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Preface

This book grew out of the lecture notes for a course on astrophysics that I gave in
Austin in the spring term of 2016 and again in the fall term of 2017. In contrast
to other courses I have given over the years on general relativity and cosmology,
in this course I wanted to provide an introduction to the more traditional “nuts
and bolts” aspects of astrophysics: the properties of single and binary stars, the
phenomena associated with interstellar matter, and the structure of galaxies.

This is not a comprehensive account of astrophysics and its applications
to astronomy. That would not be possible in a single volume. Indeed, many
of the individual topics treated in single sections of this book have been the
subjects of massive monographs, on which I have heavily relied, especially for
numerical results and summaries of astronomical data. (Some of these books
are listed among others in bibliographies for each chapter.) Instead, I here offer
a short course, a collection of astrophysical calculations that can be done simply
and analytically, without recourse to computers, and yet are relevant to the
real world.

In many of the treatises and review articles on astrophysics that I have con-
sulted, where numerical computations have not entirely replaced analysis, for-
mulas are given without presenting derivations or even references. (Sometimes
they are wrong.) This book is intended for those who care about the rationale of
astrophysical formulas as well as about their applications. So where I can I give
derivations of all the formulas I use, or if that would take me too far from my
subject I give a reference where the derivation can be found.

There are several results presented here that I have not seen elsewhere. Some
of them may be new, including a general formula for the matrix element for
bremsstrahlung and inverse bremsstrahlung, a formula for the volume of the
Roche lobe when one star in a binary is much more massive than the other,
and an estimate of the ratio of the central temperature and effective surface
temperature of a main sequence star in terms of the center’s optical depth.

xiii



xiv Preface

This is not intended as a treatise on general relativity or cosmology. Having
written such books in the past, I had no wish now to write another one. But it
would have been impossible to leave out general relativity altogether. For one
thing, that would have precluded any serious discussion of the instability of
white dwarfs, neutron stars, and supermassive stars. It would have ruled out an
estimate of energy production in accretion disks around massive black holes.
Above all, I could hardly leave out any discussion of the exciting new field
of gravitational wave astronomy, which begin in late 2015 with the discovery
by the Laser Interferometric Gravitational Wave Observatory of gravitational
waves from distant coalescing black holes.

So I have compromised. In those sections (not many) where general relativity
has to be used, brief appendices provide a compact account of relevant aspects
of the subject. Derivations are generally abbreviated or skipped where they were
given in my 1972 treatise, Gravitation and Cosmology, and where topics were
not covered there, I take this opportunity to bring that book up to date. Likewise,
where I need to use quantum mechanics, for instance to calculate Coulomb
barriers in the section on nuclear energy generation or inverse bremsstrahlung
in the section on opacity, the calculations are presented in appendices to those
sections. I hope that with these appendices, the material presented in this book
should be accessible to anyone with a good undergraduate background in clas-
sical physics and its mathematical methods.

Of course, as progress is made in observational astronomy new calculations
will become relevant, but I trust that the calculations presented here will provide
physicists and astrophysicists with a kit of analytic tools of permanent value.

In preparing these lectures, I have greatly benefited from conversations with
many physicists, astrophysicists, and astronomers. Special thanks are due to col-
leagues at the University of Texas: Michael Boylan-Kolchin, Richard Matzner,
Paul Shapiro, J. Craig Wheeler, and Aaron Zimmerman. I am very grateful to
Anson d’Aloisio and to Aaron Smith for reading through the book’s first draft,
and making numerous valuable suggestions. Any errors that remain are all my
fault. As with my earlier book on quantum mechanics, I owe many thanks to
Simon Capelin of Cambridge University Press for his help in bringing out this
volume.

Many years ago when I was bed-ridden in Berkeley with a bad back, my wife
gave me a present, a copy of Chandrasekhar’s 1939 classic An Introduction to
the Study of Stellar Structure that she had found in a bookshop on Telegraph
Avenue. Reading the book saved me from wasting much of my time in bed, and
gave me a permanent sense of excitement that physics and mathematics could
deal effectively with something as mysterious as stars. I don’t wish bad backs on
today’s young physicists, but I hope that they will have some occasion to spend
time going through these calculations, and will feel some of the excitement with
astrophysics that I first felt long ago.

STEVEN WEINBERG



1
Stars

In antiquity stars were generally supposed to be bright spots fixed on a sphere
that revolves once a day about the Earth. Modern astrophysics began in the early
nineteenth century, with the discovery by Joseph von Fraunhofer (1787–1826)
of dark lines in the spectra of the Sun and some bright stars, which showed
that they all have similar composition, and with the measurement by Friedrich
Bessel (1766–1828) and William Wollaston (1784–1826) of the distances of
stars like Y Cygni and α Centauri, which showed that their absolute luminosity
is not very different from that of the Sun. By the end of the nineteenth century
hydrodynamics and thermodynamics had been applied to the structure of the
Sun and stars. Only the source of their energy was still mysterious, not to be
understood in detail until the development of nuclear physics in the 1930s.

It would be most logical to begin this chapter with an introduction to the
physics required to understand modern stellar theory, including calculations of
nuclear energy production and opacity, and only then go on to the stars them-
selves. Logical, but perhaps a bit boring. It is not always possible to maintain
one’s interest in the details of nuclear and atomic physics without knowing how
these results are to be used. So in this chapter we start with the stars.

First in Section 1.1 we derive the equations of hydrostatic equilibrium for
stars. This leads to the virial theorem, which illuminates the stars’ early history.
Then in Sections 1.2 and 1.3 we adopt a simple model in which energy is
transported in the star solely by radiation, leaving convection for later sections.
In this model we can see how the structure of the star is uniquely determined
by the formulas that give pressure, opacity, and nuclear energy production in
terms of density and temperature, with just one free stellar parameter, that can
be taken to be the star’s total mass. With this as motivation, in Sections 1.4
and 1.5 we describe the physics underlying the formulas for opacity and nuclear
energy generation. It turns out to be a fair approximation to take the opacity and
energy generation as well as the pressure as proportional to products of powers
of density and temperature. This approximation is used in Section 1.6 to give
formulas for stellar properties, including luminosity, radius, central temperature,
etc., in terms of the star’s mass. We come to convection in Section 1.7, and
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2 1 Stars

show that the presence of convective zones does not greatly change the results
of Sections 1.3 and 1.6.

We then turn to stars of a more exotic breed. In Section 1.8 we consider the
general class of stars in which the pressure is simply proportional to some power
of the density. Where this power is close to 4/3, the star is close to instability.
The detailed conditions for stellar instability are worked out in Section 1.9. Then
we consider white dwarf and neutron stars in Section 1.10 and supermassive
stars in Section 1.11, using the results of Section 1.8 to describe their structure
and of Section 1.9 to find where they become unstable.

This chapter deals only with isolated single stars. Binary stars and their emis-
sion of gravitational radiation will be considered in the following chapter.

1.1 Hydrostatic Equilibrium

Suppose a star is in equilibrium and is spherically symmetric, so that the mass
density ρ and pressure p are functions only of the distance r from the cen-
ter. Consider a thin spherical shell of radius r and thickness dr . Its mass is
4πr2ρ(r) dr , so it feels a gravitational force

Fgravitational = −G4πr2ρ(r) dr M(r)

r2
= −4πGρ(r)M(r) dr , (1.1.1)

where M(r) is the total mass interior to the radius r:

M(r) =
∫ r

0
4πr ′2ρ(r ′) dr ′. (1.1.2)

The minus sign in Eq. (1.1.1) indicates that this force points inward. The shell
also feels an outward buoyant force, equal to the pressure force on the inner
surface of the shell minus the pressure force on its outer surface:

Fbuoyant = 4πr2[p(r)− p(r + dr)] = −4πr2 p′(r) dr . (1.1.3)

In equilibrium the sum of these forces vanishes, so

dp(r)

dr
= −GM(r)ρ(r)

r2
. (1.1.4)

This is the fundamental equation of hydrostatic equilibrium for stars. For some
purposes it is convenient to rewrite Eq. (1.1.2) also as a differential equation

dM(r)

dr
= 4πr2ρ(r), (1.1.5)

with initial condition M(0) = 0.
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Equations (1.1.4) and (1.1.5) lead to a useful inequality for the pressure.1 We
note that

d

dr

[
p(r)+ GM2(r)

8πr4

]
= −GM(r)ρ(r)

r2
− GM2(r)

2πr5
+ GM(r)M′(r)

4πr4
.

The first and third terms cancel, leaving the negative second term, so

d

dr

[
p(r)+ GM2(r)

8πr4

]
≤ 0. (1.1.6)

In particular, assuming that the density is finite at r = 0, we have M(r) ∝ r3 for
r → 0, so M2(r)/r4 → 0 for r → 0. Assuming also that the pressure vanishes
at some nominal stellar radius R, and taking M(R) = M , the quantity in square
brackets in (1.1.6) is p(0) at r = 0 and GM2/8πR4 at r = R, so (1.1.6) yields
a useful inequality for the central pressure:

p(0) ≥ GM2

8πR4
= 4.44 × 1014(M/M�

)2(
R/R�

)−4 dyne/cm2. (1.1.7)

(The subscript � denotes values for the Sun. For comparison, recall that one
standard atmosphere equals 1.013 × 106 dyne/cm2.) Using methods described
in this chapter, it has been calculated that the pressure at the center of the Sun
is p�(0) 	 2 × 1017 dyne/cm2, in accord with the inequality (1.1.7).

Equation (1.1.4) can be used to derive a simple formula for the total gravi-
tational potential energy � of the star, related to the virial theorem of celestial
mechanics. We define −� as the energy required to remove the mass of the
star to infinity, peeling it shell by shell from the outside in. Once all the mass
exterior to a radius r has been removed, the energy required to remove the shell
at r of thickness dr is the integral over the distance r ′ between the shell and the
star’s center of the gravitational force GM(r)/r ′2 × 4πr2ρ(r) dr exerted by a
mass M(r) on the shell’s mass:

GM(r)× 4πr2ρ(r) dr ×
∫ ∞

r

dr ′

r ′2
= 4πGrM(r)ρ(r) dr ,

so the total gravitational binding energy is

−� = 4πG
∫ R

0
rM(r)ρ(r) dr , (1.1.8)

where R is the radius of the nominal stellar surface, where p(R) = 0. Using
Eq. (1.1.4) for −GMρ, we have

1 S. Chandrasekhar, An Introduction to the Study of Stellar Structure (University of Chicago Press, Chicago,
IL, 1939), Chapter III. This chapter also gives other general theorems derived from Eqs. (1.1.4) and (1.1.5).



4 1 Stars

� = 4π
∫ R

0

dp(r)

dr
r3 dr = −3

∫ R

0
p(r) 4πr2 dr , (1.1.9)

in which we have integrated by parts, using the vanishing of r3p(r) at both
endpoints of the integral.

Incidentally, the definition of � can also be written in terms of the familiar
gravitational potential

φ(r) = −G
∫ ∞

r

M(r ′) dr ′/r ′2. (1.1.10)

(This formula satisfies the defining condition that −φ′(r) should equal the New-
tonian force per mass −GM(r)/r2. An arbitrary additive constant has been
chosen so that φ(r) → 0 for r → ∞.) Integrating by parts, we have∫ ∞

0
φ(r)M′(r) dr = −

∫ ∞

0
φ′(r)M(r) dr = −G

∫ ∞

0
M2(r)dr/r2.

With −1/r2 = d/dr(1/r) and integrating by parts again, we see that the final
expression is 2�, so

� = 1

2

∫ ∞

0
φ(r)M′(r) dr . (1.1.11)

The integral here is the sum of the gravitational energies of each bit of stellar
matter, due to the gravitational field of each bit of matter, so in the integral
each bit of stellar matter is counted twice, a double counting corrected by the
factor 1/2.

The total energy of the star is the sum of � and the star’s thermal energy,
given by

ϒ ≡
∫ R

0
E(r) 4πr2 dr , (1.1.12)

where E(r) is the density of internal thermal energy, not including rest mass
energies or gravitational energy. The total non-relativistic energy (not including
rest masses) of the star is then

E = ϒ +� =
∫ R

0

[
E(r)− 3p(r)

]
4πr2 dr . (1.1.13)

We see that the star has negative energy and is therefore stable against dispersal
of its matter to infinity if E(r) < 3p(r).

It is frequently the case that the density E of internal energy is proportional
to the pressure, a relation conventionally written as

E = p/(� − 1). (1.1.14)

(Such stars are called polytropes, and are discussed in detail in Section 1.8.)
For instance, for an ideal gas of monatomic particles with number density n we
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have p = nkBT and E = 3nkBT/2 (where kB is Boltzmann’s constant), so here
� = 5/3. For radiation p = E/3, so � = 4/3. In such cases, the thermal and
gravitational energies of the star are given in terms of its total non-relativistic
energy by Eqs. (1.1.9), (1.1.12), and (1.1.14) as

ϒ = − E

3� − 4
, � = (� − 1)E

� − 4/3
. (1.1.15)

The star will explode if E is positive, so stability requires that E < 0, and since
Eq. (1.1.9) gives � < 0, this means that � > 4/3. Stars whose pressure is
dominated by highly relativistic particles (such as very massive ordinary stars
and white dwarfs and neutron stars with masses near their upper limit) have �
only slightly above 4/3 and are therefore trembling on the brink of instability.

Equation (1.1.15) plays a crucial role in governing the early history of stars.
A cloud of cold diffuse gas will have little internal or gravitational energy, so its
total energy E will be small. Unless the cloud is at absolute zero temperature
it will radiate some light, chiefly at infrared wavelengths. If its total energy
becomes negative, the cloud will no longer be able to disperse. According to
Eq. (1.1.15), as the cloud loses energy then, as long as � > 4/3,�will decrease,
becoming increasingly negative, but the internal energy ϒ will increase. The
star behaves as if it has negative specific heat; the more it loses energy, the hotter
it gets. With increasing temperature the star radiates energy more rapidly, and
the process accelerates. Eventually the central temperature of the star becomes
so high that nuclei can penetrate the Coulomb repulsion that separates them
(discussed in Section 1.5); nuclear energy generation begins and increases until
it balances the energy lost by radiation; and the star becomes stable, at least
until the nuclear fuel at the star’s center is exhausted. Paradoxically, the onset
of nuclear reactions stops the heating of the star.

As a protostar radiates energy and heats up, it also contracts. We can define a
mass-weighted mean radius r , by

M2r−1 ≡
∫ R

0
rM(r)ρ(r) dr .

Then Eq. (1.1.8) may be written � = −4πGM2/r . As −� increases, r must
decrease.

Before the discovery of radioactivity, with its implications for the source of
heat of stars, William Thomson (1824–1907, a.k.a. Lord Kelvin), estimated the
length of time that the Sun could have been shining with its present luminosity,
deriving its heat solely from gravitational contraction.2 As we have seen, the

2 W. Thomson, Phil. Mag. 23, 158 (1862); reprinted in Mathematical and Physical Papers by Sir William
Thomson, Baron Kelvin, ed. J. Larmor (Cambridge University Press, Cambridge, 1911).



6 1 Stars

energy E of a star is related to its gravitational energy � by Eq. (1.1.15), which
for � = 5/3 gives

E = �/2. (1.1.16)

We can get a fair estimate of � by taking ρ(r) constant in Eq. (1.1.6), so that
ρ(r) = 3M/4πR3 and M(r) = Mr3/R3, in which case

E 	 −1

2
× 4πG× MR2

5
× 3M

4πR3
= −3GM2

10R
. (1.1.17)

This is minus the energy the star has lost in contracting from a cloud with
negligible gravitational and thermal energy, if no internal energy sources have
contributed to its heat since the contraction began. For the Sun,M� = 1.9891×
1033 g and R = 6.960 × 1010 cm, so E 	 −1.1 × 1048 ergs. The Sun’s present
luminosity is L� = 3.9 × 1033 erg/sec, so in the absence of internal energy
sources it could only have been shining at that rate for roughly |E|/L� 	
107 years.3 Kelvin’s 1862 conclusion was not very different: “It seems therefore
most probable that the sun has not illuminated the earth for 100,000,000 years.”
Already in the nineteenth century it was known that this was too short a time
for the evolution of life and of features of the Earth’s surface, but the path to
a resolution of the problem first appeared with the discovery of nuclear energy
in 1897.

(By the way, this calculation is sometimes done setting the energy radiated
during the Sun’s previous life equal to |�| rather than to |E|. This ignores the
fraction of the energy of gravitational contraction that goes into heating the
Sun. As we have seen, that fraction is given by the virial theorem as 1/2 for
� = 5/3, so the Sun’s age calculated here is reduced by a factor 1/2. This
serves to emphasize the peculiar aspect of gravitation mentioned above, that as
a young star condenses under the influence of gravitation without the produc-
tion of nuclear energy, it heats up, so that the temperature of a gravitationally
condensing body increases as it loses energy.)

In some cases, such as zero-temperature white dwarf stars, the pressure p
is a known function of the mass density ρ, which otherwise depends only on
chemical composition and universal constants such as h̄, c, and me. (This is
discussed in Section 1.10.) In such cases, Eqs. (1.1.4) and (1.1.5) yield a definite
stellar model.

More generally p(r) depends on the temperature at r as well as on ρ(r), and
so Eqs. (1.1.4) and (1.1.5) do not in themselves lead to any definite result for the
structure of a star. For this, we also need to understand how energy is transported
in the star. There are two chief mechanisms for energy transport, radiation and
convection, to be studied in the following sections.

3 See e.g. C. J. Hansen, S. D. Kawaler, and V. Trimble, Stellar Interiors, 2nd edn. (Springer, New York,
2004).
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1.2 Radiative Energy Transport

The equations of hydrostatic equilibrium involve the pressure, which depends
on the temperature, so in order to use them we need equations of energy trans-
port, that dictate how the temperature varies through the star. There are two chief
mechanisms of energy transport: radiation and convection. (Because mean free
paths are small in stars, conduction is much less important.) In this section we
shall work out the coupled differential equations, Eqs. (1.2.28) and (1.2.30),
that govern the r-dependent temperature and luminosity for a star in which
energy transport is dominated by radiation. Convection will be considered in
Section 1.7.

Let 	(n̂, x, ν, t) d2n̂ dν be the energy per volume at position x and time t
of photons with directions within a solid angle d2n̂ around the unit vector n̂
and frequencies between ν and ν + dν. Our first task is to calculate various
contributions to the rate of change of 	(n̂, x, ν, t). Later we shall assume that
the total rate of change of 	(n̂, x, ν, t) vanishes, and use that requirement as the
condition of equilibrium when energy transport is dominated by radiation.

There are four contributions to this rate of change.

Transport

If nothing is happening to the radiation, then at time t+dt the energy of photons
per volume, per solid angle, and per frequency interval traveling in direction n̂
with frequency ν at position x will be what it was at time t and position x−cn̂ dt :

	(n̂, x, ν, t + dt) = 	(n̂, x − cn̂ dt , ν, t).

Thus the rate of change of 	 solely due to the transport of radiation is(
∂

∂t
	(n̂, x, ν, t)

)
transport

= −cn̂ · ∇	(n̂, x, ν, t). (1.2.1)

Absorption

It is important to distinguish here between absorption and scattering. We will
understand absorption to be any process in which an incident photon disap-
pears without producing a photon whose direction is correlated with that of the
incident photon. For instance, in a so-called bound–free transition, a photon
gives its energy to raising the energy of a bound electron so that it becomes
a free particle. In a free–free transition the incident photon is absorbed by a
free electron in the Coulomb field of an ion (which allows such a transition to
conserve energy and momentum). In either case the final free electron merges
with the surrounding medium, increasing its temperature. The medium may then
give up this energy by emitting photons, but the directions of these photons will
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be uncorrelated with the initial photon’s direction, so these transitions count as
absorption. In a bound–bound transition the energy of the initial photon goes
to raise the atom to a higher energy state. Typically the atom then undergoes
collisions, which either drain the excitation energy or change the excited state
so that even if it decays radiatively the final photon direction is uncorrelated with
the direction of the initial photon. In either case, these bound–bound transitions
also count as absorption.

Suppose that the net fraction of radiation of frequency ν absorbed at position
x and time t in a time interval dt is cκabs(x, ν, t)ρ(x, t) dt , where ρ is the
mass density and κabs is a coefficient characterizing the medium, called the
absorption opacity. (As discussed in Section 1.4, stimulated emission counts
here as negative absorption.) A factor of the speed of light is inserted here to
give 1/κabsρ the dimensions of length; it is the average distance that a typical
photon travels before being absorbed in a homogeneous medium. Then the rate
of change of 	 due to absorption is(

∂

∂t
	(n̂, x, ν, t)

)
absorption

= −cκabs(x, ν, t)ρ(x, t)	(n̂, x, ν, t). (1.2.2)

For a two-body absorption process like a bound–free or bound–bound transition
κabsρ is the absorption cross section times the number density of absorbers, and
hence κabs is the absorption cross section divided by the mean absorber mass.
(As we will see in Section 1.4, free–free transitions are more complicated.)

Scattering

These are processes in which the disappearance of an initial photon yields a
final photon, whose direction generally differs from the initial direction, but is
correlated with it. The leading example is Thomson scattering, the elastic scat-
tering of photons with energies well below mec

2 on non-relativistic electrons.
A bound–bound transition could also be regarded as a scattering, if the excited
atom were to decay radiatively before the atom undergoes collisions that wipe
out any correlation of the final and initial photons.

The fraction of radiation energy of frequency ν traveling in a direction n̂
that in a time interval dt at time t is scattered at position x into a solid angle
d2n̂′ around a final direction n̂′ is written as cκS(n̂ → n̂′; x, ν, t) ρ(x, t) d2n̂′ dt ,
where κS is a coefficient characterizing the scatterers, independent of the photon
distribution function 	. In calculating the rate of change of 	(n̂, x, ν, t), we must
now take into account not only the scattering of photons at position x and time t
with initial directions n̂ into any other directions n̂′, but also the earlier scattering
of photons elsewhere with arbitrary initial directions n̂′ into the position x and
direction n̂. For this purpose, we assume that 1/κSρ is so much smaller than
the distance over which conditions in the star vary that we can assume that any
photon that after scattering reaches a given position x at time t can only have
been scattered at a position and time where the photon distribution function 	
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and density ρ were essentially the same as at x and t . (This may not be true near
the surface of a star.) Then the contribution of scattering to the rate of change
of 	 is(
∂

∂t
	(n̂, x, ν, t)

)
scattering

= cρ(x, t)
∫
d2n̂′ [−κS(n̂ → n̂′; x, ν, t)	(n̂, x, ν, t)

+ κS(n̂′ → n̂; x, ν, t)	(n̂′, x, ν, t)
]
.

(1.2.3)

(We are here ignoring any shift in frequency in scattering. Such shifts are small
if the photon energy hν is much less than the rest mass energy of the particles
responsible for scattering, and if the velocity of these particles is much less
than the speed of light, though even small frequency shifts can be important
when scattering cross sections are very sensitive to frequency, as in resonant
scattering.)

If (as is usually the case) the scattering is a two-body process, with photons
scattered each time by a single particle of the medium, we have

κS(n̂ → n̂′; x, ν, t) = Nscat(x, t)σ (n̂ → n̂′, ν),

where σ(n̂ → n̂′, ν) is the differential scattering cross section, and Nscat(x, t)
is the ratio of the number density of scattering centers to the mass density ρ; in
other words, it is the number of scattering centers per gram.

Emission (thermal and nuclear)

We suppose that the radiation energy emitted in any direction per time, per
volume, per solid angle, and per frequency interval at position x and time t is(

∂

∂t
	(n̂, x, ν, t)

)
emission

= j (x, ν, t)ρ(x, t)/4π , (1.2.4)

where j is another coefficient characterizing the medium and the radiation field.
Note that j includes any radiation emitted isotropically subsequent to photon
absorption, along with the ordinary thermal radiation from the stellar material,
which is heated by nuclear processes. (Stimulated emission, which creates a
photon with the same momentum and helicity as one already present, will be
included as a negative term in the absorption coefficient κabs.)

Putting together these four terms, we have

∂

∂t
	(n̂, x, ν, t) = − cn̂ · ∇	(n̂, x, ν, t)

− cκabs(x, ν, t)ρ(x, t)	(n̂, x, ν, t)

+ cρ(x, t)
∫
d2n̂′[−κS(n̂ → n̂′; x, ν, t)	(n̂, x, ν, t)

+ κS(n̂′ → n̂; x, ν, t)	(n̂′, x, ν, t)
]

+ j (x, ν, t)ρ(x, t)/4π . (1.2.5)
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If we now require the photon distribution function 	 and the stellar material to
be unchanging, we arrive at the condition of radiative equilibrium

0 = −cn̂ · ∇	(n̂, x, ν)

− cκabs(x, ν)ρ(x)	(n̂, x, ν)

+ cρ(x)
∫
d2n̂′ [−κS(n̂ → n̂′; x, ν)	(n̂, x, ν)

+ κS(n̂′ → n̂; x, ν)	(n̂′, x, ν)
]

+ j (x, ν)ρ(x)/4π , (1.2.6)

in which we assume that κ , j , and ρ as well as 	 are all independent of time,
and so drop the argument t everywhere.

We want to use this result to derive relations between three fundamental
quantities, the radiation energy per volume and per frequency interval

Erad(x, ν) ≡
∫
d2n̂ 	(n̂, x, ν), (1.2.7)

the flux vector of radiation energy per frequency interval

�i(x, ν) ≡ c

∫
d2n̂ n̂i	(n̂, x, ν), (1.2.8)

and the spatial part of the energy-momentum tensor of radiation per frequency
interval

�ij (x, ν) ≡
∫
d2n̂ n̂i n̂j 	(n̂, x, ν). (1.2.9)

(Here i and j etc. run over the Cartesian coordinate indices 1, 2, 3. Note that
�iNi dA dν is the rate at which radiant energy of frequency between ν and
ν + dν passes through a small patch with area dA and unit normal Ni .)

To derive our relations, we first integrate Eq. (1.2.6) over the direction of n̂,
which gives

∇ · �(x, ν) = −cκabs(x, ν)ρ(x)Erad(x, ν)+ j (x, ν)ρ(x). (1.2.10)

Note that the scattering term in Eq. (1.2.6) does not contribute here, because the
integrand in this term is antisymmetric in n̂ and n̂′.

Let us pause at this point to note a relation between the quantities κ(x, ν),
j (x, ν), and Erad(x, ν). These quantities depend only on ν and on the density
ρ(x), temperature T (x), and chemical composition at x; they vary with position
because ρ(x) and T (x) and perhaps the chemical composition vary with posi-
tion, but they have no independent dependence on position. That is, we can write
κ(x, ν), j (x, ν), and Erad(x, ν) as ν-dependent functions only of ρ(x), T (x),
and chemical composition at x. Now, if the energy emission density j (x, ν)
received no contribution from nuclear processes then the medium could come
to equilibrium with thermal emission balancing absorption at each point and
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at each frequency, as in a black-body cavity. We could thus imagine a homoge-
neous medium that everywhere had the same temperature, density, and chemical
composition that the real star has at a given position x. For this hypothetical
homogeneous medium, Eq. (1.2.10) would require that j = cκabsErad. Hence in
the inhomogeneous real star, we have

j (x, ν) = cκabs(x, ν)Erad(x, ν)+ ε(x, ν), (1.2.11)

where ε(x, ν) is the rate per gram and per frequency interval of energy genera-
tion from nuclear reactions. Equation (1.2.10) then reads

∇ · �(x, ν) = ε(x, ν)ρ(x). (1.2.12)

We next multiply Eq. (1.2.6) with n̂i and then integrate the product over the
directions of n̂:

∇j�ij (x, ν) = −κabs(x, ν)ρ(x)�i(x, ν)

−cρ(x)
∫
d2n̂′

∫
d2n̂ n̂i

[
κS(n̂ → n̂′; x, ν)	(n̂, x, ν)

−κS(n̂′ → n̂; x, ν)	(n̂′, x)
]
.

(In accord with the usual summation convention, the index j is here summed
over the values 1, 2, 3. The emission term in Eq. (1.2.6) does not contribute
here, because jρ is independent of photon direction.) Under the assumption
that κS is invariant under rotations together of both initial and final photon
directions, we may define∫

d2n̂′ κS(n̂ → n̂′; x, ν) ≡ κout(x, ν) (1.2.13)

and ∫
d2n̂ n̂iκS(n̂

′ → n̂; x, ν) ≡ n̂′
iκin(x, ν). (1.2.14)

It follows then that

c

∫
d2n̂′

∫
d2n̂ n̂iκS(n̂ → n̂′; x, ν)	(n̂, x, ν) = κout(x, ν)�i(x, ν)

and

c

∫
d2n̂′

∫
d2n̂ n̂iκS(n̂

′ → n̂; x, ν)	(n̂′, x, ν) = κin(x, ν)�i(x, ν),

and therefore
c∇j�ij (x, ν) = −κ(x, ν)ρ(x)�i(x, ν), (1.2.15)

where κ is the total opacity:

κ(x, ν) ≡ κabs(x, ν)+ κout(x, ν)− κin(x, ν). (1.2.16)
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To derive a formula for κin that clarifies its relation to κout, we contract
Eq. (1.2.14) with n̂′. This gives

κin(x, ν) =
∫
d2n̂ (n̂ · n̂′)κS(n̂′ → n̂; x, ν) =

∫
d2n̂′ (n̂ · n̂′)κS(n̂ → n̂′; x),

(1.2.17)
which differs from the definition (1.2.13) of κout by the factor n̂ · n̂′. Textbook
treatments of opacity often do not distinguish between absorption and scatter-
ing, and so do not encounter the term κin. This is obviously wrong, because
κout would not vanish even if the scattering were restricted to an infinitesimal
neighborhood of the forward direction n̂′ = n̂, in which case the scattering
should have no effect. The inclusion of κin removes this paradox, since

κout(x, ν)− κin(x, ν) =
∫
d2n̂′ [1 − n̂ · n̂′]κS(n̂ → n̂′; x, ν), (1.2.18)

which vanishes for purely forward scattering, as it must. The authors of these
treatments can get away with this oversight, because, for reasons described in
Section 1.4, κin happens to vanish for Thomson scattering. But κin might matter
in other scattering, such as bound–bound transitions in which the excited state
decays radiatively, with the final photon direction correlated with that of the
incoming photon.

So far, this has been exact, aside from the approximations made in deriving
Eq. (1.2.3). We will now extend the approximation of short mean free path used
there to the rest of our analysis. That is, we assume again that the opacity κ
is so large that the mean path 1/κρ of typical photons is much smaller than
the distance over which conditions vary. This is appropriate for the interiors of
most stars, though not necessarily for their outer layers. It follows that to a good
approximation 	(n̂, x, ν) is independent of the photon direction n̂, so that �ij is
approximately proportional to δij . From the trace of Eq. (1.2.9) we have then

�ij (x, ν) 	 1

3
δijErad(x, ν). (1.2.19)

We also note that with 1/κρ very short the radiation is in thermal equilibrium
with local matter at a temperature T , so that

Erad(x, ν) 	 B
(
ν, T (x)

)
, (1.2.20)

where B is the Planck black-body distribution

B(ν, T ) = 8πh

c3

ν3

exp(hν/kBT )− 1
. (1.2.21)

Using Eqs. (1.2.19) and (1.2.20) in Eq. (1.2.15),

c∇B(ν, T (x)
) = −3κ(x, ν)ρ(x)�(x, ν). (1.2.22)
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Of course, 	(n̂, x, ν) does depend somewhat on n̂. Even deep in a star, there is
some difference between up and down, the directions toward and away from the
star’s surface. We are neglecting this in Eqs. (1.2.19) and (1.2.20), but since κρ
is assumed large, we may not neglect the quantity κρ�i in Eq. (1.2.22), even
though perfect isotropy of the photon distribution would make �i vanish.

Now let us take up the special case of greatest interest, a spherically symmet-
ric star in which the only special direction at any point is the radial direction,
which distinguishes up and down. We then take the flux vector to point in the
direction x̂ ≡ x/r , and otherwise to depend only on ν and r ≡ |x|, so that we
may write

�(x, ν) = x̂
L(r , ν)
4πr2

. (1.2.23)

Then L(r , ν) is the total radiant energy flux, the radiant energy per time and per
frequency interval passing outward through a sphere of radius r . In this case,
Eqs. (1.2.12) and (1.2.22) take the form

dL(r , ν)
dr

= 4πr2ε(r , ν)ρ(r), (1.2.24)

and

c
d B
(
ν, T (r)

)
dr

= −3κ(r , ν)ρ(r)
L(r , ν)
4πr2

. (1.2.25)

To calculate the temperature distribution in a star, it suffices to consider
the total radiant energy for all frequencies. The total radiant energy flux is
defined by

L(r) ≡
∫
dν L(r , ν), (1.2.26)

and the total energy per gram emitted by nuclear processes at all frequencies is

ε(r) ≡
∫
dν ε(r , ν). (1.2.27)

Then integrating Eq. (1.2.24) over frequency, we have

dL(r)
dr

= 4πr2ε(r)ρ(r). (1.2.28)

In order to write the equation for dT /dr in terms of L(r), we divide Eq. (1.2.25)
by κ(r , ν) and integrate over ν:

−3ρ(r)
L(r)
4πr2

= c

∫
dν

1

κ(r , ν)

(
∂B(ν, T )

∂T

)
T=T (r)

T ′(r).
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We define the Rosseland mean opacity4 κ(r) as the inverse of the average of the
inverse of κ(r , ν), evaluated with a weighting function (∂B(ν, T )/∂T )T=T (r):∫
dν

1

κ(r , ν)

(
∂B(ν.T )

∂T

)
T=T (r)

≡ 1

κ(r)

∫
dν

(
∂B(ν.T )

∂T

)
T=T (r)

= 4aT 3(r)

κ(r)
,

(1.2.29)

where a is the radiation energy constant, a= 8π5k4
B/15h3c3 = 7.566 × 10−15

erg cm−3 K−4. So

−3ρ(r)
L(r)
4πr2

= 4acT 3(r)T ′(r)
κ(r)

,

or, multiplying by κ(r)/4acT 3(r):

dT (r)

dr
= −3ρ(r)κ(r)

4acT 3(r)

L(r)
4πr2

. (1.2.30)

Equations (1.2.28) and (1.2.30) are the fundamental equations of radiative
energy transport in spherical star interiors.

It is convenient for some purposes to introduce an opacity function κ(ρ, T , ν)
and its Rosseland mean κ(ρ, T ) that depend on density and temperature rather
than on position, with

κ(r) = κ
(
ρ(r), T (r)

)
, κ(r , ν) = κ

(
ρ(r), T (r), ν

)
. (1.2.31)

Then the definition (1.2.29) of the Rosseland mean takes the position-
independent form ∫

dν
1

κ(ρ, T , ν)

(
∂B(ν, T )

∂T

)
= 4aT 3

κ(ρ, T )
. (1.2.32)

1.3 Radiative Models

In this section we shall describe the differential equations and boundary
conditions that govern a star in which energy transport is everywhere dominated
by radiation. The most important result here is that for a set of stars of
a given age and initial uniform chemical composition (such as the stars in
many clusters), any stellar parameter, such as radius, luminosity, etc., may be
expressed as a function of stellar mass. In consequence, when any two of these
parameters are plotted against one another, the plot is a one-dimensional curve.
(One such relation is the plot of luminosity against effective temperature, known
as the Hertzsprung–Russell relation, about which more later.) The following two

4 S. Rosseland, Mon. Not. Roy. Astron. Soc. 84, 525 (1924).



1.3 Radiative Models 15

sections will consider the opacity and nuclear energy generation per mass,
which appear as ingredients in these differential equations. Then in Section 1.6
we will derive consequences from these equations in the form of power
laws for various stellar properties for stars that are on the main sequence of
the Hertzsprung–Russell diagram. Section 1.7 considers energy transport by
convection, and shows that convection does not affect the main results of this
section and Section 1.6.

With the chemical composition fixed and uniform, we can regard the pres-
sure p(r), opacity κ(r), and nuclear energy production per mass ε(r) as fixed
functions of the density ρ(r) and temperature T (r). The star’s structure is then
described by four functions of the radial coordinate r: the mass M(r) contained
within a sphere of radius r; the radiant energy per second L(r) flowing outward
through a spherical surface of radius r; and the density ρ(r) and temperature
T (r). These four quantities are governed by four first-order differential equa-
tions: the equations (1.1.4) and (1.1.5) of hydrostatic equilibrium

dp(r)

dr
= −GM(r)ρ(r)

r2
(1.3.1)

and
dM(r)

dr
= 4πr2ρ(r), (1.3.2)

and the equations (1.2.28) and (1.2.30) of radiative energy transport

dL(r)
dr

= 4πr2ε(r)ρ(r) (1.3.3)

and
dT (r)

dr
= −3κ(r)ρ(r)

4caT 3(r)

L(r)
4πr2

. (1.3.4)

There are also four boundary conditions – two at the center,

M(0) = L(0) = 0; (1.3.5)

and two at the star’s nominal radius R,

ρ(R) = T (R) = 0. (1.3.6)

With the pressure p, Rosseland mean opacity κ , and nuclear energy production
per mass ε assumed to be given as functions of density and temperature, the dif-
ferential equations (1.3.1)–(1.3.4) and boundary conditions (1.3.5) and (1.3.6)
then govern the four unknown functions ρ(r), M(r), T (r), and L(r).

Before considering the implications of these differential equations and
boundary conditions, we need to say a bit about the implausible boundary
condition that the temperature and density vanish at the star’s surface. With
four first-order differential equations for four unknown functions, and only two
boundary conditions at r = 0, there is enough freedom to impose these two
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additional conditions at any radius in the generic case. We call the value of r
where these conditions are imposed on the solutions of Eqs. (1.3.1)–(1.3.4) the
“nominal radius”R of the star. But of course the surfaces of stars are not actually
at absolute zero temperature. Not even close. In fact, the approximation of
nearly perfect isotropy that we used in deriving the equations (1.3.3) and (1.3.4)
breaks down close to the stellar surface, where there is a big difference between
up, down, and sideways. Specifically, this approximation breaks down at values
of r for which R − r is no longer large compared with the typical photon
free path 1/ρ(r)κ(r) at r . In this region, known as the stellar atmosphere, we
need to use the full equation (1.2.6) of radiative equilibrium, and we do not
find a surface with absolute zero temperature. The nominal radius R is where
the density and temperature would vanish if Eqs. (1.3.1)–(1.3.4) held out to
this radius.

In the real world, instead of a surface at which the density and tempera-
ture vanish, there is a “true surface” with radius Rtrue beyond which there is
essentially empty space, with only outgoing radiation and some gas of very low
density, such as the solar corona. But this is not the surface from which comes
the light we see. To the extent that the light of a star resembles black-body
radiation, we can think of it as coming from an effective surface with radius
Reff, defined by the condition

σT 4(Reff)× 4πR2
eff = L, (1.3.7)

where σ = ac/4 is the Stefan–Boltzmann constant, and L is the star’s lumi-
nosity, the value of L(r) at all values of r outside the stellar core in which
nuclear energy production occurs. The depth of the effective surface below the
true surface is best described in terms of its optical depth

τeff =
∫ Rtrue

Reff

κ(r)ρ(r) dr . (1.3.8)

Since it is the typical photon free path 1/κρ that sets the scale of variations with
radius near the surface, we expect τeff to be of order unity. (In fact, there is a
time-honored but rather unconvincing calculation5 that gives the optical depth
of the effective surface as τeff = 2/3.)

The important point for us is that the thickness of the stellar atmosphere is
much less than R. As long as we restrict our interest to the star’s interior, we
can therefore continue to use the differential equations (1.3.1)–(1.3.4), with
the boundary conditions (1.3.5) and (1.3.6), with the understanding that the
condition (1.3.6) just means that the density and pressure are much less at the
star’s true surface than deep in the interior. For instance, the central density and
temperature of the Sun are (98±15) g/cm3 and (13.6±1.2)×106 K, while even
deep in the stellar atmosphere, at an optical depth τ = 10, the solar density and

5 For instance, see J. P. Cox and R. T. Giuli, Principles of Stellar Structure: Application to Stars, Vol. 2
(Gordon & Breach, New York, 1968), Chapter 20.
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temperature are only about 5 × 10−7 g/cm3 and 9,700 K, much less than the
central values.

With four first-order equations and four boundary conditions in which
there appear only a single parameter R, we expect a one-parameter family
of solutions. This result is close to a conclusion that is often called the Vogt–
Russell theorem,6 which asserts that for a definite chemical composition there
is a unique solution to the equations of stellar structure, that depends on just
a single stellar parameter, such as the radius R or the total mass M . In fact,
we can’t be sure of the existence of a solution, because it is possible that a
singularity could be encountered that prevents a solution, though no such case
of astronomical relevance is known. Also, assuming a solution exists, it may
not be unique.

The possibility of non-uniqueness arises from the peculiar feature, that the
boundary conditions refer to two different boundaries, r = 0 and r = R.
Consider how we would actually construct a solution. Starting at r = 0, we
can adopt various trial values ρc and Tc of the central density ρ(0) and central
temperature T (0), so that with the original conditions M(0) = L(0) = 0 we
have four initial conditions. Integrating Eqs. (1.3.1)–(1.3.4) with these initial
conditions gives a unique solution, depending on ρc and Tc. We can then adjust
these two initial values so that the other conditions, ρ(R) = T (R) = 0, are
satisfied at any given R. With two conditions on the two parameters ρc and
Tc, there is likely to be a solution, but possibly more than one. As long as
the number of solutions is finite, they can each depend on only a single free
parameter, which so far we have taken as the stellar radius R.

Of course, if all stellar parameters depend on a single parameter R, they can
be taken to depend on any one of the other stellar parameters, not necessarily R.
In particular, since the stellar mass M is the one thing that remains essentially
fixed as a star evolves (until the star in its old age begins to blow off mass), it is
more natural to take the single parameter as M rather than R. We can (though
we need not) do this directly, by a reinterpretation of the differential equations.
We can take the independent variable to be M rather than r , with the dependent
variables taken as r(M) along with ρ(M), T (M), and L(M). The differential
equations are the reciprocal of Eq. (1.3.2),

dr(M)

dM = 1

4πr2(M)ρ(M)
, (1.3.9)

and the ratios of Eqs. (1.3.1), (1.3.3), and (1.3.4) to Eq. (1.3.2):

dp(M)

dM = − GM
4πr4(M)

, (1.3.10)

dL(M)

dM = ε(M), (1.3.11)

6 H. Vogt, Astron. Nachr. 226, 301 (1926); H. N. Russell, Astronomy (Boston) 2, 910 (1927).
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and
dT (M)

dM = − 3κ(M)L(M)

4caT 3(M)
(
4πr2(M)

)2 . (1.3.12)

Instead of imposing boundary conditions at r = 0 and r = R, here they are
imposed at M = 0,

r(M) = L(M) = 0 at M = 0, (1.3.13)

and at M equal to the total stellar massM ,

ρ(M) = T (M) = 0 at M = M . (1.3.14)

With the equations written in this way, there is no need to input any stellar
parameter aside from the massM .

It is the dependence of stellar structure on just a single parameter that explains
a remarkable feature of observations of clusters of stars. The dozens or hun-
dreds of stars in an open cluster like the Pleiades generally condensed at about
the same time from the same cloud of interstellar material, so they all have
pretty much the same initial chemical composition and age as well as distance,
though differing widely in their masses. The only thing on which any observable
feature of the stars in such a cluster can depend that varies from one star to
another will thus be the stars’ masses. Hence when any pair of observables
for the cluster stars are plotted against each other, these points will fall on a
one-dimensional curve, each different point on this curve corresponding to a
different stellar mass.

This is less so for the thousands or hundreds of thousands of stars in a globular
cluster like M15, where there is a greater spread in age and initial chemical
composition. But even here the plot of any pair of observables against each
other is a more or less thickened curve.

The most easily observable stellar quantities are the luminosity L (or, if the
distance d to the cluster is not known, the apparent luminosity L/4πd2) and the
effective temperature Teff. The effective temperature is defined by the condition
that L = σT 4

eff ×4πR2, but it is estimated from observations of the star’s color7

and/or spectrum, as described in the following table:8

7 The color of a star is measured by the differences of its luminosity when the star is observed with several
different filters. As seen by an observer without filters, the color depends on the distribution with frequency
of the radiant energy emitted by the star, for those frequencies that are visible to the eye. For hot stars with
temperatures T > 30, 000 K, these frequencies are all much less than kBT/h, and therefore, according
to the black-body formula (1.2.21), the energy emitted between visible frequencies ν and ν + dν is
proportional to ν2 dν. As it happens, this is the same frequency distribution as for the light scattered by
molecules and other small particles in the atmosphere, which gives the sky its color. Hence sky blue is the
asymptotic visible color of black bodies with very high temperature.

8 The information here is taken from F. LeBlanc, Introduction to Stellar Atmospheres (John Wiley & Sons,
Chichester, 2010), with some additions from other sources.
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Typical spectral lines, effective temperatures, colors, and examples of various
types of star

Type Lines Teff (K) Color Example

O HeII abs >30,000 Sky blue λ Ori
B HeI abs, H 10,000–30,000 Blue–White Rigel
A H, CaII 7,500–10,000 White Sirius A, Vega
F CaII, H weaker 6,000–7,500 Yellow–White Procyon
G CaII, Fe, H weak 5,000–6,000 Yellow Sun
K Metals, CH, CN 3,500–5,000 Orange Arcturus
M TiO <3,500 Red Antares

The graph of observed absolute or apparent luminosity versus effective temper-
ature is known as the Hertzsprung–Russell diagram, which was first constructed
a century ago.9

In practice, the Hertzsprung–Russell diagram of a cluster is a thick curve, not
strictly one-dimensional. This is because the cluster stars did not all begin at
precisely the same time with precisely the same chemical composition. There
are also observational problems: a star’s color and spectrum do not give a precise
value for the effective temperature, and it is often difficult to distinguish binary
stars from single stars. Even so, one can clearly see in the data that there is
a one-dimensional curve of luminosity versus effective temperature, not just
points everywhere in the plot.

The Hertzsprung–Russell diagram for a cluster commonly contains a main
sequence, consisting of stars like the Sun that are still burning hydrogen at
their cores. On the main sequence L increases smoothly with Teff, with the most
massive stars the hottest and most luminous. (In Section 1.6 we will show how to
estimate the shape of the main sequence curve by applying dimensional analysis
to Eqs. (1.3.1)–(1.3.4).) As the cluster evolves, the Hertzsprung–Russell
diagram develops a red giant branch, consisting of stars that have converted
most of the hydrogen at their cores to helium, and are burning hydrogen only in
a shell around the inert helium core. On this branch, the effective temperature
decreases (and radius increases) with increasing luminosity, accounting for the
red color of very luminous red giant stars such as Betelgeuse and Antares.
The heavier stars on the main sequence have larger L and therefore evolve more
quickly, so as time passes more and more of the upper part of the main sequence
bends over into the red giant branch. Observations of this main sequence

9 E. Hertzsprung, Astron. Nachr. 179 (24), 373 (1908); H. N. Russell, Pop. Astron. 22, 275 (1914).
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turn-off therefore indicate the age of the cluster.10 Eventually the more massive
stars of the cluster will begin to burn helium, and the Hertzsprung–Russell
diagram will develop further complications, but it remains a more-or-less one-
dimensional curve, as required by the Vogt–Russell theorem.

There is a general conclusion of some importance, which can be derived
immediately from Eqs. (1.3.1)–(1.3.4), without detailed calculation. We note
that the pressure p in Eq. (1.3.1) is the sum of the pressures of gas and radiation,

p = pgas + prad, (1.3.15)

where, for black-body radiation,

prad = a

3
T 4. (1.3.16)

For an ideal gas pgas = ρkBT/m1μ, where μ is the molecular weight and m1
is the nucleon mass, or more precisely, the mass of unit atomic weight. For the
present all we need to know about the gas pressure is that it decreases with
increasing r . Now, Eq. (1.3.4) may be written

dprad(r)

dr
= −κ(r)ρ(r)L(r)

4πcr2
.

Taking the difference between this and Eq. (1.3.1) gives

−κ(r)ρ(r)L(r)
4πcr2

+ GM(r)ρ(r)

r2
= −dpgas(r)

dr
> 0

and therefore, everywhere in the star,

κ(r)L(r) < 4πGcM(r).

In particular, by setting r equal to the nominal stellar radius R, we find an
inequality involving the star’s luminosity L = L(R) and massM = M(R):

κ(R)L < 4πGcM . (1.3.17)

If this inequality were violated, then the radiation pressure alone would be
strong enough to blow off the outer layers of the star. In the commonly encoun-
tered case where the opacity in the star’s outer layers is due to Thomson scatter-
ing the inequality (1.3.17) is known as the Eddington limit. This inequality also
limits the luminosity that can be produced by spherically symmetric accretion
onto a star or galactic nucleus.

This derivation also shows that if gas pressure were negligible compared with
radiation pressure (as it is in only the most massive stars) the inequality would
become an equality, κ(R)L = 4πGcM .

10 For a summary of the use of this technique in cosmology, see S. Weinberg, Cosmology (Oxford University
Press, Oxford, 2008), pp. 62–63.
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1.4 Opacity

We saw in Section 1.2 that Eq. (1.2.30), one of the pair of equations that
govern the variation of temperature of stars with distance r from the center,
involves a quantity κ(r), known as the opacity. In general, the opacity is given
by Eq. (1.2.16):

κ ≡ κabs + κout − κin, (1.4.1)

with it understood that in Eq. (1.2.30) κ(r) is a Rosseland mean value κ(ρ(r),
T (r)), calculated according to Eq. (1.2.32):∫

dν
1

κ(ρ, T , ν)

(
∂B(ν, T )

∂T

)
= 4aT 3

κ(ρ, T )
,

where B is the black-body distribution function

B(ν, T ) = 8πh

c3

ν3

exp(hν/kBT )− 1
.

The first term in Eq. (1.4.1) is defined so that cρκabs is the net rate of absorp-
tion – that is, it is the average rate per photon at which photons are absorbed,
less the rate per initial photon at which photons with the same momentum are
created by stimulated emission. If �abs is the rate of absorption alone, then when
stimulated emission is taken into account, the net rate of photon absorption is

cρκabs(ρ, T , ν) = �abs(ρ, T , ν)
[
1 − e−hν/kBT

]
. (1.4.2)

This can most easily be seen by returning to Eqs. (1.2.11) and (1.2.20), which
show that when radiation and matter come to equilibrium in the absence of
nuclear energy generation, the absorption opacity is related to the energy
j (ρ, T , ν) emitted by the matter per mass, per time, and per frequency
interval, by

κabs(ρ, T , ν) = j (ρ, T , ν)/cB(ν, T ) = c2

8πhν3
j (ρ, T , ν)

[
exp(hν/kBT )− 1

]
.

The emission rate j has a familiar factor exp(−hν/kBT ), reflecting the prob-
ability of excitation by energy hν of degrees of freedom in the matter. When
combined with the factor exp(hν/kBT )− 1 from 1/B this gives the correction
factor 1−e−hν/kBT in Eq. (1.4.2), in which the first and second terms arise from
absorption and stimulated emission.11

The second and third terms in Eq. (1.4.1) are defined so that cρκout and cρκin
are the rates at which photons are scattered out of or into any given direction.

11 For a derivation of Eq. (1.4.2) that does not depend on the assumption that the radiation can come into
equilibrium with the matter, see R. Flauger and S. Weinberg, Phys. Rev. D 99, 123030 (2019).
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In cases where scattering occurs in a collision with a single particle, such as an
electron or atom, these terms are given by Eqs. (1.2.13) and (1.2.17):

κout = Nscat

∫
d2n̂′ σscat(n̂ → n̂′), (1.4.3)

κin = Nscat

∫
d2n̂′ (n̂′ · n̂) σscat(n̂ → n̂′), (1.4.4)

where σscat(n̂ → n̂′) is the differential cross section for scattering of a photon
traveling in a direction n̂ into a direction n̂′, andNscat is the number of scatterers
per gram. (These integrals are independent of the unit vector n̂ because of the
invariance of the integrands under simultaneous rotations of n̂ and n̂′.)

Now let us consider the various contributions to opacity, and the temperature
and density dependence of each. It is often a fair approximation to represent the
opacity as a simple function of temperature and density, proportional to powers
of both:

κ(ρ, T ) = κ1ρ
α(kBT )

β , (1.4.5)

where κ1 as well as α and β are approximately independent of density and
temperature. We will estimate α and β below for contributions to opacity of
various types, and show in Section 1.6 how these results can be used to relate
observable properties of stars.

Thomson Scattering

This is the simplest contribution to opacity. It is the elastic scattering of photons
with energies much less thanmec

2 on free electrons moving non-relativistically.
The differential scattering cross section is

σThomson(n̂ → n̂′) = e4

2m2
ec

4

[
1 + (n̂ · n̂′)2

]
. (1.4.6)

(Recall that in this book e is the charge of the electron in unrationalized elec-
trostatic units.) Because this differential cross section is even12 in n̂′, while the
factor n̂ · n̂′ in Eq. (1.4.4) is odd in n̂′, here we have κin = 0. Hence, where the
opacity is dominated by Thomson scattering, the total opacity is

κ = κout = NeσT, (1.4.7)

12 This forward–backward symmetry can be understood in classical terms. Classically, in Thomson
scattering the electron position oscillates under the influence of the electric field of the incoming photon,
and this oscillation produces the electromagnetic field of the outgoing photon. This oscillation is in the
direction of the polarization vector of the incoming photon, which is normal to the photon’s direction, so
there is nothing about this oscillation or the field it produces that can distinguish between the forward and
backward directions.
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where σT is the total Thomson scattering cross section, given by the integral of
the differential cross section (1.4.6) over solid angle:

σT = 8π

3

(
e2

h̄c

)2 (
h̄

mec

)2

= 0.66525 × 10−24 cm2,

and Ne is the number of free electrons per gram. For instance, for a medium
consisting of completely ionized atoms of atomic number Z and atomic weight
A, we have Ne = Z/Am1, where m1 = 1.66054 × 10−24 g is the mass for
unit atomic weight. This gives a Thomson scattering opacity (1.4.7) equal to
0.400 × Z/A cm2/g.

Since the cross section is constant (aside from a possible dependence of
the degree of ionization on temperature and density) the opacity for Thomson
scattering has

α = β = 0. (1.4.8)

No averaging over photon frequency is necessary if Thomson scattering domi-
nates the opacity.

Free–Free Absorption

In the absence of external fields, the conservation of energy and momentum
forbids the absorption of a photon by a free electron. If the photon has momen-
tum q then it has energy c|q|, so the conservation of energy and momentum
requires that

0 = (E′ − E)2 − c2(p′ − p)2 = 2m2
ec

4 − 2E′E + 2c2p′ · p.

where p and p′ are the initial and final electron momenta, and E = [c2p2 +
m2

ec
4]1/2 and E′ = [c2p′2 +m2

ec
4]1/2 are the initial and final electron energies.

This is not possible if any energy is absorbed by the electron, for in the frame in
which the electron is initially at rest, this requires that E′ = mec

2, so the final
electron would have to be also at rest in the same frame.

But in the Coulomb field of an atomic nucleus, the nucleus can take up
momentum without carrying away appreciable energy because it is so massive.
So absorption is possible on a free electron near a nucleus, with the energy
but not the momentum of electron and photon conserved, in the same way
that a dropped ball can bounce upward without losing energy, its momentum
being taken up by the Earth. This is the inverse of the familiar process of
bremsstrahlung, in which a photon is emitted when a charged particle is slowed
in a collision. (The cooling of interstellar matter by bremsstrahlung is dis-
cussed at the end of Section 3.3, and the emission of detectable radiation by
bremsstrahlung is considered in Section 3.7.) The absorption of photons by free
electrons in the Coulomb field of a nucleus leads to what is known as Kramers
opacity, named for Hendrik Kramers (1894–1952) who, using classical physics,
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first attempted a calculation.13 Kramers’ classical result was in effect that the
rate of absorption of a photon of frequency ν (averaged over photon directions
and helicities) is14

�Kramers(ρ, T , ν) =
∫
ne(v, T ) d3v

4πZ2e6nN

3
√

3hm2
evν

3

where the integral is over initial electron velocities v; ne(v, T ) is the number of
electrons per spatial volume and per velocity-space volume; nN is the number
density of ions, taken to have charge Ze; e is the magnitude of the electron
charge in unrationalized electrostatic units; and h = 2πh̄.

Depending on the electron velocity and photon frequency, this can be sig-
nificantly modified by quantum and other corrections. With or without these
corrections, the net rate cρκ of photon absorption in free–free transitions is
quadratic in particle densities, so α = 1, but the temperature dependence is
more complicated. It was first calculated by John Arthur Gaunt15 (1904–1944).
It has become traditional to express the rate per electron as the Kramers result
multiplied by a correction factor, known as the free–free Gaunt factor:

�ff abs(ρ, T , ν) =
∫
ne(v, T ) d3v

4πZ2e6nN

3
√

3hm2
evν

3
gff(ν, v). (1.4.9)

This absorption rate is quite complicated, given by an integral of the matrix
element of the momentum operator of the electron between initial and final
electron wave functions, which in a Coulomb potential are Kummer functions.
But it is not so difficult to carry out the calculation in Born approximation –
that is, to first order in the Coulomb potential. As shown in the appendix to this
section, in this order the rate at which a photon of frequency ν is absorbed is16

�ff abs(ρ, T , ν) =
∫
nNne(v, T ) d3v

4Z2e6

3hm2
evν

3
ln

(
v′ + v
v′ − v

)
, (1.4.10)

where v′ is the final electron velocity, given by the energy conservation
condition

mev
′2

2
= mev

2

2
+ hν. (1.4.11)

13 H. Kramers, Phil. Mag. 46, 836 (1923).
14 The fractional rate of decrease of energy in a light ray of frequency ν is hν�(ν), which for the Kramers

formula is independent of Planck’s constant. It is this rate that emerges from a purely classical calculation.
15 J. A. Gaunt, Proc. Roy. Soc. 126, 654 (1930).
16 For a different derivation of this formula, using “old-fashioned” second-order perturbation theory, see

H.-Y. Chiu, Stellar Physics (Blaisdell, Waltham, MA, 1968). The factor v in the denominator of
Eq. (1.4.10) appears in Chiu’s book as v′; presumably this is a typographical error.
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That is, the Gaunt factor is

gff(ν, v) =
√

3

π
ln

(
v′ + v
v′ − v

)
, (1.4.12)

with v′ again given by Eq. (1.4.11). This is a good approximation for non-
relativistic electrons if the Coulomb potential at an electron scattered by an
atom or ion is typically much less than electron kinetic energies, which is the
case if Ze2/h̄v � 1 and Ze2/h̄v′ � 1.

