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Preface to the second edition

First of all, I still agree with everything that I wrote in the preface to the first
edition; however, I probably need to add a few words on the differences between
the second edition and the first.

As you can see, I have changed the title. In 2011 when I finished Graphene:
Carbon in Two Dimensions, there were no other books on graphene, and the
accuracy of the title was probably not so important. I would also like to emphasize
what is special about this book and in what respect it is different from the many
others that have appeared in the market in the meantime. To my knowledge, this is
the only book on graphene (yet) that focuses completely on fundamental issues of
physics and completely ignores all aspects of fabrication, devices, applications,
chemistry, etc. Hopefully, the new title, The Physics of Graphene, stresses this
point clearly enough and helps potential readers to avoid any disappointment if
they do not find something in the book which, in their mind, should be in a book on
graphene. Of course, I do not mean that these aspects are not important; I just
believe that I am not the proper person to write about them and that other people
can do that much better.

In the field of graphene, eight years is a very long period of time, when many
things have happened. To my surprise, when I started to work on the new edition,
I did not find anything that should be eliminated from the book because it turned
out to be fundamentally wrong or irrelevant for further development. Of course,
there were some inaccuracies and mistakes, which hopefully have been fixed now,
but even so, I think all old issues remain interesting and important. At the same
time, many new concepts and facts have appeared that should be reflected in the
new book. Therefore I have added three new chapters: Chapters 13 and 14
introduce the basic physics of an important new concept, van der Waals hetero-
structures, and Chapter 15 gives a very brief summary of our progress in under-
standing many-body effects in graphene. Eight years ago we had the feeling that a
single-particle picture of noninteracting Dirac fermions explained everything; this

ix


https://www.cambridge.org/core
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is no longer the case. Huge progress in the quality of graphene samples has opened
a way to essentially observe many-body features of the electronic spectrum near
the neutrality point.

My work on these subjects was essentially based on a collaboration with Nikita
Astrakhantsev, Viktor Braguta, Annalisa Fasolino, Andre Geim, Yura Gornos-
tyrev, Sasha Lichtenstein, Kostya Novoselov, Marco Polini, Burkhard Sachs, Guus
Slotman, Misha Titov, Maksim Ulybyshev, Merel van Wijk, Tim Wehling, and
Shengjun Yuan. Many thanks!

New material has also been added to the old chapters. The most important new
points are:

(1) We now understand the physics and mathematics of chiral tunneling in single-
and bilayer graphene much better, therefore Chapter 4 has been expanded.
These new results were obtained in collaboration with many people, and
I especially thank Koen Reijnders and Victor Kleptsyn.

(2) I'have added a new section to Chapter 5 on a spectral flow of Dirac operator in
multiconnected graphene flakes. Topological aspects of condensed matter
physics have become really hot of late, and this provides a nice and fresh
new example. This piece is based on our work with Vladimir Nazaikinskii, to
whom I also give thanks.

(3) Chapter 9 was essentially rewritten. I have added new material on mechanical
properties, which is based on our work with Jan Los and Annalisa Fasolino,
and on thermal expansion of graphene. I thank Igor Burmistrov, Igor Gornyi,
Paco Guinea, Valentin Kachorovskii, and Sasha Mirlin for collaboration and
useful discussions of this subtle issue. I also thank Achille Mauri who found
some inaccuracies in the old Chapter 9 and helped to fix them.

(4) In Chapter 11, I have added a discussion of edge scattering, which is based on
our work with Vitaly Dugaev, to whom I am very thankful for his collabor-
ation. Hydrodynamics of electronic liquid in graphene is a very fresh and
popular subject now, and I cannot avoid it. When I wrote this part, discussions
with Misha Titov and Marco Polini were very helpful.

(5) We now know much more about magnetism and spin-orbit effects in graphene
and related two-dimensional materials, therefore Chapter 12 has also been
updated. The common work with Andre Geim, Irina Grigorieva, Sasha Lich-
tenstein, Vladimir Mazurenko, and Sasha Rudenko provided essential insights
on my new understanding of the subject.

I would like to repeat all of my acknowledgments from the preface to the first
edition. Without all of these old and new collaborations and, of course, without full
support from my wife Marina, this book would be impossible.
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Preface to the first edition

I do not think that I need to explain, in the preface to a book that is all about
graphene, what graphene is and why it is important. After the Nobel Prize for
physics in 2010, everybody should have heard something about graphene. I do
need, however, to explain why I wrote this book and what is special about it.

I hope it will not be considered a disclosure of insider information if I tell you
that Andre Geim is a bit sarcastic (especially with theoreticians). Every time
I mentioned that I was somewhat busy writing a book on graphene, he always
replied “Go to Amazon.com and search for ‘graphene’.” Indeed, there are many
books on graphene, many more reviews, and infinitely many collections of papers
and conference proceedings (well, not really infinitely many ... in the main text
I will use the mathematical terminology in a more rigorous way, I promise). Why,
nevertheless, has this book been written and why may it be worthwhile for you to
read it?

Of course, this is a personal view of the field. I do love it, and it has been my
main scientific activity during the last seven years, from 2004 when graphene
started to be the subject of intensive and systematic investigations. Luckily, I was
involved in this development almost from the very beginning. It was a fantastic
experience to watch a whole new world coming into being and to participate in the
development of a new language for this new world. I would like to try to share this
experience with the readers of this book.

The beauty of graphene is that it demonstrates in the most straightforward way
many basic concepts of fundamental physics, from Berry’s phase and topologically
protected zero modes, to strongly interacting fluctuations and scaling laws for two-
dimensional systems. It is also a real test bed for relativistic quantum phenomena
such as Klein tunneling or vacuum reconstruction — “CERN on one’s desk.” I was
not able to find a book that focused on these aspects of graphene, namely on its role
in our general physical view of the world. I have tried to write such a book myself.
The price is that I have sacrificed all practical aspects of graphene science and

X1
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technology, so you will not find a single word here about the ways in which
graphene is produced, and there is hardly anything about its potential applications.
Well, there is a lot of literature on these subjects. Also, I have said very little about
the chemistry of graphene, which is an extremely interesting subject in itself. It
certainly deserves a separate book, and I am not chemist enough to write it.

The field is very young, and it is not easy to know what will not be out of date in
just a couple of years. My choice is clear from the contents of this book. I do
believe that it represents the core of graphene physics, which will not be essentially
modified in the near future. I do not mean that this is the most interesting part;
moreover, I am sure that there will be impressive progress, at least, in two more
directions that are hardly mentioned in the book: in the many-body physics of
graphene and in our understanding of electron transport near the neutrality point,
where the semiclassical Boltzmann equation is obviously inapplicable. I think,
however, that it is a bit too early to cover these subjects in a book, since too many
things are not yet clear. Also, the mathematical tools required are not as easy as
those used in this book, and I think it is unfair to force the reader to learn
something technically quite complicated without a deep internal confidence that
the results are relevant for the real graphene.

The way the book has been written is how I would teach a course with the title
“Introduction to the Theory of Graphene.” I have tried to make a presentation that
is reasonably independent of other textbooks. I have therefore included some general
issues such as Berry’s phase, the statistical mechanics of fluctuating membranes, a
quick overview of itinerant-electron magnetism, a brief discussion of basic none-
quilibrium statistical mechanics, etc. The aims were, first, to show the physics of
graphene in a more general context and, second, to make the reading easier.

It is very difficult to give an overview of a field that has developed so quickly as
has that of graphene. So many papers appear, literally every day, that keeping
permanently up to date would be an enterprise in the style of ancient myths, e.g.,
those of Sisyphus, the Danaides, and some of the labors of Hercules. I apologize
therefore for the lack of many important references. I tried to do my best.

I cannot even list all of the scientific reviews on the basic physics of graphene
that are available now (let alone reviews of applications and of popular literature).
Let me mention at least several of them, in chronological order: Katsnelson
(2007a), Geim and Novoselov (2007), Beenakker (2008), Castro Neto et al.
(2009), Geim (2009), Abergel et al. (2010), Vozmediano, Katsnelson, and Guinea
(2010), Peres (2010), Das Sarma et al. (2011), Goerbig (2011), and Kotov et al.
(2012). There you can find different, complementary views on the field (with the
possible exception of the first one). Of course, the Nobel lectures by Geim (2011)
and Novoselov (2011) are especially strongly recommended. In particular, the
lecture by Andre Geim contains a brilliant presentation of the prehistory and
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history of graphene research, so I do not need to discuss these unavoidably
controversial issues in my book.

I am very grateful to Andre Geim and Kostya Novoselov, who involved me in
this wonderful field before it became fashionable (otherwise I would probably
never have dared to join such a brilliant company). I am especially grateful to
Andre for regular and lengthy telephone conversations; when you have to discuss a
theory using just words, without formulas and diagrams, and cannot even make
faces, after several years it does improve your understanding of theoretical physics.

It is impossible to thank all my other collaborators in the field of graphene in a
short preface, as well as other colleagues with whom I have had fruitful discussions.
I have to thank, first of all, Annalisa Fasolino, Paco Guinea, Sasha Lichtenstein, and
Tim Wehling for especially close and intensive collaboration. I am very grateful to
the former and current members of our group in Nijmegen working on graphene:
Misha Akhukov, Danil Boukhvalov, Jan Los, Koen Reijnders, Rafa Roldan, Timur
Tudorovskiy, Shengjun Yuan, and Kostya Zakharchenko, and to my other collabor-
ators and coauthors, especially Mark Auslender, Eduardo Castro, Hans De Raedt,
Olle Eriksson, Misha Fogler, Jos Giesbers, Leonya Levitov, Tony Low, Jan Kees
Maan, Hector Ochoa, Marco Polini, Sasha Rudenko, Mark van Schilfgaarde, Andrey
Shytov, Alyosha Tsvelik, Maria Vozmediano, Oleg Yazyev, and Uli Zeitler.

I am grateful to the Faculty of Science of Radboud University and the Institute
for Molecules and Materials for making available to me the time and resources for
research and writing.

I am very grateful to Marina Katsnelson and Timur Tudorovskiy for their
invaluable help with the preparation of the manuscript and for their critical reading.
I am grateful to many colleagues for permission to reproduce figures from their papers
and for providing some of the original figures used in the book. I am especially
grateful to Annalisa Fasolino for the wonderful picture that is used on the cover.

Of course, the role of my wife Marina in this book amounts to much more than
her help with the manuscript. You cannot succeed in such a long and demanding
task without support from your family. I am very grateful for her understanding
and full support.

The book is dedicated to the memory of two people who were very close to me,
my teacher Serghey Vonsovsky (1910-1998) and my friend Sasha Trefilov
(1951-2003). I worked with them for about 20 years, and they had a decisive
influence on the formation of my scientific taste and my scientific style. I thought
many times during these last seven years how sad it is that I cannot discuss some of
the new and interesting physics about graphene with them. Also, in a more
technical sense, I would not have been able to write this book without the experi-
ence of writing my previous books, Vonsovsky and Katsnelson (1989) and
Katsnelson and Trefilov (2002).
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1

The electronic structure of ideal graphene

1.1 The carbon atom

Carbon is the sixth element in the periodic table. It has two stable isotopes,
'2C (98.9% of natural carbon) with nuclear spin 7 = 0 and, thus, nuclear magnetic
moment u, = 0, and 3¢ (1.1% of natural carbon) with I = %2 and u, = 0.7024uy
(un 1s the nuclear magneton); see Radzig and Smirnov (1985). Like most of the
chemical elements, it originates from nucleosynthesis in stars (for a review, see the
Nobel lecture by Fowler [1984]). Actually, it plays a crucial role in the chemical
evolution of the universe.

The stars of the first generation produced energy only by proton—proton chain
reaction, which results in the synthesis of one a-particle (nucleus *He) from four
protons, p. Further nuclear fusion reactions might lead to the formation of either of
the isotopes SHe and °Li (p + a collisions) or of 8Be (o + o collisions); however,
all these nuclei are very unstable. As was first realized by F. Hoyle, the chemical
evolution does not stop at helium only due to a lucky coincidence — the nucleus
'2C has an energy level close enough to the energy of three a-particles, thus, the
triple fusion reaction 30 — '2C, being resonant, has a high enough probability.
This opens up a way to overcome the mass gap (the absence of stable isotopes with
masses 5 and 8) and provides the prerequisites for nucleosynthesis up to the most
stable nucleus, *°Fe; heavier elements are synthesized in supernova explosions.

The reaction 3a — '*C is the main source of energy for red giants. Carbon also
plays an essential role in nuclear reactions in stars of the main sequence (heavier
than the Sun) via the so-called CNO cycle.

The carbon atom has six electrons, two of them forming a closed 1s® shell
(helium shell) and four filling 2s and 2p states. The ground-state atomic configur-
ation is 2s> 2p2, with the total spin S = 1, total orbital moment L = 1 and total
angular moment J = 0 (the ground-state multiplet *Py). The first excited state, with
aJ = 1, °P, multiplet, has the energy 16.4 cm ' ~ 2 meV (Radzig & Smirnov,
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1985), which gives an estimate of the strength of the spin-orbit coupling in the
carbon atom. The lowest-energy state with configuration 2s' 2p’ has the energy
33,735.2 cm !~ 42 eV (Radzig & Smirnov, 1985), so this is the promotion
energy for exciting a 2s electron into a 2p state. At first sight, this would mean that
carbon should always be divalent, due to there being two 2p electrons while the
2s electrons are chemically quite inert. This conclusion is, however, wrong.
Normally, carbon is tetravalent, due to a formation of hybridized sp electron
states, according to the concept of “resonance” developed by L. Pauling (Pauling,
1960; see also Eyring, Walter, & Kimball, 1946).

When atoms form molecules or solids, the total energy decreases due to overlap
of the electron wave functions at various sites and formation of molecular orbitals
(in molecules) or energy bands (in solids); for a compact introduction to chemical
bonding in solids, see section 1.7 in Vonsovsky and Katsnelson (1989). This
energy gain can be sufficient to provide the energy that is necessary to promote
a 2s electron into a 2p state in the carbon atom.

In order to maximize the energy gained during the formation of a covalent bond,
the overlap of the wave functions with those at neighboring atoms should also be
maximal. This is possible if the neighboring atoms are situated in such directions
from the central atoms that the atomic wave functions take on maximum values.
The larger these values are, the stronger the bond is. There are four basis functions
corresponding to the spherical harmonics

1
Yo0(%,0) = T
/3
Yi0(89) = 1 Cos 9 (1.1)

.13 )
Yi41(9,0) = :Fz\/%sm9 exp (Fip),

where 3 and ¢ are polar angles. Rather than take the functions ¥} (9, ¢) to be the
basis functions, it is more convenient to choose their orthonormalized linear
combinations of the form

/3 .
Y119, 0) —Yi—1($9)] = Esmgcos 0,

S -

/3 .
Y1,1(8,0) +Y1,1(3,0)] = Esm&sm 0, (1.2)

—iY10(9,0) = \/43—7[0059,

Si =
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which are transformed under rotations as the Cartesian coordinates x, y, and z,
respectively. The radial components of the s and p functions in the simplest
approximation are supposed to be equal in magnitude (which is of course a very
strong assumption) and may be omitted, together with the constant factor 1/v/4x
which is not important here. Then the angular dependence of the four basis
functions that we will introduce in lieu of Y} ,,($, @) can be represented as

) = 1,

1.3)
y) =V3sindsing, |z) = V3cosd.

lx) = v/3sin 9 cos g,

We now seek linear combinations of the functions (1.3) that will ensure maximum
overlap with the functions of the adjacent atoms. This requires that the value

of o = max y be a maximum. With the normalization that we have chosen,
-991/’

o = 1 for the s states and a = /3 for the p functions of |x),
represent the function |y) as

y), and |z). We then

lw) = als) + bi|x) + baly) + b3|z), (1.4)
where a and b; are real-valued coefficients that satisfy the normalization condition
@+ b b+ b=1. (1.5)

The function |y), then, is normalized in the same way as (1.3). This follows from
their mutual orthogonality

J@W@szWWPW%M+%@M+%MW+%@@ZM,

with do being an element of solid angle. For the time being, the orientation of the
axes in our case is arbitrary.

Let us assume that in one of the functions  for which a is a maximum, this
maximum value is reached in the direction along the diagonal of the cube (1, 1, 1),
with the carbon atom at its center and with the coordinate axes parallel to its edges
(Fig. 1.1). Then by = b, = b3 = b. The (1, 1, 1) direction is given by angles 9 and ¢

such that
2
s i '9 - )
sin \/;

sing = cosgp = cosd =

5-

1
\/5 ’
so that

In addition,

a=a+3b=a++/3(1 —d?), (1.6)
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z

(1,-1,-1)

Fig. 1.1 Directions of sp® chemical bonds of the carbon atom.

where we have used the conditions (1.3). The maximum of a as a function of a is
reached for a = % and is equal to 2. The quantity b in this case is equal to % Thus
the first orbital with maximum values along the coordinate axes that we have
chosen is of the form

1y =3 (Is) + 1) + 1) + o) (1.7

It can be readily shown that the functions

2) =3 (Is) + ) — ) — |
3 =5 () — ) + 1) ~ ), (1.8
[4) =5 () — ) — b) +12)

correspond to the same value o = 2. The functions |i) (i = 1, 2, 3, 4) are mutually
orthogonal. They take on their maximum values along the (1,1, 1), (1, 1, 1), (1, 1, 1),
and (1, 1, 1) axes, ie., along the axes of the tetrahedron, and, therefore, the
maximum gain in chemical-bonding energy corresponds to the tetrahedral environ-
ment of the carbon atom. In spite of being qualitative, the treatment that we have
performed here nevertheless explains the character of the crystal structure of the
periodic table group-1V elements (diamond-type lattice, Fig. 1.2) as well as the shape
of the methane molecule, which is very close to being tetrahedral.

The wave functions (1.7) and (1.8) correspond to a so-called sp3 state of the
carbon atom, for which all chemical bonds are equivalent. Another option is that
three sp electrons form hybrid covalent bonds, whereas one p electron has a special
destiny, being distributed throughout the whole molecule (benzene) or the whole
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Fig. 1.2 The structure of diamond.

crystal (graphite or graphene). If one repeats the previous consideration for a
smaller basis, including only functions, |s), |x) and, |y) one finds the following
functions corresponding to the maximum overlap (Eyring, Walter, & Kimball,
1946):

1) == (19 +vak)).

V3
2) = ) — =9+ = 19
2) = —=ls) = =) + 5D (19)
1 1 1
3) = Zzlsh = —2h = =),

The corresponding orbits have maxima in the xy-plane separated by angles of 120°.
These are called o bonds. The last electron with the p orbital perpendicular to the
plane (|z) function) forms a m bond. This state (sp?) is therefore characterized by
threefold coordination of carbon atoms, in contrast with fourfold coordination for
the sp® state. This is the case of graphite (Fig. 1.3).

1.2 & States in graphene

Graphene has a honeycomb crystal lattice as shown in Fig. 1.4(a). The Bravais
lattice is triangular, with the lattice vectors

a‘lzg(s,\@, a3y — (3,—\@), (1.10)

a
2
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Fig. 1.3 The structure of graphite.

(a)

(b)

r M k,
K/
\ bV

Fig. 1.4 (a) A honeycomb lattice: sublattices A and B are shown as black and
gray. (b) Reciprocal lattice vectors and some special points in the Brillouin zone.

where a~ 1.42 A is the nearest-neighbor distance. It corresponds to a so-
called conjugated carbon—carbon bond (like in benzene) intermediate between a
single bond and a double bond, with lengths r; ~ 1.54 A and r ~ 1.31 1&,
respectively.

The honeycomb lattice contains two atoms per elementary cell. They belong to
two sublattices, A and B, each atom from sublattice A being surrounded by three
atoms from sublattice B, and vice versa (a bipartite lattice). The nearest-neighbor
vectors are

5 =5 (1.v3), 52:g<1,—x/§), 55 = a(—1,0). (1.11)

NSRS
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Energy (eV)

=20

-
Z 4

G G

Fig. 1.5 The band structure of graphene.

(Reproduced with permission from Boukhvalov, Katsnelson, & Lichtenstein, 2008.)

The reciprocal lattice is also triangular, with the lattice vectors

- 2 - 2

b = (1,f3), by =" (1,—\@). (1.12)
3a 3a

The Brillouin zone is presented in Fig. 1.4(b). Special high-symmetry points K, K’,

and M are shown there, with the wave vectors

. 2 2«m - 2w 2 —~ 2
K/ ==, , K=[— , — s M=— s 0 . 113
(361 3\/§a> (361 3\/§a) <3a > ( )

The electronic structures of graphene and graphite are discussed in detail in
Bassani and Pastori Parravicini (1975). In Fig. 1.5 we show a recent computational
result for graphene. The sp® hybridized states (o states) form occupied and
empty bands with a huge gap, whereas p, (w) states form a single band, with a
conical self-crossing point in K (the same point, by symmetry, exists also in K').
This conical point is a characteristic of the peculiar electronic structure of graphene
and the origin of its unique electronic properties. It was first obtained by Wallace
(1947) in the framework of a simple tight-binding model. Furthermore this model
was developed by McClure (1957) and Slonczewski and Weiss (1958).

Let us start, following Wallace (1947), with the nearest-neighbor approximation
for the = states only, with the hopping parameter 7. The basis of electron states
contains two 7 states belonging to the atoms from sublattices A and B. In the
nearest-neighbor approximation, there are no hopping processes within the sub-
lattices; hopping occurs only between them. The tight-binding Hamiltonian is
therefore described by the 2 x 2 matrix
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H\k 0 tS(l?) (1.14)

( ) o\ as* <§) o |
where & is the wave vector and

N i ik.a kya\/§ .
S(k) —%:e = 2exp < > > cos < 7 + exp (—tkya). (1.15)

The energy is, therefore,
E(l?) :iz‘s(l‘c’)( — +1,/3 +f(l‘<’), (1.16)

f(l?) = 2cos (\/?:kya) + 4 cos <?kya> cos (%kxa) (1.17)

where

One can see immediately that S (I? ) = S(l? ! ) = 0, which means band crossing. On
expanding the Hamiltonian near these points one finds

- 3at 0 a(% + iqy)

H 7 ad ~ —
k@5 (qx _ l.qy> 0

. 3at 0 a(qx - iqv)

He(d) ~ — : 1.1
x(q) 2 | (qx N iqy) 0 (1.18)

56 \ith g= k — Kandk — K’ respectively. The phase 51/6 can be

excluded by a unitary transformation of the basis functions. Thus, the effective
Hamiltonians near the points K and K’ take the form

where o = e

- S 0 q, F iq,
Hyg v (g)=h . * Y, 1.19
ol =m(, 2y ) (1.19)
where
3alt|
=— 1.20
V= (1.20)

is the electron velocity at the conical points. The possible negative sign of ¢ can be
excluded by an additional phase shift by =.
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On taking into account the next-nearest-neighbor hopping 7, one finds, instead
of Eq. (1.16),

E(l?) - iz(S(ié)‘ + r’f(i?) — 41,3 +f(1’€> + z’f(ié). (1.21)
The second term breaks the electron—hole symmetry, shifting the conical point
from E = 0 to E = —37, but it does not change the behavior of the Hamiltonian
near the conical points. Actually, this behavior is symmetry-protected (and even
topologically protected), as we will see in the next section.

Note that, contrary to the sign of ¢, the sign of ¢ describing the hopping within
the same sublattice cannot be changed by unitary transformation.

The points K and —K’ differ by the reciprocal lattice vector b = by — by, so the
point K’ is equivalent to —K. To show this explicitly, it is sometimes convenient to
use a larger unit cell in the reciprocal space, with six conical points. The spectrum
(1.16) in this representation is shown in Fig. 1.6.

The parameters of the effective tight-binding model can be found by fitting
the results of first-principles electronic-structure calculations. According to Reich
et al. (2002), the first three hopping parameters are t = —2.97 eV, 7 = —0.073 eV
and / = —0.33 eV. Experimental estimates (Kretinin et al., 2013) yield 7 ~ — 0.3
eV +15%. The smallness of 7 in comparison with # means that the electron—hole
symmetry of the spectrum is quite accurate not only in the vicinity of the conical
points but also throughout the whole Brillouin zone.

There are saddle points of the electron energy spectrum at M (see Figs. 1.5
and 1.6), with Van Hove singularities in the electron density of states,
ON(E) x — In | E — E,,| (Bassani & Pastori Parravicini, 1975). The positions of
these singularities with the parameters from Reich et al. (2002) are

Ev_=t+17 -3 ~ - 2.05eV

k,a1 2

Fig. 1.6 The electron energy spectrum of graphene in the nearest-neighbor
approximation.
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and
Eyy=—1t+1"4+3t" = 191eV.

The Hamiltonian (1.14) in the representation (1.15) has an obvious trigonal
symmetry (a symmetry with respect to rotation at 120°). At the same time, it is
not periodic in the reciprocal space, which may be inconvenient for some calcula-
tions (of course, its eigenvalues (1.16) are periodic). This can be fixed by the
change of basis, e.g., by multiplying the A-component of the wave function by a
factor exp (—il:%). Then, instead of Eq. (1.15) we will have the expression

S(E) -1+ eiE(31—33) + eiE(32_33)’

which is obviously periodic but its trigonal symmetry is now hidden. The use of
the representation is dictated by convenience for a specific problem.

1.3 Massless Dirac fermions in graphene

Undoped graphene has a Fermi energy coinciding with the energy at the conical
points, with a completely filled valence band, an empty conduction band, and no
band gap in between. This means that, from the point of view of a general band
theory, graphene is an example of a gapless semiconductor (Tsidilkovskii, 1996).
Three-dimensional crystals, such as HgTe and a-Sn (gray tin) are known to be
gapless semiconductors. What makes graphene unique is not the gapless state itself
but the very special, chiral nature of the electron states, as well as the high degree
of electron—hole symmetry.

For any realistic doping, the Fermi energy is close to the energy at the conical
point, |[Er | « | t|. To construct an effective model describing electron and hole
states in this regime one needs to expand the effective Hamiltonian near one of the
special points K and K’ and then make the replacements

. 0 . 0
™ "las O —la,
which corresponds to the effective mass approximation, or E[)’ perturbation
theory (Tsidilkovskii, 1982; Vonsovsky & Katsnelson, 1989). From Eq. (1.19),
one has
Hy = —ihvGV, (1.22)

Hy = HY, (1.23)

where

10 0 1 0 —i 1 0
"0_<0 1)’ “x_<1 0>’ Uy_(i o)’ “Z_<o —1) (1.24)
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are Pauli matrices (only x- and y-components enter Eq. (1.22)) and T denotes a
transposed matrix. A complete low-energy Hamiltonian consists of 4 x 4 matrices
taking into account both two sublattices and two conical points (in terms of
semiconductor physics, two valleys).

In the basis

YkA

p— | VB | (1.25)
Yk'a
Yk'B
where wga means a component of the electron wave function corresponding to
valley K and sublattice A, the Hamiltonian is a 2 x 2 block supermatrix

. Hy O
H = ). 1.26
() .26

Sometimes it is more convenient to choose the basis as

VKA

w— | Yks (1.27)
YK'B

—VYKA
(Aleiner & Efetov, 2006; Akhmerov & Beenakker, 2008; Basko, 2008), then the
Hamiltonian (1.26) takes the most symmetric form

H = —ihvty®3V, (1.28)

where 7, is the unit matrix in valley indices (we will use different notations for the
same Pauli matrices acting on different indices, namely, & in the sublattice space
and 7 in the valley space).

For the case of an ideal graphene, the valleys are decoupled. If we add some
inhomogeneities (external electric and magnetic fields, disorder, etc.) that are smooth
at the atomic scale, the valleys remain independent, since the Fourier component of
external potential with the Umklapp wave vector b is very small, and intervalley
scattering is improbable. We will deal mainly with this case. However, one should
keep in mind that any sharp (atomic-scale) inhomogeneities, e.g., boundaries or
vacancies, will mix the states from different valleys, see Chapters 5 and 6.

The Hamiltonian (1.22) is a two-dimensional analog of the Dirac Hamiltonian
for massless fermions (Bjorken & Drell, 1964; Berestetskii, Lifshitz, & Pitaevskii,
1971; Davydov, 1976). Instead of the velocity of light ¢, there is a parameter
v 10°ms™! ~ ¢/300 (we will discuss later, in Chapter 2, how this parameter has
been found experimentally).
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A formal similarity between ultrarelativistic particles (with energy much larger
than the rest energy mc?, such that one can consider the particles as massless) and
electrons in graphene makes graphene a playground on which to study various
quantum relativistic effects — “CERN on one’s desk.” These relationships between
the physics of graphene and relativistic quantum mechanics will be considered in
the next several chapters.

The internal degree of freedom, which is just spin for “true” Dirac fermions, is
the sublattice index in the case of graphene. The Dirac “spinors” consist here of the
components describing the distribution of electrons in sublattices A and B. We will
call this quantum number pseudospin, so that pseudospin “up” means sublattice
A and pseudospin “down” means sublattice B. Apart from the pseudospin, there
are two more internal degrees of freedom, namely the valley label (sometimes
called isospin) and real spin. So the most general low-energy Hamiltonian of
electrons in graphene is an 8 X 8 matrix.

Spin-orbit coupling leads to a mixture of pseudospin and real spin and to the gap
opening (Kane & Mele, 2005b). However, the value of the gap is supposed to be
very small, of the order of 10> K for pristine graphene (Huertas-Hernando,
Guinea, & Brataas, 2006). The reason is not only the lightness of carbon atoms
but also the orientation of orbital moments for p, states perpendicular to the
graphene plane. In silicene and germanene, that is, Si and Ge analogs of graphene,
the structure is buckled, which leads to a dramatic enhancement of the spin-orbit
coupling (Acun et al., 2015). Defects can significantly enhance the spin-orbit
coupling (Castro Neto & Guinea, 2009) and the corresponding effects are relevant,
e.g., for spin relaxation in graphene (Huertas-Hernando, Guinea, & Brataas, 2009),
but the influence of spin-orbit coupling on the electronic structure is negligible.
Henceforth we will neglect these effects, until the end of the book (see Section
12.4).

For the case of “true

9

Dirac fermions in three-dimensional space, the
Hamiltonian is a 4 x 4 matrix, due to two projections of spins and two values of
a charge degree of freedom — particle versus antiparticle. For the two-dimensional
case the latter is not independent of the former. Electrons and holes are just linear
combinations of the states from the sublattices A and B. The 2 x 2 matrix hvek
(the result of action of the Hamiltonian (1.22) on a plane wave with wave vector E)
is diagonalized by the unitary transformation

U; —\/%(1 + i), (1.29)
where 7i; = (sin ¢, — cos ¢,;), and ¢ is the polar angle of the vector k (ﬁi;L/?).
The eigenfunctions
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®(7 1 exp (—i¢;/2)
Ven (k) =7 <iexp (i6:/2) (1.30)

correspond to electron (e) and hole (h) states, with the energies
E.n =+ hvk. (1.31)

For the valley K’ the corresponding states (in the basis (1.25)) are

w7y _ L [ explidg/2)
Ven (k) = , : (1.32)
V2 \ £exp (—igz/2)
Of course, this choice of the wave functions is not unique, they can be multiplied
by an arbitrary phase factor; only the ratio of the components of the spinor

corresponding to the sublattices A and B has a physical meaning.
For the electron (hole) states, by definition

(%)
k l//e,h = :l:l//e,h' (133)

This means that the electrons (holes) in graphene have a definite pseudospin
direction, namely parallel (antiparallel) to the direction of motion. Thus, these
states are chiral (helical), as should be the case for massless Dirac fermions
(Bjorken & Drell, 1964). This is of crucial importance for “relativistic” effects,
such as Klein tunneling, which will be considered in Chapter 4.

The Dirac model for electrons in graphene results from the lowest-order expan-
sion of the tight-binding Hamiltonian (1.14) near the conical points. If one takes
into account the next, quadratic, term, one finds, instead of the Hamiltonian (1.28)
(in the basis (1.27))

H = hveo®3k + uz.® | 20,k k, — o, (k2 = K2 | (1.34)

where 1 = 3a*/8. The additional term in Eq. (1.34) corresponds to a frigonal
warping (Ando, Nakanishi, & Saito, 1998; McCann et al., 2006). Diagonalization

of the Hamiltonian (1.34) gives the spectrum E. j, (l?) = *¢ (l?) where

& (ié) = RV F 2hvk® cos (3¢;) + 12k, (1.35)

with the signs F corresponding to valleys K and K. The dispersion law is no longer

isotropic but has threefold (trigonal) symmetry. Importantly, e(l?) #e(—l?),
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which means that the trigonal warping destroys an effective time-reversal sym-
metry for a given valley (the property E(I?) =F (—l?) follows from the time-

reversal symmetry [Vonsovsky & Katsnelson, 1989]). Of course, for the electron
spectrum as a whole, taking into account the two valleys, the symmetry holds:

g<1’€+1?) :a(—l?—[?). (1.36)

At the end of this section we show, following Mafies, Guinea, and Vozmediano
(2007), that the gapless state with the conical point is symmetry-protected. The
proof is very simple and based on consideration of two symmetry operations: time
reversal T and inversion 1. We will use the basis (1.25) and the extended-Brillouin-
zone representation of Fig. 1.6 assuming K’ = —K. The time reversal changes the
sign of the wave vector, or valley,

Tyxas) = ‘//lt(A,B) = VYK'(AB) (1.37)

whereas the inversion also exchanges the sublattices:

Iyxa =wxs, Iyks = Yra. (1.38)

Invariance under these symmetries imposes the following conditions for Hy
and Hy :

T:Hy = Hy = Hy, (1.39)
I: HK = O-xHK’O-x = HK. (140)
Indeed,
ayl  apn dyy dz
o o, = s 1.41
x<6121 azz) * (6112 a11> ( )

so the operation in (1.40) does exchange the A and B sublattices.

The conditions (1.39) and (1.40) establish relations between the Hamiltonians
for the different valleys. If we use both these symmetry transformations we impose
restrictions on Hyx and Hy separately, e.g.,

TI : Hx = o.H{o, = Hg. (1.42)

If we write the Hamiltonian as

Hyg = E 0;0;
;
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one can see immediately that o, = 0, which means the absence of the mass term.
Thus, a perturbation that is invariant under 7 and [ can, in principle, shift the
conical point (we will see in Chapter 10 that it can indeed be done, by deform-
ations), but cannot open the gap: (Hg);; = (Hx)», and the bands split by +|H,|.

If the sublattices are no longer equivalent, then there is no inversion symmetry,
the mass term naturally appears and the gap opens. This is, for example, the case of
graphene on top of hexagonal boron nitride, h-BN (Giovannetti et al., 2007; Sachs
et al., 2011). This case will be considered in detail in Chapter 13.

1.4 The electronic structure of bilayer graphene

By exfoliation of graphene one can obtain several layers of carbon atoms. Bilayer
graphene (Novoselov et al., 2006) is especially interesting. Its electronic structure
can be understood in the framework of a tight-binding model (McCann & Fal’ko,
2006; McCann, Abergel, & Fal’ko, 2007).

The crystal structure of bilayer graphene is shown in Fig. 1.7. Like in graphite,
the second carbon layer is rotated by 60° with respect to the first one. In graphite,
such a configuration is repeated, which is called Bernal stacking. The sublattices
A of the two layers lie exactly on top of one another, with a significant hopping
parameter y; between them, whereas there are no essential hopping processes
between the sublattices B of the two layers. The parameter y, = ¢, is usually
taken as 0.4 eV, from data on the electronic structure of graphite (Brandt, Chudi-
nov, & Ponomarev, 1988; Dresselhaus & Dresselhaus, 2002), which is an order of
magnitude smaller than the nearest-neighbor in-plane hopping parameter y, = t.

Fig. 1.7 (a) The crystal structure of bilayer graphene; hopping parameters are
shown. (b) Special points in the Brillouin zone for the bilayer graphene.
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The simplest model, which takes into account only these processes, is described by
the Hamiltonian

o sk 0
0 0 0
1 0 0 s* (l?)
o (k) o
with § (I?) from Eq. (1.15). The basis states are ordered in the sequence first layer,
sublattice A; first layer, sublattice B; second layer, sublattice A; second layer,

sublattice B.
The matrix (1.43) can be easily diagonalized, with four eigenvalues

= 1 1 -\ |2

E,-(k) :j:itli\/zt2l+t2‘5(k)‘ (1.44)

with two independent + signs. The spectrum is shown in Fig. 1.8(a). Two bands
touch one another at the points K and K'. Near these points

(1.43)

S0y
E],z(ié> ~+ ~ o d (1.45)

f, Zm*’

where the effective mass is m™ = ‘2’—;' (McCann, Abergel, & Fal’ko, 2007). The
experimental data give a value m™ = 0.028m,., where m, is the mass of a free
electron (Mayorov et al., 2011). So, in contrast with the case of a single layer,

bilayer graphene turns out to be a gapless semiconductor with parabolic band

(@) (b)
02 T 0.2
> —~
2 00 | 2 0.0
N &
0.2 | ~0.2 |
04— e 04—
20.10 -0.05 0.00 0.05 0.10 ~0.10 -0.05 0.00 005 0.10
ka ka

Fig. 1.8 (a) The electronic structure of bilayer graphene within the framework of
the simplest model (nearest-neighbor hopping processes only). (b) The same, for
the case of biased bilayer graphene (a voltage is applied perpendicular to the
layers).
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touching. Two other branches E3’4(l_c') are separated by a gap 2|t,| and are

irrelevant for low-energy physics.

