of RN+1 are
given.

(12.3.1) Definition. We call an N -simplex τ ∈ T N completely labeled if
and only if it contains solutions vε of the equation Hτ (v) = ~ε for all sufficiently
small ε > 0.

In other words, we define an N -simplex τ to be completely labeled if it
contains a zero point of the PL approximation Hτ and if this property of τ is
stable under certain small perturbations in the above sense.

(12.3.2) Proposition. Let τ = [v1, . . . , vN+1] ∈ T N be an N -simplex. Let

(12.3.3) L(τ) :=
(

1 . . . 1
H(v1) . . . H(vN+1)

)
be the labeling matrix on τ induced by H. Then τ is completely labeled if
and only if the following two conditions hold:

(a) L(τ) is nonsingular;

(b) L(τ)−1 is lexicographically positive i.e. the first nonvanishing entry
in any row of L(τ)−1 is positive.

Proof. We characterize a point vε ∈ τ by its barycentric coordinates

(12.3.4)



vε =
N+1∑
i=1

αi(ε) vi ;

N+1∑
i=1

αi(ε) = 1 ;

αi(ε) ≥ 0 for i = 1, 2, . . . , N + 1.
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As in the proof of (12.2.4), we obtain the following characterization for vε to
be a solution of the equation Hτ (v) = ~ε:

(12.3.5) L(τ)

 α1(ε)
...

αN+1(ε)

 =
(

1
~ε

)
.

Let τ be completely labeled. Then analogously to the proof of (12.2.4), we
see that L(τ) must be nonsingular. Multiplying (12.3.5) by L(τ)−1, we see
that the αi(ε) must be polynomials in ε of degree N , hence

αi(ε) =
N+1∑
j=1

A[i, j] εj for i = 1, . . . , N + 1,

where A is some (N + 1)× (N + 1)-matrix. This leads to the linear equation

(12.3.6)

 α1(ε)
...

αN+1(ε)

 = A

(
1
~ε

)
.

From (12.3.5) we obtain
A = L(τ)−1.

Now the condition αi(ε) ≥ 0 for all sufficiently small ε > 0 and i = 1, . . . , N+1
in equation (12.3.6) implies that A must be lexicographically positive.

Conversely, if L(τ)−1 is lexicographically positive, then for ε > 0 being
sufficiently small, the equation (12.3.6) provides us with the barycentric co-
ordinates of a solution vε ∈ τ of the equation Hτ (v) = ~ε.

As we will see below, keeping track of the labeling matrix L(τ) is the
basic means for numerically tracing H−1

T (0).

(12.3.7) Definition. An (N + 1)-simplex σ ∈ T is called transverse (with
respect to H) if it contains a completely labeled N -face.

(12.3.8) Proposition (Door-In-Door-Out-Principle).
An (N + 1)-simplex has either no or exactly two completely labeled N -faces.

Proof. We give a geometric proof. Let us assume that σ is transverse, and
let us consider the equation Hσ(v) = ~ε for v ∈ σ. By proposition (12.2.4),
for ε > 0 being sufficiently small, the solutions v form a line which does not
intersect lower-dimensional faces of σ. Hence, the line intersects exactly two
N -faces of σ. These two N -faces cannot change as ε → 0, since otherwise a
lower-dimensional face would be traversed and proposition (12.2.4) would be
contradicted. In other words, exactly two N -faces of σ contain solutions of
the equation Hσ(v) = ~ε for ε > 0 being sufficiently small.
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The PL continuation algorithm for tracing certain components of H−1
T (0)

can now be easily described via the above Door-In-Door-Out-Principle, cf.
Eaves (1974). Heuristically, let us imagine that the (N + 1)-simplices σ ∈ T
are “rooms” in an “infinite” building T , and the “walls” of a room σ are its
N -faces τ . A wall has a “door” if it is completely labeled. Hence a room has
either no or exactly two doors. The algorithm consists of passing from one
room to the next, and the following rule must be obeyed: if a room is entered
through one door, it must be exited through the other door, see figure 12.3.a
for an illustration.

Figure 12.3.a Passing through the “doors”

This leads to the following

(12.3.9) Generic PL Continuation Algorithm. comment:

input

begin

σ0 ∈ T transverse; starting simplex

τ0 completely labeled N -face of σ0;
end;

repeat for n := 1, 2, . . .
find σn ∈ T , σn 6= σn−1 pivoting step

such that τn−1 = σn ∩ σn−1;
find the completely labeled N -face τn of σn door-in-door-out step

such that τn 6= τn−1;
until traversing is stopped.

For the special case of homotopy methods which will be discussed in the next
chapter, the choice of a starting simplex will be obvious. On the other hand,
for general PL curve tracing methods, a suitable starting simplex has to be
constructed. This can be done by the general methods described in section
15.4, see (15.4.3) and subsequent remarks. The numerical implementation
of the door-in-door-out step usually amounts to solving linear equations in a
manner analogous to the Simplex Method of linear programming. Therefore,
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we often refer to such steps as linear programming (LP) steps. This will
be discussed in the next section.

The algorithm generates a sequence

(12.3.10) σ0 ⊃ τ0 ⊂ σ1 ⊃ τ1 ⊂ σ2 ⊃ τ2 ⊂ σ3 · · ·

of transverse (N + 1)-simplices σi containing the two completely labeled N -
faces τi−1 and τi. Since no (N +1)-simplex can have three completely labeled
N -faces, the following classification is obvious.

(12.3.11) Proposition. The sequence (12.3.10) has one of the following two
properties:

(a) infinite: Both infinite sequences σ0, σ1, . . . and τ0, τ1, . . . have pairwise
different elements.

(b) cyclic: There is a smallest integer ñ > 0 such that σ0 = σñ. Both fi-
nite sequences σ0, σ1, . . . , σñ−1 and τ0, τ1, . . . , τñ−1 have pair-
wise different elements. The cyclic relations σi = σñ+i and
τi = τñ+i hold for i = 0, 1, . . .

A formal proof of (12.3.11) can be given via graph theory. We consider a
graph G whose nodes σ are the transverse (N + 1)-simplices of T . Two nodes
σ1, σ2 of G are connected if they have a common completely labeled N -face.
Proposition (12.3.8) states that all nodes of G have degree 2. Hence, all paths
in G are either homeomorphic to R or S1.

(12.3.12) The Polygonal Path. Each completely labeled N -face τn gen-
erated by algorithm (12.3.9) possesses a unique zero point un of HT , which
we call the H-center of τn. We will see in the next section that these cen-
ters are easy to calculate. Let cT : [0,∞) → RN+1 be the uniquely defined
polygonal path, parametrized by arclength s, with nodes cT (sn) = un for
0 = s0 < s1 < s2 < . . ..

It is clear that range
(
cT
)
⊂ H−1

T (0). The PL algorithm can be considered
as following this polygonal path. If H is smooth and has zero as regular value,
this polygonal path approximates the smooth curve c in H−1(0), defined in
(2.1.9), with initial value c(0) = u0. As will be seen in sections 12.6 and 15.4,
the approximation has truncation error O(δ2), where δ is the meshsize of the
triangulation.
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12.4 Numerical Implementation of a PL Continuation
Algorithm

Let us now discuss some details of numerically implementing the generic algo-
rithm (12.3.9). To perform the linear programming steps, we have in essence
to keep track of the inverse L(τ)−1 of the labeling matrix of the current com-
pletely labeled N -face τ (= “door we are currently entering”), cf. (12.3.2). We
investigate this in more detail by making use of the following identity which
can be regarded as a special case of the formula of Sherman & Morrison
(1949):

(12.4.1) Remark. Let A be an (N + 1)× (N + 2)-matrix of maximal rank
N + 1, and B a (N + 2) × (N + 1)-matrix such that AB = Id i.e. B is a
right inverse of A. Since A has maximal rank, there is a vector γ ∈ RN+2,
γ 6= 0, such that γ spans ker(A). For example, if e ∈ RN+2 does not belong
to range(B) then γ := e−BAe is a possible choice. For any unit basis vector
ei it is immediately seen that the rank-one modification

(12.4.2) Bi := B − γe∗iB

γ[i]

is the right inverse of A uniquely defined by the property e∗iBi = 0. In
fact, the inverse of the matrix obtained by deleting the i th column of A is
the matrix obtained by deleting the i th row of Bi. Of course, the equation
(12.4.2) only makes sense under the assumption that γ[i] 6= 0, but it is clear
that this condition is equivalent to the assumption that the matrix obtained
by deleting the i th column of A is invertible.

To simplify the following discussion, let us suppose, cf. (12.3.9), that we
just performed a “pivoting step”. We denote the current transverse (N + 1)-
simplex by σn = [v1, . . . , vN+2] and its current completely labeled N -face
by τn−1 = [v1, . . . , vN+1]. Hence, the vertex vN+2 was just pivoted in the
preceding step. Our aim in the “linear programming step” is to find the
completely labeled N -face τn of σn which is different from τn−1 i.e. which is
not opposite vN+2. Assuming that a right inverse B of the labeling matrix
A = L(σn) is known, from (12.4.1) it follows that we merely need to find an
index i ∈ {1, . . . , N + 1} such that the above Bi with the i th row deleted is
lexicographically positive. Hence we are seeking an index i such that the rows

e∗jB −
γ[j]e∗iB
γ[i]

of Bi are lexicographically positive for all j 6= i. Dividing by γ[j], we see that
this is equivalent to the following three conditions:

e∗jB

γ[j]
lex. greater

e∗iB

γ[i]
for j 6= i, γ[j] > 0;(12.4.3)(1)
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e∗jB

γ[j]
lex. smaller

e∗iB

γ[i]
for j 6= i, γ[j] < 0;(12.4.3)(2)

e∗jB lex. positive for j 6= i, γ[j] = 0.(12.4.3)(3)

Since the N -face opposite vN+2 is completely labeled, we already know that
(12.4.3) is satisfied for i = N + 2. In particular, this implies that condition
(12.4.3)(3) holds, and combining the two conditions (12.4.3)(1)–(2) for i =
N + 2, we also obtain

e∗j1B

γ[j1]
lex. smaller

e∗j2B

γ[j2]
whenever γ[j1] < 0 < γ[j2].

Now lexicographically maximizing over the first terms and lexicographically
minimizing over the second yields exactly the two indices corresponding to
the two completely labeled N -faces. One of these two indices is of course the
already known index, in our case i = N +2, indicating the current completely
labeled N -face τn−1, and the other is the new index we are seeking in the
linear programming step. This leads to the numerical implementation of the
door-in-door-out-principle. In our algorithms below, we always calculate the
vector γ ∈ RN+2 representing ker(A) in such a way that the component of γ
corresponding to the known index (assumed here to be i = N +2) is negative.
Then we have to always perform the lexicographical minimization described
above in the linear programming step.

For numerical purposes, the lexicographical minimization in linear pro-
gramming is usually performed only over the first co-ordinate of the rows.
Theoretically, in cases of degeneracies, an algorithm based on this simpli-
fied test could cycle, but this is rarely observed in practice. For the simplex
method of linear programming, sophisticated pivoting rules have been de-
veloped to avoid cycling, see e.g. Magnanti & Orlin (1988). Of course, if
one wishes to test the complete lexicographic case, an implementation has to
account for possible round-off errors. These also depend on the decomposi-
tion method which is updated together with the current labeling matrix, cf.
chapter 16, and their magnitude is difficult to estimate.

Using this simplification, the numerical linear algebra of a step of (12.3.9)
now consists of solving the equation

Aγ = 0, γ[j] = −1

for γ ∈ RN+2, where the index j is given and corresponds to the known
completely labeled N -face, and of solving the equation

Aα = e1

for α ∈ RN+2. Note that the vector α is only determined up to one degree of
freedom, which may be cut down by imposing the condition α[j] = 0. Note
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also that α corresponds to the first column of the right inverse B used in the
above discussion. Then a minimization

min
{
α[i]
γ[i]

∣∣∣∣ γ[i] > 0, i = 1, . . . , N + 2
}

is performed to find an index i, the vertex vi is pivoted into the new vertex
ṽi, the corresponding label

y :=
(

1
H(ṽi)

)

is calculated, and the new labeling matrix Ã is obtained by replacing the i th

column of A by y:
Ã = A+ (y −Aei)e∗i .

Usually, at each step, a standard decomposition of Ã is updated from a given
decomposition of A in O(N2) flops, which enables us to solve the linear equa-
tions in each step. The cheapest such method directly updates the right
inverse B of A such that e∗iB = 0 for the current pivot index i, c.f. (12.4.1).
A similar update is also used in the Revised Simplex Method of linear pro-
gramming. Unfortunately, this method can produce numerical instabilities,
due to the fact that the denominator in (12.4.1) may have a high relative error
generated by cancellation of digits, see Bartels & Golub (1969). In chapter 16
we give a more thorough discussion and remedies. In the following algorithm
we assume that the pivoting rules of a given triangulation T of RN+1 are
easily performed, and that the linear equations described above are solved
by updating the right inverse of the labeling matrix A, or by updating some
standard decomposition of A in each step.

(12.4.4) General PL Continuation Algorithm. comment:

input

begin

[v1, . . . , vN+2] ∈ T transverse; starting simplex

j ∈ {1, . . . , N + 2}; the N -face opposite vj —

is known to be completely labeled

end;

A :=
(

1 · · · 1
H(v1) · · · H(vN+2)

)
; initialize labeling matrix
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repeat

begin

solve Aα = e1, α[j] = 0 for α; first linear equation

if α 6≥ 0 then quit; failure, e.g. wrong starting simplex —

or numerical instability

solve Aγ = 0, γ[j] = −1 for γ; second linear equation

find optimal index i with respect to

min
{
α[i]
γ[i]

∣∣∣∣ γ[i] > 0, i = 1, . . . , N + 2
}

; door-in-door-out step

pivot vi into ṽi; pivoting step

vi := ṽi;

y :=
(

1
H(vi)

)
; new label on new vertex vi

A := A+ (y −Aei)e∗i ; update of labeling matrix

j := i;

end.

Given the coefficients α in the “first linear equation”, it is straightforward to
obtain the H-center u = H−1

τ (0) of the completely labeled N -face τ opposite
the vertex vj , namely:

(12.4.5) u =
N+2∑
i=1

α[i] vi .

Recall that this H-center approximates a zero point of H in τ . Hence, the
nodes of the polygonal path (12.3.12) generated by the PL algorithm are easily
obtained.

As an illustration of the above discussion, we conclude this section with
a sketch of a customized version of (12.4.4) in which the right inverse B of the
current labeling matrix A is always updated by using the formula (12.4.2).
Let us again emphasize that this version may be numerically unstable, see the
remarks preceding (12.4.4). Other update procedures are discussed in chapter
16.
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(12.4.6) PL Algorithm Updating the Right Inverse. comment:

input

begin

[v1, . . . , vN+2] ∈ T ; transverse starting simplex

j ∈ {1, . . . , N + 2}; the N -face opposite vj —

is known to be completely labeled

εtol > 0; tolerance for avoiding —

division by zero in the update formula

end;
initial labeling matrix —

A :=
(

1 · · · 1
H(v1) · · · H(vN+2)

)
; in fact the j th column is not needed

find (N + 2)× (N + 1)-matrix B such that
AB = Id and e∗jB = 0; initial right inverse of A

repeat

begin

if B is not lex. positive failure, e.g. wrong starting simplex —
then quit; or numerical instability

y :=
(

1
H(vj)

)
; new label

γ := By − ej ; α := Be1; solving the linear equations

find optimal index i with respect to

min
{
α[i]
γ[i]

∣∣∣∣ γ[i] > εtol, i = 1, . . . , N + 2
}

; door-in-door-out step

pivot vi into ṽi; pivoting step

vi := ṽi;

B := B − γe∗iB

γ[i]
; update of B

j := i;

end.



      

168 12. PL Continuation Methods

12.5 Integer Labeling

In the preceding sections we outlined a PL algorithm using a labeling matrix
(12.3.3) based upon a map

(12.5.1) H : RN+1 → RN .

In this context, the map H is often referred to as vector labeling. An-
other class of labelings which have been used by several authors are integer
labelings

(12.5.2) ` : RN+1 7→ {1, 2, . . . , N + 1} .
This was used in one of the first approaches to fixed point algorithms, see
Kuhn (1968–69), and can be connected to Sperner’s lemma (1920), see e.g.
Todd (1976). Since integer labeling leads to a very coarse approximation of a
given nonlinear problem, it is usually not recommended for smooth problems,
but it may be interesting for problems of a more combinatorial nature. The
great advantage of integer labeling is that numerical linear algebra is not
required in order to drive the pivoting process.

Recall that an N -simplex τ = [v1, . . . , vN+1] ⊂ RN+1 is completely
labeled with respect to H if the convex hull of {H(v1), . . . , H(vN+1)} contains
all ε-vectors ~ε, see (12.2.3), for sufficiently small ε > 0. The analogous concept
for integer labeling is as follows:

(12.5.3) Definition. An N -simplex τ = [v1, . . . , vN+1] ⊂ RN+1 is said to
be completely labeled with respect to a given integer labeling (12.5.2) if
{`(v1), . . . , `(vN+1)} = {1, . . . , N + 1} .

It is possible to unify these concepts by introducing a PL map `T induced
by an integer labeling (12.5.2).

(12.5.4) Definition. Let ` be an integer labeling and T a triangulation of
RN+1. We fix a standard simplex Σ = [w1, . . . , wN+1] ⊂ RN such that zero
is an interior point of Σ. The particular choice of Σ is immaterial. For a node
v of T , we define

`T (v) := w`(v) .

Now `T can be uniquely extended to a PL map `T : RN+1 → Σ by the usual
affine interpolation.

From the above definitions, it is immediately clear that an N -simplex
τ ⊂ RN+1 is completely labeled with respect to ` if and only if it is completely
labeled with respect to `T . Hence, the dynamics of the PL algorithm for
integer labelings can be regarded as a special case of the general discussion
given in section 12.3. In particular, the door-in-door-out step of (12.3.9) is
especially simple to program, since one needs to pivot only those vertices which
have the same label `. As an illustration, let us repeat algorithm (12.4.4) for
the case of integer labeling:
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(12.5.5) General PL Algorithm Using Integer Labeling. comment:

input [v1, . . . , vN+2] ∈ T and transverse starting simplex —

the N -face opposite vj —

j ∈ {1, . . . , N + 2} such that is completely labeled

{`(vk)
∣∣ k = 1, . . . , N + 1, k 6= j} = {1, 2, . . . , N + 1};

repeat
find i ∈ {1, . . . , N + 2}, i 6= j such that
`(vi) = `(vj); door-in-door-out step

pivot vi into ṽi; pivoting step

vi := ṽi; j := i;
until traversing is stopped.

The following is an example of how an integer labeling ` may be defined in
order to investigate a given zero point problem H(u) = 0 for a map H :
RN+1 → RN . For v ∈ RN+1, we define `(v) := 1 +m where m is the number
of initial co-ordinates of H(v) which are positive, i.e. `(v) is defined by the
following steps:

(12.5.6)
i := 1;
while i < N + 1 and e∗iH(v) > 0 do i := i+ 1;
`(v) := i.

To see the connection between the above integer labeling and the zero points
of H, we note that the continuity of H implies

(12.5.7)
N+1⋂
i=1

`−1(i) ⊂ H−1(0) .

The reverse inclusion holds for regular zero points of H:

(12.5.8) Lemma. Let H be differentiable at u ∈ RN+1 such that H(u) = 0
and rankH ′(u) = N . Then

u ∈
N+1⋂
i=1

`−1(i) .

Proof. For i = 1, 2, . . . , N +1 let qi denote the i th column of the N × (N +1)-
matrix 

−1 1 1 . . . 1
−1 −1 1 . . . 1
...

...
. . . . . .

...
−1 . . . . . . −1 1

 .
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Since H ′(u) has rank N , there exists a C > 0 such that the equation

H ′(u) vn,i =
1
n
qi

has a solution vn,i for i = 1, 2, . . . , N+1 and n = 1, 2, . . . such that ||vn,i||∞ ≤
C/n. From the definition of differentiability it follows that H(u + v) =
H ′(u)v + o(||v||) holds, and hence

`(u+ vn,i) = i i = 1, 2, . . . , N + 1

holds for n sufficiently large. Since lim∞n=1 vn,i = 0, u is a limit point of `−1(i)
for i = 1, 2, . . . , N + 1.

The following lemma indicates how well a completely labeled simplex
approximates a zero point of H:

(12.5.9) Lemma. Let M ⊂ RN+1 be a set such that H(M) is bounded and
`
(
H(M)

)
= {1, 2, . . . , N+1}. Then ||H(u)||∞ ≤ diam∞H(M) holds for every

u ∈M .

Proof. For i = 1, 2, . . . , N we can find a ui ∈ M such that `(ui) = i. This
implies

e∗iH(u) = e∗i
(
H(u)−H(ui)

)
+ e∗iH(ui)

and e∗iH(ui) ≤ 0 yields

(12.5.10) e∗iH(u) ≤ diam∞H(M) .

Furthermore, let uN+1 ∈ M such that `(uN+1) = N + 1. Then we have for
j = 1, 2, . . . , N that

e∗jH(u) = e∗j
(
H(u)−H(uN+1)

)
+ e∗jH(uN+1),

and e∗jH(uN+1) > 0 yields

(12.5.11) e∗jH(u) ≥ −diam∞H(M) .

The inequalities (12.5.10–11) prove the assertion.
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12.6 Truncation Errors

We conclude this chapter with some brief remarks on error estimates. A more
comprehensive and general discussion will be given in section 15.5. Let us
begin by defining the meshsize of a triangulation.

(12.6.1) Definition. Let T be a triangulation of RN+1. The meshsize of
T is defined by

δ := sup
σ∈T

diam(σ) .

For example, let us consider Freudenthal’s triangulation T of RN+1, see
(12.1.10). If we use the maximum norm ||·||∞, then the meshsize of T is δ = 1,
and if we use the Euclidean norm || · ||2, then the meshsize is δ =

√
N + 1.

Similarly, let us consider the affine image T (σ) of Freudenthal’s triangulation,
see (12.1.12), obtained by the reflection rules (12.1.11), starting from the
simplex σ = [v1, v2, . . . , vN+2]. Then the meshsize of T (σ) is bounded by∥∥∥∥∥∥∥∥∥ ( v2 − v1 . . . vN+2 − v1 )


1 1 . . . 1
0 1 . . . 1
...

. . . . . .
...

0 . . . 0 1


−1
∥∥∥∥∥∥∥∥∥ δ

=

∥∥∥∥∥∥∥∥∥∥∥∥∥
( v2 − v1 . . . vN+2 − v1 )



1 −1 0 0 . . . 0
0 1 −1 0 . . . 0
...

. . . . . . . . . . . .
...

0 . . . 0 1 −1 0
0 . . . 0 0 1 −1
0 . . . 0 0 0 1



−1
∥∥∥∥∥∥∥∥∥∥∥∥∥
δ

=
∥∥∥(v2 − v1 , v3 − v2 , vN+2 − vN+1

)∥∥∥ δ ,
where δ is the meshsize of T according to whichever norm is used. It is
not difficult to show that there exists a factor of proportionality C > 0,
independent of the choice of σ, such that

1
C

diam(σ) ≤ ‖( v2 − v1 . . . vN+2 − v1 )‖ ≤ C diam(σ) .

Hence, there exists a constant K > 0 such that the meshsize of T (σ) can be
bounded by K diam(σ). In particular, for the ∞-norm, Gnutzmann (1988)
shows

K =
[
N + 2

2

]
.
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The general aim of PL continuation methods is to obtain completely
labeled N -faces τ in a triangulation T of meshsize δ. The idea is that such
a τ approximates a zero point of the given map H. It is intuitively clear
that the order of approximation depends on the labeling which is used (e.g.
integer or vector labeling) and on the smoothness of H. For example, let us
assume that H is Lipschitz continuous, i.e. there exists a constant L > 0 such
that ||H(u) −H(v)|| ≤ L ||u − v|| holds for all u, v ∈ RN+1. Then it follows
immediately from (12.5.9) that in the case of integer labeling (12.5.6), all
points u ∈ τ approximate a zero point of H with order O(δ), more precisely:

||H(u)||∞ ≤ Lδ

holds for every u ∈ τ . As will be seen in section 15.5 and in particular in
proposition (15.5.2), vector labeling yields a second order approximation if H
is sufficiently smooth:

||H(u)|| ≤ O(δ2)

for u ∈ τ such that HT (u) = 0.



     

173

Chapter 13. PL Homotopy Algorithms

In the last chapter we discussed the general features of PL continuation
methods. In this chapter we will apply them to find a zero point of a map
G : RN → RN . We will see that it is possible to greatly relax the smoothness
hypotheses regarding the map G, which are usually assumed for numerically
solving such problems. In fact, the map G may even be set-valued. Eaves
(1971) showed that it is possible to calculate by PL algorithms the fixed points
which are guaranteed to exist by a theorem of Kakutani (1941). Merrill (1972)
gave a more general boundary condition for set-valued maps G, which is sim-
ilar to the Leray-Schauder condition (11.2.12). In this chapter we present two
PL algorithms due to Merrill (1972) and Eaves & Saigal (1972) which can be
regarded as PL implementations of the homotopy method which was sketched
generally in section 11.2. To insure success of the algorithms, we will follow a
presentation of Georg (1982) which used a quite general boundary condition
extending somewhat that used by Merrill.

13.1 Set-Valued Maps

Let us begin with a description of some properties of set-valued maps which
we will use in the sequel. More details can be found in the books of Berge
(1963), Rockafellar (1970), Stoer & Witzgall (1970) and Todd (1976). To
motivate the ideas, we first consider a simple example. Let G : R → R be
defined by

(13.1.1) G(x) =
{ 1 if x ≥ 1,
−1 if x < 1.

Although G changes sign at x = 1, due to its discontinuity it does not have
a zero point. However, in a more general sense, it is useful to regard the
point x = 1 as a “generalized zero point”. In fact, G(x) has two accumulation
points as x→ 1, namely ±1, and hence the convex hull of these accumulation
points is [−1, 1], which contains the point zero. This example motivates us to
give the following definitions.



2
0

1

1

-1

0
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(13.1.2) Definition. A map G : RN → RN is called locally bounded if
each point x ∈ RN has a neighborhood Ux such that G(Ux) is a bounded set.

For example, the map G : R→ R defined by

G(x) =
{
x−1 if x 6= 0,
0 if x = 0,

is not locally bounded at zero.

(13.1.3) Definition. Let G : RN → RN be locally bounded. Denote by
RN# the family of nonempty compact convex subsets of RN . We define the
set-valued hull G# : RN → RN# by

G#(x) :=
⋂
U∈Ux

coG(U) ,

where Ux denotes the family of neighborhoods of x ∈ RN and co represents
the operation of taking the closed convex hull.

For the function (13.1.1) we obtain

(13.1.4) G#(x) =

 { 1} if x > 1,
{−1} if x < 1,
[−1, 1] if x = 1,

see figure 13.1.a.

Figure 13.1.a The map G of (13.1.1) and its set-valued hull G# with a
“generalized zero point” at x = 1

(13.1.5) Lemma. The set-valued hull G# : RN → RN# of definition
(13.1.3) is upper semi-continuous, i.e. for each point x ∈ RN and each
open subset V ⊂ RN such that G#(x) ⊂ V there exists a neighborhood
W ⊂ RN of x such that G#(w) ⊂ V for all w ∈W .

Proof. Since G is locally bounded, we can find a closed ball B ⊂ RN and a
neighborhood Wo of x such that G(Wo) ⊂ B. Let us denote by Wx the family
of all neighborhoods of x which are contained in Wo. Suppose the assertion is
not true for a pair x and V as in the hypothesis. Then it follows that

(13.1.6) coG(W ) ∩ (B − V ) 6= ∅
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holds for all W ∈ Wx. The system {coG(W )}W∈Wx is downward directed by
inclusion, i.e. if W1, . . . ,Wk ∈ Wx, then W1 ∩ . . . ∩Wk ∈ Wx, and

coG(W1 ∩ . . . ∩Wk) ⊂ coG(W1) ∩ . . . ∩ coG(Wk) .

It follows that the system of compact sets

(13.1.7)
{

coG(W ) ∩ (B − V )
}
W∈Wx

is also downward directed by inclusion. Now (13.1.6) implies that it has the
finite intersection property. By a standard compactness argument we have

(13.1.8)
⋂

W∈Wx
coG(W ) ∩ (B − V ) 6= ∅.

But by definition
G#(x) =

⋂
W∈Wx

coG(W ) ,

and hence (13.1.8) contradicts the choice of V in the hypothesis.

It is now easy to see from the definition (13.1.3) and the above lemma
that the map G# : RN → RN# is the smallest upper semi-continuous map
which contains G. We also obtain the following

(13.1.9) Corollary. Let G : RN → RN be locally bounded and x ∈ RN .
Then G is continuous at x if and only if G#(x) =

{
G(x)

}
is a singleton.

Proof. Let us denote by Bρ(y) the closed ball with radius ρ and center y.
If G is continuous at x, then for every ε > 0 there is a δ(ε) > 0 such that
G
(
Bδ(ε)(x)

)
⊂ Bε

(
G(x)

)
. Hence

G#(x) ⊂ coG
(
Bδ(ε)(x)

)
⊂ Bε

(
G(x)

)
.

Intersecting both sides of the above relation over all ε > 0 and using the
continuity of G at x yields

G#(x) ⊂
⋂
ε>0

Bε
(
G(x)

)
=
{
G(x)

}
and hence G#(x) =

{
G(x)

}
. Conversely, suppose that G#(x) =

{
G(x)

}
is

a singleton. Then by lemma (13.1.5), for every ε > 0 there is a δ(ε) > 0 such
that G#(w) ⊂ Bε

(
G(x)

)
for all w ∈ Bδ(ε)(x). Since G(w) ∈ G#(w), it follows

immediately that G
(
Bδ(ε)(x)

)
⊂ Bε

(
G(x)

)
holds, which states the continuity

of G at x.

In many applications G is defined in a piecewise fashion over sets which
subdivide RN . For example, G may be defined by considering different cases.
Let us describe such a general scenario.

(13.1.10) Definition. A family of maps
{
Gι : Mι → RN

}
ι∈I is called a

locally bounded partition of G : RN → RN if the following conditions
hold:
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(1) {Mι }ι∈I form a disjoint partition of RN i.e.
⋃
ι∈IMι = RN and Mα ∩

Mβ = ∅ for α, β ∈ I with α 6= β;

(2) {Mι }ι∈I is locally finite i.e. for every x ∈ RN there is a neighborhood
U ∈ Ux such that only finitely many Mι meet U , where Ux again denotes
the family of neighborhoods of x;

(3) all Gι : Mι → RN are locally bounded maps;
(4) G(x) = Gι(x) for x ∈Mι and ι ∈ I.

Clearly, any map G satisfying the above definition is locally bounded,
and hence has a set-valued hull. Analogously to (13.1.3), we can define the
set-valued hull G#

ι : Mι → RN# of a component Gι by

G#
ι (x) :=

⋂
U∈Ux

coGι(U ∩Mι)

for any point x in the closure Mι of Mι. We call an index ι ∈ I active at
x ∈ RN if x belongs to the closure Mι. Let us denote by I(x) the set of
indices which are active at x, see figure 13.1.b. By the condition (13.1.10)(2)
it is clear that I(x) is finite. The following lemma is useful for obtaining the
set-valued hull of a locally bounded partition.

Figure 13.1.b Active indices of a partitioned map

(13.1.11) Lemma. Let
{
Gι : Mι → RN

}
ι∈I be a locally bounded partition

of the map G : RN → RN . Then

G#(x) = co
{
G#
ι (x)

∣∣ ι ∈ I(x)
}

holds for x ∈ RN .

Proof. By condition (13.1.10)(2) we can find a Uo ∈ Ux such that G(Uo) is
bounded and

Uo ∩Mι 6= ∅ ⇐⇒ ι ∈ I(x) .

For U ∈ Ux with U ⊂ Uo we have

G(U) =
⋃

ι∈I(x)

Gι(U ∩Mι)
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and consequently

coG(U) = co
( ⋃
ι∈I(x)

coGι(U ∩Mι)
)
.

Here we have used the well known fact that the convex hull of a finite union
of closed convex sets is closed. Intersecting over all U on both sides of the
above relation yields the assertion.

In many cases, the component maps Gι : Mι → RN are continuous and
can be continuously extended to the closure Mι, and then the set-valued hulls
G#
ι (x) can be shown to reduce to the singletons

{
Gι(x)

}
by an argument

similar to that in corollary (13.1.9).
In the next sections we will present several PL homotopy algorithms.

As we have seen in our discussions in section 11.2, in order for homotopy
algorithms to be successful, a boundary condition is needed. The following
definition gives rise to a boundary condition which is particularly well suited
for PL homotopy algorithms.

(13.1.12) Definition. A locally bounded map G : RN → RN is called
asymptotically linear if there exists a nonsingular N × N -matrix A such
that

lim
||x||→∞

||G(x)−Ax||
||x|| = 0

holds. For obvious reasons we call G′(∞) := A the Jacobian of G at infinity.

It is possible to introduce a Leray-Schauder-type degree for set-valued
maps, see e.g. Granas (1959), Górniewicz (1976) or Siegberg & Skordev (1982)
for very general cases. The following theorem is a simple example of an
existence theorem which can be proven by a degree argument.

(13.1.13) Theorem. Let G : RN → RN be asymptotically linear. Then
G# has a zero point i.e. there exists a point x̄ ∈ RN such that 0 ∈ G#(x̄).

In fact, for a sufficiently large closed ball B with center zero, the degrees
of G# and G′(∞) coincide on B, and since the latter is different from zero,
we have a zero point of G# in B. A “constructive” proof of this theorem can
be obtained by considering the homotopy algorithms of the next sections, i.e.
these algorithms approximate a zero point x̄ as above. However, our main
point is that we do not regard (13.1.13) from a standpoint of an existence
theorem, but rather as a general setting under which PL homotopy algorithms
will be successful. This will be elaborated in the next sections. Hence we
regard the above boundary condition viz. the asymptotic linearity of G as an
appropriate boundary condition for these algorithms. Let us finally give some
important examples where this boundary condition occurs in a natural way.
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(13.1.14) Example. Let C ⊂ RN be a compact convex set, and let R :
RN → C be a retraction i.e. R is continuous and R(x) = x for x ∈ C. Such a
retraction always exists. For example, if C contains an interior point x0 then
R(x) for x 6∈ C may be defined as the intersection point of ∂C with the line
connecting x0 and x. Now let F : C → C be any map. We set G := Id−F ◦R.
It is immediately clear that G is locally bounded and asymptotically linear.
In fact, G′(∞) = Id. Hence, there is an x̄ ∈ RN such that 0 ∈ G#(x̄). It
follows that x̄ ∈ F#

(
R(x̄)

)
, because R is continuous. Since C is compact and

convex and F (C) ⊂ C, we obtain a fixed point x̄ ∈ C such that x̄ ∈ F#(x̄).
This is a set-valued version of the fixed point theorem of Brouwer (1912), see
Kakutani (1941) for a generalization to infinite dimensional spaces. Let us
again remark: the discussions in the next sections will show that by using
the above approach, such fixed points can be approximated via PL homotopy
methods.

(13.1.15) Example. Let us now show how the Leray-Schauder condition
(11.2.12) can be used to obtain an asymptotically linear map. Suppose that
Ω ⊂ RN is a bounded open neighborhood of p ∈ RN , and let F : Ω → RN

be a continuous map such that the following boundary condition holds:

(13.1.16) λ
(
F (x)− p

)
6= (x− p) for x ∈ ∂Ω and 0 ≤ λ ≤ 1.

Let us define G : RN → RN by

G(x) =
{
x− p for x 6∈ Ω,
x− F (x) for x ∈ Ω.

Again G is obviously an asymptotically linear map with Jacobian G′(∞) = Id.
Hence G# possesses a zero point x̄. Let us show that x̄ is a fixed point of F
in Ω by considering the three possible cases

1. x̄ ∈ Ω: Then G is continuous at x̄, and (13.1.9) implies that{
0
}

= G#(x̄) =
{
G(x̄)

}
=
{
x̄− F (x̄)

}
.

Hence x̄ is a fixed point of F .
2. x̄ 6∈ Ω: Then we have G#(x̄) =

{
x̄ − p

}
=
{

0
}

by (13.1.9), and this
contradicts p ∈ Ω.

3. x̄ ∈ ∂Ω: Then 0 ∈ G#(x̄), and (13.1.9), (13.1.11) imply that

G#(x̄) = co
{
x̄− p , x̄− F (x̄)

}
.

Hence there is a convex combination: λ1, λ2 ≥ 0, λ1 + λ2 = 1 such that
λ1(x̄ − p) + λ2

(
x̄ − F (x̄)

)
= 0. Since x̄ 6= p, it follows that λ2 6= 0 and

hence a simple manipulation of this last equation shows that(
λ1

λ2

+ 1
)

(x̄− p) = F (x̄)− x̄ ,

which can be seen to contradict the boundary condition (13.1.16).
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Thus we have seen that a continuous map F : Ω→ RN satisfying the bound-
ary condition (13.1.16) has a fixed point in Ω. In section 11.2 we showed that
such a fixed point could be approximated in the case of a smooth map F . In
the following sections we will see that such fixed points can also be approx-
imated for a continuous (not necessarily smooth) map F via PL homotopy
algorithms.

(13.1.17) Example. The next example concerning constrained optimization
essentially follows a discussion given by Merrill (1972), see also Todd (1976)
and Georg (1980). A function θ : RN → R is called convex if

λ1θ(x1) + λ2θ(x2) ≥ θ(λ1x1 + λ2x2)

holds for all convex combinations: λ1, λ2 ≥ 0, λ1 + λ2 = 1, x1, x2 ∈ RN . It is
well known, see Rockafellar (1970), that a convex function is continuous and
has an upper semi-continuous subgradient ∂θ : RN → RN# defined by

∂θ(x) :=
{
y ∈ RN

∣∣ θ(z)− θ(x) ≥ y∗(z − x) for all z ∈ RN
}
.

A simple consequence of this fact is that a point x̄ ∈ RN is a solution point
of the minimization problem minx θ(x) if and only if 0 ∈ ∂θ(x̄).

We now want to study the constrained minimization problem

(13.1.18) min
x

{
θ(x)

∣∣ ψ(x) ≤ 0
}
,

where θ, ψ : RN → R are convex. We assume the Slater condition

(13.1.19)
{
x
∣∣ ψ(x) < 0 , ||x− x0|| < r

}
6= ∅

and the boundary condition that the problem

(13.1.20) min
x

{
θ(x)

∣∣ ψ(x) ≤ 0 , ||x− x0|| ≤ r
}
,

has no solution on the boundary
{
x
∣∣ ||x − x0|| = r

}
for some suitable

x0 ∈ RN and r > 0. This boundary condition is satisfied for example if{
x
∣∣ ψ(x) ≤ 0

}
⊂
{
x
∣∣ ||x− x0|| < r

}
or more generally, if

∅ 6=
{
x
∣∣ ψ(x) ≤ 0

}
∩
{
x
∣∣ θ(x) ≤ C

}
⊂
{
x
∣∣ ||x− x0|| < r

}
.

Let us define the map G : RN → RN by

(13.1.21) G(x) ∈


∂θ(x) for ψ(x) ≤ 0 and ||x− x0|| < r,
∂ψ(x) for ψ(x) > 0 and ||x− x0|| < r,
{x− x0 } for ||x− x0|| ≥ r.

Again it is obvious that G is asymptotically linear with Jacobian G′(∞) =
Id. Hence we obtain a zero point x̄ of G#. We will show that x̄ solves
the minimization problem (13.1.18) by considering various possible cases. In
doing so, we will repeatedly make use of the properties of convex functions as
described above, and of (13.1.9), (13.1.11) without any further mention.
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1. ||x̄− x0|| > r: We obtain x̄− x0 = 0, which is a contradiction.
2. ψ(x̄) > 0 and ||x̄ − x0|| = r: Then there exists a convex combination

such that 0 ∈ λ1∂ψ(x̄) + λ2

{
x − x0

}
. Hence x̄ solves minx λ1ψ(x) +

1
2λ2||x− x0||2. But by (13.1.19) there exists a v such that ψ(v) < 0 and
||v − x0|| < r, which yields a contradiction.

3. ψ(x̄) = 0 and ||x̄ − x0|| = r: Then there exists a convex combination
such that 0 ∈ λ1∂θ(x̄) + λ2∂ψ(x̄) + λ3

{
x − x0

}
. Let us first observe

that λ1 = 0 yields the same contradiction as in the previous case. Hence
λ1 6= 0, and we have that x̄ solves minx λ1θ(x) +λ2ψ(x) + 1

2λ3||x−x0||2.
But by (13.1.20) there exists a v such that θ(v) < θ(x̄), ψ(v) ≤ 0 and
||v − x0|| < r, which yields a contradiction since λ1 6= 0.

4. ψ(x̄) < 0 and ||x̄ − x0|| = r: Then there exists a convex combination
such that 0 ∈ λ1∂θ(x̄) + λ2

{
x − x0

}
. Hence x̄ solves minx λ1θ(x) +

1
2λ2||x − x0||2. But by (13.1.20) there exists a v such that θ(v) < θ(x̄)
and ||v − x0|| < r, which yields a contradiction.

5. ψ(x̄) > 0 and ||x̄ − x0|| < r: Then 0 ∈ ∂ψ(x̄), and x̄ solves minx ψ(x)
which contradicts (13.1.19).

6. ψ(x̄) = 0 and ||x̄ − x0|| < r: Then there exists a convex combination
such that 0 ∈ λ1∂θ(x̄) + λ2∂ψ(x̄). Let us first observe that λ1 = 0 yields
the same contradiction as in the previous case. Hence λ1 6= 0, and we
have that x̄ solves minx λ1θ(x) + λ2ψ(x). Let us assume that x̄ is not
a solution of the minimization problem (13.1.18). Then there exists a v
such that θ(v) < θ(x̄) and ψ(v) ≤ 0, which yields a contradiction since
λ1 6= 0.

7. ψ(x̄) < 0 and ||x̄− x0|| < r: Then 0 ∈ ∂θ(x̄), and x̄ solves minx θ(x).

So we have shown that the cases 1–5 are impossible and the cases 6–7 yield a
solution of the minimization problem (13.1.18).

(13.1.22) Example. Let us return to the nonlinear complementarity prob-
lem (11.7.1): Find an x ∈ RN such that

x ∈ RN
+ ; g(x) ∈ RN

+ ; x∗g(x) = 0 ,

where g : RN → RN is a continuous map. Because of (11.7.3), we seek a zero
point x̄ of the map x 7→ g(x+) − x−, and then x̄+ solves the NLCP. We use
the coercivity condition (11.7.6) and define G : RN → RN by

G(x) =
{
x if x 6∈ Ω,
g(x+)− x− if x ∈ Ω.

Again, G is asymptotically linear and G′(∞) = Id. Hence we have a zero point
x̄ of G#. Since Ω is a bounded open neighborhood of zero, the case x̄ 6∈ Ω
is excluded, and the case x̄ ∈ ∂Ω is excluded by an argument very similar to
the one following (11.7.6). The remaining case, namely x̄ ∈ Ω, yields a zero
point of the map x 7→ g(x+)− x−.
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The above examples are only a sample of the many possible applica-
tions of PL homotopy methods or more generally, of complementary pivoting
methods. The reader can find many further cases in the bibliography.

13.2 MerrillÕs Restart Algorithm

In this section we describe a version of Merrill’s algorithm which is a simple
example of a “restart” method. For a historical account of early versions of
PL methods we refer the reader to Todd (1976) and (1982). We begin with a
useful

(13.2.1) Definition. Let T be a triangulation of RN+1 and let C ⊂ RN+1

be a closed convex set with nonempty interior int(C). We call the triangula-
tion T compatible with C if⋃ {

σ ∈ T
∣∣ σ ∩ int(C) 6= ∅

}
= C .

It can be shown that T induces a triangulation of ∂C. For the sake of
completeness, we sketch a proof of this in the following

(13.2.2) Lemma. Let T be a triangulation of RN+1 and let C ⊂ RN+1 be
a closed convex set with nonempty interior int(C). Furthermore, let T be
compatible with C. Recalling the definition (12.1.7) of the system of N -faces
T N , we define

T ∂C :=
{
τ ∈ T N

∣∣ τ ⊂ ∂C 6= ∅} .
Then T ∂C is a triangulation of ∂C, more precisely:

(1) ⋃
τ∈T ∂C

τ = ∂C;

(2) the intersection τ1 ∩ τ2 of two N -simplices τ1, τ2 ∈ T ∂C is empty or a
common face of both simplices;

(3) the family T ∂C is locally finite;
(4) for any τ ∈ T ∂C and any (N − 1)-face ξ of τ , there exists a unique

τ̃ ∈ T ∂C such that τ̃ 6= τ and ξ ⊂ τ̃ .

Sketch of Proof. Properties (1)–(3) are an immediate consequence of the fact
that T is a triangulation of RN+1, cf. (12.1.6), and that T is compatible with
C. Property (4) corresponds to lemma (12.1.8). In fact, it is again possible
to formally show that properties (1)–(3) imply (4). To do this, let us first
observe that there is at least one τ̃ ∈ T ∂C such that τ̃ 6= τ and ξ ⊂ τ̃ hold.
We consider the hyperplane H ⊂ RN+1 containing τ , and consider a straight
line s ∈ R 7→ c(s) ∈ RN+1 such that c(0) is the barycenter of ξ and such
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that c(−1) is the barycenter of τ . If we take an interior point b of C, then
the line between b and c(ε) for small ε > 0 must intersect ∂C in a unique
point aε which is not in τ , because C is convex and H supports C at ξ. Hence
it must be in some τ̃ ∈ T ∂C . Clearly, τ̃ has the above properties. We now
proceed to show that τ̃ is unique. Suppose that we have a third τ̂ ∈ T ∂C
such that τ̂ 6= τ and ξ ⊂ τ̂ hold. If aε is in τ̂ for small ε > 0 or small −ε > 0
then τ̂ must coincide with τ and τ̃ respectively, since it agrees an ξ and some
additional point. Otherwise, the line from b to c(0) must be in the hyperplane
Ĥ ⊂ RN+1 containing τ̂ . But since b is an interior point of C, this contradicts
the fact that Ĥ supports C at ξ.

(13.2.3) Example. Let δ > 0. We call the image T δ of the Freudenthal
triangulation T , cf. (12.1.10), under the dilation map u ∈ RN+1 7→ δu the
Freudenthal triangulation of meshsize δ. We note that in this context,
for simplicity we use the norm || · ||∞. Then T δ is compatible with the δ-slab
RN×[0, δ] ⊂ RN+1. Hence, by lemma (13.2.2), T δ also induces triangulations
of the levels RN ×{0} and RN ×{δ}. In this particular case, it is in fact easy
to see that the induced triangulations are again Freudenthal triangulations
with meshsize δ.

Now more generally, let T be any triangulation of RN+1 which is com-
patible with the δ-slab RN × [0, δ] ⊂ RN+1, and let G : RN → RN be
an asymptotically linear map. For a starting point x0 ∈ RN , one cycle of
Merrill’s algorithm can be viewed as following a polygonal path in H̃−1

T (0)
from the level λ = 0 to the level λ = δ, where H̃T denotes the PL approx-
imation of the convex homotopy H̃ : RN ×R → RN defined by H̃(x, λ) =
(1− δ−1λ)G′(∞)(x− x0) + δ−1λG(x), see figure 13.2.a.

Figure 13.2.a One cycle of Merrill’s algorithm. In the next cycle, the
starting point is the approximate solution obtained from the previous cycle,
i.e. x0 := x̄δ

Since a PL algorithm only makes use of the values of the map H̃ at the
nodes of the triangulation, it suffices to consider the labeling

(13.2.4) H(x, λ) =
{
G′(∞)(x− x0) for λ ≤ 0,
G(x) for λ > 0.
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Given an asymptotically linear map G : RN → RN , we now sketch Merrill’s
algorithm using the labeling (13.2.4). The reader should bear in mind that this
labeling changes in each cycle on the trivial level λ = 0, since the starting point
x0 changes at each cycle to the approximate solution found in the previous
cycle. The algorithm may be stopped if the meshsize δ gets smaller than a
given minimal meshsize.

(13.2.5) Merrill’s Algorithm. comment:

input x0 ∈ RN , δ > 0; starting point and initial meshsize

repeat
find a triangulation e.g. a shifted —

T δ of RN+1 which is compatible Freudenthal triangulation

with the δ-slab RN × [0, δ] ⊂ RN+1 and has meshsize δ;
find a completely labeled N -face τ ∈ T Nδ τ is unique —

such that τ ⊂ RN × {0}; by lemma (13.2.6) below

determine σ ∈ T δ such that
τ ⊂ σ and σ ⊂ RN × [0, δ] ⊂ RN+1;

while τ 6⊂ RN × {δ} do
begin
find the completely labeled N -face door-in-door-out step

τ̃ of σ such that τ̃ 6= τ ;
find σ̃ ∈ T δ such that τ̃ ⊂ σ̃ and σ̃ 6= σ; pivoting step

σ := σ̃; τ := τ̃ ;
end;

calculate the H-center (x, δ) of τ ; see the remark (12.4.5)

x0 := x; output x0; cycle successful

δ :=
δ

2
; reduce meshsize

until traversing is stopped.