In thermal equilibrium at temperature T , far from degeneracy, the electron
velocity distribution is given by the Maxwell–Boltzmann formula

ne(v, T ) = ne

(
me

2πkBT

)3/2

exp

(
−mev

2

2kBT

)
, (1.4.13)

where ne is the total electron number density. We can find the temperature
dependence of the integral (1.4.10) by introducing a re-scaled variable of
integration

x ≡ v
√
me/2kBT .

Then Eq. (1.4.10) can be written

�ff abs(ρ, T , ν) = nenN
16Z2e6

3hcm2
eν

3

√
me

2πkBT

∫ ∞

0
xe−x

2
dx × ln

(
x′ + x
x′ − x

)
,

(1.4.14)
where ne and nN are the total number densities of electrons and ions, respec-
tively. If we supply the correction factor 1 − exp(−hν/kBT ) for stimulated
emission, and as usual write the result as cρκff, then

κff(ρ, T , ν) = ρNeNN
16Z2e6

3hcm2
eν

3

√
me

2πkBT

∫ ∞

0
xe−x

2
dx

× ln

(
x′ + x
x′ − x

) (
1 − exp(−hν/kBT )

)
, (1.4.15)

where Ne ≡ ne/ρ is the number of electrons per gram, NN ≡ nN/ρ is the
number of nuclei per gram, and x′ ≡ v′√me/2kBT is given by the energy
conservation equation (1.4.11) as

x′2 = x2 + y, y ≡ hν/kBT . (1.4.16)

The Rosseland mean opacity (1.2.32) is here

κ(ρ, T ) = 8ρ(kBT )
−7/2NeNNZ

2e6h6(a/k4
B)m

−3/2
e

3
√

2π3/2
∫ ∞

0
dy

y6ey

(ey − 1)

[∫ ∞

0
x e−x

2
dx × ln

(
x′ + x
x′ − x

)]−1
,

(1.4.17)
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with x′ related to the integration variables x and y by the energy conserva-
tion condition (1.4.16). The important result is that in Eq. (1.4.5) the Kramers
opacity has

α = 1, β = −7/2. (1.4.18)

The mean opacity has a factor T −7/2 because of the factor 1/
√
T in Eq. (1.4.15),

and because the factor 1/ν3 in Eq. (1.4.15) is converted into a factor propor-
tional to 1/T 3 in the Rosseland mean.

It should not be thought that the T −7/2 dependence of the free–free opacity
continues to arbitrary low temperatures. Obviously, for sufficiently low tem-
peratures, there are very few free electrons, and the free–free and Thomson
scattering contributions to the opacity both become negligible.

High-Energy Bound–Free Absorption

When a photon is absorbed by a bound electron whose binding energy is much
less than the photon energy, it hardly matters that the electron is initially bound.
Thus the temperature dependence in this case is the same as for free–free
absorption, with β = −7/2. The difference is that the relevant density of
electrons is not the ambient density of free electrons, but an average square of
the bound electron wave function, so the absorption rate cρκ is proportional just
to the density of atoms, and hence α = 0 rather than α = 1. The contribution
to opacity of this sort of photon absorption is often lumped in with free–free
absorption in what is called Kramers opacity.

Bound–Bound Absorption and Low-Energy Bound–Free Absorption

In these cases the photon is absorbed by a bound electron whose binding energy
is at least comparable to the photon energy. This contribution to opacity involves
complications of atomic physics not present for other contributions, and will not
be examined further here. The heating of interstellar hydrogen by low-energy
bound–free absorption of photons from hot stars is discussed in Section 3.2.

Appendix: Calculation of Free–Free Opacity

We consider a process in which a photon of momentum q and helicity λ is
absorbed by a non-relativistic free electron of momentum p in the neighborhood
of an atomic nucleus, giving the electron a non-relativistic momentum p′. The
nucleus serves to provide a potential V (x), but is supposed to be so heavy
that it can carry away momentum without receiving appreciable energy, so
that p′2/2me = p2/2me + qc (where q ≡ |q|, p ≡ |p|, and p′ ≡ |p′|) but
p′ �= p + q. For the present we will consider a general potential, but will later
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specialize to a screened Coulomb potential with V (x) = −Ze2 exp(−r/	)/r
where r ≡ |x|, including the unscreened case where the screening radius 	 is
taken to be infinite.

According to the general rules of quantum mechanics,17 the differential rate
for this process is given by

d�(p + (q, λ) → p′) = (2πh̄)5nN
∣∣M(p + (q, λ) → p′)∣∣2

× δ(p′2/2me − p2/2me − qc) d3p′, (1.4.A1)

and so the rate of photon absorption is

�abs(q, λ) = (2πh̄)5nN

∫
ne(p) d3p

×
∫
d3p′ ∣∣M(p + (q, λ) → p′)∣∣2 δ(p′2/2me − p2/2me − qc),

(1.4.A2)

where ne(p) d3p is the number density of initial electrons with momenta in a
range d3p around p; nN is the number density of nuclei;M is the coefficient of
the energy and momentum conservation delta functions in the S-matrix element
for this process; and we have used the momentum conservation delta function
in the rate to eliminate the integral over the final nucleus momentum.

We are only concerned with single-photon absorption processes, and will
ignore all quantum electrodynamic radiative corrections, so the matrix element
M is of first order in the interaction between the electron and the quantized
electromagnetic field. It therefore takes the form18

M = −2πi√
2qc(2πh̄)3/2

× −√
4πeh̄2

me

∫
d3x ψ ′∗(x)e(q̂, λ) · ∇ψ(x). (1.4.A3)

Here ψ and ψ ′ are “in” and “out” solutions of the Schrödinger equations for the
initial and final electrons

− h̄2

2me
∇2ψ + Vψ = p2

2me
ψ , − h̄2

2me
∇2ψ ′ + Vψ ′ = p′2

2me
ψ ′, (1.4.A4)

17 For the general relation between S-matrix elements and rates, see e.g. S. Weinberg, The Quantum Theory
of Fields, Vol. I (Cambridge University Press, Cambridge, 1995), Section 3.4. Note that in this reference
2πM was defined as the coefficient of the delta function in the S-matrix, while here this coefficient is
justM .

18 For a textbook derivation of this interaction, see e.g. S. Weinberg, Lectures on Quantum Mechanics,
2nd edn. (Cambridge University Press, Cambridge, 2015), Eq. 11.7.6. In Eq. (1.4.A3) we are using
the electric dipole approximation, in which the photon wavelength is much larger than the de Broglie
wavelengths of the initial and final electrons. With photon and electron energies of order kBT , this is a
good approximation if kBT � mec

2, as we shall assume is the case.
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normalized so that for r → ∞
ψ(x) → exp(ip · x/h̄)

(2πh̄)3/2
+O(1/r), ψ ′(x) → exp(ip′ · x/h̄)

(2πh̄)3/2
+O(1/r),

(1.4.A5)
where the O(1/r) term is an outgoing wave for ψ and an incoming wave
for ψ ′. (For an unscreened Coulomb potential the arguments of the exponentials
contain additional imaginary terms of order ln r .) Also e(q̂, λ) is the polariza-
tion vector for a photon with direction q̂ and helicity λ, normalized so that
e∗ · e = 1. We will use the results forM obtained here also in the discussions of
bremsstrahlung in Sections 3.3 and 3.7.

Eventually we will be moving on to the Born approximation, in which M is
calculated only to first order in V , but it is useful for several reasons to work
for a while with Eq. (1.4.A3), which is derived in what is called the distorted
wave Born approximation;19 it is valid to all orders in V but only to first order
in the interaction of the electron with the annihilation part of the quantized
electromagnetic field.

Multiplying Eq. (1.4.A3) with qc = p′2/2me − p2/2me and using the
Schrödinger equations (1.4.A4), we have

qcM = −2πi√
2qc(2πh̄)3/2

× −√
4πeh̄2

me

×
∫
d3x

[(
− h̄2

2me
∇2ψ ′ + Vψ ′

)∗
e(q̂, λ) · ∇ψ

−ψ ′∗e(q̂, λ) · ∇
(

− h̄2

2me
∇2ψ + Vψ

)]
.

Integration by parts shows that the kinetic energy terms cancel,20 while the
potential terms cancel except for a term proportional to the gradient of the
potential:

M = −ie√h̄
(qc)3/2me

∫
d3x ψ ′∗(x)e(q̂, λ) · [∇V (x)]ψ(x). (1.4.A6)

We now go over to the Born approximation, keeping only terms of first order
in the potential V . Since Eq. (1.4.A6) already has an explicit factor V , in the
Born approximation we can ignore V in the wave functions, and use for ψ and
ψ ′ just the plane waves

19 For a general textbook account of this approximation, see Weinberg, op. cit. Section 8.6.
20 The surface term in the integration by parts may be neglected because of its rapid oscillation as r → ∞

when p′ �= p.
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ψ(x) = exp(ip · x/h̄)
(2πh̄)3/2

, ψ ′(x) = exp(ip′ · x/h̄)
(2πh̄)3/2

. (1.4.A7)

Equation (1.4.A6) then reads

M = −ie√h̄
(2πh̄)3(qc)3/2me

∫
d3x e(q̂, λ) · [∇V (x)] exp

(
i(p − p′) · x/h̄

)
= −e
(2πh̄)3(qc)3/2me

√
h̄

e(q̂, λ) · (p − p′)

×
∫
d3x V (x) exp

(
i(p − p′) · x/h̄

)
. (1.4.A8)

For the screened Coulomb potential V (x) = −Ze2e−r/	/r , this reads

M = Ze3

(2πh̄)3(qc)3/2me
√
h̄

4πe(q̂, λ) · (p − p′)
(p − p′)2/h̄2 + 1/	2

. (1.4.A9)

Orbital electrons in singly ionized atoms obviously produce a partial screen-
ing with 	 of the order of atomic dimensions. But even where ionization is
complete, there is a screening due to mobile electrons attracted to the vicinity
of the atomic nucleus. This is known as Debye screening, and is discussed
in Section 3.7. For the present, we will consider the unscreened case, with 	
infinite, in which case

M = Ze3

2π2(qch̄)3/2me

e(q̂, λ) · (p − p′)
(p − p′)2

. (1.4.A10)

The absorption rate per photon is then given by Eqs. (1.4.A2) and (1.4.A10) as

�abs(q, λ) =
∫
d3p ne(p)

∫
d2p̂′ 8πe6Z2h̄2p′nN

mec3q3

[
(p − p′) · e(λ, q)
(p′ − p)2

]2

.

(1.4.A11)

We average over photon helicity and direction, using

1

2

∑
λ=±1

1

4π

∫
d2q̂ ei(λ, q)e∗j (λ, q) = 1

8π

∫
d2q̂

[
δij − qiqj /q2

]
= 1

3
δij .

(1.4.A12)
The integral over the direction of the outgoing electron is then∫

d2p̂′ 1

(p − p′)2
= 2π

pp′ ln

(
p′ + p
p′ − p

)
. (1.4.A13)
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Equation (1.4.A11) now gives the average photon absorption rate

�abs(q) =
∫
d3p ne(p)

16π2e6Z2h̄2nN

3pmec3q3
ln

(
p′ + p
p′ − p

)
. (1.4.A14)

This can be rewritten for the purposes of comparison with the main text, setting
v = p/me, v′ = p′/me, ν = qc/h, and h = 2πh̄. Equation (1.4.A14) then
becomes Eq. (1.4.10).

In this derivation we have treated the Coulomb interaction between electrons
and nuclei only to first order in the Coulomb potential. This is justified if Ze2/r

for typical values of r is much less than the electron kinetic energies. Taking the
typical value of r as the de Broglie wavelength h̄/mev, the ratio of potential to
kinetic energy is of order

Ze2/r

mev2/2
≈ Ze2

h̄v
	 Zc/137v,

so this calculation is reliable only if v/c � Z/137. Our non-relativistic treat-
ment also requires that v/c � 1. For nuclei like C, N, and O, with Z ≥ 6,
this does not leave much of a range for the electron velocity in which the
above calculation is reliable, beyond just giving the order of magnitude of the
absorption rate. The contribution toM of terms of higher order in the Coulomb
potential is considered in the context of bremsstrahlung in Section 3.7.

1.5 Nuclear Energy Generation

We now consider the nuclear energy production per mass ε(ρ, T ). As with
opacity in the previous section, one of our aims here will be to estimate the
exponents when ε(ρ, T ) is approximated by a power-law expression

ε(ρ, T ) 	 ε1ρ
λ(kBT )

ν , (1.5.1)

with ε1 as well as λ and ν independent of ρ and T .
The nuclear material left over from the first three minutes of the big bang was

chiefly 1H (that is, protons), plus about 25% by mass 4He, and only a trace of
2H, 3He, and 7Li. These light nuclei have less binding energy per nucleon than
nuclei of medium atomic weight like iron and nickel, so energy can be gained
by fusion of hydrogen and helium into heavier elements. But there are no stable
nuclei with five or eight nucleons, so it is difficult (though, as we shall see,
not impossible) to gain energy from helium in 1H–4He or 4He–4He collisions.
Thus, as long as hydrogen lasts in the center of a star, the dominant source of
nuclear energy will be the fusion of 1H into 4He, which has by far the greatest
binding energy of any of these light elements.
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There are two chief routes by which hydrogen can fuse into helium. One is
the proton–proton chain,21 of which the simplest version is22

I : 1H + 1H → 2H + e+ + νe + 1.18 MeV

II : 1H + 2H → 3He + γ + 5.49 MeV

III : 3He + 3He → 4He + 1H + 1H + 12.85 MeV. (1.5.2)

The other route is the CNO cycle,23 which in its simplest variant is

i : 1H + 12C → 13N + γ + 1.95 MeV

ii : 13N → 13C + e+ + νe + 1.50 MeV

iii : 1H + 13C → 14N + γ + 7.54 MeV

iv : 1H + 14N → 15O + γ + 7.35 MeV

v : 15O → 15N + e+ + νe + 1.73 MeV

vi : 1H + 15N → 12C + 4He + 4.96 MeV, (1.5.3)

where carbon, nitrogen, and oxygen nuclei are understood to be present in the
interstellar matter from which stars like the Sun are formed, left over from
nuclear processes in an earlier generation of stars. They are catalysts, neither
created nor destroyed in a complete cycle. In both cases there are side branches
and extensions to which we will return below, but these simple versions will
provide us with sufficient examples to illustrate how ε(ρ, T ) is estimated.

The detailed calculation of the rates of these various nuclear reactions is
beyond the scope of this book. However, we can usefully identify various sup-
pression factors in the rates that tell us a good deal about which reactions are
dominant, and about their temperature dependence.

Electromagnetic Coupling

The rate of any reaction in which a single photon is emitted (such as 1H+2H →
3He + γ in the proton–proton cycle or 1H + 12C → 13N + γ in the CNO cycle)
is suppressed by a factor of order e2/h̄c 	 1/137.

Weak Coupling

The rate of any reaction in which a proton turns into a neutron with the emission
of a positron and neutrino (such as the first step 1H + 1H → 2H + e+ + νe in

21 H. A. Bethe and C. H. Critchfield, Phys. Rev. 54, 248 (1938).
22 The energies listed here for the proton–proton chain and below for the CNO cycle are the energies for

each reaction actually deposited in the stellar material. Thus, where a positron is emitted, these energies
include not only the rest energy mec

2 of the emitted positron but also the rest energy of the electron
with which that positron inevitably annihilates. On the other hand, the mean energy of the accompanying
neutrino is subtracted from the energy released, since virtually all neutrinos leave the star.

23 C. F. von Weizsäcker, Phys. Z. 38, 176 (1938); H. A. Bethe, Phys. Rev. 55, 434 (1939).
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the proton–proton cycle or the beta decays of 13N and 15O in the CNO cycle) is
suppressed by two factors of the weak coupling constantGwk = 1.1664×10−11

MeV−2. Since the typical energy involved in these nuclear reactions is about
1 MeV, weak interaction processes are typically suppressed by a dimensionless
factor of order 10−22.

Coulomb Barrier

The temperature dependence of nuclear reaction rates is chiefly due to the neces-
sity for colliding nuclei to leak through the Coulomb barrier, the field of elec-
trostatic repulsion between positively charged atomic nuclei.24 The calculation
of the effect of the Coulomb barrier on reaction rates requires use of quantum
mechanics, but only at a quite elementary level, and will be presented in an
appendix at the end of this section. The result is that a reaction involving two
nuclei of atomic numbers Z1 and Z2 and an energy of relative motion E is
suppressed by a factor of order

B(E) = exp

[
−πZ1Z2e

2

√
2μ

h̄2E

]
, (1.5.4)

where μ = m1m2/(m1 +m2) is the reduced mass.
The nuclei colliding in a star of course do not have any definite value for

the energy E of relative motion, but rather a range of values, with probabilities
governed by the requirements of kinetic theory at temperature T . Assuming
that nuclei spend most of their time sufficiently far from other nuclei that their
energy is mostly kinetic, the probability of finding a pair of nuclei in a range of
momenta d3p1 d

3p2 is proportional to

exp

(
− p1

2

2m1kBT
− p2

2

2m2kBT

)
d3p1 d

3p2 = exp

(
− E

kBT

)
d3p

× exp

(
− P2

2(m1 +m2)kBT

)
d3P ,

(1.5.5)

where P ≡ p1 + p2 is the total momentum, and E = p2/2μ is the energy of
relative motion, with p ≡ μ(p1/m1 − p2/m2) the relative momentum. The rate
ε of nuclear reactions per gram is then of the form

ε(ρ, T ) =
∫ ∞

0
dE f (E, ρ, T ) exp(−E/kBT )B(E)

=
∫ ∞

0
dE f (E, ρ, T ) exp

(
− E

kBT
− C√

E

)
, (1.5.6)

24 Barrier penetration was first calculated in the context of nuclear α-decay; G. Gamow, Z. Phys. 52, 510
(1928).
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where f (E, ρ, T ) arises from power-law factors in the thermal distribution of E
and P and in the probability of the nuclear reaction occurring when the nuclei
reach zero separation, and C is the constant in the exponent in Eq. (1.5.4):

C = πZ1Z2e
2

√
2μ

h̄2
. (1.5.7)

In practice, kBT is always much less than C2, so the exponential exp(−C/√E)
will be very small unless E is much greater than kBT , in which case exp(−E/
kBT ) will be very small. The exponential in Eq. (1.5.6) is therefore very sharply
peaked at the energy ET where its argument is a maximum:

0 = d

dE

∣∣∣∣
E=ET

(
− E

kBT
− C√

E

)
= − 1

kBT
+ C

2E3/2
T

(1.5.8)

so
ET = (CkBT/2)

2/3. (1.5.9)

The dominant factor BT in the temperature dependence of the reaction rate
(1.5.6) is simply the exponential function, evaluated at E = ET :

BT = exp

(
− ET

kBT
− C√

ET

)
= exp

⎛
⎝−3

(
πZ1Z2e

2√μ
h̄
√

2kBT

)2/3
⎞
⎠. (1.5.10)

Numerically this is

BT = exp

[
−
(
Z2

1Z
2
2(μ/mp)× 7.726 × 1010 K

T

)1/3]
, (1.5.11)

where mp is the proton mass.
The values of reaction rates depend on a number of other factors besides

the barrier penetration factor, but it is the barrier that chiefly governs their
temperature dependence. Thus we can use the above calculation of the Coulomb
barrier to estimate the exponent ν in the power law ε ∝ (kBT )

ν that is used to
estimate the temperature dependence of the energy generation rate ε. We take

ν = T
d

dT
lnBT 	 1

3

(
Z2

1Z
2
2(μ/mp)× 7.726 × 1010 K

T

)1/3

. (1.5.12)

(The T −1/3 temperature dependence here is sufficiently weak to justify approxi-
mating ε as proportional to a constant power of temperature.) From Eqs. (1.5.11)
and (1.5.12) we infer the general rule that ν is one-third the absolute value of
the exponent in whatever barrier penetration factor dominates the temperature
dependence of the energy generation rate.

Let us now apply these general remarks to stars that derive their nuclear
energy either from the proton–proton chain or from the CNO cycle.
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Proton–Proton Chain

For the first reaction p + p → d + e+ + ν in the proton–proton chain we take
μ = mp/2 and Z1 = Z2 = 1, so, according to Eq. (1.5.11), if T = 107K
(roughly the temperature at the center of the Sun), the Coulomb barrier sup-
presses the reaction by a factor exp(−15.7) = 1.5 × 10−7.

But the reaction p+p → d+e++ν is not the end of the story; it is just the first
step in a chain of reactions. The Coulomb barrier suppression of the second step,
1H+2 H → 3He+γ, is only slightly more severe than that of reaction I, because
the charges of the nuclei are the same, and their reduced mass is larger only by
a factor 4/3. Taking μ = 2mp/3, Z1 = Z2 = 1, and T 	 107 K in Eq. (1.5.11)
gives BT ≈ exp(−4/3 × 15.7) = 8 × 10−10. Apart from Coulomb suppression,
since step I involves a weak interaction it is suppressed by an additional factor
of order 10−22 and since step II involves an electromagnetic interaction it is
suppressed by an additional factor of order 1/137, so the ratio of the rate per
proton of step I and the rate per deuteron of step II is expected to be of order

rate/p of p + p → d + e+ + ν

rate/d of p + d → 3He + γ
≈ 10−22 × (1.5 × 10−7)

(1/137)× (8 × 10−10)
	 3 × 10−18.

(The actual ratio is about 10−17.) Reaction III has a more formidable Coulomb
barrier, with Z1Z2 = 4. All three reactions release substantial amounts of
energy. So which do we need to calculate in order to find ε. And in particular,
which is the relevant Coulomb barrier?

The answer relies on an assumption of time-independence: The abundances
of the intermediate participants in these reactions rapidly evolve to stable values,
for which these abundances change little over times in which a very large num-
ber of reactions take place in the star’s core. Thus, in order that the abundance
of deuterons should not change, the rates per volume of reactions I and II, in
which deuterons are respectively created and destroyed, should be the same,
and in order that the abundance of 3He nuclei should not change, the rate per
volume of reaction II should be twice that of reaction III, in which two 3He
nuclei are destroyed:

� ≡ �(I) = �(II) = 2�(III), (1.5.13)

where the �s denote the rates per volume of various reactions. It is like the law
of economics that supply equals demand. If demand exceeds supply prices will
go up, damping demand and providing an incentive for increased supply, until
supply and demand approach each other. (Or so they say.) In the same way, if
the rate per volume of reaction II were less than that of reaction I the abundance
of 2H nuclei would rise until these rates were equal, and just as many 2H nuclei
were being destroyed as created. According to the above estimate of the ratio
of the rate per proton of reaction I and the rate per deuteron of reaction II, we
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therefore expect the number density of deuterons to be smaller than the number
density of protons by a factor of order 3 × 10−18.

Though �(I), �(II), and 2�(III) must all be equal, their calculation differs in
one important respect. The rate of reaction I does not depend on the abundance
of the intermediate nuclei 2H and 3He, and in particular is not suppressed by
their low abundance, so it can be calculated without knowing anything about
the other reactions. Thus it is the Coulomb barrier in reaction I that governs
the rate at which hydrogen is converted to helium and energy is produced,
and its temperature dependence. In particular, in accordance with the general
rule (1.5.12), for the proton–proton cycle the exponent ν in the temperature
dependence of ε is one-third of the value 15.7 that we previously calculated
for the exponent in the barrier penetration factor for reaction I, so ν 	 5 at
T ≈ 107 K. Fortunately ν has only a mild dependence on temperature, going
as T −1/3, so this estimate of ν is a fair approximation for a wide range of
temperatures.

But although we only need to calculate the rate � of reaction I, all of reactions
I, II, and III release energy, say an energy EI, EII, and EIII per reaction, so the
rate ερ of total energy production per volume is not just EI�, but

ερ =
(
EI + EII + 1

2
EIII

)
� = 13.1 MeV × �. (1.5.14)

The crucial first step in the proton–proton chain is a collision of two protons.
Its rate, and hence the rate per volume ερ of energy generation due to the
proton–proton chain, is proportional to ρ2. Hence, if the proton–proton chain
dominates nuclear energy generation, we have λ = 1 as well as ν ≈ 5.

The reactions (1.5.2) dominate the energy production in the proton–proton
chain, but there are alternative finales to this chain, one of which is of historical
importance. In one alternative, instead of a pair of 3He nuclei combining in
reaction III, individual 3He nuclei undergo the reaction

III′ : 3He + 4He → 7Be + γ

followed by either

IV : 7Be + e− → 7Li + νe

V : 7Li + 1H → 4He + 4He (1.5.15)

or else

IV′ : 7Be + 1H → 8B + γ

V′ : 8B → 8Be + e+ + νe

VI′ : 8Be → 4He + 4He. (1.5.16)

The probability of a 3He nucleus undergoing the reaction III′ rather than III
is small, so these alternatives have little effect on the energy generation rate ε
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and its density and temperature dependence, but the high energy of the neutrino
from the 8B beta decay in reaction V′, extending up to over 10 MeV, offered an
early opportunity of observing neutrinos from the Sun.

The reaction 37Cl + νe → 37Ar + e− that was used to search for solar
neutrinos in the experiments of Davis et al.25 on solar neutrinos is sensitive only
to these high-energy neutrinos, not to the much lower-energy neutrinos emitted
in the other reactions of the proton–proton chain. The high Coulomb barriers in
reactions III′ and IV′ make the flux of high-energy neutrinos extremely sensitive
to the temperature profile in the Sun. Detailed calculations by John Bahcall26

(1934–2005) showed that the high-energy neutrinos should be observable in
Davis’s experiments, but decades of searching did not find them. Finally solar
neutrinos were detected27 using the reaction Ga71 + νe → Ge71 + e−, but the
observed rate was substantially less than predicted by Bahcall. Either Bahcall’s
calculations were inaccurate, or something was happening to neutrinos on the
way to the Earth.

In particular, it was speculated by Bruno Pontecorvo (1913–1993) that neu-
trinos have mass, and that the states of definite mass are not the neutrinos of
electron type emitted in the Sun, but superpositions of neutrinos of electron type
with neutrinos of muon and tauon type, so that on the way to Earth electron-type
neutrinos become an oscillating superposition of types, with only the electron-
type fraction observable in reactions like Cl37+νe → Ar37+e− or Ga71+νe →
Ge71 + e−. The issue was settled by experiments at the Sudbury Neutrino
Observatory.28 By monitoring a large tank of heavy water, experimenters could
detect high-energy 8B neutrinos not only in the reaction νe + d → p + p + e−,
which is sensitive only to electron-type neutrinos, but also in the neutral current
process ν + d → p + n + ν, which is equally sensitive to neutrinos of all
types, electron, muon, and tauon. It turned out that the total flux of neutrinos of
all types agreed with Bahcall’s calculations, providing a decisive vote in favor
of neutrino oscillations. Since then the existence of neutrino oscillations has
been confirmed and neutrino masses and mixing angles measured in numerous
terrestrial experiments.

CNO Cycle

Matters are more complicated for the CNO cycle. Here too we assume that the
abundances of the intermediate CNO nuclei settle down to constant values. The
constancy of the abundance of 13N requires that reactions i and ii have the same
rate per volume; the constancy of the abundance of 13C requires that reactions

25 R. Davis, D. S. Harmer, and K. C. Hoffman, Phys. Rev. Lett. 20, 1205 (1968).
26 J. N. Bahcall, Current Science 77, 1487 (1999), and earlier references quoted therein.
27 P. Anselmann et al., Phys. Lett. B342, 440 (1995); J. N. Abdurashitov et al., Phys. Rev. Lett. 77, 3708

(1996).
28 Q. R. Ahmad et al., Phys. Rev. Lett. 89, 11301 (2002).
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ii and iii have the same rate per volume; and so on, so that all these rates per
volume are equal:

�(i) = �(ii) = �(iii) = �(iv) = �(v) = �(vi) ≡ �. (1.5.17)

This determines the ratios of the abundances. Each of the rates here is propor-
tional to the number density n of the CNO nucleus in the initial state of the
reaction

�(i) = n
(12C

)
R(i), �(ii) = n

(13N
)
R(ii), etc., (1.5.18)

with the rate factors R independent of the densities of anything but hydrogen.
For each reaction, R is the rate at which the CNO nucleus in the initial state
undergoes that reaction. For instance, R(i) is the rate at which any individual
12C nucleus undergoes the reaction 1H +12 C → 13N + γ. Then the equality of
rates (1.5.17) gives

n
(13N

)
n
(12C

) = R(i)

R(ii)
) , n

(13C
)

n
(12C

) = R(i)

R(iii)
, etc. (1.5.19)

But we cannot in this way find the overall number density of the CNO nuclei

n(CNO) ≡ n
(12C

)+n(13N
)+n(13C

)+n(14N
)+n(15O

)+n(15N
)
, (1.5.20)

which does not change in the reactions i through vi, and is determined by the
abundances in the interstellar medium from which the star formed. We can,
however, express the common rate � in terms of n(CNO): Using Eqs. (1.5.20)
and (1.5.17) and then (1.5.18) we note that

n(CNO)

�
= n

(12C
)

�(i)
+ n
(13N

)
�(ii)

+ n
(13C

)
�(iii)

+ n
(14N

)
�(iv)

+ n
(15O

)
�(v)

+ n
(15N

)
�(vi)

= 1

R(i)
+ 1

R(ii)
+ 1

R(iii)
+ 1

R(iv)
+ 1

R(v)
+ 1

R(vi)
,

so the common rate is

� = n(CNO)

/(
1

R(i)
+ 1

R(ii)
+ 1

R(iii)
+ 1

R(iv)
+ 1

R(v)
+ 1

R(vi)

)
.

(1.5.21)
That is, the common rate of the reactions equals the harmonic mean of what the
individual rates would be if the density of the CNO nucleus in each initial state
equaled the total density n(CNO). The rate per volume ερ of energy generation
in the CNO cycle is � times the sum of the energies in Eq. (1.5.3):

ερ = � × 25.03 MeV. (1.5.22)

Because of the absence of a Coulomb barrier in the beta decays ii and v, these
reactions have relatively rapid rates R per CNO nucleus, with mean lives 1/R
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of 7 minutes and 82 seconds, respectively, while 1/R for all the other reactions
in the CNO cycle is at least 105 years. Thus the terms 1/R(ii) and 1/R(v) can
be neglected in the denominator in Eq. (1.5.21). Also, for the same reason,
the number density of the CNO nucleus in the initial states of the beta decay
reactions is much smaller than the number densities of the other CNO nuclei,
and can be neglected in n(CNO). Thus Eq. (1.5.21) for the rate � of the various
reactions in the CNO channel is dominated by the two-body reactions i, iii, iv,
and vi. As two-body reactions, they all have λ = 1. Also, these reactions all have
about the same value of the reduced mass, ranging from 12mp/13 to 15mp/16,
whileZ1Z2 only ranges from 6 for reaction i to 7 for reaction vi, so the Coulomb
suppression factor and hence the rate factor R is smallest for reaction vi, but not
overwhelmingly so. We will take the Coulomb barriers of these reactions to be
a compromise, calculated by taking Z1Z2 = 6.5 and μ = mp. At any given
temperature, the exponent in Eq. (1.5.10) for the effective Coulomb barrier is
thus larger than for the proton–proton chain by a factor 6.52/321/3 = 4.4. At the
nominal temperature of 107 K, the Coulomb barrier in the CNO cycle produces a
suppression factor exp(−4.4 × 15.7) 	 10−30. It is only because of the extreme
slowness of weak interaction processes such as the first step in the proton–
proton chain that the CNO cycle can compete with the proton–proton chain
at any temperature.

The power of temperature in Eq. (1.5.1) is larger than for the proton–proton
chain by the same factor 4.4, so at T ≈ 107 K we have ν ≈ 22, and somewhat
less at higher temperatures. As already mentioned, the power of density is
λ = 1.

Here too there are alternative finales. Instead of step vi, the 15N nucleus can
undergo the reaction 1H + 15N → 16O + γ, followed by 1H + 16O → 17F + γ

and 17F → 17O + e+ + ν. After that, there are again two possibilities: either
1H + 17O → 14N + 4He, or else 1H + 17O → 18F + γ followed by 18F →
18O + e+ +ν and 1H + 18O → 15N + 4He. In all cases the net effect is that four
protons turn into a 4He nucleus plus two positrons and two neutrinos, with the
CNO catalysts always returned to their original abundances.

Crossover

We can now estimate the crossover temperature at which the rates of energy
production in the CNO cycle and proton–proton chain would be equal. We
have seen that the rate of the reactions in the proton–proton chain is suppressed
by the Coulomb barrier by a factor exp

(−15.7(T [107 K])−1/3
)
, so the rate

of the reactions in the CNO cycle is suppressed by a factor exp
(−4.4 ×

15.7(T [107 K])−1/3
)
. It is further suppressed relative to the proton–proton

chain by the ratio of the number of CNO nuclei to hydrogen nuclei, which
for the Sun is about 10−3, and since a photon is emitted, also by a factor
e2/h̄c 	 10−2. On the other hand, the reaction p + p → d + e+ + ν in
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the proton–proton chain is a weak interaction, so its rate is proportional to
the square of the weak coupling constant, and is therefore suppressed by a
dimensionless factor (GwkE

2)2, which for E ≈ 1 MeV is about 10−22. So, very
roughly, the crossover temperature at which the CNO cycle and the proton–
proton chain have competitive rates is given by

10−3 × 10−2 × exp
(− 4.4 × 15.7(T [107 K])−1/3)

≈ 10−22 × exp
(− 15.7(T [107 K])−1/3),

or T ≈ 2.5 × 107 K. This is not very different from the value given by more
detailed calculations,29 which is not much greater than the temperature 1.36 ×
107 K at the center of the Sun. For stars that are considerably more or less mas-
sive than the Sun the central temperature is higher or lower, and it is respectively
the CNO cycle or the proton–proton chain that dominates energy production.

Beyond Hydrogen Burning

As mentioned in Section 1.3, when the hydrogen has been converted to helium
in a star’s center, the star leaves the main sequence and becomes a red giant,
in which the conversion of hydrogen to helium continues in a shell surrounding
the helium core. The core temperature continues to grow, and when it becomes
sufficiently high it becomes the turn of helium to undergo nuclear reactions.
Although there is no stable nucleus that can be formed in a collision of a proton
and a 4He nucleus or in the collision of two 4He nuclei, the latter collision can
produce an unstable state of the nucleus 8Be that lives long enough before it
undergoes fission back into two 4He nuclei, so that it can serve as an intermedi-
ary in the carbon production reactions

a : 4He + 4He → 8Be + γ

b : 4He + 8Be → 12C + γ. (1.5.23)

Although this is a sequence of two-body reactions, it does not lead to an energy
production rate per volume ερ proportional to ρ2, as in the proton–proton chain
and the CNO cycle. The reason is that there is only a small probability P
for the 8Be nucleus to absorb another 4He nucleus before it fissions. Thus
ερ is proportional to ρ2P , and since P when small is proportional to ρ, ερ
is proportional to ρ3, and therefore the exponent λ in Eq. (1.5.1) is λ = 2.

As usual, the temperature dependence of ε is harder to estimate. Reaction a
is endothermic, requiring an energy E of relative motion of the two 4He nuclei
of at least 92 keV. In order for 4He nuclei to have any chance of having energies
this large, the temperature must be at least 108 K. Even at such relatively high

29 R. J. Tayler, The Stars: Their Structure and Evolution (Wykeham Publications, London, 1970), Figure
39m gives the crossover temperature as 1.7 × 107 K, while F. LeBlanc, An Introduction to Stellar
Astrophysics (John Wiley & Sons, Winchester, 2010), Figure 6.7 gives 1.9 × 107 K.
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temperatures, there are sizable Coulomb barriers both in the rate for reaction a
and in the probability P that a 8Be nucleus will experience reaction b instead
of fissioning. The only reason30 why carbon production is non-negligible at
temperatures of order 108 K to 109 K is that there is an unstable state of 12C that
provides a resonance in the 4He+8Be channel at an accessible excitation energy
of 310 keV. This unstable state has an appreciable chance of decaying into the
stable ground state of carbon, with the emission of a 7.4 MeV photon. Because
of the pair of Coulomb barriers plus the exothermic nature of reaction a, the
exponent ν in Eq. (1.5.1) for the temperature dependence of carbon production
is quite large, estimated to be of order 30 to 40, depending on the temperature.

Once 12C is formed in this way, it is possible to produce heavier nuclei in
various reactions that are suppressed mostly by Coulomb barriers: 4He+12 C →
16O+γ, 4He+16 O → 24Mg+γ, 12C+12 C → 24Mg+γ, and so on. There are
also reactions that destroy but do not produce various light nuclei with relatively
small binding energies, including 2H, 3He, 6Li, 7Li, 9Be, 10B, and 11B. Where
these nuclei are found spectroscopically in interstellar clouds, their measured
abundance provides a valuable lower bound on the cosmological abundance of
light elements left over from the beginning of the big bang.

Appendix: Calculation of Suppression by Coulomb Barriers

Classically, the total energy of a pair of nuclei interacting through a central
potential V (r) is

Etot = p2
1

2m1
+ p2

2

2m2
+ V (r) = P2

2(m1 +m2)
+ p2

2μ
+ V (r), (1.5.A1)

where p and P are the relative and total momenta, where

p = μ

(
p1

m1
− p2

m2

)
, P = p1 + p2, (1.5.A2)

and μ again is the reduced mass

μ = m1m2

m1 +m2
.

Since both Etot and P are time-independent, they can be expressed at any time
in terms of the relative and total momenta p0 and P0 at a time t0 early enough
that the nuclei are so far apart that V (r) is negligible:

Etot = P2
0

2(m1 +m2)
+ p2

0

2μ
, P = P0. (1.5.A3)

30 E. E. Salpeter, Astrophys. J. 115, 326 (1952).
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We are assuming here that the potential depends only on the separation r ≡ |x|,
x = x1 − x2.

Quantum mechanically, the probability of finding the nuclei with separation
vector x1 − x2 in a small volume d3x around x and center-of-mass position
(m1x1 +m2x2)/(m1 +m2) in a small volume d3X around X is given in terms of
a wave function ψ(x, X) by |ψ(x, X)|2 d3x d3X. The wave function satisfies the
Schrödinger equation Hψ = Etotψ , where Etot is the numerical quantity given
by Eq. (1.5.A3), and H is the Hamiltonian operator, given by replacing p and P
on the right-hand side of Eq. (1.5.A1) with −ih̄ times gradients with respect to
the separation x and the center-of-mass position X = (m1x1+m2x2)/(m1+m2).
The Schrödinger equation is then

Etotψ(x, X) =
[
− h̄2

2(m1 +m2)
∇2

X − h̄2

2μ
∇2

x + V (r)
]
ψ(x, X). (1.5.A4)

We can always find a solution of the form

ψ(x, X) = eiP·X/h̄ψE(x), (1.5.A5)

where E is the energy of relative motion, defined by

Etot = P2

2(m1 +m2)
+ E, (1.5.A6)

and

EψE(x) =
[
− h̄

2

2μ
∇2

x + V (r)
]
ψE(x). (1.5.A7)

This is supposed to hold only outside some very small radius r0, within which
nuclear reactions occur.

To solve this equation, we can often employ the WKB approximation. We
suppose that for a range of radii r > r0, V (r) − E is positive and sufficiently
large that V (r) changes little in a distance 1/κE(r), where

κE(r) =
[

2μ

h̄2

(
V (r)− E)]1/2

.

Then, in this range of r ,

ψE(r) 	 C+ exp

(
+
∫ r

r0

κE(r
′) dr ′

)
+C− exp

(
−
∫ r

r0

κE(r
′) dr ′

)
. (1.5.A8)

The nuclear reactions that occur within the radius r0 fix the ratio C+/C− to
take some value of order unity, which we will not need to calculate. We suppose
further that V (r) eventually decreases to zero for r → ∞. Equation (1.5.A8)
must break down when r approaches a radius rE where V (rE) = E, at which
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κ(rE) = 0. We take the potential barrier between r0 and rE to be sufficiently
high and thick that ∫ rE

r0

κE(r) dr � 1.

Then, for r = rE , Eq. (1.5.A8) reads

ψE(rE) 	 C+ exp

(
+
∫ rE

r0

κE(r
′) dr ′

)
,

the other term in Eq. (1.5.A8) being negligible. For r > rE the function ψE(r)
oscillates, with little change in amplitude, so |ψE(rE)| is determined by the
wave function representing the approach of the nuclei from a large separation.
Thus the rate of nuclear reactions is suppressed by a barrier penetration factor

B(E) 	
∣∣∣∣ C+
ψE(rE)

∣∣∣∣
2

= exp

(
−2
∫ rE

r0

κE(r
′) dr ′

)
. (1.5.A9)

For a Coulomb barrier, we have V (r) = Z1Z2e
2/r , so, taking r0 � rE , we

have

B(E) 	 exp

⎡
⎣−2

∫ rE

0
dr

√
2μZ1Z2e2

h̄2

(
1

r
− 1

rE

)⎤⎦ , (1.5.A10)

where rE = Z1Z2e
2/E. To do this integral, we set r = rEu

2, and use∫ 1
0 du

√
1 − u2 = π/4, so that

B(E) 	 exp

⎡
⎣−π

√
2μZ1Z2e2rE

h̄2

⎤
⎦ = exp

[
−πZ1Z2e

2

√
2μ

h̄2E

]
, (1.5.A11)

as was to be shown.

1.6 Relations among Observables: The Main Sequence

As we have seen in Section 1.3, we expect on very general grounds that stellar
parameters such as radius, luminosity, central temperature, effective surface
temperature, etc. all depend only on the star’s mass, age, and initial chemical
composition. This is why, when any pair of these parameters for a sample of
stars in a cluster that all began at the same time with the same uniform chemical
composition are plotted against each other, the values of these parameters will
fall close to a one-dimensional curve, such as the Hertzsprung–Russell diagram
comparing luminosity and effective surface temperature. But to find the form of
these curves requires detailed physical assumptions and numerical calculation.
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We shall see in this section that for stars that are still on the main sequence,
burning hydrogen at their cores, it is possible to make a good estimate of the
form of these curves using dimensional analysis, together with the assumption
of power-law behavior for the rate per mass ε of nuclear energy generation and
for the opacity κ:

ε = ε1ρ
λ(kBT )

ν , κ = κ1ρ
α(kBT )

β , (1.6.1)

with κ1 and ε1, α, β, λ, and ν all constants assumed to depend only on chemical
composition. (Section 1.4 found α = β = 0 for Thomson scattering, and α = 1
and β = −7/2 for free–free absorption. Section 1.5 found λ = 1 for the proton–
proton chain and CNO cycle; ν ≈ 5 for the proton–proton chain and larger for
the CNO cycle, and ν weakly dependent on temperature, with ν ∝ T −1/3.) Our
discussion in this section will be limited to stars in which thermal energy is
transported only by radiation. In the following section we shall show that the
presence of convective energy transport does not change our main conclusions.

With these assumptions, each stellar parameter will turn out to be dependent
only on the star’s mass M and a pair of quantities N1 and N2 that depend
on chemical composition and fundamental physical constants. Since there are
no dimensionless ratios among M , N1, and N2, any stellar parameter will be
proportional to a product of powers of M , N1, and N2, with exponents fixed by
dimensional analysis. This only works for stars on the main sequence whose
chemical composition (on which κ1, α, etc. depend) is still approximately uni-
form. For red giant stars whose stellar parameters also depend on the radius of
the helium core, dimensional analysis is not enough. It is also not enough even if
we assume that non-uniformities evolve from an initially uniform composition,
because then stellar parameters depend on the age of the star, as well as on
M , N1, and N2.

To carry out our dimensional analysis, we write Eqs. (1.3.3) and (1.3.4) in
terms of ρ, kBT , and L∗ ≡ L/ε1:

dL∗(r)
dr

= 4πr2ρλ+1(r)
(
kBT (r)

)ν , (1.6.2)

d
(
kBT (r)

)4
dr

= −3N1ρ
α+1(r)

(
kBT (r)

)β L∗(r)
4πr2

, (1.6.3)

where

N1 ≡ κ1ε1k
4
B

ca
. (1.6.4)

We will begin by assuming that the pressure p is dominated by gas pressure, as
is the case for all but the most massive stars. (We will return at the end of this
section to stars in which p is dominated by radiation pressure.) The pressure
then is well approximated by the ideal gas law, p = kBTρ/m1μ, where μ is the
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molecular weight and m1 is the mass of unit atomic weight. Then Eqs. (1.3.1)
and (1.3.2) are

d
(
ρ(r)kBT (r)

)
dr

= −N2
M(r)ρ(r)

4πr2
, (1.6.5)

dM(r)

dr
= 4πr2ρ(r), (1.6.6)

where
N2 ≡ 4πGm1μ. (1.6.7)

For uniform chemical composition, the stellar parameters R, L∗ ≡ L/ε1, ρ(0),
kBT (0), etc. can depend only on N1, N2, andM .

Next we must work out the dimensionalities of N1 and N2 in powers of
length, time, and mass. We note that the energy production rate per mass has
dimensions

[ε] = [energy][mass]−1[time]−1 = [velocity]2[time]−1 = [length]2[time]−3,

so

[ε1] = [length]2[time]−3[mass/length3]−λ[energy]−ν

= [length]2+3λ−2ν[time]−3+2ν[mass]−λ−ν .

Also, since 1/κρ is the mean free path, the opacity has dimensions [κ] =
[length]−1/[mass/length3], so

[κ1] = [length]−1[mass/length3]−1−α[energy]−β

= [length]2+3α−2β[time]2β[mass]−1−α−β .

Finally,

[ca/k4
B] = [energy][time]−1[area]−1[energy]−4

= [energy]−3[length]−2[time]−1

= [length]−8[time]5[mass]−3.

Thus

[N1] = [length]12+3λ−2ν+3α−2β[time]−8+2ν+2β[mass]2−λ−ν−α−β (1.6.8)

and

[N2] = [G][mass] = [velocity]2[length] = [length]3[time]−2. (1.6.9)

To calculate the stellar radius R, we ask what product of form MAN
A1
1 N

A2
2

has the dimensions of length. Setting the numbers of powers of length, time,
and mass in this product respectively equal to +1, 0, and 0, we find
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powers of length : 1 = (12 + 3λ− 2ν + 3α − 2β)A1 + 3A2, (1.6.10)

powers of time : 0 = (−8 + 2ν + 2β)A1 − 2A2, (1.6.11)

powers of mass : 0 = A+ (2 − λ− ν − α − β)A1. (1.6.12)

Using Eq. (1.6.11) to eliminate A2 in Eq. (1.6.10) gives A1; Eq. (1.6.11) then
gives A2; and using this in Eq. (1.6.12) gives A. In this way we find

A = −2 + λ+ ν + α + β
3λ+ ν + 3α + β , (1.6.13)

A1 = 1

3λ+ ν + 3α + β , (1.6.14)

A2 = −4 + ν + β
3λ+ ν + 3α + β , (1.6.15)

and so
R ∼= MAN

A1
1 N

A2
2 , (1.6.16)

with A, A1, and A2 given by Eqs. (1.6.13)–(1.6.15). (Here we use ∼= to mean
“proportional to, and since there are no very large or very small dimensionless
constants in the differential equations, also roughly equal to.”)

Likewise, the luminosity has dimensions

[L] = [energy]/[time] = [length]2[time]−3[mass],

so L∗ ≡ L/ε1 has dimensions

[L∗] = [length]−3λ+2ν[time]−2ν[mass]1+λ+ν .

Following the same procedure as above for R, we find that the unique product
of powers ofM , N1, and N2 that has the same dimensionality as L∗ is

L∗ ∼= MBN
B1
1 N

B2
2 ,

where

B = (1 + λ+ ν)(3α + β)+ (3 − α − β)(3λ+ ν)
3λ+ ν + 3α + β , (1.6.17)

B1 = − 3λ+ ν
3λ+ ν + 3α + β , (1.6.18)

B2 = ν(3α + β)+ (4 − β)(3λ+ ν)
3λ+ ν + 3α + β . (1.6.19)

We conclude then that

L = ε1L
∗ ∼= ε1M

BN
B1
1 N

B2
2 . (1.6.20)
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The same reasoning can be applied to other quantities, such as the tempera-
ture at the center of the star. The only combination of N1, N2, and M that has
the same dimensions as kBT isMCN

C1
1 N

C2
2 , where

C = 2
λ+ α + 1

3λ+ ν + 3α + β , (1.6.21)

C1 = − 1

3λ+ ν + 3α + β , (1.6.22)

C2 = 1 + 4C1, (1.6.23)

so we conclude that the central temperature is

kBT (0) ∼= MCN
C1
1 N

C2
2 . (1.6.24)

At this point the reader may be wondering why the central temperatures of
stars are so different from their effective surface temperatures, despite their
having the same dimensionality. For instance, the effective surface temperature
of the Sun is measured as Teff,� = 5, 800 K, while detailed solar models give
the central temperature of the Sun as T�(0) = 1.36 × 107 K etc., larger by a
factor 2,340. The answer is that, while the central temperature depends only on
M , N1, and N2, this is not true of the effective surface temperature, which is
defined by the requirement L = 4πR2σT 4

eff, or in other words,

kBTeff ≡ [k4
BL/4πσR

2]1/4 = [Lk4
B/πacR

2]1/4 = [N1L
∗/πR2κ1]1/4.

(1.6.25)
This can be written as the product

Teff = τ
−1/4
0 T0, (1.6.26)

where τ0 is the dimensionless quantity

τ0 = Rκ1[M/R3]1+α[kBT (0)]
β ,

and T0 has the dimensions of temperature,

kBT0 = [R[M/R3]1+α[kBT (0)]
βN1L

∗/πR2]1/4.

Since T0 and T (0) depend only on M , N1, and N2, and have the same dimen-
sionality, we expect them to be equal, up to factors of order unity. So from
Eq. (1.6.26) we expect that

T (0)/Teff ≈ τ
1/4
0 . (1.6.27)

On the other hand, τ0 is the value that the optical depth of the center of the
star would have if the density and temperature had the uniform values M/R3

and T (0), which is much greater than unity because the star is optically thick.
For instance, if we take the Sun to be completely ionized hydrogen and take its
opacity to be entirely due to Thomson scattering, then, as shown in Section 1.4,
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κ 	 0.4 cm2/g, so for a uniform density ≈ M/R3� the optical depth of the
center of the Sun is τ0 ≈ R�κM�/R3� = 1.6×1011. Our estimate (1.6.27) then
suggests that T (0)/Teff 	 630, not very different from the actual ratio 2,340
cited above.

We are now in a position to find the shape of the famous Hertzsprung–Russell
relation between effective surface temperature and luminosity for stars on the
main sequence. From the definition (1.6.25) and our results that R ∝ MA and
L ∝ MB , we find the mass dependence of the effective surface temperature

Teff ∝ M [B−2A]/4. (1.6.28)

Therefore, eliminating M from our results for L and Teff, we can express the
Hertzsprung–Russell relation as a power law:

L ∝ T Heff (1.6.29)

with exponent

H = 4B

B − 2A
= 4

[
1 − 2

−2 + λ+ ν + α + β
(1 + λ+ ν)(3α + β)+ (3 − α − β)(3λ+ ν)

]−1

.

(1.6.30)

The estimate of H is simplest for stars on the upper part of the main sequence,
whose high temperature means that opacity is dominated by Thomson scatter-
ing, for which α = β = 0. For both the proton–proton chain and the CNO cycle
λ = 1, so leaving ν as a free parameter, the Hertzsprung–Russell exponent is

H = 12(3 + ν)
11 + ν . (1.6.31)

In all cases ν is positive-definite and 3.27 < H < 12. More specifically, for the
proton–proton chain and CNO cycle we have roughly ν 	 5 and ν 	 15, for
which respectively H 	 6 and H 	 8.3. The comparison with observation is
complicated by the fact that, although it is straightforward to measure L for any
star whose distance is known (or to measure ratios of values of L for a cluster of
stars that are all at the same distance), it is difficult to obtain a precise value for
Teff from observations of colors or spectral lines. From one graph31 of L versus
Teff for a large sample of stars with masses between 2 and 10 solar masses,
I estimate that H 	 7.

The problems associated with the measurement of effective surface temper-
ature can be avoided by considering the class of eclipsing binary stars, for
which accurate values of R and M can be found from the analysis of the time-
dependence of luminosities and Doppler shifts.32 It is particularly revealing to
consider the relation between luminosity and mass for stars, such as those on the

31 F. LeBlanc, Introduction to Stellar Astrophysics (John Wiley & Sons, Chichester, 2010), p. 27.
32 J. Andersen, Astron. Astrophys. Rev. 3, 91 (1991).
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upper part of the main sequence, whose opacity is due to Thomson scattering,
for which α = β = 0. For these stars Eqs. (1.6.17)–(1.6.19) give B = 3,
B1 = −1, and B2 = 4, so here Eq. (1.6.20) reads

L ∼= ε1M
3N−1

1 N4
2 = ca(4πGm1μ)

4

κ1k
4
B

M3. (1.6.32)

It is striking that this result is entirely independent of the parameters ε1, λ, and ν
characterizing the mechanism for nuclear energy generation. One suspects that
for α = β = 0 this result is even independent of the assumption that the rate
of energy generation per mass is proportional to a product of powers of density
and temperature, but I have not been able to prove this.

The data on eclipsing binaries cited by Andersen shows that for 2 ≤ M/

M� ≤ 20, binaries have L ∝ M3.6. Another survey33 shows that bright stars
have L ∝ M4.0, while dimmer stars have L ∝ M2.76. Stars on the upper part of
the main sequence have34 L ∝ M3.5. Given the limited statistics from eclipsing
binaries and the oversimplification in our assumption of an opacity entirely due
to Thomson scattering, the discrepancies among these measured exponents –
3.6, 4.0, 2.76, and 3.5 – and with our result that L ∝ M3 – are not surprising.

The luminosity–mass relation provides insight regarding the scale of time
over which stars of various mass evolve. The fusion 41H → 4He yields 6.5 MeV
per proton, so the energy per mass available from hydrogen burning is

6.5 MeV/p × 1.602 ×10−5 erg/MeV/1.672 ×10−24 g/p = 6.23 ×1019 erg/g.

The Sun has massM� = 1.939 × 1033 g, but initially only 75% was hydrogen,
so the energy available is

EH = 0.75f × 1.939 × 1033
(
M

M�

)
g × 6.23 × 1019 erg/g

= 0.93 × 1053f

(
M

M�

)
erg,

where f is the fraction of the Sun’s hydrogen that becomes sufficiently hot to
initiate nuclear reactions. The Sun has luminosity L� = 3.845 × 1033 erg/sec,
so a star of massM and luminosity L could go on burning hydrogen for a time

EH/L 	 7.6 × 1011f
M/M�
L/L�

years.

The main sequence duration of the Sun is commonly estimated as 1010 years,
corresponding to f 	 0.013, a not unreasonable value. Even with an efficiency

33 Cited by J. P. Cox and R. T. Giuli, Principles of Stellar Structure (Gordon and Breach, New York, 1968),
p. 15.

34 C. J. Hansen, S. D. Kawaler, and V. Trimble, Stellar Interiors: Physical Principles, Structure and
Evolution, 2nd edn. (Springer, New York, 2004), p. 28.
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this small, the solar main sequence lifetime is much longer than the Kelvin time
107 years over which the Sun could go on shining without nuclear reactions, and
it is not much less than the present age 1.37 × 1010 years of the big bang. But
with our analytic estimate L ∝ M3 and the same hydrogen burning efficiency,
for M = 100M� the main sequence duration would be only 106 years, while
with the empirical relation L ∝ M3.5 the main sequence lifetime would be
105 years.

Finally, consider the relation between stellar radii and masses. Recall
that R ∝ MA, and for α = β = 0 and λ = 1, Eq. (1.6.13) gives

A = −1 + ν
3 + ν .

If for the CNO cycle we take ν = 15, then R ∝ M0.78. Data35 for stars with
masses between 5 and 20 solar masses give R ∝ M0.78, while other data36 for
stars on the upper part of the main sequence indicate that R ∝ M0.75. This is a
very satisfactory confirmation of the results of dimensional analysis.

* * * * *

In closing, we return to the case in which the pressure is dominated by radiation
rather than hot gas. Here p = aT 4/3, so Eqs. (1.6.5) and (1.6.7) are replaced
with

d
(
kBT (r)

)4
dr

= −3N ′
2
M(r) ρ(r)

4πr2
,

and

N ′
2 ≡ 4πGk4

B/a,

while there is no change in Eqs. (1.6.1)–(1.6.4) or (1.6.6). Now stellar param-
eters R, L∗ ≡ L/ε1, ρ(0), kBT (0), etc. depend only on N1, N ′

2, and M . Note
that N ′

2 has the dimensions of G[energy]4/[energy/volume], or

[N ′
2] = [G][energy]4/[energy/volume] = [G][energy]3[volume]

= [length]12[time]−8[mass]2. (1.6.33)

Here again there is a remarkably general simple relation between luminosity
and mass in the case where opacity is dominated by Thomson scattering. Recall
that L has dimensions

[L] = [energy]/[time] = [length]2[time]−3[mass],

35 Cited by A. Weiss, W. Hillebrandt, H.-C. Thomas, and H. Ritter, Cox and Giuli’s Principles of Stellar
Structure, 2nd edn. (Cambridge Scientific Publishers, Cambridge, 2004), p. 10.

36 Cited by C. J. Hansen, S. D. Kawaler, and V. Trimble, Stellar Interiors: Physical Principles, Structure
and Evolution, 2nd edn. (Springer, New York, 2004), p. 28.
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so L∗ ≡ L/ε1 has dimensions

[L∗] = [length]−3λ+2ν[time]−2ν[mass]1+λ+ν .

The only combination of N1, N ′
2, and M that has the same dimensions as L∗ is

MB ′
N
B ′

1
1 N ′B ′

2
2 , where

B ′ = 1 + (λ+ ν/2)(3α + β)− (α + β/2)(3λ+ ν)
3λ+ ν + 3α + β , (1.6.34)

B ′
1 = − 3λ+ ν

3λ+ ν + 3α + β , (1.6.35)

B ′
2 = ν

4
+ B ′

1

(
−1 + ν

4
+ β

4

)
. (1.6.36)

Hence
L = ε1L

∗ ∼= ε1M
B ′
N
B ′

1
1 N ′B ′

2
2 . (1.6.37)

Equations (1.6.25)–(1.6.27) with α = β = 0 give B ′ = 1, B ′
1 = −1, B ′

2 = 1,
so Eq. (1.6.37) gives

L ∼= ε1MN
−1
1 N ′1

2 = 4πGc

κ1
M , (1.6.38)

for any values of λ and ν. This may be compared with the result given at the
end of Section 1.3, that in the absence of gas pressure

L = 4πGcM

κ(R)
. (1.6.39)

This result was derived with no assumptions regarding the dependence of opac-
ity or nuclear energy generation on temperature and density. If we assume that
the opacity is independent of temperature and density, as it is for Thomson
scattering, then κ(R) is the same as what in this section we have called κ1, so
Eq. (1.6.38) is the same as Eq. (1.6.39) and dimensional analysis is not needed.
Here ∼= actually means =. But, for a more general dependence of opacity on
temperature and density, of the form (1.6.1), though Eq. (1.6.39) is still valid in
the absence of gas pressure, the opacity κ(R) at the surface is different from κ1,
the relation depending on the profile of density and pressure throughout the star
and hence on the stellar mass, so here dimensional analysis comes in handy in
finding the luminosity–mass relation.

