Experimental Analysis of Algorithms

Catherine Cole McGeoch
August 1986

Submitted in partial fulfiliment of the requirements for the degree of
Doctor of Philosaphy in Computer Sclence at Camegie-Mellon University.

Copyright @ 1988 Catherine Cole McGeoch

This research was sponsored in part by the National Science Foundation under Graduate
Fellowship Grant No. SPE-8350019, and in part by the Oflice of Naval Research under
Contract NOO014-85-k-0512.

Carnegie-Mellon University
DEPARTMENT OF COMPUTER SCIENCE

THESIS
SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

TITLE Experimental Analysis of Algorithms

PRESENTED BY Catherine McGoech

ACCEPTED

‘.Lh @ S%mzw '25 e (986 Bare

_@@M‘— sl2:(87
‘ DEPARTLAENT +€AD Tave

@ y Sept . 1987

SEMOR VICE PRESIDENT FOR ACADEMIC AFFARS

Abstract

This thesis examines the application of experimental, statistical, and Jata analysis tools to problems
in algorithm analysis. Note that algorithms, not programs, are studied: “‘resuits” in algorithm analysis
generally refer to abstract cost functions, are independent of particular machines or implementation
strategies, and express lunctional relationships between input parameters and measures of
algorithmic performance. The study of algorithms presents special problems and opportunities for
experimental research.

The following research goals are set:
1. To demonstrate that simulation can provide a useful, general toa! for developing new
understanding of algorithms.
2. To identity common problems and to assess the applicability of this approach.
3. To develop principles for successful experimental research in this domain.

4. To promote more general use of this approach by giving a “handbook™ of useful tools
and techniques.
Part | of the thesis introduces an experimental approach to algorithm analysis and discusses the
context for this research. Examples from the current algorithms literature serve to illustrate issues
and problems that can arise.

Part Il presents experimental resuits for case studies in four algorithm domains (one-dimensional bin
packing, greedy matching, median-selection strategies for Quicksort, and self-organizing sequential
search).

Part Il discusses the case studies, guidelines for successful simulation research, and useful tools and
techniques for simulating algorithms.)

Acknowledgements

This is the place where | get to cay ali those things that I've alvzays meant to say.

To Jon Bertley: as my advisor you have provided encouragement, constructive criticism, and laughs
far beyond the call of duty. This thesis is to a great extent a reflection of your abilities as a teacher.
Thanks.

To the other members of my committee, Bill Eddy, Jay Kadane, and Ravi Kannan: your patience with
my naive questions and your encouragement throughout this research is much appreciated. Thanks.

To the many people that {'ve learned from in technical discussions, including Al Aho, Andrew Appel,
Bill Cleveland, Rex Dwyer, Guy Jacobson, David Johnson, Brian Kernighan, Mike Langston, Tom
Leighton, Glen Manacher, Jim Saxe, Danny Sleator, Peter Shor, Mike Steele, Dary! Tennenbaum, Jim
Wendorl, Roli Wendort, Bob Wilber, and many others: thank you for your time and your inlerest in this
research. ‘

It is impossible to complete a graduate degree without the support and encouragement of friends. To
all my friends, whether currently, formerly or never members of the CMU CSD community. thanks for
the memories.

The support and love of my family has been invaluable to me. To my parents, my grandparents, my
inlaws, and my siblings: | coukin't have gotten where | am today without you. Thank you.

! can’t say enough about a hushand who sympathized with my frustrations, proofread drafts,
discussed technical issues, and cleaned the apartment, all while working on his own thesis. You
know who you are: thanks, pal.

Table of Contents

PARTI:

An Experimental Approach to Algorithm Analysis

1. Introduction

1.1. A Context for Experiments

1.2. Previous Work: Examples

1.3. Research Goals
References

PARTII:
Case Studies

2. One-Dimensional Bin Packing

2.1, Previous Work
2.2. The Simulation Study
2.3 First Fit
2.3.1. Nonmonotonicity in u
2.3.2. Measurements at fixed v
2.4, Best Fit
2.5. First Fit Decreasing
2.5.1. u Below 05
25.2. uabove 0.5
2.6. Best Fit Decreasing
2.7. Future Work
References
3. Groady Matching Iin One Dimension
3.1. introduction
32. The Study
3.3. Experimental Results
Referenices
4. Comparisons In Quicksort

4.1. Introduction
4.2, Simulation Issues

4.2.1. The Model

4.2 2. The Simulation Program
4.3, Fixed-T Strategles

4.4, Choosing T to Minimize Comparisons

. 4.5, Insertion Sort

b

DLW

N
w

ABR2AKEBR/BBYNR B

B2INBBAIB

4.6. Conclusions
References
5. Seif-Organizing Search

5.1. Previous Work

5.2. Measures of Search Rules

5.3. Experimental Results
5.3.1. Zipf's Distribution
5.3.2. Varying Lambda

5.4. Properties of Search List Permutations
References

PART II:
Experiments and Algorithm Analysis

6. Experiments and Algorithms
6.1. Why Do Experiments?
6.2. Applications and Limitations of Experimental Analysis
6.3. Prnciples
References
7. Tools and Techniques
7.1. Choice of Measure
7.2. Ensuring Correct Results
7.3. Variance Reduction Techniques
7.4. Placement of Sample Points
7.5. Pilot Studies
7.8. Simulation Shortcuts
7.7. The Simulation Environment
7.8. Analyzing Simulation Results
7.8.1. Looking at Distributions
7.8.2. Comparing Sets of Data
7.8.3. Assessing Functional Relationships
7.9. Summary
References
8. Conclusions
8.1. Contributions of the Thesis
8.2. Future Work
References

87
89

92

100
100
107

109

11

1
.13
17
18
121

122
123
124
127
130
132
134
137
140
143
145
149
151
155

158
156
162

Part |

An Experimental Approach to
Algorithm Analysis

The experiment serves two purposes, often independent
one from the other: it allows observation of new facts
hitherto either unsuspected, or not yet well defined;

and it determines whether a working hypothesis fits the

world of observable facts.
- Rene J. Dubois

This section introduces an experimental approach to algorithm analysis and discusses the
context for this research. Examples from the current algorithms literature illustrate issues and
problerﬁsmatcanubo. The specific goals of this thesis and the research strategy are

described.

Chapter 1
Introduction

This thesis investigates the application of experimental methods to problems in algorithm
analysis: specifically, techniques of simulation and data analysis are used to gain new
understanding of combinatorial algorithms. A number of terms other than “experimental
analysis" have been used to describe the same general idea. The term simuiation is certainly
appropriate, since the object is to represent and measure the behavior of ona'system (an
algorithm) by use of another system (a computer). Monte Carlo study also applies since
inputs are sampled from specilied probability distributions. For this thesis, statistical analysis
was rejected because techniques other than the purely s.tatislical are considered. Empirical is
defined by Webster as “'relying on experience or observation alone often without due regard
for system and theory”. Both system and theory are highly regarded here.

The following section introduces this research in the context of algorithm analysis and
expernimental siaﬁsﬁm. Section 1.2 surveys experimental studies from the algornithms
literature and illustrates problems that can arise. Section 1.3 presents the specific goals and
scope of the thesis. The primary vehicle for this research is the case study: simulation results
in four algorithm domains are described in Part ll. Principles and techniques for powertul,
correct, and eflicient experimental studies are developed in Part lll, which also presents
conclusions and open problems.

1.1. A Context for Experiments

Much of the current research in the area ol overlap between computer sclence and
statistics involves the development of better tools for statisticians Conferences such
Statistics and Computer Sclence: The Interface, COMPSTAT, and Frontiers in Computational
Statistics provide forums for research on design of statistical packages, fast and stable
algorithms for computing statistical formulas, and database tools for managing and analyzing
data sets. Equally important is the use of statistical methods to develop more powerful tools

4

for computer scientists; a variety of applications are possible. Weide [50], for example. used
concepts from probability theory to develop lechniques for probabilistically analyzing
algorithms. Kadane and Wasilkowski [30] demonstrated the equivalence between Bayesian
experimental design and certain complexity problems. Bentiey. Haken, and Hon (3] presented
a statistical characterization of VLS! designs. Experimental statistical methods have been
applied in many areas of computer science: for examples, see Borenstein’s investigation of
user help systems [11], Brent's evaluation of techniques for dynamic storage allocation [12),
or Stritter’s study of file migration strategies [48].

Continuing this trend, this thesis examines experimental and statistical techniques in the
context of algorithm analysis. As Exhibit 1-1 suggests, there are many ways to analyze an
algorithm, and many forms that a “result’* may take. The analysis problems considered here

_are quite traditional: the usual goal is to characterize an algorithm's perlormance, on an
abstract model of computation, as a function of its input. In particular, the expected
periormance, which is determined by a specified probability distribution on input instances, is
the quantity to be characterized. "Performnance” generally refers to some measure such as
the number of comparisons required, the number of iterations performed, or the quality of a
heuristic solutlon.

Note that algorithms, not pr;':gmms. are studied here; the principle of abstraction ia
maintained throughout. Abstraction is fundamental to traditional algorithm analysis for a
number of good reasons. By maintaining abstraction in the cost function (number of
comparisons, say, rather than running time), one obtains results that are implementation-
independent and therefore useful in a varlaty of situations. Abstraction can producs deeper
understanding of underlying mechanisms and discovery of algorithmic paradigms.
Mathematical models of algorithms and input allow consistent and well-defined manipulation
of parameters, provide a standard vocabulary for communicating results, and promote
generalization of algarithms and analysis techniques.

Although the algorithmic problems studied are traditional, this research represents
something of a departure from familiar uses of simulation in computer science. Because the
experimental resuits are expected to correspond to abstract models and theoretical
statements, the procedural issues tackled here are dilferent from those that arise, say, in a
benchmark study to compare various compilers.. The following tasks usually associated with
simulation research are not considered here: identitying appropriate benchmarks, monitoring

o Type of Measure.

o Time: number of significant operations, or running time of a program.
o Space.

o Time-space tradeolfs.

o Heuristic solution quality.

o Communication cost.

o Numerical stability.

+ Domain of Analysis

o Worst-case input.

o Best-case input.

o Pathological input.

o Expected-case: probability distribution on input, or randomized algorithm.
o Input from real applications.

o Models of typical input.

o Classic problem instances.

o Model of Computation.

o Random Access Machines: word or bit opcrations, straight.iine or
branching programs.

o Specific machine models: e.g. MIX implementation.

o Paralle! and distributed models.

o Real programs and real machines.

o Precision of Analysis.

o Tractability: establishing polynomial halting time.

o Order of Magnitude bound: usually asymptotlic analysis (as problem size
- o0).

o Exact formulas: usually concrete analysis (for all problem sizes).

o Probabilistic analysis,

Exhibit 1-1: Analyzing Algorithms

and modeling typical input, develaping and justifying simulation modeis (that is, arguing that
they are realistic), and developing statistical models for analysis.

instead, experiments are 1o be used to study what are essentially mathematical objects:
combinatorial algorithms operating on well-defined input distributions. The motivation for
applying experimental research in this context is clear: completely analyzing an algorithm is
difficult, and purely mathematical approaches don't always give desired resuits. This is
~ especially true in studies of expected-case performance, where the analytical results that
have been obtained are often limited to very simple distributions on input instances. ideally,

6

expenmental studies could be used to suggest theorems, to support or to refute conjectures,
and to characterize performance in terms of input parameters. Success with such an
approach depends on understanding of experimental techniques, familiarity with practical
issues of algorithm simulation, and knowledge of appropniate analytical lools. Clearer
understanding of these topics in the context of algorithm analysis is a primary goal of this

research.

The following terminology is used throughout the thesis. Suppose the expected-case
performance of algorithm A is of interest: this is the simulation model. A distribution on input
instances is established that can be described by a small number of parameters. A sample
paint is determined by a fixed setting of the parameters. A trial corresponds to a single input
instance randomly generated® at a fixed sample point. For example, taking 50 trials at the
sample point {n = 1000, p = 1/2) might correspond to generating 50 binary strings of length
1000 according to a binomia! probability distnbution with parameter p = 1/2. In performing
an experiment, a simulation program that mimics the performance of algonithm A is
implemented and applied to the input instances. For each trial, values for one or more
measures - such as number of comparisons, number of nodes examined, or solution quality
- are recorded. The goal of the experimental analysis is usually to characterize the
measurements (the values taken for the measures) in terms of the input parameters.

Throughout the thesis, the notation H. refers to the n” harmonic number, defined by
H =3 Vi Thebase-2logarithm of nis denoted by Ign. The natura! logarithm is denoled
by Inn. The notation “log" is used when the base is irrelevant, as in order-of-magnitude
formulas.

1.2. Previous Work: Examples

Given an algorithm whose theoretical analysis is elusive, it is conceptually easy to
impiement the algorithm, generate appropriate inputs, and gather measurements. In practice,
however, difficulties can arise in matching the simulation program to the model, in ensuring
correctness of simulation results, and (especially) in using the measurements to gain real
insight into the aigorithm's structure. To illustrate problems that can arise, this section
surveys a number of experimental studies from the aigorithms literature. It is clear that none
of the studies surveyed here were intended to illustrate sophisticated analysis techniques or

'mm-mwbmunmmm-ww.

innovations in experimental method: except lor a few dissertations entirely devoted to
simylation research, the experimental results are usually presented in the final section {(or
appendix) ol a paper largely devoted to theoretical analysis. Although this is not an
exhaustive survey, these studies are representative of the current level and scope of

experimental research in algorithm analysis.

Simulation Models and Simulation Programs

Usually the goal of an experimental study is to shed light on open problems suggested by
partial theoretical characterization of an algorithm. One impediment to achieving this goal is
found when simulation results do not correspond to the analytical déscription of the problem.

This is certainly the case when asymptotic performance is studied: how can measurements
at finite input sizes be extended to inferences about asymptotic behavior? Experimental
results can be greatly dependent on input size; consider the problem of determining the
expected intemal path length / e of a binary tree under a random series of insert/delete
operations (see Knuth[34), Section 6.2.2 for a detailed discussion of the problem).
Experiments performed by Knott [33] in 1975 suggested that (for certain deletion algorithms)
I, tends to decrease as a random sequence of insertions and deletions is applied. Knott's
studies took sequences of up to 24 insertion/deletion operations and trees with fewer than
100 nodes. Eppinger’s [21] 1981 study with a as high as 2048 and insert/delete sequences as
large as 9,000,000 indicate that /_ decreases at first and then increases as the sequence
length grows.

Another common difficulty with obtaining measurements that accurately reflect the
simulation model arises in the study of heuristics for NP-hard problems. Bounds on heuristic
solution quality are often expressed in terms of the optimal solution, which cannot be
determined experimentally. The one-dimensional bin packing problem, for example, is to
pack a list of n items with weights from a subrange of (0,1] into unit-sized bins so as to
minimize the number of bins used (the bin count). Since this problem is NP-hard, heuristic
rules for bin packing are of interest; a common analytical measure is the bin ratlo, the ratio of
the heuristic bin count to the optimal bin count.

In general, the true bin ratio cannot be measured experimentally because the optimal bin
count is not known (if it were known, there would be no need for & heuristic). A common
solution is to find an easily-measured lower bound on the optimal bin count and to estimate

8

the bin ratio using this lower bound, which gives an upper bound on the true bin ratio. For
example, since there must be enough bins to contain all of the ilems, the sum of the weights is
a lower bound on the optimal bin count. Also, the optimal bin count is bounded below by the
number of items with weight greater than 1/2, since no two of these items can fit in the same
bin. Johnson's [28] 1973 simulation study of various packing rules used the measure
max([weight-sum], number of items > 1/2) as a lower-bound approximation to the optimal bin
count. Ong, Magazine and Wee [38] used [weight sum] as the lower-bound estimate in their
1984 study; noticing that the heuristic “*BFD" nearly always achieved the lower bound, they
also presented bin ratios using the BFD bin count to estimate the optimal bin count.

Using the solution ratio to characterize the quality of a heuristic is a common analyticai
technique. Omne drawback to using a lower-bound estimate of the optimal solution in
simylation studies is that the estimate may be a poor approximation to the optimal solution
and therefore give little ir.formation about the true solution ratio. While this is not a problem in
bin packing (Karmarkar [31] showed in 1882 that under the standard expected-case model
the weight sum is very near the optimal bin_count). finding useful lower bounds is a nontrivial
task in many domains. An altemative approach is to generate input instances with known
optimal solutions. Helfrich [27], for example, §enerata random integer lattices with known
shortest vectors and uses them to study heuristics for finding the smallest vector in a lattice.
Pilcher [38] describes techniques for generating graphs for which optimum traveling
salesman tours are known. Although this approach is promising, it can be difficult to develop
generation schemes that preserve interesting properties of the input.

Other examples of disparity between simulation model and simulation program have
appeared; some could have been avoided. For example, & self-organizing sequential search
rule maintains a list of items under a sequence of requests, keeping frequently requested
items near the frant of the list so that the average cast of searching for requested items is low.
Since the rules do not know the true request frequencies, they are allowed to reorder the
search list according to the requs .ts seen so far.

The usual expected-case model is that the N items in the search fist are requested
according to a specified probability distribution. The standard analytical model assumes that
all intial orderings of the search list are equally likely. In real applications, however, it is more
fikely that lists are initially empty and that new items are added to the back of the [ist if not
found. Tenenbaum's[45)] simulations of search rules used a combination of these two

9

assumptions: the lists are initially empty, but accumulation of search costs does not begin
until the lists are of size N. Since the search lists are in not in random order when the cost
accounting begins, the abserved convergence properties for the rules do not cosrrespond to
the analytical model. (In fact, Rivest [41] showed that one of the rules (MF) has achieved its
asymptotic performance by the time the list is of size N). Tenenbaum's discussion of
convergence properties for the analytical model (based on his experimental results) is

inappropriate.

Franklin [23] presents an algorithm for performing hidden-line elimination. The algorithm is
conjectured to run in time linear in N, the number of overlapping circles randomly generated
within the unit square. Franklin presents timing statistics to support this conjecture, and
notes that the limings are linear except for a slight increase at larger ¥; he remarks that the
observed super-linearity is probably due to increased paging activity. Ohuyad, lam and
Murasoto [37], similarly, use timing statistics to support the conjectured linear running time of
their cell-based algorithm for computing Voronoi diagrams and to find optimal program
parameters under various input madels.

The above authors have a legitimate interest in the running times of their algorithms, which
have great practical value. Their discussions of algorithmic bounds and optimal parameter
settings would be stronger, however, if they were based on abstract operations: this could be
easily accomplished by simple bookkeeping mechanisms embedded into the implementation.
Although runtime statistics can give a rough kdea of algorithmic time complexity, a number of
factors interfere with accurate measurement. Van Wyk, Bentley, and Weinberger [46) and
Wendorf [48) observe that timings of a single program can vary by as much as 20% under
Unix? timing protocols, even when it Is the only user process running on the system. On any
large operating system, variation due to paging, multiple users, and cacheing can add
significant “noise” to the timings. Implementation details and variation in optimization leveis
can mask the behavior of the underfying algorithm.

Obtaining Correct Results

Even when the implementation accurately reflects the simulation modet, R can be difficult to
ensure that experimental results are corract. For example, theoretical models are likely to
assume properties of real numbers, but experiments are performed on finite-precision
machines. Eddy [20] presents a fast convex hull algorithm for planar point sets and measures

2iyvix is & trademark of ATST Bell Laborstories.

10

its performance for five distributions on point sets. He notes that when the convex hull has a
large number of vertices, adjacent sides are nearly parallel and roundoft errors signilicantly

affect the measurements.

The general probiem of verilying that a program performs as specified is well known. Direct
validation of simulation programs is rarely posible: if the measurements can be accurately
predicted, there is little need for a simulation study. Exceptions do occur: Bloch, Daniels, and
Spector [10] use Markov analysis to characterize their algorithm for maintaining directory
information in a distributed system. Because the size of the state space makes direct
computation tedious, they use simulation as an efficient way to describe performance aver a
wide range of sample points. The authors are able to validate their simulation results by
spot-checking against the correct formuta.

Since most researchers are not as fortunate, an important assurance of experimental
integrity is replicalion. Eppinger [21), for example, replicates his experiments for insertion
and deletion in binary trees on a secondary system. The two simulation environments differ in
machine architecture (a Vax 11/750 vs. a Perq personal workstation), random number
generator, implementation stralegy, and programming language. The consistency of results
between these two environnients gives strong assurance that the results are not artifacts of
the implementation.

Otherwise, replication by the author appears to be nonexistent, or at least unreported.
Usually, however, authors provide enough details so that the reader can duplicate the
experiments. Kernighan and Lin [32], and Coliman, Kadota and Shepp [16] present listings of
the simulation programs as well as fairly detailed descriptions of the random number
generators. Cameron and Thomas [15] discuss significant implementation detasils, give the
code for the random number generator used, and offer to send a list of random number seeds
to interested readers. Many authors report the sample points and the number of trials per
sample point and only mention implementation details that differ significantly from the model.

Analyzing the Data

The most difficult task of the simulation study Is to draw conclusions about the algorithm
based on the experimental results. In maost of the studies surveyed here, the “analysia"
consists of tables (or graphs) displaying average measurements for each sampie point,
accompanied by an informal discussion of the results. This is the format used, for example, in
studies of sequential search rules by Bellow [1], Bitner [8, 9], Rivest [41], and Tenenbaum

11

[45]). Other examples of this presentation format are found in Bui [14], Kemighan and Lin
[32], Crowder and Padberg [18], Culberson [19], and Friedman, Bentley and Finkel [24).

A few instances of more formal data analyses have appeared. Golden and Stewart
[25] apply Wilcoxon signed rank tests, Friedman tests, and other statistical tests to compare
TSP heuristics. Eddy [20] estimates standard deviation in his study of a convex hull algorithm.
Weide [47] presents confidence intervals in his studies of search structures. Hart
[26] establishes confidence intervals for his results on insertion in binary search trees and
applies hypothesis testing.

In general, extensive statistical analyses appear relatively infrequently in the algorithms
literature. This may be because.the answers pfoduced by standard analysis techniques
appear to be at odds with many questions posed in algorithm analysis. For example, the
standard procedure in regression analysis Is to assume an underlying functional form
describing the relationship between experimental values and to determine the function '
parameters that best fit the observed relationship. In the study oi a'gorithms, on the other
hand, determining or bounding the true functional rclationship is often the primary goal of the
analysis; in order-of-magnitude analyses the actual parameter values are not a part of the
model.

A partial solution is found when strong arguments for a particular Function form are
available, although difficulties can still arise. Hart [26] uses regression in his study of
insertion in binasy trees: after n insertions, the average height H(n) of a tree s known to satisly
Hin)=Clinn+ o(in n), and may be of the form H(n)=C/inn+Cninn+o(ininn). it Is known
that C is in the range [3.834, 4.311], and specific values of 4 and 4.311 have been
conjectured. As part of a thorough statistical analysis, Hart performs a least-squares
regression using the model H{m)=Cjinn+ Cininn, which gives C =44037 and

1:-4.1&)1. Althcugh q Is nearer to 4311 than to 4, it Is also larger than its known upper
bound. This fact as well as standard analysis suggests that the model s not appropriate for
this range of input sizes.

Culberson [19] studies internal tree height after a series of insert/delete operations and fits
regression curves using the model E[/] = d(«*"?) + b, where I_ denotes the intemal height of a
tree with nnodes. The correlation coelficients (for unweighted and weighted regressions) are
0.99894 and 0.9956, and the R? errors are 0.997 and 0.99124, suggesting that the model gives
a very good fit to the data. In accompanying graphs, however, the data points clearly curve

12

upward relative to the fit. Culberson remarks: “any such [regression] resulls must be treated
with skepticism, unless some theoretical reason can be found to.support them. *

Ong, Magazine and Wee [38] use regression when studying heuristics for bin packing.
Eslimating H(n), the bin count for rule H, they show that if certain reasonable assumptions
hold, then E{H(n)] is of the form bn + ¢(n), for constant b and y(n) = o(n). Theretore E[H(n)]
is 2 nearly linear function of n for large n. The authors apply least-squares regression using
the modet E{H(n)] = a + bn. They nole that the correlation coefficient for all experiments is
equal to 1, and that the percentage of variation explained by the model is 99.99: by these
measures the model provides a very good fit to the data. Although the regression model is
well justified and fits the data very well, some of the results are (unavoidably) misleading,
primarily because the model is for asymptotic n and the measurements are taken at n between
40 and 1000. For example, they estimate the bin ratio for the "FFD * rule as 1.018, although
Leuker [35] had proved that the true bin ratio is asymptotically 1. It was later shown in [S] and
[43] that the bin ratio for two other rules Is asymptotically 1 although thelr estimates suggest
otherwise. :

Authors have used techniques other than statistical summarization and analysis to convey
the resuits of their simulations. Colfiman, Kadota and Shepp [16], for example, study a
strategy for dynamic storage allocation. They present “snapshols” of memory gver time to
illustrate their observations. Cutberson [19] presents snapshots of binary search trees as
insertions/deletions are performed. Brown and Sedgewick [13], and Bentley and Kemighan

[6] have developed systems for “animating"” algorithms; perhaps in the future these methods
will play a larger role in the analysis and presentation of simulation results.

In addition to these examples of experimental study in algorithm analysis, some previous
work has appeared about using experiments In this context. Purdom and Brown [40] devota a
chapter of their text, The Analysis of Aigorithms, to a discussion of probabilistic tools for
analysis and a review of Eppinger's work. Golden and Stewart [25] present data analysis tools
for benchmark studies of heuristics for the Traveling Salesman Problem. Crowder, Dembo,
and Mulvey [17] discuss issues in the presentation of computational experiments in
mathematics; they give a critical survey of previous experimental studies and propose a
checklist of criteria for reporting computational results. Hoaglin and Andrews [28] also
propose guidefines for presentation of computer-based experimental resuits.

13
1.3. Research Goals

While there is strong motivation for using experimental techniques in algorithm analysis, it
appears that not much progress has been made. Experimental results have been published
that contradict known theoretical bounds, lead to erroneaus conclusions about algorithmic
performance, and do not correspond to the underlying analytical model. Perhaps because
formal statistical analyses have not been generally successiul in lending new insight,
researchers tend to limit their exposition to methods more suitable to benchmark studies: the
most common format for presentation of experimental resulls is a table giving average
measurements at various sample paints, accompanied by informal discussion of the table
entries. Very little discussion of experimental methods and techniques for research in this
domain has appeared.

Nevertheless, the thesis motivating this research is that simulation and data analysis can
provide a powerful tool for obtaining new insight about combinatorial algorithms. This
hypothesis was prompted by experience with a simulation study begun as joint work with
J. L. Bentley, D. S. Johnson, and F. T. Leighton (reported in [4]). The object of the study was
to measure the expected performance of two heuristics for bin packing. Under the expected-
case model, n items with weights drawn from the uniform distribution on (0u),0<usl, areto
be packed into a minimum number of unit-sized bins. The amount of empty space in a
packing - the number of bins used minus the sum of the weights - was the measure ol
packing quality recorded in our simulations of the packing rules First Fit (FF) and First Fit
Decreasing (FFD) (see Chapter 2 for a detailed discussion of the problem). Prior lo the study,
very little was known about the expected-case behavior of the rules; our goal was to
characterize mean empty space as a function of n and u. The lollowing observations were
among those reported in [4].

eWhen u=1, mean empty space in FFD packings is ~03r”%. Prior to this
observation (first noted by Bentley and Faust[2] in 1980) it was widely

conjectured that empty space is {3(n). Prompted by experimental results, Leuker
[35] subsequently proved the © (7*) bound.

o When u 505, mean empty space in FFD packings is O(1). This remarkable
observation ~ that empty space does not grow in n when u is small - was
subsequently proved in [S]. The proof gives an uppet bound of roughly 10™ bins;
Floyd and Karp [22] have recently reduced this to 10 bins under a slightly different
average-case model. Simulation results suggest that the true expectation is
nearer to 0.7.

14

e When u < 0.5, empty space is less than 1 (and therefore the packing is optimal) in
over 75% of FFD packings.

e When 0.5 < u <1, mean empty space is O(n'*). This bound was subsequently
proved (see [S]).

e There appears to be a critical point u, such that when # is less than u . Empty
space in FFD packings is very small; above the critical point, empty space is quite
large and outliers (corresponding to very bad packings) are observed. The
crilical paint appears to increase slowly as ngrows.

o Mean empty space appears to grow linearly in u when u is below the critical point
and to increase rapidly in u above the critical point. When u <0.5, empty space
appears to be constant in u as well as n. (This early cbservation is modified
somewhat in Chapter 2). Theoretically characterizing empty space as a function
of u remains an open problem.

e When u = 1, mean empty space in FF packings appears to grow approximately as
022", This observation contradicts previous widely-held intuition, which
predicted that empty space wouki grow at least linearly in n. A bound of
O(n”logn) was subsequently proven (see[S]); this was tightened to
O("log*’n) and Q(#*) by Shor [42].

e When u < |, empty space in FF packings is nonmonotonic in i; for example,
packings of weights drawn from (0, .9] give /ess empty space than packings of
weights from (0, .84] or from (0, 1}. This nonmonotonic behavior becomes more
pronounced as n grows.

¢ The nonmonotonicity suggests that empty space grows more rapidly in n when
u = 34 than when u= 1. Experimental results give the tentative conjecture that
empty space is linear in n at some values of u.

This experimental study significantly influenced theoretical analysis of the two bin-packing
algorithms. First, the simulation results in some cases contradicted previously heid
conjectures, prompting a redirection of theorem-proving effort. Not only did the experimental
results suggest the theorems to be proved, but detailed and varying views of the data as well
as animations of the algorithms as they packed were essential to the development of the proof
techniques appearing in [S]. The study went beyond simple measurements: new insight into
packing structure, new conjectures about the performance of the heuristics, and more
efficient heuristics were a direct resuit of the simulations. The simulation resuits have
“opened up' what had previously been a fairly clased area for expected-case resulits.

Limited simulation studies by Johnson [29], Maruyama, Chang, and Tang [36], and Ong,
Magazine and Wee [38] had appeared previously. Why was this study much richer in

18

conjectures, insights, and thegrems? The [ollowing factors probably contribuled to the
success of our study. -

e Larger problem size. We simulated packings with lists of up lo 128,000 items,
while previous studies used lists of up to 200 and 1000 items. Some ol the
observations, particularly the nonmonotonicity in FF packings, were not visible at
lower n.

e Change of measure. We measured empty space rather than the bin ratio (the
ratio of the number of bins used by the heurislic lo the number used in an optimal
packing) as had been done previously. This measure allowed a much clearer
picture of packing quality; because the ratios are very near 1 and tend to
converge slowly in n, the small changes in growth are overwhelmed by the
variance in the data. Empty space has much smaller variance relative to its
growthin n.

e Departure from benchmark-style reporting of results. Rather than presenling
tables of measurements for the packing rules at various sample points, we tried to
characterize empty space as a function of n and u. We examined the raw data
over all trials, rather than just average measurements, to gain insight into
distributional properties. We made extensive use of graphical analysis tools.

e Many of the experiments were replicated on a personal computer, which varied
the implementation of the packing heuristics, the type of random number
generator, and the machine word size. The consistency of the results between
the two environments, combined with program validation and hand-checking of
results at small n, gave us confidence in the (often nonintuitive) results.

¢ Finally, and perhaps most importantly, the study was not finished after a single
round of experiments; we terated thegretical and experimental analyses of the
heuristics. The two approaches interacted in many ways. Certainly theorstical
work wos guided by experiments; just as importantly, experimantal work was
directed by theoretical insight. In some cases new insights suggested shortcuts
in the data-gathering process, or eliminated the need to gather new data.
Growing insight suggested more precise measures of packing quality. In tum,
later experimental results gave more insight and produced more detailed
understanding of the algorithms.

The simulation study of bin packing had a significant impact on theoretical analysis by
contributing new theorems, new insights, new conjectures, and precise, accurats
measurements. in addilion, a number of procedural questions were prompted by the success
of the study. Can the above principles be generalized to other algorithmic domains? Could we
have leamed more from the data? Are more powerful data analysis tools available? Could the
same information have been gained with less programming and analysis effort? In general,
what types of results can be gained from experimental studies of algorithms? What are the
limitations of this approach?

18

An obvious first step in answering such questions is to see what has been accomplished by
others. As Section 1.2 suggests, experimental research in this area has not been extensively
applied or addressed. Compare this to experimental research in, say, the physical sciences:
entire papers are devoted to experimental results, and topics such as the justification of
experimental models, experimental design, applications of analysis tools, and issues of
graphical presentation are regularly and rigorously discussed.

A vast literature of general simulation and statistical analysis techniques exists. Texts such
as The Art of Scientilic Investigation [7] contain a great deal of collected “lore” of good
experimental technique and discussion of the scientific process (which iterates theoretical
and expenimental analyses). The application of these techniques and tools in the context of
algorithm analysis is the topic addressed in the lollowing_ chapters.

The lollowing research goals are set:
1. To demonstrate that simulation can provide 8 uselul, general tool lor developing
new understanding of algorithms.
2 To identify common problems and assess the applicability of this approach.

