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Preface

The present volume of our series “Methods and Principles in Medicinal
Chemistry” focuses on a timely topic: Bioinformatics. Bioinformatics is a
multidisciplinary field, which encompasses molecular biology, biochemistry
and genetics on the one hand, and computer science on the other. Bio-
informatics uses methods from various areas of computer science, such as
algorithms, combinatorial optimization, integer linear programming, con-
straint programming, formal language theory, neural nets, machine learn-
ing, motif recognition, inductive logic programming, database systems,
knowledge discovery and database mining. The exponential growth in bio-
logical data, generated from national and international genome projects,
offers a remarkable opportunity for the application of modern computer
science. The fusion of biomedicine and computer technology offers sub-
stantial benefits to all scientists involved in biomedical research in support
of their general mission of improving the quality of health by increasing
biological knowledge. In this context, we felt that it was time to initiate a
volume on bioinformatics with a particular emphasis on aspects of design-
ing new drugs.

The completion of the human genome sequence, published in February
2001, marks a historic event, not only in genomics, but also in biology and
medicine in general. We are now able to read the text; but we understand
only minor parts of it. “Making sense of the sequence” is the task of the
coming years. Bioinformatics will play the leading role in this field, in
understanding the regulation of gene expression, in the functional descrip-
tion of the gene products, the metabolic processes, disease, genetic variation
and comparative biology. Correspondingly, the publication of this book is
“just in time” to jump into the post-genomic era.

Basically, there are two ways of structuring the field of bioinformatics.
One is intrinsically by the type of problem that is under consideration.
Here, the natural way of structuring is by layers of information that are
compiled, starting from the genomic data. The second is extrinsically, by the
application scenario in which bioinformatics operates and by the type of
molecular biology experiment that it supports. This new contribution to
bioinformatics is roughly structured according to this view. The wealth of
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Preface

information bundled in this volume necessitated a subdivision into two
parts.

The intrinsic view is the subject of Part 1: it structures bioinformatics
in methodical layers. Lower layers operate directly on the genomic text
that is the result of sequencing projects. Higher layers operate on higher-
level information derived from this text. Accordingly, Part 1 discusses sub-
problems of bioinformatics that provide components in a global bioinfor-
matics solution. Each chapter is devoted to one relevant component: after an
introductory overview, Chapters follow that are devoted to Sequence Analy-
sis (written by Martin Vingron), Structure, Properties and Computer Identi-
fication of Eukaryotic Genes (by Victor Solovyev), Analyzing Regulatory Re-
gions in Genomes (by Thomas Werner), Homology-Based Protein Modeling
in Biology and Medicine (by Roland Dunbrack), Protein Structure Prediction
and Applications in Structural Genomics, Protein Function Assignment and
Drug Target Finding (by Ralf Zimmer and Thomas Lengauer), Protein—Ligand
Docking and Drug Design (by Matthias Rarey) and Protein—Protein and
Protein—-DNA Docking (by Mike Sternberg and Gidon Moont). An appendix
by Thomas Lengauer, sketching the algorithmic methods that are used in
bioinformatics, concludes this first Part.

The extrinsic view is the focus of the second Part: Chapters concentrate
on several important application scenarios that can only be supported ef-
fectively by combining components discussed in Part 1. These Chapters
cover Integrating and Accessing Molecular Biology Resources (by David
Hansen and Thure Etzold), Bioinformatics Support of Genome Sequencing
Projects (by Xiaoqiu Huang), Analysis of Sequence Variations (by Christopher
Carlson et al.), Proteome Analysis (by Pierre-Alan Binz et al.), Target Finding
in Genomes and Proteomes (by Stefanie Fuhrman et al.) as well as Screen-
ing of Drug Databases (by Martin Stahl et al.). In a concluding Chapter,
Thomas Lengauer highlights the Future Trends in the field of bioinformatics.

The series editors are grateful to Thomas Lengauer, who accepted the
challenging task to organize this volume on bioinformatics, to convince
authors to participate in the project and to finish their chapters in time,
despite the fact that research runs hot these days. We are sure that the result
of his coordinative work constitutes another highlight in our series on
Methods and Principles in Medicinal Chemistry. In addition, we want to
thank Gudrun Walter and Frank Weinreich, Wiley-VCH, for their effective
collaboration.

September 2001 Raimund Mannhold Diisseldorf
Hugo Kubinyi Ludwigshafen
Henk Timmerman Amsterdam
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For my son Nico

Foreword

Computational biology and bioinformatics are terms for an interdisciplinary
field joining information technology and biology that has skyrocketed in
recent years. The field is located at the interface between the two scientific
and technological disciplines that can be argued to drive a significant if not
the dominating part of contemporary scientific innovation. In the English
language, computational biology refers mostly to the scientific part of the
field, whereas bioinformatics addresses mainly the infrastructure part. In
some other languages (e.g. German) bioinformatics covers both aspects of
the field.

The goal of this field is to provide computer-based methods for coping
with and interpreting the genomic data that are being uncovered in large
volumes through the diverse genome sequencing projects and other new
experimental technology in molecular biology. The field presents one of the
grand challenges of our times. It has a large basic research aspect, since we
cannot claim to be close to understanding biological systems on an organ-
ism or even cellular level. At the same time, the field is faced with a strong
demand for immediate solutions, because the genomic data that are being
uncovered encode many biological insights whose deciphering can be the
basis for dramatic scientific and economical success. At the end of the pre-
genomic era that was characterized by the effort to sequence the human
genome we are entering the postgenomic era that concentrates on harvest-
ing the fruits hidden in the genomic text. In contrast to the pregenomic era
which, from the announcement of the quest to sequence the human genome
to its completion, has lasted less than 15 years, the postgenomic era can be
expected to last much longer, probably extending over several generations.

xix
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Foreword

While it will encompass many basic and general aspects of the field, the
specific aim of the book is to point towards perspectives that bioinformatics
can open towards the design of new drugs. It is this pharmaceutically ori-
ented side of the field that provides the strongest fuel for the current wide-
spread interest in bioinformatics.

Before this background, the book is intended as an introduction into
the field of bioinformatics and is targeted to readers with a variety of back-
grounds. Biologists, biochemists, pharmacologists, pharmacists and medi-
cal doctors can get from it an introduction into basic and practical issues
of the computer-based part of handling and interpreting genomic data. In
particular, many chapters of the book point to bioinformatics software and
data resources that are available on the internet (often at no cost) and make
an attempt at classifying and comparing those resources. For computer sci-
entists and mathematicians the book contains an introduction into the bio-
logical backgrounds and the necessary information to begin to appreciate
the difficulties and wonders of modeling complex biochemical and bio-
molecular issues in the computer.

Bioinformatics is a quickly progressing field. Both the experimental tech-
nologies and the computer-based method are in a dynamic phase of de-
velopment. This book presents a snapshot of where the field stands today.

I am grateful to many people that helped make this book possible. Hugo
Kubinyi first approached me with the idea for this book and since then
accompanied the project with a finely balanced mixture of pressure and
encouragement. Raimund Mannhold and Henk Timmerman supported the
project as the other editors of this series. Above all, I thank the authors of
the various chapters of the two volumes who found the time to write well
thought-out chapters in a period of dramatic growth of the field that pres-
ents every participating scientist with an especially high workload. Gudrun
Walter and Frank Weinreich handled the production process of the book
very well. Finally I would like to express my deep gratitude to my wife
Sybille and my children Sara and Nico who had to cope with my physical
or mental absence while the project was ongoing.

Thomas Lengauer
Sankt Augustin, July 2001
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From Genomes to Drugs with
Bioinformatics

Thomas Lengauer

In order to set the stage for this two-volume book, this Chapter provides
an introduction into the molecular basis of disease. We then continue to
discuss modern biological techniques with which we have recently been
empowered to screen for molecular drugs targets as well as for the drugs
themselves. The Chapter finishes with an overview over the field of bio-
informatics as it is covered in the two volumes of this book.

1.1
The molecular basis of disease

Diagnosing and curing diseases has always been and will continue to be an
art. The reason is that man is a complex being with many facets much of
which we do not and probably will never understand. Diagnosing and cur-
ing diseases has many aspects include biochemical, physiological, psycho-
logical, sociological and spiritual ones.

Molecular medicine reduces this variety to the molecular aspect. Living
organisms, in general, and humans in particular, are regarded as complex
networks of molecular interactions that fuel the processes of life. This
“molecular circuitry” has intended modes of operation that correspond to
healthy states of the organism and aberrant modes of operation that corre-
spond to diseased states. In molecular medicine, the goal of diagnosing a
disease is to identify its molecular basis, i.e. to answer the question what
goes wrong in the molecular circuitry. The goal of therapy is to guide the
biochemical circuitry back to a healthy state.

As we pointed out, the molecular basis of life is formed by complex bio-
chemical processes that constantly produce and recycle molecules and do so
in a highly coordinated and balanced fashion. The underlying basic princi-
ples are quite alike throughout all kingdoms of life, even though the pro-
cesses are much more complex in highly developed animals and the human
than in bacteria, for instance. Figure 1.1 gives an abstract view of such an

Bioinformatics — From Genomes to Drugs. Volume I: Basic Technologies. Edited by Thomas Lengauer
Copyright © 2002 WILEY-VCH Verlag GmbH, Weinheim
ISBN: 3-527-29988-2
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Fig. 1.1

Abstract view of part of the metabolic network of the
bacterium E. coli. From http://www.genome.ad.jp/kegg/
kegg.html

underlying biochemical network, the so-called metabolic network of a bacte-
rial cell (the intestinal bacterium E. coli). The figure affords an incomplete
and highly simplified account of the actual molecular interactions, but it
nicely visualizes the view of a living cell as a biochemical circuit. The figure
has the mathematical structure of a graph. Each dot (node) stands of a small
organic molecule that is metabolized within the cell. Alcohol, glucose, and
ATP are examples for such molecules. Each line (edge) stands for chemical
reaction. The two nodes connected by the edge represent the substrate and
the product of the reaction. The colors in Figure 1.1 represent the role that
the respective reaction plays in metabolism. These roles include the con-
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struction of molecular components that are essential for life — nucleotides
(red), amino acids (orange), carbohydrates (blue), lipids (light blue), etc. —
or the breakdown of molecules that are not helpful or even harmful to the
cell. Other tasks of chemical reactions in a metabolic network pertain to the
storage and conversion of energy. (The blue cycle in the center of the Figure
is the citric acid cycle.) A third class of reactions facilitates the exchange of
information in the cell or between cells. This include the control of when
and in what way genes are expressed (gene regulation), but also such tasks as
the opening and closing of molecular channels on the cell surface, and the
activation or deactivation of cell processes such as replication or apoptosis
(induced cell death). The reactions that facilitate communication within the
cell or between cells are often collectively referred to as the regulatory net-
work. Figure 1.1 only includes metabolic and no regulatory reactions. Of
course the metabolic and the regulatory network of a cell are closely inter-
twined, and many reactions can have both metabolic and regulatory aspects.
In general, much more is known on metabolic than on regulatory networks,
even though many relevant diseases involve regulatory rather than meta-
bolic dysfunction.

The metabolic and regulatory network can be considered as composed of
partial networks that we call pathways. Pathways can fold in on themselves,
in which case we call them cycles. A metabolic pathway is a group of re-
actions that turns a substrate into a product over several steps (pathway) or
recycle a molecule by reproducing in several steps (cycle). The glycolysis
pathway (the sequence of blue vertical lines in the center of Figure 1.1), is
an example of a pathway that decomposes glucose into pyruvate. The citric
acid cycle (the blue cycle directly below the glycolysis pathway in Figure 1.1)
is an example of a cycle that produces ATP, the universal molecule for
energy transport. Metabolic cycles are essential, in order that the processes
of life not accumulate waste or deplete resources. (Nature is much better at
recycling than man.)

There are several ways in which Figure 1.1 hides important detail of the
actual metabolic pathway. In order to discuss this issue, we have extracted a
metabolic cycle from Figure 1.1 (see Figure 1.2). This cycle is a component
of cell replication, more precisely; it is one of the motors that drive the
synthesis of thymine, a molecular component of DNA. In Figure 1.2, the

N5,N'°-methylene-

tetrahydrofolate dihydrofolate

DHFR
NADPH + H*
Fig. 1.2

- . NADP*
A specific metabolic cycle tetrahydrofolate
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Fig. 1.3
The three dimensional structure of dihydrofolate reductase
colored by its surface potential. Positive values are
depicted in red, negative values in blue.

nodes of the metabolic cycle are labeled with the respective organic mole-
cules, and the edges point in the direction from the substrate of the reaction
to the product. Metabolic reactions can take place spontaneously under
physiological conditions (in aqueous solution, under room temperature and
neutral pH). However, nature has equipped each reaction (each line in Fig-
ure 1.1) with a specific molecule that catalyzes that reaction. This molecule
is called an enzyme and, most often, it is a protein. An enzyme is a tailor-
made binding site for the transition state of the catalyzed chemical reaction.
Thus the enzyme speeds up the rate of that reaction tremendously, by rates
of as much as 107. Furthermore, the rate of a reaction that is catalyzed by an
enzyme can be regulated by controlling the effectivity of the enzyme or the
number of enzyme molecules that are available. Even the direction of a re-
action can effectively be controlled with the help of several enzymes.

How does the enzyme do its formidable task? For an example, consider
the reaction in Figure 1.2 that turns dihydrofolate into tetrahydrofolate. This
reaction is catalyzed by an enzyme called dihydrofolate reductase (DHFR).
The surface of this protein is depicted in Figure 1.3. One immediately rec-
ognizes a large and deep pocket that is colored blue (representing its nega-
tive charge). This pocket is a binding pocket or binding site of the enzyme,
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and it is ideally formed in terms of geometry and chemistry, such as to bind
to the substrate molecule dihydrofolate and present it in a conformation
that is conducive for the desired chemical reaction to take place. In this
case, this pocket is also where the reaction is catalyzed. We call this place
the active site. (There can be other binding pockets in a protein that are far
removed from the active site.)

There is another aspect of metabolic reactions that is not depicted in
Figure 1.1: Many reactions involve co-factors. A co-factor is an organic mol-
ecule, a metal ion, or — in some cases — a protein or peptide that has to be
present in order for the reaction to take place. If the co-factor is itself
modified during the reaction, we call it a co-substrate. In the case of our ex-
ample reaction, we need the co-substrate NADPH for the reaction to hap-
pen. The reaction modifies dihydrofolate to tetrahydrofolate and NADPH to
NADP*. Figure 1.4 shows the molecular complex of DHFR, dihydrofolate
(DHF) and NADPH before the reaction happens. After the reaction has
been completed, both organic molecules dissociate from DHFR and the
original state of the enzyme is recovered.

Now that we have discussed some of the details of metabolic reactions let
us move back to the global view of Figure 1.1. We have seen that each of the
edges in that figure represents a reaction that is catalyzed by a specific pro-

Fig. 1.4
DHFR (gray) complexed with DHF (green) and NADPH red)
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tein. (However, the same protein can catalyze several reactions.) In E. coli
there are an estimated number of 3000 enzymes, in the human there are at
least twice as many. The molecular basis of a disease lies in modifications of
the action of these biochemical pathways. Some reactions do not happen at
their intended rate (sickle cell anemia, diabetes), resources that are needed
are not present in sufficient amounts (vitamin deficiencies) or waste prod-
ucts accumulate in the body (Alzheimer’s disease). In general imbalances
induced in one part of the network spread to other parts. The aim of therapy
is to replace the aberrant processes with those that restore a healthy state.
The most desirable fashion, in which this could be done, would be to con-
trol the effectiveness of a whole set of enzymes, in order to regain the met-
abolic balance. This set probably involves many, many proteins, as we can
expect many proteins to be involved in manifesting the disease. Also, each
of these proteins would have to be regulated in quite a specific manner. The
effectiveness of some proteins would possibly have to be increased dramat-
ically whereas other proteins would have to be blocked entirely etc. It is
obvious that this kind of therapy involves a kind of global knowledge of
the workings of the cell and a refined pharmaceutical technology that is far
beyond what man can do today and for some time to come.

1.2
The molecular approach to curing diseases

For this reason, the approach of today’s pharmaceutical research is far more
simplistic. The aim is to regulate a single protein. In some cases we aim at
completely blocking an enzyme. To this end, we can provide a drug mole-
cule that effectively competes with the natural substrate of the enzyme. The
drug molecule, the so-called inhibitor, has to be made up such that it binds
more strongly to the protein than the substrate. Then, the binding pockets
of most enzyme molecules will contain drug molecules and cannot catalyze
the desired reaction in the substrate. In some cases, the drug molecule even
binds very tightly (covalently) to the enzyme (suicide inhibitor). This bond
persists for the remaining lifetime of the protein molecule. Eventually, the
deactivated protein molecule is broken down by the cell and a new identical
enzyme molecule takes its place. Aspirin is an example of a suicide inhibi-
tor. The effect of the drug persists until the drug molecules themselves are
removed from the cell by its metabolic processes, and no new drug mole-
cules are administered to replace them. Thus, one can control the effect of
the drug by the time and dose it is administered.

There are several potent inhibitors of DHFR. One of them is methotrexate.
Figure 1.5 shows methotrexate (color) both unbound (left) and bound
(right) to DHFR (black and white). Methotrexate has been administered as
an effective cytostatic cancer drug for over two decades.
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Fig. 1.5
Methotrexate (colored by surface potential, see Figure 3)
and bound DHFR (gray)

There are many other ways of influencing the activity of a protein by
providing a drug that binds to it. Drugs interact with all kinds of proteins:

+ with receptor molecules that are located in the cell membrane and fulfill
regulatory tasks

+ with ion channels and transporter systems (again proteins residing in the
cell membrane) that monitor the flux of molecules into and out of the cell

The mode of interaction between drug and protein does not always have the
effect to block the protein, but we are generally looking for drugs that bind
tightly to the protein.

Most drugs that are on the market today modify the enzymatic or regula-
tory action of a protein by strongly binding to it as described above. Among
these drugs are long-standing, widespread and highly popular medications
and more modern drugs against diseases such as AIDS, depression, or can-
cer. Even the life-style drugs that came into use in the past few years, such
as Viagra and Xenical, belong to the class of protein inhibitors.

In this view, the quest for a molecular therapy of a disease decomposes
into two parts:

9
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* Question 1: Which protein should we target? As we have seen, there are
many thousands candidate proteins in the human. We are looking for one
of them that, by binding the drug molecule to it, provides the most effec-
tive remedy of the disease. This protein is called the target protein.

Question 2: Which drug molecules should be used to bind to the target protein?
Here, the molecular variety is even larger. Large pharmaceutical compa-
nies have compound archives with millions of compounds at their dis-

.

posal. Every new target protein raises the questions, which of all of these
compounds would be the best drug candidate. Nature is using billions of
molecules. With the new technology of combinatorial chemistry, where
compounds can be synthesized systematically from a limited set of build-
ing blocks, this number of potential drug candidates is also becoming ac-
cessible to the laboratory.

We will now give a short summary of the history of research on both of
these questions.

13
Finding protein targets

Question 1 could not really be asked realistically until a few years ago. His-
torically, few target proteins were known at the time that the respective drug
has been discovered. The reason is that new drugs were developed by mod-
ifying known drugs, based on some intuitive notion of molecular similarity.
Each modification was immediately tested in the laboratory either in vitro or
in vivo. Thus, the effectiveness of the drug could be assessed without even
considering the target protein. To this day, all drugs that are on the mar-
ketplace world-wide target to an estimated set of 500 proteins [1]. Thus the
search for target proteins is definitely the dominant bottleneck of today’s
pharmaceutical research.

Today, new experimental methods of molecular biology, the first versions
of which have been developed just a few years ago, afford us with a funda-
mentally new way — the first systematic way — of looking for protein targets.
We exemplify this progress at a specific DNA chip technology [2]. However,
the general picture extends to many other experimental methods under de-
velopment.

Figure 1.6 shows a DNA-chip that provides us with a differential census
of the proteins manufactured by a yeast cell in two different cell states, one
governed by the presence of glucose (green) and one by the absence of glu-
cose (red). In effect the red picture is that of a starving yeast cell, whereas
the green picture show the “healthy” state. Each bright green dot stands
for a protein that is manufactured (expressed) in high numbers in the
“healthy” state. Each bright red dot stands for a protein that is expressed
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Fig. 1.6
A DNA chip (from http://cmgm.stanford.edu/pbrown/
explore/)

highly in the starving cell. If the protein occurs frequently in both the
healthy and the starving state, the corresponding dot is bright yellow (re-
sulting from an additive mixture of the colors green and red). Dark dots
stand for proteins that are not frequent, the tint of the color again signifies
whether the protein occurs more often in the healthy cell (green), equally
often in both cells (yellow) or more often in the diseased cell (red).

At this point it is of secondary importance, exactly which experimental
procedures generate the picture of Figure 1.6. What is important is, how
much information is attached to colored dots in the picture. Here, we can
make the following general statements.

1. The identity of the protein is determined by the coordinates of the col-
ored dot. We will assume, for simplicity, that dots at different locations
also represent different proteins. (In reality, multiple dots that represent
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the same protein are introduced, on purpose, for the sake of calibration.)
The exact arrangement of the dots is determined before the chip is
manufactured. This involves identifying a number of proteins to be rep-
resented on the chip and laying them out on the chip surface. This layout
is governed by boundary conditions and preferences of the experimental
procedures and is not important for the interpretation of the information.

2. Only rudimentary information is attached to each dot. At best, the ex-
periment reveals the complete sequence of the gene or protein. Some-
times, only short segments of the relevant sequence are available.

Given this general picture, the new technologies of molecular biology can
be classified according to two criteria, as shown by the next subsections.

1.3.1
Genomics vs proteomics

In genomics, not the proteins themselves are monitored but rather we
screen the expressed genes whose translation ultimately yields the respec-
tive proteins. In proteomics, the synthesized proteins themselves are moni-
tored. The chip in Figure 1.6 is a DNA-chip, i.e., it contains information on
the expressed genes and, thus, only indirectly on the final protein products.
The advantage of the genomics approach is that genes are more accessible
experimentally and easier to handle than proteins. For this reason, genom-
ics is ahead of proteomics, today. However, there also are disadvantages to
genomics. First the expression level of a gene need not be closely correlated
with the concentration of the respective protein in the cell. But the latter
figure may be more important to us if we want to elicit a causal connection
between protein expression and disease processes. Even more important,
proteins are modified post-translationally (i.e. after they are manufactured).
These modifications involve glycosylation (attaching complex sugar mole-
cules to the protein surface), and phosphorylation (attaching phosphates to
the protein surface), for instance, and they lead to many versions of protein
molecules with the same amino-acid sequence. Genomics cannot monitor
these modifications, which are essential for many diseases. Therefore, it can
be expected that, as the experimental technology matures, proteomics will
gain importance over genomics.

1.3.2
Extent of information available on the genes/proteins

Technologies vary widely in this respect. The chip in Figure 1.6 is generated
by a technology that identifies the gene sequence. We are missing informa-
tion on the structure and the function of the protein, its molecular interac-
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tion partners and its location inside the metabolic or regulatory network of
the organism. All of this information is missing the majority of the genes
on the chip.

There are many variations on the DNA-chip theme. There are technol-
ogies based on so-called expressed sequence tags (ESTs) that tend to provide
more inaccurate information on expression levels, and various sorts of
microarray techniques (see Chapter 5 of Volume 2). Proteomics uses differ-
ent kinds of gels, and experiments involving mass spectrometry (see Chap-
ter 4 of Volume 2). As is the case with genomics, proteomics technologies
tend to generate information on the sequences of the involved proteins and
on their molecular weight, and possibly information on post-translational
modifications such as glycosylation and phosphorylation. Again, all higher-
order information is missing. It is infeasible to generate this information
exclusively in the wet lab — we need bioinformatics to make educated
guesses here. Furthermore basically all facets of bioinformatics that start
with an assembled sequence can be of help. This includes the comparative
analysis of genes and proteins, protein structure prediction, the analysis and
prediction of molecular interactions involving proteins as well as bioinfor-
matics for analyzing metabolic and regulatory networks. This is why all of
bioinformatics is relevant for the purpose of this book. Thus, part 1 of the
book summarizes the state of the art of the relevant basic problems in bio-
informatics.

If, with the help of bioinformatics, we can retrieve this information then
we have a chance of composing a detailed picture of the disease process
that can guide us to the identification of possible target proteins for the
development of an effective drug. Note that the experimental technology
described above is universally applicable. The chip in Figure 1.6 contains all
genes of the (fully sequenced) organism S. cerevisiae (yeast). The cell tran-
sition analyzed here is the diauxic shift — the change of metabolism upon
removal of glucose. But we could exchange this with almost any other cell
condition of any tissue of any conceivable organism. The number of spots
that can be put on a single chip goes into the hundred thousands. This is
enough for putting all human genes on a single chip. Also, we do not have
to restrict ourselves to disease conditions; all kinds of environmental con-
ditions (heat, cold, low or high pH, chemical stress, drug treatment, diverse
stimuli etc.) or intrinsic conditions (presence or absence of certain genes,
mutations etc.) can be the subject of study.

This paradigm of searching for target proteins in genomics data is con-
sidered to be so promising that pharmaceutical industry has been investing
heavily in it in over the past years. Contracts between pharmaceutical com-
panies and new biotech industry that is providing the data and clues to new
targets have involved hundreds of million dollars. In turn, each new target
protein can afford a completely new approach to disease therapy and a po-
tentially highly lucrative worldwide market share. Yet, the paradigm still has
to prove its value. These commercial aspects of the research have also

13
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strongly affected the scientific discipline of bioinformatics. We will com-
ment more on this in the second volume of this book.

Providing adequate bioinformatics for finding new target proteins is a
formidable challenge that is the focus of much of this book. But once we
have a target protein our job is not done.

1.4
Developing drugs

If the target protein has been selected, we are looking for a molecule that
binds tightly to a binding site of the protein. Nature often uses macro-
molecules, such as proteins or peptides to inhibit other proteins. However,
proteins do not make good drugs: They are easily broken down the digestive
system, they can elicit immune reaction, and they cannot be stored for a
long time. Thus, after a short excursion into drug design based on proteins,
pharmaceutical research has gone back to looking for small drug molecules.
Here, one idea is to use a peptide as the template for an appropriate drug
(peptidomimetics).