1.7 Convection

The regime of radiative energy transport discussed in the previous sections,
and more generally any smooth model of stellar structure, may not be stable
against the onset of convection. Bits of stellar material may separate from their
surroundings, and rise or fall, like eddies in a heated pot of water.
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Suppose that a small element of stellar fluid happens to move upward from
r to r + dr . The balance of forces at the surface of the element will cause the
pressure inside to change, from p(r) to the ambient pressure p(r)+ p′(r) dr at
its new location. The density and temperature will also change, but not to the
new ambient density and temperature. Since heat conduction is generally very
slow in stars, it is reasonable to suppose that the process is adiabatic, with no
heat flowing into or out of the fluid element. Then the density and temperature
will be some definite function of the pressure (in general depending on initial
conditions), and in particular the new density will be

ρ(r)+
[
∂ρ(p)

∂p

]
p=p(r)

p′(r) dr , (1.7.1)

in which we adopt the convention that a partial derivative in square brackets is
to be calculated assuming that variations are adiabatic – that is, with changes
in pressure, the temperature and density vary in such a way that no heat flows
into or out of the fluid element. If this new density is greater than the ambient
density ρ(r)+ρ′(r) dr at the new position, then the fluid element will sink back
toward its original position, and the initial configuration will be stable. Thus the
condition for stability against upward motion is[

∂ρ(p)

∂p

]
p=p(r)

p′(r) > ρ′(r). (1.7.2)

Similarly, if the blob density (1.7.1) is less than the new ambient density ρ(r)+
ρ′(r) dr then the fluid element will float upward, so we then have stability
against downward motion. Since for downward motion dr is negative, the sta-
bility condition is again (1.7.2).

On the other hand, if the left-hand side of Eq. (1.7.2) is less than the right-
hand side we have an exponentially growing instability, whereas if the two sides
are equal we have instability against a steady drift upwards or downwards.

Under conditions of convective stability, the r-derivative of the temperature is
given by the equation (1.3.4) of radiative energy transport, while the r-derivative
of the pressure is given by the equation (1.3.1) of hydrostatic equilibrium, so it
is convenient (and conventional) to rewrite the equation (1.7.2) of convective
stability in terms of temperature and pressure rather than density and pressure.
For this purpose, we need the ideal gas law

ρ = mp/kBT ,

where m is the mass of the gas particles, whose value will not concern us. It
follows then that [

∂ρ

∂p

]
= ρ

p
− ρ

T

[
∂T

∂p

]
= ρ

p
−
[
∂ ln T

∂ lnp

]
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(the square brackets again indicating adiabatic variations), and

ρ′ = ρp′

p
− T ′ρ

T
,

so the quantity appearing in the stability condition (1.7.2) can be written[
∂ρ

∂p

]
p=p(r)

p′(r)− ρ′(r) = −p
′(r)ρ(r)
p(r)

(∇ad(r)− ∇(r)),
where ∇ad is the value of ∂ ln T/∂ lnp for adiabatic variations,

∇ad(r) ≡
[
∂ ln T (p)

∂ lnp

]
p=p(r)

, (1.7.3)

and ∇(r) is the actual value of this derivative in the star:

∇(r) ≡ T ′(r)/T (r)
p′(r)/p(r)

. (1.7.4)

Since the quantity p′ρ/p is everywhere negative, the condition (1.7.2) for
convective stability is just

∇(r) < ∇ad(r). (1.7.5)

Using Eqs. (1.3.1) and (1.3.4), we have

∇(r) = 3κ(r)L(r)p(r)
16πca T 4(r)GM(r)

. (1.7.6)

It is instructive to write the stability condition ∇(r) < ∇ad(r) as a limit on the
rate of energy flow through a sphere of radius r that can be carried stably by
radiation:

L(r) < 4 ∇ad(r)

(
prad(r)

p(r)

)
LEdd(r), (1.7.7)

where prad(r) is the radiation pressure aT (r)4/3 and LEdd(r) is the Eddington
limit 4πGcM(r)/κ(r). As we saw at the end of Section 1.3, L(r) must in any
case be less than LEdd(r) in order for radiation not to overcome gravitational
attraction and tear the star apart. We will see that 4 ∇ad is never very different
from unity, so for ordinary stars, for which radiation pressure is much less than
gas pressure, stability against convection requires that L(r)must be not just less
but very much less than the Eddington limit LEdd(r).

To calculate ∇ad we make use of the conservation of energy and mass. (For
relativistic theories, in which mass is not conserved, we use baryon number
instead.) We take E as the thermal energy density, excluding the energy associ-
ated with rest masses, so the thermal energy per gram is E/ρ. When the volume
per gram 1/ρ of stellar material increases by a small amount δ(1/ρ) (which
of course is negative for decreasing volume), the work per gram that is done
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against the ambient pressure p is p δ(1/ρ), so in the absence of heat flow the
conservation of energy requires that

δ(E/ρ)+ p δ(1/ρ) = 0. (1.7.8)

As already mentioned in Section 1.1, for a wide variety of stellar material E is
proportional to p, a relation conventionally written as

E = p

� − 1
. (1.7.9)

(This is sometimes written as E = np, where n ≡ 1/(�− 1).) Using Eq. (1.7.9)
in Eq. (1.7.8), the adiabatic energy conservation condition becomes

�p δ(1/ρ)+ (1/ρ) δp = 0,

or in other words
δ
(
p/ρ�

) = 0. (1.7.10)

The adiabatic partial derivative in Eq. (1.7.2) is then[
∂ρ(p)

∂p

]
= ρ

�p
, (1.7.11)

and the stability condition (1.7.2) is then just the condition that

ρ(r) p′(r)
�p(r)

> ρ′(r),

or, multiplying by the positive quantity �/ρ(r),

p′(r)
p(r)

>
�ρ′(r)
ρ(r)

. (1.7.12)

(The difference between the left-hand and right-hand sides of this inequality is
a quantity known as the Schwarzschild discriminant.) Hence stability requires
that p(r)/ρ�(r) increases with r . Where this is not the case, convection occurs.

For an ideal gas, with p proportional to ρT , we have p/ρ� proportional to
T �/p(�−1), so for adiabatic variations T ∝ p(�−1)/� , and the quantity (1.7.3)
is the constant

∇ad = 1 − 1/�. (1.7.13)

This is the value we must use in the stability criterion (1.7.5).
For a monatomic ideal gas of atoms at temperature T the equipartition of

energy gives a thermal energy per atom 3kBT/2, so with ρ/m1μ atoms per
volume (where μ is the atomic weight andm1 the mass for unit atomic weight),
the thermal energy per volume is E = 3kBTρ/2μm1, as compared with a
pressure given by the ideal gas law as p = kBTρ/μm1, so here Eq. (1.7.9)
is satisfied with � = 1 + 2/3 = 5/3, and ∇ad = 2/5.

Matters are not always so simple, even in ordinary stars. For instance in the
Sun, as we go inwards from just below the surface to r 	 0.8R�, the increasing
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temperature goes first to ionizing atomic hydrogen (which takes 13.6 eV per
atom), then to singly ionizing atomic helium (24.6 eV per atom), and then
to completely ionizing singly ionized helium (54.4 eV per ion), rather than
to increasing thermal velocities and pressure. Since ∂E/∂p is thus effectively
greater than 3/2, the effective value of � is less than 5/3, and ∇ad is less than 2/5.
In the outer layers of the Sun, from just below the surface down to r 	 0.8R�,
the effective value of ∇ad is approximately 0.15.37 Elsewhere in the Sun, ∇ad is
close to the nominal value 2/5.

Energy density is proportional to pressure also if the thermal energy and
pressure are both dominated by relativistic particles, such as fast electrons in
high-mass white dwarfs or photons in supermassive stars. In such cases we have
p = E/3, so Eqs. (1.7.9) and (1.7.13) are satisfied with � = 4/3 and ∇ad = 1/4.

Now suppose that, in some part of a star, the condition (1.7.2) for convective
stability is not satisfied, but rather[

∂ρ(p)

∂p

]
p=p(r)

p′(r) < ρ′(r), (1.7.14)

or equivalently,
∇(r) > ∇ad(r). (1.7.15)

(This is the case in the Sun from just below the surface, at a depth where
p ≈ 105 dyne/cm2, down to r 	 0.7R�, where p ≈ 1013.5 dyne/cm2.) As
we have seen, in this case a blob of stellar fluid that happens to move upwards
or downwards will become respectively lighter or heavier than the same volume
of ambient fluid along its path, and hence will tend to keep moving in the same
direction. The pressure in the blob remains the same as the ambient pressure
along its path, so if the energy per volume E depends only on the pressure, it
too remains the same in the blob as in the fluid along its path, but since the mass
density ρ in the blob becomes less or greater than in the fluid along its path
for a blob going upwards or downwards, the energy per mass E(p)/ρ becomes
respectively greater or less than in the fluid along its path. Specifically, after the
blob travels a distance δr , the difference between its density and the density of
the surrounding material will be

δρ =
[[
∂ρ(p)

∂p

]
p=p(r)

p′(r)− ρ′(r)

]
δr ,

so the difference between the thermal energy per mass of the blob and of the
surrounding material will be

37 Numerical results for ∇ and ∇ad here and below are taken from Figure 29.4 of R. Kippenhahn and
A. Weigert, Stellar Structure and Evolution (Springer-Verlag, Berlin, 1990). Other solar parameters are
taken from C. W. Allen, Astrophysical Quantities (Athlone Press, London, 1955).
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δ

(E
ρ

)
= −Eδρ/ρ2 = E(r)

ρ2(r)

[
ρ′(r)−

[
∂ρ(p)

∂p

]
p=p(r)

p′(r)

]
δr . (1.7.16)

According to the condition (1.7.14) for convection to occur, the change (1.7.16)
in energy per mass of the blob will be positive or negative for outward or inward
motion, respectively. Eventually the blob will dissolve into the ambient material,
heating the ambient matter above if the blob has gone upward and cooling the
matter below if the blob has gone downward. The succession of blobs going up
and down thus leads to a flow of heat energy outward through the star.

The convective transport of energy forces a clarification of notation. From
now on, we refer to the rate of energy transport outward through a sphere of
radius r by radiation and convection as Lrad(r) and Lconv(r), respectively, while
the total rate of energy transport is

Lrad(r)+ Lconv(r) ≡ Ltot(r).

The equation (1.3.3) of energy conservation refers of course to the total energy
transport rate

dLtot(r)

dr
= 4πr2ε(r)ρ(r), (1.7.17)

while it is Lrad(r) that controls variations in temperature through Eq. (1.3.4),
which we now write as

dT (r)

dr
= −3κ(r)ρ(r)

4caT 3(r)

Lrad(r)

4πr2
. (1.7.18)

Thus, in the presence of convection, Eq. (1.7.6) refers to the radiative energy
transport rate, not the total rate:

∇(r) = 3κ(r)Lrad(r)p(r)

16πca T 4(r)GM(r)
. (1.7.19)

Often one defines a quantity ∇rad(r) as what ∇(r) would be if energy were
transported entirely by radiation:

∇rad(r) ≡ 3κ(r)Ltot(r)p(r)

16πca T 4(r)GM(r)
. (1.7.20)

Since convection carries some energy, the presence of convection means that
∇(r) is less than ∇rad(r) (often much less), as well as greater than ∇ad.

Finding Ltot(r) is relatively easy. Equation (1.7.17) tells us that outside a
central core where nuclear reactions occur, Ltot(r) is a constant, and hence is
equal to the star’s luminosity L. But in order to use Eq. (1.7.18) to calculate the
variation in the star’s temperature, we need to find Lrad(r), which is not so easy.
Instead we can often simply assume that in convective zones ∇(r) 	 ∇ad(r),
so that the temperature varies in such a way as to keep the pressure simply
proportional to ρ� .
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To see when this is likely to be the case, it is usual to calculate the convective
energy flux employing a radical approximation. One assumes that the dissolu-
tion of each blob occurs after it has traveled a distance 	(r), known as the mixing
length. (The mixing length at radius r is usually taken to be of the same order
of magnitude as the scale height of the stellar fluid at that position, the radial
distance in which density, pressure, etc. change appreciably, but it is difficult
to justify this guess, and even more difficult to do better.) We assume that the
whole mass of the star is involved in this convection, so the energy per time
transported by convection through a sphere of radius r is the quantity (1.7.16)
(with δr replaced with 	) times the mass 4πr2ρ(r)	(r) in a shell of thickness
	(r) divided by the time ≈ 	(r)/u(r) that it takes blobs to pass through this
shell,

Lconv(r) ≈ 4πr2u(r)
E(r)
ρ(r)

(
ρ′(r)−

[
∂ρ(p)

∂p

]
p=p(r)

p′(r)

)
	(r), (1.7.21)

where u(r) is a typical blob velocity. To estimate u(r), we note that the buoyant
force on a blob of volume V is the acceleration of gravity g = GM/r2 =
|p′/ρ| times the mass ρV of the ambient material with the same volume V
minus the mass (ρ + δρ)V of the blob.38 To first order the acceleration of the
blob is this force divided by ρV , which after traveling a distance 	(r) is

a =
∣∣∣∣p′(r)
ρ2(r)

∣∣∣∣
(
ρ′(r)−

[
∂ρ(p)

∂p

]
p=p(r)

p′(r)

)
	(r).

The average velocity over this time is then of the order u ≈ √
a	, or

u(r) ≈
∣∣∣∣p′(r)
ρ2(r)

∣∣∣∣
1/2
(
ρ′(r)−

[
∂ρ(p)

∂p

]
p=p(r)

p′(r)

)1/2

	(r). (1.7.22)

Together with Eq. (1.7.21), this gives the energy per time transported by con-
vection through a sphere of radius r as

38 A proof of the classic result that the buoyant force on a submerged body equals the weight of the fluid the
body displaces was given by Archimedes, “On Floating Bodies,” in The Complete Works of Archimedes,
trans. T. L. Heath (Cambridge University Press, Cambridge, 1897). He compared two columns of fluids.
In one, the submerged body is held down by a piston, while in the other, with the same horizontal cross
section as the submerged body, the fluid is undisturbed. In order for the fluid to be at rest the force pressing
down at the base of the two columns must be the same, so the buoyancy, which equals the force exerted by
the piston, plus the weight of the submerged body, plus the weight of the column of fluid less the weight
of the fluid displaced by the body, must equal the weight of the fluid in the undisturbed column, which
does include the weight of the fluid displaced by the body. The same result can be derived more directly
by modern methods. The integral of the pressure force on the surface of the displaced body is related by
Gauss’s theorem to the integral of the pressure gradient over the displaced volume, which according to
the equation of hydrostatic equilibrium equals the weight of the displaced fluid.
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Lconv(r) ≈ 4πr2
∣∣∣∣p′(r)
ρ2(r)

∣∣∣∣
1/2 E(r)
ρ(r)

(
ρ′(r)−

[
∂ρ(p)

∂p

]
p=p(r)

p′(r)

)3/2

	2(r).

(1.7.23)
In the same way as in our derivation of the condition (1.7.5) for convective
stability, for ideal gases we can rewrite Eq. (1.7.23) as

Lconv(r) ≈ L0(r)
(∇(r)− ∇ad(r)

)3/2, (1.7.24)

where

L0(r) ≡ 4πr2p
′2(r)E(r)	2(r)

p3/2(r)ρ1/2(r)
. (1.7.25)

We say that convection is efficient at r if the coefficient L0(r) is much larger
than the luminosity L. This is often the case. Where the mixing length 	(r) is
half the pressure scale height, and E = 3p/2, we have

L0 ≈ (3/2)πr2p3/2(r)/ρ1/2(r).

In the Sun at r = 0.8R� we have r = 5.6×1010 cm, p = 1.6×1012 dyne/cm2,
and ρ = 0.018 g/cm3, so L0 ≈ 2 × 1041 erg/sec, as compared with the solar
luminosity L = 3.9 × 1033 erg/sec. By a wide margin, this is a case of efficient
convection. In general cases of efficient convection, Eq. (1.7.24) requires that
∇(r) is very close to the adiabatic value ∇ad(r). In particular, where E is related
to the pressure by Eq. (1.7.9), ∇ad is given by Eq. (1.7.13), and so in the case of
efficient convection we have

p(r) = Kρ�(r), (1.7.26)

whereK is a constant that depends on conditions at the boundary of this region.
This is the case throughout the convective region of the Sun, aside from a thin
shell near the surface, where the pressure drops from 106 dyne/cm2 to 105

dyne/cm2. (But, as already mentioned, due to the effect of ionization, � is not
constant in the outer parts of the convective region.) Where Eq. (1.7.26) holds
throughout a star’s interior, the star is known as a polytrope. Such stars are
discussed further in Section 1.8.

There is another way of expressing this. The second law of thermodynamics
tells us that there is a function s of ρ, p, etc. known as the specific entropy, or
entropy per gram, for which39

T ds = d(E/ρ)+ p d(1/ρ). (1.7.27)

Hence Eq. (1.7.8) can be interpreted as the statement that convection does not
change the specific entropy of the convected fluid elements:

δs = 0. (1.7.28)

39 We are using δ to denote a change in a fluid element as it rises or falls in the star, while d stands for an
arbitrary variation, not necessarily related to any actual motion.
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This is because heat conduction is neglected here, which is generally a good
approximation in stars. In regions where convection is efficient the specific
entropy tends to a nearly uniform value to keep the convective energy transport
consistent with the actual luminosity of the star. Stars with a uniform entropy
per gram are said to be isentropic.

Though not strictly necessary for our purposes, it is instructive to work out
a formula for the specific entropy for gases. With the internal energy given by
Eq. (1.7.9), Eq. (1.7.27) reads

T ds = 1

� − 1

(
dp

ρ
+ �p d

(
1

ρ

))
= ρ�−1

� − 1
d

(
p

ρ�

)
. (1.7.29)

For an ideal gas, T = p/Rρ, with R constant, so

ds = R

� − 1

(
ρ�

p

)
d

(
p

ρ�

)
= R

� − 1
d ln

(
p

ρ�

)
. (1.7.30)

Hence

s = R

� − 1
ln

(
p

ρ�

)
+ constant. (1.7.31)

We see again that p/ρ� is constant in an isentropic star.
In typical stars there are regions stable against convection, in which energy

transport is by radiation and p/ρ� increases with r , and others with effective
convection, in which p/ρ� is constant. For instance, in the Sun there is a core
with radiative energy transport, extending from the center where p 	 2 × 1017

dyne/cm2, out to a radius about 0.65R� where the pressure has dropped to about
3 × 1013 dyne/cm2. This is surrounded by an outer convective layer, and (since
convection cannot carry energy into empty space) a relatively thin surface layer
dominated by radiative energy transport. In more massive stars, there typically
is a convective core, and an outer layer dominated by radiative transport that is
stable against convection.

None of this affects the general results of Section 1.3 because the radii where
regions of convective energy transport begin or end, and the values of p/ρ�

in these regions, are set by the conditions in the adjacent regions of radiative
energy transport, and so are ultimately determined in terms of physical constants
and the value of the nominal stellar radius R where the boundary conditions
ρ(R) = p(R) = 0 are imposed. Also, the general results of Section 1.6 for the
main sequence are unchanged, because nothing regarding convection involves
new dimensionful constants.

* * * * *

For isentropic stars, whether or not satisfying the conditions for a polytrope,
the equations of hydrostatic equilibrium can be expressed as a variational prin-
ciple, which will prove useful when we come to stellar instability in Section 1.9.
Let us consider the variation in the total energy
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E =
∫ R

0
4πr2

(
E(r)− GM(r)ρ(r)

r

)
dr . (1.7.32)

Changes δρ and δE in the mass and energy densities produce a change in the
total energy

δE =
∫ R

0
4πr2

(
δE(r)− GM(r) δρ(r)

r
− Gρ(r)

r

∫ r

0
4πr ′2δρ(r ′) dr ′

)
dr .

(1.7.33)
In the first term, we use Eq. (1.7.8), which gives δE = (E + p) δρ/ρ. In the
third term, we interchange the order of integration, and also interchange the
coordinate labels r and r ′. This gives

δE =
∫ R

0
4πr2 F(r) δρ(r) dr , (1.7.34)

where

F(r) = E(r)+ p(r)
ρ(r)

− GM(r)

r
−G

∫ R

r

4πr ′ρ(r ′) dr ′. (1.7.35)

A straightforward calculation using Eq. (1.7.8) gives

dF(r)
dr

= 1

ρ(r)

dp(r)

dr
+ GM(r)

r2
. (1.7.36)

This vanishes according to the equation (1.1.4) of hydrostatic equilibrium, so
F(r) is a constant F0, and therefore Eq. (1.7.32) reads

δE = F0

∫ R

0
4πr2 δρ(r) dr = F0 δM . (1.7.37)

Thus, although the equation of hydrostatic equilibrium does not tell us that
either E orM is stationary, it does tell us that E is stationary ifM is. (The same
result applies in general relativity,40 with the total baryon number NB times the
baryon rest mass mB taking the place of M and M − mBNB taking the place
of E.)

1.8 Polytropes

There are several classes of stars for which the pressure is simply proportional
to a power of density, at least away from the surface:

p = Kρ� , (1.8.1)

40 For a textbook demonstration, see Section 11.2 of S. Weinberg, Gravitation and Cosmology (Wiley, New
York, 1972).
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with K and � constant throughout the star. Such stars are known as polytropes
with index �. These include the following types,

• Ordinary stars with efficient convective energy transport. As shown in the
previous section, these stars obey Eq. (1.8.1), with � typically close to 5/3,
and K depending on boundary conditions, such as the values of the central
density and pressure.

• As we shall see in Section 1.10, exceptionally light white dwarf stars obey
Eq. (1.8.1) with � usually close to 5/3, and exceptionally heavy white dwarf
stars obey Eq. (1.8.1) with � 	 4/3. In both cases K depends only on the
chemical composition, as well as on fundamental physical constants.

• Supermassive stars. As discussed in Section 1.11, these stars obey Eq. (1.8.1)
with � 	 4/3 and withK depending on the molecular weight and on the ratio
of matter to radiation pressure, as well as on fundamental physical constants.

In this section we will treat all polytropes in common, not inquiring into the
reason for Eq. (1.8.1).

Since the temperature does not enter in Eq. (1.8.1), we can work out the
properties of the star using only the hydrostatic equations (1.1.4) and (1.1.5). It
will be convenient now to rewrite these two first-order differential equations as
a single second-order equation for the density:

d

dr

(
r2

ρ(r)

d

dr
ρ�(r)

)
+ 4πG

K
r2ρ(r) = 0. (1.8.2)

As boundary conditions, we can take the central density to have some assumed
value ρ(0) and, since the analyticity of ρ as a function of x requires ρ(r) to
be a power series in r2 near r = 0, we also take ρ′(0) = 0. With two initial
conditions, we have a unique solution, depending only on � and on the free
parameters K/G and ρ(0).

There is an apparent paradox in the case of stars with efficient convective
energy transport. Here there is not just one free stellar parameter, such as the
star’s mass or radius, but two free parameters, which can be taken as ρ(0) and
K = p(0)/ρ(0)� . Thus the Vogt–Russell theorem mentioned in Section 1.3
does not apply to such polytropes. This may seem surprising, because we
can think of the star as described by three first-order differential equations:
Eqs. (1.1.4) and (1.1.5), together with

d

dr

(
p(r)

ρ�(r)

)
= 0,

together with three parameter-free boundary conditions: M(0) = 0, ρ(R) = 0,
and p(R) = 0. So why, with an equal number of first-order differential equa-
tions and parameter-free boundary conditions, do we have any free parameters
beyond the radius R at which some of the boundary conditions are imposed?
The reason why this counting does not work here, though it may seem the
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same as the sort we used in Section 1.3, is that we are really imposing only
one boundary condition at the surface. With p(r)/ρ�(r) constant, the condition
ρ(R) = 0 implies that p(R) = 0. Having three first-order differential equations
and only two independent parameter-free boundary conditions depending on R,
there is an additional free parameter, which can be taken as K or ρ(0), in
addition to the radius R at which one of the boundary conditions is imposed.

Returning now to general polytropes, the free parameters in Eq. (1.8.2) can be
eliminated by re-scaling the independent and dependent variables. First, define

� ≡
(
ρ(r)

ρ(0)

)�−1

. (1.8.3)

Then Eq. (1.8.2) gives

1

r2

d

dr

(
r2 d

dr
�

)
+ 4πG(� − 1)

K�
ρ(0)(2−�)�1/(�−1) = 0.

We can get rid of the constant in the second term by introducing

ξ ≡
(

4πG(� − 1)

K�

)1/2

ρ(0)(2−�)/2r . (1.8.4)

The differential equation (1.8.1) then becomes

1

ξ2

d

dξ

(
ξ2 d

dξ
�(ξ)

)
+�(ξ)1/(�−1) = 0, (1.8.5)

and the boundary conditions are

�(0) = 1, �′(0) = 0. (1.8.6)

(The requirement �′(0) = 0 like the requirement ρ′(0) = 0 is needed for the
analyticity of ρ(r) at r = 0 as a function of the Cartesian components of x.)

Equation (1.8.5) is known as the Lane–Emden equation,41 and was much
studied in the early years of the twentieth century. It was shown that, for
� > 6/5, its solution vanishes at a finite value ξ1 of ξ , so the radius of the star is

R =
(

4πG(� − 1)

K�

)−1/2

ρ(0)−(2−�)/2ξ1. (1.8.7)

The star’s mass is

M =
∫ R

0
4πr2ρ(r) dr

= 4πρ(0)(3�−4)/2
(

K�

4πG(� − 1)

)3/2 ∫ ξ1

0
ξ2�1/(�−1)(ξ) dξ .

41 The classic discussion of the Lane–Emden equation is by S. Chandrasekhar, An Introduction to the Study
of Stellar Structure (University of Chicago Press, Chicago, IL, 1939).
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By using Eq. (1.8.5), we easily see that∫ ξ1

0
ξ2�1/(�−1)(ξ) dξ = −ξ2

1�
′(ξ1),

so

M = 4πρ(0)(3�−4)/2
(

K�

4πG(� − 1)

)3/2

ξ2
1 |�′(ξ1)|. (1.8.8)

There are just three values of � > 1 for which exact non-singular solutions
of the Lane–Emden equation are known.

• For � = ∞, Eq. (1.8.5) is linear and inhomogeneous. The general solution
is −ξ2/6 plus any linear combination of 1/ξ and 1. The condition �(0) = 1
fixes the solution to be simply �(ξ) = 1 − ξ2/6. This gives ξ1 = √

6 and
ξ2

1�
′(ξ1) = −2

√
6.

• For � = 2, Eq. (1.8.5) is linear and homogeneous. The general solution
is any linear combination of sin ξ/ξ and cos ξ/ξ . The condition �(0) = 1
fixes the solution to be simply �(ξ) = sin ξ/ξ . This gives ξ1 = π and
ξ2

1�
′(ξ1) = −π .

• For � = 6/5, the solution of Eq. (1.8.5) with �(0) = 1 is

�(ξ) = (1 + ξ2/3)−1/2.

This reaches zero only at infinity, so ξ1 = ∞, but ξ2�′(ξ) approaches the
finite value −√

3 for ξ → ∞, so, though the radius is infinite, the mass is
finite.

For other values of � > 1 a numerical computation is needed.42 Here are some
values of ξ1 and ξ2

1 |�′(ξ1)| for several values of �:

� ξ1 ξ2
1 |�′(ξ1)|

6/5 ∞ √
3

4/3 6.89685 2.01824
3/2 4.35287 2.41105
5/3 3.65375 2.71406
2 π π

∞ √
6 2

√
6

The isothermal case � = 1 is discussed in connection with galaxies in
Section 4.2.

42 Chandrasekhar, op. cit.
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1.9 Instability

We noted in Section 1.1 that stars that are close to a polytrope with � = 4/3 are
at the brink of a catastrophic instability. In this section we will prove a theorem
that allows us to identify more precisely the threshold parameters at which such
stars become unstable.

Suppose that a time-independent equilibrium stellar configuration is subject
to an infinitesimal perturbation. As usual for perturbations of time-independent
equilibrium, the perturbations δρ(x, t), δT (x, t), etc. of various quantities can be
expressed as a sum over normal modes, the contribution of each normal mode
having a time-dependence given by a factor e−iωt , with various values of ω (not
necessarily real) for the various normal modes.43 Each frequency ω is a function
of the various parameters characterizing the equilibrium configuration, such as
mass and/or central density.

In the absence of dissipative effects like heat conduction, the equations gov-
erning the time-dependence of the perturbations have the symmetry of time-
reversal invariance, so that if δρ(x, t), δT (x, t), etc. is a solution of these equa-
tions, then so is δρ(x, −t), δT (x, −t), etc. This tells us that if ω is the frequency
for some normal mode, then there is another normal mode with frequency −ω.
If ω is complex then exp(−iωt) grows exponentially unless the imaginary part
of ω is negative, in which case exp(iωt) grows exponentially. Hence the equi-
librium configuration is unstable unless all the frequencies ω characterizing the
various normal modes are real.

Now, consider an equilibrium configuration with parameters for which all ω
are real. Small perturbations will oscillate, but not grow. If we vary the star’s
parameters some ω may become complex, marking a transition to instability,
but this faces an obstacle. Everything in these equations is real, so if δρ(x, t),
δT (x, t), etc. is a solution of these equations, then so is its complex conjugate
δρ(x, t)∗, δT (x, t)∗, etc., which tells us that if ω is the frequency for some
normal mode, then there is another normal mode with frequency −ω∗, as well
as time-reversed modes with frequencies −ω and ω∗. Thus, if a generic real
frequency ω became complex for some value of a stellar parameter, then the
two modes with real frequencies ω and −ω would become four modes with
frequencies ω, −ω, −ω∗, and ω∗. This is impossible; the number of modes is set
by the dimensionality of the problem, and cannot suddenly increase or decrease.

43 This is a consequence of the time-translation symmetry of the problem. If δρ(x, t), δT (x, t), etc. is a
solution of the differential equations for small perturbations, then so is δρ(x, t + δt), δT (x, t + δt), etc.
Since the equations governing these very small perturbations are linear, the solution at t + δt must be a
linear combination of the various solutions at t . By diagonalizing the matrix in this linear combination, we
obtain an equal number of solutions in which each δρ(x, t + δt), δT (x, t + δt), etc. is simply proportional
to the corresponding δρ(x, t), δT (x, t), etc., with a coefficient of proportionality that differs from unity by
a term of first order in δt . That is, δρ(x, t + δt) = [1 − iωδt]δρ(x, t), δT (x, t + δt) = [1 − iωδt]
δT (x, t), etc., with ω some constant, This implies the desired time-dependence, proportional to
exp(−iωt).
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There is, however, a way in which a real frequency ω can become complex,
and the star thereby become unstable. If for some set of parameter values the
two real frequencies ω and −ω come together, so that ω vanishes, then for
slightly different parameters the frequency can become pure imaginary, so that
ω = −ω∗, and there are still just two normal modes, with frequencies ω and
−ω = ω∗. We conclude that the transition from stability, with all ω real, to
instability, with some ω complex (actually imaginary), takes place for parameter
values at which some ω vanishes.44

For the parameter values at which the ω for some normal mode vanishes,
this normal mode becomes a time-independent perturbation of the stellar con-
figuration, satisfying the equations of stellar structure. Since this perturbation
becomes time-dependent for infinitesimal ω, it must preserve the values of
conserved quantities, such as the total energy and baryon number. Thus (with
the possible exceptions described in footnote 2) a time-independent stellar con-
figuration can become unstable only at values of stellar parameters at which
there exists a time-independent perturbation that preserves the values of all
conserved parameters.

In cases where the effects of general relativity can be neglected at the transi-
tion to instability, we can take the two quantities that have to be conserved as
the energy E, not counting rest masses, and the total rest massM , defined equal
to the baryon number B times the rest mass mB per baryon. As we saw at the
end of Section 1.7, at least for stars with a uniform entropy per rest mass, if one
of these is stationary the other is too, so we can concentrate on perturbations
that leave just E conserved. We will see an example of this in Section 1.10 for
iron white dwarfs.

There are other cases, where the instability arises because of effects of general
relativity. Here again there are two conserved quantities, the mass M in the
Schwarzschild metric (see Eq. (1.9.A1) below) and the total baryon number B.
As in the non-relativistic case, it is especially convenient to look for values
of stellar parameters at which the total internal energy E ≡ M − mBc

2B

(which includes gravitational energy and everything else except the energy in
rest masses) is stationary. Obviously ifM and B are stationary then so is E, and
the theorem mentioned at the end of Section 1.7 tells us that at least for stars
with a uniform entropy per baryon, in general relativity the condition that E is
stationary is sufficient as well as necessary for bothM and B to be stationary.

44 Strictly speaking, there are other possible ways in which, at the transition to instability, several modes may
come together to have the same frequency. As an example, suppose that for some set of parameters we
have four normal modes with distinct real frequencies ω1, −ω1, ω2, and −ω2. If we vary the parameters
in such a way that ω1 and ω2 become equal to the same real value ω0, then for a further variation of
parameters we could again have four distinct frequencies, ω0 + iε, −ω0 − iε, −ω0 + iε, and ω0 − iε

with ε �= 0 real. For instance, this happens if the frequencies of the four normal modes are the roots of
the equation (ω2 − a2)2 − b = 0, with a and b real. The roots are real for b > 0, but become complex
(though not pure imaginary) as b moves to negative values. I am not aware of these possibilities actually
occurring in stars, and they will not be considered in what follows.
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To find where E is stationary in a relativistic context, we will use an expan-
sion for E in powers of the dimensionless quantities p/ρc2 and GM/rc2.
These two quantities according to Eq. (1.1.4) are roughly of the same order of
magnitude, which will be denoted v2/c2, and are assumed to be very small.45

The expansion reads

E =
∫ R

0
E(r) 4πr2 dr − 3

∫ R

0
p(r) 4πr2 dr

+
∫ R

0
6πr4dr p′2(r)/c2ρ(r)

−
∫ R

0
8πr3dr p(r)p′(r)/c2ρ(r)+ · · · , (1.9.1)

where E is the thermal energy density, excluding only gravitational energy and
the energy in rest masses. The individual terms on the first line are of order
Mv2, while the terms on the second and third lines are of order Mv4/c2, and
the dots denote terms no larger than of orderMv6/c4.

The derivation of the expansion (1.9.1) is given at the end of this section. This
derivation does not rely on any assumption about the star being a polytrope,
but the expansion finds its most important application when the terms of order
Mv2 on the first line nearly cancel, so that the relativistic corrections on the
second and third lines become important. This occurs when the pressure is
close to E/3, i.e., when the star is close to a polytrope with � = 4/3. As
already remarked in Section 1.1, when a star is very close to having E = 3p,
as for a polytrope with � 	 4/3, very small corrections to a stellar model can
make the difference between stability and instability. Because the relativistic
corrections on the second and third lines of Eq. (1.9.1) are already much smaller
than the individual terms on the first line, in the case at hand these terms can be
calculated using the non-relativistic equations of stellar structure for a polytrope
with � = 4/3, that is with p = Kρ4/3 for some constant K , the inaccuracies in
this calculation being even smaller. Using Eqs. (1.8.3), (1.8.4), and (1.8.1), we
easily find that Eq. (1.9.1) becomes

E =
∫ R

0
4πr2 dr

[
E(r)− 3p(r)

]+ 16π

(πG)3/2c2
ρ2/3(0)K7/2η, (1.9.2)

45 For ordinary stars supported by non-relativistic gas pressure, p/ρc2 ≈ v2
th/c

2, where vth is a typical
thermal velocity, generally much less than c. Even when the pressure is dominated by relativistic particles,
such as electrons in the most massive white dwarfs or photons in very massive stars, the ratio p/ρc2 is of
the order of the ratio of the energy in these relativistic particles to the energy in baryon rest masses, and
is still generally very small.
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where η is the positive numerical constant46

η = −2
∫ ξ1

0
�4(ξ)�′(ξ)ξ3 dξ+6

∫ ξ1

0
�3(ξ)�′2(ξ)ξ4 dξ = 3.49815, (1.9.3)

with ξ1 = 6.89685 corresponding to the radius at the star’s surface. We still need
to calculate the first term in Eq. (1.9.2) separately for individual cases, such as
massive white dwarfs and supermassive stars, as will be done in Sections 1.10
and 1.11, but the second term in Eq. (1.9.2) represents a universal relativistic
correction for stars that are close to polytropes with � = 4/3.

Appendix: Derivation of Relativistic Correction to Energy

As in the non-relativistic case, in general relativity there are two quantities that
must be conserved, at least in any spherically symmetric perturbations of the
star, and that therefore must both be stationary at values of parameters such as
central density at which there is a transition from stability to instability. One
of them is the mass M appearing in the Schwarzschild solution for the metric
outside the star:

− gtt = g−1
rr = 1 − 2MG/rc2, gθθ = r2, gφφ = r2 sin2 θ . (1.9.A1)

(Here and below we are using “standard” coordinates, for which inside or out-
side the star gtt and grr are functions of r and t , while gφφ and gθθ are the same
as for a flat space.) The Schwarzschild solution gives

M =
∫ R

0
ρ(r) 4πr2 dr , (1.9.A2)

where now ρ(r)c2 is the total energy density (that is, the time–time component
of the energy-momentum tensor T μν), including mass energy and everything
else except gravitational energy. (Gravitational energy is included in M in the
difference between 4πr2 dr and the spatial volume element 4πr2√grr dr .)

The other conserved quantity is B, the total baryon number of the star:

B =
∫ R

0
Bt(r) 4πr2

√
−grr(r)gtt (r) dr , (1.9.A3)

where Bμ is the conserved current of baryon number. We can write Bt in terms
of the scalar baryon density n ≡ UμB

μ, where Uμ is the velocity four-vector,
normalized so that UμUνgμν = −1. For a fluid at rest Ur = Uθ = Uφ = 0, so
Ut = 1/

√−gtt , Ut = √−gtt , n = √−gttBt , and therefore

46 The numerical value given here is inferred from Eqs. (6.9.29)–(6.9.31) of S. Shapiro and S. Teukolsky,
Black Holes, White Dwarfs, and Neutron Stars (Wiley, New York, 1983).
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B =
∫ R

0
n(r) 4πr2

√
grr(r) dr . (1.9.A4)

The Schwarzschild solution inside the star gives

grr(r) =
(

1 − 2GM(r)

rc2

)−1

, (1.9.A5)

where, as before,

M(r) =
∫ r

0
4πr ′2ρ(r ′) dr ′. (1.9.A6)

Thus

B =
∫ R

0
n(r) 4πr2

(
1 − 2GM(r)

rc2

)−1/2

dr . (1.9.A7)

Of course, in the non-relativistic limit ρ is the rest mass density, and
M = mBB, where mB 	 938 MeV/c2 is the rest mass per baryon. More
generally, we can define an internal energy density E excluding rest masses, by

ρ(r) ≡ n(r)mB + E(r)/c2. (1.9.A8)

We will eventually be assuming that the star, though not necessarily a polytrope,
is close to a non-relativistic polytrope with �= 4/3, and therefore has a pressure
p(r) close to 3E(r). Without yet making this approximation, we can anticipate
that it will be convenient to express ρ as

ρ(r)c2 = mBn(r)c
2 + 3p(r)+�E(r), (1.9.A9)

where

�E(r) ≡ E(r)− 3p(r), (1.9.A10)

which will eventually be treated as a small perturbation, arising from the finite
electron mass for white dwarfs and the finite baryon kinetic energy for super-
massive stars.

It is important to be clear about the order of magnitude of the terms in M
and mBB. The leading term in both,

∫ R
0 4πr2mBn(r) dr , is the non-relativistic

approximation to M , and hence is of order M . The next-to-leading terms,∫ R
0 12πr2p(r) dr/c2 in M and

∫ R
0 4πr2mBn(r)

(
GM(r)/c2r

)
dr in mBB,

are of order Mv2/c2, where v is a characteristic gas particle velocity, with
v2 ≈ GM/r ≈ p/mBn, assumed much less than c. The general relativistic
correction

∫ R
0 4πrmBn(r)

(
GM(r)/rc2

)2
dr in mBB is of order Mv4/c4.
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To eliminate the terms of order M , we consider the difference, which gives the
total internal energy E:

E/c2 ≡ M −mBB

=
∫ R

0
4πr2 dr

[
3p(r)/c2 +�E(r)/c2

+mBn(r)
(
1 − (1 − 2GM(r)/rc2)−1/2)]. (1.9.A11)

The terms of order Mv2/c2 also cancel in Eq. (1.9.A11), as can be seen by
integrating the pressure term by parts,∫ R

0
12πr2p(r) dr =

∫ R

0
p(r) d(4πr3) = −

∫ R

0
p′(r) 4πr3 dr ,

and then using the relativistic equilibrium condition47

−r2p′(r) = G
(
ρ(r)+p(r)/c2)(M(r)+4πr3p(r)/c2)(1−2M(r)G/rc2)−1,

(1.9.A12)
which together with formula (1.9.A9) for the total energy density gives∫ R

0
12πr2p(r) dr =

∫ R

0
4πrG

(
mBn(r)+ 4p(r)/c2 +�E(r)/c2)

× (M(r)+ 4πr3p(r)/c2)(1 − 2M(r)G/rc2)−1
dr .

(1.9.A13)

Using this for the first term in Eq. (1.9.A11) gives the internal energy

E =
∫ R

0
4πr2

[
�E(r)+mBn(r)c

2(1 − (1 − 2GM(r)/rc2)−1/2)] dr
+
∫ R

0
4πrG

(
mBn(r)c

2 + 4p(r)+�E(r))
× (M(r)+ 4πr3p(r)/c2)(1 − 2M(r)G/rc2)−1

dr . (1.9.A14)

So far, although we have been guided by order-of-magnitude estimates, the
result (1.9.A14) is exact. Now, we note the term of order Mv2 in the first line
is − ∫ R0 4πr2mBn(GM/rc2) dr and cancels the term of order Mv2/c2 in the

second line, which is + ∫ R0 4πrGmBnM dr/c2. The leading terms are then of
orderMv4/c2:

47 For a textbook derivation, see Section 11.1 of S. Weinberg, Gravitation and Cosmology (Wiley, New
York, 1972).
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E 	
∫ R

0
4πr2

[
�E(r)− 3

2
mBn(r)c

2(GM(r)/rc2)2] dr
+G

∫ R

0
4πr dr

[
mBn(r)M(r)

(
2M(r)G/rc2)

+mBn(r)4πr
3p(r)+ 4p(r)M(r)

]
. (1.9.A15)

Because each relativistic correction term in Eq. (1.9.A15) is individually small,
of order Mv4/c4, they can each be evaluated by using the non-relativistic
approximation

ρ(r) = mB n(r) (1.9.A16)

and the non-relativistic equation of equilibrium, Eq. (1.1.4), which gives

M(r) = −r2p′(r)/Gρ(r). (1.9.A17)

Then, also combining the last term on the first line of Eq. (1.9.A15) with the
first term on the second line,

E =
∫ R

0
4πr2 dr �E(r)+

∫ R

0
2πr4 dr p′2(r)/c2ρ(r)

+
∫ R

0
16π2Gr4 dr ρ(r)p(r)/c2 −

∫ R

0
16πr3 dr p(r)p′(r)/c2ρ(r).

(1.9.A18)

This can be further simplified, by noting that to order Mv4/c2 the third term is
a linear combination of the second and fourth terms. Using the non-relativistic
equation (1.1.4) of hydrostatic equilibrium (which is justified since this term is
already small), we have

4πGr2ρ = G
dM
dr

= − d

dr

(
r2

ρ

dp

dr

)
,

so integrating by parts gives

∫ R

0
16π2Gr4 dr ρ(r)p(r) = −

∫ R

0
4πr2p(r)

d

dr

(
r2

ρ(r)
p′(r)

)

=
∫ R

0
4πr4p′(r)2/ρ(r)

+
∫ R

0
8πr3p(r)p′(r)/ρ(r), (1.9.A19)
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so that (1.9.A18) becomes

E =
∫ R

0
4πr2 dr �E(r)+

∫ R

0
6πr4 dr p′2(r)/c2ρ(r)

−
∫ R

0
8πr3 dr p(r)p′(r)/c2ρ(r), (1.9.A20)

as was to be shown.

1.10 White Dwarfs and Neutron Stars

In a white dwarf star nuclear reactions have come to an end, the star has cooled
to the point that temperature may be neglected in studying the interior, and
pressure and kinetic energy are provided by cold degenerate electrons. To a good
approximation, the mass density ρ is m1μ times the electron number density,
where m1 = 931.49 GeV/c2 is the nuclear mass for unit atomic weight, and
here μ ≡ A/Z is the atomic weight per electron, equal to 55.847/26 for iron.
According to the rules of Fermi statistics, this gives the mass density as48

ρ(r) = 8πm1μ

h3

∫ kF(r)

0
k2 dk = 8πm1μk

3
F(r)

3h3
, (1.10.1)

where kF is the maximum momentum of the filled electron levels, known as
the Fermi momentum, and h = 2πh̄ is the original Planck constant. (The extra
factor 2 in 8π takes account of the electron’s two spin states.) The internal
energy density (excluding rest masses) and pressure of the electrons are then

E(r) = 8π

h3

∫ kF(r)

0

[√
k2c2 +m2

ec
4 −mec

2
]
k2 dk (1.10.2)

and

p(r) = 8πc2

3h3

∫ kF(r)

0

k4√
k2c2 +m2

ec
4
dk. (1.10.3)

Using Eq. (1.10.1) to express kF in terms of ρ/μ, Eqs. (1.10.2) and (1.10.3)
become formulas for E and p in terms of ρ/μ (or each other). With μ assumed
uniform in the star, for any given μ and central density ρ(0), we can use the

48 Fermi statistics requires that no two electrons can have the same momentum and spin. The possible states
of free particles are represented by wave functions of the form exp(ik · x/h̄), with k the momentum. To
confine these particles in a finite volume L3 without violating translation invariance, we require the wave
function to be the same on opposite faces of a box with edge L, so that k = 2πh̄n/L, where n is a vector
with integer components. The number of such vectors n with magnitude between n and n+dn is 4πn2 dn,
so the number of possible momenta with magnitude between k and k+ dk is (2πh̄/L)−3 × 4πk2 dk, and
with two particles per momentum state, the number of particles per volume with momenta between k and
k + dk is 8πk2 dk/(2πh̄)3.
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equations (1.1.4) and (1.1.5) of hydrostatic equilibrium to find ρ(r) and p(r)
throughout the star, and in particular to find the stellar massM and radius R.

In general a white dwarf star is not a polytrope, with E proportional to p and
p proportional to a power of ρ, except in the limit of very small or very large
density and Fermi momentum. According to Eq. (1.10.1), the critical density at
which the Fermi momentum becomes equal to mec is

ρc = 8πm1μm
3
ec

3

3h3
= 0.97 × 106 μ g/cm3. (1.10.4)

For ρ � ρc we have kF � mec, so Eqs. (1.10.2) and (1.10.3) give

p = 8π

3meh3

∫ kF

0
k4 dk = 8πk5

F

15meh3
= 8π

15meh3

(
3h3ρ

8πm1μ

)5/3

(1.10.5)

and E = 3p/2. This is a polytrope, with � = 5/3, and

K = 8π

15meh3

(
3h3

8πm1μ

)5/3

. (1.10.6)

Equations (1.8.7) and (1.8.8) then give the radius and mass of the star as

R = 3.65375 ×
(

8πG

5K

)−1/2

ρ(0)−1/6 = 2.0 × 104 μ−1
(
ρ(0)

ρc

)−1/6

km

(1.10.7)
and

M = 2.71406 × 4πρ(0)1/2
(

5K

8πG

)3/2

= 2.79μ−2
(
ρ(0)

ρc

)1/2

M�. (1.10.8)

Thus low-mass white dwarfs, with ρ(0) � ρc, have radii somewhat greater than
the Earth’s, and masses somewhat less than the Sun’s. Also, their thermal plus
gravitational energy (1.1.13) is

E =
∫ R

0

(
E(r)− 3p(r)

)
4πr2 dr = −6π

∫ R

0
p(r)r2 dr

= −6π

(
5

8πG

)3/2

K−1/2ρ(0)7/6
∫ ξ1

0
�5/2(ξ)ξ2 dξ , (1.10.9)

where ξ1 = 3.65375.
For ρ � ρc we have kF � mec, so Eqs. (1.10.2) and (1.10.3) give

p = 8πc

3h3

∫ kF

0
k3 dk = 2πck4

F

3h3
= 2πc

3h3

(
3h3ρ

8πm1μ

)4/3

(1.10.10)
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and E = 3p. This is a polytrope, with � = 4/3, and

K = 2πc

3h3

(
3h3

8πm1μ

)4/3

. (1.10.11)

Equations (1.8.7) and (1.8.8) then give the radius and mass of the star as

R = 6.89685 ×
(
πG

K

)−1/2

ρ(0)−1/3 = 5.3 × 104μ−1
(
ρ(0)

ρc

)−1/3

km

(1.10.12)
and

M = 2.01824 × 4π

(
K

πG

)3/2

= 5.87μ−2M�. (1.10.13)

It is striking that although R decreases andM increases with increasing central
density, the mass approaches the limiting value (1.10.13), known as the Chan-
drasekhar bound. Of course, with � = 4/3, the energy (1.1.13) is E = 0.

White dwarfs with ρ(0) � ρc have � considerably above 4/3, so according to
the arguments in Section 1.1 they are stable at least against complete dispersal.
Also, Eqs. (1.10.8) and (1.10.9) show that in this region M and E both vary
monotonically with ρ(0), while according to the theorem cited in the previous
section, in order for a white dwarf to become unstable with increasing central
density it is necessary for ρ(0) to reach a value at which the conserved quantities
M and E have vanishing derivatives with respect to central density.

If our results so far were the whole story, white dwarfs would also be stable
for ρ(0) � ρc. For � = 4/3 bothE andM are constants, but as we shall see, by
itself the small departure from the polytropic equation of state due to the finite
electron mass would give both −E andM a continued monotonic increase with
ρ(0). But there are two complications that make instability possible.

One complication is provided by neutronization: the baryon number per elec-
tron μ is not really constant. For sufficiently large central density, the Fermi
momentum is large enough for it to be energetically favorable for electrons to
be absorbed by protons, in the reaction e−+p → νe+n. For an iron white dwarf,
this occurs when ρ(0) exceeds 1.14 × 109 g/cm3, and has the effect that 56Fe
nuclei with μ = 2.15 are converted to 56Mn, with μ = 2.24. The increase in μ
eventually causes the mass (1.10.13) to stop rising toward a limit, and instead to
reach a maximum close to the value (1.10.13), and then begin to decrease. This
maximum marks the transition to instability, and thus represents the true upper
bound on the masses of iron white dwarfs.

Another complication arises from general relativity. According to the results
of the previous section, even if μ is constant there is a transition to instability at
a value of central density for which a maximum is reached by the energy

E =
∫

4πr2 dr
[
E(r)− 3p(r)

]+ 16π

(πG)3/2c2
ρ2/3(0)K7/2η, (1.10.14)
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where η = 3.49815. The second term is a universal general relativistic correc-
tion for stars with E near 3p, except that we must use the appropriate value
for K , which for white dwarfs is given by Eq. (1.10.11). To calculate the first
term for white dwarfs with ρ(0) � ρc, we use Eqs. (1.10.2) and (1.10.3) for
m2

ec
2 � k2

F, together with the familiar expansions√
k2c2 +m2

ec
4 = kc +m2

ec
3/2k + · · · ,

1/
√
k2c2 +m2

ec
4 = 1/kc −m2

ec/2k
3 + · · · .

Taking kF from Eq. (1.10.1), we obtain expansions in powers of electron mass49

E = 3hc

4

(
3

8π

)1/3 (
ρ

μm1

)4/3

−
(
me

μm1

)
ρc2

+ 3m2
ec

3

4h

(
3

8π

)−1/3 (
ρ

μm1

)2/3

+ · · · , (1.10.15)

3p = 3hc

4

(
3

8π

)1/3 (
ρ

μm1

)4/3

− 3m2
ec

3

4h

(
3

8π

)−1/3 (
ρ

μm1

)2/3

+ · · · .

(1.10.16)

The leading terms give the equation of state (1.10.10) of a � = 4/3 polytrope.
The terms in Eqs. (1.10.15) and (1.10.16) of first and second order in me give

�E ≡ E − 3p = −
(
me

μm1

)
ρc2 + 3m2

ec
3

2h

(
3

8π

)−1/3 (
ρ

m1μ

)2/3

+ · · ·

= −
(
me

μm1

)
ρc2 + 3m2

ec
4

8m2
1μ

2K
ρ2/3 + · · · . (1.10.17)

Since the factor m2
e/m

2
1 makes the term in

∫
4πr2 dr �E of second order in me

very small, it can be evaluated by using the solution given in Section 1.8 for
a non-relativistic polytrope with � = 4/3. Equation (1.10.17) then gives the
expansion∫

4πr2 dr �E = −
(
me

m1μ

)
Mc2 + 3πm2

ec
4K1/2ζ

2m2
1μ

2(πG)3/2
ρ(0)−1/3 + · · · ,

(1.10.18)
where50

ζ =
∫ ξ1

0
�2(ξ)ξ2 dξ = 4.3267. (1.10.19)

49 The term in Eq. (1.8.15) of first order in me is present because we have chosen to define E excluding all
rest masses, including the electron rest mass. As we shall see in Eq. (1.10.18), it leads to a term in E that
is independent of central density, and therefore has no effect on the threshold for instability.

50 The numerical value here is inferred from Eqs. (6.10.19) and (6.10.20) of S. Shapiro and S. Teukolsky,
Black Holes, White Dwarfs, and Neuton Stars (Wiley, New York, 1983).
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The critical central density ρinst for a transition from stability to instability is
then the stationary point of Eq. (1.10.14):

0 = ∂E

∂ρ(0)

∣∣∣∣
ρ(0)=ρinst

= − πm2
ec

4K1/2ζ

2m2
1μ

2(πG)3/2
ρ

−4/3
inst + 32π

3(πG)3/2c2
ρ

−1/3
inst K

7/2η.

(1.10.20)
This gives51

ρinst = 3m2
ec

6ζ

64m2
1μ

2K3η
= 8πm2

em
2
1c

3μ2ζ

h3η
= 6.6 × 109μ2 g/cm3. (1.10.21)

The critical densities for general relativistic instability along with neutron-
ization thresholds52 are given (both in g/cm3) for three commonly considered
chemical compositions in the table below. Since white dwarfs of low central
density are stable, the transition to instability for increasing central density
occurs at the lower of the neutronization threshold and ρinst. This transition
is evidently produced by neutronization for 56Fe, and by general relativity for
12C and 4He.

Critical densities and neutronization thresholds

Composition Neutronization threshold ρinst

56Fe 1.14 × 109 3.06 × 1010

12C 3.9 × 1010 2.63 × 1010

4He 1.37 × 1014 2.63 × 1010

Neutronization in a white dwarf star can only go so far before the star
becomes unstable. But when a star that is too massive to form a stable white
dwarf exhausts its nuclear fuel it collapses, becoming a supernova. The density
increases, and the rapid rise in the electron Fermi momentum forces a nearly
complete neutronization. Almost all of the star’s protons and electrons are
converted to neutrons, with just enough electrons left for the neutron decay
n → p + e− + ν to be blocked by the Pauli exclusion principle, and with an
equal number of protons left over to balance the electron charges. After blowing
off enough matter, what remains is a stable neutron star.53

In a neutron star, it is neutrons rather than electrons that fill all quantum
levels up to a Fermi momentum kF(r). Here the mass density is given again
by Eq. (1.10.1), but with the neutron mass mn in place of m1μ:

51 When cancellations and different notation are taken into account, this formula turns out to be identical to
the second line of Eq. (6.10.28) of Shapiro and Teukolsky, op. cit., derived in a rather different manner.
They give a numerical result 6.615 × 109μ2 g/cm3 for ρinst.

52 Thresholds are taken from Shapiro and Teukolsky, op. cit., Table 3.1.
53 W. Baade and F. Zwicky, Phys. Rev. 46, 76 (1934).
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ρ(r) = 8πmn

h3

∫ kF(r)

0
k2 dk = 8πmnk

3
F(r)

3h3
. (1.10.22)

There is again a critical density here, but now one for which the Fermi momen-
tum becomes mnc rather than mec:

ρc = 8πm4
nc

3

3h3
= 6.11 × 1015 g/cm3. (1.10.23)

The mean separation between neutrons is(
ρ

mn

)−1/3

=
(
ρc

ρ

)1/3

× 0.52 × 10−13 cm, (1.10.24)

which for ρ � ρc is greater than the range of nuclear forces, justifying the
treatment of neutrons as free particles, as implicitly assumed in Eq. (1.10.22).
Also, for ρ � ρc even neutrons at the top of the Fermi sea are moving non-
relativistically, so the neutron pressure is given by the same formula (1.10.5) as
for low-mass white dwarfs, but with mn in place of both me and m1μ:

p = 8π

15mnh3

(
3h3ρ

8πmn

)5/3

. (1.10.25)

This is again a polytrope with � = 5/3. Since the neutrons are moving non-
relativistically, the structure of the neutron star for ρ(0) � ρc is governed by
the Newtonian equations of gravitation and dynamics, just like the structure of
white dwarfs, and can therefore be treated by the methods of Section 1.8. In
particular, we can use Eqs. (1.10.6)–(1.10.8) for the neutron star’s radius R and
massM , again with mn in place of both me and m1μ:

R = 3.65375×(3Gmnh
3)−1/2

(
3h3

8πmn

)5/6

ρ(0)−1/6 = 11.0 km×
(
ρc

ρ(0)

)1/6

(1.10.26)
and

M = 2.71406×4πρ(0)1/2(3Gmnh
3)−3/2

(
3h3

8πmn

)5/2

= 2.7M�×
(
ρ(0)

ρc

)1/2

.

(1.10.27)
The mass is again a few solar masses, like a white dwarf, but now in a radius of
a few kilometers instead of a few thousand kilometers.

It may be surprising that both white dwarfs and neutron stars typically have
masses of orderM�, even though they are supported by the degeneracy pressure
of particles of very different mass: electrons for white dwarfs, and neutrons
for neutron stars. This is because the electron mass cancels in Eq. (1.10.8) for
white dwarf masses (though not in Eq. (1.10.7) for white dwarf radii). Indeed,
Eqs. (1.10.8) and (1.10.27) give the masses of both white dwarfs and neutron
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stars as equal to different factors of order unity times the same combination of
fundamental constants:

(h̄c/G)3/2m
−3/2
1 = 1.90M�.