The usual way to obtain a completely labeled N -face τ at the start of the
cycle is to shift the triangulation T δ in such a way that the starting point
x0 coincides with the barycenter of a standard N -face τ ∈ T Nδ . Then τ is
completely labeled. More generally, we have the following result:

(13.2.6) Lemma. Let A : RN → RN be an affine map such that the Ja-
cobian A′ is nonsingular, and let To be a triangulation of RN . Then there is
exactly one simplex τ ∈ To which is completely labeled with respect to the
labeling A.

Proof. If A−1(0) is in the interior of some simplex τ , then the assertion is
trivial. Of course, this is the typical case in applications. The following
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proof also incorporates the degenerate case. Using the notation (12.2.3), let
xε := A−1(~ε). Since A is affine, it coincides with its PL approximation, and
by an argument similar to the proof of (12.2.4), we see that there is an ε̃ > 0
such that

{
xε
∣∣ 0 < ε < ε̃

}
does not intersect a lower dimensional face of

To . Hence,
{
xε
∣∣ 0 < ε < ε̃

}
must be contained in the interior of a unique

simplex τ ∈ To , which clearly is completely labeled.

Let us now show that each cycle of the algorithm (13.2.5) succeeds in
finding a completely labeled N -face in the level RN × {δ} in finitely many
steps. Thus, if G is smooth, then the discussion in section 12.6 shows that the
new point x0 approximates a zero point of G with truncation error O(δ2). We
first give a technical lemma which will also be useful in subsequent discussions.

(13.2.7) Lemma. Let G : RN → RN be an asymptotically linear map, and
define the labeling H as in (13.2.4). If T is a triangulation of RN+1 with
finite meshsize, then the PL approximation HT is also asymptotically linear,
more precisely:

lim
||x||→∞

HT (x, λ)−G′(∞)x
||x|| = 0 uniformly in λ .

Proof. Let π : RN×R→ RN denote the canonical projection, i.e. π(x, λ) = x.
For u ∈ RN ×R, we find a convex combination

(13.2.8) u =
N+2∑
i=1

αi(u) vi(u) ,

where [ v1(u), . . . , vN+2(u) ] ∈ T is a suitable simplex depending on u. Since
T has a finite meshsize δ, we have

||π
(
vi(u)

)
|| − δ ≤ ||π(u)|| ≤ ||π

(
vi(u)

)
||+ δ ,

and hence the following asymptotic relationships hold for ||π(u)|| → ∞ or
equivalently, ||π

(
vi(u)

)
|| → ∞:

(13.2.9) o
(
||π(u)||

)
= o
(
||π
(
vi(u)

)
||
)

and π
(
u− vi(u)

)
= o
(
||π(u)||

)
.

Since G(x) and G′(∞)(x − x0) are asymptotically linear, it follows from the
definition of H that

(13.2.10) H(u)−G′(∞)π(u) = o
(
||π(u)||

)
.

This and (13.2.9) imply

(13.2.11)

H(u)−H
(
vi(u)

)
= G′(∞)π(u) + o

(
||π(u)||

)
−G′(∞)π

(
vi(u)

)
− o
(
||π
(
vi(u)

)
||
)

= o
(
||π(u)||

)
.
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Using the convex combination

HT (u) =
N+2∑
i=1

αi(u) H
(
vi(u)

)
over (13.2.11), we obtain

H(u)−HT (u) = o
(
||π(u)||

)
,

and by (13.2.10) the assertion follows.

(13.2.12) Lemma. Each cycle of algorithm (13.2.5) generates a sequence,
cf. (12.3.10), of simplices in the δ-slab RN × [0, δ] and stops with a completely
labeled N -face τ ∈ RN × {δ} after finitely many steps.

Proof. Let us denote by cT δ(s) =
(
x(s), λ(s)

)
the polygonal path generated by

one cycle of algorithm (13.2.5), cf. (12.3.12). Then we have cT δ(0) = (x0, 0),
and by lemma (13.2.6) this path cannot cross the level RN × {0} any more.
Since HT δ

(
x(s), λ(s)

)
= 0, the preceding lemma yields

(13.2.13) G′(∞)x(s) = o
(
||x(s)||

)
.

From the nonsingularity of G′(∞) we obtain a γ > 0 such that ||G′(∞)x|| ≥
γ||x|| for all x ∈ RN , and therefore (13.2.13) implies that x(s) stays bounded.
Hence cT δ(s) hits the level RN × {δ} for some s = s̄ i.e. λ(s̄) = δ, and thus
x(s̄) is the H-center of a completely labeled N -face in RN × {δ}, which is
generated by one cycle of algorithm (13.2.5) after a finite number of steps.

By the above lemma, it is now clear that algorithm (13.2.5) generates a
sequence xn of approximate zero points of G#: each cycle terminates with an
H-center, say (xn, δ/2

n), of a completely labeled N -face τn = ξn × {δ/2n} in
the level RN × {δ/2n} for n = 0, 1, 2, . . . where δ > 0 is the initial meshsize.
Projecting the sequences (xn, δ/2

n) and τn onto RN , we obtain G-centers xn
of G-completely labeled N -simplices ξn ⊂ RN with diamξn = δ/2n. In the
next two lemmata we show in what sense the sequence xn approximates a
zero point x̄ of G#.

(13.2.14) Lemma. The sequence xn is bounded and hence has at least one
accumulation point.

Proof. We use asymptotic arguments analogous to those in the proof of lemma
(13.2.7). Let the sequence xn be given by the convex combinations xn =∑N+1
i=1 αi(n) vi(n) , where ξn = [ v1(n), . . . , vN+1(n) ]. Then

0 =
N+1∑
i=1

αi(n)G
(
vi(n)

)
=
N+1∑
i=1

αi(n)
(
G′(∞) vi(n) + o

(
||vi(n)||

))
= G′(∞)xn + o

(
||xn||

)
.
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Arguing as in the discussion following (13.2.13), we see that the sequence xn
remains bounded.

(13.2.15) Lemma. Each accumulation point x̄ of the sequence xn is a zero
point of G#.

Proof. Since xn is a G-center of ξn, we have 0 ∈ coG(ξn). Let U x̄ be the
family of neighborhoods of x̄, and let U ∈ U x̄. Since limn→∞ diamξn = 0 and
x̄ is an accumulation point of xn, we find an n such that ξn ⊂ U . This implies
0 ∈ coG(U). Intersecting the last relation over all U ∈ U x̄ yields 0 ∈ G#(x̄).

It is now clear that algorithm (13.2.5) can be considered as providing a
“constructive proof” of theorem (13.1.13): if G is asymptotically linear, then
G# has at least one zero point x̄, which is approximated by the sequence
generated by algorithm (13.2.5) in the sense of the above two lemmata.

Generally, we cannot prove that the sequence xn converges. On the other
hand, if we assume that G# has only one zero point, then the convergence
follows trivially. However, especially in this context of general applicability,
the latter assumption is very restrictive. We will see in section 13.4 that the
Eaves-Saigal algorithm and related continuous deformation algorithms allow
a proof of convergence under the reasonable assumption that all zero points
of G# are isolated.

13.3 Some Triangulations and their Implementations

Up to now we have given essentially only one example of a triangulation,
namely Freudenthal’s triangulation, cf. (12.1.10), and affine images of it,
cf. (12.1.12). In this section we present two more important examples of
triangulations: the triangulation J1 of Todd (1976) and the refining triangu-
lation J3, which is Todd’s modification of a refining triangulation introduced
by Eaves (1972) and Eaves & Saigal (1972). We will describe these triangu-
lations and formulate their pivoting rules in pseudo codes. For an extensive
treatment of triangulations which are particularly useful in the context of PL
homotopy methods, we refer the reader to the monograph of Eaves (1984).

In order to familiarize the reader with the approach which will be adopted
in this section, we will first review Freudenthal’s triangulation, or more pre-
cisely, an affine image of it, by describing its pivoting rules in the form of
a pseudo code. The code is based on a starting simplex [v1, v2, . . . , vN+2] ⊂
RN+1 which must be furnished by the user. This starting simplex defines a
triangulation T as the image of Freudenthal’s triangulation under the affine
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map A : RN+1 → RN+1 which maps the respective columns of the matrix


0 1 1 . . . 1
0 0 1 . . . 1
...

...
. . . . . .

...
0 . . . . . . 0 1


onto the columns of the matrix (v1, v2, . . . , vN+2), see also (12.1.12).

Figure 13.3.a Freudenthal’s triangulation in R2

The codes assume at each step that a decision has been made for deter-
mining which vertex is to be pivoted next e.g. the door-in-door-out steps of
chapter 12 may furnish such a decision. Our first code is based on pivoting
by reflection, see (12.1.11):

(13.3.1) Pivoting by Reflection
in Freudenthal’s Triangulation. comment:

input [v1, v2, . . . , vN+2] ⊂ RN+1; starting simplex

ρ(j) :=
{
j + 1 for j = 1, . . . , N + 1,
1 for j = N + 2;

cyclic right shift

repeat

enter i ∈ {1, 2, . . . , N + 2}; index of vertex to be pivoted next

vi := vρ−1(i) − vi + vρ(i) reflection rule

until pivoting is stopped.

Equivalently, these pivoting rules can also be obtained by interchange permu-
tations, see the discussion preceding (12.1.11):
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(13.3.2) Pivoting by Interchange Permutations
in Freudenthal’s Triangulation. comment:

input [v1, v2, . . . , vN+2] ⊂ RN+1; starting simplex

ρ(j) :=
{
j + 1 for j = 1, . . . , N + 1,
1 for j = N + 2;

cyclic right shift

uj :=
{
vj+1 − vj for j = 1, . . . , N + 1,
v1 − vN+2 for j = N + 2; standard axes

for j = 1, . . . , N + 2 do π(j) := j; initial permutation

repeat

enter i ∈ {1, 2, . . . , N + 2}; index of vertex to be pivoted next

vi := vρ−1(i) + uπ(i); pivoting rule

interchange π
(
ρ−1(i)

)
and π(i);

until pivoting is stopped.

The above codes have been given in order to acquaint the reader with our
method of presentation in this section and to emphasize again that at any
given stage of a PL algorithm, only one simplex has to be stored. As our
next example, we give similar descriptions of the triangulation J1. One of the
advantageous features of J1 over Freudenthal’s triangulation is that it carries
less directional bias. The nodes of J1 are again given by the points v ∈ RN+1

which have integer co-ordinates. An (N + 1)-simplex σ ⊂ RN+1 belongs to
the triangulation J1 if the following rules are obeyed:

(1) the vertices of σ are nodes of J1 in the above sense;
(2) the vertices of σ can be ordered in such a way, say σ = [v1, v2, . . . , vN+2]

that they are given by the following recursion formula

vj+1 = vj + s(j) eπ(j), j = 1, . . . , N + 1

where e1, . . . , eN+1 is the standard unit basis of RN+1,

π : {1, 2, . . . , N + 1} → {1, 2, . . . , N + 1}

is a permutation and

s : {1, 2, . . . , N + 1} → {+1,−1}

is a sign function;
(3) the central vertex v1 has odd integer co-ordinates.
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Figure 13.3.b The triangulation J1 of R2

From the description of the pivoting rules below it is quite evident that these
conditions define a triangulation T of RN+1. The formal proof is however
somewhat technical, and we refer the reader to Todd (1976). Analogously to
(13.3.1) and (13.3.2), let us now describe the pivoting rules in an affine image
of J1:

(13.3.3) Pivoting by Reflection in J1. comment:

input [v1, v2, . . . , vN+2] ⊂ RN+1; starting simplex

repeat

enter i ∈ {1, 2, . . . , N + 2}; index of vertex to be pivoted next

vi :=


2v2 − v1 for i = 1,
2vN+1 − vN+2 for i = N + 2,
vi−1 − vi + vi+1 else;

until pivoting is stopped.

Similarly to the discussion for pivoting in Freudenthal’s triangulation, the
pivoting rules for J1 can also be obtained by interchange permutations:

(13.3.4) Pivoting by Interchange Permutations in J1. comment:

input [v1, v2, . . . , vN+2] ⊂ RN+1; starting simplex

for j = 1 to N + 1 do

begin

uj := vj+1 − vj ; standard axes

π(j) := j; initial permutation

s(j) := 1; initial sign function

end;
repeat

enter i ∈ {1, 2, . . . , N + 2}; index of vertex to be pivoted next

case i = 1: consider different cases

v1 := v2 + s(1)uπ(1);
s(1) := −s(1);



     

190 13. PL Homotopy Algorithms

case i = N + 2:
vN+2 := vN+1 − s(N + 1)uπ(N+1);
s(N + 1) := −s(N + 1);

case else:
vi := vi−1 + s(i)uπ(i);
interchange s(i− 1) and s(i);
interchange π(i− 1) and π(i)

end cases ;
until pivoting is stopped.

We call the next triangulation J3 a refining triangulation of RN ×R since
it induces triangulations T i on each level RN × {i} such that the meshsize
δ(T i) → 0 as i → ∞. We will see in the next section that such refining
triangulations are very useful in the context of PL homotopy methods. The
nodes of J3 are given by the points (x, λ) ∈ RN ×R such that λ = k for some
integer k and such that all co-ordinates of x are integer multiples of 2−k. An
(N + 1)-simplex σ ⊂ RN+1 belongs to the triangulation J3 if the following
rules are obeyed:

(13.3.5) J3-Rules.

(1) the vertices of σ are nodes of J3 in the above sense;
(2) there exists an ordering

σ =
[

(x1, λ1), (x2, λ2), . . . , (xN+2, λN+2)
]

of the vertices of σ, a permutation

π : {1, 2, . . . , N + 1} → {1, 2, . . . , N + 1}

and a sign function

s : {1, 2, . . . , N + 1} → {+1,−1}

such that the following conditions hold for q := π−1(N + 1) (“last index
on the fine level”):

λj+1 = λj for j = 1, . . . , N + 1, j 6= q;(a)

λq+1 = λq − 1;(b)

xj+1 = xj + s(j) 2−λj eπ(j)(c)

for j = 1, . . . , q − 1, q + 1, . . . , N + 1;

xq+1 = xq −
N+1∑
r=q+1

s(r) 2−λ1 eπ(r) ;(d)
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(3) the central point x1 has odd integer multiples of the finer meshsize 2−λ1

as co-ordinates;
(4) the first point xq+1 on the coarser grid has a maximal number of odd

integer multiples of the coarser meshsize 2−λq+1 as co-ordinates, i.e.

2λq+1 xq+1

[
π(r)

]
is odd for r = q + 1, . . . , N + 1.

Figure 13.3.c The triangulation J3 of R×R

Here e1, . . . , eN denotes the standard unit basis of RN . From the description
of the pivoting rules below it is quite evident that these conditions define
a triangulation T of RN+1. The formal proof is however very technical,
and we refer the reader to Todd (1976). An affine map A : RN → RN

extends in a natural way to an affine map Ã : RN ×R→ RN ×R by setting
Ã(x, λ) = (Ax, λ). We now describe the pivoting rules in such an affine image
of J3. At each step, the following data are updated:

(13.3.6) J3-Data.

(i) the vertices
(
zj , λj

)
, j = 1, 2, . . . , N + 2 of the current simplex Ãσ;

(ii) the central point x1 of the current simplex σ ∈ J3;
(iii) the permutation π : {1, 2, . . . , N + 2} → {1, 2, . . . , N + 2};
(iv) the sign function s : {1, 2, . . . , N + 2} → {+1,−1};
(v) a cyclic permutation ρ : {1, 2, . . . , N + 2} → {1, 2, . . . , N + 2} describing

the ordering of the vertices as referred to in (13.3.5)(2) (note that this
order may change after a pivoting step).

For the permutation π and the ordering ρ we use the convention that Ax1 =
zρ(j) corresponds to the central point x1 of the current simplex σ ∈ J3 if
π(j) = N + 2. Instead of updating λj and s(j) separately, we update the
useful “steplength” d(j) := s(j) 2−λj for j = 1, 2, . . . , N + 2, see (13.3.5)(2c).
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(13.3.7) Pivoting in J3. comment:

input [z2, z3, . . . , zN+2] ⊂ RN ; corresponds —

to a starting N -face in RN × {0}
z1 := 1

2

(
z2 + zN+2

)
;

ρ(j) :=
{
j + 1 for j = 1, . . . , N + 1,
1 for j = N + 2; starting cyclic ordering

d(j) :=
{

1
2 for j = 1,
−1 for j = 2, . . . , N + 1;

starting steplengths

π(j) :=

{
N + 1 for j = 1,
j − 1 for j = 2, . . . , N + 1,
N + 2 for j = N + 2;

starting permutation

x1(j) := 0.5 for j = 1, . . . N ; central point

repeat

enter i ∈ {1, 2, . . . , N + 2}; index of vertex to be pivoted next

1: reference point for automatic pivots, see section 13.6

i− := ρ−1(i); i+ := ρ(i); cyclic left and right neighbors

case |d(i−)| = |d(i)| = |d(i+)|: neighbors on same level

zi := zi− − zi + zi+ ; reflection pivot

interchange d(i−) and d(i);
interchange π(i−) and π(i);

case |d(i−)| > |d(i)| = |d(i+)|: zi is first point on fine level

zi := 2zi+ − zi; reflection pivot

x1[π(i)] := x1[π(i)] + 2d(i); new central point

d(i) := −d(i);
case |d(i−)| < |d(i)| = |d(i+)|: zi is first point on coarse level

zi := zi− −
1
2zi + 1

2zi+ ; skew pivot

d(i−) := 1
2d(i); d(i) := d(i−);

interchange π(i−) and π(i);
case |d(i−)| = |d(i)| > |d(i+)|: zi is last point on coarse level

find q with π(q) = N + 1; q+ := ρ(q); index of last point —

on fine level

zi := zq − 1
2zi + 1

2zi− ; skew pivot

d(q) := − 1
2d(i−); d(i) := d(q);

π(q) := π(i−); π(i−) := N + 2; π(i) := N + 1;
ρ(i−) := i+; ρ(i) := q+; ρ(q) := i; new cyclic ordering
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case |d(i−)| > |d(i)| < |d(i+)|: zi is the only point on fine level

zi := zi− ;

interchange π(i−) and π(i);
d(i) := 4d(i);
for j = 1 to N + 2 such that π(j) 6= N + 1, N + 2 do
x1[π(j)] := x1[π(j)]− 1

2d(j); new central point

case |d(i−)| < |d(i)| > |d(i+)|: zi is the only point on coarse level

zi := 1
2

(
zi− + zi+

)
;

interchange π(i−) and π(i);
d(i) := 1

4d(i);
for j = 1 to N + 2 such that π(j) 6= N + 1, N + 2 do
x1[π(j)] := x1[π(j)] + 1

2d(j); new central point

case |d(i−)| = |d(i)| < |d(i+)| and
x1(π(i−)) + d(i−)

|d(i+)| ≡ 0 (mod 2):

zi is last point on fine level —

no change of cyclic ordering, see (13.3.5)(4)

zi := 2zi− − 2zi + zi+ ; skew pivot

interchange π(i−) and π(i);
d(i) := 2d(i−);

case else: zi is last point on fine level —

cyclic ordering will be changed, see (13.3.5)(4)

find q with π(q) = N + 2; q+ := ρ(q); index of last point —

on coarse level

zi := 2zi− − 2zi + zq; skew pivot

d(q) := −2d(i−); d(i) := d(q);
π(q) := π(i−); π(i) := N + 2; π(i−) := N + 1;
ρ(i−) := i+; ρ(q) := i; ρ(i) := q+; new cyclic ordering

end cases
until pivoting is stopped.

Code (13.3.7) is in the spirit of the codes (13.3.1) and (13.3.3) using a more
geometric approach of the reflection rule. It is easy to convert (13.3.7) to the
spirit of codes (13.3.2) and (13.3.4). Code (13.3.7) has been implemented in
the program of the Eaves-Saigal algorithm in the appendix. The above code
has been presented more for readability than efficiency. The triangulation J3

presented here is the simplest case of an already efficient refining triangulation:
it reduces the meshsize on each successive level by a factor 1

2 . It is possible
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to construct refining triangulations with arbitrary refining factors, see Bárány
(1979), Shamir (1979), Engles (1980), van der Laan & Talman (1980), Kojima
& Yamamoto (1982), Broadie & Eaves (1987). However, Todd(1978) and
Todd & Acar (1980) show that attempts to decrease the meshsize to fast may
result in a larger number of PL steps.

It is possible to compare different triangulations via various ways of mea-
suring their efficiency. Such results can be found in Todd (1976), Saigal
(1977), van der Laan & Talman (1980), Alexander & Slud (1983), Eaves &
Yorke (1984), Eaves (1984).

13.4 The Homotopy Algorithm of Eaves & Saigal

In this section we describe a version of the Eaves & Saigal (1972) algorithm
which is a simple example of a PL homotopy deformation algorithm. The
earliest such algorithm is due to Eaves (1972). We return to the problem of
seeking a zero point of the set-valued hull G# of an asymptotically linear map
G : RN → RN , see (13.1.3–12). The idea of the Eaves-Saigal algorithm is to
apply a PL algorithm for the labeling H as given in (13.2.4):

H(x, λ) =
{
G′(∞)(x− x0) for λ ≤ 0,
G(x) for λ > 0,

using some refining triangulation for RN×R. We will illustrate the algorithm
for an affine image T of the refining triangulation J3. But let us emphasize
here that other refining triangulations such as those cited above may be used
as well. A starting face τ ∈ RN × {0} is chosen so that the starting point
(x0 , 0) is the barycenter of τ . By lemma (13.2.6), τ is the only completely
labeled N -face of T lying in RN × {0}. The algorithm starts from τ and
enters RN ×R+. It may be stopped when a specified level RN × {λmax} is
traversed. As an affine image of J3, the refining triangulation T is completely
determined by the starting N -face τ and the pivoting rules in (13.3.7).

(13.4.1) Eaves-Saigal Algorithm. comment:

input τ0 ⊂ RN , an N -simplex with barycenter x0 ; starting point

output (x0 , 0); first node of polygonal path, cf. (12.3.12)

τ := τ0 × {0}; starting N -face

get σ ∈ T with τ ⊂ σ and σ ⊂ RN ×R+;
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repeat

find the completely labeled N -face τ̃ of σ

such that τ̃ 6= τ ; door-in-door-out step

find σ̃ ∈ T such that τ̃ ⊂ σ̃ and σ̃ 6= σ; pivoting step, see (13.3.7)

σ := σ̃; τ := τ̃ ;

calculate the H-center (x, λ) of τ ; see the remark (12.4.5)

output (x, λ); next node of polygonal path, cf. (12.3.12)

until traversing is stopped.

Figure 13.4.a The polygonal path of the Eaves & Saigal algorithm

The algorithm (13.4.1) generates a polygonal path cT (s) =
(
x(s), λ(s)

)
∈

H−1
T (0), cf. (12.3.12), whose nodes are given by the output. We have x(0) =

x0, λ(0) = 0 and λ(s) > 0 for s > 0. For simplicity, we assume that s
represents the arclength of cT . Recall from (13.2.7) that the PL approximation
HT is also asymptotically linear. This was the basis for proving (13.2.12),
(13.2.14), (13.2.15). Using similar arguments, we obtain the following

(13.4.2) Lemma. Let G : RN → RN be asymptotically linear. Then the
polygonal path cT (s) =

(
x(s), λ(s)

)
∈ H−1

T (0) generated by the Eaves-Saigal
algorithm (13.4.1) without stopping (i.e. for λmax = ∞) has the following
properties:

(1) since no stopping is allowed, cT (s) is generated for all s ≥ 0;

(2) λ(s)→∞ as s→∞;

(3) x(s) is bounded for s → ∞ and hence has at least one accumulation
point;

(4) each accumulation point x̄ of x(s) as s→∞ is a zero point of G#.

As in the case of Merrill’s algorithm, it is clear again in the sense of the above
lemma that algorithm (13.4.1) can be considered as providing a “constructive
proof” of theorem (13.1.13): if G is asymptotically linear, then G# has at
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least one zero point x̄, which is approximated by an accumulation point of
the path x(s) generated by algorithm (13.4.1).

Generally, we cannot prove that the path x(s) converges as s → ∞, see
also the remarks at the end of section 13.2. However, we can now obtain a
convergence result under a reasonable additional condition:

(13.4.3) Corollary. If G# has only isolated zero points in RN , then the
path x(s) converges to a zero point of G# as s→∞.

Proof. A straightforward argument of point set topology shows that the set
of accumulation points of x(s) as s→∞ can be expressed as

(13.4.4)
⋂
s>0

x
(

(s,∞)
)
.

Since x(s) is continuous in s, the set (13.4.4) is connected. Since it contains
only isolated points, it must be a singleton {x̄}. Since x(s) is bounded and
has exactly one accumulation point x̄ as s → ∞, we obtain the convergence
lims→∞ x(s) = x̄.

More generally, the above proof also shows: if x̄ is an isolated zero point
of G# and x̄ is an accumulation point of x(s), then x(s) converges to x̄.
The assumption in (13.4.3) is reasonable, since it essentially means that the
problem “find x such that 0 ∈ G#(x)” is well formulated.

13.5 Mixing PL and Newton Steps

As we have seen above, the Eaves-Saigal algorithm (13.4.7) is more conve-
nient for discussing the question of convergence. If no stopping is allowed,
it generates a sequence of nodes (xn , λn) for n = 0, 1, 2, . . .. We have seen
that xn converges to a zero point x̄ of G# under reasonable and very weak
assumptions. Without additional assumptions on G however, nothing can be
said about the rate of convergence of xn. Brooks (1980) has shown that infi-
nite retrogression can occur. To ensure linear convergence, assumptions in the
spirit of the Newton-Kantorovitch theorems, see Ortega & Rheinboldt (1970),
are necessary. Such convergence discussions have been given by Saigal (1977)
and Cromme (1980). Saigal was the first to see the close interrelationship
between PL steps and Newton’s method. Several papers discuss techniques of
mixing PL and Newton steps in order to accelerate a PL homotopy algorithm,
see e.g. Saigal (1977), Saigal & Todd (1978) and Todd, M. J. (1978), (1980).
In the context of PL continuation methods, i.e. when a whole curve c(s) is to
be approximated by a polygonal path cT (s), Saupe (1982) has considered a
mixing of PL and predictor-corrector steps.

We describe here an elementary way of mixing PL and Newton steps
given by Georg (1982). It is based on the simple observation that a modified
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Newton’s method expressed in barycentric co-ordinates leads to a system of
linear equations which is closely related to the linear equations obtained in
the “door-in-door-out step” of complementary pivoting as given in (12.4.4)
and (12.4.5).

(13.5.1) Lemma. Let G : RN → RN be a map and τ = [z1, z2, . . . , zN+1] ⊂
RN an N -simplex. Let B := G′τ denote the Jacobian of the PL approximation
Gτ of G, see (12.2.1)(1), i.e. B is the finite difference approximation of G′

using the values of G on z1, z2, . . . , zN+1. We assume that B is nonsingular

and define a modified Newton step N : RN → RN by

(1) N(x) := x−B−1G(x) .

Then

(2) N(zi) = b for i = 1, 2, . . . , N + 1 ,

where b denotes the G-center of τ , which is characterized by Gτ (b) = 0, cf.
(12.3.12). Furthermore, for any zN+2 ∈ RN , let

(3) L(τ, zN+2) :=
(

1 . . . 1 1
G(z1) . . . G(zN+1) G(zN+2)

)
be the labeling matrix, defined analogously to (12.2.5–6), and consider the
barycentric co-ordinates

α =
(
α[1], α[2], . . . , α[N + 2]

)∗
, γ =

(
γ[1], γ[2], . . . , γ[N + 2]

)∗
defined by the equations

(4)
L(τ, zN+2)α = e1, α[N + 2] = 0 ,

L(τ, zN+2) γ = 0, γ[N + 2] = −1 .

Then α− γ represents the barycentric co-ordinates of N(zN+2), i.e.

(5) N(zN+2) =
N+2∑
j=1

(
α[j]− γ[j]

)
zj .

Proof. Note first that the nonsingularity of B implies that Gτ is bijective
i.e. the linear equations (4) can be uniquely solved. Since Gτ is affine, we
have B = Gτ + C for some constant C ∈ RN , and consequently

∑
j ξjBzj =∑

j ξjGτ(zj) for coefficients ξj such that
∑
j ξj = 0. This will be used in the

sequel.
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From equation (1) we have G(x) = Bx − BN(x) = Gτ (x) − Gτ
(
N(x)

)
.

If x is a vertex of τ , then G(x) = Gτ (x) and hence Gτ
(
N(x)

)
= 0. Since Gτ

is bijective and b = G−1
τ (0) by definition, assertion (2) follows.

Combining the two equations in (4) we easily see that

α[N + 2]− γ[N + 2] = 1 ,
N+1∑
j=1

α[j]− γ[j] = 0 ,

N+1∑
j=1

(
α[j]− γ[j]

)
G(zj) = −G

(
zN+2

)
.

This implies

−G
(
zN+2

)
=
N+1∑
j=1

(
α[j]− γ[j]

)
Gτ (zj) =

N+1∑
j=1

(
α[j]− γ[j]

)
Bzj

and consequently

−B−1G
(
zN+2

)
=
N+1∑
j=1

(
α[j]− γ[j]

)
zj

or

N
(
zN+2

)
= x−B−1G

(
zN+2

)
=
N+2∑
j=1

(
α[j]− γ[j]

)
zj .

This proves (5).

The above lemma suggests, how the PL steps of the Eaves-Saigal algo-
rithm (13.4.1) can be combined with Newton steps. Let us assume that a
level RN × {k} for k > 0 is encountered for the first time. In this case we
have a completely labeled N -face

τ = [ (z1, k), (z2, k), . . . , (zN+1, k) ]

and an (N + 1)-simplex

σ = [ (z1, k), (z2, k), . . . , (zN+1, k), (zN+2, k − 1) ]

such that the vertex (zN+2, k − 1) has to be pivoted next. Since the labeling
on the level RN ×{k} is given by G, see (13.2.4), apart from the unimportant
level co-ordinate λ = k, we are exactly in the situation of the preceding
lemma. In particular, the first Newton point N(z1) = b is given by the
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G-center (b, k) of τ , and subsequent Newton points N(b), N2(b), . . . can be
obtained by replacing the vertex (zN+2, k − 1) by (b, k),

(
N(b), k

)
, . . . and

solving linear equations which are very similar to the ones for the PL steps.
In fact, we continue to update a labeling matrix (13.5.1)(4) by replacing the
column corresponding to the vertex (zN+2, k−1) in each Newton step with the
labels of the Newton points. Hence, we continue to use updating techniques
which will be described in chapter 16 and which result in O(N2) flops step,
regardless of whether it is a PL or a Newton step. If the Newton steps are
not successful, we simply perform the pivot of the vertex (zN+2, k − 1) and
resume the updating of the PL method. The following pseudo code sketches
this technique. As a simple example, we use updating of the right inverse as
in (12.4.6).

(13.5.2) Eaves-Saigal Algorithm With Newton Steps. comment:

input

begin

0 < κ < 1; maximal admissible contraction rate for Newton steps

εG > 0; stopping tolerance for ||G||
λmax > 0; stopping level

εtol > 0; tolerance for avoiding division by zero in the update formula

τ0 = [z2 , . . . , zN+2] ⊂ RN ; starting N -face

end;
z1 := 1

2

(
z2 + zN+2

)
; loading starting simplex [(z1, λ1), . . . , (zN+2, λN+2)]

λk :=
{

1 for k = 1,
0 for k = 2, . . . , N + 1;

x0 :=
1

N + 1

N+2∑
k=2

zk ; starting point makes τ0 × {0} completely labeled

j = 1; N -face opposite (z1 , λ1) is completely labeled

A :=
(

1 · · · 1
H(z1 , λ1) · · · H(zN+2 , λN+2)

)
; labeling matrix

find (N + 2)× (N + 1)-matrix B such that
AB = Id and e∗jB = 0; initial right inverse of A

λ̄ := 1; highest level currently encountered

repeat

if B is not lex. positive then quit; failure —
e.g. wrong starting simplex or numerical instability

y :=
(

1
H(zj , λj)

)
; new label w.r.t. (13.2.4)
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γ := By − ej ; α := Be1 ; solving the linear equations

i := arg min
k=1,...,N+2

{
α[k]
γ[k]

∣∣∣∣ γ[k] > εtol

}
; door-in-door-out step

pivot (zi , λi); pivoting step w.r.t. (13.3.7)

B := B − γe∗iB

γ[i]
; update of B

if λi > λ̄ then new level traversed: tentative Newton steps

begin
λ̄ := λi ; new highest level

w1 :=
N+2∑
k=1

α[k] zk ; first Newton point

if ||G(w1)|| < εG then stop;
repeat Newton iteration

y :=
(

1
G(w1)

)
; new label

γ := By − ei ;

w2 :=
N+2∑
k=1

(
α[k]− γ[k]

)
zk ; second Newton point, see (13.5.1)(5)

if ||G(w2)|| < εG then stop;

if
||G(w2)||
||G(w1)|| > κ then go to 1; Newton steps failed —

back to PL steps

w2 := w1 ;
until stopped;

end{if};
1: reference point for continuing PL steps

j := i;
until λj > λmax .

As each new level RN ×{k} is reached in the above algorithm, some tentative
Newton steps are performed. If the contraction rate of the Newton steps is
sufficiently strong, the algorithm continues to perform modified Newton steps
until it stops at an approximate solution. This means of course that some
conditions typical for Newton’s method must be satisfied. For example, if
G# has only isolated zero points, and if G is in fact smooth at these points
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with a nonsingular Jacobian G′, then it is not difficult to see by combining
the convergence result (13.4.3) and the classical Newton-Kantorovitch theory,
that the above algorithm will eventually converge to a solution via Newton
steps. Hence, we can look at the above algorithm as a type of globalization
of Newton’s method, where in addition the algorithm reveals whether the
assumptions for the Newton-Kantorovitch theory are verified.

It is evident that a treatment similar to that in algorithm (13.5.2) can be
formulated for restart algorithms such as that of Merrill. We have illustrated
the mixing of Newton steps for the case of the update method (12.4.6). Other
update methods which will be discussed in more detail in chapter 16, can be
treated in an analogous way.

13.6 Automatic Pivots for the Eaves-Saigal Algorithm

By noticing the special form of the labeling (13.2.4) which is used in the
Eaves-Saigal algorithm, it becomes clear that the label on two vertices co-
incides i.e. H(xi, λi) = H(xj , λj) if xi = xj and λi, λj > 0. This fact can
be used to occasionally perform automatic pivots and thereby reduce the
computational effort. More precisely, if the vertex (xi, λi) has been pivoted
in at the last step, then the N -face opposite (xi, λi) is completely labeled. If
H(xi, λi) = H(xj , λj) holds, then it is immediately clear that also the N -face
opposite (xj , λj) is completely labeled. Hence, the next vertex to be pivoted
must be (xj , λj). Thus the linear algebra for the door-in-door-out step need
not be performed. We only have to keep track of the interchange i↔ j.

Let us now illustrate this effect by describing in more detail the automatic
pivots for the case that the Eaves-Saigal algorithm is used in conjunction with
an affine image of the refining triangulation J3 for RN×R. Since the pivoting
code (13.3.7) for J3 involves occasional reorderings of the vertices via the cyclic
permutation ρ anyway, it is convenient to perform the interchange by changing
ρ instead of performing the interchange in the update of the linear equations.

The automatic pivots in the Eaves-Saigal algorithm can occur in the
following three cases of code (13.3.7):

case |d(i−)| < |d(i)| = |d(i+)|
case |d(i−)| = |d(i)| > |d(i+)|
case |d(i−)| > |d(i)| < |d(i+)|

As an example, let us illustrate the steps of the automatic pivot after the
pivot in the first case has been performed, i.e. between the two lines

interchange π(i−) and π(i);
case |d(i−)| = |d(i)| > |d(i+)|

in (13.3.7), we simply add the following steps.
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if |d
(
ρ(i)

)
| > 0 and π

(
ρ(i)

)
= N + 2 then

begin

i− := ρ−1(i); i+ := ρ(i); i++ := ρ(i+);
interchange d(i) and d(i+);
interchange π(i) and π(i+);
ρ(i−) := i+; ρ(i+) := i; ρ(i) := i++;
go to 1

end

The other two cases are handled in a similar way. They are incorporated in
the implementation of the Eaves-Saigal algorithm in the appendix.

Figure 13.6.a The pivoting step v → ṽ automatically implies
the pivoting step w → w̃. Conversely, the pivoting step w̃ → w
automatically implies the pivoting step ṽ → v
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Chapter 14. General PL Algorithms on PL
Manifolds

In the last 20 years, a vast variety of algorithms have been developed which
are based on the concept of complementary pivoting. Many of these are listed
in our bibliography. The PL continuation and homotopy algorithms described
in the last two chapters are important examples. In order to give a better
idea of the flexibility which is possible and to describe the construction of
such algorithms for special purposes, we are now going to cast the notion of
PL algorithms into the more general setting of PL manifolds. Eaves (1976)
has given a very elegant geometric approach to general PL methods which has
strongly influenced the writing of this chapter, see also Eaves & Scarf (1976).
In the first two sections we give a general formulation of PL algorithms in
the context of PL manifolds which will then allow us to describe and study a
variety of sophisticated PL algorithms in a unified framework.

14.1 PL Manifolds

The notion of complementary pivoting can be roughly described by looking
at the following system of linear equations and inequalities

(14.1.1) Ax = b, Lx ≥ c,

where x ∈ RN+1, b ∈ RN , A is an N × (N + 1)-matrix, c ∈ RK and L
is an K × (N + 1)-matrix for some integer K > 0. Let us assume a simple
but important case, namely that A has maximal rank N and that the line
{x ∈ RN+1 | Ax = b} intersects the convex polyhedral set of feasible points
{x ∈ RN+1 | Lx ≥ c} in exactly two relative boundary points x1 and x2. Then
the step x1 → x2 is considered a step of complementary pivoting. This
notion is closely related to the door-in-door-out steps described in chapters
12 and 13. In fact, by taking L = Id and c = 0 and using barycentric co-
ordinates, we see that the latter is a special case, cf. (12.2.5). It is important
to realize that also the more general steps considered here can be numerically
implemented in a fashion similar to the implementation of the door-in-door-
out steps in section 12.4. In fact, if γ denotes a nontrivial solution of Aγ = 0,
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then the above assumptions imply the existence of an index i ∈ {1, . . . , N+1}
such that e∗i (Lx1 − c) = 0 and e∗iLγ 6= 0. Without loss of generality we may
assume that e∗iLγ > 0 . From the ansatz x2 = x1 − εγ we obtain

(14.1.2) ε := min
j=1,...,N+1

{
e∗j (Lx1 − c)

e∗jLγ

∣∣∣∣ e∗jLγ > 0

}
.

In view of this numerical step, it is thus interesting to consider a class of
algorithms which trace a solution curve in H−1(0) where H :M→ RN is a
PL map on an (N+1)-dimensional PL manifoldM, and the pieces of linearity
(cells) {σ}σ∈M are given by linear inequalities such as Lx ≥ c. This leads us to
the notion of general PL manifolds M and PL maps which will be discussed
in this chapter. First we have to introduce some preliminary terminology.
Throughout the rest of this chapter, E denotes an ambient finite dimensional
Euclidean space which contains all points which arise in the sequel.

(14.1.3) Notation. If σ ⊂ E is any subset, then

(1) co(σ) denotes the convex hull of σ;

(2) co(σ) denotes the closed convex hull of σ;

(3) aff(σ) denotes the affine hull of σ;

(4) tng(σ) := aff(σ) − σ denotes the tangent space of σ which is the linear
space obtained by translating aff(σ) to the origin;

(5) int(σ) denotes the relative interior of σ with respect to the space aff(σ);
(6) ∂(σ) denotes the relative boundary of σ with respect to the space aff(σ).

Figure 14.1.a Bounded and unbounded cell

(14.1.4) Cells. If u ∈ E, u 6= 0 and γ ∈ R, then the set {x ∈ E | u∗x ≥ γ}
is called a half-space and its boundary {x ∈ E | u∗x = γ} a hyperplane.
A finite intersection of half-spaces is called a convex polyhedral set or cell.
Hence cells are closed convex sets, they may be bounded or unbounded, see
figure 14.1.a, and trivially any affine space of finite dimension is a cell. The
dimension of a cell σ is identified with the dimension of its tangent space
i.e. dim(σ) := dim

(
tng(σ)

)
, and we call an m-dimensional cell also simply an

m-cell. A face τ of a cell σ is a convex subset τ ⊂ σ such that for all x, y, λ

(14.1.5)(a) x, y ∈ σ, 0 < λ < 1, (λ− 1)x+ λy ∈ τ ⇒ x, y ∈ τ
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holds. Trivially, the cell σ is a face of itself. All other faces of σ are called
proper faces. In the theory of convex sets, the above definition of a face
coincides with that of an extremal set. By using separation theorems for
convex sets, it can be shown that a subset τ ⊂ σ, τ 6= σ is a face of σ if and
only if there is a half-space ξ such that σ ⊂ ξ and

(14.1.5)(b) τ = σ ∩ ∂ξ,
see any book including an introduction into the theory of convex sets, e.g.
Dunford & Schwartz (1963), Rockafellar (1970), Stoer & Witzgall (1970). To
include the trivial case σ = τ , we have to assume here that dimσ < dimE
which can always be arranged. In the language of the theory of convex sets,
∂ξ is called a hyperplane supporting σ at τ . Figure 14.1.b illustrates this
characterization. From this it follows immediately that faces are cells, and
that any cell has only finitely many faces. Furthermore, any finite intersection
of faces is again a face. A proper face of maximal dimension i.e. dim(τ) =
dim(σ) − 1 is called a facet of σ. The 0-faces are singletons containing one
vertex of σ, 1-faces are also called edges of σ. Simplices are particularly
simple cells, and for this case the definitions given here are compatible with
those in (12.1.5).

Figure 14.1.b Supporting hyperplanes

(14.1.6) PL manifolds. LetM be a non-empty family of (N+1)-cells. For
0 ≤ k ≤ N + 1, the following notation is introduced as in (12.1.7):

Mk := {τ | τ is a k-face of some cell σ ∈M} .
Furthermore, we set

|M| :=
⋃
σ∈M

σ .

We call M a PL manifold of dimension N + 1 if and only if the following
conditions hold:

(1) the intersection σ1 ∩ σ2 of two cells σ1, σ2 ∈ M is empty or a common
face of both cells;

(2) a facet τ ∈MN is common to at most two cells of M;
(3) the family M is locally finite i.e. any relatively compact subset of |M|

meets only finitely many cells σ ∈M.
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Figure 14.1.c The facet τ belongs to the three simplices σ1,
σ2 and σ3

Figure 14.1.c illustrates an example where condition (2) is not met. We de-
note by the boundary ∂M of M the system of facets τ ∈ MN which are
common to exactly one cell ofM. Figure 14.1.d illustrates two PL manifolds
of dimension 2: one possesses a boundary and one does not. A PL manifold
M is called a pseudo manifold if and only if all cells of M are actually
simplices, see again figure 14.1.d for an illustration. The triangulations of
RN+1 which we introduced in section 12.1 and in particular in section 13.3
are all pseudo manifolds without boundary.

Figure 14.1.d A 2-dimensional PL manifold with boundary and a
2-dimensional pseudo manifold without boundary

We have to distinguish between a PL manifoldM and the set |M| which
is subdivided by the PL manifold M. In the case that M is a pseudo
manifold, we also say that M triangulates the set |M|.
(14.1.7) PL maps. Let M be a PL manifold of dimension N + 1. We call
H :M→ RN a PL map if and only if

(1) H : |M| → RN is a continuous map;

(2) the restriction Hσ : σ → RN of H to σ is an affine map for all σ ∈M.

Analogously to (12.2.1) we can again speak of the Jacobian H ′τ : tng(τ) →
RN of the affine map Hτ : τ → RN where τ ∈ Mk is a face for some
0 ≤ k ≤ N + 1. Again as in (12.2.2), a point x ∈ |M| is called a regular
point of the PL map H if and only if
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(a) x is not contained in any lower dimensional face τ ∈Mk for k < N ;
(b) H ′σ has maximal rank for all σ ∈MN ∪MN+1 such that x ∈ σ.

A value y ∈ RN is a regular value of H if all points in H−1(y) are regular.
By definition, y is vacuously a regular value if it is not contained in the range
of H. If a point is not regular it is called singular. Analogously, if a value is
not regular it is called singular.

We can once more use the perturbation

(14.1.8) ~ε :=

 ε1

...
εN


in order to prove a Sard type theorem.

(14.1.9) Proposition. Let H : M → RN be a PL map where M is a PL
manifold of dimension N+1. Then for any relatively compact subset C ⊂ |M|
there are at most finitely many ε > 0 such that C∩H−1(~ε) contains a singular
point of H. Consequently, ~ε is a regular value of H for almost all ε > 0.

Proof. The above proposition is a generalization of (12.2.4). Unfortunately,
the technique of the proof has to be modified to include this more general
situation. Since the proof of (12.2.4) was quite explicit, we will now give
a concise proof by contradiction. Hence let us assume there is a strictly
decreasing sequence {εi}i∈N of positive numbers, converging to zero, for which
a bounded sequence {xi}i∈N ⊂ |M| of singular points can be found such that
the equations

(14.1.10) H(xi) = ~εi

for i ∈ N are satisfied. For any subset I ⊂ N of cardinality N + 1 we see that
the {~εi}i∈I are affinely independent, and by the above equations (14.1.10) and
the piecewise linearity (14.1.7)(2) of H the {xi}i∈I cannot all be contained
in the same lower dimensional face τ ∈ Mk for k < N . Since this holds
for all index sets I, we use this argument repeatedly, and the local finiteness
(14.1.6)(3) of M permits us to find a strictly increasing function ν : N→ N
(to generate a subsequence), and to find a face σ ∈ MN+1 ∪MN such that
the subsequence {xν(i)}i∈N is contained in σ, but no point of {xν(i)}i∈N is
contained in any lower dimensional face τ ∈ Mk for k < N . But now we
can again use the above argument: for an index set I ⊂ ν(N) of cardinality
N + 1 the {~εi}i∈I are affinely independent, and we conclude that H ′σ has
maximal rank N . However, this means that all points {xν(i)}i∈N are regular,
a contradiction to the choice of {xi}i∈N. The last assertion of the proposition
follows since |M| can be written as a countable union of relatively compact
subsets.
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We shall first discuss the PL algorithm for regular values. Then we
will use the above proposition to show that, similarly to section 12.3, a PL
algorithm can as well be discussed for singular values. The following lemma
shows that for regular values the solution path is always transverse to the
facets τ ∈ MN of M. For the rest of this section, we assume that H :M→
RN is a PL map where M is a PL manifold of dimension N + 1.

(14.1.11) Lemma. Let zero be a regular value of H, and let τ ∈ MN be a
facet such that H−1(0) ∩ τ 6= ∅. Then H−1(0) ∩ τ contains exactly one point
p, and p ∈ int(τ).

Proof. Any p ∈ H−1(0) ∩ τ must be interior to τ since otherwise p would lie
in a lower dimensional face and could not be a regular zero point, contrary to
the assumption. Let us now assume that H−1(0) ∩ τ contains more than one
point. Then there is a p0 ∈ τ and a t ∈ E, t 6= 0 such that x(s) := p0 + st
is contained in H−1(0) ∩ τ for small s ≥ 0. Differentiating Hτ

(
x(s)

)
= 0

with respect to s at s = 0 yields H ′τ t = 0, hence the Jacobian H ′τ does not
have maximal rank, and p0 is not a regular zero point of H, contrary to our
assumption.

(14.1.12) Corollary. If zero is a regular value of H, then

NH :=
{
H−1(0) ∩ σ | σ ∈M, H−1(0) ∩ σ 6= ∅

}
is a one-dimensional PL manifold which subdivides H−1(0).

It is clear that each connected component is a polygonal path which is
either isomorphic to the circle {z ∈ C | ||z|| = 1}, the line R, the ray [0,∞)
or the segment [0, 1]. Contrary to the case of pseudo manifolds which has
been essentially discussed in chapter 12, now a 1-cell ξ ∈ NH may not only
be a segment i.e. ξ = {x + st | 0 ≤ s ≤ 1} where x, t ∈ E with t 6= 0 are
suitably chosen, but can also be a ray i.e. ξ = {x + st | s ≥ 0} or a line i.e.
ξ = {x+ st | s ∈ R}. However, this latter case is not interesting and will be
omitted from the subsequent discussion.