If one neglects intervalley scattering and replaces hg, and hg, by operators
py = —ihd/0x and p, = —iho/dy as usual, one can construct the effective
Hamiltonian; for single-layer graphene, this is the Dirac Hamiltonian (1.22). For
the case of bilayer graphene, instead, we have (McCann & Fal’ko, 2006; Novose-
lov et al., 2006)

2
. 1 0 D, — ip,
R (o= iby)" ). (1.46)
2m* \ (P + iby) 0
This is a new type of quantum-mechanical Hamiltonian that is different from both
nonrelativistic (Schrodinger) and relativistic (Dirac) cases. The eigenstates of this
Hamiltonian have special chiral properties (Novoselov et al., 2006), resulting in a

special Landau quantization, special scattering, etc., as will be discussed later.
Electron and hole states corresponding to the energies

nk
Ecn= iZm* (1.47)
(cf. Eq. (1.31)) have a form similar to Eq. (1.30), with the replacement ¢; — 2¢;:
® (7 _ L [e™

v () = 7 <ie"¢z > (1.48)

These are characterized by a helicity property similar to Eq. (1.33):

(k2 = 2) e + 2kikyo

- l//e,h = il/je,h' (149)

k2
By applying a voltage V perpendicular to the carbon planes one can open a gap in

the energy spectrum (McCann & Fal’ko, 2006; Castro et al., 2007, 2010a). In this
case, instead of the Hamiltonian (1.43), one has

V/2 rS(/’é) r 0
} 15 (1?) v/2 0 0
H<k) 4 0 —v/2 s* (1?) (120

0 0 ts(ié) V)2
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and, instead of the eigenvalues (1.44), we obtain

E’ (k) _; ’S(k)‘ + ot T+(u2+v2)r2)s(k>‘ (151)
For the two low-lying bands in the vicinity of the K (or K) point the spectrum has

the “Mexican hat” dispersion

= VvV  VhH? i
E(k)~4+(=— K K 1.52
( ) <2 1,2 JrtﬁV ) (152)

where we assume, for simplicity, that Avk«V«|t_ |. This expression has a maximum
at k = 0 and a minimum at k = V//(v/2hv) (see Fig. 1.8(b)). The opportunity to
tune a gap in bilayer graphene is potentially interesting for applications. It was
experimentally confirmed by Castro et al. (2007) and Oostinga et al. (2008).

Consider now the effect of larger-distance hopping processes, namely hopping
between B sublattices (y3 ~ 0.3eV) (Brandt, Chudinov, & Ponomarev, 1988;
Dresselhaus & Dresselhaus, 2002). Higher-order terms, such as y, ~ 0.04 eV,
are assumed to be negligible. These processes lead to a qualitative change of the
spectrum near the K (K') point. As was shown by McCann and Fal’ko (2006) and
McCann, Abergel, and Fal’ko (2007), the effective Hamiltonian (1.46) is modified
by 73 terms, giving

(f’x - if’y)z 3ysa

0 p.+ip,
g = . dor T Pt iPy) ’
(ﬁx+i]§y) 3pa . "
m* n (bx = iby) 0
(1.53)
with the energy spectrum determined by the equation (assuming that |yz|« |yo|)
2
- 3p,ah’k’ h*k?
E2(K) ~ (338 T cos (36g) + (5.5 ) - (1.54)

This means that, at small enough wave vectors

731
V02

ka < ~ 1072, (1.55)

the parabolic dispersion law (1.47) is replaced by the linear one. The correspond-
ing level of doping when the Fermi wave vector satisfies the conditions (1.55) is
estimated as n < 10'! cm ™2 (McCann, Abergel, & Fal’ko, 2007).

The spectrum (1.54) is shown in Fig. 1.9. The term with cos (3¢];) in Eq. (1.53)
corresponds to the trigonal warping, which is more important for the bilayer than it
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(b)

0.4/~
02
>
2 00 _—
K

-0.2

—0.4-—" =5
-0.10 -0.05 0.00 0.05 0.10
ka

Fig. 1.9 The effect of trigonal warping on the electronic structure of bilayer
graphene. (a) A cross-section of the dispersion surface at ¢; = 0; one can see
the asymmetry of the spectrum (cf. Fig. 1.8(a)). (b) A general view of the
dispersion surface.

is for the single layer: It leads to a reconstruction of isoenergetic lines when
k grows. Instead of one point of parabolic touching of the bands at k£ = 0, there
are now four conical points at k = 0 and k = 6m*y;a/h%, cos (3(15,—5) = +1, where
the signs + correspond to K and K’ valleys. The merging of four cones into one
paraboloid with increasing energy is a particular case of the Lifshitz electronic
topological transition associated with a Van Hove singularity of the electron
density of states (Lifshitz, Azbel, & Kaganov, 1973; Abrikosov, 1988; Vonsovsky
& Katsnelson, 1989).

1.5 Multilayer graphene

For the third layer of carbon atoms there are two options: It can be rotated with
respect to the second layer by either —60° or by 60°. In the first case, the third layer
lies exactly on top of the first layer, with the layer order aba. In the second case, we
will denote the structure as abc. In bulk graphite, the most stable state corresponds
to Bernal stacking, abab ... However, rhombohedral graphene with the stacking
abcabc . .. also exists, as does turbostratic graphite with an irregular stacking (on
the energetics of these different stackings, see Savini et al., 2011).

Here we consider the evolution of the electronic structure of N-layer graphene
with different stacking as N increases (Guinea, Castro Neto, & Peres, 2006;
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Partoens & Peeters, 2006; Koshino & McCann, 2010). First we will discuss the
case of Bernal stacking. We will restrict ourselves to considering only the simplest
model with parameters yo = t and y; = ¢, , neglecting all other hopping parameters
y;. For the case of bilayer graphene this corresponds to the Hamiltonian (1.43).
On introducing the basis functions y,, o (l?) and y, g I?) (n=12,...,N(Nis
the number of carbon layers, A and B label sublattices, and k is the two-
dimensional wave vector in the layer) we can write the Schrodinger equation as

Eyya (l?) =15 <E) Wan b (1_5) +1) [Wzn_ 1A (/?) + Voni1.a (’_5)} ;
Evan s (K) = 15" (K)wan a (),
Evara (k) = 15 (B)warern (§) + 12 [wana (R) + varaa (B) ]
Epiin (l?) =S (l?) Woni1 A (75) :

Excluding the components g from Eq. (1.56), one can write the equation

ol P
-0 @) e fpns@ s n@®) 0

(1.56)

For an infinite sequence of layers (bulk graphite with Bernal stacking) one can try
the solutions of Eq. (1.57) as

Vo A (75) = YA (75) e, (1.58)

which gives us the energies (Wallace, 1947)

E(E,é) =1 cosfj:\/tz‘S(l?)‘z—l—ti cos2(¢). (1.59)

The parameter ¢ can be written as ¢ = 2k,c, where k, is the z-component of
the wave vector, c is the interlayer distance and, thus, 2c¢ is the lattice period in
the z-direction. A more accurate tight-binding model of the electronic structure of
graphite, taking into account more hoppings, y;, was proposed by McClure (1957)
and Slonczewski and Weiss (1958); for reviews, see Dresselhaus and Dresselhaus
(2002) and Castro Neto et al. (2009).

For the case of N-layer graphene (n = 1, 2, ..., N) one can still use Eq. (1.57),
continuing it for n = 0 and n = N + 1, but with constraints

wo.A = Ynsy1a =0 (1.60)
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requiring the use of linear combinations of the solutions with ¢ and —¢&; since
E(&) = E(—¢) the expression for the energy (1.59) remains the same but & is now
discrete. Owing to Eq. (1.60) we have

Wn,A ~ SN (Spn) (1.61)
with
p
= — =1,2,...,N. 1.62
$p Nep P (1.62)

Eq. (1.59) and (1.62) formally solve the problem of the energy spectrum for N-layer
graphene with Bernal stacking. For the case of bilayer graphene cos¢, = + %, and we
come back to Eq. (1.44). For N = 3, there are six solutions with cos¢, =0, £ 1 / V2:

it(S(/‘é)
E(k) = — (1.63)
:ttl\/i/Zi\/ti/Z—l—tz‘S(k)‘ .

We have both conical (like in single-layer graphene) and parabolic (like in bilayer

’

graphene) touching at K and K’ points where S (I?) — 0.

For rhombohedral stacking (abc), instead of Eq. (1.56), we have the Schrédinger
equation in the form

B k) + ILWI’A<I_€>7
~ ~ B (1.64)
Ey,p (k> = fS(k V’z,A(k) ‘HU//3,A(k ;
EW3A<E) = tS@ ‘//3,13(_') + thz,B(l_C)’
Eysp (/_é) = 15* (l_é) Y3 A(l_é)
On excluding from Eq. (1.64) v, g and w3 g one obtains
NP
s@F .
E— B Wl,A(k) = ILW2,A<k)’
(1.65)

U N CREC)
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so we have just two equations for y, 4, a and y, g

1> - = =
El1- —lﬂ W2, <k> = 15" (k> V2. (k>
£ - 2|5 (k)|
(1.66)
£ - - -
Ef1-——" s (F) = 5(R)yan (),
£~ 2|s(K)|
and, finally, the equation for the energy
2
2 N |2
Elir——d——| =2ls(k) (1.67)

2
_E?

IZ‘S(E)

Near the K and K’ points when S<l€) — 0 there is a solution of Eq. (1.67) that
behaves as

3

E(l’é) %i@

x +¢°, (1.68)

where ¢ = k—K or k —K! So, in trilayer graphene with rhombohedral stacking
we have a gapless semiconducting state with cubic touching of the conduction and
valence bands.

If we have a rhombohedral stacking of N layers (each layer is rotated with
respect to the previous one by +60°), the low-lying part of the spectrum behaves,
similarly to Eq. (1.68), according to

N

E(q) x izN——qu (1.69)

1

(Maiies, Guinea, & Vozmediano, 2007).

Effects of y; beyond the simplest model were discussed by Koshino and
McCann (2010).

To finish this chapter, we calculate the density of states

d’k ”

N(E) =2 2(5(E—E<k>), (1.70)
(27)

where integration is over the Brillouin zone of the honeycomb lattice and the factor

2 takes into account spin degeneracy. For small energies £ — 0 the contribution to

(1.70) comes only from the vicinity of the K and K’ points and E = E(|g|)
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depends, to a first approximation (neglecting trigonal warping), only on the
modulus of the wave vector. Thus, one gets

N(E) :2-2J:dzq:5(E—E@) :i}f{é/?l. (1.71)

For the case of single-layer graphene, according to Eq. (1.31)

_2|E]|
T hAH?

N(E)

and the density of states vanishes linearly as £ — 0. For bilayer graphene, due
to Eq. (1.47)

1.72)

2m*

7h?
and the density of states is constant. Finally, for the spectrum (1.69) the density
of states is divergent at £ — 0, N > 2:

N(E) ==, (1.73)

1
At large enough energies the density of states has Van Hove singularities (related
to the M point) that are relevant for the optical properties and will be discussed
in Chapter 7.
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Electron states in a magnetic field

2.1 The effective Hamiltonian

The reality of massless Dirac fermions in graphene has been demonstrated by
Novoselov et al. (2005a) and Zhang et al. (2005) using quantized magnetic fields.
The discovery of the anomalous (half-integer) quantum Hall effect in these works
was the real beginning of the “graphene boom.” Discussion of the related issues
allows us to clarify in the most straightforward way possible the basic properties
of charge-carrier states in graphene, such as chirality, Berry’s phase, etc. So, it
seems natural, both historically and conceptually, to start our consideration of
the electronic properties of graphene with a discussion of the effects of the
magnetic field.

We proceed with the derivation of the effective Hamiltonian of band electrons in
a magnetic field (Peierls, 1933); our presentation will mainly follow Vonsovsky
and Katsnelson (1989). It is assumed that the magnetic length

hc
Iy = 2.1
B e[ B 2.1)
(B is the magnetic induction) is much larger than the interatomic distance:
Ilg»a (2.2)

which is definitely the case for any experimentally available fields; it would be
violated only for B » 10*T.

Another approximation is that we will take into account only 7 electrons and
neglect transitions to other electron bands (e.g., o bands). Since the distance
between n and ¢ bands is of the order of the m bandwidth (see Fig. 1.5) one can
prove that the approximation is justified under the same condition (2.2) (see the
discussion of magnetic breakdown at the end of this section). A rigorous theory of
the effect of magnetic fields on Bloch states has been developed by Kohn (1959)

24
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and Blount (1962). It is rather cumbersome, and its use for the case of graphene,
with its simple band structure, would obviously be overkill.
The original Hamiltonian is

7—7':2
H=—+V(7), 23
2m + Vi) 2-3)
where
i=p-SA p=—ihv, 2.4)
c
A is the vector potential
B =V x4, (2.5)

m is the mass of a free electron, and V(¥) is a periodic crystal potential. The

operators 7, satisfy the commutation relations
S A ie
[nx,ny] = —[ny,nx] = EB’ (2.6)

other commutators being zero (we assume that the magnetic induction is along the
z-axis).
We can try a general solution of the Schrédinger equation

Hy = Ey, (2.7)

as an expansion in the Wannier basis ¢,(7) (we will omit the band label since we
will consider only 7 states):

v=>_cw 7). 28)

The Wannier function on state i can be represented as

-

9,(F) = 0o (F— R;) = exp {— %f?iﬁ}%(?) (2.9)

where ¢ is the function corresponding to the zero site.
For future use, we have to specify the gauge. Here we will use a radial gauge

O By Bx
A=-Bxr=|——,— . 2.1
S BxT ( 2,270) (2.10)

Then, instead of the expansions (2.8) and (2.9), it is convenient to choose another
basis, namely

Y = Zdi(bi(?)’
i

i

¢,(F) = exp {_El_éiﬁ}qﬁo(?) (2.11)
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where
s . e
nH=p+-A. (2.12)
c

The point is that the operators I1, commute with 7y and, thus, with the kinetic
energy term in Eq. (2.3):

. ieh (0Ap 0A,
To, p| = —— =0 2.13
(e, 1) c <6xa * 6xﬁ> 13)

due to Eq. (2.10). Using the identity
exp (A + B) = exp (A) exp (B) exp (—% [A,B]) (2.14)

(assuming [A, [A,BH = [B, [A,BH = 0), see Vonsovsky and Katsnelson (1989),
one can prove that the operator

exp (%Rﬁ) = exp {ZI—;;C (I_éi X E)?} exp {%R,ﬁ} (2.15)

commutes also with the potential energy V() due to translational invariance of the
crystal:

i - 4 s - - I - 3 = I - N
exp {ERip}V(r) ...=V(F+ Ri)exp {gRip}. .= V(Fexp {ERip} ..

(2.16)
and, thus, the Hamiltonian matrix in the basis (2.12) has the form
Hj = Jd?(pak (¥)H exp (%fé,ﬁ) exp (—%R}ﬁ) @0 (7). (2.17)

Using, again, Eq. (2.14) one finds

exp (%Rﬁ) exp <_ %ﬁjﬁ) — exp [%ﬁ(ﬁ,. “ )] exp {_ e (R E,)E}

(2.18)

The Wannier functions are localized within a region of extent of a few interatomic
distances, so, to estimate the various terms in (2.18), one has to assume r =~ a and

| I_él- — Rj |~ a and take into account Eq. (2.2).
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Thus,
e - .
Hj =~ exp —Z—hC(R,- x R;)B ¢ty (2.19)

where t; = Hj; (E = O) is the hopping parameter without a magnetic field. With
the same accuracy, one can prove that the basis (2.11) is orthonormal.

Further straightforward transformations (Vonsovsky & Katsnelson, 1989) show
that the change of the hopping parameters (2.11) corresponds to a change of the
band Hamiltonian 7(j) (where p = fk) by

Heop = t(ff) (2.20)
and, thus, the Schrodinger equation (2.7) takes the form
t<ﬁ> v = Ey. .21

Instead of the operators 7, and 7, satisfying the commutatlon relations (2.6), it is
convenient to introduce the standard Bose operators band b by writing

A= q,—iny, = b,
C
2 |e| kB
Ry =+ iy = \/%f (2.22)
in such a way that
[Zo, Zﬁ] —1. (2.23)

We will see later that this representation is very convenient for the cases of both
single-layer and, especially, bilayer graphene.

To finish this section, we should discuss the question of neglected transitions to
other bands (magnetic breakdown). If the distance between the bands is of the
order of their bandwidth (which is the case for 6 and = bands in graphene), the
condition (2.2) still suffices to allow us to neglect the transitions. If the gap
between the states A « |z|, the magnetic breakdown can be neglected if

lelB 1 [A\*1
— ==« =,
hc lé t) a?
where we assume that ¢ ~ %:2 (Vonsovsky & Katsnelson, 1989).

Similarly to the derivation of equations for the electron spectrum of a semicon-
ductor with impurities in the effective-mass approximation (Tsidilkovskii, 1982),
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one can prove that, if the magnetic induction B(x,y) is inhomogeneous but the
spatial scale of this inhomogeneity is much larger than a, the Hamiltonian (2.20)
still works.

2.2 Landau quantization for massless Dirac fermions

Let us apply the general theory to electrons in graphene in the vicinity of the point
K. It follows from Eq. (1.22), (2.20), and (2.22) that the effective Hamiltonian is

_ 0 #_\ _ [2lenBv*( 0 b
H_v<7%+ o)\/T bt 0 @24

and the Schrodinger equation (2.21) for the two-component spinor reads

by, = ey,

+
b y, = ey,, (2.25)

where we have introduced a dimensionless quantity &, such that

2 BV? 2h
E=1 lel RBv” fl Ve, (2.26)
c B

We assume here that B > 0 (magnetic field up). For the second valley K, w; and v,
exchange their places in Eq. (2.25).

First, one can see immediately from (2.25) that a zero-energy solution exists
with y; = 0, and y, = |0) is the ground state of a harmonic oscillator:

b[0) = 0. (2.27)

This solution is 100% polarized in pseudospin; that is, for a given direction of the
magnetic field for the valleys K and K, electrons in this state belong completely to
sublattices A and B, respectively, or conversely if the direction of the magnetic
field is reversed.

To find the complete energy spectrum, one has to act with the operator b " on the
first equation of (2.25), which gives us immediately

b by, =y, (2.28)
with the well-known eigenvalues
e£=n=0,1,2,.... (2.29)

n

Thus, the eigenenergies of massless Dirac electrons in a uniform magnetic field are
given by

E®) = tho/n, (2.30)
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2
— @ _ [2Rlel B 2.31)
B C

will be called the “cyclotron quantum.” In the context of condensed-matter phys-
ics, this spectrum was first derived by McClure (1956) in his theory of the
diamagnetism of graphite. This spectrum is drastically different from that for

where the quantity

nonrelativistic electrons with t(;’f’) = 72/(2m), where (Landau, 1930)

&y = hao, <n + l) W = w. (2.32)
2 mc

Discrete energy levels of two-dimensional electrons in magnetic fields are called

Landau levels.

First, the spectrum (2.31), in contrast with (2.32), is not equidistant. Second, and
more importantly, the zero Landau level (n = 0) has zero energy and, due to the
electron—hole symmetry of the problem, is equally shared by electrons and holes.
The states at this level are chiral; that is, they belong to only one sublattice, as was
explained previously. The existence of the zero-energy Landau level has deep
topological reasons and leads to dramatic consequences for the observable proper-
ties of graphene, as will be discussed later in this chapter.

To better understand the relations between relativistic and nonrelativistic
Landau spectra, let us calculate the Hamiltonian (2.24) squared, taking into
account the commutation relations (2.6):

)

4\ 2 A NS 4 Vv2h|e|B
H :v2<a7r) :v27r2+iv20<7r><7r>:v27r2—¢0

c

< (2.33)

The spectrum of the operator (2.33) can be immediately found from the solution of
the nonrelativistic problem if one puts m = 1/(2v?). Then,

+_
" c 2 2

2h Bv? 1\ _V*h B 2h Bv? 1 1
E2:|e—’v<n+5)4?v [e]B_2h|e|By (n—i——_ ) (2.34)

where +1 are eigenstates of the operator 6°. The last term in Eq. (2.33) looks like
Zeeman splitting, and the existence of the zero Landau level in these terms
results from an exact cancellation of the cyclotron energy and the Zeeman
energy. Actually, for free electrons, for which the same mass is responsible for both
the orbital motion and the internal magnetic moment, the situation is exactly the same:

h B 1 h B
g —llelB( 1\ hlelB (2.35)
’ mc 2 2mce
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In semiconductors, the effective electron mass is usually much smaller than the
effective electron mass, and the Zeeman term just gives small corrections to Landau
quantization. For the case of graphene, the pseudo-Zeeman term also originates from
the orbital motion, namely from hopping processes between neighboring sites.

To find the eigenfunctions corresponding to the eigenenergies (2.30), one needs
to specify a gauge for the vector potential. The choice (2.10) gives us solutions
with radial symmetry. It is more convenient, however, to use the Landau gauge

A = (0,Bx,0). (2.36)
Then Eq. (2.25) takes the form

o .0 «x _iE
Ox l@y 2)V2 "t

B
2.37
o0 X\, _iE =
Ox l@y 2 iV

In the gauge (2.36), y is the cyclic coordinate, and the solutions of Eq. (2.37) can
be tried in the form

w120, y) = wi2(x) exp (ikyy), (2.38)

which transforms Eq. (2.37) into

0 xw) i
ox 2 V2=V

o awy _iE
ox l% =gV

xo = gk, (2.40)

(2.39)

where

is the coordinate of the center of the electron orbit (Landau, 1930). On introducing
a dimensionless coordinate

X :\l/—i (x — x0) (2.41)
B

and a dimensionless energy (2.26), one can transform Eq. (2.37) to

—te +___>‘//1(X):0' (2.42)

i) = = (45 ). 2.43)
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We assume in the second equation that ¢ # 0, otherwise
X2
vi(X) ~ exp (‘ 4)’ (2.44)

The only solution of Eq. (2.42) vanishing at X ——oo (the second one is exponen-
tially growing) is, with an accuracy to within a constant multiplier

w1(X) = Da(—X), (2.45)

where D, (X) is the Weber function (Whittaker & Watson, 1927) and

wa(X) = ieDg> 1 (—X). (2.46)

If the sample is not restricted for both X — —oo and X — oo, the solutions (2.45)
and (2.46) are normalizable only for integer £, which again gives us the quantiza-
tion condition (2.29). For an integer index n, the Weber functions

2 n 2
D,(X) = (—1)"exp <%> % exp <—%> (2.47)
decay as exp(—X*/4)forX — oo .

The energy is not dependent on the quantum number k,, or, equivalently, on the
position of the center of the orbit x,. This means that the Landau levels (2.30) have
a macroscopically large degeneracy g. To calculate it, it is convenient to use a
periodic (Born—von Karman) boundary condition in the y-direction

Wi206y) = w0,y + Ly) (2.48)

(for large enough samples the density of states does not depend on boundary
conditions [Vonsovsky & Katsnelson, 1989]). Thus,

ky =", (2.49)

where n = 0, 1, ... the maximum value of 7 is determined by the condition that
the center of the orbit should be within the sample: 0 < xy < L, (L, is the width of
the sample in the x-direction), or

L, |e|B

k. ——~ =11
| )|<l§ hC

L,. (2.50)
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Thus, the total number of solutions is

|e|BL.L, |e|BA @
g= = —=

= = 2.51
he 2x he 27 @’ @.51)

where A = L,L, is the sample area, @ is the total magnetic flux though the sample,
and

Dy = < (2.52)

is the flux quantum. Keeping in mind further applications to graphene, one should
multiply the degeneracy (2.51) by a factor of 4, namely a factor of 2 for the two
valleys K and K’ and a further factor of 2 for the two spin projections. The latter is
possible since the ratio of the Zeeman energy Ez = | e | AB/(2mc) to the cyclotron
quantum A, is always very small (about 0.01 in fields B ~ 10—30 T).

2.3 Topological protection of the zero-energy states

The existence of the zero-energy Landau level is the consequence of one of the
most important theorems of modern mathematical physics, the Atiyah—Singer
index theorem (Atiyah & Singer, 1968, 1984). This theorem has important appli-
cations in quantum field and superstring theories (Kaku, 1988; Nakahara, 1990). In
its simplest version, being applied to the operator

H= vé(—ih? - gg(x, y)) (2.53)

acting on a torus (that is, with periodic boundary conditions both in the y- and in
the x-direction), the theorem states that the index of this operator is proportional to
the total flux, namely

. D
index(H) =Ny —N_ =—, 2.54
in ex( ) 4 o ( )
for an inhomogeneous magnetic field as well as for a homogeneous one. Here N
is the number of solutions with zero energy and positive chirality

Hy, =0, w,=0, (2.55)
and N_ is the number of solutions with zero energy and negative chirality
pi =0, Hy,=0. (2.56)

For the case of a homogeneous magnetic field, N, = g is given by Eq. (2.51) and
N_ = 0. Strictly speaking, we did not consider the case of a torus; instead, we
considered periodic boundary conditions in the y-direction only; the case of a torus
is analyzed by Tenjinbayashi, Igarashi, and Fujiwara (2007), and the result for the
number of zero modes is the same. A simplified (in comparison with the general
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case) formal discussion of the Atiyah—Singer theorem for the Hamiltonian (2.53)
can be found in Katsnelson and Prokhorova (2008).

The index theorem tells us that the zero-energy Landau level is topologically
protected; that is, it is robust with respect to possible inhomogeneities of the magnetic
field (Novoselov et al., 2005a; Katsnelson, 2007a). This statement is important for
real graphene since the effective magnetic field there should be inhomogeneous due
to the effect of so-called ripples, as will be discussed in Chapter 10.

The simplest way (at least for physicists) to understand the robustness of zero-
energy modes is to explicitly construct the solutions for zero-energy states in an
inhomogeneous magnetic field. This was done by Aharonov and Casher (1979) for
the case of an infinite sample with the magnetic flux @ localized in a restricted region.

Let us assume, first, that the vector potential satisfies the condition

VA = 0; (2.57)

otherwise, one can always use the gauge transformation

- - o ie
A — A+ Vy, W — wexp <EX)’ (2.58)

choosing y to provide Eq. (2.57). Thus, one can introduce a scalar “potential” ¢(x, y)
such that

o9 Jp
Ai=——, A =— 2.59
Oy Y ox (2.59)
and, due to Eq. (2.5),
B = V2g0. (2.60)

Then, Eq. (2.55) and (2.56) can be written in the form

0 . 0 iedp oedp
— It St =0, 2.61
<8x+w 6y+ he 8x+hc 8y> V2 (26D

where 6 =l and —1 for y; and w», respectively. The potential ¢ can be excluded by
the substitution

oe
2= oxp (= 2-0)f1 2.62)

which transforms Eq. (2.61) into the equation

0

. 0
(a + 1o 6_y>f]’2 =0. (263)
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This means that f; and f, are analytic and complex-conjugated analytic entire
functions of z = x + iy, respectively.
Eq. (2.60) has a solution

o(F) = Jd?’G(?, #\B(P), (2.64)
where
oy 1 | 77|
G(A,7) = o In < . > (2.65)

is the Green function of the Laplace operator in two dimensions (Jackson, 1962),
where ry is an arbitrary constant. At r — o

o(r) ~ % In <r—r0) (2.66)
and
12 = () 5,0 2.67)
where
@:Jﬁ%ﬁ) (2.68)

is the total magnetic flux. Since the entire function f(z) cannot go to zero in all
directions at infinity, w; can be normalizable only assuming that ce® > 0; that is,
zero-energy solutions can only exist for one (pseudo)spin direction, depending on
the sign of the total flux.

Let us now count how many independent solutions of Eq. (2.63) we have. As a
basis, we can choose just polynomials searching the solutions of the form

fik)=17 (2.69)

(to be specific, we consider the case e® > 0), where j = 0, 1, 2, ... One can see
from Eq. (2.67) that the solution is integrable with the square, only assuming that
J < N, where N is the integer part of

ed O
277,'flC_ (I)O'

Thus, the number of the states with zero energy for one (pseudo)spin projection is
equal to N, and there are no such solutions for another spin projection. This agrees
with Eq. (2.54).
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2.4 Semiclassical quantization conditions and Berry’s phase

The exact spectrum (2.30) of Dirac electrons in a uniform magnetic field B seems
to be in a contradiction with the Lifshitz—Onsager semiclassical quantization
condition (Lifshitz, Azbel, & Kaganov, 1973; Abrikosov, 1988; Vonsovsky &

Katsnelson, 1989)
2 B 1
S(E,) =T1¢12 |hi | (n + E)’ (2.70)

where S(E,) is the area of k-space inside the line determined by the equation

E(ky, k;) = E,, Q.71)

For massless Dirac electrons this is just a circle of radius k(E) = E/(Av) and
E2
S(E) = Tk (2.72)
so the term with % in Eq. (2.70) should not exist. Strictly speaking, the semiclassical
condition (2.70) is only valid for highly excited states, n » 1; however, for these
states it should give us not only the leading, but also the subleading, term correctly,
which is not the case now.
The replacement n — n + % follows from the existence of two turning points for
a classical periodic orbit; in a more general case, it is related to the so-called
Keller—Maslov index. The simplest way to derive it is probably by using the
saddle-point approximation in the path-integral formulation of quantum mechanics
(Schulman, 1981). It turns out that the case of electrons in single-layer (as well as
in bilayer, see later) graphene is special, and, for Dirac fermions, the correct
semiclassical condition is
s(g,) = ZLelB 2.73)
" hc ’ '
which gives us, together with Eq. (2.72), the exact spectrum (2.30), including the
existence of a zero mode at n = 0. Of course, in general, we are not always so
lucky, and for the case of bilayer graphene (Section 2.5) the situation is different.
The mystery of the missing term % is a good way to introduce one of the deepest
concepts of modern quantum mechanics, namely Berry’s (or the geometrical)
phase (Berry, 1984; Schapere & Wilczek, 1989).
Let us start with the following simple observation. If we rotate the k vector by
the angle 2x, the wave functions (1.30) change sign:

Ven (6p = 27) = =y, (¢ = 0). (2.74)
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This is not surprising when rotating spin % in spin space, but we are talking about
rotations in real physical space, and our “spin” is just a label for sublattices! This
property (2.74) has a deep geometrical and topological meaning.

Berry (1984) considered a general adiabatic evolution of a quantum system.
To be specific, we will apply these ideas to the evolution of electron states in K
space (Zak, 1989; Chang & Niu, 2008; Xiao, Chang, & Niu, 2010).

The Bloch states

v, (F) = 1,1 (7) exp (iF). 2.75)

where u ;(7) is the Bloch amplitude periodic in the real space, evolve under the

action of external electric and magnetic fields. If they are time-independent, or their
time dependence is slow in comparison with typical electron times of the order
of h/W (W is the bandwidth), this evolution is mainly within the same band n, with
an exponentially small probability of interband transitions (electric or magnetic
breakdown; Vonsovsky & Katsnelson, 1989).

By substituting Eq. (2.75) into the Schrédinger equation one can derive the
equation for the Bloch amplitude with a slowly varying wave vector k()

iha"‘a—f» = Hegr (/?<r>) Ju(1)) (2.76)

(an explicit form of the Hamiltonian H. is not essential here). The time-dependent

band states

nl?> satisfy a stationary Schrédinger equation

i) F) - (9

where ‘nlz> = u,;(7). Neglecting interband transitions, one can try the solution

n, 75> (2.77)

of Eq. (2.76) with an initial condition

u(0)) = |, K(0)) (2.78)
T . -
u()) = [u(0)) exp —Ejdt E(KW)) pexp {in,0}n k). @79
0
On substituting Eq. (2.79) into Eq. (2.76), one finds
ayn(t) . e ~ e d]_C’(t)
T~ z<n,k(t) iln, k(t)> == (2.80)
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If we consider a periodic motion k() = k(0), then, on integrating Eq. (2.80) over
the period of motion 7, one finds for the Berry phase

) = l-{;d;z@,;:yﬁ,g)n,@ - —Im+d5<n,§
C C

=

Vi

n/’é> 2.81)

where C is a line drawn by the end of the vector l:(t) (the real part of the integral
vanishes identically: 2Re §. dE<n, k|Vz|n, I?> = [dF§, dl_ﬁ,;}un,—g‘z = 0). For non-
degenerate bands, it is obvious that y,, = 0. However, this is not the case for a
degenerate spectrum and, in particular, for the case in which conical points exist,
like in graphene.

Using Stokes’ theorem, Eq. (2.81) can be written in terms of the surface integral
over the area, restricted by the contour C:

n,l_5> = —Im J d§<§,;n

7,(C) = —Ideiﬁ,; X <n,l_€"§lz

X )ﬁ,;n> (2.82)

with obvious notations, e.g.,

Von) = v’,;(n,zz>.
To explicitly demonstrate the role of crossing points of the energy spectrum

(such as the conical points in graphene), we introduce, following Berry (1984), the
summation over a complete set of eigenstates |m):

(Ven| \6@ - ; <\7;n\m> x (m

The term with m = n in Eq. (2.83) is obviously zero and can be omitted since, due

) = —(afen).

On differentiating Eq. (2.77) with respect to k one has

6;n>. (2.83)

to the normalization condition (n|n) = 1, <§,;n

ViH e |n) + (Hetr — Ey)

ﬁ,;n> = V,E,|n). (2.84)

On multiplying Eq. (2.84) by (m| from the left and taking into account that
(m|H o = (m|E,, and (m|n) = 0 at m # n, one finds

(m

Finally, by substituting Eq. (2.85) into Eq. (2.83) we derive the following expres-
sion for the Berry phase:

<mﬁzﬁzeff\n>
E,—E, ’

ﬁ,;n> - (2.85)
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where

= imy” (n|VH eﬁ|m <m‘vaeff|n>' (2.86)

This vector is called Berry curvature.
Suppose we have two neighboring bands described by the effective Hamiltonian

Hes = % R (k) (2.87)

with the eigenenergies
E. (k) = i% R (%), (2.88)
and the corresponding eigenstates |y, ) = m (;QtfRz ), where

= R, £ iR,. Assuming k= (kx,ky), after long but straightforward

calculations one finds:

) R
7)—3 , (2.89)
ﬁ(kx,ky) 2R

o(RuRy) .

where () is the corresponding Jacobian. At last, we make the replacement of

variables in the integral (2.86): k — R. Then, (( P )) ds = dS s and the expression

for the Berry phase is dramatically simplified:

-

- R
C)=7+|dSz—, 2.90
y:t( ) J R2R3 ( )

which is nothing other than the electric flux through the contour C created by the
charge % at the point R = 0. The answer is obvious:

7:(C) = 75Q(C), (2.91)

where Q(C) is the solid angle of the contour (Fig. 2.1).

For the case of massless Dirac fermions R (E) ~ Kk is the two-dimensional vector
(ky, ky), and the solid angle is 2m, so the Berry phase is y,. = + z, in agreement with
Eq. (2.74).
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Fig. 2.1 The derivation of Berry’s phase (Eq. (2.90)).

As was demonstrated by Kuratsuji and Iida (1985), the Berry phase enters the
semiclassical quantization condition. Their approach was based on the path-
integral formalism (Schulman, 1981). Here we will present in the simplest way
just a general idea of the derivation. Instead of l_c'(t) we will consider a general set of
slowly varying with time (adiabatic) variables X(z).

