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Preface to the second edition

First of all, I still agree with everything that I wrote in the preface to the first
edition; however, I probably need to add a few words on the differences between
the second edition and the first.

As you can see, I have changed the title. In 2011 when I finished Graphene:
Carbon in Two Dimensions, there were no other books on graphene, and the
accuracy of the title was probably not so important. I would also like to emphasize
what is special about this book and in what respect it is different from the many
others that have appeared in the market in the meantime. To my knowledge, this is
the only book on graphene (yet) that focuses completely on fundamental issues of
physics and completely ignores all aspects of fabrication, devices, applications,
chemistry, etc. Hopefully, the new title, The Physics of Graphene, stresses this
point clearly enough and helps potential readers to avoid any disappointment if
they do not find something in the book which, in their mind, should be in a book on
graphene. Of course, I do not mean that these aspects are not important; I just
believe that I am not the proper person to write about them and that other people
can do that much better.

In the field of graphene, eight years is a very long period of time, when many
things have happened. To my surprise, when I started to work on the new edition,
I did not find anything that should be eliminated from the book because it turned
out to be fundamentally wrong or irrelevant for further development. Of course,
there were some inaccuracies and mistakes, which hopefully have been fixed now,
but even so, I think all old issues remain interesting and important. At the same
time, many new concepts and facts have appeared that should be reflected in the
new book. Therefore I have added three new chapters: Chapters 13 and 14
introduce the basic physics of an important new concept, van der Waals hetero-
structures, and Chapter 15 gives a very brief summary of our progress in under-
standing many-body effects in graphene. Eight years ago we had the feeling that a
single-particle picture of noninteracting Dirac fermions explained everything; this
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is no longer the case. Huge progress in the quality of graphene samples has opened
a way to essentially observe many-body features of the electronic spectrum near
the neutrality point.

My work on these subjects was essentially based on a collaboration with Nikita
Astrakhantsev, Viktor Braguta, Annalisa Fasolino, Andre Geim, Yura Gornos-
tyrev, Sasha Lichtenstein, Kostya Novoselov, Marco Polini, Burkhard Sachs, Guus
Slotman, Misha Titov, Maksim Ulybyshev, Merel van Wijk, Tim Wehling, and
Shengjun Yuan. Many thanks!

New material has also been added to the old chapters. The most important new
points are:

(1) We now understand the physics and mathematics of chiral tunneling in single-
and bilayer graphene much better, therefore Chapter 4 has been expanded.
These new results were obtained in collaboration with many people, and
I especially thank Koen Reijnders and Victor Kleptsyn.

(2) I have added a new section to Chapter 5 on a spectral flow of Dirac operator in
multiconnected graphene flakes. Topological aspects of condensed matter
physics have become really hot of late, and this provides a nice and fresh
new example. This piece is based on our work with Vladimir Nazaikinskii, to
whom I also give thanks.

(3) Chapter 9 was essentially rewritten. I have added new material on mechanical
properties, which is based on our work with Jan Los and Annalisa Fasolino,
and on thermal expansion of graphene. I thank Igor Burmistrov, Igor Gornyi,
Paco Guinea, Valentin Kachorovskii, and Sasha Mirlin for collaboration and
useful discussions of this subtle issue. I also thank Achille Mauri who found
some inaccuracies in the old Chapter 9 and helped to fix them.

(4) In Chapter 11, I have added a discussion of edge scattering, which is based on
our work with Vitaly Dugaev, to whom I am very thankful for his collabor-
ation. Hydrodynamics of electronic liquid in graphene is a very fresh and
popular subject now, and I cannot avoid it. When I wrote this part, discussions
with Misha Titov and Marco Polini were very helpful.

(5) We now know much more about magnetism and spin-orbit effects in graphene
and related two-dimensional materials, therefore Chapter 12 has also been
updated. The common work with Andre Geim, Irina Grigorieva, Sasha Lich-
tenstein, Vladimir Mazurenko, and Sasha Rudenko provided essential insights
on my new understanding of the subject.

I would like to repeat all of my acknowledgments from the preface to the first
edition. Without all of these old and new collaborations and, of course, without full
support from my wife Marina, this book would be impossible.

x Preface to the second edition
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Preface to the first edition

I do not think that I need to explain, in the preface to a book that is all about
graphene, what graphene is and why it is important. After the Nobel Prize for
physics in 2010, everybody should have heard something about graphene. I do
need, however, to explain why I wrote this book and what is special about it.

I hope it will not be considered a disclosure of insider information if I tell you
that Andre Geim is a bit sarcastic (especially with theoreticians). Every time
I mentioned that I was somewhat busy writing a book on graphene, he always
replied “Go to Amazon.com and search for ‘graphene’.” Indeed, there are many
books on graphene, many more reviews, and infinitely many collections of papers
and conference proceedings (well, not really infinitely many . . . in the main text
I will use the mathematical terminology in a more rigorous way, I promise). Why,
nevertheless, has this book been written and why may it be worthwhile for you to
read it?

Of course, this is a personal view of the field. I do love it, and it has been my
main scientific activity during the last seven years, from 2004 when graphene
started to be the subject of intensive and systematic investigations. Luckily, I was
involved in this development almost from the very beginning. It was a fantastic
experience to watch a whole new world coming into being and to participate in the
development of a new language for this new world. I would like to try to share this
experience with the readers of this book.

The beauty of graphene is that it demonstrates in the most straightforward way
many basic concepts of fundamental physics, from Berry’s phase and topologically
protected zero modes, to strongly interacting fluctuations and scaling laws for two-
dimensional systems. It is also a real test bed for relativistic quantum phenomena
such as Klein tunneling or vacuum reconstruction – “CERN on one’s desk.” I was
not able to find a book that focused on these aspects of graphene, namely on its role
in our general physical view of the world. I have tried to write such a book myself.
The price is that I have sacrificed all practical aspects of graphene science and
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technology, so you will not find a single word here about the ways in which
graphene is produced, and there is hardly anything about its potential applications.
Well, there is a lot of literature on these subjects. Also, I have said very little about
the chemistry of graphene, which is an extremely interesting subject in itself. It
certainly deserves a separate book, and I am not chemist enough to write it.

The field is very young, and it is not easy to know what will not be out of date in
just a couple of years. My choice is clear from the contents of this book. I do
believe that it represents the core of graphene physics, which will not be essentially
modified in the near future. I do not mean that this is the most interesting part;
moreover, I am sure that there will be impressive progress, at least, in two more
directions that are hardly mentioned in the book: in the many-body physics of
graphene and in our understanding of electron transport near the neutrality point,
where the semiclassical Boltzmann equation is obviously inapplicable. I think,
however, that it is a bit too early to cover these subjects in a book, since too many
things are not yet clear. Also, the mathematical tools required are not as easy as
those used in this book, and I think it is unfair to force the reader to learn
something technically quite complicated without a deep internal confidence that
the results are relevant for the real graphene.

The way the book has been written is how I would teach a course with the title
“Introduction to the Theory of Graphene.” I have tried to make a presentation that
is reasonably independent of other textbooks. I have therefore included some general
issues such as Berry’s phase, the statistical mechanics of fluctuating membranes, a
quick overview of itinerant-electron magnetism, a brief discussion of basic none-
quilibrium statistical mechanics, etc. The aims were, first, to show the physics of
graphene in a more general context and, second, to make the reading easier.

It is very difficult to give an overview of a field that has developed so quickly as
has that of graphene. So many papers appear, literally every day, that keeping
permanently up to date would be an enterprise in the style of ancient myths, e.g.,
those of Sisyphus, the Danaïdes, and some of the labors of Hercules. I apologize
therefore for the lack of many important references. I tried to do my best.

I cannot even list all of the scientific reviews on the basic physics of graphene
that are available now (let alone reviews of applications and of popular literature).
Let me mention at least several of them, in chronological order: Katsnelson
(2007a), Geim and Novoselov (2007), Beenakker (2008), Castro Neto et al.
(2009), Geim (2009), Abergel et al. (2010), Vozmediano, Katsnelson, and Guinea
(2010), Peres (2010), Das Sarma et al. (2011), Goerbig (2011), and Kotov et al.
(2012). There you can find different, complementary views on the field (with the
possible exception of the first one). Of course, the Nobel lectures by Geim (2011)
and Novoselov (2011) are especially strongly recommended. In particular, the
lecture by Andre Geim contains a brilliant presentation of the prehistory and
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history of graphene research, so I do not need to discuss these unavoidably
controversial issues in my book.

I am very grateful to Andre Geim and Kostya Novoselov, who involved me in
this wonderful field before it became fashionable (otherwise I would probably
never have dared to join such a brilliant company). I am especially grateful to
Andre for regular and lengthy telephone conversations; when you have to discuss a
theory using just words, without formulas and diagrams, and cannot even make
faces, after several years it does improve your understanding of theoretical physics.

It is impossible to thank all my other collaborators in the field of graphene in a
short preface, as well as other colleagues with whom I have had fruitful discussions.
I have to thank, first of all, Annalisa Fasolino, Paco Guinea, Sasha Lichtenstein, and
Tim Wehling for especially close and intensive collaboration. I am very grateful to
the former and current members of our group in Nijmegen working on graphene:
Misha Akhukov, Danil Boukhvalov, Jan Los, Koen Reijnders, Rafa Roldan, Timur
Tudorovskiy, Shengjun Yuan, and Kostya Zakharchenko, and to my other collabor-
ators and coauthors, especially Mark Auslender, Eduardo Castro, Hans De Raedt,
Olle Eriksson, Misha Fogler, Jos Giesbers, Leonya Levitov, Tony Low, Jan Kees
Maan, Hector Ochoa, Marco Polini, Sasha Rudenko, Mark van Schilfgaarde, Andrey
Shytov, Alyosha Tsvelik, Maria Vozmediano, Oleg Yazyev, and Uli Zeitler.

I am grateful to the Faculty of Science of Radboud University and the Institute
for Molecules and Materials for making available to me the time and resources for
research and writing.

I am very grateful to Marina Katsnelson and Timur Tudorovskiy for their
invaluable help with the preparation of the manuscript and for their critical reading.
I am grateful to many colleagues for permission to reproduce figures from their papers
and for providing some of the original figures used in the book. I am especially
grateful to Annalisa Fasolino for the wonderful picture that is used on the cover.

Of course, the role of my wife Marina in this book amounts to much more than
her help with the manuscript. You cannot succeed in such a long and demanding
task without support from your family. I am very grateful for her understanding
and full support.

The book is dedicated to the memory of two people who were very close to me,
my teacher Serghey Vonsovsky (1910–1998) and my friend Sasha Trefilov
(1951–2003). I worked with them for about 20 years, and they had a decisive
influence on the formation of my scientific taste and my scientific style. I thought
many times during these last seven years how sad it is that I cannot discuss some of
the new and interesting physics about graphene with them. Also, in a more
technical sense, I would not have been able to write this book without the experi-
ence of writing my previous books, Vonsovsky and Katsnelson (1989) and
Katsnelson and Trefilov (2002).

Preface to the first edition xiii
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1

The electronic structure of ideal graphene

1.1 The carbon atom

Carbon is the sixth element in the periodic table. It has two stable isotopes,
12C (98.9% of natural carbon) with nuclear spin I = 0 and, thus, nuclear magnetic
moment μn = 0, and 13C (1.1% of natural carbon) with I = ½ and μn = 0.7024μN
(μN is the nuclear magneton); see Radzig and Smirnov (1985). Like most of the
chemical elements, it originates from nucleosynthesis in stars (for a review, see the
Nobel lecture by Fowler [1984]). Actually, it plays a crucial role in the chemical
evolution of the universe.

The stars of the first generation produced energy only by proton–proton chain
reaction, which results in the synthesis of one α-particle (nucleus 4He) from four
protons, p. Further nuclear fusion reactions might lead to the formation of either of
the isotopes 5He and 5Li (p + α collisions) or of 8Be (α + α collisions); however,
all these nuclei are very unstable. As was first realized by F. Hoyle, the chemical
evolution does not stop at helium only due to a lucky coincidence � the nucleus
12C has an energy level close enough to the energy of three α-particles, thus, the
triple fusion reaction 3α ! 12C, being resonant, has a high enough probability.
This opens up a way to overcome the mass gap (the absence of stable isotopes with
masses 5 and 8) and provides the prerequisites for nucleosynthesis up to the most
stable nucleus, 56Fe; heavier elements are synthesized in supernova explosions.

The reaction 3α ! 12C is the main source of energy for red giants. Carbon also
plays an essential role in nuclear reactions in stars of the main sequence (heavier
than the Sun) via the so-called CNO cycle.

The carbon atom has six electrons, two of them forming a closed 1s2 shell
(helium shell) and four filling 2s and 2p states. The ground-state atomic configur-
ation is 2s2 2p2, with the total spin S = 1, total orbital moment L = 1 and total
angular moment J = 0 (the ground-state multiplet 3P0). The first excited state, with
a J = 1, 3P1 multiplet, has the energy 16.4 cm�1 � 2 meV (Radzig & Smirnov,
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1985), which gives an estimate of the strength of the spin-orbit coupling in the
carbon atom. The lowest-energy state with configuration 2s1 2p3 has the energy
33,735.2 cm�1 � 4.2 eV (Radzig & Smirnov, 1985), so this is the promotion
energy for exciting a 2s electron into a 2p state. At first sight, this would mean that
carbon should always be divalent, due to there being two 2p electrons while the
2s electrons are chemically quite inert. This conclusion is, however, wrong.
Normally, carbon is tetravalent, due to a formation of hybridized sp electron
states, according to the concept of “resonance” developed by L. Pauling (Pauling,
1960; see also Eyring, Walter, & Kimball, 1946).

When atoms form molecules or solids, the total energy decreases due to overlap
of the electron wave functions at various sites and formation of molecular orbitals
(in molecules) or energy bands (in solids); for a compact introduction to chemical
bonding in solids, see section 1.7 in Vonsovsky and Katsnelson (1989). This
energy gain can be sufficient to provide the energy that is necessary to promote
a 2s electron into a 2p state in the carbon atom.

In order to maximize the energy gained during the formation of a covalent bond,
the overlap of the wave functions with those at neighboring atoms should also be
maximal. This is possible if the neighboring atoms are situated in such directions
from the central atoms that the atomic wave functions take on maximum values.
The larger these values are, the stronger the bond is. There are four basis functions
corresponding to the spherical harmonics

Y0,0 ϑ; φð Þ ¼ 1ffiffiffiffiffi
4π

p ,

Y1,0 ϑ; φð Þ ¼ i

ffiffiffiffiffi
3
4π

r
cos ϑ,

Y1,�1 ϑ; φð Þ ¼ �i

ffiffiffiffiffi
3
8π

r
sin ϑ exp �iφð Þ,

(1.1)

where ϑ and φ are polar angles. Rather than take the functions Yl, m(ϑ, φ) to be the
basis functions, it is more convenient to choose their orthonormalized linear
combinations of the form

iffiffiffi
2

p ½Y1,1ðϑ; φÞ � Y1,�1ðϑ; φÞ� ¼
ffiffiffiffiffi
3
4π

r
sin ϑ cosφ,

iffiffiffi
2

p ½Y1,1ðϑ; φÞ þ Y1,�1ðϑ; φÞ� ¼
ffiffiffiffiffi
3
4π

r
sin ϑ sinφ,

� iY1,0ðϑ; φÞ ¼
ffiffiffiffiffi
3
4π

r
cos ϑ,

(1.2)
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which are transformed under rotations as the Cartesian coordinates x, y, and z,
respectively. The radial components of the s and p functions in the simplest
approximation are supposed to be equal in magnitude (which is of course a very
strong assumption) and may be omitted, together with the constant factor 1=

ffiffiffiffiffi
4π

p
which is not important here. Then the angular dependence of the four basis
functions that we will introduce in lieu of Y1,m(ϑ, φ) can be represented as

sj i ¼ 1,

xj i ¼
ffiffiffi
3

p
sin ϑ cos φ, yj i ¼

ffiffiffi
3

p
sin ϑ sinφ, zj i ¼

ffiffiffi
3

p
cos ϑ:

(1.3)

We now seek linear combinations of the functions (1.3) that will ensure maximum
overlap with the functions of the adjacent atoms. This requires that the value
of α ¼ max

ϑ, φ
ψ be a maximum. With the normalization that we have chosen,

α = 1 for the s states and α ¼ ffiffiffi
3

p
for the p functions of jxi, jyi, and jzi. We then

represent the function jψi as
ψj i ¼ a sj i þ b1 xj i þ b2 yj i þ b3 zj i, (1.4)

where a and bi are real-valued coefficients that satisfy the normalization condition

a2 þ b21 þ b22 þ b23 ¼ 1: (1.5)

The function jψi, then, is normalized in the same way as (1.3). This follows from
their mutual orthogonalityð

do ψ ϑ;φð Þj j2 � ψjψh i ¼ a2 sjsh i þ b21 xjxh i þ b22 yjyh i þ b23 zjzh i ¼ 4π,

with do being an element of solid angle. For the time being, the orientation of the
axes in our case is arbitrary.

Let us assume that in one of the functions ψ for which α is a maximum, this
maximum value is reached in the direction along the diagonal of the cube (1, 1, 1),
with the carbon atom at its center and with the coordinate axes parallel to its edges
(Fig. 1.1). Then b1 = b2 = b3 = b. The (1, 1, 1) direction is given by angles ϑ and φ
such that

sinφ ¼ cos φ ¼ 1ffiffiffi
2

p , cos ϑ ¼ 1ffiffiffi
3

p , sin ϑ ¼
ffiffiffi
2
3

r
,

so that
jxi = jyi = jzi = 1.

In addition,

α ¼ aþ 3b ¼ aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 1� a2ð Þ

p
, (1.6)
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where we have used the conditions (1.3). The maximum of α as a function of a is
reached for a ¼ 1

2 and is equal to 2. The quantity b in this case is equal to 1
2. Thus

the first orbital with maximum values along the coordinate axes that we have
chosen is of the form

1j i ¼ 1
2

sj i þ xj i þ yj i þ zj ið Þ: (1.7)

It can be readily shown that the functions

2j i ¼ 1
2

sj i þ xj i � yj i � zj ið Þ,

3j i ¼ 1
2

sj i � xj i þ yj i � zj ið Þ,

4j i ¼ 1
2

sj i � xj i � yj i þ zj ið Þ

(1.8)

correspond to the same value α = 2. The functions jii (i = 1, 2, 3, 4) are mutually
orthogonal. They take on their maximum values along the (1,1, 1), (1, 1, 1), (1, 1, 1),
and (1, 1, 1) axes, i.e., along the axes of the tetrahedron, and, therefore, the
maximum gain in chemical-bonding energy corresponds to the tetrahedral environ-
ment of the carbon atom. In spite of being qualitative, the treatment that we have
performed here nevertheless explains the character of the crystal structure of the
periodic table group-IV elements (diamond-type lattice, Fig. 1.2) as well as the shape
of the methane molecule, which is very close to being tetrahedral.

The wave functions (1.7) and (1.8) correspond to a so-called sp3 state of the
carbon atom, for which all chemical bonds are equivalent. Another option is that
three sp electrons form hybrid covalent bonds, whereas one p electron has a special
destiny, being distributed throughout the whole molecule (benzene) or the whole

(–1,–1,1)

(1,–1,–1)

(–1,1,–1)

(1,1,1)

Z

Y

X

Fig. 1.1 Directions of sp3 chemical bonds of the carbon atom.
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crystal (graphite or graphene). If one repeats the previous consideration for a
smaller basis, including only functions, jsi, jxi and, jyi one finds the following
functions corresponding to the maximum overlap (Eyring, Walter, & Kimball,
1946):

1j i ¼ 1ffiffiffi
3

p sj i þ
ffiffiffi
2

p
xj i

� �
,

2j i ¼ 1ffiffiffi
3

p sj i � 1ffiffiffi
6

p xj i þ 1ffiffiffi
2

p yj i,

3j i ¼ 1ffiffiffi
3

p sj i � 1ffiffiffi
6

p xj i � 1ffiffiffi
2

p yj i:

(1.9)

The corresponding orbits have maxima in the xy-plane separated by angles of 120�.
These are called σ bonds. The last electron with the p orbital perpendicular to the
plane (jzi function) forms a π bond. This state (sp2) is therefore characterized by
threefold coordination of carbon atoms, in contrast with fourfold coordination for
the sp3 state. This is the case of graphite (Fig. 1.3).

1.2 π States in graphene

Graphene has a honeycomb crystal lattice as shown in Fig. 1.4(a). The Bravais
lattice is triangular, with the lattice vectors

~a1 ¼ a

2
3;

ffiffiffi
3

p� �
, ~a2 ¼ a

2
3;�

ffiffiffi
3

p� �
, (1.10)

Fig. 1.2 The structure of diamond.

1.2 π States in graphene 5
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where a � 1:42 A
∘

is the nearest-neighbor distance. It corresponds to a so-
called conjugated carbon–carbon bond (like in benzene) intermediate between a
single bond and a double bond, with lengths r1 � 1:54 A

∘
and r2 � 1:31 A

∘
,

respectively.
The honeycomb lattice contains two atoms per elementary cell. They belong to

two sublattices, A and B, each atom from sublattice A being surrounded by three
atoms from sublattice B, and vice versa (a bipartite lattice). The nearest-neighbor
vectors are

~δ1 ¼ a

2
1;

ffiffiffi
3

p� �
, ~δ2 ¼ a

2
1;�

ffiffiffi
3

p� �
, ~δ3 ¼ a �1; 0ð Þ: (1.11)

Fig. 1.3 The structure of graphite.

(a)

A

a1

a2

B

(b)

K

MΓ

K´

b2

ky

kx

b1

Fig. 1.4 (a) A honeycomb lattice: sublattices A and B are shown as black and
gray. (b) Reciprocal lattice vectors and some special points in the Brillouin zone.

6 The electronic structure of ideal graphene
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The reciprocal lattice is also triangular, with the lattice vectors

~b1 ¼ 2π
3a

1;
ffiffiffi
3

p� �
, ~b2 ¼ 2π

3a
1;�

ffiffiffi
3

p� �
: (1.12)

The Brillouin zone is presented in Fig. 1.4(b). Special high-symmetry points K, K0,
and M are shown there, with the wave vectors

~K 0 ¼ 2π
3a

;
2π

3
ffiffiffi
3

p
a

� �
; ~K ¼ 2π

3a
;� 2π

3
ffiffiffi
3

p
a

� �
, ~M ¼ 2π

3a
; 0

� �
: (1.13)

The electronic structures of graphene and graphite are discussed in detail in
Bassani and Pastori Parravicini (1975). In Fig. 1.5 we show a recent computational
result for graphene. The sp2 hybridized states (σ states) form occupied and
empty bands with a huge gap, whereas pz (π) states form a single band, with a
conical self-crossing point in K (the same point, by symmetry, exists also in K0).
This conical point is a characteristic of the peculiar electronic structure of graphene
and the origin of its unique electronic properties. It was first obtained by Wallace
(1947) in the framework of a simple tight-binding model. Furthermore this model
was developed by McClure (1957) and Slonczewski and Weiss (1958).

Let us start, following Wallace (1947), with the nearest-neighbor approximation
for the π states only, with the hopping parameter t. The basis of electron states
contains two π states belonging to the atoms from sublattices A and B. In the
nearest-neighbor approximation, there are no hopping processes within the sub-
lattices; hopping occurs only between them. The tight-binding Hamiltonian is
therefore described by the 2 	 2 matrix

Fig. 1.5 The band structure of graphene.
(Reproduced with permission from Boukhvalov, Katsnelson, & Lichtenstein, 2008.)
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Ĥ ~k
� �

¼
0 tS ~k

� �
tS∗ ~k
� �

0

0
@

1
A, (1.14)

where~k is the wave vector and

S ~k
� �

¼
X
~δ

ei
~k~δ ¼ 2 exp

ikxa

2

� �
cos

kya
ffiffiffi
3

p

2

� �
þ exp �ikxað Þ: (1.15)

The energy is, therefore,

E ~k
� �

¼ �t S ~k
� ���� ��� ¼ �t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ f ~k

� �r
, (1.16)

where

f ~k
� �

¼ 2 cos
ffiffiffi
3

p
kya

� �
þ 4 cos

ffiffiffi
3

p

2
kya

� �
cos

3
2
kxa

� �
: (1.17)

One can see immediately that S ~K
� 	 ¼ S ~K 0� 	 ¼ 0, which means band crossing. On

expanding the Hamiltonian near these points one finds

ĤK 0 ~qð Þ � 3at
2

0 α qx þ iqy
� �

α∗ qx � iqy
� �

0

0
@

1
A

ĤK ~qð Þ � 3at
2

0 α qx � iqy
� �

α∗ qx þ iqy
� �

0

0
@

1
A (1.18)

where α = e5iπ/6, with ~q ¼~k � ~K and~k � ~K 0 respectively. The phase 5π/6 can be
excluded by a unitary transformation of the basis functions. Thus, the effective
Hamiltonians near the points K and K0 take the form

ĤK,K 0 ~qð Þ ¼ ℏv
0 qx � iqy

qx � iqy 0

� �
, (1.19)

where

v ¼ 3a tj j
2ℏ

(1.20)

is the electron velocity at the conical points. The possible negative sign of t can be
excluded by an additional phase shift by π.
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On taking into account the next-nearest-neighbor hopping t0, one finds, instead
of Eq. (1.16),

E ~k
� �

¼ �t S ~k
� ���� ���þ t0f ~k

� �
¼ �t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ f ~k

� �r
þ t0f ~k

� �
: (1.21)

The second term breaks the electron–hole symmetry, shifting the conical point
from E = 0 to E = �3t0, but it does not change the behavior of the Hamiltonian
near the conical points. Actually, this behavior is symmetry-protected (and even
topologically protected), as we will see in the next section.

Note that, contrary to the sign of t, the sign of t0 describing the hopping within
the same sublattice cannot be changed by unitary transformation.

The points K and �K0 differ by the reciprocal lattice vector~b ¼~b1 �~b2, so the
point K0 is equivalent to �K. To show this explicitly, it is sometimes convenient to
use a larger unit cell in the reciprocal space, with six conical points. The spectrum
(1.16) in this representation is shown in Fig. 1.6.

The parameters of the effective tight-binding model can be found by fitting
the results of first-principles electronic-structure calculations. According to Reich
et al. (2002), the first three hopping parameters are t = �2.97 eV, t0 = �0.073 eV
and t00 = �0.33 eV. Experimental estimates (Kretinin et al., 2013) yield t0 � � 0.3
eV �15%. The smallness of t0 in comparison with t means that the electron–hole
symmetry of the spectrum is quite accurate not only in the vicinity of the conical
points but also throughout the whole Brillouin zone.

There are saddle points of the electron energy spectrum at M (see Figs. 1.5
and 1.6), with Van Hove singularities in the electron density of states,
δN(E) / � ln j E � EMj (Bassani & Pastori Parravicini, 1975). The positions of
these singularities with the parameters from Reich et al. (2002) are

EM� = t + t0 � 3t00 � � 2.05eV

Fig. 1.6 The electron energy spectrum of graphene in the nearest-neighbor
approximation.
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and
EM+ = � t + t 0 + 3t 00 � 1.91eV.

The Hamiltonian (1.14) in the representation (1.15) has an obvious trigonal
symmetry (a symmetry with respect to rotation at 120�). At the same time, it is
not periodic in the reciprocal space, which may be inconvenient for some calcula-
tions (of course, its eigenvalues (1.16) are periodic). This can be fixed by the
change of basis, e.g., by multiplying the A-component of the wave function by a
factor exp ð�i~k~δ3Þ. Then, instead of Eq. (1.15) we will have the expression

Sðk⇀Þ ¼ 1þ ei
~kð~δ1�~δ3Þ þ ei

~kð~δ2�~δ3Þ,

which is obviously periodic but its trigonal symmetry is now hidden. The use of
the representation is dictated by convenience for a specific problem.

1.3 Massless Dirac fermions in graphene

Undoped graphene has a Fermi energy coinciding with the energy at the conical
points, with a completely filled valence band, an empty conduction band, and no
band gap in between. This means that, from the point of view of a general band
theory, graphene is an example of a gapless semiconductor (Tsidilkovskii, 1996).
Three-dimensional crystals, such as HgTe and α-Sn (gray tin) are known to be
gapless semiconductors. What makes graphene unique is not the gapless state itself
but the very special, chiral nature of the electron states, as well as the high degree
of electron–hole symmetry.

For any realistic doping, the Fermi energy is close to the energy at the conical
point, jEF j « j tj. To construct an effective model describing electron and hole
states in this regime one needs to expand the effective Hamiltonian near one of the
special points K and K0 and then make the replacements

qx ! �i
∂
∂x

, qy ! �i
∂
∂y

,

which corresponds to the effective mass approximation, or ~k
~p perturbation
theory (Tsidilkovskii, 1982; Vonsovsky & Katsnelson, 1989). From Eq. (1.19),
one has

ĤK ¼ �iℏv~σr, (1.22)

ĤK0 ¼ ĤT
K, (1.23)

where

σ0 ¼ 1 0
0 1

� �
, σx ¼ 0 1

1 0

� �
, σy ¼ 0 �i

i 0

� �
, σz ¼ 1 0

0 �1

� �
(1.24)
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are Pauli matrices (only x- and y-components enter Eq. (1.22)) and T denotes a
transposed matrix. A complete low-energy Hamiltonian consists of 4 	 4 matrices
taking into account both two sublattices and two conical points (in terms of
semiconductor physics, two valleys).

In the basis

Ψ ¼
ψKA

ψKB

ψK 0A
ψK 0B

0
BB@

1
CCA, (1.25)

where ψKA means a component of the electron wave function corresponding to
valley K and sublattice A, the Hamiltonian is a 2 	 2 block supermatrix

Ĥ ¼ ĤK 0
0 ĤK0

� �
: (1.26)

Sometimes it is more convenient to choose the basis as

Ψ ¼
ψKA
ψKB
ψK0B

�ψK0A

0
BB@

1
CCA (1.27)

(Aleiner & Efetov, 2006; Akhmerov & Beenakker, 2008; Basko, 2008), then the
Hamiltonian (1.26) takes the most symmetric form

Ĥ ¼ �iℏvτ0⊗~σr, (1.28)

where τ0 is the unit matrix in valley indices (we will use different notations for the
same Pauli matrices acting on different indices, namely, ~σ in the sublattice space
and~τ in the valley space).

For the case of an ideal graphene, the valleys are decoupled. If we add some
inhomogeneities (external electric and magnetic fields, disorder, etc.) that are smooth
at the atomic scale, the valleys remain independent, since the Fourier component of
external potential with the Umklapp wave vector ~b is very small, and intervalley
scattering is improbable. We will deal mainly with this case. However, one should
keep in mind that any sharp (atomic-scale) inhomogeneities, e.g., boundaries or
vacancies, will mix the states from different valleys, see Chapters 5 and 6.

The Hamiltonian (1.22) is a two-dimensional analog of the Dirac Hamiltonian
for massless fermions (Bjorken & Drell, 1964; Berestetskii, Lifshitz, & Pitaevskii,
1971; Davydov, 1976). Instead of the velocity of light c, there is a parameter
v � 106ms�1 � c/300 (we will discuss later, in Chapter 2, how this parameter has
been found experimentally).
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A formal similarity between ultrarelativistic particles (with energy much larger
than the rest energy mc2, such that one can consider the particles as massless) and
electrons in graphene makes graphene a playground on which to study various
quantum relativistic effects� “CERN on one’s desk.” These relationships between
the physics of graphene and relativistic quantum mechanics will be considered in
the next several chapters.

The internal degree of freedom, which is just spin for “true” Dirac fermions, is
the sublattice index in the case of graphene. The Dirac “spinors” consist here of the
components describing the distribution of electrons in sublattices A and B. We will
call this quantum number pseudospin, so that pseudospin “up” means sublattice
A and pseudospin “down” means sublattice B. Apart from the pseudospin, there
are two more internal degrees of freedom, namely the valley label (sometimes
called isospin) and real spin. So the most general low-energy Hamiltonian of
electrons in graphene is an 8 	 8 matrix.

Spin-orbit coupling leads to a mixture of pseudospin and real spin and to the gap
opening (Kane & Mele, 2005b). However, the value of the gap is supposed to be
very small, of the order of 10�2 K for pristine graphene (Huertas-Hernando,
Guinea, & Brataas, 2006). The reason is not only the lightness of carbon atoms
but also the orientation of orbital moments for pz states perpendicular to the
graphene plane. In silicene and germanene, that is, Si and Ge analogs of graphene,
the structure is buckled, which leads to a dramatic enhancement of the spin-orbit
coupling (Acun et al., 2015). Defects can significantly enhance the spin-orbit
coupling (Castro Neto & Guinea, 2009) and the corresponding effects are relevant,
e.g., for spin relaxation in graphene (Huertas-Hernando, Guinea, & Brataas, 2009),
but the influence of spin-orbit coupling on the electronic structure is negligible.
Henceforth we will neglect these effects, until the end of the book (see Section
12.4).

For the case of “true” Dirac fermions in three-dimensional space, the
Hamiltonian is a 4 	 4 matrix, due to two projections of spins and two values of
a charge degree of freedom – particle versus antiparticle. For the two-dimensional
case the latter is not independent of the former. Electrons and holes are just linear
combinations of the states from the sublattices A and B. The 2 	 2 matrix ℏv~σ~k
(the result of action of the Hamiltonian (1.22) on a plane wave with wave vector~k)
is diagonalized by the unitary transformation

Û~k ¼
1ffiffiffi
2

p 1þ i~m~k~σ
� 	

, (1.29)

where ~m~k ¼ sin ϕ~k;� cos ϕ~k
� 	

, and ϕ~k is the polar angle of the vector~k ~m~k⊥
~k

� �
.

The eigenfunctions
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ψ Kð Þ
e,h

~k
� �

¼ 1ffiffiffi
2

p
exp �iϕ~k=2

� 	
� exp iϕ~k=2

� 	
 !

(1.30)

correspond to electron (e) and hole (h) states, with the energies

Ee,h = � ℏvk. (1.31)

For the valley K0 the corresponding states (in the basis (1.25)) are

ψ K0ð Þ
e,h

~k
� �

¼ 1ffiffiffi
2

p exp iϕ~k=2
� 	

� exp �iϕ~k=2
� 	

 !
: (1.32)

Of course, this choice of the wave functions is not unique, they can be multiplied
by an arbitrary phase factor; only the ratio of the components of the spinor
corresponding to the sublattices A and B has a physical meaning.

For the electron (hole) states, by definition

~k~σ
� �
k

ψe,h ¼ �ψe,h: (1.33)

This means that the electrons (holes) in graphene have a definite pseudospin
direction, namely parallel (antiparallel) to the direction of motion. Thus, these
states are chiral (helical), as should be the case for massless Dirac fermions
(Bjorken & Drell, 1964). This is of crucial importance for “relativistic” effects,
such as Klein tunneling, which will be considered in Chapter 4.

The Dirac model for electrons in graphene results from the lowest-order expan-
sion of the tight-binding Hamiltonian (1.14) near the conical points. If one takes
into account the next, quadratic, term, one finds, instead of the Hamiltonian (1.28)
(in the basis (1.27))

Ĥ ¼ ℏvτ0⊗~σ~k þ μτz⊗ 2σykxky � σx k2x � k2y

� �h i
, (1.34)

where μ = 3a2t/8. The additional term in Eq. (1.34) corresponds to a trigonal
warping (Ando, Nakanishi, & Saito, 1998; McCann et al., 2006). Diagonalization

of the Hamiltonian (1.34) gives the spectrum Ee,h ~k
� �

¼ �ε ~k
� �

, where

ε2 ~k
� �

¼ ℏ2v2k2 � 2ℏvμk3 cos 3ϕ~k
� 	þ μ2k4, (1.35)

with the signs ∓ corresponding to valleys K and K0. The dispersion law is no longer

isotropic but has threefold (trigonal) symmetry. Importantly, ε ~k
� �

6¼ ε �~k
� �

,

1.3 Massless Dirac fermions in graphene 13
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which means that the trigonal warping destroys an effective time-reversal sym-

metry for a given valley (the property E ~k
� �

¼ E �~k
� �

follows from the time-

reversal symmetry [Vonsovsky & Katsnelson, 1989]). Of course, for the electron
spectrum as a whole, taking into account the two valleys, the symmetry holds:

ε ~k þ ~K
� �

¼ ε �~k � ~K
� �

: (1.36)

At the end of this section we show, following Mañes, Guinea, and Vozmediano
(2007), that the gapless state with the conical point is symmetry-protected. The
proof is very simple and based on consideration of two symmetry operations: time
reversal T and inversion I.We will use the basis (1.25) and the extended-Brillouin-
zone representation of Fig. 1.6 assuming ~K 0 ¼ �~K: The time reversal changes the
sign of the wave vector, or valley,

TψK A;Bð Þ ¼ ψ∗
K A;Bð Þ ¼ ψK0 A;Bð Þ, (1.37)

whereas the inversion also exchanges the sublattices:

IψKA = ψK0B, IψKB = ψK0A. (1.38)

Invariance under these symmetries imposes the following conditions for ĤK

and ĤK0 :

T : HK = H∗
K0 = HK, (1.39)

I : HK = σxHK0σx = HK. (1.40)

Indeed,

σx
a11 a12
a21 a22

� �
σx ¼ a22 a21

a12 a11

� �
, (1.41)

so the operation in (1.40) does exchange the A and B sublattices.
The conditions (1.39) and (1.40) establish relations between the Hamiltonians

for the different valleys. If we use both these symmetry transformations we impose
restrictions on HK and HK0 separately, e.g.,

TI : HK ¼ σxH
∗
Kσx ¼ HK: (1.42)

If we write the Hamiltonian as

HK ¼
X
i

αiσi

14 The electronic structure of ideal graphene
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one can see immediately that αz = 0, which means the absence of the mass term.
Thus, a perturbation that is invariant under T and I can, in principle, shift the
conical point (we will see in Chapter 10 that it can indeed be done, by deform-
ations), but cannot open the gap: (HK)11 = (HK)22 and the bands split by �jH12j.

If the sublattices are no longer equivalent, then there is no inversion symmetry,
the mass term naturally appears and the gap opens. This is, for example, the case of
graphene on top of hexagonal boron nitride, h-BN (Giovannetti et al., 2007; Sachs
et al., 2011). This case will be considered in detail in Chapter 13.

1.4 The electronic structure of bilayer graphene

By exfoliation of graphene one can obtain several layers of carbon atoms. Bilayer
graphene (Novoselov et al., 2006) is especially interesting. Its electronic structure
can be understood in the framework of a tight-binding model (McCann & Fal’ko,
2006; McCann, Abergel, & Fal’ko, 2007).

The crystal structure of bilayer graphene is shown in Fig. 1.7. Like in graphite,
the second carbon layer is rotated by 60� with respect to the first one. In graphite,
such a configuration is repeated, which is called Bernal stacking. The sublattices
A of the two layers lie exactly on top of one another, with a significant hopping
parameter γ1 between them, whereas there are no essential hopping processes
between the sublattices B of the two layers. The parameter γ1 = t⊥ is usually
taken as 0.4 eV, from data on the electronic structure of graphite (Brandt, Chudi-
nov, & Ponomarev, 1988; Dresselhaus & Dresselhaus, 2002), which is an order of
magnitude smaller than the nearest-neighbor in-plane hopping parameter γ0 = t.

(a)

g0
g3

g1

g4

(b)
K´ K

M

Γ

Fig. 1.7 (a) The crystal structure of bilayer graphene; hopping parameters are
shown. (b) Special points in the Brillouin zone for the bilayer graphene.
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The simplest model, which takes into account only these processes, is described by
the Hamiltonian

Ĥ ~k
� �

¼

0 tS ~k
� �

t⊥ 0

tS∗ ~k
� �

0 0 0

t⊥ 0 0 tS∗ ~k
� �

0 0 tS ~k
� �

0

0
BBBBBB@

1
CCCCCCA

(1.43)

with S ~k
� �

from Eq. (1.15). The basis states are ordered in the sequence first layer,
sublattice A; first layer, sublattice B; second layer, sublattice A; second layer,
sublattice B.

The matrix (1.43) can be easily diagonalized, with four eigenvalues

Ei
~k
� �

¼ � 1
2
t⊥ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4
t2⊥ þ t2 S ~k

� ���� ���2
r

(1.44)

with two independent � signs. The spectrum is shown in Fig. 1.8(a). Two bands
touch one another at the points K and K0. Near these points

E1,2 ~k
� �

� �
t2 S ~k
� ���� ���2
t⊥

� �ℏ2q2

2m∗
, (1.45)

where the effective mass is m∗ ¼ jt⊥j
2v2 (McCann, Abergel, & Fal’ko, 2007). The

experimental data give a value m∗ � 0.028me, where me is the mass of a free
electron (Mayorov et al., 2011). So, in contrast with the case of a single layer,
bilayer graphene turns out to be a gapless semiconductor with parabolic band

(a)

E 
(e
V
)

(b)

E 
(e
V
)

Fig. 1.8 (a) The electronic structure of bilayer graphene within the framework of
the simplest model (nearest-neighbor hopping processes only). (b) The same, for
the case of biased bilayer graphene (a voltage is applied perpendicular to the
layers).

16 The electronic structure of ideal graphene

https://www.cambridge.org/core


touching. Two other branches E3,4 ~k
� �

are separated by a gap 2jt⊥j and are

irrelevant for low-energy physics.
If one neglects intervalley scattering and replaces ℏqx and ℏqy by operators

p̂x ¼ �iℏ∂=∂x and p̂y ¼ �iℏ∂=∂y as usual, one can construct the effective

Hamiltonian; for single-layer graphene, this is the Dirac Hamiltonian (1.22). For
the case of bilayer graphene, instead, we have (McCann & Fal’ko, 2006; Novose-
lov et al., 2006)

ĤK ¼ 1
2m∗

0 p̂x � ip̂y
� 	2

p̂x þ ip̂y
� 	2

0

 !
: (1.46)

This is a new type of quantum-mechanical Hamiltonian that is different from both
nonrelativistic (Schrödinger) and relativistic (Dirac) cases. The eigenstates of this
Hamiltonian have special chiral properties (Novoselov et al., 2006), resulting in a
special Landau quantization, special scattering, etc., as will be discussed later.
Electron and hole states corresponding to the energies

Ee,h ¼ �ℏ2k2

2m∗
(1.47)

(cf. Eq. (1.31)) have a form similar to Eq. (1.30), with the replacement ϕ~k ! 2ϕ~k:

ψ Kð Þ
e,h

~k
� �

¼ 1ffiffiffi
2

p e�iϕ~k

�eiϕ~k

� �
: (1.48)

These are characterized by a helicity property similar to Eq. (1.33):

k2x � k2y

� �
σx þ 2kxkyσy

k2
ψe,h ¼ �ψe,h: (1.49)

By applying a voltage V perpendicular to the carbon planes one can open a gap in
the energy spectrum (McCann & Fal’ko, 2006; Castro et al., 2007, 2010a). In this
case, instead of the Hamiltonian (1.43), one has

H ~k
� �

¼

V=2 tS ~k
� �

t⊥ 0

tS∗ ~k
� �

V=2 0 0

t⊥ 0 �V=2 tS∗ ~k
� �

0 0 tS ~k
� �

�V=2

0
BBBBBB@

1
CCCCCCA

(1.50)

1.4 The electronic structure of bilayer graphene 17

https://www.cambridge.org/core


and, instead of the eigenvalues (1.44), we obtain

E2
i
~k
� �

¼ t2 S ~k
� ���� ���2 þ t⊥2

2
þ V2

4
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t⊥4

4
þ t⊥2 þ V2
� 	

t2 S ~k
� ���� ���2

r
(1.51)

For the two low-lying bands in the vicinity of the K (or K0) point the spectrum has
the “Mexican hat” dispersion

E ~k
� �

� � V

2
� Vℏ2v2

t⊥2
k2 þ ℏ4v4

t⊥2V
k4

� �
(1.52)

where we assume, for simplicity, that ℏvk«V«jt⊥j. This expression has a maximum
at k = 0 and a minimum at k ¼ V=

ffiffiffi
2

p
ℏv

� 	
(see Fig. 1.8(b)). The opportunity to

tune a gap in bilayer graphene is potentially interesting for applications. It was
experimentally confirmed by Castro et al. (2007) and Oostinga et al. (2008).

Consider now the effect of larger-distance hopping processes, namely hopping
between B sublattices (γ3 � 0.3eV) (Brandt, Chudinov, & Ponomarev, 1988;
Dresselhaus & Dresselhaus, 2002). Higher-order terms, such as γ4 � 0.04 eV,
are assumed to be negligible. These processes lead to a qualitative change of the
spectrum near the K (K0) point. As was shown by McCann and Fal’ko (2006) and
McCann, Abergel, and Fal’ko (2007), the effective Hamiltonian (1.46) is modified
by γ3 terms, giving

ĤK ¼
0

p̂x � ip̂y
� 	2

2m∗
þ 3γ3a

ℏ
p̂x þ ip̂y
� 	

p̂x þ ip̂y
� 	2

2m∗
þ 3γ3a

ℏ
p̂x � ip̂y
� 	

0

0
BB@

1
CCA,

(1.53)

with the energy spectrum determined by the equation (assuming that jγ3j« jγ0j)

E2 ~k
� �

� 3γ3að Þ2k2 þ 3γ3aℏ
2k3

m∗
cos 3ϕ~k
� 	þ ℏ2k2

2m∗

� �2

: (1.54)

This means that, at small enough wave vectors

ka � γ3γ1
γ02

����
���� � 10�2, (1.55)

the parabolic dispersion law (1.47) is replaced by the linear one. The correspond-
ing level of doping when the Fermi wave vector satisfies the conditions (1.55) is
estimated as n < 1011 cm�2 (McCann, Abergel, & Fal’ko, 2007).

The spectrum (1.54) is shown in Fig. 1.9. The term with cos 3ϕ~k
� 	

in Eq. (1.53)
corresponds to the trigonal warping, which is more important for the bilayer than it
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is for the single layer: It leads to a reconstruction of isoenergetic lines when
k grows. Instead of one point of parabolic touching of the bands at k = 0, there
are now four conical points at k = 0 and k ¼ 6m∗γ3a=ℏ

2, cos 3ϕ~k
� 	 ¼ �1, where

the signs � correspond to K and K0 valleys. The merging of four cones into one
paraboloid with increasing energy is a particular case of the Lifshitz electronic
topological transition associated with a Van Hove singularity of the electron
density of states (Lifshitz, Azbel, & Kaganov, 1973; Abrikosov, 1988; Vonsovsky
& Katsnelson, 1989).

1.5 Multilayer graphene

For the third layer of carbon atoms there are two options: It can be rotated with
respect to the second layer by either�60� or by 60�. In the first case, the third layer
lies exactly on top of the first layer, with the layer order aba. In the second case, we
will denote the structure as abc. In bulk graphite, the most stable state corresponds
to Bernal stacking, abab . . . However, rhombohedral graphene with the stacking
abcabc . . . also exists, as does turbostratic graphite with an irregular stacking (on
the energetics of these different stackings, see Savini et al., 2011).

Here we consider the evolution of the electronic structure of N-layer graphene
with different stacking as N increases (Guinea, Castro Neto, & Peres, 2006;

(a)

E
 (

eV
)

(b)

Fig. 1.9 The effect of trigonal warping on the electronic structure of bilayer
graphene. (a) A cross-section of the dispersion surface at ϕ~k ¼ 0; one can see
the asymmetry of the spectrum (cf. Fig. 1.8(a)). (b) A general view of the
dispersion surface.
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Partoens & Peeters, 2006; Koshino & McCann, 2010). First we will discuss the
case of Bernal stacking. We will restrict ourselves to considering only the simplest
model with parameters γ0 = t and γ1 = t⊥, neglecting all other hopping parameters
γi. For the case of bilayer graphene this corresponds to the Hamiltonian (1.43).

On introducing the basis functions ψn,A
~k
� �

and ψn,B
~k
� �

n ¼ 1, 2, . . . ,Nð (N is
the number of carbon layers, A and B label sublattices, and ~k is the two-
dimensional wave vector in the layer) we can write the Schrödinger equation as

Eψ2n,A
~k
� �

¼ tS ~k
� �

ψ2n,B
~k
� �

þ t⊥ ψ2n�1,A
~k
� �

þ ψ2nþ1,A
~k
� �h i

,

Eψ2n,B
~k
� �

¼ tS∗ ~k
� �

ψ2n,A
~k
� �

,

Eψ2nþ1,A
~k
� �

¼ tS∗ ~k
� �

ψ2nþ1,B
~k
� �

þ t⊥ ψ2n,A
~k
� �

þ ψ2nþ2,A
~k
� �h i

,

Eψ2nþ1,B
~k
� �

¼ tS ~k
� �

ψ2nþ1,A
~k
� �

:

(1.56)

Excluding the components ψB from Eq. (1.56), one can write the equation

E �
t2 S ~k
� ���� ���2
E

0
B@

1
CAψn,A

~k
� �

¼ t⊥ ψnþ1,A
~k
� �

þ ψn�1,A
~k
� �h i

: (1.57)

For an infinite sequence of layers (bulk graphite with Bernal stacking) one can try
the solutions of Eq. (1.57) as

ψn,A
~k
� �

¼ ψA
~k
� �

einξ , (1.58)

which gives us the energies (Wallace, 1947)

E ~k; ξ
� �

¼ t⊥ cos ξ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 S ~k
� ���� ���2 þ t2⊥ cos 2 ξð Þ

r
: (1.59)

The parameter ξ can be written as ξ = 2kzc, where kz is the z-component of
the wave vector, c is the interlayer distance and, thus, 2c is the lattice period in
the z-direction. A more accurate tight-binding model of the electronic structure of
graphite, taking into account more hoppings, γi, was proposed by McClure (1957)
and Slonczewski and Weiss (1958); for reviews, see Dresselhaus and Dresselhaus
(2002) and Castro Neto et al. (2009).

For the case of N-layer graphene (n = 1, 2, . . ., N) one can still use Eq. (1.57),
continuing it for n = 0 and n = N + 1, but with constraints

ψ0,A = ψN+1,A = 0 (1.60)
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requiring the use of linear combinations of the solutions with ξ and �ξ; since
E(ξ) = E(�ξ) the expression for the energy (1.59) remains the same but ξ is now
discrete. Owing to Eq. (1.60) we have

ψn,A � sin (ξpn) (1.61)
with

ξp ¼
πp

N þ 1
, p ¼ 1, 2, . . . ,N: (1.62)

Eq. (1.59) and (1.62) formally solve the problem of the energy spectrum for N-layer
graphene with Bernal stacking. For the case of bilayer graphene cos ξp ¼ � 1

2, and we
come back to Eq. (1.44). For N= 3, there are six solutions with cos ξp ¼ 0, � 1=

ffiffiffi
2

p
:

E ~k
� �

¼
�t S ~k

� ���� ���,
�t⊥

ffiffiffi
2

p
=2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2⊥=2þ t2 S ~k

� ���� ���2
r

:

8><
>: (1.63)

We have both conical (like in single-layer graphene) and parabolic (like in bilayer

graphene) touching at K and K0 points where S ~k
� �

! 0:

For rhombohedral stacking (abc), instead of Eq. (1.56), we have the Schrödinger
equation in the form

Eψ1,A
~k
� �

¼ tS ~k
� �

ψ1,B
~k
� �

þ t⊥ψ2,A
~k
� �

,

Eψ1,B
~k
� �

¼ tS∗ ~k
� �

ψ1,A
~k
� �

,

Eψ2,A
~k
� �

¼ tS∗ ~k
� �

ψ2,B
~k
� �

þ t⊥ψ1,A
~k
� �

,

Eψ2,B
~k
� �

¼ tS ~k
� �

ψ2,A
~k
� �

þ t⊥ψ3,A
~k
� �

,

Eψ3,A
~k
� �

¼ tS ~k
� �

ψ3,B
~k
� �

þ t⊥ψ2,B
~k
� �

,

Eψ3,B
~k
� �

¼ tS∗ ~k
� �

ψ3,A
~k
� �

:

(1.64)

On excluding from Eq. (1.64) ψ1,B and ψ3,B one obtains

E �
t2 S ~k
� ���� ���2
E

0
B@

1
CAψ1,A

~k
� �

¼ t⊥ψ2,A
~k
� �

,

E �
t2 S ~k
� ���� ���2
E

0
B@

1
CAψ3,A

~k
� �

¼ t⊥ψ2,B
~k
� �

,

(1.65)
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so we have just two equations for ψ2,A, a and ψ2, B

E 1� t2⊥

E2 � t2 S ~k
� ���� ���2

0
B@

1
CAψ2,A

~k
� �

¼ tS∗ ~k
� �

ψ2,B
~k
� �

,

E 1� t2⊥

E2 � t2 S ~k
� ���� ���2

0
B@

1
CAψ2,B

~k
� �

¼ tS ~k
� �

ψ2,A
~k
� �

,

(1.66)

and, finally, the equation for the energy

E2 1þ t2⊥

t2 S ~k
� ���� ���2 � E2

0
B@

1
CA

2

¼ t2 S ~k
� ���� ���2: (1.67)

Near the K and K0 points when S ~k
� �

! 0 there is a solution of Eq. (1.67) that
behaves as

E ~k
� �

� �
t3 S ~k
� ���� ���3
t2⊥

/ �q3, (1.68)

where ~q ¼~k � ~K or ~k � ~K 0: So, in trilayer graphene with rhombohedral stacking
we have a gapless semiconducting state with cubic touching of the conduction and
valence bands.

If we have a rhombohedral stacking of N layers (each layer is rotated with
respect to the previous one by +60�), the low-lying part of the spectrum behaves,
similarly to Eq. (1.68), according to

E ~qð Þ / � tN

tN�1
⊥

qN (1.69)

(Mañes, Guinea, & Vozmediano, 2007).
Effects of γj beyond the simplest model were discussed by Koshino and

McCann (2010).
To finish this chapter, we calculate the density of states

N Eð Þ ¼ 2
ð

d2k

2πð Þ2 δ E � E ~k
� �� �

, (1.70)

where integration is over the Brillouin zone of the honeycomb lattice and the factor
2 takes into account spin degeneracy. For small energies E! 0 the contribution to
(1.70) comes only from the vicinity of the K and K0 points and E ¼ E j~qjð Þ
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depends, to a first approximation (neglecting trigonal warping), only on the
modulus of the wave vector. Thus, one gets

N Eð Þ ¼ 2
2
ð∞
0

dqq

2π
δ E � E ~qð Þð Þ ¼ 2

π
q Eð Þ
dE

dq


�� �� : (1.71)

For the case of single-layer graphene, according to Eq. (1.31)

N Eð Þ ¼ 2
π
j E j
ℏ2v2

, (1.72)

and the density of states vanishes linearly as E ! 0. For bilayer graphene, due
to Eq. (1.47)

N Eð Þ ¼ 2m∗

πℏ2 , (1.73)

and the density of states is constant. Finally, for the spectrum (1.69) the density
of states is divergent at E ! 0, N > 2:

N Eð Þ / 1

Ej j1�2=N
: (1.74)

At large enough energies the density of states has Van Hove singularities (related
to the M point) that are relevant for the optical properties and will be discussed
in Chapter 7.
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2

Electron states in a magnetic field

2.1 The effective Hamiltonian

The reality of massless Dirac fermions in graphene has been demonstrated by
Novoselov et al. (2005a) and Zhang et al. (2005) using quantized magnetic fields.
The discovery of the anomalous (half-integer) quantum Hall effect in these works
was the real beginning of the “graphene boom.” Discussion of the related issues
allows us to clarify in the most straightforward way possible the basic properties
of charge-carrier states in graphene, such as chirality, Berry’s phase, etc. So, it
seems natural, both historically and conceptually, to start our consideration of
the electronic properties of graphene with a discussion of the effects of the
magnetic field.

We proceed with the derivation of the effective Hamiltonian of band electrons in
a magnetic field (Peierls, 1933); our presentation will mainly follow Vonsovsky
and Katsnelson (1989). It is assumed that the magnetic length

lB ¼
ffiffiffiffiffiffiffiffiffiffi
ℏc

jej B

s
(2.1)

(B is the magnetic induction) is much larger than the interatomic distance:

lB » a (2.2)

which is definitely the case for any experimentally available fields; it would be
violated only for B » 104T.

Another approximation is that we will take into account only π electrons and
neglect transitions to other electron bands (e.g., σ bands). Since the distance
between π and σ bands is of the order of the π bandwidth (see Fig. 1.5) one can
prove that the approximation is justified under the same condition (2.2) (see the
discussion of magnetic breakdown at the end of this section). A rigorous theory of
the effect of magnetic fields on Bloch states has been developed by Kohn (1959)

24

https://www.cambridge.org/core


and Blount (1962). It is rather cumbersome, and its use for the case of graphene,
with its simple band structure, would obviously be overkill.

The original Hamiltonian is

H ¼ ~̂π2

2m
þ V ~rð Þ, (2.3)

where

~̂π ¼ ~̂p� e

c
~A, ~p ¼ �iℏ~∇ (2.4),

~A is the vector potential
~B ¼ ~∇ �~A, (2.5)

m is the mass of a free electron, and V ~rð Þ is a periodic crystal potential. The
operators π̂α satisfy the commutation relations

π̂x; π̂y

� � ¼ � π̂y; π̂x

� � ¼ ie

ℏc
B, (2.6)

other commutators being zero (we assume that the magnetic induction is along the
z-axis).

We can try a general solution of the Schrödinger equation

Hψ = Eψ, (2.7)

as an expansion in the Wannier basis φi ~rð Þ (we will omit the band label since we
will consider only π states):

ψ ¼
X
i

ciφi ~rð Þ: (2.8)

The Wannier function on state i can be represented as

φi ~rð Þ ¼ φ0 ~r �~Ri

� � ¼ exp � i

ℏ
~Ri~̂p

� �
φ0 ~rð Þ (2.9)

where φ0 is the function corresponding to the zero site.
For future use, we have to specify the gauge. Here we will use a radial gauge

~A ¼ 1
2
~B�~r ¼ �By

2
;
Bx

2
; 0

	 

: (2.10)

Then, instead of the expansions (2.8) and (2.9), it is convenient to choose another
basis, namely

ψ ¼
X
i

ai~φi ~rð Þ,

~φi ~rð Þ ¼ exp � i

ℏ
~Ri~̂Π

� �
φ0 ~rð Þ (2.11)
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where

~̂Π ¼ ~̂pþ e

c
~A: (2.12)

The point is that the operators Π̂α commute with π̂ β and, thus, with the kinetic
energy term in Eq. (2.3):

π̂α; Π̂β

� � ¼ � ieℏ
c

∂Aβ

∂xα
þ ∂Aα

∂xβ

	 

¼ 0 (2.13)

due to Eq. (2.10). Using the identity

exp Â þ B̂
� � ¼ exp Â

� �
exp B̂

� �
exp � 1

2
Â; B̂
� �	 


(2.14)

(assuming Â; Â; B̂
� �� � ¼ B̂; Â; B̂

� �� � ¼ 0), see Vonsovsky and Katsnelson (1989),
one can prove that the operator

exp
i

ℏ
~Ri~̂Π

	 

¼ exp

ie

2ℏc
~Ri �~B
� �

~r

� �
exp

i

ℏ
~Ri~̂p

� �
(2.15)

commutes also with the potential energy V ~rð Þ due to translational invariance of the
crystal:

exp
i

ℏ
~Ri~̂p

� �
V ~rð Þ . . . ¼ V ~r þ~Ri

� �
exp

i

ℏ
~Ri~̂p

� �
. . .¼ V ~rð Þexp i

ℏ
~Ri~̂p

� �
. . .

(2.16)

and, thus, the Hamiltonian matrix in the basis (2.12) has the form

Hij ¼
ð
d~rφ∗0 ~rð ÞĤ exp

i

ℏ
~Ri~̂Π

	 

exp � i

ℏ
~Rj~̂Π

	 

φ0 ~rð Þ: (2.17)

Using, again, Eq. (2.14) one finds

exp
i

ℏ
~Ri~̂Π

	 

exp � i

ℏ
~Rj~̂Π

	 

¼ exp

i

ℏ
~̂Π ~Ri �~Rj

� �� �
exp � ie

2ℏc
~Ri �~Rj

� �
~B

� �
¼ exp

ie

2ℏc
~Ri �~Rj

� ��~B
� �

~r

� �
� exp � ie

2ℏc
~Ri �~Rj

� �
~B

� �
exp

i

ℏ
~̂p ~Ri �~Rj

� �� �
:

(2.18)

The Wannier functions are localized within a region of extent of a few interatomic
distances, so, to estimate the various terms in (2.18), one has to assume r � a and

j ~Ri �~Rj j� a and take into account Eq. (2.2).
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Thus,

Hij � exp � ie

2ℏc
~Ri �~Rj

� �
~B

� �
tij, (2.19)

where tij ¼ Hij ~B ¼ 0
� �

is the hopping parameter without a magnetic field. With
the same accuracy, one can prove that the basis (2.11) is orthonormal.

Further straightforward transformations (Vonsovsky & Katsnelson, 1989) show
that the change of the hopping parameters (2.11) corresponds to a change of the
band Hamiltonian t ~pð Þ (where~p ¼ ℏ~k) by

Ĥ eff ¼ t ~̂π
 �

(2.20)

and, thus, the Schrödinger equation (2.7) takes the form

t ~̂π
 �

ψ ¼ Eψ: (2.21)

Instead of the operators π̂x and π̂y satisfying the commutation relations (2.6), it is
convenient to introduce the standard Bose operators b̂ and b̂

þ
by writing

π̂ � ¼ π̂x � iπ̂y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 jej ℏB

c

r
b̂,

π̂þ ¼ π̂x þ iπ̂y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 je j ℏB

c

r
b̂
þ

(2.22)

in such a way that

b̂; b̂
þh i

¼ 1: (2.23)

We will see later that this representation is very convenient for the cases of both
single-layer and, especially, bilayer graphene.

To finish this section, we should discuss the question of neglected transitions to
other bands (magnetic breakdown). If the distance between the bands is of the
order of their bandwidth (which is the case for σ and π bands in graphene), the
condition (2.2) still suffices to allow us to neglect the transitions. If the gap
between the states Δ « jtj, the magnetic breakdown can be neglected if

ej jB
ℏc

¼ 1

l2B
«

Δ
t

	 
2 1
a2

,

where we assume that t � ℏ2

ma2 (Vonsovsky & Katsnelson, 1989).
Similarly to the derivation of equations for the electron spectrum of a semicon-

ductor with impurities in the effective-mass approximation (Tsidilkovskii, 1982),
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one can prove that, if the magnetic induction ~B x; yð Þ is inhomogeneous but the
spatial scale of this inhomogeneity is much larger than a, the Hamiltonian (2.20)
still works.

2.2 Landau quantization for massless Dirac fermions

Let us apply the general theory to electrons in graphene in the vicinity of the point
K. It follows from Eq. (1.22), (2.20), and (2.22) that the effective Hamiltonian is

Ĥ ¼ v
0 π̂�
π̂þ 0

	 

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 jej ℏBv2

c

s
0 b̂
b̂þ 0

	 

(2.24)

and the Schrödinger equation (2.21) for the two-component spinor reads

b̂ ψ2 ¼ εψ1,

b̂
þ
ψ1 ¼ εψ2, ð2:25Þ

where we have introduced a dimensionless quantity ε, such that

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 jej ℏBv2

c

s
ε �

ffiffiffi
2

p
ℏv

lB
ε: (2.26)

We assume here that B> 0 (magnetic field up). For the second valley K0, ψ1 and ψ2

exchange their places in Eq. (2.25).
First, one can see immediately from (2.25) that a zero-energy solution exists

with ψ1 = 0, and ψ2 � j0i is the ground state of a harmonic oscillator:

b̂ 0j i ¼ 0: (2.27)

This solution is 100% polarized in pseudospin; that is, for a given direction of the
magnetic field for the valleys K and K0, electrons in this state belong completely to
sublattices A and B, respectively, or conversely if the direction of the magnetic
field is reversed.

To find the complete energy spectrum, one has to act with the operator b̂
þ
on the

first equation of (2.25), which gives us immediately

b̂
þ
b̂ψ2 ¼ ε2ψ2, (2.28)

with the well-known eigenvalues

ε2n ¼ n ¼ 0, 1, 2, . . . : (2.29)

Thus, the eigenenergies of massless Dirac electrons in a uniform magnetic field are
given by

E �ð Þ
n ¼ �ℏωc

ffiffiffi
n

p
, (2.30)
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where the quantity

ℏωc ¼
ffiffiffi
2

p
ℏv

lB
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ℏ jej Bv2

c

s
(2.31)

will be called the “cyclotron quantum.” In the context of condensed-matter phys-
ics, this spectrum was first derived by McClure (1956) in his theory of the
diamagnetism of graphite. This spectrum is drastically different from that for

nonrelativistic electrons with t ~̂π
 �

¼ ~̂π2= 2mð Þ, where (Landau, 1930)

εn ¼ ℏ~ωc nþ 1
2

	 

, ~ωc ¼ j e j B

mc
: (2.32)

Discrete energy levels of two-dimensional electrons in magnetic fields are called
Landau levels.

First, the spectrum (2.31), in contrast with (2.32), is not equidistant. Second, and
more importantly, the zero Landau level (n = 0) has zero energy and, due to the
electron–hole symmetry of the problem, is equally shared by electrons and holes.
The states at this level are chiral; that is, they belong to only one sublattice, as was
explained previously. The existence of the zero-energy Landau level has deep
topological reasons and leads to dramatic consequences for the observable proper-
ties of graphene, as will be discussed later in this chapter.

To better understand the relations between relativistic and nonrelativistic
Landau spectra, let us calculate the Hamiltonian (2.24) squared, taking into
account the commutation relations (2.6):

Ĥ
2 ¼ v2 ~σ~̂π

 �2
¼ v2~̂π2 þ iv2~̂σ ~̂π � ~̂π

 �
¼ v2~̂π2 � v2ℏ ej jB

c
σz: (2.33)

The spectrum of the operator (2.33) can be immediately found from the solution of
the nonrelativistic problem if one puts m = l/(2v2). Then,

E2
n ¼

2ℏ j e j Bv2
c

nþ 1
2

	 

∓
v2ℏ j e j B

c
¼ 2ℏ j e j Bv2

c
nþ 1

2
∓
1
2

	 

, (2.34)

where �1 are eigenstates of the operator σ̂ z. The last term in Eq. (2.33) looks like
Zeeman splitting, and the existence of the zero Landau level in these terms
results from an exact cancellation of the cyclotron energy and the Zeeman
energy. Actually, for free electrons, for which the same mass is responsible for both
the orbital motion and the internal magnetic moment, the situation is exactly the same:

En,σ ¼ ℏ j e j B
mc

nþ 1
2

	 

∓
ℏ j e j B
2mc

: (2.35)
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In semiconductors, the effective electron mass is usually much smaller than the
effective electron mass, and the Zeeman term just gives small corrections to Landau
quantization. For the case of graphene, the pseudo-Zeeman term also originates from
the orbital motion, namely from hopping processes between neighboring sites.

To find the eigenfunctions corresponding to the eigenenergies (2.30), one needs
to specify a gauge for the vector potential. The choice (2.10) gives us solutions
with radial symmetry. It is more convenient, however, to use the Landau gauge

~A ¼ 0;Bx; 0ð Þ: (2.36)

Then Eq. (2.25) takes the form

∂
∂x

� i
∂
∂y

� x

l2B

	 

ψ2 ¼

iE

ℏv
ψ1,

∂
∂x

þ i
∂
∂y

þ x

l2B

	 

ψ1 ¼

iE

ℏv
ψ2:

(2.37)

In the gauge (2.36), y is the cyclic coordinate, and the solutions of Eq. (2.37) can
be tried in the form

ψ1,2(x, y) = ψ1,2(x) exp (ikyy), (2.38)

which transforms Eq. (2.37) into

∂
∂x

� x� x0
l2B

	 

ψ2 ¼

iE

ℏv
ψ1,

∂
∂x

þ x� x0
l2B

	 

ψ1 ¼

iE

ℏv
ψ2:

(2.39)

where

x0 ¼ l2Bky (2.40)

is the coordinate of the center of the electron orbit (Landau, 1930). On introducing
a dimensionless coordinate

X ¼
ffiffiffi
2

p

lB
x� x0ð Þ (2.41)

and a dimensionless energy (2.26), one can transform Eq. (2.37) to

d2

dX2 þ ε2 þ 1
2
� X2

2

	 

ψ1 Xð Þ ¼ 0: (2.42)

ψ2 Xð Þ ¼ � i

ε
d

dX
þ X

2

	 

ψ1 Xð Þ: (2.43)
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We assume in the second equation that ε 6¼ 0, otherwise

ψ1 Xð Þ � exp �X2

4

	 

,

ψ2 Xð Þ ¼ 0:
(2.44)

The only solution of Eq. (2.42) vanishing at X !�∞ (the second one is exponen-
tially growing) is, with an accuracy to within a constant multiplier

ψ1(X) = Dε2(�X), (2.45)

where Dv(X) is the Weber function (Whittaker & Watson, 1927) and

ψ2(X) = iεDε2�1(�X). (2.46)

If the sample is not restricted for both X ! �∞ and X ! ∞, the solutions (2.45)
and (2.46) are normalizable only for integer ε2, which again gives us the quantiza-
tion condition (2.29). For an integer index n, the Weber functions

Dn Xð Þ ¼ �1ð Þn exp X2

4

	 

dn

dXn exp �X2

2

	 

(2.47)

decay as exp(�X2/4) forX ! �∞ .
The energy is not dependent on the quantum number ky or, equivalently, on the

position of the center of the orbit x0. This means that the Landau levels (2.30) have
a macroscopically large degeneracy g. To calculate it, it is convenient to use a
periodic (Born–von Kármán) boundary condition in the y-direction

ψ1,2(x, y) = ψ1,2(x, y + Ly) (2.48)

(for large enough samples the density of states does not depend on boundary
conditions [Vonsovsky & Katsnelson, 1989]). Thus,

ky ¼ 2π
Ly

n, (2.49)

where n = 0, �1, . . . the maximum value of n is determined by the condition that
the center of the orbit should be within the sample: 0 < x0 < Lx (Lx is the width of
the sample in the x-direction), or

j ky j< Lx
l2B

¼ j e j B
ℏc

Lx: (2.50)
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Thus, the total number of solutions is

g ¼ j e j B
ℏc

LxLy
2π

¼ j e j B
ℏc

A

2π
¼ Φ

Φ0
, (2.51)

where A = LxLy is the sample area, Φ is the total magnetic flux though the sample,
and

Φ0 ¼ hc

j e j (2.52)

is the flux quantum. Keeping in mind further applications to graphene, one should
multiply the degeneracy (2.51) by a factor of 4, namely a factor of 2 for the two
valleys K and K0 and a further factor of 2 for the two spin projections. The latter is
possible since the ratio of the Zeeman energy EZ = j e j ℏB/(2mc) to the cyclotron
quantum ℏωc is always very small (about 0.01 in fields B � 10�30 T).

2.3 Topological protection of the zero-energy states

The existence of the zero-energy Landau level is the consequence of one of the
most important theorems of modern mathematical physics, the Atiyah�Singer
index theorem (Atiyah & Singer, 1968, 1984). This theorem has important appli-
cations in quantum field and superstring theories (Kaku, 1988; Nakahara, 1990). In
its simplest version, being applied to the operator

Ĥ ¼ v~̂σ �iℏ~∇ � e

c
~A x; yð Þ

 �
(2.53)

acting on a torus (that is, with periodic boundary conditions both in the y- and in
the x-direction), the theorem states that the index of this operator is proportional to
the total flux, namely

index Ĥ
� � ¼ Nþ � N� ¼ Φ

Φ0
, (2.54)

for an inhomogeneous magnetic field as well as for a homogeneous one. Here N+

is the number of solutions with zero energy and positive chirality

Ĥψ1 ¼ 0, ψ2 ¼ 0, (2.55)

and N� is the number of solutions with zero energy and negative chirality

ψ1 ¼ 0, Ĥψ2 ¼ 0: (2.56)

For the case of a homogeneous magnetic field, N+ = g is given by Eq. (2.51) and
N� = 0. Strictly speaking, we did not consider the case of a torus; instead, we
considered periodic boundary conditions in the y-direction only; the case of a torus
is analyzed by Tenjinbayashi, Igarashi, and Fujiwara (2007), and the result for the
number of zero modes is the same. A simplified (in comparison with the general
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case) formal discussion of the Atiyah�Singer theorem for the Hamiltonian (2.53)
can be found in Katsnelson and Prokhorova (2008).

The index theorem tells us that the zero-energy Landau level is topologically
protected; that is, it is robust with respect to possible inhomogeneities of the magnetic
field (Novoselov et al., 2005a; Katsnelson, 2007a). This statement is important for
real graphene since the effective magnetic field there should be inhomogeneous due
to the effect of so-called ripples, as will be discussed in Chapter 10.

The simplest way (at least for physicists) to understand the robustness of zero-
energy modes is to explicitly construct the solutions for zero-energy states in an
inhomogeneous magnetic field. This was done by Aharonov and Casher (1979) for
the case of an infinite sample with the magnetic fluxΦ localized in a restricted region.

Let us assume, first, that the vector potential satisfies the condition

~∇~A ¼ 0; (2.57)

otherwise, one can always use the gauge transformation

~A ! ~Aþ~∇χ, ψ ! ψ exp
ie

ℏc
χ

	 

, (2.58)

choosing χ to provide Eq. (2.57). Thus, one can introduce a scalar “potential” φ(x, y)
such that

Ax ¼ � ∂φ
∂y

, Ay ¼ ∂φ
∂x

(2.59)

and, due to Eq. (2.5),
B = ∇2φ. (2.60)

Then, Eq. (2.55) and (2.56) can be written in the form

∂
∂x

þ iσ
∂
∂y

þ ie

ℏc
∂φ
∂x

þ σe
ℏc

∂φ
∂y

	 

ψ1,2 ¼ 0, (2.61)

where σ= l and�1 for ψ1 and ψ2, respectively. The potential φ can be excluded by
the substitution

ψ1,2 ¼ exp � σe
ℏc

φ
 �

f 1,2, (2.62)

which transforms Eq. (2.61) into the equation

∂
∂x

þ iσ
∂
∂y

	 

f 1,2 ¼ 0: (2.63)
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This means that f1 and f2 are analytic and complex-conjugated analytic entire
functions of z = x + iy, respectively.

Eq. (2.60) has a solution

φ ~rð Þ ¼
ð
d~r0G ~r;~r0ð ÞB ~r0ð Þ, (2.64)

where

G ~r;~r0ð Þ ¼ 1
2π

ln
j~r �~r0 j

r0

	 

(2.65)

is the Green function of the Laplace operator in two dimensions (Jackson, 1962),
where r0 is an arbitrary constant. At r ! ∞

φ rð Þ � Φ
2π

ln
r

r0

	 

(2.66)

and

ψ1,2 �rð Þ ¼ r0
r

 � σeΦ
2πℏc

f 1,2 ~rð Þ, (2.67)

where

Φ ¼
ð
d~r~B ~rð Þ (2.68)

is the total magnetic flux. Since the entire function f(z) cannot go to zero in all
directions at infinity, ψi can be normalizable only assuming that σeΦ > 0; that is,
zero-energy solutions can only exist for one (pseudo)spin direction, depending on
the sign of the total flux.

Let us now count how many independent solutions of Eq. (2.63) we have. As a
basis, we can choose just polynomials searching the solutions of the form

f1(z) = zj (2.69)

(to be specific, we consider the case eΦ > 0), where j = 0, 1, 2, . . . One can see
from Eq. (2.67) that the solution is integrable with the square, only assuming that
j < N, where N is the integer part of

eΦ
2πℏc

¼ Φ
Φ0

:

Thus, the number of the states with zero energy for one (pseudo)spin projection is
equal to N, and there are no such solutions for another spin projection. This agrees
with Eq. (2.54).
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2.4 Semiclassical quantization conditions and Berry’s phase

The exact spectrum (2.30) of Dirac electrons in a uniform magnetic field B seems
to be in a contradiction with the Lifshitz–Onsager semiclassical quantization
condition (Lifshitz, Azbel, & Kaganov, 1973; Abrikosov, 1988; Vonsovsky &
Katsnelson, 1989)

S Enð Þ ¼ 2π j e j B
ℏc

nþ 1
2

	 

, (2.70)

where S(En) is the area of k-space inside the line determined by the equation

E(kx, ky) = En. (2.71)

For massless Dirac electrons this is just a circle of radius k(E) = E/(ℏv) and

S Eð Þ ¼ π
E2

ℏvð Þ2 , (2.72)

so the term with 1
2 in Eq. (2.70) should not exist. Strictly speaking, the semiclassical

condition (2.70) is only valid for highly excited states, n » 1; however, for these
states it should give us not only the leading, but also the subleading, term correctly,
which is not the case now.

The replacement n ! nþ 1
2 follows from the existence of two turning points for

a classical periodic orbit; in a more general case, it is related to the so-called
Keller�Maslov index. The simplest way to derive it is probably by using the
saddle-point approximation in the path-integral formulation of quantum mechanics
(Schulman, 1981). It turns out that the case of electrons in single-layer (as well as
in bilayer, see later) graphene is special, and, for Dirac fermions, the correct
semiclassical condition is

S Enð Þ ¼ 2π j e j B
ℏc

n, (2.73)

which gives us, together with Eq. (2.72), the exact spectrum (2.30), including the
existence of a zero mode at n = 0. Of course, in general, we are not always so
lucky, and for the case of bilayer graphene (Section 2.5) the situation is different.

The mystery of the missing term 1
2 is a good way to introduce one of the deepest

concepts of modern quantum mechanics, namely Berry’s (or the geometrical)
phase (Berry, 1984; Schapere & Wilczek, 1989).

Let us start with the following simple observation. If we rotate the~k vector by
the angle 2π, the wave functions (1.30) change sign:

ψe,h ϕ~k ¼ 2π
� � ¼ �ψe,h ϕ~k ¼ 0

� �
: (2.74)
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This is not surprising when rotating spin 1
2 in spin space, but we are talking about

rotations in real physical space, and our “spin” is just a label for sublattices! This
property (2.74) has a deep geometrical and topological meaning.

Berry (1984) considered a general adiabatic evolution of a quantum system.
To be specific, we will apply these ideas to the evolution of electron states in ~k
space (Zak, 1989; Chang & Niu, 2008; Xiao, Chang, & Niu, 2010).

The Bloch states

ψn~k ~rð Þ ¼ un~k ~rð Þ exp i~k~r
 �

, (2.75)

where un~k ~rð Þ is the Bloch amplitude periodic in the real space, evolve under the

action of external electric and magnetic fields. If they are time-independent, or their
time dependence is slow in comparison with typical electron times of the order
of ℏ/W (W is the bandwidth), this evolution is mainly within the same band n, with
an exponentially small probability of interband transitions (electric or magnetic
breakdown; Vonsovsky & Katsnelson, 1989).

By substituting Eq. (2.75) into the Schrödinger equation one can derive the
equation for the Bloch amplitude with a slowly varying wave vector~k(t)

iℏ
∂ u tð Þj i
∂t

¼ Ĥ eff
~k tð Þ
 �

u tð Þj i (2.76)

(an explicit form of the Hamiltonian Heff is not essential here). The time-dependent

band states n~k
��� E

satisfy a stationary Schrödinger equation

Ĥ eff
~k
 �

n;~k
��� E

¼ En
~k
 �

n;~k
��� E

, (2.77)

where n~k
��� E

¼ un~k ~rð Þ: Neglecting interband transitions, one can try the solution

of Eq. (2.76) with an initial condition

u 0ð Þj i ¼ n;~k 0ð Þ
��� E

(2.78)

u tð Þj i ¼ u 0ð Þj i exp � i

h

ðt
0

dt0En
~k t0ð Þ
 �8<:

9=; exp iγn tð Þf g n;~k tð Þ
��� E

: (2.79)

On substituting Eq. (2.79) into Eq. (2.76), one finds

∂γn tð Þ
∂t

¼ i n;~k tð Þ
D ���~∇~k n;~k tð Þ

��� E d~k tð Þ
dt

: (2.80)
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If we consider a periodic motion~k τð Þ ¼~k 0ð Þ, then, on integrating Eq. (2.80) over
the period of motion τ, one finds for the Berry phase

γn ¼ i

þ
C

d~k n;~k
D ���~∇~k n;~k��� E

¼ �Im
þ
C

d~k n;~k
D ���~∇~k n;~k��� E

, (2.81)

where C is a line drawn by the end of the vector~k tð Þ (the real part of the integral
vanishes identically: 2Re

Þ
C d

~k n;~k
D ���~∇~k n;~k��� E

¼ Ð d~r ÞC d~k~∇~k un~k�� ��2 ¼ 0). For non-

degenerate bands, it is obvious that γn = 0. However, this is not the case for a
degenerate spectrum and, in particular, for the case in which conical points exist,
like in graphene.

Using Stokes’ theorem, Eq. (2.81) can be written in terms of the surface integral
over the area, restricted by the contour C:

γn Cð Þ ¼ �Im
ð
d~S�~∇~k � n;~k

D ���~∇~k n;~k��� E
¼ �Im

ð
d~S ~∇~kn
D ���� ~∇~kn

��� E
(2.82)

with obvious notations, e.g., ~∇~kn
��� E

¼ ~∇~k n;~k
��� E

:

To explicitly demonstrate the role of crossing points of the energy spectrum
(such as the conical points in graphene), we introduce, following Berry (1984), the
summation over a complete set of eigenstates jmi:

~∇~kn
D ���� ~∇~kn

��� E
¼
X
m

~∇~kn
���mD E

� m
���~∇~knD E

: (2.83)

The term with m = n in Eq. (2.83) is obviously zero and can be omitted since, due

to the normalization condition njnh i ¼ 1, ~∇~kn
���nD E

¼ � n
���~∇~knD E

.

On differentiating Eq. (2.77) with respect to~k one has

~∇~kĤ eff nj i þ Ĥ eff � En

� �
~∇~kn
��� E

¼ ~∇kEn nj i: (2.84)

On multiplying Eq. (2.84) by hmj from the left and taking into account that
mh jĤ eff ¼ mh jEm and hmj ni = 0 at m 6¼ n, one finds

m
���~∇~knD E

¼
mh j~∇

~k
Ĥ eff nj i

En � Em
: (2.85)

Finally, by substituting Eq. (2.85) into Eq. (2.83) we derive the following expres-
sion for the Berry phase:
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γn Cð Þ ¼ �
ð
d~S~Vn

~k
 �

,

where

~Vn ¼ Im
X
m6¼n

nh j~∇~kĤ eff mj i � mh j~∇~kĤ eff nj i
Em � Enð Þ2 : (2.86)

This vector is called Berry curvature.
Suppose we have two neighboring bands described by the effective Hamiltonian

Ĥ eff ¼ 1
2
~R ~k
 �

~σ (2.87)

with the eigenenergies

E� ~k
 �

¼ � 1
2
R ~k
 ���� ��� (2.88)

and the corresponding eigenstates ψ�j i ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2R R∓Rzð Þ

p �R�
R∓Rz

	 

, where

R ¼ ~R
�� ��,R� ¼ Rx � iRy. Assuming ~k ¼ kx; ky

� �
, after long but straightforward

calculations one finds:

~V ~R
� � ¼ � ∂ Rx;Ry

� �
∂ kx; ky
� � ~R

2R3 , (2.89)

where
∂ Rx;Ryð Þ
∂ kx;kyð Þ is the corresponding Jacobian. At last, we make the replacement of

variables in the integral (2.86):~k ! ~R. Then,
∂ Rx;Ryð Þ
∂ kx;kyð Þ d~S ¼ d~S~R and the expression

for the Berry phase is dramatically simplified:

γ� Cð Þ ¼ ∓
ð
d~S~R

~R

2R3 , (2.90)

which is nothing other than the electric flux through the contour C created by the
charge 1

2 at the point
~R ¼ 0. The answer is obvious:

γ� Cð Þ ¼ ∓
1
2
Ω Cð Þ, (2.91)

where Ω(C) is the solid angle of the contour (Fig. 2.1).

For the case of massless Dirac fermions~R ~k
 �

�~k is the two-dimensional vector

(kx, ky), and the solid angle is 2π, so the Berry phase is γ� = ∓ π, in agreement with

Eq. (2.74).
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As was demonstrated by Kuratsuji and Iida (1985), the Berry phase enters the
semiclassical quantization condition. Their approach was based on the path-
integral formalism (Schulman, 1981). Here we will present in the simplest way
just a general idea of the derivation. Instead of~k tð Þ we will consider a general set of
slowly varying with time (adiabatic) variables~x tð Þ.

Let us consider a periodic process with xi(τ) = xi(0). We are interested in
calculating the evolution operator

K̂ τð Þ ¼ T̂ exp � i

ℏ

ðτ
0

dtĤ xi tð Þ½ 	
8<:

9=;, (2.92)

where Ĥ is the Hamiltonian dependent on ~x tð Þ and T̂ is the time-
ordering operator. To calculate the expression (2.92) via a path integral, one has
to discretize the time interval, tn = nε, where n = 0, 1, . . ., N � 1 and ε = τ/N
(N ! ∞):

K̂ τð Þ ¼ Tr exp � iε
h
Ĥ t0ð Þ

� �
exp � iε

h
Ĥ t1ð Þ

� �
. . . exp � iε

h
Ĥ tN�1ð Þ

� �� �
: (2.93)

In the adiabatic approximation, the evolution involves only the transitions between
the same states of the Hamiltonian:

K̂ τð Þ ¼
X
n

n t0ð Þh j exp � iε
ℏ
Ĥ t0ð Þ

� �
n t1ð Þj i n t1ð Þh j exp � iε

ℏ
Ĥ t1ð Þ

� �
n t2ð Þj i

. . . n tN�1ð Þh j exp � iε
ℏ
Ĥ tN�1ð Þ

� �
n tð Þj i:

(2.94)

Fig. 2.1 The derivation of Berry’s phase (Eq. (2.90)).
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At ε ! 0, the overlap integral

n tð Þjn t þ εð Þh i � n tð Þjn tð Þh i þ ε
d~x

dt
n tð Þj~∇~xn tð Þ
D E

¼ 1þ ε
d~x

dt
n tð Þj~∇~x n tð Þ
D E

� exp
εd~x
dt

n tð Þj~∇~x n tð Þ
D E� � (2.95)

and each term in hnj. . .jni in Eq. (2.94), apart from the standard dynamical
contribution, has an additional phase factor

YN�1

n¼0

n tnð Þjn tnþ1ð Þh i ¼ exp
ðτ
0

dt
d~x

dt
nj~∇~xn
D E24 35 ¼ exp iγn Cð Þ½ 	 (2.96)

(cf. Eq. (2.81)), which leads to the change of the effective action of the system
S ! S + ℏγ. On repeating a standard derivation of the semiclassical quantization
condition, one can see that nþ 1

2 is replaced by nþ 1
2 � γ= 2πð Þ. In particular, for

Bloch electrons in a magnetic field, instead of Eq. (2.70), one has

S Enð Þ ¼ 2π jej B
ℏc

nþ 1
2
� γ
2π

	 

(2.97)

(Mikitik & Sharlai, 1999). For γ = π one has the quantization condition (2.73).
Again, we see that anomalous quantization of Landau levels for the case of

graphene is related to the nontrivial topological properties of a system with a
conical point in its energy spectrum.

This derivation is, however, too schematic; whereas it gives the correct result for
the case of massless Dirac fermions, under the condition (2.91), for the massive case,
one needs to be more careful. The detailed analysis (Fuchs et al., 2010) shows that in
this case, what enters the semiclassical condition is not the full Berry phase (2.90) but
only its “topological part” related to the “winding number” (number of rotations of the
pseudospin vector under the cycle), and one should still put γ = π into Eq. (2.97).

2.5 Landau levels in bilayer graphene

Consider now the case of bilayer graphene (McCann & Fal’ko, 2006; Novoselov
et al., 2006; McCann, Abergel, & Fal’ko, 2007; Fal’ko, 2008).

Let us start with the simplest Hamiltonian (1.46), which means intermediate
energies

t⊥j j γ3
2

t2
« Ej j« t⊥j j: (2.98)
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At lower energies (cf. Eq. (1.55)) trigonal warping terms in the Hamiltonian (1.53)
become important, and at higher energies all four bands (1.44) become relevant.
For realistic parameters, this means energies of the order of tens of meV. Later we
will consider a more general case.

On combining Eq. (1.46) with Eq. (2.20) and (2.22) we find the Hamiltonian for
the case of a uniform magnetic field:

Ĥ ¼ ℏω∗
c

0 b̂
2

b̂
þ �2

0

 !
, (2.99)

where

ω∗
c ¼ ej jB

m∗c
(2.100)

is the cyclotron frequency for nonrelativistic electrons with effective mass m*.
Then, instead of Eq. (2.25) for single-layer graphene, one has the Schrödinger
equation

b̂
2
ψ2 ¼ εψ1,

b̂
þ �2

ψ1 ¼ εψ2, (2.101)

where the dimensionless energy ε is introduced now by writing

E ¼ ℏω∗
c ε: (2.102)

Again, for the case of valley K0 one has to exchange ψ1 and ψ2.
First, one can see immediately from Eq. (2.102) that there are zero modes with

ε = 0 and ψ2 = 0, and their number is twice as great as for the case of a single
layer. Indeed, both the states of the harmonic oscillator with n = 0 and those with
n = 1 satisfy the equation b̂

2
ψj i ¼ 0:

b̂ 0j i ¼ 0, b̂
2
1j i ¼ b̂ b̂ 1j i� � ¼ b̂ 0j i ¼ 0: (2.103)

On multiplying the first of the Eq. (2.101) by (b+)2 from the left, one finds

b̂
þ �2

b̂
2
ψ1 ¼ ε2ψ1: (2.104)

Since

b̂
þ �2

b̂
2 ¼ b̂

þ
b̂

 �
b̂
þ
b̂ � 1

 �
(2.105)
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we have immediately the spectrum

En ¼ �ℏω∗
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n n� 1ð Þ

p
(2.106)

with n = 0, 1, 2, . . .
The counting of the degeneracy of Landau levels (2.106) can be done in exactly

the same way as in Section 2.2, and one finds, instead of Eq. (2.51),

gn ¼
Φ
Φ0

, n 
 2, (2.107)

and

g0 ¼
2Φ
Φ0

(2.108)

(the latter follows from the fact that the zero and first levels are degenerate, Eq.
(2.103)).

One can prove that Eq. (2.108) follows from the Atiyah–Singer index theorem
and remains correct if the magnetic field is inhomogeneous (Katsnelson & Pro-
khorova, 2008). This fact is quite simple and follows from the property that the
index of a product of operators equals the sum of their indices. An explicit
construction of zero modes for the Hamiltonian (2.99) that is similar to the
Aharonov�Casher construction for the case of the Dirac equation (see Section
2.3) was done by Kailasvuori (2009).

For n » 1, the spectrum (2.106) is described by the expression

Enj j � ℏω∗
c n� 1

2

	 

, (2.109)

in agreement with the semiclassical quantization condition

S Enð Þ ¼ 2π ej jB
ℏc

n� 1
2

	 

: (2.110)

It follows from the general quantization law (2.97) assuming that the
Berry phase

γ = 2π. (2.111)

This is indeed the case (McCann & Fal’ko, 2006; Novoselov et al., 2006), although
the description in terms of the winding number seems to be more accurate (Mañes,
Guinea, & Vozmediano, 2007; Katsnelson & Prokhorova, 2008; Park & Marzari,
2011). The Hamiltonian (1.46) has the form (2.87) with

Rx;Ry

� � � k2x � k2y ; 2kxky
 �
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or

(Rx + iRy) � (kx + iky)
2. (2.112)

It is clear, therefore, that when the vector~k runs over the closed loop the vector ~R
runs over the same loop twice, and the Berry phase should be twice as large as for
the case of a single layer. Actually, the Berry phase and the index are proportional;
they are both related to the winding number of the vector ~R in the Hamiltonian
(Katsnelson & Prokhorova, 2008). For the case of a rhombohedral N-layer system
(1.69), the number of zero modes is equal to NΦ/Φ0 and the Berry phase is γ= Nπ.

2.6 The case of bilayer graphene: trigonal warping effects

Consider now the case of small energies

Ej j � γ23
t⊥j j
t2

: (2.113)

Thus, the effects of trigonal warping should be taken into account, and one has to
proceed with the Hamiltonian (1.53). Instead of the Hamiltonian (2.99) we have for
the case of a uniform magnetic field

Ĥ ¼ ℏω∗
c

0 b̂
2 þ αb̂

þ

b̂
þ �2

þ αb̂ 0

0@ 1A, (2.114)

where

α ¼ 3γ3am
∗

ℏ2

ffiffiffiffiffiffiffiffi
2ℏc
ej jB

s
(2.115)

is a dimensionless parameter characterizing the role of trigonal warping. The
Schrödinger equation (2.101) is modified to the form

b̂
2 þ αb̂

þ �
ψ2 ¼ εψ1,

b̂
þ �2

þ αb̂

	 

ψ1 ¼ εψ2:

(2.116)

First, let us consider zero modes with ε= 0 and ψ1 = 0. Taking into account that in
dimensionless coordinates, (2.40) and (2.41),

b̂ ¼ �i
∂
∂X

þ X

2

	 

,

b̂
þ ¼ �i

∂
∂X

� X

2

	 

, (2.117)

2.6 The case of bilayer graphene: trigonal warping effects 43

https://www.cambridge.org/core


the first of the Eq. (2.116) for ε = 0 reads

d2ψ2

dX2 þ X þ iαð Þ dψ2

dX
þ 1

2
þ X2

4
� iXα

2

	 

ψ2 ¼ 0: (2.118)

The substitution

ψ2 Xð Þ ¼ exp �X2

4
� iα

2
X

	 

φ Xð Þ (2.119)

eliminates the first derivative ∂/∂X in Eq. (2.118), so

∂2

∂X2 φþ α2

4
� iXα

	 

φ ¼ 0: (2.120)

At α = 0 there are two independent solutions of Eq. (2.120), φ0 = 1 and φ1 = X.
For finite α there are still two solutions, and they can be expressed in terms of
Bessel functions of order � 1

3 (Whittaker & Watson, 1927). Anyway, both of the
solutions (2.119) vanish at X ! �∞ due to the factor exp(�X2/4) and, therefore,
the number of zero modes remains the same at α 6¼ 0. Obviously, the second of the
Eq. (2.116) has no normalizable solutions at ε= 0. These results are not surprising;
they are related to a general statement that index(H) is determined solely by the
terms with the highest order of derivatives (Katsnelson & Prokhorova, 2008).

To consider the effects of the trigonal warping on other Landau levels, one has

to square the Hamiltonian (2.114) or just act by the operator b̂
þ �2 þ αb̂

	 

from

the left on the first equation of Eq. (2.116). The result is

L̂ψ2 ¼ ε2ψ2, (2.121)

where

L̂ ¼ b̂
þ
b̂

 �2
� 1� α2
� �

b̂
þ
b̂ þ α b̂

3 þ b̂
þ �3	 


:

Using a standard perturbation theory in α one can find a strange result: only the
level with n = 2 has corrections of the order of α2

ε2
2 ¼ 2� α2

3
, (2.122)

whereas the leading corrections to the levels with n > 2 are proportional to α4 and
positive.

To qualitatively understand the opposite case of a very large α (or very
weak magnetic fields), it is convenient to use the semiclassical approximation
(Dresselhaus, 1974). In this regime, one can consider energy levels belonging
independently to each of four cones of the spectrum (see Fig. 1.9). The energy
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level with n = 2 tends to zero at α ! ∞, since one more zero mode should appear
for three independent (in this limit) side cones: the zero mode corresponding to
the central cone is associated (for a given direction of the magnetic field) with
another valley.

For intermediate α, Eq. (2.116) can be solved numerically (McCann & Fal’ko,
2006; Mayorov et al., 2011a). The results are shown in Fig. 2.2.

Finally, we analyze the effects of trigonal warping on the Berry phase. One can
demonstrate by a straightforward calculation (Mikitik & Sharlai, 2008) that each of
the three side conical points contributes π to the Berry phase and the central one
contributes �π, so the total Berry phase is 3π � π = 2π, in agreement with Eq.
(2.111). One can also straightforwardly see that the winding number of the
transformation

(Rx + iRy) � (kx + iky)
2 + α(kx � iky) (2.123)

is the same (two) as for Eq. (2.112).
The distribution of the Berry “vector potential” ~Ωð~kÞ ¼ �i nh j~∇~k nj i, demonstrat-

ing singularities at four conical points is shown in Fig. 2.3.

Fig. 2.2 The energy spectrum for bilayer graphene in a magnetic field, with the
trigonal warping effects taken into account. Here ℏω∗

c is the cyclotron quantum
and EVHS is the energy of the Van Hove singularity at the merging of four
conical legs.
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2.7 A unified description of single-layer and bilayer graphene

Consider now the case of magnetic fields large enough that

jEj 
 jt⊥j. (2.124)

At these energies, a parabolic dispersion transforms to a conical one. Neglecting the
trigonal warping and using Eq. (2.20) and (1.43), one has the 4 � 4 Hamiltonian

Ĥ ¼
0 vπ̂þ t⊥ 0

vπ̂� 0 0 0
t⊥ 0 0 vπ̂�
0 0 vπ̂þ 0

0BB@
1CCA: (2.125)

Using the operator (2.22) and dimensionless units (2.26) and introducing the notation

t⊥ ¼ Γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ej jhBv2

c

s
, (2.126)

one can represent the Schrödinger equation with the Hamiltonian (2.125) as

b̂ ψ2 þ Γψ3 ¼ εψ1,

b̂
þ
ψ1 ¼ εψ2,

Γψ1 þ b̂
þ
ψ4 ¼ εψ3,

b̂ψ3 ¼ εψ4:

ð2:127Þ

Fig. 2.3 The distribution of the Berry vector potential in bilayer graphene, with
the trigonal warping effects taken into account.
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On excluding ψ4 and ψ2 from Eq. (2.127), one obtains

1
ε
b̂ b̂

þ
ψ1 þ Γψ3 ¼ εψ1,

Γψ1 þ
1
ε
b̂
þ
b̂ψ3 ¼ εψ3: (2.128)

One can see that ψi are eigenfunctions of the operator n̂ ¼ b̂
þ
b̂ whose eigenvalues

are n = 0, 1, 2, . . . On replacing b̂
þ
b̂ by n and b̂b̂

þ
by n + 1 in Eq. (2.128) we find

the eigenenergies εn as

ε2n ¼
Γ2 þ 2nþ 1

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ2 þ 2nþ 1

2

	 
2

� n nþ 1ð Þ
s

: (2.129)

This formula (Pereira, Peeters, & Vasilopoulos, 2007) gives a unified description of
Landau levels for the cases of both single-layer and bilayer graphene (without trigonal
warping effects). On putting Γ= 0 we come to the case of two independent layers, with

ε2n ¼ nþ 1
2
� 1
2
, (2.130)

which exactly coincides with Eq. (2.34). For large Γ (the case of relatively low
energies, Eq. (2.98)) we have

ε2n1 ¼
n nþ 1ð Þ

Γ2 (2.131)

and

ε2n2 ¼ Γ2 þ 2nþ 1: (2.132)

Eq. (2.131) gives the Landau levels for low-lying bands in the parabolic approxi-
mation (1.46). The energies

εn2 � � Γþ 1
Γ

nþ 1
2

	 
� �
(2.133)

following from Eq. (2.132) are nothing other than the Landau levels for two-
gapped bands in the parabolic approximation.

The condition Γ � 1 for which nonparabolic band effects in the Landau-level
spectrum of bilayer graphene become very important, corresponds to magnetic
fields of the order of

Bc � 2
9

t⊥
t

 �2 ℏc
ej ja2 � 70T,

which is too high to be attained in present-day experiments. However, even in
fields of 20�30 T the effects of nonparabolicity should be quite noticeable.
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2.8 Magnetic oscillations in single-layer graphene

Magneto-oscillation effects in quantized magnetic fields make possible one of
the most efficient ways to probe the electron-energy spectra of metals and
semiconductors (Schoenberg, 1984). The basic idea of the oscillations is quite
simple: since most of the properties are dependent on what happens in the close
vicinity of the Fermi level, whenever, on changing the magnetic induction or
chemical potential μ, one of the Landau levels coincides with the Fermi energy,
the properties should have some anomalies that repeat periodically as a function
of the inverse magnetic field (the latter follows from the semiclassical quantiza-
tion condition (2.97) Δn � (1/B)ΔE). These anomalies are smeared by tempera-
ture and disorder; so, to observe the oscillations, one needs, generally speaking,
low temperatures and clean enough samples. It was the observation of magneto-
oscillation effects (Novoselov et al., 2005a; Zhang et al., 2005) that demon-
strated the massless Dirac behavior of charge carriers in graphene. Experi-
mentally, oscillations of the conductivity (the Shubnikov�de Haas effect)
were studied first; it is more difficult (but quite possible, see later in this
section) to observe the oscillations of thermodynamic properties, e.g., magnet-
ization (the de Haas–van Alphen effect) in a single layer of atoms. However,
physics of these two effects is just the same, but theoretical treatment of
thermodynamic properties can be done in a more clear and rigorous way. Here
we will consider, following Sharapov, Gusynin, and Beck (2004), de Haas–van
Alphen magnetic oscillations for two-dimensional Dirac fermions, i.e., for
single-layer graphene.

The standard expression for the thermodynamic potential of the grand canonical
ensemble for noninteracting fermions with energies Eλ is (Landau & Lifshitz,
1980)

Ω ¼ �T
X
λ

1þ exp
μ� Eλ

T

	 
� �
¼ �T

ð∞
�∞

dεN εð Þ ln 1þ exp
μ� ε

T

 �h i
,

(2.134)

where

N εð Þ ¼
X
λ

δ ε� Eλð Þ (2.135)

is the density of states. However, one should be careful at this point, since
statistical mechanics assumes that the energy spectrum is bounded from below,
which is not the case for the Dirac equation. One can either use a complete tight-
binding Hamiltonian, where the spectrum is bound, and carefully analyze the limit
of the continuum model, or just write the answer from considerations of relativistic
invariance (Cangemi & Dunne, 1996). The correct relativistic answer is
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Ω ¼ �T

ð∞
�∞

dεN εð Þ ln 2 cosh
ε� μ
2T

 �h i
, (2.136)

which differs from Eq. (2.134) by the term

ΔΩ ¼ 1
2

ð∞
�∞

dεN εð Þ ε� μð Þ: (2.137)

This term is, in general, infinite and temperature-independent. If the spectrum is
symmetric, namely N(�ε) = N(ε) (which is necessary for relativistic invariant
theories), and the chemical potential is chosen in such a way that μ= 0 for the half-
filled case (all hole states are occupied and all electron states are empty), then the
correction (2.137) vanishes in that situation.

The expression (2.136) is still not well defined, but its derivatives with respect to
μ, temperature, and magnetic field are convergent. For example, the compressibil-
ity is proportional to the “thermodynamic density of states”

D μð Þ ¼ ∂n
∂μ

¼ � ∂2Ω
∂μ2

¼
ð∞
�∞

dεN εð Þ � ∂f εð Þ
∂ε

	 

, (2.138)

where f(ε) is the Fermi function

� ∂f εð Þ
∂ε

¼ 1

4T cosh 2
ε� μ
2T

 � , (2.139)

and this expression is certainly well defined, with the difference between Eq.
(2.134) and (2.136) becoming irrelevant. The quantity (2.138) is directly measur-
able as the quantum capacitance (John, Castro, & Pulfrey, 2004); for the case of
graphene, see Ponomarenko et al. (2010), Yu et al. (2013).

At zero temperature, the expression (2.138) is just a sum of delta-functional
contributions:

DT¼0 μð Þ ¼ 4
Φ
Φ0

δ Eð Þ þ
X∞
v¼1

δ E � ℏωc
ffiffiffi
v

p� �þ δ E þ ℏωc
ffiffiffi
v

p� �" #
(2.140)

(see Eq. (2.30), (2.31), and (2.51); we have taken into account a factor of 4 due to
the valley and spin degeneracy). Using the identities

δ(E � x) + δ(E + x) = 2jEjδ(E2 � x2), (2.141)

δ Eð Þ ¼ dΘ Eð Þ
dE

(2.142)
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(Θ(x > 0) = 1, Θ(x < 0) = 0 is the step function) and

X∞
n¼1

Θ a� xnð Þ ¼ Θ að Þ � 1
2
þ a

x
þ
X∞
k¼1

sin 2πk
a

x

 �
πk

24 35, (2.143)

one can find the closed expression

DT¼0 μð Þ ¼ 4
Φ
Φ0

sgn μð Þ d

dμ
μ2

ε2c
þ 1
π
tan �1 cot

2πμ2

ε2c

	 
� �� �
, (2.144)

where εc = ℏωc (Sharapov, Gusynin, & Beck, 2004). Eq. (2.143) is the partial case
of the Poisson summation formulaX∞

n¼�∞

δ x� nð Þ ¼
X∞
n¼�∞

exp 2πikxð Þ (2.145)

and, thus, X∞
n¼1

f nð Þ ¼
X∞
k¼�∞

ð∞
α

dx f xð Þ exp 2πikxð Þ (2.146)

(0 < a < 1) for any f(x), and the identityX∞
n¼1

sin πnxð Þ
n

¼ tan �1 sin πxð Þ
1� cos πxð Þ
	 


(2.147)

is used when deriving (2.144).
To consider the case of finite temperatures, it is convenient to use the expansion

of �∂f(E)/∂E into the Fourier integral:

� ∂f Eð Þ
∂E

¼
ð∞
�∞

dt

2π
exp i μ� Eð Þt½ 	R tð Þ, (2.148)

where

R tð Þ ¼ πTt
sinh πTtð Þ½ 	 : (2.149)

On substituting Eq. (2.148), together with Eq. (2.141) and (2.142), into the
definition (2.138) one finds

D μð Þ ¼ 4
Φ
πΦ0

ð ð
dEdt R tð Þ exp i μ� Eð Þt½ 	 Ej j 1

ε2c
þ 2
ε2c

X∞
k¼1

cos 2πk
E2

ε2c

	 
" #
:

(2.150)
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The sum over k describes oscillations of the thermodynamic density of states. To
proceed further, one can use the saddle-point method (or “the method of steepest
descent”) for integrals of strongly oscillating functions (Fedoryuk, 1977). The
procedure is as follows. If we have a multidimensional integral

I(λ) =
Ð
dnx f(x) exp (iλΦ(x)) (2.151)

with a large parameter λ, then the main contribution follows from the stationary
point x0 of the phase Φ(x), where

∂Φ
∂xk

¼ 0, (2.152)

since the oscillations are weakest in the vicinity of these points. On expanding Φ(x)
near x0,

Φ xð Þ � Φ x0ð Þ þ 1
2

X
kl

∂2Φ
∂xk∂xl

	 

0

xk � xk0ð Þ xl � xl0ð Þ, (2.153)

one finds

I λð Þ � f x0ð Þ 2πð Þn=2Q
k �iμkð Þ1=2

exp iλΦ x0ð Þ½ 	, (2.154)

where μk are eigenvalues of the matrix

∂2Φ
∂xk∂xl

	 

:

If there is more than one stationary point, their contributions are just summed.
The oscillating part of the expression (2.150) can be estimated by this method,

choosing

Φ E; tð Þ ¼ μ� Eð Þt � 2πkE2

ε2c
, (2.155)

which gives us immediately

E0 ¼ μ,

t0 ¼ ∓
4πkμ
ε2c

:
(2.156)

Finally, one obtains

Dosc μð Þ � 8A μj j
πℏ2v2

X∞
k¼1

zk

sinh zkð Þ cos
πkcμ2

ℏ ej jBv2
	 


, (2.157)
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where

z ¼ 2π2Tc μj j
ℏ ej jBv2 (2.158)

and A is the sample area. A formal condition of applicability of the saddle-point
method is that the resulting oscillations are fast enough; that is, the argument of the
cosine in Eq. (2.157) is much larger than 1.

Disorder will broaden Landau levels and smear the delta-functional peaks in the
density of states, suppressing the oscillations. This effect, too, can be taken into
account (Sharapov, Gusynin, & Beck, 2004; Ponomarenko et al., 2010).

A general semiclassical consideration for an arbitrary energy dispersion
law (the Lifshitz�Kosevich theory; see Lifshitz, Azbel, & Kaganov [1973]
and Abrikosov [1988]) leads to a similar temperature dependence of the oscilla-
tions, with

z ¼ 2π2Tcm∗

ℏ ej jB , (2.159)

where

m∗ ¼ 1
2π

∂S Eð Þ
∂E

����
E¼μ

(2.160)

is the effective cyclotron mass. For the massless Dirac fermions

m∗ ¼ mj j
v2

, (2.161)

which is nothing other than the famous Einstein relation E = mc2 with a
replacement of c by v. For two-dimensional systems S ¼ πk2F / n, where n is
the charge-carrier concentration, and, thus, for massless Dirac fermions one can
expect

m∗ � ffiffiffi
n

p
: (2.162)

The experimental observation of this dependence (Novoselov et al., 2005a; Zhang
et al., 2005) was the first demonstration of the reality of massless Dirac fermions in
graphene (see Fig. 2.4). This also gives us a value v � 106ms�1 � c/300. Note that
what was measured experimentally in these works was the conductivity, not D(μ),
but the temperature dependence should be the same. Oscillations of D(μ) were
measured later via quantum capacitance (Ponomarenko et al., 2010). They are well
pronounced even at room temperature (see Fig. 2.5); their broadening is deter-
mined by disorder effects.
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2.9 The anomalous quantum Hall effect in single-layer and
bilayer graphene

The anomalous character of the quantum Hall effect in single-layer (Novoselov
et al., 2005a; Zhang et al., 2005) and bilayer (Novoselov et al., 2006) graphene is
probably the most striking demonstration of the unusual nature of the charge
carriers therein. We do not need to present a real introduction to the theory of
the quantum Hall effect in general (see Prange & Girvin, 1987). However, it would

Fig. 2.4 The concentration dependence of the cyclotron mass for charge carriers in
single-layer graphene; m0 is the free-electron mass.
(Reproduced with permission from Novoselov et al., 2005a.)

Fig. 2.5 Magnetic oscillations of the quantum capacitance (thermodynamic dens-
ity of states) as a function of the gate voltage (which is proportional to the charge
carrier concentration), for the magnetic field B = 16 T and various temperatures.
(Reproduced with permission from Ponomarenko et al., 2010.)
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seem useful to provide some basic information, to emphasise the relation to the
Berry phase and the existence of topologically protected zero modes.

If we consider the motion of electrons in the crossed magnetic ~B
� �

and electric
~E
� �

fields, the Lorentz force acting on an electron moving with a velocity~v is

~F ¼ e ~E þ 1
c
~v�~B

	 

: (2.163)

In the crossed fields ~B jj Ozand~E jj Oy, this will result in a steady drift of the
electrons along the x-axis with a velocity of

vx ¼ c
E

B
: (2.164)

This effect results in the appearance of an off-diagonal (Hall) conductivity propor-
tional to the total electron concentration and inversely proportional to the magnetic
field:

σxy ¼ nec

B
: (2.165)

The standard theory of the quantum Hall effect assumes that all the states between
Landau levels are localized due to disorder (Anderson localization), see Fig. 2.6.
This means that, if the Fermi energy lies between the Landau levels, then only the
states belonging to the occupied Landau levels contribute to transport and the Hall
conductivity is merely proportional to the number of occupied levels N:

σxy ¼ Ngsgv
Φ
Φ0

1
A

ec

B
¼ gsgvN

e2

h
, (2.166)

where gs and gv are the spin and valley degeneracy factors (for graphene gs = gv = 2)
and we take into account Eq. (2.51) for the number of states per Landau level. Thus,
the Hall conductivity should have plateaux as a function of the electron concen-
tration: it remains constant and integer (in the units of e2/h per valley per spin)
when we pass from one occupied Landau level to the next one.

Fig. 2.6 A sketch of the density of states under quantum Hall effect conditions in
graphene. The zero-energy Landau level separates electron and hole states and is
equally shared by electrons and holes. Regions of localized and extended states
are shown in gray and white, respectively.
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However, in the case of graphene the zero-energy Landau level is equally shared
by electrons and holes. This means that when counting only electrons (μ > 0) or
only holes (μ < 0) it contains half as many states as do all other Landau levels.
Thus, instead of Eq. (2.166), one has (Schakel, 1991; Gusynin & Sharapov, 2005;
Novoselov et al., 2005a; Zhang et al., 2005; Castro Neto, Guinea, & Peres, 2006)

σxy ¼ gsgv N þ 1
2

	 

e2

h
: (2.167)

This is exactly the behavior observed experimentally (the half-integer quantum
Hall effect). For the case of bilayer graphene, the zero-energy level contains twice
as many states as for single-layer graphene, and the quantum Hall effect is integer,
but, in contrast with the case of a conventional electron gas, there is no plateau at
zero Fermi energy (Novoselov et al., 2006). These two cases are shown in Fig. 2.7.

Fig. 2.7 The resistivity and Hall conductivity as functions of the charge-carrier
concentration in single-layer (top) and bilayer (bottom) graphene.
(Reproduced with permission from Novoselov et al., 2005a [top] and Novoselov, 2006
[bottom].)
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Thus, the anomalous quantum Hall effect in graphene is related to the existence of
zero-energy modes and, thus, to the Atiyah–Singer theorem.

Further understanding of geometrical and topological aspects of the anomalies
can be attained within an approach developed by Thouless et al. (1982); see also
Kohmoto (1985, 1989), Hatsugai (1997). The main observation is that the Hall
conductivity can be represented in a form very similar to that for the Berry phase.
Actually, the work by Thouless et al. (1982) was done before that by Berry (1984);
the relation under discussion has been emphasized by Simon (1983).

Let us consider, again, a general two-dimensional electron system in a periodic
potential plus uniform magnetic field (Section 2.1). We will prove later (Section
13.6) that, if the flux per elementary cell is rational (in units of the flux quantum),
the eigenstates of this problem can be rigorously characterized by the wave vector
~k and considered as Bloch states in some supercell (for a formal discussion, see
Kohmoto, 1985). We will label them as λj i ¼ n~k

��� E
, where n is the band index.

We will use a linear response theory leading to a so-called Kubo formula (Kubo,
1957). The Hall effect was first considered in this way by Kubo, Hasegawa, and
Hashitsume (1959); for a detailed derivation and discussions, see Ishihara (1971)
and Zubarev (1974). For the single-electron case it can be essentially simplified.

Let A be a one-electron operator that can be represented in a secondary
quantized form as

Â ¼
X
12

A12ĉ
þ
1 ĉ2 (2.168)

(here the numerical indices will label electron states in some basis; bcþi and ĉi are
fermionic creation and annihilation operators). Thus, its average over an arbitrary
state is

Â
� � ¼X

12

A12 ĉþ1 ĉ2
� � ¼ Tr Âρ̂

� �
, (2.169)

where

ρ21 ¼ ĉþ1 ĉ2
� �

(2.170)

is the single-electron density matrix. For noninteracting electrons, the Hamiltonian
of the system has the same form:

Ĥ ¼
X
12

H12ĉ
þ
1 ĉ2, (2.171)

and, using the commutation relation

ĉþ1 ĉ2; ĉ
þ
3 ĉ4

� � ¼ δ23ĉ
þ
1 ĉ4 � δ14ĉ

þ
3 ĉ2, (2.172)
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one can prove that the density matrix ρ̂ satisfies the communication relations

iℏ
∂ρ̂
∂t

¼ Ĥ ; ρ̂
� �

, (2.173)

where the matrix multiplication is performed in the single-particle space, e.g.,

Ĥ ρ̂
� �

12 ¼
X
3

H13ρ32: (2.174)

Let Ĥ tð Þ ¼ Ĥ0 þ V̂ tð Þ, where Ĥ0 is diagonal (Ei are its eigenenergies) and V̂ tð Þ is
a small perturbation depending on time as exp (�iωt + δt)jδ!+0. Then, the
correction to the density matrix, ρ̂0 exp (�iωt + δt) is given by the expression
(see Vonsovsky & Katsnelson, 1989)

ρ012 ¼
f 1 � f 2

E2 � E1 þ ℏ ωþ iδð ÞV12, (2.175)

where fi = f(Ei) is the Fermi function and the perturbation of an observable A is
δA exp (�iωt + δt), where

δA ¼ Tr Âρ̂0
� � ¼X

12

f 1 � f 2
E2 � E1 þ ℏ ωþ iδð ÞV12A21: (2.176)

To calculate the Hall conductivity one has to consider a perturbation

V ¼ �e~r~E, (2.177)

where ~E is the electric field, the coordinate operator is

~r ¼ i~∇~k (2.178)

(see Vonsovsky & Katsnelson, 1989), and the current operator is

~̂j ¼ e
d~̂r

dt
¼ ie

ℏ
Ĥ ;~̂r
h i

: (2.179)

Using the identity (2.84) and restricting ourselves to the static case only (ω= η= 0),
one finds, for the case T = 0

σH ¼ � 2e2

Aℏ
Im
ð

d~k

2πð Þ2
X
Em<μ

X
En>μ

mh j∂H=∂kx nj i nh j∂H=∂ky mj i
En � Emð Þ2 , (2.180)

where the integral is taken over the Brillouin zone of the magnetic supercell;
we remind that A is the sample area. This is exactly the same expression as in
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Eq. (2.86), and, thus, as in Eq. (2.82). Using Stokes’ theorem one can represent
Eq. (2.180) as a contour integral over the boundary of the Brillouin zone:

σH ¼ � e2

2πh
Im
Xocc
n

þ
d~k nh j~∇~k nj i, (2.181)

where the sum is taken over all occupied bands. The contour integral gives us the
change of the phase of the state jni when rotating by 2π in~k-space. If all the states
are topologically trivial (i.e., there is no Berry phase), all these changes should be
integer (in the units of 2π), and, thus, Eq. (2.181) gives us the quantization of the
Hall conductivity (2.166). In the case of graphene, the Berry phase π should be
added, which changes the quantization condition to Eq. (2.167). Of course, this is
just an explanation and not derivation: One also needs to prove that Berry phase π
enters the integral in Eq.(2.181) an odd number of times; this fact was confirmed
by straightforward calculations by Watanabe, Hatsugai, and Aoki (2010).

The real situation is more complicated since the consideration by Thouless et al.
(1982) does not take into account disorder effects, in particular, Anderson
localization, which are actually crucial for a proper understanding of the quantum
Hall effect. A more complete mathematical theory requires the use of noncommu-
tative geometry (Bellissard, van Elst, & Schulz-Baldes, 1994) and is too compli-
cated to review here. Just to make this statement not completely esoteric one has to
refer to the properties of the operators (2.15) describing translations in the presence
of the magnetic field. Generally speaking, they do not commute (see, e.g., Eq.
(2.18)), and noncommutative translations generate noncommutative geometry.

Keeping in mind the case of graphene, it was demonstrated by Ostrovsky,
Gornyi, and Mirlin (2008) that, actually, the quantum Hall effect can be either
anomalous (half-integer) or normal (integer) depending on the type of disorder.
Short-range scatterers induce a strong mixture of the states from different valleys
and restore the ordinary (integer) quantum Hall effect. Of course, this is beyond the
“Dirac” physics, which is valid assuming that the valleys are essentially
independent.

The cyclotron quantum (2.31) in graphene is much higher than in most semi-
conductors. The energy gap between the Landau levels with n = 0 and n = 1 is
ΔE� 2,800K for the largest currently available permanent magnetic fields, B= 45
T (ΔE � 1,800 K for B = 20 T). This makes graphene a unique system exhibiting
the quantum Hall effect at room temperature (Novoselov et al., 2007).

Here we discuss only the background to quantum Hall physics in graphene. The
real situation is much more complicated, both theoretically (involving the role of
disorder and electron–electron interactions) and experimentally (Zhang et al.,
2006; Giesbers et al., 2007; Jiang et al., 2007b; Checkelsky, Li, & Ong, 2008;
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Giesbers et al., 2009). In particular, at high enough magnetic fields the spin and,
probably, valley degeneracies are destroyed and additional plateaux appear, in
addition to the fact that the gap opens at n = 0. The nature of these phenomena is
still controversial. Last, but not least, the fractional quantum Hall effect has been
observed for freely suspended graphene samples (Bolotin et al., 2009; Du et al.,
2009). This is an essentially many-body phenomenon (Prange & Girvin, 1987).
We will come back to the physics of the quantum Hall effect in graphene many
times in this book.

2.10 Effects of smooth disorder and an external electric field on
the Landau levels

In reality, all Landau levels are broadened due to disorder. If the latter can be
described by a scalar potential V(x, y) that is smooth and weak enough, the result
will just be a modulation of the Landau levels by this potential (Prange & Girvin,
1987)

Ev(x, y) � Ev + V(x, y). (2.182)

The weakness means that

jV(x, y)j « ℏωc, (2.183)

and the smoothness means that a typical spatial scale of V(x, y) is large in
comparison with the magnetic length (2.1). The calculations for the case of
graphene are especially simple and transparent if one assumes a one-dimensional
modulation, such that V is dependent only on the y-coordinate (Katsnelson &
Novoselov, 2007). Thus, instead of Eq. (2.37) one has

∂
∂x

� x

l2B
� i

∂
∂y

	 

ψ2 ¼

iE

ℏv
ψ1 �

iV yð Þ
ℏv

ψ1,

∂
∂x

þ x

l2B
þ i

∂
∂y

	 

ψ1 ¼

iE

ℏv
ψ2 �

iV yð Þ
ℏv

ψ2:

(2.184)

We can try the solutions of Eq. (2.184) as an expansion in the basis of the solutions
(2.45) of the unperturbed problem (V = 0):

ψi x; yð Þ ¼
X∞
n¼0

ð∞
�∞

dky
2π

c ið Þ
n ky
� �

exp ikyy
� �

AnDn

ffiffiffi
2

p
x� l2Bky
� �

lB

 !
, (2.185)

where An is the normalization factor (the basis functions are supposed to be
normalized with respect to unity).
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After straightforward calculations, one obtains a set of equations for the expan-
sion coefficients c ið Þ

n ky
� �

:

�
ffiffiffi
2

p

lB
1�δn,0ð Þcn 2ð Þ ky

� �¼ iE

ℏv
cn

1ð Þ ky
� �� i

ℏv

X∞
n0¼0

ð∞
�∞

dqy
2π

v ky�qy

 �
cn0 1ð Þ qy

 �
n,kyjn0,qy
D E

ffiffiffi
2

p

lB
1þnð Þcn 1ð Þ ky

� �¼ iE

ℏv
cn

2ð Þ ky
� �� i

ℏv

X∞
n0¼0

ð∞
�∞

dqy
2π

v ky�qy
 �

cn0 2ð Þ qy
 �

n,kyjn0,qy
D E

(2.186)

where v(q) is a Fourier component of V(y)

n, kyjn0, qy
D E

¼ AnAn0

ð∞
�∞

dxDn

ffiffiffi
2

p
x� lB

2ky
� �

lB

 !
Dn0

ffiffiffi
2

p
x� lB

2qy
 �

lB

0@ 1A:

(2.187)

If the potential is smooth and weak enough, one can use the adiabatic approxima-
tion and neglect the terms with n0 6¼ n in Eq. (2.186) describing transitions between
the Landau levels. Then,

� 1� δn, 0ð Þ~cn 2ð Þ ky
� � ¼ iεcn

1ð Þ ky
� �� i

ð∞
�∞

dqy
2π

v ky � qy
 �

n, kyjn, qy
D E

cn
1ð Þ qy
 �

ncn
1ð Þ ky
� � ¼ iε~cn

2ð Þ ky
� �� i

ð∞
�∞

dqy
2π

v ky � qy
 �

n, kyjn, qy
D E

~cn
2ð Þ qy
 �

, (2.188)

where ~cn
2ð Þ ¼ c 2ð Þ

n�1, and we use a dimensionless energy (2.26). For n = 0, the
components 1 and 2 are decoupled and we have

εc ky
� � ¼ ð∞

�∞

dqy
2π

v ky � qy
 �

exp � l2B
4

ky � qy
 �2� �

c qy
 �

, (2.189)

where c is either c 1ð Þ
0 or ~c 2ð Þ

0 and we calculate explicitly h0, kyj 0, qyi.
Coming back to real space,

c ky
� � ¼ ð∞

�∞

dy exp �ikyy
� �

c ky
� �

, (2.190)
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one can transform Eq. (2.189) to the form

ε� ~V yð Þ� �
c yð Þ ¼ 0, (2.191)

where

~V yð Þ¼ 1
ℏωc

ð∞
�∞

dqy
2π

v qy
 �

exp �lB
2qy

2

4
þiqyy

" #
¼ 1
ℏωc

ð∞
�∞

dy0V y0ð Þ 1ffiffiffi
π

p
lB
exp � y�y0ð Þ2

lB
2

" #
(2.192)

is a convolution of the potential V(y) with the ground-state probability density of a
harmonic oscillator. If the potential is smooth in comparison with lB, then
~V yð Þ � V yð Þ:
Eq. (2.191) has solutions

c yð Þ ¼ δ y� Yð Þ,
ε ¼ V Yð Þ, (2.193)

which means that the zero-energy Landau level broadens via just a modulation by the
scalar potential. However, a random vector potential does not broaden the zero-energy
level, due to the index theorem (Section 2.3). All other Landau levels are broadened
both by scalar and by vector potentials. For a scalar potential only, one has in general

En Yð Þ � ℏvF
lB

ffiffiffiffiffi
2n

p
¼ V Yð Þ: (2.194)

There is some experimental evidence that the zero-energy Landau levels in gra-
phene are narrower than the other ones (Giesbers et al., 2007). The most natural
explanation is that there exist random pseudomagnetic fields in graphene due to
ripples (corrugations; Morozov et al., 2006). The origin of these pseudomagnetic
fields will be discussed later, in Chapter 10.

For the case of a constant electric field E

V(x) = �eEx, (2.195)

the problem has a beautiful, exact solution that is based on relativistic invariance of
the Dirac equation (Lukose, Shankar, & Baskaran, 2007). The Lorentz
transformation

y0 ¼ y� βvtffiffiffiffiffiffiffiffiffiffiffiffiffi
1� β2

p , t0 ¼ t � βy=vffiffiffiffiffiffiffiffiffiffiffiffiffi
1� β2

p , (2.196)

corresponding to the coordinate system moving with the velocity βv, with β < 1
(we remind the reader that for our Dirac equation v plays the role of the velocity of
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light), changes the electric field ~EkOy and magnetic field ~BkOz according to
(Jackson, 1962)

E0 ¼
E � β

vB

cffiffiffiffiffiffiffiffiffiffiffiffiffi
1� β2

p ,
vB0

c
¼

vB

c
� βEffiffiffiffiffiffiffiffiffiffiffiffiffi
1� β2

p : (2.197)

This means that, if the electric field is weak enough

E <
v

c
B, (2.198)

it can be excluded by the Lorentz transformation with

β∗ ¼ cE

vB
: (2.199)

In the opposite case

E >
v

c
B,

one can, vice versa, exclude the magnetic field, see Shytov et al. (2009).
Thus, the effective magnetic field is

Beff ¼ B
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� β∗2

q
: (2.200)

As a result, the energy spectrum of the problem is (Lukose, Shankar, & Baskaran,
2007)

En ky
� � ¼ �ℏωc

ffiffiffi
n

p
1� β∗2
� �3=4 � ℏvβ∗ky: (2.201)

The distances between Landau levels are decreased by the factor (1 � β∗2)3/4. The

last term in Eq. (2.201) (as well as the additional factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� β∗2

p
in the first term)

is nothing other than the result of Lorentz transformation of energy and momen-
tum. It transforms the Landau levels into Landau bands, in qualitative agreement
with Eq. (2.194).
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3

Quantum transport via evanescent waves

3.1 Zitterbewegung as an intrinsic disorder

The Berry phase, the existence of a topologically protected zero-energy level and
the anomalous quantum Hall effect are striking manifestations of the peculiar,
“ultrarelativistic” character of charge carriers in graphene.

Another amazing property of graphene is the finite minimal conductivity, which
is of the order of the conductance quantum e2/h per valley per spin (Novoselov
et al., 2005a; Zhang et al., 2005). Numerous considerations of the conductivity of a
two-dimensional massless Dirac fermion gas do give us this value of the minimal
conductivity with an accuracy of some factor of the order of one (Fradkin, 1986;
Lee, 1993; Ludwig et al., 1994; Nersesyan, Tsvelik, & Wenger, 1994; Shon &
Ando, 1998; Ziegler, 1998; Gorbar et al., 2002; Yang & Nayak, 2002; Katsnelson,
2006a; Tworzydlo et al., 2006; Ryu et al., 2007).

It is really surprising that in the case of massless two-dimensional Dirac
fermions there is a finite conductivity for an ideal crystal, that is, in the absence
of any scattering processes (Ludwig et al., 1994; Katsnelson, 2006a; Tworzydlo
et al., 2006; Ryu et al., 2007). This was first noticed by Ludwig et al. (1994) using
a quite complicated formalism of conformal field theory (see also a more detailed
and complete discussion in Ryu et al., 2007). After the discovery of the minimal
conductivity in graphene (Novoselov et al., 2005a; Zhang et al., 2005), I was
pushed by my experimentalist colleagues to give a more transparent physical
explanation of this fact, which has been done in Katsnelson (2006a) on the basis
of the concept of Zitterbewegung (Schrödinger, 1930) and the Landauer formula
(Beenakker & van Houten, 1991; Blanter & Büttiker, 2000). The latter approach
was immediately developed further and used to calculate the shot noise (Tworzydlo
et al., 2006), which turns out to be similar to that in strongly disordered metals
(a “pseudodiffusive transport”). There are now more theoretical (Prada et al., 2007;
Katsnelson & Guinea, 2008; Rycerz, Recher, & Wimmer, 2009; Schuessler et al.,
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2009; Katsnelson, 2010a) and experimental (Miao et al., 2007; Danneau et al., 2008;
Mayorov et al., 2011a) works studying this regime in the context of graphene. This
situation is very special. For a conventional electron gas in semiconductors, in the
absence of disorder, the states with definite energy (eigenstates of the Hamiltonian)
can simultaneously be the states with definite current (eigenstates of the current
operator), and it is the disorder that results in the nonconservation of the current and
finite conductivity. In contrast, for the Dirac fermions the current operator does not
commute with the Hamiltonian (Zitterbewegung), which can be considered as a kind
of intrinsic disorder (Katsnelson, 2006a; Auslender & Katsnelson, 2007). Therefore,
a more detailed understanding of the pseudodiffusive transport in graphene is not
only important for physics of graphene devices but also has a great general interest
for quantum statistical physics and physical kinetics.

The Zitterbewegung is a quantum relativistic phenomenon that was first
discussed by Schrödinger as early as in 1930 (Schrödinger, 1930). Only very
recently was it observed experimentally for trapped ions (Gerritsma et al., 2010).
This phenomenon seems to be important if one wishes to qualitatively understand
the peculiarities of electron transport in graphene at its small doping (Katsnelson,
2006a; Auslender & Katsnelson, 2007). Other aspects of the Zitterbewegung in
graphene physics, in particular, possibilities for its direct experimental observation,
are discussed by Cserti and Dávid (2006) and Rusin and Zawadzki (2008, 2009).
Here we will explain this basic concept for the case of two-dimensional massless
Dirac fermions. In a secondary quantized form, the Dirac Hamiltonian reads

Ĥ ¼ v
X
~p

bΨ~p
þ~σ~pΨ̂~p �

X
~p

bΨ~p
þĥ~pΨ̂~p, (3.1)

and the corresponding expression for the current operator is

~̂j ¼ ev
X
~p

bΨ~p
þ~σΨ̂~p �

X
~p

~̂j~p, (3.2)

where ~p is the momentum and bΨ~p
þ ¼ bΨþ

~p1;
bΨþ
~p2

� �
are pseudospinor electron-

creation operators. The expression (3.2) follows from Eq. (3.1) and the gauge

invariance, which requires (Abrikosov, 1998)

~̂j~p ¼ e
δĥ~p
δ~p

: (3.3)

Here we omit spin and valley indices (so, keeping in mind applications to
graphene, the results for the conductivity should be multiplied by 4, due to there
being two spin projections and two conical points per Brillouin zone).
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Straightforward calculations for the time evolution of the electron operators give
Ψ tð Þ ¼ exp iĤ t

� �
Ψ exp �iĤ t

� �
(here we will put ℏ = 1)

Ψ̂~p tð Þ ¼ 1
2

exp �iε~pt
� �� � 1þ~pσ

p

� 	
þ exp iε~pt

� �� � 1�~pσ

p

� 	
 �
Ψ̂~p (3.4)

and for the current operator

~̂j tð Þ ¼~̂j0 tð Þ þ~̂j1 tð Þ þ~̂j
þ
1 tð Þ

~̂j0 tð Þ ¼ ev
X
~p

Ψ̂~p
þ~p ~pσð Þ

p2
Ψ̂~p

~̂j1 tð Þ ¼ ev

2

X
~p

Ψ̂~p
þ σ �~p ~pσð Þ

p2
þ i

p
σ �~p

� 
Ψ̂~p exp 2iε~pt

� �
, (3.5)

where ε~p ¼ vp is the particle energy. The last term in Eq. (3.5) corresponds to the
Zitterbewegung.

Its physical interpretation is usually given in terms of the Landau–Peierls
generalization of the Heisenberg uncertainty principle (Landau & Peierls, 1931;
Berestetskii, Lifshitz, & Pitaevskii, 1971; Davydov, 1976). Attempts to measure
the coordinate of a relativistic particle with a very high accuracy require an
amount of energy that is sufficient to create particle–antiparticle pairs and, thus,
we will inevitably lose our initial particle, being unable to distinguish it from one
of the created particles (according to quantum statistics, all the particles are
equivalent). This pair creation corresponds to the oscillating terms with fre-
quency 2ε~p in Eq. (3.5).

In terms of condensed-matter physics, the Zitterbewegung is nothing other than
a special kind of interband transition with the creation of virtual electron–hole
pairs. The unitary transformation generated by the operator (1.29) diagonalizes the
Hamiltonian and thus introduces electron and hole states with the energies �vp;
after this transformation the oscillating term in Eq. (3.5) obviously corresponds to
the interband transitions, e.g.,

U~p
þ j~p

xU~p ¼ ev
� cos ϕ~p � i sin ϕ~p exp �iϕ~p þ 2iε~pt

� �
i sin ϕ~p exp iϕ~p � 2iε~pt

� �
cos ϕ~p

0B@
1CA:

(3.6)

To calculate the conductivity σ(ω) one can first try to use the Kubo formula (Kubo,
1957), which reads, for the two-dimensional isotropic case
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σ ωð Þ ¼ 1
A

ð∞
0

dt exp iωtð Þ
ðβ
0

dλ ~̂j t � iλð Þ~̂j
D E

, (3.7)

where β = T�1 is the inverse temperature and A is the sample area. In the static
limit ω = 0, taking into account the Onsager relations and the analyticity of the

correlators ~̂j zð Þ~̂j
D E

for �β < Im z � 0 (Zubarev, 1974), one has

σ ¼ β

2A

ð∞
�∞

dt ~̂j tð Þ~̂j
D E

: (3.8)

Usually, for ideal crystals, the current operator commutes with the Hamiltonian
and thus~̂j tð Þ does not depend on time. In that case, due to Eq. (3.7), the frequency-
dependent conductivity in the ground state contains only the Drude peak

σD ωð Þ ¼ π
A

lim
T!0

~̂j2
D E
T

δ ωð Þ: (3.9)

Either the spectral weight of the Drude peak is finite and, thus, the static conduct-
ivity is infinite, or it is equal to zero. It is easy to check that for the system under
consideration, the spectral weight of the Drude peak is proportional to the modulus
of the chemical potential jμj and thus vanishes at zero doping (μ = 0). It is the

Zitterbewegung, i.e., the oscillating term ~̂j1 tð Þ, which is responsible for the non-
trivial behavior of the conductivity for zero temperature and zero chemical poten-
tial. A straightforward calculation gives the formal result

σ ¼ πe2

h

ð∞
0

dε εδ2 εð Þ, (3.10)

where one delta-function originates from the integration over t in Eq. (3.8) and the
second one from the derivative of the Fermi distribution function appearing in
the calculation of the average over the product of Fermi operators. Of course, the
square of the delta-function is not a well-defined object, and thus Eq. (3.10) is
meaningless before specification of how one should regularize the delta-functions.
After regularization, the integral in Eq. (3.10) is finite, but its value depends on the
regularization procedure (for a detailed discussion of this uncertainty, see Ryu
et al., 2007). Although this derivation cannot give us a correct numerical factor, it
opens a new path to qualitative understanding of more complicated situations. For
example, the minimal conductivity of the order of e2/h per channel has been
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observed experimentally also for bilayer graphene (Novoselov et al., 2006), with
an energy spectrum drastically different from that for the single-layer case. Bilayer
graphene is a zero-gap semiconductor with parabolic touching of the electron and
hole bands described by the single-particle Hamiltonian (1.46). The Hamiltonian
can be diagonalized by the unitary transformation U~p with the replacement
ϕ~p ! 2ϕ~p. Thus, the current operator after the transformation takes the form
(3.6) with the replacements v! p/m and exp �iϕ~p

� �
! exp �2iϕ~p

� �
. In contrast

with the single-layer case, the density of electron states for the Hamiltonian (1.46)
is finite at zero energy but the square of the current is, vice versa, linear in energy.
As a result, we have the same estimate as Eq. (3.10).

3.2 The Landauer-formula approach

A deeper understanding of the origin of finite conductivity without charge carriers
can be reached using the Landauer-formula approach (Beenakker & van Houten,
1991; Blanter & Büttiker, 2000). Following Katsnelson (2006a) we consider
the simplest possible geometry, choosing the sample as a ring of length Ly in
the y-direction; we will use the Landauer formula to calculate the conductance
in the x-direction (see Fig. 3.1). As we will see, the conductivity turns out to be
dependent on the shape of the sample. To have a final transparency we should keep
Lx finite. On the other hand, periodic boundary conditions in the y-direction are
nonphysical, and we have to choose Ly as large as possible in order to weaken their
effects. Thus, for the two-dimensional situation one should choose Lx « Ly.

In the coordinate representation the Dirac equation at zero energy takes the form

∂
∂x

þ i
∂
∂y

� 	
ψ1 ¼ 0,

∂
∂x

� i
∂
∂y

� 	
ψ2 ¼ 0:

(3.11)

Fig. 3.1 The geometry of the sample. The thick arrow shows the direction of the
current. Solid and dashed lines represent wave functions of the edge states
localized near the top (ψt(x)) and bottom (ψb(x)) of the sample, respectively.
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General solutions of these equations are just arbitrary analytic (or complex-
conjugated analytic) functions:

ψ1 ¼ ψ1 xþ iyð Þ,
ψ2 ¼ ψ2 x� iyð Þ:

(3.12)

Owing to periodicity in the y-direction, both wave functions should be
proportional to exp(ikyy), where ky = 2πn/Ly, n = 0, �1, �2, . . . This means that
the dependence on x is also fixed: The wave functions are proportional to
exp(�2πnx/Ly). They correspond to the states localized near the bottom and top
of the sample (see Fig. 3.1).

To use the Landauer formula, we should introduce boundary conditions at the
sample edges (x = 0 and x = Lx). To be specific, let us assume that the leads
are made of doped graphene with the potential V0 < 0 and the Fermi energy
EF = vkF = �V0. The wave functions in the leads are supposed to have the same
y-dependence, namely ψ1, 2(x, y) = ψ1, 2(x) exp (ikyy). Thus, one can try the solution
of the Dirac equation in the following form that is consistent with Eq. (1.30):

ψ1 xð Þ ¼
exp ikxxð Þ þ r exp �ikxxð Þ, x < 0,

a exp kyx
� �

, 0 < x < Lx,

t exp ikxxð Þ, x > Lx,

8><>:
ψ2 xð Þ ¼

exp ikxxþ iϕð Þ þ r exp �ikxx� iϕð Þ, x < 0,

b exp �kyx
� �

, 0 < x < Lx,

t exp ikxxþ iϕð Þ, x > Lx,

8><>:
(3.13)

where sinϕ = ky/kF and kx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2F � k2y

q
. From the conditions of continuity of the

wave functions, one can find the transmission coefficient

Tn ¼ t ky
� ��� ��2 ¼ cos 2ϕ

cosh 2 kyLx
� �� sin 2ϕ

: (3.14)

Further, one should assume that kFLx » 1 and put ϕ ffi 0 in Eq. (3.14), so

Tn ¼ 1

cosh 2 kyLx
� � : (3.15)

The conductance G (per spin per valley) and Fano factor F of the shot noise
(Blanter & Büttiker, 2000) are expressed via the transmission coefficients (3.15):

G ¼ e2

h

X∞
n¼�∞

Tn (3.16)
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and

F ¼ 1�
P∞

n¼�∞
T2
nP∞

n¼�∞
Tn

: (3.17)

Note that in the ballistic regime, where the transmission probability for a given
channel is either one or zero, F= 0 (the current is noiseless), whereas if all Tn « 1
(e.g., current through tunnel junctions) F � 1.

Thus, the trace of the transparency, which is just the conductance (in units of
e2/h), is

TrT ¼
X∞
n¼�∞

1

cosh 2 kyLx
� � ffi Ly

πLx
: (3.18)

Assuming that the conductance is equal to σ Ly/Lx one finds a contribution to
the conductivity per spin per valley equal to e2/(πh) (Katsnelson, 2006a;
Tworzydlo et al., 2006). This result seems to be confirmed experimentally
(Miao et al., 2007; Mayorov et al., 2011a). Also note that for the case of
nanotubes (Lx » Ly) one has a conductance e2/h per channel, in accordance
with known results (Tian & Datta, 1994; Chico et al., 1996). For the Fano factor
one has

F ¼ 1
3

(3.19)

(Tworzydlo et al., 2006). This result is very far from the ballistic regime and
coincides with that for strongly disordered metals (Beenakker & Büttiker, 1992;
Nagaev, 1992). This means that, in a sense, the Zitterbewegung works as an
intrinsic disorder.

Instead of periodic boundary conditions in the y-direction, one can consider
closed boundaries with zigzag-type or infinite-mass boundary conditions (we will
discuss these later). The result (Tworzydlo et al., 2006) is just a replacement of the
allowed values of the wave vectors in Eq. (3.15). One can write, in general
(Rycerz, Recher, & Wimmer, 2009)

ky nð Þ ¼ gπ nþ γð Þ
Ly

, (3.20)

where g = 1 and γ ¼ 1
2 for closed boundary conditions and g = 2 and γ = 0 for

periodic boundary conditions. The results (3.18) and (3.19) for the case Lx » Ly
remain the same.
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The case of bilayer graphene (Katsnelson, 2006b; Cserti, Csordás, & Dávid,
2007; Snyman & Beenakker, 2007) is more subtle. Even if we neglect the trigonal
warping and use the Hamiltonian (1.46), an additional spatial scale

l⊥ ¼ ℏv
t⊥

� 10a (3.21)

arises in the problem (Snyman & Beenakker, 2007), and the results for the
conductance and the Fano factor depend on the sequence of the limits Lx/l⊥ ! ∞
and EF ! 0. Moreover, when we cross the energy of trigonal warping and kF
satisfies the inequality (1.55), all four conical points work and the results are
changed again (Cserti, Csordás, & Dávid, 2007).

3.3 Conformal mapping and Corbino geometry

Thus, electron transport in undoped graphene is due to zeromodes of theDirac operator,
which are represented by analytic functions of z = x + iy determined by boundary
conditions. For the geometry shown in Fig. 3.1, these functions are just exponents:

ψ1n zð Þ ¼ exp
2πnz
Ly

� 	
, (3.22)

so a generic wave function inside a graphene flake can be written as

Ψ x; yð Þ �
X∞
n¼�∞

an
exp

2πnz
Ly

� 	
0

0@ 1Aþ bn
0

exp
2πn�z
Ly

� 	0@ 1A24 35, (3.23)

where the coefficients an and bn are determined by the boundary conditions. Let the
Fermi wavelength in the leads be much smaller than the geometrical lengths of the
flake. Then, for most of the modes one can write the boundary conditions assuming
normal incidence ϕ = 0:

ψin � 1þ r
1� r

� 	

ψout � t
t

� 	
, (3.24)

where subscripts “in” and “out” label the values of the wave functions at the
boundaries between the leads and the sample. In this approximation it is very easy
to solve the problem of electron transport through a graphene quantum dot of
arbitrary shape using a conformal mapping of this shape to the strip (Katsnelson &
Guinea, 2008; Rycerz, Recher, & Wimmer, 2009). For example, the mapping
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w zð Þ ¼ R1 exp
2πz
Ly

� 	
(3.25)

with

exp
2πLx
Ly

� 	
¼ R2

R1

transforms the rectangular strip Lx � Ly into a circular ring with inner and outer
radii R1 and R2, respectively. Indeed, for z= x+ iy, with 0< x< Lx and 0< y< Ly,
the transformation (3.25) leads to 0� arg w< 2π and R1 � jwj � R2. Instead of Eq.
(3.23) one can try in this case

Ψ x; yð Þ �
X∞
n¼�∞

an
zn

0

� 	
þ bn

0
�zn

� 	� 
: (3.26)

The conformal mapping allows us to find immediately the solution for Corbino
geometry where “in” and “out” leads are attached to the inner and outer edges of
the ring, respectively (see Fig. 3.2); in this case periodic boundary conditions in the
y-direction should naturally be used. Moreover, the solution of the problem for any
shape of the flake that is topologically equivalent to the ring can be written
automatically in terms of the corresponding conformal mapping (Rycerz, Recher,
& Wimmer, 2009). Earlier (Katsnelson & Guinea, 2008), this method was applied
to the case of graphene quantum dots with thin leads attached.

If we just repeat the derivation of Eq. (3.15) using the boundary conditions
(3.24), one can see that

cosh kyLx
� �¼ 1

2
exp kyLx

� �þ exp �kyLx
� �� �

¼ 1
2

ψ1 x ¼ Lxð Þ
ψ1 x ¼ 0ð Þ þ ψ1 x ¼ 0ð Þ

ψ1 x ¼ Lxð Þ
�  (3.27)

Fig. 3.2 The Corbino geometry: radial electric current in the ring.
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and

ψ1 x ¼ Lxð Þ
ψ1 x ¼ 0ð Þ ¼ ψ2 x ¼ 0ð Þ

ψ2 x ¼ Lxð Þ : (3.28)

Under the conformal mapping (3.25)

ψ1 x ¼ Lxð Þ
ψ1 x ¼ 0ð Þ ¼ exp

2πLx
Ly

� 	
! ψ1 r ¼ R2ð Þ

ψ1 r ¼ R1ð Þ ¼
R2

R1
, (3.29)

and the result for the transmission coefficient reads

Tn ¼ 4
R2
R1

� �n
þ R1

R2

� �n : (3.30)

We should be careful, however, since up to now we have not taken into account the
Berry phase π for massless Dirac fermions. When we pass along the circle within
the disc we have not periodic but antiperiodic boundary conditions:

ψ1(jwj, argw) = � ψ1(jwj, arg w + 2π), (3.31)

which means that n in (3.30) should be replaced by nþ 1
2. Finally, one has (Rycerz,

Recher, & Wimmer, 2009)

Tj ¼ l

cosh 2 j ln
R2

R1

� 	�  , j ¼ � 1
2
, � 3

2
, � 5

2
, . . . , (3.32)

and the summation over integer n in Eq. (3.16) and (3.17) should be replaced by a
summation over half-integer j. For a ring that is thin enough, jR2 � R1j « R1, the
result is

G � 2e2

h

1

ln
R2

R1

� 	 , F � 1
3
: (3.33)

This agrees with the result (3.18) if we take into account that the thin ring is
equivalent to the rectangular strip with Lx = R2 � R1 and Ly = 2πR1. In the
opposite limit R1 « R2 one has

G � 8e2

h

R1

R2
, F � 1� G

h

8e2
: (3.34)

Thus, for zero doping, the conductance of a graphene flake of arbitrary shape can
be found without explicit solution of the Dirac equation, by a conformal mapping
to a rectangle.
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3.4 The Aharonov–Bohm effect in undoped graphene

The Aharonov–Bohm effect (Aharonov & Bohm, 1959; Olariu & Popescu, 1985)
is the shift of interference patterns from different electron trajectories by the
magnetic flux through the area between the trajectories. This leads to oscillations
of observable quantities, such as conductance as a function of the magnetic flux.
The Aharonov–Bohm effect in graphene has been studied both theoretically
(Recher et al., 2007; Jackiw et al., 2009; Katsnelson, 2010a; Rycerz, 2010;
Wurm et al., 2010) and experimentally (Russo et al., 2008; Huefner et al.,
2009) for the case of a finite doping. It is not clear a priori whether this effect
is observable or not in undoped graphene, where the transport is determined by
evanescent waves. The analysis of Katsnelson (2010a) and Rycerz (2010) shows
that, whereas for the case of very thin rings the Aharonov–Bohm oscillations are
exponentially small, for a reasonable ratio of radii, such as, e.g., R2/R1 = 5, the
effect is quite observable.

By combining the conformal-mapping technique with a general consideration of
zero-energy states for massless Dirac fermions one can derive simple and general
rigorous formulas for any graphene flakes topologically equivalent to the ring,
avoiding both numerical simulations and explicit solutions of the Schrödinger
equation for some particular cases (Katsnelson, 2010a). Note that for the case of
a circular ring and a constant magnetic field the problem can be solved exactly for
any doping (Rycerz, 2010), but, of course, the mathematics required is much more
cumbersome. In the corresponding limits, the results are the same.

The effect of magnetic fields on the states with zero energy can be considered
by employing the method of Aharonov and Casher (1979) (see Section 2.3).
The general solutions have the form (2.62), where f1 and f1 are analytic and
complex-conjugated analytic functions. The boundary conditions following from
Eq. (3.24) are

1þ r ¼ ψ 1ð Þ
þ ,

1� r ¼ ψ 1ð Þ
� ,

t ¼ ψ 2ð Þ
þ ,

t ¼ ψ 2ð Þ
� ,

(3.35)

where superscripts 1 and 2 label the boundaries attached to the
corresponding leads.

If the boundary of the sample is simply connected, one can always choose
φ = 0 at the boundary and, thus, the magnetic fields disappear from Eq. (3.35); this
fact was used by Schuessler et al. (2009) as an elegant way to prove that a random
vector potential has no effect on the value of the minimal conductivity. Further, we
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will consider a ring where the scalar potential φ is still constant at each boundary
but these constants, φ1 and φ2, are different. Also, by symmetry (cf. Eq. (3.28)),

f 2ð Þ
þ
f 1ð Þ
þ

¼ f 1ð Þ
�
f 2ð Þ
�

: (3.36)

The answer for the transmission coefficient T = jtj2 for the case of a ring has the
form

Tj ¼ 1

cosh 2 jþ að Þ ln R2

R1

� 	�  , (3.37)

the only difference from Eq. (3.32) being the shift of j by

a ¼ e

ℏc
φ2 � φ1

ln
R2

R1

� 	 , (3.38)

which generalized the corresponding result of Rycerz, Recher, and Wimmer
(2009) on the case of finite magnetic fields. The conductance G (per spin per
valley) and Fano factor of the shot noise F are expressed via the transmission
coefficients (3.37) by Eq. (3.16) and (3.17). To calculate the sums one can use the
Poisson summation formula (2.145). On substituting Eq. (3.37) into (3.16) and
(3.17) one finds a compact and general answer for the effect of a magnetic field on
the transport characteristics:

G ¼ 2e2

h ln R2=R1ð Þ 1þ 2
X∞
k¼1

�1ð Þk cos 2πkað Þαk
" #

, (3.39)

F ¼ 1� 2
3

1þ 2
P∞
k¼1

�1ð Þk cos 2πkað Þαk 1þ π2k2= ln 2 R2

R1

� 	� 	
1þ 2

P∞
k¼1

�1ð Þk cos 2πkað Þαk

2664
3775, (3.40)

where

αk ¼
π2k= ln

R2

R1

� 	
sinh π2k= ln

R2

R1

� 	� 	 : (3.41)

Eq. (2.60) can be solved explicitly for radially symmetric distributions of the
magnetic field B(r):
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φ2 � φ1 ¼
Φ
Φ0

ln
R2

R1

� 	
þ

ðR2

R1

dr

r

ðr
R1

dr0r0B r0ð Þ, (3.42)

where Φ is the magnetic flux though the inner ring. In the case of the Aharonov–
Bohm effect where the whole magnetic flux is concentrated within the inner ring
one has

a ¼ Φ
Φ0

: (3.43)

Owing to the large factor π2 in the argument of sinh in Eq. (3.41), only the terms
with k = 1 should be kept in Eq. (3.36) and (3.37) for all realistic shapes, thus

G ¼ G0 1� 4π2

ln
R2

R1

� 	 exp � π2

ln
R2

R1

� 	
0BB@

1CCA cos
eΦ
ℏc

� 	2664
3775, (3.44)

F ¼ 1
3
þ 8π4

3 ln 3
R2

R1

� 	 exp � π2

ln
R2

R1

� 	
0BB@

1CCA cos
eΦ
ℏc

� 	
, (3.45)

where G0 is the conductance of the ring without magnetic field (3.33).
Oscillating contributions to G and F are exponentially small for very thin rings

but are certainly measurable if the ring is thick enough. For R2/R1 = 5 their
amplitudes are 5.3% and 40%, respectively.

Consider now a generic case with the magnetic field B = 0 within the flake.
Then, the solution of Eq. (2.60) is a harmonic function, that is, the real or
imaginary part of an analytic function. It can be obtained from the solution for
the disc by the same conformal transformation as that which we use to solve the
Dirac equation. One can see immediately that Eq. (3.35) remains the same. The
expressions (3.44) and (3.45) can be rewritten in terms of an experimentally
measurable quantity G0

G ¼ G0 1� 4π2

β
exp � π2

β

� 	
cos

eΦ
ℏc

� 	� 
, (3.46)

F ¼ 1
3
þ 8π4

3β3
exp � π2

β

� 	
cos

eΦ
ℏc

� 	
, (3.47)

where β = 2e2/(hG0) and we assume that β « π2.
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Thus, conformal transformation (Katsnelson & Guinea, 2008; Rycerz, Recher,
& Wimmer, 2009) is a powerful tool with which to consider pseudodiffusive
transport in undoped graphene flakes of arbitrary shape, not only in the absence
of a magnetic field but also in the presence of magnetic fluxes in the system. An
experimental study of the Aharonov–Bohm oscillations and comparison with the
simple expressions (3.46) and (3.47) derived here would be a suitable way to check
whether the ballistic (pseudodiffusive) regime is reached or not in a given experi-
mental situation.

To conclude this chapter, we note that undoped graphene is a gapless
semiconductor, with a completely filled valence band and an empty conduction
band. It is really counterintuitive that in such a situation, at zero temperature, it has
a finite conductivity, of the order of the conductance quantum e2/h. This is one of
the most striking consequences of its peculiar “ultrarelativistic” energy spectrum.
Formally, the electron transport in undoped graphene is determined by zero modes
of the Dirac operator, which are described by analytic functions with proper
boundary conditions. Therefore, the whole power of complex calculus can be used
here, just as in classical old-fashioned branches of mathematical physics such as
two-dimensional hydrodynamics and electrostatics. These states cannot correspond
to the waves propagating through the sample but, rather, are represented by
evanescent waves. The transport via evanescent waves in undoped graphene is a
completely new variety of electron transport in solids, being drastically different
from all types known before (ballistic transport in nanowires and constrictions,
diffusive transport in dirty metals, variable-range-hopping transport in Anderson
insulators, etc.). Gaining a deeper understanding of these new quantum phenomena
would seem to be a very important task.
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4

The Klein paradox and chiral tunneling

4.1 The Klein paradox

Soon after the discovery of the Dirac equation, Oskar Klein (1929) noticed one of
its strange properties, which was called afterwards the “Klein paradox.” Klein
considered the 4 � 4 matrix Dirac equation for a relativistic spin-12 particle
propagating in three-dimensional space. To be closer to our main subject, we will
discuss the 2 � 2 matrix equation for a particle propagating in two-dimensional
space; the essence of the paradox remains the same. Thus, we will consider the
stationary Schrödinger equation

ĤΨ ¼ EΨ (4.1)

with the two-component spinor wave function

Ψ ¼ ψl
ψ2

� �

and the Hamiltonian

Ĥ ¼ �iℏc~̂σrþ V x; yð Þ1̂ þ mc2σ̂ z: (4.2)

Here c is the velocity of light, m is the mass of the particle, and V(x, y) is a
potential energy; we will explicitly write the identity matrix 1̂ to show the
spinor structure of the Hamiltonian. Let us consider the one-dimensional case
V = V(x) and ψi = ψi(x) (the latter means normal incidence). Eq. (4.1) now takes
the form

�iℏc
dψ2

dx
¼ E � mc2 � V xð Þ� �

ψ1,

�iℏc
dψ1

dx
¼ E þ mc2 � V xð Þ� �

ψ2:

(4.3)
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First consider just a jump of the potential:

V xð Þ ¼ 0,
V0,

x < 0,
x > 0,

�
(4.4)

with a positive V0.
At the left side of the barrier, the solutions Ψ1 and Ψ2 have x-dependence as

exp(�ikx), where the wave vector k satisfies the relativistic dispersion relation
E2 = (ℏck)2 + m2c4, or

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � m2c4

p

ℏc
: (4.5)

The allowed energy values are E > mc2 (electron states) or E < �mc2 (hole,
or positron, states). To be specific, we will consider the first case. Thus, using
Eq. (4.3) with V = 0 one finds for the incident wave

Ψin xð Þ ¼ 1
α

� �
eikx (4.6)

and for the reflected wave

Ψr xð Þ ¼ 1
�α

� �
e�ikx, (4.7)

where

α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � mc2

E þ mc2
:

r
(4.8)

We will assume a solution of the general form

Ψ(x) = Ψin(x) + rΨr(x), (4.9)

where r is the reflection coefficient.
At the right side of the barrier, we have the dispersion relation

(E � V0)
2 = ℏ2c2q2 + m2c4 for the new wave vector q. We will consider the case

of a potential jump that is strong enough:

V0 > E + mc2. (4.10)

In this case the solution

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V0 � Eð Þ2 � m2c4

q
ℏc

(4.11)

is real and the particle can also propagate on the right side of the barrier. However,
this particle belongs to the lower (positron, or hole) continuum (see Fig. 4.1).
It is in this situation that the paradox arises, so we will consider only this case.
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For smaller values of V0, one has either the situation of propagating electrons
on both sides of the barrier, if V0 < E � mc2, or evanescent waves at x > 0 if
E � mc2 < V0 < E + mc2 (Fig. 4.1(a)).

On solving the Schrödinger equation (4.3) for x> 0 one finds for the transmitted
wave

Ψt xð Þ ¼
1

� 1
β

0
@

1
Aeiqx, (4.12)

where

β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V0 � E � mc2

V0 � E þ mc2

s
: (4.13)

(a)

E=mc2

E=–mc2

E=0

V0

V0

(b)

E=mc2

E=0 V0

E=–mc2

Fig. 4.1 Electron and positron states on the left and right sides of the barrier for
the cases V0 < 2mc2 (a) and V0 > 2mc2 (b).
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One can find the reflection coefficient r and the transmission coefficient t, assum-
ing that the wave function is continuous at x = 0, that is,

Ψin + rΨrjx=�0 = tΨtjx=+0 (4.14)

or

1þ r ¼ t,

α 1� rð Þ ¼ � 1
β
t: (4.15)

We find straightforwardly

r ¼ 1þ αβ
αβ � 1

: (4.16)

Since for the case under consideration α and β are real, 0 < α, β < 1, one can see
immediately that r < 0 and

R ¼ rj j2 ¼ 1þ αβ
1� αβ

� �2

> 1: (4.17)

However, R is nothing other than the reflection probability! Indeed, the current
density

jx = cΨ+σxΨ = c(ψ1
∗ψ2 + ψ2

∗ψ1) (4.18)

has the values 2αc and �2αcR for the incident and reflected parts of the wave
function (4.9), respectively. Thus, we have the very strange conclusion that, under
the condition (4.10), the reflected current is larger than the incident one and the
reflection probability is larger than unity. This was initially called the Klein
paradox.

Our further discussion will follow Calogeracos and Dombey (1999) and Dom-
bey and Calogeracos (1999). (A rather complete list of references can be found in
Greiner and Schramm [2008].)

First, as was noticed by Pauli, there is a problem with the definition of the
transmitted wave. For the case (4.10), the group velocity of the particle on the right
side of the barrier

vg ¼ 1
ℏ
dE

dq
¼ 1

ℏ
dq

dE

� ��1

¼ ℏqc2

E � V0
, (4.19)

is opposite to the direction of the wave vector q. This means that, formally
speaking, the transmitted wave (4.12) describes the particle propagating to the left
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(for positive q), since the direction of propagation is determined by the direction of
the group velocity, not by the momentum. So, at first sight, the formal paradox
disappears (see also Vonsovsky & Svirsky, 1993).

However, it reappears in a more detailed view of the problem. Instead of the
infinitely broad barrier (4.4), let us consider the finite one:

V xð Þ ¼ V0, xj j < a,
0, xj j > a:

�
(4.20)

In this situation, there is no problem with the choice of the transmitted wave at the
right side, it is just tΨin; within the barrier region one has to consider the most
general solution, with both parts, proportional to exp (�iqx). The calculations are
simple and straightforward (see, e.g., Su, Siu, & Chou, 1993; Calogeracos &
Dombey, 1999) and the results for the reflection and transmission probabilities R
and T are

R ¼ 1� α2β2
� 	2

sin 2 2qað Þ
4α2β2 þ 1� α2β2

� 	2
sin 2 2qað Þ

, (4.21)

T ¼ 4α2β2

4α2β2 þ 1� α2β2
� 	2

sin 2 2qað Þ
: (4.22)

There is no formal problem in the sense that 0 < R < 1, 0 < T < 1 and R + T = 1,
as should be the case.

Now, the case of an infinitely broad barrier can be considered from Eq. (4.21)
and (4.22) in the limit a ! ∞. We should be careful here, because of fast
oscillations. If

qa ¼ Nπ
2

(4.23)

(N is an integer), then sin (2qa) = 0, and we have complete transmission (R = 0,
T = 1). If we just average over the fast oscillations in the limit a ! ∞, replacing
sin2 (2qa) by its average value 1

2, we will find the expressions

R∞ ¼ 1� α2β2
� 	2

8α2β2 þ 1� α2β2
� 	2 ,

T∞ ¼ 8α2β2

8α2β2 þ 1� α2β2
� 	2 : (4.24)

Thus, the paradox reappears in a different form. It is no longer a paradox in a
logical or mathematical sense, it is just a physically counterintuitive behavior.
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The well-known tunneling effect in quantum mechanics assumes that the
particle can penetrate through a classically forbidden region with E < V(x) but
the probability of the penetration is exponentially small if the barrier is high and
broad. In the semiclassical approximation, the transmission of the barrier between
classical turning points x1,2 satisfying the equation E = V(x1,2) can be estimated as
(Landau & Lifshitz, 1977)

T � exp � 2
ℏ

ðx2
x1

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m V xð Þ � E½ �

p8<
:

9=
;, (4.25)

where m is the mass of the particle; the motion is supposed to be nonrelativistic.
For the relativistic particle under the condition (4.10) the situation is dramatically
different: In the limit a ! ∞ the penetration probability (4.24) remains finite and,
in general, is not small at all. Even for an infinitely high barrier (V0 ! ∞) one has
β = 1 and

T∞ ¼ E2 � m2c4

E2 � 1
2
m2c4

: (4.26)

This quantity is of the order of unity if E – mc2 is of the order of mc2. In the
ultrarelativistic limit

E » mc2, (4.27)

one has T∞ � 1. The ability of quantum relativistic particles to penetrate with large
enough probabilities through barriers with arbitrarily large height and width is the
contemporary formulation of the Klein paradox (Calogeracos & Dombey, 1999).

A hand-waving explanation of the tunnel effect is based on the Heisenberg
principle: Since one cannot know with arbitrary accuracy both the momentum and
the position of a particle at a given instant one cannot accurately separate the total
energy into a potential part and a kinetic part. Thus, the kinetic energy can be “a
bit” negative.

In the relativistic regime, there is a much stronger restriction (Landau & Peierls,
1931). One cannot know even the position alone with accuracy better than ℏc/E.
This means that relativistic quantum mechanics cannot be mechanics, it can only
be field theory (Berestetskii, Lifshitz, & Pitaevskii, 1971). It always contains
particles and antiparticles, and to measure the position with an accuracy better
than ℏc/E one needs to apply an energy so high that it will create particle-
antiparticle pairs. The original particle whose position is supposed to be measured
will be lost among the newly born particles since all electrons are identical.
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This consideration is relevant for the Klein paradox since under the condition
(4.10) both electron and positron states are explicitly involved.

The standard interpretation of the states with negative energy is based on the
Dirac theory of holes (Bjorken & Drell, 1964; Berestetskii, Lifshitz, & Pitaevskii,
1971; Davydov, 1976). It is supposed that in the vacuum all the states with
negative energy are occupied; antiparticles are the holes in this energy continuum.
In the case (4.10), the tunneling of a relativistic particle happens from a state from
the upper energy continuum (x < 0) to a state in the lower one (x > 0). In this
situation the definition of the vacuum should be reconsidered. This reconstruction
takes place necessarily when we switch on the potential and pass from the
“normal” situation of small V to the “paradoxical” case (4.10).

Let us consider the case of a rectangular barrier (4.20) but for arbitrary V. If V is
small enough, the bound states are formed in the gap, that is, with energies
jEj < mc2. A straightforward solution of this problem gives the following equation
for the energy of the bound states (Calogeracos & Dombey, 1999):

tan qað Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mc2 � Eð Þ mc2 þ E þ V0ð Þ
mc2 þ Eð Þ E þ V0 � mc2ð Þ

s
,

tan qað Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mc2 þ Eð Þ mc2 þ E þ V0ð Þ
mc2 � Eð Þ E þ V0 � mc2ð Þ

s
,

(4.28)

where

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E þ V0ð Þ2 � m2c4

q
ℏc

and we have made the replacement V0 ! �V0. When qa = π/2 and, thus,

V0 ¼ mc2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mcð Þ2 þ π2ℏ2c2

4a2

s
, (4.29)

the energy of one of the bound states reaches the boundary of the positron
continuum, E = �mc2 (Fig. 4.2). It is now energetically favorable to occupy this
state, creating a hole in the negative energy continuum (positron emission). At
qa= π the next state reaches the continuum, and the vacuum state is reconstructed.
This allows us to better understand the nature of the original Klein paradox.
Despite the problem that a large enough barrier looks static, actually it is not.
One needs to carefully study how this state is reached, and this process involves
positron emission by the growing barrier. For a more detailed discussion of the role
of the electron–positron pairs in the Klein paradox, see Krekora, Su, and Grobe
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(2005). We will come back to this issue later, when discussing supercritical
charges in graphene (Chapter 8).

4.2 The massless case: the role of chirality

We are going to discuss the Klein paradox and related issues for the massless
Dirac fermions in graphene (Katsnelson, Novoselov, & Geim, 2006). The case
m = 0 is very special. If we put m = 0 in the results (4.21) and (4.22) we will have
T= 1 and R= 0 for any parameters of the potential (one can see from Eq. (4.8) and
(4.13) that α= β= 1 for m= 0). This result is not related to a specific choice of the
potential barriers (4.20).

For m = 0, the equations (4.3) can be very easily solved for arbitrary V(x). Let
us introduce a variable

w ¼ 1
ℏc

ðx
dx0 E � V x0ð Þ½ �: (4.30)

Of course, we have to be careful: This change of variables is possible only for the
intervals within which E > V(x) or E < V(x), so dw/dx never vanishes. Therefore,
we will use (4.30) separately for each interval between two turning points (and for

Fig. 4.2 Energies of the bound state found from Eq. (4.28) as functions of the
height of the barrier; a = 2ℏ/(mc).
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the intervals between �∞ and the first turning point and between the last turning
point and +∞). There are two basic solutions for each such interval:

Ψ> ¼ 1
1

� �
exp i wj jð Þ (4.31)

and

Ψ< ¼ 1
�1

� �
exp �i wj jð Þ: (4.32)

Both components of the spinor should be continuous at the turning points, so one
can see immediately that the only way to match the solutions is to choose either Ψ>

or Ψ< to be zero everywhere. One can never have a combination of incident and
reflected waves, since propagation is only allowed in one direction (here one has to
recall that we consider only the case of normal incidence; for two-dimensional
problems with Ψ(x, y) this is not the case, see the next section).

The point is that a massless Dirac particle can only propagate either along its
(pseudo)spin direction or in the opposite direction. The scalar potential propor-
tional to the identity matrix in the Hamiltonian (4.2) does not act on the pseudospin
and therefore cannot change the direction of propagation of a massless particle
with spin 1

2 to the opposite.
This property has an analogue in more general two-dimensional and three-

dimensional situations with V = V(x, y) or V = V(x, y, z): Backscattering is
forbidden. This was found long ago for the scattering of ultrarelativistic particles
in three dimensions (Yennie, Ravenhall, & Wilson, 1954; Berestetskii, Lifshitz, &
Pitaevskii, 1971). Ando, Nakanishi, and Saito (1998) noticed an importance of this
property for carbon materials. In particular, the absence of backscattering explains
the existence of conducting channels in metallic carbon nanotubes; in a nonrela-
tivistic one-dimensional system an arbitrarily small disorder leads to localization
(Lifshitz, Gredeskul, & Pastur, 1988), so the conductive state of the nanotubes is
not trivial.

The consideration of Ando, Nakanishi, and Saito (1998) is very instructive, since
it shows explicitly the role of the Berry phase and time-reversal symmetry, but it is
quite cumbersome. Here we present a somewhat simplified version of this proof. To
this end, we consider the equation (Newton, 1966) for the scattering T-matrix

T̂ ¼ V̂ þ V̂ Ĝ0T̂ , (4.33)

where V̂ is the scattering potential operator,

Ĝ0 ¼ lim
δ!þ0

1

E � Ĥ0 þ iδ
(4.34)
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is the Green function of the unperturbed Hamiltonian Ĥ0, and E is the
electron energy (we will assume E > 0). For more details of this formalism,
see Chapter 6. If Ĥ0 is the Dirac Hamiltonian for massless fermions (1.22),
we have

Ĝ0 ~r;~r
0ð Þ ¼

ð
d~q

2πð Þ2 Ĝ0 ~qð Þ exp i~q ~r �~r0ð Þ½ �, (4.35)

where

Ĝ0 ~qð Þ ¼ 1
E � ℏv~q~σ þ iδ

¼ 1
ℏv

k þ~q~σ

k þ iδð Þ2 � q2
(4.36)

with k = E/(ħv). The probability amplitude of the backscattering can be found by
iterations of Eq. (4.33) and is proportional to

T �~k;~k

 �

¼ �~k
���V þ VĜV þ VĜVĜV þ � � � ~k

���D E
� T 1ð Þ þ T 2ð Þ þ � � � , (4.37)

where T(n) is the contribution proportional to Vn.

Let us assume that~k
Ox (we can always choose the axes in such a way), then

~k
��� E and �~k

��� E
have spinor structures

1
1

� �
and

1
�1

� �
,

respectively (see Eq. (1.30)). Thus, if T̂ is a 2 � 2 matrix

T̂ ¼ T0 þ~T~̂σ, (4.38)

one has

T �~k;~k

 �

¼ �~k
D ���Tz þ iTy

~k
��� E: (4.39)

Then, keeping in mind that V is proportional to the identity matrix, one can prove,

term by term, that all contributions to �~k Tzj j~k
D E

and �~k Ty

�� ��~kD E
vanish by

symmetry. Actually, this is just because ~T ~k

 �

/~kkOx. One cannot construct

from the vectors ~k and �~k anything with nonzero y- or z-components: For two

nonparallel vectors ~k1 and ~k2, one of them has a nonzero y-component and
~k1 �~k2kOz.
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4.3 Klein tunneling in single-layer graphene

Keeping in mind electrons in quantum electrodynamics, it is not easy to create
potential jumps larger than 2mc2 � 1 MeV. Similar phenomena take place in very
high electric or gravitational fields (Greiner, Mueller, & Rafelski, 1985; Grib,
Mamaev, & Mostepanenko, 1994; for a detailed list of references, see Greiner &
Schramm, 2008), but the context is always quite exotic, such as collisions of
ultraheavy ions or even black-hole evaporation. There were no experimental data
that would require the Klein paradox for their explanation.

Soon after the discovery of graphene, it was realized that Klein tunneling
(tunneling of Dirac fermions under the conditions of the Klein paradox) is one of
the crucial phenomena for graphene physics and electronics (Katsnelson, Novose-
lov, & Geim, 2006). Soon after the theoretical prediction of Klein tunneling in
graphene, it was confirmed experimentally (Stander, Huard, & Goldhaber-Gordon,
2009; Young & Kim, 2009).

In conventional terms of solid-state physics, Klein tunneling is nothing other
than tunneling through a p-n-p (or n-p-n) junction when electrons are transformed
into holes and then back to electrons (or vice versa) (Fig. 4.3). As we saw in the
previous section, for massless Dirac fermions, the transmission at normal incidence
is always 100%, irrespective of the height and width of the potential barrier. From
the point of view of applications, this is very bad news: If one just copies the
construction of a silicon transistor it will not work, since it is impossible to lock it.
The gap opening is necessary. The good news is that, due to the Klein paradox, the
unavoidable inhomogeneities of the electron density in graphene (see Section 13.1)
do not lead to localization and, moreover, their effect on the electron mobility is
not very great. We will come back to this important issue many times in this book.

Now consider, following Katsnelson, Novoselov, and Geim (2006), electron
propagation through the barrier (4.20) for an arbitrary angle of incidence φ. The

Fig. 4.3 Transformation of an electron to a hole under the potential barrier; the
large arrows show directions of momenta, assuming that the group velocity is
always parallel to the Ox axis. Black and gray lines show the dispersion of
electronic states with opposite pseudospin projections.
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energy E = ħvk is supposed to be positive. There is a refraction of the electron
wave at the potential jump, and the new angle θ is determined by the conservation
of the y-component of the electron momentum (and, thus, of the wave vector):

ky = k sin φ= qy = q sin θ, (4.40)

where

q ¼ E � V0j j
ℏv

(4.41)

is the length of the wave vector within the barrier. For massless Dirac fermions
with energy E propagating at the angle φ to the x-axis, the components of the
spinor wave functions are related by

ψ2 = ψ1 exp (iφ) sgnE (4.42)

(see Eq. (1.30)). Thus, the wave function has the following form (cf. Eq. (3.13) for
the case of zero energy):

ψ1 x; yð Þ ¼
exp ikxxð Þ þ r exp �ikxxð Þ½ � exp ikyy

� 	
, x < �a,

A exp iqxxð Þ þ B exp �iqxxð Þ½ � exp ikyy
� 	

, xj j < a,

t exp ikxxþ ikyy
� 	

, x > a,

8>><
>>: (4.43)

ψ2 x; yð Þ ¼
s exp ikxxþ iφð Þ � r exp �ikxx� iφð Þ½ � exp ikyy

� 	
, x < �a,

s0 A exp iqxxþ iθð Þ � B exp �iqxx� iθð Þ½ � exp ikyy
� 	

, xj j < a,

st exp ikxxþ ikyyþ iφ
� 	

, x > a,

8>><
>>:

(4.44)

where

s ¼ sgnE, s0 ¼ sgn E � V0ð Þ, kx ¼ k cosφ, qx ¼ q cos θ (4.45)

and we have taken into account that the reflected particle moves at the angle π � φ,
exp [i(π � φ)] = � exp (�iφ). The parameters r (the reflection coefficient), t (the
transmission coefficient), A, and B should be found from the continuity of ψ1 and
ψ2 at x = �a. Note that the Klein paradox situation is

ss 0 = � 1 (4.46)

(with opposite signs of the energy outside and inside the barrier). As a result, one
finds

88 The Klein paradox and chiral tunneling

https://www.cambridge.org/core


r ¼ 2 exp iφ� 2ikxað Þ sin 2qxað Þ

� sinφ� ss0 sin θ
ss0 exp �2iqxað Þ cos φþ θð Þ þ exp 2iqxað Þ cos φ� θð Þ½ � � 2i sin 2qxað Þ :

(4.47)

The transmission probability can be calculated as

T = |t|2 = 1 � |r|2. (4.48)

The results are shown in Fig. 4.4. In agreement with the general consideration of
the previous section, r = 0 at φ = 0 (this can be seen immediately from Eq. (4.47)
and (4.40)).

There are also additional “magic angles” for which r = 0 and one has 100%
transmission. They correspond to the condition sin (2qx a) = 0, or

qxa ¼ π
2
N, (4.49)

Fig. 4.4 Transmission probabilities through a 100-nm-wide barrier as a function
of the angle of incidence for single-layer (a) and bilayer (b) graphene.
The electron concentration n outside the barrier is chosen as 0.5 � 1012 cm�2

for all cases. Inside the barrier, hole concentrations p are 1� 1012 and 3� 1012 cm�2

for black and gray curves, respectively (such concentrations are most typical in
experiments with graphene). This corresponds to Fermi energies E of incident
electrons �80 and �17 meV for single-layer and bilayer graphene, respectively.
The barrier heights V0 are (a) 200 and (b) 50 meV (black curves) and (a) 285 and
(b) 100 meV (gray curves).
(Reproduced with permission from Katsnelson, Novoselov, & Geim, 2006.)
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where N = 0, �1, �2, . . . Interestingly, this coincides with the condition (4.23) of
complete transmission for the case of nonzero mass. These conditions correspond
to the Fabry–Pérot resonances in optics (Born & Wolf, 1980). The same reson-
ances can take place for a more general potential V = V(x), as was shown in the
semiclassical approximation by Shytov, Rudner, and Levitov (2008) (see also
Shytov et al., 2009). At the same time, for some V(x), these resonances cannot take
place, and only full transmission for normally incident beam survives (Tudorovskiy,
Reijnders, & Katsnelson, 2012; Reijnders, Tudorovskiy, & Katsnelson, 2013).

This issue will be considered in the next section.

4.4 Klein tunneling for a smooth potential barrier and the effect
of magnetic fields

Strictly speaking, the Dirac-cone approximation itself does not work for the case of
an atomically sharp potential since it will induce intervalley scattering, which can
change the whole physical picture dramatically. The sharp potential jump con-
sidered in the previous sections means a sharpness in comparison with the electron
wave length k�1 but not in comparison with the interatomic distance a. So, the
typical spatial scale of the change of potential at the barrier d was assumed to
satisfy the condition

a « d < «
1
k
: (4.50)

The opposite limit case, that of a very smooth potential

kd » 1, (4.51)

was first considered by Cheianov and Falko (2006). It turns out that in this case the
region of high transmission near φ � 0 is pretty narrow:

T(φ) = exp (�Ckd sin2φ), (4.52)

where C is a numerical factor depending on the specific shape of the potential, thus
T(φ) � 1 if

φj j 	 1ffiffiffiffiffi
kd

p (4.53)

(the “Klein collimation”). The result (4.52) was obtained using both the exact
solution of the Dirac equation in a constant electric field and the semiclassical
approximation. Here we will present a simple derivation following Shytov, Gu,
and Levitov (2007; see also Shytov et al., 2009).
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Let us consider the Schrödinger equation (4.1) with the Hamiltonian (4.2) for
the case when

V(x) = �eEx, (4.54)

where E is the electric field. One can use the momentum representation for the
coordinate x, x$ kx. Then the coordinate x! i∂/∂kx and the Schrödinger equation
takes the form (with the replacement c! v, keeping in mind the case of graphene)

�ieE
∂Ψ
∂kx

¼ Ĥ 0Ψ, (4.55)

where

Ĥ
0 ¼ ℏv~k~σ � ε

(here we use the notation ε for the electron energy, in order not to confuse it with
the electric field). The Eq. (4.55) is formally equivalent to the time-dependent
Schrödinger equation with a time t0=�ℏkx/(eE) and the Hamiltonian linearly
dependent on the “time.” This is nothing other than the problem of Landau–Zener
breakdown, in which the term ℏvkyσy plays the role of the gap in the Hamiltonian.
Using the known solution of this problem (Vonsovsky & Katsnelson, 1989) one finds

T � exp � πℏvk2y
eEj j

 !
, (4.56)

which coincides with Eq. (4.52), keeping in mind that d � ℏvk/|eE|.
If we have crossed electric and magnetic fields E and B (B || Oz), one can use

the Lorentz transformation, similarly to what was done in Section 2.10 (see
Eq. (2.196) and (2.197)). In the case

E >
v

c
B, (4.57)

which is complementary to Eq. (2.198), one can exclude the magnetic field, and
the electric field E is replaced in Eq. (4.56) by

E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� vB

cE

� �2
s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � vB

c

� �2
s

(cf. Eq. (2.200)). The effects of disorder on the motion of an electron near a p-n
junction were considered by Fogler et al. (2008).

Shytov, Rudner, and Levitov (2008) studied the case of a parabolic potential
barrier

V(x) = ax2 � ε (4.58)

4.4 A smooth potential barrier and the effect of magnetic fields 91

https://www.cambridge.org/core


(a, ε > 0), which creates p-n boundaries at

x ¼ �xε ¼ �
ffiffiffi
ε
a

r
: (4.59)

The magnetic field B is included in the Landau gauge, Ax = 0, Ay = Bx. Numerical
solution of the Schrödinger equation gives the results shown in Fig. 4.5. One can see
that a region of 100% transmission can exist not only for a rectangular barrier
(see Eq. (4.49)) but also for a more general symmetric potential. At the same time,
for nonsymmetric potentials V(x) 6¼ V(�x), the side resonances with φ 6¼ 0 turn out
to be suppressed (Tudorovskiy, Reijnders, & Katsnelson, 2012) as will be
discussed later. The magnetic field modifies the picture of the transmission in a
peculiar way. Oscillations of the conductance through the barrier as a function of
the magnetic field were observed by Young and Kim (2009) (Fig. 4.6).

(a) B= 0

M
om

en
tu

m
 p

y/
p *

Potential depth e/e*

1

0.5

–0.5

–1

0

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

(b) B> 0

M
om

en
tu

m
 p

y/
p *

Potential depth e/e*

1

0.5

–0.5

–1

0

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

Fig. 4.5 The transmission coefficient, obtained from numerical solution of the
Dirac equation with the potential (4.58), plotted as a function of the component of
electron momentum py and potential depth. At zero magnetic field (a), transmis-
sion exhibits fringes with a phase that is nearly independent of pv. At finite
magnetic field (b), the fringe contrast reverses its sign on the parabola (black thin

line). Here ε∗ = (aℏ2v2)1/3 and p∗ = ε∗/v.
(Reproduced with permission from Shytov, Rudner, & Levitov, 2008.)
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Now let us consider a general semiclassical theory for an arbitrary, smooth, one-
dimensional potential V(x); here we will follow the work by Reijnders, Tudorovs-
kiy, and Katsnelson (2013).

First, let us introduce dimensionless units x ! x=l,~̂p ! ~̂p=p0,
E ! E=vp0,V ! V=vp0, where l is a typical spatial scale of the change of
potential and vp0 is a typical energy scale of the difference E – V. Then, the
Schrödinger equation for massless Dirac fermions in graphene takes the form

�ihσ̂x
d

dx
þ pyσ̂y þ U xð Þ

� �
Ψ xð Þ ¼ 0, (4.60)

where U(x) = V(x) � E,
h = ℏ/(p0l), (4.61)

and we try the solution in the form

Ψ x; yð Þ ¼ Ψ xð Þ exp ipyx

h

� �
(4.62)

(cf. Eq. (4.43), (4.44)). Note that semiclassical approximation is formally applic-
able if h « 1.

Similar to the transition from Eq. (2.39) to Eq. (2.42), we act by the operator
�ihσ̂x

d
dx þ pyσ̂y � U xð Þ on Eq. (4.60). The result is

�h2
d2

dx2
þ p2y � U2 xð Þ � ihσ̂xU

0 xð Þ
� �

Ψ xð Þ ¼ 0, (4.63)

Fig. 4.6 The magnetic field and density dependences of the conductance of a p-n-p
junction in graphene; left and right panels present experimental data and theoretical
results, respectively.
(Reproduced with permission from Young & Kim, 2009.)
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where U0 (x) = dU(x)/dx. Since Eq. (4.63) contains only a single Pauli matrix, it
can be diagonalized by the substitution

Ψ xð Þ ¼ 1
1

� �
η1 xð Þ þ 1

�1

� �
η2 xð Þ (4.64)

and we obtain (cf. Eq. (2.42), (2.43)):

h2
d2

dx2
þ U2 xð Þ � ihU0 xð Þ � p2y

� �
η1,2 xð Þ ¼ 0, (4.65)

η2,1 ¼
1
py

h
d

dx
� iU xð Þ

� �
η1,2: (4.66)

Eq. (4.65) reminds the standard nonrelativistic Schrödinger equation with the
effective potential U2(x) � ihU 0 (x) and the effective energy p2y . Just as in the
conventional semiclassical approximation (Landau & Lifshitz, 1977) one can try
the solution in the form

η1 xð Þ ¼ A x; hð Þ exp iS x; hð Þ
h

� �
, (4.67)

expanding the phase S(x,h) and amplitude A(x,h) functions in Taylor series in the
parameter h (4.61). In the leading order approximation, we have

η1 xð Þ ¼ Aþ xð Þ exp iS0 xð Þ
h

� �
þ A� xð Þ exp � iS0 xð Þ

h

� �
, (4.68)

where

S0 xð Þ ¼
ðx
x0

dy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2y � U2 xð Þ

q
(4.69)

and x0 is a constant. Eq. (4.68) describes incident and reflected waves in the
classically allowed regions where p2y > U2 xð Þ. In the classically forbidden regions
(p2y < U2 xð Þ) it describes evanescent waves, and near the turning points
(p2y ¼ U2 xð Þ) the amplitude functions A�(x) are divergent, making the expression
(4.68) inapplicable. The problem of how to match the semiclassical solutions in
classically allowed and classically forbidden regions and how to build a “uniform
asymptotics” valid in the vicinity of the turning points is discussed in detail by
Tudorovskiy, Reijnders, and Katsnelson (2012) and Reijnders, Tudorovskiy, and
Katsnelson (2013). Here we will show just some results.

Let us consider the case of n-p-n junction, with two smooth-enough junctions
between electron and hole parts separated by a relatively long hole region
(Fig. 4.7). In this situation, turning points x� and classically forbidden regions
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arise, and we have to solve the matching problem for each of them separately. The
result for the transmission coefficient tnpn is (Shytov, Rudner, & Levitov, 2008;
Tudorovskiy, Reijnders, & Katsnelson, 2012; Reijnders, Tudorovskiy, & Katsnel-
son, 2013):

tnpn ¼ tnptpne�iL=h

1� r∗npr
∗
pne

�2iL=h
, (4.70)

where tnp, rnp are transmission and reflection coefficients for the left junction, tpn,
rpn are the same for the right junctions, and

L ¼
ðx2�
x1þ

dy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2y � U2 xð Þ

q
, (4.71)

where the integral is taken over the classically allowed hole region. This is an
analogue of the known expression describing Fabry–Pérot resonances in optics
(Born & Wolf, 1980).

Keeping in mind that |t|2 + |r|2 = 1 for both n-p and p-n junctions, one can find
that the maximum (resonant) value of the modulus of transmission coefficient
(4.72) is equal to

tnpn
�� ��

res
¼ tnp

�� �� tpn�� ��
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� tnp

�� ��2
 �
1� tnp

�� ��2
 �r ; (4.72)

this value is equal to 1 only if |tnp| = |tpn| (symmetric barrier), otherwise we always
have |tnpn|res < 1.

In semiclassical approximation, one finds (Tudorovskiy, Reijnders, &
Katsnelson, 2012; Reijnders, Tudorovskiy, & Katsnelson, 2013)

tnpn
�� ��

res
¼ 1

cosh
Knp � Kpn

h

� � , (4.73)

electrons holes

forbidden

forbidden

Fig. 4.7 A potential barrier for the case of n-p-n junction.
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where

K ¼
ðxþ
x�

dy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 xð Þ � p2y

q
(4.74)

and the integral are taken over the corresponding (left or right) classically forbid-
den region. Therefore, one can see that for a generic, asymmetric one-dimensional
barrier, the full transmission takes place only for py = 0, otherwise the suppression
is exponentially strong in our formal small parameter (4.61).