(14.1.13) Definition of a PL Algorithm. For the case that zero is a reg-
ular value of H, a PL algorithm consists of traversing a connected component
(path) of the above one-dimensional solution manifold NH . Excluding the
uninteresting case that the whole path consists of just one line, the algorithm
may be started in three different ways:

(1) Ray start. We start in a ray ξ ∈ NH such that its only vertex is
traversed next.

(2) Boundary start. We start in a segment ξ ∈ NH such that one vertex
of ξ is on the boundary ∂M and the other vertex is traversed next.

(3) Interior start. We start in a segment ξ ∈ NH which has no vertex in
the boundary ∂M. One of the two vertices of ξ is traversed next, hence
in this case an orientation of the path has to be chosen initially.
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There are also different ways in which the algorithm may terminate:

(a) Boundary termination. The vertex of the current 1-cell ξ ∈ NH which
has to be traversed next lies in the boundary ∂M.

(b) Ray termination. The current 1-cell ξ ∈ NH which has been entered
through one vertex is actually a ray.

(c) Loop termination. The algorithm enters a 1-cell ξ ∈ NH which was
already traversed. In this case an interior start was performed, and the
whole path is isomorphic to a circle.

(d) No termination. The algorithm never stops and never repeats a cell.
In this case the whole path is isomorphic either to a ray or to a line.

Figure 14.1.e illustrates two cases.

Figure 14.1.e A loop, and a ray start with boundary termination or a
boundary start with ray termination

Let us now consider the more general case that zero is possibly a singular
value of H. As in chapter 12, we can avoid this difficulty by looking at the
perturbation H−1(~ε) where ~ε is a regular value for almost all ε > 0, see
(14.1.9), and then considering the limiting procedure ε → 0. We are hence
tracing a path in

(14.1.14)
⋂
ε̃>0

⋃
0<ε<ε̃

H−1(~ε) ⊂ H−1(0)

which is unfortunately not necessarily subdivided by a one-dimensional PL
manifold, e.g. it may contain bifurcation points. Nevertheless, the above idea
carries through here too, as we will now show.

(14.1.15) Definition. We call a cell σ ∈ M transverse (with respect to
H) if and only if σ ∩ H−1(~ε) 6= ∅ for all sufficiently small ε > 0. We call
a facet τ ∈ MN completely labeled (with respect to H) if and only if
τ ∩H−1(~ε) 6= ∅ for all sufficiently small ε > 0. It is clear that these definitions
are consistent with the corresponding definitions given in chapter 12.

From the discussion in (14.1.9–13) we conclude:
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(14.1.16) Lemma. Let σ ∈ M be transverse. Then one of the following
three cases holds:

(1) The transverse cell σ does not contain any completely labeled facet. Then
σ possesses a line of solutions. This case is not interesting from an al-
gorithmic point of view, since this cell indicates simultaneously the start
and the termination of the algorithm.

(2) The transverse cell σ contains exactly one completely labeled facet. Then
σ possesses a ray of solutions. This case can only occur at the start or
at the termination of the algorithm.

(3) The transverse cell σ contains exactly two completely labeled facets.
Then σ possesses a segment of solutions. This case corresponds to the
door-in-door-out principle (12.3.8), and it is the only case which can occur
for pseudo manifolds M.

Of course, if τ is a completely labeled facet of a cell σ, then σ is transverse
by definition (14.1.15). Hence, as in chapter 12, we can follow a solution
path by going from one transverse cell to the next transverse cell through
a completely labeled facet. We merely need to take more possibilities into
account. Thus we are led to a general PL algorithm which we will now sketch.

(14.1.17) General PL Algorithm. comment:

input

begin

σ1 ∈M transverse; starting cell

τ1 ∈MN completely labeled facet of σ1; τi is the facet —

end; through which σi is exited

for i = 1, 2, . . . do

begin

if τi ∈ ∂M then stop; termination on the boundary of M
find the unique σi+1 ∈M

such that σi+1 6= σi and τi ⊂ σi+1; pivoting step

if τi is the only completely labeled

facet of σi+1 then stop; termination on a ray in σi+1

find the unique completely labeled facet

τi+1 of σi+1 such that τi+1 6= τi; general door-in-door-out step

end.

The algorithm is not stopped in the cases (14.1.13)(c–d). Additional features
have to be incorporated if those events are suspected.
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(14.1.18) Note On Numerical Implementations. As the reader may al-
ready have imagined, the numerical implementation of the above general algo-
rithm is more complex than in the case of triangulations which was discussed
in chapters 12–13. The underlying principle is the discussion of (14.1.1–2). A
cell is represented by a system such as (14.1.1), and the ”general door-in-door-
out step” is performed by a minimization as in (14.1.2). The ”pivoting step”
is performed by generating a new system (14.1.1), and hopefully we can make
use of the numerical effort such as decomposing the old system to cheaply de-
compose the new system by update procedures. The special features of these
techniques vary with the type of PL manifold under consideration. In some
important cases such as standard pseudo manifolds triangulating RN+1 (see
chapters 12–13) or other simple subdivisions by PL manifolds, the numerical
details are efficiently implemented. We refer to our extensive bibliography for
numerical details in such cases and will only give some hints in the following
sections.

14.2 Orientation and Index

Keeping track of orientations in PL methods furnishes some useful informa-
tion, e.g. it is possible to define and study an index for zero points on the
boundary of the PL manifold M. This is the object of the current section.
Nearly all manifolds which are of importance for practical implementations,
are orientable. Index and orientability have been studied in the context
of PL methods by Allgower & Georg (1980), Eaves (1976), Eaves & Scarf
(1976), Garcia & Zangwill (1979), van der Laan & Talman (1981), Lemke &
Grotzinger (1976), Peitgen (1982). Peitgen & Prüfer (1979), Peitgen & Sieg-
berg (1981), Prüfer (1978), Prüfer & Siegberg (1979), (1981), Shapley (1974),
Todd (1976), Yamamoto (1988). We begin with some basic definitions.

(14.2.1) Orientation. Let F be a linear space of dimension k. An orien-
tation of F is a function

or : F k → {−1, 0, 1}

such that the following conditions hold:

(1) or(b1, . . . , bk) 6= 0 if and only if b1, . . . , bk are linearly independent,
(2) or(b1, . . . , bk) = or(c1, . . . , ck) 6= 0 if and only if the transformation matrix

(αi,j)i,j=1,...,k defined by bi =
∑k
j=1 αi,jcj has positive determinant.

It is clear from the basic facts of linear algebra that any finite dimensional lin-
ear space permits exactly two orientations. A k-cell σ is oriented by orienting
its tangent space tng(σ). Such an orientation orσ of σ induces an orientation
orτ,σ on a facet τ of σ by the following convention:
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(3) orτ,σ(b1, . . . , bk−1) := orσ(b1, . . . , bk) whenever bk points from τ into the
cell σ.

It is routine to check that the above definition of orτ,σ verifies the conditions
(1)–(2).

(14.2.2) Oriented PL Manifolds. Let M be a PL manifold of dimension
N + 1. Then an orientation of M is a choice of orientations {orσ}σ∈M such
that

(*) orτ,σ1
= −orτ,σ2

for each facet τ ∈ MN which is adjacent to two different cells σ1, σ2 ∈ M.
By making use of the standard orientation

or
(
b1, . . . , bN+1

)
:= sign det

(
b1, . . . , bN+1

)
of RN+1, it is clear that any PL manifold of dimension N+1 which subdivides
a subset of RN+1 is oriented in a natural way. But many less trivial oriented
PL manifolds are known.

(14.2.3) Orientation of NH . If H :M→ RN is a PL map on an oriented
PL manifold of dimension N + 1 such that zero is a regular value of H, then
the orientation of M and the natural orientation of RN induces a natural
orientation of the 1-dimensional solution manifold NH . Namely, for ξ ∈ NH ,
bN+1 ∈ tng(ξ) and σ ∈M such that ξ ⊂ σ, the definition

(14.2.4) orξ
(
bN+1

)
:= orσ(b1, . . . , bN+1) sign det

(
H ′σb1 , . . . , H

′
σbN

)
is independent of the special choice of b1, . . . , bN ∈ tng(σ), provided the
b1, . . . , bN are linearly independent. Clearly, an orientation of the 1-dimen-
sional solution manifold NH is just a rule which indicates a direction for
traversing each connected component of NH . Keeping this in mind, we
now briefly indicate why the above definition indeed yields an orientation
for NH . Let τ ∈ MN be a facet which meets H−1(0) and does not belong
to the boundary ∂M, let σ1, σ2 ∈ M be the two cells adjacent to τ , and let
ξj := H−1(0) ∩ σj ∈ NH for j = 1, 2. If b1, . . . , bN is a basis of tng(τ), and
if bj,N+1 ∈ tng(ξj) points into σj , then from condition (14.2.2)(*) it follows
that

orσ1
(b1, . . . , bN , b1,N+1) = −orσ2

(b1, . . . , bN , b2,N+1) ,

and hence (14.2.4) implies that

orξ1(b1,N+1) = −orξ2(b2,N+1) ,

which is exactly the right condition in the sense of (14.2.2)(*) to ensure that
the manifold NH is oriented. The definitions given here are related in a nat-
ural way to the orientation of smooth curves defined in the remarks following
(2.1.5).
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(14.2.5) Index of a Boundary Solution. Let us again assume that H :
M→ RN is a PL map on an oriented PL manifold of dimension N + 1 such
that zero is a regular value of H. If x is a boundary solution of H(x) = 0
i.e. x ∈ |∂M| ∩H−1(0), then there exists exactly one connected component
C of NH containing x. We let C inherit the natural ordering of NH and
distinguish between two cases: C starts from x into M, or C terminates in x.
Accordingly, we define

(14.2.6) indexH(x) :=
{

1 for C starting in x,
−1 for C terminating at x.

The following result is then an obvious but a surprisingly powerful topo-
logical tool for investigating nonlinear equations.

(14.2.7) Theorem. Let H : M → RN be a PL map on an oriented PL
manifold of dimension N + 1 such that zero is a regular value of H. If NH is
compact, then

(14.2.8)
∑

x∈|∂M|∩H−1(0)

indexH(x) = 0 .

Proof. Let C be a connected component of NH . Since C is bounded by our
assumption, either C is isomorphic to a circle or a segment, see (14.1.13). In
the first case C does not hit the boundary ∂M at all, and in the second case
C begins and terminates at two points in |∂M| which must have opposite
indices. Hence formula (14.2.8) follows immediately.

The two most common contexts in which formula (14.2.8) is applied,
are the case in which the PL manifold M itself is compact, or the case that
some boundary conditions for H hold which result in a priori estimates for
the solutions NH and thus imply its compactness. By making use of the
ε-perturbations following (14.1.8), it is again possible to also include the case
that zero is a singular value of H, but the statements have to be slightly
revised.

By making PL approximations of continuous maps (cf. section 12.2) or
upper semi-continuous set valued maps (cf. section 13.1), it is not difficult
to introduce the Brouwer degree via the above index and to establish its
properties by making use of (14.2.8), see Peitgen & Siegberg (1981) for an
elegant presentation of this. The relations between the above index and the
Brouwer degree of a map have been investigated also by Prüfer (1978), Garcia
& Zangwill (1979), Peitgen & Prüfer (1979), Prüfer & Siegberg (1979), (1981),
Peitgen (1982).
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14.3 LemkeÕs Algorithm for the Linear Complementarity
Problem

The first and most prominent example of a PL algorithm was designed by
Lemke to calculate a solution of the linear complementarity problem, see
Lemke & Howson (1964), Lemke (1965) and the survey of Lemke (1980).
This algorithm played a crucial role in the development of subsequent PL
algorithms. The linear complementarity problem is a special case of the non-
linear complementarity problem discussed in section 11.7. Initially, some of
our terminology and results will be carried over. For the rest of this section
we consider the following

(14.3.1) Linear Complementarity Problem (LCP). Let g : RN → RN

be an affine map. Find an x ∈ RN such that

(1) x ∈ RN
+ ; (2) g(x) ∈ RN

+ ; (3) x∗g(x) = 0.

Here R+ denotes the set of non-negative real numbers, and in the sequel we

also denote the set of positive real numbers by R++. If g(0) ∈ RN
+ , then

x = 0 is a trivial solution to the problem. Hence this trivial case is always
excluded and the additional assumption

(4) g(0) /∈ RN
+

is made.

LCPs arise in quadratic programming, bimatrix games, variational in-
equalities and economic equilibria problems, and numerical methods for their
solution have been of considerable interest. We cite the following books and
articles for further references: Asmuth & Eaves & Peterson (1979), Balinski &
Cottle (1978), Doup & van der Elzen & Talman (1986), Cottle (1972), (1974),
Cottle & Dantzig (1968), (1970), Cottle & Gianessi & Lions (1980), Cottle
& Golub & Sacher (1978), Cottle & Stone (1983), Doup & van der Elzen
& Talman (1986), Eaves (1971), (1976), (1978), (1983) Eaves & Scarf (1976),
Eaves & Gould & Peitgen & Todd (1983), Garcia & Gould & Turnbull (1984),
Garcia & Zangwill (1981), van der Heyden (1980), Karamardian (1977), Ko-
jima & Mizuno & Noma (1987), Kojima & Mizuno & Yoshise (1987), Ko-
jima & Nishino & Sekine (1976), van der Laan & Talman (1985), Lemke
(1965), (1968), (1980), Lemke & Howson (1964), Lüthi (1976), Megiddo
(1986), Mizuno & Yoshise & Kikuchi (1988), van der Panne (1974), Saigal
(1971), (1972), (1976) Saigal & Simon (1973), Scarf & Hansen (1973), Tal-
man & Van der Heyden (1983), Todd (1976), (1978), (1980), (1984), (1986).

As in (11.7.2) we introduce the

(14.3.2) Definition. For x ∈ RN and i = 1, . . . , N we define x+ ∈ RN
+ by

x+[i] := max{x[i], 0}, and x− ∈ RN
+ by x− := (−x)+. The following formulas

are then obvious:
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(1) x = x+ − x−; (2) (x+)∗(x−) = 0.

Again, the next proposition is not difficult to prove and reduces the LCP
to a zero point problem in a simple way:

(14.3.3) Proposition. Let us define f : RN → RN by f(z) = g(z+) − z−.
If x is a solution of the LCP (14.3.1), then z := x− g(x) is a zero point of f .
Conversely, if z is a zero point of f , then x := z+ solves the LCP (14.3.1).

The advantage which f provides is that it is obviously a PL map if we
subdivide RN into orthants. This is the basis for our description of Lemke’s
algorithm. For a fixed d ∈ RN

++ we define the homotopy H : RN × [0,∞)→
RN by

(14.3.4) H(x, λ) := f(x) + λd .

For a given subset I ⊂ {1, 2, . . . , N} we introduce the complement I ′ :=
{1, 2, . . . , N} \ I, and furthermore we introduce the power set

(14.3.5) PN :=
{
I | I ⊂ {1, 2, . . . , N}

}
.

Then an orthant in RN × [0,∞) can be written in the form

(14.3.6) σI := { (x, λ) | λ ≥ 0, x[i] ≥ 0 for i ∈ I, x[i] ≤ 0 for i ∈ I ′ } ,
and the family

(14.3.7) M :=
{
σI
}
I∈PN

is a PL manifold (of dimension N+1) which subdivides RN×[0,∞). Further-
more it is clear from (14.3.2–4) that H :M→ RN is a PL map since x 7→ x+

switches its linearity character only at the hyperplanes {x ∈ RN | x[i] =
0}i=1,2,...N . Let us assume for simplicity that zero is a regular value of H.
We note however, that the case of a singular value is treated in the same way
by using the techniques described in the discussion beginning at (14.1.14).

Lemke’s algorithm is started on a ray: if λ > 0 is sufficiently large, then(
− g(0)− λd

)
+

= 0 and
(
− g(0)− λd

)
− = g(0) + λd ∈ RN

++ ,

and consequently

H
(
− g(0)− λd , λ

)
= f

(
− g(0)− λd

)
+ λd = g(0)−

(
g(0) + λd

)
+ λd = 0 .

Hence, the ray ξ ∈ NH defined by

(14.3.8)

λ ∈ [λ0,∞) 7−→ −g(0)− λd ∈ σ∅

for λ0 := max
i=1,...,N

−g(0)[i]
d[i]

is used (for decreasing λ-values) for the ray start. This ray is usually called
the primary ray, and all other rays in NH are called secondary rays. Note
that λ0 > 0 by assumption (14.3.1)(4). Since the PL manifold M consists of
the orthants of RN × [0,∞), it is finite i.e. #M = 2N , there are only two
possibilities left:
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(1) The algorithm terminates on the boundary |∂M| = RN ×{0} at a point
(z, 0). Then z is a zero point of f , and (14.3.3) implies that z+ solves the
LCP (14.3.1).

(2) The algorithm terminates on a secondary ray. Then the LCP (14.3.1)
has no solution if the Jacobian g′ belongs to a certain class of matrices,
see the literature cited above.

Let us illustrate the use of index and orientation by showing that the algorithm
generates a solution in the sense of (1) under the assumption that all principle
minors of the Jacobian g′ are positive. Note that the Jacobian g′ is a constant
matrix since g is affine. For σI ∈M, see (14.3.5–6), we immediately calculate
the Jacobian

(14.3.9)

H ′σI = (f ′σI , d) ,

where f ′σIei =
{
g′ei for i ∈ I,
ei for i ∈ I ′.

If ξ ∈ NH is a solution path in σI , then formula (14.2.4) immediately yields

orξ(v) = sign det f ′σI orσI (e1, . . . , eN , v) ,

and since orσI (e1, . . . , eN , v) = signv∗eN+1 by the standard orientation in
RN+1, det f ′σI is positive or negative if and only if the λ-direction is increas-
ing or decreasing, respectively, while ξ is traversed according to its orientation.
It is immediately seen from (14.3.9) that det f ′σI is obtained as a principle
minor of g′ i.e. by deleting all columns and rows of g′ with index i ∈ I ′

and taking the determinant of the resulting matrix (where the determinant
of the “empty matrix” is assumed to be 1). Since we start in the negative
orthant σ∅ where the principle minor is 1, we see that the algorithm traverses
the primary ray against its orientation, because the λ-values are initially de-
creased. Hence, the algorithm continues to traverse NH against its orienta-
tion. For the important case that all principle minors of g′ are positive, the
algorithm must continue to decrease the λ-values and thus stops in the bound-
ary |∂M| = RN × {0}. Hence, in this case the algorithm finds a solution.
Furthermore, it is clear that this solution is unique, since NH can contain no
other ray than the primary ray. The next lemma shows that positive definite
matrices represent a special case.

(14.3.10) Definition. Let A be an N × N -matrix which is not necessarily
symmetric. Then A is called positive definite if and only if x∗Ax > 0 for
all x ∈ RN with x 6= 0.

(14.3.11) Lemma. Let A be positive definite. Then all principle minors are
positive.

Proof. It follows immediately that all real eigenvalues of all principal subma-
trices of A are positive. Since the complex eigenvalues λ ∈ C\R occur in pairs,
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and since the determinant of a submatrix is the product of its eigenvalues,
the assertion follows.

In view of the condition (11.7.6) and the subsequent discussion of the
nonlinear complementarity problem (NLCP), it would be tempting to use
again the homotopy (11.7.4). But let us point out that this homotopy is not
a PL map. In (14.4.15) we will see how we can overcome this difficulty by
using a formal cone construction.

Let us discuss how Lemke’s algorithm may be implemented numerically.
For I ∈ PN we follow the path in the cell σI by considering the following
system

(14.3.12)

∑
i∈I

g′eix[i] +
∑
i∈I′

eix[i] + λd+ g(0) = 0 ,

x[i] ≥ 0 for i ∈ I , x[i] ≤ 0 for i ∈ I ′ , λ ≥ 0 .

The path goes through a facet if x[j] changes sign for some j ∈ {1, 2, . . . , N}.
Then the pivoting into the adjacent cell σI is performed by adding or sub-
tracting j from I, and hence the new system differs from the old system in
that one column of the system matrix changes. The algorithm stops success-
fully if the level λ = 0 is reached. More formally, we define y ∈ RN+1 by
setting

(14.3.13) y[i] :=

 x[i] for i ∈ I,
−x[i] for i ∈ I ′,
λ for i = N + 1,

and defining an N × (N + 1)-matrix AI such that

(14.3.14) AIei :=

{
g′ei for i ∈ I,
−ei for i ∈ I ′,
d for i = N + 1.

Then the system (14.3.12) can be written as

(14.3.15) AIy + g(0) = 0 , y ∈ RN+1
+ ,

and a pivoting from one facet to the next facet can be described by considering
a solution y of (14.1.15) and a solution w ∈ RN+1 of AIw = 0 such that
w[j] = −1. In fact, if we set

ε0 := max
ε
{ε | ε > 0, y − εw ∈ RN+1

+ } ,

then y−ε0w is on a facet of σI . The algorithm is now sketched by the following
pseudo-code:
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(14.3.16) Lemke’s Algorithm. comment:

j := arg min
i=1,2,...,N

−g(0)[i]
d[i]

;

I := {j}; the starting ray hits the facet of σ∅ corresponding to j

repeat

begin

solve AIy + g(0) = 0, y[j] = 0 for y; linear system

solve AIw = 0, w[j] = −1 for w; linear system

if −w ∈ RN+1
+ then stop; ray termination, no solution found

j := arg min
i=1,2,...,N

{
y[i]
w[i]

∣∣∣∣ w[i] > 0
}

; next facet is found

if j = N + 1 then solution of LCP found

begin

solve AIy + g(0) = 0, y[j] = 0 for y;

define x ∈ RN by x[i] :=
{
y[i] for i ∈ I;
0 for i ∈ I ′; solution vector

print x; stop;
end;

if j ∈ I then I := I \ {j} else I := I ∪ {j};
end.

As in section 12.4, lexicographic ordering could have been incorporated to
also handle the case that zero is a singular value of H. The linear systems
are typically solved by using some update method, since each system matrix
differs from the preceding one in just one column, see section 12.4 and chapter
16.

14.4 Variable Dimension Algorithms

In recent years, a new class of PL algorithms has attracted considerable at-
tention. They are called variable dimension algorithms since they all
start from a single point, a zero dimensional simplex, and successively gen-
erate simplices of varying dimension, until a completely labeled simplex is
found. Numerical results indicate that these algorithms improve the com-
putational efficiency of PL homotopy methods, see van der Laan & Talman
(1979), (1981), Kojima & Yamamoto (1984).

The first variable dimension algorithm is due to Kuhn (1969) and is best
illustrated for Sperner’s lemma, see the discussion below. However, this al-
gorithm had the disadvantage that it could only be started from a vertex of
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a large triangulated standard simplex S, and therefore PL homotopy algo-
rithms were preferred. By increasing the sophistication of Kuhn’s algorithm
considerably, van der Laan & Talman (1978) developed an algorithm which
could start from any point inside S. It soon became clear, see Todd (1978),
that this algorithm could be interpreted as a homotopy algorithm. Numerous
other variable dimension algorithms were developed by Doup (1988), Doup &
van der Elzen & Talman (1987), Doup & van der Laan & Talman (1987) Doup
& Talman (1986), Van der Elzen & van der Laan & Talman (1985), Freund
(1984–86), Kojima (1980–81), Kojima & Oishi & Sumi & Horiuchi (1985),
Kojima & Yamamoto (1982–84), van der Laan (1980–84), van der Laan &
Seelen (1984), van der Laan & Talman (1978–87), van der Laan & Talman
& van der Heyden (1987), Reiser (1981), Talman (1980), Talman & Van der
Heyden (1983), Talman & Yamamoto (1986), Todd (1978), (1980), Todd &
Wright (1980), Wright (1981), Yamamoto (1981–86), Yamamoto & Kaneko
(1986), Yamamura & Horiuchi (1988).

In this section, we will give a brief introduction into the very complex field
of variable dimension algorithms. Two unifying approaches have been given,
one due to Kojima & Yamamoto (1982), the other due to Freund (1984).
We present here a modified version of the first approach. The modification
consists of introducing a cone construction for dealing with the homotopy
parameter. In a special case, this construction was also used by Kojima &
Yamamoto, see their lemma 5.13.

Let us first illustrate the original versions of the variable dimension al-
gorithms of Kuhn and van der Laan & Talman for the celebrated lemma of
Sperner (1928):

(14.4.1) Sperner’s Lemma. Let S = [p1, p2, . . . , pN+1] be a fixed (stan-
dard) N -simplex and T a pseudo manifold triangulating S. Let ` : S →
{1, 2, . . . , N + 1} be an integer labeling such that for all x ∈ S and all
i ∈ {1, 2, . . . , N + 1}
(14.4.2) βi(x) = 0 ⇒ `(x) 6= i

holds, where βi(x) denotes the barycentric co-ordinates of x with respect
to S i.e.

(14.4.3) x =
N+1∑
i=1

βi(x)pi ,
N+1∑
i=1

βi(x) = 1 .

Then there is a completely labeled simplex σ ∈ T , i.e. a simplex σ =
[v1, v2, . . . , vN+1] such that `{v1, v2, . . . , vN+1} = {1, 2, . . . , N + 1}.

Figure 14.4.a illustrates Kuhn’s algorithm for obtaining a completely la-
beled simplex for the case N = 2. The dots correspond to the barycenters of
the faces (i.e. vertices, edges, 2-simplices) which are generated.

Before we can give a description of these algorithms, we introduce the
notion of a primal-dual pair of PL manifolds due to Kojima & Yamamoto
(1982). In fact, we only need a special case.
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Figure 14.4.a The algorithm of Kuhn

(14.4.4) Definition. Let P and D be two PL manifolds of dimension N .
We call (P,D) a primal-dual pair if there is a bijective map

τ ∈ Pk 7−→ τd ∈ DN−k, k = 0, 1, . . . , N ,

such that

(14.4.5) τ1 ⊂ τ2 ⇔ τd2 ⊂ τd1

holds for all τ1 ∈ Pk1 and τ2 ∈ Pk2 .

We will deal with a homotopy parameter via the following cone construc-
tion. Throughout the rest of this section, ω denotes a point which is affinely
independent from all cells under consideration. The introduction of ω is only
formal and may be obtained by e.g. increasing the dimension of the ambi-
ent finite dimensional Euclidean space E introduced in the remarks preceding
(14.1.3).

(14.4.6) Cone Construction. If σ is a cell, then ω•σ := {(1−λ)ω+λx | x ∈
σ, λ ≥ 0} denotes the cone containing σ with vertex ω. Clearly, ω•σ is again
a cell and dimω•σ = dimσ + 1. If H : σ → Rk is an affine map, then the
affine extension ω•H : ω•σ → Rk is defined by ω•H((1−λ)ω+λx) := λH(x)
for x ∈ σ and λ ≥ 0. If M is a PL manifold of dimension N , then ω•M :=
{ω•σ}σ∈M is a PL manifold of dimension N +1, and a PL map H :M→ Rk

is extended to a PL map ω•H : ω•M → Rk.
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We will be interested below in rays traversing a cone, and we therefore
collect some properties in the following remark.

(14.4.7) Rays Traversing a Cone. Let σ be a cell. We consider a ray

{(1− ε)z1 + εz2 | ε ≥ 0} ⊂ ω•σ ,
where z1 = (1− λ1)ω + λ1x1 and z2 = (1− λ2)ω + λ2x2

for some suitable λ1, λ2 ≥ 0 and x1, x2 ∈ σ. A simple calculation using the
affine independence of ω yields

(1− ε)z1 + εz2 = (1− λε)ω + λεxε ,

where λε = (1− ε)λ1 + ελ2

and xε =
(1− ε)λ1x1 + ελ2x2

λε
.

Since λε ≥ 0 for all ε ≥ 0, it follows that λ2 ≥ λ1. This leaves two cases to
consider:

λ2 > λ1 ≥ 0 ⇒ lim
ε→∞

xε =
λ2x2 − λ1x1

λ2 − λ1

∈ σ ,

λ2 = λ1 > 0 ⇒ x1 6= x2 ,

xε = (1− ε)x1 + εx2 ∈ σ for ε ≥ 0 .

The second case is only possible if the cell σ is unbounded.

The last notion we need is that of a refining PL manifold.

(14.4.8) Definition. Let T and M be manifolds of dimension N . We call
T a refinement of M if for all σ ∈ M the restricted PL manifold T σ :=
{ξ | ξ ∈ T , ξ ⊂ σ} subdivides σ.

We are now in a position to introduce

(14.4.9) Primal-Dual Manifolds. Let (P,D) be a primal-dual pair of N -
dimensional PL manifolds, and let T be a refinement P. Then

(14.4.10) T ⊗ D := {ξ × τd | k ∈ {0, 1, . . . , N}, ξ ∈ T k, τ ∈Mk, ξ ⊂ τ}

is an N -dimensional PL manifold with empty boundary. A proof of this and
related results was given by Kojima & Yamamoto (1982). We call T ⊗ D
the primal-dual manifold generated by T and D. An essential part of the
proof consists of discussing the possible pivoting steps. Let ξ × τd ∈ T ⊗ D
with k = dim ξ as above, and let κ be a facet of ξ × τd. We now describe the
pivoting of ξ × τd across the facet κ, see (14.1.17), i.e. we have to find a cell
η ∈ T ⊗ D such that η 6= ξ × τd and κ ⊂ η. There are three possible cases:
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(14.4.11) Increasing The Dimension. Let κ = ξ×σd such that σ ∈Mk+1

contains τ . Then there is exactly one ρ ∈ T k+1 such that ξ ⊂ ρ and ρ ⊂ σ.
This is a consequence of definition (14.4.8) and is not difficult to prove. Then
η := ρ × σ is the desired second N -cell. In this case the dimension k of the
primal cell ξ is increased.

(14.4.12) Decreasing The Dimension. Let κ = δ×τd such that δ ∈ T k−1

is a facet of ξ. If δ ⊂ ∂τ , then there exists exactly one facet ν ∈ Mk−1 of τ
such that δ ⊂ ν, and η := δ × νd is the desired second cell. In this case the
dimension k of the primal cell ξ is decreased.

(14.4.13) Keeping The Dimension. Let κ = δ × τd such that δ ∈ T k−1

is a facet of ξ. If δ 6⊂ ∂τ , then there exists exactly one cell ξ′ ∈ T k such that
ξ′ 6= ξ, ξ′ ⊂ τ and δ ⊂ ξ′. This is again a consequence of definition (14.4.8)
and is not difficult to prove. Now η := ξ′ × τ is the desired second cell. In
this case the dimension k of the primal cell ξ is left invariant.

The main point for practical purposes is that the above three different
kinds of pivoting steps must be easy to implement on a computer. This is
of course mainly a question of choosing a simple primal-dual pair (P,D) and
either T = P or some standard refinement T of P which can be handled well.
We do not wish to go into these details which vary for different choices, and
instead refer the reader to the above mentioned special literature.

(14.4.14) Primal-Dual Manifolds With Cone. We now slightly modify
the construction (14.4.9) of primal-dual manifolds to include cones for the
refinement T of the primal manifold:

(14.4.15) ω•T ⊗D := {ω•ξ×τd | k = 0, 1, . . . , N, ξ ∈ T k, τ ∈Mk, ξ ⊂ τ} .

If dim ξ = k > 0, then the facets of ω•ξ are simply the ω•ρ where ρ ∈ T k−1 is
a facet of ξ, and it is readily seen that the pivoting steps (14.4.11–13) apply.
The only exception is the case dim ξ = k = 0. In this case it follows that
ξ = τ , and ξ is a vertex of the primal manifold P, but ω•ξ is a ray which has
one vertex, namely {ω}. Hence, we now have a boundary

(14.4.16) ∂(ω•T ⊗ D) =
{
{ω} × {v}d | {v} ∈ P0

}
.

Clearly, such a boundary facet {ω}×{v}d belongs to the (N+1)-cell ω•{v}×
{v}d ∈ ω•T ⊗ D. We will later see that such boundary facets are used for
starting a PL algorithm. This corresponds to starting a homotopy method on
the trivial level λ = 0 at the point v.

We will now apply the above concept of primal-dual manifolds in order
to describe some PL algorithms. We begin with
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(14.4.17) Lemke’s Algorithm Revisited. We consider again the LCP
(14.3.1) and introduce a primal-dual pair (P,D) by defining

for I ⊂ {1, 2, . . . , N} and I ′ := {1, 2, . . . , N} \ I
the primal and dual faces

(14.4.18)
αI := {x ∈ RN | x[i] ≥ 0 for i ∈ I, x[i] = 0 for i ∈ I ′} ,
αdI := αI′ .

The primal and dual manifolds consist of just one cell: P = D = {RN
+}.

We now define a PL map H : P ⊗ D × [0,∞) −→ RN by H(x, y, λ) :=
y − g(x) − λd where d ∈ RN

++ is fixed. Note that the variables x and y are
placed into complementarity with each other by the construction of P ⊗ D,
and hence a more complex definition of H as in (14.3.4) is not necessary.
For sufficiently large λ > 0 the solutions of H(x, y, λ) = 0 are given by the
primary ray (x, y, λ) = (0 , g(0) + λd , λ). Here the PL algorithm following
H−1(0) is started in negative λ-direction. If the level λ = 0 is reached, a
solution H(x, y, 0) = 0 solves the LCP since the complementarity x ∈ RN

+ ,
y = g(x) ∈ RN

+ , x∗y = 0 holds by the construction of P ⊗D.

(14.4.19) A Different LCP Method. Let us now show that an analogue
of the homotopy (11.7.4) can also be used for the LCP (14.3.1). We consider
the same primal-dual pair (P,D) as in (14.4.17). Let y0 ∈ RN

++ be a fixed
starting point. We define the homotopy H : P⊗D× [0,∞) −→ RN by setting

(14.4.20)(a) H(x, y, λ) := (y − y0) + λg(x) .

Unfortunately, H is not PL. Hence, we use the cone construction to identify
H with a PL map Hω : ω•P ⊗ D −→ RN by collecting the variables in a
different way:

(14.4.20)(b) Hω(z, y) := (y − y0) + ω•g(z) .

For z = ω, which corresponds to λ = 0, there is exactly one solution of
Hω(z, y) = 0, namely (z, y) = (ω, y0). Hence H−1

ω (0) intersects the boundary
∂(ω•P ⊗D) in just one point. This is the starting point for our PL algorithm
which traces H−1

ω (0). Initially, the solution path coincides with the segment{ (
(1− ε)ω + ε0 , y0 − εg(0)

) ∣∣ 0 ≤ ε ≤ ε0

}
⊂ ω•P ⊗ D

for sufficiently small ε0 > 0. Since there are only finitely many cells in ω•P⊗D
and the solution on the boundary is unique, the algorithm can terminate in
only one way: on a ray

(14.4.21)
{(

(1−ε)z1+εz2 , (1−ε)y1+εy2

)
| ε ≥ 0

}
⊂ ω•αI×αI′ ∈ ω•P⊗D .

Here I denotes some subset of {1, 2, . . . , N} and I ′ = {1, 2, . . . , N} \ I, see
(14.4.18). Using the notation and remarks of (14.4.7), it follows that

(14.4.22) ((1− ε)y1 + εy2 − y0) + λεg(xε) = 0 for ε ≥ 0 .

We have to consider two possible cases:



    

224 14. General PL Algorithms on PL Manifolds

1: λ2 > λ1 ≥ 0: Dividing equation (14.4.22) by ε > 0 and letting ε → ∞
yields

(14.4.23)

y + λg(x) = 0 ,
where y := y2 − y1 ∈ αI′ , λ := λ2 − λ1 > 0

and x :=
λ2x2 − λ1x1

λ2 − λ1

∈ αI .

From the complementarity x ∈ RN
+ , y = λg(x) ≥ 0 ∈ RN

+ , x∗y = 0 it
follows that x solves the LCP (14.3.1).

2: λ2 = λ1 > 0: From (14.4.22) and the fact that g is PL we obtain the
equation

((1− ε)y1 + εy2 − y0) + λ1(1− ε)g(x1) + λ1εg(x2) = 0 for ε ≥ 0 .

Dividing by ε > 0 yields

(14.4.24)

y + λ1g
′x = 0 ,

where y := y2 − y1 ∈ αI′
and x := x2 − x1 ∈ αI \ {0} .

For some classes of matrices g′, this last conclusion leads to a contradic-
tion, and then only case 1 is possible i.e. the algorithm finds a solution
of the LCP. Let us mention two such classes of matrices. Multiplying
(14.4.24) from the left with x∗ yields

(14.4.25) x∗g(x) = 0 ,

since x∗y = 0. Hence, if g′ is positive definite, see (14.3.10), or if all
entries of g′ are positive, we obtain such a contradiction from (14.4.25).

(14.4.26) The Van Der Laan & Talman Algorithm. We now sketch the
original algorithm of van der Laan & Talman (1978–79). Let

S = [p1, p2, . . . , pN+1]

be some fixed (standard) N -simplex in RN . We again introduce the barycen-
tric co-ordinates

βi : RN → R for i = 1, 2, . . . , N + 1

with respect to the vertices of S via the equations

(14.4.27) x =
N+1∑
i=1

βi(x)pi ,
N+1∑
i=1

βi(x) = 1 for x ∈ RN .
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We define the directional vectors

(14.4.28) di :=
{
pi+1 − pi for i = 1, 2, . . . , N ,
p1 − pN+1 for i = N + 1.

For a given meshsize δ > 0 such that δ−1 is a natural number, we consider
the simplex σ0 = [v1, v2, . . . , vN+1] such that v1 := p1 and vi+1 := vi + δdi
for i = 1, 2, . . . , N . Let T be the triangulation of RN obtained from σ0 via
reflections, see (12.1.11–12). Then the restriction TS := {σ ∈ T | σ ⊂ S} is
a pseudo manifold which triangulates S. Let {x0} be a fixed vertex (starting
point) in T such that x0 ∈ S. Then we define a primal-dual pair (P,D)
of N -dimensional manifolds by introducing the following duality: For I ⊂
{1, 2, . . . , N +1} and I ′ := {1, 2, . . . , N +1}\I such that #I ≤ N we consider

(14.4.29)

αI :=

{
x0 +

∑
i∈I

λidi

∣∣∣ λi ≥ 0 for i ∈ I
}
,

αdI :=

{ ∑
i∈I′

λipi

∣∣∣ λi ≥ 0 for i ∈ I ′,
∑
i∈I′

λi = 1

}
,

Hence, the primal manifold P subdivides RN into N + 1 cones with vertex
x0, and the triangulation T is a refinement of P. The dual manifold is simply
D = {S}.

Let us consider the integer labeling ` of Sperner’s lemma (14.4.1) for an
illustration. First we choose some extension ` : RN → {1, 2, . . . , N + 1} such
that βi(x) ≤ 0 ⇒ `(x) 6= i for i = 1, 2, . . . , N + 1. This extension is only
formal and will not be needed in the actual computations by the algorithm.
For each vertex {v} ∈ T 0 such that v ∈ S, let us define g(v) := p`(v). Then we
extend g : T → RN in a unique way such that it is PL. From the properties
of ` we conclude that g

(
RN

)
= S, and moreover βi(x) ≤ 0 ⇒ βi

(
g(x)

)
= 0

for i = 1, 2, . . . , N + 1 and x ∈ RN . Let b denote the barycenter

b := (N + 1)−1
N+1∑
k=1

pk

of S. From the construction of g it is clear that g(x) = b if and only if x
is the barycenter of a simplex σ ∈ T , σ ⊂ S which is completely labeled
in the sense of Sperner’s lemma (14.4.1). Hence we define the homotopy
H : T ⊗ D × [0,∞)→ RN by setting

(14.4.30)(a) H(x, y, λ) := (y − b) + λ
(
g(x)− b

)
.

Again, to obtain a PL map, we actually have to identify H with Hω : ω•T ⊗
D → RN by setting

(14.4.30)(b) Hω(z, y) := (y − b) + ω•
(
g(z)− b

)
.
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For z = ω, which corresponds to λ = 0, there is exactly one solution of
Hω(z, y) = 0, namely (z, y) = (ω, b). Hence H−1

ω (0) intersects the boundary
∂(ω•T ⊗D) at just one point. This is the starting point for our PL algorithm
which traces H−1

ω (0). Initially, the solution path coincides with the segment{(
(1− ε)ω + εx0 , b− ε

(
g(x0)− b

) ) ∣∣∣ 0 ≤ ε ≤ ε0

}
⊂ ω•T ⊗ D

for sufficiently small ε0 > 0. Let us now show that the algorithm cannot
generate a point (z, y) =

(
(1− λ)ω + λx , y

)
∈ H−1

ω (0) such that x /∈ S.
Indeed, otherwise we could find an index j such that βj(x) < 0. Let

x ∈ αI , see (14.4.29). From

βj(x) = βj

(
x0 +

∑
i∈I

λidi

)
= βj(x0) +

∑
i∈I

λiβj(di) < 0

we see that j /∈ I, and hence βj(y) = 0 by the duality in P ⊗D. Furthermore
βj
(
g(x)

)
= 0 by the construction of g. Now y + λ

[
g(x)− b

]
= b implies that

βj(y) + λ
[
βj
(
g(x)

)
− βj(b)

]
= βj(b), and since βj(b) = (N + 1)−1, we obtain

a contradiction by looking at the sign of the various barycentric co-ordinates.
Now, since the algorithm can only traverse finitely many cells, and since

the solution on the boundary ∂(ω•T ⊗D) is unique, it can only terminate in
a ray

(14.4.31)
{(

(1−ε)z1+εz2 , (1−ε)y1+εy2

)
| ε ≥ 0

}
⊂ ω•τ×αdI ∈ ω•T ⊗D ,

where τ ∈ T k such that τ ⊂ αI and k = #I. We again use the notation and
remarks of (14.4.7). It follows that

(14.4.32) (1− ε)y1 + εy2 − y0 + λε
(
g(xε)− b

)
= b for ε ≥ 0 .

Since the k-cell τ is bounded, we only have to consider the case λ2 > λ1 ≥ 0.
Dividing equation (14.4.32) by ε > 0 and letting ε→∞ yields

(14.4.33)
λ
(
g(x)− b

)
= 0 ,

where λ := λ2 − λ1 > 0 and x :=
λ2x2 − λ1x1

λ2 − λ1

∈ τ ,

and the completely labeled simplex τ in the sense of Sperner’s lemma (14.4.1)
is found. Note that dim τ = N follows from this.

Figure 14.4.b illustrates the algorithm of van der Laan & Talman for
obtaining a completely labeled simplex for the case N = 2. The dots corre-
spond to the barycenters of the faces (i.e. vertices, edges, 2-simplices) which
are generated.
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Figure 14.4.b The algorithm of van der Laan & Talman

(14.4.34) The (N+1)-algorithm. More generally, the above setting can be
used to calculate an approximate zero point of a map G : RN → RN which is
asymptotically linear, see (13.1.12). Since the primal manifold P of (14.4.29)
contains (N + 1) ray edges, this method is often called the (N + 1)-algorithm.
We consider the PL approximation GT : T → RN of G, see section 12.2. It is
clear, see (13.2.7), that GT is also asymptotically linear and G′T (∞) = G′(∞).
A homotopy H : T ⊗ D × [0,∞)→ RN is introduced by setting

(14.4.35a) H(x, y, λ) := G′(∞)(y − b) + λGT (x) .

Again, a PL map Hω : ω•T ⊗ D → RN is obtained by setting

(14.4.35b) Hω(z, y) := G′(∞)(y − b) + ω•GT (z) .

The algorithm is started as before, see the remarks following (14.4.30).
Let us first show that there is a constant C > 0 such that H(x, y, λ) = 0

implies ||x|| < C. Indeed, otherwise we could find a sequence{
(xn, yn, λn)

}
n=1,2,...

⊂ H−1(0)

such that limn→∞ ||xn|| =∞. It follows from H(xn, yn, λn) = 0 that

(14.4.36) λ−1
n (yn − b) +G′(∞)−1GT (xn) = 0 ,

and consequently the barycentric co-ordinates verify the equation

(14.4.37) λ−1
n

(
βj(y)n − βj(b)

)
+ βj

(
G′(∞)−1GT (xn)

)
= 0 .
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However, since limn→∞ ||xn|| = ∞, by possibly choosing a subsequence, we
may without loss of generality assume that there is a j ∈ {1, 2, . . . , N + 1}
such that βj(xn) < 0 for n = 1, 2, . . .. By the asymptotic linearity of GT
we hence have βj

(
G′(∞)−1GT (xn)

)
< 0 for large enough n. Furthermore

βj(b) = (N + 1)−1 and βj(y) = 0 by the duality of P ⊗ D, see the remarks
preceding (14.3.31). Now checking the signs of the barycentric co-ordinates
in (14.4.37) leads to a contradiction.

Now, since the algorithm can only traverse finitely many cells, and since
the solution on the boundary ∂(ω•T ⊗D) is unique, it can only terminate in
a ray

(14.4.38)
{(

(1−ε)z1+εz2 , (1−ε)y1+εy2

)
| ε ≥ 0

}
⊂ ω•τ×αdI ∈ ω•T ⊗D ,

where τ ∈ T k such that τ ⊂ αI and k = #I. We again use the notation and
remarks of (14.4.7). It follows that

(14.4.39) (1− ε)y1 + εy2 + λεG
′(∞)−1GT (xε) = b for ε ≥ 0 .

Since the k-cell τ is bounded, we only have to consider the case λ2 > λ1 ≥ 0.
Dividing equation (14.4.39) by ε > 0 and letting ε→∞ yields

GT (x) = 0 , where x :=
λ2x2 − λ1x1

λ2 − λ1

∈ τ

is the desired approximate zero point of G.

(14.4.40) The octahedral algorithm. There are many examples of vari-
able dimension algorithms in the literature which can be efficiently described
by our concept of primal-dual manifolds. We refer to Kojima & Yamamoto
(1982–84) for more details. Here, we will only give one last example, namely
the octahedral method of Wright (1981), since numerical experiments indicate
that it performs favorably, see e.g. Kojima & Yamamoto (1984).

We denote by Σ := {+1, 0,−1}N \{0} the set of all nonzero sign vectors.
For two vectors s, t ∈ Σ we introduce the relation

(14.4.41) s ≺ p :⇐⇒ ∀i=1,...,N

(
s[i] 6= 0⇒ s[i] = p[i]

)
.

Then we define a primal-dual pair (P,D) of N -dimensional manifolds by in-
troducing the following duality:

α0 := {0}, αd0 :=
{
y ∈ RN

∣∣∣ ||y||1 ≤ 1
}
,

and for s ∈ Σ we consider

(14.4.42)
αs :=


∑
p∈Σ
s≺p

λp p

∣∣∣∣ λp ≥ 0

 ,

αds :=
{
y ∈ RN

∣∣∣ ||y||1 ≤ 1, s∗y = 1
}
.
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Hence, the primal manifold P subdivides RN into 2N cones centered around
the unit base vectors ±ei for i = 1, 2, . . . , N , and the dual manifold D just
consists of the unit ball with respect to the ||.||1-norm. We easily check that

y ∈ αds , s ≺ p ⇒ y∗p ≥ 0

and hence

(14.4.43) (x, y) ∈ P ⊗D ⇒ x∗y ≥ 0 .

We now consider a triangulation T which is a refinement of P, for example it
is easy to see that the triangulation J1 introduced in the remarks preceding
(13.3.3) has this property. Again our aim is to find an approximate zero point
of an asymptotically linear map G by using the homotopy (14.4.35) where
b = 0. The discussion following (14.4.35) applies also here, we only have to
show again that (14.4.36) leads to a contradiction. Indeed the asymptotic
linearity and limn→∞ ||xn|| = ∞ implies that x∗nG

′(∞)−1GT (xn) > 0 for all
sufficiently large n. Hence, if we multiply (14.4.36) from the left with x∗n and
take b = 0 and (14.4.43) into account, the contradiction results.

(14.4.44) Concluding Remarks. We have seen that the concept of primal-
dual manifolds P ⊗ D enables us to describe many variable dimension algo-
rithms in a unified way. One class of such algorithms are the homotopy
methods of chapter 13. An important feature of primal-dual manifolds is that
a complementarity property of the variables (x, y) may be incorporated into
the construction of P ⊗D so that (x, y) ∈ P ⊗D (automatically) implies this
property. This is a very convenient trick for dealing with complementarity
problems or related questions, and was illustrated here for the case of the
linear complementarity problem, see (14.4.17) and (14.4.19), but many more
applications have been considered in the literature.

14.5 Exploiting Special Structure

It is a general opinion that PL homotopy methods tend to be slower than more
classical methods or even predictor-corrector methods in solving nonlinear
problems such as G(x) = 0 for G : RN → RN . One reason for this is the
large number of simplices which have to be traversed. Indeed, if we consider
triangulations such as Freudenthal’s triangulation or Todd’s triangulation J1

of RN , then each unit cube contains N ! simplices, and though usually only
a small portion of these simplices is actually traversed, this may still amount
to a fair number of PL steps. In particular for large dimensions N , this may
lead to an unacceptable amount of computational expense.