Let us consider a periodic process with x{(7) = x{0). We are interested in
calculating the evolution operator

K(7) = Texp —;Jdtﬁ[xi(t)] , (2.92)
0

where H is the Hamiltonian dependent on X(r) and T is the time-
ordering operator. To calculate the expression (2.92) via a path integral, one has
to discretize the time interval, ¢, = ne, where n =0, 1, ..., N — 1 and ¢ = 7/N
(N — o0):

A

K(r) = Tr{ exp [— %ﬁ(ro)] exp [— %H(n )] L exp [— %ﬁ(tN,l )] } (2.93)

In the adiabatic approximation, the evolution involves only the transitions between
the same states of the Hamiltonian:

K ()= X )l exp |~ )| o) o) exp | e )

n

- n(ty1)] exp [—%ﬁz(m_l)] In(s)).
(2.94)
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At ¢ — 0, the overlap integral

—

(@) (e + ) = () (o)) 65 (n(0)Font))
— 14 g§<n(t)|in(z)> (2.95)
edx -
exp |4 (o) Fnt))

and each term in (n|...|n) in Eq. (2.94), apart from the standard dynamical
contribution, has an additional phase factor

Q

N—1

T (a(t)In(tasn)) = exp Jdtfl—f<nﬁfn> — exp iy, (C)] (2.96)

n=0 0

(cf. Eq. (2.81)), which leads to the change of the effective action of the system
S — S + fAy. On repeating a standard derivation of the semiclassical quantization
condition, one can see that n + 1 is replaced by n + 1 — y/(2x). In particular, for
Bloch electrons in a magnetic field, instead of Eq. (2.70), one has

_2mle|B 1 vy

(Mikitik & Sharlai, 1999). For y = 7 one has the quantization condition (2.73).

Again, we see that anomalous quantization of Landau levels for the case of
graphene is related to the nontrivial topological properties of a system with a
conical point in its energy spectrum.

This derivation is, however, too schematic; whereas it gives the correct result for
the case of massless Dirac fermions, under the condition (2.91), for the massive case,
one needs to be more careful. The detailed analysis (Fuchs et al., 2010) shows that in
this case, what enters the semiclassical condition is not the full Berry phase (2.90) but
only its “topological part” related to the “winding number” (number of rotations of the
pseudospin vector under the cycle), and one should still put y = 7 into Eq. (2.97).

2.5 Landau levels in bilayer graphene

Consider now the case of bilayer graphene (McCann & Fal’ko, 2006; Novoselov
et al., 2006; McCann, Abergel, & Fal’ko, 2007; Fal’ko, 2008).

Let us start with the simplest Hamiltonian (1.46), which means intermediate
energies

2%
|tL|l:_2«‘E|«|tL|‘ (2.98)
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At lower energies (cf. Eq. (1.55)) trigonal warping terms in the Hamiltonian (1.53)
become important, and at higher energies all four bands (1.44) become relevant.
For realistic parameters, this means energies of the order of tens of meV. Later we
will consider a more general case.

On combining Eq. (1.46) with Eq. (2.20) and (2.22) we find the Hamiltonian for
the case of a uniform magnetic field:

H = ho* 0., a (2.99)
= nw.. ~ N .
¢ (b+> 0
where
B
or =1 (2.100)
mTc

is the cyclotron frequency for nonrelativistic electrons with effective mass m*.
Then, instead of Eq. (2.25) for single-layer graphene, one has the Schrodinger
equation

)
by, =eyy,

f1\2
(b ) R 2.101)
where the dimensionless energy ¢ is introduced now by writing
E=hole. (2.102)

Again, for the case of valley K’ one has to exchange y; and y,.

First, one can see immediately from Eq. (2.102) that there are zero modes with
& = 0 and y, = 0, and their number is twice as great as for the case of a single
layer. Indeed, both the stateiszof the harmonic oscillator with » = 0 and those with
n = 1 satisfy the equation b |y) = 0:

b0y =0, b[1) =b(b[1)) =bJ0) = 0. (2.103)
On multiplying the first of the Eq. (2.101) by (b)? from the left, one finds
N 2.
<b+> by, = . (2.104)

Since

<13+>2132 _ <ia+z3) (i;*ia — 1) (2.105)
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we have immediately the spectrum

E, = thol+\/n(n —1) (2.106)

withn=20,1,2, ...
The counting of the degeneracy of Landau levels (2.106) can be done in exactly
the same way as in Section 2.2, and one finds, instead of Eq. (2.51),

()]
=—, > 2, 2.107
8&n oy nZ= ( )
and
20
= — 2.108
80 @, ( )

(the latter follows from the fact that the zero and first levels are degenerate, Eq.
(2.103)).

One can prove that Eq. (2.108) follows from the Atiyah—Singer index theorem
and remains correct if the magnetic field is inhomogeneous (Katsnelson & Pro-
khorova, 2008). This fact is quite simple and follows from the property that the
index of a product of operators equals the sum of their indices. An explicit
construction of zero modes for the Hamiltonian (2.99) that is similar to the
Aharonov—Casher construction for the case of the Dirac equation (see Section
2.3) was done by Kailasvuori (2009).

For n » 1, the spectrum (2.106) is described by the expression

1
|E,| ~ ho <n — 5)’ (2.109)
in agreement with the semiclassical quantization condition
2r|e|B 1
S(E,) = —=. 2.110
B0 =2 (n=3) @.110)

It follows from the general quantization law (2.97) assuming that the
Berry phase

y =2m @2.111)

This is indeed the case (McCann & Fal’ko, 2006; Novoselov et al., 2006), although
the description in terms of the winding number seems to be more accurate (Maiies,
Guinea, & Vozmediano, 2007; Katsnelson & Prokhorova, 2008; Park & Marzari,
2011). The Hamiltonian (1.46) has the form (2.87) with

(R R,) ~ <kf s 2kxky>
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or

(R, + iR)) ~ (k, + iky)’. (2.112)

It is clear, therefore, that when the vector k runs over the closed loop the vector R
runs over the same loop twice, and the Berry phase should be twice as large as for
the case of a single layer. Actually, the Berry phase and the index are proportional;
they are both related to the winding number of the vector R in the Hamiltonian
(Katsnelson & Prokhorova, 2008). For the case of a rhombohedral N-layer system
(1.69), the number of zero modes is equal to N ®/®, and the Berry phase is y = Nm.

2.6 The case of bilayer graphene: trigonal warping effects
Consider now the case of small energies

£, ]
|E| Nygt—z. (2.113)
Thus, the effects of trigonal warping should be taken into account, and one has to
proceed with the Hamiltonian (1.53). Instead of the Hamiltonian (2.99) we have for

the case of a uniform magnetic field

) At
. 0 b +ab
H=ho!| ;.02 . @, (2.114)
<b ) +ob 0
where
3ysam™  [2hc
= [— 2.115

is a dimensionless parameter characterizing the role of trigonal warping. The
Schrodinger equation (2.101) is modified to the form

(5 +ab Yo =,
~\2 . (2.116)
((b ) + ab> W, = &y,.

First, let us consider zero modes with € = 0 and y; = 0. Taking into account that in
dimensionless coordinates, (2.40) and (2.41),

b = —i(i—§>, (2.117)
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the first of the Eq. (2.116) for € = 0 reads

d*y, dy, (1 X’ iXa
X +ia)——= —t——— =0. 2.118
dX2+( +za)dX+ st T ( )
The substitution
X’ ia
y,(X) = exp <—T—§X>¢’(X) (2.119)
eliminates the first derivative 6/0X in Eq. (2.118), so
o a>
ﬁgﬂ—i_ <Z—1Xa>(/) =0. (2.120)

At oo = 0 there are two independent solutions of Eq. (2.120), o = 1 and ¢; = X.
For finite a there are still two solutions, and they can be expressed in terms of
Bessel functions of order :l:% (Whittaker & Watson, 1927). Anyway, both of the
solutions (2.119) vanish at X — =0 due to the factor exp(—X2/4) and, therefore,
the number of zero modes remains the same at a # 0. Obviously, the second of the
Eq. (2.116) has no normalizable solutions at € = 0. These results are not surprising;
they are related to a general statement that index(H) is determined solely by the
terms with the highest order of derivatives (Katsnelson & Prokhorova, 2008).

To consider the effects of the trigonal warping on other Landau levels, one has

A\ 2 ~
to square the Hamiltonian (2.114) or just act by the operator <<b+) + ab) from
the left on the first equation of Eq. (2.116). The result is
Ly, = &y, (2.121)

where
L= (6'5) —(1—a?)b'b +a(z;3 i (3+)3>.

Using a standard perturbation theory in o one can find a strange result: only the
level with n = 2 has corrections of the order of o
2

gl =2— % (2.122)
whereas the leading corrections to the levels with n > 2 are proportional to o and

positive.

To qualitatively understand the opposite case of a very large a (or very
weak magnetic fields), it is convenient to use the semiclassical approximation
(Dresselhaus, 1974). In this regime, one can consider energy levels belonging
independently to each of four cones of the spectrum (see Fig. 1.9). The energy
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2 Evus

Fig. 2.2 The energy spectrum for bilayer graphene in a magnetic field, with the
trigonal warping effects taken into account. Here hw is the cyclotron quantum
and Eyys is the energy of the Van Hove singularity at the merging of four
conical legs.

level with n = 2 tends to zero at o — oo, since one more zero mode should appear
for three independent (in this limit) side cones: the zero mode corresponding to
the central cone is associated (for a given direction of the magnetic field) with
another valley.

For intermediate a, Eq. (2.116) can be solved numerically (McCann & Fal’ko,
2006; Mayorov et al., 2011a). The results are shown in Fig. 2.2.

Finally, we analyze the effects of trigonal warping on the Berry phase. One can
demonstrate by a straightforward calculation (Mikitik & Sharlai, 2008) that each of
the three side conical points contributes 7 to the Berry phase and the central one
contributes —m, so the total Berry phase is 3n — n = 2x, in agreement with Eq.
(2.111). One can also straightforwardly see that the winding number of the
transformation

(R, + iR)) ~ (ky + ik,)* + alk, — ik,) (2.123)
is the same (two) as for Eq. (2.112).

The distribution of the Berry “vector potential” Q(k) = —i (n|Vz|n), demonstrat-
ing singularities at four conical points is shown in Fig. 2.3.
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Fig. 2.3 The distribution of the Berry vector potential in bilayer graphene, with
the trigonal warping effects taken into account.

2.7 A unified description of single-layer and bilayer graphene

Consider now the case of magnetic fields large enough that
] > |r.]- (2.124)

At these energies, a parabolic dispersion transforms to a conical one. Neglecting the
trigonal warping and using Eq. (2.20) and (1.43), one has the 4 x 4 Hamiltonian

0 V7i’+ f, 0

- vi_ 0 0 0

H = ' 0 0 vi (2.125)
0 0 vi, O

Using the operator (2.22) and dimensionless units (2.26) and introducing the notation

2|e|hBv?
i = n/M, (2.126)
C

one can represent the Schrodinger equation with the Hamiltonian (2.125) as

by, +Ty; =ey,,
-t
by =y, (2.127)

~t
Ty, +b wy=eys,

i"//3 = &Yy.
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On excluding y, and y, from Eq. (2.127), one obtains

.-+
gbb yi + 1y =ey,

1 Aga
Ty, +-b by, = eys;. (2.128)

m

. . L .
One can see that y; are eigenfunctions of the operator 7 = b b whose eigenvalues

aren=20, 1,2, ... Onreplacing b'h by n and bb" by n + 1in Eq. (2.128) we find
the eigenenergies ¢, as

242041 24on+1\°
£ = +2”+ i\/( +2”+ ) —n(n+1). (2.129)

This formula (Pereira, Peeters, & Vasilopoulos, 2007) gives a unified description of
Landau levels for the cases of both single-layer and bilayer graphene (without trigonal
warping effects). On putting I = 0 we come to the case of two independent layers, with

11
gﬁ:n+§i§, (2.130)
which exactly coincides with Eq. (2.34). For large I' (the case of relatively low
energies, Eq. (2.98)) we have

, nn+1)
=Tz (2.131)
and
e, =T +2n+1. (2.132)

Eq. (2.131) gives the Landau levels for low-lying bands in the parabolic approxi-
mation (1.46). The energies

a,,zz:t[l“—l—%(n—i—%)] (2.133)
following from Eq. (2.132) are nothing other than the Landau levels for two-
gapped bands in the parabolic approximation.

The condition I" = 1 for which nonparabolic band effects in the Landau-level
spectrum of bilayer graphene become very important, corresponds to magnetic
fields of the order of

2 1, 2 he
B. z—(—) ¢~ 70T,
9\t/ |e|a®

which is too high to be attained in present-day experiments. However, even in
fields of 20—30 T the effects of nonparabolicity should be quite noticeable.
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2.8 Magnetic oscillations in single-layer graphene

Magneto-oscillation effects in quantized magnetic fields make possible one of
the most efficient ways to probe the electron-energy spectra of metals and
semiconductors (Schoenberg, 1984). The basic idea of the oscillations is quite
simple: since most of the properties are dependent on what happens in the close
vicinity of the Fermi level, whenever, on changing the magnetic induction or
chemical potential x, one of the Landau levels coincides with the Fermi energy,
the properties should have some anomalies that repeat periodically as a function
of the inverse magnetic field (the latter follows from the semiclassical quantiza-
tion condition (2.97) An ~ (1/B)AE). These anomalies are smeared by tempera-
ture and disorder; so, to observe the oscillations, one needs, generally speaking,
low temperatures and clean enough samples. It was the observation of magneto-
oscillation effects (Novoselov et al., 2005a; Zhang et al., 2005) that demon-
strated the massless Dirac behavior of charge carriers in graphene. Experi-
mentally, oscillations of the conductivity (the Shubnikov—de Haas effect)
were studied first; it is more difficult (but quite possible, see later in this
section) to observe the oscillations of thermodynamic properties, e.g., magnet-
ization (the de Haas—van Alphen effect) in a single layer of atoms. However,
physics of these two effects is just the same, but theoretical treatment of
thermodynamic properties can be done in a more clear and rigorous way. Here
we will consider, following Sharapov, Gusynin, and Beck (2004), de Haas—van
Alphen magnetic oscillations for two-dimensional Dirac fermions, i.e., for
single-layer graphene.

The standard expression for the thermodynamic potential of the grand canonical
ensemble for noninteracting fermions with energies E; is (Landau & Lifshitz,
1980)

Q— —T; [1 + exp <’u _TEAH =T ]O deN(g) In [1 + exp (’u%g)]

(2.134)

where

N(e)=> 6z — Ey) (2.135)

is the density of states. However, one should be careful at this point, since
statistical mechanics assumes that the energy spectrum is bounded from below,
which is not the case for the Dirac equation. One can either use a complete tight-
binding Hamiltonian, where the spectrum is bound, and carefully analyze the limit
of the continuum model, or just write the answer from considerations of relativistic
invariance (Cangemi & Dunne, 1996). The correct relativistic answer is
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_ E—H
Q=T J deN(2) In [2 cosh( = )] (2.136)
which differs from Eq. (2.134) by the term
1 0
AQ = 5 J deN(e)(e — ). (2.137)

—00

This term is, in general, infinite and temperature-independent. If the spectrum is
symmetric, namely N(—&) = N(e) (which is necessary for relativistic invariant
theories), and the chemical potential is chosen in such a way that x# = O for the half-
filled case (all hole states are occupied and all electron states are empty), then the
correction (2.137) vanishes in that situation.

The expression (2.136) is still not well defined, but its derivatives with respect to
U, temperature, and magnetic field are convergent. For example, the compressibil-
ity is proportional to the “thermodynamic density of states”

o Fa | 0
D) = £ =-52= J deN (2) <— %) (2.138)

where f{€) is the Fermi function
of(e) _ 1
08 AT cosh? <8—_ﬂ) ’
2T

(2.139)

and this expression is certainly well defined, with the difference between Eq.
(2.134) and (2.136) becoming irrelevant. The quantity (2.138) is directly measur-
able as the quantum capacitance (John, Castro, & Pulfrey, 2004); for the case of
graphene, see Ponomarenko et al. (2010), Yu et al. (2013).

At zero temperature, the expression (2.138) is just a sum of delta-functional
contributions:

o o

= 450 S(E) + Y _O(E — hoeyv) + 6(E + hwc\/\_z)] (2.140)

v=1

Dr—o(p)

(see Eq. (2.30), (2.31), and (2.51); we have taken into account a factor of 4 due to
the valley and spin degeneracy). Using the identities

E — x) + O(E + x) = 2|E|0(E* — x°), (2.141)

S(E) = %(_f) (2.142)
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(O > 0) =1, O(x < 0) = 0 is the step function) and

® 1 q & sin (27rkg)
Z a—xn (a) —§+;+ZTX s (2143)
n=1 k=1

one can find the closed expression

() d (1 1 1 2mu?
Dr—o(u) = 4—sgn( )d,u{ +; tan [COt( 2 )]}, (2.144)

where ¢, = ho, (Sharapov, Gusynin, & Beck, 2004). Eq. (2.143) is the partial case
of the Poisson summation formula

f: o(x —n) = i exp (2mikx) (2.145)
and, thus,
if(n) = i: T dx f(x) exp (2mikx) (2.146)
n=1 k=—oo
(0 < a < 1) for any f(x), and the identity
S ) o (2 @.147)

is used when deriving (2.144).
To consider the case of finite temperatures, it is convenient to use the expansion
of —Of(E)/OFE into the Fourier integral:

0 T d
- ];(g) - J é exp [i(u — E)IIR(1), (2.148)
where
Tt
RO = b ) (2.149)

On substituting Eq. (2.148), together with Eq. (2.141) and (2.142), into the
definition (2.138) one finds

D) = 4% J JdEdtR(t) exp [i( — E)]|E]

o

1 2& E?
8—2+8—22 COS (277:/( )]
C C

k=1
(2.150)
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The sum over k describes oscillations of the thermodynamic density of states. To
proceed further, one can use the saddle-point method (or “the method of steepest
descent”) for integrals of strongly oscillating functions (Fedoryuk, 1977). The
procedure is as follows. If we have a multidimensional integral

IA) = [ d"x fix) exp (IAD(x)) (2.151)

with a large parameter A, then the main contribution follows from the stationary
point xq of the phase ®(x), where
od

=0, 2.152
o ( )

since the oscillations are weakest in the vicinity of these points. On expanding ®(x)
near x,

*w) 2 Z <8xk6xl> — Xy ) (X1 — 1), (2.153)

one finds

o) n/2
. (( nzﬂ 7 exp [iA®(x0)], (2.154)
K\ Mk

where y; are eigenvalues of the matrix

R
axkax; '

If there is more than one stationary point, their contributions are just summed.
The oscillating part of the expression (2.150) can be estimated by this method,
choosing

1(2) = f(x0)

2mkE”
O(E, 1) = (u— E)t + (2.155)
gC
which gives us immediately

Ey = p,

Ak (2.156)
o=+ 5
8C

Finally, one obtains

_ 8Alu| & wkeu®
D , 2.157
o nh2v2 Z s1nh Zk <h|e\Bv2 ( )
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where

27 Tely|

= 2.158
¢ h|e|Bv? ( )

and A is the sample area. A formal condition of applicability of the saddle-point
method is that the resulting oscillations are fast enough; that is, the argument of the
cosine in Eq. (2.157) is much larger than 1.

Disorder will broaden Landau levels and smear the delta-functional peaks in the
density of states, suppressing the oscillations. This effect, too, can be taken into
account (Sharapov, Gusynin, & Beck, 2004; Ponomarenko et al., 2010).

A general semiclassical consideration for an arbitrary energy dispersion
law (the Lifshitz—Kosevich theory; see Lifshitz, Azbel, & Kaganov [1973]
and Abrikosov [1988]) leads to a similar temperature dependence of the oscilla-
tions, with

B 212 Tem™

2.15
hle|B ’ (2.159)

where

1 OS(E)

= 2.160
2r OE E—u ( )

is the effective cyclotron mass. For the massless Dirac fermions

*_|m|

==, (2.161)
Vv

which is nothing other than the famous Einstein relation E = mc®> with a
replacement of ¢ by v. For two-dimensional systems S = nk% x n, where n is
the charge-carrier concentration, and, thus, for massless Dirac fermions one can
expect

m* ~ /n. (2.162)

The experimental observation of this dependence (Novoselov et al., 2005a; Zhang
et al., 2005) was the first demonstration of the reality of massless Dirac fermions in
graphene (see Fig. 2.4). This also gives us a value v ~ 10°ms ' & ¢/300. Note that
what was measured experimentally in these works was the conductivity, not D(u),
but the temperature dependence should be the same. Oscillations of D(u) were
measured later via quantum capacitance (Ponomarenko et al., 2010). They are well
pronounced even at room temperature (see Fig. 2.5); their broadening is deter-
mined by disorder effects.
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Fig. 2.4 The concentration dependence of the cyclotron mass for charge carriers in
single-layer graphene; m is the free-electron mass.
(Reproduced with permission from Novoselov et al., 2005a.)
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Fig. 2.5 Magnetic oscillations of the quantum capacitance (thermodynamic dens-
ity of states) as a function of the gate voltage (which is proportional to the charge
carrier concentration), for the magnetic field B = 16 T and various temperatures.
(Reproduced with permission from Ponomarenko et al., 2010.)

2.9 The anomalous quantum Hall effect in single-layer and
bilayer graphene

The anomalous character of the quantum Hall effect in single-layer (Novoselov
et al., 2005a; Zhang et al., 2005) and bilayer (Novoselov et al., 2006) graphene is
probably the most striking demonstration of the unusual nature of the charge
carriers therein. We do not need to present a real introduction to the theory of
the quantum Hall effect in general (see Prange & Girvin, 1987). However, it would
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seem useful to provide some basic information, to emphasise the relation to the
Berry phase and the existence of topologically protected zero modes.

If we consider the motion of electrons in the crossed magnetic (E) and electric
(E) fields, the Lorentz force acting on an electron moving with a velocity V is

- S5 1 -
F:e<E+—17><B>. (2.163)
c

In the crossed fields B || OzandE || Oy, this will result in a steady drift of the
electrons along the x-axis with a velocity of

E
= C—. 2.164
ve=cp ( )
This effect results in the appearance of an off-diagonal (Hall) conductivity propor-
tional to the total electron concentration and inversely proportional to the magnetic

field:
Opy = —. (2.165)

The standard theory of the quantum Hall effect assumes that all the states between
Landau levels are localized due to disorder (Anderson localization), see Fig. 2.6.
This means that, if the Fermi energy lies between the Landau levels, then only the
states belonging to the occupied Landau levels contribute to transport and the Hall
conductivity is merely proportional to the number of occupied levels N:

D 1ec &2
Oxy = Ng8y DAB 88N 7

(2.166)
where g and g, are the spin and valley degeneracy factors (for graphene g, = g, = 2)
and we take into account Eq. (2.51) for the number of states per Landau level. Thus,
the Hall conductivity should have plateaux as a function of the electron concen-
tration: it remains constant and integer (in the units of e*/h per valley per spin)
when we pass from one occupied Landau level to the next one.

m
Q
holes eleclrons

Fig. 2.6 A sketch of the density of states under quantum Hall effect conditions in
graphene. The zero-energy Landau level separates electron and hole states and is
equally shared by electrons and holes. Regions of localized and extended states
are shown in gray and white, respectively.
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However, in the case of graphene the zero-energy Landau level is equally shared
by electrons and holes. This means that when counting only electrons (¢ > 0) or
only holes (¢ < 0) it contains half as many states as do all other Landau levels.
Thus, instead of Eq. (2.166), one has (Schakel, 1991; Gusynin & Sharapov, 2005;
Novoselov et al., 2005a; Zhang et al., 2005; Castro Neto, Guinea, & Peres, 2006)

- AL (2.167)
Ory = 858y 5 )7 .
This is exactly the behavior observed experimentally (the half-integer quantum
Hall effect). For the case of bilayer graphene, the zero-energy level contains twice
as many states as for single-layer graphene, and the quantum Hall effect is integer,

but, in contrast with the case of a conventional electron gas, there is no plateau at
zero Fermi energy (Novoselov et al., 2006). These two cases are shown in Fig. 2.7.

Py (KQ)
12T

10

-4 2 0 2 4
n (1012ecm-2)

Fig. 2.7 The resistivity and Hall conductivity as functions of the charge-carrier
concentration in single-layer (top) and bilayer (bottom) graphene.

(Reproduced with permission from Novoselov et al., 2005a [top] and Novoselov, 2006
[bottom].)
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Thus, the anomalous quantum Hall effect in graphene is related to the existence of
zero-energy modes and, thus, to the Atiyah—Singer theorem.

Further understanding of geometrical and topological aspects of the anomalies
can be attained within an approach developed by Thouless et al. (1982); see also
Kohmoto (1985, 1989), Hatsugai (1997). The main observation is that the Hall
conductivity can be represented in a form very similar to that for the Berry phase.
Actually, the work by Thouless et al. (1982) was done before that by Berry (1984);
the relation under discussion has been emphasized by Simon (1983).

Let us consider, again, a general two-dimensional electron system in a periodic
potential plus uniform magnetic field (Section 2.1). We will prove later (Section
13.6) that, if the flux per elementary cell is rational (in units of the flux quantum),
the eigenstates of this problem can be rigorously characterized by the wave vector
k and considered as Bloch states in some supercell (for a formal discussion, see
Kohmoto, 1985). We will label them as |1) = |nk ), where n is the band index.

We will use a linear response theory leading to a so-called Kubo formula (Kubo,
1957). The Hall effect was first considered in this way by Kubo, Hasegawa, and
Hashitsume (1959); for a detailed derivation and discussions, see Ishihara (1971)
and Zubarev (1974). For the single-electron case it can be essentially simplified.

Let A be a one-electron operator that can be represented in a secondary
quantized form as

A=Y Aptfe (2.168)
12

(here the numerical indices will label electron states in some basis; ¢;”

fermionic creation and annihilation operators). Thus, its average over an arbitrary
state is

and ¢; are

(A) = An(efer) = Tr(Ap), (2.169)
12

where
pa = (¢1¢2) (2.170)

is the single-electron density matrix. For noninteracting electrons, the Hamiltonian
of the system has the same form:

H= ZHuéTéz, (2.171)
12

and, using the commutation relation

[61ey,65e4) = O tes — duaélen, (2.172)
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one can prove that the density matrix p satisfies the communication relations

p s

ih— = = [H,p], (2.173)

where the matrix multiplication is performed in the single-particle space, e.g.,

Hp),, = Hizps,. (2.174)
3

Let (1) = Hy + V(t), where Hy is diagonal (E; are its eigenenergies) and V (7) is
a small perturbation depending on time as exp (—iwt + f)|s_,o. Then, the
correction to the density matrix, p’ exp (—iwt + Jf) is given by the expression
(see Vonsovsky & Katsnelson, 1989)

fi1—/F
E, — E; +h(a)+l§)

gy = (2.175)

where f; = f(E;) is the Fermi function and the perturbation of an observable A is
0A exp (—iwt + Jf), where

_ Aar f1 _fz
0A =Tr(Ap') = ZEZ T h@ D) Vi2As. (2.176)

To calculate the Hall conductivity one has to consider a perturbation
V = —¢iE, (2.177)
where E is the electric field, the coordinate operator is
7 =iV; (2.178)
(see Vonsovsky & Katsnelson, 1989), and the current operator is

dr

j=el = [H?} (2.179)

E
dt h

Using the identity (2.84) and restricting ourselves to the static case only (w = 5 = 0),
one finds, for the case T =0

on — 2e J dk Z Z (m|OH Ok, |n)(n|OH | Ok, |m>, (2.180)

2
E,<puE,>u Eﬂ —E )

where the integral is taken over the Brillouin zone of the magnetic supercell;
we remind that A is the sample area. This is exactly the same expression as in
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Eq. (2.86), and, thus, as in Eq. (2.82). Using Stokes’ theorem one can represent
Eq. (2.180) as a contour integral over the boundary of the Brillouin zone:

2 occ

(4 — —
on = _TMIm;iﬁdk(nwzyn), 2.181)

where the sum is taken over all occupied bands. The contour integral gives us the
change of the phase of the state |n) when rotating by 2 in I?—space. If all the states
are topologically trivial (i.e., there is no Berry phase), all these changes should be
integer (in the units of 2m), and, thus, Eq. (2.181) gives us the quantization of the
Hall conductivity (2.166). In the case of graphene, the Berry phase m should be
added, which changes the quantization condition to Eq. (2.167). Of course, this is
just an explanation and not derivation: One also needs to prove that Berry phase n
enters the integral in Eq.(2.181) an odd number of times; this fact was confirmed
by straightforward calculations by Watanabe, Hatsugai, and Aoki (2010).

The real situation is more complicated since the consideration by Thouless et al.
(1982) does not take into account disorder effects, in particular, Anderson
localization, which are actually crucial for a proper understanding of the quantum
Hall effect. A more complete mathematical theory requires the use of noncommu-
tative geometry (Bellissard, van Elst, & Schulz-Baldes, 1994) and is too compli-
cated to review here. Just to make this statement not completely esoteric one has to
refer to the properties of the operators (2.15) describing translations in the presence
of the magnetic field. Generally speaking, they do not commute (see, e.g., Eq.
(2.18)), and noncommutative translations generate noncommutative geometry.

Keeping in mind the case of graphene, it was demonstrated by Ostrovsky,
Gornyi, and Mirlin (2008) that, actually, the quantum Hall effect can be either
anomalous (half-integer) or normal (integer) depending on the type of disorder.
Short-range scatterers induce a strong mixture of the states from different valleys
and restore the ordinary (integer) quantum Hall effect. Of course, this is beyond the
“Dirac” physics, which is valid assuming that the valleys are essentially
independent.

The cyclotron quantum (2.31) in graphene is much higher than in most semi-
conductors. The energy gap between the Landau levels with n = 0 and n = 1 is
AE =~ 2,800 K for the largest currently available permanent magnetic fields, B = 45
T (AE ~ 1,800 K for B = 20 T). This makes graphene a unique system exhibiting
the quantum Hall effect at room temperature (Novoselov et al., 2007).

Here we discuss only the background to quantum Hall physics in graphene. The
real situation is much more complicated, both theoretically (involving the role of
disorder and electron—electron interactions) and experimentally (Zhang et al.,
2006; Giesbers et al., 2007; Jiang et al., 2007b; Checkelsky, Li, & Ong, 2008;
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Giesbers et al., 2009). In particular, at high enough magnetic fields the spin and,
probably, valley degeneracies are destroyed and additional plateaux appear, in
addition to the fact that the gap opens at n = 0. The nature of these phenomena is
still controversial. Last, but not least, the fractional quantum Hall effect has been
observed for freely suspended graphene samples (Bolotin et al., 2009; Du et al.,
2009). This is an essentially many-body phenomenon (Prange & Girvin, 1987).
We will come back to the physics of the quantum Hall effect in graphene many
times in this book.

2.10 Effects of smooth disorder and an external electric field on
the Landau levels

In reality, all Landau levels are broadened due to disorder. If the latter can be
described by a scalar potential V(x, y) that is smooth and weak enough, the result
will just be a modulation of the Landau levels by this potential (Prange & Girvin,
1987)

E(x,y)=E, + V(x,y). (2.182)

The weakness means that

|V(x,y)| « haoy, (2.183)

and the smoothness means that a typical spatial scale of V(x, y) is large in
comparison with the magnetic length (2.1). The calculations for the case of
graphene are especially simple and transparent if one assumes a one-dimensional
modulation, such that V is dependent only on the y-coordinate (Katsnelson &
Novoselov, 2007). Thus, instead of Eq. (2.37) one has

<a x .a)z_iE iv(y)

a—l—z—la—y Va=g, V1™ . Vi
0 + n .0 _IE _iV(y)
ox 2 oy Mim V2™ TRy Y

We can try the solutions of Eq. (2.184) as an expansion in the basis of the solutions
(2.45) of the unperturbed problem (V = 0):

(2.184)

0

© R
(x5,y) = Z J ) exp (ikyy)A,D, (W) (2.185)

n=
—00

where A, is the normalization factor (the basis functions are supposed to be
normalized with respect to unity).
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After straightforward calculations, one obtains a set of equations for the expan-
sion coefficients cfj) (ky) :

2 : e e
_%(1—5,1,0)%(2) (ky) = %cn(l) (ky) _hivz;) J %V(ky_ qy) e, <qy> <n’ ky|n,’qy>
. 0 0 d 1
\l/_Bi(l—H’l)Cn(l) (ky)= ;Ec,,u) (ky) _Lvnz;) J %v (ky—qy> e (%) <n . n,,qy>
(2.186)

where v(gq) is a Fourier component of V(y)

<n, kyln’,qy> = AuAy ]O dxD, <M> D, M

I I

—00

(2.187)

If the potential is smooth and weak enough, one can use the adiabatic approxima-
tion and neglect the terms with n'# n in Eq. (2.186) describing transitions between
the Landau levels. Then,

1) =) 1 [ () ke o)

0

k) = 20) 1 | ev(l =) ki o?(s). @180

—00

where En(z) = cizjl, and we use a dimensionless energy (2.26). For n = 0, the

components 1 and 2 are decoupled and we have
2

ec(ky) = T L;—Cj:v(ky — qy) exp {—%B (ky - qy)z} c(qy), (2.189)

where c is either cf)l) or Z‘(()z) and we calculate explicitly (0, ,| 0, g,).

Coming back to real space,

c(ky) = J dyexp (—ikyy)c(ky), (2.190)
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one can transform Eq. (2.189) to the form

(= V©)ely) =0, (2.191)
where
~ . 1 T de lequ . . T / N1 (y_y/)z
V(y)= ho. ng (qy) exp [— 1 Tiay | = hoo, J ay'v(y') ﬁlep 7
(2.192)

is a convolution of the potential V(y) with the ground-state probability density of a
harmonic oscillator. If the potential is smooth in comparison with [, then
V() = V().

Eq. (2.191) has solutions

c(y) =6y —Y),
= V(Y), (2.193)
which means that the zero-energy Landau level broadens via just a modulation by the
scalar potential. However, a random vector potential does not broaden the zero-energy
level, due to the index theorem (Section 2.3). All other Landau levels are broadened
both by scalar and by vector potentials. For a scalar potential only, one has in general

E,(Y)+ hl—;F V2n =V(Y). (2.194)

There is some experimental evidence that the zero-energy Landau levels in gra-

phene are narrower than the other ones (Giesbers et al., 2007). The most natural

explanation is that there exist random pseudomagnetic fields in graphene due to

ripples (corrugations; Morozov et al., 2006). The origin of these pseudomagnetic
fields will be discussed later, in Chapter 10.
For the case of a constant electric field E

V(x) = — eEx, (2.195)

the problem has a beautiful, exact solution that is based on relativistic invariance of
the Dirac equation (Lukose, Shankar, & Baskaran, 2007). The Lorentz
transformation

R Ry L

corresponding to the coordinate system moving with the velocity fv, with f < 1
(we remind the reader that for our Dirac equation v plays the role of the velocity of

(2.196)
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light), changes the electric field E||Oy and magnetic field B||Oz according to
(Jackson, 1962)

F=——¢£ —=f___ (2.197)
l_ﬁz c l_ﬁZ

This means that, if the electric field is weak enough
E<’B, (2.198)
c

it can be excluded by the Lorentz transformation with

_cE

* = 2.199
Fr= (2.199)
In the opposite case
E>"'B,
c

one can, vice versa, exclude the magnetic field, see Shytov et al. (2009).
Thus, the effective magnetic field is

By = B\/1 — p*2. (2.200)

As aresult, the energy spectrum of the problem is (Lukose, Shankar, & Baskaran,
2007)
3/4

E,(ky) = hoc/n(1 — p*?)
The distances between Landau levels are decreased by the factor (1 — /3*2)3/ “ The

last term in Eq. (2.201) (as well as the additional factor /1 — ﬁ*2 in the first term)
is nothing other than the result of Lorentz transformation of energy and momen-
tum. It transforms the Landau levels into Landau bands, in qualitative agreement
with Eq. (2.194).

— hvB*ky. (2.201)
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Quantum transport via evanescent waves

3.1 Zitterbewegung as an intrinsic disorder

The Berry phase, the existence of a topologically protected zero-energy level and
the anomalous quantum Hall effect are striking manifestations of the peculiar,
“ultrarelativistic” character of charge carriers in graphene.

Another amazing property of graphene is the finite minimal conductivity, which
is of the order of the conductance quantum e*/h per valley per spin (Novoselov
et al., 2005a; Zhang et al., 2005). Numerous considerations of the conductivity of a
two-dimensional massless Dirac fermion gas do give us this value of the minimal
conductivity with an accuracy of some factor of the order of one (Fradkin, 1986;
Lee, 1993; Ludwig et al., 1994; Nersesyan, Tsvelik, & Wenger, 1994; Shon &
Ando, 1998; Ziegler, 1998; Gorbar et al., 2002; Yang & Nayak, 2002; Katsnelson,
2006a; Tworzydlo et al., 2006; Ryu et al., 2007).