Numerical results that illustrated suppression of the side resonances for the
Dirac electrons are shown in Fig. 4.8 (Kleptsyn et al., 2015). This conclusion is
also confirmed by numerical simulations on honeycomb lattice, that is, beyond
Dirac approximation (Logemann et al., 2015).

4.5 Negative refraction coefficient and Veselago lenses for
electrons in graphene

As was discussed in Section 4.1, the group velocity~vg is parallel to the wave vector
~k for particles (electrons) and antiparallel for antiparticles (holes). In the situation
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Fig. 4.8 Transmission probability for n-p-n junction for massless Dirac fermions;
energy is 80 meV and the height of the potential is 200 meV. (a) The results for
symmetric potential (shown in b). (c) The results for asymmetric potential (shown in d).
(Reproduced with permission from Kleptsyn et al., 2015)
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of the Klein paradox, the incident and transmitted waves propagate, by definition,
in the same direction, and the propagation direction is determined by the group
velocity. This means that the wave vectors for these waves are antiparallel. For
massless particles with a linear dispersion, the group velocity is

~vg ¼ �v
~k

k
, (4.75)

where the signs + and � correspond to electrons and holes, respectively. The

incident electron wave has the wave vector ~k ¼ k cos φ; sin φð Þ and the group
velocity ~ve ¼ v cos φ; sinφð Þ: The reflected wave has the wave vector
~k0 ¼ k � cosφ; sinφð Þ and the group velocity~v0e ¼ v �cos φ; sinφð Þ: For the trans-
mitted wave, in the situation of the Klein paradox (or for a p-n junction, using
conventional semiconductor terminology) the group velocity~vh ¼ v cos θ0; sin θ0ð Þ
and the wave vector ~q ¼ �q cos θ0; sin θ0ð Þ, cos θ0 > 0, q is determined by
Eq. (4.41) and θ 0 = � θ. The refraction angle θ0 is determined by the continuity
of the y-component of the wave vector (see Eq. (4.40)), or

sin θ0

sinφ
¼ � k

q
� n (4.76)

with a negative refractive index n. This means that the p-n junction in graphene
transforms a divergent electron beam into a collimated one, see Fig. 4.9 (Cheianov,
Falko, & Altshuler, 2007).

In optics, such devices are known as Veselago lenses (Veselago, 1968), and
materials with negative refractive indices are called left-handed materials, or
metamaterials (Pendry, 2004). Creation of such a material for visual light is not
an easy task. For electrons in graphene such a situation can be realized quite easily.

Fig. 4.9 A Veselago lens for the case of a negative refraction index.
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For a detailed discussion of the relation between the negative refraction index and
the Klein paradox, see Giiney and Meyer (2009).

Electron Veselago lensing in graphene was experimentally observed by Lee,
Park, and Lee (2015) and by Chen et al. (2016). Bøggild et al. (2017) suggested a
concept of “Dirac Fermion Microscope” where collimated electron beams in
graphene in the ballistic regime are used to magnify atomic-scale inhomogeneities.

A detailed theory of Veselago lensing in graphene was developed by Reijnders
and Katsnelson (2017a, 2017b). Here we will present only the main physical
results of the theory.

First, for the massless Dirac fermions there is an intimate relation between
propagation direction of the electron beam and the direction of the pseudospin if
we use the beam with nonzero pseudospin polarization. The latter can be created,
e.g., via electron injection from hexagonal boron nitride (Wallbank et al., 2016). In
that case the sublattice symmetry is broken, as we will discuss in detail at the end
of the book (Chapter 13). Numerical simulations as well as semiclassical theory
(Reijnders & Katsnelson, 2017a) show that the pseudospin polarization can result
into a splitting or asymmetric shift of the focus, see Fig. 4.10.

When we take into account the trigonal warping, we have different Hamilto-
nians for the different valleys, due to the τz term in Eq. (1.34). This leads to
different trajectories for different valleys and to a valley splitting of the focus
(Reijnders & Katsnelson, 2017b). Moreover, one can create a valley beam
splitter based on n-p-n junction: the trigonal warping effects can essentially
separate the K and K0 beam components (Garcia-Pomar, Cortijo, & Nieto-
Vesperinas, 2008).

4.6 Klein tunneling and minimal conductivity

As was stressed in the previous chapter, the existence of a minimal conductivity of
the order of e2/h is one of the striking properties of graphene. We discussed this
from the perspective of pure samples (the ballistic regime). It is instructive to
consider the same problem from the opposite perspective of strong disorder
(Katsnelson, Novoselov, & Geim, 2006).

First, it is worth recalling some basic ideas on the electronic structure of
strongly disordered systems (Mott, 1974; Mott & Davis, 1979; Shklovskii &
Efros, 1984; Lifshitz, Gredeskul, & Pastur, 1988). Let us start with the case in
which typical fluctuations of the potential energy V(x, y) are much stronger than
the kinetic energy T. The electrons are locked into puddles restricted by the
equipotential lines E – V(x, y). There is a small probability of tunneling from one
puddle to another, so some electrons are distributed among couples of puddles,
fewer electrons among trios of puddles, etc. (Fig. 4.11). On increasing the ratio
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jT/Vj the tunneling probability increases, and at some point a percolation transi-
tion happens (Shklovskii & Efros, 1984), with the formation of an infinite cluster
of regions connected by electron tunneling. This percolation is associated with
the Mott–Anderson metal–insulator transition, although the latter involves more

(a) (b)

(c)

Fig. 4.10 The modulus of the electron wave function near the focus of the
Veselago lens shown schematically in Fig. 4.9. Electron energy is 100 meV, the
height of the potential barrier in 250 meV and the distance from the source to
the lens is L = 100 nm. (a) The components of the spinor wave function are
1; 1ð Þ= ffiffiffi

2
p

, the electron density is symmetric about the x-axis. (b) The components
of the spinor wave function are (1,0), the mirror symmetry is broken. (c) The
components of the spinor wave function are 1;�1ð Þ= ffiffiffi

2
p

, the mirror symmetry is
restored, but the central maximum has disappeared.
(Reproduced with permission from Reijnders & Katsnelson, 2017a.)
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then just percolation, since phase relations between the electron wave functions
are also important (Mott & Davis, 1979).

The Klein tunneling changes the situation dramatically. However small the
kinetic energy is (or, equivalently, however high and broad the potential barriers
are), the electrons cannot be locked into puddles (Fig. 4.12). Thus, their states
cannot be localized.

In the absence of Anderson localization, the minimal conductivity can be
estimated via Mott’s considerations on the basis of the remark by Ioffe and Regel
that for extended states the electron mean free path l cannot be smaller than the
electron de Broglie wavelength (Mott, 1974; Mott & Davis, 1979). Here we apply
this general consideration to graphene.

Fig. 4.11 A sketch of electronic states in conventional semiconductors with strong
disorder; electrons tunnel, with a small probability, between classically allowed
regions.

Fig. 4.12 A sketch of electronic states in graphene with strong disorder; due to
Klein tunneling, electrons cannot be locked and penetrate through p-n boundaries,
transforming into holes.
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Let us start with Einstein’s relation between the conductivity σ and the electron
diffusion coefficient D (Zubarev, 1974).

σ ¼ e2
∂n
∂μ

D (4.77)

For a noninteracting degenerate (obeying Fermi statistics) electron gas

∂n
∂μ

¼ N EFð Þ ¼ 2 EFj j
πℏ2v2

¼ 2kF
πℏv

(4.78)

(see Eq. (2.138) and Eq. (1.72)). For the two-dimensional case, the diffusion
coefficient is

D ¼ 1
2
v2τ, (4.79)

where τ is the electron mean-free-path time. On substituting Eq. (4.78) and (4.79)
into (4.77) one finds

σ ¼ e2

πℏ
kFl ¼ 2e2

h
kFl, (4.80)

where l= vτ is the mean free path. Assuming that the minimal possible value of kFl
is of the order of unity, we have an estimation for the minimal conductivity of

σmin 
 e2

h
(4.81)

coinciding, in the order of magnitude, with the ballistic conductivity e2/(πh) per
channel (see Eq. (3.16)).

This conclusion is very important, in the light of experimental observation of
electron-hole puddles in graphene on a substrate in the vicinity of the neutrality
point (Martin et al., 2008). Moreover, it was demonstrated theoretically that the
puddles are unavoidable even for freely suspended graphene at room temperature
since the inhomogeneities of electron density result from thermal bending fluctu-
ations (Gibertini et al., 2010); this phenomenon will be considered in detail in
Section 13.1. It is the Klein tunneling that protects electron states from localization
and makes large-scale inhomogeneities rather irrelevant for electron transport.

The minimal conductivity was analyzed in terms of classical percolation by
Cheianov et al. (2007). It follows from their analysis that the minimal conductivity
is of the order of e2/h if the number of electrons (holes) per puddle is of the order of 1.

4.7 Chiral tunneling in bilayer graphene

To elucidate which features of the anomalous tunneling in graphene are related to
the linear dispersion and which features are related to the pseudospin and chirality
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of the Dirac spectrum, it is instructive to consider the same problem for bilayer
graphene (Katsnelson, Novoselov, & Geim, 2006). We will restrict ourselves to the
case of moderate electron energies, for which the parabolic approximation (1.46)
works. This means that the energies are smaller than that of interlayer hopping,
both outside and inside the barrier:

jEj, jE � V0j « 2jγ1j (4.82)

and, at the same time, the trigonal warping effects are not important,

ka, qa >
γ3γ1
γ20

����
���� (4.83)

(cf. Eq. (1.55)), where we assume that the potential barrier has the shape (4.20),
and k and q are the wave vectors outside and inside the barrier, respectively:

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m∗ Ej j

ℏ2

s
,

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m∗ E � V0j j

ℏ2

s
: (4.84)

Assuming that the wave function propagates in the y-direction with the wave-
vector component ky, the two components of the spinor wave function are

ψ1 x; yð Þ ¼ ψ1 xð Þ exp ikyy
� 	

,

ψ2 x; yð Þ ¼ ψ2 xð Þ exp ikyy
� 	

,
(4.85)

where ψi(x) satisfy the second-order equations

d2

dx2
� k2y

� �2

ψi ¼ k4ψi (4.86)

outside the barrier and

d2

dx2
� k2y

� �2

ψi ¼ q4ψi (4.87)

inside it. At the boundaries x = �a one has to require that four conditions be
fulfilled, namely continuity of ψ1, ψ2, dψ1/dx and dψ2/dx. To satisfy them one has
to include not only propagating but also evanescent solutions of Eq. (4.86) and
(4.87) but, of course, without the terms growing exponentially at x ! �∞.
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Let us consider first the case x < �a. The two components of the wave function
can be found from the equations

d

dx
þ ky

� �2

ψ2 ¼ sk2ψ1,

d

dx
þ ky

� �2

ψ1 ¼ sk2ψ2,

(4.88)

where s = sgn E (cf. Eq. (4.45)). Thus, for this region one can try the solutions

ψ1 xð Þ ¼ α1 exp ikxxð Þ þ β1 exp �ikxxð Þ þ γ1 exp χxxð Þ,
ψ2 xð Þ ¼ s α1 exp ikxxþ 2iφð Þ þ β1 exp �ikxx� 2iφð Þ � γ1h1 exp χxxð Þ½ �, (4.89)

where φ is the angle of incidence,

ky = k sin φ,

kx = k cos φ, (4.90)

χx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ 2k2y

q
¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin 2φ

p
(4.91)

and

h1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin 2φ

p
� sin φ


 �2
: (4.92)

The coefficients α1, β1, and γ1 are the amplitudes of the incident, reflected, and
evanescent waves, respectively.

For the case x > a there is no reflected wave:

ψ1 xð Þ ¼ α3 exp ikxxð Þ þ δ3 exp �χxxð Þ,

ψ2 xð Þ ¼ s α3 exp ikxxþ 2iφð Þ � δ3
h1

exp �χxxð Þ
� �

;
(4.93)

the phase factor exp(2iφ) follows from Eq. (1.48). Finally, inside the barrier |x| < a
one has to use the most general solution with two propagating and two evanescent
waves:

ψ1 xð Þ¼ α2exp iqxxð Þþβ2exp �iqxxð Þþγ2exp χ0xx
� 	þδ2exp �χ0xx

� 	
,

ψ2 xð Þ¼ s0 α2exp iqxxþ2iθð Þþβ2exp �iqxx�2iθð Þ�γ2h2exp χ0xx
� 	�δ2

h2
exp �χ0xx
� 	� �

,

(4.94)

where θ is the refraction angle,
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qy = q sin θ = ky,

qx = q cos θ, (4.95)

χ0x ¼ q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin 2θ

p
, (4.96)

h2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin 2θ

p
� sin θ


 �2
(4.97)

and s0 = sgn(E – V0) (cf. Eq. (4.45)). The presence of the evanescent waves is a
very interesting feature of bilayer graphene that is dramatically different both from
the Dirac case and from the Schrödinger case.

Now we have to find the coefficients αi, βi, γi, and δi from eight conditions of
continuity of ψi(x) and dψi(x)/dx at x = a and x = �a. In general, this can only be
done numerically. Typical results for the “Klein” case ss0 = �1 are shown in
Fig. 4.4(b). Similarly to the case of single-layer graphene, there are “magic angles”
with transmission probability equal to unity. A detailed mathematical analysis
(Kleptsyn et al., 2015) shows, however, that contrary to the case of the single-
layer graphene, where 100% transmission is protected by chirality, and for the case
of symmetric potential, additional magic angles exist; for the case of bilayer, the
magic angles are not necessary, and one can build a potential barrier with arbitrary,
small transmission probability at any angle (for a given energy). It takes place for
the potentials, which are oscillating rapidly enough (with a typical scale of the
oscillations comparable with the de Broglie wavelength of the electrons), see
Fig. 4.13.
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Fig. 4.13 An example of the fast-oscillating potential. Within the energy band
from 20 to 30 meV the maximal transmission probability does not exceed
2 � 10�8.
(Reproduced with permission from Kleptsyn et al., 2015.)
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This provides a nice counterexample for a frequent statement that n-p-n (or p-n-p)
junction cannot be locked in single-layer graphene due to the energy gap absence. In
the case of bilayer, the gap is also absent but the junction can be locked! It is the
chiral properties of electrons (conservation of pseudospin and, therefore, the propa-
gation direction for the normally incident beam) rather than the gap absence. The
difference can already be seen from our simple case of a rectangular barrier if we
focus on the case of the normally incident beam.

For the case of normal incidence (φ = 0, θ = 0) the problem can be solved
analytically, and the result for the transmission coefficient is

t ¼ α3
α1

¼ 4ikq exp 2ikað Þ
qþ ikð Þ2 exp �2qað Þ � q� ikð Þ2 exp 2qað Þ : (4.98)

In contrast with the case of single-layer graphene, T = |t|2 decays exponentially
with the height and the width of the barriers, as exp(�4qa) for φ= 0. This situation
is sometimes called anti-Klein tunneling. This illustrates a drastic difference
between the cases of chiral scattering with Berry phases π and 2π. For the latter
case, the condition (1.49) does not fix the projection of the pseudospin to the
direction of the motion (cf. Eq. (1.33)), so the conservation of the chirality does not
forbid backscattering.

For the case a ! ∞ (which is just a potential step corresponding to a single p-n
junction) T = 0 at φ = 0, which looks rather counterintuitive: There is a continuum
of allowed states after the barrier but penetration there is forbidden. Furthermore,
for a single p-n junction with V0 » E, the following analytic solution for any φ has
been found:

T ¼ E

V0
sin 2 2φð Þ, (4.99)

which, again, yields T = 0 for φ = 0. This behavior is in obvious contrast with that
of single-layer graphene, where normally incident electrons are always perfectly
transmitted.

The perfect reflection (instead of perfect transmission) can be viewed as another
incarnation of the Klein paradox, because the effect is again due to the charge-
conjugation symmetry. For single-layer graphene, an electron wave function at the
barrier interface perfectly matches the corresponding wave function for a hole with
the same direction of pseudospin, yielding T = 1. In contrast, for bilayer graphene,
the charge conjugation requires a propagating electron with wave vector k to
transform into a hole with wave vector ik (rather than �k), which is an evanescent
wave inside a barrier.

For completeness, we compare the results obtained with those from the case of
conventional nonrelativistic electrons. If a tunnel barrier contains no electronic
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states, the difference is obvious: The transmission probability in this case is known
to decay exponentially with increasing barrier width and height (Esaki, 1958), so
that the tunnel barriers discussed previously would reflect electrons completely.
However, both graphene systems are gapless, and it is more appropriate to
compare them to gapless semiconductors with nonchiral charge carriers (such a
situation can be realized in certain heterostructures (Meyer et al., 1995; Teissier
et al., 1996)). In this case, we find

t ¼ 4kxqx exp 2iqxað Þ
qx þ kxð Þ2 exp �2iqxað Þ � qx � kxð Þ2 exp 2iqxað Þ , (4.100)

where kx and qx are the x-components of the wave vector outside and inside the
barrier, respectively. Again, similarly to the case of single-layer and bilayer
graphene, there are cases of normal incidence (φ = 0), the resonance conditions

Fig. 4.14 The transmission probability T for normally incident electrons in single-
layer and bilayer graphene and in a nonchiral, zero-gap semiconductor as a
function of the width D of the tunnel barrier. The concentrations of charge carriers
are chosen as n = 0.5 � 1012 cm�2 and p = 1 � 1013 cm�2 outside and inside the
barrier, respectively, for all three cases. The transmission probability for bilayer
graphene (the lowest line) decays exponentially with the barrier width, even
though there are plenty of electronic states inside the barrier. For single-layer
graphene it is always 1 (the upper line). For the nonchiral semiconductor it
oscillates with the width of the barrier (the intermediate curve).
(Reproduced with permission from Katsnelson, Novoselov, & Geim, 2006.)
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2qx a = πN, N = 0, �1, at which the barrier is transparent. For the tunneling
coefficient is then an oscillating function of the tunneling parameters and can
exhibit any value from 0 to 1 (see Fig. 4.14). This is in contrast with graphene,
for which T is always 1, and bilayer graphene, for which T = 0 for sufficiently
wide barriers. This makes it clear that the drastic difference among the three cases
is essentially due to the different chiralities or pseudospins of the quasiparticles
involved rather than any other features of their energy spectra.

To summarize this chapter, the Klein paradox is a key phenomenon for
electronic transport in graphene and for graphene-based electronics. On the one
hand, it protects high electron mobility in inhomogeneous graphene and prevents
Anderson localization. On the other hand, it is an essential obstacle to copying
a “normal” transistor based on p-n-p (or n-p-n) junctions in conventional semicon-
ductors. Usually, one can easily lock the transistor by applying a voltage to the
potential barrier, which is impossible for the cases of both single-layer and bilayer
graphene due to the Klein paradox. One needs to open a gap in the electron
spectrum. One of the most natural ways to do this is the use of space quantization
in graphene nanoribbons and nanoflakes, which will be one of the subjects of the
next chapter.
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5

Edges, nanoribbons, and quantum dots

5.1 The neutrino billiard model

Owing to the Klein paradox, the massless Dirac fermion cannot be confined in a
restricted region by any configuration of a purely electrostatic (scalar) potential
V(x, y); one needs the gap opening. As discussed in Section 1.3, this requires a
violation of the equivalence of the sublattices. Let us consider the Hamiltonian

Ĥ ¼ �iℏv~σrþ σzΔ x; yð Þ, (5.1)

where the last term represents a difference of potential energy between the
A and B sites (or between (pseudo)spin up and (pseudo)spin down states). With
Δ = constant the energy spectrum of the Hamiltonian (5.1) is

E ~k
� �

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ2v2k2 þ Δ2

p
, (5.2)

where~k is the wave vector and there is the energy gap 2jΔj. For a given energy E,
the regions where jEj < jΔ(x, y)j are classically forbidden; quantum mechanically,
the probability of tunneling to these regions decays exponentially with the distance
from the boundary. In particular, one can introduce the boundary condition

jΔ(x, y)j = �∞ (5.3)

at a line L; thus, only the region D restricted by the line L is allowed for the
particle (Fig. 5.1). The line L is parameterized by the length s counted from some
initial point:

x= xL(s), y= yL(s) (5.4)

We will assume
Δ(x, y) = 0 (5.5)

within the region D.
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This model was considered by Berry and Mondragon (1987) long before the
discovery of graphene and was called the “neutrino billiard” (at that time it was
assumed that the neutrino had zero mass). It is not sufficient to completely describe
the edge effects and confinement in graphene nanoribbons and nanoflakes: As we
will see further, the existence of two valleys is of crucial importance, thus, the
single Dirac point approximation is not enough. However, it already contains some
important physics, so it is convenient to start our consideration with this model.

An important property of the Hamiltonian (5.1) is that it is not invariant under
the time-reversal symmetry operation T̂ . The latter can be represented (Landau &
Lifshitz, 1977) as

T̂ ¼ ÛK̂ , (5.6)

where

Û ¼ iσ̂y ¼ 0 1
�1 0

� �
(5.7)

and K̂ is the complex conjugation. Under this operation the Hamiltonian Ĥ (5.1) is
transformed into

Ĥ0 ¼ ÛĤ∗Û
þ ¼ �iℏv~σr� σzΔ x; yð Þ (5.8)

and differs from Eq. (5.1) by the sign of Δ. This means that there is no
Kramers degeneracy (Landau & Lifshitz, 1977) of the energy levels of the

Fig. 5.1 The geometry of a “neutrino billiard.” The particle moves within the
region D restricted by the line L where the infinite energy gap opens.
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Hamiltonian (5.1). At the same time this means that the energy spectrum is
insensitive to the sign of Δ: If

Ψ ¼ ψ1
ψ2

� �

is an eigenstate of the Hamiltonian (5.1) with an energy E, the function

Ψ0 ¼ T̂Ψ ¼ ψ2
∗

�ψ1
∗

� �
(5.9)

corresponds to the same eigenvalue E for the Hamiltonian (5.8). Obviously, Ψ0 is
orthogonal to Ψ, since (Ψ0)* Ψ = 0.

The most general boundary condition for the Hamiltonian (5.1) and (5.5)
follows from the requirement that it should be Hermitian (or, equivalently, its
energy spectrum should be real). Using the Gauss theorem, one has

ðð
D

dxdy ψþĤψ � ψþĤ
þ
ψ

� �
¼ �iℏv

ðð
D

dxdy ψþ~σrψ þ rψþð Þ~σψ½ �

¼ �iℏv
ðð
D

dxdyr ψþ~σψ½ � ¼ �iℏ
þ
L

ds~n sð Þ~j sð Þ ¼ 0,
(5.10)

where ~n is the unit vector normal to the curve L and~j ¼ vΨþ~σΨ is the current
density (cf. Eq. (3.2)).

The local boundary condition must ensure that there is no normal current to the
boundary at any point. On introducing the angle α such that

~n ¼ cos α; sin αð Þ (5.11)

(see Fig. 5.1), one can write this condition as

cos αRe ψ∗
1 ψ2

� �þ sin α Im ψ∗
1 ψ2

� � ¼ 0 (5.12)

or, equivalently,
ψ2

ψ1
¼ iB exp iα sð Þð Þ, (5.13)

where B = B(s) is real.
To specify B, one can consider first the case of a flat boundary L jj Oy. One can

assume that Δ = 0 at x < 0 and Δ = Δ0 = constant at x > 0, solve the Dirac
equation explicitly as was done in the previous chapter, consider the reflection
problem, and compare the result for ψ2(x =�0)/ψ1(x = �0) with Eq. (5.13) at
α = 0. One can see that

B = �1 (5.14)
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at Δ0 ! �∞. We will call Eq. (5.13) with B = �1 the infinite-mass boundary
condition (Berry & Mondragon, 1987).

It is not surprising that this boundary condition is not invariant under the time-
reversal operation. Indeed, it follows from Eq. (5.9) and (5.13) that

ψ0
2

ψ0
1

¼ � ψ1

ψ2

� �∗

¼ �iB exp iα sð Þð Þ, (5.15)

which differs from Eq. (5.13) by the sign (we have taken into account that B2 = 1).
Confinement of electrons in a finite region leads to a discrete energy spectrum.

Consider first the simplest case in which L is just a circle, r = R, where we pass to
the polar coordinates

x ¼ r cosφ, y ¼ y sin φ: (5.16)

In these coordinates,

�i~σr ¼ �i
0 e�iφ ∂

∂r
� i

r

∂
∂φ

� �

eiφ
∂
∂r

þ i

r

∂
∂φ

� �
0

0
BB@

1
CCA (5.17)

and the Schrödinger equation for the state with E = ħvk takes the form

e�iφ ∂
∂r

� i

r

∂
∂φ

� �
ψ2 ¼ ikψ1,

eiφ
∂
∂r

þ i

r

∂
∂φ

� �
ψ1 ¼ ikψ2:

(5.18)

One can try solutions of Eq. (5.18) of the form

ψ1 r;φð Þ ¼ ψ1 rð Þ exp ilφð Þ,
ψ2 r;φð Þ ¼ ψ2 rð Þ exp i lþ 1ð Þφ½ �,

(5.19)

where l is integer. On substituting Eq. (5.19) into Eq. (5.18) one has

dψ2

dr
þ lþ 1

r
ψ2 ¼ ikψ1,

dψ1

dr
� l

r
ψ1 ¼ ikψ2:

8>><
>>: (5.20)

By excluding ψ1 (or ψ2) from Eq. (5.20), one can find a second-order differential
equation for the Bessel functions (Whittaker & Watson, 1927). The solutions
regular at r ! 0 are
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ψ1 rð Þ ¼ Jl krð Þ,
ψ2 rð Þ ¼ iJlþ1 krð Þ: (5.21)

The energy spectrum k = knl can be found from the boundary condition (5.13),
keeping in mind that for the circle α = φ. Thus, the quantization rule for the disc is

Jl+1(knlR) = BJl(knlR). (5.22)

This leads to a discrete spectrum with a distance between neighboring energy
levels with a given l of

δl Eð Þ ffi πℏv
R

: (5.23)

The density of states of the whole system is an extensive quantity proportional (in
two dimensions) to the system area A. Therefore, the average energy distance (for
an arbitrary shape of the billiard, not necessarily for the disc) can be estimated as

δ Eð Þ � 1
N Eð ÞA , (5.24)

where N(E) is the density of states of the Dirac Hamiltonian per unit area:

N Eð Þ ¼ E

2πℏ2v2
¼ k

2πℏv
: (5.25)

It differs from Eq. (1.72) by a factor of 4 (here we do not take into account the
fourfold spin and valley degeneracy for graphene). The semiclassical estimation
(5.24) (see Perenboom, Wyder, & Meier, 1981; Halperin, 1986; Stöckmann, 2000)
is valid at

k
ffiffiffi
A

p
>> 1: (5.26)

For the case of a circular disc that Eq. (5.20) gives, taking into account Eq. (5.23)
through (5.25),

δ Eð Þ � δl Eð Þ
kR

/ 1

R2 : (5.27)

There is an important issue relating to the energy-level distribution in finite
systems (Bohr & Mottelson, 1969; Perenboom, Wyder, & Meier, 1981; Stöck-
mann, 2000). In the case of integrable systems with regular classical motion of
particles it is supposed that it follows the Poisson statistics. It was shown by Berry
and Mondragon (1987) that this is indeed the case for the spectrum determined by
Eq. (5.22). For a generic system with chaotic motion level repulsion takes place,
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and the probability of finding two very close energy levels is strongly suppressed.
The main physical statement can be seen just from the two-level quantum-mechanical
problem with a 2 � 2 Hamiltonian, for which the splitting of eigenvalues is

Δ1,2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H11 � H22ð Þ2 þ 4 H12j j2

q
: (5.28)

If the Hamiltonian matrix is diagonal, the probability of degeneracy Δ1,2 = 0
is equal to the probability that H11 = H22; if the matrix is off-diagonal and real, it is
the probability that H11 = H22 and H12 = 0; if it is not real, it is the probability that
H11 = H22, and Re H12 = 0 and Im H12 = 0, which is obviously smaller.

For a generic chaotic system with time-reversal symmetry (this means that the
basis exists in which the Hamiltonian is real) the distribution of the neighboring
levels, S= ΔE/δ(E), is given by the Gaussian orthogonal ensemble (GOE), with the
probability function

PGOE Sð Þ ¼ πS
2

exp � πS2

4

� �
, (5.29)

whereas without time-reversal symmetry we have the Gaussian unitary ensemble
(GUE), with

PGUE Sð Þ ¼ 32S2

π2
exp � 4S2

π

� �
(5.30)

(Bohr & Mottelson, 1969; Perenboom, Wyder, & Meier, 1981; Stöckmann, 2000).
The numeral calculations of Berry and Mondragon (1987) demonstrate that the

level distribution for neutrino billiards with chaotic classical motion obeys the
GUE statistics (5.30). This is the consequence of violation of the time-reversal
symmetry, which was discussed previously.

5.2 A generic boundary condition: valley mixing

As was discussed in Chapter 1, charge carriers in graphene can be described in the
single Dirac-cone approximation only if all external inhomogeneities are smooth at
the atomic scale. The edges of the terminated honeycomb lattice are sharp and can,
in general, mix the electron states belonging to different valleys. So, one should
use a more general, two-valley Hamiltonian (1.28) (we will use here the represen-
tation (1.27)). The current operator (cf. Eq. (3.3)) is

~̂j ¼ δĤ
δ~p

¼ vτ0⊗~σ: (5.31)
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The most general restriction on the boundary condition generalizing Eq. (5.10) and
(5.12) in the two-valley case is the absence of the normal component of the current
through the boundary

Ψ ~n sð Þ~̂j
			 			ΨD E

¼ 0, (5.32)

at any s.
We will consider, following McCann and Fal’ko (2004) and Akhmerov and

Beenakker (2008), the boundary conditions for the abruptly terminated honeycomb
lattice, with zero probability of finding an electron outside the graphene flake. The
simplest terminations, zigzag and armchair edges, are shown in Fig. 5.2.

Then the Schrödinger equation inside the flake reads

�iℏvτ0⊗~σrþ ℏvM̂ 0δ ~r �~rBð Þ
 �
Ψ ¼ EΨ, (5.33)

where ~r ¼~rB sð Þ in the equation of the boundary line L, and M̂ 0 is an energy-
independent Hermitian matrix. By integrating Eq. (5.33) along an infinitesimal
line parallel to the normal ~n sð Þ to the boundary and taking into account that
Ψ = 0 outside the flake, one finds the boundary condition

ÂΨ ¼ iM̂ 0Ψ (5.34)

at~r ¼~rB sð Þ, where

Â ¼~nτ̂0⊗~̂σ ¼ 1
v
~n:~̂j (5.35)

Â
2 ¼ 1

� �
: Equivalently, the condition (5.34) can be represented as

Ψ ¼ M̂Ψ ~r ¼~rBð Þ, (5.36)

Fig. 5.2 Zigzag and armchair edges of the honeycomb lattice.
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where

M̂ ¼ iÂM̂ 0: (5.37)

On iterating Eq. (5.36) one can see that

M̂
2 ¼ 1: (5.38)

If we require that the Hermitian matrices Â and M̂ 0 anticommute,

Â; M̂ 0�  ¼ 0, (5.39)

the matrix (5.37) turns out to be Hermitian and, due to Eq. (5.38), also unitary:

M̂
þ ¼ M̂ ¼ M̂

�1
: (5.40)

It also anticommutes with the matrix Â:

Â; M̂
�  ¼ iÂ

2
M̂ 0 þ i ÂM̂ 0� �

Â ¼ 0 (5.41)

and the condition (5.32) is automatically satisfied in this case:

ΨþÂΨ ¼ ΨþM̂
þ
ÂM̂Ψ ¼ �ΨþÂΨ ¼ 0: (5.42)

Thus, the boundary condition (5.36) with the most general matrix M̂ satisfying the
requirements (5.40) and (5.41) seems to be the most general form of the boundary
conditions at the edges of terminated graphene flakes.

As was proven by Akhmerov and Beenakker (2008) the most general allowed
matrix M̂ can be represented as

M̂ ¼ sinΛτ̂0⊗ ~n1~̂σ
� �

þ cosΛ ~v~̂τ
� �

⊗ ~n2~̂σ
� �

, (5.43)

where Λ is an arbitrary real number and ~v,~n1 and ~n2 are three-dimensional
unit vectors such that ~n1 and ~n2 are mutually orthogonal and also orthogonal to
~n (~v is arbitrary).

One can assume that the boundary conditions for the graphene flake as a whole
should be time-reversal symmetric. Formally, this follows from the fact that the
tight-binding Hamiltonian for the honeycomb lattice in real space can be chosen as
a real matrix. The time-reversal symmetry can be broken by spontaneous valley
polarization at the edges or by spin polarization plus spin-orbit coupling. So far,
there is no clear experimental evidence for such phenomena (as for the possible
spin polarizaion at the edges, see Chapter 12).

On generalizing the definition of the time-reversal operation (5.6) to the case of
two valleys one can write

T̂ ¼ �τ̂y⊗~σy�K̂ : (5.44)
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The matrix M̂ (5.43) commutes with T̂ only at Λ = 0; thus, for the time-reversal-
invariant case

M̂ ¼ ~v~̂τ
� �

⊗ ~m~̂σ
� �

,~m⊥~n: (5.45)

Further specification of the boundary conditions can be achieved by assuming the
nearest-neighbor approximation (which is actually quite accurate for graphene,
see Chapter 1). In this approximation there exist only hopping terms between
sublattices, ĤAB, whereas intrasublattice terms vanish: ĤAA ¼ ĤBB ¼ 0 (see
Eq. (1.14)). The Schrödinger equation for the two-component wave function
(the components correspond to the sublattices)

Ĥ ABψA ¼ EψB,

Ĥþ
ABψB ¼ EψA (5.46)

has a rigorous electron–hole symmetry: ψB !�ψB, E!�E transforms the equa-
tion to itself. In the limit of small energies jEj << jtj this means that the operation
R̂ ¼ τz⊗σz changes the sign of the Hamiltonian

R̂ĤR̂ ¼ �Ĥ (5.47)

or, equivalently (keeping in mind that R̂
2 ¼ 1),

Ĥ ; τ̂z⊗σ̂ z

�  ¼ 0: (5.48)

This symmetry is an approximate one for real graphene, but this approximation
is quite good due to the smallness of the second-neighbor hopping jt0/tj � 0.1
(see Section 1.2). If we require (5.48), there are only two classes of allowed
boundary conditions: (1)~vkOz,~mkOz, for which

M̂ ¼ �τ̂z⊗σ̂ z; (5.49)

and (2) vz = mz = 0, for which

M̂ ¼ cosφτ̂x þ sinφ~τy
� �

⊗σx (5.50)

(we assume that the edge is along the x-axis~nkOy, and thus ~mkOx).
Boundary conditions of the type (5.36) and (5.49) are called zigzaglike, whereas

those of the type (5.36) and (5.50) are called armchairlike, for reasons that will be
discussed in the next section. It is an important result (Akhmerov & Beenakker,
2008; Wimmer, Akhmerov, & Guinea, 2010) that zigzaglike boundary conditions
are generic, whereas armchairlike boundary conditions occur only for some excep-
tional orientations of the edges.
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5.3 Boundary conditions for a terminated honeycomb lattice

Here we present, following Akhmerov and Beenakker (2008), a microscopic
derivation of the boundary conditions for a terminated honeycomb lattice in the
nearest-neighbor approximation. The geometry of our problem is clear from
Fig. 5.3. The translation vector along the boundary is

T̂ ¼ n~R1 þ m~R2, (5.51)

where

R̂1,2 ¼ a

2

ffiffiffi
3

p
;∓1

� �
(5.52)

are elementary translation vectors and n and m are integers. The number N of
missing sites and the number N0 of dangling bonds per period are larger than or
equal to n + m. Fig. 5.3(d) shows a minimal boundary where N = N0 = n + m.

The Schrödinger equation for the tight-binding model in the nearest-neighbor
approximation reads

ψB ~rð Þ þ ψB ~r �~R1
� �þ ψB ~r �~R2

� � ¼ εψA ~rð Þ,
ψA ~rð Þ þ ψA ~r �~R1

� �þ ψA ~r �~R2
� � ¼ εψB ~rð Þ,

(5.53)

where ε = E/t is the dimensionless energy and subscripts A and B label sublattices.

Fig. 5.3 (a) A honeycomb lattice constructed from a unit cell (gray rhombus)
containing two atoms (labelled A and B), translated over lattice vectors R1 and
R2. Panels (b)–(d) show three different periodic boundaries with the same
period T = nR1 + mR2. Atoms on the boundary (connected by thick solid lines)
have dangling bonds (thin gray line segments) to empty neighboring sites (open
circles). The number N of missing sites and the number N0 of dangling bonds per
period are n+ m. Panel (d) shows a minimal boundary, for which N= N0 = n+ m.
(Reproduced with permission from Akhmerov & Beenakker, 2008.)
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The angle between the translation vector ~T and the armchair orientation (the
direction Ox in Fig. 5.3(a)) is

φ ¼ arctan
1ffiffiffi
3

p n� m

nþ m

� �
: (5.54)

Owing to symmetry with respect to rotations at � π/3 we can restrict ourselves to
the case jφj < π/6 only.

The boundary condition is the requirement that the wave function vanishes at
the empty sites. One can assume that it depends smoothly on the energy ε. We are
interested in the case of small ε (the states close to the Dirac points) and, thus, can
put ε = 0 in Eq. (5.53). So, as a first step one can find zero-energy modes for the
terminated honeycomb lattice. Owing to the translational invariance along the
boundary, one can use the Bloch theorem and require that

ψA,B ~r þ~T
� � ¼ eikψA,B ~rð Þ (5.55)

with a real 0 	 k < 2π.
For the behavior normal to the boundary, we assume that

ψA,B ~r þ~R3
� � ¼ λψA,B ~rð Þ, (5.56)

where ~R3 ¼ ~R1 �~R2 is antiparallel to the y-axis in Fig. 5.3(a). This lattice vector

has a nonzero component a cosφ > a
ffiffiffi
3

p
=2 perpendicular to ~T. For the states

localized at the edge jλj < 1 and for propagating states jλj = 1; of course, the case
jλj > 1 is meaningless, since the corresponding wave function cannot be normal-
ized. If jλj < 1, the solution satisfying Eq. (5.56) has a decay length in the direction

normal to ~T of

l ¼ � a cos φ
ln λj j : (5.57)

Taking into account that ~R1 ¼ ~R2 þ~R3, one can rewrite Eq. (5.53) at ε = 0 as

ψB ~rð Þ þ ψB ~r �~R2 �~R3
� �þ ψB ~r �~R2

� � ¼ 0,

ψA ~rð Þ þ ψA ~r �~R2 �~R3
� �þ ψA ~r �~R2

� � ¼ 0:
(5.58)

On substituting Eq. (5.56) into Eq. (5.58) one finds

ψB ~r þ~R2
� � ¼ � 1

1þ λ
ψB ~rð Þ,

ψA ~r þ~R2
� � ¼ � 1þ λð ÞψA ~rð Þ:

(5.59)

Using Eq. (5.56) and (5.55) together, we have, for any integer p and q,
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ψB ~r þ p~R2 þ q~R3
� � ¼ λq �1� λð Þ�pψB ~rð Þ,

ψA ~r þ p~R2 þ q~R3
� � ¼ λq �1� λð Þ�pψA ~rð Þ:

(5.60)

Now we have to recall the Bloch theorem (5.55) for

~T ¼ n ~R2 þ~R3
� �þ m~R2 ¼ nþ mð Þ~R2 þ n~R3: (5.61)

Thus, we have two equations relating k and λ:

(�1 � λ)m+n = eikλn (5.62)

for the sublattice A and

(�1 � λ)m+n = eikλm (5.63)

for the sublattice B. One needs to find all solutions λ of Eq. (5.62) and (5.63) for a
given k satisfying the conditions jλj 	 1.

A general zero-energy state can be represented as

ψA ¼
XMA

p¼1

αpψp

ψB ¼
XMB

p¼1

α0pψ
0
p,

(5.64)

where MA and MB are the numbers of solutions of Eq. (5.62) and (5.63) within the
unit circle, respectively, and ψp and ψ0

p are the corresponding eigenstates. The
coefficients αp and α0p should be chosen in such a way that ψA and ψB vanish at
missing sites from the sublattices A and B.

The Dirac limit corresponds to the case of small k. Explicit calculations for the
case k = 0 give the result (Akhmerov & Beenakker, 2008)

MA ¼ 2nþ m

3

MB ¼ 2mþ n

3
þ 1:

(5.65)

These solutions include also the values

λ� ¼ exp � 2πi
3

� �
, (5.66)
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corresponding to the propagating modes; for all other modes jλj < 1, so they are

localized at the edge. The corresponding eigenstate is exp �i~K~r
� �

, with

~K ¼ 4π
3a2

~R3: (5.67)

Thus, the general zero-energy mode at k = 0 can be represented as

ψA ¼ ψ1 exp i~K~r
� �þ ψ4 exp �i~K~r

� �þ XMA�2

p¼1

αpψp,

ψB ¼ ψ2 exp i~K~r
� �þ ψ3 exp �i~K~r

� �þ XMB�2

p¼1

α0pψ
0
p:

(5.68)

The four amplitudes (ψ1,�iψ2, iψ3,�ψ4) correspond to the four components of the
wave function (1.27) in the Dirac limit; ψ1 and ψ2 are associated with the valley K,
ψ3 and ψ4 with the valley K0.

At the same time, there are NA conditions ψA = 0 at the missing sites belonging
to the sublattice A and NB conditions ψB = 0 at the missing sites belonging to the
sublattice B (NA and NB are the numbers of missing sites belonging to the
corresponding sublattice).

For the minimal boundary, NA = n and NB = m. At the same time, for n > m
one hasMA < n conditions ψA = 0 at some sites. The only way to satisfy them is to
require that ψA = 0 on the whole boundary, including ψ1 = ψ4 = 0. At the same
time, MB > m + 2, so ψ2 and ψ3 remain undetermined.

This corresponds to the zigzag boundary conditions Eq. (5.49), with the minus
sign. Similarly, for n < m one has the zigzag boundary conditions with the plus
sign. Only at n = m does one have MA = MB = n + 1 > n, such that one has the
same condition for sublattices A and B. All ψi are nonzero in this case, with

ψ1j j ¼ ψ4j j, ψ2j j ¼ ψ3j j (5.69)

(armchair boundary conditions (5.50)).
So, at least for the case of minimal edges, one can prove that the armchair

boundary conditions are exceptional whereas the zigzag ones are generic. This result
also seems to be correct for nonminimal edges, as well as for the case of disorder at
the edges (Martin & Blanter, 2009; Wimmer, Akhmerov, & Guinea, 2010).

For the case n > m, the number of independent zero-energy modes per unit
length is (Akhmerov & Beenakker, 2008; Wimmer, Akhmerov, & Guinea, 2010)

ρ ¼ MA � n
~T
		 		 ¼ m� nj j

3a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ nmþ m2

p ¼ 2
3a

sin φj j: (5.70)
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At φ = 0 (armchair boundaries) there are no such states. The existence of the zero-
energy modes and the corresponding sharp peak in the density of states at zigzag
edges was first found numerically by Nakada et al. (1996). It will be analyzed in
more detail in the next sections.

Akhmerov and Beenakker (2008) have demonstrated that the infinite-mass
boundary condition (5.13) with B = �1 can be obtained in the limit of an infinite
staggered field (difference of on-site energies between sublattices A and B at the
edge). The sign of B is determined by the sign of this staggered field.

5.4 Electronic states of graphene nanoribbons

The previous consideration was a bit formal, but the result is quite simple. For the
case of pure zigzag edges all missing atoms belong to sublattice A only (or
sublattice B only), thus the corresponding components of the wave function for
the two valleys, K and K0, should vanish at the boundary. If the numbers of missing
atoms belonging to A and B are not equal, the boundary conditions remain the
same, depending on the majority of the atoms: “The winner takes all.” Only in
the exceptional case, in which the numbers of missing atoms from A and
B coincide exactly (armchair edges), are all four components of the Dirac spinors
finite at the edge, satisfying the two relations (5.69).

If we have a nanoribbon of a constant width L(jyj 	 L/2) with zigzag edges, one
edge corresponds to the missing atoms A and the other to the missing atoms B. The
boundary conditions are

u y ¼ � L

2

� �
¼ 0,

v y ¼ L

2

� �
¼ 0,

(5.71)

where u is ψ1 or ψ4 and v is ψ2 or ψ3. In this case the valleys are decoupled, so in
the Dirac approximation we can consider them independently. For the valley K, the
Schrödinger equation reads

∂
∂x

þ i
∂
∂y

� �
u x; yð Þ ¼ ikv x; yð Þ,

∂
∂x

� i
∂
∂y

� �
v x; yð Þ ¼ iku x; yð Þ,

(5.72)

where k = E/(ℏv). For the valley K0, the signs before ∂/∂y are exchanged. The
analytic solution of Eq. (5.72) with the boundary conditions (5.71) has been found
by Brey and Fertig (2006). Let us try the solutions as
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u(x, y) = exp(ikxx)u(y),

v(x, y) = exp(ikxy)v(y), (5.73)

where u and v satisfy a system of two linear ordinary differential equations with
constant coefficients:

kx þ d

dy

� �
u yð Þ ¼ kv yð Þ,

kx � d

dy

� �
v yð Þ ¼ ku yð Þ:

(5.74)

The solution can be tried as

u yð Þ ¼ A exp zyð Þ þ B exp �zyð Þ,
v yð Þ ¼ C exp zyð Þ þ D exp �zyð Þ, (5.75)

where

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x � k2

q
(5.76)

can be either real (for evanescent waves) or imaginary (for propagating waves). On
substituting Eq. (5.75) into Eq. (5.74) and taking into account Eq. (5.71), one finds
a dispersion relation for the waves in the nanoribbon:

φ zð Þ ¼ kx � z

kx þ z
¼ exp �2Lzð Þ: (5.77)

Graphical solution of Eq. (5.77) (Fig. 5.4) shows that a real solution (other than the
trivial one, z = 0) exists if

kx >
1
L
: (5.78)

(a) (b)

Fig. 5.4 Graphical solution of Eq. (5.77) (the logarithm of both sides is taken). If
the condition (5.78) is satisfied, there is a nontrivial (z 6¼ 0) solution (a);
otherwise, z = 0 is the only solution (b).
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Indeed, at this condition φ(z) � 1 � 2z/kx is larger than exp(�2Lz) � 1 � 2Lz at
small z. At the same time, φ(kx) = 0 < exp (�2Lkx), thus the curves should cross.
Otherwise, there are no solutions.

Eq. (5.78) is the condition of existence of the edge state; for the semispace
(L ! ∞) it always exists, with the decay decrement z = kx, in agreement with the
consideration of the previous section. For a finite width L, those states with
energies

Es ¼ �ℏv
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x � z2

q
(5.79)

are linear combinations of the states localized on the left and right edges of the
ribbon. There are no solutions at kx < 0, so, for a given valley, these edge states can
propagate only in one direction. Conversely, for the valley K0 the solutions exist
only for kx < 0. Numerical calculations for honeycomb-lattice nanoribbons (Brey
& Fertig, 2006; Peres, Castro Neto, & Guinea, 2006) show that these edge states
connect the valleys K and K0 (Fig. 5.5).

For the case of purely imaginary z = iky Eq. (5.77) can be rewritten as

kx = ky cot (kyL), (5.80)

which gives “bulk” standing waves with discrete values of ky and energy

Eb ¼ �ℏv
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
: (5.81)

For the case of armchair nanoribbons, the amplitudes of the components of wave
functions belonging to different valleys are the same but the phases can differ (see
Eq. (5.69)). A detailed analysis (Brey & Fertig, 2006) results in the following
boundary conditions:

0.6
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K
Zigzag.
L = 14´ (3)1/2 a0

K¢

Fig. 5.5 The energy spectrum for zigzag-terminated graphene nanoribbon with
56 atoms per unit cell.
(Reproduced with permission from Brey & Fertig, 2006.)
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u � L

2

� �
¼ u0 � L

2

� �
,

v � L

2

� �
¼ v � L

2

� �
,

u
L

2

� �
¼ exp 2πivð Þu0 L

2

� �
,

v
L

2

� �
¼ exp 2πivð Þv0 L

2

� �
,

(5.82)

where the functions with (without) primes correspond to the states from valley K0

(K) and v ¼ 0, � 2
3, depending on the number of rows in the nanoribbons; v = 0 if

this number is 3p (p is an integer) and v ¼ � 2
3 if it is 3p� 1. In this case there are no

edge states with real z, the wave functions of the bulk states are very simple, namely

uj yð Þ ¼ �ivj yð Þ ¼ 1ffiffiffiffiffiffi
2L

p exp ikjy
� �

,

u0j yð Þ ¼ �iv0j yð Þ ¼ 1ffiffiffiffiffiffi
2L

p exp �ikjy
� �

,
(5.83)

and kj is discrete:

kj ¼ jþ vð Þπ
L

, j ¼ 0, � 1, . . . : (5.84)

5.5 Conductance quantization in graphene nanoribbons

For the case of zigzag edges, electron motion along the edges is coupled with that
in the perpendicular direction; see Eq. (5.80). This coupling leads to interesting
consequences for the electron transport in nanoribbons with varying width, such as
those with nanoconstrictions (Fig. 5.6).

Let us consider a ribbon with a slowly varying width L(x), assuming that

dL

dx

				
				 « 1: (5.85)

Fig. 5.6 A sketch of a graphene nanoribbon with a smoothly varying width.
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For simplicity, we will assume mirror symmetry so that the edges correspond to
y = �L(x)/2 (Fig. 5.6). For the case of the Schrödinger equation for conventional
nonrelativistic electrons

� ℏ2

2m
r2Ψ x; yð Þ ¼ EΨ x; yð Þ (5.86)

with boundary conditions

Ψ y ¼ � L xð Þ
2

� �
¼ 0 (5.87)

(impenetrable walls), the electron states can be considered in the adiabatic approxi-
mation (Glazman et al., 1988; Yacoby & Imry, 1990). Owing to the condition
(5.87), one can try having the wave function as

Ψ(x, y)= χ(x)φx(y), (5.88)

where

φx yð Þ ¼
ffiffiffiffiffiffiffiffiffi
2

L xð Þ

s
sin

πn 2yþ L xð Þ½ �
L xð Þ

� �
(5.89)

is the standing wave of transverse motion satisfying the boundary condition (5.87)
and depending on x as a parameter via L(x). It can be proven (Glazman et al., 1988;
Yacoby & Imry, 1990) that the wave function of longitudinal motion satisfies the
Schrödinger equation

d2χn xð Þ
dx2

þ k2 � k2n xð Þ� �
χn xð Þ ¼ 0, (5.90)

where k2 = 2mE/ℏ2 and

kn xð Þ ¼ πn
L xð Þ : (5.91)

Owing to Eq. (5.85), one can use the semiclassical approximation (Landau &
Lifshitz, 1977). At k > kn(x), the solutions of Eq. (5.90) are propagating waves
with an exponentially small probability of reflection, whereas for the classically
forbidden regions k < kn(x), the electron states decay quickly. This means that the
electron transport in the adiabatic approximation is determined by the minimal
width of the constriction Lmin: All states with

n <
kLmin

π
(5.92)
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have transmission coefficients close to unity, and all states with larger n do not
contribute to the electron transmission at all. According to the Landauer formula
(see Section 3.2) the conductance in the adiabatic regime should be quantized, with
an exponential accuracy of

G ¼ 2e2

h
n, (5.93)

where n is an integer and the factor of 2 is due to spin degeneracy. Each transverse
mode corresponds to an independent channel of transmission.

For the case of graphene nanoribbons the situation is more complicated
(Katsnelson, 2007b). Here we will only consider the case of zigzag boundary
conditions, since they are generic for inhomogeneous nanoribbons as discussed
earlier.

Thus, one can solve the equations (5.72) with x-dependent boundary
conditions (5.71):

u x; y ¼ � L xð Þ
2

� �
¼ 0,

v x; y ¼ L xð Þ
2

� �
¼ 0:

(5.94)

Following Katsnelson (2007b) we expand a general solution in the standing
waves with kx = 0. For this case,

ky ¼ kj ¼ πj
L
, j ¼ � 1

2
, � 3

2
, . . . (5.95)

(cf. Eq. (5.80)), and the eigenfunctions can be written explicitly:

uj yð Þ ¼ 1ffiffiffi
L

p cos kj y� L

2

� �� �
,

vj yð Þ ¼ � 1ffiffiffi
L

p sin kj y� L

2

� �� �
:

(5.96)

Instead of Eq. (5.88), let us use the most general expansion

u x; yð Þ ¼
X
j

cj xð Þu xð Þ
j yð Þ,

v x; yð Þ ¼
X
j

cj xð Þv xð Þ
j yð Þ,

(5.97)
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where u(x) and v(x) are the functions (5.96) with the replacement L ! L(x):

u xð Þ
j yð Þ ¼ 1ffiffiffiffiffiffiffiffiffi

L xð Þp cos πj
y

L xð Þ �
1
2

� �� �
,

v xð Þ
j yð Þ ¼ � 1ffiffiffiffiffiffiffiffiffi

L xð Þp sin πj
y

L xð Þ �
1
2

� �� �
:

(5.98)

The functions (5.98) satisfy by construction the boundary conditions. On sub-
stituting the expansion (5.97) into Eq. (5.72) and multiplying the first equation by
hvjj and the second one by hujj one finds

X
j0

dcj0

dx
vjjvj0
� �þ cj0 vj

dvj0

dx

				
�� �

¼ i
X
j0

k � kj0
� �

cj0 vjjuj0
� �

,

2
4

X
j0

dcj0

dx
ujjuj0
� �þ cj0 uj

duj0

dx

				
�� �

¼ i
X
j0

k � kj0
� �

cj0 ujjvj0
� �

:

2
4 (5.99)

These equations are formally exact. As a first step to the adiabatic approximation,
one should neglect the terms with

vj
dvj0

dx

				
�
and uj

duj0

dx

				
�
,

��

which is justified by the smallness of dL/dx, as in the case of nonrelativistic
electrons (Yacoby & Imry, 1990).

To proceed further, we need to calculate the overlap integrals

ϕ1jϕ2h i ¼
ðL=2

�L=2

dyϕ∗1 ϕ2

for different basis functions:

ujjuj0
� � ¼ 1

2
δjj0 þ δj,�j0
� �

,

vjjvj0
� � ¼ 1

2
δjj0 þ δj,�j0
� �

,

ujjvj0
� � ¼ vj0 juj

� � ¼ � 1
π j0 � jð Þ , j0 � j ¼ 2nþ 1,

� 1
π j0 þ jð Þ , j0 � j ¼ 2n,

8>>><
>>>:

(5.100)
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where n is an integer. On substituting Eq. (5.100) into Eq. (5.99) and neglecting the
nonadiabatic terms within the matrix elements of the operator d/dx, we obtain after
simple transformations

dcj
dx

¼ � 2i
π

X0
j0
k � kj0 xð Þ
jþ j0

cj0 xð Þ, (5.101)

where the sum is over all j0 such that j0 – j is even.
Until now we have employed transformations and approximations that are

identical to those used in the case of nonrelativistic electrons. However, we still
have a coupling between different standing waves, so we cannot prove that the
electron transmission through the constriction is adiabatic. To prove this we need
one more step, namely a transition from the discrete variable j to a continuous one
and a replacement of the sums on the right-hand side of Eq. (5.101) by integrals:P0

j0 . . . ! 1
2P

Ð
dy . . . , where P is the symbol of principal value. This step is

justified by assuming that kL >> 1, i.e., it is valid only for highly excited states.
For low-lying electron standing waves it is difficult to see any way to appreciably
simplify the set of equations (5.101) for the coupled states.

For any function f(z) that is analytic in the upper (lower) complex half-plane one hasð∞
�∞

dxf xð Þ 1
x� x1 � i0

¼ 0 (5.102)

or, equivalently, ð∞
�∞

dxf xð Þ P

x� x1
¼ �iπf x1ð Þ: (5.103)

Assuming that cj(x) is analytic in the lower half-plane as a function of the complex
variable j one obtains, instead of Eq. (5.101),

dcj xð Þ
dx

¼ k þ kj xð Þ
 �
c�j xð Þ: (5.104)

Similarly, taking into account that c�j(x) is analytic in the upper half-plane as a
function of the complex variable j we have

dc�j xð Þ
dx

¼ kj xð Þ � k

 �

cj xð Þ: (5.105)

Finally, on differentiating Eq. (5.104) with respect to x, neglecting the derivatives
of kj(x) due to the smallness of dL/dx and taking into account Eq. (5.105) we find

d2cj xð Þ
dx2

þ k2 � k2j xð Þ
h i

cj xð Þ ¼ 0: (5.106)
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Further analysis completely follows that for the nonrelativistic case. The potential
is semiclassical for the case of smoothly varying L(x). Therefore, the transmission
coefficient is very close to unity if the electron energy exceeds the energy of the
j’th level in the narrowest place of the constriction and is exponentially small
otherwise. Standard arguments based on the Landauer formula prove the conduct-
ance quantization in this situation.

At the same time, for the lowest energy levels the replacement of sums by
integrals in Eq. (5.101) cannot be justified, and thus the states with different js are
in general coupled even for a smooth constriction (5.85). Therefore, electron
motion along the strip is strongly coupled with that in the perpendicular direction
and different electron standing waves are essentially entangled. In this situation
there is no general reason to expect sharp jumps and well-defined plateaux in the
energy dependence of the conductance. This means that the criterion of the
adiabatic approximation is more restrictive for the case of Dirac electrons than it
is for nonrelativistic ones. The formal reason is an overlap between components of
the wave functions with different pseudospins or, equivalently, between the hole
component of the state j and the electron component of the state j0 6¼ j. This
conclusion (Katsnelson, 2007b) seems to be confirmed by the numerical simula-
tions of Muños-Rojas et al. (2008).

5.6 The band gap in graphene nanoribbons with generic
boundary conditions

One has to keep in mind that the terminated honeycomb lattice is a special case of
graphene edges. Density-functional calculations show that the reconstructed “5–7”
edge (Fig. 5.7) has an energy lower than those of both armchair and zigzag edges
(Koskinen, Malola, & Häkkinen, 2008). The reconstruction to this low-energy
state requires the overcoming of energy barriers, so the zigzag edges are metastable
(Kroes et al., 2011), but under some circumstances it will definitely happen. Zigzag
edges are very chemically active, so they will bind hydrogen, oxygen, or hydroxyl
groups (see, e.g., Boukhvalov & Katsnelson, 2008; Bhandary et al., 2010). Lastly,
that the density of states peaks due to zero-energy modes means ferromagnetic
instability (Fujita et al., 1996; Son, Cohen, & Louie, 2006a; see also Section 12.3).

Fig. 5.7 A sketch of a reconstructed 5–7 zigzag edge.
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All of this will substantially modify the boundary conditions. The most general
form is given by Eq. (5.36) and (5.45). It assumes only time-reversal symmetry.
Time-reversal symmetry can be broken by ferromagnetic ordering; however, the
latter can exist in one-dimensional systems at zero temperature only. At finite
temperatures one has, instead, a superparamagnetic state with a finite correlation
length ξ which is just several interatomic distances at room temperature (Yazyev &
Katsnelson, 2008). If all essential sizes of the problem (e.g., the width of
nanoribbons L) are larger than ξ then the system should be considered time-
reversal invariant.

The most general boundary conditions for the nanoribbons are therefore

Ψ x; y ¼ � L

2

� �
¼ ~v1�~̂τ

� �
⊗ ~n1�~̂σ
� �

Ψ x; y ¼ �L

2

� �
,

Ψ x; y ¼ L

2

� �
¼ ~v2:~̂τ

� �
⊗ ~n2�~̂σ
� �

Ψ x; y ¼ L

2

� �
,

(5.107)

where ~vi are three-dimensional unit vectors (no restrictions) and ~ni are three-
dimensional unit vectors perpendicular to the y-axis:

~n1 ¼ cos θ1; 0; sin θð Þ,
~n2 ¼ cos θ2; 0; sin θ2ð Þ:

(5.108)

Valley symmetry implies that only the relative directions of the vectors~v1 and~v2
are essential. Thus, the problem is characterized by three angles: θ1, θ2, and the
angle γ between~v1 and~v2.

The most general dispersion relation E = E(k) for the propagating waves

Ψ(x, y) / exp (ikx + iqy), (5.109)

satisfying the boundary conditions (5.107) has been obtained by Akhmerov and
Beenakker (2008). It reads

cos θ1 cos θ2 cosω� cos 2Ω
� �þ cosω sin θ1 sin θ2 sin

2Ω

� sinΩ sinΩ cos γþ sinω sin θ1 � θ2ð Þ½ � ¼ 0,
(5.110)

where

ω2 ¼ 4L2
E2

ℏ2v2
� k2

� �

and

cosΩ ¼ ℏvk
E

: (5.111)
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Different solutions of Eq. (5.110) correspond to different standing waves with
discrete qn. Analysis of this equation shows that there is a gap in the energy
spectrum if γ = 0, π (which means that valleys are coupled at the boundaries) or at
γ = π, sin θ1 sin θ2 > 0, or at γ = 0, sin θ1 sin θ2 < 0 (Akhmerov & Beenakker,
2008). One can see that the case of zigzag-terminated edges when states with
arbitrarily small energy, up to E = 0, exist is very exceptional. For generic
boundary conditions, the gap is of the order of

Δ ffi ℏv
L
: (5.112)

A detailed analysis of the gap, both in a tight-binding model and in realistic
density-functional calculations, was carried out by Son, Cohen, and Louie
(2006b) (see also, e.g., Wassmann et al., 2008).

The gap opening in nanoribbons is very important for applications. It allows one
to overcome restrictions due to Klein tunneling and build a transistor that can really
be locked by a gate voltage (Han et al., 2007; Wang et al., 2008; Han, Brant, &
Kim, 2010).

5.7 Energy levels in graphene quantum dots

Nanoribbons are restricted in one dimension, therefore their electron spectra
consist of bands En(k). It is possible to make graphene devices in which electrons
are confined in two dimensions – graphene quantum dots (Ponomarenko et al.,
2008; Stampfer et al., 2008; Güttinger et al., 2009; Molitor et al., 2010; Zhang
et al., 2010). Fig. 5.8 (Ponomarenko et al., 2008) shows an example of such a
device, together with the voltage dependence of the differential conductance G
through the device. Oscillations of G are due to the discreteness of the electron
energy spectrum in the dot. First of all, there is a classical electrostatic effect,
namely the dependence of the energy on the total charge Q,

EC Qð Þ ¼ Q2

2C
, (5.113)

where C is the capacitance of the dot. When the electron tunnels to the dot or from
the dot, the charge Q, is changed by �e. This effect is known as Coulomb
blockade; see Kouwenhoven, Marcus, and McEuen (1997). Apart from this, there
is a discreteness of the single-electron energy spectrum superimposed on the
Coulomb-blockade peaks. The sharp dependence of G on the gate voltage allows
one to use the device as a single-electron transistor (Ponomarenko et al., 2008;
Stampfer et al., 2008). The data extracted from the measurements clearly show the
effect of level repulsion, which was discussed in Section 5.1; this means that the
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single-electron spectrum of real graphene quantum dots is certainly chaotic (De
Raedt & Katsnelson, 2008; Ponomarenko et al., 2008). The function P(S) (cf. Eq.
(5.29) and (5.30)) extracted from the experimental data by Ponomarenko et al.
(2008) for a 40-nm graphene quantum dot is shown in Fig. 5.9. Its decrease at
small S is a manifestation of the level repulsion. At the same time, it is difficult to
distinguish between the cases of orthogonal and unitary ensembles. Theoretically,
the distinction depends on the probability of intervalley scattering. If it is large
enough, then, due to atomic-scale inhomogeneity at the edges, the system is time-

Fig. 5.8 (a) A graphene-based, single-electron transistor. The conductance G of a
device shown in the insert in the upper right corner is given as a function of the
gate voltage, at temperature T = 0.3 K. Two panels in (b) show the picture with
different resolutions.
(Reproduced with permission from Ponomarenko et al., 2008.)
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reversal invariant, and one should expect the behavior typical for the Gaussian
orthogonal ensemble, Eq. (5.29). This is obvious already from the fact that, in the
absence of a magnetic field, the tight-binding Hamiltonian can be chosen to be real.
At the same time, if the inhomogeneities at the edges are smooth enough and
intervalley scattering is therefore weak, the situation should be close to the case of
a neutrino billiard (Section 5.1), and a unitary ensemble is to be expected. This can
indeed be the case, since for chemical passivation of the edges the electronic
structure changes smoothly within a rather broad strip near the edges (Boukhvalov
& Katsnelson, 2008). Theoretical discussions of the energy-level statistics in
graphene quantum dots can be found in Wurm et al. (2009), Libisch, Stampfer,
and Burgdörfer (2009), Wimmer, Akhmerov, and Guinea (2010), and Huang, Lai,
and Grebogi (2010).

5.8 Edge states in magnetic fields and the anomalous quantum Hall effect

Now we can come back to the physics of the half-integer quantum Hall effect
discussed in Chapter 2. Our analysis in Section 2.9 was based on the solution of the
quantum-mechanical problem for bulk graphene. There is an alternative approach
to the quantum Hall effect that is based on the analysis of the edge states of
electrons in a magnetic field (Halperin, 1982; MacDonald & Středa, 1984).

Let us start with the classical picture of electron motion in a magnetic field. In
two dimensions, the electron orbits are closed circles (Larmor rotation). Depending
on the direction of the magnetic field, all electrons in the bulk rotate either
clockwise or counterclockwise. However, for the electrons with the centers of
their orbits close enough to the boundary, reflections form a completely different
kind of trajectory, skipping orbits (Fig. 5.10). They possess a magnetic moment

Fig. 5.9 The level-spacing distribution extracted from experimental data on a
graphene 40-nm quantum dot.
(Reproduced with permission from De Raedt & Katsnelson, 2008.)
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opposite to that of the “bulk” orbits and, actually, exactly compensate for the latter,
so that, in agreement with a general theorem, the classical system of electrons can
be neither paramagnetic nor diamagnetic (Vonsovsky & Katsnelson, 1989). In
quantum theory, the skipping orbits are associated with the edge states localized
near the boundary and carrying the current. These states are chiral, since only one
direction of propagation is allowed. Therefore, they are protected against localiza-
tion by disorder; the situation is similar to the Klein tunneling and forbidden
backscattering for massless Dirac fermions (Chapter 4). Simply speaking, there
are no other states with the same energy for electrons to be scattered to. Thus, if
one assumes that all bulk states are localized there is still a current being carried by
the skipping electrons, with a contribution to the conductance of e2/h per spin
(complete transmission). This gives an alternative explanation of the quantum Hall
effect (Halperin, 1982; MacDonald & Středa, 1984).

A topological analysis shows that the number of edge states at the border
between a quantum Hall insulator and vacuum is equal to the integer in (2.181)
and, thus, “bulk” and “edge” approaches to the quantum Hall effect give the same
results for σxy (Hatsugai, 1993; Kellendonk & Schulz-Baldes, 2004; Prodan, 2009).

The counting of the edge states is therefore an alternative way to explain the
anomalous (“half-integer”) quantum Hall effect in graphene (Abanin, Lee, &
Levitov, 2006; Hatsugai, Fukui, & Aoki, 2006). Here we will use the approach
of the first of these works, which is based on a solution of the Dirac equation in a
magnetic field (the second one uses an analysis of the geometry of the honeycomb
lattice).

Fig. 5.10 Skipping orbits of electrons due to the combination of Larmor rotation
in a magnetic field and reflection from the edges.
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Let us assume that graphene fills the semispace x< 0. The solutions of the Dirac
equation for the valley K satisfying the conditions ψi(x) ! 0 at x ! �∞ are given
by Eq. (2.45) and (2.46),

ψ1 Xð Þ ¼ Dn �Xð Þ,
ψ2 Xð Þ ¼ iεDn�1 �Xð Þ, (5.114)

where n = ɛ2 and X is given by Eq. (2.26) and (2.41). For the valley K0 the results
are the same but with the replacement ψ1 ! ψ0

2,ψ2 ! ψ0
1 (see Eq. (1.27) and

(1.28)), thus,

ψ0
1 Xð Þ ¼ iεDn�1 �Xð Þ,

ψ0
2 Xð Þ ¼ Dn �Xð Þ: (5.115)

The eigenenergy ɛ can be found from the boundary conditions. For example, for
the armchair-terminated edge, one needs to put

ψ1 x ¼ 0ð Þ ¼ ψ0
1 x ¼ 0ð Þ,

ψ2 x ¼ 0ð Þ ¼ ψ0
2 x ¼ 0ð Þ: (5.116)

For the case of zigzag-terminated edges, the valleys are decoupled, and the
conditions are

ψ1 x ¼ 0ð Þ ¼ 0,

ψ0
1 x ¼ 0ð Þ ¼ 0

(5.117)

(for the zigzag edge with missing A atoms). Then, Eq. (5.114) and (5.115) give the
energy (2.26) depending on the coordinate of the center of the orbit x0 (2.40) or,
equivalently, on the wave vector ky along the edge.

It is easier to analyze these solutions after transformation of the original problem
to the Schrödinger equation for a double-well potential (Abanin, Lee, & Levitov,
2006; Delplace & Montambaux, 2010). The Hamiltonian Ĥ

2
(2.33) can be repre-

sented as

Ĥ
2 ¼ 2ℏ ej jBv2

c
Q̂, (5.118)

where

Q̂ ¼ � 1
2
d2

dx2
þ 1
2

x� x0ð Þ2 � 1
2
σzτz,

where x and x0 are in units of the magnetic length lB and σz = +1 for components
corresponding to the sublattice A and σz =�1 for components corresponding to the
sublattice B, with τz = �1 for the valley K and K0, respectively.
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For the case of zigzag edges, the valleys and sublattices are decoupled. The
eigenvalues of the operators Q̂ for the valleys K and K0 differ by 1. The sublattices
are also decoupled, but the edge states for the B sublattice are associated with
another edge.

The eigenstates of the problem

Q̂ψ xð Þ ¼ ε2ψ xð Þ (5.119)

with the boundary condition (5.117) are the same as the antisymmetric eigenstates
for the symmetric potential

Q̂ ¼ � 1
2
d2

dx2
þ V xð Þ, (5.120)

V xð Þ ¼ 1
2

xj j � x0ð Þ2∓ 1
2

(5.121)

with ∓ signs for the valleys K and K0, respectively (see Fig. 5.11).
If jx0j >> 1, the potential wells are well separated and the probability of

tunneling between the wells is exponentially small, for

ε2 	 1
2
x20: (5.122)

Then, in zeroth-order approximation, the eigenvalues are the same as for inde-
pendent walls

ε2n ¼ nþ 1
2
∓
1
2
, (5.123)

where (n = 0, 1, 2, . . .). Tunneling leads to the splitting of each eigenvalue for
symmetric and antisymmetric states

δε2n ¼ �Δn (5.124)

x

V(x)

Fig. 5.11 The effective potential (5.121) (for the case of the minus sign).
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with

Δn / exp �
ðx2
�x1

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V xð Þ � ε2n

q2
4

3
5, (5.125)

where x1,2 are the classical turning points: V x1,2ð Þ ¼ ε2n: One needs to choose the
plus sign in Eq. (5.124) corresponding to the antisymmetric eigenfunctions.

For the minus sign in Eq. (5.121) (valley K) one has some growing dependence
of En on the function jx0j/lB (the larger jx0j the smaller the shift) starting from
E = 0. Starting from the first Landau level, the second valley K0 also contributes,
but Δn for the same energy corresponds to another value of n(n! n � 1) and, thus,
will be different. As a result, we have the picture of the energy levels shown
schematically in Fig. 5.12. An almost zero-energy Landau band (originating from
the zero-energy Landau level for an infinite system) corresponds, for a given edge,
to the states from a single valley; the states from the second valley are associated
with another edge.

For the case of armchair edges, the boundary conditions (5.116) lead to the
Schrödinger equations (5.119) and (5.120), but with the potential

V xð Þ ¼ 1
2

xj j � x0ð Þ2 � 1
2
sgnx (5.126)

(see Fig. 5.13). Indeed, one can define formally

ψ0
1 xð Þ 
 ψ1 �xð Þ,

ψ0
2 xð Þ 
 ψ2 �xð Þ,

(5.127)

Fig. 5.12 A sketch of the energy spectrum for magnetic edge states.
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so that Eq. (5.116) is nothing other than the condition of continuity of the wave
function ψ1 and its derivative dψ1/dx (which is related to ψ2 by the Dirac equation)
at x = 0. The qualitative dependence En(x0/l) remains the same as that shown in
Fig. 5.12. A more detailed analysis of the problem in the semiclassical
approximation was performed by Delplace and Montambaux (2010).

To calculate the Hall conductivity one just needs to count the occupied edge
states for a given Fermi energy, with each state contributing e2/h per spin. One can
immediately see from Fig. 5.12 that the lowest-energy Landau band
always produces one edge electron (for E > 0) or hole (E < 0) state and all
other bands produce two such states. This immediately gives Eq. (2.167) for σxy,
with gv = 2 and gs = 1 (Abanin, Lee, & Levitov, 2006).

5.9 Spectral flow for massless Dirac fermions

In Chapter 2, we discussed nontrivial topological properties of massless Dirac
fermions in graphene; the existence of topologically protected zero-energy Landau
levels (Section 2.3) and related to them half-integer quantization of Hall
conductivity (Section 2.9) is probably the most important one. Here we consider
the other nontrivial topological effect, namely, nonvanishing spectral flow of the
Dirac Hamiltonian (5.1), (5.5) in quantum dots which are not simply connected
(that is, with holes; Fig. 5.14). The effect was considered by Prokhorova (2013)
and Katsnelson and Nazaikinskii (2012); our presentation will follow the
latter paper.

Let us consider the situation with magnetic fluxes Φi entering ith inner hole; for
the external boundary we will assume, by definition,

Φ1 ¼ �
Xm
i¼2

Φi (5.128)

x

V(x)

Fig. 5.13 The effective potential (5.126).
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where m > 1 is the number of boundaries. Due to Aharonov–Bohm effect
(Aharonov & Bohm, 1959; Olariu & Popescu, 1985; see Section 3.4) the phase
of the wave function when going around ith hole is changed by 2πμi, μi = Φi/Φ0

where Φ0 is the flux quantum (2.52) (cf. Eq. (3.43)). If all μi are integer, the system
is equivalent to the system without magnetic field and, in particular, should have
the same eigenenergies Eα. For the conventional nonrelativistic electron gas it
would mean that each eigenenergy separately is a periodic function of the magnetic
fluxes:

Eα(μi) = Eα(μi + ni) (5.129)

when all ni are integer.
However, the Dirac Hamiltonian is not semibounded, it can have arbitrarily

large negative and positive eigenvalues; this is an unavoidable consequence of its
electron–hole symmetry. In this situation, periodicity of the spectrum {Eα} as a
whole does not mean periodicity of each eigenvalue separately. Indeed, if we
consider a transformation n ! n + 1, then the set of all integers Z transforms to
itself, despite that each number is shifted up; if we consider only the set of
positive integers, nothing similar is possible. For unbound operators, one
can introduce a concept of spectral flow (Atiyah, Patodi, & Singer, 1976).
For our problem, the latter can be defined as follows. Fix any real value of
energy E. Let us consider the transformation of the Hamiltonian Ĥ to itself
(such as μi ! μi + ni in Eq. (5.129)) due to a continuous change of parameters
(such as increase or decrease of magnetic field through the holes). Then some
eigenvalues (N< of them) will cross the value E from up to down and some

X

∂X1

∂X5

∂X4

∂X3

∂X2

Fig. 5.14 Example of a quantum dot with m = 5 boundaries. When calculating the
flux associated to each boundary the sign is positive for the inner boundaries (∂X2,
∂X3, ∂X4, ∂X5) when going around the boundary clockwise and for the
external boundary (∂X1) when going counterclockwise, as shown by arrows. If
B is positive for X1, X4, and X5 and negative for X2 and X3,
∂+X = ∂X1 [ ∂X4 [ ∂X5.
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eigenvalues (N> of them) will cross the value E from down to up. The spectral
flow of the operator Ĥ is

sf Ĥ
�  ¼ N> � N< (5.130)

It is easy to see that it cannot be dependent on the value of E. In particular, it means
that if the spectral flow of the Dirac operator is not zero, then, under a smooth
increase of magnetic fluxes, some energy levels will cross zero, which means a
creation of electron–hole pairs from vacuum.

Let us assume Berry–Mondragon boundary condition (5.13) for each boundary.
Then, as was proven by Prokhorova (2013) and Katsnelson and Nazaikinskii
(2012) the spectral flow is dependent on the signs of the constants B (that is, on
the signs of gap functions Δ at the boundaries). The result is:

sf Ĥ
�  ¼

X
∂þX

μi ¼
X
∂þX

Φi

Φ0
: (5.131)

Here ∂+X is the sum of all boundaries for which B is positive, see Fig. 5.14. In
particular, if the sign of B is the same for all boundaries, sf Ĥ

�  ¼ 0 due to
Eq. (5.128).

There are two Dirac cones in graphene, and for a given configuration of
magnetic fluxes their spectral flows should be opposite, to have the total spectral
flow of the lattice Hamiltonian equal to zero (similar to the index; see Section 2.3).
It means that if we would create a configuration with different signs of the gap
functions at different boundaries, then, at a smooth increase of the magnetic field,
some energy levels will move up for one valley and down for the other one.

Until now, there is still no experimental confirmation of this interesting predic-
tion. The concept of spectral flow of the Dirac operator turns out to be useful in
the physics of vortices in superfluid helium-3, where it leads to the appearance
of additional hydrodynamic forces acting on moving vortices (Kopnin forces;
Kopnin, 2002; Volovik, 2003).
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6

Point defects

6.1 Scattering theory for Dirac electrons

Here we discuss quantum relativistic effects in the electron scattering by a radially
symmetric potential V(r). This will give us a feeling for the peculiar properties
of charge carriers in imperfect graphene, in comparison with the conventional two-
dimensional electron gas with impurities (Ando, Fowler, & Stern, 1982). Further,
we will consider a more realistic model of defects in a honeycomb lattice, beyond
the Dirac approximation. In this section we follow the papers by Katsnelson
and Novoselov (2007), Hentschel and Guinea (2007), Guinea (2008), and Novikov
(2007). It is instructive to compare the scattering theory developed in those
works with the two-dimensional scattering theory for the Schrödinger equation
(Adhikari, 1986).

Let us start with the equation

�iℏv~̂σrþ V rð Þ
� � ψ1

ψ2

� �
¼ E

ψ1
ψ2

� �
, (6.1)

where the potential V(r) is supposed to be isotropic, that is, dependent only on the
modulus r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. We have to pass to the radial coordinates (see Eq. (5.16)

through Eq. (5.19)). Then Eq. (6.1) is transformed to the couple of ordinary
differential equations

dgl rð Þ
dr

� l

r
gl rð Þ � i

ℏv
E � V rð Þ½ � f 1 rð Þ ¼ 0,

df l rð Þ
dr

þ lþ 1
r

f l rð Þ � i

ℏv
E � V rð Þ½ �g1 rð Þ ¼ 0,

(6.2)

where l = 0, �1, �2, . . . is the angular-momentum quantum number and we try
the solution in the following form (cf. Eq. (5.19):
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ψ1 ~rð Þ ¼ gl rð Þ exp ilφð Þ,
ψ2 ~rð Þ ¼ f l rð Þ exp i lþ 1ð Þφð Þ:

(6.3)

To be specific, we will further consider the case of electrons with E = ħvk > 0.
In two dimensions, the incident electron plane wave has the expansion

exp i~k~r
� �

¼ exp ikr cos φð Þ ¼ Σ
∞

l¼�∞
ilJI krð Þ exp ilφð Þ, (6.4)

where Jl(z) are the Bessel functions (Whittaker & Watson, 1927). At large values
of the argument (kr >> 1), they have asymptotics

Jl krð Þ ffi
ffiffiffiffiffiffiffi
2
πkr

r
cos kr � lπ

2
� π

4

� �
: (6.5)

The radial Dirac equation (6.2) for free space (V(r) = 0) has, for a given l, two
independent solutions, which are proportional to the Bessel and Neumann func-
tions, Jl(kr) and Yl(kr), the latter having the asymptotics (kr >> 1)

Yl krð Þ ffi
ffiffiffiffiffiffiffi
2
πkr

r
sin kr � lπ

2
� π

4

� �
, (6.6)

but the functions Yl(kr) are divergent at r ! 0. Instead, one can use Hankel
functions

H 1;2ð Þ
l krð Þ ¼ Jl krð Þ � iYl krð Þ (6.7)

with the asymptotics, at kr >> 1,

H 1;2ð Þ
l krð Þ ffi

ffiffiffiffiffiffiffi
2
πkr

r
exp �i kr � lπ

2
� π

4

� �� �
: (6.8)

Thus, the function H 1ð Þ
l describes the scattering wave H 2ð Þ

l and describes the wave
falling at the center.

If we have a potential of finite radius R (V(r > R) = 0), the solution of Eq. (6.2)
at r > R can be represented in the form

gl rð Þ ¼ A Jl krð Þ þ tlH
1ð Þ
l krð Þ

h i
,

f l rð Þ ¼ iA Jlþ1 krð Þ þ tlH
1ð Þ
lþ1 krð Þ

h i
,

(6.9)

where the terms proportional to Bessel (Hankel) functions describe incident
(scattering) waves. The complex factors tl in Eq. (6.9) are scattering amplitudes.
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One can represent them in a more conventional way, via scattering phases δl
(Newton, 1966; Adhikari, 1986). The latter are determined via the asymptotics of
radial solutions at kr >> 1,

gl krð Þ / 1ffiffiffiffiffi
kr

p cos kr � lπ
2
� π

4
þ δl

� �
: (6.10)

Taking into account Eq. (6.5) through Eq. (6.8), Eq. (6.10) can be represented as

gl rð Þ / cos δlJl krð Þ � sin δlY l krð Þ
¼ exp �iδlð Þ Jl krð Þ þ i sin δl exp iδlð ÞHl

1ð Þ krð Þ
h i

:
(6.11)

On comparing Eq. (6.9) and (6.11) one finds

tl kð Þ ¼ i sin δl kð Þ exp iδl kð Þ½ � ¼ exp 2iδl kð Þ½ � � 1
2

: (6.12)

It follows from Eq. (6.12) that

jtl(k)j � 1, (6.13)

which means, as we will see later, that the scattering current cannot be larger than
the incident one.

Let us now calculate the scattering cross-section. For the incident wave propa-
gating along the x-axis we have

Ψ 0ð Þ ¼ 1ffiffiffi
2

p 1
1

� �
exp ikxð Þ, (6.14)

where the numerical factor provides normalization of the incident current:

j (0)x = [Ψ(0)]+σxΨ
(0) = 1. (6.15)

Thus, one can choose A ¼ 1=
ffiffiffi
2

p
in Eq. (6.9). Taking into account Eq. (6.9) and

(6.8), one finds for the asymptotics of the scattering waves at large distances

Ψsc � 1ffiffiffiffiffiffiffi
πkr

p exp ikr � iπ
4

� � X∞
l¼�∞

tl
exp i lþ 1ð Þφ½ �

exp ilφð Þ

 !
: (6.16)

The current operator in the direction~n ¼~r=r is

ĵn ¼~n~̂σ ¼ 0 e�iφ

eiφ 0

� �
, (6.17)

which gives us for the scattering current
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j scð Þ ¼ Ψþ
sc ĵnΨsc ¼ 2

πkr
F φð Þj j2, (6.18)

where

F φð Þ ¼
X∞
l¼�∞

tl exp ilφð Þ: (6.19)

Eq. (6.18) gives for the differential cross-section

dσ
dφ

¼ 2
πk

F φð Þj j2: (6.20)

The Dirac equation (6.2) for the massless case has an important symmetry with
respect to the replacement f $ g, l $ �l � 1, which leads to the result

tl(k) = t�l�1(k). (6.21)

Taking into account Eq. (6.21), the equation (6.20) can be rewritten in the final
form (Katsnelson & Novoselov, 2007)

dσ
dφ

¼ 8
πk

X∞
l¼0

tl cos lþ 1
2

� �
φ

� �					
					
2

: (6.22)

It follows immediately from Eq. (6.22) that dσ/dφ= 0 at φ= π, that is, backscatter-
ing is absent. This is in agreement with the general considerations of Section 4.2.

If we have a small concentration of point defects nimp, then, according to the
standard semiclassical Boltzmann theory (Shon & Ando, 1998; Ziman, 2001; see
also later, Chapter 11), their contribution to the resistivity is

ρ ¼ 2
e2v2N EFð Þ

1
τ kFð Þ , (6.23)

where τ(kF) is the mean-free-path time and

1
τ kFð Þ ¼ nimpvσtr, (6.24)

where

σtr ¼
ð2π
0

dφ
dσ
dφ

1� cos φð Þ (6.25)

is the transport cross-section. The applicability of the semiclassical Boltzmann
theory to quantum relativistic particles in graphene is not clear, a priori. This issue
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will be considered in detail in Chapter 11, and the answer will be that, yes, we can
use this theory, except in the very close vicinity of the neutrality point, where the
minimal conductivity is a purely quantum phenomenon (see Chapter 3). On
substituting Eq. (6.20) into Eq. (6.25) one finds

σtr ¼ 4
k

X∞
l¼0

sin 2 δl � δlþ1ð Þ: (6.26)

Note that Eq. (6.23), for the case of graphene, coincides with Eq. (4.80), where
l = vτ(kF) is the mean free path.

6.2 Scattering by a region of constant potential

Let us apply a general theory from the previous section to the simplest case of a
rectangular potential well (or hump)

V rð Þ ¼ V0, r < R,
0, r > R:



(6.27)

Then, the asymptotic expression (6.9) gives us an exact solution for r > R. At
r < R, k should be replaced by

q ¼ E � V0

ℏv
, (6.28)

and only Bessel functions JI(qr) are allowed (otherwise, the solution will not be
normalizable, due to divergence Yl(z) ~z

�l at z ! 0):

gl rð Þ ¼ BJl qrð Þ
f l rð Þ ¼ iBJlþ1 qrð Þ

(6.29)

at r < R. One needs to add the conditions of continuity of the functions gl(r)
and fl(r) at r = R. The result is (Hentschel & Guinea, 2007; Katsnelson &
Novoselov, 2007)

tl kð Þ ¼ Jl qRð ÞJlþ1 kRð Þ � Jl kRð ÞJlþ1 qRð Þ
Hl

1ð Þ kRð ÞJlþ1 qRð Þ � Jl qRð ÞHlþ1
1ð Þ kRð Þ : (6.30)

Let us consider first the case of a short-range potential

kR << 1; (6.31)

then q = –V0/(ħv) can be considered an energy-independent quantity. At z ! 0,
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Jl zð Þ � 1
l!

z

2

� �l
,

H 1ð Þ
l zð Þ � � i

π
2
z

� �l

l� 1ð Þ! l 6¼ 0ð Þ,

H 1ð Þ
0 zð Þ � 2i

π
ln z:

(6.32)

On substituting Eq. (6.32) into Eq. (6.30), one finds

tl kð Þ � πi

l!ð Þ2
Jlþ1 qRð Þ
Jl qRð Þ

kR

2

� �2lþ1

(6.33)

and, thus, the s-scattering (l = 0) dominates

t0(k) / δ0(k) / kR. (6.34)

Substituting Eq. (6.33) and (6.34) into Eq. (6.26),

σtr / k (6.35)

and the contribution to the resistivity (6.23), (4.80) for the short-range scatterers,
can be estimated as

ρ ffi h

e2
nimpR

2: (6.36)

We will see later (see the detailed analysis in Chapter 11) that this contribution is
negligible.

The results (6.34) and (6.35) are quite clear, keeping in mind an analogy with
optics (Born & Wolf, 1980). The dispersion relation for massless Dirac fermions is
the same as for photons, but for the latter case we know that obstacles with
geometrical sizes much smaller than the wavelength are very inefficient scatterers.

There is a special case, however, if

J0(qR) = 0. (6.37)

Then, the expression (6.33) does not work at l = 0, and higher-order terms should
be taken into account. The result is

t0 kð Þ ffi πi
2

1
ln kRð Þ (6.38)

and
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σtr ¼ π2

k ln 2 kRð Þ : (6.39)

Therefore, instead of (6.36) we have a much larger contribution to the resistivity
(Ostrovsky, Gornyi, & Mirlin, 2006; Katsnelson & Novoselov, 2007):

ρ ffi h

e2
nimp

n

1
ln 2 kFRð Þ , (6.40)

where n ¼ k2F=π is the charge-carrier concentration.
The condition (6.37) corresponds to the case of resonance, for which a virtual

bound state in the well lies close to the neutrality point. Later in this chapter we
will consider more realistic models of such resonant scatterers, namely vacancies
and adatoms. It is interesting to see, however, that the effect already exists in the
Dirac approximation.

If we were to repeat the same calculations for a nonrelativistic electron gas
(Adhikari, 1986), then, instead of continuity of two components of the spinor wave
function at r = R, we would have conditions of continuity of the single-component
wave function and its derivative. The result is

tl kð Þ ¼
k

q

� �
Jl qRð ÞJlþ1 kRð Þ � Jl kRð ÞJlþ1 qRð Þ

H 1ð Þ
l kRð ÞJlþ1 qRð Þ � k

q

� �
Jl qRð ÞH 1ð Þ

lþ1 kRð Þ
, (6.41)

where k and q are, again, wave vectors outside and inside the potential region. In
this case t0(k) ~ 1/ln(kR) (cf. Eq. (6.38)) for general values of the parameters, and
the contribution to the resistivity takes the form (6.40). One can say that for the
two-dimensional nonrelativistic electron gas any potential scattering should be
considered resonant. This agrees with the fact that the perturbation theory does
not work in such a situation and an arbitrarily weak potential leads to the formation
of a bound state (Landau & Lifshitz, 1977).

The opposite limit

kR >> 1 (6.42)

is relevant for the problem of electron scattering by clusters of charge impurities
(Katsnelson, Guinea, & Geim, 2009; see also Chapter 11). On substituting the
asymptotics (6.5) and (6.8) into Eq. (6.30) one finds

tl kð Þ � 1
2

exp
2iV0R

ℏv

� �
� 1

� �
: (6.43)

The summation in Eq. (6.19) should be taken up to jlj � lmax � kR, thus
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dσ
dφ

¼ 2
πk

sin 2 V0R

ℏv

� � Xlmax

l¼�lmax

eilφ
					

					
2

¼ 2
πk

sin 2 V0R

ℏv

� � sin 2 2lmax þ 1ð Þφ
2

� �
sin 2

φ
2

� � :

(6.44)

The expression (6.44) has sharp maxima at the angles

φ ¼ π
2nþ 1

2lmax þ 1
, n ¼ 0, � 1, � � � ,

which can be related to periodic classical trajectories of electrons within the
potential well (for more details, see Katsnelson, Guinea, & Geim, 2009). On
substituting Eq. (6.44) into Eq. (6.25) one finds

σtr ffi 4
k
sin 2 V0R

ℏv

� �
: (6.45)

Interestingly, the cross-section (6.45) is small in comparison with the geometrical
size of the potential region R. Indeed, the region is transparent, due to Klein
tunneling. The corresponding contribution to the resistivity is

ρ ffi h

e2
nimp

n
sin 2 V0R

ℏv

� �
: (6.46)

Thus, long-range potential scattering leads to a contribution to the resistivity
proportional to 1/n.

6.3 Scattering theory for bilayer graphene in the parabolic-band
approximation

We saw in the previous section that the scattering of massless Dirac fermions in
graphene (chiral states, a linear dispersion relation) is essentially different from that
of nonrelativistic electrons (nonchiral states, a parabolic dispersion relation) in a
two-dimensional electron gas. To better understand the role of chirality and of
dispersion relations, it is instructive to consider the case of chiral states with a
parabolic dispersion relation, that is, the case of bilayer graphene in the parabolic-
band approximation (1.46). The corresponding scattering theory was developed by
Katsnelson (2007c).

To solve the Schrödinger equation for the Hamiltonian (1.46) with the addition
of a radially symmetric potential V(r), one has to use, instead of Eq. (6.3), the
angular dependences of the two components of the spinor wave function
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ψ1 ~rð Þ ¼ gl rð Þ exp ilφð Þ,
ψ2 ~rð Þ ¼ f l rð Þ exp i lþ 2ð Þφð Þ,

(6.47)

where l = 0, �1, . . . The radial components satisfy the equations

d

dr
� lþ 1

r

� �
d

dr
� l

r

� �
gl ¼ k2 � 2m∗V

ℏ2

� �
f l,

d

dr
þ lþ 1

r

� �
d

dr
þ lþ 2

r

� �
f l ¼ k2 � 2m∗V

ℏ2

� �
gl,

(6.48)

where, to be specific, we consider the case of electrons with E = ℏ2k2/(2m∗) > 0.
The problem of scattering for this case is essentially different from both the

Dirac theory and the Schrödinger theory, since evanescent waves are unavoidably
involved (cf. the discussion of Klein tunneling for the case of bilayer graphene, Section
4.7). This means that, beyond the radius of action of the potential, Bessel functions of
imaginary arguments have to be added to Eq. (6.9). More specifically, we mean the
Macdonald function Kl(kr) (Whittaker & Watson, 1927) with the asymptotics

Kl krð Þ �
ffiffiffiffiffiffiffi
π
2kr

r
exp �krð Þ (6.49)

at kr >> 1; the Bessel functions Il(kr) grow exponentially at large r and cannot be
used, due to the normalization condition for the wave function. Thus, one should
try for the solution at large distances

gl rð Þ ¼ A Jl krð Þ þ tlH
1ð Þ
l krð Þ þ clKl krð Þ

h i
,

f l rð Þ ¼ A Jlþ2 krð Þ þ tlH
1ð Þ
lþ2 krð Þ þ clKlþ2 krð Þ

h i
:

(6.50)

One can check straightforwardly that the functions (6.50) satisfy the equations
(6.48) at V(r) = 0 for any A, tl and cl.

The terms proportional to Jl(kr) are related to the incident wave (see Eq. (6.4)),

with those proportional to H 1ð Þ
l krð Þ to the scattering waves and those proportional

to Kl(kr) to the evanescent waves. The coexistence of scattering and evanescent
waves at the same energy makes the case of bilayer graphene really peculiar.

The normal component of the current operator

ĵn ¼~n
δĤ

δk
⇀ , (6.51)

where~n ¼~r=r and Ĥ is the Hamiltonian (1.46), has the form (cf. Eq. (6.17))
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ĵn ¼
ℏk
m∗

0 exp �2iφð Þ
exp 2iφð Þ 0

� �
: (6.52)

By further calculating the scattering cross-section, as in the previous section, we
find the same expression (6.19) and (6.20) formally, as for the case of single-layer
graphene. However, the symmetry properties of Eq. (6.48) are different. Namely,
they are invariant under the replacement f $ g, l $�l � 2. As a result, instead of
Eq. (6.21) we have

tl(k) = t�l�2(k). (6.53)

Substituting Eq. (6.53) into Eq. (6.19), we rewrite Eq. (6.20) as

dσ
dφ

¼ 2
πk

t�1 þ 2
X∞
l¼0

tl cos lþ 1ð Þφ½ �
					

					
2

, (6.54)

which gives us a general solution of the scattering problem.
To find the scattering amplitudes tl one needs to specify V(r). For simplicity, we

will use the expression (6.27) (a region of constant potential). Then, for the
solution of Eq. (6.48) at r < R that is regular as r ! 0 one can try

gl rð Þ ¼ αlJl qrð Þ þ βlIl qrð Þ,
f l rð Þ ¼ σ αlJlþ2 qrð Þ þ βlIlþ2 qrð Þ½ �,

(6.55)

where

σ ¼ sgn E � V0ð Þ,

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m∗ E � V0j j

ℏ2

s
:

(6.56)

Eq. (6.48) are now satisfied identically, and the coefficients αl, βl, tl, and cl should
be found from continuity of gl(r), fl(r), dgl(r)/dr, and dfl(r)/dr at r = R.

Further, we will consider only the case of a short-range potential, kR << 1.
For the case l = –1, taking into account the identities Kl(z) = K–1 (z), I1(z) = I1 (–z),

J1 (z) = – J–1 (z), and H
1ð Þ
1 zð Þ ¼ �H 1ð Þ

�1 zð Þ, one can prove immediately that c–1 = 0 and

t�1 / (kR)2. (6.57)

Also, taking into account the asymptotics of the Macdonald and Hankel
functions for l > 2, z ! 0 (we need here next-order terms, in comparison with
Eq. (6.32)),
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Kl zð Þ � 1
2

2
z

� �l

l� 1ð Þ! 1
2

2
z

� �l�2

l� 2ð Þ!,

H 1ð Þ
l zð Þ � � i

π
2
z

� �l

l� 1ð Þ!� i

π
2
z

� �l�2

l� 2ð Þ!,
(6.58)

one can prove that for l 	 1 and kR ! 0 both tl and cl are of the order of (ka)2l

or smaller and thus only the s-channel (l = 0) contributes to the scattering cross-
section, so that Eq. (6.54) can be rewritten as

dσ
dφ

¼ 8
πk

t0 kð Þj j2 cos 2φ: (6.59)

For single-layer graphene, dσ/dφ ~ cos2 (φ/2) (see Eq. (6.22)) and backscattering is
forbidden. For the case of bilayer graphene, there is a strong suppression of the
scattering at φ � π/2. This reflects a difference of the chiral properties of electron
states in these two situations.

For the case l = 0, the wave functions at r > R (but for kR << 1), Eq. (6.50),
have the forms

g0 rð Þ ¼ A 1þ t0 þ τ0 ln
kr

2

� �
þ γ

� �
þ O krð Þ2 ln krð Þ

h i
,

f 0 rð Þ ¼ A � 2i
π
t0 � τ0

2

krð Þ2 �
1
2

 !" #
þ O krð Þ2 ln krð Þ

h i
,

(6.60)

where γ � 0.577 . . . is the Euler constant,

τ0 ¼ 2it0
π

� c0: (6.61)

It follows from the continuity of df0(r)/dr at r = R that

τ0 ¼ k2R3

4A
df 0 rð Þ
dr

				
r¼R

: (6.62)

and, thus,

dg0
dr

				
r¼R

/ k2:

In the limit k ! 0 one has the condition

dg0
dr

				
r¼R

¼ 0, (6.63)

which gives us a ratio of β0/α0. As a result, for r < R
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g0 rð Þ ¼ α0 J0 qrð Þ � I0 qrð Þ J
0
0 qRð Þ
I 00 qRð Þ

� �
,

f 0 rð Þ ¼ σα0 J2 qrð Þ � I2 qrð Þ J
0
0 qRð Þ
I 00 qRð Þ

� �
,

(6.64)

where prime means d/dR. Thus, we have two equations for the constant α0 and A,

g0 Rð Þ ¼ A 1þ t0ð Þ,

f 0 Rð Þ þ R

2
df 0 Rð Þ
dR

¼ � 2iA
π

t0,
(6.65)

which gives us the final expression for t0.
It is clear that t0 does not depend on k in the limit kR! 0. It takes the value with

the maximum possible modulus, t0 = –1 (the unitary limit), when

d

dR

J0 qRð Þ
I0 qRð Þ ¼ 0: (6.66)

This behavior is dramatically different from both that of massless Dirac fermions
and that of conventional nonrelativistic electrons, for which t0(k) ! 0 at k ! 0
(either linearly or ~l/jln kj).

As a result, for the case of short-range scattering in bilayer graphene (in the
parabolic-band approximation)

σtr / 1
k
, (6.67)

and the corresponding contribution to the resistivity is

ρ � h

e2
nimp

n
: (6.68)

Within the perturbation theory, this concentration dependence was obtained by
Koshino and Ando (2006).

We will postpone further discussion of these results until Chapter 11, where we
will discuss electronic transport in graphene; here we restrict ourselves to the
quantum-mechanical problem.

6.4 General theory of defects in a honeycomb lattice

In general, the continuum medium approximation used earlier is not sufficient for
discussing short-range scattering centers in graphene, since they induce intervalley
transitions (Shon & Ando, 1998). To study these effects, we pass here to consider-
ation of defects in a honeycomb lattice (Peres, Guinea, & Castro Neto, 2006;
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Wehling et al., 2007; Basko, 2008; Wehling, Katsnelson, & Lichtenstein, 2009a).
We will use the T-matrix formalism, which has already been mentioned in Section
4.2 (see Eq. (4.33) and (4.34)), but here we will present it in a more systematic way
(see Lifshitz, Gredeskul, & Pastur, 1988; Vonsovsky & Katsnelson, 1989).

Let us consider a general, single-particle Hamiltonian

Ĥ ¼ Ĥ0 þ V̂ (6.69)

defined on a crystal lattice, Ĥ0 being the Hamiltonian of the ideal lattice and V̂ the
perturbation created by defects. The local density of states at site i is determined by
the expression

Ni Eð Þ ¼ i δ E � Ĥ
� �		 		i �

, (6.70)

which can also be represented as

Ni Eð Þ ¼ � 1
π
Im Ĝii Eð Þ, (6.71)

where

Ĝ Eð Þ ¼ lim
δ!þ0

1

E � Ĥ þ iδ
(6.72)

is the Green function (resolvent) of the operator Ĥ . It follows immediately from
Eq. (6.69) that

Ĝ
�1 ¼ bG�1

0 � V̂ , (6.73)

where Ĝ0 is the Green function of the unperturbed problem Eq. (4.34). By
multiplying Eq. (6.73) by operators Ĝ from the right side and Ĝ0 from the left
side we derive the Dyson equation

Ĝ Eð Þ ¼ Ĝ0 Eð Þ þ Ĝ0 Eð ÞV̂ Ĝ Eð Þ: (6.74)

Its formal solution can be written as

Ĝ Eð Þ ¼ Ĝ0 Eð Þ 1� V̂ Ĝ0 Eð Þ� ��1
, (6.75)

which is a compact notation for the infinite series

Ĝ Eð Þ ¼ Ĝ0 Eð Þ þ Ĝ0 Eð ÞV̂ Ĝ0 Eð Þ þ Ĝ0 Eð ÞV̂ Ĝ0 Eð ÞV̂ Ĝ0 Eð Þ þ � � � (6.76)

Alternatively, the series (6.76) can be written as

Ĝ Eð Þ ¼ Ĝ0 Eð Þ þ Ĝ0 Eð ÞT̂ Eð ÞĜ0 Eð Þ, (6.77)
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where T̂ is the T-matrix satisfying Eq. (4.33). Its formal solution can be repre-
sented as

T̂ Eð Þ ¼ 1� V̂ Ĝ0 Eð Þ� ��1
V̂ : (6.78)

The change of the spectral density can be expressed in terms of the T-matrix. The
total density of states

N Eð Þ ¼ Tr δ E � Ĥ
� � ¼ � 1

π
Tr Im Ĝ Eð Þ (6.79)

can be written, due to Eq. (6.72) and (6.75), as

N Eð Þ ¼ 1
π

∂
∂E

Tr Im ln Ĝ Eð Þ ¼ 1
π

∂
∂E

Tr Im ln Ĝ0 Eð Þ � ln 1� V̂ Ĝ0 Eð Þ� �� �
(6.80)

since

Ĝ Eð Þ ¼ � ∂
∂E

ln Ĝ Eð Þ: (6.81)

At the same time, due to Eq. (6.78),

ln T̂ Eð Þ ¼ � ln 1� V̂ Ĝ0 Eð Þ� �þ ln V̂ , (6.82)

the last term being energy-independent. As a result, the change of the density of
states due to the perturbation V̂ can be presented as

ΔN Eð Þ ¼ N Eð Þ � N0 Eð Þ ¼ 1
π

∂
∂E

Im Tr ln T̂ Eð Þ: (6.83)

Finally, using the operator identity

Tr ln Â ¼ ln det Â, (6.84)

one can represent Eq. (6.83) in the form

ΔN Eð Þ ¼ � 1
π
Im

∂
∂E

ln det 1� Ĝ0 Eð ÞV̂� �
, (6.85)

which is more convenient for real calculations.
The contribution of point defects to the resistivity can be also expressed in terms

of the T-matrix, see Chapter 11.
If the perturbation V̂ is localized on one site i = 0 only

Vij = Vδi0δj0, (6.86)

then one can see from Eq. (6.78) that the T̂ -matrix is also localized on the same
site:
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Tij(E) = T00(E)δi0δj0, (6.87)

where

T00 Eð Þ ¼ V

1� VG 0ð Þ
00 Eð Þ

(6.88)

and G 0ð Þ
00 Eð Þ is the matrix element of the Green function for the ideal crystal lattice

at site 0. For the lattice without basis,

G00
0ð Þ Eð Þ ¼ lim

δ!þ0

X
~k

1

E � t ~k
� �

þ iδ
: (6.89)

However, for the case of a honeycomb lattice the Hamiltonian Ĥ0 is a 2 
 2 matrix,
which has, in the nearest-neighbor approximation, the form (1.14). By inverting the
matrix E � Ĥ0 one finds the Green function Ĝ0 in the k representation:

Ĝ0 E;~k
� �

¼ lim
δ!þ0

1

E þ iδð Þ2 � t ~k
� �			 			2

E t ~k
� �

t∗ ~k
� �

E

0@ 1A, (6.90)

where t ~k
� �

¼ tS ~k
� �

. Thus, instead of Eq. (6.89) we have, for the on-site Green
function

G 0ð Þ
00 Eð Þ ¼ lim

δ!þ0

X
~k

E

E þ iδð Þ2 � t ~k
� �			 			2

¼ 1
2

lim
δ!þ0

X
~k

1

E þ iδ� t ~k
� �			 			þ 1

E þ iδþ t ~k
� �			 			

0B@
1CA (6.91)

for which it does not matter whether the site 0 belongs to sublattice A or sublattice
B. At jEj << jtj

N0 Eð Þ ¼ � 1
π
ImG 0ð Þ

00 Eð Þ ¼ 1
π

Ej j
ℏ2v2

(6.92)

(cf. Eq. (1.72); our quantity is smaller by a factor of 2, since here we do not take
into account the spin degeneracy). To find the real part of G 0ð Þ

00 one can use
Kramers–Kronig relations:

ReG 0ð Þ
00 Eð Þ ¼ P

ð∞
�∞

dE0 N0 E0ð Þ
E � E0 , (6.93)
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where P is the symbol for the principal value. We can also just guess the answer,

keeping in mind that G 0ð Þ
00 Eð Þ is a regular function of energy in the upper complex

half-plane.
Notice that jEj= Esgn E= E[1� 2θ(�E)], where θ(x> 0)= 1, θ(x< 0)= 0 and

θ �Eð Þ ¼ 1
π
Im ln E þ iδð Þ:

This means that

Ej j ¼ E � 2
π
E Im ln E þ iδð Þ (6.94)

and, thus, the term jEj in � 1=πð ÞIm G 0ð Þ
00 Eð Þ corresponds to 2E Reln (E + iδ) =

2E ln jEj in Re G 0ð Þ
00 Eð Þ. Taking into account also that, by symmetry,

G 0ð Þ
00 E ¼ 0ð Þ ¼ 0, (6.95)

one finds

ReG 0ð Þ
00 Eð Þ ffi 2

π

E ln
Ej j
D

� �
ℏ2v2

, (6.96)

where we introduce within the logarithm a factor D of the order of the bandwidth.
For the accurate calculation of this factor, see Basko (2008). A general theory of
scattering by short-range defects in graphene, including group-theory analysis, can
also be found in that paper.

The contributions of various types of defects to the transport properties will be
considered in detail in Chapter 11. Here we will just give some simple estimations,
in order to establish relations between this section and the previous ones.

For the case of a weak enough potential V, the scattering rate (6.24) can be
estimated, according to the Fermi golden rule, as

1
τ kFð Þ ¼

2π
ℏ
nimp Vj j2N0 EFð Þ: (6.97)

For the case of a small concentration of defects but strong scattering, one can prove
rigorously (Luttinger & Kohn, 1958) that the potential V should be replaced by the
T-matrix:

1
τ kFð Þ ¼

2π
ℏ
nimp T00 EFð Þj j2N0 EFð Þ (6.98)

(for the case of graphene, see Robinson et al., 2008; Wehling et al., 2010a).
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6.5 The case of vacancies

As a specific application of the general theory described previously, consider first
the case of vacancies (Peres, Guinea, & Castro Neto, 2006). Vacancies are
not naturally present in graphene, due to their very high formation energy of about
7.5 eV; see Kotakoski, Krasheninnikov, and Nordlund (2006). However, they can
be created by ion bombardment (Chen et al., 2009).

The simplest way to simulate the vacancy is just to put V = ∞ in the expression
(6.88), thus making the site i = 0 unavailable for electrons. In this case,

T00 Eð Þ ¼ � 1

G 0ð Þ
00 Eð Þ

: (6.99)

On substituting Eq. (6.99) into Eq. (6.77) one finds that G00(E)= 0, as it should be.
For small energies jEj << D one finds from Eq. (6.96) and (6.99)

T00 Eð Þ ¼ � πℏ2v2

E

1

2 ln
Ej j
D

� �
� iπ sgn E

: (6.100)

The change of the density of states, according to Eq. (6.83), is

ΔN Eð Þ ¼ 1
π

∂
∂E

Im ln T00 Eð Þ

¼ � 1
π

∂
∂E

Im ln 2 ln
Ej j
Δ

� iπsgnE

� �
� � 2

Ej j ln 2
D

Ej j
� � (6.101)

This contribution is negative since the vacancy changes the total number of sites in
the system by one, thus ð∞

�∞

dE ΔN Eð Þ ¼ �1: (6.102)

It is singular at E ! 0.
By substituting Eq. (6.100) into Eq. (6.98) and (6.23), one can estimate the

vacancy contribution to the momentum relaxation rate and, thus, to the resistivity:

ρ � h

e2
nimp

n

1
ln 2 kFað Þ , (6.103)

coinciding with Eq. (6.40). Thus, the vacancy is a resonant scatterer, contributing
essentially to the resistivity (Hentschel & Guinea, 2007; Chen et al., 2009).
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Qualitatively, this result can also be obtained within the continuum model. Let
us consider the Dirac equation for the empty space with the radial wave functions
(6.9). Let us assume that the disc r < R is just cut from the sample. To be specific,
let us assume boundary conditions of zigzag type ψA = 0, that is

gl(R) = 0 (6.104)

(the case ψB = 0 can be derived just by the replacement l ! �l � 1, as was
explained in Section 6.1). Taking into account the behavior of Bessel and Hankel
functions at kr << 1 (Eq. 6.32), one finds immediately that

t0 kð Þ ¼ � J0 kRð Þ
H 1ð Þ

0 kRð Þ
� πi

2 ln kRð Þ , (6.105)

coinciding with Eq. (6.38). As we have seen in Section 6.2, this gives the estima-
tion (6.103) for the resistivity (Hentschel & Guinea, 2007).

Consider now the asymptotics of the perturbed density of states

ΔNi Eð Þ ¼ � 1
π
Im G 0ð Þ

i0 Eð ÞT00 Eð ÞG 0ð Þ
0i Eð Þ

h i
(6.106)

(see Eq. (6.77)) at Ri ! ∞. The asymptotics of the Green function

G 0ð Þ
i0 Eð Þ ¼

X
~k

exp i~k~Ri

� �
G0 E;~k
� �

, (6.107)

where G0 E;~k
� �

is defined by Eq. (6.90), is determined by the region of ~k close
to one of the conical points, K or K0. For a generic perturbation V the result is
(Bena & Kivelson, 2005; Lin, 2005, 2006; Wehling et al., 2007)

ΔNi Eð Þe 1
Ri

(6.108)

at Ej jRi

ℏv >> 1. For the case of a vacancy (V = ∞) we have, instead of Eq. (6.108),

ΔNi Eð Þe 1

R2
i

(6.109)

(Pereira et al., 2006).
Finally, consider the case of a finite concentration of vacancies. The singularity

of the scattering amplitude, Eq. (6.100) and (6.105), results in the formation of
mid-gap states, or vacancy bands (Pereira et al., 2006; Yuan, De Raedt &
Katsnelson, 2010a, 2010b). Fig. 6.1 shows the total density of states (in the small-
energy region) obtained numerically for a large (about 107 nodes) piece of honey-
comb lattice with periodic boundary conditions, with different concentrations of
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randomly distributed vacancies (Yuan, De Raedt, & Katsnelson, 2010a). The
vacancy-induced states form a peak at E = 0 which was observed experimentally
by Ugeda et al. (2010). In the continuum-medium model (see Eq. (6.104)) these
states are associated with the edge states at the boundary of the void (Pereira et al.,
2006). Note, however, that the latter model is valid only qualitatively, since the
atomically sharp disorder induces intervalley processes, which should be taken into
account (Basko, 2008).
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Fig. 6.1 The density of states of graphene with a small concentration of vacancies
(a) or hydrogen atoms (that is, adatoms with the parameters (6.114)) (b). Solid
lines, pure graphene; dashed lines, 0.1% of defects; dotted lines, 1% of defects.
(Reproduced with permission from Yuan, De Raedt, & Katsnelson, 2010a.)
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6.6 Adsorbates on graphene

Adsorbed atoms and molecules are probably the most important examples of point
defects in the physics of graphene. Owing to the outstanding strength of the carbon
honeycomb lattice it is very difficult to introduce any defects into the lattice itself.
At the same time, some contamination of graphene is unavoidable. A systematic
study of adsorbates on graphene was started by Schedin et al. (2007), who
discovered an extreme sensitivity of the electric properties of graphene to gaseous
impurities; even the adsorption of a single molecule can be detected. The case of
NO2 was studied in detail, both theoretically and experimentally, by Wehling et al.
(2008b). Optimized structures and electron densities of states for the NO2 mono-
mer and dimer are shown in Fig. 6.2. One can see that for the latter case (N2O4)
there is a peak in the density of states that is reminiscent of the vacancy-induced
mid-gap states. Chemical functionalization of graphene, leading, in particular, to
the derivation of new two-dimensional crystals, such as graphane, CH (Elias et al.,
2009), and fluorographene, CF (Nair et al., 2010), starts with chemisorption of the
corresponding adatoms or admolecules (for a review, see Boukhvalov & Katsnel-
son, 2009a). Last but not least, scattering by adatoms and admolecules seems to be
one of the most important factors limiting electron mobility in graphene (Wehling
et al., 2010a; Ni et al., 2010); for more details, see Chapter 11.

Fig. 6.2 Left: the spin-polarized density of states of graphene with adsorbed NO2

(the black line is for spin up and the gray line is for spin down), (a) and (b), and
the density of states for N2O4, (c)–(e), in various adsorption geometries. Right:
adsorption geometries obtained from the calculations.
(Reproduced with permission from Wehling et al., 2008b.)
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The simplest single-electron model describing adsorbates is the hybridization
model with the Hamiltonian (Robinson et al., 2008; Wehling et al., 2010a)

Ĥ ¼ Σ
ij
tijĉ

þ
i ĉj þ Σ

ij
γij ĉi

þd̂ j þ d̂
þ
j ĉi

� �
þ Ed

X
i

bdþ
i d̂ i, (6.110)

where the operators ĉi and d̂ i annihilate electrons on the ith carbon atom and ith
atom of adsorbate, respectively, tij are the hopping parameters for the carbon
honeycomb lattice, Ed is the electron energy for the adsorbate atoms (which are
assumed to be identical), and γij are hybridization parameters between the ith carbon
atom and jth adsorbed atom. The d electron subsystem can be rigorously excluded
by projection to c subspace only; the effective Hamiltonian for c electrons has the
form (6.69), where Ĥ0 is the first term on the right-hand side of Eq. (6.110) (the band
Hamiltonian for graphene), and V̂ is the energy-dependent perturbation

Vij ¼
P

l γilγlj
E � Ed

: (6.111)

If we consider the case of a single adatom (i = 0) and assume, for simplicity, that
γij = γδij, we pass to the problem (6.86) with

V Eð Þ ¼ γ2

E � Ed
: (6.112)

Further, we can simply use the theory developed in the previous section.
If the condition

γ2 >> jEdjjtj (6.113)

is satisfied, then, at energies close enough to the Dirac point (jEj << jtj), the
potential (6.112) is very strong, and an adatom is effectively equivalent to a
vacancy.

To understand this very important point, let us consider the hydrogen atom as an
example. It is attached to one of the carbon atoms, transforming locally its state
from sp2 bonded to sp3 bonded; distortions make the angles between the bonds and
bond lengths locally similar to those in diamond (Boukhvalov, Katsnelson, &
Lichtenstein, 2008), see Fig. 6.3. This means that the carbon atom bonded with
hydrogen is almost unavailable for pz electrons, since their energies are locally shifted
too strongly. This makes it similar to a vacancy. Ab initio calculations (Wehling et al.,
2010a) show that the local electronic structure for the case of a hydrogen adatom can
be quite accurately fitted by the hybridization model with the parameters

γ � 2 tj j, Ed � � tj j
16

, (6.114)
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so the inequality (6.113) is satisfied with high precision. This means that hydrogen
atoms form mid-gap states, which are, however, slightly shifted with respect to the
Dirac point, because Ed < 0 (Wehling et al., 2010a; Yuan, De Raedt, & Katsnel-
son, 2010a), see Fig. 6.1.

Interestingly, approximately the same parameters (6.114) describe the case of
various organic groups, such as CH3, C2H5, and CH2OH, attached to carbon atoms
via the carbon–carbon chemical bond (Wehling et al., 2010a). One can assume that
such bonds can be formed in real graphene with organic contaminants, which,
therefore, can be responsible for the appearance of strongly “resonant” scatterers
(Ni et al., 2010; Wehling et al., 2010a).

The position of the impurity peak corresponds to the pole of the T-matrix

1 ¼ V Eimp
� �

G 0ð Þ
00 Eimp
� �

(6.115)

(see Eq. (6.88)). With the parameters (6.114) we find Eimp � �0.03 eV, in
agreement with the results of straightforward ab initio calculations (Wehling,
Katsnelson, & Lichtenstein, 2009b). For the case of fluorine, F, and the
hydroxyl group, OH, the latter parameters give, respectively, Eimp � –0.67 eV
and Eimp � – 0.70 eV, so these impurities are weaker scatterers than hydrogen or a
vacancy (Wehling, Katsnelson, & Lichtenstein, 2009b).

Further discussion will be presented in Chapters 11 and 12, in relation to the
effects of adatoms on electronic transport in graphene and their magnetic proper-
ties, respectively.

6.7 Scanning tunneling microscopy of point defects on graphene

Scanning tunneling microscopy (STM) allows us to probe the electronic properties
of conducting materials with atomic-scale spatial resolution (Binnig & Rohrer,
1987). Being a local probe, it is especially suitable for studying the electronic
structures of various types of defects and defect-induced features, including many-
body effects (Li et al., 1998; Madhavan et al., 1998; Balatsky, Vekhter, & Zhu,

hA2

hB1 dC–H hA0

Fig. 6.3 Atomic displacements around a hydrogen atom attached to one of the
carbon atoms in graphene. Carbon atoms belonging to sublattices A and B are
shown in dark gray and light gray, respectively; hA0 ¼ 0:257 A

�
,

hB1 ¼ �0:047 A
�
, hA2 ¼ �0:036 A

�
, and dC�H ¼ 1:22 A

�
.

(Reproduced with permission from Boukhvalov, Katsnelson, & Lichtenstein, 2008.)
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2006). In particular, it was used locally to probe vacancies in the top (graphene)
layer of graphite (Ugeda et al., 2010) and a magnetic adatom (Co) on graphene
(Brar et al., 2011). Here we will discuss some general peculiarities of the STM
spectra of graphene (Uchoa et al., 2009; Saha, Paul, & Sengupta, 2010; Wehling
et al., 2010b).

Assuming that the tunneling between the sample and the STM tip is weak
enough, one can derive, to lowest order in the tunneling amplitude M, the
following expression for the current–voltage (I–V) characteristic (Tersoff &
Hamann, 1985; Mahan, 1990):

I Vð Þ ¼ πe
ℏ

X
nvσ

Mσ
nv

		 		2 ð dE Nσ
n Eð ÞNσ

n E � eVð Þ f E � eVð Þ � f Eð Þ½ �, (6.116)

where f(E) is the Fermi distribution function, σ is the spin projection, Greek (Latin)
indices label electron eigenstates for the sample (tip) ψvσ and ψnσ,

Mσ
nv ¼

ℏ2

2m

ð
d~S ψ∗

nσrψvσ � ψvσrψ∗
nσ

� �
(6.117)

is the current-matrix element, m is the free-electron mass, and the surface integral
in Eq. (6.117) is taken over arbitrary area between the tip and sample. The spectral
densities

Nσ
v Eð Þ ¼ � 1

π
Im Gσ

v Eð Þ (6.118)

for the sample and a similar quantity Nσ
v Eð Þ for the tip determine the intensity of

tunneling. If one neglects the spin polarization, assumes that the spectral density of
the tip is a smooth function, and uses a semiclassical approximation (Ukraintsev,
1996), one can demonstrate that, at low enough temperatures (T << jeVj),

dI

dV
/ � 1

π
Im Gii E ¼ eVð Þ, (6.119)

where i is the site index for the atom of the sample nearest to the tip. This means
that, using STM, one can probe the spatial distribution of the electron density
around the defect (see Wehling et al., 2007).

Let us assume that the adatom situated at the site i = 0 has a resonant state which
can be of single-electron or many-body origin (e.g., the Kondo effect). The
expression (6.116) and, thus, (6.119) are correct, anyway, assuming that the
tunneling amplitude M is small enough and the lowest-order perturbation theory
in M works (Mahan, 1990).

The resonance at E = Ed is manifested in this situation via two contributions,
namely, the direct contribution of d electrons to tunneling and the contribution of c
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electrons to the tunneling, via c-d hybridization. This leads to the Fano (anti)
resonance effect (Madhavan et al., 2001). For simplicity, we can assume that d
states are more localized than c states and, thus, only the second effect is important.
In this situation, we can use Eq. (6.119), assuming that G is the Green function of
c electrons. Its change due to the presence of an impurity is determined by
Eq. (6.77). On putting i = 0 one finds

Im G00 Eð Þ � G 0ð Þ
00 Eð Þ

h i
¼ Im G 0ð Þ

00 Eð Þ
h i2

T00 Eð Þ

 �

¼ Re G 0ð Þ
00 Eð Þ

h i2
� Im G 0ð Þ

00 Eð Þ
h i2
 �

Im T00 Eð Þ

þ 2 Im G 0ð Þ
00 Eð Þ

h i
Re G 0ð Þ

00 Eð Þ
h in o

Re T00 Eð Þ:

(6.120)

In the case of resonance,

T00 Eð Þe 1
E � Ed þ iΔ

, (6.121)

where Δ is the halfwidth of the resonance, thus

�Im T00 Eð Þe Δ

E � Edð Þ2 þ Δ2
(6.122)

has a maximum at E = Ed and

Re T00 Eð Þe E � Ed

E � Edð Þ2 þ Δ2
(6.123)

changes sign. Assuming that G 0ð Þ
00 Eð Þ is smoothly dependent on the energy at the

energy scale jE � Edj � Δ and substituting Eq. (6.120) through (Eq. (6.123) into
Eq. (6.119), one finds

dI

dV
/ q2 � 1þ 2qε0

1þ ε02
, (6.124)

where

ε0 ¼ eV � Ed

Δ
(6.125)

and the quantity

q ¼ �Re G 0ð Þ
00 Edð Þ

Im G 0ð Þ
00 Edð Þ

(6.126)
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is called the Fano asymmetry factor (which should not be confused with the Fano
factor (3.17) – the usual problem when a particular scientist made essential
contributions to various fields!). If q is large then the resonance should be
observed, whereas for small q one will observe rather the antiresonance (a dip in
dI/dV instead of a peak).

For graphene, due to Eq. (6.92) and (6.96), the Fano factor at jEj << Δ,

q ¼ 2
π
ln

Δ
Ed

				 				, (6.127)

is very large (Wehling et al., 2010b).
For a more detailed analysis, see Uchoa et al. (2009), Wehling et al. (2010b) and

Saha, Paul, and Sengupta (2010).

6.8 Long-range interaction between adatoms on graphene

Consider now the energetics of point defects and their clusters. On substituting
Eq. (6.83) for the change of the total density of states into the expression for the
thermodynamic potential of noninteracting fermions Eq. (2.134), one finds

ΔΩ ¼ � T

π
Im Tr

ð∞
�∞

dE ln 1þ exp
μ� E

T

� �� �
∂
∂E

ln T̂ Eð Þ

¼ 1
π
Im Tr

ð∞
�∞

dE f Eð Þ ln T̂ Eð Þ

¼ 1
π
Im
ð∞
�∞

dE f Eð Þ ln det 1� Ĝ0 Eð ÞV̂� �
(6.128)

(see Eq. (6.85)).
This expression can be used, for example, to study the effects of interactions

between impurities. Let us assume that

Vij = V1δi1δj1 + V2δi2δj2, (6.129)

which means two defects with local potential at sites i = 1 and i = 2 (cf. Eq. (6.86)).
Then,

det 1� Ĝ0V
� � ¼ 1� Ĝ

0ð Þ
11 V1

h i
1� Ĝ

0ð Þ
12 V2

h i
� V1Ĝ

0ð Þ
12 V2Ĝ

0ð Þ
21 : (6.130)
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To find the interaction energy one needs to substitute Eq. (6.130) into Eq. (6.128)
and subtract the same expression with Ĝ 0ð Þ

12 ¼ 0, which corresponds to the case of
noninteracting defects. As a result, we obtain

Ωint ¼ 1
π
Im
ð∞
�∞

dE f Eð Þ ln 1� T 0ð Þ
11 Eð ÞG 0ð Þ

12 Eð ÞT 0ð Þ
22 Eð ÞG 0ð Þ

21 Eð Þ
h i

, (6.131)

where T 0ð Þ
ii Eð Þ are the single-site T-matrices (6.88). Keeping in mind that the

functions G(0)(E) and T(E) are analytic at Im E > 0, that the Fermi function has
poles at

E= μ+ iεn, (6.132)

where
εn = πT(2n + 1),

with the residues –T, and recalling that

Im A E þ i0ð Þ ¼ 1
2i

A E þ i0ð Þ � A E � i0ð Þ½ �, (6.133)

one can rewrite the expression (6.131) as

Ωint ¼ �T
X
εn

ln 1� T 0ð Þ
11 iεn þ μð ÞG 0ð Þ

12 iεn þ μð ÞT 0ð Þ
22 iεn þ μð ÞG 0ð Þ

21 iεn þ μð Þ
h i

(6.134)

(Shytov, Abanin, & Levitov, 2009). One can use this expression to calculate the
interaction energy for two resonant impurities, such as vacancies or hydrogen
adatoms, when Eq. (6.99) can be used for the T-matrix.

To calculate the asymptotics of the interaction energy at large distances, one can
assume that G12 is small and only take into account the first term in the Taylor
expansion of Eq. (6.134):

Ωint � T
X
εn

T 0ð Þ
11 iεn þ μð ÞG 0ð Þ

12 iεn þ μð ÞT 0ð Þ
22 iεn þ μð ÞG 0ð Þ

21 iεn þ μð Þ: (6.135)

Later we will consider the case of undoped graphene (μ = 0).
Using this expression, one can prove that the sign of the interaction is different

for impurities belonging to the same sublattice and to a different sublattice. In the
latter case, there is attraction between the impurities, decaying as

UAB rð Þ / � 1
r ln r=að Þ (6.136)

(r >> a), whereas for the former case there is repulsion
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UAA rð Þ / 1
r2 ln r=að Þ : (6.137)

This means that the resonant impurities would prefer to sit in different
sublattices (Shytov, Abanin, & Levitov, 2009). This consideration is valid only
at large distances. Interestingly, first-principles electronic-structure calculations
(Boukhvalov, Katsnelson, & Lichtenstein, 2008; Boukhvalov & Katsnelson, 2009a)
show that the same happens for the nearest-neighbor, next-nearest-neighbor, etc.
distances: The resonant impurities always prefer to sit in different sublattices.
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7

Optics and response functions

7.1 Light absorption by Dirac fermions: visualization of the
fine-structure constant

In this chapter we will discuss electromagnetic properties of graphene related to
electron–photon interaction. The discussion of optical properties related to phonons
(infrared adsorption, the Raman effect) will be postponed until Section 9.8.

Massless Dirac fermions in two dimensions have an amazing property: their
optical response is universal and expressed only in terms of the fine-structure
constant (Ando, Zheng, & Suzuura, 2002; Gusynin, Sharapov, & Carbotte, 2006;
Nair et al., 2008)

α ¼ e2

ℏc
� 1

137:036
: (7.1)

Experiments on light absorption of graphene can, literally, visualize this funda-
mental constant (Nair et al., 2008). To see this, let us determine the electric field of

the light via the vector potential ~A tð Þ ¼ ~A exp �iωtð Þ,

~E tð Þ ¼ � 1
c

∂~A
∂t

¼ iω
c
~A: (7.2)

This is more convenient for optics than the representation via the scalar potential
~E ¼ �~∇φ, but is, of course, equivalent to it due to gauge invariance. Thus, the
Hamiltonian of Dirac electrons in the presence of an electric field is (cf. Eq. (2.20)
and (2.24))

Ĥ ¼ v~σ ~̂p� e

c
~A

� �
¼ Ĥ0 þ Ĥ int, (7.3)

where

Ĥ int ¼ � ve

2c
~σ~A ¼ iev

2ω
~σ~E (7.4)
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is the Hamiltonian of the electron–photon interaction. The factor 1
2 in Eq. (7.4) is

necessary, since the standard expression for the complex field is

~E tð Þ ¼ Re ~E exp �iωtð Þ� � ¼ 1
2

~E exp �iωtð Þ þ~E∗ exp �iωtð Þ� �
(7.5)

and we take into account only the first term. This interaction induces transitions

from the occupied hole states ψh
~k
� �

to the empty electron states ψe
~k
� �

with the

same wave vector~k (see Eq. (1.30)), the intraband transitions being forbidden by the
momentum conservation (Fig. 7.1). The matrix element of the Hamiltonian (7.4) is

ψhjĤ intjψe

� � ¼ ev

2ω
Ey cos φ∓Ex sin φ
� 	

, (7.6)

where the � and + signs correspond to K and K0 valleys. It only depends on the
polar angle φ of the ~k vector, not on its length. On averaging the square matrix
element over φ one finds

Mj j2 ¼ ψh Ĥ int



 

ψe

� �

 

2 ¼ e2v2

8ω2
~E


 

2, (7.7)

where we assume that the photon propagates perpendicular to the graphene plane
and, thus, the vector ~E ¼ Ex;Ey; 0

� 	
lies within the plane. The absorption prob-

ability per unit time, to the lowest order of perturbation theory, is (Landau &
Lifshitz, 1977)

P ¼ 2π
ℏ

Mj j2N ε ¼ ℏω
2

� �
, (7.8)

where N(ε) is the density of states (1.72) (we take into account the spin and valley
degeneracy) and the energy of the final states is ħω/2 as is obvious from Fig. 7.1.
On substituting Eq. (1.72) and (7.7) into (7.8) we find

P ¼ e2

4ℏ2ω
~E


 

2: (7.9)

Fig. 7.1 A schematic representation of direct optical transitions in graphene.
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Thus, the absorption energy per unit time is

Wa ¼ Pℏω ¼ e2

4ℏ
~E


 

2: (7.10)

At the same time, the incident energy flux is (Jackson, 1962)

Wi ¼ c

4π
~E


 

2: (7.11)

The absorption coefficient is, therefore,

η ¼ Wa

W i
¼ πe2

ℏc
� 2:3% (7.12)

and is universal, assuming that ℏω > 2jμj. Otherwise, the transitions are forbidden
by the Pauli principle (see Fig. 7.1) and η = 0. For visible light, ℏω � 1 � 2 eV is
much higher than the Fermi energy in graphene. Moreover, it is much higher than
the energy of electron hopping between layers in multilayer graphene or graphite.
Therefore, the absorption for N-layer graphene is just Nη. This behavior was
observed experimentally for single-layer and bilayer graphene (Nair et al., 2008)
and for graphite (Kuzmenko et al., 2008). According to Eq. (7.12), graphene is
quite transparent. At the same time, one should keep in mind that this is an
absorption coefficient of more than 2% per single atomic layer, which is a huge
value. Thus, the interaction of Dirac electrons with photons is actually very strong.

In the first work (Novoselov et al., 2004) single-layer graphene on SiO2 was first
detected just by the human eye, via a conventional (optical) microscope. It was a
lucky coincidence that the contrast due to light absorption in graphene was
strongly enhanced by interference phenomena in the SiO2 layer with appropriate
thickness. The optics of the visibility of graphene on a substrate was considered by
Blake et al. (2007) and Abergel, Russel, and Fal’ko (2007).

7.2 The optics of Dirac fermions: the pseudospin precession formalism

The optical properties of Dirac fermions can be studied in a physically transparent
way using the equations of motion for the density matrix (Katsnelson, 2008). It has
the form (2.173). For the Hamiltonian one can use Eq. (7.3); however, it is more
instructive to change the gauge and write

Ĥ int ¼ �e~E tð Þ~̂r ¼ �ie~E tð Þ~∇~k (7.13)

(see Eq. (2.178)). We will show explicitly that the result (7.12) can be derived
within this representation as well. Thus, the equation (2.173) reads
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iℏ
∂ρ̂~k
∂t

¼ ℏv~k ~̂σ; ρ̂~k

h i
� ie ~E tð Þ�~∇~k

� �
ρ̂~k, (7.14)

where ρ̂~k is the 2 � 2 pseudospin matrix

ρ̂~k
� 	

αβ ¼ ψþ
~kβ
ψ~kα

D E
(7.15)

(cf. Eq. (2.170) and (3.1)). It can be expanded in Pauli matrices

ρ̂~k ¼ n~kÎ þ ~m~k~̂σ, (7.16)

where Î is the unit 2 � 2 matrix, and

n~k ¼
1
2
Trρ̂~k (7.17)

and

~m~k ¼
1
2
Tr ~̂σρ̂~k

� �
(7.18)

are charge and pseudospin densities (in the ~k representation). On substi-
tuting Eq. (7.16) into Eq. (7.14) we find the separated equations for the charge
density

∂n~k
∂t

¼ � e

ℏ
~E�~∇~k
� �

n~k, (7.19)

and the pseudospin density

∂~m~k

∂t
¼ 2v ~k�~m~k

� �
� e

ℏ
~E�~∇~k
� �

~m~k: (7.20)

To calculate the time-dependent current density

~j ¼ Tr ~̂jρ̂
� �

¼ 2ev
X
~k

~m~k, (7.21)

we need only Eq. (7.20). It is rigorous (for noninteracting fermions) and can be
used to calculate both linear and nonlinear optical properties. The first term on the
right-hand side of Eq. (7.20) is nothing other than precession, with a pseudomag-
netic “field” proportional to ~k acting on the pseudospin degree of freedom.
A similar formalism was used by Anderson (1958) as the most physical way to
represent the BCS theory of superconductivity.

To calculate the optical conductivity we will use the first-order perturbation
in ~E, assuming that it has the form ~E exp �iωtð Þ, and look for the solution of
Eq. (7.20) as
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~m~k tð Þ ¼ ~m~k
0ð Þ þ δ~m~k exp �iωtð Þ, (7.22)

where

δ~m~k e~E:
To calculate ~m~k

0ð Þ, we use the unitary transformation

ψ~k1 ¼ 1ffiffiffi
2

p ξ~k1 þ ξ~k2
� 	

,

ψ~k2 ¼ exp iφ~k
� 	ffiffiffi
2

p ξ~k1 � ξ~k2
� 	

,

(7.23)

diagonalizing the Hamiltonian Ĥ0,

Ĥ0 ¼
X
~k

ℏvk ξþ~k2ξ~k2 � ξþ~k1ξ~k1
� �

: (7.24)

So ξ~k1 and ξ~k2 are annihilation operators for holes and electrons, respectively.
At equilibrium,

ξþ~kiξ~ki
D E

¼ f~ki (7.25)

are Fermi distribution functions depending on the energies ∓ℏvk. We obtain

~m~k
0ð Þ ¼

~k

2k
f~k1 � f~k2
� 	

: (7.26)

Eq. (7.20) takes the form

ω δ~m~k ¼ 2v ~k � δ~m~k

� �
� e

ℏ
~E�~∇~k
� �

~m~k
0ð Þ: (7.27)

Since the vector (7.26) lies in the xy-plane, the component δmz is not coupled to the
electric field and can be found from Eq. (7.27):

δm~k
z ¼ 2v

ω
kxδm~k

y � kyδm~k
x

� 	
: (7.28)

Using Eq. (7.28) to exclude δmz from the equations for δmx and δmy, we find

ω2 � 4v2k2y

� �
δm~k

x þ 4v2kxkyδm~k
y ¼ � ieω

ℏ
E
∂m~k

x 0ð Þ

∂kx
,

4v2kxkyδm~k
x þ ω2 � 4v2k2x

� 	
δm~k

y ¼ � ieω
ℏ

E
∂m~k

y 0ð Þ

∂kx
, (7.29)
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where we have chosen the direction of the x-axis along the electric field. By
solving Eq. (7.29) and calculating the current along the x-axis as

jx ¼ 2ev
X
~k

δm~k
x ¼ σ ωð ÞE (7.30)

we obtain the following expression for the optical conductivity:

σ ωð Þ ¼ � 8ie2v3

ℏω

X
~k

ky
ω2 � 4v2k2

ky
∂m~k

x 0ð Þ

∂kx
� kx

∂m~k
x 0ð Þ

∂kx

 !
: (7.31)

On substituting Eq. (7.26) into Eq. (7.31) we find

σ ωð Þ ¼ � 4ie2v3

ℏω

X
~k

k2y
ω2 � 4v2k2k

1
k

f~k1 � f~k2
� 	

¼ � 2ie2v3

ℏω

X
~k

k f~k1 � f~k2
� 	
ω2 � 4v2k2

: (7.32)

As is usual in calculations of response functions, one should make the replace-
ments ω ! ω + iδ in Eq. (7.32) and δ ! +0 at the end of the calculations
(Zubarev, 1974).

To calculate Re σ(ω), one needs to make the replacement

1

ω2 � 4v2k2
! Im

1

ωþ iδð Þ2 � 4v2k2
¼ �πiδ ω2 � 4v2k2

� 	
¼ � πiδ ω� 2vkð Þ

4vk
:

(7.33)

So,

Reσ ωð Þ ¼ πe2v2

2ℏω

X
~k

f~k1 � f~k2
� 	

δ ω� 2vkð Þ

¼ e2

16ℏ
f ε ¼ �ℏω

2

� �
� f ε ¼ ℏω

2

� �� �
: (7.34)

This is the conductivity per valley per spin. On multiplying the result by 4 and
setting the temperature to zero one has

Reσ ωð Þ ¼
0, ω < 2 μj j,
e2

4ℏ
, ω > 2 μj j:

8<: (7.35)

This expression corresponds exactly to the absorption coefficient (7.12).
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It is important to stress that the universal optical conductivity

σ0 ¼ e2

4ℏ
¼ πe2

2h
(7.36)

is of the order of, but not equal to, the static ballistic conductivity

σB ¼ 4e2

πh
(7.37)

(see Eq. (3.16) and Eq. (3.18)). This is not surprising, since we saw in Chapter 3
that limits ω ! 0, μ ! 0, T ! 0, etc. do not necessarily commute with one
another, as different ways to regularize the ill-posed expression (3.10).

The imaginary part of the conductivity can be restored from Eq. (7.35) via the
Kramers–Kronig relations. The result is (see, e.g., Stauber, Peres, & Geim, 2008)

Imσ ωð Þ ¼ σ0
π

4μ
ℏω

� ln
ℏωþ 2μ
ℏω� 2μ





 



� �
: (7.38)

At μ ! 0, Im σ(ω) ! 0 for any frequency.

7.3 Many-body corrections to the universal optical conductivity:
a phenomenological approach

Experimental data obtained by Nair et al. (2008) agree, to within a few percent,
with the theoretical value (7.12) (or, equivalently, (7.35)), which is, actually, a
problem. As we will see later, the electron–electron interaction in graphene is not
small, and earlier considerations (Fritz et al., 2008; Herbut, Juričič, & Vafek, 2008)
predicted a rather strong renormalization of the optical conductivity, of the order of
1/ ln jt/(ℏω)j. The following first-principles GW (G is the Green function and W is
the dynamically screened interaction; Yang et al., 2009) as well as the lattice
quantum Monte Carlo (Boyda et al., 2016) calculations show that the many-body
corrections to the optical conductivity are either absent or small. A more detailed
analytical many-body analysis (Mishchenko, 2008; Sheehy & Schmalian, 2009; de
Juan, Grushin, & Vozmediano, 2010, Teber & Kotikov, 2014; Link et al., 2016)
leads to the conclusion that, whereas the terms of the order of 1/ ln jt/(ℏω)j do not
exactly disappear, there is a small numerical factor before them. The situation will
be considered in more detail in Chapter 15.

Importantly, the survival of the many-body corrections to the conductivity,
albeit with a small numerical prefactor, is a consequence of long-range Coulomb
interelectron interaction in graphene. For the case of weak enough short-range
interactions the corrections to σ(ω) are absent. Here we present, following
Katsnelson (2008), some arguments in support of this statement based on the
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phenomenological Fermi-liquid theory. Later, the absence of correlation correc-
tions to the optical conductivity of electrons on the honeycomb lattice was proved
rigorously for the case of a weak enough, short-range interelectron interaction
(Giuliani, Mastropietro, & Porta, 2011). Despite that this is not exactly the case of
real graphene, the phenomenological consideration seems to be instructive as a
demonstration of power of the density matrix and pseudospin formalism.

The equation of motion for the density matrix can be modified naturally to the
kinetic equation for quasiparticles within the framework of Landau Fermi-liquid
theory (Landau, 1956; Platzman & Wolf, 1973; Vonsovsky & Katsnelson, 1989).
Assuming

ρ̂ ¼ ρ̂ 0ð Þ þ δρ̂ exp �iωtð Þ (7.39)

(cf. Eq. (7.22)), one can write, instead of Eq. (7.14),

ℏω δρ̂~k ¼ ℏv~k ~̂σ; δρ̂~k

h i
� ie ~E�~∇~k

� �
ρ̂~k

0ð Þ þ δĤ~k; ρ̂~k
0ð Þ

h i
, (7.40)

where the last term contains the change of the Hamiltonian δĤ due to the change of
the density matrix. In the spirit of Landau theory it is due to the interaction between
quasiparticles characterized by some matrix F̂ :

δĤ~k ¼
X
~k0

F̂~k~k0δρ̂~k0 : (7.41)

Eq. (7.41) generalizes the standard Landau theory to the case of a matrix distribu-
tion function for the quasiparticles.

The (pseudo)spinor structure of the matrix F̂ can be found by invoking sym-
metry considerations. First, it should be rotationally invariant in the two-
dimensional space. Second, as was discussed in Chapter 1 (see Eq. (1.42)), the
Hamiltonian δĤ and, thus, the matrix F̂ cannot contain the σ̂ z matrix (this follows
from the inversion and time-reversal symmetries). Third, it should vanish at ~k,
~k0 ! 0, together with Ĥ0

~k
� �

. The most general expression satisfying these
requirements is

F̂ ~k~k0 ¼ A ~k �~k0



 


� �

I⊗I 0 þ B ~k �~k0



 


� �

~k�~σ
� �

⊗ ~k0�~̂σ0
� �

þC ~k �~k0



 


� �

~k�~k0
� �

σ̂x⊗bσ 0
x þ σ̂y⊗bσ 0

y

� �
: (7.42)

The long-range Coulomb (Hartree) interaction, singular at ~k �~k0



 


! 0 (see

Section 8.4), contributes to the function A only, whereas the functions B and C

are supposed to be smooth and tend to become constants as ~k �~k0



 


! 0.
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By substituting Eq. (7.41) and (7.42) into Eq. (7.40) we derive, instead of
Eq. (7.29),

ω2δmx
~k
� 4v2k2yδ~m

x
~k
þ 4v2kxkyδ~m

y
~k
¼ � ieω

ℏ
E
∂mx 0ð Þ

~k

∂kx
,

4v2kxkyδ~m
x
~k
þ ω2δmy

~k
� 4v2k2xδ~m

y
~k
¼ �ieω

ℏ
E
∂my 0ð Þ

~k

∂kx
, (7.43)

where δ ~~m ¼ δ~mþ~Δ, and the term

~Δ~k ¼
1
vk

X
~k0

B~k~k0
~k ~k0δ~m~k0

� �
þ C~k~k0

~k�~k0
� �

δ~m~k0

h i
(7.44)

contains all correlation effects. Also, we have an additional correlation contribu-
tion to the current density,

jcorrx ¼ δĤ~k

δkx
¼
X
~k

δF̂~k~k0

δkx
δρ̂

k
⇀
, (7.45)

which can, after some straightforward manipulations, be rewritten as

jcorrx ¼ 8e2v3
X
~k

ky
ω2 � 4ω2k2

kyΔ
x
~k
� kxΔ

y
~k

� �
: (7.46)

The remaining work is just direct analysis of the corrections, term by term,
which shows that they all vanish by symmetry after the integration over~k and~k0

(Katsnelson, 2008).

7.4 The magneto-optics of Dirac fermions

Consider now the case of Dirac fermions in a magnetic field. Instead of momentum
~k, the eigenstates of the unperturbed problem jni, are characterized by the Landau
band index n and the coordinate of the Landau orbit x0 (see Section 2.2). This does
not lead to any difficulties, since the optical conductivity, as well as any response
functions, can easily be written in an arbitrary basis. The general formalism has
already been presented in Section 2.9 (see Eq. (2.175) and later here). We will use
the Hamiltonian (2.177) with the electric field (7.5) and calculate the induced

electric current, 12
~j exp iωtð Þ þ~j∗ exp �iωtð Þ� �

, assuming that

~j ¼ ~̂σ ωð Þ~E (7.47)

(in this section,~j is the electric current operator).
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Then, using Eq. (2.176) and (2.177), we find

σαβ ωð Þ ¼ e
X
mn

f m � f n
En � Em � ℏ ωþ iδð Þ n jαj jmh i m rβ



 

n� �
: (7.48)

We will consider here only the case of finite ω, thus, the term with m = n does not
contribute to Eq. (7.48). Keeping in mind Eq. (2.179), we find

m jαj jnh i ¼ ie

ℏ
m rαj jnh i Em � Enð Þ: (7.49)

On substituting Eq. (7.49) into Eq. (7.48), taking into account that

1
En � Em � ℏ ωþ iδð Þ

1
Em � En

¼ � 1
ℏω

1
En � Em � ℏ ωþ iδð Þ �

1
Em � En

� �
,

(7.50)

we obtain

σαβ ωð Þ ¼ i

ω
Παβ ωð Þ � Παβ 0ð Þ� �

, (7.51)

where

Παβ ωð Þ ¼
X
mn

f m � f n
En � Em � ℏ ωþ iδð Þ n jαj jmh i m jβ



 

n� �
: (7.52)

In particular, for the quantity Re σxx(ω), determining the absorption of electromag-
netic waves, we have

Re σxx ωð Þ ¼ π
ω

X
mn

f m � f nð Þ n jxj jmh ij j2δ En � Em � ℏωð Þ: (7.53)

For the Dirac electrons jx = eσx. Without a magnetic field, this immediately gives
us the result (7.34). In the presence of a magnetic field, we have to use as the basis
functions m and n the solutions of the Landau problem (2.45) and (2.46). They are
dependent on the Landau indices and on ky (see Eq. (2.40) and (2.41)). Obviously,
the matrix elements hnjσxjmi are diagonal in ky. Since the functions Dn(X) are
orthogonal, one can see immediately that the allowed transitions are n! n� 1 and
n ! �(n � 1) only and, thus, the expression (7.53) describes absorption peaks at

ℏω= jEnj � jEn + 1j, (7.54)

or at ω ¼ ωc
ffiffiffiffiffiffiffiffiffiffiffi
pþ 1

p � ffiffiffi
p

p� 	
, where p = 0, 1, 2, . . . The complete expression can

be found in Gusynin, Sharapov, and Carbotte (2007a, 2009).
This absorption has been observed experimentally (Sadowski et al., 2006; Jiang

et al., 2007a; Witowski et al., 2010). The results are in agreement with Eq. (7.54).
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This effect can be used as an alternative method by which to measure the Fermi
velocity v in graphene.

Another interesting magneto-optical effect is the polarization rotation of propa-
gating light in the magnetic field, that is, the Faraday effect (Landau & Lifshitz,
1984). The rotation angle is proportional to Re σxy, which has absorption peaks at
the same frequencies (7.54) as Re σxx (for the theory of the Faraday effect
in graphene, see Fialkovsky and Vassilevich [2009]). Near the resonances, the
rotation is very large, as was observed experimentally by Crassee et al. (2011).
This giant Faraday effect is potentially interesting for applications.

7.5 Optical properties of graphene beyond the Dirac approximation

Now consider the theory of optical conductivity for a honeycomb lattice, beyond
the Dirac cone approximation, so that it can be used at ℏω � jtj as well (Gusynin,
Sharapov, & Carbotte, 2007b; Stauber, Peres, & Geim, 2008). We will start
with the expression (2.20) for the Hamiltonian of band electrons in the presence
of a vector potential; in the single-band approximation it also works for the time-

dependent vector potential ~A tð Þ.
In particular, in the nearest-neighbor approximation the Hamiltonian has the

form

Ĥ ~k
� �

¼
0 tS ~k � e~A

ℏc

� �
tS∗

~k � e~A

ℏc

 !
0

0BBB@
1CCCA (7.55)

(cf. Eq. (1.14) and (1.15)). To calculate the linear response, we need to expand the

right-hand side of Eq. (7.55) up to second order in ~A. Indeed, the electric current
operator

~̂j ¼ c
δĤ

δ~A
(7.56)

has paramagnetic (p) and diamagnetic (d) components

ĵα ¼ ĵ pð Þ
α þ ĵ dð Þ

α , (7.57)

where

~̂j pð Þ
α ¼ c

δĤ

δ~Aα

� �
~A¼0

(7.58)
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and

~̂j dð Þ
α ¼ 1

2
c2
X
β

δ2Ĥ

δ~Aαδ~Aβ

 !
~A¼0

Aβ: (7.59)

When calculating the average current density to linear order in ~A,

jα ¼ Tr ĵ
pð Þ
α ρ̂0

� �
þ Tr ĵ

dð Þ
α ρ̂0

� �
, (7.60)

both terms contribute to the conductivity. Further calculations are quite straight-
forward (Gusynin, Sharapov, & Carbotte, 2007b; Stauber, Peres, & Geim, 2008).
Here, we will present only the expressions for Re σxx(ω) = Re σ(ω):

Re σ ωð Þ ¼ Dδ ωð Þ þ πt2e2a2

8ℏ3ωA0

X
~k

F ~k
� �

f~k1 � f~k2
� 	

� δ ω� ε ~k
� �� �

� δ ωþ ε ~k
� �� �h i

, (7.61)

where the first term originates from j(d), the Drude weight is

D ¼ � e2a2

3ℏ2A0

X
~k

ε ~k
� �

f~k1 � f~k2
� 	

, (7.62)

ε ~k
� �

¼ t S ~k
� �


 


 t > 0ð Þ, f~k1,2 are given by Eq. (7.25), A0 ¼ 3

ffiffiffi
3

p
a2=2 is the area of

the unit cell and

F ~k
� �

¼ 18� 4 S ~k
� �


 


2 þ 18

Re S ~k
� �h i2

� Im S ~k
� �h i2

S ~k
� �


 


2 : (7.63)

The optical conductivity (7.61) at ω 6¼ 0 is proportional to the density of states

N Eð Þ ¼
X
~k

δ Ej j � ε ~k
� �� �

(7.64)

(it differs by a factor of 2 from Eq. (1.70)). It can be analytically expressed
(Hobson & Nierenberg, 1953) in terms of the elliptic integral

K mð Þ ¼
ðπ=2
0

dφffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m sin 2φ

p , (7.65)
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namely

N Ej jð Þ ¼ 2 Ej j
π2t2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
φ Ej j=tð Þp K

4 Ej j=t
φ Ej j=tð Þ
� �

, 0 < Ej j < t,

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 Ej j=tð Þp K

φ Ej j=tð Þ
4 Ej j=t

� �
, t < Ej j < 3t,

8>>>><>>>>: (7.66)

where

φ xð Þ ¼ 1þ xð Þ2 � x2 � 1ð Þ2
4

: (7.67)

This function is shown in Fig. 7.2. It has logarithmic divergences at E = �t
corresponding to Van Hove singularities in the electron density of states.

At 0 < ħω < t the optical conductivity (7.61) coincides with Eq. (7.35). The
corrections are (Stauber, Peres, & Geim, 2008)

σ ωð Þ � σ0
2

tanh
ℏωþ 2μ

4T

� �
þ tanh

ℏω� 2μ
4T

� �� �
1þ ℏωð Þ2

36t2

" #
: (7.68)

The curve for the whole interval is shown in Fig. 7.3 (Yuan, De Raedt, &
Katsnelson, 2010a). One can see a singularity at ℏω = 2t; however, a moderate
disorder (such as 1% of vacancies or resonant impurities) smears it essentially.

For the case of bilayer graphene, we have a Van Hove singularity at low energy,
due to trigonal warping and the merging of four Dirac ones to give one paraboloid
(see Section 1.4). Also, the gap can be made to open in that case by applying a bias

Fig. 7.2 The density of states (7.66). The logarithmic divergences at E = �t are
Van Hove singularities.
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between the layers. Experimentally, these effects on the infrared optics of bilayer
graphene have been studied by Kuzmenko et al. (2009).

7.6 The dielectric function of Dirac fermions

Now we will consider the response function for an inhomogeneous external
perturbation

V ext ~r; tð Þ ¼
X
~k

Ψ~k
þV̂~q

extΨ~kþ~q exp i~q~r� iωtð Þ, (7.69)

where Ψ~k
þ ¼ ψþ

~k1
;ψþ

~k2

� �
is the spinor creation operator, V̂ ext

~q is a generic 2 � 2
matrix, and~q is the wave vector of the inhomogeneity. We need to pass to electron-
and hole-creation operators (7.23). The result is

Ψþ
~k
V̂ ext
~q Ψ~kþ~q ¼ Ξþ

~k
Û~qΞ~kþ~q, (7.70)

where Ξ~k
þ ¼ ξþ~k1; ξ

þ
~k, 2

� �
and

Û~q ¼ 1
2

1 exp �iφ~kþ~q
� �

1 � exp �iφ~kþ~q
� �

0B@
1CAV̂ ext

~q

1 1

exp iφ~k
� 	 � exp iφ~k

� 	 !
: (7.71)

4

3

2

1

0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
w/t

s x
x/

s 0

4.0 4.5 5.0

Fig. 7.3 The frequency dependence of Re σxx(ω) for an ideal honeycomb lattice in
the nearest-neighbor approximation (dashed line) and for one with 1% of
vacancies, randomly distributed (solid line); σ0 is given by Eq. (7.36).
(Reproduced with permission from Yuan, De Raedt, & Katsnelson, 2010a.)
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Then, the perturbation of the density matrix (2.175) is the operator
ρ̂0 exp i~q~r� iωtð Þ with the matrix elements (in the ξ representation)

ρ̂0~kþ~q, i,~k, j ¼
f~k, j � f~kþ~q, i

E~k, j � E~kþ~q, i � ℏ ωþ iδð Þ Û~q

� 	
ij (7.72)

and the perturbation of the operator

Ĵ ¼
X
~k~q

Ψþ
~k
Ĵ~qΨ~kþ~q �

X
~k~q

Ξþ
~k
~̂J~qΞ~kþ~q (7.73)

is

δJ~q ¼ Tr Ĵ ρ̂0
� 	 ¼X

~k

f~k, j � f~kþ~q, i
E~k, j � E~kþ~q, i � ℏ ωþ iδð Þ Û~q

� 	
ij

~̂J~q
� �

ji
: (7.74)

Consider first the case of a scalar potential and the density operator Ĵ ¼ n̂; in that
case, both V̂ ext

~q and Ĵ~q are proportional to the unit matrix. We obtain

δn~qω ¼ �Π ~q;ωð ÞV̂ ext
~qω, (7.75)

where

Π ~q;ωð Þ ¼ gsgv Σ
~k

Σ
s, s0¼�

λss0 ~k;~q
� � f sE ~k

� �
� f s0E ~k þ~q

� �h ih i
s0E ~k þ~q
� �

� sE ~k
� �

þ ℏ ωþ iδð Þ
(7.76)

is the polarization operator E ~k
� �

¼ ℏvk,

λss0 ~k;~q
� �

¼ 1
2

1þ ss0
k þ q cos φ

~k þ~q



 




0B@
1CA, (7.77)

φ is the angle between~k and~q, and the factors gs = 2 and gv = 2 take into account
spin and valley degeneracy (Ando, 2006; Wunsch et al., 2006; Hwang & Das
Sarma, 2007).

Perturbation of the electron density will induce perturbation of the potential

Vind
~qω ¼ vC qð Þδn~qω, (7.78)

where

vC qð Þ ¼ 2πe2

qεext
(7.79)
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is the Fourier component of the Coulomb interaction

vC rð Þ ¼ e2

rεext
(7.80)

in two dimensions and εext is the external dielectric constant (e.g., due to screening
by a substrate). The total potential perturbation is

V~qω ¼ Vext
~qω þ V ind

~qω ¼ Vext
~qω

ε ~q;ωð Þ : (7.81)

The last equality in Eq. (7.81) defines the dielectric function ε ~q;ωð Þ. Within
the random-phase approximation (RPA) it is assumed that, for a system of
interacting fermions, the induced density formally has the same expression as
for the noninteracting fermions, (7.75) and (7.76), but with the replacement
Vext ! V in Eq. (7.75). This means that the interaction effects are taken into
account via a self-consistent mean field (Vonsovsky & Katsnelson, 1989). As
a result,

ε ~q;ωð Þ ¼ 1þ vC qð ÞΠ q;ωð Þ: (7.82)

If we also take into account the external screening, the total dielectric function is

εtot q;ωð Þ ¼ εextε q;ωð Þ ¼ εext þ 2πe2

q
Π q;ωð Þ: (7.83)

In the case when graphene lies between two subspaces with dielectric constants ε1
and ε2, one has (Landau & Lifshitz, 1984)

εext ¼ ε1 þ ε2
2

: (7.84)

For the two most popular substrates, SiO2 and BN, ε2 � 4, so, assuming ε1 = 1
(vacuum, or air), one has εext � 2.5.

Consider first the case of undoped graphene (μ = 0) at zero temperature.
Then, only interband transitions (s = + and s0 = – or vice versa) contribute to
Eq. (7.76) and

Π0 q;ωð Þ ¼ gsgv
ℏ

X
~k

1� k þ q cos φð Þ
~k þ~q



 




0B@
1CA v k þ ~k þ~q




 


� �
v2 k þ ~k þ~q




 


� �2
� ωþ iδð Þ2

:

(7.85)
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As the next step, we calculate Im Π0(q,ω). It contains δ v k þ ~k þ~q



 


� ω

� �h i
,

which allows us to calculate the integral (first, in ω and then in k) in a quite

elementary manner. The result is

Im Π0 q;ωð Þ ¼ gsgv
16ℏ

q2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 � v2q2

p θ ω� vqð Þ, (7.86)

where θ(x > 0) = 1, θ(x < 0) = 0 is the step function. Noticing that the analytic

function 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
zþ iδ

p
is purely imaginary at real z < 0 and purely real at real z > 0,

one can do analytic continuation immediately, thus having

ReΠ0 q;ωð Þ ¼ gsgv
16ℏ

q2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2q2 � ω2

p θ vq� ωð Þ: (7.87)

On combining Eq. (7.86) and (7.87) we have a very simple answer (Gonzáles,
Guinea, & Vozmediano, 1999):

Π0 q;ωð Þ ¼ gsgv
16ℏ

q2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2q2 � ωþ iδð Þ2

q : (7.88)

At ω = 0, Π0(q,ω) ~ q, and the dielectric function ε(q) is actually not dependent
on q:

ε ¼ εext þ πe2

2ℏv
: (7.89)

For graphene,

α ¼ e2

ℏv
� 2:2 (7.90)

and the second term on the right-hand side of Eq. (7.89) is about 3.5.
Within the RPA, this result is exact, and high-energy states cannot change the

value of ε(q = 0). Indeed, for arbitrary band structure with the Bloch states m~k



 E

,

one has (Vonsovsky & Katsnelson, 1989)

Π ~q;ω ¼ 0ð Þ ¼ 2
X
mn

X
~k

f n,~k � f m,~kþ~q
Em,~kþ~q � En,~k

n;~kjm;~k þ~q
D E


 


2 (7.91)

(the factor of 2 is due to spin degeneracy).
Let us exclude the Dirac point, considering the case when (at T = 0) we have

completely occupied bands and completely empty bands and some gap in between.
Then Eq. (7.91) can be rewritten as
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Π ~q;ω ¼ 0ð Þ ¼ 4
Xocc
n

Xempty

m

1
Em,~kþ~q � En,~k

n;~kjm;~k þ~q
D E


 


2, (7.92)

which is obviously proportional to q2 at q ! 0. More explicitly, on writing

m;~k þ~q



 E

� 1þ~q~∇~k
� �

m;~k



 E

(7.93)

and using Eq. (2.85), one finds for~q ! 0

Π ~q;ω ¼ 0ð Þ ¼
X
αβ

Cαβqαqβ, (7.94)

where

Cαβ ¼ 4
Xocc
n

Xempty

m

1

Em,~k � En,~k

� �3 m;~k
∂Ĥ
∂kα





 



n;~k� �
n;~k

∂Ĥ
∂kβ





 



m;~k� �
(7.95)

is some finite tensor. Since vc(q) ~ 1/q, we have, in two dimensions, ε(q ! 0,
ω = 0) = 1 for any gapped state. This means that only the region close to the Dirac
point contributes to this quantity. Note that first-principles GW calculations
do indeed give results quite similar to those obtained by use of Eq. (7.89)
(Schilfgaarde & Katsnelson, 2011).

Now consider the case of doped graphene (to be specific, we put μ > 0, i.e.,
the case of electron doping). The calculations are quite cumbersome but straight-
forward. The result is (Wunsch et al., 2006; Hwang & Das Sarma, 2007)

Π(q,ω) = Π0(q,ω) + Π1(q,ω),
with

Π1 q;ωð Þ ¼ gsgvμ

2πℏ2v2
� gsgvq

2

16πℏ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 � v2q2

p
� G

ℏωþ 2μ
ℏvq

� �
� θ

2μ� ℏω
ℏvq

� 1

� �
G

2μ� ℏω
ℏvq

� �
� iπ

� ��

�θ
ℏω� 2μ
ℏvq

þ 1

� �
G

ℏω� 2μ
ℏvq

� ��
,

(7.96)

where

G xð Þ ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p
� ln xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p� �
: (7.97)

For generalization of this expression to the case of gapped graphene, see
Pyatkovskiy (2009).
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Now we will consider different partial cases of this general expression. Keeping
in mind the case of graphene, we will put gs = gv = 2.

7.7 Static screening

We start with the case ω = 0. The result is (Gorbar et al., 2002; Ando, 2006;
Wunsch et al., 2006; Hwang & Das Sarma, 2007)

Π q; 0ð Þ ¼ 2kF
πℏv

�
1, q < 2kF,

1� 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2kF

q

� �2
s

þ q

4kF
cos �1 2kF

q

� �
, q > 2kF:

8><>:
(7.98)

Interestingly, at q < 2kF, П(q, 0) = constant, due to cancellation of the q
dependence in the (formally) μ-dependent contribution

Πþ q; 0ð Þ ¼ 2kF
πℏv

1� πq
8kF

� �
(7.99)

and the contribution for the undoped case (see Eq. (7.88)),

Π0 q; 0ð Þ ¼ q

4ℏv
: (7.100)

It is instructive to compare Eq. (7.98) with that for a conventional, nonrelativistic
two-dimensional electron gas (Stern, 1967):

Π0 q; 0ð Þ ¼ N EFð Þ �
1, q < 2kF,

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2kF

q

� �2

,

s
q > 2kF:

8><>: (7.101)

In both cases, the polarization operator is constant at q< 2kF. At the same time, the
behavior at q > 2kF is essentially different. For the nonrelativistic case П(q, ω)
decays with increasing q, as 1/q2 at q ! ∞, whereas for the case of massless Dirac
fermions П(q, 0) increases linearly with increasing q, due to the contribution
(7.100). The behavior of expressions (7.98) and (7.101) at q ! 2kF is also
essentially different. Whereas for the nonrelativistic electron gas
δΠ q; 0ð Þ e ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q� 2kF
p

, with a divergent derivative, for the case of graphene the

singularity is weaker δ Π (q, 0) ~ (q � 2kF)
3/2.

The result for small q corresponds to the Thomas–Fermi approximation
(Katsnelson, 2006c; Nomura & MacDonald, 2006). The latter (Lieb, 1981) assumes
that the perturbation V ~rð Þ is smooth enough that its effect on the electron density
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n μð Þ ¼
ðμ
0

dE N Eð Þ (7.102)

can be taken into account just by making the replacement n μð Þ ! n μ� V ~rð Þ½ 	.
This means that the potential just locally shifts the maximum band energy EF ~rð Þ,
such that

EF ~rð Þ þ V ~rð Þ ¼ μ: (7.103)

The self-consistent equation for the total potential, which is similar to Eq. (7.81),
reads

V ~rð Þ ¼ Vext ~rð Þ þ e2

εext

ð
d~r0

nint ~r0ð Þ
~r �~r0j j , (7.104)

where

nint ~rð Þ ¼ n μ� V ~rð Þ½ 	 � n μð Þ (7.105)

is the induced change of the electron density. Assuming that the perturbation V is
small, one can expand (7.105) as follows:

nint ~rð Þ � � ∂n
∂μ

V ~rð Þ ¼ �N EFð ÞV ~rð Þ, (7.106)

where the last identity assumes T = 0 (cf. Eq. (2.138)).
On Fourier-transforming Eq. (7.104) and comparing the result with Eq. (7.81)

one finds

ε q; 0ð Þ ¼ εext þ 2πe2N EFð Þ
q

¼ εext 1þ κ
q

� �
, (7.107)

where

κ ¼ 4e2 μj j
εextℏ

2v2
(7.108)

is the inverse Thomas–Fermi screening radius. This result coincides exactly
with Eq. (7.98) and (7.101) at q < 2kF. Thus, for a two-dimensional electron
gas, the nonrelativistic and ultrarelativistic versions of Thomas–Fermi theory both
give exactly the same result, as does the RPA for static screening with q < 2kF.
For a three-dimensional electron gas the situation is different (Vonsovsky &
Katsnelson, 1989).
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Consider now the real-space effects of static screening. If the external potential
Vext(r) is radially symmetric, with the Fourier component Vext

q depending only on
the modulus q, the expression for the total potential is

V rð Þ ¼
ð

d~q

2πð Þ2 exp i~q~rð Þ V ext
q

ε q; 0ð Þ ¼
ð∞
0

dq q

2π
J0 qrð Þ V ext

q

ε q; 0ð Þ : (7.109)

At r ! ∞, there are two important contributions to the integral (7.109), from
the region of small q (to compensate for large r in the argument of the Bessel
function) and from the region q = 2kF, where ε(q, 0) has a singularity in П(q, ω)
(7.98). In the three-dimensional case, the first contribution decays exponentially
at r ! ∞, whereas the second oscillates and decays as cos (2kFr)/r

3, being
what is called a Friedel oscillation (Vonsovsky & Katsnelson, 1989). In
the two-dimensional case, the situation is different since the Thomas–Fermi
(small-q) contribution also decays as 1/r3 (Katsnelson, 2006c; Wunsch et al.,
2006). As a result, the asymptotics of the induced density around the point defect
is (Wunsch et al., 2006)

nind rð Þ e αþ β cos 2kFrð Þ
r3

, (7.110)

with some parameters α and β dependent on kF and on the potential.
In a nonrelativistic electron gas in two dimensions, nind(r) ~ cos(2kFr)/r

2 since
the singularity in П (q, ω) at q ! 2kF is stronger. In graphene, the Thomas–Fermi
and Friedel contributions to the induced density around point defects are compar-
able at r ! ∞.

The first-principles GW results for the dielectric function ε(q, 0) of graphene
(Schilfgaarde & Katsnelson, 2011) show that the Dirac approximation works for
q 
 0.05 Å–1; at q � 0.1 Å–1 the polarization operator approximately halves in
comparison with the value (7.100).

7.8 Plasmons

Let us now consider the opposite limiting case

ω >> vq. (7.111)

The polarization operator (7.96) in the limit of small q takes the form

Π q ! 0;ωð Þ ¼ q2

2πℏω
iπ
2
θ ℏω� 2μð Þ � 2μ

ℏω
þ 1
2
ln

ℏωþ 2μ
ℏω� 2μ





 



� �
: (7.112)

188 Optics and response functions

https://www.cambridge.org/core


At ℏω > 2μ it has an imaginary part that is at least comparable to the real part, so
the equation

ε(q,ω) = 0, (7.113)

which determines the spectrum of plasma oscillations (Platzman & Wolf, 1973;
Vonsovsky & Katsnelson, 1989), has no real solutions. In the opposite limit

ℏω << 2μ (7.114)

one has

Π q ! 0;ωð Þ � � μq2

π ℏωð Þ2 (7.115)

and the solution of Eq. (7.113) is

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2e2μ

ℏ3εext
q

s
: (7.116)

At q ! 0, the expression (7.116) obviously satisfies the condition (7.114).
The existence of the low-frequency plasmon mode with the dispersion ω e ffiffiffi

q
p

is
a general property of a two-dimensional electron gas (Ando, Fowler, & Stern,
1982). However, the dependence of the plasmon dispersion relation on the electron
density n is different: For graphene, due to Eq. (7.116) ω ~ n1/4q1/2, whereas for the
nonrelativistic case ω ~ n1/2q1/2.

Outside the region qv < ω < 2μ Π (q,ω) has a large imaginary part and the
plasmon is essentially damped. This is a partial case of Landau damping due to a
decay into incoherent electron–hole excitations (Vonsovsky & Katsnelson, 1989).
It was argued, however, by Gangadharaiah, Farid, and Mishchenko (2008) that
higher-order correlation effects, beyond the RPA, can change the situation, leading
to a well-defined plasmon mode with ω < qv, even at μ = 0.

Beyond the Dirac approximation, there are two important physical mechanisms
that can lead to additional plasmon modes. First, there is Coulomb interaction
between electrons from different valleys, resulting in the appearance of intervalley
plasmons, with a linear dispersion law ω ~ q (Tudorovskiy & Mikhailov, 2010).
Second, there is a Van Hove singularity in the optical conductivity at ω = 2t
(see Section 7.5), because of which high-energy “optical” plasmons arise (Hill,
Mikhailov, & Ziegler, 2009; Stauber, Schliemann, & Peres, 2010; Yuan, Roldán,
& Katsnelson, 2011).

Experimental study of plasmons in graphene is currently an intensively develop-
ing field (Grigorenko, Polini, & Novoselov, 2012; Woessner et al., 2015; Basov,
Fogler, & García de Abajo, 2016; Alonso-González et al., 2017; Lundeberg et al.,
2017; Low et al., 2017). There are several important advantages of graphene in
comparison with conventional plasmonic materials such as metallic surfaces. First,
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the electron concentration in graphene is easily tunable by gate voltage which, due
to Eq. (7.116), changes plasmon frequency. Second, graphene encapsulated to
hexagonal boron nitride (see Chapter 13) has extremely high quality and can be
made practically defect-free. Together with a very high intrinsic electron mobility
due to a weakness of electron–phonon interaction (Chapter 11), it allows us to excite
and observe plasmons with unusually small damping (or unusually high lifetime).

Electrodynamics of graphene on metallic substrate was studied by Principi et al.,
(2018). In this case, due to a nonlocal metallic screening, acoustic plasmons with
linear dispersion are formed (Fig. 7.4). Surprisingly, such plasmons can still have a
very low damping which makes them potentially interesting for applications.

7.9 Transverse response functions and diamagnetic susceptibility

Similarly to the previous sections, one can consider the response of electrons in
graphene to a vector potential (Principi, Polini, & Vignale, 2009). One just needs
to choose bV ext

q ¼ ~̂σ in Eq. (7.70). In general, instead of the polarization operator
(7.76), we introduce a set of response functions

Παβ ~q;ωð Þ ¼ gsgv
X
~k

X
s, s0¼�

λαβss0 ~k;~q
� � f sE ~k

� �h i
� f s0E ~k þ~q

� �h i
s0E ~k þ~q
� �

� sE ~k
� �

þ ℏ ωþ iδð Þ
,

(7.117)

e

Fig. 7.4 A grayscale plot of the loss function �Im 1
ε q;ωð Þ with kF and ωF = EF/ℏ

(Fermi wave vector and Fermi frequency of graphene) as units for the plasmon
wave vector and frequency. A sharp acoustic plasmon mode is visible just above
the electron–hole continuum line ω = vq (v is the Fermi velocity in graphene).
Calculations are made for the electron density 1012 cm�2 for graphene and
1021 cm�3 for metal, Fermi velocity of the metal is taken as 0.35v. The plasmon
velocity for these parameters is 1.04v.
(Reproduced with permission from Principi et al., 2018).
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where

λαβss0 ~k;~q
� �

¼ ψs
~k
� �

σαj jψs0
~k þ~q
� �D E

ψs0
~k þ~q
� �

σβ


 

ψs

~k
� �D E

, (7.118)

in which ψs
~k
� �

are electron and hole wave functions (1.30). The density–density
response function is, in this notation П00, where σ0 = I. For example,

λxxss0 ~k;~q
� �

¼
1þ ss0 cos φ~k þ φ~kþ~q

� �
2

: (7.119)

For the response function, determining the current in the x-direction induced by the
vector potential in the x-direction ĵx ¼ vσ̂x

� 	
j~qω

x ¼ � e2v2

c
Πxx ~q;ωð ÞAx

~q,ω: (7.120)

When calculating this quantity we are faced with an important problem, showing
that sometimes one needs to be very careful when using the Dirac approximation.
Let us put ω = 0 and express the vector potential in terms of an external magnetic
field ~B ¼ ~∇�~A ¼ 0; 0;B x; yð Þð Þ:

B~q ¼ � i

qy
Ax
q: (7.121)

Phenomenologically, the magnetic field induces a magnetization
~M ¼ 0; 0;M x; yð Þð Þ proportional to the magnetic field

M~q ¼ χ ~qð ÞB~q (7.122)

and the current

~j ¼ c~∇ � ~M (7.123)

(Jackson, 1962; Landau & Lifshitz, 1984), or, equivalently,

jx~q ¼ icqyM~q: (7.124)

On substituting Eq. (7.121) through Eq. (7.123) into Eq. (7.120) one finds

Πxx ~qð Þ ¼ � q2yc
2

v2e2
χ ~qð Þ (7.125)

and, obviously, Πxx ~q ¼ 0ð Þ ¼ 0. Physically, this means that, due to the gauge
invariance, a constant vector potential cannot induce any physical response.

However, on substituting Eq. (7.119) into Eq. (7.117) we have, even at μ = 0, a

divergent integral over ~k



 


. On introducing by hand a cut-off ~k




 


 
 kmax, we find

the result (Principi, Polini, & Vignale, 2009)
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Πxx ~qð Þ ¼ �gsgv
kmax

4πℏv
, (7.126)

which is finite and, moreover, tends to infinity at kmax! ∞. This is a pathological
property of our model, reflecting the fact that by introducing the cut-off we break

the gauge invariance ~k !~k � e~A= ℏcð Þ. The contribution (7.126) should just be
subtracted from the answer.

By calculating Πxx(qy, 0) at small qy and using Eq. (7.125), we find the magnetic
susceptibility describing the effect of the magnetic field on the orbital motion of
electrons:

χ ¼ � gsgv
24π

e2v2

c2
1

T cosh 2 μ= 2Tð Þ½ 	 ¼ � gsgv
6π

e2v2

c2
δ μð Þ, (7.127)

where the last equality assumes the limit T! 0. This expression was first obtained
by McClure (1956) by differentiation of the thermodynamic potential (2.134) with
respect to the magnetic field (see also Sharma, Johnson, & McClure, 1974; Safran
& DiSalvo, 1979; Koshino & Ando, 2007, 2010).

The result (7.127) is really unusual. It means that at zero temperature and finite
doping the orbital susceptibility of graphene within the Dirac model should be
zero! Usually, the contribution of the orbital motion of electrons to the magnetic
susceptibility is diamagnetic (Landau–Peierls diamagnetism), but here we have
an exact cancellation of intraband and interband contributions; for a general
discussion of these contributions, see Wilson (1965). In multilayer graphene and
graphite, there is no cancellation but, rather, a strong diamagnetism (Sharma,
Johnson, & McClure, 1974; Koshino & Ando, 2010).

As a result, the orbital magnetism of electrons in single-layer doped graphene is
completely determined by electron–electron interactions (Principi et al., 2010).
Using perturbation theory, one can find that the resulting effect is paramagnetic
(χ > 0), with

χ ¼ gsgv
e2v2

c2
e2

ℏvεext

Λ
EF

, (7.128)

where Λ is a function of the interaction constant, of the order of 10�2

(Principi et al., 2010).
Other nontrivial manifestations of the electron–electron interactions will be

considered in the next chapter and in more detail in Chapter 15.
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8

The Coulomb problem

8.1 Scattering of Dirac fermions by point charges

Now we come back to the problem of scattering of Dirac electrons by a radially
symmetric potential V(r) considered in Section 6.1. The case of a Coulomb
potential

V rð Þ ¼ � Ze2

εextr
� �ℏvβ

r
(8.1)

deserves a special consideration for reasons that will be clarified in this chapter.
Here εext is the dielectric constant due to substrate and other external factors and

β ¼ Ze2

εextℏv
(8.2)

is the dimensionless interaction strength (the sign is chosen such that positive β
corresponds to attraction). This problem has been considered for the case of two-
dimensional massless Dirac equations by Shytov, Katsnelson, and Levitov (2007a,
2007b), Pereira, Nilsson, and Castro Neto (2007), and Novikov (2007). Here we
will follow the works by Shytov, Katsnelson, and Levitov.

Instead of using the general expression (5.19), it is convenient to try the solution
of the Coulomb problem in the form

Ψ r;φð Þ ¼
wþ rð Þ þ w� rð Þ

wþ rð Þ � w� rð Þ½ � exp iφð Þ

 !
rs�1=2 exp i m� 1

2

� �
φ

� �
exp ikrð Þ,

(8.3)

where m is half-integer,

m ¼ � 1
2
, � 3

2
, . . . , (8.4)
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and the parameters k and s should be found from the behavior of solutions at large
and small r, respectively. For the potential (8.1), we find

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � β2

q
, k ¼ � E

ℏv
, (8.5)

where E is the energy. On substituting Eq. (8.1) and (8.3) into the Dirac equation
(6.1) we find, instead of Eq. (6.2),

r
dwþ
dr

þ s� iβ þ 2ikrð Þwþ � mw� ¼ 0,

r
dw�
dr

þ sþ iβð Þw� � mwþ ¼ 0:

(8.6)

Note that s can be either real (if jmj> jβj) or imaginary (if jmj< jβj); the behaviors
of solutions in these two cases are essentially different, as will be discussed later.

Using the second of Eq. (8.6) one can express w+ in terms of w� and substitute
it into the first equation. Then, after introducing a new independent variable

z = � 2ikr, (8.7)

one has a confluent hypergeometric equation, or Kummer’s equation (Abramowitz
& Stegun, 1964)

z
d2w�
dz2

þ c� zð Þ dw�
dz

� aw� ¼ 0, (8.8)

where

c= 2s+ 1, a= s+ iβ. (8.9)

Its general solution has the form

w�(z)= A1F1(a, c; z)+ Bz1�c
1F1(a� c+ 1, 2� c; z), (8.10)

where A and B are arbitrary constants and

1F1 a; c; zð Þ ¼ Γ cð Þ
Γ að Þ

X∞
n¼0

Γ aþ nð Þzn
Γ cþ nð Þn! (8.11)

is the confluent hypergeometric function (1F1(a, c; 0) = 1).
We will start with the case of real s, that is, jmj > jβ j. Then, only the first term in

Eq. (8.10) is regular at r = 0 and is therefore allowed, thus

w�(z) = A1F1(s + iβ, 2s+ 1; z). (8.12)

Using the identity

z
d

dz 1
F1 a; c; zð Þ ¼ a 1F1 aþ 1; c; zð Þ � 1F1 a; c; zð Þ� �

(8.13)
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one finds from Eq. (8.6)

wþ zð Þ ¼ A
sþ iβ
m 1F1 sþ 1þ iβ; 2sþ 1; zð Þ: (8.14)

Eq. (8.12) and (8.14) give us a formal solution of our problem. Using the
asymptotic expression (Abramowitz & Stegun, 1964)

1F1 a; c; zð Þ � Γ cð Þ
Γ c� að Þ �zð Þ�a þ Γ cð Þ

Γ að Þ exp zð Þza�c (8.15)

for jzj » 1, one finds for kr » 1

w� rð Þ ¼ λ exp �iβ ln 2krð Þ½ �
2krð Þs ,

wþ rð Þ ¼ λ∗ exp iβ ln 2krð Þ½ � exp �2ikrð Þ
2krð Þs ,

(8.16)

where λ is a constant dependent on m and β but not on k. It follows from Eq. (8.16)
that w� and w+ represent scattered and incident waves, respectively (we have to
recall our definition of k (8.5); E is assumed to be positive). Their ratio gives us the
scattering phases δm(k) (cf. Eq. (6.11)):

w� rð Þ
wþ rð Þ ¼ exp 2iδm kð Þ þ 2ikr½ �,

δm kð Þ ¼ �β ln 2krð Þ þ arg λ:

(8.17)

The logarithmic dependence in Eq. (8.17) is typical for the phases coming from
the 1/r Coulomb tail of the potential (Landau & Lifshitz, 1977). Since this
contribution does not depend on m, it does not affect the angular dependence of
the scattering current, giving just an irrelevant factor jexp[�iβ ln (2kr)]j2 = 1. The
relevant scattering phases are arg λ. Its explicit dependence on m and β is not
important for us; it suffices to know that they are k-independent. From the general
expression for the transport cross-section (6.26) one can see immediately that for
the Coulomb scattering

σtr � 1
k
, (8.18)

which gives us for the contribution of Coulomb impurities to the resistivity
(cf. Section 6.2):

ρ � h

e2
nimp

n
: (8.19)
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This contribution is much larger (by a factor of (nR2)�1) than that of short-range
scatterers (Eq. (6.36)) and corresponds, at least qualitatively, to the experimentally
observed V-shape of the dependence of the conductivity on the electron concen-
tration (Novoselov et al., 2005a). It is not surprising therefore that charge
impurities were initially suggested to be the main factor limiting electron mobility
in graphene (Ando, 2006; Nomura & MacDonald, 2006; Adam et al., 2007). The
real situation is probably much more complicated and will be discussed in Chap-
ter 11. It is clear, anyway, that long-range scattering potentials deserve special
attention in the case of graphene. However, screening effects are important and
should be taken into account, as will be discussed later.

Consider now the case jβj > jmj where s = iγ,

γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 � m2

q
: (8.20)

Then both terms in Eq. (8.10) are formally allowed:

w�(z) = A1F1(i(γ + β), 1 + 2iγ; z) + Bz�2iγ
1F1(i(β � γ), 1 � 2iγ; z). (8.21)

This means that the Dirac equation with the potential (8.1) for large enough jβj
is ill-defined. To find a solution, one needs to add some boundary conditions at
small but finite r.

For jkrj « 1,

w�(z) � A + B exp (�πγ) exp [�2iγ ln (2kr)]. (8.22)

The solution w+(z) corresponding to Eq. (8.21) is

wþ zð Þ ¼ iA
γþ β
m 1F1 1þ iγþ iβ; 1þ 2iγ; zð Þ

þ iB
β � γ
m

z�2iγ
1F1 1þ iβ � iγ; 1þ 2iγ; zð Þ: (8.23)

Its asymptotics at jkrj « 1 is

wþ zð Þ � iA
γþ β
m

þ iB
β � γ
m

exp �πγð Þ exp �2iγ ln 2krð Þ½ �: (8.24)

To be specific, let us use “zigzag” boundary conditions ψ2(r) = 0 at some cutoff
radius r = r0, which means (see Eq. (8.3))

w�(r0) = w+(r0). (8.25)

By substituting Eq. (8.22) and (8.24) into Eq. (8.25) one can find the ratio B/A
and then use it to find the ratio w�(r)/w+(r) at jkrj » 1 and the scattering phases (see
Eq. (8.17)). The result is (Shytov, Katsnelson, & Levitov, 2007b)
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exp 2iδm kð Þ½ � ¼ exp πi mj j½ � zþ exp 2iχ kð Þ½ �
1þ z∗ exp 2iχ kð Þ½ � , (8.26)

where

z ¼ exp πγð Þ
η

Γ 1þ 2iγð Þ
Γ 1� 2iγð Þ

Γ 1� iγþ iβð Þ
Γ 1þ iγþ iβð Þ (8.27)

and

χ kð Þ ¼ γ ln 2kr0ð Þ þ arctan
1þ η
1� η

� �
, (8.28)

with

η ¼
ffiffiffiffiffiffiffiffiffiffiffi
β � γ
β þ γ

s
: (8.29)

The factor exp [2iχ(k)] oscillates rapidly at kr0 « 1. This conclusion does not
depend on a specific choice of the boundary condition (8.25); for a generic
boundary condition the first (logarithmic) term in Eq. (8.28) will be the same.

The expressions (8.26) through (8.29) have a very interesting property: They
describe the existence of quasilocalized states (Shytov, Katsnelson, & Levitov,
2007b). For localized states, the wave function is described by a single real
exponent, exp(�κr) (κ > 0), at r ! ∞, which means the absence of a scattering
wave. Considering δm(k) as a function of the complex variable k and taking into
account the condition (8.17), one can write the equation for the bound state as

exp[2iδm(k)] = 0 (8.30)

for k < 0 and

exp[�2iδm(k)] = 0 (8.31)

for k > 0. To be specific, let us consider the first case, E > 0. Then, Eq. (8.30) is
equivalent to

exp[2iχ(k)]= � z, (8.32)

which, taking into account Eq. (8.28), reads

ln 2knr0ð Þ ¼ � i

2γ
ln z� 1

2γ
ln arctan

1þ η
1� η

� �
� πn

γ
, (8.33)

where n is an integer. For small γ, that is, near the threshold jβj ffi jmj, Eq. (8.33)
describes the series of quasilocalized states corresponding to positive n (for
negative n, kr0 » 1, which contradicts our choice of the parameter r0 as a small
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cut-off ). The k values have an imaginary part, due the term �[i/(2γ)] ln jzj in
Eq. (8.33). Keeping in mind that

ln Γ 1þ iβð Þj j ¼ 1
2
ln Γ 1þ iβð ÞΓ 1� iβð Þ½ � ¼ 1

2
ln

πβ

sinh πβð Þ
� �

, (8.34)

one finds

kn ¼ c exp � πn
γ
� iλ

� �
, (8.35)

where

λ ¼ π
1� exp �2πβð Þ (8.36)

and the prefactor c is of the order of r�1
0 . The corresponding energies En = �ℏvkn

have an imaginary part, due to the factor λ; however, it is small:

� Im
Re

En

En
¼ π

exp 2πβð Þ � 1
: (8.37)

The minimal value of β corresponds to βj j ¼ 1
2 , and the right-hand side of

Eq. (8.37) is about 0.14. This means that the imaginary part is relatively small and
the resonances are narrow. The resonances correspond to jumps in the scattering
phases and sharp anomalies in the transport scattering cross-section (6.26). The
corresponding numerical data are shown in Fig. 8.1 (Shytov, Katsnelson, & Levitov,
2007b). One can see typical Fano resonances (see Section 6.7), as one would expect
for quasilocalized states within a continuum spectrum.

These resonances were observed experimentally for the groups of more than
three Ca2+ ions on graphene, hexagonal boron nitride was used as a substrate
(Wang et al., 2013). In this case εext � 2.5 (see Eq.(7.84)) and the total screening
constant (7.89) is about 8. Thus, the experimental situation corresponds to the
effective dimensionless coupling constant Ze

2

εℏv of the order of unity, which seems to
be reasonable. At the same time, the direct quantitative comparison of the theory
for the single Coulomb center with the data on the group of four (or more)
Coulomb centers seems to be impossible.