Due to the lack of fundamental knowledge of the biological processes in-
volved, the search for drugs was governed by chance, until recently. How-
ever, as long as chemists have thought in terms of chemical formulas,
pharmaceutical research has attempted to optimize drug molecules based
on chemical intuition and on the concept of molecular similarity. The basis
for this approach is the lock-and-key principle formulated by Emil Fischer
[3] about a hundred years ago. Figure 1.4 nicely illustrates that principle: In
order to bind tightly the two binding molecules have to be complementary
to each other both sterically and chemically (colors). The drug molecule
fits into the binding pocket of the protein like a key inside a lock. The lock-
and-key principle has been the dominating paradigm for drug research ever
since its invention. It has been refined to include the phenomenon of in-
duced fit, by which the binding pocket of the protein undergoes subtle steric
changes in order to adapt to the geometry of the drug molecule.

For most of the century, the structure of protein binding pockets has not
been available to the medicinal chemist, so drug design was based on the
idea that molecules whose surface is similar in shape and chemical features
should bind to the target protein with comparable strength. Thus drug de-
sign was based on comparing drug molecules, either intuitively or, more
recently, systematically with the computer. As 3D protein structures became
available, the so-called rational or structure-based approach to drug develop-
ment was invented, which exploited this information to develop effective
drugs. Rational drug design is a highly interactive process with the com-
puter originally mostly visualizing the protein structure and allowing quer-
ies on its chemical features. The medicinal chemist modified drug mole-
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cules inside the binding pocket of the protein at the computer screen. As
rational drug design began to involve more systematic optimization proce-
dures interest rose in molecular docking, i.e. the prediction of the structure
and binding affinity of the molecular complex involving a structurally re-
solved protein and its binding partner, in the computer. Synthesizing and
testing a drug in the laboratory used to be comparatively expensive. Thus it
was of interest to have the computer suggest a small set of highly promising
drug candidates. However, to this day rational drug design has been ham-
pered by the fact that the structure of the target protein will not be known
for many pharmaceutical projects for some time to come. For instance,
many diseases involve target proteins that reside in the cell membrane, and
we cannot expect the 3D structure of such proteins to become known soon.

With the advent of high-throughput screening, the binding affinity of as
many as several hundred thousands drug candidates to the target protein
can now be assayed within a day. Furthermore, combinatorial chemistry allows
for the systematic synthesis of molecules that are composed of preselected
molecular groups that are linked with preselected chemical reactions. The
number of molecules that is accessible in such a combinatorial library, in
principle, can exceed many billions. Thus we need the computer to suggest
promising sublibraries that contain a large number of compounds that bind
tightly to the protein.

As in the case of target finding, the new experimental technologies in
drug design require new computer methods for screening and interpreting
the voluminous data assembled by the experiment. These methods are sel-
dom considered part of bioinformatics, since the biological object, namely
the target protein is not the focus of the investigation. Rather, people speak
of cheminformatics, the computer aspect of medicinal chemistry. Whatever
the name, it is our conviction that both aspects of the process that guides us
from the genome to the drug have to be considered together, and we will do
so in this book.

1.5
A bioinformatics landscape

In the Sections above, we have described the application scenario that is the
viewpoint from which we are interested in bioinformatics. In this Section,
we attempt to chart out the field of bioinformatics in terms of its scientific
subproblems and the application challenges that it faces.

Basically, there are two ways of structuring the field of bioinformatics.
One is intrinsically, by the type of problem that is under consideration. Here,
the natural way of structuring is by layers of information that are compiled
starting from the genomic data and working our way towards various levels
of the phenotype. The second is extrinsically, by the medical or pharmaceu-
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tical application scenario to which bioinformatics contributes and by the
type of biological experimentation that it supports. This book is roughly
structured according to this distinction. The intrinsic view is the subject of
Volume 1. This volume discusses subproblems of bioinformatics that pro-
vide components in a global bioinformatics solution. Each Chapter is de-
voted to one relevant component. The extrinsic view is the focus of Volume
2. This volume has Chapters which each concentrate on some important
application scenarios that can only be supported effectively by combining
components discussed in Volume 1.

Both views are summarized in an integrated fashion in Figure 1.7, where
the bioinformatics circle is depicted reaching from the genome sequence to
the macroscopic phenotype. We will be guided by this figure as we now
chart out the bioinformatics landscape in more detail.

1.5.1
The intrinsic view

The intrinsic view may be the more basic research-oriented one. This view
on bioinformatics tends to produce reasonably well-defined and timeless
scientific problems that often have the character of grand challenges. As
described above, we will structure this view of bioinformatics in layers of
derived information that we add on top of the primary information provided
by the genomic sequence.

1.5.1.1 Layer —1: Sequencing support

This part of bioinformatics addresses problems that occur even before the
genomic sequence is available. The object is to interpret experimental data
that are generated by sequencing efforts. Problems to be addressed here are
base calling, i.e. the interpretation of the signals output by sequencers in
terms of nucleic acid sequences, physical mapping, i.e. providing a rough
map of relevant marker loci along the genome, and fragment assembly, i.e.
the process of piecing together short segments of sequenced DNA to form a
contiguous sequence of the genome or chromosome. Layer —1 plays a spe-
cial role, since it is both a subproblem and an application scenario. The
application-oriented character of this problem originates from its close
relationship with the applied sequencing procedure. The two competing
approaches to sequencing the human genomes, namely whole-genome-
shotgun sequencing, as performed by Celera Genomics [4] and BAC-
assembly as performed by the publically funded human genome project [5],
which lead to quite different approaches for assembly, have illustrated this
point very visibly. We chose to discuss this layer in Volume 2 (Chapter 2 by
Xiaogiu Huang).



17

1.5 A bioinformatics landscape

SDI]ELLIOJUIOI] JO MAIAIDAC DITBLUAYDS Y

£1°8y
sisfjeue
eouenbeg  UoRSIpaid ainjonug suoljorIauY|
T SN AT IO TABSHE0 INT IOV lejnaajop

WIATOHIAJAHHOMETOTINI IDHANERIN
sujajold

- - - BeBEwaEGEeEEEeabeEERono)oRa3R
woabB3aE6Eeaaoyesecabebbabaoon
salouac)

saidesayy

Buiziupdo .
&

UOIESI[eNSI/, ‘SONSIEIS
swyjuobiy ‘Buijpuey eleq

O

sBrup gL il ,.‘ N

GERTELD sepes oo go
MBU 10} Ydieas 3 0 e

1Y

L]

uosuedwos :sdiys yNJd



18

1 From Genomes to Drugs with Bioinformatics

After exercising layer —1 of bioinformatics successfully the raw genomic
sequence is available.

1.5.1.2 Layer 1: Analysis of nucleic acid sequences (5 o’clock position
in Figure 1.7)
This layer is concerned with annotating the raw genomic sequence with in-
formation that can be derived directly from the sequence. Problems ad-
dressed in this layer are gene finding (Chapter 3 of Volume 1, Victor Solovyev),
i.e. the identification of those — as it happens, rare — stretches of genomic
DNA that code for proteins, and the analysis of the much more prevalent
and quite a bit more mysterious non-coding regions in the genome (Chapter
4 of Volume 1, Thomas Werner). The former problem is our entry to under-
standing the proteome. It is so hard, that today experimental procedures
that go directly after protein sequences are developed to help along the way.
The latter problem currently concentrates on the regions upstream of se-
quences that encode proteins. These regions are believed to contain patterns
that govern the regulation of the expression of the genes, i.e. their transla-
tion to proteins. Both problems can be considered basic research problems
and scientific grand challenges. Numerous other annotations are desirable,
such as the annotation of genomic sequences with homologous sequences
in the same or different species, the distinction between orthologous” and
paralogous® sequences. A comparison between many sequences at a time
can yield a multiple alignment or, if we are interested in the lineages of the
participating sequences, an evolutionary tree.

The processes of layer 1 provide the data for layer 2.

1.5.1.3 Layer 2: Analysis of protein sequences (5 o’clock position

in Figure 1.7)

This layer annotates protein sequences. Here, the most voluminous source
of information is the comparison with other homologous sequences, either
on the protein or on the nucleic acid level. The results desired are relation-
ships between different proteins that allow for making conclusions about

1) Orthologous sequences are homologous  2) Paralogous sequences are homologous

sequences in different species that have sequences that exist within a species.
common origin and whose distinctions Paralogous sequences have a common
come about by gradual evolutionary origin but involve gene duplication
modifications from the common events to arise. Often the gene

ancestor. Orthologous sequences tend to duplication has the purpose of using the
have the same function in different sequence to implement a new function.
species. Thus paralogous sequences often

perform different functions.
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protein function, cellular localization and the like. The methods in layer 2
are basically the same ones as in layer 1. Chapter 2 of Volume 1 (Martin
Vingron) concentrates on the bioinformatics methods for layers 1 and 2.

1.5.1.4 Layer 3: Analysis and prediction of molecular structure (6 o’clock
position in Figure 1.7)

This layer generates three-dimensional models of the biomolecules under
consideration. In the introductory part of the Chapter we have seen that this
structure is the key to the function of a molecule. Thus, modeling molecular
structure is a very important problem of bioinformatics. There are several
kinds of molecules to be considered.

1.5.1.41 DNA

The structure of DNA is quite well preserved throughout nature. It is the
double helix. There are small differences, the so-called fine structure of
DNA, which are modeled in the computer with methods like energy mini-
mization and molecular dynamics. These methods are also used for mod-
eling other biomolecules, notably, proteins. Therefore modeling the struc-
ture of DNA is not covered in this book.

1.5.1.42 RNA

This molecule is structurally more flexible than DNA. The database of
resolved three-dimensional RNA structures is much smaller than that
for proteins; it contains only a few hundred molecules. Modeling three-
dimensional structures of RNA is basically an unsolved problem, however,
there are effective methods for modeling two-dimensional RNA structures.
We do not discuss modeling RNA structures in this book and refer the
reader to [6].

1.5.1.4.3 Proteins

Proteins display a wide variety of structures. The protein structure predic-
tion problem has been a challenge for a long time. Many successes have
been accomplished but the general problem is still far from being solved.
What can be achieved is to model (target) proteins given a structurally re-
solved protein that acts as a template. However this process is only successful
if the target and the template protein exhibit a sufficient amount of similarity
in sequence. Chapter 5 of Volume 1 (Roland Dunbrack, Jr) describes the
methods used in this approach to protein modeling. If the sequence simi-
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larity is low, then one cannot generate an accurate full-atom model of
the protein, in general. But often one can still find out a lot of significant
aspects of the structure of the protein, such as the overall architecture,
the coordinates of the protein backbone, or even more accurate models of
relevant binding pockets. Chapter 6 of Volume 1 (Ralf Zimmer, Thomas
Lengauer) reports on the state of the art in this field.

1.5.1.4.4 Lipids, carbohydrates

Lipids form membranes inside and around the cell. Carbohydrates form
complex tree-like molecules that become attached to the surface of proteins
and cellular membranes. In both cases, the three-dimensional molecular
structure is not unique, but the molecular assemblies are highly flexible.
Thus, analyzing the molecular structure involves the inspection of a process
in time. Molecular dynamics is the only available computer-based method
for doing so. Compared with protein structures there are relatively few re-
sults on lipids and carbohydrates. The book does not detail this topic.

1.5.1.5 Layer 4: Molecular interactions (7 o’clock position in Figure 1.7)

If the molecular structure is known we can attempt to analyze the inter-
actions between molecules. Among the many possible pairs of interaction
partners two are both relevant and approachable by computer.

1.5.1.5.1 Protein-ligand interactions

Here, one molecular partner is a protein; and the other is a small, often
flexible, organic molecule. This is the problem discussed in detail in the
introductory parts of this Chapter. The problem is a basic research problem
and, at the same time, is of prime importance for drug design. The problem
has two aspects. One is to determine the correct geometry of the molecular
complex. The second is to provide an accurate estimate of the differential
free energy of binding. Whereas much progress has been made on the first
aspect, the second aspect remains a grand challenge. Chapter 7 of Volume 1
(Matthias Rarey) discusses this problem.

1.5.1.5.2 Protein—protein interactions

Here two proteins bind to each other. This problem is important if we want
to understand molecular interaction inside living organisms; it plays less of
a role for drug design. The problem is different from protein-ligand dock-
ing in several respects. In protein-ligand docking, the binding mode is
mostly determined by strong enthalpic forces between the protein and the
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ligand. In addition, the contributions of desolvation (replacing the water
molecules inside the pocket by the ligand) are essential. The notion of
molecular surface is not as much relevant, especially, since the ligand can
be highly flexible and does not have a unique surface. In contrast, geometric
complementarity of both proteins is a dominating issue in protein—protein
docking, where both binding partners meet over a much larger contact sur-
face area. Issues of desolvation can be essential here. Induced fit, i.e. subtle
structural changes on the protein surface to accommodate binding are im-
portant in both problems, but seem to be more essential in protein—protein
docking. Chapter 8 of Volume 1 (Michael Sternberg) discusses this prob-
lem. Estimating the free energy of binding is a major bottleneck in all
docking problems.

1.5.1.5.3 Other interactions

Of course, all kinds of molecular interactions are important, be it protein—
DNA (essential for understanding gene regulation) or reactions involving
RNA, lipids or carbohydrates. Protein—-DNA docking seems even harder
than protein—protein docking. Because of the rigidity of DNA stronger
conformational changes seem to be necessary on the protein side. Also,
water plays an important role in protein—-DNA docking. Chapter 8 discusses
protein-DNA docking. The other problems are not discussed in this book.

1.5.1.6 Layer 5: Metabolic and regulatory networks (9 o’clock position

in Figure 1.7)

This layer takes the step from analyzing single interactions to analyzing
networks of interactions. It has a database aspect, which just collects the
voluminous data and makes them generally accessible, and an algorithmic
aspect that performs simulations on the resulting networks. Both aspects
are in a preliminary stage. The most development has taken place in meta-
bolic databases. Here, we have quite a detailed picture of parts of the
metabolism for several organisms. This book does not detail the simulation
of metabolic networks.

1.6
The extrinsic view

This view structures bioinformatics according to different application sce-
narios and types of experimental data that are under scrutiny.
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1.6.1
Basic contributions: molecular biology databases and genome comparison

The first completely sequenced bacterial genome, that of the bacterium, H.
influenzae, was available in 1994. Since then, a few dozen bacterial genomes
have been sequenced. Sequencing a bacterium has become state of the art,
and we can expect many more genomes to appear in the near future. The
first eucaryote (S. cerevisiae, yeast [7]) has been sequenced in 1996, and the
genome of the first multicellular organism (C. elegans, nematode, [8]) be-
came available in 1998. The genome of D. melanogaster (fruitfly [9]) became
available in February 2000, and two drafts of the human genome sequence
have been published in February 2001 [4, 5]. As the number and variety of
completely sequenced genomes rises, their comparison can yield important
scientific insights. What is it that makes the bacterium E. coli a symbiotic
beneficial parasite, whereas the bacterium H. influenzae that generates ear
infections basically has toxic effects in the relevant parts of the human
body? Huynen et al. [10] have carried out a differential analysis that looks
for homologies among proteins in both bacteria and concentrates on those
(about 200) proteins that occur only in H. influenzae. Using homology
searches over the database of available protein sequences from all kinds of
organisms, Huynen et al. [10] found that many of these 200 proteins are
similar to proteins that act toxic in other organisms. Thus, in some sense,
the set of candidate proteins that are responsible for the adverse effects of
H. influenzae has been narrowed down from the about 1800 protein in the
bacterium to 200. This is an example of the kinds of results genome com-
parison can achieve.

In order to carry out such tasks, we need to combine a wide variety of
methods and data. Chapter 1 of Volume 2 (Thure Etzold et al.) describes a
successful and widely used approach for linking the vastly growing variety
of biomolecular databases.

1.6.2
Scenario 1: Gene and protein expression data (10 o’clock position
in Figure 1.7)

The measurement and interpretation of expression levels of genes and pro-
teins is at the center of today’s attention in genomics, proteomics, and bio-
informatics. The goal is to create a detailed differential functional picture of
the cell's inner workings, as it is determined by the cell state at hand. Cell
states can be influenced and determined by external environmental factors
(temperature, pH, chemical stress factors), and by internal factors such as
the cell belonging to a special tissue or be in a certain disease state.
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Historically the first version of expression of data is expressed sequence tags
(ESTs). These are short stretches of cDNA (complementary DNA), i.e. DNA
that has been translated back from messenger RNA (mRNA) expressed in
the cell. The messenger RNA is in a mature state, i.e. introns have been
spliced out before the cDNA was taken from the mRNA. ESTs provide a
census of the genes expressed in a cell that is subject to certain internal and
external conditions. The level of expression of a certain gene is roughly
correlated with the frequency with which this gene is hit by sequenced
ESTs. Today, there are large collections of ESTs available for many organ-
isms and cells subject to many different conditions.

The DNA chips described above (see Figure 1.6) provide a different vari-
ant of the kind of data provided by ESTs. The advantage of DNA chips is
that they can provide more accurate expression data on expression levels.
Whereas, EST counts can be low and generally provide little resolution. One
way of reading out expressions levels from DNA chips is via fluorescent
marking. The high correlation between the light intensity and the expres-
sion level provides more resolution than EST counts.

Expression levels on DNA or protein gels are generally deduced from the
size of spots on the gel. 2D gels and mass spectrometry can be used as fast
tools for identifying expressed proteins in various states of the cell. These
experimental data and their interpretation with bioinformatics are subject to
Chapter 4 (Roland Appel et al., proteomics) and Chapter 5 (Roland Somo-
gyi, genomics) of Volume 2.

1.6.3
Scenario 2: Drug screening (1 o’clock position in Figure 1.7)

Once the target protein is identified, the search for the drug starts. That
search is again composed of a mixture of experimental and computer-based
procedures. In a first phase, one is looking for a lead compound. The only
requirement on the lead compound is that it binds tightly to the binding
site of the target protein. In a second step of lead optimization, the lead
compound is modified to be non-toxic, have few side effects and be bio-
accessible, i.e. be easily delivered to the site in the body, at which its effect is
desired.

Basically, there are two approaches to developing a new drug. One is
to create one from scratch. This has been attempted on the basis of the
knowledge of the three-dimensional structure of the binding site of the
protein. In effect, the drug molecule can be designed to be complementary
to the binding site in steric and physicochemical terms. This approach is
called ab initio drug design (not to be confused with ab initio protein struc-
ture prediction or ab initio methods in theoretical chemistry). Ab initio drug
design has been hampered by the fact that often the developed molecules
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were hard to synthesize. Furthermore lead optimization turned out to be
hard for many lead compounds developed with ab initio design techniques.

The second approach is to screen through a large database of known
molecules and check their binding affinity to the target protein. The advan-
tage of this approach is that, mostly, the compounds that have been accu-
mulated in a database have been investigated before — though mostly in a
different context. Their bioaccessibility and toxicity may have been studied
and they probably have been synthesized. Screening compounds from a
library can been done in the laboratory or in the computer. In the latter case,
the process is called virtual screening. Compound databases become large,
so a mixture of the two processes may be advisable. Here, a set of com-
pounds is preselected from a large library with virtual screening. These
compounds are then tested in the laboratory. Chapter 6 of volume 2 by
Matthias Rarey, Martin Stahl, and Gerhard Klebe gives more detail on vir-
tual drug screening.

1.6.4
Scenario 3: Genetic variability (2 o’clock position in Figure 1.7)

Recently, new experimental methods have been developed that uncover
variations of genomic text for organisms of the same species. The sequenc-
ing data discriminate between different external or internal states of the
organism or provide insight into intra-species genetic variability. Genetic
variability is just starting to be investigated on a genomic scale both ex-
perimentally and with bioinformatics. Chapter 3 of Volume 2 (Deborah
Nickerson) introduces this new and exciting field of molecular biology
and bioinformatics.

Genetic variability does not only occur in the host (patient) but also in the
guest (infectious agent). For many antibacterial and several antiviral thera-
pies (e.g. AIDS), the guest population reacts to the administering of drugs,
and resistant strains develop. In this context, drug selection is a difficult
problem. Given appropriate genotypic and phenotypic data, bioinformaticcs
can eventually help in optimizing therapies in this context (3 o'clock posi-
tion in Figure 1.7).

The following Chapters of both volumes provide the necessary detail for
an in-depth introduction into bioinformatics. Chapter 7 of volume 2 will
make an attempt at wrapping up where we stand today and balance hopes
and expectations with limitations of this new and rapidly developing field.
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2
Sequence Analysis

Martin Vingron

2.1
Introduction

Although a theoretical method to predict the three-dimensional structure of
a protein from its sequence alone is not in sight yet, researchers have un-
covered a multitude of connections between the primary sequence on one
hand and various functional features of proteins on the other hand. Among
the success stories are the recognition of transmembrane proteins or the
classification of proteins into classes of similar function based on sequence
similarity. The latter achievement uses the observation that proteins that are
similar in sequence are likely to share similar functional features. This is
also giving rise to the enormous utility of similarity searches in sequence
data bases. This Chapter will deal with the kinds of analysis and predictions
based on primary sequence alone and the algorithms used in this field.

Roughly speaking, methods fall into two classes, based on whether they
analyze the individual protein sequence in isolation or whether implications
are drawn from a comparison with or among many sequences. Individual
sequences are analyzed primarily based on characteristics of amino acids as
derived either from physical chemistry or statistically. Such characteristics
are hydrophobicity scales or statistical preferences for a particular secondary
structure. Section 2.2 will cover these methods.

Naturally the type of information that can be extracted from a sequence
in isolation is very much restricted compared to what can be gained from
analyzing many sequences. The key observation allowing us to exploit the
information that is collected in our databases is the close relationship be-
tween homology, i.e., common ancestry and sequence similarity. In search-
ing for sequence similarity we strive for the recognition of homology be-
cause homology lets us suggest common functions. The basis for the study
of sequence similarity is the comparison of two sequences which will be
dealt with in Section 2.3.

Sequence comparisons are effected in large numbers when searching
sequence databases for sequences that are similar to a query sequence. Al-
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gorithms for this purpose need to be fast even at the expense of sensitivity.
Section 2.4 discusses the widely used heuristic approaches to database
searching. However, the algorithms we are designing for the purpose of
quantifying sequence similarity can only be as good as our understanding of
evolutionary processes and thus they are far from perfect. Therefore, results
of algorithms need to be subjected to a critical test using statistics. Methods
for the assessment of the statistical significance of a finding are introduced
in Section 2.5.

Genes do not come in pairs but rather in large families. Consequently,
the need arises to align more than two sequences at a time which is done by
multiple alignment programs. Computationally a very hard problem, it has
found considerable attention from the side of algorithms development.
Section 2.6 presents the basic approaches to multiple sequence alignment.
Section 2.7 will build on the knowledge of a multiple alignment and intro-
duce how to exploit the information contained in several related sequences
for the purpose of identifying additional related sequences in a database.
The last section will cover methods for identifying domains in one or
among several sequences. For the annotation of sequences and for predic-
tion of function this aspect has become increasingly important during re-
cent years.

2.2
Analysis of individual sequences

This Chapter focuses on analyses that can be performed based solely
on the primary sequence of a protein. Several rationales can be applied.
Physico-chemical characteristics of individual amino acids are one basis
for predictions of gross structural features. For example, particular repeti-
tive patterns may suggest a coiled-coil structure while in general secondary
structure can be predicted based on an a statistical analysis of the primary
sequence. The definition of signals recognized by the cellular transport
machinery allow the prediction of subcellular location. Although somewhat
unsystematic such observations can provide valuable hints as to the struc-
ture and/or function of a protein.

Amino acids side chains differ in their physico-chemical features. For
example, some like to be exposed to water, i.e., they are hydrophilic, while
the hydrophobic amino acids tend to avoid exposure to water. Charge, size,
or flexibility in the backbone are only some of the other examples of amino
acid parameters. These parameters are usually measured on a numerical
scale such that for every parameter there exists a table assigning a number
to each amino acid. For the case of hydrophobicity two such scales have
become famous. The first is due to Hopp and Woods [1] while the other is
due to Kyte and Doolittle [2]. A large collection of amino acid parameters
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Hydrophobicity plot for the transmembrane protein opsin.
Note the peaks in hydrophobicity which roughly denote
the putative membrane spanning regions.

have been collected by Argos [3] who found that subgroups of them are
correlated with each other such that the real information content of this
large number of parameters is in fact lower than it seems. He selected the
following parameters as a non-redundant set: hydrophobicity, turn prefer-
ence [4], residue bulk [5], refractivity index [6], and antiparallel strand pref-
erence [7].

Standard sequence analysis software today offers programs that plot vari-
ous parameters for a given protein (Figure 2.1). Serious software packages
tend to provide the user with a selection of informative and non-redundant
parameters similar to the one given. Some other packages pretend to offer
new insights by plotting large numbers of parameters. In practice, the vari-
ous parameters are used to plot a curve along the amino acid chain. Values
are averaged within a sliding window to smoothen the curve. The selection
of the window width is, of course, arbitrary but values between 7 and 15
would generally seem appropriate. Within a window a weighting scheme
may be applied which would typically assign more importance to residues
in the middle of the window than to the ones on the edges.

Features of the individual amino acids also play a key role in protein sec-
ondary structure formation. Based on experimental data, scales have been
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assigned to the amino acids describing their preference for assuming, e.g., a
helical structure [8]. Consequently, early secondary structure prediction
methods have assigned preferences to the amino acids according to which
secondary structure they tend to assume. For example, Glutamate is fre-
quently found in alpha helices while Valine has a preference for beta
strands and Proline is known to be strongly avoided in helices. Modern
secondary structure prediction methods are more involved though (see
below).

The functional features of proteins that are grasped by such parameters
are manifold. Hydrophobic amino acids tend to occur in the interior of
globular proteins, while at the surface of a protein one will preferentially
find hydrophilic residues. One application of the latter is the prediction of
antigenic epitopes because these are assumed to coincide with patches of
hydrophilic residues. In transmembrane proteins, the regions of the chain
that span the membrane tend to be strongly hydrophobic and the recogni-
tion of several such regions is an integral part of methods aiming at the
recognition of transmembrane proteins based on their sequence alone [9,
10]. Recognition of transmembrane regions has been found to be remark-
ably successful, also leading to the acceptance of the output of these pro-
grams as annotation in sequence databases.