Now the main reason that classical methods perform so much better in
higher dimensions (if they work at all!) is that they make an implicit and
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usually also an explicit use of the special structure of the problem, and it is a
fact that all higher dimensional problems of practical importance carry some
special structure which can be used to increase the computational efficiency
considerably. For example, if G is affine, then Newton’s method only makes
one step, but a PL method still has to traverse many simplices. Of course,
nobody would solve a linear problem by either way, but this is just an example
to point out that something drastic has to be done in order to enable PL
methods to be competitive.

The crucial point we want to make here is that for a general map G :
RN → RN we cannot avoid triangulations by pseudo manifolds, since for
an arbitrary PL manifold M subdividing RN there usually exists no PL
approximation GM : RN → RN i.e. a PL map such that G and GM coincide
on all vertices of M. This is generally only true for pseudo manifolds T .
However, the picture changes if G has some structure. Then the “pieces of
linearity” of GT may be larger than simplices. In fact, we have already seen
such examples:

1) The cells (actually cones) traversed by Lemke’s algorithm, see section
14.3, can be taken so large since the complementarity problem under
consideration is linear. The situation in (14.4.17) and (14.4.19) is similar.

2) We consider a pseudo manifold T such as Freudenthal’s triangulation
or Todd’s J1 triangulating a slab RN × [0, δ] and a standard homotopy
H : RN × [0, δ] → RN such as (13.2.4) for calculating a zero point of
an asymptotically linear map G : RN → RN . Then the restriction of
H to the trivial level RN × {0} is affine. Hence, if σ1 and σ2 are two
(N + 1)-simplices in RN × [0, δ] which have a common N -face such that
the vertices which are not common lie in the trivial level RN × {0},
then the PL approximation HT is affine on the piece σ1 ∪ σ2. This fact
is incorporated into the variable dimension algorithms such as (14.4.34)
and (14.4.40), since the primal-dual manifolds ω•T ⊗D are a convenient
tool for producing such larger pieces of linearity.

(3) The automatic pivots of section 13.6 use the fact that the homotopy map
H of (13.2.4) has the same values on vertices of the triangulation J3 which
differ only in the λ-co-ordinate. However, this does not correspond to a
larger piece of linearity.

In this section we want to make it clear that the efficiency of PL homotopy
algorithms can be greatly enhanced if they are modified to exploit special
structure of maps such as sparsity and separability. The usual approach is
to show that the PL approximations of such maps are in fact affine on larger
pieces which fit together to form a PL manifold. Such pieces can be traversed
in one pivoting step where the numerical linear algebra is only slightly more
complex than in the standard case for simplices as described in chapter 12.
This observation is essentially due to Kojima (1978) and has been further
studied by Todd (1980),(1983), see also Allgower & Georg (1980), Awoniyi
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& Todd (1983), Saigal (1983), Sagara & Fukushima (1984), Yamamura &
Horiuchi (1988).

We illustrate the essential idea for a simple but important example,
namely for a separable map.

(14.5.1) Definition. A map G : RN → RN is called separable if there are

functions Gi : R→ RN such that G(x) =
∑N
i=1Gi(x) holds for x ∈ RN .

The following lemma is trivial but provides the essential argument for
dealing with this special structure.

(14.5.2) Lemma. Let G : RN → RN be separable, and let σ :=
∏N
i=1[ai, bi]

with ai < bi be a cube. Then there is a unique affine map Gσ : σ → RN such
that G(v) = Gσ(v) for all vertices {v} of σ.

Let us now assume that G : RN → RN is a separable and asymptoti-
cally linear map. The following primal-dual pair has been used by Kojima &
Yamamoto (1982) to provide an efficient implementation of Merrill’s method
(13.2.5), and a related subdivision of RN×[0, 1] has been used by Todd (1980)
to give an efficient implementation of Merrill’s method for the case of sepa-
rable mappings. For a fixed meshsize δ > 0 we consider a vector q ∈ RN

such that q[i] is an integer multiple of δ for i = 1, 2, . . . , N . Then we de-
fine a primal-dual pair (P,D) of N -dimensional manifolds by introducing the
following

(14.5.3) Duality.

αq :=
{
x ∈ RN

∣∣ x[i] = q[i] for
x[i]
δ

odd,

x[i] ∈ [q[i]− δ , q[i] + δ] for
x[i]
δ

even
}
,

αdq :=
{
x ∈ RN

∣∣ x[i] = q[i] for
x[i]
δ

even,

x[i] ∈ [q[i]− δ , q[i] + δ] for
x[i]
δ

odd
}
.

Hence, the primal manifold P represents a subdivision of RN into cubes of
length 2δ with centers q such that all co-ordinates of q are odd multiples of δ,
and the dual manifold D is similar, only that now the centers q are even mul-
tiples of δ. The following lemma follows immediately from the construction
of the duality (14.5.3):

(14.5.4) Lemma. Let
{

(xn, yn)
}
n∈N

⊂ P ⊗D be a sequence. Then

lim
n→∞

||xn|| =∞ ⇐⇒ lim
n→∞

||yn|| =∞ ,

lim
n→∞

||xn|| =∞ =⇒ lim
n→∞

x∗nyn
||xn||2

= 1 .
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If G : RN → RN is any asymptotically linear map and T a pseudo man-
ifold which refines P such as Todd’s triangulation J1, by using (14.5.4) we
can proceed as in the octahedral method (14.4.40), in particular as in the
remarks following (14.4.43), to show that the corresponding variable dimen-
sion algorithm finds an approximate zero point of G. However, if G is also
separable, then we do not need the refinement T . In fact, there is a unique
PL approximation GP : P → RN such that G and GP coincide on all vertices
of P. Analogously to (14.4.35), we define a PL map Hω : ω•P ⊗D → RN by
setting

(14.5.5) Hω(z, y) := G′(∞)y + ω•GP(z) .

The corresponding variable dimension algorithm which follows a solution
curve in H−1

ω (0), traverses much larger pieces than the general algorithm
described above.

Similar, but more complex subdivision techniques can be used if G has a
Jacobian which respects a certain sparsity pattern. Furthermore, such sparsity
can also be used to decrease the computational effort involved in the numerical
linear algebra of each PL step (door-in-door-out step). We refer the reader to
Todd (1980) for more details.
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Chapter 15. Approximating Implicitly DeÞned
Manifolds

15.1 Introduction

Up to now we have been discussing ways of numerically tracing a curve C ⊂
H−1(0) where H : RN+1 → RN . We have outlined both the predictor-
corrector methods which rest rather strongly upon smoothness properties of
H and the piecewise-linear methods which require less smoothness, but then
on the other hand are generally less flexible as far as allowing general step-
lengths is concerned. The latter methods are also no longer viable for large N .
The behavior of the two methods was also seen to be considerably different
in the presence of singular points on the curve.

The reader will recall some version of the classical result known as the
implicit function theorem, which enables one under certain hypotheses to
conclude the existence of a manifold M ⊂ H−1(0) where H : RN+K → RN .
The question therefore arises whether we cannot analogously approximate M
via numerical methods as we have done for curves in our previous chapters. It
turns out that both the PC and the PL methods can be modified to apply to
this case. In the actual implementations, certain technical complications can
arise. In this chapter we will describe some of the details for approximating
M and related questions. In reading this chapter the reader may occasionally
need to refer to the notation and terminology of chapter 12.

Before proceeding, let us for the sake of completeness recall a theorem
upon which much of our discussion in this chapter will rest.

(15.1.1) Implicit Function Theorem. Let H : RN+K → RN be a smooth
map such that 0 ∈ range(H). Then

M = {x ∈ RN+K
∣∣ H(x) = 0, x is a regular point of H}

is a smooth K-dimensional manifold.

The case K = 1 is what our earlier chapters concerning implicitly defined
curves have rested upon. For the case K = 2 the manifold M is a surface.
Let us consider a few simple examples.
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(15.1.2) Example. Let H : R3 → R1 be defined by

H(x1, x2, x3) = x2
1 + x2

2 + x2
3 − 1.

In this case, 0 is a regular value of H, and the manifold M is the unit sphere
in R3.

(15.1.3) Example. Let H : R3 → R1 be defined by

H(x1, x2, x3) = x2
1 + x2

2 − x2
3.

Since H ′(x1, x2, x3) = (2x1 , 2x2 , −2x3), we see that 0 ∈ R3 is the only
point where H is not regular. Now M consists of the two halves of a cone
without the vertex (which is the only singular point of H).

(15.1.4) Example. Let H : R3 → R1 be defined by

H(x1, x2, x3) = x1 · x2.

Since H ′(x1, x2, x3) = (x2 , x1 , 0), we see that H is not regular when both
x1 = 0 and x2 = 0. Now M consists of the two co-ordinate planes {x1 = 0}
and {x2 = 0} without the x3-axis (which is the set of singular points of H).

It is easy to see that given a point on M , then further points on M can
be obtained by reducing the number of free variables (e.g. via holding K − 1
variables fixed) and then applying one of the earlier continuation methods.
However, one usually wants to approximate the manifold in a way which gives
some insight into its structure. For example, we might want to obtain an
approximate local parametrization, or an idea of its qualitative global shape.
In the case K = 1 approximate local parametrizations of the curve can easily
be obtained from the output of the methods we described previously. If the
curve is compact, the PC and PL continuation methods can be easily modified
so that overlapping approximations are avoided.

For K > 1 it becomes apparent that the naive approach mentioned above
is unsatisfactory if one wishes to obtain approximations to M which reveal
structure. In most applications it is desirable or often satisfactory to obtain a
pseudo manifold which approximates M locally or even globally. The latter is
important for example, if one wishes to use a finite element method for some
problem defined on the manifold. In this case it is crucial that no overlappings
of the approximating pieces occur. So when one attempts to approximate M
with such objectives in mind the task becomes harder and requires a more
sophisticated approach.

To date two different approaches for obtaining piecewise linear approxi-
mations of M have been given. One of them is the “moving frame algorithm”
given by Rheinboldt (1987) which we will discuss first. The other approach
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which we will discuss generalizes the PL approximation of curves. These gen-
eralizations have been given by Allgower & Schmidt (1985) for integer labeling
and Allgower & Gnutzmann (1987) for vector labeling.

A different approach using polygonizations of implicit surfaces in R3 has
recently been given by Bloomenthal (1988).

The moving frame algorithm offers the advantage of allowing relatively
large values for N . The algorithm yields a piecewise linear approximation of
a covering of M and hence reveals its structure. The objective of having non-
overlapping is at this time not completely met in general. The generalized
PL algorithm meets both objectives but is not viable for large N . It can
also be used for computer graphics and finite element methods over compact
manifolds.

15.2 NewtonÕs Method and Orthogonal Decompositions
Revisited

Before we discuss the methods for obtaining PL approximations of M , let
us briefly indicate that Newton’s method can be used as a corrector in the
sense of chapter 3 also in this more general setting. For simplicity, we assume
throughout this chapter that zero is a regular value of the smooth map H :
RN+K → RN . Hence M = H−1(0) is a smooth K-dimensional manifold.

If B is an N × (N + K)-matrix with maximal rank, then in analogy
to section 3.1, the Moore-Penrose inverse B+ of B is given by e.g. B+ =
B∗(BB∗)−1. The product BB+ is the identity on RN , and Id− B+B is the
orthogonal projection onto ker(B).

In analogy to theorem (3.3.1), there exists an open neighborhood U of
M such that Newton’s method

(15.2.1) vi+1 = vi −H ′(vi)+H(vi), i = 0, 1, . . .

converges quadratically to a point v∞ ∈M whenever the starting point v0 is
in U . Since the evaluation and decomposition of the Jacobian matrix H ′(vi)
may be costly, one often modifies (15.2.1) to the so-called chord method

(15.2.2) vi+1 = vi −B+H(vi), i = 0, 1, . . .

where B is some fixed approximation of H ′(v0). It is well known that the
above mentioned quadratic convergence reduces to linear convergence in the
latter case, see e.g. Ben-Israel (1966).

Orthogonal decompositions are particularly useful in this context. If Q
is an orthogonal (N +K)× (N +K)-matrix such that BQ = (L, 0) for some
lower triangular N ×N -matrix L, and if we split the orthogonal matrix Q =
(QN , QK) into the first N and the last K columns, then it is straightforward
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to see that B+ = QNL
−1, and the columns of QK provide an orthonormal

basis for ker(B).
Unfortunately, for all known decomposition methods, this basis matrix

QK does not depend continuously on the choice of the matrix B, and this is a
fact which complicates matters in constructing the moving frame algorithm,
see Rheinboldt (1986). The remedy is to introduce a reference (N +K)×K-
matrix TK whose columns form an orthonormal system (i.e. T ∗KTK = Id) and
to use the singular value decomposition V ∗1 T

∗
KQKV2 = Σ, see e.g. Golub &

Van Loan (1983). Rheinboldt shows that the map B 7→ WK := QKV1V
∗
2 is

smooth if B varies over the open set of (N +K)×K-matrices which have full
rank and a kernel such that T ∗KQK is non-singular. We simplify our discussion
by slightly abusing the notation of Rheinboldt and calling the new matrix WK

the moving frame of the kernel of B with respect to the reference matrix
TK .

15.3 The Moving Frame Algorithm

To motivate the idea of the moving frame algorithm, we first give a very
heuristic description. At some starting point p ∈ M , we triangulate the tan-
gent space of M at p using some standard triangulation (e.g. Freudenthal’s).
We now imagine that the manifold is “rolled” over the tangent space, thereby
“imprinting” a triangulation on M . This is used to provide an approximation
of some part of M by a pseudo manifold. For K > 1, the moving frame idea
prevents twisting in the “rolling” process which would mess up the fitting
of the imprinted triangulation. The following pseudo algorithm sketches the
essential ideas of Rheinboldt’s method. Given a triangulation T of RK , the
algorithm constructs an “imprint” ϕ : X → M where X ⊂ T 0 is a subset of
“marked” nodes of T which is successively enlarged.

(15.3.1) Moving Frame Algorithm. comment:

input
begin
s ∈ T 0; initial marked node

ϕ(s) ∈M ; starting point on M , imprint of s

TK ; reference matrix

h > 0; steplength for moving frame —
should be much bigger than the meshsize of the triangulation

end;
X := {s}; initial set of marked nodes

repeat
get x ∈ X such that begin building a new frame

{y ∈ T 0
∣∣ y /∈ X , ||y − x|| < h} 6= ∅;
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B := H ′(ϕ(x)); new Jacobian —
which will generally be decomposed at this point

calculate WK ; moving frame of ker(B) with respect to TK
while {y ∈ T 0

∣∣ y /∈ X , ||y − x|| < h} 6= ∅ do

begin

get y ∈ {y ∈ T 0
∣∣ y /∈ X , ||y − x|| < h}; new marked node

v := WK(y − x) + ϕ(x); predictor for imprint of y

repeat v := v −B+H(v) chord corrector method

until convergence;
ϕ(y) := v; imprint of y

X := X ∪ {y}; set of marked nodes is augmented

end{while};
until a stopping criterion is satisfied.

By examining the construction of the moving frame in section 15.2 it
becomes evident that we have to make the following technical restriction for
nodes x ∈ X where we begin a new frame: let M0 be the set of points where
the reference matrix TK induces a local co-ordinate system on M i.e.

M0 :=
{
z ∈M

∣∣∣∣ det
(
H ′(z)
T ∗K

)
6= 0
}
.

Then a point x is only permitted if its imprint ϕ(x) is in the connected
component of M0 which contains the starting point ϕ(s). It is possible to relax
this restriction, but this is usually done at the cost of having an overlapping
approximation of M by a pseudo manifold.

In typical applications of the above method, the dimension N will be
significantly larger than K, and hence the computational cost of the singular
value decomposition is comparatively small.

The above algorithm can be regarded as a higher dimensional analogue of
the PC continuation methods. The predictor step is more complicated than
for K = 1, since a triangulation of RK is mapped onto the tangent space of
M at x via the moving frame device. For the case K = 1, the moving frame
idea coincides with the concept of orientation as described e.g. in chapter 2.
For K > 1 however, the moving frame device induces more structure than
just orientation. The corrector process is quite analogous to the case K = 1.
Some topics which remain to be investigated further are:

• Globalization. If M is a compact manifold, it would be desirable to adapt
the construction of the marked nodes X and the imprint ϕ(X ) in such a
way that ϕ(X ) can be regarded as a compact pseudo manifold (by adding
appropriate edges).
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• Steplength adaptation. As in the case K = 1, it is possible to vary the
steplength h in the above algorithm according to the performance of the
Newton corrector and possibly other factors.

• Handling singular points. It would be desirable to incorporate techniques
for detecting, classifying and handling singularities on the manifold (e.g.
bifurcation points). This is a much more complex problem than even for
the case K = 1.

15.4 Approximating Manifolds by PL Methods

In the previous section it was seen that PC methods can be adapted to the
task of approximating an implicitly defined manifold M of higher dimension.
In this section we will describe an algorithm which yields an approximation
of M by a piecewise linear K-manifold. The algorithm is based on the same
kinds of ideas as the PL continuation method as described in chapter 12, and
as before the smoothness assumptions on H can be considerably relaxed. We
essentially present some of the ideas given in Allgower & Schmidt (1985),
Allgower & Gnutzmann (1987) and Gnutzmann (1988). The latter reference
contains a rather sophisticated PASCAL program which is too lengthy to be
reproduced here.

We begin with a description of the underlying ideas. Let us suppose
that the space RN+K is triangulated by a triangulation T . In our earlier
PL algorithms there was not much reason to store any simplices. In the
present situation however, we will need for certain reasons to store some of
the simplices. An important advantage of the usual standard triangulations
is that any simplex can be very compactly stored and cheaply recovered by
means of an (N + K)-tuple of integers corresponding to its barycenter. Let
us illustrate this for the example of Freudenthal’s triangulation T . We use
the notation of (12.1.10) and the subsequent discussion.

Let the diagram

uπ(1) uπ(2) uπ(N+K)

σ : v1 −→ v2 −→ . . . −→ vN+K+1

characterize a simplex σ = [v1, v2, . . . , vN+K+1] ∈ T where

π : {1, 2, . . . , N +K + 1} −→ {1, 2, . . .N +K + 1}

is a permutation. We make the additional assumption that π(N +K + 1) =
N +K + 1. Summing the vertices of σ yields the integer vector m with com-
ponents m1, . . . ,mN+K . Each component can be decomposed in the form
mq = κq (N +K + 1) + λq where the remainder terms 0 < λq < (N +K + 1)
are all distinct integers for q = 1, . . . , N + K. On the other hand, given
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an integer vector m with these properties, the leading vertex of the corre-
sponding simplex σ is given by v1 = (κ1, . . . , κN+K), and the corresponding
permutation π is obtained by ordering the N +K distinct remainder terms

λπ(1) > λπ(2) > · · · > λπ(N+K).

It is also possible to perform the pivoting steps directly on the integer vector
m and thereby to save some arithmetic operations. The following rules are
immediately recovered by translating the pivoting rules (12.1.11) for m:

1. Pivoting the leading vertex v1 of σ generates a simplex σ̃ whose integer
vector m̃ is obtained by adding 1 to all components ofm and an additional
1 to the component mπ(1), which otherwise would have a remainder 0.

2. Conversely, if the last vertex vN+K+1 of σ is pivoted, a simplex σ̃ is
generated whose integer vector m̃ is obtained by subtracting 1 from all
components of m and an additional 1 from the component mπ(N+K),
which otherwise would have a remainder 0.

3. Pivoting one of the other vertices vq, 1 < q < N + K + 1, of σ gener-
ates a simplex σ̃ whose integer vector m̃ is obtained by adding 1 to the
component mπ(q) and subtracting 1 from the component mπ(q−1).

To take advantage of the above described compact storing, the reader may
assume that we are considering Freudenthal’s triangulation in the sequel. As
in (12.2.1) we let HT denote the PL approximation of H with respect to
T . The definition (12.2.2) of regular points and regular values extend to this
context. We again obtain a Sard type theorem i.e. the proof of proposition
(12.2.4) involving ε-perturbations, generalizes verbatim if 1 is replaced by
K. Hence, if zero is a regular value of HT , the zero set H−1

T (0) carries the
structure of a K-dimensional PL manifold. We formulate this last remark
more precisely:

(15.4.1) Theorem. Let zero be a regular value of HT . If σ ∈ T has a non-
empty intersection with H−1

T (0), then Mσ := σ ∩H−1
T (0) is a K-dimensional

polytope, and the family

MT := {Mσ

∣∣ σ ∈ T , σ ∩H−1
T (0) 6= ∅}

is a K-dimensional PL manifold.

The following algorithm describes the fundamental steps of a PL algo-
rithm for obtaining the PL manifold MT approximating M . We again make
the assumptions that H : RN+K → RN is a smooth map, T is a triangulation
of RN+K , and zero is a regular value of both H and its PL approximation HT .
Analogously to (12.3.7) we call a simplex σ ∈ T transverse if it contains an
N -face which is completely labeled with respect to H. In the algorithm, the
dynamically varying set V (σ) keeps track of all vertices of the transverse sim-
plex σ which remain to be checked in order to find all possible new transverse
simplices by pivoting, cf. “update” in the algorithm below.
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(15.4.2) Generic PL Approximation of a Manifold. comment:

input
begin
σ ∈ T transverse; starting simplex

D ⊂ RN+K compact; bounds the region where M is approximated

end;
Σ := {σ}; current list of transverse simplices

V (σ) := set of vertices of σ;
while V (σ) 6= ∅ for some σ ∈ Σ do since D is compact —

begin the algorithm will eventually stop via this line

get σ ∈ Σ such that V (σ) 6= ∅;
get v ∈ V (σ);
obtain σ′ from σ by pivoting the vertex v into v′;
if σ′ is not transverse or σ′ ∩D = ∅ σ′ is not of interest in this case

then drop v from V (σ) update

else in this case σ′ is transverse

if σ′ ∈ Σ then check whether σ′ is new

drop v from V (σ) and v′ from V (σ′) update

else σ′ is added to the list Σ in this case

begin
Σ := Σ ∪ {σ′};
V (σ′) := set of vertices of σ′;
drop v from V (σ) and v′ from V (σ′); update

end{else};
end{while}.
For purposes of exposition we have formulated the above generic algo-

rithm in a very general way. One may regard the algorithm as a draft for the
“outer loop” of the method. A number of items remain to be clarified and
elaborated. We will show below how a starting simplex can be obtained in
the neighborhood of a point x ∈ M . The list Σ can be used to generate a
K-dimensional connected PL manifold

M0 := {Mσ}σ∈Σ,

cf. (15.4.1). This PL manifold approximates M quadratically, as will be seen
from the error estimates in the next section. If M is compact, the restric-
tion imposed by the bounding region D can be dropped, and the generated
PL manifold will be compact with no boundary, provided the mesh of the



    

15.4 Approximating Manifolds by PL Methods 241

triangulation is sufficiently small. It is not really necessary to perform the
pivot σ → σ′ if σ′ is not transverse, since it will already be known from the
current data whether the facet σ ∩ σ′ is transverse. In the above comparing
process called “check whether σ′ is new”, it is crucial that compact exact
storing is possible by standard triangulations such as that of Freudenthal.
The list searching can be performed via efficient binary tree searching. An
implementation using such ideas has been given by Gnutzmann (1988).

The above PL manifold M0 furnishes a first coarse PL approximation
of M . Several improvements are possible. The first is quite obvious in view
of section 15.2: some version of Newton’s method can be used to project the
nodes ofM0 onto M . Thus a new PL manifoldM1 is generated which inherits
the adjacency structure of the nodes from M0 and has nodes on M . A next
step which would be important for certain applications (e.g. finite element
methods) might be to subdivide the cells of the PL manifoldsM0 orM1 into
simplices in such a way that the resulting manifold can be given the structure
of a pseudo manifold M2. This is a technical problem which for K = 2 is
easy to implement, but is more complex for K > 2, and although it is in
principle solvable, it has not yet been satisfactorily implemented. When all of
this has been done, we may be left with a pseudo manifoldM2 which contains
some “flat” simplices. These can be eliminated by “identifying” certain nodes.
Here too, there has not yet been given an implementation which is in general
satisfactory. Once an approximating pseudo manifoldM2 has been generated,
it is easy to refine it by e.g. the well-known construction of halving all edges
of each simplex τ ∈M2, triangulating it into 2K subsimplices and projecting
the new nodes back onto M . The above subtriangulation can be performed
by using combinatorial ideas similar to those for generating Freudenthal’s
triangulation.

We have assumed that zero is a regular value of HT . In fact, similarly to
chapter 12, ~ε-perturbations and the corresponding use of the lexicographically
positive inverse of the labeling matrix automatically resolves singularities even
if zero is not a regular value of HT . The situation is similar to the case K = 1
which has been explained by Peitgen (1982) and Peitgen & Schmitt (1983),
see also Gnutzmann (1988) where the general case is treated.

Let us now address the question of obtaining a transverse starting sim-
plex. If we assume that a point x on M is given, then it can be shown
that any (N + K)-simplex with barycenter x and sufficiently small diam-
eter is transverse, see (15.5.6). Error estimates implying such facts will
be given in the next section. Since we may not know a priori how small
to choose the diameter, let us indicate how to check whether any simplex
σ = [v1, v2, . . . , vN+K+1] ⊂ RN+K is transverse and if so, how to obtain a
completely labeled N -face of σ. We formulate the following auxiliary linear
programming problem which is motivated by the well-known “First Phase”
of the Simplex Method:
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(15.4.3) min
y,λ

{
N+1∑
i=1

y[i]
∣∣∣ y + L(σ)λ = e1, y, λ ≥ 0

}
,

where

(15.4.4) L(σ) :=
(

1 . . . 1
H(v1) . . . H(vN+K+1)

)
is the usual labeling matrix. If no degeneracies are present, then an optimal
solution (y0, λ0) leads to a completely labeled N -face τ of σ if and only if
y0 = 0 i.e. the optimal value is zero.

On the other hand, there is a direct way to construct a completely labeled
N -face and a transverse simplex containing it. Let us assume that x is a point
in M . The normal space of M at x is given by the orthogonal complement
kerH ′(x)⊥ of kerH ′(x). From the Inverse Function Theorem, it is clear that
the restriction H : x+kerH ′(x)⊥ → RN has x as a regular isolated zero point.
Hence, if τ ⊂ x+kerH ′(x)⊥ is an N -simplex with barycenter x and sufficiently
small diameter, then it is completely labeled. Error estimates implying this
will be given in the next section. Hence, we only have to construct an affine
map T sending an N -face τ̃ ∈ T̃ N of some standard triangulation T̃ of RN+K

onto such a τ . This can be achieved in the following way. For simplicity, let us
assume that T̃ is Freudenthal’s triangulation, cf. (12.1.10). Let the simplex
σ̃ = [v1, v2, . . . , vN+K+1] ∈ T be defined by v1 = 0, vi+1 − vi = ei for
i = 1, 2, . . . , N + K. We consider the N -face τ̃ = [v1, v2, . . . , vN+1] which
has the barycenter b̃. Let H ′(x)Q = (L, 0) be a factorization of the Jacobian
H ′(x) such that Q is an orthogonal (N + K) × (N + K)-matrix and L is a
lower triangular N ×N -matrix. We will use the obvious fact that the first N
columns of Q span the normal space of M at x. Corresponding to the meshsize
δ > 0, the affine map T (u) := δQ(u − b̃) + x sends the triangulation T̃ onto
a triangulation T , and in particular, T maps the N -face τ̃ of the simplex σ̃
onto an N -face τ of the simplex σ. It is clear that τ has the barycenter x, and
the meshsize of the new triangulation T is δ since Q is an orthogonal matrix.

As we have previously remarked, the algorithm (15.4.2) merely generates
the list Σ of transverse simplices. For particular purposes like finite element
methods, computer graphics etc., a user will wish to have more information
concerning the structure of the PL manifold MT e.g. all nodes of the PL
manifold MT together with their adjacency structure. Hence, to meet such
requirements, it is necessary to “customize” the above algorithm by e.g. in-
corporating inner loops which serve to yield such information. As examples
of what we have in mind, we present two algorithms. The first shows how one
may obtain all completely labeled N -faces of a transverse N +K-simplex if a
completely labeled N -face is already given (see the above constructions). The
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second shows how algorithm (15.4.2) can be customized to efficiently obtain
all completely labeled N -faces of all transverse simplices of the list Σ. These
algorithms can in turn be easily adapted for special purposes.

Before presenting these modifications, let us introduce the following no-
tation and remark. Following terminology from linear programming, we call
a set

β = {b1, b2, . . . , bN+1} ⊂ RN+K

an LP basis if (
1 · · · 1

H(b1) · · · H(bN+1)

)−1

exists and is lexicographically positive. If β consists of the vertices of an N -
simplex τ , then from (12.3.1)–(12.3.2) it is clear that β is an LP basis if and
only if τ is completely labeled. Furthermore, the Door-In-Door-Out-Principle
(12.3.8) generalizes in the following way:

(15.4.5) LP Step. If β ⊂ RN+K is an LP basis with respect to a map
H : RN+K → RN and v ∈ RN+K − β, then there exists exactly one v′ ∈ β
such that β ∪ {v} − {v′} is again an LP basis.

This modification of the Door-In-Door-Out-Principle (12.3.8) is necessary
since a general transverse (N+K)-simplex may have many completely labeled
N -faces. Gnutzmann (1988) gave the following sharp upper bound for this
number:

(15.4.6)
(
N +K −

[
K+1

2

]
N + 1

)
+
(
N +K −

[
K+2

2

]
N + 1

)
.

An obvious sharp lower bound is given by K + 1.
The following algorithm describes how one may obtain all completely

labeled N -faces of a transverse N +K-simplex if a completely labeled N -face
is already given.

(15.4.7) Completely Labeled Faces of One Simplex. comment:

input

begin

σ ∈ T a transverse N +K-simplex;
τ a completely labeled N -face of σ;

end;
β := all vertices of τ ; starting LP basis

α := all vertices of σ;
W (β) := α− β; dynamic trial set for LP steps

B := {β}; dynamic list of LP bases
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while W (β) 6= ∅ for some β ∈ B do

begin

get β ∈ B such that W (β) 6= ∅;
get v ∈W (β);

find v′ ∈ β such that β′ := β ∪ {v} − {v′} is an LP basis; LP step

if β′ ∈ B then LP basis is already listed

drop v from W (β) and v′ from W (β′) updates

else new LP basis

begin

B := B ∪ {β′};
W (β′) := α− β′;
drop v from W (β) and v′ from W (β′); updates

end{else};
end{while};

output all β ∈ B. list of all LP bases in σ

The next algorithm shows how to efficiently obtain all completely labeled
N -faces of all transverse simplices of a connected component.

(15.4.8) All Completely Labeled Faces. comment:

input

end

σ ∈ T transverse; starting simplex

D ⊂ RN+K compact; D bounds the region —

end; where M is approximated

B(σ) := all LP bases of σ; c.f. (15.4.7)

Σ := {σ}; current list of transverse simplices

V (σ) := set of vertices of σ;

while V (σ) 6= ∅ for some σ ∈ Σ do since D is compact —

begin the algorithm will eventually stop via this line

get σ ∈ Σ such that V (σ) 6= ∅;
get v ∈ V (σ);

if v ∈ β for all β ∈ B(σ) pivoting v would not generate —

then drop v from V (σ) a transverse simplex
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else
begin v is pivoted in this case

obtain σ′ from σ by pivoting the vertex v into v′;
if σ′ ∩D = ∅ σ′ is not of interest in this case

then drop v from V (σ) update

else in this case σ′ is transverse

if σ′ ∈ Σ check whether σ′ is new

then drop v from V (σ) and v′ from V (σ′) update

else
begin σ′ is added to the list Σ in this case

Σ := Σ ∪ {σ′};
V (σ′) := set of vertices of σ′;
drop v from V (σ) and v′ from V (σ′); update

B(σ′) := {β ∈ B(σ)
∣∣ v /∈ β}; LP bases common to σ and σ′

for all β ∈ B(σ) such that v /∈ β do
begin generate all LP bases of σ′

find w ∈ β LP step

such that β̃ := β ∪ {v′} \ {w} is an LP basis;
if β̃ /∈ B(σ′) then B(σ′) := B(σ′) ∪ {β̃}.
end{for};

end{else};
end{else};

end{while}.

15.5 Approximation Estimates

We conclude this chapter with some error estimates concerning the quality
of the preceding PL approximations. These estimates also pertain to the
approximations described in chapters 12 and 13. Although some of the PL al-
gorithms are useful under much weaker assumptions on the map H, in order to
obtain error estimates, it is necessary to make some smoothness assumptions
regarding the first and second derivatives of H. The results in this section
are analogous to results given in Gnutzmann (1988) and Allgower & Georg
(1989). For reasons of simplicity, in this section we make the following

(15.5.1) Assumptions. Let H : RN+K → RN be a smooth map with zero
a regular value. We assume that the following bounds hold:

(1) ||H ′(x)+|| ≤ κ for all x ∈M := H−1(0);

(2) ||H ′′(x)|| ≤ α for all x ∈ RN+K .
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In fact, these bounds need only to hold in a convex region containing all of
the points considered in the sequel. We remark also that it would be sufficient
to assume that the Jacobian H ′(x) is Lipschitz continuous with constant α.
The above assumptions only serve to make our proofs less technical, however
the results are essentially the same.

Let T be a triangulation of RN+K having mesh size δ > 0, see definition
(12.6.1). As in the preceding section we let HT denote the PL approximation
of H with respect to T . Our first result concerns the accuracy with which
HT approximates H.

(15.5.2) Proposition. ||H(x)−HT (x)|| ≤ 1
2αδ

2 for x ∈ RN+K .

Proof. Let σ = [v1, v2, . . . , vN+K+1] ∈ T be an (N +K)-simplex such that

x =
N+K+1∑
i=1

γivi ∈ σ.

From Taylor’s formula we have

H(vi) = H(x) +H ′(x)(vi − x) +
1
2
Ai[vi − x, vi − x]

for i = 1, 2, . . . , N + K + 1 where we use the mean values Ai :=
∫ 1

0
H ′′
(
x +

t(vi−x)
)
2(1−t)dt of H ′′. Multiplying these equations with the corresponding

barycentric co-ordinates γi, summing and taking norms yields

||H(x)−
N+K+1∑
i=1

γiH(vi)|| ≤
1
2
αδ2

as a consequence of (15.5.1)(2). The result now follows since HT (x) =∑N+K+1
i=1 γiH(vi).

In the next estimate the thickness of a simplex has a meaningful role.
One possible measure of thickness is the following

(15.5.3) Definition. Let σ be a simplex with diameter δ and barycenter x.
Let ρ be the radius of the largest ball having center x and being contained in
σ. Then the measure of thickness of σ is defined by

θ(σ) :=
ρ

δ
.

The measure of thickness of a triangulation T is defined by

θ(T ) := inf{θ(σ)
∣∣ σ ∈ T }.

For standard triangulations such as affine images of Freudenthal’s trian-
gulation, such measures are well-known and > 0, see e.g. Kojima (1978) or
Saigal (1978). For example, the standard Freudenthal triangulation of Rq has
thickness θ = 1/

(
(q + 1)

√
2
)
.
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(15.5.4) Proposition. Let σ ⊂ RN+K be an (N + K)-simplex having di-
ameter δ and thickness θ. If x ∈ σ, then ||H ′(x)−H ′σ(x)|| ≤ δα/θ.
Proof. Let σ = [v1, v2, . . . , vN+K+1]. From Taylor’s formula we have

H ′(x)(vi − vj) = H ′(x)(vi − x)−H ′(x)(vj − x)

= H(vi)−H(vj)−
1
2
Ai[vi − x, vi − x] +

1
2
Aj [vj − x, vj − x]

for i, j = 1, 2, . . . , N + K + 1, where the mean values Ai of H ′′ are defined
as in the previous proof. From the definition of the PL approximation we
immediately obtain

H ′σ(x)(vi − vj) = H(vi)−H(vj).

Subtracting corresponding sides of the above equations and taking norms and
using (15.5.2) yields

||
(
H ′(x)−H ′σ(x)

)
(vi − vj)|| ≤ αδ2.

By making convex combinations with this last estimate, we obtain

||
(
H ′(x)−H ′σ(x)

)
(u− v)|| ≤ αδ2

for all u, v ∈ σ. From the definition (15.5.3) it follows that the set {u − v
∣∣

u, v ∈ σ} contains the ball with radius θδ and center zero. Thus the above
estimate extends to the corresponding matrix norms

θδ||
(
H ′(x)−H ′σ(x)

)
|| ≤ αδ2,

and the assertion follows.

The next proposition is a useful characterization of transverse simplices.
We employ the notation of (12.3.1).

(15.5.5) Proposition. A simplex σ ∈ T is transverse if and only if it con-
tains solutions vε of HT (v) = ~ε for sufficiently small ε > 0.

Proof. The proof is obtained by modifying the arguments in (12.2.4) and
(12.3.8). If σ does not contain the asserted solutions vε for sufficiently small
ε > 0, then by definition (12.3.1) it cannot be transverse. On the other hand,
if σ contains solutions vε for sufficiently small ε > 0, then by an obvious
generalization of (12.2.4), the solution set consists of regular points of HT for
sufficiently small ε > 0. Hence, if ε varies, no faces of σ of dimension < N can
be intersected, and hence always the same N -faces of σ have to be intersected
by this solution set. Clearly, those are the completely labeled N -faces of σ.
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The following proposition guarantees that all regular zero points of H can
be approximated by transverse simplices. In particular, such estimates may
be used for obtaining the starting simplices for the PL algorithms of sections
15.4, 12.3 and 12.4.

(15.5.6) Proposition. Let H(x) = 0, and let σ ⊂ RN+K be an (N + K)-
simplex having barycenter x, diameter δ and thickness θ. If

καδ

θ
<

1
2
,

then σ is transverse.

Proof. In view of (15.5.5), it suffices to show that the affine approximation
Hσ has a solution point xε ∈ σ such that
(15.5.7) Hσ(xε) = ~ε

for sufficiently small ε > 0. Since Hσ is affine, any point given by a generalized
Newton step

xε := x−B
(
Hσ(x)− ~ε

)
satisfies the equation (15.5.7), provided that B is a right inverse of H ′σ. If we
show that the essential part of the Newton term satisfies the estimate
(15.5.8) ||BHσ(x)|| < θδ

for a particular B, then we conclude from definition (15.5.3) that xε ∈ σ for
sufficiently small ε > 0, and the assertion follows. From proposition (15.5.4)
we have

||H ′(x)−H ′σ(x)|| ≤ δα

θ
and hence by (15.5.1)(1) and the hypothesis,

||H ′(x)+
(
H ′(x)−H ′σ(x)

)
|| ≤ κδα

θ
<

1
2
.

We can now define B via the Neumann series

B :=
∞∑
i=0

(
H ′(x)+

(
H ′(x)−H ′σ(x)

))i
H ′(x)+.

Multiplying the identity

H ′σ(x) = H ′(x)
(

Id−H ′(x)+
(
H ′(x)−H ′σ(x)

))
from the right by B verifies that B is indeed a right inverse of H ′σ. From the
Neumann series we can also see that the estimate

||B|| ≤ κ

1− καδ
θ

< 2κ

holds. On the other hand, proposition (15.5.2) implies

||Hσ(x)|| = ||Hσ(x)−H(x)|| ≤ 1
2
αδ2.

Combining the last two estimates yields the estimate (15.5.8) and hence the
assertion follows.
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The next proposition shows that the PL manifold MT = H−1
T (0) approx-

imates the given manifold M = H−1(0) quadratically in the meshsize.

(15.5.9) Proposition. Let x ∈ RN+K be such that dist(x,M) < (κα)−1.
Let w ∈ M be a nearest point to x i.e. ||x − w|| = dist(x,M). If HT (x) = 0
then ||x− w|| ≤ καδ2.

Proof. Since w satisfies the optimization problem

min
w
{ ||x− w||

∣∣ H(w) = 0 },

the Lagrange equations yield x−w ∈ range
(
H ′(w)∗

)
or equivalently, (x−w) ⊥

ker
(
H ′(w)

)
. From Taylor’s formula we have

H(x)−H(w) = H ′(w)(x− w) +
1
2
A[x− w, x− w],

where

A =
∫ 1

0

H ′′
(
w + t(x− w)

)
2(1− t) dt

again denotes a mean value of H ′′. Since (x−w) ⊥ ker
(
H ′(w)

)
, and since the

Moore-Penrose inverse performs the inversion orthogonally to ker
(
H ′(w)

)
, we

have
H ′(w)+H(x) = x− w +

1
2
H ′(w)+A[x− w, x− w].

From (15.5.2) we have

||H(x)|| = ||H(x)−HT (x)|| ≤ 1
2
αδ2.

From these last two statements and the assumptions (15.5.1) we obtain

||x− w|| ≤ 1
2
καδ2 +

1
2
κα||x− w||2

≤ 1
2
καδ2 +

1
2
||x− w||,

and the assertion follows.

Up to now our approximation estimates have been of a local nature. In
order to obtain global approximation results we need to apply more sophis-
ticated tools and technical arguments. One such tool is the Brouwer degree,
which for K = 1 may be used in a manner similar to that of Rabinowitz
(1971) to obtain the existence of global continua. Peitgen & Prüfer (1979)
and also Peitgen (1982) have given extensive discussions of the constructive
role the PL methods play in connection with such arguments. For our purpose
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the continuous Newton method seems to be a suitable tool. We consider the
autonomous ODE

(15.5.10) ẋ = −H ′(x)+H(x).

If an initial point x0 for (15.5.10) is sufficiently near the manifold M =
H−1(0), then the flow initiating at x0 has an exponentially asymptotic limit
x∞ ∈ M , and the map x0 7→ x∞ is smooth, see e.g. Tanabe (1979). Analo-
gously, if zero is a regular value of HT and the meshsize of T is sufficiently
small, then we may consider the flow defined by

(15.5.11) ẋ = −H ′T (x)+HT (x).

Note that the right hand of (15.5.11) is piecewise affine but not continuous,
and that a solution path consists of a polygonal path having nodes on lower
dimensional faces τ ∈ T N+K−1. Nevertheless, it is possible by use of some
technical arguments to show that the analogous results hold here too i.e.
if an initial point x0 for (15.5.11) is sufficiently near the manifold MT =
H−1
T (0), then the flow initiating at x0 has an exponentially asymptotic limit

x∞ ∈ MT , and the map x0 7→ x∞ is absolutely continuous. The detailed
arguments concerning (15.5.11) are beyond our present scope and will be
presented elsewhere. We merely sketch how this technique may be used to
obtain the following two propositions.

(15.5.12) Proposition. If x0 ∈M and the meshsize divided by the measure
of thickness δ/θ of T is sufficiently small, then there exists a transverse σ ∈ T
such that dist(x0, σ) ≤ καδ2.

Sketch of Proof. We consider the initial value problem (15.5.11) with initial
value x0 and asymptotic limit x∞ ∈MT . A full initial Newton step is given by
−H ′T (x0)+HT (x0). From (15.5.2) we obtain the estimate ||HT (x0)|| ≤ 1

2αδ
2.

From (15.5.4) and (15.5.1) we obtain ||H ′T (x0)+|| ≈ ||H ′(x0)+|| ≤ κ. Thus
a rough bound for the full initial Newton step is given by 1

2καδ
2. Hence to

obtain the assertion we estimate ||x0 − x∞|| by twice this steplength.

The algorithms in section 15.4 generate connected components of the PL
manifold MT . The following proposition assures that such a connected com-
ponent approximates the entire manifold M if it is compact and connected.

(15.5.13) Proposition. Let zero also be a regular value of HT . Let C ⊂M
be a compact connected subset (which could be all of M). Then for any
triangulation T for which the meshsize divided by the measure of thickness δ/θ
is sufficiently small, there is a connected compact PL submanifold CT ⊂MT
such that for every x0 ∈ C there is an x∞ ∈ CT for which ||x0− x∞|| < καδ2

holds.

Sketch of Proof. Consider the Newton map x0 ∈ C 7→ x∞ ∈ MT introduced
above. Since this map is continuous, and since the continuous image of a
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compact and connected set is compact and connected, the PL submanifold

CT := {Mσ

∣∣ σ ∈ T and x∞ ∈ σ for some x0 ∈ C}

is compact and connected. Now the assertion follows from estimates in
(15.5.12).

It is now clear from the preceding discussion that if M is compact and
connected, then a connected component of MT approximates M globally and
quadratically for sufficiently small meshsize, provided the measure of thickness
of T stays bounded away from zero.

It is also possible to formulate measures of efficiency for piecewise lin-
ear approximations of k-manifolds. Analogously to corresponding results for
k = 1 as cited at the end of section 13.3, Alexander (1987) has studied the
average intersection density for several triangulations in the context of PL
approximations of k-manifolds.

If zero is a regular value of H and HT , then the smooth manifoldM and
the approximating manifold MT inherit a natural orientation which in the
former case is a basic concept of differential geometry and in the latter case is
analogous to the orientation described in (14.2.3). It can be shown that these
orientations are consistent with each other for sufficiently fine mesh size, see
Gnutzmann (1988).
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Chapter 16. Update Methods and their
Numerical Stability

16.1 Introduction

In numerical continuation methods, we are usually confronted with the prob-
lem of solving linear equations such as

(16.1.1) Ax = y

at each step. Update methods can be applied when the matrix A is only
slightly modified at each subsequent step. This is in particular the case for
the update algorithms of chapter 7 and for the PL algorithms of chapters
12–15. As we have noted in those chapters, the modification of A is of the
form

(16.1.2) Ã := A+ (a−Ae)e∗ ,

where e is some vector of unit length. For example, see (12.4.4), if e denotes
the i th unit basis vector, then the above formula indicates that the i th column
of A is replaced by the column a. Similar formulae arise via Broyden’s update
in chapter 7, see (7.2.3). In order to solve linear equations such as (16.1.1), it
is usually necessary to decompose A. In the present chapter we show that by
making use of (16.1.2), such a decomposition can be cheaply updated in order
to obtain a decomposition of Ã. A simple example is provided by (12.4.6)
where a certain right inverse of A was updated at each step. However, as was
pointed out there, this update is not always stable, see Bartels & Golub (1968–
69). Thus, the question arises whether cheap numerically stable updates of a
decomposition are possible.

We outline some of the most commonly used procedures for updating
certain decompositions of A, see the survey of Gill & Golub & Murray &
Saunders (1974), and address the question of numerical stability for these
procedures. Such update methods and their numerical stability have been ex-
tensively studied in the context of the simplex method of linear programming
and in the context of quasi-Newton methods, see e.g. Gill & Murray & Wright
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(1981). We will only give a short account, specifically for the purposes of the
algorithms presented in this book. However, we will not assume that A is an
N × (N + 1)-matrix, i.e. that the system (16.1.1) is overdetermined as was
the case in some examples of this book see e.g. chapters 4 and 7. Instead, we
leave such slight modifications to the reader in order to keep the discussion
as simple as possible. Our presentation is strongly influenced by the investi-
gation of Georg & Hettich (1987). To make the description clearer, we will
always refer to the following

(16.1.3) Standard Update Algorithm. comment:

input A; an initial N ×N -matrix

repeat
enter new data to be changed in each cycle of the method

a, e, y ∈ RN such that ||e|| = 1;
Ã := A+ (a−Ae)e∗; update formula

solve Ax = y for x; example of a linear equation —

to be solved in each cycle

A := Ã; prepare for next cycle

until cycles are stopped.

To further simplify matters, we will assume throughout this chapter that the
data are given in such a way that the matrix A is always nonsingular: the
principal concern here is not singularity but numerical instability. The linear
equation Ax = y to be solved for x is only an example to indicate that some
decomposition of A is needed at each step. Some problems need a solving of
more than one equation and may also involve the transpose A∗ of A.

The two important questions to ask in connection with update methods
such as (16.1.3) are:

1) How can we cheaply implement algorithm (16.1.3) so that linear equations
such as Ãx = y are solved in each cycle?

2) How stable is this method numerically, i.e. what errors do we have to
expect in the solution x after an arbitrary number of cycles have been
performed?

16.2 Updates Using the Sherman-Morrison Formula

The simplest implementation of algorithm (16.1.3) makes use of the formula

(16.2.1) Ã−1 = A−1 − A−1(Ae− a)e∗A−1

e∗A−1(Ae− a)
= A−1 − (e−A−1a)e∗A−1

1− e∗A−1a
,

which is usually attributed to Sherman & Morrison (1949) and which is easily
checked by multiplying the right-hand side of (16.2.1) with the right-hand
side of (16.1.2). If we denote A−1 by B, then the implementation takes the
form
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(16.2.2) Update Via the Sherman-Morrison Formula. comment:

input A; an initial N ×N -matrix

generate B := A−1;

repeat

enter a, e, y ∈ RN such that ||e|| = 1; new data

B̃ := B − (e−Ba)e∗B
1− e∗Ba ; update formula

x := B̃y; linear equation

B := B̃; prepare for next cycle

until cycles are stopped.