8.2 Relativistic collapse for supercritical charges

Our consideration up to now has been rather formal. To understand the physical
meaning of the quasilocalized states considered in the previous section we will use
a simple semiclassical consideration (Shytov, Katsnelson, & Levitov, 2007b;
Shytov et al., 2009). It turns out that these states are related to the phenomenon
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of relativistic collapse, or fall of electrons into the center for superheavy nuclei
(Pomeranchuk & Smorodinsky, 1945). This provides us with a new, interesting
connection between the physics of graphene and high-energy physics.

To gain some insight into the problem, let us start with a hand-waving deriv-
ation of the size of atoms using the Heisenberg uncertainty principle. If an electron
is confined within a spatial region of radius R, its typical momentum is of the
order of

p � ℏ
R
: (8.38)

Fig. 8.1 (a) The scattering phase for m ¼ 1
2 at negative energy E = �ħvk < 0. The

kinks correspond to quasilocalized states trapped by the impurity potential for
supercritical β. (b) The transport cross-section as a function of the potential
strength; the quasilocalized states are seen as Fano resonances.
(Reproduced with permission from Shytov, Katsnelson, & Levitov, 2007b.)
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For nonrelativistic particles with mass m, the kinetic energy is p2/(2m), and the
total energy of the electron, taking into account its attraction to the nucleus, can be
estimated as

E Rð Þ � ℏ2

2mR2 �
Ze2

R
, (8.39)

with a minimum at

R0 ¼ ℏ2

mZe2
, (8.40)

which is nothing other than the Bohr radius. For a relativistic particle we have,
instead of Eq. (8.39),

E Rð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏc
R

� �2

þ mc2ð Þ2
s

� Ze2

R
: (8.41)

The minimum condition

∂E
∂R

� �
R¼R0

¼ 0

gives us the equation

1þ mcR0

ℏ

� �2

¼ ℏc

Ze2

� �2

, (8.42)

which has a solution only for

Z < Zc ¼ ℏc
e2

¼ 1
α
� 137: (8.43)

For Z > Zc, the energy (8.41) decays monotonically with R, decreasing from
E∞ = mc2 at R ! ∞ to E = �∞ at R = 0. This means that the electron falls into
the center.

Speaking more formally, the Dirac equation for a point charge Z > Zc is ill-
defined and has no unique solutions, without introducing some additional bound-
ary conditions at small R, similarly to what we did in the previous section. The
wave function has infinitely many oscillations at r ! 0 (cf. Eq. (8.22) and (8.24)),
and some of the solutions for the energies (Bjorken & Drell, 1964; Berestetskii,
Lifshitz, & Pitaevskii, 1971)

En, j ¼ mc2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Zαð Þ2

n� jj j þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 � Zαð Þ2

q� �2

vuuuut
(8.44)
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(n = 0, 1, 2, . . ., j = �1, �2, . . .) become non-real, which means that the
Hamiltonian is not a proper Hermitian operator.

If we draw the positions of the energy levels as a function of ζ = Zα one can see
that at ζ = 1 the energy of the 1s state goes to zero, and the gap between electron
and positron states disappears. In this situation, one could expect vacuum recon-
struction, with the creation of electron–positron pairs from vacuum (Pomeranchuk
& Smorodinsky, 1945; Zel’dovich & Popov, 1972; Greiner, Mueller, & Rafelski,
1985; Grib, Mamaev, & Mostepanenko, 1994); cf. our discussion of the Klein
paradox in Section 4.1. The scheme of the energy levels (Zel’dovich & Popov,
1972) is shown in Fig. 8.2.

Taking into account the finite size of atomic nuclei R = Rn and assuming a
parabolic potential at r < Rn, as should be the case for a uniformly charged sphere,
one finds a larger value for the critical radius, Zc � 170 (Zel’dovich & Popov,
1972), which is still far beyond the charge of the heaviest known element. One can
hope to observe this very interesting effect in collisions of two heavy ions with
Z < Zc, but in this case the critical value of total Z is even larger. Therefore, this
effect of “relativistic collapse” of superheavy atoms has not been observed, thus far.

In the case of graphene, we have the Fermi velocity v � c/300, instead of the
velocity of light, and the critical value Zc should be of the order of one, which
makes this effect observable (Pereira, Nilsson, & Castro Neto, 2007; Shytov,
Katsnelson, & Levitov, 2007a, 2007b; Wang et al., 2013). Actually, some mani-
festations have been discussed in the previous section, such as the Fano resonances
shown in Fig. 8.1 (Shytov, Katsnelson, & Levitov, 2007b). The scanning tunneling
microscopy (STM) observation of this feature was claimed by Wang et al. (2013).
Strong oscillations of the local density of states for the supercritically charged

+1

(a)

–1

0
1

1S

3S, 3P
2S, 2P

e

z

+1

(b)

–1

0
1

1S 2P 2S

e

z

Fig. 8.2 (a) Energy levels of superheavy atoms (in units of mc2) obtained from the
Dirac equation for the Coulomb potential as a function of the coupling constant
ζ = Zα. (b) The same, but taking into account the effects of the finite size of
atomic nuclei. The critical value of Z is shifted from Zc = α�1 � 137 to Zc � 170
(Zel’dovich & Popov, 1972).
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impurities observable in principle by STM could be considered another manifest-
ation (Shytov, Katsnelson, & Levitov, 2007a).

Strictly speaking, the massless case m = 0 relevant for graphene deserves
special consideration. We saw in the previous section that relatively narrow
resonances occur in the continuum spectrum. To better understand their origin it
is instructive to consider the problem semiclassically.

For ultrarelativistic particles with the Hamiltonian

H ~p; rð Þ ¼ v~pj j � Ze2

r
, (8.45)

one can introduce the radial momentum pr and angular momentum pφ = M, which
is an integral of motion since the Hamiltonian (8.45) does not depend on φ. One
can find from the energy-conservation condition H = E that

p2r ¼
1
v2

E þ Ze2

r

� �2

�M2

r2
, (8.46)

and the classically allowed regions are determined by the condition p2r > 0. If M is
large enough,

M > Mc ¼ Ze2

v
, (8.47)

the particle can propagate from r= 0 to r= ∞. AtM<Mc the situation is different,
and we have two classically allowed regions, 0 < r < r1 and r > r2, separated by a
potential barrier, where

r1,2 ¼ Ze2 ∓Mv

Ej j : (8.48)

If we were to neglect the tunneling through the classically forbidden region, we
could use the semiclassical quantization condition (Bohr–Sommerfeld condition)
for the inner well: ðr1

0

drpr ¼ πℏ nþ μð Þ, (8.49)

where n= 0, 1, 2, . . . and μ is a factor of the order of unity, cf. Section 2.4 (Landau
& Lifshitz, 1977).

One can see, however, that the integral on the left-hand side of Eq. (8.49) is
logarithmically divergent at the lower limits, and a cut-off at r = r0 « r1 should be
introduced. This divergence reflects the fall toward the center discussed earlier.
After that, we will find from the corrected version of Eq. (8.49)
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En � �C
ℏv
r0

exp � πℏnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

c �M2
q

264
375 (8.50)

with a factor C � 1, in very good agreement with the positions of quasilocalized
levels found from the exact solution Eq. (8.35).

Owing to the Klein tunneling through the classically forbidden region, the
lifetime in the inner well is finite, which leads to the appearance of the imaginary
part of the energy,

Γn

Enj j � exp � 2S
ℏ

� �
, (8.51)

S ¼
ðr2
r1

dr pr rð Þj j (8.52)

(Landau & Lifshitz, 1977). The explicit calculation gives us the answer

S ¼ π Mc �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

c �M2
q� �

: (8.53)

At the threshold, M = Mc, and this gives us a result that differs from the exact one
(8.37) only by the replacement

1
exp 2πβð Þ � 1

! exp �2πβð Þ: (8.54)

The resonances are narrow, and the quasilocalized states are long-lived, because of
the numerical smallness exp(�π) � 0.04, an interesting example of a small
numerical parameter for a coupling constant of the order of 1!

8.3 Nonlinear screening of charge impurities

Up to now, we have not taken into account electron–electron interactions. How-
ever, they are essential in our problem. The Coulomb potential (8.1) induces some
redistribution of the electron density nind ~rð Þ, which will create an additional
potential

V ind ~rð Þ ¼ e2

εext

ð
d~r0

nind ~r0ð Þ
~r �~r0j j þ Vxc ~rð Þ, (8.55)

where the first term is the Hartree potential and the second is the exchange
correlation potential. In the simplest approximation the latter can be neglected,

8.3 Nonlinear screening of charge impurities 203

https://www.cambridge.org/core


and we restrict ourselves to this approximation. The density-functional approach,
taking into account Vxc for the case of massless Dirac fermions, was developed by
Polini et al. (2008) and Rossi and Das Sarma (2008) (see also Brey & Fertig, 2009;
Fogler, 2009; Gibertini et al., 2010).

We will focus on the case of undoped graphene (chemical potential μ = 0). In
this situation, the radial dependence of nind(r0) can be written just from dimensional
analysis. There is no way to construct any length from the parameters of
the potential (Ze2) and of the electron spectrum (the Fermi velocity v); the
only relevant characteristic β, given in (8.2), is dimensionless. At the same time,
nind(r) has a dimensionality of inverse length squared. The most general
expression is

nind rð Þ ¼ A βð Þδ ~rð Þ þ B βð Þ
r2

, (8.56)

with the dimensionless A and B. The physical roles of these two terms are
dramatically different. The term proportional to A(β) is nothing other than the
renormalization of the point charge:

� Z

εext
! � Z

εext
þ A βð Þ: (8.57)

At the same time, phenomenologically, the answer should be �Ze2/ε, where ε is
the total dielectric constant (7.89), thus

A βð Þ ¼ Z
1
ε
� 1
εext

� �
: (8.58)

Therefore, the first term on the right-hand side of Eq. (8.56) describes nothing but
linear screening, that is, the renormalization of the dielectric constant.

The second term gives a logarithmically divergent contribution to the total
charge:

Qind ¼
ð
d~r 0nind ~r 0ð Þ � 2πB βð Þ ln rmax

rmin

� �
, (8.59)

where rmax and rmin are the upper and lower limits of the integration. The obvious
choice for rmin is the lattice constant a, since at such small distances the Dirac
model is not applicable. As for rmax, it is of the order of the sample length L. The
appearance of such contributions proportional to large ln(L/a) should have very
important consequences.

Let us first consider the case of small Z. The linear-response problem was
considered in Chapter 7, and no logarithms appeared. Owing to electron–hole
symmetry, Qind (Z) should be an odd function:
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Qind = (�Z) = � Qind(Z), (8.60)

which means that, at small Z, B can be represented as

B(Z) = B3Z
3 + B5Z

5 + 	 	 	. (8.61)

Straightforward calculations show that B3 = 0 (Ostrovsky, Gornyi, & Mirlin,
2006; Biswas, Sachdev, & Son, 2007). Later in this section we will show in a
nonperturbative way that B = 0 at Z < Zc (Shytov, Katsnelson, & Levitov, 2007a).

To consider the opposite limit of large Z one can use the Thomas–Fermi
approximation (Katsnelson, 2006c). For the case of atoms, one can prove that it
is asymptotically exact at Z ! ∞ (Lieb, 1981). Within this approximation (Landau
& Lifshitz, 1977; Lieb, 1981; Vonsovsky & Katsnelson, 1989) the effect of the
total potential

V ~rð Þ ¼ �Ze2

r
þ V ind ~rð Þ (8.62)

on the electron density dependent on the chemical potential n(μ), is purely local,

nind ~rð Þ ¼ n μ� V rð Þ½ � � n μð Þ, (8.63)

and the term Vxc in Eq. (8.55) can be neglected. The linearized version of this
approximation for the doped case was discussed in Section 7.7.

As a result,

V ind ~rð Þ ¼ e2

εext

ð
d~r0

n μ� V ~r0ð Þ½ � � n μð Þ
~r �~r0j j : (8.64)

For the case of graphene,

n μð Þ ¼
ðμ
0

dEN Eð Þ ¼ μ μj j
πℏ2v2

(8.65)

(see Eq. (1.72)).
Let us start with the undoped case (μ = 0). Then, on substituting Eq. (8.62)

and (8.65) into Eq. (8.64) and integrating over angles (it is obvious that V ~rð Þ
and nind ~rð Þ depend only on ~rj j ¼ r), one finds the integral equation (Katsnelson,
2006c)

F rð Þ ¼ Z � 2q
π

ð∞
0

dr0

r0
r

r þ r0
K

2
ffiffiffiffiffi
rr0

p

r þ r0

 !
F r0ð Þ F r0ð Þj j, (8.66)

where F is related to V by the expression

8.3 Nonlinear screening of charge impurities 205

https://www.cambridge.org/core


V ~rð Þ ¼ � e2

εextr
F rð Þ, (8.67)

K(m) is the elliptic integral (7.65) and

q ¼ 2
e2

εextℏv

� �2

: (8.68)

We will see later that, actually, the integral on the right-hand side of Eq. (8.66) is
divergent at r = 0; the reason is the inapplicability of the Dirac model at r 
 a.
Therefore, we need to introduce a cut-off at r0 � a, as was discussed previously.
The exact value of a is not relevant, given the logarithmic accuracy.

To proceed further, we make a replacement of variables in Eq. (8.66), r0 = r exp (t),
and introduce the notation ~F ln rð Þ ¼ F rð Þ: As a result, Eq. (8.66) takes the form

~F xð Þ ¼ Z � q

ðx
ln a

dt ~F tð Þ ~F tð Þ		 		� q

ð∞
�∞

dt ~F xþ tð Þ ~F xþ tð Þ		 		φ tð Þ, (8.69)

where

φ tð Þ ¼ 2
π

K 1= cosh
t

2


 �
 �
1þ exp t

� θ �tð Þ, (8.70)

with θ(x> 0) = 1, θ(x< 0) = 0. The function φ(t) decays exponentially at t!�∞
and has a logarithmic divergence at t = 0 (see Fig. 8.3). For large x, the last term in
Eq. (8.69) can be neglected:

Fig. 8.3 A graph of the function φ(t) in (8.70).
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~F xð Þ ¼ Z � q

ðx
ln a

dt ~F tð Þ ~F tð Þ		 		: (8.71)

This integral equation is equivalent to the differential one:

d ~F xð Þ
dx

¼ �q ~F xð Þ ~F xð Þ		 		, (8.72)

with the initial condition ~F 0ð Þ ¼ Z. The solution is

F rð Þ ¼ Z

1þ Zj jq ln r

a


 � , (8.73)

which corresponds to a very strong (logarithmic) screening of the effective charge
at r » a:

Zeff rð Þ ¼ Z þ Qind �
Zeff rð Þ
q ln

r

a


 � : (8.74)

If we were to expand Eq. (8.73) formally in Z, the leading term in Qind would be

Qind � �Z Zj jq ln rmax

rmin

� �
, (8.75)

which does not have the form (8.61) (but, of course, satisfies the condition (8.60)).
However, as we will see, the expression (8.73) is correct only for jZj » 1.

If we took the expression (8.73) literally, it would lead to the conclusion that
any charge is completely screened by the vacuum of two-dimensional massless
Dirac electrons (Katsnelson, 2006c). The situation is reminiscent of “charge
nullification” in quantum electrodynamics (Landau & Pomeranchuk, 1955;
Landau, Abrikosov, & Khalatnikov, 1956; Migdal, 1977), which was considered
(especially by the Landau school) as a fundamental difficulty of quantum field
theory in general. Actually, complete nullification occurs neither in quantum
electrodynamics nor in graphene. We will see that in the latter case the screening
is stopped at the value Z = Zc (Shytov, Katsnelson, & Levitov, 2007a).

The simplest way to demonstrate this is to use arguments based on the Friedel
sum rule (Friedel, 1952; Vonsovsky & Katsnelson, 1989); its generalization to the
case of the Dirac equation has been proposed by Lin (2005, 2006). According to
the sum rule, the total induced charge is related to the phase scattering at the Fermi
surface

Qint ¼ � 4
π

X
m

δm kFð Þ, (8.76)
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where the minus sign corresponds to that in Eq. (8.5) and we introduce the factor of
4 (valley degeneracy multiplied by spin degeneracy), keeping in mind applications
to graphene. We are interested in the limit kF ! 0, which, however, requires some
careful treatment for the supercritical charges (jβ j > βc), due to the term ln(2kr0) in
Eq. (8.28). This is, actually, the same logarithmic divergence as in Eq. (8.59), so
we will immediately see that the B term in Eq. (8.56) arises naturally at jβ j > βc
(but is equal to zero at jβj > βc, as has already been mentioned). For the
r-dependent term one can estimate, with logarithmic accuracy

Qint rð Þ � � 4
π

X
m

δm k � 1
r

� �
¼ � 4

π

X
m

γm ln
r

a


 �
, (8.77)

where the sum is taken over all jmj < jβj.
Thus, we have the following expression for the logarithmically dependent term

in Eq. (8.56):

B βð Þ ¼ � 2
π2

β
X
mj j< βj j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 � m2

q
: (8.78)

To proceed further one can use the renormalization group (RG) method, in its
simplest form of the “poor man’s scaling” (Anderson, 1970). Let us find the
dimensionless charge β self-consistently:

β rð Þ ¼ e2

εextℏv
Z þ Qind rð Þð Þ ¼ β0 Z þ 2πB ln

r

a


 �
 �
, (8.79)

where β0 is the bare value (8.2). The differential RG equation for the effective
coupling constant reads

dβ
d ln r

¼ 2πβ0B βð Þ ¼ � 4e2β
πεextℏv

X
mj j< βj j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 � m2

q
: (8.80)

Eq. (8.80) describes the flow of effective charge from its initial value β(r � a) = β0
to a smaller screened value. The flow stops, however, when jβ(r)j reaches
the critical value βc ¼ 1

2, since B(jβj < jβcj) = 0. It happens at a finite screening
radius r* determined by the condition

1
2π β0j j

ðβj j

βc

d βj j
B βð Þ ¼ ln

r∗

a

� �
: (8.81)

For the case of 1
2 < β0j j < 3

2 , for which only one term (with mj j ¼ 1
2) contributes to

B(β), the integration can be carried out explicitly:
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r∗ ¼ a exp
πεextℏv
4e2

cosh �1 2β0ð Þ
� �

: (8.82)

This means that the supercritical charge in graphene is surrounded by a cloud
of electron–hole pairs (created from the vacuum) of finite radius r*. For distances
r > r* the supercritical charge looks like the critical one. In our simple theory this
critical charge corresponds to βcj j ¼ 1

2; however, one should keep in mind that a
more accurate consideration of electron–electron interactions can renormalize this
value. Also note that taking into account the A term (8.58) will lead to the
replacement εext ! ε in Eq. (8.80) and (8.82).

Anyway, it is natural to expect that jβcj is of the order of 1. Thus, due to the
condition v « c, the rich and interesting physics of the supercritical charge and
vacuum reconstruction, which is hardly reachable for superheavy nuclei, can play
an important role in graphene.

To finish this section, let us establish the relations between the Thomas–Fermi
approximation and our RG treatment. If we assume that jZj » 1 and jβj is much
larger than the critical value, the sum in Eq. (8.78) can be replaced by the integral

X
mj j< βj j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 � m2

q
�
ðβj j

� βj j

dm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 � m2

q
¼ πβ2

2
, (8.83)

and Eq. (8.80) coincides with Eq. (8.72), with the solution (8.73). Thus, the
Thomas–Fermi approximation works at Z ! ∞, as one would naturally expect.

8.4 Interelectron Coulomb interaction and renormalization of the
Fermi velocity

As discussed in Chapter 7, electron–electron interaction in graphene is not weak,
the effective coupling constant being of the order of 1. This makes the problem of a
many-body description of graphene very complicated. Also, experimental evi-
dence of many-body effects in graphene (except in the quantum Hall regime)
remains very poor. For these two reasons, it seems to be a bit early to discuss in
detail the correlation effects in graphene. However, one of the predictions, namely,
a concentration-dependent renormalization of the Fermi velocity (González,
Guinea, & Vozmediano, 1994) is based on relatively simple Hartee–Fock calcula-
tions and should be reliable, at least, qualitatively. Very recently, this effect was
confirmed experimentally (Elias et al., 2011). It demonstrates the importance of the
long-range character of interelectron Coulomb interactions and, therefore, will be
considered in this chapter.
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The Hamiltonian of the Coulomb interaction reads

ĤC ¼ e2

2

X
α, β

ðð
d~rd~r0

ψ̂þ
α ~rð Þψ̂α ~rð Þψ̂þ

β ~r0ð Þψ̂β ~r0ð Þ
~r �~r0j j , (8.84)

where ψ̂α ~rð Þ is the electron annihilation operator at the point~r, α is an intrinsic
quantum number (e.g., a set of spin-projection, sublattice, and valley labels). The
Hartree–Fock approximation corresponds to the replacement

bψþ
1 ψ̂2bψþ

3 ψ̂4 ! bψþ
1 ψ̂2

� bψþ
3 ψ̂4 þ bψþ

1 ψ̂4

� 
ψ̂2bψþ

3 ¼ ρ21bψþ
3 ψ̂4 þ ρ41ψ̂2bψþ

3 , (8.85)

which means a consideration of electron–electron interactions at the mean-field level
(Landau & Lifshitz, 1977; Vonsovsky & Katsnelson, 1989). The coupling withX

/
bψþ
α ~rð Þψ̂α ~rð Þ�  ¼ n ~rð Þ (8.86)

corresponds to Hartree (electrostatic) terms and, within the model of a homoge-
neous electron gas, is exactly compensated for by the interactions with ionic charge
density, due to the electroneutrality of the system. The Fock contribution survives:

ĤF ¼ �e2
X
α, β

ð
d~rd~r0

bψþ
α ~rð Þψ̂β ~r0ð Þ� bψþ

β
~r0ð Þψ̂α ~rð Þ

~r �~r0j j : (8.87)

Owing to the translational invariance of the system,

bψþ
α ~rð Þψ̂β ~r

0ð Þ
D E

¼
X
~k

ρβα ~k

 �

exp i~k ~r �~r0ð Þ
h i

, (8.88)

where

ρβα ~k

 �

¼ bψþ
~kα
ψ̂~kβ

D E
(8.89)

(cf. Chapter 7, where we used this single-particle density matrix many times). If we
apply this assumption to graphene, this means that we neglect intervalley Coulomb
interaction. The corresponding terms contain “Umklapp processes” with
ρ̂ ~k;~k �~g

 �

, where~g ¼ ~K � ~K 0 is the vector connecting the valleys. This approxi-
mation will be discussed later.

On substituting Eq. (8.88) into Eq. (8.87) we will have an additional term in the
single-electron Hamiltonian

ĤF ¼
X
~k

X
α, β
bψþ
α

~k

 �

hαβ ~k

 �

ψ̂β
~k

 �

, (8.90)
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where

hαβ ~k

 �

¼ �2πe2
X
~k

ραβ ~k

 �

~k �~k0
			 			 : (8.91)

If we consider the electron–electron interaction effects by applying a perturbation
theory, the corrections to the energies of electrons and holes are nothing other than
the matrix elements of ĥ ~k


 �
in the corresponding basis. The explicit calculation

for the undoped case (which is similar to that in Sections 7.2 and 7.6) gives us the
following result:

δEe,h ~k

 �

¼ �
X
~k0

2πe2

~k �~k0
			 			 12 1�

~k~k0

kk0

 !
: (8.92)

The integral in Eq. (8.92) is logarithmically divergent at the upper limit and has to
be cut at kc � 1/a, due to the inapplicability of the Dirac approximation. It contains
the term �ħδvF(k)k, where

δvF kð Þ ¼ e2

4ℏ
ln

kc
k

� �
, (8.93)

which is logarithmically divergent at k ! 0. This means that, strictly speaking, the
Dirac cones near the neutrality point are not exactly cones.

For the case of doped graphene, the divergence at k ! 0 is cut at k � kF, which
results in a logarithmic dependence of the Fermi velocity on the electron
concentration:

δvF ¼ e2

4ℏ
ln

1
kFa

� �
: (8.94)

If we take into account the screening of the Coulomb interaction by the environ-
ment plus virtual electron–hole transitions, the expression (8.94) is replaced by

δvF ¼ e2

4ℏε
ln

1
kFa

� �
, (8.95)

with ε given by Eq. (7.89). This seems to be in agreement with the experimental
data published by Elias et al. (2011).

Note that, if we took into account the intervalley Coulomb interaction, the
Fourier component 1= ~k �~k0

			 			 in Eq. (8.92) would be replaced by a constant

1

~k �~k0 þ~g
			 			 � 1

g
:

This interaction does not lead to any singularities and, therefore, can be neglected.
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The situation becomes more complicated and interesting if we take into account
dynamical screening of the Coulomb interaction (see Eq. (7.81), (7.82) and (7.88)).
As was shown by González, Guinea, and Vozmediano (1999), this leads to the
damping of electron states proportional to jEj, in contrast with the typical Fermi-
liquid E2 behavior. This means that graphene in the vicinity of the neutrality point
should be a marginal Fermi liquid, with ill-defined quasiparticles. Currently, it is
not clear how this result will be changed on going beyond the perturbation theory.

The many-body effects in graphene will be considered in much greater detail
in Chapter 15.
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9

Crystal lattice dynamics, structure, and
thermodynamics

9.1 Phonon spectra of graphene

Phonon spectra of two-dimensional and quasi-two-dimensional crystals have some
peculiar features that were first analyzed by Lifshitz (1952; see also Belenkii,
Salaev, & Suleimanov, 1988; Kosevich, 1999). To explain them we first recall a
general description of the phonon spectra in crystals (Kosevich, 1999; Katsnelson
& Trefilov, 2002).

Let the coordinates of the nuclei be

~Rnj ¼ ~R 0ð Þ
nj þ~unj, (9.1)

where ~R 0ð Þ
nj

n o
form a crystal lattice, n labels elementary cells (or sites of the

corresponding Bravais lattice), j = 1, 2, . . ., v labels the atoms within elementary
cell (or sublattices), and~unj are displacements. Further, we will use the notation

~R 0ð Þ
nj ¼~rn þ~ρj, (9.2)

where~rn are translation vectors and~ρj are basis vectors ~ρ1 � 0ð Þ.
The main assumption of the standard theory of crystal lattices is the smallness of

average atomic displacements in comparison with the interatomic distance d:

~unj
2� �

« d2: (9.3)

According to Eq. (9.3) one can expand the potential energy V ~Rnj

� �� �
in terms of

atomic displacements and take into account only the lowest second-order term (the
linear term obviously vanishes due to mechanical equilibrium conditions):

V ~Rnj

� �� � ¼ V ~R 0ð Þ
nj

n o� 	
þ 1
2

X
nn0
ij

αβ

Aαβ
ni,n0ju

α
niu

β
n0j, (9.4)
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where

Aαβ
ni,n0j ¼

∂2V

∂uαni∂u
β
n0j

 !
~u¼0

(9.5)

is the force-constant matrix. Eq. (9.4) defines the harmonic approximation. The
classical equations of motion for the potential energy (9.4) read

Mi
d2u αð Þ

ni

dt2
¼ �

X
n0jβ

Aαβ
ni,n0ju

β
n0j: (9.6)

By looking for solutions of the form uni
α(t) ~ exp (�iωt) and using translational

symmetry, one can prove that the square eigenfrequencies of the problem
ω2 ¼ ω2

ξ ~qð Þ, are eigenvalues of the dynamical matrix

Dαβ
ij ~qð Þ ¼

X
n

Aαβ
0i,njffiffiffiffiffiffiffiffiffiffiffi
MiMj

p exp i~q~rnð Þ: (9.7)

Here~q is the phonon wave vector running over the Brillouin zone and ξ= 1, 2, . . .,
3v is the phonon branch label.

After quantization of the classical problem, one can prove that in the harmonic
approximation, the Hamiltonian of the system is

Ĥ0 ¼
X
λ

ℏωλ b̂
þ
λ b̂λ þ

1
2

� �
, (9.8)

where λ ¼ ~q; ξð Þ are phonon quantum numbers, b̂þλ and b̂λ are canonical Bose

creation and annihilation operators, and the atomic displacement operator is
expressed in terms of b̂þλ and b̂λ as

~̂unj ¼
X
λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ

2N0Mjωλ

s
b̂λ þ b̂þ�λ

� �
~ej λð Þ exp i~q~rnð Þ: (9.9)

Here N0 is the number of elementary cells, �λð Þ � �~q; ξð Þ and~ej λð Þ are polariza-
tion vectors, that is, unit eigenvectors of the dynamical matrix.

There are important restrictions on the force-constant matrix, due to the transla-
tional invariance of the problem. If we were to move all nuclei of the crystal by the
same displacement vector~u, no force would act on any atom. This means, due to
Eq. (9.6), that X

nj

Aαβ
0i,nj ¼ 0: (9.10)
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It follows from the condition (9.10) that in three-dimensional space there are three
acoustic modes, with ω2

ξ ~q ! 0ð Þ ! 0 ξ ¼ 1; 2; 3ð Þ and 3(v � 1) optical modes,

with finite ω2
ξ ~q ! 0ð Þ: The acoustic modes for small ~q correspond to coherent

displacements of all atoms in the elementary cell by the same vector ~uj � ~u ,
whereas optical modes at ~q ¼ 0 correspond to the motion of atoms within the
elementary cells with the fixed inertia center:

X
j

Mj~uj ~q ¼ 0ð Þ ¼ 0: (9.11)

Keeping in mind graphene, we will assume further that Mj = M is the mass
of the carbon atom. Owing to mirror symmetry in the graphene plane, it is
obvious that

Â
xz ¼ Â

yz ¼ 0 (9.12)

and, thus, the modes with polarization along the z-direction are rigorously separ-
ated, within the harmonic approximation, from the modes polarized in the gra-
phene xy-plane. Also, taking into account that the two sublattices A and B are
equivalent, one can see that

Dαβ
11 ¼ Dαβ

22 (9.13)

and, due to Eq. (9.7) and (9.10),

Dαβ
12 ~q ¼ 0ð Þ þ Dαβ

11 ~q ¼ 0ð Þ ¼ 0: (9.14)

Therefore, there are six phonon branches in graphene, namely the following:

(1) The acoustic flexural mode ZA ~ukOzð Þ with the frequencies

ω2
ZA ~qð Þ ¼ Dzz

11 ~qð Þ þ Dzz
12 ~qð Þ: (9.15)

(2) The optical flexural mode ZA ~ukOzð Þ with the frequencies

ω2
ZO ~qð Þ ¼ Dzz

11 ~qð Þ � Dzz
12 ~qð Þ: (9.16)

(3), (4) Two acoustic in-plane modes, with ω2 ~qð Þ equal to eigenvalues of the
2 � 2 matrix

Dαβ
11 ~qð Þ þ Dαβ

12 ~qð Þ α; β ¼ x; yð Þ:
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(5), (6) Two optical in-plane modes, with ω2 ~qð Þ equal to eigenvalues of the 2 � 2
matrix

Dαβ
11 ~qð Þ � Dαβ

12 ~qð Þ α; β ¼ x; yð Þ:

If the two-dimensional wave vector ~q lies in symmetric directions, branches (3)
through (6) can be divided into longitudinal ~ek~qð Þ and transverse ~e⊥~qð Þmodes; for
a generic~q this classification is not possible.

Because of the conditions (9.14), one can assume that for acoustic modes
ω2 ~ q2 at ~q ! 0, and this is, in general, true. However, for the ZA mode, q2

terms also disappear, and ωZA
2(q) ~ q4 (Lifshitz, 1952). This follows from the

rotational invariance of the system. Indeed, instead of uniform translation
~un = constant, let us use uniform rotation

~unj ¼ δ~φ�~R 0ð Þ
nj , (9.17)

where δ~φ is the rotation angle. This should also not lead to the appearance of any
forces or torques acting on the atoms. If δ~φ lies in the xy-plane,~unjkOz, additionally
to the conditions (9.10), we will haveX

nj

Azz
0i,njr

α
nr

β
n ¼ 0 (9.18)

(α, β = x, y). It follows immediately from Eq. (9.18) and the definition of the
dynamical matrix in (9.7) that

∂2

∂qα∂qβ
Dzz

11 ~qð Þ þ Dzz
12 ~qð Þ ���

~q¼0
¼ 0 (9.19)

and, thus the expansion of the right-hand side of Eq. (9.15) starts with terms of the
order of q4; therefore,

ωZA(q) � q2 (9.20)

at ~q ! 0: In the next section we will derive this result by means of phenomeno-
logical elasticity theory.

There is no way, until now, to measure phonon dispersion in graphene experi-
mentally, since the number of atoms in graphene flakes is insufficient for inelastic
neutron-scattering experiments. It can be calculated using the density-functional
method (Mounet & Marzari, 2005) or some semiempirical interatomic potential.
The results are quite similar. Later in this chapter we will frequently discuss
the results of atomistic simulations obtained using the so-called long-range
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carbon-bond order potential (LCBOPII) (Los & Fasolino, 2003; Los et al., 2005).
Therefore, we show in Fig. 9.1 the phonon spectra calculated within the same
model (Karssemeijer & Fasolino, 2011). One can clearly see the six branches of the
phonons listed previously.

Let us now consider the case of finite temperatures. In the harmonic
approximation, the mean-square atomic displacement is (Kosevich, 1999; Kats-
nelson & Trefilov, 2002)

uαnju
β
nj

D E
¼
X
λ

ℏ
2N0Mjωλ

eαnj

� 	∗
eβnj

� 	
coth

ℏωλ

2T

� �
: (9.21)

For in-plane deformations (α = β = x or y) at any finite temperature the integral
(9.21) is logarithmically divergent due to the contribution of acoustic branches
with ω ~ q at~q ! 0: This divergence is cut at minimal qmin ~ L�1 (L is the sample
size), thus

x2nj

D E
¼ y2nj

D E
� T

2πMc2s
ln

L

d

� �
, (9.22)

where cs is the average sound velocity (Peierls, 1934, 1935; Landau, 1937; Landau
& Lifshitz, 1980). This led Landau and Peierls to the conclusion that two-
dimensional crystals cannot exist. Strictly speaking, this means just the inapplic-
ability of the harmonic approximation, due to violation of the condition (9.3).
However, a more rigorous treatment does confirm this conclusion (Mermin, 1968),
as a partial case of the Mermin–Wagner theorem (Mermin & Wagner, 1966;

Fig. 9.1 Phonon spectra of graphene.
(Reproduced with permission from Karssemeijer and Fasolino, 2011.)
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Ruelle, 1999). This means that the definition of graphene as a “two-dimensional
crystal” requires a detailed and careful discussion, which is one of the main aims of
this chapter.

For α = z, the situation is even worse, due to the much stronger divergence of
ZA phonons Eq. (9.20). One can see from Eq. (9.21) that

hnj
2

� � � T
X
q

1
q4

� T

Eat
L2, (9.23)

where Eat is of the order of the cohesive energy. Henceforth we will use the
notation h = uz, assuming that~u ¼ ux; uyð Þ is a two-dimensional vector only.

Before going any further it is important to derive the key results (9.20) and
(9.23) from a different point of view.

9.2 The theory of elasticity for thin plates

In this section we present the general equations of the phenomenological elasticity
theory, with applications to thin plates (Timoshenko &Woinowsky-Krieger, 1959;
Landau & Lifshitz, 1970). This is a necessary preparatory step before we can
discuss the unique mechanical properties of graphene (Booth et al., 2008; Lee
et al., 2008). Also, it gives us a deeper insight into the properties of flexural
phonons.

Let us consider a D-dimensional (D = 2 or 3) deformed medium. The particles,
which had original coordinates xα, transformed to the position

x0α ¼ xα þ uα xβ
� �� �

: (9.24)

The metrics, that is, the distance between infinitesimally distant points, being
Pythagorean

dl2 = dxαdxα (9.25)

(we assume a summation over repeated tensor indices) is changed to

dl02 ¼ dx0αdx
0
α ¼

∂x0α
∂xβ

∂x0α
∂xγ

dxβdxγ ¼ dl2 þ 2uαβdxαdxβ, (9.26)

where

uαβ ¼ 1
2

∂uα
∂xβ

þ ∂uβ
∂xα

þ ∂uγ
∂xα

∂uγ
∂xβ

� �
(9.27)

is a so-called deformation tensor. It is assumed, in the elasticity theory, that the free
energy of a deformed medium is a functional of the deformation tensor F = F[uαβ].
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By definition, the equilibrium state without external forces corresponds to
uαβ = 0.

There are two types of external forces resulting in the deformation. First, there
are bulk forces acting on each atom of the medium, such as gravitational and
electric forces. Their volume density is assumed to be f vð Þ

α ~rð Þ: Second, there are
mechanical forces, due to contact with various bodies; they act on the surface only.
The hydrostatic pressure P is an example; it leads to the total force

~f ¼
þ
d~SP, (9.28)

where d~S is the (vector) element of the surface area. In a more general case in
which shear forces are also allowed Eq. (9.28) is generalized as

fα =
Þ
dSβσαβ, (9.29)

where σαβ is called the stress tensor. Using the Gauss theorem, Eq. (9.29) can be
represented as an integral over the volume

f α ¼
ð
dDx

∂σαβ
∂xβ

: (9.30)

Thus, the condition of local equilibrium can be written as

∂σαβ
∂xβ

þ f vð Þ
α ¼ 0: (9.31)

One can prove (Landau & Lifshitz, 1970) that, due to the condition of absence of
internal torques, the stress tensor is symmetric:

σαβ = σβα. (9.32)

Interestingly, this condition is violated in ferromagnetic media, due to gyro-
magnetic effects (Vlasov & Ishmukhametov, 1964), but we will not consider that
case here.

The stress tensor creates deformations that are linear in the stress (Hooke’s law).
In the approximation of an isotropic elastic medium, the relation is determined by
two Lamé constants, λ and μ:

σαβ = λδαβuγγ + 2μuαβ. (9.33)

It is obvious that for small-enough deformations juαβj « 1, the renormalization of
the local volume is determined by uγγ ¼ Trû:
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dV 0

dV
¼ det

∂x0α
∂xβ

� �
� 1þ uγγ: (9.34)

This component of the deformation tensor is called dilatation. The traceless
component

u0αβ ¼ uαβ � 1
D
δαβuγγ, (9.35)

is called shear deformation. Hooke’s law (9.33) can be rewritten as

σαβ ¼ Bδαβuγγ þ 2μ uαβ � 1
D
δαβuγγ

� �
, (9.36)

where

B ¼ λþ 2μ
D

(9.37)

is the bulk modulus and μ has the meaning of a shear modulus of the system under
consideration.

On substituting Eq. (9.33) into Eq. (9.31) we find the equilibrium conditions for
the case f vð Þ

α ¼ 0:

∂
∂xα

λuγγ
� �þ 2

∂
∂xβ

μuαβ
� � ¼ 0: (9.38)

Eq. (9.38) corresponds to the extremum of the free energy

F ¼ 1
2

ð
dDx λ uααð Þ2 þ 2μuαβuαβ
h i

: (9.39)

Thermodynamic stability requires

B > 0, μ > 0, (9.40)

which is obvious if one considers pure dilatation and pure shear deformation.
The inversion of Eq. (9.36) gives us

uαβ ¼ 1

D2B
δαβσγγ þ 1

2μ
σαβ � 1

D
δαβσγγ

� �
: (9.41)

If we apply a uniaxial uniform stress (σxx = p and other components are equal to
zero) we can find from Eq. (9.41) that

uxx ¼ p

Y
, uyy ¼ �vuxx, (9.42)

where Y is called Young’s modulus and v is the Poisson ratio determining the
change of sizes in directions perpendicular to the stress. For D = 3 one has
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Y ¼ 9Bμ
3Bþ μ

,

v ¼ 1
2
3B� 2μ
3Bþ μ

(9.43)

and, due to Eq. (9.40),

�1 < v <
1
2
: (9.44)

For most solids v > 0, which means a constriction of the body in the perpendicular
direction. For D = 2

Y ¼ 4Bμ
Bþ μ

,

v ¼ B� μ
Bþ μ

:

(9.45)

Now, after recalling these basic definitions of elasticity theory, let us consider the
case of a thin plate (its thickness Δ is much smaller than the typical size L, in the
x- and y-directions). We start with the case of small deformations, for which the last
nonlinear term in the definition (9.27) can be neglected. If we assume that no forces
act on the surfaces of the plate, it should be, according to Eq. (9.29), the case that

σαβnβ = 0, (9.46)

where~n is the unit normal to the surface. For the equation of the surface

z = h(x, y) (9.47)

the components of the normal are

nx ¼ � ∂h
∂x

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ rhj j2

q ,

ny ¼ � ∂h
∂y

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ rhj j2

q ,

nz ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ rhj j2

q ,

(9.48)

where

rh ¼ ∂h
∂x

;
∂h
∂y

� �
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is a two-dimensional gradient (see any textbook on differential geometry, e.g.
DoCarmo, 1976; Coxeter, 1989). If jrhj « 1, the normal is parallel to the z-axis,
and Eq. (9.46) reads

σxz = σyz = σzz = 0. (9.49)

The conditions (9.49) should be satisfied for both surfaces of the plate and, since
the plate is thin, should also be valid within the plane. Taking into account
Eq. (9.33) and the definitions (9.43), one finds

∂ux
∂z

¼ � ∂uz
∂x

,
∂uy
∂z

¼ � ∂uz
∂y

(9.50)

and

uzz ¼ � v

1� v

∂ux
∂x

þ ∂uy
∂y

� �
: (9.51)

Assuming uz = h(x, y) to be z-independent within the plane, one finds from
Eq. (9.50)

ux ¼ �z
∂h
∂x

, uy ¼ �z
∂h
∂y

, (9.52)

and the components of the deformation tensor are

uxx ¼ �z
∂2h
∂x2

, uyy ¼ �z
∂2h
∂y2

, uxy ¼ �z
∂2h
∂x∂y

, (9.53)

uxz ¼ uyz ¼ 0, uzz ¼ z
∂2h
∂x2

þ ∂2h
∂y2

� �
v

1� v
:

On substituting Eq. (9.53) into Eq. (9.39) and integrating explicitly over jzj < Δ/2
(Δ is the plate thickness) one finds for the energy of bending deformation

Fb ¼ YΔ3

24 1� ν2ð Þ
ð
d2x r2h

� �2 þ 2 1� νð Þ ∂2h
∂x∂y

� �2

� ∂2h
∂x2

∂2h
∂y2

" #( )
, (9.54)

where

r2 ¼ ∂2

∂x2
þ ∂2

∂y2
(9.55)

is the two-dimensional Laplacian. The last term in Eq. (9.54)

det
∂2h
∂xi∂xj

� �
,

222 Crystal lattice dynamics, structure, and thermodynamics

https://www.cambridge.org/core


is proportional to the Gaussian curvature K of the deformed surface (DoCarmo,
1976; Coxeter, 1989); see later for more details. It can be represented as a total
derivative:

2 det
∂2f

∂xi∂xj

� �
¼ �εimεjm

∂2

∂xm∂xn

∂f
∂xi

∂f
∂xj

� �
(9.56)

(̂ε is the unit antisymmetric 2 � 2 matrix) and, thus, leads to some integral over the
edges of the membrane. It therefore has no effect on the equations of motion.
Alternatively, one can refer to the Gauss–Bonnet theorem (DoCarmo, 1976;
Coxeter, 1989) that

Ð
dSK is a topological invariant that is not changed during

smooth deformations. Thus, the bending energy (9.54) can be represented as

Fb ¼ κ
2

ð
d2x r2h
� �2

, (9.57)

where

κ ¼ YΔ3

12 1� v2ð Þ : (9.58)

If we add the kinetic energy

T ¼ 1
2

ð
d2xρ

∂~u
∂t

� �2

� 1
2

ð
d2xρ

∂h
∂t

� �2

(9.59)

(ρ is the mass density) and write the Lagrangian L = T � Fb and the corresponding
equations of motion

∂
∂t

ρ
∂h
∂t

� �
þr2 κr2h

� �2 ¼ 0, (9.60)

then we find for the frequencies of the bending waves

ω2 ¼ κ
ρ
q4, (9.61)

in agreement with Eq. (9.20). The quantity κ is called the bending rigidity.
Our consideration up to now has not taken into account the energy of in-plane

deformations. To take them into account one needs to add the energy (9.39), where
α, β = x, y. In the definition, one can neglect (9.27) the nonlinear terms

∂ux
∂xα

∂ux
∂xβ

and
∂uy
∂xα

∂uy
∂xβ

,

but one should keep the nonlinearities
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∂h
∂xα

∂h
∂xβ

since, as we will see, they can be comparable to ∂uα/∂xβ (further,~u ¼ ux; uy
� �

is
the two-dimensional vector):

uαβ ¼ 1
2

∂uα
∂xβ

þ ∂uβ
∂xα

þ ∂h
∂xα

∂h
∂xβ

� �
: (9.62)

The total deformation energy is

F ¼ 1
2

ð
d2x κ r2h

� �2 þ λ uααð Þ2 þ 2μuαβuαβ
n o

, (9.63)

where

λ = λ3Δ, μ = μ3Δ (9.64)

are the two-dimensional Lame constants (henceforth we will write two-
dimensional parameters λ, μ without subscripts, and the corresponding three-
dimensional parameters with the subscript 3). The equations for equilibrium
deformations of the plate can be found by minimization of the functional (9.63),
plus interactions with external forces. After rather cumbersome transformations
(Landau & Lifshitz, 1970; Timoshenko & Woinowsky-Krieger, 1959) one finds

κr4h� Δ
∂2χ
∂y2

∂2h
∂x2

þ ∂2χ
∂x2

∂2h
∂y2

� 2
∂2χ
∂x∂y

∂2h
∂x∂y

� �
¼ P (9.65)

r4χ þ Y3
∂2h
∂x2

∂2h
∂y2

� ∂2h
∂x∂y

� �2
" #

¼ 0, (9.66)

where Y3 is the bulk (three-dimensional) Young modulus, P is the density of
external forces (per unit area), and χ is the potential for the stress tensor (Airy
stress function):

σxx ¼ ∂2χ
∂y2

, σxy ¼ � ∂2χ
∂x∂y

, σyy ¼ ∂2χ
∂x2

: (9.67)

These equations (the Föppl–von Karman equations) are essentially nonlinear, and
their solution is, in general, a difficult task. One can, however, estimate the
deformation for the situation when jhj » Δ, the only one that is relevant for
graphene, where Δ is of the order of interatomic distance. The first term in
Eq. (9.65) is smaller in this situation than the second one and can be neglected
(Landau & Lifshitz, 1970). This means that the bending rigidity κ is irrelevant, and
it is in-plane deformation and the corresponding Young modulus that determine
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the resistance to the external force. Dimensional analysis of Eq. (9.65) and (9.66)
gives us a typical value of the deformation:

h � L4P

Y3Δ

� �1
3

: (9.68)

For example, for a circular plate of radius R with a clamped edge and uniform P,
the deformation at the center is (Timoshenko & Woinowsky-Krieger, 1959)

h0 � 0:662R
RP

Y3Δ

� �1
3

: (9.69)

Note that, despite Eq. (9.65), (9.66) do not depend on the Poisson ratio ν, the
expressions for the deformation tensor and, therefore, the boundary conditions
depend on it. The answer (9.69) corresponds to ν = 0.25. Estimations also show
that linear and nonlinear terms in the deformation tensor (9.62) are, in general, of
the same order of magnitude.

Graphene is an extremely strong material (the real values of the constants κ, B,
and μ will be discussed later in this chapter). Also, being almost defect-free, it can
keep a deformation as high as, at least, 10%–15% (Kim et al., 2009). Therefore,
according to the classical elasticity theory, for typical flake sizes of the order of
10–100 µm, a flake can bear a weight of the order of billions of times its own
weight (Booth et al., 2008). Later we will see that for the single-atomic membrane
the Föppl–von Karman equations (9.65) and (9.66) should be reconsidered due to
essential role of thermal fluctuations but, qualitatively, the conclusion on the
extraordinary strength of graphene membrane remains correct.

There is another way to derive Eq. (9.57), which starts from the model of a
membrane as an infinitely thin plate, that is, a single flexible surface (Nelson,
Piran, & Weinberg, 2004). It is natural to assume that the energy of a deformed
membrane depends on the mutual orientation of normals to the surface at the
neighboring points, which determines the orientation of electron orbitals, etc.
(Fig. 9.2). If we discretize (e.g., triangulate) the surface, we can write the corres-
ponding free energy as

Fb ¼ ~κ
X
ijh i

1�~ni~nj
� �

, (9.70)

where ~κ > 0,~ni is the normal to the zth triangle and the sum is taken over the
neighboring triangles. The bending energy (9.70) is counted from the flat state with
all~nikOz: Since

1�~ni~nj ¼ 1
2

~ni �~nj
� �2

, (9.71)
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in the continuum limit it will be transformed to the invariant quantity

∂nα
∂xβ

∂nα
∂xβ

,

and

Fb ¼ κ
2

ð
d2x

∂nα
∂xβ

∂nα
∂xβ

(9.72)

with κ / ~κ: On substituting Eq. (9.48) into Eq. (9.72) and keeping only the lowest-
order terms in ∂h/∂xα we have

Fb ¼ κ
2

ð
d2x r2h

� �2 � 2 det
∂h
∂xi

∂h
∂xj

� �� �
: (9.73)

The last term, which is proportional to the Gaussian curvature, can be skipped for
the reasons discussed earlier, and we have the expression (9.57).

One more view of Eq. (9.57) is based on the Helfrich model of liquid
membranes (Helfrich, 1973; Jones, 2002). The deformation energy in this model
is written in terms of the mean curvature H and Gaussian curvature K of the
surface:

F ¼ κ
2

ð
dSH2 þ κ0

ð
dSK, (9.74)

where, due to the Gauss–Bonnet theorem, the second term is important only for
processes during which the topology is changed (e.g., the merging of two vesicles).
The first term is also known in mathematics as the Willmore functional; for some
recent discussions see Taimanov (2006) and Manyuhina et al. (2010). For a general
surface defined by Eq. (9.47) one has (DoCarmo, 1976)

dS ¼ dxdy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ rhj j2

q
, (9.75)

Fig. 9.2 The orientation of normals and the directions of electron orbitals in a
fluctuating membrane (black) and in its ground state (gray).
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K ¼ 1

1þ rhj j2
h i2 ∂2h

∂x2
∂2h
∂y2

� ∂2h
∂x∂y

� �2
" #

, (9.76)

H ¼ 1

1þ rhj j2
h i3=2 1þ ∂h

∂x

� �2
" #

∂2h
∂y2

þ 1þ ∂h
∂y

� �2
" #

∂2h
∂x2

� 2
∂2h
∂x∂y

∂h
∂x

∂h
∂y

( )
:

(9.77)

Keeping only the lowest-order terms in jrhj, we have
H � r2h (9.78)

and, thus, Eq. (9.74) is equivalent to Eq. (9.57).

9.3 The statistical mechanics of flexible membranes

The expressions (9.62) and (9.63) provide a background for the statistical
mechanics of crystalline membranes at finite temperatures (Nelson & Peliti,
1987; Aronovitz & Lubensky, 1988; Abraham & Nelson, 1990; Le Doussal &
Radzihovsky, 1992; Nelson, Piran, & Weinberg, 2004). Henceforth we will
consider only the classical regime, assuming that ~u ~rð Þ and h ~rð Þ are static fields
fluctuating in space. Thus, the partition function is determined by a functional
integral

Z ¼
ð
D~u ~rð ÞDh ~rð Þ exp �βF~u ~rð Þ; h ~rð Þ½ �f g, (9.79)

where β = T�1 is the inverse temperature and the free energy F (9.63) plays the
role of the Hamiltonian. The nonlinear term in Eq. (9.62) couples the two fields,
making the theory highly nontrivial – at least as nontrivial as the famous problem
of critical behavior (Wilson & Kogut, 1974; Ma, 1976).

If we neglect this term, the Hamiltonian (9.63) is split into two independent
Hamiltonians for the free fields. In the~q representation, it reads

F0 ¼ κ
2

X
~q

q4 h~q
�� ��2 þ 1

2

X
~q

μq2 ~u~q
�� ��2 þ λþ μð Þ ~q�~u~q

� �2h i
, (9.80)

where h~q and ~u~q are Fourier components of h ~rð Þ and ~u ~rð Þ, respectively. The

correlation functions for the free fields can be found immediately using the
properties of Gaussian functional integrals (Wilson & Kogut, 1974; Ma, 1976;
Faddeev & Slavnov, 1980):
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G0 ~qð Þ ¼ h~q
�� ��2D E

0
¼ T

κq4
, (9.81)

D0
αβ ~qð Þ ¼ uα~q

∗uβ~q
� �

0 ¼ Pαβ ~qð Þ T

λþ 2μð Þq2 þ δαβ � Pαβ ~qð Þ � T

μq2
, (9.82)

where h. . .i0 means averaging with the Hamiltonian F0 and

Pαβ ~qð Þ ¼ qαqβ
q2

(9.83)

is the projection operator on the~q vector. Note that the normal–normal correlation

function is related to h~q
�� ��2D E

by

δ~n~qδ~n�~q
� � ¼ q2 h~q

�� ��2D E
(9.84)

as follows from Eq. (9.48), δ~n is the deviation of the normal vector from Oz axis.
On substituting Eq. (9.81) into Eq. (9.84) we find

δ~n~qδ~n�~q
� � ¼ T

κq2
: (9.85)

However, the approximation (9.81) turns out to be unsatisfactory. It does not
describe a flat membrane. Indeed, the membrane is more or less flat if the
correlation function

~n0~n~R
� � ¼X

~q

~n~q
�� ��2D E

exp i~q~R
� �

(9.86)

tends to a constant at R! ∞ (normals at large distances have, on average, the same
direction). Instead, substitution of Eq. (9.85) into (9.86) leads to a logarithmically
divergent integral. Moreover, the mean-square out-of-plane displacement

h2
� � ¼X

~q

h~q
�� ��2D E

(9.87)

after the cut-off at qmin ~ L�1 gives the result

h2
� � � T

κ
L2 (9.88)

(cf. Eq. (9.23)), which means that the membrane is crumpled (on average, it has all
three dimensions of the order of L).
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Similarly, the in-plane square deformation

~u2
� � ¼X

~q

~u~q
�� ��2D E

(9.89)

is logarithmically divergent, as in Eq. (9.22). Thus, we conclude, again, that the
statistical mechanics of two-dimensional systems cannot be based on the harmonic
approximation, or approximation of free fields.

The nonlinear term

∂h
∂xα

∂h
∂xβ

in Eq. (9.62) after substitution into Eq. (9.63) results in a coupling of two fields.
The integral over ~u ~rð Þ in Eq. (9.79) remains Gaussian and can be calculated
rigorously, using the well-known rule (Wilson & Kogut, 1974; Faddeev &
Slavnov, 1980)

Ð
D~u exp � 1

2
~uL̂~u�~f~u

� �
Ð
D~u exp � 1

2
~uL̂~u

� � ¼ exp
1
2
~f L̂

�1
~f

� �
: (9.90)

As a result, the partition function (9.79) can be represented as

Z ¼
ð
Dh ~rð Þ exp �βΦ h ~rð Þ½ �f g , (9.91)

with the Hamiltonian Φ depending on the out-of-plane deformations only

Φ ¼ 1
2

X
~q

κq4 h~q
�� ��2 þ Y

8

X
~q~k~k0

R ~k;~k0;~q
� 	

h~kh~q�~k
� 	

h~k0h�~q�~k0
� 	

, (9.92)

where Y is the two-dimensional Young modulus (9.45) and

R ~k;~k0;~q
� 	

¼
~q�~k
� 	2

~q�~k0
� 	2
q4

: (9.93)

The term proportional to h4 in Eq. (9.92) describes anharmonic effects, or self-
interaction of the field h ~rð Þ, and Y plays the role of the coupling constant.

Thus, we have the problem of interacting fluctuations where the low-q contri-
bution is dominant, which is reminiscent of the problem of a critical point. The
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difference is that for two-dimensional systems we have such a critical situation at
any finite temperature.

The correlation function G ~qð Þ ¼ h~q
�� ��2D E

satisfies the Dyson equation

G�1 ~qð Þ ¼ G0
�1 ~qð Þ þ Σ ~qð Þ, (9.94)

where G0 ~qð Þ is given by Eq. (9.81) and the self-energy Σ ~qð Þ can be calculated

using perturbation theory in Y via, e.g., Feynman diagrams. We can introduce the
renormalized bending rigidity κR(q) by writing

G qð Þ ¼ T

κR qð Þq4 , (9.95)

and discuss this quantity. The first-order correction gives us (Nelson & Peliti,
1987)

δκ qð Þ ¼ κR qð Þ � κ ¼ TY

κ

X
~k

1

~qþ~k
��� ���4

~q�~k
� 	2

q2k2

2
64

3
75
2

: (9.96)

On calculating the integral over~k we find

δκ qð Þ ¼ 3TY
16πκq2

: (9.97)

At

q 	 q∗ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
3TY
16πκ2

r
(9.98)

the correction (9.97) is equal to the bare value of κ or larger than κ, and the
perturbation theory is obviously not applicable. The value q* plays the same role
as the “Ginzburg criterion” (Ma, 1976; Landau & Lifshitz, 1980) in the theory of
critical phenomena: Below q* the effects of interactions between fluctuations
dominate.

The increase of bending rigidity with increasing temperature has a simple
physical explanation. It is known, for the case of a corrugated plate, that corruga-
tions of height h » Δ (Δ is the thickness of the plate) should increase its effective
rigidity by a factor (h/Δ)2 (Briassoulis, 1986; Peng, Liew, & Kitipornchai, 2007).
Taking into account Eq. (9.88) (with L ! 1/q) and Δ � a, we will have an
estimation like Eq. (9.97)).

Note that in the theory of liquid membranes, where the Hamiltonian is given by
Eq. (9.74) and the in-plane deformations~u are not relevant, there is also a divergent
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anharmonic correction to κR(q), due to higher-order (nonlinear) terms in the
expression (9.77) for the mean curvature (Peliti & Leibler, 1985):

δκ � � 3T
4π

ln
1
qa

� �
: (9.99)

This term has the opposite sign in comparison with that for a crystalline membrane
(9.97) and is much smaller than the latter. Thus, the Hamiltonian (9.92) takes into
account the main nonlinearities, and “liquid” anharmonicities are not relevant for
crystalline membranes.

In the next sections we will discuss how to solve this problem and what the real
behavior of fluctuations with q 	 q∗ is.

9.4 Scaling properties of membranes and intrinsic ripples in graphene

In situations in which one has strongly interacting long-wavelength fluctuations,
scaling considerations are extremely useful (Wilson & Kogut, 1974; Ma, 1976;
Patashinskii & Pokrovskii, 1979). Let us assume that the behavior of the renorma-
lized bending rigidity at small q is determined by some exponent η:

κR(q) � q�η, (9.100)

which means

G qð Þ ¼ ~h~q
��� ���2� �

¼ A

q4�ηqη0
: (9.101)

Here we introduce a parameter

q0 ¼
ffiffiffiffi
Y

κ

r
(9.102)

of the order of a�1 to make A dimensionless. One can also assume a renormaliza-
tion of effective Lamé constants:

λR(q), μR(q) � qηu, (9.103)

which means

Dαβ ~qð Þ ¼ uα~q
∗uβ~q

� � � 1
q2þηu

: (9.104)

Finally, instead of Eq. (9.88) we assume

hh2i � L2ζ. (9.105)
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The values η, ηu, and ζ are similar to critical exponents in the theory of critical
phenomena. They are not independent (Aronovitz & Lubensky, 1988).

First, it is easy to express ζ in terms of η. Substituting Eq. (9.101) into Eq. (9.87)
and introducing, as usual, a cut-off at qmin ~ L�1 we have

ζ ¼ 1� η
2
: (9.106)

If η > 0, ζ < 1 and the membrane remains flat (in the sense that its effective

thickness
ffiffiffiffiffiffiffiffiffi
h2
� �q

, is much smaller than L at L ! ∞). Also, in the correlation

function (9.86), due to Eq. (9.84) and (9.101), there is no divergence from the
region of small q:

δ~n~qδ~n�~q
� � � 1

q2�η
(9.107)

is an integrable singularity.
The relation between ηu and η has been derived by Aronovitz and Lubensky

(1988) using quite complicated tools, such as the renormalization group and Ward
identities in Feynman-diagram technique. Its meaning is, however, rather elemen-
tary and related to the requirement that the deformation tensor has the correct
structure (9.62) under the renormalization. This means that the correlation func-
tions of ∂uα/∂xβ and

∂h
∂xα

∂h
∂xβ

should have the same exponents. The first one follows immediately from
Eq. (9.104):

Γ1 ~qð Þ ¼ ∂uα
∂xβ

� �
�~q

∂uα
∂xβ

� �
~q

* +
¼ q2Dαα ~qð Þ � q�ηu : (9.108)

For the second one we have a convolution:

Γ2 ~qð Þ ¼ ∂h
∂xα

∂h
∂xβ

� �
�~q

∂h
∂xα

∂h
∂xβ

� �
~q

* +

¼
X
~k1~k2

k1α qβ � k1β
� 	

k2α qβ þ k2β
� 	

h�~k1h�~q�~k1h�~k2h~qþ~k2

D E
:

(9.109)

For free fields we have Wick’s theorem, and

hh1h2h3h4i = hh1h2ihh3h4i + hh1h3ihh2h4i + hh1h4ihh2h3i. (9.110)
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For interacting fields this is no longer the case, and we have some irreducible
averages (cumulants). It is supposed in the scaling theory that the scaling proper-
ties of these cumulants are the same as those for the “reducible” terms (Patashinskii
& Pokrovskii, 1979) and, thus, one can use Eq. (9.110) to calculate the exponents.
On substituting Eq. (9.110) into Eq. (9.109) one obtains

Γ2 ~qð Þ �
X
~k

k2 ~q�~k
� 	2

G ~k
� 	

G ~k �~q
� 	

: (9.111)

Finally, on substituting Eq. (9.101) into Eq. (9.111) we have

Γ2 ~qð Þ � 1
q2�2η

: (9.112)

On comparing Eq. (9.112) with Eq. (9.108), we arrive at the result

ηu = 2 � 2η. (9.113)

This exponent is positive if 0 < η < 1 (we will see later that this is the case). This
means that, due to interactions between out-of-plane and in-plane phonons, the
former become harder but the latter become softer.

The temperature dependence of the constant A in Eq. (9.101) can be found from
the assumption that q* in (9.98) is the only relevant wave vector in the theory and
that Eq. (9.81) and (9.101) should match at q � q∗. The result is (Katsnelson,
2010b):

A ¼ α
T

κ

� �ζ

, (9.114)

where α is a dimensionless factor of the order of 1.
Before discussing how to calculate the exponent η, it is worth returning to the

Mermin–Wagner theorem about the impossibility of long-range crystal order in
two-dimensional systems at finite temperatures.

The true manifestation of long-range order is the existence of delta-functional
(Bragg) peaks in diffraction experiments; see, e.g., the discussion in Irkhin and
Katsnelson (1986). The scattering intensity is proportional to the static structural
factor

S ~qð Þ ¼
X
mn0

X
jj0

exp i~q ~Rnj �~Rn0j0
� � �� �

: (9.115)

Using Eq. (9.1) and (9.2) the expression (9.115) can be rewritten as

S ~qð Þ ¼
X
nn0

exp i~q ~rn �~rn0ð Þ½ �
X
jj0

exp i~q ~ρj � ρj0
� 	h i

Wnj,n0j0 , (9.116)
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where

Wnj,n0j0 ¼ exp i~q ~unj �~un0j0
� � �� �

: (9.117)

Eq. (9.115) and (9.117) are written for the classical case, in which ~unj are not
operators but just classical vectors; for a more detailed discussion of the scattering
problem in crystal lattices, see Vonsovsky and Katsnelson (1989) and Katsnelson
and Trefilov (2002).

In conventional three-dimensional crystals, one can assume that the displace-
ments~unj and~un0j0 are not correlated, and

Wnj,n0j0 ¼ exp i~q~unj
� �� �

exp �i~q~un0j0
� �� � � mj ~qð Þm∗

j0 ~qð Þ (9.118)

when ~rn �~rn0j j ! ∞; here mj ~qð Þ are Debye–Waller factors that are independent
of n due to translational invariance. Therefore, for ~q ¼~g (reciprocal lattice
vectors), where exp i~q~rnð Þ ¼ 1, the contribution to S ~qð Þ is proportional to N2

0,
whereas for a generic ~q it is of the order of N0. The Bragg peaks ~q ¼~g
are, therefore, sharp; thermal fluctuations decrease their intensity (by the
Debye–Waller factor) but do not broaden the peaks. The observation of
such sharp Bragg peaks is an experimental manifestation of the existence of
long-range crystal order. In the two-dimensional case, the correlation functions
of atomic displacements do not vanish at ~rn �~rn0j j ! ∞. Indeed, in the
continuum limit ~unj ! ~u ~rð Þ; h ~rð Þð Þ, where ~u is already a two-dimensional
vector, and

h ~rð Þ � h ~r0ð Þ½ �2
D E

¼ 2
X
~q

h~q
�� ��2D E

1� exp i~q ~r �~r0ð Þ½ �f g � ~r �~r0j j2ζ , (9.119)

~u ~rð Þ �~u ~r0ð Þ½ �2
D E

¼ 2
X
~q

~u~q
�� ��2D E

1� exp i~q ~r �~r0ð Þ½ �f g � ~r �~r0j jηu (9.120)

after substitutions of Eq. (9.101) and (9.103) (Abraham & Nelson, 1990). This
means that the approximation (9.118) does not work.

To estimate the structural factor near the Bragg peak, ~q ¼~gþ δ~q we can use
the identity

ech i ¼ exp
1
2

c2
� �� �

(9.121)
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for the correlation function (9.117). Strictly speaking, it follows from Wick’s
theorem and, therefore, is exact only in the harmonic approximation (Vonsovsky
& Katsnelson, 1989) but, as was discussed previously, should give us correct
scaling properties. Therefore,

Wnj,n0j0 � exp �α1qk
2~r �~r0j jηu � α2 δ~q⊥ð Þ2~r �~r0j j2ζ

h i
, (9.122)

where~qk and~q⊥ are components of the scattering vector parallel and perpendicular
to the crystal plane and we take into account that~g⊥ ¼ 0:

On substituting Eq. (9.122) into Eq. (9.116) one can see that the sum over n0 at a
given n is convergent, and S ~q ¼~gð Þ ~ N0. Thus, instead of a delta-functional Bragg
peak (in the thermodynamic limit) we have a sharp maximum of finite width at
δ~q ! 0 (Abraham & Nelson, 1990). This means that, rigorously speaking, the
statement that two-dimensional crystals cannot exist at finite temperatures (Peierls,
1934, 1935; Landau, 1937) is correct. However, the structural factor still can have
very sharp maxima~q ¼~g, and the crystal lattice can be restored from the positions
of these maxima. In this (restricted) sense, two-dimensional crystals do exist, and
graphene is a prototype example.

It was found experimentally by electron diffraction, namely by transmission
electron microscopy, that freely suspended graphene at room temperature is
rippled; that is, it exhibits corrugations in the out-of-plane direction (Meyer
et al., 2007a, 2007b). The existence of these intrinsic, thermally induced ripples
in graphene has been confirmed by atomistic Monte Carlo simulations that use the
potential LCBOPII mentioned earlier in Section 9.1 (Fasolino, Los, & Katsnelson,
2007). A typical snapshot is shown in Fig. 9.3. Further detailed studies of the
correlation function G(q) by such simulations have been performed for single-layer
graphene by Los et al. (2009) and Zakharchenko et al. (2010b) and for bilayer
graphene by Zakharchenko et al. (2010a).

According to these simulations, at some intermediate value of q, roughly
between 0.1 Å�1 and 1 Å�1 (for the case of room temperature T = 300K), the

Fig. 9.3 A typical atomic configuration (from atomistic Monte Carlo simulations)
for graphene at room temperature.
(Courtesy of A. Fasolino.)
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correlation function G(q) follows the harmonic approximation (9.81) (Fig. 9.4).
From the slope of this dependence, one can extract κ � 1.1 eV, which means
that graphene at room temperature should be considered a rather hard membrane
(κ/T � 40). With the temperature increase, the bending rigidity of graphene
grows, as shown in Fig. 9.5. For q > 1 Å�1 the continuum-medium approximation
does not work, and G(q) increases due to closeness to the Bragg peak. At
q � q∗ � 0.2 Å�1 there is a crossover to the behavior described by
Eq. (9.101), with

η � 0.85. (9.123)

This value is quite close to that predicted by functional renormalization-group
analysis of the model (9.92) (Kownacki & Mouhanna, 2009). Thus, both the
continuum model and atomistic simulations predict a rather broad, power-law
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~q–2

~q–1.15

N = 12,096

Fig. 9.4 The normal–normal correlation function q2 G(q) found from atomistic
Monte Carlo (MC) simulations for three samples with indicated number of
atoms N.
(Reproduced with permission from Los et al., 2009.)
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κ

Fig. 9.5 Temperature dependence of the bending rigidity found by fitting G(q) to
Eq. (9.81) for q > q∗.
(Reproduced with permission from Katsnelson and Fasolino, 2013.)

236 Crystal lattice dynamics, structure, and thermodynamics

https://www.cambridge.org/core


distribution of intrinsic ripples in graphene, without any dominant spatial scale.
Ripples in graphene on a substrate will be discussed in Chapter 11, in relation to
scattering mechanisms involved in electron transport.

Other evidence for thermally introduced ripples and their effects on thermo-
dynamic and mechanical properties will be considered in Sections 9.6 and 9.7.

According to the Monte Carlo simulations, the in-plane and out-of-plane atomic
displacements are strongly correlated at q < q∗ and uncorrelated for q > q∗, in
agreement with our general picture (Fig. 9.6).

One needs to make one important comment about the model (9.63) (or, equiva-
lently, (9.92)). In this model of a so-called phantom membrane, there is a phase
transition at T � κ to a crumpled phase (Nelson, Piran, & Weinberg, 2004). There
are some arguments, however, in favor of the view that this transition is sup-
pressed, and the low-temperature (quasi-) flat phase is stabilized at any temperature
if one adds a condition of avoided self-crossing (short-range repulsion forces). It is
also assumed that the scaling properties of the (quasi-) flat phase are the same for
“phantom” and “real” membranes (Nelson, Piran, & Weinberg, 2004). Anyway,
the regime T � κ � 104K is obviously not reachable for graphene. What happens
with graphene with increasing temperature will be discussed in Section 9.6.

To finish this section, let us discuss the case of bilayer graphene. Intrinsic
ripples in bilayer graphene were observed experimentally (Meyer et al., 2007b)
and studied theoretically (Zakharchenko et al., 2010b). The main difference from
the case of single-layer graphene can be seen even at the level of the harmonic
approximation for the bilayer membrane. Instead of Eq. (9.57) (or (9.73)) we have
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Fig. 9.6 The correlation function Γ~q ¼ uxð Þ~q h2
� �

�~q
D E

found from atomistic

Monte Carlo simulations for three samples with indicated number of atoms N.
(Reproduced with permission from Katsnelson and Fasolino, 2013.)
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Fb ¼ 1
2

ð
d2x κ r2h1

� �2 þ κ r2h2
� �2 þ 2γ δhð Þ2

h i
, (9.124)

where h1 and h2 are out-of-plane deformations in each plane, κ is the bending
rigidity per layer

δh = h1 � h2, (9.125)

and γ describes a relatively weak van der Waals interaction between the layers. By
introducing an average displacement

h ¼ h1 þ h2
2

(9.126)

one can rewrite Eq. (9.124) as

Fb ¼ 1
2

ð
d2x 2κ r2h

� �2 þ κ
2

r2δh
� �2 þ 2γ δhð Þ2

h i
, (9.127)

and thus we have, in the harmonic approximation, instead of Eq. (9.81)

hq
�� ��2D E

¼ T

2κq4
, (9.128)

δhq
�� ��2D E

¼ T
1
2
κq4 þ 2γ

: (9.129)

Atomistic simulations (Zakharchenko et al., 2010a) give, at room temperature,
γ � 0:025 eVÅ4. At

q < qc ¼
ffiffiffiffiffi
4γ
κ

4

r
(9.130)

the correlation function (9.129) goes to a constant. In this regime, a bilayer behaves
like a single membrane with bending rigidity twice as large as that for a single
layer (see Eq. (9.128)). At q > qc the layers fluctuate more or less independently.
The simulations (Zakharchenko et al., 2010a) qualitatively confirm this simple
picture; the wavelength of fluctuations at which the crossover happens is about
2π/q∗ � 2 nm (at room temperature).

This is, however, not the complete story on the bending rigidity of multilayered
membranes. Indeed, according to the earlier argument, the effective bending
rigidity should grow linearly with the number of layers N. At the same time,
phenomenological expression (9.58) shows that κ / Δ3 / N3. The crossover
between these two regimes was considered by de Andres, Guinea, and Katsnelson
(2012). It turns out that the effective bending rigidity of multilayered crystalline
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membrane is strongly dependent on the wave vector even in harmonic
approximation, due to hybridization of in-plane and out-of-plane phonon modes.
It interpolates from the N3 behavior in the limit q ! 0 to the linear-in-N for larger
wave vectors.

9.5 The self-consistent screening approximation

There are several ways to calculate the exponent η analytically with reasonable
accuracy. The simplest approximation is to rewrite Eq. (9.96) in a self-consistent
way:

κR qð Þ ¼ κ þ TY
X
~k

1

κR ~k þ~q
��� ���� 	

~k þ~q
��� ���4

~q�~k
� 	2

q2k2

2
64

3
75
2

, (9.131)

assuming that the Young modulus Y is not renormalized (Nelson & Peliti,
1987). On substituting Eq. (9.100) into Eq. (9.131) we find � η = η � 2, or η = 1.

A more accurate result is given by the self-consistent screening approximation
(SCSA) (Le Doussal & Radzihovsky, 1992; see also Xing et al., 2003; Gazit, 2009;
Zakharchenko et al., 2010b; Roldán et al., 2011; Le Doussal & Radzihovsky,
2018).

The Hamiltonian (9.92) describes the self-interaction of a classical field h ~rð Þ
with the momentum-dependent interaction vertex YR ~k;~k0;~q

� 	
: To consider the

effects of the interaction one can use a Feynman-diagram technique similar to that
used in the theory of critical phenomena (Wilson & Kogut, 1974; Ma, 1976). The
basic elements are the Green function G ~qð Þ (solid thick line, in contrast with
the solid thin line for G0 ~qð Þ and the interaction vertex (the dashed line), see
Fig. 9.7(a). The exact and bare Green functions are related by the Dyson equation

(9.94), where, in the lowest order of the perturbation theory, the self-energy Σ ~k
� 	

is given by the diagram shown in Fig. 9.7(b). Its analytic expression corresponds
to Eq. (9.96). The next step corresponds to the replacement of G0 ~qð Þ by G ~qð Þ
(Fig. 9.7(c)), which corresponds to the Eq. (9.131) and gives η = 1, as discussed
previously.

The SCSA corresponds to the summation of “ladder” diagrams shown
in Fig. 9.7(d). This infinite summation is just a geometric progression, with
the result

1þ Â þ Â
2 þ � � � ¼ 1

1� Â
: (9.132)
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The answer is (Le Doussal & Radzihovsky, 1992; Le Doussal & Radzihovsky, 2018)

Σ ~qð Þ ¼
ð

d2~k

2πð Þ2
Yef

~k
� 	
T

~q�~k
� 	2

k2

2
64

3
75
2

G ~k �~q
� 	

, (9.133)

where

Yef
~k
� 	

¼ Y

1þ Y

2T
I ~k
� 	 , (9.134)

I ~k
� 	

¼
ð

d2~p

2πð Þ2
~k �~p
� 	2

k2

0
B@

1
CA

2

G ~pð ÞG ~k �~p
� 	

: (9.135)

Eq. (9.134) and (9.135) describe renormalization of the Young modulus as a result
of summation of the infinite series of diagrams according to Eq. (9.132).

Of course, the summation shown in Fig. 9.7(d) is not exact. This approximation
was introduced by Bray (1974) in the context of the theory of critical phenomena
for an n-component order parameter. It can be justified rigorously if n » 1. In our
problem, the number of components of the field h ~rð Þ is n = 1; therefore, the
applicability of the SCSA is not clear. The reasonable agreement with the Monte

Fig. 9.7 (a) Basic elements of the diagram technique (see the text). (b) The lowest-
order perturbation expression for the self-energy corresponding to Eq. (9.96). (c)
The self-consistent version of the previous diagram corresponding to Eq. (9.131).
(d) The diagram summation equivalent to the SCSA.
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Carlo simulations (Zakharchenko et al., 2010b) and an explicit analysis of the
higher-order diagrams (Gazit, 2009) justify it as a reasonable, relatively simple,
approximation in the theory of fluctuating membranes.

Let us consider Eq. (9.133) through (9.135) in the limit of small q, assuming that
Σ(q) » G0

�1(q) and using Eq. (9.101) for the Green function. Thus,

I ~k
� 	

¼ A2

q2η0

ð
d2~p

2πð Þ2
~k �~p
� 	2

k2

0
B@

1
CA

2

1

p4�η ~k �~p
��� ���4�η ¼

A2

q2η0 k2�2η
I1 ηð Þ, (9.136)

where

I1 ηð Þ ¼
ð

d2~x

2πð Þ2
~x�~x0ð Þ4

x4�η~x�~x0j j4�η (9.137)

and~x0 ¼ 1; 0ð Þ: The expression (9.136) diverges at k ! 0 and, therefore, one can
neglect 1 in the denominator of Eq. (9.134), assuming

Yef
~k
� 	

� 2T

I ~k
� 	 ¼ 2Tq0

2η

A2

k2�2η

I1 ηð Þ : (9.138)

On substituting Eq. (9.138) into Eq. (9.133) we have

q4�ηq0
η

A
¼ 2q0

ηq4�η

AI1 ηð Þ I2 ηð Þ (9.139)

where

I2 ηð Þ ¼
ð

d2x

2πð Þ2
x2�2η ~x�~x0ð Þ4
~x�~x0j j4�η : (9.140)

Eq. (9.139) is satisfied at arbitrary A, and η can be found from the equation

I1(η) = 2I2(η). (9.141)

The integrals I1 and I2 can be expressed via a Γ-function and calculated
explicitly (Le Doussal & Radzihovsky, 1992; Gazit, 2009; Le Doussal & Radzi-
hovsky, 2018). The answer is

η ¼ 4

1þ ffiffiffiffiffi
15

p � 0:821, (9.142)

which is not far from the more accurate value η � 0.85 discussed in the previous
section (Eq. (9.123)).
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To find G(q) for the whole range of q one needs to solve Eq. (9.133) through
(9.135) numerically. The results shown in Fig. 9.8 are in reasonable agreement
with the Monte Carlo simulations.

Keeping in mind possible applications, it is worth mentioning that G(q) for all q
can be approximated as an interpolation between the high-q limit (9.81) and the
low-q limit (9.101) and (9.114):

Ga
�1 qð Þ ¼ κq4

T
þ κ

T

� 	1�η
2 q0

ηq4�η

α
(9.143)

for some numerical factor α. This fitting is also shown in Fig. 9.8.
The SCSA can also be used to consider the effects of an external stress σextαβ on

the properties of membranes (Roldán et al., 2011). The former can be described as
an additional term in Eq. (9.63):

F ¼ 1
2

ð
d2x κ r2h

� �2 þ λ uααð Þ2 þ 2μuαβuαβ þ σextαβ uαβ
n o

, (9.144)

where

σextαβ ¼ λδαβu
ext
γγ þ 2μuextaβ (9.145)

can be expressed in terms of an external strain tensor uextαβ . By substituting
Eq. (9.62) into Eq. (9.144) one can see that, in the harmonic approximation, the
bare Green function (9.81) is modified as follows:
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Fig. 9.8 The correlation function G(q) calculated in self-consistent screening
approximation for T = 300K and parameters characteristic of graphene. One
can see that the interpolation formula (9.143) has a pretty high accuracy.
(Courtesy of A. Mauri.)
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G0 ~qð Þ ¼ T

q2 κq2 þ λuααext þ 2μuαβext
qαqβ

~qj j2
 ! : (9.146)

Assuming for simplicity the case of isotropic external deformation,

uextαβ ¼ uδαβ, (9.147)

we have

G0 ~qð Þ ¼ T

q2 κq2 þ 2 λþ μð Þu½ � (9.148)

where we consider only the case of expansion (u> 0); the effect of compression on
the membrane is actually very complicated (Moldovan & Golubovic, 1999; Sharon
et al., 2002; Cerda & Mahadevan, 2003; Brau et al., 2011). One can see that
flexural fluctuations are suppressed by the strain at

q < qu = q0u
1/2 (9.149)

(see Eq. (9.102)). If qu 
 q∗, that is,

u 
 0:1
T

κ
(9.150)

(see Eq. (9.98)), the anharmonic effects are assumed to be strongly suppressed, and
the harmonic approximation (9.148) should work up to q ! 0. This conclusion
will be important for our discussion of the transport properties of freely suspended
graphene flakes in Chapter 11.

9.6 Thermodynamic and other thermal properties of graphene

The existence of the soft acoustic flexural (ZA) mode (9.15) and the related
tendency to intrinsic ripple formation is crucial to the thermodynamic properties
of graphene, first of all, to its thermal expansion.

In the quasiharmonic approximation, the lattice thermodynamic properties are
assumed to be described by harmonic expressions but with phonon frequencies ωλ,
dependent on the lattice constant. In this approximation, the thermal expansion
coefficient

αp ¼ 1
Ω

∂Ω
∂T

� �
p

(9.151)

9.6 Thermodynamic and other thermal properties of graphene 243

https://www.cambridge.org/core


(where Ω is the volume for three-dimensional crystals and area for two-
dimensional ones; p is the pressure) is given by the Grüneisen law (Vonsovsky
& Katsnelson, 1989; Katsnelson & Trefilov, 2002)

αp ¼ γCV Tð Þ
ΩBT

, (9.152)

where BT is the isothermal bulk modulus

CV Tð Þ ¼
X
λ

Cλ, (9.153)

where

Cλ ¼ ℏωλ

T

� �2 exp
ℏωλ

T

� �
exp ℏωλ

T

� �� 1
 �2 , (9.154)

is the constant-volume heat capacity in the harmonic approximation, and

γ ¼
P

γ γλCλP
γ Cλ

(9.155)

is the macroscopic Grüneisen parameter, where

γλ ¼ � ∂ lnωλ

∂ lnΩ
(9.156)

are microscopic Grüneisen parameters.
Graphite is known to have a negative thermal expansion coefficient up to

700 K (Steward, Cook, & Kellert, 1960). This behavior has been explained, in
terms of the Grüneisen law, by Mounet and Marzari (2005) via density-functional
calculations of ωλ and γλ. It turns out that the Grüneisen parameters γλ are negative,
both in graphene and in graphite, for ZA phonons over the whole Brillouin zone.
The same results follow from atomistic simulations with the LCBOPII potential
(Karssemeijer & Fasolino, 2011), see Fig. 9.9. The theory explained the change in
sign of αp at T � 700 K for the case of graphite and predicted that αp < 0 at all
temperatures for the case of graphene. Negative thermal expansion of graphene at
room temperature and slightly above has been confirmed experimentally by Bao
et al. (2009). The linear thermal expansion coefficient at these temperatures was
about �10�5 K�1, a very large negative value. According to the quasiharmonic
theory of Mounet and Marzari (2005), it was supposed to be more or less constant
up to temperatures of the order of at least 2,000 K.

However, straightforward Monte Carlo atomistic simulation with the LCBOPII
potential, not assuming the quasiharmonic approximation (Zakharchenko,
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Katsnelson, & Fasolino, 2009), gave an essentially different result (see Fig. 9.10).
One can see that, according to this calculation, αp is supposed to change sign at
T � 700–900 K. Later, it was confirmed experimentally that αp, while remaining
negative, decreases in modulus with increasing temperature up to 400 K (Yoon,
Son, & Cheong, 2011). This temperature dependence of αp(T), beyond the quasi-
harmonic approximation, is a true anharmonic effect.

Similar calculations for the case of bilayer graphene have been performed by
Zakharchenko et al. (2010a). The results (Fig. 9.10) show that the change of sign of
da/dT happens at lower temperatures than for the case of single-layer graphene and
that in this sense bilayer graphene should be similar to graphite. The thermal
expansion perpendicular to the graphene plane turns out to be positive, dc/dT > 0.

The Lamé constants λ and μ have also been found from atomistic simulations
(Zakharchenko, Katsnelson, & Fasolino, 2009). The room-temperature values of
the elastic constants are

μ � 10 eVÅ
�2
; B � 12 eVÅ

�2
; v � 0:12: (9.157)

The calculated Young modulus (9.45) lies within the error bars of the experimental
value Y � 340 � 50 Nm�1 (Lee et al., 2008). Note that, per atomic layer, it is an
order of magnitude higher than that of steel. However, this is correct only when
we are talking about the bare values of the elastic constants. As one can see from
Eq. (9.103) and will be discussed in detail in the next section, the renormalization
effects are very important. Strictly speaking, at finite temperatures and in the limit
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Fig. 9.9 Grüneisen parameters calculated in graphene with the potential
LCBOBII.
(Reproduced with permission from Katsnelson & Fasolino, 2013.)
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of infinite sample size (L ! ∞ , q ! 0), the effective moduli of single-atom
crystalline membrane tend to zero.

Now consider the thermal expansion of graphene at low temperatures. Negative
Grüneisen parameter for the ZA phonons can be derived analytically (de Andres,
Guinea, & Katsnelson, 2012). Taking into account Eq. (9.144) through (9.148) one
can see that in the presence of uniform expansion u, instead of Eq. (9.61), the
square frequency of ZA modes reads

ω2 ¼ κq4 þ Buq2

ρ
: (9.158)

Substituting Eq. (9.158) into Eq. (9.156) one obtains

γ~q ¼ � B

2κq2
: (9.159)

This expression is negative and, importantly, divergent at q! 0. The integral over the
wave vectors in Eq. (9.152) is divergent at the lowest limit. To regularize it, one needs
to take into account the renormalization of the bending rigidity as described in the
previous section (see, e.g., Eq. (9.143)). With the logarithmic accuracy, the result is

αp � � 1
4πκ

ðqT
q∗

dq

q
¼ � 1

8πκ
ln

T

ℏω∗
� � 1

16πκ
ln

κ3ρ

ℏ2Y2
, (9.160)

where q* is the crossover wave vector (9.98),
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Fig. 9.10 Temperature dependences of the lattice constant a for single-layer (SL)
and bilayer (BL) graphene and of the interlayer distance c in interlayer graphene.
(Reproduced with permission from Zakharchenko et al., 2010a.)
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ℏω∗ ¼ ℏ
ffiffiffi
κ
ρ

r
q∗2 ¼ 3T

16π
Yffiffiffiffiffiffiffi
κ3ρ

p , (9.161)

the corresponding photon energy and qT is determined by the condition

ℏ
ffiffiffi
κ
ρ

r
q2T ¼ T : (9.162)

Importantly,

ℏω∗ �
ffiffiffiffiffi
m

M

r
T « T (9.163)

and therefore q* « qT (m and M are electron and atomic masses, respectively). The
expression (9.160) gives a very accurate estimate of the experimental thermal
expansion coefficient of the order of �10�5 K�1.

Due to thermodynamic identity (Landau & Lifshitz, 1980)

∂Ω
∂T

� �
p

¼ � ∂S
∂p

� �
T

(9.164)

and the third law of thermodynamics (the entropy S! 0 at T! 0), one can expect
that the thermal expansion coefficient should vanish at zero temperature. The
expression (9.160) does not satisfy this requirement. Usually the third law of
thermodynamics is protected by quantum statistics of relevant elementary excita-
tions (in our case, phonons) but according to divergent Grüneisen parameter
(9.159), the main contribution to the thermal expansion coefficient follows from
the classical region (Eq. (9.163)); taking into account anharmonic effects does not
help (de Andres, Guinea, & Katsnelson, 2012). To solve the problem and to find the
behavior of the thermal expansion at low temperatures, one needs to have the theory
of quantum membranes, which is still in its infancy. Burmistrov et al. (2016) has
shown that at T ! 0 the thermal expansion coefficient vanishes very slowly

αp � jlnTj�a (9.165)

(0 < a < 1) but the issue certainly deserves more investigation, both experi-
mentally and theoretically.

Let us again come back to the case of high temperatures and consider another
high-temperature anharmonic effect, the growth of the heat capacity with the
temperature beyond the Dulong–Petit value 3R

CV Tð Þ ¼ 3R 1þ T

E0

� �
(9.166)
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(Katsnelson & Trefilov, 2002). The atomistic simulations (Zakharchenko,
Katsnelson & Fasolino, 2009) confirm this behavior, with E0 � 1.3 eV.

At high enough temperature, graphene is destroyed. This process was studied by
atomistic Monte Carlo simulations in Zakharchenko et al. (2011) and Los et al.
(2015). In these simulations the temperature of destruction of graphene was
estimated as 4,500 K, which makes graphene probably the most refractory material
(it is 210 K higher than the melting temperature of bulk graphite). The word
“destruction” is used instead of “melting” to stress that it is a rather peculiar
process, leading to the formation of carbon chains, with these chains being strongly
entangled and forming something like a polymer melt, rather than a simple liquid
(Fig. 9.11).

Probably the most interesting thermal property of graphene, in view of potential
applications, is its extraordinarily high thermal conductivity (Balandin et al., 2008;
Ghosh et al., 2010; Balandin, 2011). Usually, solids with high thermal conductivity
are metals, and the thermal conductivity is determined by conduction electrons,
whereas the phonon contribution is negligible (for a general theory of phonon
thermal conductivity, see Ziman, 2001). Carbon materials (diamond, nanotubes,
and graphene) are exceptional. Their thermal conductivity, being of phonon origin,
can be higher than for any metal (for a review, see Balandin, 2011). The very
general reason is the high phonon group velocity, due to the very strong chemical
bonding and the relatively low mass of the carbon nucleus. Currently, graphene has
the largest thermal conductivity among all known materials (Balandin et al., 2008).

Fig. 9.11 A typical atomic configuration of graphene at T = 5,000 K from
atomistic Monte Carlo simulations.
(Courtesy of K. Zakharchenko.)
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The theory of this thermal conductivity was considered in Ghosh et al. (2010). It is
a complicated phenomenon, which is not yet fully understood (in particular, the
role of flexural phonons needs to be clarified). Its practical importance is related to
the problem of heat removal in the electronics industry.

9.7 Mechanical properties of graphene

It follows already from Eq. (9.100) to (9.103) that neither Hooke’s law (9.33) nor
Föppl–von Karman equations (9.65) through (9.67) are valid for atomically thin
membranes at finite temperatures. Indeed, q-dependence of elastic constants means
spatial dispersion, that is, nonlocality of relations between stress and deformation
(similar to nonlocality of relations between electric induction and electric field in
electrodynamics of continuous media (Landau & Lifshitz, 1984). Also, the
condition (9.149) means that the thermal fluctuations can be switched off by
external deformation, which assumes essential nonlinearity of relations between
stress and deformation. Experimental data show that the effective bending
rigidity of graphene can be modified in orders of magnitude via the change of
sample size L (Blees et al., 2015), and the effective Young modulus can be
modified in several times by relatively small disorder (López-Polín et al., 2015)
or by external deformation and by change of temperature (Nicholl et al., 2015).
We still have no a complete theory that can replace the Föppl–von Karman
theory for ultrathin membranes; there are just first attempts in this direction
(Košmrlj & Nelson, 2016; Los, Fasolino, & Katsnelson, 2016; Bowick et al.,
2017; Los, Fasolino, & Katsnelson, 2017). They include some simple scaling
considerations and atomistic simulations. Here, we will review the corresponding
results.

First of all, let us introduce characteristic lengths, which determine regions of
different mechanical behavior (Košmrlj & Nelson, 2016). In the absence of extrenal
stress, there are two characteristic scales: the sample size L and the thermal length

Lth ¼ π
q∗

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16π3κ2

3TY

r
(9.167)

(see Eq. (9.98)). Since the revelant wave vectors at the deformation of a plate of the
size L are of the order of π/L one can assume that for the case L < Lth the in-plane
and out-of-plane phonons are decoupled (see Fig. (9.6)) and the elastic constants
are more or less equal to their bare values (for the case of graphene, (9.157)).
For the opposite case L > Lth the effective bending rigidity should be enhanced
(see Eq. (9.100)) and the effective Lamé constants, and therefore Young modulus,
are suppressed (see Eq. (9.103)).
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In the presence of external stress, the flexural fluctuations and anharmonic
effects are suppressed (see Eq. (9.149)). Looking at Eq. (9.146) and (9.148) and
replacing their bending rigidity by its renormalized value (9.100) one can see that
the change of the regime happens when

κR(q)q
4 � σq2, (9.168)

or q � π/Lσ where

Lσ ¼ κ
Lthð Þησ

� �1= 2�ηð Þ
¼ Lth

3TY
16π3σκ

� �1= 2�ηð Þ
, (9.169)

which represents the other characteristic length scale in the system (Roldán et al.,
2011; Košmrlj & Nelson, 2016). Detailed scaling analysis of various regimes
(Košmrlj & Nelson, 2016) leads to the following answer for the renormalized
elastic constants:

κR Lð Þ
κ

�
1, L < Lth

L=Lthð Þη, Lth < L < Lσ

Lσ=Lthð Þη ln L=Lσð Þ, Lσ < L

8><
>: , (9.170)

λR Lð Þ
λ

,
μR Lð Þ
μ

,
YR Lð Þ
Y

�
1, L < Lth

L=Lthð Þ�ηu , Lth < L < Lσ

Lσ=Lthð Þ�ηu , Lσ < L

8><
>: : (9.171)

Scaling behavior of mechanical parameters of graphene was also studied by
atomistic simulations with the potential LCBOBII (Los, Fasolino, & Katsnelson,
2016; Los, Fasolino, & Katsnelson, 2017). First of all, the results do confirm the
renormalization of the effective Lamé constants in agreement with Eq. (9.103) and
(9.113), as one can see from Fig. 9.12.

Under the stress the dependence of the effective Young modulus on the sample
size at a given temperature (or, equivalently, on the temperature at a given sample
size) is suppressed, see Fig. 9. 13.

The renormalization of the Poisson ratio for thermally fluctuating membranes
was discussed in detail by Burmistrov et al. (2018a, 2018b).

Los, Fasolino, and Katsnelson (2017) has estimated, from the combination of
atomistic simulations for small sample size and scaling considerations presented
earlier, the critical load under which the graphene membrane is destroyed. In the
regime of the destruction, the stress is strong enough to suppress the thermal
fluctuations, and the results are not very different from those which can be
estimated based on the Föppl–von Karman equations. In particular, the quantitative
conclusion on extraordinary mechanical stress of graphene is confirmed. For
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graphene drum of 1 m in diameter at room temperature, it can keep the load up to
2.65 kg if all of this load is concentrated in the center and up to 8 kg if it is
uniformly distributed over the whole drum – not bad for the single-atom-thick
support!
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Fig. 9.13 Effective Young modulus as a function of the sample size for graphene
at room temperature for the indicated values of the negative stress (the sample is
expanded). L0 is the sample size at zero stress. The value in the bracket is the
corresponding elongation under the stress.
(Reproduced with permission from Los, Fasolino, & Katsnelson, 2016.)
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Fig. 9.12 Correlation functions Dαα
u (α = x, y) of in-plane displacement fields uα

for graphene at room temperature, the number of atoms in the crystallite is 37,888.
The scaling exponent is consistent with Eq. (9.103) and (9.113),
ηu = 2 � 2 � 0.85 = 0.3 (dashed line).
(Reproduced with permission from Los, Fasolino, & Katsnelson, 2016.)
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9.8 Raman spectra of graphene

The main experimental tool allowing us to study phonon spectra throughout the
Brillouin zone is inelastic neutron scattering (Vonsovsky & Katsnelson, 1989;
Katsnelson & Trefilov, 2002). Unfortunately, this method is not applicable (up to
now) to graphene because it requires rather massive samples. Optical tools such as
infrared and Raman spectroscopy only provide us with information about phonons
at some special points of the Brillouin zone. However, even this information is of
crucial importance. Raman spectroscopy is one of the main techniques used in
graphene physics (Ferrari et al., 2006; for a review see Malard et al., 2009). Here,
we discuss some basic ideas about Raman spectra of graphene.

The Raman effect is inelastic light scattering; “inelastic” means that the fre-
quency of the scattered light, ω0, is not equal to that of the incident light, ω
(Landsberg & Mandelstam, 1928; Raman, 1928; Raman & Krishnan, 1928). Its
quantum explanation is based on the Kramers–Heisenberg formula for the light-
scattering cross-section (Berestetskii, Lifshitz, & Pitaevskii, 1971)

dσ
do0

¼ ωω03
ℏ2c4

�����
X

n

ð~df n~e0∗Þð~dni~eÞ
ωni � ω� iδ

þ ð~df n~eÞð~dni~e0∗Þ
ωni þ ω� iδ

( )�����
2

δ!þ0

, (9.172)

where do0 is the element of solid angle of scattering light, ~e and ~e0 are photon
polarization vectors for incident and scattered light, respectively, jf i and jii are the
final and initial states of the scattering system, respectively, jni is its intermediate
state,~dmn are matrix elements of the electric dipole momentum operator

ωni ¼ En � Ei

ℏ
, (9.173)

and, due to the energy-conservation law,

ω0 ¼ ωþ Ei � Ef

ℏ
: (9.174)

The general expression (9.172) can be applied both to elastic (ω = ω0) and to
inelastic (ω 6¼ ω0) cases; we will be interested here in the latter.

The electric dipole moment can be represented as a sum of contributions from
electrons and nuclei (phonons):

~d ¼~d eð Þ þ~d phð Þ: (9.175)

Correspondingly, we have the electron Raman effect when the state jni corres-
ponds to some electron excitation in the system and the phonon Raman effect when
jni differs from jii by the creation or annihilation of a phonon with frequency ωλ.
In the latter case
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ω 0 = ω � ωλ, (9.176)

the + and � signs correspond to annihilation and creation of the phonon, respect-
ively. Keeping in mind that for visual light the wave vector of a photon is much
smaller than the inverse interatomic distance 1/a and bearing in mind the
momentum-conservation law, one can conclude that in crystals only phonons at
the Γ point ~q ¼ 0ð Þ can normally be probed to leading order of perturbation by the
Raman effect. As we will see, this is not the case for graphene.

There are selection rules determining whether a given optical phonon can be
Raman-active (that is, it contributes to the Raman scattering) or infrared-active
(that is, it contributes to absorption of the photon), or both. In general, such
analysis requires the use of group theory (Heine, 1960).

For the case of graphene, at the Γ point there are the infrared-active ZO mode
and a doubly degenerate Raman-active optical mode, with deformations lying in
the plane (see Fig. 9.1). The latter corresponds to the so-called Eg (g for gerade)
representation of the point group of the honeycomb lattice. The atomic displace-
ments for this mode are shown in Fig. 9.14 (the mode is doubly degenerate since
there are two equivalent, mutually perpendicular, directions of the displacements).
Therefore, one could expect a single line with the frequency ωλ = jω 0 � ωj equal
to that of ωLO ~q ¼ 0ð Þ � 1580 cm�1: Indeed, this line was observed long ago in
graphite (Tuinstra & Koenig, 1970). It is called usually the G peak. However, the

Fig. 9.14 Atomic displacements for a Raman-active optical phonon at the Γ point.
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Raman spectra of graphite are characterized by the second sharp and intensive
feature in Fig. 9.16 (Nemanich & Solin, 1977, 1979), which is usually called the
2D peak in the literature on graphene. (In the literature on nanotubes and in the
review by Malard et al. (2009), it is called the G0peak.) It was interpreted from the
very beginning as a two-phonon peak. (A detailed theory has been proposed by
Thomsen & Reich, 2000; Maultzsch, Reich, & Thomsen, 2004). The basic idea is
that in this case, the intermediate state jni in Eq. (9.159) is a combined electron-
phonon excitation.

The basic physics originates from the existence of two valleys, K and K0; the
vector ~q connecting K and K0 is equivalent to the vector TK (Fig. 9.15(a)).
Therefore, the process is allowed when (i) an incident photon initiates a transition
from hole to electron bands at the K point, the electron energy being E0, (ii) the
excited electron is transferred from K to K0, emitting a phonon with ~q ¼ ~K and
frequency ω0; (iii) it is transferred back to K0, emitting a second phonon, with
~q ¼ �~K and the frequency ω0; and (iv) the scattered photon is emitted from the
state with En = E0 � 2ℏω0 (Fig. 9.15(b)). In this case ω0 = ω � 2ω0. This is a
higher-order process in the electron–phonon coupling; however, this does not give
any additional smallness since the process is resonant: The electron bands in
K and K0 are identical, and we know that, for the case of perturbation of degenerate
energy levels, the effect of the perturbation has no smallness (Landau & Lifshitz,
1977). In the electron–photon interaction this is a second-order process, as is a
normal Raman effect; therefore, its probability can be comparable to that of single-
phonon Raman scattering.

(a)

K q
K′

G

(b)

K K′

wph

wph

w w′

Fig. 9.15 The origin of the 2D Raman peak. (a) The scheme of momentum
conservation. (b) The scheme of the energy transfer (see the text).
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Actually, there are several types of phonons at the K point (see Fig. 9.1); both
electrons and phonons have dispersion, so the 2D peak at �2,700 cm�1 is not a
single line, but a band (see the high-frequency peak in Fig. 9.16). Detailed study of
its shape provides information about phonon dispersion near the K point (Mafra
et al., 2007). A theoretical analysis of the electron–phonon coupling, which is
responsible for the 2D peak for various modes, has been done by Jiang et al.
(2005), within a tight-binding model, and by Park et al. (2008) using density-
functional calculations. The electron–phonon coupling is essentially different for
different modes. Also, effects of destructive interference between contributions to
the double resonance should be taken into account (Maultzsch, Reich, & Thomsen,
2004). As a result of all these factors, the main contribution originates from TO
phonons along the K–M direction (Mafra et al., 2007). There is also a satellite line
(at smaller frequencies), which originates from the processes with one TO phonon
and one LA phonon involved (Mafra et al., 2007).

There is a noticeable shift in position of Raman peaks between graphene and
graphite (Ferrari et al., 2006), see Fig. 9.16. Moreover, one can easily distinguish
single-layer, bilayer, . . ., N-layer graphene (up to N � 5) by Raman spectroscopy,
which makes it a very suitable tool for the identification of graphene.

If some defects are present, one of the phonon-induced scattering processes
responsible for the 2D peak can be replaced by elastic scattering by the defects (the
D peak, with the frequency jω0 � ωj � ω0. “Resonant” impurities that change
locally the sp2 state of carbon atoms to sp3, such as hydrogen, fluorine and C–C

Fig. 9.16 The Raman spectra of graphite and graphene. The wavelength of the
incident light is 514 nm.
(Reproduced with permission from Ferrari et al., 2006.)
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chemical bonds (see Section 6.6), give the main contribution to the origin of this
peak, and its intensity can be used to estimate the concentration of such locally
modified sp3 centers in graphene (Elias et al., 2009; Nair et al., 2010; Ni et al.,
2010).

We hope these examples suffice to illustrate the importance of Raman
spectroscopy in graphene physics and chemistry.

To summarize, in this chapter we have considered some of the peculiarities
of the structural state, mechanical properties, dynamics, and thermodynamics of
graphene. The consequences of these peculiarities for the electronic properties of
graphene will be considered in the next two chapters.
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10

Gauge fields and strain engineering

10.1 Strain-induced pseudomagnetic fields

We saw in the previous chapter that graphene at finite temperatures is unavoidably
corrugated. As a result, in any real atomic configuration the three bonds of each
atom with its neighbors are no longer equivalent; see a snapshot from Monte Carlo
simulations by Fasolino, Los, and Katsnelson (2007) in Fig. 10.1. Apart from
atomically sharp inhomogeneities, there is a large-scale, macroscopic nonequiva-
lence, which survives in a continuum-medium description of graphene, and is
described in terms of the deformation tensor uαβ.

Let us assume that the hopping parameters t1, t2, and t3 are different throughout
the whole sample and repeat the tight-binding derivation of the Dirac Hamiltonian
(Section 1.2). As a result, instead of Eq. (1.22) we find the following effective
Hamiltonian near the K point (Kane & Mele, 1997; Suzuura & Ando, 2002;
Sasaki, Kawazoe, & Saito, 2005; Katsnelson & Novoselov, 2007):

Ĥ ¼~σ �iℏv~r�~A
� �

, (10.1)

where

Ax ¼
ffiffiffi
3

p

2
t1 � t2ð Þ,

Ay ¼ 1
2

2t3 � t1 � t2ð Þ
(10.2)

play the role of components of the vector potential. Thus, the difference in t1, t2,
and t3 shifts the Dirac conical point in some random direction. It does not produce
a mass term proportional to σz, since the sublattices remain equivalent. The field~A
is a typical gauge field, similar to the vector potential in electrodynamics. It was
first discussed in the context of electron–phonon interaction in carbon nanotubes
(Kane & Mele, 1997; Suzuura & Ando, 2002; Sasaki, Kawazoe, & Saito, 2005)
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and then introduced in the physics of graphene by Morozov et al. (2006) and
Morpurgo and Guinea (2006) as a mechanism suppressing weak (anti)localization.
Note that the vector potential ~A in Eq. (10.1) has the dimension of energy; in
conventional units, it should be written as (ev/c)~A.

In the weakly deformed lattice, assuming that the atomic displacements ~u are
small in comparison with the interatomic distance a, the length of the nearest-
neighbor vectors~ρi will be changed by the quantity

δai ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~ρi þ~ui �~u0ð Þ2

q
� a �~ρi ~ui �~u0ð Þ

a
, (10.3)

where~ui and~u0 are displacement vectors for the corresponding atoms and we take
into account that ~ρij j ¼ a. As a result, the new hopping integrals will be

ti � t � βt
a2
~ρi ~ui �~u0ð Þ, (10.4)

where

β ¼ � ∂ ln t
∂ ln a

(10.5)

Fig. 10.1 A snapshot of a typical atomic configuration in atomistic Monte Carlo
simulations of graphene at T = 300 K; the number indicates the bond length (Å).
(Reproduced with permission from Fasolino, Los, & Katsnelson, 2007.)
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is the electron Grüneisen parameter describing the dependence of the nearest-
neighbor hopping integral on the interatomic distance. This value lies in the
interval β � 2 � 3 (Heeger et al., 1988; Vozmediano, Katsnelson, & Guinea,
2010). In the continuum limit (elasticity theory)

~ui �~u0ð Þ � ~ρirð Þ~u ~rð Þ (10.6)

and, thus

Ax ¼ �2cβtuxy:

Ay ¼ �cβt uxx � uyy
� �

:
(10.7)

(Suzuura & Ando, 2002; Mañes, 2007), where c is a numerical factor depending on
the detailed model of chemical bonding. In particular, one should take into account
that the nearest-neighbor hopping parameter depends not only on the interatomic
distance but also on the angles. Keeping in mind an uncertainty in the value of β,
we will put c = 1 from now on.

Thus, the two components of the vector potential are proportional to the two
shear components of the deformation tensor. On general symmetry grounds,
strains should also lead to a scalar potential proportional to dilatation (Suzuura
& Ando, 2002; Mañes, 2007):

V ~rð Þ ¼ g uxx þ uyy
� �

: (10.8)

It originates from a redistribution of electron density under the deformation.
A naïve estimation would be to assume that it should be of the order of the
bandwidth, g � 20eV (Ono & Sugihara, 1966; Sugihara, 1983; Suzuura & Ando,
2002). Recent density-functional calculations for single-layer graphene give a
much smaller value, g � 4eV (Choi, Jhi, & Son, 2010). However, these two
values are not actually contradictory, since the density functional takes into
account the effect of electron screening, which should lead to a replacement
g ! g/ε. Taking into account that for undoped single-layer graphene ε � 4.5 (see
Eq. (7.89)), we see that screened g � 4eV corresponds to unscreened g0 � 18 eV.
This value seems to be in agreement with experimental data on electron mobility
in freely suspended graphene (Castro et al., 2010b); for more details, see
Chapter 11.

Within the framework of the Dirac approximation, a uniform strain cannot open
a gap in the spectrum, but just leads to a shift of conical points. However, if the
strain is very strong and t1, t2, and t3 are essentially different, the gap can be
opened. As was shown by Hasegawa et al. (2006), there is no gap if the “triangular
inequalities”

jtl1 � tl2j � jtl3j � jtl1 + tl2j (10.9)
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are satisfied, where (l1, l2, l3) is a permutation of (1, 2, 3). This issue was later
studied in more detail within the framework of the tight-binding model (Pereira,
Castro Neto, & Peres, 2009; Cocco, Cadelano, & Colombo, 2010; Pellegrino,
Angilella, & Pucci, 2010). According to the last of these papers, the minimum
shear deformation that leads to the gap opening is about 16%. This is, in principle,
possible in graphene without its destruction (Lee et al., 2008). Henceforth we
restrict ourselves to the case of smaller deformations, for which the linear approxi-
mation (10.4) is applicable. We can see in this chapter that this already provides
very rich and interesting physics, with the prospect of important applications.

If the strain is not uniform, the vector potential (10.7) creates, in general, a
pseudomagnetic field (in normal units)

evB

c
¼ ∂Ay

∂x
� ∂Ax

∂y
: (10.10)

It is important to stress that the pseudomagnetic field acting on electrons from the
valley K0 is exactly opposite to that acting on electrons from the valley K:

BK =� BK0. (10.11)

This follows from explicit calculations and is obvious from the time-reversal
symmetry: Deformations cannot break it for the honeycomb lattice as a whole.
However, if we have only smooth deformations and no scattering processes between
the valleys, the electrons in a nonuniformly strained graphene will behave as if the
time-reversal symmetry were broken (Morozov et al., 2006; Morpurgo & Guinea,
2006). This has very important consequences for the physics of the quantum Hall
effect, weak localization, etc., as will be discussed in later this chapter.

10.2 Pseudomagnetic fields of frozen ripples

As the first example, we consider the pseudomagnetic field created by a frozen
ripple. This means that we substitute Eq. (9.62) for the deformation tensor into Eq.
(10.7) and (10.10) and take into account only the last term

uαβ ¼ 1
2
∂h
∂xα

∂h
∂xβ

: (10.12)

The effects of in-plane relaxation will be taken into account in the next section.
Thus, the amplitude of the pseudomagnetic field can be estimated as

�B � ℏc
e

h2

aR3 , (10.13)
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where h is the typical height of the ripple and R is its radius (Morozov et al., 2006).
This field can be as large as 1 T, for typical sizes of the ripples observed in
exfoliated graphene (Morozov et al., 2006).

To perform some quantitave analysis, let us start with the case of the simple
sinusoidal deformation shown in Fig. 10.2 (Guinea, Katsnelson, & Vozmediano,
2008). We will assume a modulation along the x-axis tij � tij(x). Thus, the problem
is effectively one-dimensional, and ky remains a good quantum number. One can
consider hopping parameters between the rows (see Fig. 10.2, right panel) that are
equal to t (for horizontal bonds) and

2t cos ky

ffiffiffi
3

p
a

2

� �

for other bonds.
If we assume a modulation of the hopping parameters,

t(x) = t + δt(x), (10.14)

then the two hoppings are renormalized as

t ! t xð Þ,

2t cos φ !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 xð Þ cos 2φþ δt xð Þ½ �2 sin 2φ

q
,

(10.15)

where φ ¼ ky
ffiffi
3

p
a

2 . Let us assume

δt xð Þ ¼ δt sin
2πx
l

� �
, (10.16)

where l is the period of modulation. The electron spectrum has been calculated
numerically for a strip with periodic boundary conditions; the results are shown in
Fig. 10.3 (Guinea, Katsnelson, & Vozmediano, 2008).

Fig. 10.2 (a) A sketch of the sinusoidal ripple. (b) Atomic rows of a honeycomb lattice.
(Reproduced with permission from Guinea, Katsnelson & Vozmediano, 2008.)
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The most important result is the appearance of a dispersionless zero-energy
mode, its phase volume grows with increasing δt/t. This is related to the topologic-
ally protected zero-energy Landau level in an inhomogeneous magnetic field for
the Dirac equation (Section 2.3). There are also some features that are reminiscent
of other Landau levels, but they are essentially dispersive, which changes the
situation dramatically from the case of a real magnetic field (but see Section 10.4).
The real magnetic field B can be included in the calculations via the replacement

ky ! ky þ eB

ℏc
x: (10.17)

The results are shown in Fig. 10.4 (Guinea, Katsnelson, & Vozmediano, 2008).
Two important features of these results should be mentioned. First, the combin-
ation of the pseudomagnetic field due to rippling and a real magnetic field leads to
a broadening of all Landau levels except the zero-energy one; this is a consequence
of the topological protection of the zero-energy Landau level.

Second, due to Eq. (10.11) for the pseudomagnetic field, the effective total fields
acting on electrons from the valleys K and K0 are different, which results in a valley
polarization. One can clearly see in Fig. 10.4 that the phase space of the disper-
sionless zero-energy level for the valley K0 is larger than that for the valley K.

The first of these conclusions seem to be relevant for the interpretation of some
of the peculiarities of the quantum Hall effect in graphene (Giesbers et al., 2007).
The activation gaps for the quantum Hall plateau at v = 2 and v = 6 have been
extracted from the temperature dependences of the resistivity ρxx(T). Their depen-
dences on the magnetic field are presented in Fig. 10.5. In the ideal case, they
would follow

ffiffiffi
B

p
dependences (see Eq. (2.30) and (2.31)). However, due to

disorder there are deviations from this law, and the stronger the disorder the higher
the magnetic field at which the

ffiffiffi
B

p
law is restored. One can see that, for v = 2, for

which the zero-energy Landau level is involved, it happens much earlier than it
does for v = 6. This was explained by Giesbers et al. (2007) by postulating that

Fig. 10.3. Low-energy states induced by the ripple shown in Fig. 10.2. The
average hopping is 3 eV. The width of the ripple is 1,200 a1200a = 168 nm.
The modulations of the hopping δt/t are 0, 0.02, and 0.04 (from left to right).
(Reproduced with permission from Guinea, Katsnelson, & Vozmediano, 2008.)
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random pseudomagnetic fields created by ripples (Morozov et al., 2006) contribute
essentially to the broadening of all Landau levels except the zero-energy one, due
to its topological protection (Novoselov et al., 2005a; Katsnelson, 2007a). The
same situation should also occur for the case of bilayer graphene (Katsnelson &
Prokhorova, 2008).

The electronic structure of the frozen sinusoidal ripple has been studied by
Wehling et al. (2008a) by carrying out density-functional calculations.

These calculations confirm the qualitative predictions of the tight-binding model
concerning the existence of zero-energy states. A schematic view of the ripple is
shown in Fig. 10.6, and the results for the width of the dispersionless zero-energy
mode are illustrated in Fig. 10.7. This qualitative agreement is not trivial, since the
tight-binding model takes into account neither next-nearest-neighbor hopping nor
the electrostatic potential (10.8). The reason why the latter is not relevant here will
be clear later (see Section 10.6).

Fig. 10.4 The same as in Fig. 10.3 (δt/1 = 0.04) but with a magnetic field of B =
10 T. Upper panel, K value; lower panel, K0 value.
(Reproduced with permission from Guinea, Katsnelson, & Vozmediano, 2008.)
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Fig. 10.5 Energy gaps 2Δ between two Landau levels extracted from the
temperature dependence of the resistivity pxx as a function of the magnetic field
for v = +2 (full triangles), v = �2 (open circles) and v = +6 (full squares). The
dashed and dotted lines are the theoretically expected energy gaps for sharp
Landau levels. The inset shows schematically the density of states for a sharp
zero-energy Landau level and broadened higher Landau levels for electrons and
holes at B = 30 T. Extended states are represented by the white areas, localized
states by the dashed areas.
(Reproduced with permission from Giesbers et al., 2007.)
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Fig. 10.6 Schematic top and side views of the ripple used in the electronic
structure calculations by Wehling et al. (2008a).
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The calculations by Wehling et al. (2008a) demonstrate a complete sublattice
polarization for the zero-energy pseudo-Landau states Fig. 10.8. This follows from
Eq. (10.11): In contrast with the usual quantum Hall effect (Sections 2.2 and 2.3),
the solutions for both valleys belong to the same sublattice.

It was shown by Wehling et al. (2008a) that, if in-plane relaxation of atoms is
allowed, the dispersionless zero-energy mode disappears for the geometry under
consideration. The reason for this behavior will be discussed in the next section.
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Fig. 10.7 Pseudo-Landau-level extension obtained from the density-functional
calculations (DFT) by Wehling et al. (2008a). The definition of Δk is clear from
the inset; the parameters h and l are defined in Fig. 10.6. Crosses show the fit to
the expression aΔk/(2π) = A1(h/l)

2 � A2(h/l) with some constants Ai.
(Courtesy of T. Wehling.)
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Fig. 10.8 The local density of states (LDOS) inside the cells at x = 1b0 (low
pseudomagnetic field) and x = 10b0 (high field region). For the low field region,
the LDOS is the same in both sublattices (only sublattice A is plotted here, dashed
line), whereas in the high field region the LDOS in the sublattice A (solid line)
and B (dash-dotted line) differ significantly, only the first one indicates the
formation of zero-energy Landau level.
(Reproduced with permission from Wehling et al., 2008a.)
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10.3 Pseudomagnetic fields of ripples: the effect of in-plane relaxation

Let us assume a fixed distribution of out-of-plane deformation h(x, y). If in-plane
relaxation is allowed, the in-plane deformations ux and uy should be found from the
minimum of the total energy (9.63) and excluded (Guinea, Horovitz &, Le
Doussal, 2008; Wehling et al., 2008a). It is convenient to use the complex-number
notation z = x + iy, z∗ = x � iy,

∂ ¼ ∂
∂z

¼ 1
2

∂
∂x

� i
∂
∂y

� �
,

∂∗ ¼ ∂
∂z∗

¼ 1
2

∂
∂x

þ i
∂
∂y

� �
,

r2 ¼ 4∂∂∗

(10.18)

and

u z; z∗ð Þ ¼ ux � iuy,

A z; z∗ð Þ ¼ Ax � iAy:
(10.19)

We will express the deformation tensor via A using Eq. (10.7). As a result, the free
energy (9.63) can be rewritten as (Wehling et al., 2008a)

F¼
ð
d2z 8κ ∂∂∗hð Þ2þ λþμð Þ 1

2
∂∗uþ∂∗uð Þþ∂h∂∗h

� �	

þμ ∂uþ ∂hð Þ2
h i

∂∗u∗þ ∂∗hð Þ2
h i


¼
ð
d2z 8κ ∂∂∗hð Þ2þ μa2

β2t2
AA∗þ λþμð Þ a

2βt
1

∂∂∗
∂∗2Aþ∂2A∗
� �þ 1

∂∂∗
R h½ �2

� �	 


(10.20)

where

R h½ � ¼ ∂2h∂∗2h� ∂∂∗hð Þ2 ¼ ∂ ∂h; ∂∗hð Þ
∂ z; z∗ð Þ (10.21)

is proportional to the Gaussian curvature of the surface, Eq. (9.76). On minimizing
Eq. (10.20) for a given h(z, z*) one finds
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A ¼ �βta2
ðλþ μÞ
ðλþ 2μÞ

∂2

∂∂∗
R, (10.22)

evB

c
¼ iβta2

ðλþ μÞ
ðλþ 2μÞ

∂3 � ∂∗3

∂∂∗ð Þ2
R: (10.23)

One can see from Eq. (10.22) and (10.23) that for the case of a free membrane
both the pseudomagnetic field and the vector potential vanish identically if h
depends only on one Cartesian coordinate, which means R � 0. This is not so,
as we will see in Section 10.5, if the membrane is under strain, in which case an
additional term should be added to Eq. (10.20).

This explains the disappearance of zero-energy states created by a frozen
sinusoidal ripple under relaxation mentioned at the end of the previous section.
If we induce the field

f αβ ~rð Þ ¼ ∂h
∂xα

∂h
∂xβ

(10.24)

and its Fourier component

f αβ ~k
� �

¼ �
X
~k1

k1α kβ � k1β
� �

h~k1h~k�~k1 (10.25)

then the symbolic expression (10.23) can be represented in an explicit form
(Guinea, Horovitz, & Le Doussal, 2008)

eB ~k
� �
hc

¼ iky
3k2x � k2y

k4
β
a

λþ μ
λþ 2μ

k2y f xx ~k
� �

þ k2x f yy ~k
� �

� 2kxkyf xy ~k
� �h i

: (10.26)

This gives us a formal solution of the problem.
Importantly, Eq. (10.23) and (10.26) reflect the trigonal symmetry of the

problem: If we have an isotropic ripple, h = h(r), and thus R = R(r), the
pseudomagnetic field will have an angular dependence

B(r,φ) = sin (3ϕ)B0(r), (10.27)

where ϕ is the polar angle (Wehling et al., 2008a).
In the next chapter, when discussing electron scattering by the ripples, we will

be interested in the correlation functions of vector and scalar potentials created by
the intrinsic ripples. They are proportional to

Fαβ, γδ ~qð Þ ¼ f αβ ~qð Þf γδ �~qð Þ �
¼

X
~q1~q2

q1α q1β � qβ
� �

q2γ q2γ þ qδ
� �

h~q1h~q�~q1h�~q2h�~q�~q2
 �

:
(10.28)
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To estimate the correlation function on the right-hand side of Eq. (10.28), one can
use Wick’s theorem (9.110) and the results of Section 9.4. The answer is (Kats-
nelson, 2010b)

F ~qð Þ �

T

κ

� �2 ln q=q∗

q2
, q > q∗,

T

κ

� �2�η 1

q2η0 q2�2η
, q < q∗,

8>>>><
>>>>:

(10.29)

where q* is the crossover wave vector (9.98). This means that the correlation
function of the vector potential is singular at q ! 0. At the same time, the
correlation function

B~q
�� ��2D E

� q2 A~q
�� ��2D E

(10.30)

tends to zero at q ! 0. Similarly to Eq. (10.27) in real space, it has the angular
dependence sin 2ð3φ~qÞ, where φ~q is the polar angle of the vector ~q (Guinea,
Horovitz, & Le Doussal, 2008).

10.4 The zero-field quantum Hall effect by strain engineering

In the previous sections we discussed the gauge fields created by ripples, which
are almost unavoidable in graphene. However, one can use Eq. (10.7) and
(10.10) to intentionally create a magnetic field with the desired properties to
manipulate the electronic structure of graphene via “strain engineering.” First
of all, let us consider an opportunity to create a uniform, or almost uniform,
pseudomagnetic field and thus realize Landau quantization and the quantum
Hall regime without a real magnetic field (Guinea, Katsnelson, & Geim, 2010;
Guinea et al., 2010).

Let us consider the simplest case of plane geometry, where h = 0 and the strain
tensor is created by the w-field only. Within linear two-dimensional elasticity
theory the general solution for the strain tensor can be written in terms of two
arbitrary analytic functions g(z) and k(z), namely

σxx ¼ ∂2f
∂y2

, σyy ¼ ∂2f
∂x2

, σxy ¼ � ∂2f
∂x∂y

, (10.31)

where

f(x, y) = Re [z∗g(z) + k(z)] (10.32)
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(Landau & Lifshitz, 1970; Vozmediano, Katsnelson, & Guinea, 2010). For a
purely shear deformation, σxx = �σyy, which means that g(z) = 0. Thus, the
components of the vector potential which are expressed in terms of stress as

Ax ¼ � 2cβt
μ

σxy,

Ay ¼ � cβt
μ

σxx � σyy
� �

(10.33)

are proportional to the real and imaginary parts of d2 k(z)/dz2, respectively, and

B � Im
d3k zð Þ
dz3

: (10.34)

A pure shear deformation that leads to a uniform pseudomagnetic field is

k(z) = Az3 (10.35)

(A is a constant). The general deformation (including dilatation), which leads to a
uniform pseudomagnetic field, is determined by the function

f(z) = Az3 + Bz∗z2 (10.36)

(A and B are constants). It corresponds to the strain tensor linearly dependent on
coordinates

uαβ ¼ �u

L
xαeβ, (10.37)

where u is a typical stress, L is the sample size, and~e is an arbitrary unit vector. The
effective pseudomagnetic field is associated with a magnetic length

1

l2B
¼ eB

ℏc
� β�u

aL
: (10.38)

For �u ¼ 10�2 and L � 10 μm we obtain lB � 0.2 μm, which corresponds to a
magnetic field of about 0.3 T. Actually, much higher deformations and, thus, much
higher pseudomagnetic fields can be created in graphene.

In reality, the stress can only be applied normally to the boundary of a sample.
Numerical solutions of the equations of the theory of elasticity show that it is not
difficult to have a quasiuniform pseudomagnetic field in a quite general situation; what
is really important is to keep the trigonal symmetry of the stress (Guinea, Katsnelson,
& Geim, 2010; Guinea et al., 2010). One can also show that the presence of dilatation
and, thus, of an electrostatic potential (10.8) does not affect the results (Guinea et al.,
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2010). As an example, we present here the results obtained by Guinea, Katsnelson,
and Geim (2010) for a hexagonal flake with external forces applied to three edges
(Fig. 10.9). One can see that the value of the pseudomagnetic field in the central part
of the flake is of uniform to high accuracy. As a result, the density of states, averaged
over the central region, clearly exhibits pronounced Landau levels (Fig. 10.10).

Fig. 10.9 A pseudomagnetic field in a hexagon of a size 1.4 μm that is strained by
the forces applied to three sides. The maximum strain of 20% creates an effective
field of about 10 T at the hexagon’s center. The counters correspond to 8, 6, 4, 2,
0, –2 T, from inside to outside.
(Reproduced with permission from Guinea, Katsnelson, & Geim, 2010.)

Fig. 10.10 The average density of states in the central region of diameter 0.5 µm
for the hexagon shown in Fig. 10.9.
(Reproduced with permission from Guinea, Katsnelson, & Geim, 2010.)
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It was suggested by Guinea, Katsnelson, and Geim (2010) that one should use
electron Raman scattering to observe the Landau levels created by strain. Soon
after that, this effect was observed by scanning tunneling microscopy for graphene
bubbles on a platinum surface (Levy et al., 2010). It is significant that these
bubbles have a shape with trigonal symmetry. The value of the pseudomagnetic
field created by spontaneous deformation in these bubbles was estimated by Levy
et al. (2010) to be approximately 300 T, which is much higher than any real
magnetic field attainable to date. Later, Georgi et al. (2017) have estimated
pseudomagnetic fields in their samples as 1,000 T. Importantly, they were able
to measure the density of states separately in sublattices A and B and confirmed a
strong pseudospin polarization predicted theoretically (see Fig. 10.8).

Owing to the condition (10.11), the system as a whole remains time-reversal-
invariant, and, due to the Onsager relations (Zubarev, 1974), one should have
σxy = 0 (here σ is the conductivity, not the stress!). In terms of edge states (Section
5.8) this results from the existence of two counter-propagating edge states, from
values K and K0, without total charge transfer. This situation can be described as a
“valley quantum Hall effect” analogous to the spin quantum Hall effect (Kane &
Mele, 2005a, 2005b). Inhomogeneities at the edges will lead to a scattering
between the valleys; however, one can show that, due to the smallness of the
parameter a/lB, the mixture of the counter-propagating edge states can be very
small (Guinea, Katsnelson, & Geim, 2010).

10.5 The pseudo-Aharonov–Bohm effect and transport gap
in suspended graphene

As the next example, we consider the pseudomagnetic field arising in a freely
suspended graphene membrane (Fogler, Guinea, & Katsnelson, 2008). If it is
charged with the electron density n, the electrostatic pressure acts on the membrane
(Jackson, 1962)

p ¼ 2πe2

ε
n2, (10.39)

where ε is the dielectric constant. Under this pressure, the membrane will be bent
(Fig. 10.11), with the equation of equilibrium

κ
d4h xð Þ
dx4

� τ
d2h

dx2
¼ p, (10.40)

where τ is the external strain (this follows from the minimization of the total energy
(9.144) in the presence of an external strain σextxx ¼ τ, and uxx is given by
Eq. (10.12). If we assume that the membrane is supported at x = �L/2 then the
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solution of Eq. (10.40) satisfying the boundary conditions is (Timoshenko &
Woinowsky-Krieger, 1959)

h xð Þ ¼ pL4

16u4κ
cosh 2ux=Lð Þ

cosh u
� 1

� �
þ pL2 L2=4� x2

� �
8u2κ

, (10.41)

u2 ¼ τl2

4κ
: (10.42)

The strain has to be found self-consistently, as

τ ¼ τ0 þ Y
ðL=2

�L=2

dxuxx ¼ τ0 þ Y
2L

ðL=2

�L=2

dx
dh

dx

� �2

, (10.43)

where τ0 is an external strain of nonelectrostatic origin. First we will assume, for
simplicity, that τ0 = 0 and

n »

ffiffiffiffiffiffiffiffiffi
εκ

e2L3

r
, (10.44)

which gives us u » 1. In this regime only the last term on the right-hand side of Eq.
(10.49) survives, and the profile h(x) is represented by a simple parabola:

graphene layer

(a)

(b)

Gate

h0

kx

ky Ay

K

K′ K′

K

L

Fig. 10.11 (a) A sketch of the model of a suspended graphene membrane under
consideration (see the text). (b) Fermi-circle positions in the Brillouin zone in the
leads (left) and in the suspended region (right).
(Reproduced with permission from Fogler, Guinea, & Katsnelson, 2008.)
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h xð Þ ¼ h0 1� 4x2

L2

� �
, (10.45)

where

h0 ¼ 3π
64

e2

εY
n2L4

� �1=3

(10.46)

and

τ ¼ pL2

8h0
¼ πe2n2L

4εh0
: (10.47)

The deformation uxx creates the vector potential. Its effect is largest if the zigzag
direction is along the y-axis, thus

Ax ¼ 0, Ay ¼ � βt
a
uxx, (10.48)

where the signs � correspond to the valleys K and K0, respectively. Thus, the
conical points will be shifted, inside the membrane, in the y-direction (see
Fig. 10.11(b)). If this shift is larger than the Fermi wave vector kF, that is,

kF <
Ay

�� ��
ℏv

, (10.49)

the matching of wave functions in the leads and in the membrane becomes
impossible, then the transport though the membrane will be totally suppressed;
that is, the transport gap will be open. Here we assume, for simplicity,
that the concentrations of charge carriers for the leads and membrane are
the same.

To proceed further, let us replace the deformation uxx in Eq. (10.48) by its
average value

uxx ¼ τ

Y
: (10.50)

Thus, taking into account Eq. (10.46) through (10.48), we have an estimation

Ay

�� ��
ℏv

� e2

Yε

� �2=3

n4=3L�1=3 � a2n4=3L�1=3

ε2=3
: (10.51)

Keeping in mind that kF � n1/2, we see that, if all of the strain is purely
electrostatic, the condition (10.57) is not satisfied, and the gap never opens.
However, it can be open (and will certainly be open, if n is small enough) if
τ0 6¼ 0 in Eq. (10.43). This gap opening is an effect of the vector potential itself, not
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of the pseudomagnetic field, and it takes place even if the vector potential is
constant: Ay = constant, B = 0. Therefore, it can be considered to be an analog
of the Aharonov–Bohm effect for pseudomagnetic fields.

The scattering problem can be solved exactly if one assumes, for simplicity,
Ay = constant. The calculations are absolutely similar to those in Chapters 3 and 4.
We assume (as has already been mentioned) that we have the same value of kF in
the leads and in the membrane. This means that the y-component of the wave
vector in the leads is

ky = kF sin φ (10.52)

(φ is the incidence angle), and within the membrane it is replaced by

ky ! ky � q � ky � Ay

hv
: (10.53)

The transmission coefficient is (Fogler, Guinea, & Katsnelson, 2008)

T ky
� � ¼ k21k

2
2

k21k
2
2 þ k2Fq

2 sin 2 k2Lð Þ , (10.54)

where

k1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2F � k2y

q
¼ kF cos φ,

k2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2F � ky � q

� �2q
:

(10.55)

The total conductance can be calculated, using the Landauer formula, as

G ¼ 4e2

h
W

ðkF
�kF

dky
2π

T ky
� �

, (10.56)

where W is the width of the membrane.
Pereira and Castro Neto (2009) have suggested that one could use this effect for

strain engineering: By applying some external strain distribution to graphene, one
can create a desirable distribution of the vector potential and thereby manipulate
the electronic transport through graphene. This type of strain engineering is
different from that considered in the previous section, since no real gaps due to
Landau quantization are required, transport gaps due to the “pseudo-Aharonov–
Bohm effect” suffice.

Low et al. (2012) and Jiang et al. (2013) considered electron pumping through
the device shown in Fig. 10.11a. The pumping arises in the systems with slow
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(adiabatic) periodic modulation of the parameters, and the quantized electric
charge pumped through the system is expressed via some topological (or geomet-
ric) characteristics reminiscent of the Hall conductivity quantization, see Section
2.9 (Thouless, 1983; Brouwer, 1998; Makhlin & Mirlin, 2001). Modulation of
voltage applied to the suspended graphene sheet and of its in-plane deformation
results in pumping of electrons, one by one, through the device (Low et al., 2012).
Dependent on crystallographic orientation of the suspended graphene stripe, one
can also reach full valley polarization of the current when all electrons from
K valley move to the right and all electrons from K0 valley move to the left, or
vice versa (Jiang et al., 2013).

10.6 Gap opening by combination of strain and electric field

Let us now consider the case of coexistence of pseudomagnetic fields and electro-
static potential. We will assume that all these perturbations are smooth, and
therefore the intervalley scattering can be neglected. Thus, the Hamiltonian of
the system is

Ĥ ¼ Ĥ0 þ ĤA þ ĤV , (10.57)

where

Ĥ ¼ �iℏv~̂σ~r,

ĤA ¼ �σ̂xAx ~rð Þ � σ̂yAy ~rð Þ,
ĤV ¼ V ~rð Þ: (10.58)

We will assume that both perturbations are weak and use the perturbation theory
for the Green function:

Ĝ ¼ 1

E � Ĥ þ iδ
(10.59)

(cf. Sections 4.2 and 6.4). We can formally write the answer via the Dyson
equation,

Ĝ ¼ 1

E � Ĥ0 � Σ̂ Eð Þ , (10.60)

where Σ̂ Eð Þ is the self-energy operator, which can be written as a perturbation
series

Σ̂ Eð Þ ¼ ĤA þ ĤV þ ĤA þ ĤV

� �
Ĝ0 ĤA þ ĤV

� �þ 	 	 	 , (10.61)
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where Ĝ0 is the Green function of the Hamiltonian Ĥ0, Eq. (4.35) and (4.36). Both
Ĝ0 and ĤA contain terms proportional to σ̂x and σ̂y, and their product can generate
σ̂ z, that is, the mass term:

σ̂xσ̂y ¼ �σ̂yσ̂x ¼ iσ̂ z: (10.62)

In the lowest order, such terms originate from the term linear in ĤA and linear in
Ĝ0. It is also linear in ĤV . This cross-term has the form

~̂Σ 0
ðEÞ ¼ ĤV

1

E � Ĥ0 þ iδ
ĤA þ ĤA

1

E � Ĥ0 þ iδ
ĤV

¼ ĤVðE � Ĥ0Þ
1

ðE þ iδÞ2 � Ĥ2
0

ĤA

þ ĤAðE � Ĥ0Þ
1

ðE þ iδÞ2 � Ĥ2
0

ĤV : (10.63)

Perturbatively, the correction to the effective Hamiltonian is Σ̂ ~k;~k;E
� �

(the self-
energy depends on two wave vectors since the Hamiltonian (10.57) is not transla-
tionally invariant, but we need only terms diagonal in k). The second-order
correction containing the mass term is

Σ̂
2ð Þ ~k;~k;E
� �

¼
X
~k

Ŵ~k�~k0Ĝ0
~k0;E
� �

Ŵ~k0�~k, (10.64)

where

Ŵ~q ¼ V~q þ ~̂σ~A~q (10.65)

and Ĝ0 is given by Eq. (4.36). We are interested in the gap opening at the
neutrality point and thus should put E = 0. By substituting Eq. (4.36) into
Eq. (10.64) we find

Σ̂
2ð Þ ~k;~k; 0
� �

¼ � 1
ℏv

X
~q

Ŵ~k�~q
~q~̂σ
q2

Ŵ~q�~k: (10.66)

Since

Ŵ σ̂ α ¼ V σ̂α þ Aα þ iεβαγA
βσ̂ γ (10.67)

the expression (10.66) contains the gap term Δσ̂ z, where

Δ~k ¼
2
ℏv

X
~q

Im V~k�~q qxA
x
~q�~k � qyA

x
~q�~k

� �h i
q2

: (10.68)
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At ~k ¼ 0, it can be expressed in terms of the Fourier component of the pseudo-
magnetic field,

B~k ¼ kxA
y
~k
� kyA

x
~k
, (10.69)

namely

Δ~k¼0 ¼
2
ℏv

X
~q

Im V�~qB~q
� �
q2

(10.70)

(Low, Guinea, & Katsnelson, 2011).
Before discussing this expression, we derive an important result for ∂Σ̂=∂E. It

follows from Eq. (10.66) and (4.36) that

∂Σ 2ð Þ ~k;~k;E
� �
∂E

������
E¼0

¼ �
X
~q

Ŵ~k�~qŴ~q�~k
ℏvqð Þ2 : (10.71)

The integral (10.71) contains an infrared divergence at q! 0, which should be cut,
at some qmin. The result is

∂Σ 2ð Þ ~k;~k;E
� �
∂E

������
E¼0

� �
X
~q

1n qminað Þj j
2π ℏvð Þ2 Ŵ~kŴ�~k: (10.72)

This divergence is very important for the theory of electron transport in graphene,
as will be discussed in the next chapter.

It follows from Eq. (10.70) that the gap is determined by correlations between
the electrostatic potential and the pseudomagnetic field. Let us characterize these
correlations by a parameter

C ¼ lim
~k!0

BVð Þ~k, (10.73)

which has the dimension of energy. It is roughly given by the value of the
electrostatic potential times the number of flux quanta of the pseudomagnetic
field over the region where the field and the electrostatic potential are correlated.
The gap can be estimated, according to Eq. (10.70), as

Δ � C j ln (qmina) j . (10.74)

The minimal value of q in pure graphene is determined by the gap itself,
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qmin �
Δ
ℏv

, (10.75)

so Eq. (10.74) is an equation for Δ. In dirty samples, the cut-off is determined by
disorder.

Since the ripples create both an electrostatic potential and a vector potential, it is
natural to ask whether this effect can result in gap opening or not. To check this,
we will use the expression for the deformation tensor created by ripples with the in-
plane relaxation taken into account (Guinea, Horovitz, & Le Doussal, 2008):

uαβ ~k
� �

¼
~k
��� ���2
2

δαβ � λþ μ
λþ 2μ

kαkβ

2
64

3
75 k2x f yy ~k

� �
þ k2y f xx ~k

� �
� 2kxky f xy ~k

� �

~k
��� ���4

(10.76)

(cf. Eq. (10.26) for the magnetic field). On substituting Eq. (10.76), (10.7), and
(10.8) into Eq. (10.70) we obtain (Low, Guinea, & Katsnelson, 2011)

Δ ¼ g
β
a

μ λþ μð Þ
λþ 2μð Þ2

X
~k

kx
2f yy ~k

� �
þ ky

2f xx ~k
� �

� 2kxkyf xy ~k
� ���� ���2

~k
��� ���4

cos 3φ~k
� �

,

(10.77)

where φ~k is the polar angle of the vector
~k. This expression is zero since on making

the replacement ~k ! �~k the cosine changes sign ϕ�~k ¼ π þ φ~k
� �

and

f αβ �~k
� �

¼ f αβ
∗ ~k
� �

(since the expression (10.24) is real). This means that, while

the scalar and vector potentials originate from the same deformations, the gap is
not open. To achieve gap opening one needs to apply an inhomogeneous electro-
static potential together with strains. Some specific devices of this kind were
considered by Low, Guinea, and Katsnelson (2011). Under some quite realistic
assumptions about parameters of the devices, a gap of the order of 0.1 eV can
reasonably be expected. In general, this direction in strain engineering looks quite
promising.

In this chapter we have considered only the simplest gauge field, that is, a
pseudomagnetic one, which can be created by smooth deformations. Topological
defects in graphene such as dislocations and disclinations can create non-Abelian
gauge fields acting on two valleys. This issue and more formal aspects of gauge
fields in graphene are reviewed by Vozmediano, Katsnelson, and Guinea (2010).
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11

Scattering mechanisms and transport properties

11.1 The semiclassical Boltzmann equation and limits of its applicability

The conventional theory of electronic transport in metals and semiconductors
(Ziman, 2001) is based on the Boltzmann equation (or kinetic equation) for the

distribution function f k
!
; r
!
; t

� �
, which is nothing other than a probability density

in the single-electron phase space (instead of the canonical variables p
! and r

!, we

will use k
!

and r
!, k

!¼ p
!
=ℏ). It has the form (Lifshitz, Azbel, & Kaganov, 1973;

Abrikosov, 1988; Vonsovsky & Katsnelson, 1989; Ziman, 2001)

∂f
∂t

þ _
k
!r

k
!f þ _r

!r r
!f ¼ I

k
! f½ �, (11.1)

where
_
k
!
and _r

! are determined by the canonical equations of motion

ℏ
_
k
! ¼ e E

! þ 1
c
v
!

k
!� B

!
� �

, (11.2)

_r
! ¼ v

!
k
! ¼ 1

ℏ

∂ε k
!� �

∂k
! , (11.3)

where εðk!Þ is the band dispersion and E
!
and B

!
are the electric and magnetic fields.

The right-hand side of Eq. (11.1) is called the collision integral. If we neglect
electron–electron scattering processes and assume that there is only elastic scatter-
ing by some external (with respect to the electron subsystem) sources, the collision
integral takes the form

I
k
! f½ � ¼

X
k0
!

w k
!
; k
!0

� �
f
k
!0 1� f

k
!

� �
� f

k
! 1� f

k
!0

� �h i
¼
X
k0
!

w k
!
; k
!0

� �
f
k
!0 � f

k
!

� �
,

(11.4)
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where wðk!; k!0Þ is the quantum-mechanical scattering probability and the factors
(1 � f) in Eq. (11.4) take into account the Pauli principle forbidding scattering into
occupied states. One can see, however, that these factors are not essential. If the
scattering Hamiltonian has the form

Ĥ 0 ¼
X
k
!
k
!
V

k
!
k
!0 ĉ

þ
k
! ĉ

k
!0 (11.5)

and V is a static potential (quenched disorder) then, in the Born approximation,
according to “Fermi’s golden rule,”

w k
!
; k
!0

� �
¼ 2π

ℏ
V

k
!
k
!0

��� ���2� �
δ ε

k
! � ε

k
!0

� �
(11.6)

(angular brackets denote the average over the states of the scatterers). Note that in

this approximation wðk!; k!0Þ ¼ wðk!0; k
!Þ, which is already taken into account in

Eq. (11.4). For simplicity, we omit spin indices and do not take into account
summation over them; otherwise, the right-hand side of Eq. (11.4) should be
multiplied by 2, the spin degeneracy factor.

Here, we will consider only a linear response, assuming that the external electric
field E

!
is small enough. Then,

f
k
! r

!
; t

� �
¼ f 0 ε

k
!

� �
þ δf

k
! r

!
; t

� �
, (11.7)

where f0(ε) is the Fermi–Dirac distribution function, and we need to take into
account only linear terms in Eq. (11.1). Then, the collision integral is

I
k
! f½ � ¼

X
k
!0

w k
!
; k
!0

� �
δf

k
!0 � δf

k
!

� �
: (11.8)

The current and the perturbation of the electron charge density can be calculated as

j
!

r
!
; t

� �
¼ e

X
k
!

v
!

k
!δf

k
!, (11.9)

δρ r
!
; t

� �
¼ e

X
k
!

δf
k
!: (11.10)

The rigorous quantum-mechanical derivation of the Boltzmann equation from
fundamental physical laws, that is, from the Schrödinger equation, is a very
complicated problem. It is part of the general problem of the derivation of statis-
tical physics and of macroscopic irreversibility (the Boltzmann equation is
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irreversible; that is, it has no time-reversal symmetry, whereas the Schrödinger
equation does have time-reversal symmetry); see, e.g., Zubarev (1974), Ishihara
(1971), and Balescu (1975). For the particular case of elastic scattering with
randomly distributed impurities

V r
!� �

¼
X
i

u r
! � R

!
i

� �
(11.11)

(R
!
i are their positions), the problem was solved by Kohn and Luttinger (1957). The

idea was as follows. First, the Schrödinger equation is equivalent to Eq. (2.173) for
the density matrix

ρ
k
!
, k
!0 ¼ ĉ

k
!0

þĉ
k
!

D E
(11.12)

(cf. Eq. (2.170)). For the case of a spatially uniform system,

f
k
! ¼ ρ

k
!
, k
!: (11.13)

One can prove that, if V is weak enough, the off-diagonal terms of the density
matrix (11.12) are small in comparison with the diagonal ones, with the latter
satisfying the Boltzmann equation (11.1), (11.4), and (11.6). Assuming a random
distribution of the impurities, one has

V
k
!
k
!0

��� ���2� �
¼ nimp u

k
!�k

!0

��� ���2, (11.14)

where nimp is the impurity concentration. Luttinger and Kohn (1958) proved that if
nimp is small, one can repeat the whole derivation without assuming the smallness
of potential u, and Eq. (11.1), (11.4), and (11.6) remain correct, but with replace-
ment of the potential û by the single-site T̂ -matrix:

V
k
!
k
!0

��� ���2� �
¼ nimp T

k
!
k
!0 E ¼ ε

k
!

� ���� ���2: (11.15)

This result has already been mentioned and was used in Chapter 6; see e.g.,
Eq. (6.22) through (6.26).

If neither the potential nor the concentration of the defects is small, the
Boltzmann equation is, in general, incorrect. For example, it does not take into
account the effects of Anderson localization, which are crucially important for
strongly disordered systems (Mott, 1974; Mott & Davis, 1979; Shklovskii & Efros,
1984; Lifshitz, Gredeskul, & Pastur, 1988).

Some general and powerful tools with which to derive kinetic equations,
such as Kadanoff–Baym nonequilibrium Green functions and the Keldysh
diagram technique for their calculation (Kadanoff & Baym, 1962; Keldysh, 1964;

11.1 The semiclassical Boltzmann equation and limits of its applicability 281

https://www.cambridge.org/core


Rammer & Smith, 1986; Wagner, 1991; Kamenev & Levchenko, 2009; Kamenev,
2011; Stefanucci & van Leeuwen, 2013) and the nonequilibrium statistical
operator (NSO) method and similar approaches (Zubarev, 1974; Kalashnikov &
Auslender, 1979; Akhiezer & Peletminskii, 1981; Luzzi, Vasconcellos, & Ramos,
2000; Kuzemsky, 2005) were developed thereafter. They are all based on the idea
of a coarse-grained description. If the disorder is weak (due to either weakness of
the scattering potential or smallness of the concentration of defects) the off-
diagonal elements of the density matrix have a very fast dynamics in comparison
with that of the diagonal ones and can be eliminated. On time scales much larger
than typical electron times (e.g., ℏ/jtj, where t is the hopping integral) the dynamics
of the whole system can be described by a small number of degrees of freedom (we
have N0 diagonal elements (11.13) and N2

0 elements of the total density matrix
(11.12)). If there are no small parameters in the problem under consideration, the
coarse-grained approach cannot be justified and one needs other methods (see, e.g.,
Efetov, 1997; Evers & Mirlin, 2008).

Earlier we discussed the case of a spatially uniform system. If we have inho-
mogeneities on an atomic scale and no small parameters, the kinetic equation does
not work. For the case of smooth enough inhomogeneities, the Boltzmann equation
(11.1) can be justified for the Wigner distribution function

f
k
! r

!
; t

� �
¼
ð
dξ
!

exp �i k
!
ξ
!� �

ρ r
!þ ξ

2

!
; r
! � ξ

2

!
; t

 !
, (11.16)

where ρ r
!
; r
!0

� �
¼ ψ̂þ r

!0
� �

ψ̂ r
!� �D E

is the density matrix in the coordinate

representation (Kadanoff & Baym, 1962). Henceforth we will not consider the
inhomogeneous case. We also restrict ourselves to the case of dc transport with a

time-independent E
!
. Therefore, the terms with ∂/∂t and r r

! in Eq. (11.1) can be
neglected.

For the case of graphene, the applicability of the Boltzmann equation is not
obvious. In the standard theory of electron transport in solids, the current operator
commutes with the unperturbed Hamiltonian Ĥ0, thus we start with states that have
simultaneously well-defined values of energy and well-defined values of momen-
tum. The perturbation Ĥ

0
does not commute with the current operator, leading to

scattering between these states. For the Dirac Hamiltonian (3.1), the current
operator (3.2) does not commute with it (Zitterbewegung, see Chapter 3). At the
same time, for the case of a scalar potential

Ĥ
0 ¼

X
k
!
k
!
ψ̂þ

k
!V

k
!
k
!0 ψ̂ k

!0 (11.17)
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with V proportional to the unit matrix in pseudospin space, the current operator
commutes with Ĥ

0
. It is not at all clear how important this huge formal difference

can be. Also, it is not clear when interband scattering processes can be neglected;
thus, at least, instead of the scalar quantity (11.13), one needs to consider the
matrix (7.15) in pseudospin space. If we have atomically sharp scattering, the
valley index should also be taken into account, but we will not consider that case
here. The matrix Boltzmann equation for the case of graphene has been derived by
Auslender and Katsnelson (2007) (see also Kailasvuori & Lüffe, 2010; Trushin
et al., 2010). They used the NSO approach; Kailasvuori and Lüffe (2010) used the
Keldysh diagram technique and discussed the relation between these two
approaches.

The corresponding derivations are rather complicated and cumbersome, but the
physical results are quite clear. Therefore, we will only present the general idea and
the answers here.

First, let us diagonalize the Dirac Hamiltonian by the transformation (7.23) to
the form (7.24). The scattering operator (11.5) takes the form

Ĥ
0 ¼
X
k
!
k
!
Ξ̂þ

k
!V 0

k
!
k
!Ξ̂þ

k
!0 , (11.18)

where Ξ̂
þ
k
! ¼ ξ̂

k
!
1

þ
; ξ̂

þ
k
!
2

� �
and

V
k
!
k
!0 ! V 0

k
!
k
!0 ¼

1
2
V

k
!
k
!0

1þ exp i φ
k
!0 � φ

k
!

� �h i
1� exp i φ

k
!0 � φ

k
!

� �h i
1� exp i φ

k
! � φ

k
!0

� �h i
1þ exp i φ

k
!0 � φ

k
!

� �h i
0B@

1CA:

(11.19)

It contains both diagonal and nondiagonal elements. In the NSO method, one first
needs to postulate the set of “coarse-grained” variables for which a closed set of
equations of motion is assumed to exist. In our case, this is the 2� 2 density matrixbΞþ

k
!Ξ̂

k
!

D E
or, equivalently,

D
k
! ¼ bξþk!1ξ̂ k

!
1

D E
þ bξþk!2ξ̂ k

!
2

D E
� 1,

N
k
! ¼ bξþk!1ξ̂ k

!
1

D E
þ 1� bξþk!2ξ̂ k

!
2

D E
,

g
k
! ¼ bξþk!1ξ̂ k

!
2

D E
¼ bξþk!2ξ̂ k

!
1

D E∗
:

(11.20)

Note that the function g
k
! is complex. The generalized Boltzmann equation to

second order in V reads (Auslender & Katsnelson, 2007)
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∂D
k
!

∂t
þ eE

ℏ

∂D
k
!

∂kx
¼ � 2π

ℏ

X
q
!

V
k
!
, q!

��� ���2 cos 2 φ
k
! � φq

!

2

� �
δ ε

k
! � εq!

� �
D

k
! � Dq

!
� �

,

(11.21)

∂N
k
!

∂t
þ eE

∂N
k
!

∂kx
�
2eE sin ϕ

k
!

ℏk
Img

k
!

¼ 2π
ℏ

X
q
!

V
k
!
, q!

��� ���2 1
π
sin φ

k
! � φq

!
� �

Regq
!

1
εq! þ ε

k
!
þ 1
εq! � ε

k
!

 !(

� cos 2
φ
k
! � φq

!

2

� �
N

k
! � Nq

!
� �

þ sin φ
k
! � φq

!
� �

Imgq
!

	 
�
δ ε

k
! � εq!

� �
,

(11.22)

∂g
k
!

∂t
� 2ivkg

k
! þ eE

ℏ

∂g
k
!

∂kx
þ iE

2ℏk
N

k
! � 1

� �
sin φ

k
!

¼ � π
ℏ

X
q
!

V
k
!
, q!

��� ���2 � i

2
sin φ

k
! � φq

!
� �

Dq
! δ ε

k
! � εq!

� �
þ i

π
1

ε
k
! � εq!

" #(

þ 2 cos 2
φ
k
! � φq

!

2

� �
g
k
! � gq

!
� �

δ ε
k
! � εq!

� �
þ i

π

g
k
! þ gq

!

ε
k
! � εq!

" #

þ 1
2π

Nq
!

ε
k
! þ εq!

sin φ
k
! � φq

!
� �

� 2i
π

g
k
! þ gq

!∗

ε
k
! þ εq!

sin 2
φ
k
! � φq

!

2

� �)
, (11.23)

where ε
k
! ¼ ℏvk and the electric field E is supposed to be directed along the x-axis.

The current is expressed in terms of these functions as

jx ¼ ev
X
q
!

Nq
! cos φq

! þ 2 sin φq
!Im gq

!
� �

: (11.24)

The Eq. (11.21) is decoupled from Eq. (11.22) and (11.23) and is formally
equivalent to the usual Boltzmann equation (11.1), (11.4), and (11.6), but the other
two equations have an essentially different structure. The most important differ-
ence is that the “collision integral” now contains not only “dissipative” terms with

δðε
k
! � εq!Þ but also “reactive” terms with 1=ðε

k
! � εq!Þ. These terms are associated
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with virtual interband transitions, that is, with Zitterbewegung (see Chapter 3). As
a result, the linearized kinetic equations are singular, and their solutions contain
logarithmic divergences at small enough chemical potential μ and temperature T.
For the case of the contact potential V

k
!
, q!

¼ constant, these integral equations can

be solved exactly (Auslender & Katsnelson, 2007).
First, let us neglect off-diagonal terms, that is, g

k
!. Then we will have the

standard Boltzmann equation for the Dirac fermions and the corresponding expres-
sion for the resistivity (6.23) with the inverse Drude mean-free-path time (Shon &
Ando, 1998)

1
τ
k
!
¼ π
ℏ

X
q
!

V
k
!
, q!

��� ���2 sin 2 φ
k
! � φq

!
� �

δ ε
k
! � εq!

� �

¼
πε

k
!

2πℏvð Þ2 nimp

ð2π
0

dφ u 2k sin
φ

2

� ���� ���2 sin 2φ (11.25)

where u(q) is the Fourier component of u(r) from Eq. (11.11).
If we now find the off-diagonal terms of the density matrix g

k
!, by iterations we

will see that they have a smallness in the parameter

λ ¼ ℏ
εFj jτ kFð Þ �

e2ρB
h

, (11.26)

where ρB is the resistivity (6.23) and (11.25) calculated by applying the ordinary
semiclassical Boltzmann equation. If we go closer to the neutrality point the off-
diagonal terms are divergent. For the case of the contact potential, the exact
solution of the integral equations mentioned previously gives a typical energy
scale (Auslender & Katsnelson, 2007)

εK ¼ W exp � πh
e2ρB

� �
, (11.27)

where W is a cut-off energy of the order of the bandwidth. The conventional
Boltzmann equation is valid if

jεFj, T » εK. (11.28)

The subscript K in Eq. (11.27) refers to Kondo, due to a formal similarity
between the energy scale discussed here and the Kondo effect in the scattering
of electrons in metals by a magnetic impurity (Kondo, 1964; Hewson, 1993). In
that case, due to spin-flip processes involved in the scattering, a resonant singlet
state is formed (“Kondo resonance”), which, being considered perturbatively, leads
to logarithmic corrections in the temperature dependences of various physical
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quantities. It is important that the spin-up and spin-down states of the impurities
are degenerate. A magnetic field kills this degeneracy and suppresses the Kondo
effect. The scattering potential (11.19) contains off-diagonal matrix elements
between electron and hole bands. At μ = 0, these bands are degenerate, and an
analog of the Kondo effect arises, making the standard Born approximation
insufficient. A finite chemical potential μ plays the same role as the magnetic field
in the Kondo effect. The condition (11.28) guarantees that all singularities are
suppressed. One can see that this is equivalent to the condition

λ « 1, (11.29)

which is the desired criterion of applicability of the standard semiclassical Boltz-
mann theory. In the vicinity of the neutrality point we are in the “strong-coupling”
regime. Note that Eq. (11.21) through (11.23) is probably insufficient in this case. As
was emphasized previously, in the situation without any smallness of disorder, other
methods have to be applied. They will be briefly discussed later in this chapter
(Section 11.7). The main role of the approach considered here is that it justifies the
use of the standard Boltzmann equation under the condition (11.29).

Note that these “Kondo” logarithms are related to the divergence of ∂Σ/∂E
at the neutrality point Eq. (10.79). From another point of view and in a
different context (Dirac fermions in d-wave superconductors), these logarithms
were discussed by Lee (1993), Nersesyan, Tsvelik, and Wenger (1994), and
Ziegler (1998).

Thus, not too close to the neutrality point, namely at

σ ¼ 1
ρ
»
e2

h
, (11.30)

the interband transitions are negligible. If we assume, to be specific, that the Fermi
energy lies in the electron band, then only the (1,1) matrix element of the current
operator and that of the scattering potential are relevant:

j
k
!
x

� �
1,1

¼ ev cosφ
k
!, (11.31)

V 0
k
!
k
!0

� �
1,1

¼ V
k
!
k
!0

1þ exp i φ
k
!0 � φ

k
!

� �h i
2

: (11.32)

Let us consider the most general form of the scattering potential V
k
!
k
!0 in

Eq. (11.17):

V
k
!
k
!0 ¼ V ð0Þ

k
!
k
!0
þ V

!
k
!
k
!0 σ

!
: (11.33)
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Then, the effective scattering potential will be

Veff

k
!
k
!0
¼ V 0

k
!
k
!0

� �
1,1

¼V 0ð Þ
k
!
k
!0

1þ exp i φ
k
!0 �φ

k
!

� �h i
2

þVz

k
!
k
!0

1� exp i φ
k
!0 �φ

k
!

� �h i
2

þ Vx

k
!
k
!0 þiVy

k
!
k
!0
Þexp �iφ

k
!

� �
þ Vx

k
!
k
!0 �iVy

k
!
k
!0
Þexp iφ

k
!0

� �
:

��
(11.34)

Thus, under the condition (11.30) we have a single-band problem with the unper-
turbed Hamiltonian

Ĥ0 ¼
X
k
!

ℏvkξ̂þ
k
! ξ̂

k
!, (11.35)

current operator

ĵx ¼
X
k
!

ev cosφ
k
!bξþ

k
! ξ̂

k
! (11.36)

and scattering operator

Ĥ
0 ¼

X
k
!

Vef

k
!
k
!0
ξ̂þ
k
! ξ̂

k
!0 , (11.37)

where we will omit the label “1” for electron operators. In the next section we will
present a convenient and general tool that can be used to find the resistivity in this
problem.

11.2 The Kubo–Nakano–Mori formula for resistivity

In general, the linearized Boltzmann equation is an integral equation that can only
be solved exactly in some special cases (e.g., for contact interaction uð r! �R

!
1Þ in

Eq. (11.11)). Usually, a variational approach (Ziman, 2001) is used. However,
within the Born approximation there is a more straightforward way to calculate
transport properties. It is based on the use of the Kubo–Nakano–Mori formula (Kubo,
1957; Nakano, 1957; Mori, 1965) for the resistivity. It gives exactly the same result as
the solution of Boltzmann equation by the variational approach but in a technically
simpler way. Since this method seems not to be well known in graphene community,
we will present it here following Mori (1965). It will allow us also to illustrate the
idea of coarse graining, which is fundamental for the nonequilibrium statistical
mechanics and which was discussed preliminarily in the previous section.

Let us start with the Kubo formula (3.7) for σxx. It can be rewritten as

σxx ωð Þ ¼ β
ð∞
0

dt exp iωtð Þ ĵx tð Þ; ĵx
� 

, (11.38)
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where

Â; B̂
�  ¼ 1

β

ðβ
0

dλ exp λĤ
� 

Â exp �λĤ
� 

B̂
þD E

: (11.39)

Here, Ĥ is the Hamiltonian of the system and we put the area of the sample equal

to 1. Importantly, if we consider operators Â
� �

as vectors in some linear space,
Eq. (11.39) determines the scalar product in this space and satisfies all of the
axioms of the scalar product.

The operator equation of motion is

dÂ tð Þ
dt

¼ iL̂Â tð Þ, (11.40)

where

L̂Â � Ĥ ; Â
� �

(11.41)

is the Liouville (super) operator. “Super” means that it acts as an operator in the
vector space of quantum-mechanical Hermitian operators. Here we put ℏ = 1 for
simplicity.

Let us assume that Â
� �

form a set of operators such that their dynamics is

closed, that is, Â tð Þ� �� �
at any time t is determined by initial conditions

Â 0ð Þ� �� � � Â
� �� �

. This implies the coarse-grained dynamics. A technical
advantage of Mori’s approach is that we use far fewer operators than in the kinetic
equation, just current operators, but with almost the same accuracy.

Since Eq. (11.39) defines the scalar product in our vector space, one can

introduce a projection operator of any set of operators Ĝ
� �

on the initial set Â
� �

:

P̂0Ĝ ¼ Ĝ; Â
� � Â; Â� �1� Â, (11.42)

where the dot denotes the matrix product, e.g.,

Ĝ; Â
� � Â� �

i ¼
X
j

Gi; Âj

� 
Âj (11.43)

and i and j label operators within the set Â
� �

. Thus, Â tð Þ can be represented as a

sum of “projective” and “perpendicular” components with respect to Â
� �

:

Â tð Þ ¼ Ξ0 tð ÞÂ þ Â
0
tð Þ, (11.44)

where

Ξ0 tð Þ ¼ Â tð Þ; Â� � Â; Â� �1
(11.45)
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and

Â
0
tð Þ ¼ 1� P̂0

� 
Â tð Þ: (11.46)

Next, we can derive the equation of motion for Â
0
. Acting by 1� P̂0

� 
on

Eq. (11.40) we find

dÂ
0
tð Þ

dt
� iL̂1Â

0
tð Þ ¼ Ξ0 tð Þf̂ 1, (11.47)

where

L̂1 ¼ 1� P̂0
� 

L̂, (11.48)

f̂ 1 ¼ iL̂1Â: (11.49)

It has the formal solution

Â
0
tð Þ ¼

ðt
0

dsΞ0 sð Þf̂ 1 t � sð Þ, (11.50)

where we take into account that Â
0
0ð Þ ¼ 0 and

f̂ 1 tð Þ ¼ exp iL̂1t
� 

f̂ 1: (11.51)

Eq. (11.50) represents a convolution. On taking the Laplace transform

Â zð Þ ¼
ð∞
0

dt exp �ztð ÞÂ tð Þ, (11.52)

we find

Â zð Þ ¼ Ξ0 zð Þ� Â þ f̂ 1 zð Þ� �
: (11.53)

As the next step, we have to repeat the procedure for f̂ 1. It satisfies the equation of
motion

df̂ 1
dt

¼ iL̂1 f̂ 1: (11.54)

We can reproduce it as

f̂ 1 tð Þ ¼ Ξ1 tð Þ� f̂ 1 þ f̂
0
tð Þ, (11.55)

where

Ξ1 tð Þ ¼ f̂ 1 tð Þ; f̂ 1
� � f̂ 1; f̂ 1

� �1
(11.56)
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and

f̂ 01 tð Þ ¼ 1� P̂1
� 

f̂ 1 tð Þ, (11.57)

where P̂1 is the projection operator onto f̂ 1
� �

. Further, we will have for the
Laplace transform,

f̂ 1 zð Þ ¼ Ξ1 zð Þ� f̂ 1 þ f̂ 2 zð Þ� �
, (11.58)

which is similar to Eq. (11.53), and where

f̂ 2 tð Þ ¼ exp iL̂2t
� 

iL̂2 f̂ 1, (11.59)

L̂2 ¼ 1� P̂1
� 

L̂1: (11.60)

Treating f̂ 2 in a similar way, we introduce a new object f̂ 3, etc., so that we will
have a set of quantities f̂ j tð Þ

� �
f̂ 0 ¼ Â
� 

defined iteratively as

f̂ j tð Þ ¼ exp iL̂jt
� 

iL̂jf̂ j�1, (11.61)

where

L̂j ¼ 1� P̂j�1
� 

L̂j�1, L̂0 ¼ L̂, (11.62)

and P̂j is the projection operator onto f̂ j
� �

. The Laplace transforms of f̂ j satisfy the
chain of equations

f̂ j zð Þ ¼ Ξj zð Þ� f̂ j þ f̂ jþ1 zð Þ� �
: (11.63)

As a result, we derive a continued-fraction representation of the correlators
(Mori, 1965):

Ξ0 zð Þ ¼ 1

z� iω0 � Δ2
0Ξ1 zð Þ , (11.64)

Ξ1 zð Þ ¼ 1

z� iω1 � Δ1
2Ξ2 zð Þ , (11.65)

etc., where

iωj ¼ _f j; f j
� � f j; f j

� �1
, (11.66)

Δ2
j = ( fj, fj) � ( fj�1, fj�1)�1. (11.67)

Let us apply this general scheme to the conductivity. We have to choose as the first
step Â ¼ ĵx; ĵy

� 
. Next, we have to calculate ω0. This can easily be done using the

identity
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_̂A; B̂
� �

¼ i

β

ðβ
0

dλ exp λĤ
� 

Ĥ ; Â
� �

exp �λĤ
� 

B̂
þD E

¼ i

β

ðβ
0

dλ
d

dλ
exp λĤ

� 
Â exp �λĤ

� 
B̂
þD E

¼ i

β
exp βĤ

� 
Â exp �βĤ

� 
B̂
þD E

� ÂB̂
þD Eh i

¼ i

β
B̂
þ
, Â

h iD E
,

(11.68)

where we take into account that

Â
� � ¼ Tr exp �βĤ

� 
Â

� �
=Z (11.69)

and implement the cyclic permutation under the trace symbol.
In the absence of a magnetic field, the average values of all of the commutators

of the current operator are zero (in particular σ̂ zh i ¼ 0), so one can conclude that
ω0 = 0. Also, one can conclude by symmetry arguments that

(jα, jβ) = δαβ(jx, jx). (11.70)

Let us stop the procedure at the first step, neglecting f̂ 2 and all higher-order terms.
Then, the result for the conductivity (11.38) will be

σxx ωð Þ ¼ β jx; jxð Þ
�iωþ 1= ji; jxð Þ ĵxĤ

� �
; Ĥ ; ĵx
� �� 

z¼�iω

: (11.71)

Since within the single-band approximation (11.35) through (11.37), the current
operator commutes with Ĥ0, one can replace ĵx; Ĥ

� �
by ĵx; Ĥ

0h i
a result,

Eq. (11.71) takes the form

σxx ωð Þ ¼ β jx; jxð Þ
�iωþ 1=τ ωð Þ , (11.72)

where

1
τ ωð Þ ¼

1
jx; jxð Þ

ð∞
0

dt exp iωtð Þ Fx t � iλð Þ;Fþ
x

� 
(11.73)

and

Fx ¼ ĵx; Ĥ
0h i
: (11.74)
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To calculate (jx, jx) one can neglect the scattering operator Ĥ
0
. Then, taking into

account that ĵx; Ĥ
� � ¼ 0, we have

jx; jxð Þ ¼ j2x
� �

: (11.75)

By substituting Eq. (11.38) into Eq. (11.75) and using Wick’s theorem we find

jx; jxð Þ ¼
X
k

e2v2 cos 2φk bξþk1ξ̂ k1D E
ξ̂ k1bξþk1D E

¼
X
k

e2v2 cos 2φkf εkð Þ 1� f εkð Þ½ �

¼ 1
2β

X
k

e2v2 � ∂f εkð Þ
∂εk

� �
,

(11.76)

where we average cos 2φk ! 1
2. At T « jεFj the result is

β jx; jxð Þ ¼ e2
N εFð Þv2

2
: (11.77)

On comparing Eq. (11.72) and (11.77) with Eq. (6.23) one can see that Eq. (11.72)
is nothing other than the Drude formula, and τ(ω = 0) given by Eq. (11.73) is
nothing other than the mean-free-path time. At ω= 0 it can be simplified, similarly
to the transformation from Eq. (3.7) to Eq. (3.8):

1
τ
¼ 1

2 j2x
� � ð∞

�∞

dt Fx tð ÞFþ
x

� �
: (11.78)

This, together with Eq. (6.23), gives us the Kubo-Nakano-Mori formula for the
resistivity. As has already been mentioned, it is equivalent to the solution of the
semiclassical Boltzmann equation by the variational approach (Ziman, 2001).

By substituting Eq. (11.36) and (11.37) into Eq. (11.74) and (11.78) and
calculating the average using Wick’s theorem, we find, finally (we restore here
the Planck constant), the expression for the momentum relaxation rate of Dirac
fermions:

1
τ
¼ 2π

ℏN εFð Þ
X
k
!
k
!
δ ε

k
! � εF

� �
δ ε

k
!0 � εF

� �
cosφ

k
! � cos φk!

� �2
V eff

k
!
k
!0

��� ���2: (11.79)

Together with Eq. (11.34), this allows us to analyze various scattering
mechanisms.
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11.3 Scattering mechanisms in graphene on a substrate

There are two fundamental experimental facts about the conductivity of graphene
on a substrate. First, the dependence of the conductivity on the charge-carrier
concentration n typically has a V-shape (Novoselov et al., 2004, 2005a; Zhang
et al., 2005). If we introduce the mobility µ via the relation

σ = neμ (11.80)

this means that µ is weakly dependent on the concentration and σ ~ n except in the
close proximity of the neutrality point. Typical results (Novoselov et al., 2005a)
are shown in Fig. 11.1 (note that n is proportional to the gate voltage). This
behavior has been confirmed by numerous works by many experimental groups
and seems to be universal. It does not depend on the type of substrate, but the value
of µ does. Whereas for graphene on SiO2 one typically has μ 	 104 cm2V�1s�1

(Novoselov et al., 2004, 2005a; Zhang et al., 2005), for graphene on hexagonal BN
µ can be an order of magnitude higher (Dean et al., 2010).

Second, for graphene on a substrate, the temperature dependence of conductiv-
ity is extremely weak. If one tries to separate “extrinsic” (due to defects) and
“intrinsic” (e.g., due to electron–phonon interaction) contributions to the mobility
using Matthiessen’s rule (Ziman, 2001)

1
μ Tð Þ ¼

1
μext

þ 1
μint Tð Þ , (11.81)

Fig. 11.1 The dependence of the conductivity of graphene on the gate voltage Vg ~ n.
(Reproduced with permission from Novoselov et al., 2005a.)
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assuming that µext is temperature-independent and µint (T)! 0 at T! 0, one finds
μint 	 (2 � 4) � 105 cm2V�1s�1 (Morozov et al., 2008), which means that the
difference in conductivity between T 	 0 and room temperature is no more than a
few percent. We postpone the discussion of this temperature dependence until the
next section and focus here on the origin of µext.

Importantly, the concentration and temperature dependences of the conductivity
for bilayer graphene are more or less the same as for single-layer graphene
(Novoselov et al., 2006). To discuss this case, we will use the same semiclassical
Boltzmann equation as for the case of single-layer graphene, the only differences
being in the dispersion law and the transformation to electrons and holes (φk ! 2φk
in Eq. (11.19) and (11.34)). In both cases, the inverse relaxation time (11.79) can
be estimated as

1
τ
	 2π

ℏ
N εFð Þ �V kFð Þj j2, (11.82)

where �V kFð Þ is a typical value of V eff

k
!
k
!0 , at k

!��� ��� 	 k
!0
��� ��� 	 kF. On substituting

Eq. (11.82) into the Drude formula (11.72) and (11.77) we find

σ nð Þ � v2F
�V kFð Þj j2

, (11.83)

where vF = v = constant for the case of single-layer graphene and

vF ¼ ℏkF
m

� n1=2 (11.84)

for the case of bilayer graphene. This means that, to explain the experimentally
observed behavior σ(n), one needs to assume

�V kFð Þj j2 	 constant (11.85)

for the case of bilayer graphene and

�V kFð Þj j2 e 1

kF
2 (11.86)

for the case of single-layer graphene.
For randomly distributed defects, one needs to use Eq. (11.14) (assuming the

Born approximation) or the more accurate Eq. (11.15) (assuming only a low
concentration of defects). In the latter case, the answer can be expressed in terms
of scattering phases; see Eq. (6.23) through (6.26) for the case of single-layer
graphene and Eq. (6.54) for the case of bilayer graphene.
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Up to now we have not taken into account the screening effects (see Section

7.7). Within the random phase approximation (RPA), the scalar potential V 0ð Þ
k
!
k
!0

in

Eq. (11.34) is replaced by

V sð Þ
k
!
k
!0

¼
V 0ð Þ

k
!
k
!0

ε q ¼ k
! � k

!0
��� ���;ω ¼ 0

� � : (11.87)

Beyond the RPA, so-called vertex corrections should be taken into account, but we
will not discuss them here; this simple theory will suffice just for estimations. At
the same time, there is no screening of the vector potential V

!
k
!
k
!0 (Gibertini et al.,

2010).
Let us restrict ourselves to the case of the scalar potential only and use

Eq. (11.14). Thus, Eq. (11.79) will take the form (11.25), with the replacement
u(q)! u(q)/ε(q). On introducing the new variable x= sin(φ/2) one can rewrite this
equation as

1
τ kFð Þ ¼

4kF
πℏv

nimp

ð1
0

dxx2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p u 2kFxð Þ
ε 2kFx; 0ð Þ
���� ����2: (11.88)

Note that only ε(q, 0) with q < 2kF is involved in Eq. (11.88). In this regime, the
RPA coincides with the Thomas–Fermi approximation (see Eq. (7.107)), thus

ε 2kFx; 0ð Þ ¼ εext þ 2e2

ℏv
1
x

(11.89)

and does not depend on kF.
The behavior (11.86) is provided by Coulomb impurities, where

u qð Þ ¼ 2πZe2

q
: (11.90)

Moreover, it also takes place with the replacement of the potential u by the
T-matrix; see Eq. (8.18) and (8.19). Therefore, it is very natural to assume that
charge impurities determine the electron mobility in graphene on a substrate
(Nomura & MacDonald, 2006; Ando, 2006; Adam et al., 2007; Peres, 2010; Das
Sarma et al., 2011). Quantitative estimations for the case of graphene on SiO2

(εext 	 2.5) give (Adam et al., 2007)

σ nð Þ 	 20e2

h

n

nimp
, (11.91)

where four current channels (two spins and two valleys) are taken into account.
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Indeed, an intentional addition of charge impurities (potassium adatoms) to
graphene leads to a decrease of the electron mobility, in good agreement with
the theory described earlier (Chen et al., 2008). At the same time, there is convin-
cing experimental evidence that this is not the main factor restricting electron
mobility in standard exfoliated graphene samples on a substrate.

The main argument is that the electron mobility is relatively weakly changed in
an environment with a high dielectric constant and, thus, very large εext, e.g., after
covering graphene with water, ethanol or other polar liquids, or when using
substrates with large ε (Ponomarenko et al., 2009). In particular, the mobility in
graphene on SrTiO3 (which has a dielectric constant growing from ε	 300 at room
temperature to ε 	 5,000 at liquid-helium temperature) is of the same magnitude as
that for graphene on SiO2 and very weakly dependent on temperature (Couto,
Sacépé, & Morpurgo, 2011). Of course, the screened Coulomb interaction in such
a situation should be strongly suppressed and strongly temperature-dependent.

It was suggested by Katsnelson, Guinea, and Geim (2009) that the reason why
charged adsorbate adatoms on graphene can be not very important for the electron
mobility is their strong tendency to form clusters. Indeed, density-functional
calculations (Wehling, Katsnelson, & Lichtenstein, 2009b) show that the more
charged the adsorbate species, the weaker its chemical bond with graphene and
the lower its migration barriers. This means that strongly bonded and immobile
adsorbates have very small charge transfer to graphene and, thus, small effect-
ive Z, whereas impurities with Z 
 1 can be kept more or less randomly
distributed only at low enough temperatures. This was found to be the case
for potassium atoms by Chen et al. (2008). The clusterization suppresses the
scattering cross-section per impurity by orders of magnitude (Katsnelson,
Guinea, & Geim, 2009).

The effect described here was confirmed experimentally by McCreary et al.
(2010). They deposited gold adatoms onto graphene and observed their clusteriza-
tion, with a simultaneous growth of the electron mobility.

Before discussing other possible scattering mechanisms, we need to say a
few words about the case of bilayer graphene. Actually, for any isotopic two-
dimensional case, the density of states at the Fermi energy is

N EFð Þ ¼ gvgs
2π

ð∞
0

dk kδ εF � ε kð Þð Þ ¼ gsgv
2π

kF
ℏvF

; (11.92)

where

vF ¼ 1
ℏ

∂ε
∂k

� �
k¼kF

(11.93)
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and we have restored the spin and valley degeneracy factors. As a result, the
inverse screening radius is, instead of being given by Eq. (7.108) for single-layer
graphene,

κ ¼ gsgv
e2kF
ℏvFεext

(11.94)

and, thus,

ε 2kFx; 0ð Þ ¼ εext þ gsgve
2

ℏvF

1
2x

: (11.95)

For the case of bilayer graphene, κ » kF since vF ! 0 at n! 0. Actually, this is the
case even for single-layer graphene if εext is not too large. Therefore, vF is
cancelled out from Eq. (11.83) and we have an estimation

σ nð Þ � 1

nimp u kFð Þj j2 , (11.96)

which is valid both for single-layer and for bilayer graphene. This means that for
the same type of purely scalar potential scattering, the concentration dependence of
the conductivity is the same. Strictly speaking, this is true only within the Born
approximation, and for the case of strong scatterers there will be some difference
(see later). The numerical coefficients can be different since, in the case of bilayer
graphene, one has to make the replacement (φ! 2φ in Eq. (11.32) and, as a result,
the factor cos2(φ /2) is replaced by cos2 φ. Thus, for the same electron concen-
tration and the same scatterers, the ratio of the resistivity of single-layer graphene
to that of bilayer graphene is

ρ1
ρ2

¼ Φ1

Φ2
, (11.97)

where

Φ1 ¼
ð1
0

dxx4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
u 2kFxð Þj j2

Φ2 ¼
ð1
0

dxx4 1� 2x2ð Þ2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p u 2kFxð Þj j2

(see Eq. (11.88) and (11.95)).
Another potentially important source of electron scattering is ripples (see

Chapter 10). They create both a random vector potential (10.7) and a random
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scalar potential (10.8). By substituting these expressions into Eq. (11.34) and
following the analysis of Sections 10.2 and 10.3 one finds that

�V kFð Þj j2 � F q 	 kFð Þ, (11.98)

where the correlation function F is given by Eq. (10.28). For intrinsic (thermally
induced) ripples, one needs to use Eq. (10.29). Thus, for the case of not-too-small
doping, when

kF » q
∗, (11.99)

one has (Katsnelson & Geim, 2008)

ρ 	 h

e2
T

κa

� �2 ln q∗að Þj j
n

: (11.100)

At room temperature, this has the correct 1/n dependence and corresponds to the
correct order of magnitude for the mobility μ � 104cm2V�1s�1. There are two
problems, however. First, the mobility is weakly temperature dependent. There-
fore, Katsnelson and Geim (2008) suggested that there is a mechanism of freezing
(quenching) of the ripples and, hence, that they keep the structure corresponding to
some quenching temperature Tq. If one makes the replacement T! Tq of the order
of room temperature in Eq. (11.100), it seems to explain µext reasonably well.
Moreover, if one assumes that the large-scale ripple structure is frozen, but flexural
phonons can be excited within the ripples, it can also explain the temperature
dependence of µint (Morozov et al., 2008).

The weak temperature dependence of the ripple structure for graphene on
SiO2 has been confirmed by scanning tunneling microscopy (STM) experiments
(Geringer et al., 2009). However, the origin of this quenching is still unknown. It
was suggested and confirmed by density-functional calculations (Boukhvalov &
Katsnelson, 2009b) that ripples can be stabilized by covalently bonded adatoms
and admolecules. San-José, González, and Guinea (2011) proposed an intrinsic
mechanism of ripple stabilization that is based on the interactions of ripples with
conduction electrons. The absence of a detailed theory of the quenching seems to
be the weakest point of the idea that the ripples can be the main limiting factor for
electron mobility, whereas from the experimental point of view this possibility
cannot be excluded. Anyway, as will be discussed in the next section, intrinsic
ripples are probably the main limiting factor for the electron mobility in freely
suspended graphene samples.

Another important question within this scenario is that of whether the frozen
ripples on a substrate have the same structure as intrinsic ripples or not. The results
from the first two scanning-probe studies for graphene on SiO2 (Ishigami et al.,
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2007; Stolyarova et al., 2007) indicated that these ripples repeat the roughness of
the substrate approximately, whereas in the later work by Geringer et al. (2009) for
the same system, two types of ripples were found: a first type following the
roughness of the substrate and a second type similar to the intrinsic ripples.

It is important to note that the first type seems to be irrelevant for the electron
mobility. Indeed, let us consider a general type of correlation function,

h r
!� �

� h 0ð Þ
h i2� �

� r2H : (11.101)

Then,

hq
!

��� ���2� �
� q�2 1þHð Þ (11.102)

and for 2H < 1 the correlation function F(q) in (10.28) has a finite limit at q = 0,
thus,

�V q ¼ 0ð Þj j2
D E

	 ℏv
a

� �2 z4

R2 , (11.103)

where z and R are the characteristic height and radius of ripples, respectively. This
leads to a concentration-independent and very small contribution to the resistivity

ρ 	 h

4e2
z4

R2a2
: (11.104)

For 2H > 1,

ρ � n1�2H; (11.105)

and for 2H = 1,

ρ � ln2(kFa) (11.106)

(Katsnelson & Geim, 2008). For the roughness of the substrate, one could
expect 2H 	 1 (Ishigami et al., 2007). Only frozen ripples with 2H 	 2 (such as
intrinsic ripples at not too large distances r) are interesting as a scattering
mechanism.

Another important potential source of scattering is resonance scattering (see
Sections 6.5 and 6.6). They give a concentration dependence of the conductivity
that is very close to linear (see Eq. (6.103)), that is, a weakly concentration-
dependent mobility

μ � ln2(kFa). (11.107)
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At least in some cases this reproduces the experimental data better than does
just constant mobility (Peres, 2010; Wehling et al., 2010a; Couto, Sacepe, &
Morpurgo, 2011). This is certainly the case when vacancies are created in graphene
by ion bombardment (Chen et al., 2009), but, as discussed in Section 6.5, it is very
unlikely that there will be any vacancies in graphene if they are not created
intentionally. It was suggested by Wehling et al. (2010a) that the resonant
scatterers in real graphene samples could be due to the formation of chemical
C–C bonds between graphene and organic pollutants on it. Even a very small concen-
tration of such bonds, <10�4, would be sufficient to explain the experimental data.

Zhao et al. (2015) has demonstrated, by straightforward calculation of conduct-
ivity via the Kubo formula, that there are some fingerprints of the resonance
scatterers in comparison with the two other candidate mechanisms. First, they lead
to a much higher degree of electron–hole asymmetry when taking into account the
next-nearest-neighbor hopping t0 	 t/10 (Kretinin et al., 2013). Second, at high
enough concentration of the defects, the mobility in this case demonstrates a
shallow minimum as the function of the hole concentration.

For the case of bilayer graphene, within the parabolic-band approximation one
could expect σ ~ n and µ = constant for the cases of both resonant and generic
impurities (Katsnelson, 2007c); see Section 6.3. Straightforward numerical simu-
lations (Yuan, De Raedt, & Katsnelson, 2010b) show that for the case of resonant
scatterers, this is true only if their concentration is very small. When the width of
the impurity band exceeds 2jt⊥j there is a cross-over to the behavior typical for
single-layer graphene Eq. (11.107).

To conclude this section, we note that one can expect different main scattering
mechanisms in different samples. Currently, it seems that for most situations the
choice is between resonant scatterers and frozen ripples, but charge impurities can
also be relevant if one protects their more or less random distribution and prevents
their clusterization.

11.4 Intrinsic mobility and transport properties of suspended
graphene flakes

In this section we will consider intrinsic mobility in graphene in relation to
electron–phonon interaction (Stauber, Peres, & Guinea, 2007; Mariani & von
Oppen, 2008, 2010; Morozov et al., 2008; Castro et al., 2010b; Ochoa et al.,
2011). Here, we will follow the last two papers.

The inelastic scattering processes should satisfy the momentum- and energy-
conservation laws. For single-phonon processes this means

ε
k
! ¼ ε

k
!0 � ℏωq

!, (11.108)
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where

k
!0 ¼ k

! � q
!

(see Fig. 11.2(a)). The maximum momentum transfer within a given valley is

q = 2kF, and both electron states k
!��� E and k

!0
��� E

should lie within a layer of the

order of T near the Fermi energy. Thus, if

T > ℏω2kF, (11.109)

the scattering processes can be considered almost elastic. The scattering probability
is proportional to the number of thermally excited phonons (virtual phonons do not
contribute to the resistivity; see Ziman (2001)) and is negligible at

ℏω2kF » T. (11.110)

Up to room temperature, this excludes all optical phonons in graphene from our
consideration. It also excludes intervalley scattering processes involving phonons
with q

!	 K
!
(see Section 9.8), since for all branches the condition (11.110) is satisfied

at q
!¼ K

!
and T � 300K (see Fig. 9.1). Thus, we are interested only in acoustic

phonons at q « a�1 (in graphene, kF is always much smaller than a�1). There are three
branches of such phonons, longitudinal (L) and transverse (T) in-plane phonons and
flexural (F) out-of-plane phonons with the dispersion relations (see Section 9.2)

ωL
q
! ¼ vLq, vL ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ þ 2μ

ρ

s
, (11.111)

ωT
q
! ¼ vTq, vT ¼

ffiffiffi
μ
ρ

r
, (11.112)

(a) (b)

Fig. 11.2 Momentum transfer processes for single-phonon (a) and double-phonon
(b) scattering processes.
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ωF
q
! ¼

ffiffiffi
κ
ρ

r
q2, (11.113)

where ρ is the mass density. Keeping in mind real parameters for graphene, we
can estimate theBloch–Grüneisen temperature,TBG=ℏω2kF, for the various branches:

TL
BG ¼ 57

ffiffiffi
n

p
K, TT

BG ¼ 38
ffiffiffi
n

p
K, TF

BG ¼ 0:1nK, (11.114)

where n is expressed in units of 1012 cm�2. At T > TBG (11.109), phonons can be
considered classically. One can see that for flexural phonons this is actually the
case for any practically interesting temperatures.

The electron–phonon interaction in graphene originates from two sources: the
electrostatic potential (10.8), which should be substituted into Eq. (11.17),
and the vector potential (10.7),modulating the electron hopping.However, the deform-
ation tensor ûαβ should be considered as an operator. It is given by Eq. (9.62), and
the operators ûα and ĥ are expressed in terms of the corresponding phonon operators
by Eq. (9.9). The resulting Hamiltonian takes the form (Ochoa et al., 2011)

Ĥe�ph ¼
X
k
!
k
!0

�
â
k
!þâ

k
!0 þ ĉ

k
!þĉ

k
!0

�(X
υq
!
V1, q!

υ

	
b̂ q

!υ þ
�
b̂�q

!υ

�þ

δ
k
!0, k

!�q
!þ

þ
X
q
!
q
!0
V1, q!q

!0
F b̂ q

!
F þ b̂�q

!
F

� �þ	 

b̂ q

!0
F þ b̂�q

!0
F

� �þ	 

δ
k
!0, k

!�q
!�q

!0

9=;þ

þ
X
k
!
k
!0

X
υq
!
V2, q!