In the following section we will see the same combination of constants appear-
ing in the mass of stars supported by radiation pressure.

The theory of neutron stars is much more complicated for ρ(0) comparable
to or greater than ρc. Here the neutron velocities are comparable to c, and since
the neutrons are the source of the star’s gravitational field, general relativity is
needed to work out the structure of the neutron star. Calculations by Landau54

and by Oppenheimer and Volkoff55 showed that there is a maximum mass,
beyond which neutron stars become unstable. Oppenheimer and Volkoff found
this maximum mass to be 0.7M�. But these calculations treated the neutrons
as an ideal gas. For ρ(0) greater than ρc, the separation (1.10.24) of neutrons
is no greater than the range of nuclear forces, and a treatment of neutrons as
free particles is no longer reliable. There have been various estimates of the
maximum mass of stable neutron stars, all of the order of a few solar masses
at most.

Because of their small size, neutron stars would naturally be expected to spin
very rapidly. The Sun, with a radius R� of about 7 × 105 km, rotates with a
frequency ω�/2π = 5 × 10−7 revolutions per second, not an exceptionally
rapid rotation. If a progenitor star core had a similar radius and rotation rate,
and if angular momentum per mass ∝ ωR2 were conserved in its collapse to a
neutron star, then the decrease in its radius to a few kilometers would increase
its rate of rotation by a factor of order 1010, giving it a rotation rate of a few
thousand revolutions per second. This is roughly the maximum possible rotation
rate. A body of mass M and radius R that is held together only by gravitation
cannot rotate at an angular frequency ω greater than ωmax ≈

√
GM/R3, at

which rate the centripetal acceleration ω2R equals the gravitational acceleration
GM/R2. For a neutron star at the Oppenheimer–Volkoff limit,M 	 0.7M� and
R 	 10 km, so its maximum rotation rate ωmax/2π is about 1,600 revolutions
per second.

The theoretical anticipation56 of rapidly rotating neutron stars was borne out
by the discovery of pulsars. First came the observation57 in 1967 of a source
of radio pulses with period 1.33 seconds. It was proposed58 that this was a
rapidly rotating neutron star, emitting radiation along the direction of a strong
magnetic field, at an angle to the axis of rotation, which happens to point in
the direction of Earth once in each rotation. This suggestion became widely

54 L. D. Landau, Phys. Z. Sowjetunion 1, 285 (1933).
55 J. R. Oppenheimer and G. M. Volkoff, Phys. Rev. 55, 374 (1938).
56 F. Pacini, Nature 216, 567 (1967).
57 A. Hewish, S. J. Bell, J. D. H. Pilkington, P. F. Scott, and R. A. Collins, Nature 217, 709 (1968).
58 T. Gold, Nature 218, 731 (1968).
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accepted with the discovery of a source of much more rapid pulses, with period
33 milliseconds, too rapid for anything but a neutron star, in a known supernova
remnant, the Crab nebula. Since then pulsars have been found emitting radiation
at various wavelengths, with pulse periods ranging from 8.5 seconds down
to 1.4 milliseconds. There is uncertainty about the mechanism for producing
this radiation, but there seems no doubt that the sources are rapidly rotating
neutron stars.

Since the discovery of pulsars neutron stars have become even more interest-
ing. As discussed in Section 2.3, pulsars were found in binary systems, whose
decay gave the first observational evidence for the emission of gravitational
radiation, and the coalescence of binary neutron stars was proposed to account
for observed bursts of electromagnetic radiation (so-called kilonovae) with
intrinsic luminosity between ordinary novae and supernovae. Most dramati-
cally, as we shall see in Section 2.4, in 2017 gravitational waves as well as
electromagnetic radiation were observed coming from the coalescence of a
binary of neutron stars.

1.11 Supermassive Stars

There is an interesting class of stars in which the pressure of material particles
is much less than radiation pressure, though not entirely negligible. As we shall
see, these stars are necessarily supermassive, typically heavier than 100M�.
Stars this massive are very rare in the present universe,59 but they are plausible
precursors of supernovae that have led to neutron stars or black holes.

The energy density and pressure of radiation are given by the well-known
formulas

Erad = aT 4, prad = 1

3
aT 4, (1.11.1)

where a is the radiation energy constant

a = π2k4
B

5h̄3c3
= 7.567 × 10−15 erg

cm3 K4
. (1.11.2)

The matter of the star is assumed to form a non-relativistic ideal gas of particles
of average mass m, in thermal equilibrium with the radiation, and with energy
density and pressure

Egas = ρkBT

m(γ − 1)
, pgas = ρkBT

m
, (1.11.3)

59 One famous example is η Carinae A, the heavier star in a binary at a distance of 2,300 pc, with a mass
estimated as (100–200)M�. This is not a stable star; in 1837 it became the second brightest star in the
sky, then faded to below naked-eye visibility, and in 1940 again became easily visible. It is estimated to
have lost a mass of about 10M� in a decade.
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where kB is the Boltzmann constant, ρ is the mass density, γ is the polytrope
index of the gas alone, not counting the radiation, andm is the mean mass of the
gas particles. (For ionized hydrogen m 	 mp, the proton mass, and γ = 5/3.)
The ratio of gas pressure to radiation pressure is then

β ≡ pgas/prad = 3kB

am

ρ

T 3
. (1.11.4)

For β � 1 Eq. (1.11.1) shows that the star is close to a polytrope with index
� = 4/3, so that p 	 Kρ4/3 with a constant K that can be expressed it terms
of β:

K 	 prad/ρ
4/3 = aT 4

3ρ4/3
=
(

3

a

)1/3 (
kB

mβ

)4/3

. (1.11.5)

Assuming the whole star to be in a state of effective convection, the constant K
and hence also β must be constant through the star. This can be seen more quan-
titatively from considerations of entropy. As we saw in Section 1.7, the entropy
per gram of an ideal gas with Egas = pgas/(γ − 1) is R/(γ − 1) ln

(
Tρ1−γ ),

where R = kB/m is the constant appearing in the ideal gas law pgas = RρT .
The entropy of the radiation per mass of gas is calculated from

T dsrad = d

(
aT 4

ρ

)
+ aT 4

3
d

(
1

ρ

)
,

from which it follows that srad = 4aT 3/3ρ. The total specific entropy is then

s = 4aT 3/3ρ + R/(γ − 1) ln
(
Tρ1−γ ) = R

[
4

β
+ 1

γ − 1
ln
(
pgas/ρ

γ
)]

.

We expect the logarithm to vary only by amounts of order unity (at least away
from the star’s surface), so in order for s to be constant 1/β can only change
by amounts of order unity, and therefore for β � 1 by only a small fractional
amount, at most of order β.

Using the general formula (1.8.8) for the mass of any non-relativistic poly-
trope, and setting � = 4/3, we have here

M = 4π × 2.01824 ×
(
K

πG

)3/2

= 18M�
(mp

m

)2 1

β2
. (1.11.6)

With m 	 mp/2 and β less, say, than 0.3, the mass must be above 800M�, and
hence such stars are truly supermassive.

It should be noted that, even though we are interested here in the case β � 1,
for which gas pressure is much less than radiation pressure, we can (and will)
nevertheless confine our attention to the case ρc2 � aT 4, for which gas rest
energy density is much greater than radiation energy density. The ratio is

ρc2

aT 4
= β

mc2

3kBT
.
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Hence, as long as the gas itself is non-relativistic, with 3kBT � mc2, we can
assume that ρc2 � aT 4, provided only that β is greater than a lower bound
3kBT/mc

2. For this reason, general relativity has so far played no role in our
remarks about supermassive stars.

But, as shown in Section 1.9, in order to identify the critical density at which
the star becomes unstable, we must find the stationary point of the internal
energy E, which general relativity gives as the expression (1.9.2). To calculate
the first term in Eq. (1.9.2), we need

�E ≡ Erad +Egas − 3prad − 3pgas = −3γ − 4

γ − 1
pgas 	 −3γ − 4

γ − 1
βp. (1.11.7)

The factor β makes this small, so we can calculate its integral over the star by
taking the star to be a polytrope with � = 4/3, the corrections to this being
doubly small. Making the appropriate substitutions (1.8.3) and (1.8.4) for a
� = 4/3 polytrope, we have∫

4πr2p dr = 4πKρ4/3(0)
[
ρ1/3(0)(πG/K)1/2

]−3
α, (1.11.8)

where α is another numerical constant,

α ≡
∫ ξ1

0
�4(ξ)ξ2 dξ = 1.18119. (1.11.9)

Combining Eqs. (1.9.2), (1.11.7), and (1.11.8), we have then

E = −4πβK5/2α

(πG)3/2

(
3γ − 4

γ − 1

)
ρ1/3(0)+ 16πK7/2η

(πG)3/2c2
ρ2/3(0). (1.11.10)

The star is stable for sufficiently small central densities, where the second term,
due to general relativistic corrections, can be neglected. With increasing central
density, the star becomes unstable at a critical value ρinst of the central density
at which ∂E/∂ρ(0) = 0:

ρinst =
[
βαc2

8Kη

3γ − 4

γ − 1

]3

. (1.11.11)

To bring out the physical significance of this result, it is useful to consider the
radius of the star, which according to Eq. (1.8.7) is given by R = ξ1(K/πG)

1/2

ρ−1/3(0), where ξ1 = 6.89685 is the value of ξ where �(ξ) drops to zero. At
the critical central density, this is

Rinst = 8ηξ1
βαc2

(πG)−1/2K3/2 γ − 1

3γ − 4
. (1.11.12)
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It is instructive to compare this with the Schwarzschild radius 2MG/c2. The
mass of a � = 4/3 polytrope is given by Eq. (1.11.6), so

c2Rinst

MG
= γ − 1

β(3γ − 4)

2 × 6.89685 × 3.49815

2.01824 × 1.18119
= 20.24

γ − 1

β(3γ − 4)
. (1.11.13)

For a stable supermassive star we haveR > Rinst, so for small β the star’s radius
is much larger than the Schwarzschild radius, and the redshift MG/Rc2 from
the surface of the star is quite small.

Finally, let us consider the evolution of a supermassive star. The mass M of
the star is dominated by the rest mass of the nucleons it contains, and hence
cannot appreciably change with time. According to Eq. (1.11.6), it follows that
K does not change much, so the same is true of β. But the central density can
and does evolve. The internal energy (1.11.10) may be written

E
(
ρ(0)

) = E0

[
−2

(
ρ(0)

ρinst

)1/3

+
(
ρ(0)

ρinst

)2/3
]

, (1.11.14)

where E0 is a positive constant. If initially a supermassive star has ρ(0) < ρinst
it will have an internal energy that decreases monotonically with central density,
and be stable. As the star radiates, it loses internal energy, which must then
become increasingly negative. Since for ρ(0) < ρinst the internal energy E is
a monotonically decreasing function of central density, this requires the central
density to rise, until ρ(0) reaches its critical value, whereupon the star explodes.
It is not clear what happens after that, but it is plausible that a stable remnant is
left, a star that is no longer supermassive.
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2
Binaries

We have been considering stars in isolation, but a good fraction of the stars in
our galaxy are binaries, pairs of stars in orbit about a common center of mass.
Binary stars have long provided invaluable information about individual stars,
such as the measurements of stellar masses mentioned in Section 1.6. We begin
here in Section 2.1 with a reminder of the Newtonian theory of these orbits,
and discuss how the stellar masses and orbital parameters can be measured. In
Section 2.2 we take up a special class of binaries, stars so close in their orbits
that matter can spill from one onto the other. Binaries gained new importance
with the discovery of a binary pulsar, which as described in Section 2.3 showed a
loss of energy that provided the first observational evidence for the existence of
gravitational radiation. Section 2.4 tells how the excitement was heightened in
2015 with the first actual detection of gravitational waves, produced by a binary
of black holes caught at the moment of coalescence. Since then gravitational
waves have been detected from the coalescence of several other binaries of black
holes and of neutron stars.

2.1 Orbits

Let us first work out the motion of the stars in a general binary, and how it is
observed. Taking the origin of the coordinate system as the center of mass, the
coordinate vectors x1 and x2 of the two stars are related by m1x1 + m2x2 = 0,
where m1 and m2 are the two stars’ masses. Both coordinate vectors can thus
be expressed in terms of the separation r ≡ x1 − x2, as

x1 =
(m2

M

)
r, x2 = −

(m1

M

)
r, (2.1.1)

with M ≡ m1 + m2 the total mass. For stars moving much more slowly than
light, we can use the Newtonian equations of motion:

d2

dt2
x1 = −Gm2r/r3,

d2

dt2
x2 = +Gm1r/r3.

82
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Both equations can more conveniently be written as

d2

dt2
r = −GMr/r3. (2.1.2)

We take the 3-axis to be normal to the orbital plane, and write the solution as

r = r
(

cosϕ, sinϕ, 0
)
, (2.1.3)

where

r = L

1 − e cosϕ
(2.1.4)

and
dϕ

dt
=
√
GM

L3
(1 − e cosϕ)2. (2.1.5)

Here e and L are elements of the elliptical orbit known as the eccentricity and
semi-latus rectum. For an ellipse with major axis 2a and minor axis 2b, these
elements are e =

√
1 − b2/a2 and L = a(1 − e2). Our coordinates are here

chosen so that the major axis of the ellipse is along the 1-axis, with apastron at
ϕ = 0, where r takes its maximum value a(1+e), and with periastron at ϕ = π ,
where r reaches its minimum a(1 − e).

The motion is periodic, with period

T =
∫ 2π

0

dϕ

dϕ/dt
=
√
L3

MG

∫ 2π

0

dϕ

(1 − e cosϕ)2
= 2π

√
a3

MG
. (2.1.6)

For future reference, we note that the total kinetic and potential energy of the
stars is

E = m1

.
x

2
1

2
+m2

.
x

2
2

2
− Gm1m2

r

and their angular momentum is

J = m1 x1× .
x1 +m2 x2× .

x2 .

The angular momentum is a vector normal to the orbit, with magnitude J⊥.
Using Eqs. (2.1.1) and (2.1.3)–(2.1.5), we find that the energy and angular
momentum are

E = −μMG
2a

, J⊥ = μ
√
GML, (2.1.7)

where μ ≡ m1m2/(m1 +m2) is the usual reduced mass.
Now let us consider how observations are used to find the properties of

binary stars. Some, like Sirius, are visual binaries, pairs of stars that are far
enough apart and close enough to Earth that the stars can be separately observed
visually. Because of their large separation, they often move too slowly to allow
an accurate measurement of their velocities. Much more revealing are eclipsing
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variables, whose line of sight to the Earth happens to lie in the binary star
orbital plane, so that each star periodically eclipses the other. As mentioned
in Section 1.6, the analysis of their light curves, of luminosity vs. time, has
provided values for the masses and radii of a large sample of stars, but this is a
complicated business that will not be pursued here. We will be chiefly concerned
in what follows with the many spectroscopic binaries, whose properties are
generally known only through Doppler shifts of spectral lines or pulses, due
to orbital motion. This class includes the Hulse–Taylor binary pulsar, discussed
in Section 2.3, which provided the first observational evidence for the reality of
gravitational radiation.

First, let us calculate the Doppler shift of any periodic signal from either of
the two stars. We take the line of sight from the binary system to the Earth in
the coordinate system used in Eq. (2.1.3) to be the general unit vector

n = (sin i cosψ , sin i sinψ , cos i), (2.1.8)

with i the angle between the line of sight and the normal to the orbit. The motion
of the two stars produces Doppler shifts

(�ν/ν)1 = n · .
x1 /c = (m2/M)n · .

r/c,

(�ν/ν)2 = n · .
x2 /c = −(m1/M)n · .

r/c. (2.1.9)

Using the Newtonian results (2.1.4) and (2.1.5), we have

.
r=
√
MG

Lc2

(− sinϕ, cosϕ − e, 0
)
,

so, in the absence of relativistic effects, the Doppler shifts are

(�ν/ν)1 = (m2/M)

√
MG

Lc2
sin i

[
sin(ψ − ϕ)− e sinψ

]
,

(�ν/ν)2 = −(m1/m2)(�ν/ν)1. (2.1.10)

The comparison of Eq. (2.1.10) with the observed variation with time of the
Doppler shift from either star together with Eq. (2.1.5) allows the determination
of values both forMG/L3 and for the eccentricity e. Where both Doppler shifts
are observed, their ratio also gives the mass ratio m1/m2. The overall scale of
the Doppler shift for star 1 can yield a value for (m2/M)

√
MG/L sin i, and if

both Doppler shifts are measuredm2/M will be known, so this gives a value for√
MG/L sin i. But without further data this does not yield separate values for

M , L, or sin i.
Fortunately, the additional data needed to find the properties of the binary

can come from relativistic corrections. One general relativistic phenomenon that
affects Doppler shifts is the precession of the elliptical orbit of r. The precession
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in radians per revolution is given by the same formula used by Einstein in 1914–
1915 to calculate the precession of the orbit of Mercury,1

�ϕ = 6πMG

Lc2
,

but with M now of course interpreted as the total mass of the binary system,
rather than of the Sun. In Eq. (2.1.8), ψ is the angle between the major axis
of the ellipse and the projection of the line of sight from the binary to the
solar system on the orbital plane, so ψ increases by the angle �ϕ per revo-
lution, producing a non-periodic secular change in the Doppler shifts (2.1.10).
This change depends on MG/L, so with the value of MG/L3 found from the
observed period, it is possible to make a separate determination of MG and L,
but this still does not give separate values for m1 and m2 if Doppler shifts are
observed from only one star of the binary.

The observed Doppler shift of either star is also affected by a relativistic
time dilation, due both to the gravitational field of the companion star and to
the motion of the observed star. As shown in the appendix to this section, this
produces an added frequency shift. For star 1,

(�ν/ν)Einstein,1 = constant − (m2G/MLc
2)(M +m2)e cosϕ. (2.1.11)

With M , e, and L already known, the presence of this term in the observed
frequency shift allows a separate determination of m1 and m2. There is also a
slowing of signals from one star in the gravitational field of the companion star,
analogous to the Shapiro time delay2 in the gravitational field of the Sun.

Appendix: Calculation of Time Dilation in Binary Stars

If δτ = 1/ν is the proper time interval between emitted wave crests or pulses,
measured in the co-moving inertial frame of the emitting star, and δt is the
coordinate time between these wave crests or pulses, in a coordinate system in
which the center of mass is at rest, then

δτ = δt
√−g00 − 2g0iv1i − gij v1ivij , (2.1.A1)

where v1 is the velocity of the observed star relative to the center of mass,
and gμν are the components of the metric tensor in a coordinate system that
is Minkowskian far from the binary. According to the post-Newtonian approx-
imation to general relativity,3 as long as the emitting star’s velocity is much

1 A. Einstein, Sitz. preuß. Acad. Wiss. 1914, p. 1030; 1915, pp. 778, 799, 831, 844. For a textbook derivation,
see Section 8.6 of S. Weinberg, Gravitation and Cosmology (Wiley, New York, 1972).

2 I. I. Shapiro, Phys. Rev. Lett. 13, 789.
3 For a textbook treatment, see S. Weinberg, Gravitation and Cosmology (Wiley, New York, 1972), Section

9.1. In this appendix, we use units with c = 1.
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less than that of light, we have g00 = −1 − 2φ + O(v̄4), g0i = O(v̄3), and
gij = δij + O(v̄2), where φ is the gravitational field of the companion at the
position of the emitting star. Hence to order v̄2 we have

δτ = δt

√
1 + 2φ − v2

1 = δt (1 + φ − v2
1/2), (2.1.A2)

the corrections to this formula being of order v̄4. Now,

φ = −Gm2/r = −(Gm2/L)(1 − e cosϕ)

and

v2
1 = (m2/M)

2 .
r

2= (m2/M)
2(MG/L)

(
1 − 2e cosϕ + e2),

so there is an “Einstein” fractional frequency shift

(�ν/ν)Einstein,1 = (δτ/δt)−1 − 1 = −φ + v2
1/2

= (m2G/L)(1 − e cosϕ)

+ (m2/M)
2(MG/2L)

(
1 − 2e cosϕ + e2). (2.1.A3)

A constant fractional frequency shift is usually undetectable, since we generally
have no knowledge of what ν would be in the absence of these relativistic effects
and the Doppler shift, so the interesting part of this frequency shift is its variable
part, reported in Eq. (2.1.11).

2.2 Close Binaries

In the orbital analysis of the previous section the two stars in a binary were
treated as point masses. Now we will consider binaries in which the radius of
one or both of the stars is not much smaller than the separation of the binary, and
we have to take into account the distortion of the star or stars by tidal effects.
We can still give an analytic treatment, using the same Newtonian results for
orbital motion, in the common case where most of each star’s mass remains in
a sphere but the outer layer of at least one star is severely distorted, to the point
where matter can flow from that star to the other.

We begin by asking how far the stars in a binary need to be separated for tidal
distortion to be unimportant, and will then turn to the case when they are not
that far apart. Consider one of the stars in a binary, with mass m1 and radius
R1, in a circular orbit about the center of mass with circular frequency �, at a
distance r from the other star. A particle of mass δm on the surface of star 1 at
the point closest to the other star will feel a gravitational force toward the center
of star 1:

Fgrav = Gm1 δm

R2
1

− Gm2 δm

(r − R1)2
, (2.2.1)



2.2 Close Binaries 87

the minus sign preceding the second term indicating that this part of the force is
toward the other star. Since the particle is at a distance m2r/M − R1 from the
center of mass of the two stars, it will also feel a centrifugal force in the same
direction:4

Fcent = �2(m2r/M − R1) δm. (2.2.2)

(We are here assuming that the centrifugal force from any rotation of the star
is much less than from its orbital motion.) We recall from Eq. (2.1.6) that for
circular orbits with a = r , the angular frequency� = 2π/T has�2 = MG/r3,
so that the gravitational and centrifugal forces would balance each other for
m1 = 0 and R1 → 0. For R1 �= 0 the centrifugal force (2.2.2) is less than the
gravitational force exerted by the other star, and so the particle would fly off the
surface of star 1 if not held by the gravity of star 1. The condition for particles
on the surface of star 1 not to fly off toward star 2 is thus that

Gm1

R2
1

− Gm2

(r − R1)2
+�2(m2r/M − R1) > 0,

or, using �2 = MG/r3 and canceling factors of G,

m1

R2
1

− m2

(r − R1)2
>
MR1 −m2r

r3
.

This is a necessary condition for neglecting tidal distortion of the side of star
1 facing toward star 2, and it is reasonable to suppose that the equality of the
two sides of this condition defines a value of r at which tidal distortion begins
to matter, but strictly speaking, since this condition was derived assuming both
stars to be spheres, all we can say with confidence is that these tidal effects are
negligible if

m1

R2
1

− m2

(r − R1)2
� MR1 −m2r

r3
. (2.2.3)

Similarly, a sufficient condition for neglecting tidal distortion of the side of star
1 facing away from star 2 is that

m1

R2
1

+ m2

(r + R1)2
� MR1 +m2r

r3
. (2.2.4)

In the common case where r is much larger than the stellar radius R1, both
Eqs. (2.2.3) and (2.2.4) amount to the requirement that

r � R1

(
1 + 3m2

m1

)1/3

. (2.2.5)

4 For reasons I am not able to understand, the textbook treatments of this problem that I have seen neglect the
decrease in centrifugal force given by the term −R1 in parentheses in Eq. (2.2.2). As a result, Eq. (2.2.5)
is generally given with a factor 2 in place of 3 in the cube root.
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This is known as the Roche limit, named for Édouard Albert Roche (1820–
1883).

For instance, Sirius is a famous visual binary consisting of the stars Sirius A
and B with massesMA = 2.28M� andMB = 0.98M� and radii RA = 1.71R�
and RB = 0.008R�, respectively. (Sirius B is a white dwarf.) According to
condition (2.2.5), the tidal distortion of Sirius A will be negligible if it is at
a distance from Sirius B much greater than 1.3RA = 2.3R�. Since its actual
distance to Sirius B is 1.2 × 109 km = 1.7 × 103R�, this condition is very
well satisfied. Sirius B is so small that tidal effects on it are even less than for
Sirius A.

Where Eqs. (2.2.3) and (2.2.4) are not satisfied, we may need to take into
account the tidal distortion of the stars’ shapes. If the binary is in rigid rotation
with angular frequency � around an axis with direction n̂ through the center of
mass, then the gravitational plus centrifugal force on a test body of mass δm at
position x is

F(x) = δm
(
−∇φ(x)+�2[x − n̂(n̂ · x)

])
,

where φ(x) is the total gravitational potential. This force can be written as the
gradient of an effective potential,

F(x) = −δm∇�(x),
where

�(x) = φ(x)− �2

2

[
x2 − (n̂ · x)2

]
.

This force can be balanced by pressure forces in the interior of the stellar
material, and on the surface its normal component can also be balanced by
pressure forces, but there is nothing to balance tangential components of the
force on the surface, so the tangential components of ∇� must vanish on the
surface, and therefore all points on the surface of the stellar material must have
the same values for �(x):

φ(x)− �2

2

(
x2 − (n̂ · x)2

) = �, (2.2.6)

where � is now a constant, whose various possible values define various possi-
ble equipotential surfaces that could be the boundary of stellar matter.

Equation (2.2.6) is difficult to use in cases where tidal effects disrupt the
whole mass distribution, because φ(x) then depends on the shape of this surface.
But we are chiefly concerned with tidal effects on the outer layers of the stars
in a binary, where most of the masses of these stars remain in nearly spherically
symmetric configurations centered on positions x1 and x2, in which case we can
approximate the gravitational potential as
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φ(x) = − m1G

|x − x1| − m2G

|x − x2| , (2.2.7)

and again take �2 = MG/r3, so that Eq. (2.2.6) becomes

m1G

|x − x1| + m2G

|x − x2| + MG

2r3

(
x2 − (n̂ · x)2

) = −�. (2.2.8)

Taking the centers of the spherical mass distributions in rotating Cartesian coor-
dinates to be at fixed positions

x1 = (−m2r/M , 0, 0) , x2 = (m1r/M , 0, 0) ,

and the rotation axis to be in the direction n̂ = (0, 0, 1), condition (2.2.8)
requires that at a position x = (x, y, z) we have

m1G

((x +m2r/M)2 + y2 + z2)1/2
+ m2G

((x −m1r/M)2 + y2 + z2)1/2

+ MG

2r3
(x2 + y2) = −�. (2.2.9)

There is an equipotential surface for each constant negative �. Of course, these
mathematical surfaces may or may not actually be filled with stellar material.

For −� sufficiently large, the equipotential surface consists of disconnected
parts,5 two small spherical surfaces around the positions x1 and x2, with radii
proportional respectively tom1 andm2, and to 1/|�|. For smaller values of −�
these spheres are larger, and distorted by tidal effects, with the surfaces being
pulled toward one another. For some critical value of � the two surfaces meet
at a point (known as L1) on the line between x1 and x2. The volumes enclosed
by the equipotential surfaces around x1 and x2 for this critical value of � are
known as Roche lobes.

If one star fills its Roche lobe (as may be the case for main sequence stars
and red giants) and the other does not (as is generally true of compact stars
such as white dwarfs and neutron stars) then pressure forces will push matter
from the filled lobe to the unfilled one. One effect of this transfer of matter
is to produce radiation as matter falls on the compact star, usually at X-ray
frequencies. Another effect is to speed up or slow down the rotation of the
binary. Using Eq. (2.1.3) with e = 0 gives �2 = GM/r3, so (ignoring any

5 As long as the equipotential surface consists of disconnected parts, we could take the left-hand side of
Eq. (2.2.9) to have different values on each disconnected part of the surface. Indeed, for real binaries
with a separation large enough to satisfy condition (2.2.4), these values are generally different for the
actual surfaces of each star. We are taking (2.2.9) to have equal values for each disconnected part of the
equipotential surface because we are now chiefly interested in the case where the inequality (2.2.4) is not
satisfied, and where these parts of the equipotential surface merge and become a single connected surface,
for which of course there is just a single value of �.
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possible rotation of the individual stars), we see that the angular momentum of
the binary is

J = �m1

(m2

M
r
)2 +�m2

(m1

M
r
)2 = m1m2�r

2

M
= m1m2G

2/3

�1/3M1/3
. (2.2.10)

The conservation of mass requires that ṁ1 = −ṁ2, so with Eq. (2.2.10) the
conservation of angular momentum gives

�̇

�
= 3ṁ1(m2 −m1)

m1m2
. (2.2.11)

Hence, if we see � decreasing or increasing, we can infer that mass is being
transferred from the more massive to the less massive star, or vice versa.

The transfer of mass from one star to another in a binary can have more
dramatic effects. If an ordinary star that fills its Roche lobe is in a binary
with a white dwarf, it will transfer mass to the dwarf. As the white dwarf
mass increases, its central density increases, and may reach a value at which
thermonuclear reactions ignite. This is a likely mechanism for producing the
observed stellar explosions known as Type 1a supernovae, which are used as
standard candles in measurements of the distances of galaxies with large red
shifts. (“Type 1” simply indicates an absence of hydrogen in the spectrum of
the supernova, which is consistent with the expected chemical composition of
white dwarfs. The “a” distinguishes these supernovae from those that occur
through the core collapse of massive stars that have exhausted their hydrogen,
which have a very different curve of luminosity vs. time than supernovae of
Type 1a.) There is some doubt about this explanation of Type 1a supernovae,
because white dwarfs in binaries may lose enough mass through novae that
they never experience thermonuclear explosions, and because no one has ever
observed the companion stars from which white dwarfs in Type 1a supernovae
could have acquired their mass. The question is open.

All this provides motivation to look in more detail at Roche lobes. To put
Eq. (2.2.9) in dimensionless form, we can set � = −(MG/r)C and (x, y, z) =
r(x ′, y′, z′), so that

m1/M

((x′ +m2/M)2 + y′2 + z′2)1/2 + m2/M

((x′ −m1/M)2 + y′2 + z′2)1/2

+ x′2 + y′2

2
= C. (2.2.12)

In the coordinates (x′, y′, z′) the equipotential surface evidently depends only on
C and on the mass ratio m1/m2. In particular, the critical value of C at which
the surface first becomes connected as C decreases depends only on the mass
ratio, as do the properties of the Roche lobes in these coordinates.

For general mass ratios the properties of the Roche lobes can be found quanti-
tatively only by numerical calculation. However, it is possible to give an analytic
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treatment of the important case where one mass is much less than the other, say
m2/m1 ≡ ε � 1. As long as C is well above 3/2 the small spherical surface
with center at x′ = 1 +O(ε), y′ = z′ = 0 and radius 	 ε/(C − 3/2) is part of
the equipotential surface (2.2.12), since on this small sphere the first and third
terms on the left-hand side of Eq. (2.2.12) have values respectively equal to 1
and 1/2 for ε = 0. The other disconnected part of the equipotential surface will
consist of points on which, apart from terms of order ε,

1

(x′2 + y′2 + z′2)1/2 + x′2 + y′2

2
= C,

since for C well above 3/2 all points on this surface are nowhere near the small
sphere on which the second term in Eq. (2.2.12) is non-negligible. But as C
decreases to the critical value C = 3/2, this surface approaches the small
sphere, and the equipotential surface becomes connected. At this critical value,
the equipotential surface becomes

1

(x′2 + y′2 + z′2)1/2 + x′2 + y′2

2
= 3/2, (2.2.13)

except for points very close to x′ = 1, y′ = z′ = 0, where the lobes are joined.
This is an oblate figure of rotation about the z′-axis, with equatorial radius unity
and poles at x′ = y′ = 0, z′ = ±2/3. The volume of the Roche lobe around
mass 1 is thus

V1 = πr3I,

where I is the dimensionless integral

I =
∫ 2/3

−2/3
(x′2 + y′2) dz′.

We can use Eq. (2.2.13) to write

z′2 = −ρ2 + 4

(3 − ρ2)2
,

where ρ2 ≡ x′2 + y′2. The integral I can thus be written

I =
∫ 1

0

ρ2
(
1 − 8(3 − ρ2)−3

)
√

4(3 − ρ2)−2 − ρ2
dρ2

= −16

3
+ 4

√
3 + 8 tanh−1(2)− 8 tanh−1(

√
3) = 0.721487.

It is conventional to define an effective radius r1, such that the volume of the
Roche lobe around mass 1 is 4πr3

1/3. We see that in the case m1 � m2 the
effective radius is (3I/4)1/3r = 0.814886r . This is in perfect agreement with a
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numerical calculation of Kopal,6 who gave r1 = 0.8149r for m1/m2 → ∞.
Also, we saw that the Roche lobe around mass 2 becomes infinitesimal for
m1 � m2; likewise, the Roche lobe around mass 1 becomes infinitesimal for
m1 � m2, so in this case r1 = 0. The effective radii calculated numerically
by Eggleton7 for these and other mass ratios are given in a table below. Not too
much emphasis should be put on the precision of these numerical results, as they
are derived under the assumption that most of the masses of the stars remains in
spherical distributions, which can at best be only a fair approximation.

m1/m2 r1/r

∞ 0.8149
1000 0.7817
100 0.7182
10 0.5803
2.5 0.4621
1 0.3799
0.4 0.3026
0.1 0.2054
0.01 0.1012
0.001 0.0482
0 0

2.3 Gravitational Wave Emission: Binary Pulsars

The orbital analysis outlined in Section 2.1 became dramatically more important
with the discovery of a pulsar in a binary system. As discussed in Section 1.10,
pulsars are rapidly rotating neutron stars, with masses typically comparable
to the Sun’s mass, with radii of order of a few kilometers, and with strong
magnetic fields that are not parallel to the axis of rotation. The rotating neutron
star produces a narrow beam of radio frequency electromagnetic waves along
the direction of the magnetic field, which swivels around the axis of rotation.
We on Earth receive a pulse of radiation when this beam happens to point
toward us.

In 1974, in the course of a survey of pulsars using the Arecibo radio tele-
scope in Puerto Rico, Russell Hulse and Joseph Taylor discovered a pulsar,
PSR 1913+16, whose period of about 59 milliseconds varied periodically by

6 Z. Kopal, Close Binary Systems (Chapman and Hall, London, 1959).
7 P. A. Eggleton, Astrophys. J. 268, 368 (1983). Eggleton’s results provide small corrections to earlier

calculations of Kopal, op. cit., and B. Paczyński, Ann. Rev. Astron. Astrophys. 9, 183 (1971).
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about 0.07% over a period of about 8 hours.8 This variation was interpreted
as a Doppler shift, indicating that the pulsar and another invisible star were
in an orbit about each other, with a period of about 8 hours, and a velocity
component along the line of sight not much greater than 0.07% of the speed of
light. Since the orbital velocity is thus much less than the speed of light, it is
a good approximation to treat the orbit using Newtonian mechanics, as done in
Section 2.1.

Fortunately, the observation of pulsar timing is so precise that it is possible to
detect the relativistic effects discussed in Section 2.1, effects that depend on the
parameters of the binary pulsar so that all of them can be calculated. When all
these effects are put together, along with a decrease in orbital period taken as a
free parameter, Weisberg, Nice, and Taylor in 2010 found that the least-squares
fit of observed pulsar timing with theory yields the following parameters:9

• m1 = 1.4398(2)M�
• m2 = 1.3886(2)M�
• e = 0.6171334(5)
• T = 0.32299744891(4) days
• .
T= −2.296(6)× 10−12,

with the uncertainty in the last digit given for each item by the number in
the parentheses. (A small part of the directly observed decrease in the orbital
period is a kinematic effect, due to the acceleration of the binary system in the
gravitational field of the galaxy. The value given above corrects for this effect.)

From the above values of m1, m2, and T , we can also calculate a value for
the semi-major axis of the orbit of r:

a = (T /2π)2/3(MG)1/3 = 1.95 × 106 km. (2.3.1)

Thus the binary system could fit easily into the orbit of Mercury, which has
semi-major axis 58 million kilometers. With these parameters, the rate of pre-
cession of the periastron is

�ϕ

T
= 6πMG

(1 − e2)c5aT
= 4.22◦/year, (2.3.2)

which is a huge rate when compared with the famous 43 arc seconds per century
anomalous precession of the orbit of Mercury.

From the beginning it seemed likely that the observed speed up of the orbital
motion of the binary pulsar is due to the emission of gravitational radiation. Just
as accelerated electric charges produce electromagnetic radiation, so also accel-
erated masses produce gravitational radiation. Specifically, as is well known,

8 R. A. Hulse and J. H. Taylor, Astrophys. J. 195, L51 (1975).
9 J. M. Weisberg, D. J. Nice, and J. H. Taylor, Astrophys. J. 722, 1030 (2010), and earlier work of Taylor and

Weisberg cited therein.
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the acceleration of a set of particles with position vectors xN and electric charge
eN radiates electromagnetic waves, with the average radiated power given in the
dipole approximation by the Larmor formula10

〈P 〉 = 2

3c3

〈 ..
Di (t)

..
Di (t)

〉
,

where Di is the electric dipole moment:

Di(t) =
∑
N

eNxNi(t).

HereN runs over particle labels, and i runs over Cartesian coordinate indices 1,
2, 3, with repeated indices summed. Similarly, accelerated particles with masses
mN produce gravitational waves, with the average radiated power given in what
is known as the quadrupole approximation by

〈P 〉 = G

5c5

〈
...

Qij (t)
...

Qij (t)−
1

3

∣∣∣...Qii (t)∣∣∣2
〉

, (2.3.3)

whereQij is the mass tensor

Qij (t) ≡
∑
N

mNxNi(t)xNj (t). (2.3.4)

In both cases, the average is over a time that is longer than any beat period.
That is, if the xNi(t) are sums of terms that vary harmonically, with various
discrete frequencies (not necessarily commensurate), then the average is over a
time longer than the inverse of the smallest frequency difference. A derivation
of Eq. (2.3.3) is given in the appendix at the end of this section.

For a binary star, with the coordinates of the two stars given by Eq. (2.1.1),
the mass tensor (2.3.4) is

Qij (t) = m1x1i(t)x1j (t)+m2x2i (t)x2j (t) = μ ri(t)rj (t), (2.3.5)

where μ ≡ m1m2/(m1+m2) is the reduced mass, and r is the separation vector.
It follows that the average power (2.3.3) emitted in gravitational radiation is

〈P 〉 = Gμ2

5

〈
2

...
r

2
r2 + 12(

...
r · ..

r)(
.
r · r)+ 12(

...
r · .

r)(
..
r · r)

+ 2(
...
r · r)2 + 18

..
r

2 · .
r

2 + 18(
..
r · .

r)2
〉
. (2.3.6)

For instance, in the case of zero eccentricity, since r is here constant we have

r = rr̂ ,
.
r = r�ϕ̂,

..
r = −r�2r̂ ,

...
r = −r�3ϕ̂,

10 J. Larmor, Phil. Mag. Series 5. 44, 503 (1897).
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where r̂ and ϕ̂ are unit vectors in the direction of increasing r and ϕ, and � =√
MG/r3 is the orbital angular velocity. In this case the second, fourth, and

sixth terms in Eq. (2.3.6) vanish, while the others add up to

〈P 〉 = 32Gμ2

5c5

(
MG

r3

)3

r4.

For general ellipticity, we get a factor
√
MG/a3 for every time derivative,

a factor a for every r or its time derivative, and a factor of a more-or-less
complicated function f (e) of ellipticity, so

−
〈
dE

dt

〉
= 〈P 〉 = 32Gμ2

5c5

(
MG

a3

)3

a4f (e). (2.3.7)

A detailed calculation11 of the average (2.3.6) gives

f (e) = (1 − e2)−7/2
[

1 + 73

24
e2 + 37

96
e4
]

. (2.3.8)

Because f (0) = 1, this agrees with the result given above for circular orbits,
where r = a. Similarly, gravitational waves carry away the angular momentum
component J⊥ normal to the orbit, at a rate12

−
〈
dJ⊥
dt

〉
= 32G7/2μ2M5/2

5c5a7/2(1 − e2)2

(
1 + 3e2

8

)
. (2.3.9)

Aside from constants, according to Eq. (2.1.7) E depends only on a while J⊥
depends only on L, so from Eqs. (2.3.7)–(2.3.9) we can easily find the rate of
decrease of a and L. Since L = a(1 − e2), one can then also find the rate of
change of the ellipticity e. According to Peters,13〈

de

dt

〉
= −e × 304G3μM2

15c5a4(1 − e2)5/2

(
1 + 121

304
e2
)

. (2.3.10)

The important thing is that the ellipticity decreases, at a rate that accelerates as
a decreases, so binary orbits eventually become circular. This is the case for
the coalescing binaries discussed in the next section. But, by this standard, the
Hulse–Taylor binary pulsar, which has e 	 0.617, is clearly quite young.

The loss of energy of the binary star is observed as a decrease of its orbital
period. Eliminating the semi-major axis a in Eqs. (2.1.6) and (2.1.7) gives the
period T in terms of the orbital energy E:

T = MG(−2E/μ)−3/2.

11 P. C. Peters and J. Mathews, Phys. Rev. 131, 435 (1963).
12 P. C. Peters, Phys. Rev. 136, B1224 (1964).
13 Peters, op. cit.
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Thus, if E decreases on average at a rate 〈P 〉, the period decreases at an average
fractional rate

.
T /T = −3

2
〈P 〉/(−E). (2.3.11)

Inserting Eqs. (2.3.7) and (2.1.7), with a given in terms of T by Eq. (2.1.6),
we find

.
T = −96μG

5c5
(2π)8/3T −5/3(MG)2/3f (e). (2.3.12)

The characteristic sign of the decrease of energy via gravitational radiation is a
rate of decrease of the period T that increases as T −5/3. For old binaries, with
e = 0, we have f (e) = 1, and Eq. (2.3.7) shows that the quantity T 5/3 dT /dt

depends only on a single mass parameter, known as the chirp mass:

T 5/3 .
T= −96G

5c5
(2π)8/3m5

chirp/3G
2/3, (2.3.13)

where

mchirp ≡ μ3/5M2/5 = (m1m2)
3/5(m1 +m2)

−1/5.

To confirm that the observed rate of decrease of the orbital period of a binary
pulsar is really due to the emission of gravitational radiation, we need to know
μ, M , and e as well as T and

.
T . Fortunately, as we have seen, all these param-

eters are known for the binary pulsar discovered in 1975 by Hulse and Taylor.
Using the values found in 2010, Weisberg, Nice, and Taylor calculated a theo-
retical rate of period decrease

.
T = −2.402531(14)× 10−12. Using Eq. (2.3.12)

and the same parameters, but with more rounding off, I find
.
T = −2.402 ×

10−12. Either way, this is in good agreement with the “observed” value
.
T =

−2.423(1) × 10−12, obtained as a fit to the data. There seems to be no doubt
that the decrease of the orbital period is caused by the emission of gravitational
radiation, in accordance with the prediction of general relativity.

From the observed orbital period T0 and its observed rate of decrease
.
T 0

in a binary star at the present time t = t0, we can calculate the time t1 when
gravitational radiation will bring about the vanishing of the period and the
coalescence of the binary’s two stars. Since according to Eq. (2.3.12)

.
T is

proportional to T −5/3f (e), we have

t1 − t0 =
∫ 0

T0

dT
.
T (T )

=
∫ 0

T0

f (e0) dT
.
T 0 (T /T0)−5/3f (e)

>
3T0

8| .
T 0 |

, (2.3.14)

with the final inequality following from the decrease of f (e) during the
relatively brief final period when the orbit evolves rapidly toward smaller
ellipticity. Using the values T0 = 0.323 days and

.
T 0 = −2.297 × 10−12
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for the Hulse–Taylor binary pulsar, we see that if no other processes speed
up the coalescence, then this binary will coalesce in somewhat more than
144 million years.

However long it takes, the coalescence of a binary of neutron stars or black
holes will produce interesting effects. Powerful sources of gamma rays, known
as Gamma Ray Bursts (GRBs), had been known since 1967, when they were
observed by a US satellite designed to detect Soviet nuclear weapons tests.
GRBs were generally supposed to be produced in supernovae, in which a young
massive star collapses, but about a third, the short-duration GRBs, were not
associated with supernovae or with star-forming regions in which supernovae
are expected to occur, and so it seemed plausible that they were instead pro-
duced in the coalescence of compact bodies, such as neutron stars and/or black
holes. Li and Paczyński14 noted in 1998 that the coalescence of a pair of neutron
stars or of a neutron star and a black hole would eject a small fraction of highly
radioactive neutron-rich matter, producing an impressive burst of electromag-
netic radiation. In 2010 Metzger et al.15 estimated that for a day or so the
luminosity of such ejecta would be about a thousand times that of typical novae,
and therefore called these events kilonovae. In 2013 Tanvir et al.16 reported
evidence for such a kilonova, the short gamma ray burst SCRB 130603B and
its longer-wavelength afterglow, supporting the hypotheses that the coalescence
of compact objects account both for observed short-duration gamma ray bursts
and for much of the production of heavy elements. As we will see in the next
section, this was confirmed by the observation of a short-duration GRB and then
its afterglow shortly after a detection in 2017 of the gravitational wave signal
GW170817.17

Just before coalescence, a binary of neutron stars and/or black holes will emit
a fair fraction of the energy in its rest mass as gravitational radiation in its final
revolutions. Using Eq. (2.1.6), the radiated gravitational wave power (2.3.7) can
be expressed in terms of the orbital period T instead of the semi-major axis a:

〈P 〉 = 32Gμ2(MG)4/3f (e)

5c5

(
T

2π

)−10/3

.

Also, using (2.3.12), we have

dt = 5c5T 5/3 dT

96μG(2π)8/3(MG)2/3f (e)
,

14 L.-X. Li and B. Paczyński, Astrophys. J. 507, L59 (1998).
15 B. D. Metzger et al., Mon. Not. Roy. Astron. Soc. 406, 2650 (2010).
16 N. R. Tanvir et al., Nature 500, 547 (2013).
17 This gamma ray signal was much less luminous than is typical for short-duration gamma ray bursts, so its

identification remains somewhat in doubt.
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so the total energy radiated when the period drops from a value T0 at an initial
time t0 to a much smaller value T1 at a later time t1 is

−�E =
∫ t0

t1

〈P 〉 dt 	
∫ T0

T1

(2π)2/3μ(MG)2/3

3T 5/3
dT

	 (2π)2/3μ(MG)2/3

2T 2/3
1

. (2.3.15)

For neutron stars coalescence occurs at around the time that the decrease in
the size of the orbit would bring the stars into contact. At late times the eccen-
tricity of the orbit will be very small, so coalescence occurs when a reaches a
value equal to the sum of the radii of the neutron stars. For massive neutron stars
this is of orderMG/c2, the minimum period T1 is thus of order 2πMG/c3, and
the total energy radiated is of order μc2.

We can be a bit more precise about black holes. As shown in the appendix
to Section 4.5, the minimum radius of a stable circular orbit of a test body
revolving about a black hole of mass M has radius R = 6MG/c2. Using
this as a rough estimate for a binary black hole of total mass M , we can use
Eq. (2.1.6) to guess that a black hole binary continues in orbit until its period
reaches a minimum value T1 = 2π63/2MG/c3, after which the black holes
plunge together and coalesce. The total power (2.3.15) radiated until this plunge
is then roughly of order μc2/12. Of course, such estimates are subject to large
relativistic corrections.

Since the discovery of PSR 1913+16, dozens of pulsars have been found in
binary systems, coupled with ordinary stars, white dwarfs, and other neutron
stars. (There is even a binary PSR J0737-3038 composed of two pulsars, dis-
covered in 2003 at the Parkes Observatory in Australia.) Although all these
binaries are slowing down through the emission of gravitational radiation, so
far unfortunately it has not been possible to detect the gravitational radiation
from any binary pulsar. The direct observation of gravitational radiation had to
wait for the detection of the enormous energy radiated by coalescing binaries,
to be discussed in the next section.

Appendix: Review of Gravitational Radiation

This book is not a treatise on general relativity, but in view of the increasing
importance in astronomy of gravitational radiation, it seems appropriate to pro-
vide a brief survey here of the theory of this radiation. Derivations are generally
abbreviated or skipped.18

18 The full derivations can be found in many books, including Chapter 10 of S. Weinberg, Gravitation and
Cosmology (Wiley, New York, 1972). Derivations that were not given in this reference, including the
derivation of the quadrupole approximation for emitted power in the form (2.3.A36), are given here.
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For a weak gravitational field, the metric is

gμν(x) = ημν + hμν(x), |hμν(x)| � 1, (2.3.A1)

where μ and ν are spacetime indices, running over the values 1, 2, 3, 0, with
x0 = t , and the non-zero components of ημν are η11 = η22 = η33 = 1 and
η00 = −1.19 It is always possible to adopt what is called a harmonic coordinate
system, which in the weak field case satisfies the condition

∂

∂xμ
hμ ν(x) = 1

2

∂

∂xν
hμ μ(x). (2.3.A2)

Here and elsewhere in using the weak field approximation, indices are raised
and lowered with ημν , and repeated indices are summed.

The Einstein field equations for weak gravitational fields in harmonic coordi-
nates read

�hμν(x) = −16πGSμν(x), (2.3.A3)

where � is the d’Alembertian � ≡ ημν ∂2/∂xμ ∂xν , and Sμν(x) is related to
the energy-momentum tensor Tμν(x) by

Sμν(x) ≡ Tμν(x)− 1

2
ημνT

λ
λ(x). (2.3.A4)

Let us first consider the solution for empty space, in which case the field
equation is

�hμν(x) = 0. (2.3.A5)

We can show that by a suitable choice of coordinates that preserves the harmonic
coordinate condition (2.3.A2) we can always eliminate the time components of
hμν , so that

hi0 = h0i = h00 = 0, (2.3.A6)

(with i and j running over the space coordinate labels 1, 2, 3), and it then
follows from Eq. (2.3.A2) that, apart from possible time-independent terms,

hii = 0,
∂hij

∂xj
= 0. (2.3.A7)

[Here is the proof. Under a general coordinate transformation xμ �→ xμ+εμ(x),
with εμ(x) small (of the same order as hμν(x)), we have

hμν �→ hμν + ∂εμ

∂xν
+ ∂εν

∂xμ
.

We preserve the condition (2.3.A2) by requiring that �εμ = 0. We can make
h00 vanish by taking ε0 to satisfy ∂ε0/∂x

0 = −h00/2, and we can make h0i
vanish by taking εi to satisfy ∂εi/∂x0 = −h0i − ∂ε0/∂x

i . Setting ν = 0 in

19 Until the end of this appendix, the speed of light is set equal to unity.
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Eq. (2.3.A2) then gives 0 = ∂hii/∂x
0, so, apart from time-independent terms,

hii = 0. It then follows from Eq. (2.3.A2) that also ∂hij /∂xj = 0.]
If we further assume that hμν depends only on x3 and time, as for a wave

traveling in the ±3-direction, then the vanishing of ∂hij /∂xj tells us that
∂hi3/∂x3 = 0, so, apart from terms that do not depend on x, we also have

hi3 = h3i = 0. (2.3.A8)

This leaves hμν with only two independent non-zero components,

h+ ≡ h11 = −h22, h× ≡ h12 = h21. (2.3.A9)

Such a gravitational wave is said to be in transverse-traceless gauge. By consid-
ering how these components transform under rotations around the 3-axis, one
can conclude that the components for gravitons with helicity ±2h̄ are h+∓ ih×.

It should be noted that for a wave that propagates in the 3-direction, for which
hμν does not depend on x1 or x2, the coordinate shifts εμ that are used to put hμν
into transverse-traceless gauge do not depend on x1 or x2, so the transformation
hμν �→ hμν + ∂εμ/∂xν + ∂εν/∂xμ has no effect on the components (2.3.A9).
Thus, to find the components (2.3.A9) in transverse-traceless gauge, there is
no need actually to transform to this gauge; it is only necessary to inspect the
space–space components hij with i and j taking the values 1 and/or 2.

The general solution of Eqs. (2.3.A5) and (2.3.A2) is a linear superposition
of terms of the form

hμν(x) = eμνe
ikλx

λ + e∗μνe−ikλx
λ

, (2.3.A10)

where the kλ are real constant wave vectors satisfying

kλkλ = 0, (2.3.A11)

and the eμν = eνμ are complex constant polarization tensors satisfying

kμe
μ
ν = 1

2
kνe

μ
μ. (2.3.A12)

In transverse-traceless gauge, the polarization tensor satisfies the further
conditions

e0i = ei0 = e00 = 0, ei i = 0, kie
ij = 0, (2.3.A13)

where as usual i and j run over the values 1, 2, 3. This leaves only two inde-
pendent components, which when ki is in the 3-direction are

e11 = −e22 ≡ e+, e12 = e21 ≡ e×. (2.3.A14)

Let us now return to the field equation (2.3.A3) in the presence of a non-zero
source. The general solution is

hμν(x, t) = 4G
∫
d3x′

(
Sμν(x′, t − |x − x′|)

|x − x′|
)

, (2.3.A15)
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plus any linear combination of free-field solutions of form (2.3.A10). Suppose
the source is a sum of simple harmonic terms with various angular frequencies
ω (not necessarily commensurate)20

Tμν(x, t) =
∑
ω

[
Tμν(x,ω) exp(−iωt)+ T ∗

μν(x,ω) exp(iωt)
]
. (2.3.A16)

Then in the wave zone, where ω|x − x′| � 1 for all the frequencies ω in
Eq. (2.3.A16) and for all x′ in the source (that is, for which Tμν(x′,ω) is non-
zero), the solution (2.3.A15) becomes a sum of plane waves like (2.3.A10) for
the various frequencies ω:

hμν(x, t) =
∑
ω

[
eμν(ω, x)eik(ω,x̂)·xe−iωt + e∗μν(ω, x)e−ik(ω,x̂)·xeiωt

]
,

(2.3.A17)
with

k(ω, x̂) = ωx̂, x̂ ≡ x/|x|, (2.3.A18)

eμν(ω, x) = 4G

|x|
[
Tμν
(
k(ω, x̂),ω

)− 1

2
ημνT

λ
λ

(
k(ω, x̂),ω

)]
, (2.3.A19)

and

Tμν(k,ω) ≡
∫
d3x′ Tμν(x′,ω) exp

(−ik · x′). (2.3.A20)

Although both k(ω, x̂) and eμν(ω, x) depend on x, in the wave zone they change
by negligible amounts when x changes by amounts of the order of the wave-
length 1/|ω|.

Energy-momentum conservation guarantees

kiTiν(k,ω) = ωT0ν(k,ω), (2.3.A21)

from which it follows that (2.3.A19) satisfies the harmonic coordinate condi-
tion (2.3.A12), and with which we can express all components of Tμν in terms
of the space–space components:

T0j (k,ω) = Tj0(k,ω) = kiTij (k,ω)/ω, (2.3.A22)

T00(k,ω) = kiTi0(k,ω)/ω = kikjTij (k,ω)/ω2. (2.3.A23)

In general (2.3.A19) does not satisfy the transverse-traceless conditions
(2.3.A13) without a further coordinate transformation, but as previously
mentioned this transformation does not change the components e+ and e×,
so these components can be read off from Eq. (2.3.A19) without needing

20 In this section we commit the notational sin of using the same symbol for functions and their Fourier
transforms or Fourier components, leaving it to the displayed arguments to indicate which is intended.
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to perform this transformation. In particular, for x and hence k(ω, x̂) in the
3-direction,

e×(ω, x) = 4G

|x| T12
(
k(ω, x̂),ω

)
,

e+(ω, x) = 2G

|x|
[
T11
(
k(ω, x),ω

)− T22
(
k(ω, x),ω

)]
. (2.3.A24)

(In deriving the formula for e+, we use Eq. (2.3.A23), which for k(ω, x̂) in
the 3-direction gives T00

(
k(ω, x̂),ω

) = T33
(
k(ω, x̂),ω

)
.)

We evidently only need the spatial components of Tμν(k,ω). These are
greatly simplified in what is known as the quadrupole approximation. The
typical speed of matter in the source is ω|x′|, where x′ is the coordinate
separation from a point (such as the center of mass) relative to which velocities
are measured. Hence, if the matter of the source is moving non-relativistically,
we have ω|x′| � 1. Using Eq. (2.3.A23), expanding Eq. (2.3.A20) for T00(k,ω)
to second order in k, and matching coefficients of kikj , we have

Tij (k,ω) 	 −ω
2

2
Qij (ω), (2.3.A25)

whereQij is the mass tensor

Qij (ω) =
∫
d3x′ x′

ix
′
jT00(x′,ω). (2.3.A26)

Using Eqs. (2.3.A16), (2.3.A18), (2.3.A24), (2.3.A25), and (2.3.A26) in
Eq. (2.3.A17), we find the components of the time-dependent gravitational
wave amplitude in transverse-traceless gauge for a source at a distance d in the
3-direction

h×(x, t) = 2G

d

..
Q12 (t − d), h+(x, t) = G

d

[ ..
Q11 (t − d)−

..
Q22 (t − d)

]
,

(2.3.A27)
whereQij (t) are the components of the time-dependent mass tensor

Qij (t) =
∫
d3x xixjT00(x, t) =

∑
ω

[
e−iωtQij (ω)+ eiωtQ∗

ij (ω)
]
.

(2.3.A28)
Although contemporary observations of gravitational radiation rely on the

detection of spatial distortion rather than of energy flux, it is important to know
the energy radiated gravitationally by sources such as binary stars, in order to
learn the effect of this radiation on the sources. The energy and momentum
in gravitational waves can be obtained from a pseudo-tensor tμν , defined by
moving the non-linear terms on the left-hand side Rμν − gμνR

λ
λ/2 of the

Einstein field equations to the right-hand side, where they act as a source to
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the linearized Einstein equations. To second order in the perturbation hμν to the
Minkowski metric,

tμν = 1

8πG

[
R(2)μν − 1

2
ημνη

ρσR(2)ρσ

]
, (2.3.A29)

whereR(2)μν is the part of the Ricci tensorRμν of second order in the perturbation
to the Minkowski metric. (tμν is a pseudo-tensor, in the sense that it transforms
as a tensor under Lorentz transformation, but not under general coordinate trans-
formations.) Since t i0 is the energy flux vector, the energy per time radiated in a
solid angle d� around a direction x̂ is dP = |x|2x̂i t i0 d�. Evaluating t i0 in the
wave zone using Eq. (2.3.A17) and averaging over a time that is long compared
with the longest beat frequency (the inverse of the smallest difference between
frequencies ω), the average radiated power per solid angle is〈

dP (x)
d�

〉
= |x|2

16πG

∑
ω

ω2
[
eμν∗(ω, x)eμν(ω, x)− 1

2

∣∣∣eμ μ(ω, x)
∣∣∣2] .