Certain periodicities in the occurrence of hydrophilic and hydrophobic
residues may indicate particular secondary structures. Exposed helices tend
to display a hydrophilic residue every 3—4 positions, while the other resi-
dues are rather hydrophobic. This is well visible in a “helical wheel repre-
sentation” where the amino acid sequence is printed on a circle with the
appropriate 3.6 amino acids per 360°. Likewise, a strand whose one side is
exposed may display a hydrophilic residue at every other position. Based on
these observations, Eisenberg devised the method of hydrophobic moments
[11]. Many structural proteins interact with each other through intertwined
helices forming a so-called coiled-coil structure. The physical constraints
on the interface between these helices is reflected in a certain periodic
arrangement of hydrophilic and hydrophobic amino acids. Generally, the
sequence of an alpha helix that participates in a coiled-coil region will dis-
play a periodicity with a repeated unit of length 7 amino acids. Denote those
7 positions by a through g, then position e and g tend to be charged or polar
while a and d are hydrophobic [12]. Prediction methods for coiled-coil re-
gions are making use of these preferences [13] and even attempt to distin-
guish between two-stranded and three-stranded coiled-coils [14].

The primary sequence of a protein also contains the information whether
a protein is secreted or which cellular compartment it is destined for. In
particular, secretory proteins contain a N-terminal signal peptide for the
recognition of which programs have been developed [15]. Other signals like,
e.g., nuclear localization signals are notoriously hard to describe. Many
posttranslational modifications, on the other hand, are linked to particular
amino acid patterns as described in the Prosite database.
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2.2.1
Secondary structure prediction

Linus Pauling already suggested that amino acid chains could assume reg-
ular local structures, namely alpha helices and beta strands [16]. In between
these secondary structure elements there are turns or loops [17]. There is
a long tradition of attempts to predict local secondary structure based on
sequence. Secondary structure prediction generally aims at correlating
the frequencies of occurrences of short amino acid words with particular
secondary structures. The data set for this statistic must be derived from
known protein structures with the secondary structures assigned to the
primary sequence which is in itself not a trivial task [18]. Based on such a
learning set, statistical methods are applied that range from information
theory (the GOR method [19]) to neural networks [20] and linear discrim-
inant analysis [21].

The basic approach essentially due to Chou and Fasman [22] uses a log-
odds ratio comparing the frequency with which a particular amino acid as-
sumes, say, a helical structure over the overall frequency of an arbitrary
amino acid to occur in an alpha helix. The logarithm of this ratio is a mea-
sure indicating when this residue preferentially assumes a helical structure
(positive value) as opposed to avoiding a helix (negative value). These pref-
erence values can be learnt from a large data set. For a prediction the pref-
erence is used like one of the parameters from above. Values are averaged
within a sliding window and the resulting curves for helix, strand and loop
prediction are compared, looking for the highest one in every part of the
sequence.

The GOR method phrases a very similar approach in an information
theoretic framework, computing not only preferences for individual resi-
dues but aiming at the delineation of preferences for short stretches of
amino acids. Since the given data set will generally not supply sufficient
data for estimation of the log-odds for every k-tuple certain approximations
have to made [23]. At the same time it has become clear that even this
approach is unlikely to give perfect predictions because, in known crystal
structures, one and the same 5-mer of residues will be found in different
secondary structures [24]. Other approaches like the one due to Solovyev
and Salamov [25] assemble different characteristics for a short stretch (sin-
glet and doublet secondary structure preferences, hydrophobic moment) of
amino acids and apply linear discriminant analysis in order to derive a pre-
dictor for the secondary structure of a region.

While the information contained in one primary sequence alone seems to
be insufficient to predict a protein’s secondary structure, multiply aligned
sequences (see below) offer a means to push the limits of the prediction.
Originally due to Zvelebil et al. [26] this line of attack on the problem is the
basis of the PHD method by Rost and Sander [27]. The PHD method takes
as input a multiple alignment of a set of homologous protein sequences and
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uses several neural networks to effect the prediction. The first neural net-
work maps the distribution vectors of amino acid occurrences in a window
of adjacent alignment columns onto one of the states helix, strand, and
loop. Outputs of this neural net are then reconciled by a second neural net
which computes a consensus prediction. A last level of consensus-taking
combines several predictions from neural nets that were trained on differ-
ent data or with different techniques. The learning set for this procedure is
taken from the HSSP database [28] of multiply aligned sequences that are
annotated with their common secondary structure.

Development of prediction methods can, of course, only become fruitful
when there are standards available to test and compare methods. It has
been the achievement of Kabsch and Sander [29] to put forward a validation
scheme for secondary structure prediction. This is based on an automatic
assignment of secondary structures for a given crystal structure followed by
an assessment of the degree of accuracy of helix, sheet and loop predictions.
As long as one restricts oneself to the problem of secondary structure pre-
diction for a single sequence the limit in predicting accuracy today seems to
lie around 63% [30]. PHD claims an accuracy up to 72% due to the inclu-
sion of multiply aligned sequences. In practical applications, however, the
concrete data set will decide about the success of secondary structure
prediction. Even when a substantial number of protein sequences can be
aligned prior to predicting secondary structure, the information that they
contribute depends on the degree of divergence between them. Some
methods (like GOR and PHD, among others) supply the user with an esti-
mate of how reliable a prediction in a particular area is which is of course
helpful in practice. The success of overlaying the output from several sec-
ondary structure prediction programs is hard to predict because it is not
clear whether the individual methods are sufficiently different to actually
produce new information through such an approach. Recent methods by
Cuff et al. [31] and by Selbig et al. [32] have automated and evaluated this
approach.

The expasy server [33] offers references to many Web sites for protein
sequence analysis and secondary structure prediction.

23
Pairwise sequence comparison

The methods of the last chapter analyzed a sequence by its own virtues. We
now turn to the comparison of two sequences. The rationales behind the
comparison of sequences may be manifold. Above all, the theory of evolu-
tion tells us that gene sequences may have derived from common ancestral
sequences. Thus it is of interest to trace the evolutionary history of muta-
tions and other evolutionary changes. Comparison of biological sequences
in this context is understood as comparison based on the criteria of evolu-
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tion. For example, the number of mutations, insertions, and deletions of
bases necessary to transform one DNA sequence into another one is a
measure reflecting evolutionary relatedness. On the other hand, a compari-
son may be more pragmatic in that it is not aimed at a detailed reconstruc-
tion of the evolutionary course of events but rather aims at pinpointing
regions of common origin which may in turn coincide with regions of
similar structure or similar function. Physical characteristics of amino acids
play a more important role in this viewpoint than they do when studying
evolution.

2.3.1
Dot plots

Dot plots are probably the oldest way of comparing sequences [34]. A dot
plot is a visual representation of the similarities between two sequenes.
Each axis of a rectangular array represents one of the two sequences to be
compared. A window length is fixed, together with a criterion when two
sequence windows are deemed to be similar. Whenever one window in one
sequence resembles another window in the other sequence, a dot or short
diagonal is drawn at the corresponding position of the array. Thus, when
two sequences share similarity over their entire length a diagonal line will
extend from one corner of the dot plot to the diagonally opposite corner.
If two sequences only share patches of similarity this will be revealed by
diagonal stretches.

Figure 2.2 shows an example of a dot plot. There, the coding DNA
sequences of the alpha chain of human hemoglobin and of the beta chain of
human hemoglobin are compared to each other. For this computation the
window length was set to 31. The program adds up the matches within a
window and the grayscale value of the diagonal is set according to the
quality of the match at that position. One can clearly discern a diagonal
trace along the entire length of the two sequences. Note the jumps where
this trace changes to another diagonal of the array. These jumps correspond
to position where one sequence has more (or fewer) letters than the other
one. The figure was produced using the program “dotter” [35].

Dot plots are a powerful method of comparing two sequences. They
do not predispose the analysis in any way such that they constitute the
ideal first-pass analysis method. Based on the dot plot the user can decide
whether he deals with a case of global, i.e., beginning-to-end similarity, or
local similarity. “Local similarity” denotes the existence of similar regions
between two sequences that are embedded in the overall sequences which
lack similarity. Sequences may contain regions of self-similarity which are
frequently termed internal repeats. A dot plot comparison of the sequence
itself will reveal internal repeats by displaying several parallel diagonals.

Instead of simply deciding when two windows are similar a quality func-
tion may be defined. In the simplest case, this could be the number of
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Fig. 2
Dot plot comparing two hemoglobin sequences.

matches in the window. For amino acid sequences the physical relatedness
between amino acids may give rise to a quantification of the similarity of
two windows. For example, when a similarity matrix on the amino acids
(like the Dayhoff matrix, see below) is used one might sum up these values
along the window. However, when this similarity matrix contains unequal
values for exact matches this leads to exactly matching windows of different
quality. The dot plot method of Argos [36] is an intricate design that reflects
the physical relatedness of amino acids. The program dotter [37] is an
X-windows based program that allows to display dot plots for DNA, for
proteins, and for comparison of DNA to protein.

232
Sequence alignment

A sequence alignment [38] is a scheme of writing one sequence on top of
another where the residues in one position are deemed to have a common
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evolutionary origin. If the same letter occurs in both sequences then this
position has been conserved in evolution (or, coincidentally, mutations from
another ancestral residue has given rise to the same letter twice). If the let-
ters differ it is assumed that the two derive from an ancestral letter, which
could be one of the two or neither. Homologous sequences may have dif-
ferent length, though, which is generally explained through insertions or
deletions in sequences. Thus, a letter or a stretch of letters may be paired up
with dashes in the other sequence to signify such an insertion or deletion.
Since an insertion in one sequence can always be seen as a deletion in the
other one sometimes uses the term ‘indel’, or simply ‘gap’.

In such a simple evolutionarily motivated scheme, an alignment medi-
ates the definition of a distance for two sequences. One generally assigns 0
to a match, some positive number to a mismatch and a larger positive
number to an indel. By adding these values along an alignment one obtains
a score for this alignment. A distance function for two sequences can be
defined by looking for the alignment which yields the minimum score.

Naively, the alignment that realizes the minimal distance between two
sequences could be identified by testing all possible alignments. This
number, however, is prohibitively large but luckily, using dynamic pro-
gramming, the minimization can be effected without explicitly enumerating
all possible alignments of two sequences. To describe this algorithm [39],
denote the two sequences by s =sy,...,s, and t = t;, ..., t,,. The key to the
dynamic programming algorithm is the realization that for the construction
of an optimal alignment between two stretches of sequence si,...,s; and
t1,...,t; if suffices to inspect the following three alternatives:

i) the optimal alignment of sq,...,s; 1 with #;,...,t;_1, extended by the
P g j Y
match between s; and t;;
ii) the optimal alignhment of s;,...,s;_; with t;,...,t;, extended b
P g j y
matching s; with a gap character ‘—’;
iii) the optimal alignment of s;,...,s; with #,...,t;_;, extended b
P g j y
matching a gap character ‘—’ with ¢;.

Each of these cases also defines a score for the resulting alignment. This
score is made up of the score of the alignment of the so far unaligned se-
quences that is used plus the cost of extending this alignment. In case: (i)
this cost is determined by whether or not the two letters are identical and in
cases (ii) and (iii) the cost of extension is the penalty assigned to a gap. The
winning alternative will be the one with the best score (Figure 2.3).

To implement this computation one fills in a matrix the axes of which are
annotated with the two sequences s and t. It is helpful to use north, south,
west, and east to denote the sides of the matrix. Let the first sequence ex-
tend from west to east on the north side of the matrix. The second sequence
extends from north to south on the west side of the matrix. We want to fill
the matrix starting in the north-western corner, working our way southward
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Schematic representation of the edit matrix
comparing two sequences. The arrows
indicate how an alignment may end
according to the three cases described in
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row by row, filling each row from west to east. To start one initializes the
northern and western margin of the matrix, typically with gap penalty val-
ues. After this initialization the above rules can be applied. A cell (i, j) that
is already filled contains the score of the optimal alignment of the sequence
s1,...,8 with t1,...,t;. The score of each such cell can be determined by
inspecting the cell immediately north-west of it (case (i)), the cell west (case
(ii)), and the one north (case (iii)) of it and deciding for the best scoring
option. When the procedure reaches the south-eastern corner that last cell
contains the score of the best alignment. The alignment itself can be re-
covered as one backtracks from this cell to the beginning, each time select-
ing the path that had given rise to the best option.

The idea of assigning a score to an alignment and then minimizing or
maximizing over all alignments is at the heart of all biological sequence
alignment. However, many more considerations have influenced the defi-
nition of the scores and made sequence alignment applicable to a wide
range of biological settings. Firstly, note that one may either define a dis-
tance or a similarity function to an alignment. The difference lies in the
interpretation of the values. A distance function will define positive values
for mismatches or gaps and then aim at minimizing this distance. A simi-
larity function will give high values to matches and low values to gaps and
then maximize the resulting score. The basic structure of the algorithm is
the same for both cases. In 1981, Smith and Waterman [40] showed that for
global alignment, i.e., when a score is computed over the entire length of
both sequences, the two concepts are in fact equivalent. Thus, it is now
customary to choose the setting that gives more freedom in appropriately
modeling the biological question that one is interested in.

In the similarity framework one can easily distinguish among the differ-
ent possible mismatches and also among different kinds of matches. For
example, a match between two Tryptophanes is usually seen to be more
important than a match between two Alanines. Likewise, the pairing of two
hydrophobic amino acids like Leucine and Isoleucine is preferable to the
pairing of a hydrophobic with a hydrophilic residue. Scores are used to de-
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scribe these similarities and are ususally represented in the form of a sym-
metric 20 by 20 matrix, assigning a similarity score to each pair of amino
acids. Although easy to understand from the physical characteristics of the
amino acids, the values in such a matrix are usually derived based on an
evolutionary model that allows one to estimate whether particular sub-
stitutions are preferred or avoided. This approach has been pioneered by
M. Dayhoft [41] who computed a series of amino acid similarity matrices.
Each matrix in this series corresponds to a particular evolutionary distance
among sequences. This distance is measured in an arbitrary unit called 1
PAM, for 1 Accepted Point Mutation (in 100 positions). The matrices carry
names like PAM120 or PAM250 and are supposed to be characteristic for
evolutionary distances of 120 or 250 PAM, respectively. Other more recent
series of matrices are the BLOSUM matrices [42] or Gonnet’s [43] matrices.
For every matrix one needs to find appropriate penalties for gaps.

The treatment of gaps deserves special care. The famous algorithm by
Needleman and Wunsch [44] did not impose any restrictions on the penalty
assigned to a gap of a certain length. For reasons of computational speed
this was later specified to assigning a cost function linear in the number of
deleted (inserted) residues [45]. This amounts to penalizing every single
indel. However, since a single indel tends to be penalized such that it is
considerably inferior to a mismatch, this choice resulted in longer gaps be-
ing quite expensive and thus unrealistically rare. As a remedy, one mostly
uses a gap penalty function which charges a gap open penalty for every gap
that is introduced and penalizes the length with a gap extension penalty
which is charged for every inserted or deleted letter in that gap. Clearly, this
results in an affine linear function in the gap length, frequently written as
g(k) = a+bxk[46].

With the variant of the dynamic programming algorithm first published
by Gotoh [47] it became possible to compute optimal alignments with affine
linear gap penalties in time proportional to the product of the lengths of
the two sequences to be aligned. This afforded a speed-up by one order
of magnitude compared to a naive algorithm using the more general gap
function. A further breakthrough in alignment algorithms development was
provided by an algorithm that could compute an optimal alignment using
computer memory only proportional to the length of one sequence instead
of their product. This algorithm by Myers and Miller [48] is based on work
by Hirschberg [49].

Depending on the biological setting several kinds of alignment are in use.
When sequences are expected to share similarity extending from the be-
ginning of the sequences to their ends they are aligned globally. This means
that each residue of either sequence is part either of a residue pair or a gap.
In particular it implies that gaps at the ends are charged like any other gap.
This, however, is a particularly unrealistic feature of a global alignment.
While sequences may very well share similarity over their entire length (see
the example dot plot of two hemoglobin chains in Figure 2.2), their respec-
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tive N- and C-termini usually are difficult to match up and differences in
length at the ends are more of a rule than an exception. Consequently, one
prefers to leave gaps at the ends of the sequences un-penalized. This variant
is easy to implement in the dynamic programming algorithm. Two mod-
ifications are required. Firstly the initialization of the matrix needs to reflect
the gap cost of 0 in the margin of the matrix. Secondly, upon backtracking,
one does not necessarily start in the corner of the matrix but much rather
searches the margins for the maximum from which to start. Variants of this
algorithm that penalize only particular end-gaps are easy to derive and can
be used, e.g., to fit one sequence into another or to overlap the end of one
sequence with the start of another.

In many cases, however, sequences share only a limited region of simi-
larity. This may be a common domain or simply a short region of recog-
nizable similarity. This case is dealt with by so-called local alignment in an
algorithm due to Smith and Waterman [50]. Local alignment aims at iden-
tifying the best pair of regions, one from each sequence, such that the op-
timal (global) alignment of these two regions is the best possible. This relies
on a scoring scheme that maximizes a similarity score because otherwise
an empty alignment would always yield the smallest distance. Naively, the
algorithm to compute a local alignment would need to inspect every pair of
regions and apply a global alignment algorithm to it. The decisive idea of
Smith and Waterman was to offer the maximization in each cell of the
matrix a fourth alternative: a zero to signify the beginning of a new align-
ment. After filling the dynamic programming matrix according to this
scheme, backtracking starts from the cell in the matrix that contains the
largest value.

Upon comparing a dot plot and a local alignment one might notice re-
gions of similarity visible in the dot plot but missing in the alignment.
While in many cases there exist gap penalty settings that would include all
interesting matching regions in the alignment, generally it requires the
comparison with the dot plot to notice possible misses. This problem is
remedied by an algorithm due to Waterman and Eggert [51] which com-
putes suboptimal, local, and non-overlapping alignments. It starts with the
application of the Smith-Waterman algorithm, i.e., a dynamic programming
matrix is filled and backtracking from the matrix cell with the largest entry
yields the best local alignment. Then the algorithm proceeds to delineate a
second-best local alignment. Note that this cannot be obtained by back-
tracking from the second-best matrix cell. Such an approach would yield an
alignment largely overlapping the first one and thus containing little new
information. Instead, those cells in the dynamic programming matrix are
set to zero from where backtracking would lead into the prior alignment.
This can be seen as “resetting” the dynamic programming matrix after
having deleted the first alignment. Then the second best alignment is
identified by looking for the maximal cell in the new matrix and starting
backtracking from there. Iteration of this procedure yields one alternative,
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non-overlapping alignment after the other in order of descending quality.
Application of this algorithm avoids possibly missing matching regions be-
cause even under strong gap penalties the procedure will eventually show
all matching regions.

There is an interesting interplay between parameters, in particular the
gap penalty, and the algorithmic variant used. Consider a pair of sequences
whose similar regions can in principle be strung together into an alignment
(as opposed to sequences containing repeats which cannot all be seen in a
single alignment). Under a weak gap penalty the Smith—Waterman algo-
rithm has a chance to identify this entire alignment. On the other hand,
not knowing about the similarity between the sequences ahead of time, a
weak gap penalty might also yield all kinds of spurious aligned regions. The
Waterman—Eggert algorithm is a valid alternative. The gap penalty can be
chosen fairly stringently. The first (i.e., the Smith—Waterman) alignment
will then identify only the best matching region out of all the similar re-
gions. By iterating the procedure, though, this algorithm will successively
identify the other similar regions as well. For a detailed discussion of these
issues see Vingron and Waterman [52].

2.4
Database searching I: single sequence heuristic algorithms

This section takes a first look at the problem of identifying those sequences
in a sequence database that are similar to a given sequence. This task arises,
e.g., when a gene has been newly sequenced and one wants to determine
whether a related sequence already exists in a database. Generally, two set-
tings can be distinguished. The starting point for the search may either be
a single sequence with the goal of identifying its relatives, or a family of
sequences with the goal of identifying further members of that family.
Searching a data base needs to be fast and sensitive but the two objectives
contradict each other. Fast methods have been developed primarily for
searching with a single sequence and this shall be the topic of this section.
When searching a database with a newly determined DNA or amino acid
sequence — the so-called query sequence — the user will typically lack
knowledge of whether an expected similarity might span the entire query or
just part of it. Likewise, he will be ignorant of whether the match will extend
along the full length of some database sequence or only part of it. There-
fore, one needs to look for a local alignment between the query and any
sequence in the database. This immediately suggests the application of the
Smith—Waterman algorithm to each database sequence. One should take
care, though, to apply a fairly stringent gap penalty such that the algorithm
focuses on the regions that really match. After sorting the resulting scores
the top scoring database sequences are the candidates one is interested in.
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Several implementations of this procedure are available, most prom-
inently the SSEARCH program from the FASTA package [53]. There exist
implementations of the Smith—Waterman algorithm that are tuned for
speed like one using special processor instructions [54] and, among others,
one by Barton [55]. Depending on implementation, computer, and database
size, a search with such a program will take on the order of one minute.

The motivation behind the development of other database search pro-
grams has been to emulate the Smith—Waterman algorithm’s ability to dis-
cern related sequences while at the same time performing the job in much
less time. To this end, one usually makes the assumption that any good
alignment as one wishes to identify contains, in particular, some stretch of
ungapped similarity. Furthermore, this stretch will tend to contain a certain
number of identically matching residues and not only conservative replace-
ments. Based on these assumptions most heuristic programs rely on iden-
tifying a well-matching core and then extending it or combining several of
these. With hindsight, the different developments in this area can further be
classified according to a traditional distinction in computer science accord-
ing to which one either preprocesses the query or the text (i.e., the data-
base). Preprocessing means that the string is represented in different form
that allows for faster answer to particular questions, e.g., whether it contains
a certain subword.

The FASTA program (part of a package [56] that usually goes by the same
name) sets a size k for k-tuple subwords. The program then looks for diag-
onals in the comparison matrix between query and search sequence along
which many k-tuples match. This can be done very quickly based on a pre-
processed list of k-tuples contained in the query sequence. The set of k-
tuples can be identified with an array whose length corresponds to the
number of possible tuples of size k. This array is linked to the indices where
the particular k-tuples occur in the query sequence. Note that a matching k-
tuple at index i in the query and at index j in the database sequence can be
attributed to a diagonal by subtracting the one index from the other. There-
fore, when inspecting a new sequence for similarity, one walks along this
sequence inspecting each k-tuple. For each of them one looks up the indices
where it occurs in the query, computes the index-difference to identify the
diagonal and increases a counter for this diagonal. After inspecting the
search sequence in this way a diagonal with a high count is likely to contain
a well-matching region. In terms of the execution time, this procedure is
only linear in the length of the database sequence and can easily be iterated
for a whole database. Of course this rough outline needs to be adapted
to focus on regions where the match density is high and link nearby, good
diagonals into alignments.

The other widely used program to search a database is called BLAST [57,
58]. BLAST follows a similar scheme in that it relies on a core similarity,
although with less emphasis on the occurrence of exact matches. This pro-
gram also aims at identifying core similarities for later extension. The core
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similarity is defined by a window with a certain match density on DNA or
with an amino acid similarity score above some threshold for proteins. In-
dependent of the exact definition of the core similarity, BLAST rests on the
precomputation of all strings which are in the given sense similar to any
position in the query. The resulting list may be on the order of thousand or
more words long, each of which if detected in a database gives rise to a core
similarity. In Blast nomenclature this set of strings is called the neighbor-
hood of the query. The code to generate this neighborhood is in fact ex-
ceedingly fast.

Given the neighborhood, a finite automaton is used to detect occurrences
in the database of any string from the neighborhood. This automaton is a
program, constructed on the fly and specifically for the particular word
neighborhood that has been computed for a query. Upon reading through a
database of sequences, the automaton is given an additional letter at a time
and decides whether the string that ends in this letter is part of the neigh-
borhood. If so, BLAST attempts to extend the similarity around the neigh-
borhood and if this is successful reports a match.

Like FASTA, BLAST has also been adapted to connect good diagonals and
report local alignments with gaps. BLAST converts the database file into its
own format to allow for faster reading. This makes it somewhat unwieldy to
use in a local installation unless someone takes care of the installation.
FASTA, on the other hand, is slower but easier to use. There exist excellent
web servers that offer these programs, in particular at the National Center
for Biotechnology Information (NCBI [59]) and at the European Bio-
informatics Institute (EBI [60]) where BLAST or FASTA can be used on up-
to-date DNA and protein databases.

According to the above mentioned distinction among search methods
into those that preprocess the pattern and those that preprocess the text,
there also is the option of transforming a DNA or amino acid database such
that it becomes easier to search. This route was taken, e.g., by a group from
IBM developing the FLASH [61] program. They devised an intricate though
supposedly very space consuming technique of transforming the database
into an index for storing the offsets of gapped k-tuples. The work of Heu-
mann and Mewes [62] has focused on further developing the well known
data structure of a suffix tree. A suffix tree allows for quick lookup of where
subwords of arbitrary length occur in a database. The problem with a suffix
tree is that its size is several times the magnitude of the original data which
for a sequence database means that it is unlikely to fit into main memory.
Heumann and Mewes developed a data structure that allows for efficient
mapping to disk such that the size problems can be circumvented. Likewise,
the QUASAR program by Burkhard et al. [63] preprocesses the database
into a so-called suffix array, similar to a suffix tree yet simple to keep on
disk.

Progress in computational speed using either specially designed or mas-
sively parallel hardware has led to the availability of extremely fast versions
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of the Smith—Waterman algorithm. The EBI, among other institutions,
offers a service where this algorithm is executed on a massively parallel
computer resulting in search times of a few seconds. Companies like
Compugen [64] or Paracel [65] have developed special hardware to do this
job.

With the availability of expressed sequence tags (ESTs) it has become very
important to match DNA sequence with protein sequence in such a way
that a possible translation can be maintained throughout the alignment.
Both the FASTA and the BLAST package contain programs for this and re-
lated tasks. When coding DNA is compared to proteins, gaps are inserted in
such a way as to maintain a reading frame. Likewise, a protein sequence can
be searched versus a DNA sequence database. The search of DNA vs. DNA
with an emphasis on matching regions that allow for a contiguous transla-
tion is not so well supported. Although a dynamic programming algorithm
for this task is feasible the existing implementation in BLAST compares all
reading frames.

