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INTRODUCTION

The use of group theory in physics became very widespread in the last two
decades. The reasons are not hard to find. Firstly, the theory happens to be a
natural mathematical language suitable for physical concepts to be expressed in.
Secondly, the emergence of very complicated mathematical equations in physics
that needed simplification in any possible way, and symmetry in physics is just one
such aspect that can be used in simplification.

The first factor can easily be seen in quantum field theory. The description of
state functions is made by means of a vector in a Hilbert space. On the other hand,
the theory requires Poincaré symmetry, or invariance. But representation theory
of the Poincaré group provides us with exactly this kind of mathematical tool that
combines special relativity and quantum mechanics. A more sophisticated use of
representations of the Poincaré group is subsequently achieved by associating a
particle with each representation. This then leads to Wigner’s famous
classification of particles according to their spins and masses [E. P. Wigner, On
Unitary Representations of the Inhomogeneous Lorentz Group, Ann. Math. 40,
149 (1939)]. A further step leads to the classification of all invariant equations
according to the representation. This leads to the very important result of finding
the equation of motion associated with each representation. In this way one
obtains the Dirac equation, the Proca equation, etc. [E. P. Wigner, Invariant
Quantum Mechanical Equations of Motion, in Theoretical Physics, International
Atomic Agency, Vienna, 1963, pp. 59-82].

Wigner’s ideas changed our conceptional approach to physics. An example is
provided by the use of compact groups, such as SU,, SU;, etc., in strong and
weak interactions. Once again the theory of groups is mystically fit to describe
mathematically the particle’s quantum numbers, such as isopin, strangeness, etc.
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Although many excellent books on general relativity have been written, the
present book is the first book on the subject of group theory and general relativity
and deals with the applications of group theory to general relativity. As is well
known, the theory of general relativity was founded at a time when group theory
was very little used in physics. During the last two decades it has become obvious
that general relativity is one of many theories known as gauge theories, and at the
same time a lot of work has been done in general relativity using group theory. To
be sure we do not have any other gauge theory (except for the obvious case of the
electromagnetic theory) that is compared, in its perfection and fitness to exper-
imental results, to general relativity. However, the idea of gauge theories in par-
ticle physics is very widespread. An example of this is Weinberg’s gauge theory
that combines the electromagnetic and weak interactions [S. Weinberg, Phys. Rev.
Letters 19, 1264 (1967)]. In this book an extensive discussion on the theory of
general relativity from the point of view of gauge fields is given, and an attempt is
made to put together in one volume many scattered original works on the use of
group theory in general relativity theory. The point of view of looking at gravita-
tion theory as a gauge theory was extensively discussed by the author in the
NATO Advanced Study Institute on Mathematical Physics [M. Carmeli, SL(2, C)
Symmetry of the Gravitational Field, in Group Theory in Non-Linear Problems,
A. O. Barut, Ed., D. Reidel, Dordrecht, Holland; Boston, U.S.A., 1974, pp. 59-
110]. However, there is no other volume that encompasses the original articles,
now scattered in the professional literature, which fits into the subject category of
group theory and general relativity.

This book is based on lectures given by the author in the last four years to
advanced undergraduate and graduate students of mathematics and physics at the
Ben Gurion University. There are twelve chapters, divided into forty-six sections,
five appendices, and an extensive bibliography. Each chapter concludes with a set
of problems. The first six chapters are devoted to the theory of representations of
the rotation and Lorentz groups. The other six chapters deal with the application
of groups, mostly the Lorentz group, to the theory of general relativity. They cover
topics that start from the fundamentals of general relativity and end with exact
solutions of the gravitational field equations and representations of the Bondi-
Metzner-Sachs group. No discussion on cosmology is included. Also, the chapter
on the representations of the Bondi-Metzner-Sachs group is just a brief introduc-
tion to the subject. A more detailed account of this important group would need
the use of the theory of representations of the Poincaré group, in particular
Wigner's little group method; that was not the purpose of the present book. [The
reader who is interested in more detail about the Bondi-Metzner-Sachs group is
referred to R. Penrose’ lucid review: Relativistic Symmetry Groups, in Group
Theory in Non-Linear Problems, A. O. Barut, Ed., D. Reidel, Dordrecht, Holland;
Boston, U.S.A, 1974, pp. 1-58, although no discussion is given on the representa-
tions themselves.] The whole book is written in a self-contained way in both topics
of group theory and general relativity theory. No prior knowledge of either sub-
ject by the reader is assumed. The book could be used as a textbook for a
two-semester course for students of mathematics and physics at the graduate level,
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or for research purposes. Parts of the book could also be used as a basis for a
one-semester course; for example the first six chapters can be used as a text for
a one-semester course on the theory of representations of the rotation and Lorentz
groups for advanced undergraduate and graduate students of mathematics and
physics. As is well known, the theory of representations of the Lorentz group has
traditionally been used as an introduction to the general theory of representations
of groups. Another example is that the last six chapters of the book can be used as
a text for graduate students of physics and mathematics on the theory of general
relativity. The detail of the chapters is as follows:

Chapter 1 is devoted to the theory of representations of the rotation group. It
includes such elementary concepts as the pure rotation group, the group SU,, the
very important concept of invariant integral over a group and, of course, the
Wigner matrices of irreducible representations of the rotation group. While
the rotation group has been widely covered in other texts, the parametrization of
these representations here is not done through the traditional Euler angles but by
other angles that describe rotations. In chapter 2 the discussion of the Lorentz
group begins. This chapter includes an elementary discussion of the problem in
general. Chapter 3 includes the important case of the finite-dimensional spinor
representations of the Lorentz group. Here the group SI{2, C) is introduced, and
its relation to the Lorentz group is outlined. Chapters 4, 5, and 6 are devoted to
the infinite-dimensional representations of the group SL(2, C). These representa-
tions are the principal series, the complementary series, and the complete series.

The discussion of the infinite-dimensional representations starts in Chap. 4 by
outlining the spaces of representations. These include several Hilbert spaces. Here
also the theory of Fourier transform on the group SU, is introduced. The group
operators are subsequently introduced, and the representation of the principal
series is realized in these spaces. The complementary series is subsequently in-
troduced in Chap. 5, where an operator formulation is also given. Chapter 6 then
concludes the discussion of the infinite-dimensional representations. In this chap-
ter some harmonic analysis of the group SI{2, C) is also given.

The theory of general relativity first appears in Chap. 7 where the standard
elements of the theory are given. Applications of the spinor representations to
general relativity theory are given in Chap. 8. The Maxwell and Weyl spinors are
introduced and classified accordingly. In Chap. 9 the general aspects of the theory
of gauge fields are described. This includes the concept of isotopic spin and
isotopic gauge transformations. Generalizations are then made to the Lorentz and
Poincaré groups, and finally to the group SL{2, C). This leads to our obtaining the
gravitational field equations in the familiar form of Newman and Penrose. Thus
our approach here is obtaining the Newman-Penrose equations for general relati-
vity from gauge-theory principles. Later chapters of the book are devoted to
solving the field equations of general relativity.

In Chap. 10 we analyse the gravitational field variables, proving the
Goldberg-Sachs theorem, and dealing with choosing coordinate systems and
asymptotic behaviour. In Chap. 11 we give exact solutions to the Newman-
Penrose equations of general relativity. These include the Robinson-Trautman
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solution, the Newman-Tamburino solutions, the NUT-Taub solution, and all
type D vacuum solutions, including the familiar Kerr solution. Finally, Chap. 12
concludes the text with the representations of the Bondi-Metzner-Sachs group.
The five appendices give reviews of the theory of groups, reviews of the theories of
finite and infinite-dimensional representations, whereas the last two appendices
summarize the Newman-Penrose equations-for the gravitational field of general
relativity. The book is then concluded with the bibliography.

Although both the theory of representations of the Lorentz group and the
theory of general relativity are presented here, and although the material includes
reviews of some of the most recent developments in both topics, the present book
does not cover all possible subjects on both topics. Among the following list of
excellent books and monographs the remedies for some of these deficiencies can
be found:

(1) B. L. van der Waerden, Modern Algebra, Fredric Ungar, New York, 1953.

(2) L. Pontrjagin, Topological Groups, Princeton University Press, New Jersey,
US.A, 1946.

(3) E. P. Wigner, Group Theory and its Application to the Quantum Mechanics of
Atomic Spectra, Academic Press, New York, 1959.

(4) M. A. Naimark, Linear Representations of the Lorentz Group, Pergamon
Press, New York, 1964.

(5) I. M. Gelfand, M. 1. Graev, and N. Ya. Vilenkin, Generalized Functions,
Vol. 5: Integral Geometry and Representation Theory, Academic Press, New
York, 1966.

(6) I. M. Gelfand, R. A. Minlos, and Z. Ya. Shapiro, Representations of the
Rotation and Lorentz Groups and their Applications, Pergamon Press, New
York, 1963.

(7) W. Rthl, The Lorentz Group and Harmonic Analysis, W. A. Benjamin, New
York, 1970.

(8) A. Trautman, F. A. E. Pirani, and H. Bondi, Lectures on General Relativity
(Brandeis 1964 Summer Institute on Theoretical Physics, Vol. 1), Prentice-
Hall, Englewood Cliffs, N.J., U.S.A, 1965.

(9) J. L. Anderson, Principles of Relativity Physics, Academic Press, New York,
1967.

(10) W. R. Davis, Classical Theory of Particles and Fields and the Theory of
Relativity, Gordon and Breach, New York, 1970.

(11) S. Weinberg, Gravitation and Cosmology: Principles and Applications of the
General Theory of Relativity, John Wiley, New York, 1972.

(12) S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-Time,
Cambridge University Press, Cambridge, England, 1973.

(13) C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation, W. H. Freeman,
San Francisco, 1973.

(14) A. Papapetrou, Lectures on General Relativity, D. Reidel, Dordrecht,
Holland; Boston, U.S.A., 1974.
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I would like to conclude this Introduction by citing a very relevant statement
on the important role of group theory in physics, even though most researchers
now realize and understand this role. However, it is a citation that has its own
historical significance and is here very relevant in relation to gravitational theory,
just as it was originally. It is a quotation from an introduction of A. Salam in a
moment of deep insight, commenting on G. Racah’s lectures on Lie groups given
at the Institute for Advanced Studies at Princeton [A. Salam, The Formalism of
Lie Groups, in Theoretical Physics, International Atomic Agency, Vienna, 1963,
pp. 173-196]:

Throughout the history of quantum theory, a battle has raged between the
amateurs and professional group theorists. The amateurs have maintained that
everything one needs in the theory of groups can be discovered by the light of
nature provided one knows how to multiply two matrices. In support of this
claim, they of course, justifiably, point to the successes of that prince of
amateurs in this field, Dirac, particularly with the spinor representations of the
Lorentz group. As an amateur myself, I strongly believe in the truth of the
non-professionalist creed. I think perhaps there is not much one has to learn in
the way of methodology from the group theorists except caution. But this does
not mean one should not be aware of the riches which have been amassed over
the course of years particularly in the most highly developed of all mathemati-
cal disciplines—the theory of Lie Groups. My lectures then are an amateur’s
attempt to gather some of the fascinating results for compact simple Lie groups
which are likely to be of physical interest. I shall state theorems; and with a
physicist’s typical unconcern rarely, if ever, shall I prove them. Throughout, the
emphasis will be to show the close similarity of these general groups with the
most familiar of all groups, the group of rotations in three dimensions. In 1951 1
had the good fortune to listen to Prof. Racah lecture on Lie groups at Prin-
ceton. After attending these lectures I thought this is really too hard; I cannot
learn this; one is hardly ever likely to need all this complicated matter. I was
completely wrong. Eleven years later the wheel has gone full cycle and it is my
turn to lecture on this subject. I am sure many of you will feel after these lectures
that all this is too damned hard and unphysical. The only thingI can say is: 1do
very much hope and wish you do not have to learn this beautiful theory eleven
years too late.

Many people have helped me to prepare this book, from the first stages of
writing to the final stage of reading it, partially or completely. I am in particular
indebted to Professor S. Malin, without whose help, continuous encouragement,
and reading of the manuscript, the book would probably have never been finished.
I am indebted to Professor A. O. Barut whose kind invitation to the NATO
Advanced Summer Institute in Istanbul gave me the opportunity to present the
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content of Chaps. 8 and 9 of the book in my two-week series of lectures there, and
for his kind hospitality there. I am indebted to my teacher and colleague Professor
Nathan Rosen, both for reading the manuscript and for his comments and encour-
aging remarks on it which I am sure has led to a better presentation of the
material. Many thanks are also due to Professor L. Witten for both encourage-
ment on the idea of the book and for critically reading and commenting on it, and
to Professor G. Tauber and Dr. J. Bekenstein for comments and remarks. Last,
but not least, I am indebted to my students M. Kaye and C. Charach for systema-
tically reading the manuscript and for their comments and suggestions. Finally, I
am grateful to Mrs. Y. Ahuvia for the excellent job she has made of typing the
manuscript.

MOSHE CARMELI
Beer Sheva, Israel



CHAPTER

ONE
THE ROTATION GROUP

In the following we find the irreducible representations of the three-dimensional
pure rotation group, O5. This is done by Weyl’s method, which makes use of the
homomorphism of the special unitary group of order two, SU,, onto the rotation
group. The representations are discussed in terms of two different parameteriza-
tions: (1) the angle of rotation in a specified direction and the spherical angles of
the direction of rotation; and (2) the traditional Euler angles.

1-1 THE THREE-DIMENSIONAL PURE ROTATION GROUP

A linear transformation g of the variables x;, x,, and x5, which leaves the form
x? + x2 4+ x3% invariant, is called a three-dimensional rotation. The aggregate of all
such linear transformations g provides a continuous group, which is formed from
the set of all real orthogonal 3-dimensional matrices!’! and is called the three-
dimensional rotation group. The determinant of every orthogonal matrix is equal to
either + 1, in which case the transformation describes pure rotation, or to —1, in
which case it describes a rotation-reflection. The aggregate of all pure rotations
forms a group, which is a subgroup of the 3-dimensional group, and is called the
pure rotation group. This chapter is concerned with the 3-dimensional pure rotation
group. This group is denoted by O;.

The Euler Angles

Let g be an element of the group 03, ie., a 3-dimensional orthogonal matrix with
determinant unity. One then can express each such element in terms of a set of
three parameters. An example of such parameters is that of Euler angles, which are

! A matrix g is called orthogonal if g'g = 1, where g' is the transposed of g.
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£

~N

(a)

(b)

(c)

Figure 1.1 The three rotations deﬁning the
Euler angles.

Line of nodes

defined as the three successive angles of rotation describing the transformation
from a given Cartesian coordinate system to another by means of three successive

rotations performed in a specific sequence.
The sequence will be started (see Fig. 1.1) by rotating the original system of
axes x by an angle ¢, clockwise about the z axis.!? The new coordinate system

will be labelled &. One thus has § = g(¢,)x, where
cos ¢, —sin¢, O

g(¢,) = | sin ¢, cos ¢; 0 (1-1)
0 0 1

2 We use the notation X = (x, y, z) = (x,, x,, X3), & = (&, 7, (). & = (&, 7, () and X' = (¥, ¥, 2') =

()0 X X3)
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In the second stage the intermediate axes § are rotated about its £ axis clockwise
by an angle 6 to another intermediate set which is denoted &', and one has

& = g(0)&, where

1 0 0
g(0) = (0 cos § —sin 9) (1-2)
0 sind cos 0

The & axis is called the line of nodes. Finally the &' axes are rotated clockwise by an
angle ¢, about the {’ axis to produce the desired x’ system of axes, X' = g(¢,)E’,
where

cos ¢, —sin¢, O
) (1-3)

g(¢,) = (sin ¢z cos ¢, O
0 0 1

The matrix of the complete transformation x' = gx is given, therefore, by the
product of the successive matrices g = g(¢,)g(0)g(¢,) and is given by

cos ¢, cos ¢, —cos ¢, sin ¢, sin ¢, sin 6
— cos 0 sin ¢, sing, —cos 0 cos ¢, sin ¢,
g = | sin ¢, cos ¢, —sin ¢, sin ¢, —cos ¢, sin 8
+ cos 0 sin ¢; cos ¢, + cos 0 cos ¢, cos ¢,
sin 0 sin ¢, sin 0 cos ¢, cos 0
(1.4)

The angles ¢, 6, ¢, are independent parameters, fully determining the rota-
tion g. They are called the Euler Angles. By their definition, one has 0 < ¢, < 2n,
0<0<mand 0<¢, <2n

1-2 THE GROUP SU,

Rotations can also be specified by unitary matrices of order two and determinant
unity. The aggregate of all such matrices provides a group which is denoted by
SU, . The relation between the groups O, and SU, can be established as follows.

The Groups O, and SU,

Let x, and x,, with k, I = 1, 2, 3, denote the coordinates of two Cartesian frames
related by xj = gy, x;, where g,; are elements of the matrix g € 05, and the summa-
tion convention is being employed here and in the sequel. With each coordinate
system x, one associates a 2 x 2 Hermitian matrix P defined by P = x, 6%, where
o* are the Pauli spin matrices,

Q) 0D e e



4 GROUP THEORY AND GENERAL RELATIVITY

In terms of P one requires that the coordinates transform according to P’ = uPu?,
where u is an element of the group SU,, P = xj¢’, and u' is the Hermitian

conjugate of u. The relation between u of SU, and g of O5 are given by
6.0 = $Te(0uou') (1-6)
u=F(l+d0%,)2(1 + Trg)'’? (1-7)

where Tr stands for trace.

Homomorphism of the Group SU, onto the Group O,

Accordingly, to each rotation g of the group Oj; there corresponds, by Eq. (1-7),
two matrices Fu of the group SU, and, conversely, to each unitary matrix u of
SU, there corresponds, by Eq. (1-6), some rotation g of O5. It thus follows that
the group O is homomorphic (see Appendix A) to the group SU, . For example,
the unitary matrices corresponding to the rotations g(¢,), g(0), and g(¢,) given by
Egs. (1-1)-(1-3) are easily found, using Eq. (1-7). They are

_ ei«151/2 0
ulg) =+ 0 e—im/z) (1-8)
cos = Isin o
2 2
u(0)= F (1-9)
i sin 5 cos 3
_ eit2/2 0
u¢l)=7F| e—f¢2/2) (1-10)

A general rotation g, described by the matrix (1.4), will then correspond to the
unitary matrix u = u(¢b,) u(0) u(¢,) and is given by

cos Qei(¢2+¢1)/2 i sin Qei(¢z—¢1)/2
2

i sin e =002 cog L e ib2te1)2

1-3 INVARIANT INTEGRALS OVER THE GROUPS 0, AND
SU,

A function y = f(g) is said to be defined over the group G, if to each element g
of G there corresponds a number y. If the group is taken to be the rotation group

3 The subject of invariant integrals is treated here very briefly. For more details the reader is
referred to E. P. Wigner, Group Theory and its Application to the Quantum Mechanics of Atomic
Spectra, Academic Press, New York 1959; A. Weil, Actualites Sci. Ind, no, 869 (1938); M. A.
Naimark, Linear Representations of the Lorentz Group, Pergamon Press, New York, 1964; L. S.
Pontrjagin, Topological Groups, Princeton University Press, New Jersey, U.S.A., 1946.
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0, and one uses the Euler angles as parameters, then f(g), where g € 0, becomes
simply a function of the angles ¢,, 0, ¢,, ie., f(g9) = f(¢,, 6, ¢,). The function

[ then satisfies
f(d)l + 21{, 9’ ¢2) =f(¢1’ 9’ ¢2) (1-12)
f(1, 0, ¢, + 2m) = f (¢4, 0, ¢2)

Invariant Integral over the Group O,

The integral | f(g) dg is then called the invariant integral of the function f () over
the group O, if it satisfies

jf(g do) dg=jf(go g) dg

’

= [ flo) dg (1-13)
for any g4 € 05, and

[ fla™") dg =] flg) dg (1-14)

The expression dg is called a measure. When the Euler angles are used to para-
meterize the elements g of O,, one can write dg in terms of the angles ¢, 6, ¢, as
dg = (1/8n*) sin 0 d¢, d6 d@, . It satisfies

j dg=1 (1-15)

The integration limits extend over the whole domain of definitions of the var-
iables, ie, 0 < ¢, <2n,0<0 <m and 0 < ¢, <27

Invariant integral over the Group SU,

The concepts of functions defined over the group O, and invariant integrals
defined over the rotation group O, can easily be extended to the unitary group
SU,. Again, a function f(u) defined over the group SU, can be considered as a
function of the angles ¢,, 0, ¢,, ie., f(u) = f(d,, 0, ¢,). The analogous periodicity
conditions to those of Eq. (1-12) for functions defined over O will now be

f(d)l + 4”5 9’ ¢2) =f(¢1’ 9’ ¢2)
f(d)l’ 9’ ¢2 + 4”) =f(¢1’ 9’ ¢2) (1-16)
f(d)l + 27t, 9’ ¢2 + 2”) =f(¢1’ 9’ ¢2)
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The invariant integral over the group SU, then satisfies

[ f(uug) du = [ f(uou) du

= J f(u) du (1-17)

for any u € SU,, and

jﬂwwdu=jﬂmdu (1-18)

The measure du can then be expressed in terms of the Euler angles as
du = (1/16x?) sin 0 d¢, df d¢, and satisfies

jdu=1 (1-19)

The integration limits here will be: 0 < ¢, <4n,0 <0 <x,and 0 < ¢, <2n.

1-4 REPRESENTATIONS OF THE GROUPS 0; AND SU,

We have seen that the pure rotation group 04 is homomorphic to the unimodular
unitary group of order two, SU,, such that to every rotation g of O, there
correspond two matrices +u and —u of SU, and, conversely, to every element u
of SU, there corresponds some rotation g of O5.

Single- and Double-Valued Representations

It thus follows that the description of the representations (see Appendix B) of the
group O, is equivalent to that of the group SU,; a representation g — D(g) of the
group O, is single- or double-valued according to whether or not D(u) is equal to
D(—u). The use of the group SU, for finding the representations of the group 0,
was originally suggested by H. Weyl and has been widely adopted when the Euler
angles are used to parameterize the groups. The advantage of Weyl’s method is in
giving the double valued representations along with the proper representations.
The double valued representations are important in physical problems dealing
with spin-like properties. In the following we will use Weyl’s method as adopted
by Carmeli*

We point out that, by using Weyl’s method, ong can obtain a general invariant
result that is a function of u € SU,, valid for any parameterization one uses to
describe the rotation. To find the representations of the group O, in terms of a set
of parameters, one has merely to express u in terms of these parameters, as in the

*M. Carmeli, J. Math. Phys. 9, 1987 (1968). See also H. E. Moses, Ann. Phys. (N.Y.) 37, 224,
(1966); 42, 343, (1967); Nuovo Cimento 40A, 1120 (1965).
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case when the Euler angles are employed. In addition, by having the results as
functions over the group SU,, certain relations will be obtained which are invar-
iant under change of the parameters. As an example, the orthogonality relations
between the matrix elements of the irreducible representation can be written as an
invariant integral over SU,. Hence the relations are valid for any
parameterization.

Infinitesimal Generators

An orthogonal matrix describing a rotation with angle y about some direction
n = (sin 6 cos ¢, sin 0 sin @, cos 0) is given by

Grs = 0,5 cOS Y + n.n(l — cos ) — g, 1 sin Y (1-20)

where r, s, and ¢ run from 1 to 3. Rotations g,(¥), g,(¥), and g,(¢) around Ox,,
Ox,, and Ox, axes are obtained from (1-20) by putting the proper values for the
polar angles 0 and ¢.!* The infinitesimal matrices, g,, corresponding to rotations
about the axis Ox, are defined by'®

o= [ (121

and satisfy the commutation relations

(9, > 95] = &9 (1-22)

where [a, b] = ab — ba, and ¢, are the structure constants of the group.
Let us denote a representation of the group O, in an n-dimensional Euclidean
space R by g — D(g) and for convenience we putl”!

4,(¥) = D(g.(¥)) (1-23)

S These matrices are given by

1 0 0

gl(¢)=(0 cos ¥ —siﬂ'lf), 9.(¥) =
0 siny cosy

0 1 0

cosy O siny
(—sinnj/ 0 cosnj/)

cosy —siny O
g:(v) = (sin V] cos ¥ 0)
0 0 1

6 The g, are related to g,(¥) by g,(¢) = exp (¥g,), and are given by

00 0 00 1 0 -1 0
g1=(0 0 —1), g,=( 00 0)}, g3=(l 0 0)
01 0 -1 00 0 00

7 A(y) are called the basic one-parameter groups of the given representation and define one-
parameter groups of operators that satisfy A4 .(¥,)4,(y,) = A,(y, + ¥,); they are differentiable func-
tions of ¥ and may be expanded as 4,(y) = exp (y4,), where A, is defined by Eq. (1-24).



8 GROUP THEORY AND GENERAL RELATIVITY

The basic infinitesimal operators of the representations are then obtained by

e [dA,(w)L:O 120

dy

A representation of the group O, is uniquely determined by its basic infinitesimal
operators A4,. The determination of all the finite-dimensional representations of
the group O, is based on the fact that the operators A, satisfy the same commuta-
tion relations that exists among the infinitesimal matrices g,

[4,, A] = ¢4 A4, (1-25)

The A, are skew-Hermitian operators,!®! Af = — 4,, since, without loss of genera-
lity, every finite-dimensional representation of O, can be considered to be unitary
(see Problems 1.1 and 1.2).

Canonical Basis

Defining the new operators

Ly =id, + A,, L,=iA, (1-26)
one finds that
[Ls,Ly]= Lz, Ly, L_]=2L, (1-27)
LV=L_,Li=1L,

The problem then reduces to the determination of the operators L, L satisfying
conditions (1-27). This is answered by the following: Every finite-dimensional
representation of the group O, is uniquely determined by a non-negative integer
or half-integer j, the weight of the representation. The space of the representation
corresponding to such a number j has the dimension 2j + 1; the operators L, L,
of the representation are given relative to its canonical basis f_;, f_ ;4 4, ..., f; by

Lifm = [(] 1 m)(] i— m + 1)]1/2fmi1
L3fm = mfm

191

(1-28)
where m= —j, —j+ 1,...,j

8 An operator B in a finite-dimensional Euclidean space R is called adjoint to the operator A in
the same space if (Ax, y) = (x, By) for all x, y of R. The adjoint of an operator 4 is usually
denoted by A". It can be shown that for any linear operator A there exists one and only one adjoint
operator A", and that the adjoint operator to A" is A. An operator A is called Hermitian if 4" = 4.
An operator A is called unitary if and only if 4T4 = 1.

° It also follows that for each j there corresponds an irreducible representation of O,. If the
operators L, and L, of a representation of O in a (2j + 1)-dimensional space are given relative to
some basis f_;, f_ .y, ..., f;, then by Eqs. (1-28) that representation is irreducible.
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We now find the unitary matrix u corresponding to the rotation g, Eq. (1-20).
They are related by Egs. (1-6) and (1-7). A direct calculation gives

cos % + i sin ﬂcos9 i sin fsin()e""’
_ 2 2 2
u=+ " " " (1-29)
isin —sinfe cos —isin Ecos()

This is the unitary matrix u € SU, corresponding to a rotation with angle ¥
around the direction n specified by 8 and ¢. The corresponding matrix when the
Euler angles are employed was given in Eq. (1-11). It will be noted that
u(—, 6, §) =u"'(. 6, ¢).

The unitary matrices u, (i), #,(¥), and u;(y¥) corresponding to the rotations
g:1(¥), g2(¥), and g;3() around the axes of coordinates Ox,, Ox,, and Ox; (see
footnote 5, p. 7), are obtained from (1-29) by putting the appropriate values for 6
and ¢. They are:!®

cos ﬂ isin %
ui(¥) =+ " (1-30a)
i sin % cos 5
~ cos % —sin %
u(¥) = F ’ ’ (1-30b)
sin 0 cos 5
/2 0
us(¥) = F (e 0 e—fm) (1-30c)

Using these matrices, the operators A4,(i/) of the group SU, will be determined in
the next section.

1-5 MATRIX ELEMENTS OF IRREDUCIBLE
REPRESENTATIONS

A matrix u of SU, can be considered as that of a linear transformation of the
space of all pairs of complex numbers (¢!, £2):

E7= Yu,lt  (p=12) (1-31)

19 The infinitesimal matrices #, corresponding to rotations around Ox,,
u, = [du,(ll/)/dll/]‘,:o
are related to the Pauli matrices, Eq. (1-5), by 4, = ¥ (i/2)o".
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A representation of the group SU, can be obtained if one considers several pairs
(€1, &%), ..., (&4 €}) and forms all products £5! -+ £P% letting py, ..., p, take the
values 1, 2, independently. Under the transformation (1-31), this product trans-

forms like
2

EpLe-- = Z Upig upquélil o (1_32)
q1, ..., qx=1
The product £§! --- £f* may be considered as a vector in the linear space R, of all
2* complex numbers ¢ Px The linear transformation D™(u) of the space R, is
then given by

é/m Pk — Z upuu  Upe éql st qk (1_33)
=1

Spinor Representation of the Group SU,

The correspondence u — D®(u) is a representation of the group SU,, not irredu-
cible in general, since the subspace S, of R, of all symmetrical vectors ¢ is invariant
with respect to all the operators D®(u). The correspondence u — D®(u) is irredu-
cible, however, in the space S, . We denote this representation by Z, . It is called
the spinor representation of the group SU, of weight k/2.

An equivalent realization of the representation Z; is obtained if one identifies
the space S, with the (k + 1)-dimensional space of homogeneous polynomials
p(zy, z,) of degree k in the two complex variables z; and z, and sets up a one-to-
one correspondence between ¢ of S, and p(z,, z,) in the form

2
p(Zl’ Zz) = Z e mpkzpl T Zpy (1'34)

Ple e k=1

The operator D®(u) for this new realization of the space S, is then given by
D®(u)p(z, z,) = p(z}, 25)

’
Zq—

[ gk

UpeZp (g=12) (1-35)

p=1

Introducing a new variable z = z, /z,, the polynomial p(z,, z,) can then be writ-
ten as z% p(z), where p(z) is a polynomial in the variable z of degree not exceeding
k. The operators D®(u) of the representation Z, are, accordingly, given by
Uz +u

11 2 1) (1'36)

D®(u)p(z) = (U122 + g, )
()p(z) = (1, 22)1’11122_’_1122

This equation gives, in particular, the operators A, (y) = D(u,(i/)) when the
matrices u,(y), Egs. (1-30), are used!*!! (see Problem 1.3).

1 For the determination of the operators A(y}), one needs u,(y) only for small values of . The
signs in Eqgs. (1-30) are determined by the conditions lim «,(y) = 1 when ¥ — 0. Hence the + sign
must be used.
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Matrix Elements of the Operator D(u)

It follows that every irreducible finite-dimensional representation of the group
SU, is uniquely determined by some non-negative integer or half-integer j = k/2,
the weight of the representation.!*?! The functions

(=2

= 1'37

)= (G =myis + my 7 (=7

where m= —j, —j+ 1, ..., j, form a canonical basis (see Problem 1.4) for the

representation Z, in the space S,. Using Eq. (1-36), one finds

D®(u Z DI, (1-38)
m=—j
where DJ, (1) are the matrix elements of the operator D(u) of the irreducible
representation of weight j relative to the canonical basis, which corresponds to an
arbitrary rotation g. Its explicit expression ist**

j _ 2j~m—n (]_m) (J+m) 12
e S =]

j_n j+n a j—m—a,j—n—a mtnta
XZ( . )(J— _a)uuu’lz uh " st (1-39)

m

where the summation runs from ¢ = max (0, —m — n) to min (j —m, j — n), and

() =6

In Eq. (1-39) the indices m and n take the values —j, —j + 1,...,jandj = 0,4, 1,3,
2, ...

To find the matrix elements (1-39) in terms of the variables ¥, 6, and ¢ we
simply substitute for u,, their expressions as functions of these variables as given
by Eq. (1-29).1'* One obtains for Di,,(u) = Di, (i, 6, ¢):

Do, 6, #) = (—1)2"""‘”[WJ”2(1' sin %sin Be_"“’)m_n

X (cos %—isi ! cos 9) " S(j, m, n; x) (1-40)

12 Conversely, for a non-negative integer or half-integer j, there exists an irreducible representation
of the group SU, of weight j. A representation of weight j can be realized as the spinor representation
Z,,where k = 2j;and every finite-dimensional irreducible representation of the group SU, is equivalent
to one of the representations Z, .

13 It will be noted that D/, (—u) = (— 1)¥DJ,,(u). Thus the representation is single-valued for integer
j and double-valued for half-integer j. In the sequel the matrix u of Eq. (1-29) will be taken with
the + sign.

14 See Problem 1.5 for the expression of D/ in terms of Euler’s angles.
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Here!!!
S(, m, n; x) =2"79(j = n)!(j + n)!

T ar (x £ 1f(x — 1y

j—n—a)l(j—m—a)l(a+m+n)

(1-41)

and x = 1 — 2 sin? (y/2) sin? 6.

Properties of the Matrices D’/(u)

The matrices D’(u) are unitary, and the correspondence u — D/(u) is a representa-
tion of the group SU,. Accordingly one has

D(u, u) = Dj(“l)Dj(“z)

or, in terms of matrix elements, one obtains
i

Di(uyuy) = Z D't’.nq(ul)D{;n(uZ)

q=-]
Furthermore, one observes that
Di(u™") = [Diu)]™ " = [D/(u)]'
or, explicitly,
D] (u™") = D}n(u)

Let us now introduce the unitary matrix

e—it/2 0
Y= ( 0 eit/Z)

where ¢ is a real number. The matrix elements DJ,(y) can then be found using
Egs. (1-36) and (1-37). One obtains

(e—itz)j—n
[G—mG+n

Consequently, one finds that the matrix D/(y) is diagonal, and that the diagonal
elements are given by

D(y)fulz) = (= 1) "V TRE = e"f,(2)

Din(y) =™
Furthermore, one obtains

D} (yu) =e™D],(u),  Dp(uy) = e™Dp,(u)

!5 1t will be noted that the function S(j, m, n; x) is equal to the Jacobi polynomial P*(x)
when s =j —4{[m + n|+ |m—n|),a=|m—n|,and § = |m + n|.
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Orthogonality Relation

We conclude this section by giving the orthogonality relation that the matrices D’

satisfy 116!

[ D2t ()Di20,w) dut = iy + )7 81,52 s O (1-42)

1-6 DIFFERENTIAL OPERATORS OF INFINITESIMAL
ROTATIONS

We are now in a position to find the differential operators corresponding to
infinitesimal rotations about the coordinate axis, namely, the operators 4,, 4,,
and A, and, consequently, the operators L; and L,.These operators are well
known in the literature when the Euler angles are employed. We here derive these
operators in terms of the variables y, 0, and ¢.

Representations of O; in Space of Functions

Let g — D(g) be an irreducible representation of weight j of the group O and let
D,,, = Di,, be its matrix elements. We consider these elements as functions of the
rotation ¢, D,,, = D,..(g9). Since g —» D(g) is a representation, one has D(gg’) =
D(g)D(g'). In terms of matrix elements, the last relation is

D8d) = 3. Daela)Dula) (1-43)

q4=—1J

where D, (gg’) are the matrix elements of the operators D(gg'). Define now a
transformation U such that

U(g/)Dmn(g) = Dmn(ggl) (1'44)
Comparing Egs. (1-43) and (1-44) we obtain
U(g)Dmnl9) = Y. Donld')Drmgl9) (1-45)
Furthermore, one can show that
Ulg)U(g") = Ulg'g") (1-46)

16 Relations similar to (1-42) are valid for any compact group. See, for example, L. S. Pontrjagin,
Topological Groups, Princeton University Press, New Jersey, U.S.A,, 1946.
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It thus follows that the transformation U(g’) realizes a representation of the group
0, in the space of 2j + 1 functions of the mth row of the matrix D(g) [compare
Eq. (1-38)], and that the matrix elements of U(g') are D,,(g')"”

The Basic Infinitesimal Operators

To find the operators A4, we take g’ as the rotation through some angle « around
the axis Ox, and expand the relation (1-44) in powers of a. Expansion of D,,,(gg’),
which we denote by D,.,( v} g, ), gives

Dp(¥, B, §) = Dpy(¥ 0, )

.4y  oD,,dd &D,,d
[aw + == 20 dx +7¢d—ﬂ.=o+ (1-47)

To determine 4, we have to determine

@ @

dé
d =¥
do |, do an

1-4
a=0’ da ( 8)

a=0

for each rotation.
Now the matrix of the rotation g is a function of the angles ,, 6, and ¢ which,
by Eq. (1-20), has the form

9(¥. 6, ¢)

cos Y sin? 0 cos ¢ sin ¢(1 — cos ) sin 0 cos O cos (1 — cos ¥)

+ sin? B cos? $(1 —cosyy)  — cos Osin ¥ + sin 0 sin ¢ sin ¥
_ sin? 0 sin ¢ cos ¢(1 — cos y) cos ¥ sin 0 cos 0 sin ¢(1 — cos )

] +cosfsiny + sin? 0 sin? ¢(1 — cos ) — sin 0 cos ¢ sin

sin 0 cos 0 cos ¢(1 —cos )  sin 6 cos O sin ¢(1 — cos )  cos ¥
— sin 6 sin ¢ sin + sin 0 cos ¢ sin + cos? (1 — cos ¥)
(1-49)

The matrix of rotation gg' is given by some angles ¥, 8, and ¢ which depend on the
rotation angle o and which are equal to ¢, 8, and ¢ when o = 0. Expansion of the
matrix gg' in a power series in o gives

= > 93 A1
ath.0.00+ 5505

dg db dg dd

69£a=0+%£a=0}+ (1-50)
!7 The representation g’ — U(g’) in the space of functions D, (9), ¢= —j, —j+ 1L, ..., j, is

irreducible, and the D, (g) form a canonical basis in this space. Hence the operators L, and L; of
this representation satisfy the relation (1-28), ie.,

L, D} (g) =[( £ n+ 1)(i T m)]"D,, ., .(9)
L, D], (g) = nD/..(9)
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To find the operator A, we identify g’ with the rotation with angle « around
Ox, given by

1 0 0
gi(@)= |0 cosa —sina

0 sina COS o
1 00 00 0
=101 0] +a]O O —-1| +-- (1-51)
0 01 01 0
Therefore
0 913 —912
991 =9, 0, d) + a0 g3 —g22) + (1-52)
0 933 —932

On the other hand, gg, is given by Eq. (1-50) when g, = ¢’. Comparing these two
expressions for gg,, we obtain equations from which the three expressions given in
(1-48) can be determined for the case of rotation about Ox,. We obtain!'®

d
2 sin 6 cos ¢ sin 4 —sin9sin¢@ +c0s900s¢‘g
2 da a=0 da =0
— cos 4 (1 — sin? 6 cos? ¢)@ =0 (1-53a)
2 o a=0
. . . d ., d
2sin98m¢sm£ s1n9c0s¢—$ +cos9sm¢‘g
2 da |- da |,—¢
v N o . .Y '
cos - (1 — sin® 0 sin ¢)a T sin 6| cos 0 sin ¢ sin 5~ cos d) cos 2
(1-53b)
2 cos 0 sin %flz e + cos % sin 9% - = cos 8 sin ¢ sin % + cos ¢ cos %
(1-53¢)
The solution of Egs. (1-53) is
@ = cos ¢ sin 0
da |- ;
dd 1{ . W
il = - z -54
do |, 2(s1n<j>+cot 2cos()cos d)) (1-54)
d 1 .
d—(z . =5 cosec 9(cos 0 cos ¢ — cot % sin d))

18 One obtains nine equations; only three of them are independent. Equations (1-53) are obtained
by equating the diagonal elements of the matrices (1-50) and (1-52).
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Using Egs. (1-54) in Eq. (1-47), we find the operator A; corresponding to the
rotation around Ox;,

0 1 / 0
Al—cos¢sm96¢ 2(s1n¢+coticos9cos¢)69
+1 osec 0| cos 0 co <j>-—c0t£sin<j>i (1-55a)
5 © co S > Py
The operators A, and A5 are found in a similar way:
1 0
A, = sin ¢ sin 9@ —2(00s ¢ — cot gcos 0 sin d))%
+1 cosec 8 cos 0 sin ¢ + cot f cos ¢ i (1-55b)
2 ¢ 2 o
0 1 lp 0 0
= - 1'
Ay = cos Bﬁlﬁ 3 cot — sin 969 Frs (1-55¢)

Angular Momentum Operators

Using the last three equations in Eq. (1-26) one obtains for the angular momen-
tum operators L, , L_, and Lj;:

o 1({_. ¥ 0
Ly =ie* s1n9w+2(+l+cot5cos9)%
1 AN
+ 5 cosec 9(cos 0 + i cot )5¢} (1-56a)
o 1 ¥ 0 190
L 0% _“cot Ysingl = ]
3 = (cos 3y ) sin 969 26¢) (1-56b)

The angular momentum operators derived above were expressed in terms of the
angle of rotation ¢ and the spherical angles of direction of rotation 6 and ¢. One
can use, however, the Euler angles and obtain the standard expressions of angular
momentum operators given in other treatises (see Problem 1.6).

PROBLEMS

1.1 Show that every finite-dimensional representation g — D(g) of the group O; can be made to be
unitary. Show that a scalar product can be defined in the space of representation in such a way that all
the operators, D(g) become unitary operators.

1.2 Show that if the representation g - D(g) is unitary then A} = —A4,.
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1.3 Find the three operators A,(y) for the representation (1-36). From them derive the basic
infinitesimal operators A, . Finally, show that

L,p= —0p/oz
L_p = 2*(0p/dz) — kzp
Lyp = —2(0p/0z) + (k/2)p

1.4 Show that the functions (1-37) form a canonical basis for the representation Z,, by checking that
L. f, and H;f, are indeed given by Egs. (1-28) when f,, is put for p in the corresponding equations of
Problem 1.3.

1.5 Write the matrix elements D’ of Eq. (1-39) in terms of the Euler angles by use of Eq. (1-11). Show
that DI (¢,, 6, ¢,) is given by

Do 0.8 = (i mee LU g i e )

(—n)i(j + n) -m—a
9 m+n+2a 9 2f-m—-n—-2a )
x |cos - sin - g ilm2rndn)
2 2

1.6 Find the angular momentum operators L, , L; when expressed in terms of Euler’s angles. Use the
matrix (1-4) instead of (1-49) and show that the angular momentum operators are now given by:

L, = e*“"’(+cot 9— + li+ cosec 9—)
¢, ¢,

0
o9,
1.7 Verify that the angular momentum operators L, , L_, and L; of Problem 1.6 satisfy the following
equations:

Ly=i

L, D}, =[(xn+ 1) F n)]"D 4y

LyD}, = nD}

where D], are given in terms of Euler’s angles (see Problem 1.5), and m, n take the values —j, —j + 1,
.. J. Show that, by changing the variable ¢, into ¢, and vice versa, one obtains the following
relations:

LD, =[(+m+ 1) T m)]'D,, t.n
ZSD{M = MD{HPI

where the angular momentum operators L, , L ;are given by

L Fib2 +cot9—+ti cosec Bi
: 20, a0 26,

L=il
=]—
P og,

1.8 Show that every function f (1) ip the group SU, whose modulus square is integrable with respect to
the measure du can be expanded in terms of the functions DJ (u).

1.9 Write the matrix u € SU, in the form
(2 F
u= —B &
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where |a¢|? + |B|* = 1. From this show that the matrix u is uniquely determined by the parameters
t=|al, ¢=arga, Yy=argh

Show that in terms of the new parameters one has

1 1 2 2
[rau=2] a] do] s ov) .

1.10 Introduce the four coordinates x,, x,, x3, x,, related to the parameters of Problem 1.9 by
@ =x,+ix,, f=x3 + ix,. Then the relation |a|*>+ |f]|* =1 implies x2 + x2 + x2 + x2 =1, ie,,
the surface of the unit sphere S, in a four-dimensional space, and hence each element u of SU , uniquely
corresponds to a point on §,. Show that the expression 4 dz d¢ dyy has the simple geometrical
meaning of a surface element of the sphere S, .

1.11 Show that

1+
D:nm(u)DLn(u) = Z ng’n' Drl:|'+n', m+n(u)sLmn
L={l-1
Show that the coefficients s, ,,, can be chosen to be real and find their form. [See E. P. Wigner, Group
Theory and its Application to the Quantum Mechanics of Atomic Spectra, Academic Press, New York,
1959.]



CHAPTER

TWO
THE LORENTZ GROUP

After discussing representations of the rotation group in the previous chapter, we
now present the Lorentz group which is discussed in Chapters 2 to 6. The present
chapter is an introduction to the theory of the Lorentz group. We first define the
Galilean and the Poincaré groups. Infinitesimal Lorentz matrices and their com-
mutation relations are consequently found. The one-parameter groups of opera-
tors are consequently introduced and the role of the representations of the
rotation group (which is a subgroup of the Lorentz group) in representing
the Lorentz group is discussed. Representations of the Lorentz group are then
briefly discussed, and the canonical basis is introduced. Finally, conditions under
which a representation of the Lorentz group becomes unitary, are given,

2-1 INFINITESIMAL LORENTZ MATRICES

Galilean Group

In classical mechanics one assumes that the laws of motion do not depend on the
choice of a particular fixed coordinate system with respect to which motion is
considered to take place and, furthermore, that the same laws do not change by
going over from one coordinate system into another which has uniform, rectilin-
ear, translational motion relative to the first. These requirements mean that the
laws of classical mechanics are invariant under orthogonal transformations of
coordinates and hence one has rotational invariance and, furthermore, one has

10
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what is called a Galilean invariance. If one chooses both coordinate systems so
that the corresponding axes are parallel, and if v is the velocity of one coordinate
system with respect to the other, the Galilean transformation can be expressed as
follows:

X'=x4+ vt y =yt Z'=z4p,t (2-1)

In these transformations the time coordinate ¢ appears as a parameter. The
aggregate of all transformations of the form (2-1) forms a group, called the Gal-
ilean group.

In the theory of relativity, space and time coordinates appear on the same
footing. One therefore deals with linear four-dimensional space of vectors with
components x°, x!, x2, and x> Such a four-dimensional space, with the scalar
product

xOyO _ xlyl _ x2y2 _ x3y3 — nuvxuyv (2_2)

is called a Minkowskian space. In Eq. (2-2) the symbol ,, (and later on n**) is the
flat space metric, given by the matrix

1 0 0 0
o =1 0o o
=10 o -1 o0 (2-3)
0 0 0 -1

We call x*x, = n,, x*x" the square of the length of the vector x*. Indices are raised
and lowered by means of the n** and 1, . A vector V* is called timelike if its square
length is positive, spacelike if it is negative, and null if the length vanishes. A
timelike vector V* is called positive or negative according to whether V; is positive
or negative, respectively. The manifold of all null vectors forms the light cone.

Poincarée Group

Linear transformations in Minkowski space defined by

xH= A" x" + y* (2-4)

which satisfy the relation
nuv Aua Avp = nap (2'53.)

or, using matrix notation,
AnA=nq (2-5b)

where A’ is the transposed matrix to the matrix A, are called inhomogeneous
Lorentz transformations. These transformations are usually denoted by the
symbol (A, y). The homogeneous Lorentz transformations (A, 0) leave the scalar
product invariant:

X, yE =, xEYY =, A N XY = x, )f

! The coordinate x° = ct, where c is the speed of light, and ¢ is the time coordinate,
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The inhomogeneous Lorentz transformations form a group. It is called the
inhomogeneous Lorentz group or the Poincaré group. The multiplication law of the
group can be written as

(A y1)Ay, v2) = (A1 AL, vy + Ayys)

and the inverse of the group element (A, y)is (A™", —A~'y). The homogeneous
Lorentz transformations form a subgroup of the Poincaré group. It is called the
Lorentz group. The translational part of the inhomogeneous Lorentz transforma-
tions (2-4), denoted by (1, y), provides another subgroup of the Poincaré group; it
is the group of translations. The group of translations is an invariant subgroup of
the Poincaré group (see Problem 2.1). All of these groups are Lie groups.

Proper, Orthochronous, Lorentz Group

The homogeneous Lorentz group possesses four disconnected pieces that arise as
follows.

Equation (2-5b) shows that (det A)? = 1, and accordingly, the determinant of
every Lorentz transformation is equal to either + 1, in which case the transforma-
tion is called proper, or to — 1, in which case the transformation is called improper.
From Eq. (2-52), when one chooses « = 8 = 0, one obtains

(Aoo)2 - (Alo)2 - (Azo)2 - (Aao)2 =1
Hence (A%)* > 1, and consequently we have either
A% =21 or A’ <-1

A Lorentz transformation whose element A%, > 1 is called orthochronous. The
aggregate of all orthochronous Lorentz transformations provides a subgroup of
the homogeneous Lorentz group. A Lorentz transformation satisfies the condition
A%, > 1 if and only if it transforms every positive timelike vector into another
positive timelike vector (see Problem 2.2).

The four parts of the homogeneous Lorentz group are then given by:?!

(1) LY :det A = +1,A%, = 1. This part contains the identity element of the group.
The aggregate of all proper, orthochronous, Lorentz transformations provides
a group which is a subgroup of the Lorentz group. It is called the proper,
orthochronous Lorentz group!

(2) L' :det A = —1, A°; = + 1. This manifold contains a space inversion element
S which describes a reflection relative to the three space axes:

2 For details see R. F. Streater and A. S. Wightman, PCT, Spin and Statistics, and All That,
Benjamin, New York, 1964.
3 The proper, orthochronous, Lorentz group is identical with the group SO(3, 1).
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(3) L :det A = —1, A%, < — 1. This manifold contains a time reversal element T
which describes a reflection relative to the time axes:
x/O — _xO’ xll - xl’ x/2 = x2’ x/3 _ x3

(4) LL:det A= +1, A°, < —1. This manifold contains the element ST.

Finally, one notices that from the above four parts of the homogeneous
Lorentz group one obtains the subgroup L' = L} U L, the orthochronous Lor-
entz group, and the subgroup L, = L} U L%, the proper Lorentz group. One,
furthermore, notices that every improper Lorentz transformation has the form
A = SA,, where A, is a proper Lorentz transformation.

In the following we will be concerned with the proper, orthochronous, Lor-
entz group. This group will be denoted by L. Obviously the rotation group 0O,
discussed in Chapter 1, is a subgroup of the group L.

Infinitesimal Lorentz Matrices

Rotations a,(y), a,(¥), and a,(y) and Lorentz transformations b,(y), b,(¢), and
bs(), around and along the axes Ox!, Ox?, and Ox? can be written explicitly. One
easily finds the rotation matrices, using the results of Chapter 1, to be given by

1 0 0 0 1 0 0 0
_ 10 1 0 0 _ 10 cosy 0 siny
aW=10 0 cosy —smyl> “P=lo o 1 o
0 0 siny cos Y 0 —siny 0 cosy
1 0 0 0
_ |0 cosy —siny O )
a:(¥) = 0 sinyy cosy O (2-62)
0 0 0 1

The Lorentz transformations can also be found. They are given by (see
Problem 2.3):

coshy sinhy 0 O coshy O sinhy O
__ |sinhy coshy 0 0 _ 0 1 0 0
b =1 o 10" 2= ldmhy 0 coshy 0
0 0 01 0 0 0 1

coshyy 0 O sinhy

0 10 0
b:,(lﬁ) = 0 01 0 (2'6b)
sinhy 0 O coshy

They satisfy the relations
a(W1)a(¥2) = aldy + ¥2)

bW )bi(¥2) = bilyy + V) (2-7)

where k =1, 2, 3.
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The infinitesimal matrices a,, a,, a; and by, b, , b, of the group L are defined
by

_ dak(w) b, = dbk(w)

“TW e T @8)

They are related to the rotations and Lorentz transformations a,(y) and b, () by

a(V) = exp (Yay), bi(¥) = exp (¥by)
with k=1, 2, 3.

Commutation Relations

The infinitesimal Lorentz matrices satisfy the following commutation relations:
[ai > aj] = E;jx Ay
[b;, bj] = =& (2-9)
[a;, bj] = Eijkbk .

Here [a, b] = ab — ba. Equations (2-9) can easily be verified using Egs. (2-8).

2-2 INFINITESIMAL OPERATORS

One-parameter Group of Operators

We denote an arbitrary linear representation of the proper, orthochronous, Lor-
entz group L in a Banach space B (see Appendix €) by A - D(A), and for conven-
ience we denote

AY) = Da(y)),  Bu(¥) = D(bu(V)) (2-10)
Using Egs. (2-7) one obtains

AW ) AdY2) = AWy + ¥,)

By(¥11)Bi(¥2) = B(¥r1 + ¥2) (2-11)
4 Explicitly, they are given by
000 0 0 000 00 00
{000 o 0 00 1 joo -1o0
“=looo —-1]0 “2Tlo oo0o0) %“=lo1 oo
001 0 0 -1 0 0 00 00
and
0100 0010 00 0 1
, |t 000 , [0 000 R [
1Tlooo o] 2Tt o0 o0 3%lo 0 0 0
0000 0000 1000
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where i = 1, 2, 3. Furthermore, 4,(0) = 1, B;(0) = 1. A,(y) and B,(y) are contin-
uous functions of  and are called one-parameter groups of operators. If the re-
presentation A — D(A) is finite-dimensional, then the operators A;(y) and B (y)
are differentiable functions of . If the representation is infinite-dimensional,
however, these operators might be non-differentiable, but there may still exist a
vector x in the space B for which A,(¥)x and B,(y)x are differentiable
vector-functions.t!

The infinitesimal operators of the one-parameter groups A,(¥) and B,(i/) are
defined by's!

4, = d4,(¥) , B, = dBy(¥) (2-12)
dy |y-o dy =0

In the following, the representations A — D(A) of the group L are assumed to
satisfy the following properties:

In the space of representation B there exists a dense subspace X which is
invariant under all representations operators D(A). All infinitesimal operators,
and their products, of the representations, apply then to the vectors x of X. For
any vector x of X, the vector D(A)x is an infinitely differentiable function on the
group L. Furthermore, for any vector x of X and any one-parameter group a(y/) of
the group L, the vector A(y)x = D(a(}))x satisfies the condition

df;(‘”)x = AA(Y)x = A())Ax (2-13)
Y
where the operator A is related to A(y) by
A(Y)x = x + Y Ax + 2—: Ax + ‘g A(p)A3x (2-14a)
A(¢)x=x+lﬁAx+2—'2A2x+"'+%A"x+"' (2-14b)

Here

AWY) = % j:(l — t)A%(t) dt

®In general, let A(y) be a continuous one-parameter group of operators in a Banach space B,
and denote by X(A) the set of all vectors x of B for which the limit of (A(y)x — x)/\y, when
¥ — 0 exists in the sense of the norm in B. Obviously the set X(A4) contains the vector x = 0.
Define now the operator A for all x of X(4) by Ax = lim {{A(y)x — x)/y} at the limit ¥ — 0. The
domain of definition, X(A), of the operator A is a subspace of B, and A is linear, namely
A(Ayx, 4+ A;x,) = A, Ax; + 4, Ax, for x, and x, of X(A). Such an operator A is called the in-
finitesimal operator of the one-parameter group A(y). If A(y) = D(a(y)) is the group of operators of
the representation A — D(A), corresponding to a one-parameter subgroup a(y) of the group L, the
corresponding operator A is then called the infinitesimal operator of the representation A — D(A).

6 4,(y) and B,(y) might then be expanded in terms of A, and B, as A,(y)=exp (¥4,) and

Byy) = exp (VB,).
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is bounded in norm in any finite interval. The series on the right-hand side of
Eq. (2-14b) converges in norm, absolutely. If P(y) is a finite product of the opera-
tors A,(y) and A;, and if x is a vector in X, then | P(/)x | is a bounded function of
Y in any finite interval. From Eq. (2-14b) it follows that, on the vectors x of X, the
operator A(y) is uniquely determined by the infinitesimal operator A. Since these
vectors form a set, dense in the space B, and A(y) is bounded, it follows by
continuity that A(y) is uniquely determined on the whole space B. Hence one has
also that the one-parameter group A(y) is uniquely determined on the whole
space B by the infinitesimal operator A.

Now since the group O is a subgroup of the group L, obviously the represen-
tation A — D(A) of the group L is also a representation of the group SU,. Ac-
cordingly, let us consider the representation only for the group SU,.

Decomposition of a Representation of the Group SU, into Irreducible
Representations'”

Let u — D(u) be an arbitrary continuous representation of the group SU, in a
reflexive Banach space B, and define the operator

Efy= (2 + 1) | Dh(u)D() du (2-15)
Since D}, (u)D(u) is a continuous operator function on the group SU,, the integral
on the right-hand side of Eq. (2-15) exists, and EZ, is a bounded operator in the

space B.

Lemma 2.1 The operators Ei,, satisfy the relations

j
D()Ep, = Y. Dun(t)Ep, (2-16a)
m=-j
j
EpD(u) = 3, Dipyft)Em (2-16b)
m==j
E'riva'riv’r’n’ = E'rivm’ 5jj, 5nm’ (2-17)

To prove Eq. (2-16a) one calculates D(u)E!, . Using the properties of D, (1)
(see Chapter 1) one obtains

D(u)Eh, = Du){(2j + 1) | Dh(w)D(w') du}
=(Q2j+1) j Dl («)D(uw') du/

7 See, for example, M. A. Naimark, Linear Representations of the Lorentz Group, Pergamon Press,
New York. 1964.
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Changing variables uu’ — u’ and using the properties of D/, (1) one obtains

D(u)Ehy = (2 + 1) [ Dhu(u™')D(w) du/

—+1) 3 [ Dllu™)Bl)Dw) du

k=—j

= Y Dhu(u™)Ef,

k=—j
j . .
= ). Dj.(u)Ei,
=-J

The proof of Eq. (2-16b) is similar. Finally Eq. (2-17) can be shown by calculating
the product Ef, EZ.,. and using Eq. (2-16a). One obtains

Ej B =

m'n’

Qi+ 1) j Di,(u)D(u) du}E{,’,,,,
= (2 + 1) | Dh(w)D()EL,, du

J
= (2 + 1) [ Di(u) ¥ Dfpy(w)EL du

Using the orthagonality relation Eq. (1-42) between the matrices Dj,,, one obtains
Eq. (2-17).
As a particular case of Egs. (2-16) one easily obtains

D(y)EL,, = ¢™E}, (2-18a)
El,D(y) = €"™El,, (2-18b)

e—iw/Z 0
Y= ( 0 eiw/Z)

Lemma 2.2 The operators E’, defined by

for a matrix vy given by

Jj
E= Y E., (2-19)

m=—j
satisfy the relations
E'F' = E/ 67 (2-20)
[D(u), E]=0, wueSU, (2-21)



THE LORENTZ GROUP 27

Equation (2-19) follows from Eq. (2-17). Using Egs. (2-16) we obtain

DWE = 3 Dipfw)Eh,

m n=-—j

E'D(u) = i D}(u)D},,

mn=—j

Hence the commutator [D(u), E'] = 0 and the proof is complete.

Definition We denote by M, the aggregate of all vectors x of the space B
satisfying the condition E/, x = x, and denote by M’ the aggregate of all
vectors x of B satisfying the condition E/x = x.

Lemma 2.3 The spaces M, and M’ are closed subspaces of the space B.

Suppose El,.x, =x, and E,x,=x,, then E} (a;x; +a,x;)=
a; X; + @, x, for any complex numbers «,; and «, . Hence M, is a subspace of the
space B. Furthermore, let Ej,, x, = x, and |x, — x| =0 as n — oo, then, proceed-
ing to the limit and making use of the continuity of the operators EZ,,, we obtain
E!. x = x. Hence the subspace M is closed. The subspace M’ is also a closed
subspace of the space B as can easily be seen.

Lemma 2.4 The subspaces M., , for all possible j and m, and the subspaces M-,
for all possible j, are linearly independent ®

Suppose x belongs to the subspace M7, . Then, using Eq. (2-17), one obtains

E . x=E_ F x=E,  &"§.x=86,,x (2-22)

mm
In the same way one shows that if x belongs to M’ then

Eix = §7x (2-23)

Suppose now that x, + x, + - + x, = 0, where x; belongs to M}, x, belongs to
Miinzz’ CtC., and (] 1 ml) # (j2, m2) # . Applylng now E{nlum to
(xy + -+ x,) =0, and using Eq. (2-22), one obtains x, = 0. In this way one
shows that x, = x, =--=x,=0, and consequently the subspaces M are
linearly independent. In a similar way one shows that the subspaces M’ are also
linearly independent.

8 Subspaces M,, M,, ... are called linearly independent if an equation of the form x, + x, +
+++ x, =0, where x, is a vector in M, is valid if and only if one has x;, = x, =+ =x,=0.



28 GROUP THEORY AND GENERAL RELATIVITY

Lemma 2.5 The space M/ is the direct sum of the subspaces'® Mj, for m = —j,
—j+1,...,j

Lemma 2.6 The space B is the closed direct sum of all the subspaces M7, and
hence of all subspaces M.

The proofs of Lemmas 5 and 6 are left for the reader.

Definition A representation u — D(u) of the group SU, in a Banach space B is
called multiple of the irreducible representation u — DY (u) of weight j, if the

space B is the direct sum of closed subspaces B,,, withm= —j, —j+ 1,...,],
such that for any B, and x of B, there exist vectors x,, of B,,,m = —j, —j + 1,
.., j, such that x, = x and
Jj
Z D'rimr(u)xn (2'25)
n==j

Lemma 2.7 Every subspace M’ is invariant with respect to the representation
u — D(u). If the space M’ is not empty then the representation u — D(u), con-
sidered only on the space M, is a multiple of the irreducible representation
u — DY (u) of weight j.

In fact, by Lemma 2.5, the space M is the direct sum of the subspaces M? . Now
let x belong to the space M’ for some n and substitute x,, = E},x for m = —},
—j+1,...,j. Using Eq. (2-17) one has E},, x,, = E}, EL. x = E x = x,,. Hence
x,, belongs to. the space M7,. In particular x, = E/, x = x since x belongs to the
space M. Applying now Eq. (2- 16a) we obtain

D(u)x,, = D(u)Ej,x = Z DI, (WE, x = Z D, x,.
m=-j =-J
Hence the space M/ is invariant with respect to the operator D(u) and the operator
D(u) satisfies Eq. (2-25). Hence the representation u — D(u), when considered as a
representation in the space M/, is a multiple of the representation u — D9(u).

Definition A bounded linear operator A in a Banach space B is called the
direct sum of the bounded linear operators A,, in the closed subspaces B,,,
denoted by A=A, + A, + -, if B=B, + B, + - and A(x; + x, + "
+x,)=A,x; + A,x, + -+ A,x, for any finite number of vectors x,
of B,.

° A subspace M is called the direct sum of linearly independent subspaces M,, M,, ..., M,
denoted M = M, + -+ M,, if M is the aggregate of all sums of the form x, + -+ + x_, where
x, belongs to M, . A closed subspace M will be called the closed direct sum of the finite or infinite
(possibly nondenumerable) number of closed subspaces M,, M,,...,denotedby M = M, + M, + -+ if
M is the closure of the aggregate of all finite sums of the form x, + x, +~* + x,, where x, belongs to
M,,andk = 1,2,3,..., if the sequence x'™ = x{™ + x§” + --+ +x, with x{™ belongs to M, , converges
in norm to zero, while for a fixed k the sequence x{™, m =1, 2, 3, ..., converges in norm, then the
sequence x{™ converges in norm to zero.
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Definition A representation g — D(g) of a group SU, in a Banach space B is
called the direct sum of the representations g — D™(g) in the subspaces B, if
D(g) = D™ (g) + D*(g) + D®(g) + - - for all elements g of the group G.

Lemma 2.8 Every representation u — D(u) of the group SU , is the direct sum of
representations that are multiples of irreducible representations u — DY (u).

In fact this is a direct result of Lemmas 2.6 and 2.7.

Further Assumptions

We now come back to the representations A — D(A) of the group L in the Banach
space B. Let us consider this representation as a representation g — D(g) of the
group SU, . By Lemma 2.8, the space B is the closed direct sum of the subspaces M/,
invariant relative to the operators D(g), where g is an element of the group SU, .
Here the representation g — D(g) of the subgroup SU,, when considered only on
the space M/, is a multiple of the irreducible representation of weight j of the
subgroup SU,.

Definition A given representation A — D(A) of the group L is said not to
contain irreducible representation of weight j of the group SU, if the space
M/ is empty, and is said to contain it k times if the representation A — D(A),
for A of SU,, considered only on M/, is a k-th multiple of the irreducible
representation of weight j of the group SU,.

The further assumptions on the representations of the group L are that each
irreducible representation of the group SU, is contained at most once in the
representation of the group L, and that each subspace M’ is completely contained
in the set X .[10

Lemma 2.9 If'the infinitesimal operators A;, B;and A}, B;,i = 1,2, 3, of the two
representations A — D(A)and A — D'(A) of the group L in a space B coincide on
a subspace X' of X which is dense in the space B and invariant relative to the
operators A;, B;, A;, B;, then the two representations A - D(A) and A — D'(A)
coincide on the whole space B.

In fact from our previous assumptions it follows that the one-parameter
groups of operators obtained from A;, B;, A4}, B; will satisfy:
AW) = 4),  BW)=B(Y); (i=123)

on the whole space B. But every proper orthochronous Lorentz transformation A
is the product of matrices a,(y/) and b,(y’) (see Problem 2.4). Hence the operators
D(A) and D'(A) are the products of operators "A,(y), B(Y) and AY), Bi(¥),

19 In Chapter 6 we shall see that the formulae obtained are also valid without these assumptions.
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respectively. Consequently, the operators A,, B; and A;, B; coincide on the whole
space B.

Asaresult of Lemma 2.9 it follows that a representation A — D(A) of the group
L is completely determined by its infinitesimal operators 4;, B;, i = 1, 2, 3.

Lemma 2.10 If a nonzero subspace X' of X is invariant relative to all the
infinitesimal operators A;, B;, i=1, 2, 3, of an irreducible representation
A — D(A) of the group L, then X' is dense in the space B.

The proof of this lemma is left to the reader (Problem 2.7).

Commutation Relations

The determination of the irreducible representations of the group L is based on
the fact that the basic infinitesimal operators of a representation satisfy the same
commutation relations that exist among the infinitesimal matrices a; and b, given
by Egs. (2-9). Hence one has:

[Ai* Aj] = & Ay
[B;, B]] = — ¢ Ax (2-26)
[4;, B] = & B,
Defining now the operators
L:=iA + A,, Ly =iA;
K;=iB, +B,, K; =iB; (2-27)
one finds for the commutation relations (2-26) the following:
[L; > Ls] =*Ls, [L+ > L—] =2L,
[K:,K3]=FL+, [K,,K_]=-2L,s
[L:, K:]=[L;, K;] =0, [L:, Kz] = £2K, (2-28)
[L:, K] = FK., [Ks:, L]= FK,

Hence the problem reduces to the determination of the operators L and K satisfy-
ing the conditions stated in Eq. (2-28).

2-3 REPRESENTATIONS OF THE GROUP L

Canonical Basis

A given representation A — D(A) of the proper, orthochronous, homogeneous,
Lorentz group L is obviously also a representation of the rotation group O;.
Clearly, if a given representation of the group L is irreducible it need not be
irreducible when considered as a representation of the group O;. In fact, any
infinite-dimensional representation of the group L, when regarded as a representa-
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tion of the group 0,, is highly reducible; it is equivalent to a direct sum of an
infinite number of irreducible representations. The space B of any irreducible
representation of the group L is, therefore, a closed direct sum of subspaces M/,
where M/ is the (2j + 1)-dimensional space in which the irreducible representation
of weight j of the group O, is realized.

Following the standard convention, one chooses the 2j + 1 normalized eigen-
vectors of the operator L, as the canonical basis for the subspace M. Let these
base vectors be denoted as f4,, where m = —j, —j + 1,..., j, where the superscript
j indicates the subspace to which the vector 7, belongs,!* ! and the subscript is the
eigenvalue of the operators L, . A detailed investigation of the commutation rela-
tions (2-28) in terms of the canonical basis f7, then leads to the following
conclusions 112!

(1) Each irreducible representation of the group L is characterized by a pair
of numbers (j,, ¢), where j, is a non-negative integral or half-integral number, and
¢ is a complex number;

(2) The space B(j,, c) of any given irreducible infinite-dimensional represen-
tation of the group L is characterized by the non-negative integral or half-integral
jo such that B(j,, ¢) = M7e + M/o*! 4 MJi°*2 { --- The whole space B(j,, c) is
spanned, therefore, by the set of base-vectors [, where j = j,,jo + Ljo + 2, --.,
and m= —j, —j+ 1, —j+ 2, ..., j. If the given irreducible representation is
finite-dimensional, then the direct sum of the subspaces M’s terminates after a
finite number of terms.

(3) A given representation is finite-dimensional if and only if it satisfies the
condition ¢? = (j, + n)? for some natural number n.

(4) The irreducible representation corresponding to a given pair (j, ¢) is,
with a suitable choice of a basis f7, in the space of representation, given by the
formulae:*3!

Ly fl =0 £m+ 1) F m]'*fh.

L fi, = mf},

K, f'r,n = i‘[(] FmjFm-— 1)]1/2ij{n_111
=[G F m)l £ m+ 1)]'24; s (2-29)
[ Em+ 1) £m+ 2)]V2C;,, fH5

Ky fh=[(G—-m{+ m)]l/zcjff;._l - mAjf'rin

—[G+m+ 1) —m+ D)]72C,,, £

! The superscript in /7, specifies the subspace uniquely since each irreducible representation of the
group O, is contained at most once in any given irreducible representation of the group L.

12 See, for example, M. Carmeli and S. Malin, Fortschr. Physik. 21, (1973).

13 Equations (2-29), for the unitary representations case, and under certain assumptions, were first
obtained by Gelfand (See M. A. Naimark, Linear Representations of the Lorentz Group, Pergamon
Press, New York, 1964, p. 117); they were later on rederived by Harish-Chandra, Proc. Roy. Soc.
(A) 189, 372, (1947) and Phys. Rev. 71, 793 (1947), and by I. M. Gelfand and A. M. Iaglom, Zh. Eksp.
Teor. Fiz. 18, 703 (1948); English translation in: Technical Translation TT-345, National Research
Council of Canada. Ottawa. 1953,
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In Eqgs. (2-29)

,,(1 1 )
Ay = gl —
J

i+ 1
i 2 2y71/2 (2-30)
C-=i (2 =i — )Y
J ] 4j2_1

(5) To each pair of numbers (j,, c), where j, is a nonnegative integral or
half-integral number and ¢ is a complex number, there corresponds a representa-
tion A — D(A) of the group L whose infinitesimal operators are given by
Egs. (2-29) and (2-30). Since only the products of the numbers j, and ¢ and the
squares of these numbers appear in Egs. (2-30) it is clear that the pairs (j,, ¢) and
(—Jjo, —c) characterize the same representation.

Unitarity Conditions

If the representation A — D(A) of the group L is unitary* *! then Eqgs. (2-29) satisfy
certain conditions that are summarized below.

Let A be an infinitesimal operator of a unitary representation A — D(A) of the
group L. Then A(y) = D(a(y/)) is a unitary operator and therefore its adjoint!**
operator [(A(Y)]" = [A(¥)]"' = A(—y). Consequently, we have (A(y)f, g) =
(fs A(—y)g). Differentiating both sides of this equation with respect to the par-
ameter y we obtain, for =0,

(4f 9) = —(/, Ag) (2-31)
Using Eq. (2-31) one then finds that
(L+ £ 9)=(f L-9)
(Ls £, 9) = (£ Lsg) (2-32)
(K+f9)=(fK_g) .
(K3 £ 9)=(f K39)

A systematic use of Egs. (2-32) in Eqs. (2-29) then leads to the following:

If the irreducible representation A — D(A) of the group L is unitary, then the
pair of numbers (j,, ¢) characterizing the representation satisfies either: (a) ¢ is
purely imaginary and j, is an arbitrary non-negative integral or half-integral
number, or (b) ¢ is a real number in the interval 0 < |¢| < land j, = 0. Represen-
tations characterized by (0, ¢) and (0, —c) are equivalent.

4 A representation A —» D(A) of a group G in a space R is called unitary if and only if R is a
Hilbert space and D(A) is a unitary operator for all A of G. This implies that (D(A)x, D(A)y) = (x, y)
for all A of G and all x and y of R, where (x, y) denotes the scalar product in the space R. For further
details see Appendix C.

!5 An operator B is called an adjoint to the operator 4 if it satisfies (Ax, y) = (x, By) for all x
and y of the space R.
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The representations corresponding to the case (a) are called the principal
series of representations, and those corresponding to the case (b) are called the
complementary series of representations. Both series of these infinite-dimensional
representations will be discussed in Chapters 4 and 5. In the next chapter,
however, we will discover the finite-dimensional representations of the group L.

PROBLEMS

2.1 Show that the group of translations is an invariant subgroup of the Poincaré group. Show also that
if T denotes the group of translations, P the Poincaré group, and L the homogeneous Lorentz group,
then P is the semidirect product of L and T, namely P =L x T.

2.2 Show that a Lorentz transformation satisfies the conditions A°; > 1 if and only if it transforms
every positive timelike vector into another positive timelike vector.

23 Prove Equations (2-6b).

2.4 Show that every proper, orthochronous, Lorentz matrix A can be represented in the form
A = gb,(y)k, where g and k are three-dimensional rotations, and b,(y) is given by Eq. (2-6b). As a
result, show that A can be represented in the form of a product of transformations of the form a (),

a3(¥), and by ().

2.5 Prove Lemma 2.5

2.6 Prove Lemma 2.6

2.7 Prove Lemma 2.10

2.8 Prove Equations (2-26). [See M. A. Naimark, Linear Representations of the Lorentz Group, Perga-
mon Press, New York, 1964.]

29 Prove Equations (2-29) and (2-30).
210 Prove Equations (2-32).



CHAPTER

THREE

SPINOR REPRESENTATION OF
THE LORENTZ GROUP

After giving the general aspects of representations of the proper, orthochronous,
homogeneous Lorentz group in Chapter 2, we now give the simplest realization of
these representations; this is the spinor representation of the Lorentz group. The
spinor representation includes all finite-dimensional representations and is non-
unitary. The discussion is started by introducing the group of all 2 x 2 complex
matrices with determinant unity, the group SL(2, C), and establishing a homo-
morphism between the groups SL(2, C) and the proper, orthochronous, Lorentz
group. Subgroups of the group SL(2, C) are then discussed, and the connection
with the Lobachevskian motion is pointed out. Subsequently, the spinor represen-
tation of the group SL(2, C) is introduced. A realization of the representation is
carried out in spaces of polynomials, and the important concept of two-
component spinor is introduced. The spinor representation is then realized by
means of the group SU, . Matrix elements of the spinor representations operators
are found and their relation to those of irreducible representations of the group
SU, is pointed out. Finally, the infinitesimal operators of the spinor representa-
tion are found, and irreducibility and other properties of these representations are
established.

3-1 THE GROUP SL(2, C) AND THE LORENTZ GROUP

The Group SL(2, C)

In what follows we establish the fact that elements of the proper, orthochronous,
homogeneous Lorentz group L discussed in the last chapter can be described by
means of elements of SL(2, C), the group of all 2 x 2 complex matrices

g= (Z Z) (3-1)

34
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with
detg=ad —bc=1 (3-2)
In the natural topology of matrices the group SL(2, C) is simply connected. The
relation between the two groups can be established as follows.

One associates with each four vector x* a Hermitian matrix

Xo + X3 X1 + ix2

Q= (x1 —iX, Xo — x3) (3-3)

In this way one defines a one-to-one linear correspondence between all four-
vectors and all 2 x 2 Hermitian matrices. Equation (3-3) can also be written as

Q= x,0° (3-4)

where 6%, k = 1, 2, 3, are the three Pauli matrices given by Egs. (1-5) and ¢° is the
2 x 2 unit matrix:

SRR R PR

It is often also very convenient to parametrize the elements g of the group SL(2, C)
by

g=g,0*
where g,, g, k = 1, 2, 3, are complex numbers.

Corresponding to every element g of the group SL(2, C) consider the follow-
ing transformation in the space of the Hermitian matrices Q:

Q' =gQg' (3-6)

where g' is the Hermitian conjugate of g, and Q' = x/, ¢°. The corresponding
operation in the Minkowskian space of four-vectors is a linear transformation

X' = A%y(g)x* (3-7a)
or, in matrix notation,
X' = Alg)x (3-7b)

where the transformation matrix A can be expressed in terms of the matrix g of the
group SL(2, C). The transformation (3-7) preserves the scalar product since

(¥')* = det Q' = det Q = (x)* (3-8)
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Homomorphism of the Group SL(2, C) on the Group L

The matrix elements A%, can be expressed in terms of the corresponding matrix g
of the group SL(2, C). Using the properties of the Pauli spin matrices, and using
Eq. (3-6) and Egs. (3-7), one has

x'* = 6% x'#

1
=3 Tr(s%* )x;

1
=5 Tr(e*Q)
1
=5 Tr(o°9Qg")
1
=3 Tr(o*go?g")x,

.

Comparing this result with Eq. (3-7a) one obtains
1
Ay = 5 Tr(o*g0’g") (3-9a)
where g' is the Hermitian conjugate of the matrix g, and Tr stands for trace.

The explicit expression of the transformation A(g) in terms of the parameters
go and g, of the matrix g is as follows (Problem 3.1):

3
A% = g0+ 2 la?
k=1

A%y = goGi + Gogx — i€ Gm

A% = goTi + Godi t iE""G\Gm (3-90)
= 51.;( lgo |2 Z g, | ) + gigi + Gud = E"(GoGm — GoGim)
where the ¢ symbols are fixed by £'2* = ¢°!2® = + 1.In particular, one notices the
useful relation
Tr A(g) = |Tr g|* =4]g, |?

One also notices that because the group SL(2, C) is connected, and the mapping
into the homogeneous Lorentz group is a continuous homomorphism, the image
of the group SL(2, C) must be a subgroup of the proper orthochronous, Lorentz
group L.

Equations (3-9) show that to an arbitrary matrix g of SI(2, C) there corre-
sponds a 4 x 4 matrix A. We now show that the matrix A belongs to the proper,
orthochronous, Lorentz group L.
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First, from Eq. (3-8), one sees the quadratic form xZ — x? — x3 — x% is invar-
iant under the transformation A, and therefore the matrix A is an element of the
homogeneous Lorentz group. As a consequence, det A = + 1. But for the special
case for which g is the 2 x 2 unit matrix, the corresponding A is the identity
transformation, and hence det A = 1. Since det A is a continuous function of the
four variables a, b, ¢, d of the matrix g of the group SL(2, C), and since the domain
of variation of these four variables is simply connected, a discontinuous jump
from det A = +1 to det A = —1 is excluded. Consequently, det A = +1 for all
values of a4, b, ¢, d, subject to the restriction (3-2). Hence A belongs to the proper
Lorentz group. Finally, from Egs. (3-9) one sees that A%, cannot be negative.
Accordingly, A is orthochronous. Consequently, A is an element of the proper,
orthochronous, Lorentz group L.

Suppose now that an element A of the group L is given. Let us try to invert the
relations (3-9). If Tr A # 0 we obtain'"! (Problem 3.2):

3
g=goo°+ Y gi0*
k=1

3
=D NTr Ac® + Y (A% + A% — ie2A° )o* (3-10)
k

=1
where
D2 =4 —Tr A? + (Tr A)? — i A%, A, (3-11)

The sign of the denominator D is undetermined. Since the smallest subgroup of
the group L that contains all elements with Tr A # 0 is L itself, the image of the
group SL(2, C) is the whole of the group L.

It is possible to find the elements g of SL(2, C) which go into L in the case
Tr A =0 also. If

M

(A%)* #0

k

1

the matrix A then describes a rotation with an angle =, and one has
3
go=0, g= Ygo', g'=-—e
k=1

A@)A(g) = A(g®) = A(—e) =1

where e is the 2 x 2 unit matrix. The 3 x 3 matrix M' = 8, A% + A' is sym-
metric and possesses the three eigenvalues 0, A%, — 1, and A°; + 1. The eigen-
value 0 belongs to the normalized eigenvector v, defined by

oy = [Zowor| g

1'W. Riihl, The Lorentz Group and Harmonic Analysis, Benjamin, New York, 1970.
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If we denote the normalized real eigenvector, corresponding to the eigenvalue
A°, + 1, by v,, we can then express the components g, in terms of the vectors v,
and v, x v, as follows:

g = £{[HA% — DI'2(vi x vo) + i[3(A% + 1)]'20f} (3-12)

Again the matrix g is determined only up to a sign. The remaining case, for which
Tr A= A% =0, k=12, 3,is contained in Eq. (3-12) as the limit A°0 = 1. One
obtains (Problem 3.3):

gy = Tivh (3-13)

In this fashion one reaches the conclusion that there exists a two-to-one
mapping between all the elements of the group SL(2, C) and all the elements A of
the proper, orthochronous, Lorentz group L such that to each element A of the
group L there correspond two elements +g of the group SL(2, C), and to each
element g of the group SL(2, C) there corresponds an element A of the group L.
The mapping conserves the group multiplication and constitutes, therefore, a
homomorphism of the group SL(2, C) on the group L. As a result of this, the
description of the representations of the group L is equivalent to that of the group
SL(2, C); a representation g — D(g) of L is single- or double-valued according to
whether or not D(g) is equal to D(—g) or not.

Kernel of Homomorphism

The sign ambiguity of g = g(A) means, in particular, that the unit matrix I of the
group L is the image of both central'?! elements e, of the group SL(2, C), where
e, = te, and e is the 2 x 2 unit matrix. Hence we have established an isomor-
phism between the proper, orthochronous, Lorentz group L and the group
SL(2, C)/Z,, where Z, denotes the centre of the group SL(2, C) consisting of the
elements e .

Subgroups of the Group SL(2, C)

The group SL(2, C) possesses some important subgroups, some of which play
crucial roles in further investigations. These subgroups correspond to subgroups
of the proper, orthochronous, homogeneous Lorentz group L as well. Since the
group SL(2, C) is more natural to handle than the group L, one prefers to deal
with the group SL(2, C) x T,, where T, is the translational group. The group
SL(2, C) x T, is sometimes called the inhomogeneous SL(2, C) group.

2 Group elements are called central if they commute with all group elements. Central elements
form the center of the group. See Appendix A for further details.
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The group SU, has already been mentioned as a subgroup of SL(2, C). It
consists, of course, of those elements u satisfying u' = u~'. A possible parametri-
zation of the group SU, is as follows:

u=u,o0 (3-14)

with the condition
uf+ Y ui=1 (3-15)

Here u, and u, . k = 1, 2, 3, are real numbers.

Another subgroup of SL(2, C) is the group SU(I 1). It consists of those
elements v of SL(2, C)satisfying the condition v'63v = 6. A possible parametrlza-
tion is as follows:

v =10,0°+ v,0' + vy0% + ivy0° (3-16)
with the condition
¥ —vl-03+0vi=1 (3-17)

Here the numbers v, and v,, k = 1, 2, 3, are real.
A third subgroup of SL(2, C)is the group SL(2, R). It consists of elements a of
the group SL(2, C) satisfying a'6?a = 6. They can be presented as

a=a,o® +a,o' +iayo® + ayo’ (3-18)
Here the numbers a, and a,, k = 1, 2, 3, are real and satisfy the condition
a}—at+al-adl=1 (3-19)

The matrix a is a real 2 x 2 matrix.
By a rotation exp (ing'/4) = 271/2(¢° + is') in the x, — x, plane, we can map
the group SU(1, 1) on the group SL(2, R):

a = exp (—ino'/4)v exp (inc'/4) (3-20)

from which one infers that a, = vy, a, = v, a, = v5, and a; = —v,. This one-to-
one mapping of the two groups SU(l, 1) and SL(2, R) onto each other is
sometimes called the standard isomorphism.

Finally, the group of triangular matrices

e /2 0
((b, l‘) = (ue—hp/z ei¢/2)

where y is complex and 0 < ¢ < 4z, with the group multiplication law (¢, u,) x
(@2, 12) = (¢, + d2(£4n), u, + €®'y,), is isomorphic to the group of Euclidean
motions on the Riemannian plane of functions z'/2. The corresponding subgroup
of L is isomorphic to the group of motions in the complex z-plane itself. The
notation of this subgroup is U(1) x T, if one means the subgroup of L, and
U(1y x T, if one means the subgroup of SL(2, C).

(3-21)



40 GROUP THEORY AND GENERAL RELATIVITY

Connection with Lobachevskian Motion

We have seen that each complex, unimodular, two-dimensional matrix g induces a
Lorentz transformation in the Minkowskian space according to Q' = gQg', where
Q is given by Eq. (3-3). These Lorentz transformations map the surfaces

x3—x}—-x2-xi=c (3-22)

into themselves, for they preserve the corresponding quadratic form. There are
three types of such surfaces. These are either sheet of a two-sheeted hyperboloid
when ¢ > 0, a single-sheeted hyperboloid when ¢ < 0, and either the positive or
negative cone when ¢ = 0.1°!

The Lorentz transformations induce transformations that are called motions
of these surfaces. In this way to each complex unimodular two-dimensional matrix
g there corresponds a motion on each of the surfaces above. One can show thata
given motion corresponds to two matrices g, and g, if and only if g, = +g,.