3 To develop principles for successful experimental research in the domain of
algorithm analysis.

4. To promote more general usa of this approach by giving a “handbook™ of useful
tools and techniques.

Part 1l, comprising Chapters 2 through 5, presents four "case studies” of experimental
analyses of algorithms. The case study approach is adopted here for a number of reasons.
First, the studies allow an accurate assessment of the usefulness of this approach. The
problem domains are well known to computer scientists: partial theoretical characterization
already exists, and the open problems- have been the subject of extensive previous theoretical
and experimental research. if the experiments give new insight in these problem domains,
then Goal 1 will be established. Second, the problem domains provide realistic testbeds for
simulation and analysis techniques. Third, studying a variety of problems aliows identification
of common problems and useful general techniques. Fourth, the case studies serve as
examples of the experimental process, which may be of use to future researchers. Finally, the

-experimental results themseives contribute to open problems the algorithm domains,

Part iii contains a discussion of the case studies. Chapter 6 discusses applications,

17

principles, and goals ol expenmental research in the domain of algorithm analysis. Chapter 7
presents techniques and tools that proved useful in the case studies. Chapter 8 assesses the
contributions of the thesis and discusses future work.

18

References

(1]

(2]

(3]

(4]

(5]

(6]

)]

)]

M. E. Bellow.

Pertormance of Selt-Organizing Sequential Search Heuristics under Stochastic
Refarance AModels.

PhD thesis, Department of Statistics, Camegie-Mellon University, Piltsburgh, PA,
November, 1983.

J. Bentley, J. Faust.
Unpublished notes on simulations of FFD.
1980.

J. L. Bentley, D. Haken, R. W. Hon.

Statistics on VLSI Designs.

Technical Report CMU-CS-80-111, Department of Computer Science, Camegie-
Mellon University, Pittsburgh, PA 15213, April, 1980.

J. L. Bentiey, D. S. Johnson, F. T. Leighton, and C. C. McGeoch.

An experimental study of bin packing.

In Proceedings, 21st Atlerton Confaerance on Communication, Control, and
Computing. University of lifinois, Urbana Il, 1983.

J. L. Bantley, D. S. Johnson, F. T. Leighton, C. C. McGeoch, L. A. McGeoch.
Some unexpected expected-behavior resufts for bin packing.
In Proceedings, 16th Symposium on Theory of Computation. ACM, April, 1884.

J. L Bentley and B. W. Kemighan.
A system for algorithm animation (draft manuscript).
December , 1886,

W. |. B. Beveridge.
The Art of Scientific Investigation.

Vintage Books, New York, 1857.

J. R. Bitner.
Heuristics that Dynamically Alter Data Structures to Reduce Their Access Time.
PhD thesis, University of lllinois, July, 1978.

J.R. Bitner.
Heuristics that dynamically organize data structures.
SIAM Journal of Computing 8(1):82-110, February, 1978.

(0]

(1]

[12]

[13]

[14]

[15]

[16]
[17]
(18]

[19]

[20]

[21]

19

J. J. Bloch, D. S. Daniels, and A. Z. Spector.

Weighted Voting lor Directorias: A Comprehensive Study.

Technical Report CMU.CS-84-114, Department of Computer Science, Carnegie-
Mellon University, Pittsburgh, PA, April , 1984,

N. S. Borenstein.
The Design and Evaluation ol On-line Help Systems.
PhD thesis, Department of Computer Science, Carnegie-Mellon University, Apnl, 1985.

R. P.Brent.

Dynamic Storage Allocation on a Computer with Virtual Memory.

Technical Report CMA-R37-84, Centre for Mathematical Analysis, Australian National
University, Canberra ACT 2601, Australia, February, 1984.

M. H. Brown and R. Sedgewick.
Techniques for algorithm animation.
IEEE Soltware 2(1):28-39, January, 1985.

T.N.Bul.
On Bisecting Random Graphs.
Master's thesis, MIT, January, 1983.

J. Cameron and G. Thomas.

An heuristic graph partitioning and coloring algorithm.
1884.

Draft manuscript

E. G. Coffman, Jr., T. T. Kadota, and L. A. Shepp.
A stochastic model of frag mentation in dynamic storage allocation.
Manuscript, Bell Laboratories, Murray Hill, NJ 07974, 1983.

H. P.Crower, R. S. Dembo, and J. M. Mulvey.
Reporting camputational expeniments in mathematical programming.
Mathematical Programming 15:316-329, 1978.

H. Crowder and M. W. Padberg.
Solving large-scale symmetric traveling salesman problems to optimality.
Management Science 26(5):435-509, May, 1980.

J. C. Cuberson.

Updating Binary Trees.

Master's thestis, Department of Computer Science, University of Waterloo, Waterloo,
Ontario, Canada, March, 1964,

W. F. Eddy.
A new convex hull algorithm for planar sets.

ACM Transactions on Mathematical Software 3(4):398-403, December, 1977.
J. Eppinger. -

An empirical study of insertion and deletion in binary trees.

Communications of the ACM 26(9), September, 1983.

[22]

(23]

[24]

[25]

[26]

[271

[28]

[29]

[30)

[31]

[32]

133)

S. Floyd and R. Kam.

FFD bin-packing lor distributions on [0, 1/2].

In Proceedings, 27th Symposium on Foundations of Computer Science. IEEE,
October, 1988.

W. R. Franklin.
An exact hidden sphere algonthm that operates in finear time.
Computer Graphics and image Processing 15:364-379, February, 1981.

J. H. Friedman, J. L. 8entley, R. A. Finkel.
An algornithm for finding best matches in logarithmic expected time.
ACM Transactions on Mathematical Software 3(3):209-226, Seplember, 1977.

8. L. Golden and W. R. Steward.
Chapter 7: Empirical Analysis of Heuristics.
The Travelling Salesman Problem.

1985, Chapter 7.

R.R. Hart.
The Average Height of Binary Search Trees.
Master’s thesis, University of California at Irvine, 1983,

8. Helfrich.
Reduktionsalgonthmen luer Gitterbasen.
Diplomarbeit, Frankfurt, Germany, 1984.

D. C. Hoaglin and D. F. Andrews.
The reporting of comoutation-based results in statistics.
The American Statistician 29(3):122-126, August, 1975.

D. S. Johnson.

Near-Optimal Bin Packing Aigorithms.

PhD thesis, Department of Mathematics, Massachussetts Institute of Technology,
Cambridge MA, June, 1973,

J. B. Kadane and G. W, Wasilkowskl,
Average case epsilon-complexity in computer science: a Bayesian view,
In Second Valencia International Meeting on Bayesian Statistics. September, 1983.

N. Karmarkar.

Probabilistic analysis of some bin-packing algorithms.

in Proceedings, 23rd Symposium on Foundations of Computer Science, pages
107-111. {EEE Computer Society, 1982.

6. W. Kernighan and S. Lin.
An efficient heuristic procedure for partitioning graphs.
The Bell System Technical Journal 43{(2):291-307, February, 1970.

G. D. Knott.
Deletion in Binary Storage Trees.
PhD thesis, Stanford University, May, 1975.

(34]

[3s]

(36]

[37]

[38]

(39]

[40]

[41]

[42]

[43]

[44]

21

D. E. Knuth.
The Art ol Computer Programming: Volume 3, Sorting and Searching.
Addison-Wesley Publishing Company, Reading, MA, 1973.

G. S. Leuker.

Bin packing with items uniformly distributed over intervals [a,b].

In Proceedings, 24th Symposium on Foundations of Computer Science, pages
289.297. IEEE Computer Society, 1983.

K. Maruyama, S. K. Chang, and D. T. Tang.
A geileral packing algorithm for multidimensional resource requirements.
International Journal of Computer and information Sciences 6{2):131-149, 1977.

T. Ohya, M. Iri, and K. Murota.

improvements of the incremental method for the Voronoi diagram with computational
comparison of various algorithms.

Journal of the Operations Researc h Society of Japan 27(4):304-336, December, 1984.

H. L. Ong, M. J. Magazine, T. S. Wee.

Probabilistic analysis of bin packing heuristics.

Operations Research 32(5).983-998, September-October, 1984.

M. G. Pilcher. }

Development and Validation of Random Cut Discrete Optimization Test Problem

Generaltors.
PhD thesis, Purdue University, 1985.

C. W. Purdhom and C. Brown.
The Analtysis of Algorithms.
Holt, Reinhart & Winston, 1985.

R. Rivest.
On seli-organizing sequential search heuristics.
Communications of the ACM 19(2):63.67, February, 1978.

P.W. Shor.

The avsrage-case analysis of some on-line algorithms for bin packing.

In Proccerdings, 25th Symposium on Foundations of Computer Science, pages
183 200. IEEE , October, 1984.

P.W. Shor.
Average-case Analysis of Some Onfine Heuristics for Bin Packing.
PhD thesis, Massachussetts Institute of Technology, May, 1885.

E. P. Stritter.

File Migration.

(Ph.D. Thesis) SLAC-200, UC-32, STAN-CS-77-594, Stanford Linear Accelerator
Center, Stanford University, Stanford California, January, 1977.

Available from Nationa! Technical Informations Service, U S Department of
Commerce, 5285 Port Royal Road, Springfield, VA 22161.

{4s]

[46]

(471

f48]

A. Tenenbaum.
Simulations of dynamic sequential search algorithms.
CACM 21(8):790-791, September, 1978.

C. J. Van Wyk, J. L Bentley, and P. J. Weinberger.

Efficiency Considsrations for C Programs on a VAX 11/780.

Technical Report CMU-CS-82-134, Department of Computer Science, Carnegie-
Meiion University, Pittsburgh, PA, August, 1982.

B. W. Weide.
Statistical Methods in Algorithm Design and Analysis.
PhD thesis, Carnegie-Mellon University, August, 1978.

J. Wendordf.
Unpublished notes.
October, 1985.

Part il

Case Studies

Just the facts, m’am.
- Sgt. Joe Friday

This section presents four studies in experimental analysis of algorithma. Chapter 2 examines
four heuristics for the one-dimensional bin packing problem. The solution quality and time
complexity of a greedy algorithm for matching are studied in Chapter 3. Chapter 4 compares
stratagies for selecting partition elements in Quicksort. Finally, Chapter 5 studies a family of
seif-organizing sequential search rules under various distributions on request probabilities.

Chapter 2
One-Dimensiona! Bin Packing

The one-dimensional bin packing problem is well known: given a set of items with weights
from the interval (0, 1], pack the items into 8 minimum number of unit-capacity bins. Since the
problem is NP-complele, a variety of approximation algorithms have been proposed. The
following have received considerable attention. -

o Flrst Fit (FF): inspect the bins sequentially and place each item into the first bin
that can contain it. Items are packed in the order in which they are presented as

input.

o First Fit Decreasing (FFD): Sort the items in decreasing order by weight, then
apply First Fit to the sorted list.

o Bast Fit (BF): Place each item in the fullest tin that can contain it; that is, the bin
into which it fits most tightly. As with First Fit, the ordering of the input list is

presarved.

» Bast Fit Decreasing {BFD): Sort the items in decreasing order by weight, then
apply Best Fit lo the sorted list of weights.

. All of these algorithms can be implemented to run in O(nlogn) time, where n is the number
of items to be packed. Note that FF and BF are on-line algorithms, whereas FFD and BFD
require that the entire list be available bafore packing begins.

For a given list L _ of n weights, the bin count A(L,) ~ the number of bins used by algorithm
Atopack istL - is the usual analytical measure of packing quality. The packing rule that
minimizes the bin count for any list has the name OPT. The sum of weights in L , denoted by
Z(L). isalower bound on OPT(L,). Another common measure is the bin ratio, the ratio of the
number of bins used by the algorithm to the number used by OPT when packing L . Since bin
packing is NP-hard, OPT(L,) cannot be easily determined expefrimentally. The measure
empty space, which is the sum of the gaps remaining in partially packed bins, is therefore
adopted here. Empty space for algorithm A when packing list L is denoted by AA(L).

26

Note that empty space is equal to the dillerence between the bin count and the weight sum:
thatis, AA(L)) = A(L,) - Z(L)- Since Z(L,,) Is a lower bound on OPT(L). an upper bound
on empty space can be used o denive an upper bound on the bin ratio by the following
argument. Suppose it is established that AA(L) = A(L,)—-Z(L,) < flu.n), for some unction
Sfu.n). Then .

(A(L,)—~Z(L))/OPT(L,) < flu.n)/OPT(L).
and therelore
A(L,)/ OPT < fu.n)/OPT(L,) + Z(L,)/OPT(L,).
where the last term is at most 1.

The expected performance of the bin-packing algorithms is studied in this chapter. Under
the standard model, weights are drawn independently at random from the uniform distribution
on the interval [0, u], for 0<u €1. The list L, is therefore a random variable generated
according to parameters n and v, as are the measures bin count A(LM). and empty space
AA(L,) Note that E[Z(L,)] = un/2.

2.1. Previous Work

Approximation algorithms for bin packing have received considerable attention; for an
extensive review of work in this area, see Coffman, Garey and Johnson [5]. Some results
related to this work are surveyed below.

Johnson [9] established the following worst-case bounds on the bin ratio. These bounds
ara tight in the sense that no better ratio can be found.

FFD(L,) < 1/9-OPT(L) +4
BFD(L,) < 1L/9-OPT(L) + 4
FF(L,) S 17/10-OPT(L,) + 1
BF(L,) < 17/10-OPT(L,) +1
Brown [4] showed that no on-ine algorithm can achieve an asymptotic bin ratio batter than
1.536. On the other hand, Femandez de la Vega and Leuker[6] and Karmarkar and Karp

[11] have presented off-line algorithms for which the worst-case bin ratio approaches the
optimal value of 7.

a

Karmarkar [10] showed that in the expected-case model any v allows a perfect packing: that
is, the ratio of E{OPT(L o] to E[Z(“_n)] approaches 1 as n — oo. How do the heuristics
compare to the optimal packing? Expected-case resulls for the rules studied here have
appeared only for the case u = 1. Frederickson [8] and Leuker [13] have studied FFD and
BFD. Their analyses show that the expected bin ratio for these algorithms converges to 1 and
that expected empty space is 8 (n'?).

More recently, Shor [16] showed that any on-line algorithm that does not know n in advance
(including BF and FF) will leave Q(n'/*(1ogn)'?) empty space in the expected case. He also
showed that E[ABF(L,)] is O(r'"logn) and Q(n'*(logn)’*), and that E[AFF(L,)] is
O(n*(log n)*) and R (™).

Previous simulation studies of bin packing heuristics have estimated the bin ratio for varying
n and u. Johnson [9] simulated a number of heuristics for u = 025, 0.5, 1 and n up to 200. He
computed max([weight-sum].number of weights > 1/2) (a lower bound on OPT) for each list,
and reported the bin ratio using this approximation. His measurements therefore give an
upper bound on bin ratios for n $200. Ong, Magazine‘and Wee [15] applied regression
analysis with the model E[A(L“n)]= dn + a. The regression fits give estimates for the
asymptotic bin ratio, using I(LM) and BFD(LM) to estimate OPT(LM). Their simulations
took u=25,5,75.1 and n up to 1000. Maruyama, Chang, and Tang [14] considered a
spectrum of packing rules and input parameters to determine which rules dominate under a
variety of circumstances.

2.2. The Simulation Study

The lollowing sections present new results for the expected-rase behavior of the heuristics.
Parts have been published as Joint work with J. Bentlgy, D. Johnson, T. Leighton, and
L. McGeoch, in [2] and [3]. Earller work is extended here in a number of ways, primarily by a
closer examination of performance when u Is less than 1, identification of new measures that
give more precise characterization of the packings, and new arguments to explain observed
behavior.

The initial goal of the simulation study was to measure packing quality for the four rules as a
function of st size and the upper bound on the item weights. Each trial therefore
corresponds to a list of n weights generated independently from the uniform distribution on
(0w). For efficiency, integer computation was used in the simulation: bin capacity was 2°-1,
and weights were generated from appropriate integer ranges.

28

The primary experiments were perfarmed on a VAX 11/750, (some on a VAX 11/780), using
22.bit integers and 64-bit (55-bit mantissa) double-precision reals. The random number
generator was the cyclic feedback method described by Knuth [12] (Algorithm A, Section
3.2.2, 2nd Edition). Ta check the primary results, a number of experiments were replicated an
a TRS-80 Model Ili computer (using the system’s linear congruential random number

generator), with 32-bit real arithmetic.

in most af the graphs presented in this chapter, the abscissa corresponds to either nor u
and the ordinate corresponds to a measure of packing quality such as empty space (in units
of bins). Sample points were taken at n doubling from 125: that is, at 125, 250, . . . 128000.
The parameter u takes values in the range (0, 1]. Uniess otherwise specified, the number of
trials at each sample point is 25.

2.3. First Fit

A long-standing open problem has been to determine the asymptotic bin ratio for First Fit
under the expected-case model when u is fixed at 1. Since First Fitis an on-line algorithm and
does not reorder its input list, it has been widely conjectured (see [9, 3]) that the heuristic is
not-asymptotically optimal, implying that the asymptotic bin ratio is some constant strictly
greater than 1. Johnson's [9] worst case bound implies that the expected bin ratio cannot be
more than 1.7; from sim_ulaﬁons he conjectured that the expected bin ratio is near 1.07.
Experimental results of Ong, Magazine and Wee [15] (with higher n) suggest that the ratio is
between 1.038 and 1.058.

Exhibit 2-1-a shows empty space for 25 trials each at the sample points u = 1 and n doubling
from 125 to 128000 The near linear growth on a log/log scale suggests a power law: linear
least-squares regression on this scale yiekis an estimated slope of 0.7012, indicating that
mean empty space grows approximately as n®’, The residuals to this fit (Graph 2- 1-b) suggest
that the variance increases in n; no significant curvature in the residuals is apparent.

R appears, therefore, that empty space grows sublinearly in n. This leads to the surprising
conjecture that the expected bin ratio of First Fit is asymptotically optimal, by the following
argument: the expected sum of the weights {(equal to n/2) grows lineasly in n and therefore
OPT(L,) is Q(n). Since, AFF(L,‘")xn" = oOPT(L,). the asymptotic expected bin ratic Is
L

o 1000y
Q
a
7)) -
£ 100}
E >
s
1o-i 1 -
100 1000 10000 100000
N
a
Q'SO' -
§ o0l
§ 100 -
E - - .
50' - -
< S I
ot =----. Boeeo.n g--e- ... '. ----- I---- .l Boeeee- g--e-- - :
-so- - - s
100 1000 10000 100600
N

Exhibit 2-1: FirstFit,us1

This new conjecture is proved in [3]; specifically, it is shown that E[AFF(L,)] = o(n**).
The bound is actually derived for a simplified version of FF, called 2FF, which performs
exactly as FF except that a maximum of two items may be placed in any bin. (itis easy to show
that FF never uses more bins than 2FF.) An obvious question is whether the gap between
observed growth in empty space, msn’, and the theoretical bound, O(n*'), is due to
differences between the packing efficiency of 2FF and FF. Graph 2-2 suggests that thera is
no such gap between the two algorithms: on identical lists, the average ratio of empty space
in a 2FF packing to that in the FF packing appears to approach a constant near 1.2 rather-
than increasing in .

Prompted by these observations, Shor [16] obtained bounds of 2(*”) and O(og’n)
for expected empty space in FF packings. His technique was to establish an analogy between
bin packing and certain planar matching problems and to show that bounds in one domain
imply bounds in the other. Note that although our regression fit (AFF(L,)~sn"") Is greater

t
'.‘.
i:.: .
Q
&)
H| :
e : . : T .
uP: s . ; :
: . g3

s - 9 i ! H g ! 1 | |

0o 7000 TO000 o000

»
Exhibit 2-2: Ratio ol 2FF to FF

than Shor's upper bound, the fit was adequate to justify the conjecture of asymptotic
optimality.

2.3.1.Nonmonotonicity in u

Analytical characterizations of First Fit for values of v <1 remain elusive. Graph 2-3-a
presents empty space for 25 trials at each sample paint, for 02 Su < 1.0 and n = 128000.
Graph 2-3-b gives a “closeup’ of the measure for 0.7 Su <1. Graph 2-3-¢ presents mean
empty space in this range for four values of n. The graphs reveal a surprising phenomenon:
at large n, emptyfipace is not monotonic in u. Packings of items with weights from (0,038], for
example, givo tﬁore empty space than packings of items with weights from (0.09].

Experiments taking 50 trials aach. for v in the neighborhood of the local minima (in
increments of 0.005) suggest that they occur near v~ = 09, 0925, and 0.94 respectively, for n
= 32000, 84000, and 128000. Doubling n produces a declining Increment in u™, suggesting
that the local minimum u~ increases slowly in n. It would be interesting to determine ifu™ has
an asymptotic upper bound that is strictly less than 1.

Similat&stimaﬁonofu".theuvaluegivinb melocalmaximum,isﬁ\omdifﬁwltbecaweol
the shallow curve and relatively large variance of data points in this range. ‘With u taken in
increments of 0.01, the largest means are found at u* =082, 0.82, and 038 for n = 32000,

K}

1000 a _ I. _ - 1000
i _§* -
[| i" 2 ==
™ : l_ -Eg
500 — _ B :!E - 800
- .=§
] ! B
0d - - - ' ; . 600
]] L] [] 1 T
2 6 1 2 B3 9 1
a b
m- -
*100m
w0 T%°
0-— .xm
T T T T
i J 8 9 1

c
Exhibit 2-3: Empty Space lor Varying u

64000, and 128000. These estimates do not inspire confidence because the means do not
move smoothly in u at fixed n.

An alternative to comparing means at each sample point is to use a statistical test on each
set of measurements. Student's t test, for example, evaluates the hypothesis that two point
sets from a normal distribution have lhe_same'menm the measurements at the sample point
n = 128000, v = 0.8, for example, can be compared to those from n = 128000,y = 0.81.
(Informal graphical analysis indicates that the assumption of normality is not unreasonabte.)

Number ol Bins

kv

Unfortunately, while the graphical observation that the three curves are moving up at
u =0.79, 080 and down at u = 0.3, 0.84 is confirmed. the test detects no significant difference
between adjacent poinl sets in this range. The conjecture remains. therefore, that
08 su* 5082, and that u™* moves very slowly, if at all, in n.

co
!
!
B

- | .

Exhibit 2-4: Distribution by Item Class

A more detailed look at the packings gives a better understanding of the nonmonotic
behavior. Define a gap to be the amount of empty space in a single bin, and define a k-item
bin to be a bin with k items in it after the packing is finished. Graph 2-4-a shows the
distribution of k-item bins, averaged over five trials each at n = 128000 and 0.75 Su <1. The
four curves represent the average number of 1-item, 2-item, 3-item, and 4-or-more-item
(denoted by 4+ item) bins In the packings. Over most of this range the number of 1-item bins
is small, except for a rapid Increase as v nears 1. The 2-item bins are by far the most
common: the number of 2-item bins increases quickly in the range 08 < v <09 and then
levels off as v nears 1. The number of 3-item and 4+ Item bins generally decrease as v
increases. On alogarithmic y-scale the number of 1-item bins is nearly linear in u, suggesting
approximately exponential growth. Graph 2-4-b depicts the amount of empty space in each
bin class. Most of the empty space lies in 2-item bins for u In this range. As v nears 1, empty
space in 2-item bins decreases and empty space In'loitem binsincreases; compare,

Now, divide the interval (0, 025] into 25 gap ranges, each of the form ((/—1)/100, i/100}, for
i 25, and label each bin according to the index i of its gap range. (Bins with gap greater

.1, .15, .2, .25,>

.05,

.05

u=1]

[]
Q0
~N
et

b U= .95

-l
o
ot

A

t U=.9

+

u=z .85

),

T.“”:

-
- u'.a
r

A
.1 .15 .20 .25'>

Gap Size
1-item Bins

Exhibit 2-5: Distributions of Gaps

2-item Bins

Gap Size
3-{item
Bins

.05
GS

44item

Bins

- than 025 are counted in a single category.) Exhibit 2-5 pr'esems the distribution of bins by
k-item category as well as by gap range, with n = 128000 and five values of u, for a single trial
at each sample point. In this multigraph, a row of panels corresponds to a u value, and a
column of panels corresponds to k-item bins, for k=1, 2, 3, and 4-or-more. Each panel

3

displays the distribution of bins with respect to gap ranges. In the upper left panel, for
example, a point with coordinates (0.05, 400) would indicate that in the packing at
n=128000, v = 1, there were 400 1-item bins having gaps in the range (.04, .05].

Because the counts range over four orders of magnilude, a logarithmic y-scale is used in
the panels. In each panel. the harizontal bars mark the nght and left edges of the gap ranges
having non-zero counts. In the 1-item column (leftmost panels), bins with gaps larger than
0.25 are counted as a single category at the right side of each panel.

Exhibit 2-5 allows a number of observations. For example, 1-item bins cannot have gaps
smaller than 1 - y. Only 1-item bins ever have gaps larger than 0.25. Gaps in 1-item bins are
fairly uniformly distributed, whereas the distribution of gaps in 2-item {and in 3-item bins)
declines quickly as gap size increases.

The largest gap observed in 2-item bins is 0.18 (at u = 85), and 3-item bins have gaps
smaller than 009. For some reason, gaps in 3-item bins are generally larger at u = 0.85 than at
u=090r atu = (8. The largest gap observed for 4+ item bins is 0.02. In general, at fixed u,
k-item bins have smaller gaps than |-item bins, fork < |J.

Finally, note that as u increases to 1 the number of 1-item bins increases (observed from
Graph 2-4-a), but the average gap in those bins decreases (since the distribution shilts left at
higher panels of 2-5). Similarty, the number of 2-item bins also increases in u, leveling off near
u =09, and the average gap in 2-item bins decreases as v nears 1. Recall that empty spacein
2-item bins is nonmonotonic over this range, and that these bins dominate the packing: the
2-item bins account for the “hump” observed earlier for total empty space. As v nears 1,
empty space in 1-item bins increases rapidiy, which accounts for the rise in total empty space
when v is greater than u~. The number of 3 and 4+ item bins generally decreases as v
increases, but they are few and their gaps are small. Although they do not greatly affect total
empty space in this range, it is likely, that they would dominate the packings at smaller u.

We conjectured in (2] that there exist values of u for which expected empty space grows
linearly in n. Exhibits 2-4 and 2-5 suggests an argument for this conjecture when, say, u = 08.
Suppose there is a positive constant fthat gives a lower bound on the expected fraction of
1-item and 2-item bins in an FF packing. Now, the gap In 1-item bins is'at least 1—-u; suppose
aiso that the average gap In 2-item bins is at least some fixed constant e, where 0 < e S1—u.
Tonlemptyspaeeisﬂ'oereloreboundedbelowbyefFF(Lu). Sinca the number of bins is at

35

least linear (bounded below by the sum of the weights) this gives a linear lower bound for

empty space.

It is easy to formalize the following argument for the desired lower bound on £ the fraction ot
1-item and 2.item bins in the packing. The argument works by giving an upper bound on the
number of bins that can contain at least 3 items. This number is maximized when as many

bins as possible have exactly three items.

Recall that Z(Lu_n) is a lower bound on the number of bins used; when u = 0.8 we have
E[Z(Lu_n)] = 2n/S. Suppose a packing leaves 2n/5 bins. Not a// of these bing can contain 3 or
more items, since this wou'd give only n/] bins, which is smaller than 2n/5. The way to leave
2n/5 bins and also maximize the number of 3-item bins is to pack as many as possible 3-item
bins and then to fill out the packing with 1-item bins. {f a is the number of items packed
3-to-a-bin, we want to maximize a subject to a73 + (n—a) = 2n/5. This equality holds when
a = 9n/10; therelore at mast 9n/10 of the items can be packed 3-to-a-bin if there are to be
2n/5 total bing in the packing. The expected number of items packed 1- or 2-to-a-bin is
therefore at least n/10.

Deriving a lower bound on e appears to be difficult. An easy lower bournxd on gap sizes
exists for 1-item bins: since v bounds the weight size, there can be no 1-item bin with gap
smaller than 1—u. if the 2-item bins were formed by random pairings of uniform variates with
upper bound 0.8, then one could easily show that the gaps are (with high probability) greater
than a small constant @ < 02. Unfortunately, the pairings produced by First Fit are likely to
give gaps consistently smaller than those produced by random pairings.

Graph 2-6-a gives observed average values for f for three trials each at n = 128000 and
02 <u S 1. The curves corresponds to k-item bins, for k between 1 and 7: each curve is
labeled near the point where it reaches its highest value. For example, at v = 0.65 the 3-item
bins comprise about 61% of the bins in the packings, and this is the highest fraction ever
obtained by 3-item bins. The highest fraction achieved for 2-item bins is approximately 81%,
seen when u = 95. The highest fraction for 1-item bins is about 1%, whenu = L.

Graph 2-6-b gives the distribution of empty space in 2-item bins for n = 128000, v = 8. The
x-coordinate of each point comresponds to a gap range in increments of 001 The y-
coordinate gives the fraction of 2-item bins with gaps in this range. This graph can be used to
suggest appropriate values for « the leftmast points show that about 3/100 of the 2-item bins

g . 2. E .035¢
@ 0.8} o o Q
- A 3
b [8 .030¢ ;»
K- s -~ +
a 0.8 - 3.-. Q .' 2 1*’
8 ‘g TS S o2sf ° :
w L . - ¥ >
- Se .: .'\'. ‘.. ‘. g ;*
o.‘ ° : .'.'. .' -_' -‘- .-. g t .
e ¢S w s S .020f 13 %394
71%:8 e .) w + :igt
02} ~7a fa ¢ " ‘e
5T T) ":::if
P N Y ('S : 015} t
P T S e -
00} §-¢ 3:0t0e-30.080
0.2 0.4 0.6 0.8 1.0 o .01 .02 .03
a u b Qap

Exhibit 2-6: Measuningfand e

have gaps in the range [0. .001]. Therefore 97/100 of the 2-item bins have gaps at least".001.
About half of the bins have gaps greater than .025 (not shown on this graph). Similar graphs
measuring gap distribution at smalier n are almiost identical in appearance to Graph 2-6-b,

although variance tends to dacreasein n.

The graphs of Exhibit 2.6 show a great deal of structure; it would be interesting to
characterize this behavior analytically by bounding the number of k-item bins and the gaps in
those bins for any value of u. These could be combined to obtain bounds on empty space as
well as the bin ratio in First Fit packings.

2.3.2. Measurements at fixed v

The previous subsection measuré growth in v for fixed values of n; this subsection
- examines growth in n for certain fixed values of u. An interesting open question is whether
empty space is finear in n for any value of u. Early simulation results (reported in [2]) suggest
that this is the case when u =038, and the previous subsection gives an argument for this
conjecture,

Graph 2-7-a depicts mean empty space as a function of n for 25 trials each at four values of
u; Graph 2.7-b presents results of 25 trials at v = 2, 8. Both graphs are on log-log scales. At
u =8, alinear least-squares fit to the data in 2-7-b corresponding to the five highest values of

a7

r 10000
8 1000 %ad 8 [
b + g
% - U8 7] -
2 o > * ved
2 100} " o ‘J 4 E . *
IE . * ° . = W 1001 . .

* -] * i |]
* [} * ! i ' . *
‘ -
10} e« O N o‘b..z : -"c us2
+ -] + 1 1 l ; l
o o - o ! : : L
. ° C il
o * o : °
[} -
[}
1P 00 o
i . ; .01 s .
100 10000 1000000 100 10000 1000000
N N
a b

Exhibit 2-7: Growthinn

n (that is, for sample points with 8000 <n < 128000) has slope near 0.938. Similar fits to the
four, three, and two highest values give slopes of 0.943, 0.954, and 0.966, respectively.

Although the increasing slopes and upward curvature in the residuals (not shown) provide
some evidence lor asymptotic linearity, the results are not conclusive: the steady change in
slopes zuggests that n is too small for an accurate assessment of asymptotic behavior. Of
course, it is likely that a function form other than a power law, perhaps n/ign, is more
appropriate. A regression fit using this model at u = 0.8 (and 8000 < n < 128000) also leaves an
upward curve in the residuals, although the curve is more shallow. At u = 02, a least-squares
fit at the five highest n values gives a slope of approximately 0.75, and a fit at the two highest
values gives 0.78. The lower slope suggests that either empty space actually grows
sublinearly at this u value (as was the case with u = 1), or that the curve is very slow in
approaching its asymptotic form.

2.4. Best Fit

The Best Fit algorithm is similar in many ways to First Fit. Both are on-line algorithms, and
both can be implemented to run in O(alog) time. First Fit needs only a simple heap data
structure to find the first bin that can contain a given item, however, while Best Fit requires
some sort of balanced tree mechanism to find the bin into which the item fits most tightly.

Partly because of the implementation requirements, the simulation program for Best Fit uses
linear search to find the best-fitting bin and therefore requires O(n?) time to pack.
Simulations of Best Fit packings were only taken for n up to 16000 rather than to 128000.
Although the program efficiency was not great, the efficiency of the experimentation - in
terms of human and computer time spent in the search for useful measurements - was
enhanced by the fact that the First Fit study had been done first. The understanding of
packing structures gained from that study allowed similar analysis of Best Fit with much less
exploration time. Similarly, since the results are analogous to those for First Fit, the pace of
this section is faster.

Graph 2-8-a depicts empty space in Best Fit packings as a function of n with u =1, and
Graph 2-8-t shows the residuals from this fit. A linear least-squares fit on this log/log scale
has slope 0.619, which is better than the corresponding value of 0.701 observed for First Fit.
The regression results suggests that empty space is sublinear in n; as before, this leads to the
conjecture that Best Fit is asymptotically optimal for this input model. Prompted by these
otservations, Shor [16] proved bounds of O(n*Ylogn) and Q(nYlogn ") for empty space
in Best Fit packinggs whenu = L.