(2.3.A30)
Using Eq. (2.3.A19), we see that this depends only on the direction of x:〈

dP (x̂)

d�

〉
= G

π

∑
ω

ω2
[
T μν∗(k(x̂,ω),ω)Tμν(k(x̂,ω),ω)

− 1

2

∣∣∣T μ μ(k(x̂,ω),ω)
∣∣∣2] . (2.3.A31)

Equations (2.3.A22) and (2.3.A23) allow us to write this in terms of the space
components Tij :〈

dP (x̂)

d�

〉
= G

π

∑
ω

ω2T ij∗(k(x̂,ω),ω)T kl(k(x̂,ω),ω)

×
(
δilδjm − 1

2
δij δlm − 2x̂j x̂mδil + 1

2
x̂l x̂mδij

+ 1

2
x̂i x̂j δlm + 1

2
x̂i x̂j x̂kx̂l

)
. (2.3.A32)

The angular dependence of the emitted power becomes much more explicit in
the quadrupole approximation, in which Tij (k,ω) is given by a tensor (2.3.A25)
independent of k. It is then easy to integrate over solid angle, which gives the
total average emitted power

〈P 〉 = 2G

5

∑
ω

ω6
[
Q∗
ij (ω)Qij (ω)−

1

3
|Qii(ω)|2

]
. (2.3.A33)

Equation (2.3.A33) is the classic formula for emitted gravitational radiation
power in the quadrupole approximation. Using it is convenient for a source that
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has a simple harmonic time-dependence, with only a single frequency ω, such
as a binary star with a circular orbit. But for sources whose time-dependence
is a superposition of many frequencies, such as a binary star with an elliptical
orbit, it is much more convenient to write the emitted power in terms of the
actual time-dependence of the mass tensor (2.3.A28).

We want to show that the power (2.3.A33) is given by the time-average of
products of third time derivatives of the mass tensor (2.3.A28). Consider the
average〈
d3

dt3
Q∗
ij (t)

d3

dt3
Qkl(t)

〉
=
∑
ω,ω′

ω3ω′3
〈[
e+iωtQ∗

ij (ω)− e−iωtQij (ω)
]

×
[
e−iωtQkl(ω′)− e+iωtQ∗

kl(ω
′)
]〉

.

(2.3.A34)

The averaging over times long compared with the longest of the beat periods
1/|ω − ω′| kills all terms with ω �= ω′, and all terms with time-dependence
exp(±2iωt), so Eq. (2.3.A34) gives〈...

Q
∗
ij (t)

...

Qkl (t)
〉
=
∑
ω

ω6[Q∗
ij (ω)Qkl(ω)+Qij (ω)Q∗

kl(ω)
]
. (2.3.A35)

Comparing this with Eq. (2.3.A33), we see that the average power emitted in
gravitational radiation is

〈P 〉 = G

5c5

〈
...

Q
∗
ij (t)

...

Qij (t)−
1

3

∣∣∣...Qii (t)∣∣∣2
〉

. (2.3.A36)

We have used dimensional analysis to include a factor c5 in the denominator
here, in order to make this formula correct in cgs units, and therefore ready to
use for numerical calculation.

2.4 Gravitational Wave Detection: Coalescing Binaries

In the 1960s and 1970s interest in the detection of gravitational waves centered
on measurement of the energy they deposit as elastic waves in large metal
cylinders. In 1969 Joseph Weber21 claimed to have detected gravitational waves
with such a device, but Weber’s cylinder was chiefly sensitive to sources emit-
ting gravitational waves with a frequency that happens to match one of its nor-
mal modes, and there was no good candidate for a source with such a frequency,
or otherwise strong enough to be observed with Weber’s apparatus.

Since then, it has been generally agreed that this supposed detection was in
error. Attention has shifted to a different sort of detector, conceived in 1972

21 J. Weber, Phys. Rev. Lett. 22, 1320 (1969); 24, 276 (1970); 25, 180 (1970).
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by Rainer Weiss,22 which seeks instead to observe changes in phase of elec-
tromagnetic waves in the arms of a laser interferometer. A National Science
Foundation project instigated by Weiss with Ronald Drever, Kip Thorne, and
others, and then with the supervision of Barry Barish, built such an observatory,
the Laser Interferometric Gravitational Wave Observatory (LIGO), with instal-
lations at Livingston, Louisiana and Hanford, Washington, each consisting of
two 4 kilometer arms at right angles. A European collaboration built a similar
interferometer, Virgo, at Cascina in Italy, and plans are in train for installations
in other countries. Such detectors are sensitive to waves in a range of frequen-
cies, not just a few normal modes.

LIGO operated from 2002 to 2010, and reported no gravitational wave
detection. It was then succeeded by an advanced version.23 As we shall see,
Advanced LIGO soon detected what could only be interpreted as gravitational
waves from the coalescence of a binary consisting of a pair of black holes.

For orientation, let’s first make a crude estimate of the gravitational field
perturbation to be expected far from typical sources. For a monochromatic
source that produces gravitational waves with frequency ω/2π , Eqs. (2.3.A17)–
(2.3.A20) of the appendix to the previous section give a typical value h of the
components of the perturbation hμν to gμν at a distance d from the source as
h ≈ GT /dc4, where T is a typical value of Fourier components of the energy-
momentum tensor, and we now use dimensional analysis to put in powers of c to
make expressions valid in cgs units. As shown in Eqs. (2.3.A25) and (2.3.A26),
in the quadrupole approximation for a source consisting of small bodies with
total mass M , linear extent a, and typical velocities v ≈ aω � c, we have
T ≈ M v2, so

h ≈ MGv2/dc4. (2.4.1)

For the Hulse–Taylor binary pulsar discussed in Section 2.3, d 	 6.4 kpc =
2 × 1022 cm, M 	 2.8M�, MG/c2 	 4 × 105 cm, and v/c 	 10−3, so
Eq. (2.4.1) gives h ≈ 2 × 10−24. As we shall see, it is hopeless for LIGO to
detect a gravitational wave this weak with a period as long as the 8 hour period
of this binary pulsar.

Other sources are more promising. When a pair of neutron stars in orbit
around each other are just about to coalesce, their minimum separation a(1− e)
becomes equal to the sum R of their radii. Also, as shown in Eq. (2.3.10), the
loss of energy and angular momentum through gravitational radiation will by
then generally have reduced e to a small value, so a 	 R. For a pair of neutron
stars R will typically be of order 30 km, so if M 	 3M� the orbital frequency
at coalescence will be

22 Quarterly Report of the Research Laboratory for Electronics, MIT Report No. 105 (1972).
23 For a detailed description of Advanced LIGO, see J. Aasi et al. (LIGO Scientific Collaboration), Classical

& Quantum Gravity 32, 074001 (2015).
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1

T
= 1

2π

√
MG

R3
	 6 × 102 Hz.

The typical velocity will be of order ωa = 2πa/T , which is then v/c 	 0.4.
If the coalescing neutron star binary is at the same distance as the Hulse–Taylor
binary pulsar, then Eq. (2.4.1) gives h ≈ 3 × 10−19, and of course greater or
less if the coalescing binary is closer or farther.

On the other hand, the gravitational wave signal from a pair of coalescing
black holes is somewhat greater than from a pair of neutron stars of the same
mass and distance. This is because the Schwarzschild radius of a black hole
is smaller than the radius of a neutron star of the same mass, where the neu-
tron star mass is well below the Landau–Oppenheimer–Volkoff limit. For this
reason, coalescence occurs not when the separation equals the sum of their
Schwarzschild radii, but earlier, when their orbit becomes unstable. As shown in
the appendix to Section 4.5 for the case where one body is much heavier than the
other, this happens when the separation is three times the bigger Schwarzschild
radius, but this is still smaller than the sum of the radii of neutron stars of
the same mass. Still, there is not much difference in the signal received from
coalescing black holes or neutron stars at the same mass and distance. As it
has turned out, the important difference between mergers of neutron stars and
black holes as sources of gravitational radiation is that black hole masses are not
limited by an upper bound like the Landau–Oppenheimer–Volkoff bound on the
masses of stable neutron stars, and, as we shall see, have been discovered with
masses much larger than any stable neutron star.

Whether it is neutron stars or black holes that are coalescing, or one of each,
the leading signature of a coalescence is a wave with a period T that according
to Eq. (2.3.12) decreases at a rate proportional to T −5/3. The solution of the
equation

.
T ∝ T −5/3 is

T ∝ (t − t1)3/8,

where t1 is the time of coalescence. This specific result for the decrease of period
applies only within the quadrupole approximation, but in general we expect the
period of the emitted gravitational wave to decrease as the binary spirals inward,
giving a signal known as a chirp.

Let’s now look at the geometry of LIGO and similar gravitational wave obser-
vatories. A laser, operating at an optical or infrared wavelength, sends a coher-
ent electromagnetic wave into the observatory, say along the 1-axis. The wave
strikes a beam splitter, with the effect that a transmitted portion continues along
an arm in the 1-direction, while a reflected part is sent along an arm in the
orthogonal 2-direction. Both the transmitted wave and the reflected wave strike
mirrors, and are reflected back to the beam splitter, where a portion recombines
and continues along the negative 2-axis to a detector. In practice, the effec-
tive path lengths of the two arms are increased by a factor of order 100 by



2.4 Gravitational Wave Detection: Coalescing Binaries 107

interposing a partly silvered mirror in each arm near the beam splitter, so that
each electromagnetic wave is reflected back and forth many times before it
reaches the detector.

Suppose that a weak gravitational wave with metric gμν = ημν + hμν enters
the observatory. We adopt a coordinate system for which to zeroth order in
hμν the mirrors are at rest. In laser interferometers like LIGO, the mirrors are
suspended so that their natural period of oscillation is much longer than the
characteristic frequencies of the gravitational waves to which they are sensitive,
so that to a good approximation the only horizontal forces to which they are
exposed are gravitational. The spacetime coordinate xμ of each mirror thus
satisfies the equation for a freely falling body

d2xμ

dτ 2
+ �μρσ (x)

dxρ

dτ

dxσ

dτ
= 0, (2.4.2)

where

�μρσ = 1

2
gμν

[ gνρ
∂xσ

+ gνσ

∂xρ
− gρσ

∂xν

]
(2.4.3)

and
dτ 2 = −gρσ dxρ dxσ . (2.4.4)

Since �μρσ is at least of first order in hμν , to this order on the right-hand side of
Eq. (2.4.2) we can take dxi/dτ = 0 and dt/dτ = 1, and

�i00 = ∂hj0

∂t
− 1

2

∂h00

∂xi
, �0

00 = −1

2

∂h00

∂t
, (2.4.5)

so, according to Eq. (2.4.2), the change δxμ in the coordinates due to the gravi-
tational wave satisfies

∂2δxi

∂t2
= −∂hj0

∂t
+ 1

2

∂h00

∂xi
,
∂2δx0

∂t2
= 1

2

∂h00

∂t
. (2.4.6)

(We are now writing the time derivatives on the left-hand side of these equations
of motion as partial derivatives, because δxμ depends not only on time, but also
on the zeroth-order position x. As usual, i, j , etc. run over the values 1, 2, 3, and
repeated indices are summed over these values.) It is therefore very convenient
to adopt a generalized transverse-traceless gauge, in which

h0i(x) = hi0(x) = h00(x) = 0, (2.4.7)

and, as a consequence of Eq. (2.3.A2),

∂ihij = 0, hii = 0, (2.4.8)

so in this gauge there is no first-order effect of the gravitational wave on the
coordinates of the mirrors. The reader can check that this choice of gauge is
accomplished by the coordinate transformation xμ → xμ − δxμ, with δxμ sat-
isfying Eq. (2.4.6). (Equations (2.4.7) and (2.4.8) are satisfied after a coordinate
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transformation for the plane waves discussed in Section 2.3, but we are not now
assuming that the wave is simple-harmonic or traveling in the 3-direction.)

We now wish to consider the effect of the gravitational wave on an electro-
magnetic wave traveling between two mirrors separated by a fixed coordinate
distance L. To first order in h, we have gμν = ημν − hμν , so any individual
component E(x) of an electromagnetic wave will satisfy the equation

0 = [ημν − hμν(x)] ∂μ∂νE(x). (2.4.9)

If (as is usual) the gravitational perturbation varies little over the arms of the
interferometer and the travel time of the electromagnetic wave, we can use a
plane wave solution:

E(x) ∝ exp
(−iωt + iqn̂ · x

)
, (2.4.10)

where n̂ is the direction of propagation of the electromagnetic wave and ω/2π
is its frequency. (There is of course no necessary relation between ω and the
frequency 2� of the gravitational wave; in fact, in all relevant cases, ω � �.)
In transverse-traceless gauge the wave number q therefore satisfies

q2[1 − hij n̂i n̂j ] − ω2 = 0,

which has the first-order solution

q = ω

[
1 + 1

2
hij n̂i n̂j

]
. (2.4.11)

Thus a gravitational wave produces a change in phase of the electromagnetic
wave after traveling an effective distance L back and forth along the direction n̂
(perhaps bouncing back and forth many times) equal to

�� = 1

2
hij n̂i n̂jωL. (2.4.12)

We see that when the electromagnetic wave is recombined after traveling
effective lengths L1 and L2 back and forth in the interferometer arms along the
1- and 2-directions, the wave will take the form

exp(−iωt)
[
A1 exp

(
iωL1[1 + h11/2]

)+ A2 exp
(
iωL2[1 + h22/2]

)]+ c.c.,

(2.4.13)

where A1 and A2 are amplitudes that reflect the effects of reflection and trans-
mission along the two interferometer arms, and c.c. denotes the complex con-
jugate. Since it is harder to observe a small change in the electromagnetic wave
intensity caused by a gravitational wave than to observe a weak electromagnetic
wave where previously there were none, LIGO was designed to arrange for
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destructive interference in the absence of the gravitational wave.24 The system
is adjusted so that to the greatest extent possible |A1| = |A2| and L1 = L2 ≡ L,
and then finer adjustments are made so that in the absence of gravitational
waves nearly complete destructive interference is observed in the detector. We
then have

A1 exp[iωL1] = −A2 exp[iωL2] ≡ A. (2.4.14)

In the presence of a gravitational wave the destructive interference will not be
complete, and to first order in h the amplitude will be

iA exp(iωt)Lω
(
h11 − h22

)
/2 + c.c.. (2.4.15)

That is, if N photons would have been received at the detector during a time
2π/ω if one arm of the interferometer were blocked, so that there is no destruc-
tive interference, then the number actually received in the presence of a gravi-
tational wave will be

N

∣∣∣Lω(h11 − h22
)
/2
∣∣∣2, (2.4.16)

with the components hij evaluated at the position of the interferometer (which
we are assuming is small compared with the wavelength of the gravitational
wave) and at the time of the measurement.

The detection of a gravitational wave of frequency 2�/2π is impeded by two
main types of background noise, with very different dependence on �.

One noise type is ordinary seismic noise, which increases with decreasing�.
This is minimized by hanging the interferometers’ mirrors on pendula with very
low response frequencies, and resting these pendula on seismic isolation tables.
Seismic noise can be further suppressed by recording only detections at the two
LIGO sites in Louisiana and Washington that arrive in coincidence, within the
≈ 0.01 seconds travel time of a gravitational wave between the two sites. Even
so, seismic noise is a serious problem for low-frequency sources, in particular
making it impossible to detect a source like the Hulse–Taylor binary pulsar with
a period of 8 hours.

The other chief source of noise is “shot noise,” arising from the limited
number of photonsN delivered in a finite time by an electromagnetic wave. This
number is subject to quantum fluctuations of order

√
N , and hence fractional

fluctuations of order 1/
√
N . Since the number of photons arriving during a

time of order 1/� is proportional to 1/�, the effect of shot noise increases
with increasing �. To mitigate the effects of shot noise LIGO uses a powerful
laser, but shot noise is still a serious problem for high-frequency sources.

Detailed calculations that are beyond the scope of these lectures show that
a gravitational wave with frequency 2�/2π in the range of 100 to 1,000 Hz

24 In Advanced LIGO the destructive inteference in the absence of a gravitational wave is nearly but not quite
complete, in order to make the response of the interferometer to the wave linear rather than quadratic in
the wave’s amplitude.



110 2 Binaries

would have been detectable in the first run of LIGO if its amplitude h were
greater than about 2 × 10−23, while the present Advanced LIGO could detect
a gravitational wave in this frequency range with amplitude 2.5 times smaller,
with h 	 8 × 10−24. It is expected that eventually LIGO will be sensitive to
gravitational waves in this frequency range with h as small as 3.5 × 10−24.

Thus our earlier rough estimate, that a coalescing neutron star binary at the
distance of the Hulse–Taylor binary would give a strain of about 3 × 10−19,
means that such a coalescence could be detected by the present LIGO out to a
distance of about 104 times the distance of the Hulse–Taylor binary pulsar, or
roughly 60 Mpc. A more careful calculation gives 30 Mpc. The expected rate of
neutron star coalescence in our galaxy is estimated to be in the range of about
5 × 10−4 to 10−6 per year.25 Taking account of the estimated number of binary
neutron stars per galaxy and the number of galaxies per volume centered on
our galaxy, the same authors estimated a rate of coalescences per year and per
volume in the range 4×10−9 to 2×10−5 per Mpc3 per year. These estimates led
to a widespread expectation that the advanced version of LIGO when complete
would eventually be detecting the coalescence of neutron star binaries.

What happened was even more exciting. In 2015, in the first observing run of
Advanced LIGO, two gravitational wave signals were observed, GW15091426

and GW151226.27 In both cases, coincidental chirps were detected at both of
the LIGO interferometers, in Washington and Louisiana. They fit what would
be expected from general relativity for the coalescence of a binary pair of
black holes, followed by the subsequent “ringdown” of the merged black hole
as it approaches equilibrium. From analysis of the time-development of the
coalescence signals, the black holes were found to have initial masses 36+5

−4M�
and (29 ± 4)M� for GW150914, and 14.2+8.3

−3.7M� and (7.5 ± 2.3)M� for
GW151226. From comparison of the signals with numerical simulations of
coalescence, the final black holes were found to have masses (62 ± 4)M�
and 20.8+6.1

−1.7M�, respectively, with the missing mass radiated in gravitational
waves. From the strength of the signals (a peak value of 1.0 × 10−21 for
the relevant strain component h11 − h22 for GW150914) it was calculated
that the sources of GW150914 and GW151226 were at luminosity distances
410+160

−180 Mpc and 440+180
−190 Mpc, respectively. Not only was this the first direct

detection of gravitational waves – the observation of GW150914 revealed the
existence of a class of black holes considerably more massive than had been
anticipated.

25 V. Kalogera, R. Narayan, D. N. Spergel, and J. H. Taylor, Astrophys. J. 556, 340 (2001).
26 B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 116, 061102

(2016).
27 B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 116, 241103

(2016).
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At the time of writing in 2018, three more gravitational wave signals from
coalescing black holes have been detected, described in the table28 below:

Event dL (Mpc) −�E (M�c2) mchirp (M�) m1,m2 (M�) mfinal (M�)

GW150914 440+160
−180 3.0 ± 0.5 28.2+1.8

−1.7 35.4+5.0
−3.4, 29.8+3.3

−4.3 62.2+3.7
−3.4

GW151226 440+180
−190 1.0+0.1

−0.2 8.9+0.3
−0.3 14.2+8.3

−3.7, 7.5+2.3
−2.3 20.8+6.1

−1.7

GW170104 880+450
−390 2.0+0.6

−0.7 21.1+2.4
−2.7 31.2+8.4

−8.0, 19.4+5.3
−5.9 48.7+5.7

−4.6

GW170608 340+140
−140 0.85+0.07

−0.17 7.9+0.2
−0.2 12+7

−2, 7+2
−2 18.0+4.8

−0.9

GW170814 540+130
−219 2.7+0.4

−0.3 24.1+1.4
−1.1 30.5+5.7

−3.0, 25.3+2.8
−4.2 53.2+3.2

−2.5

As mentioned above, it had been anticipated that the first gravitational waves
to be detected at Advanced LIGO would be from coalescing neutron stars, so it
was a surprise that the first five gravitational wave signals were from binaries
whose members were much too massive to be neutron stars, or anything but
black holes. Where were the gravitational waves from coalescing neutron stars?

Finally, on August 17, 2017, such a signal, GW170817, was detected,29 most
clearly at the Hanford interferometer, and, after dealing with a noisy glitch, also
at the Livingston interferometer, and much more weakly at the Virgo interfer-
ometer in Italy. The relative weakness of the Virgo signal provided an important
clue to the source’s location in the sky. As explained in the mathematical notes at
the end of this section, each interferometer has four blind spots – it can detect no
gravitational wave that arrives on a line of sight in the plane of the interferometer
and midway between the interferometer’s arms, or at an angle greater by one,
two, or three right angles. Thus, although the weakness of the signal observed
at Virgo limited the use of this signal in determining the intrinsic properties of
the source, this weakness showed that the source was close to one of Virgo’s
blind spots.

Analysis of the LIGO signal showed that the gravitational waves came from
the coalescence of orbiting bodies with individual masses (1.36–1.60)M� and
(1.17–1.36)M�, and total mass 2.74+0.04

−0.01M�, consistent with neutron stars as

28 This is a compressed version of a table available from Wikipedia, which gives references for all these
signals. The date of each detection is indicated by the signal name; thus, GW170814 was detected on
August 14, 2017. Here dL is the luminosity distance, inferred from the observed signal strength; −�E
is the total energy emitted as gravitational waves; mchirp is the chirp mass defined by Eq. (2.3.13); m1

and m2 are the black hole masses before coalescence; and mfinal is the mass of the black hole left after
coalescence. Some of the results given in the table for the first two events were recalculated since the
original publication.

29 B. P. Abbott et al. (LIGO Scientific Collaboration, Virgo Collaboration, and other collaborations),
Astrophys. J. 848, L12 (2017). For details about the further analysis of the signal, see B. P. Abbott et
al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. X 9, 011001 (2019).
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well as black holes or ordinary stars, but reaching separations too close for
anything but neutron stars or black holes. From the intensity of the gravitational
wave signal, the luminosity distance was calculated to be 40+8

−14 Mpc, much
closer than for any of the earlier gravitational wave signals. Most excitingly, 1.7
seconds later a short-duration gamma ray burst, GRB170817A, was detected by
the orbiting observatories Fermi and INTEGRAL. Such a signal was expected
from the coalescence of neutron stars, but not of black holes. The gamma ray
signal gave more precise information about the location in the sky of the source,
and also showed that the speed of gravitational waves and that of electromag-
netic waves are indistinguishable.

Less than a day later, a search with optical telescopes revealed the glow-
ing remnant of this event,30 in an outlying part of the galaxy NGC4993 at
a distance 40 Mpc in the constellation Hydra. The composition of this debris
was consistent with what would be expected from the coalescence of neutron
stars. Evidence emerged suggesting the production of heavy elements in neutron
star coalescence, including elements such as gold and platinum that caught
the public’s imagination. All these observations tended to confirm the picture
of kilonovae described in the previous section, though argument continues.
Observations about 110 days later with the Chandra X-ray telescope indicate
that this kilonova has made a black hole.31

This event, and the earlier detection of gravitational waves from black hole
coalescences, clearly mark the beginning of a new era in astronomy.32

* * * * *

The detailed analysis of these gravitational wave signals is too complicated
to be thoroughly described here, in part because the strength of the gravitational
fields in the merger of black holes and the more massive neutron stars requires
the use of numerical methods, and also because at least for black holes the
analysis must take into account their spins. What follows is a simplified analy-
sis, using the quadrupole approximation described in Section 2.3, and ignoring
black hole and neutron star spin. As we shall see, even for the gravitational
wave signal from an orbiting binary in a circular orbit, the intensity of the
received signal, on which we rely in estimating the distance of the binary,
depends on four independent angles: the angles i and i ′ between the line of
sight and the normals to the planes of the interferometer and the binary; the
angle φ between arm 1 of the interferometer and the projection of the line of
sight onto the plane of the interferometer; and a fourth angle α, which we take

30 D. A. Coulter et al., Science 358, 1556 (2017).
31 D. Pooley, P. Kumar, J. C. Wheeler, and B. Grossan, Astrophys. Lett. 859, L23 (2018).
32 The limitations set by seismic noise on the observation of gravitational waves of low frequency may be

overcome by the observation of the effect of gravitational waves on the arrival times of pulses from
pulsars. As pointed out by S. Detweiler, Astrophys. J. 234, 1100 (1979), this method is sensitive to
gravitational waves with periods of the order of 1 to 10 years. Seismic noise can also be avoided by
space-based interferometers, such as the LISA (Laser Interferometer Space Antenna) system proposed by
the European Space Agency.
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as the angle between the vectors perpendicular to the line of sight in the plane of
the interferometer and in the plane of the binary. It is only through the analysis
of general relativistic corrections to the wave form, which is beyond our scope
here, that this can all be sorted out.

We can write the gravitational wave amplitude h11 − h22 to which the inter-
ferometer is sensitive in terms of the amplitudes h+ and h× introduced earlier.
Suppose we introduce a coordinate system (distinguished by a tilde) in which
the gravitational wave is traveling in the 3-direction, and further choose coordi-
nates so that the metric perturbation takes the form

h̃00 = h̃i0 = h̃0i = h̃3i = h̃i3 = 0

h̃11 = −h̃22 ≡ h̃+, h̃12 = h̃ ≡ h̃×,
(2.4.17)

all these components depending only on x̃3 and time. In the coordinate system
we have been using, in which the interferometer is in the 1–2 plane, the gravi-
tational wave will be traveling in some general direction

n̂1 = sin i cosφ, n̂2 = sin i sinφ, n̂3 = cos i, (2.4.18)

and will take the form

hij = R(i,φ)ikR(i,φ)jlh̃kl ,

h00 = h0i = hi0 = 0,
(2.4.19)

where R(i,φ) is the rotation

R(i,φ) =
⎛
⎝ sinφ cosφ 0

− cosφ sinφ 0
0 0 1

⎞
⎠
⎛
⎝ 1 0 0

0 cos i sin i
0 − sin i cos i

⎞
⎠ , (2.4.20)

which takes the 3-axis into the direction n̂. A straightforward calculation gives

h11 = (sin2φ − cos2 φ cos2i)h̃+ + sin 2φ cos i h̃×
h12 = h21 = − sin 2φ(1 + cos2i) h̃+/2 − cos 2φ cos i h̃×
h13 = h31 = sin 2i cosφ h̃+/2 − sinφ sin i h̃×
h22 = (cos2φ − sin2φ cos2i)h̃+ − sin 2φ cos i h̃×
h23 = h32 = sinφ sin 2i h̃+/2 + cosφ sin i h̃×
h33 = − sin2i h̃+. (2.4.21)

(Both h̃+ and h̃× depend only on n̂ · x and on time. The reader can easily check
that ∂ihij = 0 and hii = 0, so we are still in transverse-traceless gauge.) In par-
ticular, the amplitude in Eqs. (2.4.14) and (2.4.15) to which the interferometer
is sensitive is

h11 − h22 = −cos 2φ (1 + cos2i) h̃+ + 2 sin 2φ cos i h̃×, (2.4.22)

where again
h̃+ ≡ h̃11 = −h̃22, h̃× ≡ h̃12 = h̃21. (2.4.23)
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Equation (2.4.22) has the important immediate consequence that any interfer-
ometer has four blind spots, directions from which gravitational waves cannot
be detected, characterized by lines of sight with cos i = 0 and cos 2φ = 0.
Looking back at Eq. (2.4.18), we see that in these cases the line of sight is in the
plane of the interferometer and along a line midway between two arms – that
is, φ equal to π/4 – or at an angle φ = 3π/4, 5π/4, or 7π/4. As mentioned
above, the non-observation of the gravitational wave signal GW170817 in one
interferometer when a strong signal was observed in two other interferometers
gave important information concerning the line of sight to this source, which
was not provided by the strong signals at LIGO.

We record for future use that the 1-axis in the tilde coordinate system (which
is used in the definition of h̃+ and h̃×) has components in the interferometer-
based coordinate system

1̃j = R(i,φ)j1 = (sinφ, − cosφ, 0), (2.4.24)

which is the unit vector in the plane of the interferometer orthogonal to the
direction of travel of the gravitational wave.

In order to calculate the quantity (2.4.22) for a gravitational wave produced
by a binary star, we now need to go beyond the calculation of gravitational
wave power emission in the previous section. For simplicity, we consider a
binary with zero eccentricity. In the inertial coordinate system of the binary
(distinguished by an asterisk), in which the orbit is in the x∗–y∗ plane, the
separation vector has components

r∗x = a cos�t∗, r∗y = a sin�t∗, r∗z = 0, (2.4.25)

where, according to Eq. (2.1.2), � =
√
GM/a3, and t∗ is the time corre-

sponding to time t on Earth. (For instance, if we ignore cosmological effects,
t∗ = t − d.) If there is an angle i′ between the line of sight to the Earth
and the normal to the plane of the orbit, then in the tilde coordinate system
introduced above, in which the line of sight to the Earth is in the 3̃-direction, the
components of the separation vector are

r̃1 = r∗x cosα − r∗y cos i′ sinα = a cosα cos�t∗ − a cos i′ sinα sin�t∗,

r̃2 = r∗x sinα + r∗y cos i′ cosα = a sinα cos�t∗ + a cos i′ cosα sin�t∗,

r̃3 = −r∗y sin i = −a sin i′ sin�t∗, (2.4.26)

where α is the angle between the vector in the plane of the interferometer
orthogonal to the line of sight (used above to define the tilde coordinate system)
and the vector in the plane of the orbit perpendicular to the line of sight. In
the tilde coordinate system, the relevant components of the mass quadrupole
moment Q̃ij ≡ μr̃i r̃j are
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Q̃11(t)− Q̃22(t) = 2μa2
[
−[1 + cos2i′

]
cos 2α cos 2�t∗

+2 sin 2α cos i′ sin 2�t∗
]
,

Q̃12(t) = 2μa2
[
−1

2

[
1 + cos2i′

]
sin 2α cos 2�t∗ − cos i′ cos 2α sin 2�t∗

]
.

(2.4.27)

According to Eq. (2.3.A27), the components h̃+ and h̃× at a distance d from the
source to be used in Eq. (2.4.22) are

h̃×(x, t) = 2G

d

..

Q̃12 (t
∗), h̃+(x, t) = G

d

[ ..

Q̃11 (t
∗)−

..

Q̃22 (t
∗)
]

. (2.4.28)

Using Eq. (2.4.28) in Eq. (2.4.27), and then using the result in Eq. (2.4.22), we
have the strain component

h11 − h22 = A cos
(
2�t∗

)+ B sin
(
2�t∗

)
, (2.4.29)

where

A = −8�2Gμa2

d
(1 + cos2i′)

[
cosφ (1 + cos2i) cos 2α − 2 sinφ cos i sin 2α

]
(2.4.30)

and

B = 16�2Gμa2

d
cos i′

[
cosφ (1 + cos2i) sin 2α + 2 sinφ cos i cos 2α

]
.

(2.4.31)
As for any system of point particles whose motion is monochromatic with
frequency �, the gravitational wave signal from a circularly orbiting binary
with frequency � has frequency 2�.

Since there is no way to determine the arbitrary zero of time in Eq. (2.4.25),
the comparison of Eq. (2.4.29) with observation only allows the determination
of the modulus A2 +B2, as well as�. Using Eqs. (2.1.6) and (2.3.13), the mea-
surement of� and

.
� allows us to calculate a3/M and the chirp mass μ3/5M2/5.

This suffices to allow a calculation of the factor μa2 = [μM2/3][a3/M]2/3 in
A and B, so with a guess at a plausible range of the angles i, φ, i ′, and α we
can use the measured value of A2 + B2 to infer a plausible range of values
for the distance d. This alone would not provide values for a or the individual
masses, let alone the actual values of the angles i, φ, i′, and α, but fortunately,
as remarked in Section 2.1 for general binaries, relativistic corrections (here
including effects of black hole spin) come to our aid, and allow a complete
determination of all binary parameters.
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3
The Interstellar Medium

The space between the stars in our galaxy is filled with matter. The density of
interstellar matter is much lower than in a good laboratory vacuum, but there is
a lot of space between the stars, and interstellar matter plays an important role
in galaxies. It comes in various forms and temperatures. All but a few percent
is un-ionized hydrogen and helium, with densities of order tens of atoms per
cm3 near the Sun. There are colder denser molecular clouds, pretty much in
the galactic plane, with temperatures between about 50 K and 150 K, in which
new stars form. There is a very hot ionized corona of highly ionized atoms,
extending far outside the plane of the galaxy, with temperatures of several mil-
lions of degrees Kelvin and densities of order 10−2 to 10−4 atoms/cm3. There
are HII regions surrounding hot stars in the plane of the galaxy, chiefly of
ionized hydrogen, with densities of order 103 to 104 atoms/cm3. Much of the
interstellar medium is pervaded with magnetic fields. Apart from hydrogen
and helium, the interstellar matter contains “metals”: mostly carbon, nitrogen,
and oxygen, and also measurable quantities of lithium, sodium, magnesium,
aluminum, silicon, phosphorus, sulfur, calcium, and iron. Their abundances are
all somewhat less than what is believed to be the average cosmic abundances,
especially for aluminum and calcium. There are grains of solid matter, which
are believed to contain the missing metal atoms. These grains have dimensions
of order 10−4 cm or less, and redden the light from more distant stars. To stir up
the interstellar medium there are also starlight, supernovae shock waves, cosmic
rays, and turbulence.

It is all quite complicated. In line with the spirit of these lectures, this chapter
will not attempt a comprehensive survey of interstellar matter, but will instead
take up a number of important topics that can be treated analytically. In Section
3.1 we consider the formation of emission and absorption spectral lines, which
are ubiquitous in astronomy, and in particular continue to provide most of our
information about interstellar matter. Section 3.2 describes HII regions, includ-
ing Strömgren’s lovely analytic treatment of their extent, and a simple calcula-
tion of their heating by a hot star. Section 3.3 deals with the important issue of
cooling in the interstellar medium, and as an example discusses its application
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to the balance between heating and cooling in HII regions. In Section 3.4 we
consider the formation of stars, using an updated version of a theory of Jeans,
that although far from realistic nevertheless provides a language in which star
formation continues to be discussed.

Where stars or black holes find themselves in clouds of interstellar mat-
ter, some of that matter will drizzle down onto the surface. The matter being
accreted onto a star usually delivers significant angular momentum as well as
mass to the star and therefore takes the form of a disk. In other cases, especially
for black holes, when the matter of the cloud is pretty much at rest the accreting
matter can take the form of a sphere. These two limiting cases of accretion are
described in Sections 3.5 and 3.6. The treatment of accretion disks in Section 3.5
will be carried over to the next chapter, when we consider accretion disks around
the massive black holes at the center of quasars.

Section 3.7 deals with the emission of low-frequency radiation, such as radio
waves, from hot ionized interstellar gas, through the process of bremsstrahlung.
The results presented here differ from those commonly cited.

3.1 Spectral Lines

Interstellar matter can produce emission lines when it is excited by neighboring
stars, as in HII regions. It can also produce emission lines even from clouds
in local thermal equilibrium in cases where the cloud is somewhat optically
thick only near one or more discrete frequencies. And it can produce absorption
lines in the spectra of sources on the far side of interstellar clouds. To deal with
all of these cases, let us first recall Eq. (1.2.6) for time-independent radiation
transport:

n̂ · ∇	(ν, n̂, x) = −K(ν, x)	(ν, n̂, x)+ J (ν, x)/4πc. (3.1.1)

Here 	(ν, n̂, x) d2n̂ dν d3x is the energy of the photons in a small volume d3x

around x, having directions in a small solid angle d2n̂ around n̂, and with
frequencies in a small range from ν to ν + dν. Also, K(ν, x) (previously called
κabs(ν, x)ρ(x)) is the net fraction of photon energy absorbed by the medium
per distance traveled, and J (ν, x) (previously called j (ν, x)ρ(x)) is the rate of
radiant energy emission in all directions by the medium per volume and per
frequency interval. We are ignoring photon scattering here, so we can limit
ourselves to photons traveling in a fixed direction n̂ toward the observer, and
hence we can drop the argument n̂, take x = sn̂, and replace the argument x
with s. Then Eq. (3.1.1) becomes

d

ds
	(ν, s) = −K(ν, s)	(ν, s)+ J (ν, s)/4πc. (3.1.2)
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In cases where the absorption represented by the coefficient K(ν, s) is negligi-
ble, the solution is trivial:

	(ν, s) = 	(ν, s1)+ 1

4πc

∫ s

s1

J (ν, s) ds, (3.1.3)

where a subscript 1 denotes any convenient reference point along the line of
sight, such as a point source or the far end of an interstellar cloud.

To treat cases where absorption is not negligible, we introduce the optical
depth from the fixed reference point s1 to a point s:

τ(ν, s) ≡
∫ s

s1

K(ν, s′) ds′. (3.1.4)

It is elementary to check that Eq. (3.1.2) has the exact solution

	(ν, s) = e−τ(ν,s)
[
	(ν, s1)+ 1

4πc

∫ s

s1

J (ν, s′)eτ(ν,s′) ds′
]

. (3.1.5)

The integral over s′ can be easily calculated if we assume that the ratio
J (ν, s′)/K(ν, s′) is independent of s′, whether or not J (ν, s′) and K(ν, s′)
are individually independent of s′. In this case, we can write Eq. (3.1.5) as

	(ν, s) = e−τ(ν,s)
[
	(ν, s1)+

(
J (ν)

4πcK(ν)

)∫ s

s1

K(ν, s′)eτ(ν,s′) ds′
]

= e−τ(ν,s)
[
	(ν, s1)+

(
J (ν)

4πcK(ν)

)∫ s

s1

dτ(ν, s′)
ds′

eτ(ν,s′) ds′
]

and therefore

	(ν, s) = e−τ(ν,s)	(ν, s1)+
(

J (ν)

4πcK(ν)

) [
1 − e−τ(ν,s)]. (3.1.6)

We can use Eq. (3.1.6) more generally if we regard the quantity J (ν)/K(ν) as
a suitable average of J (ν, s′)/K(ν, s′) over the ray path from s1 to s.

Now we must see how to calculate J (ν) and K(ν). We consider the contri-
bution of transitions a ↔ b between two energy levels of some sort of atoms
(or molecules) in the interstellar medium, with Ea > Eb. In 1917 Einstein1

defined a quantity Aba as the rate at which an atom will spontaneously make
a transition from an energy level Ea to a lower energy level Eb, emitting a
photon of frequency near νab = (Ea − Eb)/h. The frequency of the emitted
photon will not be precisely equal to νab, both because the finite lifetime of the

1 A. Einstein, Phys. Z. 18, 121 (1917). For a textbook account, see S. Weinberg, Lectures on Quantum
Mechanics, 2nd edn. (Cambridge University Press, Cambridge, 2015), Section 2.1. A difference in notation
should be mentioned: In Lectures on Quantum Mechanics the indices n, m on theA andB coefficients refer
to individual states, while here the indices a and b refer to energy levels, some of which may contain more
than one individual state.
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initial (and possibly also the final) energy level gives the frequency distribution
a natural width, and also because thermal motion of the atoms produces a spread
of Doppler-shifted frequencies. If the probability that the photon is emitted with
frequency between ν and ν + dν is φ(ν) dν, sharply peaked at ν = νab with∫
φ(ν) dν = 1, then the rate of photon emission per volume, per solid angle, and

per frequency interval is φ(ν)Abana/4π , where na is the number per volume of
atoms in energy levelEa . It takes a photon a time ds/c to travel a distance ds, so
the amount J (ν)/4πc of additional radiant energy emitted per distance traveled,
per solid angle, and per frequency interval is hν φ(ν)Abana/4πc, and hence

J (ν) = hνφ(ν)Abana . (3.1.7)

Usually the natural width of atomic states is so small that the distribution
of frequencies described by φ(ν) arises chiefly from Doppler broadening. The
observed frequency ν is related to the frequency νab of the atomic transition at
rest by

ν = νab
[
1 − v/c], (3.1.8)

where v is the atomic velocity along the line of sight. In thermal equilibrium
at temperature T , where the mean velocity has a component v along the line of
sight, the probability that a particle of massm will have a velocity along the line
of sight between v and v + dv is P(v) dv, where

P(v) =
(

m

2πkBT

)1/2

exp
(−m(v − v)2/2kBT

)
. (3.1.9)

This is normalized so that
∫
P(v) dv = 1, so, to get a frequency distribution

function φ(ν) normalized so that
∫
φ(ν) dν = 1, we take

φ(ν) = c

νab
P
(
c(1 − ν/νab)

)
. (3.1.10)

Einstein also considered the absorption of photons from radiation with an
energy density ργ(ν) dν at frequencies between ν and ν + dν. The rate at
which an individual atom in such a field makes a transition from an energy
level Eb to a higher energy level Ea by absorbing a photon of frequency ν
near νab = (Ea − Eb)/h is written as Bab ργ(ν). Again, the absorbed photon
frequency is not generally exactly equal to νab, because both the natural widths
of the states and Doppler frequency shifts give the transition a finite width.
If the probability that the photon is absorbed with frequency between ν and
ν + dν is φ(ν)dν, then the rate of photon absorption per volume, per frequency
interval, and per solid angle is Babφ(ν)	(ν, s)nb where nb is the number density
of atoms in energy level Eb, and as before 	(ν, s) is the energy density at s
per frequency interval, and per solid angle. Each photon absorption removes an
energy hν from the radiation field, so absorption reduces the energy density per
solid angle and per frequency interval at a rate Babφ(ν)	(ν, s)nb. Einstein also
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took into account the possibility that the radiation would stimulate the emission
of photons by the atom in transitions from a higher energy level Ea to a lower
level Eb at a rate written as Bbaργ (ν), with the emitted photon frequency ν
near νab. The net rate of decrease of radiant energy density per solid angle
and per frequency interval due to absorption and stimulated emission is then
(Bab nb − Bbana)φ(ν)	(ν, s). The net decrease K(ν)	(ν, s) ds in radiant energy
density per solid angle and per frequency interval due to absorption and stimu-
lated emission during the time ds/c it takes a photon to travel a distance ds is
hνφ(ν)(Bab nb − Bbana)	(ν, s) ds/c, so

K(ν) = hνφ(ν)
(
Babnb − Bbana

)
/c. (3.1.11)

To work out the relations between the coefficients Aba , Bab , and Bba , Einstein
imposed the condition that black-body radiation at temperature T should have
no effect on the population of atomic states if the atoms are in thermal equilib-
rium at the same temperature. In thermal equilibrium the number densities of
atoms of a given element in energy levels Ea and Eb have the ratio

na/nb = gae
−Ea/kBT

gbe−Eb/kBT
, (3.1.12)

where ga and gb are the degeneracies, the numbers of individual states having
energies Ea and Eb, respectively. Einstein’s condition (neglecting the widths of
the states) is thus

ρ(νab, T )
(
Bab gbe

−Eb/kBT − Bbagae−Ea/kBT
) = Abagae

−Ea/kBT , (3.1.13)

where ρ(ν, T ) is the energy density per frequency interval for black-body radi-
ation at temperature T

ρ(ν, T ) = 8πhν3

c3

[
exp(hv/kBT )− 1

]−1 . (3.1.14)

The coefficients Aba and Bba characterize atomic energy levels, not the atom’s
environment, and are therefore independent of temperature. In order for
Eq. (3.1.14) to be satisfied for all temperatures with temperature-independent
A and B coefficients, these coefficients must satisfy the Einstein relations:

Bab gb = Bbaga , Aba =
(

8πhν3
ab

c3

)
Bba . (3.1.15)

Thus in general, whether or not the medium is in a state of thermal equilibrium,
Eqs. (3.1.11) and (3.1.15) give

K(ν) = hνφ(ν)

[
1 − na/ga

nb/gb

]
Bab nb/c (3.1.16)
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and Eqs. (3.1.7), (3.1.15), and (3.1.16) give

J (ν)

K(ν)
=
(

8πhν3
ab

c2

)[
nb/gb

na/ga
− 1

]−1

. (3.1.17)

Now let us see how these general results work in special cases.

Emission Lines from Clouds in Thermal Equilibrium

In cases where an interstellar cloud is itself the source of an observed spectral
line, we can take the reference point s1 to be at the far edge of a cloud, where
	 = 0, so that Eq. (3.1.6) gives the observed radiation energy density per
frequency interval and per solid angle at s as

	(ν, s) =
(

J (ν)

4πcK(ν)

) [
1 − e−τ(ν,s)]. (3.1.18)

If we assume that the cloud is in thermal equilibrium at temperature T , with
number densities satisfying Eq. (3.1.12), then Eq. (3.1.17) gives

J (ν)

K(ν)
=
(

8πhν3
ab

c2

) [
exp(hνab/kBT )− 1

]−1 . (3.1.19)

Hence Eq. (3.1.18) gives

	(ν, s) = ρ(νab, T )

4π

[
1 − e−τ(ν,s)], (3.1.20)

where ρ(ν, T ) is the energy density per frequency interval in black-body radi-
ation at temperature T , given by Eq. (3.1.14). Also, in thermal equilibrium,
Eqs. (3.1.4), (3.1.16), and (3.1.12) give the optical depth of the cloud due to
transitions a ↔ b as

τ(ν, s) = hνφ(ν)Bab
[
1 − exp(−hνab/kBT )

]
Nb(s)/c, (3.1.21)

where Nb(s) is the column density of atoms in the lower energy level between
s1 and s

Nb(s) =
∫ s

s1

nb(s
′) ds′. (3.1.22)

If the cloud were optically thick, with τ(ν, s) � 1, at all frequencies, then the
observer at s looking into the cloud would simply see black-body radiation at the
cloud’s temperature, with no spectral lines. (The denominator 4π in Eq. (3.1.20)
is present because 	 is the radiation energy density per frequency interval and
per solid angle, while ρ(ν, T ) is simply the black-body radiation energy density
per frequency interval.) Commonly the optical thickness τ(ν, s1) is negligible
except near one or more transition frequencies νab where φ(ν) is appreciable.
The observer will then see a negligible radiant energy from the cloud except
near these frequencies, which will appear as emission lines.
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The most famous example of such an emission line is the 21 cm line of
hydrogen, produced in transitions between the two hyperfine states of the 1s
level of hydrogen, of which the lower has total (electron plus proton) spin S = 0
and the upper has total spin S = 1. These states are separated in energy by
5.9×10−6 eV, which is much less than the value of kBT even for the microwave
background temperature 2.7 K, so the column densities of the states of the lower
and upper state are proportional to the multiplicity 2S + 1 of states for spin S,
and thus these column densities are 1/4 and 3/4 of the total column density NH
of 1s atomic hydrogen, respectively. Here Eq. (3.1.21) gives an optical depth

τ(ν, s) = (hνab)
2φ(ν)Bab

4ckBT
NH(s). (3.1.23)

The decay rate of the upper to the lower hyperfine state is Aba = 2.87 ×
10−15 s−1, from which it is possible to calculate the B coefficient using
Eq. (3.1.15). The optical depth is then given by Eq. (3.1.23) as τ = 5.49 ×
10−14NHP(v)/T , with the column density NH in hydrogen atoms per cm2,
T in degrees Kelvin, P(v) the velocity distribution function (3.1.9), and v
related to ν by Eq. (3.1.8). The observed radiation energy density per solid
angle and per frequency interval is given in terms of this optical depth by
Eq. (3.1.20), which for small but non-negligible optical depth reads

	(ν, s) = ρ(νab, T )

4π
τ(ν, s). (3.1.24)

The measurement in this way of the optical depth at the 21 cm wavelength
provides information about the mean velocity, temperature, and column density
of interstellar atomic hydrogen and eventually (it is hoped) of intergalactic
atomic hydrogen.

Emission Lines from Non-equilibrium Regions

Of course interstellar matter that is not in thermal equilibrium can produce
emission lines even (and especially) if it is optically thin. In this case, again
taking s1 to be the far end of the relevant interstellar matter, where 	 = 0, the
radiation energy density is given by Eq. (3.1.3) as

	(ν, s) =
(
J (ν)

4πc

)
L(s), (3.1.25)

where L(s) ≡ s − s1 is the effective path length through the emitting region.
As mentioned earlier, if the emission function J varies along this path, then its
average should be used in Eq. (3.1.25).

Common examples of this sort of emission line include the optical-frequency
lines emitted in the recombination of ionized interstellar matter, as in HII
regions, discussed in the next section. Among these lines are those emitted by
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the decay of excited states of atomic hydrogen (HI), once-ionized and twice-
ionized oxygen (OII and OIII), and once-ionized nitrogen (NiII), usually excited
by ultraviolet radiation from a nearby hot star. A pair of green emission lines
were once thought to indicate the presence of a new element, nebulium, until
they were identified as arising from OIII. (The importance of OIII in cooling
interstellar gas will be discussed in Section 3.3.) Much of our knowledge of
Strömgren spheres comes from the observation of such emission lines.

It is not always the case that τ is very small. Where it is not, we must return
to the general form of Eq. (3.1.6), which (when 	 = 0 vanishes at s = s1) gives

	(ν, s) =
(

J (ν)

4πcK(ν)

) [
1 − e−τ(ν,s)

]
, (3.1.26)

and use Eq. (3.1.16) for K(ν). In particular, where there is a population
inversion, with na/nb > ga/gb (which never happens in thermal equilibrium),
stimulated emission exceeds absorption, and we have K and τ negative, so
that the interstellar material emits radiation at frequencies at which −K(ν) is
large. Such masers are found at microwave frequencies in the accretion disks
surrounding the black holes at the centers of various galaxies, including the
well-studied cases of NGC 4258 and M33.

Absorption Lines

Absorption lines are produced in the passage of radiation from a distant source
through interstellar matter. In this case, the relevant term in the observed radia-
tion density is the first term in Eq. (3.1.6):

	(ν, s) 	 	(ν, s1)e
−τ(ν,s), (3.1.27)

where s1 is the coordinate of the source. Absorption lines occur at values
νab = (Ea − Eb)/h of frequency where the optical depth τ has a peak, due to
transitions between the energy levels a and b. When the medium is in thermal
equilibrium, the optical depth is given by Eq. (3.1.21).

The absorption line at 21 cm wavelength is seen in the spectrum of radio
sources viewed through clouds of interstellar hydrogen, and used to measure
the velocity, temperature, and column density of such clouds. As we shall see
in the following chapter, these observations were used to map the rotational
speeds at various positions in distant disk galaxies, and in that way provided
one of the first pieces of evidence for dark matter in galaxies. It should be noted
that at radio wavelengths the optical depth is reduced by stimulated emission
in the transition a → b from the upper to the lower state. In particular, for
kBT � hνab, Eq. (3.1.21) shows that the optical depth is reduced by stimulated
emission by a factor hνab/kBT :

τ(ν, s1) = hνφ(ν)Bab
(
hνab/kBT

)
Nb/c. (3.1.28)
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Absorption lines at optical wavelengths are seen in the spectra of stars viewed
through interstellar clouds. There is a classic instance of interstellar absorption
at optical wavelengths in the spectrum of ζ Ophiuchi. On the line of sight
between this star and the Earth there are clouds of cold gas that absorb light
at various optical frequencies of atoms and molecules. For instance, there is
absorption at the 5,890 Å and 5,896 Å lines of atomic sodium, produced in tran-
sitions of the 3s1/2 state to the 3p3/2 and 3p1/2 states. (These are the transitions
that in 1925–1926 gave the first evidence of electron spin.) From the Doppler
shift of these lines, it is found that two of the thicker clouds have velocities
along the line of sight of 30 km/sec and 10 to 20 km/sec, respectively.2

Though it was not realized at the time, an optical absorption line in the
spectrum of ζ Oph provided the first evidence for the existence of the cos-
mic microwave background.3 There had been a measurement of the radiation
temperature at wavelength 0.264 cm in 1941, long before the discovery by
Penzias and Wilson. In 1941 W. S. Adams,4 following a suggestion of Andrew
McKellar, found two dark lines in the spectrum of ζ Oph that could be identified
as due to absorption of light by cyanogen (CN) in an intervening cloud. The
first line, observed at a wavelength of 3,874.62 Å, could be attributed to absorp-
tion of light from the CN ground state, with rotational angular momentum
J = 0, leading to the component of the first vibrationally excited state with
J = 1. But the second line, at 3,874.00 Å, represented absorption from the J = 1
rotationally excited vibrational ground state, leading to the J = 2 component
of the first vibrationally excited state.5 From this, McKellar concluded6 that
a fraction of the CN molecules in the cloud were in the first excited rota-
tional component of the vibrational ground state, which is above the true J = 0
ground state by an energy hc/(0.264 cm), and from this fraction he estimated
an equivalent molecular temperature of 2.3 K. Of course, he did not know that
the CN molecules were being excited by radiation, much less by black-body
radiation. After the discovery by Penzias and Wilson several astrophysicists7

independently noted that the old Adams–McKellar result could be explained by
radiation with a black-body temperature at wavelength 0.264 cm in the neigh-
borhood of 3 K. Theoretical analysis showed that nothing else could explain the

2 M. J. Barlow et al., Mon. Not. Roy. Astron. Soc. 272, 333 (1995).
3 The following discussion is based on that of S. Weinberg, Cosmology (Oxford University Press, New York,

2008), Section 2.1.
4 W. S. Adams, Astrophys. J. 93, 11 (1941).
5 Today the wavelengths of these two lines are more accurately known to be 3,874.608 and 3,873.998

Å. There is another line at 3,875.763 Å, produced by transitions from the J = 1 rotationally excited
vibrational ground state to the J = 0 component of the first vibrationally excited state.

6 A. McKellar, Publs. Dominion Astrophys. Observatory (Victoria, B.C.) 7, 251 (1941).
7 G. Field, G. H. Herbig, and J. L. Hitchcock, Astron. J. 71, 161 (1966); G. Field and J. L. Hitchcock, Phys.

Rev. Lett. 16. 817 (1966); Astrophys. J. 146, 1 (1966); N. J. Woolf, quoted by P. Thaddeus and J. F. Clauser,
Phys. Rev. Lett. 16, 819 (1966); I. S. Shklovsky, Astronomicheskii Tsirkular No. 364 (1966).
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excitation of this rotational state.8 This interpretation was then borne out by
continuing observations on this and other absorption lines in CN as well as CH
and CH+ in the spectrum of ζ Oph and other stars.

3.2 HII Regions

Here and there throughout the plane of the galaxy there are hot stars at the
upper end of the main sequence, of spectral type O and B, that emit copious
photons with energies so high that they can ionize the atomic hydrogen (HI)
that surrounds these stars. These photons cannot readily be absorbed by ionized
hydrogen,9 so they travel to the outskirts of the ionized region, where they
ionize more hydrogen. At some distance from the star the radiation becomes
attenuated enough that its production of hydrogen ions (HII) no longer over-
whelms the recombination of protons and electrons, and the fraction of un-
ionized hydrogen begins to increase. As soon as there is any appreciable amount
of HI, the interstellar medium becomes opaque to ionizing radiation, and at
even slightly greater distances there is no more ionization. In this way the hot
star’s ultraviolet radiation excavates a sphere of ionized hydrogen around the
star, with a remarkably distinct outer surface. The sphere is observed through
its production of radiation emitted when protons and electrons recombine into
excited states of atomic hydrogen, which then decay to the ground state through
a cascade of intermediate states. This notably includes the Lyman-α ultraviolet
line emitted when hydrogen atoms make the final transition from the 2p state to
the 1s ground state. Such spheres were first discussed by the Danish astronomer
Bengt Strömgren10 (1908–1987), and are widely known as Strömgren spheres.

To analyze the structure of Strömgren spheres, we will consider only the
simplest case: a spherically symmetric star in a medium that in the absence
of the star would be a uniform gas of pure atomic hydrogen, of constant number
density n. If at a distance r from the star’s center a fraction ξ(r) of the hydrogen
is not ionized by the star’s ultraviolet radiation, then the number density of
hydrogen atoms is ξ(r)n, and the number densities of protons and electrons are
both equal to

(
1 − ξ(r))n. If the star emits L photons per time isotropically in

all directions, then at r the flux �(r) (in photons per area per time) is given by

�(r) = L
4πr2

exp
(−τ(r)). (3.2.1)

8 G. Field, G. H. Herbig, and J. L. Hitchcock, Astron. J. 71, 161 (1966); Thaddeus and J. F. Clauser, Phys.
Rev. Lett. 16, 819 (1966).

9 Free–free absorption of photons in the Coulomb scattering of electrons and protons is less important in
HII regions, and will not be taken into account in this section.

10 B. Strömgren, Astrophys. J. 89, 526 (1939).
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Here τ(r) is the optical depth between r and the star’s surface at the stellar
radius r0:

τ(r) =
∫ r

r0

nσξ(r ′) dr ′, (3.2.2)

where σ is the photoionization cross section in atomic hydrogen, with its
frequency dependence averaged over the star’s spectrum. The number of
ionizations per volume per time at r is ξ(r)nσ�(r), while the number of
recombinations per volume per time is the product n2

(
1 − ξ(r))2 of the number

densities of protons and electrons times a coefficient α with the dimensions
of length3 per time, so the condition for equilibrium which determines the
fractional ionization at r is

ξ(r)nσ�(r) = αn2(1 − ξ(r))2. (3.2.3)

(We are treating α as a constant. In principle α depends on the temperature of
the plasma of electrons and protons, but the temperature does not vary sharply
within the Strömgren sphere, and since recombination is an exothermic process
its temperature dependence is not pronounced.11)

From these relations we can derive a differential equation for ξ(r). From
Eqs. (3.2.1) and (3.2.3) we have

exp
(
τ(r)

) = Lσ
4πr2αn

ξ(r)(
1 − ξ(r))2 . (3.2.4)

Differentiating with respect to r , using Eq. (3.2.2) for dτ/dr , and then dividing
by eτ gives

r2 d

dr

(
ξ(r)

r2
(
1 − ξ(r))2

)
= nσ

ξ2(r)(
1 − ξ(r))2 . (3.2.5)

The only astrophysical parameter on which this differential equation depends
is nσ , but the other parameters in the problem get into the solution through the
initial condition. Since τ(r0) vanishes by definition, at r0 Eq. (3.2.4) gives

ξ(r0)(
1 − ξ(r0)

)2 = 4πr2
0αn

Lσ . (3.2.6)

Equation (3.2.5) is too complicated to allow a simple analytic solution. We
can, however, find such solutions in two overlapping regions.