It is really surprising that in the case of massless two-dimensional Dirac
fermions there is a finite conductivity for an ideal crystal, that is, in the absence
of any scattering processes (Ludwig et al., 1994; Katsnelson, 2006a; Tworzydlo
et al., 2006; Ryu et al., 2007). This was first noticed by Ludwig et al. (1994) using
a quite complicated formalism of conformal field theory (see also a more detailed
and complete discussion in Ryu et al., 2007). After the discovery of the minimal
conductivity in graphene (Novoselov et al., 2005a; Zhang et al., 2005), I was
pushed by my experimentalist colleagues to give a more transparent physical
explanation of this fact, which has been done in Katsnelson (2006a) on the basis
of the concept of Zitterbewegung (Schrodinger, 1930) and the Landauer formula
(Beenakker & van Houten, 1991; Blanter & Biittiker, 2000). The latter approach
was immediately developed further and used to calculate the shot noise (Tworzydlo
et al., 2006), which turns out to be similar to that in strongly disordered metals
(a “pseudodiffusive transport”). There are now more theoretical (Prada et al., 2007;
Katsnelson & Guinea, 2008; Rycerz, Recher, & Wimmer, 2009; Schuessler et al.,

63
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2009; Katsnelson, 2010a) and experimental (Miao et al., 2007; Danneau et al., 2008;
Mayorov et al., 2011a) works studying this regime in the context of graphene. This
situation is very special. For a conventional electron gas in semiconductors, in the
absence of disorder, the states with definite energy (eigenstates of the Hamiltonian)
can simultaneously be the states with definite current (eigenstates of the current
operator), and it is the disorder that results in the nonconservation of the current and
finite conductivity. In contrast, for the Dirac fermions the current operator does not
commute with the Hamiltonian (Zitterbewegung), which can be considered as a kind
of intrinsic disorder (Katsnelson, 2006a; Auslender & Katsnelson, 2007). Therefore,
a more detailed understanding of the pseudodiffusive transport in graphene is not
only important for physics of graphene devices but also has a great general interest
for quantum statistical physics and physical kinetics.

The Zitterbewegung is a quantum relativistic phenomenon that was first
discussed by Schrodinger as early as in 1930 (Schrédinger, 1930). Only very
recently was it observed experimentally for trapped ions (Gerritsma et al., 2010).
This phenomenon seems to be important if one wishes to qualitatively understand
the peculiarities of electron transport in graphene at its small doping (Katsnelson,
2006a; Auslender & Katsnelson, 2007). Other aspects of the Zitterbewegung in
graphene physics, in particular, possibilities for its direct experimental observation,
are discussed by Cserti and Déavid (2006) and Rusin and Zawadzki (2008, 2009).
Here we will explain this basic concept for the case of two-dimensional massless
Dirac fermions. In a secondary quantized form, the Dirac Hamiltonian reads

ﬁ ZVZ(I\’E;-’_EPA;, = Z@i,‘-’_ilﬁ‘i'-‘, (31)
P P
and the corresponding expression for the current operator is

]_?: €VZ‘/I\’13+5'"?[3 = Z};, (3.2)
p P

12
creation operators. The expression (3.2) follows from Eq. (3.1) and the gauge

e —_— A~ ~+ ~ .
where p is the momentum and ¥;* = <‘P~ \P;E) are pseudospinor electron-

invariance, which requires (Abrikosov, 1998)

=5 5i113
j —eél_),.

L

(3.3)

Here we omit spin and valley indices (so, keeping in mind applications to
graphene, the results for the conductivity should be multiplied by 4, due to there
being two spin projections and two conical points per Brillouin zone).
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Straightforward calculations for the time evolution of the electron operators give
P(1) = exp (iﬁlt)‘l’exp (—iflt) (here we will put A = 1)

50 = 1 {[exp (—iegt)] (1 ;ﬁ"> + [exp (ieyt)] <1 ‘pﬁ") }@,3 (3.4)

and for the current operator

3 3 5t

70 =Jo(t) +71(0) +17, (¢)

3 = D(po) ¢
o) = 3t I
7

3 ev ~ . |o—pPpo) i Sl .
Ji(t) = —Z‘Pﬁ [% —i—;a x P| Wy exp (2iest), (3.5

where ¢ = vp is the particle energy. The last term in Eq. (3.5) corresponds to the
Zitterbewegung.

Its physical interpretation is usually given in terms of the Landau—Peierls
generalization of the Heisenberg uncertainty principle (Landau & Peierls, 1931;
Berestetskii, Lifshitz, & Pitaevskii, 1971; Davydov, 1976). Attempts to measure
the coordinate of a relativistic particle with a very high accuracy require an
amount of energy that is sufficient to create particle—antiparticle pairs and, thus,
we will inevitably lose our initial particle, being unable to distinguish it from one
of the created particles (according to quantum statistics, all the particles are
equivalent). This pair creation corresponds to the oscillating terms with fre-
quency 2¢; in Eq. (3.5).

In terms of condensed-matter physics, the Zitterbewegung is nothing other than
a special kind of interband transition with the creation of virtual electron—hole
pairs. The unitary transformation generated by the operator (1.29) diagonalizes the
Hamiltonian and thus introduces electron and hole states with the energies +vp;
after this transformation the oscillating term in Eq. (3.5) obviously corresponds to
the interband transitions, e.g.,

— Cos ¢ — isin@;exp (—i¢ﬁ + 2ig,3t)
Uﬁ+jﬁxUﬁ = ev
isin @5 exp (iqﬁﬁ - 2ia,;t> cos ¢
(3.6)

To calculate the conductivity o(w) one can first try to use the Kubo formula (Kubo,
1957), which reads, for the two-dimensional isotropic case
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© B
o(w) = % J dt exp (iof) }d/1<f(t - M)j}, 3.7)
0

0

where f = T~ ! is the inverse temperature and A is the sample area. In the static
limit @ = 0, taking into account the Onsager relations and the analyticity of the

A~
-

correlators <](z)f> for —f < Im z < 0 (Zubarev, 1974), one has

o= % T dz<f(r)j>. (3.8)

Usually, for ideal crystals, the current operator commutes with the Hamiltonian
and thus f(t) does not depend on time. In that case, due to Eq. (3.7), the frequency-
dependent conductivity in the ground state contains only the Drude peak

@5(@. (3.9)

Either the spectral weight of the Drude peak is finite and, thus, the static conduct-
ivity is infinite, or it is equal to zero. It is easy to check that for the system under
consideration, the spectral weight of the Drude peak is proportional to the modulus
of the chemical potential |¢| and thus vanishes at zero doping (u = 0). It is the

Zitterbewegung, i.e., the oscillating term fl(t), which is responsible for the non-
trivial behavior of the conductivity for zero temperature and zero chemical poten-
tial. A straightforward calculation gives the formal result

2 0
o= %Jdeeﬁz(g), (3.10)
0

where one delta-function originates from the integration over ¢ in Eq. (3.8) and the
second one from the derivative of the Fermi distribution function appearing in
the calculation of the average over the product of Fermi operators. Of course, the
square of the delta-function is not a well-defined object, and thus Eq. (3.10) is
meaningless before specification of how one should regularize the delta-functions.
After regularization, the integral in Eq. (3.10) is finite, but its value depends on the
regularization procedure (for a detailed discussion of this uncertainty, see Ryu
et al., 2007). Although this derivation cannot give us a correct numerical factor, it
opens a new path to qualitative understanding of more complicated situations. For
example, the minimal conductivity of the order of e*/h per channel has been
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observed experimentally also for bilayer graphene (Novoselov et al., 2006), with
an energy spectrum drastically different from that for the single-layer case. Bilayer
graphene is a zero-gap semiconductor with parabolic touching of the electron and
hole bands described by the single-particle Hamiltonian (1.46). The Hamiltonian
can be diagonalized by the unitary transformation U with the replacement
¢5 — 2¢5. Thus, the current operator after the transformation takes the form
(3.6) with the replacements v — p/m and exp (—iqﬁﬁ) — exp (—2i¢ﬁ> . In contrast
with the single-layer case, the density of electron states for the Hamiltonian (1.46)
is finite at zero energy but the square of the current is, vice versa, linear in energy.
As a result, we have the same estimate as Eq. (3.10).

3.2 The Landauer-formula approach

A deeper understanding of the origin of finite conductivity without charge carriers
can be reached using the Landauer-formula approach (Beenakker & van Houten,
1991; Blanter & Biittiker, 2000). Following Katsnelson (2006a) we consider
the simplest possible geometry, choosing the sample as a ring of length L, in
the y-direction; we will use the Landauer formula to calculate the conductance
in the x-direction (see Fig. 3.1). As we will see, the conductivity turns out to be
dependent on the shape of the sample. To have a final transparency we should keep
L, finite. On the other hand, periodic boundary conditions in the y-direction are
nonphysical, and we have to choose L, as large as possible in order to weaken their
effects. Thus, for the two-dimensional situation one should choose L, « L.

In the coordinate representation the Dirac equation at zero energy takes the form

9 i)y =0
ox Oy i="5

o .0
(i) =o

)

3.11)

Fig. 3.1 The geometry of the sample. The thick arrow shows the direction of the
current. Solid and dashed lines represent wave functions of the edge states
localized near the top (y4(x)) and bottom (4, (x)) of the sample, respectively.
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General solutions of these equations are just arbitrary analytic (or complex-
conjugated analytic) functions:

y =y (x +iy),

(3.12)
Yy = yo(x —iy).

Owing to periodicity in the y-direction, both wave functions should be
proportional to exp(ik,y), where k, = 2nn/L,, n = 0, =1, £2, ... This means that
the dependence on x is also fixed: The wave functions are proportional to
exp(£2nnx/Ly). They correspond to the states localized near the bottom and top
of the sample (see Fig. 3.1).

To use the Landauer formula, we should introduce boundary conditions at the
sample edges (x = 0 and x = L,). To be specific, let us assume that the leads
are made of doped graphene with the potential V; < 0 and the Fermi energy
Er = vk = —V,. The wave functions in the leads are supposed to have the same
y-dependence, namely y »(x,y) = y;, 2(x) exp (ik,y). Thus, one can try the solution
of the Dirac equation in the following form that is consistent with Eq. (1.30):

exp (ikyx) + r exp (—ikyx), x <0,
i (x) =< a exp (kyx), 0<x<Ly,
t exp (ikyx), x> L,, 3.13)
exp (ikyx + ig) + r exp (—ikux — ig), x <O,
wy(x) = ¢ b exp (—kyx), 0<x<Ly,
t exp (ikyx + ig), x> Ly,

where sing = k/kg and k, = , /k% — ki. From the conditions of continuity of the
wave functions, one can find the transmission coefficient

cos 2¢

2
T,=|tk,)| = . 3.14
’ ( ))| cosh?(kyLy) — sin?¢ (314)
Further, one should assume that kL, » 1 and put ¢ = 0 in Eq. (3.14), so
1
T,=———. 3.15
cosh? (kL) G-15)

The conductance G (per spin per valley) and Fano factor F of the shot noise
(Blanter & Biittiker, 2000) are expressed via the transmission coefficients (3.15):

2
e
G:E Z T, (3.16)

n—=-—oo
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and

> T,
F=1-"=—"2_ (3.17)
> Tn

Nn=—00

Note that in the ballistic regime, where the transmission probability for a given
channel is either one or zero, F'= 0 (the current is noiseless), whereas if all T, « 1
(e.g., current through tunnel junctions) F =~ 1.

Thus, the trace of the transparency, which is just the conductance (in units of
elh), is

- - 1 N L,
T = Z cosh2(kny) T nl, (-18)

Assuming that the conductance is equal to ¢ L,/L, one finds a contribution to
the conductivity per spin per valley equal to e*/(zh) (Katsnelson, 2006a;
Tworzydlo et al., 2006). This result seems to be confirmed experimentally
(Miao et al., 2007; Mayorov et al., 2011a). Also note that for the case of
nanotubes (L, » L,) one has a conductance e*lh per channel, in accordance
with known results (Tian & Datta, 1994; Chico et al., 1996). For the Fano factor
one has

1
F= 3 (3.19)
(Tworzydlo et al., 2006). This result is very far from the ballistic regime and
coincides with that for strongly disordered metals (Beenakker & Biittiker, 1992;
Nagaev, 1992). This means that, in a sense, the Zitterbewegung works as an
intrinsic disorder.

Instead of periodic boundary conditions in the y-direction, one can consider
closed boundaries with zigzag-type or infinite-mass boundary conditions (we will
discuss these later). The result (Tworzydlo et al., 2006) is just a replacement of the
allowed values of the wave vectors in Eq. (3.15). One can write, in general
(Rycerz, Recher, & Wimmer, 2009)

ky(n) = grlnty) (3.20)
Ly
where g = 1 and y = % for closed boundary conditions and g = 2 and y = 0 for

periodic boundary conditions. The results (3.18) and (3.19) for the case L, » L,
remain the same.
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The case of bilayer graphene (Katsnelson, 2006b; Cserti, Csordas, & David,
2007; Snyman & Beenakker, 2007) is more subtle. Even if we neglect the trigonal
warping and use the Hamiltonian (1.46), an additional spatial scale

[, = hy ~ 10a (3.21)
Iy
arises in the problem (Snyman & Beenakker, 2007), and the results for the
conductance and the Fano factor depend on the sequence of the limits L,/[, — oo
and Er — 0. Moreover, when we cross the energy of trigonal warping and &z
satisfies the inequality (1.55), all four conical points work and the results are
changed again (Cserti, Csordés, & D4vid, 2007).

3.3 Conformal mapping and Corbino geometry

Thus, electron transport in undoped graphene is due to zero modes of the Dirac operator,
which are represented by analytic functions of z = x + iy determined by boundary
conditions. For the geometry shown in Fig. 3.1, these functions are just exponents:

Y1n(2) = exp <2an>, (3.22)
y
so a generic wave function inside a graphene flake can be written as
° 2mnz 9
¥(x,y) = n;w a, | P <o L, > 0| exp <2ZlZ> . (3.23)

where the coefficients a,, and b,, are determined by the boundary conditions. Let the
Fermi wavelength in the leads be much smaller than the geometrical lengths of the
flake. Then, for most of the modes one can write the boundary conditions assuming

normal incidence ¢ = O:
(147
Vin = 1—r

Your = (;) ; (3.24)

where subscripts “in” and “out” label the values of the wave functions at the
boundaries between the leads and the sample. In this approximation it is very easy
to solve the problem of electron transport through a graphene quantum dot of
arbitrary shape using a conformal mapping of this shape to the strip (Katsnelson &
Guinea, 2008; Rycerz, Recher, & Wimmer, 2009). For example, the mapping
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w(z) = Ry exp (?) (3.25)
y

with

27[Lx R2

exp ==

L, Ry
transforms the rectangular strip L, X L, into a circular ring with inner and outer
radii R, and R, respectively. Indeed, for z = x + iy, with0 < x < Lyand 0 <y < L,,

the transformation (3.25) leads to 0 < arg w < 2z and R; < |w| < R,. Instead of Eq.
(3.23) one can try in this case

Py = [a<zo> +bn<§,>]. (3.26)

n=—00

The conformal mapping allows us to find immediately the solution for Corbino
geometry where “in” and “out” leads are attached to the inner and outer edges of
the ring, respectively (see Fig. 3.2); in this case periodic boundary conditions in the
y-direction should naturally be used. Moreover, the solution of the problem for any
shape of the flake that is topologically equivalent to the ring can be written
automatically in terms of the corresponding conformal mapping (Rycerz, Recher,
& Wimmer, 2009). Earlier (Katsnelson & Guinea, 2008), this method was applied
to the case of graphene quantum dots with thin leads attached.

If we just repeat the derivation of Eq. (3.15) using the boundary conditions
(3.24), one can see that

cosh (kyLy) = % [exp (kyL ) + exp (—kyLy)]
3.27
Sl oo 27
2 W] l(x - LX)

|_

Fig. 3.2 The Corbino geometry: radial electric current in the ring.
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and
w(x = Ly) . W, (x =0)

= . (3.28)
y(x=0) wo(x = Ly)
Under the conformal mapping (3.25)
v =L _ (2”Lx> =R Ry (3.29)
yi(x=0) Ly yi(r=Ri) R
and the result for the transmission coefficient reads
4
T, = (3.30)

() + ()

We should be careful, however, since up to now we have not taken into account the
Berry phase n for massless Dirac fermions. When we pass along the circle within
the disc we have not periodic but antiperiodic boundary conditions:

wi(|w|, argw) = — wi(|w|, arg w + 27), (3.31)

which means that # in (3.30) should be replaced by n + % Finally, one has (Rycerz,
Recher, & Wimmer, 2009)

1 1 3 5
, J=Ef-, -, o, ., (3.32)

R
cosh 2 [jln (R—zﬂ 2 2 2
1

and the summation over integer » in Eq. (3.16) and (3.17) should be replaced by a
summation over half-integer j. For a ring that is thin enough, |R, — R;| « Ry, the
result is

T =

G . F=x-=. (3.33)

This agrees with the result (3.18) if we take into account that the thin ring is
equivalent to the rectangular strip with L, = R, — R; and L, = 2zR;. In the
opposite limit R; « R, one has

Gr——, Fxr1-G—. (3.34)

Thus, for zero doping, the conductance of a graphene flake of arbitrary shape can
be found without explicit solution of the Dirac equation, by a conformal mapping
to a rectangle.
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3.4 The Aharonov-Bohm effect in undoped graphene

The Aharonov—Bohm effect (Aharonov & Bohm, 1959; Olariu & Popescu, 1985)
is the shift of interference patterns from different electron trajectories by the
magnetic flux through the area between the trajectories. This leads to oscillations
of observable quantities, such as conductance as a function of the magnetic flux.
The Aharonov-Bohm effect in graphene has been studied both theoretically
(Recher et al., 2007; Jackiw et al., 2009; Katsnelson, 2010a; Rycerz, 2010;
Wurm et al., 2010) and experimentally (Russo et al., 2008; Huefner et al.,
2009) for the case of a finite doping. It is not clear a priori whether this effect
is observable or not in undoped graphene, where the transport is determined by
evanescent waves. The analysis of Katsnelson (2010a) and Rycerz (2010) shows
that, whereas for the case of very thin rings the Aharonov—-Bohm oscillations are
exponentially small, for a reasonable ratio of radii, such as, e.g., R,/R; =5, the
effect is quite observable.

By combining the conformal-mapping technique with a general consideration of
zero-energy states for massless Dirac fermions one can derive simple and general
rigorous formulas for any graphene flakes topologically equivalent to the ring,
avoiding both numerical simulations and explicit solutions of the Schrédinger
equation for some particular cases (Katsnelson, 2010a). Note that for the case of
a circular ring and a constant magnetic field the problem can be solved exactly for
any doping (Rycerz, 2010), but, of course, the mathematics required is much more
cumbersome. In the corresponding limits, the results are the same.

The effect of magnetic fields on the states with zero energy can be considered
by employing the method of Aharonov and Casher (1979) (see Section 2.3).
The general solutions have the form (2.62), where f; and f; are analytic and
complex-conjugated analytic functions. The boundary conditions following from
Eq. (3.24) are

1+7r= (//(j),
1—r=y),
W(_z) (3.35)
r=y.,
r=y?,

where superscripts 1 and 2 label the boundaries attached to the
corresponding leads.

If the boundary of the sample is simply connected, one can always choose
@ = 0 at the boundary and, thus, the magnetic fields disappear from Eq. (3.35); this
fact was used by Schuessler et al. (2009) as an elegant way to prove that a random
vector potential has no effect on the value of the minimal conductivity. Further, we
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will consider a ring where the scalar potential ¢ is still constant at each boundary
but these constants, ¢, and ¢,, are different. Also, by symmetry (cf. Eq. (3.28)),

(2) (1)
I+ f;. (3.36)

PO

70
The answer for the transmission coefficient T = |r|* for the case of a ring has the
form

1

T, — . (3.37)
cosh? [(] +a)ln <—2>}
Ry
the only difference from Eq. (3.32) being the shift of j by
a=—9"" (3.38)

e <R2> ’
In{—
R,

which generalized the corresponding result of Rycerz, Recher, and Wimmer
(2009) on the case of finite magnetic fields. The conductance G (per spin per
valley) and Fano factor of the shot noise F are expressed via the transmission
coefficients (3.37) by Eq. (3.16) and (3.17). To calculate the sums one can use the
Poisson summation formula (2.145). On substituting Eq. (3.37) into (3.16) and
(3.17) one finds a compact and general answer for the effect of a magnetic field on
the transport characteristics:

G- X
hln (Rz/Rl)

142 (=1)*cos (ana)ak] , (3.39)
k=1

il R
1425 (=1)* cos (2zka)ay <1 + 72k*/ In? <R—2>>
F=1-7 = Sl (340)

1425 (—1)" cos (2zka) oy
k=1

7*k/In (ﬁ—?)
ann (/10 (%))

Eq. (2.60) can be solved explicitly for radially symmetric distributions of the
magnetic field B(r):

[\S]

where

(3.41)

O —
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R2 r
(] Rz dr
0y — @ = > In (R_1> + J - J dr'r'B(r'), (3.42)
R R

where O is the magnetic flux though the inner ring. In the case of the Aharonov—
Bohm effect where the whole magnetic flux is concentrated within the inner ring
one has

D

a=—.
D,

(3.43)

Owing to the large factor ©° in the argument of sinh in Eq. (3.41), only the terms
with k = 1 should be kept in Eq. (3.36) and (3.37) for all realistic shapes, thus

2 2
T ed
G=Gy|l———+~exp| ————|cos|— ]|, 3.44
0 R p & e (3.44)
In [ — In [ —
Ry Ry
1 8+ 72 e®
F=-+4+——"—exp| ——>=<|cos|—], (3.45)
3 R2 Rz hc
3In3 (= In (==
Ry Ry

where Gy is the conductance of the ring without magnetic field (3.33).

Oscillating contributions to G and F are exponentially small for very thin rings
but are certainly measurable if the ring is thick enough. For R,/R; = 5 their
amplitudes are 5.3% and 40%, respectively.

Consider now a generic case with the magnetic field B = 0 within the flake.
Then, the solution of Eq. (2.60) is a harmonic function, that is, the real or
imaginary part of an analytic function. It can be obtained from the solution for
the disc by the same conformal transformation as that which we use to solve the
Dirac equation. One can see immediately that Eq. (3.35) remains the same. The
expressions (3.44) and (3.45) can be rewritten in terms of an experimentally
measurable quantity Gq

4r° ? D
G =G, [1 . % exp (— %) cos (‘;l—cﬂ (3.46)

1 8z* ? ed
F= 3 + 3—[))3 exp (— F) cos (E)’ 3.47)

where ff = 2e2/(hG0) and we assume that f « .
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Thus, conformal transformation (Katsnelson & Guinea, 2008; Rycerz, Recher,
& Wimmer, 2009) is a powerful tool with which to consider pseudodiffusive
transport in undoped graphene flakes of arbitrary shape, not only in the absence
of a magnetic field but also in the presence of magnetic fluxes in the system. An
experimental study of the Aharonov—Bohm oscillations and comparison with the
simple expressions (3.46) and (3.47) derived here would be a suitable way to check
whether the ballistic (pseudodiffusive) regime is reached or not in a given experi-
mental situation.

To conclude this chapter, we note that undoped graphene is a gapless
semiconductor, with a completely filled valence band and an empty conduction
band. It is really counterintuitive that in such a situation, at zero temperature, it has
a finite conductivity, of the order of the conductance quantum e*/A. This is one of
the most striking consequences of its peculiar “ultrarelativistic” energy spectrum.
Formally, the electron transport in undoped graphene is determined by zero modes
of the Dirac operator, which are described by analytic functions with proper
boundary conditions. Therefore, the whole power of complex calculus can be used
here, just as in classical old-fashioned branches of mathematical physics such as
two-dimensional hydrodynamics and electrostatics. These states cannot correspond
to the waves propagating through the sample but, rather, are represented by
evanescent waves. The transport via evanescent waves in undoped graphene is a
completely new variety of electron transport in solids, being drastically different
from all types known before (ballistic transport in nanowires and constrictions,
diffusive transport in dirty metals, variable-range-hopping transport in Anderson
insulators, etc.). Gaining a deeper understanding of these new quantum phenomena
would seem to be a very important task.
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The Klein paradox and chiral tunneling

4.1 The Klein paradox

Soon after the discovery of the Dirac equation, Oskar Klein (1929) noticed one of
its strange properties, which was called afterwards the “Klein paradox.” Klein
considered the 4 x 4 matrix Dirac equation for a relativistic spin—% particle
propagating in three-dimensional space. To be closer to our main subject, we will
discuss the 2 x 2 matrix equation for a particle propagating in two-dimensional
space; the essence of the paradox remains the same. Thus, we will consider the
stationary Schrodinger equation

HY = E¥Y “4.1)

with the two-component spinor wave function
W2

H = —ihcaV + V(x,y)1 + mc%6,. 4.2)

and the Hamiltonian

Here ¢ is the velocity of light, m is the mass of the particle, and V(x, y) is a
potential energy; we will explicitly write the identity matrix 1 to show the
spinor structure of the Hamiltonian. Let us consider the one-dimensional case
V = V(x) and y; = wi(x) (the latter means normal incidence). Eq. (4.1) now takes
the form

d
—lhc% = [E—mc® = V(¥)]y,,
dx 4.3)
W
_lhcd—xl = [E+mc® —V(x)]y,

77
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First consider just a jump of the potential:

0, x<0,
V(x) = { Vo, x>0, 4.4)

with a positive V.

At the left side of the barrier, the solutions ¥; and ¥, have x-dependence as
exp(=£ikx), where the wave vector k satisfies the relativistic dispersion relation
E* = (hck)® + m>c*, or

2
k= M. 4.5)
hc

The allowed energy values are E > mc” (electron states) or E < —mc” (hole,
or positron, states). To be specific, we will consider the first case. Thus, using
Eq. (4.3) with V = 0 one finds for the incident wave

Wy (x) = < : )e""" (4.6)
and for the reflected wave

¥ (x) = < 1a>e”“, (4.7)

E — mc?
N E e *5)

We will assume a solution of the general form

where

Y(x) = ¥in(x) + r'fi(x), (4.9)

where 7 is the reflection coefficient.

At the right side of the barrier, we have the dispersion relation
(E — Vo) = flzczq2 + m?c* for the new wave vector q. We will consider the case
of a potential jump that is strong enough:

Vo > E + mc>. (4.10)

In this case the solution

\/(VO — E)2 — m2ct
hc

q= 4.11)
is real and the particle can also propagate on the right side of the barrier. However,
this particle belongs to the lower (positron, or hole) continuum (see Fig. 4.1).
It is in this situation that the paradox arises, so we will consider only this case.
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Fig. 4.1 Electron and positron states on the left and right sides of the barrier for
the cases Vy < 2mc? (a) and V > 2mc? (b).

For smaller values of Vj, one has either the situation of propagating electrons
on both sides of the barrier, if Vo) < E — mc?, or evanescent waves at x > 0 if
E — mc* < Vy < E 4+ mc* (Fig. 4.1(a)).

On solving the Schrodinger equation (4.3) for x > 0 one finds for the transmitted
wave

1
Pix) = | 1|, (4.12)

B

Vo — E — mc?
EE 4.13
'B Vo—E+m02 ( )

where
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One can find the reflection coefficient r and the transmission coefficient ¢z, assum-
ing that the wave function is continuous at x = 0, that is,

lIJin + ”‘Pr‘x=70 = tht|x=+0 (414)
or
14+r=t,
a(l =r)=—=t (4.15)
We find straightforwardly
1+oaf
=7 4.16
r= 1 (4.16)

Since for the case under consideration o and £ are real, 0 < a, f < 1, one can see
immediately that » < 0 and

2
R=|r) = G J:Zé) > 1. (4.17)

However, R is nothing other than the reflection probability! Indeed, the current
density

Jo= Y0¥ = clyi *va + w2l yn) (4.18)

has the values 2ac and —2acR for the incident and reflected parts of the wave
function (4.9), respectively. Thus, we have the very strange conclusion that, under
the condition (4.10), the reflected current is larger than the incident one and the
reflection probability is larger than unity. This was initially called the Klein
paradox.

Our further discussion will follow Calogeracos and Dombey (1999) and Dom-
bey and Calogeracos (1999). (A rather complete list of references can be found in
Greiner and Schramm [2008].)

First, as was noticed by Pauli, there is a problem with the definition of the
transmitted wave. For the case (4.10), the group velocity of the particle on the right
side of the barrier

L1 ()t @19

T hdg  h\dE) T E—V,

is opposite to the direction of the wave vector g. This means that, formally
speaking, the transmitted wave (4.12) describes the particle propagating to the left
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(for positive g), since the direction of propagation is determined by the direction of
the group velocity, not by the momentum. So, at first sight, the formal paradox
disappears (see also Vonsovsky & Svirsky, 1993).

However, it reappears in a more detailed view of the problem. Instead of the
infinitely broad barrier (4.4), let us consider the finite one:

Ve, Xl <a,
V(x) = { 0, Kl>a (4.20)
In this situation, there is no problem with the choice of the transmitted wave at the
right side, it is just ¥;,; within the barrier region one has to consider the most
general solution, with both parts, proportional to exp (£igx). The calculations are
simple and straightforward (see, e.g., Su, Siu, & Chou, 1993; Calogeracos &
Dombey, 1999) and the results for the reflection and transmission probabilities R
and T are

 (1- @) sin(24a)
B 4024 + (1 — 0(2,/)’2)2 sin2(2ga) ,

(4.21)

T 4o ?
4025 + (1 — a2ﬁ2)2 sin2(2ga)

4.22)

There is no formal problem in the sense that 0 < R < 1,0 < T <landR+T=1,
as should be the case.

Now, the case of an infinitely broad barrier can be considered from Eq. (4.21)
and (4.22) in the limit a — oo. We should be careful here, because of fast
oscillations. If
Nz

qga = 5 4.23)

(N is an integer), then sin (2ga) = 0, and we have complete transmission (R = 0,
T = 1). If we just average over the fast oscillations in the limit ¢ — oo, replacing
sin® (2ga) by its average value 1, we will find the expressions

PO )
- 8a2p* + (1 — azﬁz)z ’
202
T 8a’p (4.24)

“T 8a2f” + (1 - a2ﬁ2)2.

Thus, the paradox reappears in a different form. It is no longer a paradox in a
logical or mathematical sense, it is just a physically counterintuitive behavior.
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The well-known tunneling effect in quantum mechanics assumes that the
particle can penetrate through a classically forbidden region with £ < V(x) but
the probability of the penetration is exponentially small if the barrier is high and
broad. In the semiclassical approximation, the transmission of the barrier between
classical turning points x; , satisfying the equation E = V(x; ) can be estimated as
(Landau & Lifshitz, 1977)

X2

T~ expq — % J dx+/2m[V(x) — E] 7, (4.25)

X1

where m is the mass of the particle; the motion is supposed to be nonrelativistic.
For the relativistic particle under the condition (4.10) the situation is dramatically
different: In the limit a — oo the penetration probability (4.24) remains finite and,
in general, is not small at all. Even for an infinitely high barrier (Vy — o) one has
p=1and

T,=——° (4.26)

This quantity is of the order of unity if E — mc? is of the order of mc?. In the
ultrarelativistic limit

E » mc?, 4.27)

one has T,, =~ 1. The ability of quantum relativistic particles to penetrate with large
enough probabilities through barriers with arbitrarily large height and width is the
contemporary formulation of the Klein paradox (Calogeracos & Dombey, 1999).

A hand-waving explanation of the tunnel effect is based on the Heisenberg
principle: Since one cannot know with arbitrary accuracy both the momentum and
the position of a particle at a given instant one cannot accurately separate the total
energy into a potential part and a kinetic part. Thus, the kinetic energy can be “a
bit” negative.

In the relativistic regime, there is a much stronger restriction (Landau & Peierls,
1931). One cannot know even the position alone with accuracy better than Ac/E.
This means that relativistic quantum mechanics cannot be mechanics, it can only
be field theory (Berestetskii, Lifshitz, & Pitaevskii, 1971). It always contains
particles and antiparticles, and to measure the position with an accuracy better
than hc/E one needs to apply an energy so high that it will create particle-
antiparticle pairs. The original particle whose position is supposed to be measured
will be lost among the newly born particles since all electrons are identical.
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This consideration is relevant for the Klein paradox since under the condition
(4.10) both electron and positron states are explicitly involved.

The standard interpretation of the states with negative energy is based on the
Dirac theory of holes (Bjorken & Drell, 1964; Berestetskii, Lifshitz, & Pitaevskii,
1971; Davydov, 1976). It is supposed that in the vacuum all the states with
negative energy are occupied; antiparticles are the holes in this energy continuum.
In the case (4.10), the tunneling of a relativistic particle happens from a state from
the upper energy continuum (x < 0) to a state in the lower one (x > 0). In this
situation the definition of the vacuum should be reconsidered. This reconstruction
takes place necessarily when we switch on the potential and pass from the
“normal” situation of small V to the “paradoxical” case (4.10).

Let us consider the case of a rectangular barrier (4.20) but for arbitrary V. If Vis
small enough, the bound states are formed in the gap, that is, with energies
|E| < mc?. A straightforward solution of this problem gives the following equation
for the energy of the bound states (Calogeracos & Dombey, 1999):

mcz— mc2

mc* + E)(E + Vo —mc2)’

(4.28)
2+ E)(mc®> +E+V,
tan (qa) = — (mc* + E)(mc* + E + 0)’
me? — 0 — mc
(me> —E)(E4+V 2)
where
\/(E + Vo)* — m2ct
1= hc
and we have made the replacement Vo — —V,. When ga = #/2 and, thus,
m2h%c?
Vo = mc® + [ (me)* + 1 (4.29)

the energy of one of the bound states reaches the boundary of the positron
continuum, E = —mc” (Fig. 4.2). It is now energetically favorable to occupy this
state, creating a hole in the negative energy continuum (positron emission). At
ga = 7 the next state reaches the continuum, and the vacuum state is reconstructed.
This allows us to better understand the nature of the original Klein paradox.
Despite the problem that a large enough barrier looks static, actually it is not.
One needs to carefully study how this state is reached, and this process involves
positron emission by the growing barrier. For a more detailed discussion of the role
of the electron—positron pairs in the Klein paradox, see Krekora, Su, and Grobe
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E/mc®
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Fig. 4.2 Energies of the bound state found from Eq. (4.28) as functions of the
height of the barrier; a = 2h/(mc).

(2005). We will come back to this issue later, when discussing supercritical
charges in graphene (Chapter 8).

4.2 The massless case: the role of chirality

We are going to discuss the Klein paradox and related issues for the massless
Dirac fermions in graphene (Katsnelson, Novoselov, & Geim, 2006). The case
m = 0 is very special. If we put m = 0 in the results (4.21) and (4.22) we will have
T =1 and R = 0 for any parameters of the potential (one can see from Eq. (4.8) and
(4.13) that o = = 1 for m = 0). This result is not related to a specific choice of the
potential barriers (4.20).

For m = 0, the equations (4.3) can be very easily solved for arbitrary V(x). Let
us introduce a variable

X

! de’[E ol 430)

WZ%

Of course, we have to be careful: This change of variables is possible only for the
intervals within which E > V(x) or E < V(x), so dw/dx never vanishes. Therefore,
we will use (4.30) separately for each interval between two turning points (and for
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the intervals between —oo and the first turning point and between the last turning
point and +0). There are two basic solutions for each such interval:

T>::(i)emﬂﬂwD @.31)
and
Y. = (__i)exp(—ﬂwb. 4.32)

Both components of the spinor should be continuous at the turning points, so one
can see immediately that the only way to match the solutions is to choose either ¥~
or W_ to be zero everywhere. One can never have a combination of incident and
reflected waves, since propagation is only allowed in one direction (here one has to
recall that we consider only the case of normal incidence; for two-dimensional
problems with Y¥(x, y) this is not the case, see the next section).

The point is that a massless Dirac particle can only propagate either along its
(pseudo)spin direction or in the opposite direction. The scalar potential propor-
tional to the identity matrix in the Hamiltonian (4.2) does not act on the pseudospin
and therefore cannot change the direction of propagation of a massless particle
with spin j to the opposite.

This property has an analogue in more general two-dimensional and three-
dimensional situations with V = V(x, y) or V = V(x, y, z): Backscattering is
forbidden. This was found long ago for the scattering of ultrarelativistic particles
in three dimensions (Yennie, Ravenhall, & Wilson, 1954; Berestetskii, Lifshitz, &
Pitaevskii, 1971). Ando, Nakanishi, and Saito (1998) noticed an importance of this
property for carbon materials. In particular, the absence of backscattering explains
the existence of conducting channels in metallic carbon nanotubes; in a nonrela-
tivistic one-dimensional system an arbitrarily small disorder leads to localization
(Lifshitz, Gredeskul, & Pastur, 1988), so the conductive state of the nanotubes is
not trivial.