25
Alignment and search statistics

Alignment score is the product of an optimization, mostly a maximization
procedure. As such it tends to be a large number sometimes suggesting bi-
ological relatedness where there is none. In pairwise comparisons the user
still has a chance to study an alignment by eye in order to judge its validity
but upon searching an entire database automatic methods are necessary to
attribute a statistical significance to an alignment score.

In the early days of sequence alignment, the statistical significance of the
score of a given pairwise alignment was assessed using the following pro-
cedure. The letters of the sequences are permuted randomly and a new
alignment score is calculated. This is repeated roughly 100 times and mean
and standard deviation of this sample are calculated. The significance of the
given alignment score is reported in ‘number of standard deviations above
the mean, also called the Z-score. Studying large numbers of random
alignments is in principle correct. However, the significance of the align-
ment should then be reported as the fraction of random alignments that
score better than the given alignment. The procedure described assumes
that these scores were normally distributed. Since the random variable under
study — the score of an optimal alignment — is the maximum over a large
number of values this is not a reasonable assumption. In fact, when trying
to fit a normal distribution to the data the lack of fit quickly becomes obvi-
ous. The second argument against this way of calculating significance is a
pragmatic one. The procedure needs to be repeated for every alignment
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under study because the effect of the sequence length cannot be accounted
for.

Based on the work of several researchers [66, 67] it has meanwhile be-
come apparent that alignment score as well as scores from database
searches obey a so-called extreme value distribution. This is not surprising
given that extreme value distributions typically describe random variables
which are the result of a maximization. In sequence alighment, there are
analytical results confirming the asymptotic convergence to an extreme val-
ue distribution for the case of local alignment without gaps, i.e., the score of
the best-matching contiguous diagonal in a comparison [68]. This is also a
valid approximation to the type of matching effected in the database search
program BLAST. Thus this approach has become widely used and in fact
has contributed significantly to the popularity of database search programs
because significance measures have made the results of the search much
easier to interpret.

The statistical significance of an event like observing a sequence align-
ment of a certain quality is the probability to observe a better value as a re-
sult of chance alone. Thus one needs to model chance alignments, which is
precisely what the statistician means by deriving the distribution of a ran-
dom variable. The probability that a chance result would exceed an actually
obtained threshold S is 1 minus the value of the cumulative distribution
function evaluated at that threshold. (If S is the score of a given sequence
segment this probability is the famed P-value of the segment. It is to be
contrasted with the E-value which gives the expected number of segments
in the sequence that exceed the score. For interesting outcomes both of
these values are very small and almost identical.) In sequence alignment,
the respective cumulative distribution function is generally expressed as
[69]:

exp(mnKe*).

Here, m and n are the lengths of the sequences compared and K and 4
are parameters which need to be computed (where possible) or derived by
simulation. K and 4 depend on the scoring matrix used (e.g., the PAM120
matrix) and the distribution of residues. Hence, for any scoring system
these parameters are computed beforehand and the statistical significance
of an alignment score S is then computed by evaluating the formula with
the length of the two sequences compared.

The most prominent case where the parameters K and 4 can be defined
analytically is local alignment without gaps. Algorithmically this amounts to
computing a Smith—Waterman alignment under very high gap penalties
such that the resulting alignment will simply not contain any gaps. Since
this notion of alignment also guides the heuristic used by the BLAST data-
base search program the resulting statistical estimates are primarily used in
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database searching. In this application, one of the lengths is the length of
the input sequence and the other length is on the order of the length of the
concatenated sequences from the database that is being searched.

When gaps are allowed the situation is more complex because an ap-
proximation of the distribution function of alignment score by an extreme
value distribution as above is not always valid. Generally speaking, it is
allowed only for sufficiently strong gap penalties where alignments remain
compact as opposed to spanning the entire sequences. Under sufficiently
strong gap penalties, though, it has been demonstrated that the approxi-
mation is indeed valid just like for infinite gap penalties [70]. However, it is
not possible any more to compute analytically the values of the parameters
K and 1. As a remedy, one applies simulations where many alignments of
randomly generated sequences are computed and the parameters are deter-
mined based on fitting the empirical distribution function with an extreme
value distribution [71]. Like in the case above, this procedure allows to de-
termine parameters beforehand and compute significance by putting the
lengths of the sequences into the formula.

The question remains how to determine whether approximation by an
extreme value distribution is admissible for a certain scoring scheme and
gap penalty setting one is using. This can be tested on randomly generated
(or, simply, unrelated) sequences by computing a global alignment between
sequences under that particular parameter setting. If the result has negative
sign (averaged over many trials or on very long random sequences) then the
approximation is admissible. This is based on a theorem due to Arratia and
Waterman [72] and subsequent simulation results reported by Waterman
and Vingron [73]. In particular, a gap open penalty of 12 with extension
penalty of 2 or 3 for the case of the PAM250 matrix, as well as any stronger
combination allow for approximation by the extreme value distribution.

In database searching the fitting need not be done on randomly generated
sequences. Under the assumption that the large majority of sequences in a
database are not related to the query, the bulk of the scores generated upon
searching can be used for fitting. This approach is taken by W. Pearson in
the FASTA package. It has the advantage that the implicit random model is
more realistic since it is taken directly from the data actually searched.
Along a similar line of thought, Spang and Vingron [74] tested significance
calculations in data base searching by evaluating a large number of search
results. Their study showed that one should not simply use the sum of the
lengths of all the sequences in the database as the length-parameter in
the formula for the extreme value distribution. This would overestimate the
length that actually governs the statistics. Instead, a considerably shorter
effective length can determined for a particular database using simulations.
This effect is probably due to the fact that alignments cannot start in one
sequence and end in the next one which makes the number of feasible
starting points for random alignments smaller than the actual length of the
database.



2.6 Multiple sequence alignment

2.6
Multiple sequence alignment

For many genes a database search will reveal a whole number of homo-
logous sequences. One then wishes to learn about the evolution and the
sequence conservation in such a group. This question surpasses what can
reasonably be achieved by the sequence comparison methods described in
Section 2.3. Pairwise comparisons do not readily show positions that are
conserved among a whole set of sequences and tend to miss subtle sim-
ilarities that become visible when observed simultaneously among many
sequences. Thus, one wants to simultaneously compare several sequences.

A multiple alignment arranges a set of sequences in a scheme where
positions believed to be homologous are written in a common column. Like
in a pairwise alignment, when a sequence does not possess an amino acid
in a particular position this is denoted by a dash. There also are conventions
similar to the ones for pairwise alignment regarding the scoring of a mul-
tiple alignment. The so-called sum-of-pairs (SOP) [75] score adds the scores
of all the induced pairwise aligments contained in a multiple alignment. For
a linear gap penalty this amounts to scoring each column of the alignment
by the sum of the amino acid pair scores or gap penalties in this column.
Although it would be biologically meaningful, the distinctions between
global, local, and other forms of alignment are rarely made in a multiple
alignment. The reason for this will become apparent below, when we de-
scribe the computational difficulties in computing multiple alignments.

Note that the full set of optimal pairwise alignments among a given set of
sequences will generally overdetermine the multiple alignment. If one
wishes to assemble a multiple alignment from pairwise alignments one has
to avoid “closing loops”, i.e., one can put together pairwise alignments
as long as no new pairwise alignment is included to a sequence which is
already part of the multiple alignment. In particular, pairwise alignments
can be merged when they align one sequence to all others, when a linear
order of the given sequences is maintained, or when the sequence pairs for
which pairwise alignments are given form a tree. While all these schemes
allow for the ready definition of algorithms that output multiply aligned
sequences, they do not include any information stemming from the simul-
taneous analysis of several sequences.

An alternative approach is to generalize the dynamic programming opti-
mization procedure applied for pairwise alignment to the delineation of a
multiple alignment that maximizes, e.g., the SOP score. The algorithm
used [76] is a straight-forward generalization of the global alignment algo-
rithm. This is easy to see, in particular, for the case of the column-oriented
SOP scoring function avoiding affine gap penalty in favor of the simpler
linear one. With this scoring, the arrangement of gaps and letters in a col-
umn can be represented by a Boolean vector indicating which sequences
contain a gap in a particular column. Given the letters that are being com-
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pared, one needs to evaluate the scores for all these arrangements. However
conceptually simple this algorithm may be, its computational complexity is
rather forbidding. For n sequences it is proportional to 2" times the product
of the lengths of all sequences.

In practice this algorithm can be run only for a modest number of se-
quences being compared. There exists software to compare three sequences
with this algorithm that additionally implements a space-saving technique
[77]. For more than three sequences, algorithms have been developed that
aim at reducing the search space while still optimizing the given scoring
function. The most prominent program of this kind is MSA2 [78, 79]. An
alternative approach is used by DCA [80, 81] which implements a divide-
and-conquer philosophy. The search space is repeatedly subdivided by
identifying anchor points through which the alignment is highly likely to
pass.

None of these approaches, however, would work independent of the
number of sequences to be aligned. The most common remedy is reducing
the multiple alignment problem to an iterated application of the pairwise
alignment algorithm. However, in doing so, one also aims at drawing on the
increased amount of information contained in a set of sequences. Instead of
simply merging pairwise alignments of sequences, the notion of a profile
[82] has been introduced in order to grasp the conservation patterns within
subgroups of sequences. A profile is essentially a representation of an
already computed multiple alignment of a subgroup. This alignment is
“frozen” for the remaining computation. Other sequences or other profiles
can be compared to a given profile based on a generalized scoring scheme
defined for this purpose. The advantage of scoring a sequence versus a
profile over scoring individual sequences lies in the fact that the scoring
schemes for profile matching reflect the conservation patterns among the
already aligned sequences.

Given a profile and a single sequence, the two can be aligned using the
basic dynamic programming algorithm together with the accompanying
scoring scheme. The result will be an alignment between sequence and
profile that can readily be converted into a multiple alignment now com-
prising the sequences underlying the profile plus the new one. Likewise,
two profiles can be aligned with each other resulting in a multiple align-
ment containing all sequences from both profiles. With these tools vari-
ous multiple alignment strategies can be implemented. Most commonly, a
hierachical tree is generated for the given sequences which is then used as a
guide for iterative profile construction and alignment. This alignment
strategy was introduced in papers by Taylor [83], Corpet [84], and Higgins
[85]. Higgins' program Clustal [86] has meanwhile become the de facto
standard for multiple sequence alignment [87]. Other programs in practical
use are the MSA2 program, DCA, and Dialign. Dialign [88, 89] is different
in that it aims at the delineation of regions of similarity among the given
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sequences. Chapter 8 will discuss approaches to multiple sequence com-
parison where common patterns are sought rather than overall alignments.

Since iterative profile alignment tends to be guided by a hierarchical tree,
this step of the computation is also influencing the final result. Usually the
hierarchical tree is computed based on pairwise comparisons and their re-
sulting alignment scores. Subsequently this score matrix is used as input to
a clustering procedure like single linkage clustering or UPGMA [90]. How-
ever, it is well understood that in an evolutionary sense such a hierarchical
clustering does not necessarily result in a biologically valid tree. Thus, when
allowing this tree to determine the multiple alignment there is the danger
of pointing further evolutionary analysis of this alignment into the wrong
direction. Consequently, the question has arisen of a common formula-
tion of evolutionary reconstruction and multiple sequence alignment. The
cleanest although biologically somewhat simplistic model attempts to re-
construct ancestral sequences to attribute to the inner nodes of a tree [91].
Such reconstructed sequences at the same time determine the multiple
alignment among the sequences. In this ‘generalized tree alignment’ one
aims at minimizing the sum of the edge-lengths of this tree, where the
length of an edge is determined by the alignment distance between the se-
quences at its incident nodes. As to be expected, the computational com-
plexity of this problem again makes its solution unpractical. The practical
efforts in this direction go back to the work of Sankoff [92]. Hein [93] and
Schwikowski and Vingron [94] produced software [95, 96] relying on these
ideas.

2.7
Multiple alignments and database searching

Information about which residues are conserved and thus important for
a particular family is crucial not only for the purpose of multiply aligning a
set of sequences. Also in the context of identifying related sequences in a
database this information is very valuable. A multitude of methods has been
developed that aim at identifying sequences in a database which are related
to a given family. The first one was the notion of a profile that was described
above and was actually introduced in the context of data base searching.
Like in multiple alignment, profiles help in emphasizing conserved regions
in a database search. Thus, a sequence that matches the query profile in a
conserved region will receive a higher score than a database sequence
matching only in a divergent part of an alignment. This feature is of enor-
mous help in distinguishing truly related sequences.

Algorithmically, profile searching simply uses the dynamic programming
alignment algorithm for aligning a sequence to a profile on each sequence
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in the database. Of course, this is computationally quite demanding and
much slower than the heuristic database search algorithms like BLAST
or FASTA. Typically, the multiple alignment underlying the profile will de-
scribe a conserved domain which one expects to find within a database se-
quence. Therefore, in this context it is important that end gaps should not
be penalized. Furthermore, gap penalties for profile matching frequently
vary along the profile in order to reflect the existence of gaps within the
underlying multiple alignment. Through this mechanism, one attempts
to allow new gaps preferentially in regions where gaps have been observed
already. However, different suggestions exist as to the choice and derivation
method for these gap penalties [97].

In 1994, Haussler and co-workers [98] introduced Hidden Markov Models
(HMMs) for the purpose of identifying family members in a database.
HMMs are a class of probabilistic models well suited for describing the rel-
evant parameters in matching a given multiple alignment against a data-
base. For HMMs there exist automatic learning algorithms that adapt the
parameters of the HMM for best identification of family members. Thus,
they offer in particular a solution to the question of gap penalty settings
along a profile. Sequences are matched to HMMs in much the same way as
they are aligned to a profile although the interpretation of the procedure is
different. The HMM is thought of as producing sequences by going through
different states. Aligning a sequence to an HMM amounts to delineating
the series of model-states that is most likely to have produced the sequence.

Based on this interpretation one can make an interesting distinction be-
tween the optimal alignment of a sequence with a HMM and the computa-
tion of the probability that a model has produced a particular sequence. The
optimal alignment is computed with an algorithm exactly analogous to the
dynamic programming algorithm and maximizing the probability that a
series of states has given rise to a particular sequence. In contrast hereto, in
absence of knowledge of the correct path of states, the probability that a
model has given rise to a particular sequence should rather be computed
as the sum over the different sets of states that could have produced the
sequence. This interpretation leads to a summation over all paths instead of
the choice of the best one. These issues are discussed by Durbin et al. [99]
(Section 2.5.4) although, practically, there is little known about the differ-
ence in performance between the two approaches. Bucher and Karplus
[100] introduced generalized profiles and showed that the two concepts are
equally powerful in their abilities to model sequence families and detect
related sequences.

The fact that a profile or HMM can pick out new sequences also related to
the given family suggests that these should be used to update the profile or
HMM used as search pattern. This idea leads to iterative search algorithms
where the database is searched repeatedly, each time updating the query
pattern with some or all of the newly identified sequences. Psi-Blast [101]
is a very successful implementation of this idea. It starts with a single



2.8 Protein families and protein domains

sequence and after the first search builds profiles from conserved regions
among the query and newly identified sequences. Without allowing for gaps
(to speed up the search) these new profiles are used to repeat the search.
Generally, Psi-Blast quickly converges after updating these profiles again
and generally is very successful in delineating all the conserved regions a
sequence may share with other sequences in a database. In the realm of
HMMs, SAM is a very careful implementation of the idea of iterated
searches [102, 103].

It is the generally held view that searching a database with a profile
or HMM will produce extreme-value distributed random scores, just like
single-sequence database searching. The quality of the fit to the extreme-
value distribution may depend on the particular given alignment, though.
This has been substantiated with mathematical arguments only for the case
of ungapped profile matching. Nevertheless, this basic understanding of the
statistical behavior of database matching methods is a crucial element in the
iterative search programs. Without clear and reliable cutoff values one could
not decide which sequences to integrate into the next search pattern and
would run the danger of including false positives, thus blurring the infor-
mation in the pattern.

Both single sequence search methods and profile/ HMM-based ones have
been thoroughly validated during recent years [104]. Databases of structur-
ally derived families like, e.g., SCOP [105, 106] have made it possible to
search a sequence database with a query and exactly determine the number
of false positives and false negatives. For every search one determines how
many sequences one misses (false negatives) in dependence of the number
of false positive matches. If the sequence statistics is accurate the number of
false positives correlates well with the E-value which is the number of false
positives expected by chance. Although not always quite decided, this way
of validating search methods allows to make objective comparisons and to
determine how much quality one actually gains with slower methods over
faster, less accurate one.

2.8
Protein families and protein domains

The dual question to the one that assigns related sequences from a database
to a given query sequence or family is the question that tries to assign to a
query sequence the family that it is a member of or the domains that it
contains. One simple yet very effective resource for this purpose is the
Prosite database [107, 108] which contains amino acid patterns that are de-
scriptive for particular domains, families, or functions. These patterns allow
to specify alternative residues in particular positions or variable length
spacers between positions. Matching a sequence against a Prosite entry
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amounts simply to looking for the particular pattern of characters in the
given sequence. For many sequences that are contained in a protein
sequence database this is not even necessary any more because they have
already been annotated with the Prosite patterns they contain. The expasy
server [109] offers the possibility to screen a sequence versus the entire
collection of Prosite patterns.

For certain protein sequence domains character patterns may be rather
poor descriptors, i.e., they may cause many false positive and false negative
matches. The Pfam database remedies this situation by supplying pre-
computed Hidden Markov Models for protein domains. A query sequence
can be matched against this library of HMMs in order to identify known
domains in the query sequence. Here, too, match statistics plays a crucial
role in order to determine the significantly matching domains. A server that
allows to scan a sequence versus all Pfam domains can be found at the
Sanger center [110]. Software has also been developed to recognize the
Pfam HMMs in either coding DNA or in genomic DNA. In the latter case
the program combines the HMM matching with the distinction between
coding and non-coding DNA. Recently, a database of domains, InterPro
[111], has emerged that unifies sources like Prosite and Pfam.

Many attempts have been made at developing algorithms that will auto-
matically determine domains shared by several input sequences. In a way
this is a generalization of the multiple alignment problem in the direction
of local alignment, however in this context it seems to be considerably more
difficult than in the pairwise case. There exist two programs that identify
Prosite-like patterns contained in many sequences. These are Pratt [112,
113] and TEIRESIAS [114, 115]. The program Blockmaker [116, 117] iden-
tifies non-gapped sequence blocks that are characteristic of a given set of
sequences. This program has also been used to construct a large collection
[118] of Blocks that can be searched like Prosite or Pfam. Krause and
Vingron [119] used an iterated search procedure SYSTERS [120] to delin-
eate protein families and supply consensus sequences of these families to
be searched with a DNA or protein query sequence. The most sophisticated
programs for the detection of common sequence motifs in a given set use
probabilistic modeling and/or machine learning approaches. In particular,
the mathematical technique of the Gibbs sampler has lent its name also to
a motif-finding program, the Gibbs Motif Sampler [121, 122]. Bailey and
Elkan [123] designed the MEME [124] program which relies on an expecta-
tion maximization algorithm.

29
Conclusion

The problems and methods introduced above have been instrumental in
the advance in our understanding of genome function, organization, and
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structure. While some years ago human experts would check every program
output, nowadays sequence analysis routines are being applied in an auto-
matic fashion creating annotation that is included in various database. This
holds true for similarity relationships among sequences and extends all the
way to the prediction of genomic structure or to function prediction based
on similarity. Although the quality of the tools has increased dramatically,
the possibility of error and in particular its perpetuation by further auto-
matic methods exists. Thus, it is apparent that the availability of these high-
throughput computational analysis tools is a blessing and a problem at the
same time.
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3
Structure, Properties and Computer
Identification of Eukaryotic Genes

Victor Solovyev

3.1
Structural characteristics of eukaryotic genes

The gene is a fragment of nucleic sequence that carries the information
representing a particular polypeptide or RNA molecule. In eukaryotes,
genes lie in a linear array on chromosomes, which consist of a long mole-
cule of duplex DNA and chromatin proteins (mostly histones that form a
structure called a nucleosome). The complex of DNA and proteins (chro-
matin) can maintain genes in an inactive state by restricting access to RNA
polymerase and its accessory factors. To activate a gene, the chromatin en-
compassing that gene and its control region must be modified to permit
transcription [1]. The principal steps in gene expression of protein-coding
genes are transcription and post-transcriptional processing of messenger
RNA precursors including 5’-capping, 3'-polyadenilation and splicing. The
order in which these events occur is not entirely clear: some splicing events
could take place during transcription [2]. The processing events produce the
mature mRNA in the nucleus and then it is transported to the cytoplasm for
translation. The mature mRNA includes sequences called exons that encode
the protein product according to the rules of the genetic code. However,
the gene sequence often includes non-coding regions: introns that are
removed from the primary transcript during RNA splicing and 5’- and 3’-
untranslated regions. Model and stages of gene expression of a typical
protein-coding gene are presented in Figure 3.1.

Knowledge about structural gene characteristics is accumulated in Gen-
Bank and EMBL nucleotide sequence databases, where one gene can be
described in dozens of entries assigned to partially sequenced gene regions,
alternative splicing forms or mRNAs. Processing GenBank [3] data, a gene-
centered database InfoGene was created [4, 5], which contains description
of known genes and their basic functional signals and structural compo-
nents. All major organisms are presented in the separate divisions. The
Human InfoGene division contains about 21000 genes (including 16 000
partially sequenced genes), 53435 coding regions, 83488 exons and about
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Copyright © 2002 WILEY-VCH Verlag GmbH, Weinheim
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Fig. 3.1

Model of eukaryotic gene structure and gene expression

stages. BEs are boundary elements that bind proteins to
prevent the enhancer effects on outside genes. MARs are
matrix attachment regions.

58 000 donor and acceptor splice sites. Table 3.1 shows the major structural
characteristics of Human, Mouse, D. melanogaster, C. elegans, S. cerevisiae
and A. thaliana genes deposited in GenBank, release 119.

We do not observe any significant difference in the size of protein coding
mRNAs in different types of organisms, but the gene sizes are often larger
in vertebrates and especially in primates. We can notice that the human
coding exons are significantly shorter that the sizes of the respective genes.
The average size of an exon is about 200 bp, that is close to the DNA length
associated with the nucleosome particle. Coding and non-coding exons can
be as short as several bases and as long as dozens or thousands of bases.
Usually protein coding exons occupy just a few percent of the gene size.
Different kind of repeats cover 41% of sequenced human DNA, and coding
exons account only for 2-3% of the genomic sequence.

The structural characteristics of eukaryotic genes considered above create
two major problems in computational gene identification.

1. Low quality recognizers will generate a lot of false positive predictions,
the number of which is comparable with the true exon number (Figure
3.2);

2. Recognition of small exons (1-20 bp) can not be done using any com-
position-based coding measure that is often successful for prokaryotes.

We need to develop gene prediction approaches that are based significantly
on the recognition of functional signals encoded in the gene sequence.

The main information about exon location is encoded in splice site se-
quences. In the next section we will consider essential characteristics of
splice sites. The other functional signals as promoter, poly-A, start and stop
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Bacterial DNA

v

Non-coding regions Coding regions Score

False positives

Human DNA

v

Non-coding regions Coding regions Score
Fig. 3.2 reflects the value of a given classifying
The huge amount of non-coding DNA in  function to assign a sequence region to
the human genome can significantly coding or non-coding classes. The
increase the number of false positive y-axis presents the number of sequence

coding exon predictions. The score x-axis ~ fragments with a particular score.

of translation will be discussed later with description of their recognition
functions used in many gene prediction programs.

3.2
Classification of splice sites in mammalian genomes

Since the discovery of split genes it was observed that practically all introns
contain two very conservative dinucleotides. The donor site has GT exactly
at the intron's 5’-boundary and the acceptor site has AG exactly at its 3'-
boundary [6, 7]. We call splice sites of this type canonical. Introns flanked
by the standard GT-AG pairs excised from pre-mRNA by the spliceosome
including U1, U2, U4/U6 and U5 snRNPs [7]. Recently, a few examples of a
new type of splice pair, a AT-AC, has been discovered. It is processed by a
related, but different splicing machinery [8, 9]. AT-AC introns are excised by
a novel type of spliceosome composed of snRNPs U11, U12, U4atac/Ubatac,
and U5 [10, 11, 12]. Several other cases of non-canonical splice sites with
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GC-AG, GG-AG, GT-TG, GT-CG or CT-AG dinucleotides at the splice junc-
tions have been reported [8, 13].

The most comprehensive investigation of different types of annotated
splice sites has been performed by Burset, Seledtsov and Solovyev [14]. They
have extracted 43 337 pairs of exon-intron boundaries and their sequences
from the InfoGene database [15] covering all annotated genes in mamma-
lian genomic sequences. Annotation errors present a real problem in ob-
taining accurate information on eukaryotic gene functional signals from
nucleotide sequence databases, such as GenBank or EMBL [3, 16]. This is
especially crucial for the analysis of non-standard splice sites. For instance,
carefully checking 50 such examples revealed 21 cases of clear EMBL
annotation errors [17]. To verify the annotated splice sites Burset et al. [14]
used the alignment of spliced exons with known mammalian ESTs and
high throughput genomic sequences.

Of 43337 pairs of donor and acceptor splice sites (splice pairs) 22489
were supported by EST sequences. 98.71% of those contain canonical dinu-
cleotides GT and AG for donor and acceptor sites. 0.56% hold non-canonical
GC-AG splice site pairs. The reminder 0.73% occurs in a lot of small groups
(with maximum size of 0.05%). 53.6% of canonical and just 27.3% of non-
canonical splice pairs were supported by ESTs. Based on these figures it was
supposed that at least half of annotated non-canonical sites presents anno-
tation errors, as was shown in some previous works [8, 17].

In addition to the conserved dinucleotides AG-GT, canonical splice sites
demonstrate well defined, conserved donor site consensus: AG|GTRAGT",
and acceptor site consensus: YYTTYYYYYYNC|AGG [18]. For the much
smaller AT-AC group different conserved positions have been noticed:
|[ATATCCTTT for donor site and YAC| for acceptor site [12, 19, 20]. These
differences reflect some specific interactions with the components of splic-
ing machineries and they can be used to judge if a particular splice site
group belongs to the GT-AG or AT-AC splice system. Weight matrices for
the GT-AG, GC-AG pairs constructed based on EST-supported splice pairs
are presented in Table 3.2 and consensus sequences for the AT-AC pair are
depicted in Figure 3.3.