The upper sheet of a two-sheeted hyperboloid together with the motions
defined in this way is one model of Lobachevskian space. This means that the group
of complex two-dimensional unimodular matrices is locally isomorphic to the group of
Lobachevskian motions. In addition to Lobachevskian space, there exist two
related spaces with groups of motions locally isomorphic to the same group of
matrices. Models of these spaces are the single-sheeted hyperboloid and the posi-
tive cone. '

We conclude this brief discussion on the Lobachevskian space by pointing out
that the group of motions on each of these surfaces is transitive, that is every point
of the space can be transformed by some motion to any other point. Let us prove
this assertion for the upper sheet of the two-sheeted hyperboloid x3 — x? — x% —
x3 =1, as the proof for the other surfaces is similar. Using Eq. (3-3), then the
points on our surface correspond to positive definite unimodular Hermitian
matrices. Since every such matrix can be written in the form Q = gg' = geg',
where g is a complex unimodular matrix and e is the 2 x 2 unit matrix. This
proves that there exists a motion transforming the fixed unit matrix into Q.

3-2 SPINOR REPRESENTATION OF THE GROUP SL(2, C)

Spinor Representation in Space of Polynomials

We now construct the spinor representation of the group SL(2, C). This represen-
tation contains all the irreducible, finite-dimensional, nonunitary representations of
the group SL(2, C).4

*If, instead of considering points x in Minkowskian space, we deal with Hermitian matrices 0,
the surfaces would be the following three types of manifolds in the space of Hermitian matrices:
all positive definite (or negative definite) Hermitian matrices with fixed determinant ¢ > 0; all
Hermitian matrices with fixed determinant ¢ < 0; and all Hermitian matrices Q > 0 (or @ < 0), that is
matrices @ whose corresponding Hermitian form takes on nonnegative (or nonpositive) values, with
determinant zero. See, for example, I. M. Gelfand, M. I. Graev, and N. Ya. Vilenkin, Integral Geometry
and Representation Theory, Academic Press, New York, 1966.

* M. Carmeli and S. Malin, Fortschr. der Phys. 21, 397 (1973).
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We denote by P,, the aggregate of all polynomials p(z, Z) in the variables z
and its complex conjugate z, of degree not exceeding m in the variable z and » in
z, where m and n are fixed non-negative integers determining the representation.
The space P,, is a linear vector space, where the operation of addition, and
multiplication by a number, are defined in the usual way for polynomials.

An element of the group SL(2, C) will be denoted, according to Eq. (3-1), by

= [ d

where a, b, ¢, and d are complex numbers satisfying the condition ad — bc = 1. We
define now the operator D(g) in the space P,,, by

D(g)p(z. 2) = (bz + dy"(bz + A)p (02 +c az+ 5)

bz+d’ bz+d
The correspondence g — D(g) is a linear representation of the group SL(2, C)

as can be verified. This is the spinor representation of the group SL(2, C) of
dimension (m + 1)(n + 1).

(3-23)

Two-Component Spinors

In order to relate the spinor representation introduced above to the two-
component spinors,l>! one realizes the representation in a somewhat different way
as described below.

One considers all systems of numbers ¢ ,, ... 4., .. x, Symmetrical in both the
indices A, **- A,, and in X, --- X, taking the values 0, 1 and 0, 1. The set of all
such systems of numbers provides a linear space, denoted by S,,,, of dimension
(m+ 1)(n+ 1).

A one-to-one linear mapping between the spaces P,, and S, can easily be
established. To each system of numbers ¢ ... 4 &, ... x, of the space S, there
corresponds the polynomial

P(2,2)= Y Gue amby k2T AmzX 1+ + X (3-24)
PR
of degree not exceeding m in the variable z and n in z. Therefore p(z, Z) belongs to
the space P,,,. On the other hand every polynomial

p(z, 2) = ). p,, 2’2" (3-25)

in the space P,, can be written in the form (3-24) if one relates the ¢ and p by

means of
m\ (n
B Y L PRIE O g 22 (3-26)

with A, + -+ A =rand X, + -+ X, =s.

* Throughout this chapter the term spinor is used to mean symmetrical spinor.
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A second form of the spinor representation is then obtained if one applies the
polynomials (3-24) in Eq. (3-23). One obtains

D(g)p(z, 2) = Z ¢A1 a2 A s (3-27)

X1. weey X,.

where we have used the notation
¢A’1""A».X’1"'X’.= Z gAB gAmBmg’?x).'x“. gx,n).'n¢BlluBm).'1."Yn
(3-28)

and where use has been made of the notation g,, =a, g,0 =b, go; = ¢, and

goo = d.
The quantity ¢ , ... 4., .-, 18 called a two-component spinor, symmetric in

its m undotted indices and in its n dotted indices. Equation (3-28) expresses the
law of transformation of symmetrical spinors under the transformation g of the
group SL(2, C). With a change in notation, one obtains the same transformation
law (3-28) but with goo = @, go1 = b, g1 = ¢, and g, = d since the matrix

d ¢
b a
occuring in the transformation (3-28) is also an element of the group SL(2, C).

Hence we will use the same transformation law (3-28) but with g,y = a, go; = b,
dio = ¢ and g,, = d, where a, b, ¢, and d are the elements of the matrix g of the

group SL(2, C).

Example 3.1 The simplest example of a spinor is a one index spinor. ¢ ,, with
A =0, 1. Its law of transformation is, according to Eq. (3-28), given by

1
¥y = Z 94895 (3-29)
B=0
with 4 =0, 1.
Example 3.2 Taking the complex conjugate of Eq. (3-29), one obtains
1
=) Gusbs
B=0

The complex conjugate of a spinor ¢ , is sometimes denoted by @ ;. Hence the
above equation will usually be written as

Fi= Y Gasbs (3-20)
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Example 3.3 A mixed spinor ¢ 45 will transform as

dp= Z 9 4cTsoPci (3'31)

If one denotes by D®/2-1/2) the representation corresponding to the transfor-
mation (3-31) of the spinor components (¢4, Poi» @15, P,1), then the trans-
formation matrix is given by

aa ab ba bb
i< [3 5 & &
¢ cd dec dd

(3-32)

Example 3.4 If we use the space of polynomials P, for m = n = 1, then
p(z, Z) = poo + Po1Z + P1oZ + P112Z (3-33)

The law of transformation. of the coefficients p,, is again given by means of the
matrix D42 1/3(g) of Eq. (3-32).

Spinor Representation by means of the Group SU,

We now establish a third form for the spinor representation using the group SU,.
Starting from Eq. (3-25) we denote the polynomial p(z, Z) by p(z), and define the
function

a(g) = 95275, (3-34)

where the matrix g of the group SL(2, C) is denoted as

g=(g“ 912)
gd21 922

The spinor representation formula (3-23) can then be written in the form

D(g)p(z) = a(zg)p(z(9)) (3-35)
Here z denotes a complex variable as well as the matrix
10
= 33
z (z 1) (3-36)

and the variable z(g) in Eq. (3-35) is given by z(g) = ¢4, /952, Where the matrix ¢
of SL(2, C) is given by

, 911 gdi12
g =zg9= (3-37)
(9112+921 9122"‘922)
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Therefore the new variable z(g) in Eq. (3-35), using Eq. (3-37), is given by

921 911z2+ g .
) 922 9122+ G22 (

The new form of the spinor representation is obtained by expressing Eq. (3-35) in
terms of matrix elements of the group SU, . Let

u= (““ “”) (3-39)

denote an element of the group SU, . Let P, denote the space of all polynomials
q(u) that are homogeneous in the variables u,; and u,, of degree m, and in %, and
i, , of degree n, satisfying the condition

q(yu) = €'~ "2q(u) (3-40)
where the matrix y € SU, is given by
e 2 0
)= ( . ew) (3-41)

In the following we will establish a mapping between the space P,,, of polyno-
mials g(u) and the space P,, of polynomials p(z). To this end we proceed as
follows.

We first introduce the set of all matrices k of the form

k= (i(_)l ’;) (3-42)

where 4 and p are complex numbers with A # 0. It is easily seen that the aggregate
of all the matrices k forms a subgroup of the group SL(2, C). This subgroup is
denoted by K. Let us, furthermore, notice that the set of all matrices z of the form
given by Eq. (3-36) also provides a subgroup of the group SL(2, C). This subgroup
is denoted by Z.

Lemma 3.1 Any element g of the group SL(2, C), satisfying the condition
g2z F 0, can be uniquely decomposed into the form

g=kz, kekK, zeZ (3-43)

In fact, suppose a matrix g of the group SL(2, C) is given. Then Eq. (3-43)

means
(911 912) - ('1—1 l‘) (1 0)
gda1 Y22 0 Az 1
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A straightforward calculation then shows that we have the unique solution
A=gi, =412 (3-44a)
zZ=g11/922 (3-44b)

Consider now the set of all right cosets Z (see Appendix A) of the group
SL(2, C)withrespect to the subgroup K. It follows from Lemma 3.1 that there exists
a one-to-one correspondence between all these right cosets and all the complex
numbers z of the matrices z; Eq. (3-44b) shows that all the elements of the group
SL(2, C) for which the ratio g,,/g,, = z is the same, belong to the same right
coset. We will prove, furthermore, that every right coset Z of the group SI{2, C)
with respect to the subgroup K contains elements of the group SU, .

Lemma 3.2 Every element g of the group SL(2, C) can be decomposed into the
form

g = ku, ke K, ueSU, (3-45)
In fact, since the general form of the element u of SU, is given by
a f _
= _ : o =1 -
u (—ﬂ &)’ o + BB (3-46)

Equation (3-45) has the form

(g“ g“) - (1-1 ”)( * ’_3) (3-47)
g1 922 0 A\-p &

Solving Eq. (3-47) for the variables 4, , a, and § one obtains, using the condition
(3-46),

|/1|2 = |g21 P + |922 1 (3-48)
« =22 (3-49)
_ _9n i
p=-% (3-50)
912 ‘_' B/A : %40
&
p= (3-51)
—@; a=0
B

The decomposition of the matrix g = ku of Eq. (3-45) is, therefore, not unique
since the phase w of 4 is left undetermined by Eqgs. (3-48) to (3-51). In fact, if
y € SU, is an arbitrary matrix of the form

B e—iw 0
7= 0 Ciw (3'52)
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with a real phase w, and k belongs to the subgroup K, then ky also belongs to K.
Hence

g =ku=(ky)(y~'u) = k'v (3-53)

with k' = ky belongs to K, u' =y~ 'u belongs to the group SU,, and 7 is an
arbitrary matrix of the form (3-52). One easily finds that the transition from k and
u to ky and y~'u is equivalent to the transition from 4, a, and f to €4, e“a, and
eB, respectively.

If now g is an element that belongs to the right coset Z, then Eq. (3-45) shows
that u too belongs to z. But if also u, belongs to Z then u, = k'u, where k' belongs
to the subgroup K. Hence g = ku = kk'"'u, and, using Eq. (3-53), one finds
u; = 7y 'u. Consequently, every right coset  contains unitary matrices of the
group SU,, and unitary matrices from the same right coset differ by a left factor y.
Finally, if z and u belong to the same left coset 2, then for some k we have z = ku.
Applying Egs. (3-48) to (3-51) to the matrix

()

[A2=1+|z|% o=

one finds that

(3-54)

| =
=
I
|
ol )

The above considerations show that the set of all matrices u’ that belong to
the right coset z forms a right coset I'u of the group SU, with respect to its
subgroup I', where I is the aggregate of all matrices of the form (3-52). We can
denote this right coset by & and make the correspondence between every right
coset Z and every right coset @, the one containing the matrix u. The transforma-
tion Z — z(g) can then be considered as a transformation & — i(g) of the corre-
sponding right cosets ii.

The mapping between the space P,,, of polynomials g(u) and the space P,,, of
polynomials p(z) can now be established by putting

q(u) = ' 2a(u)p(2) (3-55a)

where a(u) = u%, 3, and the matrices u and

()

belong to the same right coset z. Since by Eqs. (3-54) z = —B/& = u,, /uz,, the
mapping between the two spaces P,,,and P,,, is easily established, and one obtains

q(u) = n'2 Y p,uy U5y a5, 833° (3-55b)

r.s
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The representation formula (3-35) can now be considered as a representation
in the space P,,, by using the mapping (3-55). One obtains

o(ug)

D(g)q(u) 2(u(a)) q(u(g)) (3-56)
where g(u) belongs to P,,, and u(g) is a matrix of SU, which belongs to the right
coset Z(g) = z’ where z’ is given by Eq. (3-38). The matrix u(g) can be explicitly
obtained in terms of the matrices u of SU, and g of SL(2, C). To see this we
proceed as follows (¢!

Let the matrix u(g) be denoted by v,

-p &
According to Eq. (3-45) ug can be written in the form ug = ku(g) = ku’, where k is

a matrix having the form given by Eq. (3-42). If one denotes now ug by ¢’, then one
has g’ = ku’, or explicitly,

g gy (A wu\( o« B
M I P [ =

gr1 = —AB, g22 =AY

u'=( “ ﬂ,); ||+ |B > =1 (3-57)

This gives

from which one obtains

—

922 921
192 r= 921 3-59
o === P T (3-59)

Furthermore, using the condition (3-57) one obtains
|41 = 1921 [ + |22 I (3-60)

But g’ = ug. Let us denote the matrix u by

« f _
I 4 TR

and the matrix g by

g
g= (g“ 12); 911922 — 912921 =1
g1 922

Then one has from g’ = ug the following:

(9'11 9'12) _ ( agi1 + g2 ogyz + ﬂgzz)

! ’ 0 — D —_ 3'61
921 922 ~Bg11 + 3921 —Bgiz + g2, ( )

¢ M. Carmeli and S. Malin, J. Math. Phys. 12, 225 (1971).
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If we now write 4 = |A| e, where A is some real number (phase), then one

4] e
finally obtains for Eq. (3-59) and (3-60)

o = (=BG + agyy)|A|7" e
] 12 ) 22 |_1| A (-62)
ﬂ,:(ﬂgll_ag21)|i| ¢!
and
|A]> = |Bg11 — @Gas > + | —BG12 + 0222 |2 (3-63)

Hence u(g) is determined by means of u and g up to an arbitrary phase factor. It is
readily verified that the right-hand side of Eq. (3-56) is independent of the arbi-
trary phase factor since it cancels out. The spinor representation is, therefore, well
defined on the space P,, by Eq. (3-56).

Example 3.5 Let us suppose that g is a matrix u, that belongs to the group
SU,:

0o ﬂo); |a0 |2 + |ﬂ0 |2 =1 (3-64)

= Uy = — _
g ° (_ﬂo %o
Then one obtains for the matrix u' = u(g) = u(u,), using Egs. (3-62) and
(3'63)’

o« = (—PBo + axo) €
B = (B, + af,) e (3-65)
|[A] =1
Consequently, one has
a(uuo) _ Lim—mA
w(uluo)) e . (3-66)

Example 3.6 Suppose now that the matrix g is of the form
-1
€35 0
=¢= 3-67
g & ( 0 822) ( )
where ¢,, is real. One now obtains
o =agy, A7 e
B =Pexs |47 e (3-68)

412 = [B %27 + |3,

whereas

— |i |m+n ei(m—n)A (3-69)
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Matrix Elements of the Spinor Operator D(g)

To conclude this section we find the matrices of the spinor operators D(g).!™
Consider the complex two-vectors & = (&', £2), which transform as

=<y (3-70)

under application of a matrix g of the group SL(2, C). Let us construct a linear
vector space of complex polynomials in the two variables &' and ¢2 and denote
these polynomials by p(£) = p(£!, &%) which are homogeneous in &' and &2 of
degree 2J, where 2J is an arbitrary nonnegative integer. In this space, having the
dimension (2J + 1), we define the transformation D(g) for any g of SL{2, C) by

D(g)p(¢) = p(&') = p(49) (3-71)

These transformations provide a (2J + 1)-dimensional representation of the
group SI{2, C).

In order to relate the transformation (3-71) to a more familiar notation we
expand the polynomial p into powers of ¢! and £2:

PO= 5 ANy ey 6-7)

Here N{, are normalized constants defined by
Ny ={@NYJ + M) — M)112

and y3, are expansion coefficients. In terms of yj, the transformation D(g) can be
expressed as

(D@ = 3 Dheloide (373)

Mi=—J

From Egs. (3-71), (3-72), and (3-73) one finds

Dinnla) = | M = M)! 1/22 J+M\( J-M
=My -m)y| 2l on Jlu+M—n
X giigiz ™ g M g MY (3-74)

where the sum over n extends over all integers for which neither of the binomial
coefficients vanish.

If we restrict the group SL{2, C) to the subgroup SU,, we obtain the matrix
Digp(u) defining the unitary irreducible representation of the group SU, (see
Chapter 1). Each element Dj;y.(u) is a homogeneous polynomial of degree 2J in
the matrix elements of u, and the coefficients of the polynomial are real. A substi-
tution u;; — g,;, with i, j = 1, 2, leads us back to the matrix elements Dyp.(g). If we

7 See, for example, W. Rithl, The Lorentz Group and Harmonic Analysis, Benjamin, New York,
1970.
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substitute u;; = o0 + if, uy; =y + id, uy; = —y + id, and u,, = a — iff, with real
a, B, 7, 0, such that a® + B2 + y* + 6% = 1, the substitution u; —g;; can be in-
terpreted as an extension of the real parameters «, §, y, 0 into the complex domain.
This is called a complexification of the group SU, .

3-3 INFINITESIMAL OPERATORS OF THE SPINOR
REPRESENTATION

We now find the infinitesimal operators L, L,, K, K; of the spinor repre-
sentation for the group SL(2, C) discussed in the last section.

One-parameter Subgroups

First we find the one-parameter subgroups of the group SL(2, C) corresponding to
the one-parameter subgroups a,() and b,(y) of the proper, orthochronous, hom-
ogeneous Lorentz group L. These can easily be derived using Egs. (3-10). One
finds for these one-parameter groups:

cos g i sin g cos g —sin g
a () = v vl a,(y) = " y
i sin 3 cos 5 sin 5 cos 5
/2 0
aa(lp) = e0 e_iw/z) (3-753)
cosh % sinh % cosh izp_ i sinh g \
b =| v s by(¥) = Ty J
sinh 5 cosh > —1i sinh 3 cosh 5
v/2 0
b= (G ) (3-750)

In terms of the infinitesimal matrices a, and b,, where k = 1, 2, 3, of the group
SL(2, C), they can be written as

a(y) =" b)) =™,

where a, and b, are given in terms of the three Pauli matrices (3-5) by a; = ic*/2
and b, = ¢%/2.
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Infinitesimal Operators

Using now Egs. (3-23) one can find the operators A,(y) and B,(y), where k = 1, 2,
3. For example

A (Y)p(z, 2) = (i sin Lp Z + cOos f)m(—z sin f Z + ¢Os f)"

2 2 2 2
cos§z+zs1 g cos%z—zsmg
o lSln§z+co %’ —zsmgz+cosg
A,(W)p(z, z) = [ —sin %z + cos ~) ( % + cos 'g)" (3-76)
cosiz+smg lzpz+smg
x B
’ —Singz+cosg —sin¥2+cosg

A3(¥)p(z, Z) = €™ ™12 M i2p(eVz, e Vz),

In the same way one finds the operators B,(y), k = 1, 2, 3. Differentiating both
sides of these equations with respect to the parameter y, and putting = 0, one
obtains:

i 0 i 0
A = {— —_ 2——7 __2* —
== L =50 ) L e =y
1 NG| 0 1 -
Azp—=2(l+z)£+§(l+z)£—§(mz+nz)}p (3-77a)
.0 _0 i
A3p={zz£—123—§(m—n)}p
Bp=1(1—22)~+ (1—22)g+ (mz + nz)ip
2 z oz ' 2
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The operators L, , L;, K, and K5 can now be found, using Egs. (2-77):

L+p={—£—22~+n2}p
0z z
o 0
)29 9
L_p—;z 8z+82 mz}p
g 0 1
L3p—:—zé+za—z+§(m—n)}p
(3-78)
0
K+p=;i~—122~+mz}p
oz
K_p= —122g+1 + imz
-P= oz s P
¢  _0
K3p—{lz£+lza~2—2(m+n)}p

Further Properties of Spinor Representations

We conclude this section by the following lemmas.
Lemma 3.3 The spinor representations of the group SL(2, C) are irreducible.

Lemma 3.4 Every finite-dimensional irreducible representation of the group
SL(2, C) is equivalent to some spinor representation. The pair of numbers j, and
c of the representation formula (2-30) is thenrelated to the pair of numbers m and
n of the spinor representation by

Jo=%[m—n| (3-79a)
_ |[sign (m—n)][3(m +n) +1];  m+#n
‘= +[3(m + n) + 1], m=n (3-790)

Lemma 3.5 The spinor representations are all nonunitary.

The proofs of Lemmas 3.3, 3.4, and 3.5 are left for the reader (Problems 3.12,
3.13, and 3.14).

PROBLEMS

3.1 Use Eq. (3-9a) to prove Eqgs. (3-9b).

3.2 Prove Egs. (3-10). [See W. Riih], The Lorentz Group and Harmonic Analysis, Benjamin, New York,
1970]

3.3 Prove Eq. (3-13). [See W. Riihl, op. cit.]
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3.4 Prove that the kernel of the homomorphism of the group SL(2, C) onto the group L coincides with
the centre of the group SL{2, C). [Notice that by definition the element g is in the kernel of the
homomorphism if for all Hermitian matrices Q one has Q = gQg'.]

3.5 Use Eq. (3-9a) to show that if a, b, ¢, and d are the four elements of the matrix g of the group
SL(2, C), with ad — bc = 1, then the corresponding matrix A of the proper, orthochronous, homo-
geneous, Lorentz group is given by

iaa + bb + cc +dd)  Re(ab + cd) m{ab —cd)  i(aa — bb + ct — dd)
A | Re (at + bd) Re (ad + bt) m (ad + bc)  Re (ac — bd)
| 1m (ac + bd) m (ad + be) e(ad —bc) Im (ac — bd)

L(aa + bb — ct — dd) Re (@b—cd) Im(ab+cd) 4aa—bb— ct +dd)
Show that the same matrix can also be obtained directly from either Eq. (3-6) or Eq. (3-9b).
3.6 Show that the formula (3-23) provides a representation of the group SL(2, C).
3.7 Prove Egs. (3-27) and (3-28).
3.8 Show that the transformation (3-71) is another form of the spinor representation.
3.9 Show that the matrix elements Dj,,,.(g) of Eq. (3-74) satisfy the properties:
Dyu(3) = Disnelg)
Diudg") = Dirul9)
Dipallg™ 1)) = ()M DLy _ylg)

310 Show that the parameter y of Egs. (3-75b) is related to the relative speed v of the Lorentz
transformation by

¥ = cosh™! [(1 — v?/c?)~1/?]
3.11 Find the operators B,(y/) for the spinor representation of the group SL(2, C)and from them prove
Egs. (3-77b).
3.12 Prove Lemma 3.3.
3.13 Prove Lemma 3.4.

3.14 Prove Lemma 3.5. [Thus the group SL(2, C) does not contain finite-dimensional unitary
representations.]



CHAPTER

FOUR

PRINCIPAL SERIES OF REPRESENTATIONS
OF SL(2, C)

In Chap. 3 we found all finite-dimensional representations of the Lorentz group.
In this chapter and the next two chapters we give all infinite-dimensional re-
presentations of that group. In this chapter we discuss the important representa-
tion known as the representation of the principal series, which is unitary and
irreducible. We start our discussion by introducing some infinite-dimensional
spaces in which the representations of the principal series are later realized. This
is followed by a discussion of the concept of Fourier transform on the group SU, .
We then realize the representation of the principal series, which can be considered
as a generalization of the finite-dimensional spinor representation. A comparison
with the infinitesimal approach, discussed in Chap. 2, is then made. Finally, we
discuss some preliminary aspects of the theory of harmonic analysis on the group
SL(2, C).

4-1 LINEAR SPACES OF REPRESENTATIONS

We start our discussion of infinite-dimensional representations of the group
SL(2, C) by defining certain infinite-dimensional linear spaces in which the re-
presentations are realized.!!)

! See, for example, M. A. Naimark, Linear Representations of the Lorentz Group, Pergamon Press,
New York, 1964.

54
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The Hilbert Space L,(Z)

We denote by L,(Z) the Hilbert space of all measurable functions f(z) defined on
the group Z, satisfying the condition

f | f(z)]* dz < 0 \ (4-1)

The scalar product in the space L,(Z) is given by

(ff2) = [ fie)ale) dz (4-2)

Here Z denotes the aggregate of all matrices z of the form (see Chapter 3):
1 0

2= ( 1) (43)

Obviously Z provides a subgroup of the group SL(2, C). The integrals in
Egs. (4-1) and (4-2) are invariant integrals on the group Z, with the measure

dz =dx dy; z=Xx+1iy (4-4)

The measure dz is invariant under the group displacement z — zz,,

'[ f(zzo) dz = '[ f(z) dz (4-5)

It is also possible to consider the function f(z) as a function of the variables x
and y and denoting f(z) by f(x, y), where z = x + iy. By Eq. (4-4) one then has

[reraz=]" | stxy)axay (4-)

— @ —

But the displacement z — zz, carries the parameters x and y into x + x, and

v + yo since
(1 0/ 0} 1 0
o= z 1Mlzg 1) T \z42z, 1

@0 @0

[flezo)dz =] [ flx+xo,7+yo)dxdy

— — @

Hence we have

=jm J‘m f(x,y)dxdy=t[f(2)dz

— @ — @

Furthermore, one can easily show (see Problem 4.1) that under the transformation
z -2 = z(g),

+
z( =911Z g21

4-7
9122 + ga2 (47
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from Eq. (3-38), g being an element of the group SL(2, C), the measure dz is
transformed into the new measure

dz' = |g122+g22|_4d2 (4-83)

Equation (4-8a) can also be given a group theoretical meaning. This is so since
if we define the function

Blg) = |922[* (4-9)
and if k is an element of the group K, ie. a matrix of the form
AT o
—3 4-
k ( 0 /l) (4-10)

(see Chapter 3), then
Bkg) = |Ag22|* = |4 1*19221* = B(k)B(g)

Furthermore, §(z) = 1, where z is a matrix of the form (4-3). Now let g’ = zg, and
apply Eq. (3-37), we see that B(zg) = |g,,z + g2 |* Hence Eq. (4-8a) can be
written as

dz' = B~ !(zg) dz (4-8b)

The Hilbert Space I*(SU,)

The Hilbert space [?(SU,) is defined as the set of all functions f (u), where u is an
element of the group SU,, which are measurable and satisfy the conditions
[ | f()|* du < 0. The scalar product in the space I*(SU,) is defined by

NARIRAOTAORY

The proof of the completeness of the space I*(SU,) is left for the reader (compare
Appendix C).

The Hilbert Space L2(SU,)

We denote by L25(SU,) the set of all functions ¢(u) on the group SU,, which are
measurable, and satisfy the conditions

P(yu) = eVd(u) (4-11)
where y of SU, is given by

e ™2 0
y=( . eW) (4-12)
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and [ |¢(u)|* du < 0. We introduce in the space L3*(SU,) a scalar product
defined by

(61 62) = [ $1(u)p2u) du

L2%(SU,) then becomes a Hilbert space; it is a closed subspace of the Hilbert space
I?(SU,) discussed above, and is complete. In fact I2(SU,) is the direct sum of all
the L3*(SU,). Here s should be an integer or half-integer in order to guarantee
singlevaluedness of the function ¢(u).

Fourier Transform on the Group SU,

We now generalize the concept of Fourier transform of functions to functions
defined over groups.

Let f(x) be a measurable function with integrable square modulus on the real
line — o0 < x < o0, and consider its Fourier transform

f(k) = ﬁ [7 () e dx (+13)

The theorem of Plancherel then states that the integral in Eq. (4-13) converges in
the mean and the functions f satisfy

[ 1rWP k=] 1G] dx (4-14)
Equation (4-14) is known as Plancherel’s formula. In the following we use the
above formalism for analogous generalizations to Lie groups. In the particular
case of compact Lie groups, such as the group SU,, the Plancherel theorem is
included in the theorem of Peter and Weyl.[Z

To this end we first give a group theoretical meaning to Plancherel’s theorem.
One notices that the set of all real numbers x can be considered as a group, the
additive group of real numbers, R, in which the group operation is defined as the
addition of numbers. Consider now, for a fixed real number «, the function
D(x; k) = e**. Obviously, D(x, + x,; k) = D(x,; k)D(x,; k) and D(0; k) = 1.
Consequently, the operation of multiplication by D(x; k) in a one-dimensional
space realizes a one-dimensional representation of the group R.

Consider next the measurable functions f(x) which are integrable square on
the real line — o0 < x < c0. They provide a Hilbert space, denoted by I?( — oo, o).
A unitary representation of the group R, known as the regular representation of the
group R, can be realized in the space I?(— oo, o) by the representation formula
D(y)f(x) = f(x + y). The function f(k) of Eq. (4-13), whose values belong to the
space C of all complex numbers, and satisfy [*,, | f(k)|* dk < o0, can be con-

2 See, for example, L. S. Pontrjagin, Topological Groups, Princeton University Press, Princeton,
New Jersey, 1946.
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sidered as the continued direct sum of continuously many images of the space C.
Plancherel’s formula (4-14) shows that the space I*(— oo, o0) of functions f(x) is
isometric (see Appendix C) to the space of functions f(k) through the isometry
transformation (4-13). The operator D(y) of the regular representation, under the
isometric mapping (4-13), goes into the operator D(y) defined in the space of
functions f(k). To find the operator D(y) we notice that an application to the
function f(x) of the operator D(y) of the regular representation takes the function

f(k) into

@0

flx+y)e ™ dx= 7(127) j f(x) e” ™= dx = e™f (k)

- @

(2n)

Hence the application of the operator D(y) to the function f(k) yields a multi-
plication of the k-th image f(k) by D(y; k) = €™, ie. a transformation of each
separate one-dimensional image of C according to a one-dimensional representa-
tion of the group R. In analogy with the definition of the usual (discrete) ortho-
gonal direct sum of representations, the representation x — D(x) is called the
continued direct sum of the one-dimensional representations x — D(x; k). The
Fourier transform (4-13) realizes an isometric mapping of the regular representa-
tion of the additive group R of real numbers into the continued direct sum of its
irreducible, one-dimensional, representations, thus realizing a decomposition of
the regular representation of the group R into its irreducible representations.
These considerations point out the group theoretical significance of the Fourier
transform and Plancherel’s formula.[3!

Consider now the Hilbert space I*(SU,). Let D4, ,(u) be the matrix elements of
the irreducible representations of the group SU, in their canonical basis (see
Chapter 1), and define the function

1 !-w

5(1) = /(2 + 1)Dh,,(u) (4-15)

As has been shown in Chapter 1, these functions provide a complete orthogonal
system in the space I?(SU,). Hence one has

[ 17w du= (1) =% T o’ (+-16)

where |
S = (1 Don) = [ £ () B(s) du (4-17)
Here the summationruns over j =0,4 1,3, ...,andm,n= —j, —j+ 1, —j + 2,

.., J. Equations (4-16) and (4-17) can also be written as

Fi= [ f)[D'W)]' du (4-18)

® These results are valid to arbitrary locally compact commutative groups. See, for example,
M. A. Naimark, Normed Rings, Noordhofl, Groningen, The Netherlands, 1959.
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where D/(u) is the matrix whose elements are D/,,(u). Hence F’ is a matrix whose
elements are

Fho = [ £()Dhfu) du (#-19)

Equation (4-18) can now be considered as the generalization of the Fourier
transform (4-13); the comparable part of the numerical function f (x), labelling the
irreducible representations of the additive group of real numbers R, is being taken
over in the present case by the matrix F7 of discrete variables j, labelling the weight
of irreducible representation of the group SU,. From Egs. (4-15) (4-17), and
(4-19) one finds that o/, = \/(2j + 1)F’,,, whereas Eq. (4-16) gives

[ 1/ @Pdu=F @i+ )T |Fhl? (4-20)

Equation (4-20) is Plancherel’s formula for the group SU, 14!

We define the regular (more accurately, right regular) representation u — D(u)
of the group SU, in the Hilbert space [>(SU,) by associating to every element u,
of SU, the operator D(u,), called the right translation operator on the space
I}(SU,), which transforms all the f(u) according to

D(uo) f(u) = f (uuo)

Obviously D(uyu,) = D(u;)D(u;), so that D(u) is a representation of the group
SU,. Because the measure du is invariant under right translations, the regular
representation is unitary. One may then ask for the decomposition of this re-
presentation into irreducible representations.

The matrix elements Fi,, are transformed in the transition from f (u) to f (uu,),
using Eq. (4-19), into

Flmjn = Z Dmm uO (4'21)
Let us denote by R’ the (2j + 1)-d1men51onal space of all possible systems
X={X_j, X ji1s ens xj} of numbers x_;, x_;,y, ..., x; with the scalar product
defined by (x, y) = (2/ + 1) ), X, ¥, Where m takes the values from —j to j. For
fixed values of j and m, the numbers F’ ,, with n = —j, —j + 1,...,, are elements
xh=(F5 _;, Fi _j+1, ..., F};) of the space R’. Hence the function F’ can be

considered as a vector-valued functlon x = {x}} with values in the space R}, = R’.
One then has [ | f(u)|* du =) |x}|®. Hence the transition from f to F/ by
Eq. (4-19) is an isometric mapping of the space I?(SU,) onto the direct sum of
spaces R’ in which each space R’ occurs 2j + 1 times. If ﬁ(u) is the operator to
which the operator D(u) corresponds under this mapping, Eq. (4-21) shows that
each of the subspaces R/, = R’is invariant with respect to the operator D(u)and the
matrix of the operator D(u) in this subspace is the matrix D/, (). Consequently,
the generalized Fourier transform (4-18) realizes an isometric mapping of the

4 Equation (4-20) can be generalized for any compact topological group.
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regular representation u — D(u) onto the direct sum of irreducible representations
u = DJ(u), where each representation u — D’(u) is included in this direct sum
2j + 1 times.

The Hilbert Space [%°

We now use the generalized Fourier transform, introduced above, in order to
transform each Hilbert space L3%(SU,) into the Hilbert space /3* which is defined
as follows !

Consider all possible systems of numbers ¢/, where m= —j, —j + 1, ..., j
and j = |s|, |s| + 1, |s| + 2, ..., with the condition

g Jj
2 @+1) Y [on] <o (4-22)
J=Tsl m=—j
The aggregate of all such systems ¢/, of numbers forms a Hilbert space, denoted
by [2%, in which the scalar product is defined by

a

Z (2 +1) Z LY, (4-23)
i=ls m=—j
for any two vectors ¢, and ¥, of I2°. For any integer or half-integer value of s, the
two Hilbert spaces L3°(SU,) and [3* are isometric. Let us find the transformation
between the two spaces.
Let DJ (u) be the matrix elements of the irreducible representation of the
group SU,. As has been shown in Chapter 1, the functions D/, (u) satisfy

Din(yu) = €D}y (u) (4-24)

where the matrix y of SU, is given by Eq. (4-12). For a fixed value of s, the
functions D!,,(u) provide a complete orthogonal set for the Hilbert space L35(SU,),
where m= —j, —j+ 1, ...,jand j=|s|, |s| + 1, |s| + 2, .... The functions
DI (u) also satisfy the orthogonality relation

[ D3 ()DL () du = 5= — 85 6, 6, (4-25)

2]+1

Consequently, any function ¢(u) of the space L3*(SU,) can be uniquely expanded
in the form

$(u) = Z @+1) % ¢ho (4-26)

=ls| m=—j

where
= | #(u)DL,(u) du (4-27)

5 M. Carmeli, J. Math. Phys. 11, 1917 (1970).
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The system of numbers ¢, consequently, satisfy the condition (4-22) if and only if
the corresponding function ¢(u) satisfies the condition | |$(u)|* du < oo of the
Hilbert space L3*(SU,). The Hilbert spaces L3*(SU,) and [3° are, therefore, isome-
tric and the mapping between them is given by the generalized Fourier transforms
(4-26) and (4-27).

Linear Spaces of Homogeneous Functions

Infinite-dimensional representations of the group SL(2, C) can also be realized on
spaces of homogeneous functions.!® The homogeneous functions can be con-
sidered as generalizations of the spaces of polynomials which are homogeneous,
with integral degrees, in pairs of variables. Such spaces are denoted by D(y), and
the homogeneous functions of two complex variables are denoted by F(z,, z,, Zy,
z,). For convenience, these functions will be denoted by F(z,, z,). Hence the
function F(z,, z,) is considered as homogeneous of degree (4, 1), where 4 and p
are complex numbers differing by an integer. This means, for any complex number
a # 0, we have

F(az,, az,) = a*@"F(z,, 2,) (4-28)

In order to make the function fsingle-valued, the homogeneity condition F(e“z,,
e"z,) = e*""*F(z,, z,) must reduce to an identity for 6 = 2nn, where n is an
integer. Hence the condition A — g = m, with m as an integer, should be satisfied.
We shall make this assumption throughout.

Let n, and n, be a pair of complex numbers whose difference is an integer.
Instead of the degrees A and u we shall characterize homogeneous functions by the
pair of numbers n, and n,, and for simplicity we put y = (n, n,), where
n, =24+ 1and n, = u + 1. In addition, we use the notation —y = (—n;, —n,) if
x = (ny, ny). The linear spaces D(y) of homogeneous functions F(z,, z,) are then
defined by the following postulates:

(1) F(zy, z,) is homogeneous of degree (n;, — 1, n, — 1);

(2) F(z,, z,) is infinitely differentiable in the variables z,, z, and their com-
plex conjugates throughout the entire region of variation of z, and z,, except at
the point (0, 0).

We also introduce a topology into the space D(x). A sequence {F,(z,, z,)} of
functions in D(y) will be said to converge to zero if on every closed bounded set
that does not include the point (0, 0) these functions converge uniformly to zero
together with all their derivatives. One can show that the space D(x) is complete
with respect to this topology, and hence D(y) is a topological vector space.

6 See, for example, I. M. Gelfand, M. 1. Graev, and N. Ya. Vilenkin, Generalized Functions,
Vol. 5. Integral Geometry and Representation Theory, Academic Press, New York, 1966.
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Other Realizations of the Space D(y)

Instead of using the spaces of homogeneous functions, it is sometimes useful to
consider other equivalent realizations of the spaces D(x).

Consider the complex line z, = 1 in a space of two complex dimensions. This
line intersects each line passing through the origin (except z, = 0) at one and only
one point. Therefore, each F(z,, z,) of D(x) is determined uniquely by its values on
this line. In this way with each function F(z,, z,) of D(x) we associate the function

f(z2)=F(z 1) (4-29)

Due to the homogeneity of F(z,, z,), knowledge of the function f(z) suffices to
reconstruct F(z,, z,),

F(Zb 22) = 2'2”_17'2'2_1f(21/22) (4'30)

The function f(z) depends on only one complex variable z. It is infinitely
differentiable in z and Z, the infinite far point included. At this infinite far point
f(2) has an asymptotic series expansion of the form

flz) ~ zm-1zmt Z ajkz_jf—" (4-31)

j, k=0

The topology of the space D(y) of functions F(z,, z,) can be carried over to the
new space of functions f(z). In view of Eq. (4-30) we may call this space also D(y).

Another realization of the space D(x) is available if one considers the manifold
Q of all points (z,, z,) such that |z, |* + |z, |* = 1. Every line passing through the
origin and intersecting the manifold Q at (w,, w,) contains also all points of the
form (e*w,, €¥w,), where y is a real number such that 0 < < 27. The homogen-
eity condition then leads to'

F(e"w,, e¥w,) = ™™ " ¥F(w,, v,) (4-32)

Hence, with every function F(z,, z,) of the space D(x) we can associate an
infinitely differentiable function F(w,, w,) on the sphere Q whose equation is
|wy [* + |w,|* =1 and which satisfies the homogeneity condition of Eq. (4-32).
F(z4. z;) can be obtained from F(w,, w,) by

F(zq, z,) =r""*"72F(z, /r, z,/r) (4-33)
where. r = (|z, |* + |z, |*)"/%. Conversely, if F(w,, ,) is any infinitely differen-

tiable function on Q and satisfies Eq. (4-32), the function F(z,, z,) of Eq. (4-33)
belongs to D(x)”

7 The realization of the space D(x) in terms of the functions F(w,, w,) is interesting since Q is a
compact manifold.
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4-2 THE GROUP OPERATORS

Representation of SL(2, C) on D(y)

We now determine the representation of the group SL(2, C), the group of all
complex unimodular 2 x 2 matrices

a b
- . — bc =
g (c d) ; ad c=1,

on the space D(x). Each element g of SL(2, C) induces the linear transformation
Zi =az, + cz,
zy = bzy + dz,

on the space of the two complex variables z, and z, . This transformation, in turn,
may be associated with the transformation

F(zy, z;) > Flaz, + cz,, bz, + dz,)

on the space D(x). Thus the operator D(g, x) that defines the above
transformation,

D(g; X)F(zy, z;) = F(azy + cz3, bz, + dz,) (4-34)

is defined exactly as in the case of spinor representation. Since the origin
z, = z, = 0 goes into itself, namely z| = z, =0, it is clear that D(g; y)F(z,, z,) is
in D(y) if F(z,, z,) itself is in D(x), since the former function is also infinitely
differentiable and homogeneous of degree (n, — 1, n, — 1).

The operator D(g; x) is continuous in the space D(x). This means if
{F,(zy, z,)} in D(x) converges to zero, then the sequence {D(g; x)F.(zy, z,)} also
converges to zero. Furthermore, if limg,=g when m— o0, then
lim D(g,,; x)F(z, z2) = D(g; x)F(z,, z,) when m — oo, for any F of D(x). Hence the
operator D(g; ) is a continuous operator of the element g of SL(2, C). One can
easily show that

D(g192; %) = D(g1: x)D(g2; %)

Die; 1) = 1 (4-35)

where e is the unit 2 x 2 matrix and 1 is the unit operator, for any two elements g,
and g, of the group SL(2, C). Consequently, the set of transformations D(g; x) on
the space D(x) forms a representation of the group SI{2, C). Hence to any pair of
complex numbers y = (n,, n,), whose difference is an integer, there corresponds a
representation D(g; x) of the group SIL{2, C) realized on the space D(y) of
infinitely differentiable functions F(z,, z,), homogeneous of degree (n, — 1,
n, — 1) in accordance with Eq. (4-34). The pair y is called the weight of the
representation.
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Other Realizations for D(g; x)

Since the space D(x) can also be realized as the space of all infinitely differentiable
functions f (z) = F(z, 1) of z and z, one can express the operators D(g; x) on these
functions. Using the homogeneity property of the function F(z,, z,) one obtains:

D(g; x)F(zy, z;) = Faz, + cz,, bz, + dz,)

=@a+wm“%a+&mrv(“+wj

bz, +dz,
But D(g; ) f(z) = D(g; x)F(z, 1) is the function of one variable corresponding to
D(g; x)F(zy, z,). Hence we obtain for the operator D(g; x), operating on f(z):

az + ¢
bz +d

mwmw=W+WH@+WH4 (4-36)

Conjugate Representations

Let D'(y) be the space conjugate to D(y), i.e. the space of linear functionals on D(x)
(see Appendix C). One can then define a bilinear functional (®, f), where @ be-
longs to D'(x) and f belongs to D(y), in a natural way for these two spaces. (®, ) is
the value of the functional ® on the function f.

A representation of the group SL(2, C) can then be defined on D'(x) by
defining its operators by

(Dlg: 0)®, ) = (®, D(g~": x)f) (4-37)

One can easily show that D(g, g,; x) = D(g,; x)D(g2; x). The representation
(4-37) is called conjugate to the representation whose operator is D(g; ). If one
replaces f by D(g; x)fin Eq. (4-37) one obtains (D(g; x)®, D(g; x)f) = (@, f) and
therefore the bilinear functional (®, /) is invariant under the operators D(g; x)
and its conjugate D(g; ).

Consider now two spaces D(y,) and D(x,) and construct the invariant bilinear
functional B(¢, ¥), where ¢ belongs to D(x,) and ¥ to D(x,). Since the bilinear
functional is invariant, one has B(D(g; x,)¢, D(g; x2)¥) = B(¢, ¥) for any element
g of the group SL(2, C). Assume, furthermore, that B(¢, ¥) is nondegenerate on
D(3)!®! Then D(yx,) can be mapped in a one-to-one way into the space D'(x,) so
that D(g; x,) is mapped into D(g; ,). In this way D(g; x,), the representation
conjugate to D(g; x,), can be considered as an extension of D(g; x,)-

To see this one notices that any function ¢ of D(x) defines a linear functional
B(¢, ¥) on D(x,). In this way D(x,) is mapped into D'(x,). Since by assumption
B(¢, ¥) is nondegenerate on D(x,), only ¢ =0 is mapped into zero under this
mapping. Hence D(y,) — D'(x;) is a one-to-one mapping. We next show that
D(g; x,) is an extension of D(g; ,), ie. on D(y,) it coincides with D(g; ¥,). For

® The functional B(¢, y) is nondegenerate on D(x) if B(¢, ) = 0 for fixed ¢ of D(y,) and any ¥
of D(y,) yields ¢ = 0.
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consider a function ¢ to be an element of D'(x,). Then (D(g; x,)é, ¥) = (¢, D(g™*;
%2)@). On the other hand, from the definition of the mapping D(x,) — D’'(x,) one
has (¢, ) = B(¢, ¥). Therefore,

(¢, D(g—l; x2W) = B¢, D(g™1; x2)¥) = B(D(g; x1)¢, ¥) = (D(g; x1)9, ¥)

One therefore finds that (D(g; x2)¢, ¥) = (D(g; x1)¢, ¥), or D(g;
11)¢ = D(g; x2)¢-

We shall see later on that for every pair of complex numbers y = (n, n,), the
representations D(g; x) and D(g; —x), where —yx = (—n,, —n,), have a non-
degenerate invariant bilinear functional, and hence the conjugate representation
D(g; x) is an extension of D(g; —¥).

Realization of the Representation of the Principal Series

We now realize the representation of the principal series in some of the spaces
introduced in Section 4-1. First this is done in the Hilbert space L,(Z).!*!

Again our starting point is the spinor representation discussed in Chapter 3.
This representation was written in the form D(g)p(z) = a(zg)p(z(g)), where p(z) =
p(z, z) was a polynomial of the space P,,,, a(zg) = (bz + d)™(bz + d)", and z(g) is
given by Eq. (3-38). Let us try, therefore, a representation g — D(g) of the group
SL(2, C) in the space L,(Z) of the form D(g) f(z) = a(z, g) f(z(g)), where f(z) now
is an element of the Hilbert space L,(Z) and a(z, g) is some unknown function of z
and g of SI{2, C). But in order that g — D(g) be a representation, we must have
D(g, 9,)f(z) = D(g,)D(g,) f (). This imposes a condition on the function «(z, g) of
the form a(z, g, g,) = a(z, g;)x(z(g,), g,). Denoting now ale, g) by a(g), where e is
the unit matrix. The latter equation gives, when one puts z = e and g, = g, a(e,
g19) = ole, gi)ale(gy ), g). or algy g) = a(g,)x(e(g,), g). If one choses g, to be an
element k of the form given by Eq. (4-9), ie. an element of the group K, then one
has a(kg) = a(k)a(e(k), g). But one can easily see that e(k) = e. Hence one obtains
a(kg) = a(k)a(g). On the other hand if one takes g, to be equal to z, one obtains
a(zg) = a(z)(e(z), g). But e(z) = z!'® Hence we obtain a(zg) = a(z)x(z, g). The
assumed form for the principal series of representation is, therefore, given by
D(g)f(z) = {o(zg)/a(2)} f (z(g)). Finally, if we take k = g = ¢ we obtain a(e) =
a(e)a(e) which yields either a(e) = 1 or a(e) = 0. We shall see below that a(e) = 1
and the other case is impossible.

Let us now assume that the operator D(g) is isometric (see Appendix C), thus

(D(9)f1- D(9)f2) = (f1, f2) Taking f; = f, = f then gives
[ 1a@ )11 (gD [ dz = [ | £(2) [ dz

° 1. M. Gelfand and M. A. Naimark, Izv. Akad. Nauk SSSR, Ser. Mat. 11, 411, (1947); M. A
Naimark, Linear Representations of the Lorentz Group, Pergamon Press, New York, 1964.

19 We recall that the variable z(g) = g3,/g5,, where the matrix ¢’ of SL(2, C) is given by g' = zg.
Hence to calculate e(k) one has ¢ = ek = k and therefore z(g) = ¢3,/g5, = k;,/k;; =0 and the
matrix z(g) = e. In the case of calculating e(z) the matrix g’ = ¢z =z and therefore the variable
2(g) = ¢3,/d2; = 231/2,, = z and the matrix z(g) = z.
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Changing variables z — z’ = z(g) in the integral on the right-hand side of the latter
equation, and using Eq. (4-8b), gives

[ |2z 9)*1 7 G@)I? dz = [ B~ (zg)| f(=(g))|* dz

where B(g) is defined by Eq. (4-9). Since the function f(z) of L,(Z) is arbitrary, we
conclude that

|a(z, g)| = B~""(z9) (4-38)

In particular, using Eq. (4-9), we obtain |a(e)| = |a(e, €)| = f~'/*(¢) =1 and
therefore a(e) # 0. Conversely, if Eq. (4-38) is satisfied, then the operator D(g) is
isometric. Taking g as z~ ! in Eq. (4-38), and using a(zg) = a(z)a(z, g), we obtain
|2(z)| = 1. One can show that it is always possible to take a(z) = 1 (Problem 4.6).
Consequently, the representation formula for the principal series can be written as
D(g)f(z) = a(zg)f( (9)), with the function a(zg) determined by |a(zg)| =
B~ '"%(zg), and B(g) = |g.2|* Tt remains to find out the function a(zg).

We have seen that a(kg) = a(k)a(g). It follows, since every g of SL(2, C) can be
written as g = kz (see Lemma 3.1, Chapter 3), that a(g) = a(kz) = a(k)a(z) = a(k).
Hence it is enough to find out the function a(k). We take now k = k,, and g = k,
in a(kg) = a(k)x(g), and obtain a(k, k,) = a(k,)ax(k;). Hence a(ky'kk,)=
alky Da(k)o(ky) = a(k) since afky')au(k,) = a(e) = 1. Writing now the matrix k
explicitly (see Eq. (3-42)),
AN o
(o )

one sees that the function a(k) is a function of the two variables A, y, a(k) = a(4, p).
We show below that o does not depend on the variable u. For suppose

A0
k“( 0 11)

AT Afu
0 A

then
ki tkk, = (

and the relation a(k; 'kk;) = a(k) means (4, Af u) = «(4, u). But 4, is an arbitrary
complex variable. Hence « does not depend on y, ie. a(k) = a(4). The relation
a(ky k,) = a(ky)a(k,) then means (i, 4,) = a(d;)x(4,), whereas the relation
la(g)| = B "*(g) = |g52|"* gives |a(A)| = [4]>

Consequently, let us now define the function

1= [4[a(i)

satisfying (4, 4,) = x(4,)x(4;) and |x(4)| = 1. If we denote A =c¢'e®, with
—oc <t<ooand 0 < ¢ <2m and i, = ¢, 1, = e, we obtain x(4) = x(e")x(e*),
and therefore it is enough to find the functions y,(¢) = x(e) and x,(¢) = x(e).
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They satisfy yi(t; + t2) = xa(t)xa(t2):  X2(@1 + #2) = 22(P1)x2(d,),  with
[x1(t)| = |x2(¢)| = 1. Because the function y(4) is supposed to be single-valued,

it must also satisfy y,(¢ + 2n) = x,(¢). The only solutions for x, and y,, satisfy-
ing these conditions, are

21(6) = e, x2(P) = ™

where m must be an integer and p is a real number. Accordingly, the function y(4)
will have the form

w3) = A [
and the function a(k) = a(4) is given by
oK) = [4[o2m
The principal series of representation is therefore given by

D(g)f (2) = «(z9)f (z(9)) (4-39a)
with a(g) = a(k) is given by

ag) = 922" """ %95, (4-39b)
The variable z(g) is given according to Eq. (3-38) by (9,2 + 9,1)/(9:122 + 9,,)
Conversely, with arbitrary real p and arbitrary integral m, Eqs. (4-39) determine
an isometric operator D(g) in the Hilbert space L,(Z). The problem of showing

that Eqgs. (4-39) indeed provide a representation is left for the reader to verify
(Problem 4.7).

4-3 SU, DESCRIPTION OF THE PRINCIPAL SERIES

Properties of the Principal Series

In the last section we introduced the representation of the principal series, realized
in the Hilbert space L,(Z). We now discuss some of its important properties and
realize it in other spaces.

First one notices that for any functions f;(z) and f,(z) of L,(Z), the scalar
expression (D(g)f;. f2) is a continuous function on the group SL(2, C). This fol-
lows from the definition of the representation formula (4-39).

The relation D(g)D(g~") = D(g~')D(g) = D(e) = 1 shows that the operator
D(g) has an inverse, D(g~!), which is also isometric in the Hilbert space L,(Z).
Thus the operator D(g) is unitary. Consequently one has: To every pair of num-
bers m and p, where m is an integer and p is a real number, there corresponds a
unitary representation g— D(g) in the space L,(Z) defined by Egs. (4-39).
Furthermore, the detailed expression of the representation formula (4-39) shows a
great similarity to the nonunitary spinor representation (see Problem 4.8).

Finally, we point out that the representation of the principal series is irredu-
cible (Problem 4.9).
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Realization of the Principal Series by Means of the Group SU,

We now realize the representation of the principal series in the Hilbert space
L2%(SU,). We recall that the space L3*(SU,) was the collection of functions ¢(u)
satisfying ¢(yu) = e’¥¢(u), where y is given by Eq (4 12) (see Section 4.1). The
scalar product was defined by (¢,, ¢,) = [ ¢,(u)¢,(u) du. Using Eq. (4-39b) one
sees that a(y) = e™”, where @ = /2 is the phase 1n the matrix y of Eq. (4-12).
Hence the functions ¢(u) of the space L*(SU,) satisfy the condition

Plyu) = a(y)é(u) (4-40)

where use has been made of m = 2s.
We now assign, similar to the correspondence (3-55) for the spinor case, to
every function f(z) of the space L,(Z) the function

$(u) = n'*a(u) f(2) (4-41)

where u of SU, and z of Z belong to the right coset Z (see Section 3.2). The
mapping between the two spaces L3(SU,) and L,(Z) is isometric, since u and yu
belong to the same coset z and ¢(yu) = n''%a(yu)f(z) = n'2a(y)a(u) f(z) =
a(y)¢(u), thus the condition (4-40) is satisfied. Furthermore,

[ 166 du=[ 1) dz. (4-42)

so that the function defined by Eq. (4-41) belongs to the space L3%(SU,) and the
mapping from f(z) to ¢(u) preserves the norm. The proof of Eq. (4-42) is left for
the reader (Problem 4.10). The inverse of Eq. (4-41) means, given an arbitrary
function ¢(u) of the space L3(SU,), one defines

f(z)=7n"1a" Y (u)p(u) (4-43)

again with u and z belonging to the right coset z, where f(z) belongs to the space
L,(2).

We now find the representation of the principal series in the space L3(SU,).
One has

D(g)p(u) = n'2a(u)D(g) f (2) = o' *a(u)x(z9) f (2(g)) = a(uf(zg)/x(u(g))}¢(u(g)),

where u(g) is an arbitrary element of the right coset ii(g) (see Section 3.2). But z
and u belong to Z and z(g) and u(g) belong to Z(g), hence one can put z = kyu,
ug = ku(g) and therefore a(zg) = a(k,ug) = a(ky)oa(ug) = a(ug)/a(u), thus a(u) x
{a(zg)/a(u(g))} = a(ug)/x(u(g)). Hence the representation of the principal series in
the Hilbert space L3(SU,) is given by

D(g)p(u) = $(u(g)) (4-44a)
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where u(g) is an arbitrary matrix of the right coset ii(g) and is given by Eq. (3-57)
and (3-62), and a(g) is given by

a(g) = |922|ip_2s_zg§s2 (4-44b)

Here 25 = m is an integer.

Realization of the Principal Series in the Space /3°

Using the generalized Fourier transform, introduced in Section 4.1, we now
express the representation of the principal series as infinite-dimensional matrices,
the elements of which will be explicitly given as integrals over the group SU, .['1]

To this end one first notices that the matrix elements D, (u) of the irreducible
representations of the group SU,, for a fixed s, are elements of the Hilbert space
L%¥(SU,) since they also satisfy D, (yu) = e'¥Di,(u) (see Chapter 1) just as the
functions ¢(u) of the space L3*(SU,) do. Consequently, the representation formula
(4-44) can be applied to the functions D, (u) to yield

Dlg)Dp(s) = S Dl (4-45)

Using now the expansion (4-26) in the representation formula (4-44a), and using
Eq. (4-45), one obtains

=T @+ DT ¢ DLl (4-46)
7 ( )

Since Eq. (4-45) is a representation of the group SL(2, C) in the space
L3%(SU,), hence the function {a(ug)/x(u(g))}Di.(u(g)) belongs to the space
L}¥(SU,). Accordingly, it can be expanded in the form of an infinite series of the
form (4-26). Such an expansion can be written as

a(ug) . .
Dy, (u(g)) = 2. (2 + 1) 2 Dilnlgs s, p)Dim{u) (4-47)
ofulg) 2@+
where, because of Eq. (4-27), one has
alug) o
DZ (g;s p)=| —— = Dl (u(g))Ds,(u) du 4-48
(035 0)= | () PnU(@IDE ) (4-48)
Combining now Eqs (4 46) and (4-47) one finally obtains
Z 2i+1) Z ¢iDI (u (4-49)
j
where the quantities ¢,/ are defined by
® j
w2 (2 +1) X DEdg; s p)r, (4-50)
j=Tsl m==j

' M. Carmeli, J. Math. Phys. 11, 1917 (1970).
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Accordingly, the operator D(g) of the representation of the principal series of
the group SL(2, C) in the Hilbert space I3° is described by the linear transforma-
tion given in Eq. (4-50) describing the law of transformation of the quantities ¢7,,
where j= [s|, [s| + L [s|+2 ...,and m= —j, —j+ 1, —j+2, ..., j The
coefficients Di/, (g; s, p), given by Eq. (4-49), are functions on the group SL(2, C)
as well as of p and s, where p is real and 2s is an integer. These functions are the
matrix elements of an infinite-dimensional matrix whose rows are labelled by
(j, m) and columns by (j’, m’). They are given by Eq. (4-48) as integrals over the
group SU,.

It will be noted that the quantities ¢/ , whose transformation law is given by
Eq. (4-50), were obtained from the representation formula (4-44) of the principal
series in analogy with the way two-component spinors, transforming according to
Eq. (3-28), were obtained from the representation formula (3-56) [or, in fact,
(3-23)] of the spinor representation. Both ¢/, and the two-component spinors are
coefficients appearing in the space of representations. Of course, the spinor re-
presentation was finite and nonunitary, whereas the representation of the princi-
pal series was infinite-dimensional and unitary.

The Principal Series as a Representation for the Group SU,

Since the group SU, is a subgroup of the group SL(2, C), the representation of the
principal series is also a representation for the group SU,. Equation (4-44a) will
then have the form D(uq)p(u) = {o(uuy)/a(u(uo))}d(u(uo)), where u, is an arbitrary
element of the group u,. A straightforward calculation, using Egs. (3-65), shows
that u(uy) = yuu,, where y is the matrix

B eiA 0
Zlo e

and A is an arbitrary real number (phase). If one chooses A = 0, one thus obtains
for the representation of the principal series as a representation for SU,,

Do )b(u) = (utio) (&51)

realized in the Hilbert space L}(SU,).

Let us now assume that in the space L3*(SU,) there is a subspace R in which
the irreducible representation of weight j of the group SU, is realized, and let
D, (u), with m,n= —j, —j + 1,...,j, be the matrix elements of this representation
in its canonical basis. Let ¢,,(u), with m = —j, —j + 1, ..., j, be the canonical basis
in the subspace R, thus

J

D(uo)p,(u) = Y Diultio)pm(u) (4-52)

m=-j
Hence, comparing Egs. (4-51) and (4-52), one obtains
Suuo) =Y. DI (uo)g (4-53)
It is left for the reader (Problem 4.13) to show that

Pmltt) = 2, Dn(u) (4-54)
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where o is a constant. Accordingly, the subspace R is spanned by the functions
D, (u), where m = —j, —j + 1, ..., j. Hence the irreducible representation of SU,
of weight j occurs only once in the representation of the principal series in the
Hilbert space L3*(SU,), where s is one of the numbers —j, —j + 1, ..., j. Con-
versely, if s is one of the numbers —j, —j+ 1, ..., j, then in the subspace R
spanned by the function Di,(u), where m= —j, —j + 1, ..., j, the irreducible
representation of SU, is included in the principal series.

Accordingly, when considered as a representation of the group SU,, the
representation of the principal series is reducible, and decomposes into the sum of
irreducible representations.

Functions on the Group SL(2, C)

The theory of functions defined on a group was introduced in Chapter 1 and has
been applied to the group SU, . To conclude this section we now apply the theory
to functions defined on the group SL(2, C).

A function f(g) on the group SL(2, C),

g= (: Z), ad —bc =1, (4-55)
is called rapidly decreasing if it satisfies the condition
|£(g)] < Clg[™ (4-56)
where n > 0, and
lgl ={lal*+ |b|* + |c|* + |d|*}~ (4-57)

The function |g| is called the norm of the matrix g.

Integration on the group SL(2, C) can be defined by introducing the measure
dg, which is invariant under left and right translations on the group. Hence if g is
replaced by g, g or gg,, one has dg = d(g,g) = d(gg,)- The integral is, of course,
invariant under left and right translation of the function f(g),

[ fla09) dg = [ flago) dg = [ 1(g) dg (4-58)

To find out the explicit expression of the measure dg, we proceed as follows.
Let us first consider the set of all complex matrices

-

in two dimensions, and associate with each matrix g of the form (4-59) a point («,
B, 7, 8) in a space of four complex dimensions. The unimodular matrices then form
a quadratic surface of the form «é — fy = 1 in this four-dimensional space. With
this surface we associate the differential form ¢(g) defined by!* %

da df dy dé = d(«d — By) - alg) (4-60)
2 Here d(xd — By). o(g) is the exterior product of the differential forms. See, for example, I. M.

Gelfand and G. E. Shilov, Generalized Functions, Vol. 1. Properties and Operations, Academic Press,
New York and London. 1964.
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The differential form will then have the form!*3!
o(g)=6""dfdydé=y 'dadydé= —p"' dadp dé
= —a ' dadfdy (4-61)

Since a, B, 7, and § cannot all simultaneously vanish, o(g) has no singularities
on the group SL(2, C). Moreover, o(g) is invariant under translations since then o,
B, v, and § undergo a linear transformation whose determinant is unity, and
therefore da df dy dé is invariant under such transformations. On the other hand,
the determinant aé — By of the matrix g is invariant under such transformations.
Therefore, d(xd — By) is also invariant, and accordingly ¢(g) is invariant under
translations. The measure on SL(2, C) is then defined by

dg = (%) g (4-62)

leading to the explicit form

dg = (i)3dﬂ dB dy dj dé d3 _ (i')3da da dy dy ds d3
2 |6 2 |7[?
_ (i)3da dz df dB do dd _ (i)3da dz dg dB dy dy (.63
2 |B* 2 [«

It will be noted that dg is invariant also under inversions, d(g~!) = dg. This is so
since if the matrix g has determinant unity, then

(& B
g ~(—v a)

and d(g™') is given by Eq. (4-63) when a, B, y, J are replaced by 6, — B, —7, «,
respectively, a replacement that leaves Eq. (4-63) invariant. Hence one has

[ ™) dg=] 1(g) dg (4-64)

Finally, a function f(g) is called summable on SL(2, C) if | | f(g)| dg con-
verges. One can show that every rapidly decreasing function is summable.
Furthermore, with each element g of SL(2, C) of the form (4-59) we can associate a
point on the surface ad — By = 1 in the space of four complex dimensions. Any
three of the parameters o, f§, y, 6 can be chosen to be local coordinates in the
neighborhood of any such point. The function f(g) is then called infinitely differen-
tiable in a neighbourhood of g, if, considered as a function of the three coordin-
ates chosen in this neighbourhood, it has derivatives of all orders in this
neighbourhood. Such a definition is independent of the choice of coordinate
system.

13 See, for example, I. M. Gelfand, M. I. Graev, and N. Ya. Vilenkin, op. cit.
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4-4 COMPARISON WITH THE INFINITESIMAL APPROACH

Comparison of the Parameters (s, p) and (j,, c)

We have seen in the last section that all irreducible representations of the group
SL(2, C) of the principal series are characterized by a pair of numbers (s, p), where
s is an integer or half-integer and p is real. When the representation is given in its
global form, the space of the representation depends on the value of s (see Section
4.3) and the operators depend on both s and p [compare Eq. (4-48)].

The representation of the principal series was already defined in terms of the
infinitesimal operators in Section 2-3. It was found to depend on a pair of par-
ameters (j,, ¢), where j, is an arbitrary non-negative integral or half-integral
number and ¢ is pure imaginary. The values of these parameters occurred in the
formulas for the infinitesimal operators (2-29) and (2-30).

By applying the global form of a given representation to infinitesimal ele-
ments of the group SL(2, C), one can calculate the infinitesimal operators of the
representation. Comparing the infinitesimal operator thus obtained with the re-
sults of Section 2-3 one establishes the relationship between the pairs of par-
ameters (s, p) and (jo, ). The result is as follows (Problem 4.17):

jo=|sl c=—i(signs)§; s#0 (4-65a)

j0=0’ C:il

N

: s=0 (4-65b)

As a result of Egs. (4-65), it follows that two representations of the principal
series, characterized by the pairs (s, p) and (—s, — p), are unitarily equivalent. The
proof of this statement is left as an exercise for the reader (Problem 4.18).

The rest of this section will be devoted to discussing some harmonic analysis
on the group SL(2, C).

Tangent Space to the Group SL(2, C)\**!
Consider the element h(z) of the group SL(2, C),

—a(Z) b(Z) a\z Z)— Z)e\z) = -
W= (5 wo) el ) = blekta) = (@-66)

where the matrix elements of h(z) are analytic functions of the complex variable z
for small values of |z|, and assume that h(0) = e, where e is the 2 x 2 unit matrix.
In other words we assume a(0) = d(0) = 1 and b(0) = ¢(0) = 0. The matrix h(z)
can be considered as a curve, whereas the matrix h(0) = e as a point, in the space of
the group SL(2, C). The matrix

h=H(0) = (“/(O) bl(O)) (4-67)

14 See for example, 1. M. Gelfand, M. 1. Graev, and N. Y. Vilenkin, op. cit.
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is consequently called the tangent vector of the curve h(z) at e. The aggregate of all
vectors, tangent to curves passing through the point e, forms a three-dimensional
complex linear space since if h; and h, are tangent vectors at e to the curves h,(z)
and h,(z), then A, h; + 4, h, is the tangent vector to h(z) = h,(4, z)h,(4, z). This
linear space is known as the tangent space to the group at e, and is denoted by A. A
matrix belongs to the space A if and only if ifs trace vanishes.

Lie Operators

The concepts of Lie operators play important roles in the theory of representa-
tions. They are defined as follows.

Let h(z) be a curve passing through the point e with a tangent vector h, and
define the operator A(h)f(g)={0f (h(z)g)/0z},~0. If one parametrizes the

elements
_(* B

of the group SI(2, C) by the elements «, 8, and §, then f(h(z)g) = f(a(z)x + b(z)y,
a(z)B + b(2)é, c(z)p + d(z)d) and therefore

% e gﬁ {aa'(0) + yb'(0)} + Z,{ﬂaf(@) + Sb'(0)} + %{ﬂc'(O) + 6d(0))
= o<z 835 055) +HO 12y 0 3g) + OB

(4-68)

where use has been made of the fact that a(0) = d(0) = 1, b(0) = ¢(0) = 0, and
d'(0) = —a'(0). The operator A(h) is called the left Lie operator. The aggregate of
all the left Lie operators forms a linear space since A(4; hy + A, h,) = A, A(hy) +
A3 A(h,). One can choose the one-parameter subgroups (see Chapter 1) as

hl(z)=(i (1)) hz(z)=(‘g 0) h3(z)=((1) i) (4-69)

e

The tangent vectors are then given by

T RS A I

The three matrices hy, h,, and h; can then be taken as a basis in the linear space A.
Using Eq. (4-68) then leads to the left Lie operators A, A,, and A; corresponding
to h,, h,, and hy, with

0
A, =82
1 ﬂaé
0 0 0
Ay=o ot o — 6 -
2 a@a+ﬂ8ﬂ 585 (4-71)
0 0
A3='y7+6;

da OB
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In the same fashion one can define the right Lie operators, defined by
B(h)f(g9) = {0f (9(h(z))/0z},- 0, Where h(z) is any curve for which h(0) =e and
H(0) = h. One then obtains for these operators

d
Bl:ﬂ@a
I B
Ba=ag =P ap %% (4-72)
FE
By=azptvss

where B, = B(h,), B, = B(h;), and B; = B(h3). One can then show that the com-
mutation relations between the left Lie operators are given by (Problem 4.19):

[Al’ AZ] = _2A1

[4;, As]= —24, (4-73a)
[45, A] = -4,
whereas the right Lie operators give
[By, B,] = 2B,
[B,, Bs] = 2B, (4-73b)
[Bs, Bi] = B,

Moreover, the left Lie operators commute with the right Lie operators. The above
commutation relations can then be used to write any polynomial of Lie operators
with constant coefficients as a linear combination of ordered products.

Laplacian Operators
Let us now find out the operator that commutes with all the Lie operators. It is
given by

A=A Ay + A3 Ay + 343 (4-74)

The operator A is called the Laplacian operator for the group SL(2, C), and can
also be written as

A=Tr A2 =Tr B? (4-75)
where A and B are defined by
14 A iB B :
4= [?" 13 ’ B=|?"? 13 (4-76)
Ay —24; B, —3B;

Equation (4-75) is a result of the fact that A = (¢")" ' Bg' (see Problem 4.20) and
therefore Tr 4> = Tr B2 Since A can be written as a polynomial of the A(h) with



76 GROUP THEORY AND GENERAL RELATIVITY

constant coefficients, it commutes with all the B(h). On the other hand, it can also
be written as a polynomial of the B(h) with constant coefficients, thus commutes
with all the A(h). Hence A commutes with all the Lie operators.

PROBLEMS

4.1 The transformation z — 2’ = z(g) of Eq. (4-7) corresponds to a certain transformation of the var-
iables x and y into x’' and y’, where z = x + iyand 2’ = x’ + iy’. Use the Cauchy-Riemann equations to
show that the Jacobian |d(x’, y')/d(x, y)| of this transformation is equal to the square of the modulus
of the derivative dz'/dz. Use Eq. (4-7) to show that the Jacobian is equal to |g,,z + g,,]| ™%

4.2 Prove the completeness of the space IZ(SU,).

4.3 Show that, using Eq. (4-20),

[ 1/@)] du=Y (2 + 1) Tr (FI'Fi).
: i
4.4 Prove Eq. (4-21).
4.5 Prove Eq. (4-31).
4.6 Show that it is always possible to choose the function «(z), whose modulus |«(z)| = 1, to be equal
to 1. Prove this by rewriting the representation formula for the principal series, using the new function

f(z) = a(z) f(z) which also belongs to the Hilbert space L,(Z). Show that the operator of the represen-
tation can then be written as

D(g)](z) = &(z9) ] (2(g))

where now &(z) = 1.[See M. A. Naimark, Linear Representations of the Lorentz Group, Pergamon Press,
New York, 1964, p. 145.]

4.7 Prove that the correspondence g — D(g) defined by Eqs. (4-39) is a representation of the group
SL{2, C), ie, show that D(e) = 1 and D(g,)D(g,) = D(g, 92)-

4.8 Write the representation of the principal series, given by Eq. (4-39), explicitly. Show that it has the
form

ioi2-1(= =4 = y-mz+igz-10(9n1Ztg
D(G)f(2) = (@22 + Gaz)">* P2~ (G1y 7 + Gag) ¥ 0 f(‘)

9122 + G323

Hence it has the same form as the spinor representation given by Eq. (3-23), where the polynomial
p(z, 7) is now replaced by f(z) and the powers m and n are replaced now by m/2 + ip/2 — 1 and
—m/2 + ip/2 — 1, respectively.

49 Show that the representation of the principal series is irreducible. [Se¢ M. A. Naimark, Linear
Representations of the Lorentz Group, Pergamon Press, New York, 1964, p. 151.]

4.10 Prove Eq. (4-42). Use the three parameters ¢, 6, 8’ as indicated in Problem 1.9 to parametrize u of
SU,. To relate these variables to z use z = r e* arg A = w, and Egs. (3-54). Show that one obtains the
following relations between the two sets of variables (¢, 6, 6') and (r, w, k): t = 1/(1 + %), 0 = —c0,
6 =n+w—k and therefore |a(u)|* dtd6 d6' = 2r dr dk dw =2 dw dz, or |B(u)|~* dt d8 d8’ =
2 dw dz.

4.11 Show that as a result of the fact that the representation of the principal series is unitary one
obtains:
,_Pluda))

Blug)

du

if u' = u{g).
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412 Calculate the expression a(ug)/a(u(g)), appearing in the representation (4-44) of the principal
series, for the case for which g = u, (unitary matrix of SU,) and

e=g= e, 0
0 &y

where ¢,, is real. Show that for the first case one has

a(ug)/ulu(uy)) = e¥**

whereas for the second case one obtains
afus)/a(u(e)) = |4]*~% e¥sh

where |4]> = |B|%;2 + |a|%¢3;. [Use Egs. (3-62) and (3-63)].
4.13 Prove Eq. (4-54). Show that «, = (2j + 1)'/%af,, with |af, | = 1. Show that

sp

) 1 —2n+ip

= I G oy
n=Jjo

414 Show that the norm |g| of a matrix g, defined by Eq. (4-57), satisfies the following properties:
|9, + 92| < 9. + |9:]
|9:92] < 9. 9]

lag| = || |9]
where a is an arbitrary number.

4.15 Show the invariance of the measure dg of the group SL(2, C), ie., dg = d(g,9) = d(gg,), by
calculating the Jacobian of the transformation from g to g, g and gg,.

4.16 Show that the measure dg on the group SL(2, C) can also be written as

dp, df, dy, dy, d6, dé, do, do, df, df, dy, dy,
dg = 2 = 2
9] 7]
where o = a, +ia,, f=f, +if,, y =1y, +iv,, =90, +id,, and «, B, y, § are the matrix elements
of ge SL(2, C) with ad — fy = 1.
4.17 Prove Egs. (4-65).
4.18 Show that two representations of the principal series characterized by the pairs (s, p) and
(—s, —p) are unitarily equivalent.
419 Prove Eqgs. (4-73). Show also that the left Lie operators commute with the right Lie operators.
4.20 Define the two matrices

A=(%Az 45 ) B=(éaz B, )
Al “%Az ’ Bl _12‘32

whose elements are Lie operators. Show that there is a relationship between the left and right Lie
operators of the form g'4 = By, where Bg denotes symbolic matrix multiplication, i.e., the elements of
the matrix g* are not differentiated.



CHAPTER

FIVE

COMPLEMENTARY SERIES OF
REPRESENTATIONS OF SL(2, C)

In Chapter 4 the representation of the principal series of the group SL(2, C) was
realized in varieties of forms in different infinite-dimensional spaces. The represen-
tation of the principal series, however, do not realize all irreducible unitary re-
presentations of the group SL(2, C). Rather, every irreducible unitary
representation of the group SL(2, C) is equivalent to a representation of either the
principal series or the complementary series of representations. In this chapter we
give the representation of the complementary series. We first define the space of
representation of the complementary series and then realize the representation in
this space. Subsequently, a SU, description of the representation of the com-
plementary series is given. This is followed by a comparison with the infinitesimal
approach. A brief review of an operator formulation of the representation theory
of the group SL(2, C) then concludes the chapter.

5-1 REALIZATION OF THE COMPLEMENTARY SERIES

In Chapter 4 the representation of the principal series of the group SL(2, C),
which is unitary and irreducible, was realized in varieties of forms in different
spaces. One of its forms was given in the Hilbert space L,(Z) by the representation
formula (4-39).
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Complementary Series

The representations of the principal series, however, do not realize all irreducible
unitary representations of the group SL(2, C). Rather, every irreducible unitary
representation of the group SL(2, C) is unitarily equivalent to a representation of
either the principal series or the complementary series of representations.

Formally, the formula of the representation of the complementary series can
be obtained from the formula of the representation of the principal series,
Eq. (4-39), if one takes p in the form p = io and s = 0, where now ¢ is real and has
the values 0 < ¢ < 2. Unfortunately, the operators thus obtained follow not to be
unitary in the scalar product defined by Eq. (4-2) for the Hilbert space L,(Z). In
fact, EqQ. (4-39) defines a unitary operator if and only if the function a(g) is given
by Eq. (4-39b) with real p.

A realization of the representation of the complementary series in terms of
unitary operators is, however, possible when defined on a Hilbert space to be
defined as follows, and in which the variable p is taken to be imaginary.

Space of Representation'!!

To this end let us define a linear space of functions f'(z), denoted by R, in which the
scalar product is defined by!?

o fo= H K(zy, 22)/1(21) f2(2,) dz, dz, (5-1)

for any two functions f;(z) and f,(z) of R, and where K(z,, z,) is some function of
z, and z,, called the kernel. Furthermore, we assume that the space R and the
kernel K satisfy the following conditions:

(1) The space R contains all bounded measurable functions f (z) which vanish
in the exterior of some bounded set in the z-plane;

(2) The integral for the scalar product in the space R, Eq. (5-1), converges
absolutely for all f;(z) and f,(z) of the space R; and

(3) The space R is invariant with respect to all operators D(g) of the represen-
tation of the complementary series.

Now since we require the representation to be unitary, the scalar product
given by Eq. (5-1) must be invariant under replacing the functions f; and f, by

' I. M. Gelfand and M. A. Naimark, Izv. Akad. Nauk SSSR, Ser. Mat. 11, 411 (1974); M. A.
Naimark, Linear Representations of the Lorentz Group, Pergamon Press, New York, 1964.

2 The scalar product given by Eq. (5-1) is a generalization to our previous scalar product of
Eq. (4-2)just as the scalar product (x, y) = Y, a;x,y,;, which is a positive-definite Hermitian quadratic
form, of a finite-dimensional space is a generalization of the scalar product (x, y) = ¥, x, ¥;.
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D(g) f; and D(g) f, , respectively. Thus we require that {D(g) f1, D(9) /2> = {f1. [2>
or, using Eq. (4-3%a).

[[ K@ 2220 9)3(229)1 (1(0) foz2(9) dz, dz,

= [ (e 2 (e 42 42 (52)

If we now make the substitution zj = z,(g) and z, = z,(g), and using Eq. (4-8b),
then the right-hand side of Eq. (5-2) will have the form

[ K(z1l9). 220D 121 (@) alz2(0))B ™ (219)B™ H229) dz; dz,

Equating this expression with the left-hand side of Eq. (5-2), and using the condi-
tion (1) for the space R mentioned above, we obtain

K(zy, z2)u(z, g)a(z29) = K(z4(g), z,(9))8™ (21 9)B" Y(z,9) (5-3)

Hence if we use Eq. (4-39b), Eq. (3-38), and Eq. (4-9) to write down explicitly the
functions «(g), z(g) and B(g), respectively in Eq. (5-3) we obtain

+ + ;
K g1121 T 921 9119 921) _ K(zl, 22)|g1221 +g20 |—m+m+2

91221 + 922 91292+ 922
X (91221 + G22)"|g1225 + g2y |22
X (G122, + J22)" (5-4)

Accordingly, we may choose the matrix g to be given by z,, ie., we choose

(1 0
g_zol

and as a result Eq. (5-4) gives a condition on the function K(z,, z,),

K(zy + 2o, z; + z0) = K(zy, 2,) (5-5)
If, in particular, one now takes z, = —z,, then one obtains
K(z, — z,,0)= K(zy, z,) (5-6)
We will denote the function K(z, 0) by K,(z), thus we obtain from Eq. (5-6)
Ki(z; — z;) = K(zy, z;) (5-7)

Using this relation in Eq. (5-4), we then obtain

Zy — 2y

K =Ky(z1 — 23)|g1221 + g22 |72
! (91221 + 922)(g1222 + 922) e AUEEE

X (91221 + 922)" 91222 + 922 |-+ 2

X (G1222 + 22)" (5-8)
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Equation (5-8) then gives (see Problem 5.1)m = 0 and p = — p, namely p is a pure
imaginary number, p = ig, where ¢ is real. Equation (5-8) also gives, when one
takes z, = 0, choosing g,, so that g,,z, + g,, = 1, and putting g,, =z, = z,

K,(z) = K,(1)|z[""2 (5-9)
Hence if we take z, — z, = z we obtain

K(Zl, 22) = C|21 - 22 |6_2 (5'10)

where we have used the notation K,(1) = C, with C as an arbitrary constant.
Accordingly, the formula for the representation of the complementary series
will have the form

—2-0p(9112 T 921
D(g)f(z) = z+ 2(;) 5-11
@)f(2) = |91z g2z | f 9122 + 22 ( )
whereas the scalar product (5-1) will have the form
Svfor=C ” |z, ~ 2, |6_2f1(21)f:(22) dz, dz, (5-12)

thus imposing the condition ¢ > 0 so as the integral above converges. The set of
all measurable functions f(z) satisfying | f(z)| <(1 + |z|*)”'~° for almost all
complex z then satisfies the three conditions (1)-(3) that the space R has to satisfy.

Value of the Parameter ¢

Equation (5-12) defines a scalar product only if {f, f> 20 (see Appendix C).
Hence one has the condition

” |21 = 22 "7 (21)F (22) dz, dz, 20 (5-13)

If follows that this condition of positive definiteness is satisfied for 0 < o < 2,
along with the possibility of choosing C = 1 (Problem 5.2).

In the case for which ¢ = 2 and C = 1, the scalar product (5-12) will have the
form

Sofd = fi() dzy [ filea) dz (5-14)

a particular form of which is

2

LS>= 20 (5-15)

J.f(z) dz

thus £,/ > = 0 only if { f(z) dz = 0. In this case the aggregate of all such functions
f(z) provides a one-dimensional Hilbert space, where the scalar product is given
by Eq. (5-14). In this case D(g)f=/f, or D(g) = 1. Hence the one-dimensional
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representation g — 1 is the unit representation. In other words the unit representa-
tion is the limit of the representation of the complementary series when the
parameter ¢ = 2 (Problem 5.3).

Finally, the case for which ¢ > 2, Egs. (5-11) and (5-12) do not yield a unitary
representation (Problem 5.4).

Realization of the Complementary Series

We denote by R the set of all functions f(z) which vanish outside some circle and
are differentiable with respect to x and y, where z = x + iy, as many times as
desired. Clearly R is a subspace of R. For 0 < ¢ < 2 we introduce in R the scalar
product

o fo= H |21 — 2 |6_2f1(21)f_2(22) dz, dz, (5-16)

Hence R becomes a Euclidean space, whose completion' we denote by R(a). The
space R(o) is a Hilbert space, which is also the completion of the space R, and
consequently R is a subspace of R(g).

The unitary representation of the complementary series is then defined in the
space R(s) by Eq. (5-11), where 0 < ¢ < 2. One can show that the representation
so obtained is irreducible (Problem 5.5).

In the next section we will use the group SU, techniques to describe the
representation of the complementary series.

5-2 SU, DESCRIPTION OF THE COMPLEMENTARY SERIES

In the last section we described the representation of the complementary series, an
infinite-dimensional, unitary, irreducible representation, which was realized in the
Hilbert space R(a). In this section we realize the representation of the complemen-
tary series in other spaces defined on the group SU,. This is similar to what was
done in Section 4-3 for the representation of the principal series.

The Euclidean Space H

To this end we set for each function f(z) of the space R (see Section 5-1) the
function

$u) = n'a(u) f(2) (5-17)

defined on the group SU,. Here u and z belong to the right coset Z (see
Chapter 3), and the function a(u) is now defined by

alg) = |922|_2_a (5-18)

3If R is an incomplete Euclidean space then one can complete it into a Hilbert space. See M. A.
Naimark, Normed Rings, Noordhoff, Groningen, The Netherlands, 1959.
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The function ¢(u) defined by Eq. (5-17) is constructed in a similar way to the
function ¢(u) defined by Eq. (4-41) for representations of the principal series.
Furthermore, it satisfies the condition

P(yu) = P(u) (5-19)
since a(yu) = a(u), where y € SU, is given by
e"¥2 0
Y= ( 0 eiw/z) (5-20)

We now construct a Hilbert space out of the functions ¢(u). First we define
the scalar product of the functions ¢(u). To this end we first write the scalar
product

o fd= _l_[ |21 — 2 |a_ zfl(zl)f_Z(ZZ) dz; dz, (5-21)

in the space R in terms of the functions ¢(u) defined by Eq. (5-17). A straightfor-
ward calculation then shows that (Problem 5.6).

o fod = | Kluyuy ), (u)dy(wy) duy du, (5-22)

Hence if we denote by H the aggregate of all bounded, measurable, functions ¢(u),
satisfying the condition ¢(yu) = ¢(u), then the integral on the right-hand side of
Eq. (5-22) will converge absolutely if ¢, (u) and ¢,(u) belong to H. In the space H
we can therefore define the scalar product by

(91 ¢2> = [[ Kluyuz )ba(u)a(uz) duy duy (5-23)

where the kernel function K(u, u; ') is defined by

K(u) = |u21 |a_2 (5-24)

The Hilbert Space H(o)

The space H then becomes a Euclidean space. We denote its completion by H(c),
where H(o) is a Hilbert space. Because of Egs. (5-22) and (5-23), Eq. (5-17) pro-
vides an isometric mapping of the space R on the space H, which is extended ina
unique way by continuity to an isometric mapping of the space R(c) on the space
H(o).