Because Shor’s results imply that empty space grows more slowly for Best Fit than for First
Fit, Best Fit must produce better packings asymptotically when v = 1. 1t is clear from Exhibit
2-9 that Best Fit produces better packings at smaller n and v as well. Graph 2-9-a shows the
ratio of empty space in First Fit packings ta that for Best Fit packings of identical weight lists,
for 10 trials each at v = 1 and 125 < n <3000. In all cases the ratio is greater than 1, indicating
that BF gives better performance. Graph 2-9-b compares empty space for the two algorithms
on identical weight lists at n=16000 and 02 <u s1. Best Fit generally gives better packings
throughout, although the differences are negligible at smailu. Although Best Fit and First Fit
are both onfine algorithms, there is no a priori reasoﬁ to suspect that similar nﬁnmonotonlc
behavior wil be exhibited. Graphs similar to 2-9-b indicate, however, that the
nonmonotonicity is even more pronounced with Best Fit, since it becomes apparent at smaller
n and is more sharply defined as n grows.

e 256
Q
a p
/]
bd‘r
n .
& 18}
4 L g
100 1000 10000
N
a
2‘0' +
a
] r * +
h-] *
| P ¢
(3] 2 3
1 R P R ; %
. ¥ ‘
-20%F *
100 1000 10000
N
b

Exhibit 2-8: BestFit, u = 1

The obvious quesﬁqn is whether the bins are distributed by item classes and by gap ranges
as they are for First Fit. Preliminary experiments measuring 1, the fraction of k-item bing in a
packing, suggest behavior almost identical to that displayed for First Fit (in Graph 2-6). The
only significant dilerence discovered so far i3 that when u is above 0.9, Best Fittendsto give a
slightly higher fraction of 1-item bins and slightly lower fractions of 2-item and 3-item bins
than First Fit.

The arguments for nonmonotonic behavior in First Fit can be adapted to BestFit. Showing
that e (alower bound on the gap In 2-item bins) is bounded away from zero seems even more
dillicult in this case, however, since Best Fit finds pairings that minimize this gap. Complete
analytical characterization of online packihgs remains a formidable open prablem.

~
o
\

i i:so.
N = 16000 . .
';l.ll % - iawj i'
3 . . - i
3t . ! 5 uoL . 3
d . X i -t!{
val - <oy v | . FF i
S A i 4 it
. o 3 . ! :
l.!.. . : ! * . o} .ft
; © . [
Y ",'
9% 1000 70000 o _'z.. e 3 3 5
a b

Exhibit 2-9: Comparing Best Fit to First Fit

2.5. First Fit Decreasing

The First Fit Decreasing algorithm sorts the items by decreasing weight before applying First
Fit to tha list. Prompted by early simulation results of Bentley and Faust([1], Leuker
(14] showed that AFFD(L,) = O)whenu=1.

Exhibit 2-10 depicts empty space as a function of n for five values of u. Each panel of Graph
2-10-a presents empty space for 25 trials at each sample paint; for comparison of scales, a
horizontal line in each panel is drawn at one bin. In Graph 2-10-b, each curve presents mean
values for the corresponding panel of Graph 2-10-a. Note that the n values double as they
increase and that the abscissa is on a logarithmic scale,

The most striking observation, from the bottom two panels of 2-10-a, is that empty space
does not appear grow in n when u is small. The conjecture that empty space is constantin n
when v £ 0.5 was first made in [2] and subsequently proved in [3]). Subsection 2.5.1 presants
acloser look at the packings when u is less than 0.5.

The presence of outliers - which indicate very bad packings - when u is large (at 0.7 and
0.8) and n is small (less than 1000) is also of interest. Exhibit 2-11 gives another view of the
oulliers. Graph 2-11-a presents empty space as a function of u for three fixed values of n (as
before, note the differences in scale among the panels). The bottom two graphs present mean
empty space for the corresponding panels above.

41

-j * -'

® 0
_l (¥
= -
.=-=§'§l!‘i 3- .
-A:T o R~ -
z = - 3 - 358 2% ¢ 7
- 8 1T B - = 34 . °
- . °
04 . ' . =4
= - = = . - = [I LI
o s | 1 silen””
-‘l--:! —5: C". ==o.o..|
3 :--;:;:=!;= . + 3 e s
" - - - -
:l._‘:;szsi ° T T™ T
= " s =281 " 38 3 L T BT I]
0
- - . " D e - -
Ve
E:"-:‘.--! b
s |azz3 222323 §¢
= 2 o = 2 8 = - 2 -
;=5=;":-§--
" g ez = _ 2 = - Z a
[
1 8 § ¥ B 4
0 xm 12000 126000
8

Exhibit 2-10: First Fit Decreasing

When v nears 1 (the paneis on the right), a number of outliers appear and empty space
suddenly displays a large variance as well as a rapid increase in the mean. As n increases,
this critical region (where the bad packings occur) appears to shift to the right. This behavior
is also observed in Graph 2-10-a: the top panel suggests that u = 0.8 is no longer in the critical
region when n = 2000, since outliers are no longer seen.

The left panels of Exhibit 2-11 suggest that behavior at u < 0.5 is quite different from that at
u > 05. In fact, the bottom left graph suggests that empty space grows lineardy inu whenu is

12

- - 300
N :E! gl [
2 -i' I.Z':” E:
- '!!— ;SS-W
o!l!‘-- -------- l“‘_’
. £}]
513 o SZaly
g ==ssgs2"” ~-28gr
i-‘-gii!: “aulid
° - 0 ® = - & o - ® & & ® - -o
-'i -
;:.- Ne - -
== ° - ___-:,.”
x-§=§l;l§=!=-m) 5_._5;'
iss=as_12 __.'..
o'!‘-a. —---:2:_."'0
™~ T T T T = sl
3 3 3 3 X 1
a
4
-I 4 ./'—lm
).
Ne
@ 128000
2 - o | © 18000 - 50
€ © 2000 .
e s
ﬂ...‘
1- /_:" f o-®
34 8 Lo
. 1] v Y T T
3 3 3 3 9
: b
Exhibit 2-11: First Fit Decreasing

rd

between 0.5 and the critical region. Subsection 2.5.2 exafnlnés the critical region and gives a
partial characlerization of the causes of bad packings; behavior when v is below the critical
region but above 0.5 Is also explored. '

2.5.1. uBelow 0.5

The proot (in [3]) that empty space is constant in n when u < 0.5 gives an upper bound of at
least 10 bins; Floyd and Karp [7] recently improved this bound to 10 bins, using a slightly
dilterent model of input probabilities. The bottom panel of Graph 2-10-a suggests that the
mean is in fact nearer to 0.7. Moreover, empty space is less than 1 over 75% of the time, in
which case the packing must be optimal (because the optimal packing cannot use lewer bins
and still contain the entire weight list). This section examines behavior at u <0.5 more closely.

Since the minimum number of bins used is [Z(L,)], there must be at feast
" [%,)= (L,) empty space in even an optimal packing: the last bin in the packing
represents a sort of “spillover” bin, whose gap is more an artifact of the weight sum than of
the packing quality. Lat the partial empty space of a packing refer to the empty space in all
butthe (ast bin.

e 1.0 <
a
s .
€ 2 :
£ :
v
a
: ..& :
? .
- L 4
J# .
L
'
&
0 2 - .0

] ..
Empty Ssece i Other B.a3

Exhibit 2-12: Last8in vs Partial Empty Space

Exhibit 2-12 plots empty space in the last bin against empty space in all the other bins
(partial empty space), for 25 trials at the sample paint n = 128000. v = 0.5. Empty space in all
the other bins (approximately 32000 of them at this sampie point) remains between 0.17 and
0.18, while empty space in the last bin ranges between 0 and 1. Total empty space (the sum
of these two quantities at each trial) is therefore almast completely dominated by variation in

the last bin.

a4

Graph 2-13-a compares total empty space (left panels) to partial empty space (right paneis)
tor sample points at n = 123000, 0.1 < u <.5. Note the dramatic increase in precision: empty
space has an observed range ol approximately 1 bin, while partial empty space is usually less
than +£0.001 bin from its mean. The growth of partial empty space in u was completely
obscured by the iast bin.

Graph 2-13-b shows partial empty space for n = 128000 and v in increments of .01. Grach
' 2.13-c shows the same Information on a log/log scale, with a linear regression line
superimpased. Partial empty space is nearly linear on this scale, except for an increase at the
high end. The fit has slope ol 2.11, indicating that partial empty space grows approximately as
™. (Fits at smaller n are consistent with this). The residuals from this fit provide an
interesting pattern: in Graph 2-13-d, peaks appear at v = 172, 1/3, .14, _, suggesting that a
cyclic component exists. Graph 2-13-e shows residuals from a fit to a degree-3 polynomial.
Similar peaks appear with this model and in fits with as high as degree-S polynomials.

An obvious question is whether this cyclic behavior is somehow an artilact of the simulation.
When n is very large and v very small, the average dilference between successive weights is
small, as are the gaps in the bins: perhaps errors due to machine precision are propagated in
some fashion to cause this pattern. Evidence exists to suggests that the cyclicity Is not an
artifact of machine precision or implementation. First, the smallest item weight ever
generated has expected size about one millionth of a bin (this occurs when n = 126000 and
u =0.1), and partial empty space is near 0.005, giving an average gap of one millionth of a bin.
The weights are represented by 30-bit integers, which can represent one billionth of a bin, so
machine precision is not overwheimed. Second, the cyclic behavior Is observed at smaller n,
which would presumably not be the case if machine precision were the prablem. Third, the
results were replicated on a secondary simulation environment, with differences in random
number_ aenerator (linear congruential vs. cyclic feedback), machine precision (30-bit
integers to represent the weights vs 16-bit reals), implementation, programmer, and
programming language. The only diferences in partial empty space between the two are
predicted byanglysiso!mediﬂerencaln precision batween the two systems.

it is possible that the cyclicity in the residuals can be explained by an arqument similar to
that for the nonmonotonic behavior of First Fit: that is, the observed behavior is a resuit of the
interaction between the fraction of k-item bins and the gaps In k-item bins. Analysis of FFD
packings suggests that k-item bins have a great deal of structure.

14 - = 0 - = * -
- C = =1 Ne -
= . ;== --°= an .-
feeca~-2 - = _ ="
0- - 8 = - - .o
14 L - _ - = - i 93
I R 2= .= =
-z .82 g3 |Ne -
- 2" e - . a 160 -
Ez2=2§82% -~ -
0= =~ ~ === -0
td = = - - -2 a k02
z = = -2 = -== _ s
—Sz= 27 %z a|N- .
- T2 g .=38|XZ0 s "
== a2 _ - s ®
- - -
0d-=*- - --- o
L T T L)
1 3 3 a 4 3 3
£
t! g
£ 4 c.
. K] vt
..
H 3 o ?
. '...-
.-" T
!» ..,n.
.-.... .f
-'...
B TLh 4
R 2 - -4 .5 2. 2.9 -1.% -1.8 -£.3
b c
-
’m-b -
.l ‘_ - <
.:' . .:: .0
- .- 'l [] :: :.l
= o 1fl. o
-[:. Ll.. . ..U.lgli ..: . e ® <
[: '..."..- e
LT | oy
-" .;O.. e ®
:-.a-lnl.'ll.“'.- ':i! .;-- ‘ | Y eet
T +) .
<3 -2 S | ot N 3 -4 P 4 s - -5

d

Exhibit 2-13: Partial Empty Space

Figure a: ltems with weight between 1/2 and 1/3 have been
packed. Thaitams are stacked two-10-a-bin.

Flgure b: ltems with weight between 1/3 and 1/4 have been
added (o the packing. Most of these items are stacked three-
to-a-bin in region B. Some items backfill onto region a The
vertical linas mark the edges of regions a and .

Figure c: ltems with weight betwen 1/4 and 1/5 have been
added. Most of these items are stacked lour-to-a-bin, but
some backlill anto reglons a and 8.

Figure d: All the items have been packed. '

Exhibil 2-14: FFD Packings

~l /7

T LAY

47

Exhibit 2-14 presents “snapshots” of an FFD packing of weights drawn from [0, 0.5). Each
item is represented by a very narrow white vertical bar with its top marked in black. There are
S0 many items that the black tops appear to form a continuous line. The first (largest) item
goes into the first bin, and so must the second, since the weights are near 0.5. The third and
fourth items must go into the second bin. This packing of items 2-to-a-bin continues until alt
items with weight greater than 1/3 have been packed (Figure a). Call the bins packed up to
this point 2-bins (not 2-item bins, since they will eventually contain more items). Once the
items are of size less than 1/3, they may be packed 3-to-a-bin (call these the 3-bins). Some of
these items, however, are small enough to “backfill” the 2-bins. This process of backfilling
and packing 3-to-a-bin continues until items with weight greater than 1/4 have been packed
(Figure b). Continuing, items either backfill in the 2-bins or the 3-bins, or are packed 4-to-a-
bin in new bins. This pattern continues until all items are packed. Observaticn of this
structure in FFD packings was central to our prool of constant empty space in [3]. More
importantly, “movies™ of the packings, obtained from simple algorithm animation techniques,
were directly responsible for suggesting the proof technique.

2.5.2. uabove 0.5

This subsection examines FFD packings for v >05. Empty space is measured here rather
than partial empty space, since the last bin does not dominate the measurements. Wg first
study the critical region, where outliers in empty space appear and mean empty space
increases rapidly asu nears 1.

Recall from Exhibit 2-10 that the left side of the crilical region appears to shift to the right at
a rate at most logarithmic in n. It is not clear how to characterize the region by experimental
methods; is likely, for example, that quantities such as the "edge of the region"” and the
“fraction of outliers” would be artifacts more of sample size and data analysis toois than of
underlying phenomena. Instead of measuring properties of the critical region, this section
examines properties of the weight fist that are correlated with bad packings.

Exhibit 2-15 presents, for 2 = 2000 and .84 Su <1, the distribution of empty space for 25
trials at each sample point. A panel corresponds to at single sample point; in each, the
measurements of empty spacs for the 25 trials are plotted against their ranks. In the top left
and center paneis, corresponding to u =084 and 086 (outside the critical region), empty
space is fairly uniformly distributed between {08,2] and [1,2], respectively. At u =038 the
distribution smooth except for the last 3 points, which are sharply higher. Atu =90 abreak is

2 ! 2 +*1 18 |
.84 oo .08 o .88 1
““
- * .
. Lad ””’ 10
“00” ’0-0’ .
1 ’0” 0’.’ JUTPPPPPPRwOeY Ve 4
1 0 =
0 10 20 0 10 20 0 10 20
12
10} .90 ST 20 .92 1 20| 94 R 1
. +* .
*
6 * ’0 ’“
R 10 o 10 wt
S ¢ e
’"m ’“Q
W ¢
0 0 w : o Leseess
0 10 20 0 10 20 0 10 20
.96 [4
30 L 4 40 .98 40 1.0 L
. * 7
20 +* . ’0
Copnd Lad 20 g
10 \ ,,M’.’ ? »ﬂ*"“”’ POV o) oot
0 A.“ 0 M 0 L 4
0 10 20 0 10 2V 0 10 20

Exhibit 2-15: Distribution of Empty Space

seen at the l6th-largest point. At higher values of v an abrupt br2ak is no longer seen.
Theoretical characterization of the distribution of empty space for fixed n and u is an open
problem. Although the sample size is small, it appears that the distribution changes
significantly over the critical reglon.

A new measure gives more insight into behavior in the critical region. Call items with weight
greater than 0.5 the big items in an input kst. The expected number of big items is n(uv—0.5)/u;
at n=2000, u =038, for example, 2000(0.3/08) =750 of the items in the weight list are
expected to be big items.

Graph 2.16-a presents the results of 1000 trials at n = 2000, with u generated uniformly at
random from the interval (0.82, 0.88]. The y-coordinate of each point corresponds to empty
space lor that trial; the x-coordinate gives the difference § between the number of big items in

Exhibit 2-18: Bad Packingsand §

the list and its expected value for the corresponding u. For exampie, a point with x-coordinate
20 might corresponds to a trial with 2000 items generated uniformly from the range (0. .325).
The expected number of big items at this sample point is 2000(.825 - .5)/.825 = 788, but the list
actuaily generated at that trial had 808 big items, so we have 8§ =808-788 = 20. In Graph
2-16-b, & is plotted against u for each of the 1000 triais. The relatively bad packings -~ the 40
trials having empty space between 3 and 50 - are highlighted in the graph. (All other
packings had fewer than 3 bins of empty space.)

Lists with positive § (the topheavy weight lists) tend to give bad packings. From Graph
2-16.a it appcars that vory topheavy lists tend to give very bad packings. On the other hand,
not all topheavy lists give bad packings; from Graph 2.16-b it appears that FFD is more
sensitive to topheavy lists at high u, since bad packings are generally concentrated in the
upper right corner of the graph.

Exhibit 2-17 supports this last observation. Graph 2-17-a plots empty space against the
number of big items for 25 trials at the sample point n = 2000, u = 1. The expected number of
big items at this sample point is 1000. Empty space increases with the number of big items in
the weight list; that is, topheavy lists tend to give bad packings. In contrast, Graph 2-17-b
depicts empty space versus the number of big items at n = 2000, v = 0.3, which is well below
the critical region. Outside the critical region, empty space does not appear o grow with the
number of big items.

g
o

025 . e
o s
a &
'S
>20 . . a1.8} ’0 Ry
% E .
w w
1s} + .
o 1.2 L .
+ tz * +
10+ . + .,
Py +
. ° o8 +
st , * .
. . . 0.4 . s
960 1000 1040 700 750 800
Number of Big llems Number of B{g ltems
atus b:u = 0.8

Exhibit 2-17: Empty Space vs. Big ltems

These and similar graphs suggest that as v nears 1 FFD becomes increasingly sensitive to
the number of big items in the list. If the conjecture were true, it would explain why the critical
reglon appears to shift to the right at high n. Let p represent the expected number of big
items in a list. By the central limit theorem, as n grows the probability of generating a list with
more than dpu big items decreases expanentially as n grows. On the other hand, at fixed n the
probability of generating a topheavy list increases linearly in u, since the range of weights
increases. At high n and small u, therefore, the probability of getting a bad list is too low for
outliers to be seen in 25 trials. Since the prebability increases in u the boundary of the critical
region would appear to shift to the right. While this observation gives a first cut at
characterizing packings in the critical reglon, it is clearly not complete. Why, for example, do
some topheavy lists cause bad packings and others do not? Further simulation might reveal
more.

Finally, consider the packings in the well-behaved area with u below the critical region but
above 0.5. The analytical bound of O(n'?) for empty space when u = 1 can be extended to
any u (see[14]). In addition, it can be shown (see[3]) that E[AFFD(L,)= R(n*") for
05 < v <. Finding the functions of u implicit in these order-of-magnitude bounds is an open
problem.

51

Recall Exhibit 2-11, which depicts growth in u for three values of n; it appears from the
bottom left graph that mean empty space grows linearly with v in this range. Linear
regression fits to the cimulation measurements in this region indicate that empty space is
approximately described by the function E[AFFD(L,)] = 490" (u=0.5). As with regression
fits when u s below 0.5, a cyclic component is once again seen in the residuals.

2.6. Best Fit Decreasing

The Best Fit Decreasing algorithm, like FFD and unlike BF and FF, sorts the item list before
packing. BFD and FFD are compared in this section. Although the expected performance of
FFD has been characterized to some extent for all values of u, theoretical analysis of BFD is

much less complete.

Simulations comparing BFD and FFD on identical weight lists at various sample points
suggest that the two algorithms give almost identical performance for this input model. For
example, in 25 trials each at the sample points given by u = 1, n = 125,250, 8000, comprising
175 measurements, empty space in corresponding packings differed in only one trial (at
n = 8000), when FFD used 2 more bins than BFD. Note that bin counts differ if and only if
empty space differs, since the weight lists are identical at each trial. This close
correspondence holds for other values of u as well: experiments at v =08 (and the same n
values) produced one trial where bin counts dilfered by 1, and trials at u = 0.5 produced no
differences. Similar experiments with n fixed at 8000 and v = G2, 04. 0.6. 0.3 produced no
differences in bin count.

it is not necessarily the case that BFD and FFD give identical packings. Whether the
packings are identical can be resolved to some extent by measurning partial empty space,
which corresponds to empty space in all but the last bin. If the packings are identical, then
partial empty space will be equal for the two. The converse is not necessarily true: it is
possible that the paddﬁgs be dilferent but partial empty space is the same. Preliminary
experiments at u=1 and varying n suggest that, on average, partial empty space differs
between the two rules less than 1/3 of the time. Limited experiments at n =800 give
differences 84% of the time at u=0.8 and 65% of the time at u=04. |

Consider the structure of BFD packings as compared to the pictures of FFD packings in
Exhibit 2-14. On a oerlect list (with items evenly distributed between 0 and u), BFD and FFD
must produce identical packings because the first bin into which an item fits is also the best.

52

Suppose a random list with v = 0.5 is to be packed. Certainly the items with weight in the
range (1/3, 1/2] would be packed identically by BFD and FFD. In the next packing stage it is
passible that an item with weight from (174, 1/3] has its “best" fitin a 3-bin, but its “first"* fit in
a 2-bin, but this would only result in two items being swapped in the two bins, which would not
affect pafiial empty space since the weight sum and the bin count are identical. By this
argument it is surprising that partial empty space is observed to differ so often for u less than
1. Further experiments with more detailed measures could give more information about

packing properties of the two rules.

2.7. Future Work

The results in this chapter have extended current understanding of the expected-case
behavior of the four bin packing heuristics. Not only do the measurements allow a precise
description of mean embty space as a function of n and u, but examination of properties of
the packings gives deeper insight and new arguments to explain cbserved behavior.

An obvious next step is to deveiop theoretical characterizations of the heuristics, perhags
by formalizing some of the arguments contained here. It is unlikely that theoretical
characterization ag precise as these measurements will be obtained by current techniques.

The experimentat work could be extended in a number of ways. First, it would be interesting
to measure packings for nenuniferm distributions on weights. Also, many other heuristics are
worthy of consideration: Cofiman, Garey, and Johnson [5), for example, survey results for
over 20 packing rules. Little is known about the expected performance of most of these rules.

References

(]

(2

13

(]

51

el

(6]

)]

J. Bentlay, J. Faust.
Unpublished notes on simulations of FFD.
1860.

J. L. Bentley, D. S. Johnson, F. T. Leighton, and C. C. McGeoch.

An experimental study of bin packing.

in Proceedings, 21st Allerton Conference on Communication, Control, and
Computing. University of Ulinots, Urbana lI, 1983.

J. L. Bentlay, D. S. Johnson, F. T, Leighton, C. C. McGeoch, L. A. McGeoch.
Some unexpected axpected-behavior results for bin packing.
In Proceedings, 16th Symposium on Theary of Computation. ACM, April, 1884.

D. J. Brawn.

A lower bound for on-line ons-dimensional bin packing algorithms. .

Report No. R-864, Coordinated Science Laboratory, University of lilinols, Urbana IL.,
1978.) .

E. G. Coffman, Jr, M. R. Garey, D. S. Johnson.
Approximation Algorithms for Bin-Packing -~ An Updated Survey.
Avaijlable from the authors at Bell Laboratories, Murray Hill, NJ 07874.

W. Fernandez de la Vega and G. S. Leuker.
Bin packing can be solved within 1+ e in linear time.
Combinatorica 1:312-320, 1881.

S. Floyd and R. Karp. .

FFD bin-packing for distributions on [0, 1/2].

In Proceedings. 27th Symposium on Foundations of Computer Sclence. IEEE,
October, 1868,

G. N. Frederickson.
Probabilistic analysis for simple one- and two-dimensional bin packing algorithms.
Information Processing Letters 11{4,5):156-161, December, 1880.

D. S. Johnson.

Near-Optimal Bin Packing Algorithms.

PhD thesis, Department of Mathematics, Massachussetts Institute of Technology,
Cambridge MA, June, 1873.

(0]

()

2]

(13)

(14]

[1s)

(6]

N. Karmarkar.
Probabilistic analysis of some bin-packing algorithms.
In Proceedings, 23rd Symposium on Foundations of Computer Science, pages

107-111. IEEE Caomputer Soclety, 1882.

N. Karmarkar and R. M. Karp.

An efficient approximation scheme for the one-dimensional bin packing problem.

In Praceedings, 23rd Symposium on Foundations of Computer Science, pages
312.320. IEEE Computer Society, 1882.

D. E. Knuth.
The Art of Computer Prcgiamming: Volume 2, Seminumerical Algorithms.

Addison-Wezta; Publishing Company, Reading, MA, 1973.

G. S. Leuker. :

Bin packing with items uniformly distributed over intervais [a,b].

In Proceedings, 24th Symposium on Foundations of Computer Science, pages
289-297. IEEE Computer Soclety, 1863.

K. Maruyama, S. K. Chang, and D. T. Tang.
A general packing algorithm for multidimensional resource requirements.

International Journal of Computer and Information Sciences 6(2):131-149, 1977.

H. L. Ong, M. J. Magazine, 7. S. Wee.
Probabilistic analysis of bin packing heuristics.
Operations Research 32(5):983-998, September-October, 1964.

P.W. Shor.

The average-case analysis of some on-line algorithms for bin packing.

In Proceedings. 25th Symposium on Foundations of Computer Science, pages
183-200. IEEE , October, 1664.

Chapter 3
Greedy Matching In One Dimension

3.1. Introduction

This chapter studies a restriction of the following problem: Given N points within the d-
dimensional unit hypercube, what is the pairwise matching of the points that minimizes the
sum of the Euclidean distances between maltched pairs? The planar version of this problem
arises, for example, in scheduling mechanical plotters: the input is a connected graph in the
plane and the plotter must draw lines at all edges, minimizing the amount of time that is
wasted while the plotter moves with pen up. Wasted pen movement can be eliminated if an
Eulerian cycle exists in the graph. There is no Eulerian cycle if and only if the graph has an
even number N 2 of vertices of odd degree; in that case the minimum matching of those
vertices can be added to the edge set to obtain the tour with minimum wasted movement.

The matching problem for paints uniform on the unit square has been studied extensively.
Edmonds [3] showed that a minimal matching in a general graph of N vertices can be found in
O(N) time, but this can be too expensive for plotting applications becausa N is often very
large, say, in the thousands. Fast approximation algorithms are therefore of interest; Avis
[1] reviews work in this area.

An obvious approximation algorithm for minimum matching is the “Greedy” one: keep
removing the pair of vertices with minimum edge cost until the matching is complete. The
straightforward implementation takes O(MN’) time; Manacher and Zobrist[5] describe a
version that from experimental results appears to run in O(N) expected time when the points
are distributed uniformly in the unit square.

Let E, (N) denote the edge cost of the matching produced by heuristic H; this is the sum of
the weights of edges in the matching. (The subscript is dropped in the following when
reference to the Greedy Heuristic is clear from the context.)

56

Reingold and Tarjan [6] showed that lor any graph that obeys the triangle ineguality, the

" . 913 383

worst-case ratio EG‘ eeuy(N)’Eowm(N) is bounded above by (4/3)N™7'°, or about (4/3)N-",
Avis, Davis and Steele [2] showed that when the points are unilormly distributed wilthin the
unit d-cube (for d > 1), the cost of the Greedy matching asymplotically approaches ¢ dN“’“”",

which is within a constant factor of the optimal matching.

We examine here the expected performance of the Greedy heuristic in one dimension: that
is, the points are drawn independently from the unilorm distribution on [0.1]. Certainly
Greedy is a poor choice for this problem, since the optimal matching can be found quickly by
pairing the leftmost paint with the second leftmost, the third with the fourth, and so on, giving
an expected matching cost ol approximately 1/2. Although Greedy should not be
implemented expressly for one-dimensional matching, its expecied-case behavior is of
interest. First, paints in higher-dimensional problems might happen to lie on a straight line. it
is uselul to know how Greedy performs in this potentially frequent case. The second reason is
purely theoretical: although Avis, Davis and Steele have characterized the expected edge cost
in d-space for d > 1, the case d = 1 remains open. Finally, the expected running time of the
Greedy algorithm described below, a modification of the Manacher and Zobrist algorithm for
planar points, is an open problem: the one-dimensional case can give insight into behavior at
higher dimensions.

3.2. The Study

Exhibit 3-1 presents a description of the Greedy algorithm used as the simulation model.
The algorithm uses an array A containing the N points from the interval [0, 1]; the points are
assumed to be presorted in increasing order. Greedy makes repeated passes through the
point set, at each pass locating the smallest gap between adjacent points, accumulating edge
cost, and removing the pair from the point sat. This algorithm runs In time quadratic in N.

The simulation program is more efficient than the straightforward implementation. The
program description Is given in Exhibit 3-2; this Is a modification of an implementation
proposed by Manacher and Zobrist[S] for the two-dimensional matching problam. The
simulation program also makes repeated passes through the point set, but each pass remaves
many points from the set rather than a single pair. Two points comprise a nearest naighbor
pair it each is the nearest neighbor of the other; the distance between them is therefore a
local minimum, and would eventually be removed by Greedy. Rather than removing the pair

Gready(N)
tnput: Array X of points, X[1] <= X{2] . . . X[N]
QOutput: edgecost

while ¥ > 0 do
mingap = MaxReal;
for t := 2 to N do Find smallest gap.
gap = Xx[1] - X[i-1]
it (gap < mingap) then
mingap = gap

index = i
edgecost = edgecost + mingap Accumulate costs.
for i := index+1 to N do Remove matched paints.

X[1-2] = X[4]
N=N-2

Exhibit 3-1: Greedy Algonthm: Quadratic Implementation

with minimum gap at each pass, the program removes all pairs of points with iocally minimum
distances. Since removing paints cannot produce smaller gaps, Program 3-2 correctly
implements the Greedy heuristic.

Two measures of the Greedy algorithm are of interest. The edge cost corresponds to the
sum of the lengths of the edges formed in the Greedy matching. Let E(N) denote the
expected edge cost for NN points drawn uniformly and independently from the interval (0. 1]. -
The time required to compute the matching at each iteration of the whiie loop is proportionai
to the number of paints encountered (assuming a preprocessing step to sort the paints). Tha
computation cost is therefore proportiona! to the sum, over ali iterations of the while loop, of
the number of points remaining at each iteration; let C\N) denote expected computation cost

The following section presents simulation results for the Greedy algorithm. The primary
simulations were performed on a VAX-11/750' using 32 bit integers and 64 bit (55 bit
mantissa) double precision reals. For program efficiency, integer computation was used
throughout; that is, points were drawn from the intoger range [0, 2°°] and results were scaled
to the real ranga [0,1] for output only. '

The only parameter to the simulation ks N, the number of input paints. Sample points for the

TVAX is & trademark of Digital Equipment Corparation.

Gready(N)
input: Array X of points, X[1] <= X[2] . . .X[N]
Output: edgecost

while N > 0 do

m = MaxReal Initialize.
r = X[2] - X[(1]
X[M+1] = MaxReal Set up sentinel.
for 1 = 2 to N do
1=m
mar
r o= X[i+1] - X[1] Find local minima.

if (1 > m) and (¢ >= m) then
X[i-1] = X[1] = KIL
adgecost = adgacost+m Accumulate
edge cos!s.

J=-1 Remove matched pairs.
for i := 1 to N do
if X{1] 1s not NIL then
X[= X[} J= 3+ 1
Nej-1
end

Exhibit 3-2: The Simuiation Program

study were taken at powers of two from 16 = 2* to 262144 = 2. in general, 25 trials were
performed at each sample point. Given N, the simulation program generated N points by the
cyclic feedback method described by Knuth [4] (Algorithm A, Section 3.2.2). The numbers
were then quicksorted and presented to the matching routine. Some expenments wers
replicated (for N < 4000) in Basic on a TRS-80 Model ill computer, using the system random
number generator and 32-bit reals.

3.3. Experimental Results

Some upper bounds are known for the edge cost E(N) of a Greedy Matching. Reingold and
Tasjan's[6] worst.case bound holds in the onedimensional case, giving
Eronty™Y EgpiemaM < 4/3N* (recall that Eopemal() 18 approximately 1/2 for linear
matching). Moreover, it is easy to show that EM(N)=O(109N) when the points are placed
on a line (see[2]): when there are N points in the unit interval, the two nearest points must be
at most 1/(N-1) apart. Removing these two gives k= N-2 points and the smallest edge
distance is at most 1/(k—1). Therefore

\vn) 1
EGreey\V) S Z m‘) = O(log N).

k=0

it is not known whether this upper bound is tight. By analogy with the results of Avis, Davis
and Steele [2] for higher dimensions. it Is natural to conjecture that the ratio of edge cost for
Greedy is vithin a constant factor of Optimal. This problem was described by Mike Steele,
who had been trying to prove the constant bound. The initial goal of the simuiation study was
to find an empirical bound on the constant and so to direct the theorem-proving elforts.