The occurrence of canonical dinucleotides upstream or downstream in
each EST-supported non-canonical splice site group was carefully analyzed.
For example, the telethonin gene has only one intron annotated in positions
639-885. This junction is completely supported by ESTs and the annotated
splice sites are GG-CA. Analyzing the telethonin sequence uncovered an
occurrence of a canonical splice pair GT-AG just one position downstream
from the annotated site (Figure 3.4). Taking into account that the non-
canonical splice junctions occur very rarely, we can suspect that the canon-

1) Here, we use the common [UPAC
ambiguity codes: e.g., R=A,G, Y=C,T,
S=CG,N=ACG,T
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Tab. 3.2

Sequence composition of major group of splice sites.

GT-AG group (98.70%).

Frequency of nucleotides in donor splice site. 1 and 2 are positions of conserved GT

dinucleotide.

% -3 -2 -1 1 2 3 4 5 6

A 34.0 60.4 9.2 0.0 0.0 52.6 71.3 7.1 16.0
C 36.3 12.9 33 0.0 0.0 2.8 7.6 5.5 16.5
G 18.3 12.5 80.3 100 0.0 41.9 11.8 81.4 20.9
8] 11.4 14.2 7.3 0.0 100 2.5 9.3 5.9 46.2

Frequency of nucleotides in acceptor splice site. —1 and —2 are positions of conserved

AG dinucleotide.

% —-14 -13 -12 -11 -10 -9 -8 -7 -6 -5 —4 -3 -2 -1 1

A 90 84 75 68 76 80 9.7 92 76 7.8 237 4.2 100 0.0 239
C 31.0 31.0 30.7 29.3 32.6 33.0 37.3 385 41.0 35.2 309 70.8 0.0 0.0 13.8
G 125 11.5 10.6 104 11.0 11.3 11.3 85 6.6 6.4 21.2 03 0.0 100 52.0
U 423 44.0 47.0 49.4 47.1 46.3 40.8 429 445 50.4 24.0 246 0.0 0.0 10.4

GC-AG group (0.56%)

Frequency of nucleotides in donor splice site. 1 and 2 are positions of conserved GT

dinucleotide.

% -3 -2 =1 1 2 3 4 5 6

A 40.5 88.9 1.6 0.0 0.0 87.3 84.1 1.6 7.9
C 42.1 0.8 0.8 0.0 100 0.0 3.2 0.8 11.9
G 15.9 1.6 97.6 100 0.0 12.7 6.3 96.8 9.5
U 1.6 8.7 0.0 0.0 0.0 0.0 6.3 0.8 70.6

Frequency of nucleotides in acceptor splice site.

AG dinucleotide.

—1 and —2 are positions of conserved

% —14 —13 —12 —11 =10 -9 -8 -7 —6 -5 —4 -3 -2 -1 1
A 111 127 32 48 127 87 167 167 127 9.5 262 63 100 0.0 21.4
C 365 309 19.1 23.0 349 39.7 349 405 405 36.5 333 682 00 00 7.9
G 95103 151 127 87 95 167 48 24 63 135 00 00 100 627
U 389 41.3 587 55.6 42.1 40.5 30.9 37.3 44.4 47.6 27.0 254 00 0.0 7.9
Donor: S‘)()|ATA1()0T10()CIO(JCI()(]TI()OT90T70

Acceptor:  T79G50C70NCgsoAC |A60T60

Fig. 3.3

Consensus sequences for the AT-AC pair of the alternative

splicing machinery.
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Donor Acceptor

Annotated: ...CCCGAGGAGG | ggtgagtgtg......... cctctcccca| GCTGCTCCCT. . .
Possible: ...CCCGAGGAGGG|gtgagtgtg......... cctctccccag|CTGCTCCCT. . .
Annotated junction: .. .CCCGAGGAGG | GCTGCTCCCT. . .
(EST=AI802984)

Possible junction: .. .CCCGAGGAGGG | CTGCTCCCT. . .
Fig. 3.4 supported by ESTs, which also supports a
Possible errors in EST-supported splice canonical splice junction. The annotated
pairs. Example of an annotated non- non-canonical junction and the putative
canonical junction from the H. sapiens canonical junction produce the same final
telethonin gene, intron 1 (Genbank spliced sequence.

accession #: AJ010063). This junction is

ical splice sites are very likely the real ones. This suggested to explain these
observations of shifted canonical dinucleotides by annotation errors involv-
ing inserting/deleting one nucleotide, which is actually absent/present
in the real genomic sequence. This hypothesis was tested by comparing
human gene sequences deposited to GenBank earlier with the sequence of
the same region obtained in high throughput genomic sequencing projects
(HTGs). Several examples of clear annotation and sequencing errors iden-
tified by the comparison are presented in Figure 3.5. 156 out of 171 human
non-canonical and EST-supported splice site sequences had a clear match
in the human HTG. They can be classified after corrections as: 79 GC-AG
pairs (of which 1 was an error that corrected to GC-AG), 61 errors that were
corrected to GT-AG canonical pairs, 6 AT-AC pairs (of which 2 were errors
that corrected to AT-AC), 1 case that was produced from non-existent intron,
7 cases that were found in HTG that were deposited to GenBank, and finally
there were only 2 cases left of supported non-canonical splice sites.

It was concluded that 99.24% of the splice site pairs should be GT-AG,
0.69% GC-AG, 0.05% AT-AC and finally only 0.02% could consist of other
types of non-canonical splice sites (Table 3.3). Therefore, gene finding
approaches using just standard GT-AG splice sites can potentially predict
accurately 97% genes (assuming 4-5 exons per gene on average). If the

Sequences of homeodomain protein, HOXA9EC (AF010258)

Donor Acceptor
Genbank: CGATCCCAAT |aa-tgtctcct cccgcagaat | AACCCAGCAG
High throughput: CGATCCCA |gtaagtgtctcct cccgcag | AT-AACCCAGCAG

Sequences of poly(A) binding protein II, PABP2 (AF026029)

Donor Acceptor
Genbank: TCCAGGCAAT |gctgagtaac tttcctgata | GCTGGCCCGG
High througput: TCCAGGCAATG|gtgagtaac tttcctgatag| CTGGCCCGG

Fig. 3.5

Errors found by comparing GenBank and human high
throughput sequences for several annotated non-canonical
splice sites.
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Tab. 3.3
Frequencies of canonical and non-canonical splice sites in
human genes.

GT-AG 99.24%
GC-AG 0.69%
AT-AC 0.05%
Other non-canonical 0.02%

method takes into consideration GC-AG splice pairs, it can increase the
recognition quality to 99%. The GC-AG splice group has several interesting
features. The first is its relatively high frequency (0.56% of all EST-sup-
ported splicing pairs belong to this type and 0.69% is the final estimated
frequency of this group). The frequency matrix of this site shows signi-
ficantly higher degree of conservation in relation to the canonical donor
matrix. It provides a possibility to implement this information in gene pre-
diction programs without generating many false-positive predictions. The
Fgenesh HMM-based gene prediction program [21] has been modified to
predict genes with canonical as well as with GC-donor splice sites. This
version of Fgenesh (http://www.softberry.com/gf/gf.-html) can identify non-
standard GC-exons with approximately the same level of false-positive pre-
dictions as the original program.

22199 verified examples of canonical splice pairs are presented in the
SpliceDB database, which is publicly available through the WWW (http://
genomic.sanger.ac.uk/SpliceDB.html) [14]. It also includes 1615 annotated
and 292 EST-supported and shift-verified non-canonical pairs.

33
Methods for the recognition of functional signals

This Section is intended to describe several approaches for the recognition
of functional signals in genes and some features of these signals used
in gene identification. A traditional way to find functional sites is based
on using consensus sequences or weight matrices reflecting conservative
nucleotides of a signal.

3.3.1
Search for nonrandom similarity with consensus sequences

A statistical method for estimating the significance of the similarity between
a consensus of a functional signal and a similar sequence fragment is
briefly described below [22, 23].
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Let us assume that we are searching for a site in a sequence of length N
with a random arrangement of nucleotides A, T(U), G and C, where the
frequencies of these nucleotides are Py, Pr(y), Pc and Pc, respectively. If we
accept that Py = P4, P, = Pg, P3 = Pr, Py = Pc, then the frequencies of
the nucleotides of the other classes P; (j=5,...,15) representing the non-
empty subsets of the set {A, C, G, T} of nucleotides are determined as sums
of frequencies of nucleotides of all the types of the j-th class. P;5 represents
the set of all 4 nucleotides, depicted by the [UPAC code N.

3.3.1.1 Single block site
Let us consider a functional site of length L. Let N; be the number of posi-
tions in the consensus sequence whose bases belong to the I-th class and
let Ny + Ny + -+ N5 = L. Assume that the consensus has M conserved
positions M; (I=1,...,14), where M is the number of conserved nucleo-
tides of the lth class (M; + M +---+ My = M). Then k (k=0,1,...)
mismatches between the site and the segment of length L belonging to
the sequence under consideration are allowed only at the L-M variable
positions. R; (I=1,...,14) are the numbers of mismatches between
the consensus and the DNA segment of the I-th class of nucleotides.
The number of mismatches should meet the following conditions: 0 <
R < min(k, Ny — Ml), 0< Ry< l’l’lll’l(k — Ry, Ni5 — M15)7 .., 0<Ri5<
mm(k — R1 — R2 — s = R13, N14 — M14).

Therefore, the probability P(L, k) of detecting the segment (L, k) of length
L with mismatches in k variable positions, what we will call an (L, k) site, is:

min(k,Ny—M;) min(k—Ry—R3...R14,N14—M;s)
P(LEk= > .. > CO L PP (1 - Py
R=0 Ri5=0
OB PR TR (1 — Pys) R (1)

In this case the expected number T(L, k) of structures (L, k) in a random
sequence of length N is:

T(L,k) = P(L,k) x F;
Here F; is the number of possible site positions in the sequence:
Fp=N-L+1.

The probability of having precisely T structures (L,k) in the sequence
may be estimated using the binomial distribution:

P(T) = Cf, PT(L,k)[1 — P(L,k)] ™" )

The probability of detecting T structures with k or fewer mismatches is:

67
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k

P(T) =Y CiPT(Lz)[1- P(Lz)]" " (3)

Now we can derive the upper boundary of the confidence interval T, (with
the significance level g) for the expected number of structures in a random

sequence:
To—1 To
Z P(t) <q and Z P(t) = q. (4)
t=0 t=0

If the number of (L, k) sites detected in the sequence meets the condition
T > Ty, they can be considered as potential functional signals with the sig-
nificance level g.

3.3.1.2 Composite (two-blocks) site

Let us consider a composite consensus from two blocks of lengths L; and L,
at a distance D (D; < D < D5, i.e., D; and D, are, respectively, the mini-
mum and maximum allowed distances between the blocks). Let Ny and
N, be the number of nucleotides of the I-th class in the first and second
blocks, respectively (I = 1,...,15). Itis clear that N + Nz 4 -- 4+ Njis = L;
(=1, 2)'

Let the first and second blocks have My and M, conserved positions
of the nucleotides of l-th class. Then the probability P(L;, k;) of finding in
a random sequence the segment (L;,k;) of size L; differing in k; non-
conserved positions from the j-th block of the site is calculated using Eq. (2)
with the substitutions L,k, N; and M by L, k;, Ny and My (I=1,...,14;
j=1,2), respectively. The probability of simultaneous and independent
occurrence of (Ly,kq) and (L, k;) in the random sequence is:

P(L17k17;L27k2) :P(L17k1) X P(L27k2)' (5)

The number of possible ways of arranging the segments (L, k1) and (L, k;)
in the random sequence of length N is:

D, + D
F(Ly,Ly,Dy,D;) = (D — Dy +1)|N — L — L, — 12 2

+1l. (6)

Then, the expected number of sequences (Ly, k1, ; L3, k2, D1, Dy) is:
(L1, k1, Lo, ka, D1, D2) = F(Ly, La, D1, D2) X P(Ly, k1,5 Loy ka) (7)
The probability P(T) of detecting T sequences (L, k1, ; Ly, ks, D1, D;) and

the upper boundary of the confidence interval T can be computed analo-
gously to Eq. (2—-4).
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This statistics has been implemented in the program NSITE (http://
www.softberry.com/gf html) [24], that identifies nonrandom similarity be-
tween fragments of a given sequence and consensuses of regulatory motifs
from the TRANSFAC database [25].

3.3.2
Position-specific sensors

Weight matrices are often applied for functional signal description [26, 27,
28]. They are usually more accurate than the consensus technique and often
incorporated as a signal scoring method in gene finding algorithms. A
weight matrix can be considered as a simple model based on a set of
position-specific probability distributions {p/}, that provide probabilities
of observing a particular type of nucleotide s in a particular position i of
the functional signal sequence S. The probability of generating a sequence
X (x1,...,%) under this model is:

P(X/S) = pr, (8)

where nucleotides of the signal are generated independently. A corre-
sponding model can also be constructed for non-site (N) sequences: {r}. A
good discriminative score based on these models is the log-likelihood ratio:

LLR(X) = log P(X/S)/P(X/N) (9)

This score can be computed as an average sum of weights of observed nu-
cleotides in a given sequence fragment using a corresponding weight matrix

w(i,s) = {log(p;/m;)}:
k
LLR(X :%; (i, %). (10)

The more the LLR(X) (log likelihood ratio) exceeds 0, the better chances
this sequence has to represent a real functional signal.

There are some other weight functions that are used to search for func-
tional signals, for example, weights can be received by optimization proce-
dures such as perceptrons or neural networks [29, 30]. Also, different posi-
tion-specific probability distributions {p!} can be considered. One typical
generalization is to use position-specific probability distributions {p!} of
k-base oligonucleotides (instead of mononucleotides), another one is to ex-
ploit Markov chain models, where the probability to generate a particular
nucleotide x; of the signal sequence depends on ko — 1 previous bases (i.e.
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depends on the ky — 1 base oligonucleotide ending at the position i — 1.
Then the probability of generating the signal sequence X is:

P(X/S) = po HP!, o (11)
i=ko
where pi~l'} is the conditional probability of generating nucleotide x; in

position i given oligonucleotide s;_; ending at position i—1, p, is the
probability of generating oligonucleotide x; ... xy,_1. For example, a simple
weight matrix represents the independent mononucleotide model (or 0-
order Markov chain), where ky =1, p, =1 and P;L b ;L = px When we use
dinucleotides (1% order Markov chain) ko = 2, po = p,, , and p}c 1; is the
conditional probability of generating nucleotide x; in position i given nu-
cleotide x;_; at position i — 1. The conditional probability can be estimated
from the ratio of the observed frequency of the ky-base oligonucleotide
(ko > 1) ending at position i divided by the frequency of the ko — 1-base
oligonucleotide ending at position i — 1 in a set of aligned sequences of
some functional signal.

pibl = f(sic, %) /f(sia)

By the same method we can construct a model for non-site sequences for
computing P(X/N), where often the 0-order Markov chain with genomic
base frequencies (or even equal frequencies (0.25)) is used. A log likelihood
ratio (10) with Markov chains was used to select CpG island regions [31] as
well in as a description of functional signals in gene finding programs such
as Genscan [32], Fgenesh [21, 33] and GeneFinder [34].

Useful discriminative measure taking into account some a priori knowl-
edge can be based on computing Bayesian probabilities as components of
position specific distributions {p!}:

P(S/o) = P(o;/S)P(S)/(P(0;/S)P(S) + P(0;/N)P(N)), (12)

where P(0//S) and P(o!/N) can be estimated as position-specific fre-
quencies of oligonucleotides o/ in the set of aligned sites and non-sites; P(s)
and P(N) are the a priori probabilities of site and non-site sequences, re-
spectively. s is the type of oligonucleotide starting (or ending) in the i-th
position [35]. If one assumes independence of oligonucleotides in different
positions the probability of a sequence X belonging to the signal is given by:

P(S/X) :ﬁP (S/0l)

Another empirical discriminator called “Preference” uses the average posi-
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tional probability of belong to a signal:

Pr(S/X) = 1/k2k:1>(5/o;'n). (13)

This measure which is used in constructing discriminant functions for the
Fgenes gene finding program [36] can be more stable than the above one on
short sequences and has a simple interpretation: if Pr(S/X) > 0.5, then our
sequence is more likely belong to signal than to non-signal sequences.

333
Content-specific measures

Some functional signal sequences have distinctive general oligonucleotide
composition. For example, many eukaryotic promoters are found in GC-rich
chromosome fragments. We can characterize these regions applying scor-
ing functions that are similar to the ones discussed above, but using prob-
ability distributions and their estimations by oligonucleotide frequencies,
which are computed on the whole sequence of functional signal and are not
position specific. For example, the Markov chain based probability (11) of
generating the signal sequence X will be:

k
P(X/S) =po [ [ P (14)

i=ko

334
Frame-specific measures for recognition of protein coding regions

An important problem is to compute the probability of generating a protein
coding sequence X. A coding sequence is a sequence of triplets (codons)
read continuously from a fixed starting point. Three different reading
frames with different codons are possible for any nucleotide sequence (or
six if the complementary chain is also considered). It was noted that nu-
cleotides are distributed quite unevenly among different codon positions,
therefore the probability of observing a specific oligonucleotide in coding
sequences depends on its position relative to the reading frame (three pos-
sible variants) as well as on adjacent nucleotides [37, 38, 39, 40]. Asymmetry
in base composition between codon positions arises due to uneven usage of
amino acids and synonymous codons in addition to the particular structure
of the genetic code [41]. Comprehensive assessment of various protein
coding measures was done by Fickett and Tung [42]. They estimate the
quality of more than 20 measures and showed that the most powerful

7
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measures, such as the ‘in phase hexanucleotide compositior, codon or
amino acids usage give about 81% accuracy as coding region recognition
functions on 54 base windows. Some powerful recognisers of coding gene
regions based on neural network approaches have been constructed [43, 44].
Their sensitive coding region sensor, based on codon and dicodon statistics
in six frames and a neural network output function, reaches 99% accuracy
on predicting 180 nt ORFs (open reading frame), but it was analyzed only
for genes expressed in liver and tested on 1000 examples. The prediction
accuracy over 54 bp coding windows was about 85% [44]. Using a neural
network to combine the information from 7 sensors that describe large
amounts and diverse types of information, Uberbacher and Mural created
the “coding recognition module”, which identifies 90% of the coding exons
of length 100 nt or greater and about 50% of those less than 100 nt long
[43]. Solovyev and Lawrence [45] used as the recognition function a modi-
fication of a Bayesian prediction scheme Eq. (12) that demonstrated good
results on prokaryotic coding regions prediction [40]. The accuracy of clas-
sification using oligonucleotides of 8 bp length and function Eq. (13) is 90%
for 54 nt and 95% for sequences 108 nt long [45], which is better than the
accuracy for the combined six most powerful measures by LDA function in
the Fickett and Tung [42] investigation.

In Markov chain approaches the frame-dependent probabilities psﬁl_’xi
(f ={1,2,3}) can be used to model coding regions:

k
PX/S)=po [[ Pl (15)

i=ko

where f is equal 1, 2 or 3 for oligonucleotides ending at codon position 1, 2
or 3, respectively.

3.35
Accuracy measures

For estimation of the performance of an algorithm or a recognition function
we will use several quality measures [42, 46, 47]. True positives (Tp) is the
number of correctly predicted and false positives (Fp) is the number of
falsely predicted authentic sites. True negatives (Ty) is the number of cor-
rectly predicted and false negative (Fy) is the number of falsely predicted
non-sites. Sensitivity (S,) measures the fraction of the true examples that
are correctly predicted: S, = Tp/Tp + Fy. Specificity (S,) measures the
fraction of the predicted examples that are correct: S, = Tp/Tp + Fp. Only
consideration of both S, and S, values makes sense when we aim at pro-
viding accuracy information. If we want to concentrate on a single value for
accuracy estimation the average of the correctly predicted number of sites
and non-sites: AC = 0.5 (TP + TN) is a suitable measure. However, this
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latter measure does not take into account possible difference in sizes of site
and non-sites sets. A better single measure (correlation coefficient) takes
into account the relation between correctly predictive positives and neg-
atives as well as false positives and negatives [48]:

CC = (T, Ty — F,F)/\/(Ty + Fp) (T + Fu) (T, + En)(Ty + F).

3.3.6
Application of linear discriminant analysis

Many eukaryotic functional signals have very short conservative regions and
we should use their additional specific features (other than oligonucleotide
frequencies) to increase the accuracy of signal identification. Different fea-
tures of a functional signal may have different significance for the recogni-
tion and might not be independent. Classical linear discriminant analysis
provides a method to combine such features in a discriminant function. In
general, a discriminant function, when applied to a pattern, yields an output
that is an estimate of the class membership of this pattern. The discrim-
inative technique provides a minimization of the error rate of classification
[49]. Let assume that each given sequence can be described by vector X of p
characteristics (x1,%3, ...,%,), which could be measured. The procedure of
linear discriminant analysis is to find a linear combination of the measures
(called the linear discriminant function or LDF), that provides maximum
discrimination between sites sequences (class 1) and non-site examples
(class 2).
The LDF:

p
Z = E aix;
i=1

classifies (X) into class 1 if Z > ¢ and into class 2 if Z < ¢ with a few mis-
classification as possible. The vector of coefficients (d:,d,...d,) and
threshold constant ¢ are derived from the training set by maximizing the
ratio of the between-class variation z to within-class variation and are equal
to [49]:

a=s"1(m —my)
and

c= ﬁ(ﬁ’tl + 7’71«2)/27

where 7; are the sample mean vectors of characteristics for class 1 and class
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2, respectively; s is the pooled covariance matrix of characteristics:

S 2T

s; is the covariation matrix, and n; is the sample size of class i. Thus, based
on these equations we can calculate the coefficients of the LDF and the
threshold constant ¢ using the values of characteristics of site and non-site
sequences from the training sets and then test the accuracy of the LDF on
the test set data. The significance of a given characteristic or set of charac-
teristics can be estimated by the generalized distance between two classes
(called the Mahalonobis distance or D?):

D? = (#hy — iip)s ™ (i — iy)

which is computed based on values of the characteristics in the training
sequences of classes 1 and 2. To find sequence features a lot of possible
characteristics are generated, such as score of weight matrices, distances,
oligonucleotide preferences within different sub-regions etc. Selection of
the subset of significant characteristics g4 (among the tested p) is performed
by a step-wise discriminant procedure including only characteristics, which
significantly increase the Mahalonobis distance. The procedure to test this
significance uses the fact that the quantity:

_nl—i—nz—p—l nlnz(Dj—Dé)
P—q (m +n)(m +ny—2)+ n1n2D§

F

has an F (p — q,n1 + ny — p — 1) distribution [49] when testing hypothesis
HO: A} = A2, where A} is the population Mahalonobis distance based on m
variables. If the observations come from multivariate normal populations,
the posterior probability that the example belongs to class 1 may be com-
puted as [49]

1

Pr(class1/¥) = ” .
1+ n—z exp{—z+c}
1

The posterior probability Pr(class2/%) = 1 — Pr(class1/X).

3.3.7

Prediction of donor and acceptor splice junctions

Recognition of RNA splice sites by the spliceosome is very precise [50-52]

indicating the presence of specific signals for their function. Splice site
patterns are mainly defined by nucleotides at the ends of introns, because
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deletions of large intron parts often turn out not to effect their selection [7,
53]. A sequence of 8 nucleotides is highly conserved at the boundary be-
tween an exon and an intron (donor or 5’-splice site) and a sequence of 4
nucleotides, preceded by a pyrimidine-rich region, is also highly conserved
between an exon and an intron (acceptor or 3’-splice site). The third less
conserved sequence of about 5-8 nucleotides and containing an adenosine
residue, lies within the intron, usually between 10 and 50 nucleotides up-
stream of the acceptor splice site (branch site). These sequences provide
specific molecular signals by which the RNA splicing machinery can select
the precise splice sites [18]. There are many efforts to analyze the sequences
around these conserved regions [7, 18, 54]. It was shown that their consen-
sus differ slightly between different classes of organisms [18, 55] and cer-
tain important information may be provided by the sequences outside the
short conserved regions. Scoring schemes based on consensus sequences or
weight matrices, which take into account information on open reading
frames, free energy of base-pairing of RNA with snRNA and other pecu-
liarities, yield an accuracy of about 80% for the prediction splice site posi-
tions [56, 57]. More accurate prediction is shown by neural network algo-
rithms [58, 59]. The optimal network architecture (15 nucleotides window
and 40 hidden units for donor sites and 41 nucleotides window and 20
hidden units) has an accuracy about of 94% (111/118) for predicting donor
and 85% (100/118) for predicting acceptor splice sites in a test set of 118
examples [59]. Using joint coding/noncoding and splice site classification
the prediction accuracy of about 95% with a low level of false positive sites
was obtained. This work provides a good benchmark for testing new pre-
dictive algorithms, because the authors analysed large learning (331 exam-
ples) and testing (118 examples) sets. Because practically all donor sites
contain the conserved dinucleotide GT and all acceptor sites contain AG,
Mural et al. [60] used for splice sites selection the preferences of tabulated
triplets in and about authentic splice junctions and also in and about pseu-
do-junctions which contain either a GT or an AG base pair. The authors
obtained a good 91% accuracy for donor and 94% accuracy for acceptor
splice sites prediction for primate genes. However, this data was based on
small learning (about 150) and test (about 50) sets of splice junctions.

The overall view on the difference of triplet composition in splice and
pseudosplice sequences is shown in Figure 3.6 [61]. This figure clearly
demonstrates the various functional parts of splice sites. We see that only
short regions around splice junctions have a great difference in triplet
composition. Their sequences usually are used as the only determinants of
donor or acceptor splice site positions. However, dissimilarity in many other
regions can also be seen: for the donor site coding region, the G-rich intron
region may be distinguished; for acceptor sites — intron G-rich region,
branch point region, poly(T/C)-tract, and coding.