11 For temperatures in a range of 5, 000 K to 20, 000 K, the recombination coefficient α varies from 4.54 ×
10−13 cm3/sec to 2.52 × 10−13 cm3/sec. This is for “case B” recombination, in which the ultraviolet
photons emitted in recombination directly to the ground state of hydrogen are supposed immediately to
ionize a nearby hydrogen atom, so that recombination to the ground state is not included in the effective
value of α. Numerical estimates in this section are taken from D. E. Osterbrock, Astrophysics of Gaseous
Nebulae and Active Galactic Nuclei (University Science Books, Mill Valley, CA, 1989).
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Interior of the Sphere

By definition the interior of a Strömgren sphere is a region in which the ioniza-
tion is nearly 100%, so that ξ is much less than unity. Where this is the case we
can set 1 − ξ equal to unity in Eq. (3.2.5), which then becomes

r2 d

dr

ξ(r)

r2
= nσξ2(r). (3.2.7)

The solution is now elementary:

ξ(r)

r2
= [r2

0/ξ(r0)− nσ(r3 − r3
0 )/3

]−1. (3.2.8)

This is valid for values of r for which it gives ξ(r) � 1.
To see when this condition is satisfied, we note that two independent and

very different distance scales enter in Eq. (3.2.8). One is the mean free path d
of photons in a gas of atomic hydrogen of number density n:

d ≡ 1/σn. (3.2.9)

The other distance scale is the radius RS that a sphere of completely ionized
hydrogen of density n would need in order for there to be one recombination
for every photon emitted by the star, if placed at the center of the sphere:

αn2

(
4πR3

S

3

)
≡ L. (3.2.10)

For typical Strömgren spheres R is in the range of 10–100 pc, while d is much
smaller, typically of order 0.1 pc.

For ξ � 1, Eqs. (3.2.6), (3.2.9), and (3.2.10) give ξ(r0)/r2
0 = 3d/R3, so

Eq. (3.2.8) may be rewritten as

ξ(r) = 3dr2

R3
S − r3 + r3

0

.

The stellar radius r0 is negligible compared with R or even d, so we do not need
to keep the term r2

0 in the denominator of this formula, which becomes

ξ(r) = 3dr2

R3
S − r3

. (3.2.11)

We see that as long as r is no larger than of order RS, but not close to
RS, ξ(r) is no larger than of order d/RS � 1. Under these circumstances
Eqs. (3.2.8) and (3.2.11) should be good approximations, and we can conclude
that the Strömgren sphere has a radius close to RS. For instance, according to
Eq. (3.2.11) ξ rises to 0.1 when r 	 RS − 10d , which for typical Strömgren
spheres is very close to RS.
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Surface of the Sphere

Equation (3.2.11) shows that the approximation ξ � 1 must break down when
r is within some distance of order d of the nominal radiusRS. For r in this range
we can no longer set the factor 1 − ξ equal to unity in Eq. (3.2.5), but we can
get an analytic solution with a different approximation. Since this range is so
narrow compared with RS, we can take r in Eq. (3.2.5) as the constant RS, so
that Eq. (3.2.5) becomes

d

dr

(
ξ(r)(

1 − ξ(r))2
)

= nσ
ξ2(r)(

1 − ξ(r))2 . (3.2.12)

Then if ξ(r) grows from a small value ξa at a radius ra to a value ξb close to
unity at radius rb, we have

rb − ra
d

=
∫ ξb

ξa

[
(1 − ξ)2
ξ2

]
d

dξ

(
ξ

(1 − ξ)2
)
dξ

=
[
−1

ξ
+ 2 ln

(
ξ

1 − ξ
)]ξb

ξa

. (3.2.13)

For instance, ξ will rise from 0.1 to 0.99 in a range of length 22.6d near RS. For
typical Strömgren spheres this is much less than the radius RS of the sphere,
showing that the transition from ionized to atomic hydrogen does indeed take
place in a very narrow shell.

Recombination Lines

According to the definition of the recombination coefficient α, the energy of the
photons emitted per second and per volume by recombination with frequency
between ν and ν + dν is

J (ν, s) dν = αn2(s)
(
1 − ξ(s))2hνφ(ν) dν, (3.2.14)

where s is the coordinate along the line of sight, and φ(ν) is the line shape
function introduced in the previous section, with

∫
φ(ν) dν ≡ 1. Neglecting

absorption, assuming total ionization within the HII region, and assuming no
radiation at frequency ν coming into the HII region at its far end, Eq. (3.1.3)
gives the intensity of the line at frequency ν leaving the region toward the
observer as

	(ν) = αEhνφ(ν)
4πc

, (3.2.15)

where E is the so-called emission measure

E =
∫

HII region
n2(s) ds. (3.2.16)
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The observation12 of the Hα (n = 3 → n = 2) and Hβ (n = 4 → n = 2)
hydrogen emission lines indicates that typical HII regions have E ≈ 103−104

pc cm−6, so such an HII region with a diameter of, say, 10 pc would have a
number density of order 10–30 cm−3.

Heating

HII regions provide a particularly simple example of the heating of interstellar
matter by starlight. First note that the collision of photons with electrons is a
very ineffective way of transferring energy from radiation to matter. As noted
in Section 1.4, energy and momentum conservation do not allow a photon to be
absorbed by a free electron in empty space, while in the scattering of a photon
of energy E at an angle θ by an electron at rest, the energy transferred to the
electron is

�E = E2(1 + cos2 θ)

mec2 − E(1 + cos2 θ)
,

which is very much less than E for optical or ultraviolet frequency photons, for
which E � mec

2. Scattering by a free proton is even less effective. As long
as there is any appreciable amount of neutral hydrogen present, the dominant
mechanism by which a hot O or B star can heat the interstellar medium is
photoionization.

HII regions are typically sufficiently wide that any photon emitted by the
central star with an energy E above the ionization threshold EI = 13.6 eV of
neutral hydrogen will ionize some hydrogen atom, giving the emitted electron
an energy E − EI, so the average energy per electron given to these electrons
will be

�E =
∫∞
EI
(E − EI )L(E) dE∫∞
EI

L(E) dE
, (3.2.17)

where L(E) dE is the rate at which the star emits photons with energy between
E and E + dE. To a good approximation, the energy dependence of L(E) is
that of a black body with some “color temperature” Tc:

L(E) ∝ E2

exp(E/kBTc)− 1
. (3.2.18)

It is easy to evaluate �E in two limiting cases. For kBTc � EI, the integrals in
Eq. (3.2.17) are dominated by energies just above the ionization threshold EI,
so, by setting E = EI + w, we find

�E 	
∫∞

0 wE2
I exp(−(EI + w)/kBTc) dw∫∞

0 E2
I exp(−(EI + w)/kBTc) dw

= kBTc. (3.2.19)

12 Cited by W. J. Maciel, Astrophysics of the Interstellar Medium (Springer, New York, 2013).
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For kBT � EI, the integrals in Eq. (3.2.17) are dominated by energies far above
the ionization threshold EI, so we can ignore the lower bound in these integrals,
and find

�E 	
∫∞

0 [E3/(exp(E/kBTc)− 1)] dE∫∞
0 [E2/(exp(E/kBTc)− 1)] dE

= π4

30ζ(3)
kBTc = 2.701kBTc. (3.2.20)

Hence the order of magnitude of�E is never very different from kBTc. Numer-
ical calculations13 show that�E rises from 1.051 kBTc for kBTc/EI = 0.033 to
1.655kBTc for kBTc/EI = 1.85.

In equilibrium the constancy of the degree of ionization requires that the rate
of ionizations per volume must equal the rate αnenp of recombinations per
volume. Hence the heating function �, the rate per volume at which photons
deposit energy in the matter of the HII region, is

� = αnenp�E. (3.2.21)

Thermal equilibrium requires that the temperature of the medium must take
a value at which this heating is balanced by some sort of cooling. There is
one sort of cooling that clearly will not do the trick. If the average energy
of electrons that recombine with protons is ER, then the rate per volume at
which the ionized gas loses energy through recombination is αnenpER. For
this to balance the heating function (3.2.21), it would be necessary to have
ER = �E. The cross section for electrons to be captured by protons decreases
with increasing electron energy, so ER is less than the mean electron energy
3kBTe/2, where Te is the electron kinetic temperature. We conclude that if
recombination were the sole form of cooling, the electron temperature Te would
have to be greater than 2�E/3kB, which is always greater than 2Tc/3. But HII
regions excited by stars with color temperatures of 3 × 104 K to 5 × 104 K gen-
erally have electron temperatures less than around 104 K, considerably less than
2Tc/3. Other cooling processes aside from recombination are needed to bring
the temperature down this low. Such general cooling processes are considered
in the next section.

3.3 Cooling

The interstellar medium is heated by starlight and supernova shock waves, so it
can reach equilibrium only at a temperature at which this heating is balanced
over time by processes of cooling. Furthermore, as we will see in the next

13 L. Spitzer, Jr., Physical Processes in the Interstellar Medium (John Wiley & Sons, New York, 1998),
Table 6.1.
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section, in order for stars to form in the gravitational collapse of clumps of
interstellar matter, it is necessary for gas pressure in these clumps to be reduced
by cooling. So it is important to consider how to calculate the quantity known
as the cooling function�, the rate per volume and per time at which interstellar
matter loses energy. It is a function of the temperature and of the densities
of whatever constituents of the interstellar medium participate in the cooling
process.

Cooling typically occurs when kinetic energy in a collision is transferred to
excited states of atoms, ions, or molecules, after which the excited states lose
their energy by emitting photons, which escape the matter if it is optically thin.
We will separately consider two limiting cases of such cooling processes, for
which the cooling function has very different dependences on the density of the
medium being cooled.

We will also consider a third source of cooling, which becomes dominant in
the absence of metals, at temperatures high enough that almost all hydrogen and
helium atoms are ionized. This is bremsstrahlung, the radiation of photons in the
Coulomb scattering of electrons by ions. Bremsstrahlung is the inverse of the
process leading to free–free absorption of photons, calculated in the appendix
to Section 1.4, which is often called inverse-bremsstrahlung. In Section 3.7,
bremsstrahlung will be discussed again as a source of observable low-frequency
radiation.

Prompt Radiation

In some cases radiative decays are so rapid that a particle (an ion, atom, or
molecule) that is excited in a collision will almost always lose its energy in
radiation, rather than in a subsequent collision. Assuming that the radiation
escapes the medium, the rate of energy loss per cm3 per second is

� =
∑
ab

na�ab(Eb − Ea), (3.3.1)

where na is the number density of these particles (ions, atoms, or molecules)
normally in energy level a with energyEa , and�ab is the rate at which collisions
cause one of these particles to make a transition from energy level a to a higher
energy level b. The transition rate �ab is proportional to the density of whatever
other projectile particles are colliding with the target particle in question, so
in the case of prompt radiation the cooling function is quadratic in particle
densities. As long as we know that the rate for the de-excitation transition b → a

is dominated by radiation rather than collisions, to calculate the cooling function
we do not need to know the radiative transition rate, but we do need to know the
excitation rate �ab.

In regions of interstellar space with low number density, collisions are mostly
long-range affairs, so the largest contributions to collision rates are generally



3.3 Cooling 133

those for which the interaction energy falls off least steeply with distance. The
electrostatic interaction energy between a projectile particle and target parti-
cle that produces a transition a → b in the target particle has a dependence
on the separation R of the target and projectile of the form R−	−	′−1, where
	 and 	′ are the dimensionalities in powers of length of the operators acting
on the states of the target particle and projectile particle, respectively.14 For
monopoles, dipoles, quadrupoles, etc. we have 	 = 0, 	 = 1, 	 = 2, etc.
The monopole operator is the total electric charge. Since we are interested in a
transition a → b between different energy levels of the target particle, which
cannot be produced by the total charge operator, the operator acting on the
target must have 	 ≥ 1, whether the target particle is charged or neutral. On
the other hand, if we are not interested in transitions between energy levels of
the projectile particle, the fall off of the interaction with distance is least steep if
the projectile is a charged particle, such as an electron or an ion, in which case
we can have 	′ = 0. At any given temperature electrons move much faster than
ions, and hence have larger collision rates, so as long as electrons are plentiful
it is their collisions with atoms, ions, etc. that play the leading role in cool-
ing. The Coulomb attraction between electrons and positive ions increases the
density of electrons near the ions, which adds to the effectiveness of electron–
ion collisions. The recombination of ions and electrons after photoionization is
generally a slow process, so ions and electrons can be plentiful in the interstellar
medium even at temperatures far below the level at which they would cease to
be abundant in thermal equilibrium.

Electron–electron scattering is generally sufficiently rapid that electrons are
in kinetic equilibrium at some temperature Te, with the number density of elec-
trons with kinetic energy between E and E + dE given by the Maxwell–
Boltzmann distribution

ne(E) dE = 2ne
√
E dE√

π(kBTe)3/2
exp
(−E/kBTe

)
,

where ne is the total electron number density. If the rate at which an electron of
energy E ≥ Eb − Ea produces a transition a → b between energy levels of
target particles is naγab(E), then

�ab =
∫ ∞

Eb−Ea
ne(E) γab(E) dE,

and so the cooling function (3.3.1) is

� = 2ne√
π(kBTe)3/2

∑
ab

na(Eb −Ea)
∫ ∞

Eb−Ea
γab(E)

√
E exp

(−E/kBTe
)
dE.

(3.3.2)

14 For a textbook discussion, see S. Weinberg, Lectures on Quantum Mechanics, 2nd edn. (Cambridge
University Press, Cambridge, 2015), Section 5.9.
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In particular, if there is just one available transition a → b, and the temper-
ature is much less than (Eb − Ea)/kB, then the integral in Eq. (3.3.2) will be
dominated by values of E close to the lower bound Eb − Ea . The coefficient
γab(E) will vanish in this limit like some power ν of E −Eb +Ea . That is, for
E → Eb − Ea

γab(E) → Cab(E − Eb + Ea)ν ,
with Cab some constant. The cooling function (3.3.2) is then

� = 2ne�(ν + 1)√
π

na(kBTe)
ν−1/2(Eb − Ea)3/2 Cab exp

(−(Eb − Ea)/kBTe
)
.

(3.3.3)
For instance, neutral hydrogen atoms are by far the most abundant constituent

of the interstellar medium, but the first excited level in atomic hydrogen is the
n = 2 level, 10.2 eV above the n = 1 ground state. In this case, for T between
about 4,000 K and 12,000 K, Eq. (3.3.3) gives15

� 	 �0nenHI exp(−118,000 K/T ), (3.3.4)

where �0 = 7.3 × 10−19 erg cm3/sec. This gives a rapid increase with tem-
perature up to about 10,000 K, but this increase does not continue with higher
temperature, because the density nHI of un-ionized hydrogen begins to fall off
rapidly for temperatures above about 15,000 K.

To understand this, note that in the interstellar medium far from sources of
ionizing radiation the degree of ionization is set by a balance between colli-
sional ionization and recombination.16 As already mentioned in Section 3.2,
the rate per time and per volume of recombination of electrons and HII ions
(i.e., protons) into neutral hydrogen atoms takes the form

�(e + HII → HI + γ) = α(T )nenHII, (3.3.5)

where ne and nHII are the number densities of electrons and hydrogen ions, and
α(T ) is a coefficient with only power-law dependence on temperature. Detailed
calculations give17

α(T ) 	 4.0 × 10−13 (T [104 K]
)−0.6353 cm3/sec, (3.3.6)

15 See e.g. L. Spitzer, Jr., Physical Processes in the Interstellar Medium (John Wiley & Sons, New York,
1998), Eq. (6-12).

16 For studies of departures from this equilibrium, see O. Gnat and A. Sternberg, Astrophys. J. Suppl. 168,
213 (2007), and earlier work cited therein.

17 H. Mo, F. van den Bosch, and S. White, Galaxy Formation and Evolution (Cambridge University Press,
Cambridge, 2010), Eq. (B1.50). This is for “Case A” recombination, in which the photon emitted in
recombination is not supposed to ionize another neutral hydrogen atom, which is the case for instance in
optically thin regions or if this photon is absorbed by a dust grain.
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for T between about 100 K and 108 K. On the other hand, the rate per time
and per volume of collisional ionization takes the form (in a non-conventional
notation)

�(e + HI → HII + e + e) = β(T )nenHI exp(−TI/T ), (3.3.7)

where TI ≡ 13.6 eV/kB = 157,800 K, and β(T ) is another coefficient with
only power-law dependence on temperature. Detailed calculations give18

β(T ) 	 2.32 × 10−8(T /TI)
1/2(1 + (T [105 K])1/2]

)−1 cm3 sec−1, (3.3.8)

for T between about 104 K and 108 K. In the common case of collisional
ionization equilibrium, the rates per time and per volume of appearance and
disappearance of neutral hydrogen atoms must be equal, so

�(e + HII → HI + γ) = �(e + HI → HII + e + e).

This gives a ratio of ionized and un-ionized hydrogen densities

nHII

nHI
=
(
β(I)

α(T )

)
exp(−TI/T ),

or in other words

nHI = nH
(
1 + exp(−TI/T )β(T )/α(T )

)−1, (3.3.9)

where nH ≡ nHI +nHII is the total hydrogen density. Also, ignoring all elements
but hydrogen, the electrical neutrality of the interstellar medium requires

ne = nHII = nH − nHI.

Hence for pure hydrogen the cooling function (3.3.4) takes the form

� = �0n
2
H exp(−7TI/4T )

(
β(T )/α(T )

)(
1 + exp(−TI/T )β(T )/α(T )

)−2,
(3.3.10)

in which we have written the exponential in Eq. (3.3.4) as exp(−3TI/4T ).
At the temperatures of interest β(T )/α(T ) is very large and slowly varying,
so the cooling function rises steeply for small temperature, proportionally to
exp(−7TI/4T ), reaches a maximum at exp(−TI/T ) = 7α/β, and then falls off
with increasing temperature, reaching a plateau value proportional to α/β � 1.
For instance, if we take β/α to have the value β/α = 5 × 104 that the esti-
mates (3.3.6) and (3.3.8) give for pure hydrogen at 15,000 K, then the maximum
in the cooling curve is at T 	 TI/8.9 	 17,700 K.

Including a typical admixture of helium, nHe 	 nH/12, gives a second local
maximum in the cooling curve at T 	 105 K, with lower height than the first
maximum, and the cooling function then again falls off rapidly for greater

18 Mo et al., op. cit., Eqs. (B.1.55) and (B.1.56).
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temperature. The cooling is greatly enhanced if the interstellar medium is
enriched by metals, such as carbon and oxygen and their ions, which have
lower excitation energies.

We can understand the energy levels of multi-electron atoms and ions in the
Hartree approximation, according to which each electron can be considered
to move in an effective potential produced by the nucleus and all the other
electrons. The effective potential is close to being spherically symmetric, so,
apart from spin, the states of individual electrons can be characterized by an
orbital angular momentum 	 = 0, 1, 2, etc. and a principal quantum number
n ≥ 	 + 1, defined so that the number of nodes of the radial wave function is
n − 	 − 1. The effective potential is not of the Coulomb form, so one-particle
states of the same n and different 	 are generally not even approximately degen-
erate. Since the z-component of orbital angular momentum takes 2	+ 1 values,
and the z-component of the electron spin takes 2 values, there are 2(2	 + 1)
one-electron states with a given n and 	, and this is the number of electrons that
are allowed by the Pauli exclusion principle to occupy such a single-particle
state. The two most tightly bound electrons will have n = 1 and 	 = 0, and the
two next most tightly bound will have n = 2 and 	 = 0. Atoms with five to ten
electrons, and in particular the most abundant metals, namely carbon, nitrogen,
and oxygen, will have their least bound electrons in n = 2, 	 = 1 single-particle
states. Even apart from relativistic and magnetic effects, the corrections to the
Hartree approximation give the atom’s energies a dependence on L, the total
orbital angular momentum, with the energies of states with different L differing
by a few eV. As we will see, in cases of interest here the requirement that the
wave function be completely antisymmetric in electron variables implies that
states with definite values of L also have definite values of the total electron
spin S.

For states with definite non-zero L and S, comparatively weak magnetic and
relativistic effects produce a small fine-structure splitting into states of definite
energy, the higher of which can be excited even at quite low temperature. Rota-
tional invariance requires these states to have definite values for the total angular
momentum J . These states of definite energy, L, S, and J , are described in a
“Russell–Saunders” notation, as

2S+1LJ ,

with the value of L indicated as S, P , D, F , etc. for L = 0, L = 1, L = 2,
L = 3, etc.

For example, the singly ionized carbon atom, CII, has five electrons: the
two that are most deeply bound in states with n = 1, 	 = 0; the two that
are next most deeply bound in states with n = 2, 	 = 0; and a single least
bound “valence” electron in a state with n = 2, 	 = 1. The coupling of the
orbital and spin angular momenta of the valence electron splits this state into
components with two different values for the total angular momentum, J = 1/2
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and J = 3/2, denoted 2P1/2 and 2P3/2, split by an energy kB × 92 K. The
upper state with J = 3/2 can be excited by collisions with hydrogen atoms or
molecules as well as with electrons, allowing cooling to temperatures of a few
tens of degrees Kelvin.

Because oxygen is more abundant than any other metal, the case of doubly
ionized oxygen, OIII, is of special interest. These ions have the two most deeply
bound electrons in states with n = 1, 	 = 0; the two next most deeply bound
electrons in states with n = 2, 	 = 0, and two valence electrons in states with
n = 2, 	 = 1. These two 	 = 1 orbital angular momenta can add up to a total
orbital angular momentum L = 0, L = 1, or L = 2. The states with L = 0
and L = 2 are symmetric in the orbital angular momentum quantum numbers
of the two valence electrons, so since electrons are fermions the wave function
must be antisymmetric in the spin quantum numbers of these two electrons, and
hence the total spin is S = 0 and these states therefore have no fine structure.
They are denoted 1S0 and 1D2. On the other hand, the state with total orbital
angular momentum L = 1 is antisymmetric in the orbital angular momentum
quantum numbers of the two valence electrons, so the wave function must be
symmetric in spin quantum numbers of these two electrons, and hence the total
spin is S = 1. The L = 1 states are therefore split into components 3P0, 3P1,
and 3P2 with total angular momentum J = 0, J = 1, and J = 2. As it happens,
the lowest OIII states are those with L = 1; the states with L = 2 and L = 0
are higher by about 2.5 eV and 5.3 eV, respectively. Among these L = 1 states,
the lowest is 3P0, with J = 0; the 3P1 and 3P2 states with J = 1 and J = 2
are higher by energies 0.014 eV and 0.038 eV, respectively, corresponding to
temperatures 162 K and 441 K, respectively, so collisions of electrons with OIII
ions can provide a mechanism for cooling down to about 100 K. Similar remarks
apply to the NII ion, which, however, is generally less abundant than OIII, and
therefore less important in cooling.

One last example: The singly ionized OII ion has three 	 = 1 valence elec-
trons. In the most deeply bound state these three unit orbital angular momenta
add up to a total orbital angular momentum L = 0, for which the wave function
is completely antisymmetric in valence electron coordinates. It therefore must
be completely symmetric in valence electron spins, so this state has S = 3/2
and hence J = 3/2. With L = 0, this 4S3/2 state of course has no fine-structure
splitting. The first excited states are a 2D3/2, 2D5/2 doublet, about 3.3 eV above
the ground state.

These ions provide the chief mechanism for cooling in ionized clouds, such
as HII regions.19 For electron temperatures below about 6,000 K, cooling is
dominated by electronic excitation of the fine-structure transitions 3P0 → 3P1
and 3P0 → 3P2 in OIII. For higher temperatures cooling is dominated by

19 Results in this paragraph are taken from Figure 6.1 of L. Spitzer, Jr., Physical Processes in the Interstellar
Medium (John Wiley & Sons, New York, 1998),
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electronic excitation of the 3.3 eV transitions 4S3/2 → 2D3/2 and 4S3/2 →
2D5/2 in OII. At these temperatures there is also significant but less important
cooling from the 3P → 1D2 transitions in OIII and NII. Setting the cooling
function calculated in this way equal to the heating function (3.2.21) gives an
equilibrium electron temperature of about 8,000 K for an HII region heated by
a star with color temperature 35,000 K.

Delayed Radiation

In some cases collisions are so rapid and radiative decays relatively so slow that
collisional de-excitation is much faster than radiation, and the states excited
in collisions usually lose their energy in further collisions, with the loss of
energy by photon emission relatively rare. In this case the number density of
atoms or molecules in an energy level with energy E and degeneracy g is
fixed by conditions of thermal equilibrium to be approximately proportional to
g exp(−E/kBT ), so the number density in an excited energy level with energy
Ea and degeneracy ga is related to the total number density n =∑a na of these
atoms or molecules in any state by

na = nZ−1(T )ga exp
(−[Ea − E0]/kBT

)
, (3.3.11)

where

Z(T ) ≡
∑
a

ga exp
(−[Ea − E0]/kBT

)
, (3.3.12)

and E0 is conveniently taken as the lowest energy level. If Aab (in the notation
introduced by Einstein) is the rate at which states of energy Eb (averaged over
such states, if gb > 1) spontaneously decay into any state with energy Ea < Eb
(including the lowest energy level a = 0) with the emission of radiation of
energy Eb − Ea , then the rate of energy loss per time and per volume is

� =
∑

b:Eb>E0

nb
∑

a:Ea<Eb

Aab(Eb − Ea)

= nZ−1(T )
∑

b:Eb>E0

gb exp
(−[Eb − E0]/kBT

) ∑
a:Ea<Eb

Aab(Eb − Ea),

(3.3.13)

so here the cooling function is proportional to the density. As long as we know
that the collision rate is high eneough to keep target particles in thermal equilib-
rium and for the de-excitation transition b → a to be dominated by collisions
rather than radiation, we do not need to know the collision rate, but we do need
to know the radiative transition rate Aab to calculate the cooling function.

This case is commonly encountered for the most common molecule in
interstellar space, diatomic hydrogen. In general, the lowest energy levels
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of molecules are rotational20 – vibrational modes have energies higher by a
factor of order (mp/me)

1/2, and modes with electronic excitation have energies
still higher, by a factor of order mp/me. At sufficiently low temperature the
hydrogen molecule can therefore be treated as a rigid linear rotator, whose
only continuous degree of freedom is the direction n̂ of the separation of
the two protons. The wave functions are spherical harmonics, Ym	 (n̂), with
	 = 0, 1, 2, . . . and m an integer taking 2	 + 1 values, from −	 to +	. The
energies of the corresponding states are of the form E	 = h̄2	(	+1)/2I , where
I is the moment of inertia, which for hydrogen molecules takes a value for
which h̄2/2IkB = 45 K.

There is an important complication here, due to the fact that protons are
fermions, with spin 1/2. The overall wave function must be antisymmetric
in exchange of the spin and coordinates of the two protons, so the states of
total spin zero and one, known as parahydrogen and orthohydrogen, which are
respectively antisymmetric and symmetric in proton spins, must be respectively
even or odd in n̂, and therefore have 	 even or odd, respectively. Aside from
this limitation on 	, the alignment of spins has a negligible effect on energy, so
that both orthohydrogen and parahydrogen molecules have energies E	 = h̄2	

(	+ 1)/2I . For total spin s the 3-component of the spin takes 2s + 1 values, so
the degeneracies of hydrogen molecules are

g	,para = 2	+ 1, g	,ortho = 3(2	+ 1). (3.3.14)

The lowest energy level of orthohydrogen is higher than the lowest energy level
of parahydrogen by an energy 2 × h̄2/2I = 90 K/kB, so at temperatures well
above about 100 K there are three orthohydrogen molecules for each parahydro-
gen molecule.

The rate for radiative conversion between orthohydrogen and parahydgrogen
is extremely low, so radiative transitions in hydrogen molecules take place only
between states which both have 	 even, or both have 	 odd, and therefore do
not change the parity of the molecule. The dominant radiative transitions are
therefore those in which 	 changes by two units, and Eq. (3.3.13) gives

� = nH2Z
−1(T )

⎡
⎣ ∑
	≥2 even

+ 3
∑

	≥3 odd

⎤
⎦

× (2	+ 1) exp
(− h̄2	(	+ 1)/2IkBT

)
A	−2
	 (4	− 2)h̄2/2I , (3.3.15)

where

Z(T ) =
⎡
⎣ ∑
	≥0 even

+ 3
∑

	≥1 odd

⎤
⎦ (2	+ 1) exp

(−h̄2	(	+ 1)/2IkBT
)
.

20 For a textbook treatment of rotational and vibrational modes of molecules, see S. Weinberg, Lectures on
Quantum Mechanics, 2nd edn. (Cambridge University Press, Cambridge, 2015), Sections 4.9 and 5.6.
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This gives a cooling function at 100 K equal to nH2 × 3 × 10−26 erg/sec.21

Radiative de-excitation is slower in H2 molecules than collisional de-excitation
because, as we have noted, the dominant radiative transitions in H2 are between
states in which 	 changes by two units. These are electric quadrupole transi-
tions, and therefore slower than electric dipole transitions by a factor of order
(a/λ)2, where a is the length of the molecule and λ is the wavelength of the
emitted photon.

Radiative transitions are faster in molecules such as HD or CO, in which the
nuclei are not identical. For such molecules electric dipole transitions between
states with 	 differing by one unit are allowed, and are typically faster than
collisional de-excitation. Thus, although such molecules are always much less
abundant than H2, they can make a larger contribution to the cooling function.
This is especially the case at low temperatures for CO, which has a much larger
moment of inertia than H2 or HD, and therefore has a very low excitation energy
of just 5.5 K × kB for the transition 	 = 0 → 	 = 1. In very cold clouds in the
galactic plane it is CO that provides the dominant cooling.

Bremsstrahlung Cooling

As we saw earlier in this section, at temperatures above about 15,000 K hydro-
gen is mostly ionized, and cooling can no longer occur through the excita-
tion of neutral hydrogen. Instead, at these temperatures cooling occurs through
bremsstrahlung, the radiation of photons in the Coulomb scattering of electrons
by ions. This is the inverse of the process leading to free–free absorption of
photons, discussed in Section 1.4.

In order to calculate the contribution of bremsstrahlung to the cooling func-
tion, we need to know the bremsstrahlung emissivity jν(T ), the rate of emission
of radiation energy per volume, per solid angle, and per frequency interval at
temperature T of emission of photons of frequency ν, given by

jν(T ) = hν

∫
d3q

4π
δ(qc/h− ν)

∫
d3p ne(p, T )

∑
λ

∫
d3p′ j (q, λ; p → p′),

(3.3.16)

where ne(p, T ) d3p is the number density of electrons in a range d3p of
momenta around initial momentum p at temperature T , and j (q, λ; p →
p′) d3p′ is the rate at which an electron of initial momentum p is scattered into
a range d3p′ of momenta around a final momentum p′, with the emission of a
photon with helicity λ and with momentum in a range d3q around q. According
to the general rules of quantum mechanics, the rate per electron is given by

21 J. E. Dyson and D. A. Williams, The Physics of the Interstellar Medium, 2nd edn. (Institute of Physics
Publishing, Bristol, 1997), p. 31.



3.3 Cooling 141

j (q, λ, p → p′) = (2πh̄)2nN|M|2 δ
(
p2

2me
− p′2

2me
− qc

)
, (3.3.17)

where nN is the number density of nuclei, and the matrix element M is the
coefficient of the energy-momentum delta function in the S-matrix for the pro-
cess in which an electron with momentum p and a nucleus at rest yields a
photon with momentum q and helicity λ, an electron with momentum p′, and a
recoiling nucleus. (A momentum conservation delta function is implicitly used
here to fix the recoil momentum as p − p′ − q. Since the nucleus is relatively
so massive, with this momentum it carries off negligible kinetic energy.) To
first order in the Coulomb potential, M is the same as the Born-approximation
matrix element (1.4.A10) for the corresponding absorption process, except that
the polarization vector e(q, λ) is replaced with its complex conjugate:

MBorn = Ze3

2π2(qch̄)3/2me

e∗(q̂, λ) · (p − p′)
(p − p′)2

, (3.3.18)

where Ze is the nuclear charge (again in unrationalized electrostatic units).
Using this in Eq. (3.3.17) gives the emissivity per electron

jBorn(q, λ; p → p′) = Z2e6nN

π2h̄[(p − p′)2]2q3c3m2
e

×
∣∣∣(p − p′) · e∗(λ, q)

∣∣∣2 δ ( p2

2me
− p′2

2me
− qc

)
.

(3.3.19)

Using Eq. (1.4.A12), we see that the average of this over photon direction and
summed over helicity is

∑
λ

∫
d2q̂

4π
jBorn(q, λ; p → p′) = 2Z2e6nN

3π2h̄(p − p′)2q3c3m2
e

× δ

(
p2

2me
− p′2

2me
− qc

)
. (3.3.20)

The integral over the directions of p′ is given by Eq. (1.4.A13)∫
d2p̂′

|p − p′|2 = 2π

pp′ ln

(
p + p′

p − p′

)
,

and we find the Born-approximation bremsstrahlung emissivity:

jν(T ) = 4Z2e6nN

3πh̄c3m2
e

∫
ne(p, T ) d3p

×
∫ p

0

p′2 dp′

pp′ ln

(
p + p′

p − p′

)
δ

(
p2

2meh
− p′2

2meh
− ν
)

. (3.3.21)
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Assuming that all photons leave the medium, the contribution of brems-
strahlung to the rate of energy loss per volume and per time is given in the
Born approximation by

�brem(T ) = 4π
∫
jν(T ) dν. (3.3.22)

The integral over ν is trivial, and we have

�brem(T ) = 16Z2e6nN

3h̄c3m2
e

∫
ne(p) d3p

∫ p

0

p′2 dp′

pp′ ln

(
p + p′

p − p′

)
.

Now the integral over p′ is a standard definite integral:∫ p

0
p′ dp′ ln

(
p + p′

p − p′

)
= p2.

The bremsstrahlung cooling function (3.3.22) is then

�brem(T ) = 16Z2e6nN

3h̄c3m2
e

∫
pne(p, T ) d3p. (3.3.23)

If electrons are in thermal equilibrium at temperature T , then ne(p) is given
by the Maxwell–Boltzmann momentum distribution

ne(p, T ) = (2πmekBT )
−3/2ne exp

(−p2/2mekBT
)
, (3.3.24)

where ne here is the total number density of electrons. Then the integral over
p is ∫

pne(p, T ) d3p = ne
√

8mekBT/π ,

and the contribution of bremsstrahlung to the cooling function in the Born
approximation is

�brem(T ) = 16Z2e6nNne

3πh̄c3m2
e

√
8πmekBT . (3.3.25)

Although this result is approximate, the growth of the bremsstrahlung cooling
function as

√
T is generally seen in more elaborate calculations.

To summarize results for cooling: Eq. (3.3.10) shows that in pure hydrogen
the cooling function rises rapidly at first with increasing temperature, as more
and more hydrogen atoms become energetic enough to excite the 2s state and
higher states in collisions, and then for T 	 15,000 K begins a rapid decline
with increasing temperature as more and more of the hydrogen is ionized. The
presence of metals in the form of molecules, ions, or atoms then dominates the
cooling. For pure hydrogen, at about 106 K the decline of the cooling function is
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replaced with a slow rise of � with increasing temperature, as bremsstrahlung
becomes the chief mechanism for cooling the ionized hydrogen.22

3.4 Star Formation

We saw in Section 1.1 that an isolated spherical mass in hydrostatic equilibrium
obeys the virial theorem

�+� = 0, (3.4.1)

where � is a measure of the thermal energy

� ≡ 3
∫ R

0
4πr2p(r) dr , (3.4.2)

and � is the gravitational self-energy

� = −G
∫ R

0
4πrρ(r)M(r) dr , (3.4.3)

where

M(r) ≡
∫ r

0
4πr ′2ρ(r ′) dr ′. (3.4.4)

We can think of Eq. (3.4.1) as marking a boundary between two kinds of non-
equilibrium configurations. If � is greater than −� then the gravitational field
is not strong enough to prevent pressure forces from dispersing the matter. On
the other hand, if � is less than −�, then the pressure is not strong enough to
prevent the beginning of gravitational condensation into a star.

Of course, without an equilibrium condition such as Eq. (1.1.4), there is
nothing to pick out any particular initial distribution of density and pressure
in the mass. But we can make a crude estimate. The density ρ(r) may be
taken to be of the order of a typical value ρ of density; M and M(r) are of
order 4πρR3; and p(r) is of the order c2

s ρ, where cs is of the same order as the
typical acoustic velocity. Then, ignoring all dimensionless factors of order unity
other than 4π ,

� ≈ 4πc2
sρR

3, −� ≈ (4π)2Gρ2R5. (3.4.5)

Hence the condition� < |�| for gravitational condensation is, roughly,

R > RJ, (3.4.6)

22 The cooling curves for hydrogen plus helium, with and without metals, are displayed in Figure 8.1 of
H. Mo, F. van den Bosch, and S. White, Galaxy Formation and Evolution (Cambridge University Press,
Cambridge, 2010).
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where RJ is the so-called Jeans length:

R2
J ≡ c2

s

4πGρ
. (3.4.7)

The velocity cs can be estimated to have the adiabatic value c2
s = �kBT/m,

where � is 5/3 or 7/5 for monatomic and diatomic gases, respectively, and the
particle mass m has the value Amp where mp is the proton mass, and A is the
atomic (or molecular) weight in units of mp. Then the Jeans length is given by

R2
J ≡ �kBT

4πGAmp ρ
. (3.4.8)

This calculation only gives an order-of-magnitude estimate for the scale above
which gravitational condensation occurs, but we will see below that with our
result for RJ, qJ = 1/RJ is precisely the critical wave number (though in a
calculation based on unrealistic assumptions) at which there is a transition from
stable oscillation to instability.

Since the linear scale and density of a condensation change during collapse, it
is convenient to work with an invariant, the Jeans mass, equal to the mass within
a sphere of diameter equal to the corresponding wavelength 2π/qJ = 2πRJ:

MJ ≡ 4π

3
ρ
(
πRJ

)3 = π5/2c3
s

6A1/2m
1/2
p n1/2G3/2

= 6.57 × 104M�
(
cs [km/sec]

)3(
n [cm−3]

)−1/2
A−1/2, (3.4.9)

where n = ρ/Amp is the number density. Setting c2
s = �kBT/mpA, this is

MJ = π5/2(�kBT )
3/2

6A2m2
pn

1/2G3/2
= 49.5M�A−2(�T [K]

)3/2(
n [cm−3]

)−1/2. (3.4.10)

Stars are being formed in the plane of our galaxy in giant molecular clouds,
with cloud masses extending up to about 6 × 106M�. It is important that
these clouds are rich in molecules, such as H2 and CO, because as we saw in
Section 3.3 atomic hydrogen is ineffective in cooling at temperatures below
about 15,000 K because of the high excitation energy of the first n = 2 excited
state, and ineffective in cooling at temperatures above about 15,000 K because it
is mostly ionized. On the other hand, molecules (and also ions such as OIII) have
much lower excited states, which can be excited at much lower temperatures
and lose their energy through radiation. (Ultraviolet light that would otherwise
dissociate the molecules in molecular clouds is usually blocked by surrounding
atomic or molecular hydrogen.) Cooling is essential in star formation, because
it lowers cs, and hence lowers the Jeans mass.

For a giant molecular cloud with number density n = 104 cm−3, temperature
T = 20 K, molecular weight A = 2, and adiabatic index � = 7/5, Eq. (3.4.10)
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gives a Jeans mass of 18M�. This is not an unreasonable mass for a protostar,
which suffers further fragmentation into stars like the Sun. As the protostar
shrinks, its density increases, which lowers the Jeans mass. However, if its
temperature also increases, that increases the Jeans mass. The fragmentation
into smaller stars therefore requires an efficient cooling mechanism. Another
complication is turbulence, which can play the role here of the acoustic veloc-
ity cs. Taking the turbulent velocities to be of order 1 to 10 km/sec and A = 2,
then even for n as large as 105 cm−3, Eq. (3.4.9) gives a Jeans mass of order
150 to 150,000 solar masses. On the other hand, star formation can be assisted
by the compression of the interstellar medium by supernova shock waves or
stellar winds. This is a complicated business, too complicated for detailed
treatment here.23

The radius (3.4.7) is called the Jeans length because in 1902 James Jeans for
the first time gave a value for the minimum wavelength of density perturbations
that grow exponentially, which turned out to be of order (3.4.7). Though appar-
ently precise, as we shall see, Jeans’ calculation was in fact no more accurate
than the crude estimate given above. His work was based on the Newtonian
equations of fluid dynamics: the continuity equation for the density and the
fluid velocity u,

∂ρ

∂t
+ ∇ · (uρ) = 0; (3.4.11)

Euler’s equation (essentially Newton’s second law),

∂u
∂t

+ (u · ∇)u = −∇φ − 1

ρ
∇p; (3.4.12)

and the Poisson equation for the gravitational potential φ,

∇2φ = 4πGρ. (3.4.13)

The solution is to be written as a set of assumed unperturbed quantities, labeled
with a subscript 0, plus small perturbations to be calculated, labeled with a
subscript 1:

ρ = ρ0 + ρ1, u = u0 + u1, etc. (3.4.14)

Jeans took the unperturbed velocity to vanish, and all the other unperturbed
quantities to be constants in both space and time. The terms in Eqs. (3.4.11)–
(3.4.13) of first order in perturbations are then

∂ρ1

∂t
+ ρ0 ∇ · (u1

) = 0, (3.4.15)

∂u1

∂t
= −∇φ1 − c2

s

ρ0
∇ρ1, (3.4.16)

23 For a taste of these complications, see C. F. McKee and E. C. Ostriker, Ann. Rev. Astron. Astrophys. 45, 1
(2007).
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and
∇2φ1 = 4πGρ1, (3.4.17)

where

c2
s ≡

(
∂p

∂ρ

)
ρ=ρ0

, (3.4.18)

the derivative being taken with constant entropy per baryon or constant temper-
ature, as appropriate in the circumstances. Since the unperturbed background
is constant in space and time, we can find a solution in which the spacetime
dependence of all perturbations is given by a factor exp(−iωt + iq · x), with ω
and q constant. Equations (3.4.17) and (3.4.16) then give in turn

φ1 = −4πG

q2
ρ1

and

u1 = q
ω

(
φ1 + c2

s

ρ0
ρ1

)
= qρ1

ω

(
−4πG

q2
+ c2

s

ρ0

)
,

and using this in Eq. (3.4.15) then gives

iωρ1 = iq · u1ρ0 = iq2ρ1

ω

(
−4πGρ0

q2
+ c2

s

)
,

or, canceling factors of iρ1/ω,

ω2 = c2
sq

2 − 4πGρ0. (3.4.19)

This result may be usefully compared with the corresponding result for elec-
tromagnetic waves in a plasma

ω2 = c2
sq

2 + 4πe2ne,

where ne is the number density of electrons. For large wave numbers q, both
relations reduce to the usual formula ω = ±csq for sound waves, but for small q
there is a very large difference: the perturbations described by Eq. (3.4.19) grow
exponentially with time for q2 less than 4πGρ0/c

2
s , or in other words, for 1/q

greater than the Jeans length RJ, while electromagnetic waves do nothing but
oscillate at any wave number. The crucial difference of sign in the second term
of Eq. (3.4.19) is of course due to the fact that electrical forces between electrons
are repulsive, while gravitational forces between all particles are attractive.

We should not conclude from the derivation of Eq. (3.4.19) that there really
is a sharp transition at wave number 1/RJ between oscillation and exponential
growth of perturbations. The trouble is that the assumed unperturbed “solution”
is not a solution at all. Equation (3.4.13) shows that if ρ is constant, then φ can-
not be constant. This is not just a point of principle. If we take the unperturbed
solution to be time-independent then the equilibrium condition (1.1.4) shows
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that the unperturbed fluid must vary over a scale of distances of order RJ, so
we cannot estimate what happens at wave numbers of order 1/RJ by taking the
unperturbed fluid to be constant in time and space.

We can, however, use Eq. (3.4.19) to estimate that in the limit of small wave
numbers, the rate of growth of gravitational condensation is of order

√
4πGρ.

This can be verified without the use of perturbation theory. Let us consider an
actual solution of Eqs. (3.4.11)–(3.4.13) for which the density ρ and pressure
p are constant in space, though not in time. For simplicity, let us also assume
that this solution is spherically symmetric around some point r = 0. With ρ
constant in space, there is a spherically symmetric solution of Eq. (3.4.13):

φ(r , t) = 2πGρ(t)r2/3. (3.4.20)

Then, with p constant in space, Eq. (3.4.12) has the solution

u = H(t)r, Ḣ (t)+H(t)2 = −4πGρ(t)/3, (3.4.21)

and Eq. (3.4.11) then gives

ρ(t) ∝ a(t)−3, ȧ(t)/a(t) = H(t). (3.4.22)

We can write the differential equation (3.4.21) as a conservation law. Note that

d

dt
(H 2a2 − 8πGρa2/3) = 2Ha2(Ḣ +H 2 + 4πGρ/3

) = 0,

so
H 2 − 8πGρ/3 = −K/a2, (3.4.23)

with K constant in time as well as space. This of course is a non-relativistic
version of the Friedmann model of an expanding (or contracting) universe. In
cosmology, K is a measure of spatial curvature; here it is merely a constant of
the motion.

We can use Eq. (3.4.23) to calculate the time taken for a cloud to collapse
to a much smaller scale, where pressure effects may begin to be important.
Suppose that the matter of the cloud is at rest, so thatH vanishes, at some initial
time t0. Then according to Eq. (3.4.23) we have K/a2(t0) = 8πGρ(t0)/3, and
Eq. (3.4.21) becomes(

ȧ(t)

a(t)

)2

= 8πGρ(t0)

3

[(
a(t0)

a(t)

)3

−
(
a(t0)

a(t)

)2
]

. (3.4.24)

The time required for the collapse in free fall of the distance scale a(t) from
a(t0) to a much smaller value is then

Tc =
√

3

8πGρ(t0)

∫ a(t0)

0

da

a

[(
a(t0)

a

)3

−
(
a(t0)

a

)2
]−1/2

= π

2

√
3

8πGρ(t0)
,

(3.4.25)
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in agreement with our earlier estimate of a growth rate of order
√

4πGρ0. Again
setting ρ(t0) = n(t0)mpA, this is

Tc = 51.5 × 106 years × (An(t0) [cm−3]
)−1/2. (3.4.26)

This is generally a short time compared with typical galactic time scales.

3.5 Accretion Disks

Not all interstellar matter remains interstellar. Here and there in the plane of
our galaxy interstellar matter is falling onto a neighboring star. The interstellar
matter usually starts with enough angular momentum that the incoming matter
speeds up as it falls down, and forms an accretion disk, revolving about the star
as its inner parts fall onto the star’s surface. It was from such a disk about the
young Sun that the planets of the solar system were formed. More spectacular
are the accretion disks around black holes at the centers of quasars, which
will be discussed in Section 4.5. Although these various accretion disks vary
enormously in scale, they can all be described using a common mathematical
formalism, the subject of this section.

The great luminosity of many accretion disks is explained in part by the
fact that they are not subject to a well-known limit on the luminosity that can
be produced by spherically symmetric accretion onto a given mass. This is
the Eddington limit, which we have already encountered in Eq. (1.3.17). To
recapitulate, a spherically symmetric source of luminosity L produces a force
per gram on ionized accreting matter at distance r equal to (L/4πr2c)κT, where
κT is the opacity due to Thomson scattering, equal to the Thomson scattering
cross section times the number of free electrons per gram. For accretion to
continue on a mass M , this cannot exceed the gravitational force per gram
GM/r2, so L cannot exceed the Eddington luminosity LE ≡ 4πcGM/κT. For
completely ionized hydrogen, LE = 3.25 × 104L�(M/M�).

But accretion can be much more effective than this.24 Consider accreting mat-
ter in a configuration with cylindrical rather than spherical symmetry, surround-
ing a central mass M , with the accreting matter in circular orbits around the
axis of symmetry. Here the maximum luminosity Lmax is set by the condition
that at every point the repulsive force due to radiation pressure and centrifugal
force should be no greater than gravitational attraction. The centrifugal force
per mass is�2(R)R, where�(R) is the angular frequency of bodies in an orbit
of radius R, and R is a vector of magnitude R in the plane of the orbit pointing
outward away from the axis of symmetry. That is, in Cartesian coordinates with
symmetry around the z-axis, R = (x, y, 0). The gravitational force per mass

24 This argument is given by S. Kato, J. Fukue, and S. Mineshige, Black Hole Accretion Disks (Kyoto
University Press, Kyoto, 2008). They attribute it to a communication from M. A. Abramowicz.
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is −∇φ, where φ is the gravitational potential. The force per mass exerted by
radiation is κT�/c, where � is a vector pointing in the direction of the radiation
flow whose magnitude is the energy per time and per area passing through a
small area normal to �. (For instance, for a source that emits radiation of lumi-
nosity L with spherical symmetry, we have � = (L/4πr2)r̂ , where r = rr̂ is
the vector from the source. But here we are not assuming spherical symmetry!)
Hence the maximum luminosity is set by the condition that at every point

�2(R)R + κT�/c ≤ ∇φ, (3.5.1)

the inequality applying to each component of the vectors. This sets a limit on
the luminosity

L =
∫
A

� · dA ≤ c

κT

∫
A

[
−�2(R)R + ∇φ

]
· dA, (3.5.2)

where the integrals are over the surface of a large volume enclosing the region
of accretion, and dA is a vector normal to this surface with magnitude equal to
an element of the surface area. To calculate the surface integrals on the right,
we use Gauss’s theorem, so that the maximum luminosity is

Lmax = c

κT

∫
V

[
−∇ · [�2(R)R] + ∇2φ

]
dV , (3.5.3)

the integral now taken over the whole accreting region. The Poisson equation
gives ∇2φ = 4πGρ, and since ∇ · R = 2, we have

∇ · [�2(R)R] = 2�2(R)+ R d

dR
�2(R).

Putting this together, the maximum luminosity is

Lmax = LE − c

κT

∫
V

[
2�2(R)+ R d

dR
�2(R)

]
dV , (3.5.4)

with LE = 4πGMc/κT the Eddington luminosity. The luminosity thus can
exceed the Eddington limit if and only if the integral in Eq. (3.5.4) is negative.
For rigid rotation, �(R) is independent of R, and this integral is positive. On
the other hand, with the mass of the system concentrated in a central body, we
expect Keplerian orbits, with �(R) ∝ R−3/2, in which case Eq. (3.5.4) gives a
maximum luminosity

Lmax = LE + c

κT

∫
V

�2(R) dV , (3.5.5)

greater than the Eddington limit.
But if matter is in orbit around a central mass, how can it be accreted?

After all, the planets of the solar system are not being pulled into the Sun. It
is essential that here we are not dealing with a collisionless medium, like the
solar system, but rather with a viscous gas in differential rotation. The viscosity
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here may arise from momentum transfer not so much by particles of long mean
free path, as from effects of magnetic fields, such as Alfvén waves. But it can
approximately be treated like an ordinary gas viscosity, and we will do so here.

Consider any circle around the axis of cylindrical symmetry. With R� a
decreasing function of R, as for Keplerian orbits, the matter a little outside the
circle is moving a little slower than the matter a little inside the circle. In the
presence of viscosity, this shear causes the inside matter to slow down and hence
move toward the center. (The implications of this simple picture for the flow of
angular momentum will be discussed later.)

So we need to consider the effect of viscosity in gas rotating around an axis
of symmetry. The dynamics of a non-relativistic viscous fluid in a gravitational
potential φ is governed by the equation for the rate of change of momentum, the
Navier–Stokes equation25

∂

∂t

(
ρvi
)+ ∂

∂xj

(
ρvivj

) = −ρ ∂φ
∂xi

− ∂p

∂xi

+ ∂

∂xj

[
ρν

(
∂vi

∂xj
+ ∂vj

∂xi
− 2

3
δij

(
∂vk

∂xk

))

+ ζ δij
(
∂vk

∂xk

)]
, (3.5.6)

and the equation of mass conservation

∂ρ

∂t
+ ∂

∂xi

(
ρvi
) = 0. (3.5.7)

Here i, j , k are Cartesian vector indices, running over the values 1, 2, 3; these
indices when repeated are summed; ρ is the mass density; vi are the Cartesian
velocity components; p is the pressure; and ν and ζ are coefficients charac-
terizing the fluid, known respectively as the kinematic viscosity and the bulk
viscosity.26

For our present purposes, we need to use cylindrical coordinates, R, θ , z,
and assume cylindrical symmetry, so that nothing depends on θ . Then the
θ -component of Eq. (3.5.6) becomes

25 For a classic textbook account, see L. D. Landau and E. M. Lifshitz, Fluid Mechanics, trans. J. B. Sykes
and W. H. Reid (Pergamon Press, London, 1959).

26 Since the contribution of bulk viscosity takes the same form as that of pressure, in defining bulk viscosity it
is necessary to be careful about the definition of pressure. Usually one defines the pressure to be the same
function of density and temperature as for uniform fluid flow, for which the viscosity terms in Eq. (3.5.6)
would be absent. With that definition, the bulk viscosity vanishes for a non-relativistic or highly relativistic
ideal gas, though it can be significant in a mixture of these. On this point, see S. Weinberg, Astrophys. J.
168, 175 (1971). As a consequence of cylindrical symmetry, in the calculation below neither pressure nor
bulk viscosity will play a role.
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∂

∂t

(
ρvθ
)+ 1

R2

∂

∂R

(
R2ρvRvθ

)+ ∂

∂z

(
ρvzvθ

)
= 1

R2

∂

∂R

(
R3ρν

∂

∂R

vθ

R

)
+ ∂

∂z

(
ρν
∂vθ

∂z

)
, (3.5.8)

and Eq. (3.5.7) reads

∂ρ

∂t
+ 1

R

∂

∂R

(
RρvR

)+ ∂

∂z

(
ρvz
) = 0. (3.5.9)

We will limit our discussion here to a thin disk, concentrated around the plane
z = 0, in which ρ vanishes rapidly for large |z|, and within which nothing else
varies appreciably with z. (The relation between ρ and z is discussed below.)
Integrating Eqs. (3.5.8) and (3.5.9) over all z then gives

∂

∂t

(
 vθ

)+ 1

R2

∂

∂R

(
R2 vRvθ

) = 1

R2

∂

∂R

(
R3 ν

∂

∂R

vθ

R

)
(3.5.10)

and
∂ 

∂t
+ 1

R

∂

∂R

(
R vR

) = 0, (3.5.11)

where  is the surface mass density

 (R, t) ≡
∫
dz ρ(R, z, t). (3.5.12)

We next use Eqs. (3.5.10) and (3.5.11) to derive a differential equation relat-
ing the t and R dependence of the surface density (3.5.12). For this purpose, we
assume that vθ can be taken to be a time-independent function only of R. It is
true that as gas moves inward or outward, the angular velocity of any element
of gas changes at about the same fractional rate as  , but at any fixed R the
value of vθ depends only on R and φ′(R), and as long as the central mass is
much larger than the mass in the disk the gravitational potential changes only
very slowly. So we can take vθ outside the time derivative in Eq. (3.5.10). We
can also take the R derivative in the second term of Eq. (3.5.10) to act first on
R vR and then on Rvθ , so that Eq. (3.5.10) becomes

vθ
∂

∂t

(
 
)+ vθ

R

∂

∂R

(
R vR

)+  vR

R

∂

∂R

(
Rvθ

) = 1

R2

∂

∂R

(
R3 ν

∂

∂R

vθ

R

)
.

The first two terms cancel according to Eq. (3.5.11), so

 vR
∂

∂R

(
Rvθ

) = 1

R

∂

∂R

(
R3 ν

∂

∂R

vθ

R

)
. (3.5.13)

Also, in taking vθ to be time-independent we have already had to assume that
the disk is much less massive than the central mass. The orbits are therefore
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Keplerian, with vθ ∝ R−1/2, so on the left-hand side of Eq. (3.5.13) we can use
(∂/∂R)(Rvθ ) = vθ/2, and on the right-hand side use

∂

∂R

(
R3 ν

∂

∂R

vθ

R

)
= −3

2

∂

∂R
(R νvθ ) = −3

2
R1/2vθ

∂

∂R

(
R1/2 ν

)
.

Canceling factors of vθ in Eq. (3.5.13), we have then

 vR = −3R−1/2 ∂

∂R

(
R1/2 ν

)
. (3.5.14)

We can use this to eliminate vR in Eq. (3.5.11), and have at last our differential
equation for the surface density:

∂ 

∂t
= 3

R

∂

∂R

(√
R
∂

∂R

(√
R ν

))
. (3.5.15)

We will explore some time-dependent solutions of Eq. (3.5.15) at the end of
this section, making a simple assumption about the viscosity ν. For the present,
we will use Eq. (3.5.15) to derive formulas for the flow of mass and angular
momentum through the disk, that hold for arbitrary viscosity. We will then use
these formulas in a treatment of the most interesting special case, a steady disk
with  time-independent.

To calculate the rates of flow of mass and angular momentum, we consider
the rate of change of the amount of mass and angular momentum of the disk
between any two radii,R1 andR2. Using Eq. (3.5.15), we find the rate of change
of the massM(R1,R2) between radii R1 and R2:

dM(R1,R2)

dt
= d

dt

∫ R2

R1

2πR dR (R, t)

= 6π

[
R1/2 ∂

∂R

(
R1/2 ν

)]
R=R2

− 6π

[
R1/2 ∂

∂R

(
R1/2 ν

)]
R=R1

. (3.5.16)

This tells us that the rate of mass flow inward through a circle of radius R is

Ṁ(R, t) = 6πR1/2 ∂

∂R

(
R1/2 ν

)
. (3.5.17)

This result is pretty obvious, for using Eq. (3.5.14) allows us to rewrite it as

Ṁ(R, t) = −2πR (R, t)vR(R, t).

Naturally, for vR negative, in a time dt particles at R move inward a distance
−vR dt , and the mass of the particles in an annulus of this thickness is −vR dt×
2πR .
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The result for angular momentum flow is less obvious. As we have noted,
vθ (R) is time-independent at a fixed R, so the θ -component (3.5.10) of the
equations of motion gives

R2vθ
∂ 

∂t
= ∂

∂R

[
−R2 vRvθ + R3 ν

∂

∂R

vθ

R

]
,

and the rate of change of the angular momentum J (R1,R2) between R1 and R2
is therefore

dJ (R1,R2)

dt
= d

dt

∫ R2

R1

2πR dR × (R, t)Rvθ (R)

= 2π

[
−R2 vRvθ + R3 ν

∂

∂R

vθ

R

]
R=R2

− 2π

[
−R2 vRvθ + R3 ν

∂

∂R

vθ

R

]
R=R1

. (3.5.18)

We conclude that the rate at which angular momentum moves inward through a
circle of any radius R is

J̇ (R, t) = 2π

[
−R2 vRvθ + R3 ν

∂

∂R

vθ

R

]
.

Using Eq. (3.5.14) and vθ ∝ R−1/2, this is

J̇ (R, t) = 2πvθ

[
3R3/2 ∂

∂R

(
R1/2 ν

)− 3

2
R ν

]

= 6πvθ(R)R
2 ∂

∂R

(
 (R, t)ν(R, t)

)
. (3.5.19)

Steady Disks

We now consider the case of an accretion disk that has settled into a quasi-
stable configuration that lasts much longer than the characteristic time R2/ν.
Since matter and angular momentum are assumed to be accreting onto a central
body, in this case we must assume that they are being supplied by matter coming
in to the disk from outside it. For a steady disk we can drop the time derivative
in Eq. (3.5.15). The solution of Eq. (3.5.15) for  ν then is trivial:

 ν = A√
R

+ B, (3.5.20)

where A and B are constants.
The constant B can be related to the rate Ṁ ≡ −2πR vR at which mass

flows inward through the 2πR circumference of a circle of any radius R. Insert-
ing Eq. (3.5.20) in Eq. (3.5.17) gives

Ṁ = 3πB. (3.5.21)
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Likewise, inserting Eq. (3.5.20) into Eq. (3.5.19) gives the rate of inward angu-
lar momentum flow

J̇ = −3πAvθR
1/2 = −3πA

√
MG. (3.5.22)

Note that for steady disks both Ṁ and J̇ are independent of both t and R, as of
course they must be if the disk properties are not to change. These constants
depend on the environment of the disk – the amount of matter and angular
momentum flowing in from the outer edge of the disk.