We use this implementation to clarify some ideas which we are going to pursue
in this chapter. A flop denotes a computer operation which may maximally
consist of one addition, one multiplication and some index manipulation, see
Golub & Van Loan (1983). This is a typical operation arising in numerical
linear algebra.

Initially, O(N3) flops are used to generate the inverse B := A−1. There-
after, only O(N2) flops are used per cycle to update B and to calculate the
solution x. From the point of view of computational efficiency, the implemen-
tation (16.2.2) is the best we can do. However, as was first pointed out by
Bartels & Golub (1968–69), this and similar implementations are not numeri-
cally stable since the “pivot element” 1−e∗Ba may have a large relative error
due to cancellation, without the condition number of Ã being very large. Let
us investigate this question of numerical stability in more detail. We distin-
guish between two notions of stability:

(16.2.3) Local Stability. Let us assume that B represents the numerically
exact inverse of A at the beginning of some cycle. Then, due to round-off
errors, at the end of the cycle we actually have that B̃ = (Ã+ ∆Ã)−1 where
∆Ã is some (hopefully small) error. This error induces an error in the solution:
Instead of x = Ã−1y, we actually calculate x+ ∆x = B̃y = (Ã+ ∆Ã)−1y, and
a standard argument in numerical linear algebra, see e.g. Golub & Van Loan
(1983), leads to the following estimate for the relative error in x:

||∆x||
||x|| ≤

||∆Ã||
||Ã||

cond(Ã) +O
(
||∆Ã||2

)
.

The solving of the equation Ãx = y is considered to be numerically stable if
the relative error in x does not exceed the order of magnitude εtol cond(Ã)
where εtol is the relative machine error. This means that the relative error in
A has to be of the same order of magnitude as εtol.
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However, 1− e∗Ba may have a large relative error ε due to cancellation,
and consequently B̃ = Ã−1 + ∆B̃ may have an error of the magnitude

||∆B̃ || ≈ ε
||(e−Ba)e∗B||
|1− e∗Ba| .

Since
Ã+ ∆Ã =

(
Ã−1 + ∆B̃

)−1 = Ã− Ã∆B̃Ã+O
(
||∆B̃ ||

)2
,

it is possible that the relative error in Ã exceeds εtol by orders of magnitudes.
Hence, the method (16.2.2) may be numerically unstable. Similar instabil-
ities can occur in the Gauss decomposition method without row or column
pivoting, and this is a well-known effect described in every book on numerical
linear algebra, see e.g. Golub & Van Loan (1983). We call the instability
described here a local instability since it may occur within one single cycle
of method (16.2.2).

(16.2.4) Global Stability. On the other hand, we may assume that we
begin a cycle already with some error in B:

B = (A+ ∆A)−1 .

The question now is, how this error is propagated through the current cycle:

B̃ = (Ã+ ∆Ã)−1 .

In order to simplify the discussion, we neglect local errors (which we consider
separately), and assume that all calculations in the current cycle are exact.
At the end of the cycle, we hence obtain

B̃ = B − (e−Ba)e∗B
1− e∗Ba

=
[
(A+ ∆A) +

(
(A+ ∆A)e− a

)]−1

=
[
Ã+ ∆A(Id− ee∗)

]−1
,

and hence we obtain the propagation error

∆Ã = ∆A(Id− ee∗) .
Thus the new error ∆Ã is obtained from the old error ∆A by projecting the
rows of ∆A orthogonally to e, i.e. the error is damped. If for example, the
vector e runs through an orthogonal basis of RN , then after N steps the error
is damped to zero. In view of the above discussion, we call an implementation
of (16.1.3) globally stable if

(16.2.5) ||∆Ã|| ≤ ||∆A||+O
(
||∆A||2

)
holds, and self-correcting , see Georg (1982) and Georg & Hettich (1987),
if

(16.2.6) ∆Ã = ∆A(Id− ee∗) +O
(
||∆A||2

)
holds. Hence, the implementation (16.2.2) is globally stable and self-correc-
ting.
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(16.2.7) Stability. Of course, the numerical stability of an implementation
of algorithm (16.1.3) depends on both aspects, i.e. we call an implementation
stable if it is globally and locally stable. Implementations such as (16.2.2)
are very popular since they use the lowest amount of flops possible, are very
easy to program, and in view of their global stability, they usually perform
well. However, since they may be locally unstable, readers who are tempted
to use this implementation must keep in mind that they are not always safe.
At least some test for cancellation errors should be employed as a safeguard.

16.3 QR Factorization

Because of the celebrated numerical stability of QR factorizations, see also
chapter 4, another very popular implementation of algorithm (16.1.3) con-
sists of updating a QR factorization of A in each cycle. It is well-known, see
e.g. Golub & Van Loan (1983), that QR factorizations of a matrix are numer-
ically very stable. As we will see later, it may also be necessary to update a
permutation matrix P , which consists of some permutation of the columns
of the identity matrix Id. We recall that PP ∗ = Id is a simple consequence.

Hence, let Q be an orthogonal matrix (i.e. QQ∗ = Id), P a permutation
matrix and R an upper triangular matrix such that

(16.3.1) QAP = R .

It follows that the linear equation Ax = y can be solved by x := PR−1Qy,
i.e. by a matrix multiplication z := Qy, a forward solving of Rw = z and a
rearranging x := Pw of the co-ordinates. In order to obtain a QR factorization
of the update Ã in a numerically efficient way, we multiply equation (16.1.2)
from the left with Q and from the right with P and use (16.3.1):

(16.3.2) QÃP = R+ (Qa−RP ∗e)e∗P .

By applying some Givens transformations on this situation, we now obtain
a QR factorization of the update Ã in a computationally efficient way. This
is best described by means of a pseudo-code as in (4.2.1). We recall that an
N ×N -matrix has Hessenberg form if it has nearly upper triangular form:

x x x x x x
x x x x x x
0 x x x x x
0 0 x x x x
0 0 0 x x x
0 0 0 0 x x

 .



     

16.3 QR Factorization 257

(16.3.3) General QR Step. comment:

u := Qa−RP ∗e; v∗ := e∗P ; initialization

Q̃ := Q; R̃ := R; P̃ := P ;
for i = N − 1 downto 1 do

begin
(s1, s2) :=

(
u[i], u[i+ 1]

)
; calculate Givens rotation

if s2 6= 0 then else: no rotation is necessary

begin
s :=

√
s2

1 + s2
2; (s1, s2) := s−1(s1, s2);(

e∗i R̃
e∗i+1R̃

)
:=
(
s1 s2

−s2 s1

)(
e∗i R̃
e∗i+1R̃

)
; rows i and i+ 1 are rotated

(
e∗i Q̃
e∗i+1Q̃

)
:=
(
s1 s2

−s2 s1

)(
e∗i Q̃
e∗i+1Q̃

)
;

(
u[i]

u[i+ 1]

)
:=
(
s1 s2

−s2 s1

)(
u[i]

u[i+ 1]

)
;

end;
end;

e∗1R̃ := e∗1R̃+ u[1]v∗; now Q̃ÃP̃ = R̃ has Hessenberg form

for i = 1 to N − 1 do
begin
(s1, s2) :=

(
R̃[i, i], R̃[i+ 1, i]

)
; calculate Givens rotation

if s2 6= 0 then else: no rotation is necessary

begin
s :=

√
s2

1 + s2
2; (s1, s2) := s−1(s1, s2);(

e∗i R̃
e∗i+1R̃

)
:=
(
s1 s2

−s2 s1

)(
e∗i R̃
e∗i+1R̃

)
; rows i and i+ 1 are rotated

(
e∗i Q̃
e∗i+1Q̃

)
:=
(
s1 s2

−s2 s1

)(
e∗i Q̃
e∗i+1Q̃

)
;

end;
end. now Q̃ÃP̃ = R̃ has upper triangular form

In the above example, the permutation matrix P was not modified at all
and could have been omitted. However, permutations play a crucial role
if a special but very important case is considered, namely that the vector
e coincides with some unit base vector: e = ek. In this case, P ∗e = em
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for some m ∈ {1, 2, . . . , N}, and if we introduce the permutation matrix
P0 := (e1, . . . , em−1, em+1, . . . , eN , em), then

(16.3.4) QÃPP0 =
(
R+ (Qa−RP ∗e) e∗P

)
P0 .

already has Hessenberg form:
x x x x x x
0 x x x x x
0 0 x x x x
0 0 x x x x
0 0 0 x x x
0 0 0 0 x x

 .

Therefore, (16.3.3) simplifies to the following

(16.3.5) Special QR Step. comment:

let m ∈ {1, 2, . . . , N} be such that P ∗e = em; initialization

P0 := (e1, . . . , em−1, em+1, . . . , eN , em);

P̃ := PP0; new permutation matrix

Q̃ := Q;

R̃ :=
(
R+ (Qa−RP ∗e) e∗P

)
P0; Q̃ÃP̃ = R̃ has Hessenberg form

for i = m to N − 1 do
begin
(s1, s2) :=

(
R̃[i, i], R̃[i+ 1, i]

)
; calculate Givens rotation

if s2 6= 0 then else: no rotation is necessary

begin
s :=

√
s2

1 + s2
2; (s1, s2) := s−1(s1, s2);(

e∗i R̃
e∗i+1R̃

)
:=
(
s1 s2

−s2 s1

)(
e∗i R̃
e∗i+1R̃

)
; rows i and i+ 1 are rotated

(
e∗i Q̃
e∗i+1Q̃

)
:=
(
s1 s2

−s2 s1

)(
e∗i Q̃
e∗i+1Q̃

)
;

end;
end. now Q̃ÃP̃ = R̃ has upper triangular form

By using the techniques (16.3.3) or (16.3.5), an implementation of algorithm
(16.1.3) can now be described in the following way. Here Q, Q̃, Q0 denote
orthogonal matrices, P , P̃ , P0 denote permutation matrices, and R, R̃ denote
upper triangular matrices.
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(16.3.6) QR Update. comment:

input A; an initial N ×N -matrix

generate Q, P , R such that QAP = R; initial factorization

repeat
enter a, e, y ∈ RN such that ||e|| = 1; new data

generate Q0, P0 such that update formula

R̃ := Q0

(
R+ (Qa−RP ∗e) e∗P

)
P0 is upper triangular;

Q̃ := Q0Q; P̃ := PP0; Q̃ÃP̃ = R̃ is the new factorization

x := P̃ R̃−1Q̃y; linear equation

Q := Q̃; P := P̃ ; R := R̃; prepare for next cycle

until cycles are stopped.

Again, the computational cost amounts to an initial O(N3) flops and an
additional O(N2) flops per cycle. Let us now investigate the stability of this
implementation. The local stability is evident from the well-known facts about
the stability of the QR factorization, see e.g. Golub & Van Loan (1983). The
global stability requires some discussion. We assume that we begin a cycle
with some error already in the factorization:

Q
(
A+ ∆A

)
P = R .

Again the question is, how this error is propagated through the current cycle:

Q̃
(
Ã+ ∆Ã

)
P̃ = R̃ .

In order to simplify the discussion, we neglect local errors (which we consider
separately), and assume that all calculations in the current cycle are exact.
Furthermore, we neglect errors in the orthogonality relations such as QQ∗ =
Id. This is permissible, since the update of orthogonal matrices by means of
Givens transformations or similar techniques is known to be numerically very
stable. A more thorough account of errors in the orthogonality relations is
given by Georg & Hettich (1987). We now calculate

Q0Q
(
Ã+ ∆Ã

)
PP0 = R̃

= Q0

(
R+

(
Qa−RP ∗e

)
e∗P

)
P0

= Q0

(
Q(A+ ∆A)P +Q

(
a−Q∗RP ∗e

)
e∗P

)
P0

= Q0

(
Q(A+ ∆A)P +Q

(
a− (A+ ∆A)e

)
e∗P

)
P0

= Q0Q
(
Ã+ ∆A

(
Id− ee∗

))
PP0 ,
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and again obtain the propagation error

(16.3.7) ∆Ã = ∆A(Id− ee∗) .

Hence the implementation (16.3.6) is very safe, since it is locally stable and
globally stable and self correcting. However, the computational cost is con-
siderably higher than in the implementation (16.2.2). More than half of this
cost is paid for keeping an update of the orthogonal matrix Q. Therefore Gill
& Murray (1973) proposed not to store Q. Indeed, if QAP = R is a QR
factorization of A, then R∗R = P ∗A∗AP is a Cholesky factorization, and the
equation Ax = y can be solved via PR∗RP ∗x = y i.e. via a forward and a
backward solving and some renumbering of the co-ordinates. In order to ob-
tain an implementation which does not make explicit use of Q, we note that
QAP = R implies QA∗ −1P = (QAP )∗ −1 = R∗ −1 and hence Q = R∗ −1P ∗A∗.
This last expression is substituted for Q in (16.3.6) to obtain a new imple-
mentation:

(16.3.8) QR Update Without Storing Q. comment:

input A; an initial N ×N -matrix

generate Q, P , R initial factorization P ∗A∗AP = R∗R

such that QAP = R;
repeat

enter a, e, y ∈ RN such that ||e|| = 1; new data

generate Q0, P0 such that update formula

R̃ := Q0

(
R+R∗ −1P ∗A∗(a−Ae) e∗P

)
P0 is upper triangular;

P̃ := PP0; Ã := A+ (a−Ae)e∗; new factorization P̃ ∗Ã∗ÃP̃ = R̃∗R̃

x := P̃ R̃−1R̃∗ −1P ∗A∗y; linear equation

P := P̃ ; R := R̃; A := Ã; prepare for next cycle

until cycles are stopped.

The local stability of this implementation is usually quite satisfactory. Let
us assume that P ∗A∗AP = R∗R represents the numerically exact Cholesky
factorization at the beginning of some cycle. Since orthogonal factorizations
are involved, at the end of the cycle we can roughly estimate the local error
∆Ã by

||∆Ã||
||Ã||

≤ εtol .

We note, however, that we solve the linear equation A∗Ax = A∗y, and hence
the typical role of the condition number cond(A) is replaced by its square:

||∆x||
||x|| ≤ cond2(A)

||∆A||
||A|| .
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Hence, the above implementation is not advisable if the condition number of
the linear systems is expected to be large.

To investigate the global stability, we again assume that we begin a cycle
with some error in the factorization:

(16.3.9) Q
(
A+ ∆A

)
P = R .

The question is, how this error is propagated through the current cycle:

Q0Q
(
Ã+ ∆Ã

)
PP0 = R̃ .

We neglect local errors and assume that all calculations in the current cycle
are exact. Furthermore, we neglect errors in the orthogonality relations such
as QQ∗ = Id. From (16.3.9) we obtain

R∗ −1 = Q
(
A+ ∆A

)∗ −1P

and hence
R∗ −1P ∗ = Q

(
A+ ∆A

)∗ −1,

which is used in the following calculation:

Q0Q
(
Ã+ ∆Ã

)
PP0

= R̃

= Q0

(
R+R∗ −1P ∗A∗(a−Ae) e∗P

)
P0

= Q0

(
Q
(
A+ ∆A

)
P +Q

(
A+ ∆A

)∗ −1A∗(a−Ae) e∗P
)
P0

= Q0Q
(
A+ ∆A +

(
A+ ∆A

)∗ −1A∗(a−Ae) e∗
)
PP0 .

Now we use the estimate(
A+ ∆A

)∗ −1 = Id−A∗ −1∆∗AA
∗ −1 +O

(
||∆A||2

)
and obtain

Ã+ ∆Ã = A+ ∆A + (a−Ae) e∗ +A∗ −1∆∗A(a−Ae) e∗ +O
(
||∆A||2

)
,

which implies

(16.3.10) ∆Ã = ∆A +A∗ −1∆∗A(a−Ae) e∗ +O
(
||∆A||2

)
.

The first and last term of the above propagation error equation are harmless,
but the second term may give rise to problems if

||A∗ −1∆∗A(a−Ae) e∗|| ≥ C ||∆A||
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for some C > 1. Even if this term does not increase dramatically, an occa-
sional modest factor C > 1 in some of the cycles may accumulate so that
after a performance of several cycles the global instability of the method may
have dramatic dimensions. Such effects are shown in numerical experiments
given by Georg & Hettich (1987). It is interesting to note that the factor
(a − Ae) may help prevent global instability. In fact, if Newton’s method is
implemented with a quasi-Newton update such as Broyden’s formula (7.1.7),
see also theorem (7.1.8), then an update algorithm in the sense of (16.1.3)
is performed where ||(a − Ae)|| will be small for most cycles. Let us finally
note that it is possible to develop other implementations of algorithm (16.1.3)
which use some orthogonal factorization method. However, all these methods
are globally unstable if they do not store the orthogonal factor Q.

16.4 LU Factorization

The first efficient and numerically stable implementation of update methods
such as (16.1.3) was given by Bartels & Golub (1968–69). They proposed a
certain update of LU factorizations. Since at least row pivotings have to be
performed in order to make the method locally stable, it turns out that the
L-matrix cannot be kept lower triangular and becomes full. We now give a
brief account of the main ideas which are somewhat analogous to those of
section 16.3. Many variations are possible.

Let L be a N × N -matrix, P a permutation matrix and U an upper
triangular matrix such that

(16.4.1) LAP = U .

It follows that the linear equation Ax = y can be solved by x := PU−1Ly,
i.e. by a matrix multiplication z := Ly, a forward solving of Uw = z and a
rearranging x := Pw of the co-ordinates. In order to obtain a similar factor-
ization of the update Ã in a numerically efficient way, we multiply equation
(16.1.2) from the left with L and from the right with P and use (16.4.1):

LÃP = U + (La− UP ∗e)e∗P .

Instead of applying some Givens transformations to this situation, we now ob-
tain a new factorization of Ã in a computationally efficient way by performing
some elementary row operations as in the Gauss decomposition method, but
we incorporate certain row pivotings to increase the stability. This is best
described by means of a pseudo-code:
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(16.4.2) General LU Step. comment:

u := La− UP ∗e; v∗ := e∗P ; initialization

L̃ := L; Ũ := U ; P̃ := P ;

for i = N − 1 downto 1 do

if |u[i]|+ |u[i+ 1]| > 0 then else: no operations are necessary

begin

if |u[i]| < |u[i+ 1]| then row pivots

swap
(
eiL̃ , eiŨ , u[i]

)
↔
(
ei+1L̃ , ei+1Ũ , u[i+ 1]

)
;

s :=
u[i+ 1]
u[i]

; pivot element

e∗i+1R̃ := e∗i+1R̃− s e∗i R̃; elementary row operation

e∗i+1L̃ := e∗i+1L̃− s e∗i L̃;

u[i+ 1] := 0;

end;

e∗1R̃ := e∗1R̃+ u[1]v∗; now L̃ÃP̃ = Ũ has Hessenberg form

for i = 1 to N − 1 do

if |R̃[i, i]|+ |R̃[i+ 1, i]| > 0 then else: no operations are necessary

begin

if |R̃[i, i]| < |R̃[i+ 1, i]| then row pivots

swap
(
eiL̃ , eiŨ

)
↔
(
ei+1L̃ , ei+1Ũ

)
;

s :=
R̃[i+ 1, i]
R̃[i, i]

; pivot element

e∗i+1R̃ := e∗i+1R̃− s e∗i R̃; elementary row operation

e∗i+1L̃ := e∗i+1L̃− s e∗i L̃;

end. now L̃ÃP̃ = Ũ has upper triangular form

As in section 16.3, the permutation P only plays a crucial role in the special
case that the vector e coincides with some unit base vector. Then (16.4.2)
simplifies to the following
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(16.4.3) Special LU Step. comment:

let m ∈ {1, 2, . . . , N} be such that P ∗e = em; initialization

P0 := (e1, . . . , em−1, em+1, . . . , eN , em);

P̃ := PP0; new permutation matrix

L̃ := L;

Ũ :=
(
U + (La− UP ∗e) e∗P

)
P0; L̃ÃP̃ = Ũ has Hessenberg form

for i = m to N − 1 do
if |R̃[i, i]|+ |R̃[i+ 1, i]| > 0 then else: no operations are necessary

begin
if |R̃[i, i]| < |R̃[i+ 1, i]| then row pivots

swap
(
eiL̃ , eiŨ

)
↔
(
ei+1L̃ , ei+1Ũ

)
;

s :=
R̃[i+ 1, i]
R̃[i, i]

; pivot element

e∗i+1R̃ := e∗i+1R̃− s e∗i R̃; elementary row operation

e∗i+1L̃ := e∗i+1L̃− s e∗i L̃;

end. now L̃ÃP̃ = Ũ has upper triangular form

By using the techniques (16.4.2–3), an implementation of algorithm (16.1.3)
can now be described in the following way:

(16.4.4) QL Update. comment:

input A; an initial N ×N -matrix

generate L, P , U such that LAP = U ; initial factorization

repeat
enter a, e, y ∈ RN such that ||e|| = 1; new data

generate L0, P0 such that update formula

Ũ := L0

(
U + (La− UP ∗e) e∗P

)
P0 is upper triangular;

L̃ := L0L; P̃ := PP0; L̃ÃP̃ = Ũ is the new factorization

x := P̃ Ũ−1L̃y; linear equation

L := L̃; P := P̃ ; U := Ũ ; prepare for next cycle

until cycles are stopped.

Again, the computational cost amounts to an initial O(N3) flops and an addi-
tional O(N2) flops per cycle. However, we emphasize that the elementary row
operations are considerably less expensive than the Givens transformations or
some similar technique discussed in section 16.3. Let us now investigate the
stability of this implementation. Gauss decomposition techniques employing
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row pivots are generally accepted as being “sufficiently” stable for practical
purposes, see e.g. Golub & Van Loan (1983). For the same reason, we propose
to accept the above implementation as being locally “sufficiently” stable, see
also Bartels & Golub (1968–69), Bartels (1971), Bartels & Stoer & Zengler
(1971), Gill & Murray & Wright (1981), Powell (1977, 1985).

The global stability needs some discussion along the same lines as in
section 16.3. We assume that we begin a cycle already with some error in the
factorization:

L
(
A+ ∆A

)
P = U .

Again the question is, how this error is propagated through the current cycle:

L̃
(
Ã+ ∆Ã

)
P̃ = Ũ .

We neglect local errors (which we consider separately), and assume that all
calculations in the current cycle are exact. We have

L0L
(
Ã+ ∆Ã

)
PP0 = Ũ

= L0

(
U +

(
La− UP ∗e

)
e∗P

)
P0

= L0

(
L(A+ ∆A)P + L

(
a− L−1UP ∗e

)
e∗P

)
P0

= L0L
(
A+ ∆A +

(
a− (A+ ∆A)e

)
e∗
)
PP0

= L0L
(
Ã+ ∆A

(
Id− ee∗

))
PP0 ,

and again obtain the propagation error

(16.4.5) ∆Ã = ∆A(Id− ee∗) .

Hence, the implementation (16.4.5) is locally “sufficiently” stable and globally
stable and self correcting. The computational cost is considerably lower than
in the implementation (16.3.6).
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Program 1. A Simple PC Continuation Method

We present a very simple version of a PC continuation method which traces
a path c as characterized by the defining initial value problem (2.1.9). It uses
an Euler predictor step, then evaluates the Jacobian at the predicted point
and performs Newton steps as a corrector back to the curve. Hence only
one calculation and decomposition of the Jacobian is needed per predictor-
corrector step. A steplength control strives to remain below a maximal con-
traction factor in the Newton step and a maximal distance to the curve in
the spirit of (6.1.10). The algorithm stops at a point at which the function
f(x) := x[N + 1] − 1 vanishes. This is achieved by switching the steplength
control over to Newton steps for the arclength, see (9.2.3). A simple test is
incorporated to check whether the condition number of the linear systems
becomes too bad.

The following test example is furnished: a homotopy H : RN ×R→ RN

is defined by H(z, λ) := z − λf(z) where the ith coordinate of f(z) is given
by

(P1.1) f(z)[i] := exp

(
cos

(
i
N∑
k=1

z[k]

))
.

The algorithm starts at (z, λ) = (0, 0) and stops at (z, λ) = (z̄, 1) such that z̄
is a fixed point of f . We first sketch the essential features of the algorithm:

Sketch of Program 1. comment:

input
begin
x ∈ H−1(0); initial point

h > 0; initial steplength

hmin > 0; minimal stepsize

tol > 0; tolerance for corrector loop

1 > ctmax > 0; maximal contraction factor

dmax > 0; maximal distance to curve

end input;
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A := H ′(x); a QR decomposition of the Jacobian is performed

t := t(A); tangent

newton := false;
label 93;
repeat

u := x+ ht; predictor step

A := H ′(u); a QR decomposition of A is performed

repeat for iter = 1, 2, . . . begin corrector loop

dist := ||A+H(u)||; length of corrector step

u := u−A+H(u); corrector step

if iter > 1 then contr :=
dist

disto
; contraction factor

disto := dist; save distance

if dist > dmax or contr > ctmax

then reduce h and goto 93; PC step not accepted

until dist < tol; end corrector loop

x := u; new point approximately on curve

t := t(A); new tangent

if x[N + 1] > 1 then newton := true; switch to Newton’s steplength

if newton then

h := −x[N + 1]− 1
t[N + 1]

Newton’s steplength, see (9.2.3)

else adapt h w.r.t. ctmax, dmax; according to (6.1.10)

until |h| < hmin. stopping criterion

The following is the complete FORTRAN program listing.
program cont continuation method, follows a curve H(u) = 0

Euler predictor, Newton-correctors
stepsize control by asymptotic estimates

Jacobian is evaluated only at predictor point
stepsize is monitored by two different values:

1. contraction rate in corrector steps
2. distance to the curve

stops at a point x such that x(n1) = 0

arrays:
parameter(n = 10, n1 = n+1) dimension of the problem
dimension b(n1,n) transpose of Jacobian
dimension q(n1,n1) orth. matrix for QR dec. of b
dimension x(n1), u(n1) current points on the curve
dimension t(n1) tangent vector
dimension y(n) stores values y := H(x)
logical succ, newt
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parameters:
tol = 1.e-4 tolerance for corrector iteration
ctmax = 0.6 maximal contr. rate in corrector step
dmax = .4 maximal distance to curve
hmax = 1. maximal stepsize
hmin = 1.e-5 minimal stepsize
maxjac = 1000 maximal number of Jacobian evaluations
cdmax = 1.e3 maximum for condition estimate
fmax = 2. maximal factor for acceleration
h = .03 initial stepsize
eta = .1 perturbation to avoid cancellation

when calculating the contraction rate

main program
open(1, file=Õcont.datÕ) output file
call stpnt(x, n1) user defined starting point, H(x) = 0
newt = .false.
mapct = 0 counts the calls of the map H
jacct = 0 counts the calls of the Jacobian H′

call jacob(b, x, n, n1) b := transpose of Jacobian at x
jacct = jacct + 1
call decomp(b, q, cond, n, n1) b, q := orthog. decomp. of b
if (cond .gt. cdmax) then
write(1,*) Õ bad cond. estimate in init. point = Õ, cond
write(*,*) Õ bad cond. estimate in init. point = Õ, cond
stop
endif

do 91 k = 1, n1 tangent
t(k) = q(n1, k)

91 continue
call setor(or, t, n1) set orientation

12 continue begin PC loop
if (abs(h).lt.hmin) then
write(1,*) Õ failure at minimal stepsizeÕ
write(*,*) Õ failure at minimal stepsizeÕ
stop

endif
if (jacct .gt. maxjac) then
write(*,*) Õ maximal number of Jacobian eval. exceededÕ
write(1,*) Õ maximal number of Jacobian eval. exceededÕ
stop

endif
do 92 k = 1, n1
u(k) = x(k) + h * or * t(k) predictor step

92 continue
fac = 1./ fmax initialize deceleration factor
call jacob(b, u, n, n1) b := transpose of Jacobian at u
jacct = jacct + 1
call decomp(b, q, cond, n, n1) decompose b
if (cond .gt. cdmax) goto 21
iter = 0 counts the corrector iterations

93 iter = iter + 1 begin corrector loop
call map(u, y, n, n1)
mapct = mapct + 1
call newton(q, b, u, y, dist, n, n1)
if (dist.gt.dmax) goto 21
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fac = max(fac, sqrt(dist/dmax)*fmax)
if (iter.ge.2) then
contr = dist / (disto + tol*eta) contraction rate
if (contr.gt.ctmax) goto 21
fac = max(fac, sqrt(contr/ctmax)*fmax)
endif

if (dist.lt.tol) goto 22 corrector successful
disto = dist
goto 93 end corrector loop

21 h = h / fmax PC not accepted
goto 12

22 continue PC step accepted
succ = .false.
if (u(n1).ge.1.) newt = .true. switch to Newton steplength
if (newt) then
h = - (u(n1) - 1.) / q(n1, n1)
if (abs(h).lt.hmin) succ = .true. solution point found

else
if (fac.gt.fmax) fac = fmax
h = min(abs(h/fac), hmax) steplength adaptation
if (h.gt.hmax) h = hmax

endif
do 94 k = 1, n1
x(k) = u(k) new point on curve
t(k) = q(n1, k) new tangent

94 continue
if (succ) then stopping the curve tracing

write(1,*) Õ success withÕ, mapct,Õ calls of ÕÕmapÕÕ andÕ,
* jacct, Õ calls of ÕÕjacobÕÕÕ

write(*,*) Õ success withÕ, mapct,Õ calls of ÕÕmapÕÕ andÕ,
* jacct, Õ calls of ÕÕjacobÕÕÕ

write(1,*)
write(*,*)
write(1,*) Õ solution vector:Õ
write(*,*) Õ solution vector:Õ
write(1,*) Õ ===============Õ
write(*,*) Õ ===============Õ
do 95 k = 1, n
write(1,*) Õ x(Õ, k, Õ) = Õ, x(k)
write(*,*) Õ x(Õ, k, Õ) = Õ, x(k)

95 continue
stop
endif

goto 12
end

subroutine map(x, y, n, n1) user defined
input: x output: y = H(x)

H(x) = 0 defines the curve to be traced
dimension x(n1), y(n)
s = 0.0
do 91 i = 1, n
s = s + x(i)

91 continue
do 92 i = 1, n
y(i) = x(i) - x(n1) * exp(cos(i * s))
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92 continue
return
end

subroutine jacob(b, x, n, n1) user defined
input: x output: b

evaluates the transpose b of the Jacobian at x
dimension b(n1,n), x(n1)
s = 0.0
do 91 i = 1, n
s = s + x(i)

91 continue
do 92 k = 1, n1
do 93 i = 1, n
if (k.eq.n1) then
b(k, i) = -exp(cos(i * s))

elseif (i.eq.k) then
b(k,i)=1.+x(n1)*exp(cos(i*s))*sin(i*s)*i

else
b(k,i) = x(n1)*exp(cos(i*s))*sin(i*s)*i

endif
93 continue
92 continue

return
end

subroutine stpnt(x, n1) user defined
output: x = starting point on curve

dimension x(n1)
do 91 k = 1, n1
x(k) = 0.0

91 continue
return
end

subroutine setor(or, t, n1) user defined
input: t output: or(t)

decides in which direction the curve will be traversed
dimension t(n1)
if (t(n1).gt.0.) then
or = 1.0

else
or = -1.0

endif
return
end

subroutine givens(b, q, c1, c2, l1, l2, l3, n, n1)
input: b, q, c1, c2, l1, l2, l3

output: b, q, c1, c2
one Givens rotation is performed —

on rows l1 and l2 of b and q
the rotation maps c1, c2 onto sqrt(c1**2+c2**2), 0

dimension b(n1, n), q(n1, n1)
if (abs(c1)+abs(c2) .eq. 0.) return
if (abs(c2) .ge. abs(c1)) then
sn = sqrt(1. + (c1/c2)**2) * abs(c2)

else



    

Program 1. A Simple PC Continuation Method 271

sn = sqrt(1. + (c2/c1)**2) * abs(c1)
endif
s1 = c1/sn
s2 = c2/sn
do 91 k = 1, n1
sv1 = q(l1, k)
sv2 = q(l2, k)
q(l1, k) = s1 * sv1 + s2 * sv2
q(l2, k) = -s2 * sv1 + s1 * sv2

91 continue
do 92 k = l3, n
sv1 = b(l1, k)
sv2 = b(l2, k)
b(l1, k) = s1 * sv1 + s2 * sv2
b(l2, k) = -s2 * sv1 + s1 * sv2

92 continue
c1 = sn
c2 = 0.0
return
end

subroutine decomp(b, q, cond, n, n1)
input: b, output: b, q, cond

a QR decomposition for b is stored in q, b —
by using Givens rotations on b and q = id —

until b is upper triangular
a very coarse condition estimate cond is provided

dimension b(n1, n), q(n1, n1)
do 91 k = 1, n1 start with q := id
do 92 l = 1, n1
q(k, l) = 0.0

92 continue
q(k, k) = 1.0

91 continue
do 93 m = 1, n successive Givens transformations
do 94 k = m+1, n1
call givens(b, q, b(m, m), b(k, m), m, k, m+1, n, n1)

94 continue
93 continue

cond = 0. very coarse condition estimate
do 95 i = 2, n
do 96 k = 1, i - 1
cond = max(cond, abs(b(k,i)/b(i,i)))

96 continue
95 continue

return
end

subroutine newton(q, b, u, y, d, n, n1)
input q, b, u, y = H(u), n, n1

output u, d
y is changed

a Newton step u := u−A+H(u) is performed —
where A approximates the current Jacobian H′

q, b = QR decomposition of A∗

d = length of Newton step
dimension q(n1, n1), b(n1, n), u(n1), y(n)
do 91 k = 1, n
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do 92 l = 1, k-1
y(k) = y(k) - b(l, k) * y(l)

92 continue
y(k) = y(k) / b(k, k)

91 continue
d = 0.
do 93 k = 1, n1
s = 0.0
do 94 l = 1, n
s = s + q(l, k) * y(l)

94 continue
u(k) = u(k) - s
d = d + s**2

93 continue
d = sqrt(d)
return
end

A run of the above program gave the following results:
success with 900 calls of ÕmapÕ and 280 calls of ÕjacobÕ

solution vector:
===============
x( 1) = 1.492
x( 2) = .5067
x( 3) = .3890
x( 4) = .9273
x( 5) = 2.420
x( 6) = 2.187
x( 7) = .7729
x( 8) = .3721
x( 9) = .5866
x( 10) = 1.754
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We now present a PL homotopy method in the sense of Eaves & Saigal, see
section 13.4. The algorithm is applied to the problem minx∈R2 ϕ(x), where

(P2.1) ϕ : R2 → R, ϕ(x1, x2) := 100
(
x2 − x3

1

)2 − (1− x1

)2
,

which we take from the paper of Himmelblau (1972). The problem obviously
has the unique solution x1 = 1, x2 = 1. The interesting point of this example
is that the standard optimization algorithms perform slowly since the graph of
the function displays a steep valley which decreases only gradually. Essentially
the same behavior is also shown by the PL method applied to the map

(P2.2) H : R2 ×R→ R2, H(x, λ) =
{
x− x0 for λ ≤ 0,
∇ϕ(x) for λ > 0.

Occasionally Newton steps are tempted as described in section 13.5, and au-
tomatic pivots in the sense of section 13.6 are performed to save LP steps.
It is interesting to see how the algorithm runs up and down the bisection
levels until it comes so near to the solution that Newton iterations are finally
successful, see figure P2.a.

Figure P2.a Running up and down the bisection levels
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It should be noted that single precision (real*4) is barely capable of
handling the bad conditioning of the problem. We first sketch the essential
features of the algorithm:

Sketch of Program 2. comment:

input

begin

v1, . . . , vN+1 ∈ RN ; vertices of a starting simplex

x0 ∈ RN ; starting point

bis ∈ N maximal bisection level allowed

end input;
define an affine image of the triangulation J3 of RN ×R

which uses the above starting simplex triangulation

and which uses x0 as a barycenter;
k2 = 0 pivoting index

repeat begin of PL loop

find a new k2; door-in-door-out step

pivot k2; pivoting step

if a new bisection level is encountered
then try some Newton steps;

if Newton steps were successful then stop;
until level = bis is encountered.

The following is the complete FORTRAN program listing.

program plhom Piecewise linear homotopy method
in the sense of Eaves and Saigal, see section 13.4

with automatic pivoting steps and tentative Newton steps
the condition of the labeling matrix is tested

integer bis, i1, i2, k2, count, maxct, k, n, n1, level
real stol, kappa, cdmax, newtl, ferr
parameter(n = 2, n1 = n+1) dimension of the problem
parameter(ferr = 1.0e-6) tolerance, used for stopping
parameter(stol = 1.e-4) ≈ sqrt(machine tolerance)
parameter(cdmax = 1./stol) maximum for condition estimate
parameter(bis = 18) maximal number of bisections
parameter(kappa = 0.5) contr. factor for Newton steps
parameter(maxct = 400) maximal number of steps
real d(0:n1) level of vertices (stepsize)
real v(n, 0:n1) vertices of simplex
integer l(0:n1), r(0:n1) permutations for vertices
integer a(0:n1) axis from v(.,i) to v(.,i+1)
real z(n) center of virtual simplex
real x(0:n), w(0:n) points , x(0) = 2.**(-level)
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real x0(n) starting point
real y(n) current value y= f(x)
real c(0:n1) column
real q(0:n1, 0:n1) orthogonal matrix
real b(0:n1, 0:n) upper triangular matrix
logical newl new level traversed ?
logical succ success of Newton iterations ?

i1 = 0 first higher level index
i2 = 0 last higher level index
k2 = 0 index of vertex being pivoted
count = 0 counts number of function evaluations
newtl = 0.5 last level for Newton steps
open(1, file=Õplhom.datÕ) output file
call load(v,x0,x,y,z,a,d,r,l,b,q,cdmax,count,n,n1)

1 continue start of PL loop
call index(k2,stol,q,n,n1) find new pivoting index k2
call pivot(k2,newl,d,v,l,r,a,z,x,i1,i2,n,n1)
level = nint(-alog(abs(d(i1)))/alog(2.))
write(1,Õ(i6,4x,ÕÕlevel=ÕÕ,i3)Õ) count, level
write(*,Õ(i6,4x,ÕÕlevel=ÕÕ,i3)Õ) count, level
if (newl .and. (newtl .gt. x(0))) then
newtl = x(0) tentative Newton steps
call newton(x,x0,y,w,c,cdmax,ferr,kappa,count,

* v,k2,q,b,n,n1,succ)
if (succ) then
write(1,Õ(6x,a)Õ) ÕNewton iterations succeededÕ
write(*,Õ(6x,a)Õ) ÕNewton iterations succeededÕ
goto 35

else
write(1,Õ(6x,a)Õ) ÕNewton iterations did not succeedÕ
write(*,Õ(6x,a)Õ) ÕNewton iterations did not succeedÕ

endif
do 91 k = 1, n
x(k) = v(k, k2)

91 continue
endif
if (level .gt. bis) then
write(1,Õ(6x,a)Õ) Õmaximal bisection level exceededÕ
write(*,Õ(6x,a)Õ) Õmaximal bisection level exceededÕ
goto 35

endif
call label(x, x0, y, n)
count = count + 1
if (count .gt. maxct) then
write(1,Õ(6x,a)Õ) Õmaximal number of PL steps exceededÕ
write(*,Õ(6x,a)Õ) Õmaximal number of PL steps exceededÕ
goto 35

endif
call update(b,q,y,w,cdmax,k2,n,n1)
goto 1 end of PL loop

35 continue best solution found
write(1,Õ(6x,a,i6/)Õ) Õnumber of label evaluations:Õ,count
write(*,Õ(6x,a,i6/)Õ) Õnumber of label evaluations:Õ,count
write(1,Õ(6x,a)Õ) Õapproximate solution found:Õ
write(*,Õ(6x,a)Õ) Õapproximate solution found:Õ



   

276 Program 2. A PL Homotopy Method

write(1,Õ(6x,a,i2,a,e16.8)Õ) (Õx(Õ, k, Õ)=Õ, x(k), k=1,n)
write(*,Õ(6x,a,i2,a,e16.8)Õ) (Õx(Õ, k, Õ)=Õ, x(k), k=1,n)
end

subroutine stpnt(x0, n) user defined
output: x = starting point for homotopy method

real x0(n)
integer n
x0(1) = -1.2
x0(2) = 1.0
return
end

subroutine stsim(v, n, n1) user defined
output: v = starting simplex

real v(n, 0:n1)
integer n, n1, k, m
do 91 k = 1, n
v(k, 1) = 1.0

91 continue
do 92 m = 2, n1
do 93 k = 1, n
v(k, m) = v(k, m - 1)

93 continue
v(m - 1, m) = 0.0

92 continue
return
end

subroutine label(x, x0, y, n) user defined
input: x output: y = label of x

real x(0:n), x0(n), y(n), x12, x13
integer n, k, level
level = nint(-alog(x(0))/alog(2.))
if (level .gt. 0) then label = f (interesting level)
x12 = x(1) * x(1)
x13 = x12 * x(1)
y(1) = -600.0 * (x(2) - x13) * x12 - 2.0 * (1.0 - x(1))
y(2) = 200.0 * (x(2) - x13)

else label on the trivial level
do 91 k = 1, n
y(k) = x(k) - x0(k)

91 continue
endif
return
end

subroutine givens(b, q, c1, c2, l1, l2, l3, n, n1)
input: b, q, c1, c2, l1, l2, l3

output: b, q, c1, c2
one Givens rotation is performed —

on rows l1 and l2 of b and q
the rotation maps c1, c2 onto sqrt(c1**2+c2**2), 0

real b(0:n1, 0:n),q(0:n1,0:n1),sn,s1,s2,c1,c2,sv1,sv2
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integer l1, l2, l3, n, n1, k
if (abs(c1)+abs(c2) .eq. 0.) return
if (abs(c2) .ge. abs(c1)) then
sn = sqrt(1. + (c1/c2)**2) * abs(c2)

else
sn = sqrt(1. + (c2/c1)**2) * abs(c1)

endif
s1 = c1/sn
s2 = c2/sn
do 91 k = 0, n1
sv1 = q(l1, k)
sv2 = q(l2, k)
q(l1, k) = s1 * sv1 + s2 * sv2
q(l2, k) = -s2 * sv1 + s1 * sv2

91 continue
do 92 k = l3, n
sv1 = b(l1, k)
sv2 = b(l2, k)
b(l1, k) = s1 * sv1 + s2 * sv2
b(l2, k) = -s2 * sv1 + s1 * sv2

92 continue
c1 = sn
c2 = 0.0
return
end

subroutine testcd(b, cdmax, n, n1) test of condition —
a very coarse estimate

real b(0:n1, 0:n), cdmax
integer n, n1, i, k
do 91 i = 1, n
do 92 k = 0, i - 1
if (abs(b(k,i)) .gt. cdmax*abs(b(i, i))) then
write(1,Õ(6x,a)Õ) Õbad cond. estimateÕ
write(*,Õ(6x,a)Õ) Õbad cond. estimateÕ
stop

endif
92 continue
91 continue

return
end

subroutine load(v,x0,x,y,z,a,d,r,l,b,q,cdmax,count,n,n1)
real v(n,0:n1), x0(n), y(n), z(n), d(0:n1), q(0:n1,0:n1),
* b(0:n1,0:n), x(0:n), cdmax

integer a(0:n1), l(0:n1), r(0:n1), n, n1, k, m, count
call stsim(v, n, n1)
call stpnt(x0, n)
do 81 k = 1, n
y(k) = 0.0
v(k,0) = 0.5 * (v(k,1) + v(k,n1)) first new vertex
do 82 m = 1, n1
y(k) = y(k) + v(k,m)

82 continue
y(k) = y(k) / real(n1) barycenter of starting simplex

81 continue
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do 83 k = 1, n shifting barycenter into x0
do 91 m = 0, n1
v(k, m) = v(k, m) - y(k) + x0(k)

91 continue
83 continue

do 92 k = 1, n
z(k) = 0.5 load virtual simplex
a(k) = k

92 continue
do 93 k = 1, n1
d(k) = -1.0

93 continue
d(0) = 0.5
do 94 k = 0, n1
r(k) = k + 1
l(k) = k - 1

94 continue
l(0) = n1
r(n1) = 0
do 95 m = 0, n1 loading b and q

b(m, n) = 1.0
x(0) = abs(d(m))
do 96 k = 0, n1
q(k, m) = 0.0

96 continue
q(m, m) = 1.0
do 97 k = 1, n
x(k) = v(k, m)

97 continue
call label(x, x0, y, n)
count = count + 1
do 98 k = 1, n
b(m, k - 1) = y(k)

98 continue
95 continue

do 88 m = 0, n
do 89 k = m + 1, n1
call givens(b, q, b(m, m), b(k, m), m, k, m+1, n, n1)

89 continue
88 continue

call testcd(b, cdmax, n, n1)
return
end

subroutine index(k2,stol,q,n,n1) find new pivoting index k2

real q(0:n1, 0:n1), s, stol
integer k2, n, n1, k
if (q(n1, k2).gt. 0) then
do 91 k = 0, n1
q(n1, k) = -q(n1, k)

91 continue
endif
s = 1.e20
k2 = -1
do 92 k = 0, n1
if (q(n1, k) .gt. stol) then
if (q(n, k) / q(n1, k) .lt. s) then
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s = q(n, k) / q(n1, k)
k2 = k

endif
endif

92 continue
if (k2 .eq. -1) then
write(1,Õ(6x,a)Õ) Õinstability: no index foundÕ
write(*,Õ(6x,a)Õ) Õinstability: no index foundÕ
stop

endif
return
end

subroutine update(b,q,y,w,cdmax,k2,n,n1)
the decomposition q transpose(A) = b is updated —

for the case that A(k2,1:n) is replaced by y
see section 16.3

real w(0:n), y(n), q(0:n1, 0:n1), b(0:n1, 0:n), cdmax
integer k2, n, n1, k, l
do 91 k = 1, n
w(k - 1) = y(k)

91 continue
w(n) = 1.0
do 92 k = 0, n
do 82 l = 0, k
w(k) = w(k) - b(l, k) * q(l, k2)

82 continue
92 continue

do 93 k = n, 0, -1
call givens(b, q, q(k,k2), q(k+1,k2), k, k+1, k, n, n1)

93 continue
do 94 k = 0, n1 correction of q

q(0, k) = 0.0
94 continue

q(0, k2) = 1.0
do 95 k = 0, n
b(0, k) = b(0, k) + w(k)

95 continue
do 96 k = 0, n
call givens(b, q, b(k,k), b(k+1, k), k, k+1, k+1, n, n1)

96 continue
call testcd(b, cdmax, n, n1)
return
end

function even(a) test if the real number a —
is near an even number

real a, b
logical even
b = abs(a) / 2.0
if (b - aint(b) .lt. 0.25) then
even = .true.

else
even = .false.

endif
return
end
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subroutine pivot(k2,newl,d,v,l,r,a,z,x,i1,i2,n,n1)
performs all necessary updates —

for pivoting vertex k2 of the current simplex —
with respect to the triangulation J3

indicates whether a new level is traversed
performs automatic pivots, see section 13.6 —

in case that the traversed level has height ≤ 0.25

real d(0:n1), v(n, 0:n1), z(n), x(0:n), s
integer l(0:n1), r(0:n1), a(0:n1), k2, i1, i2, n, n1, k1,
* k3, k, i0
integer pivcase cases for pivoting, ordering as in (13.3.7)

logical newl
newl = .false.