~2.5 - -
| - L F
.oz o 2]
52.0- s I 0z . 2 1
2 . L T B
318l R
=18 N T - T -
s - I I 8 & g & _ 2 7 * -
s 2 ® - é ; ° : .
or : : ; $ % % ° -
: i i s * - -
8 3
osf < - * -
0.0
8 64 512 4096 32768 265144
a
2190
3
[-
1.80}
] - -
<
S 1.70} - -
a -
=1 - - 1
1.60} - - .
E - - - - ! - [] ' -
81.50»--:525!!!-""‘
140 . _ - =
1.30} -
1204 64 512 4096 32768 265144
R)

Exhibit 3-3: Performance of Greedy

Graph 3-3-a shows why the bound was so difficuit to prove: FIN) increases with N rathef
than remaining constant. The graph depicts the resuits of 25 trials each for N set at powers of
2 from 2’ 10 2'*. Since the x-scale is iogarithmic and edga cost appears to grow linearty,
iogarithmic growth in V is indicated. A linear least-square fit on this scale gives

BN =0.09%g, N + 0.23.

This implies that unlike higher-dimensional cases, the ratio of the Greedy matching to tha
optimai malching is not bounded by a constant. Note that the coefficient is very small and
that E{V) therefore grows very slowly in-¥. Experimants over a smalier range of N values may
not have permitted this observation.

The computation cost of the efficient implementation Is also of interest. Computation costis
proportional ta the total number of paints examined in all passes through the point set. This
number, divided by N, is displayed as a function of N in Graph 3-3-b; the results suggest that
asymptotically {NV)=s1.52N.

Lewd
w e es0 o o o o o e on o e e o 0o 0 ® seoe e [
Pon
Fnd e ease o o wme o o m o 6 eoup o vew o wme e 1
Rancovwe e e e o o e e - L
Fiad e - . L Sv— L e e —]
Rewwe . . - - .
Lz
Flad 4
Remove

Exhibit 3-4: The Matching Algorithm

More detailed measurement of the matchings give more insight. Exhibit 3-4 shows the
behaviar of the shartcut algarithm on a small point set. Let a Jevel carrespond to ons pass
through the point sets, equivalent to one iteration of the auter 100p in Program 3-2. At level 0,
all the points are present. At each subsequent level, nearest neighbor pairs are removed and
the level edge cost ~ the sum ol the distances between paired points - is accumulated. This
continues untit some level where no points remain. Of course, different trials at the same
sample point may not produce the same number of leveis.

81

14 1 2 14
13 2 7 10 13
12 2 4 9 13 12
1" 1 2 11 17 9 11
10 1 12 17 10 1 10
9 1 1 19 11 5 2 9
8 1 3 10 9 1 1 8
7 1 13 18 14 2 7
6 2 8 15 t0 3 8
5 1 4 12 9 1 5
4 3 13 17 5 a
3 17 10 2 3
2 5 1 2
(AT TN, TS NS W VN SN SN PR SRR RN N NN SH S O
16 64 256 1024 4096 168384 65536 262144

Exhibit 3-5: Number of Levels

Exhibit 3-5 shows the number of levels encountered as in 25 trials at each N. Each table
entry gives the number of trials far which the correspanding N value (Columns) reached the
correspanding number of levels (raws). Zero entries are left blank. AtV = 16, for example, S
trials reached 2 levels, 17 trials reached 3 levels, and 3 trials reached 4 levels. Sinca N
doubles each time (essentially producing a logarithmic scale on the N values) and the counts
appear to incraase linearly, this table suggests thét the mean number of levels grows

logarithmically in N.

0.80¢]
g g.O.B
£ [

3 - = ® -

E - .
io.eoL - 50_3. .

: - - - - - -
S .- 5w S N
7] = e = S sz

o.40} - s .z Y906t « 233>
& l"!:i:" .E“..-"!!ligé--
o020} 0.2} -z -
0.00 - . A A S 0.0 A a a N R N R

o 2 « 6 8 10 0 2 & 6 8 10 12 14

Level Level
N=8192 Exhibit 3-6: Fraction Remaining N= 262144

62

This conjecture of logarithmic grov/th in the number of levels is supported by Exhibit 3-6,
which presents the Iraction ol points remaining at each level for twa values of N. Tha fraction
remaining at level i is equal to the number of paints at level i divided by the number of points
at tevel i-1. Far example, if there are 1200 paints at level O and 900 are removed (leaving 300
points at levet 1), then 300/1200 = 0.25 is the fraction remaining at levet 1. Since
approximately a constant fraction of paints are remaved at each level, only a loganthmic

number of levels is typically reached.

Very nearly 1/3 of the origina! point set remains at Level 1. After Level.1, the mean fraction
remaining is slightly higher (near 0.36), and is nearly constant throughout higher levels
(atthough the variance increases). Plate that at the last levels the fraction remaining must
correspond ta soma "small rational” such as V/4ar 4/6, since there are very few paints ieft.
The mean fraction remaining at a given levet does not aﬁpear to vary with N. This observation
suggests an argument for linear compulation cost: at most of the levels a constant fraction f
(abserved to be near 0.36) of the points fram the previaus level remain to be pracessed. Since
the cost of the algorithm at each level is linear in the number of paints at the level, the
recurrence for compulation cost has the farm A

QM) = CFN) + O(N)
which has solution O(N). Farmalizing this argument would require finding an upper bound on
J tor most levels and either bounding the variance at the last levels or shawing that they do
not dominate the total computation cost.

o0.50
c

3
<045
E -
< 0.40
[3

0.35} -

U
.
TV
YT
' omm

nom

(1]

T

-

-

°

°

.

Fractlo

0.30}

o2s} - -

0.20}

0.15 — . . . - . :
. 16 64 256 1024 4096 16384 65536 262144
N

Exhibit 3-7: Fraction Remaining at Level 1

63

The Iraction remaining at Leve! 1 is an interesting special case: given a set ol peints
unifarmly distributed on the unit interval, how many form nearest neighbor pairs? Exhibit 3-7
suggests that asymptoticatly twa-thirds of the points form nearest neighbor pairs at Level 1,
since the fraction remaining converges ta 1/3. Steele [7] praves this observation. intuitively,
two points are nearest neighbors if the gap between them is a tacat minimum. Far any tripte of
consecutive gaps, the prabability that the middle ane is the smatlest is 1/3. Twa points are
removed every time this happens, so we expec.t to remave 2/3 of the paints.

The paints are na langer uniformly distributed alter Level 1, so the abave argument does not
hald at later fevels (Exhibit 3-6 indicates that the fraction remaining is near 0.36 at higher
levels rather than 1/3). Theoretical characterization of the properties that determine nearest
neighbor pairs at higher levels is an open problem. Nate that a2 gap at Level 1 is either its
original size ar has been formed by the removal of nearest neighbor pairs, in which case it
equals the sum of an odd number of ariginal gaps. Since gaps between uniformly distributed
points have a distribution similar to exponential, gaps at later levels are distributed as sums af
(random numbers of) exponential variates. i

Examination of the levels also gives an argument for logarithmic growth of edge cost (recall
that total edge cost is the sum over all levels of the edge cost at each level). Exhibit 3-8
presents the edge cost per leve! far two values of N. At Level 1, edge cost Is near 0.11;
afterwards, mean edge cost remains near the canstant 0.14 in the middie levels and increases
at the last few levels. The mean edge cost per level does nat appear ta vary with N, although
variance clearty depends on the number of points at a given level.

These ohservations suggest an argument far logarithmic growth of total edge cost. Suppose
that level edge cost Is near some constant ¢ at all but the last lew levels. Total edge cast must
therefore be etimes the number of levels. By the earlier argument relating fraction remaining
to the number of leveis, there are about Iogw.N levels, so EN must grow as elog VJN'

From the simulation results it appears that e =+0.14 and f=s 036 (because 1/f=s2.7), giving a
conjecture that ENN 0.1410g UN A least-squares regression fit using the model
EN=clloguN+ c for total edge cost produces [=01427 (which is very near the
conjectured value) and 6= 028.

The simulation results presented here give new measurements, conjectures, and arguments
for the performance of Greedy matching in one dimension. Formalization of the arguments

5 1.0 . '._;1.0(
3 § L
[-] -
@0.8 >00.8
& - . b .-
0.6 - 0.6 _
0.4} : 0.4} - -
] 3 { - ;-
0.2} s 33 2 - 0.2 s gse
AR SERRAREEREEE
Y| I T — ool . 3
0O 2 € 6 8 10 12 0 2 €66 8 8 10 12 14
Leavel Level
N=8192 N=262144

Exhibit 3-8: Edge Cost by Level

contained here requires deeper understanding of the distributional properties of point sets
under nearest-neighbor removal.

References

[

(2

[31

[4]

[5)

6]

7

D. Avis.
A survey of heuristics for the weighted matching probiem.
Networks 13(3):475.493, September, 1983.

D. Avis, B. Davis, and J. M. Steele.

Probabilistic analysis of a greedy heuristic for Euclidean matching.
1988.

(To appear in Journal of Applied Probability).

J. Edmonds.
Paths, trees, and flowers.
Canadian Journal of Mathematics 17:449-467, 1965.

0. E. Knuth. .
The Art of Computer Programming: Volume 2, Seminumerical Algoarithms.
Addison-Wesley Publishing Company, Reading, MA, 1973.

G. K. Manacher and A. L. Zobrist.

Probabilistic methods with heaps for fast-average-case greedy algorithms.
Advances in Computing Research: Computational Geomeltry.

F. P. Preparata, Ed., JAI Press, Greenwich CT, 1883, pages 261-278.

E. M. Reingold and R. E. Tarjan.
On a greedy heuristic for complete matching.
SIAM Journal of Computing 10.676-681, 1981,

M. J. Steele.
Personal communication.
1985.

Chapter 4
Comparisons in Quicksort

4.1. Introduction

Quicksort is among the most efficient of comparison-based sorting methods. Proposed by
Hoare [2, 3] in 1960, the algorithm was thoroughly analyzed by Sedgewick [8, 6], who gave
precise performance bounds for 2 number of impiementation strategies. Knuth [S] also
provides a detailed discussion.

To sart an array X of N elements, Quicksort partitions X around a partition element, s, so
that elements with value less than s are to its left in the array and larger elements are to its
right; after partitioning, s is in it correct position. The algorithm then recurs on the two
subarrays on either side of ¢+ Performance depends to a great extent upon the choice of
partition element at each stage of the recursion. if, for example, the least element is selected
each time, then Quicksort can require 2(M') total comparisons during partitioning. Best
performance is achieved if the list is divided in half at each stage. A number of efficient
strategies for selecting a partition element with rank near the median have been examined.

A strategy that works well is to choose s at random at each stage. A generalization
(suggested by Hoare) takes a sampla of siza T from the sublist and uses the median of the
sample as an estimate of the true median (random selection corresponds to T'=). Singieton
[9] and Sedgewick [8] recommended median-of-3 Quicksort (that is, T = 3) over a large class
of selection strategies. Sedgewick showed that the percentage improvement in sorting cost is
small for larger T and argued that the cost of finding the median of larger samples would
quickly overtake any improvement in sorting cast. His argument was not made precise
because the comparisons used in median selection were not an explicit part of his analytical
model; instead, this cost was included as part of the overhead for each recursive call.

This chapter extends Sedgewick’s analysis by explicitly including the cost of median

68

selection and by considerning the trade-offs between partilioning and median.selection costs.
Intuitively, larger sample sizes require more median-selection comparisons but produce better
partitions, giving fewer partition comparisons. Section 4.3 presents simulation results that
compare fixed- T strategies; although comparison cost is of primary interat. others measures
are also considered. Section 4.4 examines strategies that allow T to vary as a function of
sublist size at each recursive stage. Section 4.5 corrects a small error in Sedgewick's analysis
of median- of-3 Quicksort.

4.2. Simulation Issues

it is not necessary to generate and sort random lists of numbers to obtain the desired
measurements. A simple “shortcut” simufation program mimics the performance of
Quicksort on random lists with much less computation time. Subsection 4.2.1 describes the
model of Quicksort to be simulated, and Subsection 4.2.2 discusses implementation details of
the simulation program.

4.2.1. The Model

Exhibit 4-1 gives the general structure of the simulation model. It is actually a combination of
two sorting algorithms: “basic’ Quicksort can be improved by not recurring on sublists
smaller than some cutoff M. To sort the elements in the small sublists, a single final pass of
Insertion Sort, which has low overhead, is used.

Assume that the N elements to be sorted consist of the integers 1 through N, initially
arranged in some random permutation; this simplifies the discussion as well as the simulation
sinca the rank of an element Is identical to its value. Note that this implies that equal-valued
elements do not occur in the Input list; otherwise, this assumption does not affect the analysis
of Quicksort because performance depends only on the ranks and not on the values of the
elements. (See Sedgewick [7] for a discussion of Quicksort with equal elements.)

Quicksort is ane of the few algorithms for which various implementation strategies have
been analyzed exactly rather than in asymptotic order-of-magnitude terms. To do this, a set
of measures are identified that correspond to the number of times various pieces of code are
execuled. The analysis remains independent of specific implementation because the
measures correspond to the number cf times various steps are perdormed rather than to their
running times. The standard model incorporates the measures listed below; values at each

Procedure Quicksort To sort array X[1. N} with cutoff M.
Qsort(1, N)
InsertionSort{1, N)

Procedure Qsort(lo, hi)
It (hi-fo 2 W)

Sample T elements from X[lo,hi]

Select the sample median, call it s

Partition the array around s, and set |
to the index of s in X

Recur on the left and right subarrays:
Qsort(j+ 1, hl)
Qsortllo, j-1)

Procedure InsertionSort(lo, hi)
Setiz=lo+1
Loop untili=hi:
It X[i] is smaller than X[i-1] then .
Sift down X[I-1] to X[1]. shifting elements
and placing a in its correct sorted
: position.
Incrementi
Endloop

Exhibit 4-1: Quicksort

recursive stage correspond to Sedgewick’s very efficient implementation of Quicksort [8, 6).
For a delailed discussion of the simulation model, the measures, and their analysis, see [8],
(6], or [S] (Section 52.1).

» A: the expected number of times subroutine Qsort is called. At each recursive
stage A is incremented by 1.

e B: the expected lotal number of exchanges performed during partitioning. At
each recursive stage, this corresponds to the number of elements that must be
moved in order to partition the subarmay around the partition element s. If the
array is of siza n= hi - lo + 1 and Tis the sample size, then at each stage B the
expected number of exchanges Is given by

(n—1)n—3 ").

o C: the expected total number of comparisons of array elements to s during
partitioning (but not during median-sefection). In Sedgewick’s efficient
implementation C is incremented by n—1 at each recursive stage. This
implementation requires a high-valued sentinel at the high end of array X. During
the recursion previously-selected partition elements serve as sentinels for the
subarrays.

o D: the number of insertions performed during Insertion Sort. In Program 4.2.1 this

L

corresponds to the number of limes the conditional is rue in the Insertion Sort
procedure. D represents the sum, over the subarrays of size less than A/, of the
number of insertions in each. For cach small subarray of size n 5 1/ the number
of insertions has expected value n— Hﬂ.

e [:: expected the number of moves during insertion (equivalently, the total distance
items are shilted) performed by Insertion Sort. For each small subarray of size
n < M, this has expected value {n—1)/4. Like D, L represents the sum of this
quantity over all small subarrays.

Sedgewick found closed forms (within an O(N) term) for B and C for general fixed. T
strategies when M/ =1 (that is, no Insertion Sort is performed). He also derived exact
formulas for 4 through E (within an O(n™*) term) for T=3 and arbitrary Af. This study
extends the standard model by explicitly counting the cost of median selection. In
Sedgewick's model the sample size is fixed, so median selection is counted as part of the
overhead ol a recursive cafl, found by mulliplying measure 4 by an appropriate constant. .His
analysis also assumes that A 2 2T, whichis not necessarily the case here.

Section 4.3 examines fixed-T strategies with varying Af; Section 4.4 considers strategies
where T is aliowed to vary with the sublist size. Since the sample size is allowed to vary as a
function of the subarray size at each stage, a general median-selection algorithm that takes
the sample size as input is required. Let ¢(n) be a function that retumns an odd-valued integer
in the range [1. n]: then T = ((n) is the size of the sample taken from the n elements at a given
recursive stage.

In Sedgewick’s very fast implementation the sample elements are evenly-spaced over the
subarray. General median-selection algorithms assume a contiguous set of elements, rather
than an evenly-spaced sample of a larger set: how shall median-selection be embedded into
Quicksort?

One sirategy Is to copy the sample elements to another array for median selection. Another
is to perform median-selection /n place, either by forming the sample from T contiguous
elements in the middle of the subarray or by implementing a median-selection routine that
accommodates noncontiguous elements (perhaps by using indirection in array addresses).
This strategy avoids the overhead of copying elements between arrays. Another potential
benefit of the in-place strategy is that the sample is comectly partitioned during median
selection; a clever implementation of the (Quicksort) partitioning step might exploit this fact by
not re-examining the sample.

71

Detailed evaluation of implementation possibilities would depend upon many factors
specific to the environment; this (interesting) problem is more appropnate to a study that
would measure program performance on a specilic machine. The policy adopted for this
simulation study was to keep it simple, to make as few assumptions as possible about
implementation details, and to allow for the possibility of in-place median selection.

Exhibit 4-2 presents Select, a linear expected-time algorithm for selecting the median of
array elements X[lo, hi], where 7 = hi-lo + 1. The general algorithm for selecting the k™
largest of T itams was first described by Hoare [2] (who called it Find) and was analyzed by
Knuth (see [5), Problem 5.2.2-32). At termination of Select the median element lies in X[m].

Select is similar in structure to Quicksort except that only one side of the partition is
considered in each iteration. In keeping with the theme of simplicity, a Median-of-1 (random
sampling) strategy is adopted in the Sampling step. The model adopted for the partitioning
step requires n+ 1 comparisons for each iteration on a subarray of size a, rather than the n—1
adopted for measure C (see [5] lor a discussion of this partitioning model). This version
requires no sentinel, however, which would complicate the model under the assumption of
in-place median selection.

Procedure Select(io, hi) T=hi-lo+ 1
m = |(lo+hi)/2] m = theindex of the median
loop

t = 70; J=hit+ 1
Sample a random element s from X[1c, hi]
Partition the array around s. and set |
to the index of s in X.
Test: {f (J < m) then 10 = § + 1
glse if (] > m) then hi = § - 1
else break:
endloop

"Exhibit 4-2: Median Selection

Let fT.k represent the number of selection comparisons required to find the ¥ largestof T
elements, and let Era represent the number of selection exchanges. Then the following
rewrsions.wimbasemsasfu=0and h:o.dewbechomputaﬁon time of Select (see
(5D. : :

72

- k-1 T
1 1
fT.k: T+1 +?Z‘fr-:.k-x+-7-' z fs-l,k
=

s=ket

T
(T—=3)s—1) 1 o (T=sKs=1)
Z -1 fresi-s™ r,; (T-1) ok

k+t

Knuth [S] (Problem 5.2.2.32), solved [. Showing that
Jry = AT+ DH~(k+ DH ~(T=k+2)H,_, , +T+5/3] (1)

it appears that a clased form lor Ery has not been published. Let Frepresent the total number
of comparisons performed during median selection.

When T'is lixed and M < 7, it is possibla that a subarray is too small: how does one sample 5
elements from 3?7 Sedgewick's implementation samples with replacement in such a case, so
that some of the elements are duplicated. Because this assumption is not compatible with
that of sampling and selecting lrorp contiguous elements the subarray, the elements are
sampled without replacement. When T is greater than the subarray size n. TIs set to nor
n-1, whichever is odd. This implies that the true median is aiways found when nis odd and
smaller than 7, which may not be the case under Sedgewick’s model. If T is less than the
cutoft M, then this model is identical to Sedgewick's.

4.2.2. The Simulation Program

An obvious simulation strategy is to generate random lists of numbers and to sort them whila
recording the measures of interest. This would require (N) steps to generate each list plus
Q(NlogN) steps to sort. A simple observation allows more efficient simulation; the
“shortcut” implementation describe here is similar to a shortcut Bentley describes for a
median-selection algorithm in [1]..

Recall the assumption that an input list of size N consist of a random permutation of the
integers 1 through N. When Qsort(lo, hi) is called, the subarray X{lo, hi] must therefore
contain a random permutation of the integers lo through hi. Whatever the median-selection
strategy, the partition element chasen must be from [lo, hi]. If the partition element s in X[k}
after partitioning, then Quicksort recurs on the subarrays X[lo, k-1] and X[k + 1, h].

Rather than selecting the partition element from the subarray at each recursive stage, the

73

shortcut simulation program generates a partition element from a hypothetical subarray
according to an appropriate probability distribution. At each stage, the size ol the subarray
(equal to hi - 10 + 1) and the value ol the partition element (randomly generated by a
procedure to be described shortly) are the only two quantilies needed to accumulate the
measures described earfier. For example, A, the number of stages reached, is simply
incremented at each stage of the simulation program. It the partition element has rank s in a
subarray of size n, then 8, the number of exchanges, is incremented by

/3

The number of partition comparisons at this stage is n—1, and the number of selection
comparisons was given earier as formula (1) (with k = (7 + 1)/2, the median of 7). Finally, the
cost of Insertion Sort determined by the small subarrays. For a subarray of size n < M,
measures Dand E are incremented by n— H,_ and n(n—1)/4, respectively.

Note that the expected values of B, D, E. and F are accumulated at each level, rather than
values of corresponding random variables. As a result, the variance for these four quantities
is much smaller than would be displayed by Quicksort. Since only means are examined here,
this "bug’ becomes a feature: the small variance in experimental resuits means that few trials
are needed. This is an application of a variance reduction technique discussed more lully in
Section 7.3.

To obtain estimates for the expected values of A through F.I then, it is sufficient to generate
a partition element at each stage according to a probability distribution that Is determined by
the size of the subarray n and the sample size T=i(n). The generation of such a partition
element is easily accomplished in O(i(n)) time at each stage: simply generate a random
sample of size T from [1, a] and return the sample median. Two methods are employed in the
simulation program, the choice depending on whether Tis near n. When T, the simulation
program simply generates integers uniformly T distinct ones appear; a hash table of size 27'Is
used to check for duplicates. The table uses an open addressing collision scheme, with the
invariant that table entries are always in sorted order. Once generated, the T integers are
shifted to the low end of the table and the median element, which occupies table pasition
m=(T+1)/2, is retumed.

When T Is near n this method Is inefficent because of the large number of dupficates
generated before T distinct elements are found. Knuth [4] (Section 3.4.2) gives an algorithm
for generating a sample of T integers from 1.n in ascending order by considering each intener

74

in ium and “accepting” it with appropriate probability. This algonthm is modilied in the
simulation to stop when the u integer is accepted.

This process requires about 772 random number calls; as implemented, it is more eflicient
than the first method when T < ~0.Jn. Note that because the elements are maintained in
sorted order (making it easier to find the median), both of these methods produce partition
elements more efliciently than if median-selection had actually been performed on a random
sample from the sublisl. The second method is even more ellicient because it only considers
approximately 772 elements.

Procedure Shortcut(n)
if (n < M) then
D +=n-H Accumulate Insertion Sort measures.
E += n(n - 1)74
else
= t(n) Determine sample size.
= (T+1)/2 ~
= Generate-Partition-Element(n, T)

“w B -~

+= 1 Accumulate measurements.
+= (n-s)(s-1) / Choose(n, T)

+z 0 - 1

2 2((n + I)H. - (uﬂ)u_ - (T-m+2)H

noO®>»

r-as* 7573
Shortcut(s-1)
Shortcut(n-s-1)

Procedure Driver
Input N, N
Set A through F to zero
Shortcut(N)
Report A through F

Exhibit 4-3: The Simulation Algorithm

The simulation program is sketched In Exhibit 4-3; the formulas for accumulating A through
Frreflect the model described in the previous subsection. Its average running time is given by
the following recursion, where p, represents the probability that s becomes the partition
element when «n) elements are sampled. Time,, = O(1) when NSM.

75

N
Time, = O(1(N))+2) , p, Time_,. N> M
5=l

I (T (s V(PR

Finding a closed lorm for this recurrence lor arbitrary £n) is dillicult. When Kn)is a constant

function, the program runs in time linear in N.

The experiments described in the following sections were performed on a VAX 11/780
running under Unix'. The random number generator was the cyclic feedback method
described by Knuth [4] (Algorithm A, Section 3.2.2, 2nd Edition). In most of the tollowing, Nis
set at powers of two from 2* to 2", M is set at 0. 10, and 20, and T (in Section 4.3) is setat 1, 3,
and S.

To check some experimental results, the exact values of measures A through E were
computed according to Sedgewick’s formutas [8, 6] tor Median-ol-3 Quicksort. When a small
error was found in one of the lormulas (see Section 4.5), a dynamic program was
implemented to check the formulas as well as the simulation program. For example, to
compute C exactly by dynamic programming, array elemants C|n] are set to 0 for n < A, since
no Quicksort comparisons are performed at n below the cutoff. The lollowing sum is then
computed for n 2 M.

ctil= 3 8= D1+ o= 11+ =D
=1 .

G)

k]

In each term of the summation the quotient represents the probability that s is chosen as the
median of three elements selected randomly from [1, n]. The terms in parentheses represent
the cost associated with chosing s, which is given by the cost at this lavel (n—1) plus the
expected cost of partitioning around 5. To further check the random number generator in the
simulation program, this dynamic programming approach was extended to T=1,3,5,and 7
for quantity 4. In all tests of the simulation program, observed means for the measures wera
within L5% of the true means produced by the dynamic program.

Instead of pedomﬁngsimulaﬂons.whymli&stmﬂmdynmicmmbmuducaeuct

'vunmaoswmc«muanwunnuum

76

values for the measures? The main drawback of the dynamic program is inelfficiency: since
the probability of s being chosen must be recomputed for each s < n, the running time of the
program is linear in each n and therelore quadratic in the highest n computed. Because the
running time of the simulation program is linear in N for (fixed 7) and the variance in
simulation results was small (requiring few trials per sample point), experiments provided a
much mare efficient way to gather resuits for large problem sizes and many sainple points.

4.3. Fixed-T Strategies

This section presents simulation results for median-of-T Quicksort for T fixed at 1.3, and 5.
A sample point is determined by N, A, and T. Most of the simulations were performed at
sample points corresponding to N=2',2%,...2%, Af=110,20, and T=1. 3.5; measures A
through F are considered. An obvious problem in describing simulation results arises: how to
represent a function of three variables using two-dimensional graphs? A number of
approaches to this problem are considered in Chapter 7; for this study, the following
conventions are adopled. Measurements for the three M setlings appear in separate paneis.
In each panel the x-coordinate of a point is determined by log 1N + 7710, and the y-coordinate
ol each point corresponds to the specified measure (giving the mean over 20 trials at this
sample point). For example, in the left panel of Graph 4-4-a sample paint Af = 1, N=2" = 256,
T=1 Is represented by the leftmost cross in the panel. The second-leftmost point
corresponds to the sample point M =1, N=2%, T=3, and is plotted with x-coordinate 8J.
This method of “coding” the x-coordinate of each point allows easy comparison of the
measures at in terms of the simulation parameters.

Let C’ represent the average tofal number of comparisons required in fixed-T Quicksort;
thatis, C’ = C + F. Intuitively, C should decreasa with T, because larger samples give bettar
partitions, reducing the number of partition comparisons. On the other hand, F should
increase with T since larger samples require more median-selection comparisons. The best
choice of T — that Is, the choice that minimizes total - I3 one that finds the right balance
between these two measures.

Graph 4-4-a depicts C’/ N for the sample points given above. Not surprisingly, large M (right
panel) gives fewer comparisons at every sample point since the cost of Insertion Sort is
ignored. The reduction In Quicksort comparisons at high M must of course be balanced
against the increase in Insertion Sort time. This would be an important task in determining the
best choice of M for a specific implementation.

Tol.Compares / N

b 2 r
22+ M N22}+M=10 \N22} *Ma .
+ " * : 3 ¢
18 218 JER'S 5 18f .
L ’. a » Q b Ad
>
14 .- E14 % E14} Lt
. * Q e o r ¢
10 - <10 . - 10} ¢
» Qo * .E Y
* e v s}
6 b c - P P 4 " "
8 12 168 20 8 12 16 20 8 12 16 20
IgN IgN lgN
a
3
14 T=5
is best
10 T = 3isbest
¢ T = 1isbest.
2
2 4 (-] 8 10 12 14

IgN
Exhibit 4-4: Total Comparisons

The left panel in Graph 4-4-a corresponds to Af = 1; that is, to Quicksorting the enlire array
and not performing Insertion Sort at ll. In this panel, the lefimost in each triple of crosses has
least value when N 52, and the middle cross has least value when N > 2", This indicates
that the Median-ol-] strategy gives fawest total comparisons when N is small, but Median-ol-3
is best when N is large {within the range of the experiments). if a cutoff of size M = 10is used
(middle panel), then Median-of-3 gives fewest total comparisons for N smaller than 2, and
Median-ol-5 gives fewest total comparisons at higher N. {f M =20 (right panel), then
Median-ol-5 is best for all but the lowest value of N sampled. Note that the separation in cost
between Median-of-1 and the other two strategies becomes more pronounced at large M.

Graph 4-4-b presents the results of further simulations to determine the best choice of T for
various combinations of N and /. Each region of the graph corresponds to the T setling that

78

gives the smallest mean value of C lor N at even powers of 2 and M below 16, 20 trials each.
For example, when either Af or N is low (bottom left region), Modian-of-1 Quicksornt gives
fewest total comparisons. Note that the x-scale corresponds to quadrupling N each time
whereas the ordinate corresponds to unit increases in M.

Consider the distribution of subarray sizes that appear during the recursion: a single array
of size n=N appears, then twao arrays of size approximately n=~N72, then four arrays of size
approximately n= N/4, and so on. As N grows, larger subarrays appear in the distribution but
small subarrays become more numerous. Suppose that the choice of 7 to minimize total
comparisons at a given recursive stage is an increésing unbounded lunction of the subarray
size. Intuitively, with large subarrays at the beginning of the recursion a large sample size Is
the best choice, and smaller sampies are mare appropnrate for small subarrays at lower
recursive levels.

If the best choice of T grows fast enough in n, then as N (the problem size) increases, the
large subamays would eventually overcome the small subarrays in "voting" for the best
cholice of T. When Al is greater than 1 the small subarrays are ignored, so the influence of the
large subarrays is seen earfier in N. An implication of this argument is that the choice of 7T to
minimize total comparisons (over the set of fixed T strategies) does not have a constant upper
bound, but rather increases with N (and the rate of Increase is determined by M). This
contradicts Sedgewick's argument that Median-of-3 is probably the best choice among
fixed-T strategies when A/ = 1. On the other hand, Graph 4-4.b suggests that Median-ol-3 (or
Median-ol-1) is indeed the best choice aver a large range of practical input sizes. Another
imphication is that a strategy which varies the sample size at each level according to the
subamay size would give fewer total comparisons than any fixed- T strategy. Evidence that
this is the case is presented in Section 4.4.

Consider how C’ is divided between C and F. Sedgewick showed that lor any fixed T, the
number of comparisons during partitioning is given by

C2o———t e (N—1)H,+O(N) = O(MogN)
H - H(T+ W N

when M =1 Graph 4-5-a presents C/(MogN). Not surprisingly, C decreases as M grows

(since the cost of Insertion Sorting small subarrays is ignored). Although the logarithmic

x-scale in each panel makes the curves appear to grow more steeply than they actually do,

the asymptotic constant is not easily seen at these values of N. As predicted, the triples of

crosses show that C decreases in O larger sample sizes tend to give better partitions,

decreasing the total number of partition comparisons.

79

2 Ms1 2 [Ms 10 E3 [M= 22
91.2[R o2} N a2}
4 3 + 2 g + 2 g +
] — +
S3tot * L+t S1of ,°* . S 1ot . °
> ‘ + - + : + . ’ ’
+* + + + - + %3 -
osft * osf + * 0.8} s+
L L +’ L + %
o.s} 0.6} o8t o
8 10 14 18 6 10 14 18 8 10 14‘ 18
IgN s IgN IgN
- 301 BTSRRI 2 4 2 4
N Ms1 < M« 10 N Ms20
3 3L 3¢
> + 4+
2- 2b V2-
L s+ + + +
1p 1 s P+ + 4+ 4 1 L s 4+ + +
> * P+ + 9+ »
OL e OF + + + + + » OF + + + 4+ 4+ &
8 12 16 20 8 12 16 20 E: | 12 18 20
IgN b IgN IgN.
50‘7 [2 2+ + + +) 3 0.7¢ 50'7
R [rrrr it < | R |
o.s5} o.s5} 0.5}
F Maet L M= 10 [M=20
0.3} 0.3} 0.3
> o ‘ P
o.1} oqf $HEINS 01 v a4 8
8 12 18 20 8 12 16 20 8 12 16 20
IgN c IgN IgN

Exhibit 4-5: MeasuresC,F,and A

Graph 4-5-a shows that lor any combination of value of Af and N, the T= 1 strategy (the
feftmost symbol in each triple) gives a significantly higher value of C than T=3 or T=5.
Although Median-of-5 gives the lowest vajlue for C everywhere, the improvement over
Median-of-3 is never very great. This agrees with Sedgewick's observation that while
Median-of-3 gives a substantial improvement over Median-of-1 for this measure, the
percentage improvement at higher values of T is small.