The consideration of Ando, Nakanishi, and Saito (1998) is very instructive, since
it shows explicitly the role of the Berry phase and time-reversal symmetry, but it is
quite cumbersome. Here we present a somewhat simplified version of this proof. To
this end, we consider the equation (Newton, 1966) for the scattering 7-matrix

T=V+VG,T, (4.33)
where V is the scattering potential operator,

o . 1
Go = lim

—_— 4.34)
0—+0 F — HO +i0
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is the Green function of the unperturbed Hamiltonian Hy, and E is the
electron energy (we will assume E > 0). For more details of this formalism,
see Chapter 6. If H, is the Dirac Hamiltonian for massless fermions (1.22),
we have

—

d
GolR, ) = J(z—"zco@ exp [iG(7 — 7). (4.35)

7)

where

Gold) = 1 1 k+§s
M TE—mgi+io wktiod) -

(4.36)

with k = E/(hv). The probability amplitude of the backscattering can be found by
iterations of Eq. (4.33) and is proportional to

T(—/‘é, 12) - <—/€‘V+ VGV + VGVGV + - - ‘/€> =70 7™ ... (@437

where T is the contribution proportional to V".
Let us assume that k HOx (we can always choose the axes in such a way), then

‘l_c'> and ’—l?> have spinor structures

(1) ()

respectively (see Eq. (1.30)). Thus, if T is a2 X 2 matrix

~ — A

T =T, +7T3, (4.38)

one has
r(-E8) = (¥
Then, keeping in mind that V is proportional to the identity matrix, one can prove,
term by term, that all contributions to <—%]TZ|E> and <—/}"T‘{I_€> vanish by

T.+iT,£). (4.39)

symmetry. Actually, this is just because T(l?) x l?HOx. One cannot construct

from the vectors k and —k anything with nonzero y- or z-components: For two
nonparallel vectors I?l and Ez, one of them has a nonzero y-component and
ki X k|| Oz.
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4.3 Klein tunneling in single-layer graphene

Keeping in mind electrons in quantum electrodynamics, it is not easy to create
potential jumps larger than 2mc” ~ 1 MeV. Similar phenomena take place in very
high electric or gravitational fields (Greiner, Mueller, & Rafelski, 1985; Grib,
Mamaev, & Mostepanenko, 1994; for a detailed list of references, see Greiner &
Schramm, 2008), but the context is always quite exotic, such as collisions of
ultraheavy ions or even black-hole evaporation. There were no experimental data
that would require the Klein paradox for their explanation.

Soon after the discovery of graphene, it was realized that Klein tunneling
(tunneling of Dirac fermions under the conditions of the Klein paradox) is one of
the crucial phenomena for graphene physics and electronics (Katsnelson, Novose-
lov, & Geim, 2006). Soon after the theoretical prediction of Klein tunneling in
graphene, it was confirmed experimentally (Stander, Huard, & Goldhaber-Gordon,
2009; Young & Kim, 2009).

In conventional terms of solid-state physics, Klein tunneling is nothing other
than tunneling through a p-n-p (or n-p-n) junction when electrons are transformed
into holes and then back to electrons (or vice versa) (Fig. 4.3). As we saw in the
previous section, for massless Dirac fermions, the transmission at normal incidence
is always 100%, irrespective of the height and width of the potential barrier. From
the point of view of applications, this is very bad news: If one just copies the
construction of a silicon transistor it will not work, since it is impossible to lock it.
The gap opening is necessary. The good news is that, due to the Klein paradox, the
unavoidable inhomogeneities of the electron density in graphene (see Section 13.1)
do not lead to localization and, moreover, their effect on the electron mobility is
not very great. We will come back to this important issue many times in this book.

Now consider, following Katsnelson, Novoselov, and Geim (2006), electron
propagation through the barrier (4.20) for an arbitrary angle of incidence ¢. The

Fig. 4.3 Transformation of an electron to a hole under the potential barrier; the
large arrows show directions of momenta, assuming that the group velocity is
always parallel to the Ox axis. Black and gray lines show the dispersion of
electronic states with opposite pseudospin projections.
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energy £ = hvk is supposed to be positive. There is a refraction of the electron
wave at the potential jump, and the new angle 6 is determined by the conservation
of the y-component of the electron momentum (and, thus, of the wave vector):

ky, =ksin ¢ = g, =g sin 0, (4.40)

where

g |E — Vo
hv
is the length of the wave vector within the barrier. For massless Dirac fermions

with energy E propagating at the angle ¢ to the x-axis, the components of the
spinor wave functions are related by

(4.41)

w2 =y exp (ip) sgnk (4.42)

(see Eq. (1.30)). Thus, the wave function has the following form (cf. Eq. (3.13) for
the case of zero energy):

[exp (ikex) + rexp (—ikex)] exp (ikyy), x< —a,

w1 (x,y) = | [Aexp (ig.x) + Bexp (—ig.x)]exp (iky), || <a,  (443)
texp (ikwx + ikyy), x> a,

slexp (ikux + ip) — rexp (—ikwx — ip)] exp (ikyy),  x < —a,
wo(x,y) = < s'[Aexp (ig.x + i) — Bexp (—ig,x — if)] exp (ikyy), x| < a,

st exp (ikxx + ikyy + i(p), x> a,
(4.44)
where
s=sgnE, s =sgn(E—Vy), k=kcosp, q,=qcosl (4.45)

and we have taken into account that the reflected particle moves at the angle = — ¢,
exp [i(r — p)] = — exp (—ip). The parameters r (the reflection coefficient), ¢ (the
transmission coefficient), A, and B should be found from the continuity of y; and
w, at x = =+a. Note that the Klein paradox situation is

ss’' = —1 (4.46)

(with opposite signs of the energy outside and inside the barrier). As a result, one
finds
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Fig. 4.4 Transmission probabilities through a 100-nm-wide barrier as a function
of the angle of incidence for single-layer (a) and bilayer (b) gr%phene.
The electron concentration n outside the barrier is chosen as 0.5 x 10'* cm™>
for all cases. Inside the barrier, hole concentrations p are 1 x 102 and 3 x 10" cm™
for black and gray curves, respectively (such concentrations are most typical in
experiments with graphene). This corresponds to Fermi energies E of incident
electrons ~80 and ~17 meV for single-layer and bilayer graphene, respectively.
The barrier heights V; are (a) 200 and (b) 50 meV (black curves) and (a) 285 and
(b) 100 meV (gray curves).

(Reproduced with permission from Katsnelson, Novoselov, & Geim, 2006.)

2

r = 2exp (ip — 2ika) sin (2q,a)
9 sing — ss' sin 0
ss'[exp (—2ig.a) cos (p + 0) + exp (2ig,a) cos (p — 6)] — 2isin (2q,a)
4.47)

The transmission probability can be calculated as
T=1F=1-1r (4.48)

The results are shown in Fig. 4.4. In agreement with the general consideration of
the previous section, r = 0 at ¢ = 0 (this can be seen immediately from Eq. (4.47)
and (4.40)).
There are also additional “magic angles” for which r = 0 and one has 100%
transmission. They correspond to the condition sin (2¢, a) = 0, or
T

q.a = §N, 4.49)
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where N =0, =1, 2, ... Interestingly, this coincides with the condition (4.23) of
complete transmission for the case of nonzero mass. These conditions correspond
to the Fabry—Pérot resonances in optics (Born & Wolf, 1980). The same reson-
ances can take place for a more general potential V = V(x), as was shown in the
semiclassical approximation by Shytov, Rudner, and Levitov (2008) (see also
Shytov et al., 2009). At the same time, for some V(x), these resonances cannot take
place, and only full transmission for normally incident beam survives (Tudorovskiy,
Reijnders, & Katsnelson, 2012; Reijnders, Tudorovskiy, & Katsnelson, 2013).
This issue will be considered in the next section.

4.4 Klein tunneling for a smooth potential barrier and the effect
of magnetic fields

Strictly speaking, the Dirac-cone approximation itself does not work for the case of
an atomically sharp potential since it will induce intervalley scattering, which can
change the whole physical picture dramatically. The sharp potential jump con-
sidered in the previous sections means a sharpness in comparison with the electron
wave length k' but not in comparison with the interatomic distance a. So, the
typical spatial scale of the change of potential at the barrier d was assumed to
satisfy the condition

1
a«d< «%. (4.50)

The opposite limit case, that of a very smooth potential

kd » 1, 4.51)

was first considered by Cheianov and Falko (2006). It turns out that in this case the
region of high transmission near ¢ = 0 is pretty narrow:

T(p) = exp (—Ckdsin’p), 4.52)

where C is a numerical factor depending on the specific shape of the potential, thus
T(p) ~ 1 if

1
< — (4.53)
] NG
(the “Klein collimation”). The result (4.52) was obtained using both the exact
solution of the Dirac equation in a constant electric field and the semiclassical
approximation. Here we will present a simple derivation following Shytov, Gu,
and Levitov (2007; see also Shytov et al., 2009).
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Let us consider the Schrodinger equation (4.1) with the Hamiltonian (4.2) for
the case when

V(x) = —ekEx, (4.54)
where E is the electric field. One can use the momentum representation for the

coordinate x, x < k,. Then the coordinate x — i0/0k, and the Schrédinger equation
takes the form (with the replacement ¢ — v, keeping in mind the case of graphene)

oY .
—ieE— =H'Y, 4.55
ie o ( )
where
H = miks — ¢

(here we use the notation ¢ for the electron energy, in order not to confuse it with
the electric field). The Eq. (4.55) is formally equivalent to the time-dependent
Schrodinger equation with a time ¢ = — hk,/(eE) and the Hamiltonian linearly
dependent on the “time.” This is nothing other than the problem of Landau—Zener
breakdown, in which the term Avk,o, plays the role of the gap in the Hamiltonian.
Using the known solution of this problem (Vonsovsky & Katsnelson, 1989) one finds

2
T exp -0 456
~ exp B )’ (4.56)

which coincides with Eq. (4.52), keeping in mind that d ~ hvk/leEl.

If we have crossed electric and magnetic fields £ and B (B Il Oz), one can use
the Lorentz transformation, similarly to what was done in Section 2.10 (see
Eq. (2.196) and (2.197)). In the case

E>"B, 4.57)
¢
which is complementary to Eq. (2.198), one can exclude the magnetic field, and
the electric field E is replaced in Eq. (4.56) by

o (2) - - (2)

(cf. Eq. (2.200)). The effects of disorder on the motion of an electron near a p-n
junction were considered by Fogler et al. (2008).

Shytov, Rudner, and Levitov (2008) studied the case of a parabolic potential
barrier

VxX) = ax* — ¢ (4.58)
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Fig. 4.5 The transmission coefficient, obtained from numerical solution of the
Dirac equation with the potential (4.58), plotted as a function of the component of
electron momentum p, and potential depth. At zero magnetic field (a), transmis-
sion exhibits fringes with a phase that is nearly independent of p,. At finite
magnetic field (b), the fringe contrast reverses its sign on the parabola (black thin

line). Here ¢* = (ah®*)"? and pr=¢e*m.
(Reproduced with permission from Shytov, Rudner, & Levitov, 2008.)

(a, € > 0), which creates p-n boundaries at

x==xx, = i\/g. (4.59)
a

The magnetic field B is included in the Landau gauge, A, = 0, A, = Bx. Numerical
solution of the Schrédinger equation gives the results shown in Fig. 4.5. One can see
that a region of 100% transmission can exist not only for a rectangular barrier
(see Eq. (4.49)) but also for a more general symmetric potential. At the same time,
for nonsymmetric potentials V(x) # V(—x), the side resonances with ¢ £ 0 turn out
to be suppressed (Tudorovskiy, Reijnders, & Katsnelson, 2012) as will be
discussed later. The magnetic field modifies the picture of the transmission in a
peculiar way. Oscillations of the conductance through the barrier as a function of
the magnetic field were observed by Young and Kim (2009) (Fig. 4.6).
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Fig. 4.6 The magnetic field and density dependences of the conductance of a p-n-p
junction in graphene; left and right panels present experimental data and theoretical
results, respectively.

(Reproduced with permission from Young & Kim, 2009.)

Now let us consider a general semiclassical theory for an arbitrary, smooth, one-
dimensional potential V(x); here we will follow the work by Reijnders, Tudorovs-
kiy, and Katsnelson (2013).

First, let wus introduce dimensionless units x — x/LB — B/py.
E — E/vp,, V — V/vp,, where [ is a typical spatial scale of the change of
potential and vpg is a typical energy scale of the difference £ — V. Then, the
Schrodinger equation for massless Dirac fermions in graphene takes the form

_ih&x% +pyoy + U(x)} P(x) =0, (4.60)
where U(x) = V(x) — E,
h = h/(pol), 4.61)

and we try the solution in the form

P(x,y) = ¥(x)exp <%> (4.62)

(cf. Eq. (4.43), (4.44)). Note that semiclassical approximation is formally applic-
able if & « 1.

Similar to the transition from Eq. (2.39) to Eq. (2.42), we act by the operator
—ih6 %+ p,6y — U(x) on Eq. (4.60). The result is

2

d
_hzﬁ +p§ — U*(x) — ih6 U’ (x) |¥(x) = 0, (4.63)
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where U’ (x) = dU(x)/dx. Since Eq. (4.63) contains only a single Pauli matrix, it
can be diagonalized by the substitution

1 1
v = (1 )0+ () )t @64
and we obtain (cf. Eq. (2.42), (2.43)):
2
[hz d—2 + U*(x) £ ihU' (x) — pﬁ] n2(x) =0, (4.65)
dx ’
1 d .
M1 :p—y (hailU(x)>i’]l’2. (4.66)

Eq. (4.65) reminds the standard nonrelativistic Schrodinger equation with the
effective potential Uz(x) + ihU "’ (x) and the effective energy p%. Just as in the
conventional semiclassical approximation (Landau & Lifshitz, 1977) one can try
the solution in the form

7, (x) = A(x, h) exp [ 4.67)

iS(x, h)

h b
expanding the phase S(x,/2) and amplitude A(x,/) functions in Taylor series in the
parameter £ (4.61). In the leading order approximation, we have

) =aswen | s a e |- e

where

Solx) = J dy 2 — V() (4.69)

and xq is a constant. Eq. (4.68) describes incident and reflected waves in the
classically allowed regions where p§ > U?(x). In the classically forbidden regions
(p; < U?(x)) it describes evanescent waves, and near the turning points
(p§ = U?(x)) the amplitude functions A_.(x) are divergent, making the expression
(4.68) inapplicable. The problem of how to match the semiclassical solutions in
classically allowed and classically forbidden regions and how to build a “uniform
asymptotics” valid in the vicinity of the turning points is discussed in detail by
Tudorovskiy, Reijnders, and Katsnelson (2012) and Reijnders, Tudorovskiy, and
Katsnelson (2013). Here we will show just some results.

Let us consider the case of n-p-n junction, with two smooth-enough junctions
between electron and hole parts separated by a relatively long hole region
(Fig. 4.7). In this situation, turning points x, and classically forbidden regions
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electrons

[ N

Fig. 4.7 A potential barrier for the case of n-p-n junction.

arise, and we have to solve the matching problem for each of them separately. The
result for the transmission coefficient t,,, is (Shytov, Rudner, & Levitov, 2008;
Tudorovskiy, Reijnders, & Katsnelson, 2012; Reijnders, Tudorovskiy, & Katsnel-
son, 2013):

—iL/h

taptpne
Lapn = —, 4.70
npn 1 — r:pr;kne—ZtL/h ( )

where 1, 1, are transmission and reflection coefficients for the left junction, z,,,
Ipn are the same for the right junctions, and

Xo—

L= J dy\/p; — U%(x), 4.71)

X1+

where the integral is taken over the classically allowed hole region. This is an
analogue of the known expression describing Fabry—Pérot resonances in optics
(Born & Wolf, 1980).

Keeping in mind that I1* 4 |r1* = 1 for both n-p and p-n junctions, one can find
that the maximum (resonant) value of the modulus of transmission coefficient
(4.72) is equal to

— ‘t"P| ‘tp”| : (472)

1= (1= ) (1= bP)

this value is equal to 1 only if I£,,,| = Iz,,| (symmetric barrier), otherwise we always
have I,,,,les < 1.

In semiclassical approximation, one finds (Tudorovskiy, Reijnders, &
Katsnelson, 2012; Reijnders, Tudorovskiy, & Katsnelson, 2013)

1

‘tnpn‘res = COSh (Knp _ Kpn> >
h

‘ t”l’” |res

4.73)
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Fig. 4.8 Transmission probability for n-p-n junction for massless Dirac fermions;
energy is 80 meV and the height of the potential is 200 meV. (a) The results for
symmetric potential (shown in b). (c) The results for asymmetric potential (shown in d).
(Reproduced with permission from Kleptsyn et al., 2015)

where

Xq

K= J dy\/U?(x) — p? (4.74)

X_

and the integral are taken over the corresponding (left or right) classically forbid-
den region. Therefore, one can see that for a generic, asymmetric one-dimensional
barrier, the full transmission takes place only for p, = 0, otherwise the suppression
is exponentially strong in our formal small parameter (4.61).

Numerical results that illustrated suppression of the side resonances for the
Dirac electrons are shown in Fig. 4.8 (Kleptsyn et al., 2015). This conclusion is
also confirmed by numerical simulations on honeycomb lattice, that is, beyond
Dirac approximation (Logemann et al., 2015).

4.5 Negative refraction coefficient and Veselago lenses for
electrons in graphene

As was discussed in Section 4.1, the group velocity ¥, is parallel to the wave vector
k for particles (electrons) and antiparallel for antiparticles (holes). In the situation
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of the Klein paradox, the incident and transmitted waves propagate, by definition,
in the same direction, and the propagation direction is determined by the group
velocity. This means that the wave vectors for these waves are antiparallel. For
massless particles with a linear dispersion, the group velocity is

—

k
k’

where the signs + and — correspond to electrons and holes, respectively. The

T, = +v (4.75)

incident electron wave has the wave vector k = k(cos g, sing) and the group
velocity V, =v(cosg, sing). The reflected wave has the wave vector
k' = k(— cos ¢, sin @) and the group velocity ¥, = v(—cos ¢, sin ¢). For the trans-
mitted wave, in the situation of the Klein paradox (or for a p-n junction, using
conventional semiconductor terminology) the group velocity ¥, = v(cos &', sin @)
and the wave vector § = —¢q(cos@, sind), cosd >0, q is determined by
Eq. (4.41) and 8’ = — 6. The refraction angle & is determined by the continuity
of the y-component of the wave vector (see Eq. (4.40)), or
. /

sin __k_ 4.76)

sin ¢ q

with a negative refractive index n. This means that the p-n junction in graphene
transforms a divergent electron beam into a collimated one, see Fig. 4.9 (Cheianov,
Falko, & Altshuler, 2007).

In optics, such devices are known as Veselago lenses (Veselago, 1968), and
materials with negative refractive indices are called left-handed materials, or
metamaterials (Pendry, 2004). Creation of such a material for visual light is not
an easy task. For electrons in graphene such a situation can be realized quite easily.

Fig. 4.9 A Veselago lens for the case of a negative refraction index.
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For a detailed discussion of the relation between the negative refraction index and
the Klein paradox, see Giiney and Meyer (2009).

Electron Veselago lensing in graphene was experimentally observed by Lee,
Park, and Lee (2015) and by Chen et al. (2016). Bgggild et al. (2017) suggested a
concept of “Dirac Fermion Microscope” where collimated electron beams in
graphene in the ballistic regime are used to magnify atomic-scale inhomogeneities.

A detailed theory of Veselago lensing in graphene was developed by Reijnders
and Katsnelson (2017a, 2017b). Here we will present only the main physical
results of the theory.

First, for the massless Dirac fermions there is an intimate relation between
propagation direction of the electron beam and the direction of the pseudospin if
we use the beam with nonzero pseudospin polarization. The latter can be created,
e.g., via electron injection from hexagonal boron nitride (Wallbank et al., 2016). In
that case the sublattice symmetry is broken, as we will discuss in detail at the end
of the book (Chapter 13). Numerical simulations as well as semiclassical theory
(Reijnders & Katsnelson, 2017a) show that the pseudospin polarization can result
into a splitting or asymmetric shift of the focus, see Fig. 4.10.

When we take into account the trigonal warping, we have different Hamilto-
nians for the different valleys, due to the z, term in Eq. (1.34). This leads to
different trajectories for different valleys and to a valley splitting of the focus
(Reijnders & Katsnelson, 2017b). Moreover, one can create a valley beam
splitter based on n-p-n junction: the trigonal warping effects can essentially
separate the K and K’ beam components (Garcia-Pomar, Cortijo, & Nieto-
Vesperinas, 2008).

4.6 Klein tunneling and minimal conductivity

As was stressed in the previous chapter, the existence of a minimal conductivity of
the order of ¢*/h is one of the striking properties of graphene. We discussed this
from the perspective of pure samples (the ballistic regime). It is instructive to
consider the same problem from the opposite perspective of strong disorder
(Katsnelson, Novoselov, & Geim, 2006).

First, it is worth recalling some basic ideas on the electronic structure of
strongly disordered systems (Mott, 1974; Mott & Davis, 1979; Shklovskii &
Efros, 1984; Lifshitz, Gredeskul, & Pastur, 1988). Let us start with the case in
which typical fluctuations of the potential energy V(x, y) are much stronger than
the kinetic energy 7. The electrons are locked into puddles restricted by the
equipotential lines E — V(x, y). There is a small probability of tunneling from one
puddle to another, so some electrons are distributed among couples of puddles,
fewer electrons among trios of puddles, etc. (Fig. 4.11). On increasing the ratio
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(a) (b)

Fig. 4.10 The modulus of the electron wave function near the focus of the
Veselago lens shown schematically in Fig. 4.9. Electron energy is 100 meV, the
height of the potential barrier in 250 meV and the distance from the source to
the lens is L = 100 nm. (a) The components of the spinor wave function are
(1,1)/+/2, the electron density is symmetric about the x-axis. (b) The components
of the spinor wave function are (1,0), the mirror symmetry is broken. (c) The
components of the spinor wave function are (1, —1)/1/2, the mirror symmetry is
restored, but the central maximum has disappeared.

(Reproduced with permission from Reijnders & Katsnelson, 2017a.)

|7/V| the tunneling probability increases, and at some point a percolation transi-
tion happens (Shklovskii & Efros, 1984), with the formation of an infinite cluster
of regions connected by electron tunneling. This percolation is associated with
the Mott—Anderson metal-insulator transition, although the latter involves more
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Fig. 4.11 A sketch of electronic states in conventional semiconductors with strong
disorder; electrons tunnel, with a small probability, between classically allowed
regions.

Fig. 4.12 A sketch of electronic states in graphene with strong disorder; due to
Klein tunneling, electrons cannot be locked and penetrate through p-n boundaries,
transforming into holes.

then just percolation, since phase relations between the electron wave functions
are also important (Mott & Davis, 1979).

The Klein tunneling changes the situation dramatically. However small the
kinetic energy is (or, equivalently, however high and broad the potential barriers
are), the electrons cannot be locked into puddles (Fig. 4.12). Thus, their states
cannot be localized.

In the absence of Anderson localization, the minimal conductivity can be
estimated via Mott’s considerations on the basis of the remark by loffe and Regel
that for extended states the electron mean free path / cannot be smaller than the
electron de Broglie wavelength (Mott, 1974; Mott & Davis, 1979). Here we apply
this general consideration to graphene.


https://www.cambridge.org/core

4.7 Chiral tunneling in bilayer graphene 101

Let us start with Einstein’s relation between the conductivity ¢ and the electron

diffusion coefficient D (Zubarev, 1974).
0
=2 (4.77)
o

For a noninteracting degenerate (obeying Fermi statistics) electron gas

on 2|Ep| _ 2kr

Z — N(Ex) = —F
ou (Er) wh®?  why

(see Eq. (2.138) and Eq. (1.72)). For the two-dimensional case, the diffusion
coefficient is

(4.78)

1
D=2, (4.79)

where 7 is the electron mean-free-path time. On substituting Eq. (4.78) and (4.79)
into (4.77) one finds
e? 2¢?
= kgl = “——kgl, 4.80
0= kel =——kp (4.80)
where / = vt is the mean free path. Assuming that the minimal possible value of kg/

is of the order of unity, we have an estimation for the minimal conductivity of

62

Fmin ~ - (4.81)
coinciding, in the order of magnitude, with the ballistic conductivity e*/(zh) per
channel (see Eq. (3.16)).

This conclusion is very important, in the light of experimental observation of
electron-hole puddles in graphene on a substrate in the vicinity of the neutrality
point (Martin et al., 2008). Moreover, it was demonstrated theoretically that the
puddles are unavoidable even for freely suspended graphene at room temperature
since the inhomogeneities of electron density result from thermal bending fluctu-
ations (Gibertini et al., 2010); this phenomenon will be considered in detail in
Section 13.1. It is the Klein tunneling that protects electron states from localization
and makes large-scale inhomogeneities rather irrelevant for electron transport.

The minimal conductivity was analyzed in terms of classical percolation by
Cheianov et al. (2007). It follows from their analysis that the minimal conductivity
is of the order of ¢*/h if the number of electrons (holes) per puddle is of the order of 1.

4.7 Chiral tunneling in bilayer graphene

To elucidate which features of the anomalous tunneling in graphene are related to
the linear dispersion and which features are related to the pseudospin and chirality
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of the Dirac spectrum, it is instructive to consider the same problem for bilayer
graphene (Katsnelson, Novoselov, & Geim, 2006). We will restrict ourselves to the
case of moderate electron energies, for which the parabolic approximation (1.46)
works. This means that the energies are smaller than that of interlayer hopping,
both outside and inside the barrier:

|E|, |[E — Vol « 2|y (4.82)
and, at the same time, the trigonal warping effects are not important,
Y3Y1

%

ka, ga > (4.83)

(cf. Eq. (1.55)), where we assume that the potential barrier has the shape (4.20),
and k and g are the wave vectors outside and inside the barrier, respectively:

[2m*|E
k - mh2| |a
2m*|E —V
q= ,/%. (4.84)

Assuming that the wave function propagates in the y-direction with the wave-
vector component ky, the two components of the spinor wave function are

wy(x,y) =y, (x) exp (ikyy)’

_ (4.85)
vy (x,y) = ya(x) exp (ikyy),
where w,(x) satisfy the second-order equations
& ?
<E - ki) v, = Ky, (4.86)
outside the barrier and
& 2 ’ 4
<E - ky> Vi=qVY; (4.87)

inside it. At the boundaries x = 4a one has to require that four conditions be
fulfilled, namely continuity of v, y»,, dy/dx and dy,/dx. To satisfy them one has
to include not only propagating but also evanescent solutions of Eq. (4.86) and
(4.87) but, of course, without the terms growing exponentially at x — =oo.
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Let us consider first the case x < —a. The two components of the wave function
can be found from the equations

d 2
(E + ky) Yy = Sk2W1=

d 2
(a""ky) v, = Skzl//z’

(4.88)

where s = sgn E (cf. Eq. (4.45)). Thus, for this region one can try the solutions

w1 (x) = oy exp (ikyx) + B exp (—ikex) + v, exp (x,x),

. . . . (4.89)
ya(x) = slas exp (ikux + 2ip) + By exp (—ikux — 2ip) — yih exp (1,%)];
where ¢ is the angle of incidence,
ky, = k sin ¢,
k., = k cos ¢, (4.90)

Xe =\ ks +2k; = k\/1 + sin2p 4.91)

and

hy = <\/1 ¥ sinZp — sinq))z. (4.92)

The coefficients «;, f;, and y; are the amplitudes of the incident, reflected, and
evanescent waves, respectively.
For the case x > a there is no reflected wave:

y1 (x) = a3 exp (ikex) + d3 exp (=),

o 4.93
wo(x) =s [a3 exp (ikyx + 2ip) — h—? exp (—Xxx)] ; ( )

the phase factor exp(2ip) follows from Eq. (1.48). Finally, inside the barrier x| < a
one has to use the most general solution with two propagating and two evanescent
waves:

vy (xX) = onexp(iq,x) +Brexp(—ig.x) +7,exp (1x) +d2exp (—xx),
o . . . . / 52 /
w,o(x) = s |anexp(iqx+2i0)+p,exp(—igx—2i60) —y,hrexp (Xxx)—h—zexp (—)(xx) ,

4.94)

where 6 is the refraction angle,
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gy = g sin 0 = k,,

g, = g cos 0, (4.95)

/

2. =gV 1+ sin?0, (4.96)

hy = (\/1 T sin26 — sin 9)2 (4.97)

and ' = sgn(E — V) (cf. Eq. (4.45)). The presence of the evanescent waves is a
very interesting feature of bilayer graphene that is dramatically different both from
the Dirac case and from the Schrodinger case.

Now we have to find the coefficients a;, f;, y;, and J; from eight conditions of
continuity of y;(x) and dy,(x)/dx at x = a and x = —a. In general, this can only be
done numerically. Typical results for the “Klein” case ss' = —1 are shown in
Fig. 4.4(b). Similarly to the case of single-layer graphene, there are “magic angles”
with transmission probability equal to unity. A detailed mathematical analysis
(Kleptsyn et al., 2015) shows, however, that contrary to the case of the single-
layer graphene, where 100% transmission is protected by chirality, and for the case
of symmetric potential, additional magic angles exist; for the case of bilayer, the
magic angles are not necessary, and one can build a potential barrier with arbitrary,
small transmission probability at any angle (for a given energy). It takes place for
the potentials, which are oscillating rapidly enough (with a typical scale of the
oscillations comparable with the de Broglie wavelength of the electrons), see
Fig. 4.13.

50 F T T T =

0 L L L L
0 20 40 60 80 100 120 140 160

2z (nm)

Fig. 4.13 An example of the fast-oscillating potential. Within the energy band
from 20 to 30 meV the maximal transmission probability does not exceed
2x 1075

(Reproduced with permission from Kleptsyn et al., 2015.)
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This provides a nice counterexample for a frequent statement that n-p-n (or p-n-p)
junction cannot be locked in single-layer graphene due to the energy gap absence. In
the case of bilayer, the gap is also absent but the junction can be locked! It is the
chiral properties of electrons (conservation of pseudospin and, therefore, the propa-
gation direction for the normally incident beam) rather than the gap absence. The
difference can already be seen from our simple case of a rectangular barrier if we
focus on the case of the normally incident beam.

For the case of normal incidence (¢ = 0, § = 0) the problem can be solved
analytically, and the result for the transmission coefficient is

o9 4ikq exp (2ika)
a (g+ ik)2 exp (—2ga) — (g — ik)2 exp (2ga) '

In contrast with the case of single-layer graphene, T = I1* decays exponentially
with the height and the width of the barriers, as exp(—4qa) for ¢ = 0. This situation
is sometimes called anti-Klein tunneling. This illustrates a drastic difference
between the cases of chiral scattering with Berry phases 7 and 2z. For the latter
case, the condition (1.49) does not fix the projection of the pseudospin to the
direction of the motion (cf. Eq. (1.33)), so the conservation of the chirality does not
forbid backscattering.

(4.98)

For the case a — oo (which is just a potential step corresponding to a single p-n
junction) T'= 0 at ¢ = 0, which looks rather counterintuitive: There is a continuum
of allowed states after the barrier but penetration there is forbidden. Furthermore,
for a single p-n junction with V, » E, the following analytic solution for any ¢ has
been found:

T = £ sin?(2¢), (4.99)
Vo

which, again, yields 7' = 0 for ¢ = 0. This behavior is in obvious contrast with that
of single-layer graphene, where normally incident electrons are always perfectly
transmitted.

The perfect reflection (instead of perfect transmission) can be viewed as another
incarnation of the Klein paradox, because the effect is again due to the charge-
conjugation symmetry. For single-layer graphene, an electron wave function at the
barrier interface perfectly matches the corresponding wave function for a hole with
the same direction of pseudospin, yielding 7' = 1. In contrast, for bilayer graphene,
the charge conjugation requires a propagating electron with wave vector k to
transform into a hole with wave vector ik (rather than —k), which is an evanescent
wave inside a barrier.

For completeness, we compare the results obtained with those from the case of
conventional nonrelativistic electrons. If a tunnel barrier contains no electronic
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0(nm)

Fig. 4.14 The transmission probability 7 for normally incident electrons in single-
layer and bilayer graphene and in a nonchiral, zero-gap semiconductor as a
function of the width D of the tunnel barrier. The concentrations of charge carriers
are chosen as n = 0.5 x 10> cm 2 and p = 1 x 10"* cm 2 outside and inside the
barrier, respectively, for all three cases. The transmission probability for bilayer
graphene (the lowest line) decays exponentially with the barrier width, even
though there are plenty of electronic states inside the barrier. For single-layer
graphene it is always 1 (the upper line). For the nonchiral semiconductor it
oscillates with the width of the barrier (the intermediate curve).

(Reproduced with permission from Katsnelson, Novoselov, & Geim, 2006.)

states, the difference is obvious: The transmission probability in this case is known
to decay exponentially with increasing barrier width and height (Esaki, 1958), so
that the tunnel barriers discussed previously would reflect electrons completely.
However, both graphene systems are gapless, and it is more appropriate to
compare them to gapless semiconductors with nonchiral charge carriers (such a
situation can be realized in certain heterostructures (Meyer et al., 1995; Teissier
et al., 1996)). In this case, we find

. i 4kx?x exp (2ig,a) : ' ’ (4.100)

(9, + kx)” exp (=2ig,a) — (g, — ki)” exp (2ig,a)

where k, and g, are the x-components of the wave vector outside and inside the
barrier, respectively. Again, similarly to the case of single-layer and bilayer
graphene, there are cases of normal incidence (¢ = 0), the resonance conditions
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2g. a = 7N, N = 0, =1, at which the barrier is transparent. For the tunneling
coefficient is then an oscillating function of the tunneling parameters and can
exhibit any value from O to 1 (see Fig. 4.14). This is in contrast with graphene,
for which T is always 1, and bilayer graphene, for which 7' = 0 for sufficiently
wide barriers. This makes it clear that the drastic difference among the three cases
is essentially due to the different chiralities or pseudospins of the quasiparticles
involved rather than any other features of their energy spectra.

To summarize this chapter, the Klein paradox is a key phenomenon for
electronic transport in graphene and for graphene-based electronics. On the one
hand, it protects high electron mobility in inhomogeneous graphene and prevents
Anderson localization. On the other hand, it is an essential obstacle to copying
a “normal” transistor based on p-n-p (or n-p-n) junctions in conventional semicon-
ductors. Usually, one can easily lock the transistor by applying a voltage to the
potential barrier, which is impossible for the cases of both single-layer and bilayer
graphene due to the Klein paradox. One needs to open a gap in the electron
spectrum. One of the most natural ways to do this is the use of space quantization
in graphene nanoribbons and nanoflakes, which will be one of the subjects of the
next chapter.
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Edges, nanoribbons, and quantum dots

5.1 The neutrino billiard model

Owing to the Klein paradox, the massless Dirac fermion cannot be confined in a
restricted region by any configuration of a purely electrostatic (scalar) potential
V(x, y); one needs the gap opening. As discussed in Section 1.3, this requires a
violation of the equivalence of the sublattices. Let us consider the Hamiltonian

H = —ivGV + o.A(x, y), (5.1

where the last term represents a difference of potential energy between the
A and B sites (or between (pseudo)spin up and (pseudo)spin down states). With
A = constant the energy spectrum of the Hamiltonian (5.1) is

E(l?) — +VRH22 § A, (5.2)

where X is the wave vector and there is the energy gap 2|A|. For a given energy E,
the regions where |E| < |A(x, y)| are classically forbidden; quantum mechanically,
the probability of tunneling to these regions decays exponentially with the distance
from the boundary. In particular, one can introduce the boundary condition

|AGx,y)| = %00 (5.3)

at a line L; thus, only the region D restricted by the line L is allowed for the
particle (Fig. 5.1). The line L is parameterized by the length s counted from some
initial point:

x=x(8), y=yL(s) (5.4)

We will assume
Alx,y) =0 (5.5)

within the region D.

108
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Fig. 5.1 The geometry of a “neutrino billiard.” The particle moves within the
region D restricted by the line L where the infinite energy gap opens.

This model was considered by Berry and Mondragon (1987) long before the
discovery of graphene and was called the “neutrino billiard” (at that time it was
assumed that the neutrino had zero mass). It is not sufficient to completely describe
the edge effects and confinement in graphene nanoribbons and nanoflakes: As we
will see further, the existence of two valleys is of crucial importance, thus, the
single Dirac point approximation is not enough. However, it already contains some
important physics, so it is convenient to start our consideration with this model.