υâþ
k
! ĉ

k
!0

8<: b̂ q
!
υ þ b̂�q

!
υ

� �þ	 

δ
k
!0, k

!�q
!þ

þ
X
q
!
q
!0
V2, q!q

!0
Fâþ

k
! ĉ

k
!0 b̂ q

!
F þ b̂�q

!
F

� �þ	 

b̂ q

!0
F þ b̂�q

!0
F

� �þ	 

δ
k
!0, k

!�q
!�q

!0 þ H:c:

)
(11.115)

where υ = L; T, subscripts 1 and 2 label the terms originating from the scalar
potential (10.8) and from the vector potential (10.7), respectively; and â

k
! and ĉ

k
!

are electron annihilation operators for sublattices A and B, respectively. The matrix
elements are

VL
1, q! ¼ g

ε q; 0ð Þ iq
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ

2ρΩωL
q
!

s
,

VT
1, q! ¼ 0,
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VF
1, q!q

!0 ¼ � g

ε q
! þ q

!0�� ��; 0� � qq0 cos φq
! � φq

!0

� � ℏ

4ρΩ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ωF

q
!ωF

q
!0

q ,

VL
2, q! ¼ ℏvβ

2a
iq exp 2iφq

!
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ

2ρΩωL
q
!

s
,

VT
2, q! ¼ �ℏvβ

2a
q exp 2iφq

!
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ

2ρΩωT
q
!

s
,

VF
2, q!q

!0 ¼ �ℏvβ
4a

qq0 exp i φq
! � ϕq

!
� �h i ℏ

2ρΩ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ωF

q
!ωF

q
!0

q , (11.116)

where Ω is the sample area and we take into account the screening of scalar potential
by the static dielectric function (cf. Eq. (11.87)). Note that all matrix elements tend to
zero at q ! 0, as usual for the interaction with acoustic phonons (Ziman, 2001).

One can see that the electron–phonon interaction with flexural phonons does not
involve single-phonon processes but only two-phonon processes. This follows
from the structure of the deformation tensor (9.62). Single-flexural-phonon
processes do arise in deformed samples with some external profile h0(x, y) (Castro
et al., 2010b; Ochoa et al., 2011).

The resistivity can be found using the Kubo–Nakano–Mori formula (or,
equivalently, by derivation and approximate solution of the Boltzmann equation).
First, we have to substitute the operator Ĥ e�ph instead of Ĥ

0
into Eq. (11.74)

and (11.78). The time dependence of the phonon operators is (Vonsovsky &
Katsnelson, 1989)

b̂ q
! tð Þ ¼ b̂ q

! exp �iωq
!t

� �
,

b̂þ
q
! tð Þ ¼ b̂þ

q
! exp iωq

!t
� �

: (11.117)

Next, we decouple the electron and phonon operators (this corresponds to the
lowest-order approximation in Ĥ e�ph) and assume that the phonons are in
equilibrium:

b̂
þ
q
! b̂ q

!
D E

¼ Nq
! ¼ 1

exp ℏωq
!=T

� �
� 1

,

b̂ q
!b̂þ

q
!

D E
¼ 1þ Nq

!:

(11.118)
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This means that we neglect the effects of phonon drag, which makes the phonon
system a nonequilibrium one in the presence of an electric current. It is known
(Ziman, 2001) that this effect is usually not relevant for the resistivity but may be
crucially important for the thermoelectric power. We will not consider it here.

At T > TL,T
BG the one-phonon scattering can be considered classically, that is,

one can put

Nq
! 	 1þ Nq

! 	 T

ℏωq
!

(11.119)

and neglect the phonon frequency in the energy-conservation law. The latter can be
done, actually, at any temperature, since ε

k
!þq

! � ε
k
!

��� ��� » ℏωq
!, except in the case

k
!
⊥ q

!, which does not contribute to the integral characteristics.
In this case, we have just the same situation as for the scattering by static

disorder Eq. (11.79), with

Vef

k
!
k
!0

��� ���2e u
!

k
!
k
!0

��� ���2� �
¼ T

Mω2

k
!�k

!0

: (11.120)

An accurate calculation gives the result (Castro et al., 2010b)

1
τ
	 g2eff

v2L
þ β2ℏ2v2

a2
1

v2L
þ 1

v2T

� �	 

kFT

2ρℏ2v
, (11.121)

where

gef 	
g

ε q 	 kF; 0ð Þ (11.122)

is the screened coupling constant. As will be shown later, this contribution is
usually much smaller than that due to two-phonon processes (Morozov et al.,
2008). This situation is highly unusual; normally, both in a three-dimensional and
in a two-dimensional electron gas, single-phonon processes are dominant. It is
reminiscent of the case of electron–magnon scattering in half-metallic ferromag-
nets, where single-magnon processes are forbidden and the temperature depend-
ence of the resistivity is determined by two-magnon processes (Irkhin &
Katsnelson, 2002).

The energy and momentum conservation for the two-phonon scattering pro-
cesses can involve phonons with large enough wave vectors (see Fig. 11.2(b));
thus, it is not clear a priori that even at T > TF

BG (which is, actually, always the
case) the classical picture is correct. Nevertheless, as we will see later, this is true,
and quantum-mechanical treatment of two-phonon scattering gives approximately
the same answer (11.100) as the classical consideration of intrinsic ripples
(Morozov et al., 2008).
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An accurate treatment of the two-phonon processes leads to the expression
(Castro et al., 2010b)

1
τ
¼ 1

32π3ρ2vkF

ð∞
0

dK
D Kð Þ½ �2K2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2F � K2

4

r ð∞
0

dq
q3Nq

ωq

�
ðKþq

K�qj j

dQ
Q3 NQ þ 1ð Þ

ωQ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2q2 � K2 þ q2 � Q2

� 2
4

s ,

(11.123)

where we omit the superscript F for ωq and Nq.
Here

D Kð Þ½ �2 ¼ g2

ε2 K; 0ð Þ 1� K2

4k2F

� �
þ βℏv

2c

� �2

: (11.124)

One can see that there is no backscattering (K = 2kF) for the scalar potential, but
there is backscattering for the vector potential, as there should be (see Sections 4.2
and 6.1).

For the case q∗ « kF « qT, where q
∗ is the “Ginzburg” vector, as in Eq. (11.99),

and qT is determined by the condition

ωF
qT

¼ T (11.125)

the result is (Castro et al., 2010b)

1
τ
¼

�D2T2

64πℏ2κ2vkF
ln

T

ℏω∗

� �
, (11.126)

where ω∗ ¼ ωF
q∗ and �D is some average value of D(K). The cut-off at q 	 q* is

necessary since, as we know, the harmonic approximation is not applied to
the flexural phonons at q � q∗. Eq. (11.126) agrees with the estimation
(11.100). This justifies our statement that at qT » kF, which is equivalent to T » TBG

F,
“two-flexural-phonon” scattering means the same as “scattering by intrinsic
ripples.” The case of low temperatures where anharmonic coupling of in-plane
and out-of-plane modes is crucially important (see Sections 9.3, 9.4) was studied in
detail by Mariani and von Oppen (2008, 2010), Castro et al. (2010b), and Gornyi,
Kachorovskii, and Mirlin (2012). We will not discuss it since it is not relevant for
the current experimental situation.

By comparing Eq. (11.121) and (11.126) one can estimate that the two-phonon
processes dominate at
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T > Tc(K) 	 57n(1012cm�2) (11.127)

(Castro et al., 2010b). A quantitative comparison of single-phonon and two-
phonon contributions is shown in Fig. 11.3.

The theory for the case of bilayer graphene was developed by Ochoa et al.
(2011). Both the temperature dependence and the concentration dependence of the
resistivity are the same as for the case of single-layer graphene, accurately to
within some numerical coefficients.

As has already been mentioned, for graphene on a substrate, the intrinsic
temperature-dependent contribution to the resistivity is negligible in comparison
with the extrinsic one. The situation is dramatically different for suspended
graphene flakes, for which, after annealing, the defects can be eliminated, and
the mobility at liquid helium temperature can be of the order of 105�106 cm2 V�1 s�1

(Bolotin et al., 2008; Du et al., 2008; Castro et al., 2010b; Mayorov et al., 2011a).
In this case, the intrinsic mobility dominates completely.

Typical experimental data are shown in Fig. 11.4. Comparison between theory
and experiment shows (Castro et al., 2010b) that two-flexural-phonon scattering
(or, equivalently, scattering by intrinsic ripples) is probably the main limiting
factor for the suspended samples. It restricts the mobility at room temperature to
a value of the order of 104 cm2 V�1 s�1 (see Eq. (11.100)). However, the mobility
can be increased by expanding the samples. External deformation suppresses
flexural phonons, making them stiffer:

Fig. 11.3 Contributions to the resistivity of single-layer graphene from flexural
phonons (solid line) and from in-plane phonons (dashed line). The electronic
concentration is n = 1012 cm�2.
(Reproduced with permission from Castro et al., 2010b.)
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ρω2 = κq4 + 2(λ + μ)q2u (11.128)

(cf. Eq. (9.148)). Estimations (Castro et al., 2010b) demonstrate that even small
deformations of u � 1% may be sufficient to increase the room-temperature
mobility by an order of magnitude.

Interestingly, the situation in other two-dimensional materials seems to be
different. In single-layered five-group elements (P, As, Sb), at least, the in-plane
phonons are the main limiting factor of intrinsic mobility (Rudenko, Brener, &
Katsnelson, 2016; Rudenko et al., 2019). Graphene seems to be unique in this
respect (a crucial importance of intrinsic ripples), which opens a way to dramatic-
ally improve electron mobility at room temperature, putting it on an atomically flat
substrate such as hexagonal boron nitride (hBN); see Chapter 13. This suppresses
instability of the flexural phonons (Amorim & Guinea, 2013). For the other two-
dimensional materials this probably will not work, since the effect of substrate on
in-plane phonons is expected to be much weaker.

11.5 Edge scattering of electrons in graphene

Consider now the case where scattering centers are situated (completely or
partially) at the edges of graphene (nano)ribbons. We restrict ourselves only by
the case of relatively weak disorder and relatively broad ribbons when

LkF » 1, (11.129)

where L is the width of the ribbon. In this case the semiclassical approach based on
the Boltzmann equation is applicable. This approach was broadly used for decades

Fig. 11.4 (a) The resistivity of suspended single-layer graphene for T = 5, 10, 25,
50, 100, 150, and 200 K. (b) Examples of μ(T). The inset shows a scanning
electron micrograph of one of the suspended devices.
(Reproduced with permission from Castro et al., 2010b.)
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to study surface scattering effects in metals and semiconductors (for review, see
Okulov & Ustinov, 1979; Falkovsky, 1983). The situation of graphene is distinct
due to the different character of boundary conditions at the edges. In this section
we follow the work by Dugaev and Katsnelson (2013).

Let us assume that graphene is situated in the region 0 < x < L, electric field is
parallel to y axis, does not depend on time, and magnetic field is absent. Then, the
Boltzmann equation (11.1) – (11.3) takes the form

eEvy
∂f 0 ε

k
!

� �
∂ε

k
!

þ vx
∂δf
∂x

¼ � δf
τ
, (11.130)

where we assume linearization (11.7) and the simplest approximation for the
collision integral (11.8):

I
k
! f½ � ¼ � δf

τ
(11.131)

(for brevity, we skip the argument x and subscript k
!
of the distribution function δf).

The general solution of Eq. (11.130) for the electrons moving toward right and left
edges (vx > 0 and vx < 0, respectively) can be written as

δf> xð Þ ¼ �eEvyτ
∂f 0
∂ε

þ C>e�x=lx , (11.132)

δf< xð Þ ¼ �eEvyτ
∂f 0
∂ε

þ C<e x�Lð Þ=lx , (11.133)

where lx = jvxjτ, and C>, C< are integration constants (dependent on k
!
), which

should be found from boundary conditions. They have the form (Okulov &
Ustinov, 1979; Falkovsky, 1983)

vxj jδf> x ¼ 0ð Þ ¼ vxj jδf< x ¼ 0ð Þ þ
X
k
!0

wL k
!
; k
!0

� �
δf< x ¼ 0ð Þ � δf> x ¼ 0ð Þ½ �,

(11.134)

vxj jδf< x ¼ Lð Þ ¼ vxj jδf> x ¼ Lð Þ þ
X
k
!0

wR k
!
; k
!0

� �
δf> x ¼ Lð Þ � δf< x ¼ Lð Þ½ �,

(11.135)

where wL,Rðk
!
; k
!0Þ are scattering probabilities at left (right) edges. It is given by the

standard quantum mechanical expression (11.6) with V being the surface scattering
potential.

308 Scattering mechanisms and transport properties

https://www.cambridge.org/core


The average current density

j ¼ gsgv
e

L

ðL
0

dx
X
k
!

vy δf
< xð Þ þ δf> xð Þ½ � (11.136)

can be expressed, by Eq. (11.132) and (11.133) via the constants C>, C<; the
former can be found from the boundary conditions (11.134) and (11.135). In
general, it requires a solution of integral equations in k

!
space, since the constants

C>, C< depend on k
!
.

Until now, we used just a conventional theory of surface scattering developed
for normal metals. Graphene is specific only at the calculations of the scattering

probabilities wðk!; k!0Þ (for simplicity, we will further assume the same disorder on

both edges wLðk
!
; k
!0Þ ¼ wRðk

!
; k
!0Þ ¼ wðk!; k!0Þ). It turns out that we have essen-

tially different results for different types of boundary conditions.
Let us assume that the edge scattering is due to defects Eq. (11.14), and the

potential of individual defect u(x,y) is atomically sharp in x direction and has a
spatial scale a in y direction; therefore, the surface scattering is suppressed for
jky � ky0j > 1/a. To be specific, we can use the model

u
k
!�k

!0 ¼ V0 exp � ky � ky
0� 2

a2
h i

, (11.137)

For the Berry–Mondragon boundary conditions (5.13) and (5.14), the spinor
electron wave function near the left boundary reads

k
!��� E ¼ Aeik

!
r
! 1

�i

� �
, (11.138)

where A is a renormalization factor. In this case

w k
!
; k
!0

� �
¼ 2π

ℏ
nimpV

2
0δ ℏvk � ℏvk0ð Þ exp �2 ky � ky

0� 2
a2

h i
, (11.139)

irrespective to which sublattice, A or B, the scattering centers belong.
On the other hand, for the zigzag boundary conditions similar to Eq. (5.71)

(which can be considered as generic ones for the case of terminated honeycomb
lattice; see Section 5.3) the A component of the spinor should disappear for x = 0
(or, oppositely, for x = L which does not effect the results). The corresponding
solution of the Dirac equation has the form:

k
!��� E ¼ Aeikyy

sin kxx

�i
kx
k
cos kxxþ i

ky
k
sin kxx

 !
, (11.140)
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and the scattering probability is vanishing for the gliding electrons (kx ! 0). For
the case of defects localized in sublattice A

V Að Þ
k
!
k
!0
¼ Aj j2

ð
dxdysin kxxð Þsin kx

0xð Þei ky
0�kyð ÞyV x;yð Þ	VAkxkx

0exp � ky�ky
0� 2

a2
h i

(11.141)

where VA is some constant (proportional to the square radius of action of the
potential in x direction). Similarly, for the case of defects localized in sublattice B

V Bð Þ
k
!
k
!0

¼ Aj j2 kxkx
0

k2

ð
dxdy cos kxxð Þ cos kx

0xð Þei ky
0�kyð ÞyV x; yð Þ

	 VBkxkx
0 exp � ky � ky

0� 2
a2

h i
,

(11.142)

where VB is proportional to 1/k2. The total scattering probability in this case is
equal to

w k
!
; k
!0

� �
¼ 2π

ℏ
nimpV

2
1k

2
xk

02
x δ ℏvk � ℏvk0ð Þ exp �2 ky � ky

0� 2
a2

h i
, (11.143)

where

nimpV
2
1 ¼ nðAÞimpV

ðAÞ2
1 þ nðBÞimpV

ðBÞ2
1 , (11.144)

where nimp(A,B) is the concentration of defects in the corresponding sublattice.
One can see that depending on the type of boundary conditions at the edges, the

scattering probability either disappears in the limit of gliding electrons or remains
constant; for the case of usual metals the first case is realized (Okulov & Ustinov,
1979; Falkovsky, 1983).

The approach based on separation of the boundary conditions (11.134) and
(11.135) from the collision integral (11.131) does not work for the ballistic
(Knudsen) regime

L » l, (11.145)

(l = vτ is the mean free path) when surface scattering is more important than the
bulk one. The former should be taken explicitly into account in the collision
integral. In particular, in the limit l ! ∞ (the scattering only at the edges) the
distribution function f does not depend on x, and instead of Eq. (11.130) with the
boundary conditions (11.134) and (11.135), we have just one equation

evyE
∂f 0
∂ε

¼
X
k
!0

w k
!
; k
!0

� �
δf<,>

k
!0

� δf>,<
k
!

� �
, (11.146)
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where we assume, again, for simplicity wLðk
!
; k
!0Þ ¼ wRðk

!
; k
!0Þ ¼ wðk!; k!0Þ. The

immediate consequence is that δf k
!
< ¼ δf k

!
>. The integral equation (11.146) can

be solved numerically for the models (11.139) and (11.143) (Dugaev & Katsnel-
son, 2013). The results are shown in Figs. 11.5 and 11.6.

One can see that in the latter case the scattering time is divergent in the limit of
gliding electrons kx ! 0 as τZ / k�2

x , whereas in the former case it is not, and
τBM ! const / L. As a result, for the purely ballistic regime the conductivity of
graphene nanoribbon scales as L2 and L for the case of zigzag (terminated graphene
lattice) and Berry–Mondragon (strongly chemically functionalized edges), respect-
ively (Dugaev & Katsnelson, 2013).

Similar analysis can be also performed for the case of scattering by curved edges
(Dugaev & Katsnelson, 2013), with the same qualitative conclusions.

11.6 Nonlocal transport in magnetic fields

Graphene is unique, in the sense that one can pass continuously from electron
conductivity to hole conductivity without crossing an insulator region. This means
that by applying some small perturbations one can create two subsystems, an
electron one and a hole one, differing by some intrinsic quantum number. The
simplest case of such a perturbation is Zeeman splitting

δ = 2μBB, (11.147)
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Fig. 11.5 Dependence of effective scattering mean time on the scattering angle for
graphene nanoribbon in ballistic regime l ! ∞, for the case of Berry–Mondragon
(BM) boundary conditions. Here, ξ ¼ a2k2F, 1=τ0 ¼ nimpV2

0kF
� 

= 2πℏLvð Þ.
(Reproduced with permission from Dugaev & Katsnelson, 2013.)
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which makes the spin-up charge carriers be holes and the spin-down charge
carriers be electrons (Fig. 11.7(a)). Similar effects can be brought about by valley
polarization, but, for simplicity, we will discuss the effects of spin splitting further.
Thus, we have a very strong coupling of spin and charge degrees of freedom: By
changing the spin direction one can change the sign of charge! This peculiarity of
graphene is probably responsible for one of its salient features, a giant nonlocal
spin transport near the neutrality point (Abanin et al., 2011).

+d /2

–d /2
eF

I

R
N

L 
(k
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Fig. 11.7 (a) Zeeman splitting at the charge neutrality point. (b) Charge current
and spin currents in the presence of the Lorentz force. (c) The nonlocal resistivity
predicted by Eq. (11.177) for the quantum Hall regime (main panel) and for weak
magnetic fields (inset).
(Reproduced with permission from Abanin et al., 2011.)
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Fig. 11.6 Dependence of effective scattering mean time on the scattering angle for
graphene nanoribbon in ballistic regime l ! ∞, for the case of zigzag (Z)
boundary conditions. Here, ξ ¼ a2k2F, 1=τ1 ¼ ðnimpV2

1k
5
FÞ=ð2πℏLvÞ.

(Reproduced with permission from Dugaev & Katsnelson, 2013.)
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The mechanism is the following: Suppose you create a charge current across the
sample in the presence of an external magnetic field (it does not necessarily need to
be strong enough for the system to be in the quantum Hall regime, since the effect
under consideration is actually classical). This charge current consists of spin-up
and spin-down components, which are, due to Zeeman splitting, electron and
hole ones. In the magnetic field they will be deviated in opposite directions,
leading to a spin current perpendicular to the original charge current. The spin
current can propagate without decay for very large distances, since the time of
spin-flip scattering processes τs is normally several orders of magnitude larger
than the Drude relaxation time τ. Then, due to an inverse mechanism, this spin
current creates a voltage. Here we present a phenomenological theory of this
effect (Abanin et al., 2011). Previously, similar physics had been discussed for
the spin Hall effect in conventional semiconductors (Abanin et al., 2009);
however, for the case of graphene the effect is really huge, for the reasons
mentioned earlier.

Let us consider the geometry shown in Fig. 11.8. First, let us ignore the spin
dependence of the conductivity. The relation between the current density and the

electric field E
!¼ �r!φ is

j
!¼ �σ̂ r

!
φ, (11.148)

where

σ̂ ¼ σxx σxy
�σxy σxx

� �
(11.149)

is the conductivity tensor in the presence of a magnetic field, σxy � B. Eq. (11.149)
follows from Onsager’s relations

σαβ(B) = σβα(�B) (11.150)

and the isotropy of macroscopic properties in the xy-plane for the honeycomb
lattice. Let us assume charge injection into the point x = 0, thus the boundary
conditions are

Fig. 11.8 A schematic representation of nonlinear transport (see the text).
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jy y ¼ � L

2

� �
¼ I0δ xð Þ, (11.151)

where L is the sample width.
Owing to the structure of the tensor (11.149), the charge conservation law

r
!
j
!¼¼ 0 (11.152)

is equivalent to the Laplace equation

r2φ(x, y) = 0 (11.153)
with a general solution

φ x; yð Þ ¼
ð∞
�∞

dk

2π
a kð Þ cosh kyð Þ þ b kð Þ sinh kyð Þ½ � exp ikxð Þ: (11.154)

The coefficients a(k) and b(k) should be found from the boundary condition
(11.151), that is,

σxy
∂φ
∂x

� σxx
∂φ
∂y

� �����
y¼�L

2

¼ I0δ xð Þ: (11.155)

The solution is straightforward and gives us the voltage distribution

V xð Þ ¼ φ x;� L

2

� �
� φ x;

L

2

� �
¼ 2I0ρxx

ð∞
�∞

dk

2π
exp ikxð Þ

k
tanh

kL

2

� �
, (11.156)

where ρ̂ ¼ σ̂�1 is the resistivity tensor. On calculating the integral explicitly we
have the final answer

V xð Þ ¼ 2I0ρxx
π

ln coth
πx

2L

� �
	 4I0ρxx

π
exp � π xj j

L

� �
, (11.157)

where, in the last equality, we assume that |xj » L. Experimentally, in graphene a
rather high nonlocal resistivity

R xð Þ ¼ V xð Þ
I0

(11.158)

is observed at jxj 
 5L and even 10L, which cannot be explained by “just” charge
transport (exp(�5π) 	 1.5 � 10�7). It also cannot be explained by transport via
edge states, since it is observed beyond the quantum Hall regime as well.
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So, let us come back to our original statement that the transport properties in
graphene can be anomalously sensitive to the spin projection. In particular, in the
situation shown in Fig. 11.7(a)

(σ1)xy = � (σ2)xy, (11.159)

where subscripts 1 and 2 will be used for spin up and spin down, respectively.
Let us use, instead of Eq. (11.148), two separate Ohm laws for each spin

projection:

j
!
i ¼ �σ̂ ir

!
φi, (11.160)

where σ̂ i has the structure (11.149) and

φi ¼ ϕþ ni
Di

, (11.161)

where

Di ¼ dni
dμ

(11.162)

is the thermodynamic density of states (note that here μ is the chemical potential,
not the mobility, as in the greatest part of this chapter!), and ϕ is the electrostatic
potential. The second term on the right-hand side of Eq. (11.161) describes
diffusion processes in the situation in which spin-up and spin-down electron
densities ni are finite. We will assume the electroneutrality condition

n1 = � n2 = n (11.163)

and separate the total current density j
!
0 and the spin current density j0

!
:

j
!
1,2 ¼ j

!
0� j0

!
: (11.164)

The equation of spin diffusion reads

r
!

j
!0 ¼ �γ n1 � n2ð Þ ¼ �2γn, (11.165)

where γ ¼ τ�1
s is the rate of spin-flip processes. Then we have the following set of

equations (together with Eq. (11.165)):

r
!
ϕþ 1

D1
r! n ¼ �ρ̂1 j

!
0 þ j

!0
� �

, (11.166)

r
!

ϕ� 1
D2

r! n ¼ �ρ̂2 j
!
0� j

!� �
, (11.167)
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r
!

j
!
0 ¼ 0, (11.168)

where ρ̂i ¼ bσ�1
i :

One can exclude r! ϕ from these equations and express the spin current as

j
!0 ¼ �σ̂

1
D1

þ 1
D2

� �
r! nþ ρ̂1 � ρ̂2ð Þ j!0

	 

, (11.169)

where

σ̂ ¼ ρ̂�1, ρ̂ ¼ ρ̂1 þ ρ̂2: (11.170)

On substituting Eq. (11.151) into Eq. (11.146) and taking into account
Eq. (11.137) we find at last the closed equation for the spin density:

r2n� 1

l2s
n ¼ � D1D2

D1 þ D2
r
!

ρ̂1 � ρ̂2ð Þ j!0

h i
, (11.171)

where ls is the spin-diffusion length:

1

l2s
¼ 2γ

σxx

D1D2

D1 þ D2
: (11.172)

It follows from Eq. (11.168) and (11.151) that j0x = 0 and j0y does not depend on y:

j0y = I0δ(x). (11.173)

On substituting Eq. (11.173) into Eq. (11.171) we find a rigorous (within our
model) equation:

r2n� 1

l2s
n ¼ � D1D2

D1 þ D2
ρ̂1ð Þxy � ρ̂2ð Þxy

� �
I0
dδ xð Þ
dx

: (11.174)

If we assume that L « ls we can neglect the y-dependence of n, and Eq. (11.174) is
solved immediately:

n xð Þ ¼ � D1D2

2 D1 þ D2ð Þ ρ1ð Þxy � ρ2ð Þxy
� �h i

�I0 sgnx exp � xj j
ls

� �
: (11.175)

Finally, taking into account that for the thin strip the current is assumed to be
constant in the y-direction, we find

V xð Þ ¼ L ρ1ð Þxyj1x xð Þ þ ρ2ð Þxyj2x xð Þ
h i

¼ L ρ1ð Þxy � ρ2ð Þxy
h i

j0x xð Þ (11.176)

and use Eq. (11.169) for j0x. The final answer for the nonlocal resistance (11.158) is
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R xð Þ ¼ L

2ls
σxx ρ1ð Þxy � ρ2ð Þxy
h i2

exp � xj j
ls

� �
: (11.177)

This formula seems to be in good agreement with the experimental data (Abanin
et al., 2011). Actually, this derivation is very general. The only peculiarity of
graphene is that near the neutrality point the difference (ρ1)xy � (ρ2)xy can be huge
(see Fig. 11.7(c)).

11.7 Beyond the Boltzmann equation: localization and antilocalization

In general, the semiclassical Boltzmann equation does not suffice to describe the
transport properties of a two-dimensional electron gas because of weak localization
effects (Altshuler et al., 1980). They originate from quantum interference effects
between different trajectories passing in opposite directions (Fig. 11.9). The
corresponding correction to the conductivity is of the order of

δσ � � e2

h
Λ, (11.178)

where Λ is a “big logarithm”: At T = 0 it is ln(L/a). These interference effects are
sensitive to the magnetic field (due to the Aharonov–Bohm effect), which results in

Fig. 11.9 Interference between trajectories with opposite directions of electron
motion.
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a large magnetoresistivity. Usually, δσ < 0 and suppression of the interference by
the magnetic field increases the conductivity (negative magnetoresistance). Inelastic
scattering processes also destroy the interference, leading to a cut-off of the loga-
rithm: Λ ! ln (εF/T). In graphene, the magnetoresistance related to the weak
localization is strongly suppressed, in comparison with the case of a conventional
electron gas. This was found by Morozov et al. (2006) and explained by them as the
effect of random pseudomagnetic fields created by ripples (see Chapter 10). Later,
these effects were observed and studied in detail (Tikhonenko et al., 2008, 2009).

Actually, the physics of the weak localization in graphene (McCann et al., 2006)
is very complicated. First, the Berry phase π is involved in the interference
processes, which changes the sign of localization corrections: Instead of weak
localization one can have weak antilocalization. Second, the effects of trigonal
warping break the time-reversal symmetry for a given valley, whereas the inter-
valley scattering processes restore it. Since the trajectories in Fig. 11.9 are related
by time reversal, this symmetry is very important. As a result, depending on the
types of defects in the sample, one can have either weak localization (and negative
magnetoresistance) or weak antilocalization (and positive magnetoresistance). This
prediction (McCann et al., 2006) has been confirmed experimentally (Tikhonenko
et al., 2009). Detailed analysis of the experimental data on weak localization
allows us to separate the contributions of three main mechanisms (Section 11.3):
static pseudomagnetic fields (e.g., created by ripples), charge impurities, and
resonant scattering centers in specific samples (Couto et al., 2014).

Closer to the neutrality point, the localization corrections become of the order of
the Boltzmann conductivity, and the semiclassical approach fails completely. This
happens in a relatively narrow concentration range that is quite difficult to probe
experimentally. Theoretically, the situation also does not look very clear. Earlier
works were reviewed by Evers and Mirlin (2008). Here we just mention some
important, more recent papers: Bardarson et al. (2007, 2010), Titov et al. (2010),
and Ostrovsky et al. (2010). The main results are as follows.

If we do not take into account intervalley scattering (which means that all
inhomogeneities are supposed to be smooth), we never have Anderson
localization, and the conductivity at the neutrality point remains of the order of
minimal metallic conductivity (see Chapter 3) or grows slowly with the sample
size (antilocalization). In particular, random pseudomagnetic fields have no effect
on the value of the minimal conductivity, since they can be eliminated by a gauge
transformation similar to that discussed in Section 3.4 (Ostrovsky, Gornyi, &
Mirlin, 2008). The random mass term (Vzσz in Eq. (11.33)) affects the value of
the minimal conductivity very weakly, except when the average mass is not zero
(hVZi 6¼ 0); in that case, localization is possible (Bardarson et al., 2010). For a
random scalar potential, antilocalization seems to arise (Bardarson et al., 2007).
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In the presence of intervalley scattering, Anderson localization takes place in the
generic case. However, the most interesting case of resonant scatterers such as
vacancies or covalently bonded adatoms (see Chapter 6) requires special consider-
ation, due to the additional “chiral” symmetry (Altland, 2002; Evers & Mirlin,
2008; Ostrovsky et al., 2010; Titov et al., 2010). It seems that in this case
the localization radius diverges at the neutrality point, and the conductivity at
n = 0 remains at the level of the minimal conductivity. All these issues require
further study, both theoretically and, especially, experimentally.

11.8 Hydrodynamics of electron liquid in ultra-pure graphene

Huge progress in the quality of graphene samples allows us to reach the regime
when electron–electron collisions are a more efficient scattering mechanism than
scattering by defects (both in bulk and at the edges)

τee « τp, (11.179)

where τee, τp are the corresponding mean-free times (τp is the time of relaxation of
momentum of the electron system as a whole). Since the electron–electron colli-
sions conserve the total momentum of electron systems (in the absence of Umk-
lapp processes; see Ziman, 2001) and, at the same time, provide efficient
dissipation of energy, the electron motion under the condition (11.179) can be
described as a flow of a viscous liquid. Indeed, at the first step the electron–electron
interactions provide effective thermalization and redistribution of the energy and
momentum within the system of interacting electrons and, at the second step, the
scattering by defects, phonons, edges, etc., decelerate the electron flow as a whole –
the situation reminiscent of conventional hydrodynamics (Landau & Lifshitz,
1987; Falkovich, 2011).

Currently, hydrodynamics of electron liquid in graphene is a quickly developing
field (Briskot et al., 2015; Narozhny et al., 2015; Torre et al., 2015; Bandurin et al.,
2016; Crossno et al., 2016; Levitov & Falkovich, 2016; Lucas et al., 2016;
Pellegrino et al., 2016; Bandurin et al., 2018; Guo et al., 2017; Kumar et al.,
2017; for review, see Lucas & Fong, 2018). Here, we present a very brief
introduction of the basic ideas and results.

The transition from kinetic equation to hydrodynamics is one more example of
the coarse-graining approach (Sections 11.1 and 11.2). If we deal with the spatial
scales of the system larger than typical microscopic scales such as “thermalization
length”

lee = vFτee (11.180)
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(in this section we will use the notation vF for the Fermi velocity of electrons in
graphene, to distinguish it from the velocity of flow of electron liquid) and with the
processes slow enough in comparison with τee then the distribution function
(11.13) reaches a local equilibrium characterizing by quasithermodynamic vari-
ables such as local temperature, local chemical potential, and local drift velocity
weakly dependent on coordinates and time. The behavior of the system under such
conditions is determined by the densities of quasiconserving quantities such as
number of particles, charge, energy, momentum, etc., and one can hope to have the
closed set of equations describing such quantities; for the general scheme, see e.g.,
Zubarev (1974), Akhiezer and Peletminskii (1981), and Kamenev (2011).

In the case of graphene, if we are interested in the unified description of the
system through the neutrality point, the minimal set of macroscopic variables
includes density of electrons (e), density of holes (h), and energy density. The
corresponding currents are the electric current

j
!¼ e

X
k
!

v
!

k
!
,e
f
k
!
,e
� v

!
k
!
,h

f
k
!
,h

� �
, (11.181)

the quasiparticle disbalance current

j
!
d ¼

X
k
!

v
!

k
!
,e
f
k
!
,e
þ v

!
k
!
,h

f
k
!
,h

� �
, (11.182)

and the energy current

j
!
E ¼

X
k
!

ε
k
!
,e
v
!

k
!
,e
f
k
!
, e
þ ε

k
!
,h
v
!

k
!
,h

f
k
!
,h

� �
(11.183)

(Briskot et al., 2015; Narozhny et al., 2015; Lucas et al., 2016). For simplicity, we
will consider the case of strong enough doping (to be specific, we will assume the
electron doping)

εF » T. (11.184)

In this case, one can consider only one-component electron liquid; in some cases (but
not always) one can also separate dynamics of charge from dynamics of energy.

In that case, the former can be described by hydrodynamics of one-component
charged uncompressible liquid with the particle density n = const and the velocity
field v

! ð r!; tÞ, which satisfies the continuity equation

r v
!¼ 0 (11.185)

and Navier-Stokes equation (Landau & Lifshitz, 1987; Falkovich, 2011)
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ρ
∂ v

!

∂t
þ v

!r
� �

v
! þ v

!

τp

" #
¼ F

! þηr2 v
! , (11.186)

where ρ = m∗n is the mass density of electron liquid, η is the viscosity, and F
!
is

the density of external forces (e.g., electromagnetic) acting on electrons. The term
v
!
=τp describes external “friction” of electrons by defects, phonons, etc.
Importantly, m* in the definition of the mass density is the effective mass of the

electron, which determines its acceleration under the effect of external fields. In the
case of single-layer graphene (massless Dirac fermions) it reads

m∗ = ℏkF/vF (11.187)

(compare with Eq. (2.161)). The kinematic viscosity η/ρ can be estimated as the
diffusion coefficient of momentum; for the two-dimensional case it is equal to

η
ρ
¼ v2F

2τee
: (11.188)

For the case of highly degenerate electron liquid (11.184), the time of electron–
electron collisions can be estimated as

ℏ
τee

	 α2
T2

εF
(11.189)

(Abrikosov, 1988; Vonsovsky & Katsnelson, 1989), where α is a dimensionless
interaction parameter; for graphene it is of the order of unity. Note that at the
neutrality point, in the case opposite to Eq. (11.184), one has

ℏ
τee

	 α2T (11.190)

(Fritz et al., 2007; Kashuba, 2008). However, in this case the one-component
hydrodynamics is not applicable, and one needs to write the coupled set of
equations for all three currents (11.181) through (11.183).

For typical experimental situations (doping of the order of 1012 cm–2, tempera-
ture of the order of room temperature), accurate quantitative estimates of τee give
the kinematic viscosity η/ρ 	 0.1 m2/s (Principi et al., 2016), which is, roughly,
five orders of magnitude smaller than for water, which means that electron liquid in
graphene is very viscous. The corresponding Reynolds number (Landau & Lif-
shitz, 1987; Falkovich, 2011)

Re ¼ ρuL
η

, (11.191)
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where u is a typical flow velocity and L is a typical spatial scale of the problem, is
typically very small for the experiments with graphene (of the order of 10–3,
according to the estimate by Torre et al., 2015). In this situation, the nonlinear
term ð v! rÞ v

! in Eq. (11.186) can be neglected, which dramatically simplifies the
situation.

Let us assume that the only external force acting on the system is the electric
field, which does not depend on time:

F
! ¼ �enrφ, (11.192)

where φ is electrostatic potential. We will consider only stationary solutions of
Eq. (11.186) and, therefore, skip the term ∂ v!=∂t. As a result we obtain:

� e

m∗
rφþ η

ρ
r2 v

!¼ v
!

τp
: (11.193)

This equation can be rewritten in the form

� σ0
e
rφþ D2r2 v

!¼ v
! , (11.194)

where we introduced Drude conductivity

σ0 ¼ ne2τp
m∗

(11.195)

and diffusion length

D ¼
ffiffiffiffiffiffiffi
ητp
ρ

r
: (11.196)

Taking curl of Eq. (11.194) we find

D2r2 ω!¼ ω! , (11.197)

where

ω
! ¼ r� v

! (11.198)

is vorticity (in the case of two-dimensional flow, in xy-plane it is directed along
z-axis). From Eq. (11.196), D is the diffusion length for vorticity. For the high-
quality graphene samples encapsulated in hexagonal boron nitride one can reach
the values τp = 1 ps and D 	 0.3 μm (Torre et al., 2015).

Calculating divergence of Eq. (11.193) and taking into account Eq. (11.185) one
can immediately see that the electrostatic potential satisfies the Laplace equation

r2φ = 0. (11.199)

322 Scattering mechanisms and transport properties

https://www.cambridge.org/core


Further, we will consider the same geometry as in Fig. 11.8: graphene stripe of the
width L situated along x direction, with possible injection or extraction of the
current in some points at x = � x0. Our consideration follows the paper by Torre
et al. (2015).

Now, we have to complete Eq. (11.194) by the appropriate boundary conditions.
Its full derivation is a complicated problem; a related problem of the boundary
conditions for Boltzmann equations is discussed in Section 11.5. Torre et al.
(2015) used phenomenological Navier boundary conditions, which in general
can be written as

nαTαβτβ þ 1
lb
vατα ¼ 0 (11.200)

(Neto et al., 2005; Kelliher, 2006; Bocquet & Barrat, 2007). Here, we introduce the
stress tensor (Landau & Lifshitz, 1987) which is equal

Tαβ ¼ ∂vα
∂xβ

þ ∂vβ
∂xα

(11.201)

(under the condition (11.185), that is, for the case of uncompressible liquid),
n
! and τ

! are normal and tangential vectors to the boundary, lb is a phe-
nomenological parameter called “boundary slip length,” and we assume a summa-
tion over repeated indices. It can be related to the electron scattering at the edges,
which we discussed in Section 11.5; see Pellegrino, Torre, and Polini (2017)
and Kiselev and Schmalian (2019). For the geometry shown in Fig. 11.8
Eq. (11.200) reads

∂vx
∂y

þ ∂vy
∂x

� �
y¼�L=2

¼ ∓
vx x; y ¼ �L=2ð Þ

lb
: (11.202)

Let us first consider the simplest case where no current is ejected or extracted and
electric field Ex is just constant parallel to x axis. Then, Eq. (11.194) reads

D2 d
2vx yð Þ
dy2

� vx yð Þ ¼ σ0
en

Ex: (11.203)

This is an ordinary differential equation with constant coefficients, and its general
solution is straightforward:

vx yð Þ ¼ � σ0
en

Ex þ C1 cosh
y

D
þ C2 sinh

y

D
: (11.204)

It depends on two integration constants C1 and C2. We have to choose them from
the boundary conditions (11.202). The answer is
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vx yð Þ ¼ σ0
ne

Ex 1� D

ξ
cosh

y

ξ

� �
, (11.205)

where

ξ ¼ lb sinh
L

2D
þ D cosh

L

2D
: (11.206)

The total current can be calculated by integration of Eq. (11.205) over y:

Ix ¼ en

ðL=2
�L=2

dyvx yð Þ ¼ σ0Ex 1� 2D2

Lξ
sinh

L

2D

� �
, (11.207)

which gives the following expression for the longitudinal conductivity:

σxx ¼ σ0 1� 2D2

Lξ
sinh

L

2D

� �
(11.208)

(Torre et al., 2015).
For the case lb ! ∞ (free-boundary condition), σxx = σ0, and hydrodynamic

flow has no effect on longitudinal conductivity. In the opposite limit lb ! 0 (no-
slip boundary condition, vx = 0 at the edges) the Eq. (11.208) simplifies:

σxx ¼ σ0 1� 2D
L

tanh
L

2D

� �
: (11.209)

For further simplification, one can consider the case L « D. Then, we have:

σxx ¼ σ0L2

12D2 ¼
ne2

m∗
τeff , (11.210)

where

τeff ¼ L2

6v2Fτee
(11.211)

(we took into account Eq. (11.196) and (11.188)). In this regime, the effective
conductivity obviously increases with the temperature increase. However, with the
further temperature growth, the vorticity diffusion length D decreases, becomes of
the order of L and then smaller than L, and τeff ! τp and decreases with the
temperature increase. This means that in the hydrodynamic regime (11.179) for
thin enough films, the conductivity is a nonmonotonous function of temperature
and has a maximum (or, equivalently, resistivity has a minimum). This behavior
was predicted by Gurzhi (1968) for the case of usual metals and is sometimes
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called Gurzhi effect. Its experimental observation can be considered as the simplest
manifestation of the hydrodynamic regime. Experimentally, this regime is reached
not only for graphene (Bandurin et al., 2016; Crossno et al., 2016) but also for the
quasi–two-dimensional metal PdCoO2 (Moll et al., 2016).

Much stronger manifestations of the hydrodynamic regime can be observed in
the nonlocal transport measurements similar to those described in Section 11.6
(Torre et al., 2015; Bandurin et al., 2016; Levitov & Falkovich, 2016). Sometimes
one can observe such a counterintuitive behavior as negative local resistance, due
to electron counterflows. This can be related to the vortex formation in electron
liquid but, dependent on geometry, can be also due to other factors (Pellegrino
et al., 2016). The corresponding calculations are too cumbersome to be presented
here; they can be found in the cited papers. The effect of negative local resistance
was already experimentally observed (Bandurin et al., 2016).

The other bright experimentally observable effect in the hydrodynamic regime
for electrons in graphene is a strong violation of the so-called Wiedemann–Franz
law related thermal conductivity and conductivity in normal metals (Abrikosov,
1988; Vonsovsky & Katsnelson, 1989; Ziman, 2001). Its detailed discussion
would probably be too technical for this book; therefore, we just refer to original
theoretical (Lucas et al., 2016) and experimental (Crossno et al., 2016) works.
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12

Spin effects and magnetism

12.1 General remarks on itinerant-electron magnetism

Up to now we have not discussed physical phenomena in graphene related to the
spin of the electron (here we mean real spin and, associated with it, magnetic
moment, rather than pseudospin, or the sublattice index, which plays so essential a
role throughout the book). The only exception was Zeeman splitting in an external
magnetic field but, of course, this is just the simplest (and probably not the most
interesting) of the spin effects. In this chapter we will discuss these spin phenomena.

First, due to exchange interactions of purely quantum-mechanical origin, vari-
ous types of magnetic order can arise (Herring, 1966; Vonsovsky, 1974; Moriya,
1985; Yosida, 1996). The situation with possible magnetic ordering in graphene
and other carbon-based materials is highly controversial (see Section 12.2) but, due
to the huge interest in the field and its potential practical importance, this issue
deserves some discussion. Before doing this, it is worth recalling some general
concepts and models of itinerant-electron magnetism.

The simplest model used in the theory of itinerant-electron magnetism is the
so-called Hubbard model (Gutzwiller, 1963; Hubbard, 1963; Kanamori, 1963).
The Hamiltonian reads

Ĥ ¼
X
ijσ

tijĉ
þ
iσ ĉjσ þ U

X
i

n̂i"n̂i#, (12.1)

where bcþiσ and ĉiσ are creation and annihilation operators, respectively, on site i
with the spin projection σ = ", #, tij are the hopping parameters, n̂iσ ¼ ĉþiσ ĉiσ are
operators of electron number, and U is the intrasite interaction parameter. The main
approximation in the Hubbard model is that we neglect intersite Coulomb inter-
action. The Hamiltonian (12.1) is a simplification of a more general “polar model”
(Schubin & Wonsowski, 1934). One can easily generalize the Hamiltonian (12.1)
to the multiband case:
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Ĥ ¼
X
ijσλλ0

tiλ, jλ0 ĉ
þ
iλσ ĉjλ0σ þ

1
2

X
iσσ0

λ1λ2λ
0
1λ

0
2

λ1λ2 Uj jλ01λ02
� �

ĉþiλ1σ ĉ
þ
iλ2σ0 ĉjλ02σ0 ĉiλ01σ, (12.2)

where λ is an orbital (band) quantum number.
The simplest theory of itinerant-electron magnetism was proposed by Stoner

(1936). It is based just on the mean-field (Hartree–Fock) approximation. Let us
make the following replacement in the Hamiltonian (12.1):

n̂i"n̂i# ! n̂i"n# þ n̂i#n#, (12.3)

where we assume also that the averages n̂iσh i � nσ are not dependent on i (but can
be spin dependent). After the standard Fourier transformation, the Hamiltonian
(12.1) with the replacement (12.3) takes the form

Ĥ ¼
X
k
!

tσ k
!� �

ĉþ
k
!
σ
ĉ
k
!
σ
, (12.4)

where

t" k
!� �

¼ t k
!� �

þ Un#,

t# k
!� �

¼ t k
!� �

þ Un":
(12.5)

This is just a single-electron Hamiltonian, and one can easily find

nσ ¼
X
k
!

f
k
!
σ
, (12.6)

where

f
k
!
σ
¼ f tσ k

!� �� �
(12.7)

is the Fermi distribution function. One can show straightforwardly that nontrivial
solutions with n" 6¼ n#, corresponding to the ferromagnetic order, exist if

α � UN(εF) > 1, (12.8)

where

N εð Þ ¼
X
k
!

δ ε� t k
!� �� �

(12.9)

is the density of states (per spin projection). The inequality (12.8) is called the
Stoner criterion. In the Stoner approximation (12.5), the densities of states for
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spin-up and spin-down electrons are just related by a rigid shift (see Fig. 12.1(a)).
When α ! 1, the saturation magnetization (in units of the Bohr magneton)

M T ¼ 0ð Þ ¼ n" T ¼ 0ð Þ � n# T ¼ 0ð Þ �
ffiffiffiffiffiffiffiffiffiffiffi
α� 1

p
: (12.10)

When the temperature increases the magnetization decreases, vanishing at the
Curie temperature TC determined by the condition

U

ð
dε � ∂f

∂ε

� �
N εð Þ ¼ 1: (12.11)

At α ! 1,

TC �
ffiffiffiffiffiffiffiffiffiffiffi
α� 1

p
(12.12)

in the Stoner approximation.

(a) (b)

(c)

Fig. 12.1 A sketch of the electronic structures for various types of itinerant-
electron ferromagnet: (a) the conventional case; (b) and (c) defect-induced half-
metallic ferromagnetism in semiconductors and in graphene, respectively.
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Using the identity bn2iσ ¼ n̂iσ, one can rewrite the interaction term in the Hubbard
Hamiltonian (12.1) as

U
X
i

n̂i"n̂i# ¼ U

2

X
i

n̂i" þ n̂i#
	 
� U

2

X
i

n̂i" � n̂i#
	 
2

: (12.13)

The first term is just a renormalization of the chemical potential and can therefore
be neglected. The Stoner approximation is exact for some artificial model with
infinitely long-range and infinitely weak interaction:

Ĥ ¼
X
ijσ

tijĉ
þ
iσ ĉjσ �

U

4N0
N̂" � N̂ #
	 
2

, (12.14)

where N0 is the number of sites

N̂ σ ¼
X
i

n̂iσ: (12.15)

Importantly, two terms on the right-hand side of Eq. (12.14) commute and (using
for them the notations Ĥ1 and Ĥ2)

exp �βĤ
	 
 ¼ exp �βĤ1

	 

exp �βĤ2

	 

: (12.16)

Further, using the Hubbard–Stratonovich transformation

exp
βU
4N0

N̂" � N̂ #
	 
2� �

¼ N0β
4πU

� �1=2 ð∞
�∞

dΔ exp �N0βΔ
2

4U
� βΔ

2
N̂ " � N̂ #
	 
� �

,

(12.17)

one can calculate the partition function by integrating over Δ by the saddle-point
method, the latter being exact in the limit N0 ! ∞. This leads exactly to Eq. (12.5)
through (12.7).

This allows us to understand the physical meaning of the Stoner criterion (12.8).
Let us remove

δN ¼ N̂"
� �� N̂ #

� �	 

2

« N (12.18)

electrons (N is the total number of electrons) from the states with σ = # below the
Fermi energy to the states with σ = " above the Fermi energy (see Fig. 12.2). Each
of these electrons increases its band energy by

δε = δN � Δ1, (12.19)

where

Δ1 ¼ 1
N εFð ÞN0

(12.20)
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is the average distance between the single-particle energies near the Fermi energy
(N(εF) is the density of states per site, and the total density of states of the whole
system is N0 times larger). Thus, the increase of the total band energy is

δEband ¼ δN δε ¼ N̂"
� �� N̂ #

� �	 
2
4N εFð ÞN0

: (12.21)

At the same time, according to Eq. (12.14), the decrease of the interaction energy is

δEint ¼ �U N̂ "
� �� N̂ #

� �	 
2
4N0

: (12.22)

The Stoner criterion (12.8) is nothing but the condition that the spin polarization is
energetically favorable

δEband + δEint < 0. (12.23)

Typically, itinerant-electron ferromagnetism in 3d metals and in their alloys and
compounds is related to situations in which, in the paramagnetic case, the Fermi
energy εF lies close to the peak of the density of states formed by a merging of Van
Hove singularities; this is true for the prototype cases like Fe and Ni, as well as for
weak itinerant-electron ferromagnets like ZrZn2 (Irkhin, Katsnelson, & Trefilov,
1992, 1993). Actually, this means some instability, not necessarily magnetic; it can
also be a structural instability (Katsnelson, Naumov, & Trefilov, 1994). This
remark will be essential when we discuss the possibility of ferromagnetism in
graphene with defects (see the next section).

In realistic models with a finite radius of interelectron interaction, the Stoner
theory of ferromagnetism is not accurate. First, as was shown by Kanamori (1963),
the bare Coulomb interaction U in the criterion (12.8) should be replaced by the
T-matrix; this statement becomes accurate in the limit of a small concentration of
electrons or holes (the gaseous approximation; Galitskii, 1958a, 1958b). For the
multiband Hubbard model (12.2), the T-matrix is determined by the equation
(Edwards & Katsnelson, 2006)

13 T Eð Þj j24h i ¼ 13 Uj j24h i þ
X
5678

13 Uj j57h i 57 P Eð Þj j68h i 68 T Eð Þj j24h i, (12.24)

where j1i = ji1λ1i and

Fig. 12.2 Spontaneous spin polarization in itinerant-electron ferromagnets.
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57 P Eð Þj j68h i ¼
ð∞
�∞

dx

ð∞
�∞

dy
1� f xð Þ � f yð Þ

E � x� y
ρ56 xð Þρ78 yð Þ, (12.25)

in which ρ12(x) is the corresponding site- and orbital-resolved spectral density and
f(x) is the Fermi distribution function. If we have a more or less structureless
electron band of width W, P(E) ~ 1/W, and, in the limit of strong interaction,

U » W, T(E) � W. (12.26)

At the same time, N(E) � 1/W and, in general, after the replacement U ! T(εF),
α � 1, in clear contradiction with the original criterion (12.8). Thus, one can
conclude that the Stoner theory overestimates the tendency toward ferromagnetism
even at temperature T = 0.

The situation is essentially different in the cases in which the ferromagnetism is
due to some defect-induced (e.g., by an impurity or vacancy) band in a gap, or
pseudogap, of the main band (see Fig. 12.1(b) and (c)). This situation is relevant
for graphene, as will be discussed in the next section. As was shown by Edwards
and Katsnelson (2006), in such cases the T-matrix renormalization is less relevant,
and the renormalized interaction T(εF) is close to the bare one, U.

Even more serious problems with the Stoner theory arise at finite temperatures.
One can demonstrate that, in general, the main suppression of magnetization is
not due to the single-particle excitations but due to collective spin fluctuations
(Moriya, 1985). As a result, the Curie temperature is strongly overestimated
within the Stoner theory; if iron were a “Stoner ferromagnet” it would have
TC � 4,000 K instead of the real value of TC � 1,043 K (Liechtenstein, Katsnelson,
& Gubanov, 1985). For the case of weak itinerant-electron ferromagnets, α ! 1,
the true behavior is (Moriya, 1985)

TC ~ (α � 1)3/4 (12.27)

instead of Eq. (12.12).
At low temperatures, these spin fluctuations are nothing other than spin waves,

as in localized (Heisenberg) magnets (Fig. 12.3). Typically, the energy of spin
rotations is much smaller than that of electron–hole (Stoner) excitations. However,
the case of ferromagnetism in a narrow defect-induced band is also special in this
sense (Edwards & Katsnelson, 2006).

To explain this important point we first need to describe another basic model of
itinerant-electron ferromagnets, the s–d exchange model (Vonsovsky, 1946; Zener,
1951a, 1951b, 1951c; Vonsovsky & Turov, 1953). Nowadays, this model is
frequently called the Kondo lattice model, after the very important work of Kondo
(1964) on a magnetic impurity in a metal. I think it is historically more fair to talk
about the Kondo effect within the s–d exchange (or Vonsovsky–Zener) model.
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Within this model it is postulated that there exist some local magnetic moments
described by spin operators

^
S
!
i and that they interact locally with the spins of

conduction electrons:

Ĥ ¼
X
ijσ

tijĉ
þ
iσ ĉjσ � I

X
i

^
S
!
i
^s
!
i, (12.28)

where

^s
!
i ¼ 1

2

X
σσ0

ĉþiσ
^σ!σσ0 ĉiσ0 , (12.29)

and I is the s–d exchange interaction constant. Despite the fact that the Hamiltonian
(12.28) does not contain the exchange interactions between the localized spins at
different sites, it arises as an indirect interaction via conduction electrons known as
RKKY (Ruderman–Kittel–Kasuya–Yosida) interaction (Vonsovsky, 1974). Within
the lowest order of the perturbation expansion in I, the effective Hamiltonian for
localized spins is

Ĥ eff ¼ �
X
i<j

Jij
^
S
!
i
^
S
!
j, (12.30)

where

Jij = I2χij (12.31)

and

χij ¼ � 1
4
T
X
εn

G 0ð Þ
ij iεn þ μð ÞG 0ð Þ

ij iεn þ μð Þ (12.32)

is the inhomogeneous susceptibility of conduction electrons. Eq. (12.32) is remin-
iscent of Eq. (6.135) for the interaction between adatoms and can be derived in a

Fig. 12.3 The temperature evolution of ferromagnetic states in the Stoner model
(left panel), in the Heisenberg model (middle panel) and in real itinerant-electron
ferromagnets (right panel).
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similar way. The RKKY interaction (12.31) for the case of graphene has some
interesting properties, which will be discussed in the next section.

The criterion of applicability of the expressions (12.30) and (12.31) is the
smallness of the spin polarization in the conduction-electron subsystem. For the
case of systems with complete spin polarization, such as magnetic semiconductors
(Nagaev, 1983, 2001) and half-metallic ferromagnets (Katsnelson et al., 2008), the
situation is totally different and, instead, the double-exchange mechanism is
responsible for the ferromagnetism, with an essentially non-Heisenberg character
of exchange interactions (Auslender & Katsnelson, 1982). In this case, typical
spin-wave energies are of the order of

ℏωsw � n tj j
M

, (12.33)

where n is the charge-carrier concentration and M is the magnetization (Edwards,
1967; Irkhin & Katsnelson, 1985a, 1985b). This formula is valid both for s–d
exchange and for Hubbard models. In the first case, M is of the order of one and,
for small enough n,

ℏωsw « εF (12.34)

since εF ~ n2/3 (for the three-dimensional case) and εF ~ n1/2 (for the two-
dimensional case). If we have a strong polarization in the defect-induced band
(see Fig. 12.1(b) and (c)) M ~ n should hold and

ℏωsw � jtj » εF. (12.35)

Thus, we have a very unusual situation in which the spin rotations are more
energetically expensive than the electron–hole (Stoner) excitations. Also, as was
mentioned previously, the T-matrix renormalization of the Stoner criterion is not
relevant here. As a result, one can conclude that, if it were possible to create
ferromagnetism in the defect-induced band of itinerant electrons, this situation
would be described by the Stoner model and one could expect much higher
Curie temperatures than for conventional magnetic semiconductors (Edwards &
Katsnelson, 2006). This is one of the strongest motivations for the search for
ferromagnetism in sp-electron systems, including graphene.

12.2 Defect-induced magnetism in graphene

Experimentally, sp-electron magnetism, in particular in carbon-based materials, is
one of the most controversial issues in modern materials science (for reviews, see
Esquinazi & Höhne, 2005; Makarova & Palacio, 2006; Yazyev, 2010). Typically,
the observed experimental magnetic moment (when the existence of ferromagnetism
has been claimed) is very small, μ� 10�3 � 10�4μB per atom. Keeping in mind that
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magnetic iron is everywhere on this planet (dust contains a lot of ferrimagnetic
magnetite, Fe3O4) the question of possible contamination is crucial, and it is very
difficult to demonstrate convincingly that the observed magnetism is intrinsic
(Nair et al., 2012). To better follow the possible arguments and counterarguments,
see, e.g., reviews of the scientific literature on the magnetism of CaB6 (Edwards &
Katsnelson, 2006) and of polymerized fullerenes (Boukhvalov & Katsnelson,
2009c). Importantly, one can prove (Edwards & Katsnelson, 2006) that a Curie
temperature of the order of room temperature is thermodynamically incompatible with
μ< 10–2 μB; thus, if one observes ferromagnetic ordering with μ� 10�3 � 10�4μB at
room temperature it should be either a mistake or a strongly inhomogeneous situation,
with ferromagnetic regions with local μ > 10�2 μB in a nonmagnetic surrounding.

The first experimental study of magnetism of graphene (actually, graphene
paper, a mixture of single-layer and multilayer graphene, was studied) did not
reveal any magnetic ordering but, rather, a quite mysterious paramagnetism
(Sepioni et al., 2010).

It is natural to ask why we should discuss so controversial an issue at all. Well,
first, it is a really hot subject. More importantly, some theoretical results seem to be
reliable (actually, there are even some theorems, as will be discussed later) and
worthy of consideration. They also give us a deeper understanding of the physics
of defects (Chapter 6) and edge states (Chapter 5) in graphene.

Let us start with the case of vacancies (Section 6.5) or covalently bonded
adsorbates (Section 6.6). As we have seen, their electronic structures are quite
similar, so, in the simplest approximation, the vacancy can be considered as a
model for the hydrogen adatom or some other “resonant-scattering” center. All
these defects create mid-gap states within the graphene pseudogap (see Fig. 6.1).
As was discussed in the previous section, a peak in the density of states near the
Fermi energy can lead to a magnetic instability. This conclusion is confirmed by
straightforward density-functional calculations: The periodic array of vacancies or
hydrogen adatoms on graphene has a tendency to undergo spontaneous spin
polarization (Yazyev & Helm, 2007). The corresponding electronic structure is
shown in Fig. 12.4. For large enough distances between the defects, the magnetic
moment per defect is close to the magnitude of the Bohr magneton μB. Note that
the splitting of mid-gap states induced by hydrogen atom on the top of graphene
was observed experimentally (using scanning tunneling microscopy [STM]) by
Gonzáles-Herrero et al. (2016). Even though they did not probe spin polarization
of the split energy states, the magnetic character of the splitting seems to be the
most reasonable interpretation.

Such magnetic moments have been observed experimentally in graphene with
vacancies and in fluorinated graphene; however, no magnetic ordering has been
found (Nair et al., 2012; Nair et al., 2013). In the case of fluorinated graphene or
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graphene with other sp3 impurities (resonant scattering centers are considered in
Sections 6.6 and 11.3) these magnetic moments are supposed to be associated to
mid-gap states in pz band (see later). In the case of vacancies, apart from these
magnetic moments, an additional kind of localized magnetic moment is
observed, due to dangling bonds on carbon atoms near the vacancies; they
can be distinguished by their behavior with the electron or hole doping
(Nair et al., 2013).

Note that, from the density functional calculations, bivacancies (Boukhvalov &
Katsnelson, 2009c) or couples of neighboring hydrogen atoms (Boukhvalov,
Katsnelson, & Lichtenstein, 2008) turn out to be nonmagnetic.

Gonzáles-Herrero et al. (2016) have studied magnetism of hydrogen adatoms on
graphene via STM. They did not directly measure spin polarization but detected
local magnetic moments by splitting of the hydrogen-induced mid-gap states. They
demonstrated that the splitting, which is observed for a single hydrogen adatom,
also exists for the couple of A–A hydrogen atoms (that is, both belonging to the
same sublattice A) and not for the A–B couples (hydrogen atoms in different
sublattices), in agreement with the density functional calculations.

(a)

spin-up

spin-down

–3 –2 –1 0 1 2 3
e – eF (eV)

D
O

S
 (
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 u

.)

pz

pz

(b)

spin-up

spin-down
–3 –2 –1 0 1 2 3

e – eF (eV)

pz

sp2

sp2

pz

(c) (d)

Fig. 12.4 Spin-polarized densities of states of (a) a hydrogen adatom and (b)
vacancy in graphene; (c) and (d) shows the corresponding atomic structures
(reproduced with permission from Yazyev & Helm, 2007).
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The real meaning of these results is clarified by the Lieb theorem (Lieb, 1989),
one of the few rigorous results in the theory of itinerant-electron magnetism. The
theorem is about the ground state of the single-band Hubbard model (12.1) on a
bipartite lattice; the honeycomb lattice is just an example of this generic case. The
most general definition of the bipartite lattice is that it consists of two sublattices,
A and B, such that all hopping integrals within the same sublattice are zero:

t̂AA ¼ t̂BB ¼ 0: (12.36)

Therefore, the band part of the Hamiltonian for the bipartite lattice has the structure

Ĥ0 ¼ 0 t̂
t̂þ 0

� �
, (12.37)

with nonzero blocks only between two sublattices. Let us consider the case in
which the numbers of sites within the sublattices A and B, NA and NB, can be
different. This means that we have vacancies, and the numbers of vacancies
belonging to A and to B are, in general, not the same. Thus, t̂ is an NA � NB

matrix.
Before discussing the effects of interactions, let us consider some properties of

the single-particle spectrum of the Hamiltonian (12.37) (Inui, Trugman, & Abra-
hams, 1994; Kogan, 2011). We will assume, to be specific, that NB 	 NA.

First, there are at least NB � NA linearly independent eigenfunctions with the
eigenvalue E = 0 and all components equal to 0 on the sites of the A sublattice.
This is the obvious consequence of the structure (12.37): The system of linear
equations

tψ = 0 (12.38)

has at least NB � NA linearly independent solutions.
Second, for the eigenfunctions ψ�n ¼ ψn ið Þf g, corresponding to the nonzero

eigenvalues En,

�En t̂
t̂þ �En

� �
ψn ¼ 0, (12.39)

there is a symmetry property

ψ�n ið Þ ¼ 
ψn ið Þ, (12.40)

where ψ�n are the eigenfunctions corresponding to �En, and the plus and minus
signs on the right-hand side of Eq. (12.40) correspond to the cases in which i
belongs to A and B, respectively.

Thus, the spectrum of the Hamiltonian (12.37) is symmetric (if En is an
eigenvalue, �En is an eigenvalue, too) and contains at least NB � NA solutions
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with E = 0. It turns out that the latter states are unstable with respect to spontan-
eous spin polarization at arbitrarily small U > 0 (Lieb, 1989).

Moreover, the Lieb theorem claims that the ground state of the Hubbard model
(12.1) with U > 0, the single-particle Hamiltonian (12.37) and the number of
electrons equal to the number of sites, N = NA + NB, is unique (apart from the
trivial (2S + 1)-fold degeneracy) and has the spin

S ¼ NB � NA

2
: (12.41)

The theorem can be proved in two steps. First, it is shown that the ground state is
unique at any U, that is, that the states belonging to different multiplets with spins
S and S 0 6¼ S cannot both be eigenstates with the minimal energy. The consequence
is that the ground-state spin S cannot be dependent on U. In the opposite case, there
will unavoidably be a crossing of the minimal energies with a given spin, E0(S;U)
and E0(S

0;U), at some U = Uc. Second, in the limit of large U and N = N0 the
Hubbard model (12.1) is equivalent to the Heisenberg model with the Hamiltonian

Ĥ
0 ¼

X
i<j

2 tij
 2
U

^s
!
i
^s
!
j � 1

4

� �
(12.42)

(see, e.g., Yosida, 1996), and for the latter, the result (12.41) can be proved quite
straightforwardly and easily (Lieb & Mattis, 1962).

Importantly, the Lieb theorem does not assume the thermodynamic limit
N0 ! ∞ and is valid also for small systems. Its applications to the magnetic
properties of finite graphene fragments have been discussed by Yazyev (2010).

It follows from the Lieb theorem that if all vacancies sit in the same sublattice
their spins are parallel in the ground state. If, oppositely, NA = NB, the ground state
is a singlet, with S = 0. This means that the interactions between vacancy-induced
magnetic moments are ferromagnetic if the vacancies belong to the same sublattice
and antiferromagnetic if they belong to different sublattices. As we see, this result is
rigorous within the Hubbard model with half-filling (N = N0). The same conclusion
for the covalently bonded adatoms or vacancies follows from the density-functional
calculations (Yazyev & Helm, 2007; Boukhvalov & Katsnelson, 2011).

This can be also proved for the RKKY interaction (12.31) within the s–d
exchange model (12.28) (Kogan, 2011). By Fourier transformation of
Eq. (12.32) it can be represented as

χij ¼ � 1
4

ðβ
0

dτ G 0ð Þ
ij τð ÞG 0ð Þ

ji �τð Þ, (12.43)

where β = T�1 and
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G 0ð Þ
ji τð Þ ¼ T

X
εn

G 0ð Þ
ij iεn þ μð Þ exp �iεnτð Þ (12.44)

(see also Cheianov et al., 2009). It can be expressed in terms of the eigenfunctions
and eigenenergies of the Hamiltonian Ĥ0 (Mahan, 1990)

G 0ð Þ
ji τð Þ ¼

X
n

ψ∗
n ið Þψn jð Þ exp �ξnτð Þ f ξnð Þ � θ τð Þ½ �, (12.45)

where ξn = En � μ and θ(τ > 0) = 1, θ(τ < 0) = 0.
For the case of an undoped bipartite lattice, μ = 0, using Eq. (12.40) one finds

G 0ð Þ
ji �τð Þ ¼ ∓ G 0ð Þ

ij τð Þ
h i∗

, (12.46)

where the minus and plus signs correspond to the cases in which i and j belong to
the same sublattice and to different sublattices, respectively. As a result,

χji ¼ 
 1
4

ðβ
0

dτ G 0ð Þ
ij τð Þ

 2: (12.47)

On substituting Eq. (12.47) into Eq. (12.30) and (12.31) we come, again, to the
conclusion that for the undoped (half-filled) case, the exchange interactions are
ferromagnetic within the same sublattice and antiferromagnetic between sites from
different sublattices.

To conclude this section, it is worthwhile to warn that the use of the Lieb
theorem for graphene derivates with high concentration of sp3 centers, such as
single-side hydrogenated (C2H) or fluorinated (C2F) graphene, can lead to incor-
rect conclusions on their magnetism: In these situations, both real multiband
electronic structure and electron–electron interactions beyond the Hubbard model
(such as direct-exchange interactions) can be relevant, and instead of ferromagnetic
ground state, one can expect complicated noncollinear types of magnetic ordering
(Rudenko et al., 2013; Mazurenko et al., 2016).

12.3 Magnetic edges

It is clear from the previous consideration that the possibility of ferromagnetism in
graphene-like systems is related to zero-energy modes and other mid-gap states. As
was discussed in Chapter 5, the zero-energy modes arise naturally for a generic
boundary of a terminated honeycomb lattice (see Eq. (5.70)). One can therefore
conclude that the edges should be magnetic (except in the case of armchair edges,
for which there are no mid-gap states). This was first suggested by Fujita et al.
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(1996) and confirmed by numerous further calculations (e.g., Son, Cohen, &
Louie, 2006a; Yazyev & Katsnelson, 2008; for a review, see Yazyev, 2010). If
we have nanoribbons with zigzag edges, the atoms at the opposite edges belong to
different sublattices. Therefore, one can expect that the exchange interactions
between the edges are antiferromagnetic and that the nanoribbon as a whole should
have no magnetic moment. Within the framework of the Hubbard model, this just
follows from the Lieb theorem. The density-functional calculations by Son, Cohen,
and Louie (2006a) show that this interaction can be switched to the ferromagnetic
one by applying an external electric field.

One should keep in mind that zigzag edges of graphene are extremely chem-
ically active and can even decompose water (Boukhvalov & Katsnelson, 2008);
therefore, all calculations assume partial passivation by hydrogen (one hydrogen
atom by carbon atom). In this case, the zero-energy modes are associated with the
last row of carbon atoms. Interestingly, even for the case of complete passivation
(two hydrogen atoms per carbon atom) zero modes still exist, but associated with
the next row; in this case, density-functional calculations also predict
ferromagnetism of the edges, although more fragile (Bhandary et al., 2010).

This result seems to be very interesting in the context of spintronics based on
the coupling between electric and magnetic degrees of freedom of conducting
materials (Žutić, Fabian, & Das Sarma, 2004). Possible graphene spintronic
devices have been studied theoretically by Kim and Kim (2008) and by Wimmer
et al. (2008). As an example, one can mention a simple and elegant way to produce
a spin-polarized electric current due to a difference in shapes of the opposite zigzag
edges suggested in the latter paper (Fig. 12.5).

Fig. 12.5 The spin-injection profile of a graphene nanoribbon with a distorted
edge for spin injection into a region of n-doped graphene.
(Reproduced with permission from Wimmer et al., 2008.)
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However, there are several problems that should be carefully discussed before
entertaining any such dreams about applications. First, the Mermin–Wagner
theorem (Mermin & Wagner, 1966; Ruelle, 1999) forbids long-range order in
low-dimensional systems (such as one-dimensional graphene edges) at finite
temperatures. The range of magnetic order is limited by the temperature-dependent
spin correlation lengths ξα(α = x, y, z), which define the decay law of the spin
correlation

ŝαi ŝ
α
iþl

� � ¼ ŝαi ŝ
α
i

� �
exp � l

ξα

� �
: (12.48)

In principle, the spin correlation length ξ imposes limitations on the device sizes.
In order to establish this parameter, one has to determine the energetics of
spin fluctuations contributing to the breakdown of the ordered ground-state con-
figuration and extract the exchange parameters. This has been done via density-
functional calculations by Yazyev and Katsnelson (2008). The total energy of the
spin-spiral state (Fig. 12.6) has been calculated and fitted to the classical Heisen-
berg model. The spin-wave stiffness constant, D � 2,100 meV�Å2, has been found
to be several times higher than that in iron or nickel. This confirms the general
conclusion (Edwards & Katsnelson, 2006) that defect-induced sp-electron magnet-
ism can be characterized by very high magnon energies (see Section 12.1).

The magnetic correlation length in the presence of spin-wave fluctuations was
obtained with the help of the one-dimensional Heisenberg model Hamiltonian

Ĥ ¼ �a
X
i

^s
!
i
^s
!
iþ1 � d

X
i

ŝzi ŝ
z
iþ1, (12.49)

where the Heisenberg coupling a = 105 meV was found from the fitting of the
computational results. The estimated small anisotropy parameter d/a � 10�4

originates from the weak spin-orbit interaction in carbon (see the next section).

Fig. 12.6 The spin-spiral structure used for the calculation of the exchange
coupling constant for a graphene zigzag edge.
(Reproduced with permission from Yazyev & Katsnelson, 2008.)
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This simple model Hamiltonian has known analytic solutions (Fisher, 1964).
Fig. 12.7 shows the spin correlation lengths calculated for our particular case.
Above the cross-over temperature Tx � 10 K, weak magnetic anisotropy does not
play any role and the spin correlation length ξ / T�1. However, below Tx
the spin correlation length grows exponentially with decreasing temperature. At
T = 300 K the spin correlation length ξ � 1 nm.

From a practical point of view, this means that the sizes of spintronic devices,
based on the magnetic zigzag edges of graphene and operating under normal
temperature conditions, are limited to several nanometers. At present, such sizes
are very difficult to achieve, which can be regarded as a pessimistic conclusion.
Nevertheless, one must keep in mind that the spin stiffness predicted for the
magnetic graphene edges is still higher than the typical values for traditional
magnetic materials. That is, graphene outperforms d-element-based magnetic
materials, and there is room for improvement. Achieving control over the magnetic
anisotropy d/a could possible raise the cross-over temperature Tx above 300 K and
thus significantly extend ξ. Possible approaches for reaching this goal include
chemical functionalization of the edges with heavy-element functional groups or
coupling graphene to a substrate.

Another serious problem is the possibility of reconstruction of zigzag edges to
some nonmagnetic configuration (see Section 5.6). Theoretically, the result
regarding ferromagnetism of zigzag edges at T = 0 looks very reliable, but the
situation with real edges of real graphene is not so clear. Probably, some chemical
protection of the edges can be used to keep the magnetic state stable enough.

Indirect evidence of possible magnetism of graphene edges has been found very
recently by scanning tunneling spectroscopy (STS), namely splitting of the edge
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Fig. 12.7 The correlation length of magnetization vector components orthogonal
(ξz) and parallel (ξx,y) to the graphene plane as a function of temperature for
weakly anisotropic (d/a = 10–4) and isotropic (d = 0) Heisenberg models.
(Reproduced with permission from Yazyev & Katsnelson, 2008.)
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mid-gap states has been observed (Tao et al., 2011). Spin-polarized STS should be
used to prove that this is spin-splitting, but this work has not yet been done.

12.4 Spin-orbit coupling

As we discussed earlier, spintronic applications due to an intrinsic magnetism of
graphene are still very speculative. At the same time, one can inject spin-polarized
current into graphene using ferromagnetic leads, e.g., cobalt, and then manipulate
this with current. There is a huge amount of experimental activity in this field
(Tombros et al., 2007, 2008; Han et al., 2009a, 2009b; Jo et al., 2011). In this
situation, the spin dynamics in graphene is determined by spin-orbit coupling,
leading to various spin-relaxation processes, such as Elliott–Yafet, D’yakonov–
Perel, Bir–Aronov–Pikus, and other mechanisms (Žutić, Fabian, & Das Sarma,
2004). The main idea is that, in the presence of spin-orbit coupling, some of the
scattering processes will be accompanied by spin-flips; this is the essential
feature of the simplest and most general process, the Elliott–Yafet mechanism.
A rough estimation for the spin-flip time τs, is given by Elliott’s formula
(Elliott, 1954)

1
τs

� Δgð Þ2
τ

, (12.50)

where Δg = g � 2 is the contribution of the orbital moment to the conduction-
electron g-factor and τ is the mean-free-path time (that is, the time taken for the
relaxation of momentum). The first experiments (Tombros et al., 2007) have
already demonstrated that τs in graphene is orders of magnitude shorter than one
would expect from a naïve estimation of the spin-orbit coupling in graphene.
This observation initiated a serious theoretical activity (Castro Neto & Guinea,
2009; Gmitra et al., 2009; Huertas-Hernando, Guinea, & Brataas, 2009; Konschuh,
Gmitra, & Fabian, 2010; Jo et al., 2011; Dugaev & Katsnelson, 2014; Kochan,
Gmitra, & Fabian, 2014; Kochan, Irmer, & Fabian, 2017). In this section we do not
discuss the mechanisms of spin relaxation in graphene; instead, we focus on the
quantum-mechanical part of the problem, that is, on the various contributions to
spin-orbit coupling and their effects on the electron-energy spectrum.

Spin-orbit coupling is a relativistic effect following from the Dirac equation
(here we mean the real Dirac equation rather than its analog for graphene) as the
second-order perturbation in the fine-structure constant e2/(ћc) (Bjorken & Drell,
1964; Berestetskii, Lifshitz, & Pitaevskii, 1971):

Ĥ s�o ¼ ℏ

4m2c2
r! V � ^p

!� �
�^σ!, (12.51)
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where ^p
! ¼ �iℏr! , V is the potential energy, and ^σ! are the Pauli matrices acting

on the real electron spin (not on the pseudospin, as in the greatest part of the
book!). The main contribution originates from regions close to atomic nuclei where

r!V
  is much larger than it is in interatomic space. As mentioned in Section 1.1,

the order of magnitude of the intra-atomic spin-orbit coupling can be estimated
from the energy difference of the multiplets 3P0 and 3P1 for the carbon atom
(Radzig & Smirnov, 1985),

ΔEs-o � 2 meV: (12.52a)

It is, roughly, 10�4 of the π-electron bandwidth, as it would be natural to expect
for a quantity proportional to (e2/(ℏc))2. The corresponding quantities for carbon
analogs in the periodic table, silicon and germanium, are much higher, as is
naturally expected for heavier elements,

ΔEs�o � 9:6 meV (12.52b)

and

ΔEs�o � 69 meV, (12.52c)

respectively (Radzig & Smirnov, 1985).
In the representation of valent (2s2p) states of carbon, the Hamiltonian (12.51)

can be represented as

Ĥ s-o ¼ ξ
^
L
!�^σ!, (12.53)

where
^
L
! ¼ ^r

! � ^p
⇀ (12.54)

is the orbital moment operator.
Let us first consider what one can expect for the effective parameters of spin-

orbit coupling in the model taking into account only 2s2p states. Our further
analysis follows Huertas-Hernando, Guinea, and Brataas (2006) and Yao et al.
(2007). Within the basis of sp3 states of the carbon atom (see Section 1.1) the
Hamiltonian (12.53) can be rewritten as

Ĥ s-o ¼ 2ξ
X
j

ĉþjz"ĉjx# � ĉþjz#ĉjx" þ iĉþjz"ĉjy# � iĉþjz#ĉjy" þ iĉþjx#ĉjy# � iĉþjx"ĉjy" þH:c:
� �

,

(12.55)

where we take into account only intra-atomic matrix elements (j is the site label)
and x, y, and z label the |pxi, jpyi, and jpzi orbitals. Of course, s-orbitals are

not involved since
^
L
!jsi ¼ 0.
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Now we have to rewrite the Hamiltonian (12.55) in the representation of
σ-orbitals (1.9) and π-orbitals (jpzi). Importantly, in the nearest-neighbor approxi-
mation Ĥ s-o

	 

ππ ¼ 0, due to symmetry considerations. First, only the L̂zσ̂ z term

survives, due to the mirror symmetry in the graphene plane. Second, there is an
additional vertical reflection plane along the nearest-neighbor bonds. Under the
reflection in this plane, x̂, p̂x ! x̂, p̂x and ŷ, p̂y ! �ŷ, � p̂y and, therefore,
L̂z ! �L̂z which finishes the proof.

Thus, we have to use second-order perturbation theory, and the effective
Hamiltonian of spin-orbit coupling is

Ĥ
eff
s-o

� �
ππ

¼ Ĥ s-o
	 


πσ

1

Ĥ 0ð Þ
π � Ĥ 0ð Þ

σ

Ĥ s-o
	 


σπ, (12.56)

where Ĥ 0ð Þ
π,σ are the corresponding band Hamiltonians without spin-orbital

coupling. As a result, the effective Hamiltonians for the vicinities of the K and
K0 points are (Yao et al., 2007)

ĤK,K 0 q
!� �

¼
∓ξ1 ℏv qx∓ iqy

� �
ℏv qx 
 iqy

� �

ξ1

0
@

1
A (12.57)

instead of Eq. (1.19), where

ξ1 ¼ 2 ξj j2 ε2p � ε2s
9V2

spσ

, (12.58)

where ε2p and ε2s are the atomic energy levels for 2p and 2s states, and Vspσ is a
matrix element of the hopping Hamiltonian for the σ-block between s and p states.
All these energies are of the order of l0 eV; thus the effective spin-orbit coupling
constant for the case of flat, defect-free graphene is ξ1 � 1 μeV (Huertas-Hernando,
Guinea, & Brataas, 2006; Yao et al., 2007).

This evaluation underestimates the effective spin-orbit interaction for graphene
in comparison with the first-principle density functional calculations; the latter
gives the value ξ1 � 12 μeV(Gmitra et al., 2009). It turns out that the main
contribution originates from the virtual pd-transitions (Konschuh, Gmitra, &
Fabian, 2010). It turns out that if we add to the Hamiltonian (12.55) 3d states,
then the first-order terms in ξ is no more symmetry forbidden, and instead of Eq.
(12.58) we have

ξ1 ¼ 2 ξp
 2 ε2p � ε2s

	 

9Vspσ

2 þ ξd
9Vpdπ

2

2 ε3d � ε2p
	 
2 , (12.59)

where ξp and ξd are intra-atomic spin-orbit coupling constants for 2p and 3d states,
respectively (Konschuh, Gmitra, & Fabian, 2010).
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It is interesting to compare graphene with its analogs, silicene and germanene
(for review of these graphene-like allotropes of silicon and germanium, see Acun
et al., 2015; Le Lay, Salomon, & Angot, 2017). An important difference is that for
these two-dimensional materials, the structure is buckled (Fig. 12.8).

This lower symmetry allows the first-order term in ξp, even without taking into
account d-states (Liu, Jiang, & Yao, 2010). Together with much stronger intra-
atomic spin-orbit coupling (see Eq. (12.52)), it leads to the order-of-magnitude
larger effective spin-orbit parameters: from 12 μeV for graphene to 12 meV
for germanene (Acun et al., 2015). A general symmetry analysis of spin-orbit
coupling for various two-dimensional materials can be found in Kochan, Irmer,
and Fabian (2017).

Now, we come back to graphene. A special case of spin-orbit coupling is
associated with the external electric field perpendicular to the graphene plane
(the Rashba effect) (Kane & Mele, 2005a; Huertas-Hernando, Guinea, & Brataas,
2006; Min et al., 2006; Rashba, 2009; Stauber & Schliemann, 2009; Zarea &
Sandler, 2009). The potential of the external electric field

ĤE ¼ eEz (12.60)

has nonzero matrix elements only between jsi and jpzi orbitals. In the secondary
quantized form, Eq. (12.60) reads

ĤE ¼ z0eE
X
jσ

ĉþjzσ ĉjsσ þ ĉþjsσ ĉjzσ
� �

, (12.61)

Fig. 12.8 Structure of silicene and germanene: top and side views.
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where

z0 = hpzjzjsi (12.62)

is of the order of the radius of the carbon atom. The effective Hamiltonian of spin-
orbit coupling in the presence of the electric field, apart from Eq. (12.56), contains
the cross-term

ĤR
	 


ππ ¼ ĤE

	 

πσ

1

Ĥ 0ð Þ
π � Ĥ 0ð Þ

σ

Ĥ s-o
	 


ππ þ Ĥ s-o
	 


πσ

1

Ĥ 0ð Þ
π � Ĥ 0ð Þ

σ

ĤE

	 

σπ (12.63)

(cf. Eq. (10.70)). Taking into account this term, plus Eq. (12.57), we will find the
spin-orbit 8 � 8 Hamiltonian

Ĥ s�o ¼ ξ1η̂zτ̂zσ̂ z þ ξR η̂xτ̂zσ̂y � η̂yσ̂x

� �
, (12.64)

where η̂, τ̂ and σ̂ are Pauli matrices acting on the pseudospin (that is, the sublattice
index), valley index, and real-spin projection, respectively. Note that in most of the
book the Pauli matrix η̂ has been written as σ̂! The Rashba coupling ξR in Eq.
(12.64) is given by (Huertas-Hernando, Guinea, & Brataas, 2006; Min et al., 2006)

ξR ¼ 2eEz0
3V spσ

ξ: (12.65)

For the largest values of the electric field which can be created in graphene
E � 1 V nm�1, ξR may be of the same order of magnitude as ξ1 (keeping in mind
pd-contribution to the latter Eq. (12.59)).

There are many mechanisms that can dramatically increase the effective spin-
orbit coupling in graphene. First, it is very sensitive to the curvature, which can be
associated with the ripples (Huertas-Hernando, Guinea, & Brataas, 2006). In
curved graphene, there is no longer mirror symmetry in the vertical plane along
the nearest-neighbor bonds, and the effective spin-orbit coupling for the π-block
does not vanish to first order in ξ; this leads to Rashba-type coupling, with an
effective coupling constant of the order of

ξR � ξaH, (12.66)

where H is the mean curvature (9.77) and (9.78). For typical parameters
of the ripples this spin-orbit coupling is an order of magnitude larger than the
intrinsic one, of the order of 10�2 � 10�1 meV (Huertas-Hernando, Guinea, &
Brataas, 2006).

Second, the effective spin-orbit coupling can essentially be increased by cova-
lently bonded impurities, such as hydrogen adatoms, which change the state of
carbon atoms locally from sp2 to sp3 (Castro Neto & Guinea, 2009; Kochan,
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Gmitra, & Fabian, 2014). Again, this creates an effective spin-orbit coupling in the
π-block already in the first order in ξ, making ξ1 � ξ locally. This makes “resonant
impurities” very efficient sources of spin-flip scattering. This conclusion seems to
be in agreement with the recent experimental data (Jo et al., 2011).

Finally, let us discuss the effect of the Hamiltonian (12.64) on the electron-
energy spectrum of graphene (Kane &Mele, 2005b; Stauber & Schliemann, 2009).
This Hamiltonian does not couple the valleys. For the valley K (τz = +1), we have
a 4 � 4 matrix (in the basis A", B", A#, B#) for the total Hamiltonian:

Ĥ ¼

�ξ1 ℏv qx � iqy

� �
0 0

ℏv qx þ iqy
� �

ξ1 2iξR 0

0 �2iξR ξ1 ℏv qx þ iqy
� �

0 0 ℏv qx þ iqy
� �

�ξ1

0
BBBBBB@

1
CCCCCCA,

(12.67)

where we skip the constant energy shift ξ1 in Eq. (12.57). The equation for the
eigenenergies takes the form

det Ĥ � E
	 
 ¼ E2 � ξ21 � ℏ2v2q2

	 
2 � 4ξ2R E þ ξ1ð Þ2 ¼ 0: (12.68)

At ξR = 0, the spectrum is

E ¼ 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ2v2q2 þ ξ21

q
, (12.69)

with the gap Δs�o = 2jξ1j. The existence of the gap does not contradict the proof
given in Chapter 1 since, in the presence of spin-orbit coupling, the time-reversal
operation does not have the form (1.39) but includes the spin reversal.

In the opposite case, ξ1 = 0, the spectrum is

E2 ¼ ℏ2v2q2 þ 2ξ2R 
 2ξR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ2v2q2 þ ξR

2
q

: (12.70)

This is reminiscent of the spectrum of bilayer graphene in the parabolic-band
approximation; see Section 1.4. Two bands have a gap, with the energy 
2jξRj
at q = 0, and two others are gapless, with the parabolic spectrum at q ! 0. In
general, for finite ξ1 and ξR, the gap exists at jξ1j > jξRj and its value is

Δs�o = 2(jξ1j � jξRj). (12.71)

In the regime in which the gap exists, the mass term has opposite signs for the two
valleys (see Eq. (12.57)). This results in a very interesting picture of the “quantum
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spin Hall effect” (Kane & Mele, 2005a, 2005b). This phenomenon is not relevant
for real graphene, due to the very small value of the gap. However, this effects can
be important for silicene, germanene, or stanene (tin-based analog of graphene; Xu
et al., 2013) with their much larger values of the spin-orbit gap. Note that
germanene at insulating substrate (MoS2) is already realized experimentally
(Zhang et al., 2016).

These two papers by Kane and Mele were very important in the development of
a novel field, namely the physics of topological insulators (Moore, 2009; Hasan &
Kane, 2010; Qi & Zhang, 2010; Qi & Zhang, 2011). This is one of the many
examples of the huge influence of graphene on our general understanding of physics.

12.5 Spin relaxation due to edge scattering

As we discussed in Section 12.3, theory predicts magnetism at graphene zigzag
edges. If we assume that this prediction is correct (experimental situation still looks
unclear), then edges should be a very important source of spin relaxation. In this case,
the relaxation is determined by not spin-orbit coupling but s–d exchange interactions
(12.28), which can be many orders of magnitude stronger. The same happens for the
case when some magnetic impurities are situated at the edges. Here we present the
main ideas of the corresponding theory (Dugaev & Katsnelson, 2014).

If we assume graphene nanoribbon situated at 0 < x < L (the same geometry as
in Section 11.5) the corresponding interaction Hamiltonian is

Ĥ int ¼ W xð Þ^σ!m
!

yð Þ, (12.72)

where m! yð Þ is the distribution of magnetic moments along the edges and W(x) is a
short-range potential focused near x = 0 and x = L (for simplicity, we assume that
the edges are equivalent, similar to Section 11.5). For one-dimensional magnets at
finite temperatures

hmα(y)mβ(y0)i = γe�λjy � y0j, (12.73)

where α, β = x, y and λ = 1/ξ (cf. Eq. (12.48)). Then, the averaged probability of
spin-flip processes due to the interaction (12.72) is

W
k
!
k
⇀0 ¼

2π
ℏ

k
!0

D W xð Þ mx yð Þ � imy yð Þ	 

k
! E 2� �

δ ε
k
! � ε

k
!0

� �

¼ 4πγ
ℏ

ð
dxdy

ð
dx0dy0e�λ y�y0j j k

!0
D W xð Þ k

! E
k
!D W x0ð Þ k

!0
 E

δ ε
k
! � ε

k
!0

� �
,

(12.74)
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where the wave functions k
! E

are given by Eq. (11.138) for the case of Berry–
Mondragon (BM) boundary conditions and by Eq. (11.140) for the case of zigzag-
like (Z) edges.

Explicit calculations give us the answers (Dugaev & Katsnelson, 2014)

W BMð Þ
k
!
k
!0

¼
2πγW2

0λδ ε
k
! � ε

k
!0

� �
ℏLxL2 λ2 þ ky � k0y

� �2
� � , (12.75)

W Zð Þ
k
!
k
!0

¼
2πγW2

1λk
2
xk

02
xδ ε

k
! � ε

k
!0

� �
ℏLxL2 λ2 þ ky � k0y

� �2
� � , (12.76)

where Lx is the length of the ribbon,

W0 =
Ð
dxW(x), W1 =

Ð
dxW(x)x2. (12.77)

Spin-dependent scattering at the edges can be considered via kinetic equation for
the spin-dependent single-electron density matrix (Ustinov, 1980; Katsnelson,
1981). In the simplest case, where this density matrix is diagonal in spin indices,
we have just two Boltzmann distribution functions f

k
!",#, each of them satisfying

the same kind of equation as Eq. (11.1). After linearization (11.7), assuming no
external electric field and tau-approximation for the bulk collision integral
(11.131), we have

∂
∂t

þ v
k
!
α

∂
∂xα

þ 1
τ

� �
δf

k
!
σ
¼ 0, (12.78)

with the boundary conditions of the type of Eq. (11.134) and (11.135). If we
assume only spin-flip processes at the boundary, these take the form

jvxjδf>
k
!
,σ
ðx¼0Þ¼ jvxjδf<

k
!
,σ
ðx¼0Þþ

X
k
!0

Wðk! ; k
!0Þ½δf<

k
!0,�σ

ðx¼0Þ�δf>
k
!
,�σ

ðx¼0Þ�,

(12.79)

and similar for x = L.
Further calculations are quite cumbersome, therefore we present only the main

physical result; the details can be found in the paper Dugaev and Katsnelson (2014).
Suppose we create some spin polarization f

k
!" 6¼ f

k
!# at initial time t = 0 and

look at the distribution of the polarization along y axis at some instant t. At large
enough distances, one can pass from the kinetic equation to the spin diffusion
equation. In this case, the typical distance of the polarization propagation is
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ld ¼
ffiffiffiffiffiffiffiffi
y2h i

p
¼ ffiffiffiffiffiffiffi

Dst
p

, (12.80)

where Ds is the spin diffusion coefficient. This is the standard approximation,
which is always used to interpret the experimental data, assuming the spin-flip
scattering processes in the bulk only (Tombros et al., 2007, 2008; Han et al.,
2009a, 2009b; Jo et al., 2011). It turns out to also be correct for the case of spin
scattering at Berry–Mondragon edges. At the same time, for the most interesting
case of zigzag-like edges, where one can expect intrinsic magnetism at the edges,
the situation is predicted to be totally different. The probability of scattering
processes vanishes for the gliding electrons, according to Eq. (11.143) and
(12.76). Therefore, their propagation is ballistic rather than diffusive, which leads
to the polarization propagation faster than (12.80). Instead, we have (Dugaev &
Katsnelson, 2014):

ld / t5=6, kFξ » 1,

ld / t3=4, kFξ « 1:
(12.81)

350 Spin effects and magnetism

https://www.cambridge.org/core


13

Graphene on hexagonal boron nitride

13.1 Motivation: ripples and puddles

In early days of graphene (2004–2010), amorphous silicon dioxide was a substrate
by default. As we discussed in Chapter 11, it already provides pretty high electron
mobility. At the same time, the quality of such samples is not extremely good; the
most important restriction is charge inhomogeneity in the form of electron and hole
puddles which were discovered by Martin et al. (2008). This is a serious obstacle;
e.g., to study minimal conductivity (Chapter 3), many-body renormalization of
Fermi velocity (Section 8.4), and other effects requires, for their reliable observa-
tion, a closeness to the neutrality point. The origin of these puddles was the subject
of long discussions (Rossi & Das Sarma, 2008; Polini et al., 2008; Fogler, 2009;
Gibertini et al., 2010; Das Sarma et al., 2011; Gibertini et al., 2012). The most
obvious factor of the puddle formation is a charge disorder in the substrate;
however, this can, in principle, be eliminated. As was shown by Gibertini et al.
(2010) and Gibertini et al. (2012), this is, however, not enough to reach the
homogeneous state. The reason is the existence of ripples, which seem to be
unavoidable for single-layer two-dimensional materials (Chapter 9). They lead to
randomness of the deformation tensor and, therefore, to random distributions of
pseudomagnetic field (10.7) and pseudoscalar potential (10.8). Whereas the former
is not very relevant for the puddles, the latter turns out to be sufficient to explain
the observed charge inhomogeneity, even without an assumption on any extrinsic
charge disorder.

The calculations in these works were made using a simplified density functional
for two-dimensional Dirac electron liquid (Polini et al., 2008). For the case of
freely suspended graphene (Gibertini et al., 2010), the distribution of atomic
displacements and thus of the deformation tensor, were taken from atomistic
simulations of the same kind as discussed in Chapter 9 (Fasolino, Los, & Katsnel-
son, 2007; Los et al., 2009). The typical picture of corrugations induced by thermal
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fluctuations is shown in Fig. 13.1 and the corresponding profile of the charge
density in Fig. 13.2. One can see that the intrinsic ripples alone provide inhomo-
geneity of the electron density with the amplitude of the order of 1011–1012cm–2.

To suppress the intrinsic ripples originated from the soft flexural phonons, one
can put graphene on a substrate. Unfortunately, SiO2 is a bad choice because this
amorphous layer has unavoidably a strong roughness. The corresponding calcula-
tions were made by Gibertini et al. (2012) using the scanning tunneling

Fig. 13.1 Three-dimensional plot of the corrugated, freely suspended graphene
sample from atomistic simulations for the case of room temperature.
(Taken with permission from Gibertini et al., 2010.)

Fig. 13.2 A one-dimensional plot of electron density in nominally undoped, freely
suspended graphene sample at room temperature calculated via the density
functional (Polini et al., 2008) for the sample shown in Fig. 13.1. The triangles
show the results in the Hartree approximation and squares are the results with the
exchange-correlation potential taken into account; one can see that the results are
qualitatively similar.
(Taken with permission from Gibertini et al., 2010.)
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microscopy (STM) experimental data on a profile of graphene on top of SiO2

(Geringer et al., 2009) with further numerical solution of the equations (9.65)–
(9.67) to restore the whole three-dimensional picture of atomic displacements. It
turns out that we have roughly the same electron inhomogeneities as for the freely
suspended graphene at room temperature.

Thus, to avoid puddle formation, one needs to suppress ripples by putting
graphene on atomically flat crystalline substrate. The best choice turned out to be
the hexagonal boron nitride (hBN), which consists of relatively weakly bound
layers with the same hexagonal lattice as graphene (Fig. 1.4), but with none-
quivalent atoms in sublattices A and B (nitrogen and boron, respectively). Dean
et al. (2010) and Meric et al. (2010) have demonstrated that by choosing hBN as a
substrate, one can suppress charge inhomogeneities and increase the electron
mobility by more than an order of magnitude in comparison with graphene on
SiO2. Now hBN is a substrate by default; graphene samples put on hBN or
encapsulated (Mayorov et al., 2011b) in hBN have extraordinary high quality.
Some experimental results already referred to in this book were obtained for these
samples; see e.g., Yu et al. (2013). Whereas at low temperatures the freely
suspended graphene samples can be of a comparable quality, at room temperatures
they have a strong restrictions on electron mobility due to scattering by intrinsic
ripples (or, equivalently, by flexural phonons); see Eq. (11.126) and Fig. 11.3.
Fig. 13.2 also shows an unavoidable charge inhomogeneity in such samples.
Graphene on hBN is free of these limitations. Note that graphene can be also
epitaxially grown on hBN (Yang et al., 2013; Tang et al., 2013).

At the same time, putting graphene on hBN is not only the way to improve the
sample quality and to unveil the intrinsic physics of Dirac fermions near the
neutrality point. It creates its own very interesting physics, especially related to a
controlled commensurability/incommensurability of a potential acting on elec-
trons. This chapter presents a basic introduction to the related phenomena.

13.2 Geometry and physics of moiré patterns

Importantly, it turns out to be possible to change misorientation angle θ between
the graphene layer and hBN substrate in a controllable way; as a result, the so-
called moiré patterns arise (Xue et al., 2011; Tang et al., 2013; Yang et al., 2013;
Woods et al., 2014; Woods et al., 2016). The consequences, especially for the
electronic structure, are very rich. The basic idea is that the electrons in graphene
feel both the crystal potential of graphene and of the substrate. In general, these
two potentials are not commensurate, they have different periods. For the perfect
alignment, when crystallographic axes for graphene and hBN coincide, they are
equal to
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b1 = b, b2 = b(1 + δ), (13.1)

where b ¼ ffiffiffi
3

p
a is the lattice constant for graphene and δ � 0.018 is the misfit of

the lattice periods (for hBN it is slightly larger). The real number δ can be
approximated as a rational number p/q where p and q are coprime integers (that
is, their greatest common divisor is 1). Then, the common period of our system is
qb » b. If we assume that δ is irrational, then we deal with a very challenging
problem of electron motion in quasiperiodic potential. Probably the best known
physical realization of this situation in condensed matter takes place in
quasicrystals (Shechtman et al., 1984; Guyot, Kramer, & de Boissieu, 1991;
Mermin, 1992; Goldman & Kelton, 1993; Lifshitz, 1997; Quilichini, 1997).
Quasicrystals are three-dimensional objects that can be formally considered as a
projection of six-dimensional crystals onto three-dimensional Euclidean space.
Graphene on hBN provide us a two-dimensional system with tunable quasiper-
iodic potential, and the tuning can be done just by a rotation of graphene with
respect to the substrate. The motion of massless Dirac fermions in such a potential
have some important peculiarities, which will be considered in this and the next
chapters. Before doing this, we first have to discuss the atomic structure of our
systems.

Let us start with just a simple, one-dimensional model of an atomic chain
on a slightly incommensurate substrate. This model was suggested by Frank
and van der Merwe (1949) as a development of earlier ideas of Frenkel and
Kontorowa (1938); for the modern introduction into the field see the book
by Braun and Kivshar (2004). The potential energy in Frank–van der Merwe
model reads:

V ¼ μ
2

XN�1

n¼0

xnþ1 � xn þ b1 � b2ð Þ2 þW

2

XN�1

n¼0

1� cos
2πxn
b2

� �
, (13.2)

where μ is the elastic modulus of the chain, W is the interaction energy with the
substrate per atom, N is the total number of atoms in the chain, and xn are atomic
displacements with respect to the equilibrium atomic positions in the substrate,
nb2. The model (13.2) contains competing interactions: Whereas the interaction
with substrate (the second term) wants to make the lattice period equal to b2, the
first term reaches the minimum at the interatomic positions in the chain equal to b1.
As a result, generally speaking, the atomic structure will be reconstructed to reach
the compromise between these two tendencies.

Introducing the dimensionless quantities

ζn = xn/b2, (13.3)
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one can rewrite Eq. (13.2) as

V ¼ Wl20
XN�1

n¼0

ζ nþ1 � ζ n �
1
P

� �2

þW

2

XN�1

n¼0

1� cos 2πζ nð Þ, (13.4)

where

P ¼ b2
b2 � b1

¼ 1
δ
þ 1, l0 ¼

ffiffiffiffiffiffiffi
μb22
2W

r
: (13.5)

Now let us assume that, first, the intrachain interactions are much stronger that the
(van der Waals) interactions with the substrate, that is, l0 » 1, and, second, that the
misfit δ is small, that is, P » 1. One can show that in this situation one can pass to
the continuum limit, replacing the sum in Eq. (13.4) by the integral and finite
differences by derivatives:

V

W
�
ðN
0

dn l20
dζ
dn

� 1
P

� �2

þ sin 2πζ

" #
: (13.6)

The Euler equations for the minimization of the functional (13.6) are

d2ζ

dn2
¼ π

2l20
sin 2πζ , (13.7)

with the solutions expressed in terms of elliptic functions (Abramowitz & Stegun,
1964; Whittaker & Watson, 1927). The general solution reads:

ζ nð Þ ¼ 1
2
þ 1
π
am

πn
l0k

� �
,
dζ
dn

¼ 1
l0k

dn
πn
l0k

� �
, (13.8)

where k � 1 is modulus of the elliptic function (note that in Eq. (7.65) m = k2), a
parameter dependent on the integration constants. The special case k = 1 corres-
ponds to an individual localized defect called misfit dislocation (Frank & van der
Merwe, 1949) or crowdion (Frenkel & Kontorowa, 1938). It corresponds to the
special boundary condition to Eq. (13.7)

ζ ! 0, n ! �∞; ζ ! 1, n ! ∞ , (13.9)

which mean that the atoms at �∞ lie in two subsequent minima of the substrate
potential. The solution

ζ ¼ 2
π
arctan exp

πn
l0

� �
(13.10)
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represents a step of atomic displacements localized at the spatial scale of the order
of l0b2 » b2. At k close to 1, the general solution (13.8) represents a dislocation
lattice, with displacement jumps separated by relatively large distances; the latter
can be expressed in terms of the elliptic integral (7.65). When k decreases, the
period of the lattice decreases, and at k! 0 it transforms to a sine-like modulation.

Frank and van der Merwe (1949) have found a condition of energetic stability of
the dislocations. It has the form

P <
πl0
2

: (13.11)

Taking into account the definitions (13.5) it can be approximately rewritten as

W > μ(b2 � b1)
2, (13.12)

which has a very simple physical meaning. The van der Waals interaction with the
substrate wants to put each atom of our chain into the minimum of the substrate
potential. However, it requires the deformation of the strings. This optimization of
the van der Waals interaction is possible if the latter is stronger than the loss of the
elastic energy at the deformation. If we have the strong equality (» instead of >) in
Eq. (13.12), the atomic relaxation will result in a state of relatively broad regions
where the atoms in the chain fit the substrate, separated by dislocations (13.10). In
this situation the incommensurability of the potentials will be all focused in some
boundary regions. In the opposite case of relatively weak van der Waals inter-
actions (< instead of > in Eq. (13.12)), the system will not even try to fit the
potential of substrate, and one can assume that the effects of atomic relaxation will
be relatively small and qualitatively not important.

This is a qualitative explanation of the commensurate-incommensurate
transition at the rotation of graphene with respect to hBN substrate discovered
by Woods et al. (2014). Unfortunately, for the two-dimensional case we do not
have any analytical theory similar to the one-dimensional case considered previ-
ously; we have to restrict ourselves to a qualitative analysis and computer simula-
tions (van Wijk et al., 2014; Woods et al., 2016). Before discussing this, first we
present a formal geometric theory of two-dimensional moiré structure without taking
into account atomic relaxation. We will follow the work by Hermann (2012).

Let us assume that the Bravais lattice for the substrate is built from the lattice
vectors a

!
1 and a

!
2, and for the overlayer, from the lattice vectors b

!
1 and b

!
2, which

are some linear combinations of a!1 and a
!
2:

b
!
1

b
!
2

 !
¼ M̂ a

!
1

a
!

2

� �
: (13.13)
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The matrix M̂ combines rotations at the misorientation angle θ and possible
changes of lattice periods:

M̂ ¼ p1 0
0 p2

� �
�R̂ θð Þ, R̂ θð Þ ¼ cos θ sin θ

� sin θ cos θ

� �
; (13.14)

for our case of graphene on hBN, the scaling factors are equal: p1 = p2 = 1/(1+ δ).
Then, the basic reciprocal lattice vectors of the overlayer G

!
1,G

!
2 are linear com-

binations of the basic reciprocal lattice vectors of the substrate g
!
1, g

!
2:

G
!

1

G
!

2

 !
¼ K̂ g

!
1

g
!

2

� �
: (13.15)

Keeping in mind that the scalar products a
!
i g
!
j should be equal to the scalar

products b
!

iG
!

j (they are both equal to δij), one has to choose

K̂ ¼ M̂
T

� ��1
: (13.16)

Now consider a crystal potential as a superposition of crystal potentials of substrate
and overlayer (at this stage we neglect all the effects of the lattice relaxation).
Then, it can be represented as a sum of two Fourier expansions:

V r
!� �

¼
X
mn

umn exp img
!
1r
! þ ing

!
2r
!� �

þ wmn exp imG
!

1r
! þ inG

!
2r
!� �h i
(13.17)

with the summation over all integer m and n. This sum can be represented as

V r
!� �

¼
X
mn

umn exp img
!
1r
! þ ing

!
2r
!� �

1þ wmn

umn
exp imΔ

!
1r
! þ inΔ

!
2r
!� �� �

,

(13.18)

where

Δ
!
1

Δ
!
2

 !
¼ G

!
1 � g

!
1

G
!

2 � g
!
2

 !
¼ K̂ � 1
	 
 g

!
1

g
!
2

� �
: (13.19)

These vectors can be considered as the reciprocal lattice vectors for the superlattice
(moiré lattice) with the elementary vectors

R
!
M1

R
!
M2

 !
¼ P̂ a

!
1

a
!
2

� �
, (13.20)

where, taking into account Eq. (13.16),
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P̂ ¼ K̂ � 1
	 
T� ��1

¼ 1� M̂
	 
�1

M̂ : (13.21)

Eq. (13.21) and (13.14) allow us to calculate the lengths of the unit vectors of the
moiré lattice and thus to determine its periods. The result is (Herman, 2012):

κ1 ¼ RM1

a1
¼ p1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p22 � 2p2 cos θ

p
1þ p1p2 � p1 þ p2ð Þ cos θ þ p1 � p2ð Þ cotω sin θ

,

κ2 ¼ RM2

a2
¼ p2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p21 � 2p1 cos θ

p
1þ p1p2 � p1 þ p2ð Þ cos θ þ p1 � p2ð Þ cotω sin θ

,

(13.22)

whereω is the angle between the vectors a!1 and a
!
2. For the case p1= p2= 1/(1+ δ),

we have

κ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þδð Þ2 þ 1�2 1þδð Þ cos θ

q � 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2þθ2

p , (13.23)

where the last equality is correct for small δ and θ. In this case, the period of the
superlattice is much larger than the lattice constant.

Now let us come back to our specific system. The first-principle calculations
(Giovannetti et al., 2007; Sachs et al., 2011; Bokdam et al., 2014) show that the
interlayer interaction energy is minimal when one carbon atom in the graphene
elementary cell is on the top of the boron atom and the other one is in the middle of
the boron–nitrogen hexagon. This destroys the equivalence of graphene sublattices
and breaks the inversion symmetry; the result is the formation of local gap opening
(mass term in the Dirac equation); see Section 1.3. The consequences for the
electronic properties will be discussed in the next sections. Note that to give
reliable results for the interlayer cohesive energy, the “first-principle calculations”
should go beyond the conventional density functional in the form of local density
approximation (LDA) or generalized gradient approximations (GGA); it is well
known that they cannot correctly describe the van der Waals interactions. Probably
the minimal approximation is the ab initio random phase approximation (RPA)
(Sachs et al., 2011). The corresponding results are shown in Fig. 13.3.

The calculations give an estimate of the constant W in the model (13.2) as
10 meV. Taking into account Eq. (9.157) and δ � 0.018, one can also roughly
estimate the right-hand side of Eq. (13.12) as tens of meV. This means that for the
case of perfect alignment, the competing energies of van der Waals interaction and
elastic deformation are comparable. When we rotate the sample, increasing mis-
orientation, we effectively enhance the role of elastic deformations. We do not
have any quantitative theory for the two-dimensional case, but both experiment
(Woods et al., 2014) and atomistic simulations (van Wijk et al., 2014) demonstrate
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the commensurate-incommensurate transition. For small enough angles θ < δ, the
atomic relaxation is very strong, and the optimized structure consists of domains of
more or less commensurate positions of graphene and hBN atoms separated by
“domain walls” with essentially different stacking. For larger angles, one can, in
the first approximation, describe the atomic structure as roughly unrelaxed (see
Fig. 13.4). This has very important consequences for the electronic properties,
which will be discussed in the next section.

13.3 Zero-mass lines and minimal conductivity

The nonequivalence of sublattices A and B for graphene on hBN results in the
appearance of mass term (see Eq. (5.1) and (5.2)) and in the local gap opening.
Importantly, for the optimized moiré structure, the function Δ can change the sign,
which results in the formation of zero-mass lines (Sachs et al., 2011); see Fig. 13.5.
According to the density functional calculations, the amplitude of the oscillations
of Δ is about tens of meV.

It turns out that the mass term can essentially be enhanced by correlation effects
(Song, Shytov, & Levitov, 2013; Bokdam et al., 2014). The ab initio GW
calculations give for the maximum local gap the value of the order of 300 meV
(Bokdam et al., 2014). Nevertheless, qualitatively the picture remains the same as
in the density functional (Sachs et al., 2011).

Existence of zero-mass lines (white lines at Fig. 13.5(c)) seems to be the most
important detail of this picture (Sachs et al., 2011; Titov & Katsnelson, 2014).

−0.08

−0.06

−0.04

−0.02

 0

 0.02

 0.04

3 3.5 4 4.5 5 5.5 6

T
ot

al
 e

ne
rg

y 
(e

V
/u

ni
t c

el
l)

Distance d in Å

RPA
LDA
GGA

Fig. 13.3 Total energies of graphene-hBN interlayer interaction per unit cell for
the optimal stacking.
(Taken with permission from Sachs et al., 2011.)
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Fig. 13.4 Distribution of carbon–carbon bond lengths in a graphene layer on a rigid
hBN substrate, according to atomistic simulations (van Wijk et al., 2014). (a)
Misorientation angle θ = 0, one can see a formation of domains of local commen-
surability. (b) Misorientation angle θ = 38�, atomic relaxation is almost negligible.
(Taken with permission from van Wijk et al., 2014.)

Fig. 13.5 (a) Top view of various stacking configurations for graphene at hBN;
carbon, boron and nitrogen atoms are shown in light gray, dark gray, and gray,
respectively. Configuration V is the most energetically favorable. (b) The frag-
ment of calculated moiré pattern for the perfect alignment (θ = 0). (c) The
corresponding distribution of the calculated “mass” term Δ; see Eq. (5.1).
(Reproduced with permission from Sachs et al., 2011.)
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These lines produce the basis of unidirectional linear-dispersion modes (Volkov &
Pankratov, 1986; Ludwig et al., 1994; Tudorovskiy & Katsnelson, 2012), similar
to edge modes in quantum Hall regime (Section 5.8).

Consider the Schrödinger equation with the Hamiltonian (5.1):

�iℏvσ!rþ σzΔ x; yð Þ	 

Ψ x; yð Þ ¼ EΨ x; yð Þ: (13.24)

First, consider the case of one-dimensional geometry, Δ = Δ(y). Then, we can try
the solution of Eq. (13.24) as

Ψ x; yð Þ ¼ exp
ipxx

ℏ

� �
ψ1 yð Þ
ψ2 yð Þ

� �
: (13.25)

For further simplifications, it is convenient to make a rotation in pseudospin space
(Tudorovskiy & Katsnelson, 2012)

η1 ¼
ψ1 þ ψ2ffiffiffi

2
p , η2 ¼

ψ1 � ψ2ffiffiffi
2

p : (13.26)

In this notation, Eq. (13.24) takes the form

vpx � E ℏv
∂
∂y

þ Δ

ℏv
∂
∂y

� Δ vpx þ E

0
BB@

1
CCA

η1

η2

0
@

1
A ¼ 0: (13.27)

Similar to the transition from Eq. (2.39) to (2.42), one can replace the matrix first-
order differential equation (13.27) by the scalar second-order differential equation

� d2

dy2
þ Δ2 yð Þ

ℏ2v2
� 1
ℏv

dΔ yð Þ
dy

� �
η1,2 ¼ λη1,2, (13.28)

in which sign + corresponds to the subscript 1 and sign – to the subscript 2,

λ ¼ E2 � v2p2x
ℏ2v2

: (13.29)

The connection formulas between η1 and η2 are given by the equations

E þ vpxð Þη2 ¼ Δ� ℏv
d

dy

� �
η1,

E � vpxð Þη1 ¼ Δþ ℏv
d

dy

� �
η2:

(13.30)

Eq. (13.28) has a very special property: For any function Δ(y) changing from
negative to positive values, it always has a solution with λ = 0. Actually, this
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equation is one of the prototype examples of supersymmetry in quantum mechan-
ics, and the existence of this zero mode is a consequence of the supersymmetry
(Gendenshtein & Krive, 1985). The solution can be found directly from the first-
order differential equation (13.30). If we assume that Δ > 0 at y !+∞ and Δ < 0
at y !�∞, the solution has the energy E = vpx, η1 = 0 and

η2 / exp �
ðy
0

dy0
Δ y0ð Þ
ℏv

0
@

1
A: (13.31)

In the opposite case Δ < 0 at y !+∞ and Δ > 0 at y !�∞ the solution has the
energy E =�vpx, η2 = 0 and

η1 / exp
ðy
0

dy0
Δ y0ð Þ
ℏv

0
@

1
A: (13.32)

In both cases, the corresponding modes have linear dispersion, unidirectional (their
group velocity is either parallel or antiparallel to x axis) and fully polarized in
pseudospin. For the second valley, the propagation direction and sublattice polar-
ization are opposite. The analogy with topologically protected zero modes con-
sidered in Section 2.3 is quite straightforward.

These modes exist only if there is a straight line where the function Δ(y) changes
sign (zero-mass line). One can also build the corresponding solution if the zero-
mass line is curved (Tudorovskiy & Katsnelson, 2012). Let us assume that this line
is given by the equation

x; yð Þ ¼ R
!

τð Þ, (13.33)

where τ is the path along the line, that is, d R
!
=dτ

��� ��� ¼ 1. In the vicinity of the line
(13.33) one can assume

x; yð Þ ¼ R
!

τð Þ þ ζ n
!

τð Þ, (13.34)

where n
!

τð Þ is the unit normal vector to the line (13.33). In curvilinear coordinates
(τ, ζ) the equation (13.23) takes the form

�iℏvσ! R
!0 τð Þ

1� ζ k τð Þ
∂
∂τ

� iℏvσ!n
!

τð Þ ∂
∂ζ

þ σzΔ

 !
Ψ ¼ EΨ, (13.35)

where R
!0 τð Þ ¼ d R

!
=dτ and k τð Þ ¼�R

!0 τð Þ� n!0 τð Þ is the curvature at the point τ
(DoCarmo, 1976). Since the Jacobian of the transformation (13.34) is not unity:

J ¼ ∂ x; yð Þ
∂ τ; ζð Þ ¼ 1� k τð Þζ , (13.36)
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one has to introduce a new wave function

Φ ¼
ffiffiffi
J

p
Ψ, (13.37)

which satisfies a “conventional” normalization conditionÐ
dτdζhΦjΦi = 1. (13.38)

In these new variables the modified Dirac equation (13.35) reads

�iℏvσ!R
!0 τð Þ

1�ζ k τð Þ
∂
∂τ
�iℏvσ! n

!
τð Þ ∂
∂ζ

þσzΔ�iℏvk τð Þ σ! n
!

τð Þ
2 1�ζ k τð Þ½ � �iℏvσ!R

!0 τð Þζ k0 τð Þ
2 1�ζ k τð Þ½ �2

 !
Φ¼EΦ:

(13.39)

Further analysis of this equation confirms a robustness of the unidirectional “zero”
modes for the curved lines, at least, assuming that the curvature radius is large
enough in comparison with the “Compton wavelength” Λ = ℏv/Δ(Tudorovskiy &
Katsnelson, 2012).

In the case when we have two parallel zero-mass lines situated at y = � b,
one can calculate the tunneling amplitude between the lines. One can expect from
Eq. (13.31) and (13.32):

T � exp � 1
ℏv

ðb
�b

dy Δ yð Þj j
2
4

3
5; (13.40)

a more accurate expression with a preexponential factor can be found in Tudor-
ovskiy and Katsnelson (2012).

If we assume for estimate Δ � 0.1 eV the Compton wavelength Λ � 10 nm, that
is, comparable with a typical moiré period ξ = κa; see Eq. (13.23). This means that
quantum effects such as tunneling are essential at the consideration of low-energy
spectrum of graphene at hBN. One can, nevertheless, consider a model under the
assumption

λ » Λ, (13.41)

which allows an accurate formal treatment. In this limit, the electronic transport in
graphene on hBN at the neutrality point can be described as a classical percolation
along zero-mass lines (Titov & Katsnelson, 2014). For the physical introduction to
the percolation theory, we refer to the books of de Gennes (1979) and Shklovskii &
Efros (1984); a more advanced review can be found in Isichenko (1992).

For the commensurate case, that is, for small misorientation angle, the super-
structure of graphene is optimized to minimize the van der Waals interaction
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energy with the hBN substrate. In this case, the regions of positive and negative
mass do not have equal areas, and there is an average macroscopic gap; according
to GW calculations (Bokdam et al., 2014) it is about 30 meV. Therefore, perfectly
aligned graphene is supposed to be insulating at low temperatures. Such behavior
was indeed observed for some samples but not for all of them (Woods et al., 2014);
probably in other samples the effect is hidden by some disorder in the substrate. In
the incommensurate phase, the average macroscopic gap is expected to be 0, as we
will discuss in detail in Section 13.5. Therefore, one can assume that the regions of
negative and positive masses have equal areas, with zero-mass lines in between
(Fig. 13.6). In this situation, the zero-mass lines form a critical percolation cluster
(de Gennes, 1979; Shklovskii & Efros, 1984; Isichenko, 1992).

In two dimensions, very powerful tools can be used to study the critical
percolation, such as conformal field theory (Di Francesco, Mathieu, & Sénéchal,
1997) and Schramm–Loewner evolution (Kemppainen, 2017). As a result, a
number of rigorous results have been obtained (Saleur & Duplantier, 1987;
Isichenko, 1992; Cardy, 2000; Smirnov, 2001; Beffara, 2004; Kager & Nienhuis,
2004; Hongler & Smirnov, 2011).

Let us calculate the minimal conductivity of graphene on hBN in the model of
classical percolation. Landauer–Büttiker formula for the conductance (3.16) takes
the form

G ¼ 2e2

h
Nlineh i, (13.42)

where hNlinei is the average number of the percolation paths connecting the sample
edges at x = 0 and x = Lx, and we take into account that the transmission
probability for each classical path is 1, and that there are two channels per path,
due to spin degeneracy. Indeed, as follows from our analysis after Eq. (13.30) only

Fig. 13.6 Percolation model. Gray and white hexagons represent the regions with
positive and negative masses, respectively, with counterpropagating modes at the
boundaries between them (shown by arrows).
(Reproduced with permission from Titov & Katsnelson, 2014.)
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one valley has zero mode propagating in the needed direction; therefore, the valley
degeneracy factor 2 should not be taken into account, contrary to the consideration
in Chapter 3.

For rectangular geometry in the limit Lx » Ly, where Ly is the sample width (cf.
Eq. (3.18)), hNlinei is given by the Cardy formula derived by the tools of conformal
field theory (Cardy, 2000)

Nlineh i ¼
ffiffiffi
3

p

2
Lx
Ly

; (13.43)

mathematically rigorous proof of this formula was given by Hongler and Smir-
nov (2011). Substituting Eq. (13.43) into Eq. (13.42) one can find for the
conductivity

σ ¼
ffiffiffi
3

p e2

h
: (13.44)

Importantly, the critical percolation path in two dimensions cannot be considered
as a conventional line directly connecting, more or less, the sample edges. It is a
fractal object, that is, a very thick and meandrous line. In particular, the hull
Hausdorff dimensionality of the critical percolation cluster (roughly speaking,
the fractal dimensionality of the percolation path) is equal to 7/4 (Saleur &
Duplantier, 1987).

13.4 Berry curvature effects

Appearance of the mass term in the Dirac Hamiltonian modifies our consideration
of the Berry phase in comparison with the massless case (see Section 2.4). Now we
have the effective Hamiltonian (2.87) with the vector

R
!

k
!� �

¼ 2 ℏvkx;ℏvkx;Δð Þ: (13.45)

The corresponding expression for the Berry curvature vector (2.86) is:

V
!

k
!� �

¼ ℏvð Þ2

2 ℏvkð Þ2 þ Δ2
� �3=2 ℏvkx;ℏvky;Δ

	 

(13.46)

(cf. Eq.(2.89)). Here we consider, to be specific, only electron band; for the hole
band, the sign will be opposite.

The appearance of z-component of the Berry curvature essentially changes the
electron dynamics in the presence of external electric and magnetic fields (Xiao,
Chang, & Niu, 2010; Gorbachev et al., 2014). For simplicity, we will restrict
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ourselves here to the case of electric field E
!

tð Þ only. We will use the gauge (7.2).

Then, the effect of the electric field on the state n k
!��� E

will be just a replacement

n k
!��� E

! n; k
!

tð Þ
��� E

, with

k
!

tð Þ ¼ k
! � e

ℏc
A
!

tð Þ, (13.47)

which leads immediately to the equation of motion

dk
!

tð Þ
dt

¼ e

ℏ
E
!

tð Þ: (13.48)

Now, we have to write the expression for the average value of the group velocity
in the state ju(t)i, which solves the Cauchy problem for the time-dependent
Schrödinger equation (2.76) and (2.78):

v
!
n ¼ 1

ℏ
u tð Þh j ∂Ĥeff

∂k
! u tð Þj i: (13.49)

The further derivation (Xiao, Chang, & Niu, 2010) is a modification of the general
consideration of the Berry phase in Section 2.4. We start with a general, formally

exact expansion of the solution in the basis n; k
!

tð Þ
��� E

:

u tð Þj i ¼
X
m

am tð Þ exp � i

ℏ

ðt
0

dt0Em k
!

tð Þ
� �2

4
3
5 m; k

!
tð Þ

��� E
: (13.50)

Substituting Eq. (13.50) into Eq. (2.76), and taking into account Eq. (2.77),
we find

dan tð Þ
dt

¼�
X
m

am tð Þ exp i

ℏ

ðt
0

dt0 En k
!

t0ð Þ
� �

� Em k
!

t0ð Þ
� �h i8<

:
9=
;

	 n; k
!

tð Þ
D ���r

k
! m; k

!
tð Þ

��� E d k
!

tð Þ
dt

:

(13.51)

The right-hand side of Eq. (13.51) is proportional to the electric field, due to
Eq. (13.48). Assuming that the electric field is weak, one can solve Eq. (13.51) by
iterations. Note that the term with m = n can be excluded by some phase shift
(actually, this is the Berry phase (2.81)), which is obviously irrelevant at
the calculation of (13.49). In the linear approximation, taking into account
Eq. (13.50) and integrating on time by part, one obtains:
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u tð Þj i ¼ exp � i

ℏ

ðt
0

dt0Em k
!

t0ð Þ
� �2

4
3
5

	 n; k
!

tð Þ
��� E

� iℏ
dk
!

tð Þ
dt

X
m6¼n

m; k
!

tð Þ
��� E m; k

!
tð Þ

D ���r
k
! n; k

!
tð Þ

��� E
En k

!
tð Þ

� �
� Em k

!
tð Þ

� �
8><
>:

9>=
>;:

(13.52)

At last, we use the identity (2.85) and substitute Eq. (13.52) into Eq. (13.49).
The result is expressed in terms of the Berry curvature vector (Xiao, Chang, & Niu,
2010):

v
!
n k

!� �
¼ 1

ℏ
r

k
!En k

!� �
þ e E

! 	 V
!

n k
!� �h i

: (13.53)

The term with the vector product represents anomalous group velocity. It is
relevant for the two-dimensional transport only if the vector V

!
n k

!� �
has a non-

vanishing component perpendicular to the plane, which is possible only at Δ 6¼ 0
(see Eq. (13.46)).

In this case, one can expect the current that is normal to the direction of the
electric field, like in the Hall effect. Assuming that E

! k 0x, one can calculate from
Eq. (13.53):

jy ¼ 2e
X
α

ð
d2k

2πð Þ2 vy k
!� �

f α k
!� �

¼ σxyE, (13.54)

where f α k
!� �

is the Fermi function for electron and hole bands (α = e,h)

σxy ¼ 2
e2

h

X
α

ð
d2k

2π
Vα
z k

!� �
f α k

!� �
, (13.55)

and the factor 2 is the spin degeneracy; note that Ve
z k

!� �
¼ �Vh

z k
!� �

¼ Vz k
!� �

.

Appearance of the “Hall-like” off-diagonal conductivity assumes broken time-
reversal symmetry; we already know that in the Dirac model with nonzero mass
this symmetry is broken, indeed (see Eq. (5.8)). It is restored if we take into
account the contribution of two valleys; one can prove that they are different by the
signs of Vz k

!� �
. As a result, the total charge current in y-direction vanishes, but

valley current and therefore valley Hall effect arises, with the corresponding valley
conductivity

σvxy ¼ σKxy � σK
0

xy ¼ 4
e2

h

X
α

ð
d2k

2π
Vα
z k

!� �
f α k

!� �
: (13.56)
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Substituting Eq. (13.46) into Eq. (13.55) and assuming zero temperature, we obtain
(Gorbachev et al., 2014):

σvxy ¼
2e2

h
	 1, μj j < Δ,

Δ= μj j, μj j 
 Δ,

�
(13.57)

where μ is the chemical potential. Valley Hall current can be transformed to
nonlocal charge current and thus detected, similar to our discussion in Section
11.6. This effect was observed by Gorbachev et al., (2014), which can be con-
sidered as a bright, experimental manifestation of Berry curvature for massive two-
dimensional Dirac fermions.

Another interesting effect related to the broken inversion symmetry and appear-
ance of the mass term in graphene at hBN is the optical second-harmonic gener-
ation (Vandelli, Katsnelson, & Stepanov, 2019). Note that in this case the Dirac
approximation is not sufficient, and one needs to work with the lattice model or, at
least, take into account the trigonal warping term (1.34).

13.5 Electronic structure of moiré patterns

Now, let us build the effective Hamiltonian describing the electronic structure of
graphene at hBN. We start with the consideration of a purely geometric moiré
structure without atomic relaxation. As explained in Section 13.2, this is a reason-
able approximation for the incommensurate moiré pattern, with large enough
misorientation angle. The effects of the atomic relaxation will be included later.

If we completely neglect electron–electron interactions and consider purely
single-electron tight-binding Hamiltonian it can be represented in the form

Ĥ ¼ ĤBN þ Ĥg þ Ĥ⊥, (13.58)

where ĤBN is the tight-binding Hamiltonian for hBN substrate, Ĥg is the Hamilto-
nian for graphene overlayer, and Ĥ⊥ is the interlayer-hopping Hamiltonian con-
necting the substrate and the overlayer. The basis vectors of our two subsystems
are connected by Eq. (13.13) and (13.14), and the reciprocal lattice vectors, Eq.
(13.15) and (13.16). For the case of triangular Bravais lattice, we are interested in
the minimal reciprocal lattice vectors, which are given by the expression (note that
we rotate our coordinate frame by 60

�
in comparison with that used in Eq. (1.12))

G
!

m¼0, ..., 5 ¼ R̂
2πm
6

� �
G
!

0, G
!

0 ¼ 1� 1
1þ δ

R̂ θð Þ
� �

0;
4π
3a

� �
, (13.59)

see Eq. (13.14).
In the lowest (that is, second) order in a small interlayer hopping, the effective

Hamiltonian for graphene overlayer can be written as
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Ĥ eff ¼ Ĥg þ Ĥ⊥
1

E � ĤBN
Ĥ⊥, (13.60)

cf. Eq. (12.63). We will postpone the derivation of the Hamiltonian Ĥ⊥ between
two misoriented layers (Lopes dos Santos, Peres, & Castron Neto, 2007; Bistritzer
& MacDonald, 2011; Kindermann & First, 2011; Mele, 2011) until the next
chapter, where we will consider twisted bilayer graphene. Here, we present just
the result, the effective Hamiltonian (13.60) for the closed vicinity of Dirac points
K and K’ (Kindermann, Uchoa, & Miller, 2012; Wallbank et al., 2013; Diez et al.,
2014). In the basis (1.27), the answer reads (Wallbank et al., 2013):

Ĥeff ¼ �iℏvτ0⊗ σ! rþ U0τ0⊗σ0 f 1 r
!� �

þ U3τz⊗σz f 2 r
!� �

þU1τz⊗ σ! e
!
z 	rf 2 r

!� �� �
þ U2τz⊗ σ! rf 2 r

!� �
, (13.61)

where e
!
z ¼ 0; 0; 1ð Þ is the unit vector along z-direction, and τ0, σ0 are unit matrices

in the valley and sublattice spaces, respectively,

f 1 r
!� �

¼
X5
m¼0

exp iG
!

mr
!� �

, f 2 r
!� �

¼
X5
m¼0

�1ð Þm exp iG
!

mr
!� �

, (13.62)

and we have taken into account only the largest terms, conserving inversion
symmetry. All contributions Ui in our model are of the order of t2⊥=ΔBN � 1
meV where ΔBN � 6 eV is the energy gap in hBN (Watanabe, Taniguchi, &
Kanda, 2004). Note however that the term U0, describing modulation of scalar
potential, has much larger contribution (of the order of 60 meV) from direct
Coulomb interaction between electrons in substrate and graphene overlayer (Wall-
bank et al., 2013).

The term proportional to U3 represents the local gap opening. This term is

proportional to the function f 2ð r!Þ, with average value equal to 0; this justifies our
assumption in Section 13.3 that the average mass vanishes in the incommensurate
phase of the moiré pattern. Note that our too-simplified tight-binding model
probably essentially underestimated this term. At least the first-principle calcula-
tions cited earlier give an order-of-magnitude larger amplitude of the local gap
fluctuations.

The terms proportional to U1 and U2 originate from the modulation of hopping
parameters and describe oscillating pseudomagnetic field (10.2). Both these terms
and the mass term are proportional to τz, that is, have opposite signs for the valleys
K and K’.

In the model (13.61) we deal with Dirac fermions under the action of periodic
scalar potential, vector potential, and mass term. Probably the most interesting
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effect is the formation of the secondary families of the Dirac points related to the
boundaries of the new “moiré” Brillouin zone, with the reciprocal lattice vectors
determined by Eq. (13.59) (note that at small δ and θ their length is very large:
jGj » π/a). This effect was predicted by Park et al. (2008). Following this work, let us
first consider the model with purely scalar periodic potential in one dimension:

Ĥ ¼ ℏv �iσx
∂
∂x

��iσy
∂
∂y

þ V xð Þ
ℏv

� �
, (13.63)

V(x) = V(x + ξ). (13.64)

To be specific, we assume that the average value of the periodic potential is 0 and
that it is even: V(x) = V(–x). The unitary transformation Ĥ 0 ¼ Û

þ
1 ĤÛ1, with the

matrix

Û1 ¼ 1ffiffiffi
2

p e�iα xð Þ=2 �eiα xð Þ=2

e�iα xð Þ=2 eiα xð Þ=2

� �
(13.65)

and

α xð Þ ¼ 2
ℏv

ðx
0

dx0V x0ð Þ (13.66)

gives us the new Hamiltonian

Ĥ 0 ¼ ℏv
�i

∂
∂x

�eiα xð Þ ∂
∂y

e�iα xð Þ ∂
∂y

i
∂
∂x

0
BB@

1
CCA: (13.67)

Its diagonal part has two eigenstates propagating along x-direction and opposite
to it:

Φ1j i ¼ eikx
1
0

� �
, Φ2j i ¼ e�ikx 0

1

� �
, (13.68)

with the same eigenenergy E = ℏvk (note that the direction of the pseudospin
vector and, therefore, of the x axis is now different from the original one, due to the
unitary transformation). The off-diagonal part depending on the periodic potential
induces back-scattering connecting these two waves.

Let us assume for simplicity that α is small. Then, we know from a general
theory of electrons in a weak periodic potential (Vonsovsky & Katsnelson, 1989)
that the latter can produce a strong effect only for the wave vectors close to
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Gn ¼ 2π
ξ
n, n ¼ �1, � 2, . . . (13.69)

One can expand the phase factor in the Taylor series

eiα xð Þ ¼
Xþ∞

n¼�∞

f ne
iGnx, (13.70)

the coefficients fn are all real for the even function V(x).
For small enough fn and for the wave vectors k � Gn one can project the

Hamiltonian (13.67) onto a two-dimensional basis

~Φ1

��  ¼ ei qxþGn=2ð Þxþiqyy 1
0

� �
, ~Φ2

��  ¼ ei qx�Gn=2ð Þxþiqyy
0
1

� �
, (13.71)

the vector q! is supposed to be small. The result is

Ĥ 0 ¼ ℏv qxσz þ f nqyσy
� �

þ ℏvπn
ξ

: (13.72)

After the second unitary transformation

Û2 ¼ 1ffiffiffi
2

p 1 1
�1 1

� �
(13.73)

the Hamiltonian (13.72) takes the form

Ĥ}¼ ℏv qxσx þ f nqyσy
� �

þ ℏvπn
ξ

: (13.74)

It has the eigenenergies

EðnÞ
� ðq!Þ ¼ �ℏv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2x þ f 2nq

2
y

q
þ ℏvπn

ξ
, (13.75)

corresponding to the anisotropic conical points, with essentially different group
velocities along x and y directions (we have to recall that these directions originate
from initial ones by two rotations, (13.65) and (13.73)).

Numerical solution of the two-dimensional analog of the problem (13.63) and
(13.64) shows the appearance of the additional conical points near the moiré
Brillouin zone face centers G

!
m=2; see Eq. (13.59) (Park et al., 2008). The same

conclusion also remains correct in the full model (13.61), with modulated scalar
potential, vector potential, and mass term (Wallbank et al., 2013).

When we go beyond the weak-coupling approximation and connect more than
two waves, the higher-order sequences of conical points arise. In the presence of
quantized magnetic field, each of these sequences results in a sequence of the
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corresponding Landau levels, leading to a very complicated “fractal” structure of
the energy spectrum, reminiscent of the so-called Hofstadter butterfly (Hofstadter,
1976). The cloning of conical point and Hofstadter butterfly effects were experi-
mentally observed in graphene at hBN (Dean et al., 2013; Hunt et al., 2013;
Ponomarenko et al., 2013).

Slotman et al. (2015) simulated the electronic structure of graphene at hBN,
taking into account the atomic relaxation effects; the latter turn out to be very
important for small enough misorientation angles. The corresponding results are
shown in Fig. 13.7.

The other important conclusion from these simulations is that the results are
very sensitive to the amplitude of the mass term; to have a reasonable agreement
with the available experimental data, many-body enhancement of the mass term
(Song, Shytov, & Levitov, 2013) should be probably taken into account. To
illustrate this sensitivity we show in Fig. 13.8 the computational results for the
optical conductivity for two different values of the amplitude of the mass term.

Apart from the cloning of the conical points, periodic fields acting on massless
Dirac fermions renormalize the value of the electron velocity in the Dirac point
(Tan, Park, & Louie, 2010; Dugaev & Katsnelson, 2012). This effect will be
important for our consideration of twisted bilayer graphene in the next chapter. It
can already be seen from Eq. (13.75). Here, we consider a more general case, with
periodic modulations of both scalar and (pseudo)vector potentials, but neglecting

relaxed

unrelaxed

D
O

S 
(1

/t
)

0

0.01

0.02

0.03

0.04

E/t

−0.1 −0.05 0 0.05 0.1

Fig. 13.7 Calculated density of states (DOS) for graphene on hBN for perfect
alignment (θ = 0); energy is in the units of the nearest-neighbor hopping param-
eter t = 2.7 eV. Minima of DOS correspond to additional conical points. One can
see that the atomic relaxation dramatically increases the effect of moiré on the
electronic structure.
(Reproduced with permission from Slotman et al., 2015.)
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the mass term (Dugaev & Katsnelson, 2012). The case of modulation of only the
vector potential was considered by Tan, Park, and Louie (2010).

Instead of Eq. (13.63), let us consider a more general Hamiltonian
(cf. Eq. (10.1))

Ĥ ¼ σ! �iℏvr� A
!

xð Þ
� �

þV xð Þ, (13.76)

both functions A
!

xð Þ and V(x) are supposed to be periodic, with the period ξ. The
corresponding Schrödinger equation for the spinor wave function Ψ = (ϕ, χ)T reads

E � V iℏv∂� þ A�

iℏv∂þ þ Aþ E � V

 !
φ

χ

 !
¼ 0, (13.77)

where ∂� = ∂/∂x � i∂/∂y, A� = Ax � iAy.
We want to build Bloch functions with the wave vector k « π/ξ. To this aim,

from the conventional k�p perturbation theory (Tsidilkovskii, 1982; Vonsovsky &
Katsnelson, 1989), we first need to find the solutions of Eq. (13.77) for k

!¼ 0:

E � Vð Þφþ iℏv
dχ
dx

þ A�χ ¼ 0,

E � Vð Þχ þ iℏv
dφ
dx

þ Aþφ ¼ 0:

(13.78)
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Fig. 13.8 Calculated optical conductivity (in the units of σ0 = πe2/2h, Eq. (7.36))
for the values of the mass term taken from the calculations (Bokdam et al., 2014)
(a) and for that term enhanced by a factor of 2 (b).
(Reproduced with permission from Slotman et al., 2015.)
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We are looking for the solutions with small energy. If we put in Eq. (13.78) E = 0,
one can derive the second-order differential equation for the function φ

d2φ

dx2
� d lnV

dx
þ 2iAx

ℏv

� �
dφ
dx

þ V2

ℏ2v2
� i

ℏv
dAþ
dx

þ i

ℏv
d lnV
dx

Aþ � AþA�
ℏ2v2

� �
φ ¼ 0

(13.79)

and the expression for the second component of the spinor

χ ¼ iℏv
V

dφ
dx

þ Aþ
V

φ (13.80)

(Dugaev & Katsnelson, 2012).
Now consider the case A

!
xð Þ ¼ 0; then Eq. (13.79) and (13.80) are dramatically

simplified. One can straightforwardly check that they have the solutions

φ1,2 xð Þ ¼ exp � i

ℏv

ðx
0

dx0V x0ð Þ
2
4

3
5,

χ1,2 xð Þ ¼ ∓ exp � i

ℏv

ðx
0

dx0V x0ð Þ
2
4

3
5:

(13.81)

In k�p approximation, the normalized basic functions can be chosen as

Ψ1 ¼ eik
!
rffiffiffiffiffi
2S

p φ1
χ1

� �
, Ψ2 ¼ eik

!
rffiffiffiffiffi
2S

p φ2
χ2

� �
, (13.82)

where S is the sample area. The Hamiltonian (13.63) in this basis has the form

Ĥ ¼ ℏv
�kx γ1kx � γ2ky

γ1kx � γ2ky kx

� �
, (13.83)

where

γ1 ¼
ðξ
0

dx

ξ
cos

2
ℏv

ðx
0

dx0V x0ð Þ
2
4

3
5,

γ2 ¼
ðξ
0

dx

ξ
sin

2
ℏv

ðx
0

dx0V x0ð Þ
2
4

3
5:

(13.84)

This Hamiltonian represents the anisotropic conical point with the velocities
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vx ¼ v
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ21

q
, vy ¼ vγ2: (13.85)

For the case of a purely vector potential (V = 0), Eq. (13.79) and (13.80) have two
solutions:

φ1 xð Þ ¼ exp
i

ℏv

ðx
0

dx0Aþ x0ð Þ
2
4

3
5, χ1 xð Þ ¼ 0 (13.86)

and

φ2 xð Þ ¼ 0 , χ2 xð Þ ¼ exp
i

ℏv

ðx
0

dx0A� x0ð Þ
2
4

3
5 : (13.87)

The effective Hamiltonian in this basis is

Ĥ ¼ ℏvffiffiffiffi
Λ

p 0 kx � iky
kx þ iky 0

� �
, (13.88)

where

Λ ¼
ðξ
0

dx1
ξ

exp � 2
ℏv

ðx1
0

dx0Ay x0ð Þ
2
4

3
5ðξ

0

dx2
ξ

exp
2
ℏv

ðx2
0

dx0Ay x0ð Þ
2
4

3
5 (13.89)

(Tan, Park, & Louie, 2010; Dugaev & Katsnelson, 2012). This Hamiltonian
describes isotropic conical (Dirac) point with the effective velocity

~v ¼ v=
ffiffiffiffi
Λ

p
: (13.90)

The expression for Λ can be rewritten as

Λ ¼
ðξ
0

dx1
ξ

ðξ
0

dx2
ξ

cosh
2
ℏv

ðx2
x1

dx0Ay x0ð Þ
2
4

3
5, (13.91)

which makes obvious Λ > 1 and, therefore, periodic (pseudo)magnetic field
always diminishes the Fermi velocity.

Similarly, one can derive a general expression for the effective (anisotropic)
Fermi velocities in the presence of both scalar and vector potentials. Also, one
can consider the “Fock” renormalization of the anisotropic Fermi velocity,
similar to Eq. (8.95). All of these results can be found in Dugaev and
Katsnelson (2012).

13.5 Electronic structure of moiré patterns 375

https://www.cambridge.org/core


13.6 Magnetic bands in graphene superlattices

Moiré superstructures in graphene on hBN provide a unique opportunity to better
understand the physics of Bloch electrons in magnetic field. For “normal” crystal
lattices, we are always in the regime (2.2), which is equivalent to the assumption

Φel « Φ0, (13.92)

where Φel = BSel is the magnetic flux per elementary cell, Sel is the area of the
elementary cell, and Φ0 is the flux quantum (2.52). For the moiré superlattices with
the period ξ ¼ ffiffiffi

3
p

aκ » a (see Eq. (13.23)), Φel is enhanced by the factor κ2 and
can be comparable with Φ0 in relatively easily achievable magnetic fields of the
order of 10 T.

Let us come back to our general consideration of Section 2.1 to study what
happens with electronic states when the condition (13.92) is violated. As a first
step, we need to study in a bit more detail the generalized translation operators
(2.15), which form the magnetic translation group (Brown, 1964; Zak, 1964).
Similar to Eq. (2.18), we derive:

exp
i

ℏ
R
!
i
^
Π
!

� �
exp

i

ℏ
R
!
j
^
Π
!

� �
¼ exp

i

ℏ
R
!
i þ R

!
j

� �^
Π
!

� �
exp

ie

ℏc
R
!
i 	 R

!
j

� �
B
!

� �
:

(13.93)

Note that if magnetic field is perpendicular to the crystal plane, then

R
!
i 	 R

!
j

� �
B
!¼ BSij, (13.94)

where Sij is the area of a parallelogram build on the vectors R
!
i and R

!
j and

Sij = nijSel, (13.95)

where nij is some integer number.
Let us assume first that

Φel = pΦ0, (13.96)

where p is an integer. Then, for any translation, vectors R
!
i and R

!
j

exp
ie

ℏc
R
!
i 	 R

!
j

� �
B
!

� �
¼ exp

ieΦel

ℏc
nij

� �
¼ exp 2πipnij

	 
 ¼ 1, (13.97)

and the magnetic translation operators

T̂ R
!
i

h i
¼ exp

i

ℏ
R
!
i
^
Π
!

� �
(13.98)
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commute:

T̂ R
!
i

� �
T̂ R

!
j

� �
¼ T̂ R

!
i þ R

!
j

� �
¼ T̂ R

!
j

� �
T̂ R

!
i

� �
: (13.99)

At the same time, each of them commutes with the Hamiltonian, as was discussed
in Section (2.1); see Eq. (2.13) and (2.16). This means that they have a common
system of the eigenfunctions; that is, we can choose the solution of the stationary
Schrödinger equation ψð r!Þ such that

T̂ R
!
i

� �
ψ r

!� �
¼ τ R

!
i

� �
ψ r

!� �
, (13.100)

where τ R
!
i

� �
is the eigenvalue of the operator T̂ R

!
i

� �
. Since the latter is unitary

(which follows from its definition (13.98)) τ R
!
i

� ���� ��� ¼ 1, and the only expression

consistent with Eq. (13.99) is τ R
!
i

� �
¼ eik

!
R
!

i , k
!

is a real vector. Therefore

Eq. (13.100) is an analog of the Bloch theorem (2.75).
Taking into account Eq. (2.15), one can rewrite Eq. (13.100) as

ψ r
! þ R

!
i

� �
¼ exp

iR
!
i

ℏ
^p
!

 !
ψ r

!� �
¼ exp i k

!
r
! � ie

2ℏc
R
!
i	 B

!� �
r
!

� �
ψ r

!� �
,

(13.101)

and

ψ r
! þR

!
i

� ���� ���2 ¼ ψ r
!� ���� ���2: (13.102)

This means that under the condition (13.96), the stationary electronic states can be
represented as waves propagating through the whole crystal without scattering or
localization, exactly like the Bloch states in an ideal crystal in the absence of
magnetic field. Obviously, the same statement is correct if, instead of Eq. (13.96),
we have the condition

Φel ¼ p

q
Φ0, (13.103)

with integer p and q. Indeed, in this situation we can just consider the elementary
cell with translation vectors multiplied by q. This statement was already used in
Section (2.9).

For the irrational elementary flux (in the units of flux quantum) the translation
operators (13.98) do not commute, which makes the use of noncommutative
geometry natural (Bellissard, van Elst, & Schulz-Baldes, 1994). In this case,
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electronic states and their energies form a complicated fractal structure known as
Hofstadter butterfly, as was mentioned in the previous section.

For two-dimensional free-electron gas, classical electron motion in the magnetic
field is a Larmor rotation and, therefore, is restricted by some finite region; in
quantum case this leads to Landau quantization of the electron energy spectrum. In
general, this should also be the case in the presence of periodic crystalline
potential. At the same time, under the condition (13.103), the electron motion
should be infinite, similar to the motion of Bloch electrons without magnetic field.
This leads to a very interesting effect, which was experimentally observed by
Krishna Kumar et al. (2018) and Krishna Kumar et al. (2017). It turns out that the
longitudinal conductivity of graphene superstructures on hBN oscillates with the
magnetic field, reaching local maxima at the condition (13.103); the pronounced
maxima are observed even for relatively large values as p = 4 and q = 11. These
oscillations are completely different from the conventional magneto-oscillation
effects considered in Section 2.8. They are observed at relatively high tempera-
tures, such as 100–200 K.
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14

Twisted bilayer graphene

14.1 Geometry and atomic structure

In this chapter we continue our consideration of large-scale periodic superstruc-
tures originated in misoriented Van der Waals heterostructures and discuss a
particular but very important case of twisted bilayer graphene (or similar problem
of graphene on graphite). In these situations, the lattice constants of both layers
are identical, and the period of moiré pattern is determined by Eq. (13.22) with
p1 = p2 = 1:

κ ¼ 1
2 sin θ=2ð Þj j : (14.1)

Generally speaking, the resulting structure is incommensurate except some special
values of the misorientation angle θ. For theory and simulations, these special
cases are important because they allow us to use well-developed solid-state theory
for crystals; the case of quasicrystals is much more difficult and will be briefly
touched on in the next section. Even for this case practical calculations are possible
only with the use of long-periodic crystalline approximants.

To build the supercell for the two layers, which exists in the commensurate case,
we will use the following procedure (Shallcross et al., 2010).

Suppose we succeed with the building of a common crystal lattice for two layers
rotated one with respect to the other by angle θ. Then, each vector of this common
lattice can be represented as a linear combination of the unit cell vectors in each
layer with integer coefficients:

r
!¼ m1a

!
1 þ m2a

!
2 ¼ n1R̂ θð Þa!1 þ n2R̂ θð Þa!2, (14.2)

where n1, n2, m1, m2 are integer, R̂ θð Þ is the rotation matrix (13.14), and the lattice
vectors are given by Eq. (1.10). Multiplying Eq. (14.2) by a

!
1 and by a

!
2 and

keeping in mind that a!2
1 ¼ a

!2
2 ¼ 3a2, a!1a

!
2 ¼ 3a2=2 one obtains
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m1 þ m2

2
¼ n1R11 þ n2R12,

m1

2
þ m2 ¼ n1R21 þ n2R22,

(14.3)

where

Rij ¼ 1
3a2

a
!
i�R̂ θð Þa!j: (14.4)

Solving linear equations (14.4) and substituting Eq. (1.10) and (13.14) into
Eq. (14.4) we find

m1

m2

� �
¼

cos θ � 1ffiffiffi
3

p sin θ � 2ffiffiffi
3

p sin θ

2ffiffiffi
3

p sin θ cos θ þ 1ffiffiffi
3

p sin θ

0BB@
1CCA n1

n2

� �
: (14.5)

All matrix elements in Eq. (14.5) should be rational which requires

1ffiffiffi
3

p sin θ ¼ k1
k3

, (14.6)

cos θ ¼ k2
k3

, (14.7)

where all ki are integer. They should satisfy Diophantine equation

3k21 þ k22 ¼ k23: (14.8)

Its solution is equivalent to finding all rational points lying at the ellipse
3x2 + y2 = 1. The general solution is

k1 = 2pq, k2 = 3q2 � p2, k3 = 3q2 + p2, (14.9)

with arbitrary integer p and q (for the proof see Shallcross et al., 2010). Substitut-
ing Eq. (14.9) into Eq. (14.7) we find

cos θ ¼ 3q2 � p2

3q2 þ p2
: (14.10)

To find the supercell lattice vectors we need to substitute Eq. (14.6) and (14.7) into
Eq. (14.5):

m1

m2

� �
¼ 1

k3

k2 � k1 �2k1
2k1 k2 þ k1

� �
n1
n2

� �
: (14.11)
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The solution of these Diophantine equations is quite cumbersome, and we refer the
reader to Shallcross et al. (2010). The answer depends on the parameter

δ ¼ 3
gcd p; 3ð Þ , (14.12)

where gcd(m, n) is the greatest common divisor of the natural numbers m and n,
that is, δ = 1 if 3 divides p, and δ = 3 otherwise. For δ = 1 the unit vectors of the
supercell can be chosen as

t
!
1 ¼ 1

γ
pþ 3q
�2p

� �
, t

!
2 ¼ 1

γ
2p

�pþ 3q

� �
, (14.13)

where

γ = gcd (3q + p, 3q� p). (14.14)

Depending on p and q, γ can take one of the following values: 1, 2, 3, or 6
(Shallcross et al., 2010). For δ = 3 we have instead of Eq. (14.13)

t
!
1 ¼ 1

γ
�p� q
2q

� �
, t

!
2 ¼ 1

γ
2q

�pþ q

� �
: (14.15)

The number of atoms in the elementary supercell is given by the expression

N ¼ 4
t
!

1 � t
!
2

��� ���
z

a
!

1 � a
!
2

�� ��
z

¼ 12

δγ2
3q2 þ p2
� �

, (14.16)

where the factor 4 originates from two layers and two atoms per elementary cell in
each layer. Keeping in mind Eq. (14.10) one can rewrite Eq. (14.16) as

N ¼ 4
t
!
1 � t

!
2

��� ���
z

a
!
1 � a

!
2

�� ��
z

¼ 12

δγ2
p2

sin 2
θ
2

: (14.17)

At the same time, the number of atoms per moiré period (14.1) is

Nm ¼ 4κ2 ¼ 1

sin 2
θ

2

, (14.18)

with the same origin of factor 4. For some cases (e.g., p = 1 and odd q) N = Nm,
but, in general, the supercell contains several moiré periods and N > Nm (Shall-
cross et al., 2010).

Some illustrations of the superlattice are shown in Fig. 14.1.
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Similar to the case of graphene on hBN (Section 13.2) one can expect that,
generally speaking, atomic relaxation should be essential. Unfortunately, for the
two-dimensional case, we do not yet have an analytical theory similar to Frank &
van der Merwe (1949) for the one-dimensional situation. The issue was investi-
gated by atomistic computer simulations (van Wijk et al., 2015). Some of the
results are shown in Fig. 14.2. The obtained picture reminds vortex lattice with
atomic displacements circulated around each center of the moiré pattern.

Atomic relaxation also results in the modulation of interlayer distances
(Fig. 14.3). At the same time, the modulation of the in-layer bond lengths is
negligibly small (van Wijk et al., 2015). Importantly, relaxation effects in the
interlayer distances decrease with the increase in misorientation angle.

q
t1

a1

a2

t2

(a)

am = 27.3 Å
q = 5.2°

(b)

am = 24.5 Å

θ = 5.7°

(c)

Fig. 14.1 (a) Schematic construction of supercell for twisted bilayer graphene or
graphene on graphite. (b) Four supercells with one moiré pattern in each of them.
(c) One supercell with three moiré patterns in it. The distance between moiré
patterns am is indicated by the arrow.
(Reproduced with permission from van Wijk et al., 2015.)
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Fig. 14.2 Atomic displacements at the relaxation for graphene on graphite for the
case corresponding to Fig. 14.1(c) (am = 24.5 Å).
(Reproduced with permission from van Wijk et al., 2015.)

3.3

3.4

3.5

0 10 20 30

z 
(Å

)

q (°)

(a)

(b)

Fig. 14.3 (a) Average interlayer distance after relaxation for different samples
of graphene on graphite as a function of misorientation angle; the shaded
area indicates the spreading between minimum and maximum of the interlayer
distance. (b) Distribution of interlayer distances for the case n = 216, m = 1,
θ = 0.46�, am = 302.6 Å.
(Reproduced with permission from van Wijk et al., 2015.)
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14.2 Dodecagonal graphene quasicrystal

If cosθ is irrational, the equation (14.10) for integer n,m does not have any
solutions, and we deal with incommensurate, or quasiperiodic case. The simplest
example is θ = 30�, cos θ ¼ ffiffiffi

3
p

=2. In this case, twisted bilayer graphene forms a
two-dimensional quasicrystal, which was experimentally realized by Yao et al.
(2018) and Ahn et al. (2018).

As follows from Fig. 14.3(b), for large misorientation angles, the atomic
relaxation effects can be neglected, and just bare (unrelaxed) structure should
provide a very good approximation for the real bilayer. It is shown in Fig. 14.4.
One can clearly see dodecagonal symmetry with the local rotation axis of 12th
order (p = 12). Only rotational symmetries of the order of p = 2, 3, 4, and 6 are
allowed by translational symmetry and may occur in crystals (Vonsovsky &
Katsnelson, 1989).

Three-dimensional quasicrystals are well known and relatively well studied
(Shechtman et al., 1984; Guyot, Kramer, & de Boissieu, 1991; Mermin, 1992;
Goldman & Kelton, 1993; Lifshitz, 1997; Quilichini, 1997). In the case of twisted
bilayer graphene we deal with two-dimensional quasicrystals. Contrary to the
three-dimensional case, in this new system one can study ultrarelativistic particles
in incommensurate external potential. Indeed, direct measurements of angle-
resolved photoelectron spectra (ARPES) show 12 Dirac (conical) points connected
by intervalley scattering (Umklapp processes). This field is very young, and now
we only have first attempts to theoretically consider electronic structure of such

Fig. 14.4 Atomic structure for the bilayer graphene twisted by θ = 30�; the atoms
in two different layers are shown in black and gray, respectively.
(Courtesy Guodong Yu and Shengjun Yuan.)
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systems (Moon, Koshino, & Son, 2019; Yu et al., 2019). In Fig. 14.5 the electronic
density of states of graphene quasicrystal is shown, one can see numerous add-
itional Van Hove singularities associated to the formation of Dirac points of next
generations; compare with Section 13.5.

14.3 Electronic structure of twisted bilayer graphene

The electronic structure of twisted bilayer graphene can be considered in a
close analogy to the case of graphene on hBN (Section 13.5), with obvious
modifications. In particular, in Eq. (13.6), instead of second-order contributions

of the interlayer hopping we have just the first-order term: Ĥ⊥
1

E�ĤBN
Ĥ⊥ ! Ĥ⊥.

Essential simplifications happen for the case of a small misorientation angle θ in
the continuum approximation, that is, for the electronic states in the vicinity of
conical points K and K0 Eq. (1.13) (Lopes dos Santos, Peres, & Castro Neto, 2007;
Shallcross et al., 2010; Bistritzer & MacDonald, 2011). For small θ, intervalley
scattering processes are negligible, and we can restrict ourselves to considering the
vicinity of the K point only. The position of the K point in the second (rotated)
layer is given by the vector

K
!θ ¼ R̂ θð Þ K!¼ K

! þΔ K
!
, (14.19)

Energy – Ef (eV)

Fig. 14.5 Electronic density of states for the bilayer graphene twisted by θ = 30�
(gray dashed line) in comparison with single-layer graphene (black solid line); the
calculations are done within a tight-binding model.
(Courtesy Guodong Yu and Shengjun Yuan.)
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where

Δ K
!� θ^z!� K

!
, (14.20)

and ^z! is the unit vector in z direction; Eq. (14.20) is valid in the first order in θ.
Then, without taking into account interlayer hopping, the Hamiltonian of two

nonconnected graphene layers can be derived from Eq. (3.1) by the corresponding
changes of the coordinate system:

Ĥ0 ¼ ℏv
X
k
!

bΦþ
1k
! σ!

k
! þ Δ K

!

2

 !
Φ̂

1k
! þ bΦþ

2k
!σ
!θ k

! � Δ K
!

2

 !
Φ̂

2k
!

" #
, (14.21)

where

Φ̂
ik
! ¼ Ψ̂

i, k
!�ΔK

!
=2

(14.22)

are spinor electron annihilation operators in the corresponding layer i= 1,2 and we
shift the k-space k

!!k
! �Δ K

!
=2, with plus sign for the first layer and minus sign

for the second layer,

σ!θ ¼ exp iθσz=2ð Þ σ! exp �iθσz=2ð Þ (14.23)

are the rotated Pauli matrices.
To model the interlayer-hopping Hamiltonian, we will take into account,

following Lopes dos Santos, Peres, and Castro Neto (2007), only the hoppings
from each site in layer 1 to the neighboring sites in layer 2 for each sublattice. The

vectors ρ
!αβ between the atom situated in the sublattice α = A, B of the first layer

near the point r! and the neighboring atom belonging to the sublattice β = A, B, and

therefore the corresponding matrix elements tαβ⊥ r
!� 	

¼ t⊥ ρ
!αβ
�� ��� 	

, are dependent

on r
!, which is clearly seen in Fig. 14.1. The total single-electron Hamiltonian in this

model takes the form (Lopes dos Santos, Peres, & Castro Neto, 2007)

Ĥ ¼ Ĥ0 þ
X
k
!
G
!

bΦþ
1k
! t̂⊥ G

!� 	
Φ̂

2k
! þ h:c:

h i
, (14.24)

where G
!

are reciprocal vectors of the supercell, and t̂⊥ G
!� 	

is the matrix with the
matrix elements

tαβ⊥ G
!� 	

¼
ð
d2rtαβ⊥ r

!� 	
exp iK

!θ ρ!αβ r
!� 	

� i G
!

r
!h i

: (14.25)

For small θ, further simplifications are possible (Lopes dos Santos, Peres, & Castro
Neto, 2007; Bistritzer & MacDonald, 2011).
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Now we can use the Hamiltonian (14.24) to find the effective energy spectrum
for the layer 1 in the presence of interlayer hopping. It turns out that in the
continuum model considered here, the only effect is the renormalization of the
Fermi velocity, the spectrum remains isotropic and no gap is open. The perturb-
ative result in t⊥ for this renormalization reads (Lopes dos Santos, Peres, & Castro
Neto, 2007):

~v
v
¼ 1� 9α2, α ¼ t⊥

ℏvΔK
: (14.26)

A more accurate consideration within the consequent k�p perturbation theory gives
the result also valid for α � 1 (Bistritzer & MacDonald, 2011):

~v

v
¼ 1� 3α2

1þ 6α2
: (14.27)

For α ¼ 1=
ffiffiffi
3

p
, the Fermi velocity tends to 0. Estimating t⊥ from experimental data

for graphene, one can find that it happens at the “magic angle” θ � 1.05∘;
numerical analysis beyond Eq. (14.27) demonstrates existence of other magic
angles at large α: θ � 0.5∘; 0.35∘; 0.24∘; 0.2∘, etc. (Bistritzer & MacDonald,
2011). Other calculations give slightly different values of the largest magic angle,
θ � 1.5∘ (Suárez Morell et al., 2010) and θ � 1.08∘ (Fang & Kaxiras, 2016).

Numerical calculations cited previously demonstrate that at the magic angles the
electron velocity (almost) vanishes, not only at the conical points but along the
whole lines, that is, a flat band is formed. Importantly, for undoped case, it lies
exactly at the Fermi energy. Experimentally, a formation of the flat bands in magic-
angle twisted bilayer graphene was studied by Kim et al. (2017).

This situation is very special. In principle, flat bands at the Fermi energy can
originate from electron–electron interactions. This was postulated and studied
phenomenologically, within Landau Fermi-liquid theory, in terms of a so-called
“Fermi condensation” (Khodel & Shaginyan, 1990; Volovik, 1991; Nozieres,
1992; Zverev & Baldo, 1999). A specific microscopic scenario of the flat band
formation due to many-body effects (closeness of the Fermi energy to Van Hove
singularity in two-dimensional strongly correlated systems) was considered by Irkhin,
Katanin, and Katsnelson (2002) and by Yudin et al. (2014); it was suggested in the
first of these papers that this phenomenon can be important for physics of high-
temperature superconductivity in cuprates. In the case of twisted bilayer graphene, we
deal with the formation of flat electron bands already in single-electron approxima-
tion. This case is not unique, and sometimes flat bands are induced and protected by
topological considerations (Heikkilä, Kopnin, & Volovik, 2011).

Irrespective to the origin of the flat band at the Fermi energy, its existence
unavoidably assumes the crucial role of the many-body effects. The prototype
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example is the physics of quantum Hall systems (Prange & Girvin, 1987). Indeed,
a formation of Landau levels instead of continuum single-electron spectrum
projects kinetic energy to 0 and opens a way for numerous many-body instabilities,
including formation of incompressible electron liquid, responsible for fractional
quantum Hall effect, quantum Hall ferromagnetism, different types of charge
ordering, etc. If we recall the discussion of the Stoner criterion of itinerant-electron
magnetism in Section 12.1, the key point there was Eq. (12.21), meaning that for a
very high density of states at the Fermi energy N(εF) one can reoccupy electron
states near the Fermi energy with a very small energy cost. The flat band means
N(εF)!∞. Apart from ferromagnetism, a high density of states at the Fermi energy
is favorable for superconductivity (Volovik, 2018) and for different types of lattice
instability (Katsnelson, Naumov, & Trefilov, 1994). These different types of
instabilities (and many others, such as spin density wave, charge density wave,
etc.) influence one another and suppress competing instability channels, which
results in a very complicated phase diagram (Irkhin, Katanin, & Katsnelson, 2001;
Katanin & Kampf, 2003). The problem of interacting electrons with flat bands is
extremely complicated, but we can be sure that something interesting happens.

And it does! Cao et al. (2018a) discovered an insulating behavior in twisted
bilayer graphene at the magic angle θ � 1.1∘, which is supposedly caused by
many-body effects (Mott insulator, Wigner crystal . . .). In the doped case, the
system becomes superconducting (Cao et al., 2018b). Currently this is a subject of
very intensive experimental and especially theoretical studies.
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15

Many-body effects in graphene

15.1 Screening and effective interactions

Most of the consideration in this book assumes the picture of noninteracting
electrons (except some sections in Chapters 7, 8, and 12). The reason for this is
that, as we already know after 15 years of graphene research, this picture describes,
at least qualitatively and in many cases even quantitatively, basic electronic
phenomena in graphene. At the same time, this fact itself requires a justification,
since electron–electron interaction in graphene is by no means weak (see
Eq. (7.90)); moreover, even at the Hartree–Fock level it can result in an essential
reconstruction of the electron energy spectrum (Section 8.4). Here, we systematic-
ally discuss the role of electron–electron interactions in graphene. In this chapter
we will work with the full electronic structure of honeycomb lattice rather than
with the Dirac approximation. The reason is that many-body effects involve virtual
electron–hole excitations, which are distributed over the whole band, even if the
real electrons or holes live in the vicinity of the conical points. In particular, these
virtual excitations determine screening of the effective interactions.

The simplest way to describe these effects is the use of random phase approxi-
mation (RPA), similarly to how we did it in Sections 7.6 and 7.7 for the case of
Dirac electrons. Let us first introduce this approximation for the general case. Here
we will follow Vonsovsky & Katsnelson (1989).

Let the single-electron Hamiltonian have eigenstates ψνð r!Þ, the corresponding
eigenenergies Eν, and the equilibrium occupation numbers fν = f(Eν), where f(E) is
the Fermi function. Then, under the action of perturbation described by the
potential energy

V r
!
; t

� �
¼ V r

!� �
exp �iωt þ δtð Þ

��� δ!þ0:, (15.1)

the single-particle density matrix (2.170) will have, in the linear approximation in
V, the nonequilibrium contribution ρ̂0 exp �iωt þ δtð Þ δ!þ0j with
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ρ0νν0 ¼
f ν � f v0

Eν0 � Eν þ ℏ ωþ iδð ÞV νν0 (15.2)

(cf. Eq. (2.175)). The electron-density operator

N̂ r
!� �
¼ δ r

!� r
!0

� �
(15.3)

has matrix elements

Nνν0 ¼
ð
d r
!0 ψ∗

ν r
!0
� �

δ r
!� r

!0
� �

ψν0 r
!0
� �

¼ ψ∗
ν r
!� �

ψν0 r
!� �

: (15.4)

Then, using Eq. (2.176), one finds for the perturbation of electron density, the

expression δnð r!Þ exp �iωt þ δtð Þδ!þ0 where

δn r
!� �
¼
ð
d r
!0 Π r

!
; r
!0

� �
V r
!0
� �

, (15.5)

Π r
!
; r
!0

� �
¼
X
νν0

f v � f ν0
Eν0 � Eν þ ℏ ωþ iδð Þψ

∗
ν0 r
!� �

ψν r
!� �

ψ∗
ν r
!0
� �

ψν0 r
!0
� �

(15.6)

is the polarization operator (cf. Eq. (7.75) and (7.76)).
At last, we assume a purely electrostatic (Hartree-like) relation between the

external potential Uð r! tÞ and the total potential Vð r! tÞ, similar to Eq. (7.104):

V r
!� �
¼ U r

!� �
þ e2

ð
d r
 0 δn r

!0
� �

r
!� r

!0�� �� : (15.7)

Substituting Eq. (15.5) into Eq. (15.7) we obtain

V r
!� �
¼
ð
d r
!0 ε�1 r

!
; r
!0

� �
U r
!0
� �

, (15.8)

where ε̂�1 is the inverse to the operator of dielectric permittivity

ε r
!
; r
!0

� �
¼ δ r

!� r
!0

� �
þ e2

ð
d r
!00

Π r
!00; r!0
� �
r
!� r

!00�� �� : (15.9)

In principle, this function determines the screening of external potential rather than
the potential of interelectron Coulomb interaction

vC r
!
; r
!0

� �
¼ e2

r
!� r

!0�� �� ; (15.10)
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however, within the RPA we neglect this difference and determine the effective
potential of interelectron interaction as

v̂eff ¼ ε̂�1v̂C (15.11)

(for details, see Giuliani & Vignale, 2005).
For Dirac electrons and for the static case (ω = 0), the Coulomb potential is

weakened by the dielectric constant (7.89). The first-principle calculation for the
case of finite wave vectors q (van Schilfgaarde & Katsnelson, 2011) shows that the
screening drops quite quickly with the wave vector (Fig. 15.1).

In the rest of this chapter we will discuss many-body effects in graphene for the
model, including only pz electronic states. This model contains only one electron
state per site and can be described, in the simplest approximation, by the
Hamiltonian

Ĥ ¼
X
ijσ

0
tijĉ
þ
iσ ĉjσ þ U

X
i

n̂i"n̂i# þ 1
2

X
ij

0
Vijn̂in̂j, (15.12)

where ĉþiσ, ĉiσ are electron creation and annihilation operators on site i with spin
projection σ

n̂iσ ¼ ĉþiσ ĉiσ, n̂i ¼
X
σ

n̂iσ (15.13)

are electron occupation number operators, and sum with prime means the summa-
tion over i 6¼ j. Without the last term, this model coincides with the Hubbard model
(12.1) with Hubbard on-site interaction U; Vij are intersite interaction parameters.
Note that even in the single-band approximation, the full many-body Hamiltonian

0 0.1 0.2 0.3 0.4
1

1.5
2

2.5
3

3.5 LDA
QSGW

e 2D(q,z = 0)

q

Fig. 15.1 Fourier component of two-dimensional static dielectric permittivity
describing a screening in graphene plane (z = 0) as a function of dimensionless

wave vector �q ¼ qalat=2π (alat ¼
ffiffiffi
3
p

a is the lattice constant for graphene) along
(10) direction. Squares and circles show different methods of electronic structure
calculations (local density approximation versus quasiparticle self-consistent
GW); one can see that the results are insensitive to this difference.
(Reproduced with permission from van Schilfgaarde & Katsnelson, 2011.)
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contains many more terms, such as exchange interactions, many-body contribution
to hopping, etc. (Schubin & Wonsowski, 1934; Vonsovsky & Katsnelson, 1979).

The point is that when we eliminate from the Hamiltonian all other states except
pz, we have to take into account their effect on the interactions within the pz band
via screening. Currently, the only practical way to do this from the first principles
is to use RPA, that is, Eq. (15.6), (15.9), and (15.11). However, we should exclude
from the double sum in Eq. (15.6) the transitions from pz states to pz states because
these kinds of processes will be taken into account when we treat the Hamiltonian
(15.12) by other methods (such as quantum Monte Carlo, see Section 15.4), and
we want to avoid double counting. This corresponds to the constrained RPA
(cRPA) method (Aryasetiawan et al., 2004). The corresponding calculations for
the case of graphene were performed by Wehling et al. (2011).

First of all, we cannot expect any change of asymptotics of the effective
potential Vij = V(rij) in the limit of large distances rij ! ∞. Indeed, after elimin-
ation of the virtual transitions around conical point we have Π(q,ω = 0) / q2 at
q ! 0 (see Eq. (7.94)), and vC(q) / 1/q (see Eq. (7.79)); therefore, the dielectric
permittivity ε(q,ω = 0)! 1 at q! 0, which means inefficient screening at large
distances. This can also be proven in a purely phenomenological way, within the
electrodynamics of continuous media (Emelyanenko & Boinovich, 2008; Wehling
et al., 2011).

At the same time, for small distances the screening effect is quite essential.
According to Wehling et al. (2011), it decreases the parameter U from its bare (that
is, Hartree–Fock) value 17.0–9.3 eV, the nearest-neighbor interaction parameter
V01 from 8.5 eV to 5.5 eV, and the next-nearest-neighbor interaction parameter V02

from 5.4 eV to 4.1 eV. Starting from the third neighbors (r � 2a) the static
screened potential (Wehling et al., 2011) can be approximated by a simple formula
(Astrakhantsev et al., 2018)

V rð Þ ¼ A

r=að Þ þ C
, (15.14)

with A = e2/a = 10.14 eV, C = 0.82.
The effective interaction (15.11) is actually frequency dependent. However, this

dependence is not very essential for the frequency range of the order of 10 eV, that
is, roughly half the width of the pz band (Wehling et al., 2011). Further, we will
discuss only statically screened effective interaction.

The screening of the effective pz–pz interaction by other graphene bands does
not look very strong (it changes from the factor of the order of 2 for the on-site
interaction parameter U and decreases to 1 with the interatomic distance increase).
Nevertheless, as we will see in Section 15.4, it results in important physical
consequences.
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15.2 Mapping onto the Hubbard model

The simpler the Hamiltonian, the more accurately one can study its properties. In
particular, the Hubbard model (12.1) is definitely simpler than the more complete
model (15.12), and for many applications it would be nice to have the Hubbard
model for graphene derived from the first principles. At the same time, long-range
interactions in graphene are important and by no means small, and we cannot just
neglect the terms with Vij . The effective Hubbard model for graphene was built by
Schüler et al. (2013) by the use of Peierls–Feynman–Bogolyubov variational
principle (Peierls, 1938; Feynman, 1955; Bogolyubov, 1958; Feynman, 1972).
This is a very useful tool, providing a general method how to map in an optimal
way, a more complicated Hamiltonian to a simpler one. Since it is not very well
known in the condensed-matter community, we present here a proof of this
variational principle following a recent book by Czycholl (2008).

We want to map the Hamiltonian Ĥ on the Hamiltonian Ĥ
∗
, dependent on some

trial parameters. We are going to find these parameters from a minimization of a
trial free energy of the system. The equilibrium (Gibbs) density matrices for these
systems are

ρ̂ ¼ eβ F�Ĥð Þ, ρ̂ ∗ ¼ eβ F∗�Ĥ∗ð Þ, (15.15)

where β is the inverse temperature, and F and F* are the corresponding free energies.
Let us assume that the density matrices (15.15) are diagonal in the basis jni and jai,
respectively, with the eigenvalues ρn and ρ∗a . Of course, the set jni diagonalizes
the Hamiltonian Ĥ , and the set jai diagonalizes the Hamiltonian Ĥ

∗
.

One can prove an important inequality:

Trρ̂∗ ln ρ̂ � Trρ̂∗ ln ρ̂∗: (15.16)

Indeed,

Trρ̂∗ ln ρ̂ � ln ρ̂∗ð Þ ¼
X
a

ρ∗a ln ah jρ̂ aj i � ln ρ∗a
� �

: (15.17)

Taking into account that the set jni is complete, one can write

ln ah jρ̂ aj i ¼
X
n

ajnh ij j2 ln ρn: (15.18)

Substituting Eq. (15.18) into Eq. (15.17) we have

Trρ̂∗ ln ρ̂ � ln ρ̂∗ð Þ ¼
X
an

ρ∗a ajnh ij j2 ln ρn
ρ∗a
�
X
an

ρ∗a ajnh ij j2 ρn
ρ∗a
� 1

� 	

¼
X
n

ρn �
X
a

ρ∗a ¼ 1� 1 ¼ 0, (15.19)
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where we take into account that for any positive x, one has lnx � x � 1. This
proves Eq. (15.16).

Substituting Eq. (15.15) into Eq. (15.16), we have a very important inequality

F � F∗ þ Ĥ � Ĥ
∗

D E∗
, (15.20)

where h. . .i∗ means the average with the operator ρ̂∗. One can choose
the parameters entering Ĥ

∗
to make the right-hand side of Eq. (15.20) as

small as possible. Thus, we will have the best estimation of the free energy F
from above. This is the variational principle that we wanted to prove. Note
that if we choose Ĥ

∗ ¼ Ĥ0, we come to the conclusion that the first-order
perturbation correction always give a rigorous estimation for the free energy
from above.

Now let us proceed with the Hamiltonian (15.12). As a trial Hamiltonian, we
will use the Hubbard model (12.1) but with some effective on-site interaction
constant U*:

Ĥ
∗ ¼

X
ijσ

0
tijĉ
þ
iσ ĉjσ þ U∗

X
i

n̂i"n̂i#: (15.21)

In principle, we can also assume a renormalization of the hopping parameters
tij ! t∗ij , but let us try to keep the scheme as simple as possible (for a more general
consideration, see in ‘t Veld, 2019). Substituting Eq. (15.12) and (15.21) into
Eq. (15.20) we have

F � Ft ¼ F∗ þ U∗ � Uð Þ
X
i

n̂i"n̂i#

 �∗ þ 1

2

X
ij

0
Vij n̂in̂j

 �

:∗ (15.22)

To find the best possible value U*, we have to minimize the right-hand side of
Eq. (15.22). The necessary condition is

dFt

dU∗ ¼
dF∗

dU∗ �
X
i

n̂i"n̂i#

 �∗ þ U∗ � Uð Þ d

dU∗

X
i

n̂i"n̂i#

 �∗

þ 1
2

X
ij

0
Vij

d

dU∗ n̂in̂j

 �∗ ¼ 0:

(15.23)

According to the Hellmann–Feynman theorem, for any Hamiltonian dependent on
a parameter

dF λð Þ
dλ
¼ dĤ λð Þ

dλ

� 
, (15.24)
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therefore we have:

dF∗

dU∗ ¼
X
i

n̂i"n̂i#

 �∗

(15.25)

and

U∗ ¼ U þ 1
2

X
ij

0
Vij

∂U∗ n̂in̂j

 �∗P

l ∂U∗ n̂l"n̂l#

 �∗ , (15.26)

where ∂U∗ = d/dU∗. According to the particle number conservation

X
i

n̂i"n̂i# ¼
X
i

n̂i" Ne � n̂i# �
X
j 6¼i

n̂j

 !
¼ NeNe" � Ne" �

X
ij

0
n̂i"n̂j, (15.27)

where we take into account that n ̂i" 2 ¼ n̂i", Ne" ¼
P

i n̂i" is the total number of
spin-up electrons. Equivalently, we haveX

i

n̂i"n̂i# ¼ NeNe# � Ne# �
X
ij

0
n̂i#n̂j: (15.28)

Summing up Eq. (15.27) and (15.28) we obtain

X
i

n̂i"n̂i# ¼ Ne Ne � 1ð Þ
2

� 1
2

X
ij

0
n̂in̂j: (15.29)

At last, substituting Eq. (15.29) into Eq. (15.26) we find

U∗ ¼ U �
P0

ijV ij∂U∗ n̂in̂j

 �∗P0

ij∂U∗ n̂in̂j

 �∗ , (15.30)

which means that the effective Hubbard-U parameter is smaller than the initial
U-value by an averaged intersite interaction. Interestingly, if we assume that the
correlation function n̂in̂j


 �∗
is nonvanishing only at the neighboring sites, we have

a very simple result:

U∗ = U � V01. (15.31)

Calculations for graphene (as well as for some other sp materials) were performed
by Schüler et al. (2013). The density-density correlation function in the Hubbard
model n̂in̂j


 �∗
was calculated using the quantum Monte Carlo method (see later,

Section 15.4). As a result, the effective Hubbard parameter for graphene is
U∗ � 1.6t, instead of initial value U � 3.6t. Surprisingly, this value is quite close

15.2 Mapping onto the Hubbard model 395

https://www.cambridge.org/core


to the naïve estimate (15.31). It should be compared with the total bandwidth
W = 6t (Fig. 7.2): U∗ � W/4. In this sense, graphene should be considered as a
moderately correlated system.

15.3 Renormalization of the electron spectrum beyond
Dirac approximation

The long-range character of interelectron interactions already leads to an essential
renormalization of the Fermi velocity at the Hartree–Fock level (Section 8.4). In
Dirac approximation we can calculate this renormalization with only logarithmic
accuracy; see Eq. (8.93). Astrakhantsev, Braguta, and Katsnelson (2015) have
performed the calculations of the Hartree–Fock effective Hamiltonian for the
hexagonal lattice. Instead of Eq. (8.91), the additional contribution to the single-
electron Hamiltonian is

ĥ k
!� �
¼ σ̂x

2

X
k
!0

S k
!0
� �
S k
!0
� ���� ��� tanh

t S k
!0
� ���� ���
2T

V k
!� k

!0
� �

� δh k
!� �

σ̂x, (15.32)

where Sðk!Þ is given by Eq. (1.15), the bare energy spectrum by Eq. (1.16) (we take
into account only the nearest-neighbor hopping t), Vðk!Þ is the Fourier component
of static electron-electron interaction, and we put chemical potential to the neutral-
ity point: µ = 0.

The renormalized electron spectrum is determined by the expression

E k
!� �
¼ � tS k

!� �
þ h k

!� ���� ���: (15.33)

The computational results are shown in Fig. 15.2.
In the vicinity of Dirac points, Eq. (15.33) results in a renormalization of the

Fermi velocity

vR Tð Þ=v ¼ 1þ e2

4ℏε
ln

Λ
T

� 	
, (15.34)

where ε is the dielectric constant (7.89), and for the case of graphene on substrate
with dielectric constant εs, we have εext ¼ 1þεs

2 (see Eq. (7.84). For the case of
graphene at hBN, the parameter Λ is equal to 3.2 eV for the case of bare Coulomb
interaction and 2.4 eV for the case of screened Coulomb interaction (Astrakhant-
sev, Braguta, & Katsnelson, 2015).

The results can easily be generalized for the case of finite doping and compared
with available experimental data for graphene on hBN (Elias et al., 2011; Yu et al.,
2013). The agreement is quite good. This is not surprising since, due to a relatively
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large εext in this situation, interelectron interaction can be considered perturba-
tively. For the case of freely suspended graphene, with a large interaction param-
eter (7.90), much more sophisticated methods should be used. We will consider
them in the next section.

15.4 Quantum Monte Carlo results

What shall we do to solve quantum many-body (or quantum field) problem without
explicit small parameters? One of the most powerful modern techniques is the so
called quantum Monte Carlo (QMC) approach. A systematic derivation and even
explanation of this method goes far beyond the mathematical level adopted in this
book, therefore we just refer to monographs by Creutz (1983) and Gubernatis,
Kawashima, and Werner (2016) and to reviews by De Raedt and Lagendijk (1985)
and Foulkes et al. (2001). In particular, this method is the main technical tool
applied in quantum chromodynamics, a theory of strongly interacting quarks and
gluons (Creutz, 1983). The same approach was applied to graphene (Hands &
Strouthos, 2008; Drut & Lähde, 2009a; 2009b; Ulybyshev et al., 2013; Ulybyshev
& Katsnelson, 2015; Boyda et al., 2016; Astrakhantsev et al., 2018). Importantly,
for the case of zero doping (µ = 0) and when taking into account only the nearest-
neighbor hopping, due to electron–hole symmetry, QMC calculations for graphene
are free of fermionic sign problem, which restricts an accuracy of QMC calcula-
tions in a general case (De Raedt & Lagendijk, 1985).

Already the first calculations (Drut & Lähde, 2009a) led to a dramatic conclu-
sion that freely suspended graphene (εext = 1) is not semimetal: Many-body effects
transform it to an antiferromagnetic insulator with spontaneously broken chiral
symmetry, that is, symmetry between sublattices. The calculations were performed

E
ne

rg
y 

(e
V

)

Fig. 15.2 Energy spectrum of electrons with Coulomb (squares), screened
Coulomb (triangles) interactions, and no interaction (solid line) for T = 0.1 eV.
(Reproduced with permission from Astrakhantsev, Braguta, & Katsnelson, 2015.)
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assuming a bare Coulomb interelectron interaction. Ulybyshev et al. (2013) has
demonstrated that this conclusion is wrong, with the screening of the Coulomb
interaction considered in Section 15.1 playing a crucial role. It turns out that freely
suspended graphene is situated at the conducting side of the semimetal–insulator
transition, in a full agreement with available experimental evidences. It becomes an
insulator if one increases the electron–electron interactions by a factor approximately
1.4; this is more or less the screening effect for intermediate distances. Ulybyshev
and Katsnelson (2015) have shown that graphene can be made insulating by creating
about 1% of empty sites which physically means either vacancies or sp3 impurities
like hydrogen or fluorine, as was discussed in Sections 6.5 and 6.6.

QMC method, being formally exact, allows us to clarify a controversial issue on
many-body renormalization of optical conductivity discussed in Section 7.3.
Boyda et al. (2016) have demonstrated that this renormalization is either absent
or numerically small; at least, theories predicted strong renormalization are in a
clear contradiction with the QMC computational results (Fig. 15.3).

At last, QMC calculations were used by Astrakhantsev et al. (2018) to study the
screening of static potential. The results are surprising: Despite that the interaction
constant (7.90) for freely suspended graphene is large, the RPA expression (7.89)
agrees very well with the QMC results. This is strange indeed, since the straight-
forward calculation of the higher-order corrections to the dielectric constant
(Sodemann & Fogler, 2012) predict quite strong deviations:

ε ¼ 1þ π
2
αþ 0:778α2 þ . . . (15.35)

1/e

Fig. 15.3 Renormalization of optical conductivity in comparison with its non-
interacting value (7.36). The factor 1/ε determines the enhancement of interelec-
tron interaction potential: V(r)! V(r)/ε. One can see that the dependence on the
interaction strength is rather weak.
(Adapted from Boyda et al., 2016.)
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Anyway, it means that RPA works for graphene much better than one could
naïvely expect; however, the reasons for this good luck are currently unclear.

15.5 Many-body renormalization of minimal conductivity

We see that the interelectron–electron interaction cannot destroy semimetallic state
in graphene via spontaneously broken chiral symmetry. However, this is not the
final answer on the question whether an ideal, totally isolated, undoped graphene
will be conducting at zero temperature or not. As discussed in Chapter 3, its finite
conductivity arises from a very special mechanism, that is, electron tunneling via
zero modes of Dirac operator represented by evanescent waves (Fig. 3.1). In many-
body systems, any tunneling is, generally speaking, fragile. If we have a two-level
quantum mechanical system interacting with an environment (such as phonon
thermal bath), its tunneling probability between two states is suppressed by an
interaction with the environment (Caldeira & Leggett, 1983). If we have a system
of interacting electrons, the electron–hole continuum plays the role of dissipative
environment (Guinea, 1984). Guinea and Katsnelson (2014) applied this consider-
ation to the problem of minimal conductivity in graphene. Again, the mathematics
required to follow this theory are beyond the scope this book (everything is based
on Feynman path integral formulation of quantum mechanics); therefore, we will
present here only the initial formula and the final answer.

As a result of virtual electron–hole excitations, the probability amplitude of
electron motion along the trajectory x(τ) is multiplied by the suppression factor e-S,
where

S ¼ 1
2

ð∞
�∞

dτ

ðβ
0

dτ0
ð∞
�∞

dq

2π
exp iq x τð Þ � x τ0ð Þð Þ½ �V2 qð ÞT̂ n̂q τð Þn̂�q τ0ð Þ� �

, (15.36)

V(q) is the one-dimensional Fourier component of electron–electron interaction, β

is inverse temperature, n̂q τð Þ is the density operator, and T̂ is the symbol of time
ordering. Using the fluctuation-dissipation theorem (Zubarev, 1974; Vonsovsky &
Katsnelson, 1989; Giuliani & Vignale, 2005) the time-ordered correlator

T̂ n̂q τð Þn̂�q τ0ð Þ� �
can be expressed via imaginary part of dielectric function; for

the case of undoped graphene, the latter is given by Eq. (7.83) and (7.86).
Due to the long-range character of Coulomb interaction, the integral over q in

Eq. (15.36) is logarithmically divergent at q ! 0 and β ! ∞. For the geometry
considered in Section 3.2 and for zero temperature, the result reads (Guinea &
Katsnelson, 2014)
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S ¼ Lx
8πLy

α2

4
ffiffiffi
2
p þ α

ln
Lx
a
� ς ln

Lx
a
, (15.37)

where α = e2/ℏvε. This means that the tunneling probability (3.15) is multiplied
by the factor e�2S = (a/Lx)

2ς.
If temperature is not too low,

T >
ℏv
Lx

, (15.38)

the divergence is cut by the finite β rather than by the finite width of the sample,
and ln Lx

a ! ln t
T in Eq. (15.37). As a result, the conductance of the sample (3.16)

and therefore the conductivity is estimated as

σ � e2

h

T

t

� 	2ς

: (15.39)

The power-law temperature dependence of the conductivity at the neutrality point
was observed in an ultraclean graphene sample by Amet et al. (2013). The issue
definitely requires more experimental and theoretical studies but it can be that
the many-body effects do transform semimetallic graphene to insulating but
without broken symmetry and gap formation, due to suppression of the transport
via evanescent waves.
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Preface to the second edition

First of all, I still agree with everything that I wrote in the preface to the first
edition; however, I probably need to add a few words on the differences between
the second edition and the first.