Complementary Series in the Space H(o)

In order to realize the representation of the complementary series in the Hilbert
space H(c), we notice that the isometric mapping (5-17) transforms the operators
D(g) of a representation of the complementary series defined on the Hilbert space
R(0) over into operators in the Hilbert space H(c). Let us again denote these
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operators by D(g). One then finds that the operators D(g) of a representation of
the complementary series on the Hilbert space H(c) are given by

D)) =29 4 u(q)) (5-252)
where the function a(g) is given by

a(g) = g2z 777 (5-25b)

for any g of the group SL(2, C), and 0 < ¢ < 2. Here the function u(g) is given by
Eq. (3-57).

Canonical Basis in the Space H

We now define, following Carmeli and Malin,™ a set of functions that provides an
orthogonal basis in the space H. It is given by

en(u) = N;D},(u) (5-26)
for j=0,1,2 3, ...and m= —j, —j+ 1, ..., j, where D}, (u) are the matrix

elements of the irreducible representations of the group SU, (see Chapter 1). The
constant N; is a real normalization factor whose value is given by

N.:

J

7 [ K()Dho(u) du}_ . (5-27)

and whose explicit expression will be given in the sequel.
To show that the functions e/, indeed provide an orthogonal basis in the space
H, we calculate the scalar product

Celt,el2>=m H K(u'u'™ ')l (w)ed2(w') du’ du”
=7N,; N;, H K"~ ')Di, («) du' DIz, (u”) du”
By making the transition ¥’ — «'u” in the above integral, one obtains
(el € = TN, N, [ KW)Dl, (wu") dud D, (") du”

Using the relation

j1
Dy, (wu")= Y Dy, (u)D},(u")
m=-ji

in the last integral, we obtain

j1
(el ety = 7NNy, 3 [ K()D(u) du
m=-ji

% f D_,,'"IMI(u//)D_{;%"Z(u//) du//

“M. Carmeli and S. Malin, J. Math. Phys. 12, 255 (1971).
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Using now the orthogonality relation (1-42) that the matrices D’ satisfy, we obtain

o , iz gmimz
(em, ey = nN;, sz“ K()Dgo(w') du }ﬁ
which, by virtue of Eq. (5-27), gives
Huz2 Smimz
Jj2 N = -
<emp emz 2]1 + 1 (5 28)
The Normalization Factor N;
The normalization factor N; was defined above by
N72=nJK@ﬂ%d@du (5-29)
where K(u) is a function of u € SU, given by K(u) = |u;,[’"? and 0 < ¢ < 2.
By calculating the scalar product of D}(u) w1th itself, we find
(Dho, Dhod = 5-— | K(u)Dho(u) du
s 2] + 1 00
Hence we have
Nj ? = (2 + 1XDbo , Dho) (5-30)

Now, the right-hand side of Eq. (5-30) is positive. Hence N; 2 > 0, and therefore

N; is real.

The evaluation of the integral in Eq. (5-29) is straightforward. Using the
expression (1-39) for D}, (u) we find

j i m
Doo = _1 Z ( ) uu“zz)’"(ulzuzl)"

Writing now the unitary matrix « in the form

_ a b 2 .
u—(_b J, laff + [b]2 =1

we then obtain for the integral in Eq. (5-29) the following:

j 1\ 2
Z (_1)3,'—».(']") J |a|2m|b|2(j—m—1)+ﬂ du (5-31)
m=0
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We now express du in terms of some three real parameters. We take these par-
ameters as t = |a|*, 0 =arga, A=argb. Then du = (1/2n)* dr d6 d4, and the
integral in Eq. (5-31) becomes

(2—17:)2 Jl a Jzn do Jht'"(l — gyt g)
0 0 0

We therefore obtain for N ? the expression

j N2 1
Ni2=nY (- 1)31""'(]) J (1 — g —m 1Yoz 4y (5-32)

m=0 my Yo

This last integral can easily be evaluated by parts. One obtains
1 _ 1 1 )
[ o1 —gymmo iz g = “ j (1—eyro2=t de
"0 '+g—m~~~ '+f—1 0
J 3 J 7
m!

=) )

I(m + I)F(j +3 - m)

_ (5-33)
o
'ij+=- +1
s +)
Using Eq. (5-33) in Eq. (5-32), we finally obtain
J —{j\? G
Nj2= Y (—1)31—'"( ) B(m+ 1,j+§—m) (5-34)
m=0 m
where B(x, y) is the familiar Euler B-function,
T(x)(y)
B(x, y) = ———— 5-35
Y | (5-39)

The Spaces h and h(s)

In analogy with the generalized Fourier transform, introduced in Section 4-1
between the spaces L3(US,) and I3%, there exists for the complementary series an
isometric mapping from the Euclidean space of functions H (and its completion,
the Hilbert space H(o)) to a Euclidean space of systems of numbers h (and its
completion, a Hilbert space h(g)) which is defined as follows.
The Euclidean space h is defined as the aggregate of all systems of numbers
J,wherem= —j, —j+1,...jand j =0, 1, 2, 3, ..., satisfying the condition

Y (2 + 1N} i [P < (5-36)

J m=-=J
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The scalar product in the space h is defined by

j —_—
Y2+ YN Y Ly, (5-37)
j m=—j
for any two vectors ¢ and s, of the space h. The coefficients N ; are defined by
Eq. (5-27). With each vector ¢/, of the space h we associate the function
o)=Y (2j + YN; ' ) dhel(u) (5-38)

J

where e (u) are the basis functions given by Eq. (5-26). Since e/ (yu) = e/ (u), where
7is given by Eq. (5-20), it follows that the function ¢(u) defined by Eq. (5-38) belongs
to the space H. On the other hand, every function in the space H can be written in
the form (5-38) since, as we have seen, e/ (1) provides a complete!® orthogonal set
in the space H. In fact, the two spaces H and h are isometric, where the transition
from one space to the other is made by means of

¢n=NK¢, el (5-39)
A simple calculation also shows that!®
(b ¥> =% (2 + ON;* X 6LV, (5-40)
Jj m

* The orthogonal set of functions e/ (u) is also complete in H. This can be seen by considering
the irreducible unitary representation (5-25a) of the group SL(2, C) in the Hilbert space H(c) as
an infinite-dimensional unitary representation for the subgroup SU, and by decomposing it into its
orthogonal sum of the finite-dimensional irreducible representations. If v is an element of SU,,
then Eq. (5-25a) gives for the representation of SU,

D(v)g(u) = Pluv)
since one can put u(v) = uv in this case (see Chapter 3). Applying the last formula to e/,(«), we obtain

D(v)el(u) = ehus) = N, D uv)

SN, S Dhow)Dinlo)

m=-j

J
= X DL (v)enlu)
m=-
Hence the operator D(v) realizes a representation of SU, in the space R, of the (2j + 1) functions
e, with —j < m <}, where the matrix elements of D(v) are D/, (v). The representation v — D(v} in
the space of functions e/(u), m= —j, —j + 1, ..., j, is irreducible and the e/, form a canonical basis
in this space. Accordingly, the infinite-dimensional representation of SU, in the space H(o) is
decomposed into irreducible parts defined in the subspaces R; of e/, where m = —j, —j + 1, ...j and
7=0,1,2,3, ... .In other words, every function of the space H(c), and hence of H, can be decomposed
in the form given by Eq. (5-38).
S If y is taken to be equal to ¢, then Eq. (5-40) gives Plancherels formula

@9 =L@+ 1IN S [ghf

m=-j



88 GROUP THEORY AND GENERAL RELATIVITY

If we denote by h(o) the completion of the Euclidean space h, then the isome-
tric mapping (5-39) of H on h can be extended in a unique way by continuity to an
isometric mapping of the space H(c) on the space h(g). The operator D(g) of a
representation of the complementary series in the space H(a) passes over into
operators in the space h(g), which are also denoted by D(g), and whose explicit
expression we find below. This expression will also define a different form for the
complementary series of representations.

Realization of the Complementary Series in the Space h(o)

Applying the operator D(g) to the function ¢(u) written in the form (5-38) we
obtain

=T @+ NS 6 2 )
7 m
or, expanding the expression on the right-hand side into infinite series,
D(g)(u) = Z @+ 1) 2 ém Z (2 + DN !
Z D ,(u) (5-41)

where the infinite-dimentional matrix D¥ (g; o) is given by

. N-, ,
Dt (g; o) =n L [[ K(wu'™") x('g)
x eh(u'(9))en(u") du' du” (5-42)
Accordingly, Eq. (5-41) has the form

D(g)p(u) = ¥ (2 + DN; ' X

Jj

dieh(u

—

(5-43)

where
@ Jj .
w=2@2j+1) Y Di.lg;o)h (5-44)
j=0 m==j

Consequently, we see that the operator D(g) of the representation of the
complementary series of the group SL(2, C) in the Hilbert space h(c) is the linear
transformation determined by Eq. (5-44), describing the law of transformation of
the quantities ¢/, where m = —j, —j + 1,...,jand j =0, 1,2, 3, ... . The matrix
elements D¥, (g; o) are functions of g € SL(2, C) and of the real parameter g,
where 0 < o < 2. They can formally be obtained from the matrix elements
D¥i (g; s, p) of the representation of the principal series given by Eq. (4-48) (see

mm’

Problem 5.8).
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Comparison with the Infinitesimal Approach

The representation of the complementary series, as defined in this chapter, is
characterized by a parameter ¢ whose range of variation is 0 < ¢ < 2. The value of
o determines the scalar product, as defined by Eq. (5-22), in the Hilbert space of
representations and also the operators of the representations, as given by
Eqgs. (5-25).

The representation of the complementary series was defined, however, at the
end of Chapter 2 through the infinitesimal approach. It was shown that all irredu-
cible representations of the group SL(2, C) are characterized by a pair of numbers
(jo, c), where j, takes the values 0, 4, 1,3, 2, ... and ¢ is complex. In particular the
representations of the complementary series were found to be characterized by
the conditions that ¢ is a real number in the interval 0 < |¢| <1 and j, = 0.

To establish the relationship between the parameters o and ¢ one applies the
global form of a given representation to infinitesimal elements of the group
SL(2, C) and compares the infinitesimal elements so obtained with the results of
Chapter 2. The result is

jo=0, c=% (5-45)

o
2

The case for which j, =0 and |c| = 6/2 =1 corresponds to the identity
representation.

The discussions in Chapters 4 and 5 show that the representation of the
principal and complementary series (and the identity representation) realize all
irreducible unitary representations described by Egs. (2-29). In other words, the
representations of the principal and complementary series realize all irreducible
unitary representations of the group SL(2, C) to within unitary equivalence, or
every irreducible unitary representation of the group SL(2, C) is unitarily equiva-
lent to a representation of the principal or complementary series..”)

5-3 OPERATOR FORMULATION

So far the infinite-dimensional, unitary, representations of the homogeneous Lor-
entz group have been discussed via the global approach, in which the representa-
tions are realized as operators defined over an abstract space of functions. This
method is due to Gelfand and Naimark,'® and it complements the infinitesimal
approach due to Bargmann.®! In the latter method one finds the matrices corre-
sponding to infinitesimal generators in a given representation, and expresses
matrices corresponding to finite group elements as exponential functions of the
generators.

7 These statements were proved under the assumptions made in Section 2-2. A proof of these
statements, without the assumptions of Section 2-2, was first given by I. M. Gelfand and M. A.
Naimark, op. cit.

8 See I. M. Gelfand and M. A. Naimark, op. cit.

° V. Bargmann, Ann. Math. 48, 568 (1947).
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While the use of the finite-dimensional, nonunitary, spinor representation of
the group SL(2, C) is widespread in connection with the theory of general relati-
vity (see Chapters 7 to 12) and covariant fields, the infinite-dimensional represen-
tations have not been used so extensively. However, the latter are becoming more
and more involved in physical theories in connection with particles theory and are,
therefore, most likely to be used in gravitation theory. An example of that is the
harmonic analysis of scattering amplitudes with respect to the group SL(2, C)
done by Toller.'® Another example, by Nambu,!'!) is the use of infinite compon-
ent fields to represent an infinite family of particles suggested by the Regge
classification of elementary particles. There exist other examples'!? in which re-
presentations of the group SL(2, C) play an important role.

In view of these considerations, Bars and Giirsey!'*! developed an operator
formulation, in accordance with the quantum mechanical treatment of groups of
physical relevance to reformulate the theory of representations of SL(2, C) pre-
sented so far. Such a formulation might have an important role in future develop-
ments of quantum theory of gravitation. The theory may also find applications in
the representation theory of other noncompact groups relevant to physics, such as
the de Sitter group or the conformal group. In the following we give a brief review
of this formulation.

Casimir Operators

We define the rotation operators J, = id, and the boost operators K, = iB,,
where A, and B,, with k, n =1, 2, 3, are the infinitesimal generators deﬁned by
Eq. (2-12). The commutation relations of Egs. (2-26) then gives

s Ji] = ieumJ m
(K, Ki] = —ieymJm
e, Ki] = ieumKom
These commutation relations can then be simplified into one equation,
[Jx}. s Juv] = i(axu o + 5,1va“ - 5xv-],1u - 51;: Jxv) (5'46)

where Greek indices run from O to 3. The operator J,,,, with J,, = —J,, isrelated
to J, and K, by J, = 3eymJm and K, = iJy,. We shall use the self-dual and
anti-self-dual combination M,, =3(J,, +J,,), N,, =%(J, —J,) where the
operator J wy = 36uap Jg - We also define the left- and right-handed vector opera-
tors Xt = My = 2eum Mims XX = — Nio = 26um Nim - In vector notation one has
X, = 3(J + iK), Xg = 3(J — iK), along with the commutation relations

X%, X¥]=0
[X;IZ» X{“] = ieklmX# (5'47)
[Xf, Xﬂ = iEgym X

% M. Toller, Nuovo Cim. 53, 671 (1968).

''Y. Nambu, Phys. Rev. 160, 1171 (1967).

12 G. Domokos, S. Kovesi-Domokos, and E. Schonberg, Phys. Rev. D2, 1026 (1970).
13 1. Bars and F. Giirsey, J. Math. Phys. 13, 131 (1972).
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The group SL(2, C) admits two Casimir operators that commute with J ,, .
These are

FIZ%J“"J‘”=%(J'J_K'K)=XL X, + Xg - Xp
T 5-48
FZ:TI‘JMVJM:iJ'K:XL'XL—XR'XR ( )

Under the parity transformation § (see Section 2-1)
J-1], K- —-K (5-49)
the operator F, behaves like scalar whereas the operator F, as pseudoscalar:
F,-»F,, F,—» —F, (5-50)
It will be also convenient to use the alternative Casimir operators
C,=%F,+Fy)=X, X,

(5-51)
C2=%(F1_F2)=XR “ Xp

which are transformed into each other under parity. The irreducible representa-
tion can be labelled by the eigenvalues of C, and C, which define the (complex)
numbers j, and j, through the equations

Cy=ji(ji + 1), Cr=jj2+ 1) (5-52)

The z-Basis of the Group SL(2, C)

We now introduce the z basis as the simultaneous eigenstates of C,, C, and Z,
where Z = Z(C,, C,, X*) is a certain non-Hermitian operator that is a rational
function of J,,. This operator should satisfy the following condition:
(1) In order to have four commuting operators C;, C,, the Hermitian and
anti-Hermitian parts of Z, we must have [Z + Z', Z ~ Z'] = 0, or [Z, Z'] = 0.
(2) Let z be the eigenvalue of Z. In order for z to transform as z’' =gz =
(az + b)/(cz + d) under an SL(2, C) transformation, with elements

‘ . . b
— piloa)2  pilo- (0—iw)2 — (@ 5.
g=e e (c d) (5-53)
with ad — bc = 1, we must have Z transforming as the ratio of two operators ¥,
and ¥, that, under the group SL(2, C), transform like the components of a spinor.
One may define ¥, and ¥, as functions of J,, if ¥, with components ¥, and
¥, , satisfies the equation

(6 X )¥=Q¥; ¥= (\P‘) (5-54)

¥,
where ¢ are the three 2 x 2 Pauli matrices, given by Egs. (3-5). In other words, ¥
is defined as one of the eigenspinors of the 2 x 2 matrix of generators, and Q as the
eigenvalue operator associated with ¥. The invariant Q is a function of C, (see
below). Using now the fact that X; x X, = iX,, which is equivalent to the second
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of Egs. (5-47), one obtains (¢ - X, )*¥ = (X, - X, — ¢ * X;)¥, or, with the help of
Egs. (5-51), C, ¢ =0 - X (6 - X, + 1)¥ = Q(Q + 1)¥. Therefore, one finds for Q
two operator solutions

Q=0Q,= -1+ (C, +H"? (5-55a)
or
Q=Q,= -3~ (C, +3)? (5-55b)
These solutions satisfy the equations
Q,+Q,=-1 (5-56a)
-0, =C,=Q,(Q, + 1) =Q}(Q, + 1) (5-56b)

In the following W will be called the spinor operator associated with Q,, and it
satisfies the homogeneous operator-matrix equation

(X%—Ql Xg+ixg)(\yl)_0

XE—ixt —-xi-qf\y, (5-57)

The compatibility of the two linear equations is assured by Egs. (5-51) and
(5-56b). The operator Z is now defined by

Z=Y,¥;'=(Q — X5 (XL +iXx%)
= (X1 - iX5)7'(Q + X3) (5-58)

Consider now a finite Lorentz transformation with rotation parameters w and
boost parameters v. Let

D=D(g)=eiJ'ﬂ)+iK,v=eiu'KL+ia'xR (5'593)
where
a=mw—iv, dA=0+iv (5-59b)
One finds that
D7'e¢-X,D=clP g X eV 2=ygs.X g* (5-60)

where g is an element of the group SL(2, C)and is defined by Eq. (5-53). Similarly,
one finds

D 'o - XgD =P % - X, e T = gg - X! (5-61)

where the matrix § is given by

o Ry
|

D o,

—

?J=Uzgaz=(
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with g given by Eq. (5-53). The 2 x 2 matrix operator that transforms with g is
then —& - Xy, since one has

D Y (-6 Xg)D =D '0,6 - Xgo,D = 0,306 - Xg§ ‘o,
=g(—5 Xg)g~* (5-62)

where g is the complex conjugate to the matrix g, and g is given by Eq. (5-53).
If one now defines @ by

(-6 Xp)®=Q,0 (5-63)

in analogous to Eq. (5-54) for ¥, one can find the right-handed analog of
Eq. (5-57) (see Problem 5.10). The non-Hermitian operator Z is then defined by

Z=0,0;' = (-Q; - X3)" (X} ~iX3)
= (XF+iX5) (-0, + X¥) (5-64)

The z basis can now be defined by the simultaneous eigenstates of C,, C,, Z and
Z. If z represents the eigenvalue of Z on these states, then the state |z) will
transform into

D|z) = A(g; 2)

az+ b
cz + d> (5-65)

where A(g; z) is a certain multiplier which can be determined later. If { is the
eigenvalue of Z, then in order for { to transform as { — (al + b)/(¢{ + d), one must
have { = 7. Thus the states |j,, j,; z, Z) are defined by

Q |jiJas 22> =jy | das 2. 2
Q |j1sd2s 22> =ja linias 2 2
Z|jujnzzy= z|j1 i 2 2
Z_|j1’j2§ z,Z)= fljl’h; z,Z)

Within a given representation (j;, j,), using the commutation relations, one
obtains the expressions

Z=(j,—- X5 YXT+iX})
= (X7 +iX3)(, + 1 - X3!
~ X5, + X3)
ji+ 14+ X5)(XT —ix5)™! (5-66a)
~j2 — X§)7(XT — iX3)
Xt —iX)(~j, - 1-X57!
X1 +iX3)" ' (=j2 + X%)
—j — 1+ X5)(XE +ix§)! (5-66b)

= (X1
=0
Z =
=
=
=
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Unitary Representations

We now restrict ourselves to unitary representations, so that D(g) of Eq. (5-59a) is
unitary. This means the operators J and K are Hermitian, J = J* and K = K,
and we have (X;)' = X and (C,)! = C,. Consequently, for the eigenvalues of C,
and C, we have the relation

]_1(]_1 + 1) =j2(j2 + 1) (5'67)
which yields

ja= -1 (1 +3) (5-68)
Define now the operator X by X, = X, thus X, = X', and introduce j, and k by
2j+ 1 =j, + k and 2j, + 1 = —j, + k. Consequently, the Casimir operators F,
and F, of Egs. (5-48) have the eigenvalues F; = 3(J - J — K - K) = 4(jZ + k2 — 1)

and Fp = iJ - K = (j; +j; + 1)(jy —J2) =Jok.
Since F, and —iF, are Hermitian for unitary representations and, as we shall
see below, j, is a real integer or half-integer (see Problem 5.12), we obtain the two
cases for which representations of the group SL(2, C) are unitary. These can be

characterized by defining k = p + ic as follows:
(a) The principal series, for which

p=j1+L+1=Ti+j,+1=0k=—k (5-69)
(b) The complementary series, for which
j0+i0'=j1 —_72=0,k=E (5‘70)
One notices that the last equation, along with j, = real, imply
h=h=j2=h (5-71)
Both of these two cases come from the condition p(j, + io) = 0, which is equiva-
lent to Eq. (5-67).
From the expressions (5-66) for Z and Z we obtain
Z=(j, - X5) 'X_=(, + 1+ X3)X;! (5-72a)
Z=(~j = XY (X ) = (=i - 1+ XX (5-72b)
where we have used the notation X, = X, F iX, and (X.)' = X{ + iX}.
We now derive a relation between Z and Z*'. We have, from Eq. (5-66a) that
Z'=( + 1 - X)X =, + X}(X3")' Hence Z' satisfies the commuta-
tion relation [Z, Z'] = 0, which allows its Hermitian and anti-Hermitian parts to

be diagonalized simultaneously. In particular, we notice the important commuta-
tion relations

[z O]=1,[z, 0= -1 (5-73)
where IT is defined by IT = X , . One can then show that (Problem 5.11)
[(T)', Z'] = [(X] +iX3), Z'] = n(X] +iX5)™* (5-74)
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which leads to
fNZ = Z'f(11') + f(11") (5-75)

where f' is the derivative of the function f with respect to its argument. If one
chooses the function f by f(IT) = (IT")~? = (X! + iX}) 77J271, where p is
defined by Eq. (5-69), we obtain from Eq. (5-75) the relation Z = (IT*)"?Z*(I1).
On the other hand, because of the commutation relation [X,, X}] = 0, one also
obtains [I1°, Z'] = 0, thus we can write

Z=GZ'G ' =2Z"~ p(X] +iXx})~ 1 (5-76)
where G is defined by
G=G'=(II")"7=(T'M)"% = (X] +iX}) (X, — iX,)" "
From the last equation it follows that Z satisfies the commutation relation
[Z, 1] = -1 (5-77)
Finally, one notices the relations
Zt=G"'2G6=2Z-p(X, - iX,)"!
[z, O] =1 (5-78)
[Z',Z1 =[I, I1'] =0
which show that both Z and Z' are canconical conjugate to I, whereas Z and Z*
are canonical conjugate to IT".
The operator G reduces into the unit operator in the case of the principal
series, in which case we obtain Z = Z' when p = 0. In general, however, the
operator G plays the role of a metric operator in a Hilbert space.

The generators X and X' can now be expressed by means of I, IT?, and their
canonical conjugates. The result is

X, —iX,=T1
Xy=—-j,+1Z (5-79)
X, +iX,=2j,Z - NZ?
The first of Egs. (5-79) is the definition of II, the second follows from
Z=(X,- iX;)"!'(j; + X5), which is one of the forms of Z given by Eq. (5-66a),
whereas the third of Egs. (5-79) follows from Eq. (5-72a) after replacing X , by its

value as given by the second of Egs. (5-79).
Similarly, from the expressions of Z one finds

Xi+ixi=1'
X{=j,+1'Z (5-80)
X —-iX}=-2,Z-1'Z?
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Finally, the generators X and X' can also be expressed by means of Z' and Z*.
Equation (5-76) yields Z=Z'— p(I1')™!, and Z =Z"+ pI1"!, whereas
Egs. (5-78) yield IIZ'IT~! = Z' — I1~ 1. Using these results and using Eq. (5-67),
one finds

bt

3=J,+ 1+ 1Z°

L tiX, = =20+ )ZT - TI(Z1)?
X{=-(,+)+1'Z! (5-81)
Xt —iX}=2(,+ 1)zt - I(Z")?

Consequently, using the commutation relations (5-73), (5-77), and Eq. (5-24),
one can derive the Lie algebra (5-47) and the formulas (5-52) from either
Egs. (5-79) and (5-80) or Egs. (5-81) together with the first of Egs. (5-79) and
(5-80). Hence one obtains a unitary representation of the Lorentz group in terms
of (I, Z) and (1T, Z) or (I, Z') and (I11, Z")'4

bt
+

PROBLEMS

5.1 Use Eq. (5-8) by once taking z, = 0 and g,, so that g,,z, + g, = 1, and secondly taking z, = 0
and g,, so that g,,z, + g,, = 1. Equate the two obtained formulae, taking into account the arbitrary
nature of the variables z, and z,, in order to show that

'922 i_ipg'z"z = '922 'ipg'z"z

Show that this equation, by choosing g,, = e” where 0 is real, leads to the conditions m =0 and
p=-p.
5.2 Prove that

[[ 21 = 22 12 (2,)F (z2) dz, dz, = 2°n{T(o/2)/T(L = 0/2)} [ [$(w) [ |w (™ dw

the right-hand side of which is obviously positive for 0 < o < 2. Here ¢(w) is the Fourier transform

1

Blw) = 5 [ f(z) em%™ dz

[See M. A. Naimark, Linear Representations of the Lorentz Group, Pergamon Press, 1964, p. 174

5.3 Show that the unit representation can be considered as a limit of the representation of the
complementary series at g = 2.

5.4 Show that Eqs. (5-11) and (5-12) do not determine a unitary representation for ¢ > 2.
5.5 Show that the representation of the complementary series is irreducible.

5.6 Calculate the scalar product (5-21) in terms of the function ¢(u) by using Eq. (5-17). Change the
integration variables z, and z, into the variables u; and u, by use of u;, = k, z, and u, = k, z,. Show
that one then obtains for the scalar product the following:

Spfpp=mn JJ [z) — 2, ld-z [(y)22 ld-z [(3)22 ld-z X ¢y (uy)p,(uy) duy du,

14 For more details on the operator treatment of representations of the Lorentz group, see I. Bars
and F. Giirsey, op. cit.
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Use now z; = (4;), /(4,)22 and z; = ()3 /(u;);, to obtain
o fod = [ Kluyuz ')y (u)Baluy) duy du,

where the kernel function K(u, u;!) is defined by K(u) = |u,,|"" 2

5.7 Show that the irreducible representations of the group SU, of weight j occurs only once in the
representation of the complementary series if and only if j is an integer. (Compare Section 4-3).

5.8 Show that the matrix elements DJ/, (g; o) of the representation of the complementary series, given
by Eq. (5-42), can formally be obtained from the matrix elements DY (g; s, p) of the representation of
the principal series, given by Eq. (4-48). Show that the relation between them is given by D (g; o) =
(DI (g; 5, p)}s=0. p=ic- [See M. Carmeli and S. Malin, J. Math. Phys. 12, 225, (1971).]

5.9 Prove Egs. (5-45).

5.10 Let (—& - Xz)® = Q, ®. Show that C, = X - Xz = Q,(Q; + 1) = Q3(Q; + 1), where Q, and Q,
are defined as the roots Q, = -4+ (C, +4)!? and @, = -Q, — 1= —4 — (C, + 4)"/2 Show also
that @ satisfies the homogeneous equation

( -x%-Q, -Xxt +1'X'2‘)((D1) -0

-xk—ix® xt_q, o,/ "

which is the right-handed analog of Eq. (5-57).

5.11 Prove Eq. (5-74).

5.12 Show that from Egs. (5-79) and (5-80) one obtains
Jy=X;+Xi=-(,-j)+NZ+10'Z

Show that by introducing the operators A= (1//2)(Z +1'), B=(1//2)(Z - 1),
A =(1/2)(Z + 1), B = (1/\/2)(Z — O'), which obey the commutation relation

[4, Bl =[A4, B] =[A4, B] =[4, Bl =0and [4, 4] = [B, B] = 1, typical of harmonic oscillator creation
and annihilation operators. The relation given above can then be recast into the form

Jy=—(,—j)+ AA— BB

Since A4 and BB must have integer values and J , has integer or half-integer eigenvalues m, it follows
that j, =j, — j, is real and allowed to take integer or half-integer values.



CHAPTER

SIX

COMPLETE SERIES OF REPRESENTATIONS
OF SL(2, C)

This chapter concludes our discussion of the theory of representations of the
Lorentz group. We first introduce the representations of the complete series,
following Naimark and Gelfand, who showed that these representations include
all the completely irreducible, though not necessarily unitary, representations of
the Lorentz group. In the first section the complete series is realized in the Hilbert
spaces L5(SU,) and I2°. We then find out the relation of the representations of the
complete series to the spinor representation. This is followed by a discussion of the
theory of invariant bilinear functionals and intertwining operators. The case of
unitary representations is accordingly discussed. The last section of the chapter is
devoted to a very brief review of the theory of harmonic analysis on the Lorentz
group.

6-1 REALIZATION OF THE COMPLETE SERIES'!

Realization of the Complete Series in the Space L35(SU,)

As has been pointed out in Section 5-1, all the unitary representations of the group
SL(2, C) are included in either the principal or the complementary series.'?! Gel-

! M. Carmeli and S. Malin, Fortschr. Physik 21, 397, (1973); Int. J. Theoret. Phys. 9, 145 (1974).

21t is interesting to note that the definition of the principal and complementary series of
representations can be generalized from the group SL(2, C) to SL(N, C) for arbitrary N > 2.
However, for N > 2 there seems to be unitary representations not included in the two series. See
E. M. Stein, Ann. Math. 86, 461 (1967).
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fand and Naimark,!® and Naimark,*) have shown that all the completely
irreducible® representations of the group SL(2, C), not necessarily unitary, are
included, up to equivalence, in a series of representations called the complete
series.!®)

In this section the complete series is realized in the Hilbert spaces L2%(SU,)
and I3 (see Section 4-1).

All the representations of the complete series can be characterized by a pair of
numbers (s, p), where s is an integer or half-integer and p satisfies the condition
p*+ —4(|s| + k)3 for k=1, 2,3, ..., and is otherwise an arbitrary complex
number. The pairs (s, p) and (—s, —p) define the same representation. The re-
presentations can be realized in the Hilbert spaces L3(SU,). Hence the space of
realization depends on the parameter s alone and is independent of p. A given
representation corresponding to a pair (s, p) is realized in the Hilbert space
L}(SU,) by a set of operators D(g), where g is an element of the group SL(2, C),
defined by

a(ug)
D(g)p(u) = d(ulg 6-1a
)6 (u) 2(ulg)) (u(9)) (6-1a)
where ¢(u) is an element of the Hilbert space L35(SU,), and where a(g) is given by
a(g) = 93392, >72 (6-1b)

Here the function u(g) was defined in Chapter 3.

The representation formulae (6-1) for the complete series are the same as
those of Egs. (4-44) for the principal series; the difference is that p now can take
complex values, while in Egs. (4-44) p is real. It can be shown that the operators
D(g) defined by Egs. (6-1) are unitary if and only if p is real.

The Complete Series in the Space /2°

In complete analogy with Section 4-3 the generalized Fourier transform, in-
troduced in Section 4-1, can now be utilized to obtain a realization of the com-
plete series in the space 12°. The result is

g=Y@2i+1) Z D (g5 s, p)bl, (6-2)

i=ls| m=-—j

31. M. Gelfand and M. A. Naimark, Izv. Akad. Nauk SSSR, Ser. Mat. 11, 411 (1947).

+ M. A. Naimark, Dokl. Adad. Nauk SSSR 97, 969 (1954).

5 The definition of complete irreducibility is as follows. Given a representation D(g) of the group
SL(2, C) on a Banach space B one first defines a bounded linear operator C as admissible if it has
the form C(£) =)7., fi(¢)e;, where f, ..., 1, e Q and e, ..., e, € Q. The definitions of the sets Q and
' will be given 1n the sequel. One then defines the representations as completely irreducible if
for every admissible operator C in the Banach space B there exists a sequence x, of X such that
(D(x,)¢, 1) = (C&, n) as n— oo for all £ of Q and n of . Here X is the group ring, to be defined in
the sequel, and the operators D(x,) are defined in footnote 8 below. It can be shown that every unitary,
irreducible, representation in a separable Hilbert space is completely irreducible.

¢ The definition of equivalence of representations in the sense of the present chapter will be given
in the sequel.
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where the infinite-dimensional matrix D/, is given by

DIV’ (g _ [ oug) P D .
935 9) = [ 2oy Din((@)Dhn(w) d (6-3)
These equations are again the same as Egs. (4-50) and (4-48), respectively, for the
representations of the principal series except insofar as the definition of the func-
tion «(g), given by Eq. (6-1b) here, is extended to include complex values of the
variable p.

In the following we find the relation of the complete series to the complemen-

tary series.

Equivalence of Representations

As has been pointed out before, the complete series describes all the infinite-
dimensional completely irreducible representations, to within equivalence, of the
group SL(2, C). The meaning of equivalence here is such that the spaces of two
equivalent representations need not be isometric, but it is the formulae that are
essential for the representations and not the norm of the space. In the present
subsection we define equivalence of representations and show that the representa-
tions belonging to the complementary series are, from this point of view, equiva-
lent to representations contained in the complete series.

The definition of equivalence of representations realized in Banach spaces
requires some preliminary mathematical definitions:

(i) The group ring X. Let X denotes the set of all infinitely differentiable
functions x(g), where g is an element of the group SL(2, C), which vanish for all
the matrices g satisfying the condition |gy, [* + |g12[* + |92: > + |922* > C,
for a big enough number C which may depend on the function x(g). This set forms
a ring!”! if addition and multiplication by complex numbers are defined in the
usual way and multiplication of ring elements is defined by'®

x1 - x3(g) = [ x1(9)alg ™ 'g) dg (6-4)

(i) Conjugate representations. Given a Banach space B, whose elements are
denoted by ¢, its conjugate space B’ is defined as the space of all bounded linear
functionals f(£) in B (see Appendix C). If D is a given operator defined in the
Banach space B, then its conjugate operator D’ is defined in the conjugate space B’
by D'f(£) = f(D&). Now, given a representation in terms of the operator D(g)on a
Banach space B, one defines the operator D(g) = D'(g™') as the conjugate re-
presentation in the Banach space B'.

7 See, for example, B. L. van der Waerden, Modern Algebra, New York, 1953.

8 This definition comes about as follows: given a representation of the group SL(2, C) as a set of
operators D(g) one defines as operator D(x) corresponding to every function x(g) of X as D(x) =
[ x(¢)D(g) dg. By a straightforward calculation one finds that D(x,)D(x,) = D(x, - x,), where x, - x,
is defined by Eq. (6-4).
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(iii) The set Q corresponding to a given representation in a Banach space B is
defined as the aggregate of all finite linear combinations of the vectors D(x)¢ (the
operator D(x) is defined in footnote 8), where & belongs to the space M’ (see
Section 2-3) for any value of j and x of X. The set corresponding to the conjugate
representation is denoted by Q.

We now define two representations D*(g) and D®)(g) on the Banach space
B™ and B@, respectively, as equivalent if there exist linear operators A’ and A®
that transform B into B® and B® into B respectively, whose domains of
definition are Q) and ¥ and domains of variation Q? and Q'V), respectively,
satisfying for all ¢ of Q") and f of Q'@,

(AN, f) = (& AMS) (6-5)

Moreover, if AVE =0 and A?f =0 then £ =0 and f= 0; and finally, one has
A(I)D(l)(x)f = D(z)(x)A(l)f
A(Z)ﬁ(Z)(x)fz 5(1)(x)A(2)F

It is noteworthy that for the representations to be equivalent, the Banach
spaces need not be isometric.

(6-6)

Relation to the Complementary Series

The complete series of representations discussed above was characterized by a pair
of parameters (s, p), where s is an integer or half-integer and p is a complex
number. We now show that the complete series of representations that is charac-
terized by the particular case s =0 and 0 < —ip < 2 are equivalent to the re-
presentation of the complementary series.

The space of representations of the complete series, corresponding to s = 0,
was defined above as the Hilbert space LY(SU,). The space of representations of
the complementary series was defined as the Hilbert space H(o). These spaces
correspond to the spaces B’ and B'?), respectively, in the definition of equivalence
of representations discussed above. Now, one faces the following situation: if
D"(g) is a representation of the complementary series corresponding to a value ¢
of the parameter, and D®(g) is representation of the complete series correspond-
ing to the value s = 0, p = ig, then the representations D'"(g) and D'®(g) are given
in the two Banach spaces by the same formulas (6-1) and (5-25), respectively. It
follows, therefore, that the sets Q" and Q?, corresponding to a given representa-
tion in the Banach spaces LY(SU,) and H(o), are the same because both consist of
all the finite linear combinations of the vectors D(x)£, where £ is any of the
functions D/ (u). The operators A and A®), appearing in the definition of equi-
valence, are trivially defined now as the identity operators in Q") = Q@ and
QW = P respectively. One can check that they satisfy Egs. (6-5) and (6-6).
Therefore, any complementary series of representations, corresponding to a value
g, is equivalent to the complete series of representations characterized by the pair
of parameters s = 0 and p = io.
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Condition of Reducibility

In introducing the representations of the complete series, we restricted the values
of its parameters (s, p) by excluding the representations for which

pr= —4(|s| + k)% k=123,... (6-7)

We now consider the representations for which the condition (6-7) is valid. We
show that the representations realized by the general formula for the complete
series, Egs. (6-1), are not irreducible if Eq. (6-7) is satisfied.

To see that indeed when p = —4(|s| + k)%, where k=1, 2, 3, ..., the re-
presentation (6-1) is not irreducible we proceed as follows.

Suppose that p = —2i(|s| + k) and denote by P,y the set of all homogen-
eous polynomials in the variables u,,, @,,, U, and i,,:

p(u) = Z aaﬂyé“;l agl u%Z 17‘;2 (6'8)
a, fB,7,0
with the conditions
a—B+y—0=2s (6-9)
a+B+y+5=2|s| +2k-2 (6-10)

where k=1, 2, 3, .... One can easily see, using Eq. (6-9), that p(yu) = e*¥p(u),
where y is given by Eq. (5-20). Therefore, P,y is a subspace of the Hilbert space
LZ5(SU,) (see Section 4-1). We show that the space P,y is invariant with respect
to the operator D(g) of equation (6-1).

To this end one factorizes the matrix g of SL(2, C) into the product
g = u, eu,, where u; and u, are elements of the group SU, and ¢ is the matrix

given by
.o g7 0
"l ey

with &,, a real number. Such a factorization is possible for all matrices g of
SL(2, C) (see Problem 6.2). Since g — D(g) is a representation, one has D(g) =
D(u,)D(e)D(u,). Consequently, it is sufficient to show that the space P,yis invar-
iant under each of the operators D(u,), D(¢)) and D(u,). Now
D(uy)p(u) = {o(uuy )/oe(u(u,))}p(u(u,)). It is shown in Problem 4.12 that the ratio
a(uu, )/a(u(u,)) is equal to exp (2isA), where A is an arbitrary real number. Also,
a direct calculation, using Egs. (3-65), shows that

p(u(u)) = 3 exp [iA(—a+ B =y + 6)|ay,s
a, g,

X (uuy )y (i, )5 (utey )55 (i, )52

Hence, using the condition (6-9), one obtains D(u,)p(u) = p(uu,), which shows
that the space P,y of homogeneous polynomials is invariant with respect to the
operator D(u,). The same, of course, holds for the operator D(u,).
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Similarily, Pyy is invariant with respect to the operator D(g), where
D(e)p(u) = {a(ue)/o(u(e))}p(u(e)). It is shown in Problem 4.12 that «(ue)/x(u(c)) is
equal to exp (2isA)|A[*~2 where |A| is given by |A|? = |B|%e;2 + |«|2e2,.
Furthermore, one can easily verify that

plue)) = Y. exp [iA(—a+ B —y+ ) |A| Crrr+d

a, f,
7,0

—a—f+y+d a = .7 350
X €33 QupysUa1 U1 U22U2 2

Using the conditions (6-9) and (6-10), and the fact that p = —2i(|s| + k), one
finds

D(e)p(u) = Z e;;_ﬂ+y+6aapy6uzlﬁgl ub, 15,
s
This shows that D(e)p(u) is a polynomial in the space P,y .

Consequently, the space P,y of homogeneous polynomials is invariant with
respect to the operator D(g), and therefore the representation (6-1) is not irredu-
cible when p = —2i(|s| + k), with k = 1,2, 3, ... . The representation (6-1) is not
irreducible also when p = 2i(|s| + k), with k = 1, 2, 3, ..., since the pairs (s, p)
and (—s, — p) define the same completely irreducible representation.

Hence we conclude that the representation (6-1) is not irreducible when
pr=—4(|s| + kA withk=1,273, ...

In the next section we show that the general formulae (6-1) of the complete
series, under the condition (6-7), realize the usual finite-dimensional spinor
representation. This fact will enable us to establish a direct relation between
certain quantities appearing in the generalized Fourier transform of the homogen-
eous polynomials and the 2-component spinors. We show also that this relation is
a single linear transformation.

6-2 COMPLETE SERIES AND SPINORS

In the last section we considered the representation formula (6-1) of the complete
series, but under the condition (6-7) that p* = —4(|s| + k)%, where k =1, 2,
3, .... We showed that the representation obtained is not irreducible in that case.

Relation to Spinors

We now show that the generai formula (6-1), under the condition (6-7), realizes
the spinor representation when applied to the finite-dimensional linear space of
polynomials over the group SU, instead of the infinite-dimensional Hilbert space
L25(SU ). This fact enables us to establish a direct relation between certain quanti-
ties appearing here and the 2-component spinors. We see below that this relation
is a simple linear transformation.
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To see, in fact, that under the condition p? = —4(|s| + k)%, k=1,2,3, ...,
one obtains the spinor representation out of Eq. (6-1), we put

M=s+%p—1, N=—s+%p—1 (6-11)

Then by Egs. (6-9), (6-10) and (6-11), one obtains y=M —« and = N — f.
Accordingly, the polynomial p(u) of Eq. (6-8) can now be written as

M N
pu)= Y Y Guts 503y tuhyt (6-12)
a=0 =0

which is homogeneous in the variables u,; and u,, for degree M, and in @,, and
i1, of degree N. The polynomial (6-12) also satisfies the condition p(yu) =
e'M-MVi2p(y), where the matrix y e SU, is given by Eq. (3-41). Comparing
Eq. (6-12) with Eq. (3-55b), we see that the quantity a, is just z'/?p,,. Hence a,; is
related to 2-component spinors, by Eq. (3-26), by

G, = ,,1/2(1;4) (1;)%1 A (6-13)

WithAl+"‘+AM=aandX1+”'+XN=ﬂ.

Relation between Spinors and ¢/,

We are now in a position to find out the connection between spinors and the
generalized Fourier transform ¢/, in the finite-dimensional case. Since the polyno-
mial p(u) belongs to the space L2(SU,), one can expand it into a generalized
Fourier series,

Qi+1) 5 #Dh ) (6-14a)

Isl m=—j

I8

p(u) =

J
where ¢/ is related to p(u) by

¢ = | P)Dly(u) du. (6-14b)

Using the expansion (6-12) for p(u) in Eq. (6-14b), one obtains

- T T o, (6-15)

a=0 =0
where the six-index symbols C’ are some numerical coefficients given by
Gty = [ Dl @3, "5 * du (6-16)

In terms of the 2-component spinors, by Eq. (6-13), one obtains

M N
=Y Y OO ur e ks kn (6-17)

a=0 =0
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where the new 6-index symbol CIM¥ is related to CIMY by

map

. M)\ (N) .
o = nm( " ) ( ﬂ)c;gg (6-18)
Here A, + -+ Ay =aand X; + -+ Xy = 8.

The generalized Fourier transform ¢, is, therefore, related to the spinors
® 4, . 4k, xy Via 2 linear transformation, given explicitly by Eqgs. (6-18), (6-16)
as an integral over the group SU, .

Invariant Bilinear Functionals'®!

In Sections 4-1 and 4-2 we introduced linear spaces of homogeneous functions
D(x) and wrote down a representation formula, Eq. (4-36), for the group SL{2, C).
We now continue the discussion of the theory of representations in the space D(x).

We start with the idea of an invariant functional for a pair of representations
DM(g) and D®(g) of the group SL(2, C) on the two linear infinite-dimensional
spaces R, and R,, respectively. Let B(¢, Y) be a continuous bilinear functional
whose arguments ¢ and Y may be arbitrary elements of the spaces R, and R,.
This means one has B(ag, + bo,, ¥)=aB(¢,, ¥) + bB(¢,, ¥) and
B(¢, ay, + by,) = aB(¢, ¥,) + bB(¢, ¥,), along with the fact that B(¢, ) is a
continuous function of ¢ and ¥ in the direct sum of the spaces R; and R,. The
bilinear functional B(¢, ¥) is then called invariant under the representations DV)(g)
and D'®(g) if for arbitrary ¢ of R, and ¥ of R,, and any g of SL(2, C), one has
B(D(g)p, D(g)¥) = B(o, V).

Consider now the two representations of the group SL(2, C),

D(g; 11)é(z) = (bz + d)y~1(bz + A~ 1¢(Zj : 2) (6-19a)
D(g; x2W(z) = (bz + d)y™~1(bz + d)y™~ lw(;’j : Z) (6-19b)

where yx;, ='(n;, n,) and y, = (m;, m,), realized in the spaces of homogeneous
functions D(x,) and D(yx,), respectively. One then wishes to find a bilinear func-
tional that is invariant with respect to the operators D{(g; x,) and D(g; x,). To this
end one associates with each matrix

ab
g (c d) ad — bc

of the group SL(2, C) the Mébius transformation w = (az + ¢)/(bz + d) in the
complex plane. Matrix multiplication then corresponds to multiplication of these

transformations, and both e and —e, where e is the 2 x 2 unit matrix, are asso-
ciated with the identity transformation. Every such transformation of the complex

? For more details see, e.g, I. M. Gelfand, M. I. Graev, and N. Ya Vilenkin, Generalized Functions,
Vol. 5: Integral Geometry and Representation Theory, Academic Press, New York, and London, 1966.
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plane can be obtained from the following three types of transformations
(Problem 6.3):

(1) Parallel translation,

1 0
z292+4+25;, g= (20 1) (6-20a)
(2) Dilation,
a 0
z—a’z;  g= (O a_l) (6-20b)
(3) Inversion
01
z—>—1/z; g= (_1 0) (6-20c)

Hence it is enough to discuss invariance properties of a bilinear functional by
checking its invariance under each one of these subgroups. The associated re-
presentation formulae to these transformations, corresponding to parallel transla-
tion, dilation, and inversion, respectively, are then given by

D(g; 0)f(2) =1 (z + z0)

D(g; x)f(z) = a* " ™a' ~"2f (a?z) (6-21)
D(g; x)f(z) = "'z f (= 1/z)
It follows that if s, = —3(n, + m,;) and s, = —§(n, + m,) are not simultan-

eously negative integers or zero, then every bilinear functional invariant under
parallel translations and dilations is given, for every pair of functions ¢ and ¥,
by[l 0,11]

B(. ¥) = (%)2 f (zy — 2, 717, ~ 2,

x ¢(z,W(z,) dz, dz, dz, dz, (6-22a)

On the other hand, if 5, and s, are simultaneously negative integers or zero, the
invariant bilinear functional is given by (Problem 6.4)

B(g, ¥) = 5 [ 6~ P(e(z) dz d, (6-220)
where use has been made of the notation ¢ "2(z) = 6™ *"2¢(z)/6z" 62"

10 For Re (s, + s,) <0, the integral is to be understood in the sense of its regularization. For
instance if —m < Re (s, + 5,) < —m + 1, this regularization is defined by

m—1 ‘b(i,.i)z 215
dlz+z)— Y F%)—~ dzdzdz, dz,
i+)=0 A

B(, ¥) = (;) [t [ ygey)

't Meanwhile we restrict our discussion to those functions ¢(z) and y(z) that belong to the space
of infinitely differentiable functions of bounded support.
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The requirement that the bilinear functionals (6-22) be also invariant under
inversion leads in the first case (i.e., when s, and s, are not both negative integers
or zero) to the condition that y; = (n,, n,) = x, = (my, my), 0r n, = my = —s;, for
k = 1, 2. The bilinear functional (6-22a) then has the form (Problem 6.5)

-\ 2
i i1 = \—mpe
B )= [5) [ =z -y
X ¢(zl)¢(22) dzl dfl d22 dfz ) (6'23)

In the second case (ie. when s; and s, are negative integers or zero) the require-
ment that the bilinear functional (6-22b) be invariant under inversion also is
satisfied if one of the following conditions is fulfilled: (a) n, = my, ny = my; ny,
n,=0,1,2..;0b)n=—-m,n,=—my;(c)ny,=m,n,=—my,n, =12, ..
(d) ny = —my, n, =m,, n=1, 2, ... If such an invariant bilinear functional
exists it is given, in each of these cases, by:

B(g, ¥) = 5 [ 9" (e(z) dz dz (6-24a)
B, ¥) =5 [ $le(z) dz dz (6-24v)
Bg, ¥) = 5 [ 9O u(z) dz dz (6-24c)
B9, ¥) = [ 4" ehi(z) dz dz (6-244)

We have thus not only found the values of the parameters n, and m, for which
an invariant bilinear functional may exist, but also have found the form of this
functional when it does exist. It is possible to show that these conditions are not
only necessary but also sufficient (Problem 6.6), where now the functions ¢ and
belong to the space of homogeneous functions D(y).

Intertwining Operators

We now discuss the conditions on y, = (n,, n,) and g, = (m,, m,) such that the
two representations

D(g; x1)9(z) = (bz + d)~(bz + d)~ 1¢(Z§ I 2) (6-25a)
D(g; 1 )W(z) = (bz + dy (b7 + 3)m2-1¢(,‘jj * ;) (6-25b)

of the group SL{2, C) are equivalent.

Definition Suppose for the two representation operators D(g; x,) and
D(g; x,) there exists a continuous linear mapping 4 # 0 of the space D(x,)
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into the space D(y,), which is not necessarily one-to-one or onto all of D(y,),
such that

AD(g; 1) = D(g; x2)A (6-26)

The mapping A is then said to intertwine D(x,) and D(x,). If A is an isomor-
phism, that is if 4 is a bicontinuous one-to-one mapping of D(x,) onto D(x,),
then the representations D(g; x,) and D(g; x,) are called equivalent.

One can verify that the above definition is equivalent to the one given in
Section 6-1.

We now establish a relationship between intertwining operators and invariant
bilinear functionals.

Lemma 6.1 The operator A intertwines the representation operators D(g; x,)
and D(g; x2), namely AD(g; x,) = D(g; x2)A, if and only if the bilinear func-
tional B(¢, ¥), defined by

B(¢, ¥) = (¥, A9) (6-27)

where

i
W ¢) =5 [ ¥(2)o(2) dz dz (6-28)
is invariant under the representations D(g; x,) and D(g; —x,).

In fact, to see that the condition of intertwining AD(g; x,) = D(g; x,)A yields
the invariance of the bilinear functional (6-27) and vice versa, one writes these
conditions in equivalent ways. The condition AD(g; x,) = D(g; x,)A is equivalent
to the statement that the equation

(D(g; —x2W. AD(g; x1)¢) = (D(g; —x2)¥, D(g; x2)Ad) (6-29a)

holds for all ¢ of D(x,) and ¥ of D(— x,). The invariance of the bilinear functional
B(¢, ¥) of Eq. (6-27), on the other hand, can be written as

(D(g; — 120, AD(g; x1)0) = (¥, AP) (6-29b)

But Eq. (2-29a) is the same as Eq. (6-29b) since the left-hand sides of these
equations are identical, whereas the right-hand sides are equal because (), ¢) is
invariant under D(g; —y,) and D(g; x,).

We have found all possible y, and y, for which an invariant bilinear func-
tional may exist. Consequently, to find out the conditions under which the inter-
twining operator A may exist we need only to replace x, by —y, in the above
results. Hence one arrives at the following results: An operator A # 0 mapping the
space D(x,) continuously into the space D(x,), where yx, =(n,, n,) and
X2 = (my, my), and intertwining the representations operators, namely
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AD(g:; x,) = D(g; x2)A, exists if and only if one of the following four conditions is
satisfied:* %!
(1) %, = x2. The operator A is of the form

A49(2) = ca(z) (6-30)

Hence A is a multiple of the unit operator,!*3
(2) x1 = (ny, nz), and y, = —x; = (—n,, —n,), where n; and n, are not both
non-negative integers. The operator A is then of the form

Ap(z) = c%f (z—z) ™" Yz —z,)" " 'plz,) dz, dz, (6-31)

(3) x1 = —x2, where n; and n, are non-negative integers. The operator A is
then of the form

Agle) = o)

dz" oz (6-32)

(4) x1 = (n1, n2), x2 = (—ny, ny), where n, is a positive integer. The operator
A is then of the form

0" ¢(z)

oz™

Ad(z) = ¢ (6-33a)
(4) x1 = (ny, n2), x2 = (ny, —ny), where n, is a positive integer. The operator
A is then of the form

0" ¢(2)

67"2

Ad(z)=c

(6-33b)

In the above equations ¢ is a constant.

6-3 UNITARY REPRESENTATIONS CASE

Before we find the conditions under which a representation in the space of hom-
ogeneous functions, D(y), is unitary we discuss the problem of equivalence of
representations.

12 These are the same four cases given above, but are now renumbered, for convenience, since
1 here is replaced by —y,.

13 Note that when x, = x,, i., D(x;) = D(x,), means that any continuous linear operator in the
space D(y) that commutes with all the operators of D(g; x) is a multiple of the unit operator. Such
a representation D(g; x) is called an operator irreducible.
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Equivalence of Representations

In Section 6-2 we have already defined equivalence of representations with the
help of intertwining operators. Two representations D(g; x,) and D(g; y,) in the
two spaces of homogeneous functions D(x.) and D(x,), respectively, are called
equivalent if there exists an operator A which is a bicontinuous one-to-one map-
ping of D(y,) onto D(y,) such that

AD(g; 1) = D(g; x2)A (6-34)

Since we have found in Section 6-2 the necessary and sufficient conditions on y,
and y, for the existence of such an operator A, we can now find what additional
conditions should be imposed on the parameters x, and y, if 4 is to be a bicontin-
uous one-to-one mapping of the spaces D(x,) and D(y,). Hence one can go through
the four cases discussed above. In fact the first case is of no interest since if y; = x,
the space of homogeneous functions D(x,;) and D(x,) simply coincide. Hence we
are left with cases (2), (3), (4) and (4'). One can then prove the following:

Lemma 6.2 Two representations D(g; x,) and D(g; x,), where x, = (ny, ny)
and y, = (my, my) with x, # x,, are equivalent if and only if n, = —m, and
n, = —m,, where n, and n, are not integers of the same sign. When the two
representations D(g; x,) and D(g; x.) are equivalent, then the bicontinuous one-
to-one mapping A of the space D(x,) onto D(x,) such that AD(g; x,) =
D(g; x2)A, is given by**l

Ap) =) [ (=) e ) () ey 07 (639)

Indeed, let us first assume that x; = (ny, n,) and y, = —yx; = (—ny, —ny)
where n, and n, are not simultaneously non-negative integers. It was already
shown by Eq. (6-31) that in this case the operator A is of the form (6-35) (case 2
discussed above). It then follows that the representations D(g; x,) and D(g; —x,)
are equivalent. For consider the operator A mapping D(x,) into D(—y,) and
satisfying AD(g; x;) = D(g; —x1)A. Consider also the operator A, mapping
D(—yx;) into D(x;) and intertwining the representations, namely satisfying
A D(g; —x1) = D(g; x1)A;- Then it is possible to show (Problem 6.9) that
A;A = AA, = pl, where 1 is the unit operator, and y is given by

:u = (—1)"1_"2471'2(711 + n2 + |n1 - nzl)_l (_nl - n2 + |n1 - nzl)_l
(6-36)
Consequently, 4 # 0 and the operators A and A, are isomorphisms of the spaces

D(x,) and D(x,)- This proves the equivalence of D(g; x,)and D(g; —y,) for n, and
n, not being nonzero integers of the same sign.

'* ForRe (n, + n,) > O the integral in Eq. (6-35) is to be understood in the sense of its regularization.
For more details see I. M. Gelfand, M. L. Graev, and N. Ya. Vilenkin, op. cit.
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We now consider the case for which y, = —y, with n, and n, nonzero
integers of the same sign (Case 3 discussed above). [If n; = n, =0 then D(y,)
coincides with D(x,).] Then one has here D(g; x,) and D(g; x,) are not equivalent.
This is so since the operator A in this case is of the form given by Eq. (6-32) which
is singular since it annihilates all polynomials in the space D(x,) of the form

ni—1n2—1
b(z)= Y Y a2t
j=0 k=0
The only two cases left are those for which x; = (n;, n,), xo = (—ny, ny) for
positive integer ny, and x, = (ny, n,), xo = (n;, —n,) for positive integer n, (cases
4 and 4 discussed above). In both of these two cases the representations D(g; x,)
and D(g; x,) are not equivalent (Problem 6.10).
We are now in a position to discuss unitarity conditions for the representa-
tions in the spaces of homogeneous functions D(y).

Unitary Representations

Under certain conditions one can define in the space D(y) of homogeneous func-
tions with y = (n,, n,), a Hermitian bilinear functional (¢, ) which is invariant
under the representation operators, ie., (D(g; x)o, D(g; x)¥) = (¢, ¥) for all ¢(z)
and y(z) of the space D(x) and any element g of the group SL(2, C). When the
Hermitian bilinear functional (¢, ) is positive definite it could then be used as the
scalar product in the space D(x) and hence the representation will be unitary
(Appendix C).

In Chapters 4 and 5 the unitary representations of the group SL(2, C) were
discussed and found. They were the representation of the principal series and the
representation of the complementary series. We shall see below that the first case
corresponds to n; = — 7, for which the scalar product is given by

(6. ¥) = f b(2)P(z) dz dz (6-37)

whereas the second case corresponds to n, = n, = ¢ — 1, where ¢ is a real number
such that 0 < ¢ < 2, for which case the scalar product is given by

)
@0 =—=s] [l nl 0e)i) 42, 02, e @z (6)
i
T

Invariant Hermitian Functionals on D(y)

Let us find the conditions for the existence of an invariant, not necessarily positive
definite for the time being, Hermitian functional on the space D(). To this end we
associate with every Hermitian functional (¢, ), defined on the space D(x), with
x = (ny, n,), the invariant bilinear functional

(6, ¥) = B(¢, ¥) (6-39)
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This invariant bilinear functional is defined for ¢(z) € D(x) and ¥(z) € D(x'),
where x' = (1,, n,) for x = (ny, n,). The Hermitian invariant form (¢, ¥) is then
invariant under the operator D(g; x) if and only if B(¢, ¥) = (¢, ¥) is invariant
under the representation operators D{(g; y) and D(g; x'). This is so since

B(D(g; x)¢» D(g; x"W) = (D(g; )b, D(g; x" W)
= (D(g; x)$. D(g; 1Y)
Consequently, the invariance of the Hermitian form under the representation
operator D(g; ) is the same as the invariance of the bilinear functionals under the
operators D(g; x) and D(g; x'). This latter invariance was discussed in detail

above. All one needs is to identify y, with y and y, with y'. Hence one immediately
obtains:

Lemma 6.3 An invariant Hermitian functional exists in the space of homogen-
eous functions D(x), where x = (ny, ny), ifand only if either (1) n, = —n, ; or (2)
nl = '_12 .

In the first case, one has n; = —n,, 0r ny = 3(n + ip), n, = §(—n + ip), where
n is an integer and p is any real number. The Hermitian functional in this case is
given by

(6. ¥)=3 f o(2)P(z) dz dz. (6-40)

The second case (n, = f,) implies, since n; — n, should be an integer, that
n; = ny = 1 is real. The invariant Hermitian functional is then given by

-\ 2
{p, ¥ = (%) f |zy — 22| 2@(z, W(z,) dz; dZ; dz, dz, (6-4la)

fort#0,1,...,and by

0> =5 [ 699 dz dz (6-41b)

for © = g which is a non-negative integer. The last two formulae may be unified
into

(D, ) = ( ) j |21 22|_2’_2¢(21)l_ﬂ(22) dz, dz, dz, dz, (6'42)

by using the identity
| z |— 2t—2

(=" e
I'(—1) - 852z

=g 4

known from the theory of distributions.




COMPLETE SERIES OF REPRESENTATIONS OF SL(2, C) 113

Positive Definite Hermitian Functionals

We now turn to the problem of positive definiteness of the Hermitian functionals
discussed above.

In the first case, for which y = (3[ —n + ip], 3[ —n + ip]), the Hermitian func-
tional (6-40) is obviously positive definite. We now find the restrictions on the real
parameter t under which the Hermitian functional (6-42) becomes positive
definite.

One first notices that, since the representations D(g; x) and D(g; —) are
equivalent, one can restrict the choice of 1 to — 00 < 1 < 0. Replacing the variable
7 into ¢ = —21, thus 0 < ¢ < 0. The invariant Hermitian form (6-42) will then
have the form

.05 = (3] [ 120 = 22l 00eiler) i, i an, (649
()"
2
with 0 < ¢ < 00. But the integral (6-43) was already discussed in Section 5-1,
Eq. (5-12). It was found there that the condition for positive definiteness is

satisfied only for 0 < o < 2.
Summarizing our results one obtains:

Lemma 6.4 A representation D(g; x) defined on the space of homogeneous func-
tions D(x), where y = (ny, n,), will have a Hermitian positive definite invariant

form in either one of the two cases: (1) x = (3[n + ip], 3[ —n + ip]), where nisan
integer and p is a real number. In this case the Hermitian functional has the form

(6, ¥) = 2f¢ z) dz dz.

(2) x =(—0/2, —0/2), where 0 < 6 < 2. In this case the Hermitian functional

has the form
riz
)"

Representations in the first case are the representations of the principal series.
Representations in the second case are the representations of the complementary
series. Both series were extensively discussed in Chapter 4 and 5.

(. ¥)> = ( ) f |21 _22|'7 2¢ (22) dz, dz, dz, dz,

Unitary Representations on a Hilbert Space

The positive definite invariant Hermitian functional can be taken as the scalar
product in the space D(x). The space D(x) can then be completed with respect to
the norm |¢| = (¢, ¢)'/* to obtain a Hilbert space H in which D(x) forms a



114 GROUP THEORY AND GENERAL RELATIVITY

subset which is dense everywhere. The representation operators D(g; x) can be
extended uniquely to unitary operators on the Hilbert space H, and are again
denoted by D(g; x). They satisfy (D(g; x)¢, D(g; x)¥) = (¢, ¥), along with the
requirements that D(e; x) = 1 and D(g,g,; x) = D(g,; x)D(g,; x), where e is the
unit element of SL(2, C) and 1 is the unit operator on D(x). Hence D(g; x) pro-
vides a unitary representation of the group SL(2, C). One can show that there
exists no closed proper subspace in H which is invariant under the operator

D(g; x)-

6-4 HARMONIC ANALYSIS ON THE GROUP SL(2, C)

In Section 4-1 we discussed the concept of Fourier transforms on the group SU, .
The purpose of this section is to obtain analogous results for the group
SL(2, C)1*% We will see below that a regular representation of the group SL(2, C)
is decomposed into the direct sum of representations of the principal series. Be-
cause the representations of the principal series are not one-dimensional but
infinite-dimensional the corresponding Plancherel formula and the corresponding
equation (4-20) will contain the trace of the operators of these representations just
as the group SU, does (see Problem 4.3). On the other hand, since the representa-
tions of the principal series depend on discrete index as well as on continuous
index, the obtained Plancherel’s equation will contain summation as well as
integration.

Fourier Transform on the Group SL(2, C)

The analogs of the exponential ¢'** in Fourier theory for the group SI{2, C) is a
solution of the functional equation f(g,g9,) =/(g9,)f(g,) since the ordinary
exponentials e** are solutions of the functional equation f (x, + x,) = f(x,)f(x,)-
The only scalar solution to the equation f(g,g,) =f(g9,)f(9,) is f(g) = 1. Since
every solution to this equation, along with the condition f (e) = 1, is a representa-
tion, hence we look for an operator solution to it. We have already studied
representations of the group SL(2, C) in varieties of spaces. If we consider the spaces
ofhomogeneous functions D(y) (see Section 4-1) as the spaces where these operators
are defined, then these operators are D(g; ), where y is a pair of complex numbers,
1 = (ny, ny), whose difference is an integer and satisfy [compare Eq. (4-36)]

(6-44)

Digs )6(e) = (b + dp ™ (B2 + AP Z)

15 Section 6-4 is a brief review of the subject. For more details on the Lorentz group and
harmonic analysis see W. Riihl, The Lorent Group and Harmonic Analysis, Benjamin, New York, 1970,
Chapter 4; I. M. Gelfand, M. I. Graev and N. Ya. Vilenkin, Generalized Functions, Vol. 5: Integral
Geometry and Representation Theory, Academic Press, New York and London, 1966, Chapter IV;
M. A. Naimark, Linear Representations of the Lorentz Group, Pergamon Press, New York, 1964,
Section 14.
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Here a, b, ¢, d are complex matrix elements of g € SL(2, C),

a b
= ; —_ = -45
g (c d) ad —bc=1 (6-45)

In this sense D(g; x), g, and y play the roles of e'*, x, and i4, respectively.[*®

Definition The operator function

F(x)= [ 1(9)D(g; 1) dg (6-46)
is called the Fourier transform of the function f(g) defined on the group

SL(2, C).*7 The function F(x) is an operator in the space D(x) whose action is
defined by

F(x)$(@) = [ 1(9)Dlg; 1)) dg (6-47)

It can be shown that if f(g) is a continuous rapidly decreasing-function, the
integral on the right-hand side of Eq. (6-47) converges for all ¢(z) of the space
D(x)- Moreover, F(x)¢(z) belongs to the space D(x) and F(x) is continuous in the
topology of D(x).

Properties of Fourier Transform on SL(2, C)

We start with finding the Fourier transform F(x) under the translation g — gg, of
f(g). The Fourier transform of f(gg,) is the operator function

f £(990)P(g; x) dg

Since this is an invariant integral (see Section 4-3), we can make the substitution
g — ggo ', thus we obtain

f f(990)D(g; x) dg = f f(9)D(ggo*; x) dg
= f f(9)D(g; x)D(gs *; x)fig

= [ 1(6)D(g; 1) dgD™*(go; %)

16 Solutions of equations of the form D{(g,g,) = D(g,)(g,) give rise to special functions that are
widely known in mathematical literature. These special functions are matrix elements of the operators
D(g). The only exception, so far, are the Lamé and Mathieu functions.

'7 Functions defined on the group SL(2, C) were discussed in detail in Section 4-3.
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As a result one obtains

f £(990)D(g; x) dg = F(x)D™ (905 x) (6-48)
In the same way one obtains

[ f(659)D(g: 1) dg = Digo; X)F(x) (6-49)

We now prove the following lemma.

Lemma 6.5 The Fourier transform of any rapidly decreasing continuous func-
tion f(g) is an integral operator given by

Fbes) = 5 [ Koy, 225 00(e) d2a 7, (6-50)

K(zy, 255 x) is a function of the two variables z, and z,, which is called a
kernel.

In fact F(x)¢(z,) is defined by

F()é(z:) = | 1(g)D(g; 2)¢(z1) dg (6-51)

for any ¢(z) of the space D(x). If we use in (6-51) the expression for D(g; x)@(z,),
given by

D(g; x)$(z1) = (Bz, + 8)"1(Bz, + 5)n2—1¢(a21 + y)

ﬂzl +(5

and the expression for dg in terms of the three variables «, f, and & given by
Eq. (4-63), we obtain

F)ote) = (5) [ Flo 5. Bz, + 0B, + 3y

az; + vy _ _
y ¢(m) |82 du dz dB dB dé d5 (6-52)

The integral above can be written in a somewhat different way if we change
variables according to A= Bz, + 6, and put z, = (az, + y)/(fz, + ). Then
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§=A4—Pz,a=A"1+ Bz,,and y = (@6 — 1)~ . The Jacobian of the transfor-
mation of the coordinates gives

( 0(x B, 8)
oz2, B 4)

Using these results in Eq. (6-52), one obtains

-

FRoe) = (5) [ A0+ e, 2= peot
« Am=17m=1 4} 41 dB dB dz, dz, (6-53)

Equation (6-53) shows that F(x)¢(z,) is of the form given by Eq. (6-50) and that
the kernel K(z,, z,; ) is given by

‘2
1 _
Klew 2 7) = (5] [ #6070 + Bea 2 = o)
x Amtm17m=1 42 d7 d dB (6-54)
Finally we assert without a proof that if the function f(g) is an infinitely

differentiable function, decreasing rapidly with all of its derivatives, then the
operator

= f f(9)D(g; x) dg (6-55)
has a trace which is given by
Tr F(x f K(z z; 1) dz (6-56)
In terms of the function f(g) the trace can be written as
Tr F(x) = [ £33 + A~17")[A = 2| 2 dg (6-57)

where 4 and A7 ! are the eigenvalues of the matrix g of the group SL{2, C).

Inverse Fourier Transform

Let F(x) be the Fourier transform of a square integrable function f(g) = f(«, 8, 8)
defined on the group SL(2, C). Then F(y) is defined on the “real axis ”, that is for
those values of y = (n;, n,) corresponding to unitary representations of the princi-
pal series. Hence the points of the “real axis ” are characterized by n, = — 7, or
n, =4(n + ip)and n, = 3(—n + ip), where p is a real number and n is an integer.
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We would like first to write down the function f(g) in terms of F(x) for values
of y on the “real axis”. Alternatively, this could also be done by expressing the
function f(g) in terms of the kernel function K(z,, z,; x) of the operator F(x), with
x defined on the “real axis”. Since the kernel function was given by Eq. (6-54), our
problem reduces to inverting Eq. (6-54).

To this end we define the function ¢(z,, z,; x) by

¢(zl’ Z2, A’):%ff('l_l +ﬂ22’ﬂ’l_ﬂzl) di dj’ (6'58)

Hence the kernel function can now be written as
K(zy, 225 1) = ;f Bz, 253 A=A 1 d) d7 (6-59)

The inversion of Eq. (6-54) can then be achieved by first inverting Eq. (6-59), thus
writing ¢(z,, z,; 4) in terms of K(z,, z,; x), and then inverting Eq. (6-58), that is
expressing f(g) in terms of ¢(z,, z,; 4).

The inverse of Eq. (6-59) is straightforward. The result is (Problem 6.11):

1
W,[ K(Zl, 23, X)A._"II_"Z dX (6-60)
Xo

where j, is the “real axis”, that is the set of points y = (3[n + ip], 3[ —n + ip]),
where p is real and n is an integer. The integration with respect to y is under-
stood as integration over the variable p and summation over n. The inverse of
Eq. (6-58) is more cumbersome. The result is

¢(21, 23, '1) =

i1 A—86 a—At
flo B, 8) = _#W“’“ (T °‘—ﬂ—;a) didl  (6-61)

where ¢,; = 0%¢/0A 04

We are now in a position to express f(g) = f(«, §, ) in terms of the kernel
function of its Fourier transform. Accordingly, we differentiate Eq. (6-60) twice
with respect to A and 4 and using the result in Eq. (6-61) we obtain

flo B, 0) = _T6;7J' J nlnzK(z, %;X)

X0

X (Bz+ 6)"" 1Bz + ) "1 dz dz dy (6-62)

Here the variable y = (n,, n,) = (3[n + ip], 3| —n + ip]), where n is an integer and
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p is real, and integration over y means integration over p and summation over 7.
Taking these facts into account, one thus obtains

[0 B0 =guz X | (2407 ap

n=—o — 00

az+y n+ip —n+ip
K .
x| (Z’,sz+5’ 2 2 )

x (Bz + )" WA= LGz 4 FUDB--1dzdz  (6-63)

We finally write f(g) in terms of its Fourier transform F(x). Since
az, + 7y Cmt— 1 De .
K(Zp ﬁ ; X)(ﬂzz +8)" "Bz, +8) !
is the kernel of F(x)D™'(g; x), it follows that

3 Kev g+ 07z 7 bz 02 = Te (P65 )

b B+o’
(6-64)
Using this result in Eq. (6-62) gives
1
flo)=—¢g | Tr{F@D (g x))e(x) dx (6-65)
Xo

where ¢(y) = n; n,.

Plancherel’s Theorem for SL(2, C)

The mapping f(g) — K(z,, z,; x) can now be made to be isometric by choosing a
suitable scalar product in the space of functions f(g) and the space of kernels. To
this end we define the scalar product for the functions on the group SI{2, C) by

(fif2) = [ fil)Falg) dg (6-66)

whereas that for the kernels by

1 _
(K,K)=ﬁ K(Z,Z;X)K(Z’ZZ;X)
1 Ko 3me Lo 121, 22 202

x ¢(x) dz, dz, dz, dz, dy (6-67)

where ¢(x) = n,n, = — |n; |%, and the integral over y means integration over p
and summation over n.
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Lemma 6.6 Let f(g) be a square integrable function and K(z,, z,; x) the kernel
of its Fourier transform. Then (K, K) < 0 and

(£.f) = (K, K) (6-68)

Equation (6-68) is the analog of Plancherel’s theorem for square integrable
functions defined over the group SL{2, C). The proof of Eq. (6-68) is left for the
reader. The explicit form of Eq. (6-68) is given by

1
32n*

[ 1@ dg =55 [ K25 1)) dzy dz, dz, dz, dy (6-69)

In terms of its Fourier transform, it is given by

[ 156 dg= — s [ (o) Tr {FF*(0) dx (6:70)

Here F* = F', where F'(x) is the conjugate of F(x), the integral over y is to be
understood as the integral over p and summation over.n, and Tr (FF*) denotes
the trace of the operator FF*'8 It will be noticed that the integral does not
involve all the irreducible unitary representations, but only those of the principal
series.

Decomposition of the Regular Representation

We conclude this chapter by discussing the Fourier integral and the decomposi-
tion of the regular representation of the Lorentz group into irreducible
representations.

The right regular representation of the group SL(2, C) is realized on the
Hilbert space of functions f(g) on the group, such that the integral

|/ =f | f(9)I? dg (6-71)

converges. With any element g, of the group SL(2, C) we associate the operator
D(g,; R), called the right translation operator, which transforms f(g) into

D(go; R)f(g) =f(99) (6-72)

The operator D(gy; R) is a representation since D(e; R) = 1 and D(g,; R)D(g,;
R) = D(g,g,; R). This representation, which is unitary, is called the regular
representation, and can be decomposed into irreducible representations.

The decomposition of the regular representation of the group SL(2, C) into

'8 The operator F(x) is a Hilbert-Schmidt operator.
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irreducible unitary representations D(g; x) of the principal series can be seen if one
recalls that under the translation f(g) — f(gg,) the kernel transforms according to

Ap2Z + Yo
Boz + 8¢
where oy, By, and &, are the elements of the matrix g, of the group SL(2, C),

do = (ao ﬂo)
° Yo 0o

Accordingly, as a function of z the kernel transforms under such translations
according to the representation D(g,; — ) of the principal series. Hence the ex-
pansion of the functions on the group SL(2, C) in the Fourier integral describes
the decomposition of its regular representation D(g; R) by a direct integral into
irreducible representations of the principal series. To each y = (n,, n,) there corre-
sponds a set of component spaces depending on the other parameter z,, on each of
which the same representation D(g; —x) is induced. ‘

Finally we remark that the correspondence f(g) — K(z,, z; x) defines also the
decomposition of the left regular representation D(g; L) of the group SL{(2, C) into
irreducible components. The left regular representation is defined by

D(go; L)f(9) = f(90'9) (6-74)

The corresponding equation to Eq. (6-73) is now given by

K(zy, 225 1) = (Boz + 80) ™ " M(BoZ + ‘_50)_"2_1K(21’ ; X) (6-73)

®pZy + Yo

K , 2} - 5 n—-1(p = (_5 n2—1 ,
(21,25 %) (Boz, + 0) (Boz, + 8y) K(iﬂozl'*'(so

z; x) (6-75)
Hence under the left translations the kernel K(z,, z; x) transforms as a function of
z, under the unitary representation D(g; x) of the principal series. Consequently,
the Fourier transform of the function f(g) describes also the decomposition of the
left regular representation into its irreducible components.

PROBLEMS

6.1 Verify that the operators D(g) defined by Egs. (6-1) are unitary if and only if p is real.

6.2 Show that every matrix g of SL(2, C) can be represented in the form g = u, su,, where u, and u,
are unitary matrices of SU,, and ¢ is defined by

g, O
&=
0 &,

6.3 Prove that every linear-fractional transformation w = (az + ¢)/(bz + d) of the complex plane can
be obtained by combining the following three types of transformations: (1) Parallel translation, for
which a =1, b =0, ¢ = z,, d = 1; (2) Dilation, for whicha=a,b=0,c=0,d=a"*;and (3) Inver-
sion, for whicha=0,b=1,c= -1,d=0.

where &,, is real.
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6.4 Prove Egs. (6-22).
6.5 Prove Eqs. (6-23) and (6-24).
6.6 Prove the sufficiency conditions of Eqs. (6-23) and (6-24).
6.7 Verify Egs. (6-30)-(6-33).
6.8 Show that Eq. (6-32) can be considered as a special case of Eq. (6-31) by choosing the constant ¢
such that ¢™' = I'(—3n; — 4n, + §|n, — n,|) and remembering that the generalized function
(g, -2) "z -

C(=5n, = 3n, + 4|0, — ny|)

becomes &'™-")(z, — z) for non-negative integers n, and n,.

6.9 Verify Eq. (6-36).

6.10 Show that the representations D(g; x,) and D(g; x,) are not equivalent in cases 4 and 4.
6.11 Prove Eq. (6-60).

6.12 Prove Eq. (6-68).



CHAPTER

SEVEN
ELEMENTS OF GENERAL RELATIVITY THEORY

In the previous five chapters all finite- and infinite-dimensional representations of
the Lorentz group were found. We now turn to the description of the gravitational
field in which the Lorentz group plays an important role. This description will be
given in Chapters 8 to 12. The present chapter is intended as an introductory
presentation of classical general relativity theory.

We begin the discussion with a brief review of Riemannian geometry, followed
by a description of the physical foundations of general relativity. These are the
principles of equivalence and general covariance. The gravitational field equations
are then derived in a tensorial form. Exact and approximate solutions of FEinstein’s
field equations are subsequently given. Applications of these solutions are then
made in connection with experimental verifications of general relativity. Finally,
the equations of motion of material bodies are discussed. These include the
Einstein-Infeld-Hoffmann equation of motion for post-Newtonian accuracy.

7-1 RIEMANNIAN GEOMETRY

Transformation of Coordinates

Any four independent variables x*, where the greek letter takes the values 0, 1, 2, 3,
may be considered as the coordinates of a four-dimensional space V, . Each set of
values of x* defines a point of V,. Let there be another set of coordinates x*
related to the first set x* byt!!

XM =f(x") . (7-1)

! L. P. Eisenhart, Riemannian Geometry, Princeton, New Jersey, 1949.
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where f* are four independent real functions of x’. A necessary and sufficient
condition that f* be independent is that their Jacobian

A
ox° ox°
ar+ .
% = |: (7-2)
o o
ox3 ox3

does not vanish identically. Equation (7-1) defines a transformation of coordinates
in the space V. Since the Jacobian is different from zero, one can also write x* in
terms of x" as

x* = g*(x") (7-3)

A direction at a point P in the space V, is determined by the differential dx*.
The same direction is determined in another set of coordinates x'* by the differen-
tial dx*. The two differentials are related, using Eq. (7-1), by

dx™* = (6x™/0x*) dx* = (f*/6x*) dx’ (7-4)

Here the Einstein summation convention is used, according to which repeated
Greek indices are summed over the values 0, 1, 2, 3.

Contravariant Vectors
Let two sets of functions V* and V'* be related by
V# = (0x™*/ox")V” (7-5)

similar to the way the differentials dx'* and dx* are related. V* and V’* are then
called the components of a contravariant vector in the coordinate systems x* and
x'*, respectively. Hence any four functions of the x’s in one coordinate system can
be taken as the components of a contravariant vector whose components in any
other coordinate system are given by Eq. (7-5).%

Invariants. Covariant Vectors

Two functions f (x) and f'(x') define an invariant if they are reducible to each other
by a coordinate transformation.

2 A contravariant vector determines a direction at each point of the space V,. Let V* be the
components of a contravariant vector and let dx* be a displacement in the direction of V* Then
dx%/V® =+ = dx3/V3, This set of equations admits three independent f*(x*) = c* where k =0, 1, 2,
and the ¢’s are arbitrary constants and the matrix df*/dc* is of rank three. The functions f* are
solutions of the partial differential equation V* df*/dx* =0. Hence using the transformation laws
(7-1) and (7-3) one obtains V* = 0 for k = 0, 1, 2, and V’* # 0. Hence a system of coordinates can be
chosen in terms of which all components but one of a given contravariant vector are equal to zero.
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Let f be a function of the coordinates. Then
ofjox™ = (9f)ox’)(0x"/0x"") (7-6)

Two sets of functions ¥, and V, are called the components of a covariant vector in
the systems x and x', respectively, if they are related by the transformation law of
the form (7-6),

v, = @x/x"V, (-7)

For example, if f is a scalar function, then df/éx" is a covariant vector. It is called
the gradient of f. The product V*W, is an invariant if V is a contravariant vector
and W is a covariant vector. Conversely, if the quantity V*W, is an invariant and
either V* or W, are arbitrary vectors, then the other set is a vector.

Tensors

Tensors of any order are defined by generalizing Egs. (7-5) and (7-7). Thus the
equation'®
ox'#t  gx'tm 9x™? ox°"

Taham = OxPl xPmax™1 dxn TG en (7-8)

defines a mixed tensor of order m + n, contravariant of the mth order and covar-
iant of the nth order. If the Kronecher delta function is taken as the components of
a mixed tensor of the second order in one set of coordinates, for example, then it
defines the components of a tensor in any set of coordinates. An invariant is a
tensor of zero order and a vector is a tensor of order one. When the relative
position of two indices, either contravariant or covariant, is immaterial, the tensor
is called symmetric with respect to these indices. When the relative position of two
indices of a tensor is interchanged and the tensor obtained differs only in sign from
the original one, the tensor is called skew-symmetric with respect to these indices.
The process by means of which from a mixed tensor of order r one obtains a
tensor of order r — 2 is called contraction.

Let g,, be the components of the metric tensor, ie., a symmetric covariant
tensor, which is a function of coordinates, and let g = det g,, . The quantity g**,
denoting the cofactor of g, divided by g, is a symmetric contravariant tensor and
satisfies

v

9*°g,, = 0, (7-9)

3 Certain other quantities transform according to the law

T = N ax* oxf
A g en oxP ax,a e

Here J is the Jacobian determinant |0x*/8x#|. The superscript N is the power to which J is raised.
Te " is called a tensor density of weight N. For example, if ¢’ denotes det 90 then g’ = J2g, where
g = det g . Hence one has for the four-dimensional elements in two coordinate systems the equality:

(_g)l/Z d4x = (_gr)l/Z d4x
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The element of length is defined by means of a quadratic differential form
ds? =g,, dx" dx*. By means of the tensors g,, and g** one can lower or raise
tensor indices:

Tllvp = gMG’I:”p (7'10)
Taliv = Gup TPBY
Christoffel Symbols
From the two tensors g,, and g** one can define the two functions
1{dg dg dg
T =_| 2~ Jee Ll 7- 1
i 2(6x" + ox? Ox* (7-11)
e = 9" Taps (7-12)

They are symmetric in p and o, and are called the Christoffel symbols of the first
and second kind, respectively. Both Christoffel symbols are not components of
tensors. By starting with the differential transformation law for g,, it is not too
difficult to show that I',,, transforms according to the following relation (see
Problem 7.1):

apa

oxP ox7 0x° Ixf 9%x
4 - U 7-
Fvua Ox'™" Ix* Ox" ofy + g[iY ax” Ox'* dx'® ( 13)

Making use of the transformation law for g*# then leads to the transformation law
of I3, as

Ox'® dx* O0x° ox"® 9%x°
0 -
B o axPox " T ax oxP ox” (7-14)
From Eq. (7-11) we obtain
1 dg
e = grv 2 _
ap 2 g axa (7 15)

This equation can be rewritten in terms of the determinant g of g,, . The rule for
expansion of a determinant leads to the formula

0g/0g,, = A" (7-16)

where A" is the cofactor of the element g,,. From the law for obtaining the
inverse of a determinant, and from the definition of g**, Eq. (7-16) may be written
as

09/0g,, = 99"
and consequently

dg = g¢"* dg,, = —g9,, dg**
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Hence we have

029 = 99" 0:9uy = —99uy 029" (7-17)
The use of Eq. (7-17) enables us to write Eq. (7-15) in the form
I}, = 8,(In /(—g)) (7-18)

Covariant Differentiation

We have seen that the derivatives of an invariant are components of a covariant
vector. This is the only case for a general system of coordinates in which the
derivative of a tensor is a tensor. However, there are expressions involving first
derivatives which are components of a tensor. To see this we proceed as follows.