80

Fﬁr fixed T the total number of median-selection comparisons, /, must be proportional to
the number of times the median selection routine is performed. Therefore, I must be
proportional to A, the number of recursive stages seen during Quicksort. Specificalty, for
m=(T+1)72, IF= fTJ.(T)-A. where f‘r J“(7) is given by formula (1) on page 72. Since the
number of recursive stages reached is linear in N, Fis also linear in N. Graph 4-5.b presents
F/N. When T =1 no median-selection is performed. so the leltmost cross in each triple is
always equal to 0. As predicted, F tends to increase in 7. In both 4-5.a and 4-5-b the
dilference between T=1 and T=3 is more pronounced than the ditference between T'=J and
T=S35, although one measure increases in 7 and the other decéases inT.

Graph 4-5-c depicts A/N. The graph indicates that when Af =], 4 is not monotonic in T.
That is, median-of-3 Quicksort gives fewer stages, on average, than median-of-5 Quicksort.
The explanation for this behavior is to some extent an artifact of the simulation model.
Consider the case n =5. Median-ol-5 selection would find the exact median of the elements
and recur on two subfiles, each of size 2. Remaining recursive calls would be on subarrays of
size 1 and 0, which are below the cutoft M and do not contribute to 4, S0 4 = 3. In contrast,
for 7= 3 the sample might not produce the true median: with probability 6/10, either 2or 4 is
chosen. In such a case, Quicksort would recur on a subarray of length 1 and a subarray of
length 3, and afterwards on two subarrays of size 1 (which contribute zero cost), for a total
cost of 2. Under this strategy 4 = (6/10)2+(4/10)-3 = 24.

For arrays of length $, then, Median-of-3 produces fewer stages than Median-of-S5. This
inequality propagates in the computations of A at higher N to give the nonmonotonic behavior
observed in Graph 4.5.c. This relationship between Median-of-3 and Median-of-5 would
disappear if Af =2, but an analogous relationship would then hold for 7=7 and T'=9. This
observation can be generalized to find a similar pair of T values for any M.

By this cost metric it is not always a good idea to find the exact median of the sublist: if the
cost of recurring on a sublist of size k is equivalent to that for a sublist of size k+1, then it is
better to break a kst of size 2k +1 into a k+ 1-sized piece and a k—1-sized piece rather than
into two pieces of size k.

81
4.4. Choosing T to Minimize Comparisons

In this section T is allowed to vary as a function of », the sublist size at each ievel; the goal is
to determine the optimum sample size for each n. “Optimum’ means “the sample size that
minimizes the total expected number of comparisons.” Recall that n—1 comparisons are
needed to partition a subarray cf size a. Also, the number of comparisons required to find the
median of T = An) elements, for T an odd integer and m=(T+ 1)72, is

frm = UT+VH = (m+DH, + (T-m+2H + T+ 5/3).

T=me1

Let C represent the minimum expected total number of comparisons; that is, C is the number
of comparisons required (during partitioning and median selection) when the optimum sample

size is chosen at each recursiva staga. Letting A = | 772 | for notational convenience, we have
N=h
cm = N-1+mm(fm+zz p‘C‘_l) N> M,

s=h+1

where b= N-s -1 /(N)

The N-1 term represents the cost of partitioning at each level. The summation index s
ranges over all possible values for the partition element (as the median of T elements, s
cannot be less than A or greater than N = A). p, represents the probability that s was chosen
as the median of T elements from N. C(N) = O(1)when N S M.

Let t(n) represent the sample-size function that realizes the minimum total cost. A simple
dynamic program can be used to determine t(n) as well as C for small n. When M =1, the
boundary conditions are C(1) = 0 and t(1) = 0; for increasing n, the program searches for t(n)
to minimize the above function. Since t(n) ts nondecreasing and at most linear in n, it only
necessary 10 check t(n—1) against t(n—1)+2 for each n.

Table 4-6-a gives the lower boundary value of n corresponding to each t(n), for n < 3500.
The second and third rows Indicate, for example, that 3 is the optimum choice of T for
subarrays of size between 35 and 92. Graph 4-6-b presents the table entries in graphical
form; the dotted line corresponds to the function NV72.1. The residuals, representing the
differenca between the optimal values and this function, are presented in Graph 4-6-c. Similar
computations for M = 10 differ from Table 4-6-a in that 1(3) has lower bound 30 rather than 35;
Otherwise the table entries are identical.

Least
N t“
1 1 - 30
3s 3 (o a
93 5 s o Sosf +
197 7 . 2 N
337 9 20F . L] +
s15 1 P o2, o+
70 13 : s .
984 15 o -0.0t +
meon e o, .
1603 19 0 - s
1968 21 P -0.2} *.
232 23 .)) s
2813 25 o 2000 (o] 2000
3291 27 Cutoff (N) Cutofl (N)
a b c

Exhibit 4-8: Cutolffs for t(n)

Exhibit 4-7-a compares Cto C’ (corresponding to the fixed-T strategies), for the four sample
points N =256,1024 and M =1.10. In each triple, the circles gives the ratio C’/C for
T=1.13.5. respectively. As predicted in the previous section, a strategy that modifies the
sample size according to subarray size gives fewer total comparisons than any of the fixed-T
strategies at thesa four sample points.

While these results are encouraging, it is difficult to determine t(n) for higher n. When
N = 2500, lor example, the dynamic program must compute the combination “2500 choosa
24": although careful programming could push the computation higher, machine precision
becomes a siﬁniﬁcant factor. Solving the problem analytically also seems to be difficult.
requiring a solution to the recursion for C with arbitrary function An) to find the «n) that
minimizes C.

On the other hand, the results for small n can guide the search for good functions (n).
Graph 4-6-c depicts the difference between 1_and thefit Y= V'n 72.]; the small magnituda of
error suggests that square-root form for {n) might do a good job, although the steady
decrease in differences indicate that a more slowly-growing function might be needed at
higher N. Preliminary simulations using the “‘odd floor”* of aM/*+ § (that is, the largest odd

-~ 1.4p
=13

ét.t- ° o o °

Ef,on @ ceccssancncecacaan @eeccccencccccnanann @-ccccccancccacronce @rocence

Exhibit 4-7: Optimum and Fixed-T Strategies

integer less than or equal to the function value) indicate that C and F are [airly Insensitive to
small differences in the cutoffs. For N at 22 and 2%, mean comparisons are minimized for
square-rootformgs when a= 0.5and 8 = Q.

4.5, Insertion Sort

Sedgewick's [8] achievement was not only to present a very efficient implementation of
Quicksart, but to demonstrate that it was more efficient than many altermnatives by deriving
exact formulas for quantities A through E. His final version employs such techniques as
removal of tail-recursion, loop unrolling, careful ordering of conditionals, and fine-tuning of
parameters. It uses a Median-of-3 selection strategy with a cutoff for Insertion Sortat M= 9.

One of my first tasks in building the simufation program was to check the experimental
results against Sedgewick's formulas. This led to the discovery of an error In Sedgewick's
analysis of quantity D, the number of insertions performed during the Insertion Sort phase.
For median-of-3 Quicksort, D has the recursive form

N
DN = 22 p:DJ-I N>M.
=)

where ’=(N-—:)(s-l).
(5)

Sedgewick, in his thesis, gave the solution to this recurrence as

UN+1)

@ Mo~ -

This solution is incorrect: the last term should be (3/1;,, , T1). Although this is clearly a
minor algebraic error, the resulting computation of D is ol by a tactor of .V and gives an
erroneous calculation of the optimum value of Al. A later paper by Sedgewick [6] gives the
correct solution but fails to carry the correction through to the caiculation ot M. For the

record, the correct derivation is given here.

Sedgewick showed that recurrences of the farm

N
Yy=yy+ 20 (N-sKs— 1)(‘;’)" Y_,

=1
can be broken into three simpler recurrences. For .DN we have y~=0. and it is (only)

necessary to sglve
(N+ l)ll,,,ﬂ = N-UN.

(N+1T,, =(N+2Ty,+U,. and

(N+ l)DMﬂ = (N-S)DH +T,.
These have as base cases,

Tyu= (M+2)D,,, .~ (M-8)D,, .

Tyea=(M+3)D,,, ~(M=3)D,, .. and

+) +2°

U =(M+2T, . —(M+IT,, ..

Tedious but straightforward calculations produce the following solutions for D, o D,..
andD,, -

Dy, ,=M+5/3-2H,,,

_IM+14M+10 W
M+1T T 3Mt) Bk 7781

_I+2BMH6M160 232 +10M+24
7 YMEAMEI) (M+3YM+2) M

D,

Therelore,

Tyo, =T+ 10-12H,

AT+ 3NV + 10— 124,)

T.Hn: (M+ 2)

Uy, =0
and the three recurrences have the following solutions:

U,=0
(N+IXIM+10-12H,,)
Ty= M+2)

(N+ 1M+ 10-12H,,)
A+2)

(N+1D,,, = (N-5)D,+

Solving DN from this pdint is relatively straightforward. Multiplying by the “summing factor”
MN=1)_(N-4)/6! and rewriting for the base term Dun gives

W+10-12H, N
(N+I)D _(M+l)D + a1 9o (kz-l)'

6 Ner~ 6 M+1 M+2) R,
or finally,
_ 4N+1)
DH—(N+1) m3”"’|+l)'

Sedgewick's elficient MIX implementation of Quicksort has average running time
(53/2)A+11B+AC+ 3D +8E+9S + IN.
Solving with the correct formula for D and regrouping terms gives

47,31
-+ DH
>+ SN+ DH,,

+1

529, 18 _3n 3% 4 2(5M+3)
+)x|2= -y, ——= g +=M+ .
R T T e T R TV R T T v

-y

which differs from Sedgewick's formula in the first and fourth terms (which he has as ~111/2
and —450(N+1)/(W(M+2)), respectively). Exhibit 4-8 shows R M), the function defined by
the terms inside the large brackets, as Af varies. This graph shows that the average running
time of Sedgewick's MIX implementation is minimized when M =7, not 9 as reported.

N F(M)
1 -1.832653

2 -5.028571 |

3 -6.799184 T .
4 -7.819406 a2+ .

5 -8.378633 [.

6 -8.626538 .

7 -8.650244 <l .

8 -8.504810

9 -8.227213 * *

10 -7.843478 -6} *

11 -7.372606 . S

12 -6.828899 .

13 -6.223390 -8t . ot

14 -5.564770 et

15 -4.860008

L o i e w o
18 -2.520887 M

19 -1.679433

20 -0.812216

Exhibit 4-8: Minimizing F(M)

4.6. Conclusions

This chapter presents a version of Quicksort that allows sample size for median selection to
vary with sublist size, with evidence that it outperforms fixed-T schemes. The tradeoffs
between partition comparisons and median-selection comparisons are also examined for
fixed-T strategies. A number of open problems remain. It appears {0 be difficult to find a
closed form for C, and even harder to derive the {(n) that minimizes the number of
comparisons. Although comparison cost was the primary measure in the simulations, the
behavior of other measures is also of interest. The number of exchanges performed during
partitioning and median-selection is a measure of interest. The number of exchanges
performed by the median-selection algorithm appears to be an open problem, ripe for
experimental study.

An obvious next step is to study the actual running time of a “square root” strategy
Quicksort. It is likely that the taking of square roots would dominate the computation time, in
which case either a table-lookup scheme or a fast integer approximation of the square root
function could be used.

87

References

)]

(2

i3]

(4]

(s}

(6]

(7]

(8]

)]

J. L. Bentley.
Progamming Pearls: Selection.
Communications ol the ACM 28(11), November, 1985.

C. A. R.Hoare.
Partition (Algonthm 63), Quicksort (Algorithm 64), and Find (Algorithm 65).
Communications of the ACM 4(7):321-322, July, 1861.

C. A.R. Hoare.
Quicksort.
Computer Journal 5(4):10-15, April, 1962.

_D.E.Knuth,

The Art of Camputer Programming: Volume 2, Seminumerical Algorithms.
Addison-Wesley Publishing Company, Reading, MA, 1973.

D. E. Knuth.
The Art of Computer Programming: Volume 3, Sorting and Searching.
Addison-Wesley Publishing Company, Reading, MA, 1973,

R. Sedgewick.
Analysis of Quicksort programs.
Acla Informatica 7(4):327-35S, 1977.

R. Sedgewick.
Analysis of Quicksort with equal keys.
SIAM Journal of Computing 6(2):240-267, June, 77.

R. Sedgewick.
Quicksort. :
PhD thesis, Stanford, 197

R. C. Singleton.
An efficient atgorithm for sorting with minimal storage (Algorithm 347).
Communications of the ACM 12(3):185-186, March, 1969.

Chapter 5
Self-Organizing Search

A self-organizing sequential search rule mainlains a search list of N items sa that frequently
accessed items are near the front. Since access frequencies are assumed not to be known in
advance, the rule is allowed to modily the ordering of the search list according to the request
sequence of previous accesses. The class of Move-Ahead-k rules is studied here: when an
item is requested, it is moved forward k positions in the search list (or to the first position if
already less than k from the front), for 1 S kSN-1. The rules Move-Ahead-1 and
Move-Ahead-(N-1) are better known as Transpose and Mgve-to-Front, respectively.

For convenience, let the items be named 1 through N. A common theoretical model
assumes a sequence of 7T requests for items in the search list: the request sequence is formed
by drawing item names randomly and independently according to the probability distribution
Py={p.p, -Py}- Thatis, the probability that “3" is the next item requested is given by Py
Assume without loss of generality that P2 Py,

The request cost is equivalent to the distance of a requested item from the front of the
search list: the first item has request cost 1, and so on. The simulations described here
measure expected request cost for various rules assuming a fixed probability distribution on
the request sequence. The cost of reordering the list alter each request, which is bounded
above by the request cost, is not measured here. Sequential search rules have been studied
for almost two decades; previous work is briefly surveyed in the following section. Section 5.2
discusses simulation details, Section 5.3 presents experimental results for expected search
cost, and Section 5.4 considers properties of the search list permutations for various rules.

5.1 . Previous Work

Most previous analyses have considered sequential search as a Markov process: each
search list permutation corresponds to a state and the state-transition prababilities are
derived from request probabilities. For a given rule and probability distribution on requests,
the asymplotic expected search cost is the sum aver all search-list permutations of the
product of expected search cost of a permutation and its steady-state probability. The
expected search cost of a permutation is the sum, over all items, of the product of request
probability for each item and its position in the permutation.

For a given distribution P on request probabilities let Af{k.N.T) denote the expected search
cost of the Move-Ahead-« rule for a search list of size N alter T requests have been made. Let
M(k.N)denote the expected costas T — oo. ’

Exhibit 5-1 presents previous results for the expected costs of Transpose (k = 1) and
Move-to-Front (k = N - 1). The rules are compared to the QOptimal Static (OS) rule which
maintains the items in the search list by decreasing request probability. This rule knows the
requeslt probabilities in advance and never reorders the search list. All results in Exhibit 5-1
hold for arbitrary praobability distribution P = {pl. Pz""’;v} and all assume that the search list
is initially in random order. The first, for the Optimal Static rule, is easily derived. The second
appears in (4], [6], [9], [10], [11), and [12]). Formula (J) is due to Bitner ([3], [4])). Formula (4)
is from Chung, Hajela, and Seymour [7], and formulas (5) and (6) are found in [12].

Exhibit 5-1 can be summarized as follows. The asymptotic expected search cost of Move-
to-Front is never more than w/2 times that of Optimal Static (by formula (4)) and the expected
cost for Transpose is never more than that for Move-to-Front (by (5)). Note that computing
the expected asymptotic cost for Transpose requires summing over the N1 permutations of
the search list (6). The rate of convergence to asymptotic performance is given for Move-to-
Front by the summation term of formula (3). Bitner [3, 4] showed that even though Transpose
" has better asymptotic cost than Move-to-Front, the latter converges more Guickly.

The rules have also been analyzed for specific probability distributions on the requests,
especially ZipPs Distribution (also known as Zipfs Law), which is defined by p, = L/(iH),
whera

N

N
oSN =) ip;. M

[t} N

PP
MN-1M =12+ Y —L @
ER/ A
MN=1.N.) = MN=1N) + G0y a K]
=LND)=MN=-1., ——-(1-p-p).
1si<isn 20, T) ‘H
M(N=1.N) S ©/2-0S(N). @
MALM S MN-1N. .)
N) N

MW= pr)™Y] [1p ™ 2. where ®

v i= J=t .
=« = an ordering of the search fist,
w()) = the positionoliinw,
Pr(lN) = probability of the optimal ordering occurring initially

Exhibit 5-1: Previous Results

N
Hy=3 Vi

J3
HN is known as the N* harmonic number and grows approximately as the logarithm of N. A
tamily of distributions related to ZipPs will also be studied; define the distribution Z* by

=L
' clx

where ¢c= lﬂN = illj".
J=1
Setting A =1 gives ZipPs Distribution, and A =0 gives the uniform distribution. When the
request probabilities comrespond to er;l's. the asymptotic average search cost for the Optimal
Static rule is N/H,, and the average cost for Move-to-Front is about 1.386 times this (see
[10D. Gonnet, Munro and Suwanda [8] give closed forms for M(N-LN)whenA s 2

Some worst-case bounds also exist. Since the worst-case cost per request is trivially N, the
amortized cost (the average cost aver a worst-case sequence of requests) is used. Bentley

92

and McGeoch [2] showed that for any request sequence the amortized cost ol Move-to-Front
is at most twice that for Optimal Static. In contrast, the ratio of search cost for Tranpose to
that for Optimal Static can be arkitrarily high. Sleator and Tarjan [13] showed that under a
slightly different cost model, Move-to-Front has amortized cost a most twice that for any rule,

static or dynamic.

No expected-case bounds are known for general Move-ahead-k rules. Bitner [4], Gonnet,
Munro and Suwanda [8], and Rivest [12] have conjectured that for any two rules in this class,
the one with lower index will approach its asymptote more quickly and the other will have
lower asymptotic cost. (Bitner demonstrated this for the special cases of Transpose and
Move-to-Front.)

Move-Ahead-k rules have been studied experimentally with ZipP's Distribution describing the
request sequence. Rivest[12] presented simulation results at the sample points
N=7,T=500. k=1, ...7 to support the above conjecture. Tenenbaum [14] measured
average search cost for k ranging from 1 to 7, N from 3 to 230, and T at 12.000. Although he
uses a slightly different model in accumulating costs, his tables of average search costs
suggest the best cholce of & for each N within this range.

5.2. Measures of Search Rules

A practical experimental approach is to generate a sequence of requests and to record the
request cost of searching for requested items. This is the measure used in previous
simulation studies of sequential search rules (see [S], [1].[12], and [14]). An altemative
measure is described in this section.

For a fixed permutation, the cost of searching for the next request is a random variable
depending upon the current search list pertnutation and the request probabilities. The
expectation of this random variable is equivalent t0 the expected search cost of the
permutation: call this expectation the permutation cost. of permutation ». Permutation cost
as well as request cost is an unbiased estimator of expected search cost at time 7" In
addition, permutation cost is guaranteed to have smaller variance than request cost; see
Section 7.3 for further discussion of this idea. Many simulation studies may be improved by
replacing random variables (e.g. the request cast for permutation w) by their expectations (the
permutation cost).

33

For the simulations described in this chapter, permutation cost at time T is measured rather
than request cost. Otherwise the simulation programs are straightforward implementations of
the search rules: at every request, the routine for each rule records the permutation cost and
then reorders its search list according to the requested item. The search lists are all initialized

to the same (randomly chosen) permutation.

The request cost at time T can be computed in time proportional to the position of the
requested item. As noted in Section 5.1, this cost has asymptotic expectation 1.386N/{/ N for
Move-to-Front when requests are generated by Zipf's Distribution.

The permutation cost at time T can also be computed in time proportional to the position of
the requested item by keeping a list of summary information with the search list. The second
list records cumulative permutation costs counting from the rear of the search list. That s, if
s{i) denotes the name of the # item in the search fist and Pyi its probability of being
requested, then the ;* entry in the summary list contains the sum

N
D slirpyy
When él:rlequested item is found at position | in the search list and the appropriale search list
permutation is performed, only the information in the first i positions of the summary list need
be changed, requiring time proportional to the cost of searching the list. The permutation
cost for the entire search list is found in the first position of the summary kist.

This use of a secondary array was not discovered in time for the simulation study; in the
simulation programs, the cost of each permutation was computed by summing over the
search list (requiring linear time). The running time of the simulation routine for each rule was
therefore Increased (for Zipf's Distribution) by a factor of between H,/1386 (for Move-to-
Front) and H y for Optimal Static, a lower bound on costs for Move-ahead-k rules). For this
approach to be practical, the variance In permutation cost must be at least this much less
than the variance in request cost. Experimental evideﬁca suggests that this is bound was
easlly met in the simulation.

Permutation cost must be summarized in some way: when T = 1,000, say, it is difficult to
manipulate or display the 50,000 numbers that would be generated over 50 trials Exhibit 5-2
depicts two possible summarization schemes. For a hypothetical search rule at fixed N, the
plusses in each graph represent the search cost at time 7, for T ranging from 1 to 25.
Previous simulation studies have taken running averages of search costs, represented by the

= 5.0 w 5.0+
g 8 |.
o . 4.5

4.5

e] 4.0 (
4.0}y *
g st
3.5 —-—’-—-——. 3 o r +
* -
" -
3.0 . . 2.5} .,
+ — +
2.5} *, - 2.0t Pt re irre
+
2 o . ””"‘fiﬁ*_f_ﬁ_‘ '.5 N _
o 10 20 :13_0 o 10 20 :;_o
a . b

Exhibit 5-2: Two Summarization Methods

circles in Graph S-2-a, where a new running average is reported every fifth request. This
approach is not entirely satisfactory in capturing true search costs: since the search rules are
characterized by high initial cost, the running averages consistently gverestimate average
search cost at time 7.

Graph 5-2-b displays grouped averages (also called batched means). In this graph, each
circle represents the mean of the previous S requests only, rather than all previous requests.
These means give a more accurate measure of average search cost over time because they
are less influenced by initial costs. In the following section batched means are used rather
than running averages to summarize search costs. The parameter G denotes the group size
for a particular experiment {in Graph 5-2-b for example, G = 5}. Means are taken over all trials
for each group. At the sample point N= 10, 75 100, G = 5, for example, there are 20 groups
per trial, each containing 5 measurements; if 25 trials are taken, then each group average
represents the mean of 125 measurements.

The experiments are paired in the sense that in each trial the same request sequenca [s
submitted to all rules. For each trial, the search lists are initialized to a random omder,
identical for each rule. Random request sequences are generated by the method of aliasing
(see Section 7.7). The simulation program requires O(N) setup time (to initialize the search
lists and the random variate gencrator), constant time to generate a request, O(N) time per

95

search rule to compute permutation cost per request, and O(k) time per search rule to

reorder the search list.

A sample point is determined by k, N, T, A and G. Because of high variance in the data
(even though variance was reduced by the new measure), SO to 100 trials were taken at
vanous sample points. For efficiency and manageability of the results. k£ was only set to odd
values |, 3... N=1. In most of the {ollowing experiments N was set at 6.8, 10 and the
parameter A\ (determining request probabilities) at 0. 0.5, 1. 1.5, 2. The largest T value used
was 2000 and the largest group size was 200.

The following section presents expenmental results for the mean permutation costs for
Move-ahead-k rules under request sequences generated by Z*. Section 5.4 considers other
properties such as variance and distribution of permutation costs.) .

5.3. Experimental Results

This section presents experimental results for the mean permutation cost of Move-ahead-k
rules. As the previous section notes, permutation cost at time 7 is an estimator of the
expected search cost at time 7. The f(ollowing subsection presents results for request
probabilities generated according to Zipf's Distribution. Subsection 5.3.2 considers search
costs for varying A. For notational convenience, the Move-ahead-k rule is denoted by Mk. At
times the Move-to-Front rule is denoted by MF (rather than M(N-1)).

5.3.1. Zipt's Distribution

Exhibit 5-3 displays the mean permutation cost for 100 trials each at N=6.8,10, 7 < 20, and
G=1. The curves commespond to the Mcva-ahead-k rules with odd index; for example
k=1,3,57for N=8. In each panel the extreme rules M1 and MF are denoted by solid lines
and intermediate rules are marked by dotted or broken fines. The curves are {abeled
according to their final ordering at the right side of each panel.

Recall the conjecture that for any two of these rules, the one with higher indax will converge
more quickly and the other wil have lower asymptotic cost. Exhibit 5-3 supports this
conjecture for ZipPs Distribution. At N = 6 (lop panel), lor example, the M1 has lowest cost
alter the 11” request, but has highest cost at earfier T. The M3 rule has least cost when
$ < T <11 and is second-lowest at higher T. Finally, the Move-to-Front rule (M5) has least

1S00 "Wied veow

18-
1o
L]
~
L]
L]
"
)
©
"
{o
<
4%
+ N 9 @ o
]] L] N N

18-

16

12

< Q °
. . N

180D "W bog UGN

|
[]
g

1500 ‘W94 UvoW

t...
)
L
N
N
A
=/l
2 Dk Jo
b had
N
on
R H
P
Y
oy
1
w..~ Lﬂ
:—
]
1]
R
W
b
i
{e
¥ @ © § a°
n n < < Ly]

N=10,G=1

Mean Permutation Cost

Exhibit 5-3

Cost/N

97

cost when T <5, but eventually has highest cost of the three. Similar behavior is displayed lor
N =8: each rule in turn has least cost as T grows, with cutolf points at 7= 3, 6.19 (marked by
arrows). Eventually the rules arrange themselves into their conjectured asymplotic ordering.
In general, rules with highest index dominate at the lirst few requests, then rules with lower
index dominale in sequence unti! M1 dominates continuously at high T.

At N=10, the asymptotic ordering of the search rules has evidently nat been reached by the
20* request: the M1 rule, although declining steadily, does not yet have lowest cost. The
other rules have reached in their conjectured asymptotic order. It appears, then, that the
number of requests required before M1 dominates increases as N grows.

. Bitner [S] has shown that for ZipF's Law, M1 will dominate MF after S3(N') requests: how
many requests are required before M1 dominates any rule? Assuming that the conjecture
about relative convergence rales is true, this is equivalent to asking how many requests are
required before M1 dominates M2. Although M2 was not measured in these experiments,
Exhibit 5-3 gives a partial answer. For N =6. 8. 10, M1 has cost lower than M3 for the first time
at T=11, 19. (=+45), respectively. This observation and measurements at other N values
suggest that the cutoff point grows approximately as the cube of N. The cutoff paint for ;.42
and M1 mustgrow at Iea:,t this quickly in N (again, assuming that the conjecture hoids).

.................... B,
J . z 51
55 | I |
) © O so}
S50 s
MS
.50 G SO S, M7 -45¢ M
SR 45| Somemesteen e
.—-"‘-:."'——M 4 o :’.--—.-’:-:.——
.‘5 | e e - - .40 S hd e P e
M1 L et T T
eeeeeneereesnerenas asp
O .35 . .
o 2200 o 20‘00 o 2000
N=6 N=8 N=10 f

‘Exhlbit 5-4: " Asymptotic' Behavior

98

Exhibit 5-4 presents “asymptotic” average search costs when requests are described by
Zipf's Law. The data poinis in these graphs represent mean permulation cost for 100 trials
each at the sample points V = 6.8,10. T < 2000, and G = 100: the nghtmost data point in each
curve, for example, corresponds to mean permutation cost for requests 1901 through 2000
{(and 100 trials).

The conjectured asymplotic ranking of search rules is supported in these graphs, since
rules wilh high index have higher cost than rules with low index when T is this large. Only the
M1 and the MF rules are therefore marked; the intermediate rules appear in proper sequence
between these two. In each graph the cost of the Optimal Static Ordering (a lower bound on
Move-Ahead-k rules) is presented as a line at the bottom. The cost of the random
permutation rule, which randomly reorders the search rule at each request and has cost
(N+1)72, appears as aline at the lop.

The graphs are scated for comparison by giving Cost / N, which corresponds to the fraction
of the [ist searched at each request rather than the absolute number of comparisons. On this
scale, the random permutation rule has expected cost (V+ 1)/72N and the Optimal Static rule
has cost l/HN.

Not surprisingly, Move-Ahead-k rules have worst cost than Optimal Static but better cost
than random orderings. As N grows, the range between the two bounds increases as
(N+1)2N - \/H, *Since asymptolic expected search cost for Move-to-Front is bounded by
approximately 1.386 times the cost of the Optimal Static Ordering (see Section 5.1), the gap
between the Move-Ahead-k rules and the random ordering must increase while the gap
between the rules an- *ve Optimal Static Ordering remains bounded by a constant.

Exhibit 5-S gives an idea of the relative asymptotic performance for the rules. In addition to
experimental results, each table gives asymptotic bounds for the Optimal Static and the Move-
to-Front rule, which can be computed from the formulas in Section 5.1. The column labels
(Optimal) and (MF) comrespond to these computed values. Table 5-5-a presents mean
permutation cost for the last 100 of 200 requests (corresponding to the rightmost data point for
each curve in Exhibit 5-4). Table 5-5-b gives these values divided by N (corresponding to
fraction of fist searched) so that comparisons across N may be made. Table 5-5-c presents
ratios of permutation cost to Optimal Static at each sample point. -

‘"N oows o hN+1+V(zN)-V(uM)+V(mN‘)+¢. where o<¢<ll(mlf) and y is Euler's constant
=asnnsee,

N (Qptimal) ML M} M5 MI MO . (MF)
6 2.449 2.62 2.77 2.88 2.966
8 2.943 3.21 3.40 3.55 3.62 3.646
10 3.414 3.67 4.08 4.23 4.32 4.33 4.295

a. Expected Search Cost

N (Optimal) M1 M3 M3 M7 MO (NF)
6 0.41 0.44 0.46 0.48 0.49
8 0.37 0.40 0.43 0.44 0.45 0.46
10 0.34 0.37 0.41 0.42 0.43 0.43 0.43

b. Expected Search Cost /N

N (Optimal) MI M) M3 M1 M9 (HF)
6 1.00 1.07 1.13 1.18 1.21
8 1.00 1.09 1.16 1.21 1.23 1.24
10 1.00 1.07 1.20 1.24 1.27 1.27 1.26

c. Expected Search Cost / Optimal

Exhibit 5-5: Asymptotic Search Casts

in Table 5-5-a, the column labeled (MF) gives the asymptotlic expected caost for Mave-to-
Front, for which observed values are given by the rightmost Mk rule in each row. The
differences between asymptotic expected cast for Move-to-Front and mean permutation cost
for the corresponding Move-ahead-k rule are 063, .026, —.045 for N =6, 8, 10, respectively.
These dilferences are suggestive of the magnitude of error involved in trying to use
measurements at finite 7 to assess asymptotic behavior (as 7— oo).

At fixed N, it appears that the expected permutation cost increases sublinearly in k; the
difference between costs for M3 and M7, for example, is much smaller than the difference
between M3 and M1. It is possible that the differences between rules evens out as 7 grows;
on the other hand, measurements at smaller 7 do not suggest significantly greater disparity.
This conjecture of decreasing increments in search cost as k increases is supported by
consideration of the behavior of the search rules. Suppose a search list of 10 items Is
initialized in random order. The Move-Ahead-9 rule is equivalent to Move-to-Front. In
general, the Move-Ahead-7 rule performs a Move-10-Front operation unless the requested
item is in the ninth or tenth position in the list; as T grows these exceptions become rare, so

100

the‘ search costs for the rules are similar. In contrast, the Move-Ahead-1 and Move-Ahead-2

rules giva diflerent behavior unless the requested itemn is in the first or second position.

5.3.2.Varylng Lambda

This subsection considers permutations costs for Move-Ahead-k rules as A vanies. Recall
that A =0 corresponds to generating requests from the uniform distribution on the integers
[1.V}. Zipf's Distribution is generated when A =1. A higher value af A corresponds to a
steeper dens;ily function for request probabilities. Limited preliminary experiments indicate
that all the rules tend to converge quickly at higher A.

Exhibit 5-6 presents the mean fraction of the list searched for the sample points N = 6,3,10,
T 52000, and G = 100, with request probabilities corresponding to A =05 and 1.5; compare
these graphs to corresponding results for A = 1 in Exhibit 5-4. Higher A tends to gives lower
average search cost for ali the rules, in absolute terms (indicated by the change in scale) as
well as in relation to the random permutation rule. In addition, the spread among Move-
Ahead-k rules tends to decrease as) increases. ‘

Exhibit 5-7 compares "'asymptotic™ search costs among the rules; each point represents the
mean ol the last 100 of 2000 requests for 100 trials at each sample point. Graph 57-a
presents permutation costs for A set at 0, 0.5, 1, 1.5. Within each group, costs for each N are
ordered by increasing k. When A=0 the requests are uniformly distributed, so permutation
costs are identical for the rules, equivalent to (N+1)/2. Graph 5-7-b compares the Transposa
{M1) rule and the Move-to-Front rule (M5, M7, M9, respectively) for the three N settings; within
each group the points are plotted as a function of increasing A.

5.4. Properties of Search List Permutations

The theoretical measure “expected search cost” is defined in terms of a probability
distribution on the search list permutations; the probability of a given permutation of the
search list appearing at time T (or as T goes to infinity) is combined with the cost of that
permutation to determine the expected search cost. To give a more detailed view of the
Move-Ahead-k rules, this section examines properties of permutation costs and permutation
frequencies. Intuitively, a good rule ensures that permutations with low cost appear with high
frequency.