As you can see, I have changed the title. In 2011 when I finished Graphene:
Carbon in Two Dimensions, there were no other books on graphene, and the
accuracy of the title was probably not so important. I would also like to emphasize
what is special about this book and in what respect it is different from the many
others that have appeared in the market in the meantime. To my knowledge, this is
the only book on graphene (yet) that focuses completely on fundamental issues of
physics and completely ignores all aspects of fabrication, devices, applications,
chemistry, etc. Hopefully, the new title, The Physics of Graphene, stresses this
point clearly enough and helps potential readers to avoid any disappointment if
they do not find something in the book which, in their mind, should be in a book on
graphene. Of course, I do not mean that these aspects are not important; I just
believe that I am not the proper person to write about them and that other people
can do that much better.

In the field of graphene, eight years is a very long period of time, when many
things have happened. To my surprise, when I started to work on the new edition,
I did not find anything that should be eliminated from the book because it turned
out to be fundamentally wrong or irrelevant for further development. Of course,
there were some inaccuracies and mistakes, which hopefully have been fixed now,
but even so, I think all old issues remain interesting and important. At the same
time, many new concepts and facts have appeared that should be reflected in the
new book. Therefore I have added three new chapters: Chapters 13 and 14
introduce the basic physics of an important new concept, van der Waals hetero-
structures, and Chapter 15 gives a very brief summary of our progress in under-
standing many-body effects in graphene. Eight years ago we had the feeling that a
single-particle picture of noninteracting Dirac fermions explained everything; this
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is no longer the case. Huge progress in the quality of graphene samples has opened
a way to essentially observe many-body features of the electronic spectrum near
the neutrality point.

My work on these subjects was essentially based on a collaboration with Nikita
Astrakhantsev, Viktor Braguta, Annalisa Fasolino, Andre Geim, Yura Gornos-
tyrev, Sasha Lichtenstein, Kostya Novoselov, Marco Polini, Burkhard Sachs, Guus
Slotman, Misha Titov, Maksim Ulybyshev, Merel van Wijk, Tim Wehling, and
Shengjun Yuan. Many thanks!

New material has also been added to the old chapters. The most important new
points are:

(1) We now understand the physics and mathematics of chiral tunneling in single-
and bilayer graphene much better, therefore Chapter 4 has been expanded.
These new results were obtained in collaboration with many people, and
I especially thank Koen Reijnders and Victor Kleptsyn.

(2) I have added a new section to Chapter 5 on a spectral flow of Dirac operator in
multiconnected graphene flakes. Topological aspects of condensed matter
physics have become really hot of late, and this provides a nice and fresh
new example. This piece is based on our work with Vladimir Nazaikinskii, to
whom I also give thanks.

(3) Chapter 9 was essentially rewritten. I have added new material on mechanical
properties, which is based on our work with Jan Los and Annalisa Fasolino,
and on thermal expansion of graphene. I thank Igor Burmistrov, Igor Gornyi,
Paco Guinea, Valentin Kachorovskii, and Sasha Mirlin for collaboration and
useful discussions of this subtle issue. I also thank Achille Mauri who found
some inaccuracies in the old Chapter 9 and helped to fix them.

(4) In Chapter 11, I have added a discussion of edge scattering, which is based on
our work with Vitaly Dugaev, to whom I am very thankful for his collabor-
ation. Hydrodynamics of electronic liquid in graphene is a very fresh and
popular subject now, and I cannot avoid it. When I wrote this part, discussions
with Misha Titov and Marco Polini were very helpful.

(5) We now know much more about magnetism and spin-orbit effects in graphene
and related two-dimensional materials, therefore Chapter 12 has also been
updated. The common work with Andre Geim, Irina Grigorieva, Sasha Lich-
tenstein, Vladimir Mazurenko, and Sasha Rudenko provided essential insights
on my new understanding of the subject.

I would like to repeat all of my acknowledgments from the preface to the first
edition. Without all of these old and new collaborations and, of course, without full
support from my wife Marina, this book would be impossible.

x Preface to the second edition
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Preface to the first edition

I do not think that I need to explain, in the preface to a book that is all about
graphene, what graphene is and why it is important. After the Nobel Prize for
physics in 2010, everybody should have heard something about graphene. I do
need, however, to explain why I wrote this book and what is special about it.

I hope it will not be considered a disclosure of insider information if I tell you
that Andre Geim is a bit sarcastic (especially with theoreticians). Every time
I mentioned that I was somewhat busy writing a book on graphene, he always
replied “Go to Amazon.com and search for ‘graphene’.” Indeed, there are many
books on graphene, many more reviews, and infinitely many collections of papers
and conference proceedings (well, not really infinitely many . . . in the main text
I will use the mathematical terminology in a more rigorous way, I promise). Why,
nevertheless, has this book been written and why may it be worthwhile for you to
read it?

Of course, this is a personal view of the field. I do love it, and it has been my
main scientific activity during the last seven years, from 2004 when graphene
started to be the subject of intensive and systematic investigations. Luckily, I was
involved in this development almost from the very beginning. It was a fantastic
experience to watch a whole new world coming into being and to participate in the
development of a new language for this new world. I would like to try to share this
experience with the readers of this book.

The beauty of graphene is that it demonstrates in the most straightforward way
many basic concepts of fundamental physics, from Berry’s phase and topologically
protected zero modes, to strongly interacting fluctuations and scaling laws for two-
dimensional systems. It is also a real test bed for relativistic quantum phenomena
such as Klein tunneling or vacuum reconstruction – “CERN on one’s desk.” I was
not able to find a book that focused on these aspects of graphene, namely on its role
in our general physical view of the world. I have tried to write such a book myself.
The price is that I have sacrificed all practical aspects of graphene science and
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technology, so you will not find a single word here about the ways in which
graphene is produced, and there is hardly anything about its potential applications.
Well, there is a lot of literature on these subjects. Also, I have said very little about
the chemistry of graphene, which is an extremely interesting subject in itself. It
certainly deserves a separate book, and I am not chemist enough to write it.

The field is very young, and it is not easy to know what will not be out of date in
just a couple of years. My choice is clear from the contents of this book. I do
believe that it represents the core of graphene physics, which will not be essentially
modified in the near future. I do not mean that this is the most interesting part;
moreover, I am sure that there will be impressive progress, at least, in two more
directions that are hardly mentioned in the book: in the many-body physics of
graphene and in our understanding of electron transport near the neutrality point,
where the semiclassical Boltzmann equation is obviously inapplicable. I think,
however, that it is a bit too early to cover these subjects in a book, since too many
things are not yet clear. Also, the mathematical tools required are not as easy as
those used in this book, and I think it is unfair to force the reader to learn
something technically quite complicated without a deep internal confidence that
the results are relevant for the real graphene.

The way the book has been written is how I would teach a course with the title
“Introduction to the Theory of Graphene.” I have tried to make a presentation that
is reasonably independent of other textbooks. I have therefore included some general
issues such as Berry’s phase, the statistical mechanics of fluctuating membranes, a
quick overview of itinerant-electron magnetism, a brief discussion of basic none-
quilibrium statistical mechanics, etc. The aims were, first, to show the physics of
graphene in a more general context and, second, to make the reading easier.

It is very difficult to give an overview of a field that has developed so quickly as
has that of graphene. So many papers appear, literally every day, that keeping
permanently up to date would be an enterprise in the style of ancient myths, e.g.,
those of Sisyphus, the Danaïdes, and some of the labors of Hercules. I apologize
therefore for the lack of many important references. I tried to do my best.

I cannot even list all of the scientific reviews on the basic physics of graphene
that are available now (let alone reviews of applications and of popular literature).
Let me mention at least several of them, in chronological order: Katsnelson
(2007a), Geim and Novoselov (2007), Beenakker (2008), Castro Neto et al.
(2009), Geim (2009), Abergel et al. (2010), Vozmediano, Katsnelson, and Guinea
(2010), Peres (2010), Das Sarma et al. (2011), Goerbig (2011), and Kotov et al.
(2012). There you can find different, complementary views on the field (with the
possible exception of the first one). Of course, the Nobel lectures by Geim (2011)
and Novoselov (2011) are especially strongly recommended. In particular, the
lecture by Andre Geim contains a brilliant presentation of the prehistory and
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history of graphene research, so I do not need to discuss these unavoidably
controversial issues in my book.

I am very grateful to Andre Geim and Kostya Novoselov, who involved me in
this wonderful field before it became fashionable (otherwise I would probably
never have dared to join such a brilliant company). I am especially grateful to
Andre for regular and lengthy telephone conversations; when you have to discuss a
theory using just words, without formulas and diagrams, and cannot even make
faces, after several years it does improve your understanding of theoretical physics.

It is impossible to thank all my other collaborators in the field of graphene in a
short preface, as well as other colleagues with whom I have had fruitful discussions.
I have to thank, first of all, Annalisa Fasolino, Paco Guinea, Sasha Lichtenstein, and
Tim Wehling for especially close and intensive collaboration. I am very grateful to
the former and current members of our group in Nijmegen working on graphene:
Misha Akhukov, Danil Boukhvalov, Jan Los, Koen Reijnders, Rafa Roldan, Timur
Tudorovskiy, Shengjun Yuan, and Kostya Zakharchenko, and to my other collabor-
ators and coauthors, especially Mark Auslender, Eduardo Castro, Hans De Raedt,
Olle Eriksson, Misha Fogler, Jos Giesbers, Leonya Levitov, Tony Low, Jan Kees
Maan, Hector Ochoa, Marco Polini, Sasha Rudenko, Mark van Schilfgaarde, Andrey
Shytov, Alyosha Tsvelik, Maria Vozmediano, Oleg Yazyev, and Uli Zeitler.

I am grateful to the Faculty of Science of Radboud University and the Institute
for Molecules and Materials for making available to me the time and resources for
research and writing.

I am very grateful to Marina Katsnelson and Timur Tudorovskiy for their
invaluable help with the preparation of the manuscript and for their critical reading.
I am grateful to many colleagues for permission to reproduce figures from their papers
and for providing some of the original figures used in the book. I am especially
grateful to Annalisa Fasolino for the wonderful picture that is used on the cover.

Of course, the role of my wife Marina in this book amounts to much more than
her help with the manuscript. You cannot succeed in such a long and demanding
task without support from your family. I am very grateful for her understanding
and full support.

The book is dedicated to the memory of two people who were very close to me,
my teacher Serghey Vonsovsky (1910–1998) and my friend Sasha Trefilov
(1951–2003). I worked with them for about 20 years, and they had a decisive
influence on the formation of my scientific taste and my scientific style. I thought
many times during these last seven years how sad it is that I cannot discuss some of
the new and interesting physics about graphene with them. Also, in a more
technical sense, I would not have been able to write this book without the experi-
ence of writing my previous books, Vonsovsky and Katsnelson (1989) and
Katsnelson and Trefilov (2002).
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1

The electronic structure of ideal graphene

1.1 The carbon atom

Carbon is the sixth element in the periodic table. It has two stable isotopes,
12C (98.9% of natural carbon) with nuclear spin I = 0 and, thus, nuclear magnetic
moment μn = 0, and 13C (1.1% of natural carbon) with I = ½ and μn = 0.7024μN
(μN is the nuclear magneton); see Radzig and Smirnov (1985). Like most of the
chemical elements, it originates from nucleosynthesis in stars (for a review, see the
Nobel lecture by Fowler [1984]). Actually, it plays a crucial role in the chemical
evolution of the universe.

The stars of the first generation produced energy only by proton–proton chain
reaction, which results in the synthesis of one α-particle (nucleus 4He) from four
protons, p. Further nuclear fusion reactions might lead to the formation of either of
the isotopes 5He and 5Li (p + α collisions) or of 8Be (α + α collisions); however,
all these nuclei are very unstable. As was first realized by F. Hoyle, the chemical
evolution does not stop at helium only due to a lucky coincidence � the nucleus
12C has an energy level close enough to the energy of three α-particles, thus, the
triple fusion reaction 3α ! 12C, being resonant, has a high enough probability.
This opens up a way to overcome the mass gap (the absence of stable isotopes with
masses 5 and 8) and provides the prerequisites for nucleosynthesis up to the most
stable nucleus, 56Fe; heavier elements are synthesized in supernova explosions.

The reaction 3α ! 12C is the main source of energy for red giants. Carbon also
plays an essential role in nuclear reactions in stars of the main sequence (heavier
than the Sun) via the so-called CNO cycle.

The carbon atom has six electrons, two of them forming a closed 1s2 shell
(helium shell) and four filling 2s and 2p states. The ground-state atomic configur-
ation is 2s2 2p2, with the total spin S = 1, total orbital moment L = 1 and total
angular moment J = 0 (the ground-state multiplet 3P0). The first excited state, with
a J = 1, 3P1 multiplet, has the energy 16.4 cm�1 � 2 meV (Radzig & Smirnov,
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1985), which gives an estimate of the strength of the spin-orbit coupling in the
carbon atom. The lowest-energy state with configuration 2s1 2p3 has the energy
33,735.2 cm�1 � 4.2 eV (Radzig & Smirnov, 1985), so this is the promotion
energy for exciting a 2s electron into a 2p state. At first sight, this would mean that
carbon should always be divalent, due to there being two 2p electrons while the
2s electrons are chemically quite inert. This conclusion is, however, wrong.
Normally, carbon is tetravalent, due to a formation of hybridized sp electron
states, according to the concept of “resonance” developed by L. Pauling (Pauling,
1960; see also Eyring, Walter, & Kimball, 1946).

When atoms form molecules or solids, the total energy decreases due to overlap
of the electron wave functions at various sites and formation of molecular orbitals
(in molecules) or energy bands (in solids); for a compact introduction to chemical
bonding in solids, see section 1.7 in Vonsovsky and Katsnelson (1989). This
energy gain can be sufficient to provide the energy that is necessary to promote
a 2s electron into a 2p state in the carbon atom.

In order to maximize the energy gained during the formation of a covalent bond,
the overlap of the wave functions with those at neighboring atoms should also be
maximal. This is possible if the neighboring atoms are situated in such directions
from the central atoms that the atomic wave functions take on maximum values.
The larger these values are, the stronger the bond is. There are four basis functions
corresponding to the spherical harmonics

Y0,0 ϑ; φð Þ ¼ 1ffiffiffiffiffi
4π

p ,

Y1,0 ϑ; φð Þ ¼ i

ffiffiffiffiffi
3
4π

r
cos ϑ,

Y1,�1 ϑ; φð Þ ¼ �i

ffiffiffiffiffi
3
8π

r
sin ϑ exp �iφð Þ,

(1.1)

where ϑ and φ are polar angles. Rather than take the functions Yl, m(ϑ, φ) to be the
basis functions, it is more convenient to choose their orthonormalized linear
combinations of the form

iffiffiffi
2

p ½Y1,1ðϑ; φÞ � Y1,�1ðϑ; φÞ� ¼
ffiffiffiffiffi
3
4π

r
sin ϑ cosφ,

iffiffiffi
2

p ½Y1,1ðϑ; φÞ þ Y1,�1ðϑ; φÞ� ¼
ffiffiffiffiffi
3
4π

r
sin ϑ sinφ,

� iY1,0ðϑ; φÞ ¼
ffiffiffiffiffi
3
4π

r
cos ϑ,

(1.2)
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which are transformed under rotations as the Cartesian coordinates x, y, and z,
respectively. The radial components of the s and p functions in the simplest
approximation are supposed to be equal in magnitude (which is of course a very
strong assumption) and may be omitted, together with the constant factor 1=

ffiffiffiffiffi
4π

p
which is not important here. Then the angular dependence of the four basis
functions that we will introduce in lieu of Y1,m(ϑ, φ) can be represented as

sj i ¼ 1,

xj i ¼
ffiffiffi
3

p
sin ϑ cos φ, yj i ¼

ffiffiffi
3

p
sin ϑ sinφ, zj i ¼

ffiffiffi
3

p
cos ϑ:

(1.3)

We now seek linear combinations of the functions (1.3) that will ensure maximum
overlap with the functions of the adjacent atoms. This requires that the value
of α ¼ max

ϑ, φ
ψ be a maximum. With the normalization that we have chosen,

α = 1 for the s states and α ¼ ffiffiffi
3

p
for the p functions of jxi, jyi, and jzi. We then

represent the function jψi as
ψj i ¼ a sj i þ b1 xj i þ b2 yj i þ b3 zj i, (1.4)

where a and bi are real-valued coefficients that satisfy the normalization condition

a2 þ b21 þ b22 þ b23 ¼ 1: (1.5)

The function jψi, then, is normalized in the same way as (1.3). This follows from
their mutual orthogonalityð

do ψ ϑ;φð Þj j2 � ψjψh i ¼ a2 sjsh i þ b21 xjxh i þ b22 yjyh i þ b23 zjzh i ¼ 4π,

with do being an element of solid angle. For the time being, the orientation of the
axes in our case is arbitrary.

Let us assume that in one of the functions ψ for which α is a maximum, this
maximum value is reached in the direction along the diagonal of the cube (1, 1, 1),
with the carbon atom at its center and with the coordinate axes parallel to its edges
(Fig. 1.1). Then b1 = b2 = b3 = b. The (1, 1, 1) direction is given by angles ϑ and φ
such that

sinφ ¼ cos φ ¼ 1ffiffiffi
2

p , cos ϑ ¼ 1ffiffiffi
3

p , sin ϑ ¼
ffiffiffi
2
3

r
,

so that
jxi = jyi = jzi = 1.

In addition,

α ¼ aþ 3b ¼ aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 1� a2ð Þ

p
, (1.6)
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where we have used the conditions (1.3). The maximum of α as a function of a is
reached for a ¼ 1

2 and is equal to 2. The quantity b in this case is equal to 1
2. Thus

the first orbital with maximum values along the coordinate axes that we have
chosen is of the form

1j i ¼ 1
2

sj i þ xj i þ yj i þ zj ið Þ: (1.7)

It can be readily shown that the functions

2j i ¼ 1
2

sj i þ xj i � yj i � zj ið Þ,

3j i ¼ 1
2

sj i � xj i þ yj i � zj ið Þ,

4j i ¼ 1
2

sj i � xj i � yj i þ zj ið Þ

(1.8)

correspond to the same value α = 2. The functions jii (i = 1, 2, 3, 4) are mutually
orthogonal. They take on their maximum values along the (1,1, 1), (1, 1, 1), (1, 1, 1),
and (1, 1, 1) axes, i.e., along the axes of the tetrahedron, and, therefore, the
maximum gain in chemical-bonding energy corresponds to the tetrahedral environ-
ment of the carbon atom. In spite of being qualitative, the treatment that we have
performed here nevertheless explains the character of the crystal structure of the
periodic table group-IV elements (diamond-type lattice, Fig. 1.2) as well as the shape
of the methane molecule, which is very close to being tetrahedral.

The wave functions (1.7) and (1.8) correspond to a so-called sp3 state of the
carbon atom, for which all chemical bonds are equivalent. Another option is that
three sp electrons form hybrid covalent bonds, whereas one p electron has a special
destiny, being distributed throughout the whole molecule (benzene) or the whole

(–1,–1,1)

(1,–1,–1)

(–1,1,–1)

(1,1,1)

Z

Y

X

Fig. 1.1 Directions of sp3 chemical bonds of the carbon atom.
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crystal (graphite or graphene). If one repeats the previous consideration for a
smaller basis, including only functions, jsi, jxi and, jyi one finds the following
functions corresponding to the maximum overlap (Eyring, Walter, & Kimball,
1946):

1j i ¼ 1ffiffiffi
3

p sj i þ
ffiffiffi
2

p
xj i

� �
,

2j i ¼ 1ffiffiffi
3

p sj i � 1ffiffiffi
6

p xj i þ 1ffiffiffi
2

p yj i,

3j i ¼ 1ffiffiffi
3

p sj i � 1ffiffiffi
6

p xj i � 1ffiffiffi
2

p yj i:

(1.9)

The corresponding orbits have maxima in the xy-plane separated by angles of 120�.
These are called σ bonds. The last electron with the p orbital perpendicular to the
plane (jzi function) forms a π bond. This state (sp2) is therefore characterized by
threefold coordination of carbon atoms, in contrast with fourfold coordination for
the sp3 state. This is the case of graphite (Fig. 1.3).

1.2 π States in graphene

Graphene has a honeycomb crystal lattice as shown in Fig. 1.4(a). The Bravais
lattice is triangular, with the lattice vectors

~a1 ¼ a

2
3;

ffiffiffi
3

p� �
, ~a2 ¼ a

2
3;�

ffiffiffi
3

p� �
, (1.10)

Fig. 1.2 The structure of diamond.
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where a � 1:42 A
∘

is the nearest-neighbor distance. It corresponds to a so-
called conjugated carbon–carbon bond (like in benzene) intermediate between a
single bond and a double bond, with lengths r1 � 1:54 A

∘
and r2 � 1:31 A

∘
,

respectively.
The honeycomb lattice contains two atoms per elementary cell. They belong to

two sublattices, A and B, each atom from sublattice A being surrounded by three
atoms from sublattice B, and vice versa (a bipartite lattice). The nearest-neighbor
vectors are

~δ1 ¼ a

2
1;

ffiffiffi
3

p� �
, ~δ2 ¼ a

2
1;�

ffiffiffi
3

p� �
, ~δ3 ¼ a �1; 0ð Þ: (1.11)

Fig. 1.3 The structure of graphite.

(a)

A

a1

a2

B

(b)

K

MΓ

K´

b2

ky

kx

b1

Fig. 1.4 (a) A honeycomb lattice: sublattices A and B are shown as black and
gray. (b) Reciprocal lattice vectors and some special points in the Brillouin zone.
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The reciprocal lattice is also triangular, with the lattice vectors

~b1 ¼ 2π
3a

1;
ffiffiffi
3

p� �
, ~b2 ¼ 2π

3a
1;�

ffiffiffi
3

p� �
: (1.12)

The Brillouin zone is presented in Fig. 1.4(b). Special high-symmetry points K, K0,
and M are shown there, with the wave vectors

~K 0 ¼ 2π
3a

;
2π

3
ffiffiffi
3

p
a

� �
; ~K ¼ 2π

3a
;� 2π

3
ffiffiffi
3

p
a

� �
, ~M ¼ 2π

3a
; 0

� �
: (1.13)

The electronic structures of graphene and graphite are discussed in detail in
Bassani and Pastori Parravicini (1975). In Fig. 1.5 we show a recent computational
result for graphene. The sp2 hybridized states (σ states) form occupied and
empty bands with a huge gap, whereas pz (π) states form a single band, with a
conical self-crossing point in K (the same point, by symmetry, exists also in K0).
This conical point is a characteristic of the peculiar electronic structure of graphene
and the origin of its unique electronic properties. It was first obtained by Wallace
(1947) in the framework of a simple tight-binding model. Furthermore this model
was developed by McClure (1957) and Slonczewski and Weiss (1958).

Let us start, following Wallace (1947), with the nearest-neighbor approximation
for the π states only, with the hopping parameter t. The basis of electron states
contains two π states belonging to the atoms from sublattices A and B. In the
nearest-neighbor approximation, there are no hopping processes within the sub-
lattices; hopping occurs only between them. The tight-binding Hamiltonian is
therefore described by the 2 	 2 matrix

Fig. 1.5 The band structure of graphene.
(Reproduced with permission from Boukhvalov, Katsnelson, & Lichtenstein, 2008.)

1.2 π States in graphene 7

https://www.cambridge.org/core


Ĥ ~k
� �

¼
0 tS ~k

� �
tS∗ ~k
� �

0

0
@

1
A, (1.14)

where~k is the wave vector and

S ~k
� �

¼
X
~δ

ei
~k~δ ¼ 2 exp

ikxa

2

� �
cos

kya
ffiffiffi
3

p

2

� �
þ exp �ikxað Þ: (1.15)

The energy is, therefore,

E ~k
� �

¼ �t S ~k
� ���� ��� ¼ �t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ f ~k

� �r
, (1.16)

where

f ~k
� �

¼ 2 cos
ffiffiffi
3

p
kya

� �
þ 4 cos

ffiffiffi
3

p

2
kya

� �
cos

3
2
kxa

� �
: (1.17)

One can see immediately that S ~K
� 	 ¼ S ~K 0� 	 ¼ 0, which means band crossing. On

expanding the Hamiltonian near these points one finds

ĤK 0 ~qð Þ � 3at
2

0 α qx þ iqy
� �

α∗ qx � iqy
� �

0

0
@

1
A

ĤK ~qð Þ � 3at
2

0 α qx � iqy
� �

α∗ qx þ iqy
� �

0

0
@

1
A (1.18)

where α = e5iπ/6, with ~q ¼~k � ~K and~k � ~K 0 respectively. The phase 5π/6 can be
excluded by a unitary transformation of the basis functions. Thus, the effective
Hamiltonians near the points K and K0 take the form

ĤK,K 0 ~qð Þ ¼ ℏv
0 qx � iqy

qx � iqy 0

� �
, (1.19)

where

v ¼ 3a tj j
2ℏ

(1.20)

is the electron velocity at the conical points. The possible negative sign of t can be
excluded by an additional phase shift by π.
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On taking into account the next-nearest-neighbor hopping t0, one finds, instead
of Eq. (1.16),

E ~k
� �

¼ �t S ~k
� ���� ���þ t0f ~k

� �
¼ �t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ f ~k

� �r
þ t0f ~k

� �
: (1.21)

The second term breaks the electron–hole symmetry, shifting the conical point
from E = 0 to E = �3t0, but it does not change the behavior of the Hamiltonian
near the conical points. Actually, this behavior is symmetry-protected (and even
topologically protected), as we will see in the next section.

Note that, contrary to the sign of t, the sign of t0 describing the hopping within
the same sublattice cannot be changed by unitary transformation.

The points K and �K0 differ by the reciprocal lattice vector~b ¼~b1 �~b2, so the
point K0 is equivalent to �K. To show this explicitly, it is sometimes convenient to
use a larger unit cell in the reciprocal space, with six conical points. The spectrum
(1.16) in this representation is shown in Fig. 1.6.

The parameters of the effective tight-binding model can be found by fitting
the results of first-principles electronic-structure calculations. According to Reich
et al. (2002), the first three hopping parameters are t = �2.97 eV, t0 = �0.073 eV
and t00 = �0.33 eV. Experimental estimates (Kretinin et al., 2013) yield t0 � � 0.3
eV �15%. The smallness of t0 in comparison with t means that the electron–hole
symmetry of the spectrum is quite accurate not only in the vicinity of the conical
points but also throughout the whole Brillouin zone.

There are saddle points of the electron energy spectrum at M (see Figs. 1.5
and 1.6), with Van Hove singularities in the electron density of states,
δN(E) / � ln j E � EMj (Bassani & Pastori Parravicini, 1975). The positions of
these singularities with the parameters from Reich et al. (2002) are

EM� = t + t0 � 3t00 � � 2.05eV

Fig. 1.6 The electron energy spectrum of graphene in the nearest-neighbor
approximation.
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and
EM+ = � t + t 0 + 3t 00 � 1.91eV.

The Hamiltonian (1.14) in the representation (1.15) has an obvious trigonal
symmetry (a symmetry with respect to rotation at 120�). At the same time, it is
not periodic in the reciprocal space, which may be inconvenient for some calcula-
tions (of course, its eigenvalues (1.16) are periodic). This can be fixed by the
change of basis, e.g., by multiplying the A-component of the wave function by a
factor exp ð�i~k~δ3Þ. Then, instead of Eq. (1.15) we will have the expression

Sðk⇀Þ ¼ 1þ ei
~kð~δ1�~δ3Þ þ ei

~kð~δ2�~δ3Þ,

which is obviously periodic but its trigonal symmetry is now hidden. The use of
the representation is dictated by convenience for a specific problem.

1.3 Massless Dirac fermions in graphene

Undoped graphene has a Fermi energy coinciding with the energy at the conical
points, with a completely filled valence band, an empty conduction band, and no
band gap in between. This means that, from the point of view of a general band
theory, graphene is an example of a gapless semiconductor (Tsidilkovskii, 1996).
Three-dimensional crystals, such as HgTe and α-Sn (gray tin) are known to be
gapless semiconductors. What makes graphene unique is not the gapless state itself
but the very special, chiral nature of the electron states, as well as the high degree
of electron–hole symmetry.

For any realistic doping, the Fermi energy is close to the energy at the conical
point, jEF j « j tj. To construct an effective model describing electron and hole
states in this regime one needs to expand the effective Hamiltonian near one of the
special points K and K0 and then make the replacements

qx ! �i
∂
∂x

, qy ! �i
∂
∂y

,

which corresponds to the effective mass approximation, or ~k
~p perturbation
theory (Tsidilkovskii, 1982; Vonsovsky & Katsnelson, 1989). From Eq. (1.19),
one has

ĤK ¼ �iℏv~σr, (1.22)

ĤK0 ¼ ĤT
K, (1.23)

where

σ0 ¼ 1 0
0 1

� �
, σx ¼ 0 1

1 0

� �
, σy ¼ 0 �i

i 0

� �
, σz ¼ 1 0

0 �1

� �
(1.24)
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are Pauli matrices (only x- and y-components enter Eq. (1.22)) and T denotes a
transposed matrix. A complete low-energy Hamiltonian consists of 4 	 4 matrices
taking into account both two sublattices and two conical points (in terms of
semiconductor physics, two valleys).

In the basis

Ψ ¼
ψKA

ψKB

ψK 0A
ψK 0B

0
BB@

1
CCA, (1.25)

where ψKA means a component of the electron wave function corresponding to
valley K and sublattice A, the Hamiltonian is a 2 	 2 block supermatrix

Ĥ ¼ ĤK 0
0 ĤK0

� �
: (1.26)

Sometimes it is more convenient to choose the basis as

Ψ ¼
ψKA
ψKB
ψK0B

�ψK0A

0
BB@

1
CCA (1.27)

(Aleiner & Efetov, 2006; Akhmerov & Beenakker, 2008; Basko, 2008), then the
Hamiltonian (1.26) takes the most symmetric form

Ĥ ¼ �iℏvτ0⊗~σr, (1.28)

where τ0 is the unit matrix in valley indices (we will use different notations for the
same Pauli matrices acting on different indices, namely, ~σ in the sublattice space
and~τ in the valley space).

For the case of an ideal graphene, the valleys are decoupled. If we add some
inhomogeneities (external electric and magnetic fields, disorder, etc.) that are smooth
at the atomic scale, the valleys remain independent, since the Fourier component of
external potential with the Umklapp wave vector ~b is very small, and intervalley
scattering is improbable. We will deal mainly with this case. However, one should
keep in mind that any sharp (atomic-scale) inhomogeneities, e.g., boundaries or
vacancies, will mix the states from different valleys, see Chapters 5 and 6.

The Hamiltonian (1.22) is a two-dimensional analog of the Dirac Hamiltonian
for massless fermions (Bjorken & Drell, 1964; Berestetskii, Lifshitz, & Pitaevskii,
1971; Davydov, 1976). Instead of the velocity of light c, there is a parameter
v � 106ms�1 � c/300 (we will discuss later, in Chapter 2, how this parameter has
been found experimentally).
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A formal similarity between ultrarelativistic particles (with energy much larger
than the rest energy mc2, such that one can consider the particles as massless) and
electrons in graphene makes graphene a playground on which to study various
quantum relativistic effects� “CERN on one’s desk.” These relationships between
the physics of graphene and relativistic quantum mechanics will be considered in
the next several chapters.

The internal degree of freedom, which is just spin for “true” Dirac fermions, is
the sublattice index in the case of graphene. The Dirac “spinors” consist here of the
components describing the distribution of electrons in sublattices A and B. We will
call this quantum number pseudospin, so that pseudospin “up” means sublattice
A and pseudospin “down” means sublattice B. Apart from the pseudospin, there
are two more internal degrees of freedom, namely the valley label (sometimes
called isospin) and real spin. So the most general low-energy Hamiltonian of
electrons in graphene is an 8 	 8 matrix.

Spin-orbit coupling leads to a mixture of pseudospin and real spin and to the gap
opening (Kane & Mele, 2005b). However, the value of the gap is supposed to be
very small, of the order of 10�2 K for pristine graphene (Huertas-Hernando,
Guinea, & Brataas, 2006). The reason is not only the lightness of carbon atoms
but also the orientation of orbital moments for pz states perpendicular to the
graphene plane. In silicene and germanene, that is, Si and Ge analogs of graphene,
the structure is buckled, which leads to a dramatic enhancement of the spin-orbit
coupling (Acun et al., 2015). Defects can significantly enhance the spin-orbit
coupling (Castro Neto & Guinea, 2009) and the corresponding effects are relevant,
e.g., for spin relaxation in graphene (Huertas-Hernando, Guinea, & Brataas, 2009),
but the influence of spin-orbit coupling on the electronic structure is negligible.
Henceforth we will neglect these effects, until the end of the book (see Section
12.4).

For the case of “true” Dirac fermions in three-dimensional space, the
Hamiltonian is a 4 	 4 matrix, due to two projections of spins and two values of
a charge degree of freedom – particle versus antiparticle. For the two-dimensional
case the latter is not independent of the former. Electrons and holes are just linear
combinations of the states from the sublattices A and B. The 2 	 2 matrix ℏv~σ~k
(the result of action of the Hamiltonian (1.22) on a plane wave with wave vector~k)
is diagonalized by the unitary transformation

Û~k ¼
1ffiffiffi
2

p 1þ i~m~k~σ
� 	

, (1.29)

where ~m~k ¼ sin ϕ~k;� cos ϕ~k
� 	

, and ϕ~k is the polar angle of the vector~k ~m~k⊥
~k

� �
.

The eigenfunctions
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ψ Kð Þ
e,h

~k
� �

¼ 1ffiffiffi
2

p
exp �iϕ~k=2

� 	
� exp iϕ~k=2

� 	
 !

(1.30)

correspond to electron (e) and hole (h) states, with the energies

Ee,h = � ℏvk. (1.31)

For the valley K0 the corresponding states (in the basis (1.25)) are

ψ K0ð Þ
e,h

~k
� �

¼ 1ffiffiffi
2

p exp iϕ~k=2
� 	

� exp �iϕ~k=2
� 	

 !
: (1.32)

Of course, this choice of the wave functions is not unique, they can be multiplied
by an arbitrary phase factor; only the ratio of the components of the spinor
corresponding to the sublattices A and B has a physical meaning.

For the electron (hole) states, by definition

~k~σ
� �
k

ψe,h ¼ �ψe,h: (1.33)

This means that the electrons (holes) in graphene have a definite pseudospin
direction, namely parallel (antiparallel) to the direction of motion. Thus, these
states are chiral (helical), as should be the case for massless Dirac fermions
(Bjorken & Drell, 1964). This is of crucial importance for “relativistic” effects,
such as Klein tunneling, which will be considered in Chapter 4.

The Dirac model for electrons in graphene results from the lowest-order expan-
sion of the tight-binding Hamiltonian (1.14) near the conical points. If one takes
into account the next, quadratic, term, one finds, instead of the Hamiltonian (1.28)
(in the basis (1.27))

Ĥ ¼ ℏvτ0⊗~σ~k þ μτz⊗ 2σykxky � σx k2x � k2y

� �h i
, (1.34)

where μ = 3a2t/8. The additional term in Eq. (1.34) corresponds to a trigonal
warping (Ando, Nakanishi, & Saito, 1998; McCann et al., 2006). Diagonalization

of the Hamiltonian (1.34) gives the spectrum Ee,h ~k
� �

¼ �ε ~k
� �

, where

ε2 ~k
� �

¼ ℏ2v2k2 � 2ℏvμk3 cos 3ϕ~k
� 	þ μ2k4, (1.35)

with the signs ∓ corresponding to valleys K and K0. The dispersion law is no longer

isotropic but has threefold (trigonal) symmetry. Importantly, ε ~k
� �

6¼ ε �~k
� �

,

1.3 Massless Dirac fermions in graphene 13
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which means that the trigonal warping destroys an effective time-reversal sym-

metry for a given valley (the property E ~k
� �

¼ E �~k
� �

follows from the time-

reversal symmetry [Vonsovsky & Katsnelson, 1989]). Of course, for the electron
spectrum as a whole, taking into account the two valleys, the symmetry holds:

ε ~k þ ~K
� �

¼ ε �~k � ~K
� �

: (1.36)

At the end of this section we show, following Mañes, Guinea, and Vozmediano
(2007), that the gapless state with the conical point is symmetry-protected. The
proof is very simple and based on consideration of two symmetry operations: time
reversal T and inversion I.We will use the basis (1.25) and the extended-Brillouin-
zone representation of Fig. 1.6 assuming ~K 0 ¼ �~K: The time reversal changes the
sign of the wave vector, or valley,

TψK A;Bð Þ ¼ ψ∗
K A;Bð Þ ¼ ψK0 A;Bð Þ, (1.37)

whereas the inversion also exchanges the sublattices:

IψKA = ψK0B, IψKB = ψK0A. (1.38)

Invariance under these symmetries imposes the following conditions for ĤK

and ĤK0 :

T : HK = H∗
K0 = HK, (1.39)

I : HK = σxHK0σx = HK. (1.40)

Indeed,

σx
a11 a12
a21 a22

� �
σx ¼ a22 a21

a12 a11

� �
, (1.41)

so the operation in (1.40) does exchange the A and B sublattices.
The conditions (1.39) and (1.40) establish relations between the Hamiltonians

for the different valleys. If we use both these symmetry transformations we impose
restrictions on HK and HK0 separately, e.g.,

TI : HK ¼ σxH
∗
Kσx ¼ HK: (1.42)

If we write the Hamiltonian as

HK ¼
X
i

αiσi

14 The electronic structure of ideal graphene

https://www.cambridge.org/core


one can see immediately that αz = 0, which means the absence of the mass term.
Thus, a perturbation that is invariant under T and I can, in principle, shift the
conical point (we will see in Chapter 10 that it can indeed be done, by deform-
ations), but cannot open the gap: (HK)11 = (HK)22 and the bands split by �jH12j.

If the sublattices are no longer equivalent, then there is no inversion symmetry,
the mass term naturally appears and the gap opens. This is, for example, the case of
graphene on top of hexagonal boron nitride, h-BN (Giovannetti et al., 2007; Sachs
et al., 2011). This case will be considered in detail in Chapter 13.

1.4 The electronic structure of bilayer graphene

By exfoliation of graphene one can obtain several layers of carbon atoms. Bilayer
graphene (Novoselov et al., 2006) is especially interesting. Its electronic structure
can be understood in the framework of a tight-binding model (McCann & Fal’ko,
2006; McCann, Abergel, & Fal’ko, 2007).

The crystal structure of bilayer graphene is shown in Fig. 1.7. Like in graphite,
the second carbon layer is rotated by 60� with respect to the first one. In graphite,
such a configuration is repeated, which is called Bernal stacking. The sublattices
A of the two layers lie exactly on top of one another, with a significant hopping
parameter γ1 between them, whereas there are no essential hopping processes
between the sublattices B of the two layers. The parameter γ1 = t⊥ is usually
taken as 0.4 eV, from data on the electronic structure of graphite (Brandt, Chudi-
nov, & Ponomarev, 1988; Dresselhaus & Dresselhaus, 2002), which is an order of
magnitude smaller than the nearest-neighbor in-plane hopping parameter γ0 = t.

(a)

g0
g3

g1

g4

(b)
K´ K

M

Γ

Fig. 1.7 (a) The crystal structure of bilayer graphene; hopping parameters are
shown. (b) Special points in the Brillouin zone for the bilayer graphene.
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The simplest model, which takes into account only these processes, is described by
the Hamiltonian

Ĥ ~k
� �

¼

0 tS ~k
� �

t⊥ 0

tS∗ ~k
� �

0 0 0

t⊥ 0 0 tS∗ ~k
� �

0 0 tS ~k
� �

0

0
BBBBBB@

1
CCCCCCA

(1.43)

with S ~k
� �

from Eq. (1.15). The basis states are ordered in the sequence first layer,
sublattice A; first layer, sublattice B; second layer, sublattice A; second layer,
sublattice B.

The matrix (1.43) can be easily diagonalized, with four eigenvalues

Ei
~k
� �

¼ � 1
2
t⊥ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4
t2⊥ þ t2 S ~k

� ���� ���2
r

(1.44)

with two independent � signs. The spectrum is shown in Fig. 1.8(a). Two bands
touch one another at the points K and K0. Near these points

E1,2 ~k
� �

� �
t2 S ~k
� ���� ���2
t⊥

� �ℏ2q2

2m∗
, (1.45)

where the effective mass is m∗ ¼ jt⊥j
2v2 (McCann, Abergel, & Fal’ko, 2007). The

experimental data give a value m∗ � 0.028me, where me is the mass of a free
electron (Mayorov et al., 2011). So, in contrast with the case of a single layer,
bilayer graphene turns out to be a gapless semiconductor with parabolic band

(a)

E 
(e
V
)

(b)

E 
(e
V
)

Fig. 1.8 (a) The electronic structure of bilayer graphene within the framework of
the simplest model (nearest-neighbor hopping processes only). (b) The same, for
the case of biased bilayer graphene (a voltage is applied perpendicular to the
layers).
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touching. Two other branches E3,4 ~k
� �

are separated by a gap 2jt⊥j and are

irrelevant for low-energy physics.
If one neglects intervalley scattering and replaces ℏqx and ℏqy by operators

p̂x ¼ �iℏ∂=∂x and p̂y ¼ �iℏ∂=∂y as usual, one can construct the effective

Hamiltonian; for single-layer graphene, this is the Dirac Hamiltonian (1.22). For
the case of bilayer graphene, instead, we have (McCann & Fal’ko, 2006; Novose-
lov et al., 2006)

ĤK ¼ 1
2m∗

0 p̂x � ip̂y
� 	2

p̂x þ ip̂y
� 	2

0

 !
: (1.46)

This is a new type of quantum-mechanical Hamiltonian that is different from both
nonrelativistic (Schrödinger) and relativistic (Dirac) cases. The eigenstates of this
Hamiltonian have special chiral properties (Novoselov et al., 2006), resulting in a
special Landau quantization, special scattering, etc., as will be discussed later.
Electron and hole states corresponding to the energies

Ee,h ¼ �ℏ2k2

2m∗
(1.47)

(cf. Eq. (1.31)) have a form similar to Eq. (1.30), with the replacement ϕ~k ! 2ϕ~k:

ψ Kð Þ
e,h

~k
� �

¼ 1ffiffiffi
2

p e�iϕ~k

�eiϕ~k

� �
: (1.48)

These are characterized by a helicity property similar to Eq. (1.33):

k2x � k2y

� �
σx þ 2kxkyσy

k2
ψe,h ¼ �ψe,h: (1.49)

By applying a voltage V perpendicular to the carbon planes one can open a gap in
the energy spectrum (McCann & Fal’ko, 2006; Castro et al., 2007, 2010a). In this
case, instead of the Hamiltonian (1.43), one has

H ~k
� �

¼

V=2 tS ~k
� �

t⊥ 0

tS∗ ~k
� �

V=2 0 0

t⊥ 0 �V=2 tS∗ ~k
� �

0 0 tS ~k
� �

�V=2

0
BBBBBB@

1
CCCCCCA

(1.50)
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and, instead of the eigenvalues (1.44), we obtain

E2
i
~k
� �

¼ t2 S ~k
� ���� ���2 þ t⊥2

2
þ V2

4
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t⊥4

4
þ t⊥2 þ V2
� 	

t2 S ~k
� ���� ���2

r
(1.51)

For the two low-lying bands in the vicinity of the K (or K0) point the spectrum has
the “Mexican hat” dispersion

E ~k
� �

� � V

2
� Vℏ2v2

t⊥2
k2 þ ℏ4v4

t⊥2V
k4

� �
(1.52)

where we assume, for simplicity, that ℏvk«V«jt⊥j. This expression has a maximum
at k = 0 and a minimum at k ¼ V=

ffiffiffi
2

p
ℏv

� 	
(see Fig. 1.8(b)). The opportunity to

tune a gap in bilayer graphene is potentially interesting for applications. It was
experimentally confirmed by Castro et al. (2007) and Oostinga et al. (2008).

Consider now the effect of larger-distance hopping processes, namely hopping
between B sublattices (γ3 � 0.3eV) (Brandt, Chudinov, & Ponomarev, 1988;
Dresselhaus & Dresselhaus, 2002). Higher-order terms, such as γ4 � 0.04 eV,
are assumed to be negligible. These processes lead to a qualitative change of the
spectrum near the K (K0) point. As was shown by McCann and Fal’ko (2006) and
McCann, Abergel, and Fal’ko (2007), the effective Hamiltonian (1.46) is modified
by γ3 terms, giving

ĤK ¼
0

p̂x � ip̂y
� 	2

2m∗
þ 3γ3a

ℏ
p̂x þ ip̂y
� 	

p̂x þ ip̂y
� 	2

2m∗
þ 3γ3a

ℏ
p̂x � ip̂y
� 	

0

0
BB@

1
CCA,

(1.53)

with the energy spectrum determined by the equation (assuming that jγ3j« jγ0j)

E2 ~k
� �

� 3γ3að Þ2k2 þ 3γ3aℏ
2k3

m∗
cos 3ϕ~k
� 	þ ℏ2k2

2m∗

� �2

: (1.54)

This means that, at small enough wave vectors

ka � γ3γ1
γ02

����
���� � 10�2, (1.55)

the parabolic dispersion law (1.47) is replaced by the linear one. The correspond-
ing level of doping when the Fermi wave vector satisfies the conditions (1.55) is
estimated as n < 1011 cm�2 (McCann, Abergel, & Fal’ko, 2007).

The spectrum (1.54) is shown in Fig. 1.9. The term with cos 3ϕ~k
� 	

in Eq. (1.53)
corresponds to the trigonal warping, which is more important for the bilayer than it
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is for the single layer: It leads to a reconstruction of isoenergetic lines when
k grows. Instead of one point of parabolic touching of the bands at k = 0, there
are now four conical points at k = 0 and k ¼ 6m∗γ3a=ℏ

2, cos 3ϕ~k
� 	 ¼ �1, where

the signs � correspond to K and K0 valleys. The merging of four cones into one
paraboloid with increasing energy is a particular case of the Lifshitz electronic
topological transition associated with a Van Hove singularity of the electron
density of states (Lifshitz, Azbel, & Kaganov, 1973; Abrikosov, 1988; Vonsovsky
& Katsnelson, 1989).

1.5 Multilayer graphene

For the third layer of carbon atoms there are two options: It can be rotated with
respect to the second layer by either�60� or by 60�. In the first case, the third layer
lies exactly on top of the first layer, with the layer order aba. In the second case, we
will denote the structure as abc. In bulk graphite, the most stable state corresponds
to Bernal stacking, abab . . . However, rhombohedral graphene with the stacking
abcabc . . . also exists, as does turbostratic graphite with an irregular stacking (on
the energetics of these different stackings, see Savini et al., 2011).

Here we consider the evolution of the electronic structure of N-layer graphene
with different stacking as N increases (Guinea, Castro Neto, & Peres, 2006;

(a)

E
 (

eV
)

(b)

Fig. 1.9 The effect of trigonal warping on the electronic structure of bilayer
graphene. (a) A cross-section of the dispersion surface at ϕ~k ¼ 0; one can see
the asymmetry of the spectrum (cf. Fig. 1.8(a)). (b) A general view of the
dispersion surface.
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Partoens & Peeters, 2006; Koshino & McCann, 2010). First we will discuss the
case of Bernal stacking. We will restrict ourselves to considering only the simplest
model with parameters γ0 = t and γ1 = t⊥, neglecting all other hopping parameters
γi. For the case of bilayer graphene this corresponds to the Hamiltonian (1.43).

On introducing the basis functions ψn,A
~k
� �

and ψn,B
~k
� �

n ¼ 1, 2, . . . ,Nð (N is
the number of carbon layers, A and B label sublattices, and ~k is the two-
dimensional wave vector in the layer) we can write the Schrödinger equation as

Eψ2n,A
~k
� �

¼ tS ~k
� �

ψ2n,B
~k
� �

þ t⊥ ψ2n�1,A
~k
� �

þ ψ2nþ1,A
~k
� �h i

,

Eψ2n,B
~k
� �

¼ tS∗ ~k
� �

ψ2n,A
~k
� �

,

Eψ2nþ1,A
~k
� �

¼ tS∗ ~k
� �

ψ2nþ1,B
~k
� �

þ t⊥ ψ2n,A
~k
� �

þ ψ2nþ2,A
~k
� �h i

,

Eψ2nþ1,B
~k
� �

¼ tS ~k
� �

ψ2nþ1,A
~k
� �

:

(1.56)

Excluding the components ψB from Eq. (1.56), one can write the equation

E �
t2 S ~k
� ���� ���2
E

0
B@

1
CAψn,A

~k
� �

¼ t⊥ ψnþ1,A
~k
� �

þ ψn�1,A
~k
� �h i

: (1.57)

For an infinite sequence of layers (bulk graphite with Bernal stacking) one can try
the solutions of Eq. (1.57) as

ψn,A
~k
� �

¼ ψA
~k
� �

einξ , (1.58)

which gives us the energies (Wallace, 1947)

E ~k; ξ
� �

¼ t⊥ cos ξ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 S ~k
� ���� ���2 þ t2⊥ cos 2 ξð Þ

r
: (1.59)

The parameter ξ can be written as ξ = 2kzc, where kz is the z-component of
the wave vector, c is the interlayer distance and, thus, 2c is the lattice period in
the z-direction. A more accurate tight-binding model of the electronic structure of
graphite, taking into account more hoppings, γi, was proposed by McClure (1957)
and Slonczewski and Weiss (1958); for reviews, see Dresselhaus and Dresselhaus
(2002) and Castro Neto et al. (2009).

For the case of N-layer graphene (n = 1, 2, . . ., N) one can still use Eq. (1.57),
continuing it for n = 0 and n = N + 1, but with constraints

ψ0,A = ψN+1,A = 0 (1.60)
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requiring the use of linear combinations of the solutions with ξ and �ξ; since
E(ξ) = E(�ξ) the expression for the energy (1.59) remains the same but ξ is now
discrete. Owing to Eq. (1.60) we have

ψn,A � sin (ξpn) (1.61)
with

ξp ¼
πp

N þ 1
, p ¼ 1, 2, . . . ,N: (1.62)

Eq. (1.59) and (1.62) formally solve the problem of the energy spectrum for N-layer
graphene with Bernal stacking. For the case of bilayer graphene cos ξp ¼ � 1

2, and we
come back to Eq. (1.44). For N= 3, there are six solutions with cos ξp ¼ 0, � 1=

ffiffiffi
2

p
:

E ~k
� �

¼
�t S ~k

� ���� ���,
�t⊥

ffiffiffi
2

p
=2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2⊥=2þ t2 S ~k

� ���� ���2
r

:

8><
>: (1.63)

We have both conical (like in single-layer graphene) and parabolic (like in bilayer

graphene) touching at K and K0 points where S ~k
� �

! 0:

For rhombohedral stacking (abc), instead of Eq. (1.56), we have the Schrödinger
equation in the form

Eψ1,A
~k
� �

¼ tS ~k
� �

ψ1,B
~k
� �

þ t⊥ψ2,A
~k
� �

,

Eψ1,B
~k
� �

¼ tS∗ ~k
� �

ψ1,A
~k
� �

,

Eψ2,A
~k
� �

¼ tS∗ ~k
� �

ψ2,B
~k
� �

þ t⊥ψ1,A
~k
� �

,

Eψ2,B
~k
� �

¼ tS ~k
� �

ψ2,A
~k
� �

þ t⊥ψ3,A
~k
� �

,

Eψ3,A
~k
� �

¼ tS ~k
� �

ψ3,B
~k
� �

þ t⊥ψ2,B
~k
� �

,

Eψ3,B
~k
� �

¼ tS∗ ~k
� �

ψ3,A
~k
� �

:

(1.64)

On excluding from Eq. (1.64) ψ1,B and ψ3,B one obtains

E �
t2 S ~k
� ���� ���2
E

0
B@

1
CAψ1,A

~k
� �

¼ t⊥ψ2,A
~k
� �

,

E �
t2 S ~k
� ���� ���2
E

0
B@

1
CAψ3,A

~k
� �

¼ t⊥ψ2,B
~k
� �

,

(1.65)
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so we have just two equations for ψ2,A, a and ψ2, B

E 1� t2⊥

E2 � t2 S ~k
� ���� ���2

0
B@

1
CAψ2,A

~k
� �

¼ tS∗ ~k
� �

ψ2,B
~k
� �

,

E 1� t2⊥

E2 � t2 S ~k
� ���� ���2

0
B@

1
CAψ2,B

~k
� �

¼ tS ~k
� �

ψ2,A
~k
� �

,

(1.66)

and, finally, the equation for the energy

E2 1þ t2⊥

t2 S ~k
� ���� ���2 � E2

0
B@

1
CA

2

¼ t2 S ~k
� ���� ���2: (1.67)

Near the K and K0 points when S ~k
� �

! 0 there is a solution of Eq. (1.67) that
behaves as

E ~k
� �

� �
t3 S ~k
� ���� ���3
t2⊥

/ �q3, (1.68)

where ~q ¼~k � ~K or ~k � ~K 0: So, in trilayer graphene with rhombohedral stacking
we have a gapless semiconducting state with cubic touching of the conduction and
valence bands.

If we have a rhombohedral stacking of N layers (each layer is rotated with
respect to the previous one by +60�), the low-lying part of the spectrum behaves,
similarly to Eq. (1.68), according to

E ~qð Þ / � tN

tN�1
⊥

qN (1.69)

(Mañes, Guinea, & Vozmediano, 2007).
Effects of γj beyond the simplest model were discussed by Koshino and

McCann (2010).
To finish this chapter, we calculate the density of states

N Eð Þ ¼ 2
ð

d2k

2πð Þ2 δ E � E ~k
� �� �

, (1.70)

where integration is over the Brillouin zone of the honeycomb lattice and the factor
2 takes into account spin degeneracy. For small energies E! 0 the contribution to
(1.70) comes only from the vicinity of the K and K0 points and E ¼ E j~qjð Þ
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depends, to a first approximation (neglecting trigonal warping), only on the
modulus of the wave vector. Thus, one gets

N Eð Þ ¼ 2
2
ð∞
0

dqq

2π
δ E � E ~qð Þð Þ ¼ 2

π
q Eð Þ
dE

dq


�� �� : (1.71)

For the case of single-layer graphene, according to Eq. (1.31)

N Eð Þ ¼ 2
π
j E j
ℏ2v2

, (1.72)

and the density of states vanishes linearly as E ! 0. For bilayer graphene, due
to Eq. (1.47)

N Eð Þ ¼ 2m∗

πℏ2 , (1.73)

and the density of states is constant. Finally, for the spectrum (1.69) the density
of states is divergent at E ! 0, N > 2:

N Eð Þ / 1

Ej j1�2=N
: (1.74)

At large enough energies the density of states has Van Hove singularities (related
to the M point) that are relevant for the optical properties and will be discussed
in Chapter 7.
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2

Electron states in a magnetic field

2.1 The effective Hamiltonian

The reality of massless Dirac fermions in graphene has been demonstrated by
Novoselov et al. (2005a) and Zhang et al. (2005) using quantized magnetic fields.
The discovery of the anomalous (half-integer) quantum Hall effect in these works
was the real beginning of the “graphene boom.” Discussion of the related issues
allows us to clarify in the most straightforward way possible the basic properties
of charge-carrier states in graphene, such as chirality, Berry’s phase, etc. So, it
seems natural, both historically and conceptually, to start our consideration of
the electronic properties of graphene with a discussion of the effects of the
magnetic field.

We proceed with the derivation of the effective Hamiltonian of band electrons in
a magnetic field (Peierls, 1933); our presentation will mainly follow Vonsovsky
and Katsnelson (1989). It is assumed that the magnetic length

lB ¼
ffiffiffiffiffiffiffiffiffiffi
ℏc

jej B

s
(2.1)

(B is the magnetic induction) is much larger than the interatomic distance:

lB » a (2.2)

which is definitely the case for any experimentally available fields; it would be
violated only for B » 104T.

Another approximation is that we will take into account only π electrons and
neglect transitions to other electron bands (e.g., σ bands). Since the distance
between π and σ bands is of the order of the π bandwidth (see Fig. 1.5) one can
prove that the approximation is justified under the same condition (2.2) (see the
discussion of magnetic breakdown at the end of this section). A rigorous theory of
the effect of magnetic fields on Bloch states has been developed by Kohn (1959)
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and Blount (1962). It is rather cumbersome, and its use for the case of graphene,
with its simple band structure, would obviously be overkill.

The original Hamiltonian is

H ¼ ~̂π2

2m
þ V ~rð Þ, (2.3)

where

~̂π ¼ ~̂p� e

c
~A, ~p ¼ �iℏ~∇ (2.4),

~A is the vector potential
~B ¼ ~∇ �~A, (2.5)

m is the mass of a free electron, and V ~rð Þ is a periodic crystal potential. The
operators π̂α satisfy the commutation relations

π̂x; π̂y

� � ¼ � π̂y; π̂x

� � ¼ ie

ℏc
B, (2.6)

other commutators being zero (we assume that the magnetic induction is along the
z-axis).

We can try a general solution of the Schrödinger equation

Hψ = Eψ, (2.7)

as an expansion in the Wannier basis φi ~rð Þ (we will omit the band label since we
will consider only π states):

ψ ¼
X
i

ciφi ~rð Þ: (2.8)

The Wannier function on state i can be represented as

φi ~rð Þ ¼ φ0 ~r �~Ri

� � ¼ exp � i

ℏ
~Ri~̂p

� �
φ0 ~rð Þ (2.9)

where φ0 is the function corresponding to the zero site.
For future use, we have to specify the gauge. Here we will use a radial gauge

~A ¼ 1
2
~B�~r ¼ �By

2
;
Bx

2
; 0

	 

: (2.10)

Then, instead of the expansions (2.8) and (2.9), it is convenient to choose another
basis, namely

ψ ¼
X
i

ai~φi ~rð Þ,

~φi ~rð Þ ¼ exp � i

ℏ
~Ri~̂Π

� �
φ0 ~rð Þ (2.11)
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where

~̂Π ¼ ~̂pþ e

c
~A: (2.12)

The point is that the operators Π̂α commute with π̂ β and, thus, with the kinetic
energy term in Eq. (2.3):

π̂α; Π̂β

� � ¼ � ieℏ
c

∂Aβ

∂xα
þ ∂Aα

∂xβ

	 

¼ 0 (2.13)

due to Eq. (2.10). Using the identity

exp Â þ B̂
� � ¼ exp Â

� �
exp B̂

� �
exp � 1

2
Â; B̂
� �	 


(2.14)

(assuming Â; Â; B̂
� �� � ¼ B̂; Â; B̂

� �� � ¼ 0), see Vonsovsky and Katsnelson (1989),
one can prove that the operator

exp
i

ℏ
~Ri~̂Π

	 

¼ exp

ie

2ℏc
~Ri �~B
� �

~r

� �
exp

i

ℏ
~Ri~̂p

� �
(2.15)

commutes also with the potential energy V ~rð Þ due to translational invariance of the
crystal:

exp
i

ℏ
~Ri~̂p

� �
V ~rð Þ . . . ¼ V ~r þ~Ri

� �
exp

i

ℏ
~Ri~̂p

� �
. . .¼ V ~rð Þexp i

ℏ
~Ri~̂p

� �
. . .

(2.16)

and, thus, the Hamiltonian matrix in the basis (2.12) has the form

Hij ¼
ð
d~rφ∗0 ~rð ÞĤ exp

i

ℏ
~Ri~̂Π

	 

exp � i

ℏ
~Rj~̂Π

	 

φ0 ~rð Þ: (2.17)

Using, again, Eq. (2.14) one finds

exp
i

ℏ
~Ri~̂Π

	 

exp � i

ℏ
~Rj~̂Π

	 

¼ exp

i

ℏ
~̂Π ~Ri �~Rj

� �� �
exp � ie

2ℏc
~Ri �~Rj

� �
~B

� �
¼ exp

ie

2ℏc
~Ri �~Rj

� ��~B
� �

~r

� �
� exp � ie

2ℏc
~Ri �~Rj

� �
~B

� �
exp

i

ℏ
~̂p ~Ri �~Rj

� �� �
:

(2.18)

The Wannier functions are localized within a region of extent of a few interatomic
distances, so, to estimate the various terms in (2.18), one has to assume r � a and

j ~Ri �~Rj j� a and take into account Eq. (2.2).
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Thus,

Hij � exp � ie

2ℏc
~Ri �~Rj

� �
~B

� �
tij, (2.19)

where tij ¼ Hij ~B ¼ 0
� �

is the hopping parameter without a magnetic field. With
the same accuracy, one can prove that the basis (2.11) is orthonormal.

Further straightforward transformations (Vonsovsky & Katsnelson, 1989) show
that the change of the hopping parameters (2.11) corresponds to a change of the
band Hamiltonian t ~pð Þ (where~p ¼ ℏ~k) by

Ĥ eff ¼ t ~̂π
 �

(2.20)

and, thus, the Schrödinger equation (2.7) takes the form

t ~̂π
 �

ψ ¼ Eψ: (2.21)

Instead of the operators π̂x and π̂y satisfying the commutation relations (2.6), it is
convenient to introduce the standard Bose operators b̂ and b̂

þ
by writing

π̂ � ¼ π̂x � iπ̂y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 jej ℏB

c

r
b̂,

π̂þ ¼ π̂x þ iπ̂y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 je j ℏB

c

r
b̂
þ

(2.22)

in such a way that

b̂; b̂
þh i

¼ 1: (2.23)

We will see later that this representation is very convenient for the cases of both
single-layer and, especially, bilayer graphene.

To finish this section, we should discuss the question of neglected transitions to
other bands (magnetic breakdown). If the distance between the bands is of the
order of their bandwidth (which is the case for σ and π bands in graphene), the
condition (2.2) still suffices to allow us to neglect the transitions. If the gap
between the states Δ « jtj, the magnetic breakdown can be neglected if

ej jB
ℏc

¼ 1

l2B
«

Δ
t

	 
2 1
a2

,

where we assume that t � ℏ2

ma2 (Vonsovsky & Katsnelson, 1989).
Similarly to the derivation of equations for the electron spectrum of a semicon-

ductor with impurities in the effective-mass approximation (Tsidilkovskii, 1982),
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one can prove that, if the magnetic induction ~B x; yð Þ is inhomogeneous but the
spatial scale of this inhomogeneity is much larger than a, the Hamiltonian (2.20)
still works.

2.2 Landau quantization for massless Dirac fermions

Let us apply the general theory to electrons in graphene in the vicinity of the point
K. It follows from Eq. (1.22), (2.20), and (2.22) that the effective Hamiltonian is

Ĥ ¼ v
0 π̂�
π̂þ 0

	 

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 jej ℏBv2

c

s
0 b̂
b̂þ 0

	 

(2.24)

and the Schrödinger equation (2.21) for the two-component spinor reads

b̂ ψ2 ¼ εψ1,

b̂
þ
ψ1 ¼ εψ2, ð2:25Þ

where we have introduced a dimensionless quantity ε, such that

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 jej ℏBv2

c

s
ε �

ffiffiffi
2

p
ℏv

lB
ε: (2.26)

We assume here that B> 0 (magnetic field up). For the second valley K0, ψ1 and ψ2

exchange their places in Eq. (2.25).
First, one can see immediately from (2.25) that a zero-energy solution exists

with ψ1 = 0, and ψ2 � j0i is the ground state of a harmonic oscillator:

b̂ 0j i ¼ 0: (2.27)

This solution is 100% polarized in pseudospin; that is, for a given direction of the
magnetic field for the valleys K and K0, electrons in this state belong completely to
sublattices A and B, respectively, or conversely if the direction of the magnetic
field is reversed.

To find the complete energy spectrum, one has to act with the operator b̂
þ
on the

first equation of (2.25), which gives us immediately

b̂
þ
b̂ψ2 ¼ ε2ψ2, (2.28)

with the well-known eigenvalues

ε2n ¼ n ¼ 0, 1, 2, . . . : (2.29)

Thus, the eigenenergies of massless Dirac electrons in a uniform magnetic field are
given by

E �ð Þ
n ¼ �ℏωc

ffiffiffi
n

p
, (2.30)
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where the quantity

ℏωc ¼
ffiffiffi
2

p
ℏv

lB
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ℏ jej Bv2

c

s
(2.31)

will be called the “cyclotron quantum.” In the context of condensed-matter phys-
ics, this spectrum was first derived by McClure (1956) in his theory of the
diamagnetism of graphite. This spectrum is drastically different from that for

nonrelativistic electrons with t ~̂π
 �

¼ ~̂π2= 2mð Þ, where (Landau, 1930)

εn ¼ ℏ~ωc nþ 1
2

	 

, ~ωc ¼ j e j B

mc
: (2.32)

Discrete energy levels of two-dimensional electrons in magnetic fields are called
Landau levels.

First, the spectrum (2.31), in contrast with (2.32), is not equidistant. Second, and
more importantly, the zero Landau level (n = 0) has zero energy and, due to the
electron–hole symmetry of the problem, is equally shared by electrons and holes.
The states at this level are chiral; that is, they belong to only one sublattice, as was
explained previously. The existence of the zero-energy Landau level has deep
topological reasons and leads to dramatic consequences for the observable proper-
ties of graphene, as will be discussed later in this chapter.

To better understand the relations between relativistic and nonrelativistic
Landau spectra, let us calculate the Hamiltonian (2.24) squared, taking into
account the commutation relations (2.6):

Ĥ
2 ¼ v2 ~σ~̂π

 �2
¼ v2~̂π2 þ iv2~̂σ ~̂π � ~̂π

 �
¼ v2~̂π2 � v2ℏ ej jB

c
σz: (2.33)

The spectrum of the operator (2.33) can be immediately found from the solution of
the nonrelativistic problem if one puts m = l/(2v2). Then,

E2
n ¼

2ℏ j e j Bv2
c

nþ 1
2

	 

∓
v2ℏ j e j B

c
¼ 2ℏ j e j Bv2

c
nþ 1

2
∓
1
2

	 

, (2.34)

where �1 are eigenstates of the operator σ̂ z. The last term in Eq. (2.33) looks like
Zeeman splitting, and the existence of the zero Landau level in these terms
results from an exact cancellation of the cyclotron energy and the Zeeman
energy. Actually, for free electrons, for which the same mass is responsible for both
the orbital motion and the internal magnetic moment, the situation is exactly the same:

En,σ ¼ ℏ j e j B
mc

nþ 1
2

	 

∓
ℏ j e j B
2mc

: (2.35)
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In semiconductors, the effective electron mass is usually much smaller than the
effective electron mass, and the Zeeman term just gives small corrections to Landau
quantization. For the case of graphene, the pseudo-Zeeman term also originates from
the orbital motion, namely from hopping processes between neighboring sites.

To find the eigenfunctions corresponding to the eigenenergies (2.30), one needs
to specify a gauge for the vector potential. The choice (2.10) gives us solutions
with radial symmetry. It is more convenient, however, to use the Landau gauge

~A ¼ 0;Bx; 0ð Þ: (2.36)

Then Eq. (2.25) takes the form

∂
∂x

� i
∂
∂y

� x

l2B

	 

ψ2 ¼

iE

ℏv
ψ1,

∂
∂x

þ i
∂
∂y

þ x

l2B

	 

ψ1 ¼

iE

ℏv
ψ2:

(2.37)

In the gauge (2.36), y is the cyclic coordinate, and the solutions of Eq. (2.37) can
be tried in the form

ψ1,2(x, y) = ψ1,2(x) exp (ikyy), (2.38)

which transforms Eq. (2.37) into

∂
∂x

� x� x0
l2B

	 

ψ2 ¼

iE

ℏv
ψ1,

∂
∂x

þ x� x0
l2B

	 

ψ1 ¼

iE

ℏv
ψ2:

(2.39)

where

x0 ¼ l2Bky (2.40)

is the coordinate of the center of the electron orbit (Landau, 1930). On introducing
a dimensionless coordinate

X ¼
ffiffiffi
2

p

lB
x� x0ð Þ (2.41)

and a dimensionless energy (2.26), one can transform Eq. (2.37) to

d2

dX2 þ ε2 þ 1
2
� X2

2

	 

ψ1 Xð Þ ¼ 0: (2.42)

ψ2 Xð Þ ¼ � i

ε
d

dX
þ X

2

	 

ψ1 Xð Þ: (2.43)
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We assume in the second equation that ε 6¼ 0, otherwise

ψ1 Xð Þ � exp �X2

4

	 

,

ψ2 Xð Þ ¼ 0:
(2.44)

The only solution of Eq. (2.42) vanishing at X !�∞ (the second one is exponen-
tially growing) is, with an accuracy to within a constant multiplier

ψ1(X) = Dε2(�X), (2.45)

where Dv(X) is the Weber function (Whittaker & Watson, 1927) and

ψ2(X) = iεDε2�1(�X). (2.46)

If the sample is not restricted for both X ! �∞ and X ! ∞, the solutions (2.45)
and (2.46) are normalizable only for integer ε2, which again gives us the quantiza-
tion condition (2.29). For an integer index n, the Weber functions

Dn Xð Þ ¼ �1ð Þn exp X2

4

	 

dn

dXn exp �X2

2

	 

(2.47)

decay as exp(�X2/4) forX ! �∞ .
The energy is not dependent on the quantum number ky or, equivalently, on the

position of the center of the orbit x0. This means that the Landau levels (2.30) have
a macroscopically large degeneracy g. To calculate it, it is convenient to use a
periodic (Born–von Kármán) boundary condition in the y-direction

ψ1,2(x, y) = ψ1,2(x, y + Ly) (2.48)

(for large enough samples the density of states does not depend on boundary
conditions [Vonsovsky & Katsnelson, 1989]). Thus,

ky ¼ 2π
Ly

n, (2.49)

where n = 0, �1, . . . the maximum value of n is determined by the condition that
the center of the orbit should be within the sample: 0 < x0 < Lx (Lx is the width of
the sample in the x-direction), or

j ky j< Lx
l2B

¼ j e j B
ℏc

Lx: (2.50)
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Thus, the total number of solutions is

g ¼ j e j B
ℏc

LxLy
2π

¼ j e j B
ℏc

A

2π
¼ Φ

Φ0
, (2.51)

where A = LxLy is the sample area, Φ is the total magnetic flux though the sample,
and

Φ0 ¼ hc

j e j (2.52)

is the flux quantum. Keeping in mind further applications to graphene, one should
multiply the degeneracy (2.51) by a factor of 4, namely a factor of 2 for the two
valleys K and K0 and a further factor of 2 for the two spin projections. The latter is
possible since the ratio of the Zeeman energy EZ = j e j ℏB/(2mc) to the cyclotron
quantum ℏωc is always very small (about 0.01 in fields B � 10�30 T).

2.3 Topological protection of the zero-energy states

The existence of the zero-energy Landau level is the consequence of one of the
most important theorems of modern mathematical physics, the Atiyah�Singer
index theorem (Atiyah & Singer, 1968, 1984). This theorem has important appli-
cations in quantum field and superstring theories (Kaku, 1988; Nakahara, 1990). In
its simplest version, being applied to the operator

Ĥ ¼ v~̂σ �iℏ~∇ � e

c
~A x; yð Þ

 �
(2.53)

acting on a torus (that is, with periodic boundary conditions both in the y- and in
the x-direction), the theorem states that the index of this operator is proportional to
the total flux, namely

index Ĥ
� � ¼ Nþ � N� ¼ Φ

Φ0
, (2.54)

for an inhomogeneous magnetic field as well as for a homogeneous one. Here N+

is the number of solutions with zero energy and positive chirality

Ĥψ1 ¼ 0, ψ2 ¼ 0, (2.55)

and N� is the number of solutions with zero energy and negative chirality

ψ1 ¼ 0, Ĥψ2 ¼ 0: (2.56)

For the case of a homogeneous magnetic field, N+ = g is given by Eq. (2.51) and
N� = 0. Strictly speaking, we did not consider the case of a torus; instead, we
considered periodic boundary conditions in the y-direction only; the case of a torus
is analyzed by Tenjinbayashi, Igarashi, and Fujiwara (2007), and the result for the
number of zero modes is the same. A simplified (in comparison with the general
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case) formal discussion of the Atiyah�Singer theorem for the Hamiltonian (2.53)
can be found in Katsnelson and Prokhorova (2008).

The index theorem tells us that the zero-energy Landau level is topologically
protected; that is, it is robust with respect to possible inhomogeneities of the magnetic
field (Novoselov et al., 2005a; Katsnelson, 2007a). This statement is important for
real graphene since the effective magnetic field there should be inhomogeneous due
to the effect of so-called ripples, as will be discussed in Chapter 10.

The simplest way (at least for physicists) to understand the robustness of zero-
energy modes is to explicitly construct the solutions for zero-energy states in an
inhomogeneous magnetic field. This was done by Aharonov and Casher (1979) for
the case of an infinite sample with the magnetic fluxΦ localized in a restricted region.

Let us assume, first, that the vector potential satisfies the condition

~∇~A ¼ 0; (2.57)

otherwise, one can always use the gauge transformation

~A ! ~Aþ~∇χ, ψ ! ψ exp
ie

ℏc
χ

	 

, (2.58)

choosing χ to provide Eq. (2.57). Thus, one can introduce a scalar “potential” φ(x, y)
such that

Ax ¼ � ∂φ
∂y

, Ay ¼ ∂φ
∂x

(2.59)

and, due to Eq. (2.5),
B = ∇2φ. (2.60)

Then, Eq. (2.55) and (2.56) can be written in the form

∂
∂x

þ iσ
∂
∂y

þ ie

ℏc
∂φ
∂x

þ σe
ℏc

∂φ
∂y

	 

ψ1,2 ¼ 0, (2.61)

where σ= l and�1 for ψ1 and ψ2, respectively. The potential φ can be excluded by
the substitution

ψ1,2 ¼ exp � σe
ℏc

φ
 �

f 1,2, (2.62)

which transforms Eq. (2.61) into the equation

∂
∂x

þ iσ
∂
∂y

	 

f 1,2 ¼ 0: (2.63)
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This means that f1 and f2 are analytic and complex-conjugated analytic entire
functions of z = x + iy, respectively.

Eq. (2.60) has a solution

φ ~rð Þ ¼
ð
d~r0G ~r;~r0ð ÞB ~r0ð Þ, (2.64)

where

G ~r;~r0ð Þ ¼ 1
2π

ln
j~r �~r0 j

r0

	 

(2.65)

is the Green function of the Laplace operator in two dimensions (Jackson, 1962),
where r0 is an arbitrary constant. At r ! ∞

φ rð Þ � Φ
2π

ln
r

r0

	 

(2.66)

and

ψ1,2 �rð Þ ¼ r0
r

 � σeΦ
2πℏc

f 1,2 ~rð Þ, (2.67)

where

Φ ¼
ð
d~r~B ~rð Þ (2.68)

is the total magnetic flux. Since the entire function f(z) cannot go to zero in all
directions at infinity, ψi can be normalizable only assuming that σeΦ > 0; that is,
zero-energy solutions can only exist for one (pseudo)spin direction, depending on
the sign of the total flux.

Let us now count how many independent solutions of Eq. (2.63) we have. As a
basis, we can choose just polynomials searching the solutions of the form

f1(z) = zj (2.69)

(to be specific, we consider the case eΦ > 0), where j = 0, 1, 2, . . . One can see
from Eq. (2.67) that the solution is integrable with the square, only assuming that
j < N, where N is the integer part of

eΦ
2πℏc

¼ Φ
Φ0

:

Thus, the number of the states with zero energy for one (pseudo)spin projection is
equal to N, and there are no such solutions for another spin projection. This agrees
with Eq. (2.54).
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2.4 Semiclassical quantization conditions and Berry’s phase

The exact spectrum (2.30) of Dirac electrons in a uniform magnetic field B seems
to be in a contradiction with the Lifshitz–Onsager semiclassical quantization
condition (Lifshitz, Azbel, & Kaganov, 1973; Abrikosov, 1988; Vonsovsky &
Katsnelson, 1989)

S Enð Þ ¼ 2π j e j B
ℏc

nþ 1
2

	 

, (2.70)

where S(En) is the area of k-space inside the line determined by the equation

E(kx, ky) = En. (2.71)

For massless Dirac electrons this is just a circle of radius k(E) = E/(ℏv) and

S Eð Þ ¼ π
E2

ℏvð Þ2 , (2.72)

so the term with 1
2 in Eq. (2.70) should not exist. Strictly speaking, the semiclassical

condition (2.70) is only valid for highly excited states, n » 1; however, for these
states it should give us not only the leading, but also the subleading, term correctly,
which is not the case now.

The replacement n ! nþ 1
2 follows from the existence of two turning points for

a classical periodic orbit; in a more general case, it is related to the so-called
Keller�Maslov index. The simplest way to derive it is probably by using the
saddle-point approximation in the path-integral formulation of quantum mechanics
(Schulman, 1981). It turns out that the case of electrons in single-layer (as well as
in bilayer, see later) graphene is special, and, for Dirac fermions, the correct
semiclassical condition is

S Enð Þ ¼ 2π j e j B
ℏc

n, (2.73)

which gives us, together with Eq. (2.72), the exact spectrum (2.30), including the
existence of a zero mode at n = 0. Of course, in general, we are not always so
lucky, and for the case of bilayer graphene (Section 2.5) the situation is different.

The mystery of the missing term 1
2 is a good way to introduce one of the deepest

concepts of modern quantum mechanics, namely Berry’s (or the geometrical)
phase (Berry, 1984; Schapere & Wilczek, 1989).

Let us start with the following simple observation. If we rotate the~k vector by
the angle 2π, the wave functions (1.30) change sign:

ψe,h ϕ~k ¼ 2π
� � ¼ �ψe,h ϕ~k ¼ 0

� �
: (2.74)
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This is not surprising when rotating spin 1
2 in spin space, but we are talking about

rotations in real physical space, and our “spin” is just a label for sublattices! This
property (2.74) has a deep geometrical and topological meaning.

Berry (1984) considered a general adiabatic evolution of a quantum system.
To be specific, we will apply these ideas to the evolution of electron states in ~k
space (Zak, 1989; Chang & Niu, 2008; Xiao, Chang, & Niu, 2010).

The Bloch states

ψn~k ~rð Þ ¼ un~k ~rð Þ exp i~k~r
 �

, (2.75)

where un~k ~rð Þ is the Bloch amplitude periodic in the real space, evolve under the

action of external electric and magnetic fields. If they are time-independent, or their
time dependence is slow in comparison with typical electron times of the order
of ℏ/W (W is the bandwidth), this evolution is mainly within the same band n, with
an exponentially small probability of interband transitions (electric or magnetic
breakdown; Vonsovsky & Katsnelson, 1989).

By substituting Eq. (2.75) into the Schrödinger equation one can derive the
equation for the Bloch amplitude with a slowly varying wave vector~k(t)

iℏ
∂ u tð Þj i
∂t

¼ Ĥ eff
~k tð Þ
 �

u tð Þj i (2.76)

(an explicit form of the Hamiltonian Heff is not essential here). The time-dependent

band states n~k
��� E

satisfy a stationary Schrödinger equation

Ĥ eff
~k
 �

n;~k
��� E

¼ En
~k
 �

n;~k
��� E

, (2.77)

where n~k
��� E

¼ un~k ~rð Þ: Neglecting interband transitions, one can try the solution

of Eq. (2.76) with an initial condition

u 0ð Þj i ¼ n;~k 0ð Þ
��� E

(2.78)

u tð Þj i ¼ u 0ð Þj i exp � i

h

ðt
0

dt0En
~k t0ð Þ
 �8<:

9=; exp iγn tð Þf g n;~k tð Þ
��� E

: (2.79)

On substituting Eq. (2.79) into Eq. (2.76), one finds

∂γn tð Þ
∂t

¼ i n;~k tð Þ
D ���~∇~k n;~k tð Þ

��� E d~k tð Þ
dt

: (2.80)
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If we consider a periodic motion~k τð Þ ¼~k 0ð Þ, then, on integrating Eq. (2.80) over
the period of motion τ, one finds for the Berry phase

γn ¼ i

þ
C

d~k n;~k
D ���~∇~k n;~k��� E

¼ �Im
þ
C

d~k n;~k
D ���~∇~k n;~k��� E

, (2.81)

where C is a line drawn by the end of the vector~k tð Þ (the real part of the integral
vanishes identically: 2Re

Þ
C d

~k n;~k
D ���~∇~k n;~k��� E

¼ Ð d~r ÞC d~k~∇~k un~k�� ��2 ¼ 0). For non-

degenerate bands, it is obvious that γn = 0. However, this is not the case for a
degenerate spectrum and, in particular, for the case in which conical points exist,
like in graphene.

Using Stokes’ theorem, Eq. (2.81) can be written in terms of the surface integral
over the area, restricted by the contour C:

γn Cð Þ ¼ �Im
ð
d~S�~∇~k � n;~k

D ���~∇~k n;~k��� E
¼ �Im

ð
d~S ~∇~kn
D ���� ~∇~kn

��� E
(2.82)

with obvious notations, e.g., ~∇~kn
��� E

¼ ~∇~k n;~k
��� E

:

To explicitly demonstrate the role of crossing points of the energy spectrum
(such as the conical points in graphene), we introduce, following Berry (1984), the
summation over a complete set of eigenstates jmi:

~∇~kn
D ���� ~∇~kn

��� E
¼
X
m

~∇~kn
���mD E

� m
���~∇~knD E

: (2.83)

The term with m = n in Eq. (2.83) is obviously zero and can be omitted since, due

to the normalization condition njnh i ¼ 1, ~∇~kn
���nD E

¼ � n
���~∇~knD E

.

On differentiating Eq. (2.77) with respect to~k one has

~∇~kĤ eff nj i þ Ĥ eff � En

� �
~∇~kn
��� E

¼ ~∇kEn nj i: (2.84)

On multiplying Eq. (2.84) by hmj from the left and taking into account that
mh jĤ eff ¼ mh jEm and hmj ni = 0 at m 6¼ n, one finds

m
���~∇~knD E

¼
mh j~∇

~k
Ĥ eff nj i

En � Em
: (2.85)

Finally, by substituting Eq. (2.85) into Eq. (2.83) we derive the following expres-
sion for the Berry phase:
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γn Cð Þ ¼ �
ð
d~S~Vn

~k
 �

,

where

~Vn ¼ Im
X
m6¼n

nh j~∇~kĤ eff mj i � mh j~∇~kĤ eff nj i
Em � Enð Þ2 : (2.86)

This vector is called Berry curvature.
Suppose we have two neighboring bands described by the effective Hamiltonian

Ĥ eff ¼ 1
2
~R ~k
 �

~σ (2.87)

with the eigenenergies

E� ~k
 �

¼ � 1
2
R ~k
 ���� ��� (2.88)

and the corresponding eigenstates ψ�j i ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2R R∓Rzð Þ

p �R�
R∓Rz

	 

, where

R ¼ ~R
�� ��,R� ¼ Rx � iRy. Assuming ~k ¼ kx; ky

� �
, after long but straightforward

calculations one finds:

~V ~R
� � ¼ � ∂ Rx;Ry

� �
∂ kx; ky
� � ~R

2R3 , (2.89)

where
∂ Rx;Ryð Þ
∂ kx;kyð Þ is the corresponding Jacobian. At last, we make the replacement of

variables in the integral (2.86):~k ! ~R. Then,
∂ Rx;Ryð Þ
∂ kx;kyð Þ d~S ¼ d~S~R and the expression

for the Berry phase is dramatically simplified:

γ� Cð Þ ¼ ∓
ð
d~S~R

~R

2R3 , (2.90)

which is nothing other than the electric flux through the contour C created by the
charge 1

2 at the point
~R ¼ 0. The answer is obvious:

γ� Cð Þ ¼ ∓
1
2
Ω Cð Þ, (2.91)

where Ω(C) is the solid angle of the contour (Fig. 2.1).

For the case of massless Dirac fermions~R ~k
 �

�~k is the two-dimensional vector

(kx, ky), and the solid angle is 2π, so the Berry phase is γ� = ∓ π, in agreement with

Eq. (2.74).
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As was demonstrated by Kuratsuji and Iida (1985), the Berry phase enters the
semiclassical quantization condition. Their approach was based on the path-
integral formalism (Schulman, 1981). Here we will present in the simplest way
just a general idea of the derivation. Instead of~k tð Þ we will consider a general set of
slowly varying with time (adiabatic) variables~x tð Þ.

Let us consider a periodic process with xi(τ) = xi(0). We are interested in
calculating the evolution operator

K̂ τð Þ ¼ T̂ exp � i

ℏ

ðτ
0

dtĤ xi tð Þ½ 	
8<:

9=;, (2.92)

where Ĥ is the Hamiltonian dependent on ~x tð Þ and T̂ is the time-
ordering operator. To calculate the expression (2.92) via a path integral, one has
to discretize the time interval, tn = nε, where n = 0, 1, . . ., N � 1 and ε = τ/N
(N ! ∞):

K̂ τð Þ ¼ Tr exp � iε
h
Ĥ t0ð Þ

� �
exp � iε

h
Ĥ t1ð Þ

� �
. . . exp � iε

h
Ĥ tN�1ð Þ

� �� �
: (2.93)

In the adiabatic approximation, the evolution involves only the transitions between
the same states of the Hamiltonian:

K̂ τð Þ ¼
X
n

n t0ð Þh j exp � iε
ℏ
Ĥ t0ð Þ

� �
n t1ð Þj i n t1ð Þh j exp � iε

ℏ
Ĥ t1ð Þ

� �
n t2ð Þj i

. . . n tN�1ð Þh j exp � iε
ℏ
Ĥ tN�1ð Þ

� �
n tð Þj i:

(2.94)

Fig. 2.1 The derivation of Berry’s phase (Eq. (2.90)).
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At ε ! 0, the overlap integral

n tð Þjn t þ εð Þh i � n tð Þjn tð Þh i þ ε
d~x

dt
n tð Þj~∇~xn tð Þ
D E

¼ 1þ ε
d~x

dt
n tð Þj~∇~x n tð Þ
D E

� exp
εd~x
dt

n tð Þj~∇~x n tð Þ
D E� � (2.95)

and each term in hnj. . .jni in Eq. (2.94), apart from the standard dynamical
contribution, has an additional phase factor

YN�1

n¼0

n tnð Þjn tnþ1ð Þh i ¼ exp
ðτ
0

dt
d~x

dt
nj~∇~xn
D E24 35 ¼ exp iγn Cð Þ½ 	 (2.96)

(cf. Eq. (2.81)), which leads to the change of the effective action of the system
S ! S + ℏγ. On repeating a standard derivation of the semiclassical quantization
condition, one can see that nþ 1

2 is replaced by nþ 1
2 � γ= 2πð Þ. In particular, for

Bloch electrons in a magnetic field, instead of Eq. (2.70), one has

S Enð Þ ¼ 2π jej B
ℏc

nþ 1
2
� γ
2π

	 

(2.97)

(Mikitik & Sharlai, 1999). For γ = π one has the quantization condition (2.73).
Again, we see that anomalous quantization of Landau levels for the case of

graphene is related to the nontrivial topological properties of a system with a
conical point in its energy spectrum.

This derivation is, however, too schematic; whereas it gives the correct result for
the case of massless Dirac fermions, under the condition (2.91), for the massive case,
one needs to be more careful. The detailed analysis (Fuchs et al., 2010) shows that in
this case, what enters the semiclassical condition is not the full Berry phase (2.90) but
only its “topological part” related to the “winding number” (number of rotations of the
pseudospin vector under the cycle), and one should still put γ = π into Eq. (2.97).

2.5 Landau levels in bilayer graphene

Consider now the case of bilayer graphene (McCann & Fal’ko, 2006; Novoselov
et al., 2006; McCann, Abergel, & Fal’ko, 2007; Fal’ko, 2008).

Let us start with the simplest Hamiltonian (1.46), which means intermediate
energies

t⊥j j γ3
2

t2
« Ej j« t⊥j j: (2.98)
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At lower energies (cf. Eq. (1.55)) trigonal warping terms in the Hamiltonian (1.53)
become important, and at higher energies all four bands (1.44) become relevant.
For realistic parameters, this means energies of the order of tens of meV. Later we
will consider a more general case.

On combining Eq. (1.46) with Eq. (2.20) and (2.22) we find the Hamiltonian for
the case of a uniform magnetic field:

Ĥ ¼ ℏω∗
c

0 b̂
2

b̂
þ �2

0

 !
, (2.99)

where

ω∗
c ¼ ej jB

m∗c
(2.100)

is the cyclotron frequency for nonrelativistic electrons with effective mass m*.
Then, instead of Eq. (2.25) for single-layer graphene, one has the Schrödinger
equation

b̂
2
ψ2 ¼ εψ1,

b̂
þ �2

ψ1 ¼ εψ2, (2.101)

where the dimensionless energy ε is introduced now by writing

E ¼ ℏω∗
c ε: (2.102)

Again, for the case of valley K0 one has to exchange ψ1 and ψ2.
First, one can see immediately from Eq. (2.102) that there are zero modes with

ε = 0 and ψ2 = 0, and their number is twice as great as for the case of a single
layer. Indeed, both the states of the harmonic oscillator with n = 0 and those with
n = 1 satisfy the equation b̂

2
ψj i ¼ 0:

b̂ 0j i ¼ 0, b̂
2
1j i ¼ b̂ b̂ 1j i� � ¼ b̂ 0j i ¼ 0: (2.103)

On multiplying the first of the Eq. (2.101) by (b+)2 from the left, one finds

b̂
þ �2

b̂
2
ψ1 ¼ ε2ψ1: (2.104)

Since

b̂
þ �2

b̂
2 ¼ b̂

þ
b̂

 �
b̂
þ
b̂ � 1

 �
(2.105)
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we have immediately the spectrum

En ¼ �ℏω∗
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n n� 1ð Þ

p
(2.106)

with n = 0, 1, 2, . . .
The counting of the degeneracy of Landau levels (2.106) can be done in exactly

the same way as in Section 2.2, and one finds, instead of Eq. (2.51),

gn ¼
Φ
Φ0

, n 
 2, (2.107)

and

g0 ¼
2Φ
Φ0

(2.108)

(the latter follows from the fact that the zero and first levels are degenerate, Eq.
(2.103)).

One can prove that Eq. (2.108) follows from the Atiyah–Singer index theorem
and remains correct if the magnetic field is inhomogeneous (Katsnelson & Pro-
khorova, 2008). This fact is quite simple and follows from the property that the
index of a product of operators equals the sum of their indices. An explicit
construction of zero modes for the Hamiltonian (2.99) that is similar to the
Aharonov�Casher construction for the case of the Dirac equation (see Section
2.3) was done by Kailasvuori (2009).

For n » 1, the spectrum (2.106) is described by the expression

Enj j � ℏω∗
c n� 1

2

	 

, (2.109)

in agreement with the semiclassical quantization condition

S Enð Þ ¼ 2π ej jB
ℏc

n� 1
2

	 

: (2.110)

It follows from the general quantization law (2.97) assuming that the
Berry phase

γ = 2π. (2.111)

This is indeed the case (McCann & Fal’ko, 2006; Novoselov et al., 2006), although
the description in terms of the winding number seems to be more accurate (Mañes,
Guinea, & Vozmediano, 2007; Katsnelson & Prokhorova, 2008; Park & Marzari,
2011). The Hamiltonian (1.46) has the form (2.87) with

Rx;Ry

� � � k2x � k2y ; 2kxky
 �

42 Electron states in a magnetic field

https://www.cambridge.org/core


or

(Rx + iRy) � (kx + iky)
2. (2.112)

It is clear, therefore, that when the vector~k runs over the closed loop the vector ~R
runs over the same loop twice, and the Berry phase should be twice as large as for
the case of a single layer. Actually, the Berry phase and the index are proportional;
they are both related to the winding number of the vector ~R in the Hamiltonian
(Katsnelson & Prokhorova, 2008). For the case of a rhombohedral N-layer system
(1.69), the number of zero modes is equal to NΦ/Φ0 and the Berry phase is γ= Nπ.

2.6 The case of bilayer graphene: trigonal warping effects

Consider now the case of small energies

Ej j � γ23
t⊥j j
t2

: (2.113)

Thus, the effects of trigonal warping should be taken into account, and one has to
proceed with the Hamiltonian (1.53). Instead of the Hamiltonian (2.99) we have for
the case of a uniform magnetic field

Ĥ ¼ ℏω∗
c

0 b̂
2 þ αb̂

þ

b̂
þ �2

þ αb̂ 0

0@ 1A, (2.114)

where

α ¼ 3γ3am
∗

ℏ2

ffiffiffiffiffiffiffiffi
2ℏc
ej jB

s
(2.115)

is a dimensionless parameter characterizing the role of trigonal warping. The
Schrödinger equation (2.101) is modified to the form

b̂
2 þ αb̂

þ �
ψ2 ¼ εψ1,

b̂
þ �2

þ αb̂

	 

ψ1 ¼ εψ2:

(2.116)

First, let us consider zero modes with ε= 0 and ψ1 = 0. Taking into account that in
dimensionless coordinates, (2.40) and (2.41),

b̂ ¼ �i
∂
∂X

þ X

2

	 

,

b̂
þ ¼ �i

∂
∂X

� X

2

	 

, (2.117)
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the first of the Eq. (2.116) for ε = 0 reads

d2ψ2

dX2 þ X þ iαð Þ dψ2

dX
þ 1

2
þ X2

4
� iXα

2

	 

ψ2 ¼ 0: (2.118)

The substitution

ψ2 Xð Þ ¼ exp �X2

4
� iα

2
X

	 

φ Xð Þ (2.119)

eliminates the first derivative ∂/∂X in Eq. (2.118), so

∂2

∂X2 φþ α2

4
� iXα

	 

φ ¼ 0: (2.120)

At α = 0 there are two independent solutions of Eq. (2.120), φ0 = 1 and φ1 = X.
For finite α there are still two solutions, and they can be expressed in terms of
Bessel functions of order � 1

3 (Whittaker & Watson, 1927). Anyway, both of the
solutions (2.119) vanish at X ! �∞ due to the factor exp(�X2/4) and, therefore,
the number of zero modes remains the same at α 6¼ 0. Obviously, the second of the
Eq. (2.116) has no normalizable solutions at ε= 0. These results are not surprising;
they are related to a general statement that index(H) is determined solely by the
terms with the highest order of derivatives (Katsnelson & Prokhorova, 2008).

To consider the effects of the trigonal warping on other Landau levels, one has

to square the Hamiltonian (2.114) or just act by the operator b̂
þ �2 þ αb̂

	 

from

the left on the first equation of Eq. (2.116). The result is

L̂ψ2 ¼ ε2ψ2, (2.121)

where

L̂ ¼ b̂
þ
b̂

 �2
� 1� α2
� �

b̂
þ
b̂ þ α b̂

3 þ b̂
þ �3	 


:

Using a standard perturbation theory in α one can find a strange result: only the
level with n = 2 has corrections of the order of α2

ε2
2 ¼ 2� α2

3
, (2.122)

whereas the leading corrections to the levels with n > 2 are proportional to α4 and
positive.

To qualitatively understand the opposite case of a very large α (or very
weak magnetic fields), it is convenient to use the semiclassical approximation
(Dresselhaus, 1974). In this regime, one can consider energy levels belonging
independently to each of four cones of the spectrum (see Fig. 1.9). The energy
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level with n = 2 tends to zero at α ! ∞, since one more zero mode should appear
for three independent (in this limit) side cones: the zero mode corresponding to
the central cone is associated (for a given direction of the magnetic field) with
another valley.

For intermediate α, Eq. (2.116) can be solved numerically (McCann & Fal’ko,
2006; Mayorov et al., 2011a). The results are shown in Fig. 2.2.

Finally, we analyze the effects of trigonal warping on the Berry phase. One can
demonstrate by a straightforward calculation (Mikitik & Sharlai, 2008) that each of
the three side conical points contributes π to the Berry phase and the central one
contributes �π, so the total Berry phase is 3π � π = 2π, in agreement with Eq.
(2.111). One can also straightforwardly see that the winding number of the
transformation

(Rx + iRy) � (kx + iky)
2 + α(kx � iky) (2.123)

is the same (two) as for Eq. (2.112).
The distribution of the Berry “vector potential” ~Ωð~kÞ ¼ �i nh j~∇~k nj i, demonstrat-

ing singularities at four conical points is shown in Fig. 2.3.

Fig. 2.2 The energy spectrum for bilayer graphene in a magnetic field, with the
trigonal warping effects taken into account. Here ℏω∗

c is the cyclotron quantum
and EVHS is the energy of the Van Hove singularity at the merging of four
conical legs.
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2.7 A unified description of single-layer and bilayer graphene

Consider now the case of magnetic fields large enough that

jEj 
 jt⊥j. (2.124)

At these energies, a parabolic dispersion transforms to a conical one. Neglecting the
trigonal warping and using Eq. (2.20) and (1.43), one has the 4 � 4 Hamiltonian

Ĥ ¼
0 vπ̂þ t⊥ 0

vπ̂� 0 0 0
t⊥ 0 0 vπ̂�
0 0 vπ̂þ 0

0BB@
1CCA: (2.125)

Using the operator (2.22) and dimensionless units (2.26) and introducing the notation

t⊥ ¼ Γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ej jhBv2

c

s
, (2.126)

one can represent the Schrödinger equation with the Hamiltonian (2.125) as

b̂ ψ2 þ Γψ3 ¼ εψ1,

b̂
þ
ψ1 ¼ εψ2,

Γψ1 þ b̂
þ
ψ4 ¼ εψ3,

b̂ψ3 ¼ εψ4:

ð2:127Þ

Fig. 2.3 The distribution of the Berry vector potential in bilayer graphene, with
the trigonal warping effects taken into account.
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On excluding ψ4 and ψ2 from Eq. (2.127), one obtains

1
ε
b̂ b̂

þ
ψ1 þ Γψ3 ¼ εψ1,

Γψ1 þ
1
ε
b̂
þ
b̂ψ3 ¼ εψ3: (2.128)

One can see that ψi are eigenfunctions of the operator n̂ ¼ b̂
þ
b̂ whose eigenvalues

are n = 0, 1, 2, . . . On replacing b̂
þ
b̂ by n and b̂b̂

þ
by n + 1 in Eq. (2.128) we find

the eigenenergies εn as

ε2n ¼
Γ2 þ 2nþ 1

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ2 þ 2nþ 1

2

	 
2

� n nþ 1ð Þ
s

: (2.129)

This formula (Pereira, Peeters, & Vasilopoulos, 2007) gives a unified description of
Landau levels for the cases of both single-layer and bilayer graphene (without trigonal
warping effects). On putting Γ= 0 we come to the case of two independent layers, with

ε2n ¼ nþ 1
2
� 1
2
, (2.130)

which exactly coincides with Eq. (2.34). For large Γ (the case of relatively low
energies, Eq. (2.98)) we have

ε2n1 ¼
n nþ 1ð Þ

Γ2 (2.131)

and

ε2n2 ¼ Γ2 þ 2nþ 1: (2.132)

Eq. (2.131) gives the Landau levels for low-lying bands in the parabolic approxi-
mation (1.46). The energies

εn2 � � Γþ 1
Γ

nþ 1
2

	 
� �
(2.133)

following from Eq. (2.132) are nothing other than the Landau levels for two-
gapped bands in the parabolic approximation.

The condition Γ � 1 for which nonparabolic band effects in the Landau-level
spectrum of bilayer graphene become very important, corresponds to magnetic
fields of the order of

Bc � 2
9

t⊥
t

 �2 ℏc
ej ja2 � 70T,

which is too high to be attained in present-day experiments. However, even in
fields of 20�30 T the effects of nonparabolicity should be quite noticeable.
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2.8 Magnetic oscillations in single-layer graphene

Magneto-oscillation effects in quantized magnetic fields make possible one of
the most efficient ways to probe the electron-energy spectra of metals and
semiconductors (Schoenberg, 1984). The basic idea of the oscillations is quite
simple: since most of the properties are dependent on what happens in the close
vicinity of the Fermi level, whenever, on changing the magnetic induction or
chemical potential μ, one of the Landau levels coincides with the Fermi energy,
the properties should have some anomalies that repeat periodically as a function
of the inverse magnetic field (the latter follows from the semiclassical quantiza-
tion condition (2.97) Δn � (1/B)ΔE). These anomalies are smeared by tempera-
ture and disorder; so, to observe the oscillations, one needs, generally speaking,
low temperatures and clean enough samples. It was the observation of magneto-
oscillation effects (Novoselov et al., 2005a; Zhang et al., 2005) that demon-
strated the massless Dirac behavior of charge carriers in graphene. Experi-
mentally, oscillations of the conductivity (the Shubnikov�de Haas effect)
were studied first; it is more difficult (but quite possible, see later in this
section) to observe the oscillations of thermodynamic properties, e.g., magnet-
ization (the de Haas–van Alphen effect) in a single layer of atoms. However,
physics of these two effects is just the same, but theoretical treatment of
thermodynamic properties can be done in a more clear and rigorous way. Here
we will consider, following Sharapov, Gusynin, and Beck (2004), de Haas–van
Alphen magnetic oscillations for two-dimensional Dirac fermions, i.e., for
single-layer graphene.

The standard expression for the thermodynamic potential of the grand canonical
ensemble for noninteracting fermions with energies Eλ is (Landau & Lifshitz,
1980)

Ω ¼ �T
X
λ

1þ exp
μ� Eλ

T

	 
� �
¼ �T

ð∞
�∞

dεN εð Þ ln 1þ exp
μ� ε

T

 �h i
,

(2.134)

where

N εð Þ ¼
X
λ

δ ε� Eλð Þ (2.135)

is the density of states. However, one should be careful at this point, since
statistical mechanics assumes that the energy spectrum is bounded from below,
which is not the case for the Dirac equation. One can either use a complete tight-
binding Hamiltonian, where the spectrum is bound, and carefully analyze the limit
of the continuum model, or just write the answer from considerations of relativistic
invariance (Cangemi & Dunne, 1996). The correct relativistic answer is
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Ω ¼ �T

ð∞
�∞

dεN εð Þ ln 2 cosh
ε� μ
2T

 �h i
, (2.136)

which differs from Eq. (2.134) by the term

ΔΩ ¼ 1
2

ð∞
�∞

dεN εð Þ ε� μð Þ: (2.137)

This term is, in general, infinite and temperature-independent. If the spectrum is
symmetric, namely N(�ε) = N(ε) (which is necessary for relativistic invariant
theories), and the chemical potential is chosen in such a way that μ= 0 for the half-
filled case (all hole states are occupied and all electron states are empty), then the
correction (2.137) vanishes in that situation.

The expression (2.136) is still not well defined, but its derivatives with respect to
μ, temperature, and magnetic field are convergent. For example, the compressibil-
ity is proportional to the “thermodynamic density of states”

D μð Þ ¼ ∂n
∂μ

¼ � ∂2Ω
∂μ2

¼
ð∞
�∞

dεN εð Þ � ∂f εð Þ
∂ε

	 

, (2.138)

where f(ε) is the Fermi function

� ∂f εð Þ
∂ε

¼ 1

4T cosh 2
ε� μ
2T

 � , (2.139)

and this expression is certainly well defined, with the difference between Eq.
(2.134) and (2.136) becoming irrelevant. The quantity (2.138) is directly measur-
able as the quantum capacitance (John, Castro, & Pulfrey, 2004); for the case of
graphene, see Ponomarenko et al. (2010), Yu et al. (2013).

At zero temperature, the expression (2.138) is just a sum of delta-functional
contributions:

DT¼0 μð Þ ¼ 4
Φ
Φ0

δ Eð Þ þ
X∞
v¼1

δ E � ℏωc
ffiffiffi
v

p� �þ δ E þ ℏωc
ffiffiffi
v

p� �" #
(2.140)

(see Eq. (2.30), (2.31), and (2.51); we have taken into account a factor of 4 due to
the valley and spin degeneracy). Using the identities

δ(E � x) + δ(E + x) = 2jEjδ(E2 � x2), (2.141)

δ Eð Þ ¼ dΘ Eð Þ
dE

(2.142)
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(Θ(x > 0) = 1, Θ(x < 0) = 0 is the step function) and

X∞
n¼1

Θ a� xnð Þ ¼ Θ að Þ � 1
2
þ a

x
þ
X∞
k¼1

sin 2πk
a

x

 �
πk

24 35, (2.143)

one can find the closed expression

DT¼0 μð Þ ¼ 4
Φ
Φ0

sgn μð Þ d

dμ
μ2

ε2c
þ 1
π
tan �1 cot

2πμ2

ε2c

	 
� �� �
, (2.144)

where εc = ℏωc (Sharapov, Gusynin, & Beck, 2004). Eq. (2.143) is the partial case
of the Poisson summation formulaX∞

n¼�∞

δ x� nð Þ ¼
X∞
n¼�∞

exp 2πikxð Þ (2.145)

and, thus, X∞
n¼1

f nð Þ ¼
X∞
k¼�∞

ð∞
α

dx f xð Þ exp 2πikxð Þ (2.146)

(0 < a < 1) for any f(x), and the identityX∞
n¼1

sin πnxð Þ
n

¼ tan �1 sin πxð Þ
1� cos πxð Þ
	 


(2.147)

is used when deriving (2.144).
To consider the case of finite temperatures, it is convenient to use the expansion

of �∂f(E)/∂E into the Fourier integral:

� ∂f Eð Þ
∂E

¼
ð∞
�∞

dt

2π
exp i μ� Eð Þt½ 	R tð Þ, (2.148)

where

R tð Þ ¼ πTt
sinh πTtð Þ½ 	 : (2.149)

On substituting Eq. (2.148), together with Eq. (2.141) and (2.142), into the
definition (2.138) one finds

D μð Þ ¼ 4
Φ
πΦ0

ð ð
dEdt R tð Þ exp i μ� Eð Þt½ 	 Ej j 1

ε2c
þ 2
ε2c

X∞
k¼1

cos 2πk
E2

ε2c

	 
" #
:

(2.150)
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The sum over k describes oscillations of the thermodynamic density of states. To
proceed further, one can use the saddle-point method (or “the method of steepest
descent”) for integrals of strongly oscillating functions (Fedoryuk, 1977). The
procedure is as follows. If we have a multidimensional integral

I(λ) =
Ð
dnx f(x) exp (iλΦ(x)) (2.151)

with a large parameter λ, then the main contribution follows from the stationary
point x0 of the phase Φ(x), where

∂Φ
∂xk

¼ 0, (2.152)

since the oscillations are weakest in the vicinity of these points. On expanding Φ(x)
near x0,

Φ xð Þ � Φ x0ð Þ þ 1
2

X
kl

∂2Φ
∂xk∂xl

	 

0

xk � xk0ð Þ xl � xl0ð Þ, (2.153)

one finds

I λð Þ � f x0ð Þ 2πð Þn=2Q
k �iμkð Þ1=2

exp iλΦ x0ð Þ½ 	, (2.154)

where μk are eigenvalues of the matrix

∂2Φ
∂xk∂xl

	 

:

If there is more than one stationary point, their contributions are just summed.
The oscillating part of the expression (2.150) can be estimated by this method,

choosing

Φ E; tð Þ ¼ μ� Eð Þt � 2πkE2

ε2c
, (2.155)

which gives us immediately

E0 ¼ μ,

t0 ¼ ∓
4πkμ
ε2c

:
(2.156)

Finally, one obtains

Dosc μð Þ � 8A μj j
πℏ2v2

X∞
k¼1

zk

sinh zkð Þ cos
πkcμ2

ℏ ej jBv2
	 


, (2.157)
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where

z ¼ 2π2Tc μj j
ℏ ej jBv2 (2.158)

and A is the sample area. A formal condition of applicability of the saddle-point
method is that the resulting oscillations are fast enough; that is, the argument of the
cosine in Eq. (2.157) is much larger than 1.

Disorder will broaden Landau levels and smear the delta-functional peaks in the
density of states, suppressing the oscillations. This effect, too, can be taken into
account (Sharapov, Gusynin, & Beck, 2004; Ponomarenko et al., 2010).

A general semiclassical consideration for an arbitrary energy dispersion
law (the Lifshitz�Kosevich theory; see Lifshitz, Azbel, & Kaganov [1973]
and Abrikosov [1988]) leads to a similar temperature dependence of the oscilla-
tions, with

z ¼ 2π2Tcm∗

ℏ ej jB , (2.159)

where

m∗ ¼ 1
2π

∂S Eð Þ
∂E

����
E¼μ

(2.160)

is the effective cyclotron mass. For the massless Dirac fermions

m∗ ¼ mj j
v2

, (2.161)

which is nothing other than the famous Einstein relation E = mc2 with a
replacement of c by v. For two-dimensional systems S ¼ πk2F / n, where n is
the charge-carrier concentration, and, thus, for massless Dirac fermions one can
expect

m∗ � ffiffiffi
n

p
: (2.162)

The experimental observation of this dependence (Novoselov et al., 2005a; Zhang
et al., 2005) was the first demonstration of the reality of massless Dirac fermions in
graphene (see Fig. 2.4). This also gives us a value v � 106ms�1 � c/300. Note that
what was measured experimentally in these works was the conductivity, not D(μ),
but the temperature dependence should be the same. Oscillations of D(μ) were
measured later via quantum capacitance (Ponomarenko et al., 2010). They are well
pronounced even at room temperature (see Fig. 2.5); their broadening is deter-
mined by disorder effects.
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2.9 The anomalous quantum Hall effect in single-layer and
bilayer graphene

The anomalous character of the quantum Hall effect in single-layer (Novoselov
et al., 2005a; Zhang et al., 2005) and bilayer (Novoselov et al., 2006) graphene is
probably the most striking demonstration of the unusual nature of the charge
carriers therein. We do not need to present a real introduction to the theory of
the quantum Hall effect in general (see Prange & Girvin, 1987). However, it would

Fig. 2.4 The concentration dependence of the cyclotron mass for charge carriers in
single-layer graphene; m0 is the free-electron mass.
(Reproduced with permission from Novoselov et al., 2005a.)

Fig. 2.5 Magnetic oscillations of the quantum capacitance (thermodynamic dens-
ity of states) as a function of the gate voltage (which is proportional to the charge
carrier concentration), for the magnetic field B = 16 T and various temperatures.
(Reproduced with permission from Ponomarenko et al., 2010.)
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seem useful to provide some basic information, to emphasise the relation to the
Berry phase and the existence of topologically protected zero modes.

If we consider the motion of electrons in the crossed magnetic ~B
� �

and electric
~E
� �

fields, the Lorentz force acting on an electron moving with a velocity~v is

~F ¼ e ~E þ 1
c
~v�~B

	 

: (2.163)

In the crossed fields ~B jj Ozand~E jj Oy, this will result in a steady drift of the
electrons along the x-axis with a velocity of

vx ¼ c
E

B
: (2.164)

This effect results in the appearance of an off-diagonal (Hall) conductivity propor-
tional to the total electron concentration and inversely proportional to the magnetic
field:

σxy ¼ nec

B
: (2.165)

The standard theory of the quantum Hall effect assumes that all the states between
Landau levels are localized due to disorder (Anderson localization), see Fig. 2.6.
This means that, if the Fermi energy lies between the Landau levels, then only the
states belonging to the occupied Landau levels contribute to transport and the Hall
conductivity is merely proportional to the number of occupied levels N:

σxy ¼ Ngsgv
Φ
Φ0

1
A

ec

B
¼ gsgvN

e2

h
, (2.166)

where gs and gv are the spin and valley degeneracy factors (for graphene gs = gv = 2)
and we take into account Eq. (2.51) for the number of states per Landau level. Thus,
the Hall conductivity should have plateaux as a function of the electron concen-
tration: it remains constant and integer (in the units of e2/h per valley per spin)
when we pass from one occupied Landau level to the next one.

Fig. 2.6 A sketch of the density of states under quantum Hall effect conditions in
graphene. The zero-energy Landau level separates electron and hole states and is
equally shared by electrons and holes. Regions of localized and extended states
are shown in gray and white, respectively.
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However, in the case of graphene the zero-energy Landau level is equally shared
by electrons and holes. This means that when counting only electrons (μ > 0) or
only holes (μ < 0) it contains half as many states as do all other Landau levels.
Thus, instead of Eq. (2.166), one has (Schakel, 1991; Gusynin & Sharapov, 2005;
Novoselov et al., 2005a; Zhang et al., 2005; Castro Neto, Guinea, & Peres, 2006)

σxy ¼ gsgv N þ 1
2

	 

e2

h
: (2.167)

This is exactly the behavior observed experimentally (the half-integer quantum
Hall effect). For the case of bilayer graphene, the zero-energy level contains twice
as many states as for single-layer graphene, and the quantum Hall effect is integer,
but, in contrast with the case of a conventional electron gas, there is no plateau at
zero Fermi energy (Novoselov et al., 2006). These two cases are shown in Fig. 2.7.

Fig. 2.7 The resistivity and Hall conductivity as functions of the charge-carrier
concentration in single-layer (top) and bilayer (bottom) graphene.
(Reproduced with permission from Novoselov et al., 2005a [top] and Novoselov, 2006
[bottom].)
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Thus, the anomalous quantum Hall effect in graphene is related to the existence of
zero-energy modes and, thus, to the Atiyah–Singer theorem.

Further understanding of geometrical and topological aspects of the anomalies
can be attained within an approach developed by Thouless et al. (1982); see also
Kohmoto (1985, 1989), Hatsugai (1997). The main observation is that the Hall
conductivity can be represented in a form very similar to that for the Berry phase.
Actually, the work by Thouless et al. (1982) was done before that by Berry (1984);
the relation under discussion has been emphasized by Simon (1983).

Let us consider, again, a general two-dimensional electron system in a periodic
potential plus uniform magnetic field (Section 2.1). We will prove later (Section
13.6) that, if the flux per elementary cell is rational (in units of the flux quantum),
the eigenstates of this problem can be rigorously characterized by the wave vector
~k and considered as Bloch states in some supercell (for a formal discussion, see
Kohmoto, 1985). We will label them as λj i ¼ n~k

��� E
, where n is the band index.

We will use a linear response theory leading to a so-called Kubo formula (Kubo,
1957). The Hall effect was first considered in this way by Kubo, Hasegawa, and
Hashitsume (1959); for a detailed derivation and discussions, see Ishihara (1971)
and Zubarev (1974). For the single-electron case it can be essentially simplified.

Let A be a one-electron operator that can be represented in a secondary
quantized form as

Â ¼
X
12

A12ĉ
þ
1 ĉ2 (2.168)

(here the numerical indices will label electron states in some basis; bcþi and ĉi are
fermionic creation and annihilation operators). Thus, its average over an arbitrary
state is

Â
� � ¼X

12

A12 ĉþ1 ĉ2
� � ¼ Tr Âρ̂

� �
, (2.169)

where

ρ21 ¼ ĉþ1 ĉ2
� �

(2.170)

is the single-electron density matrix. For noninteracting electrons, the Hamiltonian
of the system has the same form:

Ĥ ¼
X
12

H12ĉ
þ
1 ĉ2, (2.171)

and, using the commutation relation

ĉþ1 ĉ2; ĉ
þ
3 ĉ4

� � ¼ δ23ĉ
þ
1 ĉ4 � δ14ĉ

þ
3 ĉ2, (2.172)
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one can prove that the density matrix ρ̂ satisfies the communication relations

iℏ
∂ρ̂
∂t

¼ Ĥ ; ρ̂
� �

, (2.173)

where the matrix multiplication is performed in the single-particle space, e.g.,

Ĥ ρ̂
� �

12 ¼
X
3

H13ρ32: (2.174)

Let Ĥ tð Þ ¼ Ĥ0 þ V̂ tð Þ, where Ĥ0 is diagonal (Ei are its eigenenergies) and V̂ tð Þ is
a small perturbation depending on time as exp (�iωt + δt)jδ!+0. Then, the
correction to the density matrix, ρ̂0 exp (�iωt + δt) is given by the expression
(see Vonsovsky & Katsnelson, 1989)

ρ012 ¼
f 1 � f 2

E2 � E1 þ ℏ ωþ iδð ÞV12, (2.175)

where fi = f(Ei) is the Fermi function and the perturbation of an observable A is
δA exp (�iωt + δt), where

δA ¼ Tr Âρ̂0
� � ¼X

12

f 1 � f 2
E2 � E1 þ ℏ ωþ iδð ÞV12A21: (2.176)

To calculate the Hall conductivity one has to consider a perturbation

V ¼ �e~r~E, (2.177)

where ~E is the electric field, the coordinate operator is

~r ¼ i~∇~k (2.178)

(see Vonsovsky & Katsnelson, 1989), and the current operator is

~̂j ¼ e
d~̂r

dt
¼ ie

ℏ
Ĥ ;~̂r
h i

: (2.179)

Using the identity (2.84) and restricting ourselves to the static case only (ω= η= 0),
one finds, for the case T = 0

σH ¼ � 2e2

Aℏ
Im
ð

d~k

2πð Þ2
X
Em<μ

X
En>μ

mh j∂H=∂kx nj i nh j∂H=∂ky mj i
En � Emð Þ2 , (2.180)

where the integral is taken over the Brillouin zone of the magnetic supercell;
we remind that A is the sample area. This is exactly the same expression as in
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Eq. (2.86), and, thus, as in Eq. (2.82). Using Stokes’ theorem one can represent
Eq. (2.180) as a contour integral over the boundary of the Brillouin zone:

σH ¼ � e2

2πh
Im
Xocc
n

þ
d~k nh j~∇~k nj i, (2.181)

where the sum is taken over all occupied bands. The contour integral gives us the
change of the phase of the state jni when rotating by 2π in~k-space. If all the states
are topologically trivial (i.e., there is no Berry phase), all these changes should be
integer (in the units of 2π), and, thus, Eq. (2.181) gives us the quantization of the
Hall conductivity (2.166). In the case of graphene, the Berry phase π should be
added, which changes the quantization condition to Eq. (2.167). Of course, this is
just an explanation and not derivation: One also needs to prove that Berry phase π
enters the integral in Eq.(2.181) an odd number of times; this fact was confirmed
by straightforward calculations by Watanabe, Hatsugai, and Aoki (2010).

The real situation is more complicated since the consideration by Thouless et al.
(1982) does not take into account disorder effects, in particular, Anderson
localization, which are actually crucial for a proper understanding of the quantum
Hall effect. A more complete mathematical theory requires the use of noncommu-
tative geometry (Bellissard, van Elst, & Schulz-Baldes, 1994) and is too compli-
cated to review here. Just to make this statement not completely esoteric one has to
refer to the properties of the operators (2.15) describing translations in the presence
of the magnetic field. Generally speaking, they do not commute (see, e.g., Eq.
(2.18)), and noncommutative translations generate noncommutative geometry.

Keeping in mind the case of graphene, it was demonstrated by Ostrovsky,
Gornyi, and Mirlin (2008) that, actually, the quantum Hall effect can be either
anomalous (half-integer) or normal (integer) depending on the type of disorder.
Short-range scatterers induce a strong mixture of the states from different valleys
and restore the ordinary (integer) quantum Hall effect. Of course, this is beyond the
“Dirac” physics, which is valid assuming that the valleys are essentially
independent.

The cyclotron quantum (2.31) in graphene is much higher than in most semi-
conductors. The energy gap between the Landau levels with n = 0 and n = 1 is
ΔE� 2,800K for the largest currently available permanent magnetic fields, B= 45
T (ΔE � 1,800 K for B = 20 T). This makes graphene a unique system exhibiting
the quantum Hall effect at room temperature (Novoselov et al., 2007).

Here we discuss only the background to quantum Hall physics in graphene. The
real situation is much more complicated, both theoretically (involving the role of
disorder and electron–electron interactions) and experimentally (Zhang et al.,
2006; Giesbers et al., 2007; Jiang et al., 2007b; Checkelsky, Li, & Ong, 2008;
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Giesbers et al., 2009). In particular, at high enough magnetic fields the spin and,
probably, valley degeneracies are destroyed and additional plateaux appear, in
addition to the fact that the gap opens at n = 0. The nature of these phenomena is
still controversial. Last, but not least, the fractional quantum Hall effect has been
observed for freely suspended graphene samples (Bolotin et al., 2009; Du et al.,
2009). This is an essentially many-body phenomenon (Prange & Girvin, 1987).
We will come back to the physics of the quantum Hall effect in graphene many
times in this book.

2.10 Effects of smooth disorder and an external electric field on
the Landau levels

In reality, all Landau levels are broadened due to disorder. If the latter can be
described by a scalar potential V(x, y) that is smooth and weak enough, the result
will just be a modulation of the Landau levels by this potential (Prange & Girvin,
1987)

Ev(x, y) � Ev + V(x, y). (2.182)

The weakness means that

jV(x, y)j « ℏωc, (2.183)

and the smoothness means that a typical spatial scale of V(x, y) is large in
comparison with the magnetic length (2.1). The calculations for the case of
graphene are especially simple and transparent if one assumes a one-dimensional
modulation, such that V is dependent only on the y-coordinate (Katsnelson &
Novoselov, 2007). Thus, instead of Eq. (2.37) one has

∂
∂x

� x

l2B
� i

∂
∂y

	 

ψ2 ¼

iE

ℏv
ψ1 �

iV yð Þ
ℏv

ψ1,

∂
∂x

þ x

l2B
þ i

∂
∂y

	 

ψ1 ¼

iE

ℏv
ψ2 �

iV yð Þ
ℏv

ψ2:

(2.184)

We can try the solutions of Eq. (2.184) as an expansion in the basis of the solutions
(2.45) of the unperturbed problem (V = 0):

ψi x; yð Þ ¼
X∞
n¼0

ð∞
�∞

dky
2π

c ið Þ
n ky
� �

exp ikyy
� �

AnDn

ffiffiffi
2

p
x� l2Bky
� �

lB

 !
, (2.185)

where An is the normalization factor (the basis functions are supposed to be
normalized with respect to unity).
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After straightforward calculations, one obtains a set of equations for the expan-
sion coefficients c ið Þ

n ky
� �

:

�
ffiffiffi
2

p

lB
1�δn,0ð Þcn 2ð Þ ky

� �¼ iE

ℏv
cn

1ð Þ ky
� �� i

ℏv

X∞
n0¼0

ð∞
�∞

dqy
2π

v ky�qy

 �
cn0 1ð Þ qy

 �
n,kyjn0,qy
D E

ffiffiffi
2

p

lB
1þnð Þcn 1ð Þ ky

� �¼ iE

ℏv
cn

2ð Þ ky
� �� i

ℏv

X∞
n0¼0

ð∞
�∞

dqy
2π

v ky�qy
 �

cn0 2ð Þ qy
 �

n,kyjn0,qy
D E

(2.186)

where v(q) is a Fourier component of V(y)

n, kyjn0, qy
D E

¼ AnAn0

ð∞
�∞

dxDn

ffiffiffi
2

p
x� lB

2ky
� �

lB

 !
Dn0

ffiffiffi
2

p
x� lB

2qy
 �

lB

0@ 1A:

(2.187)

If the potential is smooth and weak enough, one can use the adiabatic approxima-
tion and neglect the terms with n0 6¼ n in Eq. (2.186) describing transitions between
the Landau levels. Then,

� 1� δn, 0ð Þ~cn 2ð Þ ky
� � ¼ iεcn

1ð Þ ky
� �� i

ð∞
�∞

dqy
2π

v ky � qy
 �

n, kyjn, qy
D E

cn
1ð Þ qy
 �

ncn
1ð Þ ky
� � ¼ iε~cn

2ð Þ ky
� �� i

ð∞
�∞

dqy
2π

v ky � qy
 �

n, kyjn, qy
D E

~cn
2ð Þ qy
 �

, (2.188)

where ~cn
2ð Þ ¼ c 2ð Þ

n�1, and we use a dimensionless energy (2.26). For n = 0, the
components 1 and 2 are decoupled and we have

εc ky
� � ¼ ð∞

�∞

dqy
2π

v ky � qy
 �

exp � l2B
4

ky � qy
 �2� �

c qy
 �

, (2.189)

where c is either c 1ð Þ
0 or ~c 2ð Þ

0 and we calculate explicitly h0, kyj 0, qyi.
Coming back to real space,

c ky
� � ¼ ð∞

�∞

dy exp �ikyy
� �

c ky
� �

, (2.190)
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one can transform Eq. (2.189) to the form

ε� ~V yð Þ� �
c yð Þ ¼ 0, (2.191)

where

~V yð Þ¼ 1
ℏωc

ð∞
�∞

dqy
2π

v qy
 �

exp �lB
2qy

2

4
þiqyy

" #
¼ 1
ℏωc

ð∞
�∞

dy0V y0ð Þ 1ffiffiffi
π

p
lB
exp � y�y0ð Þ2

lB
2

" #
(2.192)

is a convolution of the potential V(y) with the ground-state probability density of a
harmonic oscillator. If the potential is smooth in comparison with lB, then
~V yð Þ � V yð Þ:
Eq. (2.191) has solutions

c yð Þ ¼ δ y� Yð Þ,
ε ¼ V Yð Þ, (2.193)

which means that the zero-energy Landau level broadens via just a modulation by the
scalar potential. However, a random vector potential does not broaden the zero-energy
level, due to the index theorem (Section 2.3). All other Landau levels are broadened
both by scalar and by vector potentials. For a scalar potential only, one has in general

En Yð Þ � ℏvF
lB

ffiffiffiffiffi
2n

p
¼ V Yð Þ: (2.194)

There is some experimental evidence that the zero-energy Landau levels in gra-
phene are narrower than the other ones (Giesbers et al., 2007). The most natural
explanation is that there exist random pseudomagnetic fields in graphene due to
ripples (corrugations; Morozov et al., 2006). The origin of these pseudomagnetic
fields will be discussed later, in Chapter 10.

For the case of a constant electric field E

V(x) = �eEx, (2.195)

the problem has a beautiful, exact solution that is based on relativistic invariance of
the Dirac equation (Lukose, Shankar, & Baskaran, 2007). The Lorentz
transformation

y0 ¼ y� βvtffiffiffiffiffiffiffiffiffiffiffiffiffi
1� β2

p , t0 ¼ t � βy=vffiffiffiffiffiffiffiffiffiffiffiffiffi
1� β2

p , (2.196)

corresponding to the coordinate system moving with the velocity βv, with β < 1
(we remind the reader that for our Dirac equation v plays the role of the velocity of
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light), changes the electric field ~EkOy and magnetic field ~BkOz according to
(Jackson, 1962)

E0 ¼
E � β

vB

cffiffiffiffiffiffiffiffiffiffiffiffiffi
1� β2

p ,
vB0

c
¼

vB

c
� βEffiffiffiffiffiffiffiffiffiffiffiffiffi
1� β2

p : (2.197)

This means that, if the electric field is weak enough

E <
v

c
B, (2.198)

it can be excluded by the Lorentz transformation with

β∗ ¼ cE

vB
: (2.199)

In the opposite case

E >
v

c
B,

one can, vice versa, exclude the magnetic field, see Shytov et al. (2009).
Thus, the effective magnetic field is

Beff ¼ B
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� β∗2

q
: (2.200)

As a result, the energy spectrum of the problem is (Lukose, Shankar, & Baskaran,
2007)

En ky
� � ¼ �ℏωc

ffiffiffi
n

p
1� β∗2
� �3=4 � ℏvβ∗ky: (2.201)

The distances between Landau levels are decreased by the factor (1 � β∗2)3/4. The

last term in Eq. (2.201) (as well as the additional factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� β∗2

p
in the first term)

is nothing other than the result of Lorentz transformation of energy and momen-
tum. It transforms the Landau levels into Landau bands, in qualitative agreement
with Eq. (2.194).
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3

Quantum transport via evanescent waves

3.1 Zitterbewegung as an intrinsic disorder

The Berry phase, the existence of a topologically protected zero-energy level and
the anomalous quantum Hall effect are striking manifestations of the peculiar,
“ultrarelativistic” character of charge carriers in graphene.

Another amazing property of graphene is the finite minimal conductivity, which
is of the order of the conductance quantum e2/h per valley per spin (Novoselov
et al., 2005a; Zhang et al., 2005). Numerous considerations of the conductivity of a
two-dimensional massless Dirac fermion gas do give us this value of the minimal
conductivity with an accuracy of some factor of the order of one (Fradkin, 1986;
Lee, 1993; Ludwig et al., 1994; Nersesyan, Tsvelik, & Wenger, 1994; Shon &
Ando, 1998; Ziegler, 1998; Gorbar et al., 2002; Yang & Nayak, 2002; Katsnelson,
2006a; Tworzydlo et al., 2006; Ryu et al., 2007).

It is really surprising that in the case of massless two-dimensional Dirac
fermions there is a finite conductivity for an ideal crystal, that is, in the absence
of any scattering processes (Ludwig et al., 1994; Katsnelson, 2006a; Tworzydlo
et al., 2006; Ryu et al., 2007). This was first noticed by Ludwig et al. (1994) using
a quite complicated formalism of conformal field theory (see also a more detailed
and complete discussion in Ryu et al., 2007). After the discovery of the minimal
conductivity in graphene (Novoselov et al., 2005a; Zhang et al., 2005), I was
pushed by my experimentalist colleagues to give a more transparent physical
explanation of this fact, which has been done in Katsnelson (2006a) on the basis
of the concept of Zitterbewegung (Schrödinger, 1930) and the Landauer formula
(Beenakker & van Houten, 1991; Blanter & Büttiker, 2000). The latter approach
was immediately developed further and used to calculate the shot noise (Tworzydlo
et al., 2006), which turns out to be similar to that in strongly disordered metals
(a “pseudodiffusive transport”). There are now more theoretical (Prada et al., 2007;
Katsnelson & Guinea, 2008; Rycerz, Recher, & Wimmer, 2009; Schuessler et al.,
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2009; Katsnelson, 2010a) and experimental (Miao et al., 2007; Danneau et al., 2008;
Mayorov et al., 2011a) works studying this regime in the context of graphene. This
situation is very special. For a conventional electron gas in semiconductors, in the
absence of disorder, the states with definite energy (eigenstates of the Hamiltonian)
can simultaneously be the states with definite current (eigenstates of the current
operator), and it is the disorder that results in the nonconservation of the current and
finite conductivity. In contrast, for the Dirac fermions the current operator does not
commute with the Hamiltonian (Zitterbewegung), which can be considered as a kind
of intrinsic disorder (Katsnelson, 2006a; Auslender & Katsnelson, 2007). Therefore,
a more detailed understanding of the pseudodiffusive transport in graphene is not
only important for physics of graphene devices but also has a great general interest
for quantum statistical physics and physical kinetics.

The Zitterbewegung is a quantum relativistic phenomenon that was first
discussed by Schrödinger as early as in 1930 (Schrödinger, 1930). Only very
recently was it observed experimentally for trapped ions (Gerritsma et al., 2010).
This phenomenon seems to be important if one wishes to qualitatively understand
the peculiarities of electron transport in graphene at its small doping (Katsnelson,
2006a; Auslender & Katsnelson, 2007). Other aspects of the Zitterbewegung in
graphene physics, in particular, possibilities for its direct experimental observation,
are discussed by Cserti and Dávid (2006) and Rusin and Zawadzki (2008, 2009).
Here we will explain this basic concept for the case of two-dimensional massless
Dirac fermions. In a secondary quantized form, the Dirac Hamiltonian reads

Ĥ ¼ v
X
~p

bΨ~p
þ~σ~pΨ̂~p �

X
~p

bΨ~p
þĥ~pΨ̂~p, (3.1)

and the corresponding expression for the current operator is

~̂j ¼ ev
X
~p

bΨ~p
þ~σΨ̂~p �

X
~p

~̂j~p, (3.2)

where ~p is the momentum and bΨ~p
þ ¼ bΨþ

~p1;
bΨþ
~p2

� �
are pseudospinor electron-

creation operators. The expression (3.2) follows from Eq. (3.1) and the gauge

invariance, which requires (Abrikosov, 1998)

~̂j~p ¼ e
δĥ~p
δ~p

: (3.3)

Here we omit spin and valley indices (so, keeping in mind applications to
graphene, the results for the conductivity should be multiplied by 4, due to there
being two spin projections and two conical points per Brillouin zone).

64 Quantum transport via evanescent waves

https://www.cambridge.org/core


Straightforward calculations for the time evolution of the electron operators give
Ψ tð Þ ¼ exp iĤ t

� �
Ψ exp �iĤ t

� �
(here we will put ℏ = 1)

Ψ̂~p tð Þ ¼ 1
2

exp �iε~pt
� �� � 1þ~pσ

p

� 	
þ exp iε~pt

� �� � 1�~pσ

p

� 	
 �
Ψ̂~p (3.4)

and for the current operator

~̂j tð Þ ¼~̂j0 tð Þ þ~̂j1 tð Þ þ~̂j
þ
1 tð Þ

~̂j0 tð Þ ¼ ev
X
~p

Ψ̂~p
þ~p ~pσð Þ

p2
Ψ̂~p

~̂j1 tð Þ ¼ ev

2

X
~p

Ψ̂~p
þ σ �~p ~pσð Þ

p2
þ i

p
σ �~p

� 
Ψ̂~p exp 2iε~pt

� �
, (3.5)

where ε~p ¼ vp is the particle energy. The last term in Eq. (3.5) corresponds to the
Zitterbewegung.

Its physical interpretation is usually given in terms of the Landau–Peierls
generalization of the Heisenberg uncertainty principle (Landau & Peierls, 1931;
Berestetskii, Lifshitz, & Pitaevskii, 1971; Davydov, 1976). Attempts to measure
the coordinate of a relativistic particle with a very high accuracy require an
amount of energy that is sufficient to create particle–antiparticle pairs and, thus,
we will inevitably lose our initial particle, being unable to distinguish it from one
of the created particles (according to quantum statistics, all the particles are
equivalent). This pair creation corresponds to the oscillating terms with fre-
quency 2ε~p in Eq. (3.5).

In terms of condensed-matter physics, the Zitterbewegung is nothing other than
a special kind of interband transition with the creation of virtual electron–hole
pairs. The unitary transformation generated by the operator (1.29) diagonalizes the
Hamiltonian and thus introduces electron and hole states with the energies �vp;
after this transformation the oscillating term in Eq. (3.5) obviously corresponds to
the interband transitions, e.g.,

U~p
þ j~p

xU~p ¼ ev
� cos ϕ~p � i sin ϕ~p exp �iϕ~p þ 2iε~pt

� �
i sin ϕ~p exp iϕ~p � 2iε~pt

� �
cos ϕ~p

0B@
1CA:

(3.6)

To calculate the conductivity σ(ω) one can first try to use the Kubo formula (Kubo,
1957), which reads, for the two-dimensional isotropic case
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σ ωð Þ ¼ 1
A

ð∞
0

dt exp iωtð Þ
ðβ
0

dλ ~̂j t � iλð Þ~̂j
D E

, (3.7)

where β = T�1 is the inverse temperature and A is the sample area. In the static
limit ω = 0, taking into account the Onsager relations and the analyticity of the

correlators ~̂j zð Þ~̂j
D E

for �β < Im z � 0 (Zubarev, 1974), one has

σ ¼ β

2A

ð∞
�∞

dt ~̂j tð Þ~̂j
D E

: (3.8)

Usually, for ideal crystals, the current operator commutes with the Hamiltonian
and thus~̂j tð Þ does not depend on time. In that case, due to Eq. (3.7), the frequency-
dependent conductivity in the ground state contains only the Drude peak

σD ωð Þ ¼ π
A

lim
T!0

~̂j2
D E
T

δ ωð Þ: (3.9)

Either the spectral weight of the Drude peak is finite and, thus, the static conduct-
ivity is infinite, or it is equal to zero. It is easy to check that for the system under
consideration, the spectral weight of the Drude peak is proportional to the modulus
of the chemical potential jμj and thus vanishes at zero doping (μ = 0). It is the

Zitterbewegung, i.e., the oscillating term ~̂j1 tð Þ, which is responsible for the non-
trivial behavior of the conductivity for zero temperature and zero chemical poten-
tial. A straightforward calculation gives the formal result

σ ¼ πe2

h

ð∞
0

dε εδ2 εð Þ, (3.10)

where one delta-function originates from the integration over t in Eq. (3.8) and the
second one from the derivative of the Fermi distribution function appearing in
the calculation of the average over the product of Fermi operators. Of course, the
square of the delta-function is not a well-defined object, and thus Eq. (3.10) is
meaningless before specification of how one should regularize the delta-functions.
After regularization, the integral in Eq. (3.10) is finite, but its value depends on the
regularization procedure (for a detailed discussion of this uncertainty, see Ryu
et al., 2007). Although this derivation cannot give us a correct numerical factor, it
opens a new path to qualitative understanding of more complicated situations. For
example, the minimal conductivity of the order of e2/h per channel has been
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observed experimentally also for bilayer graphene (Novoselov et al., 2006), with
an energy spectrum drastically different from that for the single-layer case. Bilayer
graphene is a zero-gap semiconductor with parabolic touching of the electron and
hole bands described by the single-particle Hamiltonian (1.46). The Hamiltonian
can be diagonalized by the unitary transformation U~p with the replacement
ϕ~p ! 2ϕ~p. Thus, the current operator after the transformation takes the form
(3.6) with the replacements v! p/m and exp �iϕ~p

� �
! exp �2iϕ~p

� �
. In contrast

with the single-layer case, the density of electron states for the Hamiltonian (1.46)
is finite at zero energy but the square of the current is, vice versa, linear in energy.
As a result, we have the same estimate as Eq. (3.10).

3.2 The Landauer-formula approach

A deeper understanding of the origin of finite conductivity without charge carriers
can be reached using the Landauer-formula approach (Beenakker & van Houten,
1991; Blanter & Büttiker, 2000). Following Katsnelson (2006a) we consider
the simplest possible geometry, choosing the sample as a ring of length Ly in
the y-direction; we will use the Landauer formula to calculate the conductance
in the x-direction (see Fig. 3.1). As we will see, the conductivity turns out to be
dependent on the shape of the sample. To have a final transparency we should keep
Lx finite. On the other hand, periodic boundary conditions in the y-direction are
nonphysical, and we have to choose Ly as large as possible in order to weaken their
effects. Thus, for the two-dimensional situation one should choose Lx « Ly.

In the coordinate representation the Dirac equation at zero energy takes the form

∂
∂x

þ i
∂
∂y

� 	
ψ1 ¼ 0,

∂
∂x

� i
∂
∂y

� 	
ψ2 ¼ 0:

(3.11)

Fig. 3.1 The geometry of the sample. The thick arrow shows the direction of the
current. Solid and dashed lines represent wave functions of the edge states
localized near the top (ψt(x)) and bottom (ψb(x)) of the sample, respectively.

3.2 The Landauer-formula approach 67

https://www.cambridge.org/core


General solutions of these equations are just arbitrary analytic (or complex-
conjugated analytic) functions:

ψ1 ¼ ψ1 xþ iyð Þ,
ψ2 ¼ ψ2 x� iyð Þ:

(3.12)

Owing to periodicity in the y-direction, both wave functions should be
proportional to exp(ikyy), where ky = 2πn/Ly, n = 0, �1, �2, . . . This means that
the dependence on x is also fixed: The wave functions are proportional to
exp(�2πnx/Ly). They correspond to the states localized near the bottom and top
of the sample (see Fig. 3.1).

To use the Landauer formula, we should introduce boundary conditions at the
sample edges (x = 0 and x = Lx). To be specific, let us assume that the leads
are made of doped graphene with the potential V0 < 0 and the Fermi energy
EF = vkF = �V0. The wave functions in the leads are supposed to have the same
y-dependence, namely ψ1, 2(x, y) = ψ1, 2(x) exp (ikyy). Thus, one can try the solution
of the Dirac equation in the following form that is consistent with Eq. (1.30):

ψ1 xð Þ ¼
exp ikxxð Þ þ r exp �ikxxð Þ, x < 0,

a exp kyx
� �

, 0 < x < Lx,

t exp ikxxð Þ, x > Lx,

8><>:
ψ2 xð Þ ¼

exp ikxxþ iϕð Þ þ r exp �ikxx� iϕð Þ, x < 0,

b exp �kyx
� �

, 0 < x < Lx,

t exp ikxxþ iϕð Þ, x > Lx,

8><>:
(3.13)

where sinϕ = ky/kF and kx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2F � k2y

q
. From the conditions of continuity of the

wave functions, one can find the transmission coefficient

Tn ¼ t ky
� ��� ��2 ¼ cos 2ϕ

cosh 2 kyLx
� �� sin 2ϕ

: (3.14)

Further, one should assume that kFLx » 1 and put ϕ ffi 0 in Eq. (3.14), so

Tn ¼ 1

cosh 2 kyLx
� � : (3.15)

The conductance G (per spin per valley) and Fano factor F of the shot noise
(Blanter & Büttiker, 2000) are expressed via the transmission coefficients (3.15):

G ¼ e2

h

X∞
n¼�∞

Tn (3.16)
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and

F ¼ 1�
P∞

n¼�∞
T2
nP∞

n¼�∞
Tn

: (3.17)

Note that in the ballistic regime, where the transmission probability for a given
channel is either one or zero, F= 0 (the current is noiseless), whereas if all Tn « 1
(e.g., current through tunnel junctions) F � 1.

Thus, the trace of the transparency, which is just the conductance (in units of
e2/h), is

TrT ¼
X∞
n¼�∞

1

cosh 2 kyLx
� � ffi Ly

πLx
: (3.18)

Assuming that the conductance is equal to σ Ly/Lx one finds a contribution to
the conductivity per spin per valley equal to e2/(πh) (Katsnelson, 2006a;
Tworzydlo et al., 2006). This result seems to be confirmed experimentally
(Miao et al., 2007; Mayorov et al., 2011a). Also note that for the case of
nanotubes (Lx » Ly) one has a conductance e2/h per channel, in accordance
with known results (Tian & Datta, 1994; Chico et al., 1996). For the Fano factor
one has

F ¼ 1
3

(3.19)

(Tworzydlo et al., 2006). This result is very far from the ballistic regime and
coincides with that for strongly disordered metals (Beenakker & Büttiker, 1992;
Nagaev, 1992). This means that, in a sense, the Zitterbewegung works as an
intrinsic disorder.

Instead of periodic boundary conditions in the y-direction, one can consider
closed boundaries with zigzag-type or infinite-mass boundary conditions (we will
discuss these later). The result (Tworzydlo et al., 2006) is just a replacement of the
allowed values of the wave vectors in Eq. (3.15). One can write, in general
(Rycerz, Recher, & Wimmer, 2009)

ky nð Þ ¼ gπ nþ γð Þ
Ly

, (3.20)

where g = 1 and γ ¼ 1
2 for closed boundary conditions and g = 2 and γ = 0 for

periodic boundary conditions. The results (3.18) and (3.19) for the case Lx » Ly
remain the same.

3.2 The Landauer-formula approach 69

https://www.cambridge.org/core


The case of bilayer graphene (Katsnelson, 2006b; Cserti, Csordás, & Dávid,
2007; Snyman & Beenakker, 2007) is more subtle. Even if we neglect the trigonal
warping and use the Hamiltonian (1.46), an additional spatial scale

l⊥ ¼ ℏv
t⊥

� 10a (3.21)

arises in the problem (Snyman & Beenakker, 2007), and the results for the
conductance and the Fano factor depend on the sequence of the limits Lx/l⊥ ! ∞
and EF ! 0. Moreover, when we cross the energy of trigonal warping and kF
satisfies the inequality (1.55), all four conical points work and the results are
changed again (Cserti, Csordás, & Dávid, 2007).

3.3 Conformal mapping and Corbino geometry

Thus, electron transport in undoped graphene is due to zeromodes of theDirac operator,
which are represented by analytic functions of z = x + iy determined by boundary
conditions. For the geometry shown in Fig. 3.1, these functions are just exponents:

ψ1n zð Þ ¼ exp
2πnz
Ly

� 	
, (3.22)

so a generic wave function inside a graphene flake can be written as

Ψ x; yð Þ �
X∞
n¼�∞

an
exp

2πnz
Ly

� 	
0

0@ 1Aþ bn
0

exp
2πn�z
Ly

� 	0@ 1A24 35, (3.23)

where the coefficients an and bn are determined by the boundary conditions. Let the
Fermi wavelength in the leads be much smaller than the geometrical lengths of the
flake. Then, for most of the modes one can write the boundary conditions assuming
normal incidence ϕ = 0:

ψin � 1þ r
1� r

� 	

ψout � t
t

� 	
, (3.24)

where subscripts “in” and “out” label the values of the wave functions at the
boundaries between the leads and the sample. In this approximation it is very easy
to solve the problem of electron transport through a graphene quantum dot of
arbitrary shape using a conformal mapping of this shape to the strip (Katsnelson &
Guinea, 2008; Rycerz, Recher, & Wimmer, 2009). For example, the mapping
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w zð Þ ¼ R1 exp
2πz
Ly

� 	
(3.25)

with

exp
2πLx
Ly

� 	
¼ R2

R1

transforms the rectangular strip Lx � Ly into a circular ring with inner and outer
radii R1 and R2, respectively. Indeed, for z= x+ iy, with 0< x< Lx and 0< y< Ly,
the transformation (3.25) leads to 0� arg w< 2π and R1 � jwj � R2. Instead of Eq.
(3.23) one can try in this case

Ψ x; yð Þ �
X∞
n¼�∞

an
zn

0

� 	
þ bn

0
�zn

� 	� 
: (3.26)

The conformal mapping allows us to find immediately the solution for Corbino
geometry where “in” and “out” leads are attached to the inner and outer edges of
the ring, respectively (see Fig. 3.2); in this case periodic boundary conditions in the
y-direction should naturally be used. Moreover, the solution of the problem for any
shape of the flake that is topologically equivalent to the ring can be written
automatically in terms of the corresponding conformal mapping (Rycerz, Recher,
& Wimmer, 2009). Earlier (Katsnelson & Guinea, 2008), this method was applied
to the case of graphene quantum dots with thin leads attached.

If we just repeat the derivation of Eq. (3.15) using the boundary conditions
(3.24), one can see that

cosh kyLx
� �¼ 1

2
exp kyLx

� �þ exp �kyLx
� �� �

¼ 1
2

ψ1 x ¼ Lxð Þ
ψ1 x ¼ 0ð Þ þ ψ1 x ¼ 0ð Þ

ψ1 x ¼ Lxð Þ
�  (3.27)

Fig. 3.2 The Corbino geometry: radial electric current in the ring.
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and

ψ1 x ¼ Lxð Þ
ψ1 x ¼ 0ð Þ ¼ ψ2 x ¼ 0ð Þ

ψ2 x ¼ Lxð Þ : (3.28)

Under the conformal mapping (3.25)

ψ1 x ¼ Lxð Þ
ψ1 x ¼ 0ð Þ ¼ exp

2πLx
Ly

� 	
! ψ1 r ¼ R2ð Þ

ψ1 r ¼ R1ð Þ ¼
R2

R1
, (3.29)

and the result for the transmission coefficient reads

Tn ¼ 4
R2
R1

� �n
þ R1

R2

� �n : (3.30)

We should be careful, however, since up to now we have not taken into account the
Berry phase π for massless Dirac fermions. When we pass along the circle within
the disc we have not periodic but antiperiodic boundary conditions:

ψ1(jwj, argw) = � ψ1(jwj, arg w + 2π), (3.31)

which means that n in (3.30) should be replaced by nþ 1
2. Finally, one has (Rycerz,

Recher, & Wimmer, 2009)

Tj ¼ l

cosh 2 j ln
R2

R1

� 	�  , j ¼ � 1
2
, � 3

2
, � 5

2
, . . . , (3.32)

and the summation over integer n in Eq. (3.16) and (3.17) should be replaced by a
summation over half-integer j. For a ring that is thin enough, jR2 � R1j « R1, the
result is

G � 2e2

h

1

ln
R2

R1

� 	 , F � 1
3
: (3.33)

This agrees with the result (3.18) if we take into account that the thin ring is
equivalent to the rectangular strip with Lx = R2 � R1 and Ly = 2πR1. In the
opposite limit R1 « R2 one has

G � 8e2

h

R1

R2
, F � 1� G

h

8e2
: (3.34)

Thus, for zero doping, the conductance of a graphene flake of arbitrary shape can
be found without explicit solution of the Dirac equation, by a conformal mapping
to a rectangle.
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3.4 The Aharonov–Bohm effect in undoped graphene

The Aharonov–Bohm effect (Aharonov & Bohm, 1959; Olariu & Popescu, 1985)
is the shift of interference patterns from different electron trajectories by the
magnetic flux through the area between the trajectories. This leads to oscillations
of observable quantities, such as conductance as a function of the magnetic flux.
The Aharonov–Bohm effect in graphene has been studied both theoretically
(Recher et al., 2007; Jackiw et al., 2009; Katsnelson, 2010a; Rycerz, 2010;
Wurm et al., 2010) and experimentally (Russo et al., 2008; Huefner et al.,
2009) for the case of a finite doping. It is not clear a priori whether this effect
is observable or not in undoped graphene, where the transport is determined by
evanescent waves. The analysis of Katsnelson (2010a) and Rycerz (2010) shows
that, whereas for the case of very thin rings the Aharonov–Bohm oscillations are
exponentially small, for a reasonable ratio of radii, such as, e.g., R2/R1 = 5, the
effect is quite observable.

By combining the conformal-mapping technique with a general consideration of
zero-energy states for massless Dirac fermions one can derive simple and general
rigorous formulas for any graphene flakes topologically equivalent to the ring,
avoiding both numerical simulations and explicit solutions of the Schrödinger
equation for some particular cases (Katsnelson, 2010a). Note that for the case of
a circular ring and a constant magnetic field the problem can be solved exactly for
any doping (Rycerz, 2010), but, of course, the mathematics required is much more
cumbersome. In the corresponding limits, the results are the same.

The effect of magnetic fields on the states with zero energy can be considered
by employing the method of Aharonov and Casher (1979) (see Section 2.3).
The general solutions have the form (2.62), where f1 and f1 are analytic and
complex-conjugated analytic functions. The boundary conditions following from
Eq. (3.24) are

1þ r ¼ ψ 1ð Þ
þ ,

1� r ¼ ψ 1ð Þ
� ,

t ¼ ψ 2ð Þ
þ ,

t ¼ ψ 2ð Þ
� ,

(3.35)

where superscripts 1 and 2 label the boundaries attached to the
corresponding leads.

If the boundary of the sample is simply connected, one can always choose
φ = 0 at the boundary and, thus, the magnetic fields disappear from Eq. (3.35); this
fact was used by Schuessler et al. (2009) as an elegant way to prove that a random
vector potential has no effect on the value of the minimal conductivity. Further, we
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will consider a ring where the scalar potential φ is still constant at each boundary
but these constants, φ1 and φ2, are different. Also, by symmetry (cf. Eq. (3.28)),

f 2ð Þ
þ
f 1ð Þ
þ

¼ f 1ð Þ
�
f 2ð Þ
�

: (3.36)

The answer for the transmission coefficient T = jtj2 for the case of a ring has the
form

Tj ¼ 1

cosh 2 jþ að Þ ln R2

R1

� 	�  , (3.37)

the only difference from Eq. (3.32) being the shift of j by

a ¼ e

ℏc
φ2 � φ1

ln
R2

R1

� 	 , (3.38)

which generalized the corresponding result of Rycerz, Recher, and Wimmer
(2009) on the case of finite magnetic fields. The conductance G (per spin per
valley) and Fano factor of the shot noise F are expressed via the transmission
coefficients (3.37) by Eq. (3.16) and (3.17). To calculate the sums one can use the
Poisson summation formula (2.145). On substituting Eq. (3.37) into (3.16) and
(3.17) one finds a compact and general answer for the effect of a magnetic field on
the transport characteristics:

G ¼ 2e2

h ln R2=R1ð Þ 1þ 2
X∞
k¼1

�1ð Þk cos 2πkað Þαk
" #

, (3.39)

F ¼ 1� 2
3

1þ 2
P∞
k¼1

�1ð Þk cos 2πkað Þαk 1þ π2k2= ln 2 R2

R1

� 	� 	
1þ 2

P∞
k¼1

�1ð Þk cos 2πkað Þαk

2664
3775, (3.40)

where

αk ¼
π2k= ln

R2

R1

� 	
sinh π2k= ln

R2

R1

� 	� 	 : (3.41)

Eq. (2.60) can be solved explicitly for radially symmetric distributions of the
magnetic field B(r):
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φ2 � φ1 ¼
Φ
Φ0

ln
R2

R1

� 	
þ

ðR2

R1

dr

r

ðr
R1

dr0r0B r0ð Þ, (3.42)

where Φ is the magnetic flux though the inner ring. In the case of the Aharonov–
Bohm effect where the whole magnetic flux is concentrated within the inner ring
one has

a ¼ Φ
Φ0

: (3.43)

Owing to the large factor π2 in the argument of sinh in Eq. (3.41), only the terms
with k = 1 should be kept in Eq. (3.36) and (3.37) for all realistic shapes, thus

G ¼ G0 1� 4π2

ln
R2

R1

� 	 exp � π2

ln
R2

R1

� 	
0BB@

1CCA cos
eΦ
ℏc

� 	2664
3775, (3.44)

F ¼ 1
3
þ 8π4

3 ln 3
R2

R1

� 	 exp � π2

ln
R2

R1

� 	
0BB@

1CCA cos
eΦ
ℏc

� 	
, (3.45)

where G0 is the conductance of the ring without magnetic field (3.33).
Oscillating contributions to G and F are exponentially small for very thin rings

but are certainly measurable if the ring is thick enough. For R2/R1 = 5 their
amplitudes are 5.3% and 40%, respectively.

Consider now a generic case with the magnetic field B = 0 within the flake.
Then, the solution of Eq. (2.60) is a harmonic function, that is, the real or
imaginary part of an analytic function. It can be obtained from the solution for
the disc by the same conformal transformation as that which we use to solve the
Dirac equation. One can see immediately that Eq. (3.35) remains the same. The
expressions (3.44) and (3.45) can be rewritten in terms of an experimentally
measurable quantity G0

G ¼ G0 1� 4π2

β
exp � π2

β

� 	
cos

eΦ
ℏc

� 	� 
, (3.46)

F ¼ 1
3
þ 8π4

3β3
exp � π2

β

� 	
cos

eΦ
ℏc

� 	
, (3.47)

where β = 2e2/(hG0) and we assume that β « π2.

3.4 The Aharonov–Bohm effect in undoped graphene 75

https://www.cambridge.org/core


Thus, conformal transformation (Katsnelson & Guinea, 2008; Rycerz, Recher,
& Wimmer, 2009) is a powerful tool with which to consider pseudodiffusive
transport in undoped graphene flakes of arbitrary shape, not only in the absence
of a magnetic field but also in the presence of magnetic fluxes in the system. An
experimental study of the Aharonov–Bohm oscillations and comparison with the
simple expressions (3.46) and (3.47) derived here would be a suitable way to check
whether the ballistic (pseudodiffusive) regime is reached or not in a given experi-
mental situation.

To conclude this chapter, we note that undoped graphene is a gapless
semiconductor, with a completely filled valence band and an empty conduction
band. It is really counterintuitive that in such a situation, at zero temperature, it has
a finite conductivity, of the order of the conductance quantum e2/h. This is one of
the most striking consequences of its peculiar “ultrarelativistic” energy spectrum.
Formally, the electron transport in undoped graphene is determined by zero modes
of the Dirac operator, which are described by analytic functions with proper
boundary conditions. Therefore, the whole power of complex calculus can be used
here, just as in classical old-fashioned branches of mathematical physics such as
two-dimensional hydrodynamics and electrostatics. These states cannot correspond
to the waves propagating through the sample but, rather, are represented by
evanescent waves. The transport via evanescent waves in undoped graphene is a
completely new variety of electron transport in solids, being drastically different
from all types known before (ballistic transport in nanowires and constrictions,
diffusive transport in dirty metals, variable-range-hopping transport in Anderson
insulators, etc.). Gaining a deeper understanding of these new quantum phenomena
would seem to be a very important task.
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4

The Klein paradox and chiral tunneling

4.1 The Klein paradox

Soon after the discovery of the Dirac equation, Oskar Klein (1929) noticed one of
its strange properties, which was called afterwards the “Klein paradox.” Klein
considered the 4 � 4 matrix Dirac equation for a relativistic spin-12 particle
propagating in three-dimensional space. To be closer to our main subject, we will
discuss the 2 � 2 matrix equation for a particle propagating in two-dimensional
space; the essence of the paradox remains the same. Thus, we will consider the
stationary Schrödinger equation

ĤΨ ¼ EΨ (4.1)

with the two-component spinor wave function

Ψ ¼ ψl
ψ2

� �

and the Hamiltonian

Ĥ ¼ �iℏc~̂σrþ V x; yð Þ1̂ þ mc2σ̂ z: (4.2)

Here c is the velocity of light, m is the mass of the particle, and V(x, y) is a
potential energy; we will explicitly write the identity matrix 1̂ to show the
spinor structure of the Hamiltonian. Let us consider the one-dimensional case
V = V(x) and ψi = ψi(x) (the latter means normal incidence). Eq. (4.1) now takes
the form

�iℏc
dψ2

dx
¼ E � mc2 � V xð Þ� �

ψ1,

�iℏc
dψ1

dx
¼ E þ mc2 � V xð Þ� �

ψ2:

(4.3)
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First consider just a jump of the potential:

V xð Þ ¼ 0,
V0,

x < 0,
x > 0,

�
(4.4)

with a positive V0.
At the left side of the barrier, the solutions Ψ1 and Ψ2 have x-dependence as

exp(�ikx), where the wave vector k satisfies the relativistic dispersion relation
E2 = (ℏck)2 + m2c4, or

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � m2c4

p

ℏc
: (4.5)

The allowed energy values are E > mc2 (electron states) or E < �mc2 (hole,
or positron, states). To be specific, we will consider the first case. Thus, using
Eq. (4.3) with V = 0 one finds for the incident wave

Ψin xð Þ ¼ 1
α

� �
eikx (4.6)

and for the reflected wave

Ψr xð Þ ¼ 1
�α

� �
e�ikx, (4.7)

where

α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � mc2

E þ mc2
:

r
(4.8)

We will assume a solution of the general form

Ψ(x) = Ψin(x) + rΨr(x), (4.9)

where r is the reflection coefficient.
At the right side of the barrier, we have the dispersion relation

(E � V0)
2 = ℏ2c2q2 + m2c4 for the new wave vector q. We will consider the case

of a potential jump that is strong enough:

V0 > E + mc2. (4.10)

In this case the solution

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V0 � Eð Þ2 � m2c4

q
ℏc

(4.11)

is real and the particle can also propagate on the right side of the barrier. However,
this particle belongs to the lower (positron, or hole) continuum (see Fig. 4.1).
It is in this situation that the paradox arises, so we will consider only this case.
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For smaller values of V0, one has either the situation of propagating electrons
on both sides of the barrier, if V0 < E � mc2, or evanescent waves at x > 0 if
E � mc2 < V0 < E + mc2 (Fig. 4.1(a)).

On solving the Schrödinger equation (4.3) for x> 0 one finds for the transmitted
wave

Ψt xð Þ ¼
1

� 1
β

0
@

1
Aeiqx, (4.12)

where

β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V0 � E � mc2

V0 � E þ mc2

s
: (4.13)

(a)

E=mc2

E=–mc2

E=0

V0

V0

(b)

E=mc2

E=0 V0

E=–mc2

Fig. 4.1 Electron and positron states on the left and right sides of the barrier for
the cases V0 < 2mc2 (a) and V0 > 2mc2 (b).
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One can find the reflection coefficient r and the transmission coefficient t, assum-
ing that the wave function is continuous at x = 0, that is,

Ψin + rΨrjx=�0 = tΨtjx=+0 (4.14)

or

1þ r ¼ t,

α 1� rð Þ ¼ � 1
β
t: (4.15)

We find straightforwardly

r ¼ 1þ αβ
αβ � 1

: (4.16)

Since for the case under consideration α and β are real, 0 < α, β < 1, one can see
immediately that r < 0 and

R ¼ rj j2 ¼ 1þ αβ
1� αβ

� �2

> 1: (4.17)

However, R is nothing other than the reflection probability! Indeed, the current
density

jx = cΨ+σxΨ = c(ψ1
∗ψ2 + ψ2

∗ψ1) (4.18)

has the values 2αc and �2αcR for the incident and reflected parts of the wave
function (4.9), respectively. Thus, we have the very strange conclusion that, under
the condition (4.10), the reflected current is larger than the incident one and the
reflection probability is larger than unity. This was initially called the Klein
paradox.

Our further discussion will follow Calogeracos and Dombey (1999) and Dom-
bey and Calogeracos (1999). (A rather complete list of references can be found in
Greiner and Schramm [2008].)

First, as was noticed by Pauli, there is a problem with the definition of the
transmitted wave. For the case (4.10), the group velocity of the particle on the right
side of the barrier

vg ¼ 1
ℏ
dE

dq
¼ 1

ℏ
dq

dE

� ��1

¼ ℏqc2

E � V0
, (4.19)

is opposite to the direction of the wave vector q. This means that, formally
speaking, the transmitted wave (4.12) describes the particle propagating to the left
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(for positive q), since the direction of propagation is determined by the direction of
the group velocity, not by the momentum. So, at first sight, the formal paradox
disappears (see also Vonsovsky & Svirsky, 1993).

However, it reappears in a more detailed view of the problem. Instead of the
infinitely broad barrier (4.4), let us consider the finite one:

V xð Þ ¼ V0, xj j < a,
0, xj j > a:

�
(4.20)

In this situation, there is no problem with the choice of the transmitted wave at the
right side, it is just tΨin; within the barrier region one has to consider the most
general solution, with both parts, proportional to exp (�iqx). The calculations are
simple and straightforward (see, e.g., Su, Siu, & Chou, 1993; Calogeracos &
Dombey, 1999) and the results for the reflection and transmission probabilities R
and T are

R ¼ 1� α2β2
� 	2

sin 2 2qað Þ
4α2β2 þ 1� α2β2

� 	2
sin 2 2qað Þ

, (4.21)

T ¼ 4α2β2

4α2β2 þ 1� α2β2
� 	2

sin 2 2qað Þ
: (4.22)

There is no formal problem in the sense that 0 < R < 1, 0 < T < 1 and R + T = 1,
as should be the case.

Now, the case of an infinitely broad barrier can be considered from Eq. (4.21)
and (4.22) in the limit a ! ∞. We should be careful here, because of fast
oscillations. If

qa ¼ Nπ
2

(4.23)

(N is an integer), then sin (2qa) = 0, and we have complete transmission (R = 0,
T = 1). If we just average over the fast oscillations in the limit a ! ∞, replacing
sin2 (2qa) by its average value 1

2, we will find the expressions

R∞ ¼ 1� α2β2
� 	2

8α2β2 þ 1� α2β2
� 	2 ,

T∞ ¼ 8α2β2

8α2β2 þ 1� α2β2
� 	2 : (4.24)

Thus, the paradox reappears in a different form. It is no longer a paradox in a
logical or mathematical sense, it is just a physically counterintuitive behavior.
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The well-known tunneling effect in quantum mechanics assumes that the
particle can penetrate through a classically forbidden region with E < V(x) but
the probability of the penetration is exponentially small if the barrier is high and
broad. In the semiclassical approximation, the transmission of the barrier between
classical turning points x1,2 satisfying the equation E = V(x1,2) can be estimated as
(Landau & Lifshitz, 1977)

T � exp � 2
ℏ

ðx2
x1

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m V xð Þ � E½ �

p8<
:

9=
;, (4.25)

where m is the mass of the particle; the motion is supposed to be nonrelativistic.
For the relativistic particle under the condition (4.10) the situation is dramatically
different: In the limit a ! ∞ the penetration probability (4.24) remains finite and,
in general, is not small at all. Even for an infinitely high barrier (V0 ! ∞) one has
β = 1 and

T∞ ¼ E2 � m2c4

E2 � 1
2
m2c4

: (4.26)

This quantity is of the order of unity if E – mc2 is of the order of mc2. In the
ultrarelativistic limit

E » mc2, (4.27)

one has T∞ � 1. The ability of quantum relativistic particles to penetrate with large
enough probabilities through barriers with arbitrarily large height and width is the
contemporary formulation of the Klein paradox (Calogeracos & Dombey, 1999).

A hand-waving explanation of the tunnel effect is based on the Heisenberg
principle: Since one cannot know with arbitrary accuracy both the momentum and
the position of a particle at a given instant one cannot accurately separate the total
energy into a potential part and a kinetic part. Thus, the kinetic energy can be “a
bit” negative.

In the relativistic regime, there is a much stronger restriction (Landau & Peierls,
1931). One cannot know even the position alone with accuracy better than ℏc/E.
This means that relativistic quantum mechanics cannot be mechanics, it can only
be field theory (Berestetskii, Lifshitz, & Pitaevskii, 1971). It always contains
particles and antiparticles, and to measure the position with an accuracy better
than ℏc/E one needs to apply an energy so high that it will create particle-
antiparticle pairs. The original particle whose position is supposed to be measured
will be lost among the newly born particles since all electrons are identical.

82 The Klein paradox and chiral tunneling

https://www.cambridge.org/core


This consideration is relevant for the Klein paradox since under the condition
(4.10) both electron and positron states are explicitly involved.

The standard interpretation of the states with negative energy is based on the
Dirac theory of holes (Bjorken & Drell, 1964; Berestetskii, Lifshitz, & Pitaevskii,
1971; Davydov, 1976). It is supposed that in the vacuum all the states with
negative energy are occupied; antiparticles are the holes in this energy continuum.
In the case (4.10), the tunneling of a relativistic particle happens from a state from
the upper energy continuum (x < 0) to a state in the lower one (x > 0). In this
situation the definition of the vacuum should be reconsidered. This reconstruction
takes place necessarily when we switch on the potential and pass from the
“normal” situation of small V to the “paradoxical” case (4.10).

Let us consider the case of a rectangular barrier (4.20) but for arbitrary V. If V is
small enough, the bound states are formed in the gap, that is, with energies
jEj < mc2. A straightforward solution of this problem gives the following equation
for the energy of the bound states (Calogeracos & Dombey, 1999):

tan qað Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mc2 � Eð Þ mc2 þ E þ V0ð Þ
mc2 þ Eð Þ E þ V0 � mc2ð Þ

s
,

tan qað Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mc2 þ Eð Þ mc2 þ E þ V0ð Þ
mc2 � Eð Þ E þ V0 � mc2ð Þ

s
,

(4.28)

where

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E þ V0ð Þ2 � m2c4

q
ℏc

and we have made the replacement V0 ! �V0. When qa = π/2 and, thus,

V0 ¼ mc2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mcð Þ2 þ π2ℏ2c2

4a2

s
, (4.29)

the energy of one of the bound states reaches the boundary of the positron
continuum, E = �mc2 (Fig. 4.2). It is now energetically favorable to occupy this
state, creating a hole in the negative energy continuum (positron emission). At
qa= π the next state reaches the continuum, and the vacuum state is reconstructed.
This allows us to better understand the nature of the original Klein paradox.
Despite the problem that a large enough barrier looks static, actually it is not.
One needs to carefully study how this state is reached, and this process involves
positron emission by the growing barrier. For a more detailed discussion of the role
of the electron–positron pairs in the Klein paradox, see Krekora, Su, and Grobe
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(2005). We will come back to this issue later, when discussing supercritical
charges in graphene (Chapter 8).

4.2 The massless case: the role of chirality

We are going to discuss the Klein paradox and related issues for the massless
Dirac fermions in graphene (Katsnelson, Novoselov, & Geim, 2006). The case
m = 0 is very special. If we put m = 0 in the results (4.21) and (4.22) we will have
T= 1 and R= 0 for any parameters of the potential (one can see from Eq. (4.8) and
(4.13) that α= β= 1 for m= 0). This result is not related to a specific choice of the
potential barriers (4.20).

For m = 0, the equations (4.3) can be very easily solved for arbitrary V(x). Let
us introduce a variable

w ¼ 1
ℏc

ðx
dx0 E � V x0ð Þ½ �: (4.30)

Of course, we have to be careful: This change of variables is possible only for the
intervals within which E > V(x) or E < V(x), so dw/dx never vanishes. Therefore,
we will use (4.30) separately for each interval between two turning points (and for

Fig. 4.2 Energies of the bound state found from Eq. (4.28) as functions of the
height of the barrier; a = 2ℏ/(mc).
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the intervals between �∞ and the first turning point and between the last turning
point and +∞). There are two basic solutions for each such interval:

Ψ> ¼ 1
1

� �
exp i wj jð Þ (4.31)

and

Ψ< ¼ 1
�1

� �
exp �i wj jð Þ: (4.32)

Both components of the spinor should be continuous at the turning points, so one
can see immediately that the only way to match the solutions is to choose either Ψ>

or Ψ< to be zero everywhere. One can never have a combination of incident and
reflected waves, since propagation is only allowed in one direction (here one has to
recall that we consider only the case of normal incidence; for two-dimensional
problems with Ψ(x, y) this is not the case, see the next section).

The point is that a massless Dirac particle can only propagate either along its
(pseudo)spin direction or in the opposite direction. The scalar potential propor-
tional to the identity matrix in the Hamiltonian (4.2) does not act on the pseudospin
and therefore cannot change the direction of propagation of a massless particle
with spin 1

2 to the opposite.
This property has an analogue in more general two-dimensional and three-

dimensional situations with V = V(x, y) or V = V(x, y, z): Backscattering is
forbidden. This was found long ago for the scattering of ultrarelativistic particles
in three dimensions (Yennie, Ravenhall, & Wilson, 1954; Berestetskii, Lifshitz, &
Pitaevskii, 1971). Ando, Nakanishi, and Saito (1998) noticed an importance of this
property for carbon materials. In particular, the absence of backscattering explains
the existence of conducting channels in metallic carbon nanotubes; in a nonrela-
tivistic one-dimensional system an arbitrarily small disorder leads to localization
(Lifshitz, Gredeskul, & Pastur, 1988), so the conductive state of the nanotubes is
not trivial.

The consideration of Ando, Nakanishi, and Saito (1998) is very instructive, since
it shows explicitly the role of the Berry phase and time-reversal symmetry, but it is
quite cumbersome. Here we present a somewhat simplified version of this proof. To
this end, we consider the equation (Newton, 1966) for the scattering T-matrix

T̂ ¼ V̂ þ V̂ Ĝ0T̂ , (4.33)

where V̂ is the scattering potential operator,

Ĝ0 ¼ lim
δ!þ0

1

E � Ĥ0 þ iδ
(4.34)
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is the Green function of the unperturbed Hamiltonian Ĥ0, and E is the
electron energy (we will assume E > 0). For more details of this formalism,
see Chapter 6. If Ĥ0 is the Dirac Hamiltonian for massless fermions (1.22),
we have

Ĝ0 ~r;~r
0ð Þ ¼

ð
d~q

2πð Þ2 Ĝ0 ~qð Þ exp i~q ~r �~r0ð Þ½ �, (4.35)

where

Ĝ0 ~qð Þ ¼ 1
E � ℏv~q~σ þ iδ

¼ 1
ℏv

k þ~q~σ

k þ iδð Þ2 � q2
(4.36)

with k = E/(ħv). The probability amplitude of the backscattering can be found by
iterations of Eq. (4.33) and is proportional to

T �~k;~k

 �

¼ �~k
���V þ VĜV þ VĜVĜV þ � � � ~k

���D E
� T 1ð Þ þ T 2ð Þ þ � � � , (4.37)

where T(n) is the contribution proportional to Vn.

Let us assume that~k
Ox (we can always choose the axes in such a way), then

~k
��� E and �~k

��� E
have spinor structures

1
1

� �
and

1
�1

� �
,

respectively (see Eq. (1.30)). Thus, if T̂ is a 2 � 2 matrix

T̂ ¼ T0 þ~T~̂σ, (4.38)

one has

T �~k;~k

 �

¼ �~k
D ���Tz þ iTy

~k
��� E: (4.39)

Then, keeping in mind that V is proportional to the identity matrix, one can prove,

term by term, that all contributions to �~k Tzj j~k
D E

and �~k Ty

�� ��~kD E
vanish by

symmetry. Actually, this is just because ~T ~k

 �

/~kkOx. One cannot construct

from the vectors ~k and �~k anything with nonzero y- or z-components: For two

nonparallel vectors ~k1 and ~k2, one of them has a nonzero y-component and
~k1 �~k2kOz.
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4.3 Klein tunneling in single-layer graphene

Keeping in mind electrons in quantum electrodynamics, it is not easy to create
potential jumps larger than 2mc2 � 1 MeV. Similar phenomena take place in very
high electric or gravitational fields (Greiner, Mueller, & Rafelski, 1985; Grib,
Mamaev, & Mostepanenko, 1994; for a detailed list of references, see Greiner &
Schramm, 2008), but the context is always quite exotic, such as collisions of
ultraheavy ions or even black-hole evaporation. There were no experimental data
that would require the Klein paradox for their explanation.

Soon after the discovery of graphene, it was realized that Klein tunneling
(tunneling of Dirac fermions under the conditions of the Klein paradox) is one of
the crucial phenomena for graphene physics and electronics (Katsnelson, Novose-
lov, & Geim, 2006). Soon after the theoretical prediction of Klein tunneling in
graphene, it was confirmed experimentally (Stander, Huard, & Goldhaber-Gordon,
2009; Young & Kim, 2009).

In conventional terms of solid-state physics, Klein tunneling is nothing other
than tunneling through a p-n-p (or n-p-n) junction when electrons are transformed
into holes and then back to electrons (or vice versa) (Fig. 4.3). As we saw in the
previous section, for massless Dirac fermions, the transmission at normal incidence
is always 100%, irrespective of the height and width of the potential barrier. From
the point of view of applications, this is very bad news: If one just copies the
construction of a silicon transistor it will not work, since it is impossible to lock it.
The gap opening is necessary. The good news is that, due to the Klein paradox, the
unavoidable inhomogeneities of the electron density in graphene (see Section 13.1)
do not lead to localization and, moreover, their effect on the electron mobility is
not very great. We will come back to this important issue many times in this book.

Now consider, following Katsnelson, Novoselov, and Geim (2006), electron
propagation through the barrier (4.20) for an arbitrary angle of incidence φ. The

Fig. 4.3 Transformation of an electron to a hole under the potential barrier; the
large arrows show directions of momenta, assuming that the group velocity is
always parallel to the Ox axis. Black and gray lines show the dispersion of
electronic states with opposite pseudospin projections.
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energy E = ħvk is supposed to be positive. There is a refraction of the electron
wave at the potential jump, and the new angle θ is determined by the conservation
of the y-component of the electron momentum (and, thus, of the wave vector):

ky = k sin φ= qy = q sin θ, (4.40)

where

q ¼ E � V0j j
ℏv

(4.41)

is the length of the wave vector within the barrier. For massless Dirac fermions
with energy E propagating at the angle φ to the x-axis, the components of the
spinor wave functions are related by

ψ2 = ψ1 exp (iφ) sgnE (4.42)

(see Eq. (1.30)). Thus, the wave function has the following form (cf. Eq. (3.13) for
the case of zero energy):

ψ1 x; yð Þ ¼
exp ikxxð Þ þ r exp �ikxxð Þ½ � exp ikyy

� 	
, x < �a,

A exp iqxxð Þ þ B exp �iqxxð Þ½ � exp ikyy
� 	

, xj j < a,

t exp ikxxþ ikyy
� 	

, x > a,

8>><
>>: (4.43)

ψ2 x; yð Þ ¼
s exp ikxxþ iφð Þ � r exp �ikxx� iφð Þ½ � exp ikyy

� 	
, x < �a,

s0 A exp iqxxþ iθð Þ � B exp �iqxx� iθð Þ½ � exp ikyy
� 	

, xj j < a,

st exp ikxxþ ikyyþ iφ
� 	

, x > a,

8>><
>>:

(4.44)

where

s ¼ sgnE, s0 ¼ sgn E � V0ð Þ, kx ¼ k cosφ, qx ¼ q cos θ (4.45)

and we have taken into account that the reflected particle moves at the angle π � φ,
exp [i(π � φ)] = � exp (�iφ). The parameters r (the reflection coefficient), t (the
transmission coefficient), A, and B should be found from the continuity of ψ1 and
ψ2 at x = �a. Note that the Klein paradox situation is

ss 0 = � 1 (4.46)

(with opposite signs of the energy outside and inside the barrier). As a result, one
finds
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r ¼ 2 exp iφ� 2ikxað Þ sin 2qxað Þ

� sinφ� ss0 sin θ
ss0 exp �2iqxað Þ cos φþ θð Þ þ exp 2iqxað Þ cos φ� θð Þ½ � � 2i sin 2qxað Þ :

(4.47)

The transmission probability can be calculated as

T = |t|2 = 1 � |r|2. (4.48)

The results are shown in Fig. 4.4. In agreement with the general consideration of
the previous section, r = 0 at φ = 0 (this can be seen immediately from Eq. (4.47)
and (4.40)).

There are also additional “magic angles” for which r = 0 and one has 100%
transmission. They correspond to the condition sin (2qx a) = 0, or

qxa ¼ π
2
N, (4.49)

Fig. 4.4 Transmission probabilities through a 100-nm-wide barrier as a function
of the angle of incidence for single-layer (a) and bilayer (b) graphene.
The electron concentration n outside the barrier is chosen as 0.5 � 1012 cm�2

for all cases. Inside the barrier, hole concentrations p are 1� 1012 and 3� 1012 cm�2

for black and gray curves, respectively (such concentrations are most typical in
experiments with graphene). This corresponds to Fermi energies E of incident
electrons �80 and �17 meV for single-layer and bilayer graphene, respectively.
The barrier heights V0 are (a) 200 and (b) 50 meV (black curves) and (a) 285 and
(b) 100 meV (gray curves).
(Reproduced with permission from Katsnelson, Novoselov, & Geim, 2006.)
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where N = 0, �1, �2, . . . Interestingly, this coincides with the condition (4.23) of
complete transmission for the case of nonzero mass. These conditions correspond
to the Fabry–Pérot resonances in optics (Born & Wolf, 1980). The same reson-
ances can take place for a more general potential V = V(x), as was shown in the
semiclassical approximation by Shytov, Rudner, and Levitov (2008) (see also
Shytov et al., 2009). At the same time, for some V(x), these resonances cannot take
place, and only full transmission for normally incident beam survives (Tudorovskiy,
Reijnders, & Katsnelson, 2012; Reijnders, Tudorovskiy, & Katsnelson, 2013).

This issue will be considered in the next section.

4.4 Klein tunneling for a smooth potential barrier and the effect
of magnetic fields

Strictly speaking, the Dirac-cone approximation itself does not work for the case of
an atomically sharp potential since it will induce intervalley scattering, which can
change the whole physical picture dramatically. The sharp potential jump con-
sidered in the previous sections means a sharpness in comparison with the electron
wave length k�1 but not in comparison with the interatomic distance a. So, the
typical spatial scale of the change of potential at the barrier d was assumed to
satisfy the condition

a « d < «
1
k
: (4.50)

The opposite limit case, that of a very smooth potential

kd » 1, (4.51)

was first considered by Cheianov and Falko (2006). It turns out that in this case the
region of high transmission near φ � 0 is pretty narrow:

T(φ) = exp (�Ckd sin2φ), (4.52)

where C is a numerical factor depending on the specific shape of the potential, thus
T(φ) � 1 if

φj j 	 1ffiffiffiffiffi
kd

p (4.53)

(the “Klein collimation”). The result (4.52) was obtained using both the exact
solution of the Dirac equation in a constant electric field and the semiclassical
approximation. Here we will present a simple derivation following Shytov, Gu,
and Levitov (2007; see also Shytov et al., 2009).

90 The Klein paradox and chiral tunneling

https://www.cambridge.org/core


Let us consider the Schrödinger equation (4.1) with the Hamiltonian (4.2) for
the case when

V(x) = �eEx, (4.54)

where E is the electric field. One can use the momentum representation for the
coordinate x, x$ kx. Then the coordinate x! i∂/∂kx and the Schrödinger equation
takes the form (with the replacement c! v, keeping in mind the case of graphene)

�ieE
∂Ψ
∂kx

¼ Ĥ 0Ψ, (4.55)

where

Ĥ
0 ¼ ℏv~k~σ � ε

(here we use the notation ε for the electron energy, in order not to confuse it with
the electric field). The Eq. (4.55) is formally equivalent to the time-dependent
Schrödinger equation with a time t0=�ℏkx/(eE) and the Hamiltonian linearly
dependent on the “time.” This is nothing other than the problem of Landau–Zener
breakdown, in which the term ℏvkyσy plays the role of the gap in the Hamiltonian.
Using the known solution of this problem (Vonsovsky & Katsnelson, 1989) one finds

T � exp � πℏvk2y
eEj j

 !
, (4.56)

which coincides with Eq. (4.52), keeping in mind that d � ℏvk/|eE|.
If we have crossed electric and magnetic fields E and B (B || Oz), one can use

the Lorentz transformation, similarly to what was done in Section 2.10 (see
Eq. (2.196) and (2.197)). In the case

E >
v

c
B, (4.57)

which is complementary to Eq. (2.198), one can exclude the magnetic field, and
the electric field E is replaced in Eq. (4.56) by

E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� vB

cE

� �2
s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � vB

c

� �2
s

(cf. Eq. (2.200)). The effects of disorder on the motion of an electron near a p-n
junction were considered by Fogler et al. (2008).

Shytov, Rudner, and Levitov (2008) studied the case of a parabolic potential
barrier

V(x) = ax2 � ε (4.58)
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(a, ε > 0), which creates p-n boundaries at

x ¼ �xε ¼ �
ffiffiffi
ε
a

r
: (4.59)

The magnetic field B is included in the Landau gauge, Ax = 0, Ay = Bx. Numerical
solution of the Schrödinger equation gives the results shown in Fig. 4.5. One can see
that a region of 100% transmission can exist not only for a rectangular barrier
(see Eq. (4.49)) but also for a more general symmetric potential. At the same time,
for nonsymmetric potentials V(x) 6¼ V(�x), the side resonances with φ 6¼ 0 turn out
to be suppressed (Tudorovskiy, Reijnders, & Katsnelson, 2012) as will be
discussed later. The magnetic field modifies the picture of the transmission in a
peculiar way. Oscillations of the conductance through the barrier as a function of
the magnetic field were observed by Young and Kim (2009) (Fig. 4.6).
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Fig. 4.5 The transmission coefficient, obtained from numerical solution of the
Dirac equation with the potential (4.58), plotted as a function of the component of
electron momentum py and potential depth. At zero magnetic field (a), transmis-
sion exhibits fringes with a phase that is nearly independent of pv. At finite
magnetic field (b), the fringe contrast reverses its sign on the parabola (black thin

line). Here ε∗ = (aℏ2v2)1/3 and p∗ = ε∗/v.
(Reproduced with permission from Shytov, Rudner, & Levitov, 2008.)
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Now let us consider a general semiclassical theory for an arbitrary, smooth, one-
dimensional potential V(x); here we will follow the work by Reijnders, Tudorovs-
kiy, and Katsnelson (2013).

First, let us introduce dimensionless units x ! x=l,~̂p ! ~̂p=p0,
E ! E=vp0,V ! V=vp0, where l is a typical spatial scale of the change of
potential and vp0 is a typical energy scale of the difference E – V. Then, the
Schrödinger equation for massless Dirac fermions in graphene takes the form

�ihσ̂x
d

dx
þ pyσ̂y þ U xð Þ

� �
Ψ xð Þ ¼ 0, (4.60)

where U(x) = V(x) � E,
h = ℏ/(p0l), (4.61)

and we try the solution in the form

Ψ x; yð Þ ¼ Ψ xð Þ exp ipyx

h

� �
(4.62)

(cf. Eq. (4.43), (4.44)). Note that semiclassical approximation is formally applic-
able if h « 1.

Similar to the transition from Eq. (2.39) to Eq. (2.42), we act by the operator
�ihσ̂x

d
dx þ pyσ̂y � U xð Þ on Eq. (4.60). The result is

�h2
d2

dx2
þ p2y � U2 xð Þ � ihσ̂xU

0 xð Þ
� �

Ψ xð Þ ¼ 0, (4.63)

Fig. 4.6 The magnetic field and density dependences of the conductance of a p-n-p
junction in graphene; left and right panels present experimental data and theoretical
results, respectively.
(Reproduced with permission from Young & Kim, 2009.)
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where U0 (x) = dU(x)/dx. Since Eq. (4.63) contains only a single Pauli matrix, it
can be diagonalized by the substitution

Ψ xð Þ ¼ 1
1

� �
η1 xð Þ þ 1

�1

� �
η2 xð Þ (4.64)

and we obtain (cf. Eq. (2.42), (2.43)):

h2
d2

dx2
þ U2 xð Þ � ihU0 xð Þ � p2y

� �
η1,2 xð Þ ¼ 0, (4.65)

η2,1 ¼
1
py

h
d

dx
� iU xð Þ

� �
η1,2: (4.66)

Eq. (4.65) reminds the standard nonrelativistic Schrödinger equation with the
effective potential U2(x) � ihU 0 (x) and the effective energy p2y . Just as in the
conventional semiclassical approximation (Landau & Lifshitz, 1977) one can try
the solution in the form

η1 xð Þ ¼ A x; hð Þ exp iS x; hð Þ
h

� �
, (4.67)

expanding the phase S(x,h) and amplitude A(x,h) functions in Taylor series in the
parameter h (4.61). In the leading order approximation, we have

η1 xð Þ ¼ Aþ xð Þ exp iS0 xð Þ
h

� �
þ A� xð Þ exp � iS0 xð Þ

h

� �
, (4.68)

where

S0 xð Þ ¼
ðx
x0

dy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2y � U2 xð Þ

q
(4.69)

and x0 is a constant. Eq. (4.68) describes incident and reflected waves in the
classically allowed regions where p2y > U2 xð Þ. In the classically forbidden regions
(p2y < U2 xð Þ) it describes evanescent waves, and near the turning points
(p2y ¼ U2 xð Þ) the amplitude functions A�(x) are divergent, making the expression
(4.68) inapplicable. The problem of how to match the semiclassical solutions in
classically allowed and classically forbidden regions and how to build a “uniform
asymptotics” valid in the vicinity of the turning points is discussed in detail by
Tudorovskiy, Reijnders, and Katsnelson (2012) and Reijnders, Tudorovskiy, and
Katsnelson (2013). Here we will show just some results.

Let us consider the case of n-p-n junction, with two smooth-enough junctions
between electron and hole parts separated by a relatively long hole region
(Fig. 4.7). In this situation, turning points x� and classically forbidden regions
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arise, and we have to solve the matching problem for each of them separately. The
result for the transmission coefficient tnpn is (Shytov, Rudner, & Levitov, 2008;
Tudorovskiy, Reijnders, & Katsnelson, 2012; Reijnders, Tudorovskiy, & Katsnel-
son, 2013):

tnpn ¼ tnptpne�iL=h

1� r∗npr
∗
pne

�2iL=h
, (4.70)

where tnp, rnp are transmission and reflection coefficients for the left junction, tpn,
rpn are the same for the right junctions, and

L ¼
ðx2�
x1þ

dy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2y � U2 xð Þ

q
, (4.71)

where the integral is taken over the classically allowed hole region. This is an
analogue of the known expression describing Fabry–Pérot resonances in optics
(Born & Wolf, 1980).

Keeping in mind that |t|2 + |r|2 = 1 for both n-p and p-n junctions, one can find
that the maximum (resonant) value of the modulus of transmission coefficient
(4.72) is equal to

tnpn
�� ��

res
¼ tnp

�� �� tpn�� ��
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� tnp

�� ��2
 �
1� tnp

�� ��2
 �r ; (4.72)

this value is equal to 1 only if |tnp| = |tpn| (symmetric barrier), otherwise we always
have |tnpn|res < 1.

In semiclassical approximation, one finds (Tudorovskiy, Reijnders, &
Katsnelson, 2012; Reijnders, Tudorovskiy, & Katsnelson, 2013)

tnpn
�� ��

res
¼ 1

cosh
Knp � Kpn

h

� � , (4.73)

electrons holes

forbidden

forbidden

Fig. 4.7 A potential barrier for the case of n-p-n junction.
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where

K ¼
ðxþ
x�

dy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 xð Þ � p2y

q
(4.74)

and the integral are taken over the corresponding (left or right) classically forbid-
den region. Therefore, one can see that for a generic, asymmetric one-dimensional
barrier, the full transmission takes place only for py = 0, otherwise the suppression
is exponentially strong in our formal small parameter (4.61).