77 continue entry point for automatic pivot
k1 = l(k2)
k3 = r(k2)
if (k2 .eq. i1) then
if (i1 .ne. i2) then
pivcase = 2

else
pivcase = 5

endif
else
if (k2 .eq. i2) then
if (even((z(a(k1)) + d(k1)) / d(k3))) then
pivcase = 7

else
pivcase = 8

endif
else
if (k1 .eq. i2) then
if (k3 .ne. i1) then
pivcase = 3

else
pivcase = 6

endif
else
if (k3 .eq. i1) then
pivcase = 4

else
pivcase = 1

endif
endif

endif
endif
goto (1,2,3,4,5,6,7,8) pivcase

1 k = a(k2)
a(k2) = a(k1)
a(k1) = k
s = d(k2)
d(k2) = d(k1)
d(k1) = s
do 91 k = 1, n
v(k, k2) = v(k, k1) + v(k, k3) - v(k, k2)
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91 continue
goto 66

2 z(a(k2)) = z(a(k2)) + 2.0 * d(k2)
d(k2) = -d(k2)
do 92 k = 1, n
v(k, k2) = 2.0 * v(k, k3) - v(k, k2)

92 continue
goto 66

3 i2 = k2
d(k1) = d(k2) * 0.5
d(k2) = d(k1)
a(k1) = a(k2)
do 93 k = 1, n
v(k, k2) = v(k, k1) + 0.5 * (v(k, k3) - v(k, k2))

93 continue
if ((k3 .eq. l(i1)) .and. (abs(d(k2)) .le. 0.25)) then
r(k1) = k3 automatic pivot
l(k3) = k1
r(k3) = k2
l(k2) = k3
r(k2) = i1
l(i1) = k2
d(k2) = d(k3)
d(k3) = d(i1)
i2 = k3
goto 77

endif
goto 66

4 a(i2) = a(k1)
d(i2) = -d(k1) * 0.5
d(k2) = d(i2)
do 97 k = 1, n
v(k, k2) = v(k, i2) + 0.5 * (v(k, k1) - v(k, k2))

97 continue
i3 = r(i2)
r(k2) = i3
l(i3) = k2
r(i2) = k2
l(k2) = i2
r(k1) = k3
l(k3) = k1
i2 = k2
if ((r(k2) .eq. k1) .and.(abs(d(k2)) .le. 0.25)) then

i2 = l(k2) automatic pivot
r(i2) = k1
l(k1) = i2
r(k1) = k2
l(k2) = k1
r(k2) = k3
l(k3) = k2
i2 = k1
d(k2) = d(k1)
d(k1) = d(i1)
goto 77

endif
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goto 66

5 i1 = k3
i2 = k1
d(k2) = d(k2) * 4.0
do 87 k = 1, n
v(k, k2) = v(k, k1)

87 continue
i0 = l(i1)
do 94 k = 0, n1
if ((k .ne. i2) .and. (k .ne. i0))

* z(a(k)) = z(a(k)) - 0.5 * d(k)
94 continue

if (abs(d(k2)) .le. 0.5) then automatic pivot
i2 = l(k1)
r(i2) = k2
l(k2) = i2
r(k2) = k1
l(k1) = k2
r(k1) = k3
l(k3) = k1
i2 = k2
d(k1) = d(k2)
d(k2) = d(k3)
goto 77

endif
goto 66

6 i1 = k2
i2 = k2
d(k2) = d(k2) * 0.25
newl = .true.
do 95 k = 1, n
v(k, k2) = 0.5 * (v(k, k1) + v(k, k3))

95 continue
i0 = l(i1)
do 96 k = 0, n1
if ((k .ne. i2) .and. (k .ne. i0))

* z(a(k)) = z(a(k)) + 0.5 * d(k)
96 continue

goto 66

7 a(k2) = a(k1)
d(k2) = d(k1) * 2.0
i2 = k1
do 98 k = 1, n
v(k, k2) = v(k, k3) + 2.0 * (v(k, k1) - v(k, k2))

98 continue
goto 66

8 r(k1) = k3
l(k3) = k1
k3 = l(i1)
do 99 k = 1, n
v(k, k2) = v(k, k3) + 2.0 * (v(k, k1) - v(k, k2))

99 continue
r(k3) = k2
l(k2) = k3
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r(k2) = i1
l(i1) = k2
d(k3) = -d(k1) * 2.0
d(k2) = d(k3)
a(k3) = a(k1)
i2 = k1
goto 66

66 continue end of pivoting cases
do 89 k = 1, n
x(k) = v(k, k2)

89 continue
x(0) = abs(d(k2))
return
end

subroutine newton(x,x0,y,w,c,cdmax,ferr,kappa,count,
* v,k2,q,b,n,n1,succ)

tentative Newton steps w.r.t. barycentric co-ordinates
see section 13.5

real v(n,0:n1),x(0:n),y(n),q(0:n1,0:n1),b(0:n1,0:n),c(0:n1),
* x0(n),w(0:n), cdmax, s, y1, y2, ferr, kappa
integer count, k2, n, n1, l, k
logical succ
succ = .false.
s = q(n, k2) / q(n1, k2) first Newton step
do 91 l = 0, n1
c(l) = (q(n, l) - s * q(n1, l)) / b(n, n)

91 continue
do 92 k = 1, n
x(k) = 0.0
do 93 l = 0, n1
if (l .ne. k2) x(k) = x(k) + c(l) * v(k, l)

93 continue
92 continue

call label(x, x0, y, n)
count = count + 1
y2 = 0.0
do 94 k = 1, n
y2 = y2 + abs(y(k))

94 continue
write(1,Õ(6x,a,e16.8)Õ) Õnorm(f)=Õ, y2
write(*,Õ(6x,a,e16.8)Õ) Õnorm(f)=Õ, y2

77 continue begin loop of successive Newton steps
call update(b,q,y,w,cdmax,k2,n,n1)
y1 = y2
s = (1.0 - q(n, k2) / b(n, n)) / q(n1, k2)
do 96 l = 0, n1
c(l) = (q(n, l) / b(n, n) + s * q(n1, l))

96 continue
do 97 k = 1, n
do 98 l = 0, n1
if (l .ne. k2) x(k) = x(k) + c(l) * v(k, l)

98 continue
97 continue

call label(x, x0, y, n)
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count = count + 1
y2 = 0.0
do 99 k = 1, n
y2 = y2 + abs(y(k))

99 continue
write(1,Õ(6x,a,e16.8)Õ) Õnorm(f)=Õ, y2
write(*,Õ(6x,a,e16.8)Õ) Õnorm(f)=Õ, y2
if (y2 .lt. ferr) then
succ = .true.
return

endif
if (y2 .gt. kappa * y1) then
return

else
goto 77

endif
end

A run of the above program gave the following result. We print only the last
part of the output file:

249 level= 9
250 level= 10

norm(f)= 0.50691070E-02
norm(f)= 0.30294531E-02
Newton iterations did not succeed

253 level= 10
254 level= 10
255 level= 10
256 level= 10
257 level= 10
258 level= 10
259 level= 10
260 level= 10
261 level= 10
262 level= 9
263 level= 10
264 level= 10
265 level= 11

norm(f)= 0.12469822E-03
norm(f)= 0.36960933E-04
norm(f)= 0.14268670E-03
Newton iterations did not succeed

269 level= 11
270 level= 12

norm(f)= 0.11098384E-03
norm(f)= 0.48157180E-04
norm(f)= 0.21099754E-03
Newton iterations did not succeed

274 level= 12
275 level= 12
276 level= 13

norm(f)= 0.25033182E-03
norm(f)= 0.38767040E-03
Newton iterations did not succeed

279 level= 13
280 level= 13
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281 level= 14
norm(f)= 0.23651090E-03
norm(f)= 0.19121162E-03
Newton iterations did not succeed

284 level= 14
285 level= 15

norm(f)= 0.23746473E-03
norm(f)= 0.47683720E-04
norm(f)= 0.00000000E+00
Newton iterations succeeded
number of label evaluations: 288

approximate solution found:
x( 1)= 0.10000000E+01
x( 2)= 0.10000000E+01

The PL homotopy algorithms depend very much on the choice of the affine
image of the triangulation J3. The affine map is automatically given by the
user defined starting point x0 and the user defined starting simplex in RN .
This is particularly interesting to see for the example (P1.1) which in this
context leads to the following homotopy

(P2.3) H : RN ×R→ RN , H(x, λ) =
{
x for λ ≤ 0,
x− f(x) for λ > 0.

The program changes at the following places:

parameter(n = 6, n1 = n+1) dimension of the problem
parameter(ferr = 1.0e-4) tol. norm(f), used for stopping
parameter(stol = 1.e-3) ≈ sqrt(machine tolerance)
parameter(cdmax = 1./stol) maximum for condition estimate
parameter(bis = 10) maximal number of bisections
parameter(kappa = 0.5) contr. factor for Newton steps
parameter(maxct = 2000) maximal number of steps

*******************************************************************
subroutine label(x, x0, y, n) user defined

input: x output: y = label of x

real x(0:n), x0(n), y(n), s
integer n, k
level = nint(-alog(x(0))/alog(2.))
if (level .gt. 0) then label = f (interesting level)
s = 0.0
do 91 k = 1, n
s = s + x(k)

91 continue
do 92 k = 1, n
y(k) = x(k) - exp(cos(k * s))

92 continue
else label on the trivial level
do 93 k = 1, n
y(k) = x(k) - x0(k)

93 continue
endif
return
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end
*******************************************************************

subroutine stpnt(x0, n) user defined
output: x = starting point for homotopy method

real x0(n)
integer n, i
do 91 i = 1, n
x0(i) = 0.0

91 continue
return
end

With the starting simplex

subroutine stsim(v, n, n1) user defined
output: v = starting simplex

real v(n, 0:n1)
integer n, n1, k, m
do 91 k = 1, n
v(k, 1) = 10.0

91 continue
do 92 m = 2, n1
do 93 k = 1, n
v(k, m) = v(k, m - 1)

93 continue
v(m - 1, m) = 0.0

92 continue
return
end

we obtain the following output (only the last lines are given):

453 level= 8
454 level= 8
455 level= 9

norm(f)= 0.20663770E-01
norm(f)= 0.43382050E-02
norm(f)= 0.98764900E-03
norm(f)= 0.21252040E-03
norm(f)= 0.79303980E-04
Newton iterations succeeded
number of label evaluations: 460

approximate solution found:
x( 1)= 0.24149892E+01
x( 2)= 0.17415463E+01
x( 3)= 0.11014134E+01
x( 4)= 0.68083550E+00
x( 5)= 0.46093451E+00
x( 6)= 0.37482151E+00

However, if we change the starting simplex into a different geometrical form
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subroutine stsim(v, n, n1) user defined
output: v = starting simplex

real v(n, 0:n1)
integer n, n1, k, m
do 91 k = 1, n
v(k, 1) = 0.0

91 continue
do 92 m = 2, n1
do 93 k = 1, n
if (k+1 .eq. m) then
v(k, m) = 10.0

else
v(k, m) = 0.0

endif
93 continue
92 continue

return
end

then the performance of the algorithm changes drastically as can be seen by
the following output:

64 level= 3
65 level= 4
norm(f)= 0.16743760E+01
norm(f)= 0.26990700E+00
norm(f)= 0.54594490E-01
norm(f)= 0.12029620E-01
norm(f)= 0.27115050E-02
norm(f)= 0.66077710E-03
norm(f)= 0.15437602E-03
norm(f)= 0.33348800E-04
Newton iterations succeeded
number of label evaluations: 73

approximate solution found:
x( 1)= 0.13212870E+01
x( 2)= 0.42966222E+00
x( 3)= 0.47269183E+00
x( 4)= 0.15330100E+01
x( 5)= 0.26841723E+01
x( 6)= 0.11308190E+01

Not only is a different solution found, but the algorithm performs much faster.
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Program 3. A Simple Euler-Newton Update
Method

The following is a modification of program 1 in which the Jacobian A ≈ H ′

of the homotopy is calculated only once at the starting point (via difference
approximations), and all subsequent approximations A ≈ H ′ along the curve
are obtained by using Broyden’s update formulas, see (7.2.13). A steplength
adaptation insures an acceptable performance of the Newton corrector step.
A simple modification is incorporated to keep the condition number of the
linear systems under control. The same numerical example as in program 1
is used so that the two algorithms can be directly compared.

Sketch of Program 3. comment:

input

begin

x ∈ H−1(0); initial point

h > 0; initial steplength

hmin > 0; minimal stepsize

end input;
newton := false;
A :≈ H ′(x); difference approximation —

a QR decomposition of A is performed

t := t(A); tangent

repeat

label 12;
u := x+ ht; predictor step

update A on x, u; a QR decomposition is updated

if angle test is negative then reduce h and goto 12;
generate a perturbation vector pv;
v := u−A+(H(u)− pv); corrector step

update A on u, v; a QR decomposition is updated

if residual or contraction test is negative then reduce h and goto 12;



       

Program 3. A Simple Euler-Newton Update Method 289

x := v; new point approximately on curve

t := t(A); new tangent

if x[N + 1] > 1 then newton := true; switch to Newton’s steplength

if newton then

h := −x[N + 1]− 1
t[N + 1]

Newton’s steplength, see (9.2.3)

else increase h;
until |h| < hmin. stopping criterion

The following is the complete FORTRAN program listing.
program contup continuation method

follows a curve H(u) = 0
one Euler predictor, one Newton-corrector

Broyden update after each step, see chapter 7
stops at a point x such that x(n1) = 0

arrays:
parameter(n = 10, n1 = n+1) dimension of the problem
parameter(pi = 3.1415926535898)
dimension b(n1,n) transpose of Jacobian
dimension q(n1,n1) orth. matrix for QR dec. of b
dimension x(n1), u(n1), v(n1) current points on the curve
dimension t(n1) tangent vector
dimension y(n),w(n),p(n),pv(n),r(n) values of the map H
logical test, succ, newton

parameters:
ctmax = .8 maximal contr. rate in corrector step
dmax = .2 maximal norm for H
dmin = .001 minimal norm for H
pert = .00001 perturbation of H
hmax = 1.28 maximal stepsize
hmin = .000001 minimal stepsize
hmn = .00001 minimal Newton step size
h = .32 initial stepsize
cdmax = 1000. maximum for condition estimate
angmax = pi/3. maximal angle
maxstp = 9000 maximal number of evaluations of H
acfac = 2. acceleration factor for steplength control

main program
open(1, file=Õcontup.datÕ) output file
call stpnt(x, n1) user defined starting point, H(x) = 0
newton = .false.
mapct = 0 counts the calls of the map H
call jac(b, x, y, h, n, n1) b = H′(x)∗

mapct = mapct + 1 + n1
call decomp(b, q, cond, n, n1) b, q := orthog. decomp. of b
if (cond .gt. cdmax) then
write(1,*) Õ bad cond. estimate in init. point = Õ, cond
write(*,*) Õ bad cond. estimate in init. point = Õ, cond
stop

endif
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do 90 k = 1, n1 tangent saved
t(k) = q(n1, k)

90 continue
call setor(or, t, n1) set orientation

12 continue begin PC loop
if (abs(h).lt.hmin) then
write(1,*) Õ failure at minimal stepsizeÕ
write(*,*) Õ failure at minimal stepsizeÕ
stop

endif
if (mapct .gt. maxstp) then
write(*,*) Õ maximal number of function eval. exceededÕ
write(1,*) Õ maximal number of function eval. exceededÕ
stop

endif
do 83 k = 1, n1 tangent saved
t(k) = q(n1, k)

83 continue
do 92 k = 1, n1
u(k) = x(k) + h * or * t(k) predictor step

92 continue
call map(u, w, n, n1)
mapct = mapct + 1
call upd(q,b,x,u,y,w,t,h,angmax,test,n,n1) predictor update
if (test .eq. .false.) goto 21 angle test is neg.
call newt(q,b,u,v,w,p,pv,r,pert,dmax,dmin,
* ctmax,cdmax,test,n,n1) Newton corrector and update
mapct = mapct + 1
if (test.eq..false.) goto 21 residual or contr. test is neg.
goto 22

21 h = h / acfac PC not accepted
goto 12

22 continue PC step accepted
succ = .false.
if (v(n1).ge.1.) newton = .true. switch to Newton steplength
if (newton) then
h = - (v(n1) - 1.) / q(n1, n1)
if (abs(h).lt.hmn) succ = .true. solution point found

else
h = abs(h) * acfac steplength adaptation
if (h.gt.hmax) h = hmax

endif
do 94 k = 1, n1
x(k) = v(k) new point on curve

94 continue
do 95 k = 1, n
y(k) = r(k) y = H(x)

95 continue
if (succ) then stopping the curve tracing

write(1,*) Õ success withÕ, mapct,Õ calls of ÕÕmapÕÕÕ
write(*,*) Õ success withÕ, mapct,Õ calls of ÕÕmapÕÕÕ
write(1,*)
write(*,*)
write(1,*) Õ solution vector:Õ
write(*,*) Õ solution vector:Õ
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write(1,*) Õ ===============Õ
write(*,*) Õ ===============Õ
do 96 k = 1, n
write(1,*) Õ x(Õ, k, Õ) = Õ, x(k)
write(*,*) Õ x(Õ, k, Õ) = Õ, x(k)

96 continue
stop

endif
goto 12
end

subroutine map(x, y, n, n1) user defined
input: x output: y = H(x)

H(x) = 0 defines the curve to be traced
dimension x(n1), y(n)
s = 0.
do 91 i = 1, n
s = s + x(i)

91 continue
do 92 i = 1, n
y(i) = x(i) - x(n1) * exp(cos(i * s))

92 continue
return
end

subroutine jac(b, x, y, h, n, n1) input: x output: b
evaluates the transpose b of the Jacobian at x

by using forward differences
dimension b(n1,n), x(n1), y(n)
do 91 i = 1, n1
x(i) = x(i) + h
call map(x, y, n, n1)
x(i) = x(i) - h
do 92 k = 1, n
b(i,k) = y(k)

92 continue
91 continue

call map(x, y, n, n1)
do 93 i = 1, n1
do 94 k = 1, n
b(i,k) = (b(i,k) - y(k)) / h

94 continue
93 continue

return
end

subroutine stpnt(x, n1) user defined
output: x = starting point on curve

dimension x(n1)
do 91 k = 1, n1
x(k) = 0.

91 continue
return
end

subroutine setor(or, t, n1) user defined
input: t output: or(t)

decides in which direction the curve will be traversed
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dimension t(n1)
if (t(n1).gt.0.) then
or = 1.0

else
or = -1.0

endif
return
end

subroutine givens(b, q, c1, c2, l1, l2, l3, n, n1)
input: b, q, c1, c2, l1, l2, l3

output: b, q, c1, c2
one Givens rotation is performed —

on rows l1 and l2 of b and q
the rotation maps c1, c2 onto sqrt(c1**2+c2**2), 0

dimension b(n1, n), q(n1, n1)
if (abs(c1)+abs(c2) .eq. 0.) return
if (abs(c2) .ge. abs(c1)) then
sn = sqrt(1. + (c1/c2)**2) * abs(c2)

else
sn = sqrt(1. + (c2/c1)**2) * abs(c1)

endif
s1 = c1/sn
s2 = c2/sn
do 91 k = 1, n1
sv1 = q(l1, k)
sv2 = q(l2, k)
q(l1, k) = s1 * sv1 + s2 * sv2
q(l2, k) = -s2 * sv1 + s1 * sv2

91 continue
do 92 k = l3, n
sv1 = b(l1, k)
sv2 = b(l2, k)
b(l1, k) = s1 * sv1 + s2 * sv2
b(l2, k) = -s2 * sv1 + s1 * sv2

92 continue
c1 = sn
c2 = 0.
return
end

subroutine decomp(b, q, cond, n, n1)
input: b output: b, q, cond

a QR decomposition for b is stored in q, b —
by using Givens rotations on b and q = id —

until b is upper triangular
a very coarse condition estimate cond is provided

dimension b(n1, n), q(n1, n1)
do 91 k = 1, n1 start with q := id
do 92 l = 1, n1
q(k, l) = 0.

92 continue
q(k, k) = 1.0

91 continue
do 93 m = 1, n successive Givens transformations
do 94 k = m+1, n1
call givens(b, q, b(m, m), b(k, m), m, k, m+1, n, n1)

94 continue
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93 continue
cond = 0. very coarse condition estimate
do 95 i = 2, n
do 96 k = 1, i - 1
cond = max(cond, abs(b(k,i)/b(i,i)))

96 continue
95 continue

return
end

subroutine newt(q,b,u,v,w,p,pv,r,pert,dmax,dmin,
* ctmax,cdmax,test,n,n1)

input q, b, u, w = H(u)
output v, test, r = H(v)

w is changed
one Newton step v := u - A+ w is performed

where A ≈ H′

q, b = QR decomposition of A∗

q, b are updated
perturbations are used for stabilization

residual and contraction tests are performed
dimension q(n1,n1),b(n1,n),u(n1),v(n1),w(n),pv(n),p(n),r(n)
logical test
test = .true.
do 81 k = 1, n perturbation
if (abs(w(k)) .gt. pert) then
pv(k) = 0.

else if (w(k) .gt. 0.) then
pv(k) = w(k) - pert

else
pv(k) = w(k) + pert

endif
w(k) = w(k) - pv(k)

81 continue
d1 = ynorm(w, n)
if (d1 .gt. dmax) then
test = .false.
return

endif
do 91 k = 1, n
do 92 l = 1, k-1
w(k) = w(k) - b(l, k) * w(l)

92 continue
w(k) = w(k) / b(k, k)

91 continue
d2 = ynorm(w, n)
do 93 k = 1, n1
s = 0.
do 94 l = 1, n
s = s + q(l, k) * w(l)

94 continue
v(k) = u(k) - s

93 continue
call map(v, r, n, n1)
do 74 k = 1, n
p(k) = r(k) - pv(k)

74 continue
d3 = ynorm(p, n)
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contr = d3 / (d1 + dmin)
if (contr .gt. ctmax) test = .false.
do 95 k = n-1, 1, -1
call givens(b, q, w(k), w(k+1), k, k+1, k, n, n1)

95 continue
do 96 k = 1, n
b(1,k) = b(1,k) - p(k) / d2

96 continue
do 97 k = 1, n-1
call givens(b, q, b(k,k), b(k+1,k), k, k+1, k, n, n1)

97 continue
if (b(n,n) .lt. 0.) then
test = .false.
b(n,n) = - b(n,n)
do 82 k = 1, n1
q(n,k) = - q(n,k)
q(n1,k) = - q(n1,k)

82 continue
endif
do 85 i = 2, n perturbation of upper triangular matrix

do 86 k = 1, i - 1
if (abs(b(k,i)) .gt. cdmax * abs(b(i,i))) then
if (b(i,i) .gt. 0.) then
b(i,i) = abs(b(k,i)) / cdmax

else
b(i,i) = - abs(b(k,i)) / cdmax

endif
endif

86 continue
85 continue

do 87 k = 1, n-1
b(k+1,k) = 0.

87 continue
return
end

subroutine upd(q,b,x,u,y,w,t,h,angmax,test,n,n1)
input q, b, x, u = predictor, y = H(x), w = H(u)

q, b = QR decomposition of transpose(H′)
q, b are updated

perturbations are used for stabilization
an angle test is performed

dimension q(n1,n1),b(n1,n),x(n1),u(n1),t(n1),y(n),w(n)
logical test
test = .true.
pi = 3.14159265358979323846
do 91 k = 1, n
b(n1,k) = (w(k) - y(k)) / h

91 continue
do 92 k = 1, n update

call givens(b, q, b(k,k), b(n1,k), k, n1, k, n, n1)
92 continue

ang = 0.
do 93 k = 1, n1 angle

ang = ang + t(k) * q(n1, k)
93 continue

if (ang .gt. 1.0) ang = 1.
if (ang .lt. -1.0) ang = -1.
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ang = acos(ang)
if (ang .gt. angmax) test = .false.
return
end

function ynorm(y,n)
dimension y(n)
s = 0.
do 13 k = 1, n
s = s + y(k)**2

13 continue
ynorm = sqrt(s)
return

end

A run of the above program gave the following results:
success with 2912 calls of ÕmapÕ

solution vector:
===============
x( 1) = 1.492
x( 2) = .5067
x( 3) = .3891
x( 4) = .9273
x( 5) = 2.420
x( 6) = 2.187
x( 7) = .7729
x( 8) = .3721
x( 9) = .5866
x( 10) = 1.754
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Program 4. A Continuation Algorithm for
Handling Bifurcation

We modify an Euler-Newton method e.g. Program 1 in such a way that it
has the interactive capability to detect simple bifurcation points and trace a
bifurcating branch via perturbations if desired. The implementation will be
similar to (8.2.4). In order to detect simple bifurcations, it is crucial that the
Jacobian is reevaluated at the predictor point. We first sketch the essential
features of the algorithm:

Sketch of Program 4. comment:

input
begin
x ∈ RN+1; starting point, H(x) ≈ 0
or ∈ {+1,−1}; direction in which the curve is traced

pert ∈ {true, false}; perturbation is on or off

h > 0; initial stepsize

arc > 0; arclength for countdown

pv ∈ RN ; perturbation vector

dmax; maximal distance to curve

end;
normalize: ||pv|| = 1

2dmax;
label 75; interactive driver

interactive driver monitors arc, pert, or, h and stopping;
corrector equation is{

H(x) = 0 for pert = false,
H(x) = pv for pert = true;

label 12; begin of PC loop

if arc < 0 then goto 75; enter new arc for countdown

if h is too small then goto 75; failure?

Newton corrector iteration on x;
if corrector not successful then goto 75; failure?
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u = x+ or · h · t(H ′(u)); predictor step

Newton corrector iteration on u;

if corrector not successful then goto 21;

if angle test negative then goto 21;

label 22; PC step accepted

t1 := t(H ′(x)); t2 := t(H ′(u));

arc := arc− h; arclength countdown

modify h; steplength control

x := u; new point on curve

if t∗1t2 < 0 then goto 75 orientation changed, bifurcation?

else goto 12;

label 21; PC step not accepted

h := 1
2h; goto 12.

We illustrate the performance of the above algorithm by generating a bifur-
cation diagram of the periodic solutions of a differential delay equation

(P4.1) ẋ(t+ 1) = −λf
(
x(t)

)
.

The standard assumptions concerning f are:

(P4.2) Assumptions.
(i) f : R→ R is sufficiently smooth,

(ii) f(x)x > 0 for x ∈ R, x 6= 0,
(iii) f ′(0) = 1,
(iv) infx∈R f(x) > −∞.

Differential delay equations are often used for modeling population growth
in natural sciences. The periodic solutions are of particular interest. Their
bifurcation diagrams have been studied by Jürgens & Saupe (1979), Jürgens
& Peitgen & Saupe (1980), Hadeler (1980), Peitgen (1982), Peitgen & Prüfer
(1979), Saupe (1982), Saupe (1983), see also Program 6 of this appendix. We
discretize the problem by using a standard numerical integration method in
conjunction with interpolation via cubic splines, see Georg (1982). In program
6, a Galerkin method in conjunction with Fast Fourier Transforms is used to
discretize a differential delay equation.

Let us first show how our problem can be formulated as an operator
equation in Banach space with one degree of freedom. For a given initial
value function x : [0, 1]→ R, we consider the uniquely defined extension

xλ : [0,∞)→ R
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of x satisfying the delay equation (P4.1). We introduce the Banach space X
of continuous functions x : [0, 1]→ [0, 1] with the sup-norm

||x|| = sup0≤t≤1|x(t)| .

For a given a period p ≥ 0 and a given eigenvalue parameter λ we define the
operator

(P4.3) T pλ : X → X , x(t) 7→ xλ(t+ p), 0 ≤ t ≤ 1 .

Clearly, x is a fixed point of T pλ if and only if xλ is a solution of (P4.1)
with period p. However, we have an undesirable degree of freedom in this
formulation of the problem, since for all a ≥ 0 the shifted function t 7→
xλ(t + a) is also a solution with period p. We therefore make the additional
normalization x(0) = 0. The above discussion shows that the problem of
finding the periodic solutions of (P4.1) can be formulated as a zero problem
for the following map

(P4.4)
H : X ×R× (0,∞) −→ X ×R ,

(x, λ, p) 7−→
(
x− T pλx , x(0)

)
.

This problem has the trivial solution x = 0 for all λ and p. Nussbaum (1975)
showed that a nontrivial solution branch bifurcates off from this branch of
trivial solutions at λ = π

2 . Furthermore, a linearization of (P4.1) leads to the
equation

(P4.5) ẋ(t+ 1) = −λx(t)

which has the solution

(P4.6) x0(t) := α sin
(π

2
t
)

where α is an arbitrary constant. This provides the tangent of the bifurcating
branch at the bifurcation point, hence for small α, the function (P4.6) together
with p = 4 and λ = π

2 furnishes a good approximation to a solution of the
nonlinear equation H(x, λ, p) = 0.

To illustrate the method, we use the example

(P4.7) f(x) = x
1 + x2

1 + x4

which has been studied by Hadeler (1980). To reduce the numerical effort, we
only investigate periodic solutions which are odd with respect to half of their
period:

(P4.8) xλ
(
t+

p

2
)

= −xλ(t) .
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This leads to a slight change in the homotopy:

(P4.9)
H : X ×R× (0,∞) −→ X ×R ,

(x, λ, p) 7−→
(
x+ T

p
2
λ x , x(0)

)
.

We discretize x ∈ X via nine equidistant points ti := i
8 , i = 0, . . . , 8 and

approximate the extension xλ by integrating (P4.1) via Simpson’s Rule on
the grid ti, i = 9, . . . , J for some sufficiently large integer J > 0. Then we
interpolate the result with free cubic splines and use this interpolation to
approximate xλ

(
t + p

2

)
on the grid ti, i = 0, . . . , 8. Thus we are led to a

discretized problem

(P4.10) H(x, λ, p) = 0, where H : R9 ×R×R −→ R9 ×R .

Figure P4.a is a bifurcation diagram based on the data of the run below.
It is evident that at some λ ∈ [4.71 , 4.83] there is a secondary bifurcation
point. The two branches of solutions differ by the value of the period p: on
the primary branch the solution has constant period p = 4, on the secondary
branch the period varies continuously.

Figure P4.a Bifurcation diagram

Usually, an additional difficulty for detecting secondary bifurcation points of
discretized problems stems from the fact that a discretization often has an
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effect similar to a perturbation: namely, bifurcation points are destroyed in
the sense of Sard’s theorem (11.2.3), see the discussion of section 8.2 and in
particular figure 8.2.a. Hence, the question arises why the secondary bifurca-
tion is not destroyed in the present case. The answer is surprisingly tricky,
see Georg (1982), and will be given here since it provides some insight into
the numerical handling of secondary bifurcation points.

Let us consider periodic solutions xλ of (P4.1) which in addition have the
following properties:

1) xλ has period p = 4,
2) xλ is odd in the sense of (P4.8),
3) xλ(1 + t) = xλ(1− t) for t ∈ [0, 1].

It is not difficult to show that the initial value x(t) = xλ(t) for t ∈ [0, 1] of
such a solution can also be characterized by the integral equation

(P4.11) x(t) = λ

∫ 1

1−t
f
(
x(ξ)

)
dξ .

This integral equation is of the form

(P4.12) x = λF (x)

where F : X → X is a nonlinear compact operator with the additional prop-
erty F (0) = 0. It has been shown that a simple eigenvalue of the linearized
equation

(P4.13) x = λF ′(0)x

leads to a bifurcation point of the nonlinear equation, see Krasnosel’skĭı
(1964), Rabinowitz (1971). It can be shown for the nonlinearity (P4.2) that
λ = π

2 is a simple eigenvalue of (P4.13). Hence, (P4.12) has a solution branch
bifurcating off from the trivial solution x = 0 at the eigenvalue λ = π

2 . A
reasonable discretization method

(P4.14) xh = λFh(xh)

should mimic this situation, i.e. Fh : RN → RN is a nonlinear operator with
the property Fh(0) = 0, and the Frechet derivative F ′h(0) has a simple eigen-
value near λ = π

2 . Since the integral equation (P4.12) admits only solutions of
period p = 4, it does not permit the secondary branch of solutions as indicated
in figure P4.a. Hence, a reasonable discretization method has a continuous
branch of solutions of period p = 4 similar to the primary branch in figure
P4.a.

Now let us consider a discretization method for the more general equation
H(x, λ, p) = 0 with H as in (P4.8). For the particular case p = 4, this
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method may or may not be equivalent to a reasonable discretization method
for (P4.12). In the first case, the secondary bifurcation point is not destroyed
by this discretization, and in the second case the secondary bifurcation point
is destroyed with probability one. It is easy to check that the discretization
which we have described above is equivalent to a standard discretization of
(P4.12) via Simpson’s Rule with mesh size h = 1

8 , and hence the secondary
bifurcation is not destroyed.

The algorithm is started by using a small α in formula (P4.6). The
following is the complete FORTRAN program listing.

program bif continuation method, follows a curve H(u) = 0
Euler predictor, Newton-correctors

stepsize control by asymptotic estimates
Jacobian is evaluated at each point

an interactive driver monitors:
orientation, perturbation, arclength countdown

in order to trace bifurcating curves
a protocol is written on bif.dat

arrays:
parameter(n = 10, n1 = n+1) dimension of the problem
parameter(pi = 3.1415926535898)
dimension b(n1,n) transpose of Jacobian
dimension q(n1,n1) orth. matrix for QR dec. of b
dimension x(n1), u(n1) current points on the curve
dimension t(n1) tangent vector
dimension y(n), pv(n) stores values y := H(x)
logical pert, corr, succ

parameters:
tol = .0001 tolerance for corrector iteration
ctmax = 0.3 maximal contr. rate in corrector step
dmax = .05 maximal distance to curve
amax = pi/180.*30. maximal angle
hmax = 1. maximal stepsize
hmin = .0001 minimal stepsize
cdmax = 1000. maximum for condition estimate
fmax = 2. maximal factor for acceleration
h = .03 initial stepsize
or = -1. initial orientation
pert = .false. initial perturbation
arc = 0. initial arclength countdown

main program
open(1, file=Õbif.datÕ) output file
call stpnt(x, n1) user defined starting point, H(x) = 0
call setper(pv, n) set perturbation vectors
save = dmax/2./xnorm(pv, n)
do 23 k = 1, n adapt perturbation to dmax
pv(k) = pv(k)*save

23 continue
75 call driver(arc,or,pert,h)

corr = .true.

12 continue begin PC loop
if (abs(h).lt.hmin) then
write(*,*) Õminimal stepsizeÕ
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write(1,*) Õminimal stepsizeÕ
goto 75

endif
if (arc.le.0.) then
write(*,*) Õenter new arclength for countdownÕ
write(1,*) Õenter new arclength for countdownÕ
goto 75

endif
if (corr) then initial corrector necessary
do 82 k = 1, n1
u(k) = x(k)

82 continue
call crloop(u,y,pv,b,q,fac,

* tol,fmax,ctmax,dmax,cdmax,pert,succ,n,n1)
if (succ) then corrector loop successful?
corr = .false.
do 18 k = 1, n1
x(k) = u(k) new point
t(k) = q(n1,k) new tangent

18 continue
write(*,*) Õ||x||=Õ,xnorm(x,n-1),Õ lambda=Õ,x(n),

* Õ period=Õ, x(n1), Õ h=Õ,h
write(1,*) Õ||x||=Õ,xnorm(x,n-1),Õ lambda=Õ,x(n),

* Õ period=Õ, x(n1), Õ h=Õ,h
else
write(*,*) Õinitial corrector loop not successfulÕ
write(1,*) Õinitial corrector loop not successfulÕ
goto 75

endif
endif
do 97 k = 1, n1
u(k) = x(k) + h * or * t(k) predictor step

97 continue
call crloop(u,y,pv,b,q,fac,
* tol,fmax,ctmax,dmax,cdmax,pert,succ,n,n1)
if (.not.succ) goto 21
angle = 0.
do 24 k = 1, n1
angle = angle + t(k)*q(n1,k)

24 continue
sangle = sign(1.,angle)
angle = sangle*angle
if (angle.gt.1.) angle = 1.
angle = acos(angle)
if ((pert).and.(sangle.lt.0.)) goto 21
if (angle.gt.amax) goto 21 angle test
fac = max(fac, angle/amax*fmax)
goto 22

21 h = h / fmax PC not accepted
goto 12

22 continue PC step accepted
arc = arc - abs(h) arclength countdown
if (fac.gt.fmax) fac = fmax
h = min(abs(h/fac), hmax) steplength adaptation
if (h.gt.hmax) h = hmax
do 94 k = 1, n1
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x(k) = u(k) new point on curve
t(k) = q(n1, k) new tangent

94 continue
write(*,*) Õ||x||=Õ,xnorm(x,n-1),Õ lambda=Õ,x(n),
* Õ period=Õ, x(n1), Õ h=Õ,h
write(1,*) Õ||x||=Õ,xnorm(x,n-1),Õ lambda=Õ,x(n),
* Õ period=Õ, x(n1), Õ h=Õ,h
if ((.not.pert).and.(sangle.lt.0.)) then
write(*,*) Õorientation changedÕ
write(1,*) Õorientation changedÕ
goto 75

endif
goto 12
end

subroutine driver(arc,or,pert,h) interactive driver
logical pert
realn = 0.
write(1,*) Õ Õ
write(1,*) Õinteractive driverÕ

77 continue
write(*,*) Õ 1) stop 2) go 3) arc=Õ,arc,Õ 4) or=Õ,or,
* Õ 5) pert=Õ,pert,Õ 6) h=Õ,h
write(*,*) Õenter integer (option) and realnumber (value)Õ
read(*,*) intgr, realn
write(1,*) Õinteger=Õ,intgr, Õ real number=Õ, realn
if (intgr .eq. 1) stop
if (intgr .eq. 2) goto 78
if (intgr .eq. 3) arc = realn
if (intgr .eq. 4) or = -or
if (intgr .eq. 5) pert = .not.pert
if (intgr .eq. 6) h = realn
goto 77

78 write(1,*) Õarc=Õ, arc, Õ or=Õ, or, Õ pert=Õ, pert, Õ h=Õ, h
write(1,*) Õ Õ
end

subroutine map(x, y, n, n1) user defined
input: x output: y = H(x)

H(x) = 0 defines the curve to be traced
dimension x(n1), y(n), w(200), d(200), xm(200),
* p(200), q(200)
nm3 = n-3
nm2 = n-2
nm1 = n-1
lim = 4*nm2 + n
h = 1./ float(nm2)
xind = x(n1)/ 2./ h
ind = xind
if ((ind.lt.1).or.(ind+n.gt.lim)) goto 2
t = (xind - ind)*h
r1 = -x(n)*h*5./12.
r2 = -x(n)*h*8./12.
r3 = x(n)*h/12.
q1 = -x(n)*h/3.
q2 = -x(n)*h*4./3.
q3 = q1
do 1 k = 1, lim



   

304 Program 4. A Continuation Algorithm for Handling Bifurcation

if (k.le.nm1) then
w(k) = x(k)

elseif (mod(k,2).eq.0) then
w(k) = w(k-1) + r1* xf(w(k-nm1)) + r2* xf(w(k-nm2))

* + r3* xf(w(k-nm3))
else
w(k) = w(k-2) + q1* xf(w(k-n)) + q2* xf(w(k-nm1))

* + q3* xf(w(k-nm2))
endif

1 continue
do 3 k = 2, lim - 1
d(k) = 3./h**2 * ( w(k+1)-2.*w(k)+w(k-1) )

3 continue
p(2) = sqrt(2.)
d(2) = d(2)/ p(2)
do 4 k = 3, lim - 1
q(k-1) = .5/ p(k-1)
p(k) = sqrt(2. - q(k-1)**2)
d(k) = (d(k) - q(k-1)*d(k-1))/ p(k)

4 continue
xm(lim) = 0.
xm(lim-1) = d(lim-1)/ p(lim-1)
do 5 k = lim - 2, 2, -1
xm(k) = (d(k) - q(k)*xm(k+1))/ p(k)

5 continue
xm(1) = 0.
do 6 k = ind + 1, ind + nm1
a7 = w(k)
c7 = xm(k)/2.
b7 = (w(k+1)-w(k))/h - h/6.*(2.*xm(k)+xm(k+1))
d7 = (xm(k+1)-xm(k))/ (6.*h)
y(k-ind) = x(k-ind) + (((d7*t)+c7)*t+b7)*t+a7

6 continue
y(n) = x(1)
return

2 write(*,*) Õfailure in mapÕ
write(1,*) Õfailure in mapÕ
stop
end

function xf(t) auxiliary function for above map
xf = t*(1. + t**2) / (1. + t**4)
end

subroutine jacob(b, x, n, n1) user defined
input: x output: b

evaluates the transpose b of the Jacobian at x
dimension b(n1,n), x(n1), y(30), w(30)
h1 = 1024.
h = 1./h1
call map(x, y, n, n1)
do 1 k = 1, n1
x(k) = x(k) + h
call map(x, w, n, n1)
x(k) = x(k) - h
do 2 l = 1, n
b(k,l) = h1*(w(l)-y(l))

2 continue
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1 continue
end

subroutine stpnt(x, n1) user defined
output: x = starting point on curve

parameter(pi = 3.1415926535898)
dimension x(n1)
h = 1./float(n1-3)
do 1 k=1, n1-2
tk = (k-1)*h*pi/2.
x(k) = .1* sin(tk)

1 continue
x(n1-1) = pi/2.
x(n1) = 4.
end

subroutine setper(pv, n) user defined
defines the perturbation vector pv

dimension pv(n)
do 1 k = 1, n-1
pv(k) = 1.

1 continue
pv(n) = 0.
end

subroutine func(x, y, pv, pert, n, n1)
perturbed function evaluation

dimension x(n1), y(n), pv(n)
logical pert
call map(x, y, n, n1)
if (pert) then
do 31 k = 1, n
y(k) = y(k) - pv(k)

31 continue
endif
end

subroutine givens(b, q, c1, c2, l1, l2, l3, n, n1)
input: b, q, c1, c2, l1, l2, l3

output: b, q, c1, c2
one Givens rotation is performed —

on rows l1 and l2 of b and q
the rotation maps c1, c2 onto sqrt(c1**2+c2**2), 0

dimension b(n1, n), q(n1, n1)
if (abs(c1)+abs(c2) .eq. 0.) return
if (abs(c2) .ge. abs(c1)) then
sn = sqrt(1. + (c1/c2)**2) * abs(c2)

else
sn = sqrt(1. + (c2/c1)**2) * abs(c1)

endif
s1 = c1/sn
s2 = c2/sn
do 91 k = 1, n1
sv1 = q(l1, k)
sv2 = q(l2, k)
q(l1, k) = s1 * sv1 + s2 * sv2
q(l2, k) = -s2 * sv1 + s1 * sv2

91 continue
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do 92 k = l3, n
sv1 = b(l1, k)
sv2 = b(l2, k)
b(l1, k) = s1 * sv1 + s2 * sv2
b(l2, k) = -s2 * sv1 + s1 * sv2

92 continue
c1 = sn
c2 = 0.0
end

subroutine decomp(b, q, cond, n, n1)
input: b, output: b, q, cond

a QR decomposition for b is stored in q, b —
by using Givens rotations on b and q = id —

until b is upper triangular
a very coarse condition estimate cond is provided

dimension b(n1, n), q(n1, n1)
do 91 k = 1, n1 start with q := id
do 92 l = 1, n1
q(k, l) = 0.0

92 continue
q(k, k) = 1.0

91 continue
do 93 m = 1, n successive Givens transformations
do 94 k = m+1, n1
call givens(b, q, b(m, m), b(k, m), m, k, m+1, n, n1)

94 continue
93 continue

cond = 0. very coarse condition estimate
do 95 i = 2, n
do 96 k = 1, i - 1
cond = max(cond, abs(b(k,i)/b(i,i)))

96 continue
95 continue

end

subroutine newton(q, b, u, y, n, n1)
input q, b, u, y = H(u), n, n1

output u
y is changed

a Newton step u := u−A+(H(u)− pv) is performed —
where A approximates the current Jacobian H′

q, b = QR decomposition of A∗

dimension q(n1, n1), b(n1, n), u(n1), y(n)
do 91 k = 1, n
do 92 l = 1, k-1
y(k) = y(k) - b(l, k) * y(l)

92 continue
y(k) = y(k) / b(k, k)

91 continue
do 93 k = 1, n1
s = 0.0
do 94 l = 1, n
s = s + q(l, k) * y(l)

94 continue
u(k) = u(k) - s

93 continue
end
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subroutine crloop(x,y,pv,b,q,fac,
* tol,fmax,ctmax,dmax,cdmax,pert,succ,n,n1)

corrector loop
input x,y

output x,y,b,q,fac,succ
dimension x(n1),y(n),pv(n),b(n1,n),q(n1,n1)
logical succ, pert
succ = .false. success of corrector loop
fac = 1./fmax
call func(x, y, pv, pert, n, n1)

35 continue begin loop
call jacob(b, x, n, n1) b := transpose of Jacobian at x
call decomp(b, q, cond, n, n1) decompose b
if (cond .gt. cdmax) return bad conditioning
dist1 = xnorm(y,n)
fac = max(fac, sqrt(dist1/dmax)*fmax)
if (dist1.lt.tol) goto 34 corrector successful
if (dist1.gt.dmax) return
call newton(q, b, x, y, n, n1)
call func(x, y, pv, pert, n, n1)
dist2 = xnorm(y,n)
contr = dist2 / (dist1 + tol) contraction rate
fac = max(fac, sqrt(contr/ctmax)*fmax)
if (contr.gt.ctmax) return
dist1 = dist2
goto 35 end loop

34 succ = .true. corrector successful
end

function xnorm(y, n) calculates euclidean norm of y
dimension y(n)
x = 0.
do 1 k = 1, n
x = x + y(k)**2