We will now make the additional assumption that the central body is not
rotating, or in any case not rotating rapidly enough to exert an appreciable torque
on the disk. (That is, the velocity of rotation at its surface must be much less
than the velocity a satellite would have in a low orbit, as is the case for the
Earth and the Sun.) This allows us to decide about a crucial sign difference
between A and B. For a central body that is not a source of mass or angular
momentum, both Ṁ and J̇ (which are defined as rates of inward flow) must have
the same sign as M and J , and hence be positive. It follows then from (3.5.21)
and (3.5.22) that while B is positive, A is negative.27 With B positive and A
negative, there is a radius R0 at which  ν vanishes:

+ R1/2
0 ≡ −A/B, (3.5.23)

and we can write Eq. (3.5.20) as

 ν = Ṁ

3π

(
1 − (R0/R

)1/2). (3.5.24)

For an accretion disk around a star, the orbit of radius R0 may be taken as just
above the star’s surface. On the other hand, as discussed in Section 4.5, for
an accretion disk around a black hole R0 is instead taken as the radius of the
smallest stable orbit around the black hole.

It may be noted that since  ν vanishes at R = R0, the angular momentum
inflow J̇ is given by the first term in the first expression in Eq. (3.5.19) as

J̇ = 6πR3/2
0 vθ (R0)

[
∂

∂R

(
R1/2 ν

)]
R=R0

,

which according to Eq. (3.5.17) is just R0vθ (R0)Ṁ . Hence the ratio of J̇ to Ṁ
equals the ratio of angular momentum to mass of the particles falling onto the
central body from their orbit at R0.

Nevertheless, it is not correct to suppose that the inward angular momentum
flow J̇ is simply due to the transport inwards of the particles that carry the mass
flow Ṁ . The angular momentum of a particle of mass m in an orbit of radius

27 Note that in deriving Eq. (3.5.19) we assumed that the angular momentum in an annulus of thickness dR
is 2πR dR Rvθ , so our convention for J is that it is positive if vθ is, and therefore by taking vθ positive
we should get a positive J̇ in Eq. (3.5.22).
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R is j = mRvθ(R), so j/m = Rvθ(R) = √
RMG. For any radius R � R0

this is much greater than J̇ /Ṁ , which according to Eqs. (3.5.21)–(3.5.23) is√
R0MG. So what happens to the angular momentum of the particles flowing

in to the center of the disk? Recall that these particles flow inward because of
the effects of viscosity on a differentially rotating disk. The particles within a
circle of any radius R are moving faster than the particles outside the circle,
so viscosity produces a torque that reduces the speed of the particles inside the
circle, which then move inward. At the same time, this torque tends to increase
the speed of the particles outside the circle, so that angular momentum flows
outward. In an isolated disk with no source of angular momentum flowing in at
the outer edge the net flow of angular momentum would have to be outward, but
such a disk could not be time-independent, because as already mentioned there
is no source of angular momentum at the center. In a steady disk whose edge
radius is much larger than R0, whatever angular momentum flows in from the
edge is nearly canceled by the angular momentum flowing outward because of
viscous torque, leaving J̇ /Ṁ much less than the ratio of angular momentum to
mass of individual particles.

Viscosity causes not only the transport of mass and angular momentum in
accretion disks – it also heats the disks. Fortunately, as we shall see, this can
be calculated knowing only  ν, without separate information about  or ν.
The general formula for the rate per volume of heat produced by viscosity in
imperfect fluids is28

H = ρν

2
σijσij + ζ(∇ · v)2, (3.5.25)

where σij is the tensor multiplying ρν in Eq. (3.5.6):

σij = ∂vi

∂xj
+ ∂vj

∂xi
− 2

3
δij

(
∂vk

∂xk

)
.

In cylindrical coordinates, taking into account only the θ -component of velocity,
this gives

H = ρν

(
∂vθ

∂R
− vθ

R

)2

= ρνR2(�′(R))2, (3.5.26)

and the corresponding heat production per disk area is∫
dzH =  νR2(�′(R))2. (3.5.27)

We can find an explicit formula for the R-dependence of the rate of heat
production per area by using Eq. (3.5.24) for  ν and the Newton formula
�2 = GM/R3 (whereM is the central mass) for �′:

28 L. D. Landau and E. M. Lifshitz, Fluid Mechanics, trans. J B. Sykes and W. H. Reid (Pergamon Press,
London, 1959), Eq. (49.5).
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∫
dzH = 9GM

4R3

Ṁ

3π

(
1 − (R0/R

)1/2). (3.5.28)

The total rate of heat production over the whole disk, from radius R0 to a much
larger radius, is ∫ ∞

R0

2πR dR
∫
dzH = GMṀ

2R0
. (3.5.29)

A mass m that falls from rest at infinity to rest at R0 loses an energy GMm/R0
to gravitation, so Eq. (3.5.29) tells us that half of that energy goes into viscous
heating of the disk.

This formalism allows us to calculate not only the total luminosity produced
by viscosity, but also its frequency distribution. Just as we did with stars, if we
assume that all heat is radiated we can define an effective radiation temperature
Teff(R), by setting the rate (3.5.28) of heat production per area equal to the rate
σT 4

eff per area at which a black body will radiate energy, so that

Teff(R) =
(

3GMṀ

4πσR3

[
1 − (R0/R

)1/2])1/4

, (3.5.30)

where σ = 2π5k4/15h3c3 is the Stefan–Boltzmann constant. Assuming that the
disk is optically thick, the rate per area at which energy is radiated by the disk
at R between frequencies ν and ν+ dν is then 2B(ν, Teff(R)), where B(ν, T ) is
given by the Planck formula

B(ν, T ) dν = 2πh

c2

ν3 dν

exp(hν/kBT )− 1
, (3.5.31)

and the factor 2 appears multiplying B because the disk has two sides. Where
we can’t resolve the disk, as for a quasi-stellar source or object, it is only the
absolute luminosity L(ν) dν between frequencies ν and ν+ dν that is available
for observation. It is given by an integral over the area of the disk

L(ν) =
∫

2πR dR B(ν, Teff(R)). (3.5.32)

(The factor 2 is omitted here because we see only one side of the disk.) Although
this differs from a simple black-body spectrum, with a single temperature, it is
not generally easy to tell the difference. The best evidence in support of the
spectrum given by Eqs. (3.5.30)–(3.5.32) currently comes from the study of
cataclysmic variables, described at the end of this section.

A complication must be mentioned. The heat generated by viscosity in the
outer layers of a disk may not be enough to raise that part of the disk to a
sufficient temperature to allow this heat to be efficiently radiated away before
it is carried inward by the radial motion of the disk, like an impurity being
advected by an eddy in a river. Where this happens, the observed temperature
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in the inner part of the disk will be higher than given by Eq. (3.5.30), with an
observable effect on the spectrum of the whole disk.

Before going on to consider time-dependent solutions, we will take a moment
to consider the vertical structure of the disk. It is set by a balance between the
z-components of gravitational and pressure forces:

1

ρ

∂p

∂z
= − MGz

(R2 + z2)3/2
	 −MGz

R3
. (3.5.33)

The speed of sound cs is given by c2
s = ∂p/∂ρ, so Eq. (3.5.33) reads

1

ρ

∂ρ

∂z
= −MGz

c2
sR

3
. (3.5.34)

(The meaning of cs depends on circumstances. For an ideal gas with fixed
temperature p is proportional to ρ, and so c2

s = p/ρ. For adiabatic variations
in a polytrope of index � we have p ∝ ρ� , so c2

s = �p/ρ. Considering the
approximations made here, a factor � is not very important.) Taking the sound
speed as a constant, the solution is a Gaussian

ρ ∝ exp

(
−
(
MG

2c2
sR

3

)
z2
)

. (3.5.35)

(Actually, just as for a star, the disk’s temperature decreases toward its surface,
so cs decreases toward the surface, and the fall-off of density is even faster
than for a Gaussian.) From Eq. (3.5.35) we see that the thickness of the disk is
of order

�z ≈
√
c2

sR
3

MG
= cs

�
, (3.5.36)

where as usual � = (MG/R3)1/2 is the orbital frequency. Thus the thin-disk
approximation �z � R requires cs � �R. In other words, the orbital motion
must be supersonic.

This is part of the modern standard picture of accretion disks, due largely to
Shakura and Sunyaev.29 They and their successors go into detail regarding the
internal structure of the disk and its stability, too much detail for us here.

Decaying Disks

We now return to the more general problem, of time-dependent accretion disks.
We now assume that the disk extends to a great distance, where the surface
density becomes negligible, with nothing coming in from infinity. Since mass
and angular momentum are falling onto the central body, the density of the
disk at any given radius R will decay. But as time passes the matter of the

29 N. I. Shakura and R. A. Sunyaev, Astron. Astrophys. 24, 357 (1973).
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disk will extend to greater distances. Indeed, by setting R1 = 0 and R2 = ∞
in Eq. (3.5.18), we see that the total angular momentum of the disk remains
constant.

In this case, we cannot get much use from Eq. (3.5.15) without knowing
something about the viscosity ν. In general ν depends on density and temper-
ature, and to find these we need to solve equations of energy as well as mass
and momentum transport. If, as seems plausible, the viscosity depends on  ,
Eq. (3.5.15) is not even linear.

If we somehow could find ν as a function only of R, then it would be possible
to make progress in finding solutions of Eq. (3.5.15) by looking for a factorized
solution. Suppose we try

 (R, t) = f (R)g(t).

Dividing Eq. (3.5.15) by fg, we have

ġ(t)

g(t)
= 3

Rf (R)

d

dR

(√
R
d

dR

(√
Rν(R)f (R)

))
.

One side of this equation is independent of R, while the other is independent
of t , so both must just be a constant, say −ω. Setting the left-hand side equal to
−ω gives g(t) ∝ exp(−ωt), while setting the right-hand side equal to −ω gives

d

dR

(√
R
d

dR

(√
Rν(R)f (R)

)) = −ωRf (R)
3

.

For instance, if we make the simple though quite unrealistic assump-
tion that ν is constant, then with ω > 0 the two solutions for f (R) are
R−1/4J±1/4

(√
ω/3νR

)
, one of which,

f (R) ∝ R−1/4J1/4
(√
ω/3νR

)
,

is non-singular at R = 0. The general non-singular decaying solution is a
superposition, which (introducing u ≡ √

ω/3ν) may be written

 (R, t) = R−1/4
∫ ∞

0
du g(u) exp

(−3νu2t
)
J1/4(uR). (3.5.37)

An 1875 result30 of Hermann Hankel lets us evaluate g(u) in terms of the
surface density at t = 0:

g(u) = u

∫ ∞

0
dr r5/4 (r , 0)J1/4(ur). (3.5.38)

We can use this to give a simple formula for the late-time behavior of the surface
density. We note first that for t → ∞ the integral (3.5.37) is dominated by

30 G. N. Watson, A Treatise on the Theory of Bessel Functions, 2nd edn. (Cambridge University Press,
Cambridge, 1944), p. 453.
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values of u for which u is no greater than of order 1/
√

3νt . ForR/
√

3νt � 1 we
can use the limiting formula J1/4(z) → (z/2)1/4/�(5/4) for z → 0, and find

 (R, t) → 1

�(5/4)

∫ ∞

0
du g(u) (u/2)1/4 exp

(−3νu2t
)
. (3.5.39)

Since this integral is dominated by values of u for which u is not much greater
than 1/

√
3νt , we can use the limit of Eq. (3.5.38) for small u:

g(u) → u3/4

21/4�(5/4)

∫ ∞

0
dr r3/2 (r , 0). (3.5.40)

The remaining integral is proportional to the constant total angular momentum
of the disk:

J =
∫ ∞

0
2πr dr × rvθ (r) (r , 0) = 2π

√
MG

∫ ∞

0
dr r3/2 (r , 0). (3.5.41)

Using Eqs. (3.5.39)–(3.5.41), we have at late times, for R � √
3νt ,

 (R, t) → 1

2
√

2�(5/4)(3νt)5/4

∫ ∞

0
dr r3/2 (r , 0)

= J

4π
√

2�(5/4)
√
MG(3νt)5/4

. (3.5.42)

(The same result may be obtained more directly from a less obvious solution31

of Eq. (3.5.15):

 (R, t) = 2

R

∫ ∞

0
dr  (r , 0)

x3/4

τ
exp

(
−1 + x2

τ

)
I1/4

(
2x

τ

)
, (3.5.43)

where x ≡ R/r , τ ≡ 12νt/r2, and I1/4(z) is the modified Bessel function,
Iν(z) ≡ e−νπiJν

(
zeπi/2

)
for −π < Arg z < π/2.)

The R-independence and t-dependence of the limiting formula (3.5.42) is not
in conflict with the finiteness and time-independence of the angular momen-
tum J , because this formula is only supposed to hold for R � √

3νt . The disk
does not have a sharp edge, but we may define an effective radius R(t) such
that the angular momentum is the same as if  (R, t) were correctly given by
Eq. (3.5.42) for R < R(t) and were zero for R > R(t). That is, R(t) is defined
so that ∫ R(t)

0
R3/2

[
1

2
√

2�(5/4)(3νt)5/4

∫ ∞

0
dr r3/2 (r , 0)

]
dR

=
∫ ∞

0
dR R3/2 (R, 0). (3.5.44)

31 J. E. Pringle, Ann. Rev. Astron. Astrophys. 19. 137 (1981).
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This gives our result for the growth of the disk’s effective radius:

R(t) → (
5
√

2�(5/4)
)2/5√3νt . (3.5.45)

The detailed formulas (3.5.42) and (3.5.45) for the decay and spread of the
disk depend on the assumption of constant viscosity, which as already men-
tioned is not realistic. But these formulas serve to illustrate the point that an
accretion disk that is not taking in matter from outside must decay, and since its
angular momentum is constant, it must also spread.

Accretion Disks in Binaries

Accretion disks are formed not only in the accretion of matter from the inter-
stellar medium, but also when matter is accreted on a compact object from a
companion star in a binary that has filled its Roche lobe. Among these are the
cataclysmic variables, binaries consisting of a white dwarf star that is accret-
ing matter from an ordinary star. (The “cataclysms” occur sporadically when
nuclear energy is released from the conversion into helium of hydrogen that
has accreted onto the white dwarf, an event often called a nova.) As mentioned
earlier, these cataclysmic variables provide the best evidence for the spectrum
shape expected for radiation emitted from steady accretion disks. The compact
object may instead be a black hole. A famous example is the X-ray source
Cygnus X-1, discovered in 1964. In Cygnus X-1 matter is flowing from a super-
giant star of type O7 onto a black hole with a mass about 10M�. By now dozens
of such black holes in binaries have been discovered. Because white dwarfs and
black holes are so compact, the general theory of accretion disks described in
this section can be applied to accretion disks in binaries, but observations are
complicated by the presence of the companion star.

3.6 Accretion Spheres

The accretion disks discussed in Section 3.5 arise when angular momentum
as well as mass is accreted by a central body from the interstellar medium.
Accretion is also possible without forming a disk, when the interstellar gas
surrounding a central body is pretty much at rest, carrying little angular momen-
tum along with its mass. As an idealization, we can treat this sort of accretion
as a steady spherically symmetric infall of gas from interstellar matter that
at large distances from the central body is at rest, with position-independent
density and pressure. Instead of the attraction of gravitation being resisted by
centrifugal force, as in accretion disks, here it is resisted by gas pressure. In
the absence of differential rotation, viscosity can be neglected. This sort of
spherically symmetric inviscid accretion was first analyzed by Herman Bondi in
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1952,32 before the modern work on accretion disks described in Section 3.5. It
is believed to account for accretion onto various neutron stars and black holes,
such as the stellar-mass black hole M31*, which is observed as an X-ray and
radio source in the Andromeda galaxy.

We start with the equation of motion (3.5.6), which in the absence of viscosity
reads

∂

∂t

(
ρvi
)+ ∂

∂xj

(
ρvivj

) = −ρ ∂φ
∂xi

− ∂p

∂xi
, (3.6.1)

and the equation of continuity (3.5.7)

∂ρ

∂t
+ ∂

∂xi

(
ρvi
) = 0. (3.6.2)

As before, ρ is the gas mass density; vi are the Cartesian components of the gas
velocity; φ is the gravitational potential; p is the gas pressure; i and j run over
the Cartesian coordinate directions; and repeated indices are summed. We use
Eq. (3.6.2) to put Eq. (3.6.1) in a more convenient form:

∂vi

∂t
+ vj ∂vi

∂xj
= − ∂φ

∂xi
− 1

ρ

∂p

∂xi
. (3.6.3)

We specialize here to the case of steady flow and spherical symmetry, in
which the velocity has only a radial component v ≡ vr , and v, p, ρ, and φ
depend only on the radial coordinate r . The equation of continuity (3.6.2) then
takes the form

1

r2

d

dr

(
r2ρv

) = 0, (3.6.4)

and the only non-trivial component of the equation of motion (3.6.3) is the
r-component

v
dv

dr
= −dφ

dr
− 1

ρ

dp

dr
. (3.6.5)

Equation (3.6.4) lets us write

4πr2ρv = − .
M , (3.6.6)

where
.
M is the r-independent accretion rate. (The minus sign is inserted here

because in accretion v is negative, so that
.
M is positive.) The equation of motion

can also be written as a conservation law, but first we have to consider the
dependence of pressure on density. If we suppose that heat conduction as well
as viscosity is negligible then variations in pressure and density are adiabatic,
and, as discussed in Section 1.8, for a variety of gases they are related by a
polytropic equation of state:

p = Kρ� , (3.6.7)

32 H. Bondi, Mon. Not. Roy. Astron. Soc. 112, 195 (1952).
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with K and � constants. Then

1

ρ

dp

dr
= K�

� − 1

dρ�−1

dr
, (3.6.8)

so Eq. (3.6.5) tells us that

d

dr

(
v2(r)

2
+ φ(r)+ K�ρ�−1(r)

� − 1

)
= 0. (3.6.9)

We take the gravitational potential for a central body of mass M as φ(r) =
−MG/r . At an infinite distance from the central body ρ(r) approaches some
constant value ρ(∞), while v(r) and φ(r) vanish, so Eq. (3.6.9) can be
expressed as

v2(r)

2
− MG

r
+ K�ρ�−1(r)

� − 1
= K�ρ�−1(∞)

� − 1
. (3.6.10)

We will now assume, as is typically the case, that the accretion is transonic.
That is, while v(r) is much less than the ambient sound speed cs(r) at very large
distances r , the gas speed |v(r)| rises to a supersonic value much greater than
cs(r) as r → 0, so there must be a critical radius rc at which

v(rc) = −cs(rc). (3.6.11)

The pair of algebraic equations (3.6.10) and (3.6.6) can be solved to find v(r)
and ρ(r) as functions of r for a broad range of values of the accretion rate

.
M ,

but none of these solutions correspond to a stable transonic accretion, except the
one for a particular critical value of

.
M . Accretion is possible for any value of

.
M , but not stable transonic accretion. For any value of

.
M other than the critical

value, transonic accretion is time-dependent, and can become stable only if
.
M

evolves to its critical value.
In general under adiabatic conditions for a polytrope with index � the speed

of sound is

cs(r) =
(
∂p

∂ρ

)1/2

ad
=
(
K�ρ�−1(r)

)1/2 = cs(∞)
(
ρ(r)

ρ(∞)
)(�−1)/2

. (3.6.12)

To see what the transonic condition implies for
.
M , let us return to the equation

of motion (3.6.5), this time using Eqs. (3.6.6) and (3.6.7) to write

1

ρ

dp

dr
= c2

s

ρ

dρ

dr
= − c2

s

r2v

d(r2v)

dr
= −c

2
s

v

dv

dr
− 2c2

s

r
, (3.6.13)

so (3.6.5) becomes(
1 − c2

s (r)

v2(r)

)
v(r)

dv(r)

dr
+ MG

r2
− 2c2

s (r)

r
= 0. (3.6.14)
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This is known as the wind equation, because it was first encountered in the
seminal study of stellar winds by Eugene Parker.33

For accretion or stellar winds, we have respectively v(r) = −cs(r) or v(r) =
+cs(r) at the critical radius r = rc, which according to Eq. (3.6.14) satisfies

MG

2rcc2
s (rc)

= 1. (3.6.15)

As we have seen, for accretion the boundary conditions at infinite r give
Eq. (3.6.10), which with Eq. (3.6.12) may be written

v2(r)

2
− MG

r
+ c2

s (r)

� − 1
= c2

s (∞)
� − 1

. (3.6.16)

Setting r = rc then gives

c2
s (rc)

(
1

2
− 2 + 1

� − 1

)
= c2

s (∞)
� − 1

,

or in other words

c2
s (rc) =

(
2

5 − 3�

)
c2

s (∞). (3.6.17)

We can now calculate the accretion rate in terms of quantities evaluated far
from the accreting body, by setting r = rc in Eq. (3.6.6). Using Eq. (3.6.12) and
the defining conditions v(rc) = −cs(rc) and (3.6.15) in Eq. (3.6.6) gives

.
M = 4πr2

c ρ(rc)cs(rc) = 4π

(
MG

2c2
s (rc)

)2

ρ(∞)
(
cs(rc)

cs(∞)
)2/(�−1)

cs(rc)

= πM2G2ρ(∞)c−3
s (∞)

(
cs(rc)

cs(∞)
)(5−3�)/(�−1)

.

Using Eq. (3.6.17), we now find

.
M = πM2G2ρ(∞)c−3

s (∞)
(

5 − 3�

2

)−(5−3�)/2(�−1)

. (3.6.18)

Thus, knowing the ambient density and sound speed, and the value of the poly-
trope index �, we can find the unique rate of stable Bondi accretion. For a
monatomic ideal gas with � = 5/3 the final factor in Eq. (3.6.18) is 00 = 1.
In terms of reference values for ρ(∞) and cs(∞) typical of the environment of
M31*,34 ρ(∞) ≈ 10−24 g/cm3 and cs(∞) ≈ 10 km/sec, the accretion rate is

.
M ≈ 5.5 × 1010

(
M

M�

)2 (
ρ(∞)

10−24 g/cm3

)(
cs(∞)

10 km/sec

)−3

g/sec.

33 E. Parker, Astrophys. J. 132, 821 (1960).
34 These numbers are taken from F. Melia, High-Energy Astrophysics (Princeton University Press, Princeton,

NJ, 2009).
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If a fraction f of the accreted mass is converted to energy, the luminosity is

f
.
M c2 = 5 × 1031f

(
M

M�

)2 (
ρ(∞)

10−24 g/cm3

)(
cs(∞)

10 km/sec

)−3

erg/sec.

The observed X-ray luminosity of M31* is about 3 × 1035 erg/sec, suggesting
a mass equal to a few tens of solar masses.

3.7 Soft Bremsstrahlung

In this section we consider the emission of observable radiation due to brems-
strahlung, produced when a free electron is scattered by an atomic nucleus in
an atom or ion. The consideration of observable bremsstrahlung radiation will
require a treatment different from our earlier discussion of related processes: In
calculating the Rosseland mean free–free opacity in Section 1.4 we averaged
over the frequencies of absorbed photons, and in calculating bremsstrahlung
cooling in Section 3.3 we integrated over the frequencies of emitted photons.
The results in both calculations were largely dominated by unobserved photons
with energies hν roughly of order kBT . Here instead we want to calculate the
observable emissivity jν(T ), the energy emitted at temperature T per time, per
volume, per solid angle, and per frequency interval, at a specific frequency ν.
We will be chiefly interested in soft bremsstrahlung, for which hν � kBT , as
is typically the case for the radio waves from hot ionized gas in galaxies and
galaxy clusters.

The emissivity is calculated in terms of the rate j (ν, v) of emission per elec-
tron of velocity v, per second, per photon solid angle, and per photon frequency
interval:

jν(T ) =
∫
mev2/2>hν

d3v ne(v, T )j (ν, |v|), (3.7.1)

where ne(v, T ) d3v is the number density of free electrons with velocity v in a
range d3v at v. It is conventional to express j (ν, v) as the approximate classical
electrodynamics result given in 1923 by Kramers,35 times a “free–free Gaunt
factor” gff(ν, v) that incorporates quantum and other corrections:

j (ν, v) ≡ 8πZ2e6nN

3
√

3 c3m2
ev
gff(ν, v), (3.7.2)

where nN is the number density of ions, Ze is the ionic charge (with e every-
where in unrationalized electrostatic units), and me is the electron mass. Using

35 H. Kramers, Phil. Mag. 46, 836 (1923).
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the Maxwell–Boltzmann momentum-space distribution (3.3.24) for ne(v, T ),
this gives the emissivity

jν(T ) = 8Z2e6nNne

3c3(kBT )1/2m
3/2
e

(
2π

3

)1/2

gff(ν, T ), (3.7.3)

where ne is the total number density of free electrons; kB is the Boltzmann
constant; and gff(ν, T ) is the thermally averaged free–free Gaunt factor (or,
briefly, the thermal Gaunt factor):

gff(ν, T ) = me

kBT

∫ ∞
√

2hν/me

gff(ν, v) exp

(
−mev

2

2kBT

)
v dv. (3.7.4)

Astrophysicists today chiefly rely on various numerical calculations36 of the
Gaunt factor, based on a set of quite complicated formulas:

gff(ν, v) = 2
√

3

πξξ ′
[
(ξ2 + ξ ′2 + 2ξ2ξ ′2)I0 − 2ξξ ′(1 + ξ2)1/2(1 + ξ ′2)1/2I1

]
I0,

(3.7.5)

where

I	 = 1

4

(
4ξξ ′

(ξ ′ − ξ)2
)	+1

eπ(ξ+ξ
′)/2 |�(	+ 1 + iξ)�(	+ 1 + iξ ′)|

�(2	+ 1)

×
(
ξ + ξ ′

ξ ′ − ξ
)−iξ−iξ ′

2F1

(
	+ 1 − iξ , 	+ 1 − iξ ′; 2	+ 2; − 4ξξ ′

(ξ ′ − ξ)2
)

.

(3.7.6)

Here ξ ≡ Ze2/h̄v and ξ ′ ≡ Ze2/h̄v′, with v′ the magnitude of the final electron
velocity, given in terms of ν and v by the condition of energy conservation

mev
′2/2 = mev

2/2 − hν. (3.7.7)

Also, 2F1 is a confluent hypergeometric function, with power series expansion

2F1(a, b; c; x) =
∞∑
n=0

(a)n(b)n

(c)n

xn

n!
, (3.7.8)

where for any complex z

(z)n ≡ z(z+ 1) · · · (z+ n− 1) for n = 1, 2, 3, . . . ; (z)0 ≡ 1.

36 For instance, W. J. Karzas and R. Latter, Astrophys. J. Suppl. 6, 167 (1961); D. G. Hummer, Astrophys. J.
327, 472 (1988); R. S. Sutherland, Mon. Not. Roy. Astron. Soc. 300, 321 (1998); P. A. M. van Hoof et al.,
Mon. Not. Roy. Astron. Soc. 444, 420 (2014).
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Equations (3.7.5) and (3.7.6) were given by Karzas and Latter,37 who derived
them from a partial wave expansion of Biedenharn38 of results originally
obtained by Sommerfeld.39 We will not go through this derivation here. It
takes only a glance at Eqs. (3.7.5) and (3.7.6) to see that in order to learn
the trend of how the emission depends on frequency and velocity, it would
be more convenient to have a simple analytic approximation for the Gaunt
factor. This would also make it easy to obtain a simple analytic formula for
the thermal Gaunt factor (3.7.4). Above all, in an independent derivation of a
simple analytic expression for the Gaunt factor we can gain an understanding of
the physics of bremsstrahlung that is not transparent in Eqs. (3.7.5) and (3.7.6).

The most widely useful simple analytic approximation for the Gaunt factor is
found using the Born approximation – that is, keeping only terms in the matrix
element for bremsstrahlung to first order in the electrostatic interaction between
electrons and atoms or ions. This approximation applies if the potential energy,
at an electron–nucleus separation r that is equal to the de Broglie wavelengths
h̄/mev and h̄/mev

′of the initial and final electrons, is much less than the kinetic
energiesmev

2/2 ormev
′2/2. For completely ionized atoms of atomic number Z

the potential is −Ze2/r , and the condition for the validity of the Born approxi-
mation is

ξ ≡ Ze2

h̄v
� 1 and ξ ′ ≡ Ze2

h̄v′ � 1. (3.7.9)

An electron has ξ < 1 if its kinetic energy is greater than the binding energy of
an atomic electron in the 1s state, equal to 13.6 eV for hydrogen. Most of the
work needed to deal with bremsstrahlung in the Born approximation has already
been done in Section 3.3, where we calculated the bremsstrahlung contribution
to cooling. From Eq. (3.3.21) we see that the emission rate per electron is

j (ν, v) = 4Z2e6nN

3πh̄c3m2
e

∫ p

0

p′2 dp′

pp′ ln

(
p + p′

p − p′

)
δ

(
p2

2meh
− p′2

2meh
− ν
)

= 8Z2e6nN

3c3m2
ev

ln

(
v + v′

v − v′

)
, (3.7.10)

with v′ fixed by the energy-conservation condition (3.7.7). Comparing with
Eq. (3.7.2), we find that in the Born approximation the Gaunt factor is

gff(ν, v) =
√

3

π
ln

(
v + v′

v − v′

)
. (3.7.11)

37 W. J. Karzas and R. Latter, Astrophys. J. Suppl. 6, 167 (1961).
38 L. C. Biedenharn, Phys. Rev. 162. 262 (1956).
39 A. J. Sommerfeld, Atombau und Spektrallinien, Vol. II (Vieweg & Sohn, Braunschweig, 1939), Chapter 7,

Section 5.
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In particular, for soft photons with hν � mev
2, this gives

gff(ν, v) =
√

3

π
ln

(
2mev

2

hν

)
. (3.7.12)

This is in excellent agreement with the numerical results of van Hoof et al.40

for soft photons with 2hν/mev
2 ≤ 10−2 and ξ < 1. For hν � kBT and

Ze2/h̄
√
kBT/me � 1, typical photons are soft and typical electrons have ξ �

1, and in this case we can use Eq. (3.7.12) in Eq. (3.7.4) and find that the thermal
Gaunt factor appearing in Eq. (3.7.3) is

gff(ν, T ) =
√

3

π

[
ln

(
4kBT

hν

)
− γ

]
, (3.7.13)

where γ is the Euler constant, γ = 0.5772157 . . . .
This is not the result usually given. Several treatises on the interstellar

medium41 give the formula

gff(ν, T ) =
√

3

π

[
ln

(
(2kBT )

3/2

πZe2νm
1/2
e

)
− 5γ

2

]
, (3.7.14)

without providing a derivation or an indication of the range of photon frequen-
cies and temperatures in which this formula is valid, other than just that the
photons are soft (and, as discussed below, that Debye screening is negligible).
Spitzer cites a 1960 calculation of Scheuer42 for Eq. (3.7.14). Scheuer obtained
this result from a calculation of the emission per electron, based entirely on
classical scattering theory, which gave the result

gff(ν, v) =
√

3

π

[
ln

(
mev

3

πZe2ν

)
− γ

]
=

√
3

π

[
ln

(
2mev

2

hνξ

)
− γ

]
. (3.7.15)

As Scheuer found, using this in Eq. (3.7.4) gives the widely quoted thermal
Gaunt factor (3.7.14) for soft photons, with hν � kBT .

It is evident that Eq. (3.7.15) cannot be valid for ξ � 1, because it does not
reduce to the Born-approximation result (3.7.12) in this case, where the Born
approximation is known to be valid. Equation (3.7.15) also cannot be valid for a
fixed ratio of photon and electron energies and arbitrarily large ξ , where it gives

40 P. A. M. van Hoof et al., Mon Not. Roy. Astron. Soc. 444, 420 (2014).
41 D. E. Osterbrock, Astrophysics of Gaseous Nebulae and Active Galactic Nuclei (University Science

Books, Mill Valley, CA, 1989); L. Spitzer, Jr., Physical Processes in the Interstellar Medium (John
Wiley & Sons, New York, 1998); B. T. Draine, Physics of the Interstellar and Intergalactic Medium
(Princeton University Press, Princeton, NJ, 2011); W. J. Maciel, Astrophysics of the Interstellar Medium,
trans. M. Serote Roos (Springer Sciences, New York, 2013).

42 F. A. G. Scheuer, Mon. Not. Roy. Astron. Soc. 120, 231 (1960). The paper of Scheuer was also quoted as
a result of classical scattering theory in an early review article: L. Oster, Rev. Mod. Phys. 13, 525 (1961).
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a negative Gaunt factor. It is in fact a good approximation only for ξ ′−ξ � 1,43

or equivalently, for
1 � ξ � mev

2/2hν. (3.7.16)

The numerical results of van Hoof et al.44 show that the range of values of ξ
in which Eq. (3.7.15) is a good approximation is vanishingly narrow even for
photon frequencies as low as 10−2mev

2/h.
It may be possible to go further. We found Eq. (3.7.10) here from the formula

(3.3.21) for the Born-approximation emissivity per electron, which followed
from a formula, Eq. (3.3.20), for the rate per momentum space volume of the
final electron at which an electron of momentum p is scattered into a definite
momentum p′ �= p with the emission of a photon of energy qc = hν. The rate is

∑
λ

∫
d2q̂

4π
jBorn(q, λ; p → p′) = 2Z2e6nN

3π2h̄(p − p′)2q3c3m2
e

× δ
(
p2

2me
− p′2

2me
− qc

)
. (3.7.17)

Although the calculation of this photon emission rate in Section 3.3 was based
on the Born approximation, which for general frequencies is only valid for
electron velocities at which condition (3.7.9) is satisfied, there is a very general
soft-photon theorem of quantum electrodynamics,45 which states that the rate
of emission of a photon in any process is given in the limit of vanishing photon
energy by a known factor times the rate of the process without the soft photon. In
our case the latter process is ordinary Coulomb scattering, whose rate is known
to be correctly given by the Born approximation to all orders in the Coulomb
potential. Hence from the soft-photon theorem it follows46 that Eq. (3.7.17)
is actually valid to all orders in the Coulomb potential in the limit qc → 0,
whether or not condition (3.7.9) is satisfied.

Unfortunately, this is not the end of the story. To derive the emission rate per
electron j (ν, v) from Eq. (3.7.17) we have to integrate over the final electron
momentum, as in deriving Eq. (3.3.21) from Eq. (3.3.20). The trouble is that the
soft-photon theorem only gives Eq. (3.7.17) in the limit hν = qc = 0, but in
this limit there is a logarithmic divergence in the integral over the direction of
the final electron momentum, arising from the configuration in which the final
and initial electron momenta are parallel, which accounts for the logarithmic

43 This was found as a consequence of Eqs. (3.7.5) and (3.7.6) by S. Albalat and A. Zimmerman, private
communication. They subsequently found that the same condition had been given in an old review article,
by P. J. Brussaard and H. C. van de Hulst, Rev. Mod. Phys. 34, 505 (1962).

44 P. A. M. van Hoof et al. Mon. Not. Roy. Astron. Soc. 444, 420 (2014).
45 S. Weinberg, Phys. Rev. 140, B516 (1965).
46 S. Weinberg, Phys. Rev. D 99, 076018 (2019).
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dependence of the Gaunt factor on hν. That is, although Eq. (3.7.17) always
holds for emission of photons of sufficiently low energy, the condition on the
photon energy for Eq. (3.7.17) to hold becomes increasingly stringent as the
final and initial electron directions approach each other. This makes no differ-
ence for Ze2/h̄v � 1, where the Born approximation applies anyway, but leads
to a suppression of the emissivity otherwise. In order to find an analytic expres-
sion for this suppression, it would be necessary to have a good estimate for the
angle between initial and final electron velocities within which the emission rate
becomes significantly less than the Born-approximation value.

All of the above in this section relies on the assumption that the electron gas
is very dilute. For finite electron number density the results (3.7.12) and (3.7.13)
are modified by a screening of the ionic charge, known as Debye screening,47

even where the interstellar medium is completely ionized. Because electrons are
mobile, their number density in phase space is proportional to

exp
(
−(p2

e/2me − eφ(x))/kBT
)

,

where φ(x) is the electrostatic potential. Integrating over the electron momen-
tum pe gives an electron charge density

−ene exp
(
eφ(x)/kBT

)
,

where ne is the average electron number density far from specific sources, where
φ(x) 	 0. Inserting an ion of charge +Ze at x = 0 then gives an electrostatic
potential satisfying the Poisson equation:

∇2φ(x) = 4πene exp
(
eφ(x)/kBT

)− 4πZenN − 4πZe δ3(x), (3.7.18)

in which the second term represents the effect of the average positive ionic
charge far from the origin, where φ = 0. The neutrality of the average charge
distribution requires that ZenN − ene = 0, so the first and second terms in
Eq. (3.7.18) would cancel if φ were zero. Even for φ �= 0, it is frequently the
case that the temperature is high enough to make the argument of the expo-
nential small, in which case we can approximate exp

(
eφ(x)/kBT

) 	 1 +
eφ(x)/kBT , and the Poisson equation becomes

∇2φ(x) = 4πe2ne

kBT
φ(x)− 4πZe δ3(x). (3.7.19)

This has a well-known solution

φ(x) = Ze

r
exp(−r/	), (3.7.20)

47 P. Debye and E. Hückel, Phys. Z. 24, 185 (1923).
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where r ≡ |x| and 	 is the Debye length

	 =
√

kBT

4πe2ne
. (3.7.21)

So at distances beyond 	 the ionic charge is screened by ambient electrons.
According to Eq. (1.4.A9), the effect of this screening is to replace the

denominator |p − p′|2 in the matrix element (whether for photon absorption or
emission) with |p − p′|2 + h̄2/	2, so in place of Eq. (3.3.19) the emission per
electron in the Born approximation is

jBorn(q, λ; p → p′) = Z2e6nN

π2h̄[(p − p′)2 + h̄2/	2]2q3c3m2
e

×
∣∣∣(p − p′) · e∗(λ, q)

∣∣∣2 δ ( p2

2me
− p′2

2me
− qc

)
,

from which it follows that

jν(T ) = 2Z2e6nN

3π2h̄c3m2
e

∫
ne(p, T ) d3p

×
∫
d3p′ |p − p′|2

[|p − p′|2 + h̄2/	2]2
δ

(
p2

2meh
− p′2

2meh
− ν
)

. (3.7.22)

For soft photons with hν � kBT , the minimum value of |p − p′|2 is of
order meh

2ν2/kBT , so Debye screening has no appreciable effect on soft
bremsstrahlung if hν � (h̄/	)

√
kBT/me, or in other words, if ν is much larger

than the plasma frequency νP ≡
√
nee2/πme.48 This is the case, for instance,

where interstellar matter has ne 	 1 cm−3 and ν � 9 kHz. In such cases,
Debye screening has a negligible effect on soft bremsstrahlung.

On the other hand, where the electron number density is sufficiently large that
ν � νP, Debye screening provides the effective cut-off for the integral over the
final electron direction, and the emissivity (3.7.22) has a well-defined limit for
ν → 0:

jν(T ) →
∫
ne(p, T ) d3p

4Z2e6nN

3c3m2
ev

[
ln
(
η + 1

)− η

η + 1

]
, (3.7.23)

where η ≡ 4mev
2kBT/h

2ν2
P. For typical values of νP and kBT we have

η � 1, in which case the integral gives a Born-approximation emissivity of
form (3.7.3), with thermal Gaunt factor

gff(0, T ) =
√

3

π

[
ln

(
23/2kBT

hνP

)
− 1

2
− γ

]
. (3.7.24)

48 The plasma frequency is the frequency of acoustic waves of very long wavelength in a plasma, and it
is the frequency below which electromagnetic waves in a plasma are strongly affected by electron–ion
attraction.
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4
Galaxies

In the foregoing chapters we have been chiefly concerned with the stars and
interstellar matter in our own galaxy. The observable universe is filled with
billions of other galaxies, composed of similar constituents, to which we
now turn.

4.1 Collisionless Dynamics

The distribution in position and velocity of stars in a galaxy can be treated by
some of the same equilibrium considerations as the distribution of molecules in
a gas, but with one great difference: the stars in a galaxy are so far apart that
their motion is mostly determined by the gravitational potential of the whole
galaxy, rather than by close encounters with individual other stars. The number
of stars of any given type in an element d3x of spatial volume at position x and
in an element d3v in velocity space at velocity v is f (x, v, t) d3x d3v, where
f is the distribution function, given by an averaged sum over stars of this type:

f (x, v, t) =
∑
N

δ3
(
x − xN(t)

)
δ3
(
v − vN(t)

)
, (4.1.1)

where xN(t) and vN(t) are the position and velocity of the N th star, and the
average is over fluctuations of positions and velocities of individual stars (indi-
cated by the bar) during times short compared with the time for the evolution of
the galaxy as a whole. The stars’ positions and velocities obey the equations of
motion

ẋN(t) = vN(t), v̇N(t) = −∇φ(xN(t), t), (4.1.2)

where φ
(
x, t
)

is the gravitational potential of the galaxy, due to gas and dark
matter as well as stars. Then, taking the time derivative of Eq. (4.1.1), we have
the rate of change of the distribution function

∂

∂t
f (x, v, t) = −v · ∇xf (x, v, t)+ ∇xφ

(
x, t
) · ∇vf (x, v, t). (4.1.3)
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This is the collisionless Boltzmann equation, which holds except during rare
close encounters of stars. It applies separately to stars of each type, though
we will not decorate the distribution function with a label distinguishing the
different types of star until we need to near the end of this section.

Just as in the kinetic theory of gases, it is often more convenient to work with
moments of the distribution function than with the distribution function itself.
First, the number density n of stars is simply the integral of the distribution
function over velocity:

n(x, t) ≡
∫
d3v f (x, v, t). (4.1.4)

Assuming that f (x, v, t) vanishes rapidly as the velocity goes to infinity, when
Eq. (4.1.3) is integrated over velocity the term proportional to ∇vf does not
contribute to the integral, and we obtain the equation of continuity:

∂

∂t
n(x, t)+ ∇ · (n(x, t)v(x, t)

) = 0, (4.1.5)

where v is the mean velocity of stars, defined by

n(x, t)v(x, t) ≡
∫
d3v vf (x, v, t). (4.1.6)

Also, multiplying Eq. (4.1.3) with vi and integrating over velocity gives

∂

∂t

(
n(x, t)vi(x, t)

) = − ∂

∂xj

(
n(x, t)vivj (x, t)

)− n(x, t)
∂

∂xi
φ(x, t), (4.1.7)

where vivj is defined by

n(x, t)vivj (x, t) ≡
∫
d3v vivjf (x, v, t).

(The third term in Eq. (4.1.3) has here been integrated by parts.)
Equation (4.1.7) has a nice application1 to the motion of stars in the flat disks

of galaxies like our own and M31. We can assume that the distribution of stars
is in equilibrium, so that we can drop the time derivative in Eq. (4.1.7), and that
the distribution depends much less on location within the area of the disk than
on the distance z from the disk’s mid-plane along a direction normal to the disk.
Then, taking the z-component of Eq. (4.1.7), and assuming that the quantities
involved depend chiefly on z, we find

1

n

d

dz

(
nv2
z

) = − d

dz
φ.

1 J. H. Oort, Bull. Astron. Inst. Netherlands 6, 349 (1932).
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With φ depending chiefly on z, the mass density ρ can be found from the
Poisson equation:

4πGρ = ∇2φ = d2φ

dz2
= − d

dz

(
1

n

d

dz

(
nv2
z

))
. (4.1.8)

Note that in deriving the right-hand side we used only the Boltzmann equation
and the equation of motion, which apply separately for each type of star, and in
particular the right-hand side is independent of the overall scale of n. Hence we
can take n here to be the number density of any easily observable test bodies
that move under the influence of the galaxy’s gravitational field, such as bright
stars, whether or not they make an appreciable contribution to the galaxy’s mass
density, which may arise largely from invisible interstellar matter. By evaluating
the right-hand side, astronomers have worked out2 that the total mass density in
the mid-plane of our galaxy is about 10−23 g/cm3. The mass density of observed
stars is about 4×10−24 g/cm3, the missing mass presumably consisting of dark
matter and/or stars too faint to observe. This calculation is often used to provide
an upper limit on the density of such faint stars, and is referred to as the Oort
limit.

Returning now to general collisionless dynamics, we can use Eq. (4.1.5) to
rewrite Eq. (4.1.7) in the useful form

∂

∂t
vi(x, t) = −(v(x, t)·∇)vi(x, t)− 1

n(x, t)

∂

∂xj
�ij (x, t)− ∂

∂xi
φ(x, t), (4.1.9)

where �ij is the velocity dispersion tensor

�ij (x, t) ≡ n(x, t)
(
vi(x, t)vj (x, t)− vi(x, t)vj (x, t)

)
=
∫
d3v
(
vivj − vi(x, t)vj (x, t)

)
f (x, v, t)

=
∫
d3v
(
vi − vi(x, t)

)(
vj − vj (x, t)

)
f (x, v, t). (4.1.10)

If we liked we could obtain a formula for the rate of change of �ij by multi-
plying Eq. (4.1.3) with vivj and integrating over v, but this would be a losing
game; the formula derived in this way would involve the average of a product
of three velocity components. This process never comes to an end. Instead, it is
often sufficient to provide closure by assuming that (perhaps because of the rare
close encounters of stars) the distribution of v − v, the stellar velocity relative
to its mean value, is isotropic, in which case�ij takes the form

�ij (x, t) = δij�(x, t), (4.1.11)

2 L. Spitzer, Jr., Physical Processes in the Interstellar Medium (John Wiley & Sons, New York, 1978),
Section 1.6.
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and Eq. (4.1.9) becomes

∂

∂t
v(x, t) = −(v(x, t) · ∇)v(x, t)− 1

n(x, t)
∇�(x, t)− ∇φ(x, t). (4.1.12)

This is pretty much the same as the Euler equation (3.4.12) of hydrodynamics
in the presence of a gravitational potential, but with � and n playing the roles
of pressure and mass density. Of course, we still need some way of estimating
� as a function of other dynamical variables.

We will be primarily interested in the condition for equilibrium, in which f
does not depend on time:

∂

∂t
f (x, v, t) = 0. (4.1.13)

Using Eq. (4.1.3) and dropping the time argument, this is

0 = −v · ∇xf (x, v)− ∇φ(x) · ∇vf (x, v). (4.1.14)

It is not hard to find a large class of solutions of Eq. (4.1.14). Suppose Ir(x, v)
are various integrals of the motion, in the sense that the Ir(x(t), v(t)) are time-
independent for any phase-space trajectory satisfying Eqs. (4.1.2):

ẋ(t) = v(t), v̇(t) = −∇φ(x(t)). (4.1.15)

An obvious integral of the motion is the energy per mass

E(x, v) = 1

2
v2 + φ(x). (4.1.16)

If the distribution function depends only on E(x, v), then it is an isotropic
function of v, and satifies Eqs. (4.1.11) and (4.1.12). The existence of other
possible integrals of the motion depends on possible symmetries of the galaxy.
In galaxies with symmetry about an axis of rotation, the angular momentum J

about that axis is another such integral.
Any distribution function of the form

f (x, v, t) = F
(
I (x(t), v(t))

)
(4.1.17)

will satisfy
∂

∂t
f (x, v, t) =

∑
r

∂F
∂Ir

d

dt
Ir(x(t), v)t)) = 0, (4.1.18)

so that (4.1.17) is a solution of the equilibrium equation (4.1.13). Since f and
Ir are thus independent of time, we can drop the time argument in Eq. (4.1.17),
which reads

f (x, v) = F
(
I (x, v)

)
. (4.1.19)

From Eq. (4.1.18) it follows that this is a solution of the equilibrium Boltzmann
equation (4.1.14), a result known as the Jeans theorem. We will see examples
of this procedure in the next section.
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Let’s look in more detail at the simplest case of Eq. (4.1.17), in which the
distribution function f (x, v) depends on a single conserved quantity, the stellar
energy per mass (4.1.16):

f (x, v) = F
(
v2/2 + φ(x)).

This is a case in which the mean velocity v defined by Eq. (4.1.6) is everywhere
zero, so it does not apply to stars in galaxies with net rotation, like the disk
galaxies considered in Section 4.3, but it allows a fair account of spherical or
ellipsoidal galaxies. We can write a formula for the equilibrium number density
as an integral over E

n(x) = N
(
φ(x)

)
, (4.1.20)

with

N (φ) =
∫
d3v F

(
v2/2 + φ) = 4π

∫ ∞

φ

dE

√
2
(
E − φ)F(E). (4.1.21)

To avoid problems with the limits of integration, it is usually assumed that F(E)
goes to zero smoothly at a maximum energy E = Emax, and vanishes for all
E > Emax, so that Eq. (4.1.21) reads

N (φ) = 4π
∫ Emax

φ

dE

√
2
(
E − φ)F(E). (4.1.22)

It follows from this that N (φ) vanishes for φ > Emax, though of course it may
vanish also for smaller values of φ. In typical cases φ(x) is everywhere negative,
and we can take Emax = 0.

This can be inverted. Not only can we find for every function F(E) an equi-
librium number density distribution (4.1.21) that depends only on φ; it is also the
case that for any number density distribution of the form (4.1.20) that depends
only on φ and that vanishes for φ greater than some maximum Emax, we can
find an equilibrium distribution function of the form f (x, v) = F

(
E(x, v)

)
for

which N (φ) is given by Eq. (4.1.22). This distribution function is

F(E) = 1√
8π2

d

dE

∫ Emax

E

dN (ψ)
dψ

dψ√
ψ − E . (4.1.23)

(This is a generalization of what is sometimes called the Eddington formula.3)
To check this, note that if we use Eq. (4.1.23) in the right-hand side of
Eq. (4.1.22), we have

4π
∫ Emax

φ

dE

√
2
(
E − φ)F(E) = 2

π

∫ Emax

φ

dE
√
E − φ

× d

dE

∫ Emax

E

dN (ψ)
dψ

dψ√
ψ − E .

3 A. S. Eddington, Mon. Not. Roy. Astron. Soc. 76, 572 (1916).
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The integral over ψ vanishes at the upper endpoint E = Emax of the inte-
gral over E, and

√
E − φ vanishes at the lower endpoint E = φ of the integral

over E, so integrating over E by parts gives

4π
∫ Emax

φ

dE

√
2
(
E− φ)F(E) = − 1

π

∫ Emax

φ

dE√
E − φ

∫ Emax

E

dN (ψ)
dψ

dψ√
ψ−E .

Inverting the order of integrations, this is

4π
∫ Emax

φ

dE

√
2
(
E−φ)F(E) = − 1

π

∫ Emax

φ

dψ
dN (ψ)
dψ

∫ ψ

φ

dE√
E− φ√

ψ−E .

The integral over E is independent of φ and ψ :∫ ψ

φ

dE√
E − φ√

ψ − E = π ,

so

4π
∫ Emax

φ

dE

√
2
(
E − φ)F(E) = −

∫ Emax

φ

dψ
dN (ψ)
dψ

= N (φ)

as was to be shown.
Despite this demonstration, Eqs. (4.1.23) and (4.1.19) do not quite provide a

universally applicable prescription for constructing an equilibrium distribution
function f (x, v) for any given density profile n(x). For one thing, Eq. (4.1.20)
works only if there is a one-to-one correspondence between values of x and
of φ(x). This is the case, for instance, for a spherically symmetric mass distri-
bution, such that as usual φ(r) increases monotonically with increasing r (or,
since φ is negative, |φ(r)| decreases monotonically with r). Another limitation
is that Eq. (4.1.23) makes sense only if it gives a distribution function F(E) that
is everywhere positive, which is not guaranteed. The above argument based on
Eq. (4.1.23) only shows that it does not take a miracle for a given density profile
to result from some distribution function of the form F(E).

For a distribution function f (x, v) = F
(
v2/2 + φ(x)

)
, the tensor �ij (x)

defined by Eq. (4.1.10) obviously has the form �ij = δij� suggested in
Eq. (4.1.11), so these stars behave as a fluid, with a mass density and pressure
given by

ρ(x) =
∑
s

msns(x) =
∑
s

ms

∫
d3vFs

(
v2/2 + φ(x)), (4.1.24)

p(x) ≡
∑
s

ms�s(x) =
∑
s

ms

3

∫
d3v v2Fs

(
v2/2 + φ(x)), (4.1.25)

the sums now running over all types s of star, each type taken to have a common
massms . Since the distribution functions Fs

(
v2/2+φ(x)) automatically satisfy

the time-independent Boltzmann equation, we expect the pressure and density
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automatically to satisfy the equation of hydrostatic equilibrium, whatever the
form of Fs . To check this, note that

∇p =
∑
s

(ms
3

)
∇φ

∫
d3v v2F ′

s

(
v2/2 + φ(x)) .

Note also that

(v · ∇v)Fs
(
v2/2 + φ(x)) = v2F ′

s

(
v2/2 + φ(x)),

so

∇p =
∑
s

(ms
3

)
∇φ

∫
d3v (v · ∇v)Fs

(
v2/2 + φ(x)).

Integrating by parts and using ∇v · v = 3, we obtain the general equation of
hydrostatic equilibrium

∇p = −ρ ∇φ,

as was to be shown. But we do not complete the work of constructing a galaxy
model just by choosing functions Fs(E), for we still have the task of finding
φ(x) by solving the Poisson equation

∇2φ(x) = 4πG
∑
s

ms

∫
d3vFs

(
v2/2 + φ(x)), (4.1.26)

which is not so easy for general Fs . In the next section we will see how this can
be done for some special choices of the distribution functions Fs .

The same formalism can be applied in other contexts. It is not only stars in a
galaxy that interact chiefly with the gravitational potential of the whole galaxy.
Because the interactions of dark matter particles are believed to be so weak, their
motion likewise is governed by the gravitational field of the galaxy or cluster of
galaxies they inhabit. Likewise, in clusters of galaxies, the individual galaxies
are so far apart that they interact chiefly with the gravitational potential of the
cluster. In all these cases, the formalism presented above allows the construction
of equilibrium distribution functions for galaxies in clusters and for dark matter
particles in galaxies or clusters.

4.2 Polytropes and Isothermals

We can use the general method for finding solutions of the equilibrium Boltz-
mann equation described in the previous section to construct plausible models
of spherical halos, galaxies, and galaxy clusters. We take the equilibrium dis-
tribution function for bodies (particles, stars, or galaxies) of type s to have the
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form (4.1.19), with a single invariant I in this equation chosen as the energy per
mass (4.1.16):

fs(x, v) = Fs
(
v2/2 + φ(x)), (4.2.1)

and now choose the functions Fs to have the simple form

Fs(E) =
{
Cs(Em − E)ν E ≤ Em

0 E ≥ Em,
(4.2.2)

where Cs > 0, ν ≥ 0, and Em are constants, with Em at least equal to the
maximum value reached by φ(x). It will be a great convenience to take ν and
Em to be the same for all s, though Cs may vary from one type of body to
another.

This is of course a large oversimplification, but it is not a bad approximation
in some contexts, such as the outer parts of spheroidal galaxies. More generally
we could have a different F(E), with different values for C, ν, and Em for each
type of star (or each type of galaxy in a cluster, or each type of dark matter
particle in a halo, galaxy, or cluster). But of course in any case φ(x) is the same
for all s, given by a sum of contributions of stars, gas, and dark matter.

The mass density and pressure are given by the integrals

ρ(x) =
∑
s

ms

∫
d3vFs

(
v2/2 + φ(x)) (4.2.3)

and

p(x) =
∑
s

ms

3

∫
d3v v2Fs

(
v2/2 + φ(x)), (4.2.4)

where, depending on the context, the sums run over types of star in a galaxy,
types of galaxies in a cluster of galaxies, or types of dark matter particle in
either, withms taken as the common mass of each type. The integrals can easily
be done by changing the variable of integration from v to u ≡ v2[2(Em −
φ(x))]−1, and using the general formula4∫ 1

0
du uμ(1 − u)ν = �(ν + 1)�(μ+ 1)

�(μ+ ν + 2)
.

This gives the density and pressure

ρ(x) = (2π)3/2
(
Em − φ(x))ν+3/2 �(ν + 1)

�(ν + 5/2)

∑
s

msCs (4.2.5)

and

p(x) = (2π)3/2
(
Em − φ(x))ν+5/2 �(ν + 1)

�(ν + 7/2)

∑
s

msCs . (4.2.6)

4 Here �(z) is the familiar Gamma function, and of course has no connection with the polytrope index �
calculated below. We shall use the formulas �(3/2) = √

π/2 and �(5/2) = 3
√
π/4.
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We now specialize to the case of a spherically symmetric potential, for
which φ and consequently ρ and p are all functions only of the radial coor-
dinate r . As remarked in the previous section, because the distribution func-
tion (4.2.1) automatically satisfies the equilibrium Boltzmann equation, the
density and pressure we have calculated must automatically satisfy the equation
of hydrostatic equilibrium. This can easily be checked here. Using the formula

ν + 5/2

�(ν + 7/2)
= 1

�(ν + 5/2)
,

Eqs. (4.2.5) and (4.2.6) give

dp

dr
= −ρ dφ

dr
,

which with the Poisson equation is the same as Eq. (1.1.4). But Eqs. (4.2.5)
and (4.2.6) do not end the need for solving difficult differential equations,
because we still have to calculate φ by solving the Poisson equation (4.1.26),
which here reads

1

r2

d

dr

(
r2 dφ

dr

)
= 4πGρ = 4πG(2π)3/2(Em − φ)ν+3/2 �(ν + 1)

�(ν + 5/2)

∑
s

msCs .

It helps in this task to note that because we take ν to be the same for each type
of star (or galaxy, or particle), we have the same relation here between pressure
and density as for the polytropes discussed in Section 1.8:

p = Kρ� , (4.2.7)

where here

� = ν + 5/2

ν + 3/2
(4.2.8)

and

K =
(
(2π)3/2

∑
s

msCs�(ν + 1)

)�−1
�(ν + 5/2)�−1

�(ν + 7/2)
. (4.2.9)

As we learned in Section 1.8, the density and pressure for such a polytrope drop
to zero at a finite radius R, as long as � > 6/5. For non-singular distribution
functions (4.2.2) we have ν ≥ 0, so Eq. (4.2.8) gives a range of values for the
polytrope index

1 < � ≤ 5/3, (4.2.10)

which includes both density distributions with finite radii and those that extend
to infinity.