Numerical results that illustrated suppression of the side resonances for the
Dirac electrons are shown in Fig. 4.8 (Kleptsyn et al., 2015). This conclusion is
also confirmed by numerical simulations on honeycomb lattice, that is, beyond
Dirac approximation (Logemann et al., 2015).

4.5 Negative refraction coefficient and Veselago lenses for
electrons in graphene

As was discussed in Section 4.1, the group velocity~vg is parallel to the wave vector
~k for particles (electrons) and antiparallel for antiparticles (holes). In the situation
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Fig. 4.8 Transmission probability for n-p-n junction for massless Dirac fermions;
energy is 80 meV and the height of the potential is 200 meV. (a) The results for
symmetric potential (shown in b). (c) The results for asymmetric potential (shown in d).
(Reproduced with permission from Kleptsyn et al., 2015)
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of the Klein paradox, the incident and transmitted waves propagate, by definition,
in the same direction, and the propagation direction is determined by the group
velocity. This means that the wave vectors for these waves are antiparallel. For
massless particles with a linear dispersion, the group velocity is

~vg ¼ �v
~k

k
, (4.75)

where the signs + and � correspond to electrons and holes, respectively. The

incident electron wave has the wave vector ~k ¼ k cos φ; sin φð Þ and the group
velocity ~ve ¼ v cos φ; sinφð Þ: The reflected wave has the wave vector
~k0 ¼ k � cosφ; sinφð Þ and the group velocity~v0e ¼ v �cos φ; sinφð Þ: For the trans-
mitted wave, in the situation of the Klein paradox (or for a p-n junction, using
conventional semiconductor terminology) the group velocity~vh ¼ v cos θ0; sin θ0ð Þ
and the wave vector ~q ¼ �q cos θ0; sin θ0ð Þ, cos θ0 > 0, q is determined by
Eq. (4.41) and θ 0 = � θ. The refraction angle θ0 is determined by the continuity
of the y-component of the wave vector (see Eq. (4.40)), or

sin θ0

sinφ
¼ � k

q
� n (4.76)

with a negative refractive index n. This means that the p-n junction in graphene
transforms a divergent electron beam into a collimated one, see Fig. 4.9 (Cheianov,
Falko, & Altshuler, 2007).

In optics, such devices are known as Veselago lenses (Veselago, 1968), and
materials with negative refractive indices are called left-handed materials, or
metamaterials (Pendry, 2004). Creation of such a material for visual light is not
an easy task. For electrons in graphene such a situation can be realized quite easily.

Fig. 4.9 A Veselago lens for the case of a negative refraction index.
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For a detailed discussion of the relation between the negative refraction index and
the Klein paradox, see Giiney and Meyer (2009).

Electron Veselago lensing in graphene was experimentally observed by Lee,
Park, and Lee (2015) and by Chen et al. (2016). Bøggild et al. (2017) suggested a
concept of “Dirac Fermion Microscope” where collimated electron beams in
graphene in the ballistic regime are used to magnify atomic-scale inhomogeneities.

A detailed theory of Veselago lensing in graphene was developed by Reijnders
and Katsnelson (2017a, 2017b). Here we will present only the main physical
results of the theory.

First, for the massless Dirac fermions there is an intimate relation between
propagation direction of the electron beam and the direction of the pseudospin if
we use the beam with nonzero pseudospin polarization. The latter can be created,
e.g., via electron injection from hexagonal boron nitride (Wallbank et al., 2016). In
that case the sublattice symmetry is broken, as we will discuss in detail at the end
of the book (Chapter 13). Numerical simulations as well as semiclassical theory
(Reijnders & Katsnelson, 2017a) show that the pseudospin polarization can result
into a splitting or asymmetric shift of the focus, see Fig. 4.10.

When we take into account the trigonal warping, we have different Hamilto-
nians for the different valleys, due to the τz term in Eq. (1.34). This leads to
different trajectories for different valleys and to a valley splitting of the focus
(Reijnders & Katsnelson, 2017b). Moreover, one can create a valley beam
splitter based on n-p-n junction: the trigonal warping effects can essentially
separate the K and K0 beam components (Garcia-Pomar, Cortijo, & Nieto-
Vesperinas, 2008).

4.6 Klein tunneling and minimal conductivity

As was stressed in the previous chapter, the existence of a minimal conductivity of
the order of e2/h is one of the striking properties of graphene. We discussed this
from the perspective of pure samples (the ballistic regime). It is instructive to
consider the same problem from the opposite perspective of strong disorder
(Katsnelson, Novoselov, & Geim, 2006).

First, it is worth recalling some basic ideas on the electronic structure of
strongly disordered systems (Mott, 1974; Mott & Davis, 1979; Shklovskii &
Efros, 1984; Lifshitz, Gredeskul, & Pastur, 1988). Let us start with the case in
which typical fluctuations of the potential energy V(x, y) are much stronger than
the kinetic energy T. The electrons are locked into puddles restricted by the
equipotential lines E – V(x, y). There is a small probability of tunneling from one
puddle to another, so some electrons are distributed among couples of puddles,
fewer electrons among trios of puddles, etc. (Fig. 4.11). On increasing the ratio
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jT/Vj the tunneling probability increases, and at some point a percolation transi-
tion happens (Shklovskii & Efros, 1984), with the formation of an infinite cluster
of regions connected by electron tunneling. This percolation is associated with
the Mott–Anderson metal–insulator transition, although the latter involves more

(a) (b)

(c)

Fig. 4.10 The modulus of the electron wave function near the focus of the
Veselago lens shown schematically in Fig. 4.9. Electron energy is 100 meV, the
height of the potential barrier in 250 meV and the distance from the source to
the lens is L = 100 nm. (a) The components of the spinor wave function are
1; 1ð Þ= ffiffiffi

2
p

, the electron density is symmetric about the x-axis. (b) The components
of the spinor wave function are (1,0), the mirror symmetry is broken. (c) The
components of the spinor wave function are 1;�1ð Þ= ffiffiffi

2
p

, the mirror symmetry is
restored, but the central maximum has disappeared.
(Reproduced with permission from Reijnders & Katsnelson, 2017a.)
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then just percolation, since phase relations between the electron wave functions
are also important (Mott & Davis, 1979).

The Klein tunneling changes the situation dramatically. However small the
kinetic energy is (or, equivalently, however high and broad the potential barriers
are), the electrons cannot be locked into puddles (Fig. 4.12). Thus, their states
cannot be localized.

In the absence of Anderson localization, the minimal conductivity can be
estimated via Mott’s considerations on the basis of the remark by Ioffe and Regel
that for extended states the electron mean free path l cannot be smaller than the
electron de Broglie wavelength (Mott, 1974; Mott & Davis, 1979). Here we apply
this general consideration to graphene.

Fig. 4.11 A sketch of electronic states in conventional semiconductors with strong
disorder; electrons tunnel, with a small probability, between classically allowed
regions.

Fig. 4.12 A sketch of electronic states in graphene with strong disorder; due to
Klein tunneling, electrons cannot be locked and penetrate through p-n boundaries,
transforming into holes.
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Let us start with Einstein’s relation between the conductivity σ and the electron
diffusion coefficient D (Zubarev, 1974).

σ ¼ e2
∂n
∂μ

D (4.77)

For a noninteracting degenerate (obeying Fermi statistics) electron gas

∂n
∂μ

¼ N EFð Þ ¼ 2 EFj j
πℏ2v2

¼ 2kF
πℏv

(4.78)

(see Eq. (2.138) and Eq. (1.72)). For the two-dimensional case, the diffusion
coefficient is

D ¼ 1
2
v2τ, (4.79)

where τ is the electron mean-free-path time. On substituting Eq. (4.78) and (4.79)
into (4.77) one finds

σ ¼ e2

πℏ
kFl ¼ 2e2

h
kFl, (4.80)

where l= vτ is the mean free path. Assuming that the minimal possible value of kFl
is of the order of unity, we have an estimation for the minimal conductivity of

σmin 
 e2

h
(4.81)

coinciding, in the order of magnitude, with the ballistic conductivity e2/(πh) per
channel (see Eq. (3.16)).

This conclusion is very important, in the light of experimental observation of
electron-hole puddles in graphene on a substrate in the vicinity of the neutrality
point (Martin et al., 2008). Moreover, it was demonstrated theoretically that the
puddles are unavoidable even for freely suspended graphene at room temperature
since the inhomogeneities of electron density result from thermal bending fluctu-
ations (Gibertini et al., 2010); this phenomenon will be considered in detail in
Section 13.1. It is the Klein tunneling that protects electron states from localization
and makes large-scale inhomogeneities rather irrelevant for electron transport.

The minimal conductivity was analyzed in terms of classical percolation by
Cheianov et al. (2007). It follows from their analysis that the minimal conductivity
is of the order of e2/h if the number of electrons (holes) per puddle is of the order of 1.

4.7 Chiral tunneling in bilayer graphene

To elucidate which features of the anomalous tunneling in graphene are related to
the linear dispersion and which features are related to the pseudospin and chirality
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of the Dirac spectrum, it is instructive to consider the same problem for bilayer
graphene (Katsnelson, Novoselov, & Geim, 2006). We will restrict ourselves to the
case of moderate electron energies, for which the parabolic approximation (1.46)
works. This means that the energies are smaller than that of interlayer hopping,
both outside and inside the barrier:

jEj, jE � V0j « 2jγ1j (4.82)

and, at the same time, the trigonal warping effects are not important,

ka, qa >
γ3γ1
γ20

����
���� (4.83)

(cf. Eq. (1.55)), where we assume that the potential barrier has the shape (4.20),
and k and q are the wave vectors outside and inside the barrier, respectively:

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m∗ Ej j

ℏ2

s
,

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m∗ E � V0j j

ℏ2

s
: (4.84)

Assuming that the wave function propagates in the y-direction with the wave-
vector component ky, the two components of the spinor wave function are

ψ1 x; yð Þ ¼ ψ1 xð Þ exp ikyy
� 	

,

ψ2 x; yð Þ ¼ ψ2 xð Þ exp ikyy
� 	

,
(4.85)

where ψi(x) satisfy the second-order equations

d2

dx2
� k2y

� �2

ψi ¼ k4ψi (4.86)

outside the barrier and

d2

dx2
� k2y

� �2

ψi ¼ q4ψi (4.87)

inside it. At the boundaries x = �a one has to require that four conditions be
fulfilled, namely continuity of ψ1, ψ2, dψ1/dx and dψ2/dx. To satisfy them one has
to include not only propagating but also evanescent solutions of Eq. (4.86) and
(4.87) but, of course, without the terms growing exponentially at x ! �∞.
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Let us consider first the case x < �a. The two components of the wave function
can be found from the equations

d

dx
þ ky

� �2

ψ2 ¼ sk2ψ1,

d

dx
þ ky

� �2

ψ1 ¼ sk2ψ2,

(4.88)

where s = sgn E (cf. Eq. (4.45)). Thus, for this region one can try the solutions

ψ1 xð Þ ¼ α1 exp ikxxð Þ þ β1 exp �ikxxð Þ þ γ1 exp χxxð Þ,
ψ2 xð Þ ¼ s α1 exp ikxxþ 2iφð Þ þ β1 exp �ikxx� 2iφð Þ � γ1h1 exp χxxð Þ½ �, (4.89)

where φ is the angle of incidence,

ky = k sin φ,

kx = k cos φ, (4.90)

χx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ 2k2y

q
¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin 2φ

p
(4.91)

and

h1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin 2φ

p
� sin φ


 �2
: (4.92)

The coefficients α1, β1, and γ1 are the amplitudes of the incident, reflected, and
evanescent waves, respectively.

For the case x > a there is no reflected wave:

ψ1 xð Þ ¼ α3 exp ikxxð Þ þ δ3 exp �χxxð Þ,

ψ2 xð Þ ¼ s α3 exp ikxxþ 2iφð Þ � δ3
h1

exp �χxxð Þ
� �

;
(4.93)

the phase factor exp(2iφ) follows from Eq. (1.48). Finally, inside the barrier |x| < a
one has to use the most general solution with two propagating and two evanescent
waves:

ψ1 xð Þ¼ α2exp iqxxð Þþβ2exp �iqxxð Þþγ2exp χ0xx
� 	þδ2exp �χ0xx

� 	
,

ψ2 xð Þ¼ s0 α2exp iqxxþ2iθð Þþβ2exp �iqxx�2iθð Þ�γ2h2exp χ0xx
� 	�δ2

h2
exp �χ0xx
� 	� �

,

(4.94)

where θ is the refraction angle,
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qy = q sin θ = ky,

qx = q cos θ, (4.95)

χ0x ¼ q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin 2θ

p
, (4.96)

h2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin 2θ

p
� sin θ


 �2
(4.97)

and s0 = sgn(E – V0) (cf. Eq. (4.45)). The presence of the evanescent waves is a
very interesting feature of bilayer graphene that is dramatically different both from
the Dirac case and from the Schrödinger case.

Now we have to find the coefficients αi, βi, γi, and δi from eight conditions of
continuity of ψi(x) and dψi(x)/dx at x = a and x = �a. In general, this can only be
done numerically. Typical results for the “Klein” case ss0 = �1 are shown in
Fig. 4.4(b). Similarly to the case of single-layer graphene, there are “magic angles”
with transmission probability equal to unity. A detailed mathematical analysis
(Kleptsyn et al., 2015) shows, however, that contrary to the case of the single-
layer graphene, where 100% transmission is protected by chirality, and for the case
of symmetric potential, additional magic angles exist; for the case of bilayer, the
magic angles are not necessary, and one can build a potential barrier with arbitrary,
small transmission probability at any angle (for a given energy). It takes place for
the potentials, which are oscillating rapidly enough (with a typical scale of the
oscillations comparable with the de Broglie wavelength of the electrons), see
Fig. 4.13.
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Fig. 4.13 An example of the fast-oscillating potential. Within the energy band
from 20 to 30 meV the maximal transmission probability does not exceed
2 � 10�8.
(Reproduced with permission from Kleptsyn et al., 2015.)
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This provides a nice counterexample for a frequent statement that n-p-n (or p-n-p)
junction cannot be locked in single-layer graphene due to the energy gap absence. In
the case of bilayer, the gap is also absent but the junction can be locked! It is the
chiral properties of electrons (conservation of pseudospin and, therefore, the propa-
gation direction for the normally incident beam) rather than the gap absence. The
difference can already be seen from our simple case of a rectangular barrier if we
focus on the case of the normally incident beam.

For the case of normal incidence (φ = 0, θ = 0) the problem can be solved
analytically, and the result for the transmission coefficient is

t ¼ α3
α1

¼ 4ikq exp 2ikað Þ
qþ ikð Þ2 exp �2qað Þ � q� ikð Þ2 exp 2qað Þ : (4.98)

In contrast with the case of single-layer graphene, T = |t|2 decays exponentially
with the height and the width of the barriers, as exp(�4qa) for φ= 0. This situation
is sometimes called anti-Klein tunneling. This illustrates a drastic difference
between the cases of chiral scattering with Berry phases π and 2π. For the latter
case, the condition (1.49) does not fix the projection of the pseudospin to the
direction of the motion (cf. Eq. (1.33)), so the conservation of the chirality does not
forbid backscattering.

For the case a ! ∞ (which is just a potential step corresponding to a single p-n
junction) T = 0 at φ = 0, which looks rather counterintuitive: There is a continuum
of allowed states after the barrier but penetration there is forbidden. Furthermore,
for a single p-n junction with V0 » E, the following analytic solution for any φ has
been found:

T ¼ E

V0
sin 2 2φð Þ, (4.99)

which, again, yields T = 0 for φ = 0. This behavior is in obvious contrast with that
of single-layer graphene, where normally incident electrons are always perfectly
transmitted.

The perfect reflection (instead of perfect transmission) can be viewed as another
incarnation of the Klein paradox, because the effect is again due to the charge-
conjugation symmetry. For single-layer graphene, an electron wave function at the
barrier interface perfectly matches the corresponding wave function for a hole with
the same direction of pseudospin, yielding T = 1. In contrast, for bilayer graphene,
the charge conjugation requires a propagating electron with wave vector k to
transform into a hole with wave vector ik (rather than �k), which is an evanescent
wave inside a barrier.

For completeness, we compare the results obtained with those from the case of
conventional nonrelativistic electrons. If a tunnel barrier contains no electronic
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states, the difference is obvious: The transmission probability in this case is known
to decay exponentially with increasing barrier width and height (Esaki, 1958), so
that the tunnel barriers discussed previously would reflect electrons completely.
However, both graphene systems are gapless, and it is more appropriate to
compare them to gapless semiconductors with nonchiral charge carriers (such a
situation can be realized in certain heterostructures (Meyer et al., 1995; Teissier
et al., 1996)). In this case, we find

t ¼ 4kxqx exp 2iqxað Þ
qx þ kxð Þ2 exp �2iqxað Þ � qx � kxð Þ2 exp 2iqxað Þ , (4.100)

where kx and qx are the x-components of the wave vector outside and inside the
barrier, respectively. Again, similarly to the case of single-layer and bilayer
graphene, there are cases of normal incidence (φ = 0), the resonance conditions

Fig. 4.14 The transmission probability T for normally incident electrons in single-
layer and bilayer graphene and in a nonchiral, zero-gap semiconductor as a
function of the width D of the tunnel barrier. The concentrations of charge carriers
are chosen as n = 0.5 � 1012 cm�2 and p = 1 � 1013 cm�2 outside and inside the
barrier, respectively, for all three cases. The transmission probability for bilayer
graphene (the lowest line) decays exponentially with the barrier width, even
though there are plenty of electronic states inside the barrier. For single-layer
graphene it is always 1 (the upper line). For the nonchiral semiconductor it
oscillates with the width of the barrier (the intermediate curve).
(Reproduced with permission from Katsnelson, Novoselov, & Geim, 2006.)
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2qx a = πN, N = 0, �1, at which the barrier is transparent. For the tunneling
coefficient is then an oscillating function of the tunneling parameters and can
exhibit any value from 0 to 1 (see Fig. 4.14). This is in contrast with graphene,
for which T is always 1, and bilayer graphene, for which T = 0 for sufficiently
wide barriers. This makes it clear that the drastic difference among the three cases
is essentially due to the different chiralities or pseudospins of the quasiparticles
involved rather than any other features of their energy spectra.

To summarize this chapter, the Klein paradox is a key phenomenon for
electronic transport in graphene and for graphene-based electronics. On the one
hand, it protects high electron mobility in inhomogeneous graphene and prevents
Anderson localization. On the other hand, it is an essential obstacle to copying
a “normal” transistor based on p-n-p (or n-p-n) junctions in conventional semicon-
ductors. Usually, one can easily lock the transistor by applying a voltage to the
potential barrier, which is impossible for the cases of both single-layer and bilayer
graphene due to the Klein paradox. One needs to open a gap in the electron
spectrum. One of the most natural ways to do this is the use of space quantization
in graphene nanoribbons and nanoflakes, which will be one of the subjects of the
next chapter.
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5

Edges, nanoribbons, and quantum dots

5.1 The neutrino billiard model

Owing to the Klein paradox, the massless Dirac fermion cannot be confined in a
restricted region by any configuration of a purely electrostatic (scalar) potential
V(x, y); one needs the gap opening. As discussed in Section 1.3, this requires a
violation of the equivalence of the sublattices. Let us consider the Hamiltonian

Ĥ ¼ �iℏv~σrþ σzΔ x; yð Þ, (5.1)

where the last term represents a difference of potential energy between the
A and B sites (or between (pseudo)spin up and (pseudo)spin down states). With
Δ = constant the energy spectrum of the Hamiltonian (5.1) is

E ~k
� �

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ2v2k2 þ Δ2

p
, (5.2)

where~k is the wave vector and there is the energy gap 2jΔj. For a given energy E,
the regions where jEj < jΔ(x, y)j are classically forbidden; quantum mechanically,
the probability of tunneling to these regions decays exponentially with the distance
from the boundary. In particular, one can introduce the boundary condition

jΔ(x, y)j = �∞ (5.3)

at a line L; thus, only the region D restricted by the line L is allowed for the
particle (Fig. 5.1). The line L is parameterized by the length s counted from some
initial point:

x= xL(s), y= yL(s) (5.4)

We will assume
Δ(x, y) = 0 (5.5)

within the region D.
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This model was considered by Berry and Mondragon (1987) long before the
discovery of graphene and was called the “neutrino billiard” (at that time it was
assumed that the neutrino had zero mass). It is not sufficient to completely describe
the edge effects and confinement in graphene nanoribbons and nanoflakes: As we
will see further, the existence of two valleys is of crucial importance, thus, the
single Dirac point approximation is not enough. However, it already contains some
important physics, so it is convenient to start our consideration with this model.

An important property of the Hamiltonian (5.1) is that it is not invariant under
the time-reversal symmetry operation T̂ . The latter can be represented (Landau &
Lifshitz, 1977) as

T̂ ¼ ÛK̂ , (5.6)

where

Û ¼ iσ̂y ¼ 0 1
�1 0

� �
(5.7)

and K̂ is the complex conjugation. Under this operation the Hamiltonian Ĥ (5.1) is
transformed into

Ĥ0 ¼ ÛĤ∗Û
þ ¼ �iℏv~σr� σzΔ x; yð Þ (5.8)

and differs from Eq. (5.1) by the sign of Δ. This means that there is no
Kramers degeneracy (Landau & Lifshitz, 1977) of the energy levels of the

Fig. 5.1 The geometry of a “neutrino billiard.” The particle moves within the
region D restricted by the line L where the infinite energy gap opens.
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Hamiltonian (5.1). At the same time this means that the energy spectrum is
insensitive to the sign of Δ: If

Ψ ¼ ψ1
ψ2

� �

is an eigenstate of the Hamiltonian (5.1) with an energy E, the function

Ψ0 ¼ T̂Ψ ¼ ψ2
∗

�ψ1
∗

� �
(5.9)

corresponds to the same eigenvalue E for the Hamiltonian (5.8). Obviously, Ψ0 is
orthogonal to Ψ, since (Ψ0)* Ψ = 0.

The most general boundary condition for the Hamiltonian (5.1) and (5.5)
follows from the requirement that it should be Hermitian (or, equivalently, its
energy spectrum should be real). Using the Gauss theorem, one has

ðð
D

dxdy ψþĤψ � ψþĤ
þ
ψ

� �
¼ �iℏv

ðð
D

dxdy ψþ~σrψ þ rψþð Þ~σψ½ �

¼ �iℏv
ðð
D

dxdyr ψþ~σψ½ � ¼ �iℏ
þ
L

ds~n sð Þ~j sð Þ ¼ 0,
(5.10)

where ~n is the unit vector normal to the curve L and~j ¼ vΨþ~σΨ is the current
density (cf. Eq. (3.2)).

The local boundary condition must ensure that there is no normal current to the
boundary at any point. On introducing the angle α such that

~n ¼ cos α; sin αð Þ (5.11)

(see Fig. 5.1), one can write this condition as

cos αRe ψ∗
1 ψ2

� �þ sin α Im ψ∗
1 ψ2

� � ¼ 0 (5.12)

or, equivalently,
ψ2

ψ1
¼ iB exp iα sð Þð Þ, (5.13)

where B = B(s) is real.
To specify B, one can consider first the case of a flat boundary L jj Oy. One can

assume that Δ = 0 at x < 0 and Δ = Δ0 = constant at x > 0, solve the Dirac
equation explicitly as was done in the previous chapter, consider the reflection
problem, and compare the result for ψ2(x =�0)/ψ1(x = �0) with Eq. (5.13) at
α = 0. One can see that

B = �1 (5.14)
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at Δ0 ! �∞. We will call Eq. (5.13) with B = �1 the infinite-mass boundary
condition (Berry & Mondragon, 1987).

It is not surprising that this boundary condition is not invariant under the time-
reversal operation. Indeed, it follows from Eq. (5.9) and (5.13) that

ψ0
2

ψ0
1

¼ � ψ1

ψ2

� �∗

¼ �iB exp iα sð Þð Þ, (5.15)

which differs from Eq. (5.13) by the sign (we have taken into account that B2 = 1).
Confinement of electrons in a finite region leads to a discrete energy spectrum.

Consider first the simplest case in which L is just a circle, r = R, where we pass to
the polar coordinates

x ¼ r cosφ, y ¼ y sin φ: (5.16)

In these coordinates,

�i~σr ¼ �i
0 e�iφ ∂

∂r
� i

r

∂
∂φ

� �

eiφ
∂
∂r

þ i

r

∂
∂φ

� �
0

0
BB@

1
CCA (5.17)

and the Schrödinger equation for the state with E = ħvk takes the form

e�iφ ∂
∂r

� i

r

∂
∂φ

� �
ψ2 ¼ ikψ1,

eiφ
∂
∂r

þ i

r

∂
∂φ

� �
ψ1 ¼ ikψ2:

(5.18)

One can try solutions of Eq. (5.18) of the form

ψ1 r;φð Þ ¼ ψ1 rð Þ exp ilφð Þ,
ψ2 r;φð Þ ¼ ψ2 rð Þ exp i lþ 1ð Þφ½ �,

(5.19)

where l is integer. On substituting Eq. (5.19) into Eq. (5.18) one has

dψ2

dr
þ lþ 1

r
ψ2 ¼ ikψ1,

dψ1

dr
� l

r
ψ1 ¼ ikψ2:

8>><
>>: (5.20)

By excluding ψ1 (or ψ2) from Eq. (5.20), one can find a second-order differential
equation for the Bessel functions (Whittaker & Watson, 1927). The solutions
regular at r ! 0 are
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ψ1 rð Þ ¼ Jl krð Þ,
ψ2 rð Þ ¼ iJlþ1 krð Þ: (5.21)

The energy spectrum k = knl can be found from the boundary condition (5.13),
keeping in mind that for the circle α = φ. Thus, the quantization rule for the disc is

Jl+1(knlR) = BJl(knlR). (5.22)

This leads to a discrete spectrum with a distance between neighboring energy
levels with a given l of

δl Eð Þ ffi πℏv
R

: (5.23)

The density of states of the whole system is an extensive quantity proportional (in
two dimensions) to the system area A. Therefore, the average energy distance (for
an arbitrary shape of the billiard, not necessarily for the disc) can be estimated as

δ Eð Þ � 1
N Eð ÞA , (5.24)

where N(E) is the density of states of the Dirac Hamiltonian per unit area:

N Eð Þ ¼ E

2πℏ2v2
¼ k

2πℏv
: (5.25)

It differs from Eq. (1.72) by a factor of 4 (here we do not take into account the
fourfold spin and valley degeneracy for graphene). The semiclassical estimation
(5.24) (see Perenboom, Wyder, & Meier, 1981; Halperin, 1986; Stöckmann, 2000)
is valid at

k
ffiffiffi
A

p
>> 1: (5.26)

For the case of a circular disc that Eq. (5.20) gives, taking into account Eq. (5.23)
through (5.25),

δ Eð Þ � δl Eð Þ
kR

/ 1

R2 : (5.27)

There is an important issue relating to the energy-level distribution in finite
systems (Bohr & Mottelson, 1969; Perenboom, Wyder, & Meier, 1981; Stöck-
mann, 2000). In the case of integrable systems with regular classical motion of
particles it is supposed that it follows the Poisson statistics. It was shown by Berry
and Mondragon (1987) that this is indeed the case for the spectrum determined by
Eq. (5.22). For a generic system with chaotic motion level repulsion takes place,
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and the probability of finding two very close energy levels is strongly suppressed.
The main physical statement can be seen just from the two-level quantum-mechanical
problem with a 2 � 2 Hamiltonian, for which the splitting of eigenvalues is

Δ1,2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H11 � H22ð Þ2 þ 4 H12j j2

q
: (5.28)

If the Hamiltonian matrix is diagonal, the probability of degeneracy Δ1,2 = 0
is equal to the probability that H11 = H22; if the matrix is off-diagonal and real, it is
the probability that H11 = H22 and H12 = 0; if it is not real, it is the probability that
H11 = H22, and Re H12 = 0 and Im H12 = 0, which is obviously smaller.

For a generic chaotic system with time-reversal symmetry (this means that the
basis exists in which the Hamiltonian is real) the distribution of the neighboring
levels, S= ΔE/δ(E), is given by the Gaussian orthogonal ensemble (GOE), with the
probability function

PGOE Sð Þ ¼ πS
2

exp � πS2

4

� �
, (5.29)

whereas without time-reversal symmetry we have the Gaussian unitary ensemble
(GUE), with

PGUE Sð Þ ¼ 32S2

π2
exp � 4S2

π

� �
(5.30)

(Bohr & Mottelson, 1969; Perenboom, Wyder, & Meier, 1981; Stöckmann, 2000).
The numeral calculations of Berry and Mondragon (1987) demonstrate that the

level distribution for neutrino billiards with chaotic classical motion obeys the
GUE statistics (5.30). This is the consequence of violation of the time-reversal
symmetry, which was discussed previously.

5.2 A generic boundary condition: valley mixing

As was discussed in Chapter 1, charge carriers in graphene can be described in the
single Dirac-cone approximation only if all external inhomogeneities are smooth at
the atomic scale. The edges of the terminated honeycomb lattice are sharp and can,
in general, mix the electron states belonging to different valleys. So, one should
use a more general, two-valley Hamiltonian (1.28) (we will use here the represen-
tation (1.27)). The current operator (cf. Eq. (3.3)) is

~̂j ¼ δĤ
δ~p

¼ vτ0⊗~σ: (5.31)
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The most general restriction on the boundary condition generalizing Eq. (5.10) and
(5.12) in the two-valley case is the absence of the normal component of the current
through the boundary

Ψ ~n sð Þ~̂j
			 			ΨD E

¼ 0, (5.32)

at any s.
We will consider, following McCann and Fal’ko (2004) and Akhmerov and

Beenakker (2008), the boundary conditions for the abruptly terminated honeycomb
lattice, with zero probability of finding an electron outside the graphene flake. The
simplest terminations, zigzag and armchair edges, are shown in Fig. 5.2.

Then the Schrödinger equation inside the flake reads

�iℏvτ0⊗~σrþ ℏvM̂ 0δ ~r �~rBð Þ
 �
Ψ ¼ EΨ, (5.33)

where ~r ¼~rB sð Þ in the equation of the boundary line L, and M̂ 0 is an energy-
independent Hermitian matrix. By integrating Eq. (5.33) along an infinitesimal
line parallel to the normal ~n sð Þ to the boundary and taking into account that
Ψ = 0 outside the flake, one finds the boundary condition

ÂΨ ¼ iM̂ 0Ψ (5.34)

at~r ¼~rB sð Þ, where

Â ¼~nτ̂0⊗~̂σ ¼ 1
v
~n:~̂j (5.35)

Â
2 ¼ 1

� �
: Equivalently, the condition (5.34) can be represented as

Ψ ¼ M̂Ψ ~r ¼~rBð Þ, (5.36)

Fig. 5.2 Zigzag and armchair edges of the honeycomb lattice.
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where

M̂ ¼ iÂM̂ 0: (5.37)

On iterating Eq. (5.36) one can see that

M̂
2 ¼ 1: (5.38)

If we require that the Hermitian matrices Â and M̂ 0 anticommute,

Â; M̂ 0�  ¼ 0, (5.39)

the matrix (5.37) turns out to be Hermitian and, due to Eq. (5.38), also unitary:

M̂
þ ¼ M̂ ¼ M̂

�1
: (5.40)

It also anticommutes with the matrix Â:

Â; M̂
�  ¼ iÂ

2
M̂ 0 þ i ÂM̂ 0� �

Â ¼ 0 (5.41)

and the condition (5.32) is automatically satisfied in this case:

ΨþÂΨ ¼ ΨþM̂
þ
ÂM̂Ψ ¼ �ΨþÂΨ ¼ 0: (5.42)

Thus, the boundary condition (5.36) with the most general matrix M̂ satisfying the
requirements (5.40) and (5.41) seems to be the most general form of the boundary
conditions at the edges of terminated graphene flakes.

As was proven by Akhmerov and Beenakker (2008) the most general allowed
matrix M̂ can be represented as

M̂ ¼ sinΛτ̂0⊗ ~n1~̂σ
� �

þ cosΛ ~v~̂τ
� �

⊗ ~n2~̂σ
� �

, (5.43)

where Λ is an arbitrary real number and ~v,~n1 and ~n2 are three-dimensional
unit vectors such that ~n1 and ~n2 are mutually orthogonal and also orthogonal to
~n (~v is arbitrary).

One can assume that the boundary conditions for the graphene flake as a whole
should be time-reversal symmetric. Formally, this follows from the fact that the
tight-binding Hamiltonian for the honeycomb lattice in real space can be chosen as
a real matrix. The time-reversal symmetry can be broken by spontaneous valley
polarization at the edges or by spin polarization plus spin-orbit coupling. So far,
there is no clear experimental evidence for such phenomena (as for the possible
spin polarizaion at the edges, see Chapter 12).

On generalizing the definition of the time-reversal operation (5.6) to the case of
two valleys one can write

T̂ ¼ �τ̂y⊗~σy�K̂ : (5.44)
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The matrix M̂ (5.43) commutes with T̂ only at Λ = 0; thus, for the time-reversal-
invariant case

M̂ ¼ ~v~̂τ
� �

⊗ ~m~̂σ
� �

,~m⊥~n: (5.45)

Further specification of the boundary conditions can be achieved by assuming the
nearest-neighbor approximation (which is actually quite accurate for graphene,
see Chapter 1). In this approximation there exist only hopping terms between
sublattices, ĤAB, whereas intrasublattice terms vanish: ĤAA ¼ ĤBB ¼ 0 (see
Eq. (1.14)). The Schrödinger equation for the two-component wave function
(the components correspond to the sublattices)

Ĥ ABψA ¼ EψB,

Ĥþ
ABψB ¼ EψA (5.46)

has a rigorous electron–hole symmetry: ψB !�ψB, E!�E transforms the equa-
tion to itself. In the limit of small energies jEj << jtj this means that the operation
R̂ ¼ τz⊗σz changes the sign of the Hamiltonian

R̂ĤR̂ ¼ �Ĥ (5.47)

or, equivalently (keeping in mind that R̂
2 ¼ 1),

Ĥ ; τ̂z⊗σ̂ z

�  ¼ 0: (5.48)

This symmetry is an approximate one for real graphene, but this approximation
is quite good due to the smallness of the second-neighbor hopping jt0/tj � 0.1
(see Section 1.2). If we require (5.48), there are only two classes of allowed
boundary conditions: (1)~vkOz,~mkOz, for which

M̂ ¼ �τ̂z⊗σ̂ z; (5.49)

and (2) vz = mz = 0, for which

M̂ ¼ cosφτ̂x þ sinφ~τy
� �

⊗σx (5.50)

(we assume that the edge is along the x-axis~nkOy, and thus ~mkOx).
Boundary conditions of the type (5.36) and (5.49) are called zigzaglike, whereas

those of the type (5.36) and (5.50) are called armchairlike, for reasons that will be
discussed in the next section. It is an important result (Akhmerov & Beenakker,
2008; Wimmer, Akhmerov, & Guinea, 2010) that zigzaglike boundary conditions
are generic, whereas armchairlike boundary conditions occur only for some excep-
tional orientations of the edges.
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5.3 Boundary conditions for a terminated honeycomb lattice

Here we present, following Akhmerov and Beenakker (2008), a microscopic
derivation of the boundary conditions for a terminated honeycomb lattice in the
nearest-neighbor approximation. The geometry of our problem is clear from
Fig. 5.3. The translation vector along the boundary is

T̂ ¼ n~R1 þ m~R2, (5.51)

where

R̂1,2 ¼ a

2

ffiffiffi
3

p
;∓1

� �
(5.52)

are elementary translation vectors and n and m are integers. The number N of
missing sites and the number N0 of dangling bonds per period are larger than or
equal to n + m. Fig. 5.3(d) shows a minimal boundary where N = N0 = n + m.

The Schrödinger equation for the tight-binding model in the nearest-neighbor
approximation reads

ψB ~rð Þ þ ψB ~r �~R1
� �þ ψB ~r �~R2

� � ¼ εψA ~rð Þ,
ψA ~rð Þ þ ψA ~r �~R1

� �þ ψA ~r �~R2
� � ¼ εψB ~rð Þ,

(5.53)

where ε = E/t is the dimensionless energy and subscripts A and B label sublattices.

Fig. 5.3 (a) A honeycomb lattice constructed from a unit cell (gray rhombus)
containing two atoms (labelled A and B), translated over lattice vectors R1 and
R2. Panels (b)–(d) show three different periodic boundaries with the same
period T = nR1 + mR2. Atoms on the boundary (connected by thick solid lines)
have dangling bonds (thin gray line segments) to empty neighboring sites (open
circles). The number N of missing sites and the number N0 of dangling bonds per
period are n+ m. Panel (d) shows a minimal boundary, for which N= N0 = n+ m.
(Reproduced with permission from Akhmerov & Beenakker, 2008.)
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The angle between the translation vector ~T and the armchair orientation (the
direction Ox in Fig. 5.3(a)) is

φ ¼ arctan
1ffiffiffi
3

p n� m

nþ m

� �
: (5.54)

Owing to symmetry with respect to rotations at � π/3 we can restrict ourselves to
the case jφj < π/6 only.

The boundary condition is the requirement that the wave function vanishes at
the empty sites. One can assume that it depends smoothly on the energy ε. We are
interested in the case of small ε (the states close to the Dirac points) and, thus, can
put ε = 0 in Eq. (5.53). So, as a first step one can find zero-energy modes for the
terminated honeycomb lattice. Owing to the translational invariance along the
boundary, one can use the Bloch theorem and require that

ψA,B ~r þ~T
� � ¼ eikψA,B ~rð Þ (5.55)

with a real 0 	 k < 2π.
For the behavior normal to the boundary, we assume that

ψA,B ~r þ~R3
� � ¼ λψA,B ~rð Þ, (5.56)

where ~R3 ¼ ~R1 �~R2 is antiparallel to the y-axis in Fig. 5.3(a). This lattice vector

has a nonzero component a cosφ > a
ffiffiffi
3

p
=2 perpendicular to ~T. For the states

localized at the edge jλj < 1 and for propagating states jλj = 1; of course, the case
jλj > 1 is meaningless, since the corresponding wave function cannot be normal-
ized. If jλj < 1, the solution satisfying Eq. (5.56) has a decay length in the direction

normal to ~T of

l ¼ � a cos φ
ln λj j : (5.57)

Taking into account that ~R1 ¼ ~R2 þ~R3, one can rewrite Eq. (5.53) at ε = 0 as

ψB ~rð Þ þ ψB ~r �~R2 �~R3
� �þ ψB ~r �~R2

� � ¼ 0,

ψA ~rð Þ þ ψA ~r �~R2 �~R3
� �þ ψA ~r �~R2

� � ¼ 0:
(5.58)

On substituting Eq. (5.56) into Eq. (5.58) one finds

ψB ~r þ~R2
� � ¼ � 1

1þ λ
ψB ~rð Þ,

ψA ~r þ~R2
� � ¼ � 1þ λð ÞψA ~rð Þ:

(5.59)

Using Eq. (5.56) and (5.55) together, we have, for any integer p and q,
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ψB ~r þ p~R2 þ q~R3
� � ¼ λq �1� λð Þ�pψB ~rð Þ,

ψA ~r þ p~R2 þ q~R3
� � ¼ λq �1� λð Þ�pψA ~rð Þ:

(5.60)

Now we have to recall the Bloch theorem (5.55) for

~T ¼ n ~R2 þ~R3
� �þ m~R2 ¼ nþ mð Þ~R2 þ n~R3: (5.61)

Thus, we have two equations relating k and λ:

(�1 � λ)m+n = eikλn (5.62)

for the sublattice A and

(�1 � λ)m+n = eikλm (5.63)

for the sublattice B. One needs to find all solutions λ of Eq. (5.62) and (5.63) for a
given k satisfying the conditions jλj 	 1.

A general zero-energy state can be represented as

ψA ¼
XMA

p¼1

αpψp

ψB ¼
XMB

p¼1

α0pψ
0
p,

(5.64)

where MA and MB are the numbers of solutions of Eq. (5.62) and (5.63) within the
unit circle, respectively, and ψp and ψ0

p are the corresponding eigenstates. The
coefficients αp and α0p should be chosen in such a way that ψA and ψB vanish at
missing sites from the sublattices A and B.

The Dirac limit corresponds to the case of small k. Explicit calculations for the
case k = 0 give the result (Akhmerov & Beenakker, 2008)

MA ¼ 2nþ m

3

MB ¼ 2mþ n

3
þ 1:

(5.65)

These solutions include also the values

λ� ¼ exp � 2πi
3

� �
, (5.66)
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corresponding to the propagating modes; for all other modes jλj < 1, so they are

localized at the edge. The corresponding eigenstate is exp �i~K~r
� �

, with

~K ¼ 4π
3a2

~R3: (5.67)

Thus, the general zero-energy mode at k = 0 can be represented as

ψA ¼ ψ1 exp i~K~r
� �þ ψ4 exp �i~K~r

� �þ XMA�2

p¼1

αpψp,

ψB ¼ ψ2 exp i~K~r
� �þ ψ3 exp �i~K~r

� �þ XMB�2

p¼1

α0pψ
0
p:

(5.68)

The four amplitudes (ψ1,�iψ2, iψ3,�ψ4) correspond to the four components of the
wave function (1.27) in the Dirac limit; ψ1 and ψ2 are associated with the valley K,
ψ3 and ψ4 with the valley K0.

At the same time, there are NA conditions ψA = 0 at the missing sites belonging
to the sublattice A and NB conditions ψB = 0 at the missing sites belonging to the
sublattice B (NA and NB are the numbers of missing sites belonging to the
corresponding sublattice).

For the minimal boundary, NA = n and NB = m. At the same time, for n > m
one hasMA < n conditions ψA = 0 at some sites. The only way to satisfy them is to
require that ψA = 0 on the whole boundary, including ψ1 = ψ4 = 0. At the same
time, MB > m + 2, so ψ2 and ψ3 remain undetermined.

This corresponds to the zigzag boundary conditions Eq. (5.49), with the minus
sign. Similarly, for n < m one has the zigzag boundary conditions with the plus
sign. Only at n = m does one have MA = MB = n + 1 > n, such that one has the
same condition for sublattices A and B. All ψi are nonzero in this case, with

ψ1j j ¼ ψ4j j, ψ2j j ¼ ψ3j j (5.69)

(armchair boundary conditions (5.50)).
So, at least for the case of minimal edges, one can prove that the armchair

boundary conditions are exceptional whereas the zigzag ones are generic. This result
also seems to be correct for nonminimal edges, as well as for the case of disorder at
the edges (Martin & Blanter, 2009; Wimmer, Akhmerov, & Guinea, 2010).

For the case n > m, the number of independent zero-energy modes per unit
length is (Akhmerov & Beenakker, 2008; Wimmer, Akhmerov, & Guinea, 2010)

ρ ¼ MA � n
~T
		 		 ¼ m� nj j

3a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ nmþ m2

p ¼ 2
3a

sin φj j: (5.70)
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At φ = 0 (armchair boundaries) there are no such states. The existence of the zero-
energy modes and the corresponding sharp peak in the density of states at zigzag
edges was first found numerically by Nakada et al. (1996). It will be analyzed in
more detail in the next sections.

Akhmerov and Beenakker (2008) have demonstrated that the infinite-mass
boundary condition (5.13) with B = �1 can be obtained in the limit of an infinite
staggered field (difference of on-site energies between sublattices A and B at the
edge). The sign of B is determined by the sign of this staggered field.

5.4 Electronic states of graphene nanoribbons

The previous consideration was a bit formal, but the result is quite simple. For the
case of pure zigzag edges all missing atoms belong to sublattice A only (or
sublattice B only), thus the corresponding components of the wave function for
the two valleys, K and K0, should vanish at the boundary. If the numbers of missing
atoms belonging to A and B are not equal, the boundary conditions remain the
same, depending on the majority of the atoms: “The winner takes all.” Only in
the exceptional case, in which the numbers of missing atoms from A and
B coincide exactly (armchair edges), are all four components of the Dirac spinors
finite at the edge, satisfying the two relations (5.69).

If we have a nanoribbon of a constant width L(jyj 	 L/2) with zigzag edges, one
edge corresponds to the missing atoms A and the other to the missing atoms B. The
boundary conditions are

u y ¼ � L

2

� �
¼ 0,

v y ¼ L

2

� �
¼ 0,

(5.71)

where u is ψ1 or ψ4 and v is ψ2 or ψ3. In this case the valleys are decoupled, so in
the Dirac approximation we can consider them independently. For the valley K, the
Schrödinger equation reads

∂
∂x

þ i
∂
∂y

� �
u x; yð Þ ¼ ikv x; yð Þ,

∂
∂x

� i
∂
∂y

� �
v x; yð Þ ¼ iku x; yð Þ,

(5.72)

where k = E/(ℏv). For the valley K0, the signs before ∂/∂y are exchanged. The
analytic solution of Eq. (5.72) with the boundary conditions (5.71) has been found
by Brey and Fertig (2006). Let us try the solutions as
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u(x, y) = exp(ikxx)u(y),

v(x, y) = exp(ikxy)v(y), (5.73)

where u and v satisfy a system of two linear ordinary differential equations with
constant coefficients:

kx þ d

dy

� �
u yð Þ ¼ kv yð Þ,

kx � d

dy

� �
v yð Þ ¼ ku yð Þ:

(5.74)

The solution can be tried as

u yð Þ ¼ A exp zyð Þ þ B exp �zyð Þ,
v yð Þ ¼ C exp zyð Þ þ D exp �zyð Þ, (5.75)

where

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x � k2

q
(5.76)

can be either real (for evanescent waves) or imaginary (for propagating waves). On
substituting Eq. (5.75) into Eq. (5.74) and taking into account Eq. (5.71), one finds
a dispersion relation for the waves in the nanoribbon:

φ zð Þ ¼ kx � z

kx þ z
¼ exp �2Lzð Þ: (5.77)

Graphical solution of Eq. (5.77) (Fig. 5.4) shows that a real solution (other than the
trivial one, z = 0) exists if

kx >
1
L
: (5.78)

(a) (b)

Fig. 5.4 Graphical solution of Eq. (5.77) (the logarithm of both sides is taken). If
the condition (5.78) is satisfied, there is a nontrivial (z 6¼ 0) solution (a);
otherwise, z = 0 is the only solution (b).
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Indeed, at this condition φ(z) � 1 � 2z/kx is larger than exp(�2Lz) � 1 � 2Lz at
small z. At the same time, φ(kx) = 0 < exp (�2Lkx), thus the curves should cross.
Otherwise, there are no solutions.

Eq. (5.78) is the condition of existence of the edge state; for the semispace
(L ! ∞) it always exists, with the decay decrement z = kx, in agreement with the
consideration of the previous section. For a finite width L, those states with
energies

Es ¼ �ℏv
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x � z2

q
(5.79)

are linear combinations of the states localized on the left and right edges of the
ribbon. There are no solutions at kx < 0, so, for a given valley, these edge states can
propagate only in one direction. Conversely, for the valley K0 the solutions exist
only for kx < 0. Numerical calculations for honeycomb-lattice nanoribbons (Brey
& Fertig, 2006; Peres, Castro Neto, & Guinea, 2006) show that these edge states
connect the valleys K and K0 (Fig. 5.5).

For the case of purely imaginary z = iky Eq. (5.77) can be rewritten as

kx = ky cot (kyL), (5.80)

which gives “bulk” standing waves with discrete values of ky and energy

Eb ¼ �ℏv
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
: (5.81)

For the case of armchair nanoribbons, the amplitudes of the components of wave
functions belonging to different valleys are the same but the phases can differ (see
Eq. (5.69)). A detailed analysis (Brey & Fertig, 2006) results in the following
boundary conditions:

0.6
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–0.6

K
Zigzag.
L = 14´ (3)1/2 a0

K¢

Fig. 5.5 The energy spectrum for zigzag-terminated graphene nanoribbon with
56 atoms per unit cell.
(Reproduced with permission from Brey & Fertig, 2006.)
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u � L

2

� �
¼ u0 � L

2

� �
,

v � L

2

� �
¼ v � L

2

� �
,

u
L

2

� �
¼ exp 2πivð Þu0 L

2

� �
,

v
L

2

� �
¼ exp 2πivð Þv0 L

2

� �
,

(5.82)

where the functions with (without) primes correspond to the states from valley K0

(K) and v ¼ 0, � 2
3, depending on the number of rows in the nanoribbons; v = 0 if

this number is 3p (p is an integer) and v ¼ � 2
3 if it is 3p� 1. In this case there are no

edge states with real z, the wave functions of the bulk states are very simple, namely

uj yð Þ ¼ �ivj yð Þ ¼ 1ffiffiffiffiffiffi
2L

p exp ikjy
� �

,

u0j yð Þ ¼ �iv0j yð Þ ¼ 1ffiffiffiffiffiffi
2L

p exp �ikjy
� �

,
(5.83)

and kj is discrete:

kj ¼ jþ vð Þπ
L

, j ¼ 0, � 1, . . . : (5.84)

5.5 Conductance quantization in graphene nanoribbons

For the case of zigzag edges, electron motion along the edges is coupled with that
in the perpendicular direction; see Eq. (5.80). This coupling leads to interesting
consequences for the electron transport in nanoribbons with varying width, such as
those with nanoconstrictions (Fig. 5.6).

Let us consider a ribbon with a slowly varying width L(x), assuming that

dL

dx

				
				 « 1: (5.85)

Fig. 5.6 A sketch of a graphene nanoribbon with a smoothly varying width.
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For simplicity, we will assume mirror symmetry so that the edges correspond to
y = �L(x)/2 (Fig. 5.6). For the case of the Schrödinger equation for conventional
nonrelativistic electrons

� ℏ2

2m
r2Ψ x; yð Þ ¼ EΨ x; yð Þ (5.86)

with boundary conditions

Ψ y ¼ � L xð Þ
2

� �
¼ 0 (5.87)

(impenetrable walls), the electron states can be considered in the adiabatic approxi-
mation (Glazman et al., 1988; Yacoby & Imry, 1990). Owing to the condition
(5.87), one can try having the wave function as

Ψ(x, y)= χ(x)φx(y), (5.88)

where

φx yð Þ ¼
ffiffiffiffiffiffiffiffiffi
2

L xð Þ

s
sin

πn 2yþ L xð Þ½ �
L xð Þ

� �
(5.89)

is the standing wave of transverse motion satisfying the boundary condition (5.87)
and depending on x as a parameter via L(x). It can be proven (Glazman et al., 1988;
Yacoby & Imry, 1990) that the wave function of longitudinal motion satisfies the
Schrödinger equation

d2χn xð Þ
dx2

þ k2 � k2n xð Þ� �
χn xð Þ ¼ 0, (5.90)

where k2 = 2mE/ℏ2 and

kn xð Þ ¼ πn
L xð Þ : (5.91)

Owing to Eq. (5.85), one can use the semiclassical approximation (Landau &
Lifshitz, 1977). At k > kn(x), the solutions of Eq. (5.90) are propagating waves
with an exponentially small probability of reflection, whereas for the classically
forbidden regions k < kn(x), the electron states decay quickly. This means that the
electron transport in the adiabatic approximation is determined by the minimal
width of the constriction Lmin: All states with

n <
kLmin

π
(5.92)
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have transmission coefficients close to unity, and all states with larger n do not
contribute to the electron transmission at all. According to the Landauer formula
(see Section 3.2) the conductance in the adiabatic regime should be quantized, with
an exponential accuracy of

G ¼ 2e2

h
n, (5.93)

where n is an integer and the factor of 2 is due to spin degeneracy. Each transverse
mode corresponds to an independent channel of transmission.

For the case of graphene nanoribbons the situation is more complicated
(Katsnelson, 2007b). Here we will only consider the case of zigzag boundary
conditions, since they are generic for inhomogeneous nanoribbons as discussed
earlier.

Thus, one can solve the equations (5.72) with x-dependent boundary
conditions (5.71):

u x; y ¼ � L xð Þ
2

� �
¼ 0,

v x; y ¼ L xð Þ
2

� �
¼ 0:

(5.94)

Following Katsnelson (2007b) we expand a general solution in the standing
waves with kx = 0. For this case,

ky ¼ kj ¼ πj
L
, j ¼ � 1

2
, � 3

2
, . . . (5.95)

(cf. Eq. (5.80)), and the eigenfunctions can be written explicitly:

uj yð Þ ¼ 1ffiffiffi
L

p cos kj y� L

2

� �� �
,

vj yð Þ ¼ � 1ffiffiffi
L

p sin kj y� L

2

� �� �
:

(5.96)

Instead of Eq. (5.88), let us use the most general expansion

u x; yð Þ ¼
X
j

cj xð Þu xð Þ
j yð Þ,

v x; yð Þ ¼
X
j

cj xð Þv xð Þ
j yð Þ,

(5.97)
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where u(x) and v(x) are the functions (5.96) with the replacement L ! L(x):

u xð Þ
j yð Þ ¼ 1ffiffiffiffiffiffiffiffiffi

L xð Þp cos πj
y

L xð Þ �
1
2

� �� �
,

v xð Þ
j yð Þ ¼ � 1ffiffiffiffiffiffiffiffiffi

L xð Þp sin πj
y

L xð Þ �
1
2

� �� �
:

(5.98)

The functions (5.98) satisfy by construction the boundary conditions. On sub-
stituting the expansion (5.97) into Eq. (5.72) and multiplying the first equation by
hvjj and the second one by hujj one finds

X
j0

dcj0

dx
vjjvj0
� �þ cj0 vj

dvj0

dx

				
�� �

¼ i
X
j0

k � kj0
� �

cj0 vjjuj0
� �

,

2
4

X
j0

dcj0

dx
ujjuj0
� �þ cj0 uj

duj0

dx

				
�� �

¼ i
X
j0

k � kj0
� �

cj0 ujjvj0
� �

:

2
4 (5.99)

These equations are formally exact. As a first step to the adiabatic approximation,
one should neglect the terms with

vj
dvj0

dx

				
�
and uj

duj0

dx

				
�
,

��

which is justified by the smallness of dL/dx, as in the case of nonrelativistic
electrons (Yacoby & Imry, 1990).

To proceed further, we need to calculate the overlap integrals

ϕ1jϕ2h i ¼
ðL=2

�L=2

dyϕ∗1 ϕ2

for different basis functions:

ujjuj0
� � ¼ 1

2
δjj0 þ δj,�j0
� �

,

vjjvj0
� � ¼ 1

2
δjj0 þ δj,�j0
� �

,

ujjvj0
� � ¼ vj0 juj

� � ¼ � 1
π j0 � jð Þ , j0 � j ¼ 2nþ 1,

� 1
π j0 þ jð Þ , j0 � j ¼ 2n,

8>>><
>>>:

(5.100)
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where n is an integer. On substituting Eq. (5.100) into Eq. (5.99) and neglecting the
nonadiabatic terms within the matrix elements of the operator d/dx, we obtain after
simple transformations

dcj
dx

¼ � 2i
π

X0
j0
k � kj0 xð Þ
jþ j0

cj0 xð Þ, (5.101)

where the sum is over all j0 such that j0 – j is even.
Until now we have employed transformations and approximations that are

identical to those used in the case of nonrelativistic electrons. However, we still
have a coupling between different standing waves, so we cannot prove that the
electron transmission through the constriction is adiabatic. To prove this we need
one more step, namely a transition from the discrete variable j to a continuous one
and a replacement of the sums on the right-hand side of Eq. (5.101) by integrals:P0

j0 . . . ! 1
2P

Ð
dy . . . , where P is the symbol of principal value. This step is

justified by assuming that kL >> 1, i.e., it is valid only for highly excited states.
For low-lying electron standing waves it is difficult to see any way to appreciably
simplify the set of equations (5.101) for the coupled states.

For any function f(z) that is analytic in the upper (lower) complex half-plane one hasð∞
�∞

dxf xð Þ 1
x� x1 � i0

¼ 0 (5.102)

or, equivalently, ð∞
�∞

dxf xð Þ P

x� x1
¼ �iπf x1ð Þ: (5.103)

Assuming that cj(x) is analytic in the lower half-plane as a function of the complex
variable j one obtains, instead of Eq. (5.101),

dcj xð Þ
dx

¼ k þ kj xð Þ
 �
c�j xð Þ: (5.104)

Similarly, taking into account that c�j(x) is analytic in the upper half-plane as a
function of the complex variable j we have

dc�j xð Þ
dx

¼ kj xð Þ � k

 �

cj xð Þ: (5.105)

Finally, on differentiating Eq. (5.104) with respect to x, neglecting the derivatives
of kj(x) due to the smallness of dL/dx and taking into account Eq. (5.105) we find

d2cj xð Þ
dx2

þ k2 � k2j xð Þ
h i

cj xð Þ ¼ 0: (5.106)
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Further analysis completely follows that for the nonrelativistic case. The potential
is semiclassical for the case of smoothly varying L(x). Therefore, the transmission
coefficient is very close to unity if the electron energy exceeds the energy of the
j’th level in the narrowest place of the constriction and is exponentially small
otherwise. Standard arguments based on the Landauer formula prove the conduct-
ance quantization in this situation.

At the same time, for the lowest energy levels the replacement of sums by
integrals in Eq. (5.101) cannot be justified, and thus the states with different js are
in general coupled even for a smooth constriction (5.85). Therefore, electron
motion along the strip is strongly coupled with that in the perpendicular direction
and different electron standing waves are essentially entangled. In this situation
there is no general reason to expect sharp jumps and well-defined plateaux in the
energy dependence of the conductance. This means that the criterion of the
adiabatic approximation is more restrictive for the case of Dirac electrons than it
is for nonrelativistic ones. The formal reason is an overlap between components of
the wave functions with different pseudospins or, equivalently, between the hole
component of the state j and the electron component of the state j0 6¼ j. This
conclusion (Katsnelson, 2007b) seems to be confirmed by the numerical simula-
tions of Muños-Rojas et al. (2008).

5.6 The band gap in graphene nanoribbons with generic
boundary conditions

One has to keep in mind that the terminated honeycomb lattice is a special case of
graphene edges. Density-functional calculations show that the reconstructed “5–7”
edge (Fig. 5.7) has an energy lower than those of both armchair and zigzag edges
(Koskinen, Malola, & Häkkinen, 2008). The reconstruction to this low-energy
state requires the overcoming of energy barriers, so the zigzag edges are metastable
(Kroes et al., 2011), but under some circumstances it will definitely happen. Zigzag
edges are very chemically active, so they will bind hydrogen, oxygen, or hydroxyl
groups (see, e.g., Boukhvalov & Katsnelson, 2008; Bhandary et al., 2010). Lastly,
that the density of states peaks due to zero-energy modes means ferromagnetic
instability (Fujita et al., 1996; Son, Cohen, & Louie, 2006a; see also Section 12.3).

Fig. 5.7 A sketch of a reconstructed 5–7 zigzag edge.
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All of this will substantially modify the boundary conditions. The most general
form is given by Eq. (5.36) and (5.45). It assumes only time-reversal symmetry.
Time-reversal symmetry can be broken by ferromagnetic ordering; however, the
latter can exist in one-dimensional systems at zero temperature only. At finite
temperatures one has, instead, a superparamagnetic state with a finite correlation
length ξ which is just several interatomic distances at room temperature (Yazyev &
Katsnelson, 2008). If all essential sizes of the problem (e.g., the width of
nanoribbons L) are larger than ξ then the system should be considered time-
reversal invariant.

The most general boundary conditions for the nanoribbons are therefore

Ψ x; y ¼ � L

2

� �
¼ ~v1�~̂τ

� �
⊗ ~n1�~̂σ
� �

Ψ x; y ¼ �L

2

� �
,

Ψ x; y ¼ L

2

� �
¼ ~v2:~̂τ

� �
⊗ ~n2�~̂σ
� �

Ψ x; y ¼ L

2

� �
,

(5.107)

where ~vi are three-dimensional unit vectors (no restrictions) and ~ni are three-
dimensional unit vectors perpendicular to the y-axis:

~n1 ¼ cos θ1; 0; sin θð Þ,
~n2 ¼ cos θ2; 0; sin θ2ð Þ:

(5.108)

Valley symmetry implies that only the relative directions of the vectors~v1 and~v2
are essential. Thus, the problem is characterized by three angles: θ1, θ2, and the
angle γ between~v1 and~v2.

The most general dispersion relation E = E(k) for the propagating waves

Ψ(x, y) / exp (ikx + iqy), (5.109)

satisfying the boundary conditions (5.107) has been obtained by Akhmerov and
Beenakker (2008). It reads

cos θ1 cos θ2 cosω� cos 2Ω
� �þ cosω sin θ1 sin θ2 sin

2Ω

� sinΩ sinΩ cos γþ sinω sin θ1 � θ2ð Þ½ � ¼ 0,
(5.110)

where

ω2 ¼ 4L2
E2

ℏ2v2
� k2

� �

and

cosΩ ¼ ℏvk
E

: (5.111)
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Different solutions of Eq. (5.110) correspond to different standing waves with
discrete qn. Analysis of this equation shows that there is a gap in the energy
spectrum if γ = 0, π (which means that valleys are coupled at the boundaries) or at
γ = π, sin θ1 sin θ2 > 0, or at γ = 0, sin θ1 sin θ2 < 0 (Akhmerov & Beenakker,
2008). One can see that the case of zigzag-terminated edges when states with
arbitrarily small energy, up to E = 0, exist is very exceptional. For generic
boundary conditions, the gap is of the order of

Δ ffi ℏv
L
: (5.112)

A detailed analysis of the gap, both in a tight-binding model and in realistic
density-functional calculations, was carried out by Son, Cohen, and Louie
(2006b) (see also, e.g., Wassmann et al., 2008).

The gap opening in nanoribbons is very important for applications. It allows one
to overcome restrictions due to Klein tunneling and build a transistor that can really
be locked by a gate voltage (Han et al., 2007; Wang et al., 2008; Han, Brant, &
Kim, 2010).

5.7 Energy levels in graphene quantum dots

Nanoribbons are restricted in one dimension, therefore their electron spectra
consist of bands En(k). It is possible to make graphene devices in which electrons
are confined in two dimensions – graphene quantum dots (Ponomarenko et al.,
2008; Stampfer et al., 2008; Güttinger et al., 2009; Molitor et al., 2010; Zhang
et al., 2010). Fig. 5.8 (Ponomarenko et al., 2008) shows an example of such a
device, together with the voltage dependence of the differential conductance G
through the device. Oscillations of G are due to the discreteness of the electron
energy spectrum in the dot. First of all, there is a classical electrostatic effect,
namely the dependence of the energy on the total charge Q,

EC Qð Þ ¼ Q2

2C
, (5.113)

where C is the capacitance of the dot. When the electron tunnels to the dot or from
the dot, the charge Q, is changed by �e. This effect is known as Coulomb
blockade; see Kouwenhoven, Marcus, and McEuen (1997). Apart from this, there
is a discreteness of the single-electron energy spectrum superimposed on the
Coulomb-blockade peaks. The sharp dependence of G on the gate voltage allows
one to use the device as a single-electron transistor (Ponomarenko et al., 2008;
Stampfer et al., 2008). The data extracted from the measurements clearly show the
effect of level repulsion, which was discussed in Section 5.1; this means that the
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single-electron spectrum of real graphene quantum dots is certainly chaotic (De
Raedt & Katsnelson, 2008; Ponomarenko et al., 2008). The function P(S) (cf. Eq.
(5.29) and (5.30)) extracted from the experimental data by Ponomarenko et al.
(2008) for a 40-nm graphene quantum dot is shown in Fig. 5.9. Its decrease at
small S is a manifestation of the level repulsion. At the same time, it is difficult to
distinguish between the cases of orthogonal and unitary ensembles. Theoretically,
the distinction depends on the probability of intervalley scattering. If it is large
enough, then, due to atomic-scale inhomogeneity at the edges, the system is time-

Fig. 5.8 (a) A graphene-based, single-electron transistor. The conductance G of a
device shown in the insert in the upper right corner is given as a function of the
gate voltage, at temperature T = 0.3 K. Two panels in (b) show the picture with
different resolutions.
(Reproduced with permission from Ponomarenko et al., 2008.)
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reversal invariant, and one should expect the behavior typical for the Gaussian
orthogonal ensemble, Eq. (5.29). This is obvious already from the fact that, in the
absence of a magnetic field, the tight-binding Hamiltonian can be chosen to be real.
At the same time, if the inhomogeneities at the edges are smooth enough and
intervalley scattering is therefore weak, the situation should be close to the case of
a neutrino billiard (Section 5.1), and a unitary ensemble is to be expected. This can
indeed be the case, since for chemical passivation of the edges the electronic
structure changes smoothly within a rather broad strip near the edges (Boukhvalov
& Katsnelson, 2008). Theoretical discussions of the energy-level statistics in
graphene quantum dots can be found in Wurm et al. (2009), Libisch, Stampfer,
and Burgdörfer (2009), Wimmer, Akhmerov, and Guinea (2010), and Huang, Lai,
and Grebogi (2010).

5.8 Edge states in magnetic fields and the anomalous quantum Hall effect

Now we can come back to the physics of the half-integer quantum Hall effect
discussed in Chapter 2. Our analysis in Section 2.9 was based on the solution of the
quantum-mechanical problem for bulk graphene. There is an alternative approach
to the quantum Hall effect that is based on the analysis of the edge states of
electrons in a magnetic field (Halperin, 1982; MacDonald & Středa, 1984).

Let us start with the classical picture of electron motion in a magnetic field. In
two dimensions, the electron orbits are closed circles (Larmor rotation). Depending
on the direction of the magnetic field, all electrons in the bulk rotate either
clockwise or counterclockwise. However, for the electrons with the centers of
their orbits close enough to the boundary, reflections form a completely different
kind of trajectory, skipping orbits (Fig. 5.10). They possess a magnetic moment

Fig. 5.9 The level-spacing distribution extracted from experimental data on a
graphene 40-nm quantum dot.
(Reproduced with permission from De Raedt & Katsnelson, 2008.)
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opposite to that of the “bulk” orbits and, actually, exactly compensate for the latter,
so that, in agreement with a general theorem, the classical system of electrons can
be neither paramagnetic nor diamagnetic (Vonsovsky & Katsnelson, 1989). In
quantum theory, the skipping orbits are associated with the edge states localized
near the boundary and carrying the current. These states are chiral, since only one
direction of propagation is allowed. Therefore, they are protected against localiza-
tion by disorder; the situation is similar to the Klein tunneling and forbidden
backscattering for massless Dirac fermions (Chapter 4). Simply speaking, there
are no other states with the same energy for electrons to be scattered to. Thus, if
one assumes that all bulk states are localized there is still a current being carried by
the skipping electrons, with a contribution to the conductance of e2/h per spin
(complete transmission). This gives an alternative explanation of the quantum Hall
effect (Halperin, 1982; MacDonald & Středa, 1984).

A topological analysis shows that the number of edge states at the border
between a quantum Hall insulator and vacuum is equal to the integer in (2.181)
and, thus, “bulk” and “edge” approaches to the quantum Hall effect give the same
results for σxy (Hatsugai, 1993; Kellendonk & Schulz-Baldes, 2004; Prodan, 2009).

The counting of the edge states is therefore an alternative way to explain the
anomalous (“half-integer”) quantum Hall effect in graphene (Abanin, Lee, &
Levitov, 2006; Hatsugai, Fukui, & Aoki, 2006). Here we will use the approach
of the first of these works, which is based on a solution of the Dirac equation in a
magnetic field (the second one uses an analysis of the geometry of the honeycomb
lattice).

Fig. 5.10 Skipping orbits of electrons due to the combination of Larmor rotation
in a magnetic field and reflection from the edges.
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Let us assume that graphene fills the semispace x< 0. The solutions of the Dirac
equation for the valley K satisfying the conditions ψi(x) ! 0 at x ! �∞ are given
by Eq. (2.45) and (2.46),

ψ1 Xð Þ ¼ Dn �Xð Þ,
ψ2 Xð Þ ¼ iεDn�1 �Xð Þ, (5.114)

where n = ɛ2 and X is given by Eq. (2.26) and (2.41). For the valley K0 the results
are the same but with the replacement ψ1 ! ψ0

2,ψ2 ! ψ0
1 (see Eq. (1.27) and

(1.28)), thus,

ψ0
1 Xð Þ ¼ iεDn�1 �Xð Þ,

ψ0
2 Xð Þ ¼ Dn �Xð Þ: (5.115)

The eigenenergy ɛ can be found from the boundary conditions. For example, for
the armchair-terminated edge, one needs to put

ψ1 x ¼ 0ð Þ ¼ ψ0
1 x ¼ 0ð Þ,

ψ2 x ¼ 0ð Þ ¼ ψ0
2 x ¼ 0ð Þ: (5.116)

For the case of zigzag-terminated edges, the valleys are decoupled, and the
conditions are

ψ1 x ¼ 0ð Þ ¼ 0,

ψ0
1 x ¼ 0ð Þ ¼ 0

(5.117)

(for the zigzag edge with missing A atoms). Then, Eq. (5.114) and (5.115) give the
energy (2.26) depending on the coordinate of the center of the orbit x0 (2.40) or,
equivalently, on the wave vector ky along the edge.

It is easier to analyze these solutions after transformation of the original problem
to the Schrödinger equation for a double-well potential (Abanin, Lee, & Levitov,
2006; Delplace & Montambaux, 2010). The Hamiltonian Ĥ

2
(2.33) can be repre-

sented as

Ĥ
2 ¼ 2ℏ ej jBv2

c
Q̂, (5.118)

where

Q̂ ¼ � 1
2
d2

dx2
þ 1
2

x� x0ð Þ2 � 1
2
σzτz,

where x and x0 are in units of the magnetic length lB and σz = +1 for components
corresponding to the sublattice A and σz =�1 for components corresponding to the
sublattice B, with τz = �1 for the valley K and K0, respectively.
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For the case of zigzag edges, the valleys and sublattices are decoupled. The
eigenvalues of the operators Q̂ for the valleys K and K0 differ by 1. The sublattices
are also decoupled, but the edge states for the B sublattice are associated with
another edge.

The eigenstates of the problem

Q̂ψ xð Þ ¼ ε2ψ xð Þ (5.119)

with the boundary condition (5.117) are the same as the antisymmetric eigenstates
for the symmetric potential

Q̂ ¼ � 1
2
d2

dx2
þ V xð Þ, (5.120)

V xð Þ ¼ 1
2

xj j � x0ð Þ2∓ 1
2

(5.121)

with ∓ signs for the valleys K and K0, respectively (see Fig. 5.11).
If jx0j >> 1, the potential wells are well separated and the probability of

tunneling between the wells is exponentially small, for

ε2 	 1
2
x20: (5.122)

Then, in zeroth-order approximation, the eigenvalues are the same as for inde-
pendent walls

ε2n ¼ nþ 1
2
∓
1
2
, (5.123)

where (n = 0, 1, 2, . . .). Tunneling leads to the splitting of each eigenvalue for
symmetric and antisymmetric states

δε2n ¼ �Δn (5.124)

x

V(x)

Fig. 5.11 The effective potential (5.121) (for the case of the minus sign).
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with

Δn / exp �
ðx2
�x1

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V xð Þ � ε2n

q2
4

3
5, (5.125)

where x1,2 are the classical turning points: V x1,2ð Þ ¼ ε2n: One needs to choose the
plus sign in Eq. (5.124) corresponding to the antisymmetric eigenfunctions.

For the minus sign in Eq. (5.121) (valley K) one has some growing dependence
of En on the function jx0j/lB (the larger jx0j the smaller the shift) starting from
E = 0. Starting from the first Landau level, the second valley K0 also contributes,
but Δn for the same energy corresponds to another value of n(n! n � 1) and, thus,
will be different. As a result, we have the picture of the energy levels shown
schematically in Fig. 5.12. An almost zero-energy Landau band (originating from
the zero-energy Landau level for an infinite system) corresponds, for a given edge,
to the states from a single valley; the states from the second valley are associated
with another edge.

For the case of armchair edges, the boundary conditions (5.116) lead to the
Schrödinger equations (5.119) and (5.120), but with the potential

V xð Þ ¼ 1
2

xj j � x0ð Þ2 � 1
2
sgnx (5.126)

(see Fig. 5.13). Indeed, one can define formally

ψ0
1 xð Þ 
 ψ1 �xð Þ,

ψ0
2 xð Þ 
 ψ2 �xð Þ,

(5.127)

Fig. 5.12 A sketch of the energy spectrum for magnetic edge states.
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so that Eq. (5.116) is nothing other than the condition of continuity of the wave
function ψ1 and its derivative dψ1/dx (which is related to ψ2 by the Dirac equation)
at x = 0. The qualitative dependence En(x0/l) remains the same as that shown in
Fig. 5.12. A more detailed analysis of the problem in the semiclassical
approximation was performed by Delplace and Montambaux (2010).

To calculate the Hall conductivity one just needs to count the occupied edge
states for a given Fermi energy, with each state contributing e2/h per spin. One can
immediately see from Fig. 5.12 that the lowest-energy Landau band
always produces one edge electron (for E > 0) or hole (E < 0) state and all
other bands produce two such states. This immediately gives Eq. (2.167) for σxy,
with gv = 2 and gs = 1 (Abanin, Lee, & Levitov, 2006).

5.9 Spectral flow for massless Dirac fermions

In Chapter 2, we discussed nontrivial topological properties of massless Dirac
fermions in graphene; the existence of topologically protected zero-energy Landau
levels (Section 2.3) and related to them half-integer quantization of Hall
conductivity (Section 2.9) is probably the most important one. Here we consider
the other nontrivial topological effect, namely, nonvanishing spectral flow of the
Dirac Hamiltonian (5.1), (5.5) in quantum dots which are not simply connected
(that is, with holes; Fig. 5.14). The effect was considered by Prokhorova (2013)
and Katsnelson and Nazaikinskii (2012); our presentation will follow the
latter paper.

Let us consider the situation with magnetic fluxes Φi entering ith inner hole; for
the external boundary we will assume, by definition,

Φ1 ¼ �
Xm
i¼2

Φi (5.128)

x

V(x)

Fig. 5.13 The effective potential (5.126).
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where m > 1 is the number of boundaries. Due to Aharonov–Bohm effect
(Aharonov & Bohm, 1959; Olariu & Popescu, 1985; see Section 3.4) the phase
of the wave function when going around ith hole is changed by 2πμi, μi = Φi/Φ0

where Φ0 is the flux quantum (2.52) (cf. Eq. (3.43)). If all μi are integer, the system
is equivalent to the system without magnetic field and, in particular, should have
the same eigenenergies Eα. For the conventional nonrelativistic electron gas it
would mean that each eigenenergy separately is a periodic function of the magnetic
fluxes:

Eα(μi) = Eα(μi + ni) (5.129)

when all ni are integer.
However, the Dirac Hamiltonian is not semibounded, it can have arbitrarily

large negative and positive eigenvalues; this is an unavoidable consequence of its
electron–hole symmetry. In this situation, periodicity of the spectrum {Eα} as a
whole does not mean periodicity of each eigenvalue separately. Indeed, if we
consider a transformation n ! n + 1, then the set of all integers Z transforms to
itself, despite that each number is shifted up; if we consider only the set of
positive integers, nothing similar is possible. For unbound operators, one
can introduce a concept of spectral flow (Atiyah, Patodi, & Singer, 1976).
For our problem, the latter can be defined as follows. Fix any real value of
energy E. Let us consider the transformation of the Hamiltonian Ĥ to itself
(such as μi ! μi + ni in Eq. (5.129)) due to a continuous change of parameters
(such as increase or decrease of magnetic field through the holes). Then some
eigenvalues (N< of them) will cross the value E from up to down and some

X

∂X1

∂X5

∂X4

∂X3

∂X2

Fig. 5.14 Example of a quantum dot with m = 5 boundaries. When calculating the
flux associated to each boundary the sign is positive for the inner boundaries (∂X2,
∂X3, ∂X4, ∂X5) when going around the boundary clockwise and for the
external boundary (∂X1) when going counterclockwise, as shown by arrows. If
B is positive for X1, X4, and X5 and negative for X2 and X3,
∂+X = ∂X1 [ ∂X4 [ ∂X5.
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eigenvalues (N> of them) will cross the value E from down to up. The spectral
flow of the operator Ĥ is

sf Ĥ
�  ¼ N> � N< (5.130)

It is easy to see that it cannot be dependent on the value of E. In particular, it means
that if the spectral flow of the Dirac operator is not zero, then, under a smooth
increase of magnetic fluxes, some energy levels will cross zero, which means a
creation of electron–hole pairs from vacuum.

Let us assume Berry–Mondragon boundary condition (5.13) for each boundary.
Then, as was proven by Prokhorova (2013) and Katsnelson and Nazaikinskii
(2012) the spectral flow is dependent on the signs of the constants B (that is, on
the signs of gap functions Δ at the boundaries). The result is:

sf Ĥ
�  ¼

X
∂þX

μi ¼
X
∂þX

Φi

Φ0
: (5.131)

Here ∂+X is the sum of all boundaries for which B is positive, see Fig. 5.14. In
particular, if the sign of B is the same for all boundaries, sf Ĥ

�  ¼ 0 due to
Eq. (5.128).

There are two Dirac cones in graphene, and for a given configuration of
magnetic fluxes their spectral flows should be opposite, to have the total spectral
flow of the lattice Hamiltonian equal to zero (similar to the index; see Section 2.3).
It means that if we would create a configuration with different signs of the gap
functions at different boundaries, then, at a smooth increase of the magnetic field,
some energy levels will move up for one valley and down for the other one.

Until now, there is still no experimental confirmation of this interesting predic-
tion. The concept of spectral flow of the Dirac operator turns out to be useful in
the physics of vortices in superfluid helium-3, where it leads to the appearance
of additional hydrodynamic forces acting on moving vortices (Kopnin forces;
Kopnin, 2002; Volovik, 2003).
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6

Point defects

6.1 Scattering theory for Dirac electrons

Here we discuss quantum relativistic effects in the electron scattering by a radially
symmetric potential V(r). This will give us a feeling for the peculiar properties
of charge carriers in imperfect graphene, in comparison with the conventional two-
dimensional electron gas with impurities (Ando, Fowler, & Stern, 1982). Further,
we will consider a more realistic model of defects in a honeycomb lattice, beyond
the Dirac approximation. In this section we follow the papers by Katsnelson
and Novoselov (2007), Hentschel and Guinea (2007), Guinea (2008), and Novikov
(2007). It is instructive to compare the scattering theory developed in those
works with the two-dimensional scattering theory for the Schrödinger equation
(Adhikari, 1986).

Let us start with the equation

�iℏv~̂σrþ V rð Þ
� � ψ1

ψ2

� �
¼ E

ψ1
ψ2

� �
, (6.1)

where the potential V(r) is supposed to be isotropic, that is, dependent only on the
modulus r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. We have to pass to the radial coordinates (see Eq. (5.16)

through Eq. (5.19)). Then Eq. (6.1) is transformed to the couple of ordinary
differential equations

dgl rð Þ
dr

� l

r
gl rð Þ � i

ℏv
E � V rð Þ½ � f 1 rð Þ ¼ 0,

df l rð Þ
dr

þ lþ 1
r

f l rð Þ � i

ℏv
E � V rð Þ½ �g1 rð Þ ¼ 0,

(6.2)

where l = 0, �1, �2, . . . is the angular-momentum quantum number and we try
the solution in the following form (cf. Eq. (5.19):
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ψ1 ~rð Þ ¼ gl rð Þ exp ilφð Þ,
ψ2 ~rð Þ ¼ f l rð Þ exp i lþ 1ð Þφð Þ:

(6.3)

To be specific, we will further consider the case of electrons with E = ħvk > 0.
In two dimensions, the incident electron plane wave has the expansion

exp i~k~r
� �

¼ exp ikr cos φð Þ ¼ Σ
∞

l¼�∞
ilJI krð Þ exp ilφð Þ, (6.4)

where Jl(z) are the Bessel functions (Whittaker & Watson, 1927). At large values
of the argument (kr >> 1), they have asymptotics

Jl krð Þ ffi
ffiffiffiffiffiffiffi
2
πkr

r
cos kr � lπ

2
� π

4

� �
: (6.5)

The radial Dirac equation (6.2) for free space (V(r) = 0) has, for a given l, two
independent solutions, which are proportional to the Bessel and Neumann func-
tions, Jl(kr) and Yl(kr), the latter having the asymptotics (kr >> 1)

Yl krð Þ ffi
ffiffiffiffiffiffiffi
2
πkr

r
sin kr � lπ

2
� π

4

� �
, (6.6)

but the functions Yl(kr) are divergent at r ! 0. Instead, one can use Hankel
functions

H 1;2ð Þ
l krð Þ ¼ Jl krð Þ � iYl krð Þ (6.7)

with the asymptotics, at kr >> 1,

H 1;2ð Þ
l krð Þ ffi

ffiffiffiffiffiffiffi
2
πkr

r
exp �i kr � lπ

2
� π

4

� �� �
: (6.8)

Thus, the function H 1ð Þ
l describes the scattering wave H 2ð Þ

l and describes the wave
falling at the center.

If we have a potential of finite radius R (V(r > R) = 0), the solution of Eq. (6.2)
at r > R can be represented in the form

gl rð Þ ¼ A Jl krð Þ þ tlH
1ð Þ
l krð Þ

h i
,

f l rð Þ ¼ iA Jlþ1 krð Þ þ tlH
1ð Þ
lþ1 krð Þ

h i
,

(6.9)

where the terms proportional to Bessel (Hankel) functions describe incident
(scattering) waves. The complex factors tl in Eq. (6.9) are scattering amplitudes.
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One can represent them in a more conventional way, via scattering phases δl
(Newton, 1966; Adhikari, 1986). The latter are determined via the asymptotics of
radial solutions at kr >> 1,

gl krð Þ / 1ffiffiffiffiffi
kr

p cos kr � lπ
2
� π

4
þ δl

� �
: (6.10)

Taking into account Eq. (6.5) through Eq. (6.8), Eq. (6.10) can be represented as

gl rð Þ / cos δlJl krð Þ � sin δlY l krð Þ
¼ exp �iδlð Þ Jl krð Þ þ i sin δl exp iδlð ÞHl

1ð Þ krð Þ
h i

:
(6.11)

On comparing Eq. (6.9) and (6.11) one finds

tl kð Þ ¼ i sin δl kð Þ exp iδl kð Þ½ � ¼ exp 2iδl kð Þ½ � � 1
2

: (6.12)

It follows from Eq. (6.12) that

jtl(k)j � 1, (6.13)

which means, as we will see later, that the scattering current cannot be larger than
the incident one.

Let us now calculate the scattering cross-section. For the incident wave propa-
gating along the x-axis we have

Ψ 0ð Þ ¼ 1ffiffiffi
2

p 1
1

� �
exp ikxð Þ, (6.14)

where the numerical factor provides normalization of the incident current:

j (0)x = [Ψ(0)]+σxΨ
(0) = 1. (6.15)

Thus, one can choose A ¼ 1=
ffiffiffi
2

p
in Eq. (6.9). Taking into account Eq. (6.9) and

(6.8), one finds for the asymptotics of the scattering waves at large distances

Ψsc � 1ffiffiffiffiffiffiffi
πkr

p exp ikr � iπ
4

� � X∞
l¼�∞

tl
exp i lþ 1ð Þφ½ �

exp ilφð Þ

 !
: (6.16)

The current operator in the direction~n ¼~r=r is

ĵn ¼~n~̂σ ¼ 0 e�iφ

eiφ 0

� �
, (6.17)

which gives us for the scattering current
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j scð Þ ¼ Ψþ
sc ĵnΨsc ¼ 2

πkr
F φð Þj j2, (6.18)

where

F φð Þ ¼
X∞
l¼�∞

tl exp ilφð Þ: (6.19)

Eq. (6.18) gives for the differential cross-section

dσ
dφ

¼ 2
πk

F φð Þj j2: (6.20)

The Dirac equation (6.2) for the massless case has an important symmetry with
respect to the replacement f $ g, l $ �l � 1, which leads to the result

tl(k) = t�l�1(k). (6.21)

Taking into account Eq. (6.21), the equation (6.20) can be rewritten in the final
form (Katsnelson & Novoselov, 2007)

dσ
dφ

¼ 8
πk

X∞
l¼0

tl cos lþ 1
2

� �
φ

� �					
					
2

: (6.22)

It follows immediately from Eq. (6.22) that dσ/dφ= 0 at φ= π, that is, backscatter-
ing is absent. This is in agreement with the general considerations of Section 4.2.

If we have a small concentration of point defects nimp, then, according to the
standard semiclassical Boltzmann theory (Shon & Ando, 1998; Ziman, 2001; see
also later, Chapter 11), their contribution to the resistivity is

ρ ¼ 2
e2v2N EFð Þ

1
τ kFð Þ , (6.23)

where τ(kF) is the mean-free-path time and

1
τ kFð Þ ¼ nimpvσtr, (6.24)

where

σtr ¼
ð2π
0

dφ
dσ
dφ

1� cos φð Þ (6.25)

is the transport cross-section. The applicability of the semiclassical Boltzmann
theory to quantum relativistic particles in graphene is not clear, a priori. This issue
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will be considered in detail in Chapter 11, and the answer will be that, yes, we can
use this theory, except in the very close vicinity of the neutrality point, where the
minimal conductivity is a purely quantum phenomenon (see Chapter 3). On
substituting Eq. (6.20) into Eq. (6.25) one finds

σtr ¼ 4
k

X∞
l¼0

sin 2 δl � δlþ1ð Þ: (6.26)

Note that Eq. (6.23), for the case of graphene, coincides with Eq. (4.80), where
l = vτ(kF) is the mean free path.

6.2 Scattering by a region of constant potential

Let us apply a general theory from the previous section to the simplest case of a
rectangular potential well (or hump)

V rð Þ ¼ V0, r < R,
0, r > R:



(6.27)

Then, the asymptotic expression (6.9) gives us an exact solution for r > R. At
r < R, k should be replaced by

q ¼ E � V0

ℏv
, (6.28)

and only Bessel functions JI(qr) are allowed (otherwise, the solution will not be
normalizable, due to divergence Yl(z) ~z

�l at z ! 0):

gl rð Þ ¼ BJl qrð Þ
f l rð Þ ¼ iBJlþ1 qrð Þ

(6.29)

at r < R. One needs to add the conditions of continuity of the functions gl(r)
and fl(r) at r = R. The result is (Hentschel & Guinea, 2007; Katsnelson &
Novoselov, 2007)

tl kð Þ ¼ Jl qRð ÞJlþ1 kRð Þ � Jl kRð ÞJlþ1 qRð Þ
Hl

1ð Þ kRð ÞJlþ1 qRð Þ � Jl qRð ÞHlþ1
1ð Þ kRð Þ : (6.30)

Let us consider first the case of a short-range potential

kR << 1; (6.31)

then q = –V0/(ħv) can be considered an energy-independent quantity. At z ! 0,
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Jl zð Þ � 1
l!

z

2

� �l
,

H 1ð Þ
l zð Þ � � i

π
2
z

� �l

l� 1ð Þ! l 6¼ 0ð Þ,

H 1ð Þ
0 zð Þ � 2i

π
ln z:

(6.32)

On substituting Eq. (6.32) into Eq. (6.30), one finds

tl kð Þ � πi

l!ð Þ2
Jlþ1 qRð Þ
Jl qRð Þ

kR

2

� �2lþ1

(6.33)

and, thus, the s-scattering (l = 0) dominates

t0(k) / δ0(k) / kR. (6.34)

Substituting Eq. (6.33) and (6.34) into Eq. (6.26),

σtr / k (6.35)

and the contribution to the resistivity (6.23), (4.80) for the short-range scatterers,
can be estimated as

ρ ffi h

e2
nimpR

2: (6.36)

We will see later (see the detailed analysis in Chapter 11) that this contribution is
negligible.

The results (6.34) and (6.35) are quite clear, keeping in mind an analogy with
optics (Born & Wolf, 1980). The dispersion relation for massless Dirac fermions is
the same as for photons, but for the latter case we know that obstacles with
geometrical sizes much smaller than the wavelength are very inefficient scatterers.

There is a special case, however, if

J0(qR) = 0. (6.37)

Then, the expression (6.33) does not work at l = 0, and higher-order terms should
be taken into account. The result is

t0 kð Þ ffi πi
2

1
ln kRð Þ (6.38)

and
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σtr ¼ π2

k ln 2 kRð Þ : (6.39)

Therefore, instead of (6.36) we have a much larger contribution to the resistivity
(Ostrovsky, Gornyi, & Mirlin, 2006; Katsnelson & Novoselov, 2007):

ρ ffi h

e2
nimp

n

1
ln 2 kFRð Þ , (6.40)

where n ¼ k2F=π is the charge-carrier concentration.
The condition (6.37) corresponds to the case of resonance, for which a virtual

bound state in the well lies close to the neutrality point. Later in this chapter we
will consider more realistic models of such resonant scatterers, namely vacancies
and adatoms. It is interesting to see, however, that the effect already exists in the
Dirac approximation.

If we were to repeat the same calculations for a nonrelativistic electron gas
(Adhikari, 1986), then, instead of continuity of two components of the spinor wave
function at r = R, we would have conditions of continuity of the single-component
wave function and its derivative. The result is

tl kð Þ ¼
k

q

� �
Jl qRð ÞJlþ1 kRð Þ � Jl kRð ÞJlþ1 qRð Þ

H 1ð Þ
l kRð ÞJlþ1 qRð Þ � k

q

� �
Jl qRð ÞH 1ð Þ

lþ1 kRð Þ
, (6.41)

where k and q are, again, wave vectors outside and inside the potential region. In
this case t0(k) ~ 1/ln(kR) (cf. Eq. (6.38)) for general values of the parameters, and
the contribution to the resistivity takes the form (6.40). One can say that for the
two-dimensional nonrelativistic electron gas any potential scattering should be
considered resonant. This agrees with the fact that the perturbation theory does
not work in such a situation and an arbitrarily weak potential leads to the formation
of a bound state (Landau & Lifshitz, 1977).

The opposite limit

kR >> 1 (6.42)

is relevant for the problem of electron scattering by clusters of charge impurities
(Katsnelson, Guinea, & Geim, 2009; see also Chapter 11). On substituting the
asymptotics (6.5) and (6.8) into Eq. (6.30) one finds

tl kð Þ � 1
2

exp
2iV0R

ℏv

� �
� 1

� �
: (6.43)

The summation in Eq. (6.19) should be taken up to jlj � lmax � kR, thus
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dσ
dφ

¼ 2
πk

sin 2 V0R

ℏv

� � Xlmax

l¼�lmax

eilφ
					

					
2

¼ 2
πk

sin 2 V0R

ℏv

� � sin 2 2lmax þ 1ð Þφ
2

� �
sin 2

φ
2

� � :

(6.44)

The expression (6.44) has sharp maxima at the angles

φ ¼ π
2nþ 1

2lmax þ 1
, n ¼ 0, � 1, � � � ,

which can be related to periodic classical trajectories of electrons within the
potential well (for more details, see Katsnelson, Guinea, & Geim, 2009). On
substituting Eq. (6.44) into Eq. (6.25) one finds

σtr ffi 4
k
sin 2 V0R

ℏv

� �
: (6.45)

Interestingly, the cross-section (6.45) is small in comparison with the geometrical
size of the potential region R. Indeed, the region is transparent, due to Klein
tunneling. The corresponding contribution to the resistivity is

ρ ffi h

e2
nimp

n
sin 2 V0R

ℏv

� �
: (6.46)

Thus, long-range potential scattering leads to a contribution to the resistivity
proportional to 1/n.

6.3 Scattering theory for bilayer graphene in the parabolic-band
approximation

We saw in the previous section that the scattering of massless Dirac fermions in
graphene (chiral states, a linear dispersion relation) is essentially different from that
of nonrelativistic electrons (nonchiral states, a parabolic dispersion relation) in a
two-dimensional electron gas. To better understand the role of chirality and of
dispersion relations, it is instructive to consider the case of chiral states with a
parabolic dispersion relation, that is, the case of bilayer graphene in the parabolic-
band approximation (1.46). The corresponding scattering theory was developed by
Katsnelson (2007c).

To solve the Schrödinger equation for the Hamiltonian (1.46) with the addition
of a radially symmetric potential V(r), one has to use, instead of Eq. (6.3), the
angular dependences of the two components of the spinor wave function
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ψ1 ~rð Þ ¼ gl rð Þ exp ilφð Þ,
ψ2 ~rð Þ ¼ f l rð Þ exp i lþ 2ð Þφð Þ,

(6.47)

where l = 0, �1, . . . The radial components satisfy the equations

d

dr
� lþ 1

r

� �
d

dr
� l

r

� �
gl ¼ k2 � 2m∗V

ℏ2

� �
f l,

d

dr
þ lþ 1

r

� �
d

dr
þ lþ 2

r

� �
f l ¼ k2 � 2m∗V

ℏ2

� �
gl,

(6.48)

where, to be specific, we consider the case of electrons with E = ℏ2k2/(2m∗) > 0.
The problem of scattering for this case is essentially different from both the

Dirac theory and the Schrödinger theory, since evanescent waves are unavoidably
involved (cf. the discussion of Klein tunneling for the case of bilayer graphene, Section
4.7). This means that, beyond the radius of action of the potential, Bessel functions of
imaginary arguments have to be added to Eq. (6.9). More specifically, we mean the
Macdonald function Kl(kr) (Whittaker & Watson, 1927) with the asymptotics

Kl krð Þ �
ffiffiffiffiffiffiffi
π
2kr

r
exp �krð Þ (6.49)

at kr >> 1; the Bessel functions Il(kr) grow exponentially at large r and cannot be
used, due to the normalization condition for the wave function. Thus, one should
try for the solution at large distances

gl rð Þ ¼ A Jl krð Þ þ tlH
1ð Þ
l krð Þ þ clKl krð Þ

h i
,

f l rð Þ ¼ A Jlþ2 krð Þ þ tlH
1ð Þ
lþ2 krð Þ þ clKlþ2 krð Þ

h i
:

(6.50)

One can check straightforwardly that the functions (6.50) satisfy the equations
(6.48) at V(r) = 0 for any A, tl and cl.

The terms proportional to Jl(kr) are related to the incident wave (see Eq. (6.4)),

with those proportional to H 1ð Þ
l krð Þ to the scattering waves and those proportional

to Kl(kr) to the evanescent waves. The coexistence of scattering and evanescent
waves at the same energy makes the case of bilayer graphene really peculiar.

The normal component of the current operator

ĵn ¼~n
δĤ

δk
⇀ , (6.51)

where~n ¼~r=r and Ĥ is the Hamiltonian (1.46), has the form (cf. Eq. (6.17))
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ĵn ¼
ℏk
m∗

0 exp �2iφð Þ
exp 2iφð Þ 0

� �
: (6.52)

By further calculating the scattering cross-section, as in the previous section, we
find the same expression (6.19) and (6.20) formally, as for the case of single-layer
graphene. However, the symmetry properties of Eq. (6.48) are different. Namely,
they are invariant under the replacement f $ g, l $�l � 2. As a result, instead of
Eq. (6.21) we have

tl(k) = t�l�2(k). (6.53)

Substituting Eq. (6.53) into Eq. (6.19), we rewrite Eq. (6.20) as

dσ
dφ

¼ 2
πk

t�1 þ 2
X∞
l¼0

tl cos lþ 1ð Þφ½ �
					

					
2

, (6.54)

which gives us a general solution of the scattering problem.
To find the scattering amplitudes tl one needs to specify V(r). For simplicity, we

will use the expression (6.27) (a region of constant potential). Then, for the
solution of Eq. (6.48) at r < R that is regular as r ! 0 one can try

gl rð Þ ¼ αlJl qrð Þ þ βlIl qrð Þ,
f l rð Þ ¼ σ αlJlþ2 qrð Þ þ βlIlþ2 qrð Þ½ �,

(6.55)

where

σ ¼ sgn E � V0ð Þ,

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m∗ E � V0j j

ℏ2

s
:

(6.56)

Eq. (6.48) are now satisfied identically, and the coefficients αl, βl, tl, and cl should
be found from continuity of gl(r), fl(r), dgl(r)/dr, and dfl(r)/dr at r = R.

Further, we will consider only the case of a short-range potential, kR << 1.
For the case l = –1, taking into account the identities Kl(z) = K–1 (z), I1(z) = I1 (–z),

J1 (z) = – J–1 (z), and H
1ð Þ
1 zð Þ ¼ �H 1ð Þ

�1 zð Þ, one can prove immediately that c–1 = 0 and

t�1 / (kR)2. (6.57)

Also, taking into account the asymptotics of the Macdonald and Hankel
functions for l > 2, z ! 0 (we need here next-order terms, in comparison with
Eq. (6.32)),
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Kl zð Þ � 1
2

2
z

� �l

l� 1ð Þ! 1
2

2
z

� �l�2

l� 2ð Þ!,

H 1ð Þ
l zð Þ � � i

π
2
z

� �l

l� 1ð Þ!� i

π
2
z

� �l�2

l� 2ð Þ!,
(6.58)

one can prove that for l 	 1 and kR ! 0 both tl and cl are of the order of (ka)2l

or smaller and thus only the s-channel (l = 0) contributes to the scattering cross-
section, so that Eq. (6.54) can be rewritten as

dσ
dφ

¼ 8
πk

t0 kð Þj j2 cos 2φ: (6.59)

For single-layer graphene, dσ/dφ ~ cos2 (φ/2) (see Eq. (6.22)) and backscattering is
forbidden. For the case of bilayer graphene, there is a strong suppression of the
scattering at φ � π/2. This reflects a difference of the chiral properties of electron
states in these two situations.

For the case l = 0, the wave functions at r > R (but for kR << 1), Eq. (6.50),
have the forms

g0 rð Þ ¼ A 1þ t0 þ τ0 ln
kr

2

� �
þ γ

� �
þ O krð Þ2 ln krð Þ

h i
,

f 0 rð Þ ¼ A � 2i
π
t0 � τ0

2

krð Þ2 �
1
2

 !" #
þ O krð Þ2 ln krð Þ

h i
,

(6.60)

where γ � 0.577 . . . is the Euler constant,

τ0 ¼ 2it0
π

� c0: (6.61)

It follows from the continuity of df0(r)/dr at r = R that

τ0 ¼ k2R3

4A
df 0 rð Þ
dr

				
r¼R

: (6.62)

and, thus,

dg0
dr

				
r¼R

/ k2:

In the limit k ! 0 one has the condition

dg0
dr

				
r¼R

¼ 0, (6.63)

which gives us a ratio of β0/α0. As a result, for r < R
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g0 rð Þ ¼ α0 J0 qrð Þ � I0 qrð Þ J
0
0 qRð Þ
I 00 qRð Þ

� �
,

f 0 rð Þ ¼ σα0 J2 qrð Þ � I2 qrð Þ J
0
0 qRð Þ
I 00 qRð Þ

� �
,

(6.64)

where prime means d/dR. Thus, we have two equations for the constant α0 and A,

g0 Rð Þ ¼ A 1þ t0ð Þ,

f 0 Rð Þ þ R

2
df 0 Rð Þ
dR

¼ � 2iA
π

t0,
(6.65)

which gives us the final expression for t0.
It is clear that t0 does not depend on k in the limit kR! 0. It takes the value with

the maximum possible modulus, t0 = –1 (the unitary limit), when

d

dR

J0 qRð Þ
I0 qRð Þ ¼ 0: (6.66)

This behavior is dramatically different from both that of massless Dirac fermions
and that of conventional nonrelativistic electrons, for which t0(k) ! 0 at k ! 0
(either linearly or ~l/jln kj).

As a result, for the case of short-range scattering in bilayer graphene (in the
parabolic-band approximation)

σtr / 1
k
, (6.67)

and the corresponding contribution to the resistivity is

ρ � h

e2
nimp

n
: (6.68)

Within the perturbation theory, this concentration dependence was obtained by
Koshino and Ando (2006).

We will postpone further discussion of these results until Chapter 11, where we
will discuss electronic transport in graphene; here we restrict ourselves to the
quantum-mechanical problem.

6.4 General theory of defects in a honeycomb lattice

In general, the continuum medium approximation used earlier is not sufficient for
discussing short-range scattering centers in graphene, since they induce intervalley
transitions (Shon & Ando, 1998). To study these effects, we pass here to consider-
ation of defects in a honeycomb lattice (Peres, Guinea, & Castro Neto, 2006;
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Wehling et al., 2007; Basko, 2008; Wehling, Katsnelson, & Lichtenstein, 2009a).
We will use the T-matrix formalism, which has already been mentioned in Section
4.2 (see Eq. (4.33) and (4.34)), but here we will present it in a more systematic way
(see Lifshitz, Gredeskul, & Pastur, 1988; Vonsovsky & Katsnelson, 1989).

Let us consider a general, single-particle Hamiltonian

Ĥ ¼ Ĥ0 þ V̂ (6.69)

defined on a crystal lattice, Ĥ0 being the Hamiltonian of the ideal lattice and V̂ the
perturbation created by defects. The local density of states at site i is determined by
the expression

Ni Eð Þ ¼ i δ E � Ĥ
� �		 		i �

, (6.70)

which can also be represented as

Ni Eð Þ ¼ � 1
π
Im Ĝii Eð Þ, (6.71)

where

Ĝ Eð Þ ¼ lim
δ!þ0

1

E � Ĥ þ iδ
(6.72)

is the Green function (resolvent) of the operator Ĥ . It follows immediately from
Eq. (6.69) that

Ĝ
�1 ¼ bG�1

0 � V̂ , (6.73)

where Ĝ0 is the Green function of the unperturbed problem Eq. (4.34). By
multiplying Eq. (6.73) by operators Ĝ from the right side and Ĝ0 from the left
side we derive the Dyson equation

Ĝ Eð Þ ¼ Ĝ0 Eð Þ þ Ĝ0 Eð ÞV̂ Ĝ Eð Þ: (6.74)

Its formal solution can be written as

Ĝ Eð Þ ¼ Ĝ0 Eð Þ 1� V̂ Ĝ0 Eð Þ� ��1
, (6.75)

which is a compact notation for the infinite series

Ĝ Eð Þ ¼ Ĝ0 Eð Þ þ Ĝ0 Eð ÞV̂ Ĝ0 Eð Þ þ Ĝ0 Eð ÞV̂ Ĝ0 Eð ÞV̂ Ĝ0 Eð Þ þ � � � (6.76)

Alternatively, the series (6.76) can be written as

Ĝ Eð Þ ¼ Ĝ0 Eð Þ þ Ĝ0 Eð ÞT̂ Eð ÞĜ0 Eð Þ, (6.77)
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where T̂ is the T-matrix satisfying Eq. (4.33). Its formal solution can be repre-
sented as

T̂ Eð Þ ¼ 1� V̂ Ĝ0 Eð Þ� ��1
V̂ : (6.78)

The change of the spectral density can be expressed in terms of the T-matrix. The
total density of states

N Eð Þ ¼ Tr δ E � Ĥ
� � ¼ � 1

π
Tr Im Ĝ Eð Þ (6.79)

can be written, due to Eq. (6.72) and (6.75), as

N Eð Þ ¼ 1
π

∂
∂E

Tr Im ln Ĝ Eð Þ ¼ 1
π

∂
∂E

Tr Im ln Ĝ0 Eð Þ � ln 1� V̂ Ĝ0 Eð Þ� �� �
(6.80)

since

Ĝ Eð Þ ¼ � ∂
∂E

ln Ĝ Eð Þ: (6.81)

At the same time, due to Eq. (6.78),

ln T̂ Eð Þ ¼ � ln 1� V̂ Ĝ0 Eð Þ� �þ ln V̂ , (6.82)

the last term being energy-independent. As a result, the change of the density of
states due to the perturbation V̂ can be presented as

ΔN Eð Þ ¼ N Eð Þ � N0 Eð Þ ¼ 1
π

∂
∂E

Im Tr ln T̂ Eð Þ: (6.83)

Finally, using the operator identity

Tr ln Â ¼ ln det Â, (6.84)

one can represent Eq. (6.83) in the form

ΔN Eð Þ ¼ � 1
π
Im

∂
∂E

ln det 1� Ĝ0 Eð ÞV̂� �
, (6.85)

which is more convenient for real calculations.
The contribution of point defects to the resistivity can be also expressed in terms

of the T-matrix, see Chapter 11.
If the perturbation V̂ is localized on one site i = 0 only

Vij = Vδi0δj0, (6.86)

then one can see from Eq. (6.78) that the T̂ -matrix is also localized on the same
site:
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Tij(E) = T00(E)δi0δj0, (6.87)

where

T00 Eð Þ ¼ V

1� VG 0ð Þ
00 Eð Þ

(6.88)

and G 0ð Þ
00 Eð Þ is the matrix element of the Green function for the ideal crystal lattice

at site 0. For the lattice without basis,

G00
0ð Þ Eð Þ ¼ lim

δ!þ0

X
~k

1

E � t ~k
� �

þ iδ
: (6.89)

However, for the case of a honeycomb lattice the Hamiltonian Ĥ0 is a 2 
 2 matrix,
which has, in the nearest-neighbor approximation, the form (1.14). By inverting the
matrix E � Ĥ0 one finds the Green function Ĝ0 in the k representation:

Ĝ0 E;~k
� �

¼ lim
δ!þ0

1

E þ iδð Þ2 � t ~k
� �			 			2

E t ~k
� �

t∗ ~k
� �

E

0@ 1A, (6.90)

where t ~k
� �

¼ tS ~k
� �

. Thus, instead of Eq. (6.89) we have, for the on-site Green
function

G 0ð Þ
00 Eð Þ ¼ lim

δ!þ0

X
~k

E

E þ iδð Þ2 � t ~k
� �			 			2

¼ 1
2

lim
δ!þ0

X
~k

1

E þ iδ� t ~k
� �			 			þ 1

E þ iδþ t ~k
� �			 			

0B@
1CA (6.91)

for which it does not matter whether the site 0 belongs to sublattice A or sublattice
B. At jEj << jtj

N0 Eð Þ ¼ � 1
π
ImG 0ð Þ

00 Eð Þ ¼ 1
π

Ej j
ℏ2v2

(6.92)

(cf. Eq. (1.72); our quantity is smaller by a factor of 2, since here we do not take
into account the spin degeneracy). To find the real part of G 0ð Þ

00 one can use
Kramers–Kronig relations:

ReG 0ð Þ
00 Eð Þ ¼ P

ð∞
�∞

dE0 N0 E0ð Þ
E � E0 , (6.93)

6.4 General theory of defects in a honeycomb lattice 155

https://www.cambridge.org/core


where P is the symbol for the principal value. We can also just guess the answer,

keeping in mind that G 0ð Þ
00 Eð Þ is a regular function of energy in the upper complex

half-plane.
Notice that jEj= Esgn E= E[1� 2θ(�E)], where θ(x> 0)= 1, θ(x< 0)= 0 and

θ �Eð Þ ¼ 1
π
Im ln E þ iδð Þ:

This means that

Ej j ¼ E � 2
π
E Im ln E þ iδð Þ (6.94)

and, thus, the term jEj in � 1=πð ÞIm G 0ð Þ
00 Eð Þ corresponds to 2E Reln (E + iδ) =

2E ln jEj in Re G 0ð Þ
00 Eð Þ. Taking into account also that, by symmetry,

G 0ð Þ
00 E ¼ 0ð Þ ¼ 0, (6.95)

one finds

ReG 0ð Þ
00 Eð Þ ffi 2

π

E ln
Ej j
D

� �
ℏ2v2

, (6.96)

where we introduce within the logarithm a factor D of the order of the bandwidth.
For the accurate calculation of this factor, see Basko (2008). A general theory of
scattering by short-range defects in graphene, including group-theory analysis, can
also be found in that paper.

The contributions of various types of defects to the transport properties will be
considered in detail in Chapter 11. Here we will just give some simple estimations,
in order to establish relations between this section and the previous ones.

For the case of a weak enough potential V, the scattering rate (6.24) can be
estimated, according to the Fermi golden rule, as

1
τ kFð Þ ¼

2π
ℏ
nimp Vj j2N0 EFð Þ: (6.97)

For the case of a small concentration of defects but strong scattering, one can prove
rigorously (Luttinger & Kohn, 1958) that the potential V should be replaced by the
T-matrix:

1
τ kFð Þ ¼

2π
ℏ
nimp T00 EFð Þj j2N0 EFð Þ (6.98)

(for the case of graphene, see Robinson et al., 2008; Wehling et al., 2010a).
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6.5 The case of vacancies

As a specific application of the general theory described previously, consider first
the case of vacancies (Peres, Guinea, & Castro Neto, 2006). Vacancies are
not naturally present in graphene, due to their very high formation energy of about
7.5 eV; see Kotakoski, Krasheninnikov, and Nordlund (2006). However, they can
be created by ion bombardment (Chen et al., 2009).

The simplest way to simulate the vacancy is just to put V = ∞ in the expression
(6.88), thus making the site i = 0 unavailable for electrons. In this case,

T00 Eð Þ ¼ � 1

G 0ð Þ
00 Eð Þ

: (6.99)

On substituting Eq. (6.99) into Eq. (6.77) one finds that G00(E)= 0, as it should be.
For small energies jEj << D one finds from Eq. (6.96) and (6.99)

T00 Eð Þ ¼ � πℏ2v2

E

1

2 ln
Ej j
D

� �
� iπ sgn E

: (6.100)

The change of the density of states, according to Eq. (6.83), is

ΔN Eð Þ ¼ 1
π

∂
∂E

Im ln T00 Eð Þ

¼ � 1
π

∂
∂E

Im ln 2 ln
Ej j
Δ

� iπsgnE

� �
� � 2

Ej j ln 2
D

Ej j
� � (6.101)

This contribution is negative since the vacancy changes the total number of sites in
the system by one, thus ð∞

�∞

dE ΔN Eð Þ ¼ �1: (6.102)

It is singular at E ! 0.
By substituting Eq. (6.100) into Eq. (6.98) and (6.23), one can estimate the

vacancy contribution to the momentum relaxation rate and, thus, to the resistivity:

ρ � h

e2
nimp

n

1
ln 2 kFað Þ , (6.103)

coinciding with Eq. (6.40). Thus, the vacancy is a resonant scatterer, contributing
essentially to the resistivity (Hentschel & Guinea, 2007; Chen et al., 2009).
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Qualitatively, this result can also be obtained within the continuum model. Let
us consider the Dirac equation for the empty space with the radial wave functions
(6.9). Let us assume that the disc r < R is just cut from the sample. To be specific,
let us assume boundary conditions of zigzag type ψA = 0, that is

gl(R) = 0 (6.104)

(the case ψB = 0 can be derived just by the replacement l ! �l � 1, as was
explained in Section 6.1). Taking into account the behavior of Bessel and Hankel
functions at kr << 1 (Eq. 6.32), one finds immediately that

t0 kð Þ ¼ � J0 kRð Þ
H 1ð Þ

0 kRð Þ
� πi

2 ln kRð Þ , (6.105)

coinciding with Eq. (6.38). As we have seen in Section 6.2, this gives the estima-
tion (6.103) for the resistivity (Hentschel & Guinea, 2007).

Consider now the asymptotics of the perturbed density of states

ΔNi Eð Þ ¼ � 1
π
Im G 0ð Þ

i0 Eð ÞT00 Eð ÞG 0ð Þ
0i Eð Þ

h i
(6.106)

(see Eq. (6.77)) at Ri ! ∞. The asymptotics of the Green function

G 0ð Þ
i0 Eð Þ ¼

X
~k

exp i~k~Ri

� �
G0 E;~k
� �

, (6.107)

where G0 E;~k
� �

is defined by Eq. (6.90), is determined by the region of ~k close
to one of the conical points, K or K0. For a generic perturbation V the result is
(Bena & Kivelson, 2005; Lin, 2005, 2006; Wehling et al., 2007)

ΔNi Eð Þe 1
Ri

(6.108)

at Ej jRi

ℏv >> 1. For the case of a vacancy (V = ∞) we have, instead of Eq. (6.108),

ΔNi Eð Þe 1

R2
i

(6.109)

(Pereira et al., 2006).
Finally, consider the case of a finite concentration of vacancies. The singularity

of the scattering amplitude, Eq. (6.100) and (6.105), results in the formation of
mid-gap states, or vacancy bands (Pereira et al., 2006; Yuan, De Raedt &
Katsnelson, 2010a, 2010b). Fig. 6.1 shows the total density of states (in the small-
energy region) obtained numerically for a large (about 107 nodes) piece of honey-
comb lattice with periodic boundary conditions, with different concentrations of
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randomly distributed vacancies (Yuan, De Raedt, & Katsnelson, 2010a). The
vacancy-induced states form a peak at E = 0 which was observed experimentally
by Ugeda et al. (2010). In the continuum-medium model (see Eq. (6.104)) these
states are associated with the edge states at the boundary of the void (Pereira et al.,
2006). Note, however, that the latter model is valid only qualitatively, since the
atomically sharp disorder induces intervalley processes, which should be taken into
account (Basko, 2008).
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Fig. 6.1 The density of states of graphene with a small concentration of vacancies
(a) or hydrogen atoms (that is, adatoms with the parameters (6.114)) (b). Solid
lines, pure graphene; dashed lines, 0.1% of defects; dotted lines, 1% of defects.
(Reproduced with permission from Yuan, De Raedt, & Katsnelson, 2010a.)
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6.6 Adsorbates on graphene

Adsorbed atoms and molecules are probably the most important examples of point
defects in the physics of graphene. Owing to the outstanding strength of the carbon
honeycomb lattice it is very difficult to introduce any defects into the lattice itself.
At the same time, some contamination of graphene is unavoidable. A systematic
study of adsorbates on graphene was started by Schedin et al. (2007), who
discovered an extreme sensitivity of the electric properties of graphene to gaseous
impurities; even the adsorption of a single molecule can be detected. The case of
NO2 was studied in detail, both theoretically and experimentally, by Wehling et al.
(2008b). Optimized structures and electron densities of states for the NO2 mono-
mer and dimer are shown in Fig. 6.2. One can see that for the latter case (N2O4)
there is a peak in the density of states that is reminiscent of the vacancy-induced
mid-gap states. Chemical functionalization of graphene, leading, in particular, to
the derivation of new two-dimensional crystals, such as graphane, CH (Elias et al.,
2009), and fluorographene, CF (Nair et al., 2010), starts with chemisorption of the
corresponding adatoms or admolecules (for a review, see Boukhvalov & Katsnel-
son, 2009a). Last but not least, scattering by adatoms and admolecules seems to be
one of the most important factors limiting electron mobility in graphene (Wehling
et al., 2010a; Ni et al., 2010); for more details, see Chapter 11.

Fig. 6.2 Left: the spin-polarized density of states of graphene with adsorbed NO2

(the black line is for spin up and the gray line is for spin down), (a) and (b), and
the density of states for N2O4, (c)–(e), in various adsorption geometries. Right:
adsorption geometries obtained from the calculations.
(Reproduced with permission from Wehling et al., 2008b.)
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The simplest single-electron model describing adsorbates is the hybridization
model with the Hamiltonian (Robinson et al., 2008; Wehling et al., 2010a)

Ĥ ¼ Σ
ij
tijĉ

þ
i ĉj þ Σ

ij
γij ĉi

þd̂ j þ d̂
þ
j ĉi

� �
þ Ed

X
i

bdþ
i d̂ i, (6.110)

where the operators ĉi and d̂ i annihilate electrons on the ith carbon atom and ith
atom of adsorbate, respectively, tij are the hopping parameters for the carbon
honeycomb lattice, Ed is the electron energy for the adsorbate atoms (which are
assumed to be identical), and γij are hybridization parameters between the ith carbon
atom and jth adsorbed atom. The d electron subsystem can be rigorously excluded
by projection to c subspace only; the effective Hamiltonian for c electrons has the
form (6.69), where Ĥ0 is the first term on the right-hand side of Eq. (6.110) (the band
Hamiltonian for graphene), and V̂ is the energy-dependent perturbation

Vij ¼
P

l γilγlj
E � Ed

: (6.111)

If we consider the case of a single adatom (i = 0) and assume, for simplicity, that
γij = γδij, we pass to the problem (6.86) with

V Eð Þ ¼ γ2

E � Ed
: (6.112)

Further, we can simply use the theory developed in the previous section.
If the condition

γ2 >> jEdjjtj (6.113)

is satisfied, then, at energies close enough to the Dirac point (jEj << jtj), the
potential (6.112) is very strong, and an adatom is effectively equivalent to a
vacancy.

To understand this very important point, let us consider the hydrogen atom as an
example. It is attached to one of the carbon atoms, transforming locally its state
from sp2 bonded to sp3 bonded; distortions make the angles between the bonds and
bond lengths locally similar to those in diamond (Boukhvalov, Katsnelson, &
Lichtenstein, 2008), see Fig. 6.3. This means that the carbon atom bonded with
hydrogen is almost unavailable for pz electrons, since their energies are locally shifted
too strongly. This makes it similar to a vacancy. Ab initio calculations (Wehling et al.,
2010a) show that the local electronic structure for the case of a hydrogen adatom can
be quite accurately fitted by the hybridization model with the parameters

γ � 2 tj j, Ed � � tj j
16

, (6.114)
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so the inequality (6.113) is satisfied with high precision. This means that hydrogen
atoms form mid-gap states, which are, however, slightly shifted with respect to the
Dirac point, because Ed < 0 (Wehling et al., 2010a; Yuan, De Raedt, & Katsnel-
son, 2010a), see Fig. 6.1.

Interestingly, approximately the same parameters (6.114) describe the case of
various organic groups, such as CH3, C2H5, and CH2OH, attached to carbon atoms
via the carbon–carbon chemical bond (Wehling et al., 2010a). One can assume that
such bonds can be formed in real graphene with organic contaminants, which,
therefore, can be responsible for the appearance of strongly “resonant” scatterers
(Ni et al., 2010; Wehling et al., 2010a).

The position of the impurity peak corresponds to the pole of the T-matrix

1 ¼ V Eimp
� �

G 0ð Þ
00 Eimp
� �

(6.115)

(see Eq. (6.88)). With the parameters (6.114) we find Eimp � �0.03 eV, in
agreement with the results of straightforward ab initio calculations (Wehling,
Katsnelson, & Lichtenstein, 2009b). For the case of fluorine, F, and the
hydroxyl group, OH, the latter parameters give, respectively, Eimp � –0.67 eV
and Eimp � – 0.70 eV, so these impurities are weaker scatterers than hydrogen or a
vacancy (Wehling, Katsnelson, & Lichtenstein, 2009b).

Further discussion will be presented in Chapters 11 and 12, in relation to the
effects of adatoms on electronic transport in graphene and their magnetic proper-
ties, respectively.

6.7 Scanning tunneling microscopy of point defects on graphene

Scanning tunneling microscopy (STM) allows us to probe the electronic properties
of conducting materials with atomic-scale spatial resolution (Binnig & Rohrer,
1987). Being a local probe, it is especially suitable for studying the electronic
structures of various types of defects and defect-induced features, including many-
body effects (Li et al., 1998; Madhavan et al., 1998; Balatsky, Vekhter, & Zhu,

hA2

hB1 dC–H hA0

Fig. 6.3 Atomic displacements around a hydrogen atom attached to one of the
carbon atoms in graphene. Carbon atoms belonging to sublattices A and B are
shown in dark gray and light gray, respectively; hA0 ¼ 0:257 A

�
,

hB1 ¼ �0:047 A
�
, hA2 ¼ �0:036 A

�
, and dC�H ¼ 1:22 A

�
.

(Reproduced with permission from Boukhvalov, Katsnelson, & Lichtenstein, 2008.)
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2006). In particular, it was used locally to probe vacancies in the top (graphene)
layer of graphite (Ugeda et al., 2010) and a magnetic adatom (Co) on graphene
(Brar et al., 2011). Here we will discuss some general peculiarities of the STM
spectra of graphene (Uchoa et al., 2009; Saha, Paul, & Sengupta, 2010; Wehling
et al., 2010b).

Assuming that the tunneling between the sample and the STM tip is weak
enough, one can derive, to lowest order in the tunneling amplitude M, the
following expression for the current–voltage (I–V) characteristic (Tersoff &
Hamann, 1985; Mahan, 1990):

I Vð Þ ¼ πe
ℏ

X
nvσ

Mσ
nv

		 		2 ð dE Nσ
n Eð ÞNσ

n E � eVð Þ f E � eVð Þ � f Eð Þ½ �, (6.116)

where f(E) is the Fermi distribution function, σ is the spin projection, Greek (Latin)
indices label electron eigenstates for the sample (tip) ψvσ and ψnσ,

Mσ
nv ¼

ℏ2

2m

ð
d~S ψ∗

nσrψvσ � ψvσrψ∗
nσ

� �
(6.117)

is the current-matrix element, m is the free-electron mass, and the surface integral
in Eq. (6.117) is taken over arbitrary area between the tip and sample. The spectral
densities

Nσ
v Eð Þ ¼ � 1

π
Im Gσ

v Eð Þ (6.118)

for the sample and a similar quantity Nσ
v Eð Þ for the tip determine the intensity of

tunneling. If one neglects the spin polarization, assumes that the spectral density of
the tip is a smooth function, and uses a semiclassical approximation (Ukraintsev,
1996), one can demonstrate that, at low enough temperatures (T << jeVj),

dI

dV
/ � 1

π
Im Gii E ¼ eVð Þ, (6.119)

where i is the site index for the atom of the sample nearest to the tip. This means
that, using STM, one can probe the spatial distribution of the electron density
around the defect (see Wehling et al., 2007).

Let us assume that the adatom situated at the site i = 0 has a resonant state which
can be of single-electron or many-body origin (e.g., the Kondo effect). The
expression (6.116) and, thus, (6.119) are correct, anyway, assuming that the
tunneling amplitude M is small enough and the lowest-order perturbation theory
in M works (Mahan, 1990).

The resonance at E = Ed is manifested in this situation via two contributions,
namely, the direct contribution of d electrons to tunneling and the contribution of c
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electrons to the tunneling, via c-d hybridization. This leads to the Fano (anti)
resonance effect (Madhavan et al., 2001). For simplicity, we can assume that d
states are more localized than c states and, thus, only the second effect is important.
In this situation, we can use Eq. (6.119), assuming that G is the Green function of
c electrons. Its change due to the presence of an impurity is determined by
Eq. (6.77). On putting i = 0 one finds

Im G00 Eð Þ � G 0ð Þ
00 Eð Þ

h i
¼ Im G 0ð Þ

00 Eð Þ
h i2

T00 Eð Þ

 �

¼ Re G 0ð Þ
00 Eð Þ

h i2
� Im G 0ð Þ

00 Eð Þ
h i2
 �

Im T00 Eð Þ

þ 2 Im G 0ð Þ
00 Eð Þ

h i
Re G 0ð Þ

00 Eð Þ
h in o

Re T00 Eð Þ:

(6.120)

In the case of resonance,

T00 Eð Þe 1
E � Ed þ iΔ

, (6.121)

where Δ is the halfwidth of the resonance, thus

�Im T00 Eð Þe Δ

E � Edð Þ2 þ Δ2
(6.122)

has a maximum at E = Ed and

Re T00 Eð Þe E � Ed

E � Edð Þ2 þ Δ2
(6.123)

changes sign. Assuming that G 0ð Þ
00 Eð Þ is smoothly dependent on the energy at the

energy scale jE � Edj � Δ and substituting Eq. (6.120) through (Eq. (6.123) into
Eq. (6.119), one finds

dI

dV
/ q2 � 1þ 2qε0

1þ ε02
, (6.124)

where

ε0 ¼ eV � Ed

Δ
(6.125)

and the quantity

q ¼ �Re G 0ð Þ
00 Edð Þ

Im G 0ð Þ
00 Edð Þ

(6.126)
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is called the Fano asymmetry factor (which should not be confused with the Fano
factor (3.17) – the usual problem when a particular scientist made essential
contributions to various fields!). If q is large then the resonance should be
observed, whereas for small q one will observe rather the antiresonance (a dip in
dI/dV instead of a peak).

For graphene, due to Eq. (6.92) and (6.96), the Fano factor at jEj << Δ,

q ¼ 2
π
ln

Δ
Ed

				 				, (6.127)

is very large (Wehling et al., 2010b).
For a more detailed analysis, see Uchoa et al. (2009), Wehling et al. (2010b) and

Saha, Paul, and Sengupta (2010).

6.8 Long-range interaction between adatoms on graphene

Consider now the energetics of point defects and their clusters. On substituting
Eq. (6.83) for the change of the total density of states into the expression for the
thermodynamic potential of noninteracting fermions Eq. (2.134), one finds

ΔΩ ¼ � T

π
Im Tr

ð∞
�∞

dE ln 1þ exp
μ� E

T

� �� �
∂
∂E

ln T̂ Eð Þ

¼ 1
π
Im Tr

ð∞
�∞

dE f Eð Þ ln T̂ Eð Þ

¼ 1
π
Im
ð∞
�∞

dE f Eð Þ ln det 1� Ĝ0 Eð ÞV̂� �
(6.128)

(see Eq. (6.85)).
This expression can be used, for example, to study the effects of interactions

between impurities. Let us assume that

Vij = V1δi1δj1 + V2δi2δj2, (6.129)

which means two defects with local potential at sites i = 1 and i = 2 (cf. Eq. (6.86)).
Then,

det 1� Ĝ0V
� � ¼ 1� Ĝ

0ð Þ
11 V1

h i
1� Ĝ

0ð Þ
12 V2

h i
� V1Ĝ

0ð Þ
12 V2Ĝ

0ð Þ
21 : (6.130)
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To find the interaction energy one needs to substitute Eq. (6.130) into Eq. (6.128)
and subtract the same expression with Ĝ 0ð Þ

12 ¼ 0, which corresponds to the case of
noninteracting defects. As a result, we obtain

Ωint ¼ 1
π
Im
ð∞
�∞

dE f Eð Þ ln 1� T 0ð Þ
11 Eð ÞG 0ð Þ

12 Eð ÞT 0ð Þ
22 Eð ÞG 0ð Þ

21 Eð Þ
h i

, (6.131)

where T 0ð Þ
ii Eð Þ are the single-site T-matrices (6.88). Keeping in mind that the

functions G(0)(E) and T(E) are analytic at Im E > 0, that the Fermi function has
poles at

E= μ+ iεn, (6.132)

where
εn = πT(2n + 1),

with the residues –T, and recalling that

Im A E þ i0ð Þ ¼ 1
2i

A E þ i0ð Þ � A E � i0ð Þ½ �, (6.133)

one can rewrite the expression (6.131) as

Ωint ¼ �T
X
εn

ln 1� T 0ð Þ
11 iεn þ μð ÞG 0ð Þ

12 iεn þ μð ÞT 0ð Þ
22 iεn þ μð ÞG 0ð Þ

21 iεn þ μð Þ
h i

(6.134)

(Shytov, Abanin, & Levitov, 2009). One can use this expression to calculate the
interaction energy for two resonant impurities, such as vacancies or hydrogen
adatoms, when Eq. (6.99) can be used for the T-matrix.

To calculate the asymptotics of the interaction energy at large distances, one can
assume that G12 is small and only take into account the first term in the Taylor
expansion of Eq. (6.134):

Ωint � T
X
εn

T 0ð Þ
11 iεn þ μð ÞG 0ð Þ

12 iεn þ μð ÞT 0ð Þ
22 iεn þ μð ÞG 0ð Þ

21 iεn þ μð Þ: (6.135)

Later we will consider the case of undoped graphene (μ = 0).
Using this expression, one can prove that the sign of the interaction is different

for impurities belonging to the same sublattice and to a different sublattice. In the
latter case, there is attraction between the impurities, decaying as

UAB rð Þ / � 1
r ln r=að Þ (6.136)

(r >> a), whereas for the former case there is repulsion
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UAA rð Þ / 1
r2 ln r=að Þ : (6.137)

This means that the resonant impurities would prefer to sit in different
sublattices (Shytov, Abanin, & Levitov, 2009). This consideration is valid only
at large distances. Interestingly, first-principles electronic-structure calculations
(Boukhvalov, Katsnelson, & Lichtenstein, 2008; Boukhvalov & Katsnelson, 2009a)
show that the same happens for the nearest-neighbor, next-nearest-neighbor, etc.
distances: The resonant impurities always prefer to sit in different sublattices.
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7

Optics and response functions

7.1 Light absorption by Dirac fermions: visualization of the
fine-structure constant

In this chapter we will discuss electromagnetic properties of graphene related to
electron–photon interaction. The discussion of optical properties related to phonons
(infrared adsorption, the Raman effect) will be postponed until Section 9.8.

Massless Dirac fermions in two dimensions have an amazing property: their
optical response is universal and expressed only in terms of the fine-structure
constant (Ando, Zheng, & Suzuura, 2002; Gusynin, Sharapov, & Carbotte, 2006;
Nair et al., 2008)

α ¼ e2

ℏc
� 1

137:036
: (7.1)

Experiments on light absorption of graphene can, literally, visualize this funda-
mental constant (Nair et al., 2008). To see this, let us determine the electric field of

the light via the vector potential ~A tð Þ ¼ ~A exp �iωtð Þ,

~E tð Þ ¼ � 1
c

∂~A
∂t

¼ iω
c
~A: (7.2)

This is more convenient for optics than the representation via the scalar potential
~E ¼ �~∇φ, but is, of course, equivalent to it due to gauge invariance. Thus, the
Hamiltonian of Dirac electrons in the presence of an electric field is (cf. Eq. (2.20)
and (2.24))

Ĥ ¼ v~σ ~̂p� e

c
~A

� �
¼ Ĥ0 þ Ĥ int, (7.3)

where

Ĥ int ¼ � ve

2c
~σ~A ¼ iev

2ω
~σ~E (7.4)
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is the Hamiltonian of the electron–photon interaction. The factor 1
2 in Eq. (7.4) is

necessary, since the standard expression for the complex field is

~E tð Þ ¼ Re ~E exp �iωtð Þ� � ¼ 1
2

~E exp �iωtð Þ þ~E∗ exp �iωtð Þ� �
(7.5)

and we take into account only the first term. This interaction induces transitions

from the occupied hole states ψh
~k
� �

to the empty electron states ψe
~k
� �

with the

same wave vector~k (see Eq. (1.30)), the intraband transitions being forbidden by the
momentum conservation (Fig. 7.1). The matrix element of the Hamiltonian (7.4) is

ψhjĤ intjψe

� � ¼ ev

2ω
Ey cos φ∓Ex sin φ
� 	

, (7.6)

where the � and + signs correspond to K and K0 valleys. It only depends on the
polar angle φ of the ~k vector, not on its length. On averaging the square matrix
element over φ one finds

Mj j2 ¼ ψh Ĥ int



 

ψe

� �

 

2 ¼ e2v2

8ω2
~E


 

2, (7.7)

where we assume that the photon propagates perpendicular to the graphene plane
and, thus, the vector ~E ¼ Ex;Ey; 0

� 	
lies within the plane. The absorption prob-

ability per unit time, to the lowest order of perturbation theory, is (Landau &
Lifshitz, 1977)

P ¼ 2π
ℏ

Mj j2N ε ¼ ℏω
2

� �
, (7.8)

where N(ε) is the density of states (1.72) (we take into account the spin and valley
degeneracy) and the energy of the final states is ħω/2 as is obvious from Fig. 7.1.
On substituting Eq. (1.72) and (7.7) into (7.8) we find

P ¼ e2

4ℏ2ω
~E


 

2: (7.9)

Fig. 7.1 A schematic representation of direct optical transitions in graphene.
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Thus, the absorption energy per unit time is

Wa ¼ Pℏω ¼ e2

4ℏ
~E


 

2: (7.10)

At the same time, the incident energy flux is (Jackson, 1962)

Wi ¼ c

4π
~E


 

2: (7.11)

The absorption coefficient is, therefore,

η ¼ Wa

W i
¼ πe2

ℏc
� 2:3% (7.12)

and is universal, assuming that ℏω > 2jμj. Otherwise, the transitions are forbidden
by the Pauli principle (see Fig. 7.1) and η = 0. For visible light, ℏω � 1 � 2 eV is
much higher than the Fermi energy in graphene. Moreover, it is much higher than
the energy of electron hopping between layers in multilayer graphene or graphite.
Therefore, the absorption for N-layer graphene is just Nη. This behavior was
observed experimentally for single-layer and bilayer graphene (Nair et al., 2008)
and for graphite (Kuzmenko et al., 2008). According to Eq. (7.12), graphene is
quite transparent. At the same time, one should keep in mind that this is an
absorption coefficient of more than 2% per single atomic layer, which is a huge
value. Thus, the interaction of Dirac electrons with photons is actually very strong.

In the first work (Novoselov et al., 2004) single-layer graphene on SiO2 was first
detected just by the human eye, via a conventional (optical) microscope. It was a
lucky coincidence that the contrast due to light absorption in graphene was
strongly enhanced by interference phenomena in the SiO2 layer with appropriate
thickness. The optics of the visibility of graphene on a substrate was considered by
Blake et al. (2007) and Abergel, Russel, and Fal’ko (2007).

7.2 The optics of Dirac fermions: the pseudospin precession formalism

The optical properties of Dirac fermions can be studied in a physically transparent
way using the equations of motion for the density matrix (Katsnelson, 2008). It has
the form (2.173). For the Hamiltonian one can use Eq. (7.3); however, it is more
instructive to change the gauge and write

Ĥ int ¼ �e~E tð Þ~̂r ¼ �ie~E tð Þ~∇~k (7.13)

(see Eq. (2.178)). We will show explicitly that the result (7.12) can be derived
within this representation as well. Thus, the equation (2.173) reads
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iℏ
∂ρ̂~k
∂t

¼ ℏv~k ~̂σ; ρ̂~k

h i
� ie ~E tð Þ�~∇~k

� �
ρ̂~k, (7.14)

where ρ̂~k is the 2 � 2 pseudospin matrix

ρ̂~k
� 	

αβ ¼ ψþ
~kβ
ψ~kα

D E
(7.15)

(cf. Eq. (2.170) and (3.1)). It can be expanded in Pauli matrices

ρ̂~k ¼ n~kÎ þ ~m~k~̂σ, (7.16)

where Î is the unit 2 � 2 matrix, and

n~k ¼
1
2
Trρ̂~k (7.17)

and

~m~k ¼
1
2
Tr ~̂σρ̂~k

� �
(7.18)

are charge and pseudospin densities (in the ~k representation). On substi-
tuting Eq. (7.16) into Eq. (7.14) we find the separated equations for the charge
density

∂n~k
∂t

¼ � e

ℏ
~E�~∇~k
� �

n~k, (7.19)

and the pseudospin density

∂~m~k

∂t
¼ 2v ~k�~m~k

� �
� e

ℏ
~E�~∇~k
� �

~m~k: (7.20)

To calculate the time-dependent current density

~j ¼ Tr ~̂jρ̂
� �

¼ 2ev
X
~k

~m~k, (7.21)

we need only Eq. (7.20). It is rigorous (for noninteracting fermions) and can be
used to calculate both linear and nonlinear optical properties. The first term on the
right-hand side of Eq. (7.20) is nothing other than precession, with a pseudomag-
netic “field” proportional to ~k acting on the pseudospin degree of freedom.
A similar formalism was used by Anderson (1958) as the most physical way to
represent the BCS theory of superconductivity.

To calculate the optical conductivity we will use the first-order perturbation
in ~E, assuming that it has the form ~E exp �iωtð Þ, and look for the solution of
Eq. (7.20) as
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~m~k tð Þ ¼ ~m~k
0ð Þ þ δ~m~k exp �iωtð Þ, (7.22)

where

δ~m~k e~E:
To calculate ~m~k

0ð Þ, we use the unitary transformation

ψ~k1 ¼ 1ffiffiffi
2

p ξ~k1 þ ξ~k2
� 	

,

ψ~k2 ¼ exp iφ~k
� 	ffiffiffi
2

p ξ~k1 � ξ~k2
� 	

,

(7.23)

diagonalizing the Hamiltonian Ĥ0,

Ĥ0 ¼
X
~k

ℏvk ξþ~k2ξ~k2 � ξþ~k1ξ~k1
� �

: (7.24)

So ξ~k1 and ξ~k2 are annihilation operators for holes and electrons, respectively.
At equilibrium,

ξþ~kiξ~ki
D E

¼ f~ki (7.25)

are Fermi distribution functions depending on the energies ∓ℏvk. We obtain

~m~k
0ð Þ ¼

~k

2k
f~k1 � f~k2
� 	

: (7.26)

Eq. (7.20) takes the form

ω δ~m~k ¼ 2v ~k � δ~m~k

� �
� e

ℏ
~E�~∇~k
� �

~m~k
0ð Þ: (7.27)

Since the vector (7.26) lies in the xy-plane, the component δmz is not coupled to the
electric field and can be found from Eq. (7.27):

δm~k
z ¼ 2v

ω
kxδm~k

y � kyδm~k
x

� 	
: (7.28)

Using Eq. (7.28) to exclude δmz from the equations for δmx and δmy, we find

ω2 � 4v2k2y

� �
δm~k

x þ 4v2kxkyδm~k
y ¼ � ieω

ℏ
E
∂m~k

x 0ð Þ

∂kx
,

4v2kxkyδm~k
x þ ω2 � 4v2k2x

� 	
δm~k

y ¼ � ieω
ℏ

E
∂m~k

y 0ð Þ

∂kx
, (7.29)
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where we have chosen the direction of the x-axis along the electric field. By
solving Eq. (7.29) and calculating the current along the x-axis as

jx ¼ 2ev
X
~k

δm~k
x ¼ σ ωð ÞE (7.30)

we obtain the following expression for the optical conductivity:

σ ωð Þ ¼ � 8ie2v3

ℏω

X
~k

ky
ω2 � 4v2k2

ky
∂m~k

x 0ð Þ

∂kx
� kx

∂m~k
x 0ð Þ

∂kx

 !
: (7.31)

On substituting Eq. (7.26) into Eq. (7.31) we find

σ ωð Þ ¼ � 4ie2v3

ℏω

X
~k

k2y
ω2 � 4v2k2k

1
k

f~k1 � f~k2
� 	

¼ � 2ie2v3

ℏω

X
~k

k f~k1 � f~k2
� 	
ω2 � 4v2k2

: (7.32)

As is usual in calculations of response functions, one should make the replace-
ments ω ! ω + iδ in Eq. (7.32) and δ ! +0 at the end of the calculations
(Zubarev, 1974).

To calculate Re σ(ω), one needs to make the replacement

1

ω2 � 4v2k2
! Im

1

ωþ iδð Þ2 � 4v2k2
¼ �πiδ ω2 � 4v2k2

� 	
¼ � πiδ ω� 2vkð Þ

4vk
:

(7.33)

So,

Reσ ωð Þ ¼ πe2v2

2ℏω

X
~k

f~k1 � f~k2
� 	

δ ω� 2vkð Þ

¼ e2

16ℏ
f ε ¼ �ℏω

2

� �
� f ε ¼ ℏω

2

� �� �
: (7.34)

This is the conductivity per valley per spin. On multiplying the result by 4 and
setting the temperature to zero one has

Reσ ωð Þ ¼
0, ω < 2 μj j,
e2

4ℏ
, ω > 2 μj j:

8<: (7.35)

This expression corresponds exactly to the absorption coefficient (7.12).
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It is important to stress that the universal optical conductivity

σ0 ¼ e2

4ℏ
¼ πe2

2h
(7.36)

is of the order of, but not equal to, the static ballistic conductivity

σB ¼ 4e2

πh
(7.37)

(see Eq. (3.16) and Eq. (3.18)). This is not surprising, since we saw in Chapter 3
that limits ω ! 0, μ ! 0, T ! 0, etc. do not necessarily commute with one
another, as different ways to regularize the ill-posed expression (3.10).

The imaginary part of the conductivity can be restored from Eq. (7.35) via the
Kramers–Kronig relations. The result is (see, e.g., Stauber, Peres, & Geim, 2008)

Imσ ωð Þ ¼ σ0
π

4μ
ℏω

� ln
ℏωþ 2μ
ℏω� 2μ





 



� �
: (7.38)

At μ ! 0, Im σ(ω) ! 0 for any frequency.

7.3 Many-body corrections to the universal optical conductivity:
a phenomenological approach

Experimental data obtained by Nair et al. (2008) agree, to within a few percent,
with the theoretical value (7.12) (or, equivalently, (7.35)), which is, actually, a
problem. As we will see later, the electron–electron interaction in graphene is not
small, and earlier considerations (Fritz et al., 2008; Herbut, Juričič, & Vafek, 2008)
predicted a rather strong renormalization of the optical conductivity, of the order of
1/ ln jt/(ℏω)j. The following first-principles GW (G is the Green function and W is
the dynamically screened interaction; Yang et al., 2009) as well as the lattice
quantum Monte Carlo (Boyda et al., 2016) calculations show that the many-body
corrections to the optical conductivity are either absent or small. A more detailed
analytical many-body analysis (Mishchenko, 2008; Sheehy & Schmalian, 2009; de
Juan, Grushin, & Vozmediano, 2010, Teber & Kotikov, 2014; Link et al., 2016)
leads to the conclusion that, whereas the terms of the order of 1/ ln jt/(ℏω)j do not
exactly disappear, there is a small numerical factor before them. The situation will
be considered in more detail in Chapter 15.

Importantly, the survival of the many-body corrections to the conductivity,
albeit with a small numerical prefactor, is a consequence of long-range Coulomb
interelectron interaction in graphene. For the case of weak enough short-range
interactions the corrections to σ(ω) are absent. Here we present, following
Katsnelson (2008), some arguments in support of this statement based on the
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phenomenological Fermi-liquid theory. Later, the absence of correlation correc-
tions to the optical conductivity of electrons on the honeycomb lattice was proved
rigorously for the case of a weak enough, short-range interelectron interaction
(Giuliani, Mastropietro, & Porta, 2011). Despite that this is not exactly the case of
real graphene, the phenomenological consideration seems to be instructive as a
demonstration of power of the density matrix and pseudospin formalism.

The equation of motion for the density matrix can be modified naturally to the
kinetic equation for quasiparticles within the framework of Landau Fermi-liquid
theory (Landau, 1956; Platzman & Wolf, 1973; Vonsovsky & Katsnelson, 1989).
Assuming

ρ̂ ¼ ρ̂ 0ð Þ þ δρ̂ exp �iωtð Þ (7.39)

(cf. Eq. (7.22)), one can write, instead of Eq. (7.14),

ℏω δρ̂~k ¼ ℏv~k ~̂σ; δρ̂~k

h i
� ie ~E�~∇~k

� �
ρ̂~k

0ð Þ þ δĤ~k; ρ̂~k
0ð Þ

h i
, (7.40)

where the last term contains the change of the Hamiltonian δĤ due to the change of
the density matrix. In the spirit of Landau theory it is due to the interaction between
quasiparticles characterized by some matrix F̂ :

δĤ~k ¼
X
~k0

F̂~k~k0δρ̂~k0 : (7.41)

Eq. (7.41) generalizes the standard Landau theory to the case of a matrix distribu-
tion function for the quasiparticles.

The (pseudo)spinor structure of the matrix F̂ can be found by invoking sym-
metry considerations. First, it should be rotationally invariant in the two-
dimensional space. Second, as was discussed in Chapter 1 (see Eq. (1.42)), the
Hamiltonian δĤ and, thus, the matrix F̂ cannot contain the σ̂ z matrix (this follows
from the inversion and time-reversal symmetries). Third, it should vanish at ~k,
~k0 ! 0, together with Ĥ0

~k
� �

. The most general expression satisfying these
requirements is

F̂ ~k~k0 ¼ A ~k �~k0



 


� �

I⊗I 0 þ B ~k �~k0



 


� �

~k�~σ
� �

⊗ ~k0�~̂σ0
� �

þC ~k �~k0



 


� �

~k�~k0
� �

σ̂x⊗bσ 0
x þ σ̂y⊗bσ 0

y

� �
: (7.42)

The long-range Coulomb (Hartree) interaction, singular at ~k �~k0



 


! 0 (see

Section 8.4), contributes to the function A only, whereas the functions B and C

are supposed to be smooth and tend to become constants as ~k �~k0



 


! 0.
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By substituting Eq. (7.41) and (7.42) into Eq. (7.40) we derive, instead of
Eq. (7.29),

ω2δmx
~k
� 4v2k2yδ~m

x
~k
þ 4v2kxkyδ~m

y
~k
¼ � ieω

ℏ
E
∂mx 0ð Þ

~k

∂kx
,

4v2kxkyδ~m
x
~k
þ ω2δmy

~k
� 4v2k2xδ~m

y
~k
¼ �ieω

ℏ
E
∂my 0ð Þ

~k

∂kx
, (7.43)

where δ ~~m ¼ δ~mþ~Δ, and the term

~Δ~k ¼
1
vk

X
~k0

B~k~k0
~k ~k0δ~m~k0

� �
þ C~k~k0

~k�~k0
� �

δ~m~k0

h i
(7.44)

contains all correlation effects. Also, we have an additional correlation contribu-
tion to the current density,

jcorrx ¼ δĤ~k

δkx
¼
X
~k

δF̂~k~k0

δkx
δρ̂

k
⇀
, (7.45)

which can, after some straightforward manipulations, be rewritten as

jcorrx ¼ 8e2v3
X
~k

ky
ω2 � 4ω2k2

kyΔ
x
~k
� kxΔ

y
~k

� �
: (7.46)

The remaining work is just direct analysis of the corrections, term by term,
which shows that they all vanish by symmetry after the integration over~k and~k0

(Katsnelson, 2008).

7.4 The magneto-optics of Dirac fermions

Consider now the case of Dirac fermions in a magnetic field. Instead of momentum
~k, the eigenstates of the unperturbed problem jni, are characterized by the Landau
band index n and the coordinate of the Landau orbit x0 (see Section 2.2). This does
not lead to any difficulties, since the optical conductivity, as well as any response
functions, can easily be written in an arbitrary basis. The general formalism has
already been presented in Section 2.9 (see Eq. (2.175) and later here). We will use
the Hamiltonian (2.177) with the electric field (7.5) and calculate the induced

electric current, 12
~j exp iωtð Þ þ~j∗ exp �iωtð Þ� �

, assuming that

~j ¼ ~̂σ ωð Þ~E (7.47)

(in this section,~j is the electric current operator).
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Then, using Eq. (2.176) and (2.177), we find

σαβ ωð Þ ¼ e
X
mn

f m � f n
En � Em � ℏ ωþ iδð Þ n jαj jmh i m rβ



 

n� �
: (7.48)

We will consider here only the case of finite ω, thus, the term with m = n does not
contribute to Eq. (7.48). Keeping in mind Eq. (2.179), we find

m jαj jnh i ¼ ie

ℏ
m rαj jnh i Em � Enð Þ: (7.49)

On substituting Eq. (7.49) into Eq. (7.48), taking into account that

1
En � Em � ℏ ωþ iδð Þ

1
Em � En

¼ � 1
ℏω

1
En � Em � ℏ ωþ iδð Þ �

1
Em � En

� �
,

(7.50)

we obtain

σαβ ωð Þ ¼ i

ω
Παβ ωð Þ � Παβ 0ð Þ� �

, (7.51)

where

Παβ ωð Þ ¼
X
mn

f m � f n
En � Em � ℏ ωþ iδð Þ n jαj jmh i m jβ



 

n� �
: (7.52)

In particular, for the quantity Re σxx(ω), determining the absorption of electromag-
netic waves, we have

Re σxx ωð Þ ¼ π
ω

X
mn

f m � f nð Þ n jxj jmh ij j2δ En � Em � ℏωð Þ: (7.53)

For the Dirac electrons jx = eσx. Without a magnetic field, this immediately gives
us the result (7.34). In the presence of a magnetic field, we have to use as the basis
functions m and n the solutions of the Landau problem (2.45) and (2.46). They are
dependent on the Landau indices and on ky (see Eq. (2.40) and (2.41)). Obviously,
the matrix elements hnjσxjmi are diagonal in ky. Since the functions Dn(X) are
orthogonal, one can see immediately that the allowed transitions are n! n� 1 and
n ! �(n � 1) only and, thus, the expression (7.53) describes absorption peaks at

ℏω= jEnj � jEn + 1j, (7.54)

or at ω ¼ ωc
ffiffiffiffiffiffiffiffiffiffiffi
pþ 1

p � ffiffiffi
p

p� 	
, where p = 0, 1, 2, . . . The complete expression can

be found in Gusynin, Sharapov, and Carbotte (2007a, 2009).
This absorption has been observed experimentally (Sadowski et al., 2006; Jiang

et al., 2007a; Witowski et al., 2010). The results are in agreement with Eq. (7.54).

7.4 The magneto-optics of Dirac fermions 177

https://www.cambridge.org/core


This effect can be used as an alternative method by which to measure the Fermi
velocity v in graphene.

Another interesting magneto-optical effect is the polarization rotation of propa-
gating light in the magnetic field, that is, the Faraday effect (Landau & Lifshitz,
1984). The rotation angle is proportional to Re σxy, which has absorption peaks at
the same frequencies (7.54) as Re σxx (for the theory of the Faraday effect
in graphene, see Fialkovsky and Vassilevich [2009]). Near the resonances, the
rotation is very large, as was observed experimentally by Crassee et al. (2011).
This giant Faraday effect is potentially interesting for applications.

7.5 Optical properties of graphene beyond the Dirac approximation

Now consider the theory of optical conductivity for a honeycomb lattice, beyond
the Dirac cone approximation, so that it can be used at ℏω � jtj as well (Gusynin,
Sharapov, & Carbotte, 2007b; Stauber, Peres, & Geim, 2008). We will start
with the expression (2.20) for the Hamiltonian of band electrons in the presence
of a vector potential; in the single-band approximation it also works for the time-

dependent vector potential ~A tð Þ.
In particular, in the nearest-neighbor approximation the Hamiltonian has the

form

Ĥ ~k
� �

¼
0 tS ~k � e~A

ℏc

� �
tS∗

~k � e~A

ℏc

 !
0

0BBB@
1CCCA (7.55)

(cf. Eq. (1.14) and (1.15)). To calculate the linear response, we need to expand the

right-hand side of Eq. (7.55) up to second order in ~A. Indeed, the electric current
operator

~̂j ¼ c
δĤ

δ~A
(7.56)

has paramagnetic (p) and diamagnetic (d) components

ĵα ¼ ĵ pð Þ
α þ ĵ dð Þ

α , (7.57)

where

~̂j pð Þ
α ¼ c

δĤ

δ~Aα

� �
~A¼0

(7.58)
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and

~̂j dð Þ
α ¼ 1

2
c2
X
β

δ2Ĥ

δ~Aαδ~Aβ

 !
~A¼0

Aβ: (7.59)

When calculating the average current density to linear order in ~A,

jα ¼ Tr ĵ
pð Þ
α ρ̂0

� �
þ Tr ĵ

dð Þ
α ρ̂0

� �
, (7.60)

both terms contribute to the conductivity. Further calculations are quite straight-
forward (Gusynin, Sharapov, & Carbotte, 2007b; Stauber, Peres, & Geim, 2008).
Here, we will present only the expressions for Re σxx(ω) = Re σ(ω):

Re σ ωð Þ ¼ Dδ ωð Þ þ πt2e2a2

8ℏ3ωA0

X
~k

F ~k
� �

f~k1 � f~k2
� 	

� δ ω� ε ~k
� �� �

� δ ωþ ε ~k
� �� �h i

, (7.61)

where the first term originates from j(d), the Drude weight is

D ¼ � e2a2

3ℏ2A0

X
~k

ε ~k
� �

f~k1 � f~k2
� 	

, (7.62)

ε ~k
� �

¼ t S ~k
� �


 


 t > 0ð Þ, f~k1,2 are given by Eq. (7.25), A0 ¼ 3

ffiffiffi
3

p
a2=2 is the area of

the unit cell and

F ~k
� �

¼ 18� 4 S ~k
� �


 


2 þ 18

Re S ~k
� �h i2

� Im S ~k
� �h i2

S ~k
� �


 


2 : (7.63)

The optical conductivity (7.61) at ω 6¼ 0 is proportional to the density of states

N Eð Þ ¼
X
~k

δ Ej j � ε ~k
� �� �

(7.64)

(it differs by a factor of 2 from Eq. (1.70)). It can be analytically expressed
(Hobson & Nierenberg, 1953) in terms of the elliptic integral

K mð Þ ¼
ðπ=2
0

dφffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m sin 2φ

p , (7.65)
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namely

N Ej jð Þ ¼ 2 Ej j
π2t2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
φ Ej j=tð Þp K

4 Ej j=t
φ Ej j=tð Þ
� �

, 0 < Ej j < t,

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 Ej j=tð Þp K

φ Ej j=tð Þ
4 Ej j=t

� �
, t < Ej j < 3t,

8>>>><>>>>: (7.66)

where

φ xð Þ ¼ 1þ xð Þ2 � x2 � 1ð Þ2
4

: (7.67)

This function is shown in Fig. 7.2. It has logarithmic divergences at E = �t
corresponding to Van Hove singularities in the electron density of states.

At 0 < ħω < t the optical conductivity (7.61) coincides with Eq. (7.35). The
corrections are (Stauber, Peres, & Geim, 2008)

σ ωð Þ � σ0
2

tanh
ℏωþ 2μ

4T

� �
þ tanh

ℏω� 2μ
4T

� �� �
1þ ℏωð Þ2

36t2

" #
: (7.68)

The curve for the whole interval is shown in Fig. 7.3 (Yuan, De Raedt, &
Katsnelson, 2010a). One can see a singularity at ℏω = 2t; however, a moderate
disorder (such as 1% of vacancies or resonant impurities) smears it essentially.

For the case of bilayer graphene, we have a Van Hove singularity at low energy,
due to trigonal warping and the merging of four Dirac ones to give one paraboloid
(see Section 1.4). Also, the gap can be made to open in that case by applying a bias

Fig. 7.2 The density of states (7.66). The logarithmic divergences at E = �t are
Van Hove singularities.
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between the layers. Experimentally, these effects on the infrared optics of bilayer
graphene have been studied by Kuzmenko et al. (2009).

7.6 The dielectric function of Dirac fermions

Now we will consider the response function for an inhomogeneous external
perturbation

V ext ~r; tð Þ ¼
X
~k

Ψ~k
þV̂~q

extΨ~kþ~q exp i~q~r� iωtð Þ, (7.69)

where Ψ~k
þ ¼ ψþ

~k1
;ψþ

~k2

� �
is the spinor creation operator, V̂ ext

~q is a generic 2 � 2
matrix, and~q is the wave vector of the inhomogeneity. We need to pass to electron-
and hole-creation operators (7.23). The result is

Ψþ
~k
V̂ ext
~q Ψ~kþ~q ¼ Ξþ

~k
Û~qΞ~kþ~q, (7.70)

where Ξ~k
þ ¼ ξþ~k1; ξ

þ
~k, 2

� �
and

Û~q ¼ 1
2

1 exp �iφ~kþ~q
� �

1 � exp �iφ~kþ~q
� �

0B@
1CAV̂ ext

~q

1 1

exp iφ~k
� 	 � exp iφ~k

� 	 !
: (7.71)

4
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x/
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Fig. 7.3 The frequency dependence of Re σxx(ω) for an ideal honeycomb lattice in
the nearest-neighbor approximation (dashed line) and for one with 1% of
vacancies, randomly distributed (solid line); σ0 is given by Eq. (7.36).
(Reproduced with permission from Yuan, De Raedt, & Katsnelson, 2010a.)

7.6 The dielectric function of Dirac fermions 181

https://www.cambridge.org/core


Then, the perturbation of the density matrix (2.175) is the operator
ρ̂0 exp i~q~r� iωtð Þ with the matrix elements (in the ξ representation)

ρ̂0~kþ~q, i,~k, j ¼
f~k, j � f~kþ~q, i

E~k, j � E~kþ~q, i � ℏ ωþ iδð Þ Û~q

� 	
ij (7.72)

and the perturbation of the operator

Ĵ ¼
X
~k~q

Ψþ
~k
Ĵ~qΨ~kþ~q �

X
~k~q

Ξþ
~k
~̂J~qΞ~kþ~q (7.73)

is

δJ~q ¼ Tr Ĵ ρ̂0
� 	 ¼X

~k

f~k, j � f~kþ~q, i
E~k, j � E~kþ~q, i � ℏ ωþ iδð Þ Û~q

� 	
ij

~̂J~q
� �

ji
: (7.74)

Consider first the case of a scalar potential and the density operator Ĵ ¼ n̂; in that
case, both V̂ ext

~q and Ĵ~q are proportional to the unit matrix. We obtain

δn~qω ¼ �Π ~q;ωð ÞV̂ ext
~qω, (7.75)

where

Π ~q;ωð Þ ¼ gsgv Σ
~k

Σ
s, s0¼�

λss0 ~k;~q
� � f sE ~k

� �
� f s0E ~k þ~q

� �h ih i
s0E ~k þ~q
� �

� sE ~k
� �

þ ℏ ωþ iδð Þ
(7.76)

is the polarization operator E ~k
� �

¼ ℏvk,

λss0 ~k;~q
� �

¼ 1
2

1þ ss0
k þ q cos φ

~k þ~q



 




0B@
1CA, (7.77)

φ is the angle between~k and~q, and the factors gs = 2 and gv = 2 take into account
spin and valley degeneracy (Ando, 2006; Wunsch et al., 2006; Hwang & Das
Sarma, 2007).

Perturbation of the electron density will induce perturbation of the potential

Vind
~qω ¼ vC qð Þδn~qω, (7.78)

where

vC qð Þ ¼ 2πe2

qεext
(7.79)
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is the Fourier component of the Coulomb interaction

vC rð Þ ¼ e2

rεext
(7.80)

in two dimensions and εext is the external dielectric constant (e.g., due to screening
by a substrate). The total potential perturbation is

V~qω ¼ Vext
~qω þ V ind

~qω ¼ Vext
~qω

ε ~q;ωð Þ : (7.81)

The last equality in Eq. (7.81) defines the dielectric function ε ~q;ωð Þ. Within
the random-phase approximation (RPA) it is assumed that, for a system of
interacting fermions, the induced density formally has the same expression as
for the noninteracting fermions, (7.75) and (7.76), but with the replacement
Vext ! V in Eq. (7.75). This means that the interaction effects are taken into
account via a self-consistent mean field (Vonsovsky & Katsnelson, 1989). As
a result,

ε ~q;ωð Þ ¼ 1þ vC qð ÞΠ q;ωð Þ: (7.82)

If we also take into account the external screening, the total dielectric function is

εtot q;ωð Þ ¼ εextε q;ωð Þ ¼ εext þ 2πe2

q
Π q;ωð Þ: (7.83)

In the case when graphene lies between two subspaces with dielectric constants ε1
and ε2, one has (Landau & Lifshitz, 1984)

εext ¼ ε1 þ ε2
2

: (7.84)

For the two most popular substrates, SiO2 and BN, ε2 � 4, so, assuming ε1 = 1
(vacuum, or air), one has εext � 2.5.

Consider first the case of undoped graphene (μ = 0) at zero temperature.
Then, only interband transitions (s = + and s0 = – or vice versa) contribute to
Eq. (7.76) and

Π0 q;ωð Þ ¼ gsgv
ℏ

X
~k

1� k þ q cos φð Þ
~k þ~q



 




0B@
1CA v k þ ~k þ~q




 


� �
v2 k þ ~k þ~q




 


� �2
� ωþ iδð Þ2

:

(7.85)
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As the next step, we calculate Im Π0(q,ω). It contains δ v k þ ~k þ~q



 


� ω

� �h i
,

which allows us to calculate the integral (first, in ω and then in k) in a quite

elementary manner. The result is

Im Π0 q;ωð Þ ¼ gsgv
16ℏ

q2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 � v2q2

p θ ω� vqð Þ, (7.86)

where θ(x > 0) = 1, θ(x < 0) = 0 is the step function. Noticing that the analytic

function 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
zþ iδ

p
is purely imaginary at real z < 0 and purely real at real z > 0,

one can do analytic continuation immediately, thus having

ReΠ0 q;ωð Þ ¼ gsgv
16ℏ

q2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2q2 � ω2

p θ vq� ωð Þ: (7.87)

On combining Eq. (7.86) and (7.87) we have a very simple answer (Gonzáles,
Guinea, & Vozmediano, 1999):

Π0 q;ωð Þ ¼ gsgv
16ℏ

q2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2q2 � ωþ iδð Þ2

q : (7.88)

At ω = 0, Π0(q,ω) ~ q, and the dielectric function ε(q) is actually not dependent
on q:

ε ¼ εext þ πe2

2ℏv
: (7.89)

For graphene,

α ¼ e2

ℏv
� 2:2 (7.90)

and the second term on the right-hand side of Eq. (7.89) is about 3.5.
Within the RPA, this result is exact, and high-energy states cannot change the

value of ε(q = 0). Indeed, for arbitrary band structure with the Bloch states m~k



 E

,

one has (Vonsovsky & Katsnelson, 1989)

Π ~q;ω ¼ 0ð Þ ¼ 2
X
mn

X
~k

f n,~k � f m,~kþ~q
Em,~kþ~q � En,~k

n;~kjm;~k þ~q
D E


 


2 (7.91)

(the factor of 2 is due to spin degeneracy).
Let us exclude the Dirac point, considering the case when (at T = 0) we have

completely occupied bands and completely empty bands and some gap in between.
Then Eq. (7.91) can be rewritten as

184 Optics and response functions

https://www.cambridge.org/core


Π ~q;ω ¼ 0ð Þ ¼ 4
Xocc
n

Xempty

m

1
Em,~kþ~q � En,~k

n;~kjm;~k þ~q
D E


 


2, (7.92)

which is obviously proportional to q2 at q ! 0. More explicitly, on writing

m;~k þ~q



 E

� 1þ~q~∇~k
� �

m;~k



 E

(7.93)

and using Eq. (2.85), one finds for~q ! 0

Π ~q;ω ¼ 0ð Þ ¼
X
αβ

Cαβqαqβ, (7.94)

where

Cαβ ¼ 4
Xocc
n

Xempty

m

1

Em,~k � En,~k

� �3 m;~k
∂Ĥ
∂kα





 



n;~k� �
n;~k

∂Ĥ
∂kβ





 



m;~k� �
(7.95)

is some finite tensor. Since vc(q) ~ 1/q, we have, in two dimensions, ε(q ! 0,
ω = 0) = 1 for any gapped state. This means that only the region close to the Dirac
point contributes to this quantity. Note that first-principles GW calculations
do indeed give results quite similar to those obtained by use of Eq. (7.89)
(Schilfgaarde & Katsnelson, 2011).

Now consider the case of doped graphene (to be specific, we put μ > 0, i.e.,
the case of electron doping). The calculations are quite cumbersome but straight-
forward. The result is (Wunsch et al., 2006; Hwang & Das Sarma, 2007)

Π(q,ω) = Π0(q,ω) + Π1(q,ω),
with

Π1 q;ωð Þ ¼ gsgvμ

2πℏ2v2
� gsgvq

2

16πℏ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 � v2q2

p
� G

ℏωþ 2μ
ℏvq

� �
� θ

2μ� ℏω
ℏvq

� 1

� �
G

2μ� ℏω
ℏvq

� �
� iπ

� ��

�θ
ℏω� 2μ
ℏvq

þ 1

� �
G

ℏω� 2μ
ℏvq

� ��
,

(7.96)

where

G xð Þ ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p
� ln xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p� �
: (7.97)

For generalization of this expression to the case of gapped graphene, see
Pyatkovskiy (2009).
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Now we will consider different partial cases of this general expression. Keeping
in mind the case of graphene, we will put gs = gv = 2.

7.7 Static screening

We start with the case ω = 0. The result is (Gorbar et al., 2002; Ando, 2006;
Wunsch et al., 2006; Hwang & Das Sarma, 2007)

Π q; 0ð Þ ¼ 2kF
πℏv

�
1, q < 2kF,

1� 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2kF

q

� �2
s

þ q

4kF
cos �1 2kF

q

� �
, q > 2kF:

8><>:
(7.98)

Interestingly, at q < 2kF, П(q, 0) = constant, due to cancellation of the q
dependence in the (formally) μ-dependent contribution

Πþ q; 0ð Þ ¼ 2kF
πℏv

1� πq
8kF

� �
(7.99)

and the contribution for the undoped case (see Eq. (7.88)),

Π0 q; 0ð Þ ¼ q

4ℏv
: (7.100)

It is instructive to compare Eq. (7.98) with that for a conventional, nonrelativistic
two-dimensional electron gas (Stern, 1967):

Π0 q; 0ð Þ ¼ N EFð Þ �
1, q < 2kF,

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2kF

q

� �2

,

s
q > 2kF:

8><>: (7.101)

In both cases, the polarization operator is constant at q< 2kF. At the same time, the
behavior at q > 2kF is essentially different. For the nonrelativistic case П(q, ω)
decays with increasing q, as 1/q2 at q ! ∞, whereas for the case of massless Dirac
fermions П(q, 0) increases linearly with increasing q, due to the contribution
(7.100). The behavior of expressions (7.98) and (7.101) at q ! 2kF is also
essentially different. Whereas for the nonrelativistic electron gas
δΠ q; 0ð Þ e ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q� 2kF
p

, with a divergent derivative, for the case of graphene the

singularity is weaker δ Π (q, 0) ~ (q � 2kF)
3/2.

The result for small q corresponds to the Thomas–Fermi approximation
(Katsnelson, 2006c; Nomura & MacDonald, 2006). The latter (Lieb, 1981) assumes
that the perturbation V ~rð Þ is smooth enough that its effect on the electron density
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n μð Þ ¼
ðμ
0

dE N Eð Þ (7.102)

can be taken into account just by making the replacement n μð Þ ! n μ� V ~rð Þ½ 	.
This means that the potential just locally shifts the maximum band energy EF ~rð Þ,
such that

EF ~rð Þ þ V ~rð Þ ¼ μ: (7.103)

The self-consistent equation for the total potential, which is similar to Eq. (7.81),
reads

V ~rð Þ ¼ Vext ~rð Þ þ e2

εext

ð
d~r0

nint ~r0ð Þ
~r �~r0j j , (7.104)

where

nint ~rð Þ ¼ n μ� V ~rð Þ½ 	 � n μð Þ (7.105)

is the induced change of the electron density. Assuming that the perturbation V is
small, one can expand (7.105) as follows:

nint ~rð Þ � � ∂n
∂μ

V ~rð Þ ¼ �N EFð ÞV ~rð Þ, (7.106)

where the last identity assumes T = 0 (cf. Eq. (2.138)).
On Fourier-transforming Eq. (7.104) and comparing the result with Eq. (7.81)

one finds

ε q; 0ð Þ ¼ εext þ 2πe2N EFð Þ
q

¼ εext 1þ κ
q

� �
, (7.107)

where

κ ¼ 4e2 μj j
εextℏ

2v2
(7.108)

is the inverse Thomas–Fermi screening radius. This result coincides exactly
with Eq. (7.98) and (7.101) at q < 2kF. Thus, for a two-dimensional electron
gas, the nonrelativistic and ultrarelativistic versions of Thomas–Fermi theory both
give exactly the same result, as does the RPA for static screening with q < 2kF.
For a three-dimensional electron gas the situation is different (Vonsovsky &
Katsnelson, 1989).
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Consider now the real-space effects of static screening. If the external potential
Vext(r) is radially symmetric, with the Fourier component Vext

q depending only on
the modulus q, the expression for the total potential is

V rð Þ ¼
ð

d~q

2πð Þ2 exp i~q~rð Þ V ext
q

ε q; 0ð Þ ¼
ð∞
0

dq q

2π
J0 qrð Þ V ext

q

ε q; 0ð Þ : (7.109)

At r ! ∞, there are two important contributions to the integral (7.109), from
the region of small q (to compensate for large r in the argument of the Bessel
function) and from the region q = 2kF, where ε(q, 0) has a singularity in П(q, ω)
(7.98). In the three-dimensional case, the first contribution decays exponentially
at r ! ∞, whereas the second oscillates and decays as cos (2kFr)/r

3, being
what is called a Friedel oscillation (Vonsovsky & Katsnelson, 1989). In
the two-dimensional case, the situation is different since the Thomas–Fermi
(small-q) contribution also decays as 1/r3 (Katsnelson, 2006c; Wunsch et al.,
2006). As a result, the asymptotics of the induced density around the point defect
is (Wunsch et al., 2006)

nind rð Þ e αþ β cos 2kFrð Þ
r3

, (7.110)

with some parameters α and β dependent on kF and on the potential.
In a nonrelativistic electron gas in two dimensions, nind(r) ~ cos(2kFr)/r

2 since
the singularity in П (q, ω) at q ! 2kF is stronger. In graphene, the Thomas–Fermi
and Friedel contributions to the induced density around point defects are compar-
able at r ! ∞.

The first-principles GW results for the dielectric function ε(q, 0) of graphene
(Schilfgaarde & Katsnelson, 2011) show that the Dirac approximation works for
q 
 0.05 Å–1; at q � 0.1 Å–1 the polarization operator approximately halves in
comparison with the value (7.100).

7.8 Plasmons

Let us now consider the opposite limiting case

ω >> vq. (7.111)

The polarization operator (7.96) in the limit of small q takes the form

Π q ! 0;ωð Þ ¼ q2

2πℏω
iπ
2
θ ℏω� 2μð Þ � 2μ

ℏω
þ 1
2
ln

ℏωþ 2μ
ℏω� 2μ





 



� �
: (7.112)
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At ℏω > 2μ it has an imaginary part that is at least comparable to the real part, so
the equation

ε(q,ω) = 0, (7.113)

which determines the spectrum of plasma oscillations (Platzman & Wolf, 1973;
Vonsovsky & Katsnelson, 1989), has no real solutions. In the opposite limit

ℏω << 2μ (7.114)

one has

Π q ! 0;ωð Þ � � μq2

π ℏωð Þ2 (7.115)

and the solution of Eq. (7.113) is

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2e2μ

ℏ3εext
q

s
: (7.116)

At q ! 0, the expression (7.116) obviously satisfies the condition (7.114).
The existence of the low-frequency plasmon mode with the dispersion ω e ffiffiffi

q
p

is
a general property of a two-dimensional electron gas (Ando, Fowler, & Stern,
1982). However, the dependence of the plasmon dispersion relation on the electron
density n is different: For graphene, due to Eq. (7.116) ω ~ n1/4q1/2, whereas for the
nonrelativistic case ω ~ n1/2q1/2.

Outside the region qv < ω < 2μ Π (q,ω) has a large imaginary part and the
plasmon is essentially damped. This is a partial case of Landau damping due to a
decay into incoherent electron–hole excitations (Vonsovsky & Katsnelson, 1989).
It was argued, however, by Gangadharaiah, Farid, and Mishchenko (2008) that
higher-order correlation effects, beyond the RPA, can change the situation, leading
to a well-defined plasmon mode with ω < qv, even at μ = 0.

Beyond the Dirac approximation, there are two important physical mechanisms
that can lead to additional plasmon modes. First, there is Coulomb interaction
between electrons from different valleys, resulting in the appearance of intervalley
plasmons, with a linear dispersion law ω ~ q (Tudorovskiy & Mikhailov, 2010).
Second, there is a Van Hove singularity in the optical conductivity at ω = 2t
(see Section 7.5), because of which high-energy “optical” plasmons arise (Hill,
Mikhailov, & Ziegler, 2009; Stauber, Schliemann, & Peres, 2010; Yuan, Roldán,
& Katsnelson, 2011).

Experimental study of plasmons in graphene is currently an intensively develop-
ing field (Grigorenko, Polini, & Novoselov, 2012; Woessner et al., 2015; Basov,
Fogler, & García de Abajo, 2016; Alonso-González et al., 2017; Lundeberg et al.,
2017; Low et al., 2017). There are several important advantages of graphene in
comparison with conventional plasmonic materials such as metallic surfaces. First,
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the electron concentration in graphene is easily tunable by gate voltage which, due
to Eq. (7.116), changes plasmon frequency. Second, graphene encapsulated to
hexagonal boron nitride (see Chapter 13) has extremely high quality and can be
made practically defect-free. Together with a very high intrinsic electron mobility
due to a weakness of electron–phonon interaction (Chapter 11), it allows us to excite
and observe plasmons with unusually small damping (or unusually high lifetime).

Electrodynamics of graphene on metallic substrate was studied by Principi et al.,
(2018). In this case, due to a nonlocal metallic screening, acoustic plasmons with
linear dispersion are formed (Fig. 7.4). Surprisingly, such plasmons can still have a
very low damping which makes them potentially interesting for applications.

7.9 Transverse response functions and diamagnetic susceptibility

Similarly to the previous sections, one can consider the response of electrons in
graphene to a vector potential (Principi, Polini, & Vignale, 2009). One just needs
to choose bV ext

q ¼ ~̂σ in Eq. (7.70). In general, instead of the polarization operator
(7.76), we introduce a set of response functions

Παβ ~q;ωð Þ ¼ gsgv
X
~k

X
s, s0¼�

λαβss0 ~k;~q
� � f sE ~k

� �h i
� f s0E ~k þ~q

� �h i
s0E ~k þ~q
� �

� sE ~k
� �

þ ℏ ωþ iδð Þ
,

(7.117)

e

Fig. 7.4 A grayscale plot of the loss function �Im 1
ε q;ωð Þ with kF and ωF = EF/ℏ

(Fermi wave vector and Fermi frequency of graphene) as units for the plasmon
wave vector and frequency. A sharp acoustic plasmon mode is visible just above
the electron–hole continuum line ω = vq (v is the Fermi velocity in graphene).
Calculations are made for the electron density 1012 cm�2 for graphene and
1021 cm�3 for metal, Fermi velocity of the metal is taken as 0.35v. The plasmon
velocity for these parameters is 1.04v.
(Reproduced with permission from Principi et al., 2018).
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where

λαβss0 ~k;~q
� �

¼ ψs
~k
� �

σαj jψs0
~k þ~q
� �D E

ψs0
~k þ~q
� �

σβ


 

ψs

~k
� �D E

, (7.118)

in which ψs
~k
� �

are electron and hole wave functions (1.30). The density–density
response function is, in this notation П00, where σ0 = I. For example,

λxxss0 ~k;~q
� �

¼
1þ ss0 cos φ~k þ φ~kþ~q

� �
2

: (7.119)

For the response function, determining the current in the x-direction induced by the
vector potential in the x-direction ĵx ¼ vσ̂x

� 	
j~qω

x ¼ � e2v2

c
Πxx ~q;ωð ÞAx

~q,ω: (7.120)

When calculating this quantity we are faced with an important problem, showing
that sometimes one needs to be very careful when using the Dirac approximation.
Let us put ω = 0 and express the vector potential in terms of an external magnetic
field ~B ¼ ~∇�~A ¼ 0; 0;B x; yð Þð Þ:

B~q ¼ � i

qy
Ax
q: (7.121)

Phenomenologically, the magnetic field induces a magnetization
~M ¼ 0; 0;M x; yð Þð Þ proportional to the magnetic field

M~q ¼ χ ~qð ÞB~q (7.122)

and the current

~j ¼ c~∇ � ~M (7.123)

(Jackson, 1962; Landau & Lifshitz, 1984), or, equivalently,

jx~q ¼ icqyM~q: (7.124)

On substituting Eq. (7.121) through Eq. (7.123) into Eq. (7.120) one finds

Πxx ~qð Þ ¼ � q2yc
2

v2e2
χ ~qð Þ (7.125)

and, obviously, Πxx ~q ¼ 0ð Þ ¼ 0. Physically, this means that, due to the gauge
invariance, a constant vector potential cannot induce any physical response.

However, on substituting Eq. (7.119) into Eq. (7.117) we have, even at μ = 0, a

divergent integral over ~k



 


. On introducing by hand a cut-off ~k




 


 
 kmax, we find

the result (Principi, Polini, & Vignale, 2009)
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Πxx ~qð Þ ¼ �gsgv
kmax

4πℏv
, (7.126)

which is finite and, moreover, tends to infinity at kmax! ∞. This is a pathological
property of our model, reflecting the fact that by introducing the cut-off we break

the gauge invariance ~k !~k � e~A= ℏcð Þ. The contribution (7.126) should just be
subtracted from the answer.

By calculating Πxx(qy, 0) at small qy and using Eq. (7.125), we find the magnetic
susceptibility describing the effect of the magnetic field on the orbital motion of
electrons:

χ ¼ � gsgv
24π

e2v2

c2
1

T cosh 2 μ= 2Tð Þ½ 	 ¼ � gsgv
6π

e2v2

c2
δ μð Þ, (7.127)

where the last equality assumes the limit T! 0. This expression was first obtained
by McClure (1956) by differentiation of the thermodynamic potential (2.134) with
respect to the magnetic field (see also Sharma, Johnson, & McClure, 1974; Safran
& DiSalvo, 1979; Koshino & Ando, 2007, 2010).

The result (7.127) is really unusual. It means that at zero temperature and finite
doping the orbital susceptibility of graphene within the Dirac model should be
zero! Usually, the contribution of the orbital motion of electrons to the magnetic
susceptibility is diamagnetic (Landau–Peierls diamagnetism), but here we have
an exact cancellation of intraband and interband contributions; for a general
discussion of these contributions, see Wilson (1965). In multilayer graphene and
graphite, there is no cancellation but, rather, a strong diamagnetism (Sharma,
Johnson, & McClure, 1974; Koshino & Ando, 2010).

As a result, the orbital magnetism of electrons in single-layer doped graphene is
completely determined by electron–electron interactions (Principi et al., 2010).
Using perturbation theory, one can find that the resulting effect is paramagnetic
(χ > 0), with

χ ¼ gsgv
e2v2

c2
e2

ℏvεext

Λ
EF

, (7.128)

where Λ is a function of the interaction constant, of the order of 10�2

(Principi et al., 2010).
Other nontrivial manifestations of the electron–electron interactions will be

considered in the next chapter and in more detail in Chapter 15.
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8

The Coulomb problem

8.1 Scattering of Dirac fermions by point charges

Now we come back to the problem of scattering of Dirac electrons by a radially
symmetric potential V(r) considered in Section 6.1. The case of a Coulomb
potential

V rð Þ ¼ � Ze2

εextr
� �ℏvβ

r
(8.1)

deserves a special consideration for reasons that will be clarified in this chapter.
Here εext is the dielectric constant due to substrate and other external factors and

β ¼ Ze2

εextℏv
(8.2)

is the dimensionless interaction strength (the sign is chosen such that positive β
corresponds to attraction). This problem has been considered for the case of two-
dimensional massless Dirac equations by Shytov, Katsnelson, and Levitov (2007a,
2007b), Pereira, Nilsson, and Castro Neto (2007), and Novikov (2007). Here we
will follow the works by Shytov, Katsnelson, and Levitov.

Instead of using the general expression (5.19), it is convenient to try the solution
of the Coulomb problem in the form

Ψ r;φð Þ ¼
wþ rð Þ þ w� rð Þ

wþ rð Þ � w� rð Þ½ � exp iφð Þ

 !
rs�1=2 exp i m� 1

2

� �
φ

� �
exp ikrð Þ,

(8.3)

where m is half-integer,

m ¼ � 1
2
, � 3

2
, . . . , (8.4)
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and the parameters k and s should be found from the behavior of solutions at large
and small r, respectively. For the potential (8.1), we find

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � β2

q
, k ¼ � E

ℏv
, (8.5)

where E is the energy. On substituting Eq. (8.1) and (8.3) into the Dirac equation
(6.1) we find, instead of Eq. (6.2),

r
dwþ
dr

þ s� iβ þ 2ikrð Þwþ � mw� ¼ 0,

r
dw�
dr

þ sþ iβð Þw� � mwþ ¼ 0:

(8.6)

Note that s can be either real (if jmj> jβj) or imaginary (if jmj< jβj); the behaviors
of solutions in these two cases are essentially different, as will be discussed later.

Using the second of Eq. (8.6) one can express w+ in terms of w� and substitute
it into the first equation. Then, after introducing a new independent variable

z = � 2ikr, (8.7)

one has a confluent hypergeometric equation, or Kummer’s equation (Abramowitz
& Stegun, 1964)

z
d2w�
dz2

þ c� zð Þ dw�
dz

� aw� ¼ 0, (8.8)

where

c= 2s+ 1, a= s+ iβ. (8.9)

Its general solution has the form

w�(z)= A1F1(a, c; z)+ Bz1�c
1F1(a� c+ 1, 2� c; z), (8.10)

where A and B are arbitrary constants and

1F1 a; c; zð Þ ¼ Γ cð Þ
Γ að Þ

X∞
n¼0

Γ aþ nð Þzn
Γ cþ nð Þn! (8.11)

is the confluent hypergeometric function (1F1(a, c; 0) = 1).
We will start with the case of real s, that is, jmj > jβ j. Then, only the first term in

Eq. (8.10) is regular at r = 0 and is therefore allowed, thus

w�(z) = A1F1(s + iβ, 2s+ 1; z). (8.12)

Using the identity

z
d

dz 1
F1 a; c; zð Þ ¼ a 1F1 aþ 1; c; zð Þ � 1F1 a; c; zð Þ� �

(8.13)
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one finds from Eq. (8.6)

wþ zð Þ ¼ A
sþ iβ
m 1F1 sþ 1þ iβ; 2sþ 1; zð Þ: (8.14)

Eq. (8.12) and (8.14) give us a formal solution of our problem. Using the
asymptotic expression (Abramowitz & Stegun, 1964)

1F1 a; c; zð Þ � Γ cð Þ
Γ c� að Þ �zð Þ�a þ Γ cð Þ

Γ að Þ exp zð Þza�c (8.15)

for jzj » 1, one finds for kr » 1

w� rð Þ ¼ λ exp �iβ ln 2krð Þ½ �
2krð Þs ,

wþ rð Þ ¼ λ∗ exp iβ ln 2krð Þ½ � exp �2ikrð Þ
2krð Þs ,

(8.16)

where λ is a constant dependent on m and β but not on k. It follows from Eq. (8.16)
that w� and w+ represent scattered and incident waves, respectively (we have to
recall our definition of k (8.5); E is assumed to be positive). Their ratio gives us the
scattering phases δm(k) (cf. Eq. (6.11)):

w� rð Þ
wþ rð Þ ¼ exp 2iδm kð Þ þ 2ikr½ �,

δm kð Þ ¼ �β ln 2krð Þ þ arg λ:

(8.17)

The logarithmic dependence in Eq. (8.17) is typical for the phases coming from
the 1/r Coulomb tail of the potential (Landau & Lifshitz, 1977). Since this
contribution does not depend on m, it does not affect the angular dependence of
the scattering current, giving just an irrelevant factor jexp[�iβ ln (2kr)]j2 = 1. The
relevant scattering phases are arg λ. Its explicit dependence on m and β is not
important for us; it suffices to know that they are k-independent. From the general
expression for the transport cross-section (6.26) one can see immediately that for
the Coulomb scattering

σtr � 1
k
, (8.18)

which gives us for the contribution of Coulomb impurities to the resistivity
(cf. Section 6.2):

ρ � h

e2
nimp

n
: (8.19)
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This contribution is much larger (by a factor of (nR2)�1) than that of short-range
scatterers (Eq. (6.36)) and corresponds, at least qualitatively, to the experimentally
observed V-shape of the dependence of the conductivity on the electron concen-
tration (Novoselov et al., 2005a). It is not surprising therefore that charge
impurities were initially suggested to be the main factor limiting electron mobility
in graphene (Ando, 2006; Nomura & MacDonald, 2006; Adam et al., 2007). The
real situation is probably much more complicated and will be discussed in Chap-
ter 11. It is clear, anyway, that long-range scattering potentials deserve special
attention in the case of graphene. However, screening effects are important and
should be taken into account, as will be discussed later.

Consider now the case jβj > jmj where s = iγ,

γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 � m2

q
: (8.20)

Then both terms in Eq. (8.10) are formally allowed:

w�(z) = A1F1(i(γ + β), 1 + 2iγ; z) + Bz�2iγ
1F1(i(β � γ), 1 � 2iγ; z). (8.21)

This means that the Dirac equation with the potential (8.1) for large enough jβj
is ill-defined. To find a solution, one needs to add some boundary conditions at
small but finite r.

For jkrj « 1,

w�(z) � A + B exp (�πγ) exp [�2iγ ln (2kr)]. (8.22)

The solution w+(z) corresponding to Eq. (8.21) is

wþ zð Þ ¼ iA
γþ β
m 1F1 1þ iγþ iβ; 1þ 2iγ; zð Þ

þ iB
β � γ
m

z�2iγ
1F1 1þ iβ � iγ; 1þ 2iγ; zð Þ: (8.23)

Its asymptotics at jkrj « 1 is

wþ zð Þ � iA
γþ β
m

þ iB
β � γ
m

exp �πγð Þ exp �2iγ ln 2krð Þ½ �: (8.24)

To be specific, let us use “zigzag” boundary conditions ψ2(r) = 0 at some cutoff
radius r = r0, which means (see Eq. (8.3))

w�(r0) = w+(r0). (8.25)

By substituting Eq. (8.22) and (8.24) into Eq. (8.25) one can find the ratio B/A
and then use it to find the ratio w�(r)/w+(r) at jkrj » 1 and the scattering phases (see
Eq. (8.17)). The result is (Shytov, Katsnelson, & Levitov, 2007b)
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exp 2iδm kð Þ½ � ¼ exp πi mj j½ � zþ exp 2iχ kð Þ½ �
1þ z∗ exp 2iχ kð Þ½ � , (8.26)

where

z ¼ exp πγð Þ
η

Γ 1þ 2iγð Þ
Γ 1� 2iγð Þ

Γ 1� iγþ iβð Þ
Γ 1þ iγþ iβð Þ (8.27)

and

χ kð Þ ¼ γ ln 2kr0ð Þ þ arctan
1þ η
1� η

� �
, (8.28)

with

η ¼
ffiffiffiffiffiffiffiffiffiffiffi
β � γ
β þ γ

s
: (8.29)

The factor exp [2iχ(k)] oscillates rapidly at kr0 « 1. This conclusion does not
depend on a specific choice of the boundary condition (8.25); for a generic
boundary condition the first (logarithmic) term in Eq. (8.28) will be the same.

The expressions (8.26) through (8.29) have a very interesting property: They
describe the existence of quasilocalized states (Shytov, Katsnelson, & Levitov,
2007b). For localized states, the wave function is described by a single real
exponent, exp(�κr) (κ > 0), at r ! ∞, which means the absence of a scattering
wave. Considering δm(k) as a function of the complex variable k and taking into
account the condition (8.17), one can write the equation for the bound state as

exp[2iδm(k)] = 0 (8.30)

for k < 0 and

exp[�2iδm(k)] = 0 (8.31)

for k > 0. To be specific, let us consider the first case, E > 0. Then, Eq. (8.30) is
equivalent to

exp[2iχ(k)]= � z, (8.32)

which, taking into account Eq. (8.28), reads

ln 2knr0ð Þ ¼ � i

2γ
ln z� 1

2γ
ln arctan

1þ η
1� η

� �
� πn

γ
, (8.33)

where n is an integer. For small γ, that is, near the threshold jβj ffi jmj, Eq. (8.33)
describes the series of quasilocalized states corresponding to positive n (for
negative n, kr0 » 1, which contradicts our choice of the parameter r0 as a small
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cut-off ). The k values have an imaginary part, due the term �[i/(2γ)] ln jzj in
Eq. (8.33). Keeping in mind that

ln Γ 1þ iβð Þj j ¼ 1
2
ln Γ 1þ iβð ÞΓ 1� iβð Þ½ � ¼ 1

2
ln

πβ

sinh πβð Þ
� �

, (8.34)

one finds

kn ¼ c exp � πn
γ
� iλ

� �
, (8.35)

where

λ ¼ π
1� exp �2πβð Þ (8.36)

and the prefactor c is of the order of r�1
0 . The corresponding energies En = �ℏvkn

have an imaginary part, due to the factor λ; however, it is small:

� Im
Re

En

En
¼ π

exp 2πβð Þ � 1
: (8.37)

The minimal value of β corresponds to βj j ¼ 1
2 , and the right-hand side of

Eq. (8.37) is about 0.14. This means that the imaginary part is relatively small and
the resonances are narrow. The resonances correspond to jumps in the scattering
phases and sharp anomalies in the transport scattering cross-section (6.26). The
corresponding numerical data are shown in Fig. 8.1 (Shytov, Katsnelson, & Levitov,
2007b). One can see typical Fano resonances (see Section 6.7), as one would expect
for quasilocalized states within a continuum spectrum.

These resonances were observed experimentally for the groups of more than
three Ca2+ ions on graphene, hexagonal boron nitride was used as a substrate
(Wang et al., 2013). In this case εext � 2.5 (see Eq.(7.84)) and the total screening
constant (7.89) is about 8. Thus, the experimental situation corresponds to the
effective dimensionless coupling constant Ze

2

εℏv of the order of unity, which seems to
be reasonable. At the same time, the direct quantitative comparison of the theory
for the single Coulomb center with the data on the group of four (or more)
Coulomb centers seems to be impossible.