1 continue
xnorm = sqrt(x)
end

The bifurcation diagram in figure P4.a was generated by the following protocol
of an interactive session:

interactive driver
integer= 3 real number= 20.00
integer= 2 real number= 20.00
arc= 20.00 or= -1.000 pert= F h= 3.0000E-02

||x||= .2103 lambda= 1.560 period= 4.000 h= 3.0000E-02
||x||= .2401 lambda= 1.556 period= 4.000 h= 6.0000E-02
||x||= .2995 lambda= 1.548 period= 4.000 h= .1200
||x||= .4177 lambda= 1.528 period= 4.000 h= .2400
||x||= .6516 lambda= 1.476 period= 4.000 h= .3316
||x||= .9733 lambda= 1.395 period= 4.000 h= .6633
||x||= 1.298 lambda= 1.335 period= 4.000 h= .2056
||x||= 1.502 lambda= 1.322 period= 4.000 h= .1434
||x||= 1.645 lambda= 1.327 period= 4.000 h= .1259
||x||= 1.769 lambda= 1.343 period= 4.000 h= .1188
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||x||= 1.885 lambda= 1.368 period= 4.000 h= .1163
||x||= 1.996 lambda= 1.400 period= 4.000 h= .1158
||x||= 2.104 lambda= 1.441 period= 4.000 h= .1177
||x||= 2.210 lambda= 1.489 period= 4.000 h= .1217
||x||= 2.317 lambda= 1.546 period= 4.000 h= .1268
||x||= 2.425 lambda= 1.611 period= 4.000 h= .1341
||x||= 2.535 lambda= 1.686 period= 4.000 h= .1422
||x||= 2.647 lambda= 1.771 period= 4.000 h= .1522
||x||= 2.764 lambda= 1.866 period= 4.000 h= .1646
||x||= 2.886 lambda= 1.974 period= 4.000 h= .1780
||x||= 3.014 lambda= 2.096 period= 4.000 h= .1929
||x||= 3.148 lambda= 2.232 period= 4.000 h= .2121
||x||= 3.292 lambda= 2.385 period= 4.000 h= .2334
||x||= 3.445 lambda= 2.558 period= 4.000 h= .2555
||x||= 3.609 lambda= 2.751 period= 4.000 h= .2813
||x||= 3.785 lambda= 2.967 period= 4.000 h= .3175
||x||= 3.979 lambda= 3.214 period= 4.000 h= .3517
||x||= 4.190 lambda= 3.492 period= 4.000 h= .3915
||x||= 4.420 lambda= 3.805 period= 4.000 h= .4345
||x||= 4.671 lambda= 4.155 period= 4.000 h= .4903
||x||= 4.949 lambda= 4.554 period= 4.000 h= .5361
||x||= 5.248 lambda= 4.994 period= 4.000 h= .5827
orientation changed

interactive driver
integer= 4 real number= .0000
integer= 3 real number= 10.00
integer= 2 real number= 10.00
arc= 10.00 or= 1.000 pert= F h= .5827

||x||= 5.248 lambda= 4.994 period= 4.000 h= .5827
||x||= 5.569 lambda= 5.476 period= 4.000 h= .6815
||x||= 5.940 lambda= 6.043 period= 4.000 h= .7354
||x||= 6.334 lambda= 6.658 period= 4.000 h= .8031
||x||= 6.760 lambda= 7.333 period= 4.000 h= .8929
||x||= 7.228 lambda= 8.088 period= 4.000 h= .9730
||x||= 7.733 lambda= 8.914 period= 4.000 h= .9752
||x||= 8.233 lambda= 9.746 period= 4.000 h= 1.000
||x||= 8.742 lambda= 10.60 period= 4.000 h= 1.000
||x||= 9.246 lambda= 11.46 period= 4.000 h= 1.000
||x||= 9.746 lambda= 12.32 period= 4.000 h= 1.000
||x||= 10.24 lambda= 13.19 period= 4.000 h= 1.000
||x||= 10.73 lambda= 14.05 period= 4.000 h= 1.000
enter new arclength for countdown

interactive driver
integer= 4 real number= .0000
integer= 5 real number= .0000
integer= 3 real number= 20.00
integer= 2 real number= 20.00
arc= 20.00 or= -1.000 pert= T h= 1.000

||x||= 10.73 lambda= 14.06 period= 3.999 h= 1.000
||x||= 10.23 lambda= 13.19 period= 3.999 h= 1.000
||x||= 9.739 lambda= 12.32 period= 3.999 h= 1.000
||x||= 9.239 lambda= 11.46 period= 3.999 h= 1.000
||x||= 8.736 lambda= 10.60 period= 3.999 h= 1.000
||x||= 8.228 lambda= 9.747 period= 3.999 h= 1.000
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||x||= 7.715 lambda= 8.894 period= 3.999 h= .9816
||x||= 7.206 lambda= 8.060 period= 3.999 h= .9325
||x||= 6.716 lambda= 7.272 period= 3.999 h= .9478
||x||= 6.213 lambda= 6.475 period= 3.998 h= .8602
||x||= 5.748 lambda= 5.758 period= 3.997 h= .7875
||x||= 5.313 lambda= 5.108 period= 3.993 h= .6959
||x||= 5.212 lambda= 4.967 period= 3.989 h= .3480
||x||= 5.157 lambda= 4.901 period= 3.983 h= .1423
||x||= 5.133 lambda= 4.875 period= 3.978 h= 5.0860E-02
||x||= 5.114 lambda= 4.864 period= 3.970 h= 2.0477E-02
||x||= 5.097 lambda= 4.858 period= 3.962 h= 1.5860E-02
||x||= 5.086 lambda= 4.858 period= 3.954 h= 1.6296E-02
||x||= 5.075 lambda= 4.861 period= 3.945 h= 2.8311E-02
||x||= 5.059 lambda= 4.871 period= 3.930 h= 3.9659E-02
||x||= 5.040 lambda= 4.890 period= 3.909 h= 7.9318E-02
||x||= 5.010 lambda= 4.933 period= 3.867 h= .1586
||x||= 4.968 lambda= 5.034 period= 3.791 h= .1868
||x||= 4.950 lambda= 5.174 period= 3.713 h= .1757
||x||= 4.957 lambda= 5.317 period= 3.645 h= .2092
||x||= 4.992 lambda= 5.488 period= 3.568 h= .2303
||x||= 5.071 lambda= 5.677 period= 3.495 h= .2260
||x||= 5.172 lambda= 5.866 period= 3.445 h= .2231
||x||= 5.278 lambda= 6.055 period= 3.408 h= .2538
||x||= 5.401 lambda= 6.271 period= 3.375 h= .2763
||x||= 5.535 lambda= 6.508 period= 3.346 h= .3006
||x||= 5.679 lambda= 6.768 period= 3.321 h= .3110
||x||= 5.826 lambda= 7.039 period= 3.299 h= .3277
||x||= 5.979 lambda= 7.326 period= 3.279 h= .3416
||x||= 6.135 lambda= 7.628 period= 3.262 h= .3527
||x||= 6.294 lambda= 7.942 period= 3.246 h= .3784
||x||= 6.461 lambda= 8.280 period= 3.231 h= .3916
||x||= 6.631 lambda= 8.632 period= 3.217 h= .4118
||x||= 6.807 lambda= 9.004 period= 3.204 h= .4508
||x||= 6.996 lambda= 9.412 period= 3.191 h= .4487
||x||= 7.181 lambda= 9.820 period= 3.180 h= .4846
||x||= 7.378 lambda= 10.26 period= 3.169 h= .5155
||x||= 7.583 lambda= 10.73 period= 3.158 h= .5065
||x||= 7.781 lambda= 11.20 period= 3.148 h= .5411
||x||= 7.989 lambda= 11.70 period= 3.138 h= .5458
||x||= 8.196 lambda= 12.20 period= 3.130 h= .5750
||x||= 8.409 lambda= 12.74 period= 3.121 h= .5674
||x||= 8.617 lambda= 13.26 period= 3.114 h= .6170
enter new arclength for countdown

interactive driver
integer= 4 real number= .0000
integer= 5 real number= .0000
integer= 3 real number= 20.00
integer= 2 real number= 20.00
arc= 20.00 or= 1.000 pert= F h= .6170

||x||= 8.617 lambda= 13.26 period= 3.114 h= .6170
||x||= 8.392 lambda= 12.69 period= 3.122 h= .6635
||x||= 8.144 lambda= 12.08 period= 3.132 h= .6422
||x||= 7.900 lambda= 11.48 period= 3.143 h= .5723
||x||= 7.678 lambda= 10.96 period= 3.153 h= .5684
||x||= 7.453 lambda= 10.43 period= 3.165 h= .5405
||x||= 7.234 lambda= 9.941 period= 3.177 h= .4969
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||x||= 7.030 lambda= 9.489 period= 3.190 h= .4922
||x||= 6.824 lambda= 9.043 period= 3.203 h= .4687
||x||= 6.624 lambda= 8.620 period= 3.218 h= .4469
||x||= 6.429 lambda= 8.219 period= 3.234 h= .4173
||x||= 6.244 lambda= 7.846 period= 3.251 h= .4061
||x||= 6.060 lambda= 7.486 period= 3.271 h= .3766
||x||= 5.885 lambda= 7.155 period= 3.292 h= .3528
||x||= 5.719 lambda= 6.847 period= 3.316 h= .3402
||x||= 5.557 lambda= 6.552 period= 3.344 h= .3266
||x||= 5.399 lambda= 6.272 period= 3.378 h= .3123
||x||= 5.248 lambda= 6.006 period= 3.421 h= .3017
||x||= 5.109 lambda= 5.752 period= 3.479 h= .2765
||x||= 5.007 lambda= 5.523 period= 3.561 h= .2559
||x||= 4.964 lambda= 5.313 period= 3.655 h= .2399
||x||= 4.964 lambda= 5.121 period= 3.748 h= .2362
||x||= 5.008 lambda= 4.955 period= 3.856 h= .2020
||x||= 5.074 lambda= 4.829 period= 3.958 h= .1946
||x||= 5.145 lambda= 4.718 period= 4.055 h= .1752
orientation changed

interactive driver
integer= 4 real number= .0000
integer= 3 real number= 10.00
integer= 2 real number= 10.00
arc= 10.00 or= -1.000 pert= F h= .1752

||x||= 5.145 lambda= 4.718 period= 4.055 h= .1752
||x||= 5.233 lambda= 4.638 period= 4.147 h= .1851
||x||= 5.343 lambda= 4.567 period= 4.243 h= .1644
||x||= 5.443 lambda= 4.503 period= 4.327 h= .1518
||x||= 5.536 lambda= 4.444 period= 4.405 h= .1497
||x||= 5.634 lambda= 4.391 period= 4.483 h= .1561
||x||= 5.743 lambda= 4.346 period= 4.566 h= .1691
||x||= 5.873 lambda= 4.317 period= 4.657 h= .1863
||x||= 6.025 lambda= 4.313 period= 4.754 h= .2156
||x||= 6.205 lambda= 4.343 period= 4.856 h= .2268
||x||= 6.395 lambda= 4.414 period= 4.943 h= .2339
||x||= 6.588 lambda= 4.513 period= 5.019 h= .2850
||x||= 6.814 lambda= 4.656 period= 5.099 h= .2798
||x||= 7.030 lambda= 4.815 period= 5.161 h= .3074
||x||= 7.261 lambda= 5.004 period= 5.215 h= .3407
||x||= 7.510 lambda= 5.225 period= 5.262 h= .3711
||x||= 7.775 lambda= 5.476 period= 5.305 h= .3810
||x||= 8.040 lambda= 5.742 period= 5.340 h= .3885
||x||= 8.304 lambda= 6.021 period= 5.369 h= .4179
||x||= 8.583 lambda= 6.328 period= 5.395 h= .3933
||x||= 8.840 lambda= 6.621 period= 5.415 h= .4174
||x||= 9.107 lambda= 6.937 period= 5.434 h= .4307
||x||= 9.379 lambda= 7.268 period= 5.450 h= .4477
||x||= 9.656 lambda= 7.615 period= 5.465 h= .5119
||x||= 9.968 lambda= 8.016 period= 5.480 h= .5533
||x||= 10.30 lambda= 8.455 period= 5.495 h= .4764
||x||= 10.58 lambda= 8.835 period= 5.506 h= .4794
||x||= 10.86 lambda= 9.221 period= 5.517 h= .5125
||x||= 11.15 lambda= 9.635 period= 5.528 h= .5377
||x||= 11.46 lambda= 10.07 period= 5.538 h= .6606
||x||= 11.83 lambda= 10.61 period= 5.550 h= .5104
enter new arclength for countdown
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interactive driver
integer= 1 real number= .0000
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Program 5. A PL Surface Generator

by Stefan Gnutzmann

The following program represents a simplified implementation of a PL algo-
rithm for approximating an implicitly defined surface. It is based upon the
algorithms discussed in section 15.4. A more general and sophisticated PAS-
CAL version is given in Gnutzmann (1988). The example used here is the
surface of the torus described by the equation

H(x1, x2, x3) := (x2
1 + x2

2 + x2
3 +R2 − r2)2 − 4R2(x2

2 + x2
3) = 0

with R = 1.0 and r = 0.2. Figure P5.a below is a wire figure plot of a run
of the program. The program utilizes the Freudenthal triangulation with the
meshsize δ > 0 translated to an initial point x given in the output below.
After a transverse edge of a simplex is determined, a zero point of H on
the edge is calculated via a modified Newton iteration, or if necessary, via
bisection. For each transverse simplex all three or four corresponding zero
points are output, thus describing a triangular or quadrilateral piece of the
PL approximation. The program stops when all transverse simplices within
the user determined bounding domain have been found.

Sketch of Program 5. comment:

input
begin
x ∈ H−1(0); initial point

δ > 0; mesh size

boundary; data for bounding cell

end input;
calculate a starting simplex σ1 using x and δ;
simplexlist := {σ1};
index := 1;
repeat determine all transverse edges of σindex

find transverse edge [Vertex0, Vertex1];
initialize index vector clface(j) := j, j = 0, 1, . . .;
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start := clface(N + 1);
transverse.facets := {clface(N + 1), clface(N + 2)};
calculate and write zero point;
repeat pivoting step

if sign
(
Vertexclface(0)

)
= sign

(
Vertexclface(N+1)

)
then begin leave := clface(0);
clface(0) := clface(N + 1) end;

else begin leave := clface(1);
clface(1) := clface(N + 1) end;

clface(N + 1) := clface(N + 2);
clface(N + 2) := leave;
transverse.facets := transverse.facets ∪ {clface(N + 2)};
calculate and write zero point;

until start = clface(N + 2);
for i ∈ transverse.facets do

if the facet corresponding to i is contained in the boundary
then transverse.facets := transverse.facets \ {i};

for i ∈ transverse.facets do begin determine all neighbors

pivot σindex across facet i obtaining σj ;
simplexlist := simplexlist ∪ {σj} end;

index := index + 1;
until index > cardinality(simplexlist).

In the interest of conserving space, a number of devices from the version in
Gnutzmann (1988) which would contribute to improved efficiency have been
omitted. Among these we mention

• Elimination of those simplices from the simplex list which are no longer
needed (to save storage).

• Instead of a sequential search through the simplex list, a binary search
or Hash method may be used.

• The length of the simplex list can be reduced by a judicious choice piv-
oting.

The FORTRAN program given below includes a Newton type iterative im-
provement such as those discussed in section 15.2. A number of steps are
possible for improving the surface mesh. Some of these have been described
in Allgower & Gnutzmann (1989).

The following is a complete FORTRAN program listing for the PL surface
approximation algorithm.
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program surapp Piecewise linear approximation of an
implicitly defined surface, see section 15.4

parameter (n=1, k=2, nplusk=n+k) dimension of the problem
parameter (k1=k+1, n3=n+3)
parameter (lisdim = 1000) dimension of the simplex list
double precision eps
parameter (eps = 1d-10) machine tolerance

double precision delta, origin(1:nplusk)
mesh size and origin of the triangulation

double precision lbound(1:nplusk), ubound(1:nplusk)
lower and upper bounds of the problem

double precision simx(0:nplusk,1:nplusk)
vertices of current simplex

double precision simf(0:nplusk,1:n)
function values of vertices

double precision error error of the approximation
double precision u(1:nplusk), v(1:nplusk), x(1:nplusk),
* fx(1:n) auxiliary arrays

integer slist (1:lisdim,1:nplusk) list of simplices
a simplex is characterized by barycenter * (nplusk+1)

integer inds current member of simplex list
integer maxs last entry of simplex list
integer numver (k1:n3) counts pl pieces
integer pi(1:nplusk), z(1:nplusk)

pi and z values of the current simplex
integer clface (0:nplusk), i auxiliary variables
logical facets (0:nplusk)

transverse facets of the current simplex
facets(i) = .true. means that facet i is transverse

open(1, file=Õsurapp.datÕ) output file
inds = 1 starting values (initialization)
maxs = 1
error = 0.0
do 10 i = k1, n3

numver (i) = 0
10 continue

write (*,Õ(/1x,a,a)Õ) Õpl approximation of an implicitlyÕ,
* Õ defined surfaceÕ
write (1,Õ(/1x,a,a)Õ) Õpl approximation of an implicitlyÕ,
* Õ defined surfaceÕ

call start (delta, origin, lbound, ubound, simx, simf,
* slist, nplusk, n, lisdim, pi, z, x, v, fx, u)

compute starting simplex, mesh size, origin, lower and
upper bounds

20 continue begin of pl loop
call appsim (inds, simx, simf, numver, nplusk, n, k1, n3,

* slist, lisdim, maxs, lbound, ubound, eps,
* error, pi, z, u, v, x, fx, facets, clface )

process current simplex
inds = inds+1
if ((inds .le. maxs) .and. (inds.le.lisdim) ) then
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not all simplices are processed
call getver (inds, simx, simf, slist, nplusk, lisdim,

* n, pi, z, x, fx, u, origin, delta)
simx and simf of next simplex are computed

goto 20
end if end of loop

statistics of program
write (*,Õ(//ÕÕ total number of transverse simplicesÕÕ,
* 14x,i8)Õ) maxs
write (*,Õ(5x,ÕÕpl pieces containingÕÕ,i2,a,15x,i8)Õ)
* (i,Õ verticesÕ,numver(i),i=k1,n3)
write (*,Õ(/ÕÕ maximum of all function valuesÕÕ,16x,d12.6)Õ)
* error
write (1,Õ(//ÕÕ total number of transverse simplicesÕÕ,
* 14x,i8)Õ) maxs
write (1,Õ(5x,ÕÕpl pieces containingÕÕ,i2,a,15x,i8)Õ)
* (i,Õ verticesÕ,numver(i),i=k1,n3)
write (1,Õ(/ÕÕ maximum of all function valuesÕÕ,16x,d12.6)Õ)
* error

stop
end

subroutine appsim (inds, simx, simf, numver, nplusk, n, k1,
* n3, slist, lisdim, maxs, lbound, ubound,
* eps, error, pi, newcen, u, v, x, fx,
* facets, clface )

input: inds, simx, simf, numver, slist, maxs, lbound, ubound
output: numver, slist, maxs

this subprogram computes all cl faces of the current simplex,
all neighbors of the current simplex which share a common

transverse facet are put on the simplex list

double precision simx (0:nplusk,1:nplusk),
* simf (0:nplusk,1:n),
* lbound (1:nplusk), ubound(1:nplusk),
* eps, error,
* u(1:nplusk), v(1:nplusk),
* x(1:nplusk), fx(1:n)
integer i, j, numver (k1:n3), lisdim, k1, n3, maxs, inds,
* slist (1:lisdim,1:nplusk), pi(1:nplusk)
logical facets (0:nplusk)

for an explanation of these variables see the main program

integer clface (0:nplusk) indices of cl face (0..n) and of
vertices to be pivoted (n+1..n+k)

integer start first vertex to pivot in cl face
integer numcl counts cl faces
integer newcen (1:nplusk) barycenter * (nplusk+1) of a neighbor
logical bound function which checks the bounds

search of a transverse edge
works only if nplusk=3

i = 1
110 continue

if ((simf(0,1).le.0.0) .eqv. (simf(i,1).le.0.0)) then
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i = i+1
if (i .le. nplusk) goto 110

end if
if (i .gt. nplusk) return

do 120 j = 0, nplusk starting values (initialization)
clface(j) = j

120 continue

numcl = 1
if (i.ne.1) then

clface(1) = i
clface(i) = 1

end if

do 130 i = 0, nplusk
facets clface(n+1) and clface(n+2) are transverse

facets (clface(i)) = i .gt. n
130 continue

start = clface (n+1)
call output (simx, simf, clface, u, v, x, fx, inds,
* nplusk, n, eps, error)

compute zero point of the cl face
and write it on a file or screen

140 continue begin cl face loop
call pivot (clface, simf, nplusk, n)

compute next cl face
call output (simx, simf, clface, u, v, x, fx, inds,

* nplusk, n, eps, error)
compute zero point of the cl face

and write it on a file or screen
numcl = numcl+1
facets (clface(nplusk)) = .true.

facet clface(nplusk) is transverse
if (clface(n+2) .ne. start) goto 140

stop test works correctly if k=2

numver(numcl) = numver(numcl)+1 counts pl pieces

do 160 i = 0, nplusk
loop which checks the bounds of transverse facets

a facet is outside the boundary if all vertices of the
facet are outside

if (facets(i)) then
do 150 j = 0, nplusk

if ((j .ne. i) .and. .not.
* bound (simx, j, lbound, ubound, nplusk, eps))
* goto 160

150 continue
facets (i) = .false.

end if
160 continue

do 170 i = 0, nplusk
loop which computes all neighbors of the current simplex

if they share a common transverse facet
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if (facets(i)) then
call reflec(slist,inds,i,newcen,nplusk,lisdim,pi)

compute the barycenter of the neighbor and
put it on the simplex list

call newsim (newcen, slist, maxs, lisdim, nplusk)
end if

170 continue
return
end

logical function bound(simx,ind,lbound,ubound,nplusk,eps)
input: simx, ind, lbound, ubound

output: bound

this function checks the bounds of the vertex simx(ind,.)

double precision simx (0:nplusk,1:nplusk),
* lbound(1:nplusk), ubound(1:nplusk),
* eps
integer nplusk, ind

for an explanation of these variables see the main program

integer i auxiliary variables
logical r

i = 0
210 i = i+1

r = ((lbound(i)-simx(ind,i)) .ge. eps) .or.
* ((simx(ind,i)-ubound(i)) .ge. eps)

if ((i .lt. nplusk) .and. .not. r) goto 210
bound = r
return
end

subroutine fvalue (x, f, nplusk, n) input: x
output: f (function value of x)

user defined function e.g. an equation of a torus

double precision x(1:nplusk), f(1:n), help
integer nplusk, n

help = x(2)**2 + x(3)**2
f(1) = (x(1)**2 + help + 0.96d0)**2 - 4.0d0*help
return
end

subroutine getver(inds,simx,simf,slist,nplusk,lisdim,n,
* pi,z,x,fx,vertex,origin,delta)

input: inds, slist, origin, delta
output: simx, simf

the subroutine computes the vertices of the current simplex
and the function values belonging to the vertices

see the rules of the Freudenthal triangulation (12.1.10)

double precision simx(0:nplusk,1:nplusk),
* simf(0:nplusk,1:n),
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* x(1:nplusk), fx(1:n), delta,
* origin(1:nplusk)
integer lisdim, nplusk, n, slist (1:lisdim,1:nplusk),
* inds, pi(1:nplusk), z(1:nplusk)

for an explanation of these variables see the main program

integer i, help
double precision vertex (1:nplusk) auxiliary variables

do 410 i = 1, nplusk
permutation pi and integer vector z are calculated

(only the barycenter * (nplusk+1) was stored)
z(i) = slist(inds,i) / (nplusk+1)
help = mod (slist(inds,i),nplusk+1)
if (help .lt. 0) then

help = help+nplusk+1
z(i) = z(i)-1

end if
pi (nplusk+1-help) = i

410 continue

do 420 i = 1, nplusk starting value for current vertex
vertex(i) = z(i)

420 continue

call simtox (vertex, simx, origin, delta, nplusk, 0)
calculate coordinates of vertex 0 and put it on simx(0,.)

function value of vertex 0 is computed and stored in simf(0,.)
do 430 i = 1, nplusk

x(i) = simx(0,i)
430 continue

call fvalue (x, fx, nplusk, n)
do 440 i = 1, n

simf(0,i) = fx(i)
440 continue

all other vertices and function values are calculated
do 470 i = 1, nplusk

vertex (pi(i)) = vertex (pi(i)) + 1.0d0
rules of the Freudenthal triangulation, see (12.1.10)

call simtox (vertex, simx, origin, delta, nplusk, i)
do 450 j = 1, nplusk

x(j) = simx(i,j)
450 continue

call fvalue (x, fx, nplusk, n)
do 460 j = 1, n

simf(i,j) = fx(j)
460 continue
470 continue

return
end

subroutine newsim (center, slist, maxs, lisdim, nplusk)
input: center, slist, smax

output: slist, smax
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the subroutine puts a new barycenter on the simplex list

integer maxs, lisdim, nplusk, slist (1:lisdim,1:nplusk)
for an explanation of these variables see the main program

integer i, j auxiliary variables
integer center (1:nplusk)

barycenter * (nplusk+1) of a simplex

loop compares all simplices of the list with current center
do 520 i = maxs, 1, -1

do 510 j = 1, nplusk
if (slist(i,j) .ne. center(j)) goto 520

510 continue
return the simplex is already a member of the list

520 continue

center belongs to a new simplex
and must be stored in the simplex list

maxs = maxs+1

check the capacity of the simplex list
if (maxs .eq. lisdim+1) then

write (*,Õ(ÕÕ simplex list is too smallÕÕ)Õ)
write (1,Õ(ÕÕ simplex list is too smallÕÕ)Õ)
return

end if

storing center at the end of the simplex list
do 530 i = 1, nplusk

slist (maxs,i) = center(i)
530 continue

return
end

subroutine output (simx, simf, clface, u, v, x, fx, inds,
* nplusk, n, eps, error)

input: simx, simf, clface, inds, error
output: error, zero point on the screen

output calculates the zero point on the edge with
a bisection method and writes it to a file or screen

subroutine works correctly if nplusk=3

double precision simx(0:nplusk,1:nplusk),
* simf(0:nplusk,1:n), eps, error
integer inds, nplusk, n

for an explanation of these variables see the main program

integer clface (0:nplusk)
for an explanation of clface see the subroutine appsim

double precision u(1:nplusk)
first vertex (simx(clface(0),.))

double precision v(1:nplusk) u+v = second vertex
double precision x(1:nplusk) zero point approximation
double precision fx(1:n) function value of x
double precision lambda
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barycentric coordinate of the zero point
double precision lowerb, upperb

lower and upper bound for the bisection method
logical neg =.true. iff f(u) is negative
integer i auxiliary variable

starting values are calculated
do 610 i = 1, nplusk

u(i) = simx (clface(0),i)
v(i) = simx (clface(1),i) - u(i)

610 continue

neg = simf(clface(0),1) .lt. 0.0d0
lowerb = 0.0d0
upperb = 1.0d0

620 continue begin loop of bisection method
lambda = (lowerb + upperb)/2.0d0
do 630 i = 1, nplusk

x(i) = lambda*v(i) + u(i)
630 continue

call fvalue ( x, fx, nplusk, n)
if (neg .eqv. (fx(1) .lt. 0.0d0)) then

lowerb = lambda
else

upperb = lambda
end if
if (upperb-lowerb .ge. eps) goto 620

approximation error
if (error .lt. dabs(fx(1))) error = dabs (fx(1))

write (*,Õ(i6,5(3x,d15.8))Õ) inds,(x(i),i=1,nplusk)
write (1,Õ(i6,5(3x,d15.8))Õ) inds,(x(i),i=1,nplusk)
return
end

subroutine pivot (clface, simf, nplusk, n)
input: clface, simf

output: clface

pivot of clface(n+1)
pivot works correctly if nplusk = 3

double precision simf (0:nplusk,1:n)
integer nplusk, n

for an explanation of these variables see the main program

integer clface (0:nplusk)
for an explanation of clface see the subroutine appsim

integer leave index of vertex which leaves the cl face

if ((simf(clface (n+1),1).le.0.0d0) .eqv.
* (simf(clface (0),1).le.0.0d0)) then

sign of clface(0) equal to sign of clface(n+1)
leave = clface(0)
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clface(0) = clface (n+1)
else

sign of clface(1) equal to sign of clface(n+1)
leave = clface(1)
clface(1) = clface (n+1)

end if

clface (n+1) = clface (n+2)
clface (n+2) = leave
return
end

subroutine reflec (slist, inds, facet, newcen, nplusk,
* lisdim, pi)

input: slist, inds, facet
output: newcen

newcen is obtained by reflecting the vertex facet
of the current simplex

see rules (12.1.10) of the Freudenthal triangulation

integer nplusk, slist(1:lisdim,1:nplusk), pi(1:nplusk)
for an explanation of these variables see the main program

integer facet index of vertex which should be reflected
from the current simplex

integer newcen(1:nplusk)
barycenter * (nplusk+1) of the neighbor

integer i, help auxiliary variables

computing of starting values
do 810 i = 1, nplusk

newcen(i) = slist (inds,i)
help = mod (slist(inds,i),nplusk+1)
if (help .lt. 0) help = help+nplusk+1
pi (nplusk+1-help) = i

810 continue

reflection (see (12.1.11))
if ((facet.gt.0) .and. (facet.lt.nplusk)) then

newcen (pi(facet)) = newcen (pi(facet)) - 1
newcen (pi(facet+1)) = newcen (pi(facet+1)) + 1

else if (facet.eq.0) then
newcen (pi(1)) = newcen(pi(1)) + 2
do 820 i = 2, nplusk

newcen(pi(i)) = newcen(pi(i)) + 1
820 continue

else
newcen (pi(nplusk)) = newcen (pi(nplusk)) - 2
do 830 i = 1, nplusk-1

newcen (pi(i)) = newcen (pi(i)) - 1
830 continue

end if
return
end

subroutine simtox (vertex, simx, origin, delta,
* nplusk, ind)
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input: vertex, origin, delta
output: simx(ind,.)

transformation of vertex to true co-ordinates

double precision delta, origin(1:nplusk),
* simx(0:nplusk,1:nplusk)
integer nplusk

for an explanation of these variables see the main program

double precision vertex(1:nplusk)
integer coordinates of vertex

integer ind index for simx
integer i

do 910 i = 1, nplusk
simx(ind,i) = origin(i) + delta*vertex(i)

910 continue
return
end

subroutine start (delta, origin, lbound, ubound, simx,
* simf, slist, nplusk, n, lisdim, pi, z,
* x, v, fx, u)

output: delta, origin, lbound, ubound, simx, simf, slist

user defined subroutine
calculating starting values of the algorithm

double precision delta, origin(1:nplusk),
* lbound(1:nplusk), ubound(1:nplusk),
* simx(0:nplusk,1:nplusk),
* simf(0:nplusk,1:n), x(1:nplusk),
* v(1:nplusk), fx(1:n), u(1:nplusk)
integer lisdim, nplusk, n, slist (1:lisdim,1:nplusk),
* pi(1:nplusk), z(1:nplusk)

for an explanation of these variables see the main program

integer i, j, step, max auxiliary variables

setting bounds
lbound(1) = -0.6d0
lbound(2) = -1.2d0
lbound(3) = -1.2d0
ubound(1) = 0.6d0
ubound(2) = 1.2d0
ubound(3) = 1.2d0

initial point (should be a approximation of a zero point)
x(1) = 0.1875d0
x(2) = 1.125d0
x(3) = 0.0625d0

delta = 0.25d0 mesh size

write (*,Õ(/ÕÕ initial pointÕÕ)Õ)
write (*,Õ(5(1x,d10.5))Õ) (x(i),i=1,nplusk)
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write (1,Õ(/ÕÕ initial pointÕÕ)Õ)
write (1,Õ(5(1x,d10.5))Õ) (x(i),i=1,nplusk)

first simplex: z = 0 and pi = id
do 1010 i = 1, nplusk

slist(1,i) = nplusk+1-i
1010 continue

step = 0
max = 1

construction of of a transverse simplex
1020 continue

do 1030 i = 1, nplusk Freudenthal triangulation
origin(i) = x(i) - delta/(nplusk+1)*(nplusk+1-i)

1030 continue

call getver (1, simx, simf, slist, nplusk, lisdim, n,
* pi, z, v, fx, u, origin, delta)

simx and simf of the starting simplex are calculated

search for a transverse edge
works only if nplusk=3

i = 1
1040 continue

if ((simf(0,1).le.0.0) .eqv. (simf(i,1).le.0.0)) then
i = i+1
if (i .le. nplusk) goto 1040

end if

if (i .gt. nplusk) then simplex is not transverse
step = step+1
if (step .lt. max) then

reduce mesh size and try it again
delta = delta*step/(step+1.0)
goto 1020

else
stop

end if
end if

recording simplex and function values
write (*,Õ(/ÕÕ start simplex of mesh size ÕÕ,f10.5)Õ)
* delta
write (1,Õ(/ÕÕ start simplex of mesh size ÕÕ,f10.5)Õ)
* delta
do 1050 j = 1, nplusk

write (*,Õ(6(1x,f11.5))Õ) (simx (i,j), i=0,nplusk)
write (1,Õ(6(1x,f11.5))Õ) (simx (i,j), i=0,nplusk)

1050 continue
write (*,Õ(/ÕÕ function valuesÕÕ)Õ)
write (1,Õ(/ÕÕ function valuesÕÕ)Õ)
do 1060 j = 1, n

write (*,Õ(6(1x,d11.5))Õ) (simf (i,j), i=0,nplusk)
write (1,Õ(6(1x,d11.5))Õ) (simf (i,j), i=0,nplusk)

1060 continue
write (*,Õ(/ÕÕ simplex numbers and approximate zero ÕÕ,
* ÕÕpoints:ÕÕ)Õ)
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write (1,Õ(/ÕÕ simplex numbers and approximate zero ÕÕ,
* ÕÕpoints:ÕÕ)Õ)
return
end

A run of the above program gave the following results. We give only the
beginning and the end of the output list.
pl approximation of an implicitly defined surface

initial point
.18750D+00 .11250D+01 .62500D-01

start simplex of mesh size .25000
.00000 .25000 .25000 .25000
1.00000 1.00000 1.25000 1.25000
.00000 .00000 .00000 .25000

function values
-.15840D+00 0.90506D-01 0.43222D+00 0.50926D+00

simplex numbers and approximate zero points:
1 0.20000000D+00 0.10000000D+01 0.00000000D+00
1 0.14142136D+00 0.11414214D+01 0.00000000D+00
1 0.13723591D+00 0.11372359D+01 0.13723591D+00
2 0.00000000D+00 0.12000000D+01 0.00000000D+00
2 0.14142136D+00 0.11414214D+01 0.00000000D+00
2 0.13723591D+00 0.11372359D+01 0.13723591D+00
3 0.20000000D+00 0.10000000D+01 0.00000000D+00
3 0.19903578D+00 0.10000000D+01 0.19903578D+00
3 0.13723591D+00 0.11372359D+01 0.13723591D+00
4 0.19999610D+00 0.10000000D+01 -0.50003903D-01
4 0.20000000D+00 0.10000000D+01 0.00000000D+00
4 0.14142136D+00 0.11414214D+01 0.00000000D+00
4 0.13868111D+00 0.11386811D+01 -0.11131889D+00
5 0.00000000D+00 0.12000000D+01 0.00000000D+00
5 0.00000000D+00 0.11855655D+01 0.18556546D+00
5 0.13723591D+00 0.11372359D+01 0.13723591D+00
6 0.00000000D+00 0.11989120D+01 -0.51087986D-01
6 0.00000000D+00 0.12000000D+01 0.00000000D+00
6 0.14142136D+00 0.11414214D+01 0.00000000D+00
6 0.13868111D+00 0.11386811D+01 -0.11131889D+00

...
551 0.00000000D+00 -0.12000000D+01 0.00000000D+00
551 0.20000000D+00 -0.10000000D+01 0.00000000D+00
551 0.19903578D+00 -0.10000000D+01 0.19903578D+00
552 -0.14142136D+00 -0.11414214D+01 0.00000000D+00
552 0.00000000D+00 -0.12000000D+01 0.00000000D+00
552 0.00000000D+00 -0.11989120D+01 0.51087986D-01
552 -0.13868111D+00 -0.11386811D+01 0.11131889D+00
553 -0.13723591D+00 -0.11372359D+01 -0.13723591D+00
553 -0.20000000D+00 -0.10000000D+01 0.00000000D+00
553 -0.14142136D+00 -0.11414214D+01 0.00000000D+00
554 -0.13723591D+00 -0.11372359D+01 -0.13723591D+00
554 0.00000000D+00 -0.12000000D+01 0.00000000D+00
554 0.00000000D+00 -0.11855655D+01 -0.18556546D+00
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555 -0.13868111D+00 -0.11386811D+01 0.11131889D+00
555 0.00000000D+00 -0.11736695D+01 0.25000000D+00
555 0.00000000D+00 -0.11989120D+01 0.51087986D-01
556 -0.13723591D+00 -0.11372359D+01 -0.13723591D+00
556 0.00000000D+00 -0.12000000D+01 0.00000000D+00
556 -0.14142136D+00 -0.11414214D+01 0.00000000D+00

total number of transverse simplices 556
pl pieces containing 3 vertices 384
pl pieces containing 4 vertices 172

maximum of all function values 0.357643D-10

Figure P5.a is a wire figure plot of the torus mentioned above. This pic-
ture was generated by a similar run with meshsize 0.2 and starting point
(0.15 , 1.1 , 0.05)∗. The figure contains 1440 edges, 960 triangles or quadrilat-
erals, and 480 vertices. The surface area of the PL approximation was summed
up to 7.6599 (the actual surface area of this torus is 0.8 π2 ≈ 7.8957).

Figure P5.a PL approximation of a torus
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Program 6. SCOUT Ñ Simplicial Continuation
Utilities

by Hartmut Jürgens and Dietmar Saupe

P6.1 Introduction

SCOUT is a program which implements a series of algorithms based on ideas
described in chapter 12 concerning PL continuation methods. The problem to
be solved numerically is a nonlinear fixed point or eigenvalue problem, i. e. to
find the zeros of

F : RN ×R→ RN ,

(x, λ) 7→ F (x, λ) .

More precisely, the following is a list of the various problem areas that are
handled by SCOUT.

Continuation. SCOUT traces a path of zeros of F using the Generic PL
Continuation Algorithm (12.3.9).

Start. For the start of the continuation algorithm a first completely labeled
simplex must be provided. Usually an educated guess for a zero of F
can be given by the user. Given that information, the program tries to
construct a start of the algorithm near the guess.

Refinement. The almost identical problem occurs when the mesh size of
the triangulation is changed. One may want to reduce the mesh size
to increase the precision of the approximation of the zeros of F , or one
might enlarge the mesh size to speed up the method. In any case, the
algorithm may start out from the current approximation to generate a
new completely labeled simplex of the new triangulation nearby.

Predictor-Corrector. The PL method is considered as slow, as it does not
exploit smoothness of solution paths by taking larger steps where possible
but rather steadily grinds its way through a triangulation. This short-
coming may be overcome to some extent by superimposing a predictor-
corrector scheme onto the basic PL algorithm. For each corrector step an
initial guess for a point of the PL approximation of F−1(0) is provided
by the predictor step. The corrector step then produces a completely
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labeled simplex near that point. This is very similar to the generation of
a start simplex above or the transition to a new triangulation. In fact,
SCOUT uses the identical algorithm for all three tasks.

Perturbation. The basic PL continuation method with a fixed triangula-
tion is very robust in the sense that bifurcation points do not harm the
algorithm. At such points due to a change of topological degree the algo-
rithm picks up a bifurcating branch and follows it from then on. Devices
are required to enable the detection of the other branches and the con-
tinuation of the old path. Also there may be disjoint continua of zeros
of F . How can those be found? SCOUT addresses these problems by
means of perturbations of the map F . In particular, the program is set
up to handle multi-parameter problems with maps

F : RN ×R2 → RN ,

(x, λ, µ) 7→ F (x, λ, µ) .

Only one parameter λ or µ is allowed to vary while the other is kept con-
stant. By extending F to a map with several parameters and changing
to µ as the variable parameter one may solve the problem of bifurcat-
ing branches and disjoint continua. Some a priori knowledge about the
solutions may be incorporated by the user as he can specify exactly the
extension of F (x, λ) to a two parameter map F (x, λ, µ). However, an-
other so called standard perturbation involving a third parameter ρ is
always provided by SCOUT. Thus the user does not always have to pro-
gram his own special perturbations.

Precision improvement. The PL approximation is not as good as an
approximation gained by e. g. Newton’s method. This is due to the tri-
angulation with a fixed mesh size. This is not a serious limitation since
the overall goal of the PL algorithm is to unravel the global structure of
the zero set of F . Locally, other methods may be used to improve the
precision. Since an approximation of a local derivative is contained in
the data structures of the PL algorithm, SCOUT uses it to improve the
precision of the approximation by a modified Newton’s method.

Interaction. From the above it follows that the program should be primarily
interactive. The decisions when to use what perturbation techniques and
how long to pursue the tracing of a particular solution branch cannot be
left to the machine. Therefore a large portion of the efforts in SCOUT
went into the design of interactive techniques.

A few remarks on the history of SCOUT are in order. The first version was
written in 1979 as part of the authors’ diploma thesis Jürgens & Saupe (1979).
It contained only the basic PL algorithm and a few perturbation techniques.
About a year later the code had matured and included mesh refinement tech-
niques and dynamic adjustments of the triangulation for greater speed, see
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Jürgens & Peitgen & Saupe (1980). A portable FORTRAN66 version was
implemented at several universities. Subsequently, a completely new version
was created, written in structured FORTRAN using the SFTRAN preproces-
sor, see Saupe (1982). It contains the predictor-corrector scheme and revised
techniques for perturbations, mesh refinement and so on. The code has been
used heavily in the study of nonlinear boundary value problems, periodic solu-
tions to differential delay equations and other problems, see Saupe (1982–83),
Caras & Janata & Saupe & Schmitt (1985).

This section is a condensed excerpt from the report Jürgens & Saupe
(1990), which can be obtained from the authors along with the code for both
versions of SCOUT. The address is Institut für Dynamische Systeme, Fach-
bereich Mathematik und Informatik, Universität Bremen, 2800 Bremen 33,
West Germany.

P6.2 Computational Algorithms

(P6.2.1) The Predictor-Corrector Method and the Corrector Step

The skeleton of a PC method for tracing a component C of the zeros of F is
as follows.

Initial data x0 ∈ C , k = 1.

Step 1 (predictor) Choose yk ∈ RN+1 as an approximation of a next point
of C. Define a codimension 1-manifold Hk ⊂ RN+1 (e. g. hyperplane) as
the kernel of some functional γk : RN+1 → R, such that yk ∈ Hk and
Hk is sufficiently transverse to C.

Step 2 (corrector) Solve the system of equations

(P6.2.2)
F (x) = 0 ,
γk(x) = 0 .

Step 3 Either stop or increase k by 1 and go to step 1.

(In this subsection we do not use a special symbol for the parameter λ, thus
x ∈ RN+1.) In our hybrid algorithm we use the PL method to solve the
system (P6.2.2) in each corrector step. The result of such a corrector step
will be a completely labeled simplex with respect to the map F . Thus the PC
method contained in SCOUT generates a subsequence of a chain of completely
labeled simplexes.

For the discussion of the corrector step, let us drop the index k. We define
a suitable path in H = γ−1(0) which connects the given estimate y ∈ H with
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the solution x ∈ H of (P6.2.2). For this purpose define

Fγ : RN+1 → RN+1 ,

x 7→
(
F (x)
γ(x)

)
and consider the homotopy

G : RN+1 ×R −→ RN+1 ,

(x, µ) 7−→ Fγ(x)− µFγ(y) =
(
F (x)− µF (y)

γ(x)

)
.

We have that G(y, 1) = G(x, 0) = 0 and we assume that G−1(0) contains
a path that connects (y, 1) with (x, 0). This assumption can be verified,
e. g. in the case where G satisfies some differentiability properties and y is
close enough to x.

Instead of applying a continuation method to follow the zeros of G in
RN+2 directly we can set up a topological perturbation F̃ of F in the spirit of
Jürgens & Peitgen & Saupe (1980) Peitgen (1982), which reduces the dimen-
sion by one, thus effectively eliminating the artificial parameter µ. In terms
of the PL algorithm F̃ is evaluated only at the vertexes of the triangulation
as follows.

(P6.2.3) F̃T (v) =
{
F (v) if γ(v) ≥ 0,
−d̃ otherwise,

where v ∈ RN+1 is any vertex of T . Let σ = [v1, . . . , vN+1] ∈ T be completely
labeled with respect to F̃T . Then either σ has exactly one vertex vj such that
γ(vj) < 0 and σ carries an x ∈ σ with FT (x)− µd̃ = 0 for some µ ≥ 0 or σ is
completely labeled with respect to F and σ carries an x ∈ F−1

T (0).
We thus conclude that either σ intersects H = γ−1(0) and then approxi-

mates a zero of G or σ is already a completely labeled simplex for the original
problem F (x) = 0. Hence, starting the simplicial algorithm for the perturbed
problem F̃ (x) = 0 close to the estimate y we will get a chain of completely
labeled simplexes which first traces {x ∈ RN+1 | FT (x) = µd̃, µ > 0} close to
H and eventually leaves H, thus approximating the zeros of F .

There are two more technical questions to be answered. How can one
make sure that the (N + 1)-simplex that contains the estimate y in fact has
also two completely labeled facets? And in which direction should the PL
algorithm trace the chain through y? The first question can be settled by
slightly modifying d̃ and γ. The other question is solved using the fact that
chains of completely labeled simplices carry an orientation. This orientation
is reversed, of course, when the direction of the chain is flipped. Thus one
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has to match the orientation of the chain generated by the corrector step
with the orientation of the chain that belongs to the original unperturbed
problem. We omit these technical details here, see Peitgen & Prüfer (1979),
Saupe (1982). The corrector step fails, if the number ν of pivoting steps in it
exceeds a maximal number νmax.

(P6.2.4) Predictor Step and Step Size Control

In SCOUT there are two ways to compute a first estimate for the next point
on the curve, the predictor via linear or quadratic extrapolation. We assume
that an (N + 1)−simplex τ = [v1, ..., vN+2] ∈ T is given such that σ =
[v1, ..., vN+1] is completely labeled. Typically, this will be the case after each
linear programming step, e. g. at the termination of a corrector step. The
linear extrapolation is obtained from FT |τ . This map has a one-dimensional
kernel, and the coefficients of the kernel with respect to v1, ..., vN+2 are

(
c1, ..., cN+2

)T =
(−L−1(1, F (vN+2))T

1

)
.

Here L denotes as usual the labeling matrix of σ. Thus a tangent is given
by xtan = c1v1 + ... + cN+2vN+2. If α > 0 denotes the step length for the
predictor step and x0 ∈ σ with FT (x0) = 0, we set

y = x0 + α
xtan
||xtan||

.

Since this method uses only local information, it is especially appropriate for
small predictor steps or for obtaining the first few predictors. After several
cycles of the predictor-corrector scheme we have accumulated enough data to
perform higher order predictor steps. The quadratic extrapolation e. g. uses
three computed points and quadratic polynomials for the predictor, for brevity
we omit the formulae.

In addition to xk−1 the last corrector step has produced the coefficient
matrix L−1 relative to the completely labeled N -simplex which contains xk−1.
Assuming that the derivative of F exists and satisfies a Lipschitz condition,
we have that L−1 implies an approximation of the inverse of the Jacobian at
xk−1. If the predictor step is not too large, then the approximation carries over
to the predictor point yk. This can be used to perform a modified Newton
step for the point yk. The size of the Newton correction can be estimated
without completely computing the correction vector. If this estimate β does
not exceed a maximal number βmax we may replace the predictor by the
corrected vector. Otherwise the predictor is not accepted. This procedure
could even be iterated.

The step size control for the predictor step is very simple and heuristic.
If the previous corrector step had been accepted, then the step length is
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increased by a factor α = 1.5, otherwise it is reduced by the factor α = 0.5. A
minimal step length of αmin equal to the mesh size of the triangulation and a
maximal step size αmax are prescribed. The predictor-corrector scheme fails
when the step size becomes too small. In that case the special setup of the
hybrid method offers a fallback in the sense that we can easily switch back
to the robust fixed triangulation algorithm starting from the result of the
last successful corrector step. From there on one may carry out a number of
cycles through the basic PL algorithm until the “difficult” part of the zero set
of F is overcome and one may return to the more efficient predictor-corrector
scheme.

(P6.2.5) Start Simplex and Changing the Mesh Size

Let F : RN+1 → RN be a continuous map. Also let y ∈ RN × R be an
estimate for a zero of F and let T be a triangulation of RN+1. When changing
the mesh size or when generating a start simplex for the PL algorithm one
has to find a completely labeled simplex in T close to the estimate y.

This is the problem to be solved in each corrector step, too. Therefore,
we naturally employ the corrector step. As initial data we define an (N + 1)-
simplex τy via y ∈ τy = [v1, . . . , vN+2] ∈ T and a transverse hyperplane
γ−1(0) by setting

γ(x) = t0 (x− y)T , 0 6= t0 ∈ Kern DFT |τy .

Here DFT |τy denotes the linear part of the affine mapping FT restricted to the
(N + 1)-simplex τy. A successful corrector step with these specifications will
solve the problem, see Saupe (1982). For the task of finding the start simplex
one has to slightly modify the procedure at the beginning of the corrector step
which determines the direction of the chain of completely labeled simplexes.

(P6.2.6) Multi-Parameter Problems and the Standard Perturbation

As mentioned above, SCOUT is formulated for a map F with two parameters
λ and µ. Often the original map already has two or more parameters. One
typical example is the boundary value problem −ü = λf(u) with u(0) =
u(π) = µ and a nonlinear function f : R → R. This differential equation
must be discretized so that one obtains a finite dimensional problem, which
then has the two parameters as above. Depending on the choice for the
nonlinearity f(u) there may be one or more continua of solutions for the
Dirichlet problem (µ = 0). But when both parameters come into play these
disjoint branches become connected, and the PL algorithm has access to all
of them. For examples of this kind see Jürgens & Peitgen & Saupe (1980),
Peitgen & Saupe & Schmitt (1981), Peitgen (1982).

The built-in standard perturbation in SCOUT uses a third parameter ρ
in addition to λ and µ. For ρ = 0 the old values of F are obtained and for
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ρ 6= 0 let

F (x, λ, µ, ρ) = (1− |ρ|)F (x, λ, µ, 0) + ρd

where 0 6= d ∈ RN . Thus the standard perturbation is just a homotopy to a
constant vector. The idea behind this is the following: Since F (x, λ, µ,±1) ≡
±d 6= 0 we have that the zeros of F are bounded in ρ by ±1. Therefore, if we
keep λ and µ fixed and let only ρ vary, then we hope that the solution path
which leaves the level ρ = 0 will return to it and not go to ∞, thus yielding
another solution of the unperturbed problem. With this technique one may
attempt to unravel bifurcation points as well as to find new disjoint continua
of solutions. It is the experience of the authors that the method works in
many cases.

(P6.2.7) Modified Newton Steps for Local Precision

Assume F : RN+1 → RN and T is a triangulation of RN+1 . Let σ ∈ T
be a completely labeled N -simplex. Then σ spans an affine hyperplane H ⊂
RN+1 of codimension 1. In this section we describe how to find a zero of the
restricted map F |H : H → RN . Assume that F |H is differentiable and let
F̂ : H → RN be the affine extension of FT |σ to H. Then we interpret the
differential DF̂ as an approximation of the differential D(F |H). Let x0 be
the zero of FT carried by σ = [v1, . . . , vN+1] and let L be the labeling matrix
with respect to V = (v1 v2 . . . vN+1). Then the modified Newton iterates
are given by

xk+1 = xk − V · L−1 ·
(

0
F (xk)

)
, k = 0, 1, . . . .

Of course, the convergence rate cannot be expected to be quadratic as is the
case in Newton’s method. One might consider updating methods to improve
convergence rates. This has not been done in SCOUT, since the design of the
package stresses the global study of F−1(0) rather than local accuracy. The
modified Newton steps are typically applied at interesting points along the
solution continua as selected by the user.
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P6.3 Interactive Techniques

In the following we give a short description of the program operation. The
user communicates with SCOUT through an instruction set of about 25 com-
mands. Each command consists of a two letter code and up to four numeral
parameters. Commands are buffered and sequentially processed. The “HE”
command e. g. activates a help facility which reads a data file and then out-
puts a portion of the file containing the requested help. Up to 30 commands
and their parameters may be recorded in a special command buffer. These
can be executed by issuing one single command (“EX”). Incorrect commands
or parameters are detected and rejected by the command processor.

An important feature of the program is the capability of dumping the
essential portions of the SCOUT data base on a file. At a later time, during
the same or a different run of SCOUT, the user can restore this data from
the memory file and continue the investigation of his problem. A similar
procedure applies to the internal storage of parts of the data base which is
carried out before each corrector step. The full data base will automatically
be restored after a possible breakdown of the predictor-corrector scheme.

The user periodically receives a feedback on his terminal describing the
progress of the path following. Moreover, a protocol file containing more
information is written simultaneously. As an option the user may request
the output of the solutions on a separate file. This file may then later be
processed for instance for a graphical representation of the solutions. These
solutions may also be read in by SCOUT to serve as starting guesses for the
continuation methods.