There is special importance to the polytropes with � = 1, for which p(r)
is simply proportional to ρ(r). This is like a gas with an r-independent
temperature, and hence is called an isothermal distribution. We cannot quite get
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down to � = 1 with a distribution function of the form (4.2.2), but instead we
can take

Fs(E) = As exp(−BE), (4.2.11)

with As and B positive constants. We take B the same for all s because it here
plays something like the role of temperature, although since E = v2/2 + φ

is not the energy but the energy per mass, B does not quite correspond to the
inverse temperature 1/kBT in energy units, but instead corresponds to the ratio
of the stellar mass ms to kBT . We are here giving up the strict requirement that
all stars are in bound orbits with E < 0, but just as for molecules of oxygen and
nitrogen in the Earth’s atmosphere, if B is sufficiently large the evaporation of
stars from the galaxy will be very slow.

The mass density and pressure for the distribution (4.2.11) are

ρ(x) =
∑
s

ms

∫
d3v fs(x, v) = (2π/B)3/2

∑
s

Asms exp
(−Bφ(x))

(4.2.12)
and

p(x) =
∑
s

ms

3

∫
d3v v2fs(x, v) = ρ(x)

B
. (4.2.13)

For spherical symmetry, with p(r) = ρ(r)/B, this is what in Section 1.8 was
called a polytrope, here with � = 1 and K = 1/B. Because ρ ∝ exp(−Bφ),
there is no surface at which ρ drops to zero, as also follows from the fact that
this is a polytrope with � < 6/5. For this reason, Eq. (4.2.11) cannot describe
an actual spherical galaxy or galaxy cluster throughout its volume, though as
we shall see, it may apply to the inner parts of some galaxies and clusters of
galaxies.

Here again, because the Fs are invariant under rotations of v alone, and
are time-independent, ρ and p automatically obey the equation of hydrostatic
equilibrium. Using Eqs. (4.2.12) and (4.2.13), we have

d

dr
p(r) = 1

B

d

dr
ρ(r) = −ρ(r) d

dr
φ(r) = −Gρ(r)M(r)/r2, (4.2.14)

which is the same as Eq. (1.1.4). This can be used with Eq. (4.2.13) and the
definition of M to derive the Lane–Emden equation for a � = 1 polytrope:

d

dr

(
r2

ρ

dρ

dr

)
+ 4πGBr2ρ = 0. (4.2.15)

Surprisingly, this has a simple analytic solution

ρ(r) = 1

2πGBr2
. (4.2.16)

This is unrealistic at r = 0 as well as at r → ∞, but it provides a useful guide
to an approximate solution of Eq. (4.2.15) that behaves reasonably at least for
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finite r , including r = 0. For this purpose, let us convert Eq. (4.2.15) to a
parameter-free form by the same sort of re-scaling as we used in Section 1.8.
Suppose we define a new coordinate and a new density function:

F(z) ≡ ρ(r)/ρ(0), z ≡ r
√

4πGρ(0)B. (4.2.17)

Equation (4.2.15) then takes the form

d

dz

(
z2

F(z)

dF (z)

dz

)
+ z2F(z) = 0. (4.2.18)

Because ρ(x) must be analytic in x, for z → 0 we must have F(z) → 1 + az2.
Putting this in Eq. (4.2.18) gives a = −1/6, so for z → 0,

F(z) → 1 − z2/6. (4.2.19)

On the other hand, for z → ∞
F(z) → 2/z2, (4.2.20)

corresponding to Eq. (4.2.16).5

The transition between these two limiting forms obviously occurs for z of
order unity, corresponding to a core radius

rc ≡ (4πGρ(0)B)−1/2. (4.2.21)

Outside the core ρ(r) becomes proportional to 1/r2, so M(r) ∝ r , and for
circular orbits Newton’s relation v2

θ (r)/r ∝ M(r)/r2 gives vθ (r) constant.
As discussed in the next section, r-independent stellar velocities are indeed
observed in the outer parts of disk galaxies, though this in itself does not prove
that these galaxies have an isothermal halo.

Clusters of galaxies contain two kinds of gas: ordinary baryonic matter,
mostly hot ionized hydrogen and helium; and dark matter, whose presence is
known only through its contribution to the gravitational field. It is generally
assumed that the same “violent relaxation” (close encounters whose gravita-
tional effects cannot be represented as an interaction with a smooth intracluster
gravitational field) that causes the concentration of the hot baryonic gas in the
cluster is also responsible for the concentration of dark matter, so that baryonic
matter and dark matter have the same distribution in E, and hence the same
value of B. In this case, Eq. (4.2.14) applies to both the baryonic and dark
matter densities ρB(r) and ρD(r), and can be written

5 To check that F(z) approaches the exact solution 2/z2, consider the perturbation to this solution, F(z) =
2/z2 + ε(z), with ε(z) very small. The term in Eq. (4.2.18) of first order in ε(z) is

z2ε′′(z)+ 6zε′(z)+ 8ε(z) = 0.

The general solution is ε(z) ∝ z−5/2 cos
(√

7z/2 + δ) (with δ an arbitrary phase) which decays as z → ∞.
This does not actually prove that F(z) → 2/z2 for z → ∞, but only that if the function F(z) ever gets
close to 2/z2 it keeps getting closer as z → ∞.
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d

dr
ρB(r) = −GBρB(r)M(r)/r2, (4.2.22)

d

dr
ρD(r) = −GBρD(r)M(r)/r2, (4.2.23)

where M(r) is the total mass within a sphere of radius r:

M(r) =
∫ r

0
4πr ′2ρM(r

′) dr ′; ρM(r) ≡ ρB(r)+ ρD(r). (4.2.24)

Adding Eqs. (4.2.22) and (4.2.23) gives

d

dr
ρM(r) = −GBρM(r)M(r)/r2, (4.2.25)

so Eqs. (4.2.15)–(4.2.22) all apply to ρM(r). In particular,

ρM(r) = ρM(0)F (z), z = r/rc, rc = (4πGρM(0)B)
−1/2, (4.2.26)

with the function F(z) the same as before. The solutions of Eqs. (4.2.22)
and (4.2.23) are then

ρB(r) = ρB(0)F (r/rc), ρD(r) = ρD(0) F (r/rc). (4.2.27)

The parameter B can be found from observation of the distribution of baryonic
velocities; the total central density ρM(0) can be found from observation of the
core radius rc; and the baryonic central density ρB(0) can be found from obser-
vation of the X-ray luminosity LX. Since X-rays are emitted in the collisions of
electrons with ions, the X-ray energy per volume is proportional to the square
of the baryon density, and so can be written as �X(B)ρ

2
B. Then the total X-ray

luminosity is

LX = �X(B)

∫ R

0
4πr2ρ2

B(r) dr = 4πI�X(B)r
3
c ρ

2
B(0), (4.2.28)

where

I ≡
∫ ∞

0
F 2(z)z2 dz = 0.1961. (4.2.29)

(Recall that F(z) → 2/z2 for z → ∞, so large values of z are suppressed
in I, and the isothermal distribution gives a finite X-ray luminosity, close to the
actual value.)

With these assumptions, the ratio of ρB(0) to ρM(0) found in this way would
give the ratio of densities of baryonic mass to all mass throughout the intraclus-
ter gas. For decades, this suggested a discrepancy between the ratio of baryonic
mass to all mass in galaxy clusters and the same ratio found for the whole uni-
verse from observations of anisotropies in the cosmic microwave background.
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For instance, a typical reported value6 for this ratio in clusters is ρB/ρM ≈
0.12 to 0.13. (Galaxies are of course mostly baryonic, because only baryonic
matter can cool and hence condense into galaxies, but galaxies contribute only
a small part of the mass of galaxy clusters.) In 2006 X-ray observations of
13 galaxy clusters7 showed that the baryonic fraction rises to 0.10 to 0.15
toward the outer parts of the cluster, about 1,000 kpc from the center. On the
other hand, WMAP observations of microwave background anisotropies gave a
value8 about 0.175 for the baryon/total mass ratio for the whole universe. More
recently, observations of the cosmic microwave background with the Planck
satellite9 have lowered the estimated cosmic baryon/total mass ratio to 0.157 ±
0.004, but a recent study10 of 91 galaxy clusters with redshifts z from 0.2 to
1.25 reports that the baryon/total mass density found in clusters is still less than
the Planck result, now by 18 ± 2%.

On the other hand, the assumptions leading to Eqs. (4.2.26)–(4.2.29) need
to be modified because shock heating drives baryonic gas away from the inner
parts of clusters, while leaving dark matter in place. It is therefore only in the
outer parts of clusters that we expect to find ratios of baryonic mass to all mass in
agreement with the cosmic ratio. Observed X-rays mostly come from the inner
parts of clusters, which biases measurements of these ratios to lower values. An
extrapolation of these measurements to the outer parts of clusters indicates that
in these parts the ratio of baryonic mass to all mass reaches its cosmic value.11

A similar conclusion has been reported for the halos of individual galaxies.12

Computer simulations of the evolution of dark matter halos give a more
complicated picture of the density profile of dark matter. These simulations
suggest an essentially universal “NFW” distribution:13

ρ(r) ∝ r−1(1 + r/r1)−2,

where r1 is an adjustable parameter. Unlike the polytrope isothermal solution
(4.2.17) this is singular at r = 0, though less singular than the simple isother-
mal solution (4.2.16), and it decreases more rapidly as r → ∞ than either
isothermal solution, though still not fast enough to give a finite total mass if
not truncated. It gives velocities vθ (r) that are roughly constant only for an
intermediate range of r , the velocities increasing and decreasing with r for
smaller and larger r , respectively. It is still expected that the baryonic gas in
clusters of galaxies is approximately isothermal, but, with the gravitational field

6 S. Schindler, Space Sci. Rev. 100, 299 (2002) [astro-ph/0107028].
7 A. Vikhlinin et al., Astrophys. J. 640, 691 (2006).
8 D. N. Spergel et al., Astrophys. J. Suppl. 170, 177 (2007) [astro-ph/0603449].
9 Planck Collective XIII, Astron. Astrophys. 594, A13 (2016).

10 I. Chiu et al., Mon. Not. Roy. Astron. Soc. 478, 3072 (2018).
11 B. Rasheed, N. Bahcall, and P. Bode, Proc. Nat. Acad. Sci. 108, 3487 (2011).
12 J. N. Bregman et al., Astrophys. J. 862, no. 1, paper 3 (2018).
13 J. F. Navarro, C. S. Frenk, and S. D. M. White, Mon. Not. Roy. Astron. Soc. 275, 56, 270 (1995); J. F.

Navarro, C. S. Frenk, and S. D. M. White, Astrophys. J. 462, 563 (1996).
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dominated by dark matter, the departures of dark matter from an isothermal
distribution lead to differences in the shapes of the baryonic and dark matter
density profiles.

4.3 Galactic Disks

Disk galaxies are among the most beautiful astronomical objects revealed by
telescopic observation. They typically have a large central bulge, surrounded by
a thin rotating disk, decorated with spiral arms to be discussed in the following
section.

There are three main contributions to the gravitational potential in the plane
of the galaxy, which dominate the potential at different locations. In order of
distance from the center, the dominant contributions are the central bulge, the
disk itself, and a spherical halo of mostly dark matter. The potential is mapped
out by measuring velocities of stars, clusters, masers, etc.14 For cylindrical
symmetry, the tangential component vθ (R) of the velocity in the plane of the
galaxy at a distance R from the center is related to the potential φ(R) by the
Newtonian relation

v2
θ (R)

R
= dφ(R)

dR
. (4.3.1)

For R less than about 1 kpc the potential is entirely dominated by the bulge,
so for spherical symmetry we have φ′(R) = GM(R)/R2, where M(R) is the
mass interior to R. Within the bulge vθ (R) is observed to rise steeply with R,
as would be expected for any reasonable density profile, for which M(R)

increases rapidly with R. The contribution of the bulge to M(R) is of course
constant outside the bulge, so for a spherically symmetric bulge as long as the
bulge dominates the gravitational potential vθ (R) is expected to approach the
Keplerian result vθ (R) ∝ R−1/2, as is observed.

But this decrease in vθ does not continue. The contribution of the disk to
vθ rises more or less linearly as R increases from zero to about 5 kpc. The
disk begins to contribute appreciably for R > 1 kpc, and becomes dominant
at R 	 3 kpc, where vθ is observed to reach a minimum, and then to begin
to rise. The calculation of the gravitational potential due to a thin disk is more
complicated than for the case of spherical symmetry, and is briefly described in
Appendix A of this section. As noted there, for the special case of rigid rotation
for which vθ (R) ∝ R, the mass per area  (R) of the disk must also grow as R.
As shown in Appendix B of this section, this rigid rotation is to be expected for

14 For instance, for distances from the center varying from less than 1 kpc to 20 kpc, see Y. Sofue, M. Honma,
and T. Omadaka, Publ. Astron. Soc. Japan 61, 227 (2009). For later results covering distances from 4 kpc
to 22 kpc, see D. Russell et al., Astron. Astrophys. 601, L5 (2017). Other references are given in a review
article by J. Bland-Harwood and O. Gerhard, Ann. Rev. Astron. Astrophys. 59, 529 (2016).
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a system that has settled into a state of lowest energy while keeping a constant
angular momentum.

The rise with R of vθ (R) does not persist. For R greater than about 5 kpc vθ
is roughly constant, as first noted for the Andromeda galaxy M31 by Rubin and
Ford.15 In particular, this is true of the solar neighborhood, for whichR 	 8 kpc.
As shown in Appendix 4.3A, as long as the gravitational potential is dominated
by the disk, this requires that the surface mass density  of the disk falls off as
1/R. Also, this leveling of vθ (R) shows that the outer part of the galaxy has not
settled into a state of lowest energy.

It is now believed that for R greater than about 20 kpc the gravitational
potential is dominated by a spherical halo of dark matter rather than the disk.
For a spherically symmetric distribution of mass, the velocity vθ (r) in circu-
lar orbits of radius r is again related to the mass M(r) within a radius r by
v2
θ (r)/r = GM(r)/r2, so in a range of radii where vθ (r) is constant, we must

have M(r) ∝ r . In 1974 Ostriker, Peebles, and Yahil16 noted that if most of
the mass of disk galaxies is supposed to occupy a spherical halo, extending
far beyond the disk, then observed velocities within local giant spiral galaxies
indicate that the mass M(r) within a radius r does increase linearly with r ,
for r between 20 kpc and 500 kpc. As they noted, and as remarked in the
previous section, this is what would be expected if the halo were an isothermal
sphere. Similar conclusions were reached at about the same time by Einasto,
Kaasik, and Saar.17 As pointed out by these two groups, the great increase in the
estimated mass of galaxies alleviated the problem that previously the estimated
mass in the galaxies in clusters and in intracluster gas was not sufficient to
satisfy the requirements of the virial theorem of Section 1.1 for the stability of
clusters. Since the newly recognized mass was not observed optically, it came
to be known as dark matter. (Another factor that seemed important at the time
was that, with only galactic masses taken into account in calculating the rate of
cosmic expansion, the previous estimates of galactic masses had given a cosmic
mass density much less than indicated by measurements of the Hubble constant
under the assumption of zero spatial curvature. In fact, although the increase in
estimated galactic mass reduced this discrepancy, most of the energy governing
the expansion of the universe is a vacuum energy discovered later, in 1998.18)

The flattening of the curve of velocity versus radius did not in itself require
that this mass take the form of a spherical halo. There was still the possibility

15 V. C. Rubin and W. K. Ford, Astrophys. J. 159, 379 (1970). For further work on the rotation curves
of various galaxies by Rubin and her collaborators, see V. Rubin, N. Thonnard, and W. K. Ford, Jr.,
Astrophys. J. 238, 471 (1980); V. Rubin, D. Burstein, W. K. Ford, Jr., and N. Thonnard, Astrophys. J. 289,
81 (1985); V. Rubin, J. A. Graham, and J. D. P. Kenney, Astrophys. J. 394, L9 (1992).

16 J. P. Ostriker, P. J. E. Peebles, and A. Yahil, Astrophys. J. 193, L1 (1974).
17 J. Einasto, A. Kaasik, and E. Saar, Nature 250, 309 (1974).
18 S. Perlmutter et al. (Supernova Cosmology Project), Astrophys. J. 517, 565 (1999); A. G. Riess et al.

(High z-Supernova Search Team), Astron. J. 116, 1099 (1998).
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that much of the dark matter inhabited the plane of the galaxy. To get constant
orbital velocities, we need a gravitational force per mass that goes as 1/R. (We
again use an upper case R here and below to distinguish the radial coordinate
of cylindrical coordinates from the radial coordinate r of spherical coordinates.)
As shown in Appendix A of this section, this force would be produced by a mass
per area that decreases as 1/R, giving a mass interior to the radius R that goes
as R, just the same as found for a spherical halo. Ostriker and Peebles argued
for a halo, as avoiding the instability19 of a cold disk against non-axisymmetric
perturbations.

Presumably baryonic matter in spiral galaxies has fallen into the galactic
plane, losing energy by radiation, while preserving its angular momentum. It
is more difficult for the dark matter of the halo to lose energy, because it cannot
radiate, but some of it is dragged from the halo into the disk by the gravitational
field of the baryonic matter.20

Appendix A: The Gravitational Potential of a Disk

This appendix will calculate the gravitational potential due to a thin disk.21 It is
believed that this is the dominant contribution to the gravitational potential of
disk galaxies in an intermediate range of distances from the center. As we will
see, this calculation of the gravitational potential is more complicated than for
a spherically symmetric mass distribution.

We use cylindrical coordinates R, θ , z, with the disk in the plane z = 0, so
that its mass density is

ρ(R, θ , z) = δ(z) (R, θ), (4.3.A1)

with  the mass per area on the disk. We are here allowing an arbitrary depen-
dence on the angular coordinate θ , because this departure from cylindrical sym-
metry turns out to cause little extra difficulty in the calculation.

In cylindrical coordinates, the Poisson equation ∇2φ = 4πGρ reads[
1

R

∂

∂R

(
R
∂

∂R

)
+ 1

R2

∂2

∂θ2
+ ∂2

∂z2

]
φ(R, θ , z) = 4πGδ(z) (R, θ).

(4.3.A2)
First let us consider solutions of the Poisson equation for z �= 0, in which

case it is just the Laplace equation ∇2φ = 0. There is a well-known class of
solutions that are finite at z = 0 and vanish as |z| → ∞:

19 J. P. Ostriker and P. J. E. Peebles, Astrophys. J. 186, 467 (1973).
20 G. R. Flores, S. M. Faber, R. Flores, and J. R. Primack, Astrophys. J. 301, 27 (1986).
21 The discussion in this appendix is based on the treatment of J. Binney and S. Tremaine, Galactic Dynamics

(Princeton University Press, Princeton, NJ, 1987).
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φν,k(R, θ , z) = J|ν|(kR)eiνθ e−k|z|, (4.3.A3)

where ν is an arbitrary integer; k is an arbitrary positive real number; and Jν is
the Bessel function of order ν, satisfying the differential equation

1

x

d

dx

(
x
dJν(x)

dx

)
+
(

1 − ν2

x2

)
Jν(x) = 0. (4.3.A4)

These solutions are finite and continuous at the disk, where z = 0, but their
first derivatives with respect to z are discontinuous. As z → 0 from above or
below, we have

∂φν,k(R, θ , z)

∂z

∣∣∣∣
z→0±

= ∓kJ|ν|(kR)eiνθ ,

so

∂2φν,k(R, θ , z)

∂z2

∣∣∣∣
z→0

= −2kδ(z)J|ν|(kR)eiνθ .

Comparing this with Eq. (4.3.A2), we see that the potential φν,k(R, θ , z) is
produced by a term −2kJ|ν|(kR)eiνθ/4πG in the surface mass density. Hence
if we write a general surface density distribution as a superposition

 (R, θ) = Re
∞∑
ν=0

∫ ∞

0
dk μν,kkJν(kR)e

iνθ , (4.3.A5)

then the solution of Eq. (4.3.A2) is

φ(R, θ , z) = −2πGRe
∞∑
ν=0

∫ ∞

0
dk μν,kJν(kR)e

iνθ e−k|z|, (4.3.A6)

and the radial gravitational force per test-body mass is

∂

∂R
φ(R, θ , z) = −2πGRe

∞∑
ν=0

∫ ∞

0
dk μν,k kJ

′
ν(kR)e

iνθ e−k|z|. (4.3.A7)

By the way, quite general functions  (R, θ) of R and θ can be expressed as
a superposition of the form (4.3.A5), known as Hankel transforms. Under very
general conditions we can write  as a Fourier series

 (R, θ) = Re
∞∑
ν=0

eiνθ ν(R).

To write  ν(R) as a superposition of Bessel functions, we note that for any
positive-definite a and b,∫ ∞

0
ak dk Jν(ka)Jν(kb) = δ(a − b).
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Therefore, by taking

μν,k =
∫ ∞

0
dR RJν(kR) ν(R),

we can write

 ν(R) =
∫ ∞

0
dk μν,kkJν(kR),

which gives the desired expression Eq. (4.3.A5).
As a special case of some importance, note that a surface mass distribution

with a θ -independent  (R, θ) ∝ Rn is obtained if μν,k ∝ k−n−2δν,0, so, where
the gravitational potential is dominated by the mass of the disk, the gravitational
force per mass (4.3.A7) goes as Rn. Setting this equal to v2

θ /R gives vθ ∝
R(n+1)/2. In particular, to get a rigid rotation, with vθ ∝ R, we must have n = 1,
in which case (R, θ) ∝ R. In this case the Hankel representation (4.3.A5) does
not converge for k → 0. On the other hand, as long as the gravitational potential
is dominated by the matter of the disk, to get theR-independent circular velocity
observed in the outer parts of the disk we would need n = −1, in which case
 would be proportional to 1/R. (It should be noted that for n = −1 and any
ν the integrals in Eqs. (4.3.A5) and (4.3.A7) for the surface mass density and
the gravitational force both converge. For k → 0 we have Jν(kR) → (kR)ν/ν!,
so the integrals converge at k = 0, while for k → ∞ we have Jν(kR) →
(2/πkR)1/2 cos(kR − νπ/2 − π/4), so the oscillation of the Bessel functions
makes the integrals converge at k → ∞.)

There is an important qualitative difference between the gravitational poten-
tials produced by distributions of mass that are spherically symmetric in three
dimensions or circularly symmetric in two dimensions. As first proved by New-
ton, in the case of spherical symmetry the gravitational acceleration φ′(r) at a
distance r from the center of symmetry is −GM(r)/r2, and so depends on no
aspect of the mass distribution other than the mass M(r) = 4π

∫ r
0 ρ(r

′)r ′2 dr ′
interior to the radius r . This is not true in two dimensions even for a circularly
symmetric surface distribution of mass. For instance, consider the surface mass
distribution  (R) = C(a2 + R2)−3/2, with arbitrary constants C and a. This
is given22 by Eq. (4.3.A5) if we take μ0,k = (C/a) exp(−ak) and μν,k = 0 for
ν �= 0. In this case, Eq. (4.3.A6) gives the gravitational potential

φ(R) = −(2πGC/a)(a2 + R2)−1/2 = −G[M(∞)− M(R)]/a,

which depends not only on the function M, but also on the length scale a.

22 The integrals needed in this discussion are given in §7 of W. Magnus and F. Oberhettinger, Formulas and
Theorems for the Functions of Mathematical Physics (Chelsea Publishing Co., New York, 1949).
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Appendix B: Minimum Energy for Fixed Angular Momentum

Consider a distribution of mass with density ρ(x) and mean velocity v(x).23

The angular momentum vector is

J =
∫
d3x ρ(x)x × v(x). (4.3.B1)

We consider variations in v(x) with J fixed, and for the moment with ρ(x) not
varied. Since we are not varying ρ(x), the gravitational energy is not varied. It
therefore suffices for us to consider only the effect of the variation in v(x) on
the kinetic energy

T = 1

2

∫
d3x ρ(x)v2(x). (4.3.B2)

We will use cylindrical coordinates R, θ , z, with the z-axis chosen to be in the
direction of J, so that the magnitude of the angular momentum is

J =
∫
d3x ρ(x)R vθ (x). (4.3.B3)

Evidently

T ≥ 1

2

∫
d3x ρ(x)v2

θ (x), (4.3.B4)

with equality only if the orbits are circles in the plane with fixed z. Hence to
minimize T we must take vR = vz = 0, which does not require any change in
J . Now, by the Schwarz inequality∫

d3x ρ(x)v2
θ (x)×

∫
d3x ρ(x)R2 ≥

[∫
d3x ρ(x)vθ (x) R

]2

= J 2,

(4.3.B5)
with equality only for vθ (x) ∝ R, that is, for rigid rotation. Adjusting vθ (R)
to be proportional to R can be done without any change in J , as we can take
vθ = RJ/I , where I = ∫

d3x ρ(x)R2. Hence, for a fixed ρ(x) and J , the
energy is minimized by taking the velocity to be a rigid rotation around the
angular momentum vector, with fixed angular velocity vθ/R = J/I . The total
energy may be further reduced by adjustment of the mass density ρ(x), but
whatever density is chosen, the energy can always then be further minimized
by letting the velocity be a rigid rotation around the angular momentum vector.
Since the velocities of stars in the outer parts of galactic disks are not propor-
tional to their radial coordinate, but approximately constant, we can conclude
that these disks have not relaxed by angular momentum conserving processes
to a state of minimum energy.

23 The discussion here is based on that of D. Lynden-Bell and J. E. Pringle, Mon. Not. Roy. Astron. Soc. 168,
603 (1974).
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4.4 Spiral Arms

We now focus on the spiral arms of the disk galaxies we have been considering.
As pointed out in a recent article24 on this subject, “Seventy percent of galaxies
in the nearby universe are characterized by a disk with prominent spiral arms,
but our understanding of the origin of these patterns is incomplete, even after
decades of theoretical study.” Apparently spiral arms are regions of increased
gas density, because they are marked with relatively short-lived massive bright
stars, which must be continually forming. But what produces these spiral inho-
mogeneities?

One thing seems clear: unless dissipative effects such as viscosity and heat
conduction play a significant role, which is not usually assumed to be the case,
spiral arms are not equilibrium solutions of the equations of galactic dynamics.
In the absence of dissipation, these equations are invariant under time-reversal,
so any solution with a given time-dependence must be accompanied by another
with the opposite time-dependence. In particular, a solution with trailing spiral
arms, in which the distance R of co-moving points on each arm from the sym-
metry axis decreases along the arm in the direction of galaxy rotation, must be
accompanied by another solution with leading spiral arms, in which R increases
in this direction. But very few if any galaxies have leading spiral arms.

Note that the absence of leading arms contradicts time-reversal symmetry
only if these are equilibrium solutions – there is no contradiction if the solutions
with trailing spiral arms are the ones that grow with time, while the ones with
leading arms decay. We will see an example of this below.

A further argument against spiral arms being an equilibrium configuration is
provided by the point discussed in Appendix B of the previous section: A disk of
fixed angular momentum that has relaxed to a configuration of minimum energy
would have to be rotating rigidly, with fixed angular velocity, in conflict with
the dependence on R observed for angular velocities outside a central region.

The idea that spiral arms represent a wave of enhanced density passing
through a disk galaxy was inspired in part by a 1964 paper of Lin and
Shu.25 They considered matter moving in a plane, with negligible velocity
dispersion. In cylindrical coordinates the equations governing the surface
density  (R, θ , t) and velocity components vR(R, θ , t) and vθ (R, θ , t) are
the equation of continuity

∂

∂t
 + 1

R

∂

∂R

(
R vR

)+ ∂

∂θ

(
 vθ

) = 0, (4.4.1)

24 E. D’Onghia, M. Vogelsberger, and L. Hernquist, Astrophys. J. 766, no. 1, paper 34 (2013).
25 C. C. Lin and F. H. Shu, Astrophys. J. 140, 646 (1964).
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and the R and θ components of the Euler equation for zero viscosity:

∂

∂t
vR + vR ∂vR

∂R
+
(vθ
R

) ∂vR
∂θ

− v2
θ

R
= − ∂φ

∂R
, (4.4.2)

∂

∂t
vθ + vR ∂vθ

∂R
+
(vθ
R

) ∂vθ
∂θ

+ vθ vR

R
= − 1

R

∂φ

∂θ
. (4.4.3)

There is also the Poisson equation for φ(R, θ , z). All these equations are evi-
dently invariant under the time-reversal transformation, which reverses the sign
of the time and all velocity components.

These equations have a familiar unperturbed solution, distinguished by a
subscript 0, with v0R = 0 and v0θ ,  0, and φ0 functions only of R, governed by
the R component of the Euler equation

v2
0θ (R)/R = ∂φ0(R)

∂R
, (4.4.4)

and the unperturbed Poisson equation. We consider an infinitesimal perturba-
tion, distinguished by a prefix δ, so that  =  0 + δ , and likewise for vR , vθ ,
and φ. To first order in perturbations, Eqs. (4.4.1)–(4.4.3) become

∂

∂t
δ + 1

R

∂

∂R

(
R 0 δvR

)+ 0
∂

∂θ

(
δvθ
)+ v0θ

∂

∂θ

(
δ 
) = 0, (4.4.5)

∂

∂t
δvR +

(v0θ

R

) ∂δvR
∂θ

− 2
v0θ δvθ

R
= −∂δφ

∂R
, (4.4.6)

∂

∂t
δvθ + δvR ∂v0θ

∂R
+
(v0θ

R

) ∂δvθ
∂θ

+ v0θ δvR

R
= − 1

R

∂δφ

∂θ
. (4.4.7)

Just for illustration, in the unlikely case that the galaxy’s mass is entirely con-
tained in its disk, the Poisson equation (4.3.A2) becomes[

1

R

∂

∂R

(
R
∂

∂R

)
+ 1

R2

∂2

∂θ2
+ ∂2

∂z2

]
δφ(R, θ , z) = 4πGδ(z) δ (R, θ).

(4.4.8)
Because the unperturbed quantities are independent of time and θ , any solution
of Eqs. (4.4.5)–(4.4.7) and the perturbed Poisson equation remains a solution
if we translate θ and t by any constant amounts. Barring degeneracies, this
translation must therefore give the same solution up to a constant factor, so
we expect to find solutions with the angular and time-dependence

δ (R, θ , t) = e−iωt+iνθ (R), (4.4.9)

δvR(R, θ , t) = e−iωt+iνθvR(R), (4.4.10)

δvθ (R, θ , t) = e−iωt+iνθvθ (R), (4.4.11)

δφ(R, θ , z, t) = e−iωt+iνθφ(R, z). (4.4.12)

These functions must not change when θ is shifted by a multiple of 2π , so ν
must be a real positive or negative integer, while ω can be any complex number.
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Of course, the physical perturbation will have components that are the real parts
of superpositions of (4.4.9)–(4.4.12). We will consider just a single value of ν
and of ω, assuming that these dominate the superposition.

Now, we can take (R) = S(R) exp(i�(R)), where S(R) and�(R) are real.
In this case, the density perturbation is

Re
(
δ (R, θ , t)

) = S(R) exp
(
Im(ω) t

)
cos
(
�(R)−Re(ω) t+νθ). (4.4.13)

If the phase �(R) varies with R much more rapidly than the modulus S(R),
then the maxima of the density at time t will be at values of R and θ for which
the cosine is a maximum, that is, for

�(R)− Re(ω) t + νθ = 2πN , (4.4.14)

where N is an integer. This represents only |ν| independent curves, because
shifting N by |ν| gives a solution with θ shifted by 2π |ν|/ν = ±2π , which of
course has no effect on the curve.

We can choose to look at the galaxy from the side where it appears to rotate
counter-clockwise – that is, with θ increasing with time. Then ν and Reω
have the same sign. Since the cosine in Eq. (4.4.13) is an even function of
its argument, we can choose this common sign to be positive. Then if �(R)
increases or decreases monotonically, these |ν| curves are respectively trailing
or leading spirals, for which at fixed time R steadily decreases or increases with
increasing θ , the direction of galaxy rotation.

By the way, time-reversal invariance tells us that for each growing mode with
Imω > 0 there is a decaying mode with Imω < 0, Since also the sign of Reω is
reversed, in this time-reversed solution the galaxy is rotating clockwise, toward
decreasing θ , so that trailing spirals become leading spirals, and vice versa.

With �(R) varying much more rapidly than other quantities, it is even
possible to solve Eqs. (4.4.5)–(4.4.8) using the WKB approximation of wave
mechanics. But these happy results depend on a big “If.” The usual WKB
approximation of wave mechanics depends on the assumption that the coef-
ficients in the differential equation should change little in a distance equal to
the effective wave length, which here is 2π/|�′(R)|. It is possible to focus on
special cases where this assumption is true, such as tightly wound spirals, but
there is no reason to expect it to be the case for general spiral galaxies, because
the equations (4.4.5)–(4.4.8) involve no small dimensionless parameters. In
any case, it is necessary to go beyond the approximation of infinitesimal
perturbations to see how the exponential growth can cease and the spiral
arms yet survive. Apparently Lin lost his enthusiasm for this particular model
of density waves, because it is barely mentioned in a 1996 book by Bertin
and Lin.26

26 G. Bertin and C. C. Lin, Spiral Structure in Galaxies: A Density Wave Theory (MIT Press, Cambridge,
MA, 1996).
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The differential rotation of the disk at an angular frequency �(R) that
depends on R did not play any explicit role in the appearance of spiral structure
in Eq. (4.4.13), though of course it must affect whatever solutions are found
for S(R) and �(R). To see directly how differential rotation can lead to spiral
structures, it is instructive to consider a generalization of a “thought experiment”
described by Binney and Tremaine.27

Consider some inhomogeneity that initially at t = 0 occupies a curve,
described by some formula θ = �0(R) for the azimuthal angle at a given
radius. (Binney and Tremaine took this curve to be a straight line extending
in a radial direction, but almost any function �0 will do, as long as R extends
over a sufficient range of radii.) If the velocities are circular but non-rigid, with
components that are only in the θ -direction and equal to a function vθ (R) of
the radial coordinate R, then at a later time t the inhomogeneity will lie on the
curve

θ = �0(R)+�(R)t , (4.4.15)

where �(R) ≡ vθ (R)/R. If �(R) has the same sign for all R, and increases
or decreases monotonically with R, then after a sufficient time has passed
Eq. (4.4.15) will be the equation of a spiral. For instance, if �(R) > 0 and
�′(R) < 0 for all R, then at late times any point on the curve (4.4.15) will
move in the direction of increasing θ , and (since dR/dθ = 1/�′(R) < 0) the
spiral will curl inward with increasing θ . In this case, we have a trailing spiral.
More generally, at late times the spiral is trailing if �′/� < 0, and leading if
�′/� > 0. Since �(R) ∝ 1/R for the outer parts of typical spiral galaxies,
we have �′/� 	 −1/R, so the spiral arm is trailing, in agreement with the
observation that galaxy spiral arms are usually trailing.

There is a problem with this, that is often expressed in terms of the pitch
angle. This is the angle α between the θ -direction at some point on the spiral
and the tangent to the spiral at that point. We can draw an infinitesimal right
triangle, with one side in the θ -direction with length equal to some infinitesimal
displacement R(θ) δθ , and another side in the perpendicular R-direction with
length equal to the magnitude |R′(θ)| δθ of the change in R when θ is changed
by δθ . The hypotenuse then lies along the direction of the spiral, and the pitch
angle α is the angle between the hypotenuse and the side in the θ -direction. Its
cotangent is the ratio of the adjacent to the opposite side, so in general

cotα = R(θ) δθ

|R′(θ)| δθ = R

∣∣∣∣dθ(R)dR

∣∣∣∣ . (4.4.16)

For the particular spiral (4.4.15), at late times this is cotα = Rt |�′(R)|. If
�(R) ∝ 1/R, we have cotα = t |�(R)|, which is the angle traced out by a

27 J. Binney and S. Tremaine, Galactic Dynamics, 2nd edn. (Princeton University Press, Princeton, NJ,
2008).
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co-moving star at radial coordinate R in a time t . But for reasonable parameters,
this is very large, because co-moving matter in the neighborhood of spiral arms
in the galaxies we observe has typically already made many turns around the
galactic center, driving α to a very small value. For instance, for the parameters
taken as a typical example by Binney and Tremaine, R = 5 kpc, �(R) =
200 km/sec/R [kpc], and t = 1010 years, the pitch angle turns out to be 0.14◦.
We do not see pitch angles this small in spiral galaxies, which typically have
pitch angles of order 10◦. This is called the winding problem. It would be
avoided if we supposed that the ages of the spiral arms we see are no more
than about 108 years, rather than 1010 years, but this seems unlikely.

We now turn to a different approach, which relies on a closer analysis of
the actual motion of stars in a disk galaxy and though incomplete seems to have
become a consensus approach to the problem of spiral arms. As we will see, the
winding problem is still present in this approach, but is much milder.

The familiar equations of planar motion of a star in a gravitational potential
φ(R) are

R̈ = Rθ̇2 − φ′(R) (4.4.17)

and
d

dt

(
R2θ̇

) = 0. (4.4.18)

As a consequence of Eq. (4.4.18), we can define a time-independent quantity

L = R2θ̇ (4.4.19)

and write Eq. (4.4.17) as

R̈ = L2

R3
− φ′(R). (4.4.20)

For a circular orbit with time-independent radius R0, θ̇ takes the constant value
�(R0), where according to Eq. (4.4.20)

�2(R0) = L2(R0)/R
4
0 = φ′(R0)/R0. (4.4.21)

For nearly circular orbits, we have

R(t) = R0 +�(t) (4.4.22)

with |�| � R0. Equation (4.4.20) then becomes

�̈+ κ2(R0)� = 0, (4.4.23)

where κ is the epicyclic frequency

κ2(R0) = 3L2(R0)

R4
0

+ φ′′(R0) = 3φ′(R0)/R0 + φ′′(R0). (4.4.24)

Thus the orbit exhibits two kinds of periodic motion: θ increases (or decreases)
at an average rate �(R0), while R oscillates around R0 at a rate κ(R0), which
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according to Eqs. (4.4.24) and (4.4.21) can be expressed in terms of � and its
derivative

κ2(R0) = 4�2(R0)+ 2�(R0)�
′(R0)R0. (4.4.25)

The orbit cannot close unless � and κ are commensurate – that is, unless
κ/� is a ratio p/q of whole numbers p and q. In that case, R executes p whole
oscillations in a time when θ increases by 2πq. For instance, for a potential
φ ∝ 1/R, κ(R0) = ±�(R0), whereas for a potential φ(R) ∝ R2, κ = ±2�,
and in both cases the orbits are closed curves. But this is not generally the case.

Lindblad28 pointed out that in our galaxy �(R0) − κ(R0)/2 is nearly inde-
pendent ofR0. Hence we can imagine a perturbation to circular orbits, for which
orbits close in a frame of reference that rotates at a smaller “pattern frequency”

�p = �(R0)− κ(R0)/2 (4.4.26)

(with any convenient value of R0). In this frame a star at R0 will revolve at an
angular frequency �(R0) − �p = κ(R0)/2, so the orbits of stars will appear
as closed slightly elliptical time-independent curves, on which R goes through
two complete cycles of increase and decrease in the time 4π/κ(R0) in which
the star makes one circuit of its orbit. Also, κ(R0) is near 2�(R0) over a sizable
range of radii, so the pattern frequency �p is considerably smaller than �(R0).

It was noted by Kalnajs29 that when stars are spread evenly on a family of
these closed curves, with the axes of the curves gradually changing their orien-
tation from one curve to another, the stars tend to crowd together at certain spots
on their orbits. To identify these crowded spots, note that the radial coordinate
of the star on an orbit of mean radius R0, at a time t after passing a point of
maximum distance from the center of the orbit, is

R(t) = R0
(
1 + e cos

(
κ(R0)t

))
, (4.4.27)

where e is the positive parameter known as the eccentricity, and is usually
assumed to be considerably less than unity. (This holds both in an inertial and in
a rotating frame.) Also, if the point on this orbit at maximum distance R0(1+e)
from the center lies in a direction �(R0), then at the same time t , the angular
coordinate of the star in the frame rotating with pattern speed �p is

θ(t) = �(R0)+
(
�(R0)−�p

)
t = �(R0)+ κ(R0)t/2, (4.4.28)

so Eq. (4.4.27) can be written (dropping the time argument)

R = R0
(
1 + e cos

(
2[θ −�(R0)]

))
. (4.4.29)

28 B. Lindblad, Stockholms Ann. 19, No. 7 (1956); 20, No. 4 (1958). His work on spiral arms goes back to B.
Lindblad, Stockholms Ann. 12, No. 4 (1936). This is the astronomer Bertil Lindblad, not to be confused
with the physicist Goran Lindblad, who derived the equation that governs the evolution of the density
matrix in the quantum theory of open systems.

29 A. J. Kalnajs, Proc. Astron. Soc. Australia 2, 174 (1973).
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(There is a correction of order e to Eq. (4.4.28) due to variations in the velocity
of the star as its radial coordinate increases and decreases, but taking these into
account would lead to corrections of order e2 in Eq. (4.4.29), and it can therefore
be neglected.) Now, if we have two orbits with nearly equal mean radii R0 and
R0 + δR0, then the distance between stars on these orbits when both are at
direction θ is

(R0 + δR0)
(
1 + e cos

(
2[θ −�(R0 + δR0)]

))
− R0

(
1 + e cos

(
2[θ −�(R0)]

))
= δR0

[
1 + e cos

(
2[θ −�(R0)]

)− 2eR0�
′(R0) sin

(
2[θ −�(R0)]

)]
+O(δR2

0). (4.4.30)

This has a minimum at an angle θm(R0) at which its first derivative with respect
to θ vanishes and its second derivative is positive:

sin
(
2[θm(R0)−�(R0)]

)+ 2R0�
′(R0) cos

(
2[θm(R0)−�(R0)]

) = 0,
(4.4.31)

−cos
(
2[θm(R0)−�(R0)]

)+ 2R0�
′(R0) sin

(
2[θm(R0)−�(R0)]

)
> 0.
(4.4.32)

For instance, if (as suggested by Kalnajs) the dimensionless parameterR0�
′(R0)

is large and negative, then these conditions are satisfied by

θm(R0) 	 �(R0)+ 3π/4 and θm(R0) 	 �(R0)+ 7π/4,

whereas if R0�
′(R0) is large and positive, then

θm(R0) 	 �(R0)+ π/4 and θm(R0) 	 �(R0)+ 5π/4.

In any case, the crowded spots fall on two curves of θm vs. R0, which are spirals
if neither θm(R0) nor θ ′

m(R0) changes sign over a wide range of R0. Assuming
that the galaxy revolves in the direction of increasing θ , they are trailing spirals
if θ ′

m(R0)/θm(R0) < 0 and leading spirals if θ ′
m(R0)/θm(R0) > 0. Note that

here there are two of these spirals, This agrees with the observation that most
spiral galaxies, such as the beautiful spirals M100, M81, and M51 (the galaxy
in which spiral arms were first observed, by the Earl of Rosse in 1850), have
two distinct arms.

It is not essential to adopt this picture of the origin of a curve of enhanced
density, or even that this curve is a spiral. The expression�p = �(R)−κ(R)/2
for the pattern speed in Eq. (4.4.26) actually has a non-negligible though weak
dependence on radius. Thus, if in an inertial frame at t = 0 the points where
stars are most crowded lie on a curve θ = θm(R), then at a later time t they will
lie on the curve

θ = θm(R)+�p(R)t = θm(R)+ [�(R)− κ(R) /2]t . (4.4.33)
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Just as before, whatever the shape of this curve, as long as �(R)− κ(R) /2 and
its first derivative with respect to R does not change sign over a range of R, the
curve will eventually wind up to a spiral.

There is also a potential winding problem here. Repeating the above dis-
cussion that led to the result that at late time the pitch angle α is given by
cotα → R|�′(R)|, we now have a pitch angle α at late time with

cotα → Rt

∣∣∣∣d�p(R)

dR

∣∣∣∣ = Rt

∣∣∣∣d[�(R)− κ(R)/2]

dR

∣∣∣∣ . (4.4.34)

According to Binney and Tremaine, in our galaxy for R between 5 and 10 kpc,
R d�p(R)/dR has a mean value of about 7 km/sec per kiloparsec, so for
t = 1010 years the pitch angle would be α 	 0.8◦, considerably larger than
before. The winding problem here is avoided if spiral arms are no more than
109 years old, but this is still unlikely.

So far, we have considered only the orbits of stars in a fixed galactic gravita-
tional field. The rotating pattern we have described produces a perturbation to
this gravitational field; we need to consider whether the perturbed field tends to
preserve the pattern, or to destroy it.

At first glance, this question seems silly. As we saw in the previous section,
the motion of stars in a disk galaxy is governed much more by the gravitational
field of the halo, not the disk. So why should perturbations to the gravitational
field of the disk be important?

It is partly a matter of resonance. If a pattern of enhanced density actually
rotated with a single angular frequency �p, then this rotating pattern would
produce a perturbation φ1(R, θ − �pt) in the gravitational potential. Since it
must be periodic in θ with period 2π , it could be written as a Fourier series

φ1(R, θ , t) =
∞∑

m=−∞
Cm(R)e

im[θ−�pt]. (4.4.35)

A star on a circular orbit with radius R0 and orbital frequency �(R0) will
experience a gravitational perturbation with a time-dependence given by a sum
of terms proportional to eim[�(R0)−�p]t . As we have seen, a star on a circular
orbit of radius R0 in an unperturbed axisymmetric gravitational potential has a
natural mode of radial oscillation, with frequency κ(R0), and therefore responds
resonantly to the perturbation (4.4.35) if

κ(R0) = m[�(R0)−�p]. (4.4.36)

These are called Lindblad resonances. (There is also a corotation resonance,
in which the m = 0 term in the gravitational potential causes a shift in phase
of the star in its circular orbit.) These resonances have a finite width, because
the actual time-dependence of any disk pattern is a superposition of terms with a
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range of pattern speeds, so orbits respond resonantly for radii for which�(R0)−
κ(R0)/m is within this range of values of the pattern speed for some integer m.
In particular, as we have seen, for a number of galaxies there is a rather well-
defined pattern speed equal to the value taken by �(R0)− κ(R0)/2 for a broad
range of radii, so the resonance condition (4.4.36) will be satisfied for m = 2
and radii in this range.

The gravitational effect of perturbations to the disk density can also be
enhanced by a phenomenon known as swing amplification.30 In some cases,
such as the winding up of a leading spiral into a trailing spiral, an instability
similar to the Jeans instability discussed in Section 3.4 can greatly amplify the
density contrast.

There is a large literature on this subject, going back to the cited work of
Lindblad and Lin and Shu, and continuing with work of Goldreich and Lynden-
Bell31 and Julian and Toomre.32 Much of this is discussed in the cited book by
Binney and Tremaine. It is too complicated to go further into here.

4.5 Quasars

By the early 1960s a number of radio sources had been identified with optical
objects that like stars have apparent sizes too small to be resolved, and hence
were called quasi-stellar sources. In 1963, Maarten Schmidt33 was able to mea-
sure the redshift of one of these sources, 3C273 (that is, number 273 of the
471 radio sources in the Third Cambridge Catalog). The fractional increase
in wavelength of spectral lines from 3C273 was z = 0.158, indicating that
this source is at a cosmological distance, about 600 Mpc. Judging from its
apparent luminosity and its distance, the intrinsic luminosity of 3C273 was
found to be enormous, over about 1012L�, more than typical whole galaxies.
Soon other quasi-stellar sources were discovered at even greater distances, such
as 3C48 with redshift z = 0.37. Other objects with apparent sizes too small
to be resolved that did not emit appreciable power at radio wavelengths were
discovered optically at very large redshift, and have become known as quasi-
stellar objects. In this section we use the term “quasar” to refer to both quasi-
stellar sources and quasi-stellar objects.

Judging from the size of the extended regions of radio emission around some
of the quasi-stellar sources, they seem to have been shining for at least 106 years,
in which time they would have emitted an energy of order 105M�c2. And yet

30 A. Toomre, “What Amplifies the Spirals?,” in The Structure and Evolution of Normal Galaxies,
ed. S. M. Fall and D. Lynden-Bell (Cambridge University Press, Cambridge, 1981), p. 111.

31 P. Goldreich and D. Lynden-Bell, Mon. Not. Roy. Astron. Soc. 130, 125 (1965).
32 W. H. Julian and A. Toomre, Astrophys. J. 146, 810 (1966).
33 M. Schmidt, Nature 197, 1040 (1963).
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the luminosity of some of these sources fluctuates appreciably in a few days,
indicating that they could not be much bigger than our solar system.

What could be producing this much energy in so small a space? Probably not
nuclear processes. The conversion of hydrogen into iron produces about 8 MeV
per nucleon, so nuclear processes in a mass M can’t produce an energy greater
than about 0.008Mc2. To produce 105M�c2 by nuclear processes would thus
require a mass greater than about 107M�. A mass M that large in a region the
sizeR of the solar system would have a gravitational binding energyGM2/R of
about 104M�c2, so gravitational condensation necessarily would provide much
if not all of the energy radiated.34 In order for gravitational condensation in such
a small region to produce an energy of order 105M�c2, a mass even greater
than 107M� is required. There is no known astrophysical system that contains
so much mass in such a small region, other than a black hole.

Today it is thought that not only quasars but most or all galaxies includ-
ing our own contain a black hole of mass 106M� to 1012M� at their centers.
Quasars are just the galaxies whose central black hole happens to be surrounded
with interstellar matter, which by accretion onto the black hole produces the
enormous luminosity observed. The theory of this accretion is pretty much as
described in more general terms in Section 3.5, with one significant difference.
Instead of identifying the radius R0 of the inner edge of the accretion disk as
the radius of the central star, it is commonly assumed that for an accretion
disk around a black hole, the inner radius R0 is the minimum radius of any
stable circular orbit around a spherically symmetric mass M , which is shown
in the appendix to this section to be given by general relativity as three times
the Schwarzschild radius, or R0 = 6MG/c2 in “standard coordinates,” defined
below by the metric (4.5.A11). With R0 = 6MG/c2, Eq. (3.5.29) gives a rate of
viscous heating of the whole disk equal to Ṁc2/12, where Ṁ is the rate of mass
accretion. (Of course, it is only a crude approximation to use Eq. (3.5.29), which
was derived in Section 3.5 from purely Newtonian physics, so close to a black
hole that general relativistic effects are important.) Hence viscous effects in an
accretion disk around a black hole can convert about 1/12 of the mass flowing
into the black hole entirely to heat. With this efficiency, the 1012L� luminosity
estimated for quasars like 3C273 is produced by the infall of roughly one solar
mass per year.

Appendix: Orbits of Minimum Radius Around Black Holes

In Newtonian mechanics, there are stable circular orbits of any radius about a
point mass. As noted above in this section, this is not true in general relativity.

34 This is essentially the argument of D. Lynden-Bell, Nature 223, 690 (1969). This article presented the
model of a quasar as a black hole surrounded by an accretion disk heated by viscosity.
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This can be shown by calculating the epicyclic frequency as a function of orbital
radius, noting that for small radii the frequency becomes imaginary and hence
the orbit becomes unstable. But of course, here we have to use the general
relativistic equation of motion.

The general formalism based on the Principle of Equivalence yields the equa-
tion of motion for the radial coordinate r of a particle in a static spherically
symmetric gravitational field:35

A(r)

c2B2(r)

(
dr

dt

)2

+ J 2

r2
− 1

B(r)
= −E. (4.5.A1)

Here A(r) and B(r) are two functions characterizing an arbitrary spherically
symmetric gravitational field. (They are metric components in the “standard”
spacetime coordinate system, A(r) = grr(r) and B(r) = −gtt (r), but we
will not need this information here.) Also, J 2 and E are positive parameters
characterizing the various possible orbits, with no simple connection to the
quantities denoted J and E in earlier sections. We will later take A(r) and B(r)
to have the form required by the Einstein field equations, but for the present we
will leave them as arbitrary functions.

For a circular orbit with a time-independent radius r0, this gives

J 2

r2
0

− 1

B(r0)
= −E, (4.5.A2)

so we can eliminate E, and write Eq. (4.5.A1) as

A(r)

c2B2(r)

(
dr

dt

)2

+ J 2

(
1

r2
− 1

r2
0

)
−
(

1

B(r)
− 1

B(r0)

)
= 0. (4.5.A3)

Next, consider a perturbation

r(t) = r0 +�(t), (4.5.A4)

with �(t) very small. To first order in �, Eq. (4.5.A3) gives

− 2J 2

r3
0

+ B ′(r0)
B2(r0)

= 0, (4.5.A5)

so that the equation of motion (4.5.A3) may be written

A(r)

c2B2(r)

(
dr

dt

)2

+ r0B
′(r0)

2B2(r0)

(
r2

0

r2
− 1

)
−
(

1

B(r)
− 1

B(r0)

)
= 0. (4.5.A6)

35 For a textbook derivation, see S. Weinberg, Gravitation and Cosmology (Wiley, New York, 1972),
Eq. (8.4.19). The radial coordinate is here denoted r because we are dealing with the case of spherical
symmetry.
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From Eqs. (4.5.A2) and (4.5.A5), we see that the conditions that J 2 and E are
positive limit r0 to values for which, respectively,

B ′(r0) > 0 (4.5.A7)

and
r0B

′(r0) < 2B(r0). (4.5.A8)

We will see below that the requirement of stability sets a more stringent condi-
tion on r0.

To find the limit on r0 set by the requirement that the orbit be stable. we
evaluate the terms in Eq. (4.5.A6) of second order in �:

A(r0)

c2B2(r0)

(
d�

dt

)2

+�2
[

3B ′(r0)
2r0B2(r0)

+ B ′′(r0)
2B2(r0)

− B ′2(r0)
B3(r0)

]
= 0,

or in other words (
d�

dt

)2

+ κ2(r0)�
2 = 0, (4.5.A9)

where κ(r0) is the epicyclic frequency

κ2(r0) = c2

A(r0)

[
3B ′(r0)

2r0
+ B ′′(r0)

2
− B ′2(r0)
B(r0)

]
. (4.5.A10)

For κ2(r0) negative the general solution of Eq. (4.5.A9) is a superposition of
an exponentially growing term, proportional to exp(|κ(r0)|t), and a decaying
solution proportional to exp(−|κ(r0)|t). The condition that there should be no
exponentially growing solution for the displacement� is simply that the expres-
sion (4.5.A10) for κ2(r0) should be positive, in which case the general solution
for �(t) merely oscillates.

Now for the first time we will take A(r) and B(r) to have the form found
from the Einstein equations in empty space outside a spherical massM:

A(r) ≡ grr(r) = (1 − 2MG/c2r
)−1, B(r) ≡ −gtt (r) = 1 − 2MG/c2r .

(4.5.A11)
The squared epicylic frequency (4.5.A10) is then

κ2(r0) = MG

r3
0

− 6M2G2

4c4r4
0

. (4.5.A12)

This is positive, and the orbits are therefore stable at least against infinitesimal
perturbations, if and only if

r0 > 6MG/c2. (4.5.A13)

With A(r) and B(r) given by Eq. (4.5.A11), the condition (4.5.A13) is more
restrictive than the condition (4.5.A7) for J 2 to be positive, which is here auto-
matically satisfied, and the condition (4.5.A8) for E to be positive, which only
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requires that r0 > 3MG/c2. Hence Eq. (4.5.A13) is the lower bound on the radii
of stable circular orbits around a non-rotating black hole, whose event horizon
is 2MG/c2. Black hole rotation would materially affect this limit.
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CNO cycle, 31, 36–38
Coulomb barrier, 32–33, 40–42
crossover between proton–proton

chain and CNO cycle, 38–39
nucleosynthesis, 30, 39–40, 97, 112
power law, 30, 35, 38
proton–proton chain, 31, 34–36
see also Coulomb barrier; weak

interactions

Oort limit, 173–174
opacity

defined, 11
power law, 22, 23, 26
Rosseland mean, 14, 21, 25
see also absorption of radiation;

Eddington limit; Kramers
opacity; scattering of radiation

optical depth, 16, 46–47, 119, 122,
124, 149

orthohydrogen and parahydrogen, 139

photoionization, 130
pitch angle, 194
Planck distribution, see black-body

radiation
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plasma frequency, 146, 170
Poisson equation, 145, 149, 169,

187–189
polarization tensor, defined, 100
polytropes, 4–5, 53, 57–59, 60,

65–66, 71–72, 75, 161–162,
178–180

see also isothermal distribution;
Lane–Emden equation

precession of periastron, 84–85, 93
PSR 1913+16, see Hulse–Taylor

binary pulsar
pulsars, 76–77, 121

see also Hulse–Taylor binary
pulsar

quasars, 199–202

radiation energy constant, 14, 77
radiative transport equations, 9–10,

13–14, 43, 118–122
radio sources, 76, 92, 199
recombination, 123–124, 127–131,

134–135
red giant stars, 19, 39, 43, 89
ringdown, 110
Roche limit, 86–88
Roche lobes, 89, 90–92
Rosseland mean, see opacity
Russell–Saunders notation, 136

scattering of radiation, 9, 21–22
see also Thomson scattering

Schwarzschild solution and radius,
65, 106, 200, 202

screened Coulomb potential, 27, 29
see also Debye screening

semi-latus rectum, defined, 83
Sirius, 83, 88
spectral lines, see absorption of

radiation; emission of radiation
spectroscopic binaries, 84
stability

of general stars, 4, 63–64
orbits around black holes, 200–202
relativistic terms in energy, 64–70,

72–74, 79

see also convection; neutron stars;
star formation; supermassive
stars; white dwarfs

star formation, 5, 18, 132, 143–148
Stefan–Boltzmann constant, 16
stimulated emission, 21, 25, 121, 124
Strömgren spheres, see HII regions
Sun, 3, 16–17

central density, 16
central pressure, 3
central temperature, 16, 39, 46–47
convective zones, 57
Kelvin lifetime, 6
main sequence lifetime, 48
rotation, 76
solar neutrinos, 36
surface, 16–17

supermassive stars, 77–80
supernovae, 74, 77, 80, 90, 97, 145
surfaces of stars, 9, 15–16

Thomson scattering, 8, 22–23
time dilation in binaries, 85–86
transonic accretion, 162
true surface, see surfaces of stars
turbulence, 145

ultraviolet radiation, 126–127, 144

variational principle, 58–59
velocity dispersion tensor, 174
violent relaxation, 174, 182
virial theorem, 3–4, 141
viscosity, 150, 155, 200
Vogt–Russell theorem, 17, 20, 60

weak interactions, 31–32, 34, 39
white dwarfs, 70–74, 90

Chandrasekhar bound, 72
neutronization, 74
Sirius B, 88
stability, 74

wind equation, 162–163
winding problem, 195, 198
WKB approximation, 41, 193

X-ray emission, 89, 160, 183