Cost/N

101

L 4
.................. D
3
576} o
MS
ssob T ¢
{ M1
.525
.soo L eeecovscansacana s
0o 2000
t
N=86
2z -60¢
\
E :
Q X
S50F
|
L- .. DN
-« | L L
R
.30 A 4
o 2000
[
N=86

.578¢

.s50}

S25 e e

500}
475}

450 4
o

Cost/N

N=8

a: Lambda = 0.5

50}
45}

40}

35

30

25 4
o

b: Lambda = 1.5

Cost/N

Cost/N

S50p-ccceccrrreiannna.

525 L

500 e

- - ! -
' D Ce -
--_.-.:._p.:.:_,.:

-, -
— - -
- - onne

475} TR
A50F.....ceeeeunnnn...
425 :
0o 2000
t
N=10
S peeeceeniieiaiannnns .
-50p
45}
.40
35} (¥
fff::f:ff:::::-:_:::s
I [0] Sy
el T e e
1| VIS MY e
.20 .
0o 2000
t
N=10

Exhibit 5-6: Mean Permutation Cost

An appropriate experimental approach might be to sample search list permutations and
estimate their distribution as a function of N and 7. Unfortunately, the space of search list

permutations is of size M, which presents a number of obvious dilliculties. For one thing, the

102

g
(=]

: 6.0 g :
8 sose 8 QA0
e e N=10 c + Transpose .
S o ONm=a g O Moave-10-From “o o5
:.: 5.0 ..0 +N=8 s 5.0} :’
3 2)
E |ooo E .. “l
s | o o g e 124
4.0} o hd 4.0 -‘- 3 ..‘-:
U ‘P .. ~Q '
hd oo .‘.q . 3 o
3.0 +» 3.0 ":'b '.. -_‘ .-
qf ”% -;:.'. .-'o L
o” '-b L 4
| 3
2.00— [W— —t s.’-.. 2.0t » 4 N] + +
A0 AeS Aot Aels Na26 N=§8 Nz10
a b

Exhibit 5-7: Varying Lambda and N

simulation program wouid require an exponential amount ol space to store the frequency
counts for each permutation. Also, many trials must be run to obtain a useful sample when
the parent population is so large. The permutation cost was therelore adopted for the
simulation.

On the other hand, the permutation cost serves as a “sianature’ (or the permutation at time
T: it should be possible translorm frequency distributions on permutation costs into frequency
distributions for permutations. How are permutation costs distributed among the
permutations of search lists?

Clearly permutation costs are symmetric: the permutation with least cost is in reverse order
of the permulation with highest cost, the permutation with second-lowest cost is in reverse-
order from that with second-highest cost, and so forth. It might be the case, however, that
most permutations have moderate cost and a few have extremely high. and low costs. Fora
particular permutation =, where =(i) represents the position of item i in the permutation and P,
its probabilily of being requested, permutation cost is given by

N
A=) =)=z,

=1
Table 5-8-a presents permutation costs assuming N = 4 and Zipls Distribution for the request

probabilities. The first column gives the index of the permutation in a lexicographical

103

Lax Parm. Cost

P
&

0 1234 1.92 s
1 1243 1.96 8
2 1324 2.00 ~
4 1423 2.08 g4.0f Aoz 4
3 1342 2.12 s 4 .
6 2134 2.16 2 -
7 2143 2.20 Eas} ~
12 3124 2.32 I I
13 3142 2.4 o
18 4123 2.44 2.0} Aet
8 2314 2.48
19 4132 2.82 ./
10 2413 2.56 25t -~
14 3214 2.56 3
20 4213 2.68 -
16 3412 2.80 2.0t
22 4312 2.84
9 2341 2.84
11 2431 2.88 1.5 . R ,
15 3241 2.92 o 40 80 120
21 4231 3.00 : Rank
17 821 .04
23 4321 3.08
a b

Exhlbit 5-8: Permutation Costs

ordering: 1234, 1243, 1324, . . . 4312, 4321. The second column gives the permutation and
the third column the permutation cost.

Graph 5-8-b presents permutation costs for the case N=35 and for the distributions
comresponding to A=1 (Zipl's Law) and A =2 (Lotka's Law) with a linear regression line
superimposed on the latter. The permutation costs are plotted against their rank.
Permutation cost for Zipl's Law has range [219. 3.18] and permutation cost for Lotka's Law
has range [1.56,4.44]. The probability distribution giving the most extreme range in
permutation cost has p = l.pbl:o: permutation cost in this case is equivaient to the
position of item 1 and ranges from 1to N.

Similar graphs indicate that ranked pemmutation costs for the family of 7} distributions are
evenly distributed over their range and are well represented by straight lines. For the case
A =0 (corresponding to a uniform distribution on requests), permutation costs would give a
horizontal line at I/N-Zy., i = (N+1)/2 for N=$ this value is 3. The slopes of linear

104

regression lits 10 the ranked costs lor A =0, 1. and 2 are 0, 0.01. and 0.0252 respectively:
these and similar results suggest that ranked permulalion costs have slopes that increase

proportionallyio A.

;4.5- .
Q - -
Q $-=_°"- =°
€ T Pl 2T T
S40fieigiiei-_ o - -
s S3iC8.-.332- ..
I ETHH T
Saslzzag2l2; -T1ir--oc.
] egs8i0I8 %2220
& |§illiji siazsigo--ci
solitsiflissieeiccilng;
Or - * - 3 s 3
SHHIHHHTHE
HHHINHEHHIE
2st i ngaonaungignatd
Ne&Gel At
2.0 . . ;
(o] 5 ~10 15 20
T

Exhlbit 5-9: Permutation Distributions

Since ranked permutation costs form an almost straight line, permutation cost is linearly
related to permutation index (when the permutations are ranked by increasing cost). A graph
presenting the observed distribution of permutation costs would therefore have shape nearly
identical to that of graph representing the distribution of permutations by rank.

Exhibit 5-9 presents the distribution of permutation costs for the Transpose rule for 100
trials at the sample point N=6, Ts20, G=1, A=1. The smooth bottom line in the points
suggest that the optimal ordering, with cost GIH‘~7.449. is regularly achieved. On the other
hand, the pessimal ordering, with cast 455, never appears. in general, permutations
appearing most often are concentrated at the low-cost end of their range, and the
concentration gﬁs tighter as T grows.

Although this graph gives a good idea of the location of permutation costs, the distribution
of costs are not clearly seen. Exhibit 5-10 presents stem-and-leal charts showing the
distribution of permutation costs for 100 trials at the request for N=6 and k=1. 3, 5, A=1. The
top three charts give permutation costs at the fitth request, and the bottom three give
permutation costs at the twentieth request. The two leftmost charts, for the M1 rule, present

105

44 4
6 43
42 44
55 41
3 40
112 a9 1
5578 a8 59
3689 37 a8
225799 36
3 5 0
0167 34 68
11239 3] 69
02223346 32 3134
001116 31 11112334668
2334779 30 1331556789
55689999 29 00337999999
034446 28 01344
000011112256789 27 001112222667777788899
23556777778 26 11112777889
0334668 25 034466677
7 24 556678
M1 M3
N=26T=5
41 1
40 3
39° 6
38 55
012 37 14
2 36 5
35 859
34 01468
112 33 11556888
11244457 32 00457
038 31 11
1114 30 111344
033377789 29 000005
00033347 28 00011344466778889
0000555568677888899 27 002555799
0122387779 26 03333356799
689999999 25 002246666666679999
24 68
M1 n
Ns=8 Ta20

28
27
26
25
24

37 3
02359

34 1

089

112334778
01111124667
3335599
39999
000002344456669
0011112227778
01133777789
23346677999
§778

NS

15

9
44999
11349
57

0166
14455568
144558

116
1114444446
0377
0000111344467788899
015579
00011233688
006799999
6788

MS

Exhibit 5-10: Distribution of Permutation Costs

106

exactly those data points appearing in Graph 5-9-a at 7=5 and T=20. The other two charts
give corresponding measurements for the M3 and MS rules.

in each chart the stem corresponds to the first two digils ol permutation cost, and the
entries in the leaves to the last digit. For example, the bottom line of the bottom right chart
corresponds o permutations with costs 2.46, 2.47, 2.48, 248. in the top row of charts the
optimal permutation, corresponding to the data point 2.45, appears once in 100 trials under
the M5 rule, twice under the M3 rule, and zero times under the M1 rule. (See Section 7.8for a
discussion of how to read stem-and-leat charts.)

The lengths of the rows suggest the relative frequency of permutation costs appearing over
100 trials. in the top charts, the search rules have only processed five requests and therefore
have little information about request frequencies. This observation is reflected in the large
spread of points in the top charts. M1 has a somewhat smoother distribution of costs than the
other two rules: both. tend to M3 and M5 have stragglérs and gaps at their high ends.

The bottom charts depict permutation costs after the 25th request. The M1 rule has greatly
reduced its range of permutation costs, concentrating them towards the low end. it s
interesting to note that although Transpose gives generally lower permutation costs, the
optimal permutation and other low-cost permutations (with costs 2.46, 247, 247) are never
seen in 100 trials. The MS and M3 rules, although they have reduced the range of
permutations from those seen at the fifth request, still tend to straggle towards the high end,
giving higher mean cost overall.

The graphs and tables in this section give preliminary insight into the relationship between
permutation costs and permutation frequencies. Theorstical characterization of permutation
distributions for general Move-Ahead-k rules remains an open problem.

107

References

)

(2]

(3]

(4]

(s]

(6]

7]

[8]

18]

(o]

M. E. Bellow.

Perlormance of Sell-Organizing Sequential Search Heuristics under Stochastic
Reference Models.

PhD thesis, Department of Statistics, Camegie-Mellon University, Pittsburgh, PA,
November, 1983.

J. L. Bentley and C. C. McGeoch.
Amortized analysis of self-organizing sequential search heuristics.
Communications of theACM 28(4):404-411, April, 1985.

J. R. Bitner. .
Heuristics that Dynamically Alter Data Structures 1o Reduce Their Access Time.
PhD thesis, University ol iillinois, July, 1976.

J. R.Bitner.
Heuristics that dynamically organize data structures.
SIAM Journaf of Computing 8(1).82-110, February, 1979.

J. R. Bilner.
Heuristics that dynamically organize data structures.
SIAM Journat of Computing 011):82-110, February, 1979,

P. J. Burville and J. F. C. Kingman.
On a model for storage and search.
Journal of Applied Probability 10:697-701, 1973.

f. R. K. Chung, D. J. Hajela, and P. D. Seymour.
Self-organizing sequential search and Hilbert's inequalities.
in Proceedings 17th STOC, pages 217-223. ACM, May, 198S.

G. H. Gonnet, J. . Munro, and H. Suwanda.
Exegesis ol self-organizing linear search.
S1AM Journal of Computing 10:613-637, 1862,

W. J. Hendricks.
The stationary distribution of an interesting Markov Chain.
Journal of Appftied Probability 9:231-233, 1972

D. E. Knuth,
The Art of Computer Programming: Volume 2, Seminumerical Algorithms.
Addison-Wesley Publishing Company, Reading, MA, 1973.

(1]

(12]

[13]

[14]

108

J. McCabe.
On senial files with relocatable records.
Operations Research 12:609-618, 1965.

R. Rivest.
On sell-organizing sequential search heuristics.
Communications of the ACA 19(2):63-67, February, 1976.

D. D. Sleator and R. E. Tarjan.
Amortized efficiency of list update and paging rules.
Communications of the ACM 28(2), February, 1985.

A. Tenenbaum.
Simulations of dynamic sequential search algorithms.
CACM 21(9):790-791, September, 1978.

109

Part Il

Experiments and Algorithm Analysis

A quite ordinary fact, principle or technique from
one branch of science may be novel and fruitful when
applied in the other branch.
- W. |. B. Beveridge
The Ant of Scientilic Investigation

Principles and techniques.for a well-developed simulation study are addressed in this
saction. The contributions of the thesis are surveyed and suggestions for future work are
presentad. '

11

Chapter 6
Experiments and Algorithms

This chapter discusses the applicability of experimental research to algorithm analysis and
presents principles for performing experimental studies.

6.1. Why Do Experiments?

One of the goals of this research is to demonstrate that experimental analysis can make
significant contributions to the understanding of combinatorial algorithms. The previous four
chapters describe experimental studies of a variety of algorithm problems. Do the studies
contribute new understanding in the algorithm domains? Were they necessary to obtaining
the understanding? | claim the answer is yes. The case studies deal with well-known
domaing. Quicksort is one of the most extensively analyzed algorithms of all time. Heuristics
for bin packing have generated considerable previous research, both experimental and
analytical. Sequential search rules been studied for over twenty years. Matching is a well.
known problem on graphs. Despite the extensive previous attention these problems have
received, new facts were discovered. To my knowledge, the follawing observations from the
case studies represent new resuits in the problem domains; all were direct products of
experimental research.

e Bin Packing

o The observation that empty space In First Fit and Best Fit is asymptotically
optimal when u = 1. The derivation of subsequent theorems.

o The observation of nonmonotonicity in FF and BF, and the conjecture that
empty space is finear in n for some values of w.

o Maasurement of the location of minima and maxima in the nonmonaotonic
curves. Observation that the local minimum shifts in n.

o Measurements of k-item bins and gaps and detailed arguments for linear
growth of empty space at some values of u.

o Proot that the expected number of 1-item and 2-item bins must be at least
linear in n when u i greater than 2/3 and less than 1, for any packing rule.

o Observation that Best Fit gives better packings than First Fit at all sample
points.

12

o Discovery that empty space in First Fit Decreasing packings is O(1) when
u <05. A subsequent proof of this fact and better understanding of the
structure of FFD packings.

o Observation that partial empty space grows nearly as the cube of u when
u<0.5. Discovery ol a cyclic component in partial empty space.

o The discovery of a *“critical region®’ in First Fit Decreasing where very bad
packings appear. and a partial characterization of lists that cause bad
packings.

o Characterization of near-linear grovrth in u for empty space FFD packings
when u is between 0.5 and the critical region. Observation of cyclic
behavior of empty spac- ‘n this region.

o Comparisons ol empty space and partial empty space in BFD and FFD
packings ol unilorm weight lists. Observation that the rules give identical

empty space very often.
o Greedy Matching
o Observation of logarithmic edge cost of Greedy matchings in one
dimension.
o Qbservation of linear computation cast of the shortcut algorithm for Greedy
matching.

o Observation that the number of levels reached by the shortcut algorithm
grows logarithmically in N.

o Observation that 1/3 ol the points are removed at the first level, prompting
the subsequent (trivial) proof of this fact

o Observation that slightly fewer than 1/3 of the remaining points are
removed at higher levels, and that the fraction removed is constant in N
although variance increases with the level number.

o Observation that the mean edge cost per level is constant in N.

o An argument for logarithmic growth in expected edge cost.

o An argument to suppon the logarithmic number of levels reached by the
shortcut algorithm.

o An argument for linear computation cost of the shortcut algorithm.

o Quicksort

o Measurements of fixed-T strategles for an extension of the previous
analytical model that explicitly counts the cost of median selection.

o Discussion of tradeoffs belween partition comparisons and selection
comparisons.

o Presentation of the M and N ranges where each fixed-T rule dominates (in
terms of total comparisons).

o Observation that in some metrics it is not necessarily a good idea to obtain
the exact median, and an argument to generalize this observation.

o Measurements of a version of Quicksort that allows the sample size to vary
as a function of sublist size.

o Derivation of optimal choices of T that minimize the total number of
comparisons. Observation that optimal 7 grows approximately as the
square root of n, the subii:4 size.

o Approximation of the opumal strategy by a square-root strategy, and
discussion of the “'best" square-root rule in the range of experiments.

113

o Discovery of an error in earlier analysis and the derivation of the correct
formula. A new computation of the optimum cutolf value in Sedgewick'’s
MIX implementation of Median-of-3 Quicksort.

e Sequential Search

o Discussion of a new measure to estimate average search cost for
sequential search rules.

o Measurements of search costs for a spectrum of Move-ahead-k rules when
request sequences are distributed according to Zipf's Law.

o Characterization of the area of dominance for each rule as the iength of the
request sequence increases.

o Approximate measurements of asymptotic performance for each rule.

o A comparison of asymptotic costs as the “sharpness” ol the request
distribution varies.

o Characterization of ranked permutation costs for the zA family of request
distnbutions.

o Comparison of permutation frequencies and permutation costs for a set of
rules.

Clearly, experimental results need not be limited to benchmark-style comparisons or tables
ol measurements at a few sample points. Experimental analysis can lead to new
observations, new conjectures, arguments to explain observed behavior, new theorems, and
new insights into underlying mechanisms.

6.2. Applications and Limitations of Experimental Analysis

This section considers the type of algodithmic problems that might be appropriate to the
application of experimental techniques.

The algorithmic problems consilered in the case studies all involve expected-case analysis.
Experimental work is naturally applicable here because it is generally a straightforward task to
generate Input instances according to a well-defined probability distribution. Although this
research was restricted to consideraton of expected-case behavior, application to other
analysis domains are passible. For example, experimental results are useful when the inputis
gathered from an existing system. It can be very difficult to obtain an adequate mathematical
description of realistic input to the system or to develop an efficient generation scheme;
gathering examples of “typical” input may be the only. approach available. A related
approach is to compare a promising algorithm against existing algorithms by testing on a
standard set of input instances. New bheuristics for the Traveling Salesman Problem, for
example, are often evaluated on a set of problem instances which includes U. S. state capitals

114

and major German cities (see {4] for more standard problems). Even when a model of input is
available and algonthmic behavior can be analyzed, experiments can give precise

measurements of resources used.

These uses of expenmental research have many properties of standard benchmark-style
simulation, which differs somewhat from the approach taken here. Within the context of
expected-case analysis of algorithms, the uses of simulation are many:

Experiments can be used to compare algorithms. Simulation results can identify the “best” .
algorithm within a class for the given sample points. This information can be used to
characterize dominance among the algorithms, or to identify input properties that determine
best performance. Many examples of this use of simulation can be found in previous work as
well as in the case studies.

Experimental results can direct theorem-proving elforts. Experiments can be used to
support or refute conjectures developed by partial theoretical characterization. Experiments
are especially valuable when they contradict prior intuition. In the Bin Packing study it was
widely conjectured (see [3] or [6). for example] that since online algonthms for bin packing
(including First Fit and Best Fit) have no opportunity to rearrange their input, they cannot be
asymptotically optimal; even in an expected-case model they would have an asymptotic bin
ratio strictly greater than 1. Simulation results suggested that this intuition was wrong since
empty space was observed to be sublinear in n, implying that the bin ratio must approach 1.
Also surprising was the observation of nonmonotonicity in empty space as u varies; this
phenomenon has not yet been characterized theoretically.

The Greedy Matching study gives another example: in all higher dimensions, the Greedy
heuristic produces matchings that are within a constant factor of optimal. It is natural to
conjecture that this will be the case In one dimension, and Steele had tried to prove the
constant-factor bound. Experiments demonstrated, however, that the bound does not hold,
since the cost of the Greedy matching grows logarithmically in N and the Optimal matching is
known to have constant cost.

Early in the Quicksort study, simulation results were compared to Sedgewick's formulas for
Median-of-3 Quicksort. Observation that the measurements matched every formula but one
led to the discovery of an error in the theoretical formula and to a recomputation of the
optimum value for M in Sedgewick's tast implementation of Quicksort.

115

Experiments allow greater precision ol analysis. Expenmental results are generally
expressed with more precision than current theoretical approaches can attain ~ for example,
an expenmental result is more naturally given as 345N rather than O(N). Experimental results
can therefore suggest directions for tightening current thearetical bounds. Simulations of
First Fit Decreasing led to the conjecture that empty space is constant in N. The theoretical
bound in [1] gives a constant of at least 10" and the proof only holds for very large lists.
Floyd and Karp [2] have recently reduced the asymptotic bound to 10 under a slightly different
averag-case model. Experiments results suggest, however, that empty space is rarely outside
the range 0.7£05. The measure partial empty space reveals even more precision; this
measure converges in n and is never observed to vary by more than 20.005 at high n. Partial .
empty space is more precise than empty space by a lactor of 100; it is more precise by than
the current theoretical bound by a factor of 10000.

Simulation can give results more elliciently than analysis. Experiments can be of use even
when theoretical analysis already exists, especially if simulation is more computationally
efficient than theoretical analysis. For example, in the Search study a formula exists for the
asymptotic search cost of the Transpose rule. Computing this formula requires N! time,
however, and has only been done for smali N and requests described by Zipf's Law. Chapter
5 gives simulation measurements for this rule (and others) for a range of distributions that
includes Zipf's Law.

Experiments can generate new insight, new arguments, and even new theorems.
Experimental results need not be limited to “mere measurement’” In the case studies
functional relationships were characterized and detailed arguments were developed to
explain observations. In the Bin Packing and Matching studies some arguments were
formalized to become theorems Detailed views of algorithmic behavior and - precise
measurements can give deep insight into underlying structures. The potential for producing
new insight gives strong motivation for using experimental toots in this domain.

As a simulation problem, the study of algorithms presents special difficulties as wefl as
opportunities. Textbook examples of simulation problems generally come from studies of
domainswchaseconomicmorpaiomnceolcomputef operating systems.
Problems in algorithm analysis differ in a number of ways frem more familiar domains: '

e Algorithms are simpler to simulate. Uniike economic systems, they have simple,
rigorous, mathematical descriptions. In expected-case studies, the input usually
has a simple mathematical description as well.

116

« Some issues of traditional simulation research, such as developing and validating
realistic models, become less important. (n current practice algorithms are
analyzed in terms ol simple abstract machines and well-defined probability
distributions. While an eventual goal of algorithm analysis is presumably to
obtain theoretical results that accurately reflect computation on real machines,
this goal is approached incrementally in order to establish a firm mathematical
base.

* Algorithms have reiatively few parameters. Except for the Search study, which
involved parameters N, T, &, G, and A, the case studies and previous work were
generally restricted to consideration of one or two parameters. As a result the
complexity of displaying and analyzing interactions between parameters is
generally less than for classic simulation problems.

e Experiments are often less expensive. Algorithms are interesting because they
are ellicient. In the case studies simulation time per trial was generally reckoned
in seconds, while simulations of complex systems can require hours, even days of
computation time. There are ol course exceptions to the above generalities.
Simulations by Johnson and McGeach [5] of a simulated annealing algorithm for
the Traveling Salesman Problem took up to six hours per trial.

It might seem that the study of algorithms presents a much simpler simulation problem than
standard domains. On the other hand, simulation results must be compared to thearetical
characterizations of algorithms. Theorems have been preferred over experimental results
because they represent certainty about bounds on algorithmic behavior and can sometimes
be generalized to broad classes of algorithms and input distributions. Theorems also express
understanding of the mechanisms underlying the algorithm. In contrast, experimental results
consist of measurements at specilic sample points with specific implementations. As with any
experimental domain, generalization of experimental results without real understanding of the
underlying process must contain some degree of uncertainty. .

Two fundamental problems in applying simulation to algorithms are how to reduce
uncertainty in simulation results and how to use the results to gain new insight into underdying
mechanisms. While these problems cannot be entirely eliminated, much can be done to
lessen their severity. The following section discusses principles for experimental research in
this domain. Chapter 7 presents a number of tools that can be applied in order to realize
these principles.

17

6.3. Principles

Four general principles for experimental research in the domain of algorithm analysis are
presented in this section. The principles were developed Irom experience with the four case
studies, three small experimental studies not presented in this thesis, and the survey of
previous work presented in Section 1.2.

e Match the simulation results 10 a well-detined analytical model. Simulation
research in algorithm analysis is usually prompted by unanswered questions from
theoretical approaches. Experimental approaches should be viewed as a
companion to theoretical approaches when studying a particular algorithm. Rtis
therelore important to reduce as much as possible the distinction between
simulation model and simulation program, and to obtain simulation results that
can be expressed in analytical terms. Sections 7.1, 7.2, and 7.5 discuss
techniques for establishing the accuracy of simulation results.

e Search for a good ‘“view*" of the data. A good view of experimental results is
obtained when the variation at fixed sample points is small refative to growth as
parameter settings vary. When a good view is obtained it is generally easier to
obtain accurate measurements, to assess functional relationships, and to
discover underlying structures. The view ol the data can be improved by the use
of appropriate data-analysis tools. In addition, 8 number of techniques may be
applied to improve the results of the simulation before data analysis occurs.
Sections 7.1, 7.3, and 7.4 discuss techniques for improving simulation resuits.
Section 7.8 discusses analysis techniques that proved useful in the case studies.

e Analyze the data, don't just measure it. Analysis of experimental results should
not stop at a tabular presentation of means for each sample point. Measurements
can be transformed and combined and functions can be fitted. The object of data
analysisg in this context is to manipulate measurements to gain new insight into
relationships between parameters and measures. Section 7.8 presents a number
of data analysis tools. '

e iterate theoretical and experimental approaches. A fundamental concept in
traditional experimental domains is that theory and experiment must be iterated.
An important component of the case studies was the rich interaction between
experimental and analytical approaches to analysis. | tried to preserve this
evolutionary development in the presentation of the case studies. Not only did
experimental results direct theorem-proving efforts, but thearetical insight often
suggested more useful measures, better choices of sample points, and more
efficient experimentation. Sections 7.1, 7.4, 75, 7.6, and 7.7 explore
opportunities for improving the simulation study and for developing simulation
programs that support an interactive, iterative approach to analysis.

These four principles can be approached at many levels. Techniques of algorithm analysis,
for example, can suggest better measures, faster simulation programs, and ways to check the

118

accuracy of simulation results. Statistical methads for sampling and expenmental design can
be applied to gain more efficiency of expenmentation and to eliminate redundant
expenments. Program development tools are needed in building efficient simulation
programs and suppaortive environments. Many practical hints from the domain of simulation

can be applied. A vanety of data analysis tools are useful.

The following chapter presents practical hints, statistical techniques, and data analysis tools
for achieving the four goals listed above. The discussion of Chapter 7 results from experience
with the cases studies: | believe they can be of use in many simulation studies of algonthms.

n9

References

(1]
[2]
[3]

(4]
(s]

(6]

J. L Bentley, D. S. Johnson, F. T. Leighton, C. C. McGeoch, L. A, McGeoch.
Some unexpected expected-behavior results for bin packing.
In Proceedings, 16th Symposium on Theory of Computation. ACM, April, 1984.

S. Floyd and R. Karp.

FFD bin-packing for distributions on [0, 1/2].

In Proceedings, 27th Symposium on Foundations of Computer Science. IEEE,
October, 1986. ’

D. S. Johnson.

Near-Optimal Bin Packing Algorithms.

PhD thesis, Department of Mathematics, Massachussetts Institute of Technology,
Cambridge MA, June, 1973, :

S. Lin. .
Computer solutions of the traveling salesman problem.
The Bell System Technical Journal 2245-2269, December, 1965.

L. A. McGeoch.
Personal communication.
1986.

H.L. Ong, M. J. Magazine, T. S. Wee.
Probabilistic analysis of bin packing heuristics.
Operations Research 32(5):983-998, September-October, 1984.

121

Chapter 7
Tools and Techniques

This chapter presents tools and techniques for enhancing experimental studies ol
algarithms. Algorithmic insight and program development techniques are applied to improve
'elliciency and accuracy of simulation programs. Statistical techniques such as sampling
plans are considered. A number of guidelines and techniques from the field of simulation are
presented. Finally, useful data analytic tools are surveyed. ')

Many of the topics addressed here are found in advanced texts on simulation, experimental
statistics, or data analysis. The contribution of this chapter is to gather knowledge from
dikse fields, to describe those techniques and guidelines that were particulady useful in the
case studies, and to discuss their application in the domain of algorithm analysis.

Familiarity with elementary statistical analysis is assumed. For a survey of statistical
concepts, see DeGroot [12] or Mosteller, Fienberg and Rourke [21). Feller's [14] two-volume
work is a standard source in probability theory. Box, Hunter, and Hunter [5], and Miller and
Freund [20] discuss statistical Issues that particularly apply in experimental research. For
texts on simulation, see Adam and Dogramaci [1), Brately, Fox, and Schrage [9], Fishman
[15), or Hammersiey and Handscomb [17). Many of the data anatytic tools presented here are
described in Tukey [24], Chambers et al [10], Cleveland [11], and Mosteller, Fienberg, and
Rourke [21].

The principles described in the previous chapter can be approached at many stages during
the simylation study. For example, the correspondence between measurements and models
can be influenced by choice of measure, comrectness of the implementation, choice of
random number generator, and the placement of sample points. The following sections are
organized by procedural issues that arise in the course of a simulation study.

122

7.1. Choice of Measure

Usually the measure adopted for the simulation is suggested by previous theoretical
analysis. Simulation results should match theoretical measures as much as possible. Timing
statistics of a program are theretfore rarely useful when investigating the time complexity of an
algorithm: noise due to implementation factors, machine loads, or compiler optimization can
seriously degrade this measure. Accurate results can be obtained by embedding simple
bookkeeping mechanisms into the simulation program to count the number of key operations.

Measures should be suggested by theoretical results, but not necessarily constrained by
them. It may be the case that the analytical measure of interest is difficult to measure
experimentally. This occurs, for example, when the algorithm is a heuristic for an NP-hard
problem and performance is expressed relative to the optimal solution (which cannot
generally be found).

It the measure suggested by the simulation model is not amenable to experimentation, it
might be possible to identify an alternative measure that is thearetically interestirig as well as
experimentally practical. The Bin Packing study used the well-defined and easily-computed
measure empty space, for example, rather than the bin ratio. In Search, the analytical model
involved the steady state probabilities on the M search list permutations. Since this measure
is impractical for simulation because of the size ot the sample space, the altemative measure
permutation cost was used in the case study.

Choice of measure is also constrained by available analysis tools. A too-detailed measure
can produce huge amounts of data, possibly overwheiming statistical analysis tools, graphical
display packages, or even machine storage capability. At one point in the Bin packing
experiments | tried generalizing the measure number of big items (which counted the number
of weight list items with size greater than (.5) to the number of items with weights in each of
the subranges (0, 0.1} (0.L 02} . (039.1]. This measure was discarded due to the ten-fold
increase in data and the difficulty of characterizing empty spaca in terms of ten variables.
Early experiments in the Search study reported permutation cost at every T for T as large as
5000. ft quickly became clear that a summarization scheme was needed, so grouped averagas
were adopted. .

Whatever the initial] measure, be prepared to change it At the beginning of a simulation
study, consideration of theoretical results can suggest good measurements. An important

123

component of the iterative approach to experimental analysis, however, is to modily the
measure as new insight is gained. In the case studies the measure generally became more
detailed as expenments evolved. In Bin Packing the measure progressed from emply space to
more detailed measurements such as partial empty space, counis of k-ilem bins, and gaps in
k-item bins. In Matching the measures changed from total costs to consideration of costs at
each level. Even if there is no hope of theoretically characterizing the detailed
measurements, they are valuable for giving insight into undertying structures. Increase in
detail was often accompanied by a reduction in the number of trials and sample points, due to
limitations of technology and patience.

7.2.Ensuring Correct Results

Experimental results are only as strong as the fidelity of the simulation program to the
simulation model. The relationship between measurements and the algorithmic model must
be close and well-understood. A number of techniques for checking the accuracy of
experimental results are available.

It is often possible to compare measurements against known theoretical resuits. This
situation arises when the simulation involves an extension of a standard model, as was the
case in the Quicksort study. In this study, checking simulation resulls against formulas led to
the discovery of an error in previous theoretical work.

Comparison against known theoretical results can also be useful for clarifying details of the
simulation model. For example, the simulation program for Quicksort requires a routine to
generate the median of T integers selected randomly from [1, N]. For the analogous problem
on the real interval (0, 1], the median of T randomly-selected reals has a Beta distribution with
parameters (T+1)/2 and 7. Beta variates can be generated in constant time per variate, so |
Implemented a generator that produces Beta variates and scaleg them to the integers [1, M.
The simulation mode! is not exactly met by this implementation because Beta generation
corresponds to sampling without replacement and the modet to sampling with replacement. |
reasoned that this difference would not significantly perturh the results since T is generalty
much smaller than N. | was Incorrect measurements under the Beta scheme differed
significantly from the model, so this method was discarded.

Once a clear specification of the model is obtcined, the next task is to meke sure that the
simulation program performs as specified. Standard program verification and valkdation

124

techniques are appropnate here and should be applied. Limitations ol machine precision can
be an important lactor since theoretical models generally assume properties ol reals.

In simulation problems the choice ol pseudo-random number generator can be critical.
There is a vast literature describing empirical and statistical tests of generators, as well as
evaluations of well-known generators. Random number generators used in the case studies
are described in Section 7.7. No matter how many statistical tests a particular generator
passes, it may have subtle non-random propertics exposed by the simulation problem. Early
in the Search study, for example, the cost per reques! exhibited unusual periodicity in the
number of requests. This periodicity was not dependent upon tt:e random number generator
in any obvious way because the cost function depended upon the search list ordening as well
as on the requested item; that is, cyclic pattems in the requests should not necessarily give
cyclic patlerns in search costs lor alf search rules since each rule reorders its list differently.
In any case, the cyclic behavior clearly indicated a violation of the assumption of
independence in requests: replacing the linear-congruential generator by an altemative
generator caused the periodic behavior to disappear.

The most import assurance ol experimental integrity is repfication, a standard component of
research in the experimental sciences. At the very least, critical experiments should be
replicated using an alternative random number generator. An even better practice is to
deveiop a secondary simulation environment, varying such factors as implementation
strategy, random number generator, and machine word size. If results are consistent across
the two environments, then there is strong assurance that the results are independent of
environmental factors. Section 7.8 presents tools for comparing results from separate
implementations.