An important property of the Hamiltonian (5.1) is that it is not invariant under
the time-reversal symmetry operation 7. The latter can be represented (Landau &
Lifshitz, 1977) as

T = UK, (5.6)

U =iz, = (_01 é) 5.7)

and K is the complex conjugation. Under this operation the Hamiltonian H (5.1) is
transformed into

where

H =UH*U" = —itvGV — 0,A(x, y) (5.8)

and differs from Eq. (5.1) by the sign of A. This means that there is no
Kramers degeneracy (Landau & Lifshitz, 1977) of the energy levels of the
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Hamiltonian (5.1). At the same time this means that the energy spectrum is
insensitive to the sign of A: If
~(3)
W2

is an eigenstate of the Hamiltonian (5.1) with an energy E, the function
*
¥ =Ty = ( V2 *> (5.9)
—¥
corresponds to the same eigenvalue E for the Hamiltonian (5.8). Obviously, ¥’ is
orthogonal to P, since (¥/)* ¥ = 0.
The most general boundary condition for the Hamiltonian (5.1) and (5.5)

follows from the requirement that it should be Hermitian (or, equivalently, its
energy spectrum should be real). Using the Gauss theorem, one has

” dxdy(t/ﬁﬁlt// - l//+l:l+l//> = —ihv H dxdy[ytaVy + (Vy)dy]

b b (5.10)

= —ihv ”dxdyV[t/ﬁ&’l//] = —ih%dsﬁ(s)j(s) =0,
D L

where 7 is the unit vector normal to the curve L and j = VP&V is the current
density (cf. Eq. (3.2)).

The local boundary condition must ensure that there is no normal current to the
boundary at any point. On introducing the angle a such that

i = (cosa, sina) (5.11)

(see Fig. 5.1), one can write this condition as

cosaRe(y{y,) + sinalm(y y,) =0 (5.12)
or, equivalently,
Y2 _ iBexp (ia(s)), (5.13)
Y1

where B = B(s) is real.

To specify B, one can consider first the case of a flat boundary L || Oy. One can
assume that A = 0 at x < 0 and A = Ay = constant at x > 0, solve the Dirac
equation explicitly as was done in the previous chapter, consider the reflection
problem, and compare the result for y,(x = —0)/y(x = —0) with Eq. (5.13) at
a = 0. One can see that

B= +1 (5.14)
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at Ay — £oo. We will call Eq. (5.13) with B = +1 the infinite-mass boundary
condition (Berry & Mondragon, 1987).

It is not surprising that this boundary condition is not invariant under the time-
reversal operation. Indeed, it follows from Eq. (5.9) and (5.13) that

/ *
vy <l//1> . .
—==—(—] = —iBexp (ia(s)), (5.15)
v Z
which differs from Eq. (5.13) by the sign (we have taken into account that B> = 1).
Confinement of electrons in a finite region leads to a discrete energy spectrum.
Consider first the simplest case in which L is just a circle, r = R, where we pass to
the polar coordinates

X=rcos@p, y=ysing. (5.16)
In these coordinates,
0 e i (g — i;)
—iGV = —i o roreg (5.17)
&=+ fi 0
or rop

and the Schrodinger equation for the state with E = /ivk takes the form

o[ O 10 _
e ¢<5—;%>W2:lk‘/’1’

L(0 i ,
ew(a—F;%)Wl :lkl/lz.

One can try solutions of Eq. (5.18) of the form

(5.18)

i (r,0) = v, (r) exp (ilp),

(5.19)
wo(r, @) = wo(r) exp [i(l + 1)g],

where [ is integer. On substituting Eq. (5.19) into Eq. (5.18) one has

dy, [+1
ar

dy, I

— — —y, = iky,.
dr r*/h IKY

W, = ikyy,
(5.20)

By excluding w, (or y,) from Eq. (5.20), one can find a second-order differential
equation for the Bessel functions (Whittaker & Watson, 1927). The solutions
regular at r — O are
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vy (r) = Ji(kr),
ya(r) = il (kr).

The energy spectrum k = k,,; can be found from the boundary condition (5.13),
keeping in mind that for the circle a = ¢. Thus, the quantization rule for the disc is

(5.21)

Jir1(kyR) = BJ(kyR). (5.22)

This leads to a discrete spectrum with a distance between neighboring energy
levels with a given [ of

s(E) =22 (5.23)

The density of states of the whole system is an extensive quantity proportional (in
two dimensions) to the system area A. Therefore, the average energy distance (for
an arbitrary shape of the billiard, not necessarily for the disc) can be estimated as

1
&Eywﬁaﬁ? (5.24)

where N(E) is the density of states of the Dirac Hamiltonian per unit area:

E k

E)yY=——F5F—=—+-. 2
N( ) 2rh*? 2rmhy (5.25)

It differs from Eq. (1.72) by a factor of 4 (here we do not take into account the
fourfold spin and valley degeneracy for graphene). The semiclassical estimation
(5.24) (see Perenboom, Wyder, & Meier, 1981; Halperin, 1986; Stockmann, 2000)
is valid at

kWA >> 1. (5.26)

For the case of a circular disc that Eq. (5.20) gives, taking into account Eq. (5.23)
through (5.25),

@wxxl_
kR ~— R*

O(E) ~ (5.27)
There is an important issue relating to the energy-level distribution in finite
systems (Bohr & Mottelson, 1969; Perenboom, Wyder, & Meier, 1981; Stock-
mann, 2000). In the case of integrable systems with regular classical motion of
particles it is supposed that it follows the Poisson statistics. It was shown by Berry
and Mondragon (1987) that this is indeed the case for the spectrum determined by
Eq. (5.22). For a generic system with chaotic motion level repulsion takes place,
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and the probability of finding two very close energy levels is strongly suppressed.
The main physical statement can be seen just from the two-level quantum-mechanical
problem with a 2 x 2 Hamiltonian, for which the splitting of eigenvalues is

Ap = \/(Hn — Hy)* + 4[H ;| (5.28)

If the Hamiltonian matrix is diagonal, the probability of degeneracy A;, = 0
is equal to the probability that H;; = H,,; if the matrix is off-diagonal and real, it is
the probability that H,; = H,, and H,, = 0; if it is not real, it is the probability that
H,, = H»,, and Re H;, = 0 and Im H;, = 0, which is obviously smaller.

For a generic chaotic system with time-reversal symmetry (this means that the
basis exists in which the Hamiltonian is real) the distribution of the neighboring
levels, S = AE/)(E), is given by the Gaussian orthogonal ensemble (GOE), with the
probability function

S S
Pgoe(S) = -~ exp (— T)’ (5.29)

whereas without time-reversal symmetry we have the Gaussian unitary ensemble
(GUE), with

328? 452
PGug(S) = 5 oXp <— —> (5.30)

T

(Bohr & Mottelson, 1969; Perenboom, Wyder, & Meier, 1981; Stockmann, 2000).

The numeral calculations of Berry and Mondragon (1987) demonstrate that the
level distribution for neutrino billiards with chaotic classical motion obeys the
GUE statistics (5.30). This is the consequence of violation of the time-reversal
symmetry, which was discussed previously.

5.2 A generic boundary condition: valley mixing

As was discussed in Chapter 1, charge carriers in graphene can be described in the
single Dirac-cone approximation only if all external inhomogeneities are smooth at
the atomic scale. The edges of the terminated honeycomb lattice are sharp and can,
in general, mix the electron states belonging to different valleys. So, one should
use a more general, two-valley Hamiltonian (1.28) (we will use here the represen-
tation (1.27)). The current operator (cf. Eq. (3.3)) is

s OH
j=— = v19®0. (5.31)
P
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The most general restriction on the boundary condition generalizing Eq. (5.10) and
(5.12) in the two-valley case is the absence of the normal component of the current
through the boundary

(v
at any s.

We will consider, following McCann and Fal’ko (2004) and Akhmerov and
Beenakker (2008), the boundary conditions for the abruptly terminated honeycomb
lattice, with zero probability of finding an electron outside the graphene flake. The
simplest terminations, zigzag and armchair edges, are shown in Fig. 5.2.

ﬁ(s)ﬂly> —0, (5.32)

Then the Schrodinger equation inside the flake reads
[—ivty®FV + AvM'S(7 — 7g)|¥ = EP, (5.33)

where 7 = 7g(s) in the equation of the boundary line L, and M’ is an energy-
independent Hermitian matrix. By integrating Eq. (5.33) along an infinitesimal
line parallel to the normal 7i(s) to the boundary and taking into account that
Y = 0 outside the flake, one finds the boundary condition

AY = iM'Y (5.34)
at ¥ = g(s), where
A ~ 1.3
A =iity®3 = —ii] (5.35)
1%

( 3’ = 1). Equivalently, the condition (5.34) can be represented as

¥ = MY (¥ =T7p), (5.36)
Zigzag edge
NN

23pa Jleyauuy

FN_ N

T X
T L

Fig. 5.2 Zigzag and armchair edges of the honeycomb lattice.
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where
M =iAM'. (5.37)
On iterating Eq. (5.36) one can see that
M =1. (5.38)
If we require that the Hermitian matrices A and M’ anticommute,
{A,M'} =0, (5.39)

the matrix (5.37) turns out to be Hermitian and, due to Eq. (5.38), also unitary:

o= =m (5.40)

It also anticommutes with the matrix A:
{A, M) =ik° W'+ i(AM)A =0 (5.41)
and the condition (5.32) is automatically satisfied in this case:
PHAY = W AMY = —PTAY = 0. (5.42)

Thus, the boundary condition (5.36) with the most general matrix M satisfying the
requirements (5.40) and (5.41) seems to be the most general form of the boundary
conditions at the edges of terminated graphene flakes.

As was proven by Akhmerov and Beenakker (2008) the most general allowed
matrix M can be represented as

M = sin Azo® (ﬁlé) + cosA(v%> ® (ﬁzé), (5.43)

where A is an arbitrary real number and V,#; and 7, are three-dimensional
unit vectors such that 7i; and 7, are mutually orthogonal and also orthogonal to
i (V is arbitrary).

One can assume that the boundary conditions for the graphene flake as a whole
should be time-reversal symmetric. Formally, this follows from the fact that the
tight-binding Hamiltonian for the honeycomb lattice in real space can be chosen as
a real matrix. The time-reversal symmetry can be broken by spontaneous valley
polarization at the edges or by spin polarization plus spin-orbit coupling. So far,
there is no clear experimental evidence for such phenomena (as for the possible
spin polarizaion at the edges, see Chapter 12).

On generalizing the definition of the time-reversal operation (5.6) to the case of
two valleys one can write

T=-%,85,K. (5.44)
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The matrix M (5.43) commutes with T only at A = 0; thus, for the time-reversal-
invariant case

M= (W) ® (nﬁé),nﬁﬁ. (5.45)

Further specification of the boundary conditions can be achieved by assuming the
nearest-neighbor approximation (which is actually quite accurate for graphene,
see Chapter 1). In this approximation there exist only hopping terms between
sublattices, H AB, Whereas intrasublattice terms vanish: H AA :IﬁIBB =0 (see
Eq. (1.14)). The Schrédinger equation for the two-component wave function
(the components correspond to the sublattices)

A

HABl//A = Eysg,
Hgyg = Ey, (5.46)

has a rigorous electron-hole symmetry: yg — —wg, E — —FE transforms the equa-
tion to itself. In the limit of small energies |E| << |¢| this means that the operation

R = 7,®0, changes the sign of the Hamiltonian
RHR = —-H (5.47)
or, equivalently (keeping in mind that R = 1),

{H,7,®6.} =0. (5.48)

This symmetry is an approximate one for real graphene, but this approximation
is quite good due to the smallness of the second-neighbor hopping |f'/t] ~ 0.1
(see Section 1.2). If we require (5.48), there are only two classes of allowed
boundary conditions: (1) V||Oz, ni||Oz, for which

M = +%.06; (5.49)

and (2) v, = m, = 0, for which

M= (cos @7, + sin (p?y)®ax (5.50)

(we assume that the edge is along the x-axis 7||Oy, and thus 77| Ox).

Boundary conditions of the type (5.36) and (5.49) are called zigzaglike, whereas
those of the type (5.36) and (5.50) are called armchairlike, for reasons that will be
discussed in the next section. It is an important result (Akhmerov & Beenakker,
2008; Wimmer, Akhmerov, & Guinea, 2010) that zigzaglike boundary conditions
are generic, whereas armchairlike boundary conditions occur only for some excep-
tional orientations of the edges.
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5.3 Boundary conditions for a terminated honeycomb lattice

Here we present, following Akhmerov and Beenakker (2008), a microscopic
derivation of the boundary conditions for a terminated honeycomb lattice in the
nearest-neighbor approximation. The geometry of our problem is clear from
Fig. 5.3. The translation vector along the boundary is

T = nR, + mR,, (5.51)

where
Ria= g (\fs, :1) (5.52)

are elementary translation vectors and n and m are integers. The number N of
missing sites and the number N of dangling bonds per period are larger than or
equal to n + m. Fig. 5.3(d) shows a minimal boundary where N =N = n + m.

The Schrodinger equation for the tight-binding model in the nearest-neighbor
approximation reads

wp(P) +yp(F— Ri) + wg(F— Ro) = eya(F),
WA(F) +wa(F—Ry) + ya(F — Ro) = ey (7),

where € = E/t is the dimensionless energy and subscripts A and B label sublattices.

(5.53)

Fig. 5.3 (a) A honeycomb lattice constructed from a unit cell (gray rhombus)
containing two atoms (labelled A and B), translated over lattice vectors Ry and
R,. Panels (b)-(d) show three different periodic boundaries with the same
period T = nR; 4+ mR,. Atoms on the boundary (connected by thick solid lines)
have dangling bonds (thin gray line segments) to empty neighboring sites (open
circles). The number N of missing sites and the number N of dangling bonds per
period are n + m. Panel (d) shows a minimal boundary, for which N =N =n + m.
(Reproduced with permission from Akhmerov & Beenakker, 2008.)
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The angle between the translation vector T and the armchair orientation (the
direction Ox in Fig. 5.3(a)) is

1 n—
@ = arctan (EZ n Z) (5.54)

Owing to symmetry with respect to rotations at £ 7/3 we can restrict ourselves to
the case |p| < @/6 only.

The boundary condition is the requirement that the wave function vanishes at
the empty sites. One can assume that it depends smoothly on the energy €. We are
interested in the case of small ¢ (the states close to the Dirac points) and, thus, can
put € = 0 in Eq. (5.53). So, as a first step one can find zero-energy modes for the
terminated honeycomb lattice. Owing to the translational invariance along the
boundary, one can use the Bloch theorem and require that

was(F+T) = yap(® (5.55)

with areal 0 < k < 2.
For the behavior normal to the boundary, we assume that

wap(F+Rs) = Ay, p(P), (5.56)

where E3 = I_él — I_éz is antiparallel to the y-axis in Fig. 5.3(a). This lattice vector

has a nonzero component acos ¢ > av/3/2 perpendicular to T. For the states

localized at the edge |4| < 1 and for propagating states |4| = 1; of course, the case

|A| > 1 is meaningless, since the corresponding wave function cannot be normal-

ized. If |A] < 1, the solution satisfying Eq. (5.56) has a decay length in the direction

normal to 7' of

acos ¢
Inji|

(5.57)

Taking into account that 131 = 1_3'2 + ﬁg, one can rewrite Eq. (5.53) at ¢ =0 as

—

l//B(?) +WB(?—§2 —ﬁ3) +Q/IB(7—R2) =0, (5 58)
l//A(?) + l//A(?_ ]_éz — I_ég) + l//A(?— iéz) =0.
On substituting Eq. (5.56) into Eq. (5.58) one finds
- 1
F+Ry) =— ),
‘//B( 2) l—i-/lWB( ) (5.59)

Using Eq. (5.56) and (5.55) together, we have, for any integer p and ¢,
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),

Ny

U4 (?‘f‘p]_éz —|—q]_é3) = /lq(—] —l)ipl//B(

(5.60)
wa(F+ PRy + gR3) = 29(—=1 — 1) Py o (7).
Now we have to recall the Bloch theorem (5.55) for
T:n(l_é2+l_é3) +mRy = (n+m)ﬁz+nﬁ3. (5.61)
Thus, we have two equations relating k and /:
(=1 = "+ =k (5.62)
for the sublattice A and
(—1 — )" +m = kgm (5.63)

for the sublattice B. One needs to find all solutions 4 of Eq. (5.62) and (5.63) for a
given k satisfying the conditions |4| < 1.
A general zero-energy state can be represented as

Ma
Va = Zapwp
p=1

(5.64)
Mg
Ve =D %V
p=1

where M and My are the numbers of solutions of Eq. (5.62) and (5.63) within the
unit circle, respectively, and y,, and 1/11’7 are the corresponding eigenstates. The
coefficients o, and a;, should be chosen in such a way that w, and wg vanish at
missing sites from the sublattices A and B.

The Dirac limit corresponds to the case of small k. Explicit calculations for the
case k = 0 give the result (Akhmerov & Beenakker, 2008)

My = 2n;’|—m
(5.65)
2m+n
Mg = 3 + 1.

These solutions include also the values

.-
di = exp (i %) (5.66)
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corresponding to the propagating modes; for all other modes |A| < 1, so they are

localized at the edge. The corresponding eigenstate is exp (iil? ?), with

K= % Rs. (5.67)
Thus, the general zero-energy mode at k = O can be represented as
Ma—2
WA = Y EXp (zKr) +yy exp —zKr Z ap¥ s
(5.68)

Wg = W, exp (1Kr) + w3 exp —1Kr Z apz,yp

The four amplitudes (1, —iw», i3, —4) correspond to the four components of the
wave function (1.27) in the Dirac limit; y; and y, are associated with the valley K,
w3 and w, with the valley K'.

At the same time, there are N5 conditions w5 = 0 at the missing sites belonging
to the sublattice A and Ng conditions wg = 0 at the missing sites belonging to the
sublattice B (N, and Np are the numbers of missing sites belonging to the
corresponding sublattice).

For the minimal boundary, Ny = n and Ng = m. At the same time, for n > m
one has M, < n conditions w5 = 0 at some sites. The only way to satisfy them is to
require that 4 = 0 on the whole boundary, including w; = w4 = 0. At the same
time, Mg > m + 2, so y, and w3 remain undetermined.

This corresponds to the zigzag boundary conditions Eq. (5.49), with the minus
sign. Similarly, for n < m one has the zigzag boundary conditions with the plus
sign. Only at n = m does one have My = Mg = n + 1 > n, such that one has the
same condition for sublattices A and B. All y; are nonzero in this case, with

il = lwals  lwal = lwsl (5.69)

(armchair boundary conditions (5.50)).

So, at least for the case of minimal edges, one can prove that the armchair
boundary conditions are exceptional whereas the zigzag ones are generic. This result
also seems to be correct for nonminimal edges, as well as for the case of disorder at
the edges (Martin & Blanter, 2009; Wimmer, Akhmerov, & Guinea, 2010).

For the case n > m, the number of independent zero-energy modes per unit
length is (Akhmerov & Beenakker, 2008; Wimmer, Akhmerov, & Guinea, 2010)

My—n |m — n

P= }T‘ 3a\/r12+rlm+m2

\s ng|. (5.70)
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At ¢ = 0 (armchair boundaries) there are no such states. The existence of the zero-
energy modes and the corresponding sharp peak in the density of states at zigzag
edges was first found numerically by Nakada et al. (1996). It will be analyzed in
more detail in the next sections.

Akhmerov and Beenakker (2008) have demonstrated that the infinite-mass
boundary condition (5.13) with B = £1 can be obtained in the limit of an infinite
staggered field (difference of on-site energies between sublattices A and B at the
edge). The sign of B is determined by the sign of this staggered field.

5.4 Electronic states of graphene nanoribbons

The previous consideration was a bit formal, but the result is quite simple. For the
case of pure zigzag edges all missing atoms belong to sublattice A only (or
sublattice B only), thus the corresponding components of the wave function for
the two valleys, K and K’, should vanish at the boundary. If the numbers of missing
atoms belonging to A and B are not equal, the boundary conditions remain the
same, depending on the majority of the atoms: “The winner takes all.” Only in
the exceptional case, in which the numbers of missing atoms from A and
B coincide exactly (armchair edges), are all four components of the Dirac spinors
finite at the edge, satisfying the two relations (5.69).

If we have a nanoribbon of a constant width L(|y| < L/2) with zigzag edges, one
edge corresponds to the missing atoms A and the other to the missing atoms B. The
boundary conditions are

(5.71)

where u is y; or w4 and v is y, or ;. In this case the valleys are decoupled, so in
the Dirac approximation we can consider them independently. For the valley K, the
Schrodinger equation reads

o .0 .
<a + la_y> u(x,y) - zkv(x, y)’
(5.72)

o .0 .
<§ - la—y> v(x,y) = iku(x,y),

where k = E/(hv). For the valley K', the signs before d/0y are exchanged. The
analytic solution of Eq. (5.72) with the boundary conditions (5.71) has been found
by Brey and Fertig (2006). Let us try the solutions as
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u(x,y) = exp(ikx)u(y),
v(x,y) = exp(iky)v(y), (5.73)

where u and v satisfy a system of two linear ordinary differential equations with
constant coefficients:

<kx + d%) u(y) = kv(y),

4 (5.74)
<kx - d—y) v(y) = ku(y).
The solution can be tried as
u(y) = Aexp(zy) + Bexp(—=zy),
) p(zy) p(—2y) (5.75)
v(y) = Cexp(zy) + Dexp(—zy),
where
2=k — K (5.76)

can be either real (for evanescent waves) or imaginary (for propagating waves). On
substituting Eq. (5.75) into Eq. (5.74) and taking into account Eq. (5.71), one finds
a dispersion relation for the waves in the nanoribbon:

_kx_z
ko2

9(2) = exp(—2Lz). (5.77)

Graphical solution of Eq. (5.77) (Fig. 5.4) shows that a real solution (other than the
trivial one, z = 0) exists if

ke >~ (5.78)

—~
Q
=
—~
o
-

= \m:m = | k_\.L:O.S‘
&2 L
51 1
o0 \ B0 | \
= =
’Ar kx 7"'\ kx
Z Z

Fig. 5.4 Graphical solution of Eq. (5.77) (the logarithm of both sides is taken). If
the condition (5.78) is satisfied, there is a nontrivial (z # 0) solution (a);
otherwise, z = 0 is the only solution (b).
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Indeed, at this condition ¢(z) =~ 1 — 2z/k, is larger than exp(—2Lz) ~ 1 — 2Lz at
small z. At the same time, ¢(k,) = 0 < exp (—2Lk,), thus the curves should cross.
Otherwise, there are no solutions.

Eq. (5.78) is the condition of existence of the edge state; for the semispace
(L — o) it always exists, with the decay decrement z = k,, in agreement with the
consideration of the previous section. For a finite width L, those states with

energies
E, = +hv\/k> — 22 (5.79)

are linear combinations of the states localized on the left and right edges of the
ribbon. There are no solutions at k, < 0, so, for a given valley, these edge states can
propagate only in one direction. Conversely, for the valley K’ the solutions exist
only for k, < 0. Numerical calculations for honeycomb-lattice nanoribbons (Brey
& Fertig, 2006; Peres, Castro Neto, & Guinea, 2006) show that these edge states
connect the valleys K and K’ (Fig. 5.5).

For the case of purely imaginary z = ik, Eq. (5.77) can be rewritten as

ky =k, cot (k,L), (5.80)

which gives “bulk” standing waves with discrete values of k, and energy

Ey = £hvy [k + k. (5.81)

For the case of armchair nanoribbons, the amplitudes of the components of wave
functions belonging to different valleys are the same but the phases can differ (see
Eq. (56.69)). A detailed analysis (Brey & Fertig, 2006) results in the following
boundary conditions:

0.6
Y Y (P
0.4 \\\ _”/ ﬁ\\”_?/f/’f
\'-.\+ / ) / ':-r"’
N N
£ 0.2] W/ \1/
> [ 1/
=3 0.0 K\g_ / K’
[} . N
[ /Y \ Zigzag.
W -0.2 N\ ’(’NL:MX(S)W 2
0.4 1/ V?{Q
e g ‘\ — \\\
0.6 a‘-”{’f’ ”tf\ f/ﬁ} AR

Fig. 5.5 The energy spectrum for zigzag-terminated graphene nanoribbon with
56 atoms per unit cell.
(Reproduced with permission from Brey & Fertig, 2006.)
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1

L L
v(=3)=v{-3)

uG) — exp(2miv)id (%)
v(g) — exp(2riv)y/ (g)

where the functions with (without) primes correspond to the states from valley K’
(K)yandv =0, + %, depending on the number of rows in the nanoribbons; v = 0 if
this number is 3p (p is an integer) and v = :I:% ifitis 3p & 1. In this case there are no
edge states with real z, the wave functions of the bulk states are very simple, namely

(5.82)

1
ui(y) = —ivi(y) = NG exp(ik;y),

| (5.83)
§03) = =) = - exp(iky).
and k; is discrete:
kj:(’Jer)”,jzo,il,.... (5.84)

5.5 Conductance quantization in graphene nanoribbons

For the case of zigzag edges, electron motion along the edges is coupled with that
in the perpendicular direction; see Eq. (5.80). This coupling leads to interesting
consequences for the electron transport in nanoribbons with varying width, such as
those with nanoconstrictions (Fig. 5.6).

Let us consider a ribbon with a slowly varying width L(x), assuming that

« 1. (5.85)

Fig. 5.6 A sketch of a graphene nanoribbon with a smoothly varying width.


https://www.cambridge.org/core

5.5 Conductance quantization in graphene nanoribbons 125

For simplicity, we will assume mirror symmetry so that the edges correspond to
y = £L(x)/2 (Fig. 5.6). For the case of the Schrodinger equation for conventional
nonrelativistic electrons

2

h
-5 V2¥(x,y) = E¥(x,y) (5.86)
with boundary conditions
L
‘I’<y: i%) =0 (5.87)

(impenetrable walls), the electron states can be considered in the adiabatic approxi-
mation (Glazman et al., 1988; Yacoby & Imry, 1990). Owing to the condition
(5.87), one can try having the wave function as

Wx, y) = x(0)9y), (5.88)
where
2 . (mn2y+ L(x)]
o (y) = e sm< W ) (5.89)

is the standing wave of transverse motion satisfying the boundary condition (5.87)
and depending on x as a parameter via L(x). It can be proven (Glazman et al., 1988;
Yacoby & Imry, 1990) that the wave function of longitudinal motion satisfies the
Schrodinger equation

d’x,(x)

T+ (R = k()6 =0, (5.90)
where k* = 2mE/h* and
kn(x) = % (5.91)

Owing to Eq. (5.85), one can use the semiclassical approximation (Landau &
Lifshitz, 1977). At k > k,(x), the solutions of Eq. (5.90) are propagating waves
with an exponentially small probability of reflection, whereas for the classically
forbidden regions k < k,(x), the electron states decay quickly. This means that the
electron transport in the adiabatic approximation is determined by the minimal
width of the constriction L,,;,: All states with

p < Fin (5.92)

T
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have transmission coefficients close to unity, and all states with larger n do not
contribute to the electron transmission at all. According to the Landauer formula
(see Section 3.2) the conductance in the adiabatic regime should be quantized, with
an exponential accuracy of

G=—n, (5.93)

where n is an integer and the factor of 2 is due to spin degeneracy. Each transverse
mode corresponds to an independent channel of transmission.

For the case of graphene nanoribbons the situation is more complicated
(Katsnelson, 2007b). Here we will only consider the case of zigzag boundary
conditions, since they are generic for inhomogeneous nanoribbons as discussed
earlier.

Thus, one can solve the equations (5.72) with x-dependent boundary

conditions (5.71):
L
u<x’y - _%) - 0’

Following Katsnelson (2007b) we expand a general solution in the standing
waves with k, = 0. For this case,

(5.94)

Tj . 1 3
ky=k=—,j=4+—,+=, ... .
y =7 J 3 T (5.95)

(cf. Eq. (5.80)), and the eigenfunctions can be written explicitly:

) =7 cos (-5 |

(5.96)
I . L
vi(y) = _7Z sin | k; y=35)1
Instead of Eq. (5.88), let us use the most general expansion
u(x.y) = (i (),
’ (5.97)

v(xy) = > v (),

J
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(x)

where 1 and v are the functions (5.96) with the replacement L — L(x):

0= e [ 3))

P el )

The functions (5.98) satisfy by construction the boundary conditions. On sub-
stituting the expansion (5.97) into Eq. (5.72) and multiplying the first equation by
(v;| and the second one by (u;| one finds

dcy
Z —= (i) + Cj’<Vj

J

dv;

)| = ki)

duj/

| =T kg uly). 699

o

J

dcy
> d—;<“j\”j’> +Cj'<uj

j/

These equations are formally exact. As a first step to the adiabatic approximation,
one should neglect the terms with

dl/tj/

dx /’

dvy
<vj d‘;jc >and<uj

which is justified by the smallness of dL/dx, as in the case of nonrelativistic
electrons (Yacoby & Imry, 1990).
To proceed further, we need to calculate the overlap integrals

L2
<¢1‘¢2> = J dy¢1k¢2
—L/2
for different basis functions:
1
(ujluy) = 3 (0 +95.)5
1
(vilvy) = 3 (0 +3j.-7)s
1 (5.100)
—— j—j=2n+1,
z(j' —J)
(uilvy) = (vylu;) = 1
N E

z(j +j)
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where n is an integer. On substituting Eq. (5.100) into Eq. (5.99) and neglecting the
nonadiabatic terms within the matrix elements of the operator d/d,, we obtain after
simple transformations
dey __2s~k—k) o (5.101)
dx mi—i j+j
where the sum is over all j/ such that j/ — j is even.

Until now we have employed transformations and approximations that are
identical to those used in the case of nonrelativistic electrons. However, we still
have a coupling between different standing waves, so we cannot prove that the
electron transmission through the constriction is adiabatic. To prove this we need
one more step, namely a transition from the discrete variable j to a continuous one
and a replacement of the sums on the right-hand side of Eq. (5.101) by integrals:

E]’, — %Pfdy. .., where P is the symbol of principal value. This step is

justified by assuming that kL >> 1, i.e., it is valid only for highly excited states.
For low-lying electron standing waves it is difficult to see any way to appreciably
simplify the set of equations (5.101) for the coupled states.

For any function f{z) that is analytic in the upper (lower) complex half-plane one has

0

[ st

—00

1

— =0 5.102
x—x; 10 ( )

or, equivalently,

J dxf (x) = +inf(x). (5.103)

X — X

Assuming that c¢;(x) is analytic in the lower half-plane as a function of the complex
variable j one obtains, instead of Eq. (5.101),

) (5.104)

Similarly, taking into account that c_;(x) is analytic in the upper half-plane as a
function of the complex variable j we have

L) _ i) ~ Koo, (5.105)

Finally, on differentiating Eq. (5.104) with respect to x, neglecting the derivatives
of kj(x) due to the smallness of dL/dx and taking into account Eq. (5.105) we find
d*¢i(x)

dx®

+ [kz - k}(x)]cj(x) —0. (5.106)
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Further analysis completely follows that for the nonrelativistic case. The potential
is semiclassical for the case of smoothly varying L(x). Therefore, the transmission
coefficient is very close to unity if the electron energy exceeds the energy of the
j’th level in the narrowest place of the constriction and is exponentially small
otherwise. Standard arguments based on the Landauer formula prove the conduct-
ance quantization in this situation.

At the same time, for the lowest energy levels the replacement of sums by
integrals in Eq. (5.101) cannot be justified, and thus the states with different js are
in general coupled even for a smooth constriction (5.85). Therefore, electron
motion along the strip is strongly coupled with that in the perpendicular direction
and different electron standing waves are essentially entangled. In this situation
there is no general reason to expect sharp jumps and well-defined plateaux in the
energy dependence of the conductance. This means that the criterion of the
adiabatic approximation is more restrictive for the case of Dirac electrons than it
is for nonrelativistic ones. The formal reason is an overlap between components of
the wave functions with different pseudospins or, equivalently, between the hole
component of the state j and the electron component of the state j/ # j. This
conclusion (Katsnelson, 2007b) seems to be confirmed by the numerical simula-
tions of Mufos-Rojas et al. (2008).

5.6 The band gap in graphene nanoribbons with generic
boundary conditions

One has to keep in mind that the terminated honeycomb lattice is a special case of
graphene edges. Density-functional calculations show that the reconstructed “5-7"
edge (Fig. 5.7) has an energy lower than those of both armchair and zigzag edges
(Koskinen, Malola, & Hékkinen, 2008). The reconstruction to this low-energy
state requires the overcoming of energy barriers, so the zigzag edges are metastable
(Kroes et al., 2011), but under some circumstances it will definitely happen. Zigzag
edges are very chemically active, so they will bind hydrogen, oxygen, or hydroxyl
groups (see, e.g., Boukhvalov & Katsnelson, 2008; Bhandary et al., 2010). Lastly,
that the density of states peaks due to zero-energy modes means ferromagnetic
instability (Fujita et al., 1996; Son, Cohen, & Louie, 2006a; see also Section 12.3).

Fig. 5.7 A sketch of a reconstructed 5-7 zigzag edge.
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All of this will substantially modify the boundary conditions. The most general
form is given by Eq. (5.36) and (5.45). It assumes only time-reversal symmetry.
Time-reversal symmetry can be broken by ferromagnetic ordering; however, the
latter can exist in one-dimensional systems at zero temperature only. At finite
temperatures one has, instead, a superparamagnetic state with a finite correlation
length ¢ which is just several interatomic distances at room temperature (Yazyev &
Katsnelson, 2008). If all essential sizes of the problem (e.g., the width of
nanoribbons L) are larger than ¢ then the system should be considered time-
reversal invariant.
The most general boundary conditions for the nanoribbons are therefore

(3= —2) = (7)o

xy=—5)=(V7)e(ins)¥(xy=—-3)
L 5 4 L
‘P(x,yzi) = (Vg.?)@(ﬁg&’)‘l’(&)f :§>,

where V; are three-dimensional unit vectors (no restrictions) and #; are three-
dimensional unit vectors perpendicular to the y-axis:

(5.107)

iy = (cos 6,0, sin6), (5.108)

—

1y = (cos 6,0, sind,).

Valley symmetry implies that only the relative directions of the vectors v and v,
are essential. Thus, the problem is characterized by three angles: 6, 8, and the
angle y between V| and ;.

The most general dispersion relation £ = E(k) for the propagating waves

Y(x,y) o< exp (ikx + igy), (5.109)

satisfying the boundary conditions (5.107) has been obtained by Akhmerov and
Beenakker (2008). It reads

cos 81 cos 0, ( COS @ — COS ZQ) + cos w sin @ sin 6, sin 2Q

(5.110)
—sinQ[sin Qcosy + sinwsin (6 — 6,)] =0,
where
E2
2 _yy2 2
w” =4L [flzvz k }
and

Q=—,. 5.111
cos 5 ( )
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Different solutions of Eq. (5.110) correspond to different standing waves with
discrete g,. Analysis of this equation shows that there is a gap in the energy
spectrum if y = 0, 7 (which means that valleys are coupled at the boundaries) or at
y =, sin 6y sin 6, > 0, or at y = 0, sin &; sin 6, < 0 (Akhmerov & Beenakker,
2008). One can see that the case of zigzag-terminated edges when states with
arbitrarily small energy, up to E = 0, exist is very exceptional. For generic
boundary conditions, the gap is of the order of
hv

A=—. 112
7 (5.112)

A detailed analysis of the gap, both in a tight-binding model and in realistic
density-functional calculations, was carried out by Son, Cohen, and Louie
(2006b) (see also, e.g., Wassmann et al., 2008).

The gap opening in nanoribbons is very important for applications. It allows one
to overcome restrictions due to Klein tunneling and build a transistor that can really
be locked by a gate voltage (Han et al., 2007; Wang et al., 2008; Han, Brant, &
Kim, 2010).