8.2 Relativistic collapse for supercritical charges

Our consideration up to now has been rather formal. To understand the physical
meaning of the quasilocalized states considered in the previous section we will use
a simple semiclassical consideration (Shytov, Katsnelson, & Levitov, 2007b;
Shytov et al., 2009). It turns out that these states are related to the phenomenon
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of relativistic collapse, or fall of electrons into the center for superheavy nuclei
(Pomeranchuk & Smorodinsky, 1945). This provides us with a new, interesting
connection between the physics of graphene and high-energy physics.

To gain some insight into the problem, let us start with a hand-waving deriv-
ation of the size of atoms using the Heisenberg uncertainty principle. If an electron
is confined within a spatial region of radius R, its typical momentum is of the
order of

p � ℏ
R
: (8.38)

Fig. 8.1 (a) The scattering phase for m ¼ 1
2 at negative energy E = �ħvk < 0. The

kinks correspond to quasilocalized states trapped by the impurity potential for
supercritical β. (b) The transport cross-section as a function of the potential
strength; the quasilocalized states are seen as Fano resonances.
(Reproduced with permission from Shytov, Katsnelson, & Levitov, 2007b.)
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For nonrelativistic particles with mass m, the kinetic energy is p2/(2m), and the
total energy of the electron, taking into account its attraction to the nucleus, can be
estimated as

E Rð Þ � ℏ2

2mR2 �
Ze2

R
, (8.39)

with a minimum at

R0 ¼ ℏ2

mZe2
, (8.40)

which is nothing other than the Bohr radius. For a relativistic particle we have,
instead of Eq. (8.39),

E Rð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏc
R

� �2

þ mc2ð Þ2
s

� Ze2

R
: (8.41)

The minimum condition

∂E
∂R

� �
R¼R0

¼ 0

gives us the equation

1þ mcR0

ℏ

� �2

¼ ℏc

Ze2

� �2

, (8.42)

which has a solution only for

Z < Zc ¼ ℏc
e2

¼ 1
α
� 137: (8.43)

For Z > Zc, the energy (8.41) decays monotonically with R, decreasing from
E∞ = mc2 at R ! ∞ to E = �∞ at R = 0. This means that the electron falls into
the center.

Speaking more formally, the Dirac equation for a point charge Z > Zc is ill-
defined and has no unique solutions, without introducing some additional bound-
ary conditions at small R, similarly to what we did in the previous section. The
wave function has infinitely many oscillations at r ! 0 (cf. Eq. (8.22) and (8.24)),
and some of the solutions for the energies (Bjorken & Drell, 1964; Berestetskii,
Lifshitz, & Pitaevskii, 1971)

En, j ¼ mc2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Zαð Þ2

n� jj j þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 � Zαð Þ2

q� �2

vuuuut
(8.44)
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(n = 0, 1, 2, . . ., j = �1, �2, . . .) become non-real, which means that the
Hamiltonian is not a proper Hermitian operator.

If we draw the positions of the energy levels as a function of ζ = Zα one can see
that at ζ = 1 the energy of the 1s state goes to zero, and the gap between electron
and positron states disappears. In this situation, one could expect vacuum recon-
struction, with the creation of electron–positron pairs from vacuum (Pomeranchuk
& Smorodinsky, 1945; Zel’dovich & Popov, 1972; Greiner, Mueller, & Rafelski,
1985; Grib, Mamaev, & Mostepanenko, 1994); cf. our discussion of the Klein
paradox in Section 4.1. The scheme of the energy levels (Zel’dovich & Popov,
1972) is shown in Fig. 8.2.

Taking into account the finite size of atomic nuclei R = Rn and assuming a
parabolic potential at r < Rn, as should be the case for a uniformly charged sphere,
one finds a larger value for the critical radius, Zc � 170 (Zel’dovich & Popov,
1972), which is still far beyond the charge of the heaviest known element. One can
hope to observe this very interesting effect in collisions of two heavy ions with
Z < Zc, but in this case the critical value of total Z is even larger. Therefore, this
effect of “relativistic collapse” of superheavy atoms has not been observed, thus far.

In the case of graphene, we have the Fermi velocity v � c/300, instead of the
velocity of light, and the critical value Zc should be of the order of one, which
makes this effect observable (Pereira, Nilsson, & Castro Neto, 2007; Shytov,
Katsnelson, & Levitov, 2007a, 2007b; Wang et al., 2013). Actually, some mani-
festations have been discussed in the previous section, such as the Fano resonances
shown in Fig. 8.1 (Shytov, Katsnelson, & Levitov, 2007b). The scanning tunneling
microscopy (STM) observation of this feature was claimed by Wang et al. (2013).
Strong oscillations of the local density of states for the supercritically charged

+1

(a)

–1

0
1

1S

3S, 3P
2S, 2P

e

z

+1

(b)

–1

0
1

1S 2P 2S

e

z

Fig. 8.2 (a) Energy levels of superheavy atoms (in units of mc2) obtained from the
Dirac equation for the Coulomb potential as a function of the coupling constant
ζ = Zα. (b) The same, but taking into account the effects of the finite size of
atomic nuclei. The critical value of Z is shifted from Zc = α�1 � 137 to Zc � 170
(Zel’dovich & Popov, 1972).
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impurities observable in principle by STM could be considered another manifest-
ation (Shytov, Katsnelson, & Levitov, 2007a).

Strictly speaking, the massless case m = 0 relevant for graphene deserves
special consideration. We saw in the previous section that relatively narrow
resonances occur in the continuum spectrum. To better understand their origin it
is instructive to consider the problem semiclassically.

For ultrarelativistic particles with the Hamiltonian

H ~p; rð Þ ¼ v~pj j � Ze2

r
, (8.45)

one can introduce the radial momentum pr and angular momentum pφ = M, which
is an integral of motion since the Hamiltonian (8.45) does not depend on φ. One
can find from the energy-conservation condition H = E that

p2r ¼
1
v2

E þ Ze2

r

� �2

�M2

r2
, (8.46)

and the classically allowed regions are determined by the condition p2r > 0. If M is
large enough,

M > Mc ¼ Ze2

v
, (8.47)

the particle can propagate from r= 0 to r= ∞. AtM<Mc the situation is different,
and we have two classically allowed regions, 0 < r < r1 and r > r2, separated by a
potential barrier, where

r1,2 ¼ Ze2 ∓Mv

Ej j : (8.48)

If we were to neglect the tunneling through the classically forbidden region, we
could use the semiclassical quantization condition (Bohr–Sommerfeld condition)
for the inner well: ðr1

0

drpr ¼ πℏ nþ μð Þ, (8.49)

where n= 0, 1, 2, . . . and μ is a factor of the order of unity, cf. Section 2.4 (Landau
& Lifshitz, 1977).

One can see, however, that the integral on the left-hand side of Eq. (8.49) is
logarithmically divergent at the lower limits, and a cut-off at r = r0 « r1 should be
introduced. This divergence reflects the fall toward the center discussed earlier.
After that, we will find from the corrected version of Eq. (8.49)
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En � �C
ℏv
r0

exp � πℏnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

c �M2
q

264
375 (8.50)

with a factor C � 1, in very good agreement with the positions of quasilocalized
levels found from the exact solution Eq. (8.35).

Owing to the Klein tunneling through the classically forbidden region, the
lifetime in the inner well is finite, which leads to the appearance of the imaginary
part of the energy,

Γn

Enj j � exp � 2S
ℏ

� �
, (8.51)

S ¼
ðr2
r1

dr pr rð Þj j (8.52)

(Landau & Lifshitz, 1977). The explicit calculation gives us the answer

S ¼ π Mc �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

c �M2
q� �

: (8.53)

At the threshold, M = Mc, and this gives us a result that differs from the exact one
(8.37) only by the replacement

1
exp 2πβð Þ � 1

! exp �2πβð Þ: (8.54)

The resonances are narrow, and the quasilocalized states are long-lived, because of
the numerical smallness exp(�π) � 0.04, an interesting example of a small
numerical parameter for a coupling constant of the order of 1!

8.3 Nonlinear screening of charge impurities

Up to now, we have not taken into account electron–electron interactions. How-
ever, they are essential in our problem. The Coulomb potential (8.1) induces some
redistribution of the electron density nind ~rð Þ, which will create an additional
potential

V ind ~rð Þ ¼ e2

εext

ð
d~r0

nind ~r0ð Þ
~r �~r0j j þ Vxc ~rð Þ, (8.55)

where the first term is the Hartree potential and the second is the exchange
correlation potential. In the simplest approximation the latter can be neglected,
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and we restrict ourselves to this approximation. The density-functional approach,
taking into account Vxc for the case of massless Dirac fermions, was developed by
Polini et al. (2008) and Rossi and Das Sarma (2008) (see also Brey & Fertig, 2009;
Fogler, 2009; Gibertini et al., 2010).

We will focus on the case of undoped graphene (chemical potential μ = 0). In
this situation, the radial dependence of nind(r0) can be written just from dimensional
analysis. There is no way to construct any length from the parameters of
the potential (Ze2) and of the electron spectrum (the Fermi velocity v); the
only relevant characteristic β, given in (8.2), is dimensionless. At the same time,
nind(r) has a dimensionality of inverse length squared. The most general
expression is

nind rð Þ ¼ A βð Þδ ~rð Þ þ B βð Þ
r2

, (8.56)

with the dimensionless A and B. The physical roles of these two terms are
dramatically different. The term proportional to A(β) is nothing other than the
renormalization of the point charge:

� Z

εext
! � Z

εext
þ A βð Þ: (8.57)

At the same time, phenomenologically, the answer should be �Ze2/ε, where ε is
the total dielectric constant (7.89), thus

A βð Þ ¼ Z
1
ε
� 1
εext

� �
: (8.58)

Therefore, the first term on the right-hand side of Eq. (8.56) describes nothing but
linear screening, that is, the renormalization of the dielectric constant.

The second term gives a logarithmically divergent contribution to the total
charge:

Qind ¼
ð
d~r 0nind ~r 0ð Þ � 2πB βð Þ ln rmax

rmin

� �
, (8.59)

where rmax and rmin are the upper and lower limits of the integration. The obvious
choice for rmin is the lattice constant a, since at such small distances the Dirac
model is not applicable. As for rmax, it is of the order of the sample length L. The
appearance of such contributions proportional to large ln(L/a) should have very
important consequences.

Let us first consider the case of small Z. The linear-response problem was
considered in Chapter 7, and no logarithms appeared. Owing to electron–hole
symmetry, Qind (Z) should be an odd function:
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Qind = (�Z) = � Qind(Z), (8.60)

which means that, at small Z, B can be represented as

B(Z) = B3Z
3 + B5Z

5 + 	 	 	. (8.61)

Straightforward calculations show that B3 = 0 (Ostrovsky, Gornyi, & Mirlin,
2006; Biswas, Sachdev, & Son, 2007). Later in this section we will show in a
nonperturbative way that B = 0 at Z < Zc (Shytov, Katsnelson, & Levitov, 2007a).

To consider the opposite limit of large Z one can use the Thomas–Fermi
approximation (Katsnelson, 2006c). For the case of atoms, one can prove that it
is asymptotically exact at Z ! ∞ (Lieb, 1981). Within this approximation (Landau
& Lifshitz, 1977; Lieb, 1981; Vonsovsky & Katsnelson, 1989) the effect of the
total potential

V ~rð Þ ¼ �Ze2

r
þ V ind ~rð Þ (8.62)

on the electron density dependent on the chemical potential n(μ), is purely local,

nind ~rð Þ ¼ n μ� V rð Þ½ � � n μð Þ, (8.63)

and the term Vxc in Eq. (8.55) can be neglected. The linearized version of this
approximation for the doped case was discussed in Section 7.7.

As a result,

V ind ~rð Þ ¼ e2

εext

ð
d~r0

n μ� V ~r0ð Þ½ � � n μð Þ
~r �~r0j j : (8.64)

For the case of graphene,

n μð Þ ¼
ðμ
0

dEN Eð Þ ¼ μ μj j
πℏ2v2

(8.65)

(see Eq. (1.72)).
Let us start with the undoped case (μ = 0). Then, on substituting Eq. (8.62)

and (8.65) into Eq. (8.64) and integrating over angles (it is obvious that V ~rð Þ
and nind ~rð Þ depend only on ~rj j ¼ r), one finds the integral equation (Katsnelson,
2006c)

F rð Þ ¼ Z � 2q
π

ð∞
0

dr0

r0
r

r þ r0
K

2
ffiffiffiffiffi
rr0

p

r þ r0

 !
F r0ð Þ F r0ð Þj j, (8.66)

where F is related to V by the expression
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V ~rð Þ ¼ � e2

εextr
F rð Þ, (8.67)

K(m) is the elliptic integral (7.65) and

q ¼ 2
e2

εextℏv

� �2

: (8.68)

We will see later that, actually, the integral on the right-hand side of Eq. (8.66) is
divergent at r = 0; the reason is the inapplicability of the Dirac model at r 
 a.
Therefore, we need to introduce a cut-off at r0 � a, as was discussed previously.
The exact value of a is not relevant, given the logarithmic accuracy.

To proceed further, we make a replacement of variables in Eq. (8.66), r0 = r exp (t),
and introduce the notation ~F ln rð Þ ¼ F rð Þ: As a result, Eq. (8.66) takes the form

~F xð Þ ¼ Z � q

ðx
ln a

dt ~F tð Þ ~F tð Þ		 		� q

ð∞
�∞

dt ~F xþ tð Þ ~F xþ tð Þ		 		φ tð Þ, (8.69)

where

φ tð Þ ¼ 2
π

K 1= cosh
t

2


 �
 �
1þ exp t

� θ �tð Þ, (8.70)

with θ(x> 0) = 1, θ(x< 0) = 0. The function φ(t) decays exponentially at t!�∞
and has a logarithmic divergence at t = 0 (see Fig. 8.3). For large x, the last term in
Eq. (8.69) can be neglected:

Fig. 8.3 A graph of the function φ(t) in (8.70).
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~F xð Þ ¼ Z � q

ðx
ln a

dt ~F tð Þ ~F tð Þ		 		: (8.71)

This integral equation is equivalent to the differential one:

d ~F xð Þ
dx

¼ �q ~F xð Þ ~F xð Þ		 		, (8.72)

with the initial condition ~F 0ð Þ ¼ Z. The solution is

F rð Þ ¼ Z

1þ Zj jq ln r

a


 � , (8.73)

which corresponds to a very strong (logarithmic) screening of the effective charge
at r » a:

Zeff rð Þ ¼ Z þ Qind �
Zeff rð Þ
q ln

r

a


 � : (8.74)

If we were to expand Eq. (8.73) formally in Z, the leading term in Qind would be

Qind � �Z Zj jq ln rmax

rmin

� �
, (8.75)

which does not have the form (8.61) (but, of course, satisfies the condition (8.60)).
However, as we will see, the expression (8.73) is correct only for jZj » 1.

If we took the expression (8.73) literally, it would lead to the conclusion that
any charge is completely screened by the vacuum of two-dimensional massless
Dirac electrons (Katsnelson, 2006c). The situation is reminiscent of “charge
nullification” in quantum electrodynamics (Landau & Pomeranchuk, 1955;
Landau, Abrikosov, & Khalatnikov, 1956; Migdal, 1977), which was considered
(especially by the Landau school) as a fundamental difficulty of quantum field
theory in general. Actually, complete nullification occurs neither in quantum
electrodynamics nor in graphene. We will see that in the latter case the screening
is stopped at the value Z = Zc (Shytov, Katsnelson, & Levitov, 2007a).

The simplest way to demonstrate this is to use arguments based on the Friedel
sum rule (Friedel, 1952; Vonsovsky & Katsnelson, 1989); its generalization to the
case of the Dirac equation has been proposed by Lin (2005, 2006). According to
the sum rule, the total induced charge is related to the phase scattering at the Fermi
surface

Qint ¼ � 4
π

X
m

δm kFð Þ, (8.76)
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where the minus sign corresponds to that in Eq. (8.5) and we introduce the factor of
4 (valley degeneracy multiplied by spin degeneracy), keeping in mind applications
to graphene. We are interested in the limit kF ! 0, which, however, requires some
careful treatment for the supercritical charges (jβ j > βc), due to the term ln(2kr0) in
Eq. (8.28). This is, actually, the same logarithmic divergence as in Eq. (8.59), so
we will immediately see that the B term in Eq. (8.56) arises naturally at jβ j > βc
(but is equal to zero at jβj > βc, as has already been mentioned). For the
r-dependent term one can estimate, with logarithmic accuracy

Qint rð Þ � � 4
π

X
m

δm k � 1
r

� �
¼ � 4

π

X
m

γm ln
r

a


 �
, (8.77)

where the sum is taken over all jmj < jβj.
Thus, we have the following expression for the logarithmically dependent term

in Eq. (8.56):

B βð Þ ¼ � 2
π2

β
X
mj j< βj j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 � m2

q
: (8.78)

To proceed further one can use the renormalization group (RG) method, in its
simplest form of the “poor man’s scaling” (Anderson, 1970). Let us find the
dimensionless charge β self-consistently:

β rð Þ ¼ e2

εextℏv
Z þ Qind rð Þð Þ ¼ β0 Z þ 2πB ln

r

a


 �
 �
, (8.79)

where β0 is the bare value (8.2). The differential RG equation for the effective
coupling constant reads

dβ
d ln r

¼ 2πβ0B βð Þ ¼ � 4e2β
πεextℏv

X
mj j< βj j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 � m2

q
: (8.80)

Eq. (8.80) describes the flow of effective charge from its initial value β(r � a) = β0
to a smaller screened value. The flow stops, however, when jβ(r)j reaches
the critical value βc ¼ 1

2, since B(jβj < jβcj) = 0. It happens at a finite screening
radius r* determined by the condition

1
2π β0j j

ðβj j

βc

d βj j
B βð Þ ¼ ln

r∗

a

� �
: (8.81)

For the case of 1
2 < β0j j < 3

2 , for which only one term (with mj j ¼ 1
2) contributes to

B(β), the integration can be carried out explicitly:
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r∗ ¼ a exp
πεextℏv
4e2

cosh �1 2β0ð Þ
� �

: (8.82)

This means that the supercritical charge in graphene is surrounded by a cloud
of electron–hole pairs (created from the vacuum) of finite radius r*. For distances
r > r* the supercritical charge looks like the critical one. In our simple theory this
critical charge corresponds to βcj j ¼ 1

2; however, one should keep in mind that a
more accurate consideration of electron–electron interactions can renormalize this
value. Also note that taking into account the A term (8.58) will lead to the
replacement εext ! ε in Eq. (8.80) and (8.82).

Anyway, it is natural to expect that jβcj is of the order of 1. Thus, due to the
condition v « c, the rich and interesting physics of the supercritical charge and
vacuum reconstruction, which is hardly reachable for superheavy nuclei, can play
an important role in graphene.

To finish this section, let us establish the relations between the Thomas–Fermi
approximation and our RG treatment. If we assume that jZj » 1 and jβj is much
larger than the critical value, the sum in Eq. (8.78) can be replaced by the integral

X
mj j< βj j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 � m2

q
�
ðβj j

� βj j

dm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 � m2

q
¼ πβ2

2
, (8.83)

and Eq. (8.80) coincides with Eq. (8.72), with the solution (8.73). Thus, the
Thomas–Fermi approximation works at Z ! ∞, as one would naturally expect.

8.4 Interelectron Coulomb interaction and renormalization of the
Fermi velocity

As discussed in Chapter 7, electron–electron interaction in graphene is not weak,
the effective coupling constant being of the order of 1. This makes the problem of a
many-body description of graphene very complicated. Also, experimental evi-
dence of many-body effects in graphene (except in the quantum Hall regime)
remains very poor. For these two reasons, it seems to be a bit early to discuss in
detail the correlation effects in graphene. However, one of the predictions, namely,
a concentration-dependent renormalization of the Fermi velocity (González,
Guinea, & Vozmediano, 1994) is based on relatively simple Hartee–Fock calcula-
tions and should be reliable, at least, qualitatively. Very recently, this effect was
confirmed experimentally (Elias et al., 2011). It demonstrates the importance of the
long-range character of interelectron Coulomb interactions and, therefore, will be
considered in this chapter.
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The Hamiltonian of the Coulomb interaction reads

ĤC ¼ e2

2

X
α, β

ðð
d~rd~r0

ψ̂þ
α ~rð Þψ̂α ~rð Þψ̂þ

β ~r0ð Þψ̂β ~r0ð Þ
~r �~r0j j , (8.84)

where ψ̂α ~rð Þ is the electron annihilation operator at the point~r, α is an intrinsic
quantum number (e.g., a set of spin-projection, sublattice, and valley labels). The
Hartree–Fock approximation corresponds to the replacement

bψþ
1 ψ̂2bψþ

3 ψ̂4 ! bψþ
1 ψ̂2

� bψþ
3 ψ̂4 þ bψþ

1 ψ̂4

� 
ψ̂2bψþ

3 ¼ ρ21bψþ
3 ψ̂4 þ ρ41ψ̂2bψþ

3 , (8.85)

which means a consideration of electron–electron interactions at the mean-field level
(Landau & Lifshitz, 1977; Vonsovsky & Katsnelson, 1989). The coupling withX

/
bψþ
α ~rð Þψ̂α ~rð Þ�  ¼ n ~rð Þ (8.86)

corresponds to Hartree (electrostatic) terms and, within the model of a homoge-
neous electron gas, is exactly compensated for by the interactions with ionic charge
density, due to the electroneutrality of the system. The Fock contribution survives:

ĤF ¼ �e2
X
α, β

ð
d~rd~r0

bψþ
α ~rð Þψ̂β ~r0ð Þ� bψþ

β
~r0ð Þψ̂α ~rð Þ

~r �~r0j j : (8.87)

Owing to the translational invariance of the system,

bψþ
α ~rð Þψ̂β ~r

0ð Þ
D E

¼
X
~k

ρβα ~k

 �

exp i~k ~r �~r0ð Þ
h i

, (8.88)

where

ρβα ~k

 �

¼ bψþ
~kα
ψ̂~kβ

D E
(8.89)

(cf. Chapter 7, where we used this single-particle density matrix many times). If we
apply this assumption to graphene, this means that we neglect intervalley Coulomb
interaction. The corresponding terms contain “Umklapp processes” with
ρ̂ ~k;~k �~g

 �

, where~g ¼ ~K � ~K 0 is the vector connecting the valleys. This approxi-
mation will be discussed later.

On substituting Eq. (8.88) into Eq. (8.87) we will have an additional term in the
single-electron Hamiltonian

ĤF ¼
X
~k

X
α, β
bψþ
α

~k

 �

hαβ ~k

 �

ψ̂β
~k

 �

, (8.90)
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where

hαβ ~k

 �

¼ �2πe2
X
~k

ραβ ~k

 �

~k �~k0
			 			 : (8.91)

If we consider the electron–electron interaction effects by applying a perturbation
theory, the corrections to the energies of electrons and holes are nothing other than
the matrix elements of ĥ ~k


 �
in the corresponding basis. The explicit calculation

for the undoped case (which is similar to that in Sections 7.2 and 7.6) gives us the
following result:

δEe,h ~k

 �

¼ �
X
~k0

2πe2

~k �~k0
			 			 12 1�

~k~k0

kk0

 !
: (8.92)

The integral in Eq. (8.92) is logarithmically divergent at the upper limit and has to
be cut at kc � 1/a, due to the inapplicability of the Dirac approximation. It contains
the term �ħδvF(k)k, where

δvF kð Þ ¼ e2

4ℏ
ln

kc
k

� �
, (8.93)

which is logarithmically divergent at k ! 0. This means that, strictly speaking, the
Dirac cones near the neutrality point are not exactly cones.

For the case of doped graphene, the divergence at k ! 0 is cut at k � kF, which
results in a logarithmic dependence of the Fermi velocity on the electron
concentration:

δvF ¼ e2

4ℏ
ln

1
kFa

� �
: (8.94)

If we take into account the screening of the Coulomb interaction by the environ-
ment plus virtual electron–hole transitions, the expression (8.94) is replaced by

δvF ¼ e2

4ℏε
ln

1
kFa

� �
, (8.95)

with ε given by Eq. (7.89). This seems to be in agreement with the experimental
data published by Elias et al. (2011).

Note that, if we took into account the intervalley Coulomb interaction, the
Fourier component 1= ~k �~k0

			 			 in Eq. (8.92) would be replaced by a constant

1

~k �~k0 þ~g
			 			 � 1

g
:

This interaction does not lead to any singularities and, therefore, can be neglected.
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The situation becomes more complicated and interesting if we take into account
dynamical screening of the Coulomb interaction (see Eq. (7.81), (7.82) and (7.88)).
As was shown by González, Guinea, and Vozmediano (1999), this leads to the
damping of electron states proportional to jEj, in contrast with the typical Fermi-
liquid E2 behavior. This means that graphene in the vicinity of the neutrality point
should be a marginal Fermi liquid, with ill-defined quasiparticles. Currently, it is
not clear how this result will be changed on going beyond the perturbation theory.

The many-body effects in graphene will be considered in much greater detail
in Chapter 15.
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9

Crystal lattice dynamics, structure, and
thermodynamics

9.1 Phonon spectra of graphene

Phonon spectra of two-dimensional and quasi-two-dimensional crystals have some
peculiar features that were first analyzed by Lifshitz (1952; see also Belenkii,
Salaev, & Suleimanov, 1988; Kosevich, 1999). To explain them we first recall a
general description of the phonon spectra in crystals (Kosevich, 1999; Katsnelson
& Trefilov, 2002).

Let the coordinates of the nuclei be

~Rnj ¼ ~R 0ð Þ
nj þ~unj, (9.1)

where ~R 0ð Þ
nj

n o
form a crystal lattice, n labels elementary cells (or sites of the

corresponding Bravais lattice), j = 1, 2, . . ., v labels the atoms within elementary
cell (or sublattices), and~unj are displacements. Further, we will use the notation

~R 0ð Þ
nj ¼~rn þ~ρj, (9.2)

where~rn are translation vectors and~ρj are basis vectors ~ρ1 � 0ð Þ.
The main assumption of the standard theory of crystal lattices is the smallness of

average atomic displacements in comparison with the interatomic distance d:

~unj
2� �

« d2: (9.3)

According to Eq. (9.3) one can expand the potential energy V ~Rnj

� �� �
in terms of

atomic displacements and take into account only the lowest second-order term (the
linear term obviously vanishes due to mechanical equilibrium conditions):

V ~Rnj

� �� � ¼ V ~R 0ð Þ
nj

n o� 	
þ 1
2

X
nn0
ij

αβ

Aαβ
ni,n0ju

α
niu

β
n0j, (9.4)
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where

Aαβ
ni,n0j ¼

∂2V

∂uαni∂u
β
n0j

 !
~u¼0

(9.5)

is the force-constant matrix. Eq. (9.4) defines the harmonic approximation. The
classical equations of motion for the potential energy (9.4) read

Mi
d2u αð Þ

ni

dt2
¼ �

X
n0jβ

Aαβ
ni,n0ju

β
n0j: (9.6)

By looking for solutions of the form uni
α(t) ~ exp (�iωt) and using translational

symmetry, one can prove that the square eigenfrequencies of the problem
ω2 ¼ ω2

ξ ~qð Þ, are eigenvalues of the dynamical matrix

Dαβ
ij ~qð Þ ¼

X
n

Aαβ
0i,njffiffiffiffiffiffiffiffiffiffiffi
MiMj

p exp i~q~rnð Þ: (9.7)

Here~q is the phonon wave vector running over the Brillouin zone and ξ= 1, 2, . . .,
3v is the phonon branch label.

After quantization of the classical problem, one can prove that in the harmonic
approximation, the Hamiltonian of the system is

Ĥ0 ¼
X
λ

ℏωλ b̂
þ
λ b̂λ þ

1
2

� �
, (9.8)

where λ ¼ ~q; ξð Þ are phonon quantum numbers, b̂þλ and b̂λ are canonical Bose

creation and annihilation operators, and the atomic displacement operator is
expressed in terms of b̂þλ and b̂λ as

~̂unj ¼
X
λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ

2N0Mjωλ

s
b̂λ þ b̂þ�λ

� �
~ej λð Þ exp i~q~rnð Þ: (9.9)

Here N0 is the number of elementary cells, �λð Þ � �~q; ξð Þ and~ej λð Þ are polariza-
tion vectors, that is, unit eigenvectors of the dynamical matrix.

There are important restrictions on the force-constant matrix, due to the transla-
tional invariance of the problem. If we were to move all nuclei of the crystal by the
same displacement vector~u, no force would act on any atom. This means, due to
Eq. (9.6), that X

nj

Aαβ
0i,nj ¼ 0: (9.10)
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It follows from the condition (9.10) that in three-dimensional space there are three
acoustic modes, with ω2

ξ ~q ! 0ð Þ ! 0 ξ ¼ 1; 2; 3ð Þ and 3(v � 1) optical modes,

with finite ω2
ξ ~q ! 0ð Þ: The acoustic modes for small ~q correspond to coherent

displacements of all atoms in the elementary cell by the same vector ~uj � ~u ,
whereas optical modes at ~q ¼ 0 correspond to the motion of atoms within the
elementary cells with the fixed inertia center:

X
j

Mj~uj ~q ¼ 0ð Þ ¼ 0: (9.11)

Keeping in mind graphene, we will assume further that Mj = M is the mass
of the carbon atom. Owing to mirror symmetry in the graphene plane, it is
obvious that

Â
xz ¼ Â

yz ¼ 0 (9.12)

and, thus, the modes with polarization along the z-direction are rigorously separ-
ated, within the harmonic approximation, from the modes polarized in the gra-
phene xy-plane. Also, taking into account that the two sublattices A and B are
equivalent, one can see that

Dαβ
11 ¼ Dαβ

22 (9.13)

and, due to Eq. (9.7) and (9.10),

Dαβ
12 ~q ¼ 0ð Þ þ Dαβ

11 ~q ¼ 0ð Þ ¼ 0: (9.14)

Therefore, there are six phonon branches in graphene, namely the following:

(1) The acoustic flexural mode ZA ~ukOzð Þ with the frequencies

ω2
ZA ~qð Þ ¼ Dzz

11 ~qð Þ þ Dzz
12 ~qð Þ: (9.15)

(2) The optical flexural mode ZA ~ukOzð Þ with the frequencies

ω2
ZO ~qð Þ ¼ Dzz

11 ~qð Þ � Dzz
12 ~qð Þ: (9.16)

(3), (4) Two acoustic in-plane modes, with ω2 ~qð Þ equal to eigenvalues of the
2 � 2 matrix

Dαβ
11 ~qð Þ þ Dαβ

12 ~qð Þ α; β ¼ x; yð Þ:
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(5), (6) Two optical in-plane modes, with ω2 ~qð Þ equal to eigenvalues of the 2 � 2
matrix

Dαβ
11 ~qð Þ � Dαβ

12 ~qð Þ α; β ¼ x; yð Þ:

If the two-dimensional wave vector ~q lies in symmetric directions, branches (3)
through (6) can be divided into longitudinal ~ek~qð Þ and transverse ~e⊥~qð Þmodes; for
a generic~q this classification is not possible.

Because of the conditions (9.14), one can assume that for acoustic modes
ω2 ~ q2 at ~q ! 0, and this is, in general, true. However, for the ZA mode, q2

terms also disappear, and ωZA
2(q) ~ q4 (Lifshitz, 1952). This follows from the

rotational invariance of the system. Indeed, instead of uniform translation
~un = constant, let us use uniform rotation

~unj ¼ δ~φ�~R 0ð Þ
nj , (9.17)

where δ~φ is the rotation angle. This should also not lead to the appearance of any
forces or torques acting on the atoms. If δ~φ lies in the xy-plane,~unjkOz, additionally
to the conditions (9.10), we will haveX

nj

Azz
0i,njr

α
nr

β
n ¼ 0 (9.18)

(α, β = x, y). It follows immediately from Eq. (9.18) and the definition of the
dynamical matrix in (9.7) that

∂2

∂qα∂qβ
Dzz

11 ~qð Þ þ Dzz
12 ~qð Þ ���

~q¼0
¼ 0 (9.19)

and, thus the expansion of the right-hand side of Eq. (9.15) starts with terms of the
order of q4; therefore,

ωZA(q) � q2 (9.20)

at ~q ! 0: In the next section we will derive this result by means of phenomeno-
logical elasticity theory.

There is no way, until now, to measure phonon dispersion in graphene experi-
mentally, since the number of atoms in graphene flakes is insufficient for inelastic
neutron-scattering experiments. It can be calculated using the density-functional
method (Mounet & Marzari, 2005) or some semiempirical interatomic potential.
The results are quite similar. Later in this chapter we will frequently discuss
the results of atomistic simulations obtained using the so-called long-range
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carbon-bond order potential (LCBOPII) (Los & Fasolino, 2003; Los et al., 2005).
Therefore, we show in Fig. 9.1 the phonon spectra calculated within the same
model (Karssemeijer & Fasolino, 2011). One can clearly see the six branches of the
phonons listed previously.

Let us now consider the case of finite temperatures. In the harmonic
approximation, the mean-square atomic displacement is (Kosevich, 1999; Kats-
nelson & Trefilov, 2002)

uαnju
β
nj

D E
¼
X
λ

ℏ
2N0Mjωλ

eαnj

� 	∗
eβnj

� 	
coth

ℏωλ

2T

� �
: (9.21)

For in-plane deformations (α = β = x or y) at any finite temperature the integral
(9.21) is logarithmically divergent due to the contribution of acoustic branches
with ω ~ q at~q ! 0: This divergence is cut at minimal qmin ~ L�1 (L is the sample
size), thus

x2nj

D E
¼ y2nj

D E
� T

2πMc2s
ln

L

d

� �
, (9.22)

where cs is the average sound velocity (Peierls, 1934, 1935; Landau, 1937; Landau
& Lifshitz, 1980). This led Landau and Peierls to the conclusion that two-
dimensional crystals cannot exist. Strictly speaking, this means just the inapplic-
ability of the harmonic approximation, due to violation of the condition (9.3).
However, a more rigorous treatment does confirm this conclusion (Mermin, 1968),
as a partial case of the Mermin–Wagner theorem (Mermin & Wagner, 1966;

Fig. 9.1 Phonon spectra of graphene.
(Reproduced with permission from Karssemeijer and Fasolino, 2011.)
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Ruelle, 1999). This means that the definition of graphene as a “two-dimensional
crystal” requires a detailed and careful discussion, which is one of the main aims of
this chapter.

For α = z, the situation is even worse, due to the much stronger divergence of
ZA phonons Eq. (9.20). One can see from Eq. (9.21) that

hnj
2

� � � T
X
q

1
q4

� T

Eat
L2, (9.23)

where Eat is of the order of the cohesive energy. Henceforth we will use the
notation h = uz, assuming that~u ¼ ux; uyð Þ is a two-dimensional vector only.

Before going any further it is important to derive the key results (9.20) and
(9.23) from a different point of view.

9.2 The theory of elasticity for thin plates

In this section we present the general equations of the phenomenological elasticity
theory, with applications to thin plates (Timoshenko &Woinowsky-Krieger, 1959;
Landau & Lifshitz, 1970). This is a necessary preparatory step before we can
discuss the unique mechanical properties of graphene (Booth et al., 2008; Lee
et al., 2008). Also, it gives us a deeper insight into the properties of flexural
phonons.

Let us consider a D-dimensional (D = 2 or 3) deformed medium. The particles,
which had original coordinates xα, transformed to the position

x0α ¼ xα þ uα xβ
� �� �

: (9.24)

The metrics, that is, the distance between infinitesimally distant points, being
Pythagorean

dl2 = dxαdxα (9.25)

(we assume a summation over repeated tensor indices) is changed to

dl02 ¼ dx0αdx
0
α ¼

∂x0α
∂xβ

∂x0α
∂xγ

dxβdxγ ¼ dl2 þ 2uαβdxαdxβ, (9.26)

where

uαβ ¼ 1
2

∂uα
∂xβ

þ ∂uβ
∂xα

þ ∂uγ
∂xα

∂uγ
∂xβ

� �
(9.27)

is a so-called deformation tensor. It is assumed, in the elasticity theory, that the free
energy of a deformed medium is a functional of the deformation tensor F = F[uαβ].
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By definition, the equilibrium state without external forces corresponds to
uαβ = 0.

There are two types of external forces resulting in the deformation. First, there
are bulk forces acting on each atom of the medium, such as gravitational and
electric forces. Their volume density is assumed to be f vð Þ

α ~rð Þ: Second, there are
mechanical forces, due to contact with various bodies; they act on the surface only.
The hydrostatic pressure P is an example; it leads to the total force

~f ¼
þ
d~SP, (9.28)

where d~S is the (vector) element of the surface area. In a more general case in
which shear forces are also allowed Eq. (9.28) is generalized as

fα =
Þ
dSβσαβ, (9.29)

where σαβ is called the stress tensor. Using the Gauss theorem, Eq. (9.29) can be
represented as an integral over the volume

f α ¼
ð
dDx

∂σαβ
∂xβ

: (9.30)

Thus, the condition of local equilibrium can be written as

∂σαβ
∂xβ

þ f vð Þ
α ¼ 0: (9.31)

One can prove (Landau & Lifshitz, 1970) that, due to the condition of absence of
internal torques, the stress tensor is symmetric:

σαβ = σβα. (9.32)

Interestingly, this condition is violated in ferromagnetic media, due to gyro-
magnetic effects (Vlasov & Ishmukhametov, 1964), but we will not consider that
case here.

The stress tensor creates deformations that are linear in the stress (Hooke’s law).
In the approximation of an isotropic elastic medium, the relation is determined by
two Lamé constants, λ and μ:

σαβ = λδαβuγγ + 2μuαβ. (9.33)

It is obvious that for small-enough deformations juαβj « 1, the renormalization of
the local volume is determined by uγγ ¼ Trû:
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dV 0

dV
¼ det

∂x0α
∂xβ

� �
� 1þ uγγ: (9.34)

This component of the deformation tensor is called dilatation. The traceless
component

u0αβ ¼ uαβ � 1
D
δαβuγγ, (9.35)

is called shear deformation. Hooke’s law (9.33) can be rewritten as

σαβ ¼ Bδαβuγγ þ 2μ uαβ � 1
D
δαβuγγ

� �
, (9.36)

where

B ¼ λþ 2μ
D

(9.37)

is the bulk modulus and μ has the meaning of a shear modulus of the system under
consideration.

On substituting Eq. (9.33) into Eq. (9.31) we find the equilibrium conditions for
the case f vð Þ

α ¼ 0:

∂
∂xα

λuγγ
� �þ 2

∂
∂xβ

μuαβ
� � ¼ 0: (9.38)

Eq. (9.38) corresponds to the extremum of the free energy

F ¼ 1
2

ð
dDx λ uααð Þ2 þ 2μuαβuαβ
h i

: (9.39)

Thermodynamic stability requires

B > 0, μ > 0, (9.40)

which is obvious if one considers pure dilatation and pure shear deformation.
The inversion of Eq. (9.36) gives us

uαβ ¼ 1

D2B
δαβσγγ þ 1

2μ
σαβ � 1

D
δαβσγγ

� �
: (9.41)

If we apply a uniaxial uniform stress (σxx = p and other components are equal to
zero) we can find from Eq. (9.41) that

uxx ¼ p

Y
, uyy ¼ �vuxx, (9.42)

where Y is called Young’s modulus and v is the Poisson ratio determining the
change of sizes in directions perpendicular to the stress. For D = 3 one has
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Y ¼ 9Bμ
3Bþ μ

,

v ¼ 1
2
3B� 2μ
3Bþ μ

(9.43)

and, due to Eq. (9.40),

�1 < v <
1
2
: (9.44)

For most solids v > 0, which means a constriction of the body in the perpendicular
direction. For D = 2

Y ¼ 4Bμ
Bþ μ

,

v ¼ B� μ
Bþ μ

:

(9.45)

Now, after recalling these basic definitions of elasticity theory, let us consider the
case of a thin plate (its thickness Δ is much smaller than the typical size L, in the
x- and y-directions). We start with the case of small deformations, for which the last
nonlinear term in the definition (9.27) can be neglected. If we assume that no forces
act on the surfaces of the plate, it should be, according to Eq. (9.29), the case that

σαβnβ = 0, (9.46)

where~n is the unit normal to the surface. For the equation of the surface

z = h(x, y) (9.47)

the components of the normal are

nx ¼ � ∂h
∂x

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ rhj j2

q ,

ny ¼ � ∂h
∂y

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ rhj j2

q ,

nz ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ rhj j2

q ,

(9.48)

where

rh ¼ ∂h
∂x

;
∂h
∂y

� �

9.2 The theory of elasticity for thin plates 221

https://www.cambridge.org/core


is a two-dimensional gradient (see any textbook on differential geometry, e.g.
DoCarmo, 1976; Coxeter, 1989). If jrhj « 1, the normal is parallel to the z-axis,
and Eq. (9.46) reads

σxz = σyz = σzz = 0. (9.49)

The conditions (9.49) should be satisfied for both surfaces of the plate and, since
the plate is thin, should also be valid within the plane. Taking into account
Eq. (9.33) and the definitions (9.43), one finds

∂ux
∂z

¼ � ∂uz
∂x

,
∂uy
∂z

¼ � ∂uz
∂y

(9.50)

and

uzz ¼ � v

1� v

∂ux
∂x

þ ∂uy
∂y

� �
: (9.51)

Assuming uz = h(x, y) to be z-independent within the plane, one finds from
Eq. (9.50)

ux ¼ �z
∂h
∂x

, uy ¼ �z
∂h
∂y

, (9.52)

and the components of the deformation tensor are

uxx ¼ �z
∂2h
∂x2

, uyy ¼ �z
∂2h
∂y2

, uxy ¼ �z
∂2h
∂x∂y

, (9.53)

uxz ¼ uyz ¼ 0, uzz ¼ z
∂2h
∂x2

þ ∂2h
∂y2

� �
v

1� v
:

On substituting Eq. (9.53) into Eq. (9.39) and integrating explicitly over jzj < Δ/2
(Δ is the plate thickness) one finds for the energy of bending deformation

Fb ¼ YΔ3

24 1� ν2ð Þ
ð
d2x r2h

� �2 þ 2 1� νð Þ ∂2h
∂x∂y

� �2

� ∂2h
∂x2

∂2h
∂y2

" #( )
, (9.54)

where

r2 ¼ ∂2

∂x2
þ ∂2

∂y2
(9.55)

is the two-dimensional Laplacian. The last term in Eq. (9.54)

det
∂2h
∂xi∂xj

� �
,

222 Crystal lattice dynamics, structure, and thermodynamics

https://www.cambridge.org/core


is proportional to the Gaussian curvature K of the deformed surface (DoCarmo,
1976; Coxeter, 1989); see later for more details. It can be represented as a total
derivative:

2 det
∂2f

∂xi∂xj

� �
¼ �εimεjm

∂2

∂xm∂xn

∂f
∂xi

∂f
∂xj

� �
(9.56)

(̂ε is the unit antisymmetric 2 � 2 matrix) and, thus, leads to some integral over the
edges of the membrane. It therefore has no effect on the equations of motion.
Alternatively, one can refer to the Gauss–Bonnet theorem (DoCarmo, 1976;
Coxeter, 1989) that

Ð
dSK is a topological invariant that is not changed during

smooth deformations. Thus, the bending energy (9.54) can be represented as

Fb ¼ κ
2

ð
d2x r2h
� �2

, (9.57)

where

κ ¼ YΔ3

12 1� v2ð Þ : (9.58)

If we add the kinetic energy

T ¼ 1
2

ð
d2xρ

∂~u
∂t

� �2

� 1
2

ð
d2xρ

∂h
∂t

� �2

(9.59)

(ρ is the mass density) and write the Lagrangian L = T � Fb and the corresponding
equations of motion

∂
∂t

ρ
∂h
∂t

� �
þr2 κr2h

� �2 ¼ 0, (9.60)

then we find for the frequencies of the bending waves

ω2 ¼ κ
ρ
q4, (9.61)

in agreement with Eq. (9.20). The quantity κ is called the bending rigidity.
Our consideration up to now has not taken into account the energy of in-plane

deformations. To take them into account one needs to add the energy (9.39), where
α, β = x, y. In the definition, one can neglect (9.27) the nonlinear terms

∂ux
∂xα

∂ux
∂xβ

and
∂uy
∂xα

∂uy
∂xβ

,

but one should keep the nonlinearities
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∂h
∂xα

∂h
∂xβ

since, as we will see, they can be comparable to ∂uα/∂xβ (further,~u ¼ ux; uy
� �

is
the two-dimensional vector):

uαβ ¼ 1
2

∂uα
∂xβ

þ ∂uβ
∂xα

þ ∂h
∂xα

∂h
∂xβ

� �
: (9.62)

The total deformation energy is

F ¼ 1
2

ð
d2x κ r2h

� �2 þ λ uααð Þ2 þ 2μuαβuαβ
n o

, (9.63)

where

λ = λ3Δ, μ = μ3Δ (9.64)

are the two-dimensional Lame constants (henceforth we will write two-
dimensional parameters λ, μ without subscripts, and the corresponding three-
dimensional parameters with the subscript 3). The equations for equilibrium
deformations of the plate can be found by minimization of the functional (9.63),
plus interactions with external forces. After rather cumbersome transformations
(Landau & Lifshitz, 1970; Timoshenko & Woinowsky-Krieger, 1959) one finds

κr4h� Δ
∂2χ
∂y2

∂2h
∂x2

þ ∂2χ
∂x2

∂2h
∂y2

� 2
∂2χ
∂x∂y

∂2h
∂x∂y

� �
¼ P (9.65)

r4χ þ Y3
∂2h
∂x2

∂2h
∂y2

� ∂2h
∂x∂y

� �2
" #

¼ 0, (9.66)

where Y3 is the bulk (three-dimensional) Young modulus, P is the density of
external forces (per unit area), and χ is the potential for the stress tensor (Airy
stress function):

σxx ¼ ∂2χ
∂y2

, σxy ¼ � ∂2χ
∂x∂y

, σyy ¼ ∂2χ
∂x2

: (9.67)

These equations (the Föppl–von Karman equations) are essentially nonlinear, and
their solution is, in general, a difficult task. One can, however, estimate the
deformation for the situation when jhj » Δ, the only one that is relevant for
graphene, where Δ is of the order of interatomic distance. The first term in
Eq. (9.65) is smaller in this situation than the second one and can be neglected
(Landau & Lifshitz, 1970). This means that the bending rigidity κ is irrelevant, and
it is in-plane deformation and the corresponding Young modulus that determine
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the resistance to the external force. Dimensional analysis of Eq. (9.65) and (9.66)
gives us a typical value of the deformation:

h � L4P

Y3Δ

� �1
3

: (9.68)

For example, for a circular plate of radius R with a clamped edge and uniform P,
the deformation at the center is (Timoshenko & Woinowsky-Krieger, 1959)

h0 � 0:662R
RP

Y3Δ

� �1
3

: (9.69)

Note that, despite Eq. (9.65), (9.66) do not depend on the Poisson ratio ν, the
expressions for the deformation tensor and, therefore, the boundary conditions
depend on it. The answer (9.69) corresponds to ν = 0.25. Estimations also show
that linear and nonlinear terms in the deformation tensor (9.62) are, in general, of
the same order of magnitude.

Graphene is an extremely strong material (the real values of the constants κ, B,
and μ will be discussed later in this chapter). Also, being almost defect-free, it can
keep a deformation as high as, at least, 10%–15% (Kim et al., 2009). Therefore,
according to the classical elasticity theory, for typical flake sizes of the order of
10–100 µm, a flake can bear a weight of the order of billions of times its own
weight (Booth et al., 2008). Later we will see that for the single-atomic membrane
the Föppl–von Karman equations (9.65) and (9.66) should be reconsidered due to
essential role of thermal fluctuations but, qualitatively, the conclusion on the
extraordinary strength of graphene membrane remains correct.

There is another way to derive Eq. (9.57), which starts from the model of a
membrane as an infinitely thin plate, that is, a single flexible surface (Nelson,
Piran, & Weinberg, 2004). It is natural to assume that the energy of a deformed
membrane depends on the mutual orientation of normals to the surface at the
neighboring points, which determines the orientation of electron orbitals, etc.
(Fig. 9.2). If we discretize (e.g., triangulate) the surface, we can write the corres-
ponding free energy as

Fb ¼ ~κ
X
ijh i

1�~ni~nj
� �

, (9.70)

where ~κ > 0,~ni is the normal to the zth triangle and the sum is taken over the
neighboring triangles. The bending energy (9.70) is counted from the flat state with
all~nikOz: Since

1�~ni~nj ¼ 1
2

~ni �~nj
� �2

, (9.71)
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in the continuum limit it will be transformed to the invariant quantity

∂nα
∂xβ

∂nα
∂xβ

,

and

Fb ¼ κ
2

ð
d2x

∂nα
∂xβ

∂nα
∂xβ

(9.72)

with κ / ~κ: On substituting Eq. (9.48) into Eq. (9.72) and keeping only the lowest-
order terms in ∂h/∂xα we have

Fb ¼ κ
2

ð
d2x r2h

� �2 � 2 det
∂h
∂xi

∂h
∂xj

� �� �
: (9.73)

The last term, which is proportional to the Gaussian curvature, can be skipped for
the reasons discussed earlier, and we have the expression (9.57).

One more view of Eq. (9.57) is based on the Helfrich model of liquid
membranes (Helfrich, 1973; Jones, 2002). The deformation energy in this model
is written in terms of the mean curvature H and Gaussian curvature K of the
surface:

F ¼ κ
2

ð
dSH2 þ κ0

ð
dSK, (9.74)

where, due to the Gauss–Bonnet theorem, the second term is important only for
processes during which the topology is changed (e.g., the merging of two vesicles).
The first term is also known in mathematics as the Willmore functional; for some
recent discussions see Taimanov (2006) and Manyuhina et al. (2010). For a general
surface defined by Eq. (9.47) one has (DoCarmo, 1976)

dS ¼ dxdy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ rhj j2

q
, (9.75)

Fig. 9.2 The orientation of normals and the directions of electron orbitals in a
fluctuating membrane (black) and in its ground state (gray).

226 Crystal lattice dynamics, structure, and thermodynamics

https://www.cambridge.org/core


K ¼ 1

1þ rhj j2
h i2 ∂2h

∂x2
∂2h
∂y2

� ∂2h
∂x∂y

� �2
" #

, (9.76)

H ¼ 1

1þ rhj j2
h i3=2 1þ ∂h

∂x

� �2
" #

∂2h
∂y2

þ 1þ ∂h
∂y

� �2
" #

∂2h
∂x2

� 2
∂2h
∂x∂y

∂h
∂x

∂h
∂y

( )
:

(9.77)

Keeping only the lowest-order terms in jrhj, we have
H � r2h (9.78)

and, thus, Eq. (9.74) is equivalent to Eq. (9.57).

9.3 The statistical mechanics of flexible membranes

The expressions (9.62) and (9.63) provide a background for the statistical
mechanics of crystalline membranes at finite temperatures (Nelson & Peliti,
1987; Aronovitz & Lubensky, 1988; Abraham & Nelson, 1990; Le Doussal &
Radzihovsky, 1992; Nelson, Piran, & Weinberg, 2004). Henceforth we will
consider only the classical regime, assuming that ~u ~rð Þ and h ~rð Þ are static fields
fluctuating in space. Thus, the partition function is determined by a functional
integral

Z ¼
ð
D~u ~rð ÞDh ~rð Þ exp �βF~u ~rð Þ; h ~rð Þ½ �f g, (9.79)

where β = T�1 is the inverse temperature and the free energy F (9.63) plays the
role of the Hamiltonian. The nonlinear term in Eq. (9.62) couples the two fields,
making the theory highly nontrivial – at least as nontrivial as the famous problem
of critical behavior (Wilson & Kogut, 1974; Ma, 1976).

If we neglect this term, the Hamiltonian (9.63) is split into two independent
Hamiltonians for the free fields. In the~q representation, it reads

F0 ¼ κ
2

X
~q

q4 h~q
�� ��2 þ 1

2

X
~q

μq2 ~u~q
�� ��2 þ λþ μð Þ ~q�~u~q

� �2h i
, (9.80)

where h~q and ~u~q are Fourier components of h ~rð Þ and ~u ~rð Þ, respectively. The

correlation functions for the free fields can be found immediately using the
properties of Gaussian functional integrals (Wilson & Kogut, 1974; Ma, 1976;
Faddeev & Slavnov, 1980):
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G0 ~qð Þ ¼ h~q
�� ��2D E

0
¼ T

κq4
, (9.81)

D0
αβ ~qð Þ ¼ uα~q

∗uβ~q
� �

0 ¼ Pαβ ~qð Þ T

λþ 2μð Þq2 þ δαβ � Pαβ ~qð Þ � T

μq2
, (9.82)

where h. . .i0 means averaging with the Hamiltonian F0 and

Pαβ ~qð Þ ¼ qαqβ
q2

(9.83)

is the projection operator on the~q vector. Note that the normal–normal correlation

function is related to h~q
�� ��2D E

by

δ~n~qδ~n�~q
� � ¼ q2 h~q

�� ��2D E
(9.84)

as follows from Eq. (9.48), δ~n is the deviation of the normal vector from Oz axis.
On substituting Eq. (9.81) into Eq. (9.84) we find

δ~n~qδ~n�~q
� � ¼ T

κq2
: (9.85)

However, the approximation (9.81) turns out to be unsatisfactory. It does not
describe a flat membrane. Indeed, the membrane is more or less flat if the
correlation function

~n0~n~R
� � ¼X

~q

~n~q
�� ��2D E

exp i~q~R
� �

(9.86)

tends to a constant at R! ∞ (normals at large distances have, on average, the same
direction). Instead, substitution of Eq. (9.85) into (9.86) leads to a logarithmically
divergent integral. Moreover, the mean-square out-of-plane displacement

h2
� � ¼X

~q

h~q
�� ��2D E

(9.87)

after the cut-off at qmin ~ L�1 gives the result

h2
� � � T

κ
L2 (9.88)

(cf. Eq. (9.23)), which means that the membrane is crumpled (on average, it has all
three dimensions of the order of L).
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Similarly, the in-plane square deformation

~u2
� � ¼X

~q

~u~q
�� ��2D E

(9.89)

is logarithmically divergent, as in Eq. (9.22). Thus, we conclude, again, that the
statistical mechanics of two-dimensional systems cannot be based on the harmonic
approximation, or approximation of free fields.

The nonlinear term

∂h
∂xα

∂h
∂xβ

in Eq. (9.62) after substitution into Eq. (9.63) results in a coupling of two fields.
The integral over ~u ~rð Þ in Eq. (9.79) remains Gaussian and can be calculated
rigorously, using the well-known rule (Wilson & Kogut, 1974; Faddeev &
Slavnov, 1980)

Ð
D~u exp � 1

2
~uL̂~u�~f~u

� �
Ð
D~u exp � 1

2
~uL̂~u

� � ¼ exp
1
2
~f L̂

�1
~f

� �
: (9.90)

As a result, the partition function (9.79) can be represented as

Z ¼
ð
Dh ~rð Þ exp �βΦ h ~rð Þ½ �f g , (9.91)

with the Hamiltonian Φ depending on the out-of-plane deformations only

Φ ¼ 1
2

X
~q

κq4 h~q
�� ��2 þ Y

8

X
~q~k~k0

R ~k;~k0;~q
� 	

h~kh~q�~k
� 	

h~k0h�~q�~k0
� 	

, (9.92)

where Y is the two-dimensional Young modulus (9.45) and

R ~k;~k0;~q
� 	

¼
~q�~k
� 	2

~q�~k0
� 	2
q4

: (9.93)

The term proportional to h4 in Eq. (9.92) describes anharmonic effects, or self-
interaction of the field h ~rð Þ, and Y plays the role of the coupling constant.

Thus, we have the problem of interacting fluctuations where the low-q contri-
bution is dominant, which is reminiscent of the problem of a critical point. The
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difference is that for two-dimensional systems we have such a critical situation at
any finite temperature.

The correlation function G ~qð Þ ¼ h~q
�� ��2D E

satisfies the Dyson equation

G�1 ~qð Þ ¼ G0
�1 ~qð Þ þ Σ ~qð Þ, (9.94)

where G0 ~qð Þ is given by Eq. (9.81) and the self-energy Σ ~qð Þ can be calculated

using perturbation theory in Y via, e.g., Feynman diagrams. We can introduce the
renormalized bending rigidity κR(q) by writing

G qð Þ ¼ T

κR qð Þq4 , (9.95)

and discuss this quantity. The first-order correction gives us (Nelson & Peliti,
1987)

δκ qð Þ ¼ κR qð Þ � κ ¼ TY

κ

X
~k

1

~qþ~k
��� ���4

~q�~k
� 	2

q2k2

2
64

3
75
2

: (9.96)

On calculating the integral over~k we find

δκ qð Þ ¼ 3TY
16πκq2

: (9.97)

At

q 	 q∗ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
3TY
16πκ2

r
(9.98)

the correction (9.97) is equal to the bare value of κ or larger than κ, and the
perturbation theory is obviously not applicable. The value q* plays the same role
as the “Ginzburg criterion” (Ma, 1976; Landau & Lifshitz, 1980) in the theory of
critical phenomena: Below q* the effects of interactions between fluctuations
dominate.

The increase of bending rigidity with increasing temperature has a simple
physical explanation. It is known, for the case of a corrugated plate, that corruga-
tions of height h » Δ (Δ is the thickness of the plate) should increase its effective
rigidity by a factor (h/Δ)2 (Briassoulis, 1986; Peng, Liew, & Kitipornchai, 2007).
Taking into account Eq. (9.88) (with L ! 1/q) and Δ � a, we will have an
estimation like Eq. (9.97)).

Note that in the theory of liquid membranes, where the Hamiltonian is given by
Eq. (9.74) and the in-plane deformations~u are not relevant, there is also a divergent

230 Crystal lattice dynamics, structure, and thermodynamics

https://www.cambridge.org/core


anharmonic correction to κR(q), due to higher-order (nonlinear) terms in the
expression (9.77) for the mean curvature (Peliti & Leibler, 1985):

δκ � � 3T
4π

ln
1
qa

� �
: (9.99)

This term has the opposite sign in comparison with that for a crystalline membrane
(9.97) and is much smaller than the latter. Thus, the Hamiltonian (9.92) takes into
account the main nonlinearities, and “liquid” anharmonicities are not relevant for
crystalline membranes.

In the next sections we will discuss how to solve this problem and what the real
behavior of fluctuations with q 	 q∗ is.

9.4 Scaling properties of membranes and intrinsic ripples in graphene

In situations in which one has strongly interacting long-wavelength fluctuations,
scaling considerations are extremely useful (Wilson & Kogut, 1974; Ma, 1976;
Patashinskii & Pokrovskii, 1979). Let us assume that the behavior of the renorma-
lized bending rigidity at small q is determined by some exponent η:

κR(q) � q�η, (9.100)

which means

G qð Þ ¼ ~h~q
��� ���2� �

¼ A

q4�ηqη0
: (9.101)

Here we introduce a parameter

q0 ¼
ffiffiffiffi
Y

κ

r
(9.102)

of the order of a�1 to make A dimensionless. One can also assume a renormaliza-
tion of effective Lamé constants:

λR(q), μR(q) � qηu, (9.103)

which means

Dαβ ~qð Þ ¼ uα~q
∗uβ~q

� � � 1
q2þηu

: (9.104)

Finally, instead of Eq. (9.88) we assume

hh2i � L2ζ. (9.105)
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The values η, ηu, and ζ are similar to critical exponents in the theory of critical
phenomena. They are not independent (Aronovitz & Lubensky, 1988).

First, it is easy to express ζ in terms of η. Substituting Eq. (9.101) into Eq. (9.87)
and introducing, as usual, a cut-off at qmin ~ L�1 we have

ζ ¼ 1� η
2
: (9.106)

If η > 0, ζ < 1 and the membrane remains flat (in the sense that its effective

thickness
ffiffiffiffiffiffiffiffiffi
h2
� �q

, is much smaller than L at L ! ∞). Also, in the correlation

function (9.86), due to Eq. (9.84) and (9.101), there is no divergence from the
region of small q:

δ~n~qδ~n�~q
� � � 1

q2�η
(9.107)

is an integrable singularity.
The relation between ηu and η has been derived by Aronovitz and Lubensky

(1988) using quite complicated tools, such as the renormalization group and Ward
identities in Feynman-diagram technique. Its meaning is, however, rather elemen-
tary and related to the requirement that the deformation tensor has the correct
structure (9.62) under the renormalization. This means that the correlation func-
tions of ∂uα/∂xβ and

∂h
∂xα

∂h
∂xβ

should have the same exponents. The first one follows immediately from
Eq. (9.104):

Γ1 ~qð Þ ¼ ∂uα
∂xβ

� �
�~q

∂uα
∂xβ

� �
~q

* +
¼ q2Dαα ~qð Þ � q�ηu : (9.108)

For the second one we have a convolution:

Γ2 ~qð Þ ¼ ∂h
∂xα

∂h
∂xβ

� �
�~q

∂h
∂xα

∂h
∂xβ

� �
~q

* +

¼
X
~k1~k2

k1α qβ � k1β
� 	

k2α qβ þ k2β
� 	

h�~k1h�~q�~k1h�~k2h~qþ~k2

D E
:

(9.109)

For free fields we have Wick’s theorem, and

hh1h2h3h4i = hh1h2ihh3h4i + hh1h3ihh2h4i + hh1h4ihh2h3i. (9.110)
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For interacting fields this is no longer the case, and we have some irreducible
averages (cumulants). It is supposed in the scaling theory that the scaling proper-
ties of these cumulants are the same as those for the “reducible” terms (Patashinskii
& Pokrovskii, 1979) and, thus, one can use Eq. (9.110) to calculate the exponents.
On substituting Eq. (9.110) into Eq. (9.109) one obtains

Γ2 ~qð Þ �
X
~k

k2 ~q�~k
� 	2

G ~k
� 	

G ~k �~q
� 	

: (9.111)

Finally, on substituting Eq. (9.101) into Eq. (9.111) we have

Γ2 ~qð Þ � 1
q2�2η

: (9.112)

On comparing Eq. (9.112) with Eq. (9.108), we arrive at the result

ηu = 2 � 2η. (9.113)

This exponent is positive if 0 < η < 1 (we will see later that this is the case). This
means that, due to interactions between out-of-plane and in-plane phonons, the
former become harder but the latter become softer.

The temperature dependence of the constant A in Eq. (9.101) can be found from
the assumption that q* in (9.98) is the only relevant wave vector in the theory and
that Eq. (9.81) and (9.101) should match at q � q∗. The result is (Katsnelson,
2010b):

A ¼ α
T

κ

� �ζ

, (9.114)

where α is a dimensionless factor of the order of 1.
Before discussing how to calculate the exponent η, it is worth returning to the

Mermin–Wagner theorem about the impossibility of long-range crystal order in
two-dimensional systems at finite temperatures.

The true manifestation of long-range order is the existence of delta-functional
(Bragg) peaks in diffraction experiments; see, e.g., the discussion in Irkhin and
Katsnelson (1986). The scattering intensity is proportional to the static structural
factor

S ~qð Þ ¼
X
mn0

X
jj0

exp i~q ~Rnj �~Rn0j0
� � �� �

: (9.115)

Using Eq. (9.1) and (9.2) the expression (9.115) can be rewritten as

S ~qð Þ ¼
X
nn0

exp i~q ~rn �~rn0ð Þ½ �
X
jj0

exp i~q ~ρj � ρj0
� 	h i

Wnj,n0j0 , (9.116)

9.4 Scaling properties of membranes and intrinsic ripples in graphene 233

https://www.cambridge.org/core


where

Wnj,n0j0 ¼ exp i~q ~unj �~un0j0
� � �� �

: (9.117)

Eq. (9.115) and (9.117) are written for the classical case, in which ~unj are not
operators but just classical vectors; for a more detailed discussion of the scattering
problem in crystal lattices, see Vonsovsky and Katsnelson (1989) and Katsnelson
and Trefilov (2002).

In conventional three-dimensional crystals, one can assume that the displace-
ments~unj and~un0j0 are not correlated, and

Wnj,n0j0 ¼ exp i~q~unj
� �� �

exp �i~q~un0j0
� �� � � mj ~qð Þm∗

j0 ~qð Þ (9.118)

when ~rn �~rn0j j ! ∞; here mj ~qð Þ are Debye–Waller factors that are independent
of n due to translational invariance. Therefore, for ~q ¼~g (reciprocal lattice
vectors), where exp i~q~rnð Þ ¼ 1, the contribution to S ~qð Þ is proportional to N2

0,
whereas for a generic ~q it is of the order of N0. The Bragg peaks ~q ¼~g
are, therefore, sharp; thermal fluctuations decrease their intensity (by the
Debye–Waller factor) but do not broaden the peaks. The observation of
such sharp Bragg peaks is an experimental manifestation of the existence of
long-range crystal order. In the two-dimensional case, the correlation functions
of atomic displacements do not vanish at ~rn �~rn0j j ! ∞. Indeed, in the
continuum limit ~unj ! ~u ~rð Þ; h ~rð Þð Þ, where ~u is already a two-dimensional
vector, and

h ~rð Þ � h ~r0ð Þ½ �2
D E

¼ 2
X
~q

h~q
�� ��2D E

1� exp i~q ~r �~r0ð Þ½ �f g � ~r �~r0j j2ζ , (9.119)

~u ~rð Þ �~u ~r0ð Þ½ �2
D E

¼ 2
X
~q

~u~q
�� ��2D E

1� exp i~q ~r �~r0ð Þ½ �f g � ~r �~r0j jηu (9.120)

after substitutions of Eq. (9.101) and (9.103) (Abraham & Nelson, 1990). This
means that the approximation (9.118) does not work.

To estimate the structural factor near the Bragg peak, ~q ¼~gþ δ~q we can use
the identity

ech i ¼ exp
1
2

c2
� �� �

(9.121)
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for the correlation function (9.117). Strictly speaking, it follows from Wick’s
theorem and, therefore, is exact only in the harmonic approximation (Vonsovsky
& Katsnelson, 1989) but, as was discussed previously, should give us correct
scaling properties. Therefore,

Wnj,n0j0 � exp �α1qk
2~r �~r0j jηu � α2 δ~q⊥ð Þ2~r �~r0j j2ζ

h i
, (9.122)

where~qk and~q⊥ are components of the scattering vector parallel and perpendicular
to the crystal plane and we take into account that~g⊥ ¼ 0:

On substituting Eq. (9.122) into Eq. (9.116) one can see that the sum over n0 at a
given n is convergent, and S ~q ¼~gð Þ ~ N0. Thus, instead of a delta-functional Bragg
peak (in the thermodynamic limit) we have a sharp maximum of finite width at
δ~q ! 0 (Abraham & Nelson, 1990). This means that, rigorously speaking, the
statement that two-dimensional crystals cannot exist at finite temperatures (Peierls,
1934, 1935; Landau, 1937) is correct. However, the structural factor still can have
very sharp maxima~q ¼~g, and the crystal lattice can be restored from the positions
of these maxima. In this (restricted) sense, two-dimensional crystals do exist, and
graphene is a prototype example.

It was found experimentally by electron diffraction, namely by transmission
electron microscopy, that freely suspended graphene at room temperature is
rippled; that is, it exhibits corrugations in the out-of-plane direction (Meyer
et al., 2007a, 2007b). The existence of these intrinsic, thermally induced ripples
in graphene has been confirmed by atomistic Monte Carlo simulations that use the
potential LCBOPII mentioned earlier in Section 9.1 (Fasolino, Los, & Katsnelson,
2007). A typical snapshot is shown in Fig. 9.3. Further detailed studies of the
correlation function G(q) by such simulations have been performed for single-layer
graphene by Los et al. (2009) and Zakharchenko et al. (2010b) and for bilayer
graphene by Zakharchenko et al. (2010a).

According to these simulations, at some intermediate value of q, roughly
between 0.1 Å�1 and 1 Å�1 (for the case of room temperature T = 300K), the

Fig. 9.3 A typical atomic configuration (from atomistic Monte Carlo simulations)
for graphene at room temperature.
(Courtesy of A. Fasolino.)
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correlation function G(q) follows the harmonic approximation (9.81) (Fig. 9.4).
From the slope of this dependence, one can extract κ � 1.1 eV, which means
that graphene at room temperature should be considered a rather hard membrane
(κ/T � 40). With the temperature increase, the bending rigidity of graphene
grows, as shown in Fig. 9.5. For q > 1 Å�1 the continuum-medium approximation
does not work, and G(q) increases due to closeness to the Bragg peak. At
q � q∗ � 0.2 Å�1 there is a crossover to the behavior described by
Eq. (9.101), with

η � 0.85. (9.123)

This value is quite close to that predicted by functional renormalization-group
analysis of the model (9.92) (Kownacki & Mouhanna, 2009). Thus, both the
continuum model and atomistic simulations predict a rather broad, power-law
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N = 19,504
~q–2

~q–1.15

N = 12,096

Fig. 9.4 The normal–normal correlation function q2 G(q) found from atomistic
Monte Carlo (MC) simulations for three samples with indicated number of
atoms N.
(Reproduced with permission from Los et al., 2009.)
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κ

Fig. 9.5 Temperature dependence of the bending rigidity found by fitting G(q) to
Eq. (9.81) for q > q∗.
(Reproduced with permission from Katsnelson and Fasolino, 2013.)
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distribution of intrinsic ripples in graphene, without any dominant spatial scale.
Ripples in graphene on a substrate will be discussed in Chapter 11, in relation to
scattering mechanisms involved in electron transport.

Other evidence for thermally introduced ripples and their effects on thermo-
dynamic and mechanical properties will be considered in Sections 9.6 and 9.7.

According to the Monte Carlo simulations, the in-plane and out-of-plane atomic
displacements are strongly correlated at q < q∗ and uncorrelated for q > q∗, in
agreement with our general picture (Fig. 9.6).

One needs to make one important comment about the model (9.63) (or, equiva-
lently, (9.92)). In this model of a so-called phantom membrane, there is a phase
transition at T � κ to a crumpled phase (Nelson, Piran, & Weinberg, 2004). There
are some arguments, however, in favor of the view that this transition is sup-
pressed, and the low-temperature (quasi-) flat phase is stabilized at any temperature
if one adds a condition of avoided self-crossing (short-range repulsion forces). It is
also assumed that the scaling properties of the (quasi-) flat phase are the same for
“phantom” and “real” membranes (Nelson, Piran, & Weinberg, 2004). Anyway,
the regime T � κ � 104K is obviously not reachable for graphene. What happens
with graphene with increasing temperature will be discussed in Section 9.6.

To finish this section, let us discuss the case of bilayer graphene. Intrinsic
ripples in bilayer graphene were observed experimentally (Meyer et al., 2007b)
and studied theoretically (Zakharchenko et al., 2010b). The main difference from
the case of single-layer graphene can be seen even at the level of the harmonic
approximation for the bilayer membrane. Instead of Eq. (9.57) (or (9.73)) we have
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Fig. 9.6 The correlation function Γ~q ¼ uxð Þ~q h2
� �

�~q
D E

found from atomistic

Monte Carlo simulations for three samples with indicated number of atoms N.
(Reproduced with permission from Katsnelson and Fasolino, 2013.)
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Fb ¼ 1
2

ð
d2x κ r2h1

� �2 þ κ r2h2
� �2 þ 2γ δhð Þ2

h i
, (9.124)

where h1 and h2 are out-of-plane deformations in each plane, κ is the bending
rigidity per layer

δh = h1 � h2, (9.125)

and γ describes a relatively weak van der Waals interaction between the layers. By
introducing an average displacement

h ¼ h1 þ h2
2

(9.126)

one can rewrite Eq. (9.124) as

Fb ¼ 1
2

ð
d2x 2κ r2h

� �2 þ κ
2

r2δh
� �2 þ 2γ δhð Þ2

h i
, (9.127)

and thus we have, in the harmonic approximation, instead of Eq. (9.81)

hq
�� ��2D E

¼ T

2κq4
, (9.128)

δhq
�� ��2D E

¼ T
1
2
κq4 þ 2γ

: (9.129)

Atomistic simulations (Zakharchenko et al., 2010a) give, at room temperature,
γ � 0:025 eVÅ4. At

q < qc ¼
ffiffiffiffiffi
4γ
κ

4

r
(9.130)

the correlation function (9.129) goes to a constant. In this regime, a bilayer behaves
like a single membrane with bending rigidity twice as large as that for a single
layer (see Eq. (9.128)). At q > qc the layers fluctuate more or less independently.
The simulations (Zakharchenko et al., 2010a) qualitatively confirm this simple
picture; the wavelength of fluctuations at which the crossover happens is about
2π/q∗ � 2 nm (at room temperature).

This is, however, not the complete story on the bending rigidity of multilayered
membranes. Indeed, according to the earlier argument, the effective bending
rigidity should grow linearly with the number of layers N. At the same time,
phenomenological expression (9.58) shows that κ / Δ3 / N3. The crossover
between these two regimes was considered by de Andres, Guinea, and Katsnelson
(2012). It turns out that the effective bending rigidity of multilayered crystalline
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membrane is strongly dependent on the wave vector even in harmonic
approximation, due to hybridization of in-plane and out-of-plane phonon modes.
It interpolates from the N3 behavior in the limit q ! 0 to the linear-in-N for larger
wave vectors.

9.5 The self-consistent screening approximation

There are several ways to calculate the exponent η analytically with reasonable
accuracy. The simplest approximation is to rewrite Eq. (9.96) in a self-consistent
way:

κR qð Þ ¼ κ þ TY
X
~k

1

κR ~k þ~q
��� ���� 	

~k þ~q
��� ���4

~q�~k
� 	2

q2k2

2
64

3
75
2

, (9.131)

assuming that the Young modulus Y is not renormalized (Nelson & Peliti,
1987). On substituting Eq. (9.100) into Eq. (9.131) we find � η = η � 2, or η = 1.

A more accurate result is given by the self-consistent screening approximation
(SCSA) (Le Doussal & Radzihovsky, 1992; see also Xing et al., 2003; Gazit, 2009;
Zakharchenko et al., 2010b; Roldán et al., 2011; Le Doussal & Radzihovsky,
2018).

The Hamiltonian (9.92) describes the self-interaction of a classical field h ~rð Þ
with the momentum-dependent interaction vertex YR ~k;~k0;~q

� 	
: To consider the

effects of the interaction one can use a Feynman-diagram technique similar to that
used in the theory of critical phenomena (Wilson & Kogut, 1974; Ma, 1976). The
basic elements are the Green function G ~qð Þ (solid thick line, in contrast with
the solid thin line for G0 ~qð Þ and the interaction vertex (the dashed line), see
Fig. 9.7(a). The exact and bare Green functions are related by the Dyson equation

(9.94), where, in the lowest order of the perturbation theory, the self-energy Σ ~k
� 	

is given by the diagram shown in Fig. 9.7(b). Its analytic expression corresponds
to Eq. (9.96). The next step corresponds to the replacement of G0 ~qð Þ by G ~qð Þ
(Fig. 9.7(c)), which corresponds to the Eq. (9.131) and gives η = 1, as discussed
previously.

The SCSA corresponds to the summation of “ladder” diagrams shown
in Fig. 9.7(d). This infinite summation is just a geometric progression, with
the result

1þ Â þ Â
2 þ � � � ¼ 1

1� Â
: (9.132)
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The answer is (Le Doussal & Radzihovsky, 1992; Le Doussal & Radzihovsky, 2018)

Σ ~qð Þ ¼
ð

d2~k

2πð Þ2
Yef

~k
� 	
T

~q�~k
� 	2

k2

2
64

3
75
2

G ~k �~q
� 	

, (9.133)

where

Yef
~k
� 	

¼ Y

1þ Y

2T
I ~k
� 	 , (9.134)

I ~k
� 	

¼
ð

d2~p

2πð Þ2
~k �~p
� 	2

k2

0
B@

1
CA

2

G ~pð ÞG ~k �~p
� 	

: (9.135)

Eq. (9.134) and (9.135) describe renormalization of the Young modulus as a result
of summation of the infinite series of diagrams according to Eq. (9.132).

Of course, the summation shown in Fig. 9.7(d) is not exact. This approximation
was introduced by Bray (1974) in the context of the theory of critical phenomena
for an n-component order parameter. It can be justified rigorously if n » 1. In our
problem, the number of components of the field h ~rð Þ is n = 1; therefore, the
applicability of the SCSA is not clear. The reasonable agreement with the Monte

Fig. 9.7 (a) Basic elements of the diagram technique (see the text). (b) The lowest-
order perturbation expression for the self-energy corresponding to Eq. (9.96). (c)
The self-consistent version of the previous diagram corresponding to Eq. (9.131).
(d) The diagram summation equivalent to the SCSA.
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Carlo simulations (Zakharchenko et al., 2010b) and an explicit analysis of the
higher-order diagrams (Gazit, 2009) justify it as a reasonable, relatively simple,
approximation in the theory of fluctuating membranes.

Let us consider Eq. (9.133) through (9.135) in the limit of small q, assuming that
Σ(q) » G0

�1(q) and using Eq. (9.101) for the Green function. Thus,

I ~k
� 	

¼ A2

q2η0

ð
d2~p

2πð Þ2
~k �~p
� 	2

k2

0
B@

1
CA

2

1

p4�η ~k �~p
��� ���4�η ¼

A2

q2η0 k2�2η
I1 ηð Þ, (9.136)

where

I1 ηð Þ ¼
ð

d2~x

2πð Þ2
~x�~x0ð Þ4

x4�η~x�~x0j j4�η (9.137)

and~x0 ¼ 1; 0ð Þ: The expression (9.136) diverges at k ! 0 and, therefore, one can
neglect 1 in the denominator of Eq. (9.134), assuming

Yef
~k
� 	

� 2T

I ~k
� 	 ¼ 2Tq0

2η

A2

k2�2η

I1 ηð Þ : (9.138)

On substituting Eq. (9.138) into Eq. (9.133) we have

q4�ηq0
η

A
¼ 2q0

ηq4�η

AI1 ηð Þ I2 ηð Þ (9.139)

where

I2 ηð Þ ¼
ð

d2x

2πð Þ2
x2�2η ~x�~x0ð Þ4
~x�~x0j j4�η : (9.140)

Eq. (9.139) is satisfied at arbitrary A, and η can be found from the equation

I1(η) = 2I2(η). (9.141)

The integrals I1 and I2 can be expressed via a Γ-function and calculated
explicitly (Le Doussal & Radzihovsky, 1992; Gazit, 2009; Le Doussal & Radzi-
hovsky, 2018). The answer is

η ¼ 4

1þ ffiffiffiffiffi
15

p � 0:821, (9.142)

which is not far from the more accurate value η � 0.85 discussed in the previous
section (Eq. (9.123)).
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To find G(q) for the whole range of q one needs to solve Eq. (9.133) through
(9.135) numerically. The results shown in Fig. 9.8 are in reasonable agreement
with the Monte Carlo simulations.

Keeping in mind possible applications, it is worth mentioning that G(q) for all q
can be approximated as an interpolation between the high-q limit (9.81) and the
low-q limit (9.101) and (9.114):

Ga
�1 qð Þ ¼ κq4

T
þ κ

T

� 	1�η
2 q0

ηq4�η

α
(9.143)

for some numerical factor α. This fitting is also shown in Fig. 9.8.
The SCSA can also be used to consider the effects of an external stress σextαβ on

the properties of membranes (Roldán et al., 2011). The former can be described as
an additional term in Eq. (9.63):

F ¼ 1
2

ð
d2x κ r2h

� �2 þ λ uααð Þ2 þ 2μuαβuαβ þ σextαβ uαβ
n o

, (9.144)

where

σextαβ ¼ λδαβu
ext
γγ þ 2μuextaβ (9.145)

can be expressed in terms of an external strain tensor uextαβ . By substituting
Eq. (9.62) into Eq. (9.144) one can see that, in the harmonic approximation, the
bare Green function (9.81) is modified as follows:
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Fig. 9.8 The correlation function G(q) calculated in self-consistent screening
approximation for T = 300K and parameters characteristic of graphene. One
can see that the interpolation formula (9.143) has a pretty high accuracy.
(Courtesy of A. Mauri.)
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G0 ~qð Þ ¼ T

q2 κq2 þ λuααext þ 2μuαβext
qαqβ

~qj j2
 ! : (9.146)

Assuming for simplicity the case of isotropic external deformation,

uextαβ ¼ uδαβ, (9.147)

we have

G0 ~qð Þ ¼ T

q2 κq2 þ 2 λþ μð Þu½ � (9.148)

where we consider only the case of expansion (u> 0); the effect of compression on
the membrane is actually very complicated (Moldovan & Golubovic, 1999; Sharon
et al., 2002; Cerda & Mahadevan, 2003; Brau et al., 2011). One can see that
flexural fluctuations are suppressed by the strain at

q < qu = q0u
1/2 (9.149)

(see Eq. (9.102)). If qu 
 q∗, that is,

u 
 0:1
T

κ
(9.150)

(see Eq. (9.98)), the anharmonic effects are assumed to be strongly suppressed, and
the harmonic approximation (9.148) should work up to q ! 0. This conclusion
will be important for our discussion of the transport properties of freely suspended
graphene flakes in Chapter 11.

9.6 Thermodynamic and other thermal properties of graphene

The existence of the soft acoustic flexural (ZA) mode (9.15) and the related
tendency to intrinsic ripple formation is crucial to the thermodynamic properties
of graphene, first of all, to its thermal expansion.

In the quasiharmonic approximation, the lattice thermodynamic properties are
assumed to be described by harmonic expressions but with phonon frequencies ωλ,
dependent on the lattice constant. In this approximation, the thermal expansion
coefficient

αp ¼ 1
Ω

∂Ω
∂T

� �
p

(9.151)
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(where Ω is the volume for three-dimensional crystals and area for two-
dimensional ones; p is the pressure) is given by the Grüneisen law (Vonsovsky
& Katsnelson, 1989; Katsnelson & Trefilov, 2002)

αp ¼ γCV Tð Þ
ΩBT

, (9.152)

where BT is the isothermal bulk modulus

CV Tð Þ ¼
X
λ

Cλ, (9.153)

where

Cλ ¼ ℏωλ

T

� �2 exp
ℏωλ

T

� �
exp ℏωλ

T

� �� 1
 �2 , (9.154)

is the constant-volume heat capacity in the harmonic approximation, and

γ ¼
P

γ γλCλP
γ Cλ

(9.155)

is the macroscopic Grüneisen parameter, where

γλ ¼ � ∂ lnωλ

∂ lnΩ
(9.156)

are microscopic Grüneisen parameters.
Graphite is known to have a negative thermal expansion coefficient up to

700 K (Steward, Cook, & Kellert, 1960). This behavior has been explained, in
terms of the Grüneisen law, by Mounet and Marzari (2005) via density-functional
calculations of ωλ and γλ. It turns out that the Grüneisen parameters γλ are negative,
both in graphene and in graphite, for ZA phonons over the whole Brillouin zone.
The same results follow from atomistic simulations with the LCBOPII potential
(Karssemeijer & Fasolino, 2011), see Fig. 9.9. The theory explained the change in
sign of αp at T � 700 K for the case of graphite and predicted that αp < 0 at all
temperatures for the case of graphene. Negative thermal expansion of graphene at
room temperature and slightly above has been confirmed experimentally by Bao
et al. (2009). The linear thermal expansion coefficient at these temperatures was
about �10�5 K�1, a very large negative value. According to the quasiharmonic
theory of Mounet and Marzari (2005), it was supposed to be more or less constant
up to temperatures of the order of at least 2,000 K.

However, straightforward Monte Carlo atomistic simulation with the LCBOPII
potential, not assuming the quasiharmonic approximation (Zakharchenko,
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Katsnelson, & Fasolino, 2009), gave an essentially different result (see Fig. 9.10).
One can see that, according to this calculation, αp is supposed to change sign at
T � 700–900 K. Later, it was confirmed experimentally that αp, while remaining
negative, decreases in modulus with increasing temperature up to 400 K (Yoon,
Son, & Cheong, 2011). This temperature dependence of αp(T), beyond the quasi-
harmonic approximation, is a true anharmonic effect.

Similar calculations for the case of bilayer graphene have been performed by
Zakharchenko et al. (2010a). The results (Fig. 9.10) show that the change of sign of
da/dT happens at lower temperatures than for the case of single-layer graphene and
that in this sense bilayer graphene should be similar to graphite. The thermal
expansion perpendicular to the graphene plane turns out to be positive, dc/dT > 0.

The Lamé constants λ and μ have also been found from atomistic simulations
(Zakharchenko, Katsnelson, & Fasolino, 2009). The room-temperature values of
the elastic constants are

μ � 10 eVÅ
�2
; B � 12 eVÅ

�2
; v � 0:12: (9.157)

The calculated Young modulus (9.45) lies within the error bars of the experimental
value Y � 340 � 50 Nm�1 (Lee et al., 2008). Note that, per atomic layer, it is an
order of magnitude higher than that of steel. However, this is correct only when
we are talking about the bare values of the elastic constants. As one can see from
Eq. (9.103) and will be discussed in detail in the next section, the renormalization
effects are very important. Strictly speaking, at finite temperatures and in the limit
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Fig. 9.9 Grüneisen parameters calculated in graphene with the potential
LCBOBII.
(Reproduced with permission from Katsnelson & Fasolino, 2013.)
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of infinite sample size (L ! ∞ , q ! 0), the effective moduli of single-atom
crystalline membrane tend to zero.

Now consider the thermal expansion of graphene at low temperatures. Negative
Grüneisen parameter for the ZA phonons can be derived analytically (de Andres,
Guinea, & Katsnelson, 2012). Taking into account Eq. (9.144) through (9.148) one
can see that in the presence of uniform expansion u, instead of Eq. (9.61), the
square frequency of ZA modes reads

ω2 ¼ κq4 þ Buq2

ρ
: (9.158)

Substituting Eq. (9.158) into Eq. (9.156) one obtains

γ~q ¼ � B

2κq2
: (9.159)

This expression is negative and, importantly, divergent at q! 0. The integral over the
wave vectors in Eq. (9.152) is divergent at the lowest limit. To regularize it, one needs
to take into account the renormalization of the bending rigidity as described in the
previous section (see, e.g., Eq. (9.143)). With the logarithmic accuracy, the result is

αp � � 1
4πκ

ðqT
q∗

dq

q
¼ � 1

8πκ
ln

T

ℏω∗
� � 1

16πκ
ln

κ3ρ

ℏ2Y2
, (9.160)

where q* is the crossover wave vector (9.98),
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Fig. 9.10 Temperature dependences of the lattice constant a for single-layer (SL)
and bilayer (BL) graphene and of the interlayer distance c in interlayer graphene.
(Reproduced with permission from Zakharchenko et al., 2010a.)
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ℏω∗ ¼ ℏ
ffiffiffi
κ
ρ

r
q∗2 ¼ 3T

16π
Yffiffiffiffiffiffiffi
κ3ρ

p , (9.161)

the corresponding photon energy and qT is determined by the condition

ℏ
ffiffiffi
κ
ρ

r
q2T ¼ T : (9.162)

Importantly,

ℏω∗ �
ffiffiffiffiffi
m

M

r
T « T (9.163)

and therefore q* « qT (m and M are electron and atomic masses, respectively). The
expression (9.160) gives a very accurate estimate of the experimental thermal
expansion coefficient of the order of �10�5 K�1.

Due to thermodynamic identity (Landau & Lifshitz, 1980)

∂Ω
∂T

� �
p

¼ � ∂S
∂p

� �
T

(9.164)

and the third law of thermodynamics (the entropy S! 0 at T! 0), one can expect
that the thermal expansion coefficient should vanish at zero temperature. The
expression (9.160) does not satisfy this requirement. Usually the third law of
thermodynamics is protected by quantum statistics of relevant elementary excita-
tions (in our case, phonons) but according to divergent Grüneisen parameter
(9.159), the main contribution to the thermal expansion coefficient follows from
the classical region (Eq. (9.163)); taking into account anharmonic effects does not
help (de Andres, Guinea, & Katsnelson, 2012). To solve the problem and to find the
behavior of the thermal expansion at low temperatures, one needs to have the theory
of quantum membranes, which is still in its infancy. Burmistrov et al. (2016) has
shown that at T ! 0 the thermal expansion coefficient vanishes very slowly

αp � jlnTj�a (9.165)

(0 < a < 1) but the issue certainly deserves more investigation, both experi-
mentally and theoretically.

Let us again come back to the case of high temperatures and consider another
high-temperature anharmonic effect, the growth of the heat capacity with the
temperature beyond the Dulong–Petit value 3R

CV Tð Þ ¼ 3R 1þ T

E0

� �
(9.166)
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(Katsnelson & Trefilov, 2002). The atomistic simulations (Zakharchenko,
Katsnelson & Fasolino, 2009) confirm this behavior, with E0 � 1.3 eV.

At high enough temperature, graphene is destroyed. This process was studied by
atomistic Monte Carlo simulations in Zakharchenko et al. (2011) and Los et al.
(2015). In these simulations the temperature of destruction of graphene was
estimated as 4,500 K, which makes graphene probably the most refractory material
(it is 210 K higher than the melting temperature of bulk graphite). The word
“destruction” is used instead of “melting” to stress that it is a rather peculiar
process, leading to the formation of carbon chains, with these chains being strongly
entangled and forming something like a polymer melt, rather than a simple liquid
(Fig. 9.11).

Probably the most interesting thermal property of graphene, in view of potential
applications, is its extraordinarily high thermal conductivity (Balandin et al., 2008;
Ghosh et al., 2010; Balandin, 2011). Usually, solids with high thermal conductivity
are metals, and the thermal conductivity is determined by conduction electrons,
whereas the phonon contribution is negligible (for a general theory of phonon
thermal conductivity, see Ziman, 2001). Carbon materials (diamond, nanotubes,
and graphene) are exceptional. Their thermal conductivity, being of phonon origin,
can be higher than for any metal (for a review, see Balandin, 2011). The very
general reason is the high phonon group velocity, due to the very strong chemical
bonding and the relatively low mass of the carbon nucleus. Currently, graphene has
the largest thermal conductivity among all known materials (Balandin et al., 2008).

Fig. 9.11 A typical atomic configuration of graphene at T = 5,000 K from
atomistic Monte Carlo simulations.
(Courtesy of K. Zakharchenko.)
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The theory of this thermal conductivity was considered in Ghosh et al. (2010). It is
a complicated phenomenon, which is not yet fully understood (in particular, the
role of flexural phonons needs to be clarified). Its practical importance is related to
the problem of heat removal in the electronics industry.

9.7 Mechanical properties of graphene

It follows already from Eq. (9.100) to (9.103) that neither Hooke’s law (9.33) nor
Föppl–von Karman equations (9.65) through (9.67) are valid for atomically thin
membranes at finite temperatures. Indeed, q-dependence of elastic constants means
spatial dispersion, that is, nonlocality of relations between stress and deformation
(similar to nonlocality of relations between electric induction and electric field in
electrodynamics of continuous media (Landau & Lifshitz, 1984). Also, the
condition (9.149) means that the thermal fluctuations can be switched off by
external deformation, which assumes essential nonlinearity of relations between
stress and deformation. Experimental data show that the effective bending
rigidity of graphene can be modified in orders of magnitude via the change of
sample size L (Blees et al., 2015), and the effective Young modulus can be
modified in several times by relatively small disorder (López-Polín et al., 2015)
or by external deformation and by change of temperature (Nicholl et al., 2015).
We still have no a complete theory that can replace the Föppl–von Karman
theory for ultrathin membranes; there are just first attempts in this direction
(Košmrlj & Nelson, 2016; Los, Fasolino, & Katsnelson, 2016; Bowick et al.,
2017; Los, Fasolino, & Katsnelson, 2017). They include some simple scaling
considerations and atomistic simulations. Here, we will review the corresponding
results.

First of all, let us introduce characteristic lengths, which determine regions of
different mechanical behavior (Košmrlj & Nelson, 2016). In the absence of extrenal
stress, there are two characteristic scales: the sample size L and the thermal length

Lth ¼ π
q∗

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16π3κ2

3TY

r
(9.167)

(see Eq. (9.98)). Since the revelant wave vectors at the deformation of a plate of the
size L are of the order of π/L one can assume that for the case L < Lth the in-plane
and out-of-plane phonons are decoupled (see Fig. (9.6)) and the elastic constants
are more or less equal to their bare values (for the case of graphene, (9.157)).
For the opposite case L > Lth the effective bending rigidity should be enhanced
(see Eq. (9.100)) and the effective Lamé constants, and therefore Young modulus,
are suppressed (see Eq. (9.103)).
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In the presence of external stress, the flexural fluctuations and anharmonic
effects are suppressed (see Eq. (9.149)). Looking at Eq. (9.146) and (9.148) and
replacing their bending rigidity by its renormalized value (9.100) one can see that
the change of the regime happens when

κR(q)q
4 � σq2, (9.168)

or q � π/Lσ where

Lσ ¼ κ
Lthð Þησ

� �1= 2�ηð Þ
¼ Lth

3TY
16π3σκ

� �1= 2�ηð Þ
, (9.169)

which represents the other characteristic length scale in the system (Roldán et al.,
2011; Košmrlj & Nelson, 2016). Detailed scaling analysis of various regimes
(Košmrlj & Nelson, 2016) leads to the following answer for the renormalized
elastic constants:

κR Lð Þ
κ

�
1, L < Lth

L=Lthð Þη, Lth < L < Lσ

Lσ=Lthð Þη ln L=Lσð Þ, Lσ < L

8><
>: , (9.170)

λR Lð Þ
λ

,
μR Lð Þ
μ

,
YR Lð Þ
Y

�
1, L < Lth

L=Lthð Þ�ηu , Lth < L < Lσ

Lσ=Lthð Þ�ηu , Lσ < L

8><
>: : (9.171)

Scaling behavior of mechanical parameters of graphene was also studied by
atomistic simulations with the potential LCBOBII (Los, Fasolino, & Katsnelson,
2016; Los, Fasolino, & Katsnelson, 2017). First of all, the results do confirm the
renormalization of the effective Lamé constants in agreement with Eq. (9.103) and
(9.113), as one can see from Fig. 9.12.

Under the stress the dependence of the effective Young modulus on the sample
size at a given temperature (or, equivalently, on the temperature at a given sample
size) is suppressed, see Fig. 9. 13.

The renormalization of the Poisson ratio for thermally fluctuating membranes
was discussed in detail by Burmistrov et al. (2018a, 2018b).

Los, Fasolino, and Katsnelson (2017) has estimated, from the combination of
atomistic simulations for small sample size and scaling considerations presented
earlier, the critical load under which the graphene membrane is destroyed. In the
regime of the destruction, the stress is strong enough to suppress the thermal
fluctuations, and the results are not very different from those which can be
estimated based on the Föppl–von Karman equations. In particular, the quantitative
conclusion on extraordinary mechanical stress of graphene is confirmed. For
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graphene drum of 1 m in diameter at room temperature, it can keep the load up to
2.65 kg if all of this load is concentrated in the center and up to 8 kg if it is
uniformly distributed over the whole drum – not bad for the single-atom-thick
support!
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Fig. 9.13 Effective Young modulus as a function of the sample size for graphene
at room temperature for the indicated values of the negative stress (the sample is
expanded). L0 is the sample size at zero stress. The value in the bracket is the
corresponding elongation under the stress.
(Reproduced with permission from Los, Fasolino, & Katsnelson, 2016.)
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9.8 Raman spectra of graphene

The main experimental tool allowing us to study phonon spectra throughout the
Brillouin zone is inelastic neutron scattering (Vonsovsky & Katsnelson, 1989;
Katsnelson & Trefilov, 2002). Unfortunately, this method is not applicable (up to
now) to graphene because it requires rather massive samples. Optical tools such as
infrared and Raman spectroscopy only provide us with information about phonons
at some special points of the Brillouin zone. However, even this information is of
crucial importance. Raman spectroscopy is one of the main techniques used in
graphene physics (Ferrari et al., 2006; for a review see Malard et al., 2009). Here,
we discuss some basic ideas about Raman spectra of graphene.

The Raman effect is inelastic light scattering; “inelastic” means that the fre-
quency of the scattered light, ω0, is not equal to that of the incident light, ω
(Landsberg & Mandelstam, 1928; Raman, 1928; Raman & Krishnan, 1928). Its
quantum explanation is based on the Kramers–Heisenberg formula for the light-
scattering cross-section (Berestetskii, Lifshitz, & Pitaevskii, 1971)

dσ
do0

¼ ωω03
ℏ2c4

�����
X

n

ð~df n~e0∗Þð~dni~eÞ
ωni � ω� iδ

þ ð~df n~eÞð~dni~e0∗Þ
ωni þ ω� iδ

( )�����
2

δ!þ0

, (9.172)

where do0 is the element of solid angle of scattering light, ~e and ~e0 are photon
polarization vectors for incident and scattered light, respectively, jf i and jii are the
final and initial states of the scattering system, respectively, jni is its intermediate
state,~dmn are matrix elements of the electric dipole momentum operator

ωni ¼ En � Ei

ℏ
, (9.173)

and, due to the energy-conservation law,

ω0 ¼ ωþ Ei � Ef

ℏ
: (9.174)

The general expression (9.172) can be applied both to elastic (ω = ω0) and to
inelastic (ω 6¼ ω0) cases; we will be interested here in the latter.

The electric dipole moment can be represented as a sum of contributions from
electrons and nuclei (phonons):

~d ¼~d eð Þ þ~d phð Þ: (9.175)

Correspondingly, we have the electron Raman effect when the state jni corres-
ponds to some electron excitation in the system and the phonon Raman effect when
jni differs from jii by the creation or annihilation of a phonon with frequency ωλ.
In the latter case
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ω 0 = ω � ωλ, (9.176)

the + and � signs correspond to annihilation and creation of the phonon, respect-
ively. Keeping in mind that for visual light the wave vector of a photon is much
smaller than the inverse interatomic distance 1/a and bearing in mind the
momentum-conservation law, one can conclude that in crystals only phonons at
the Γ point ~q ¼ 0ð Þ can normally be probed to leading order of perturbation by the
Raman effect. As we will see, this is not the case for graphene.

There are selection rules determining whether a given optical phonon can be
Raman-active (that is, it contributes to the Raman scattering) or infrared-active
(that is, it contributes to absorption of the photon), or both. In general, such
analysis requires the use of group theory (Heine, 1960).

For the case of graphene, at the Γ point there are the infrared-active ZO mode
and a doubly degenerate Raman-active optical mode, with deformations lying in
the plane (see Fig. 9.1). The latter corresponds to the so-called Eg (g for gerade)
representation of the point group of the honeycomb lattice. The atomic displace-
ments for this mode are shown in Fig. 9.14 (the mode is doubly degenerate since
there are two equivalent, mutually perpendicular, directions of the displacements).
Therefore, one could expect a single line with the frequency ωλ = jω 0 � ωj equal
to that of ωLO ~q ¼ 0ð Þ � 1580 cm�1: Indeed, this line was observed long ago in
graphite (Tuinstra & Koenig, 1970). It is called usually the G peak. However, the

Fig. 9.14 Atomic displacements for a Raman-active optical phonon at the Γ point.
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Raman spectra of graphite are characterized by the second sharp and intensive
feature in Fig. 9.16 (Nemanich & Solin, 1977, 1979), which is usually called the
2D peak in the literature on graphene. (In the literature on nanotubes and in the
review by Malard et al. (2009), it is called the G0peak.) It was interpreted from the
very beginning as a two-phonon peak. (A detailed theory has been proposed by
Thomsen & Reich, 2000; Maultzsch, Reich, & Thomsen, 2004). The basic idea is
that in this case, the intermediate state jni in Eq. (9.159) is a combined electron-
phonon excitation.

The basic physics originates from the existence of two valleys, K and K0; the
vector ~q connecting K and K0 is equivalent to the vector TK (Fig. 9.15(a)).
Therefore, the process is allowed when (i) an incident photon initiates a transition
from hole to electron bands at the K point, the electron energy being E0, (ii) the
excited electron is transferred from K to K0, emitting a phonon with ~q ¼ ~K and
frequency ω0; (iii) it is transferred back to K0, emitting a second phonon, with
~q ¼ �~K and the frequency ω0; and (iv) the scattered photon is emitted from the
state with En = E0 � 2ℏω0 (Fig. 9.15(b)). In this case ω0 = ω � 2ω0. This is a
higher-order process in the electron–phonon coupling; however, this does not give
any additional smallness since the process is resonant: The electron bands in
K and K0 are identical, and we know that, for the case of perturbation of degenerate
energy levels, the effect of the perturbation has no smallness (Landau & Lifshitz,
1977). In the electron–photon interaction this is a second-order process, as is a
normal Raman effect; therefore, its probability can be comparable to that of single-
phonon Raman scattering.

(a)

K q
K′

G

(b)

K K′

wph

wph

w w′

Fig. 9.15 The origin of the 2D Raman peak. (a) The scheme of momentum
conservation. (b) The scheme of the energy transfer (see the text).
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Actually, there are several types of phonons at the K point (see Fig. 9.1); both
electrons and phonons have dispersion, so the 2D peak at �2,700 cm�1 is not a
single line, but a band (see the high-frequency peak in Fig. 9.16). Detailed study of
its shape provides information about phonon dispersion near the K point (Mafra
et al., 2007). A theoretical analysis of the electron–phonon coupling, which is
responsible for the 2D peak for various modes, has been done by Jiang et al.
(2005), within a tight-binding model, and by Park et al. (2008) using density-
functional calculations. The electron–phonon coupling is essentially different for
different modes. Also, effects of destructive interference between contributions to
the double resonance should be taken into account (Maultzsch, Reich, & Thomsen,
2004). As a result of all these factors, the main contribution originates from TO
phonons along the K–M direction (Mafra et al., 2007). There is also a satellite line
(at smaller frequencies), which originates from the processes with one TO phonon
and one LA phonon involved (Mafra et al., 2007).

There is a noticeable shift in position of Raman peaks between graphene and
graphite (Ferrari et al., 2006), see Fig. 9.16. Moreover, one can easily distinguish
single-layer, bilayer, . . ., N-layer graphene (up to N � 5) by Raman spectroscopy,
which makes it a very suitable tool for the identification of graphene.

If some defects are present, one of the phonon-induced scattering processes
responsible for the 2D peak can be replaced by elastic scattering by the defects (the
D peak, with the frequency jω0 � ωj � ω0. “Resonant” impurities that change
locally the sp2 state of carbon atoms to sp3, such as hydrogen, fluorine and C–C

Fig. 9.16 The Raman spectra of graphite and graphene. The wavelength of the
incident light is 514 nm.
(Reproduced with permission from Ferrari et al., 2006.)
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chemical bonds (see Section 6.6), give the main contribution to the origin of this
peak, and its intensity can be used to estimate the concentration of such locally
modified sp3 centers in graphene (Elias et al., 2009; Nair et al., 2010; Ni et al.,
2010).

We hope these examples suffice to illustrate the importance of Raman
spectroscopy in graphene physics and chemistry.

To summarize, in this chapter we have considered some of the peculiarities
of the structural state, mechanical properties, dynamics, and thermodynamics of
graphene. The consequences of these peculiarities for the electronic properties of
graphene will be considered in the next two chapters.
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10

Gauge fields and strain engineering

10.1 Strain-induced pseudomagnetic fields

We saw in the previous chapter that graphene at finite temperatures is unavoidably
corrugated. As a result, in any real atomic configuration the three bonds of each
atom with its neighbors are no longer equivalent; see a snapshot from Monte Carlo
simulations by Fasolino, Los, and Katsnelson (2007) in Fig. 10.1. Apart from
atomically sharp inhomogeneities, there is a large-scale, macroscopic nonequiva-
lence, which survives in a continuum-medium description of graphene, and is
described in terms of the deformation tensor uαβ.

Let us assume that the hopping parameters t1, t2, and t3 are different throughout
the whole sample and repeat the tight-binding derivation of the Dirac Hamiltonian
(Section 1.2). As a result, instead of Eq. (1.22) we find the following effective
Hamiltonian near the K point (Kane & Mele, 1997; Suzuura & Ando, 2002;
Sasaki, Kawazoe, & Saito, 2005; Katsnelson & Novoselov, 2007):

Ĥ ¼~σ �iℏv~r�~A
� �

, (10.1)

where

Ax ¼
ffiffiffi
3

p

2
t1 � t2ð Þ,

Ay ¼ 1
2

2t3 � t1 � t2ð Þ
(10.2)

play the role of components of the vector potential. Thus, the difference in t1, t2,
and t3 shifts the Dirac conical point in some random direction. It does not produce
a mass term proportional to σz, since the sublattices remain equivalent. The field~A
is a typical gauge field, similar to the vector potential in electrodynamics. It was
first discussed in the context of electron–phonon interaction in carbon nanotubes
(Kane & Mele, 1997; Suzuura & Ando, 2002; Sasaki, Kawazoe, & Saito, 2005)
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and then introduced in the physics of graphene by Morozov et al. (2006) and
Morpurgo and Guinea (2006) as a mechanism suppressing weak (anti)localization.
Note that the vector potential ~A in Eq. (10.1) has the dimension of energy; in
conventional units, it should be written as (ev/c)~A.

In the weakly deformed lattice, assuming that the atomic displacements ~u are
small in comparison with the interatomic distance a, the length of the nearest-
neighbor vectors~ρi will be changed by the quantity

δai ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~ρi þ~ui �~u0ð Þ2

q
� a �~ρi ~ui �~u0ð Þ

a
, (10.3)

where~ui and~u0 are displacement vectors for the corresponding atoms and we take
into account that ~ρij j ¼ a. As a result, the new hopping integrals will be

ti � t � βt
a2
~ρi ~ui �~u0ð Þ, (10.4)

where

β ¼ � ∂ ln t
∂ ln a

(10.5)

Fig. 10.1 A snapshot of a typical atomic configuration in atomistic Monte Carlo
simulations of graphene at T = 300 K; the number indicates the bond length (Å).
(Reproduced with permission from Fasolino, Los, & Katsnelson, 2007.)
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is the electron Grüneisen parameter describing the dependence of the nearest-
neighbor hopping integral on the interatomic distance. This value lies in the
interval β � 2 � 3 (Heeger et al., 1988; Vozmediano, Katsnelson, & Guinea,
2010). In the continuum limit (elasticity theory)

~ui �~u0ð Þ � ~ρirð Þ~u ~rð Þ (10.6)

and, thus

Ax ¼ �2cβtuxy:

Ay ¼ �cβt uxx � uyy
� �

:
(10.7)

(Suzuura & Ando, 2002; Mañes, 2007), where c is a numerical factor depending on
the detailed model of chemical bonding. In particular, one should take into account
that the nearest-neighbor hopping parameter depends not only on the interatomic
distance but also on the angles. Keeping in mind an uncertainty in the value of β,
we will put c = 1 from now on.

Thus, the two components of the vector potential are proportional to the two
shear components of the deformation tensor. On general symmetry grounds,
strains should also lead to a scalar potential proportional to dilatation (Suzuura
& Ando, 2002; Mañes, 2007):

V ~rð Þ ¼ g uxx þ uyy
� �

: (10.8)

It originates from a redistribution of electron density under the deformation.
A naïve estimation would be to assume that it should be of the order of the
bandwidth, g � 20eV (Ono & Sugihara, 1966; Sugihara, 1983; Suzuura & Ando,
2002). Recent density-functional calculations for single-layer graphene give a
much smaller value, g � 4eV (Choi, Jhi, & Son, 2010). However, these two
values are not actually contradictory, since the density functional takes into
account the effect of electron screening, which should lead to a replacement
g ! g/ε. Taking into account that for undoped single-layer graphene ε � 4.5 (see
Eq. (7.89)), we see that screened g � 4eV corresponds to unscreened g0 � 18 eV.
This value seems to be in agreement with experimental data on electron mobility
in freely suspended graphene (Castro et al., 2010b); for more details, see
Chapter 11.

Within the framework of the Dirac approximation, a uniform strain cannot open
a gap in the spectrum, but just leads to a shift of conical points. However, if the
strain is very strong and t1, t2, and t3 are essentially different, the gap can be
opened. As was shown by Hasegawa et al. (2006), there is no gap if the “triangular
inequalities”

jtl1 � tl2j � jtl3j � jtl1 + tl2j (10.9)
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are satisfied, where (l1, l2, l3) is a permutation of (1, 2, 3). This issue was later
studied in more detail within the framework of the tight-binding model (Pereira,
Castro Neto, & Peres, 2009; Cocco, Cadelano, & Colombo, 2010; Pellegrino,
Angilella, & Pucci, 2010). According to the last of these papers, the minimum
shear deformation that leads to the gap opening is about 16%. This is, in principle,
possible in graphene without its destruction (Lee et al., 2008). Henceforth we
restrict ourselves to the case of smaller deformations, for which the linear approxi-
mation (10.4) is applicable. We can see in this chapter that this already provides
very rich and interesting physics, with the prospect of important applications.

If the strain is not uniform, the vector potential (10.7) creates, in general, a
pseudomagnetic field (in normal units)

evB

c
¼ ∂Ay

∂x
� ∂Ax

∂y
: (10.10)

It is important to stress that the pseudomagnetic field acting on electrons from the
valley K0 is exactly opposite to that acting on electrons from the valley K:

BK =� BK0. (10.11)

This follows from explicit calculations and is obvious from the time-reversal
symmetry: Deformations cannot break it for the honeycomb lattice as a whole.
However, if we have only smooth deformations and no scattering processes between
the valleys, the electrons in a nonuniformly strained graphene will behave as if the
time-reversal symmetry were broken (Morozov et al., 2006; Morpurgo & Guinea,
2006). This has very important consequences for the physics of the quantum Hall
effect, weak localization, etc., as will be discussed in later this chapter.

10.2 Pseudomagnetic fields of frozen ripples

As the first example, we consider the pseudomagnetic field created by a frozen
ripple. This means that we substitute Eq. (9.62) for the deformation tensor into Eq.
(10.7) and (10.10) and take into account only the last term

uαβ ¼ 1
2
∂h
∂xα

∂h
∂xβ

: (10.12)

The effects of in-plane relaxation will be taken into account in the next section.
Thus, the amplitude of the pseudomagnetic field can be estimated as

�B � ℏc
e

h2

aR3 , (10.13)
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where h is the typical height of the ripple and R is its radius (Morozov et al., 2006).
This field can be as large as 1 T, for typical sizes of the ripples observed in
exfoliated graphene (Morozov et al., 2006).

To perform some quantitave analysis, let us start with the case of the simple
sinusoidal deformation shown in Fig. 10.2 (Guinea, Katsnelson, & Vozmediano,
2008). We will assume a modulation along the x-axis tij � tij(x). Thus, the problem
is effectively one-dimensional, and ky remains a good quantum number. One can
consider hopping parameters between the rows (see Fig. 10.2, right panel) that are
equal to t (for horizontal bonds) and

2t cos ky

ffiffiffi
3

p
a

2

� �

for other bonds.
If we assume a modulation of the hopping parameters,

t(x) = t + δt(x), (10.14)

then the two hoppings are renormalized as

t ! t xð Þ,

2t cos φ !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 xð Þ cos 2φþ δt xð Þ½ �2 sin 2φ

q
,

(10.15)

where φ ¼ ky
ffiffi
3

p
a

2 . Let us assume

δt xð Þ ¼ δt sin
2πx
l

� �
, (10.16)

where l is the period of modulation. The electron spectrum has been calculated
numerically for a strip with periodic boundary conditions; the results are shown in
Fig. 10.3 (Guinea, Katsnelson, & Vozmediano, 2008).

Fig. 10.2 (a) A sketch of the sinusoidal ripple. (b) Atomic rows of a honeycomb lattice.
(Reproduced with permission from Guinea, Katsnelson & Vozmediano, 2008.)

10.2 Pseudomagnetic fields of frozen ripples 261

https://www.cambridge.org/core


The most important result is the appearance of a dispersionless zero-energy
mode, its phase volume grows with increasing δt/t. This is related to the topologic-
ally protected zero-energy Landau level in an inhomogeneous magnetic field for
the Dirac equation (Section 2.3). There are also some features that are reminiscent
of other Landau levels, but they are essentially dispersive, which changes the
situation dramatically from the case of a real magnetic field (but see Section 10.4).
The real magnetic field B can be included in the calculations via the replacement

ky ! ky þ eB

ℏc
x: (10.17)

The results are shown in Fig. 10.4 (Guinea, Katsnelson, & Vozmediano, 2008).
Two important features of these results should be mentioned. First, the combin-
ation of the pseudomagnetic field due to rippling and a real magnetic field leads to
a broadening of all Landau levels except the zero-energy one; this is a consequence
of the topological protection of the zero-energy Landau level.

Second, due to Eq. (10.11) for the pseudomagnetic field, the effective total fields
acting on electrons from the valleys K and K0 are different, which results in a valley
polarization. One can clearly see in Fig. 10.4 that the phase space of the disper-
sionless zero-energy level for the valley K0 is larger than that for the valley K.

The first of these conclusions seem to be relevant for the interpretation of some
of the peculiarities of the quantum Hall effect in graphene (Giesbers et al., 2007).
The activation gaps for the quantum Hall plateau at v = 2 and v = 6 have been
extracted from the temperature dependences of the resistivity ρxx(T). Their depen-
dences on the magnetic field are presented in Fig. 10.5. In the ideal case, they
would follow

ffiffiffi
B

p
dependences (see Eq. (2.30) and (2.31)). However, due to

disorder there are deviations from this law, and the stronger the disorder the higher
the magnetic field at which the

ffiffiffi
B

p
law is restored. One can see that, for v = 2, for

which the zero-energy Landau level is involved, it happens much earlier than it
does for v = 6. This was explained by Giesbers et al. (2007) by postulating that

Fig. 10.3. Low-energy states induced by the ripple shown in Fig. 10.2. The
average hopping is 3 eV. The width of the ripple is 1,200 a1200a = 168 nm.
The modulations of the hopping δt/t are 0, 0.02, and 0.04 (from left to right).
(Reproduced with permission from Guinea, Katsnelson, & Vozmediano, 2008.)
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random pseudomagnetic fields created by ripples (Morozov et al., 2006) contribute
essentially to the broadening of all Landau levels except the zero-energy one, due
to its topological protection (Novoselov et al., 2005a; Katsnelson, 2007a). The
same situation should also occur for the case of bilayer graphene (Katsnelson &
Prokhorova, 2008).

The electronic structure of the frozen sinusoidal ripple has been studied by
Wehling et al. (2008a) by carrying out density-functional calculations.

These calculations confirm the qualitative predictions of the tight-binding model
concerning the existence of zero-energy states. A schematic view of the ripple is
shown in Fig. 10.6, and the results for the width of the dispersionless zero-energy
mode are illustrated in Fig. 10.7. This qualitative agreement is not trivial, since the
tight-binding model takes into account neither next-nearest-neighbor hopping nor
the electrostatic potential (10.8). The reason why the latter is not relevant here will
be clear later (see Section 10.6).

Fig. 10.4 The same as in Fig. 10.3 (δt/1 = 0.04) but with a magnetic field of B =
10 T. Upper panel, K value; lower panel, K0 value.
(Reproduced with permission from Guinea, Katsnelson, & Vozmediano, 2008.)
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Fig. 10.5 Energy gaps 2Δ between two Landau levels extracted from the
temperature dependence of the resistivity pxx as a function of the magnetic field
for v = +2 (full triangles), v = �2 (open circles) and v = +6 (full squares). The
dashed and dotted lines are the theoretically expected energy gaps for sharp
Landau levels. The inset shows schematically the density of states for a sharp
zero-energy Landau level and broadened higher Landau levels for electrons and
holes at B = 30 T. Extended states are represented by the white areas, localized
states by the dashed areas.
(Reproduced with permission from Giesbers et al., 2007.)
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Fig. 10.6 Schematic top and side views of the ripple used in the electronic
structure calculations by Wehling et al. (2008a).
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The calculations by Wehling et al. (2008a) demonstrate a complete sublattice
polarization for the zero-energy pseudo-Landau states Fig. 10.8. This follows from
Eq. (10.11): In contrast with the usual quantum Hall effect (Sections 2.2 and 2.3),
the solutions for both valleys belong to the same sublattice.

It was shown by Wehling et al. (2008a) that, if in-plane relaxation of atoms is
allowed, the dispersionless zero-energy mode disappears for the geometry under
consideration. The reason for this behavior will be discussed in the next section.
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Fig. 10.7 Pseudo-Landau-level extension obtained from the density-functional
calculations (DFT) by Wehling et al. (2008a). The definition of Δk is clear from
the inset; the parameters h and l are defined in Fig. 10.6. Crosses show the fit to
the expression aΔk/(2π) = A1(h/l)

2 � A2(h/l) with some constants Ai.
(Courtesy of T. Wehling.)
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Fig. 10.8 The local density of states (LDOS) inside the cells at x = 1b0 (low
pseudomagnetic field) and x = 10b0 (high field region). For the low field region,
the LDOS is the same in both sublattices (only sublattice A is plotted here, dashed
line), whereas in the high field region the LDOS in the sublattice A (solid line)
and B (dash-dotted line) differ significantly, only the first one indicates the
formation of zero-energy Landau level.
(Reproduced with permission from Wehling et al., 2008a.)
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10.3 Pseudomagnetic fields of ripples: the effect of in-plane relaxation

Let us assume a fixed distribution of out-of-plane deformation h(x, y). If in-plane
relaxation is allowed, the in-plane deformations ux and uy should be found from the
minimum of the total energy (9.63) and excluded (Guinea, Horovitz &, Le
Doussal, 2008; Wehling et al., 2008a). It is convenient to use the complex-number
notation z = x + iy, z∗ = x � iy,

∂ ¼ ∂
∂z

¼ 1
2

∂
∂x

� i
∂
∂y

� �
,

∂∗ ¼ ∂
∂z∗

¼ 1
2

∂
∂x

þ i
∂
∂y

� �
,

r2 ¼ 4∂∂∗

(10.18)

and

u z; z∗ð Þ ¼ ux � iuy,

A z; z∗ð Þ ¼ Ax � iAy:
(10.19)

We will express the deformation tensor via A using Eq. (10.7). As a result, the free
energy (9.63) can be rewritten as (Wehling et al., 2008a)

F¼
ð
d2z 8κ ∂∂∗hð Þ2þ λþμð Þ 1

2
∂∗uþ∂∗uð Þþ∂h∂∗h

� �	

þμ ∂uþ ∂hð Þ2
h i

∂∗u∗þ ∂∗hð Þ2
h i


¼
ð
d2z 8κ ∂∂∗hð Þ2þ μa2

β2t2
AA∗þ λþμð Þ a

2βt
1

∂∂∗
∂∗2Aþ∂2A∗
� �þ 1

∂∂∗
R h½ �2

� �	 


(10.20)

where

R h½ � ¼ ∂2h∂∗2h� ∂∂∗hð Þ2 ¼ ∂ ∂h; ∂∗hð Þ
∂ z; z∗ð Þ (10.21)

is proportional to the Gaussian curvature of the surface, Eq. (9.76). On minimizing
Eq. (10.20) for a given h(z, z*) one finds
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A ¼ �βta2
ðλþ μÞ
ðλþ 2μÞ

∂2

∂∂∗
R, (10.22)

evB

c
¼ iβta2

ðλþ μÞ
ðλþ 2μÞ

∂3 � ∂∗3

∂∂∗ð Þ2
R: (10.23)

One can see from Eq. (10.22) and (10.23) that for the case of a free membrane
both the pseudomagnetic field and the vector potential vanish identically if h
depends only on one Cartesian coordinate, which means R � 0. This is not so,
as we will see in Section 10.5, if the membrane is under strain, in which case an
additional term should be added to Eq. (10.20).

This explains the disappearance of zero-energy states created by a frozen
sinusoidal ripple under relaxation mentioned at the end of the previous section.
If we induce the field

f αβ ~rð Þ ¼ ∂h
∂xα

∂h
∂xβ

(10.24)

and its Fourier component

f αβ ~k
� �

¼ �
X
~k1

k1α kβ � k1β
� �

h~k1h~k�~k1 (10.25)

then the symbolic expression (10.23) can be represented in an explicit form
(Guinea, Horovitz, & Le Doussal, 2008)

eB ~k
� �
hc

¼ iky
3k2x � k2y

k4
β
a

λþ μ
λþ 2μ

k2y f xx ~k
� �

þ k2x f yy ~k
� �

� 2kxkyf xy ~k
� �h i

: (10.26)

This gives us a formal solution of the problem.
Importantly, Eq. (10.23) and (10.26) reflect the trigonal symmetry of the

problem: If we have an isotropic ripple, h = h(r), and thus R = R(r), the
pseudomagnetic field will have an angular dependence

B(r,φ) = sin (3ϕ)B0(r), (10.27)

where ϕ is the polar angle (Wehling et al., 2008a).
In the next chapter, when discussing electron scattering by the ripples, we will

be interested in the correlation functions of vector and scalar potentials created by
the intrinsic ripples. They are proportional to

Fαβ, γδ ~qð Þ ¼ f αβ ~qð Þf γδ �~qð Þ �
¼

X
~q1~q2

q1α q1β � qβ
� �

q2γ q2γ þ qδ
� �

h~q1h~q�~q1h�~q2h�~q�~q2
 �

:
(10.28)
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To estimate the correlation function on the right-hand side of Eq. (10.28), one can
use Wick’s theorem (9.110) and the results of Section 9.4. The answer is (Kats-
nelson, 2010b)

F ~qð Þ �

T

κ

� �2 ln q=q∗

q2
, q > q∗,

T

κ

� �2�η 1

q2η0 q2�2η
, q < q∗,

8>>>><
>>>>:

(10.29)

where q* is the crossover wave vector (9.98). This means that the correlation
function of the vector potential is singular at q ! 0. At the same time, the
correlation function

B~q
�� ��2D E

� q2 A~q
�� ��2D E

(10.30)

tends to zero at q ! 0. Similarly to Eq. (10.27) in real space, it has the angular
dependence sin 2ð3φ~qÞ, where φ~q is the polar angle of the vector ~q (Guinea,
Horovitz, & Le Doussal, 2008).

10.4 The zero-field quantum Hall effect by strain engineering

In the previous sections we discussed the gauge fields created by ripples, which
are almost unavoidable in graphene. However, one can use Eq. (10.7) and
(10.10) to intentionally create a magnetic field with the desired properties to
manipulate the electronic structure of graphene via “strain engineering.” First
of all, let us consider an opportunity to create a uniform, or almost uniform,
pseudomagnetic field and thus realize Landau quantization and the quantum
Hall regime without a real magnetic field (Guinea, Katsnelson, & Geim, 2010;
Guinea et al., 2010).

Let us consider the simplest case of plane geometry, where h = 0 and the strain
tensor is created by the w-field only. Within linear two-dimensional elasticity
theory the general solution for the strain tensor can be written in terms of two
arbitrary analytic functions g(z) and k(z), namely

σxx ¼ ∂2f
∂y2

, σyy ¼ ∂2f
∂x2

, σxy ¼ � ∂2f
∂x∂y

, (10.31)

where

f(x, y) = Re [z∗g(z) + k(z)] (10.32)
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(Landau & Lifshitz, 1970; Vozmediano, Katsnelson, & Guinea, 2010). For a
purely shear deformation, σxx = �σyy, which means that g(z) = 0. Thus, the
components of the vector potential which are expressed in terms of stress as

Ax ¼ � 2cβt
μ

σxy,

Ay ¼ � cβt
μ

σxx � σyy
� �

(10.33)

are proportional to the real and imaginary parts of d2 k(z)/dz2, respectively, and

B � Im
d3k zð Þ
dz3

: (10.34)

A pure shear deformation that leads to a uniform pseudomagnetic field is

k(z) = Az3 (10.35)

(A is a constant). The general deformation (including dilatation), which leads to a
uniform pseudomagnetic field, is determined by the function

f(z) = Az3 + Bz∗z2 (10.36)

(A and B are constants). It corresponds to the strain tensor linearly dependent on
coordinates

uαβ ¼ �u

L
xαeβ, (10.37)

where u is a typical stress, L is the sample size, and~e is an arbitrary unit vector. The
effective pseudomagnetic field is associated with a magnetic length

1

l2B
¼ eB

ℏc
� β�u

aL
: (10.38)

For �u ¼ 10�2 and L � 10 μm we obtain lB � 0.2 μm, which corresponds to a
magnetic field of about 0.3 T. Actually, much higher deformations and, thus, much
higher pseudomagnetic fields can be created in graphene.

In reality, the stress can only be applied normally to the boundary of a sample.
Numerical solutions of the equations of the theory of elasticity show that it is not
difficult to have a quasiuniform pseudomagnetic field in a quite general situation; what
is really important is to keep the trigonal symmetry of the stress (Guinea, Katsnelson,
& Geim, 2010; Guinea et al., 2010). One can also show that the presence of dilatation
and, thus, of an electrostatic potential (10.8) does not affect the results (Guinea et al.,
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2010). As an example, we present here the results obtained by Guinea, Katsnelson,
and Geim (2010) for a hexagonal flake with external forces applied to three edges
(Fig. 10.9). One can see that the value of the pseudomagnetic field in the central part
of the flake is of uniform to high accuracy. As a result, the density of states, averaged
over the central region, clearly exhibits pronounced Landau levels (Fig. 10.10).

Fig. 10.9 A pseudomagnetic field in a hexagon of a size 1.4 μm that is strained by
the forces applied to three sides. The maximum strain of 20% creates an effective
field of about 10 T at the hexagon’s center. The counters correspond to 8, 6, 4, 2,
0, –2 T, from inside to outside.
(Reproduced with permission from Guinea, Katsnelson, & Geim, 2010.)

Fig. 10.10 The average density of states in the central region of diameter 0.5 µm
for the hexagon shown in Fig. 10.9.
(Reproduced with permission from Guinea, Katsnelson, & Geim, 2010.)
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It was suggested by Guinea, Katsnelson, and Geim (2010) that one should use
electron Raman scattering to observe the Landau levels created by strain. Soon
after that, this effect was observed by scanning tunneling microscopy for graphene
bubbles on a platinum surface (Levy et al., 2010). It is significant that these
bubbles have a shape with trigonal symmetry. The value of the pseudomagnetic
field created by spontaneous deformation in these bubbles was estimated by Levy
et al. (2010) to be approximately 300 T, which is much higher than any real
magnetic field attainable to date. Later, Georgi et al. (2017) have estimated
pseudomagnetic fields in their samples as 1,000 T. Importantly, they were able
to measure the density of states separately in sublattices A and B and confirmed a
strong pseudospin polarization predicted theoretically (see Fig. 10.8).

Owing to the condition (10.11), the system as a whole remains time-reversal-
invariant, and, due to the Onsager relations (Zubarev, 1974), one should have
σxy = 0 (here σ is the conductivity, not the stress!). In terms of edge states (Section
5.8) this results from the existence of two counter-propagating edge states, from
values K and K0, without total charge transfer. This situation can be described as a
“valley quantum Hall effect” analogous to the spin quantum Hall effect (Kane &
Mele, 2005a, 2005b). Inhomogeneities at the edges will lead to a scattering
between the valleys; however, one can show that, due to the smallness of the
parameter a/lB, the mixture of the counter-propagating edge states can be very
small (Guinea, Katsnelson, & Geim, 2010).

10.5 The pseudo-Aharonov–Bohm effect and transport gap
in suspended graphene

As the next example, we consider the pseudomagnetic field arising in a freely
suspended graphene membrane (Fogler, Guinea, & Katsnelson, 2008). If it is
charged with the electron density n, the electrostatic pressure acts on the membrane
(Jackson, 1962)

p ¼ 2πe2

ε
n2, (10.39)

where ε is the dielectric constant. Under this pressure, the membrane will be bent
(Fig. 10.11), with the equation of equilibrium

κ
d4h xð Þ
dx4

� τ
d2h

dx2
¼ p, (10.40)

where τ is the external strain (this follows from the minimization of the total energy
(9.144) in the presence of an external strain σextxx ¼ τ, and uxx is given by
Eq. (10.12). If we assume that the membrane is supported at x = �L/2 then the
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solution of Eq. (10.40) satisfying the boundary conditions is (Timoshenko &
Woinowsky-Krieger, 1959)

h xð Þ ¼ pL4

16u4κ
cosh 2ux=Lð Þ

cosh u
� 1

� �
þ pL2 L2=4� x2

� �
8u2κ

, (10.41)

u2 ¼ τl2

4κ
: (10.42)

The strain has to be found self-consistently, as

τ ¼ τ0 þ Y
ðL=2

�L=2

dxuxx ¼ τ0 þ Y
2L

ðL=2

�L=2

dx
dh

dx

� �2

, (10.43)

where τ0 is an external strain of nonelectrostatic origin. First we will assume, for
simplicity, that τ0 = 0 and

n »

ffiffiffiffiffiffiffiffiffi
εκ

e2L3

r
, (10.44)

which gives us u » 1. In this regime only the last term on the right-hand side of Eq.
(10.49) survives, and the profile h(x) is represented by a simple parabola:

graphene layer

(a)

(b)

Gate

h0

kx

ky Ay

K

K′ K′

K

L

Fig. 10.11 (a) A sketch of the model of a suspended graphene membrane under
consideration (see the text). (b) Fermi-circle positions in the Brillouin zone in the
leads (left) and in the suspended region (right).
(Reproduced with permission from Fogler, Guinea, & Katsnelson, 2008.)
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h xð Þ ¼ h0 1� 4x2

L2

� �
, (10.45)

where

h0 ¼ 3π
64

e2

εY
n2L4

� �1=3

(10.46)

and

τ ¼ pL2

8h0
¼ πe2n2L

4εh0
: (10.47)

The deformation uxx creates the vector potential. Its effect is largest if the zigzag
direction is along the y-axis, thus

Ax ¼ 0, Ay ¼ � βt
a
uxx, (10.48)

where the signs � correspond to the valleys K and K0, respectively. Thus, the
conical points will be shifted, inside the membrane, in the y-direction (see
Fig. 10.11(b)). If this shift is larger than the Fermi wave vector kF, that is,

kF <
Ay

�� ��
ℏv

, (10.49)

the matching of wave functions in the leads and in the membrane becomes
impossible, then the transport though the membrane will be totally suppressed;
that is, the transport gap will be open. Here we assume, for simplicity,
that the concentrations of charge carriers for the leads and membrane are
the same.

To proceed further, let us replace the deformation uxx in Eq. (10.48) by its
average value

uxx ¼ τ

Y
: (10.50)

Thus, taking into account Eq. (10.46) through (10.48), we have an estimation

Ay

�� ��
ℏv

� e2

Yε

� �2=3

n4=3L�1=3 � a2n4=3L�1=3

ε2=3
: (10.51)

Keeping in mind that kF � n1/2, we see that, if all of the strain is purely
electrostatic, the condition (10.57) is not satisfied, and the gap never opens.
However, it can be open (and will certainly be open, if n is small enough) if
τ0 6¼ 0 in Eq. (10.43). This gap opening is an effect of the vector potential itself, not

10.5 The pseudo-Aharonov–Bohm effect 273

https://www.cambridge.org/core


of the pseudomagnetic field, and it takes place even if the vector potential is
constant: Ay = constant, B = 0. Therefore, it can be considered to be an analog
of the Aharonov–Bohm effect for pseudomagnetic fields.

The scattering problem can be solved exactly if one assumes, for simplicity,
Ay = constant. The calculations are absolutely similar to those in Chapters 3 and 4.
We assume (as has already been mentioned) that we have the same value of kF in
the leads and in the membrane. This means that the y-component of the wave
vector in the leads is

ky = kF sin φ (10.52)

(φ is the incidence angle), and within the membrane it is replaced by

ky ! ky � q � ky � Ay

hv
: (10.53)

The transmission coefficient is (Fogler, Guinea, & Katsnelson, 2008)

T ky
� � ¼ k21k

2
2

k21k
2
2 þ k2Fq

2 sin 2 k2Lð Þ , (10.54)

where

k1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2F � k2y

q
¼ kF cos φ,

k2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2F � ky � q

� �2q
:

(10.55)

The total conductance can be calculated, using the Landauer formula, as

G ¼ 4e2

h
W

ðkF
�kF

dky
2π

T ky
� �

, (10.56)

where W is the width of the membrane.
Pereira and Castro Neto (2009) have suggested that one could use this effect for

strain engineering: By applying some external strain distribution to graphene, one
can create a desirable distribution of the vector potential and thereby manipulate
the electronic transport through graphene. This type of strain engineering is
different from that considered in the previous section, since no real gaps due to
Landau quantization are required, transport gaps due to the “pseudo-Aharonov–
Bohm effect” suffice.

Low et al. (2012) and Jiang et al. (2013) considered electron pumping through
the device shown in Fig. 10.11a. The pumping arises in the systems with slow
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(adiabatic) periodic modulation of the parameters, and the quantized electric
charge pumped through the system is expressed via some topological (or geomet-
ric) characteristics reminiscent of the Hall conductivity quantization, see Section
2.9 (Thouless, 1983; Brouwer, 1998; Makhlin & Mirlin, 2001). Modulation of
voltage applied to the suspended graphene sheet and of its in-plane deformation
results in pumping of electrons, one by one, through the device (Low et al., 2012).
Dependent on crystallographic orientation of the suspended graphene stripe, one
can also reach full valley polarization of the current when all electrons from
K valley move to the right and all electrons from K0 valley move to the left, or
vice versa (Jiang et al., 2013).

10.6 Gap opening by combination of strain and electric field

Let us now consider the case of coexistence of pseudomagnetic fields and electro-
static potential. We will assume that all these perturbations are smooth, and
therefore the intervalley scattering can be neglected. Thus, the Hamiltonian of
the system is

Ĥ ¼ Ĥ0 þ ĤA þ ĤV , (10.57)

where

Ĥ ¼ �iℏv~̂σ~r,

ĤA ¼ �σ̂xAx ~rð Þ � σ̂yAy ~rð Þ,
ĤV ¼ V ~rð Þ: (10.58)

We will assume that both perturbations are weak and use the perturbation theory
for the Green function:

Ĝ ¼ 1

E � Ĥ þ iδ
(10.59)

(cf. Sections 4.2 and 6.4). We can formally write the answer via the Dyson
equation,

Ĝ ¼ 1

E � Ĥ0 � Σ̂ Eð Þ , (10.60)

where Σ̂ Eð Þ is the self-energy operator, which can be written as a perturbation
series

Σ̂ Eð Þ ¼ ĤA þ ĤV þ ĤA þ ĤV

� �
Ĝ0 ĤA þ ĤV

� �þ 	 	 	 , (10.61)
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where Ĝ0 is the Green function of the Hamiltonian Ĥ0, Eq. (4.35) and (4.36). Both
Ĝ0 and ĤA contain terms proportional to σ̂x and σ̂y, and their product can generate
σ̂ z, that is, the mass term:

σ̂xσ̂y ¼ �σ̂yσ̂x ¼ iσ̂ z: (10.62)

In the lowest order, such terms originate from the term linear in ĤA and linear in
Ĝ0. It is also linear in ĤV . This cross-term has the form

~̂Σ 0
ðEÞ ¼ ĤV

1

E � Ĥ0 þ iδ
ĤA þ ĤA

1

E � Ĥ0 þ iδ
ĤV

¼ ĤVðE � Ĥ0Þ
1

ðE þ iδÞ2 � Ĥ2
0

ĤA

þ ĤAðE � Ĥ0Þ
1

ðE þ iδÞ2 � Ĥ2
0

ĤV : (10.63)

Perturbatively, the correction to the effective Hamiltonian is Σ̂ ~k;~k;E
� �

(the self-
energy depends on two wave vectors since the Hamiltonian (10.57) is not transla-
tionally invariant, but we need only terms diagonal in k). The second-order
correction containing the mass term is

Σ̂
2ð Þ ~k;~k;E
� �

¼
X
~k

Ŵ~k�~k0Ĝ0
~k0;E
� �

Ŵ~k0�~k, (10.64)

where

Ŵ~q ¼ V~q þ ~̂σ~A~q (10.65)

and Ĝ0 is given by Eq. (4.36). We are interested in the gap opening at the
neutrality point and thus should put E = 0. By substituting Eq. (4.36) into
Eq. (10.64) we find

Σ̂
2ð Þ ~k;~k; 0
� �

¼ � 1
ℏv

X
~q

Ŵ~k�~q
~q~̂σ
q2

Ŵ~q�~k: (10.66)

Since

Ŵ σ̂ α ¼ V σ̂α þ Aα þ iεβαγA
βσ̂ γ (10.67)

the expression (10.66) contains the gap term Δσ̂ z, where

Δ~k ¼
2
ℏv

X
~q

Im V~k�~q qxA
x
~q�~k � qyA

x
~q�~k

� �h i
q2

: (10.68)
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At ~k ¼ 0, it can be expressed in terms of the Fourier component of the pseudo-
magnetic field,

B~k ¼ kxA
y
~k
� kyA

x
~k
, (10.69)

namely

Δ~k¼0 ¼
2
ℏv

X
~q

Im V�~qB~q
� �
q2

(10.70)

(Low, Guinea, & Katsnelson, 2011).
Before discussing this expression, we derive an important result for ∂Σ̂=∂E. It

follows from Eq. (10.66) and (4.36) that

∂Σ 2ð Þ ~k;~k;E
� �
∂E

������
E¼0

¼ �
X
~q

Ŵ~k�~qŴ~q�~k
ℏvqð Þ2 : (10.71)

The integral (10.71) contains an infrared divergence at q! 0, which should be cut,
at some qmin. The result is

∂Σ 2ð Þ ~k;~k;E
� �
∂E

������
E¼0

� �
X
~q

1n qminað Þj j
2π ℏvð Þ2 Ŵ~kŴ�~k: (10.72)

This divergence is very important for the theory of electron transport in graphene,
as will be discussed in the next chapter.

It follows from Eq. (10.70) that the gap is determined by correlations between
the electrostatic potential and the pseudomagnetic field. Let us characterize these
correlations by a parameter

C ¼ lim
~k!0

BVð Þ~k, (10.73)

which has the dimension of energy. It is roughly given by the value of the
electrostatic potential times the number of flux quanta of the pseudomagnetic
field over the region where the field and the electrostatic potential are correlated.
The gap can be estimated, according to Eq. (10.70), as

Δ � C j ln (qmina) j . (10.74)

The minimal value of q in pure graphene is determined by the gap itself,
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qmin �
Δ
ℏv

, (10.75)

so Eq. (10.74) is an equation for Δ. In dirty samples, the cut-off is determined by
disorder.

Since the ripples create both an electrostatic potential and a vector potential, it is
natural to ask whether this effect can result in gap opening or not. To check this,
we will use the expression for the deformation tensor created by ripples with the in-
plane relaxation taken into account (Guinea, Horovitz, & Le Doussal, 2008):

uαβ ~k
� �

¼
~k
��� ���2
2

δαβ � λþ μ
λþ 2μ

kαkβ

2
64

3
75 k2x f yy ~k

� �
þ k2y f xx ~k

� �
� 2kxky f xy ~k

� �

~k
��� ���4

(10.76)

(cf. Eq. (10.26) for the magnetic field). On substituting Eq. (10.76), (10.7), and
(10.8) into Eq. (10.70) we obtain (Low, Guinea, & Katsnelson, 2011)

Δ ¼ g
β
a

μ λþ μð Þ
λþ 2μð Þ2

X
~k

kx
2f yy ~k

� �
þ ky

2f xx ~k
� �

� 2kxkyf xy ~k
� ���� ���2

~k
��� ���4

cos 3φ~k
� �

,

(10.77)

where φ~k is the polar angle of the vector
~k. This expression is zero since on making

the replacement ~k ! �~k the cosine changes sign ϕ�~k ¼ π þ φ~k
� �

and

f αβ �~k
� �

¼ f αβ
∗ ~k
� �

(since the expression (10.24) is real). This means that, while

the scalar and vector potentials originate from the same deformations, the gap is
not open. To achieve gap opening one needs to apply an inhomogeneous electro-
static potential together with strains. Some specific devices of this kind were
considered by Low, Guinea, and Katsnelson (2011). Under some quite realistic
assumptions about parameters of the devices, a gap of the order of 0.1 eV can
reasonably be expected. In general, this direction in strain engineering looks quite
promising.

In this chapter we have considered only the simplest gauge field, that is, a
pseudomagnetic one, which can be created by smooth deformations. Topological
defects in graphene such as dislocations and disclinations can create non-Abelian
gauge fields acting on two valleys. This issue and more formal aspects of gauge
fields in graphene are reviewed by Vozmediano, Katsnelson, and Guinea (2010).
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11

Scattering mechanisms and transport properties

11.1 The semiclassical Boltzmann equation and limits of its applicability

The conventional theory of electronic transport in metals and semiconductors
(Ziman, 2001) is based on the Boltzmann equation (or kinetic equation) for the

distribution function f k
!
; r
!
; t

� �
, which is nothing other than a probability density

in the single-electron phase space (instead of the canonical variables p
! and r

!, we

will use k
!

and r
!, k

!¼ p
!
=ℏ). It has the form (Lifshitz, Azbel, & Kaganov, 1973;

Abrikosov, 1988; Vonsovsky & Katsnelson, 1989; Ziman, 2001)

∂f
∂t

þ _
k
!r

k
!f þ _r

!r r
!f ¼ I

k
! f½ �, (11.1)

where
_
k
!
and _r

! are determined by the canonical equations of motion

ℏ
_
k
! ¼ e E

! þ 1
c
v
!

k
!� B

!
� �

, (11.2)

_r
! ¼ v

!
k
! ¼ 1

ℏ

∂ε k
!� �

∂k
! , (11.3)

where εðk!Þ is the band dispersion and E
!
and B

!
are the electric and magnetic fields.

The right-hand side of Eq. (11.1) is called the collision integral. If we neglect
electron–electron scattering processes and assume that there is only elastic scatter-
ing by some external (with respect to the electron subsystem) sources, the collision
integral takes the form

I
k
! f½ � ¼

X
k0
!

w k
!
; k
!0

� �
f
k
!0 1� f

k
!

� �
� f

k
! 1� f

k
!0

� �h i
¼
X
k0
!

w k
!
; k
!0

� �
f
k
!0 � f

k
!

� �
,

(11.4)
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where wðk!; k!0Þ is the quantum-mechanical scattering probability and the factors
(1 � f) in Eq. (11.4) take into account the Pauli principle forbidding scattering into
occupied states. One can see, however, that these factors are not essential. If the
scattering Hamiltonian has the form

Ĥ 0 ¼
X
k
!
k
!
V

k
!
k
!0 ĉ

þ
k
! ĉ

k
!0 (11.5)

and V is a static potential (quenched disorder) then, in the Born approximation,
according to “Fermi’s golden rule,”

w k
!
; k
!0

� �
¼ 2π

ℏ
V

k
!
k
!0

��� ���2� �
δ ε

k
! � ε

k
!0

� �
(11.6)

(angular brackets denote the average over the states of the scatterers). Note that in

this approximation wðk!; k!0Þ ¼ wðk!0; k
!Þ, which is already taken into account in

Eq. (11.4). For simplicity, we omit spin indices and do not take into account
summation over them; otherwise, the right-hand side of Eq. (11.4) should be
multiplied by 2, the spin degeneracy factor.

Here, we will consider only a linear response, assuming that the external electric
field E

!
is small enough. Then,

f
k
! r

!
; t

� �
¼ f 0 ε

k
!

� �
þ δf

k
! r

!
; t

� �
, (11.7)

where f0(ε) is the Fermi–Dirac distribution function, and we need to take into
account only linear terms in Eq. (11.1). Then, the collision integral is

I
k
! f½ � ¼

X
k
!0

w k
!
; k
!0

� �
δf

k
!0 � δf

k
!

� �
: (11.8)

The current and the perturbation of the electron charge density can be calculated as

j
!

r
!
; t

� �
¼ e

X
k
!

v
!

k
!δf

k
!, (11.9)

δρ r
!
; t

� �
¼ e

X
k
!

δf
k
!: (11.10)

The rigorous quantum-mechanical derivation of the Boltzmann equation from
fundamental physical laws, that is, from the Schrödinger equation, is a very
complicated problem. It is part of the general problem of the derivation of statis-
tical physics and of macroscopic irreversibility (the Boltzmann equation is
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irreversible; that is, it has no time-reversal symmetry, whereas the Schrödinger
equation does have time-reversal symmetry); see, e.g., Zubarev (1974), Ishihara
(1971), and Balescu (1975). For the particular case of elastic scattering with
randomly distributed impurities

V r
!� �

¼
X
i

u r
! � R

!
i

� �
(11.11)

(R
!
i are their positions), the problem was solved by Kohn and Luttinger (1957). The

idea was as follows. First, the Schrödinger equation is equivalent to Eq. (2.173) for
the density matrix

ρ
k
!
, k
!0 ¼ ĉ

k
!0

þĉ
k
!

D E
(11.12)

(cf. Eq. (2.170)). For the case of a spatially uniform system,

f
k
! ¼ ρ

k
!
, k
!: (11.13)

One can prove that, if V is weak enough, the off-diagonal terms of the density
matrix (11.12) are small in comparison with the diagonal ones, with the latter
satisfying the Boltzmann equation (11.1), (11.4), and (11.6). Assuming a random
distribution of the impurities, one has

V
k
!
k
!0

��� ���2� �
¼ nimp u

k
!�k

!0

��� ���2, (11.14)

where nimp is the impurity concentration. Luttinger and Kohn (1958) proved that if
nimp is small, one can repeat the whole derivation without assuming the smallness
of potential u, and Eq. (11.1), (11.4), and (11.6) remain correct, but with replace-
ment of the potential û by the single-site T̂ -matrix:

V
k
!
k
!0

��� ���2� �
¼ nimp T

k
!
k
!0 E ¼ ε

k
!

� ���� ���2: (11.15)

This result has already been mentioned and was used in Chapter 6; see e.g.,
Eq. (6.22) through (6.26).

If neither the potential nor the concentration of the defects is small, the
Boltzmann equation is, in general, incorrect. For example, it does not take into
account the effects of Anderson localization, which are crucially important for
strongly disordered systems (Mott, 1974; Mott & Davis, 1979; Shklovskii & Efros,
1984; Lifshitz, Gredeskul, & Pastur, 1988).

Some general and powerful tools with which to derive kinetic equations,
such as Kadanoff–Baym nonequilibrium Green functions and the Keldysh
diagram technique for their calculation (Kadanoff & Baym, 1962; Keldysh, 1964;
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Rammer & Smith, 1986; Wagner, 1991; Kamenev & Levchenko, 2009; Kamenev,
2011; Stefanucci & van Leeuwen, 2013) and the nonequilibrium statistical
operator (NSO) method and similar approaches (Zubarev, 1974; Kalashnikov &
Auslender, 1979; Akhiezer & Peletminskii, 1981; Luzzi, Vasconcellos, & Ramos,
2000; Kuzemsky, 2005) were developed thereafter. They are all based on the idea
of a coarse-grained description. If the disorder is weak (due to either weakness of
the scattering potential or smallness of the concentration of defects) the off-
diagonal elements of the density matrix have a very fast dynamics in comparison
with that of the diagonal ones and can be eliminated. On time scales much larger
than typical electron times (e.g., ℏ/jtj, where t is the hopping integral) the dynamics
of the whole system can be described by a small number of degrees of freedom (we
have N0 diagonal elements (11.13) and N2

0 elements of the total density matrix
(11.12)). If there are no small parameters in the problem under consideration, the
coarse-grained approach cannot be justified and one needs other methods (see, e.g.,
Efetov, 1997; Evers & Mirlin, 2008).

Earlier we discussed the case of a spatially uniform system. If we have inho-
mogeneities on an atomic scale and no small parameters, the kinetic equation does
not work. For the case of smooth enough inhomogeneities, the Boltzmann equation
(11.1) can be justified for the Wigner distribution function

f
k
! r

!
; t

� �
¼
ð
dξ
!

exp �i k
!
ξ
!� �

ρ r
!þ ξ

2

!
; r
! � ξ

2

!
; t

 !
, (11.16)

where ρ r
!
; r
!0

� �
¼ ψ̂þ r

!0
� �

ψ̂ r
!� �D E

is the density matrix in the coordinate

representation (Kadanoff & Baym, 1962). Henceforth we will not consider the
inhomogeneous case. We also restrict ourselves to the case of dc transport with a

time-independent E
!
. Therefore, the terms with ∂/∂t and r r

! in Eq. (11.1) can be
neglected.

For the case of graphene, the applicability of the Boltzmann equation is not
obvious. In the standard theory of electron transport in solids, the current operator
commutes with the unperturbed Hamiltonian Ĥ0, thus we start with states that have
simultaneously well-defined values of energy and well-defined values of momen-
tum. The perturbation Ĥ

0
does not commute with the current operator, leading to

scattering between these states. For the Dirac Hamiltonian (3.1), the current
operator (3.2) does not commute with it (Zitterbewegung, see Chapter 3). At the
same time, for the case of a scalar potential

Ĥ
0 ¼

X
k
!
k
!
ψ̂þ

k
!V

k
!
k
!0 ψ̂ k

!0 (11.17)
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with V proportional to the unit matrix in pseudospin space, the current operator
commutes with Ĥ

0
. It is not at all clear how important this huge formal difference

can be. Also, it is not clear when interband scattering processes can be neglected;
thus, at least, instead of the scalar quantity (11.13), one needs to consider the
matrix (7.15) in pseudospin space. If we have atomically sharp scattering, the
valley index should also be taken into account, but we will not consider that case
here. The matrix Boltzmann equation for the case of graphene has been derived by
Auslender and Katsnelson (2007) (see also Kailasvuori & Lüffe, 2010; Trushin
et al., 2010). They used the NSO approach; Kailasvuori and Lüffe (2010) used the
Keldysh diagram technique and discussed the relation between these two
approaches.

The corresponding derivations are rather complicated and cumbersome, but the
physical results are quite clear. Therefore, we will only present the general idea and
the answers here.

First, let us diagonalize the Dirac Hamiltonian by the transformation (7.23) to
the form (7.24). The scattering operator (11.5) takes the form

Ĥ
0 ¼
X
k
!
k
!
Ξ̂þ

k
!V 0

k
!
k
!Ξ̂þ

k
!0 , (11.18)

where Ξ̂
þ
k
! ¼ ξ̂

k
!
1

þ
; ξ̂

þ
k
!
2

� �
and

V
k
!
k
!0 ! V 0

k
!
k
!0 ¼

1
2
V

k
!
k
!0

1þ exp i φ
k
!0 � φ

k
!

� �h i
1� exp i φ

k
!0 � φ

k
!

� �h i
1� exp i φ

k
! � φ

k
!0

� �h i
1þ exp i φ

k
!0 � φ

k
!

� �h i
0B@

1CA:

(11.19)

It contains both diagonal and nondiagonal elements. In the NSO method, one first
needs to postulate the set of “coarse-grained” variables for which a closed set of
equations of motion is assumed to exist. In our case, this is the 2� 2 density matrixbΞþ

k
!Ξ̂

k
!

D E
or, equivalently,

D
k
! ¼ bξþk!1ξ̂ k

!
1

D E
þ bξþk!2ξ̂ k

!
2

D E
� 1,

N
k
! ¼ bξþk!1ξ̂ k

!
1

D E
þ 1� bξþk!2ξ̂ k

!
2

D E
,

g
k
! ¼ bξþk!1ξ̂ k

!
2

D E
¼ bξþk!2ξ̂ k

!
1

D E∗
:

(11.20)

Note that the function g
k
! is complex. The generalized Boltzmann equation to

second order in V reads (Auslender & Katsnelson, 2007)
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∂D
k
!

∂t
þ eE

ℏ

∂D
k
!

∂kx
¼ � 2π

ℏ

X
q
!

V
k
!
, q!

��� ���2 cos 2 φ
k
! � φq

!

2

� �
δ ε

k
! � εq!

� �
D

k
! � Dq

!
� �

,

(11.21)

∂N
k
!

∂t
þ eE

∂N
k
!

∂kx
�
2eE sin ϕ

k
!

ℏk
Img

k
!

¼ 2π
ℏ

X
q
!

V
k
!
, q!

��� ���2 1
π
sin φ

k
! � φq

!
� �

Regq
!

1
εq! þ ε

k
!
þ 1
εq! � ε

k
!

 !(

� cos 2
φ
k
! � φq

!

2

� �
N

k
! � Nq

!
� �

þ sin φ
k
! � φq

!
� �

Imgq
!

	 
�
δ ε

k
! � εq!

� �
,

(11.22)

∂g
k
!

∂t
� 2ivkg

k
! þ eE

ℏ

∂g
k
!

∂kx
þ iE

2ℏk
N

k
! � 1

� �
sin φ

k
!

¼ � π
ℏ

X
q
!

V
k
!
, q!

��� ���2 � i

2
sin φ

k
! � φq

!
� �

Dq
! δ ε

k
! � εq!

� �
þ i

π
1

ε
k
! � εq!

" #(

þ 2 cos 2
φ
k
! � φq

!

2

� �
g
k
! � gq

!
� �

δ ε
k
! � εq!

� �
þ i

π

g
k
! þ gq

!

ε
k
! � εq!

" #

þ 1
2π

Nq
!

ε
k
! þ εq!

sin φ
k
! � φq

!
� �

� 2i
π

g
k
! þ gq

!∗

ε
k
! þ εq!

sin 2
φ
k
! � φq

!

2

� �)
, (11.23)

where ε
k
! ¼ ℏvk and the electric field E is supposed to be directed along the x-axis.

The current is expressed in terms of these functions as

jx ¼ ev
X
q
!

Nq
! cos φq

! þ 2 sin φq
!Im gq

!
� �

: (11.24)

The Eq. (11.21) is decoupled from Eq. (11.22) and (11.23) and is formally
equivalent to the usual Boltzmann equation (11.1), (11.4), and (11.6), but the other
two equations have an essentially different structure. The most important differ-
ence is that the “collision integral” now contains not only “dissipative” terms with

δðε
k
! � εq!Þ but also “reactive” terms with 1=ðε

k
! � εq!Þ. These terms are associated
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with virtual interband transitions, that is, with Zitterbewegung (see Chapter 3). As
a result, the linearized kinetic equations are singular, and their solutions contain
logarithmic divergences at small enough chemical potential μ and temperature T.
For the case of the contact potential V

k
!
, q!

¼ constant, these integral equations can

be solved exactly (Auslender & Katsnelson, 2007).
First, let us neglect off-diagonal terms, that is, g

k
!. Then we will have the

standard Boltzmann equation for the Dirac fermions and the corresponding expres-
sion for the resistivity (6.23) with the inverse Drude mean-free-path time (Shon &
Ando, 1998)

1
τ
k
!
¼ π
ℏ

X
q
!

V
k
!
, q!

��� ���2 sin 2 φ
k
! � φq

!
� �

δ ε
k
! � εq!

� �

¼
πε

k
!

2πℏvð Þ2 nimp

ð2π
0

dφ u 2k sin
φ

2

� ���� ���2 sin 2φ (11.25)

where u(q) is the Fourier component of u(r) from Eq. (11.11).
If we now find the off-diagonal terms of the density matrix g

k
!, by iterations we

will see that they have a smallness in the parameter

λ ¼ ℏ
εFj jτ kFð Þ �

e2ρB
h

, (11.26)

where ρB is the resistivity (6.23) and (11.25) calculated by applying the ordinary
semiclassical Boltzmann equation. If we go closer to the neutrality point the off-
diagonal terms are divergent. For the case of the contact potential, the exact
solution of the integral equations mentioned previously gives a typical energy
scale (Auslender & Katsnelson, 2007)

εK ¼ W exp � πh
e2ρB

� �
, (11.27)

where W is a cut-off energy of the order of the bandwidth. The conventional
Boltzmann equation is valid if

jεFj, T » εK. (11.28)

The subscript K in Eq. (11.27) refers to Kondo, due to a formal similarity
between the energy scale discussed here and the Kondo effect in the scattering
of electrons in metals by a magnetic impurity (Kondo, 1964; Hewson, 1993). In
that case, due to spin-flip processes involved in the scattering, a resonant singlet
state is formed (“Kondo resonance”), which, being considered perturbatively, leads
to logarithmic corrections in the temperature dependences of various physical
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quantities. It is important that the spin-up and spin-down states of the impurities
are degenerate. A magnetic field kills this degeneracy and suppresses the Kondo
effect. The scattering potential (11.19) contains off-diagonal matrix elements
between electron and hole bands. At μ = 0, these bands are degenerate, and an
analog of the Kondo effect arises, making the standard Born approximation
insufficient. A finite chemical potential μ plays the same role as the magnetic field
in the Kondo effect. The condition (11.28) guarantees that all singularities are
suppressed. One can see that this is equivalent to the condition

λ « 1, (11.29)

which is the desired criterion of applicability of the standard semiclassical Boltz-
mann theory. In the vicinity of the neutrality point we are in the “strong-coupling”
regime. Note that Eq. (11.21) through (11.23) is probably insufficient in this case. As
was emphasized previously, in the situation without any smallness of disorder, other
methods have to be applied. They will be briefly discussed later in this chapter
(Section 11.7). The main role of the approach considered here is that it justifies the
use of the standard Boltzmann equation under the condition (11.29).

Note that these “Kondo” logarithms are related to the divergence of ∂Σ/∂E
at the neutrality point Eq. (10.79). From another point of view and in a
different context (Dirac fermions in d-wave superconductors), these logarithms
were discussed by Lee (1993), Nersesyan, Tsvelik, and Wenger (1994), and
Ziegler (1998).

Thus, not too close to the neutrality point, namely at

σ ¼ 1
ρ
»
e2

h
, (11.30)

the interband transitions are negligible. If we assume, to be specific, that the Fermi
energy lies in the electron band, then only the (1,1) matrix element of the current
operator and that of the scattering potential are relevant:

j
k
!
x

� �
1,1

¼ ev cosφ
k
!, (11.31)

V 0
k
!
k
!0

� �
1,1

¼ V
k
!
k
!0

1þ exp i φ
k
!0 � φ

k
!

� �h i
2

: (11.32)

Let us consider the most general form of the scattering potential V
k
!
k
!0 in

Eq. (11.17):

V
k
!
k
!0 ¼ V ð0Þ

k
!
k
!0
þ V

!
k
!
k
!0 σ

!
: (11.33)

286 Scattering mechanisms and transport properties

https://www.cambridge.org/core


Then, the effective scattering potential will be

Veff

k
!
k
!0
¼ V 0

k
!
k
!0

� �
1,1

¼V 0ð Þ
k
!
k
!0

1þ exp i φ
k
!0 �φ

k
!

� �h i
2

þVz

k
!
k
!0

1� exp i φ
k
!0 �φ

k
!

� �h i
2

þ Vx

k
!
k
!0 þiVy

k
!
k
!0
Þexp �iφ

k
!

� �
þ Vx

k
!
k
!0 �iVy

k
!
k
!0
Þexp iφ

k
!0

� �
:

��
(11.34)

Thus, under the condition (11.30) we have a single-band problem with the unper-
turbed Hamiltonian

Ĥ0 ¼
X
k
!

ℏvkξ̂þ
k
! ξ̂

k
!, (11.35)

current operator

ĵx ¼
X
k
!

ev cosφ
k
!bξþ

k
! ξ̂

k
! (11.36)

and scattering operator

Ĥ
0 ¼

X
k
!

Vef

k
!
k
!0
ξ̂þ
k
! ξ̂

k
!0 , (11.37)

where we will omit the label “1” for electron operators. In the next section we will
present a convenient and general tool that can be used to find the resistivity in this
problem.

11.2 The Kubo–Nakano–Mori formula for resistivity

In general, the linearized Boltzmann equation is an integral equation that can only
be solved exactly in some special cases (e.g., for contact interaction uð r! �R

!
1Þ in

Eq. (11.11)). Usually, a variational approach (Ziman, 2001) is used. However,
within the Born approximation there is a more straightforward way to calculate
transport properties. It is based on the use of the Kubo–Nakano–Mori formula (Kubo,
1957; Nakano, 1957; Mori, 1965) for the resistivity. It gives exactly the same result as
the solution of Boltzmann equation by the variational approach but in a technically
simpler way. Since this method seems not to be well known in graphene community,
we will present it here following Mori (1965). It will allow us also to illustrate the
idea of coarse graining, which is fundamental for the nonequilibrium statistical
mechanics and which was discussed preliminarily in the previous section.

Let us start with the Kubo formula (3.7) for σxx. It can be rewritten as

σxx ωð Þ ¼ β
ð∞
0

dt exp iωtð Þ ĵx tð Þ; ĵx
� 

, (11.38)
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where

Â; B̂
�  ¼ 1

β

ðβ
0

dλ exp λĤ
� 

Â exp �λĤ
� 

B̂
þD E

: (11.39)

Here, Ĥ is the Hamiltonian of the system and we put the area of the sample equal

to 1. Importantly, if we consider operators Â
� �

as vectors in some linear space,
Eq. (11.39) determines the scalar product in this space and satisfies all of the
axioms of the scalar product.

The operator equation of motion is

dÂ tð Þ
dt

¼ iL̂Â tð Þ, (11.40)

where

L̂Â � Ĥ ; Â
� �

(11.41)

is the Liouville (super) operator. “Super” means that it acts as an operator in the
vector space of quantum-mechanical Hermitian operators. Here we put ℏ = 1 for
simplicity.

Let us assume that Â
� �

form a set of operators such that their dynamics is

closed, that is, Â tð Þ� �� �
at any time t is determined by initial conditions

Â 0ð Þ� �� � � Â
� �� �

. This implies the coarse-grained dynamics. A technical
advantage of Mori’s approach is that we use far fewer operators than in the kinetic
equation, just current operators, but with almost the same accuracy.

Since Eq. (11.39) defines the scalar product in our vector space, one can

introduce a projection operator of any set of operators Ĝ
� �

on the initial set Â
� �

:

P̂0Ĝ ¼ Ĝ; Â
� � Â; Â� �1� Â, (11.42)

where the dot denotes the matrix product, e.g.,

Ĝ; Â
� � Â� �

i ¼
X
j

Gi; Âj

� 
Âj (11.43)

and i and j label operators within the set Â
� �

. Thus, Â tð Þ can be represented as a

sum of “projective” and “perpendicular” components with respect to Â
� �

:

Â tð Þ ¼ Ξ0 tð ÞÂ þ Â
0
tð Þ, (11.44)

where

Ξ0 tð Þ ¼ Â tð Þ; Â� � Â; Â� �1
(11.45)
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and

Â
0
tð Þ ¼ 1� P̂0

� 
Â tð Þ: (11.46)

Next, we can derive the equation of motion for Â
0
. Acting by 1� P̂0

� 
on

Eq. (11.40) we find

dÂ
0
tð Þ

dt
� iL̂1Â

0
tð Þ ¼ Ξ0 tð Þf̂ 1, (11.47)

where

L̂1 ¼ 1� P̂0
� 

L̂, (11.48)

f̂ 1 ¼ iL̂1Â: (11.49)

It has the formal solution

Â
0
tð Þ ¼

ðt
0

dsΞ0 sð Þf̂ 1 t � sð Þ, (11.50)

where we take into account that Â
0
0ð Þ ¼ 0 and

f̂ 1 tð Þ ¼ exp iL̂1t
� 

f̂ 1: (11.51)

Eq. (11.50) represents a convolution. On taking the Laplace transform

Â zð Þ ¼
ð∞
0

dt exp �ztð ÞÂ tð Þ, (11.52)

we find

Â zð Þ ¼ Ξ0 zð Þ� Â þ f̂ 1 zð Þ� �
: (11.53)

As the next step, we have to repeat the procedure for f̂ 1. It satisfies the equation of
motion

df̂ 1
dt

¼ iL̂1 f̂ 1: (11.54)

We can reproduce it as

f̂ 1 tð Þ ¼ Ξ1 tð Þ� f̂ 1 þ f̂
0
tð Þ, (11.55)

where

Ξ1 tð Þ ¼ f̂ 1 tð Þ; f̂ 1
� � f̂ 1; f̂ 1

� �1
(11.56)
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and

f̂ 01 tð Þ ¼ 1� P̂1
� 

f̂ 1 tð Þ, (11.57)

where P̂1 is the projection operator onto f̂ 1
� �

. Further, we will have for the
Laplace transform,

f̂ 1 zð Þ ¼ Ξ1 zð Þ� f̂ 1 þ f̂ 2 zð Þ� �
, (11.58)

which is similar to Eq. (11.53), and where

f̂ 2 tð Þ ¼ exp iL̂2t
� 

iL̂2 f̂ 1, (11.59)

L̂2 ¼ 1� P̂1
� 

L̂1: (11.60)

Treating f̂ 2 in a similar way, we introduce a new object f̂ 3, etc., so that we will
have a set of quantities f̂ j tð Þ

� �
f̂ 0 ¼ Â
� 

defined iteratively as

f̂ j tð Þ ¼ exp iL̂jt
� 

iL̂jf̂ j�1, (11.61)

where

L̂j ¼ 1� P̂j�1
� 

L̂j�1, L̂0 ¼ L̂, (11.62)

and P̂j is the projection operator onto f̂ j
� �

. The Laplace transforms of f̂ j satisfy the
chain of equations

f̂ j zð Þ ¼ Ξj zð Þ� f̂ j þ f̂ jþ1 zð Þ� �
: (11.63)

As a result, we derive a continued-fraction representation of the correlators
(Mori, 1965):

Ξ0 zð Þ ¼ 1

z� iω0 � Δ2
0Ξ1 zð Þ , (11.64)

Ξ1 zð Þ ¼ 1

z� iω1 � Δ1
2Ξ2 zð Þ , (11.65)

etc., where

iωj ¼ _f j; f j
� � f j; f j

� �1
, (11.66)

Δ2
j = ( fj, fj) � ( fj�1, fj�1)�1. (11.67)

Let us apply this general scheme to the conductivity. We have to choose as the first
step Â ¼ ĵx; ĵy

� 
. Next, we have to calculate ω0. This can easily be done using the

identity
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_̂A; B̂
� �

¼ i

β

ðβ
0

dλ exp λĤ
� 

Ĥ ; Â
� �

exp �λĤ
� 

B̂
þD E

¼ i

β

ðβ
0

dλ
d

dλ
exp λĤ

� 
Â exp �λĤ

� 
B̂
þD E

¼ i

β
exp βĤ

� 
Â exp �βĤ

� 
B̂
þD E

� ÂB̂
þD Eh i

¼ i

β
B̂
þ
, Â

h iD E
,

(11.68)

where we take into account that

Â
� � ¼ Tr exp �βĤ

� 
Â

� �
=Z (11.69)

and implement the cyclic permutation under the trace symbol.
In the absence of a magnetic field, the average values of all of the commutators

of the current operator are zero (in particular σ̂ zh i ¼ 0), so one can conclude that
ω0 = 0. Also, one can conclude by symmetry arguments that

(jα, jβ) = δαβ(jx, jx). (11.70)

Let us stop the procedure at the first step, neglecting f̂ 2 and all higher-order terms.
Then, the result for the conductivity (11.38) will be

σxx ωð Þ ¼ β jx; jxð Þ
�iωþ 1= ji; jxð Þ ĵxĤ

� �
; Ĥ ; ĵx
� �� 

z¼�iω

: (11.71)

Since within the single-band approximation (11.35) through (11.37), the current
operator commutes with Ĥ0, one can replace ĵx; Ĥ

� �
by ĵx; Ĥ

0h i
a result,

Eq. (11.71) takes the form

σxx ωð Þ ¼ β jx; jxð Þ
�iωþ 1=τ ωð Þ , (11.72)

where

1
τ ωð Þ ¼

1
jx; jxð Þ

ð∞
0

dt exp iωtð Þ Fx t � iλð Þ;Fþ
x

� 
(11.73)

and

Fx ¼ ĵx; Ĥ
0h i
: (11.74)
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To calculate (jx, jx) one can neglect the scattering operator Ĥ
0
. Then, taking into

account that ĵx; Ĥ
� � ¼ 0, we have

jx; jxð Þ ¼ j2x
� �

: (11.75)

By substituting Eq. (11.38) into Eq. (11.75) and using Wick’s theorem we find

jx; jxð Þ ¼
X
k

e2v2 cos 2φk bξþk1ξ̂ k1D E
ξ̂ k1bξþk1D E

¼
X
k

e2v2 cos 2φkf εkð Þ 1� f εkð Þ½ �

¼ 1
2β

X
k

e2v2 � ∂f εkð Þ
∂εk

� �
,

(11.76)

where we average cos 2φk ! 1
2. At T « jεFj the result is

β jx; jxð Þ ¼ e2
N εFð Þv2

2
: (11.77)

On comparing Eq. (11.72) and (11.77) with Eq. (6.23) one can see that Eq. (11.72)
is nothing other than the Drude formula, and τ(ω = 0) given by Eq. (11.73) is
nothing other than the mean-free-path time. At ω= 0 it can be simplified, similarly
to the transformation from Eq. (3.7) to Eq. (3.8):

1
τ
¼ 1

2 j2x
� � ð∞

�∞

dt Fx tð ÞFþ
x

� �
: (11.78)

This, together with Eq. (6.23), gives us the Kubo-Nakano-Mori formula for the
resistivity. As has already been mentioned, it is equivalent to the solution of the
semiclassical Boltzmann equation by the variational approach (Ziman, 2001).

By substituting Eq. (11.36) and (11.37) into Eq. (11.74) and (11.78) and
calculating the average using Wick’s theorem, we find, finally (we restore here
the Planck constant), the expression for the momentum relaxation rate of Dirac
fermions:

1
τ
¼ 2π

ℏN εFð Þ
X
k
!
k
!
δ ε

k
! � εF

� �
δ ε

k
!0 � εF

� �
cosφ

k
! � cos φk!

� �2
V eff

k
!
k
!0

��� ���2: (11.79)

Together with Eq. (11.34), this allows us to analyze various scattering
mechanisms.
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11.3 Scattering mechanisms in graphene on a substrate

There are two fundamental experimental facts about the conductivity of graphene
on a substrate. First, the dependence of the conductivity on the charge-carrier
concentration n typically has a V-shape (Novoselov et al., 2004, 2005a; Zhang
et al., 2005). If we introduce the mobility µ via the relation

σ = neμ (11.80)

this means that µ is weakly dependent on the concentration and σ ~ n except in the
close proximity of the neutrality point. Typical results (Novoselov et al., 2005a)
are shown in Fig. 11.1 (note that n is proportional to the gate voltage). This
behavior has been confirmed by numerous works by many experimental groups
and seems to be universal. It does not depend on the type of substrate, but the value
of µ does. Whereas for graphene on SiO2 one typically has μ 	 104 cm2V�1s�1

(Novoselov et al., 2004, 2005a; Zhang et al., 2005), for graphene on hexagonal BN
µ can be an order of magnitude higher (Dean et al., 2010).

Second, for graphene on a substrate, the temperature dependence of conductiv-
ity is extremely weak. If one tries to separate “extrinsic” (due to defects) and
“intrinsic” (e.g., due to electron–phonon interaction) contributions to the mobility
using Matthiessen’s rule (Ziman, 2001)

1
μ Tð Þ ¼

1
μext

þ 1
μint Tð Þ , (11.81)

Fig. 11.1 The dependence of the conductivity of graphene on the gate voltage Vg ~ n.
(Reproduced with permission from Novoselov et al., 2005a.)
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assuming that µext is temperature-independent and µint (T)! 0 at T! 0, one finds
μint 	 (2 � 4) � 105 cm2V�1s�1 (Morozov et al., 2008), which means that the
difference in conductivity between T 	 0 and room temperature is no more than a
few percent. We postpone the discussion of this temperature dependence until the
next section and focus here on the origin of µext.

Importantly, the concentration and temperature dependences of the conductivity
for bilayer graphene are more or less the same as for single-layer graphene
(Novoselov et al., 2006). To discuss this case, we will use the same semiclassical
Boltzmann equation as for the case of single-layer graphene, the only differences
being in the dispersion law and the transformation to electrons and holes (φk ! 2φk
in Eq. (11.19) and (11.34)). In both cases, the inverse relaxation time (11.79) can
be estimated as

1
τ
	 2π

ℏ
N εFð Þ �V kFð Þj j2, (11.82)

where �V kFð Þ is a typical value of V eff

k
!
k
!0 , at k

!��� ��� 	 k
!0
��� ��� 	 kF. On substituting

Eq. (11.82) into the Drude formula (11.72) and (11.77) we find

σ nð Þ � v2F
�V kFð Þj j2

, (11.83)

where vF = v = constant for the case of single-layer graphene and

vF ¼ ℏkF
m

� n1=2 (11.84)

for the case of bilayer graphene. This means that, to explain the experimentally
observed behavior σ(n), one needs to assume

�V kFð Þj j2 	 constant (11.85)

for the case of bilayer graphene and

�V kFð Þj j2 e 1

kF
2 (11.86)

for the case of single-layer graphene.
For randomly distributed defects, one needs to use Eq. (11.14) (assuming the

Born approximation) or the more accurate Eq. (11.15) (assuming only a low
concentration of defects). In the latter case, the answer can be expressed in terms
of scattering phases; see Eq. (6.23) through (6.26) for the case of single-layer
graphene and Eq. (6.54) for the case of bilayer graphene.
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Up to now we have not taken into account the screening effects (see Section

7.7). Within the random phase approximation (RPA), the scalar potential V 0ð Þ
k
!
k
!0

in

Eq. (11.34) is replaced by

V sð Þ
k
!
k
!0

¼
V 0ð Þ

k
!
k
!0

ε q ¼ k
! � k

!0
��� ���;ω ¼ 0

� � : (11.87)

Beyond the RPA, so-called vertex corrections should be taken into account, but we
will not discuss them here; this simple theory will suffice just for estimations. At
the same time, there is no screening of the vector potential V

!
k
!
k
!0 (Gibertini et al.,

2010).
Let us restrict ourselves to the case of the scalar potential only and use

Eq. (11.14). Thus, Eq. (11.79) will take the form (11.25), with the replacement
u(q)! u(q)/ε(q). On introducing the new variable x= sin(φ/2) one can rewrite this
equation as

1
τ kFð Þ ¼

4kF
πℏv

nimp

ð1
0

dxx2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p u 2kFxð Þ
ε 2kFx; 0ð Þ
���� ����2: (11.88)

Note that only ε(q, 0) with q < 2kF is involved in Eq. (11.88). In this regime, the
RPA coincides with the Thomas–Fermi approximation (see Eq. (7.107)), thus

ε 2kFx; 0ð Þ ¼ εext þ 2e2

ℏv
1
x

(11.89)

and does not depend on kF.
The behavior (11.86) is provided by Coulomb impurities, where

u qð Þ ¼ 2πZe2

q
: (11.90)

Moreover, it also takes place with the replacement of the potential u by the
T-matrix; see Eq. (8.18) and (8.19). Therefore, it is very natural to assume that
charge impurities determine the electron mobility in graphene on a substrate
(Nomura & MacDonald, 2006; Ando, 2006; Adam et al., 2007; Peres, 2010; Das
Sarma et al., 2011). Quantitative estimations for the case of graphene on SiO2

(εext 	 2.5) give (Adam et al., 2007)

σ nð Þ 	 20e2

h

n

nimp
, (11.91)

where four current channels (two spins and two valleys) are taken into account.
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Indeed, an intentional addition of charge impurities (potassium adatoms) to
graphene leads to a decrease of the electron mobility, in good agreement with
the theory described earlier (Chen et al., 2008). At the same time, there is convin-
cing experimental evidence that this is not the main factor restricting electron
mobility in standard exfoliated graphene samples on a substrate.

The main argument is that the electron mobility is relatively weakly changed in
an environment with a high dielectric constant and, thus, very large εext, e.g., after
covering graphene with water, ethanol or other polar liquids, or when using
substrates with large ε (Ponomarenko et al., 2009). In particular, the mobility in
graphene on SrTiO3 (which has a dielectric constant growing from ε	 300 at room
temperature to ε 	 5,000 at liquid-helium temperature) is of the same magnitude as
that for graphene on SiO2 and very weakly dependent on temperature (Couto,
Sacépé, & Morpurgo, 2011). Of course, the screened Coulomb interaction in such
a situation should be strongly suppressed and strongly temperature-dependent.

It was suggested by Katsnelson, Guinea, and Geim (2009) that the reason why
charged adsorbate adatoms on graphene can be not very important for the electron
mobility is their strong tendency to form clusters. Indeed, density-functional
calculations (Wehling, Katsnelson, & Lichtenstein, 2009b) show that the more
charged the adsorbate species, the weaker its chemical bond with graphene and
the lower its migration barriers. This means that strongly bonded and immobile
adsorbates have very small charge transfer to graphene and, thus, small effect-
ive Z, whereas impurities with Z 
 1 can be kept more or less randomly
distributed only at low enough temperatures. This was found to be the case
for potassium atoms by Chen et al. (2008). The clusterization suppresses the
scattering cross-section per impurity by orders of magnitude (Katsnelson,
Guinea, & Geim, 2009).

The effect described here was confirmed experimentally by McCreary et al.
(2010). They deposited gold adatoms onto graphene and observed their clusteriza-
tion, with a simultaneous growth of the electron mobility.

Before discussing other possible scattering mechanisms, we need to say a
few words about the case of bilayer graphene. Actually, for any isotopic two-
dimensional case, the density of states at the Fermi energy is

N EFð Þ ¼ gvgs
2π

ð∞
0

dk kδ εF � ε kð Þð Þ ¼ gsgv
2π

kF
ℏvF

; (11.92)

where

vF ¼ 1
ℏ

∂ε
∂k

� �
k¼kF

(11.93)
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and we have restored the spin and valley degeneracy factors. As a result, the
inverse screening radius is, instead of being given by Eq. (7.108) for single-layer
graphene,

κ ¼ gsgv
e2kF
ℏvFεext

(11.94)

and, thus,

ε 2kFx; 0ð Þ ¼ εext þ gsgve
2

ℏvF

1
2x

: (11.95)

For the case of bilayer graphene, κ » kF since vF ! 0 at n! 0. Actually, this is the
case even for single-layer graphene if εext is not too large. Therefore, vF is
cancelled out from Eq. (11.83) and we have an estimation

σ nð Þ � 1

nimp u kFð Þj j2 , (11.96)

which is valid both for single-layer and for bilayer graphene. This means that for
the same type of purely scalar potential scattering, the concentration dependence of
the conductivity is the same. Strictly speaking, this is true only within the Born
approximation, and for the case of strong scatterers there will be some difference
(see later). The numerical coefficients can be different since, in the case of bilayer
graphene, one has to make the replacement (φ! 2φ in Eq. (11.32) and, as a result,
the factor cos2(φ /2) is replaced by cos2 φ. Thus, for the same electron concen-
tration and the same scatterers, the ratio of the resistivity of single-layer graphene
to that of bilayer graphene is

ρ1
ρ2

¼ Φ1

Φ2
, (11.97)

where

Φ1 ¼
ð1
0

dxx4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
u 2kFxð Þj j2

Φ2 ¼
ð1
0

dxx4 1� 2x2ð Þ2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p u 2kFxð Þj j2

(see Eq. (11.88) and (11.95)).
Another potentially important source of electron scattering is ripples (see

Chapter 10). They create both a random vector potential (10.7) and a random
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scalar potential (10.8). By substituting these expressions into Eq. (11.34) and
following the analysis of Sections 10.2 and 10.3 one finds that

�V kFð Þj j2 � F q 	 kFð Þ, (11.98)

where the correlation function F is given by Eq. (10.28). For intrinsic (thermally
induced) ripples, one needs to use Eq. (10.29). Thus, for the case of not-too-small
doping, when

kF » q
∗, (11.99)

one has (Katsnelson & Geim, 2008)

ρ 	 h

e2
T

κa

� �2 ln q∗að Þj j
n

: (11.100)

At room temperature, this has the correct 1/n dependence and corresponds to the
correct order of magnitude for the mobility μ � 104cm2V�1s�1. There are two
problems, however. First, the mobility is weakly temperature dependent. There-
fore, Katsnelson and Geim (2008) suggested that there is a mechanism of freezing
(quenching) of the ripples and, hence, that they keep the structure corresponding to
some quenching temperature Tq. If one makes the replacement T! Tq of the order
of room temperature in Eq. (11.100), it seems to explain µext reasonably well.
Moreover, if one assumes that the large-scale ripple structure is frozen, but flexural
phonons can be excited within the ripples, it can also explain the temperature
dependence of µint (Morozov et al., 2008).

The weak temperature dependence of the ripple structure for graphene on
SiO2 has been confirmed by scanning tunneling microscopy (STM) experiments
(Geringer et al., 2009). However, the origin of this quenching is still unknown. It
was suggested and confirmed by density-functional calculations (Boukhvalov &
Katsnelson, 2009b) that ripples can be stabilized by covalently bonded adatoms
and admolecules. San-José, González, and Guinea (2011) proposed an intrinsic
mechanism of ripple stabilization that is based on the interactions of ripples with
conduction electrons. The absence of a detailed theory of the quenching seems to
be the weakest point of the idea that the ripples can be the main limiting factor for
electron mobility, whereas from the experimental point of view this possibility
cannot be excluded. Anyway, as will be discussed in the next section, intrinsic
ripples are probably the main limiting factor for the electron mobility in freely
suspended graphene samples.

Another important question within this scenario is that of whether the frozen
ripples on a substrate have the same structure as intrinsic ripples or not. The results
from the first two scanning-probe studies for graphene on SiO2 (Ishigami et al.,
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2007; Stolyarova et al., 2007) indicated that these ripples repeat the roughness of
the substrate approximately, whereas in the later work by Geringer et al. (2009) for
the same system, two types of ripples were found: a first type following the
roughness of the substrate and a second type similar to the intrinsic ripples.

It is important to note that the first type seems to be irrelevant for the electron
mobility. Indeed, let us consider a general type of correlation function,

h r
!� �

� h 0ð Þ
h i2� �

� r2H : (11.101)

Then,

hq
!

��� ���2� �
� q�2 1þHð Þ (11.102)

and for 2H < 1 the correlation function F(q) in (10.28) has a finite limit at q = 0,
thus,

�V q ¼ 0ð Þj j2
D E

	 ℏv
a

� �2 z4

R2 , (11.103)

where z and R are the characteristic height and radius of ripples, respectively. This
leads to a concentration-independent and very small contribution to the resistivity

ρ 	 h

4e2
z4

R2a2
: (11.104)

For 2H > 1,

ρ � n1�2H; (11.105)

and for 2H = 1,

ρ � ln2(kFa) (11.106)

(Katsnelson & Geim, 2008). For the roughness of the substrate, one could
expect 2H 	 1 (Ishigami et al., 2007). Only frozen ripples with 2H 	 2 (such as
intrinsic ripples at not too large distances r) are interesting as a scattering
mechanism.

Another important potential source of scattering is resonance scattering (see
Sections 6.5 and 6.6). They give a concentration dependence of the conductivity
that is very close to linear (see Eq. (6.103)), that is, a weakly concentration-
dependent mobility

μ � ln2(kFa). (11.107)
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At least in some cases this reproduces the experimental data better than does
just constant mobility (Peres, 2010; Wehling et al., 2010a; Couto, Sacepe, &
Morpurgo, 2011). This is certainly the case when vacancies are created in graphene
by ion bombardment (Chen et al., 2009), but, as discussed in Section 6.5, it is very
unlikely that there will be any vacancies in graphene if they are not created
intentionally. It was suggested by Wehling et al. (2010a) that the resonant
scatterers in real graphene samples could be due to the formation of chemical
C–C bonds between graphene and organic pollutants on it. Even a very small concen-
tration of such bonds, <10�4, would be sufficient to explain the experimental data.

Zhao et al. (2015) has demonstrated, by straightforward calculation of conduct-
ivity via the Kubo formula, that there are some fingerprints of the resonance
scatterers in comparison with the two other candidate mechanisms. First, they lead
to a much higher degree of electron–hole asymmetry when taking into account the
next-nearest-neighbor hopping t0 	 t/10 (Kretinin et al., 2013). Second, at high
enough concentration of the defects, the mobility in this case demonstrates a
shallow minimum as the function of the hole concentration.

For the case of bilayer graphene, within the parabolic-band approximation one
could expect σ ~ n and µ = constant for the cases of both resonant and generic
impurities (Katsnelson, 2007c); see Section 6.3. Straightforward numerical simu-
lations (Yuan, De Raedt, & Katsnelson, 2010b) show that for the case of resonant
scatterers, this is true only if their concentration is very small. When the width of
the impurity band exceeds 2jt⊥j there is a cross-over to the behavior typical for
single-layer graphene Eq. (11.107).

To conclude this section, we note that one can expect different main scattering
mechanisms in different samples. Currently, it seems that for most situations the
choice is between resonant scatterers and frozen ripples, but charge impurities can
also be relevant if one protects their more or less random distribution and prevents
their clusterization.

11.4 Intrinsic mobility and transport properties of suspended
graphene flakes

In this section we will consider intrinsic mobility in graphene in relation to
electron–phonon interaction (Stauber, Peres, & Guinea, 2007; Mariani & von
Oppen, 2008, 2010; Morozov et al., 2008; Castro et al., 2010b; Ochoa et al.,
2011). Here, we will follow the last two papers.

The inelastic scattering processes should satisfy the momentum- and energy-
conservation laws. For single-phonon processes this means

ε
k
! ¼ ε

k
!0 � ℏωq

!, (11.108)
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where

k
!0 ¼ k

! � q
!

(see Fig. 11.2(a)). The maximum momentum transfer within a given valley is

q = 2kF, and both electron states k
!��� E and k

!0
��� E

should lie within a layer of the

order of T near the Fermi energy. Thus, if

T > ℏω2kF, (11.109)

the scattering processes can be considered almost elastic. The scattering probability
is proportional to the number of thermally excited phonons (virtual phonons do not
contribute to the resistivity; see Ziman (2001)) and is negligible at

ℏω2kF » T. (11.110)

Up to room temperature, this excludes all optical phonons in graphene from our
consideration. It also excludes intervalley scattering processes involving phonons
with q

!	 K
!
(see Section 9.8), since for all branches the condition (11.110) is satisfied

at q
!¼ K

!
and T � 300K (see Fig. 9.1). Thus, we are interested only in acoustic

phonons at q « a�1 (in graphene, kF is always much smaller than a�1). There are three
branches of such phonons, longitudinal (L) and transverse (T) in-plane phonons and
flexural (F) out-of-plane phonons with the dispersion relations (see Section 9.2)

ωL
q
! ¼ vLq, vL ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ þ 2μ

ρ

s
, (11.111)

ωT
q
! ¼ vTq, vT ¼

ffiffiffi
μ
ρ

r
, (11.112)

(a) (b)

Fig. 11.2 Momentum transfer processes for single-phonon (a) and double-phonon
(b) scattering processes.
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ωF
q
! ¼

ffiffiffi
κ
ρ

r
q2, (11.113)

where ρ is the mass density. Keeping in mind real parameters for graphene, we
can estimate theBloch–Grüneisen temperature,TBG=ℏω2kF, for the various branches:

TL
BG ¼ 57

ffiffiffi
n

p
K, TT

BG ¼ 38
ffiffiffi
n

p
K, TF

BG ¼ 0:1nK, (11.114)

where n is expressed in units of 1012 cm�2. At T > TBG (11.109), phonons can be
considered classically. One can see that for flexural phonons this is actually the
case for any practically interesting temperatures.

The electron–phonon interaction in graphene originates from two sources: the
electrostatic potential (10.8), which should be substituted into Eq. (11.17),
and the vector potential (10.7),modulating the electron hopping.However, the deform-
ation tensor ûαβ should be considered as an operator. It is given by Eq. (9.62), and
the operators ûα and ĥ are expressed in terms of the corresponding phonon operators
by Eq. (9.9). The resulting Hamiltonian takes the form (Ochoa et al., 2011)

Ĥe�ph ¼
X
k
!
k
!0

�
â
k
!þâ

k
!0 þ ĉ

k
!þĉ

k
!0

�(X
υq
!
V1, q!

υ

	
b̂ q

!υ þ
�
b̂�q

!υ

�þ

δ
k
!0, k

!�q
!þ

þ
X
q
!
q
!0
V1, q!q

!0
F b̂ q

!
F þ b̂�q

!
F

� �þ	 

b̂ q

!0
F þ b̂�q

!0
F

� �þ	 

δ
k
!0, k

!�q
!�q

!0

9=;þ

þ
X
k
!
k
!0

X
υq
!
V2, q!