Let V* and V" be a contravariant vector in two coordinate systems x and
x". Then

Ve = V" (dx*/0x")

Differentiating this equation with respect to x* and using Eq. (7-14) gives (see
Problem 7.2): ‘

ore  (oV? ox" Ox*
LA b A s wld . — Ve -1
ox? (6x’“ v ‘”) ox* 0x’* VoL (7-19)
Hence if we define a covariant derivative of V* by
V. VE=0,V* +T%,V? (7-20)
the above equation can be written as
ox" ox*
VeE=V, V"?
v v, 0x* 0x'*

Therefore V, V* is a mixed tensor of second order.
In the same way one shows that the covariant derivative of a covariant vector
V, is given by:
v.V,=0,V,-T%7, (7-21)
From the above equation one has for the curl of a vector V,:
V V.=V, V,=0,V, -3,V (7-22)

Hence a necessary and sufficient condition that the first covariant derivative of a
covariant vector be symmetric is that the vector be a gradient.

It is easily seen, using the law of covariant differentiation of tensors (see
Problem 7.3), that

V,g"" =0
Vpguv = 0 (7'23)
V,88 =0

Other properties of covariant differentiation can be established (see Problem 7.4).
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Riemann and Ricci Tensors

If we differentiate covariantly the tensor V, V,, given by Eq. (7-21), we obtain
(V,V, =V, V)V, = R"am V; (7-24)
where R’ ; is called the Riemann tensor and is given by
R, =3,T% —8,T% + T&T3, — T4, (7-25)

A generalization of Eq. (7-24) to an arbitrary tensor can be made (see Problem
7.5). One can show that in order that there can exist a coordinate system in which
the first covariant derivatives reduce to ordinary ones at every point in space, it is
necessary and sufficient that the Riemann tensor be zero and that the coordinates
be those in which the metric is constant.
One notices that the Riemann tensor satisfies

Raprs = = Rpays = — Ragsy = Rysu (7-26)

Raﬂyé + Rayé[] + Raéﬂy = 0

Moreover, counting the number of components, one finds that in a four-
dimensional space the Riemann tensor has 20 components.
From the Riemann tensor one can define the Ricci tensor and the Ricci scalar
by
1
v nay \/( _g) (\/( _g)FZv), a (ln \/( _g)), uv - FTA[] Fea (7-27)

R=R*, (7-28)

respectively. Here a comma denotes partial differentiation, f , = 0, f. The Einstein
tensor is then defined by

Guv = Ruv - %guvR (7-29)

The last important tensor constructed from the Riemann tensor is the Weyl
conformal tensor:

Cpauv = Rpauv - %(gpu Rva — Yoy Rua — Gou Rvp + Gov Rup)

- %(gpvgua - gpugva)R (7'30)
It has the special property that
c =0

npv

Furthermore, if the Weyl tensor vanishes everywhere, then the metric is con-
formally flat'¥ that is, there exists a mapping such that g, can be diagonalized,

* Two spaces V and ¥ are called conformal spaces if their metric tensors g,, and g, are
related by §,, = e”g”, where f is a function of the coordinates.
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with + B(x) appearing in the diagonal positions, and where f(x) is some function.
This follows from the fact that the Weyl tensor can be expressed entirely in terms
of the density §,, = g~ '/*g,, and its inverse, and is equal to the Riemann tensor
formed by replacing g,, by §,,» Rapys(Gun) = Capys(9,v). Consequently, the vanish-
ing of the Weyl tensor implies the vanishing of R,;,4(g,,), which in turn implies
that there exists a mapping such that §,, is everywhere diagonal, with + 1 appear-
ing along the diagonal. Only g is arbitrary and +g'/#(x) appears along the dia-
gonalofg,,.

Geodesics

The differential equations of the curves of extremal length are called geodesic
equations. To find their equations we seek the relations which must be satisfied to
give a stationary value to the integral | ds. Hence we have to find the solution of
the variational problem

5des=0

where the Lagrangian L is given by

dx* dx*\ /2
L= (gwadT) (7-31)

Accordingly we have
oL oL dx*
= —_— i - -
6[Lds=] [ax" OX" T+ Sdx/ds) 5(@)] ds

The second term of the integrand may be written as the two terms

d[ oL ., _d[ oL .,
&[a(dxﬂ/ds) ¥ } _ds[a(dx“/ds)} ¥

On integration, the first of these expressions contributes nothing since the varia-
tions are assumed to vanish at the end points of the curve. As expected, the
equation obtained is the usual Langrange equation:

4 oL _OL_, 7-32
dsd(dx*/ds) ox* (7-32)

A simple calculation then gives, using the Lagrangian given by Eq. (7-31),

d2x» , dxt dxf

o Tlegy 4 T (7-33)
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Bianchi Identities

A study of Eq. (7-14) shows that it is always possible to choose a coordinate
system in which all the Christoffel symbols vanish at a point. For, suppose the
Christoffel symbols do not vanish at a point A. One can then carry out the
coordinate transformation

X% =x* =X+ 3 T (A) (X = ) — x7)

where the subscript 4 indicates to the value at the point 4. By Eq. (7-14) one finds
that the Christoffel symbols in the new coordinate system vanish at the point A4.
A coordinate system for which the Christoffel symbols vanish at a point is
called geodesic.!®!
If we choose a geodesic coordinate system at a point A4, then at A4 one has

VRV, =08, 0,15, — 0, 0,5
Consequently, at the point 4 one has:

v, R”am +V, Ruévﬂ + V[] Rt = 0 (7-34)
Since the terms of this equation are components of a tensor, this equation holds
for any coordinate system and at each point. Hence Eq. (7-34) is an identity
throughout the space. It is known as the Bianchi identities.

Multiplication of Eq. (7-34) by g°# §’, gives

g¥(V, Ry + V. R, +V, R )=0
Using the symmetry properties of the Riemann tensor, the last equation becomes:
V(R>—38R)=V G = (7-35)

Equation (7-35) is called the contracted Bianchi identity.
After having developed the mathematical tools to describe general relativity
theory, we now turn to the physical foundations of the theory.

7-2 PRINCIPLE OF EQUIVALENCE

Null Experiments. Eotvos Experiment

One of the most interesting null experiments in physics is due to Eotvos,'® first
performed in 1890 and recently repeated by Dicke.!” The experiment showed, in
great precision, that all bodies fall with the same acceleration. The roots of the

5 It is also possible to transform away the Christoffel symbols along a given curve. See E. Fermi,
Atti Accad. Nazl. Lincei 21, 21 and 51 (1922).

° R. V. E5tvos, Math. Natur. Ber. Ungarn 8, 65 (1890); Beibl. Ann. Physick 15, 688 (1891); Ann.
Physik 59, 354 (1896); R. V. Eotvos, D. Pekar and E. Fekete, Ann. Physik 68, 11 (1922).

7 P. G. Roll, R. Krotkov, and R. H. Dicke, Ann. Phys. (N.Y.) 26, 442 (1964).
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experiment go back to Newton and Galileo, who demonstrated experimentally
that the gravitational acceleration of a body is independent of its composition.

The importance of the Edtvos experiment is in the fact that the null result of
the experiment is a necessary condition for the theory of general relativity to be
valid [®

Eo6tvos employed a static torsion balance, balancing a component of the
Earth’s gravitational pull on a weight against the centrifugal force field of the
Earth acting on the weight. He employed a horizontal torsion beam, 40 cm long,
suspended by a fine wire. From the ends of the torsion beam were suspended, two
masses of different compositions, one lower than the other. A lack of exact propor-
tionality between the inertial and gravitational masses of the two bodies would
then lead to a torque tending to rotate the balance. There appears to be no need
for the one mass to be suspended lower than the other.

The experiment of E6tvds showed, with an accuracy of a few parts in 10°, that
inertial and gravitational masses are equal.!®!

In the experiment performed by Dicke, the gravitational acceleration toward
the Sun of small gold and aluminium weights were compared and found to be
equal with an accuracy of about one part in 10'!. Hence the necessary condition
to be satisfied for the validity of general relativity theory seems to be rather
satisfactorily met.

The question therefore arises as to what extent is this experiment also a
sufficient condition to be satisfied in order that general relativity theory be valid.

It has been emphasized by Dicke that gold and aluminium differ from each
other rather greatly in several important aspects. First, the neutron to proton ratio
is quite different in the two elements, varying from 1.08 in aluminium to 1.50 in
gold. Second, the electrons in aluminium move with nonrelativistic velocities, but
in gold the k-shell electrons have a 15 per cent increase in their masses as a result
of their relativistic velocities. Third, the electromagnetic negative contribution to
the binding energy of the nucleus varies as z2 and represents § per cent of the total
mass of a gold atom, whereas it is negligible in aluminium. Fourth, the virtual pair
field and other fields would be expected to be different in the two atoms. We thus
conclude that the physical aspects of gold and aluminium differ substantially, and
consequently the equality of their accelerations represents an important condition
to be satisfied by any theory of gravitation.

Since the accuracy of the E6tvis experiment is great, the question arises as to
whether it implies that the equivalence principle is very nearly valid. We show
below that this is true in a limited sense; certain aspects of the equivalence prin-
ciple are not supported in the slightest by the E6tvos experiment.

In order to understand the limited conclusions to be drawn from the Edtvos

8 R. H. Dicke, in Relativity, Groups, and Topology, (C. DeWitt et al., Eds), Gordon and Breach,
New York, 1964; S. Weinberg, Gravitation and Cosmology, Wiley, New York, 1973,

9 Infeld has suggested that intertial mass is different from gravitational mass in general relativity
theory and that they are equal only in the lowest approximation. See L. Infeld, Ann. Phys. (N.Y.)
6, 341 (1959).
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experiment, we first consider the significance of the equivalence principle for
relativity.

Strong and Weak Principle of Equivalence

It is convenient to make a distinction between the strong equivalence principle,
upon which Einstein’s general relativity theory is based, and the weak equivalence
principle, supported by the Edtvds experiment.

The strong equivalence principle might be stated as the assumption that in a
freely falling, non-rotating, laboratory the local laws of physics take on some stan-
dard form, including a standard numerical content, independent of the position of the
laboratory in space. It is implicit in this statement that the effects of gradients in
the gravitational field strength are negligibly small, i.e., tidal interaction effects are
negligible.

The weak principle of equivalence says much less, and it states only that the
local gravitational acceleration is substantially independent of the composition and
structure of the matter being accelerated.

The significance of the strong form of the principle of equivalence of general
relativity theory appears to be its requirement that the laws of physics, expressed
in a coordinate system, locally inertial, shall take on some standard form and have
some standard numerical content. As a laboratory, neither rotating nor accelerat-
ing, in gravity-free space provides a particular example of such a coordinate
system, the assumption that physical laws are correctly described in gravity-free
space by the usual Lorentz-invariant formalism implies that for the more general
situation, where gravitation is present, the formalism should reduce locally to this
standard Lorentz invariant form.

The numerical content of the locally observed laws of physics is contained in
the dimensionless physical constants appearing in the formulation of physical laws.
These include the ratios of the masses of elementary particles, the various coupling
constants of the theory, such as the fine structure constant, and the ratios of the
masses of elementary particles to the characteristic fundamental gravitational
mass (hc/G)'/? where h is Plank’s constant, ¢ is the speed of light and G is Newton’s
gravitational constant. Hence one of the assumptions of the strong equivalence
principle is that these dimensionless constants are truly constants, i.e., coordinate
independent.

It is evident that the weak principle of equivalence is supported directly and
strongly by the Edtvos experiment. But does the Edtvos experiment also support
the strong principle of equivalence?

Let us consider the implication of the Edtvos experiment for the constancy of
the dimensionless physical constants, hence for the strong equivalence principle.
This may be discussed by an example. Consider the question of whether the fine
structure constant is really constant, hence independent of position. If we make
the assumptions of energy conservation and mass energy equivalence then the fine
structure constant could not vary appreciably with position.

To see this let us first assume the contrary. Consequently, the internal energy
of the atom is a function of position, since the electrostatic self energy of the
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nucleus is proportional to z(z — 1)a, where z is the atomic number and « is the
fine structure constant.

Let us assume now a closed cycle in which the atom is first slowly lifted, while
in its ground state, from the floor of the laboratory to the ceiling. In the raised
position the atom is taken apart, being broken down either into elementary par-
ticles or into two or more atoms of smaller masses. These fragments are then
gently lowered to the ground floor and reassembled into the original atom. Now it
is easily seen that if the internal energy of the primary atom is a function of height,
but not that of the fragments, the atom has an additional (anomalous) weight
equal to the negative gradient of its internal energy. This is a necessary require-
ment for energy conservation. More generally, if the energies of the fragments are
also variable, but by different amounts, the anomalous forces will be different for
the fragments. It should be remembered that only energy conservation is required
to exhibit these anomalous forces. With the additional assumption that the iner-
tial masses of the atoms and elementary particles are equal to their internal
energies, anomalous gravitational acceleration must appear contrary to the null
result of the Eotvos experiment. The expected anomalous acceleration is equal to
da = —c*Vm/m.

A strong test of the constancy of the fine structure constant is also provided by
the electrostatic contribution to the binding energy of the nucleus. The equality of
the gravitational acceleration toward the Sun of aluminium and gold, to an accur-
acy of one part in 10!, implies that the fine structure constant could vary with
position relative to the Sun by only an extremely small amount. The fractional
gradient of the fine structure constant due to the presence of the Sun would not
exceed 5 x 107 3! per cm, or else the gravitational acceleration of gold relative to
the sun would differ by more than one part in 10!* from that of aluminium. This is
a very severe limit to the constancy of the fine structure constant, for one might
expect that if there was a cosmological effect leading to a variation of the fine
structure constant, the effect of the Sun’s presence would be!!% 111 of the order of
da ~ —a*GM/rc?, where Ja is the change in the fine structure constant due to the
presence of the Sun, and M and r are the mass of and distance to the Sun. If there
were a variation in the fine structure constant as large as that given above, there
would be an anomalous gravitational acceleration 5 x 10° times as large as the
limit set by the Eotvds experiment.!!?

The conclusion from the Edtvds experiment about the constancy of the physi-
cal constants is, accordingly, that all the dimensionless physical constants differing
from unity by no more than a few powers of 10, are constants or are very nearly
constants.!!?

10 R. H. Dicke, Science, N.Y. 129, 621 (1959).

11 1. Landau, in Niels Bohr and the Development of Physics (W. Pauli, Ed.), McGraw-Hill, New
York, 1955.

12 This conclusion depends on the assumption that the inertial mass is equivalent to the energy, and
the assumption of energy conservation. .

13 There are two physical constants which differ from unity by many powers of 10, for which this
argument is without validity. These are the Fermi and the gravitational constants, whose values are,
respectively, about 10”12 and 107 4°,
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Negative Mass

It has been suggested that the gravitational mass of an antiparticle, such as the
positron, might be negative.'* Schiff has shown that an argument based on the
Eotvos experiment and the standard Lorentz invariance can be used to exclude
this possibility!!® The argument is based on the fact that in the virtual photon
field of the nucleus there exist also virtual electron-positron pairs associated with
the vacuum polarization. If the positrons in the pairs field were to tend to fall, up
not down, there would be an anomalous weight for the atom, substantially greater
for large atomic number than small. Because of the null result of the Edtvos
experiment, it is concluded that positrons and other antiparticles fall down, not
up.

In conclusion, not only is the weak principle of equivalence supported directly
and strongly by the Eotvos experiment but, except for the question of the invar-
iance of the gravitational and Fermi interaction constants, the strong principle is
also supported by it.

7-3 PRINCIPLE OF GENERAL COVARIANCE

We have seen in the preceding section that a gravitational field can be considered
locally equivalent to an accelerated frame. This implies that the special theory of
relativity cannot be valid in an extended region where gravitational fields are
present. A curved space-time is needed and all laws of nature should be covariant
under the most general coordinate transformations.

The original formulation of general relativity by Einstein was based on two
principles: (1) the principle of equivalence (discussed in detail in the last section);
and (2) the principle of general covariance.!'®

The principle of general covariance is often stated in one of the following
forms, which are not exactly equivalent:'* 7!

(1) All coordinate systems are equally good for stating the laws of physics,
and they should be treated on the same footing.

(2) The equations of physics should have tensorial forms.

(3) The equations of physics should have the same form in all coordinate
systems.

According to the principle of general covariance, the coordinates become
nothing more than a bookkeeping system to label the events. The principle is a
valuable guide to deducing correct equations,

14 For a discussion on the dynamics of negative mass see H. Bondi, Rev. Mod. Phys. 29, 3 and
423 (1957).

'3 L. I Schiff, Phys. Rev. Letters 1, 254 (1958); Proc. Natl. Acad. Sci. 45, 69 (1959).

¢ A. Einstein, Ann. Physik 49, 769 (1916).

'7 A. Trautman, Lectures on General Relativity, Prentice-Hall, Englewood Cliffs, N.J, 1965.
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It has been pointed out by Kretschmann!!®! that any space-time physical law
can be written in a covariant form and hence the principle of general covariance
has no necessary physical consequences, and Einstein!'® concurred with this view.

In spite of Einstein’s acceptance of Kretschmann’s objection, it appears that
the principle of general covariance was introduced by Einstein as a generalization
of the principle of special relativity'2”! and he often referred to it as the principle of
general relativity. In fact the principle of equivalence (which necessarily leads to
the introduction of a curved space-time), plus the assumption of general covar-
iance, is most of what is needed to generate Einstein’s theory of general relativity.
They lead directly to the idea that gravitation can be explained by means of
Riemannian geometry. This is done in the next section.

7-4 GRAVITATIONAL FIELD EQUATIONS

We have seen in Section 7-1 that the Riemannian geometry is characterized by a
geometrical metric, ie., a symmetric, tensor g,, from which one can construct
other quantities. General relativity theory identifies this tensor as the gravitational
potential. Hence in general relativity there are ten components to the gravitational
potential, as compared with the single potential function in the Newtonian theory
of gravitation.

Einstein’s Field Equations

In trying to arrive at the desired gravitational field equations that the metric
tensor has to satisfy, we are guided by the requirement that, in an appropriate
limit, the theory should be reduced to the Newtonian gravitational theory. In the
latter theory, the gravitational potential ¢ is determined by the Poisson equation:

V3¢ = 4nGp (7-36)

where G (= 6.67 x 1078 cm® gm ™" sec™2) is the Newton gravitational constant
and p is the mass density of matter. Hence g,, should satisfy a second order
differential equation, and it should also be related to the energy-momentum
tensor T,, linearly. Such equations are!?!!

R, — %g,”R =xT, (7-37)

uv

where x is some constant to be determined. But the contracted Bianchi identities,

§
18 E, Kretschmann, Ann. Physik §3, 575 (1917).

19 A. Einstein, Ann. Physik 55, 241 (1918).

20 The principle of special relativity states that the laws of physics are valid in all ineftial frames
of references.

21 1n cosmology theory, one sometimes adds an additional term, Ag,,, to the left;Hand side of Eq.

{

(7-37). The constant 4 is known as a cosmological constant. w

—
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Eq. (7-35), show that the covariant divergence of the left-hand side of Eq. (7-37)
vanishes. Hence

V,T,=0 (7-38)

which expresses the covariant conservation of energy and momentum. The con-
stant x can be determined by going to the limit of weak gravitational field (see
Problem 7.10). Its value is k = 8nG/c*. The constant x is known as Einstein’s
gravitational constant. ’

Deduction of Einstein’s Equations from Variational Principle

We start with the action integral

1= /(~g)(Le — 2¢Ls) dx (7-39)

and demand its variation to be zero. Here L; and Ly are the Lagrangians for the
gravitational and other fields, respectively. We take L; = R, where R is the Ricci
scalar, R = R, g"".

The first part of the integral (7-39) gives

5 [ V(=9)R d*x = [ J(~g)g" 3R,, d*x + [ R,, 8(/(~g)g™) d* (7-40)
To find 6R,, we note that in a geodesic coordinate system one has'??
SR, = V,(0T=,) — V,(6T%,)
But the latter is a tensorial equation. Hence it is valid in all coordinate systems.

Consequently, the first integral on the right-hand side of Eq. (7-40) can be written
as

[ V(=g)g oR,, d*x = [ (= g)Vulg™ 6T%, — g OT%) d*x
and hence (by Problem 7.7) is equal to
[ ad(=g)g™ o3, — g oT%,)] d*x
This integral, however, vanishes since by Gauss’ theorem it is equal to a surface
integral which is equal to zero in consequence of the vanishing of the variations on

the boundary.
The second integral on the right-hand side of Eq. (7-40) gives, by Eq. (7-17),

f R,, 8(/(—g)g™) d*x = f J(—9)(R,, — 39,,R) 6g" d*x (7-41)

2% A. Palatini, Rend. circ. mat. Palermo 43, 203 (1919).
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The second part of the integral (7-39) leads to (see Problem 7.11)

8 [ J(=9)Le d*x = =} [ J(=9)T,. 3¢ d*x (7-42)
where T,, is the energy-momentum tensor and is given by

-2 a(\/(_g)LF)) a(\/(_g)LF)]
T, = — 7-43

el ) S 74
and a comma denotes partial differentiation, f , = d, f. Combining Egs. (7-39),

(7-41) and (7-42) then leads to the field equations (7-37):
Ruv - %guvR = KT;‘v

Maxwell’s Equations in Curved Space
The Lagrangian density for the electromagnetic field is given by
£ = —(1/167)F,, F** 4 (1/c)J*A, + L, (7-44)
The field F,, is related to the potential 4, by
F,=0d,4,- 6“Av (7-45)

where J® is the four-current density, and €, is the Lagrangian density of the
charged particles.
Maxwell’s equations are then given by

a,F* = (4n/c)J* (7-46)
0,F,3+ 04F,, +0,Fp,=0 (7-47)
It is easily seen that generalizations of these equations to curved space are

achieved by the following equations:
V,F* = (4n/c)J* (7-48)
F,=V,A, -V 4, (7-49)

for Egs. (7-46) and (7-45), whereas

V[~ g) " 1F,,] = 0 (7-50)

generalizes Eq. (7-47). It will be noted that Egs. (7-49) and (7-50) are identical to
Eqs. (7-45) and (7-47), respectively. In Eq. (7-50) &*#" is the totally skew-
symmetric tensor density of weight + 1 with values +1 and — 1, depending on
whether afyd is an even or an odd permutation of 0123 and zero otherwise.
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Stationary and Static Gravitational Fields
A gravitational field is called stationary if it admits a time-like Killing vector field
&t e,

V.8, +V, 5, =0 (7-51)

where ¢, = g,,&" and &2 = &, &* > 0. Equation (7-51) is called Killing’s equation,
and can be written in the equivalent form

gégaﬂ =¢° aagaﬂ + 9po 0,8° + Yo a[] =0 (7'52)

If a space possesses a time-like Killing vector field &#, then there always exists a
coordinate system in which & = (1, 0, 0, 0), and therefore

009ap = 0,9ap =0 (7-53)

by Eq. (7-52), where t = x° is the time-like coordinate.
A special case of a stationary space is one for which the trajectories of the
vector £* are orthogonal to a family of hypersurfaces. Such a space is called static.
In a static space there exists a coordinate system, which is said to be adapted
to the Killing vector field &%, in which

atguv = 0! Jox = 0 (7-54)

where k =1, 2, 3.

For suppose &, = x 0,0.Then ¢, 0,&,, =0, or §,V, &, = 0, where the square
bracket indicates an antisymmetrization of the indices (for example T;,;,; = (1/3!)
(Typy + Tpya + Top — Tpoy — Ty — Tope))- Using Killing’s equation (7-51), the
latter equation can be written as

&Vl + 8V, 8 + 8,V G =0
Multiplying now this equation by &’, putting 2 = &, &7, and again using Killing’s
equation (7-51), gives
(EVp — &g V)2 + 83V, 8y — V&) =0
Hence one obtains the equation

0.(£5/C%) = 35(2./E%)

whose solution is &, = ¢2 3, g, and therefore y = 2.

If we choose now a coordinate system in which &* = 8%, then the last equation
giVes g0 = Gay 0 =g,y ¥ =&, =% 0,0. But E2 =g, & =g,, 85 68 =goo-
Hence we obtain

920 = oo aaa (7'55)

For a =0, Eq. (7-55) gives d,0 = 1, and consequently ¢ = x° + f(x!, x2, x?),
where f is an arbitrary function of the coordinates x*.



ELEMENTS OF GENERAL RELATIVITY THEORY 139

If we now define the new coordinate system x'® = x° + f(x’*), x'¥ = x/, then
the components of the metric tensor gy, in the new coordinate system are given by

, oxP ox
Jox = (3):7'0(—3?“]’” = gox — Joo OxO

and therefore
gox =0

by Eq. (7-55). This shows Egs. (7-54) to be valid for a static field.
In the next section we find solutions of the Einstein field equations some of
which will be static.

7-5 SOLUTIONS OF EINSTEIN’S FIELD EQUATIONS

In spite of the nonlinearity of the Einstein field equations, there are numerous
exact solutions to these equations. Moreover, there are other solutions which are
not exact but approximate. Detailed exact solutions will be given in Chapter 11
using special methods. Here we give some of the known elementary ones.

Schwarzschild Solution

The simplest of all exact solutions to Einstein’s field equations is that of
Schwarzschild.!?® The solution is spherical symmetric and static. Such a field can
be produced by a spherically symmetric distribution and motion of matter. It
follows that the requirement of spherical symmetry alone is sufficient to yield a
static solution.

The spherical symmetry of the metric means that the expression for the inter-
val ds = (g,, dx* dx”)'/* must be the same for all points located at the same
distance from the centre. In flat space their distance is equal to the radius vector,
and the metric is given by (c is taken as equal to 1):

ds? = dr? — dr? — r3(d6? + sin? 0 d¢?) (7-56)

In a non-Euclidean space, such as the one we have in the presence of a gravita-
tional field, there is no quantity which has all the properties of the flat space radius
vector, such as that it is equal both to the distance from the centre and to the
length of the circumference divided by 2n. Therefore, the choice of a radius vector
is here arbitrary.

When a mass with spherical symmetry is introduced at the origin, the flat
space line element (7-56) must be modified but in a way that retains spherical
symmetry. The most general spherically symmetric expression for ds? is

ds? = a(r, t) d* + b(r, t) dr? + c(r, t) dr dt + d(r, £)(d6? + sin? @ d¢?)
(7-57)
23 K. Schwarzschild, S.B. Preuss. Akad. Wiss., 189 (1916).
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Because of the arbitrariness in the choice of the coordinate system in general
relativity theory, we can perform a coordinate transformation which does not
destroy the spherical symmetry of ds. Hence we can choose new coordinates r’
and ¢ given by some two functions r' =r'(r, t) and ¢ = ¢(r, ¢).

Making use of these transformations, we can choose the new coordinates so
that the coefficient cfr, t) of the mixed term dr dt vanishes and the coefficient
d(r, t) of the angular part to be —r'% in the metric (7-57). The latter condition
implies that the radius vector is now defined in such a way that the circumference
of a circle whose centre is at the origin of the coordinates is equal to 2zr. It is
convenient to express the functions a(r, t) and b(r, t) in exponential forms, e* and
—e’, respectively, where v and A are functions of the new coordinates r' and ¢'.
Consequently, the line element (7-57) will have the form

ds? =e* dt? — e* dr? — r}(d0? + sin? 0 d¢?) (7-58)

where we have dropped the primes from the new coordinates ' and ¢/, and the
speed of light ¢ is taken as equal to 1.

We now denote the coordinates ¢, r, 8, ¢ by x°, x!, x%, x>, respectively. Hence
the nonvanishing components of the covariant metric tensor are given by:

e\‘
0
—et
guv = _r2 (7'593)
0
—r2sin? 0
whereas those of the contravariant metric tensor are:
e -V
0
—e -4
g = -2 . (7-59b)
0
—r2sin7 %40

To find out the differential equations that the functions v and 4 have to satisfy,
according to Einstein’s equations, we first need to calculate the Christoffel sym-
bols associated with the metric (7-59). The nonvanishing components are:

Too=¥2T0=v/2, T =(12)e*™

Tgo=(v/2)e 4 Tlo=42 T} =42 (7-60)
[j,=—-re ATi3=—rsin20e 4 T2,=1r
I'{;=—sinfcos 0, T};=1/r,T3;=cotf

where dots and primes denote differentiation with respect to ¢ and r, respectively.
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With these Christoffel symbols, we compute the following expressions for the
nonvanishing components of the Einstein tensor G * = R* — 4 §* R:

{1 X 1
6=~ =)+
GOI — _e-l% (7-61)
r
v 1 1
G11 = —¢ "(r‘l‘?) +F

2

v12 v = A'/ V,j., N 1 - j. 12 lv
2 r 2 ’

1 1
G2=Gy = — 2e“l(v + =+

All other components vanish identically.

The gravitational field equations can now be integrated exactly for the spheri-
cal symmetric field in vacuum, i.e., outside the masses producing the field. Setting
Egs. (7-61) equal to zero leads to the independent equations:

| 1
e"(‘;+r—2) _F=0 (7'623)

A1 1
C_"(?—ﬁ) +ﬁ=0 (7-62b)
A=0 (7-62¢)

From Eq. (7-62a) and (7-62b) we find v/ + A’ = 0, so that v + A = f(t), where f(t) is
a function of ¢ only. If we perform now the coordinate transformation x° = h(x'°),
x* = x'*, then gyo = h*goo - Such a transformation am(M to the func-
tion v an arbitrary function of time, while leaving unaff e other components
of the metric. Hence we can choose the function h so that v+ A =0. Con-
sequently, we see, by Eq. (7-62c), that both vand A are time-independent. In other
words the spherically symmetric gravitational field in vacuum is automatically

static. -
Equations (7-62b) can now be integrated. They give:

e t=¢"=1- K

’

where K is an integration constant. We see that for r = c0, e * =¢” = 1, i.e,, far

from the gravitational bodies, the metric reduces to that of the flat space (7-56).

The constant K can easily be determined from the requirement that Newton’s law

of motion be obtained at large distances from the central mass. From the geodesic

equation it follows that the radial acceleration of a small test mass at rest with
respect to the central mass is (see Problem 7.10):

1
—T'5o = —2(1—K)K—>——Ii

r)r? 2r?
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Comparing this expression with the Newtonian value —Gm/r? gives K = 2Gm,
where m is the central mass and G is the Newton constant.[24
We therefore obtain for the spherically symmetric metric the form:

1 —2Gm/r
G = —(1 = 2Gm/r)~! 0 (7-63)
0 —r?
—r2?sin? @

It is known as the Schwarzschild solution and describes the most general spher-
ically symmetric solution to the Einstein field equations in a region of space where
the energy-momentum tensor 7" vanishes. Although g,, goes to the flat space
metric when r goes to infinity, it was not necessary to require this asymptotic
behavior to obtain the solution. Finally, we remark that all spherically symmetric
solutions of the Einstein field equations in vacuum which satisfy the boundary
conditions at infinity are equivalent to the Schwarzschild field, ie., their time-
dependence can be eliminated by a suitable coordinate transformation. This result
is due to Birkhoff.?*

Finally, it is convenient to introduce Cartesian coordinates by means of the
coordinate transformation

x! =rsin 0 cos ¢
x% =rsin 0 sin ¢
x3=rcos 6

In terms of these coordinates, the Schwarzschild metric (7-63) will then have the
form

- 2Gm
Joo = —
gdor =0 (7-63a)
2Gm/r xX'x°
Grs = -9

T 1= 2Gmir 7%

Maximal Extension of the Schwarzschild Metric

The surface for which r = 2Gm in the Schwarzschild metric (7-63) is often called
the Schwarzschild singularity. At this surface the component of the metric g,,
diverges. This singularity, however, is different from that at r =0 of the same

24 The constant 2Gm, or 2Gm/c? in units where ¢ is not taken as equal to 1, is often called the
Schwarzschild radius of the mass m. For example, the Schwarzschild radius for the Sun is 1.47 km,
that for the Earth is 4.9 mm, and that for an electron is 13.2 x 107 %% cm.

23 G. Birkhoff, Relativity and Modern Physics, Harvard University Press, Cambridge, Mass., 1923.
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metric. It has been shown by Kasner,2® [emaitre,'>” Einstein and Rosen, 28!
Robertson,'??! Synge,[3% Ehlers,!*!! Finkelstein,'®? and Fronsdal'®¥ that the sin-
gularity at r = 2Gm is not an intrinsic feature of the Schwarschild metric but
rather a property of the coordinate system used to express the metric. An indica-
tion of this effect is that the determinant of the metric, g = —r* sin? 6, is regular at
r =2Gm. So is the scalar R,,; R*" = 48G*m?/r®. It follows that the topology of
the space-time manifold of the Schwarzschild metric is not equivalent to that of
the Euclidean four-dimensional space.

An exhibition of these properties was given by Kruskal’®**! who presented a
particularly simple transformation of the Schwarzschild metric into new coordin-
ates, whereby the singularity at r = 2Gm is removed and the maximal singularity-
free extension is clearly exhibited. A manifold with a metric geometry imposed
upon it is said to be maximal if every geodesic line emanating from an arbitrary
point of the manifold has an infinite length in both directions, or terminates on a
physical singularity (that cannot be removed by a suitable coordinate transforma-
tion). If all geodesics emanating from a point have infinite length in both direc-
tions, the manifold is said to be complete. It thus follows that a manifold that is
maximal but not complete possesses singular points. The Kruskal manifold is
maximal but not complete.

Kruskal introduced a new spherically symmetric coordinate system in which
radial light rays everywhere have the slope dx'/dx® = + 1. The metric will then
have the form

f2

Guv = —f? (7-64)

0 —r?sin? 0

where x° = v, x! = u, x? = 0, and x> = ¢. By identifying Eqs. (7-63) and (7-64),
and requiring the function f to depend on r alone and to remain finite and nonzero
for v = u = 0, one finds the following essentially unique equations of transforma-
tion between the exterior of the “spherical singularity”, r > 2Gm, and the qua-
drant u > |v| in the plane of the new variables:

v = [(r/2Gm) — 1]'/? exp (r/4Gm) sinh (t/4Gm)

u = [(r/2Gm) — 1]'/* exp (r/4Gm) cosh (t/4Gm) (7-65)

26 E. Kasner, Am. J. Math. 43, 130 (1921).

27 G. Lemaitre, Ann. Soc. Sci. Bruxelles A53, 51 (1933).

28 A, Einstein and N. Rosen, Phys. Rev. 48, 73 (1935).

2% H. P. Robertson, lecture in Toronto, 1939 (unpublished), cited by J. L. Synge.
30 3. L. Synge, Proc. Roy. Irish Acad. A53, 83 (1950).

31 J, Ehlers, thesis, Hamburg, 1957 (unpublished).

32 D. Finkelstein, Phys. Rev. 110, 965 (1958).

33 C. Fronsdal, Phys. Rev. 116, 778 (1959).

34 M. D. Kruskal, Phys. Rev. 119, 1743 (1960).
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The inverse transformation is given by

[(r/2Gm) — 1] exp (r/2Gm) = u? ~ 2

t/AGm = arctanh (v/u) (7-66)
and the function f'is defined by
f2=(32Gm*/r) exp (—r/2G)
= a transcendental function of (4% — v?) (7-67)

The new coordinates give an analytic extension, K, of the limited region of
space-time, S, which is described without singularity by the Schwarzschild coor-
dinates with r > 2Gm. The metric in the extended region joins on smoothly, and
without singularity, to the metric at the boundary of the region S at r = 2Gm. The
extended region K, moreover, is the maximal possible singularity-free extension of
the region S. This may be seen by direct examination of the geodesics; every
geodesic, followed in whichever direction, either runs into the “barrier ” of intrin-
sic singularities at r = 0 (v* — u? = 1), or is continuable infinitely.

The maximal extension K has a non-Euclidean topology (see Fig. 7.1). Tt
therefore belongs to the class of topologies considered by Einstein and Rosen,
Wheeler,>®! and Misner and Wheeler.3® It presents a “bridge” between two
otherwise Euclidean spaces. It may also be interpreted as describing the “throat of
a wormhole” connecting two distant regions in one Euclidean space (when the

Z —\
; 77— 17 —X
11— N R W W N —
yA frand VA i ] ] — =X \ \ AN

e y A AR S S MR W W WA WA

Z Z 7 / 7 T i 1 \ \ \ N\ AN

(b)

Figure 7.1 Two interpretations of the three-dimensional “ maximally extended Schwarzschild metric”
at the time t = 0. (a) A connectjon or bridge in the sense of Einstein and Rosen between rwo otherwise
Euclidean spaces. (b) A wormhole in the sense of Wheeler connecting two regions in one Euclidean
space, in the limiting case where these regions are extremely far apart compared to the dimensions of
the throat of the wormhole.

3% J. A. Wheeler, Phys. Rev. 97, 511 (1955).
36 C. W. Misner and J. A. Wheeler, Ann. Phys. (N.Y) 2, 525 (1957).
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r

Figure 7.2 The Kruskal diagram. Corresponding
regions of the (r, t) and (u, v) planes. In the latter,
curves of constant r are hyperbolas asymptotic to the
lines r = 2Gm, while ¢ is constant on straight lines
through the origin. The exterior of the singular sphere,
r > 2Gm, corresponds to the region |v| <u (the
hatched areas). The whole line r = 2Gm in the (r, t)
plane corresponds to the origin u = v = 0, while two
one-dimensional families of ideal limit points with
r—=2Gmand t - + oo correspond to the remaining
boundary points u = |v| > 0.

In the (u, v) plane the metric is entirely regular
not only in the hatched area but in the entire area
between the two branches of the hyperbola r = 0.
This comprises two images of the exterior of the
spherical singularity and two of its interior. (The
expressions in Egs. (7-65) and (7-66) are valid in the
right-hand quadrant u > |v|. To obtain formulae
valid in the left-hand quadrant replace u and v by
their negatives everywhere. To obtain formulae valid
in the upper or lower quadrant replace u by +v, vby
+u, and r/2Gm — 1 by its negative everywhere. Note
that the formula for r and the final formula for ¢
remain invariant under these substitutions). The
purely radial (d6 = d¢ = 0) null geodesics are lines
inclined at 45°. The points with r = 2Gm have no
local topological distinction, but rather a global one:
if a test particle crosses r = 2Gm into the interior
(where r is time-like and t space-like), it can never get
back out but must inevitably hit the irremovable
singularity r = 0.
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separation of the wormhole mouths is very large compared to the circumference of
the throat). The length of the wormhole connection may, of course, be exceedingly
short compared to the distance between the wormhole mouths in the approximat-
ing Euclidean space. However, (see Fig. 7.2), it is impossible to send a signal
through the throat in such a way as to contradict the principle of causality.

Gravitational Field of a Point Electric Charge

The Schwarzschild metric is a solution of the empty-space Einstein field equa-
tions. The field due to a point charge is a solution of the Einstein field equations
with a non-vanishing energy-momentum tensor which arises from the electro-
magnetic field. Hence we must use the field equations (7-37) with (see Problem
7.13)

11

1, = y Zg,wFa,, F*# —F,F° (7-68)

along with Maxwell’s equations (7-48) to (7-50). The metric obtained, which was
first given by Reissner,'*” is given by

1 — 2Gmjr + Ge*/r?
—(1 = 2Gm/r + Ge*/r¥)~!
Guv = 0 (7-69)

The electromagnetic potential is then given by

A, = ("’, 0) (7-70)

r

Solution with Rotational Symmetry

Weyl*# and Levi-Civita'*® found static solutions with rotational, but not spheri-
cal, symmetry. A gravitational field is rotationally symmetric if it can be trans-
formed so that there exists a Killing vector of the form &* = (0, x2, —x!, 0). Ifthe
field is also static then it can be transformed into the form

ds? = e dt? — e??" M(dp? + dz%) — p? e ¥ d¢p? (7-71)

37 H. Reissner, Ann. Physik 50, 106 (1916).

38 H. Weyl, Ann. Physik 54, 117 (1917); 59, 185 (1919); G. Beck and H. Weyl, Marh. Z. 13,
142 (1921).

39 T. Levi-Civita, Rend. Acc. Lincei, Several Notes (1918-1919).
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where p, z, and ¢ can be interpreted as cylindrical polar coordinates and ¢ as the
time. In empty space the Einstein field equations then yield

oy 1y 0% _

5t o3t o (7-72a)
W\ (oY)?
ST
0 o
az 2 alﬁ af (7-72¢)

Equation (7-72a) is the Laplace equation in cylindrical polar coordinates for a
function with rotational symmetry. If one chooses a suitable solution to
Eq. (7-72a) for ¥, one can then solve Egs. (7-72b) and (7-72¢) for 7, since these
equations are compatible on the basis of Eq. (7-72a).

It is convenient to introduce ellipsoidal coordinates A, u given by
A=(ry+ry)2mp= (r1 —ry)/2m, whereri = p? + (z + m)%,rl = p? + (z — m)%,
so that A =21, —1 <y < +1. If we take the new coordinates as independent
variables, the field equations (7-72a}-(7-72c) are replaced by

(% [(12 )gﬂ s [(1 - uZ)g—‘ﬂ ~0 (7-73a)

%: ;;_’:j 2{1(1 1)(‘2‘0 — A1 - ul)(g‘ﬁ)z — 2u(A? - 1) g‘ﬁ Z‘Z;
(7-73b)

21 = ;zz__lz{u(i 1)(%) —u(l - u’)(g—'p)z + 241 — p*) g—f g—w}
g g g l(t7-73c)

Equations (7-73) were solved by Erez and Rosen!*®! by separating variables. Thus,
if we write ¥ = A(4)M(u), we obtain the equations

d[ ., .dA -

d dM
Qg™ _
dll[( ) d#}+aM 0

where a is a separation constant. To get a well-behaved solution for M we take
a=1I(l+1), where 1=0, 1, 2, .... The solution of Eq. (7-73a), which is well-
behaved at infinity, 1s then given by

Y= Pl(/‘)Ql('l) (7-74)

40 G. Erez and N. Rosen, Bull. Res. Counc. Israel 8F, 47 (1959).
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where P(y) is the Legendre polynomial and Q,(4) is the second Legendre function.
In particular one has
1, A-1
Vo=s5In 71
which gives the Schwarzschild solution if one goes from 4, p back to r, 6.

The general solution of Eq. (7-73a) is a linear combination of the solutions
(7-74). For example, a solution of the form

v =y, + qy (7'75)

where | # 0 and g, is an arbitrary constant, can be considered as a generalization
of the Schwarzschild solution describing the gravitational field of a particle which
possesses a mass-multipole of order [ in addition to its mass.

Particle with Quadrupole Moment

The simplest case, which is nontrivial from the physical point of view, is that for
which / = 2. One finds in this case (dropping the subscript from g,):

1 A—-1 3
lﬂ—2{ [1 +4q(3,l2 - 1)(3p? - 1)} In m+§qi(3u2 - 1)

9 . A-1 A-1
v=-"-¢q — 1042 + 1) In? = + (364% -
7= a4 {(9,1 04* + 1) In 1+1+( 28,1)1n/1+1
9 A-1
2 _ 4 2 _ 2
+ 364 16}p +{32 (—54*+ 64> —1)In Tl

3 9 52 A—1
—20A% + == S
[qi+32 ( Ol+3l)}lni+1+3q
9 , 2, 32 ., (1 1 At -1
+32q( 204 +3)}u+ 2q +q+ 12_#

A—1 1 3 —
F(A* -2+ 1) In? — + { q*(94% — 154) — ‘qi} In A-l1

* 64 i+1 71164 2 i+l

9 , 3
16q(1 )+3q

The constant of integration in y has been chosen so that y — 0 as 4 — oo, ie., the
space is Euclidean at infinity.

To study the behaviour of the solution at large distances from the origin, we
note that the line element (7-71) is given in terms of the variables A, u by

T
AP—1 1—p?
—m?e (A2 — 1)(1 — p?)dp?  (7-71a)

ds? = e® dt? — m? e~ (32 — 2)(
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If we now carry out the transformation 4 = (r/m) — 1, 4 = cos 8, we obtain

m? sin? 0

ds? =e® di* — ezy—z“’{(l + ) dr? + (r* — 2mr + m? sin? 6) d6?

r? —2mr
—e (2 — 2mr) sin® 0 dp?  (7-71b)

Denoting the coordinates t, r, 8, ¢ by x°, x!, x?, x>, and expanding in inverse
powers of r, one finds that for large values of r,

0

r3

P,(cos 0) — 9?4"' P,(cos )

goo=1+2{“m—
r

9 Om? 1
t s P,(cos ) + p

[— %Qm3P2(cos 6)
+07(Paleos 0P| + .

where we have introduced the quadrupole moment Q given by g = 15Q/2m3. The
other components of the metric tensor can be similarly expanded. For example!*!]

2 2 .
g11=—1—7m— ? 4+%q2—2(q+q2)sm20
3 3 .
. 8—Eq+%q2— —8q+4q2 sin? 0| + -
r 3 5 5

Cylindrical Gravitational Waves

Einstein’s gravitational field equations have some solutions which describe wave
phenomenae. Exact solutions which describe gravitational waves were first given
by Einstein and Rosen!*?! These solutions describe cylindrical waves. However,
spherical and plane waves were also found. In the following we deal with some
special cases of cylindrical gravitational waves.'*?!

4! In the more general case given by Eq. (7-75), if one expands the Legendre function in inverse
powers of the argument

_ b, 1

1
Q) =iyt b=g[ (1-x)dx

=3 .
one finds that

Goo =1 — 2['f + 2 pcos )+ J
r r

for large values of r. Here we introduced the multiple-moment Q, by the relation Q, = —g,b,m'**.
We see that the first terms in the expansion of g,, correspond to the Newtonian potential of a mass
plus a multiple of order I. To get the other components of the metric tensor one has to integrate Eqs.
(7-73b) and (7-73c) for y. The calculation gets progressively more tedious as [ increases.

42 A. Einstein and N. Rosen, J. Franklin Inst. 223, 43 (1937).

43 N. Rosen, Bull. Res. Counc. Israel 3, 328 (1954).
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To discuss cylindrical waves one modifies the static, axial-symmetric, gravita-
tional field of Weyl and Levi-Civita discussed above. What we do is essentially to
interchange the roles of z and ¢ in the line element (7-71). Thus, we take for the line
element, instead of Eq. (7-71),

ds? = e?~2(de? — dp?) — e Wp? dp? — e dz2. (7-76)
The Einstein equations then give
%Jr;g\ﬁ_%it‘zﬁ:o (7-77a)
sl e
%= 2p glﬁ % (7-77¢)

Let us consider periodic solutions of the wave equation (7-77a) representing
monochromatic waves, i.e., waves having a sinusoidal dependence on t. The solu-
tions of this type are of the form

Y = AJo(wp) cos (wt + a) + BNy(wp) cos (wt + B) (7-78)

where J, and N, are Bessel functions of the first and second kind, respectively, of
order zero,"** and the frequency w and the other constants 4, B, « and B are

arbitrary.
As a particular case, let us take a standing wave described by the solution
Y = AJy(wp) cos wt. (7-79a)
Substituting into Egs. (7-77b) and (7-77¢) we get
0 .
% = A20?p{[Jo(wp)]? cos? wt + [Jo(wp)]? sin? wt}
oy - , .
i — A*w?pJo(wp)Js(wp) sin 2wt

Integrating these equations we get
y =L A42wpJ o(wp)Jo(wp) cos 2wt
+ 34207 p*{[Jolwp)]* — Jolwp)swp)} (7-79b)

Hence both y and y are periodic functions of ¢.

A solution of this form, free from singularities, would be suitable to describing
a situation in which standing waves are set up by reflection at the surface of a large
sphere with centre at the origin. If in Egs. (7-79) we replace J,(wp) by No(wp) we
obtain a solution with a singularity at the origin. This might be interpreted as

4% The Bessel functions of the second kind are the same as those denoted by Y, by G. N. Watson,
A Treatise on the Theory of Bessel Functions, Cambridge, 1966.
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describing a standing cylindrical gravitational wave with matter present along the
z-axis.

Since, for large values of p, the asymptotic expansions of the Bessel functions
are given by

Jo(wp) =~ (2/mwp)*'? cos (wp - Z)

No(wp) = (2/nwp)'’? sin (wp - Z)

we obtain an outgoing wave if we take
Y = AJy(wp) cos wt + ANy(wp) sin wt (7-80a)

since the asymptotic expansion then has the form
T
¥ ~ A(2/rwp)'’? cos (wp — ot — 4).

Substituting the expression (7-80a) into Egs. (7-77b) and (7-77¢) and carrying out
the integration, one obtains

7 = 3 A4%wp{Jo(wp)o(@p) + No(wp)No(wp)
+ wp[(Jo(wp))® + (Jo(wp))? + (Nolwp))* + (No(wp))’]
+ [Jolwp)Jo(@p) — Nolwp)No(wp)] cos 2wt
+ [Jolwp)No(wp) + No(wp)o(wp)] sin 2wt} — (2/n)A%wt. (7-80b)

It should be pointed out that in the present case the solution for y contains an
aperiodic term in ¢. The continuous transfer of gravitational energy by such a
wave brings about a permanent change in the metric tensor. However, a wave of
this kind would have to be excluded on physical grounds; since the wave carries
away energy from the matter located along the z-axis, there must be a change in
the motion of the latter in the course of time in consequence of which the solution
for ¥ cannot remain periodic in t.

7-6 EXPERIMENTAL TESTS OF GENERAL RELATIVITY

Up to a few years ago, general relativity was verified by three tests: the red shift,
the deflection of light, and the planetary orbit effect on the planets. The first two
tests could also be explained, in fact, without the use of the Einstein field
equations.!**! However, this picture has been changed recently.

5 L. L Schiff, Am. J. Phys. 28, 340 (1960).
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Gravitational Red Shift

Consider the clocks at rest at two points 1 and 2. The rate of change of times at
these points are then given by ds(1) = \/(goo(1)) dt and ds(2) = \/(goo(2)) dt. The
relation between the rates of similar clocks in a gravitational field is therefore
given by (goo(2)/goo(1))*/. The frequency of an atom, v,, located at point 1, when
seen by an observer at point 2 is, hence, given by

V= "0(900(1)/900(2))1/2 (7-81)

For a gravitational field like the Schwarzschild field, one therefore obtains for the
frequency shift per unit frequency:

AV=X:192-Gm(1—1) (7-81a)

Vo Vo

to first order in Gmy/r. If we take r, to be the observed radius of the Sun and r, the
radius of the Earth’s orbit (thus neglecting completely the Earth’s gravitational
field), then Av/vy = —2.12 x 10~°. This frequency shift is usually referred to as
the gravitational red shift.

The gravitational red shift was tested for the Sun and for white dwarfs,'*®! and
it was suggested that it be tested by atomic clocks.[*” However, the red shift was
also observed directly using the Mdssbauer effect by Pound and Rebka,'*® and by
Cranshaw, Schiffer, and Whitehead.!**! The latter employed Fe’” and a total
height difference of 12.5 metres. A red shift 0.96 + 0.45 times the predicted value
was observed by them. Pound and Rebka’s result is more precise. They obtained a
red shift 1.05 + 0.10 times the predicted value.

Effects on Planetary Motion

We assume that test particles move along geodesics in the gravitational field (see
next section), and that planets are small masses as compared with the mass of the
Sun, thus behaving like test particles. Consequently, to find the equation of
motion of a planet moving in the gravitational field of the Sun one has to write the
geodesic equation in the Schwarzschild field. In fact one does not need the exact
solution (7-63a) but its first approximation,

goo = 1 - 2Gm/r
gor =0 (7-82)
g,e = —0,, — 2Gmx"x5/r?

46 B. Bertotti, D. Brill, and R. Krotkov, Experiments on gravitation, in Gravitation: An Introduc-
tion to Current Research (L. Witten, Ed.), Wiley, New York, 1962.

47 S. F. Singer, Phys. Rev. 104, 11 (1956); C. Moller, Nuovo Cim. Suppl. 6, 381, (1957).

48 R. V. Pound and G. A. Rabka, Jr,, Phys. Rev. Letters, 4, 337 (1960).

45 T. F. Cranshaw, S. P. Schiffer, and A. B. Whitehead, Phys. Rev. Letters 4, 163 (1960).
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Using the approximate metric (7-82) in the geodesic equation (7-33) gives (see
Problem 7.15)

X—GmV1=Gm
r

1 1.1 3
2(x*)V=—2Gm-V - — 2(5( : Vl)x + < (x - x)*x
r ror r r
(7-83)

where we have used three-dimensional notation and a dot denotes differentiation
with respect to t. Multiplying Eq. (7-83), vectorially, by x gives

XXX= —ZGm(X-Vl)(x X X)
r

thus leading to the first integral
X X X = J e—ZGm/r

where J is a constant vector, the angular momentum per mass unit. Hence the
radius vector x moves in a plane perpendicular to the vector J. Introducing in this
plane polar coordinates r, ¢ to describe the motion of the planet, the equation of
motion (7-83), consequently, decomposes into

Gm _ Gm

- r¢2 + r—z 2 T (7-843)

{3#2 — 222 +2 G"'}

rigp =J e 20mr (7-84b)

where J is the magnitude of the vector J.

Introducing the new variable u = 1/r one can rewrite Eqgs. (7-84) in terms of
u():

G
u”+u—ﬁ=Gm(—u'2+2u2+23—Z'u) (7-85)

Here a prime denotes a derivation with respect to the angle ¢.

Let us try a solution of the form

u=b(1 + & cos ag)

Here ¢ is the eccentricity and « is some parameter to be determined and whose
value in the usual nonrelativistic mechanics is unity.!*°! The other constant b is
related to J in the nonrelativistic mechanics by Gm/J? = b. Using the above
solution in Eq. (7-85) and equating coefficients of cos a¢ gives

a?=1-2Gm(2b + Gm/J?)

Substituting for Gm/J? its nonrelativistic value b then gives a? = 1 — 6Gmb, or, to
a first approximation in Gm,

o=1—3Gmb

3% H. Goldstein, Classical Mechanics, Addison-Wesley, Reading, Mass., 1965.
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Ag
Ag

Figure 7.3 Elliptic orbit with perihelion
advance.

Successive perihelia occur when
(1 —3Gmb)(2r + Ap) =2z

Consequently, there will be an advance in the perihelion of the orbit per revolu-
tion (see Fig. 7.3) given by A¢ = 6nGmb, or A¢ = 6nGm/a(l — ¢*) if we make use
of the nonrelativistic value of the constant b, and where a is the semimajor axis of
the orbit. Reinstating now ¢, the velocity of light, finally gives for the perihelion
advance

6nGm
cta(l — &%)

Agp = (7-86)
in radians per revolution. We list below the calculated values of A¢ per century for

four planets:

Planet A¢

Mercury 4303”
Venus 8.60”
Earth 3.80”
Mars 1.35”

The astronomical observations for the planet Mercury give 43.11 + 0.45 sec
per century,'®! in good agreement with the calculated value.

Deflection of Light

To discuss the deflection of light in the gravitational field we must again solve the
geodesic equation, but now with the conditions ds = 0. Using the approximate
solution (7-82) then gives for g,, dx* dx* =0

(14 2Gm/r)[x - x + 2Gm/r*)(x - x)}] =1
Using polar coordinates r, ¢, consequently, gives to the first approximation in Gm

P2+ r2¢? + 4Gmrtjr + 2Gmrd? = 1
! R. L. Duncombe, Astron. J. 61, 174 (1956).
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Again changing variables into u(¢) = 1/r, and using Eq. (7-84b), gives
w? 4+ u? + 2Gmu(2u'? + u?) = J—2 g4Gmu
Differentiation of this equation with respect to ¢ gives
u +u+ GmQ2u? + 4uu” + 3u?) = 2GmJ "2 (7-87)

to the first approximation in Gm.
To solve Eq. (7-87) we note that in the lowest approximation one has

wi=J 2 —y?

Using these values in Eq. (7-87) gives
W+ u=3Gmu? (7-88)

for the orbit of the light ray. In the lowest approximation u satisfies u” + u = 0,
whose solution is a straight line

_cos ¢
R

u

where R is a constant. This shows that r = 1/u has a minimum value R at ¢ = 0.
Substituting into the right-hand side of Eq. (7-88) then gives

G
W +u=3 R_rzn cos? ¢ (7-88a)

The solution of this equation is

_cosp  Gm . 5
=R +F(1+s1n ®)

Introducing new Cartesian coordinates x =r cos ¢ and y =r sin ¢, the
above equation gives

2 2 2
x=R-IMm XA
R J(x*+ %)
For large values of |y| this equation becomes
2Gm

x:R—T|y|

Hence, asymptotically, the orbit of the light ray is a straight line in space. This
result is expected, since far away from the central mass the space is flat. The angle
A¢ between the two asymptotes is, however, equal to

Gm

Ap =4 (7-89)

in units in which ¢ is different from unity.
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Figure 7.4 Bending of a light ray in the Schwarzschild field.

The angle A¢ represents the angle of deflection of a light ray in passing
through the Schwarzschild field (see Fig. 7.4). For a light ray just grazing the Sun
Eq. (7-89) gives A¢ = 1.75 sec. Observations indeed confirm this result; one of the
latest results gives 1.75 + 0.10 sec.!52!

Gravitational Radiation Experiments

Weber!** has developed methods to detect gravitational waves (see Sec. 7-5) that
Einstein’s gravitational field equations predict. The experiment involves detectors
at opposite ends of a 1000 km baseline. Sudden increases in detector output were
observed by him roughly once in several days, coincident within the resolution
time of 0.25 seconds. The statistics rule out an accidental origin and experiments
rule out seismic and electromagnetic effects.

Weber’s apparatus!>#! measures the Fourier transform of the Riemann tensor
(see Sec. 7-1). The method uses the fact that the distance #* between two neigh-
bouring test particles, which follow geodesics, satisfies the geodesic deviation
equationt®3

2,1
%s—"z + RE,, oA =0
where A% is the tangent vector to one of the geodesics, and 6/6s = A*V, is a direc-
tional covariant derivative. Weber measures the strains of a large aluminium cylin-
der, having mass of the order of 10° grams, by means of a piezoelectric crystal
attached to the cylinder which transforms the mechanical movement into an
electric current. The detector was developed for operation in the vicinity of 1662
cycle/sec. A high frequency source was developed for dynamic gravitational fields
and the detector was tested by doing a communication experiment with high

frequency Coulomb fields.1*®

2 B, Bertotti, D. Brill, and R. Krothov, op. cit.

%3 J. Weber, Gravitational Radiation Experiments, in Relativity (M. Carmeli, S. 1. Fickler, and L.
Witten, Eds), Plenum Press, New York, 1970.

%4 J. Weber, General Relativity and Gravitational Waves, Interscience Publishers, New York, 1961.

% J. L. Synge and A. Schild, Tensor Calculus, University of Toronto Press, 1949.

%6 J. Sinsky and J. Weber, Phys. Rev. Letters 18, 795 (1967).



ELEMENTS OF GENERAL RELATIVITY THEORY 157

Radar Experiment

Shapiro'®* 7 has designed a radar experiment to test general relativity by measuring
the effect of solar gravity on time delays of round-trip travel times of radar pulses
transmitted from the Earth toward an inner planet, ie., Venus or Mercury. The
experiment is based on the phenomenon that electromagnetic waves “slow down”
in the gravitational field. Within the framework of general relativity there should
be an anomalous delay of 200 microseconds in the arrival time of a radar echo
from Mercury, positioned on the far side of the Sun near the limb. For example, if
we calculate the proper time 1 at r = r, for a radial round-trip travelr, > r; - r,,
with r, > r,, of a radar pulse in the Schwarszchild field, and subtract from 1 the
corresponding value 7, when the spherical mass m = 0, we find

Ac = 0m (ln 2 _ rz_r‘) + 0(m?)
[ ry ry

In general one finds

Ac =~ 4", (+7+R)
c r.+r,—R
where r, is the Earth-Sun distance, r, the planet-Sun distance, and R the Earth-
planet distance.

Shapiro!*®! found that the retardation of radar signals are 1.02 + 0.05 times
the corresponding effect predicted by general relativity.

Low-Temperature Experiments

Schiff'>*! has proposed an experiment to check the equations of motion in general
relativity by means of a gyroscope, which is forced to go around the Earth either
in a stationary laboratory fixed to the Earth or a satellite. The unique experiment
is made possible by complete use of a low-temperature environment, and the
properties of superconductors, including the use of zero magnetic fields and
ultrasensitive magnetometry.'®? Schiff has calculated, using results obtained by
Papapetrou'®!! for the motion of spinning bodies in general relativity, that a
perfect gyroscope subject to no external torques will experience an anomalous
precession with respect to the fixed stars as it travels around the Earth.

71. 1 Shapiro, Phys. Rev. Letters 13, 789 (1964). For lightlike behavior of motion of test
particles see J. Jaffe and 1. 1. Shapiro, Phys. Rev. D6, 405 (1972); M. Carmeli, Nuovo Cimento
Letters 3, 379 (1972).

*8 1. 1. Shapiro, General Relativity and Gravitation 3, 135 (1972).

5% L. L Schiff, Proc. Natl. Acad. Sci. 46, 871 (1960).

50C. W. F. Everitt, W. M. Fairbank, and W. O. Hamilton, General Relativity Experiments
Using Low Temperature Techniques, in Relativity (M. Carmeli, S. L. Fickler, and L. Witten, Eds),
Plenum Press, New York, 1970.

! A. Papapetrou, Proc. R. Soc. Lond. (4)209, 248 (1951).
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7-7 EQUATIONS OF MOTION

Geodesic Postulate

In the last section it was assumed that the planet’s motion around the Sun is
described by the geodesic equation (7-33). The assumption that the equations of
motion of a test particle, moving in a gravitational field, are given by the geodesic
equation is known as the geodesic postulate and was suggested by Einstein'®?! in
his first article on the general theory of relativity.

It was eleven years later when Einstein and Grommer!®3 showed that the
geodesic postulate need not be assumed, but that it rather follows from the gravi-
tational field equations; this is a consequence of the non-linearity of the field
equations along with the fact that they satisfy the four contracted Bianchi identi-
ties (see Section 7-1). The discovery of Einstein and Grommer is considered to be
one of the most important achievements, and one of the most attractive features of
the general theory of relativity since its publication. Later on Infeld and Schild!¢¥
showed that the equations of motion of a test particle are given by the geodesic
equation in the external gravitational field. This result, however, does not differ
from the geodesic postulate because, by definition, a test particle has no
self-field 16

Equations of Motion as a Consequence of Field Equations

In order to establish the relation between the Einstein field equations and the
equations of motion one proceeds as follows. We have seen in Section 7-4 that
because of the contracted Bianchi identity it follows that the energy-momentum
tensor T** satisfies a generally covariant conservation law of the form given by
Eq. (7-38). Consequently, one obtains for the energy-momentum tensor density
T

V,Iw=0,T"+T8T¥=0 (7-90)

where 7+ = (—g)l/2T". :
For a system of N particles of finite masses, represented as singularities of the
gravitational field, 7** may be taken in the form
N
TH =Y mht’y 6,(x—12,) (7-91)
A=1
Here z# are the coordinates of the Ath particle. (Roman capital indices, 4, B, ...,
run from 1 to N. For these indices the summation convention will be suspended).

52 A.Einstein, Ann. Physik 49, 761 (1916); English translation in The Principle of Relativity, Dover,
New York, 1923.

53 A. Einstein and J. Grommer, Sitzungsber. Ber. Akad. Wiss. 2, 235 (1927).

54 L. Infeld and A. Schild, Rev. Mod. Phys. 21, 408 (1949).

55 The significance of the geodesic postulate for a finite mass was subsequently discussed by M.
Carmeli, Phys. Letters 11, 24 (1964).
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v = z* = dz#/di(vY = 2% = 1), and § is the three-dimensional Dirac delta function
satisfying the following conditions:

6(x)=0 for x#0

f&(x—z)d3x=1

j F(x) 8(x — z) d*x = f(2),

for any continuous function f(x) in the neighbourhood of z. In Eq. (7-91), m ,isa
function of time which may be called the inertial mass of the Ath particle.

If we put the energy-momentum tensor density (7-91) into Eq. (7-90) and
integrate over the three-dimensional region surrounding the first singularity, we
obtain

dp*/dt = j F* 5(x — z) d3x (7-92)
where
J—
F* = —mll o

and we have put, for simplicityy, m=m;, z'=2z4f, " =0v4 and

O(x —z) = 6,(x — z;).

Self-Action Terms

Equation (7-92) may be interpreted as an “exact equation of motion” of the first
particle. However, since the Christoffel symbols are singular at the location of the
particle, the equation contains infinite self-action terms. However, these terms can
be removed as follows.[5

Putting Eq. (7-91) into Eq. (7-90) we obtain

N N N
00[ > om v 54 +0,,[ DAY 54 + > m, Teh P 6, =0(7-90a)
i=1 i=1 i=1

where Latin indices run from 1 to 3. The first term on the left-hand side of
Eq. (7-90) can be written as

N N
50[2'% } Z olm 1) 8, + ZmAvAao(SA
A=1 A= A=1

with
09 0,4=20¢ 5A(xs - ZSA) = —0, 0,17

56 M. Carmeli, Phys. Rev. 140, B1441 (1965).
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Using the above results in Eq. (7-90a), we obtain

Z (m %)/ dt + m Dhvf} 6,=0 (7-90b)

Equation (7-90b), which is identical with Eq. (7-90), is satisfied for any space-time
point, since otherwise the Bianchi identity or the Einstein field equations will not
be satisfied.

Let us now examine the behaviour of Eq. (7-90b) in the infinitesimal neigh-
bourhood of the first singularity, which we assume not to contain any other
singularity. In this region d4x —zz) =0 for B=2, 3, ..., N. Hence Eq. (7-90b)
gives for the conservation law near the first singularity

{d(mvi‘)/dt + ml# "} 8(x —2) =0 (7-93)

Let us further assume that the Christoffel symbols near the first singularity can be
expanded into a power series in the infinitesimal distance r, defined by
r? = (x* — 2°)(x* — %), where z° = z3, in the vicinity of the first particle. Then we
have

Dig= aThp+ xva Do+ +ollp +

where the indices written as subscripts on the left of a function indicate its beha-
viour with respect tor, and kisa positive integer For example , I';; is that part of
the Christoffel symbol which varies as r°, i.e., is finite at the location of the first
particle. When one uses spherical coordinates r, 0, and ¢, one can write

—kriz‘ﬁ = r_kA;‘ﬂ(B, ¢)
—k+lrzit‘ﬂ = "_HlBiz‘ﬂ(B, ¢)

oty = Diy(6, ¢), etc.

Terms like T4, , I, etc, however, need not be taken into account when one
puts the above expansion into Eq. (7-93) since r/ 6(x — z) = 0 for any positive
integer j. If we denote now mAg, ", ... by 4%, ... we can write Eq. (7-93) in the
form

{r*at + ¥ 1B+ T ICH + DY} O(x —2) =0 (7-93a)

where we have used the notation D4 = d(mv*)/ dt + D*.

In order to get rid of terms proportional to negative powers of r in Eq. (7-93a)
we proceed as follows. Multiplying Eq. (7-93a) by r* and using ¥ §(x — z) = Owe
obtain

A0, ¢) o(r) =

the integration of which over the three-dimensional region yields, using spherical
coordinates,

j j A6, ¢) sin 0 dO d¢ j r2 8(r) dr =0
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From the property of the delta-function
j 5(r) d3x = ” sin 0 d6 d¢ j S(r)r? dr =1
one obtains | &(r)r? dr = (4n)”!. Hence we obtain
j j A6, ¢) sin 0 d d¢p = 0 (7-94a)

independent of the value of the variable r. Thus the angular distribution of
A¥(0, ¢) is such that its average equals zero. However, not only does the above
equation hold, but also (s is any finite positive integer)

a(r)=rs ” AX0, ¢) sin 0 dO dp = 0

for small values of r as well as when r tends to zero, as can be verified by using
L’Hospital’s theorem, for example. It follows then that a(r) is a function of r whose
value is zero for any small r, including r = 0. Using the property of the delta-
function we obtain

[ 7 60)1(r) dr = (4n)~ 11 (0)
for any continuous function of r. Since a(r) is certainly continuous, one obtains
j r? 8(r)a(r) dr =0 (7-95a)

Hence when one integrates Eq. (7-93a) over the three-dimensional space, there
will be no contribution from the first term.

In order to show that the second term of Eq. (7-93a) will also not contribute
to the three-dimensional integration of the same equation, we multiply it by r*~ 1,
We obtain now, after neglecting terms that do not contribute,

{(r=14%(6, ¢) + B*(6, $)} 5(r) = 0

Integration of this equation, again using spherical coordinates, shows that the first
term will not contribute anything because of Eq. (7-95a), and we are left with

j j B*(0, ¢) sin 0 df d¢ j r23(r)dr=0
Hence
j j B*(6, ¢) sin 6 d6 d¢ = 0 (7-94b)

independent of r. From this equation one obtains another one, analogous to
Eq. (7-95a) but with B* instead of A*:

j r? 5(r)b(r) dr = 0 (7-95b)
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with
br)=r"* J'f B*(0, ¢) sin 6 d6 dp = 0

Proceeding in this way, one verifies that the angular distribution of all func-
tions A*(6, @), BX(6, ¢), etc., is such that they all satisfy equations like Eqs. (7-94).
From this it is clear that one obtains

j D46, ¢) 5(r) d3x =0
which gives
dp#/dt + m# '( ol % 6(r) d®°x =0 (7-92a)
or equivalently

i* + "0 [ (4Tl — v*o[%) 8() d*x =0 (7-92b)

Equation (7-92a) is the “exact equation of motion”.

Einstein—Infeld-Hoffmann Method

Having found the law of motion (7-92a), one can now proceed to find the equation
of motion of two finite masses, each moving in the field produced by both of them.
In the following we find such an equation of motion in the case for which the
particles’ velocities are much smaller than the speed of light. Moreover, we will
confine ourselves to an accuracy of post-Newtonian. This means the equation of
motion obtained will contain the Newtonian equation as a limit, but is a first
generalization of it. Such an equation was first obtained by Einstein, Infeld, and
Hoffmann.'®”! To obtain this equation we solve the field equations and formulate
the equations of motion explicitly by means of an approximation method, the
Einstein-Infeld-Hoffmann (ETH) method, to be described below.

Let us assume a function ¢ developed in a power series in the parameter
A = 1/c, where c is the speed of light. One then has

p=o0b+10+ 6+

The indices written as left subscripts indicate the order of A absorbed by the ¢’s.

If a function ¢(x) varies rapidly in space but slowly with x’, then we are
justified in not treating all its derivatives in the same manner. The derivatives with
respect to x° will be of a higher order than the space derivatives. We thus write

00(,(/)) =¥

57 A. Einstein, L. Infeld, and B. Hoffmann, Ann. Math. 39, 65 (1938); A. Einstein and L. Infeld,
Canad. J. Math. 1, 209 (1949).
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That is, differentiation with respect to x° raises the order by one. Thus if the
coordinates z° of a particle are considered to be of order zero, z° will be of order
one, and z° of order two. Using now the Newtonian approximation mass X

acceleration = mass x mass/(distance)?, we see the mass is of order two. In all the

power developments we take into account only even or only odd powers of 1/¢.[6®!

Thus, because of the order with which we start m and z5, we have
F00 2g—oo + 49-00 4o
FOon 3(70"_‘_ 5g—on+
IT™M=,IT™+ T+
As to the metric tensor, we write
Guv = My + By, g% = 11 + B
The gravitational field equations (7-37) can be written as
\/(-g)Raﬂ = K(faﬂ - %gaﬂ T) (7-96)

where 7 = 77, g*',and R, is given by Eq. (7-27). From the right-hand side of the
field equations it follows that Ry and R,,, (When m = n) start with order two, R,,,
(when m # n) start with order four, while R, starts with order three. The lowest
order expressions of the left-hand side are

Ryp ~ %hoo, s
ROm = %(hOm, ss hOs. ms hms, Os + hss, Om) (7-97)
Rmn = %(hmn, ss hms, ns hns, ms hOO, mn T hss. mn)

where a comma denotes a partial derivative, ¢ ; = 0,¢. Hence we have
hoo = 2hoo + 4 hoo +
hom = 3hom + shom +
h =2hmn+4hmn+“.

mn

Newtonian Equation of Motion

We now find the equation of motion in the lowest (Newtonian) approximation.
We do it in such a way as to make the generalization to the post-Newtonian
approximation as simple as possible.

8 The expansion of the metric tensor, etc., in a power series in ¢ % (suchas ¢ = ;¢ + , 0 + ..., or
¢ =,¢+ 3¢ +-) corresponds to the choice of the symmetric Green function, thus excluding
radiation.
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Because of Eqgs. (7-96) and (7-97), the field equations of the lowest order are in
h00 s

2
%ZhOO,ss= K(zg.oo “‘%2‘700) = (K/z)zg.oo = (K/Z)Z Ky 04
A=1
where, for simplicity, we have put u, = , m,. Hence the equation obtained is

2
2h00, o= KAZIIU 04

The solution of this equation that represents two masses is

2
2hoo = —2G Z pary!
A=1

where r% = (x* — z%)(x* — z%). Using , hoo in the equation of motion (7-92b), we
obtain in the lowest (second) order for the equation of motion of the first particle

-G l Olparyt) O(x —2;) d*x =0

This gives
2} = G(0/07})(u2/2) (7-98)

where z2 = (z] — z3)(z} — z3). Equation (7-98) is, of course, the Newton equatin
of motion.

Einstein—Infeld-Hoffmann Equation \

To find the equation of motion up to the fourth order, we must know besides , 4,
the functions 4 hgg, 3 hon, and , h,,,. The second and third functions are easy to
find. The left-hand side of the corresponding equations is written out in Eq. (7-97),
whereas the right-hand side is given by Eq. (7-96) and itis —x ), p,z% 6 , for the
Om component, and (k/2) 6, 5. #, 6, for the mn component. Therefore, for the
2 h.. Wwe have the equation

2h

whose solution is

mn, ss 2hms, ns Zhns. ms + 2hss, mn 2h00, mn = 5mn 2h00, ss

thn = 5mn 2hoo
The equation for 3 by, is
3h0n. ss 3h05, ns 2 hns, Os + 2 hss, no = -2k Z ﬂAZ'/: 5,4

Using the value of , h,,, in terms of the , hyo found above, we obtain

2
3Pon, ss — 3h0s, ns T 2 2h00, 0 = — 2K Z K4z Oy
A=1
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The solution of this equation is

2
shon = 4G Z ﬂAz":lrzl'

A=1

Calculation of 4 hyo is somewhat more complicated. The relevant part of
s hoo, for two masses, that contributes to the equation of motion of the first
particle, is

ahoo = G{2Gu§ "2_2 —3u, 23251, ' HaT3, 00 + 2Gp, /‘2(2"2)_ 1} (7“99)

Using these values for 4 hg, 3 ho,, and ; h,,, in the equation of motion (7"-92b)
gives, for the two-body problem (Problem 7.16):16%!

2] — pp 0(1/2)/02]
= mp{[212] + 32325 — 48125 — dpy/z — Spy /2] 0(1/2)/02]

+ [425(28 — 27) + 32025 — 421 23) 8(1/2)/025 + 4253, 832/02% 87, 02"
(7-100)

In Eq. (7-100) the Newtonian gravitational constant G was taken as equal to 1.
The equation of motion for the second particle is obtained by replacing uy, u,, z,,
z, by u,, uy, 2,5, 2y, respectively.

Equation (7-100) is known as the Einstein-Infeld-Hoffmann equation of
motion, and is a generalization of the Newton equation!’” The essential relati-
vistic correction may be obtained by fixing one of the particles. Writing M for p,,
neglecting p, and z%, and using an obvious three-dimensional vector notation,
Eq. (7-100) simplifies to

T AL B |

where z denotes the three-vector zj.

PROBLEMS

7.1 Find the transformation laws (7-13) and (7-14) of the Christoffel symbols of the first and second
kinds.

7.2 Prove Eq. (7-19).

9 L. Infeld, Rev. Mod. Phys. 29, 398 (1957).

70 For the problem of motion and gravitational radiation see M. Carmeli, Nuovo Cim. (X) 37, 842
(1965); W. L. Burke and K. S. Thorne, Gravitational Radiation Damping, in Relativity (M. Carmeli,
S. I. Fickler and L. Witten, Eds.), Plenum Press, New York, 1970.
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7.3 Show that the covariant derivatives of the tensors T,,;, T, and T, are given by

0T,
ox’

V, Ty = —I‘ZY'I;‘,—FZY'I:W

T
V},Tuﬂ="a—xy“+r6y76ﬂ+ ngT"

ot
V,T% =< 2+ 1}

0] ] .
Ll ) Tﬂ_rﬂyTa

b

From this find the general rule for covariant differentiation.
7.4 Show that covariant differentiation of the sum, difference, outer and inner product of tensors obeys
the usual rules of ordinary differentiation.

7.5 Generalize Eq. (7-24) for a tensor T,,.
7.6 If T,; is the curl of a covariant vector, show that

V, Ty + VT, + Y, T = 0
and that this is equivalent to

0,Ty+0,T;,+6,T,,=0

7.7 Show that the divergence V, V* of the vector V* is given by

gL 8
! J(=9) ax*

Also show that for a skew-symmetric tensor F*/ the covariant divergence is

(VJ(-9)

VP = (=)

NIGY

7.8 Find the expression for the Riemann tensor R From it prove Egs. (7-26).

afiyd *
7.9 Discuss the constancy of the weak and gravitational coupling constants.

7.10 Use the geodesic equations, Eq. (7-33), to determine the force per unit mass on a body at rest, and
show that it is given by F' = ~¢?I'y,; where i = 1, 2, 3. In the weak field approximation g* are very
close to the Lorentz metric, and for a time-independent metric F = ¢2I'y, ~ (¢2/2) 8,900 - Show that in
the weak field case Eq. (7-37) reduces to the Poisson equation (7-36) where gy, >~ 1 — 2¢. From this
show that the constant x in Eq. (7-37) is given by x = 8rG/c*.

7.11 Prove Eqs. (7-42) and (7-43).

7.12 Derive the gravitational field equations (7-37) using calculus of variation by treating both g,, and
I'Y, as independent variants, and obtain thereby equations that determine both objects. Such a
procedure is known as the Palatini formalism. The procedure is analogous to the one employed in
deriving the electromagnetic field equations from a variational principle where both the field F** and
the potential A, are variants of anaction principle.[See A. Einstein, S.B. preuss. Akad. Wiss., 414 (1925)]
7.13 Find the energy-momentum tensor 7, for (1) a system of neutral particles of inertial mass M
(function of time); (2) the electromagnetic field; and (3) a scalar field ¢. Show that they are given by:

(1) ™ =) Mz 6(x — z)

11
(2) ’ILVZEI ZgquuﬂFﬂ_FuaFv

(3) ’I:w = au¢ av¢ - nguv¢2
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7.14 Show that if one takes as the solutions of Egs. (7-73a) to (7-73c)

-1 L, 21
=-In —
R L A Sl PR

Y L
=-In
2

and then carries out the transformation A = (r/m) — 1, 4 = cos 6, one obtains the usual form of the
Schwarzschild solution. [See G. Erez and N. Rosen, Bull. Res. Counc. Israel 8F, 47 (1959)].

7.15 Use the approximate metric (7-82) into the geodesic equation (7-33) to show that the equation
obtained is (7-83).
7.16 Prove Eqgs. (7-99) and (7-100).



CHAPTER

EIGHT
SPINORS IN GENERAL RELATIVITY

In Chapter 3 spinors were introduced in connection with the finite-dimensional
representations of the group SL(2, C). In this chapter we use them in the descrip-
tion of physical quantities within the framework of general relativity theory. Thus
the connection between spinors and tensors, defined in a Riemannian space, will
be given and accordingly we define the Maxwell, Weyl, and Riemann spinors. The
classifications of the Maxwell and the Weyl spinors are consequently outlined.

8-1 CONNECTION BETWEEN SPINORS AND TENSORS

In Chapter 3 it was shown how 2-component spinors are associated with the
finite-dimensional representations of the group SL(2, C) when the representation
is realized in the space of polynomials. In particular, it was shown that spinors
appear (up to factorial terms) as the coefficients of the polynomials of the space in
which the representation is realized. Furthermore, it was shown that their trans-
formation law under the group translation provides another form for the
representation.

We now use 2-component spinors in the description of the gravitational field.
Accordingly, these quantities become functions of space-time when they are
applied in physics. To this end one associates, with each tensor describing a
physical quantity in general relativity, a spinor.

Spinors in Riemannian Space

2-component spinors are introduced in a Riemannian space at each space-time
point, in a tangent two-dimensional complex space. The correspondence between

1AR
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tensors and spinors is then obtained by means of mixed-indices quantities.!!) They
are four 2 x 2 Hermitian matrices, denoted by ¢* 5. Greek letters are used for
tensor indices running over 0, 1, 2, 3, and Roman capitals for spinor indices taking
the values 0, 1. Primed indices refer to the complex conjugate. These indices replace
the dotted indices of spinors used in previous chapters. The Hermiticity of the
matrices §* means 6%, = ¢, ,. When a locally Cartesian coordinate frame is
used, the 6* matrices may be taken (apart from a factor) as the unit matrix (for °)
and the three Pauli matrices (for *). Other sets may be obtained from these by
coordinate transformations. We will not need an explicit knowledge of any one set
of ¢*.
The four matrices ¢* satisfy the relation

90" 480" e = € 4cEpp (8'1)

where g,, is the geometrical metric tensor, and ¢, and &,y along with ¢4 and
¢®?’, are the skew-symmetric Levi-Civita symbols, given by

= (_(1’ (1,) 62)

Raising or lowering a spinor index is made by means of the above symbols ¢, with

the following conventions:
¢4 ="y, Ey=2¢%
’ , B 4 A BA (8-3)
nt =& "ng, Na=MN gy

Equivalence of Spinors and Tensors

The spinor equivalent of a tensor is a quantity which has an unprimed and a
primed spinor index for each tensor index. The spinor representing the tensor
T, for example, is

TABCY L = 5, 55, P o T (3_4)

The tensor representing the spinor S4#,,, on the other hand, is given by
Saﬂ — &EAB’&[} CD’SAB’CD, (8'5)
Greek indices are lowered and raised, as usual, by the metric tensor g,; and its

inverse, g**. The spinor expressions for the metric tensor are given by

_ ABCD' _ _ACB'D'
dapcp = €aclpp > g =&7¢ (8-6)

When taking the complex conjugate of a spinor, unprimed indices become
primed, and vice versa. The complex conjugate of the spinor S*#, for example, is

! L. Infeld and B. L. van der Waerden, Sb. preuss Akad. Wiss., Phys.-mat. K1. 380 (1933); W. L
Bade and J. Jehle, Rev. Mod. Phys. 25, 714 (1953).
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S48 Accordingly, the condition for the vector $* to be real is that its spinor
equivalent be Hermitian:

SAB’ = S'B’A (8-7)

Covariant Derivative of Spinors
The covariant derivative, V, ¢ ,, of a spinor ¢, is
VuéA = auéA - FBAMEB (8-8)

where I'?,, is the spinor affine connection. The corresponding quantity re A
deals with the spinor £ ,.. The spinor affine connection is fixed by the requirement
that the covariant derivatives of & ,5, €5, and ¢ ;. shall all vanish?

VG&MAB’ = 0
V,e,3=0 (8-9)
V,e,5=0

8-2 MAXWELL, WEYL, AND RIEMANN SPINORS

We now find the spinors describing the electromagnetic and gravitational fields.
They are obtained, using the procedure outlined in the last section, by associating
a spinor with each of the Maxwell, Weyl, and Riemann tensors. However, since
these tensors have some special symmetry properties, the corresponding spinor
equivalents are simplified.

The Electromagnetic Field

Let F,, describe the Maxwell tensor, ie., a real skew-symmetric tensor with two
indices. Let us denote the spinor equivalent of this tensor by F ,zcp.. It obviously
satisfies

FAB’CD' = _FCD’AB’ (8'10)
and, as a result, one obtains the identity

F 4pcp = 3(F 4pco — Fepap) + 3(Fep ap — Fep as)
Accordingly, one obtains (see Problem 8.2):
Fpcp = 2E4cFesp + €ap Feo s G’) (8-11)
The last equation can be simplified. If one denotes $F ¢, by ¢ ,c, then

_ 1 G _ _1p G _ 1 G _—
¢AC_2FCG’A - _2FA cG — 2FAG’C “‘d)CA

2 R. Penrose, Ann. Phys. (N.Y) 10, 171 (1960).
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by the antisymmetry property of F. Hence the spinor ¢ ,¢ is symmetric. Taking the
complex conjugate of ¢ z,, on the other hand, gives

P =1 P _1Fp P_1 P
¢B’D' = 2FBP’D = 2FB’PD’ =3Fpp b

where the last equality was a consequence of the Hermiticity property of F. Using
the above two equations in Eq. (8-11) we obtain the rather simple decomposition
of the spinor F ,pcp:

F pcp = sAC(_bB'D’ + @ ucpp (8'12)

We thus see that the Maxwell tensor is equivalent to a symmetric spinor with
two indices. In other words, the six real components of the skew-symmetric tensor
F,, are equivalent to the three complex components of the symmetric spinor ¢ .
In the following ¢ ,5 will be referred to as the Maxwell spinor.

The Gravitational Field

Let now R, ,, be the Riemann tensor, ie., a real four-index tensor having the
symmetry properties (see Chapter 7).