7.3. Variance Reduction Techniques

One ol the principles for simulation research is to obtain a good view of the data - thatls, to
reduce variation in measurements at specific sample points with respect to growth as
parameters vary. One way to obtain a better view s to reducs variance in the measurements
at each sample point.

An obvious way to reduce variance is to take more trials per sample paint; Section 7.6
discusses methods for improving the efficiency of simulation programs. In addition, many
variance reduction techniques can be Incorporated into the simulation programs. Variance

125

reduction techniques that were useful in the case studies are described in this section. For
further discussion and descriptions of other techniques, see texts on simulation such as [9],
[15), or [17].

In the following, assume that algorithms A and B are being studied at a lixed sample point:
measures are denoted by X, Y. and Z. Since input instances are randomly generated, the
measurements al a given sample point are random variables from some (unknown)
distribution. Let X, denote the value taken for measure X at the ™ wial.

Conditional Monte Carlo

In studying algorithm A, it may be the case that measure X is a function of other random
variables in the simulation program. Varnance in X can be reduced if the intermediate random
variables are replace by their expectations. Suppose, for example, that there exists a
measure Y for which Z = E[Y] Y] can be either analytically calculated or efficiently estimated.
Instead of estimating E[X] by averaging the X , values, a better method is to take the means ot
the Z, values. The second measure is an unbiased estimator of E[X] and is guaranteed to
have smaller variance than the flirst (see[9] Section 2.6, or[17] - the actual values for
variance depend upon the specilic problem). This technique is called Conditional Monte
Carlo.

in the Quicksart study, the random variates associated with the number of exchanges and
the number of sefection comparisons performed at each recursive level were replaced by
their expectations. As a result, the random variates representing the total number ol
exchanges B and selection comparisons F (which are summed over all recursive levels) had
smaller variance than would occur in a straightforward implementation of Quicksort.
Similarly, in the computation of Insertion Sort costs, the random variables associated with the
number of Insertions and insertion moves for sublists of size less than M were replaced by
their expectations. Corresponding measurements D and E (representing sums over all
sublists) had smaller variance than would be produced by an implementation of Insertion Sort.

In previous simulation studies of Sequential Search rules, the request cost (the cast of
searching for requested items) was used as the simulation measure. Request cost is a
random variable with valuve depending upon the item requested and upon the current
permutation of the search list. For a fixed permutation, request cost is a random variable that
has as its expectation the permutation cost - the average cost of searching for items in the

126

permutation. Replacing the measure request cost by permutation cost is another application
of Conditional Monte Carlo.

In this case the decrease in vanance was accompanied by an increase in the running time of
the simulation program, since request cost could be computed in the time it takes to lind an
item whereas permutation cost took time proportional to N, the size of the search list. For one
model ol request probabilities (Zipf's Law), a lower bound on expected search cost per
request is NIHN. Computing permutation cost therelore increases running time by a factor of
H y per request: for this variance reduction technique to be successful, variance should be
reduced by at least this much. Although improvements in variance cannot be derived
because the probability distribution on permutations is not known, experimental evidence
suggests that the technique is cost-effective.' Examples of successful tradeolfs between
variance reduction and simulation time in many simulation domains are given by Hammersley
and Handscomb [17]. In one remarkable example ((17] page 88), computation time was
increased by a factor of 4 and variance decreased by a lactor of 10°.

Control Variates

Suppose that measure E[Y] is to be estimated (or algorithm A. Suppose also that there is
another measure Y that is positively corvelated with X, and that E[Y] is known; without loss of
generality, let E[Y] = 0. Y is called a control variate lor X. Y may be another measure of A (an
intermal control variate), it may correspond to some property of the input, or it may be a
corresponding measure of algorithm B that is similar to but simpler than A. For every positive
constant k,

E[X]=E[X— kY]

Var{X—kY] = Var{X] + EVar{¥] - 2kxCo(X.Y]L
If the sum of the last two terms can be made negative, then Var{X- kY] < Var{X], and a better
estimator of E[X] is gained. Brately, Fox and Schrage [9] (Chapter 2.3) discuss difficulties of
establishing that the variance behaves as desired and of determining the correct value for kin

a given problem instance.

The Intuition behind the use of control variates is that X can be "seen'” more clearly if a
positively-correlated source of variation can be subtracted. Control variates were used in this

’mmmmm‘mwmm permutation cost in the time proportional to that of
computing request cost was discovered too ixte 1o be incorporated into the simulation study - see Section 52,

127

informal sense throughout the case studies. In the Bin Packing study, the bin count was the
measure suggested by previous theoretical analysis. The control vanate sum of the weights
was identilied, and the measure empty space (which represents the dilference between the
bin count and the sum ol the weights) was adopted lor the simulations. In the study ol F.rst Fit
Decreasing, empty space in the last bin became a control vanate lor empty space and the

diflerence, partial empty space, was measured.
Paired Experiments

When the control variate comes from another algorithm, the use of control variates is called
paired experiments. Tor example, suppose that algonthms A and B are to be compared in
terms of measure X; in particular, the object is to estimate the expected dilference
D,=Xu— Xu The variance of D‘is given by

variD) = VarlX ., X,]
= Var{X ,]+ VarlX,]-CovX . X, }

Variance in D‘ can be reduced il the covariance of X u and Xm can be increased. |If
simulation experiments for A and B are run on independently generated sets of input, then
Cav[X‘. Y]=0. In many situations, however, inputs that give high measurements for A tend
to give high measurements for B. In paired experiments, dilferent algorithms are given
identical sets of inputs so that dilierences lor comresponding Sials may be computed rather
than average dillerences lor independently generated trials.

In the Search study, requests lor items with fow probability tends to produce high request
costs lor any reasonable rule. If algorithms A and B are given identical inputs at each tral it is
likely that the covariance of search costs would be positive. Paired experiments were used in
Search and in some of the Bin Packing experiments. In both cases, experimental evidence as
well as intuitive arguments for positive correlation of measurements wera available.

7.4. Placement of Sample Points

Placement of sample points can also improve the view of experimental resuits. Somé rules
of thumb are presented in this section.

Measure the largest problem size passible. A better view of the data is usually provided if

128

extremal parameter values are taken. An important special case is to study the largest
practical problem size. Experience with the case studies demonstrated many times that
measurements at larger problem sizes are generally warth the extra investment in time.
Previous experimental studies of Bin Packing rules, for example, measured lists as large as
200 and 1000; simulations described in Chapter 2 studied lists of size 128000. Many
observations, such the nonmonotonic behavior in First Fit and Best Fit, coukd not have been

seen at smaller input sizes.

Measuring large problems is also important when the theoretical model involves asymptotic
analysis. Although measurements at finite input sizes can generally give only approximations
to asymptotic behavior, larger input improves the accuracy of the approximation. The
similarity between theoretical model and simulation results is therefore increased. In the Bin
Packing, Matching, and Quicksort studies, the problem size doubled at each sample point
rather than increasing by a fixed amount. This seems to be a powerful method for obtaining
measurements at large N with less investment in computing time.

Sample many points within the range of parameter settings. The usual goal of algorithm
analysis is to characterize some measure of algorithm performance as a function of input
parameters. So that simulation results may be expressed in theoretical terms,
characterization of function forms should also be the goal of simulation research. If a
parameter is set only at its extremal values, assessment of the functional relationship between
the parameter and measure is rarely possible. The number of intermediate sample points is of
course limited by simulation cost and by the available data analysis tools. Some case study
results suggest, however, that it can be worthwhile to take as many sample points as the
environment will allow: the cyclicity of partial empty space in FFD packings with ¥ .5 would
not have been discovered if, say, five values of u had been sampled in this range.

Apply stratilied sampling. A recurring issue arising in the case studies was whether it Is
better to take discrete sample points or to take random sample points over the range of the
parameter settings. In practical terms, which type of graph In Exhibit 7-1 gives more
information: the left, with discrete sampla points, or the right, with randomly-placed sample
points?

Hammersley and Handscomb [17] m.ﬂ)nmmnbgenemwagoodideam
eliminate sources of randomness in the simulation wherever possible. They and other
authors of texts on simulation recommend stratified sampling: a befter view of functionafity

129

Empty Space

Q
2.2} voe g i ‘ézz[e * 5t
i +) - Y, Had N
1.8f f i ; i % 4 T:"B A 2 T .
3 + * r's ‘#
$ $ i i & w £t
1.4} f . b . . + 1.4 - K’, t‘ . S
o » -~ ; -
i : : E tar s + '
1.0t ; : . 1.0 WY +
: . e . . .) .
70 74 .78 u .70 .74 .78

Exhibit 7-1: Placement of Sample Points

and a reduction in variance may be gained if input instances are generated so that certain
input properties (specified by the parameters) occur with probability L

Stratification is not precisely the same as taking discrete sample points. In the Bin Packing
study parameters v and n were set at discrete values. The parameter n was stratified, because
every input at the sample point (no. uo) was exactly ot length n,. The parameter u was not
stratified, however, since the largest weight in each input instance was a random variable
determined by n and u. Nevertheless, the arguments lor stratification tend to support the
taking of discrete sample points. As a simulation study progresses it may be useful to stratify
inputs even further than described by the initial parameters: it might have been heiplul in the
study ol FFD packings in the critical region, for example, to stratify the parameter b = number
of big items and to generate weight lists with exactly d+big items, rather than generating
random lists according to n and u simply reporting the value of b each time. The relationship
between topheavy lists (with large b) and bad packings might then be more clearly seen.

Deslgn the experiments. The goal of experiment design is to determine the placement of
sampla points so that ﬂge most information may be gained with the least cost. Not
surprisingly, the best time to design an experiment is after the study, when the problem is
better understood. For this reason, an iterative approach to placement ol sample points is
important. '

Of course the experimenter has to start somewhere. A complete factorial design is a uselul
starting point. This design is quite straightforward: for each input parameter, choose a few
settings that span its range and establish sample points from the cross product of the
settings. In the Quicksort study of fixed-T strategies the parameters are N, M, and 7. Sefting

130

N=10.100,1000, M/ =1.5,and T=1.3. 5.7 gives a 3 x 2 x 4 lactorial design with 24 sample
points,

An altemative to the complete lactorial design is the “one-factor-at-a-time" approach: lix ¥
and M and vary T, then fix N and T and vary A/, and so lorth. This approach is natural in the
context of algorithm analysis - in the Bin Packing study, u was fixed to study growth in 7 and
then n was lixed to study growth in u. Even so, the method is not generally accepted by
statisticians today (see[5] or{8]). primarily because observations may be extended
erronecusly. Initial experiments in the Quicksort study were ol the “one-at-a-time" varety:
the parameter Af was lixed at 1 and Nand T were varied. Many of the early observations were
later found not to hold in general.

7.5. Pilot Studies

It is uselul to implement a pilot study belore beginning extensive simulation. A pilot study is
simply a small-scale preliminary version of the simulation program, where the simulation
model is implemented in a straightforward manner with litle attention to program efficiency.
Inputs are generated with minimal programming effort, using the system random number
generator and other system routines when possible. The object is to use the information
gained from the pilot study to improve the power and quality of more extensive simulations.
The information can be used in a number of ways.

First, the pilot implementation allows clarification of the simulation model and a method for
checking the specification belore much coding elfort is invested. This is especially usaful
when partial analytical results already exist. As a preliminary step in the Quicksort study
measurements from a pilot implementation were checked against known formulas for
Median-of-3 Quicksort. The implementation failed: observed means for the five measures of
interest were consistently higher than their predicted values. Closer examination revealed a
number of subtie differences between the model and the implementation. For example, when
sublists are smaller than the sample size, the analytical model assumes that the sample is
drawn with replacement while the pilot program drew a smaller sample without replacement.
Similar minor differences (which significantly affected the results) were discovered in the pilot
study. Once the details of the model were clarified, the simulation measurements produced
{to within 1.5%) the mean values predicted by theory.

Second, monitoring the pilot program can direct efforts for improving the running time of

131

later simulation programs. This simple idea was used, for example, in the implementation of
the First Fit Decreasing rule. Some of the speedups were algorithmic: instead of generating a
random lists of weights and sorting them by an £2(Nlog V) sorting algorithm, a variation on
Binsort was used, exploiting the fact that the weights are uniformly distributed. Instead of
finding the "First Fit" bin by linear scan through the bins, a heap was imposed over the bin set
to find the correct bin in O(.¥log V') time. In addition to algorithmic improvements, a number
of standard techniques far impraving program elficiency (such as those described by Bentley
[6)) were applied. Monitoring, for example, revealed that most of the computation time was
spent in searching for the cormrect bin to contain each item. Careful recoding using standard
techniques such as loop unrolling, code motion, and placing loop variables in registers,
decreased the running time of the program considerably: the final implementation could
generate and pack a list of 128000 items in just over 1 minute of machine time, a factor of four

impravement over the initial implementation.

Third, the pilot studies are useful in planning of future experiments: preliminary results
suggest, lof example, how many trials will be necessary, how many sample points shouid be
taken and where to space them, and what sort of distribution arises at each sample point.
Such information saves a lot of trial and error in later simulations. The factorial design
approach described in Section 7.4 was of considerable use in obtaining this information

quickly.

Fourth, and perhaps most importantly, the pilot implementation can be saved so that final
simulation programs, with diflerent random number generators, finely tuned code, and
shortcut implementations, may be compared to a straightforward version of the algorithmic
model. The pilot study can therefore provide a secondary system for replication of
experiments. This backup system was critical in establishing the accuracy of results in all four
case studies. ' '

A final reason for buikiing a pilot program is that it may be sufficient for the algorithmic
problem at hand: there may be no need to develap a highly-tuned implementation. Even if it
tumns out that the pilot implementation is sufficient, it is still a good idea to build a “backup”
system to validate the simulation results. At the very least, an altemative number generator
should be used. :) '

132

7.6. Simulation Shortcuts

In one sense there is little need for an efficient simulation program: the experimental results
will be the same no matter how long the experiments take. There are many reasans, however,
for spending some effort in developing a fast simulation program. Mast impartantly, extensive
use of an iterative approach depends upon the speed with which results are obtained. a
researcher is less likely to pursue a conjecture if resulls require a few days rather than a few
minules. Faster simulation programs allow more trials per sample peint in the same amount of
time. Algonthmic improvements can allow larger problems sizes, giving a better view of the
data and more insight into asymptolic performance.

Integer computation was used throughout the case studies. In the Bin Packing and
Matching studies the algorithms were performed on integers ranging from (0, 2°-1] rather
than on reals from the range (0. 1). In general, integer arithmetic is faster and gives more
accurate results than computation on reals. Also, since most generators of uniform random
variates (including those used in the studies) produce integers, the cost of converting to reals
was saved in the simulations. '

In addition to program speedups, a powerful technique in simulation is to look for simulation
shortcuts. The motivating principle is that a simulation of an algorithm is required, not
necessarily an implementation. As a trivial example, suppose the average cost of searching
for items in a random list of size N is of interest, where each item is equally Gkely to be
requested. The nalve simulation program repeatedly generates random lists and random
sequences of requests and accumulates the costs of searching for requested items. The
"shortcut” program generates search costs from a uniform distribution on the Integer range
{1,N]: although no random lists are built and no searches are performed, the results are the
same. (The “super shortcut™ program prints (N + 1)/2" and stops.)

Often, partial understanding of the algorithm can be exploited to obtain shortcuts in the
simulation. In the Quicksort study, the strafghtforward approach to simulating Quicksort
would be to generate randomly-ordered lists of numbers and to Quicksort them, recording the
measures of interest. In this case no random lists generated and no lists were sorted, yet the
desired measurements were obtained. The shortcut was possible because tha expectsd
values of the various measures at each level of recursion could be described analytically. The
shortcut program exploited this partial understanding by caiculating appropsiate values at
each recursive level rather than by simulating them. Since this simulation shortcut also
happened to be a variance reduction technique, simufation efficiency was doubly improved.

133

The median-generation routines in the Quicksort study also incorporated shortcuts: for
T<«N, maintaining an ardered hash table to detect duplicates exploited the fact that the
sample was drawn uniformly from the integer range and that only the median needed to be
found quickly. For T near N the generation routine only considered about 772 numbers
belore producing a median.

Early in the study of Search rules a simulation shortcut was developed for the Trahspose
rule by the addition of an auxiliary data structure. The straightforward implementation of
Transpose maintains a list of N items; when a regquest is made, the item is found in the list by
sequential search, the number of comparisons required to find the item is recorded, and the
item is transposed with the one preceding it. The shortcut implementation maintains a
second data structure (indexed by item names) that records the position of each item in the
search list. When an item is requested, its position in the search list (and therefore the
number of comparisons needed to find it) is found by lookup in the secondary structure rather
than by sequential search. Locating the requested item and updating the two lists requires
constant time per request rather than the time to search for the item. (When the measure in _
the simulation study was changed from request cost to permutation cost, this shortcut was no
longer used.) Some information must usually be sacrificed in order to use a shortcut: in the
Quicksort study, for example, no sorted list was produced as output. This was not a liability in
the simulation study becausae it did not affect the measures of interest.

Hammersley and Handscomb [17] give many examples of simulation shoricuts in their
discussion of Monte Carlo Techniques. Bentley [3] describes a simulation shortcut in his
study of an algorithm for median selection. Beardwood, Halton, and Hammersfey [2] make
good use of a shortcut in their study of heuristics for TSP. Given a set of points generated
uniformly within the unit square, the Strip heuristic divides the square into vertical strips of
fixed width, connects the points within each strip, and then connects the strips. The expected
tour length for the Strip heuristic is essentially the expected length within each strip multiplied
by the number of strips. The shortest tour within a strip is found by connecting the points in
order from top to bottom. Rather than developing a straightforward simulation of the Strip
heuristic, they exploited understanding of average distances between points in a strip o
calculata tour lengths without producing tours.

134
7.7. The Simulation Environment

A simulation study requires more than just a simulation program. Routines for random
number generation are needed, data files must be managed, and programs (or packages) for
data analysis must be available. Flexible and efficient simulation environments are needed to
support iterative analysis. This section discusses issues of program and environment

development.

One important rule in developing simulation programs is to avoid premature summarization
of data. Very often in the case studies, examination of the distnibution of data points at each
sample point led 10 new insight. Simulation pragrams should produce measurements taken at
each trial rather than average measurements for each sample point, so that the experimenter
can see the raw data.)

Angther rule that proved useful in the case studies is to produce results that are readable by
other programs. This principal is one component of the “Unix" style of program
development; see Kemighan and Pike [18] for more discussion of this approach (Unix is a
trademark of Bell Laboratories). The output of a simulation program, if it is to be easily
analyzed and manipulated, should not be cluttered with column headings and annotations;
this ig especially true if the results are to be submitted to a data analysis package.

Statistical Analysis Packages

The available statistical analysis package influences the arrangement of experimental
results in data files. Tools used in the case studies included the statistical analysis packages
S (developed at Bell Laboratories) and Minitab (developed at Penn State University) as well as
the graph-drawing packages Plot (developed by Ivor Durham for use in the Computer Science
Department at CMU), and Grap (a preprocessor for the Troff typesetting system).

All of these packages are column-oriented: that is, commands are typically expressed in the
following format.

o Plot the data in column 1 against corresponding values in column 2.

o Compute a multiple least-squares regression using the values: in column 2 and 3
to predict values in column 5.

o Assign to column 6 the logarithas of values in column 3.

135

If a statistical package is available then it is uselul to develop simulation programs that give
resulls in a lormat compatible with the package. In the case studies results were generated
so that each row of data ccrresponded to a single trial. The leftmost fields in each row gave
sample point settings and the nightmast fields gave values lor the measures ol interest. For
example, the lollowing data are from an experiment in the Bin Packing study. The columns,
from left to right, cotrespond to the name of the packing rule, n, u, number of bins packed,
empty space, emply space in the last bin, and number ol big items. Each line gives results for

one trial: two sample points are recorded.

FFO 125 1.000000 72 5.358297 0.468258 69
FFO 125 1.000000 63 2.500774 0.336832 58
FFO 125 1.000000 68 4.348960 0.502865 68
FFO 125 1.000000 65 2.633522 0.488351 63
FFO 125 1.000000 61 1.705485 0.805012 57
FFD 250 1.000000 137 6.808572 0.999558 137
FFO 250 1.000000 129 2.943276 0.315850 121
FFO 250 1.000000 130 4.867452 0.997307 129
FFD 250 1.000000 131 4.696441 0.459429 129
FFO 250 1.000000 145 9.049346 0.488392 142

Statistical packages can be of great use in analysis of experimental results and can be
critical to the development of an interactive style of analysis. On the other hand, much can be
accomplished with less sophisticated tools. Portions of the analysis described in the case
studies were performed on the Plot graphical-display package. Plot is not a statistical
package: its primary capability is to read a 2-column file of data and to plot values in the first
column against those in the second column. Plot commands deal with modifications of the
graphical display. Although the functionality of Plot is limited in comparison to a statistical
analysis package, much of the dilference was made up by the awk filter, a standard Unix
facility. iIn the awk language, each command comprises a paftern and an action: if the
current input line matches the pattern, then the action is taken. The pattem-matching
language allows comparison and algebralc manipulation of field entries. The action part is as
powerful as most programming languages and supports associative arrays. Awk was
regularly used for many of the functiong available in statistical packages, and the output of the
awk filter was passed to Plot for graphical display of the results. At times, the filter alone was
sufficient for quick analysis of small data sets: awk performed tedious manipulation and
summarization of the data and produced results that coukd be quickly recorded on graph
paper,

Generating Random Inpuls

136

A good source of uniform randam variates is needed in all simulalion problems. A huge
literature exists describing and evaluating algorithms for generating random variates. See lor
example Knuth [19], Brately, Fox and Schrage [9), Fishman [15), or most texts on simulation.
The primary generation algorithm for uniform variates used in the case studies is [rom Knuth
[19) (3.3.2, Algorithm A, Second Edition). Exhibit 7-2 gives the algorithm implemented as aC
macro. The 55-element array Rand vsas initialized by 55 calls to the BSD Uaix 4.1 system
random number generator, a linear congruential generator praducing integers in the range
(02%-1).

#define Maxrand (1 << 30)
int Rand[55];
int K,J;

#define RAND(X) X = Rand[K] + Rand[J]:
if (X >= Maxrand) X -= Maxrand:;
Rand[K] = X:
if (K == 0) K = 54; alsa K--;
if (J == 0) J = 54; else J--;

Pl

Exhibil 7-2: Uniform Number Generator

The secondary generation method, used in the pilot studies and In backup impleiicntatione,
was some forrn of finear congruential generator. The secondary studies varied among the
praoblem domains: some were performed on a Radio Shack TRS-80 personal computer, which
has a system linear congruential generator that generates reals from the unit interval. Other
backups systems used the system generator for BSD Uqbt 4.1,

The Bin Packing and Matching studies required the generation of order statistics ot uniform
variates: that is, sorted lists of numbers drawn independently and uniformly from a specified
range. A number of approaches might be used: for example, the variates could be generated
and then sorted by Quicksort. Since the numbers are known to be uniformly distributed,
Bucketsort might be more appropriate. Nijenhuts and Wilf [22] also give a clever aigorithm for
generating N integers in linear time and linear space. Bentley and Saxe [7] present two
linear-time algorithms for generating the order statistics of uniform reals. Although efficient,
the latter two were not considered for the case studies because they produce real numbers
rather than integers (integer computations were used throughout). A small study of the
running limes for the generation routines revealed that a variation on Bucketsort was most

efficient.

137

Many techniques exist for generating random variates from specific non-uniform
distnbutions, as well as general techniques for arbitrary distributions: see [9], [15], or [i 9] for
a good discussion. A well-known general method Is inversion: if F is an invertible distribution
function, then setling X = F~'(U) (for U a unilorm variate) produces variates with distribution
F. If the inverse of F is not easily computed, then F~'(U) may be approximated by a tabular
inversion method, where the /* entry in the table contains the pair [F(x). x,]. A simple
rejection approach generates points uniformly in the unit square and rejects any point that
lies above the specilied density curve; if the point is below the curve x-coordinate of the
generated point is reported. In general, rejection methods, generate paints in a region close
to the pro!;ability curve so that the number of rejections is small. A third method, the method
of aliasing, was adapted for generating of Z* variates in the Search study. Although the
method requires a table of size 2N and setup lime O(¥), (for N the range of possible values),
it uses constant time per vanate generated.

7.8. Analyzing Simulation Results

This section presents taols and guidelines for analyzlnd experimental results. Just as the
study of algorithms presents special problems in development of simulations studies, this
domain present special types of data-analysis problems. Some of the properties listed below
are typical of simulation studies in general; some are features of algarithmic domains.

o Sample points are usually chosen to comrespond to discrete, evenly-placed spots
in the space of parameter settings.

o Since parameters are often stratified, plotting a measure against a given
parameter results in siices of data points. At each slice the measurements
correspond to a random sample from some (usually unknown) distribution.

o The relative efficiency of simulation In this domain (compared to traditional
simulation problems) allows huge amounts of data to be generated.

o Measurements of algarithms usually (but not always) move smoothly with respect
to parameter settings. :

o A common goal is to characterize functional relationships between measures and
parameters. Comparison of algorithms at fixed sample point is also of interest.

o Usually, fitle is known about the tunctional mlati&nship. Even it theoretical
bounds exist, they often describe asymptotic behavior and may not be
appropriate for the domain of the experiments.

138

Many analytical tools were applied dunng the case studies that were not mentioned in Part
Il. The remainder of this section descnbes a number of tools that were particularly useful.
First, general techniques for studying any data set are discussed. Sections 7.9.1 through
7.9.3 describe tools for specific analysis problems.

Readers familiar with traditional techniques of expenmental statistics will realize that vety
few were mentioned in the case studies: there were no lormal experimental designs, no
analysis of variance tables, few instances of hypothesis testing, and limited applications of
regression analysis. Instead, tools of descriptive statistics were used extensively.
Statisticians specializing in Exploratory Data Analysis (EDA) distinguish between confirmatory
methods - where statisticians apply powerful analytical tools that rely upan a mathematical
model that closely describes the data in order to make inferences and to assess experimental
errors - and descriptive methods, which are used to obtain a good view of the data and to
produce summaries that are easily grasped. In the past, descriptive statistical methods have
been timited to elementary tools such as histograms and box plots. EDA provides a more
sophisticated set of tools for describing sets of numbers.

There are a8 number of reasons for the emphasis on descriptive statistics here. Tukey's
seminal text, Exploratory Data Analysis, was published in 1977: the approach Is relatively new
and, it appears, not very well known to computer scientists. The techniques deserve better
exposure to this audience. Also, at least for the case studies, the questions of interest were
answered more naturally by EDA approaches than by inferential methods.

Experience with the case studies suggests that much insight can be gained by examining
the data produced at each trial rather than averages for each sample point. Data sets at
varying sample points reveal convergence rates and changes in variance as well as
distributional properties. Graphical techniques for data analysis become very important in
this data-rich domain, since graphs are invaluable for clearly and concisely presenting huge
amounts of information. Consider, for example, the size and unreadability of the tables that
would be required to represent the information about First Fit Decreasing packings contained
in Exhibit 211. Graphs also aliow functional relationships and distribution properties to be
more easily seen.

Summarizing and Transforming Data

Although the raw data should be examined, it may be helpful to calculate summary statistics

139

to represent the data at each sample point. The sample mean is usually a good choica lor
representing the location of a data set, especially in studies of expected-case behavior.
Statistics lor describing dispersion, such as the standard deviation or the variance, are well

known.

If the distribution at a sample point is skewed (trailing off at either high or low values), or if a
bimodal distribution appears, then alternative summary statistics may more appropriate. One
approach used often in the case studies was to record certain order statistics su'~h as the
median and extremes of the data values. The quartiles are also useful: the high quartile o1 a
data set is the data value that is smaller than 25% of the set, and the lower quartile is greater
than 25% of the data. Half of the data values therefore fall between the quartiles.

A transformation of a set of numbers is achieved by applying some function to each value in
the set; common transtormations include the logarithm and the square root. Transformations
may be applied for a number of reasons. If the values represent units of time, for example,
taking reciprocals of the measurements converts “infinite time” to “zero speed,” which can
be easier to deal with.

Tukey [24] identifies a number of "types’ of data, including counts and amounts, times,
Iractions, proportions ol a whole, balances, and grades. Different types require different
analyiical tools. Simulation results for algonthmic problems generally take the form of counts
and amounts: measurements arising in the case studies, such as amount of empty space,
number of k-bins, number of comparisons, number of pairs matched, and number of recursive
stages reached, are all examples of this data type.

Tnunts and amounts have positive values with arbitrarily high upper bounds. If the ratio of
the highest value to the smaliest is large, then the high values will dominate the view of the
data. Transforming to logarithms will "spread out” the low values so that they may be more
easily seen. Tukey([24] (p. 57) remarks that counts and amounts generally profit from
logarithmic transtormation (he calls it reexpression) unless the ratio of the largest to the
smallest value is near 1.

Another type of data arises in the study of residuals to regression fits: balances have
posilive and negative values and are generally grouped around zerd. Balances usually
require no transformation.

140

The following subsections survey specific data analysis tools that proved useful in the case
studies, with emphasis on graphical and EDA tools. As before, familiarity with elementary
statistical analysis is assumed. Many of the techniques described here may be found in Tukey

[24] and Chambers et al [10). Cleveland [11] gives an excellent discussion of issues of

graphical style.

7.8.1. Looking at Distributions

At a lixed sample point the measurements represent a random sample drawn from some
probability distribution. In algorithmic problems the form of this distribution is usually
unknown, There are many reasons for looking at the distribution of measurements: How large
is the range of the data? Are the points arranged symmetrically about their mean, or are they
skewed? How are the measurements distributed at this sample point? Summary statistics can
suggest the location, shape, and spread of the dala set. In addition, a number of graphical
tools are available.

The maost familiar way to display a distribulion isby a hislogmm: Recently, statisticians have
argued against the use of histograms in data analysis - the essential drawback is that the
visual message depends greatly upon the choice of graphical parameters such as the width
and cutoff points for the bars, rathar than on the data itself. Chambers et al [10] and
Cleveland [11] discuss histograms and their weaknesses.

Exhibit 7-3 presents a number of altemnatives to the histogram using data from the Search
study. The graphs depict permutation costs for the Move-to-Frornt rule in 100 trials at the
sample point N=6, A=1, and T=5. A partial list of the results, showing the 5 highest and 11
lowest values observed in 100 trials, are presented at the left of the exhibit.

A compact and informative mﬂﬂon is given by a one-dimensional scatter plot. Graph
7-3-a reveals that observations range between approximately 2.5 and 4.5, and that about 80%
of the data is below 35. Also, the distribution is densely concentrated towards the bottom of
its range and sparse at the top. This type of graph was used extensively in the case studies
tor comparisons of distributions among sample points. Two potential disadvantage with one-
dimensional scatter plots is that the denslity of the points may overwhelm the graph-drawing
technology, producing a blob of ink rather than distinct marks, and that duplicate values are
overwritten. Methods for avoiding such problems by techniques such as “jittering” (giving
each point a random horizontal position within a small range) are described in [10] and [11).

141

4.48 4.4 8
4.36 4.3 66
4.36 4.5r - 4.2 45 o
4.05 - 4.1 @
3.713) 4.05
4.0} 3.9 40fF ©°
3.8
| i 3.73

] as 3.6 02359 a.s{
2.57 . 3.5
2.56 : 3.4 1
2.56 3ol 3.3 0a9 3.0l
2.54 i 3.2 112334778
2.53 ; 3.1 01111124687
2.53 3.0 3335599
2.52 2.5F = 2.9 39099 2.51
2.48 2.8 000002344456669
2.47 2.7 0011112227778 .
2.47 2.00— 2.6 01133777789 20—
2.45 2.5 23346677999

2.4 5778

Data a . b c

Exhibit 7-3: Displaying Distributions

The stem and Ileaf chart (Graph 7-3-b) i3 a combination graph and table. The high-order
digits of the data values are written in the stem (the hosizontal columa), and low-order digits
are recorded in the leaves (the row entries). This chart displays the trailing off at high values
more clearly and gives a better view of the shape of the distribution. From this chart we see
that most of the values are concentrated between 2.45 and 3.41, with ten stray values above.
The median value is at 2.80, the extremes are 4.48 and 2.45, and the quartiles are 3.16 and
2.68. This data is clearly skewed towards the bottom. The distribution also appears to display
some bimodality, with peaks around 3.1 and 2.8. The most common values occur between
2.80 and 2.89.

Stem-and-leaf charts provide an excellent way to record a data set and to display
distributional properties. Also, the data is not obscured by limitations of graphical
technology. The view obtained from these charts can often be improved by transformation of
the data: transformations can be used to induce Ssymmetry in the distribution and to scale
results for better comparison among data sets. In addition, order statistics can be easily
found, since the data points are presented In sorted order. One disadvantage of stem-and-

leaf charts is that they can take up a great deal of space.