Splice site prediction methods using a linear function that combines
triplet preferences around splice junction and preferences to be coding and
intron of adjacent regions have been developed [45, 61]. 692 sequences with
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2037 donor splice sites and 2054 acceptor splice sites having the GT and AG
conserved dinucleotide in flanking intron positions were extracted from
GenBank [62]. Also, 89417 pseudodonor and 134 150 pseudoacceptor sites
that contain either a GT or an AG base pair (and are not annotated as splice
sites) were extracted from these sequences. The characteristics of sequences
around splice sites and pseudosites were used for developing and testing a
human splice site recognition function to distinguish them. The training set
includes 2/3 of all sequences, and the test set contains the remaining ones.
The data set for computing octanucleotide preferences in coding and intron
regions included 4 074 593 bp of coding regions and 1797572 bp of intron
sequences.

3.3.7.1 Donor splice site recognition

The characteristics used for classifying donor site are: the triplet preferences
(Eq. 13) in the potential coding region (—30 to —5); conserved consensus
region (—4 to +6) and G-rich region (+7 to +50); the number of significant
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Tab. 3.4
Significance of selected characteristics of donor splice sites.

Characteristics 1 2 3 4 5 6 7
a Individual D? 9.3 2.6 2.5 0.01 1.5 0.01 0.4
b Combined D? 9.3 11.8 13.6 14.9 15.5 16.6 16.8

1, 2, 3 are the triplet preferences of consensus, intron G-rich and
coding regions, respectively; 4 is the number of significant triplets in
the consensus region, 5 and 6 are the octanucleotide preferences for
being the coding 54 bp region on the left and for being the intron 54
bp region on the right of donor splice site junction; 7 is the number
of G bases, GG-doublets and GGG-triplets in intron G-rich region.

triplets in the conserved consensus region; octanucleotide preferences (Eq.
15) for being coding in the (—60 to —1) region and being intron in the (+1
to +54) region; the number of G-bases, GG-doublets and GGG-triplets in
the (46 to +50) region. The values of these 6 characteristics of donor site
were calculated for 1375 authentic donor site and for 60532 pseudosite
sequences from the learning set. The Mahalonobis distances showing the
significance of each characteristic are given in Table 3.4a. We can see
that the strongest characteristic for donor sites is the triplet composition
in the consensus region (D? =9.3) and then the adjacent intron region
(D? =2.6) and coding region (D? = 2.5). Other significant characteristics
are: the number of significant triplets in the conserved consensus region;
the number of G-bases, GG-doublets and GGG-triplets; the quality of the
coding and intron regions. The accuracy of the discriminant function based
on these characteristics was tested on the recognition of 662 donor sites and
28 855 pseudosite sequences. The general accuracy of donor site prediction
was 97%. This accuracy is better than in the neural network-based method,
which has CC = 0.61 at 95% accuracy [59], comparing to CC = 0.63.

3.3.7.2 Acceptor splice site recognition

The characteristics used for acceptor splice sites are: the triplet preferences
(Eq. 13) in the branch point region (—48 to —34); poly(T/C)-tract region
(—33 to —7); conserved consensus region (—6 to +5); coding region (+6 to
+30); and octanucleotide preferences (Eq. 15) of being coding in the (+1 to
+54) region and in the (—1 to —54) region; and the number of Tand C in
poly(T/C)-tract region. The values of 7 characteristics of acceptor sites were
calculated for 1386 authentic acceptor site and 89 791 pseudosite sequences
from the learning set. The Mahalonobis distances showing individual sig-
nificance for each characteristic are given in Table 3.5a. We can see that
strongest characteristics for acceptor sites are: the triplet composition in
poly(T/C)-tract region (D? = 5.1); consensus region (D? = 2.7); adjacent
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Tab. 3.5
Significance of various characteristics of acceptor splice sites.

Characteristics 1 2 3 4 5 6 7
a Individual D? 5.1 2.6 2.7 2.3 0.01 1.05 2.4
b Combined D? 5.1 8.1 10.0 11.3 12.5 12.8 13.6

1, 3, 4, 6 are the triplet preferences of poly( T/C)-tract, consensus,
coding and branch point regions, respectively; 7 is the number

of Tand C in intron poly(T/C)-tract region, 2 and 5 are the
octanucleotide preferences for being coding 54 bp region on the left
and 54 bp region for being intron on the right of donor splice site
junction.

coding region (D? = 2.3); and branch point region (D? = 1.0). Some sig-
nificance is found using the number of T and C in the adjacent intron re-
gion (D? = 2.4); and the quality of the coding region (D? = 2.6).

The general accuracy of acceptor site prediction was 96% (C = 0.47).
Table 3.6 illustrates the performance for donor and acceptor sites and com-
pares the results with the work of Mural et al. [60] who used triplet com-
position for splice site prediction, and the work of Brunak et al. [59] who
used a complex neural network for site discrimination.

3.3.8
Recognition of promoter regions in human DNA

Eukaryotic polymerase II promoter sequences are the main regulatory ele-
ments of eukaryotic genes. Their recognition by computer algorithms will
increase the quality of gene structure identification as well as provide the
possibility to study gene regulation. The development of computer algo-
rithms to recognize Pol II promoter sequences in genomic DNA is an
extremely difficult problem in computational molecular biology. The 5’-
flanking region of a promoter is very poorly described in general. It may
contain dozens short motifs (5-10 bases) that serve as recognition sites for

Tab. 3.6
Splice site prediction accuracy.

Method Solovyev et al. [61] Mural et al. [60] Brunak et al. [59]
Donor Sn 0.97 0.91 0.95

Donor CC 0.63 0.41 0.61

Acceptor Sn 0.96 0.93 0.96

Acceptor CC 0.47 0.36 0.40

Traning sites 2037 135 449

Test sites 662 50 118
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proteins providing initiation of transcription as well as specific regulation of
gene expression. These motifs differ among various groups of genes and
even such a well known promoter element as the TATA-box is often absent
in 5’-regions of many house-keeping genes. Each promoter has a unique
selection and arrangement of these elements providing a unique program
of gene expression. A comprehensive description of promoter recognition
problems is considered in Chapter 4 of this book. Here we will consider
some general features of Polll promoters that can be taken into account in
gene prediction programs.

A review of the prediction accuracy of many general purpose promoter
prediction program was presented by Fickett and Hatzigeorgiou [63]. This
paper surveys oligonucleotide content based [64, 65], neural network [66,
67] and linear discriminant approaches [68] among others. Although the
test set is relatively small (18 sequences) and has several problems that were
noticed by [69], the results demonstrated that the programs can recognize
no more than 50% of the promoters with a false positive rate of about
1 in 700-1000 bp. With the average size of a human gene being more
than 5000 bases and many genes occuping hundreds of kilobases, we expect
significantly more false positive predictions than real promoters. However,
these programs can be used to find the promoter position (the start of
transcription and the TATA-box) in a given 5’-region or to help select the
correct 5'-exon in gene prediction approaches.

We will describe an improved version of the promoter recognition pro-
gram TSSW (Transcription Start Site, W stands for using functional motifs
from the Wingender [25] database) [68] to demonstrate sequence features
that can be used to identify eukaryotic promoter regions. In this version
it was suggested that TATA+ and TATA— promoters have very different
sequence features and these groups were analyzed separately. Potential—
TATA+ promoter sequences were selected by the value of score computed
using the Bucher TATA box weight matrix [70] with the threshold closed
to the minimal score value for the TATA+ promoters in the learning set.
This choice of the threshold divides the learning set of known promoters
into two approximately equal-size parts. Significant characteristics of both
groups found by discriminant analysis are presented in Table 3.7. Values of
Mahalanobis distances (D?) of individual characteristics reflect the power
of the feature to separate the signal from non-signal sequences. This analy-
sis demonstrated that TATA— promoters have much weaker general fea-
tures than TATA+ promoters. Probably the TATA— promoter possesses
more gene specific structure and will be extremely difficult to predict by any
general-purpose methods.

The recognition quality of the program was tested on 200 promoters,
which were not included in the learning set. We provide the accuracy values
for different levels of correctly predicted promoters in Table 3.8. The data
demonstrate a poor quality of TATA— promoter recognition on long se-
quences and show that their recognition function can provide relatively
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Tab. 3.7
Selected characteristics of promoter sequences used by TSSW programs for TATA+ and
TATA— promoters.

Characteristiscs D? for TATA + D? for TATA—
promoters promoters

» Hexaplets —200 to —45 2.6 1.4 (—100 to —1)

» TATA box score 3.4 0.9

* Triplets around TSS 4.1 0.7

» Hexaplets +1 to +40 0.9

» Spl-motif content 0.9

» TATA fixed location 0.7

* CpG content 1.4 0.7

* Similarity —200 to —100 0.3 0.7

+ Motif Density(MD) —200 to +1 45 32

« Direct/Inverted MD —100 to +1 4.0 3.3(—100 to —1)

Total Maxalonobis distance 11.2 4.3

Number promoters/non-promoters 203/4000 193/74 000

unambiguous predictions within regions less that 500 bp long. In contrast,
90% of the TATA+ promoters can be identified in the range about 2000 bp,
which makes valid their incorporation into gene finding programs.
Recently several improvements of promoter prediction approaches have
been published. Ohler et al. [69] used interpolated Markov chains in their
approach and slightly improved the previous results. They identify 50% of
the promoters in the Fickett and Hatzigeorgiou [63] promoter set, while
having one false positive prediction every 849 bp. The old version of TSSW
had an accuracy of 42% with a false positive rate of 1/789 bp. Another new
program (Promoter 2.0) was designed by Knudsen [71] applying a combi-
nation of neural networks and genetic algorithms. Promoter 2.0 was tested
on promoters in the complete Adenovirus genome, which is 35937 bases
long. The program predicted all 5 known promoter sites on the plus strand
and 30 false positive promoters. The average distance of real and closest
predicted promoter is about 115 bp. The TSSW program with the threshold

Tab. 3.8
Accuracy of promoter identification by TSSW program.

Type of promoter ~ Number of test sites  Correctly predicted 1 false positive per bp

TATA + 101 98% 1000
90% 2200
75% 3400
52% 6100
TATA — 96 52% 500

40% 1000
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to predict all 5 promoters produces 35 false positives, but an average dis-
tance between the predicted TSS (transcription start site) and the real pro-
moter is just 4 bp (2 predicted exactly, 1 with 1 bp shift, 1 with 5 bp shift
and the weakest promoter was predicted with 15 bp shift).

339
Prediction of poly-A sites

The 3’-untranslated region (3’UTR) has several cytoplasmic functions
affecting the localization, stability and translation of mRNAs [71]. Almost
all eukaryotic mRNAs undergo 3’-end processing, which involves the endo-
nucleotic cleavage followed by the polyadenylation of the upstream cleavage
product [72, 73]. Recognition of essential sequences involves the formation
of several large RNA-protein complexes [74]. RNA sequences directing
binding of specific proteins are frequently poorly conserved and often rec-
ognized in a cooperative fashion [72]. Numerous experiments have revealed
three types of RNA sequences defining a 3’-processing site [72, 75| (Figure
3.7). The most conserved is the hexamer signal AAUAAA (poly-A signal),
situated 10-30 nucleotides upstream of the 3’-cleavage site. About 90% of
the sequenced mRNAs have a perfect copy of this signal. Two other types,
the upstream and the downstream elements are degenerate and have not
been properly characterized. Downstream elements are frequently located
within approximately 50 nucleotides 3’ of the cleavage site [76]. These ele-
ments are often GU or U rich, although may have various base composi-
tions and locations. On the basis of sequence comparisons McLachlan et al.
[77] have suggested a consensus of the downstream element: YGUGUUYY.

Upsiream hexamer composition .
P : 2 o Downstream hexamer I:L)IIL[HIHIHU!J

=10 = L |

100

Hy - >

Upstream triplet composition Downsiream triplel composition

o . + ‘- 5
X3 1 b 55

Distance between poly-A and GT-glements

- -
-+ L

Score of
Score of poly-A clement downstream element

‘+——s 4

L

N reh N canrasaro. NN 6177-rien NN
F Y
e | 1. 1
e Stop codon Fohes st Cleavage site GTorich element
T-rich element
Fig. 3.7

Sequence characteristics selected to describe poly-A signal
sequences.
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The efficiency of polyadenylation in a number of genes can be also in-
creased by sequences upstream of AAUAAA, which are generally U-rich
[72]. All these RNA sequences serve as nucleation sites for the multi-
component protein complex catalyzing the polyadenylation reaction. Yada et
al. [78] have conducted a statistical analysis of human DNA sequences in
the vicinity of the poly-A signal in order to distinguish them from AATAAA
sequences occurring in human DNA (pseudo polyA-signals) that are not
involved in polyadenylation. They found that a base C frequently appears on
the upstream side of the AATAAA signal and a base T or C often appears
on the downstream side, implying that CAATAAA(T/C) can be regarded as
a consensus of the poly-A signal. Kondrakhin et al. [79] constructed a gen-
eralized consensus matrix using 63 sequences of cleavage/polyadenylation
sites in vertebrate pre-mRNA. The elements of the matrix were absolute
frequencies of triplets at each site position. Using this matrix they have
provided a multiplicative measure for recognition of polyadenylation re-
gions. However this method has a very high false positive rate.

Salamov and Solovyev developed a LDF recognition function for the poly-
A signal. The datasets for 3’-processing sites and “pseudo” poly-A signals
were extracted from GenBank (Version 82). 3’-processing sites were taken
from the human DNA entries, containing a description of the poly-A signal
in the feature table. Pseudo sites were taken out of human genes as the se-
quences comprising (—100, +200) around the patterns revealed by the poly-
A weight matrix (see below), but not assigned to poly-A sites in the feature
table. Sequences submitted to GenBank before 1994 were included to the
training set and those after 1994 to the test set. As a result there were 248
positive and 5702 pseudosites in the training set and respectively 131 and
1466 in the test set.

3.3.9.1 A model for recognition of 3’-processing sites

As the hexamer AATAAA is the most conservative element of 3'-processing
sites it was considered as the main block in our complex recognition func-
tion. Although the hexamer is highly conserved, variants of this signal are
observed. For example, in the training set 43 of 248 poly-A sites have hex-
amer variants of AATAAA with one mismatch. To consider such variants the
position weight matrix for recognizing this signal has been used. The other
characteristics such as content statistics of hexanucleotides, positional trip-
lets in the upstream and downstream regions were defined relative to the
position of the conservative hexamer sequence (Figure 3.7).

The Mahalonobis distances for each characteristic calculated on the
training set are given in Table 3.9. The most significant characteristic is the
score of the AATAAA pattern (estimated by the position weight matrix), which
indicates the importance of occurrences of an almost perfect poly-A signal
(AATAAA). The second most valuable characteristic is the hexanucleotide
preferences of the downstream (46 to +100) region. Although the discrim-



3.3 Methods for the recognition of functional signals | 83

Tab. 3.9
Significance of selected characteristics of poly-A signal.

Characteristics 1 4 2 5 3 6 8 7

Individual D? 7.61 3.46 0.01 2.27 0.44 1.61 0.16 0.17
Combined D? 7.61 1078 11.67 1236  12.68 1297 13.09 13.1

1 is the score of position weight matrix of poly-A signal, 2 is the score
of the position weight matrix of the downstream GT/T-rich element,

3 is the distance between the poly-A signal and the predicted down-
stream GT/T-rich element, 4 is the hexanucleotide composition of the
downstream (46, +100) region, 5 is the hexanucleotide composition
of the upstream (—100, —1) region, 6 is the positional triplet
composition of the downstream (+6, +55) region, 7 is the positional
triplet composition of the upstream (—50, —1) region, 8 is the
positional triplet composition of the GT/T-rich downstream element.

inating ability of the GT-rich downstream element itself (characteristic 2) is
very weak, combining it with the other characteristics significantly increases
the total Mahalonobis distance.

According to the observation of Yada et al. [78], we take into account the
hexamer AATAAA and its flanking nucleotides. Only sequences with a score
that exceeds some threshold were considered as candidates of poly-A sites.
Around the consensus we calculated the other characteristics (Figure 3.8)
and the value of the linear discriminant function. The threshold was chosen
as the minimal score observed for authentic poly-A signals in the training
set. The poly-A signal weight matrix provides a higher score for typical poly-
A signals (like CAATAAAT) and a smaller score for minor variants with
other sequences. Such variants are often observed much more frequently
among pseudosites and therefore the weight matrix is a good discriminant
itself.

In general, characteristics from the downstream region of the AATAAA
sequence are more informative than those from the upstream region. Such
selected characteristics as positional triplet composition of the upstream
and downstream regions as well as the distance between AATAAA pattern
and GT-rich element might indicate the importance of definite location of
sequence elements in the 3’-processing region. Altogether, these elements
can create the bedding for cooperative interactions between proteins of
multicomponent complex catalyzing the polyadenylation reaction. It is
worth mentioning that we tested and selected only the most general char-
acteristics of poly-A site regions.

The algorithm for 3’-processing site identification is realized in the
POLYAH program (http://genomic.sanger.ac.uk). First, it searches for the
AATAAA pattern using the position weight matrix and, after the pattern is
found, it computes the value of the linear discriminant function defined by
the characteristics around this signal. The poly-A site is predicted if the
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value of this function is greater than some empirically selected threshold.
An accuracy of the method has been estimated on a set of 131 positive and
1466 negative sites, which were not used in training. When 86% of polyA-
regions are predicted correctly, the fraction of correctly predicted sites
among all predicted (specificity) is 51% and the correlation coefficient is
0.62.

Kondrakhin et al. [79] reported the error rates of their method at different
thresholds for poly-A signal selection. If the threshold is set to predict 8 of 9
real sites their function also predicts 968 additional false sites. We have
tested the POLYAH program with the same sequence of Ad2 genome and
for 8 correctly predicted sites it gives only 4 false sites. A certain improve-
ment of Poly-A recognition was reached in using a pair of quadratic dis-
criminant function in Polyadq program [80]. This program outperform the
POLYAH detection method and is the first that can detect significant num-
bers of ATTAAA-type signals.

34
Gene identification approaches

Most gene prediction systems combine information about functional signals
and the regularities of coding and intron regions. Initially several algorithms
predicting internal exons were constructed. The program SORFIND [81] was
designed to predict internal exons based on codon usage and Berg & von
Hippel [82] discrimination energy for intron—exon boundaries recognition.
The accuracy of exact internal exons prediction (at both 5'- and 3’-splice
junctions and in the correct reading frame) by the SORFIND program
reaches 59% with a specificity of 20%. A dynamic programming approach
(alternative to the rule-based approach) was applied by Snyder and Stormo
(1993) to internal exon prediction in the GeneParser algorithm. It recog-
nized 76% of the internal exons, but the structure of only 46% exons was
exactly predicted when tested on entire GenBank entry sequences. HEXON
(Human EXON) program [61] based on linear discriminant analysis was the
most accurate in exact exon prediction that time.

Later a number of single gene prediction programs has been developed
to assemble potential eukaryotic coding regions into translatable mRNA
sequences selecting optimal combinations of compatible exons [47, 66,
83, 84]. Dynamic programming was suggested as a fast method to find
an optimal combination of preselected exons [45, 85, 86], that is different
from the approach suggested by Snyder and Stormo [46] in GeneParser
algorithm to search for exon-intron boundary positions. The Genie algo-
rithm uses a Generalized Hidden Markov Model. Genie is similar in design
to GeneParser, but is based on a rigorous probabilistic framework [87]. The
FGENEH (Find GENE in Human) algorithm includes 5’-, internal and 3'-
exon identification linear discriminant functions and dynamic program-
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ming approach [61, 88]. A comprehensive test of FGENEH and the other
gene finding algorithms has been carried out by Burset and Guigo [89]. The
FGENEH program was one of the best in the tested group having the exact
exon prediction accuracy 10% higher than for the others and the best level
of accuracy on the protein level. The same best performance of FGENEH
was shown by the developers of Genie [87].

3.5
Discriminative and probabilistic approaches for multiple gene prediction

International genome sequencing projects generate hundreds of megabases
each year and require gene-finding approaches able to identify many genes
encoded in the produced sequences. The value of sequence information for
the biomedical community will strongly depend on availability of candidate
genes computationally predicted in these sequences. Moreover, the initiative
that created a ‘rough draft’ of the human genome can allow other scientists
to proceed more rapidly with discovering disease genes [90]. The best mul-
tiple gene prediction programs include Genscan [32] and Fgenesh [21]
(HMM based, probabilistic approach) and Fgenes (discriminative approach)
[36]. Initially we will describe a general scheme of HMM based gene pre-
diction (first realized by the Haussler group [87, 91]) as the most general
description of a gene model. The pattern-based approach can be considered
as a particular case where transition probabilities are not taken into account.

3.5.1
Multiple gene prediction using the HMM approach

A gene sequence can be considered as a succession of segments x; repre-
senting exons, introns, 5’ and 3’-untranslated regions and the like.and
These segments can be considered as different sequence states. There are
35 states describing the eukaryotic gene model considering direct and re-
verse chains as possible gene locations (Figure 3.8). In the current gene
prediction approaches non-coding 5’- and 3’-exons (and introns) are not
considered, because the absence of protein coding characteristics accounts
for lower accuracy of their prediction. Also they do not code any protein
sequences. The remaining 27 states include 6 exon states (first, last single
and 3 types of internal exons in 3 possible reading frame) and 7 noncoding
states (3 intron, noncoding 5’- and 3’-promoter and poly-A) in each chain
plus noncoding intergenic region. The latter 27 states are connected with
solid arrows in Figure 3.8, the eight unused states are connected with
broken arrows.

The predicted gene structure can be considered as an ordered set of
states/sequence pairs, ¢ = {(q1,%1), (q2,%2),-- -, (qe, %)}, called the parse,
such that probability P(X, ¢) of generating X according to ¢ is maximal over
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Eo E1 E2

Fig. 3.8 respectively (i =0, 1,2 reflect 3 possible
Different sequence states and transitions  different ORF). E marks non-coding exons
in eukaryotic gene model. E; and |; are and 15/13 are 5'- and 3'-introns adjacent to
different exon and intron states, non-coding exons.

all possible parses (or some score is optimal in some meaningful sense, i.e.,
best explains the observations [93]):

k—1
P(X,p) = P(q1) (H P(x; | (i), qi) P(K(xi) | %)(P(qi+1,%))

X P(x; | H(oex), qic) P(H(xk) | qx)

where P(q;) is denote the initial state probabilities; P(x; | I(x1), ;) P(I(x:) | q:)
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and P(gi+1,q;) are the independent joint probabilities of generating the
subsequence x; of length I in state g; and transiting to state i+ 1, respec-
tively.

Successive states of this HMM model are generating output according to
the Markov process with inclusion of explicit state duration density. A sim-
ple technique based on the dynamic programming method for finding the
optimal parse (or the single best state sequence) is called the Viterbi algo-
rithm [92]. The algorithm requires on the order of N2D?L calculations,
where N is the number of states, D is the longest duration and L is the
sequence length [93]. A helpful technique was introduced by Burge [28] to
reduce the number of states and simplify computations by modeling non-
coding state length with a geometric distribution. We consider shortly the
algorithm of gene finding using this technique, which was initially im-
plemented in the Genscan program [32] and used later in the Fgenesh
program [21]. Since any valid parse will consist of only alternating series of
Non-coding and Coding states: NCNCNC, ..., NCN, we need only 11 vari-
ables, corresponding to the different types of N states. At each step corre-
sponding to some sequence position we select the maximum joint proba-
bility to continue in the current state or to move to another non-coding state
defined by a coding state (from a precomputed list of possible coding
states), which is ending in analyzed sequence position.

Let us define the best score (highest joint probability) y;(j) of the optimal
parse of the subsequence s, j, which ends in state g; at position j. Let we
have a set A; of coding states {—c,—} of lengths {d;}, starting at positions
{mi} and ending at position j, which have the previous states {b;}. The
length distribution of state ¢ is denoted by f,,(d). The searching procedure
can be stated as follows:

Initialization:
7,(1) = mPi(S1)pi, 1=1,...11.

Recursion:
-+ 1) = max{ 5 pPAS ),

gkneag{yi(mk -1 - phk)thk,ckfck(dk)P(smk,j)tck,ipiPi(Sj+1)}}

i=1,...11, j=1,...,.L—1.

Termination:

(L4 1) = a0, e 1)1 = e ) P(Soi e

i=1,...11.

g
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For each step we record the location and type of transition maximizing the
functional to restore the optimal set of states (gene structure) by a back-
tracking procedure. Most parameters of these equations can be calculated
on the learning set of known gene structures. Instead of scores of coding
states P(Sy,j) it is better to use log-likelihood ratios which do not produce
scores below the limits of computer precision.

Genscan [32] was the first algorithm to predict multiple eukaryotic genes.
Several similar HMM-based gene prediction programs were developed later,
among them Veil [94], HMMgene [95], Fgenesh [21, 33], a variant of Genie
[87] and GeneMark [96]. Fgenesh (Find GENES Hmm) is currently the
most accurate program. It is different from Genscan in that in the model of
gene structure signal terms (such as splice site or start site score) have some
advantage over content terms (such as coding potentials). In log-likelihood
terms this means that the splice sites and other exon functional signals have
an additional score, depending on the environment of the sites. Also in
computing the coding scores of potential exons, a priori probabilities of
exons were taken into account according to Bayes’ theorem. As a result, the
coding scores of potential exons are generally lower than in Genscan. The
donor recognition function is based on a second order position specific
HMM (13) instead of 8 matrix, weight describing different groups of splice
sites used in Genescan. Fgenesh works with separately trained parameters
for each distinct model organism such as human, drosophila, nematode,
yeast, arabidopsis monocot plants etc. Coding potentials were calculated
separately for 4 isochores” (human) and for 2 isochores (other species). The
run time of Fgenesh is practically linear and the current version has no
practical limit on the length of analyzed sequence. The prediction about 800
genes in 34 MB of Chromosome 22 sequence takes about 1.5 minutes on a
Dec-alpha processor EVG6 for the latest Fgenesh version.

3.5.2
Pattern based multiple gene prediction approach

FGENES (Find GENES) is the multiple gene prediction program based on
dynamic programming. It uses discriminant classifiers to generate a set of
exon candidates. Similar discriminant functions were developed initially in
Fexh (Find Exon), Fgeneh (Find GENE) (h stands for version to analyze
human genes) and described in detail [35, 68, 88].