R,,. = —R
R,.,. + R

= —R
vupa uvap (8'13)
upav T Rugyp = 0

Following the procedure outlined above for the Maxwell tensor, one obtains
for the Riemann spinor 14

~R  pcpErGr = Xacec€peru + D acrn€ppEEG

+ e4cPppEGErn + € acec XppFn (8-14)
where
_ 1 B F’
Xacec = — 3R 4pc " Epg
and
¢ — —LR B E
ACFH = — 4R pc  EF B

The two spinors y ,gcp and ¢ ,zcp uniquely define the curvature spinors.
From the symmetries of the Riemann tensor, Eqgs. (8-13), it follows that the
Spinors ¥ ,gzcp and ¢ ,gcp have the following symmetry properties:

XaBcp = Xpacp = X aBpc = Xcp4B (8'15)
and
¢ABC’D' = ¢BAC'D’ = ¢ABD’C’ = &C’D’AB (8'16)
* Note that as a consequence of the Eqs. (8-13) one has R,,,, =R,

* L. Witten, Phys. Rev. 113, 357 (1959).
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The Weyl Spinor

The spinor y ,zcp may further be decomposed. To this end one writes it as

X4BCD = %(XABCD + Xachp +~XADBC)
+ (X 48cp — Xacap) + 3(X 4ncp — Xapac)

and hence, using Eq. (8-15), one can write

Xa8cp = ¥ ancp + %EBCXAEED + %EBDXAECE (8'17)

where we have used the notation

¥ 48cp = 3(Xascp + Xacsp + Xapsc) (8-18)

But the expression y % is skew-symmetric in the indices A4, D since

E_ _ _ . E  _ E
X AE D—XEDAE—XD Ea= —XDE 4
Therefore

XaeTo =30tae"p — XpE® 4) = 3EapXcE Ee
Accordingly, we obtain for Eq. (8-17)

Xancp = W ancp + §(€scEap + EapE ac)A (8-19)

where we have denoted y,,*® by A. The spinor ¥ 44, is, of course, completely
symmetric in its four indices. It corresponds uniquely to the Weyl conformal
tensor C,,,, (see Chapter 7). It will be referred to as the Weyl spinor!*! Moreover,
using the second of Eqs. (8-13), one can show that 4 is real (see Problem 8.6).

One thus obtains for the Riemann spinor, Eq. (8-14), the following
decomposition:

=R pcpern = Y acecEpp rm + EacecVpprm
A
+ 6 8CE8AG + 8CG£AE 8B’D’8F’H’

+ 8AC8EG(8D'F'88’H’ + 8D'H’8B’F')}

+ @ ucrEpp e + Eac 8F'H'EIS5~D'EG (8'20)

Counting components, one finds five complex components for ¥ g, , three real
and three complex components for ¢ ,gc.p., and one real 4. Their sum, is thus,
equivalent to the twenty real components of the Riemann tensor.

* From the Weyl spinor ¥ ,,,, one can construct the tensor T, whose spinor equivalent is given
by T, pcoerc =Y cec¥aprn - It is known as the Robinson-Bel tensor (sometimes, gravitational
density or super energy). The tensor T,,, is symmetric in all its indices, has vanishing traces, and
vanishing covariant devergences when ¢ .., = 0. See L. Bel, C. R. Acad. Sci., Paris 247, 1094 (1958)
and 248, 1297 (1959).
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Ricci’s and Einstein’s Spinors

To conclude this section we find below the spinors that correspond to the Ricci
and Einstein tensors.
The Ricci tensor R,, = R?,,,, has the spinor form

R pcp = REF’AB’EF’CD’
= — A cepp + 20 4D (8-21)
The Ricci scalar (scalar curvature) R = R?, is given by
R=R* = -4} (8-22)

Hence the spinor ¢ gz, represents the trace-free part of the Ricci tensor. The
Einstein tensor G,, = R,, — 3g,, R, using Eqs. (8-6), (8-21) and (8-22), therefore,
takes the spinorial form

G per =4 ctpy + 20 4cpp (8-23)

8-3 CLASSIFICATION OF MAXWELL SPINOR

We are now in a position to classify both the electromagnetic and gravitational
fields. The classification of the gravitational field has been of great interest in
relation to the study of gravitational radiation and in understanding some general
features of exact solutions of the field equations.

In this section we will discuss the classification of the Maxwell tensor; the
gravitational field will be discussed in the next section. The discussion of the
electromagnetic field will be made in such a way as to emphasize the analogy to
the classification of the Weyl tensor for the gravitational field case.l®!

Complex 3-space

Let F,, be the Maxwell tensor and let *F,, be its dual (see Problem 8.4). Let us
also define the tensor F* , by

F*,,=F, +i*F, (8-24)

so that *F* = —iF* . The spinor equivalent of the tensor F,, was found in the
previous section and is given by Eq. (8-12), whereas that of the tensor F*  is
given by

F* apcp = 20 4c€pp (8'25)

where ¢ - is the Maxwell spinor.

5 G. Ludwig, Am. J. Phys. 37, 1225 (1969).
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Classification of the electromagnetic field can be made by classifying ¢ , 5. To
this end one studies the eigenspinors and eigenvalues of the spinorial equation

P pf = Aot (8-26)

To study this equation one introduces a basis in spin space. Let the two spinors of
the basis be denoted by I, and n,, satisfying the normalization condition
I ,n* = 1. This basis induces another basis; given by

Coap= N4y, Ciag= _2I(AnB) > Crap=1l4lp (8'27)

in the 3-dimensional space, E,, of bispinors. Here [ ng = 3(I,nz + Izn ). This
means a bispinor ¢ ,, can be written in terms of the basis (8-27) as

2
Pan= ;O(bmém/lﬂ (8-28)

where ¢, ¢,, and ¢, are called dyad components of the bispinor and correspond
to the six real components of the tensor F,,. The spin frame /,, n, induces other
bases in E;, such as the one given by
Noas = 21/2ilun5)
Niap=2"""2(Lp+ nyny) (8-29)
N2ag= 27"l g — n ng)
This basis satisfies the orthogonality relation

Nm48Mn 48 = 5mn (8'30)

In terms of this last basis ¢ ,, can now be written as

~

2
Dap= Z XmNmas (8'31)

m=0

The two sets of three components y and ¢ are then related by
Xo = 2"%i¢,
11=2""%(¢o + ¢,) (8-32)
X2 =2""2i(¢o — $,)

Classification
In terms of the dyad components ¢,,, the eigenvalue equation (8-26) becomes
Do = Ao (8-26a)

where @ is a 2 x 2 matrix given by

6 b
— 8-33
e (—¢o —«m) (8-332)
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and « is a column matrix given by

ox= (“T) (8-33b)

o]

where o are the dyad components of a*, ie., o = {* ,a4, and we have denoted
{o*=1" and (;*=n* The two eigenvalues of Eq.(8-26a) are
A= +(d,% — ¢o¢2)'/% One, therefore, has two cases: (1) ¢,2 — ¢po ¢, #0, in
which case there are two different eigenspinors. The spinor ¢, is called alge-
braically general or non-null; and (2) ¢,* — ¢ ¢, = 0, in which case 4 = 0 and
there is only one eigenspinor. The spinor ¢ , is then called algebraically special or
nullt7

Change of Spin Frame

Let us introduce another basis ' ;, n' , in spin space that is related to the original

basis I, n, by
'y (a by(l,
()= 30 639

Here a, b, ¢, and d are complex numbers satisfying ad — bc = 1. Thus the matrix

o= (0Y) 39)

C

is an element of the group SL(2, C). We can now write ¢ ,, in terms of the new
basis,

2
b= 2 OmCmas (8-36)
m=0
where &', ,, is the induced basis in E; and is given in terms of /', and n' , in

accordance with Eq. (8-27). The dyad components ¢’,, can then be obtained in
terms of ¢, by

o = (¢')" '0g* (8-37)
or by
o a®  2ab b\ (¢,
¢y | = lac bc+ad bd b, (8-38)
¢, 2 2cd d*] \&,

7 A null bispinor could also be defined as one which is orthogonal to itself, or has a zero
inner product in E,, where inner products of two spinors ¢ ,, and ¢’,, are defined by ) x, ¥'w =
& 3¢ ** and y,, and x,, are the dyad components in the orthogonal basis 1, , ;.
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The corresponding transformation law for y’s are obtained, using Egs. (8-32) and
(8-38):

X0 ad + bc i(ac + db) ac — bd %o

wl = |+ ea) JE@rpiere) @ -rr-a)||n]| @)
i 1

1 ab —cd %(az%—bz—cz—dz) E(az—bz—cz%—dz) X2

i

Let us denote the two square 3 x 3 complex matrices in Egs. (8-38) and (8-39)
by Q and P, respectively. They give three-dimensional representations for the
proper, orthochronous, homogeneous Lorentz group discussed in Chapter 2. The
matrix in Eq. (8-39) is orthogonal, P~! = P, with determinant unity,'® whereas
that in Eq. (8-38) satisfies the relation
2 (_ l)k

Z (_l)l

2 ki@ =k a0t = i ey

The spin frame transformation (8-34) also induces a proper, orthochronous,
Lorentz transformation on the null tetrad in the curved space constructed from
the two spinors I, and n . The null tetrad induced by the two spinors [*and nis
given by:1?

I =g* GlI®
ApP

m (8-40)

no_ xu
mt = G* .l
ol — i 4
nt = g* pnn®

Accordingly, a change of a null tetrad in the curved space is represented in the
space E; by a proper orthogonal matrix, provided the basis in E; is chosen to be
orthogonal as in Eq. (8-30).

As has been shown in Chapter 4 that the matrix g e SL(2, C), given in
Eqgs. (8-34) and (8-35), can be written as a product of three matrices of the form

0@=(; ) e0-(5 S) e0-(p 1) e

8 For applications of the 3 x 3 complex orthogonal matrix representation of the homogeneous
Lorentz group to other physical problems, see B. Kursunoglu, Modern Quantum Theory, W. H.
Freeman, San Francisco, 1962.

® The null tetrad ¥, m*, m*, and n* satisfies the normalization conditions:
H — e —
Lnw=—-mm=1
H = H — 4 — ot
LV=nnr=mm' =nmnm
— Ho= | = H o= e =
=lm=lm=nm=nm=0

It will be noted that /* and n* are real, whereas m* is complex.
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where z is a complex number. The transformation g,(z) leaves the spinor [, and
hence the null vector [,, invariant. It is called a one-(complex) parameter null
rotation about [, . The transformation g,(z) is also a one-parameter null rotation,
but about the vector n,. The transformation g,(z) corresponds to an ordinary
Lorentz transformation (boost) in the I, — n, plane, along with a spatial rotation
in the m, — m, plane.*

The matrices Q,(z), Q,(z) and Q(z) obtained from Eq. (8-38), corresponding
to the three matrices g,(z), g,(z), and gs(z) of the group SL(2, C), can be obtained
by putting the appropriate values in Q. The transformations of ¢ = (¢, ¢4, ¢,)
under Q,(z), Q,(z), and Q;(z) are then given by:

d’b = d’o
1 =z2¢0 + ¢, (8-42)
¢y =22po + 22¢, + ¢,
¢o = 22¢o
1=, (8-43)
¢ = 2_24’2
and
o = ¢o + 220, + 229,
¢ = ¢, + 20, (8-44)
d"z = ¢2
respectively.
Invariants

The matrix @ given by Egs. (8-26a) and (8-33) can also be written, using
Eq. (8-32), in terms of the components of the 3-vector x = (xo, x1, X2) as:

® = (i/\/2)X (8-45)
X = —Xo 12 — il (8-46)
X2+ iy, Xo

Under a change of basis, the trace of the matrix X must be invariant. But
Tr X =0, and thus it does not yield an interesting invariant. However, Tr X2 =

'° The matrices P, Eq. (8-39), corresponding to the three matrices g,(z), g,(z), and g5(z), can be
obtained by putting the appropriate values in P. One can verify that the determinants of P (z), P,(z),
and P,(z) are all + 1. Hence, the determinant of P is also + 1.
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2 dm =2 % = 2¢ ,3*% is an “ obvious” invariant. In fact, from X2 =y - %I,
where I is the 2 x 2 unit matrix, it follows that

Tr X*"" ' =0

8-47
Te X2 = 2 - )" (&4
for any natural number n.
We thus see that the invariant y -y plays an important role in the
classification of the bivector. If y -  vanishes, the bivector is null; otherwise it is
non-null.

Canonical Forms

There are two canonical forms which correspond to the two types of bivectors.

If the bivector is null one can always choose a spin frame I ,, ' , in such a way
that the direction of n' ,n’ g in E; coincides with that of the given null bispinor. To
see this we proceed as follows. Let ¢ = (o, ¢y, ¢,), with x -y =
2(¢o ¢, — 1) =0, be the components of the bispinor in the basis (8-27). With-
out loss of generality one can assume that ¢, # 0. (A null rotation g,(z) about n,,
of the form (8-44), could always make it so.) Under a null rotation around /,, the
components of ¢ transform according to Eq. (8-42). ¢} is a quadratic polynomial
in z, whereas ¢} is proportional to the derivative of ¢, with respect to z. The
condition ¢, ¢, — ¢,2 =0 yields a double root for ¢, given by z = —¢, /¢,
Choosing this root for z makes both ¢}, and ¢| vanish simultaneously. Ac-
cordingly, in the new frame, ¢ 5 = don ,n 5 and ¢ = (¢5, 0, 0). The matrix ®
and the eigenspinor « of Eq. (8-33) will have the forms:

(% (&4
and
((1’) (8-49)

ie, n' 4. It will be noted that it is equally possible to make the direction /' ,/'
coincides with the given bispinor by making a null rotation around n, instead.
If the given bispinor is non-null, we can make ¢’,, but not ¢/, to vanish by
choosing z to be one of the roots of the quadratic form ¢’,. Applying a null
rotation around n, with appropriate value for z will leave ¢7 as the only non-zero
component of ¢”. Hence ¢ ,, = —2¢1l" ,n" 5. The matrix @, Eq. (8-33a), is then

given by
" 0
-50
5 &5
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whereas the eigenspinors Eq. (8-33b), will be given by

((1)) and ((1’) (8-51)

i.e,, by the new basis spinors I” , and n” ,.

Spinor Method

The classification of the Maxwell spinor ¢ ,, could also be made by decomposing
it into the symmetrized product of spinors with one index. This is done as follows.

Let {4 be an arbitrary spinor, and consider the expression ¢ ,z¢4¢%. This is a
homogeneous polynomial of second degree in {° and {*. This polynomial can be
factored into two linear factors, thus writing identically

¢ 4508 = (aACA)(ﬂBCB)

or

{¢AB - a(AﬂB)}CACB =0

Therefore, since {4 is arbitrary, one obtains a decomposition of ¢ ,,,

G 4= 24Bp (8-52)

which is called the canonical decomposition of ¢ 5.

The spinors a , and B, are determined up to a (complex) scalar factor. They
are called principal spinors, and each of them, in turn, determines a real null
direction. They need not be distinct. As a result, the decomposition (8-52) deter-
mines at least one and at most two real null directions, called the principal null
directions of ¢ ,p. Classification of ¢ ,; may be based on counting the multiplici-
ties of principal null directions. If o, and B coincide, the bispinor ¢ ,, is null,
otherwise it is general. This classification coincides with our previous discussion.

Tensor Method

Finally, we briefly mention the tensor method of classification. For every skew-
symmetric tensor there exist two null directions {, # 0, which may or may not
coincide, satisfying the equation

F+u[vCp]Cu =0 (8-53)
If the directions coincide, F,, is null, otherwise it is non-null. Equation (8-53) is
equivalent to the spinor equation

¢ABCACB =0

Our previous discussion shows the tensor method to be equivalent to previous
methods.
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8-4 CLASSIFICATION OF WEYL SPINOR

In the previous section bivectors were discussed as a preliminary to discussing the
Weyl spinor. Moreover, bivectors occur as eigenvectors of the Weyl tensor. In this
section we discuss the Weyl tensor.

The Weyl tensor C,4,; has the same symmetry properties of the Riemann
tensor, Eqs. (8-13). In addition, it satisfies

Cpapﬁ = 0 (8-54)
These identities reduce the number of independent components of C,;,; to ten.
In the last section the spinor equivalent of C,,; was found to be a symmetric
spinor of four indices, ¥ 45cp.
—C ypcoErGn = €actecWaprn + Y acecErp trm (8-55)
Corresponding to the Weyl tensor C,;,5 one can define the tensor C™ ,;,; by
C+aﬂy6 = Caﬂy& + i*caﬁya (8'56)

where * denotes the (left- or right-hand) dual. The spinor equivalent to (8-56) is
given by

—C" ypcpErGr = 260 EpG Y ackG (8'57)

Complex 5-space

In order to classify the Weyl tensor we classify the Weyl spinor i ,zp in terms of
its eigenvalues and eigenspinors. The characteristic equation now is:

lpwcz)d’cp = j~d’w (8'58)

The basis [, n, in spinorial space induces the basis
Coapcp = N4Nphchp, ¢148cp = — 4 4ngncnp,
€248cp = Ol 4lgncnp, , Csapcp = —Hylplonp, (8-59)
Cauncp = Lilplclp

in the 5-dimensional complex, E5, of completely symmetric four-spinors. The
Weyl spinor can now be written in terms of the basis (8-59) as

lpwcp = Zol//n énABCD (8'60)

where y,, with n =0, 1, ..., 4, are the dyad components of the Weyl spinor, and
correspond to the ten real components of the Weyl tensor.

Since E; is a subspace of E5 x E5, one can expand i ,zcp in terms of the basis
NmasMfncp Of E3 X Ej:

2
¥ 4pcp = Z Y mnllm 48MncD (8'61)

m,n=0

One can then write the coefficients y,, in terms of the dyad components



SPINORS IN GENERAL RELATIVITY 181

Yo, ..., s by use of Egs. (8-29) and (8-59), to obtain a symmetric and trace-free
matrix:

—2¢2 i(w1 + lﬁ3) (ws - wl)
Um= [0 +02) @I+ Yo b0 2o ¥a) (8-62)

i 1
Ws=v)  3We—vs)  5@u—do- 1)

We have seen that the Weyl tensor can be regarded as a vector in a five-
dimensional space. The space E has properties similar to E, discussed in the last
section. It will be useful to introduce an orthonormal basis in E. Such a basis is
provided by the following five, completely symmetric, four-spinors:

no asco = (1/3/2) Ll glclp + nyngncnp)

N1 ascp = in/2(l 41 glcnpy + I 4ngncnp))

N248cp = \/6I(AIBnCnD) (8-63)
N348cp = \/2(I(AlBlCnD) — liangncnp)

Naascp = (i/5/2)(Lylglclp — nngncnp)

As can be easily verified, they satisfy
BCD __ 5

mn=20,...,4 (8-64)

and an arbitrary element of the space E can be written as linear combination of
them:

A .
NmaBcDNn mn>

4
Yascp =2 2 Xmllmasco (8-65)
m=0
in analogy to Eq. (8-31) for the Maxwell spinor, and where the factor 2 has been
introduced for convenience. The components y,, can then be expressed in terms of
the components ¥, of Eq. (8-60)!*!] We find:

Yo =2"*(Wo + ¥4) 21 =27y, + )
X2 = (3/2)%y, X3 =212 — ¥3) (8-66)
Xa = 2—3/2i(¢0 - w4)

1 Just as in the 3-dimensional case for the Maxwell spinor, one can introduce.an inner product in
E as follows: If two Weyl tensors C,,, and C',,., have components g,, and x’,, respectively, in the
basis (8-63), then their inner product is defined by

4
XY= Z L xrm - wABCD lV’MCD - (1/16)C+aﬂy6 C tabvé
m=0

where ¥ pcp and ¥ 5, are the Weyl spinors associated with the Weyl tensors C,,,, and C',,,
respectively. Two Weyl tensors or, equivalently, Weyl spinors are orthogonal if their inner product
vanishes. A Weyl tensor which is orthogonal to itself is called null. A unit Weyl tensor is one for
which the self-inner product is unity. As for bivectors, the existence of inner product allows the
introduction of the notion of direction in E, in the usual manner.
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Classification

In terms of the matrix ¥ of Eq. (8-62), the eigenvalue equation (8-58) can be
written as

Wy =Ax (8-67)

where y is the column matrix whose elements are y,,, m =0, 1, 2, and y,, are the
components of ¢ ,, in the orthonormal basis 7, ,5.

The Weyl spinor can now be classified according to the possible numbers of
eigenvalues and eigenvectors of the matrix ¥, Eq. (8-62). The maximum number
of eigenvalues for the matrix ¥ is three. Corresponding to every eigenvalue there
is at least one eigenvector. Accordingly, we obtain the following table:

Distinct eigenvectors 3 2 1
Distinct eigenvalues 3 2 1 2 1 1
Petrov type | D 0 11 N 11

Remark 1. In the following it will be shown that if there is only one distinct
eigenvalue, then that eigenvalue is necessarily zero. Therefore, if there were three
linearly independent eigenvectors corresponding to it, every vector of E; would
also be an eigenvector. This is possible if and only if the Weyl spinor is identically
Zero.

Remark 2. Type 1is also known as algebraically general, the others are known
as algebraically special!'?

Change of Frame

A change of the basis according to the transformation (8-34) induces changes in
the various field components. Comparing Eqgs. (8-31) and (8-61) shows that if the
law of transformation of the vector y is given by (8-39) then the law of transforma-
tion of the matrix ¥ should be given by

¥ = PYP (8-68)

One then can obtain the law of transformation for the dyad components
Vo, ..., Y, which is found to be .

Vo a* 4a’b 6azb? dab? b*\ [y
A a*c a*(3bc + ad) 3ab(ad + bc) b*(3ad + bc) b3d| | v,
Yy | = |a®c® 2ac(ad + bc) 1+ 6abed  2bd(ad + bc) b2d*|| ¥, (8-69)
178 ac® c*(3ad + bc) 3cd(ad + bc) d*(3bc + ad) bd> || v,
/A, ¢t 4c3d 6c2d? 4cd? d* 1/

12 A Weyl spinor of type N is often called null.
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Using Eq. (8-66) one finds the transformation law for the components y,,, m =0,
1, ..., 4. The result can be written in the form

X =Ry (8-70)

The 5 x 5 complex matrix R is a function of the complex variables a, b, ¢, and d
appearing as elements of the matrix g € SL(2, C). One can show that the matrix R
is orthogonal and has a determinant unity (see Problem 8.11). The 5 x 5 matrices
in Egs. (8-69) and (8-70) give five-dimensional representations of the proper,
orthochronous, homogeneous Lorentz group.

The transformation (8-69) can be applied for specific cases when the matrix
g € SL(2, C) of Eq. (8-35) is taken as g,(z), g,(2), and g5(z). Under a null rotation

g1(z) around I, the dyad components ¥, ..., Y, of the Weyl spinor transform
into

lVo = wo

Y= z2¢o + ¥,

Vo =280 + 229, + (8-71)

Wy =20 + 322, + 3z, + y;
IV4 = 24'1’0 + 4Z3l[11 + 622‘[’2 + 42{1’3 + w“

g2(2) induces the transformation

o = 2o

vy = 2%y,

Vo=, (8-72)
Vs=12"%,

Va=z"%,

whereas g;(z) induces the null rotation around n,:

Yo = Vo + 4z + 622, + 4205 + 2%y,

Wi =y + 329, + 3225 + 23,

Vo=, + 2205 + 2%, (8-73)
Ys=ys+ 2y,

Va=y,
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Invariants

By writing the components V,, ..., ¥, in terms of y,, ..., %, as expressed by
Eq. (8-66), the matrix ¥ of Eq. (8-62) may be written in terms of the components
of the Weyl tensor in the orthonormal basis as:

—(2x2/4/3) X1 — X3
Y=2"12 X1 (Xz/\/3) + Xo Xa (8-74)
—X3 Xa (Xz/\/3) — Xo

As can be verified from the transformation law (8-68), the characteristics of the
symmetric and traceless matrix (8-74) are independent of the spin frame.

Since the matrix (8-74) has a zero trace, we consider the invariant Tr P2
which is equal to

4
Tr le = X : X = Z Xme = lpABCDlpABCD (8-75)
m=0
If the invariant Tr W2 vanishes, the Weyl tensor is null. Otherwise, it is non-null.
Since an orthogonal transformation in E s does not necessarily represent a change
of spin frame, there is another invariant. It is Tr ¥3,

Tr W2 = Y42 et 1 (8-76)

Now the eigenvalues of ¥ satisfy the equation |¥ — AI| =0, where I is the
3 x 3 unit matrix. This equation gives the cubic equation in A:

f(A)=4*-344—3B=0 (8-77)
where A = y - x and B = 3 det V. By the Cayley-Hamilton theorem,
Y3 1Ay —4BI =0

and hence Tr W3 = B. One also easily verifies that Tr ¥", where n =4, 5, ..., can
be expressed in terms of 4 and B, and therefore there are no further independent
invariants.

Let 4,, 4, and 45 be the eigenvalues of ¥ (which may or may not be distinct).
From Eq. (8-77) one then obtains

11 + 12 + 13 = 0
—2(A1d; + AA5 + A34) =4 (8-78)

341A4,A; =B
Accordingly, if A, = 4, = 45, then 4; = A, = 43 = 0, and hence the two invariants
A and B, vanish. This is the case of gravitational fields of types N and III. A
gravitational field is of type II or D if two of the eigenvalues, let us say 4, and 4,,
are equal, A, =4,, and A; #4,. Equations (8-78) then show that

Ay = (Af6)'* = 4,, and 43 = —(24/3)'2, and that 4% = 6B2 # 0. A Weyl tensor
is of type I if and only if 4, # A, # A5, and hence A3 # 6B2.
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The classification given above is invariant under a change of frame. This is so
since if x is an eigenvector of W with eigenvalue 4 then, because of the transforma-
tion law (8-68), Py is an eigenvector of ¥’ with the same eigenvalue. Conversely, if
¥’ is an eigenvector of W', then Py’ is an eigenvector of ¥ with the same
eigenvalue. One can also show that if two Weyl tensors can be transformed to
each other by a change of a basis, then they must be of the same type and have the
same eigenvalues. The converse is also correct: If ¥ and ¥’ are of the same type
and have the same eigenvalues, they can be transformed one into the other. This
result enables us to put a matrix W, corresponding to a non-zero Weyl tensor, in
one of five canonical forms by choosing the spin frame in an appropriate way.
Thus, every element of the space E5 can be put into one of five standard forms.

Canonical Forms

We can assume without loss of generality that i, # 0, since otherwise a transfor-
mation of the type (8-73) will allow us to make y, non-zero. Using Eq. (8-71) we
now consider i, as a quartic in z, Y5 a cubic in z, etc., and notice that ¥/, ¥, ¥},
and Y are proportional to the first, second, third, and fourth derivative, respec-
tively, of Y, with respect to z. If ¥, has a double root we make /5 vanish
simultaneously with ¥, by choosing z to be this root. If i, has a triple root we
make ¥, ¥4, ¥, vanish simultaneously by choosing z to be this triple root. If i/,
has a quadruple root, choosing z as this root will make ¥/, ¥5, ¥, , Y/, zero. One
then finds that a necessary and sufficient condition for ¥, to have a quadruple or a
triple root is 4 =B =0. For one or two double roots the condition is
A3 = 6B? £ 0, for no multiple roots it is 4> # 6B2.

After the transformation (8-71) has been performed, let us drop the primes
from the components of the Weyl spinor. Equation (8-71) can now be followed up
by a transformation of the type (8-73) describing a null rotation about n,. If the
quartic in (8-71) has a quadruple root, allowing us to make ¥, ¥, ¥, and ¥,
vanish, no further transformation is necessary. The Weyl spinor is in the standard
form

(¥0,0,0,0,0) with i, # 0 (8-79)

If the quartic had a triple root, so that ¥, =y;s =y, =0, ¥, #0, then
Vy=ys=y,=0, ¥y; =y, and Y, can be made to vanish by choosing
z = —iy /4y, yielding the standard form

(©, ¥y, 0, 0, 0) with y, # 0 (8-80)

If the quartic had a double root, so that ¥, = 5 =0, ¥, # 0, then ¥y, =5 =0,
¥, =y, . ¥, is a quadratic in z and can be made to vanish by choosing z to be
one of its roots. If this root is a double root ¥/, will vanish also for this choice of z,
otherwise it will not. The former case occurs if the quartic had two double roots,
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the latter if it had one double root and two single ones. To show this is easy, but
tedious. Thus we get, dropping the primes, the standard forms

(0,0, ¥, , 0, 0) with ¢, # 0 (8-81)
and
(O, Y1, ¥, 0,0) with ¢, #0, Y, #0 (8-82)

If the quartic has only single roots, then 4* # 6B2. This is also the condition
that the quartic in (8-73) has no repeated roots. Hence only one of ¥, , ¥/}, ¥/}, , ¥/
can be made to vanish by an appropriate choice of z. Thus we see that we can find
a spin frame / ;, n, which induces a corresponding basis (8-59) in E; such that the
components of the given type 1 Weyl spinor take on the standard form,

(O’ %’ lpz s ¢3 ’ 0) (8-83)

where ;. ¥,, Y5 are all non-zero and satisfy the condition

A3 — 6B =3y, Y3(9Y, 2 — 16y, r3) # 0

The Weyl spinors (8-79) to (8-82) are, respectively, of types N, II1, D, I, as can
be seen by finding the corresponding matrices from (8-62) and calculating the
eigenvectors and eigenvalues. The results are shown in the following table. Note
that the algebraically special types are characterized by the existence of a null
eigenbispinor. All the eigenbispinors of a type I Weyl spinor are non-null, as is
best shown from the canonical form of the corresponding matrix (given in the
sequel).

Eigenvalues Eigenbispinors Type

(8-79) 0,0,0 lng,nmp N

(8-80) 0,00 nng 111

(8-81) /T Lg, n ng D
-2y, lng

(8-82) Vo, W, n,hg II
-2y, Lng — ; :Z: nyhg

For each type of Weyl spinor we have found a standard form. For example, a
Weyl spinor of type D can be put into the form (8-81) by an appropriate choice of
spin-frame. Our method is essentially the matrix method; the matrix, however,
was obtained using spinors. Corresponding to each type there is a canonical form
of the matrix which is obtained by choosing the spin-frame appropriately. These
canonical forms are listed below with the components of the Weyl spinor in the
basis (8-59) also given:
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0 0 0

0 1 i for type N, (2,0, 0, 0, 0)

0 i —1

010 i ;

1 0 i for typeIII,(l, _5’0’ —2,—1)

0 i 0

A 0 0

0 A,+1 i for type I1, (2, 0, 4, , 0, 0)

0 i A1

—21, 0 0

0 4, 0| fortypeD,(0,0,4,0,0)

0 0
0 i 0 fortypel,(llziz,O, ‘er 2 o, ‘212)
0 0 4,

A, and 4, are eigenvalues.

The standard forms for each type can be obtained from the appropriate
canonical form by a spin-frame transformation and vice versa. For instance, the
type I1I Weyl spinor (1, —i/2,0, —i/2, — 1) can be transformed into (0, i/2, 0, 0, 0)
by performing transformation (8-71) with z = i followed by (8-73) with z = i/2.
Conversely, performing (8-73) with z = —y, followed by (8-71) with z = 1,2y,
followed by (8-72) with z* = i/24/, transforms (0, ¥, 0,0, 0) into (1, —i/2,0, —i/2,
—1).

Spinor Method

The spinor method of classifying a Weyl tensor is analogous to that of classifying a
bivector. The expression ¥ , g, (4 8¢(P can be written as a quartic polynomial in
C =t
¥ asepC L7 = (()* Y0000 C* + 41000 C* + 61100 C?
+ Wo1 1, C+ Yl
= (") Yo C* + 4, C + 6y, C* + 43C + Y] (8-84)

where the dyad components are taken with respect to some spin-frame. This
quartic polynomial can be factored:

¥ amen PP = (M@0 € + o, )(Bo C + B1)(70 C + 71 )80 C + 6,)
= (*BalPyc(C 6pC°
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1

Il——D
Figure 8.1 The Penrose diagram for
classification of the gravitational field.
An arrow A — B indicates that the type
N 0

B field is obtained from the type A field.

111

where the spinors « ,, 8, 74, 6 4 are determined up to a constant of proportiona-
lity. Since Y, pcp is symmetric,

Y 4pcp = a(AﬂBVcéb) (8'85)

The directions of the null vectors corresponding to these spinors are called
principal null directions. If two or more coincide, the Weyl spinor is said to be
algebraically special; if they are distinct it is algebraically general. The Weyl
spinor is said to be of type N if all four spinors coincide; of type 111 if three of the
spinors coincide; of type I1 if two coincide with the remaining two distinct ; of type
D if the spinors coincide in pairs; of type I if the spinors are all distinct. This is
usually expressed in the Penrose diagram (see Fig. 8.1), where A — B indicates
that type B is obtained form type A by the confluence of two principal null
directions. Type 0, a vanishing Weyl spinor, has been included here for com-
pleteness. That this way of classifying Weyl spinors is equivalent to the matrix
method becomes clear when we note that the quartic polynomial appearing in
(8-84) is precisely the one that was under discussion in the previous section.

Tensor Method

The tensor method depends on the fact that for every Weyl tensor there exist four
null directions {, # 0, some of which may coincide, satisfying the equation

Qv[a c* Bl vé[pga]gvca =0 (8'86)

A Weyl tensor is of Petrov type I if the four directions are distinct; of type II if
two coincide with the remaining pair distinct; of type D if they coincide in pairs;
of type 111 if three directions coincide; of type N if all four directions coincide.
Equation (8-86) is equivalent to the spinor equation

wABCD£A£B£C£D =0

Our discussion following Eq. (8-84) shows that the tensor method is equivalent to
the matrix and spinor methods.
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PROBLEMS

8.1 Use Eq. (8-1) to show that the geometrical metric can be written as
guv — a.uAB’a.vAB’

Also show that

8.2 Use the identity

€4a8cp + Eactps + Eqppc =0
to show that an arbitrary spinor with two indices, ¢4%, will satisfy the equation

Cun— Caa=E4alc”
where ¢.€ = £°P¢,
8.3 Show that the spinor equivalent to the tensor
&h = (—9)""e,0,, 6 6%
is given by
ABCD

eipcn = (046G o0, 68 — 6455 67.0%)

[See R. Penrose, Ann. Phys. (N.Y.) 10, 171 (1960).]
8.4 The tensor *F, , defined by

v

*F,, = 3(=9)'""F%,,,,
is called the dual to the tensor F,,. Show that if the spinor equivalent of F, is given by Eq. (8-12), then
its dual can be given as

*Fpep = (e ucbap — Pucten)

8.5 Prove Egs. (8-14) to (8-16).
8.6 Show that the function A = y ,% is real.
8.7 The right dual tensor of the Riemann tensor is defined by

Suuse = H=0)"?R,,

uvpo afpo
Find its spinor equivalent in terms of the spinors x ,gcp and ¢ zcp -

8.8 Show that the Bianchi identity,

V,R,5 + V4R, + VR, ;=0

uvpy ¥ uvap

is equivalent to the equation
VDE'XABCD =Verd e F
[R. Penrose, Ann. Phys. (N.Y.) 10, 171 (1960).]
89 Show that the eigenvalue equation (8-26) corresponds to the tensor equation
Flo= -2,
or equivalently to
F,a" = —2(Re d)x,

where the vector a, is null and given by o = &, aa®.
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8.10 Show that the eigenvalue equation (8-58) corresponds to the tensor equation

C* opsF T = 4AF*

afiys
or the equation
1]
CUMF” = ZAF*U

where F*,, and ¢ ,, are related by Eq. (8-25).
811 Find the matrix R of Eq. (8-70); show that it is orthogonal and its determinant equals + 1.
8.12 Show that

Tr ¥3 =3det¥
= 3(koxs + 26%2/N3 — 1013
— X102 /N3 = e xsxa — 203/3V/3
— 12053 + 200373V

8.13 Show that the three scalar components of the Maxwell field ¢, ¢,, and ¢, given by Eq. (8-28)
can be obtained directly from the Maxwell tensor F,, by use of the tetrad of vectors (8-40). Show that

¢y =F, lIm’
b1 = $E (0 + )
¢, =F, m'n

8.14 Show that the five scalar components of the Weyl spinor ¥, ..., ¥, can be obtained directly
from the Weyl tensor C,4, ; by

Vo= —C,, . im'Pm?
Yy = —C nlim’
Yy = —3C, (PPN — P nfin)
Yy = —C,,mnln’
Yy = —C, AN
8.15 Show that Maxwell’s field equations with a magnetic monopole can be written in the form
V,F* = g
VAP = g
where *F is the dual to F (see Problem 8.4). Use now the following dual rotations
F, =F,cosa+*F, sina
h=ecosa+gsing
0= —esina+gcosa
in order to show that Maxwell’s equations can now be written as
V= hy
V*F = 0.
Show that the above duality transformation of the Maxwell field is equivalent to
4;,\3 =¢upe ”

where ¢, is the Maxwell spinor. [See R. Penrose, Ann. Phys. 10, 171 (1960)].



CHAPTER

NINE

SL(2, C) GAUGE THEORY OF THE
GRAVITATIONAL FIELD:
THE NEWMAN-PENROSE EQUATIONS

After discussing the use of spinors in general relativity theory in the last chapter,
we are now in a position to formulate the gravitational field as a gauge theory. The
theory of isotopic spin and gauge fields is hence discussed. This includes the
description of the electromagnetic and the Yang-Mills fields. The method of
Utiyama, generalizing the Yang-Mills field into gravitation by use of the hom-
ogeneous Lorentz group instead of the group SU,, is consequently described.
Finally the group SL(2, C) is employed. A scheme is given according to which the
spin coefficients of the gravitational field and the Riemann tensor are presented in
the form of linear combinations of the infinitesimal generators of the group
SL(2, C) similar to the way Yang and Mills write their dynamical variables in
terms of the generators of the group SU, . In this approach the spin coefficients
take the role of the Yang-Mills potentials and the Riemann tensor takes the role
of the fields. The gravitational field equations of general relativity are then derived
using the variational principle. The field equations obtained are the familiar ones
known as the Newman-Penrose equations.

9-1 ISOTOPIC SPIN AND GAUGE FIELDS

In ordinary gauge invariance of a charged field which is described by a complex
wave function y, a change of gauge!'! means a change of phase factor -/,
¥’ = (exp in)y, a change that is devoid of any physical consequences. Since ¥

t H. Weyl, The Theory of Groups and Quantum Mechanics, Dover, New York, 1931.
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depends on space-time points, the relative phase factor of i at two different points
is completely arbitrary and « is, accordingly, a function of space-time. In other
words, the arbitrariness in choosing the phase factor is local in character.

To preserve invariance it is then necessary to counteract the variation of the
phase o with space-time coordinates by introducing the electromagnetic poten-
tials A4,(x) which change under a gauge transformation as

, 1 O
A=At o
and to replace the derivative of i by a “covariant derivative” with the combina-
tion (0, — ieA, ).

Isotopic Spin

Historically, an isotopic spin parameter was first introduced by Heisenbergt? in
1932 to describe the two charge states, namely neutron and proton, of a nucleon.
The idea that the neutron and proton correspond to two states of the same
particle was suggested at the time by the fact that their masses are nearly equal,
and that the light stable even nuclei contain equal numbers of them. Later on it
was pointed out that the p—p and n—p interactions are approximately equal in the
1S state.l> * and consequently it was assumed that the equality holds also in the
other states available to both the n-p and p-p systems. Under such an assumption
one arrives at the concept of a total isotopic spin‘* which is conserved in nucleon-
nucleon interactions. Experiments on the energy levels of light nuclei strongly
suggest that this assumption is indeed correct!® This implies that all strong
interactions, such as the pion-nucleon interaction, should also satisfy the same
conservation law. This, and the fact that there are three charge states for the pion
can be coupled to the nucleon field singly, lead to the conclusion that pions have
isotopic spin unity. A verification of this conclusion was found in experiments
which compare the differential cross-section of the process n + p — n® + d with
that of the previously measured process p + p—>n* + d.[7

Conservation of Isotopic Spin and Invariance

The conservation of isotopic spin is identical with the requirement that all interac-
tions be invariant under isotopic spin rotation, when electromagnetic interactions
are neglected. This means that the orientation of the isotopic spin has no physical

2 W. Heisenberg, Z. Phys. 77, 1 (1932).

* G. Breit, E. Condon, and R. Present, Phys. Rev. 50, 825 (1936).

* J. Schwinger [Phys. Rev. 78, 135 (1950)] pointed out that the small difference may be attributed
to magnetic interactions.

® The total isotopic spin was first introduced by E. Wigner, Phys. Rev. 51, 106 (1937); B. Cassen
and E. Condon, Phys. Rev. 50, 846 (1936).

¢ T. Lauritsen, Ann. Rev. Nucl. Sci. 1, 67 (1952); D. R. Inglis, Rev. Mod. Phys. 25, 3950 (1953).

7 R. H. Hildebrand, Phys. Rev. 89, 1090 (1953).
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significance. Differentiation between a neutron and a proton is then an arbitrary
process. This arbitrariness is subject to the limitation that once one chooses what
to call a proton and what to call a neutron at one space-time point, one is ttken not
free to make any other choices at other space-time points. It also seems not to be
consistent with the localized field concept which underlies the usual physical
theories.

Isotopic Spin and Gauge Fields

The possibility of requiring that all interactions be invariant under independent
rotations of the isotopic spin at all space-time points, so that the relative orienta-
tion of the isotopic spin at two space-time points becomes physically meaningless,
was accordingly explored by Yang and Mills.'® They introduced isotopic gauge as
an arbitrary way of choosing the orientation of the isotopic spin axes at all
space-time points, in analogy with the electromagnetic gauge which represents an
arbitrary way of choosing the complex phase factor of a charged field at all
space-time points. This suggests that all physical processes, which do not involve
the electromagnetic field, be invariant under the isotopic gauge transformation
¥ -y, ¥ =S~ 'y, where S represents a space-time dependent isotopic spin rota-
tion which is a 2 x 2 unitary matrix with determinant unity, i.€., an element of the
group SU, discussed in Chapter 1.

In an entirely similar manner to what is done in electrodynamics, Yang and
Mills introduced a B-field in the case of the isotopic gauge transformation to
counteract the dependence of the matrix S on the space-time coordinates. Ac-
cordingly, and in analogy with the electromagnetic case, all derivatives of the wave
function  describing a field with isotopic spin $ should appear as “covariant
derivatives” of the form (8, — iB,)y, where B, are four 2 x 2 Hermitian matrices.
The field equations satisfied by the twelve independent components of the B-field,
which is calied the b field, and their interaction with any field having an isotopic
spin, are fixed just as in the electromagnetic case.

Isotopic Gauge Transformation

Under an isotopic gauge transformation, a two-components wave function
describing a field with isotopic spin 3 transforms according to

Y =Sy (9-1)

Invariance then requires that the covariant derivative expression transforms as
5@, — iB, W = (8, — iB, ). When combined with Eq. (9-1), we obtain the isoto-
pic gauge transformation of the 2 x 2 potential matrix B, :

B,=S"'B,S+iS"'2,S ' (9-2)

8 C. N. Yang and R. L. Mills, Phys. Rev. 96, 191 (1954).



194 GROUP THEORY AND GENERAL RELATIVITY

In analogy to the procedure of obtaining gauge invariant field strengths in the
electromagnetic case, Yang and Mills define their field as

F, =0,B,—3,B,+ B, B] (9-3)

where the commutator [B,, B,] = B, B, — B, B,. Under the transformation (9-1)
the 2 x 2 field matrix (9-3) transforms as
F,,=S'F,S (9-4)
Now Eq. (9-2) is valid for any § and its corresponding B, . Furthermore, the
matrix S™' 0S/0x* appearing in Eq. (9-2) is a linear combination of the isotopic
spin “angular momentum ” matrices T%, i = 1, 2, 3, corresponding to the isotopic
spin on the field ¥ under consideration. Here T* = 46', where o' are the three Pauli
spin matrices given by Eq. (1-5). Accordingly, the matrix B, itself must also
contain a linear combination of the matrices T'; any part of B, in addition to this,
denote it by Bu ,1s a scalar or tensor combination of the T’s, and must transform by
the homogenous part of (9-2), B, = S™'B, S. Such a field is extraneous and was
allowed by the very general form we took for the B-field, but is irrevelevant to the
question of isotopic gauge. Therefore, the relevant part of the B-field can be
written as a linear combination of the matrices T":

B,=2,T=b, ¢ (9-5)
where bold-face letters denote 3-component vectors in the isotopic space.
The isotopic-gauge covariant field matrices F,, can also be expressed as a
linear combination of the T’s. One obtains
F,=20,T=1 ¢ (9-6)
where
ob, 0b,
w = 8x‘: Toxt T 2b, x b, (9-7)

One notices that f,, transforms like a vector under an isotopic gauge transforma-
tion. The corresponding transformation of b, is cumbersome. Under infinitesimal
isotopic gauge transformations, $ = 1 — jo + dw. Then

b, =b, — 2b, x b + 06w/0x* (9-8)

Field Equations

In analogy to the electromagnetic case one can write down an isotopic gauge
invariant Lagrangian density:

= —4Tr F, F™ = —4f, - * (9-9)

One can also include a field with isotopic spin % to obtain the following total
Lagrangian density:

€= —§Tr F P — yy,(0, — iBW — mjys (9-10)
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The equations of motion obtained from the Lagrangian (9-10) are 1

of,,/ox* —2(b, x f,,)+J, =0 (9-11)
a0y — i b)Y + my =0 (9-12)
where
3, = iy, oy (9-13)
Since the divergence of J, does not vanish, one may define
Fu=J,-2b, x{, (9-14)
which leads to the equation of continuity.
0F,/0x* =0 (9-15)
Equation (9-15) guarantees that the total isotopic spin
T= j Fo d3x (9-16)

is independent of time and Lorentz transformation.

Nonlinearity of the Field Equations

Equation (9-14) shows that the isotopic spin arises from both the spin-} field J,,
and from the b, field itself. This fact makes the field equations for the B-field
nonlinear, even in the absence of the spin-} field. The situation here is different
from that of the electromagnetic case whose field is chargeless, and hence satisfies
linear equations.

Internal Holonomy Group of Gauge Fields

Group-theoretical considerations concerning the gauge theory discussed above
involved so far the gauge group SU,, only. In addition to the possibility of
generalizing the gauge group to other groups,''” there exists another group which
is defined by the potential B, ''!! One arrives at this group by the observation that
the potential can be used to define “parallel displacement” of multiplets i at
neighbouring points in the same way as the Christoffel symbols define parallelity
of vectors in Riemann space (see Chap. 7). By making a parallel displacement of

° The equations of motion (9-12) and (9-13) can be completed by the supplementary condition
b, /ex* = 0 which serves to eliminate the scalar part of the field in b,. This imposes a condition
on the possible isotopic gauge transformations. The infinitesimal isotopic gauge transformation

=1 — io - é® must satisfy the condition:

2b, x 8 ber/dx* + 3% bea/Ox* Ox, =0

This equation is the analog of the equation 82#/dx* x, = 0 that must be satisfied by the gauge trans-
formation A', = A, + ¢~ '(3a/@x*) of the electromagnetic field.

'98. L. Glashow and M. Gell-Mann, Ann. Phys. (N.Y) 15, 437 (1961).

"' H. G. Loos, J. Math. Phys. 8, 2114 (1967).
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multiplets around a closed curve in space-time, one obtains a linear transforma-
tion of multiplets. Doing this for all closed curves passing through a given point x*
results in a continuous set of linear multiplet transformations at x*. This set turns
out to be a Lie group, called the internal holonomy group, in analogy to the
ordinary holonomy group in the Riemann space!'? To see this we proceed as
follows.

We call the multiplets ¥(x*) and y(x* + dx*) equivalent if

Y(x* + dx*) — Y(x*) = B,(x*)(x*) dx* (9-17)

This equivalence relation, which is invariant under the gauge transformation (9-1)
because of Eq. (9-2), can be used to execute an equivalence displacement of multi-
plets y along a curve in space-time. The question is whether such equivalence
displacement is path-dependent. If it is not, we have

V.y =04y —iB =0 (9-18)
which leads to the integrability condition
ViV = —3F, =0 (9-19)

Since this is true everywhere for linearly independent internal vectors i, it follows
that F,, = 0. Accordingly, in order to have nonvanishing gauge fields the equi-
valence transport of y must be path-dependent. In the same way one can show that
if the field F,, vanishes everywhere, then the potential B, can be transformed away
by a gauge transformation (see Problem 9.5).

Now let C be a closed, piecewise, continuously differentiable, and has a sense
of circumscription. Taking a multiplet ¥ around C by equivalence displacement
results in a linear transformation H(C):

Y =H(C)y (9-20)

Doing this for all closed curves C through a point x one gets a set # of linear
internal transformations. The inverse of H(C) is produced by equivalence
displacement around C in the opposite direction. The composition H(C,)H(C,) is
the element H(C, + C,), where C, + C, describes the loop consisting of C, and
C,. Hence ¥ is a group which is a subgroup of the full complex linear group
GL(n, ¢). It is a connected Lie group. This is the internal holonomy group. It
follows that the internal holonomy groups at different points are isometric (Prob-
lem 9.6).

Finally, an interesting result is obtained if we consider the relation between
the internal homonomy group # and the gauge group ¢. We will leave it to the
reader (Problem 9.7) to show that compatibility of the groups # and ¢ requires
that either (1) # be a subgroup of ¢, or (2) ¢ be an invariant subgroup of 4.

12 J F. Schell, J. Math. Phys. 2, 202 (1961); J. N. Goldberg and R. P. Kerr, ibid. 327 and 332
(1961).
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9-2 LORENTZ INVARIANCE AND THE GRAVITATIONAL
FIELD

In the previous section we saw that the existence of the electromagnetic field and
the Yang-Mills field can be related to invariance properties. Thus, if the Lagran-
gian density is invariant under phase transformations y — (exp i)y, and if we
wish to make it invariant under the general gauge transformations for which « is a
function of x, then it is necessary to introduce a new field 4, which transforms
according to A, - 4, + e~ ' 0,a, and to replace the derivative of ¢ by a “covar-
iant derivative” (6, — ieA,)y. A similar argument was applied by Yang and Mills
to isotopic spin rotations, to yield a triplet of vector fields. It is thus an attractive
idea to relate the existence of the gravitational field to Lorentz invariance.

Homogeneous Lorentz Group and the Gravitational Field

Utiyama!!® has proposed a method which leads to the introduction of 24 field
variables 4Y, by considering the homogeneous Lorentz transformations of the
Lorentz group specified by six parameters. One starts by assuring that the action
integral

I=[ Ly g4 ) dx (9-21)

where y , = 0, ¥, is invariant under Lorentz transformations. Besides the x-system
one introduces an arbitrary system of curvilinear coordinates u*. We will use Latin
and Greek indices to represent quantities defined with respect to the x-system
(local Lorentz frame) and the u-system respectively. The square of the invariant
length of the infinitesimal line element is given by

ds? =n, dx' dx* =g,, du* du’

where 7, is the Minkowskian metric and g,,(u) = (0x"/0u*)(0x*/0w’)n, . Defining
the functions
Bt (u) = ox*/ow¥,  h*(u) = Out/ox* (9-22)

then gives nyh* K, =g, (), g, h*h =ng, h*H, =6k, hFH =54, and
det g,, =g = —h* = —(det h*,)>. Raising or lowering both kind of indices is
made by means of the metrics g**, g, or ,,and . Under a Lorentz transformation
xk— x*+ ¢, x!, where ¢!= —¢% are infinitesimal parameters, one has
h* — h* + 6h*, with 6h* = —¢', h*. Using the h functions we can transform a
world tensor into a corresponding local tensor defined with respect to the local
frame, and vice versa. For example, y*(u) = h*,(u)y*(u) and y*(u) = h*(u)*(u),
where Y (u) = *(x(u)).

Accordingly, we can rewrite the action integral as
I= (), ¥ u(u), 1, (w)) d*u (9-23)
where £ = L(y*(u), h*(u)y? ,(u))h and Y* , = oy (u)/ou-.

3 R. Utiyama, Phys. Rev. 101, 1597 (1956).
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Invariance of the Action Integral

The action integral I is invariant under: (1) the Lorentz transformation which
yields
Shk, = ek i, (9-24a)

5¢A = %T(kl) “M”E“’ (9-24b)

where «* is unchanged, and Tj,, 5 is the 4B matrix element of the infinitesimal
generator of the Lorentz group. The matrix Tj,, satisfies

[7;1:1) H T(mn)] = %f;cl abmnnab) s T(kl) = - 7;lk)
(2) the general point transformation
w = u* + A*(u)

where A*(u) is an arbitrary function of u, which yields

Shk, = — (04" jou)hk, (9-25a)
oY Hu) = ') — Yy*(u) =0 (9-25b)
SYt, = — (A /our) (9-25¢)

In the following the set h*, shall be considered as 16 independent given functions.

Generalized Lorentz Transformation

We now generalize the Lorentz transformation into one in which ¢* are replaced
by arbitrary functions ¢*(u). Under this “ generalized Lorentz transformation ” we
assume that y* and h*, transform as

oyt =348 T, ® (9-26a)
oh*, = e (u)h', (9-26b)
Then in order that I remains invariant under (9-26), it is necessary to introduce a
new field A (u) = — A% (u) with the following transformation law:
648, = ¢ A, + &A™, + deMjou* (9-27)
The new Lagrangian density is then given by
£ Vi B = LY, bV, (9-28)
where
Vot =optjout — 344 T, 4 0® (9-29)

We now take as our basic space-time, some Riemannian space whose metric
is g,,(u)=H,h, and whose affine connection is T*, =1g*(dg,,/ou +
09,, /0u* — dg,, /0u°). In order to obtain the relationship between A, and h*,, let
us take for Y4 the local tensor *. Then from Eq. (9-20) we obtain

Vu wkl — awkl/auu . Akmuwml _ Al"'ul,bkm
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Accordingly, replacing y* by y* = h,*y*™ we obtain

V“ wkv — awkv/auu _ Akmuwmv + r/puvwkp (9_30)
where
r',,” = h°0n /ou*) — b hy, AY, (9-31)

Equation (9-30) shows that the covariant derivative obtained here is the usual one.
where for Greek indices the I appear instead of the usual affinity I, and for Latin
indices the A*, must be inserted instead of I'. The relation (9-30) can be gener-
alized (see Problem 9.8). One also finds, under the ad hoc assumption that I is
symmetric in its lower two indices (see Problem 9.9), that

1 dg dg 0g
p —  gPo au ye _ “Ipv — 4 -
e 29 (8uv + ou*  ou° T (-32)
and
o,
hlﬂ W - Apvu = r"vu (9-33)

where 4°,, = h’h, A4,
Accordingly, we have obtained a general expression for the covariant deriva-
tive, For example, if we take for the field ¢ the spinor field i, we obtain

Vuw = (M/ax" - (i/4)Aklu[yk ’ }’z]lﬁ

where y, are the usual Dirac y matrices.

Free Field Case

Let us now consider the Lagrangian density £, for the free field, ie., the case
without the multiplet 4. The Lagrangian density is a function of the functions h
and A4,£(h*,, 4¥,, 04¥,/ow’). Since £, should be invariant under the “gener-
alized Lorentz transformation”, it follows that £, must depend on the field 4
through the form¢ o(k*,, F¥,)), where F is defined by

_oAM, oM, 1,

Fkl“v auu _ Tuv - Zf;zb m,,(AabuAm"v _ Aavamnu)
aAkl 8Akl
— Tur" — auvu + AkbuAlbv _ Akvalbu (9_34)
One can then show that (Problem 9.10):
Fkluv = huhkaRaluv (9-35)

where R?;,, is the Riemann tensor.
The total Langrangian density is given by £, =£(4, V, ¢, K,) + Lo(h*,,

F¥ ). The field equations for ¥ and h are given by
e _,

Syt oK,




200 GROUP THEORY AND GENERAL RELATIVITY

The field equations of gravitation are usually obtained from a particular Lagran-

gian density, £, = hR, where R is defined by R =g*' R, = h*h’F¥,,, and
R, = R*,,.. Taking the variation with respect to h gives
oL ot
P02 o
oh', oK,
One obtains
oLy o oL A o[ o8 .
O Shi,=—"h, 6h', + - O h,, 6k,
5hlll " 69/};1 v # ou* agpa,u ?
where
1
ogpa 2
Accordingly, the action principal leads to the field equations
h(R*® —4gP°R) = 7*° (9-36)

where 77° = 77, h'°, and 7 *, is given by
7, = bt/oh

Here .7 *7 is the symmetric energy-momentum tensor density of the original field
Y. The symmetry character of 7 ¢ can be proved (see Problem 9.11).

Poincare Invariance and the Gravitational Field

Kibble!'¥ has pointed out that Utiyama’s method, discussed above, is a rather
unsatisfactory procedure since it is the purpose of the method to supply an argu-
ment for introducing the gravitational field variables, including the metric and the
affine connections. To overcome these difficulties and make possible the introduc-
tion of the vierbein components k', as well as the local affine connections AY, as
new field variables analogous to the electromagnetic potentials 4,, Kibble ex-
tended Utiyama’s discussion and considered the 10-parameter inhomogeneous
Lorentz group (Poincaré group) instead of the homogeneous 6-parameter Lorentz
group. He showed it is then unnecessary to introduce a priori curvilinear coordin-
ates or a Riemannian metric, and that the new field variables introduced as a
consequence of the argument include the vierbein components b * as well as the
local affine connection A", . The extended transformations for which the 10 par-
ameters become arbitrary functions of position may be interpreted as general
coordinate transformations and rotations of the h* field. The Lagrangian density
proposed, then yields the free space field equations R,, = 0, but when matter is
presented the resultant equations show that there is a difference from the theory of
general relativity which arises from the fact that AY appear in the matter field

'+ T. W. B. Kibble, J. Math. Phys. 2, 212 (1961).
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Lagrangian. As a consequence this means that, although the covariant derivative
of the metric vanishes, the affine connection I'; is nonsymmetric.

We will not discuss in details this Poincaré invariant theory. Instead, we will
return and formulate the gravitational field equations in a SL(2, C) invariant way
so as to exhibit the gauge aspects of the theory. This is done in the next section.

9-3 SL(2, C) INVARIANCE AND THE GRAVITATIONAL FIELD

In the previous section we discussed the theories of Utiyama and Kibble of
applying the Yang-Mills method in order to relate the gravitational field to a
generalized gauge field associated with the Lorentz group, where one starts with
flat space and introduces at each point a curved space-time. On the other hand,
we saw in Section 8-1 how spinors are introduced in a Riemannian space, at each
space-time point in a tangent two-dimensional complex space. The two
procedures are therefore the opposite of each other. It is thus an attractive idea to
relate the two approaches, the one that is based on the Yang-Mills method and
the other that is based on spinor formalism, to the gravitational field. In this
section it is shown how the theory of general relativity, given in the spinorial form,
can be recast into a Yang-Mills-type theory by use of the group SL(2, C). To be
sure, we will not follow the prescription of Utiyama, thus not starting with a Dirac
field and going into a curved space-time since, as has been pointed out by
Weinberg,!®! this is a somewhat arbitrary procedure. Instead, we will reverse
Utiyama’s procedure since we start with the curved space-time and subsequently
introduce at each space-time point a tangent space in which a complex three-
dimensional linear space is introduced. Another difference exists between the
present theory and that of gauge fields since in the latter case it is the spin affinities
that are considered as potentials, whereas the potential matrices here will be
defined differently [see Eq. (9-38) below]. Obviously, spin affinities are not space-
time vectors whereas the potentials to be defined here are.

Spin Frame Gauge

The gravitational field dynamical variables of general relativity can be divided
into three sets: (1) the Riemann tensor, decomposed into its irreducible compon-
ents (the Weyl tensor, the trace-free parts of the Ricci tensor, and the Ricci scalar);
(2) the spin coefficients (to be introduced in the sequel); and (3) a tetrad system
(see Chapter 8) of vectors (from which one obtains the metric tensor). They are
connected by three sets of first-order partial differential equations which describe
the gravitational field.

We will represent the spin coefficients and the components of the Riemann
tensor in the form of linear combinations of the infinitesimal generators of the
group SL(2, C). This representation is very similar to the way Yang and Mills
write their dynamical variables in terms of the Pauli spin matrices. The spin

15 G, Weinberg, Phys. Rer. 138, B988 (1965).
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coefficients take the role of the Yang-Mills-like potentials, whereas the Riemann
tensor components take the role of the fields.

There is an essential difference, however, between this representation and that
of Yang and Mills. The group underlying the symmetry here is SI(2, C) whereas
in the Yang-Mills case it is SU, . The group SL(2, C) seems to fit in with general
relativity in a remarkable and natural way, just as 2-component spinors do. This is
not an unexpected result since spinors, as we have seen in Chapter 3, describe the
finite-dimensional representation of the group SL(2, C).

We start by introducing at each point of space-time two 2-component spinors
S, where a = 0, 1, to define a spin frame. Each one of these two spinors might be
considered as a complex wave function describing a spin  particle, but one
assumes nothing as to whether they satisfy any dynamical wave equations. As in
Chapter 8 the two spinors {,* are normalized such as {,%e5,(,* = {,,{," = € >
where, as usual, ¢'s are the skew-symmetric Levi-Civita symbols defined by
£o; = 1. Such a frame has already been discussed in Chapter 8 where the two
spinors were denoted by 4 and n“.

A spin frame gauge can be defined!!® as an arbitrary way of choosing the
orientation of the spin frame axes at all space-time points, in analogy with the
isotopic gauge which is an arbitrary way of choosing the orientation of the isoto-
pic spin axes at all points. One then demands that all physical processes be
invariant under the spin frame transformation

{=SU (9-37)

where ( is a 2 x 2 complex matrix whose elements are {, % and S represents a spin
frame rotation which is a 2 x 2 unimodular complex matrix whose elements S,°
are functions of space-time.

An arbitrary spinor G** can now be written in terms of the spin’ frame,
G = G, 4, %, where G are the dyad components of the spinor G*# and are
given by G®' = G .5 (*4C"?. As before, lower-case indices are used for dyad com-
ponents. These indices behave the same way algebraically as ordinary spinor
indices except when covariant differentiation is applied in which case no term
involving an affine connection appears for them. By the same token, the quantity
V,<?, obtained by taking the covariant derivative of a spinor ¢4 can also be
written in terms of the spin frame as V, ¢4 = B®, {4, where B, withb = 0, 1, are
some space-time vectors. In particular the last formulae applies to the two spinors
{,* defining the spin frame. This gives V,{,* = B,’,{,*, where B,®,, witha, b = 0,
1. are some vectors.

Potentials and Fields

In the Yang-Mills theory it is the spinor affine connections which are considered
as potentials. However, these quantities are not space-time vectors, as has been
shown in Chapter 7, in the Riemannian space, and alternative quantities have to

'e M. Carmeli, Ann. Phys. (N.Y) 71, 603 (1972).
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be found. Fortunately, such quantities are available. For instance, one can take
the vectors Ba”u, obtained above from the covariant derivatives of { %, as the
potentials. For convenience one rewrites the relation V, {,* = B,*, {,* as

vV.{=B,( (9-38)

where B, and { are 2 x 2 complex matrices whose elements are B,’, and (,%,
respectively. The normalization condition that the two spinors {,* have to satisfy
then implies that the matrix B, be traceless and the matrix { be unimodular.
The commutator of the covariant derivatives, (V,V, — V, V,), when applied
on ¢ gives F,, {, where
F

By

=0d,B,—d,B,+[B,, B, (9-39)

is a 2 x 2 complex traceless matrix whose elements are skew-symmetric tensors.
The commutator [B,, B,] = B, B, — B, B, . Hence the relation between the F- and
B-matrices is similar to that of the Yang-Mills field, Eq. (9-3), but with the
exception that the potentials are now defined by Eq. (9-38) rather than taken as
the spinor affine connections as is done in that case. Furthermore, under a change
of the spin frame (9-37) one easily finds that B, and F,, transform into

B,=S'B,S—5'4,5 (9-40)
F, =S'F,S (9-41)

similarily to those of the Yang-Mills field, Egs. (9-2) and (9-4), when subjected
under an isotopic gauge transformation.

The matrix B, defines 12 complex functions, whereas the matrix F,, defines 18
complex functions. The latter is equivalent to the 20 real components of the
Riemann tensor plus the 16 real components of the tetrad field o*,,, [see Eq. (9-46)
below].

Spin Coefficients as Potentials

Since the matrices B, and F,, are traceless, it follows that they both can be written
as linear combinations of the infinitesimal generators of the group SL(2, C) simi-
lar to the way Yang and Mills write their dynamical variables in terms of the Pauli
spin matrices. The infinitesimal generators of the group SL(2, C) are three
traceless matrices that can be chosen as'”

S T N B

1" Our matrices are related to those of Gelfand, Graev, and Vilenkin by g, = a_, g, = 2a,, and
g; = a, .Seel. M. Gelfand, M. 1. Graev, and N. Ya. Vilenkin, Integral Geometry and Representation
Theory, Academic Press, New York, 1966.
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The matrices g,, ¢,, and g3 are tangent vectors to the one-parameter subgroups

0=, ) - (5 ) e0=(p 1) e

where z is a complex parameter, and satisfy
Im(Zy +23) = gm(21)gm(z2);  (no summation on m)

for m = 1, 2, 3. The matrices (9-43) are identical to those appearing in Eq. (8-41)
[but with a slight change in the notation of g,(z)], and every matrix of the group
SL(2, C) can be presented uniquely as product of them. The infinitesimal genera-
tors g,, g,, and g5 are obtained from g¢,(z), g,(z), and gs(z), as usual, by

Im = [dgm(z)/dz]z=0

and conversely, the matrices g,(z), g,(z), and g(z) can be expressed in terms of the
infinitesimal generators ¢,, g, and g, by

gm(z) = €xp (29,
Accordingly, one can write
B,=b, - g (9-44)
Fo,=1,"8 (9-45)

where g = (g,, g2, ¢3), and b, and f,, are vectors in the complex 3-dimensional
space of SL(2, C).

We now define another set of Hermitian matrices related to the matrix * (see
Sec. 8-1) by

o* = (G*(! (9-46)

where (' is the Hermitian conjugate of {. Contrary to & whose covariant deriva-
tive vanishes by definition, the covariant derivative of the matrix ¢* does not
vanish and one has, using Eq. (9-38),

V,¢* = B,¢* + ¢*B] (9-47)

The geometrical metric can then be written as g** = * 56" 4% = ¢*,,, 6" The
elements of the matrix ¢* define a null tetrad of vectors where ¢* 5, and o* ;. are
real, whereas ¢*,, and 6", are complex, conjugate to each other. Moreover, they
satisfy the orthogonality relation 6* ;4 6,.4 = €4.€34 . These are the same null vec-
tors ¥, m*, m*, and n* introduced in Chapter 8, where 6*yo. = V¥, 0%y, = m",
oo =m, and ¢*,, = n*.

The three sets of matrices B,, F,,, and ¢* describe all the dynamical variables
of the gravitational field. From the B, and F,, one can obtain two new sets of
matrices which are just new representations of the B and F matrices:

Bab’ = O-uab’Bu (9-48)
Fapea = 0" 060" ca Fyy (9-49)
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Again one may write the latter matrices as linear combinations of g:
By=by, g (9-50)
Fab’cd’ =Lpear ° 8 (9_51)

where the new four 3-vectors b, and the six 3-vectors f,,., are related to b, and
f,, of Egs. (9-44) and (9-45) by
bcd' = aucd' bu ’ fab’cd’ = o'uab'o'vcd' fuv

The four 3-vectors b, in the complex SL(2, C) space will be denoted by
b,, =(m & —k), by, = (u B, —0)
00 ( ) 01 ( (9-52)
b10’ = ('{s a, _p)5 bll’ = (V, s _T)

Using Eq. (9-50), we see that the four matrices B, will then have the form

el ) nel

a —p Yy -1
BIO'=(/1 —ot)’ Bll(:(v —}')

when the representation (9-42) is used for g.

The twelve complex functions ¢, x, =, etc., were first introduced by Newman
and Penrose!'®! and are known in general relativity theory as spin coefficients.
From the point of view of Yang-Mills field theory these same quantities are the
potentials the field of which is given by the F-matrices according to Eq. (9-39).

(9-53)

Symmetry of F,,. .

It is convenient to introduce another matrix, Eu, connected to the matrix B, by a
similarity transformation

{B,=B,{ (9-54)

u
The new matrix then satisfies

V.{=(B, (9-55)
The matrix elements of E“ and B, arerelated as follows. If B,®, is the ab element of
the matrix B, then B,?, is the AB element of the matrix B, . This fact can easily

be seen by writing the matrix elements of both sides of Eq. (9-54). The left-hand
side gives

(CEM)eF = Ce DBD Fu

'8 E. T. Newman and R. Penrose, J. Math. Phys. 3, 566 (1962).
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whereas the right-hand side gives
(BMC)eF = BedquF

As can be easily seen, both of these expressions are equal to B,F, . Hence, while the
matrix element indices of B, are dyad components, the matrix element indices of
E“ are spinorial.

In the same way we can define another matrix F v s

{F,,=F,( (9-56)
which satisfies
(V.Y = V.V ) = (F,, (9-57)
and whose explicit expression is given by
F,=V,B,-V,B —[B,, B] (9-58)

Similar to the potential matrix B,, the matrix elements of F,,, and F,, will be

F,b,, and F %, respectively.

To find the SL(2, C) structure of the matrices F,;, .4, We proceed as follows.'!?!
Let &P be an arbitrary spinor. Then
(VVVM - VMVV)§P = (VVVM - VMVv)ggCGP
=&(V,V, -V, V.),"°
Now, using Eq. (9-57), we obtain
(V,V, =V, V)EF =& HF P,
Hence we have
(Vvvu - Vuvv)gQ = FPqu §P
or equivalently,
(VACIVBD« - VBD«VAC«)fg = FPQBD/AC' fp (9'59)

By decomposing the commutator of differentiation on the left-hand side of
Eq. (9-59), we obtain (see Problem 9.12):

36coAVar V" + Ver.V "o + 36 4(Vec Vb + Vep VEC)g = FPQBD«AC(«fp )
9-60

But the left-hand side of Eq. (9-60) is equal (see Problem 9.13) to:
ecn[V as0p — Mepatag + Eps€a0)IE" + Eandopcn & (9-61)

where ¥  zcp is the totally symmetric spinor which represents the Weyl spinor,
dopcp TEpresents the trace-free part of the Ricci spinor having the symmetry

¢QPC«D« = ¢PQC'D’ = ¢QPD’C' = ésc«DrQP
and A = —R/24, where R is the Ricci scalar.

19 M. Carmeli, J. Math. Phys. 11, 2728 (1970).
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Alep4Epp + €t 40)] + €45Porcip

and the same relation holds for lower-case indices:

Fp Ypdac = de’[Wp Tab—

A(Bpa 5bq + pr 5a q)] + Bab¢p qc’d’

Using the standard notation

Woooo = Wo s
WOlll = Wa >

and
¢000’0’

¢000’1’

= ¢003
= ¢01,
¢001'1' = ¢02’

Woom = Wl,
%111 =Y,

|poou = Wz

= ¢1o,
=¢115
¢129

¢110'o' = ¢2o
¢110'1' = ¢21
¢111'1' = ¢22

Po100°
Poro1’
o111 =

we finally obtain for the 3-vector f,,, .,

by

01’00’

-

10'00’

by

11'01°

11'00’

e

1001’

11110° = W

= (¥,
(
=
=
=
=(-

$205 P10
$225 12
W + G ¥y + b4y —

+2A, 9, —¥,)
Vi, =¥, — 2A)
—$o0)
—$52)

(9-62)

A - ‘pl - ¢01)
3+ 21

and for the six matrices F ;. .4:

Foi1.00 =

F11'10'

FIO’OO’

Fll’Ol'

Fii00 =

F10'01'

*‘pz + ¢11 + A, Wl - ¢01)
2

- Wo)
Yo+ 28—y,
Yy —¥,— 2/\)
Ya —¥3

¢10 ~4500) (9-63)

¢20 _¢10

¢12 ~4502)
¢22 _¢12

Yo+ 1 —A
Y3 + éyy

Yo+ dy + A

—¥y — bos )
VY=t A

‘pl _¢01 )

—Vs3+ dy Yo — b1 —
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In Appendix E the transformation laws under the group SL(2, C) of the tetrad
of null vectors, the spin coefficients, and the components of the Riemann tensor
will be given explicitly. Notice that v, ..., ¥, are complex, A is real, and ¢,,,

satisfy ¢,,. = @,

9-4 GRAVITATIONAL FIELD EQUATIONS

Having defined the gravitational field dynamical variables, given by the compon-
ents of the Riemann tensor (9-63), the spin coefficients (9-53), and the four null
vectors ¢*,,, we are now in a position to find out the gravitational field equations
that relate these quantities. We encounter a different situation from that of the
Yang-Mills case. In the latter case the field equations are obtained from a Lagran-
gian density that is postulated. In the present case we have the Einstein equations
which relate the Einstein tensor to matter. This latter condition, is imposed on the
field equations already at our disposal, including the identities, which con-
sequently ceased to be identities and become part of the field equations.
The procedure of using the identities as part of the field equations is well known in
general relativity.[>?) Nevertheless, we will see that two out of three sets of these
same equations can be derived from a Lagrangian density.

Identities

The matrices F,, and F,, defined in the previous section satisfy some identities
which can be found as follows.
We calculate the expression

V.Fg, + VsF,, +V,Fyy (9-64)

The curl part of F does not contribute to (9-64) as can easily be verified. The
second part of F, the commutator [B,, B,], contributes to (9-64) the expression

[(V, B, — V.B,), By] + [(V. By, — V;B,), B,] + [(VsB, — V, By), B,]
Now add to this expression the term
[[B.. B,], Bs] + [[By » B.]. B,] + [[B;, Byl. B.]
which is identically zero, we obtain
V.Fs,+ VyF,, + V,F,y =[B,, Fﬂy] + [Bg, Fyo] + [B,, Ful (9-65)

Note that the covariant derivatives in Eq. (9-65) can be replaced by partial deriva-
tives without affecting that equation.

To find the identity the F,, satisfy, we express its covariant derivative in terms
of those of F,,. Since, by Eq. (9-56), F4, = {” 'F;,(, one obtains

Vaﬁﬂy = (VaC—I)FﬂyC + C_I(VaFﬂy)C + C_lFﬂyVaC

20 M. Carmeli, Nuovo Cim. Lett. 4, 40 (1970); Nuovo Cim. TA, 9 (1972).



SL(2, C) GAUGE THEORY OF THE GRAVITATIONAL FIELD 209

Using Eq. (9-38), and the fact that V,{~' = —{~1(V,{){ ", one obtains
VoFy, = (Vo Fy, = [B,, FplX
Using this equation in Eq. (9-65) we obtain the identity that the matrix F,; has to
satisfy:
V. Fy + V,F,,+ V,F,y =0 (9-66)

Field Equations

In Section 9-3 we have defined the matrix F,, in terms of the matrix B, by
Eq. (9-39), and in this section we showed that these matrices satisfy the identity
(9-65).

By contracting Egs. (9-39) and (9-65) with ¢*,,.0" 4 and ¢*,, 6% 4 67, Te-
spectively, and using Eq. (9-47), one obtains two sets of first-order partial differen-
tial equations that now connect the four matrices B, and the six matrices F 4,/
A supplementary set of equations which connect the matrices ¢* with the matrices
B,,. and which is called the metric equation is, furthermore, obtained from
Eq. (9-47).

Multiplying Eq. (9-39) by ¢*,,.¢” ., and using Eq. (9-48) we obtain

acd’ Bab’ - aab’ Bcd’ - (Vcd’o'uab’ - Vab’o'“cd’)Bu + [Bab‘ s Bcd’] = Fab’cd’ (9'67)

where the two differential operators d and V are defined by 4, = ¢*,, 3, and
Vab' = auab' Vu :

The third and fourth terms in Eq. (9-67) can be found using Eq. (9-47). Con-
tracting the latter with ¢*,, we obtain

V. 0" = B, 0" + ¢*Bld*,.
where use has been made of the Hermicity property of ¢*,, . Hence we obtain
V. 0* = By40" + ¢*B',, . (9-68)

Here the four matrices B',, are Hermitian conjugate to the matrices B,,, given in
Eq. (9-53). For completeness, and for the convenience of the reader, we list them

below:
7 . _( B
_g)’ B’y i —B

Btl’O = ( I_}), Btm = ( f)
—a — -7

Accordingly we obtain from Eq. (9-68)

Vcd’ o.uab’ = (Bcd’ o'u)ab’ + (auBtd'c)ab’

™|

&l

Poo” ( (9-69)

R
Al o~

where (), is the ab’ element of the matrix ( ). Writing this last equation in
terms of matrix elements we obtain

Vcd’ o'uab’ = (Bcd’)a fo'ufb’ + auaf’(Btd’c)flb’ (9'70)
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Here (B,;),” and (B',.)’", are the af and f'b' elements of the matrices B,, and
B',., respectively.
Using Egs. (9-70) and (9-48) in Eq. (9-67) one obtains:

acd'Bab' - aab’ Bcd’ - (Bcd’)a fob’ - (Btd’c)f(b’Baf’
+ (Bas)e'Bra + (B'50) 4By + [Bap s Bea] = Fapea (9-71)

Similarly, one can rewrite Eq. (9-65) in terms of the corresponding quantities
with dyad indices to express relations between the matrices B, and F .4 by using
Egs. (9-47) and (9-49). Multiplying Eq. (9-65) by 6”4 0”407, and using
Eq. (9-70), one obtains:

Oabr Feare: t Oca Fepap + Oor Fapea — (Bap)e ’Fpaes.

B'yo) eFeger = (Bap)e Feagr: — (B wal s F caey
B.i)eFypay — (B'acl rFegay — (Bea)a®Fepigr

B' 4 v Fepag — (Ber)a®Fapea — (B' 1) s Fagea

B.;)e Fapge — (B' re)f aFapey

=[Bay s Feaer] + [Ba » Fef’ab’] + [Bes Fopea] (9-72)

One can easily verify that Egs. (9-71) and (9-72) are the usual field equations
obtained using the formalism of Newman and Penrose.?!!

We finally obtain the metric equation which connects ¢*,,, with B,,,. This
equation can easily be obtained from Eq. (9-70) and is given by:

aab'aucd’ - acd’auab’ = (Bab' o'u)cd’ + (auBtb’a)cd’ - (Bcd’ au)ab’ - (auBtd’c)ab’ (9'73)

—
—
—
—

Gravitational Lagrangian

The gravitational field equations, connecting the dynamical variables of general
relativity, were obtained from Eqgs. (9-39), (9-47), and (9-65) by rewriting them in
terms of the corresponding quantities with dyad indices, and substituting the
desired expression in terms of the energy-momentum tensor for the Ricci tensor
components in the curvature matrices (9-63). However, one can also obtain two
sets of these field equations from an action principle that is based on the analogy
of the present theory to that of the Yang—Mills theory.

The simplest Lagrangian density which is invariant under both general coor-
dinate transformation and spin frame transformation was shown by Carmeli and
Yang to be given by!??

to = —4(= g/ Tr (F,, F*) (9-14)

It is also a most natural generalization to the free-field Yang-Mills Lagrangian
density (9-9). It follows, however, that the equation of motion obtained from such

2! These equations are given in F. A. Pirani, Lectures on General Relativity, Prentice-Hall,
Englewood Cliffs, N.J., 1964, p. 350. ]
22 M. Carmeli, Nucl. Phys. B38, 621 (1972); C. N. Yang, Phys. Rev. Letters 33, 445 (1974).
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a Lagrangian density does not give the complete set of gravitational field equa-
tions but yields only the empty space ones.

Another Lagrangian density can be constructed, however, which gives the
complete set of field equations (9-71) and (9-72). This was shown by Carmeli and
Fickler®® to be given by —4(—g)"/? Tr (H*'F, ), where

H* = g#Bg 4P'5* 56P cp Fop
The first-order form of this Lagrangian density is:
€= —3-g)"* Tr {H*(—4F,, + 8,B, - 9,B, + [B,, B}}  (9-75)

A complex conjugate expression can be added to (9-75) so that the Lagrangian
density becomes real. The matrix elements of B, and F,, are considered to be the
independent field variables, and Eq. (9-39) is assumed to be unknown. The
matrices ¢* are introduced in (9-75) as auxiliary quantities in order to accomplish
invariance but they are not considered as part of the dynamical variables.

Application of the usual procedure of variational calculus then leads to the
field equation (9-39) and to the following equation of motion:

O(=g)H") = [B,. (~g)"H*] = 0 (9-76)

Equation (9-76) gives the dynamical equation of motion which the Riemann
tensor has to satisfy, and accordingly we have a full description of the dynamical
system. Equation (9-39) gives the Riemann tensor in terms of the spin coefficients,
whereas Eq. (9-47) gives the spin coefficients in terms of the tetrad of null vectors.

To recover the gravitational field equations (9-71) to (9-73) one has merely to
rewrite these equations in terms of the dynamical variables using Egs. (9-48),
(9-49), (9-53), and (9-63). One obtains the field equations (9-71), (9-73), and the
following:

aClecb'ad' - {(de’)cp + (th(c)q’d}Fcb'ad’
- {5f(b’(BCd()ea + 5ea(Btdlc)b’ fl}Fcf’ed’ - [BCd(’ Fcb’ad’] =0 (9'77)

When written in details, Egs. (9-72) and (9-77) follow to be identical.

The Lagrangian density (9-75) is a natural generalization of the free-field
Lagrangian density (9-74), and reduces to the latter in the free-field case. This can
easily be seen since the expression in braces in £ can be written as {H*'F > and by
Eq. (9-49) this is equal to 4F<**F ,, ., . In empty space (i.e., when all ¢’s and A are
assumed to be zeros) this last expression can be seen, by Eq. (9-63), to be equal to

1F4F pea» OF €qual to $F*'F,, thus giving the expression

~3(=g)'* Tr {F**(—%F,, +0,B, —d,B, + [B,, B,])} (9-78)

for the Lagrangian density (9-75) in free space, which is the Lagrangian density
(9-74).

We finally remark that the two sets of equations (9-71), (9-72) [or (9-77)] and
(9-73) are written in detailed form in Appendix D. The transformation laws of the
field variables will be given explicitly in Appendix E.

23 M. Carmeli and S. I. Fickler, Phys. Rev. D5, 290 (1972).
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Conservation Laws

The gravitational Lagrangian density (9-75) is not satisfactory since: (1) it in-
volves the Hermitian matrices ¢* and the metric tensor g,, as auxiliary quantities
in order to accomplish invariance but are not part of the variational procedure;
(2) it leads to the Bianchi identities and to the definition of the fields F,, in terms
of the gauge potentials B, ; and (3) the Einstein condition is not incorporated in it
and has to be added afterward in the field equations.

A modified Lagrangian density can be constructed in the form(24

L= —1Tr {e""“‘"Fa{ﬂ(—%sz +48,B,—0,B, +[B,, B,])} (9-79)

to overcome these difficulties. In Eq. (9-79) &*#** is the totally skew-symmetric
tensor density of weight + 1 with values +1 and — 1, depending upon whether
afuv is an even or an odd permutation of 0123, and zero otherwise. The matrices
B, and F}, are defined by B, = ¢,°”B,,. and F = 6," ¢ ‘“F}, ., where B,,, are
given by Egs. (9-53) and FJ,.,,. describe the Weyl tensor plus matter,

Fiyee = Fllyea + ¥Jopea (9-80)
Here  is the Einstein gravitational constant, F},.,, are the Weyl matrices given by
Vi —
FBVI’OO’ = W: _W(:
Yo —
FYl00 = W: _W: (9-81)
Vs —
oo =y, _y,
along with F.00. = Fy.01- = 0 and F{.5;. = — FY}.50-» Whereas the six matter
matrices J .., are given by
1(0 0 1{0 —T/6
J01'oo'=§ T/6 0 > J11«101=§ 0 0
J =1 TlO'OO' _TOO’OO’)
1000 2 TlO'lO' - TIO'OO’
1 TOl’ll’ _TOI’OI’)
Jitor =3 9-82
ot 2 Tll'll' _TOI’II’ ( )
J =1 Ti100 _Tovoo«) ~(T/6 0 )
P 20 Touy —Tiweo) O —T/6
J =1 Ti100 _Tovoo«) _ E(T/6 0 )
U T ~Tieo) 210 -T/6

24 M. Carmeli, Phys. Rev. D., 14, 1727 (1976); A. Salam, in Proceedings of the Coral Gables
Conference, January 1973.
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Here T, = 0% 004 T,,, where T, is the usual energy-momentum tensor, and
T=g"T,.

Carrying out variations with respect to the elements of the matrices F;, and
B, then lead to the following field equations

F), =0,B,—¢,B, +[B,, B,] (9-83)
e, Fl; — [B,, Fi,1} =0 (9-84)
The field equation (9-84) can now be written in the form
e #(0,F¥ — [B, , Fl3]} = xJ*, (9-85)
where J* represents the sources,

J‘z = —gaﬂvé{ﬁﬂ.]yé — [Bﬂ s Jyé]} 9 86

Jaﬂ = 0, abaﬂ Cd(Jab’cd' ( ) )

Equations (9-85) and (9-83), consequently, give the Newman-Penrose field

equations (see Appendix D) but with the Ricci tensor already being substituted
for by the energy-momentum tensor through the Einstein field equations.