5.7 Energy levels in graphene quantum dots

Nanoribbons are restricted in one dimension, therefore their electron spectra
consist of bands E, (k). It is possible to make graphene devices in which electrons
are confined in two dimensions — graphene quantum dots (Ponomarenko et al.,
2008; Stampfer et al., 2008; Giittinger et al., 2009; Molitor et al., 2010; Zhang
et al., 2010). Fig. 5.8 (Ponomarenko et al., 2008) shows an example of such a
device, together with the voltage dependence of the differential conductance G
through the device. Oscillations of G are due to the discreteness of the electron
energy spectrum in the dot. First of all, there is a classical electrostatic effect,
namely the dependence of the energy on the total charge Q,

0>
=3¢
where C is the capacitance of the dot. When the electron tunnels to the dot or from
the dot, the charge Q, is changed by =e. This effect is known as Coulomb
blockade; see Kouwenhoven, Marcus, and McEuen (1997). Apart from this, there
is a discreteness of the single-electron energy spectrum superimposed on the
Coulomb-blockade peaks. The sharp dependence of G on the gate voltage allows
one to use the device as a single-electron transistor (Ponomarenko et al., 2008;
Stampfer et al., 2008). The data extracted from the measurements clearly show the
effect of level repulsion, which was discussed in Section 5.1; this means that the

Ec(Q) (5.113)
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single-electron spectrum of real graphene quantum dots is certainly chaotic (De
Raedt & Katsnelson, 2008; Ponomarenko et al., 2008). The function P(S) (cf. Eq.
(5.29) and (5.30)) extracted from the experimental data by Ponomarenko et al.
(2008) for a 40-nm graphene quantum dot is shown in Fig. 5.9. Its decrease at
small S is a manifestation of the level repulsion. At the same time, it is difficult to
distinguish between the cases of orthogonal and unitary ensembles. Theoretically,
the distinction depends on the probability of intervalley scattering. If it is large
enough, then, due to atomic-scale inhomogeneity at the edges, the system is time-
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Fig. 5.8 (a) A graphene-based, single-electron transistor. The conductance G of a
device shown in the insert in the upper right corner is given as a function of the
gate voltage, at temperature 7 = 0.3 K. Two panels in (b) show the picture with

different resolutions.
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(Reproduced with permission from Ponomarenko et al., 2008.)
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Fig. 5.9 The level-spacing distribution extracted from experimental data on a
graphene 40-nm quantum dot.
(Reproduced with permission from De Raedt & Katsnelson, 2008.)

reversal invariant, and one should expect the behavior typical for the Gaussian
orthogonal ensemble, Eq. (5.29). This is obvious already from the fact that, in the
absence of a magnetic field, the tight-binding Hamiltonian can be chosen to be real.
At the same time, if the inhomogeneities at the edges are smooth enough and
intervalley scattering is therefore weak, the situation should be close to the case of
a neutrino billiard (Section 5.1), and a unitary ensemble is to be expected. This can
indeed be the case, since for chemical passivation of the edges the electronic
structure changes smoothly within a rather broad strip near the edges (Boukhvalov
& Katsnelson, 2008). Theoretical discussions of the energy-level statistics in
graphene quantum dots can be found in Wurm et al. (2009), Libisch, Stampfer,
and Burgdorfer (2009), Wimmer, Akhmerov, and Guinea (2010), and Huang, Lai,
and Grebogi (2010).

5.8 Edge states in magnetic fields and the anomalous quantum Hall effect

Now we can come back to the physics of the half-integer quantum Hall effect
discussed in Chapter 2. Our analysis in Section 2.9 was based on the solution of the
quantum-mechanical problem for bulk graphene. There is an alternative approach
to the quantum Hall effect that is based on the analysis of the edge states of
electrons in a magnetic field (Halperin, 1982; MacDonald & Stteda, 1984).

Let us start with the classical picture of electron motion in a magnetic field. In
two dimensions, the electron orbits are closed circles (Larmor rotation). Depending
on the direction of the magnetic field, all electrons in the bulk rotate either
clockwise or counterclockwise. However, for the electrons with the centers of
their orbits close enough to the boundary, reflections form a completely different
kind of trajectory, skipping orbits (Fig. 5.10). They possess a magnetic moment
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Fig. 5.10 Skipping orbits of electrons due to the combination of Larmor rotation
in a magnetic field and reflection from the edges.

opposite to that of the “bulk” orbits and, actually, exactly compensate for the latter,
so that, in agreement with a general theorem, the classical system of electrons can
be neither paramagnetic nor diamagnetic (Vonsovsky & Katsnelson, 1989). In
quantum theory, the skipping orbits are associated with the edge states localized
near the boundary and carrying the current. These states are chiral, since only one
direction of propagation is allowed. Therefore, they are protected against localiza-
tion by disorder; the situation is similar to the Klein tunneling and forbidden
backscattering for massless Dirac fermions (Chapter 4). Simply speaking, there
are no other states with the same energy for electrons to be scattered to. Thus, if
one assumes that all bulk states are localized there is still a current being carried by
the skipping electrons, with a contribution to the conductance of e*/h per spin
(complete transmission). This gives an alternative explanation of the quantum Hall
effect (Halperin, 1982; MacDonald & Stieda, 1984).

A topological analysis shows that the number of edge states at the border
between a quantum Hall insulator and vacuum is equal to the integer in (2.181)
and, thus, “bulk” and “edge” approaches to the quantum Hall effect give the same
results for o, (Hatsugai, 1993; Kellendonk & Schulz-Baldes, 2004; Prodan, 2009).

The counting of the edge states is therefore an alternative way to explain the
anomalous (“half-integer”) quantum Hall effect in graphene (Abanin, Lee, &
Levitov, 2006; Hatsugai, Fukui, & Aoki, 2006). Here we will use the approach
of the first of these works, which is based on a solution of the Dirac equation in a
magnetic field (the second one uses an analysis of the geometry of the honeycomb
lattice).
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Let us assume that graphene fills the semispace x < 0. The solutions of the Dirac
equation for the valley K satisfying the conditions y(x) — 0 at x — —oo are given
by Eq. (2.45) and (2.46),

X) = D,(—X),
() = DafX) i
wo(X) = ieDy-1(—X),

where n = ¢* and X is given by Eq. (2.26) and (2.41). For the valley K’ the results
are the same but with the replacement y; — v, w, — | (see Eq. (1.27) and
(1.28)), thus,

w1 (X) = ieD, 1 (—X),
WIZ(X) :Dn(_X)'

The eigenenergy e can be found from the boundary conditions. For example, for
the armchair-terminated edge, one needs to put

pi(x=0) =y(x=0),
ya(x = 0) = y)(x = 0).

(5.115)

(5.116)

For the case of zigzag-terminated edges, the valleys are decoupled, and the
conditions are

0)
0)

i (x

0’
i (x 0

(5.117)

(for the zigzag edge with missing A atoms). Then, Eq. (5.114) and (5.115) give the
energy (2.26) depending on the coordinate of the center of the orbit x, (2.40) or,
equivalently, on the wave vector k, along the edge.

It is easier to analyze these solutions after transformation of the original problem
to the Schrodinger equation for a double-well potential (Abanin, Lee, & Levitov,
2006; Delplace & Montambaux, 2010). The Hamiltonian H 2 (2.33) can be repre-
sented as

2
it = B (5.118)

c
where

. 1d* 1 1

0= T2 +§(X —x0)* — 50T
where x and x are in units of the magnetic length /z and ¢, = +1 for components
corresponding to the sublattice A and o, = —1 for components corresponding to the
sublattice B, with 7. = +1 for the valley K and K’, respectively.
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For the case of zigzag edges, the valleys and sublattices are decoupled. The
eigenvalues of the operators Q for the valleys K and K’ differ by 1. The sublattices
are also decoupled, but the edge states for the B sublattice are associated with
another edge.

The eigenstates of the problem

Oy (x) = 2y (x) (5.119)

with the boundary condition (5.117) are the same as the antisymmetric eigenstates
for the symmetric potential

oLy, 5.120

Q= 272 T (x), (5.120)
1 1

V(x) = §(|X| —Xo)zﬂti (5.121)

with F signs for the valleys K and K/, respectively (see Fig. 5.11).
If |xo| >> 1, the potential wells are well separated and the probability of
tunneling between the wells is exponentially small, for

1

e < Exé' (5.122)
Then, in zeroth-order approximation, the eigenvalues are the same as for inde-

pendent walls

32—n+l¥l (5.123)
a 2 2 ’

n

where (n = 0,1,2,...). Tunneling leads to the splitting of each eigenvalue for
symmetric and antisymmetric states

det = 44, (5.124)

)

Fig. 5.11 The effective potential (5.121) (for the case of the minus sign).
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X,/ I3
Fig. 5.12 A sketch of the energy spectrum for magnetic edge states.

with

X2

A, < exp —J dx\/V(x) — 2|, (5.125)

—X1

where x) » are the classical turning points: V(x; ;) = &2. One needs to choose the
plus sign in Eq. (5.124) corresponding to the antisymmetric eigenfunctions.

For the minus sign in Eq. (5.121) (valley K) one has some growing dependence
of E, on the function |xp|/lp (the larger |xo| the smaller the shift) starting from
E = 0. Starting from the first Landau level, the second valley K’ also contributes,
but A, for the same energy corresponds to another value of n(n — n — 1) and, thus,
will be different. As a result, we have the picture of the energy levels shown
schematically in Fig. 5.12. An almost zero-energy Landau band (originating from
the zero-energy Landau level for an infinite system) corresponds, for a given edge,
to the states from a single valley; the states from the second valley are associated
with another edge.

For the case of armchair edges, the boundary conditions (5.116) lead to the
Schrodinger equations (5.119) and (5.120), but with the potential

1

V(X) = 5

1

qﬂ—mf—i%m (5.126)
(see Fig. 5.13). Indeed, one can define formally
yi(x) = vy (=),

(5.127)
wy () = yo(—x),
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V(x)

Fig. 5.13 The effective potential (5.126).

so that Eq. (5.116) is nothing other than the condition of continuity of the wave
function y and its derivative dy,/dx (which is related to y, by the Dirac equation)
at x = 0. The qualitative dependence E,(xy/]) remains the same as that shown in
Fig. 5.12. A more detailed analysis of the problem in the semiclassical
approximation was performed by Delplace and Montambaux (2010).

To calculate the Hall conductivity one just needs to count the occupied edge
states for a given Fermi energy, with each state contributing e*/h per spin. One can
immediately see from Fig. 5.12 that the lowest-energy Landau band
always produces one edge electron (for E > 0) or hole (E < 0) state and all
other bands produce two such states. This immediately gives Eq. (2.167) for oy,
with g, = 2 and g = 1 (Abanin, Lee, & Levitov, 2006).

5.9 Spectral flow for massless Dirac fermions

In Chapter 2, we discussed nontrivial topological properties of massless Dirac
fermions in graphene; the existence of topologically protected zero-energy Landau
levels (Section 2.3) and related to them half-integer quantization of Hall
conductivity (Section 2.9) is probably the most important one. Here we consider
the other nontrivial topological effect, namely, nonvanishing spectral flow of the
Dirac Hamiltonian (5.1), (5.5) in quantum dots which are not simply connected
(that is, with holes; Fig. 5.14). The effect was considered by Prokhorova (2013)
and Katsnelson and Nazaikinskii (2012); our presentation will follow the
latter paper.

Let us consider the situation with magnetic fluxes ®; entering ith inner hole; for
the external boundary we will assume, by definition,

O, = —ZCDi (5.128)
=2
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Fig. 5.14 Example of a quantum dot with m = 5 boundaries. When calculating the
flux associated to each boundary the sign is positive for the inner boundaries (0X»,
0X3, 0X4, 0Xs) when going around the boundary clockwise and for the
external boundary (0X;) when going counterclockwise, as shown by arrows. If
B is positive for X;, X4, and X5 and negative for X, and Xjz,
"X = 0X; U 0X4 U 0Xs.

where m > 1 is the number of boundaries. Due to Aharonov-Bohm effect
(Aharonov & Bohm, 1959; Olariu & Popescu, 1985; see Section 3.4) the phase
of the wave function when going around ith hole is changed by 2zu;, u; = ©;/®q
where @ is the flux quantum (2.52) (cf. Eq. (3.43)). If all »; are integer, the system
is equivalent to the system without magnetic field and, in particular, should have
the same eigenenergies FE,. For the conventional nonrelativistic electron gas it
would mean that each eigenenergy separately is a periodic function of the magnetic
fluxes:

E () = Eo(ui + ny) (5.129)

when all n; are integer.

However, the Dirac Hamiltonian is not semibounded, it can have arbitrarily
large negative and positive eigenvalues; this is an unavoidable consequence of its
electron—hole symmetry. In this situation, periodicity of the spectrum {E,} as a
whole does not mean periodicity of each eigenvalue separately. Indeed, if we
consider a transformation n — n + 1, then the set of all integers Z transforms to
itself, despite that each number is shifted up; if we consider only the set of
positive integers, nothing similar is possible. For unbound operators, one
can introduce a concept of spectral flow (Atiyah, Patodi, & Singer, 1976).
For our problem, the latter can be defined as follows. Fix any real value of
energy E. Let us consider the transformation of the Hamiltonian H to itself
(such as y; — u; + n; in Eq. (5.129)) due to a continuous change of parameters
(such as increase or decrease of magnetic field through the holes). Then some
eigenvalues (N_ of them) will cross the value E from up to down and some
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eigenvalues (N~ of them) will cross the value E from down to up. The spectral
flow of the operator H is

sf{H} =N. — N_ (5.130)

It is easy to see that it cannot be dependent on the value of E. In particular, it means
that if the spectral flow of the Dirac operator is not zero, then, under a smooth
increase of magnetic fluxes, some energy levels will cross zero, which means a
creation of electron—hole pairs from vacuum.

Let us assume Berry—Mondragon boundary condition (5.13) for each boundary.
Then, as was proven by Prokhorova (2013) and Katsnelson and Nazaikinskii
(2012) the spectral flow is dependent on the signs of the constants B (that is, on
the signs of gap functions A at the boundaries). The result is:

sF{H} :Zﬂi—Z%. (5.131)

otx otx

Here 07X is the sum of all boundaries for which B is positive, see Fig. 5.14. In
particular, if the sign of B is the same for all boundaries, sf {I:I } =0 due to
Eq. (5.128).

There are two Dirac cones in graphene, and for a given configuration of
magnetic fluxes their spectral flows should be opposite, to have the total spectral
flow of the lattice Hamiltonian equal to zero (similar to the index; see Section 2.3).
It means that if we would create a configuration with different signs of the gap
functions at different boundaries, then, at a smooth increase of the magnetic field,
some energy levels will move up for one valley and down for the other one.

Until now, there is still no experimental confirmation of this interesting predic-
tion. The concept of spectral flow of the Dirac operator turns out to be useful in
the physics of vortices in superfluid helium-3, where it leads to the appearance
of additional hydrodynamic forces acting on moving vortices (Kopnin forces;
Kopnin, 2002; Volovik, 2003).
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Point defects

6.1 Scattering theory for Dirac electrons

Here we discuss quantum relativistic effects in the electron scattering by a radially
symmetric potential V(r). This will give us a feeling for the peculiar properties
of charge carriers in imperfect graphene, in comparison with the conventional two-
dimensional electron gas with impurities (Ando, Fowler, & Stern, 1982). Further,
we will consider a more realistic model of defects in a honeycomb lattice, beyond
the Dirac approximation. In this section we follow the papers by Katsnelson
and Novoselov (2007), Hentschel and Guinea (2007), Guinea (2008), and Novikov
(2007). It is instructive to compare the scattering theory developed in those
works with the two-dimensional scattering theory for the Schrodinger equation
(Adhikari, 1986).
Let us start with the equation

(_mvév+ v(r>) (:2) = E<;’2> (6.1)

where the potential V(r) is supposed to be isotropic, that is, dependent only on the
modulus » = 1/x? + y2. We have to pass to the radial coordinates (see Eq. (5.16)
through Eq. (5.19)). Then Eq. (6.1) is transformed to the couple of ordinary
differential equations

dg,/(r) 1 i
0llr _;gl(r) _h_v[E_ V(r)]fi(r) =0,
(6.2)
D0 = o [E = V(i) =0,
where [ = 0, £1, +2, ... is the angular-momentum quantum number and we try

the solution in the following form (cf. Eq. (5.19):

141
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—

y1 (7) = &i(r) exp (ilp),
ya(7) = fi(r) exp (il + 1)p).

To be specific, we will further consider the case of electrons with E = ivk > 0.
In two dimensions, the incident electron plane wave has the expansion

(6.3)

exp (iE?) = exp (ikr cos ¢) = zfg i'J;(kr) exp (ilp), (6.4)

where J/(z) are the Bessel functions (Whittaker & Watson, 1927). At large values
of the argument (kr >> 1), they have asymptotics

/2 /
Ji(kr) = %cos (kr — Eﬂ — %) . (6.5)

The radial Dirac equation (6.2) for free space (V(r) = 0) has, for a given [, two
independent solutions, which are proportional to the Bessel and Neumann func-
tions, J,(kr) and Y,(kr), the latter having the asymptotics (kr >> 1)

2 I
Yi(kr) = 4/ —sin (kr - g - %) (6.6)

but the functions Y,(kr) are divergent at » — 0. Instead, one can use Hankel
functions

H" (k) = I (kr) £ 1Y, (kr) (6.7)

with the asymptotics, at kr >> 1,

2 I}
H,'? (kr) 2 || ——exp [ii(kr -5 %ﬂ . 6.8)

Thus, the function Hl(l) describes the scattering wave H;z) and describes the wave

falling at the center.
If we have a potential of finite radius R (V(r > R) = 0), the solution of Eq. (6.2)
at > R can be represented in the form

gilr) = A (k) + 0} (k).
6.9)
Filr) = A [T (k) + nH k),

where the terms proportional to Bessel (Hankel) functions describe incident
(scattering) waves. The complex factors # in Eq. (6.9) are scattering amplitudes.


https://www.cambridge.org/core

6.1 Scattering theory for Dirac electrons 143

One can represent them in a more conventional way, via scattering phases J;
(Newton, 1966; Adhikari, 1986). The latter are determined via the asymptotics of
radial solutions at kr >> 1,

1 !
8ilkr) o< = cos [kr —5”—%&]- (6.10)

Taking into account Eq. (6.5) through Eq. (6.8), Eq. (6.10) can be represented as
g,(r) o< cosdJ;(kr) — sin ;Y (kr)

= exp (—idy) {J;(kr) + isin oy exp (id;)H,"V (kr)} . (1D
On comparing Eq. (6.9) and (6.11) one finds
a(k) = i sin 5(k) exp [i51(k)] = 2 Wé(k)] -1 (6.12)
It follows from Eq. (6.12) that
k)] < 1, (6.13)

which means, as we will see later, that the scattering current cannot be larger than
the incident one.

Let us now calculate the scattering cross-section. For the incident wave propa-
gating along the x-axis we have

g0 — \% < }) exp (ikx), (6.14)

where the numerical factor provides normalization of the incident current:

V=170 ¥? = 1. (6.15)

Thus, one can choose A = 1/+/2 in Eq. (6.9). Taking into account Eq. (6.9) and
(6.8), one finds for the asymptotics of the scattering waves at large distances

| i\ &2 exp [i(I+ 1)g]
Yo ~ AR o . 6.16
o nkr O F (l ’ 4> ,;n l( exp (ilp) ) 10

The current operator in the direction 77 = 7/r is

0 e
:<ei¢ eo > (6.17)

which gives us for the scattering current

~

L

—

)

n
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. 2
59 = @t W == |F(p)|? 6.18
-] sc-]n sC 7I'kI’| (¢)| s ( )
where
F(p) =) tiexp(ilp). (6.19)

[=—x

Eq. (6.18) gives for the differential cross-section
do 2 2

—=—|F . 6.20

=IO (620)

The Dirac equation (6.2) for the massless case has an important symmetry with
respect to the replacement f < g, [ <~ —[ — 1, which leads to the result

ti(k) = t_;_ (k). (6.21)

Taking into account Eq. (6.21), the equation (6.20) can be rewritten in the final
form (Katsnelson & Novoselov, 2007)

2
= 1
Zt,cos [<l+§)¢]
=0
It follows immediately from Eq. (6.22) that do/dp = 0 at ¢ = m, that is, backscatter-
ing is absent. This is in agreement with the general considerations of Section 4.2.
If we have a small concentration of point defects n;y,,, then, according to the

standard semiclassical Boltzmann theory (Shon & Ando, 1998; Ziman, 2001; see
also later, Chapter 11), their contribution to the resistivity is

do'_

8
—=— . 6.22
dp 7wk ( )

p= #(EF)T(;) , (6.23)
where 7(kg) is the mean-free-path time and
1
@ = NimpVOyr, (6.24)
where
27
Op = Jd(/);l;(l — cos ¢) (6.25)
0

is the transport cross-section. The applicability of the semiclassical Boltzmann
theory to quantum relativistic particles in graphene is not clear, a priori. This issue
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will be considered in detail in Chapter 11, and the answer will be that, yes, we can
use this theory, except in the very close vicinity of the neutrality point, where the
minimal conductivity is a purely quantum phenomenon (see Chapter 3). On
substituting Eq. (6.20) into Eq. (6.25) one finds

4 SN .
Oy = %Z sin2(6; — Op11)- (6.26)
=0

Note that Eq. (6.23), for the case of graphene, coincides with Eq. (4.80), where
[ = vr(kg) is the mean free path.

6.2 Scattering by a region of constant potential

Let us apply a general theory from the previous section to the simplest case of a
rectangular potential well (or hump)

Vo, r<R,
v(r) :{ " ; R (6.27)

Then, the asymptotic expression (6.9) gives us an exact solution for r > R. At
r < R, k should be replaced by
_E-V,
=7,
and only Bessel functions J/(gr) are allowed (otherwise, the solution will not be
normalizable, due to divergence Y(2) ~z latz — 0):

(6.28)

&i(r) = BJi(gr)

(6.29)
fi(r) = iBJ11(qr)

at r < R. One needs to add the conditions of continuity of the functions g,(r)
and f(r) at r = R. The result is (Hentschel & Guinea, 2007; Katsnelson &
Novoselov, 2007)

Ji(qR)J 111 (kR) — Ji(kR)J 111 (¢R)

") = 0 R) 1 (gR) — Ji(gR)Hi D (KR) (©30

Let us consider first the case of a short-range potential

kR << 1; (6.31)

then g = —V,/(fiv) can be considered an energy-independent quantity. At z — 0,
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H @) ~ - (E)la— D! (170), (632

2i
Hél)(z) N In z.

On substituting Eq. (6.32) into Eq. (6.30), one finds

i Jio1(gR) (kR) 2

k)" ——— (6.33)
W= w2

and, thus, the s-scattering (/ = 0) dominates

to(k) o< dp(k) o< kR. (6.34)
Substituting Eq. (6.33) and (6.34) into Eq. (6.26),
o, X k (6.35)

and the contribution to the resistivity (6.23), (4.80) for the short-range scatterers,
can be estimated as

h
p = e—znimpR% (6.36)

We will see later (see the detailed analysis in Chapter 11) that this contribution is
negligible.

The results (6.34) and (6.35) are quite clear, keeping in mind an analogy with
optics (Born & Wolf, 1980). The dispersion relation for massless Dirac fermions is
the same as for photons, but for the latter case we know that obstacles with
geometrical sizes much smaller than the wavelength are very inefficient scatterers.

There is a special case, however, if

Jo(gR) = 0. (6.37)

Then, the expression (6.33) does not work at / = 0, and higher-order terms should
be taken into account. The result is

(6.38)

and
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71'2

"k In2(kR)’ (639)

Otr
Therefore, instead of (6.36) we have a much larger contribution to the resistivity
(Ostrovsky, Gornyi, & Mirlin, 2006; Katsnelson & Novoselov, 2007):

~ h I’limp 1
"2 n In?(kgR)’

(6.40)

where n = k% /m is the charge-carrier concentration.

The condition (6.37) corresponds to the case of resonance, for which a virtual
bound state in the well lies close to the neutrality point. Later in this chapter we
will consider more realistic models of such resonant scatterers, namely vacancies
and adatoms. It is interesting to see, however, that the effect already exists in the
Dirac approximation.

If we were to repeat the same calculations for a nonrelativistic electron gas
(Adhikari, 1986), then, instead of continuity of two components of the spinor wave
function at r = R, we would have conditions of continuity of the single-component
wave function and its derivative. The result is

<E> Ji(gR)J 111 (kR) — Ji(kR)J 111 (qR)
(k) = q , (6.41)

Y (kR)J1s1 (gR) — (g) Ti(gR)H, (kR)

where k and g are, again, wave vectors outside and inside the potential region. In
this case 75(k) ~ 1/In(kR) (cf. Eq. (6.38)) for general values of the parameters, and
the contribution to the resistivity takes the form (6.40). One can say that for the
two-dimensional nonrelativistic electron gas any potential scattering should be
considered resonant. This agrees with the fact that the perturbation theory does
not work in such a situation and an arbitrarily weak potential leads to the formation
of a bound state (Landau & Lifshitz, 1977).
The opposite limit

kR >> 1 (6.42)

is relevant for the problem of electron scattering by clusters of charge impurities
(Katsnelson, Guinea, & Geim, 2009; see also Chapter 11). On substituting the
asymptotics (6.5) and (6.8) into Eq. (6.30) one finds

1(k) z% {exp (2;‘;31%) - 1]. (6.43)

The summation in Eq. (6.19) should be taken up to || < [,.x = kR, thus
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(2lmax + 1)g
—=—s5in"| —

dp 7wk hv

2 in2
_2 2<VOR) < 2

lmax

eil(p

=—sin
Pl mk hv sin2 <2)
max 2
(6.44)

The expression (6.44) has sharp maxima at the angles

2n+1

=g——, n=0,%1, -,
T Dl 11

which can be related to periodic classical trajectories of electrons within the
potential well (for more details, see Katsnelson, Guinea, & Geim, 2009). On
substituting Eq. (6.44) into Eq. (6.25) one finds

4 . VoR
Oy =2 X sin 2 <hiv> (6.45)

Interestingly, the cross-section (6.45) is small in comparison with the geometrical

size of the potential region R. Indeed, the region is transparent, due to Klein
tunneling. The corresponding contribution to the resistivity is

Thus, long-range potential scattering leads to a contribution to the resistivity
proportional to 1/n.

6.3 Scattering theory for bilayer graphene in the parabolic-band
approximation

We saw in the previous section that the scattering of massless Dirac fermions in
graphene (chiral states, a linear dispersion relation) is essentially different from that
of nonrelativistic electrons (nonchiral states, a parabolic dispersion relation) in a
two-dimensional electron gas. To better understand the role of chirality and of
dispersion relations, it is instructive to consider the case of chiral states with a
parabolic dispersion relation, that is, the case of bilayer graphene in the parabolic-
band approximation (1.46). The corresponding scattering theory was developed by
Katsnelson (2007¢).

To solve the Schrodinger equation for the Hamiltonian (1.46) with the addition
of a radially symmetric potential V(r), one has to use, instead of Eq. (6.3), the
angular dependences of the two components of the spinor wave function
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w,(F) = g(r) exp (ilp),

. . (6.47)
va(7) = fi(r) exp (i(1 + 2)9),
where [ = 0, £1, ... The radial components satisfy the equations
d [+1\[/d I ,  2m*V
-z _ Z e = (K=
(dr r > (dr r) ki ( h2 )fl’
(6.48)

A IR (12 (2wt
dr r dr r = K2 &

where, to be specific, we consider the case of electrons with E = h2k2/(2m*) > 0.
The problem of scattering for this case is essentially different from both the
Dirac theory and the Schrodinger theory, since evanescent waves are unavoidably
involved (cf. the discussion of Klein tunneling for the case of bilayer graphene, Section
4.7). This means that, beyond the radius of action of the potential, Bessel functions of
imaginary arguments have to be added to Eq. (6.9). More specifically, we mean the
Macdonald function K,(kr) (Whittaker & Watson, 1927) with the asymptotics

Ki(kr) ~ /% exp (—kr) (6.49)

at kr >> 1; the Bessel functions I;(kr) grow exponentially at large r and cannot be
used, due to the normalization condition for the wave function. Thus, one should
try for the solution at large distances

gulr) = A (k) + ) (kr) + k)|,
(6.50)
Fi(r) = A2 (k) + nH D (k) + ey (k)]

One can check straightforwardly that the functions (6.50) satisfy the equations
(6.48) at V(r) = 0 for any A, ¢, and ¢,

The terms proportional to J,(kr) are related to the incident wave (see Eq. (6.4)),
with those proportional to H ;1) (kr) to the scattering waves and those proportional
to K;(kr) to the evanescent waves. The coexistence of scattering and evanescent
waves at the same energy makes the case of bilayer graphene really peculiar.

The normal component of the current operator

\ OH
Jn=n—, (6.51)
ok

where 71 = 7/r and H is the Hamiltonian (1.46), has the form (cf. Eq. (6.17))
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~  hk 0 exp (—2ip)
L R— < exp (2ip) 0 ) 6.52)

By further calculating the scattering cross-section, as in the previous section, we
find the same expression (6.19) and (6.20) formally, as for the case of single-layer
graphene. However, the symmetry properties of Eq. (6.48) are different. Namely,
they are invariant under the replacement f < g, [ «»—[ — 2. As a result, instead of
Eq. (6.21) we have

(k) = 1_;_>(k). (6.53)
Substituting Eq. (6.53) into Eq. (6.19), we rewrite Eq. (6.20) as

2
do 2 -
—=—t_ 2 t [+ 1 , 6.54
dp = k| T 22 feosl+ ol (6.54)

which gives us a general solution of the scattering problem.

To find the scattering amplitudes #; one needs to specify V(r). For simplicity, we
will use the expression (6.27) (a region of constant potential). Then, for the
solution of Eq. (6.48) at r < R that is regular as r — 0 one can try

g(r) = aiJi(gr) + Bili(qr),
fir) = aloadiya(gr) + Bili2(gr)],

(6.55)

where

o =sgn(E — Vy),

TN

Eq. (6.48) are now satisfied identically, and the coefficients a;, 5, #;, and ¢; should
be found from continuity of g/r), fi(r), dg/(r)/dr, and df(r)/dr at r = R.

Further, we will consider only the case of a short-range potential, kR << 1.
For the case [ = —1, taking into account the identities Ki(z) = K_ (2), I,(2) =1 (-2),

J1 (@) =-J (2), and Hgl) (z) = —H&l% (z), one can prove immediately that ¢ ; =0 and
t_1 o< (kR)’. (6.57)
Also, taking into account the asymptotics of the Macdonald and Hankel

functions for / > 2, z — 0 (we need here next-order terms, in comparison with
Eq. (6.32)),
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Ki2) ~ % <§>l(z - 1)!% <§> ),

Hl(l)(z) ~ _i <%>l(l_ N — i <g>12(1 -2)!,

T \Z T \Z

(6.58)

one can prove that for / > 1 and kR — 0 both 7, and ¢, are of the order of (ka)ZI
or smaller and thus only the s-channel (! = 0) contributes to the scattering cross-
section, so that Eq. (6.54) can be rewritten as

do 8

dp = Tk lt0(k)|* cos p. (6.59)

For single-layer graphene, do/dg ~ cos (¢/2) (see Eq. (6.22)) and backscattering is
forbidden. For the case of bilayer graphene, there is a strong suppression of the
scattering at ¢ = /2. This reflects a difference of the chiral properties of electron
states in these two situations.

For the case [ = 0, the wave functions at r > R (but for kR << 1), Eq. (6.50),
have the forms

go(r) = A [1 +19+170ln <g) + y] + 0[(kr)2 In (kr)},

. (6.60)
folr) =A|— 24 I + 0| (k) In (k)|
r)=Al——1f)—7 - = r r)|,
0 T 0 0 (kr)z D)
where y =~ 0.577 ... is the Euler constant,
2it,
70 =220 _ ¢ 6.61)
T
It follows from the continuity of dfy(r)/dr at r = R that
K*R3 df (1)
= — . 6.62
0T T |, (662)
and, thus,
d
8o o k2.
dr r=R
In the limit £k — O one has the condition
d
%l _, (6.63)
dr r=R

which gives us a ratio of fp/ag. As a result, for r < R


https://www.cambridge.org/core

152 Point defects

s0(r) = oo ) - o) 7045
OJ,q( 8 (6.64)
folr) = w0 alar) = ) 70 .

where prime means d/dR. Thus, we have two equations for the constant a, and A,

go(R) = A(1 +10),
Rdfy(R) 2iA (6.65)

SR+ 5= g =~ o

which gives us the final expression for #.
It is clear that #, does not depend on k in the limit kR — 0. It takes the value with

the maximum possible modulus, 7y = —1 (the unitary limit), when
d Jo(gR
A Joak) _, (6.66)
dR Iy(gR)

This behavior is dramatically different from both that of massless Dirac fermions
and that of conventional nonrelativistic electrons, for which #5(k) — 0 at k — 0
(either linearly or ~l/|In k|).

As a result, for the case of short-range scattering in bilayer graphene (in the
parabolic-band approximation)

1

O X 7 (6.67)
and the corresponding contribution to the resistivity is
h .
p e Mtimp (6.68)

T on
Within the perturbation theory, this concentration dependence was obtained by
Koshino and Ando (2006).
We will postpone further discussion of these results until Chapter 11, where we
will discuss electronic transport in graphene; here we restrict ourselves to the
quantum-mechanical problem.

6.4 General theory of defects in a honeycomb lattice

In general, the continuum medium approximation used earlier is not sufficient for
discussing short-range scattering centers in graphene, since they induce intervalley
transitions (Shon & Ando, 1998). To study these effects, we pass here to consider-
ation of defects in a honeycomb lattice (Peres, Guinea, & Castro Neto, 2006;
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Wehling et al., 2007; Basko, 2008; Wehling, Katsnelson, & Lichtenstein, 2009a).
We will use the T-matrix formalism, which has already been mentioned in Section
4.2 (see Eq. (4.33) and (4.34)), but here we will present it in a more systematic way
(see Lifshitz, Gredeskul, & Pastur, 1988; Vonsovsky & Katsnelson, 1989).

Let us consider a general, single-particle Hamiltonian

H=Hy+V (6.69)

defined on a crystal lattice, H o being the Hamiltonian of the ideal lattice and V the
perturbation created by defects. The local density of states at site i is determined by
the expression

Ni(E) = (i|6(E — H)|i), (6.70)
which can also be represented as
1 .
NZ(E) = ——Im Gii(E)a (671)
T
where
A . 1
G(E) = lim ———— (6.72)
—+0E — H +id

is the Green function (resolvent) of the operator H. It follows immediately from
Eq. (6.69) that

Gl =G, -V, (6.73)

where Gy is the Green function of the unperturbed problem Eq. (4.34). By
multiplying Eq. (6.73) by operators G from the right side and G, from the left
side we derive the Dyson equation

G (E) = Go(E) + Go(E)VG(E). (6.74)

Its formal solution can be written as

G (E) = Go(E) [1 - VGo(E)] (6.75)

which is a compact notation for the infinite series

G (E) = Go(E) + Go(E)VGo(E) + Go(E)VGo(E)VGo(E) +---  (6.76)

Alternatively, the series (6.76) can be written as

G (E) = Go(E) + Go(E)T (E)Go(E), (6.77)
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where T is the T-matrix satisfying Eq. (4.33). Its formal solution can be repre-

sented as
1A

T(E)=[1-VGy(E)] V. (6.78)

The change of the spectral density can be expressed in terms of the 7-matrix. The
total density of states

N 1 ~
N(E)=Tré(E—H) =—=TrIm G(E) (6.79)
T
can be written, due to Eq. (6.72) and (6.75), as

N(E) = L G(E) = 105 Im[In Go(E) — In (1 — VGy(E))]

7w OF n OF
(6.80)
since
N 0 .
E)y=——1 E). .81
G(E) =~ nG(E) (681)
At the same time, due to Eq. (6.78),
InT(E)=—In[1 - VGo(E)] + In V, (6.82)

the last term being energy-independent. As a result, the change of the density of
states due to the perturbation V can be presented as

AN(E) = N(E) — No(E) = %a%lm Tr In T(E). (6.83)

Finally, using the operator identity
TrIn A = In det A, (6.84)

one can represent Eq. (6.83) in the form
1 0 . A
AN(E) = —=Im— In det[1 — Go(E)V], (6.85)
T OF

which is more convenient for real calculations.

The contribution of point defects to the resistivity can be also expressed in terms
of the T-matrix, see Chapter 11.

If the perturbation V is localized on one site i = 0 only

Vij = Vbidjo, (6.86)

then one can see from Eq. (6.78) that the T-matrix is also localized on the same
site:
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Ti(E) = Too(E)diodjo, (6.87)
where
\%4
Too(E) = —— 57— (6.88)
1 — VGy (E)

and G(()%> (E) is the matrix element of the Green function for the ideal crystal lattice
at site 0. For the lattice without basis,

GoV(E) = lim y ——— (6.89)

However, for the case of a honeycomb lattice the Hamiltonian H is a 2 x 2 matrix,
which has, in the nearest-neighbor approximation, the form (1.14). By inverting the
matrix £ — Hg one finds the Green function Gy in the k representation:

R S . E itk
GO(E’k):égTO(E+i5)21— (B \ () <E> O

where t(l?) =15 (I?) Thus, instead of Eq. (6.89) we have, for the on-site Green
function

0 .
G(()O) (E) = 51_1>To £

E(E+io)— ‘z(ié) ’2

D im ! + ! ©o0
20404 E+i5—‘z<7é>( E+i5+‘t<l}’)’

for which it does not matter whether the site O belongs to sublattice A or sublattice
B. At |E| << |1

No(E) = — %ImGg%) (E) =-——L (6.92)

(cf. Eq. (1.72); our quantity is smaller by a factor of 2, since here we do not take

into account the spin degeneracy). To find the real part of G(()%) one can use

Kramers—Kronig relations:

ReGY) (E) = P

(6.93)

§e—3
QU
&
=
o
&3
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where P is the symbol for the principal value. We can also just guess the answer,
keeping in mind that Gg())) (E) is a regular function of energy in the upper complex
half-plane.