The following major steps describe analysis of genomic sequences by the
Fgenes algorithm:

2) An isochore is a very long stretch
(>300 kb) of DNA that is homogeneous
in base composition and compositionally
correlated with the coding sequence that
it embeds
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1) Create a list of potential exons, selecting all ORFs: ATG ... GT, AG ...
GT, AG ... Stop with exons scores higher than the specific thresholds
depending on GC content (4 groups);

2) Find the set of compatible exons with maximal total score. Guigo [41]
described an effective algorithm of finding such a set. Fgenes uses a
simpler variant of the algorithm: Order all exon candidates according to
their 3’-end positions. Going from the first to the last exon select for each
exon the maximally scoring path (compatible exons combination) termi-
nated by this exon using the dynamic programming approach. Include
to optimal gene structure either this exon or exon with the same 3'-
splicing pattern ending at the same position or earlier (which has higher
the maximal score path).

3) Take into account promoter or poly-A scores (if predicted) in terminal
€xons scores.

The run time of the algorithm grows approximately linearly with the se-
quence length. Fgenes is based on the linear discriminant functions devel-
oped for identifying splice sites, exons, promoter and poly-A sites [61, 68].
We consider these functions in the following sections to see which sequence
features are important in exon prediction.

3.5.2.1 Internal exon recognition

For internal intron prediction we consider all open reading frames in a
given sequence that flanked the AG (on the left) and GT (on the right) base
pairs as potential internal exons. The structure of such exons is presented in
Figure 3.9. The components of the recognition function for internal exon

RBS

5'-region # - ORF - intron
ATG

5"-coding exon
intron A ORF D intron

Internal exon

intron A ORF Stop 3 -region

3’-coding exon

5"-region ORF 3 -region

ATG Stop

Single exon

Fig. 3.9

Different functional regions of the first (a), internal (b),
last (c) and single exons corresponding to components of
recognition functions.
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Tab. 3.10

Significance of selected internal exon characteristics. Characteristics 1 and 2 are the
values of donor and acceptor site recognition functions; 3 is the octanucleotide
preferences for being coding of potential exon region; 4 are the octanucleotide
preferences for being intron 70 bp region on the left and 70 bp region on the right of
potential exon region.

Characteristics 1 2 3 4 5
a Individual D? 15.0 12.1 0.4 0.2 1.5
b Combined D? 15.0 25.3 25.8 25.8 25.9

prediction consist of the octanucleotide preferences for an intron 70 bp to
the left of the potential intron region; the value of the acceptor splice site
recognition function, the octanucleotide preferences for the coding ORF,
the value of the donor splice site recognition function and the octanucleo-
tide preferences for intron 70 bp to the right of potential intron region. The
values of 5 characteristics were calculated for 952 authentic exons and for
690714 pseudo-exon training sequences from the set. The Mahalonobis
distances showing significance of each characteristic are given in Table
3.10. We can see that the strongest characteristics for exons are the values
of recognition functions of flanking donor and acceptor splice sites (D? =
15.04 and D? = 12.06, respectively). The preference of ORF being a coding
region has D? = 1.47 and adjacent left intron region has D? = 0.41 and
right intron region has D? = 0.18.

The accuracy of the discriminant function based on these characteristics
was calculated on the recognition of 451 exon and 246693 pseudo-exon
sequences from the test set. The general accuracy of exact internal exon
prediction is 77% with a specificity of 79%. At the level of individual nu-
cleotides, the sensitivity of exon prediction is 89% with a specificity of 89%;
and the sensitivity of the intron prediction positions is 98% with a specific-
ity of 98%. This accuracy is better than in the dynamic programming and
neural network-based method [46], which has 75% accuracy of the exact
internal exons prediction with a specificity of 67%. The method has 12%
fewer false exon assignments with the better level of correct exon prediction.

3.5.2.2 Recognition of flanking exons

Figure 3.10 shows the three-dimensional histograms reflecting oligonu-
cleotide composition of gene flanking regions created based on the graph-
ical fractal representation of nucleotide sequences [97, 98, 99]. The clear
differences in composition were exploited in the development of recognisers
of these regions.
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Fig. 3.10
Fractal graphical 5 ‘—regions
representation of the

number of different
hexanucleotides in the

5’- (top) and 3’- (bottom)

gene regions. Each colon
represents the number of a
particular hexanucleotide

in the set of sequences. T

3.5.2.2.1 5'-terminal exon coding region recognition

For 5’-exon prediction, all open reading frames in a given sequence starting
with an ATG codon and ending with a GT dinucleotide were considered as
potential first exons. The structure of such exons is presented in Figure 3.9.
The components of the 5’-exon recognition function included hexanucleo-
tide preferences in the (—150, —101), (=100, —51) and (—50, 1) regions to
the left of the potential coding region; the average value of the positional
triplet preferences in the (—15, +10) region around the ATG codon; octa-
nucleotide preferences of the coding ORF, the value of the donor splice site
recognition function and the octanucleotide preferences to be intron 70 bp
to the right of the potential coding region. The Mahalonobis distances
showing the significance of each characteristic are given in Table 3.11. The
accuracy of the discriminant function based on these characteristics was
computed on the recognition of 312 the first exon and 246 693 pseudo-exon
sequences. The gene sequences was scanned the 5’-exon with maximal
weight were selected for each of them. The accuracy of the exact first coding
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Tab. 3.11

Significance of selected 5’-exon characteristics. Characteristic 1 is the value of the donor
site recognition function; 2 is the average value of positional triplet preferences in the
(=15, 10) region around the ATG codon; 4 is the octanucleotide preferences for being
intron in the 70 bp region to the right of the potential exon; 3, 5 and 7 are the hexanucleotide
preferences in the (—150, —101), (=100, —51) and (—50, —1) regions to the left of the
potential exon, respectively; 6 is the octanucleotide preferences for being coding in the
exon region.

Characteristics 1 2 3 4 5 6 7
a Individual D? 5.1 2.6 2.7 2.3 0.01 1.05 2.4
b Combined D? 5.1 8.1 10.0 11.3 12.5 12.8 13.6

exon prediction is 59%. It must be noted that the competition with the in-
ternal exons was not considered in this test.

3.5.2.2.2 3’-exon coding region recognition
All ORF regions that were flanked by GT (on the left) and finished with a
stop codon were considered as potential last exons. The structure of such
exons is presented in Figure 3.9. The characteristics of their discrimimant
function and their Mahalonobis distances are presented in Table 3.12. The
accuracy of the discriminant function was tested on the recognition of the
last 322 exon and 247 644 pseudo-exon sequences. The gene sequences were
scanned and the 3’-exon with the maximal weight was selected for each of
them. The function can identify exactly 60% of the annotated last exons.
The recognition function of single exons combines the corresponding
characteristics of 5'- and 3’-exons.

3.5.2.2.3 Combined prediction of the first, internal and last exons

in human genes

The program FEX (FindEXon) predicts coding regions in a given sequence.
The program initially predicts the internal exons based on the internal exon

Tab. 3.12

Significance of selected 3’-exon characteristics. Characteristic 1 is the value of the
acceptor site recognition function; 2 is the octanucleotide preferences for being coding
of ORF region; 3, 5 and 7 are the hexanucleotide preferences (4100, 150), (+50, +100)
and (+1, +50) regions to the left of the coding region, respectively; 4 is the average
value of the positional triplet preferences in the (—10, +30) region around the stop
codon; 6 is the octanucleotide preferences for being intron in the 70 bp region to the
left of the exon sequence.

Characteristics 1 2 3 4 5 6 7

a Individual D2 10.0 3.2 0.8 2.2 1.2 0.2 1.6
b Combined D? 10.0 11.4 120 138 143 14.5 14.6
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discriminant function. Then we search for the 5’-coding region starting
from the beginning of the sequence until the end of the first predicted in-
ternal exon. In this region the 5’-coding exon with the maximal weight of
the discriminant function for the first exon is selected. After that we search
for the 3’-coding region starting from the beginning of the last predicted
internal exon until the end of the sequence. In this region the 3’-coding
exon with the maximal weight of the last exon discriminant function is
selected. This program can be useful in producing a list of potential exons,
which are not effected by their assembling, because exon assembling in
some cases might significantly corrupt actual gene structure due to under-
prediction of some small exons. However, exon assembling reduces sig-
nificantly the number of false positive exons and this strategy is used in the
most accurate gene prediction approaches.

3.5.3
Accuracy of gene identification programs

Most gene recognition programs were tested on a specially selected set of
570 one-gene sequences [89] of mammalian genes (Table 3.13). We can see
that, on the average, the best programs predict accurately 93% of the exon
nucleotides (Sn = 0.93) with just 7% false positive predictions. Because the
most difficult task is to predict small exons and to exactly identify the 5'-

Tab. 3.13

Accuracy of gene prediction programs for single gene sequences from the [89] data set.
Sn (sensitivity) is the number of exactly predicted exons/number of true exons (or
nucleotides); Sp (specificity) is the number of exactly predicted exons/number of all
predicted exons. Accuracy data for the programs developed before 1996 were estimated
by Burset and Guigo [89]. The other data were received by the authors of the respective
programs.

Algorithm Sn (exons)  Sp (exons)  Sn nucleotides  Sp nucleotides  Reference
Fgenesh 0.84 0.86 0.94 0.95 [33]
Fgenes 0.83 0.82 0.93 0.93 [36]
GenScan 0.78 0.81 0.93 0.93 [32]
Fgeneh 0.61 0.64 0.77 0.88 [88]
Morgan 0.58 0.51 0.83 0.79 [108]
Veil 0.53 0.49 0.83 0.79 [94]
Genie 0.55 0.48 0.76 0.77 (87]
Genlang 0.51 0.52 0.72 0.79 [47]
Sorfind 0.42 0.47 0.71 0.85 [81]
GenelD 0.44 0.46 0.63 0.81 [66]
Grail2 036 0.43 0.72 0.87 [86]
GeneParser2  0.35 0.40 0.66 0.79 [46]
Xpound 0.15 0.18 0.61 0.87 [109]
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and 3’-ends of an exon, the accuracy at the exon level is usually lower than
at the nucleotide level.

The Table demonstrates that the modern multiple gene prediction pro-
grams as Fgenesh, Fgenes and Genescan significantly outperform the older
approaches (some of them may have been improved since the initial publi-
cation). These data show definite progress in accuracy of gene recognition.
The exon identification rate is actually even higher than the presented data
since overlapping exons were not counted in exact exon predictions. How-
ever there is a lot of room for future improvements. Thus, the accuracy at
the level of exact gene prediction is only 59% for Fgenesh, 56% for Fgenes
and 45% for Genescan programs even on this relatively simple test.

The real challenge for ab initio gene identification is presented by long
genomic sequences containing many genes in both DNA strands. There is
not much information about real genes in such sequences. One example,
which was experimentally studied in the Sanger Centre (UK), is the human
BRACA2 region (1.4 MB) that contains 8 genes and 169 experimentally
verified exons. This region is one of the most difficult cases in genome an-
notation, because it has genes with many exons and almost no genes en-
code amino acid sequences having similarity with known proteins. More-
over the region contains 4 pseudogenes and at least 2 genes have alternative
splicing variants. The results of gene prediction initially provided by Hub-
bard and Bruskiewich (The Sanger Centre Genome Annotation Group) are
shown in Table 3.14.

Fgenesh predicts 20% fewer false positive exons in this region than Gen-

Tab. 3.14

Accuracy of gene prediction programs for the BRACA2 1.4 MB human genomic
sequence. When repeats have been defined by the RepeatMasker [100] program in the
analyzed sequence these regions were masked for the prediction and excluded from the
potential exon locations during prediction. The region consisted of 20 sequences with 8
verified genes, 4 pseudogenes and 169 exons. Later one sequence was constructed and
3 additional exons were identified. The results of the predictions on this sequence is
marked in bold. CC is the correlation coefficient reflecting the accuracy of prediction

at the nucleotide level. Snb, Spb — sensitivity and specificity at the base level (in %),

Pe — number of predicted exons, Ce — number of correctly predicted exons, Sne,

Spe — sensitivity and specificity at the exon level, Snep — exon sensitivity, including
partially correct predicted exons (in %). Ov results by including as correctly predicted
not only predicted exons which exactly coincide with the real exons, but count also
predicted exons that overlapped with the real exons.

CC Snb Spb Pe Ce/Ov  Sne Sn_ov Spe/Spe_ov
Genscan 068 90 53 271/271 109/131 65 80/76 40/49
Fgenesh 0.80 89 73 188/195 115/131 69 80/76 61/67
Fgenes 069 79 62 298/281 110/136 66  86/78 37/48
Genscan masked 0.76 90 66 217 109 65 80 50

Fgenesh masked 0.84 89 82  172/168 114/131 68  79/73 66/76
Fgenes masked 073 80 68  257/228 107/133 64  85/75 42/58
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Tab. 3.15

Performance of multiple gene-finding for 38 genomic sequences. Me is missing exons
and W is wrong exons. M_r lines provide predictions on sequences with masked
repeats. Sn_o is exon prediction accuracy including overlapping exons.

Program  Sequences/ Accuracy per Accuracy per Me We  Genes/
Genes nucleotide exon Entries

Sn Sp CC Sn/Sn_o Sp

Fgenesh 38/77M_r 094 0.87 0.90 0.85/0.93 0.80 0.08 0.14 0.36/0.11
0.94 078 0.85 0.84/0.92 0.75 0.08 0.21 0.34/0.08

Genscan 38/77M_r 093 0.82 0.87 0.80/0.90 0.74 0.10 0.18 0.29/0.03
0.92 070 0.79 0.79/0.90 0.66 0.11 0.30 0.29/0.03

Fgenes 38/77M_r 091 0.80 0.84 0.84/0.92 0.72 0.08 0.21 0.36/0.18
092 0.76 0.83 0.84/0.93 0.68 0.07 0.30 0.39/0.21

scan with practically the same number of correctly predicted exons. Also, we
can observe that even for such a difficult region, about 80% of the exons
were identified by ab initio approaches. It is interesting to note that, when
we take the subset of exons predicted by both programs (Fgenes+Fgenesh),
then the predicted exons are correct in 93% cases. It is very important to
know such reliable exons to start verification of a gene structure by experi-
mental techniques.

For another test we selected a set of 19 long genomic sequences with be-
tween 26 000 and —240 000 bp and 19 multigene sequences with between 2
and 6 genes from GenBank. Table 3.15 demonstrates the results of gene
prediction on these data. This results show that the accuracy is still pretty
good on the nucleotide and exon level, but exact gene prediction is lower
than for the test with short single gene sequences. Sensitivity for exact in-
ternal exon prediction is 85-90%, but 5’-, 3’- and single exons have a pre-
diction sensitivity of ~50-75%, which can partially explain the relatively
low level of exact gene prediction. As a result we observe splitting up of
some actual genes and/or joining some other multiple genes into a single one.
A significant limitation of the current gene-finding programs is that they
could not detect nested genes, i.e., genes located inside introns of another
genes. While this is probably a rare event for the human genome, for or-
ganisms like Drosophila it presents a real problem. For example, annotators
identified 17 examples of nested genes in the Adh region. [110]. Masking
repeats seems important to increase (~10%) the specificity of prediction.

354
Using protein or EST similarity information to improve gene prediction

Manual annotation experience shows that it is often advantageous to take
into account all available information to improve gene identification. Auto-
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matic gene prediction approaches also take into account similarity infor-
mation with known proteins or ESTs [101, 102]. Fgenesh+ [21] is a version
of Fgenesh, which uses additional information from the available protein
homolog. When exons initially predicted by Fgenesh show high similarity to
some protein from the database, it is often advantageous to use this infor-
mation to improve the prediction accuracy. Fgenesh+ requires an additional
file with a protein homolog, and aligns all predicted potential exons with
that protein using the SCAN 2 iterative local alignment algorithm [103]. To
decrease the computation time, all overlapping exons in the same reading
frame are combined into one sequence and aligned only once.
The main additions to the algorithm, relative to Fgenesh, include:

1) augmentation of the scores of exons with detected similarity by an addi-
tional term proportional to the alignment score.

2) additional penalty included for the adjacent exons in dynamic program-
ming (Viterbi algorithm), if their corresponding aligned protein seg-
ments are not close in the corresponding similar protein.

Fgenesh+ was tested on the selected set of 61 GenBank human sequences,
for which the Fgenesh predictions were not accurate (correlation coefficient
0.0 < CC < 0.90) and which have protein homologs from other organisms.
The percent sequence identity between encoded proteins and homologs was
varied from 99% to 40%. The prediction accuracy on this set is presented in
Table 3.16. The results show that if the alignment covers the whole length
of both proteins, then Fgenesh+ usually increases the accuracy relative to
Fgenesh. This phenomenon does not depend significantly on the level of
sequence identity, as long as level exceed 40%. This property makes knowl-
edge of proteins from even distant organisms valuable for improving the
accuracy of gene identification. A similar approach of exploiting known
EST/cDNA information was realized in Fgenesh_c program [21].

Tab. 3.16

Comparison of the accuracy of Fgenesh and Fgenesh+ on
the set of human genes that are poorly predicted by ab
initio methods, with known protein homologs from other
organisms. The set contains 61 genes and 370 exons. CG
— percent of correctly predicted genes; Sne, Spe are the
sensitivity and specificity at the exon level (in %); Snb,
Spb are the sensitivity and specificity at the base level (in
%), respectively; CC — correlation coefficient.

CG Sne Spe Snb Snb CC

Fgenesh 0 63 68 86 83 0.74
Fgenesh+ 46 82 85 96 98 0.95
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3.6
Annotation of sequences from genome sequencing projects

The first task in analyzing these sequences is finding the genes. Knowledge
of genes opens a new way of performing biological studies called ‘functional
genomics’. The other problem is to find out what all these new genes do,
how they interact and are regulated [104]. Comparisons between genes of
different genomes can provide additional insights into the details of the
structure and function of genes.

We cannot predict exactly all gene components due to the limitation of
our knowledge of the complex biological processes and signals regulating
gene expression. In this respect, computer analysis of the genetically well
studied Adh region of D. melanogaster by several gene-finding approaches
[105] gives us a unique opportunity to define the reliability and limitations
of our predictions and provide the strategy of right interpretation of predic-
tion results in analysis of new genomic sequences. The predictions were
evaluated by using two standards, one based on previously unreleased
high quality full-length cDNA sequences and a second based on the set
of annotations generated as part of an in-depth study of the region by a
group of Drosophila experts. The performance of several accurate annota-
tions is presented in Table 3.17. The CGG1 annotation comprised the non-

Tab. 3.17

Perfomance of several programs on the Adh region of Drosophila. The std3 contains 222
genes and 909 exons, the std1 set contains 43 genes and 123 exons. The annotated
exons are taken from the set presented by organizers of the Genome Annotation
Assessment Project (GASP1) at the time of the initial data analysis. Pe — number of
predicted exons, Ce — number of correctly predicted exons. Pg — number of predicted
genes, Pe — number of correctly predicted genes. Sn — sensitivity (in %), Sp —
specificity (in %). At the exon level the second figure shows sensitivity taking into
account exactly predicted and overlapped exons.

CGG1 Fgenesh  Fgenesh pruned  Genie  Genie EST

Base Level Sn std1 89 98 98 96 97
Sn std3 87 92 88 79 79
Sp std3 77 71 86 92 91
Exon Level Pe 1115 1671 979 786 849
Ce std1 80 100 100 86 95
Sn std1 65/89 81/97  81/97 70 77
Ce std3 544 601 565 447 470
Sn std3 60/82 66/89  62/82 49 52
Sp std3 49 36 58 57 52
Gene Level Pg 288 530 262 241 246
Cg std1 22 31 31 24 28
Sn std1 51 72 72 56 65
Cg std3 102 108 106 86 92
Sn std3 46 49 48 39 41

Sp std3 36 20 39 37 38

97
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ambiguous gene set. The genes were included by the following rules (de-
scending in priority):

a) all genes that were predicted by Fgenesh+;

b) genes predicted identically by both Fgenes (human parameters) and
Fgenesh (drosophila parameters) programs;

¢) in the regions of overlapped (but not exactly coincide) predictions, only

~

one predicted gene was included with the priority given to the genes
producing the longer protein.

Fgenesh+ was used to improve the accuracy of prediction for 49 genes.
37 of them were predicted using D. melanogaster’s own proteins, already
deposited in protein databases. Analysis of these predictions demonstrates
that even for such cases prediction of accurate gene structure may not be
trivial, although in most cases Fgenesh+ improved the prediction accuracy
relative to ab initio methods.

The annotation CGG1 predicts about 87% of the real coding nucleotides
and has just about 23% false positives (some of them might happen to be
coding due to absence of experimental data in many regions). 89% of the
exons are predicted exactly or with overlapping. These data show that ab
initio predictions can provide information about practically all of protein
coding genes (just 13% of coding region was not predicted) and can serve as
a reasonable base for further experimental analysis.

It is interesting to note that the usage of two programs provided stable
prediction accuracy on both (std1 and std3) sets. The Genie program, for
example, demonstrated 20% decrease of sensitivity (Table 3.17). Because
there is no version of Fgenes with all parameters computed on Drosophila
genes, the optimal variant of automatic annotation was performed by using
only the Fgenesh program.

It was found that the Fgenesh pruned predictions provided the best ac-
curacy of annotation of the 2.9 MB Adh sequence. In this simple variant
from the set of predicted genes all low-scoring genes (with average gene
score less than 15) were discarded. This yields 98% of the coding nucleotide
prediction on the set of 43 verified genes and 88% accurate coding nucleo-
tide predictions with only 14% of false positives on a 222 gene set (where
the significant parts of the genes were derived from Genscan predictions).
The results demonstrate that most of the annotated genes in std3 are at
least partially covered by predictions. For example, just 5 genes from the
std3 set do not overlap with Fgenesh predictions (two of them are also in-
cluded in the std1 set). From these 5 genes, 4 are located inside introns of
other genes and 4 are single-exon genes. So one of the limitations of current
gene-finding programs is that they cannot detect nested genes, i.e. genes
located inside introns of other genes and this is one of the future directions
for improvement of gene-finding software. Another drawback of the current
gene-finding programs is that predictions of terminal exons are generally
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much worse than the internal ones. This results in splitting up of some
actual genes and/or joining some other multiple genes into a single one.
Several examples of such a situation can be clear seen with the InfoGene
Java viewer [15] (Figure 3.11) developed to present information about gene
structures described in Genbank (collecting information about a gene from
many entries) or annotated using gene prediction programs. On the std1 set
Fgenesh predicts all internal exons correctly (100%), while only 72% of ini-
tial exons and 77% of terminal exons were predicted correctly. Thus better
predicting the terminal exons and the related problem of better recogniz-
ing the beginnings (transcription start sites) and endings (polyA sites) of
genes are the other areas of possible future improvements of gene-finding
programs.

3.7
InfoGene: database of known and predicted genes

Genomic information is growing faster every day, but unfortunately the
proportion of experimentally confirmed data is decreasing and the com-
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plexity of extraction of useful information is increasing. The InfoGene
database [4, 5] provides one of the most complete gene-centered genomic
databases practically with all coherent information that can be obtained
from the GenBank feature tables. We can obtain the necessary information
without looking into many GenBank entries, where the information about a
particular gene might be stored.

The InfoGene database includes known and predicted gene structures
with a description of their basic functional signals and gene components.
All major organisms are presented in separate divisions. The information
about a gene structure might be collected from dozens GenBank entries.
This information can be applied to create different sets of functional gene
component for extraction their significant characteristics used in gene pre-
diction systems. InfoGene is realized under a JAVA interactive environment
system [15] that provides visual analysis of known information about com-
plex gene structure (Figure 3.12) and searches different gene components
and signals. The database is available through WWW server of Computa-
tional Genomics Group at http://genomic.sanger.ac.uk/infodb.shtml.

The value of sequence information for the biomedical community will
strongly depend on the availability of candidate genes that are computa-
tionally predicted in these sequences. Currently information about pre-
dicted genes is absent in sequence databases if the gene has no similarity on
the protein level with a known protein. Using gene prediction the scientific
community can start experimental work with most human genes, because
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gene-finding programs usually predict accurately at least the major part
of the exons in a gene sequence. InfoGene includes all predicted genes
for Human and Drosophila genome drafts and several chromosomes of
the Arabidopsis genome. The database is available currently through WWW
server at httpd://www.softberry.com/infodb.html. Recently, the similar
project Ensembl was started as a collaboration between the Sanger Center
and European Bioinformatics Institute (http://www.ensembl.org/).

3.7.1
Annotation of human genome draft

The nucleotide sequence of nearly 90% of the human genome (3 GB) has
been determined by international sequencing effort. Assembly of the cur-
rent draft of the human genome was performed by the Human Genome
Project Team at UC Santa Cruz. On this sequence (with masked repeats) the
FGENESH program was used to predict exons and assemble predicted
genes. Annotation of similarity of each exon with the PfamA protein
domain database [106] was produced by the Blast program [107]. Totally
49171 genes and 282 378 coding exons were predicted. On average one gene
was found per about 68623 bp and one exon per 11949 bp. A complete
summary of this analysis including the gene and exon numbers in dif-
ferent human chromosomes is presented at http://www.softberry.com/inf/
humd_an html and can be viewed in the InfoGene database. Sequences of
predicted exons and gene annotation data can be copied from this site also.
1154 types of PfamA different domains were found in the predicted pro-
teins. The top part of the domain list is presented in Table 3.18.

3.8
Functional analysis and verification of predicted genes

Large scale functional analysis of predicted and known genes might be done
using expression micro-array technology (see Chapter 5 of Volume 2 of this
book). Often genes are presented on the chips by unique oligonucleotides
close to the 3’-end of the mRNA. But there are many predicted new genes
that have no known corresponding EST sequences. We can study the ex-
pression of such genes in a large number of human tissues using predicted
exon sequences represented on one or several Affymetrix type DNA chips.
As a result we will know not only expression properties of genes, but we can
identify what exons are real. Observing coordinated expression of neigh-
boring exons in different tissues it will often be possible to define gene
boundaries, which is very difficult using ab initio gene prediction. More-
over such experiments might have additional value in defining disease
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Tab. 3.18
PfamA domains identified in the predicted human genes. Domain of the same type
localized in neighboring exons were counted only once.