υâþ
k
! ĉ

k
!0

8<: b̂ q
!
υ þ b̂�q

!
υ

� �þ	 

δ
k
!0, k

!�q
!þ

þ
X
q
!
q
!0
V2, q!q

!0
Fâþ

k
! ĉ

k
!0 b̂ q

!
F þ b̂�q

!
F

� �þ	 

b̂ q

!0
F þ b̂�q

!0
F

� �þ	 

δ
k
!0, k

!�q
!�q

!0 þ H:c:

)
(11.115)

where υ = L; T, subscripts 1 and 2 label the terms originating from the scalar
potential (10.8) and from the vector potential (10.7), respectively; and â

k
! and ĉ

k
!

are electron annihilation operators for sublattices A and B, respectively. The matrix
elements are

VL
1, q! ¼ g

ε q; 0ð Þ iq
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ

2ρΩωL
q
!

s
,

VT
1, q! ¼ 0,
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VF
1, q!q

!0 ¼ � g

ε q
! þ q

!0�� ��; 0� � qq0 cos φq
! � φq

!0

� � ℏ

4ρΩ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ωF

q
!ωF

q
!0

q ,

VL
2, q! ¼ ℏvβ

2a
iq exp 2iφq

!
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ

2ρΩωL
q
!

s
,

VT
2, q! ¼ �ℏvβ

2a
q exp 2iφq

!
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ

2ρΩωT
q
!

s
,

VF
2, q!q

!0 ¼ �ℏvβ
4a

qq0 exp i φq
! � ϕq

!
� �h i ℏ

2ρΩ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ωF

q
!ωF

q
!0

q , (11.116)

where Ω is the sample area and we take into account the screening of scalar potential
by the static dielectric function (cf. Eq. (11.87)). Note that all matrix elements tend to
zero at q ! 0, as usual for the interaction with acoustic phonons (Ziman, 2001).

One can see that the electron–phonon interaction with flexural phonons does not
involve single-phonon processes but only two-phonon processes. This follows
from the structure of the deformation tensor (9.62). Single-flexural-phonon
processes do arise in deformed samples with some external profile h0(x, y) (Castro
et al., 2010b; Ochoa et al., 2011).

The resistivity can be found using the Kubo–Nakano–Mori formula (or,
equivalently, by derivation and approximate solution of the Boltzmann equation).
First, we have to substitute the operator Ĥ e�ph instead of Ĥ

0
into Eq. (11.74)

and (11.78). The time dependence of the phonon operators is (Vonsovsky &
Katsnelson, 1989)

b̂ q
! tð Þ ¼ b̂ q

! exp �iωq
!t

� �
,

b̂þ
q
! tð Þ ¼ b̂þ

q
! exp iωq

!t
� �

: (11.117)

Next, we decouple the electron and phonon operators (this corresponds to the
lowest-order approximation in Ĥ e�ph) and assume that the phonons are in
equilibrium:

b̂
þ
q
! b̂ q

!
D E

¼ Nq
! ¼ 1

exp ℏωq
!=T

� �
� 1

,

b̂ q
!b̂þ

q
!

D E
¼ 1þ Nq

!:

(11.118)
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This means that we neglect the effects of phonon drag, which makes the phonon
system a nonequilibrium one in the presence of an electric current. It is known
(Ziman, 2001) that this effect is usually not relevant for the resistivity but may be
crucially important for the thermoelectric power. We will not consider it here.

At T > TL,T
BG the one-phonon scattering can be considered classically, that is,

one can put

Nq
! 	 1þ Nq

! 	 T

ℏωq
!

(11.119)

and neglect the phonon frequency in the energy-conservation law. The latter can be
done, actually, at any temperature, since ε

k
!þq

! � ε
k
!

��� ��� » ℏωq
!, except in the case

k
!
⊥ q

!, which does not contribute to the integral characteristics.
In this case, we have just the same situation as for the scattering by static

disorder Eq. (11.79), with

Vef

k
!
k
!0

��� ���2e u
!

k
!
k
!0

��� ���2� �
¼ T

Mω2

k
!�k

!0

: (11.120)

An accurate calculation gives the result (Castro et al., 2010b)

1
τ
	 g2eff

v2L
þ β2ℏ2v2

a2
1

v2L
þ 1

v2T

� �	 

kFT

2ρℏ2v
, (11.121)

where

gef 	
g

ε q 	 kF; 0ð Þ (11.122)

is the screened coupling constant. As will be shown later, this contribution is
usually much smaller than that due to two-phonon processes (Morozov et al.,
2008). This situation is highly unusual; normally, both in a three-dimensional and
in a two-dimensional electron gas, single-phonon processes are dominant. It is
reminiscent of the case of electron–magnon scattering in half-metallic ferromag-
nets, where single-magnon processes are forbidden and the temperature depend-
ence of the resistivity is determined by two-magnon processes (Irkhin &
Katsnelson, 2002).

The energy and momentum conservation for the two-phonon scattering pro-
cesses can involve phonons with large enough wave vectors (see Fig. 11.2(b));
thus, it is not clear a priori that even at T > TF

BG (which is, actually, always the
case) the classical picture is correct. Nevertheless, as we will see later, this is true,
and quantum-mechanical treatment of two-phonon scattering gives approximately
the same answer (11.100) as the classical consideration of intrinsic ripples
(Morozov et al., 2008).
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An accurate treatment of the two-phonon processes leads to the expression
(Castro et al., 2010b)

1
τ
¼ 1

32π3ρ2vkF

ð∞
0

dK
D Kð Þ½ �2K2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2F � K2

4

r ð∞
0

dq
q3Nq

ωq

�
ðKþq

K�qj j

dQ
Q3 NQ þ 1ð Þ

ωQ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2q2 � K2 þ q2 � Q2

� 2
4

s ,

(11.123)

where we omit the superscript F for ωq and Nq.
Here

D Kð Þ½ �2 ¼ g2

ε2 K; 0ð Þ 1� K2

4k2F

� �
þ βℏv

2c

� �2

: (11.124)

One can see that there is no backscattering (K = 2kF) for the scalar potential, but
there is backscattering for the vector potential, as there should be (see Sections 4.2
and 6.1).

For the case q∗ « kF « qT, where q
∗ is the “Ginzburg” vector, as in Eq. (11.99),

and qT is determined by the condition

ωF
qT

¼ T (11.125)

the result is (Castro et al., 2010b)

1
τ
¼

�D2T2

64πℏ2κ2vkF
ln

T

ℏω∗

� �
, (11.126)

where ω∗ ¼ ωF
q∗ and �D is some average value of D(K). The cut-off at q 	 q* is

necessary since, as we know, the harmonic approximation is not applied to
the flexural phonons at q � q∗. Eq. (11.126) agrees with the estimation
(11.100). This justifies our statement that at qT » kF, which is equivalent to T » TBG

F,
“two-flexural-phonon” scattering means the same as “scattering by intrinsic
ripples.” The case of low temperatures where anharmonic coupling of in-plane
and out-of-plane modes is crucially important (see Sections 9.3, 9.4) was studied in
detail by Mariani and von Oppen (2008, 2010), Castro et al. (2010b), and Gornyi,
Kachorovskii, and Mirlin (2012). We will not discuss it since it is not relevant for
the current experimental situation.

By comparing Eq. (11.121) and (11.126) one can estimate that the two-phonon
processes dominate at
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T > Tc(K) 	 57n(1012cm�2) (11.127)

(Castro et al., 2010b). A quantitative comparison of single-phonon and two-
phonon contributions is shown in Fig. 11.3.

The theory for the case of bilayer graphene was developed by Ochoa et al.
(2011). Both the temperature dependence and the concentration dependence of the
resistivity are the same as for the case of single-layer graphene, accurately to
within some numerical coefficients.

As has already been mentioned, for graphene on a substrate, the intrinsic
temperature-dependent contribution to the resistivity is negligible in comparison
with the extrinsic one. The situation is dramatically different for suspended
graphene flakes, for which, after annealing, the defects can be eliminated, and
the mobility at liquid helium temperature can be of the order of 105�106 cm2 V�1 s�1

(Bolotin et al., 2008; Du et al., 2008; Castro et al., 2010b; Mayorov et al., 2011a).
In this case, the intrinsic mobility dominates completely.

Typical experimental data are shown in Fig. 11.4. Comparison between theory
and experiment shows (Castro et al., 2010b) that two-flexural-phonon scattering
(or, equivalently, scattering by intrinsic ripples) is probably the main limiting
factor for the suspended samples. It restricts the mobility at room temperature to
a value of the order of 104 cm2 V�1 s�1 (see Eq. (11.100)). However, the mobility
can be increased by expanding the samples. External deformation suppresses
flexural phonons, making them stiffer:

Fig. 11.3 Contributions to the resistivity of single-layer graphene from flexural
phonons (solid line) and from in-plane phonons (dashed line). The electronic
concentration is n = 1012 cm�2.
(Reproduced with permission from Castro et al., 2010b.)
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ρω2 = κq4 + 2(λ + μ)q2u (11.128)

(cf. Eq. (9.148)). Estimations (Castro et al., 2010b) demonstrate that even small
deformations of u � 1% may be sufficient to increase the room-temperature
mobility by an order of magnitude.

Interestingly, the situation in other two-dimensional materials seems to be
different. In single-layered five-group elements (P, As, Sb), at least, the in-plane
phonons are the main limiting factor of intrinsic mobility (Rudenko, Brener, &
Katsnelson, 2016; Rudenko et al., 2019). Graphene seems to be unique in this
respect (a crucial importance of intrinsic ripples), which opens a way to dramatic-
ally improve electron mobility at room temperature, putting it on an atomically flat
substrate such as hexagonal boron nitride (hBN); see Chapter 13. This suppresses
instability of the flexural phonons (Amorim & Guinea, 2013). For the other two-
dimensional materials this probably will not work, since the effect of substrate on
in-plane phonons is expected to be much weaker.

11.5 Edge scattering of electrons in graphene

Consider now the case where scattering centers are situated (completely or
partially) at the edges of graphene (nano)ribbons. We restrict ourselves only by
the case of relatively weak disorder and relatively broad ribbons when

LkF » 1, (11.129)

where L is the width of the ribbon. In this case the semiclassical approach based on
the Boltzmann equation is applicable. This approach was broadly used for decades

Fig. 11.4 (a) The resistivity of suspended single-layer graphene for T = 5, 10, 25,
50, 100, 150, and 200 K. (b) Examples of μ(T). The inset shows a scanning
electron micrograph of one of the suspended devices.
(Reproduced with permission from Castro et al., 2010b.)
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to study surface scattering effects in metals and semiconductors (for review, see
Okulov & Ustinov, 1979; Falkovsky, 1983). The situation of graphene is distinct
due to the different character of boundary conditions at the edges. In this section
we follow the work by Dugaev and Katsnelson (2013).

Let us assume that graphene is situated in the region 0 < x < L, electric field is
parallel to y axis, does not depend on time, and magnetic field is absent. Then, the
Boltzmann equation (11.1) – (11.3) takes the form

eEvy
∂f 0 ε

k
!

� �
∂ε

k
!

þ vx
∂δf
∂x

¼ � δf
τ
, (11.130)

where we assume linearization (11.7) and the simplest approximation for the
collision integral (11.8):

I
k
! f½ � ¼ � δf

τ
(11.131)

(for brevity, we skip the argument x and subscript k
!
of the distribution function δf).

The general solution of Eq. (11.130) for the electrons moving toward right and left
edges (vx > 0 and vx < 0, respectively) can be written as

δf> xð Þ ¼ �eEvyτ
∂f 0
∂ε

þ C>e�x=lx , (11.132)

δf< xð Þ ¼ �eEvyτ
∂f 0
∂ε

þ C<e x�Lð Þ=lx , (11.133)

where lx = jvxjτ, and C>, C< are integration constants (dependent on k
!
), which

should be found from boundary conditions. They have the form (Okulov &
Ustinov, 1979; Falkovsky, 1983)

vxj jδf> x ¼ 0ð Þ ¼ vxj jδf< x ¼ 0ð Þ þ
X
k
!0

wL k
!
; k
!0

� �
δf< x ¼ 0ð Þ � δf> x ¼ 0ð Þ½ �,

(11.134)

vxj jδf< x ¼ Lð Þ ¼ vxj jδf> x ¼ Lð Þ þ
X
k
!0

wR k
!
; k
!0

� �
δf> x ¼ Lð Þ � δf< x ¼ Lð Þ½ �,

(11.135)

where wL,Rðk
!
; k
!0Þ are scattering probabilities at left (right) edges. It is given by the

standard quantum mechanical expression (11.6) with V being the surface scattering
potential.
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The average current density

j ¼ gsgv
e

L

ðL
0

dx
X
k
!

vy δf
< xð Þ þ δf> xð Þ½ � (11.136)

can be expressed, by Eq. (11.132) and (11.133) via the constants C>, C<; the
former can be found from the boundary conditions (11.134) and (11.135). In
general, it requires a solution of integral equations in k

!
space, since the constants

C>, C< depend on k
!
.

Until now, we used just a conventional theory of surface scattering developed
for normal metals. Graphene is specific only at the calculations of the scattering

probabilities wðk!; k!0Þ (for simplicity, we will further assume the same disorder on

both edges wLðk
!
; k
!0Þ ¼ wRðk

!
; k
!0Þ ¼ wðk!; k!0Þ). It turns out that we have essen-

tially different results for different types of boundary conditions.
Let us assume that the edge scattering is due to defects Eq. (11.14), and the

potential of individual defect u(x,y) is atomically sharp in x direction and has a
spatial scale a in y direction; therefore, the surface scattering is suppressed for
jky � ky0j > 1/a. To be specific, we can use the model

u
k
!�k

!0 ¼ V0 exp � ky � ky
0� 2

a2
h i

, (11.137)

For the Berry–Mondragon boundary conditions (5.13) and (5.14), the spinor
electron wave function near the left boundary reads

k
!��� E ¼ Aeik

!
r
! 1

�i

� �
, (11.138)

where A is a renormalization factor. In this case

w k
!
; k
!0

� �
¼ 2π

ℏ
nimpV

2
0δ ℏvk � ℏvk0ð Þ exp �2 ky � ky

0� 2
a2

h i
, (11.139)

irrespective to which sublattice, A or B, the scattering centers belong.
On the other hand, for the zigzag boundary conditions similar to Eq. (5.71)

(which can be considered as generic ones for the case of terminated honeycomb
lattice; see Section 5.3) the A component of the spinor should disappear for x = 0
(or, oppositely, for x = L which does not effect the results). The corresponding
solution of the Dirac equation has the form:

k
!��� E ¼ Aeikyy

sin kxx

�i
kx
k
cos kxxþ i

ky
k
sin kxx

 !
, (11.140)
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and the scattering probability is vanishing for the gliding electrons (kx ! 0). For
the case of defects localized in sublattice A

V Að Þ
k
!
k
!0
¼ Aj j2

ð
dxdysin kxxð Þsin kx

0xð Þei ky
0�kyð ÞyV x;yð Þ	VAkxkx

0exp � ky�ky
0� 2

a2
h i

(11.141)

where VA is some constant (proportional to the square radius of action of the
potential in x direction). Similarly, for the case of defects localized in sublattice B

V Bð Þ
k
!
k
!0

¼ Aj j2 kxkx
0

k2

ð
dxdy cos kxxð Þ cos kx

0xð Þei ky
0�kyð ÞyV x; yð Þ

	 VBkxkx
0 exp � ky � ky

0� 2
a2

h i
,

(11.142)

where VB is proportional to 1/k2. The total scattering probability in this case is
equal to

w k
!
; k
!0

� �
¼ 2π

ℏ
nimpV

2
1k

2
xk

02
x δ ℏvk � ℏvk0ð Þ exp �2 ky � ky

0� 2
a2

h i
, (11.143)

where

nimpV
2
1 ¼ nðAÞimpV

ðAÞ2
1 þ nðBÞimpV

ðBÞ2
1 , (11.144)

where nimp(A,B) is the concentration of defects in the corresponding sublattice.
One can see that depending on the type of boundary conditions at the edges, the

scattering probability either disappears in the limit of gliding electrons or remains
constant; for the case of usual metals the first case is realized (Okulov & Ustinov,
1979; Falkovsky, 1983).

The approach based on separation of the boundary conditions (11.134) and
(11.135) from the collision integral (11.131) does not work for the ballistic
(Knudsen) regime

L » l, (11.145)

(l = vτ is the mean free path) when surface scattering is more important than the
bulk one. The former should be taken explicitly into account in the collision
integral. In particular, in the limit l ! ∞ (the scattering only at the edges) the
distribution function f does not depend on x, and instead of Eq. (11.130) with the
boundary conditions (11.134) and (11.135), we have just one equation

evyE
∂f 0
∂ε

¼
X
k
!0

w k
!
; k
!0

� �
δf<,>

k
!0

� δf>,<
k
!

� �
, (11.146)
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where we assume, again, for simplicity wLðk
!
; k
!0Þ ¼ wRðk

!
; k
!0Þ ¼ wðk!; k!0Þ. The

immediate consequence is that δf k
!
< ¼ δf k

!
>. The integral equation (11.146) can

be solved numerically for the models (11.139) and (11.143) (Dugaev & Katsnel-
son, 2013). The results are shown in Figs. 11.5 and 11.6.

One can see that in the latter case the scattering time is divergent in the limit of
gliding electrons kx ! 0 as τZ / k�2

x , whereas in the former case it is not, and
τBM ! const / L. As a result, for the purely ballistic regime the conductivity of
graphene nanoribbon scales as L2 and L for the case of zigzag (terminated graphene
lattice) and Berry–Mondragon (strongly chemically functionalized edges), respect-
ively (Dugaev & Katsnelson, 2013).

Similar analysis can be also performed for the case of scattering by curved edges
(Dugaev & Katsnelson, 2013), with the same qualitative conclusions.

11.6 Nonlocal transport in magnetic fields

Graphene is unique, in the sense that one can pass continuously from electron
conductivity to hole conductivity without crossing an insulator region. This means
that by applying some small perturbations one can create two subsystems, an
electron one and a hole one, differing by some intrinsic quantum number. The
simplest case of such a perturbation is Zeeman splitting

δ = 2μBB, (11.147)
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Fig. 11.5 Dependence of effective scattering mean time on the scattering angle for
graphene nanoribbon in ballistic regime l ! ∞, for the case of Berry–Mondragon
(BM) boundary conditions. Here, ξ ¼ a2k2F, 1=τ0 ¼ nimpV2

0kF
� 

= 2πℏLvð Þ.
(Reproduced with permission from Dugaev & Katsnelson, 2013.)
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which makes the spin-up charge carriers be holes and the spin-down charge
carriers be electrons (Fig. 11.7(a)). Similar effects can be brought about by valley
polarization, but, for simplicity, we will discuss the effects of spin splitting further.
Thus, we have a very strong coupling of spin and charge degrees of freedom: By
changing the spin direction one can change the sign of charge! This peculiarity of
graphene is probably responsible for one of its salient features, a giant nonlocal
spin transport near the neutrality point (Abanin et al., 2011).

+d /2

–d /2
eF

I

R
N

L 
(k
W

)
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V
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Fig. 11.7 (a) Zeeman splitting at the charge neutrality point. (b) Charge current
and spin currents in the presence of the Lorentz force. (c) The nonlocal resistivity
predicted by Eq. (11.177) for the quantum Hall regime (main panel) and for weak
magnetic fields (inset).
(Reproduced with permission from Abanin et al., 2011.)
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Fig. 11.6 Dependence of effective scattering mean time on the scattering angle for
graphene nanoribbon in ballistic regime l ! ∞, for the case of zigzag (Z)
boundary conditions. Here, ξ ¼ a2k2F, 1=τ1 ¼ ðnimpV2

1k
5
FÞ=ð2πℏLvÞ.

(Reproduced with permission from Dugaev & Katsnelson, 2013.)
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The mechanism is the following: Suppose you create a charge current across the
sample in the presence of an external magnetic field (it does not necessarily need to
be strong enough for the system to be in the quantum Hall regime, since the effect
under consideration is actually classical). This charge current consists of spin-up
and spin-down components, which are, due to Zeeman splitting, electron and
hole ones. In the magnetic field they will be deviated in opposite directions,
leading to a spin current perpendicular to the original charge current. The spin
current can propagate without decay for very large distances, since the time of
spin-flip scattering processes τs is normally several orders of magnitude larger
than the Drude relaxation time τ. Then, due to an inverse mechanism, this spin
current creates a voltage. Here we present a phenomenological theory of this
effect (Abanin et al., 2011). Previously, similar physics had been discussed for
the spin Hall effect in conventional semiconductors (Abanin et al., 2009);
however, for the case of graphene the effect is really huge, for the reasons
mentioned earlier.

Let us consider the geometry shown in Fig. 11.8. First, let us ignore the spin
dependence of the conductivity. The relation between the current density and the

electric field E
!¼ �r!φ is

j
!¼ �σ̂ r

!
φ, (11.148)

where

σ̂ ¼ σxx σxy
�σxy σxx

� �
(11.149)

is the conductivity tensor in the presence of a magnetic field, σxy � B. Eq. (11.149)
follows from Onsager’s relations

σαβ(B) = σβα(�B) (11.150)

and the isotropy of macroscopic properties in the xy-plane for the honeycomb
lattice. Let us assume charge injection into the point x = 0, thus the boundary
conditions are

Fig. 11.8 A schematic representation of nonlinear transport (see the text).

11.6 Nonlocal transport in magnetic fields 313

https://www.cambridge.org/core


jy y ¼ � L

2

� �
¼ I0δ xð Þ, (11.151)

where L is the sample width.
Owing to the structure of the tensor (11.149), the charge conservation law

r
!
j
!¼¼ 0 (11.152)

is equivalent to the Laplace equation

r2φ(x, y) = 0 (11.153)
with a general solution

φ x; yð Þ ¼
ð∞
�∞

dk

2π
a kð Þ cosh kyð Þ þ b kð Þ sinh kyð Þ½ � exp ikxð Þ: (11.154)

The coefficients a(k) and b(k) should be found from the boundary condition
(11.151), that is,

σxy
∂φ
∂x

� σxx
∂φ
∂y

� �����
y¼�L

2

¼ I0δ xð Þ: (11.155)

The solution is straightforward and gives us the voltage distribution

V xð Þ ¼ φ x;� L

2

� �
� φ x;

L

2

� �
¼ 2I0ρxx

ð∞
�∞

dk

2π
exp ikxð Þ

k
tanh

kL

2

� �
, (11.156)

where ρ̂ ¼ σ̂�1 is the resistivity tensor. On calculating the integral explicitly we
have the final answer

V xð Þ ¼ 2I0ρxx
π

ln coth
πx

2L

� �
	 4I0ρxx

π
exp � π xj j

L

� �
, (11.157)

where, in the last equality, we assume that |xj » L. Experimentally, in graphene a
rather high nonlocal resistivity

R xð Þ ¼ V xð Þ
I0

(11.158)

is observed at jxj 
 5L and even 10L, which cannot be explained by “just” charge
transport (exp(�5π) 	 1.5 � 10�7). It also cannot be explained by transport via
edge states, since it is observed beyond the quantum Hall regime as well.
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So, let us come back to our original statement that the transport properties in
graphene can be anomalously sensitive to the spin projection. In particular, in the
situation shown in Fig. 11.7(a)

(σ1)xy = � (σ2)xy, (11.159)

where subscripts 1 and 2 will be used for spin up and spin down, respectively.
Let us use, instead of Eq. (11.148), two separate Ohm laws for each spin

projection:

j
!
i ¼ �σ̂ ir

!
φi, (11.160)

where σ̂ i has the structure (11.149) and

φi ¼ ϕþ ni
Di

, (11.161)

where

Di ¼ dni
dμ

(11.162)

is the thermodynamic density of states (note that here μ is the chemical potential,
not the mobility, as in the greatest part of this chapter!), and ϕ is the electrostatic
potential. The second term on the right-hand side of Eq. (11.161) describes
diffusion processes in the situation in which spin-up and spin-down electron
densities ni are finite. We will assume the electroneutrality condition

n1 = � n2 = n (11.163)

and separate the total current density j
!
0 and the spin current density j0

!
:

j
!
1,2 ¼ j

!
0� j0

!
: (11.164)

The equation of spin diffusion reads

r
!

j
!0 ¼ �γ n1 � n2ð Þ ¼ �2γn, (11.165)

where γ ¼ τ�1
s is the rate of spin-flip processes. Then we have the following set of

equations (together with Eq. (11.165)):

r
!
ϕþ 1

D1
r! n ¼ �ρ̂1 j

!
0 þ j

!0
� �

, (11.166)

r
!

ϕ� 1
D2

r! n ¼ �ρ̂2 j
!
0� j

!� �
, (11.167)

11.6 Nonlocal transport in magnetic fields 315

https://www.cambridge.org/core


r
!

j
!
0 ¼ 0, (11.168)

where ρ̂i ¼ bσ�1
i :

One can exclude r! ϕ from these equations and express the spin current as

j
!0 ¼ �σ̂

1
D1

þ 1
D2

� �
r! nþ ρ̂1 � ρ̂2ð Þ j!0

	 

, (11.169)

where

σ̂ ¼ ρ̂�1, ρ̂ ¼ ρ̂1 þ ρ̂2: (11.170)

On substituting Eq. (11.151) into Eq. (11.146) and taking into account
Eq. (11.137) we find at last the closed equation for the spin density:

r2n� 1

l2s
n ¼ � D1D2

D1 þ D2
r
!

ρ̂1 � ρ̂2ð Þ j!0

h i
, (11.171)

where ls is the spin-diffusion length:

1

l2s
¼ 2γ

σxx

D1D2

D1 þ D2
: (11.172)

It follows from Eq. (11.168) and (11.151) that j0x = 0 and j0y does not depend on y:

j0y = I0δ(x). (11.173)

On substituting Eq. (11.173) into Eq. (11.171) we find a rigorous (within our
model) equation:

r2n� 1

l2s
n ¼ � D1D2

D1 þ D2
ρ̂1ð Þxy � ρ̂2ð Þxy

� �
I0
dδ xð Þ
dx

: (11.174)

If we assume that L « ls we can neglect the y-dependence of n, and Eq. (11.174) is
solved immediately:

n xð Þ ¼ � D1D2

2 D1 þ D2ð Þ ρ1ð Þxy � ρ2ð Þxy
� �h i

�I0 sgnx exp � xj j
ls

� �
: (11.175)

Finally, taking into account that for the thin strip the current is assumed to be
constant in the y-direction, we find

V xð Þ ¼ L ρ1ð Þxyj1x xð Þ þ ρ2ð Þxyj2x xð Þ
h i

¼ L ρ1ð Þxy � ρ2ð Þxy
h i

j0x xð Þ (11.176)

and use Eq. (11.169) for j0x. The final answer for the nonlocal resistance (11.158) is
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R xð Þ ¼ L

2ls
σxx ρ1ð Þxy � ρ2ð Þxy
h i2

exp � xj j
ls

� �
: (11.177)

This formula seems to be in good agreement with the experimental data (Abanin
et al., 2011). Actually, this derivation is very general. The only peculiarity of
graphene is that near the neutrality point the difference (ρ1)xy � (ρ2)xy can be huge
(see Fig. 11.7(c)).

11.7 Beyond the Boltzmann equation: localization and antilocalization

In general, the semiclassical Boltzmann equation does not suffice to describe the
transport properties of a two-dimensional electron gas because of weak localization
effects (Altshuler et al., 1980). They originate from quantum interference effects
between different trajectories passing in opposite directions (Fig. 11.9). The
corresponding correction to the conductivity is of the order of

δσ � � e2

h
Λ, (11.178)

where Λ is a “big logarithm”: At T = 0 it is ln(L/a). These interference effects are
sensitive to the magnetic field (due to the Aharonov–Bohm effect), which results in

Fig. 11.9 Interference between trajectories with opposite directions of electron
motion.
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a large magnetoresistivity. Usually, δσ < 0 and suppression of the interference by
the magnetic field increases the conductivity (negative magnetoresistance). Inelastic
scattering processes also destroy the interference, leading to a cut-off of the loga-
rithm: Λ ! ln (εF/T). In graphene, the magnetoresistance related to the weak
localization is strongly suppressed, in comparison with the case of a conventional
electron gas. This was found by Morozov et al. (2006) and explained by them as the
effect of random pseudomagnetic fields created by ripples (see Chapter 10). Later,
these effects were observed and studied in detail (Tikhonenko et al., 2008, 2009).

Actually, the physics of the weak localization in graphene (McCann et al., 2006)
is very complicated. First, the Berry phase π is involved in the interference
processes, which changes the sign of localization corrections: Instead of weak
localization one can have weak antilocalization. Second, the effects of trigonal
warping break the time-reversal symmetry for a given valley, whereas the inter-
valley scattering processes restore it. Since the trajectories in Fig. 11.9 are related
by time reversal, this symmetry is very important. As a result, depending on the
types of defects in the sample, one can have either weak localization (and negative
magnetoresistance) or weak antilocalization (and positive magnetoresistance). This
prediction (McCann et al., 2006) has been confirmed experimentally (Tikhonenko
et al., 2009). Detailed analysis of the experimental data on weak localization
allows us to separate the contributions of three main mechanisms (Section 11.3):
static pseudomagnetic fields (e.g., created by ripples), charge impurities, and
resonant scattering centers in specific samples (Couto et al., 2014).

Closer to the neutrality point, the localization corrections become of the order of
the Boltzmann conductivity, and the semiclassical approach fails completely. This
happens in a relatively narrow concentration range that is quite difficult to probe
experimentally. Theoretically, the situation also does not look very clear. Earlier
works were reviewed by Evers and Mirlin (2008). Here we just mention some
important, more recent papers: Bardarson et al. (2007, 2010), Titov et al. (2010),
and Ostrovsky et al. (2010). The main results are as follows.

If we do not take into account intervalley scattering (which means that all
inhomogeneities are supposed to be smooth), we never have Anderson
localization, and the conductivity at the neutrality point remains of the order of
minimal metallic conductivity (see Chapter 3) or grows slowly with the sample
size (antilocalization). In particular, random pseudomagnetic fields have no effect
on the value of the minimal conductivity, since they can be eliminated by a gauge
transformation similar to that discussed in Section 3.4 (Ostrovsky, Gornyi, &
Mirlin, 2008). The random mass term (Vzσz in Eq. (11.33)) affects the value of
the minimal conductivity very weakly, except when the average mass is not zero
(hVZi 6¼ 0); in that case, localization is possible (Bardarson et al., 2010). For a
random scalar potential, antilocalization seems to arise (Bardarson et al., 2007).
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In the presence of intervalley scattering, Anderson localization takes place in the
generic case. However, the most interesting case of resonant scatterers such as
vacancies or covalently bonded adatoms (see Chapter 6) requires special consider-
ation, due to the additional “chiral” symmetry (Altland, 2002; Evers & Mirlin,
2008; Ostrovsky et al., 2010; Titov et al., 2010). It seems that in this case
the localization radius diverges at the neutrality point, and the conductivity at
n = 0 remains at the level of the minimal conductivity. All these issues require
further study, both theoretically and, especially, experimentally.

11.8 Hydrodynamics of electron liquid in ultra-pure graphene

Huge progress in the quality of graphene samples allows us to reach the regime
when electron–electron collisions are a more efficient scattering mechanism than
scattering by defects (both in bulk and at the edges)

τee « τp, (11.179)

where τee, τp are the corresponding mean-free times (τp is the time of relaxation of
momentum of the electron system as a whole). Since the electron–electron colli-
sions conserve the total momentum of electron systems (in the absence of Umk-
lapp processes; see Ziman, 2001) and, at the same time, provide efficient
dissipation of energy, the electron motion under the condition (11.179) can be
described as a flow of a viscous liquid. Indeed, at the first step the electron–electron
interactions provide effective thermalization and redistribution of the energy and
momentum within the system of interacting electrons and, at the second step, the
scattering by defects, phonons, edges, etc., decelerate the electron flow as a whole –
the situation reminiscent of conventional hydrodynamics (Landau & Lifshitz,
1987; Falkovich, 2011).

Currently, hydrodynamics of electron liquid in graphene is a quickly developing
field (Briskot et al., 2015; Narozhny et al., 2015; Torre et al., 2015; Bandurin et al.,
2016; Crossno et al., 2016; Levitov & Falkovich, 2016; Lucas et al., 2016;
Pellegrino et al., 2016; Bandurin et al., 2018; Guo et al., 2017; Kumar et al.,
2017; for review, see Lucas & Fong, 2018). Here, we present a very brief
introduction of the basic ideas and results.

The transition from kinetic equation to hydrodynamics is one more example of
the coarse-graining approach (Sections 11.1 and 11.2). If we deal with the spatial
scales of the system larger than typical microscopic scales such as “thermalization
length”

lee = vFτee (11.180)
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(in this section we will use the notation vF for the Fermi velocity of electrons in
graphene, to distinguish it from the velocity of flow of electron liquid) and with the
processes slow enough in comparison with τee then the distribution function
(11.13) reaches a local equilibrium characterizing by quasithermodynamic vari-
ables such as local temperature, local chemical potential, and local drift velocity
weakly dependent on coordinates and time. The behavior of the system under such
conditions is determined by the densities of quasiconserving quantities such as
number of particles, charge, energy, momentum, etc., and one can hope to have the
closed set of equations describing such quantities; for the general scheme, see e.g.,
Zubarev (1974), Akhiezer and Peletminskii (1981), and Kamenev (2011).

In the case of graphene, if we are interested in the unified description of the
system through the neutrality point, the minimal set of macroscopic variables
includes density of electrons (e), density of holes (h), and energy density. The
corresponding currents are the electric current

j
!¼ e

X
k
!

v
!

k
!
,e
f
k
!
,e
� v

!
k
!
,h

f
k
!
,h

� �
, (11.181)

the quasiparticle disbalance current

j
!
d ¼

X
k
!

v
!

k
!
,e
f
k
!
,e
þ v

!
k
!
,h

f
k
!
,h

� �
, (11.182)

and the energy current

j
!
E ¼

X
k
!

ε
k
!
,e
v
!

k
!
,e
f
k
!
, e
þ ε

k
!
,h
v
!

k
!
,h

f
k
!
,h

� �
(11.183)

(Briskot et al., 2015; Narozhny et al., 2015; Lucas et al., 2016). For simplicity, we
will consider the case of strong enough doping (to be specific, we will assume the
electron doping)

εF » T. (11.184)

In this case, one can consider only one-component electron liquid; in some cases (but
not always) one can also separate dynamics of charge from dynamics of energy.

In that case, the former can be described by hydrodynamics of one-component
charged uncompressible liquid with the particle density n = const and the velocity
field v

! ð r!; tÞ, which satisfies the continuity equation

r v
!¼ 0 (11.185)

and Navier-Stokes equation (Landau & Lifshitz, 1987; Falkovich, 2011)

320 Scattering mechanisms and transport properties

https://www.cambridge.org/core


ρ
∂ v

!

∂t
þ v

!r
� �

v
! þ v

!

τp

" #
¼ F

! þηr2 v
! , (11.186)

where ρ = m∗n is the mass density of electron liquid, η is the viscosity, and F
!
is

the density of external forces (e.g., electromagnetic) acting on electrons. The term
v
!
=τp describes external “friction” of electrons by defects, phonons, etc.
Importantly, m* in the definition of the mass density is the effective mass of the

electron, which determines its acceleration under the effect of external fields. In the
case of single-layer graphene (massless Dirac fermions) it reads

m∗ = ℏkF/vF (11.187)

(compare with Eq. (2.161)). The kinematic viscosity η/ρ can be estimated as the
diffusion coefficient of momentum; for the two-dimensional case it is equal to

η
ρ
¼ v2F

2τee
: (11.188)

For the case of highly degenerate electron liquid (11.184), the time of electron–
electron collisions can be estimated as

ℏ
τee

	 α2
T2

εF
(11.189)

(Abrikosov, 1988; Vonsovsky & Katsnelson, 1989), where α is a dimensionless
interaction parameter; for graphene it is of the order of unity. Note that at the
neutrality point, in the case opposite to Eq. (11.184), one has

ℏ
τee

	 α2T (11.190)

(Fritz et al., 2007; Kashuba, 2008). However, in this case the one-component
hydrodynamics is not applicable, and one needs to write the coupled set of
equations for all three currents (11.181) through (11.183).

For typical experimental situations (doping of the order of 1012 cm–2, tempera-
ture of the order of room temperature), accurate quantitative estimates of τee give
the kinematic viscosity η/ρ 	 0.1 m2/s (Principi et al., 2016), which is, roughly,
five orders of magnitude smaller than for water, which means that electron liquid in
graphene is very viscous. The corresponding Reynolds number (Landau & Lif-
shitz, 1987; Falkovich, 2011)

Re ¼ ρuL
η

, (11.191)
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where u is a typical flow velocity and L is a typical spatial scale of the problem, is
typically very small for the experiments with graphene (of the order of 10–3,
according to the estimate by Torre et al., 2015). In this situation, the nonlinear
term ð v! rÞ v

! in Eq. (11.186) can be neglected, which dramatically simplifies the
situation.

Let us assume that the only external force acting on the system is the electric
field, which does not depend on time:

F
! ¼ �enrφ, (11.192)

where φ is electrostatic potential. We will consider only stationary solutions of
Eq. (11.186) and, therefore, skip the term ∂ v!=∂t. As a result we obtain:

� e

m∗
rφþ η

ρ
r2 v

!¼ v
!

τp
: (11.193)

This equation can be rewritten in the form

� σ0
e
rφþ D2r2 v

!¼ v
! , (11.194)

where we introduced Drude conductivity

σ0 ¼ ne2τp
m∗

(11.195)

and diffusion length

D ¼
ffiffiffiffiffiffiffi
ητp
ρ

r
: (11.196)

Taking curl of Eq. (11.194) we find

D2r2 ω!¼ ω! , (11.197)

where

ω
! ¼ r� v

! (11.198)

is vorticity (in the case of two-dimensional flow, in xy-plane it is directed along
z-axis). From Eq. (11.196), D is the diffusion length for vorticity. For the high-
quality graphene samples encapsulated in hexagonal boron nitride one can reach
the values τp = 1 ps and D 	 0.3 μm (Torre et al., 2015).

Calculating divergence of Eq. (11.193) and taking into account Eq. (11.185) one
can immediately see that the electrostatic potential satisfies the Laplace equation

r2φ = 0. (11.199)
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Further, we will consider the same geometry as in Fig. 11.8: graphene stripe of the
width L situated along x direction, with possible injection or extraction of the
current in some points at x = � x0. Our consideration follows the paper by Torre
et al. (2015).

Now, we have to complete Eq. (11.194) by the appropriate boundary conditions.
Its full derivation is a complicated problem; a related problem of the boundary
conditions for Boltzmann equations is discussed in Section 11.5. Torre et al.
(2015) used phenomenological Navier boundary conditions, which in general
can be written as

nαTαβτβ þ 1
lb
vατα ¼ 0 (11.200)

(Neto et al., 2005; Kelliher, 2006; Bocquet & Barrat, 2007). Here, we introduce the
stress tensor (Landau & Lifshitz, 1987) which is equal

Tαβ ¼ ∂vα
∂xβ

þ ∂vβ
∂xα

(11.201)

(under the condition (11.185), that is, for the case of uncompressible liquid),
n
! and τ

! are normal and tangential vectors to the boundary, lb is a phe-
nomenological parameter called “boundary slip length,” and we assume a summa-
tion over repeated indices. It can be related to the electron scattering at the edges,
which we discussed in Section 11.5; see Pellegrino, Torre, and Polini (2017)
and Kiselev and Schmalian (2019). For the geometry shown in Fig. 11.8
Eq. (11.200) reads

∂vx
∂y

þ ∂vy
∂x

� �
y¼�L=2

¼ ∓
vx x; y ¼ �L=2ð Þ

lb
: (11.202)

Let us first consider the simplest case where no current is ejected or extracted and
electric field Ex is just constant parallel to x axis. Then, Eq. (11.194) reads

D2 d
2vx yð Þ
dy2

� vx yð Þ ¼ σ0
en

Ex: (11.203)

This is an ordinary differential equation with constant coefficients, and its general
solution is straightforward:

vx yð Þ ¼ � σ0
en

Ex þ C1 cosh
y

D
þ C2 sinh

y

D
: (11.204)

It depends on two integration constants C1 and C2. We have to choose them from
the boundary conditions (11.202). The answer is
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vx yð Þ ¼ σ0
ne

Ex 1� D

ξ
cosh

y

ξ

� �
, (11.205)

where

ξ ¼ lb sinh
L

2D
þ D cosh

L

2D
: (11.206)

The total current can be calculated by integration of Eq. (11.205) over y:

Ix ¼ en

ðL=2
�L=2

dyvx yð Þ ¼ σ0Ex 1� 2D2

Lξ
sinh

L

2D

� �
, (11.207)

which gives the following expression for the longitudinal conductivity:

σxx ¼ σ0 1� 2D2

Lξ
sinh

L

2D

� �
(11.208)

(Torre et al., 2015).
For the case lb ! ∞ (free-boundary condition), σxx = σ0, and hydrodynamic

flow has no effect on longitudinal conductivity. In the opposite limit lb ! 0 (no-
slip boundary condition, vx = 0 at the edges) the Eq. (11.208) simplifies:

σxx ¼ σ0 1� 2D
L

tanh
L

2D

� �
: (11.209)

For further simplification, one can consider the case L « D. Then, we have:

σxx ¼ σ0L2

12D2 ¼
ne2

m∗
τeff , (11.210)

where

τeff ¼ L2

6v2Fτee
(11.211)

(we took into account Eq. (11.196) and (11.188)). In this regime, the effective
conductivity obviously increases with the temperature increase. However, with the
further temperature growth, the vorticity diffusion length D decreases, becomes of
the order of L and then smaller than L, and τeff ! τp and decreases with the
temperature increase. This means that in the hydrodynamic regime (11.179) for
thin enough films, the conductivity is a nonmonotonous function of temperature
and has a maximum (or, equivalently, resistivity has a minimum). This behavior
was predicted by Gurzhi (1968) for the case of usual metals and is sometimes
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called Gurzhi effect. Its experimental observation can be considered as the simplest
manifestation of the hydrodynamic regime. Experimentally, this regime is reached
not only for graphene (Bandurin et al., 2016; Crossno et al., 2016) but also for the
quasi–two-dimensional metal PdCoO2 (Moll et al., 2016).

Much stronger manifestations of the hydrodynamic regime can be observed in
the nonlocal transport measurements similar to those described in Section 11.6
(Torre et al., 2015; Bandurin et al., 2016; Levitov & Falkovich, 2016). Sometimes
one can observe such a counterintuitive behavior as negative local resistance, due
to electron counterflows. This can be related to the vortex formation in electron
liquid but, dependent on geometry, can be also due to other factors (Pellegrino
et al., 2016). The corresponding calculations are too cumbersome to be presented
here; they can be found in the cited papers. The effect of negative local resistance
was already experimentally observed (Bandurin et al., 2016).

The other bright experimentally observable effect in the hydrodynamic regime
for electrons in graphene is a strong violation of the so-called Wiedemann–Franz
law related thermal conductivity and conductivity in normal metals (Abrikosov,
1988; Vonsovsky & Katsnelson, 1989; Ziman, 2001). Its detailed discussion
would probably be too technical for this book; therefore, we just refer to original
theoretical (Lucas et al., 2016) and experimental (Crossno et al., 2016) works.
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12

Spin effects and magnetism

12.1 General remarks on itinerant-electron magnetism

Up to now we have not discussed physical phenomena in graphene related to the
spin of the electron (here we mean real spin and, associated with it, magnetic
moment, rather than pseudospin, or the sublattice index, which plays so essential a
role throughout the book). The only exception was Zeeman splitting in an external
magnetic field but, of course, this is just the simplest (and probably not the most
interesting) of the spin effects. In this chapter we will discuss these spin phenomena.

First, due to exchange interactions of purely quantum-mechanical origin, vari-
ous types of magnetic order can arise (Herring, 1966; Vonsovsky, 1974; Moriya,
1985; Yosida, 1996). The situation with possible magnetic ordering in graphene
and other carbon-based materials is highly controversial (see Section 12.2) but, due
to the huge interest in the field and its potential practical importance, this issue
deserves some discussion. Before doing this, it is worth recalling some general
concepts and models of itinerant-electron magnetism.

The simplest model used in the theory of itinerant-electron magnetism is the
so-called Hubbard model (Gutzwiller, 1963; Hubbard, 1963; Kanamori, 1963).
The Hamiltonian reads

Ĥ ¼
X
ijσ

tijĉ
þ
iσ ĉjσ þ U

X
i

n̂i"n̂i#, (12.1)

where bcþiσ and ĉiσ are creation and annihilation operators, respectively, on site i
with the spin projection σ = ", #, tij are the hopping parameters, n̂iσ ¼ ĉþiσ ĉiσ are
operators of electron number, and U is the intrasite interaction parameter. The main
approximation in the Hubbard model is that we neglect intersite Coulomb inter-
action. The Hamiltonian (12.1) is a simplification of a more general “polar model”
(Schubin & Wonsowski, 1934). One can easily generalize the Hamiltonian (12.1)
to the multiband case:
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Ĥ ¼
X
ijσλλ0

tiλ, jλ0 ĉ
þ
iλσ ĉjλ0σ þ

1
2

X
iσσ0

λ1λ2λ
0
1λ

0
2

λ1λ2 Uj jλ01λ02
� �

ĉþiλ1σ ĉ
þ
iλ2σ0 ĉjλ02σ0 ĉiλ01σ, (12.2)

where λ is an orbital (band) quantum number.
The simplest theory of itinerant-electron magnetism was proposed by Stoner

(1936). It is based just on the mean-field (Hartree–Fock) approximation. Let us
make the following replacement in the Hamiltonian (12.1):

n̂i"n̂i# ! n̂i"n# þ n̂i#n#, (12.3)

where we assume also that the averages n̂iσh i � nσ are not dependent on i (but can
be spin dependent). After the standard Fourier transformation, the Hamiltonian
(12.1) with the replacement (12.3) takes the form

Ĥ ¼
X
k
!

tσ k
!� �

ĉþ
k
!
σ
ĉ
k
!
σ
, (12.4)

where

t" k
!� �

¼ t k
!� �

þ Un#,

t# k
!� �

¼ t k
!� �

þ Un":
(12.5)

This is just a single-electron Hamiltonian, and one can easily find

nσ ¼
X
k
!

f
k
!
σ
, (12.6)

where

f
k
!
σ
¼ f tσ k

!� �� �
(12.7)

is the Fermi distribution function. One can show straightforwardly that nontrivial
solutions with n" 6¼ n#, corresponding to the ferromagnetic order, exist if

α � UN(εF) > 1, (12.8)

where

N εð Þ ¼
X
k
!

δ ε� t k
!� �� �

(12.9)

is the density of states (per spin projection). The inequality (12.8) is called the
Stoner criterion. In the Stoner approximation (12.5), the densities of states for
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spin-up and spin-down electrons are just related by a rigid shift (see Fig. 12.1(a)).
When α ! 1, the saturation magnetization (in units of the Bohr magneton)

M T ¼ 0ð Þ ¼ n" T ¼ 0ð Þ � n# T ¼ 0ð Þ �
ffiffiffiffiffiffiffiffiffiffiffi
α� 1

p
: (12.10)

When the temperature increases the magnetization decreases, vanishing at the
Curie temperature TC determined by the condition

U

ð
dε � ∂f

∂ε

� �
N εð Þ ¼ 1: (12.11)

At α ! 1,

TC �
ffiffiffiffiffiffiffiffiffiffiffi
α� 1

p
(12.12)

in the Stoner approximation.

(a) (b)

(c)

Fig. 12.1 A sketch of the electronic structures for various types of itinerant-
electron ferromagnet: (a) the conventional case; (b) and (c) defect-induced half-
metallic ferromagnetism in semiconductors and in graphene, respectively.
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Using the identity bn2iσ ¼ n̂iσ, one can rewrite the interaction term in the Hubbard
Hamiltonian (12.1) as

U
X
i

n̂i"n̂i# ¼ U

2

X
i

n̂i" þ n̂i#
	 
� U

2

X
i

n̂i" � n̂i#
	 
2

: (12.13)

The first term is just a renormalization of the chemical potential and can therefore
be neglected. The Stoner approximation is exact for some artificial model with
infinitely long-range and infinitely weak interaction:

Ĥ ¼
X
ijσ

tijĉ
þ
iσ ĉjσ �

U

4N0
N̂" � N̂ #
	 
2

, (12.14)

where N0 is the number of sites

N̂ σ ¼
X
i

n̂iσ: (12.15)

Importantly, two terms on the right-hand side of Eq. (12.14) commute and (using
for them the notations Ĥ1 and Ĥ2)

exp �βĤ
	 
 ¼ exp �βĤ1

	 

exp �βĤ2

	 

: (12.16)

Further, using the Hubbard–Stratonovich transformation

exp
βU
4N0

N̂" � N̂ #
	 
2� �

¼ N0β
4πU

� �1=2 ð∞
�∞

dΔ exp �N0βΔ
2

4U
� βΔ

2
N̂ " � N̂ #
	 
� �

,

(12.17)

one can calculate the partition function by integrating over Δ by the saddle-point
method, the latter being exact in the limit N0 ! ∞. This leads exactly to Eq. (12.5)
through (12.7).

This allows us to understand the physical meaning of the Stoner criterion (12.8).
Let us remove

δN ¼ N̂"
� �� N̂ #

� �	 

2

« N (12.18)

electrons (N is the total number of electrons) from the states with σ = # below the
Fermi energy to the states with σ = " above the Fermi energy (see Fig. 12.2). Each
of these electrons increases its band energy by

δε = δN � Δ1, (12.19)

where

Δ1 ¼ 1
N εFð ÞN0

(12.20)
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is the average distance between the single-particle energies near the Fermi energy
(N(εF) is the density of states per site, and the total density of states of the whole
system is N0 times larger). Thus, the increase of the total band energy is

δEband ¼ δN δε ¼ N̂"
� �� N̂ #

� �	 
2
4N εFð ÞN0

: (12.21)

At the same time, according to Eq. (12.14), the decrease of the interaction energy is

δEint ¼ �U N̂ "
� �� N̂ #

� �	 
2
4N0

: (12.22)

The Stoner criterion (12.8) is nothing but the condition that the spin polarization is
energetically favorable

δEband + δEint < 0. (12.23)

Typically, itinerant-electron ferromagnetism in 3d metals and in their alloys and
compounds is related to situations in which, in the paramagnetic case, the Fermi
energy εF lies close to the peak of the density of states formed by a merging of Van
Hove singularities; this is true for the prototype cases like Fe and Ni, as well as for
weak itinerant-electron ferromagnets like ZrZn2 (Irkhin, Katsnelson, & Trefilov,
1992, 1993). Actually, this means some instability, not necessarily magnetic; it can
also be a structural instability (Katsnelson, Naumov, & Trefilov, 1994). This
remark will be essential when we discuss the possibility of ferromagnetism in
graphene with defects (see the next section).

In realistic models with a finite radius of interelectron interaction, the Stoner
theory of ferromagnetism is not accurate. First, as was shown by Kanamori (1963),
the bare Coulomb interaction U in the criterion (12.8) should be replaced by the
T-matrix; this statement becomes accurate in the limit of a small concentration of
electrons or holes (the gaseous approximation; Galitskii, 1958a, 1958b). For the
multiband Hubbard model (12.2), the T-matrix is determined by the equation
(Edwards & Katsnelson, 2006)

13 T Eð Þj j24h i ¼ 13 Uj j24h i þ
X
5678

13 Uj j57h i 57 P Eð Þj j68h i 68 T Eð Þj j24h i, (12.24)

where j1i = ji1λ1i and

Fig. 12.2 Spontaneous spin polarization in itinerant-electron ferromagnets.
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57 P Eð Þj j68h i ¼
ð∞
�∞

dx

ð∞
�∞

dy
1� f xð Þ � f yð Þ

E � x� y
ρ56 xð Þρ78 yð Þ, (12.25)

in which ρ12(x) is the corresponding site- and orbital-resolved spectral density and
f(x) is the Fermi distribution function. If we have a more or less structureless
electron band of width W, P(E) ~ 1/W, and, in the limit of strong interaction,

U » W, T(E) � W. (12.26)

At the same time, N(E) � 1/W and, in general, after the replacement U ! T(εF),
α � 1, in clear contradiction with the original criterion (12.8). Thus, one can
conclude that the Stoner theory overestimates the tendency toward ferromagnetism
even at temperature T = 0.

The situation is essentially different in the cases in which the ferromagnetism is
due to some defect-induced (e.g., by an impurity or vacancy) band in a gap, or
pseudogap, of the main band (see Fig. 12.1(b) and (c)). This situation is relevant
for graphene, as will be discussed in the next section. As was shown by Edwards
and Katsnelson (2006), in such cases the T-matrix renormalization is less relevant,
and the renormalized interaction T(εF) is close to the bare one, U.

Even more serious problems with the Stoner theory arise at finite temperatures.
One can demonstrate that, in general, the main suppression of magnetization is
not due to the single-particle excitations but due to collective spin fluctuations
(Moriya, 1985). As a result, the Curie temperature is strongly overestimated
within the Stoner theory; if iron were a “Stoner ferromagnet” it would have
TC � 4,000 K instead of the real value of TC � 1,043 K (Liechtenstein, Katsnelson,
& Gubanov, 1985). For the case of weak itinerant-electron ferromagnets, α ! 1,
the true behavior is (Moriya, 1985)

TC ~ (α � 1)3/4 (12.27)

instead of Eq. (12.12).
At low temperatures, these spin fluctuations are nothing other than spin waves,

as in localized (Heisenberg) magnets (Fig. 12.3). Typically, the energy of spin
rotations is much smaller than that of electron–hole (Stoner) excitations. However,
the case of ferromagnetism in a narrow defect-induced band is also special in this
sense (Edwards & Katsnelson, 2006).

To explain this important point we first need to describe another basic model of
itinerant-electron ferromagnets, the s–d exchange model (Vonsovsky, 1946; Zener,
1951a, 1951b, 1951c; Vonsovsky & Turov, 1953). Nowadays, this model is
frequently called the Kondo lattice model, after the very important work of Kondo
(1964) on a magnetic impurity in a metal. I think it is historically more fair to talk
about the Kondo effect within the s–d exchange (or Vonsovsky–Zener) model.
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Within this model it is postulated that there exist some local magnetic moments
described by spin operators

^
S
!
i and that they interact locally with the spins of

conduction electrons:

Ĥ ¼
X
ijσ

tijĉ
þ
iσ ĉjσ � I

X
i

^
S
!
i
^s
!
i, (12.28)

where

^s
!
i ¼ 1

2

X
σσ0

ĉþiσ
^σ!σσ0 ĉiσ0 , (12.29)

and I is the s–d exchange interaction constant. Despite the fact that the Hamiltonian
(12.28) does not contain the exchange interactions between the localized spins at
different sites, it arises as an indirect interaction via conduction electrons known as
RKKY (Ruderman–Kittel–Kasuya–Yosida) interaction (Vonsovsky, 1974). Within
the lowest order of the perturbation expansion in I, the effective Hamiltonian for
localized spins is

Ĥ eff ¼ �
X
i<j

Jij
^
S
!
i
^
S
!
j, (12.30)

where

Jij = I2χij (12.31)

and

χij ¼ � 1
4
T
X
εn

G 0ð Þ
ij iεn þ μð ÞG 0ð Þ

ij iεn þ μð Þ (12.32)

is the inhomogeneous susceptibility of conduction electrons. Eq. (12.32) is remin-
iscent of Eq. (6.135) for the interaction between adatoms and can be derived in a

Fig. 12.3 The temperature evolution of ferromagnetic states in the Stoner model
(left panel), in the Heisenberg model (middle panel) and in real itinerant-electron
ferromagnets (right panel).
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similar way. The RKKY interaction (12.31) for the case of graphene has some
interesting properties, which will be discussed in the next section.

The criterion of applicability of the expressions (12.30) and (12.31) is the
smallness of the spin polarization in the conduction-electron subsystem. For the
case of systems with complete spin polarization, such as magnetic semiconductors
(Nagaev, 1983, 2001) and half-metallic ferromagnets (Katsnelson et al., 2008), the
situation is totally different and, instead, the double-exchange mechanism is
responsible for the ferromagnetism, with an essentially non-Heisenberg character
of exchange interactions (Auslender & Katsnelson, 1982). In this case, typical
spin-wave energies are of the order of

ℏωsw � n tj j
M

, (12.33)

where n is the charge-carrier concentration and M is the magnetization (Edwards,
1967; Irkhin & Katsnelson, 1985a, 1985b). This formula is valid both for s–d
exchange and for Hubbard models. In the first case, M is of the order of one and,
for small enough n,

ℏωsw « εF (12.34)

since εF ~ n2/3 (for the three-dimensional case) and εF ~ n1/2 (for the two-
dimensional case). If we have a strong polarization in the defect-induced band
(see Fig. 12.1(b) and (c)) M ~ n should hold and

ℏωsw � jtj » εF. (12.35)

Thus, we have a very unusual situation in which the spin rotations are more
energetically expensive than the electron–hole (Stoner) excitations. Also, as was
mentioned previously, the T-matrix renormalization of the Stoner criterion is not
relevant here. As a result, one can conclude that, if it were possible to create
ferromagnetism in the defect-induced band of itinerant electrons, this situation
would be described by the Stoner model and one could expect much higher
Curie temperatures than for conventional magnetic semiconductors (Edwards &
Katsnelson, 2006). This is one of the strongest motivations for the search for
ferromagnetism in sp-electron systems, including graphene.

12.2 Defect-induced magnetism in graphene

Experimentally, sp-electron magnetism, in particular in carbon-based materials, is
one of the most controversial issues in modern materials science (for reviews, see
Esquinazi & Höhne, 2005; Makarova & Palacio, 2006; Yazyev, 2010). Typically,
the observed experimental magnetic moment (when the existence of ferromagnetism
has been claimed) is very small, μ� 10�3 � 10�4μB per atom. Keeping in mind that
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magnetic iron is everywhere on this planet (dust contains a lot of ferrimagnetic
magnetite, Fe3O4) the question of possible contamination is crucial, and it is very
difficult to demonstrate convincingly that the observed magnetism is intrinsic
(Nair et al., 2012). To better follow the possible arguments and counterarguments,
see, e.g., reviews of the scientific literature on the magnetism of CaB6 (Edwards &
Katsnelson, 2006) and of polymerized fullerenes (Boukhvalov & Katsnelson,
2009c). Importantly, one can prove (Edwards & Katsnelson, 2006) that a Curie
temperature of the order of room temperature is thermodynamically incompatible with
μ< 10–2 μB; thus, if one observes ferromagnetic ordering with μ� 10�3 � 10�4μB at
room temperature it should be either a mistake or a strongly inhomogeneous situation,
with ferromagnetic regions with local μ > 10�2 μB in a nonmagnetic surrounding.

The first experimental study of magnetism of graphene (actually, graphene
paper, a mixture of single-layer and multilayer graphene, was studied) did not
reveal any magnetic ordering but, rather, a quite mysterious paramagnetism
(Sepioni et al., 2010).

It is natural to ask why we should discuss so controversial an issue at all. Well,
first, it is a really hot subject. More importantly, some theoretical results seem to be
reliable (actually, there are even some theorems, as will be discussed later) and
worthy of consideration. They also give us a deeper understanding of the physics
of defects (Chapter 6) and edge states (Chapter 5) in graphene.

Let us start with the case of vacancies (Section 6.5) or covalently bonded
adsorbates (Section 6.6). As we have seen, their electronic structures are quite
similar, so, in the simplest approximation, the vacancy can be considered as a
model for the hydrogen adatom or some other “resonant-scattering” center. All
these defects create mid-gap states within the graphene pseudogap (see Fig. 6.1).
As was discussed in the previous section, a peak in the density of states near the
Fermi energy can lead to a magnetic instability. This conclusion is confirmed by
straightforward density-functional calculations: The periodic array of vacancies or
hydrogen adatoms on graphene has a tendency to undergo spontaneous spin
polarization (Yazyev & Helm, 2007). The corresponding electronic structure is
shown in Fig. 12.4. For large enough distances between the defects, the magnetic
moment per defect is close to the magnitude of the Bohr magneton μB. Note that
the splitting of mid-gap states induced by hydrogen atom on the top of graphene
was observed experimentally (using scanning tunneling microscopy [STM]) by
Gonzáles-Herrero et al. (2016). Even though they did not probe spin polarization
of the split energy states, the magnetic character of the splitting seems to be the
most reasonable interpretation.

Such magnetic moments have been observed experimentally in graphene with
vacancies and in fluorinated graphene; however, no magnetic ordering has been
found (Nair et al., 2012; Nair et al., 2013). In the case of fluorinated graphene or
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graphene with other sp3 impurities (resonant scattering centers are considered in
Sections 6.6 and 11.3) these magnetic moments are supposed to be associated to
mid-gap states in pz band (see later). In the case of vacancies, apart from these
magnetic moments, an additional kind of localized magnetic moment is
observed, due to dangling bonds on carbon atoms near the vacancies; they
can be distinguished by their behavior with the electron or hole doping
(Nair et al., 2013).

Note that, from the density functional calculations, bivacancies (Boukhvalov &
Katsnelson, 2009c) or couples of neighboring hydrogen atoms (Boukhvalov,
Katsnelson, & Lichtenstein, 2008) turn out to be nonmagnetic.

Gonzáles-Herrero et al. (2016) have studied magnetism of hydrogen adatoms on
graphene via STM. They did not directly measure spin polarization but detected
local magnetic moments by splitting of the hydrogen-induced mid-gap states. They
demonstrated that the splitting, which is observed for a single hydrogen adatom,
also exists for the couple of A–A hydrogen atoms (that is, both belonging to the
same sublattice A) and not for the A–B couples (hydrogen atoms in different
sublattices), in agreement with the density functional calculations.
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Fig. 12.4 Spin-polarized densities of states of (a) a hydrogen adatom and (b)
vacancy in graphene; (c) and (d) shows the corresponding atomic structures
(reproduced with permission from Yazyev & Helm, 2007).
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The real meaning of these results is clarified by the Lieb theorem (Lieb, 1989),
one of the few rigorous results in the theory of itinerant-electron magnetism. The
theorem is about the ground state of the single-band Hubbard model (12.1) on a
bipartite lattice; the honeycomb lattice is just an example of this generic case. The
most general definition of the bipartite lattice is that it consists of two sublattices,
A and B, such that all hopping integrals within the same sublattice are zero:

t̂AA ¼ t̂BB ¼ 0: (12.36)

Therefore, the band part of the Hamiltonian for the bipartite lattice has the structure

Ĥ0 ¼ 0 t̂
t̂þ 0

� �
, (12.37)

with nonzero blocks only between two sublattices. Let us consider the case in
which the numbers of sites within the sublattices A and B, NA and NB, can be
different. This means that we have vacancies, and the numbers of vacancies
belonging to A and to B are, in general, not the same. Thus, t̂ is an NA � NB

matrix.
Before discussing the effects of interactions, let us consider some properties of

the single-particle spectrum of the Hamiltonian (12.37) (Inui, Trugman, & Abra-
hams, 1994; Kogan, 2011). We will assume, to be specific, that NB 	 NA.

First, there are at least NB � NA linearly independent eigenfunctions with the
eigenvalue E = 0 and all components equal to 0 on the sites of the A sublattice.
This is the obvious consequence of the structure (12.37): The system of linear
equations

tψ = 0 (12.38)

has at least NB � NA linearly independent solutions.
Second, for the eigenfunctions ψ�n ¼ ψn ið Þf g, corresponding to the nonzero

eigenvalues En,

�En t̂
t̂þ �En

� �
ψn ¼ 0, (12.39)

there is a symmetry property

ψ�n ið Þ ¼ 
ψn ið Þ, (12.40)

where ψ�n are the eigenfunctions corresponding to �En, and the plus and minus
signs on the right-hand side of Eq. (12.40) correspond to the cases in which i
belongs to A and B, respectively.

Thus, the spectrum of the Hamiltonian (12.37) is symmetric (if En is an
eigenvalue, �En is an eigenvalue, too) and contains at least NB � NA solutions

336 Spin effects and magnetism

https://www.cambridge.org/core


with E = 0. It turns out that the latter states are unstable with respect to spontan-
eous spin polarization at arbitrarily small U > 0 (Lieb, 1989).

Moreover, the Lieb theorem claims that the ground state of the Hubbard model
(12.1) with U > 0, the single-particle Hamiltonian (12.37) and the number of
electrons equal to the number of sites, N = NA + NB, is unique (apart from the
trivial (2S + 1)-fold degeneracy) and has the spin

S ¼ NB � NA

2
: (12.41)

The theorem can be proved in two steps. First, it is shown that the ground state is
unique at any U, that is, that the states belonging to different multiplets with spins
S and S 0 6¼ S cannot both be eigenstates with the minimal energy. The consequence
is that the ground-state spin S cannot be dependent on U. In the opposite case, there
will unavoidably be a crossing of the minimal energies with a given spin, E0(S;U)
and E0(S

0;U), at some U = Uc. Second, in the limit of large U and N = N0 the
Hubbard model (12.1) is equivalent to the Heisenberg model with the Hamiltonian

Ĥ
0 ¼

X
i<j

2 tij
 2
U

^s
!
i
^s
!
j � 1

4

� �
(12.42)

(see, e.g., Yosida, 1996), and for the latter, the result (12.41) can be proved quite
straightforwardly and easily (Lieb & Mattis, 1962).

Importantly, the Lieb theorem does not assume the thermodynamic limit
N0 ! ∞ and is valid also for small systems. Its applications to the magnetic
properties of finite graphene fragments have been discussed by Yazyev (2010).

It follows from the Lieb theorem that if all vacancies sit in the same sublattice
their spins are parallel in the ground state. If, oppositely, NA = NB, the ground state
is a singlet, with S = 0. This means that the interactions between vacancy-induced
magnetic moments are ferromagnetic if the vacancies belong to the same sublattice
and antiferromagnetic if they belong to different sublattices. As we see, this result is
rigorous within the Hubbard model with half-filling (N = N0). The same conclusion
for the covalently bonded adatoms or vacancies follows from the density-functional
calculations (Yazyev & Helm, 2007; Boukhvalov & Katsnelson, 2011).

This can be also proved for the RKKY interaction (12.31) within the s–d
exchange model (12.28) (Kogan, 2011). By Fourier transformation of
Eq. (12.32) it can be represented as

χij ¼ � 1
4

ðβ
0

dτ G 0ð Þ
ij τð ÞG 0ð Þ

ji �τð Þ, (12.43)

where β = T�1 and
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G 0ð Þ
ji τð Þ ¼ T

X
εn

G 0ð Þ
ij iεn þ μð Þ exp �iεnτð Þ (12.44)

(see also Cheianov et al., 2009). It can be expressed in terms of the eigenfunctions
and eigenenergies of the Hamiltonian Ĥ0 (Mahan, 1990)

G 0ð Þ
ji τð Þ ¼

X
n

ψ∗
n ið Þψn jð Þ exp �ξnτð Þ f ξnð Þ � θ τð Þ½ �, (12.45)

where ξn = En � μ and θ(τ > 0) = 1, θ(τ < 0) = 0.
For the case of an undoped bipartite lattice, μ = 0, using Eq. (12.40) one finds

G 0ð Þ
ji �τð Þ ¼ ∓ G 0ð Þ

ij τð Þ
h i∗

, (12.46)

where the minus and plus signs correspond to the cases in which i and j belong to
the same sublattice and to different sublattices, respectively. As a result,

χji ¼ 
 1
4

ðβ
0

dτ G 0ð Þ
ij τð Þ

 2: (12.47)

On substituting Eq. (12.47) into Eq. (12.30) and (12.31) we come, again, to the
conclusion that for the undoped (half-filled) case, the exchange interactions are
ferromagnetic within the same sublattice and antiferromagnetic between sites from
different sublattices.

To conclude this section, it is worthwhile to warn that the use of the Lieb
theorem for graphene derivates with high concentration of sp3 centers, such as
single-side hydrogenated (C2H) or fluorinated (C2F) graphene, can lead to incor-
rect conclusions on their magnetism: In these situations, both real multiband
electronic structure and electron–electron interactions beyond the Hubbard model
(such as direct-exchange interactions) can be relevant, and instead of ferromagnetic
ground state, one can expect complicated noncollinear types of magnetic ordering
(Rudenko et al., 2013; Mazurenko et al., 2016).

12.3 Magnetic edges

It is clear from the previous consideration that the possibility of ferromagnetism in
graphene-like systems is related to zero-energy modes and other mid-gap states. As
was discussed in Chapter 5, the zero-energy modes arise naturally for a generic
boundary of a terminated honeycomb lattice (see Eq. (5.70)). One can therefore
conclude that the edges should be magnetic (except in the case of armchair edges,
for which there are no mid-gap states). This was first suggested by Fujita et al.
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(1996) and confirmed by numerous further calculations (e.g., Son, Cohen, &
Louie, 2006a; Yazyev & Katsnelson, 2008; for a review, see Yazyev, 2010). If
we have nanoribbons with zigzag edges, the atoms at the opposite edges belong to
different sublattices. Therefore, one can expect that the exchange interactions
between the edges are antiferromagnetic and that the nanoribbon as a whole should
have no magnetic moment. Within the framework of the Hubbard model, this just
follows from the Lieb theorem. The density-functional calculations by Son, Cohen,
and Louie (2006a) show that this interaction can be switched to the ferromagnetic
one by applying an external electric field.

One should keep in mind that zigzag edges of graphene are extremely chem-
ically active and can even decompose water (Boukhvalov & Katsnelson, 2008);
therefore, all calculations assume partial passivation by hydrogen (one hydrogen
atom by carbon atom). In this case, the zero-energy modes are associated with the
last row of carbon atoms. Interestingly, even for the case of complete passivation
(two hydrogen atoms per carbon atom) zero modes still exist, but associated with
the next row; in this case, density-functional calculations also predict
ferromagnetism of the edges, although more fragile (Bhandary et al., 2010).

This result seems to be very interesting in the context of spintronics based on
the coupling between electric and magnetic degrees of freedom of conducting
materials (Žutić, Fabian, & Das Sarma, 2004). Possible graphene spintronic
devices have been studied theoretically by Kim and Kim (2008) and by Wimmer
et al. (2008). As an example, one can mention a simple and elegant way to produce
a spin-polarized electric current due to a difference in shapes of the opposite zigzag
edges suggested in the latter paper (Fig. 12.5).

Fig. 12.5 The spin-injection profile of a graphene nanoribbon with a distorted
edge for spin injection into a region of n-doped graphene.
(Reproduced with permission from Wimmer et al., 2008.)
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However, there are several problems that should be carefully discussed before
entertaining any such dreams about applications. First, the Mermin–Wagner
theorem (Mermin & Wagner, 1966; Ruelle, 1999) forbids long-range order in
low-dimensional systems (such as one-dimensional graphene edges) at finite
temperatures. The range of magnetic order is limited by the temperature-dependent
spin correlation lengths ξα(α = x, y, z), which define the decay law of the spin
correlation

ŝαi ŝ
α
iþl

� � ¼ ŝαi ŝ
α
i

� �
exp � l

ξα

� �
: (12.48)

In principle, the spin correlation length ξ imposes limitations on the device sizes.
In order to establish this parameter, one has to determine the energetics of
spin fluctuations contributing to the breakdown of the ordered ground-state con-
figuration and extract the exchange parameters. This has been done via density-
functional calculations by Yazyev and Katsnelson (2008). The total energy of the
spin-spiral state (Fig. 12.6) has been calculated and fitted to the classical Heisen-
berg model. The spin-wave stiffness constant, D � 2,100 meV�Å2, has been found
to be several times higher than that in iron or nickel. This confirms the general
conclusion (Edwards & Katsnelson, 2006) that defect-induced sp-electron magnet-
ism can be characterized by very high magnon energies (see Section 12.1).

The magnetic correlation length in the presence of spin-wave fluctuations was
obtained with the help of the one-dimensional Heisenberg model Hamiltonian

Ĥ ¼ �a
X
i

^s
!
i
^s
!
iþ1 � d

X
i

ŝzi ŝ
z
iþ1, (12.49)

where the Heisenberg coupling a = 105 meV was found from the fitting of the
computational results. The estimated small anisotropy parameter d/a � 10�4

originates from the weak spin-orbit interaction in carbon (see the next section).

Fig. 12.6 The spin-spiral structure used for the calculation of the exchange
coupling constant for a graphene zigzag edge.
(Reproduced with permission from Yazyev & Katsnelson, 2008.)

340 Spin effects and magnetism

https://www.cambridge.org/core


This simple model Hamiltonian has known analytic solutions (Fisher, 1964).
Fig. 12.7 shows the spin correlation lengths calculated for our particular case.
Above the cross-over temperature Tx � 10 K, weak magnetic anisotropy does not
play any role and the spin correlation length ξ / T�1. However, below Tx
the spin correlation length grows exponentially with decreasing temperature. At
T = 300 K the spin correlation length ξ � 1 nm.

From a practical point of view, this means that the sizes of spintronic devices,
based on the magnetic zigzag edges of graphene and operating under normal
temperature conditions, are limited to several nanometers. At present, such sizes
are very difficult to achieve, which can be regarded as a pessimistic conclusion.
Nevertheless, one must keep in mind that the spin stiffness predicted for the
magnetic graphene edges is still higher than the typical values for traditional
magnetic materials. That is, graphene outperforms d-element-based magnetic
materials, and there is room for improvement. Achieving control over the magnetic
anisotropy d/a could possible raise the cross-over temperature Tx above 300 K and
thus significantly extend ξ. Possible approaches for reaching this goal include
chemical functionalization of the edges with heavy-element functional groups or
coupling graphene to a substrate.

Another serious problem is the possibility of reconstruction of zigzag edges to
some nonmagnetic configuration (see Section 5.6). Theoretically, the result
regarding ferromagnetism of zigzag edges at T = 0 looks very reliable, but the
situation with real edges of real graphene is not so clear. Probably, some chemical
protection of the edges can be used to keep the magnetic state stable enough.

Indirect evidence of possible magnetism of graphene edges has been found very
recently by scanning tunneling spectroscopy (STS), namely splitting of the edge
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Fig. 12.7 The correlation length of magnetization vector components orthogonal
(ξz) and parallel (ξx,y) to the graphene plane as a function of temperature for
weakly anisotropic (d/a = 10–4) and isotropic (d = 0) Heisenberg models.
(Reproduced with permission from Yazyev & Katsnelson, 2008.)
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mid-gap states has been observed (Tao et al., 2011). Spin-polarized STS should be
used to prove that this is spin-splitting, but this work has not yet been done.

12.4 Spin-orbit coupling

As we discussed earlier, spintronic applications due to an intrinsic magnetism of
graphene are still very speculative. At the same time, one can inject spin-polarized
current into graphene using ferromagnetic leads, e.g., cobalt, and then manipulate
this with current. There is a huge amount of experimental activity in this field
(Tombros et al., 2007, 2008; Han et al., 2009a, 2009b; Jo et al., 2011). In this
situation, the spin dynamics in graphene is determined by spin-orbit coupling,
leading to various spin-relaxation processes, such as Elliott–Yafet, D’yakonov–
Perel, Bir–Aronov–Pikus, and other mechanisms (Žutić, Fabian, & Das Sarma,
2004). The main idea is that, in the presence of spin-orbit coupling, some of the
scattering processes will be accompanied by spin-flips; this is the essential
feature of the simplest and most general process, the Elliott–Yafet mechanism.
A rough estimation for the spin-flip time τs, is given by Elliott’s formula
(Elliott, 1954)

1
τs

� Δgð Þ2
τ

, (12.50)

where Δg = g � 2 is the contribution of the orbital moment to the conduction-
electron g-factor and τ is the mean-free-path time (that is, the time taken for the
relaxation of momentum). The first experiments (Tombros et al., 2007) have
already demonstrated that τs in graphene is orders of magnitude shorter than one
would expect from a naïve estimation of the spin-orbit coupling in graphene.
This observation initiated a serious theoretical activity (Castro Neto & Guinea,
2009; Gmitra et al., 2009; Huertas-Hernando, Guinea, & Brataas, 2009; Konschuh,
Gmitra, & Fabian, 2010; Jo et al., 2011; Dugaev & Katsnelson, 2014; Kochan,
Gmitra, & Fabian, 2014; Kochan, Irmer, & Fabian, 2017). In this section we do not
discuss the mechanisms of spin relaxation in graphene; instead, we focus on the
quantum-mechanical part of the problem, that is, on the various contributions to
spin-orbit coupling and their effects on the electron-energy spectrum.

Spin-orbit coupling is a relativistic effect following from the Dirac equation
(here we mean the real Dirac equation rather than its analog for graphene) as the
second-order perturbation in the fine-structure constant e2/(ћc) (Bjorken & Drell,
1964; Berestetskii, Lifshitz, & Pitaevskii, 1971):

Ĥ s�o ¼ ℏ

4m2c2
r! V � ^p

!� �
�^σ!, (12.51)
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where ^p
! ¼ �iℏr! , V is the potential energy, and ^σ! are the Pauli matrices acting

on the real electron spin (not on the pseudospin, as in the greatest part of the
book!). The main contribution originates from regions close to atomic nuclei where

r!V
  is much larger than it is in interatomic space. As mentioned in Section 1.1,

the order of magnitude of the intra-atomic spin-orbit coupling can be estimated
from the energy difference of the multiplets 3P0 and 3P1 for the carbon atom
(Radzig & Smirnov, 1985),

ΔEs-o � 2 meV: (12.52a)

It is, roughly, 10�4 of the π-electron bandwidth, as it would be natural to expect
for a quantity proportional to (e2/(ℏc))2. The corresponding quantities for carbon
analogs in the periodic table, silicon and germanium, are much higher, as is
naturally expected for heavier elements,

ΔEs�o � 9:6 meV (12.52b)

and

ΔEs�o � 69 meV, (12.52c)

respectively (Radzig & Smirnov, 1985).
In the representation of valent (2s2p) states of carbon, the Hamiltonian (12.51)

can be represented as

Ĥ s-o ¼ ξ
^
L
!�^σ!, (12.53)

where
^
L
! ¼ ^r

! � ^p
⇀ (12.54)

is the orbital moment operator.
Let us first consider what one can expect for the effective parameters of spin-

orbit coupling in the model taking into account only 2s2p states. Our further
analysis follows Huertas-Hernando, Guinea, and Brataas (2006) and Yao et al.
(2007). Within the basis of sp3 states of the carbon atom (see Section 1.1) the
Hamiltonian (12.53) can be rewritten as

Ĥ s-o ¼ 2ξ
X
j

ĉþjz"ĉjx# � ĉþjz#ĉjx" þ iĉþjz"ĉjy# � iĉþjz#ĉjy" þ iĉþjx#ĉjy# � iĉþjx"ĉjy" þH:c:
� �

,

(12.55)

where we take into account only intra-atomic matrix elements (j is the site label)
and x, y, and z label the |pxi, jpyi, and jpzi orbitals. Of course, s-orbitals are

not involved since
^
L
!jsi ¼ 0.
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Now we have to rewrite the Hamiltonian (12.55) in the representation of
σ-orbitals (1.9) and π-orbitals (jpzi). Importantly, in the nearest-neighbor approxi-
mation Ĥ s-o

	 

ππ ¼ 0, due to symmetry considerations. First, only the L̂zσ̂ z term

survives, due to the mirror symmetry in the graphene plane. Second, there is an
additional vertical reflection plane along the nearest-neighbor bonds. Under the
reflection in this plane, x̂, p̂x ! x̂, p̂x and ŷ, p̂y ! �ŷ, � p̂y and, therefore,
L̂z ! �L̂z which finishes the proof.

Thus, we have to use second-order perturbation theory, and the effective
Hamiltonian of spin-orbit coupling is

Ĥ
eff
s-o

� �
ππ

¼ Ĥ s-o
	 


πσ

1

Ĥ 0ð Þ
π � Ĥ 0ð Þ

σ

Ĥ s-o
	 


σπ, (12.56)

where Ĥ 0ð Þ
π,σ are the corresponding band Hamiltonians without spin-orbital

coupling. As a result, the effective Hamiltonians for the vicinities of the K and
K0 points are (Yao et al., 2007)

ĤK,K 0 q
!� �

¼
∓ξ1 ℏv qx∓ iqy

� �
ℏv qx 
 iqy

� �

ξ1

0
@

1
A (12.57)

instead of Eq. (1.19), where

ξ1 ¼ 2 ξj j2 ε2p � ε2s
9V2

spσ

, (12.58)

where ε2p and ε2s are the atomic energy levels for 2p and 2s states, and Vspσ is a
matrix element of the hopping Hamiltonian for the σ-block between s and p states.
All these energies are of the order of l0 eV; thus the effective spin-orbit coupling
constant for the case of flat, defect-free graphene is ξ1 � 1 μeV (Huertas-Hernando,
Guinea, & Brataas, 2006; Yao et al., 2007).

This evaluation underestimates the effective spin-orbit interaction for graphene
in comparison with the first-principle density functional calculations; the latter
gives the value ξ1 � 12 μeV(Gmitra et al., 2009). It turns out that the main
contribution originates from the virtual pd-transitions (Konschuh, Gmitra, &
Fabian, 2010). It turns out that if we add to the Hamiltonian (12.55) 3d states,
then the first-order terms in ξ is no more symmetry forbidden, and instead of Eq.
(12.58) we have

ξ1 ¼ 2 ξp
 2 ε2p � ε2s

	 

9Vspσ

2 þ ξd
9Vpdπ

2

2 ε3d � ε2p
	 
2 , (12.59)

where ξp and ξd are intra-atomic spin-orbit coupling constants for 2p and 3d states,
respectively (Konschuh, Gmitra, & Fabian, 2010).
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It is interesting to compare graphene with its analogs, silicene and germanene
(for review of these graphene-like allotropes of silicon and germanium, see Acun
et al., 2015; Le Lay, Salomon, & Angot, 2017). An important difference is that for
these two-dimensional materials, the structure is buckled (Fig. 12.8).

This lower symmetry allows the first-order term in ξp, even without taking into
account d-states (Liu, Jiang, & Yao, 2010). Together with much stronger intra-
atomic spin-orbit coupling (see Eq. (12.52)), it leads to the order-of-magnitude
larger effective spin-orbit parameters: from 12 μeV for graphene to 12 meV
for germanene (Acun et al., 2015). A general symmetry analysis of spin-orbit
coupling for various two-dimensional materials can be found in Kochan, Irmer,
and Fabian (2017).

Now, we come back to graphene. A special case of spin-orbit coupling is
associated with the external electric field perpendicular to the graphene plane
(the Rashba effect) (Kane & Mele, 2005a; Huertas-Hernando, Guinea, & Brataas,
2006; Min et al., 2006; Rashba, 2009; Stauber & Schliemann, 2009; Zarea &
Sandler, 2009). The potential of the external electric field

ĤE ¼ eEz (12.60)

has nonzero matrix elements only between jsi and jpzi orbitals. In the secondary
quantized form, Eq. (12.60) reads

ĤE ¼ z0eE
X
jσ

ĉþjzσ ĉjsσ þ ĉþjsσ ĉjzσ
� �

, (12.61)

Fig. 12.8 Structure of silicene and germanene: top and side views.
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where

z0 = hpzjzjsi (12.62)

is of the order of the radius of the carbon atom. The effective Hamiltonian of spin-
orbit coupling in the presence of the electric field, apart from Eq. (12.56), contains
the cross-term

ĤR
	 


ππ ¼ ĤE

	 

πσ

1

Ĥ 0ð Þ
π � Ĥ 0ð Þ

σ

Ĥ s-o
	 


ππ þ Ĥ s-o
	 


πσ

1

Ĥ 0ð Þ
π � Ĥ 0ð Þ

σ

ĤE

	 

σπ (12.63)

(cf. Eq. (10.70)). Taking into account this term, plus Eq. (12.57), we will find the
spin-orbit 8 � 8 Hamiltonian

Ĥ s�o ¼ ξ1η̂zτ̂zσ̂ z þ ξR η̂xτ̂zσ̂y � η̂yσ̂x

� �
, (12.64)

where η̂, τ̂ and σ̂ are Pauli matrices acting on the pseudospin (that is, the sublattice
index), valley index, and real-spin projection, respectively. Note that in most of the
book the Pauli matrix η̂ has been written as σ̂! The Rashba coupling ξR in Eq.
(12.64) is given by (Huertas-Hernando, Guinea, & Brataas, 2006; Min et al., 2006)

ξR ¼ 2eEz0
3V spσ

ξ: (12.65)

For the largest values of the electric field which can be created in graphene
E � 1 V nm�1, ξR may be of the same order of magnitude as ξ1 (keeping in mind
pd-contribution to the latter Eq. (12.59)).

There are many mechanisms that can dramatically increase the effective spin-
orbit coupling in graphene. First, it is very sensitive to the curvature, which can be
associated with the ripples (Huertas-Hernando, Guinea, & Brataas, 2006). In
curved graphene, there is no longer mirror symmetry in the vertical plane along
the nearest-neighbor bonds, and the effective spin-orbit coupling for the π-block
does not vanish to first order in ξ; this leads to Rashba-type coupling, with an
effective coupling constant of the order of

ξR � ξaH, (12.66)

where H is the mean curvature (9.77) and (9.78). For typical parameters
of the ripples this spin-orbit coupling is an order of magnitude larger than the
intrinsic one, of the order of 10�2 � 10�1 meV (Huertas-Hernando, Guinea, &
Brataas, 2006).

Second, the effective spin-orbit coupling can essentially be increased by cova-
lently bonded impurities, such as hydrogen adatoms, which change the state of
carbon atoms locally from sp2 to sp3 (Castro Neto & Guinea, 2009; Kochan,
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Gmitra, & Fabian, 2014). Again, this creates an effective spin-orbit coupling in the
π-block already in the first order in ξ, making ξ1 � ξ locally. This makes “resonant
impurities” very efficient sources of spin-flip scattering. This conclusion seems to
be in agreement with the recent experimental data (Jo et al., 2011).

Finally, let us discuss the effect of the Hamiltonian (12.64) on the electron-
energy spectrum of graphene (Kane &Mele, 2005b; Stauber & Schliemann, 2009).
This Hamiltonian does not couple the valleys. For the valley K (τz = +1), we have
a 4 � 4 matrix (in the basis A", B", A#, B#) for the total Hamiltonian:

Ĥ ¼

�ξ1 ℏv qx � iqy

� �
0 0

ℏv qx þ iqy
� �

ξ1 2iξR 0

0 �2iξR ξ1 ℏv qx þ iqy
� �

0 0 ℏv qx þ iqy
� �

�ξ1

0
BBBBBB@

1
CCCCCCA,

(12.67)

where we skip the constant energy shift ξ1 in Eq. (12.57). The equation for the
eigenenergies takes the form

det Ĥ � E
	 
 ¼ E2 � ξ21 � ℏ2v2q2

	 
2 � 4ξ2R E þ ξ1ð Þ2 ¼ 0: (12.68)

At ξR = 0, the spectrum is

E ¼ 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ2v2q2 þ ξ21

q
, (12.69)

with the gap Δs�o = 2jξ1j. The existence of the gap does not contradict the proof
given in Chapter 1 since, in the presence of spin-orbit coupling, the time-reversal
operation does not have the form (1.39) but includes the spin reversal.

In the opposite case, ξ1 = 0, the spectrum is

E2 ¼ ℏ2v2q2 þ 2ξ2R 
 2ξR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ2v2q2 þ ξR

2
q

: (12.70)

This is reminiscent of the spectrum of bilayer graphene in the parabolic-band
approximation; see Section 1.4. Two bands have a gap, with the energy 
2jξRj
at q = 0, and two others are gapless, with the parabolic spectrum at q ! 0. In
general, for finite ξ1 and ξR, the gap exists at jξ1j > jξRj and its value is

Δs�o = 2(jξ1j � jξRj). (12.71)

In the regime in which the gap exists, the mass term has opposite signs for the two
valleys (see Eq. (12.57)). This results in a very interesting picture of the “quantum
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spin Hall effect” (Kane & Mele, 2005a, 2005b). This phenomenon is not relevant
for real graphene, due to the very small value of the gap. However, this effects can
be important for silicene, germanene, or stanene (tin-based analog of graphene; Xu
et al., 2013) with their much larger values of the spin-orbit gap. Note that
germanene at insulating substrate (MoS2) is already realized experimentally
(Zhang et al., 2016).

These two papers by Kane and Mele were very important in the development of
a novel field, namely the physics of topological insulators (Moore, 2009; Hasan &
Kane, 2010; Qi & Zhang, 2010; Qi & Zhang, 2011). This is one of the many
examples of the huge influence of graphene on our general understanding of physics.

12.5 Spin relaxation due to edge scattering

As we discussed in Section 12.3, theory predicts magnetism at graphene zigzag
edges. If we assume that this prediction is correct (experimental situation still looks
unclear), then edges should be a very important source of spin relaxation. In this case,
the relaxation is determined by not spin-orbit coupling but s–d exchange interactions
(12.28), which can be many orders of magnitude stronger. The same happens for the
case when some magnetic impurities are situated at the edges. Here we present the
main ideas of the corresponding theory (Dugaev & Katsnelson, 2014).

If we assume graphene nanoribbon situated at 0 < x < L (the same geometry as
in Section 11.5) the corresponding interaction Hamiltonian is

Ĥ int ¼ W xð Þ^σ!m
!

yð Þ, (12.72)

where m! yð Þ is the distribution of magnetic moments along the edges and W(x) is a
short-range potential focused near x = 0 and x = L (for simplicity, we assume that
the edges are equivalent, similar to Section 11.5). For one-dimensional magnets at
finite temperatures

hmα(y)mβ(y0)i = γe�λjy � y0j, (12.73)

where α, β = x, y and λ = 1/ξ (cf. Eq. (12.48)). Then, the averaged probability of
spin-flip processes due to the interaction (12.72) is

W
k
!
k
⇀0 ¼

2π
ℏ

k
!0

D W xð Þ mx yð Þ � imy yð Þ	 

k
! E 2� �

δ ε
k
! � ε

k
!0

� �

¼ 4πγ
ℏ

ð
dxdy

ð
dx0dy0e�λ y�y0j j k

!0
D W xð Þ k

! E
k
!D W x0ð Þ k

!0
 E

δ ε
k
! � ε

k
!0

� �
,

(12.74)
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where the wave functions k
! E

are given by Eq. (11.138) for the case of Berry–
Mondragon (BM) boundary conditions and by Eq. (11.140) for the case of zigzag-
like (Z) edges.

Explicit calculations give us the answers (Dugaev & Katsnelson, 2014)

W BMð Þ
k
!
k
!0

¼
2πγW2

0λδ ε
k
! � ε

k
!0

� �
ℏLxL2 λ2 þ ky � k0y

� �2
� � , (12.75)

W Zð Þ
k
!
k
!0

¼
2πγW2

1λk
2
xk

02
xδ ε

k
! � ε

k
!0

� �
ℏLxL2 λ2 þ ky � k0y

� �2
� � , (12.76)

where Lx is the length of the ribbon,

W0 =
Ð
dxW(x), W1 =

Ð
dxW(x)x2. (12.77)

Spin-dependent scattering at the edges can be considered via kinetic equation for
the spin-dependent single-electron density matrix (Ustinov, 1980; Katsnelson,
1981). In the simplest case, where this density matrix is diagonal in spin indices,
we have just two Boltzmann distribution functions f

k
!",#, each of them satisfying

the same kind of equation as Eq. (11.1). After linearization (11.7), assuming no
external electric field and tau-approximation for the bulk collision integral
(11.131), we have

∂
∂t

þ v
k
!
α

∂
∂xα

þ 1
τ

� �
δf

k
!
σ
¼ 0, (12.78)

with the boundary conditions of the type of Eq. (11.134) and (11.135). If we
assume only spin-flip processes at the boundary, these take the form

jvxjδf>
k
!
,σ
ðx¼0Þ¼ jvxjδf<

k
!
,σ
ðx¼0Þþ

X
k
!0

Wðk! ; k
!0Þ½δf<

k
!0,�σ

ðx¼0Þ�δf>
k
!
,�σ

ðx¼0Þ�,

(12.79)

and similar for x = L.
Further calculations are quite cumbersome, therefore we present only the main

physical result; the details can be found in the paper Dugaev and Katsnelson (2014).
Suppose we create some spin polarization f

k
!" 6¼ f

k
!# at initial time t = 0 and

look at the distribution of the polarization along y axis at some instant t. At large
enough distances, one can pass from the kinetic equation to the spin diffusion
equation. In this case, the typical distance of the polarization propagation is
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ld ¼
ffiffiffiffiffiffiffiffi
y2h i

p
¼ ffiffiffiffiffiffiffi

Dst
p

, (12.80)

where Ds is the spin diffusion coefficient. This is the standard approximation,
which is always used to interpret the experimental data, assuming the spin-flip
scattering processes in the bulk only (Tombros et al., 2007, 2008; Han et al.,
2009a, 2009b; Jo et al., 2011). It turns out to also be correct for the case of spin
scattering at Berry–Mondragon edges. At the same time, for the most interesting
case of zigzag-like edges, where one can expect intrinsic magnetism at the edges,
the situation is predicted to be totally different. The probability of scattering
processes vanishes for the gliding electrons, according to Eq. (11.143) and
(12.76). Therefore, their propagation is ballistic rather than diffusive, which leads
to the polarization propagation faster than (12.80). Instead, we have (Dugaev &
Katsnelson, 2014):

ld / t5=6, kFξ » 1,

ld / t3=4, kFξ « 1:
(12.81)
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13

Graphene on hexagonal boron nitride

13.1 Motivation: ripples and puddles

In early days of graphene (2004–2010), amorphous silicon dioxide was a substrate
by default. As we discussed in Chapter 11, it already provides pretty high electron
mobility. At the same time, the quality of such samples is not extremely good; the
most important restriction is charge inhomogeneity in the form of electron and hole
puddles which were discovered by Martin et al. (2008). This is a serious obstacle;
e.g., to study minimal conductivity (Chapter 3), many-body renormalization of
Fermi velocity (Section 8.4), and other effects requires, for their reliable observa-
tion, a closeness to the neutrality point. The origin of these puddles was the subject
of long discussions (Rossi & Das Sarma, 2008; Polini et al., 2008; Fogler, 2009;
Gibertini et al., 2010; Das Sarma et al., 2011; Gibertini et al., 2012). The most
obvious factor of the puddle formation is a charge disorder in the substrate;
however, this can, in principle, be eliminated. As was shown by Gibertini et al.
(2010) and Gibertini et al. (2012), this is, however, not enough to reach the
homogeneous state. The reason is the existence of ripples, which seem to be
unavoidable for single-layer two-dimensional materials (Chapter 9). They lead to
randomness of the deformation tensor and, therefore, to random distributions of
pseudomagnetic field (10.7) and pseudoscalar potential (10.8). Whereas the former
is not very relevant for the puddles, the latter turns out to be sufficient to explain
the observed charge inhomogeneity, even without an assumption on any extrinsic
charge disorder.

The calculations in these works were made using a simplified density functional
for two-dimensional Dirac electron liquid (Polini et al., 2008). For the case of
freely suspended graphene (Gibertini et al., 2010), the distribution of atomic
displacements and thus of the deformation tensor, were taken from atomistic
simulations of the same kind as discussed in Chapter 9 (Fasolino, Los, & Katsnel-
son, 2007; Los et al., 2009). The typical picture of corrugations induced by thermal
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fluctuations is shown in Fig. 13.1 and the corresponding profile of the charge
density in Fig. 13.2. One can see that the intrinsic ripples alone provide inhomo-
geneity of the electron density with the amplitude of the order of 1011–1012cm–2.

To suppress the intrinsic ripples originated from the soft flexural phonons, one
can put graphene on a substrate. Unfortunately, SiO2 is a bad choice because this
amorphous layer has unavoidably a strong roughness. The corresponding calcula-
tions were made by Gibertini et al. (2012) using the scanning tunneling

Fig. 13.1 Three-dimensional plot of the corrugated, freely suspended graphene
sample from atomistic simulations for the case of room temperature.
(Taken with permission from Gibertini et al., 2010.)

Fig. 13.2 A one-dimensional plot of electron density in nominally undoped, freely
suspended graphene sample at room temperature calculated via the density
functional (Polini et al., 2008) for the sample shown in Fig. 13.1. The triangles
show the results in the Hartree approximation and squares are the results with the
exchange-correlation potential taken into account; one can see that the results are
qualitatively similar.
(Taken with permission from Gibertini et al., 2010.)

352 Graphene on hexagonal boron nitride

https://www.cambridge.org/core


microscopy (STM) experimental data on a profile of graphene on top of SiO2

(Geringer et al., 2009) with further numerical solution of the equations (9.65)–
(9.67) to restore the whole three-dimensional picture of atomic displacements. It
turns out that we have roughly the same electron inhomogeneities as for the freely
suspended graphene at room temperature.

Thus, to avoid puddle formation, one needs to suppress ripples by putting
graphene on atomically flat crystalline substrate. The best choice turned out to be
the hexagonal boron nitride (hBN), which consists of relatively weakly bound
layers with the same hexagonal lattice as graphene (Fig. 1.4), but with none-
quivalent atoms in sublattices A and B (nitrogen and boron, respectively). Dean
et al. (2010) and Meric et al. (2010) have demonstrated that by choosing hBN as a
substrate, one can suppress charge inhomogeneities and increase the electron
mobility by more than an order of magnitude in comparison with graphene on
SiO2. Now hBN is a substrate by default; graphene samples put on hBN or
encapsulated (Mayorov et al., 2011b) in hBN have extraordinary high quality.
Some experimental results already referred to in this book were obtained for these
samples; see e.g., Yu et al. (2013). Whereas at low temperatures the freely
suspended graphene samples can be of a comparable quality, at room temperatures
they have a strong restrictions on electron mobility due to scattering by intrinsic
ripples (or, equivalently, by flexural phonons); see Eq. (11.126) and Fig. 11.3.
Fig. 13.2 also shows an unavoidable charge inhomogeneity in such samples.
Graphene on hBN is free of these limitations. Note that graphene can be also
epitaxially grown on hBN (Yang et al., 2013; Tang et al., 2013).

At the same time, putting graphene on hBN is not only the way to improve the
sample quality and to unveil the intrinsic physics of Dirac fermions near the
neutrality point. It creates its own very interesting physics, especially related to a
controlled commensurability/incommensurability of a potential acting on elec-
trons. This chapter presents a basic introduction to the related phenomena.

13.2 Geometry and physics of moiré patterns

Importantly, it turns out to be possible to change misorientation angle θ between
the graphene layer and hBN substrate in a controllable way; as a result, the so-
called moiré patterns arise (Xue et al., 2011; Tang et al., 2013; Yang et al., 2013;
Woods et al., 2014; Woods et al., 2016). The consequences, especially for the
electronic structure, are very rich. The basic idea is that the electrons in graphene
feel both the crystal potential of graphene and of the substrate. In general, these
two potentials are not commensurate, they have different periods. For the perfect
alignment, when crystallographic axes for graphene and hBN coincide, they are
equal to
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b1 = b, b2 = b(1 + δ), (13.1)

where b ¼ ffiffiffi
3

p
a is the lattice constant for graphene and δ � 0.018 is the misfit of

the lattice periods (for hBN it is slightly larger). The real number δ can be
approximated as a rational number p/q where p and q are coprime integers (that
is, their greatest common divisor is 1). Then, the common period of our system is
qb » b. If we assume that δ is irrational, then we deal with a very challenging
problem of electron motion in quasiperiodic potential. Probably the best known
physical realization of this situation in condensed matter takes place in
quasicrystals (Shechtman et al., 1984; Guyot, Kramer, & de Boissieu, 1991;
Mermin, 1992; Goldman & Kelton, 1993; Lifshitz, 1997; Quilichini, 1997).
Quasicrystals are three-dimensional objects that can be formally considered as a
projection of six-dimensional crystals onto three-dimensional Euclidean space.
Graphene on hBN provide us a two-dimensional system with tunable quasiper-
iodic potential, and the tuning can be done just by a rotation of graphene with
respect to the substrate. The motion of massless Dirac fermions in such a potential
have some important peculiarities, which will be considered in this and the next
chapters. Before doing this, we first have to discuss the atomic structure of our
systems.

Let us start with just a simple, one-dimensional model of an atomic chain
on a slightly incommensurate substrate. This model was suggested by Frank
and van der Merwe (1949) as a development of earlier ideas of Frenkel and
Kontorowa (1938); for the modern introduction into the field see the book
by Braun and Kivshar (2004). The potential energy in Frank–van der Merwe
model reads:

V ¼ μ
2

XN�1

n¼0

xnþ1 � xn þ b1 � b2ð Þ2 þW

2

XN�1

n¼0

1� cos
2πxn
b2

� �
, (13.2)

where μ is the elastic modulus of the chain, W is the interaction energy with the
substrate per atom, N is the total number of atoms in the chain, and xn are atomic
displacements with respect to the equilibrium atomic positions in the substrate,
nb2. The model (13.2) contains competing interactions: Whereas the interaction
with substrate (the second term) wants to make the lattice period equal to b2, the
first term reaches the minimum at the interatomic positions in the chain equal to b1.
As a result, generally speaking, the atomic structure will be reconstructed to reach
the compromise between these two tendencies.

Introducing the dimensionless quantities

ζn = xn/b2, (13.3)
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one can rewrite Eq. (13.2) as

V ¼ Wl20
XN�1

n¼0

ζ nþ1 � ζ n �
1
P

� �2

þW

2

XN�1

n¼0

1� cos 2πζ nð Þ, (13.4)

where

P ¼ b2
b2 � b1

¼ 1
δ
þ 1, l0 ¼

ffiffiffiffiffiffiffi
μb22
2W

r
: (13.5)

Now let us assume that, first, the intrachain interactions are much stronger that the
(van der Waals) interactions with the substrate, that is, l0 » 1, and, second, that the
misfit δ is small, that is, P » 1. One can show that in this situation one can pass to
the continuum limit, replacing the sum in Eq. (13.4) by the integral and finite
differences by derivatives:

V

W
�
ðN
0

dn l20
dζ
dn

� 1
P

� �2

þ sin 2πζ

" #
: (13.6)

The Euler equations for the minimization of the functional (13.6) are

d2ζ

dn2
¼ π

2l20
sin 2πζ , (13.7)

with the solutions expressed in terms of elliptic functions (Abramowitz & Stegun,
1964; Whittaker & Watson, 1927). The general solution reads:

ζ nð Þ ¼ 1
2
þ 1
π
am

πn
l0k

� �
,
dζ
dn

¼ 1
l0k

dn
πn
l0k

� �
, (13.8)

where k � 1 is modulus of the elliptic function (note that in Eq. (7.65) m = k2), a
parameter dependent on the integration constants. The special case k = 1 corres-
ponds to an individual localized defect called misfit dislocation (Frank & van der
Merwe, 1949) or crowdion (Frenkel & Kontorowa, 1938). It corresponds to the
special boundary condition to Eq. (13.7)

ζ ! 0, n ! �∞; ζ ! 1, n ! ∞ , (13.9)

which mean that the atoms at �∞ lie in two subsequent minima of the substrate
potential. The solution

ζ ¼ 2
π
arctan exp

πn
l0

� �
(13.10)
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represents a step of atomic displacements localized at the spatial scale of the order
of l0b2 » b2. At k close to 1, the general solution (13.8) represents a dislocation
lattice, with displacement jumps separated by relatively large distances; the latter
can be expressed in terms of the elliptic integral (7.65). When k decreases, the
period of the lattice decreases, and at k! 0 it transforms to a sine-like modulation.

Frank and van der Merwe (1949) have found a condition of energetic stability of
the dislocations. It has the form

P <
πl0
2

: (13.11)

Taking into account the definitions (13.5) it can be approximately rewritten as

W > μ(b2 � b1)
2, (13.12)

which has a very simple physical meaning. The van der Waals interaction with the
substrate wants to put each atom of our chain into the minimum of the substrate
potential. However, it requires the deformation of the strings. This optimization of
the van der Waals interaction is possible if the latter is stronger than the loss of the
elastic energy at the deformation. If we have the strong equality (» instead of >) in
Eq. (13.12), the atomic relaxation will result in a state of relatively broad regions
where the atoms in the chain fit the substrate, separated by dislocations (13.10). In
this situation the incommensurability of the potentials will be all focused in some
boundary regions. In the opposite case of relatively weak van der Waals inter-
actions (< instead of > in Eq. (13.12)), the system will not even try to fit the
potential of substrate, and one can assume that the effects of atomic relaxation will
be relatively small and qualitatively not important.

This is a qualitative explanation of the commensurate-incommensurate
transition at the rotation of graphene with respect to hBN substrate discovered
by Woods et al. (2014). Unfortunately, for the two-dimensional case we do not
have any analytical theory similar to the one-dimensional case considered previ-
ously; we have to restrict ourselves to a qualitative analysis and computer simula-
tions (van Wijk et al., 2014; Woods et al., 2016). Before discussing this, first we
present a formal geometric theory of two-dimensional moiré structure without taking
into account atomic relaxation. We will follow the work by Hermann (2012).

Let us assume that the Bravais lattice for the substrate is built from the lattice
vectors a

!
1 and a

!
2, and for the overlayer, from the lattice vectors b

!
1 and b

!
2, which

are some linear combinations of a!1 and a
!
2:

b
!
1

b
!
2

 !
¼ M̂ a

!
1

a
!

2

� �
: (13.13)
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The matrix M̂ combines rotations at the misorientation angle θ and possible
changes of lattice periods:

M̂ ¼ p1 0
0 p2

� �
�R̂ θð Þ, R̂ θð Þ ¼ cos θ sin θ

� sin θ cos θ

� �
; (13.14)

for our case of graphene on hBN, the scaling factors are equal: p1 = p2 = 1/(1+ δ).
Then, the basic reciprocal lattice vectors of the overlayer G

!
1,G

!
2 are linear com-

binations of the basic reciprocal lattice vectors of the substrate g
!
1, g

!
2:

G
!

1

G
!

2

 !
¼ K̂ g

!
1

g
!

2

� �
: (13.15)

Keeping in mind that the scalar products a
!
i g
!
j should be equal to the scalar

products b
!

iG
!

j (they are both equal to δij), one has to choose

K̂ ¼ M̂
T

� ��1
: (13.16)

Now consider a crystal potential as a superposition of crystal potentials of substrate
and overlayer (at this stage we neglect all the effects of the lattice relaxation).
Then, it can be represented as a sum of two Fourier expansions:

V r
!� �

¼
X
mn

umn exp img
!
1r
! þ ing

!
2r
!� �

þ wmn exp imG
!

1r
! þ inG

!
2r
!� �h i
(13.17)

with the summation over all integer m and n. This sum can be represented as

V r
!� �

¼
X
mn

umn exp img
!
1r
! þ ing

!
2r
!� �

1þ wmn

umn
exp imΔ

!
1r
! þ inΔ

!
2r
!� �� �

,

(13.18)

where

Δ
!
1

Δ
!
2

 !
¼ G

!
1 � g

!
1

G
!

2 � g
!
2

 !
¼ K̂ � 1
	 
 g

!
1

g
!
2

� �
: (13.19)

These vectors can be considered as the reciprocal lattice vectors for the superlattice
(moiré lattice) with the elementary vectors

R
!
M1

R
!
M2

 !
¼ P̂ a

!
1

a
!
2

� �
, (13.20)

where, taking into account Eq. (13.16),
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P̂ ¼ K̂ � 1
	 
T� ��1

¼ 1� M̂
	 
�1

M̂ : (13.21)

Eq. (13.21) and (13.14) allow us to calculate the lengths of the unit vectors of the
moiré lattice and thus to determine its periods. The result is (Herman, 2012):

κ1 ¼ RM1

a1
¼ p1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p22 � 2p2 cos θ

p
1þ p1p2 � p1 þ p2ð Þ cos θ þ p1 � p2ð Þ cotω sin θ

,

κ2 ¼ RM2

a2
¼ p2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p21 � 2p1 cos θ

p
1þ p1p2 � p1 þ p2ð Þ cos θ þ p1 � p2ð Þ cotω sin θ

,

(13.22)

whereω is the angle between the vectors a!1 and a
!
2. For the case p1= p2= 1/(1+ δ),

we have

κ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þδð Þ2 þ 1�2 1þδð Þ cos θ

q � 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2þθ2

p , (13.23)

where the last equality is correct for small δ and θ. In this case, the period of the
superlattice is much larger than the lattice constant.

Now let us come back to our specific system. The first-principle calculations
(Giovannetti et al., 2007; Sachs et al., 2011; Bokdam et al., 2014) show that the
interlayer interaction energy is minimal when one carbon atom in the graphene
elementary cell is on the top of the boron atom and the other one is in the middle of
the boron–nitrogen hexagon. This destroys the equivalence of graphene sublattices
and breaks the inversion symmetry; the result is the formation of local gap opening
(mass term in the Dirac equation); see Section 1.3. The consequences for the
electronic properties will be discussed in the next sections. Note that to give
reliable results for the interlayer cohesive energy, the “first-principle calculations”
should go beyond the conventional density functional in the form of local density
approximation (LDA) or generalized gradient approximations (GGA); it is well
known that they cannot correctly describe the van der Waals interactions. Probably
the minimal approximation is the ab initio random phase approximation (RPA)
(Sachs et al., 2011). The corresponding results are shown in Fig. 13.3.

The calculations give an estimate of the constant W in the model (13.2) as
10 meV. Taking into account Eq. (9.157) and δ � 0.018, one can also roughly
estimate the right-hand side of Eq. (13.12) as tens of meV. This means that for the
case of perfect alignment, the competing energies of van der Waals interaction and
elastic deformation are comparable. When we rotate the sample, increasing mis-
orientation, we effectively enhance the role of elastic deformations. We do not
have any quantitative theory for the two-dimensional case, but both experiment
(Woods et al., 2014) and atomistic simulations (van Wijk et al., 2014) demonstrate
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the commensurate-incommensurate transition. For small enough angles θ < δ, the
atomic relaxation is very strong, and the optimized structure consists of domains of
more or less commensurate positions of graphene and hBN atoms separated by
“domain walls” with essentially different stacking. For larger angles, one can, in
the first approximation, describe the atomic structure as roughly unrelaxed (see
Fig. 13.4). This has very important consequences for the electronic properties,
which will be discussed in the next section.

13.3 Zero-mass lines and minimal conductivity

The nonequivalence of sublattices A and B for graphene on hBN results in the
appearance of mass term (see Eq. (5.1) and (5.2)) and in the local gap opening.
Importantly, for the optimized moiré structure, the function Δ can change the sign,
which results in the formation of zero-mass lines (Sachs et al., 2011); see Fig. 13.5.
According to the density functional calculations, the amplitude of the oscillations
of Δ is about tens of meV.

It turns out that the mass term can essentially be enhanced by correlation effects
(Song, Shytov, & Levitov, 2013; Bokdam et al., 2014). The ab initio GW
calculations give for the maximum local gap the value of the order of 300 meV
(Bokdam et al., 2014). Nevertheless, qualitatively the picture remains the same as
in the density functional (Sachs et al., 2011).

Existence of zero-mass lines (white lines at Fig. 13.5(c)) seems to be the most
important detail of this picture (Sachs et al., 2011; Titov & Katsnelson, 2014).
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Fig. 13.3 Total energies of graphene-hBN interlayer interaction per unit cell for
the optimal stacking.
(Taken with permission from Sachs et al., 2011.)
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Fig. 13.4 Distribution of carbon–carbon bond lengths in a graphene layer on a rigid
hBN substrate, according to atomistic simulations (van Wijk et al., 2014). (a)
Misorientation angle θ = 0, one can see a formation of domains of local commen-
surability. (b) Misorientation angle θ = 38�, atomic relaxation is almost negligible.
(Taken with permission from van Wijk et al., 2014.)

Fig. 13.5 (a) Top view of various stacking configurations for graphene at hBN;
carbon, boron and nitrogen atoms are shown in light gray, dark gray, and gray,
respectively. Configuration V is the most energetically favorable. (b) The frag-
ment of calculated moiré pattern for the perfect alignment (θ = 0). (c) The
corresponding distribution of the calculated “mass” term Δ; see Eq. (5.1).
(Reproduced with permission from Sachs et al., 2011.)
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These lines produce the basis of unidirectional linear-dispersion modes (Volkov &
Pankratov, 1986; Ludwig et al., 1994; Tudorovskiy & Katsnelson, 2012), similar
to edge modes in quantum Hall regime (Section 5.8).

Consider the Schrödinger equation with the Hamiltonian (5.1):

�iℏvσ!rþ σzΔ x; yð Þ	 

Ψ x; yð Þ ¼ EΨ x; yð Þ: (13.24)

First, consider the case of one-dimensional geometry, Δ = Δ(y). Then, we can try
the solution of Eq. (13.24) as

Ψ x; yð Þ ¼ exp
ipxx

ℏ

� �
ψ1 yð Þ
ψ2 yð Þ

� �
: (13.25)

For further simplifications, it is convenient to make a rotation in pseudospin space
(Tudorovskiy & Katsnelson, 2012)

η1 ¼
ψ1 þ ψ2ffiffiffi

2
p , η2 ¼

ψ1 � ψ2ffiffiffi
2

p : (13.26)

In this notation, Eq. (13.24) takes the form

vpx � E ℏv
∂
∂y

þ Δ

ℏv
∂
∂y

� Δ vpx þ E

0
BB@

1
CCA

η1

η2

0
@

1
A ¼ 0: (13.27)

Similar to the transition from Eq. (2.39) to (2.42), one can replace the matrix first-
order differential equation (13.27) by the scalar second-order differential equation

� d2

dy2
þ Δ2 yð Þ

ℏ2v2
� 1
ℏv

dΔ yð Þ
dy

� �
η1,2 ¼ λη1,2, (13.28)

in which sign + corresponds to the subscript 1 and sign – to the subscript 2,

λ ¼ E2 � v2p2x
ℏ2v2

: (13.29)

The connection formulas between η1 and η2 are given by the equations

E þ vpxð Þη2 ¼ Δ� ℏv
d

dy

� �
η1,

E � vpxð Þη1 ¼ Δþ ℏv
d

dy

� �
η2:

(13.30)

Eq. (13.28) has a very special property: For any function Δ(y) changing from
negative to positive values, it always has a solution with λ = 0. Actually, this
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equation is one of the prototype examples of supersymmetry in quantum mechan-
ics, and the existence of this zero mode is a consequence of the supersymmetry
(Gendenshtein & Krive, 1985). The solution can be found directly from the first-
order differential equation (13.30). If we assume that Δ > 0 at y !+∞ and Δ < 0
at y !�∞, the solution has the energy E = vpx, η1 = 0 and

η2 / exp �
ðy
0

dy0
Δ y0ð Þ
ℏv

0
@

1
A: (13.31)

In the opposite case Δ < 0 at y !+∞ and Δ > 0 at y !�∞ the solution has the
energy E =�vpx, η2 = 0 and

η1 / exp
ðy
0

dy0
Δ y0ð Þ
ℏv

0
@

1
A: (13.32)

In both cases, the corresponding modes have linear dispersion, unidirectional (their
group velocity is either parallel or antiparallel to x axis) and fully polarized in
pseudospin. For the second valley, the propagation direction and sublattice polar-
ization are opposite. The analogy with topologically protected zero modes con-
sidered in Section 2.3 is quite straightforward.

These modes exist only if there is a straight line where the function Δ(y) changes
sign (zero-mass line). One can also build the corresponding solution if the zero-
mass line is curved (Tudorovskiy & Katsnelson, 2012). Let us assume that this line
is given by the equation

x; yð Þ ¼ R
!

τð Þ, (13.33)

where τ is the path along the line, that is, d R
!
=dτ

��� ��� ¼ 1. In the vicinity of the line
(13.33) one can assume

x; yð Þ ¼ R
!

τð Þ þ ζ n
!

τð Þ, (13.34)

where n
!

τð Þ is the unit normal vector to the line (13.33). In curvilinear coordinates
(τ, ζ) the equation (13.23) takes the form

�iℏvσ! R
!0 τð Þ

1� ζ k τð Þ
∂
∂τ

� iℏvσ!n
!

τð Þ ∂
∂ζ

þ σzΔ

 !
Ψ ¼ EΨ, (13.35)

where R
!0 τð Þ ¼ d R

!
=dτ and k τð Þ ¼�R

!0 τð Þ� n!0 τð Þ is the curvature at the point τ
(DoCarmo, 1976). Since the Jacobian of the transformation (13.34) is not unity:

J ¼ ∂ x; yð Þ
∂ τ; ζð Þ ¼ 1� k τð Þζ , (13.36)
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one has to introduce a new wave function

Φ ¼
ffiffiffi
J

p
Ψ, (13.37)

which satisfies a “conventional” normalization conditionÐ
dτdζhΦjΦi = 1. (13.38)

In these new variables the modified Dirac equation (13.35) reads

�iℏvσ!R
!0 τð Þ

1�ζ k τð Þ
∂
∂τ
�iℏvσ! n

!
τð Þ ∂
∂ζ

þσzΔ�iℏvk τð Þ σ! n
!

τð Þ
2 1�ζ k τð Þ½ � �iℏvσ!R

!0 τð Þζ k0 τð Þ
2 1�ζ k τð Þ½ �2

 !
Φ¼EΦ:

(13.39)

Further analysis of this equation confirms a robustness of the unidirectional “zero”
modes for the curved lines, at least, assuming that the curvature radius is large
enough in comparison with the “Compton wavelength” Λ = ℏv/Δ(Tudorovskiy &
Katsnelson, 2012).

In the case when we have two parallel zero-mass lines situated at y = � b,
one can calculate the tunneling amplitude between the lines. One can expect from
Eq. (13.31) and (13.32):

T � exp � 1
ℏv

ðb
�b

dy Δ yð Þj j
2
4

3
5; (13.40)

a more accurate expression with a preexponential factor can be found in Tudor-
ovskiy and Katsnelson (2012).

If we assume for estimate Δ � 0.1 eV the Compton wavelength Λ � 10 nm, that
is, comparable with a typical moiré period ξ = κa; see Eq. (13.23). This means that
quantum effects such as tunneling are essential at the consideration of low-energy
spectrum of graphene at hBN. One can, nevertheless, consider a model under the
assumption

λ » Λ, (13.41)

which allows an accurate formal treatment. In this limit, the electronic transport in
graphene on hBN at the neutrality point can be described as a classical percolation
along zero-mass lines (Titov & Katsnelson, 2014). For the physical introduction to
the percolation theory, we refer to the books of de Gennes (1979) and Shklovskii &
Efros (1984); a more advanced review can be found in Isichenko (1992).

For the commensurate case, that is, for small misorientation angle, the super-
structure of graphene is optimized to minimize the van der Waals interaction
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energy with the hBN substrate. In this case, the regions of positive and negative
mass do not have equal areas, and there is an average macroscopic gap; according
to GW calculations (Bokdam et al., 2014) it is about 30 meV. Therefore, perfectly
aligned graphene is supposed to be insulating at low temperatures. Such behavior
was indeed observed for some samples but not for all of them (Woods et al., 2014);
probably in other samples the effect is hidden by some disorder in the substrate. In
the incommensurate phase, the average macroscopic gap is expected to be 0, as we
will discuss in detail in Section 13.5. Therefore, one can assume that the regions of
negative and positive masses have equal areas, with zero-mass lines in between
(Fig. 13.6). In this situation, the zero-mass lines form a critical percolation cluster
(de Gennes, 1979; Shklovskii & Efros, 1984; Isichenko, 1992).

In two dimensions, very powerful tools can be used to study the critical
percolation, such as conformal field theory (Di Francesco, Mathieu, & Sénéchal,
1997) and Schramm–Loewner evolution (Kemppainen, 2017). As a result, a
number of rigorous results have been obtained (Saleur & Duplantier, 1987;
Isichenko, 1992; Cardy, 2000; Smirnov, 2001; Beffara, 2004; Kager & Nienhuis,
2004; Hongler & Smirnov, 2011).

Let us calculate the minimal conductivity of graphene on hBN in the model of
classical percolation. Landauer–Büttiker formula for the conductance (3.16) takes
the form

G ¼ 2e2

h
Nlineh i, (13.42)

where hNlinei is the average number of the percolation paths connecting the sample
edges at x = 0 and x = Lx, and we take into account that the transmission
probability for each classical path is 1, and that there are two channels per path,
due to spin degeneracy. Indeed, as follows from our analysis after Eq. (13.30) only

Fig. 13.6 Percolation model. Gray and white hexagons represent the regions with
positive and negative masses, respectively, with counterpropagating modes at the
boundaries between them (shown by arrows).
(Reproduced with permission from Titov & Katsnelson, 2014.)
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one valley has zero mode propagating in the needed direction; therefore, the valley
degeneracy factor 2 should not be taken into account, contrary to the consideration
in Chapter 3.

For rectangular geometry in the limit Lx » Ly, where Ly is the sample width (cf.
Eq. (3.18)), hNlinei is given by the Cardy formula derived by the tools of conformal
field theory (Cardy, 2000)

Nlineh i ¼
ffiffiffi
3

p

2
Lx
Ly

; (13.43)

mathematically rigorous proof of this formula was given by Hongler and Smir-
nov (2011). Substituting Eq. (13.43) into Eq. (13.42) one can find for the
conductivity

σ ¼
ffiffiffi
3

p e2

h
: (13.44)

Importantly, the critical percolation path in two dimensions cannot be considered
as a conventional line directly connecting, more or less, the sample edges. It is a
fractal object, that is, a very thick and meandrous line. In particular, the hull
Hausdorff dimensionality of the critical percolation cluster (roughly speaking,
the fractal dimensionality of the percolation path) is equal to 7/4 (Saleur &
Duplantier, 1987).

13.4 Berry curvature effects

Appearance of the mass term in the Dirac Hamiltonian modifies our consideration
of the Berry phase in comparison with the massless case (see Section 2.4). Now we
have the effective Hamiltonian (2.87) with the vector

R
!

k
!� �

¼ 2 ℏvkx;ℏvkx;Δð Þ: (13.45)

The corresponding expression for the Berry curvature vector (2.86) is:

V
!

k
!� �

¼ ℏvð Þ2

2 ℏvkð Þ2 þ Δ2
� �3=2 ℏvkx;ℏvky;Δ

	 

(13.46)

(cf. Eq.(2.89)). Here we consider, to be specific, only electron band; for the hole
band, the sign will be opposite.

The appearance of z-component of the Berry curvature essentially changes the
electron dynamics in the presence of external electric and magnetic fields (Xiao,
Chang, & Niu, 2010; Gorbachev et al., 2014). For simplicity, we will restrict
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ourselves here to the case of electric field E
!

tð Þ only. We will use the gauge (7.2).

Then, the effect of the electric field on the state n k
!��� E

will be just a replacement

n k
!��� E

! n; k
!

tð Þ
��� E

, with

k
!

tð Þ ¼ k
! � e

ℏc
A
!

tð Þ, (13.47)

which leads immediately to the equation of motion

dk
!

tð Þ
dt

¼ e

ℏ
E
!

tð Þ: (13.48)

Now, we have to write the expression for the average value of the group velocity
in the state ju(t)i, which solves the Cauchy problem for the time-dependent
Schrödinger equation (2.76) and (2.78):

v
!
n ¼ 1

ℏ
u tð Þh j ∂Ĥeff

∂k
! u tð Þj i: (13.49)

The further derivation (Xiao, Chang, & Niu, 2010) is a modification of the general
consideration of the Berry phase in Section 2.4. We start with a general, formally

exact expansion of the solution in the basis n; k
!

tð Þ
��� E

:

u tð Þj i ¼
X
m

am tð Þ exp � i

ℏ

ðt
0

dt0Em k
!

tð Þ
� �2

4
3
5 m; k

!
tð Þ

��� E
: (13.50)

Substituting Eq. (13.50) into Eq. (2.76), and taking into account Eq. (2.77),
we find

dan tð Þ
dt

¼�
X
m

am tð Þ exp i

ℏ

ðt
0

dt0 En k
!

t0ð Þ
� �

� Em k
!

t0ð Þ
� �h i8<

:
9=
;

	 n; k
!

tð Þ
D ���r

k
! m; k

!
tð Þ

��� E d k
!

tð Þ
dt

:

(13.51)

The right-hand side of Eq. (13.51) is proportional to the electric field, due to
Eq. (13.48). Assuming that the electric field is weak, one can solve Eq. (13.51) by
iterations. Note that the term with m = n can be excluded by some phase shift
(actually, this is the Berry phase (2.81)), which is obviously irrelevant at
the calculation of (13.49). In the linear approximation, taking into account
Eq. (13.50) and integrating on time by part, one obtains:

366 Graphene on hexagonal boron nitride

https://www.cambridge.org/core


u tð Þj i ¼ exp � i

ℏ

ðt
0

dt0Em k
!

t0ð Þ
� �2

4
3
5

	 n; k
!

tð Þ
��� E

� iℏ
dk
!

tð Þ
dt

X
m6¼n

m; k
!

tð Þ
��� E m; k

!
tð Þ

D ���r
k
! n; k

!
tð Þ

��� E
En k

!
tð Þ

� �
� Em k

!
tð Þ

� �
8><
>:

9>=
>;:

(13.52)

At last, we use the identity (2.85) and substitute Eq. (13.52) into Eq. (13.49).
The result is expressed in terms of the Berry curvature vector (Xiao, Chang, & Niu,
2010):

v
!
n k

!� �
¼ 1

ℏ
r

k
!En k

!� �
þ e E

! 	 V
!

n k
!� �h i

: (13.53)

The term with the vector product represents anomalous group velocity. It is
relevant for the two-dimensional transport only if the vector V

!
n k

!� �
has a non-

vanishing component perpendicular to the plane, which is possible only at Δ 6¼ 0
(see Eq. (13.46)).

In this case, one can expect the current that is normal to the direction of the
electric field, like in the Hall effect. Assuming that E

! k 0x, one can calculate from
Eq. (13.53):

jy ¼ 2e
X
α

ð
d2k

2πð Þ2 vy k
!� �

f α k
!� �

¼ σxyE, (13.54)

where f α k
!� �

is the Fermi function for electron and hole bands (α = e,h)

σxy ¼ 2
e2

h

X
α

ð
d2k

2π
Vα
z k

!� �
f α k

!� �
, (13.55)

and the factor 2 is the spin degeneracy; note that Ve
z k

!� �
¼ �Vh

z k
!� �

¼ Vz k
!� �

.

Appearance of the “Hall-like” off-diagonal conductivity assumes broken time-
reversal symmetry; we already know that in the Dirac model with nonzero mass
this symmetry is broken, indeed (see Eq. (5.8)). It is restored if we take into
account the contribution of two valleys; one can prove that they are different by the
signs of Vz k

!� �
. As a result, the total charge current in y-direction vanishes, but

valley current and therefore valley Hall effect arises, with the corresponding valley
conductivity

σvxy ¼ σKxy � σK
0

xy ¼ 4
e2

h

X
α

ð
d2k

2π
Vα
z k

!� �
f α k

!� �
: (13.56)
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Substituting Eq. (13.46) into Eq. (13.55) and assuming zero temperature, we obtain
(Gorbachev et al., 2014):

σvxy ¼
2e2

h
	 1, μj j < Δ,

Δ= μj j, μj j 
 Δ,

�
(13.57)

where μ is the chemical potential. Valley Hall current can be transformed to
nonlocal charge current and thus detected, similar to our discussion in Section
11.6. This effect was observed by Gorbachev et al., (2014), which can be con-
sidered as a bright, experimental manifestation of Berry curvature for massive two-
dimensional Dirac fermions.

Another interesting effect related to the broken inversion symmetry and appear-
ance of the mass term in graphene at hBN is the optical second-harmonic gener-
ation (Vandelli, Katsnelson, & Stepanov, 2019). Note that in this case the Dirac
approximation is not sufficient, and one needs to work with the lattice model or, at
least, take into account the trigonal warping term (1.34).

13.5 Electronic structure of moiré patterns

Now, let us build the effective Hamiltonian describing the electronic structure of
graphene at hBN. We start with the consideration of a purely geometric moiré
structure without atomic relaxation. As explained in Section 13.2, this is a reason-
able approximation for the incommensurate moiré pattern, with large enough
misorientation angle. The effects of the atomic relaxation will be included later.

If we completely neglect electron–electron interactions and consider purely
single-electron tight-binding Hamiltonian it can be represented in the form

Ĥ ¼ ĤBN þ Ĥg þ Ĥ⊥, (13.58)

where ĤBN is the tight-binding Hamiltonian for hBN substrate, Ĥg is the Hamilto-
nian for graphene overlayer, and Ĥ⊥ is the interlayer-hopping Hamiltonian con-
necting the substrate and the overlayer. The basis vectors of our two subsystems
are connected by Eq. (13.13) and (13.14), and the reciprocal lattice vectors, Eq.
(13.15) and (13.16). For the case of triangular Bravais lattice, we are interested in
the minimal reciprocal lattice vectors, which are given by the expression (note that
we rotate our coordinate frame by 60

�
in comparison with that used in Eq. (1.12))

G
!

m¼0, ..., 5 ¼ R̂
2πm
6

� �
G
!

0, G
!

0 ¼ 1� 1
1þ δ

R̂ θð Þ
� �

0;
4π
3a

� �
, (13.59)

see Eq. (13.14).
In the lowest (that is, second) order in a small interlayer hopping, the effective

Hamiltonian for graphene overlayer can be written as
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Ĥ eff ¼ Ĥg þ Ĥ⊥
1

E � ĤBN
Ĥ⊥, (13.60)

cf. Eq. (12.63). We will postpone the derivation of the Hamiltonian Ĥ⊥ between
two misoriented layers (Lopes dos Santos, Peres, & Castron Neto, 2007; Bistritzer
& MacDonald, 2011; Kindermann & First, 2011; Mele, 2011) until the next
chapter, where we will consider twisted bilayer graphene. Here, we present just
the result, the effective Hamiltonian (13.60) for the closed vicinity of Dirac points
K and K’ (Kindermann, Uchoa, & Miller, 2012; Wallbank et al., 2013; Diez et al.,
2014). In the basis (1.27), the answer reads (Wallbank et al., 2013):

Ĥeff ¼ �iℏvτ0⊗ σ! rþ U0τ0⊗σ0 f 1 r
!� �

þ U3τz⊗σz f 2 r
!� �

þU1τz⊗ σ! e
!
z 	rf 2 r

!� �� �
þ U2τz⊗ σ! rf 2 r

!� �
, (13.61)

where e
!
z ¼ 0; 0; 1ð Þ is the unit vector along z-direction, and τ0, σ0 are unit matrices

in the valley and sublattice spaces, respectively,

f 1 r
!� �

¼
X5
m¼0

exp iG
!

mr
!� �

, f 2 r
!� �

¼
X5
m¼0

�1ð Þm exp iG
!

mr
!� �

, (13.62)

and we have taken into account only the largest terms, conserving inversion
symmetry. All contributions Ui in our model are of the order of t2⊥=ΔBN � 1
meV where ΔBN � 6 eV is the energy gap in hBN (Watanabe, Taniguchi, &
Kanda, 2004). Note however that the term U0, describing modulation of scalar
potential, has much larger contribution (of the order of 60 meV) from direct
Coulomb interaction between electrons in substrate and graphene overlayer (Wall-
bank et al., 2013).

The term proportional to U3 represents the local gap opening. This term is

proportional to the function f 2ð r!Þ, with average value equal to 0; this justifies our
assumption in Section 13.3 that the average mass vanishes in the incommensurate
phase of the moiré pattern. Note that our too-simplified tight-binding model
probably essentially underestimated this term. At least the first-principle calcula-
tions cited earlier give an order-of-magnitude larger amplitude of the local gap
fluctuations.

The terms proportional to U1 and U2 originate from the modulation of hopping
parameters and describe oscillating pseudomagnetic field (10.2). Both these terms
and the mass term are proportional to τz, that is, have opposite signs for the valleys
K and K’.

In the model (13.61) we deal with Dirac fermions under the action of periodic
scalar potential, vector potential, and mass term. Probably the most interesting
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effect is the formation of the secondary families of the Dirac points related to the
boundaries of the new “moiré” Brillouin zone, with the reciprocal lattice vectors
determined by Eq. (13.59) (note that at small δ and θ their length is very large:
jGj » π/a). This effect was predicted by Park et al. (2008). Following this work, let us
first consider the model with purely scalar periodic potential in one dimension:

Ĥ ¼ ℏv �iσx
∂
∂x

��iσy
∂
∂y

þ V xð Þ
ℏv

� �
, (13.63)

V(x) = V(x + ξ). (13.64)

To be specific, we assume that the average value of the periodic potential is 0 and
that it is even: V(x) = V(–x). The unitary transformation Ĥ 0 ¼ Û

þ
1 ĤÛ1, with the

matrix

Û1 ¼ 1ffiffiffi
2

p e�iα xð Þ=2 �eiα xð Þ=2

e�iα xð Þ=2 eiα xð Þ=2

� �
(13.65)

and

α xð Þ ¼ 2
ℏv

ðx
0

dx0V x0ð Þ (13.66)

gives us the new Hamiltonian

Ĥ 0 ¼ ℏv
�i

∂
∂x

�eiα xð Þ ∂
∂y

e�iα xð Þ ∂
∂y

i
∂
∂x

0
BB@

1
CCA: (13.67)

Its diagonal part has two eigenstates propagating along x-direction and opposite
to it:

Φ1j i ¼ eikx
1
0

� �
, Φ2j i ¼ e�ikx 0

1

� �
, (13.68)

with the same eigenenergy E = ℏvk (note that the direction of the pseudospin
vector and, therefore, of the x axis is now different from the original one, due to the
unitary transformation). The off-diagonal part depending on the periodic potential
induces back-scattering connecting these two waves.

Let us assume for simplicity that α is small. Then, we know from a general
theory of electrons in a weak periodic potential (Vonsovsky & Katsnelson, 1989)
that the latter can produce a strong effect only for the wave vectors close to
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Gn ¼ 2π
ξ
n, n ¼ �1, � 2, . . . (13.69)

One can expand the phase factor in the Taylor series

eiα xð Þ ¼
Xþ∞

n¼�∞

f ne
iGnx, (13.70)

the coefficients fn are all real for the even function V(x).
For small enough fn and for the wave vectors k � Gn one can project the

Hamiltonian (13.67) onto a two-dimensional basis

~Φ1

��  ¼ ei qxþGn=2ð Þxþiqyy 1
0

� �
, ~Φ2

��  ¼ ei qx�Gn=2ð Þxþiqyy
0
1

� �
, (13.71)

the vector q! is supposed to be small. The result is

Ĥ 0 ¼ ℏv qxσz þ f nqyσy
� �

þ ℏvπn
ξ

: (13.72)

After the second unitary transformation

Û2 ¼ 1ffiffiffi
2

p 1 1
�1 1

� �
(13.73)

the Hamiltonian (13.72) takes the form

Ĥ}¼ ℏv qxσx þ f nqyσy
� �

þ ℏvπn
ξ

: (13.74)

It has the eigenenergies

EðnÞ
� ðq!Þ ¼ �ℏv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2x þ f 2nq

2
y

q
þ ℏvπn

ξ
, (13.75)

corresponding to the anisotropic conical points, with essentially different group
velocities along x and y directions (we have to recall that these directions originate
from initial ones by two rotations, (13.65) and (13.73)).

Numerical solution of the two-dimensional analog of the problem (13.63) and
(13.64) shows the appearance of the additional conical points near the moiré
Brillouin zone face centers G

!
m=2; see Eq. (13.59) (Park et al., 2008). The same

conclusion also remains correct in the full model (13.61), with modulated scalar
potential, vector potential, and mass term (Wallbank et al., 2013).

When we go beyond the weak-coupling approximation and connect more than
two waves, the higher-order sequences of conical points arise. In the presence of
quantized magnetic field, each of these sequences results in a sequence of the
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corresponding Landau levels, leading to a very complicated “fractal” structure of
the energy spectrum, reminiscent of the so-called Hofstadter butterfly (Hofstadter,
1976). The cloning of conical point and Hofstadter butterfly effects were experi-
mentally observed in graphene at hBN (Dean et al., 2013; Hunt et al., 2013;
Ponomarenko et al., 2013).

Slotman et al. (2015) simulated the electronic structure of graphene at hBN,
taking into account the atomic relaxation effects; the latter turn out to be very
important for small enough misorientation angles. The corresponding results are
shown in Fig. 13.7.

The other important conclusion from these simulations is that the results are
very sensitive to the amplitude of the mass term; to have a reasonable agreement
with the available experimental data, many-body enhancement of the mass term
(Song, Shytov, & Levitov, 2013) should be probably taken into account. To
illustrate this sensitivity we show in Fig. 13.8 the computational results for the
optical conductivity for two different values of the amplitude of the mass term.

Apart from the cloning of the conical points, periodic fields acting on massless
Dirac fermions renormalize the value of the electron velocity in the Dirac point
(Tan, Park, & Louie, 2010; Dugaev & Katsnelson, 2012). This effect will be
important for our consideration of twisted bilayer graphene in the next chapter. It
can already be seen from Eq. (13.75). Here, we consider a more general case, with
periodic modulations of both scalar and (pseudo)vector potentials, but neglecting

relaxed

unrelaxed

D
O

S 
(1

/t
)

0

0.01

0.02

0.03

0.04

E/t

−0.1 −0.05 0 0.05 0.1

Fig. 13.7 Calculated density of states (DOS) for graphene on hBN for perfect
alignment (θ = 0); energy is in the units of the nearest-neighbor hopping param-
eter t = 2.7 eV. Minima of DOS correspond to additional conical points. One can
see that the atomic relaxation dramatically increases the effect of moiré on the
electronic structure.
(Reproduced with permission from Slotman et al., 2015.)
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the mass term (Dugaev & Katsnelson, 2012). The case of modulation of only the
vector potential was considered by Tan, Park, and Louie (2010).

Instead of Eq. (13.63), let us consider a more general Hamiltonian
(cf. Eq. (10.1))

Ĥ ¼ σ! �iℏvr� A
!

xð Þ
� �

þV xð Þ, (13.76)

both functions A
!

xð Þ and V(x) are supposed to be periodic, with the period ξ. The
corresponding Schrödinger equation for the spinor wave function Ψ = (ϕ, χ)T reads

E � V iℏv∂� þ A�

iℏv∂þ þ Aþ E � V

 !
φ

χ

 !
¼ 0, (13.77)

where ∂� = ∂/∂x � i∂/∂y, A� = Ax � iAy.
We want to build Bloch functions with the wave vector k « π/ξ. To this aim,

from the conventional k�p perturbation theory (Tsidilkovskii, 1982; Vonsovsky &
Katsnelson, 1989), we first need to find the solutions of Eq. (13.77) for k

!¼ 0:

E � Vð Þφþ iℏv
dχ
dx

þ A�χ ¼ 0,

E � Vð Þχ þ iℏv
dφ
dx

þ Aþφ ¼ 0:

(13.78)
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Fig. 13.8 Calculated optical conductivity (in the units of σ0 = πe2/2h, Eq. (7.36))
for the values of the mass term taken from the calculations (Bokdam et al., 2014)
(a) and for that term enhanced by a factor of 2 (b).
(Reproduced with permission from Slotman et al., 2015.)
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We are looking for the solutions with small energy. If we put in Eq. (13.78) E = 0,
one can derive the second-order differential equation for the function φ

d2φ

dx2
� d lnV

dx
þ 2iAx

ℏv

� �
dφ
dx

þ V2

ℏ2v2
� i

ℏv
dAþ
dx

þ i

ℏv
d lnV
dx

Aþ � AþA�
ℏ2v2

� �
φ ¼ 0

(13.79)

and the expression for the second component of the spinor

χ ¼ iℏv
V

dφ
dx

þ Aþ
V

φ (13.80)

(Dugaev & Katsnelson, 2012).
Now consider the case A

!
xð Þ ¼ 0; then Eq. (13.79) and (13.80) are dramatically

simplified. One can straightforwardly check that they have the solutions

φ1,2 xð Þ ¼ exp � i

ℏv

ðx
0

dx0V x0ð Þ
2
4

3
5,

χ1,2 xð Þ ¼ ∓ exp � i

ℏv

ðx
0

dx0V x0ð Þ
2
4

3
5:

(13.81)

In k�p approximation, the normalized basic functions can be chosen as

Ψ1 ¼ eik
!
rffiffiffiffiffi
2S

p φ1
χ1

� �
, Ψ2 ¼ eik

!
rffiffiffiffiffi
2S

p φ2
χ2

� �
, (13.82)

where S is the sample area. The Hamiltonian (13.63) in this basis has the form

Ĥ ¼ ℏv
�kx γ1kx � γ2ky

γ1kx � γ2ky kx

� �
, (13.83)

where

γ1 ¼
ðξ
0

dx

ξ
cos

2
ℏv

ðx
0

dx0V x0ð Þ
2
4

3
5,

γ2 ¼
ðξ
0

dx

ξ
sin

2
ℏv

ðx
0

dx0V x0ð Þ
2
4

3
5:

(13.84)

This Hamiltonian represents the anisotropic conical point with the velocities
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vx ¼ v
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ21

q
, vy ¼ vγ2: (13.85)

For the case of a purely vector potential (V = 0), Eq. (13.79) and (13.80) have two
solutions:

φ1 xð Þ ¼ exp
i

ℏv

ðx
0

dx0Aþ x0ð Þ
2
4

3
5, χ1 xð Þ ¼ 0 (13.86)

and

φ2 xð Þ ¼ 0 , χ2 xð Þ ¼ exp
i

ℏv

ðx
0

dx0A� x0ð Þ
2
4

3
5 : (13.87)

The effective Hamiltonian in this basis is

Ĥ ¼ ℏvffiffiffiffi
Λ

p 0 kx � iky
kx þ iky 0

� �
, (13.88)

where

Λ ¼
ðξ
0

dx1
ξ

exp � 2
ℏv

ðx1
0

dx0Ay x0ð Þ
2
4

3
5ðξ

0

dx2
ξ

exp
2
ℏv

ðx2
0

dx0Ay x0ð Þ
2
4

3
5 (13.89)

(Tan, Park, & Louie, 2010; Dugaev & Katsnelson, 2012). This Hamiltonian
describes isotropic conical (Dirac) point with the effective velocity

~v ¼ v=
ffiffiffiffi
Λ

p
: (13.90)

The expression for Λ can be rewritten as

Λ ¼
ðξ
0

dx1
ξ

ðξ
0

dx2
ξ

cosh
2
ℏv

ðx2
x1

dx0Ay x0ð Þ
2
4

3
5, (13.91)

which makes obvious Λ > 1 and, therefore, periodic (pseudo)magnetic field
always diminishes the Fermi velocity.

Similarly, one can derive a general expression for the effective (anisotropic)
Fermi velocities in the presence of both scalar and vector potentials. Also, one
can consider the “Fock” renormalization of the anisotropic Fermi velocity,
similar to Eq. (8.95). All of these results can be found in Dugaev and
Katsnelson (2012).
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13.6 Magnetic bands in graphene superlattices

Moiré superstructures in graphene on hBN provide a unique opportunity to better
understand the physics of Bloch electrons in magnetic field. For “normal” crystal
lattices, we are always in the regime (2.2), which is equivalent to the assumption

Φel « Φ0, (13.92)

where Φel = BSel is the magnetic flux per elementary cell, Sel is the area of the
elementary cell, and Φ0 is the flux quantum (2.52). For the moiré superlattices with
the period ξ ¼ ffiffiffi

3
p

aκ » a (see Eq. (13.23)), Φel is enhanced by the factor κ2 and
can be comparable with Φ0 in relatively easily achievable magnetic fields of the
order of 10 T.

Let us come back to our general consideration of Section 2.1 to study what
happens with electronic states when the condition (13.92) is violated. As a first
step, we need to study in a bit more detail the generalized translation operators
(2.15), which form the magnetic translation group (Brown, 1964; Zak, 1964).
Similar to Eq. (2.18), we derive:

exp
i

ℏ
R
!
i
^
Π
!

� �
exp

i

ℏ
R
!
j
^
Π
!

� �
¼ exp

i

ℏ
R
!
i þ R

!
j

� �^
Π
!

� �
exp

ie

ℏc
R
!
i 	 R

!
j

� �
B
!

� �
:

(13.93)

Note that if magnetic field is perpendicular to the crystal plane, then

R
!
i 	 R

!
j

� �
B
!¼ BSij, (13.94)

where Sij is the area of a parallelogram build on the vectors R
!
i and R

!
j and

Sij = nijSel, (13.95)

where nij is some integer number.
Let us assume first that

Φel = pΦ0, (13.96)

where p is an integer. Then, for any translation, vectors R
!
i and R

!
j

exp
ie

ℏc
R
!
i 	 R

!
j

� �
B
!

� �
¼ exp

ieΦel

ℏc
nij

� �
¼ exp 2πipnij

	 
 ¼ 1, (13.97)

and the magnetic translation operators

T̂ R
!
i

h i
¼ exp

i

ℏ
R
!
i
^
Π
!

� �
(13.98)
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commute:

T̂ R
!
i

� �
T̂ R

!
j

� �
¼ T̂ R

!
i þ R

!
j

� �
¼ T̂ R

!
j

� �
T̂ R

!
i

� �
: (13.99)

At the same time, each of them commutes with the Hamiltonian, as was discussed
in Section (2.1); see Eq. (2.13) and (2.16). This means that they have a common
system of the eigenfunctions; that is, we can choose the solution of the stationary
Schrödinger equation ψð r!Þ such that

T̂ R
!
i

� �
ψ r

!� �
¼ τ R

!
i

� �
ψ r

!� �
, (13.100)

where τ R
!
i

� �
is the eigenvalue of the operator T̂ R

!
i

� �
. Since the latter is unitary

(which follows from its definition (13.98)) τ R
!
i

� ���� ��� ¼ 1, and the only expression

consistent with Eq. (13.99) is τ R
!
i

� �
¼ eik

!
R
!

i , k
!

is a real vector. Therefore

Eq. (13.100) is an analog of the Bloch theorem (2.75).
Taking into account Eq. (2.15), one can rewrite Eq. (13.100) as

ψ r
! þ R

!
i

� �
¼ exp

iR
!
i

ℏ
^p
!

 !
ψ r

!� �
¼ exp i k

!
r
! � ie

2ℏc
R
!
i	 B

!� �
r
!

� �
ψ r

!� �
,

(13.101)

and

ψ r
! þR

!
i

� ���� ���2 ¼ ψ r
!� ���� ���2: (13.102)

This means that under the condition (13.96), the stationary electronic states can be
represented as waves propagating through the whole crystal without scattering or
localization, exactly like the Bloch states in an ideal crystal in the absence of
magnetic field. Obviously, the same statement is correct if, instead of Eq. (13.96),
we have the condition

Φel ¼ p

q
Φ0, (13.103)

with integer p and q. Indeed, in this situation we can just consider the elementary
cell with translation vectors multiplied by q. This statement was already used in
Section (2.9).

For the irrational elementary flux (in the units of flux quantum) the translation
operators (13.98) do not commute, which makes the use of noncommutative
geometry natural (Bellissard, van Elst, & Schulz-Baldes, 1994). In this case,
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electronic states and their energies form a complicated fractal structure known as
Hofstadter butterfly, as was mentioned in the previous section.

For two-dimensional free-electron gas, classical electron motion in the magnetic
field is a Larmor rotation and, therefore, is restricted by some finite region; in
quantum case this leads to Landau quantization of the electron energy spectrum. In
general, this should also be the case in the presence of periodic crystalline
potential. At the same time, under the condition (13.103), the electron motion
should be infinite, similar to the motion of Bloch electrons without magnetic field.
This leads to a very interesting effect, which was experimentally observed by
Krishna Kumar et al. (2018) and Krishna Kumar et al. (2017). It turns out that the
longitudinal conductivity of graphene superstructures on hBN oscillates with the
magnetic field, reaching local maxima at the condition (13.103); the pronounced
maxima are observed even for relatively large values as p = 4 and q = 11. These
oscillations are completely different from the conventional magneto-oscillation
effects considered in Section 2.8. They are observed at relatively high tempera-
tures, such as 100–200 K.
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14

Twisted bilayer graphene

14.1 Geometry and atomic structure

In this chapter we continue our consideration of large-scale periodic superstruc-
tures originated in misoriented Van der Waals heterostructures and discuss a
particular but very important case of twisted bilayer graphene (or similar problem
of graphene on graphite). In these situations, the lattice constants of both layers
are identical, and the period of moiré pattern is determined by Eq. (13.22) with
p1 = p2 = 1:

κ ¼ 1
2 sin θ=2ð Þj j : (14.1)

Generally speaking, the resulting structure is incommensurate except some special
values of the misorientation angle θ. For theory and simulations, these special
cases are important because they allow us to use well-developed solid-state theory
for crystals; the case of quasicrystals is much more difficult and will be briefly
touched on in the next section. Even for this case practical calculations are possible
only with the use of long-periodic crystalline approximants.

To build the supercell for the two layers, which exists in the commensurate case,
we will use the following procedure (Shallcross et al., 2010).

Suppose we succeed with the building of a common crystal lattice for two layers
rotated one with respect to the other by angle θ. Then, each vector of this common
lattice can be represented as a linear combination of the unit cell vectors in each
layer with integer coefficients:

r
!¼ m1a

!
1 þ m2a

!
2 ¼ n1R̂ θð Þa!1 þ n2R̂ θð Þa!2, (14.2)

where n1, n2, m1, m2 are integer, R̂ θð Þ is the rotation matrix (13.14), and the lattice
vectors are given by Eq. (1.10). Multiplying Eq. (14.2) by a

!
1 and by a

!
2 and

keeping in mind that a!2
1 ¼ a

!2
2 ¼ 3a2, a!1a

!
2 ¼ 3a2=2 one obtains
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m1 þ m2

2
¼ n1R11 þ n2R12,

m1

2
þ m2 ¼ n1R21 þ n2R22,

(14.3)

where

Rij ¼ 1
3a2

a
!
i�R̂ θð Þa!j: (14.4)

Solving linear equations (14.4) and substituting Eq. (1.10) and (13.14) into
Eq. (14.4) we find

m1

m2

� �
¼

cos θ � 1ffiffiffi
3

p sin θ � 2ffiffiffi
3

p sin θ

2ffiffiffi
3

p sin θ cos θ þ 1ffiffiffi
3

p sin θ

0BB@
1CCA n1

n2

� �
: (14.5)

All matrix elements in Eq. (14.5) should be rational which requires

1ffiffiffi
3

p sin θ ¼ k1
k3

, (14.6)

cos θ ¼ k2
k3

, (14.7)

where all ki are integer. They should satisfy Diophantine equation

3k21 þ k22 ¼ k23: (14.8)

Its solution is equivalent to finding all rational points lying at the ellipse
3x2 + y2 = 1. The general solution is

k1 = 2pq, k2 = 3q2 � p2, k3 = 3q2 + p2, (14.9)

with arbitrary integer p and q (for the proof see Shallcross et al., 2010). Substitut-
ing Eq. (14.9) into Eq. (14.7) we find

cos θ ¼ 3q2 � p2

3q2 þ p2
: (14.10)

To find the supercell lattice vectors we need to substitute Eq. (14.6) and (14.7) into
Eq. (14.5):

m1

m2

� �
¼ 1

k3

k2 � k1 �2k1
2k1 k2 þ k1

� �
n1
n2

� �
: (14.11)
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The solution of these Diophantine equations is quite cumbersome, and we refer the
reader to Shallcross et al. (2010). The answer depends on the parameter

δ ¼ 3
gcd p; 3ð Þ , (14.12)

where gcd(m, n) is the greatest common divisor of the natural numbers m and n,
that is, δ = 1 if 3 divides p, and δ = 3 otherwise. For δ = 1 the unit vectors of the
supercell can be chosen as

t
!
1 ¼ 1

γ
pþ 3q
�2p

� �
, t

!
2 ¼ 1

γ
2p

�pþ 3q

� �
, (14.13)

where

γ = gcd (3q + p, 3q� p). (14.14)

Depending on p and q, γ can take one of the following values: 1, 2, 3, or 6
(Shallcross et al., 2010). For δ = 3 we have instead of Eq. (14.13)

t
!
1 ¼ 1

γ
�p� q
2q

� �
, t

!
2 ¼ 1

γ
2q

�pþ q

� �
: (14.15)

The number of atoms in the elementary supercell is given by the expression

N ¼ 4
t
!

1 � t
!
2

��� ���
z

a
!

1 � a
!
2

�� ��
z

¼ 12

δγ2
3q2 þ p2
� �

, (14.16)

where the factor 4 originates from two layers and two atoms per elementary cell in
each layer. Keeping in mind Eq. (14.10) one can rewrite Eq. (14.16) as

N ¼ 4
t
!
1 � t

!
2

��� ���
z

a
!
1 � a

!
2

�� ��
z

¼ 12

δγ2
p2

sin 2
θ
2

: (14.17)

At the same time, the number of atoms per moiré period (14.1) is

Nm ¼ 4κ2 ¼ 1

sin 2
θ

2

, (14.18)

with the same origin of factor 4. For some cases (e.g., p = 1 and odd q) N = Nm,
but, in general, the supercell contains several moiré periods and N > Nm (Shall-
cross et al., 2010).

Some illustrations of the superlattice are shown in Fig. 14.1.
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Similar to the case of graphene on hBN (Section 13.2) one can expect that,
generally speaking, atomic relaxation should be essential. Unfortunately, for the
two-dimensional case, we do not yet have an analytical theory similar to Frank &
van der Merwe (1949) for the one-dimensional situation. The issue was investi-
gated by atomistic computer simulations (van Wijk et al., 2015). Some of the
results are shown in Fig. 14.2. The obtained picture reminds vortex lattice with
atomic displacements circulated around each center of the moiré pattern.

Atomic relaxation also results in the modulation of interlayer distances
(Fig. 14.3). At the same time, the modulation of the in-layer bond lengths is
negligibly small (van Wijk et al., 2015). Importantly, relaxation effects in the
interlayer distances decrease with the increase in misorientation angle.

q
t1

a1

a2

t2

(a)

am = 27.3 Å
q = 5.2°

(b)

am = 24.5 Å

θ = 5.7°

(c)

Fig. 14.1 (a) Schematic construction of supercell for twisted bilayer graphene or
graphene on graphite. (b) Four supercells with one moiré pattern in each of them.
(c) One supercell with three moiré patterns in it. The distance between moiré
patterns am is indicated by the arrow.
(Reproduced with permission from van Wijk et al., 2015.)
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Fig. 14.2 Atomic displacements at the relaxation for graphene on graphite for the
case corresponding to Fig. 14.1(c) (am = 24.5 Å).
(Reproduced with permission from van Wijk et al., 2015.)

3.3

3.4

3.5

0 10 20 30

z 
(Å

)

q (°)

(a)

(b)

Fig. 14.3 (a) Average interlayer distance after relaxation for different samples
of graphene on graphite as a function of misorientation angle; the shaded
area indicates the spreading between minimum and maximum of the interlayer
distance. (b) Distribution of interlayer distances for the case n = 216, m = 1,
θ = 0.46�, am = 302.6 Å.
(Reproduced with permission from van Wijk et al., 2015.)
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14.2 Dodecagonal graphene quasicrystal

If cosθ is irrational, the equation (14.10) for integer n,m does not have any
solutions, and we deal with incommensurate, or quasiperiodic case. The simplest
example is θ = 30�, cos θ ¼ ffiffiffi

3
p

=2. In this case, twisted bilayer graphene forms a
two-dimensional quasicrystal, which was experimentally realized by Yao et al.
(2018) and Ahn et al. (2018).

As follows from Fig. 14.3(b), for large misorientation angles, the atomic
relaxation effects can be neglected, and just bare (unrelaxed) structure should
provide a very good approximation for the real bilayer. It is shown in Fig. 14.4.
One can clearly see dodecagonal symmetry with the local rotation axis of 12th
order (p = 12). Only rotational symmetries of the order of p = 2, 3, 4, and 6 are
allowed by translational symmetry and may occur in crystals (Vonsovsky &
Katsnelson, 1989).

Three-dimensional quasicrystals are well known and relatively well studied
(Shechtman et al., 1984; Guyot, Kramer, & de Boissieu, 1991; Mermin, 1992;
Goldman & Kelton, 1993; Lifshitz, 1997; Quilichini, 1997). In the case of twisted
bilayer graphene we deal with two-dimensional quasicrystals. Contrary to the
three-dimensional case, in this new system one can study ultrarelativistic particles
in incommensurate external potential. Indeed, direct measurements of angle-
resolved photoelectron spectra (ARPES) show 12 Dirac (conical) points connected
by intervalley scattering (Umklapp processes). This field is very young, and now
we only have first attempts to theoretically consider electronic structure of such

Fig. 14.4 Atomic structure for the bilayer graphene twisted by θ = 30�; the atoms
in two different layers are shown in black and gray, respectively.
(Courtesy Guodong Yu and Shengjun Yuan.)
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systems (Moon, Koshino, & Son, 2019; Yu et al., 2019). In Fig. 14.5 the electronic
density of states of graphene quasicrystal is shown, one can see numerous add-
itional Van Hove singularities associated to the formation of Dirac points of next
generations; compare with Section 13.5.

14.3 Electronic structure of twisted bilayer graphene

The electronic structure of twisted bilayer graphene can be considered in a
close analogy to the case of graphene on hBN (Section 13.5), with obvious
modifications. In particular, in Eq. (13.6), instead of second-order contributions

of the interlayer hopping we have just the first-order term: Ĥ⊥
1

E�ĤBN
Ĥ⊥ ! Ĥ⊥.

Essential simplifications happen for the case of a small misorientation angle θ in
the continuum approximation, that is, for the electronic states in the vicinity of
conical points K and K0 Eq. (1.13) (Lopes dos Santos, Peres, & Castro Neto, 2007;
Shallcross et al., 2010; Bistritzer & MacDonald, 2011). For small θ, intervalley
scattering processes are negligible, and we can restrict ourselves to considering the
vicinity of the K point only. The position of the K point in the second (rotated)
layer is given by the vector

K
!θ ¼ R̂ θð Þ K!¼ K

! þΔ K
!
, (14.19)

Energy – Ef (eV)

Fig. 14.5 Electronic density of states for the bilayer graphene twisted by θ = 30�
(gray dashed line) in comparison with single-layer graphene (black solid line); the
calculations are done within a tight-binding model.
(Courtesy Guodong Yu and Shengjun Yuan.)
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where

Δ K
!� θ^z!� K

!
, (14.20)

and ^z! is the unit vector in z direction; Eq. (14.20) is valid in the first order in θ.
Then, without taking into account interlayer hopping, the Hamiltonian of two

nonconnected graphene layers can be derived from Eq. (3.1) by the corresponding
changes of the coordinate system:

Ĥ0 ¼ ℏv
X
k
!

bΦþ
1k
! σ!

k
! þ Δ K

!

2

 !
Φ̂

1k
! þ bΦþ

2k
!σ
!θ k

! � Δ K
!

2

 !
Φ̂

2k
!

" #
, (14.21)

where

Φ̂
ik
! ¼ Ψ̂

i, k
!�ΔK

!
=2

(14.22)

are spinor electron annihilation operators in the corresponding layer i= 1,2 and we
shift the k-space k

!!k
! �Δ K

!
=2, with plus sign for the first layer and minus sign

for the second layer,

σ!θ ¼ exp iθσz=2ð Þ σ! exp �iθσz=2ð Þ (14.23)

are the rotated Pauli matrices.
To model the interlayer-hopping Hamiltonian, we will take into account,

following Lopes dos Santos, Peres, and Castro Neto (2007), only the hoppings
from each site in layer 1 to the neighboring sites in layer 2 for each sublattice. The

vectors ρ
!αβ between the atom situated in the sublattice α = A, B of the first layer

near the point r! and the neighboring atom belonging to the sublattice β = A, B, and

therefore the corresponding matrix elements tαβ⊥ r
!� 	

¼ t⊥ ρ
!αβ
�� ��� 	

, are dependent

on r
!, which is clearly seen in Fig. 14.1. The total single-electron Hamiltonian in this

model takes the form (Lopes dos Santos, Peres, & Castro Neto, 2007)

Ĥ ¼ Ĥ0 þ
X
k
!
G
!

bΦþ
1k
! t̂⊥ G

!� 	
Φ̂

2k
! þ h:c:

h i
, (14.24)

where G
!

are reciprocal vectors of the supercell, and t̂⊥ G
!� 	

is the matrix with the
matrix elements

tαβ⊥ G
!� 	

¼
ð
d2rtαβ⊥ r

!� 	
exp iK

!θ ρ!αβ r
!� 	

� i G
!

r
!h i

: (14.25)

For small θ, further simplifications are possible (Lopes dos Santos, Peres, & Castro
Neto, 2007; Bistritzer & MacDonald, 2011).
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Now we can use the Hamiltonian (14.24) to find the effective energy spectrum
for the layer 1 in the presence of interlayer hopping. It turns out that in the
continuum model considered here, the only effect is the renormalization of the
Fermi velocity, the spectrum remains isotropic and no gap is open. The perturb-
ative result in t⊥ for this renormalization reads (Lopes dos Santos, Peres, & Castro
Neto, 2007):

~v
v
¼ 1� 9α2, α ¼ t⊥

ℏvΔK
: (14.26)

A more accurate consideration within the consequent k�p perturbation theory gives
the result also valid for α � 1 (Bistritzer & MacDonald, 2011):

~v

v
¼ 1� 3α2

1þ 6α2
: (14.27)

For α ¼ 1=
ffiffiffi
3

p
, the Fermi velocity tends to 0. Estimating t⊥ from experimental data

for graphene, one can find that it happens at the “magic angle” θ � 1.05∘;
numerical analysis beyond Eq. (14.27) demonstrates existence of other magic
angles at large α: θ � 0.5∘; 0.35∘; 0.24∘; 0.2∘, etc. (Bistritzer & MacDonald,
2011). Other calculations give slightly different values of the largest magic angle,
θ � 1.5∘ (Suárez Morell et al., 2010) and θ � 1.08∘ (Fang & Kaxiras, 2016).

Numerical calculations cited previously demonstrate that at the magic angles the
electron velocity (almost) vanishes, not only at the conical points but along the
whole lines, that is, a flat band is formed. Importantly, for undoped case, it lies
exactly at the Fermi energy. Experimentally, a formation of the flat bands in magic-
angle twisted bilayer graphene was studied by Kim et al. (2017).

This situation is very special. In principle, flat bands at the Fermi energy can
originate from electron–electron interactions. This was postulated and studied
phenomenologically, within Landau Fermi-liquid theory, in terms of a so-called
“Fermi condensation” (Khodel & Shaginyan, 1990; Volovik, 1991; Nozieres,
1992; Zverev & Baldo, 1999). A specific microscopic scenario of the flat band
formation due to many-body effects (closeness of the Fermi energy to Van Hove
singularity in two-dimensional strongly correlated systems) was considered by Irkhin,
Katanin, and Katsnelson (2002) and by Yudin et al. (2014); it was suggested in the
first of these papers that this phenomenon can be important for physics of high-
temperature superconductivity in cuprates. In the case of twisted bilayer graphene, we
deal with the formation of flat electron bands already in single-electron approxima-
tion. This case is not unique, and sometimes flat bands are induced and protected by
topological considerations (Heikkilä, Kopnin, & Volovik, 2011).

Irrespective to the origin of the flat band at the Fermi energy, its existence
unavoidably assumes the crucial role of the many-body effects. The prototype
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example is the physics of quantum Hall systems (Prange & Girvin, 1987). Indeed,
a formation of Landau levels instead of continuum single-electron spectrum
projects kinetic energy to 0 and opens a way for numerous many-body instabilities,
including formation of incompressible electron liquid, responsible for fractional
quantum Hall effect, quantum Hall ferromagnetism, different types of charge
ordering, etc. If we recall the discussion of the Stoner criterion of itinerant-electron
magnetism in Section 12.1, the key point there was Eq. (12.21), meaning that for a
very high density of states at the Fermi energy N(εF) one can reoccupy electron
states near the Fermi energy with a very small energy cost. The flat band means
N(εF)!∞. Apart from ferromagnetism, a high density of states at the Fermi energy
is favorable for superconductivity (Volovik, 2018) and for different types of lattice
instability (Katsnelson, Naumov, & Trefilov, 1994). These different types of
instabilities (and many others, such as spin density wave, charge density wave,
etc.) influence one another and suppress competing instability channels, which
results in a very complicated phase diagram (Irkhin, Katanin, & Katsnelson, 2001;
Katanin & Kampf, 2003). The problem of interacting electrons with flat bands is
extremely complicated, but we can be sure that something interesting happens.

And it does! Cao et al. (2018a) discovered an insulating behavior in twisted
bilayer graphene at the magic angle θ � 1.1∘, which is supposedly caused by
many-body effects (Mott insulator, Wigner crystal . . .). In the doped case, the
system becomes superconducting (Cao et al., 2018b). Currently this is a subject of
very intensive experimental and especially theoretical studies.
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15

Many-body effects in graphene

15.1 Screening and effective interactions

Most of the consideration in this book assumes the picture of noninteracting
electrons (except some sections in Chapters 7, 8, and 12). The reason for this is
that, as we already know after 15 years of graphene research, this picture describes,
at least qualitatively and in many cases even quantitatively, basic electronic
phenomena in graphene. At the same time, this fact itself requires a justification,
since electron–electron interaction in graphene is by no means weak (see
Eq. (7.90)); moreover, even at the Hartree–Fock level it can result in an essential
reconstruction of the electron energy spectrum (Section 8.4). Here, we systematic-
ally discuss the role of electron–electron interactions in graphene. In this chapter
we will work with the full electronic structure of honeycomb lattice rather than
with the Dirac approximation. The reason is that many-body effects involve virtual
electron–hole excitations, which are distributed over the whole band, even if the
real electrons or holes live in the vicinity of the conical points. In particular, these
virtual excitations determine screening of the effective interactions.

The simplest way to describe these effects is the use of random phase approxi-
mation (RPA), similarly to how we did it in Sections 7.6 and 7.7 for the case of
Dirac electrons. Let us first introduce this approximation for the general case. Here
we will follow Vonsovsky & Katsnelson (1989).

Let the single-electron Hamiltonian have eigenstates ψνð r!Þ, the corresponding
eigenenergies Eν, and the equilibrium occupation numbers fν = f(Eν), where f(E) is
the Fermi function. Then, under the action of perturbation described by the
potential energy

V r
!
; t

� �
¼ V r

!� �
exp �iωt þ δtð Þ

��� δ!þ0:, (15.1)

the single-particle density matrix (2.170) will have, in the linear approximation in
V, the nonequilibrium contribution ρ̂0 exp �iωt þ δtð Þ δ!þ0j with
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ρ0νν0 ¼
f ν � f v0

Eν0 � Eν þ ℏ ωþ iδð ÞV νν0 (15.2)

(cf. Eq. (2.175)). The electron-density operator

N̂ r
!� �
¼ δ r

!� r
!0

� �
(15.3)

has matrix elements

Nνν0 ¼
ð
d r
!0 ψ∗

ν r
!0
� �

δ r
!� r

!0
� �

ψν0 r
!0
� �

¼ ψ∗
ν r
!� �

ψν0 r
!� �

: (15.4)

Then, using Eq. (2.176), one finds for the perturbation of electron density, the

expression δnð r!Þ exp �iωt þ δtð Þδ!þ0 where

δn r
!� �
¼
ð
d r
!0 Π r

!
; r
!0

� �
V r
!0
� �

, (15.5)

Π r
!
; r
!0

� �
¼
X
νν0

f v � f ν0
Eν0 � Eν þ ℏ ωþ iδð Þψ

∗
ν0 r
!� �

ψν r
!� �

ψ∗
ν r
!0
� �

ψν0 r
!0
� �

(15.6)

is the polarization operator (cf. Eq. (7.75) and (7.76)).
At last, we assume a purely electrostatic (Hartree-like) relation between the

external potential Uð r! tÞ and the total potential Vð r! tÞ, similar to Eq. (7.104):

V r
!� �
¼ U r

!� �
þ e2

ð
d r
 0 δn r

!0
� �

r
!� r

!0�� �� : (15.7)

Substituting Eq. (15.5) into Eq. (15.7) we obtain

V r
!� �
¼
ð
d r
!0 ε�1 r

!
; r
!0

� �
U r
!0
� �

, (15.8)

where ε̂�1 is the inverse to the operator of dielectric permittivity

ε r
!
; r
!0

� �
¼ δ r

!� r
!0

� �
þ e2

ð
d r
!00

Π r
!00; r!0
� �
r
!� r

!00�� �� : (15.9)

In principle, this function determines the screening of external potential rather than
the potential of interelectron Coulomb interaction

vC r
!
; r
!0

� �
¼ e2

r
!� r

!0�� �� ; (15.10)
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however, within the RPA we neglect this difference and determine the effective
potential of interelectron interaction as

v̂eff ¼ ε̂�1v̂C (15.11)

(for details, see Giuliani & Vignale, 2005).
For Dirac electrons and for the static case (ω = 0), the Coulomb potential is

weakened by the dielectric constant (7.89). The first-principle calculation for the
case of finite wave vectors q (van Schilfgaarde & Katsnelson, 2011) shows that the
screening drops quite quickly with the wave vector (Fig. 15.1).

In the rest of this chapter we will discuss many-body effects in graphene for the
model, including only pz electronic states. This model contains only one electron
state per site and can be described, in the simplest approximation, by the
Hamiltonian

Ĥ ¼
X
ijσ

0
tijĉ
þ
iσ ĉjσ þ U

X
i

n̂i"n̂i# þ 1
2

X
ij

0
Vijn̂in̂j, (15.12)

where ĉþiσ, ĉiσ are electron creation and annihilation operators on site i with spin
projection σ

n̂iσ ¼ ĉþiσ ĉiσ, n̂i ¼
X
σ

n̂iσ (15.13)

are electron occupation number operators, and sum with prime means the summa-
tion over i 6¼ j. Without the last term, this model coincides with the Hubbard model
(12.1) with Hubbard on-site interaction U; Vij are intersite interaction parameters.
Note that even in the single-band approximation, the full many-body Hamiltonian

0 0.1 0.2 0.3 0.4
1

1.5
2

2.5
3

3.5 LDA
QSGW

e 2D(q,z = 0)

q

Fig. 15.1 Fourier component of two-dimensional static dielectric permittivity
describing a screening in graphene plane (z = 0) as a function of dimensionless

wave vector �q ¼ qalat=2π (alat ¼
ffiffiffi
3
p

a is the lattice constant for graphene) along
(10) direction. Squares and circles show different methods of electronic structure
calculations (local density approximation versus quasiparticle self-consistent
GW); one can see that the results are insensitive to this difference.
(Reproduced with permission from van Schilfgaarde & Katsnelson, 2011.)
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contains many more terms, such as exchange interactions, many-body contribution
to hopping, etc. (Schubin & Wonsowski, 1934; Vonsovsky & Katsnelson, 1979).

The point is that when we eliminate from the Hamiltonian all other states except
pz, we have to take into account their effect on the interactions within the pz band
via screening. Currently, the only practical way to do this from the first principles
is to use RPA, that is, Eq. (15.6), (15.9), and (15.11). However, we should exclude
from the double sum in Eq. (15.6) the transitions from pz states to pz states because
these kinds of processes will be taken into account when we treat the Hamiltonian
(15.12) by other methods (such as quantum Monte Carlo, see Section 15.4), and
we want to avoid double counting. This corresponds to the constrained RPA
(cRPA) method (Aryasetiawan et al., 2004). The corresponding calculations for
the case of graphene were performed by Wehling et al. (2011).

First of all, we cannot expect any change of asymptotics of the effective
potential Vij = V(rij) in the limit of large distances rij ! ∞. Indeed, after elimin-
ation of the virtual transitions around conical point we have Π(q,ω = 0) / q2 at
q ! 0 (see Eq. (7.94)), and vC(q) / 1/q (see Eq. (7.79)); therefore, the dielectric
permittivity ε(q,ω = 0)! 1 at q! 0, which means inefficient screening at large
distances. This can also be proven in a purely phenomenological way, within the
electrodynamics of continuous media (Emelyanenko & Boinovich, 2008; Wehling
et al., 2011).

At the same time, for small distances the screening effect is quite essential.
According to Wehling et al. (2011), it decreases the parameter U from its bare (that
is, Hartree–Fock) value 17.0–9.3 eV, the nearest-neighbor interaction parameter
V01 from 8.5 eV to 5.5 eV, and the next-nearest-neighbor interaction parameter V02

from 5.4 eV to 4.1 eV. Starting from the third neighbors (r � 2a) the static
screened potential (Wehling et al., 2011) can be approximated by a simple formula
(Astrakhantsev et al., 2018)

V rð Þ ¼ A

r=að Þ þ C
, (15.14)

with A = e2/a = 10.14 eV, C = 0.82.
The effective interaction (15.11) is actually frequency dependent. However, this

dependence is not very essential for the frequency range of the order of 10 eV, that
is, roughly half the width of the pz band (Wehling et al., 2011). Further, we will
discuss only statically screened effective interaction.

The screening of the effective pz–pz interaction by other graphene bands does
not look very strong (it changes from the factor of the order of 2 for the on-site
interaction parameter U and decreases to 1 with the interatomic distance increase).
Nevertheless, as we will see in Section 15.4, it results in important physical
consequences.
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15.2 Mapping onto the Hubbard model

The simpler the Hamiltonian, the more accurately one can study its properties. In
particular, the Hubbard model (12.1) is definitely simpler than the more complete
model (15.12), and for many applications it would be nice to have the Hubbard
model for graphene derived from the first principles. At the same time, long-range
interactions in graphene are important and by no means small, and we cannot just
neglect the terms with Vij . The effective Hubbard model for graphene was built by
Schüler et al. (2013) by the use of Peierls–Feynman–Bogolyubov variational
principle (Peierls, 1938; Feynman, 1955; Bogolyubov, 1958; Feynman, 1972).
This is a very useful tool, providing a general method how to map in an optimal
way, a more complicated Hamiltonian to a simpler one. Since it is not very well
known in the condensed-matter community, we present here a proof of this
variational principle following a recent book by Czycholl (2008).

We want to map the Hamiltonian Ĥ on the Hamiltonian Ĥ
∗
, dependent on some

trial parameters. We are going to find these parameters from a minimization of a
trial free energy of the system. The equilibrium (Gibbs) density matrices for these
systems are

ρ̂ ¼ eβ F�Ĥð Þ, ρ̂ ∗ ¼ eβ F∗�Ĥ∗ð Þ, (15.15)

where β is the inverse temperature, and F and F* are the corresponding free energies.
Let us assume that the density matrices (15.15) are diagonal in the basis jni and jai,
respectively, with the eigenvalues ρn and ρ∗a . Of course, the set jni diagonalizes
the Hamiltonian Ĥ , and the set jai diagonalizes the Hamiltonian Ĥ

∗
.

One can prove an important inequality:

Trρ̂∗ ln ρ̂ � Trρ̂∗ ln ρ̂∗: (15.16)

Indeed,

Trρ̂∗ ln ρ̂ � ln ρ̂∗ð Þ ¼
X
a

ρ∗a ln ah jρ̂ aj i � ln ρ∗a
� �

: (15.17)

Taking into account that the set jni is complete, one can write

ln ah jρ̂ aj i ¼
X
n

ajnh ij j2 ln ρn: (15.18)

Substituting Eq. (15.18) into Eq. (15.17) we have

Trρ̂∗ ln ρ̂ � ln ρ̂∗ð Þ ¼
X
an

ρ∗a ajnh ij j2 ln ρn
ρ∗a
�
X
an

ρ∗a ajnh ij j2 ρn
ρ∗a
� 1

� 	

¼
X
n

ρn �
X
a

ρ∗a ¼ 1� 1 ¼ 0, (15.19)
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where we take into account that for any positive x, one has lnx � x � 1. This
proves Eq. (15.16).

Substituting Eq. (15.15) into Eq. (15.16), we have a very important inequality

F � F∗ þ Ĥ � Ĥ
∗

D E∗
, (15.20)

where h. . .i∗ means the average with the operator ρ̂∗. One can choose
the parameters entering Ĥ

∗
to make the right-hand side of Eq. (15.20) as

small as possible. Thus, we will have the best estimation of the free energy F
from above. This is the variational principle that we wanted to prove. Note
that if we choose Ĥ

∗ ¼ Ĥ0, we come to the conclusion that the first-order
perturbation correction always give a rigorous estimation for the free energy
from above.

Now let us proceed with the Hamiltonian (15.12). As a trial Hamiltonian, we
will use the Hubbard model (12.1) but with some effective on-site interaction
constant U*:

Ĥ
∗ ¼

X
ijσ

0
tijĉ
þ
iσ ĉjσ þ U∗

X
i

n̂i"n̂i#: (15.21)

In principle, we can also assume a renormalization of the hopping parameters
tij ! t∗ij , but let us try to keep the scheme as simple as possible (for a more general
consideration, see in ‘t Veld, 2019). Substituting Eq. (15.12) and (15.21) into
Eq. (15.20) we have

F � Ft ¼ F∗ þ U∗ � Uð Þ
X
i

n̂i"n̂i#

 �∗ þ 1

2

X
ij

0
Vij n̂in̂j

 �

:∗ (15.22)

To find the best possible value U*, we have to minimize the right-hand side of
Eq. (15.22). The necessary condition is

dFt

dU∗ ¼
dF∗

dU∗ �
X
i

n̂i"n̂i#

 �∗ þ U∗ � Uð Þ d

dU∗

X
i

n̂i"n̂i#

 �∗

þ 1
2

X
ij

0
Vij

d

dU∗ n̂in̂j

 �∗ ¼ 0:

(15.23)

According to the Hellmann–Feynman theorem, for any Hamiltonian dependent on
a parameter

dF λð Þ
dλ
¼ dĤ λð Þ

dλ

� 
, (15.24)
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therefore we have:

dF∗

dU∗ ¼
X
i

n̂i"n̂i#

 �∗

(15.25)

and

U∗ ¼ U þ 1
2

X
ij

0
Vij

∂U∗ n̂in̂j

 �∗P

l ∂U∗ n̂l"n̂l#

 �∗ , (15.26)

where ∂U∗ = d/dU∗. According to the particle number conservation

X
i

n̂i"n̂i# ¼
X
i

n̂i" Ne � n̂i# �
X
j 6¼i

n̂j

 !
¼ NeNe" � Ne" �

X
ij

0
n̂i"n̂j, (15.27)

where we take into account that n ̂i" 2 ¼ n̂i", Ne" ¼
P

i n̂i" is the total number of
spin-up electrons. Equivalently, we haveX

i

n̂i"n̂i# ¼ NeNe# � Ne# �
X
ij

0
n̂i#n̂j: (15.28)

Summing up Eq. (15.27) and (15.28) we obtain

X
i

n̂i"n̂i# ¼ Ne Ne � 1ð Þ
2

� 1
2

X
ij

0
n̂in̂j: (15.29)

At last, substituting Eq. (15.29) into Eq. (15.26) we find

U∗ ¼ U �
P0

ijV ij∂U∗ n̂in̂j

 �∗P0

ij∂U∗ n̂in̂j

 �∗ , (15.30)

which means that the effective Hubbard-U parameter is smaller than the initial
U-value by an averaged intersite interaction. Interestingly, if we assume that the
correlation function n̂in̂j


 �∗
is nonvanishing only at the neighboring sites, we have

a very simple result:

U∗ = U � V01. (15.31)

Calculations for graphene (as well as for some other sp materials) were performed
by Schüler et al. (2013). The density-density correlation function in the Hubbard
model n̂in̂j


 �∗
was calculated using the quantum Monte Carlo method (see later,

Section 15.4). As a result, the effective Hubbard parameter for graphene is
U∗ � 1.6t, instead of initial value U � 3.6t. Surprisingly, this value is quite close
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to the naïve estimate (15.31). It should be compared with the total bandwidth
W = 6t (Fig. 7.2): U∗ � W/4. In this sense, graphene should be considered as a
moderately correlated system.

15.3 Renormalization of the electron spectrum beyond
Dirac approximation

The long-range character of interelectron interactions already leads to an essential
renormalization of the Fermi velocity at the Hartree–Fock level (Section 8.4). In
Dirac approximation we can calculate this renormalization with only logarithmic
accuracy; see Eq. (8.93). Astrakhantsev, Braguta, and Katsnelson (2015) have
performed the calculations of the Hartree–Fock effective Hamiltonian for the
hexagonal lattice. Instead of Eq. (8.91), the additional contribution to the single-
electron Hamiltonian is

ĥ k
!� �
¼ σ̂x

2

X
k
!0

S k
!0
� �
S k
!0
� ���� ��� tanh

t S k
!0
� ���� ���
2T

V k
!� k

!0
� �

� δh k
!� �

σ̂x, (15.32)

where Sðk!Þ is given by Eq. (1.15), the bare energy spectrum by Eq. (1.16) (we take
into account only the nearest-neighbor hopping t), Vðk!Þ is the Fourier component
of static electron-electron interaction, and we put chemical potential to the neutral-
ity point: µ = 0.

The renormalized electron spectrum is determined by the expression

E k
!� �
¼ � tS k

!� �
þ h k

!� ���� ���: (15.33)

The computational results are shown in Fig. 15.2.
In the vicinity of Dirac points, Eq. (15.33) results in a renormalization of the

Fermi velocity

vR Tð Þ=v ¼ 1þ e2

4ℏε
ln

Λ
T

� 	
, (15.34)

where ε is the dielectric constant (7.89), and for the case of graphene on substrate
with dielectric constant εs, we have εext ¼ 1þεs

2 (see Eq. (7.84). For the case of
graphene at hBN, the parameter Λ is equal to 3.2 eV for the case of bare Coulomb
interaction and 2.4 eV for the case of screened Coulomb interaction (Astrakhant-
sev, Braguta, & Katsnelson, 2015).

The results can easily be generalized for the case of finite doping and compared
with available experimental data for graphene on hBN (Elias et al., 2011; Yu et al.,
2013). The agreement is quite good. This is not surprising since, due to a relatively
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large εext in this situation, interelectron interaction can be considered perturba-
tively. For the case of freely suspended graphene, with a large interaction param-
eter (7.90), much more sophisticated methods should be used. We will consider
them in the next section.

15.4 Quantum Monte Carlo results

What shall we do to solve quantum many-body (or quantum field) problem without
explicit small parameters? One of the most powerful modern techniques is the so
called quantum Monte Carlo (QMC) approach. A systematic derivation and even
explanation of this method goes far beyond the mathematical level adopted in this
book, therefore we just refer to monographs by Creutz (1983) and Gubernatis,
Kawashima, and Werner (2016) and to reviews by De Raedt and Lagendijk (1985)
and Foulkes et al. (2001). In particular, this method is the main technical tool
applied in quantum chromodynamics, a theory of strongly interacting quarks and
gluons (Creutz, 1983). The same approach was applied to graphene (Hands &
Strouthos, 2008; Drut & Lähde, 2009a; 2009b; Ulybyshev et al., 2013; Ulybyshev
& Katsnelson, 2015; Boyda et al., 2016; Astrakhantsev et al., 2018). Importantly,
for the case of zero doping (µ = 0) and when taking into account only the nearest-
neighbor hopping, due to electron–hole symmetry, QMC calculations for graphene
are free of fermionic sign problem, which restricts an accuracy of QMC calcula-
tions in a general case (De Raedt & Lagendijk, 1985).

Already the first calculations (Drut & Lähde, 2009a) led to a dramatic conclu-
sion that freely suspended graphene (εext = 1) is not semimetal: Many-body effects
transform it to an antiferromagnetic insulator with spontaneously broken chiral
symmetry, that is, symmetry between sublattices. The calculations were performed

E
ne

rg
y 

(e
V

)

Fig. 15.2 Energy spectrum of electrons with Coulomb (squares), screened
Coulomb (triangles) interactions, and no interaction (solid line) for T = 0.1 eV.
(Reproduced with permission from Astrakhantsev, Braguta, & Katsnelson, 2015.)

15.4 Quantum Monte Carlo results 397

https://www.cambridge.org/core


assuming a bare Coulomb interelectron interaction. Ulybyshev et al. (2013) has
demonstrated that this conclusion is wrong, with the screening of the Coulomb
interaction considered in Section 15.1 playing a crucial role. It turns out that freely
suspended graphene is situated at the conducting side of the semimetal–insulator
transition, in a full agreement with available experimental evidences. It becomes an
insulator if one increases the electron–electron interactions by a factor approximately
1.4; this is more or less the screening effect for intermediate distances. Ulybyshev
and Katsnelson (2015) have shown that graphene can be made insulating by creating
about 1% of empty sites which physically means either vacancies or sp3 impurities
like hydrogen or fluorine, as was discussed in Sections 6.5 and 6.6.

QMC method, being formally exact, allows us to clarify a controversial issue on
many-body renormalization of optical conductivity discussed in Section 7.3.
Boyda et al. (2016) have demonstrated that this renormalization is either absent
or numerically small; at least, theories predicted strong renormalization are in a
clear contradiction with the QMC computational results (Fig. 15.3).

At last, QMC calculations were used by Astrakhantsev et al. (2018) to study the
screening of static potential. The results are surprising: Despite that the interaction
constant (7.90) for freely suspended graphene is large, the RPA expression (7.89)
agrees very well with the QMC results. This is strange indeed, since the straight-
forward calculation of the higher-order corrections to the dielectric constant
(Sodemann & Fogler, 2012) predict quite strong deviations:

ε ¼ 1þ π
2
αþ 0:778α2 þ . . . (15.35)

1/e

Fig. 15.3 Renormalization of optical conductivity in comparison with its non-
interacting value (7.36). The factor 1/ε determines the enhancement of interelec-
tron interaction potential: V(r)! V(r)/ε. One can see that the dependence on the
interaction strength is rather weak.
(Adapted from Boyda et al., 2016.)

398 Many-body effects in graphene

https://www.cambridge.org/core


Anyway, it means that RPA works for graphene much better than one could
naïvely expect; however, the reasons for this good luck are currently unclear.

15.5 Many-body renormalization of minimal conductivity

We see that the interelectron–electron interaction cannot destroy semimetallic state
in graphene via spontaneously broken chiral symmetry. However, this is not the
final answer on the question whether an ideal, totally isolated, undoped graphene
will be conducting at zero temperature or not. As discussed in Chapter 3, its finite
conductivity arises from a very special mechanism, that is, electron tunneling via
zero modes of Dirac operator represented by evanescent waves (Fig. 3.1). In many-
body systems, any tunneling is, generally speaking, fragile. If we have a two-level
quantum mechanical system interacting with an environment (such as phonon
thermal bath), its tunneling probability between two states is suppressed by an
interaction with the environment (Caldeira & Leggett, 1983). If we have a system
of interacting electrons, the electron–hole continuum plays the role of dissipative
environment (Guinea, 1984). Guinea and Katsnelson (2014) applied this consider-
ation to the problem of minimal conductivity in graphene. Again, the mathematics
required to follow this theory are beyond the scope this book (everything is based
on Feynman path integral formulation of quantum mechanics); therefore, we will
present here only the initial formula and the final answer.

As a result of virtual electron–hole excitations, the probability amplitude of
electron motion along the trajectory x(τ) is multiplied by the suppression factor e-S,
where

S ¼ 1
2

ð∞
�∞

dτ

ðβ
0

dτ0
ð∞
�∞

dq

2π
exp iq x τð Þ � x τ0ð Þð Þ½ �V2 qð ÞT̂ n̂q τð Þn̂�q τ0ð Þ� �

, (15.36)

V(q) is the one-dimensional Fourier component of electron–electron interaction, β

is inverse temperature, n̂q τð Þ is the density operator, and T̂ is the symbol of time
ordering. Using the fluctuation-dissipation theorem (Zubarev, 1974; Vonsovsky &
Katsnelson, 1989; Giuliani & Vignale, 2005) the time-ordered correlator

T̂ n̂q τð Þn̂�q τ0ð Þ� �
can be expressed via imaginary part of dielectric function; for

the case of undoped graphene, the latter is given by Eq. (7.83) and (7.86).
Due to the long-range character of Coulomb interaction, the integral over q in

Eq. (15.36) is logarithmically divergent at q ! 0 and β ! ∞. For the geometry
considered in Section 3.2 and for zero temperature, the result reads (Guinea &
Katsnelson, 2014)
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S ¼ Lx
8πLy

α2

4
ffiffiffi
2
p þ α

ln
Lx
a
� ς ln

Lx
a
, (15.37)

where α = e2/ℏvε. This means that the tunneling probability (3.15) is multiplied
by the factor e�2S = (a/Lx)

2ς.
If temperature is not too low,

T >
ℏv
Lx

, (15.38)

the divergence is cut by the finite β rather than by the finite width of the sample,
and ln Lx

a ! ln t
T in Eq. (15.37). As a result, the conductance of the sample (3.16)

and therefore the conductivity is estimated as

σ � e2

h

T

t

� 	2ς

: (15.39)

The power-law temperature dependence of the conductivity at the neutrality point
was observed in an ultraclean graphene sample by Amet et al. (2013). The issue
definitely requires more experimental and theoretical studies but it can be that
the many-body effects do transform semimetallic graphene to insulating but
without broken symmetry and gap formation, due to suppression of the transport
via evanescent waves.
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