142

The box plot is probably as well known as the histagram. Uniike the first two graphs of
Exhibit 7-3, box plots are graphical summaries of the data set and do not display all the
measurements. In Graph 7-3-c, the ends of the box correspond to the quartiles of the data set
and the harizontal bar to the median. A common problem arises in deciding which paints to
include in the vertical bars and which to mark as outliers. A standard rule of thumb (see
{24] or [10]) is to compute the interqus:tile range H - the dilference between the quartiles -
and to plot values more than 1.5/f/ away from the quartiles as outliers. In Exhibit 7-3, the
interquartile range is /{=1.16—-268=0.43, so points greater than 3.16+0.48(1.5) = 3.88 are
plotted as outliers. There are no low outliers. Note that duplicate values in the outliers are
*'stacked"” - placed side by side ~ so that they may be seen.

e 1.0y r 4.0¢
b 8
] e
3 S ++ K] +
-10.8 . E 1.6} N
+ > -
o E
- +
0.6 K n.; ;
.o 3.2 F
. 4
P . &
0.4 **,w* . ;”
+ 2.8} M"
0.2t I o
.t /—
olo + A N A A s 2.4 " A A A N
o 5 10 15 20 25 o 20 40 60 80 100
a b

Exhibit 7-4: ECDF Plots

Another graphical technique for examining the distribution of a data set is to plot the values
against their ranks, producing an empirical cumulative distribution plot (ECDF, also known as
aquantile plot or a cumulative frequency diagram). Guidelines for interpreting ECOF plots are
given by Chambers et al [10], and by Mosteller, Fienberg, and Rourke [21]. 1f the curve in 2n
ECDF plot is generally straight, then the data are nearly unitormly distributed in their range:
Graph 7-4-a presents an ECDF plot for empty space in the last bin in 25 FFD packings at the
sample point n=128000, u=0.5.

Graph 7-4-b presents an ECDF plot for the data from Exhibit 7-3. The concentration of

143

values at the bottom of the distribution is indicated by slow growth in the lelt side of the graph;
quick growth on the right side marks the outliers at the high end. In ECDF plots the slaope of
the curve correspands to the density of the data paints. Although it is more ditficult to see
peaks in the density function, ECOF plots give a good view of the symmetry and spread of a
set of data. Also, statistics such as the means and quartiles are easily found lfrom ECDF

graphs.

7.8.2. Comparing Sets of Data

Comparison of data sets at fixed sample points is a common task in simulation studies of
algorithms. Measurements for two algorithms at the same sample point can be compared to
determine if one consistently outperforms the other. Data lrom adjacent sample points can be
compared to determine if the measure changes as parameter settings vary. Data from
extremal parameter settings can be compared to measurements at middle settings to
determine it a harizontal straight line is produced. Also, measurements from secondary
implementations can be compared to corresponding values from the primary simulation'
program to determine if the results are statistically equivalent.

nddr
=4.‘ " . : *
3
e - - 40F + & *
4.0} - . + +
- - b + + .
3 - H = * *;* e -
Sasl - H : aer -, N
o H 3 ++ Tote W
- 3 3 * + : 4.
3.2} H : g 3.2r * -". ¥
= - : #& #’ + *
i : : %‘. : *
H . i
28 i 2 i 2.8¢ _’ .
i 2 i ta %
L i : I
- y . . ‘ 2.4 2.8 3.2 3.6 4.0
1 3 5 M1
a b

Exhibit 7-5: Comparing Data Sets

A simple graphical technique lar comparing data sets is by juxtaposition of one-dimensional

144

scatter plots. For example, this method was used lo study the critical region for the First Fit
decreasing rule (Exhibit 2-11). Graph 7-5-a presents a comparison of the sequential search
rules M1, M3, and MS, for 100 trials at the sample point N=6, T=25, A=1, G=1. The graph
suggests that M1 has much smaller variance than the other two rules as well as smaller mean.
Al three rules have similar low bounds, but upper bounds vary among the rules. The
distribution for M3 appears to be skewed towards the bottom to a greater extent for MS.
Juxtaposition of stem-and-leaf charts, similar to that in Exhibit 5-10, was also a frequently-
used analysis tool.

Another technique for comparing data sets is to plot corresponding values against each
other, this approach is especially uselul for comparing results of paired experiments. In Graph
7-5-b the x-coordinate of each point correspands to permutation cost for the M1 rule and the
y-coordinate to permutation cost for the M5 rule for 100 paired trials at the sample point given
ahove. The dotted line gives the identity lunction y = x. Most of the points are ahove the line,
indicating that MS generally has higher cost than M1 at this sample point. There appears to
be a smali but not averwhelming positive correlation between costs for the two rules.

Pairs of numbers can be also compared by reporting either their difference or their ratio in
terms of some input parameter. Olten in the case studies the clarity of the view was
influenced by the choice of comparison method. Usually, diferences gave a much better view
than ratios, even when ratios (for example solution ratio in the Bin Packing study) were
suggested by theoretical analysis.

Gnanadesikan and Gustafson [16] note that significantly different sizes In numerator and
- denominator can give a bimodal distribution in ratios {(which usually causes difficulties in
summarization and analysis). In visual displays the human eye is better at judging distances
{carresponding to dilferences) than proportions (corresponding to ratios). Tukey
[24] suggests that if ratios are necessary to the analysis, then it is probably better to take
togarithms of the data and to study differences in the new metric (which correspond to ratios
in the original scale), and then to translate conclusions back to the original scale.

In the Bin Packing study, empty space (which bounds the difference between heuristic bin
count and optimal bin count) lead to much stronger results than previous studies which
measured the bin ratio. The bin ratio, as it approaches some asymptotic constant, tends to
change very slowly In n. This obscures the view of the data, which Is best when growth over
sample points is large compared to variation within sample points. In contrast, emply space

145

(for u = 1) grows as n'"?, s0 change in terms of n is easily seen. Bentley and Faust [4] were the

first to measure empty space instead of bin ratio for the Bin Packing problem.

7.8.3. Assessing Functlonal Relationshlps

The most common goal of a simulation study in the domain of algorithm analysis is to
characterize the functional relationship between a measure and the parameters. This section

presents techniques for studying functional torms.
Using Regresslon Analysis

Although standard techniques ol regression analysis are well known, examples of previous
work (Irom Section 1.2) demonstrate that this powerful analysis tool should be interpreted
with care. There are at least two reasons that a regression model might be.inlerpreted
erroneously in algorithmic problems. First, the precise functional relationship between
measures and parameters is not usually known belorehand. An approximate model that
appears to describe the data must therelore be used. Second, even if the. model is known, it
may not be appropriate: theoretical results are usually expressed in terms of asymptotic
order-ol-magnitude bcunds, whereas experimental measurements at finite problems sizes
correspond to a curve approaching its asymptate.

In any reporting of regression resullts, it is not sulficient to simply state the model used and
the coelficients obtained. Regression resuits should always be accompanied by a precise
description of the variation between the data and the regreczsion fit. Standard tools for
checking model accuracy and for describing model deficiencies are found in texts on
experimental statistics such as[5), [12], and [21). Proper interpretation of regression results
cannot be made without carrect application and reporting of these results as wesl.

A useful tool for studying deficiencies of a regression fit is a graphical display of the
residuwss. Since residuals represent the difference between the data and the fit, properties of
such a graph can indicate deficiencies in the model. Observing generally straight horizontal
residuals does not necessarily mean that the correct model has been found, however. The
study of First Fit gives an example: although the residuals from the fit y = 2*'+ b display no
marked curvature (Exhibit 2-1), Shor [23] later proved asymptotic bounds of O(#*”(log n)'*)
and D(n?).

146

Although regression provides a useful descriptive tool, care must be taken in extending the
fit to behavior outside the range of the experiments. At times in the case studies, a poor fit
gave more information than a good fit: if the residuals curve upward, tor example, then the
data is growing more slowly than the fit, suggesting that the lit might gives an upper bound on
the data. (Of course there is always the possibility that the data increases at a much faster
1ate for problem sizes larger than those measured: sce Eppinger [13])

The regression models discussed in Part I are all linear models (sometimes on logarithmic
scales). At times during the analysis, attempts were made to apply more sophisticated
models. In most cases it was very difficult to determine if one model was any better than
another. | therefore used simple linear models in discussion of the case studies, which are
more obviously seen as descriptive tools than as factual descriptions of functional
relationships. '

EDA Techniques

Examinmg residuals from a regression fit is analogous to the general approach lor studying
functions by EDA methods. First, look at the smooth: transform the data, fit models, or use
other techniques to get an idea of the general relationship between the measure and
parameters. Then look at the rough, the variation between individual data points and the
general trend,

Texts on exploatory and graphical methods present many techniques for smoothing the
data points. Smoothing gives a better view of the genercl relationship between two data sets.
Exhibit 7-6 gives an example of smoothing lor a made-up set of data. In this example, the
y-coordinates are smoothed by taking means of every three values. Graph 7-6-b presents the
original and the smoothed data.

Smoothing did not appear to be generally helpful in the case studies. First, measurements
of algorithmic behavior tended to be fairly smooth anyway, so there were few oppbrtunities to
apply this technique. Second, the data usually appeared In slices: smoothing was either
trivial (taking means at each sample point) or unnatural (taking means across sample points
or within sample points). Third, although smoothing gives a good bicturo of the relationship
between variables, the smoothed curve has no concise mathematical description. In the case
sludies even an inaccurate regression fit was preferred because the fit as well as deficiencies
could be characterized in functional terms. At tmes | used smoothed lines for quick

147

3y JSmooth 8 °
1 1
2 2 2.1 o °
3 a4 2.67 .
& 2 2.67 e} ° .. o
5 2 2.67 e oo °
6 4 4.33 SR °
17 1 4.67 o -
8 3 5.33 4t oo o .
9 6 4
10 3 5.33 : o o
11 7 5.33 et "*
12 6 6 2 o o
13 5 5.66
14 6 6.33 o
15 8

o 4 8 12 16

a
b

Exhibit 7-6: Smoothing

assessment of regression models: rather than inspecting residuals, a smoothed fit was
compared to a regression fit and relative curvature was then interpreted in a manner similar to
that for residuals.

Graphical Techniques

An important use of graphs in studying functional relationships is in analysis of residuals
(described earlier). Another common graphical technique for studying functional
relationships is by the scatterplot, where pairs of values are plotted for a view of the
refationship between the two.

A standard technique of EDA is to transform the data until a straight line is produced on the
graph. The nature of the required transformations can then suggest functional relationships
between the two data sets. For example, if a straight line is produced by squaring the y-
values, then y grows as the squure-root of x. A number ol useful transformation rules are
presented by Tukey [24] (Chapter 3). Fishman [15] (p. 337) gives a large table of rules of the
form: if the true functional relationship Is y=/{x), then transforming y by g(y) or x by h(x) will
produce a straight line.

148

Changing the scale of one or both of the axes is also a kind of transformation. Many of the
graphs in the case studies have loganthmic scales. Logarithmic scales were used to “even
oul” the data, especially when input sizes doubled at each sample paint. Logarithmic y-
scales were often used when the ratio ol the largest to the smallest value was high.

The rules for interpreting graphs with logarithmic scales are identical to those for
transformed data. If the y-scale is logarithmic and a straight line is produced, for example,
then y-values are growing exponentially as a function of x. II a straight line is produced on
with a logarithmic-x scale, then y-values are growing as the logarithm of x. If both scales are
logarithmic and a straight line is produced, then a power law iS suggesied:
log () = alog (x) + bimplies y = x%eb.

Very often in algorithmic problems more than one input parameter is identified: how can
functions of more than one variable be displayed in two-dimensional graphs? A number of
options are available. Graph 2-10-b, for example, is a coded scatterplot from the FFD study.
In this graph data points are coded by symbol to correspond to their u values, and are plotted
against N. This graph allows easy comparison among the ¥ values because the curves are
superimposed. Usually such graphs require some summarization of data (by taking means in
this example) so that the different curves may be easily seen.

Graph 2-.10-a is a mutltiple scatterplot, an alternative to the coded scatterplot for displaying
measurements in terms of two variables. Multiple scatterplots allow comparison of all the data
rather than just summaries: a separate panel is produced for one parameler, and the data
points are plotied against the other parameter. For easler comparison between panels, the
scale should be identical in each. If this is not practical (because variance or mean diflers
widely among panels), then the scale should be clearly marked. Graph 2-10-a shows a
multiple plot where differences in scale ara indicated by horizontal lines within the panets.

Multiple scatterplots were used extensively in the case studies, especially in the studies of
Quicksort and Sequential Search. A generalization Is the scatterplot matrix of n rows and
columns, whars each # row/column crresponds to 2 variate (comesponding to either &
parameter or a measure). The panel with index (£ j) displays variate i plotted against variate /.

149

7.9. Summary

Chapter 6 identifies four general principles for simulation analysis of algorithms: match
experimental results to algorithmic models; find a good view of the data; analyze rather than
measure the data; and iterate theoretical and experimental approaches. This chapter
discusses issues and procedural steps that arise and presents techniques and guidelines for
approaching these four principles. To summarize this chapter, the following list presents

some guidelines for simulation research in the domain of algorithm analysis.

e Choose a measure that is both well-defined and practical {or experimentation.
Alter the theoretical model if necessary.

e Change the measure to obtain more detailed views as the study progresses.

¢ Ensure correctness of the simulation program by comparison to known formulas,
by applying standard program verification and validation techniques, arid by
consideration of limitations imposed by machine precision.

e Replicate the experiments. At the very least, change the random number
generator. Even better, alter the implementation, machine, and programming
language.

o Apply variance reduction techniques such as Conditional Mo~le Carlo, control
variates, or paired experiments. Make sure that the variance reduction is cost-
effective.

o Measure the largest problem sizes possible. Doubling the input size at each
sample point seems to be an efficient way to proceed.

+ Sample many points within the range of the parameter values.

+ Stratify the parameters 10 reduce randomness in the simulation. At tater stages in
the study it may be useful to stratify input instances beyond those properties
described by parameters.

o Start with a complete factorial design with a few of settings per parameter, and
progress to denser samples. Be careful with “one-at-a-time” approaches to
experimental design.

e implement a pilot study before beginning extensive simulation. LJse the pilot
implementation to check details of the model, to suggest coding improvements,
to direct choices of sample points and trials, and to serve as a secondary system
for replication of experiments.

¢ Efficient simulation programs are worth the elfort: new Ideas ara likely to be
pursued when results are obtained quickly.

150

¢ Exploit simulation shortcuts. The abject is not to implement an algarithm, but to
simulate its behavior.

e The simulation program should produce unsummarized data as much as the
available technology will allow. Summarnzation and manipulation of results
should not be performed belore the researcher sees the raw data.

« For compatibility with many data analysis packages, produce data files with
results of one trial per row. Input parameters should be listed on every row.

« Tools of Exploratory Data Analysis appear to be particularly useful in this domain.
Read Tukey [24).

e Simulations of algorithms allow generation of large amounts of data: make
extensive use of graphical tocts.

e« Summarization and transformation of results can give more manageable
information. Measuiements of algorithmic performance tend to be expressed as
counts and amounts, suggesting logarithmic trans{ormations.

o Tools such as the one-dimensional scatter plot, the stem-and-leaf chart, the box
plot, and the empirical cumulative distnibution chart are useful for studying
distributions. Histograms' are not recomm.ended by modem statisticians.
Techniques such as jittering may be applied to improve graphical clarity.

o Sets of data may be compared by juxtapaosition of one-dimensional scatter plots,
by plotting paired data values as points, or by examining the ratios or difference
between paired data. Differences tend to give a better view of the data than do
ratios.

o Be careful when interpreting regression analysis. Always examine the residuals.

o The ENA approach to studying functional forms is to look at the smooth and then
look at the rough. Nonparametric smoothing techniques, however, were rarely ol
use in the case studies.

o Apply transformations to induce symmetry in the data set, to even out counted
da!a. or to obtain a straight line in plots of functional relationshipa.

oMultiple scatterplots and coded scatterplots may be used to examine
measurements in as functions of more than one parameter.

151

References

i

[2]

[3]

[4]

151

[6]

71

(8]

[9)

[10)

N.R. Adam and A. Dogramaci, Eds.
Current Issues in Computer Simulation.
Academic Press, 1979,

J. Beardwood, J. H. Halton, and J. M. Hammersley.
The shortest path through many paints.
Proceedings ol the Cambridge Philosophical Society 55:299-327, 1959.

J. L. Bentley. -
Progamming Pearls: Selcz¥on.
Communications of the ACM 28(11), November, 1985.

J. Bentlay, J. Faust.
Unpublished notes on simulations of FFD.
1980.

J. L. Bentley, D. Haken, R. W. Hon.

Statistics on VLSI Designs.

Technical Report CMU-CS.80-111, Department of Computer Science, Camegie-
Mellon University, Pittsburgh, PA 15213, April, 1980

J. L. Bentley.
Writing Efficient Programs.
Prentice-Hall, 1982.

J. L. Bentley and J. B. Saxe.
Generating sorted lists of random numbers.
ACM Transactions on Mathematical Software 6(3):359-364, September, 1980.

W. L. B. Beveridge.
The Art of Sclentific Investigation.
Vintage Books, New York, 1957.

P. Brately, B. L. Fox, and L. E. Schrage.
A Guide to Simulation.
Springer-Verlag, New York, 1983.

J. M. Chambers, W. S. Cleveland, B. Kleiner, and P. A. Tukay.

The Wedsworth Statistics/Probability Series: Graphical Methods for Date Anelysis.
Duxbury Press, Boston, 1983.

Hardback version published by ‘Wadsworth Inlemational Group, Belmont, California.

(1]

[12]

(13

[14]

[1s]

[16]

[17]

[18]

[19]

(20]

[21]

(2]

{23)

152

Cleveland, W. S.
The Elements of Graphing Data.
Wadsworth Publishing Company, 1245,

M. H. DeGroot.
Probability and Statistics.
Addison-Wesley Publishing Company, Reading, MA, 1975.

J. Eppinger.
An empirical study ol insertion and deletion in binary trees.
Communications of the ACM 26(9), September, 1983.

W. Feller.
An Introduction to Probability Theory and its Applications.
Wiley and Sons, New York, 1971.

G. S. Fishman.
Concepts and Methods in Discrete Event Digital Simulation. -
John Wiley & Sons, New York, 1972,

M. Gnanadesikan and H. W. Gustalson.

Properties of Perforrhnance Measures.

198S.

Summary of poster presentation. Gnanadesikan is at Farleigh Dickinson University,
Gustalson at ATAT Corporate Headquarters.

J. M. Hammersley and D. C. Handscomb.
Monte Cario Methods.
Wiley & Sons, New Yol 1964.

B. W. Kernighan and R. Pike.
The Unix Progremming Environment.
Prentice-Hal!, 1984.

D. E. Knuth,
The Art of Computer Programming: Volume 2, Seminumerical Algorithms,
Addison-Wesley Publishing Company, Reading, MA, 1973,

1. Mifler and J. E. Freund.
Probability and Stetistics for Engineers.
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1977.

F. Mosteller, S. E. Fianberg, R. E. K. Rourke.
Beginning Stetistics with Dete Anelysis.
Addison-Wesley, Reading, MA, 1283,

A. Nijenhuis and H. S. Wilf.
Comobinatoriel Algasizins lor Compilers end Cakculators.
Academic Press, New York, 1978,

P.W. Shor.

The average-case analysis of some on-line algorithms for bin packing.

In Proceedings, 25th Symposium on Foundations of Computer Science, pages
193-200. IEEE, October, 1964,

153

[24] J. W. Tukey.
Addison-Wesley Series in Behavioral Science: Quantitative Methods: Exploratory
Data Analysis.
Addison-Wesley Publishing Company, Reading, MA, 1977.

155

Chapter 8
Conclusions

This thesis presents four case studies in experimental analysis of algorithms, aisng with a
discussion of principles and techniques for experimental research. These are all studies of
algorithms, not of programs. Perhaps because algorithm analysis is primarily a mathematical
discipline, there has been no tradition of experimental research in this domain. In sciences
with strong experimental traditions, fundamental principles such as rigorous hnalysis of
results, and replication of experiments are well-recognized and regularly applied. Much of
this tradition can be applied successfully to algorithmic pmblems.

On the other hand, although simulation has been applied in diverse areas such as economic
forecasting, analysis of weather pattemns, and benchmark testing of computer operating
systems, the goals and procedural issues presented by algorithmic problems are in many
ways atypical. For example, the underlying system is relatively simple: even a complex
heuristic algorithm is likely 0 have a cleaner mathematical description than, say, an economic
model. Algorithms also tend lo nave inexpensive implementations and relatively few
parameters, so much more data can be gained per unit of computing effort. It is not obvious,
however, that the questions pased in algorithmic studies are naturally answered by traditional
experimental methods: standard tools of statistical analysis (such as analysis of variance)
begin by assuming the functional relationship between input properties and performance
measures, while the usual goal of algorithm analysis is to discover that functional relationship.

Nevertheless, the case studies demonstrate that simulation can provide a powerful tool for
gaining Insight into difficult analysis problems. Although the problems in the case studies
have received a great deal of previous attention, many new resuits were gained by
experimental methods. The simulation results led 10 new theorems, new arguments, and new
insight, as well as to precise measurements and characterizations of algorithmic
performance.

156

Thae limitations of expesimental research in this domain are real: ineasurements at a linite
set of sample points do not necessarily lead to theorems. While the difficulties can not be
eliminated, much can be achieved by exploitation of simulation technigues, creative
appticalion of analysis tools, and an approach that iterates experimental and theoretical

analyscs.

g8.1. Contributions of the Thesis

The main contributions of the thesis take two forms: new results in the case study domains, -

and a discussion of issues and technigues for improving simulation studies of algorithms.
The lottowing list restates the research goals from Section 1.3 and gives references lo
sections ol the thesis that address each goal.

1. To demonstrate that simulation can provide a useful, general tool for developing
new understanding of algorithms. Chapters 2, 3, 4, and 5 present results for the
case studies. A list of specific contributions in these areas appears in Secticn
6.1.

2. To identify common problems and assess the applicability of this approach.
Section 1.2 gives a critical survey of previous wark and discusses problems and
issues that arise. Section 6.2 discusses limitations and applications of
experimental research in the context of algorithm analysis.

3. To develop pnnciples for succaessful exparimental research in the domain of
algorithm analysis. Section 6.3 presents four general principles for successful
experimental studies.

4. To promote more general use of this approach by giving a *handbook’’ of uselul
tools and techniques. The handbook: aonrars in Chapter 7. Topics include
accuracy and reliability of simulation results, variance reduction techniques,
choice of sample points, and analytical tools appropriate for this domain. Section
7.9 summarizes the handbook by giving a list of rules-of-thumb for simulating
algorithms. Also, the case studies provide a portfolio of examples: results were
purposely presented in an evolutionary style so that the lnmbgahve nature of the
research could be seen.

8.2. Future Work

Mve questions and open problems have been raised by this research than have been
answeved. Many conjectures and observations from the case studies await further analysis
and experimentation. Also many issues of exparimental procedure deserve further study.
This section presents some of the more prominent open problems from the case studies and
sugyests future directions for the study of experimental techniques in this domain.

157

Bin Packing

There is at present no theoretical characterization of First Fit packings for u<1l. In
particular, characterization of the nonmonotonicity in ¥ remains an intriguing open problem.,
Do the local minimum and maximum move with #? What is the value of « that gives maximum

emptly space asymptotically?

A first step would be to formalize the argument for linear empty space when 1 = 0.8 {givenin
Section 2.3.1.) by proving that expected empty space in 2-item bins is bounded below by
some small constant. The next step would be to extend the argument (in terms of k-item bins
and empty space in k-item bins) to all values of u. The proportion of k-item bins for any uis
suggested by Graph 2-6-a; further experiments would reveal appropriate values for the small
constants. Limited expenimental results give the weak conjecture that empty space does not
grow linearly at small values of i; is there an abrupt change the asymptotic function at u = 0.,
as ig the case with First Fit Decreasing?

Although the First Fit Decreasing algorithm has been theoretically characterized as a
function of n for fixed values ot u, a function in terms of 7 and u are not known. For example,
when u < 0.5, empty space has been proven to ba constant with respect . 2. Experiments
suggest that (for partial empty space) the constant depends upon u and grows approximately
as u’. A similar open problem exists for u between 0.5 and the critical region: here, empty
space appears {0 grow linearly in u. The cyclic component observed as a function of u also
remains unexplained.

Experimental results suggest that the Best Fit and Best Fit Decreasing algorithms produce
packings with structure very similar to those for First Fit and First Fit Decreasing, respectively.
Theoretical characterization of the former two algonithms seems 10 be a very difficut task.
The only expected case result to date is Shor’s [10] analysis of Best Fit packingswhenu=1.

In addition to expected behavior in terms of n and u, variation from the mean is also of
interest. The causes of very bad packings in the critical region cre only partially understood.
A promising experimental approach might be to stratity a variety of input properties to obtain
a better view of the relationship between input properties and bad packings.

For all four p;ddng algorithms, the next set of experiments should examine packing
structure more closely. The most obvious characteristic to study is the interaction between
number of k-item bins and empty space in k-item bins. A better view of this behavior could

158

lead to characterization of First Fit a1 all values of u, and, for First Fit Decreasing, to
understanding of the cyctic component and of packings in the critical region.

An obvious direction for further expenmental study is to examine a variety of input
distributions and packing algorithms. Coffman, Garey, and Johnson (S] give a thorough
survey of bin packing and related problems.

Greedy Matching _

The pnimary open problem from the Greedy Matching study is to characterize the
distribution of points after k levels of nearest-neighbor remaval. Limited experimental study of
the distribution ol inler-point distances suggests that the shape is generally invariant over k,
although the spread increases as points are eliminated.

An easier task might be to obtain a lower bound on the expected number of nearest.
neighbor pairs removed at each level and an upper baund on the expected cost of edges
removed. Bounds on these two quantities, combined with the arguments of Section 3.5,
would lead to proats of the conjectured logarithmic edge cost for Greedy Matching and linear
expected running time of the matching algorithm.

Median-Selection in Quicksort

Doug Tygar and | recently proved the conjecture of Section 4.4 that a square-root selection
strategy minimizes the total number of comparisons. We also showed that the square-root
strategy has subquadratic worst-case performance. The following problems remain open:
determining the improvement obtained by the square-root strategy over any fixed- T strategy,
finding a closed form for total comparisons, and, for fixed- T strategies, determining the best
choice of T as a function of Nand M.

Another direction lor extending this work Is to give a complete analysis of square-root
Quicksort: that is, to analyze measures A through F as determined by a specific
implementation. The biggest difficulty may be the analysis cf the median-selection algorithm.
Hoam'salgodﬂgmmwedmmeapedmemalsmdybecamﬁhasmemctandysbm
number of comparisons. A similar result for the number of exchanges appears not to have
been published. A selection algorithm by Floyd and Rivest [8,7] gives fewer comparisons
asymptotically but has not been analyzed exactly.

A number of implementation issues remain open for variable-sample Quicksort algorithms.

159

One interesting problem is how best to imbed a general median-selection algorithm into
Quicksort: since median-selection algorithms partition their ir Jut, it might be profitable to
avoid re-considering the sainpie during the partition stage. Also, an advantage of fixed-T
strategies is that the median-selection code may be finely tuned, qiving fewer comparisons for
a specific sample size than a general algorithm would. Since Quicksort seems to be fairdy
robust with respect to small changes in sample size, perhaps some hybrid scheme, which
contains a small set of finely-tuned selection subroutines and makes an intelligent choice of
which to use, would be more efficient in practice than a straightforward square-root strategy’.

An obvious open problem, ripe for experimental study, is to determine if an implementation
of square-root Quicksort exists that is more efficient than standard implementations under
realistic conditions.

Sequential Search

The conjecture that for any two Move-Ahead-k rules with different index, one will converge
more quickly and the other will have better asymptotic cost, remains open. Experimental
results support this conjecture for the family of distributions related to Zipf's law.

Standard theoretical analysis of the search rules has been based upon the asymptotic
probability for each permutation of the search list. One reason for the difficulty of studying
these probabilities by experimental methods is that the space of permutations is large. Future
experiments may be designed to reduce this problem by grouping th.2 permutations in related
classes and by examining the distributions of the groups. For example, permutations might
o8 grouped according to ranked costs, such as is displayed in Exhibit 5-8, or perhaps by
location of the most commonly-requested item. An appropriate grouping might suggest an
analytical shortcut for characterizing the Move-Ahead-k rules.

To simulate the asymptotic performance of the Move-to-Front rule, it is only necessary to
generate requests until each has appeared at least once; Bitner[8] showed that the
probabilities for search list permutations at this point are equivalent to their asymptotic
probabilities. Although this very fast shortcut algorithm was not used in the case study
{because of the paired experiments), it could be useful in future studies. Perhaps a shortcut
to asymptotic behavior can be found for general Move-Ahead-k rules. For example, starting
with the optimum search list order instead of random order may permit faster convergence to

i rank Mike Langston for suggesting this hybrid schema.

160

steady-state behavior. (Bitner [3] prcved that the steady-state prababilities for Transpose are
independent of initial list order, and this fact ts obvious for Move-lo-Front; a similar proof for
the other rules would be required to justify the use of this shcricut.) Of course, it would be
erroneous lo draw conclusions about convergence properties for the standard analytical

model from these simulations.

Simulation and Analysis of Algorithms

A coinmon problem in expenimental analysis of algorithms arises in the study of heuristics
for NP-hard problems. Analytical results are often expressed as bounds on the ratio of
heuristic performance (o the optimal solution. Unfortunately, it is rarely possible to determine
the optimal solution experimentally. In the Bin Packing study, a tight lower bound on the
optimal solution was available; for what other NP-hard problems do such tight approximations
exist? A promising alternative approach (discussed in Section 1.2) is to generate inputs with
known optimal solutions: for what problems Is this approach passible? Do the generation
schemes preserve interesting input properties?

The idea that an algorithm s to be simulated, rather than implemented, can be exploited to
produce very efficient simulation environments. Variance reduction techniques and shortcut
2lgorithms, discussed in Sections 7.3 and 7.6, deserve more extensive application and study.
Perhaps the idea of finding a shortcut to asymptotic behavior, discussed above in the context
of Search rules, can also be applied to problems in other algorithmic domains.

C-eative techniques for obtaining good views of algorithmic behavior also deserve further
attention. In particular, tools of algonthm animation - producing movies of algorithms in
action - can be quite powertul for giving insight into underlying processes. Animations of
First Fit Decreasing packings were directly responsible for the prool of constant empty space
for u < 05 (appearing in [1]). Animations and *“snapshots” of an algorithm can also provide
an excellent medium for conveying experimental results. Systems for algorithm animation
have been developed by Brown and Sedgewick [4] and Bentley and Kemighan [2]).

While a start was made at identifying properties of algorithm analysis that influence the
choice of analysis tocls, many questions remain open. This thesis only considered statistical
and analytical tools found in advanced textbooks: perhaps newer techniques may be applled
with success. In particutar, the special tools for analysis of time-series data wouid prabably be
useful in the Sequential Search and the Greedy Matching studies, as well as in other
analytical domains. What analysis tools give rigorous upper or lower bounds on function
growth rather than approximats fits?

161

An interesting problem that was only slightly addressed in this research is the design of an
environment to support simulation studies of algorithms. Although numerous simulation
languages, random number generators, and statistical packages are available, the emphasis
in such systems appears to be somewhat at odds with that of algorithm analysis. What
[éalures should be built into a statistical package to support experimental research in this
domain? Expefience with the case studics suggests that emphasis on graphical tools and
exploratory data analysis is desirable, but many more than four case studies are required
belfore a final determination may be made.

Much more experience is required If a rigorous experimental method lor algorithmic
problems, comparable to that for traditional experimental domains, is to be established. |
hope that computer scientists will apply the tools of Chapter 7 (as well as others not discussed
there) to their analysis problems and report upon their success. Statisticians can be of g.reat
help in kientifying statistical and analytical tools that are particularly useful in this domain.

162

References

[1] J.L.Benlley, D. S. Johnson, F. T. Leighton, C. C. McGeoch, L. A. McGeoch.
Some unexpected expected-behavior results for bin packing.
In Proceedings, 16th Sympasium on Theory ol Computation. ACM, April, 1984.

[2] J.L.Bentley and B. W. Kemnighan.
GRAP: a language for typesetting graphs.
Communications of the ACM 29(8):782-792, August, 1986.

[3] J-R.Bitner.
Heuristics that dynamically organize data structures.
SIAM Journal of Computing 8(1):82-110, February, 1979.

{4] M. H. Brown and R. Sedgewick.
Techniques for algorithm animation.
IEEE Soltware 2(1):28-39, January, 1985.

[s] E. G. Caftman, Jr, M. R. Garey, D. S. Johnson.
Approximation Algorithms for Bin-Packing - An Updated Survey.
Available from the authors at Bell Laboratories, Murray Hill, NJ 07974.

[6] R.W.Floydand R. L. Rivest.
The algorithm SELECT - for finding the ith smallest of n elements (Algorithm 489).
Communications of the ACM 18(3):173, March, 1975.

71 R.W. Floyd and R. L. Piyest,
Expected time bounds for selection.
Communications of the ACM 18(3):165-172, March, 1875.

(8] D. E. Knuth.
The Art of Computer Programming: Volume 2, Seminumerical Algonthms.
Addison-Wesisy Publishing Company, Reading, MA, 1973

(8] R.Rivest
On selt-organizing s=quential search heuristics.
Communications of the ACM 19(2):63-67, February, 1976.

[10] P.W.Shor.
The average-case analysis of some on-line algorithms for bin packing.
In Proceedings, 25th Symposium on Foundations of Computer Science, pages
183-200. IEEE, October, 1884.