Choosing now the basis (9-42) in the inner complex 3-dimensional space of

the group SL(2, C) one can then decompose all the matrices appearing in the field

equations (9- 85) in the space, B, =b, g F =1 -g and J*=J* g where
g = (91> 92 g3)- Equation (9-85) may then have the form
e 0, £, — b, x £, = kJ (9-87)

Since the divergence of J* does not vanish, one may define
Fh=J 4+ ke, x 1, (9-88)
which leads to the equation of continuity
oFf*ox* =0 (9-89)

The similarity to the Yang-Mills case is remarkable but should not be surpris-
ing. In terms of components, and because of the commutation relations that g,

g2, g satisfy,
[gl’ gz] =2g,, [93 > gl] =492 [gz s ga] = 2g, (9'90)
one obtains
ju =J¢ + K—leuvaﬂ{2(bv 1 » 2 _ bv 2 8 1), (bv3 8 1 _ bv 1 8 3)’
2(bv 2 ap P - bv 3 ap 2)} (9-91)

Here b,* and f,,* are given by b,* = ¢,”b,,* and f, * = q, 'av“"fa,,cd, . with b,,.*
andfab«cdf given by by, = (7, ¢, “’C)’ boy = (1 B, —0) byo = (Ao, —p)byy, = (v,



214 GROUP THEORY AND GENERAL RELATIVITY

% —1) and foro0 = (W2, ¥ —Vob firoo = —Ffroor = W3, Y2, —¥y)
Sfirio = W4, ¥3, —¥,) and f5.00. = f11.01, = 0. In the same way one easily finds
the SL(2, C) components of the “current” J*,

PROBLEMS

9.1 Show that the Hamiltonian derived from the Lagrangian density given in Eq. (9-11) is positive
definite in the absence of the field of isotopic spin 1.
9.2 To quantize the Yang-Mills field it is sometimes convenient to start with the Lagrangian density
which is not obviously gauge-invariant:
1 0b, ob ob
f=—_- H#H._# b b)) —*
200 g T BB

— (b, xb ) +J, b, ~ Py, o, +my

u

Show that the equations of motion obtained from this Lagrangian density yield the equation

d%a
(0x*)?

=0

where a = db, /0x*.
9.3 Show that the Hamiltonian density derived from the Lagrangian density of Problem 9.2 is given by
H=H,+ H, , where

int

Here m, is defined by
n, = —0b,/0x° + 2(b, x b,)
Show also that the equal-time commutation rule between b, and =, is given by
[b, (x), 7 (X )];zp = =8y 8, 8*(x — X))

[C. N. Yang and R. L. Mills, Phys. Rev. 96, 191 (1954).]
9.4 Discuss the properties of the b quanta.

9.5 Show that if the field F,, defined by Eq. (9-3) vanishes everywhere, then the potential B, can be
transformed away by a gauge transformation.

9.6 Show that the internal holonomy groups at different points are isomorphic.

9.7 Prove that compatibility of the internal holonomy group # and the gauge group ¢ requires that
either (1) # be a subgroup of §, or (2) ¢ be an invariant subgroup of #. [H. G. Loos, J. Math. Phys.
8, 2114 (1967).]

9.8 Use Eq. (9-29) to generalize the covariant derivative law (9-30) for the mixed tensor y*" to a tensor
YT g

9.9 Assuming I"',;* =I"_*, prove Egs. (9-32) and (9-33).

9.10 Prove Eq. (9-35).

9.11 Show that 7% of Eq. (9-36) is symmetric.
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9.12 Prove Eq. (9-60).
9.13 Prove Eq. (9-61).
9.14 Prove Eq. (9-72).
9.15 Show that the Lagrangian density (9-74) yields the following field equations of gravitation:

0CF poa = {(BPY p + (B)y “VF o prca
+ {OMBY, + 6UB") . Y} F yer + [B, Fopeal

[See M. Carmeli, Nucl. Phys. B38, 621 (1972).]
9.16 Show that the Lagrangian density (9-75) can also be written in the form

—5& Tr (F4F,)

where &*##" is the totally skew-symmetric tensor density, whose values are 1, 0, —1. [See M. Carmeli,
Phys. Rev. Letters 36, 59 (1976).]



CHAPTER

TEN
ANALYSIS OF THE GRAVITATIONAL FIELD

After having developed the gravitational field equations that connect the Riemann
tensor, the spin coefficients, and the tetrad of null vectors in the previous chapter
we are now in a position to apply these equations to specific problems and cases.
The geometrical meaning of the spin coefficients and the components of the Weyl
tensor are first discussed. This we follow by proving the theorem of Goldberg and
Sachs, which states the conditions under which the Riemann tensor becomes
algebraically special. The problem of choice of the coordinate system is then
discussed. Subsequently, a specific coordinate system, in which we write down the
free field equations of empty space, is chosen. For completeness, the Maxwell-
Einstein equations and the neutrino equations are also written down for any
coordinate system. We conclude the chapter by discussing the asymptotic beha-
vior of the Riemann tensor, the spin coefficients, and the metric for a general type
of radiative empty space.

10-1 GEOMETRICAL INTERPRETATION

We now proceed to examine the geometrical meaning of the spin coefficients and
the components of the Weyl spinor. The components of the Weyl spinor were
already introduced in Chapter 8. All of these dynamical variables will be
frequently used in the sequel.!!

Geometrical Meaning of the Spin Coefficients

Let £# be a congruence and let the vector ¥, i.e. ¢* . (see Sec. 9-3) be the tangent to
this congruence, * = d&*/ds. Then the spin coefficient x is related to the first
curvature of the congruence &, To see this, one calculates the covariant derivative

' E. T. Newman and R. Penrose, J. Math. Phys. 3, 566 (1962); 4, 998 (1963).

216
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of ¥ along the congruence, 6l/ds = PV, I* = 6%y, V,0%50 = Vo %p0 . Using
Eq. (9-70), we obtain

Vo0.0*00: = (€ + E)0* g0 — Ka¥ oy — k0¥ 10,
or
DIV = (e + )V — km* — km* (10-1)

In Eq. (10-1), and in the following, we use the notation according to which
D = Vg, 6 =Voy., 6 =V, A=V, for the components of the covariant deri-
vative operator V., and I = %y, m* = 6%y, m* = 6%, n* = 0*,., for the
tetrad of the null vectors ¢*,, (compare Sec. 9-3).

By a change in scale I* — ¢l¥, where ¢ is a real scalar function, one can get rid
of the first term on the right-hand side of Eq. (10-1). This can be seen if one
calculates D/ in the new scale. One obtains

DF=¢ Ye+E~ P3O, — ¢ 2Rm* + ki)

Hence if one chooses the function ¢ so that ¢ + €= F 4, ¢, DI¥ will be propor-
tional to m* and m* alone. Consequently, if x = 0 in the above choice of scaling for
I#, it follows that D¥* = 0 and the congruence &* describes geodesics. In this case,
one finds that the spin coefficient p is given by

p= (=4 + i ) (10-2)
and the spin coefficient ¢ is the complex shear of the vector I, satisfying
07 = 3l I — 3(*,,)%) (10-3)

In Egs. (10-2) and (10-3), and in the following, a semicolon denotes a covariant
derivative, lu =V, 1.
The spin coefficient 7 describes how the direction of /, changes as we move in

the direction n, according to the relation
=(y+ 7, —m, — m, (10-4)

Again the term with [, can be made to vanish by a change of scale I, - ¢l,.

Equations (10-1), (10-2), (10-3), and (10-4) thus give a geometrical description
for the spin coefficients k, p, g, and t [compare Eq. (9-53)]. The spin coefficients v,
4, 4, and n have similar meanings, the difference being that the congruence used is
given by n, instead of .

If I, is taken to be tangent to a geodesic congruence and we propagate the
remainder of the tetrad system parallelly along the congruence, then it follows that
the three-vector by of Eq. (9-52) vanishes,

boo = (m & —Kk) =0 (10-5)
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If, in addition to being tangent to geodesics, the vector I, is a hypersurface ortho-
gonal, ie., proportional to a gradient field, then one finds

p=p (10-6)
In the particular case where the vector I, is equal to a gradient field, one has

p=p
t=a+p (10-7)

Geometrical Meaning of the Weyl Spinor Components

The components of the Weyl spinor y,, ..., ¥, have already been discussed in
Chapter 9. One may briefly understand their meaning by the following:
Consider the five cases: (1) Y, # 0, all other four components vanish; (2)
Yy # 0, other components vanish; (3) ¥, # 0, other components vanish; (4)
5 # 0, other components vanish; and (5) y, # 0, other components vanish.
The fields F,, (see Chapter 9) can easily be found for each k case. One finds for
the five different cases the following:

Fi)) = 2oy, n, g,

FiY =2y {~mn,g; + (=lhuny + my,m,)g;}

F =2y —ri,nggy + (hung — mying)g, + hum,gs) (10-8)
F = 205{(huny — mymy)gy — lm,g,}

FiY = 2¢u(—l,my)g,

In these equations the three matrices g,, g, , and g, are the infinitesimal generators
of the group SL(2, C) given by Eq. (9-42), and the index in parenthesis denotes the
type number.

The Petrov type of the Weyl spinor corresponding to each one of these five
cases is as follows: (1) Petrov type N with propagation vector n,; (2) Petrov type
I1I with propagation vector n,; (3) Petrov type D with propagation vectors n, and
l,; (4) Petrov type III with propagation vector ,; and (5) Petrov type N with
propagation vector I, . A propagation vector in the above means a repeated princi-
pal null vector (compare Sec. 8-4).

If in empty space the vector field I, satisfies the equation [compare Eq. (8-86)]

l[“ Rﬂ]ﬂ?[é lv] lﬂl‘/ = O (10'93.)

then the vector I, corresponds to one of the four principal null directions of the
Riemann tensor, and i, = 0
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If two or more of the principal null directions coincide and are represented by
l,, they must satisfy

Raﬂv[J l“] lﬂl? = O (10'9b)

or Y, =y, =0. A space which satisfies Eq. (10-9b) (ie., ¥, = ¢, = 0) is alge-
braically special (see Sec. 8-4).

Goldberg—Sachs Theorem

The theorem of Goldberg and Sachs'? states that, in empty space (ie., R,, =0),a
necessary and sufficient condition for a Riemann tensor to be algebraically special,
with o = ¥, =0, is that ¢ = k = 0 (see also Problem 10.5).

Let us first assume that ¥, = ¢, = 0. The field equations (D.2), that are
relevant, then give

3oy, =0
0y, =3y, — 20y,
Ay, — 83 = =3, + 2(8 — )3 + o,
3k, =0 (10-10)
Dy, = 3py, — 2xy5
Wy — Dy = = 3my + 2(e — p)Ws + K,

It is seen from these equations that ¢ = x = 0, otherwise all the components of the
Weyl spinor ¢ vanish, ie., the space is flat.

Let us assume now the contrary, ie., ¢ = k =0 and we wish to prove that
Yo=¥,=0.

By a transformation of the form m, — €¢*m, and a suitable choice of scaling of
the null vector I, we can set ¢ = 0. The pertinent equations of the field equations
(D-1) are consequently

Dp = p?

Yo=0

Dr=(t+7®)p+ Y, (10-11)
DB = Bp + ¥,

ép=p@E@+pB)+(p—p)t— ¥,
Consequently, ¥, = 0, and as a result Egs. (D-2) now give

oYy = (4t + 2B,

Dy, = 4py, (10-12)

2 J. N. Goldberg and R. Sachs, Acta Phys. Polonica 22, Suppl. 13 (1962).
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There is still a freedom in the choice of the vector n, which enables one an
additional transformation of the form of a one-parameter null rotation around the
vector l,. This rotation is given by the transformation Egs. (8-34) and (8-35),
where the transformation matrix g of the group SL(2, C) is given by g,(z) of
Eq. (8-41). One obtains, using Eq. (8-40),

I, -1,
m,—zl, +m,

n, — zzl, + zm, + zZm, + n,

This rotation of the tetrad does not affect /, or the condition ¢ = 0. One can

choose the parameter z in such a way that t = 0."*! Accordingly, Egs. (10-12) yield

olny, =28
Dlny, =4p (10-13)
Hence, using Egs. (10-11), one obtains
(D6 — D) In Y, =6y, + 2B8p — 4p(@ + B) (10-14)

On the other hand, the commutator (D§ — D) when applied on a scalar function,
is given in Appendix D by Eq. (D-3b) (see Problem 10.4). One has

(6D—DO)Iny,=@&+B—A)D Inyy; —péln y,
which, together with Eq. (10-13), gives

(D6 — D) In Y, = 28p — 4p(a + B) + 4p7 (10-15)
Equations (10-14) and (10-15) then lead to the result y, = (2/3)p&. But Egs.
(10-11) show that y; = —7p. Hence since p is supposed to be different from zero,

one concludes that both y, and % are zeros, and the proof is completed.

10-2 CHOICE OF COORDINATE SYSTEM

We now choose a particular coordinate system and a tetrad of vectors.

Coordinate System

In the hyperbolic Riemannian space of general relativity it is always possible to
introduce a family of null hypersurfaces, designated by a parameter u = const., i.e.,

g’u,,u,, =0 (10-16)
where a comma denotes a partial differentiation, u,, = 6, u. The vectors I* = g*'u,,

3 This is possible only if p # 0. However, if p = 0 one obtains y, = 0 as can be seen from the last
of Egs. (10-11) and therefore the theorem would be proven.
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are tangent to the family of null geodesics lying in the hypersurfaces u = const.,
and satisfy

DI =P =0 (10-17)

It has been pointed out by Robinson and Trautman# that if one chooses as
coordinates u = x°, an affine parameter'® along the geodesic r = x!, and two
coordinates x2 and x? that label the geodesics on each surface u = const., then the
metric tensor will have the form

01 0 O
#= o % 0 (10-18)
0 g13 gij
where i, j = 2, 3.
Tetrad
Having determined a coordinate system, the vector I, then has the form
I, =0, F=o" (10-19)
Since I, n* = 1 and [, m* = 0 (see footnote 9 of Chapter 8), we have
m ="+ & 6* (10-20)
=064+ U *+ X 6% (10-21)

where i = 2, 3. The unknown components of the metric (10-18) are then given by'®

gt =2(U — vd)
g' = X' — (@& + ) (10-22)
gl = — (6% + E)

where i, j =2, 3.

There is still a complete freedom for rotating the tetrad vectors m* and r* but
leaving #* unchanged. This freedom is eliminated by demanding that the vectors
m* and r* be parallelly propagated along the vector [*. This requirement, in
addition to the fact that the vector I, has been chosen as a gradient field, is stated
in terms of the spin coefficients by Egs. (10-5) and (10-7) (ie, k =¢ =7 =0;
p=pit=0a+p)

*1. Robinson and A. Trautman, Phys. Rev. Letters 4, 431 (1960).

* An affine parameter is a parameter along the geodesic, such that the equation of the geodesic
takes the standard form (see Sec. 7-1). See, for example, E. M. Schrddinger, Expanding Universe,
Cambridge University Press, New York, 1956. Some authors use different parameters from the
affine parameter, such as a luminosity parameter, which then yields g°! # 1. We here will use only an

affine parameter.
S This follows from the fact that

g = a0 = n’ + 0l — m'm® — wm
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Operators

With these simplifications, the covariant differentiation operators D, &, 4, and A,
when applied on a scalar function, using Eqs. (10-20) and (10-21), are given by

D = 8/dr
5= w dfor + & 0o (10-23)
A =38/ou+ U 8/or + X' .0/6x

with & being the complex conjugate of §, and i = 2, 3.

Free Field Equations

The free space field equations (i.e., when R** = 0) under the above conditions have
a simplified form. Equations (D-2) become:

8o — DYy = dapo — 4py, (10-24a)
oYy — DYy = Ao + 20p 1 — 3pY, (10-24b)
Yy — Dys =20 — 2pYs (10-24c)
O3 — DYy =30, — 2043 — pY, (10-24d)
Ao — 8, = (4 — pWo — (4 + 2800, + 3ov, (10-24c)
Ay — 8y = vilg + 2(y — phry — 3, + 205 (10-24f)
Ay — 805 = 200, — 3ty + 28 — W5 + oV (10-24g)
A3 — 0y =30, — 2(y + 2u)s + (46 — 1), (10-24h)
whereas Egs. (D-1) become:

Dp = p? + g6 (10-25a)

Do = 2p0 + Yo (10-25b)
Dt=1p+ 7o+, (10-25¢)

Da =ap + B& (10-25d)
Df=fp+ac+y, (10-25¢)
Dy=1a+ 18+, (10-25f)

DAl =Jp + uc (10-25g)
Du=pup+ic+y, (10-25h)
Dv=1i4+7Tu+ Y, (10-25i1)

AL —v=2av+ (T—3y—p—R)A— Y, (10-25j)
dp—da=(B+a)p + (B—3a) — ¥, (10-25k)
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So — 0f = pup — Ao — 2af + ad + BB — ¥, (10-251)
O —dpu=(a+ B+ (&—38)4A—y; (10-25m)
v —Au=yu—2vB+ ju+ u*+ il (10-25n)
dy—AB=tu—ov+(u—y+ 7B+ i (10-250)
dt—Aoc =218+ (F+u—3y)o+p (10-25p)
Ap—dt=(y+5—H)p — 20t — Ao — y, (10-25q)
Aa—dy=pv—TtA—AB+ (F—7y—~Ra— s (10-25r)
The metric equation (9-73) gives
D& = p&' + oF (10-26a)
Do =pw + o — (7 + B) (10-26b)
DX'=t& + 3¢ (10-26¢)
DU=twm+Tw—-(y+7) (10-26d)
- A:i =(u+7—y)E+ A& (10-26¢)
=(B—a)s'+ (@ - B)E’ (10-26f)
50— 30 = (B — ) + (T — B + (1 — ) (10-26g)
U—-Ao=p+35—y)o+iod—7 (10-26h)

In the above equations i = 2, 3.

Maxwell-Einstein Equations

To conclude this section we give below the coupled Maxwell-Einstein equations
and the neutrino equations for any coordinate system. Maxwell's equations in
vacuum are then given by (Problem 10.13; for equations with sources see Problem
10.14; for the Dirac equation see Problem 10.15):

0o — Doy = (20 — m)o — 2p¢ + K, (10-27a)
0¢y — D¢, = Ao — 2nd, + (26 — p)o, (10-27b)
Ao — 6y = (2y — p)po — 219y + 0, (10-27¢)
Apy — 0¢y = vpo — 2ud, + (26 — 1)¢, (10-27d)

where ¢¢, ¢, and ¢, are the dyad components of the Maxwell spinor (see
Chapter 8) which are given by

¢0 = Fuvl“mv
¢y = 3F ,(Fn® + m*'m”) (10-28a)

LR
2F
¢, = F, m'n

]
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In terms of the electromagnetic potentials A,, defined by
F,,=V,A, —V, A, the three dyad components of the Maxwell spinor can be

uv

written as
$o=0—B+m—a)Ago — (D —&+&—p)Aoy + 0410 — KA,y
¢y =3{(A—y—p+ -7 —(
+(0+t+p+m—a)A; o —D+E—p+p+e)Ad,)

¢, = —VAgy +Adg + A+ 7+ A —PA)p —(0+B—T+ )4,
Here Agq., Ag1» A1o» and A4, are the dyad components of the electromagnetic
potentials, 4., = 4, 0", thus Ay, and A4,,, are real, whereas A,,. and A, are
complex and conjugate to each other.
The Ricci tensor is proportional to the electromagnetic energy-momentum
tensor, R,, = kT,,. Hence one can write for the Ricci spinor ¢,,,:

Brun = 27? G P, (10-29)
where m, n = 0, 1, 2. The field equations (D-2) will accordingly have the form:
3, — (A4 2y 4+ 4ups + (0 — 7+ 48,

= =@ APy + §,00, + 2(vd, ¢, — AP, — vh, ¢, + 02 ;) (10-30a)
2w, — (A + 3uha + (6 — 2t + 285 + oy,

= —$,0¢,+ $,D¢0; + 2(ud ¢, — 1P, ¢, — b ¢, + ed,¢,)  (10-30b)
Wo — (A =2y + 2u)Y, + (6 — 3th, + 20¢;

= —¢,Ado + 02000 + 2(vh o — 0,0 — TP, P, + pd,¢,) (10-30c)
(—A+ 4y — o + (06— 4t — 280, + 30y,

= —¢,0¢0 + ¢2Ddo + 2(Bd1 b0 — £d1 00 — 0P, b, + kP, ¢,)  (10-30d)
30, — (0 + 4n + 2a)y; + (D + 46 — ply,

= — APy + ¢,0h;, + 2(v9od, — A, P, — Yo, + 0P, &) (10-30e)
20, — (0 + 3n)y + (D + 2 — 2p)r3 + kY,

= —0,0¢0, + ¢ Ddy + 2(udody — nh1 b1 — BPo b, + £0, $) (10-30f)
Ao — (6 + 21— 20, + (D — 3pW, + 2kY3

= —@oAdo + ¢,0¢0 + 2(yo o — 2d o — TP P, + b, b)) (10-30g)
(=0 —m+4da)o+ (D— 26— 4p)y, + 3y,

= —@obdo + ¢ DPo + 2BPodo — £, o — PP, + KD, $)) (10-30h)

where in the above equations the constant 2G/c* was taken as equal to 1.
The other two sets of field equations, (D-1) and (9-73), are valid, of course, in
general and need not be changed in the presence of an electromagnetic field.

il
+
=i
|
i
|
53
|
Gl
o:::-

(10-28b)
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Neutrino Equations

The field variables of the neutrino are the two components of a spinor, #,. They
satisfy Weyl’s neutrino equation in curved space, namely

VA, =0
The energy-momentum tensor for the neutrino field is given by
T, = {6, "4V, 7x. + &, %1V, 7y
_&M Ax'ﬁX’Vv Na— &v Ax,ﬁX’Vﬂl ’1A}

One can now obtain the equivalent equations in the tetrad formalism in a
straightforward way. The Weyl equation then becomes

V"b/ﬂa - (Bab’)a dnd =0
or, in details:
Ang —ony = (y — o + (B — ), (10-31a)

oo — Dy = (¢ — mhno + (e ~ p)n,y (10-31b)
Here 5, and 5, are the dyad components of the Weyl spinor # , (see Chapter 8),
Na=1L{,"m4, thus no ="y, and n, = n'y,. The functions v, u, B, etc, are, of
course, spin coefficients. Since 7T,* =0, one has R = 0 and 4 =0, and hence the
Einstein equations become R,, = kT, . Using Eq. (8-23), one therefore obtains for
the spinorial form of the Einstein equations the following:

2¢ 4cop = KTypcp

where ¢ ,cpp is the trace-free part of the Ricci tensor, and T,p.cp, is the energy-
momentum spinor, T, pcp = 6" 456 cp T,,. Hence the Einstein equations are
given by

Ki _ _
G acop = —E{WAVCD'UB’ +ncV s ilp

—%sVepta = fip Vaplic)
To find out the dyad components of the Ricci spinor, ¢4, we rewrite the
last equation in dyad notation. This can easily be done if one notices that

Cb Bvcd’nﬂ = Vcd’ Ny — (Bcd’)b ene
Zb’ B’Vcd’ﬁB’ = Vcd’ ﬁb’ - (Bd'c)b’ e,ﬁe’

where (B,,),* is the complex conjugate of the matrix element (B,.),° (see Sec. 9.3).

One obtains:
Pacwa = (16/2){1[Vea fioe — (Bac)y “7e ]
+ 1 Vap fla = (Bya)s 7]
—y[Veatla = (Bea)a“Ne]
— 4 [Vay .= (Bap): el
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In terms of ¢,,,, where m, n=0, 1, 2 and ¢+ p+4 = Pacpa (se€ Sec. 9-3), one
finally obtains:

Poo = —Mo(Dno — M + K1y) + c.C. (10-32a)
11 = —(i/2){fio(Ano — v10 + T11)

+ 7.(Dn, — mno + eny)} + cc. (10-32b)

$22 = —if (A — o + y1,) + CC. (10-32c)

do1 = (i12){no(DAy + o — Wy + &1 — &o + PTy)
— 71(Dno — eng + k1)

— 7o(9M0 — Bno + on,)} (10-32d)
Bo2 = i{no(67;, — Ao + %ify)
— 71(6n0 — Bno + ony)} (10-32¢)

¢12 = (i12){no(AR, — Vo + 771) + 1,(0%, — ARo + 7, )
— 71(Ang + ny — Mo + Ty — pno + Bny)} (10-32f)
b10= o1, P20 = Poz 21 = P12 (10-32g)

In Egs. (10-32) the gravitational constant k was taken to be 1, and primes were
omitted from the dyad indices of complex components for the sake of clarity.

10-3 ASYMPTOTIC BEHAVIOUR

We now discuss the asymptotic behavior of the components of the Weyl spinor,
the spin coefficients, and the metric tensor. This is done for a general type of a
radiative field for the free space case.

Asymptotic Behaviour of Weyl Spinor

In order to discuss asymptotic behaviour in general, it is usually necessary to
impose conditions on the field functions when they approach flatness at infinity of
the space. These conditions are usually imposed on the metric tensor. However, as
we saw in Chapter 9, the Riemann spinor and the spin coefficients can also be
considered as field variables. Hence we will impose conditions on the components
of the Weyl spinor.

Let us assume that the asymptotic behaviour of ¥, is given by!”

Yo =0(r"?) (10-33a)
" A relation of the form f(u, r, x') = 0(g(r)) means that there exists a function F of the variables

u and x' such that |f(u, r, x')| <|g(r}||F(u. x')| for large r. For more details see F. Erdyle,
Asymptotic Expansions, Dover, New York, 1955.
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and that the asymptotic behaviour of Dy, is given by
Dyo = 0(r°)

It will be assumed, furthermore, that derivatives of the left-hand sides, with respect
to the variables x', of these equations do not change their asymptotic behaviour.
Thus we assume that 0,y, = 0(r~%), ..., 8, ;D¥o = 0(r~°), for i, j = 2, 3. It will
also be assumed that the hypersurfaces u = const. are not chosen to be asympto-
tically cylindrical or asymptotically plane.!®!

The main result to be shown, under the above conditions, is that the other
four components ¥/, ¥/, , ¥, , ¥, of the Weyl spinor will have the asymptotic forms

Yy =0(r"%), Y, = 0("_3)
Y3=00"2%)  Y,=0("")
To prove Egs. (10-33b) we proceed as follows. Let us denote by P and Q the

two matrices
G p

(10-33b)

0
o-[5, ]
The first two equations of Eqgs. (10-25) can then be written as
DP=p*+Q (10-34)
Equation (10-34) has the solution
= —(DY)Y"! (10-35)
Here the matrix Y, where
Y= (i’l f’z) (10-36)
Yi )2
is a nonsingular solution of the matrix equation
DY= —PY (10-37)
and therefore satisfies
DY = —QY (10-38)
The asymptotic behaviour of the solution of Eq. (10-38) is'®!
DY =F + o(1) (10-39)
Y =rF + o(r) (10-40)

8 This assumption means that certain very special choices of coordinate systems are to be ruled out.
In the following both of these cases will be discussed.
A relation of the form f(u, r, x') = o(g(r)) means lim {f(u, r, x)/g(r)} =0 for any value of

r=w

u and x', i = 2, 3. See F. Erdlye, op. cit.
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where F is a constant matrix.’® But Q = 0(»~%). Hence, using Egs. (10-38) and
(10-40), we obtain

DY = —rQF + o(r~*) =0("%) (10-41)

By integrating this equation twice and comparing it with Eq. (10-39), we obtain
DY=F +0(?) (10-42)

Y=rF+E+0(? (10-43)

where E is another constant matrix. Using Eqs. (10-42) and (10-43) in Eq. (10-35)
then gives

P=—r"'I+r 2EF '+ 0(r7?) (10-44)

where I is the 2 x 2 unit matrix and provided F is not singular.

If F is singular, ie., its determinant vanishes, then the asymptotic behavior of
the matrix P is quite different. When F is a nonzero matrix, then this is the
asymptotically cylindrical case in which the matrix P becomes asymptotically
proportional to a singular matrix, and p behaves as p = —(1/2r) + 0(~2). If
F =0, on the other hand, we obtain the asymptotically plane case for which
P =0(r"?). In both cases the matrix E must be such that there are two linearly
independent columns among those of the matrices E and F, since otherwise the
matrix Y will have a vanishing determinant for all r and the solution for P of
Eq. (10-34) does not exist anymore. We will exclude these asymptotically cylindri-
cal and plane cases.

Equation (10-44) shows that the two spin coefficients p and ¢ are given by

p=—r1+0(r? (10-45)
=002 (10-46)

For further discussion the following lemma will be needed.

Lemma. Let the n x n matrix A be independent of the affine parameter r and
has no eigenvalue with a positive real part. Let also any pure imaginary
eigenvalue of A be regular, i.e., its multiplicity is equal to the number of linearly
independent eigenvectors corresponding to it. Then all the solutions of the
equation

Dy=(Ar"'+B)y+b (10-47)

are bounded as r — co. Here y is a complex column matrix which is a function of
r, Bisann x n complex matrix, and b is a column matrix with n elements, both
of which are given as functions of r, where

B=0(r"2%), b=0(r"2) (10-48)

1 E, Coddington and V. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, New
York, 1955, p. 103.
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The proof of this lemma is as follows. Let us denote r by exp /, then
Eq. (10-47) can be written as

L 0
A P C ic
d{(y : : y
a(y) _ : . 10-49
dl(l) L 0 + : >(1) ( )
0 0:0 0 0:0

where the n x n matrix C is given by

C(l) = e'B(e'), (10-50)
and the n-column matrix c is given by
c(l) = e'b(e") (10-51)
Now the equation

10

4 i
ald=| |l 102

di\{ to ) \¢
0 0:0

has the solution
z = {exp Al}z,

C=Co

which is bounded. In Egs. (10-53) z, and {, are constants. By Eqs. (10-48), (10-50),
and (10-51) it follows that the integrals with respect to / of the moduli of the
elements of the matrices C and ¢ are bounded as / - 0. Hence, by Levinson’s
theorem,''!! the solutions of Eq. (10-49) are also all bounded and are given by

y = {exp Al}y, + 0(1) (10-54)
where y, is constant. This proves the lemma.

Suppose now the matrices B, b, and y are functions also of the coordinates x?
and x*. Then, differentiating Eq. (10-47) with respect to x', where i = 2, 3, yields

(10-53)

D(@:y) = (Ar™" + B)@:y) + {(@:B)y + (b)) (10-55)
Equation (10-55) is also of the form of Eq. (10-47) provided that
0;B=0(r"2%, 0,b=0(r"% (10-56)

"' N. Levinson, Am. J. Math. 68, 1 (1946).
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Assuming Egs. (10-56) to be valid, it follows from the lemma that d;y should be
bounded. By repeating the argument we obtain the corresponding results for
higher derivatives.

Consider now the x' derivatives, where i = 2, 3, of the first two equations of
Egs. (10-25). The equations obtained can be written as

( N 20+ 2r7! G o
D‘rzﬁi(a)’=( 20 20+ 2r7! 0 )
i a ‘ 2F 0 2p+2r7!
P 0
x r? o, (0) +r? 9, (Wo) (10-57)
4 Yo
Applying the lemma with 4 = 0, and using Eqs. (10-45) and (10-46), we obtain
8:p = 0(r?) (10-58)
0,0 =0(r %) (10-59)
Applying the lemma again to the next two x' derivatives of Egs. (10-57) yields
0, 0;p, 0,0;6, 0;0;0,p, 0,0; 0,0=0(r"?) (10-60)

Next, using Eqgs. (10-23), one can apply the lemma to the first of Egs. (10-24),
the third and fourth of Egs. (10-25), the first and second of Egs. (10-26), and their
complex conjugates, with the matrix y being the column built from the twelve
elements

r4w15 r4w19 raa rd‘a rﬁa rBa réza "Ez, r€'3, "Esa (U,CT)

and the matrices b, A, are given by

b=0 (10-61)
0 0: 0 0
0 - 0: 0 0
A= | peen s (10-62)
-1 0
—a
0 -1

0001100000
= ( ) (10-63)

0010010000

whereas the elements of the matrix B are functions of order O(r~ 2) of the variables
r, p, 6, Yo, Dy, and 0,y . It therefore follows that

Y, =0(r"%) (10-64)
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and
a B, E=0(0r"")
w =0(1) (10-65)
Furthermore, by the first of Egs. (10-24) we obtain
Dy, =0(r~%) (10-66)

Taking now successive x' derivatives, and using Eqgs. (10-58), (10-59), and
(10-60), the lemma then also gives

oWy, 0, 0;¥,, 0;,0; 0.y, =0("%) (10-67)
O, 0, 0,8, 0,00, 0; 0,8, 0,0,¢,
0,0; 0,4, 0;0;0,p, 0,0;0.E=0(0"") (10-68)
0w, 8;0;00, 9;0; 0,0 =0(1) (10-69)
Hence, using the first of Eqs. (10-24), one obtains
0;DYry, 9, 0;Dy, =0(r™%) (10-70)

We next apply the second of Eqs. (10-24) and the seventh and eighth of
Egs. (10-25). The lemma is now applied, with the matrix y being the column built
from the elements r*y,, rA, ru, and the matrix A is taken as zero, whereas the
matrices B and b are built of elements of order O(r ~ %) which are functions of r, p, g,
Vo, o, Y1, @, DYy, E 0,4,. Tt therefore follows that

Y, =0("3) (10-71)
A =001 (10-72)
Consequently
Dy, =0(r"%) (10-73)
0¥y, 0 ajw2=0(r—3) (10'74)
0;A, O, 0;0;4, 0, 0;,u=0("") (10-75)
0Dy, =0(r %) (10-76)

Finally, the lemma may be applied to the third of Eqs. (10-24) with y = r%y5,
and to the fourth of Egs. (10-24) with y = r{/, one obtains

Y3 =0(r"7) (10-77)
8 = 0(r"?) (10-78)
Dy3 =0(r~ 2)

and
Ve =00"") (10-79)
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One furthermore obtains

v, X =0(1) (10-80)

which, by Egs. (10-22), leads to

g'/=0(1) (10-81)

with i, j =2, 3012

Sachs Peeling-off Theorem

We have seen that under certain general assumptions of approach to flatness at
infinity, which one expects to find in radiative empty spaces, the Riemann tensor
exhibits a characteristic asymptotic behaviour of the form

Y, =0(r""") (10-82)

The space may thus be divided into five regions: a near zone, where all terms
are important; three transition zones, where Y4, ¥/, and \/, become negligible in
turn; and finally, the radiation zone in which one can neglect Y4, ¥, ¥, , ¥/, and
only ., remains important. In the last zone the Riemann tensor is essentially null.
The fourth zone is essentially type III whereas the third zone is essentially alge-
braically special or usually type II. The second zone is essentially a region in
which there are “geodesic rays” in the terminology of Sachs.!*3! Finally, the first
zone is of “general” type. Consequently, as one moves backwards from infinity
along a suitable null geodesic, the principal null directions ““ peel off ” one by one
from the outgoing radial direction. This behaviour was first pointed out by Sachs
for the linearized general relativity.

Comparison with Electrodynamics

The analogy between the above property of the gravitational field and the electro-
magnetic field is striking. In the electromagnetic case there are three regions: the
near zone, where r~ 3 terms are important; the transition zone, where r~2 terms
are important; and the radiation zone where the field behaves like »~ ! and is null.

12 For a further discussion of the behaviour of asymptotically flat empty spaces see E. T. Newman
and T. W.J. Unti, J. Math. Phys. 3, 891 (1962).
13 R. K. Sachs, Proc. R. Soc. Lond. (4)270, 103 (1962).
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In terms of the electromagnetic field components ¢, ¢, and ¢, of Egs. (10-28),
one has

$o=0(r"")
¢, =002 (10-83)
¢, =0(r" 1)

The two electromagnetic principal null directions exhibit, in general, the same
property of “peeling off ” as in the gravitational case!'*

PROBLEMS

10.1 Prove Egs. (10-2) and (10-3).

10.2 Prove that the spin coefficients =, 4, i, and v are analogous to x, p, 6 and t when the congruence
used is n, instead of I,, by deriving the analogous equations to Egs. (10-1) to (10-4).

10.3 Prove Egs. (10-5) to (10-7).
10.4 Use Eq. (9-70) to show that if ¢ is a scalar function, then
(Var Ver = Vea Var )}
= {(Bnb’)cfvfd’ + (B'Vn)f/d’vcj'
- (Bcd’)n IVﬂr - (B'd’c)f'livnf’}¢

[This equation is written explicitly in Appendix D, Egs. (D-3)]. Show, furthermore, that if one takes for
the function ¢ in the above equation the coordinates x*, then the resulting equation is Eq. (9-73).
10.5 Prove that a necessary and sufficient condition for v =2 = 0 in empty space is Y, = ¢, = 0.
10.6 Prove Egs. (10-24), (10-25) and (10-26).

10.7 Prove Egs. (10-30).

10.8 Show that the spin coefficients are related to the Ricci rotation coefficients ™, [see L. P. Eisen-
hart, Riemannian Geometry, Princeton University Press, 1949] by

K= 7%131 e =512 — T3a1h = Y134
= —7Yaa> @ =34y124 = V344) 0 ="133
H= —%a43> B= %(Vlzs — Y1a3) V= —%242

= —7Ya Y= %(7122 — Y342)s T =732

10.9 Show that the spin coefficients can be expressed as

= —n, mD, a =4, — m, m)m
p=1.,mm, k=1 ml

= —n, mm, e =1, n —m, mWw
f= g,y = L — m
=1, mn, o=1,mm
V= —n, m'n, B =13, —m, m)m

14 See also J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics, John Wiley, New York,
1952, footnote on page 803.
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10.10 Show that the coordinate transformation u =t — r transforms the Minkowski line elements
ds? = di? — dr? — r*(d#? + sin? @ d¢?) into the null-coordinate line element ds? = du? + 2 du dr —
r2(d0? + sin? @ d¢?). The surfaces u = const. are then just the light cones emanating from the origin
r = 0. Choose the tetrad so that [* is the outward vector tangent to the cone, n* is the inward null vector
pointing toward the origin, and m* and m* are vectors tangent to the two-dimensional sphere defined
by r = const. and u = const. Show that these vectors in the null coordinate system x° = u, x! =7,
x? =0, x* = ¢ will have the form

and /" is the complex conjugate to m*. [See A. I. Janis and E. T. Newman, J. Math. Phys. 6,902 (1965).]

10.11 Use the results of Problem 10.10 to show that the spin coefficients in the null coordinate system
in flat space are given by

1 I
=-——— cot 6, = - —
F=3p k==%

Show that the Maxwell equations (10-27) now become
0, fér + 24, /r = 2712~ 12D + cot O)p,
Oy for + @, /r=2"12r"15¢,
0ofou = 100 /0r ~ /2 = 27V 104,
061 /ou — 10, Or — by /r = 2724 + cot O,

where & = /66 + (i/sin 8) /3¢, and 2 is its complex conjugate. Solve these equations and find the
monopole, dipole, and quadrupole solutions. In particular, show that the Coulomb solution is given by

¢o=0’ ¢1=e/2rzr ¢, =0

where e is the charge. [See A. 1. Janis and E. T. Newman, J. Math. Phys. 6, 902 (1965).]

10.12 Show that if one identifies the neutrino spinor # , with the spinor {,* of the spin frame, then the
neutrino equations (10-31) reduce to the conditions p = ¢ and 7 = B. Show that if one assumes that
both spinors of the spin frame to satisfy the neutrino equation, then Egs. (10-31) gives p = ¢, 1 = 8,
o = m and y = u. Discuss the physical meaning of this choice.

10.13 Show that Maxwell's equations (10-27) in free space can be obtained from combinations of
Eqgs. (7-48) and (7-50) of the form

V(F,, +H,)=0

where H,, is defined by 0,,, 0., a’""’a"”"’F”, and F,, is the Maxwell skew-symmetric tensor. Show
that the above equation can be written in dyad notation as

6Cd’(Fub’cd’ + Fcb‘ud’) = {(de,)cp + (B'q’c)q' d’}(Fab’cd’ + Fcb’ad’)
+ {8 (B, + 5B, I/}(Fef'cd’

+ Fcf‘e«f)
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In the above equation F, , = ¢*,, 06", F,, are scalars (not matrices as in the gravitational case), and
are related to ¢, 1, ¢, bY do = Fooor» ¢1 = 5(Foorr + Fioo1)h @2 = Fro11. - Show that the above
dyad equation easily leads to Egs. (10-27).

10.14 Show that Maxwell’s equations with sources can be obtained from the equation
V"(FMv + H‘”) = 4”‘];1

where F, and H, are defined in Problem 10.13, and J, is the electromagnetic current. Show that
this equation leads to the following equations for the electromagnetic field:

3¢po ~ D, = (2a — w)py — 2p¢, + k¢, — 21 .
3¢, — Do, = Ay — 216, + (26 — p)b, — 21,
Ado — 56, = (27 — )by — 214, + 6, — 2],
Ad, — 56 = vby — 2, + (28 — 1)b; — 27,

Here Joq., Jo;1» J10- and J,,. are the dyad components of the current, J,,, =J, 6", , thus Jo,
and J,,. are real whereas J,,, and J,,. are complex and conjugate to each other. (Note that the n’s
appearing in the last four terms of the above equations are not spin coefficients but are the usual
constant).

10.15 Find the Dirac equation for the electron written in terms of the 2-component spinors «“ and
B4 instead of the usual 4-dimensional spinor. Show that when an electromagnetic ‘potential 4* is
presented that the Dirac equation will have the form

9 m _
(VAB + ie“’)ozA = iﬂ”

V2

(VAP — ied4®)g = i_a?”

where A4% = &% 4* and m is the mass of the electron. Show that in dyad notation these equations
yield:

m _
(A+ied,, —y+nhg+ (=6 —iedy, — f+ 1), =ﬁﬂl
- , m _
(0 +ied,y —a+ mag + (=D — iedgy — €+ pla; = — B,

N

. m.
(A—ied;,, — v+ By + (—06 + iedy,. — B + 1), =ﬁal

(0—ied;, —a+ 7)o+ (=D +iedyy— e+ p)f, = %a‘zo
where a4, a,, By, B1, Ago»> Aoyr» A1o-» and A ;. are the dyad components of the spinors « ,, f, and
A

A8



CHAPTER

ELEVEN

SOME EXACT SOLUTIONS OF THE
GRAVITATIONAL FIELD EQUATIONS

After writing the gravitational field equations that connect the Riemann tensor,
the spin coefficients, and the tetrad of null vectors in Chapter 9, and after analys-
ing the field functions and their geometrical meaning in Chapter 10, we are now in
a position to solve these equations. Exact solutions to the free-field Einstein
equations are obtained. We first find exact solutions that contain hypersurface
orthogonal geodesic rays. These include the familiar Robinson-Trautman solu-
tion, and the spherical and cylindrical classes of the Newman-Tamburino solu-
tions. We consequently solve the field equations for another kind of solution, the
Newman-Tamburino-Unti solution, which is a generalization of the Schwarz-
schild metric. Finally, we solve the field equations to find out all type D vacuum
metrics. The eleven metrics obtained are due to Kinnersley, and include the fami-
liar Kerr metric. This chapter is not a survey of exact solutions in general relativity
but rather a demonstration of the power of the methods developed so far for
obtaining such solutions. Other exact solutions are given in Section 7-5.

11-1 SOLUTIONS CONTAINING HYPERSURFACE
ORTHOGONAL GEODESIC RAYS

We now solve the gravitational field equations, obtained in the previous two
chapters, to find empty space solutions with hypersurface orthogonal null
geodesic rays. These solutions include the Robinson-Trautman and the Newman-
Tamburino solutions.

71K
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Divergence, Curl, and Shear

A congruence of null geodesics /, in a hyperbolic Riemannian space can be charac-
terized by three scalar functions. These functions are the divergence, curl, and
(complex) shear, denoted by 6, w, and ¢, respectively, of the congruence. Such a
congruence is associated to any empty space solution of the Einstein field equa-
tions possessing a family of geodesic rays, i.e., principal null directions of the

wdv

Figure 11.1 The shadow (solid lines) cast by an object will differ
from the parallel displace of the object (dotted lines) by an
expansion, a rotation, and shear. If the screen is an infinitesimal
distance dv from the object then the shadow is expanded, rotated,
and sheared by the respective amounts

—0dp=3F, dv
wdo= G, " "}”2 dv
o do = lly P = 4 VB do
=4+ h)
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Riemann tensor.!!! The geometrical significance of the three scalar functions 8, w,
and ¢ was discussed by Sachs.!?! Figure 11.1 describes their geometrical meaning.
It is then convenient to classify the vacuum solutions of the Einstein field equa-
tions according to the vanishing or nonvanishing of the divergence 6, the curl w,
and the shear o of the geodesic rays.

The three scalar functions 8, w, and ¢ are related to two of the spin coefficients
p and o. When the null congruence is affinely parametrized, one has:

= —3divlF= —3F, =Rep (11-1)
w=3curl =3, =1Imp (11-2)
|o| = shear I = {31, 1 — 3(,,)*]}' 72 (11-3)
Hence one has
p=0+iw (11-4)

as can be seen from Egs. (11-1) and (11-2) and in accordance with Eq. (10-2).

Kundt'® has considered the class of metrics containing geodesic rays with
vanishing divergence, curl, and shear, § = & = ¢ = 0. In this section we will
obtain solutions to the vacuum Einstein field equations that contain nonvanishing
divergence, 6 #+ 0. Throughout the section it will be assumed that m* and n* are
parallelly propagated along the geodesic rays.

Robinson—Trautman Solution

Robinson and Trautman!¥ have presented all metrics containing nonshearing
(6 = 0)and noncurling (w = 0) hypersurface orthogonal (z = @ + f) geodesic rays
{#, but with nonvanishing divergence, 8 # 0. Since /* is a hypersurface orthogonal
geodesic ray, then x = 0, and as a consequence ¥/, vanishes and p = p. Further-
more, since the geodesic ray is shear-free, i, must also vanish. Consequently, the
Robinson-Trautman solution is characterized by the following conditions:

Vo=Ui=k=m=t=0=p-p=0; p#0 (11-5)

The gravitational field equations (10-24), (10-25), and (10-26) can now, and
throughout this section, be used and integrated. The metric sought has the form
given by Eq. (10-18), namely

ab (1 1-6)

g = Fn’ + ntl' — m'm’ — mm® =

! Principal null directions of the Riemann tensor are also known, sometimes, as Ruse, Debever, or
Penrose vectors.

2 R. Sachs, Proc. R. Soc. Lond. (A) 264, 309 (1961).

> W. Kundt, Z. Physik. 163, 77 (1961).

*I. Robinson and A. Trautman, Proc. R. Soc. Lond. (A) 265, 463 (1962).
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where the null tetrad is given by
B=5*
mt=wd *+ E (11-6a)
m=o 6"+ & "
=208+ U6 *+X §*

and i =2, 3.
One can see that the form of this metric is invariant under the following
coordinate transformations:

U =u
¥ =r+ R(x% x?, x*) (11-7a)
x/i — xi

which represents a shift of the origin of the coordinate r,

u = s(u)
¥=r/s (11-7b)
x't=x
which relabels hypersurfaces, and
u=u
r=r (11-7¢)

x't=x(x% x2, x?)

which relabels geodesics,'>) where i = 2, 3. Here a dot denotes differentiation with
respect to the parameter u.

In addition to these transformations, there is a freedom in choosing tetrad
transformations that do not affect the vectors /* or the orthogonality conditions
(see Appendix E). These transformations are the null rotation and the spatial
rotation. They are given by the transformations (8-34) and (8-35), where the
matrices g of the group SL(2, C) are given by g,(z) and g,(z) of Eq. (8-41). Using
Eq. (8-40) one obtains (Problem 11.1):

=P
m* =zl* + m* (11-8a)
n'* = zzl" + zm" + zm"* + n*

® It should be noted that where a hypersurface orthogonal geodesic ray exists, the null hypersurfaces
u = const. are fixed by the curvature tensor by Eq. (10-8) and the fact that [, = u .
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for the null rotation, and

= s
m* = em* (11-8b)
n*=n"

for the spatial rotation, where C is real and independent of the coordinate .
From Egs. (10-25) one obtains, under the conditions outlined above, the field
equation!®

Dp = p?

whose solution is easily found to be

1

p=—(r+po)°

where p, is a function that does not depend on r. One can choose p, as zero by
means of the coordinate transformation (11-7a). Hence one obtains for the spin
coefficient p the following:

p=—1/r (11-9)

This value for p can now be used to integrate the rest of the field equations.
Equations (10-25c), (10-25d), and (10-25¢) then give:

Dt = —1/r
Do = —a/r
DB = —pir
The solutions of these equations are easily found to be given by
T =1g/r (11-10)
o= og/r (11-11)
B=Bo/r (11-12)

where 1,4, 4, and B, are functions independent of r. However, by Eq. (10-7), one
has the algebraic condition

To =& + Bo

Using the transformation (11-8) one can set 7, as zero, and consequently one
obtains

Bo= —1 (11-13)
t=0 (11-14)

¢ E. T. Newman and L. A. Tamburino, J. Math. Phys. 3, 902 (1962).
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From Eq. (10-25k) one obtains

bp=wd(-1/r)or=0
which yields!”!

®=0 (11-15)
Also, one finds that Eq. (10-25p) leads to
1=0 (11-16)

Using the above results in Egs. (10-24b), (10-25f), and (10-25h) then leads to
the following:

Vo =y, (11-17)
7= 70— ¥ °/2r? (11-18)
1= pofr — W, OJr? (11-19)

where ¥,°, y,, and p, are functions independent of r. But Eq. (10-26g) shows that
u = fi. Hence both u, and ¥,° are real functions. Furthermore, Egs. (10-26a),
(10-26¢) and (10-26d) give

g=&r (11-20)
X=X, (11-21)
U=U;— (3o + To)r — ¥, r (11-22)

where ¢," and X! are functions independent of r and i = 2, 3.
By using the coordinate transformation (11-7c) we can set

502 = - i&o 3 = P(xo, x2, x3) (11-23)

The remaining coordinate freedom is

u' = s(u)
¥ =rfs (11-24a)
{'=fw)
where { and {’ are complex variables defined by
[ =x?+ ix (11-24b)
{=x?+ix? (11-24c)
Substituting the above results into Eq. (10-26e) then leads to (Problem 11.2):
Co*Xoly — 0o f0u — Xo*eo' i = 270 80" (11-25a)
uo = Uy (11-25b)
from which one obtains
PVX,=0 (11-26)

7 The tetrad function w here [see Eq. (10-20)] should not be confused with the curl function
o [see Eq. (11-2)].
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In Eq. (11-26) the function P is defined by Eq. (11-23), the differentiation operator
V is defined by

V =0/0x* + i d/0x> =28/ (11-27)
where { is given by Eq. (11-24b), and the function X, is defined by
Xo=Xo2+iX,? (11-28)

Assume now the function X, = X o(y, {) to be analytic. Using the coordinate
transformation (11-24a), Eq. (11-26) then shows that one can set

Xs=0 (11-29)
The remaining coordinate freedom is now
u = s(u)
r=r/s (11-30)
U=rQ)
Equations (11-25a) and (11-29) then give
7%= —40 In P/ou (11-31)

Furthermore, from Eq. (10-24f) one obtains

5y, = PV, O = 0
Hence one obtains

V2 © =y, ) (11-32)
From Egs. (10-24c), (10-24d), and (10-25i) one obtains
Y3 =3 (11-33)
Vo=, — (PVW3 ® + 2003 0)/"2 (11-34)
V=, — ;3 °/r? (11-35)

where /5°, ¥, °, and v, are functions independent of the variable r. The remaining
equations (10-26f), (10-26h), (10-25j), (10-251), and (10-25m) may be worked out in
the same manner. They yield (Problem 11.3):

1, = 3PV In (11-36)

Yo = —4PV (In PP)/au (11-37)
W, = PVvy + 204, (11-38)

4o = Uy = ~LPPVY In (PP) (11-39)

¥3° = PVy, (11-40)

Consequently, every function is now expressed in terms of the two functions P
and y,°. Equation (10-24g) then relates the functions P and y,° by

{0/6u — 3(OP/ou)/PW,° = PV, © — 28,15 ° (11-41)



SOME EXACT SOLUTIONS OF THE GRAVITATIONAL FIELD EQUATIONS 243

All other equations are now identically safisfied. Furthermore, using Eq. (11-8b)

one can finally set ~
P=P (11-42)

a fact that has already been incorporated in Eq. (11-41).
The metric tensor (11-6) now becomes

g%°=0,g"=14%=0
g'' = 2U, — dpor — 20,

g'i=0 (11-43)
g¥ = —2(P2jy?) 69

where U, is given by Eq. (11-39) and y, by Eq. (11-31) and i, j = 2,3. If y, =0,
then Eq. (11-41) becomes
V3(P?VZIn P)=0 (11-44a)

where V2 = VV.If §, # 0, on the other hand, then by using Egs. (11-7b) one can
set /,° =1 and Eq. (11-41) gives

0P/ou = (P3/3)V*(P*V? In P) (11-44b)
The only remaining coordinate freedom given by Eqs. (11-30) is
P = P|df({)/dC|

This completes the Robinson-Trautman solution.
In the following we summarize the results that characterize the Robinson-
Trautman metric:

(a) Spin Coefficients:
K=e=nm=g=1=A4A=0
p=—1/r
o= —p=PVIn P/2r
y=—3 0In P/ou —y,°/2r?
u= —3(P*VV In P?)/r — y,%/r?
v = —%PV(0 In P/ou) — y,°/r
where ¥,° =0, 1, and ;% = — 3 PV(P*VV In P?).
(b) Weyl Spinor:
Yo=4¥,=0; Vo =¥,
Y3 = ~4r 2 PV(P?VV In P?)
Va=y,"r —[PVY3° + P(V In P}y, °)/r?

where
Y, 0= _—;i[PV + P(V In P)]PV(0 In Pz/au)
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(c) Tetrad: Using Eq. (11-6a) one obtains:

ll‘ = 6111
m“ = éi 61‘“
ﬁl“ = Ei 61'“

nt = 60“ +U 61“
where i = 2,3, and & = {oi/r, &2 = —i&,® = P(x°, x%, x*), and
U= —-P>V2InP+rdlnP/ou—y,%r

(d) The metric: The components of the metric tensor have already been given
in Eq. (11-43).

Newman-Tamburino Solutions: Spherical Class

We now obtain the generalized solution for the shearing class (¢ # 0) of noncurl-
ing (w = 0) hypersurface orthogonal geodesic rays with nonvanishing divergence
(6 # 0). There are two general subcases which are called spherical and cylindrical.
The spherical class is characterized by

Yo=p—-p=0, p* # o6

-45
p #0, o +0, k=0, £ =0, =0 (11-45)

To integrate the gravitational field equations we proceed as follows. The field
equations (10-25a) and (10-25b) may be expressed now as a matrix equation,

DM = M?
or
DM~ !'=—]

where I is the 2 x 2 unit matrix and M is a nonsingular matrix which, by
Eq. (11-45), is given by
v-( ]
g p

The solution of this matrix equation is given by
M_1=(Po—" _‘70)
—0p pPo—T

and therefore the matrix M is given by

M=R-2(Po—" 0o )

0o Po—Tr
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Here R? = det (M~ ') = (po — r)? — 500, # 0 by Eq. (11-45), and p, and g, are
functions independent of the coordinate r.

Using the coordinate transformation (11-7a) we can set p, = 0. Hence one
obtains

p=—r/R? (11-46)
o =0,/R? (11-47)

where R2 =r? —5,0,.
Equation (10-24a), using Eq. (11-46), gives

Y=y, /R (11-48)

where ¥, ° is a function independent of r. Equation (10-26a) and its complex
conjugate are easily seen to be equivalent to the matrix equation

DE = M¢

where £ denotes the column matrix

fi
¢= ( ,.
4
If we now denote ¢ by Mu, then v satisfies the equation

Dv=20

whose solution can easily be found to be

)
Zo
where &, are functions independent of the coordinate r. Hence one obtains from
the relation ¢ = Mv the expression
éizR_z(réoi_aozoi) (11'49)
Using the coordinate transformation (11-7¢), one can now set
o2 = —if> = P(x° x% x?) (11-50)

and the remaining coordinate freedom is now

u = s(u)
r=r/s (11-51)
C, =f(u’ C)

where { and {’ are given by Eqgs. (11-24b) and (11-24c).
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Next, Egs. (10-25d) and (10-25¢) are integrated to yield the r dependence of
the functions « and f; the null transformation (11-8a) is used to eliminate a
constant of integration. One obtains®

Y, %L 1 . Y °
Q=W+F rag + G, a0_2—;7 (11-52)

ﬁ: —Z-R—Z—Rz (ra0+0'0a0) (11'53)

Here a = ||, a, is a function independent of r, whereas
1 r+a

L=_1In ( )
2 r—a

We next turn to Eq. (10-26b) which yields

Ly, %a n rwg — 0oMg
2a3 R?

Q) =

(11-54)

where w, is a function independent of r and whose value can be obtained from
Eq. (10-25k). One finds

[OF =Zoiaiao+ wl 00'0/2a2 - 400(10 (11'55)
Equations (10-26f) and (10-26c) give
2o=3PVIn P (11-56)
. . ZL o or =y L(y'r — a*Z)
Xi= Xoi4 o _ ]
Xo'+ 2a>  2a°R? 2a*R? (11-57)

where the différentiation operator V is given by Eq. (11-27), X’ is a function
independent of r, and y* and z* are defined by

V=&Y, %% + &Y, %
Zi — Zoiwlo + 50@10
Equation (10-24b) then gives

Y, = M (¥ Yool | rao A, n B, i ¥ %30

TR a’R* a’R* " R*  a’R®
where ,° is a function independent of the coordinate r, and A, B,, and C are
functions given by

A =80, O+ 29, %5y + 4, Y0 @o — &o* Bra?)3a®  (11-59a)
By =2y, % —&* auy,° (11-59b)
C =20,@ + ¢o* 0ia? (11-59¢)

(rC — 5,C)  (11-58)

8 L. A. Tamburino, Exact Empty Space Metrics Containing Geodesic Rays, Ph.D. Dissertation,
University of Pittsburgh, 1962.
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and Eq. (10-25f) gives
P I F N (¥, %)%6, 2 rL

Y=70— @R - 44°R? 4a*R? 243R? (wl 06050 - % anao)
|¢1 * . _ L r 3y,
+ 2aR2 a2 + (¥ %0 — ¥, %) | + 22 3a’R? B, + e
oc 1
+ (W %o — ¥y @) + wzla } 2a’R% (G0 Ay + ¥y %G8 — ¥ Pa0a0)
Vi’ (s C 11-60
—W(O’Oc— Cr) ( - )

where 7, is a function independent of r. Equations (10-25g) and (10-25h) now give

Y 200 (200 K s rL _  ¥.%,C
A= a’R 4q°R? + 2a*R? Biao + 2a?
&2 (¢10)2+A _wloc £ ri_O
2a¢% | 24? 1 6a? R?
g YU, °Cl ¥, %(Cra, — C)
_R—g[ o o+ Vs }Jr R (11-61)
_ Y. %?e i rL [(¥,°)a0 oA, n ¥, %,C
"~ 4a°R? a®R? | 4g? 2 1242
uor 1 GoA
"2 RZ[ } R? _F[""'{” 2a?
lpl G,C ¥, %(Cr ~ Cay)
4a et |t 4R (11-62)

where A, and y, are functions which are independent of the coordinate r.
The next equation to be solved is Eq. (10-25]). Its solution leads to

o = —1PPVV(In PP) (11-63)

This followed by Eq. (10-26d) which gives

R I, °P2 WL
U=Uo—()’o‘i‘}’o)r"‘?(‘pzo‘i‘wzo)"‘T 2Rz
VLr 1 o0 0
" 2arE T e OV TV HUC)
SLr TL
12 4R2(6a W+lpl GOC+w1 Go ) 2_a3+2—a3 (11-64)
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where U, is independent of r, and the functions S, T, V, W are given by

S=B, + B, + 3|y, °[*2a* + (¥, °C + ¥, °C)/24? (11-65a)
T=W—(GoA, + oA, + (¥, °5,C + ¥, %5, C)/6a>  (11-65b)
V=1y,%00G0+ ¥, °@y0, (11-65¢)
W=y, % + § °w, (11-65d)

and Eq. (10-26g) which gives
8ot 0,0 =o' 0100 = 2(Ho@o — 2gq) + (ToAo ~ To ko)
+ @1 Owo - ¥ O(Do)/a2 —[(¥, 0)260 - @1 0)2‘70]/402 (11-66)

So far the results obtained above contain the Robinson-Trautman solution
when ¥, % and ¢ tend to zero.

The next equation to be considered is Eq. (10-26e). This equation is by far the
longest and most tedious equation that is examined in closed form. However, the
results obtained from it both simplify the above results and, in addition, give extra
differential equations that eventually rule out the possibility of obtaining
the Robinson-Trautman solution. The following is a summary of these results:

¥, °=0 (11-67)
fojanoi_ajfoiXoj_afoi/au=27050i (11-68)

As in the Robinson-Trautman case, Eq. (11-68) and the coordinate transfor-
mation (11-51) yield

Xo'=0 (11-69)
and
Jo = —3(0 In P/ou) (11-70)
and the remaining coordinate freedom is now
u' = s(u)
r=r/s (11-71)
=)

Furthermore, one obtains from Eq. (10-26e¢):

Uo=po+ (¥, %0000 + ¥, °Fowo + | ¥, °|?/2)/2a* (11-72)
Ao = 004/0u + ao(37 — 70) (11-73)

Eo* 0,02 = —20,@, (11-74)

&k 00, O =¥, °(P, © + daoa® + Eo* 8,a?)/2a (11-75)
Eok 0 W, O = —y, %23y + 30,00 /a?) (11-76)
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Using these results one obtains for the functions A, B, and C the following
expressions:

Al = lpl an(f)o/az (11'773.)
B, =y, %5owo/a’ — [Y,°[*/24° (11-77b)
C=0 (11-77¢)

The last equation to be worked out in a closed form is Eq. (10-24e). One
simply finds that it is identically satisfied.

It has been shown by Tamburino that the main features of the above calcula-
tions are analogous to those of the Robinson-Trautman case discussed above.
However, some of the functions become increasingly complicated and their mani-
pulation is extremely tedious, though straightforward. Some equations are com-
plicated by having r dependence appear in various products of the functions R and
L, such as L/R%, Lr/R? L/R* etc. These products were shown to be linearly
independent, and therefore the matching of coefficients of like products becomes
equivalent to matching powers of r. All field functions have been obtained in
closed form except for the spin coefficient v and the Weyl components y; and v/, .
In order to avoid lengthy expressions in the final phases of the calculations, a
power series expansion in r for all equations containing the functions v, 5, and
Y, can be resorted to. It is conceivable to assume that this use of power series
yields all obtainable information in the lowest powers, and that a more exhaustive
treatment would be fruitless.

The following system of equations are then easily derived from Egs. (11-55),
(11-74), (11-75), and (11-76):

V In (¢, °P/a®) = 0 (11-78a)
V In (¢, %,/P%) = 0 (11-78b)
Y, ® = a®PV In (P*/a*5,?) (11-78¢)

In the Robinson-Trautman case the functions y,® and o, are zeros and hence
Egs. (11-78) are trivial identities. In the present case ¥,° # 0 and g, # 0, and
therefore Eqs. (11-78) yield the following results:

P=13Ci'exp [4G + G)+ C((T, + T))] (11-79a)
a=3C;" exp [2C (T, + T,)] (11-79b)
exp (i¢) = exp [8(G — G) + 4C (T} — T,)] (11-79c¢)
where
P = pexp (ipp) (11-79d)
o = aexp (ipa) (11-79¢)

¢ =2¢p — ¢a (11-79f)
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Here C, is a real function of u only, G is an arbitrary analytic function of the
variables u and {, and

T, = j exp (—8G) d¢. (11-79g)

Equations (11-79) are enough to demonstrate that the Robinson-Trautman
solution is no longer contained in this class of metrics. From Egs. (11-66), (10-25i),
and (10-26h) it can be shown that Egs. (11-79) reduce to

P=gexp[4g+g)+(t+1)] (11-80a)
a= Aexp [2(t + )] (11-80b)
exp (i) = exp [4(t — 2g) — 4(t — 27)] (11-80c¢)
¥, ° = Pva’ (11-80d)
where g is an analytic function of the variable {,
t = j exp (—8g) d¢ (11-80e)

and A is a real function of u only.
We may set g, = a, by using the spatial rotation (11-8b), and therefore

P=Zexp (8g+3t—1) (11-81)
From the coordinate transformation {' = f({) of Eq. (11-71) one obtains
P’ = P(3f)0) (11-82)

If we choose
of/ol = exp (—8g + 4t) = 1(0'e*/o7)

or
Fmdp =
then Egs. (11-80) reduce to the following:
P =} exp [3(t + )] = () (11-83a)
oo =a= A)'"? (11-83b)
Y, 0 =24%(L0)¥%¢ (11-83c¢)

From Eq. (10-25n) the function A(u) is then found to satisfy the differential
equation
024

5.2 =0 (11-83d)

Hence one can choose A as equals to either Bu or B, where B is an arbitrary
constant.

The results from the remaining equations, when only considered up to several
orders in r, are given below. All constants of integrations are determined uniquely
up to the arbitrary constant B. In these results the coordinates transformation
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u' = s(u), ¥ =r/s, of Eq. (11-71) have been tacitly used to eliminate the integration
constant in the indefinite integral (11-80¢). All other available transformations
have been, by now, completely used up.

Summarizing these results, one obtains for the spherical class of the Newman-
Tamburino solution the following:

(a) The Metric Tensor:
g% = %2 = %3 = 4?3 = 0, g°l=1
a2y L2 2P A + T2 4t ALY
g R? A R* R*

o2 = 4ty - G20 - O (11-84a)

2a3  24°R?*  R*

o

2a®>  2a’R? R*
where x®=u, x' =r, { =x*+ ix3 a= A(0)"Y* R?=r* —a?,
L=3ln[(+a)r-a),

and A is a function of u satisfying d24/du? = 0, and therefore A can be taken as
either equal to Bu or B, where B is a real constant.

(b) The Components of the Weyl Spinor:

Yo=0
Yy =24%(L0)*4/R*
Yo = —[447(0) 2L + 2407 + 44%(0)¥?)/R? (11-84b)

Vs = (1/r?)[2(dA/du)((0)' ] + (1/r*)8AL + -+
Vo= ~(Ur*)8(dA/du)(CD)] + -

In the above solutions one can verify that the limit 4 — 0 yields the flat space
case.

Cylindrical Class

The cylindrical class of metrics of Newman and Tamburino containing hypersur-
face orthogonal geodesic rays with nonvanishing shear and divergence is charac-
terized by the conditions:

Vo=p—p=0, pi=0d3+#0, k=0, ¢=0, n =0 (11-85)
In the following we give the only empty space metric that satisfies

Egs. (11-85). It will be noted that although the metric obtained is complicated, it is
still given in a closed form.
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Equations (10-25a) and (10-25b) yield
p=1/(Ry —2r)
g = GO/(RO - 27‘)

where R, and a4 are functions independent of the coordinate r. One can, using the
transformations (11-7a) and (11-7b), set

p=0c=—1/2r
All the remaining scalar field functions can be obtained in a closed form in a
manner analogous to that used in the spherical case discussed above.
The solution obtained does not depend on the coordinate x* and contains two
arbitrary constants denoted by a and e. We obtain (Problem 11.5):
(a) The Metric Tensor:
Goo = —4a’(en’ay)(In r)? — [¢ + a* In (ren*ay)/en’ay
gor = 1, g11=912=913=0
goz = —4Y[r + 4au(cn?ay) In r]
gos = —2(cn%ay)Inr (11-86a)
g2z = —r%2 —4a*u?Y?*(cn’ay) In r
g23 = —8uYen’(ay)
gss = —cn’(ay)/a®

where x®=u, x' =r, x2 =y, cn(ay) is an elliptic function having modules
k=1/\/2, and Y is given by

a(l — cn*ay)'?

Y=0— " 11-86b

~  2/2cn(ay) ( )

where the + or — sign are taken according to whether y >0 or y <0,
respectively.

(b) The Weyl Spinor:
Yo=0
Y, = 2b/r?

lp3 = 4b{j.0 - 8ib1 bz + 4b(5 - lbz) + 4Lb(b1 - 4lb2) + 6b2L2}/r2
W = 16b{—b, U, + 4b, *(3ib, — b,)
+ L[—bU,g + 8bb,(3ib, — b)] + 4b2I2(Tib, — 2b — bL)}/r?
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where b, and b, are defined by

3 L .acn(ay)
b=b, +ib,=Y+i 22 (11-86d)
the function L is defined by L = In r, and

2 1 2.2
2 = e+a ;1 (cn(ay)) 4 @en (ay) (11-86¢)

cn’(ay) 4

2e + a* + a* In (cn*(ay)) . a’cn(ay)

= 11-86f
Uo cn’(ay) T ( )

(c) The Spin Coefficients:
p=a6=—1/2r, k=e=n=0
a=bL+ 1)r, p=bL-1)r
t=2(b L — ib,)/r
y=4b(—b, /r + 2ib, L + ib,)/r (11-86g)
t=1{%o + 4bb, + 4b(b + ib,)L — 2b2*}/r
A= (Ao — 8ib;by — 4bb, — 4bb, L — 2b*)/r
v=4—A4(b + b,) — 8b%b + 4ibb, b,

— L(Aob, + 4b%b, — 8b,b, %) — 2ibb, I2(3b + 2b,) + 2I2b%b }/r

(d) Finally, the components of the tetrad are given by:
U= Ug + 8b,2L + 4bbI?

E=1r =A% +iBy* (11-86h)
X?%= —4b,(L + 1)/r
X*= —db, Ay *(L + 1)/r — 4B, *b,L
where
Ao*= —8a’b,u,  Bo*=d’/4b, (11-86i)

Using Eq. (11-6a) one can obtain the tetrad of vectors I, m*, ", and n*.

Final Remarks on the Newman-Tamburino Solutions

The metrics of Newman and Tamburino discussed above are of Petrov type 1
nondegenerate. Together with the metrics of Kundt and Robinson-Trautman,
which are degenerate, they exhaust all metrics that contain hypersurface ortho-
gonal geodesic rays.
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Since the Robinson-Trautman solution contains the Schwarzschild metric as
a special case, one expects that the solutions of the generalized class containing
shearing geodesic rays would be interesting in discussing gravitational radiation
problems. The generalized solutions, however, do not depend on any arbitrary
function and therefore seem not suitable to describe a gravitational radiation field.
The spherical class does not yield the Robinson-Trautman metric in the limit of
vanishing shear, but instead as 4 — 0 the metric degenerates into flat space.

In the next section the class of metrics containing nonvanishing geodesic rays
with nonvanishing curl will be given.

11-2 THE NUT-TAUB METRIC

In the previous section we presented the Robinson-Trautman metric which con-
tains nonshearing and noncurling geodesic rays with nonvanishing divergence.
We also presented the Newman-Tamburino metrics containing noncurling
geodesic rays but with shear and divergence. As has been pointed out at the
beginning of Section 11-1, Kundt has considered the class of metrics containing
geodesic rays with vanishing divergence, curl, and shear.

In this section we present a subset of the class of metrics possessing nonshear-
ing but curling geodesic rays with nonvanishing divergence. A total of three
stationary metrics and their groups of motion are obtained. All the solutions,
which were obtained by Newman, Tamburino, and Unti, are determined up to
several constants. One of the solutions is of particular interest for it is a generaliza-
tion of the Schwarzschild metric.’

Tetrad System and Coordinate Conditions

Once again the gravitational field equations are greatly simplified by suitable
choices of the tetrad system and coordinate conditions. Specifically, the vector [
will be taken as a normalized geodesic ray, and the remainder of the tetrad system
is propagated in a parallel manner along this congruence. Since ¥ is a geodesic
ray, then 1, vanishes. Furthermore, since the geodesic ray is shear free, 1, must
also vanish.

The coordinate conditions are chosen such that the components of the vector
I* are equal to §,*. The coordinate x! = r then becomes the affine parameter along
the null geodesics. With this choice, the pertinent nonvanishing spin coefficients
are: p, T, 4, 4, v, o, §, and y. The tetrad components will be denoted by

P=5,"
mt=w 6 "+ & 5,*
mt=o 8 "+ & ,"

ni=U "+ X5,

(11-87a)

® E. T. Newman, L. Tamburino, and T. Unti, J. Math. Phys. 4, 915 (1963).
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where a =0, 2, 3, and the intrinsic derivatives by
D¢ ="V, ¢ = d¢jor
0 = m'V, ¢ = w 0¢/0r + £* 0¢/0x"
0¢ = MV, ¢ = @ d¢/0r + & 0¢/0x*
Ap =n'V, ¢ = U 0¢/0r + X 0¢/0x*

(11-87b)

Field Equations

With the above conditions, the empty space field equations obtained from

Egs. (D-1), (D-2) and (D-4) of Appendix D that describe a space containing

shear-free, but curling, geodesic rays are given by:%

Dp = p? (11-88a)
Dt =p1 (11-88b)
Da = pa (11-88c)
DB =B (11-88d)
Dy=ta+ T+, (11-88¢)
Di=pJ (11-88f)
Du=pu+ ¥, (11-88g)
Dv=71u+ 1A+ y; (11-88h)
DV, — 3py, = 0 (11-88i)
Dyr3 — 2pyr; = 0y, (11-88j)
Dyy — pYa = 35 + 205 — 349, (11-88k)
DU=tw+T0o~(y+7) (11-881)
DX® = 184 4 78 (11-88m)
Do = pow — (@ + B) (11-88n)
D& = pe (11-880)
and
op=p(@E+ )+ (p— Pk (11-89a)
da — 8B = pp+ adl + BB — 2aB + y(p — P) ~ ¥, (11-89b)
0h—3du=@p—p+ ua+B)+ia@—3p)— ¥, (11-89c¢)
M—=—v=M7-3y—u—-a)+vBx+B—~7)— Y, (11-89d)
ov—Au=p*+ i+ puly+7) + vt —a—3p) (11-89¢)

19 Note that now p # p.
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t=pl+t(t+ -2
Ap—dt=p(y+7—F)+1(B—a—7)— ¥,
Aa—dy=pv—AMc+ )+ a(y — @)+ 9B —7) — ¢35
Sy—AB=al+pr+y(t—a—~p)+pu+7-7)

W, =31y,
Ay, — Y3 = =3up, + 2B — 1)y,
Ay — Wy = 3w, — (2y + 4us + (48 — )Y,
U—-—Aw=—-v+Ur~a—B)+al+om—y+7)
OX* — AL =Xt —a—B)+ &A1+ (u—v+7)

dw —déd =@ —u)+ U@ —p)+ (B — &) + ol — P)

8¢ — 08 = (p — p)X* + (B — )& + (& — B)°
where a =0, 2, 3.

Coordinate and Tetrad Transformations

(11-89f)
(11-89g)
(11-89h)
(11-89i)
(11-89j)
(11-89K)
(11-891)
(11-89m)
(11-89n)
(11-890)
(11-89p)

There are a number of coordinate and tetrad transformations that preserve the
coordinate conditions and the orthogonality conditions as well as the parallel

propagation of the tetrad system.
The coordinate transformations are

x/a = x/a(xO, x2’ x3)
r =r+ R(x%

where a =0, 2, 3.
The allowed tetrad transformations are

/e =
mt =zl* + m*
n* = zzI* 4+ zm"* + Zm* + n*

where z is a complex scalar independent of r, and

e =M
mt = emt
wt=n'

where C is real and independent of r.

(11-90a)

(11-90b)

(11-90c¢)
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A combination of tetrad and coordinate transformation is

= ATt
mE = mt

nt = An* (11-90d)
X =x°

r=A1r

where A = A(x*), and a =0, 2, 3.

Integration of Field Equations

We are now in a position to integrate the field equations. The following simplify-
ing assumptions will be made:

Y3=Y,=0 (11-91a)
t=0 (11-91b)

Hence the only nonzero component of the Weyl spinor is y/, . Since ;3 = ¢, =0,
it follows (Problem 10.5) that

y=4i=0 (11-91c)

In the remainder of this section the component of the Weyl spinor y, will be
denoted simply by . Furthermore, a subscript zero will indicate that a function is
independent of the coordinate 7.

The solution of Eq. (11-88a) is

p=—1/(r + po)

Using the coordinate transformation (11-90a) one can set the real part of the
constant of integration p, equal to zero. Furthermore, using the combined coor-
dinate and tetrad transformation r' = A~ 'r of Egs. (11-90d) gives p'(r') = —
1/(Ar + po’'A) and therefore p,’ = A” 'p,. The scalar function A can now be
chosen to make p,’ a constant. Dropping the primes, one has

Po =i|po| = const. (11-92)

The constant could be given a definite value, but it is preferable to let p, be a
parameter.

From Eqgs. (11-88c) to (11-880) one can easily obtain the r dependence of the
remaining variables. The solutions to these equations are given below:

o= pog (11-93a)
B=ppBo (11-93b)
¥ =p, (11-93c)
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7= "0+ 3%, (11-93d)
= Puo +3(p* + PPV, (11-93¢)
U= Uy~ (y0+ To)r — 3p¥o + p¥,) (11-93f)
© = pwo + (@o + Bo) (11-93g)
X=X,* (11-93h)
¢ =péo” (11-93i)

where a =0, 2, 3. So far the radial dependence of all field variables has been
determined.

From Eq. (11-88j), using Egs. (11-87b), one obtains by comparing the
coefficients of equal powers of r,

wo =10 (11-94a)
&% 0.¥o = —3(20 + Bol¥o (11-94b)
Equation (11-89j) gives
(P/P)So® 8a¥o = —3(3o + Bo)¥o (11-94¢)
Expanding the expression (p/p) into a power series in 1/r gives
p/p =1+ (po = po)/r + (Po® = poPo)/r® + -

Using this expansion in Eq. (11-94c), and comparing coefficients of equal powers
of r, gives

o Ba¥o = —3(@o + BolWo
(Po - l_’o)foa 0,0 =0, etc.

Hence, unless p, = p,, one obtains

$o% 0o =0 (11-94d)
@+ fo=0 (11-94¢)

Using Egs. (11-94a) and (11-94e) in Eq. (11-93g) then shows that
=0 (11-94f)

Equation (11-89k) yields, again by comparing the coefficients of equal
powers of r, the following relations:

3(vo + TolWo + Xo“ 8atho =0 (11-95a)
—Uo = (0 + To)Po = Ho (11-95b)
Uopo + (7o + Fo)po > + (Yo — Wo)/2 = Hopo (11-95c¢)

Hence from Eqgs. (11-95b) and (11-95¢) one obtains
Yo — Yo = 4Htopo (11-95d)
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which shows that y, is real. Therefore Eq. (11-95b) yields
Yo+ 70 =0 (11-95e)
Ug= —to = — Ho (11-95f)
and consequently Eq. (11-95a) leads to
X0 0,90=0 (11-95g)

where a =0, 2, 3.
From Eqgs. (11-89c) and (11-89¢) we obtain

o Oalto =0 (11-96a)
X% 0,00 =0 (11-96b)

Also, Eq. (11-89n) yields
Eo® 0.X 0" — X% 0,807 =270¢,° (11-96¢)

At this stage it is convenient to use the available coordinate and tetrad trans-
formations to simplify the above results. The transformation m* = exp (iCo)m* of
Egs. (11-90c), along with Eq. (11-95¢), are used to set

70 =10 (11-97)

Under the coordinate transformation x = 6°(x%) of Egs. (11-90a), the variables
X% and €, transform as follows:

X0 =X," 0,0° (11-98a)

&yt =00 0,0° (11-98b)
The first of these equations can be used to set

X,°=1 (11-99a)

Xo2=X,3=0 (11-99b)

The remaining coordinate freedom is now
X0 = x° + 6%(x2, x)
x'? = 60?(x?, x?) (11-100)
X3 = 03(x%, x3)

and consequently one obtains
floo =& o+ foi 6,-90
&o? =& 0,07 (11-101)
f/os = foi ai93

where i = 2, 3.
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Equation (11-96c) now becomes, using Eqgs. (11-99),
08 %0x° = 8¢, /ou =0
Hence it is possible to use Egs. (11-100) and (11-101) to set

o= —ilo> = P(x? x°) (11-102)
and to use the tetrad transformation m™* = exp [iC(x?, x*)]m* to set
P =P = p(x*, x?) (11-103)
The coordinate freedom now available is
X% =x%+ f(x? x?) (11-104a)
&% =180+ pVf (11-104b)
and
{'=g(0) (11-104c)

where the complex coordinate { is defined by { = x% + ix?, and the differentiation
operator V is defined by V = 2 /3.

Putting Eqgs. (11-99) and (11-102) into Egs. (11-94), (11-95), and (11-96) one
finds o and Y, to be constants which satisfy Eq. (11-95d).

From Egs. (11-89p) and (11-89b) one obtains the following three formulae:

205 =pVinp (11-105a)
2p0 = P’[V(&, °/p) — V(&0 /p)] (11-105b)
2110 = (v/2p)?VY In (y/2p) (11-105¢)

With these three equations, we have obtained all the available information from
the gravitational field equations. Equation (11-105a) is taken as defining the func-
tion a4, and it remains to integrate Eqgs. (11-105b) and (11-105c).

It can be shown that the constant 2u, in Eq. (11-105¢) is the Gaussian curva-
ture of a two-dimensional space with the metric (,/2p)* 6" (Problem 11.6). This
metric is equal to the limit, at r —» oo, of (r2g"), where g¥ (i, j = 2, 3) are the
components of the metric obtained [Eq. (11-109d) below]. With the coordinate
transformation (11-104c), it is possible to choose coordinates such that

J20 =1+ poll2 (11-106)

The curvature 2, may be reduced, by means of a scale change in the coordinate r,
to one of the three values, 1, 0, or — 1. It is for this reason that the constant p, has
been chosen as a parameter.

Using the expression (11-106) for p into the inhomogeneous equation
(11-105b), one obtains the following solution for £,°:

o= —pol/y/2 (11-107)

Let 17, be the general solution to the homogeneous equation (obtained from the
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inhomogeneous equation by putting p, = 0). The most general solution to
Eq. (11-105b) is then

0% =10 — pol/\/2 (11-108)
The coordinate transformations (11-104a) and (11-104b) then yield
&o'% =mno + PV (x4 x%) — POC/\/z

The function f can be chosen such that &' = —py{/i/2, which means that
(11-107) becomes the most general solution to Eq. (11-105b). This is possible since
one can always satisfy Vf = —#, /p, because the integrability condition VVf = VVf
is equivalent to the homogeneous equation itself, and hence is satisfied.

This completes the formal calculations. The metric tensor is obtained, of
course, from g*¥ = *n* + v’ — m*m’ — m*m’, where the null tetrad *, m*, m* and
n* is given by Eq. (11-87a).

The metric so obtained, is usually referred to as the NUT-Taub metric.

Summary of Calculations
In the following we give a summary of the calculations presented aboye.
(a) Spin Coefficients:

g=t1=A=v=k=¢=n=0
p=—1/r+po);  po=i|po| = const,
1= op + Volp> + pp)/2;  2p0=—-1,0,1 (11-109a)
a=—P=puol/2y2; (=x*+ix’
v=p0/2; Yo =o+ 2iuo|po

where 1, is a real constant.

(b) Tetrad Components: Using Eq. (11-87a) one obtains:

l“ = 51“
mt = 5, - (11-109b)
mt =& 5"

nt =29+ U d*
where a =0, 2, 3 and the functions £° and U are given by
& = —ppol/y/2
&=—il=pp
U= —uo+ pp(ro + 240 | pol?)
and \/2p =1+ po /2.
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(c) Weyl Spinor:
Yo=Y 1=VY3=y,=0

Y=y = 93@0 + 2iug|pol) (11-1050)
(d) The Metric:
—(A>+ B)R* 1 —A4/R* —B/R?
o = _ﬁsz 2 -—SRZ 0 (11.109d)
_BJR? 0o 0 1R
Here A= |po|x?/\/2p, B= — |po|x*/\/2p, and 1/R? = 2ppp* = (—det g**)"/2.

(e) Killing Fields: There is a four-parameter group of motions which is
described by the following solutions to the Killing equation &,., + £,., =0:

& =110,0,0]

E4=1[0,0, —y, x] (11-109¢)
&t =[=2]poly 0, 24 (x* = y*)uo » 2u0xy]

£ =12]polx, 0, 2uoxy, 2 — po(x* — y?)]

where £1=0,1,2, 3, x=x% and y = x3.

Generalized Schwarzschild Metric

The metric given by Eq. (11-109d) is an extension of a metric first obtained by
Taub.'" The solution with the choice 2y, = 1 yields the Schwarzschild metric in
the limit p, = 0.

To see this one writes the metric (11-109d) in terms of spherical coordinates t,
r', 6, and ¢ by use of the following coordinate transformation:

t=u —j QU) ! dr
r=r
sin 6 = {{/(1 + {{/4)
tan ¢ = x3/x?
The transformed covariant metric tensor is consequently given by

ds? = f(P)ds + 4 sin? (6/2) dgT — (1/f) dr? — (2 + 12)(d67 + sin? 0 dgp?)
(11-111)

(11-110)

where

f(r)=1="2(mr + P)/(r* + I7) (11-112)
and m and [ are given by m =, and | = | p, |, and the prime has been dropped
from r.

"' A. H. Taub, Ann. Math. 53, 472 (1951).
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The contravariant metric tensor is given by

gOO 0 0 g03
, 0 o9 0
=10 % 20 (11-113)
g03 0 0 g33
where
g°° =f~"' — 16/* sin* (6/2) cosec? 8/(r* + %)

g% = 4l sin? (6/2) cosec? 6/(r* + 12)

g'l=—f (11-114)
222 1) + P2

g** = —cosec? 0/(r? + I?)