Special emphasis is put on the provision of plotting of bifurcation dia-
grams. There are two options for this purpose: 1. The plot data is output
to a file for later graphical processing. 2. The plot data is routed directly to
a graphical device (“picture system”) while SCOUT is running. Of course,
both of the options may be chosen. Either option however, requires the user
to add certain software to the SCOUT package. First, the plotted data de-
pends very much on the problem. Often, a plot of the maximum norm of the
solution versus the parameters λ and µ is not sufficient. Thus the user has
to define his plot data in a special output routine. There he can also define
extra output for his terminal and his files. Secondly, if he desires to connect a
graphical device directly to SCOUT, he must write an interface routine that
drives his device.

The main program controls the execution of the simplicial and predictor-
corrector algorithms. It delegates most of the work load to various subrou-
tines. There are six basic cases that are handled by the main program:

• Resetting the data base to its starting values.
• Initialization for the start of the simplicial algorithm: Generation of a

start simplex and inversion of the labeling matrix.
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• Execution of a single corrector step in the case that the start simplex is
not completely labeled.

• Execution of a single corrector step for the purpose of changing the mesh
size of the triangulation.

• Execution of the simplicial algorithm in a fixed triangulation: repeated
linear programming and pivoting steps together with labeling and output.

• Execution of the predictor-corrector algorithm.

The COMMAND routine is the key program unit which enables the user to
input his commands to SCOUT. There are five different command modes.
In each mode a certain subset of all commands is accepted as a valid input.
These subsets are not disjoint, in fact, many commands are available in all
five modes. When a prompt appears on the terminal, the command routine
awaits a command to be typed in by the user. This prompt consists of a key
word which indicates the command mode and a number denoting the total
number of cycles through the simplicial core routines. The five modes are:

INIT : Commands setting initial parameters such as mesh size and dimension
of the triangulation, initial values for the start of the path following etc.
are expected.

FIX : The fixed triangulation algorithm has been started and all commands
are accepted except for two commands which are valid in INIT mode.

P/C : The predictor-corrector algorithm is activated and running. The
output is restricted to the end of corrector steps.

SH : The corrector step in the start homotopy has not yet finished. Only
commands that continue or abort the corrector step are accepted.

PROG : In this mode COMMAND loads the user commands into a special
command buffer. Only the commands that initialize this mode or cause
execution of the buffer will not be accepted.

The “HE” and “IF” commands for help and information are available in all
modes. Certain commands like “GO” return the control back to the main
program which then lets the simplicial algorithm work until the next user
input is requested.

The SCOUT package consists of a main program and a collection of 30
subroutines (about 2700 lines). In addition six routines from the LINPACK
package are needed. Almost all of the terminal, file and plotting output is
defined in one of two routines: OUTPUT or OUTP1. The first routine is
the standard SCOUT routine which provides certain general output. Special
problem dependent output such as plot data has to be defined by the user
in the OUTP1 routine. Of course, The user must supply a routine which
evaluates the map F (x, λ, µ) . A sample is given in the last section of this
appendix.
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P6.4 Commands

The following alphabetical list briefly describes the commands in SCOUT.
The emphasized words in the first line of each item denote parameters to the
command. Optional parameters are enclosed in square brackets.

BL [mesh]. The triangulation is “blown up”, i. e. a new mesh size mesh is
prescribed. A corrector step in the new triangulation is performed.

CM [formfeed]. Use this comment command to insert a line of text (up to
80 characters) into your output list. A non zero value of formfeed will
additionally result in a form feed.

EX [start]. Triggers the execution of commands from the programmed com-
mand buffer. The optional parameter start denotes the command at
which to start the interpretation. Thus the first start-1 commands are
skipped (default is 1). See also the PR command.

FC ifc1 ifc2 rfc1 rfc2. This command sets the values of the parameters ifc1,
ifc2, rfc1 and rfc2 which are available in the user supplied subroutine
FCT() from a FORTRAN common block. Applications are e. g. collect-
ing several functions in the same source or controlling rarely changed
parameters of the problem.

GO [nout [special]]. This command passes control back to the main program.
In INIT mode the start simplex will be generated and the program checks
if it is completely labeled. In mode FIX the basic PL algorithm will be
continued. The next user input will be expected after nout terminal out-
puts. This number becomes the default for subsequent GO commands.
The complete solution vectors are included in these outputs when special
= 1, if special = 2, then these vectors will also be stored in a file.

HE . The commands available to the current mode are displayed (one line
per command and parameters). Additional help for an individual com-
mand can be obtained by typing the command and a question mark as
parameter.

IF [case]. This command causes outputs of either a list of the current special
command buffer (case=1) or a list of the currently open files and their
uses (case=2). The user can extend these capabilities.

IN [incr]. Sets the maximal number of steps between user commands. This
is sometimes useful e. g. in “level” output mode or in corrector steps,
when the program does not seem to come to a final completely labeled
simplex. When the optional parameter is omitted, the current maximal
number of steps is output.

LE [number][type]. This command activates the output mode “level”. Out-
puts are produced not after a certain number of steps, but rather when
the completely labeled simplex is contained in a level of the triangula-
tion, i. e. all vertexes of this simplex carry the same parameter value. In
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general, these parameter values are multiples of the mesh size. To exit
the output mode “level”, use the commands LE-1 or OU. The parame-
ter number denotes the number of levels to be traversed for each output,
e. g. LE2 skips every other level. type declares that a different component
of the vertex vectors should be regarded for the level criterion.

ME . The command produces a dump file containing all the data necessary
to later restart the program at the current point (see the RE command).

MF [special]. This command will cause a display of the solution vector, a
point of the computed PL manifold. If special = 2, then this vector will
be stored on a new file. To store more vectors onto that file, use MF1
or special = 2 in the GO or TU command.

NW [iters][delta][eps]. A certain number of quasi-newton iterations is in-
voked. iters is the maximum number of iteration allowed. The iterations
are terminated when the changes in the solution decrease below delta or
when the value of the function at the solution decreases below eps .

OU [steps]. The output command sets the number of cycles of the PL algo-
rithm between two consecutive outputs to steps. Output mode “level” is
terminated if active.

PA parameter [lambda][mu]. This command defines the free parameter and
in INIT mode it optionally sets the initial values of λ and µ. The values
1,2,3 of parameter selects λ, µ and ρ (for the standard perturbation)
respectively. In FIX and P/C mode this is possible only when the
current simplex is in a level of the triangulation (see the LE command).

PC alpha max [mf type] [beta max][alpha 0]. The PC command initializes
and controls execution of the predictor-corrector algorithm. The first
parameter alpha max is the maximal step size. The next parameter
mf Type defines the codimension 1 manifold used in the corrector steps,
the default (0) is given by hyperplanes. Optionally, spheres may be used
(mf type6=0). The number beta max is the bound for the corrector step
estimate explained in section (P6.2.4). It is measured in mesh sizes (de-
fault 5). The last parameter sets the initial step length. To terminate
the predictor-corrector scheme the command PC-1 can be used.

PL case [mode]. This command defines plot action to a file or (if programmed)
to an online graphics device. There are four different cases. When
case=1, plotting is initialized and the mode parameter selects the output
devices (1 = file output, 2 = graphics output, 3 = both). The plot out-
put may be temporarily disabled and then reinvoked by the command
PL2. PL3 terminates the plotting and closes the devices, while PL4
enters an interactive display mode on the graphics device (e. g. allowing
for rotation of 2-parameter bifurcation diagrams).

PR [start]. Begins a recording of subsequent commands into a special com-
mand buffer and, thus the PROG mode is entered. The commands are
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executed only by means of the EX command. All commands are allowed
for recording except for PR and EX. The stop command ST terminates
the recording. The maximum buffer size is 30. Command buffering is
useful when the same sequence of commands must be given over and over
again e. g. when plotting a grid over a 3-dimensional bifurcation diagram
(tracing a square grid in the λ-µ space). The optional parameter start
denotes the number of the command in the buffer at which to begin the
recording. Thus several such “makros” can be defined.

RE . This command restarts the program at a previously stored point from
a dump file (created by the ME command).

SP i. Declares that the homotopy to the constant vector in the standard
perturbation technique uses the i-th unit vector.

ST [restart]. The stop command ST terminates SCOUT. To rerun SCOUT
use the command with restart = 1. The command is also used in mode
PROG to finish the recording of commands.

SV [next]. The start simplex will be centered around zero. If the program is
supposed to search for a start simplex somewhere else, a vector (or sev-
eral) may be supplied from a file. Such a file might have been generated
by the commands MF or GO in a previous run of SCOUT. After the
first vector is read from the file and displayed one may obtain the next
vector from the file by typing SV 1.

TR dim [mesh]. The triangulation command TR defines the dimension and
the size of the triangulation. dim is the dimension in the problem not
counting parameters (initial default is the highest possible dimension).
mesh is the mesh size of the triangulation (initial default is 0.01).

TU [nout [special]]. This “turn” command is the same as GO except that
the orientation of the current solution curve is reversed.

P6.5 Example: Periodic Solutions to a Differential Delay
Equation

The structure of continua of periodic solutions of differential delay equations
of the type ẋ(t) = f(x(t), x(t−τ)) constitute an area of interest where contin-
uation methods have aided intuition, and provided material for new insights
and conjectures. Such equations are often motivated from the natural sci-
ences. In 1977 Mackey and Glass proposed the delay equation

(P6.5.1) ẋ(t) =
ax(t− τ)

1 + x(t− τ)8
− bx(t), a, b, τ > 0

as a model for the dynamics of the production of red blood cells. The growth
rate (the first term) in the equation is assumed to depend on the concentration
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of cells at time t−τ . If the delay time τ is sufficiently large, as it is conjectured
to be the case in patients with leukemia, the concentration x(t) will oscillate
or even behave chaotically, see Mackey & Glass (1977). Yorke (see Nussbaum
(1979)) first considered the simplified model

ẋ(t) = −λ x(t− 1)
1 + |x(t− 1)|p , λ > 0, p ≥ 1

which seems to generate very similar behavior of solutions for p = 8 and
sufficiently large parameters λ. The program SCOUT has been used by the
authors to provide a comprehensive study of periodic solutions to this latter
equation, see Saupe (1982–83). One of the methods used in these studies, a
Galerkin approximation, also applies to the case of the Mackey-Glass equation
(P6.5.1) as explained in the following.

To cast the problem of periodic solutions into a finite dimensional set-
ting which is useful for computation, we employ a Galerkin method built
upon Fourier analysis. First note, that a T -periodic solution to (P6.5.1) is
equivalent to a 2π-periodic solution to

(P6.5.2) ẋ(t) =
λ

ω

x(t− ω)
1 + x(t− ω)8

− µ

ω
x(t)

where we have set
ω =

2πτ
T

, λ = aτ, µ = bτ.

Let C2π be the space of continuous and real 2π-periodic functions and let
Em ⊂ C2π be the (2m+ 1)-dimensional subspace of C2π given by all trigono-
metric polynomials xm of the form

xm(t) =
a0

2
+

m∑
k=1

ak cos kt+ bk sin kt

with real coefficients a0, a1, ..., am and b1, ..., bm. Introduce the operators

Sω : C2π → C2π, Sωx(t) = x(t− ω), ω > 0
F : C2π → C2π, Fx(t) = f(x(t)), f(x) = x/(1 + x8)

and the projection Pm : C2π → C2π with Pm(C2π) = Em, where the (Fourier)
coefficients of Pmx are given as usual by

ak =
1
π

∫ 2π

0

x(t) cos(kt)dt, k = 0, 1, ...,m,

bk =
1
π

∫ 2π

0

x(t) sin(kt)dt, k = 1, 2, ...,m.
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We call xm ∈ Em a Galerkin approximation of a 2π-periodic solution of order
m, if xm satisfies the equation

(P6.5.3) ẋm −
λ

ω
PmFSωxm +

µ

ω
xm = 0

This means that xm is a Galerkin approximation, if the first Fourier coeffi-
cients of

λ

ω

xm(t− ω)
1 + xm(t− ω)8

− µ

ω
xm(t)

coincide with the coefficients of the derivative of xm.
But (P6.5.3) alone is not yet sufficient for the computation of periodic

solutions of (P6.5.1), since the differential equation is autonomous and the
exact frequencies ω are unknown. Moreover, if xm solves (P6.5.3) then so
does Ssxm for all s ∈ R. Thus solutions are not isolated, which poses another
problem for numerical methods. These problems are overcome by regarding
ω as an unknown variable and by adding an additional equation to the sys-
tem, which removes the ambiguity of solutions. One such possible “anchor”
equation is

(P6.5.4) ẋm(0) = 0.

In the numerical evaluation of the expressions in equations (P6.5.3),
(P6.5.4) the only apparent problem is the computation of Sωxm from the
coefficients of xm and of the Fourier coefficients of FSωxm. While Sωxm can
be obtained directly using basic trigonometric identities, one employs the fast
Fourier transform methods to compute PmFSωxm. Two such transforms are
necessary, the first to compute 2k values of Sωxm(t) at equidistantly sampled
times (here we must require 2k > 2m + 1). Then the nonlinearity f is ap-
plied to obtain FSωxm(t) at discrete times, and the second (inverse) Fourier
transform takes these values back into the frequency domain. Only the first
2m+1 leading coefficients are kept and used for the evaluation of the Galerkin
equation. This program is carried out in the computer code listed below. The
Fourier transform routine REALFT() is not listed, we have used the code
from Press & Flannery & Teukolsky & Vetterling (1986).

SUBROUTINE FCT(F,V,RPARAM,IPRD)
REAL F(1), V(1), W(64)
REAL RPARAM(1)
INTEGER IPRD the dimension of V, F
COMMON /CFCT/ RFC1,RFC2,IFC1,IFC2 parameters (FC command)

C
C Mackey Glass Equation
C dx/dt(t) = lambda/w * x(t-w)/(1+x(t-w)**p) - mu/w * x(t)
C
C On input V contains:
C V(1) = a(0) double constant part of x(t)
C V(2) = T period (w = 2 pi / T)
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C V(2k+1) = a(k), k=1,2,... cosine coefficients
C V(2k+2) = b(k), k=1,2,... sine coefficients
C
C The parameters are:
C RPARAM(1) = lambda first factor
C RPARAM(2) = mu second factor
C IFC1 = p exponent
C
C On output F contains:
C F(1) : constant part of Galerkin equation
C F(2) = dx/dt (0) : the anchor expression
C F(2k+1), k=1,2,... : cosine coefficients
C F(2k+2), k=1,2,... : sine coefficients
C
C Compute coefficiencts of shifted function x(t-w)

OMEGA = 6.2831852 / V(2) omega = 2*pi / period
W(1) = V(1) constant part
W(2) = 0E0 last term
DO 200 K = 1, IPRD/2-1 use trigonmetric recursion

C = COS (K * OMEGA) for all other terms
S = SIN (K * OMEGA)
K1 = 2 * K + 1
K2 = K1 + 1
W(K1) = C * V(K1) - S * V(K2)
W(K2) = S * V(K1) + C * V(K2)

200 CONTINUE
ILEN = 64 discretization size, number of samples
DO 300 I = IPRD+1, ILEN

300 W(I) = 0E0 set extra coefficients to zero
C
C Shifted function x(t-w) at discrete times and nonlinearity

CALL REALFT (W, ILEN/2, -1) inverse Fourier transform
DO 400 I = 1, ILEN apply the nonlinearity

400 W(I) = W(I) / (1E0 + ABS(W(I))**IFC1)
C
C Do the Fourier transform back into the frequency domain

CALL REALFT (W, ILEN/2, 1) forward Fourier transform
FACTOR = 2E0 / ILEN need to scale the result
DO 500 I = 1, ILEN because REALFT returns a

500 W(I) = FACTOR * W(I) multiple of true transform
C
C Set up the Galerkin expression

F(1) = (RPARAM(2) * V(1) - RPARAM(1) * W(1)) / OMEGA
F(2) = 0
DO 700 K = 1, IPRD/2 - 1

K1 = 2 * K + 1
K2 = K1 + 1
F(2) = F(2) + K * V(K2) sum up derivative terms at zero
F(K1) = K*V(K2)+(RPARAM(2)*V(K1)-RPARAM(1)*W(K1)) / OMEGA
F(K2) = -K*V(K1)+(RPARAM(2)*V(K2)-RPARAM(1)*W(K2)) / OMEGA

700 CONTINUE
RETURN
END



   

P6.5 Example: Periodic Solutions 341

A suitable start for tracing a continuum of solutions can be derived from
the linearization of (P6.5.2). Note, that the trivial (constant) solutions are
x(t) ≡ 0 and x(t) ≡ ±c where c is the solution to the equation

λc

1 + c8
= µc.

These trivial solutions cannot be used in the above Galerkin scheme because
of nonuniqueness (the variable ω can be chosen arbitrarily). Linearizing about
0 yields the conditions

ω = −λ sinω ,
µ = λ cosω

for solutions of the type x(t) = eit. Therefore we expect bifurcating branches
to (P6.5.2) for λ = −ω/ sinω and µ = −ω/ tanω. The parameter ω must be
chosen between 3

2π and 2π up to multiples of 2π. Linearizing about c yields

ω = −λf ′(c) sinω ,
µ = λf ′(c) cosω .

Setting m = λf ′(c), we derive the conditions

µ =
−ω

tanω
,

m =
−ω

sinω
,

λ =
8µ2

m+ 7µ
,

for ω between π
2 and π up to multiples of 2π. As an example, we get

λ = 1.688, µ = 1, ω = 2.029.

For these values we have

c = 0.9548, T =
2π
ω

= 3.0979.

Thus, the function x(t) = c + ε cos t for small ε > 0 should be very close to
true solutions of (P6.5.2). In terms of a start vector we may use (ε = 0.2)

(0.9548, 3.0979, 0.2, 0.0, 0.0, . . .).

together with the above values for λ and µ. The following computer output
demonstrates how the continuum of solutions is picked up and followed. The
typical lines of the form
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511.St-1 Par: 3.28 1.00 S: 1.123 .546 Per:3.030 E: .004 .014

have the following meaning:

511.St-1 total number of PL steps and orientation of curve
Par: 3.28 1.00 λ and µ

S: 1.123 .546 solution xm, constant part
a0

2
, oscillatory part

||xm(t)− a0

2
||∞

Per: 3.030 period of solution xm(t), i. e. T =
2π
ω

E: .004 .014 errors ||F (x, λ, µ)||∞ and

||xm +
λ

ω
FSωxm − µxm||∞ (defect)

Output related to the performance of the predictor-corrector scheme lists
among others the current step length, the corrector step estimator, causes of
deceleration and number of PL steps per PC cycle.
INIT( 0): TR 16,0.05
INIT( 0): FC 8
New Function specifications: IFC1 8 RFC1 .000

IFC2 0 RFC2 .000
INIT( 0): SV
Enter filename: Start.vec

1.9080 3.0970 .2000 .0000 .0000
.0000 .0000 .0000 .0000 .0000
.0000 .0000 .0000 .0000 .0000
.0000

RPA1 : 1.7000 RPA2 : 1.0000
INIT( 0): GO
Initial triangulation values: mesh size .050

centered around
1.9080 3.0970 .2000 .0000 .0000
.0000 .0000 .0000 .0000 .0000
.0000 .0000 .0000 .0000 .0000
.0000

image of center
.0667 .0000 .0184 -.0373 -.0217
-.0283 -.0125 .0025 .0004 -.0014
-.0006 -.0005 .0001 .0000 .0000
.0000

Initial problem values: dimension 16
parameters PA1 1.700

PA2 1.000
variable PA1

function specifications
IFC1 8
IFC2 0
RFC1 .000
RFC2 .000
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SH( 0): GO
147.St-1 Par: 1.70 1.00 S: .955 .037 Per:3.082 E: .002 .003

X: 1.91008 3.08231 .03613 -.00088 -.00045
.00040 .00001 .00010 -.00004 -.00008
.00004 .00000 .00000 .00003 -.00002
-.00001

FIX( 147): OU 100
FIX( 147): GO 3

247.St-1 Par: 1.76 1.00 S: .960 .099 Per:3.098 E: .001 .002
347.St-1 Par: 1.90 1.00 S: .973 .175 Per:3.098 E: .003 .005
447.St-1 Par: 2.05 1.00 S: .988 .236 Per:3.093 E: .004 .010

FIX( 447): PC 1.0
Max step length: 1.0 (hyperplanes) Max estimator : 5.0
P/C( 447): GO 10

1. PC-cycle Step length : .1000 PL -steps: 15
462.St-1 Par: 2.15 1.00 S: .997 .272 Per:3.095 E: .004 .007

2. PC-cycle Step length : .1500 PL -steps: 10
472.St-1 Par: 2.30 1.00 S: 1.012 .315 Per:3.085 E: .004 .009

3. PC-cycle Step length : .2250 PL -steps: 13
485.St-1 Par: 2.53 1.00 S: 1.034 .373 Per:3.069 E: .004 .010

4. PC-cycle Step length : .3375 PL -steps: 14
499.St-1 Par: 2.80 1.00 S: 1.064 .433 Per:3.057 E: .006 .013

5. PC-cycle Step length : .5063 PL -steps: 12
511.St-1 Par: 3.28 1.00 S: 1.123 .546 Per:3.030 E: .004 .014

6. PC-cycle Step length : .7594 PL -steps: 35
546.St-1 Par: 4.00 1.00 S: 1.221 .715 Per:3.037 E: .005 .022

7. PC-cycle Step length : 1.0000 PL -steps: 5
551.St-1 Par: 4.95 1.00 S: 1.364 .942 Per:3.085 E: .004 .037

8. PC-cycle Step length : 1.0000 PL -steps: 27
578.St-1 Par: 5.88 1.00 S: 1.505 1.170 Per:3.158 E: .005 .047

Deceleration: 578 Estimator: 8.393 2.315
9. PC-cycle Step length : .5000 PL -steps: 16

594.St-1 Par: 6.44 1.00 S: 1.589 1.308 Per:3.206 E: .006 .058
10. PC-cycle Step length : .7500 PL -steps: 15

609.St-1 Par: 7.17 1.00 S: 1.697 1.490 Per:3.264 E: .004 .066
P/C( 609): PC -1
Predictor-corrector scheme is turned off.
FIX( 609): LE
FIX( 609): GO 1,1

622.St-1 Par: 7.20 1.00 S: 1.702 1.497 Per:3.266 E: .005 .068
X: 3.40302 3.26634 1.19040 .01697 .17557

-.16245 .01753 .03253 .05444 .03352
.03233 .00272 .01426 .00487 .01199
.00478

FIX( 622): PA 2
New variable parameter PA2
FIX( 622): PC 2.0
Max step length: 2.0 (hyperplanes) Max estimator : 5.0
P/C( 622): GO 13

1. PC-cycle Step length : .2000 PL -steps: 92
714.St-1 Par: 7.20 1.10 S: 1.600 1.358 Per:3.121 E: .005 .071

2. PC-cycle Step length : .3000 PL -steps: 102
816.St-1 Par: 7.20 1.25 S: 1.454 1.160 Per:2.942 E: .004 .068

Deceleration: 816 Estimator: 5.660 .773
3. PC-cycle Step length : .2250 PL -steps: 40

856.St-1 Par: 7.20 1.35 S: 1.368 1.042 Per:2.847 E: .004 .073
4. PC-cycle Step length : .3375 PL -steps: 25
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881.St-1 Par: 7.20 1.50 S: 1.259 .896 Per:2.735 E: .003 .074
Deceleration: 881 Estimator: 8.055 5.301

5. PC-cycle Step length : .2531 PL -steps: 38
919.St-1 Par: 7.20 1.65 S: 1.175 .819 Per:2.657 E: .004 .063

....
13. PC-cycle Step length : .8109 PL -steps: 32

1152.St-1 Par: 7.20 5.05 S: .883 .110 Per:2.369 E: .018 .017
P/C( 1152): MF

1.7670 2.3690 .0958 -.0347 -.0087
.0067 .0028 .0061 -.0010 -.0002
.0001 .0007 -.0002 .0001 .0000
.0000

P/C( 1152): ST

This listing has been shortened and edited a bit to accomodate some re-
strictions necessary for printing it here. Let us explain some of the operations
that were carried out in this short run of SCOUT. Initially, at step 0, the
dimension is set to 16 and the mesh size to 0.05. Also the exponent in the
nonlinearity (coded as IFC1) is set to 8. Then the start vector is read in
from the file ‘Start.vec’ and the first GO command lets the program set up a
simplex around the given vector, determine the labels and so on. The mode
changes from INIT to SH. A corrector step is necessary, since the simplex is
not completely labeled (next GO command). After 147 PL steps the algorithm
finds a completely labeled simplex, outputs the solution vector and changes
the mode to FIX. Three outputs are next requested, each one after 100 steps.
The variable parameter λ has increased from 1.70 to 2.05 while the solution
grew in norm from 0.037 to 0.326. At step 447 the predictor-corrector algo-
rithm is activated with a maximal step length of 1.0 and a maximal estimator
of 5 mesh sizes (default). 10 cycles are performed and the current step length
increases from 0.1 to 1.0. In the 9-th cycle a deceleration takes place due to a
too large estimator 8.393. The second number 2.315 is the estimator for the
modified predictor, i. e. after the correction worth 8.393 mesh sizes has been
applied. The ratio between these two numbers can also be used additionally
to control the step sizes. At step 609 the PC method is turned off, and the
standard algorithm in the fixed triangulation advances one level and outputs
the solution vector there. Next the variable parameter is changed to µ (it is
necessary, that the current simplex is in a level of the triangulation). Then the
solution branch is followed in that new direction using the predictor-corrector
method. After 13 cycles the norm of the solution vector has decreased almost
to 0, thus we are at another bifurcation point for a different value of ω.

We finish this section with a bifurcation diagram, see figure P6.a, which
depicts the solutions for five different values of µ as they bifurcate from the
trivial constant solution x(t) ≡ c. On the vertical axis the norm of the os-
cillatory part of the solutions xm is plotted, i. e. ||xm(t)− a0

2 ||∞. Also there
is a secondary bifurcation included for the µ = 2, 3, 4, 5 branches. These are
period doubling bifurcations which can be found very easily by starting the
algorithm on the primary branch using a doubled period and suitably modi-
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fied coefficients (set ak and bk to 0 for odd indices k > 0). The continuum will
automatically branch off at the secondary bifurcation points. These secondary
periodic solutions cannot be continued to µ = 1. The loop of the secondary
branch present for µ = 2 will close itself to a point when the parameter µ
decreases. The solutions bifurcating from the other trivial constant solution
x(t) ≡ 0 result in a very similar bifurcation diagram. We remark, that these
studies presented here are only the results of a few runs of SCOUT and are
far from complete. Moreover, the dimension in the Galerkin approximation
is only 16, i. e. the highest frequency terms are only sin 7t and cos 7t.

Figure P6.a Differential delay bifurcation diagram
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Verlag, Basel,46–73.

Beyn, W.-J. (1981): Lösungszweige nichtlinearer Randwertaufgaben und ihre Approxima-
tion mit dem Differenzenverfahren. Habilitationsschrift, Univ. Konstanz.

Beyn, W.-J. (1984): Defining equations for singular solutions and numerical applications. In:
Numerical methods for bifurcation problems. T. Küpper & H. D. Mittelmann & H. Weber
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Górniewicz, L. (1976): Homological methods in fixed point theory of multivalued maps.
Diss. Math. 129.

Gould, F. J. (1980): Recent and past developments in the simplicial approximation approach
to solving nonlinear equations – a subjective view. In: Extremal methods and systems
analysis. A. V. Fiacco & K. O. Kortanek editors. Lecture Notes in Econom. and Math.
Systems 174. Springer Verlag, Berlin, Heidelberg, New York, 466–480.

Gould, F. J. & Schmidt, C. P. (1980): An existence result for the global Newton method.
In: Variational inequalities and complementarity problems. R. Cottle & F. Giannessi &
J.-L. Lions editors. John Wiley & Sons, Chichester, 187–194.

Gould, F. J. & Tolle, J. W. (1974): A unified approach to complementarity in optimization.
Discrete Math. 7, 225–271.

Gould, F. J. & Tolle, J.. (1976): An existence theorem for solutions to f(x) = 0. Math.
Programming 11, 252–262.

Gould, F. J. & Tolle, J. W. (1983): Complementary pivoting on a pseudomanifold struc-
ture with applications on the decision sciences. Sigma Series in Applied Mathematics 2.
Heldermann Verlag, Berlin.

Granas, A. (1959): Sur la notion du degree topologique pour une certaine classe de trans-
formations mutivalentes dans espaces de Banach. Bull. Acad. Polon. Sci. 7,271–275.
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Belg. Bull. Cl. Sci. (5) 34, 809–827.
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Differentialgleichungen. Numer. Math. 32, 17–29.

Weber, H. (1980): Numerical solution of Hopf bifurcation problems. Math. Methods Appl.
Sci. 2, 178–190.

Weber, H. (1981): On the numerical solution of some finite-dimensional bifurcation prob-
lems. Numer. Funct. Anal. Optim. 3, 341–366.

Weber, H. (1982): Zur Verzweigung bei einfachen Eigenwerten. Manuscripta Math. 38,
77–86.

Weber, H. (1982): Numerical solution of a class of nonlinear boundary value problems for
analytic functions. Z. Angew. Math. Phys. 33, 301–314.

Weber, H. (1984): An efficient technique for the computation of stable bifurcation branches.
SIAM J. Sci. Statist. Comput. 5, 332–348.

Weber, H. (1985): Multigrid bifurcation iteration. SIAM J. Numer. Anal. 22, 262–279.
Weber, H. & Werner, W. (1981): On the accurate determination of nonisolated solutions of

nonlinear equations. Computing 26, 315–326.
Wendland, W. L. (1978): On the imbedding method for semilinear first order elliptic sys-

tems and related finite element methods. In: Continuation methods. H.-J. Wacker editor.
Academic Press, New York, London, 277–336.

Werner, B. & Spence, A. (1984): The computation of symmetry-breaking bifurcation points.
SIAM J. Numer. Anal. 21, 388–399.

Whalley, J. (1977): Fiscal harmonization in the EEC; some preliminary findings of fixed
point calculations. In: Fixed points: algorithms and applications. S. Karamardian editor.
Academic Press, New York, London, 435–472.

Whalley, J. & Piggott, J. (1980): General equilibrium analysis of taxation policy. In: Anal-
ysis and computation of fixed points. S. M. Robinson editor. Academic Press, New York,
London, 183–195.

Wilmuth, R. (1977): A computational comparison of fixed point algorithms which use com-
plementary pivoting. In: Fixed points: algorithms and applications. S. Karamardian edi-
tor. Academic Press, New York, London, 249–280.

Wilson, R. B. (1963): A simplicial algorithm for concave programming. Ph.D. Thesis. Har-
vard University.

Winters, K. H. (1988): A bifurcation analysis of three-dimensional Bénard convection. Pre-
print TP.1293, Harwell Laboratory, England.

Winkler, R. (1985): Path-following for two-point boundary value problems. Seminarbericht
Nr. 78. Humboldt-Univerität, Berlin.

Wolsey, L. A. (1974): Convergence, simplicial paths and acceleration methods for simplicial
approximation algorithms for finding a zero of a system of nonlinear equations. CORE
Discussion Paper #7427. Univ. Cath. de Louvain, Belgium.

Wright, A. H. (1981): The octahedral algorithm, a new simplicial fixed point algorithm.
Math. Programming 21, 47–69.

Wright, A. H. (1985): Finding all solutions to a system of polynomial equations. Math.
Comp. 44, 125–133.



    

382 Bibliography

Yamamoto, Y. (1981): Subdivisions and triangulations induced by a pair of subdivided
manifolds. Preprint.

Yamamoto, Y. (1982): The 2-ray method: a new variable dimension fixed point algorithm
with integer labelling. Discussion Paper Series 154. Univ. of Tsukuba, Japan.

Yamamoto, Y. (1983): A new variable dimension algorithm for the fixed point problem.
Math. Programming 25, 329–342.

Yamamoto, Y. (1984): A unifying model on retraction for fixed point algorithms. Math.
Programming 28, 192–197.

Yamamoto, Y. (1984): A variable dimension fixed point algorithm and the orientation of
simplices. Math. Programming 30, 301–312.

Yamamoto, Y. (1987): A path following algorithm for stationary point problems. J. Oper.
Res. Soc. Japan 30, 181–198.

Yamamoto, Y. (1987): Stationary point problems and a path following algorithm. In: Pro-
ceedings of the 8 th Mathematical Programming Symposium, Hiroshima, Japan, 153–170.

Yamamoto, Y. (1988): Orientability of a pseudomanifold and generalization of Sperner’s
lemma. Journal of the Operations Research Society of Japan 31, 19–42.

Yamamoto, Y. (1989): Fixed point algorithms for stationary point problems. In: Mathe-
matical Programming, M. Iri & K. Tanabe editors, KTK Scientific Publishers, Tokyo,
283–307.

Yamamoto, Y. & Kaneko, M. (1986): The existence and computation of competitive equi-
libria in markets with an indivisible commodity. J. Econom. Theory 38, 118–136.

Yamamura, K. & Horiuchi, K. (1988): Solving nonlinear resistive networks by a homotopy
method using a rectangular subdivision. To appear in: IEEE Trans. on Circuits and
Systems.

Yamashita, H. (1979): A continuous path method of optimization and its application global
optimization. In: Survey of mathematical programming. Vol. I. A. Prékopa editor. North-
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Index and Notation

|| . || : usually denotes a norm, see norm

| . | : usually stands for the absolute value of a number, but occasionally may indicate a union,
namely if M is a system of sets such as a PL manifold, then |M| = ∪σ∈Mσ is the set
subdivided by M

. [.] usually denotes a co-ordinate, e.g. x[i] for x ∈ RN and i ∈ {1, 2, . . . , N} denotes the
i th co-ordinate of x

[. , . . . , .], see simplex

(.)∗ : denotes transposition, e.g. x∗y for x, y ∈ RN is the scalar product of x and y
ˆ: denotes the deletion of the element beneath
(.)′, see derivative
∇, see derivative
∂ : symbol for a partial derivative, or also for a subgradient, or also for the boundary of a

set
(.)+ : Moore-Penrose inverse, cf. (3.2.2)
(.)+, cf. (11.7.2)
⊥ : sign for orthogonality, cf. preceding (3.2.5)
(.)−, cf. (11.7.2)
# usually indicates the cardinality of a set, e.g. #{2, 3, . . . , k} = k − 1
(.)#, see set valued hull, cf. (13.1.3)
\ : usually indicates the set-theoretical difference i.e. A \B = {x ∈ A | x /∈ B}
adjacent simplices, cf. (12.1.7)
aff(.) symbol for affine hull, cf. (14.1.3)
affinely independent, cf. (12.1.1)
angle, measure of curvature, cf. (6.1.7)

arclength, cf. preceding (1.7), following (2.1.4), (5.2.1), preceding (6.3.2), preceding (9.2.1)
arg min, see minimization

asymptotically linear map, cf. (13.1.2)

augmented Jacobian, cf. (2.1.5)
automatic pivot, cf. section 13.6

band structure, cf. (10.3.17)

barycenter, cf. (12.1.5)

barycentric co-ordinates, cf. (12.1.4)

Bezout’s Theorem, cf. (11.6.4)
bifurcation equation, approximation of, cf. (8.1.7), (8.3.7)–(8.3.9)

bifurcation point, cf. (8.1.1)

bifurcation point, detection and approximation, cf. (8.3.1), end of section 9.2
bifurcation point, simple, cf. (8.1.11)

boundary of a set is usually denoted by the symbol ∂
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boundary condition, cf. following (1.5)

boundary condition, LS, cf. (11.2.12), (13.1.15)

boundary condition, Smale’s, cf. (11.4.4) preceding (11.2.12), (11.4.4), (11.5.3), following
(11.5.6), (11.7.5), (13.1.12), (13.1.16)

boundary start, cf. (14.1.13)

boundary termination, cf. (14.1.13)

branch switching via the bifurcation equation, cf. section 8.3

branch switching via perturbation, cf. section 8.2

Brouwer fixed point theorem, cf. following (11.1.1), section 11.3

Broyden’s formula, cf. (7.1.7), (7.2.3)

C∞, see smooth

C : set of complex numbers

cancellation error, cf. following (7.2.13), following (8.3.9), neighborhood of (10.3.25),
preceding (12.4.4), section 16.2

cardinality, see #

Cauchy-Riemann, cf. section 11.6 and 11.8

cell, cf. (14.1.4)
Cholesky, cf. (10.3.6–7)
chord method, Newton, cf. preceding (7.1.1), (13.5.1), (15.2.2)
co denotes the convex hull

co denotes the closed convex hull
coercivity condition, cf. (11.7.6), (13.1.22)
compatible with a triangulation, cf. (13.2.1)
complementarity problem, cf. (11.7.1), (13.1.22), section 14.3, (14.4.17), (14.4.44)
complementary pivoting, cf. (11.7.6) preceding (13.5.1) end of section 14.1
completely labeled, cf. (12.3.1–3), (14.1.15)
completely labeled, integer case, cf. (12.5.3)
complex numbers, see C
complexification of a map, cf. preceding (11.8.4)
complexity, cf. preceding (11.7.7)
condition number, cf. (4.3.1)
cone construction, cf. (14.4.6)
conjugate gradient, cf. section 10.3
contraction rate, Newton, cf. (6.1.1)
convex function, cf. (13.1.17)
convex hull, cf. (2.3.1), (12.1.3), (13.1.3)
convex, uniformly, cf. (10.3.5)
co-ordinate, see . [.]

corrector procedure, cf. (2.2.3), chapter 3, section 10.3, (15.2.1)
Coxeter, cf. (12.1.10)

critical point, cf. section 11.8

cyclic ordering of vertices, cf. following (12.1.11)
Davidenko, cf. (1.8), (2.1.9)

defining initial value problem, cf. (2.1.9)

deflation, cf. (11.5.1)

degree of a map, cf. following (1.8), following (8.1.14), neighborhood of (11.1.1)

degree of a polynomial, cf. following (11.6.3)
delay equation, differential, cf. (P4.1), section P6.5

derivative : If f : RN → R, then f ′ denotes the row of partial derivatives, and ∇f = (f ′)∗

the gradient, i.e. the column of partial derivatives. Consequently, the Hessian is denoted
by∇f ′. Correspondingly, if F : RN → RM , then F ′ denotes the M×N -Jacobian matrix.

d-homotopy, cf. (11.5.2)
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difference, set-theoretical, see \
dimension of a simplex, cf. (2.3.1), (12.1.5)

dimension of a cell, cf. (14.1.4)

distance to curve, measure, cf. (6.1.6)

Door-In-Door-Out-Principle, cf. (12.3.8), (15.4.5)

ei : usually denotes the i th unit base vector whose dimension is obvious from the context

edge of a simplex, cf. (12.1.5)

edge of a cell, cf. (14.1.5)

embedding method, cf. (1.6)

ε-perturbation, cf. (12.1.3–4), (14.1.8)

error model, cf. section 6.2

Euler-Newton, cf. (3.3.7), chapter 5, section 10.2

extremal points, approximation of, cf. section 9.3

extremal set, cf. (14.1.5)

face of a simplex, cf. (2.3.1), (12.1.5)

face of a cell, cf. (14.1.5)

facet of a simplex, cf. (12.1.5)
facet of a cell, cf. (14.1.4)
flop, cf. following (16.2.2)
Freudenthal, cf. (12.1.10)
Frobenius norm, cf. (7.1.6)
G′(∞), see Jacobian at ∞
general position, cf. (12.1.1)
Givens rotations, cf. section 4.2, (10.3.17), preceding (16.3.3)
HT : denotes the PL approximation of H with respect to T
half-space, cf. (14.1.4)
H-center, cf. (12.3.12)
Hessenberg form, cf. preceding (16.3.3)
Hessian, see derivative
homeomorphic : a homeomorphism is a bijective map which is continuous in both directions
homogeneous part of a polynomial, cf. following (11.6.3)
homogenization of a polynomial, cf. following (11.6.3)
homotopy algorithm or method, cf. (1.3)
homotopy, convex or linear, cf. (1.4)
homotopy, global, cf. (1.5), section 11.4
homotopy level, cf. following (1.5)

homotopy map, cf. (11.1.1), (11.2.4)
homotopy algorithm or method, piecewise linear (PL), cf. section 13.2, section 13.4,

section 14.4
hyperplane, cf. (14.1.4)

Id : denotes the identity matrix whose dimension is usually clear from the context

identity matrix, see Id

implicit function theorem, cf. following (1.5), preceding (2.1.3), following (2.1.14),
preceding (8.1.6), (15.1.1)

index of a map, cf. (11.5.5), end of section 8.1, preceding (11.5.2)

index, Morse, cf. (11.8.2)

index, PL, cf. section 14.2

integer labeling, cf. section 12.5
integers, positive, see N

interior start, cf. (14.1.13)

interpolation, higher order predictors, cf. section 6.3
interpolation, PL or affine, cf. preceding (12.1.1), (12.5.4)
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inverse iteration, cf. (8.3.6)

J1, cf. preceding (13.3.3)

J3, cf. (13.3.5)

Jacobian, see derivative

Jacobian at ∞, cf. (13.1.12)

kernel, approximation of, cf. (8.3.6)

labeling matrix, cf. preceding (12.2.6), (12.3.3)

Landau symbol, cf. (3.3.4)

least change principle, cf. preceding (7.1.6)

Lemke, cf. section 14.3

Leray & Schauder, see boundary condition, LS

Leray & Schauder fixed point theorem, cf. (11.1.1)

lexicographically positive, cf. (12.3.2)

Liapunov-Schmidt reduction, cf. (8.1.3)–(8.1.7)

line, cf. preceding (14.1.13)

linear programming step, see LP step

line search, following 10.3.23)
locally bounded map, cf. (13.1.2)
locally bounded partition, cf. (13.1.10)
loop termination, cf. (14.1.13)
LP basis, cf. preceding (15.4.5)
LP step, cf. preceding (12.3.10), section 12.4, (15.4.5)
LU decomposition or factorization, cf. section 4.5, section 16.4
M : often denotes a manifold
manifold, PL, cf. (14.1.6)
max, see minimization
maximal point, see minimization
maximal value, see minimization
mean value and Taylor’s formula, cf. neighborhood of (5.2.3), (7.1.11), section 15.5
meshsize of a triangulation, cf. (12.6.1), (13.2.3)
min, see minimization
minimal point, see minimization
minimal value, see minimization
minimization : The following notation is used: Consider e.g. the function x ∈ RN →
||x−x0||, then the optimal or minimal value is minx∈RN ||x−x0|| = 0, and the optimal or
minimal point is arg minx∈RN ||x−x0|| = x0. The concept of maximization is analogous.

minimization problem, constrained, cf. (13.1.18)
modified Newton : chord method

Moore-Penrose inverse, cf. (3.2.2)
moving frame, cf. end ofsection 15.2

multiple solutions, cf. section 11.5

multiplicity of a zero point, cf. (11.6.4)
N : set of positive integers

negative part, cf. (11.7.2)

Neumann series, cf. (5.2.8), (15.5.6)

norm : if not otherwise stated, Euclidean norm is assumed

Newton, global, cf. section 11.4
Newton’s method, cf. following (3.1.1), (3.3.6), (3.4.1), section 7.1

nodes of a triangulation, cf. (12.1.7)

O(.), see Landau symbol
optimal point, see minimization

optimal value, see minimization
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order adaptation, cf. section 6.3

orientation, cf. preceding (2.1.6)

orientation, change, cf. following (8.1.14), (8.1.17)

orientation of PL manifolds, cf. section 14.2, end of chapter 15

parametrization, local, cf. following (10.2.1)

perturbation, global, cf. (8.2.1)

perturbation, local, cf. (8.2.2)

P-function, uniform, cf. (11.7.10)

piecewise-linear (PL) approximation, cf. section 12.2

piecewise-linear (PL) method, cf. section 2.3, (8.2.1), section 12.3, section 12.4, (14.1.17),
section 15.4

pivoting by reflection, cf. (12.1.11), (13.3.1), (13.3.3)

pivoting step, cf. (12.1.9), end of section 14.1

PL approximation of a map, cf. (12.2.1)

PL manifold, cf. (14.1.6)

Polak & Ribière, cf. (10.3.3)

polynomial systems, cf. section 11.6
polynomial time algorithm, cf. preceding (11.7.7), end of section 11.7
positive definite, cf. (14.3.10)
positive integers, see N
positive part, cf. (11.7.2)
preconditioning, cf. neighborhood of (10.3.6)
predictor-corrector (PC) method, cf. following (2.2.3), (3.1.1), preceding (13.5.1),

(15.3.1)
predictor, Euler, cf. (2.2.2)
predictor, variable order, cf. section 6.3
primal-dual manifold, cf. (14.4.9)
primal-dual pair, cf. (14.4.4)
primary ray, cf. (14.3.8)
principle minor, cf. following (14.3.9)
pseudo manifold, cf. (14.1.6)
Quasi-Newton, cf. end of section 7.1, preceding (16.1.3), end of section 16.3, section P6.4
QL decomposition or factorization, cf. preceding (10.3.10), (16.4.4)
QR decomposition or factorization, cf. section 4.1, section 16.3
R : set of real numbers
R+ : set of non-negative real numbers
R++ : set of positive real numbers

ray, cf. preceding (14.1.13)
ray start, cf. (14.1.13)

ray termination, cf. (14.1.13)

real numbers, see R
reference matrix, cf. end of section 15.2

refining manifold, cf. (14.4.8)

refining triangulation, cf. preceding (13.3.5), preceding (13.4.1)
regular point or value, cf. following (1.5), (2.1.10)

regular point or value, PL case, cf. (12.2.2), (14.1.7)

resultant, cf. (11.6.6)

retraction, cf. (13.1.14)

secant equation, cf. (7.1.3)
segment, cf. preceding (14.1.13)

set-valued hull, cf. (13.1.3)

slab, cf. following (13.2.3)
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Sperner’s Lemma, cf. (14.4.1)

supporting hyperplane, cf. (14.1.5)

residual algorithm, minimal, cf. end of section 10.3

set valued hull, cf. (13.1.3)

Sard’s theorem, cf. (11.2.2–3), section 8.2, preceding (12.2.4), preceding (14.1.9),
preceding (15.4.1), preceding (P4.11)

scalar product, see (.)∗

scaling, cf. section 4.4

secondary bifurcation point, cf. program 4

secondary ray, cf. (14.3.8)

self-correcting, cf. (16.2.6)

separable map, cf. (14.5.1)

Sherman-Morrison-Formula, cf. (16.2.1)

simplex, definition of, cf. (2.3.1), (12.1.3)

singular point or value, cf. (2.1.10)

singular point or value, PL case, cf. (12.2.2), (14.1.7)

Slater condition, cf. (13.1.19)
smooth : continuously differentiable as often as needed, C∞-differentiability may be as-

sumed for simplicity, cf. (2.1.1)
subgradient, cf. (13.1.17)
Stability, numerical, cf. end of section 4.4, preceding (4.5.2), end of section 5.1,

end of section 6.3, following (7.2.13), section 11.3, chapter 16
Stability, change in, cf. (9.1.1–2)
steplength adaptation, cf. chapter 6
steplength adaptation, Newton, cf. (9.2.3)
superlinear convergence, cf. (6.2.10), (7.1.8), section 10.3
Sylvester matrix, cf. (11.6.6)
t(.), cf. (2.1.7)
T : often denotes a triangulation, see triangulation
tangent, approximation of, cf. (8.3.10–11)
tangent space of a cell, see tng(.)
tangent vector induced by a matrix, cf. (2.1.7)
Taylor’s formula, cf. neighborhood of (3.4.4), preceding (5.2.4)
thickness, measure of, cf. (15.5.3)
tng(.) : tangent space of a cell i.e. tng(σ) = span{x− y | x, y ∈ σ}
transverse intersection, cf. preceding (8.1.11), preceding (11.2.10)
transverse simplex, cf. (12.3.7)
transverse cell, cf. (14.1.15)

triangulation, cf. (2.3.2), (12.1.6), preceding (14.1.7)
triangulation of a pseudo manifold, cf. (14.1.7)

truncation error, cf. following (2.3.3), preceding (3.3.5), following (8.3.9), end of section
10.1, neighborhood of (10.3.24), end of section 12.1 and 12.2, end of section 12.3,
section 12.6, preceding (13.2.7)

turning points, cf. following (1.6), (9.1.1) , (9.3.6), following (11.8.3), (11.8.10)

unit base vector, see ei
update method, cf. chapter 7

upper semi-continuous, cf. (13.1.5)
variable dimension algorithms, cf. section 14.4

vector labeling, cf. (12.5.1)

vertex of a simplex, cf. (2.3.1), (12.1.5)
vertex of a cell, cf. (14.1.4)

zero points of a polynomial at ∞, cf. (11.6.4)