Notice that |E| = Esgn E = E[1 — 20(—E)], where 8(x > 0) = 1, 8(x < 0) = 0 and
1
O(—E) = —Im In (E + id).
T
This means that

2
|E| = E — ZEIm In (E + i6) (6.94)
T

and, thus, the term |E| in —(1/z)Im G(()%) (E) corresponds to 2E Reln (E + id) =

2E In |E| in Re Gé%) (E). Taking into account also that, by symmetry,

GW(E =0) =0, (6.95)
one finds
JE (‘%‘)
ReGl) (E) = N (6.96)

where we introduce within the logarithm a factor D of the order of the bandwidth.
For the accurate calculation of this factor, see Basko (2008). A general theory of
scattering by short-range defects in graphene, including group-theory analysis, can
also be found in that paper.

The contributions of various types of defects to the transport properties will be
considered in detail in Chapter 11. Here we will just give some simple estimations,
in order to establish relations between this section and the previous ones.

For the case of a weak enough potential V, the scattering rate (6.24) can be
estimated, according to the Fermi golden rule, as

% = %”nimpyvyzNO(EF). (6.97)
For the case of a small concentration of defects but strong scattering, one can prove
rigorously (Luttinger & Kohn, 1958) that the potential V should be replaced by the
T-matrix:

1 2r

(k) W”imP’TOO(EFNzNO(EF) (6.98)

(for the case of graphene, see Robinson et al., 2008; Wehling et al., 2010a).
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6.5 The case of vacancies

As a specific application of the general theory described previously, consider first
the case of vacancies (Peres, Guinea, & Castro Neto, 2006). Vacancies are
not naturally present in graphene, due to their very high formation energy of about
7.5 eV; see Kotakoski, Krasheninnikov, and Nordlund (2006). However, they can
be created by ion bombardment (Chen et al., 2009).

The simplest way to simulate the vacancy is just to put V = o in the expression
(6.88), thus making the site i = 0 unavailable for electrons. In this case,

1

Too(E) = —%-

(6.99)

On substituting Eq. (6.99) into Eq. (6.77) one finds that Gyo(E) = 0, as it should be.
For small energies |E| << D one finds from Eq. (6.96) and (6.99)

h*v? 1
Too(E) = — -2 . (6.100)
2In|— ) —imsgnE
D
The change of the density of states, according to Eq. (6.83), is
ANE) = 2% tmin Too(E)
=——TImln
wOE 00
2 (6.101)

10 E
= _;ﬁlmln [21n ’K|— insgnE} R —

D
|E| lnz(—>
|E|

This contribution is negative since the vacancy changes the total number of sites in
the system by one, thus

J dE AN(E) = —1. (6.102)

It is singular at £ — O.
By substituting Eq. (6.100) into Eq. (6.98) and (6.23), one can estimate the
vacancy contribution to the momentum relaxation rate and, thus, to the resistivity:

-~ h nimp 1
T n In2(kga)’

P (6.103)

coinciding with Eq. (6.40). Thus, the vacancy is a resonant scatterer, contributing
essentially to the resistivity (Hentschel & Guinea, 2007; Chen et al., 2009).
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Qualitatively, this result can also be obtained within the continuum model. Let
us consider the Dirac equation for the empty space with the radial wave functions
(6.9). Let us assume that the disc r < R is just cut from the sample. To be specific,
let us assume boundary conditions of zigzag type y, = O, that is

2(R) =0 (6.104)

(the case yg = 0 can be derived just by the replacement [ — —[ — 1, as was
explained in Section 6.1). Taking into account the behavior of Bessel and Hankel
functions at kr << 1 (Eq. 6.32), one finds immediately that

Jo(kR) i
HY(kR) 2 In(kR)’
coinciding with Eq. (6.38). As we have seen in Section 6.2, this gives the estima-

tion (6.103) for the resistivity (Hentschel & Guinea, 2007).
Consider now the asymptotics of the perturbed density of states

to(k) = (6.105)

1
AN:(E) = — ~Im [G,%’) (E)Too(E)GY (E)} (6.106)
T
(see Eq. (6.77)) at R; — oo. The asymptotics of the Green function

GOE) =Y exp (il?R}) Go (El?) (6.107)
;

where Gy (5,1_5 is defined by Eq. (6.90), is determined by the region of k close
to one of the conical points, K or K'. For a generic perturbation V the result is
(Bena & Kivelson, 2005; Lin, 2005, 2006; Wehling et al., 2007)

AN;(E)~— (6.108)

at % >> 1. For the case of a vacancy (V = o) we have, instead of Eq. (6.108),

1

AN(E)~ (6.109)

(Pereira et al., 2006).

Finally, consider the case of a finite concentration of vacancies. The singularity
of the scattering amplitude, Eq. (6.100) and (6.105), results in the formation of
mid-gap states, or vacancy bands (Pereira et al., 2006; Yuan, De Raedt &
Katsnelson, 2010a, 2010b). Fig. 6.1 shows the total density of states (in the small-
energy region) obtained numerically for a large (about 10’ nodes) piece of honey-
comb lattice with periodic boundary conditions, with different concentrations of
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Fig. 6.1 The density of states of graphene with a small concentration of vacancies
(a) or hydrogen atoms (that is, adatoms with the parameters (6.114)) (b). Solid
lines, pure graphene; dashed lines, 0.1% of defects; dotted lines, 1% of defects.
(Reproduced with permission from Yuan, De Raedt, & Katsnelson, 2010a.)

randomly distributed vacancies (Yuan, De Raedt, & Katsnelson, 2010a). The
vacancy-induced states form a peak at £ = O which was observed experimentally
by Ugeda et al. (2010). In the continuum-medium model (see Eq. (6.104)) these
states are associated with the edge states at the boundary of the void (Pereira et al.,
2006). Note, however, that the latter model is valid only qualitatively, since the
atomically sharp disorder induces intervalley processes, which should be taken into
account (Basko, 2008).
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6.6 Adsorbates on graphene

Adsorbed atoms and molecules are probably the most important examples of point
defects in the physics of graphene. Owing to the outstanding strength of the carbon
honeycomb lattice it is very difficult to introduce any defects into the lattice itself.
At the same time, some contamination of graphene is unavoidable. A systematic
study of adsorbates on graphene was started by Schedin et al. (2007), who
discovered an extreme sensitivity of the electric properties of graphene to gaseous
impurities; even the adsorption of a single molecule can be detected. The case of
NO, was studied in detail, both theoretically and experimentally, by Wehling et al.
(2008b). Optimized structures and electron densities of states for the NO, mono-
mer and dimer are shown in Fig. 6.2. One can see that for the latter case (N,Oy4)
there is a peak in the density of states that is reminiscent of the vacancy-induced
mid-gap states. Chemical functionalization of graphene, leading, in particular, to
the derivation of new two-dimensional crystals, such as graphane, CH (Elias et al.,
2009), and fluorographene, CF (Nair et al., 2010), starts with chemisorption of the
corresponding adatoms or admolecules (for a review, see Boukhvalov & Katsnel-
son, 2009a). Last but not least, scattering by adatoms and admolecules seems to be
one of the most important factors limiting electron mobility in graphene (Wehling
et al., 2010a; Ni et al., 2010); for more details, see Chapter 11.
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Fig. 6.2 Left: the spin-polarized density of states of graphene with adsorbed NO,
(the black line is for spin up and the gray line is for spin down), (a) and (b), and
the density of states for N,Oy, (c)—(e), in various adsorption geometries. Right:
adsorption geometries obtained from the calculations.
(Reproduced with permission from Wehling et al., 2008b.)
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The simplest single-electron model describing adsorbates is the hybridization
model with the Hamiltonian (Robinson et al., 2008; Wehling et al., 2010a)

H=S1567¢+ Sy (e d;+ d) @) + Eay_d s (6.110)
y y i

where the operators ¢; and d ; annihilate electrons on the ith carbon atom and ith
atom of adsorbate, respectively, 7; are the hopping parameters for the carbon
honeycomb lattice, Ey4 is the electron energy for the adsorbate atoms (which are
assumed to be identical), and y;; are hybridization parameters between the ith carbon
atom and jth adsorbed atom. The d electron subsystem can be rigorously excluded
by projection to ¢ subspace only; the effective Hamiltonian for c electrons has the
form (6.69), where Hy, is the first term on the right-hand side of Eq. (6.110) (the band
Hamiltonian for graphene), and V is the energy-dependent perturbation

. Zl YitVij

V= .
Y E—E4

6.111)

If we consider the case of a single adatom (i = 0) and assume, for simplicity, that
Vi = 79,5, we pass to the problem (6.86) with

2

Y
V(E) = . 6.112
E)= 5% (6.112)
Further, we can simply use the theory developed in the previous section.
If the condition
7 >> |E| (6.113)

is satisfied, then, at energies close enough to the Dirac point (|E| << |t|), the
potential (6.112) is very strong, and an adatom is effectively equivalent to a
vacancy.

To understand this very important point, let us consider the hydrogen atom as an
example. It is attached to one of the carbon atoms, transforming locally its state
from sp” bonded to sp” bonded; distortions make the angles between the bonds and
bond lengths locally similar to those in diamond (Boukhvalov, Katsnelson, &
Lichtenstein, 2008), see Fig. 6.3. This means that the carbon atom bonded with
hydrogen is almost unavailable for p, electrons, since their energies are locally shifted
too strongly. This makes it similar to a vacancy. Ab initio calculations (Wehling et al.,
2010a) show that the local electronic structure for the case of a hydrogen adatom can
be quite accurately fitted by the hybridization model with the parameters

v~ !t, F,~——, 6114
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Fig. 6.3 Atomic displacements around a hydrogen atom attached to one of the
carbon atoms in graphene. Carbon atoms belonging to sublattices A and B are
shown in dark gray and light gray, respectively; hao = 0.257 A,
hBl = —0.047 A, hAz = —0.036 A, and dC,H =122 A.

(Reproduced with permission from Boukhvalov, Katsnelson, & Lichtenstein, 2008.)

so the inequality (6.113) is satisfied with high precision. This means that hydrogen
atoms form mid-gap states, which are, however, slightly shifted with respect to the
Dirac point, because E4 < 0 (Wehling et al., 2010a; Yuan, De Raedt, & Katsnel-
son, 2010a), see Fig. 6.1.

Interestingly, approximately the same parameters (6.114) describe the case of
various organic groups, such as CHj, C,Hs, and CH,OH, attached to carbon atoms
via the carbon—carbon chemical bond (Wehling et al., 2010a). One can assume that
such bonds can be formed in real graphene with organic contaminants, which,
therefore, can be responsible for the appearance of strongly “resonant” scatterers
(Ni et al., 2010; Wehling et al., 2010a).

The position of the impurity peak corresponds to the pole of the 7T-matrix

1 = V(Eimp) Gy (Eimp) 6.115)

(see Eq. (6.88)). With the parameters (6.114) we find Ej,, ~ —0.03 eV, in
agreement with the results of straightforward ab initio calculations (Wehling,
Katsnelson, & Lichtenstein, 2009b). For the case of fluorine, F, and the
hydroxyl group, OH, the latter parameters give, respectively, Ei,, ~ —0.67 eV
and Ejy,, = — 0.70 eV, so these impurities are weaker scatterers than hydrogen or a
vacancy (Wehling, Katsnelson, & Lichtenstein, 2009b).

Further discussion will be presented in Chapters 11 and 12, in relation to the
effects of adatoms on electronic transport in graphene and their magnetic proper-
ties, respectively.

6.7 Scanning tunneling microscopy of point defects on graphene

Scanning tunneling microscopy (STM) allows us to probe the electronic properties
of conducting materials with atomic-scale spatial resolution (Binnig & Rohrer,
1987). Being a local probe, it is especially suitable for studying the electronic
structures of various types of defects and defect-induced features, including many-
body effects (Li et al., 1998; Madhavan et al., 1998; Balatsky, Vekhter, & Zhu,
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2006). In particular, it was used locally to probe vacancies in the top (graphene)
layer of graphite (Ugeda et al., 2010) and a magnetic adatom (Co) on graphene
(Brar et al., 2011). Here we will discuss some general peculiarities of the STM
spectra of graphene (Uchoa et al., 2009; Saha, Paul, & Sengupta, 2010; Wehling
et al., 2010b).

Assuming that the tunneling between the sample and the STM tip is weak
enough, one can derive, to lowest order in the tunneling amplitude M, the
following expression for the current—voltage (I-V) characteristic (Tersoff &
Hamann, 1985; Mahan, 1990):

I(V) = %Z M, |? JdE NO(E)N’(E — eV)[f(E — eV) —f(E)],  (6.116)
where f(E) is the Fermi distribution function, o is the spin projection, Greek (Latin)
indices label electron eigenstates for the sample (tip) v, and v,

R
MZV = % J dS(W;lk(TvWVO' - V/VUVW:G) (61 17)
is the current-matrix element, m is the free-electron mass, and the surface integral
in Eq. (6.117) is taken over arbitrary area between the tip and sample. The spectral
densities

N9(E) = — %Im G’(E) (6.118)

for the sample and a similar quantity N7 (E) for the tip determine the intensity of
tunneling. If one neglects the spin polarization, assumes that the spectral density of
the tip is a smooth function, and uses a semiclassical approximation (Ukraintsev,
1996), one can demonstrate that, at low enough temperatures (7 << |eV]),

j—‘l/oc —%Im Gi(E=¢eV), (6.119)
where i is the site index for the atom of the sample nearest to the tip. This means
that, using STM, one can probe the spatial distribution of the electron density
around the defect (see Wehling et al., 2007).

Let us assume that the adatom situated at the site i = 0 has a resonant state which
can be of single-electron or many-body origin (e.g., the Kondo effect). The
expression (6.116) and, thus, (6.119) are correct, anyway, assuming that the
tunneling amplitude M is small enough and the lowest-order perturbation theory
in M works (Mahan, 1990).

The resonance at £ = E4 is manifested in this situation via two contributions,
namely, the direct contribution of d electrons to tunneling and the contribution of ¢
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electrons to the tunneling, via c-d hybridization. This leads to the Fano (anti)
resonance effect (Madhavan et al., 2001). For simplicity, we can assume that d
states are more localized than c states and, thus, only the second effect is important.
In this situation, we can use Eq. (6.119), assuming that G is the Green function of
c electrons. Its change due to the presence of an impurity is determined by
Eq. (6.77). On putting i = 0 one finds

Im|Goo(E) — G (E)} - Im{ [Ggg (E)]zTOO(E)}
- {Re G (E)r— Im|Giy (E)]Z}Im Too(E)  (6:120)

+ 2{Im [Gg? (E)] Re [G(()%) (E)} }Re Too(E).
In the case of resonance,

1

TOO(E)~E7_ AN (6.121)
where A is the halfwidth of the resonance, thus
A
has a maximum at £ = E4 and
E—-E
Re Too(E)~m (6.123)
—Lkq)" +

changes sign. Assuming that G(()%) (E) is smoothly dependent on the energy at the

energy scale |E — E4| = A and substituting Eq. (6.120) through (Eq. (6.123) into
Eq. (6.119), one finds

dl ¢ —1+2g¢

— X, 6.124
av > 142 (6.124)
where
’ eV — Ed

= 6.125
€ A ( )

and the quantity

0

_ m (6.126)

Im GV (Eq)
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is called the Fano asymmetry factor (which should not be confused with the Fano
factor (3.17) — the usual problem when a particular scientist made essential
contributions to various fields!). If g is large then the resonance should be
observed, whereas for small g one will observe rather the antiresonance (a dip in
dl/dV instead of a peak).
For graphene, due to Eq. (6.92) and (6.96), the Fano factor at |[E| << A,
2

g=—-—1In
T

A

; 6.127
E, (6.127)

is very large (Wehling et al., 2010b).
For a more detailed analysis, see Uchoa et al. (2009), Wehling et al. (2010b) and
Saha, Paul, and Sengupta (2010).

6.8 Long-range interaction between adatoms on graphene

Consider now the energetics of point defects and their clusters. On substituting
Eq. (6.83) for the change of the total density of states into the expression for the
thermodynamic potential of noninteracting fermions Eq. (2.134), one finds

T T w—E\] 0 . .
=——ImT E In |1 —— | |=InT
AQ —Im rJd n[ +exp< T )]aEn (E)

o0

= %Im Tr J dEf(E)In T(E) (6.128)

—00

- %Im J dEf(E) In det [1 — Go(E)V]

(see Eq. (6.85)).
This expression can be used, for example, to study the effects of interactions
between impurities. Let us assume that

Vij == V15i15j1 + V25l’25j2, (6129)
which means two defects with local potential at sites i = 1 and i = 2 (cf. Eq. (6.86)).
Then,

det[1 - Gov] = [1- Gﬁ)vl} - Gﬁ?vz] V69,60 (6.130)
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To find the interaction energy one needs to substitute Eq. (6.130) into Eq. (6.128)
and subtract the same expression with G(lg) = 0, which corresponds to the case of
noninteracting defects. As a result, we obtain

I
Q= —Im J dE f(E)In |1 = T\ (E)GR(E)TR ()G (E)].  (6.131)

—00

where Tf.l-o ) (E) are the single-site T-matrices (6.88). Keeping in mind that the
functions G(O)(ED and T(F) are analytic at Im £ > 0, that the Fermi function has
poles at

E=u+ie, (6.132)
where
e, =nT(2n + 1),

with the residues —7, and recalling that
Im A(E + i0) :%[A(E+i0) — A(E — i0)], (6.133)
one can rewrite the expression (6.131) as
Quw = =T Y In |1 = TGy + )G G + )75 (i -+ )Gy (i + 1)

(6.134)

(Shytov, Abanin, & Levitov, 2009). One can use this expression to calculate the
interaction energy for two resonant impurities, such as vacancies or hydrogen
adatoms, when Eq. (6.99) can be used for the 7T-matrix.

To calculate the asymptotics of the interaction energy at large distances, one can
assume that Gy, is small and only take into account the first term in the Taylor
expansion of Eq. (6.134):

Qe ~ T YT\ (ien + )G (g + )Ty (it + 1)Gyy (ien +12).  (6.135)
&n
Later we will consider the case of undoped graphene (¢ = 0).
Using this expression, one can prove that the sign of the interaction is different
for impurities belonging to the same sublattice and to a different sublattice. In the
latter case, there is attraction between the impurities, decaying as

1

UAB(I") X _W

(6.136)

(r >> a), whereas for the former case there is repulsion
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1

Uaa(r) ocm.

(6.137)
This means that the resonant impurities would prefer to sit in different
sublattices (Shytov, Abanin, & Levitov, 2009). This consideration is valid only
at large distances. Interestingly, first-principles electronic-structure calculations
(Boukhvalov, Katsnelson, & Lichtenstein, 2008; Boukhvalov & Katsnelson, 2009a)
show that the same happens for the nearest-neighbor, next-nearest-neighbor, etc.
distances: The resonant impurities always prefer to sit in different sublattices.
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7

Optics and response functions

7.1 Light absorption by Dirac fermions: visualization of the
fine-structure constant

In this chapter we will discuss electromagnetic properties of graphene related to
electron—photon interaction. The discussion of optical properties related to phonons
(infrared adsorption, the Raman effect) will be postponed until Section 9.8.

Massless Dirac fermions in two dimensions have an amazing property: their
optical response is universal and expressed only in terms of the fine-structure
constant (Ando, Zheng, & Suzuura, 2002; Gusynin, Sharapov, & Carbotte, 2006;
Nair et al., 2008)

&2 1

o~
~

hc  137.036°

(7.1)

Experiments on light absorption of graphene can, literally, visualize this funda-
mental constant (Nair et al., 2008). To see this, let us determine the electric field of

the light via the vector potential A(r) = A exp (—iot),

N 104  iw-
(=--% == (7.2)
This is more convenient for optics than the representation via the scalar potential
E = —Vgp, but is, of course, equivalent to it due to gauge invariance. Thus, the
Hamiltonian of Dirac electrons in the presence of an electric field is (cf. Eq. (2.20)

and (2.24))

H=va (ﬁ - 52) — Ho + Hin, (7.3)
C
where
Hy =54 =55 (7.4)
2¢ 2w

168
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Fig. 7.1 A schematic representation of direct optical transitions in graphene.

is the Hamiltonian of the electron—photon interaction. The factor % in Eq. (7.4) is
necessary, since the standard expression for the complex field is

E(t) = Re[E exp (—iot)] = % [E exp (—iot) + E* exp (—ict)] (7.5)

and we take into account only the first term. This interaction induces transitions

from the occupied hole states v, (1?) to the empty electron states v, (75) with the

same wave vector k (see Eq. (1.30)), the intraband transitions being forbidden by the
momentum conservation (Fig. 7.1). The matrix element of the Hamiltonian (7.4) is

(vilHilve) =5 (E,cos p3E,sin ¢), (7.6)

where the — and + si_gns correspond to K and K’ valleys. It only depends on the

polar angle ¢ of the k vector, not on its length. On averaging the square matrix

element over ¢ one finds

2 22
~ 8a?

where we assume that the photon propagates perpendicular to the graphene plane

and, thus, the vector E = (Ex,Ey, 0) lies within the plane. The absorption prob-

ability per unit time, to the lowest order of perturbation theory, is (Landau &
Lifshitz, 1977)

IE|, 1.7)

M* = (v | Hine|we) |

2w, ho
:—M = — .
P h| \N(s 2), (7.8)

where N(¢) is the density of states (1.72) (we take into account the spin and valley
degeneracy) and the energy of the final states is /icw/2 as is obvious from Fig. 7.1.
On substituting Eq. (1.72) and (7.7) into (7.8) we find
e’ | ~|2

P=——
4h’w

(7.9)
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Thus, the absorption energy per unit time is

62 =2
W, = Pho = - |E|". (7.10)

At the same time, the incident energy flux is (Jackson, 1962)

C 12,2
W, =—|E|. 7.11
A ‘ } ( )
The absorption coefficient is, therefore,
W, we?
=—"="—"x23 7.12
=W e % (7.12)

and is universal, assuming that hw > 2|u|. Otherwise, the transitions are forbidden
by the Pauli principle (see Fig. 7.1) and # = 0. For visible light, Aw ~ 1 — 2 eV is
much higher than the Fermi energy in graphene. Moreover, it is much higher than
the energy of electron hopping between layers in multilayer graphene or graphite.
Therefore, the absorption for N-layer graphene is just Nx. This behavior was
observed experimentally for single-layer and bilayer graphene (Nair et al., 2008)
and for graphite (Kuzmenko et al., 2008). According to Eq. (7.12), graphene is
quite transparent. At the same time, one should keep in mind that this is an
absorption coefficient of more than 2% per single atomic layer, which is a huge
value. Thus, the interaction of Dirac electrons with photons is actually very strong.

In the first work (Novoselov et al., 2004) single-layer graphene on SiO, was first
detected just by the human eye, via a conventional (optical) microscope. It was a
lucky coincidence that the contrast due to light absorption in graphene was
strongly enhanced by interference phenomena in the SiO, layer with appropriate
thickness. The optics of the visibility of graphene on a substrate was considered by
Blake et al. (2007) and Abergel, Russel, and Fal’ko (2007).

7.2 The optics of Dirac fermions: the pseudospin precession formalism

The optical properties of Dirac fermions can be studied in a physically transparent
way using the equations of motion for the density matrix (Katsnelson, 2008). It has
the form (2.173). For the Hamiltonian one can use Eq. (7.3); however, it is more
instructive to change the gauge and write

Hip = —eE(1)F = —ieE(1)V; (7.13)

(see Eq. (2.178)). We will show explicitly that the result (7.12) can be derived
within this representation as well. Thus, the equation (2.173) reads
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. Opg 713 A . (7 S\ A
in k= hk |3, g | — ie(E (1)) (7.14)
where p; is the 2 X 2 pseudospin matrix
(7). = (Vi) (7.15)
(cf. Eq. (2.170) and (3.1)). It can be expanded in Pauli matrices
prp = ngl + i, (7.16)
where 1 is the unit 2 x 2 matrix, and
1
ny = ETrﬁ,; (7.17)
and
I SN
i = S Tr (ap;) (7.18)

are charge and pseudospin densities (in the k representation). On substi-
tuting Eq. (7.16) into Eq. (7.14) we find the separated equations for the charge
density

ong e /= =
SE=—7 <E-V,;) n., (7.19)
and the pseudospin density
oniy - e /==
£ =2y (km,;) - (E~V,;> iz (7.20)

To calculate the time-dependent current density
7= Tr(j'p) =2ev iy, (7.21)
K

we need only Eq. (7.20). It is rigorous (for noninteracting fermions) and can be
used to calculate both linear and nonlinear optical properties. The first term on the
right-hand side of Eq. (7.20) is nothing other than precession, with a pseudomag-
netic “field” proportional to K acting on the pseudospin degree of freedom.
A similar formalism was used by Anderson (1958) as the most physical way to
represent the BCS theory of superconductivity.

To calculate the optical conductivity we will use the first-order perturbation
in E, assuming that it has the form E exp (—iwt), and look for the solution of
Eq. (7.20) as
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(1) = ;) + oz exp (—ict), (7.22)

where
iz ~E.

To calculate n'%,g(o), we use the unitary transformation

1
vil = 75 (G + &),
(‘ ) (7.23)
exp (ig;
2 = — (ST IE
diagonalizing the Hamiltonian H,
Ho =" hvk (5525,;2 _ 5;15,;1). (7.24)
K

So ¢, and g, are annihilation operators for holes and electrons, respectively.
At equilibrium,

(&) =1 (7.25)

are Fermi distribution functions depending on the energies TAvk. We obtain

B k
g =2 (i = o) (7.26)

Eq. (7.20) takes the form
i = 20 (J x i) — = (B0 ). (7.27)

Since the vector (7.26) lies in the xy-plane, the component dm® is not coupled to the
electric field and can be found from Eq. (7.27):

2
omy® = Ev (kudm” — kyomz). (7.28)

Using Eq. (7.28) to exclude om® from the equations for om" and om”, we find

. x(0
iew  omg""

h ok,

(coz — 4v2k§>5m,;" + 4vzkxkyc5m,;y =—

lew 8m,;y(0)
h ok, ’

W hkyompt + (0F — 27k3)ompY = — (7.29)
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where we have chosen the direction of the x-axis along the electric field. By
solving Eq. (7.29) and calculating the current along the x-axis as

Je=2ev Z om* = o(w)E (7.30)

we obtain the following expression for the optical conductivity:

8ie*? ky om0 om0
= ky—k— — k, —k ) 7.31
O'(CO) A ;wz _ 4V2k2 < y akx akx ( )

On substituting Eq. (7.26) into Eq. (7.31) we find

4ie*v? k2
olw)=——— - mk (fkl ~f)
2ie*v? k (fkl —f kZ)
— . 7.32
ho Z — 2k ( )

As is usual in calculations of response functions, one should make the replace-
ments @ — @ + id in Eq. (7.32) and § — +0 at the end of the calculations
(Zubarev, 1974).
To calculate Re a(w), one needs to make the replacement
1 1

—— — Im
@2 — 42K? (0 + ié)2 — 42K?

= —ﬂié(wz — 4v2k2)

mio(w — 2vk)
4vk '

(7.33)

So,

7T€V

Reo(w 2th(fkl — f12)0(w — 2vk)

e? hw hw
G ) o

This is the conductivity per valley per spin. On multiplying the result by 4 and
setting the temperature to zero one has

© g, @ < 2|ul,

Reo(w) =< e (7.35)
—, 2ul.
i @ > 2l

This expression corresponds exactly to the absorption coefficient (7.12).
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It is important to stress that the universal optical conductivity

T
=—=— 7.36
T4 (7.36)
is of the order of, but not equal to, the static ballistic conductivity
4 2
op = —— (7.37)
h

(see Eq. (3.16) and Eq. (3.18)). This is not surprising, since we saw in Chapter 3
that limits & — 0, g — 0, T — 0, etc. do not necessarily commute with one
another, as different ways to regularize the ill-posed expression (3.10).

The imaginary part of the conductivity can be restored from Eq. (7.35) via the
Kramers—Kronig relations. The result is (see, e.g., Stauber, Peres, & Geim, 2008)

_ oo (4u  |ho+2u
Imo(w) = . (hw ln'ifw) _ZIUD. (7.38)

At u — 0, Im o(w) — 0O for any frequency.

7.3 Many-body corrections to the universal optical conductivity:
a phenomenological approach

Experimental data obtained by Nair et al. (2008) agree, to within a few percent,
with the theoretical value (7.12) (or, equivalently, (7.35)), which is, actually, a
problem. As we will see later, the electron—electron interaction in graphene is not
small, and earlier considerations (Fritz et al., 2008; Herbut, Juri¢i¢, & Vafek, 2008)
predicted a rather strong renormalization of the optical conductivity, of the order of
1/ 1In |t/(hw)|. The following first-principles GW (G is the Green function and W is
the dynamically screened interaction; Yang et al., 2009) as well as the lattice
quantum Monte Carlo (Boyda et al., 2016) calculations show that the many-body
corrections to the optical conductivity are either absent or small. A more detailed
analytical many-body analysis (Mishchenko, 2008; Sheehy & Schmalian, 2009; de
Juan, Grushin, & Vozmediano, 2010, Teber & Kotikov, 2014; Link et al., 2016)
leads to the conclusion that, whereas the terms of the order of 1/ In |#/(hw)| do not
exactly disappear, there is a small numerical factor before them. The situation will
be considered in more detail in Chapter 15.

Importantly, the survival of the many-body corrections to the conductivity,
albeit with a small numerical prefactor, is a consequence of long-range Coulomb
interelectron interaction in graphene. For the case of weak enough short-range
interactions the corrections to o(w) are absent. Here we present, following
Katsnelson (2008), some arguments in support of this statement based on the
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phenomenological Fermi-liquid theory. Later, the absence of correlation correc-
tions to the optical conductivity of electrons on the honeycomb lattice was proved
rigorously for the case of a weak enough, short-range interelectron interaction
(Giuliani, Mastropietro, & Porta, 2011). Despite that this is not exactly the case of
real graphene, the phenomenological consideration seems to be instructive as a
demonstration of power of the density matrix and pseudospin formalism.

The equation of motion for the density matrix can be modified naturally to the
kinetic equation for quasiparticles within the framework of Landau Fermi-liquid
theory (Landau, 1956; Platzman & Wolf, 1973; Vonsovsky & Katsnelson, 1989).
Assuming

p=pO +6p exp(—iwr) (7.39)
(cf. Eq. (7.22)), one can write, instead of Eq. (7.14),

heo opg = k|3, 00| — e (E-¥)p® + [of7,p7 . (7.40)

where the last term contains the change of the Hamiltonian 64 due to the change of
the density matrix. In the spirit of Landau theory it is due to the interaction between
quasiparticles characterized by some matrix F:

OHy = Fdpp. (7.41)
v
Eq. (7.41) generalizes the standard Landau theory to the case of a matrix distribu-
tion function for the quasiparticles.

The (pseudo)spinor structure of the matrix F can be found by invoking sym-
metry considerations. First, it should be rotationally invariant in the two-
dimensional space. Second, as was discussed in Chapter 1 (see Eq. (1.42)), the
Hamiltonian 6H and, thus, the matrix F cannot contain the 0, matrix (this follows
from the inversion and time-reversal symmetries). Third, it should vanish at I?,
K — 0, together with H, (I?) The most general expression satisfying these

requirements is
)(k3)e (k)

) (k%) (3,97, + 6,85, ). (7.42)

F =A(fe-F

)1@1’ +B<(i€— 7

+C(‘7€— i

The long-range Coulomb (Hartree) interaction, singular at ’Ig —K

— 0 (see
Section 8.4), contributes to the function A only, whereas the functions B and C

— 0.

are supposed to be smooth and tend to become constants as ’1_5 —K
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By substituting Eq. (7.41) and (7.42) into Eq. (7.40) we derive, instead of
Eq. (7.29),

lew 8mf(0>
o om; — ko + vk o = — == E——,
i onm’®
. N lew
42 kky O + @ om. — KoM, = —E— ]’; : (7.43)
where 6int = i + A, and the term
- 1 /s s
== | Bak(Ro ) + g (KR )iy (7.44)
k!

contains all correlation effects. Also, we have an additional correlation contribu-
tion to the current density,
OF -

+COIT k kK sn
= = 5 7.45
T 5k, ok (7.43)

which can, after some straightforward manipulations, be rewritten as
o 8oy Z w2k2 (ko = Koty (7.46)

The remaining work is just direct analysis of the corrections, term by term,
which shows that they all vanish by symmetry after the integration over k and k’
(Katsnelson, 2008).

7.4 The magneto-optics of Dirac fermions

Consider now the case of Dirac fermions in a magnetic field. Instead of momentum
k, the eigenstates of the unperturbed problem |n), are characterized by the Landau
band index n and the coordinate of the Landau orbit x, (see Section 2.2). This does
not lead to any difficulties, since the optical conductivity, as well as any response
functions, can easily be written in an arbitrary basis. The general formalism has
already been presented in Section 2.9 (see Eq. (2.175) and later here). We will use
the Hamiltonian (2.177) with the electric field (7.5) and calculate the induced

electric current, § Uexp (iwt) + j* exp (—ict)], assuming that
j=3(w)E (7.47)

(in this section, fis the electric current operator).
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Then, using Eq. (2.176) and (2.177), we find

(@) = e ;E _ EJ; m_—fJ:( i i) (m]rg|n). (7.48)

We will consider here only the case of finite w, thus, the term with m = n does not
contribute to Eq. (7.48). Keeping in mind Eq. (2.179), we find

(mliln) = " mlrelm) (Ew — ). (7.49

On substituting Eq. (7.49) into Eq. (7.48), taking into account that

1 1 1 1 1
E,—En—h(w+id)E,—E, _%<En—Em—h(w+i5) _Em—E,,)’
(7.50)

we obtain

. [Mp(@) — Myp(0)], (7.51)

1

where

fm _fn . .
IT = . 7.52
In particular, for the quantity Re o, (w), determining the absorption of electromag-
netic waves, we have

Re 0y (@) = gz (Frn — L)l M) PO(Ey — En — ho).  (7.53)
For the Dirac electrons j, = eag,. Without a magnetic field, this immediately gives
us the result (7.34). In the presence of a magnetic field, we have to use as the basis
functions m and n the solutions of the Landau problem (2.45) and (2.46). They are
dependent on the Landau indices and on &, (see Eq. (2.40) and (2.41)). Obviously,
the matrix elements (n|o,|m) are diagonal in k,. Since the functions D,(X) are
orthogonal, one can see immediately that the allowed transitions are n — n = 1 and
n — —(n £ 1) only and, thus, the expression (7.53) describes absorption peaks at

ho = |E,| + |E, . 1, (7.54)

oratm = mc(\/p +1=£ \/13) where p =0, 1, 2, ... The complete expression can
be found in Gusynin, Sharapov, and Carbotte (2007a, 2009).

This absorption has been observed experimentally (Sadowski et al., 2006; Jiang
et al., 2007a; Witowski et al., 2010). The results are in agreement with Eq. (7.54).
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This effect can be used as an alternative method by which to measure the Fermi
velocity v in graphene.

Another interesting magneto-optical effect is the polarization rotation of propa-
gating light in the magnetic field, that is, the Faraday effect (Landau & Lifshitz,
1984). The rotation angle is proportional to Re o,,, which has absorption peaks at
the same frequencies (7.54) as Re g, (for the theory of the Faraday effect
in graphene, see Fialkovsky and Vassilevich [2009]). Near the resonances, the
rotation is very large, as was observed experimentally by Crassee et al. (2011).
This giant Faraday effect is potentially interesting for applications.

7.5 Optical properties of graphene beyond the Dirac approximation

Now consider the theory of optical conductivity for a honeycomb lattice, beyond
the Dirac cone approximation, so that it can be used at i > |¢] as well (Gusynin,
Sharapov, & Carbotte, 2007b; Stauber, Peres, & Geim, 20