«Q

and x° =, x! =r, x2 =6, and x> = ¢. Furthermore, one finds that
det g,, = —(r* + I?)* sin? 0. (11-115)
It can easily be seen that one obtains the Schwarzschild solution from the
metric tensor given by Eqgs. (11-111)and (11-113) if one sets | = | po | = 0, where m
is the mass in units for which the gravitational constant and the speed of light are

taken to be equal to unity.
Expressed in terms of the new coordinate system, the Killing vectors (11-109¢)

are now given by:
&t =11,0,0,0]
&t =[-2,0,0,1]
&y =[—2I tan (6/2) sin ¢, 0, cos ¢, ~cot 6 sin ¢]
¢4 =21 tan (6/2) cos ¢, 0, sin ¢, cot 6 cos @]

(11-116)

The Killing fields associated with the Schwarzschild solution are obtained by
setting | = 0.

The Groups of Motions

In order to gain physical insight into the NUT-Taub metric, it is convenient to
consider a test particle whose Lagrangian, four momentum, and Hamiltonian are
given by:

L=3g, x"x* (11-117a)
P, =0L/0x" = g, %" (11-117b)
H=3g, PP (11-117¢)

where x* = dx*/ds. Killing generators are defined by
G,=P/L* (11-118)
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where ¢ # is a Killing vector. Using the above definition one can show (Problem

11.7) that Killing’s equation is equivalent to the Poisson bracket relation
[G,,H]=0 (11-119)

Consequently, the Killing generators are constants of the motion.
The Killing generators obtained from Egs. (11-116) are:

G, =P,
G, = —2IP, + P,

G, = —2IP, tan (0/2) sin ¢ + P, cos ¢ — P; cot 0 sin ¢
G, = 2IP, tan (6/2) cos ¢ + P, sin ¢ + P, cot & cos ¢

(11-120)

These four Killing generators are constants of the motion. In particular, the
energy of the test particles, P,, and the ¢ component of the four-momentum, P,
are constants of the motion.

The following Poisson bracket relations are readily obtained:

(G4, Gyl =€ 4pcGc (11-121a)

[G,,G,]=0 (11-121b)
In these equations A, B, C each takes the values a, b, ¢, and & , is the completely
skew-symmetric symbol with ¢, = +1. The group characterized by
Eq. (11-121a) is the covering group of the rotation group O;; namely the group
SU,, discussed in Chapter 1.

A natural definition for the angular momenta are the generators of rotations
about the three axes, which are the Killing generators of the Schwarzschild metric:

M, =P,
M, =P, cos ¢ — P5 cot 0 sin ¢ (11-122)
M, = P, sin ¢ — P5 cot 0 cos ¢

Finally, from the relations
G,— M,= -2|P,
G, — M, = —2IP, tan (0/2) sin ¢ (11-123)
G, — M, =2IP, tan (6/2) cos ¢

one sees that the components of angular momentum differ from the constants of
motion by terms proportional to IP,.

Discussion

We have seen that the constant m = ¥, becomes the mass in the Schwarzschild
limit of I = | p, | = 0. Hence it is reasonable to assume that m describes the mass of
the source even when [ # Q.
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The parameter [, which is a measure of the curl of the geodesic ray [,
describes the departure of the stationary NUT-Taub metric from the static Sch-
warzschild metric. It is also a measure of the deviation between two components
of a test particle’s angular momentum and its constants of the motion. The ¢
component is singled out as the only constant, which implies that the field has axial
symmetry. Hence, one can interpret [ as the angular momentum of the source, the
latter being considered as a spinning particle. The field of a rotating body, in the
linear approximation, was given many years ago by Lense and Thirring!'?
The NUT-Taub solution resembles that solution in the sense that the same metric
components are zero, the angular momentum appears linearly in the mixed com-
ponents, and both pass to the Schwarzschild metric when the angular momentum
vanishes.

It has been pointed out by Misner!' ¥ that the orbit of a point under the group
of time translations is a circle, rather than a line as in the Schwarzschild case. The
time-like hypersurfaces r = const. which are left invariant by the group of motions
are topologically three-spheres S°, in contrast to the topology S? x R (or §* x §')
for the r = const. surfaces in the Schwarzschild case. In the Schwarzschild case,
the intersection of a spacelike surface ¢t = const. and an r = const. surface is a
sphere S2. If ¢ is any spacelike hypersurface in the NUT-Taub metric, then its
(two-dimensional) intersection with an r = const. surface is not any closed two-
dimensional manifold, that is, the metric admits no reasonable spacelike surfaces.
Thus, even though the only nonvanishing curvature invariant { = i, vanishes as
r — o0, in fact ¢ = 0(1/r?), as in the Schwarzschild case, the metric is not asympto-
tically flat in the sense that coordinates can be introduced for which g,, — 1, =
0(1/r), where 7, is the Minkowskian metric.

To conclude this section we emphasize that the NUT-Taub solution is of
Petrov type D (type I degenerate), or in Penrose’ notation (in which the Weyl
spinor is decomposed into a product of four spinors)—see Chapter 8—the four
spinors coincide in pairs. In the next section we find all type D vacuum metrics.

11-3 TYPE D VACUUM METRICS

We are now in a position to solve the vacuum field equations for Petrov type D
solutions. An exhaustive set of eleven metrics were obtained by Kinnersley. These
metrics present all type D vacuum metrics, including the Kerr solution!!* and the
NUT-Taub solution, discussed in Sec. 11-2.' 3 Figure 11.2 describes these metrics.

Petrov type D fields are of interest to study for several reasons. The Schwarz-
schild and Kerr metrics are familiar cases of this class. Besides being free of the

2], Lense and H. Thirring, Physik. Z. 19, 156 (1918).

13.C. W, Misner, J. Math. Phys. 4, 924 (1963).

14 R. Kerr, Phys. Rev. Letters 11, 237 (1963).

15 W. Kinnersley, J. Math. Phys. 10, 1195 (1969). See also W. Kinnersley, Recent progress in exact
solutions, Proceedings of the International Conference on Gravitation and Relativity (held in Tel
Aviv, 24-28 June 1974).
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C-NUT (m. 1, a,T)

Kerr —NUT (m, /, a)

Cc(mT) Kerr (m, a) NUT (m, 1)

—
I
o

Schwarzschild (m)

Figure 11.2 Kinnersley's diagram describing type D vacuum metrics.

line singularities which plague some algebraically special metrics such as the
Robinson-Trautman metric (see Sec. 11-1), these two metrics are also stationary
in time. The relation between the Petrov type and the existence of Killing
vectors is not known. One can prove a weak converse, namely that an algebraical-
ly special field which is stationary, time-reversible, and with a finite source can
only be type D.

Field Equations

Let the space under consideration be vacuum and of type D, and let /¥, m*, m*, n*
be the tetrad, and choose /* and n* to lie along the principal null directions. This
implies Yo = ¥, = Y53 = Y4 = 0. As in the last section we will refer to ¥, simply as
. The Goldberg-Sachs theorem implies k = ¢ = v = 4 = 0. As before, we choose
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coordinates such that [ = §,*, making x' = r an affine parameter along [, and we
set ¢ = 0. The tetrad components then take the form for the vector components.

=0, 1,0,0)
m* = (&% w, &%, &%)
mt = (EO, CD, E{ 53)

nt = (X% U, X% X?)

identical to those given by Eq. (11-87a) of the last section.
The metric equation (9-73) gives, under the above conditions,

DU=(T+mnow+(t+ 7)o —
DX'=(t+ )¢ + (1 + )&

Do = po + (T — & — B)

U—-Ao=r—a—-BU+@p—y+7o
X' —Af=(t—a—-BX' +(u—y+7)&
by —dd=(p—p)+(p—p)U - (B —a)o -
8 —d=(p—pX' —(B—a)' - '

Equations (D-1) of Appendix D give

Dp =p?
Dp=pp
Da = p(a +
Dt =p(t +
Dy=aft+7

?-il

+ 7)
+7)
m) +

op=p(@+p)+(p—py
ot=tt —a+p)

o — 0f = pu+ % + BB — 20f + (p — )y — ¥

on=—n(n+oa—p)

op=—pla+p)—(n—pr

BT+ m)y+ 1+ ¢
Du—dn=pu+n(@—a+p)+y

(11-124a)
(11-124b)
(11-124c)
(11-124d)
11-125a
11-125b

11-125¢
11-125d

)
)
)
)

11-126a
11-126b
11-126¢

(
(
(
(11-126d

)
)
)
)

(11-127a)
(11-127b)
(11-127¢)
(11-127d)
(11-127¢)
(11-127f)
(11-128a)
(11-128b)
(11-128¢)
(11-1284)
(11-128¢)
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Ap—dt=—pp—tT+a—B+p(y+7) -y (11-129a)
An= —pT+n)—n(y —7) (11-129b)
Ax —dy= —pa+ y(B —7) + T (11-129c¢)
AB— 8y = —u(B+7)+ (2B +&—1) - 7 (11-129d)
Ap=—pp+y+7) (11-129¢)

Equations (D-2) give

Dy = 3py (11-130a)

Ay = — 3 (11-130b)

oY = 3ty (11-130c¢)

Sy = —3ny (11-130d)

The commutation relations (D-3) of Appendix D give

AD—-DA=(y+79)D-(t+m)d—(t+7)d (11-131a)

6D —Dé=(x+ p—7a)D— pd (11-131b)
A-—Ab=(t—a—BD+u—y+7%9d (11-131c¢)

35— 88 =(A—pD+(F—-p)A—(B-a)d—(@—p)d (11-131d)

In addition to the above equations we obtain four more important relations
among the spin coefficients variables by applying the commutators to the Weyl
spinor component y:

(AD — DAY = A(3pY) — D(—3uy)
= 3y(Ap + Dp)

=3p(y+73) —t(T+7n)+ r(t + 7)
Hence we obtain
Ap +Du=p(y+7%) +nx —17 (11-132a)

Likewise, from (6D — DS)y, (6A — Ad)y, and (86 — 88)y we obtain

dp + Dn=p(a+ B) (11-132b)
Su+At=—p@+p)+t(y—7) (11-132¢)
t+dn=pp—pp—B—-o)t+(@—P)n (11-132d)

The integration of the above equations falls naturally into two cases, p = 0
and p =0.
Solution for p # 0. Radial Integration
The solution to the equation Dp = p?, Eq. (11-127a), is
p=—1/(r +ipy) (11-133)
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where p, is real, and the subscript indicates it is independent of the coordinate r.
The choice of the integration “constant” as ip, is made possible by means of a
coordinate transformation (see Sec. 11-2). The case p = 0, resulting from p, — oo,
will be considered separately later.

An equation for p may be derived from the commutator

(6D — Dé)p = 2pdp — Dp

. =p*a+ B —m)— pdp
giving
DSp —3pdp=p*n—a—P) (11-134)
Using now Egs. (11-127a) to (11-127c¢), the general solution of the above equation
is found to be
op = pla + B) — 27 p° (11-135)
where 7, is a “constant” of integration, i.., a function independent of the coordin-
ate r. This result is now substituted in Eq. (11-132b) to yield
Drn = 2%,p° (11-136)
which has the solution
=1+ T,p? (11-137)
Equations (11-125), (11-127b) to (11-127¢), and (11-130a) can now be in-
tegrated easily one at a time, each one yielding a new integration “constant.” In
this way the radial dependence of every tetrad field function, spin coefficient
function, except u, and the Weyl spinor component , is determined ; the solutions
are as follows:

&=pé’ (11-138a)
@ = pwo + &o + o — o /P (11-138b)
X'=Xo' + pp(Tolo’ + T0%0") + pt1oCo’ + PRo o’ (11-138c)

U= U —r1(yo+ 7o+ Moo + floTo) + r’mo Ty
+ p[To(®@o + Bo) — Tolo + Mo @o — ¥o/2]
+ Plto(2o + Bo) — Toflo + Tlowo — ¥o/2]
+ pp(Towo + To@o — ToTo) — (p/Po)ToTo

— (p/p)romo (11-138d)
B = pBo (11-138¢)
o= pag — My + P37, (11-138f)
T = pho + pPTo — Ty (11-138g)

7 =70 + p(noto — ToTo) + P(Tlo fo — ToTo)
+ p*(Wo/2 + Tono) + pP(to0o + To o)
+ p2pToTo — IMyT, (11-138h)

V= p*0, (11-138i)
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In order to obtain an expression for Ap and y we again use a commutator:
(AD—=DA)p =2p Ap —D Ap
=p(y+7) - (t+7) dp—(T+m)dp
The last term of this equation can be written out in full using Egs. (11-128a),

(11-135), (11-137), and (11-138). The result is an equation for Ap which can be
integrated to give

Ap = —p*Mo + p*no(eto + Po) + p(vo + To + Mo To)
+ PofloTo + pP[MIo(@o + Bo) — ToTo + ToTo — Mo o]
— p*(Wo/2 + Toto) — P?P[¥0/2 + Tomo
— To(%o + Bo) — To(%o + Bo)]
— p3pToTo + r¥p3my T, (11-139)
where M, is a constant of integration.
Finally, we substitute Eq. (11-139) into Eq. (11-132a) and perform the radial
integration for the spin coefficient 4. We obtain:
B= o + p(My — ToTo) + PTomo
+ p*(Wo/2 + ToNo) + pPVo/2
+ p2pToTy — ripmy Ty (11-140)

Transverse Equations

In the second stage of the solution of the field equations we complete the elimina-
tion of the coordinate r by substituting the above results into the remaining
equations and equating the coefficients of similar powers of p. In this manner we
obtain differential equations involving £, and X", and also some purely algebraic
constraints between the integration constants.

To find out the derivatives of p, we differentiate Eq. (11-133). The results are:

op = p* + i 5po)
3p = p*(® + i 3p,)
Ap = p*(U + i Apo)

Expanding now these equations and comparing them with Egs. (11-128a),
(11-135), and (11-139), we obtain the following relations:

o'poi = —Pol@o + Bo — 10) — iTo + 2ipy 2o (11-141a)
Xo'po.i = —polyo + Fo + 2mono + 27y 7o)
+ (Mg — Mo)/2 + i(tomo — ToTto) (11-141b)
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o = —ipo(@o + Bo — M0) — 2p0 *To (11-141c)
Uo = nolao + Bo) + oo + Bo) — 1oTo

+ ipo(mono — ToTo) — (Mo + M,)/2

+ T + T T, (11-141d)

where a comma, as usual, denotes a partial differentiation, f; = af /0x'.
The three other field equations, Eqs. (11-130b) to (11-130d), provide the deri-
vatives of y/,:

EoWoi= —3o(@ + Bo — Mo — 2ipo 7o) (11-142a)
&o o= —3Yolao + Bo) (11-142b)
XoWoi= —3Wo(vo + Yo + to + ToMNo + ToTo) (11-142¢)

Substitution in Egs. (11-128b) and (11-129a) then gives the transverse deriva-
tives of ny, 79, and #4:

&o'To.i = — Ho + Mol — Bo) (11-143a)
o 'Mo,i = mo(Bo — o) (11-143b)
Eo'toi = —10(380 + Bo) (11-143c)
o '10.i = —To(®%0 + 3P0 — Tio + 2ipo7o) — 2ipg M,
= 2i(po)’moTo + (Yo — ¥o)/2 (11-143d)
€0 Moi = —M0(280 — Mo — 2ipoTo) + 2707 (11-143¢)
EoMo.i= —2Bono — My + My + 27,7, (11-143f)
Equations (11-127f) and (11-128d) confirm these results. Equation (11-128c¢)
yields
o iaO,i - & l'/30,.' = 2ﬂ0(Bo — do)
+ 2ipo(yo + Ho + 2o To + BoTo)
+ My + 3p, *ny T (11-144)
Equation (11-128e) yields the relations
&0 'toi = —Ho(%o + Bo) — 2ipofio Mo + 2ipo Mo Mo o
+ (Mg + My)my + 6p, *mg 2Ty (11-145a)

& 'Mo,; = —2Mo(2o + Bo) + (Yo + 2¥0)mo
+ po 2o — 240 To + 2To Moo
— 200 2o Ty o + 2ipg To o Ty + dipy °mo 2@y (11-145b)
and the relation

r’O = 2ip07_t0 (11'1450)
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When the last equation (11-145c¢) is introduced, many of the above equations
become simplified. If we differentiate it and compare it with Eq. (11-143f) we
obtain a further condition:

MO — MO = 2lp0l_l0 + 4‘?07_1:0 — 8p0 27:07_1:0 (11'1463.)
Since the real part of the right-hand side of this equation must vanish we also
obtain the relation

214y + 2To Mo = 8o *Mo Mo + ipo(to — Ho) (11-146b)
Continuing in the same manner, Egs. (11-129) and (11-132c¢) then gives the follow-
ing set of equations:

Eo'toi = —ol®o + Bo) + To(M, + M)

+ 2ipoTo g + 10pg 2mo 7y 2 (11-147a)
oMo = —2Mo(@o + Po) + 37 Yo + 2ipeTo(SMo + M)
— 3P0 2UoTto — 6ipgToTo Ty + 20ipg *mo T 2 (11-147b)
Xo'moi = —mo(Yo — Jo + 2ipeTo 7o) (11-147¢)
Xo'To,i = —Tolto + 70 + 370) + To(Wo — ¥o)/2
— 2ipoTo My + 6ipgTome 2 — 2ipy Moo 2 (11-147d)
Xo 2o — &0 = — oo *+ o) + Boo

+ ipoTo(2y0 + 20 — Ho) + Moy

+ 2ipomo 2o — 4ipoToTo o

+ TomoTo + Tpo 2o 27, (11-147¢)
XoBoi— &0 0. = —Bolkto — 70 + 270) + To Yo

— ipoTo(2y0 + Ho) + Moo + 4ipomoTo Bo

— 2ipoTo 20tg + 3To Moo + 3P0 Mo o (11-147f)
Xo'Ho.i = —Holto + 7o + Fo — 2ipoToTo) — 2ipoToTo Hlo (11-147g)

Xo'Mo:= —2Mq(io + 7o + To) — ToTo(¥o — Yo) + 4ipo MomoTo
+ 2U0ToTo + Po *ToTo(io — Fo) + 4ipoToTo *To
— 4ipg Ty 2moto — 12ipy 1o 27y 2 (11-147h)

and also an algebraic constraint
Mo = Ho (11-1471)
It is interesting to note that Eq. (11-147i) is implied only by the very last
equation, Eq. (11-129¢). Differentiation of Eq. (11-146b) leads to

To(¥o — Wo)/2 = —poTo + 4po 2uo Ty + 2ipe Mo T
+ 2ip0T07t07_t0 - 2l.p0f07_toﬂ0 - 6lp0 37t07_t0 2 (11'148)
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Finally, the metric equations (11-126) give

€o'Xo? i — Xo'Co? i = (o + 270 — 4ipoTomo)Eo’
+ 2ipomoTo Lo + (2ipoTo — & — Bo)Xo’ (11-149a)
Eo'lo? i —&o'Co? i = —2(Bo + ipomo)o’
+ 2(Bo — ipoTo)Eo? — 2ipo X o’ (11-149b)

Choice of Tetrad and Coordinates

So far the tetrad has not been completely specified ; it still has the freedom of the
two-parameter group of rotations which leaves the directions of the vectors /* and
n* unchanged:

lﬂ 4 AO - 11#

m* — exp (i0,)m*

(11-150)

m* — exp (—i0,)m"

n* — Ay n*
where A, and 8, are arbitrary real functions independent of the coordinate r.''®
This transformation induces a transformation on all the field variables. For
instance, one obtains

Ug— 492U,
% + Bo = [Ao(2o + Bo) — o7 Ao ;] exp (i)

7t0 i 7('.0 exp (_100)

To — Ao 210 exp (i)

Yo Ao 3‘#0

The fact that some variables transform inhomogeneously permits a partial

check on the results obtained so far, since all the equations obtained above must
be covariant under the transformation (11-150). It also suggests the possiblity of
setting some of the variables as zeros.

We now perform a rotation with 4, chosen in such a way that y, /, becomes
a constant. Then Eqs. (11-142a) to (11-142c) yield the following equations:

&0 + ﬂo = 2lp07_to (11'1513)
P+ +u=0 (11-151b)

'$1f the functions 4, and 6, were allowed to depend on the coordinate r, the condition & = 0
would be violated.



274 GROUP THEORY AND GENERAL RELATIVITY

Classification of Solutions

At this stage of the calculation it is worthwhile to resolve several cases.

Case I: Let us assume that n, = 7, = 0. This is the case already treated by
Newman, Tamburino, and Unti which leads to the three NUT-Taub metrics
discussed in the last section.

Case Il1: 1y =0, 15 + 0. We select 8, such that ity is everywhere real and
positive. Equations (11-143a), (11-147d), and (11-151b) give us py = yo = 0. Now

My,= —U, and ¥, =m + il become constants. From a comparison of Egs.
(11-143c), (11-143d), and (11-144) we obtain
Bo = Bo

2p0Uo = —1—4ifo7o
o l'/30,1' = U0/2 - 2ﬁ0 2
o iTO,i =270

Let us now choose coordinates such that X,’ = 8,". Use p, to define a coor-
dinate x2 by po = po(x?). Since &y'py ; is real, it follows that £, must also be real.
By the coordinate transformations

x% = x% + f(x% x%)
x* > g(x?)

x* = x3 + h(x?, x?)

(11-152)

we can make £o2 = —1/,/2 and &,° and &,° imaginary. Then the relations
o lfoj,i = Eo ifoj,i
¢o iTO,i = iTO,i
60 iﬂO,i = EO iﬂO,i
Xo ifoj,i = Xo iTO,i =Xo'Boi=0
show that &,%, 74, and B, are functions of only the coordinate x2. Integration is
now straightforward and leads to the following metrics:
Case I1.A: U,y <0. By a further rotation by Eq. (11-150), with 4, constant,

one can set U, = —3. The solution is known as the Kerr-NUT space,!'? with a

being the Kerr angular momentum per unit mass parameter, and x° = u, x! = r,
3

xt=x,x}=y:
Bo = —32'% cot x
To = —1ia2'/? sin x
p=—(r+il—iacos x)~! (11-153a)
= (0, 1,0,0)
m* = — 32'2plia sin x + 2il cot x, 0, 1, i cosec x]

n=pp[rt + * +a% —(r* = 2mr — I* + a@%)/2, 0, a]

7 M. Demianski and E. Newman, Bull. Acad. Polon. Sci. 14, 653 (1966).
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The only nonzero components of the metric are

Guu = PP(r* — 2mr — > + a? cos? x)

gu =1

gy = —2ppl cos x(r? — 2mr — I* + a?) + 2ppa sin® x(mr + [*) (11-153b)
g,y = —asin? x — 2l cos x

gux = —12 — (I — a cos x)?

g,y = pp(r* — 2mr — I* + a*)(a sin® x + 2l cos x)?
— pp sin? x(r? + I + a?)?

Case II1.B: U, >0, B, < —2'2/4. Now we use the rotation to set U, = } and
obtain

Bo = —12"% coth x

To = —4ia2'/? sinh x
p = —(r —il + ia cosh x)™! (11-154a)
= (0, 1,0,0)

m* = — 1212p( —ia sinh x + 2il coth x, 0, 1, i cosech x)

nt = pp[r? + I* + a% (r* + 2mr — I> + a%)/2, 0, 4]
whereas the nonzero components of the metric are given by

dus = —pp(r? + 2mr — > + a® cosh? x)

9w =1

duy = 2ppl cosh x(r? + 2mr — I* + a*) — 2ppa sinh? x(mr — |?)

g,, = a sinh? x — 2/ cosh x (11-154b)
gux = —r* — (=1 + a cosh x)?

g,y = —pp(r* + 2mr — I* + a*)(—a sinh? x + 2I cosh x)?
— pp sinh? x(r? + > + a?)?
Case I1.C: Uy = +3, Bo > —2'?/4. We obtain

Bo = —12'2 tanh x

1o = — 31a2'/% cosh x
p = —(r—il +iasinh x)™! (11-155a)
= (0, 1,0, 0)

m* = — 12'2p(—ia cosh x + 2il tanh x, 0, 1, i sech x)

nt=pplr* + I — a? (r* + 2mr — I> — a%)/2, 0, q]
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whereas the nonzero components of the metric are given by

Gu = —pp(r? + 2mr — I? + @* sinh? x)

gur =1

9uy = 2ppl sinh x(r? + 2mr — * — a®) — 2ppa cosh? x(mr — %)

g,, = a cosh? x — 2l sinh x (11-155b)

gxx = —1% — (=1 + a sinh x)?

g,y = —pp(r* + 2mr — I* — a*)(—a cosh? x + 2/ sinh x)?
— pp cosh? x(r? + I — a?)?

Case II1.D: Uy = +3, fo = —2'2/4. We obtain

ﬂo = —21/2/4
1o = —3ia2l/? e*
p=—(r—il+iae’) ! (11-156a)

= (0, 1,0,0)
mt = —32'2p(—iae* + 2il,0,1,ie”%)
nt = pp[r? + 12, (r* + 2mr — 1?)/2, 0, a]

whereas the nonzero components of the metric are given by

Gue = —pp(r? + 2mr — I* + a? e*%)
g =1
Guy = 20pl €*(r* + 2mr — ) — 2ppa e**(mr — I?) (11-156b)

g, =ae?* —2le*
Gux = 12— (=l+ae*)?
g,y = —pp(r* + 2mr — P)(—a e** + 2l e*)? — pp(r? + [?)? e**

CaseIL.E: U, = 0,1 # 0. We may now use a tetrad rotation and a rescaling of
coordinates in order to set / = +1. Then the solution is given by

o = —2%x

1o = —3i212x
p=—(r+ib+ix*2)"! (11-157a)
= (0, 1,0,0)

mt = —3212p(—ix3/4 — ibx, 0, 1, i/x)
n* = pp(r* + b3, mr +5,0, 1)
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whereas the metric is given by

Gu = — pP(2mr + 2b + x?)

9w =1

Guy = pPx*(r? — 2mbr — mrx?/2 — b* — bx?*/2) (11-157b)
g,y = bx? + x*/4

Gux = —17 — (b + x?/2)?

g,y = —pp(2mr + 2b)(bx? + x*/4)? — ppx?(r* + b*)?

Case I1.F: Uy =0, | =0. We obtain

Bo=0
To = —4i2!2
p=—(r+ix)"! (11-158a)

= (0, 1,0, 0)
mt = —32'2p(—ix3,0, 1, i)

n* = pp(r?, mr — 3,0, 1)

whereas the metric is given by

Yu = —2ppmr

Jur =1

Guy = pp(r* — 2mrx?* + x2) (11-158b)
Gry=X*

Ixx = _r2 - x2

g,, = —pp(r* + 2mx*r — x*4)

Case 111: Here we assume n, +* 0. Now we choose 6, in such a way that x, is
everywhere real. Equations (11-143a), (11-143b), (11-147¢), and (11-151a) then
imply the relations:

Ho = —27mo(Bo + Bo)
Bo — Bo = 2ipemo
Yo — To = —2ipomo?

®o = —fo
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Likewise, Eqs. (11-146a), (11-146b), and (11-148) reduce to the following set of
equations:
Mo — Mo = dipomo(Bo + Bo) — 2mo(to — To)
To + To = 4po *mo

Yo — Yo = 2ipo(Mo + Mo) + 2(tg — To)(Bo + Bo) — 6ipo *mo 2

It is advantageous to abandon the complex notation at this point of calcula-
tion and work with real and imaginary parts. Accordingly we write:

Bo =bo + ipomo

To = 2p0 27:0 + iﬂoto

Ho = —4moby

7o = 2Mobo — ipomo 2 (11-159)
My= —Ug + 4po2me? — 2ing 2ty — 4ipomoby

Yo =my + il

= mg + 2i(—poUq + 2bo oty + po °mo %)

Then the equations to be solved are the following:

¢o'po.i=&o'po.i=Toto (11-160a)
&o'to; = o 'to.i = —8p0 o (11-160b)
Eo'moi = o 'mo = 2bomo (11-160c)
Eoboi=CE0'bo;i=Ug/2 — 2by? — 3py*my? (11-160d)
éOiUO,i = EOiUO,i

= —3mgymy — 6poTo to — 12p¢ %Mo by (11-160€)
o i‘pO,i =&, l!‘po,i = 6ipomo Yo (11‘160f).
€0'Co’ i — Co'Co? i = —2ipg X o7 — 2bo(&oT — &) (11-160g)
Eo'Xo i — Xo'o” i = —2ipemo X(So” — &) (11-160h)

Xo'poi=Xo'to; = Xo'Toi = Xo'bo,
=Xo'Uo,i=XoYo,;=0 (11-1601)

Again by Eq. (11-152) we can make ¢,° and &,° to be imaginary and
{o? =dm,, where d is a real constant to be chosen in the sequel. Equations
(11-160a) and (11-160b) then imply

Po.xx = —8po°/d? (11-161)
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The solution of this equation is easily seen to be given by
Po = acn[(2a2'%/d)x]

where cn x is an elliptic function of modulus k = 1/,/2, and a is a constant of
integration.

One consequently has the following subcases:

Case 111.A: a =0. Here we choose d = 1. The remaining integrations are
simple and lead to the following vacuum solution:

To=0
my=m
lo =0
o = (3)V*¥ (%) (11-162a)
I* = (0, 1,0, 0)

m* = {0, (3)'%1f (x), —(3)"/*r "1 f(x),
— iy
nt = {1, 3r*[f(x — 1/r)]% 0, 0}

and the metric becomes:

g = —r[f(x = 1/r)]?

Ju =1

Gux = —1° (11-162b)
gux = =T -

gy = —r’[f(¥)]?

where
f(x) = (=2mx* + ax + b)'/?

and m, & and b are constants.
This solution is the static “C” metric discussed by Ehlers and Kundt.['®
Case I11.B: a #+ 0. Choose d = —2%2a. Then one obtains

po=acnx (11-163)
to =2%%a%n x dn x

where sn x and dn x are elliptic functions.
Equation (11-160f) is next integrated to yield

Yo = (m + il)(dn x — i27'%sn x)? (11-164)

'8 J. Ehlers and W. Kundt, in Gravitation: An Introduction to Current Research, (L. Witten, Ed.),
John Wiley, New York, 1962.
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where m and [ are constants. Equation (11-160e) can then be written as
o' (Uo + 3po®my?) ;= —3momg
whose integration yields
Uy + 3p0°my> = b+ 32"2a  'en x(msn x — 2'2ldn x)  (11-165)

where b is a constant. When Egs. (11-160c), (11-160d), and (11-165) are combined,
they give the following equation for my2:

My . snx dn x — my2en®x = —1ba” %en x + 4la”3dn’x + {g2'/2ma” *sn’x
(11-166)

whose solution is given by
mo? =csnxdnx + ba”%en?x — §2"2a den x(msn x + 22ldn x)  (11-167)

Finally, the solution of Egs. (11-160g) and (11-160h), for j = 0, 3, is found to
be
X,/=Disnx+E dnx (11-168a)

o = 1212igy (= D/ dn x + LE7 sn x) (11-168b)

We choose D/ = §,7 and E/ = 6,7, and the resulting vacuum solution is, con-

sequently, given by

p=—(r+iacnx)!

= (0, 1,0,0) (11-169a)
mt = —2712p[ —4im, " sn x, 2!, (r? + 3a’cn2x),
4am, , in,” 'dn x]

= (X, U, 0, X?)
where
X% =dn x + 2'"2%app(rcn x + 2'?a sn x dn x) sn x

X? =snx —2¥%app(ren x + 2Y2a sn x dn x) dn x
U=>b+32"%a"'en x(msn x — 2'21dn x)
+ 2°2qcr en®x ~ 2Y2a7'brsn x cn x dn x
— 3a~*mr(dn®x — 3sn?x dn x) + n,%(r? — 3a*cn?x)
+ 3a” 3lr(3dn®x sn x — sn°x) + pp(rm, + al, cn x) (11-169b)
— dppa*ny*(ren x — 2'2a sn x dn x)?
my = m(dn®x — 3dn x snx) + 2'2/(3dnx sn x — §sn>x)
I, = —2'?m(3dn?x sn x — 4sn®x) + I(dn3x — 3dn x sn?x)
mo? = csn x dn x + 4a~2b cn®x — §2'2a" %cn x(msn x + 2'/2] dn x)

and aq, b, ¢, [, and m are arbitrary constants.
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The nonzero components of the metric, when written in these terms, are given
by:

g.. = —2U dn*x — (X’n,)*(r? + a*cn?x)

g, =dnx

g = —%2"%a"'dn x(r* + 3a*cn2x)

gy = —Usnxdnx + X°X’r,%(r? + a’cnx) (11-169c¢)
gy =350 X

g.. = —iglamy)”*(r* + a*cnx)

gry = —32"%a"'sn x(r* + 3a%cn?x)

g,y = —3U sn*x — (X°ny)%(r? + a’cn’x)

Generalized Kerr Metric

The solutions of Case II, Egs. (11-153) to (11-159), can be interpreted physically as
follows.

If we examine the two-dimensional positive-definite metric of the wavefronts
on the equipotentials 4 = const., r = const., we see that asymptotically, as r — oo,
they become spheres in Case 11.A, pseudospheres in cases I1.B to I1.D, and planes
in Cases ILE and ILF.

Case IL.A is the Kerr-NUT space. It has been pointed out by Demianskiand
Newman!!'®! that this solution describes the field of a particle possessing a mass m,
an angular momentum ma, and a “magnetic monopole of mass” . When the
parameter [ is taken to be zero, the resulting metric is reduced into the following:

Gus = (r* + a? cos? x — 2mr)/(r* + a* cos? x)

g =1

duy = (2amr sin® x)/(r* + a* cos? x) (11-170)
g,y = —asin® x

gex = —(r* + a® cos? x)

g,, = sin? x[a*(r* + a® — 2mr) sin® x — (r* + a®)*]/(r* + a® cos? x)

The solution (11-170) is known as the Kerr metric.[2? If we expand the metric
(11-170) as a power series in m and a in the sense of Einstein-Infeld-Hoffman (see
Sec. 7-7), assuming m to be of order two and a of order one, and compare it
with the Einstein-Infeld-Hoffman approximation for a spinning particle,

19 M. Demianski and E. Newman, op. cit.
20 R, Kerr, op. cit.
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one finds that m is the Schwarzschild mass (ie. Gm/c?) and ma the angular
momentum about the z axis. It has no higher order multipole moments in this
approximation (see Problem 11.9; for generalizations of the Kerr metric see
Problem 11.14, 11.16 and 11.17).

The metrics of Case II have been interpreted by Kinnersley to represent
spinning particles and correspond to the six different ways we can pick a velocity
four-vector and an angular momentum vector orthogonal to it. Cases II.B and
IL.D are attributed to a particle with spacelike velocity, and Cases ILE and ILF to
one with lightlike velocity. The angular momentum vector is supposed to be
spacelike for Cases II.A, I1.C, and ILF, null for Cases II.D and ILE, and timelike
for Case I1.B. These assertions are reinforced by an examination of the geometry
of the principal congruences in the flat space limit m = [ = 0, and also from the
fact that the metrics may be obtained from one another by infinite Lorentz
transformations.

As has been mentioned before, case IIL.A, Egs. (11-162), is the static
degenerate “C” metric given by Ehlers and Kundt2!} Case IIL.B seems to be
closely related to it, but with rotation added. Both are asymptotically flat
at r — co.

Solution for p =0

In what follows we can assume the spin coefficient u = 0 since otherwise after
interchange of /* and n* the previous calculation would apply. Since /* is now
proportional to a gradient, we can follow Chapter 10 andsett =& + §, X° =1,
and ¢°= 1. Furthermore, Egs. (11-127d), (11-132a), and (11-132b) imply
Dt = Dr =0, and % = 17, so we may use the tetrad rotation, Eq. (11-150), to set
1 = —n. The field equations (11-127f), (11-128b), (11-128d), and (11-129a) now
yield the following expression for y:

Y =2t(f— ) (11-171)

We must insist on { # 0 and hence 1 # 0 since otherwise the space will be flat.
Some of the other immediate consequences of the field equations are

Dy = Ay =0 (11-172a)
Dr=Ar=0 (11-172b)
&Y =8y = 3ty (11-172¢)
dt=90r=2pt (11-172d)

a+f=a+p (11-172¢)
y=7 (11-172f)
Sy =0 (11-172g)

21 See J. Ehlers and W. Kundt, op. cit.
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The radial integration can easily be performed. One finds that all the variables
are independent of the coordinate r except for

Y =70 + r[(t + T)B — @) — 7] (11-173a)
X=X, —(c - 7)(& - &) (11-173b)
w=wy—Ht+7) (11-173c¢)
U=U,—r[2y0 + (t — D)wo] —r*[(r + T)(B —a) — 2] (11-173d)

When these equations are substitiited in the remaining field equations we obtain
the following equations:

870 = —wo[(t + T)B — a) — 7] (11-174a)

Uy — Xo'wo,; = wo[270 + (T — T)Hwo — @o)] — Uo(t + ) (11-174b)
dwg — 0y = —(wg — Do)t + 28 + B) (11-174¢)

3 — 88 = (& - EYa—PB) (11-174d)
0Xo'— Xo*e, = wo(t — T)(E = &) (11-1748)

First, we will show how the function w, may be eliminated. The coordinate
transformation r — r + f(x° x2, x*) leaves previous conditions unchanged. Under
this transformation one finds that

70 = Yo —f(z + 7B — a) — 7*] (11-175a)
wo = wo + f +f(t+7) (11-175b)

The quantity in square brackets in Eq. (11-175a) can easily be shown to be
equal Dy. If Dy is nonzero, f = y, /Dy will make y, — 0 and Eq. (11-174a) will then
imply wo — 0. If Dy =0 we have dy, = 0. Then Eq. (11-175b) may be used to
make w, — 0, provided the integrability conditions are satisfied. In other words
we must specify Df and Af such that all the commutators applied to f are given
correctly. Choose Df =0, X' f; = U, — 2y, f. The only nontrivial commutators
are (A — 6A)fand (56 — 8d) f; and these are automatically satisfied by virtue of
Egs. (11-174b) to (11-174e).

Next we show how to eliminate the functions U, 7, by means of a combined
coordinate transformation and tetrad rotation. The tetrad rotation is given by

I* = A7 (xO)

5 = A (11-176a)

whereas the change of coordinates is given by

Yo (11-176b)
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which together preserve all previous conditions, but transform U= U, —
2ryo(x®) — r2Dy into something new. We want to pick 4 and R such that the new
Uy, 7o are zeros. The observation that 8(U, Dy) = 0 is sufficient to reduce the
problem to the solution of two total differential equations for A(x°) and R(x°),
given y, and U, Dy as arbitrary functions of x°. Under sufficient assumptions of
continuity, such equations always have solutions, which is all we need to know.

Finally, from 8y = 8y = 0, we can choose a coordinate x2 = x such that £2 is
real, and then the usual transformation x* — x? + f(x2, x*) makes &3 imaginary.
Equations (11-172a)and (11-172b) show that the remaining variables depend only
on x.

From Egs. (11-172d) and (11-172¢) we find that

T—T=a—-a+f+p
=28 - B)
=t 'ot—7'dt (11-177)

Solve now Eq. (11-172¢) for 7 and substitute it in Eq. (11-177). The result may be
written in the form

S(WH? Sy sy =0 (11-178)
The integration of this equation yields
CYy 'B=y '3 +D (11-179)

The coordinate freedom x' = f(x) would let us set Re y equal to an arbitrary
function of x. But due to Eq. (11-179) we can choose x such that

¥ = (m+ il)(x + ia)™? (11-180)

where m, |, and a are again real constants. Next, 7, a, and f are all expressed in
terms of £2 and substituted into Eq. (11-171) which consequently becomes

0.[(£%)?] + 2ia(eH)*/(x* + a?) = —(m + il)/(x + ia)? (11-181)
The case for which a # 0, Eq. (11-181) yields the real solution

_ 2amx + la® — x?)

2 = 11-182
(%) 2a(x* + a?) ( )

whereas if a = 0, the solution is simplified into
(%2 =C +m/x (11-183)

where C is an arbitrary constant, and necessarily [ = 0. Then by a coordinate
transformation we can set C = +31, 0.
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Resulting Metrics

The resulting subcases are:
Case IV.A:

= (0, 1,0, 0)
mt = (0, 2rx&/(x? + a®), &, i/£) (11-184a)
n* = (1, —r*l2a(x* + a*), 0, 4ar/(x* + a?))

whereas the metric is given by

9w =1
Gux = —2rx(x* + a®)7! (11-184b)
Ixx = _%6_2
gyy = _2&2
where
2amx + l(a® — x?)|'/?
R~ 3 B IO 11-184¢
¢ 2a(x* + a?) ( )
Case IV .B:
I*=(0,1,0,0)
m* = (0, 2r¢/x, &, i/§) (11-185a)
n* = (1, Cr?/x%0,0)
and the metric is given by
Gy = —2Cr?/x?
Ju=1
Guxe = —2r/x (11-185b)
Oxx = _%6—2
gyy = _262
where
C=1%30
(11-185c)
&= (C+ m/x)'"*
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Discussion

Case IV.B, Eqs. (11-185), was also given by Ehlers and Kundt,'2?! referred to by
them as the “B” metrics. Case IV.A is a rotating generalization which tends
smoothly to Case IV.B in the limit [ - 0,a— 0, l/a— C.

To summarize this chapter we list in the accompanying table all metrics
discussed in it. In this table the parameter m describes the mass, [ describes
“magnetic monopole of mass,” a describes angular momentum per unit mass, and
I" describes other parameters that the metric might have.

PROBLEMS

11.1 Prove Egs. (11-8).

11.2 Prove Egs. (11-25a), (11-25b), and (11-26).

11.3 Prove Egs. (11-36), (11-37), (11-38), (11-39), and (11-40).

11.4 Show that the Robinson-Trautman solution contains the Schwarzschild metric.
11.5 Prove Egs. (11-86).

11.6 Show that the constant 2u, of Eq. (11-105c) is the Gaussian curvature of a two-space with the
metric (/2p)? 6". [See E. T. Newman, L. Tamburino, and T. Unti, J. Math. Phys. 4, 915 (1963).]

11.7 Prove Eq. (11-119).[See E. T. Newman, L. Tamburino, and T. Unti, J. Math. Phys. 4,915 (1963).]
11.8 Prove Egs. (11-138).

11.9 Show that the parameter a in the Kerr metric (11-170) has the meaning that ma is the angular
momentum. [See R. Kerr, Phys. Rev. Letters 11, 237 (1963).]

11.10 Use the coordinate transformation u = t—r — 2mln(r — 2m),r' =r, &' =6, ¢ = ¢ to write the
Schwarzschild metric in the form g** = I*n* + n*l* — m*m” — m*m®, where

1‘1:61‘1

1 i
oo _ u Sk
" 2r(52 *sin 3)

1 i
At = o St
" \/2r(62 sing )

= 6g* — 41 - 2m/r) 6, *

withx® =y, x'=r, x2=0,x* = ¢.
11.11 Allow the coordinate r in Problem 11.10 to take complex values and rewrite the tetrad in the
form

=gy

1 i
v=__ [5 v 4 S
" \/2r(2 sin 0 3)

1 i
it = — |5 ¢ — Sk
" \/2r(2 sin 8 3)

nt =8y — 41 — m(1/r + 1/7)] 6,*

22 See J. Ehlers and W. Kundt, op. cit.
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where ¥ is the complex conjugate of r. Perform now the complex coordinate transformation u’ = u —
iacos 0, =r+iacos 0,0 =0, ¢ = ¢, on the vectors of the tetrad.
Show that if one allows r’, ' to be real, one obtains the Tollowing tetrad in terms of the new

coordinate system:

= 51 ©

mt = [/2(r + ia cos 0)) [ia sin 0(5g* — 6, *) + 6,* + (i/sin 8) 6;#]

nt = 6g* — 41 = 2m[r/(r* + a* cos? 9)]} &, *
with m" being the complex conjugates of m". Show that g obtained from the above tetrad by

g* = Fn + I'n* — m*m* — m*m® to be equivalent to the Kerr metric (up to a coordinate transforma-
tion). [See E. T. Newman and A. L. Janis, J. Math. Phys. 6, 915 (1965).]

11.12 Show that one cannot treat the coordinates r, 6, and ¢ of Problem 11.11 as the usual polar
coordinates, for even in the flat space limit (m = 0), the metric g*” is not the polar coordinate version of
1, - the Minkowski metric. Show that the following coordinate transformation does lead to polar
coordinates r, ¢, ¢',and v’ =1 — r":
W =u+r—(r*+ a®sin? 6)1/2
(r)*=r*+a*sin? 0
cos 0' =r cos 0/(r* + a® sin® §)!/2
tan ¢’ = (tan ¢ — a/r)/(1 + tan ¢a/r)

[See E. T. Newman and A. L. Janis, J. Math. Phys. 6, 915 (1965).]
11.13 Show that the Reissner metric, Eq. (7-69), can be written in null coordinates as g** = n* +

e — m'm* — m*m®, with
r=24*
mt = (1/\/2r)[62“ + (i/sin 6) 6,*]

and m* is the complex conjugate of m*.

11.14 Allow the coordinate r in Problem 11.13 to take complex values and rewrite the tetrad in the
form

B=8
mt = (1/5/27)[8,* + (i/sin 0) 5, "]

nt =30 — 1 — m(lr + 1/F) + €2/rr} 6,*

with 7 being the complex conjugate of r. Perform now the same complex coordinate transformation
used in Problem 11.11 to obtain the following tetrad
"= 51u
m* = [J2(r + ia cos )] [ia sin (6 — 6, %) + 8,* + (i/sin ) 6,#]

w =8y — [& — (mr - e22)(r* + a* cos? ) '] §,*
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Calculate the metric g** = #n* + n*l* — m*m* — m"m", and show that it is given by

00 = —a?sin? 0/(r* + a* cos? 6)

o1 = (r* + a®)/(r* + a* cos” 9)

= —a/(r* + a® cos® 6)

g
g
g
gt = 2mr — r? — a* — €*)/(r* + a? cos? )
g'? = a/(r* + a* cos? 6)
g*2 = —1/(r* + a? cos? 0)
g3 = —1/(r* + a? cos® 0) sin? @
Also show that the electromagnetic field components ¢, ¢, ¢, of Eq. (10-28) are given by
$o=0
¢, = e/2(r — ia cos 0)*
¢, = iea sin 0/(r — ia cos 0)>,/2.

Show that the above metric and electromagnetic field constitutes a solution of the Einstein-Maxwell
equations, The above solution is known as the Kerr-Newman solution, and represents the metric of a
rotating, charged mass. [See E. T. Newman et al., J. Math. Phys. 6, 918 (1965); M. M. Schiffer, R. J.
Adler, J. Mark, and C. Sheffield, J. Math. Phys. 14, 52 (1973); E. T. Newman, J. Math. Phys. 14, 774
(1973).]

11.15 Transform the null tetrad that generates the Kerr-Newman metric, given in Problem 11.14, by
means of a null rotation about the vector /,,

g9:(z) = (: (1))

(see Appendix E). Show that if one chooses the complex variable z as
z = (iap sin 6)//2
where
p = —1/(r —iacos )
then one obtains for the components of the null tetrad the following:
I*=(0,1,0,0)
mt = —2"*p(iasin 6,0, 1, i cosec 6)
nt = pp(r* + a%, —A/2,0,a)
where
A=r*+a®+e*—2mr
and for the covariant components
[,=1(1,0,0, —asin? §)
m, = —(p//2)[iasin 6,0, —1/pp, —i(a® + r?)sin 0]
n, =[App/2, 1,0, —(Appa/2)sin? 4]
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Show that with the above null tetrad one obtains for the components of the Weyl spinor the
following:

11/0:%:11/3:1//4:0

The spin coeflicients are given by

p=—(r—iacos9)"*
t= —iasinf p;‘)/\/z
7 = igsin pz/‘\/i
B=—cotl ;‘),/2\/5
a=n—f

W= Ap*p/2

v =i+ (r— mpp,2

Finally. one finds for the components of the Maxwell spinor the following:

$o=0
1= ep?2
$,=0

11.16 Assume that the mass parameter appearing in the null tetrad of the Kerr metric (given in
Problem 11.15 with e = 0) to depend on the retarded time x° = u, ie., m = m(u). Calculate the spin
coefficients and show that they are identical with those of the Kerr metric except for the presence of
the spin coefficient v in this case which is given by

v = —im(u)rasin 6 pzf)/ﬁ

and otherwise vanishes when m is a constant. Show that in the present case the components of the
Weyl spinor are given by

Yo=4,=0
V2 = mlwp?
Wy = —im(u)asin 0 pzp/z\/i ~ 2im(u)ra sin 0 ;}3[)/\/2
W, = t(ura® sin? 0 p*pi2 + m(u)ra® sin? 0 p*p
Also show that the Ricci spinor is given by
$oo = Po1 = P, =¥y, =A=0
¢y, = —im(u)asin @ ;}2;7,,2\/2
$,, = —ira® sin® 0p?p%2 — m(u)r? p2p?

In the above equations a dot denotes differentiation with respect to the retarded time u. [See
M. Carmeli and M. Kaye, Phys. Lett. 53A, 14 (1975)].
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11.17 Show that the Kerr-Newman metric can be generalized to include a magnetic charge g. Show
that the metric obtained has the form

ds? = [l — pp(2mr — €* — g*)Jdu® + 2dudr
+ 2app sin? 02mr — e? — g?)dud¢
— 2asin? Bdrd$ — d6?/pp
—sin? 0[r? + a® + a®pp sin? 0Q2mr — &* — g*)}d¢*

Show that the tetrad components of the electromagnetic field are given by

d)o =0
¢y = (e +ig)p?/2
d)z =0

Here p = —(r — ia cos )™ '. [Hint: use the results of Problem 8.15.]



CHAPTER

TWELVE
THE BONDI-METZNER-SACHS GROUP

The group SL(2, C), whose representations were found and applied in previous
chapters, is a finite parameter group. In this chapter we introduce another kind of
group that occurs in gravitational theory. The new group has an infinite number
of parameters. It is known as the Bondi-Metzner-Sachs group, and was ori-
ginated in the study of gravitational radiation problems.

After the Bondi-Metzner—Sachs group is defined, we introduce the conformal
group, and the relationship between the two groups is discussed. Consequently, a
certain class of functions is introduced; these are the spin-s spherical harmonics
and the spin-weighted functions. Applications of these functions to Maxwell’s
theory and a further generalization are subsequently made. The structure of the
Bondi-Metzner-Sachs group is then discussed, and its normal subgroups are
found. This is followed by finding out the infinitesimal transformations. Finally, a
brief account of the representations theory of the Bondi-Metzner-Sachs group is
given.

12-1 THE BONDI-METZNER-SACHS GROUP

The group SL(2, C) introduced and discussed in previous chapters is a finite
parameter group. In this chapter we introduce another kind of a group which
occurs in gravitational theory, a group having an infinite number of parameters.
This is known as the Bondi-Metzner-Sachs group (BMS group).

09
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The BMS group originated in the study of gravitational radiation
problems,*- 2 and was discussed in detail by Sachs.!® It follows from this study
that, even in space-times which are asymptotically Minkowskian, one apparently
cannot extract the inhomogeneous Lorentz group (see Chapter 2) as an asympto-
tic symmetry group if finite, retarded, time intervals only are considered. Instead,
one obtains the BMS group.

Definition of the BMS Group

Let u, r, 6, and ¢ be standard coordinates for asymptotically flat space—time. This
means the coordinate u is a retarded time parameter such that u = const. are null
hypersurfaces opening into future, r is a radial coordinate, namely an affine par-
ameter on each of the generators of the hypersurfaces, and 8 and ¢ are spherical
polar coordinates for the sphere at infinity on each hypersurface u = const., with
u, 0, ¢ = const. giving the null geodesic generators of these hypersurfaces.

The BMS transformation is defined by the following transformation of the
coordinates u, 0, and ¢4

W = K(6, p){u — «(6, ¢)}
0 =00, ) (12-1)

¢ = ¢'(6, ¢)

where the transformation of the coordinates 8 and ¢ into & and ¢’ is a conformal
transformation of the (6, ¢) sphere into itself, with K being the corresponding
conformal factor defined by

d@'? + sin? 0 d¢'? = K2(6, ¢)(d8? + sin? 6 d¢?) (12-2)

and where (6, ¢) is a suitably smooth, twice differentiable, real function defined
on the sphere.'®! The expression df? + sin? 8 d¢? is, of course, the metric of the
unit sphere. The aggregate of all BMS transformations forms a group called the
BMS group.

The particular BMS transformations for which ' = 8 and ¢’ = ¢ are called,
in general, supertranslations.

In order to understand the meaning of the BMS group we first discuss the
conformal transformations. ‘

! H. Bondi, M. G. J. van der Burg, and A. W. K. Metzner, Proc. R. Soc. Lond. () 269, 21 (1962).

2 R. K. Sachs, Proc. R. Soc. Lond. (a) 270, 103 (1962).

* R. K. Sachs, Phys. Rev. 128, 2851 (1962).

4E. T. Newman and R. Penrose, J. Math. Phys. 7, 863 (1966).

3 The r coordinate may also be involved in the BMS group of transformations but such a trans-
formation is not relevant to the structure of the group.
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The Conformal Group

The aggregate of all conformal transformations, given by Eq. (12-2), provides a
group. It is called the conformal group. Obviously, the rigid rotations, described in
Chapter 1, which form the rotation group O, form that subgroup of the confor-
mal group for which the conformal factor K satisfies K? = 1.

The conformal group, which preserves the angle between two curves and its
direction (see Problem 12.2), is a six-parameter Lie group which is isomorphic to
the proper, orthochronous, homogeneous Lorentz group (see Chapter 2). The
isomorphism between the two groups can be verified as follows.[®

Introducing stereographic coordinates, namely a complex coordinate { related
to the spherical coordinates 6 and ¢ by

{ = cot g et (12-3)

In terms of the new coordinate {, the metric on the unit sphere will then have the
form

ds?=d? + sin? 0 dg? = 4(1 + ()2 d{ dT (12-4)

Now the complex coordinate { defines a point in the complex plane. There-
fore, the conformal transformations of the complex plane induces the conformal
transformations of the unit sphere onto itself. The only transformations with a
simple pole and a simple zero at the new north and south poles, respectively, are
given by the Mobius transformation:

_aC+b.

C = Zm 5 ad —bc=1 (12-5)

where a, b, ¢, and d are four complex constants which, together with the restriction
indicated in Eq. (12-5), represent six real parameters.

Applying now the transformation of coordinates (12-5), one obtains for the
metric on the unit sphere,

ds? =4K*(1 + {7) 2 dy d (12-6)
with the conformal factor K given by

(al + b)@l + b) + (¢ + d)(eC + d)
1+

K= (12-7)

To show the isomorphism of the conformal group of transformations (12-2) to
the proper, orthochronous, homogeneous Lorentz group (see Chapter 2) one
notices that the transformation (12-5) is exactly as that obtained by transforma-

¢ See, for example, P. Roman, Theory of Elementary Particles, North-Holland Publishing
Company, Amsterdam, 1960.
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tions of the group SL(2, C). To see this, one introduces a two-dimensional com-
plex linear vector space. Let v, and v, be the components of a vector in this space.
Then to each transformation (12-5) there corresponds a linear transformation of
the group SL(2, C) of the form

vy = av, + bv,
v = cvy + dv, (12-8)
as can be seen by the identification { = v, /v,. Accordingly, one can identify the
group of transformations of the form (12-5) with the group SL(2, C). Because of
the invariance of the conformal factor given by Eq. (12-7) under the simultaneous
change a > —a, b > —b,c > —c¢, and d » —d, it follows that the group SL(2, C)
furnishes a double covering of the conformal group of transformations (12-2)
exactly as it furnishes a double covering of the proper orthochronous, homogen-
eous Lorentz group. Thus the required isomorphism between the conformal
group and the proper, orthochronous, homogeneous Lorentz group is established.

The Irreducible Representation DVt

Let £ and # be two independent basis vectors in the two-dimensional linear space
of the vectors which satisfy the transformation law (12-8). Then a basis for the
linear vector space defining an irreducible representation of the Lorentz group,
which we denote by DY 72, is given by!”

(ézjl—mﬂm)(Eij—MZﬁMZ) (12-9)

where 0 < m; <2j, and 0 <m, <2j,. The parentheses in Eq. (12-9) indicate
complete symmetrization of the factors. This linear vector space is a (2j; + 1) x
(2j, + 1)-dimensional. Therefore, an arbitrary vector in this space is determined
by (2j; + 1)(2j, + 1) numbers a,,,, -

The transformation (12-5), which maps the components (v, v,) into (v}, v5),
induces a corresponding mapping of the components a,,,,,, into new components
a . By considering the transformation of the quantities

mim2z

(02 (o™ (@) 22 (D )™

= (avy + bvy )M T™ (cvy + dv, )™ (@D, + bD,)*2T™(ET + diy)™?

2j1 22
Z Z A:v{imjzziunz 2“_"11)"152]2 nzﬁgz (12-10)
n1=0 n2=0

one establishes the transformation

2j1 2j2 U5 3D
) -
m1mz - Z Z mimzznlnz ninz (12 11)
=0 n;=0

7 J. N. Goldberg, A. J. Macfarlane, E. T. Newman, F. Rohrlich and E. C. G. Sudarshan, J. Math.
Phys. 8, 2155 (1967).
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Spin-s Spherical Harmonics
Consider now the set of functions defined by
SZ'l:llm2 — (1 + CZ)—LcL—s-m1zL+s—mz (12_12)

where |s| <L 0<m; <L-s and 0 <m, <L+ s. Applying the transforma-
tion (12-5) one obtains for the transformed set

Z% iy = KL+ (0)7E @H(al + Bl + dym(ad + B)Es el + Ay
(12-13)

s mimy
where

1 (c¢ + d)(C + d)

1+¢T  K(1+)
a_c+d
“TaZ+a

+
and K is given by Eq. (12-7). Comparing Eq. (12-13) with Egs. (12-10) and (12-11)

one finds that

ae

L-s L+s [L_Svlf*-s)
SZ;'fl’"Z = K_L eiSl ZO ZoAmernanni SZf;lnz (12-14)
n=0 nz=

L
mimz

Therefore, up to the conformal factor KL e** the functions ;Z transform

L—-+s L+s
under the irreducible representation D[W?' t 2 Jof the Lorentz group.

The set of functions ;Z% ., do not form an orthogonal set of functions on the
sphere for fixed s. Indeed, for all L > |s| they form a redundant set of functions
for definite spin weight s. However, the spin-s spherical harmonics  Y,,(6, ¢) do
form an orthogonal set for fixed s. For [ < L, the | Y,,, are given uniquely in terms
of the (ZL . by:

L-s L+s

Ym= 2 X B2, (12-15)

s“mpm;
m=0m;=0

with s <I<L |m| </, and

mimz __ almf* = _ ﬂ+s_ml_s I+S

L~
X (L ) 6mz,m1+s+m (12'16)

—s—m —p

In Eq. (12-16) p,, = min (L — s — my, | — s, | + m), and the a,,, are the numbers
defined by

g = (= 1) [(+ m)! (1 = m)! (21 + 1)/4n]"/2 (12-17)

For fixed s and L, the coefficients B;™™* form a nonsingular (L — s + 1)
(L+s+1)x(L—s+ 1)L+ s+ 1) matrix [(/, m), (m;, m;)] connecting the
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Y,

im*

JZE to the

mim2
L—s L+s

D["z' ‘T’) of the Lorentz group up to the factor K~ ™4, it follows that the
s Yim» With |s| </ < Land |m| </, transform under an equivalent representation
up to the same factor.

The above results hold both for L and s integral or half integral.

Since the ,Z:t transform under the representation

s mim2

Spin-Weighted Functions on a Sphere

The spin-s spherical harmonics | Y,,, introduced above can also be introduced in
conjection with a certain differential operator, denoted by ¢, that appears as
follows.

In three-dimensional Euclidean space with polar coordinates, r, 8, and ¢ we
introduce an orthogonal triad a, b, and ¢ of vector fields. The vectors a and b are
tangent to the sphere of radius r at each of its points while ¢ is in the direction of
the radius vector r. Of course the two vectors a and b are only defined up to a
rotation of angle y about the vector ¢. It is very convenient to introduce in place of
the two vectors a and b the complex vector m and its complex conjugates m by

means of
\/Zm =a+ib (12-18)

Then the complex vector m is defined up to a phase factor, ie.
m =e¥m (12-19)
where ¥ is a real function.

A quantity # is now said to be of spin weight s if, under the transformation
(12-19), it transforms according to

N =e%¥y (12-20)

Here, s is in general integral, but half-integral values can also occur. Examples of
quantities of spin weights s = — 1, 0, 1, respectively, are obtained from the scaler
products of an arbitrary vector function V with the complex vector m:

V - m, V-¢ V:':m

More generally, examples of quantities of spin-weight s are furnished by three-
dimensional tensors of rank n contracted k,, k,, and k; times with m, ¢, and m,
respectively, where k3 — ky = s, and k; + k, + k; = n. The convention adopted is
that one for which the real and imaginary parts of the vector m point along the
coordinate lines and hence transform according to Eq. (12-20) under coordinate
transformations.

The function # could have, in addition, a conformal weight. Generally, a
quantity # defined on the (6, ¢)-sphere has conformal weight w if under conformal
transformation of the sphere with conformal factor K as in Eq. (12-2) (and with
fixed vectors m") one has

n=K"
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K is, in effect, the relativistic Doppler factor (¢ + v)'/*(c — v)'/%. For consistency
with the coordinate conditions, the conformal transformation should be accom-
panied by the transformation

"=KF, r=K'r
with m'™* = m*.

Effectively, the concepts of spin-weight and conformal weight refer to the
behaviour of functions on the (6, ¢)-sphere at infinity only, and do not refer to the
remainder of the space-time. Indeed, the concepts will apply to any two-
dimensional abstract surface, with a Riemannian or conformal structure. Quanti-
ties with spin weights correspond to irreducible tensor quantities on the surface.

The differential operator ¢, acting on a quantity # of spin-weight s, is defined
by the following equation:

Y O\ av-s
dn = —(sin 0) 20 + cosec 0 %)(sm 0)"°n (12-21a)

Since, under the transformation (12-20), one has

(@n) = e (gn) (12-22)

It is seen that the operator ¢ has the important property of raising the spin weight
of the function # by 1. Similarily, if one defines the operator J by

- o o\, .
gn=—(sin@)"*° Frie i cosec 0 %) (sin 8)n (12-21b)

with n here also a quantity of spin-weight s, one can see that d lowers the spin
weight by 1. Furthermore, one easily sees that

@9—93dm=2sn (12-23)

Of importance, too, is the effect of the operator ¢ on ordinary spherical
harmonics Y,,(6, ¢), with —I<m <[ 1=0, 1,2, ....Indeed one may define the
spin-s spherical harmonics | Y,,,, for integral s, [, and m, by

s Yin(0, @) = [(L = $)1/(1 + $)1]'7* 3°Y,,.(6, &) (12-24a)
for 0 <s </, and by
Yil0: @) = [(1+ 5)/(1 = 9)]"2(= 1) 7°%(6, &) (12-24b)

for —1 <s<0. Hence , Y, are not defined for |s| > I They form a complete
orthonormal set for each value of s, namely any spin-weight s function can be
expanded in a series in terms of ;Y,,. The spin-s spherical harmonics have,
furthermore, the properties:

sYlm (_ 1)m+s-sYLm (12'253)
asYlm = [(l - S)(l +s+ 1)]1/2 s+1 Ylm (12-25b)
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I Y= —[(+ ) =s+ )] _ Y (12-25¢)
§OYim=—(=s)l+s5+1)Y, (12-25d)
Fo= (-1t Y, (12-25¢)

Accordingly, the operators ¢ and ¢ act on raising and lowering operators on the
“quantum number” s and the _ Y, are eigenfunctions of the operator ¢ .

In terms of the stereographic coordinater { = cot (6/2) ' of Eq. (12-3), the
operators ¢ and ¢ become

gn = 2P 7% 3(P*n)/d¢ (12-26a)
gn = 2P'*° (P~*n)/oC (12-26b)

with P = (1 + {{). In terms of the coordinates { and {, the spin-s spherical
harmonics take the form

A

o) l—s I+s p(_ P\p+s—m
e (B T Ty S Z( p )(p+s—m)“ )
(12-27)

with a,, given by Eq. (12-17). Expression (12-27) applies also to spin-s spherical
harmonics for which I, m, and s are all half-odd integers.

Simple Example: Maxwell’s Equations

As a simple example illustrating the use of the operator ¢ and the spin-s spherical
harmonics | we consider the Maxwell equations in free space:

V- (E+iB)=0
V x (E + iB) — i@/01)(E + iB) = 0

im>
(12-28)

The quantities
- =(E+iB)-m
no=(E+iB) ¢ (12-29)
Ny =(E+iB)  m

of spin weight —1, 0, 1, respectively, then satisfy the equations
0 0\ ,(0 @ -
e S - =0
(6t ar)r (6t * ar)”’ 7 orm
? e _ '
(ﬁ — é?)rzﬂo — @@rﬂo =0 (12-30)

0 0\ ,(0 0O -
(6t+5)r (a—a)rrh ~ddm, =0
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in which the quantities n_ , 5o, 7, are already uncoupled. If we assume solutions
of these equations of the form

”i(t’ r, 99 d)) = i i .ajil,m(t’ r)il Xy’m(ea d))

o j (12-31)
”O(I’ r’ 95 d)) = Z Z a{),m(t’ r)O}ifm(ei‘ d))
j=0m=—j
it is seen that
0 _ 0 0 0 . - i
(at + a)rz(at + ar)mji Lt ) +J0+ Drodey (e, 7) =0
(12-32)

0 92 ; .
(W - 6;')"2&]0’ wlts ) +J(j + Drody (1, 7)=0
and the dependence on the angular variables have been cancelled out. These latter
equations can be solved easily.

Further Remarks on the Spin-s Spherical Harmonics

The spin-s spherical harmonics and spin-weighted functions introduced above
have some group-theoretical interpretation. To see this one proceeds as follows.®]

One starts as before, by introducing a triad of unit vectors &, &,, &5 on each
point of a sphere of radius r. The two vectors &, and &, are taken to be in the
tangent plane to the sphere at the spherical angles ¢ and 8, whereas & is taken to
be normal to the sphere there. The vectors &, and &, are defined up to a rotation
with an angle, which we denote by ¢,, in the tangent plane about an axis in the
direction of &, . The rotation of &, and &, about &5 is given a definite mathematical
expression in the sequel.

By introducing the above rotation, we have actually added a new variable ¢,
upon which the two vectors &, and &, depend. Accordingly, these two vectors
depend on the spherical angles ¢, 8 as well as the new angle ¢,:

gl = gl(d)’ 9, ¢)2)’ gZ = gZ(d)a 9, ¢2)
The vector &,, on the other hand, depends only on the angle ¢ and 6:
€= ia(d% 9)-

Of particular interest to us is the behaviour of &, and &, under the rotation
about &, . Such a rotation can be presented by the orthogonal matrix

cosy siny O
Q= |—siny cosy O
0 0 1

8 M. Carmeli, J. Marh. Phys. 10, 569 and 1699 (1969); Nuovo Cim. 67B, 103 (1970).
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Denoting the column of the three vectors &, &,, &5 by &,

(il)
E= |8 (12-33)
&3

then under the rotation Q we have
& =0

It is convenient to introduce the complex vector & , and its complex conjugate
& _ defined by

&y = 2—1/2@1 + iiz)
Under the rotation Q these complex vectors transform as
g, =g, (12-34a)

similar to the vector m appearing in Eq. (12-19).
A quantity # is now said to be of spin weight s if under the rotation Q it
transforms as

n-n =e%y (12-34b)

where s is an integer, as in Eq. (12-20).
Examples of quantities of spin weights 1, 0 and —1 are obtained by scalar
multiplication of a vector field v with &, , &,

N11(®, 0, d3) = v($, 0) - E.(, 0, $3)

(12-35)
”((i)’ 9) = V(d), 9) ) §3(¢’ 9)

as before.

Further examples of quantities of spin weights of any order can be obtained in
a similar way from tensor fields.

In the following we restrict ourselves to quantities # obtained by contraction
of tensor fields with the triad & , &5 . In other words, the 5 functions are compon-
ents of tensor fields along the complex triad. These components generally depend
on the three angles ¢, 6, ¢,. By relating these angles to the three parameters
appearing in the three-dimensional rotation group (such as Euler’s angles or
direction and angle of rotation, see Chapter 1), the quantities 5 can be considered
as functions of g:

n = n(g) (12-36a)

where ¢ is an element of O;.

Using the homomorphism relationship between the rotation group and the
special unitary group of order two, SU,, we consider n as functions on the
group SU, also:

n =) (12-36b)

where u e SU,.
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In the following, we give the explicit dependence of g on the angles ¢, 8, and
¢,. We also find out what should be substituted for g in order that n can be
written as a linear combination of components of the original tensor field.

First we relate the triad field &, given by Eq. (12-33), to g € O, in such a way
that for each triad & there corresponds a rotation g € O,. This correspondence
can be achieved by assigning to each triad & a rotation g € O, which transforms a
certain given triad on the sphere at ¢ = 8 =0 to &. To find the rotation g, we
proceed as follows.

We introduce a new triad of unit vectors

€y
e = €
¢
€, ~

whose vectors are directed along the coordinates 8, ¢, and r, respectively, and
whose origin coincides with that of the triad &. The triad of vectors e is a function
of the spherical coordinates, e = e(¢, 8). The particular triad at ¢ =6 =0 is
denoted by

Accordingly we have
e’ = [e(¢, 6)]p=0=0

It is easily seen that the three vectors eJ, e3, and e/ are pointing in the same
directions as the Cartesian coordinates x, y, and z of the fixed system. The trans-
formation g is then defined as that one which transforms the triad e° into the triad
&:

g =ge°

Now the vectors e,, e,, and e, can be decomposed along the Cartesian coor-
dinates, hence along eJ, €3, and e? . One easily finds that the matrix of rotation R
which transforms the triad e° into the triad e,

e = Re° (12-37)
is given by
cos 8 cos ¢ cos sin¢g —sin b
R= —sin ¢ cos ¢ 0
sin 6 cos ¢ sin 0 sin ¢ cos 8

The above matrix R can be written as a product of three orthogonal matrices
R =DBA (12-38)
where

010 1 0 0
D=1]-1 0 0}, B= |0 cosf -—sinf (12-39)
0 sin 6 cos 6
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and where

A = |cos¢ sin ¢ 0

0 0 1

By changing the variable ¢, the matrix A" may be written as

cos ¢, —sin ¢, 0
| |

(sin¢> —cos ¢ 0)

sin ¢, cos ¢, 0
0 0 1

(12-40)

where ¢, = n/2 — ¢.

It remains to find the transformation from the triad e to the triad &. Since the
angle of rotation ¢, of the two vectors &, and &, was left undetermined, we define
it by

£E=CD e (12-41)

where the matrix C is given by

C = | sin ¢, cos ¢, 0

0 0 1

For later calculations we have to know the relation between the triad & when
¢, =0 and the triad e. From Eq. (12-41) we obtain

I
93 = €y
€3/ 142=0 e,

Using Egs. (12-41), (12-37), (12-38) and (12-40), we find the explicit form of
the rotation g € O; which transforms the fixed triad e into the triad &:

9(¢1, 6, ¢2) = C(¢2)B(6)A(¢1) (12-43)

The transformation g(¢,, 8, ¢,) represents three rotations with Euler’s angles
¢4, 0, and ¢, around the z, x, and z axis, respectively, where ¢, = n/2 — ¢. Hence,
for each value of the variables ¢, 6, and ¢, of the triad & there corresponds a
rotation g(n/2 — ¢, 0, ¢,) € O3, and any function of these variables can be con-
sidered as a function of g € O;.

In particular, the vectors & , , & can be considered as functions over the group
0,

(12-42)

cos ¢, —sin ¢, 0)

&: =&:(9) & = &3(9)
A direct calculation shows that
E(9) = —27 *[ey(¢y, 0) £ ieg(y, B)]e
83(9) = e.(¢1, 0)
where ¢, = n/2 — ¢.

(12-44)
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The above considerations show that all functions 7 obtained by contraction of
tensor fields with the complex vectors, such as those given by Egs. (12-35), are
functions of g € 05

1= [1(9))p1=r12-0 (12-45)
For example, the functions n,, s = 1, 0, —1, given by Egs. (12-35), are given by
n:1(g) = —27Y*[vy(¢1, 0) £ ivg(y, O))e ™

no(9) = v.(¢1, 6)

When we put ¢, = 0, the function # become functions of the spherical coor-
dinates ¢ and 6 only:

(12-46)

(¢, 0) = ['1(9)]¢1=n/2-¢,¢z=0 (12-47)
Using Egs. (12-46), we obtain the result for #,, s = 1, 0, — 1, for example:

n:(¢, 0) = 2—1/2(% 4 ivy) =
'10((1)» 9) = vr

In general, one can relate these functions to the matrix elements of the irredu-
cible representations of O, and SU, .

A tensor field W of rank two provides nine quantities W, of weights s = 2, 1, 0,
—1, —2. These are obtained by contraction of the tensor field W with &, £ and
inserting ¢, = 0.

(12-48)

Table 12.1: Various spin-weight functions W, obtained from the tensor field W
and their expansion modes in D/ .

Weight s W, Tensor components Expanded in DJ,
+2 WoB. 8 W= Wy Dl, (2~ ¢,6,0)
Ti(way + W)
+1 W-ELE, — (W, = iW,,) Dl fn/2~ ¢,6,0)
W &8, _(W¢iimo)
0 W"5+E.u— %¢+%o %_n(n/2_¢’ 050)
+H{( Wy — W)
W &8, W,
W-E &, Woo + Wao
_i(u/ag) - W:pe)

We give in the table the various spin-weight functions W, obtained from the
tensor field W. We also give their expansion moded in D/, ; the latter are evaluated
at ¢, = (n/2) — ¢ and ¢, = 0.

Using this formalism one can, for example, write down all the electromagnetic
field variables as functions over the rotation group or the group SU, and then
isolate completely the dynamical field variables (see Problems 12.5 and 12.6).
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Isometries

In the next section we will give a detailed discussion of the BMS group. This
preliminary section will be concluded by a discussion of the geometrical notion of
symmetry in a curved space-time (see also Section 7-4).

Suppose one has the metric tensor g,, as a function of the coordinates x*.
Suppose, furthermore, that there exists a one-parametric set of transformations
x* = x*(W; x*), x*(0; x*) = x*, which are such that the transformed metric is the
same function of the new coordinates as g,, is of the coordinates x*. Then the
transformations are called symmetry or isometry transformations. Let
&* = [0x*/0W]w=o; & is a contravariant vector. The basic way to look for isome-
tries in a given space-time is to use the following theorem: The vector & obeys
Killing’s equation

fa;p + éﬂ;a =0

if, and only if, the corresponding transformations are isometries!®! Here, as before,
semicolons denote covariant derivatives.

By means of specific examples one can convince oneself that any reasonably
general space-time permits either no solution of Killing’s equation or at most one
solution of Killing’s equation. To look for general, physically realistic properties
of gravitational radiation from bounded sources in a space-time that permits two
linearly independent solutions of Killing’s equation, is not a promising procedure.
Minkowski space, of course, permits ten linearly independent solutions, corre-
sponding to the ten parameters of the Poincaré group (see Chapter 2).

The Euclidean Group

To illustrate the above considerations we discuss a much simpler group than the
BMS group that arises from the Euclidean group in the plane, E(2)..*% Using
polar coordinates x! = r and x?> = 8, with 0 < r < o and 0 <0 < 2z, and choos-
ing the metric to be positive-definite, then one has

LR

where i, j = 1, 2. Solving the Killing equation %, g" = 0, which can be written in
the form (see Chapter 7)
g"‘fj,k + gjkfi,k _ gij,kf" =0

gives

& =1(0)+ (1/r)f(0)

° L. P. Eisenhart, Riemannian Geometry, Princeton, New Jersey, 1949,
10 p. J. McCarthy, J. Math. Phys. 13, 1837 (1972).
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with the additional condition that

S(0)+1(0)+rg(0)=0

Here f(0) and g(0) are arbitrary, differentiable functions of the variable 6, subject
to the condition stated above, and a prime denotes a differentiation, f'(9) =
df(0)/d6 and g'(0) = dg(#)/d0. Since the last condition is supposed to be satisfied
for any r, one concludes that

S0)+1(0) =
g)=0
Consequently, the solution of the Killing equation is given by
& =f@bP)=acos 6+ bsinb
=K+ (1/r)f"®?(0) = K + (1/r)(—a sin 0 + b cos 0)

where K, a, and b are constants.

The above solution shows that we have three degrees of freedom. These
degrees of freedom describe the infinitesimal group of motions of the plane, a and
b correspond to translations in the plane, whereas K corresponds to rotations
around the point r = 0.

Asymptotic Isometries

Let us now consider the positive-definite, two-dimensional, differentiable Rieman-
nian manifold with metric g¥(x) given in some coordinate patch x’, i = 1, 2. Define
in this coordinate patch two differentiable scalar functions r(x) and 6(x) having
the property of “polar” coordinates. This means that the metric in the new
coordinate system r, 8 should be such as g™ =1 and g% = 0. Hence the new
coordinates should satisfy

6r or

E ox
_or 00
g ax 5x’

Consequently, the metric tensor takes the form

10.0= g r0.0)

where f(r, 0) is an arbitrary, differentiable, function.

We now impose conditions so as the manifold be “asymptotically flat.” These
conditions are:

(a) The patch of coordinates x* should cover the whole manifold outside
some bounded region. The coordinate ranges outside the region is given by
ro Sr< oo and 0 <0 <2x for some ry > 0;
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(b) In these intervals of r and 6, the function f(r, 0) should behave as
f(r,0)=r"240(@"%), for 2 <1<3;and

(c) The function f(r, 8) should also satisfy (3/0r)[f(r, 0) —r=?]=0(r"9),
where g = A. It is also assumed that the derivatives of f(r, 8) with respect to the
coordinate 6 satisfy the same condition. By transforming to “Cartesian” coordin-
ates one can show (Problem 12.7) that

s (10
9o 1

as r — oo, in “Cartesian” coordinates.
Hence the metric so obtained

g (1 0
9= (0 rtg O(r_‘))
describes a wide class of “asymptotically flat” manifolds. The Killing equations
Z:9" =0, unlike the previous case, now have no nonzero solutions. However, if
we require only asymptotic isometries, i€, transformations that preserve the
metric asymptotically, there will be nonzero solutions. Hence we look for solu-
tions of the approximate equations

Leg't =0
jchZ — jégZI =0
Leg*? =0(r"")

which are, for large r, independent of the O(r~#) term. Indeed, the solution of the
first two of the above equations are

&t =1(0)
& = g(0) + (1/r)f'(6) + 0(r™*)
for 1 < pu <2, where f(f) and g(0) are arbitrary differentiable functions. The last
Killing equation gives the condition
2r2g'(0) + 2r3[f7(0) + (0)] + O(r~*) = O(r %)
with s > 4. Multiplying this equation by r? and letting r —» oo, one sees that
g'(6) = 0. Hence g(f) = K, where K is a constant. This is similar to the flat space

case. However, since 2 < 1 < 3, one obtains no condition on the function (), and
the solutions have, consequently, the form

& =1(0)
& =K+ (1/r)f(0)+0(r)
with 1 < u <2.

As has been pointed out before, these solutions are, for larger r, independent
the O(r~*) term. When compared with the solution of the flat space case, we see
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that the two-parameter family of functions f @ *(9) is now enlarged into an infinite
parameter family of arbitrary functions /(). This is exactly what happens in the
BMS group. If we would assume that 4 > 3, the solutions would have been

El = f@ @)= acos 6 + b sin 0
£2 = K + (1)r) £ »(0) + 0(r~*)

with u > 2. This means if the metric approaches flatness too rapidly as r — co, the
two-parameter functions f?(9) will not be enlarged into an infinite parameter
family of functions.

Finally, we notice that the finite coordinate transformation which preserve the
metric asymptotically can be calculated here also just as for the BMS group case.
One finds

ror+f(0)+ 37 0) + 07
-0+ K+r 'f(0)+0(r?)

12-2 THE STRUCTURE OF THE BONDI-METZNER-SACHS
GROUP

It will be useful to introduce at this stage some of the subgroups of the
Bondi-Metzner-Sachs group.

Supertranslation, Translation, and Proper Subgroups of the BMS Group

As has been previously mentioned, the particular BMS transformations for which
¢’ =0 and ¢’ = ¢, are called supertranslations. In this case one obtains

Ww=u—a 0=0, ¢=¢ (12-49)
for Eq. (12-1). The aggregate of all supertranslations forms the supertranslation
subgroup N. Under a supertranslation, the system of null hypersurfaces u = const.
is transformed into a different system of null hypersurfaces ' = const., but no
Lorentz rotation is involved. We may write the function a in terms of spherical
harmonics:

a(g’ d’) -Z Im 9 d’

m=-

II[\/]g

!

where o, are constants. The infinite set of parameters a,,,, subjected to the condi-
tion o _,, = (—1)"a&,,, since « is real, then define the supertranslations.

If ), =0 for I > 2, so that « takes the form:

a=¢g+ & sin b cos ¢ + ¢, sin 0 sin ¢ + &5 cos 0 (12-50)
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then the supertranslations reduce to a special case, called the transiations, with just
four parameters ¢,, ..., €3, and one obtains the translation subgroup.

This terminology is, in fact, consistent with that for the Lorentz translations in
Minkowski space. We may call a hypersurface u = const. a “ good ” cone in Mink-
owski space if it is the null cone of some point, and a “bad ” cone if, on the other
hand, the generators of u = const. do not all meet in a point. Thus, an actual
translation in Minkowski space must send “good” cones into “good” cones;
under a general supertranslation, the “good” cones will be warped into “bad”
cones. It is precisely the condition that a be given by (12-50), which is required to
preserve the “goodness” of the Minkowski null cones.

In curved asymptotically flat space-times the difficulty is to find an appro-
priate analog of the Minkowskian concept of “good” and “bad ” cones. It is not,
in fact, necessary to do this in order to single out the translations from the
remaining supertranslations since the translations are already determined by (12-
50). But if we wish, in addition, to isolate the “pure” Lorentz rotations from
Lorentz rotations which have a “super-translations component ”, then some con-
cept of a distinction between “good ” and “ bad ” cones is necessary. For we might
try to define Lorentz rotations (homogeneous Lorentz transformation) as given
by (12-1) with o« = 0. The hypersurface u = 0 is then transformed into itself. In
Minkowski space, if u =0 is a “good” cone, the resulting transformation indeed
represents a Lorentz rotation and it sends other “good” cones into “good”
cones. If, on the other hand, u = 0 is a “bad ™ cone, then we do not get a Lorentz
rotation in general. Thus, for asymptotically flat spaces, in order to know which of
the BMS transformations are to be regarded as “supertranslation-free Lorentz
rotations”, we must have some definition of “goodness” of u = const.
hypersurfaces.

In Minkowski space, the “good” cones can be characterized locally by the
fact that the null rays generating them possess no shear. In asymptotically Mink-
owskian spaces, it will only be the asymptotic behaviour of the (complex) shear ¢
of these null rays that will concern us. With a null vector /* tangent to the null

rays and a complex null vector m* orthogonal to [ satisfying m*m, = —1, /" and m*
being parallelly propagated along each ray, we have
Lom'm’ =a(u, 0, ¢, r)=0"u, 6, )/r* +0(r™*) (12-51)

where r is scaled so that r , [* — 1 at infinity. Thus ¢° defines the asymptotic shear
of the hypersurface given, say, by u = const. The complex quantity ¢° is of special
interest in gravitational radiation theory. It forms part of the initial data onu = 0
used to determine the space-time asymptotically. Furthermore, d¢°/0u and
026°/0u? both have physical significance. We may call 826°/0u? the gravitational
radiation field since it represents the r~! part of the Riemann curvature field.
Bondi et al. and Sachs call d6°/du the news function since it can be used as
asymptotic initial data for the gravitational radiation field and |8¢°/du|? repre-
sents the flux energy of the gravitational radiation in their analysis.

We cannot, however, attempt to define “good” cones, in general, simply by
requiring ¢° = 0. In many cases it is simply not possible to arrange ¢° = 0 for all
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values of 6, ¢, on one hypersurface, but even in cases where it is possible (e.g. in the
axially symmetric, reflection symmetric cases), it is clear from the above remarks
that, in the presence of gravitational radiation, if ¢° = 0 for one value of u, we will
generally have ¢° # 0 for a later value of u (i.e., “goodness ” would not be invar-
iant under time translation). The idea presented here suggests that, if we make
apparently reasonable physical assumptions as to how the gravitational radiation
falls off at u = —oc (or alternately at u = + oo), then we can effectively minimize
0% at u = — oo (or alternatively at u = + oo). This will restrict our coordinates to
such an extent that only a subgroup of the BMS group remains—which is isomor-
phic to the improper orthochronous inhomogeneous Lorentz group.

Finally, the BMS transformations (12-1) for which the Jacobian J, defined by

K* =sin? 0J%(0, ¢; 0', ¢') sin™2 ¢ (12-52)

where K is the conformal factor, is positive, form the subgroup of all proper BMS
transformations.

Normal Subgroups

We now discuss the important question of what normal subgroups the BMS
group contains." 7 A normal subgroup N of a group G is characterized by the
property that if nis an element of N and g is an element of G, then ' = g~ 'ng is an
element of N (see Appendix A).

Theorem 12.1 The supertranslations form an Abelian normal subgroup N of the
BMS group; the factor group is isomorphic to the orthochronous homogeneous
Lorentz group.

Proof. The supertranslations are characterized by the fact that they leave the
angles @ and ¢ unchanged. Using this fact, one finds that the supertranslations
form a normal subgroup. The factor group is isomorphic to the conformal sub-
group defined above. We have seen that this conformal subgroup is isomorphic to
the homogeneous orthochronous Lorentz group; that any two supertranslations
commute follows from Eq. (12-1).

Lemma 12.1 The translations form a normal four-dimensional subgroup of the
proper BMS group.

In fact, any translation commutes with any supertranslation. As can be seen
from the Lorentz group the commutator of a translation with a conformal trans-
formation is some translation. Therefore, the translations form a normal
subgroup. This normal subgroup is four-dimensional since it requires, as one sees
from Eq. (12-50), exactly four parameters to span the translation group.

IR, K. Sachs, Phys. Rev. 128, 2851 (1962).
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Lemma 12.2 If N' is a four-dimensional normal subgroup of the proper BMS
group then N' is contained in the supertranslation group N.

In fact, let G be the proper BMS group and consider the image N'/N of N’
under the homomorphism G - G/N;since N’ is a normal subgroup of G, N'/N is a
normal subgroup of G/N. Therefore, according to Theorem 12.1, N'/N is a normal
subgroup of the proper orthochronous homogeneous Lorentz group L. However,
the only normal subgroups of L are L itself and the identity e of L. If N/N = L
then N'/N must be six-dimensional; then N’ is at least six-dimensional, contrary
to hypothesis. Therefore, N'/N = e; N’ is, therefore, contained in N.

Lie Transformation Group, Lie Commutator, and Lie Algebra

We now introduce the infinitesimal BMS group transformations.'! ) Suppose one
has an S-dimensional Lie transformation group of an R-dimensional space. Let
the coordinates of the space be y*(«, f = 1, ..., R) and the parameters of the group
be z#(u, v=1, ..., §), where z* is the identity of the group. Then the transforma-
tions have the form

y*=r1*y"; z¢), where [f(y*;0)=)% (12-53)

the functions f* are assumed to be twice differentiable. Consider now the
quantities

4, =(0*02") yuco, (@=1..,Ripu=1,...,8) (12-54)

gq,% is a vector defined everywhere on the R-dimensional space; there are S such
vectors, one for each of the group parameters. If the group is truly S-dimensional
and the z* are chosen suitably, these vectors are linearly independent; that is, if
one has S constants B* then

B“qua:O=>B“:0, (a:l,,R,p:l,,S) (12-55)

To investigate the group structure one introduces the differential operators
P,:
u

P, = q,%(0/3y"), a=1,...,Ru=1,..,9) (12-56)

these are again linearly independent in the above sense. Consider a sufficiently
small, finite neighbourhood of the identity z* = 0 in the space of different group
elements. Every group element in such a neighbourhood lies in precisely one
one-dimensional subgroup of the full group. To each one-dimensional subgroup
corresponds precisely one set {Q'} of multiples of a particular linear combination
of the basic linear operators

Q=BP, Q' =BQ (12-57)

12 The BMS group is not locally compact (compare, for example, L. Pontrjagin, Topological
Groups, Princeton University Press, 1946).
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Here, the B* are again constants and B is an arbitrary constant. Conversely, to
every set {Q'}, defined by Eq. (12-57) with fixed B* and arbitrary B corresponds
precisely one-dimensional subgroup of the group.

To the commutator of two group elements g and h that lie in the relevant
neighbourhood of the group identity corresponds the Lie commutator

Il

[G, H]= —-[H, G] = G*H'[P,, P ]

= [G*H" — H"G"](q,* 34, /0y*)(0/0y") (12-58)
G =G*P,, H=H"P_, (B=1...,Rpv=1,...,8)

of differential operators G and H that correspond to the subgroups in which g and
h lie. The group axioms imply that the Lie commutator must be a linear combina-
tion of the basic differential operators:

[P,,P]=4,°P,, (vp=1..17) (12-59)

Here the quantities 4, * are constants, the structure constants (see Chapter 1). The
differential operators, considered as abstract quantities whose only relevant
properties are given by their commutator table, are a complete linearly indepen-
dent set of basic elements for what is called the Lie algebra of the group. The Lie
algebra itself consists of the linear combinations of the differential operators;
commutators are imposed on these linear combinations in the obvious way and
then obey all the usual abstract properties of Poisson or commutator brackets,
such as antisymmetry and bilinearity.[* 3

To an §' < § dimensional subgroup correspond §’ linearly independent oper-
ators Q, (the symbol B with indices will denote constants):

Q.,=B,*P,, (u=1,...8;v=1,...,8;5 <5) (12-60)

These operators have the property that their Lie commutators are linear combina-
tions of themselves:

[0..0]=B.°Q,, (wv.p=1..57) (12-61)

If the §’ dimensional subgroup is a normal subgroup then the Q, obey the stronger
conditions

[0..P]=0Q,B,% (mp=1...8y=1..,5)  (12:62)

The fundamental theorem on Lie groups states that these relations can be in-
verted. If one can find in the Lie algebra combinations Q, that obey Eqgs. (12-61)
or (12-62), then there exists, respectively, a subgroup or normal subgroup to which
the Q, correspond. Thus the structure of the Lie algebra characterizes the struc-
ture of the Lie group up to those global properties that cannot be analysed by
analysing a small finite neighbourhood of the group identity.

'3 L. Pontrjagin, op. cit.
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Infinitesimal Transformations
To apply these ideas to the BMS group, we expand the function o(f, ¢) of
Eq. (12-1) as before in terms of spherical harmonics!**!

o] !

= Z Z Y,.(0, ¢), Ay - = (= 1)a,, (12-63)

1=0 m=—1

From Eq. (12-56) one finds for the supertranslations
P, = Y,.(0, $)@0/0u), (P, =(—1)"P P,,=0for [m| >1) (12-64)

l, —m>

The six differential operators corresponding to the conformal group will be
denoted by L,,, with L, = —L,,. These are the infinitesimal generators that
generate rotations within the (x° x”) plane of the Minkowski space (see
Chapter 2). For example, a rotation in the (x, y) plane is given by

U =u, 0 =0, ¢" = ¢ + const. (12-65)
a rotation in the (z, t) plane is given by
u' = K(0)u, ¢ =0
cot (6/2) = (1 — const.) cot (6/2)

Using Eqgs. (12-54) and (12-56), one then obtains for the generators of the above
rotations

(12-66)

0

L12 = % (12'673)

and

0 0
L= 0 — — -
so=ucosf - + sin 6 20 (12-67b)

It is often convenient to introduce the following linear combinations:
Ly = %ilys + Lys, Ly=Ly,

S (12-68a)
Ky =Filyo+ Lo, K3=Ls
A simple calculation then leads to the following:
.
L. = ti¢
+ =€ (56+lcot9 5¢>)
d
Ly=—
3 ad’
P P (12-68b)
K, = ei"“’(u sin 6 3, ~ ¢ 0 — & ¥ icosecd 5¢>)

0 0
K;= 0 — 0 —
3 = U COS ou + sin 20

4 Such an expansion is always possible, since the function «(6, ¢) is twice differentiable. See R.
Courant and D. Hilbert, Methods of Mathematical Physics, Interscience, New York, 1953.
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The Py, and L, together form a complete set of linearly independent differential
operators for the infinitesimal operators of the BMS group. From Egs. (12-68)
one finds the basic commutators

[Lab ’ Lcd] = nadLbc + Mhe Lad — Nac Lbd - ndeac

lLa,,, bt ;J = (Lo — aW) (%
implying
(L3, Ppp] = imP,,
[Ly, Py =—[(l—m)I+m+ 1)]'?P, ,.\y
[Ks. P]= (= D[(l —m+ 1)1+ m+ 1))+ )21+ 3)]" 2Py
—(I+2)( — m?)" 2412 = 1)~ 2P, , (12-69)
[Ki, Pl=0—=1[+m+2) (I +m+ D221+ 1)21+ 3)] Y?Pisy mer
—(+2m)[(I —m)(l —m — )41 — 1) ?P_ ey

Here W is defined by the relation d(L,, f)/0u = L,, df/ou + W 0f/du for arbitrary
f(u). All other commutators can be obtained from those given in Eq. (12-69) by
taking linear combinations or complex conjugate. For example,

[L,.L.]= —[K,,K_]=2iL,

[L:, K. ]=2K,;

[Ly. Ks] = [L. . K,] =0 (12-70)
[Ls s L+] = i[Ks , K+] =iL,

[Ly, K.]= —iL,, Ks] = iK,

[L-. Pw]=[Ls, Pp]=(=1)"[Ls . P, -]

From the last four relations in Eq. (12-69) one sees that the conformal trans-
formations transform the translations only among themselves (because of the
factor I — 1), but completely mix up all the other supertranslations with each
other. This fact can be used to prove the uniqueness of the translation group.

Theorem 12.2 The only normal four-dimensional subgroup of the BMS group is
the translation group.

Proof. In fact, suppose there was a second four-dimensional normal
subgroup. Label the four linearly independent differential operators that corre-
spond to the supposed second group as P,(a=0, ..., 3). Then from Lemma 12.2
one infers:

e

Il
™8
-

B,'"P,, (12-71)

i

0O m=-1{
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Moreover, there must be at least one value of m, one value of “a”, and one value
of I > 2 for which B,'™ # 0, since the four linearly independent operators P, with
[ < 2 are merely the four operators of the translation group. Now let n = 2 be the
minimum value of | 2 2 for which there is at least one B,"" # 0. Choose one value
of “a” for which B,™ # 0. Let mg be the minimum value of m for which B,™ # 0
with this choice of “a”. Now commute P,(n — m,) times with the operator L, .
The resulting operator Q then has the form

Q:BPnn+ Z ZBIMPIM
(Fn 'm (12-72)

B # 0, no summation on “n”

as one sees from the commutator formulae (12-69). Commute Q four times succes-
sively with the operator L_; one obtains:

[L..Q]=Q =BP,, ,+,(n>2;B +0)
[L-.Q]=0Q"=B'P,,,+ . (B #0)
[L-.Q1=Q"=B"P,, s+, (B"#0)
[L_,Q")=B"P, , 4+, (B #0)

Now the five operators shown in Egs. (12-73) are all linearly independent, since
the P,, appearing in them are linearly independent. On the other hand, by virtue
of Eq. (12-62) and the hypothesis that we are dealing with a normal four-
dimensional subgroup, these five operators must depend linearly on the original
four P, (with complex coefficients). This is a contradiction and establishes the
theorem.

As desired, the theorem characterizes translations uniquely.

The homogeneous Lorentz transformations are not similarly unique. In fact,
let L be the conformal subgroup and ¢ any finite supertranslation. Then the group
M = tLt™ ' is a subgroup of the BMS group distinct from L and isomorphic to the
homogeneous orthochronous Lorentz group. If ¢ is the infinitesimal supertransla-
tion a(6, ¢)(d/du), then the infinitesimal elements of M have the form

(12-73)

G,
Ly=Ly+ Lya —
du

0

L,=L,+L,a
du

(12-74)

K’3:K3+(K3a—acose)§
u

Ky =K, + (K;a+ asin 6 e?) %
Representations of the BMS Group

We now discuss some representations of the BMS group and prove two theorems
on the BMS Lie algebra.



316 GROUP THEORY AND GENERAL RELATIVITY

Theorem 12.3 There is at least one irreducible Hermitian representation of the
BMS Lie algebra; the induced representation of the orthochronous Lorentz
group is equivalent to the rest-mass zero, spin zero representation.

Proof. Consider the (indefinite) scalar product for any two functions

f(u, 0, ¢) and g(u, 0, ¢):
figd=i |'°° du J do jzn sin 0 do(af /ou)g (12-75)
‘=00 0 0

Consider also the set of all twice-differentiable functions {f} which are, together
with their first two derivatives, integrable in the sense that Eq. (12-75) remains
finite when any pair of functions are integrated. Suppose that they and their first
derivatives vanish at u = +oo. With the scalar product (12-75) one obtains a
Hilbert space.

Consider now the linear operators

Pu.=P, Ki;=K;+cos0
Ly=1L,, K,=K;+e**sin0 (12-76)
Li :L+

By a direct calculation one verifies that these linear operators again obey the com-
mutation relation of the BMS Lie algebra. Moreover, let L,, be the linear opera-
tors that correspond to the operators L, , L3, K'; ,and K’'; via Egs. (12-68). For
the scalar product given one finds

<.f; lleg> = <g’ llef>

<.f; iLabg> = <ga iLabf>
the last relations verify the existence of a Hermitian representation.
Let us leave the question of irreducibility aside for the moment and examine
the relation to representations of the Lorentz group.
Consider the solutions of D’Alembert’s equation

n* d, d,u

where 5 is the Lorentz metric, which are nonsingular, vanish at spatial infinity,
and obey the Sommerfeld outgoing radiation condition for fixed u and large r.[!3!
Consider the quantity

p(u, 0, ¢) = lim ru(u, r, 0, @) (12-77)

Because of the outgoing radiation condition, this limit always exists. Moreover, it
obeys the conditions placed on fand g above. We show below that the relation
between p and u is one-to-one.

15 A. Sommerfeld, Partial Differential Equations in Physics, Academic Press, New York, N.Y. 1949.
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In fact, expand the field u in spherical harmonics Y,,, spherical Bessel func-
tions j,(kr) and a Fourier time integral:1*®

ut,r 0, ¢) = i ijwkl/ldk)’,mw,cb)

1=0 m=-1{

x j(kr) e*'A,,(k) + cc. (12-78)

Here the A,,(k) are the expansion coefficients. From the Fourier-Bessel
theorem!!”

X

fo r2j(kr)ji(k'r) dr=m 8(k — K')(2kk’)~* (12-79)
one obtains
Ap(k) = (im) ! j d3x Y, jilkr) 2 @u/0t + tkp),—o (12-80)
Inserting the asymptotic values
Jjdy) = y~!sin(y = In/j2) (12-81)

into Eq. (12-78), one finds

o} ! o}
plu, 0, §) = _Z )y f k' dkY,, e*4,, + c.c. (12-82)

m=~-1+-0

From Eq. (12-82) one infers that the knowledge of p enables one to calculate all
the coefficients A4,,,; from these coefficients one in turn obtains u. Thus, p and u
determine each other uniquely.

If one now writes down the standard rest-mass zero, spin zero, representation
of the Lorentz group Lie algebra acting on y, for example P, u = i du/ot, etc., one
is able to induce a corresponding representation of differential operators acting on
p- The latter turns out to be just given by the relevant quantities in Eq. (12-76).
Therefore, we have verified the equivalence of the two representations as far as the
orthochronous inhomogeneous Lorentz group!*®) algebra is concerned.

We now come to the problem of irreducibility of the given representation of
the BMS Lie algebra. The irreducibility now also follows. In fact, suppose the
above BMS Lie algebra representation contains an invariant subspace. By means
of the above one-to-one correspondence between p and u there would be an
induced invariant subspace of the corresponding representation of the inho-
mogeneous Lorentz group algebra by operators acting on u. But the latter re-
presentation is well known to be irreducible; consequently, there is also no

'6 The proof is carried out for real p and u. The extension to the complex case can easily be made.

'71. N. Sneddon, in Handbuch der Physik, (Ed. S. Fliigge), Springer-Verlag, Berlin, 1955, Vol. 2.

'8 Representations of the inhomogeneous Lorentz group (Poincaré group) were given by E. P.
Wigner, Ann. Math. 40, 149 (1939).
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invariant subspace for the given BMS Lie algebra representation. This completes
the proof of the theorem.

The next theorem concerns an operator that commutes with all the operators
of the BMS Lie algebra. Consider the “rest mass” operator

m* = Pyo? — Pyg? — Py Py, (12-83)
Using the differential operators (12-69), one finds"*?!
m? =0 (12-84)
Equations (12-69) also imply the following:

Theorem 12.4 In every representation of the BMS Lie algebra, m* commutes
with all other operators!*®

In the case of the Lorentz group there is a second operator, the “spin”™
operator, which also commutes with all the other operators.?!) By a direct calcula-
tion one verifies that the analogous operator in the case of the BMS group fails to
commute with those supertranslations that are not merely translations. Therefore,
Sachs has conjectered that the general unitary irreducible representation of the
BMS group contains some mixture of Lorentz group representations with differ-
ent spins, and that perhaps one such representation may contain precisely the
mixture of spins that is found in nature.

PROBLEMS

12.1 Prove that the aggregate of all BMS transformations forms a group

12.2 Prove that the conformal transformations preserve the angle between two curves and its
direction.

12.3 Show that the spin-s spherical harmonics satisfy the orthogonality relation
f +Vim rYl'm' dS =0y Oy Opupe

where dS is the surface area element on the sphere.

12.4 Prove that the spin-s spherical harmonics | ¥, provide a complete set for spin weight s quantities
on the sphere.

12.5 Write down the Maxwell equations with or without sources when the field variables are con-
sidered as functions over the group SU, . [See M. Carmeli, J. Math. Phys. 10, 1699 (1969).]

12.6 Use Problem 12.5 in order to isolate a single complex function to describe the dynamics of the
Maxwell field. Apply the canonical quantization procedure to quantize the wave equation so ob-
tained. [See M. Carmeli, Nuovo Cim. 67B, 103, (1970).]

!9 Since it is only the Lie commutators that can be taken over from the Lie algebra to representa-
tions of the Lie algebra, Eq. (12-83) does not imply the (possibly correct) statement that the
matrix corresponding to m? must vanish in every representation of the BMS Lie algebra.

20 Sachs has conjectored that Theorem 12.4 implies that in any irreducible representation of the
BMS group, m? is represented by a constant—a linear operator which has only one eigenvalue and
has every function as eigenfunction. See, however, P. J. McCarthy, Phys. Rev. Letters 29, 817 (1972).

2! See, for example, S. Schweber, Relativistic Field Theory, Row-Peterson, Evanston, I1l., 1961.
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12.7 Make a coordinate transformation to “Cartesian” coordinates of the metric obtained on a genera-
lization of the Euclidean plane
, 1 0
. 0= |

0 f(r,0)
discussed at the end of Section 12.1. Show that in “Cartesian™ coordinates, as r — oo, the metric tensor
satisfies
i 10
-
7o 1

12.8 Consider the group G of conformal mappings on the Riemann sphere S. Let x be the vector space
of smooth, real-valued functions on §. Define the action of G on y as follows: If g belongs to G and f
belongs to x, then gf (p) = Kf (g(p)), where p belongs to S and K is the conformal factor associated with
the action of g on S. Show that the semidirect product of G and y, denoted by GQ®y, is the BMS group.
[See R. Geroeh and E. T. Newman, J. Math. Phys. 12, 314 (1971); see, however, a correction in P. J.
McCarthy, J. Math. Phys. 13, 1837 (1972).]

12.9 Use the method of Problem 12.6 to quantize the linearized gravitational field equations. [See
S. Malin, Phys. Rev. D 10, 2338 (1974).]



APPENDIX

A
REVIEW OF GROUP THEORY

Group theory is well covered in textbooks, including those by Pontrjagin,[' van
der Waerden,[?! and Wigner.'®! This Appendix is devoted to an exposition of the
fundamental concepts of the theory.

A-1 GROUP AND SUBGROUP

A set G of elements is called a group if the following axioms are satisfied:

(1) There exists an operation in G which associates with each two elements q,
b of G a third element ¢ of G. This operation is called multiplication, and the
element ¢ is called the product of a and b, ¢ = ab;

(2) The multiplication is associative, i.., if a, b, and ¢ are elements of G, then
(ab)c = albe);

(3) G contains a right identity, ie., an element e such that ae = a for any
element a of G; and

(4) For each element a of G there exists a right inverse element, a~*, such that
aa '=e.

If the set G is finite the group G is called finite and the number of elements of G
is called its order. Otherwise the group G is called infinite. If the product of any
two elements a and b of G is commutative, ab = ba, the group is called abelian. In
abelian groups the multiplicative notation ab is replaced by additive notation
a + b and the group operation is called addition. The identity is called zero and

' L. Pontrjagin, Topological Groups, Princeton University Press, 1946.

2 B. L. van der Waerden, Modern Algebra, Fredric Ungar, New York, 1953.

> E. P. Wigner, Group Theory and its Application to the Quantum Mechanics of Atomic Spectra,
Academic Press, New York, 1959.
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denoted by 0, and the inverse of a is called the negative of a and denoted by —a.

Since the product of group elements is associative, one writes for (ab)c = a(bc)
simply abc. The same holds for products of any number of elements. One can
easily show that a right identity e is also a left identity, ea = a, for any element g of
G, and that a right inverse a™! of a is also a left inverse, a™'a = e. Hence the
inverse of a™ ! is a. Moreover, it follows that both the identity and the inverse are
unique. This allows the use of the notation of algebra such as a™*! = g™a, with
a' = a, for any natural number m. Negative powers of a are introduced by
a ™= (a"')", a® =e. Hence afa’=a""% and (a*)? = a", where p and q are
integers.

A set H of elements of a group G is called a subgroup of G if it is a group with
the same law of multiplication which operates in G. A necessary and sufficient
condition for a subset H of a group G to be a subgroup is that if H contains two
elements a and b it must also contain the element ab™".

A-2 NORMAL SUBGROUP AND FACTOR GROUP

Let G be a group and H a subgroup, and let a and b be two elements of G. One
calls a and b equivalent, ™ a ~ b, if ab™"! is an element of H. The group G is thus
divided into classes of equivalent elements each called a right coset of H relative to
G. It follows that if 4 is a right coset of H and a is an element of 4 then A = Hal"!
Moreover, every subset of the form Hb is a right coset and the subgroup H itself is
one of the cosets. One can also introduce left cosets of H, written in the form gH.
They are obtained from an equivalence relation such that a ~ b if a~'b belongs
to H.

A subgroup N of a group G is called an invariant or normal subgroup of G if for
every element n of N and a of G the element a™ 'na belongs to N. It follows that a
necessary and sufficient condition for right and left cosets of a subgroup N to
coincide is that N be a normal subgroup.!®!

If N is a normal subgroup of a group G and A4 and B are two cosets of N,
A = Na, B= Nb, then AB is also a coset of N. The multiplication of cosets thus
defined satisfies the group axioms, and the set of all cosets is called the factor group
of G by the normal subgroup N and is denoted by G/N.

* A relation of equivalence is said to be established in a set M if every two elements a, b of M
are either equivalent, a ~ b, or not equivalent, a not ~b. A relation of equivalence should be (a)
reflexive: a ~ a; (b) symmetric: If @ ~ b then b ~ a; and (c) transitive: If a ~ b and b ~ ¢ thena ~ c.
A relation of equivalence in M divides M into disjoint classes of equivalent elements.

*If A and B are two subsets of a group G, one denotes by 4B the subset of all elements of the
form ab,wherea ¢ Aand b ¢ B. The subset A~ ! denotes all elements a~ !, where a € A. The subset A™**
is defined by A™*! = A™A, where A' = A, the subset A~ ™ is defined by A~ ™ = (A~')™ for a natural
number m, and the subset A° is the set containing the identity only.

¢ Every group has at least two normal subgroups, the subgroup which includes only the identity,
and the subgroup which coincides with the group itself. A group which has no normal subgroup
except for these two subgroups is called simple.
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A-3 ISOMORPHISM AND HOMOMORPHISM

A mapping f of a group G on another group G’ is called isomorphism if it (1) is
one-to-one; and (2) preserves the multiplication. G and G’ are then called isomor-
phic. The inverse f~! of an isomorphism f is itself an isomorphism. An isomor-
phism of a group onto itself is called automorphism. The aggregate of all
automorphisms of a group forms a group.

A mapping f of a group G on another group G’ is called homomorphism if it
preserves the operation of multiplication. The set N of all elements of G which go
over into the identity of G’ under the homomorphism is called the kernel of the
homomorphism. If the kernel coincides with the identity of G then the homomor-
phism is an isomorphism. It follows that N is a normal subgroup of G, and G’ is
isomorphic to G/N. The isomorphism between G’ and G/N is called the natural
isomorphism. The mapping f of a group G on G/N defined by associating with each
element a of G the element f(a) = 4 of G/N containing a is a homomorphism,
called the natural homomorphism of a group on its factor group. If fis a homomor-
phism of a group G on another group G’ and H is a (normal) subgroup of G, then
f(H) is a (normal) subgroup of G'. If f is a homomorphism of a group G on
another group G', and g is a homomorphism of G’ on a third group G”, then the
mapping gf is a homomorphism of G on G”.

One finally notes that if f is a homomorphism of a group G on part of another
group G’ then the set of all elements of G’ which are images of elements of G forms
a subgroup of G'. Also, if f ™! (H’) is the set of all elements of G which go into
H' < G' under the homomorphism f, and if H' is a (normal) subgroup of the group
G, then /™ (H’) is also a (normal) subgroup of the group G.
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B

BASIC CONCEPTS OF REPRESENTATIONS
THEORY

In this Appendix the basic concepts of the theory of finite-dimensional representa-
tions are reviewed. For more details the reader is referred to the books of
Wigner,!!] Naimark,!?! and of Gelfand, Graev, and Vilenkin.*]

B-1 LINEAR OPERATORS

Let R be a linear space and x a vector in R. A function D(x) is called an operator in
R if for any vector x of R there corresponds a vector y = D(x) of R. An operator D
in R is called linear if D(x + y) = D(x) + D(y) and D(ax) = aD(x), for any x, y of R
and any complex number «. Addition of two operators 4 and B is defined in R by
(A + B)x = Ax + Bx for all vectors x of R. Similarly, multiplication by a number
« and multiplication of operators 4 and B in R are defined by (xA)x = a(Ax)and
(AB)x = A(Bx). If, furthermore, 4 and B are linear operators then 4 + B, a4, and
AB are also linear operators.

Linear operators in a finite-dimensional space R can be represented as
matrices by introducing a basis e, ..., ¢, in R. Accordingly, if A is a linear
operator in R, then Ae, can be written as a linear combination of ey, ..., ¢,, or,

VE. P. Wigner, Group Theory and its Application to the Quantum Mechanics of Atomic Spectra,
Academic Press, New York, 1959.

2 M. A. Naimark, Linear Representations of the Lorentz Group, Pergamon Press, New York, 1964,

* 1. M. Gelfand, M. I. Graev, and N. Ya. Vilenkin, Generalized Functions, Vol. 5: Integral Geometry
and Representation T heory, Academic Press, New York, 1966.
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Ae, =Y7_y Ayej,fork=1,..., n Ay are the elements of the matrix representing
the operator A relative to the basis e, ..., e,. One can show that the operator A4 is
completely determined by its matrix A4;;. Furthermore, the operations of addition,
multiplication by a number, and multiplication of operators correspond to the
same operations of their matrices relative to a fixed basis.

B-2 FINITE-DIMENSIONAL REPRESENTATION OF A GROUP

Let G be a group and g an arbitrary element of G. A correspondence g — D(g) of
each element g of G to a linear operator D(g) in a finite-dimensional space R is
called a representationif: (1) D(g,9,) = D(g,)D(g,);and (2) D(e) is the unit operator
in R where e is the identity element of G. R is called the space of representation
and its dimension is called the dimension of representation.

Two finite-dimensional representations g — D(g) and g — D'(g) in two spaces
R and R’ having the same dimensions, respectively, are called equivalent if basis in
R and R’ can be chosen so that the matrices of the operators D{(g) and D'(g) are
identical. A subspace S of R is called invariant with respect to the representation
g — D(g) if for every vector x of S one finds that D(g)x is also a vector in S for all
g € G. If there is no invariant subspaces in R with respect to the representation
g — D(g), except for the trivial cases of the null subspace and the whole space, the
representation is called irreducible. A representation g — D(g) of a group G is
called continuous if D(g) is a continuous operator function on the group G We
will consider here only continuous representations.

B-3 UNITARY REPRESENTATIONS

A linear space is called Euclidean if from each two vectors x and y of it one can
define a function, called the scalar product of x and y, denoted by (x, y), which
satisfies: (1) (x, x) 20, (x, x) =0 if and only if x=0; (2) (y, x) = (x, ¥); (3)
(ax, y) = a(x, y); and (4) (x; + x5, ¥) = (X1, y) + (x2, ). A scalar product can be
introduced in every finite-dimensional space.

An operator A in a finite-dimensional Euclidean space R is called unitary if it
preserves the scalar product, namely, (Ax, Ay) = (x, y) for all x, y of R. A re-
presentation g — D(g) is called unitary if all the operators D(g) are unitary.

4 An operator function D(g) is called continuous on a group G if the elements of the matrix of
D(g), relative to a fixed basis, are continuous functions on G. This definition of continuity of D(g)
does not depend on the choice of the basis since the matrix elements relative to another basis are
linear combinations, with constant coefficients, of the matrix elements relative to the original basis.
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C
INFINITE-DIMENSIONAL REPRESENTATIONS

In Appendix B the elementary concepts of finite-dimensional representations were
discussed. In this Appendix the theory of infinite-dimensional representations is
briefly outlined.!]

C-1 BANACH SPACE

A linear space R is called normed if a function |x| is defined in it and satisfies the
conditions: (1) |x| 20, |x| =0 if and only if the vector x =0; (2) |ax| =
|oc| | x| for any number a and any vector x of R;and (3) |x + y| < |x]| + |y| for
any vectors x and y of the space R. The function |x| is called a norm?

A sequence of elements x,, of a normed space R is called convergent in norm to
the element x of R if |x — x,| -0 as n— co. A sequence x, of R is called fun-
damental if it satisfies the Cauchy condition (ie. if for every ¢ > 0 there exists a
number N = N(e) such that |x, — x,| <& for n, m> N.) A space R is called

! For more details see M. A, Naimark, Linear Representations of the Lorentz Group, Pergamon
Press, New York, 1964; 1. M. Gelfand, M. 1. Graev, and N. Ya. Vilenkin, Generalized Functions,
Vol. 5: Integral Geometry and Representation Theory, Academic Press, New York, 1966.

2 An example of a normed space is the aggregate C of all complex numbers x. The norm of a
complex ‘number is taken as its modulus. Another example is provided by the aggregate of all
sequences x = {&, &,, ...} of complex numbers ¢,, ¢,, ... for which the series |&, |* + |&,]* + ++~ con-
verges. The operations in the space are defined as ax = {af,, aé,, ...} and x+y={, +1n,, &, +
Ny, ..} for x={&, &, ..} and y={n,, n,, ...). The norm is defined as |x|={|&,|*+|&,|>+
-+-}'"2, This space is sometimes denoted by 12,
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complete if every fundamental sequence in R converges in norm to some element x
of R A complete normed space is called a Banach space.

Let S be an arbitrary set in a Banach space R. The set § obtained from S by
adding to it all the limits in norm of sequences of elements x, of S is called the
closure of the set S. A set S is called dense in R if S = R. A set S is called closed if
§ = S. A closed subspace of a Banach space is itself a Banach space.

A series x; + x, + -~ of elements x,, of R is called convergent and the element
x of R is called the sum of the series if x; + x, + > + x, > x as n— oo in the
sense of the norm in R. A series x; + x, + -+ is called absolutely convergent if the
series |x; | 4+ |x,| + -+ of real numbers is convergent. In a Banach space every
absolutely convergent series converges. This follows from the inequality
[Xps1 4"+ Xy p] < |Xpeq| + 4 |X,4,| and the fact that the space is
complete.

C-2 OPERATORS IN BANACH SPACE

A linear operator A in a Banach space R is called bounded if there exists a
constant ¢ > 0 such that |Ax| <c|x| for all x of R. The smallest number ¢
satisfying this condition is called the norm of the bounded operator 4 and is
denoted by |A4|. Hence |Ax| < |A||x|.If A and Bare bounded operators, then
also the operators a4, A + B, and BA are bounded and satisfy

laA| = || |A]; |4+ B| <|A| + |B|; |AB| < |A| |B]|

It then follows that every bounded linear operator A is continuous. Furthermore,
if two bounded operators 4 and B coincide on a set S which is dense in a space R,
then they coincide on the whole of R.

C-3 GENERAL DEFINITION OF A REPRESENTATION

A mapping g — D(g) of a group G on a Banach space R is called a representation if
to every element g of G there corresponds a bounded linear operator D(g) in R
such that D(e) =1 and D(g, g,) = D(g9,)D(g,)- A representation g —» D(g) in a
Banach space R is called irreducible if R contains no closed subspace (other than
the null one and R itself) which is invariant with respect to all operators D(g). This
definition coincides with that of irreducibility for the finite-dimensional one. This
is so since every finite-dimensional subspace is closed.

A linear functional f(x) in a linear space R is a numerical function satisfying
f(ax) = af (x) and f(x + y) = f(x) + f(y) for any number « and x and y of R. A
linear functional in a normed space R is called bounded if there exists a constant

3 The space C of all complex numbers discussed in footnote 2 above, is complete. The space I
defined in footnote 2 is also complete. An example of a non-complete normed space is the set of all
sequences x = {¢,, £, , ...} in which only a finite number of £, is non-zero, all other operations of the
space are the same as those of the space 2.
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¢ 2 0 such that | f(x)| < c|x]| forall x of R. The smallest number ¢ > 0 satisfying
this condition is called the norm of the functional and is denoted by | f|. Thus
| f(x)| <|f||x| The bound linear functionals in R form a normed linear space
where the sum and product are defined by (f, + f,)(x) = fi(x) + f,(x) and
(o )(x) = af (x). This space is called the conjugate to the space R. It is a complete
space.

Let a linear space be denoted by R and let its conjugate space be denoted by
R'. Then for every element x of R there exists a functional f of R’ such that
f(x)=|x| and | f| = 1. Hence iff(x) = 0 for all f of R’ then x = 0. Furthermore,
if M is a closed subspace of a Banach space R and x,, is a vector in R not belonging
to M, then there exists a functional fof R’ satisfying f (x,) # 0, and f(x) = 0 for all
x of M.

Since the conjugate space R’ is a normed space, one can therefore consider the
linear bounded functional F(f) in it. Such functionals are obtained, for example, if
we put F (f) = f(x) for a fixed element x of R since F,(f) is a bounded linear
functional in R'. A space R is called reflexive if the functionals F ( f), for all x of R,
exhaust all the bounded linear functionals in R’. In other words if every bounded
linear functional F(f) in R’ is given by F(f) = f(x) for some x of R

C-4 CONTINUOUS REPRESENTATIONS

Let x(t) = x(ty, t, ..., t,,) be a vector function of a point t = (¢, ..., t,) in an
m-dimensional space with values in R. A vector function x(t) is called continuous in
a set D in m-dimensional space if for every functional f of the conjugate space R’
the numerical function f[x(t)] is continuous in D. A bounded linear operator
function A(f) in R is called continuous in D if for every x of R and f of R’ the
numerical function f(A(t)x) is continuous in D. For example if G is a group of
matrices, then it may be regarded as a subset of m-dimensional space for a
sufficiently large m. Hence one may speak of a vector-function x(g) or an operator
function A(g) as continuous in the group G. A representation g — D(g) ofa group
of matrices is called continuous if D(g) is a continuous operator function.'! It then
follows that if x(t) and A(t) are vector and operator functions, respectively, which
are continuous in a closed bounded set D, then the numerical functions | x(¢)| and
| A(r)| are bounded in that set.

C-5 UNITARY REPRESENTATIONS

The concept of a unitary representation discussed in Appendix B can be gener-
alized as follows.

Let R be a Euclidean space which might be infinite. One can easily introduce a
norm in R by putting |x| = (x, x)'/?, where (x, y) is a scalar product in R. A

4 Throughout our discussion we consider only representations in reflexive Banach spaces.
* Throughout the text the term representation stands for continuous representation (unless other-
wise stated),
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Euclidean space R, complete with respect to the norm |x| = (x, x)'/2, is called
a Hilbert space!® In a Hilbert space R every bounded linear functional f(x) is
represented in the form f(x) = (x, y), where y belongs to Rand | | = |y|. Hence
the space R’, conjugate to a Hilbert space R, may be identified with R itself,
R =R

Two Hilbert spaces R, and R, are called isometric if there exists a linear
operator U mapping R, onto R, and preserving the scalar product, (Ux, Uy) =
(x, y) for all x, y of R;. The operator U itself is then called isometric and it satisfies
|Ux| = |x| for all x of R;.

If U is an isometric operator mapping R onto itself, then U is called a unitary
operator in R. A representation g — D(g) of a group G in a space R is called unitary
if R is a Hilbert space and D(g) is a unitary operator for all g of G. A representa-
tion g —» D(g) in a Hilbert space R is unitary if (D(g)x, D(g)y) = (x, y)forallg of G
and x, y of R.

Let A be a bounded operator in a Hilbert space R. An operator A' is called
adjoint to A if (Ax, y) = (x, A'y) for all x, y of R. One can show that A" = 4,
(xA)t = aA’, (A + B)t = A" + B', (AB)' = B'A4', and |A"| = | A|. An operator
Uis unitary if and only if U'U = UU' = 1. The operator A~ ! is called inverse to
Aif AA™' = A~ 'A = 1. Hence a unitary operator satisfies U' = U~ !. An opera-
tor A is called Hermitian if A" = 4. A Hermitian operator P is called a projection
operator if P2 = P.

Finally, let R, R,, ... be closed, mutually orthogonal, subspaces of a Hilbert
space R. The aggregate of all sums x = x; + x, + --* of convergent series of
elements x, € R, is called the orthogonal sum of the Hilbert spaces Ry, R,, ..., and
is denoted by R; @ R, @ - -. It follows that R, @ R, @ - - is a closed subspace of
R.If E, is a projection operator in Ronto R, @R, ®--- ®R,, then E, x = x; +

-+ + x, for any vector x = x; + x, + - of R, where x; € R,. The bounded linear
operator A in a space R is called the orthogonal sum of the operators A, in R,
denoted by A, @4, @, if R=R, @R, @ - and Ax=A,; x; + Ay x, + -,
where x = x; + x, + *--. A unitary representation g - D(g) of a group G in a
Hilbert space R is called the orthogonal sum of the representations g - D®(g) in
the closed subspaces R, if D(g) = D'*(g) + D®(g) + --- for all g of G.

© The space !* discussed in footnotes 2 and 3 above is a Hilbert space if the scalar product is
defined by (x, y) = £&, 7, for x ={¢,, ¢,, ...} and y = {n,, n,, ...}. Another example of a Hilbert
space is the aggregate of all functions f(x), measurable in a fixed interval (g, b) and satisfying the
conditions [® | f(x)|? dx < cc, if the operations of addition and mulllpllcallon by a number are defined
in the usual way, and the scalar product is defined by (f}, f,) = [% f,(x)/,(x) dx. This Hilbert space
is sometimes denoted by [?(a, b). In the same way the Hilbert space LZ(SU ) is defined as the
aggregate of all funcuons f(u) satisfying [ | f(u)|? du < oo, where the scalar product is defined by

(i f2) = [ /()



APPENDIX

D
GRAVITATIONAL FIELD EQUATIONS

In Chapter 9 we wrote down the gravitational field equations of general relativity
that connect the three sets of dynamical variables: (1) the components of the
Riemann tensor (the Weyl tensor, the trace-free parts of the Ricci tensor, and the
Ricci scalar); (2) the spin coefficients; and (3) a tetrad of null vectors. These
equations were given by Eq. (9-71), Eq. (9-72) (or equivalently Eq. (9-77)), and
Eq. (9-73).

We here write down explicitly Egs. (9-71), (9-72) and (9-73). We shall use the
standard notation for the operators J,,, according to which D = d,,., 6 = 0.,
8 =0, and A = 8,,.. Also given in this appendix are the commutation relations
that these operators satisfy.

D-1 GRAVITATIONAL FIELD EQUATIONS

For Eq. (9-71) one obtains:

B -0 € —K I/ —,
D(# —ﬂ)_(s(n —s)_(w2+2A —wl)

—ky+7Re—Ef+ o —3e0+ kT — ik + &0
—de+ pf+on—ku —op+ dk — po+ 3Pk
= (D-1a)
—KV+ AR — U+ 04 Ky — fie + Ef — o
—an+ pu+af—eu +dc—pp+ uk —no
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13

4

>

—p & —kK P10
_“) _5(" —8) B (4’20

e — 260 + B — Ky

—¢oo)
—®10

—nk — Ep + Rt + dax

+pa—Pe+ 6B+ pn — kA —p?+ Bx — G0 — pe

n? — 3ed + EA — Rv
+pA— B+ 6u+ na

—y n  —¢

nf + foa — &y — 2y

+10 — Y6+ T + T — KV

i — 3ev + WA — BV
+TA—Jrn+ Tu+ yn

-P) _ B —o Y, —
—a) 5(# —ﬂ)+( Vs — das

ue — 2fa + da — py

—r) _A(s —x) 3 (¢2+¢11 - A

—7e + e — Ex + Ky
—pa+ Be — 6B+ ix —mp

_'/’1 _¢01 )
_¢2_¢11 +A
—mo—7p+ET—1p
+ 7k —To — 16 + 3Ky

—nf + 2ey — A + &y
-t + J¢ — T+ vk — AT

¢11_A —llj1+¢01 )

Y+ P+ A
— UK — &p + pT — pT

+py—He+ BB+ pu — oA +jik — Bo — Bp + 3o

ur — 3PA + &1 — pv
+pv— in+ Bu + pa

N TV

up — 2By + Jo — &y

— ue + 2fo — do + py
—pup —py+ e — BB+ Ao

_¢02)
_¢12
—uo — Ap + &t + 3y0

+ty—Ve+Fp+tu—ve —1*+ Ik —70 —18

ut —3pv+ A4 — av
+tv—Van+ Ju+ yu

-1 «a —p Ys
—A -

B R I
AB + fix — By — ve
—FJou+ Ty + T4 — pv

Au — 3av + A — Bv
—v + 3yA — A + TV

—uf + 2By — Ao+ @y + vo
—ty+ Ve —Ff—ut

~¥; = 2/\)
—¥s

—io — fp + Bt + vk
+Pp — Tt + yp — T

—AB — fa+ By + ve
+F0— Ty —TAd + pv

(D-1b)

(D-1¢)

(D-1d)

(D-1e)

(D-1f)
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ot o

Yo+ 20 — m)r, — 3py, + 2y,

!/’1 _‘/’o ‘/’2_4’11_1\

‘/’2+2A _‘/’1 ‘/’3 _¢21

A
(2}.!/11 —3ny, + 2(e — plr, + kY,

—Hpgo + nho; + (T — 284
+2pp,; — RKPy, + 0650 — Ky,

—2ud, o+ 2nd,, — (20 — T — 2P),,

+2p —e)p,, — Ry,

X

W + 2(y — pi; — 3y, + 209,

‘/’1 _‘/’o ‘/’2+¢11_A

-0

|

Wy + 2A

|

+

-¥ Yy + ¢y

2"‘/’1 - 3.‘“/’2 + 2(ﬁ - T)‘/’g + 6‘/’4

—HPo; + TPoy — Ao + 270,
+(p — 28)¢, + 04, — Ky,

—2u¢,; + 2nd,;, — gy
+2(8 + M), + (P — 26 — 28)p,,

_‘/’2_¢11+A

200, = 3m, — 2p — ey + K,

‘/’2+¢11_A _‘/’1_¢o1

1

Y3+ ¢y

|

3, — (Ar + 200, — (p — 4e)g,

— Voo + Aoy + (E — 27)¢4
+2T¢y — 6Py + 1y — PPy

=2v¢,o + 224 + (27 — 27 + B)d,,

+2(T — a)p,, — Go,,

=AWy — 2(a — )Wy + 3pY, — 2Ky,

_‘/’2_‘1’11"’A

=y —2(y — .u)!/ﬁ + 3y, — 20y,

¥s

¥,
— Ao — 2 — m) + 3py, — 2xy,)

GRAVITATIONAL FIELD EQUATIONS 331

-4
—Yy+ ¢y + A) (1’20 _¢10)

(m — 4o + (26 + 4, — 3y, )

(28 + 28 — T)doo — 2(e + P,
+Rpgy — 204, + 2K,

_‘/’1 + ¢o1 ‘/’10 _d’oo

HPoo — mo; + (28 — W)
—2p¢  + Ry, — 0,0 + Kby,

(D-2a)
—$12

(u = 47 Wo + (41 + 280, — 3oy,

_‘/’1 _¢o1 ¢12 —d’oz

$22

Id"oc - 2(7_‘ - ﬁ)¢01
+(28 — 26 — p)py, — 20, + 2k,

Hooy — Tho, + Ao — 2Th,
+(2& — )by, — 0y, + Ky,

N

(D-2b)

—¥, - 2A ¢’1o —doo

—l/’:; ¢2o _¢10

|

2y + 27 ~ B)doo — 2(x + D)o,
+60g;, — 2td 4 + 200,

204, + 3ny, — 2e — plr, — kY,

VPoo — Ao + (27 — H)d,
—2Tpyy + 6Py, — 1hy0 + PP,y

(D-2c)
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Y, — by — A =Y+ ¢y ¥y —¥,—2A 12 —do2
A( -9 +94
‘/’3 - ¢21 “‘/’2 + ¢11 +A ‘/’4 _‘/’3 . ¢22 _¢’12

(Zv!/ll —3uy, + 2B — Wy + oY, =+ 20— YW, + 3y, - 201/13)
3y = (40 + 290y + (4B — Wy = 2w, + 3, + 20 = AW, — oY,

—V@oy t APy, — Vo + 280, V¢90 +2(y — D)oy

+(f - 2B)¢12 + T¢21 - P¢22 +(2ﬂ - 20— f)¢02 - 2""¢11 + 2P¢12
+

—2vh,y + 20y, — Vo, Vo, — Aoy + V1o — 206,

+2y + @by + (T =20 = 28)d,, +(2B — Ty, — 1hy; + pdy,
(D-2d)

As can be seen Egs. (D-1) and (D-2) are equivalent to the usual equations
obtained using the Newman-Penrose formalism.[!!

D-2 COMMUTATION RELATIONS

Finally, we give in this Appendix the explicit equations obtained by applying the
commutator (V,, V., — V,, V,,) on any scalar function ¢ (see Problem 10.4):

(DA - AD)p =[—(y + 7D+ (R +T)0 + (t + ®)d — (¢ + ©)Alp (D-3a)
(6D —DS)p =[(@+ B — 7D — (p + ¢ — £)5 — 03 + kA]P (D-3b)
(A —AS)p=[-D+ (u—y+ 50+ 20+ (r —a — P)Al¢ (D-3¢)

(05— 38)¢ = [(u— BD + (B — ) + (X — B3 + (p — p)Al¢  (D-3d)

If one now substitutes x* for the arbitrary function ¢ in these equations, and
uses the fact that
Dx* = Po,x* = I
Ox* =m0, x* = m*
Sxt = w0, x* = it
Ax* = n*0, x* = n*
! F.A. E. Pirani, Introduction to Gravitational Radiation Theory, in Lectures on General Relativity,

Prentice-Hall, Englewood Cliffs, NJ, 1964, p. 350. (There are two misprints, however, in the
Newman-Penrose equations appearing in this reference).
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one finally obtains:
Dn* — AP = —(y+ P+ (n+ T)m* + (v + A)m* — (¢ + n*  (D-4a)
S —Dm* =(@+ p— A — (p + ¢ — e)m* — o + kn* (D-4b)
ot — Am* = —vlF + (u — 7 + P)m* + Am* + (1 — & — f)n* (D-4c)
ot — om* = (u ~ @l + (B — a)m* + (& — By + (p — p)n*  (D-4d)

Equations (D-4) are identical to the metric equation (9-73) when the latter is
written in detail.



APPENDIX

E

TRANSFORMATION PROPERTIES OF THE
NEWMAN-PENROSE FIELD VARIABLES

In this Appendix we give the transformation laws of the Newman-Penrose gravi-
tational field variables (see Section 9-3 and Appendix D) under the group SL(2, C).
These variables were the tetrad of null vectors, the spin coefficients, and the
components of the Riemann tensor,

E-1 GENERAL TRANSFORMATION PROPERTIES

It has been shown in Section 9-3 that under a change of the spin frame { = S{’,
where § is an element of the group SI(2, C), the matrices B, and F,, transform as
follows:

B,=S'B,S—S'4,S§ (E-1)
F,, =S 'F,S (E-2)

Under the transformation { = S{, the matrix ¢* becomes o¢* = ("=
S{e*tST = So™St, thus o = S~ 1g*(S) ™! = S~ 1a#(S™ 1) since (ST) 7! = (ST )"
For convenience we introduce the matrix g = S~ !, whence the transformation law
of ¢* becomes ¢'* = ga*g', or

’ _ ¢ td’
0t =892 06% 09"y (E'3)
in matrix elements notation.
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The laws of transformation of B,, = ¢*,, B, and F,, = 0*,, 0", F,, can
now be obtained. They are:

B/cd’ = aJ“cd’B,u (E'4)

13 J J 7
F abed = a“ab’a vcd’F uv (E-S)

where ¢’*,,, is given by Eq. (E-3) and B, and F',, are given by Eqs. (E-1) and
(E-2), respectively. In matrix elements notation we obtain:

(Blcd’)a b = gc egff’d’[ga p(Bef’)p q(g— ! )q b— ga p(aef’ g- ! )p b] (E'6)
(Flab’cd’)p 4= ga egtf’ b’gc hg t d’gp r(Fef’hn’)r s(g- ! )sq (E'7)

Here the matrices B,,. and F,,. , are given explicitly by Egs. (9-53) and (9-63),
respectively.

E-2 TRANSFORMATIONS UNDER ONE-PARAMETER
SUBGROUPS

If the general matrix g of the group SL(2, C) is denoted by

9" = (g g) (E-8)
then
6 =(_e ) (E9)
and _
@y = (g g) (E-10)

We have seen in Section 8-3 that the matrix g of the group SL(2, C) can be
written as a product of three matrices of the form [compare Eq. (8-41)]

0=, 1) we=(5 0) ee-(p 1) @

z

where z is a complex variable. The transformations g,(z) and gs(z) describe one-
(complex) parameter null rotations about I/, and n,, respectively. The transforma-
tion g,(z) corresponds to an ordinary Lorentz transformation (boost) in the
I, — n, plane along with a spatial rotation in the m, — /m, plane. Here we have
denoted (,* = I*and {,* = n* as usual.

We are now in a position to find out the explicit laws of transformations. The
transformations will be given for each one of the three one-parameter subgroups
described above. Use will be made of the intrinsic derivative operators D = 8.,

3 =200y, 0 =0, and A =4d,,,, where 0, = %, 0,,.
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E-3 TRANSFORMATION UNDER NULL ROTATION ABOUT I,

Here one has (' = g, (z){. Hence
ly=1,
n,=zl,+n,

and the null tetrad transforms as follows:

=zzl, + zm, + Zm, + n,
The spin coefficients transform as follows:[!!
p=p+zk
o =a+z(p+e)+ 2%
A=A+ z(n+2a)+ z%p + 2¢) + 2’k + 3z + zDz

K=k
£ =€+ zk
n=n+ 2z + 2% + Dz
g =0+7ZK
B =B+ zo + Ze + zZk
W =p+2zf+2n + 220 + 2zz¢ + z%2x + 6z + zDz
T=1T+4+2z0+Zp + 2Zk
Yy =y +z2(t + B) + za + 220 + zZ(p + &) + 272k
V =v+z(u+ 2y)+ 2A+ 2226 + 1) + 22(20 + 7) + 2%2(2¢ + p)
+ 2%+ %2k + Az + 2 6z + 7 8z + 2ZDz
The tetrad components of the Weyl tensor transform as follows:
Yo = Vo
Yy =2y + ¥,
Yy = 22 + 229, + Y,
Wy =220 + 322, + 329, + Y5
Wa =240 + 2%, + 625, + dzys + Yy

! M. Carmeli and M. Kaye, Ann. Phys. (N.Y.) 99, 188 (1976).

(E-12)

(E-13)

(E-14a)

(E-14b)

(E-14c)

(E-14d)

(E-15)
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and the components of the trace-free Ricci tensor transform as follows:

$oo = ®oo
$o1 = ZPoo + Po1
Po2 = Z2Poo + 221 + o (E-16)

@11 = ZZ2dgo + 2¢Po1 t ZP10 + G14
P12 = 2200 + 2Z2¢hoy + 2¢0y + 22011 + 2Pio + ¢4,
Py = 2222Poo + 222%¢Po1 + 22Poy + 22720, + 422y, + 22y,

+ 22050 + 22¢21 + b22
Note that these variables satisfy the relation ¢, = @, for m, n=0, 1, 2.

E-4 BOOST IN ¥ —pn* PLANE AND SPATIAL ROTATION IN
m* — m* PLANE

Here one has {' = g,(z){. The complex parameter z can be written in the form
z=AY?e"2 where A and 0 are real. Then A is the boost parameter and 0 the
spatial rotation parameter. Hence

l,=1zl,
, . (E.17)

=zz2"'m, = e“m (E-18)

The spin coefficients transform as follows:

p=zzZp

« =z '2(a~z5z7) (E-19a)
N =z"3]

K = 237K

¢ =zz(e — zDz™ ') (E-19b)
n=z"lzn

o =z%""¢

B =zz"'(B—z06z7") (E-19¢)

15-1

W=z 'z 'u
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y=z1z7Yy-zAz7") (E-19d)
vV =z"3%%1y

The tetrad components of the Weyl tensor transform as follows:

Yo = 2%,

¥ = 2%y,

¥ =1, (E-20)
Y =272,

V=27,

and the tetrad components of the trace-free Ricci tensor transform as follows:

Poo = 2222 oo

®o1 =22¢o1
¢/ =22-Z——2¢
o oz (E-21)
¢11 = ¢11
Pra=2"2¢y,

@y =227 %P,

Here ¢,,, = @, for m, n=0, 1, 2.

E-5 TRANSFORMATION UNDER NULL ROTATION ABOUT n,

Here one has {' = g,(z){. Hence

ly=1,+2zn,

oy (E-22)
and the null tetrad transforms as follows:
L,=1,+2zm, + zm, + zZn,
= m, +zn, (E-23)
n,=n,
The spin coefficients transform as follows:
p=p+2za+7zt+z2A+2z2y+2%2v -0z — Z Az
o =o+zA+Zy+ zZv (E-24a)

A=A4+32v
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K =K+ z(p + 2¢) + zo + 2220 + 7) + z2(2B + 1) + 222(2y + p)
+2%A+2%2v—Dz—208z—-26z—zz Az

€ =e+z(n+ o)+ 2f+ 2?4 + zZ(u + y) + 2°2zv ~ (E-24b)

n=n+4zA+ Zu + zZv

oc=0c+z(t+20)+z(u+2y)+z2°v—z—z Az
B=B+z(u+y)+ 2 (E-24c)
W=pu+zv
v =1+4+2zy+zv - Az
Y =7y42zv (E-24d)
V=yv
The tetrad components of the Weyl tensor transform as follows:
Yo = Wo + 42y, + 62%Y, + 425 + 2%,
W=y + 32y, + 32805 + 2%,

Wy =W, + 2205 + 2%, (E-25)
Yy =5+ zy,
'//'4 = '//4

and the tetrad components of the trace-free Ricci tensor transform as follows:
D00 = Poo + 2201 + 2210 + 42211 + 2P0, + 27¢50
+ 22z22¢,, + 2222¢,, + 222295,
Pro =10+ 22011 + 2ao + 22251 + 271, + Z°2¢h2,
P11 = P11 + Z¢1; + 2y + 2202, (E-26)
P20 = P20 + 22¢,1 + 2295,
21 = P21 + Z¢22
$22 = P22

Here ¢, = ¢,, withm,n=0, 1, 2.
In each case the Ricci scalar remains, of course, unchanged, A" = A.

E-6 TRANSFORMATION UNDER OTHER FACTORIZATION

We conclude this Appendix by finding the transformation laws of the Newman-
Penrose gravitational field variables under a different factorization of the group
SL(2, C).
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In Section 6-2 the group SL(2, C) was factorized in a way different from that
given above by Eq. (E-11). The three alternative basic matrices of SL(2, C)
were given by Egs. (6-20):

(Zl (1)) ((Z) (2)‘1)’ (_(1) (1)) (E-27)

Induced transformation by the three one-parameter subgroups g,(z), g,(z) and
g5(z) can then be obtained by transformations under the three matrices (E-27).
The first and second matrices of Eq. (E-27) are identical to g,(z) and g,(z),
respectively, whereas the third one is not identical to g,(z) (compare Eq. (E-11)).
Let us denote the third matrix of Eq. (E-27) by g,

g= (_j’ o) (E-28)

The one-parameter subgroup g,(z) can then be obtained from g,(z), g,(z) and g.
In fact one easily finds that

g:(2) = —g9,(—2)g (E-29)

This fact can be utilized in order to find out all the transformation laws of
the null tetrad, the spin coefficients, and the components of the Riemann tensor
obtained in Section E-5 that were induced by a transformation of the spin frame
under g,(z). The desired transformation can be obtained as a product of three
transformations of the same field variables under g, g,(—z) and g. To this end we
have to find the transformation laws under the spin frame transformation {' = g{,
where g is given by Eq. (E-28), using Egs. (E-6) and (E-7), with

ga”=(_? é) (E-30a)
(g“)a”=((1) _(1)) (E-30b)
@y = ((1) —é) (E-30c)

Since there is no dependence on the parameter z, the calculation is rather simple.
The results are:

Il ,=n,
n,=-l, (E-31)
and the null tetrad transforms as
I',=n,
m, = —m, (E-32)
n, =1
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The spin coeflicients transform as follows:

p=—u

o =p (E-33a)

A=-0

K=v

g = —y (E-33b)

T=r1

o=~

f =a (E-33¢)
7 — _p

T=nm

Yy = —¢ (E-33d)
Vi =k

The tetrad components of the Weyl tensor transform as follows:

Vo=V,
Y= —y,
Wy =¥, (E-34)
Y=~y
V=¥,
and the tetrad components of the trace-free Ricci tensor transform as follows:
Po0 = P22
¢y =914
P22 = bo0 (E-35)
o= —912
P30 = P02
P12= —90

with ¢, = @,,, for m, n =0, 1, 2. Finally, one has A" = A.



342 GROUP THEORY AND GENERAL RELATIVITY

As an illustration of the above discussion let us find the transformed value of
¥, under g,(z), or using Eq. (E-29), under successions of three transformations
g. 9,(—z) and g since the minus sign does not contribute. One has, using Egs.
(E-34), (E-15) and (E-34), respectively,

"o __ ”

0o =V,
= z%y, — 423, + 627y, — dzyy +
=z%, + 422y, + 623y, + 42y, + Y, (E-36)

a result which is identical to that given by Eq. (E-25).
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Curvilinear coordinates, 197, 200
Cylindrical gravitational waves, 149~151

D, é, 8, A (differentiation operators), 217, 222,
329
¢ (differentiation operator), 297-299
D’Alembert’s equation, 316
Davis, W. R., xvi
Decomposition of a representation, 25-29,
120-121
of SU,, 25-30
Decomposition of elements of SL(2, C), 44, 45, 176
Decomposition of the regular representation,
120-121
Deduction of Einstein’s equations from varia-
- tional principle, 136-137
Definition of the BMS group, 293
Deflection of light, 151, 154-156
Delta function:
Dirac, 159
Kronecher, 125
Demianski, M., 281
de Sitter group, 90
Dicke, R. H., 130, 131
Differential form, 71, 72
Differential operators of infinitesimal rotation,
13-16
Differentiation, covariant, 127
Differentiation operators V,,, and 4., 217, 222,
329
Differentiation operator ¢, 297-299
Dilation, 106
Dimension of representation, 324
Dimensionless physical constants, 132, 133
Dirac delta function, 159
Dirac equation, xiii, 235
Dirac field, 201
Dirac matrices, 199
Direct sum of representations, 29, 58, 114
Direct sum of spaces, 105
Direct sum of subspaces, 28
Direction in space, 124
Directional covariant derivative, 156
Divergence (6), 237-238
Dotted indices, 41-42
Double-valued representations, 6-7, 11
Dual tensor, 173, 180, 189
Dyad components of spinors, 174, 175, 180, 202
covariant differentiation of, 202
D/ (u)-matrix, 11, 58-60, 69-71, 84, 87
as a representation of the group SL(2, C), 49
complexification of, 50
explicit expression of, 11, 17
orthogonality relation of, 13
properties of, 12
D(x) (linear space), 61, 64, 105, 107-116
completeness of, 61
other realizations of, 62
representation of the group SL(2, C) on, 63
topology of, 61
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Eigenspinor, 174
of Maxwell spinor, 175, 178
Eigenvalue, of spinor, 174
of Maxwell spinor, 175
Eigenvector, 38
of the angular momentum operator L,, 31
Einstein, A., 132, 134, 135, 143, 144, 149, 158, 162
Einstein-Infeld-Hoffmann equation, 164-165
Einstein-Infeld-Hoffmann method, 162-163
application to Kerr metric of, 281, 287
Einstein-Maxwell field equations, 137, 223-224,
234, 235
Einstein-Rosen metric, 149-151
Einstein summation convention (see Summation
convention)
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Einstein’s gravitational constant (x), 136,212, 226

Einstein’s (gravitational) field equations, 135-139
deduction from variational principle, 136-137
Einstein’s spinor, 173
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232-233
Electromagnet?c current, 137
Electromagnetic field, 137, 170-171, 193
canonical form of 178~179
classification of, 173-179
invariants of, 174-178
Electromagnetic interaction, xiv
Electromagnetic potential, 137, 192, 224
Electromagnetic theory, xiv (see also Maxwell’s
equations)
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Elements of general relativity theory, 123-167
Ellipsoidal coordinates, 147
Ellis, G. F. R, xvi
Energy conservation, 132, 133
Energy-momentum tensor, 135, 137, 158, 200,
210, 213
for electromagnetic field, 146, 224
for neutrino, 225-226
for scalar field, 166
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Eotvos, R. V., 130
Eotvos experiment, 130-132, 134
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for the gravitational field, 213
for the Yang-Mills field, 195
Equations of motion, 158-165
as a consequence of field equations, 158-159
Einstein-Infeld-Hoffmann, 164-165
Newtonian, 163-164
self-action terms of, 159-162
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Equivalence principle, 130-134, 135

Equivalent multiplets, 196
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Euclidean group, 305-308

asymptotic isometries of, 306-308

Euclidean space, 82, 83, 86, 88, 324

Euclidean space H, 82-83, 86, 88

Euclidean space h, 86-88
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Euler angles, 1-3, 301-304

Euler B-function, 86

“Exact equation of motion”, 159, 162

Exact solutions of the gravitational field equa-
tions, 236-291 (see also Solutions of
Einstein’s field equations)

Experimental tests of general relativity, 151-157

Exterior product, 71

External gravitational field, 158

Factor group, 321
of BMS group, 310
Factorization of a matrix, 102
Family of geodesic rays, 237
Family of null geodesics, 221
Family of null hypersurfaces, 220
Fermi’s weak interaction constant, 134
Fickler, S. I, 211
Field:

electromagnetic, 170-171

gravitational, 171

infinite-component, 90

Field equations:

Einstein’s, 135-139; Newman-Penrose version
of, 191-215, 222-223, 329-333; SL(2, C)
gauge theory version of, 208-213

Maxwell’s, 137

Maxwell-Einstein’s, 137, 223-224, 234, 235

Neutrino, 225-226

Yang-Mills, 194-195

Fine structure constant (a), 132, 133
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324

Finite-dimensional representations of SL(2, C),
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Finkelstein, D., 143

First curvature of a congruence, 216

relation to the spin coefficient x, 216-217

Five-dimensional representation of the proper
orthochronous homogeneous Lorentz
group, 183

Fixed stars, 157

Flat space (see Minkowskian space)

Fourier transform, 57-58

generalized, 59-61, 69, 86, 99, 103-105

group-theoretical significance of, 58

inverse, 117-119

on the group SL(2, C), 114-121
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Fourier transform,
on the group SU,, 57-60, 114
of a function, 57
of the Riemann tensor, 156
Free field equations (of gravitation), 222-223
Frequency of an atom, 152
Fronsdal, C., 143
Function,
bounded measurable, 79
defined on a group, 4
defined on O,, 4
defined on SL(2, C), 71-72, 88, 117
defined on SU,, 5, 56
homogeneous, 61
infinitely differentiable, 72
invariant, 124-125
Kronecker delta, 125
Lamé, 115
Mathieu, 115
measurable, 55, 56, 57
numerical, 59
operator, 115
rapidly decreasing, 71, 72, 115, 116, 117
scalar, 125
summable, 72
Function of spin weight, 297-304
Functional equation, 114
Functionals,
bilinear, 64, 105-107, 108, 111, 112
invariant Hermitian, 111, 112
linear, 326
positive definite Hermitian, 113
space of, 100

Galileo, G., 131
Galilean group, 19-20
Galilean invariance, 20
Galilean transformation, 20
Gauge, 191
isotopic, 193, 194, 202
Gauge fields, xiv, 201
and isotopic spin, 191-196
internal holonomy group of, 195-196
Gauge group, 195-196

Gauge theory of the gravitational field, SL(2, C),

191-215
Gauge theories, xiv
Gauge transformation, 192, 196
Gaussian curvature, 260
Gelfand, I. M., xvi, 89, 98, 323
General covariance principle, 134-135
General definition of a representation, 326-327
General relativity theory, 90
elements of, 123-167
experimental tests of, 151-157
physical foundations of, 130
spinorial form of, 201
General transformation properties (of the
Newman-Penrose variables), 334-335

Generalized Fourier transform, 59-61, 69, 86, 99,
103-105
Generalized Lorentz transformation, 198
Generalized Schwarzschild metric, 254, 262-263
Generators, infinitesimal, 7-8, 89, 90, 201, 204,
218,313
Geodesic coordinate system, 130
Geodesic deviation equation, 156
Geodesic equation, 129, 158
in the Schwarzschild field, 152
Geodesic postulate, 158
Geodesic rays, 237, 238, 254, 255
Geodesics, 129, 152, 221
Geometrical meaning of the spin coefficients,
216-218
Geometrical meaning of the Weyl spinor com-
ponents, 218-219
Geometry, Riemannian, 123-130, 135
GL(n, c), 196
“Good” hypersurface, 309-310
Goldberg, J. N, 219
Goldberg-Sachs theorem, 219-220, 266
Gradient, 125, 127
Graev, M. 1, xvi, 323
Gravitation theory, 90
as a gauge theory, xiv, 191-215
Gravitational acceleration, 131, 133
Gravitational energy, 151
Gravitational field, 171
analysis of, 216-235
and homogeneous Lorentz group, 197
and Lorentz invariance, 197-201
and Poincaré invariance, 200-201
and SL(2, C) invariance, 201-208
canonical form of, 185-187
classification of, 180-189
external, 158
invariants of, 184185
SL(2, C) gauge theory of, 191-215
static, 138-139
stationary, 138-139, 254, 266
Gravitational field dynamical variables, 201, 204,
208
Gravitational field equations,
Einstein’s, 135-139
gauge theory version of, 208-213
Newman-Penrose version of, 191-215, 222-223,
329-333
solutions of, 139-151, 236-291 (see also Solu-
tions of Einstein’s field equations)
Gravitational field of a point electric charge (see
Reissner metric).
Gravitational field with rotational symmetry (see
Weyl-Levi-Civita metric)
Gravitational gauge field, 202-203, 205-207
transformation under change of spin frame, 203,
334-335
Gravitational gauge potential, 202-205
transformation under change of spin frame, 203,
334-335



Gravitational mass, 131, 134
Gravitational potential, 135
Gravitational radiation, 173, 254, 309
Gravitational radiation experiment, 156
Gravitational red shift, 151, 152
Gravitational waves, 149-151
Grommer, J., 158
Group, 320-321
additive of real numbers, 57, 59
basic one-parameter, 7
Bondi-Metzner-Sachs, xiv, 292-319
compact topological, 59
conformal, 90, 294-295, 313
de Sitter, 90
Euclidean E(2), 305-308
factor, 310, 321
Galilean, 19-20
gauge, 195-196
GL(n, c), 196
homogeneous Lorentz, 21, 197
inhomogeneous Lorentz (see Poincaré group)
internal holonomy, 195-196
L, 22-25, 29, 30-34, 38
Lie, 21, 57, 196
locally compact commutative, 58
Lorentz, 19-33, 34, 201
noncompact, 90
0,,1-9, 13, 294
one-parameter, 23-25
ol Euclidean motions, 39, 305-306
of translations, 21, 38
orthochronous Lorentz, 21, 22
Poincare, xiii, xiv, 20-21, 33, 200, 293, 294,
305
proper Lorentz, 21, 22
proper orthochronous Lorentz, 21-22, 30, 34,
38, 53, 176
rotation, 1-18
simply connected, 35
SL(2, C), 34-40, 175, 176, 177, 183, 201, 202

SU,, xiii, 3-4, 39, 44, 47-49, 58-60, 67-70, 82,
87, 103, 114, 193, 195, 202
SU,, xiil
u(l) x T,, 39
with infinite number of parameters, 292
Z,,38
Group of operators, one-parameter, 23-25
Group operators, 63-67
Group-theoretical significance of Fourier trans-
form, 58
Group theory, review of, 320-322
Group translation, 115, 121
Groups of motion, 254, 265
Giirsey, F., 90
Gyroscope experiment, 157
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Harmonic analysis on the group SL(2, C), 73, 90,
114-121
Hawking, S. W, xvi
Heisenberg, W., 192
Hermitian bilinear functional, 111
Hermitian [unctional, invariant, 111-112
positive definite, 113
Hermitian matrix, 3, 35, 40, 169
Hermitian matrix *, 169, 204
Hermitian matrix ¢*, 204
Hermitian operator, 8, 94, 328
Hermitian representations of BMS group,
316-318
Hermitian spinor, 170
Hilbert-Schmidt operator, 120
Hilbert space, 55-57, 81-83, 89, 95, 328
H, 113, 114
H(o), 83, 84, 86, 87, 88, 101
hga), 86-88
(-0, ), 57, 58
I}(8U,), 56, 58, 59, 76
L,(Z), 55-56, 65-68, 76, 78, 79
1%, 60-61, 69, 70, 86, 99
LE(SU,), 56-57, 60, 61, 68-71, 86, 98, 99,
102-104
R(o), 82
Hoffmann, B., 162
Holonomy group, internal, 195-196
Homogeneous functions, 61, 62, 105, 110
characterization of, 61
linear spaces of, 61, 105
Homogeneous Lorentz group, 21
and the gravitational field, 197
four parts of, 21
Homogeneous Lorentz transformation, 20, 21, 89
Homomorphism, 322
kernel of, 38, 53, 322
natural, 322
of the group SL(2, Cj on the group L, 36-38
of the group SU, on the group 0,, 4
Hyperbolic Riemannian space, 220, 237
Hyperboloid, single- and two-sheeted, 40
Hypersurface, 220
“ good” and “bad”, 309-310
Hypersurface orthogonal null geodesic rays, 236,
238, 251, 253

Identities, Bianchi, 130, 158, 208-209

Identity representation, 89

Improper Lorentz transformation, 21

Inertial mass, 131, 133, 159

Infeld, L., 158, 162

Infinite-component fields, 90

Infinite-dimensional representations, 24, 325-328
of SL(2, C), 54, 61, 89, 90

Infinitesimal approach, 73-76, 89

Infinitesimal BMS group transformations, 311

Infinitesimal generators, 7-8, 89, 90, 201, 204, 218,

313
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Infinitesimal isotopic gauge transformation, 194
Infinitesimal Lorentz matrices, 19-23
Infinitesimal matrices, 7, 23
relation to Pauli matrices, 9, 50
Infinitesimal operators, 8, 13, 23-30, 32, 73
basic, 8, 14-16
of the BMS group, 314
of the spinor representation, 50-52
Infinitesimal rotations, differential operators of,
13-16
Infinitesimal transformations, 313-315
Inhomogeneous Lorentz group (see Poincaré
group)
Inhomogeneous Lorentz transformation, 20, 21
translational part of, 21, 33
Inhomogeneous SL(2, C), 38
Integral operator, 116
Internal holonomy group of gauge fields, 195-
196
Intertwining mapping, 108
Intertwining operator, 107-109, 110
Invariance and conservation of isotopic spin,
192-193
Invariant, 124-125, 127
Invariants,
of the electromagnetic field, 177-178
of the gravitational field, 184-185
Invariant bilinear functionals, 105-107, 108, 111,
112
Invariant equations, xiii
Invariant Hermitian functional, 111-112
Invariant integral, 4-6
over the group 0,4, 5
over the group SL(2, C), 71, 115
over the group SU,, 5-6, 105
over the group Z, 55
Invariant space, 102, 103
Invariant subgroup (see Normal subgroup)
Invariant subspace, 30, 114
{nvariance:
Galilean, 20
of scalar product, 20
Inverse Fourier transform, 117-119
Inverse operator, 328
Inversion, 106
Irreducible representation, 28, 60, 73, 324, 326
decomposition of a representation of the group
SU, into, 25-30
Irreducible representation, DY /2, 295
Irreducible representation of the group L:
characterization of, 31, 73
finite-dimensional, 31
nonunitary, 40
Isometric mapping, 58, 59, 83, 86, 88, 119
Isometric spaces, 100, 111, 328
Isometry, 58, 305
asymptotic, 306-308
Isometry mapping, 58 (see also Isometric map-
ping)
Isometry of internal holonomy group, 196

Isometry transformation, 58, 305 (see also
Isometric mapping)
Isomorphism, 38, 110, 322
natural, 322
standard (of the groups SU(1, 1) and SL(2, R)),
39

Isomorphism of L and SL(2, C)/Z,, 38
Isomorphism of SL(2, C) to Lobachevskian
motions, 40
Isomorphism of the conformal group to the
proper  orthochronous homogeneous
Lorentz group, 294
Isospin (see Isotopic spin)
Isotopic gauge, 193, 194, 202
Isotopic gauge transformation, 193-194
infinitesimal, 194
Isotopic space, 194
Isotopic spin, xiii, 192, 193, 194, 195, 202
and gauge fields, 191-196
conservation of, 192-193
total, 192, 195
Isotopic spin rotation, 193

Jacobi polynomial, 12
Jacobian, 76, 117, 124
of BMS group, 310

Kasner, E., 143
Kernel, 79, 116-121
Kernel of homomorphism, 38, 53, 322

of the group SL(2, C) on the group L, 38, 53
Kerr, R. P., 265
Kerr angular momentum per unit mass (a), 274,

281-282
Kerr metric, 265, 281-282, 287
Kerr-Newman metric, 289
Kerr-Newman with magnetic monopole metric,
291

Kerr-NUT metric, 274, 281
Kibble, T. W. B., 200, 201
Killing generators, 263, 264
Killing vector, 138, 262, 263, 264, 266

relation to Petrov type, 266
Killing’s equation, 138, 262, 264, 305
Kinnersley, W., 265, 282
Kinnersley’s diagram, 266
Kretschmann, E., 135
Kronecker delta function, 125
Kruskal, M. D., 143
Kruskal diagram, 145
Kruskal manifold, 143
Kundt, W., 238, 279, 282, 287
Kundt metric, 238, 253, 254

L (group), 22-25, 29, 30, 34, 38
relation to the group SL(2, C), 36-38
representations of, 30-33

Laboratory, freely falling, 132
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Lagrangian, for: Lorentz transformation:
Einstein field equations, 136-137 of null tetrad, 177
Maxwell field equations, 137 orthochronous, 21
Newman-Penrose equations, 210-213, 215 proper, 21
Yang-Mills field equations, 194, 210 Low-temperature experiments, 157
Lamé function, 115
Laplace equation, 147 Magnetic charge (see Magnetic monopole)
Laplacian operator, 75-76 Magnetic monopole, 190, 281, 293
Left-handed vector operator, 90 Malin, S., 84
Left Lie operator, 74, 77 Manifold, 22, 40, 62
Left regular representation, 121 compact, 62
Lemaitre, G., 143 complete, 143
Length element, 126 maximal, 143
Lense, J., 265 Mapping, 107, 108, 119
Levi-Civita, T., 146 bicontinuous, 110
skew-symmetric symbols of, 169 isometric, 58, 59, 83, 86, 88, 119
Lie algebra, 96, 311-312, 318 Mass, 131
Lie commutator, 311-312 negative, 134
Lie group, 21, 57, 196 of neutron and proton, 192
compact, 57 Mass energy equivalence, 132, 133
connected, 196 Mass-multipole of a particle, 148
Lie operator, 74-75, 76, 77 Mathieu function, 115
commutation relations of, 75 Matrix:
left and right, 75 angular momentum, 194
Lie transformation group, 311-312 complex, 176
Light deflection, 154-156 Dirac, 199
Line singularity, 266 D/ (u), 9-13, 58-60, 69-71, 84, 87
Linear functional, 326 factorization of, 102
Linear internal transformation, 196 Hermitian, 3, 35, 40, 169
Linear operator, 28, 323 infinite-dimensional, 69, 88
Linear spaces: infinitesimal, 7, 19-23
of functions, 79 Lorentz, 19-23
of homogeneous functions, 61, 105 orthogonal, 7
of representations, 54-62 Pauli, 3, 35, 50, 91, 169, 194, 201, 203
Lobachevskian motion, 40 topology of, 35
Lobachevskian space, 40 triangular, 39
Local coordinates for SL(2, C), 72 unitary, 3
Local gravitational acceleration, 132 unimodular, 40
Local laws of physics, 132 unimodular Hermitian, 40
Locally compact commutative group, 58 Matrix elements, of irreducible representations,
Locally inertial coordinate system, 132 9-13
Lorentz group, 19-33, 34, 201 explicit expression of, 11, 17
and the group SL(2, C), 34-40 Matrix elements of operators, 11
inhomogeneous (see Poincaré group) Matrix elements of spinor representation, 49-50
orthochronous, 21, 22 Matter matrices, 212
proper, 21, 22 Maximal extension of the Schwarzschild metric,
proper orthochronous, 21-22, 30, 34, 38 142-146
spinor representation of, 34-53 Maximal manifold, 143
relation to SL(2, C), 34, 36 Maxwell-Einstein (field) equations, 137, 223-224,
Lorentz invariance, 134 234, 235
and the gravitational field, 197-201 Maxwell spinor, 170-173, 179, 181
Lorentz invariant formalism, 132 algebraically general, 175
Lorentz matrices, infinitesimal, 19-23 algebraically special, 175
Lorentz transformation: asymptotic behaviour of, 232-233
along axis, 22 canonical decomposition of, 179
determinant of, 21 canonical forms of, 178-179
generalized, 198 classification of, 173-179
homogeneous, 20, 21 dyad components of, 174, 190, 224, 235
improper, 21 eigenspinor of, 175, 178

inhomogeneous, 20, 21 eigenvalue of, 175
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Maxwell spinor,
invariants of, 177-178
non-null, 175, 178, 179
null, 175, 178, 179, 232
principal null directions of, 179
Maxwell tensor, 137, 170, 171, 173, 174
dual of, 173
Maxwell's equations,
in curved space, 137, 223-224, 234, 235
in flat space, 137, 234, 299-300, 318
McCarthy, P. J,, 303
Measurable function, 55, 56, 57, 79
Measure, 5, 59
of the group 0,, 5
of the group SL(2, C), 71, 72, 77
of the group SU,, 6
of the group Z, 55, 56
Mercury, 154, 157
Metric equation, 210, 223, 333
Metric tensor, 125, 135, 169
and tetrad system, 201
asymptotic behaviour of, 226-232
conformally flat, 128
constant, 128
diagonal, 128, 129
flat (Minkowskian), 20, 139, 197
spinor equivalence of, 169
Mills, R. L., 193, 194, 201, 203
Minkowskian metric (see Minkowskian space)
Mink owskian space, 20, 35, 40, 201, 305
metric of, 20, 139, 197
Minlos, R. A, xvi
Misner, C. W., xvi, 144, 265
Mixed-indices quantities, 169
Mixed tensor, 125, 127
Mobius transformation, 105, 294
Monochromatic waves, 150
Motion of a spinning body, 157
Motion of a test particle, 158
Multiplets, 195

Naimark, M. A,, xvi, 89, 99, 323
Nambu, Y., 90
Natural homomorphism, 322
Natural isomorphism, 322
Negative mass, 134
Neutron, 192, 193
to proton ratio. 131
Neutrino equations, 225-226
Newman, E. T., 205, 254, 274, 281
Newman-Penrose equations, 191-215, 329-333
free (in vacuum), 222-223
Newman-Penrose field variables, transformation
properties of, 334-342
Newman-Tamburino solution (metric), 236,
244-254
cylindrical class of, 251-253
remarks on, 253-254
spherical class of, 244-251
News function, 309

Newton, I, 131
Newtonian theory of gravitation, 135
Newton’s gravitational constant (G), 132, 134,
135, 142
Newton’s law of motion, 141, 163-164, 165
as a limit of Einstein-Infeld-Hoffmann
method, 162
Noncompact group, 90
Non-Euclidean topology of the Schwarzschild
metric, 144
Non-Hermitian operator, 91, 93
Nonlinearity of the Yang-Mills field equations,
195
Norm, 68, 71, 100, 113, 325
Normal subgroup, 21, 321
of BMS group, 310-311
Normalization factor, 85-86
Normalization of spin space basis, 174, 202
Normed space, 325
n-p interaction, 192
Nucleon, 192
Null congruence, 238
Null direction, 179, 188, 218, 219, 232, 233, 237
Null experiments, 130-132
Null geodesics, 221, 237, 293
Null hypersurfaces, 220, 293, 308
Null rotation about the vector {* of, 177,
336-337
Maxwell tensor components, 177
null tetrad, 220, 239, 256, 336
Ricct scalar, 339
Ricci tensor (trace-free), 337
spin coefficients, 336
spin frame, 336
Weyl tensor components, 183, 336
Null rotation about the vector n* of, 177,
338-339
Maxwell tensor components, 177
null tetrad, 338
Ricci scalar, 339
Ricci tensor (trace-free), 339
spin coefficients, 338-339
spin frame, 338
Weyl tensor components, 183, 339
Null tetrad of vectors (see Tetrad of null vectors)
Null vector, 20, 177
NUT-Taub metric, 254-265, 274
as a generalized Schwarzschild metric,
262-263
coordinate and tetrad transformations of,
256-257
coordinate conditions of, 254-255
field equations of, 255-256
groups of motion of, 254, 263-264
integration of field equations of, 257-261
Killing fields of, 262-264
properties of, 264-265
summary of calculations of, 261-262
tetrad system of, 254-255
topology of, 265



One-parameter group of operators, 23-25
One-parameter null rotation, 177, 220
One-parameter set of transformations, 305
One-parameter subgroups, 50, 74
Operator:

adjoint, 8, 328

angular momentum, 16, 17

boost, 90

Casimir, 90-91, 94

continuous, 327

Hermitian, 8, 94, 328

Hilbert-Schmidt, 120

infinitesimal, 8, 13, 14-16, 23-30, 32, 50-52, 73

integral, 116

intertwining, 107-109, 110

inverse, 328

isometric, 65

Laplacian, 75-76

Lie, 74-75, 76, 77

left-handed vector, 90

linear, 28, 323

non-Hermitian, 91, 93

of group, 63-67

one-parameter group of, 23-25

projection, 328

right translation, 59, 120

rotation, 90

spinor, 92

trace of, 114, 117

unitary, 8, 114, 324, 328
Operator formulation, 89-96
Operator function, 115
Operators in Banach space, 326
Orbit of light ray, 155
Origin of BMS group, 293
Orthochronous Lorentz group, 21, 22
Orthochronous Lorentz transformation, 21
Orthogonal matrix, 1, 7
Orthogonal sum of Hilbert spaces, 328
Orthogonal sum of operators, 328
Orthogonal sum of representations, 328
Orthogonal system, 13, 58
Orthogonality relation of the matrices D/(u), 13
Other realizations for D(g; x), 64
Other realizations of the space D(x), 62
0, (pure rotation group), 1-3

as a subgroup of the conformal group, 294

invariant integral on, §

measure of, §

relation to the group SU,, 3-4

representations of, 6-9, 13

Papapetrou, A., xvi, 157

Parallel displacement, 195

Parallel translation, 106

Parameter o, 81-82, 89

Particle with quadrupole moment, 148-149

Pauli spin matrices, 3, 35, 50, 91, 169, 194, 201,
203
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Penrose diagram, 188
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Physical singularity, 143
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for the group SU,, 59
group theoretical significance of, 58
Plancherel theorem, 57, 119-120
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on the group SL(2, C), 119-120
Plane gravitational waves, 149
Planetary motion effect, 151, 152-154
Plank’s constant (h), 132
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200-201
Poincaré symmetry, xiii
Point in space of the group SL(2, C), 73
Poisson bracket, 264
Poisson equation, 135
Pontrjagin, L. S., xvi, 320
Positive definite Hermitian functional, 113
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Post-Newtonian accuracy, 162
Post-Newtonian equations of motion (see
Einstein-Infeld-Hoffmann equations)
Post-Newtonian approximation, 163
Pound, R. V,, 152
Precession of a gyroscope, anomalous, 157
p-p interaction, 192
Primed indices, 169
Principal null direction, 179, 188, 218, 219, 232,
233, 237, 266
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79, 82, 83, 88, 94, 95, 98, 99, 100, 111, 113,
114, 117, 121
as a representation of the group SU,, 70-71
comparison with the infinitesimal approach,
73
properties of, 67
realization of, 65-70
SU, description of, 67-72
Principal spinors, 179
Principle of equivalence, 130-134, 135
Principle of general covariance, 134-135
Principle of general relativity, 135
Principle of special relativity, 135
Proca equation, xiii
Projection operator, 328
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Propagation vector, 218

Proper Lorentz group, 21, 22

Proper Lorentz transformation, 21

Proper orthochronous Lorentz group, 21-22,

30, 34, 38

expression in terms of the group SL(2, C), 53
five-dimensional representation of, 183
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