Number PfamA short name Name
467 Pkinase Eukaryotic protein kinase domain
372 7tm_1 7 transmembrane receptor (rhodopsin family)
308 Myc_N_term Myc amino-terminal region
256 Topoisomerase_I Eukaryotic DNA topoisomerase I
224 Ig Immunoglobulin domain
183 Rrm RNA recognition motif
182 PH PH domain
180 Myosin_tail Myosin tail
166 EGF EGF-like domain
159 Filament Intermediate filament proteins
154 Syndecan Syndecan domain
143 Ras Ras family
138 RNA_pol_A RNA polymerase A/beta’/A” subunit
123 BTB BTB/POZ domain
119 Granin Granin (chromogranin or secretogranin)
119 Troponin Troponin
113 Herpes_glycop_D Herpesvirus glycoprotein D
111 Homeobox Homeobox domain
110 SH3 SH3 domain
102 Trypsin Trypsin
102 helicase_C Helicases conserved C-terminal domain
100 KRAB KRAB box
98 dehydrin Dehydrins
96 ABC_tran ABC transporter
95 ERM Ezrin/radixin/moesin family
89 Collagen Collagen triple helix repeat
87 Tryp_mucin Mucin-like glycoprotein
84 Fn3 Fibronectin type III domain
81 pro_isomerase Cyclophilin type peptidyl-prolyl cis-trans isomerase
81 HMG_box HMG (high mobility group) box
79 SH2 Src homology domain 2

tissue specific genes, which can be used for the development of potential
therapeutics.

The chip designed by EOS Biotechnology included all exons from Chro-
mosome 22 predicted by Fgenesh and Genescan as well as exons from hu-
man genomic sequences of Phase 2 and 3 predicted by Fgenesh. It was
found that the predicted exon sequences present a good alternative to EST
sequences that open a possibility to work with predicted genes on a large
scale.

In Figure 3.13 we have an example of expression behavior of five sequen-
tial exons along the Chromosome 22 sequence (expression data were received
in EOS Biotechnology Inc.). Exons 2, 3 and 4 are Myoglobin gene exons.
Tissue specific expression of them is clear seen with the major peaks located
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Human Myoglobin gene from Chromosome (EOS37009) respectively show completely
22 (exons were predicted by the Fgenesh  different patterns of expression. The
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Biotechnology Human genome chip) in program for analysis of expression data
50 different tissues. The high level of developed by Softberry Inc.

expression is observed only in several

in skeletal muscle, heart and diaphragm tissues. The level of expression
in these tissues is 10-100 times higher than the level of signals for other
tissues as well as the average level of expression for randomly chosen exons.
We found that three Myoglobin exons have expression level correlation co-
efficient 0.99, when for random exons it is about 0.06. These exons were
predicted correctly by the Fgenesh program and were used for selection of
oligonucleotide probes. From this result we can conclude that the predicted
exons can be used as gene representatives. At the same time two flank-
ing exons (1 and 5) from different genes show no correlation with the
Myoglobin exons. This clearly demonstrates how expression data can be
used to define gene boundaries. Another application of expression data is
functional analysis and identification of alternatively spliced genes (exons),
if in particular tissues some exons (or their parts) have very different ex-
pression intensities comparing with the other exons from the same gene.
If 5’-alternative exons define different functional forms of genes (normal
and disease-specific, for example), then the 3’-EST generated probes cannot
be used for identification of disease specific gene variants.
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3.9

Internet sites for gene finding and functional site prediction

Gene identification, and finding of ORFs, promoters and splice sites by the
methods described above is available via World Wide Web. Table 3.19 pres-
ents a list of some useful programs but does not provide a comprehensive

collection.

Tab. 3.19

Public web servers for eukaryotic gene and functional signal prediction.

Program/function

World Wide Web address

Fgenesh/HMM-based gene prediction
(Human, Drosophila, Dicots, Monocots,
C.elegans, S.pombe)

Genscan/HMM:-based gene prediction
(Human, Arabidipsis, Maize)

HMM-gene/HMM-based gene prediction
(Human, C.elegans)

Fgenes/Disciminative gene prediction
(Human)

Fgenes-M/Prediction of alternative gene
structures (Human)

Fgenesh + /Fgenesh_c/gene prediction
with the help of similar protein/EST

Fgenesh-2/gene prediction using 2
sequences of close species

BESTORF/Finding best CDS/ORF
in EST (Human, Plants, Drosophila)

Mzef/internal exon prediction
(Human, Mouse, Arabidopsis, Yeast)

TSSW/TSSG/eukaryotic promoter
prediction

Promoter 2.0/promoter prediction

PromoterScan/eukaryotic promoter
prediction
CorePromoter/promoter prediction

SPL/splice site prediction
(Human, Drosophila, Plants, Yeast)
NetGene2/NetPGene/splice site
prediction (Human, C.elegans, Plants)
Dbscan/searching for similarity in
genomic sequences and its
visualization altogether with known
gene structure

http://genomic.sanger.ac.uk/gf/ gf.shtml
http://searchlauncher.bcm.tmc.edu:9331/
seq-search/gene-search.html
http://www.softberry.com/nucleo.html
http://genes.mit.edu/ GENSCAN.html

http://www.cbs.dtu.dk/services/
HMMgene/
http://genomic.sanger.ac.uk/gf/gf.shtml
http://searchlauncher.bcm.tmc.edu:9331/
seq-search/gene-search.html
http://genomic.sanger.ac.uk/gf/gf.shtml
http://www.softberry.com/nucleo.html
http://genomic.sanger.ac.uk/gf/gf.shtml
http://www.softberry.com/nucleo.html
http://www.softberry.com/nucleo.html

http://genomic.sanger.ac.uk/gf/ gf.shtml
http://www.softberry.com/nucleo.html
http://argon.cshl.org/genefinder/

http://searchlauncher.bcm.tmc.edu:9331/
seq-search/gene-search.html
http://genomic.sanger.ac.uk/gf/gf.shtml
http://www.cbs.dtu.dk/services/
Promoter/
http://cbs.umn.edu/software/proscan/
promoterscan.htm
http://argon.cshl.org/genefinder/
CPROMOTER/index.htm
http://genomic.sanger.ac.uk/gf/gf.shtml
http://www.softberry.com/nucleo.html
http://www.cbs.dtu.dk/services/
NetPGene/
http://www.softberry.com/nucleo.html
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4
Analyzing Regulatory Regions in Genomes

Thomas Werner

4.1
General features of regulatory regions in eukaryotic genomes

Regulatory regions share several common features despite their obvious
divergence in sequence. Most of these common features are not evident
directly from the nucleotide sequence but result from the restraints im-
posed by functional requirements. Therefore, understanding of the major
components and events during the formation of regulatory DNA—protein
complexes is crucial for the design and evaluation of algorithms for the
analysis of regulatory regions. Transcription initiation from polymerase II
(pol II) is the best understood example so far and will be a major focus of
this chapter. However, the mechanisms and principles revealed from pro-
moters are mostly valid for other regulatory regions as well.

Algorithms for the analysis and recognition of regulatory regions draw
from the underlying biological principles, to some extent, in order to gen-
erate suitable computational models. Therefore, a brief overview over the
biological requirements and mechanisms is necessary to understand what
are the strengths and weaknesses of the individual algorithms. The choice
of parameters and implementation of the algorithms largely control sensi-
tivity and speed of a program. The specificity of software recognizing regu-
latory regions in DNA is determined, to a large extent, by how closely the
algorithm follows what will be called the biological model from hereon. A
detailed overview of this topic was recently published [1].

4.2
General functions of regulatory regions

The biological functionality of regulatory regions is generally not a property
evenly spread over the regulatory region in total. Functional units usually
are defined by a combination of defined stretches that can be delimited
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and possess an intrinsic functional property (e.g., binding of a protein or a
curved DNA structure). Several functionally similar types of these stretches
of DNA are already known and will be referred to as elements. Those ele-
ments are neither restricted to regulatory regions nor individually sufficient
for the regulatory function of a promoter or enhancer. The function of the
complete regulatory region is composed from the functions of the individ-
ual elements either in an additive manner (independent elements) or by
synergistic effects (modules).

4.2.1
Transcription factor binding sites (TF-sites)

Binding sites for specific proteins are most important among these ele-
ments. They consist of about 10-30 nucleotides, not all of which are equally
important for protein binding. As a consequence individual protein bind-
ing sites vary in sequence, even if they bind to the same protein. There are
nucleotides contacted by the protein in a sequence-specific manner which
are usually the best conserved parts of a binding site. Different nucleotides
are involved in DNA backbone contacts, i.e., contacting the sugar-phosphate
framework (not sequence specific as they do not involve the bases A, G, C,
or T), and there are internal “spacers” not contacted by the protein at all.
In general, protein-binding sites exhibit enough sequence conservation to
allow for the detection of candidates by a variety of sequence similarity-
based approaches. Potential binding sites can be found almost all over the
genome and are not restricted to regulatory regions. Quite a number of
binding sites outside regulatory regions are also known to bind their re-
spective binding proteins [2]. Therefore the abundance of predicted binding
sites is not just a shortcoming of the detection algorithms but reflects bio-
logical reality.

4.2.2
Sequence features

Regulatory DNA also contains several features not directly resulting in rec-
ognizable sequence conservation. For example, the sequences of two copies
of a direct repeat (approximate or exact) are conserved in sequence with re-
spect to each other but different direct repeats are not similar in sequence at
all. Nevertheless, direct repeats are quite common within regulatory DNA
regions. They consist either of short sequences which are repeated twice or
more frequently within a short region or they can be complex repeats which
repeat a pattern of two or more elements. Repeat structures are often asso-
ciated with enhancers. Enhancers are DNA structures that enhance tran-
scription over a distance without being promoters themselves. One example
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of a highly structured enhancer is the interleukin-2 enhancer [3]. Other se-
quence features that are hard to detect by computer methods include the
relatively weak nucleosomal positioning signals [4], DNA stretches with in-
trinsic 3-D structures (like curved DNA [5]), methylation signals (if there
are definite signals for methylation at all), and other structural elements.

4.2.3
Structural elements

Secondary structures are currently the most useful structural elements with
respect to computer analysis. Secondary structrures are mostly known for
RNAs and proteins but they also play important roles in DNA. Potential
secondary structures can be easily determined and even scored via the
negative enthalpy that should be associated with the actual formation of
the hairpin (single strand) or cruciform (double strand) structure. Second-
ary structures are also not necessarily conserved in primary nucleotide se-
quence but are subject to strong positional correlation within the structure.
Three-dimensional aspects of DNA sequences are without any doubt very
important for the functionality of such regions. However, existing attempts
to calculate such structures in reasonable time met with mixed success and
cannot be used for a routine sequence analysis at present.

4.2.4
Organizational principles of regulatory regions

This paragraph will mainly concentrate on eukaryotic polymerase II pro-
moters as they are currently the best-studied regulatory regions. The TF-
sites within promoters (and likewise most other regulatory sequences) do
not show any general patterns with respect to location and orientation
within the promoter sequences. Even functionally important binding sites
for a specific transcription factor may occur almost anywhere within a pro-
moter. For example, functional AP-1 (Activating protein 1, a complex of two
transcription factors, one from the fos and one from the Jun family) binding
sites can be located far upstream, as in the rat bone sialoprotein gene where
an AP-1 site located about 900 nucleotides upstream of the transcription
start site (TSS) inhibits expression [6]. An AP-1 site located close to the TSS
is important for the expression of Moloney Murine Leukemia Virus [7].
Moreover, functional AP-1 sites have also been found inside exon 1 (down-
stream of the TSS) of the proopiomelanocortin gene [8] as well as within
the first intron of the fra-1 gene [9], both locations outside the promoter.
Similar examples can be found for several other TF-sites, illustrating why
no general correlation of TF-sites within specific promoter regions can be
defined. TF binding sites can be found virtually everywhere in promoters
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but in individual promoters possible locations are much more restricted. A
closer look reveals that the function of an AP-1 binding site often depends
on the relative location and especially on the sequence context of the bind-
ing site. The AP-1 site in the above mentioned rat bone sialoprotein gene
overlaps with a set of glucocorticoid responsive element (GRE, the DNA
sequence that is bound by the glucocorticoid receptor which is a transcrip-
tion factor) half sites which are crucial for the suppressive function.

The context of a TF-site is one of the major determinants of its role in
transcription control. As a consequence of context requirements, TF sites
are often grouped together and such functional groups have been described
in many cases. A systematic attempt of collecting synergistic or antagonis-
tic pairs of TF binding sites has been made with the COMPEL database
[10, 11]. In many cases, a specific promoter function (e.g., a tissue-specific
silencer) will require more than two sites. Promoter subunits consisting of
groups of TF binding sites that carry a specific function independent of the
promoter will be referred to as promoter modules. A more detailed definition
of promoter modules has been given recently by Arnone and Davidson [12].
In summary, promoter modules contain several transcription factor binding
sites which act together to convey a common function like tissue-specific
expression. The organization of binding sites (and probably also of other
elements) of a promoter module appears to be much more restricted than
the apparent variety of TF sites and their distribution in the whole promoter
suggests. Within a promoter module both sequential order and distance can
be crucial for function indicating that these modules may be the critical
determinants of a promoter rather than individual binding sites. Promo-
ter modules are always constituted by more than one binding site. Since
promoters can contain several modules that may use overlapping sets of
binding sites, the conserved context of a particular binding site cannot be
determined from the primary sequence. The corresponding modules must
be detectable separately before the functional modular structure of a pro-
moter or any other regulatory DNA region can be revealed by computer
analysis. One well known general promoter module is the core promoter,
which will be discussed in more detail below. However, the basic principles
of modular organization are also true for most if not all other regulatory
regions and are neither peculiar nor restricted to promoters.

4.2.41 Module properties of the core promoter

The core promoter module can be defined functionally by its capability to
assemble the transcription initiation complex (see Figure 4.3) and orient it
specifically towards the TSS of the promoter [13], defining the exact location
of the TSS. Various combinations of about four distinguishable core pro-
moter elements that constitute a general core promoter can achieve this.
This module includes the TATA box, the initiator region (INR), an upstream
activating element, and a downstream element. (The TATA box is a basic
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four elements is not always essential. transcription start site.

transcription element, which is located about 20-30 nucleotides upstream
of the actual transcription start site and is known to bind to the TATA box
binding protein TBP.) However, this is also where the straightforward defi-
nition of a core promoter module ends because not all four elements are
always required, or some elements can be too variable to be recognizable by
current computer tools.

4.2.4.2 First group: TATA box containing promoters without known initiator
Successful positioning of the initiation complex can start at the TATA box
containing promoters by the TFIID complex, which contains the TATA
box binding protein as well as several other factors. Together with another
complex of general transcription factors, termed TFIIB, this leads to the
assembly of an initiation complex [14]. If an appropriate upstream TF bind-
ing site cooperates with the TATA box, no special initiator or downstream
sequences might be required, which allows for the assembly of a functional
core promoter module from just two of the four elements (Figure 4.1). This
represents one type of a distinct core promoter that contains a TATA box,
common among cellular genes in general.

4.2.43 Second group: TATA-less promoters with functional initiator

However, as it is known from a host of TATA-less promoters, the TATA box
is by no means an essential element of a functional core promoter. An INR
combined with a single upstream element has also been shown to be capa-
ble of specifically initiating transcription [15], although initiators cannot be
clearly defined on the sequence level so far. Generally, a region of 10-20
nucleotides around the transcription start site is thought to represent the
initiator. A remarkable array of four different upstream TF sites (SP1, AP-1,
ATF, or TEF1) was shown to confer inducibility by T-antigen to this very
simple promoter. T-antigen is a potent activating protein from a virus called
SV40. This is an example of a TATA-less distinct promoter that can be found
in several genes from the hematopoietic lineage (generating blood cells).
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The third combination is called a composite promoter and consists of
both a TATA box and an initiator. This combination can be found in several
viral promoters and it has been shown that an additional upstream TF
binding site can influence whether the TATA box or the initiator element
will be determining the promoter properties [16]. The authors showed that
upstream elements can significantly increase the efficiency of the INR in
this combination while especially SP-1 sites made the TATA box almost ob-
solete in their example. The combination of TATA box with an INR had the
general effect to induce resistance against the detrimental effects of a TFIIB
mutant, which interfered with expression from TATA-only promoters. This
is also an example for the more indirect effects of specific arrangements in
promoters that may not be apparent unless special conditions occur.

The last group consists of so-called null-promoters which have neither a
TATA box nor an initiator and rely exclusively on upstream and downstream
elements [17].

Basically, at least the four different core promoter types detailed above
have been identified so far, which all represent valid combinations of core
promoter sites (reviewed in [17]). If the combinations involving upstream
and downstream elements are also considered, a total of 7 possible core
promoter modules are possible (most of which can be actually found in
genes and consist of the four variants in Figure 4.2 adding upstream or
downstream elements or both).

a) EITI_>

Distinct TATA box core promoter

O e

b) /N [ ]

Distinct INR core promoter

Composite core promoter

I |‘| I_> Fig. 4.2
9 Four different setups of a

d) /\ | polymerase Il core

promoter. Graphical
Null Core promoter symbols as in Figure 4.1.
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The only apparent common denominator of transcription initiation with-
in a promoter would be that there must be at least one (or more) core pro-
moter element within a certain region. This assumption is wrong. Both
spacing and/or sequential order of elements within the core promoter
module are of utmost importance regardless of the presence or absence of
individual elements (as a rule, there appear to be some exceptions). More-
over, many distinct promoters have requirements for specific upstream or
downstream elements and will function with their specific TF. Moving
around the initiator, the TATA box and, to some extent, also upstream ele-
ments can have profound effects on promoter functions. For example, in-
sertion of just a few nucleotides between the TATA box and an upstream TF
binding site (MyoD) in the desmin gene promoter cuts the expression levels
by more than half [18]. Moreover, the promoter structure can affect later
stages of gene expression like splicing [19]. It was also shown for the rat
beta-actin promoter that a few mutations around the transcription start site
(i.e. within the initiator) can render that gene subject to translational control
[20].

As a final note, the mere concept of one general TATA box and one gen-
eral INR is an oversimplification. There are several clearly distinguishable
TATA boxes in different promoter classes [21, 22, 23, 24] and the same is
true for the INR region which also has several functionally distinct im-
plementations as the glucocorticoid-responsive INR in the murine thymi-
dine kinase gene [25], the C/EBP binding INR in the hepatic growth factor
gene promoter [26], or the YY-1 binding INR [27].

Most of the principles of variability and restrictions detailed above for
the core promoter modules are also true for other promoter modules that
modify transcriptional efficiency rather that determining the start point of
transcription as the core promoter does. The bottom line is that the vast
majority of alternative arrangements of the elements that can be seen in a
particular promoter might not contribute to the function of the promoter.
Module-induced restrictions are not necessarily obvious from the primary
sequences. Figure 4.3 shows a schematic pol II promoter with the initiation
complex assembled which illustrates that it matters where a specific protein
is bound to the DNA in order to allow for proper assembly of the molecular
jigsaw puzzle of the initiation complex. This is not immediately obvious
from inspection of promoter sequences because there exist several (but a
strictly limited set of ) alternative solutions to the assembly problem. As
complicated as Figure 4.3 may appear, it still ignores all aspects of chroma-
tin rearrangements and nucleosomal positions which also play an impor-
tant role in transcription regulation. Stein et al. [28] has detailed an example
of the profound influence of these effects on promoter-protein complex
assembly and function for the ostecalcin promoter in a study. However,
chromatin-related effects are not yet considered in any of the promoter
prediction methods. Therefore, we do not go into any more details here.
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4.2.5
Bioinformatics models for the analysis and detection of regulatory regions

Algorithms used to analyze and detect regulatory regions are necessarily
based on some kind of usually simplified model of what a regulatory region
should look like. All of these models are inevitably compromising between
accuracy with respect to the biological model (the standard of truth) and
computational feasibility of the model. For example, a computational model
based on a priori three-dimensional structure prediction derived from
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molecular dynamics using sophisticated force fields may be the most accu-
rate model for a region but cannot be used for the analysis of real data due
to excessive demand on computational resources. On the other hand a
model based on simple sequence similarities detected by IUPAC consensus
(see Chapter 3 for detailed definition) sequences can be easily used on a PC
but results will usually not match the biological truth in an acceptable
manner.

4.2.5.1 Statistical models

It has been noted several years ago that promoters and most likely also
other regulatory regions like enhancers contain more transcription factor
binding sites that non-regulatory sequences. An analysis of the relative fre-
quencies of such sites within a sliding window therefore can yield some
information about the potential regulatory character of a stretch of DNA,
which is the prototype of simple statistical models. Several programs exist
that rely to some extent on this type of statistics.

4.2.5.2 Mixed models

Of course, it is quite clear from section 4.1 that a pure statistical model is
an oversimplification that will adversely affect the accuracy of prediction
despite its attractive ease of implementation. Therefore, mixed models are
also used that take at least some regional information into consideration
and can be seen as statistical models split into compartments. Within the
compartments solely statistical features are considered, but promoter orga-
nization is somewhat reflected by the arrangement of the compartments
which represent different promoter regions.

4.2.5.3 Organizational models

The last category consists of models that try to closely follow the organiza-
tional principles of real regulatory regions. In order to accomplish that,
individual promoter elements like transcription factor binding sites as well
as their relative order and distances are encoded in a formal model which
reflects the setup of a single promoter or a small group of functionally
similar promoters. Although they are matching the biological situation best
they are not yet suitable for widespread application. High quality sets of
training sequences are required to generate such models because many
parameters concerning nature, order and distance of elements have to be
determined. This is a process far from being an easy task and limits appli-
cation of such models to relatively few examples that require elaborate
analysis.
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4.3
Methods for element detection

4.3.1
Detection of transcription factor binding sites

Transcription factor binding sites are the most important elements within
regulatory DNA regions like promoters or enhancers. The majority of the
known transcription factors recognize short DNA stretches of about 10-15
nucleotides in length that show different degrees of internal variation. Suc-
cessful detection of protein binding sites in DNA sequences always relies on
precompiled descriptions of individual binding sites. Such descriptions are
usually derived from a training set of four or more authentic binding sites.
However, the criteria applied for the decision whether a site is authentic
or not vary considerably among authors of different publications. One of
the first approaches to define protein binding sites used I[UPAC consensus
sequences, which indicate the predominant nucleotide or nucleotide com-
bination at each position in a set of example sequences. The IUPAC string
TGASTCA indicates that the first three positions are most frequently T, G,
and A while the fourth position may be C or G followed by T, C, and A in
most cases. [UPAC consensus sequences became very popular as they are
extremely easy to define from even a small set of sequences and their defi-
nition does not require more than a pencil and a sheet of paper.

However, IUPAC consensus sequences strongly depend on the sequence
set used for definition. The final [UPAC consensus sequence remains arbi-
trary depending on the rules used to determine the consensus. Cavener de-
fined some rules that we have used at GSF for several years now and, in
our experience, [IUPAC consensus sequences defined that way can be use-
ful [29]. However, IUPAC consensus sequences may reject biologically
functional binding sites due to a single mismatch (or an ill-defined I[UPAC
sequence).

The concept of nucleotide weight matrix (NWM) descriptions has been
developed in the 1980s as an alternative to IUPAC strings [30, 31]. However,
although weight matrices proved to be generally superior to IUPAC strings
their biggest disadvantage is the absolute requirement for predefined ma-
trices, which are more complicated to construct than IUPAC strings and
require specific software. This delayed widespread use of weight matrices
for almost a decade although the methods were principally available. They
remained mostly unused because only a few special matrices had been de-
fined [32]. The situation changed when in 1995 two (overlapping) matrix
libraries for TF sites were compiled and became widely available almost
simultaneously [33, 34]. Matrix Search [34] transformed the TRANSFAC
database as complete as possible (starting at two binding sites for one
factor) into matrices using a log-odds scoring approach. The MatInspec-
tor library is largely based on a stringent selection from the matrix table
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of the TRANSFAC database, including the matrices derived from the Con-
sInspector library [35, 36, 37|. and several genuine matrices. The Informa-
tion Matrix Database was compiled from the TRANSFAC matrix table and
the TFD. The MatInspector library is updated with each new TRANSFAC
release while IMD has not been updated recently. Available matrix detection
programs have been reviewed recently [36] and a comparison of these
methods by application to a test set of sequences was published [37]. For
convenience Table 4.1 summarizes which methods for the detection of
transcription factor binding sites are available in the internet with emphasis
on programs featuring a WWW-interface.

432
Detection of structural elements

Regulatory sequences are associated with a couple of other individual ele-
ments or sequence properties in addition to the factor binding sites. Among
these are secondary structure elements like the HIV-1 TAR region (Trans-
ActivatingRegion, which constitutes an RNA enhancer [38], cruciform DNA
structures [39], or simple direct repeats [40]. Three-dimensional structures
like curved DNA [41] also influence promoter function. Most of these ele-
ments can be detected by computer-assisted sequence analysis [42, 43, 44,
45] but none of them is really promoter specific and all such elements can
be found frequently outside of promoters. The promoter or enhancer func-
tion arises from the combination of several elements that need to cooperate
to exert transcription control which none of them can achieve alone. This
also illustrates the main problem of promoter recognition. It is necessary
to compile several individually weak signals into a composite signal, which
then indicates a potential promoter without being overwhelmed by the
combinatorial complexity of potential element combinations.

433
Assessment of other elements

Several methods employ statistical measures of sequence composition to
include features of regulatory sequences, which cannot be described by the
three types discussed above. This includes frequencies of oligonulceotides
(dinucleotides, trinucleotides, and hexamers are used most frequently),
CpG islands (CG dinucleotides are usually underrepresented in mam-
malian genomes except in part of coding and regulatory sequences. CpG
islands are regions where the dinucleotide is NOT underrepresented [46],
and periodicity of weak sequence patterns (AA, TT etc). Definitions of such
elements are usually too weak to allow any significant contribution to cur-
rent prediction programs. However, this situation might well change due to
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the unprecedented amounts of continuous genomic sequences that become
available in the course of the current genome sequencing projects.

4.4
Analysis of regulatory regions

Basically two different tasks can be distinguished in the analysis of regula-
tory regions. The first task is analysis aiming at the definition of common
features based on sets of known regulatory sequences. This is a prerequisite
for the definition of descriptions suitable for large-scale application for pre-
diction of potential regulatory regions within new anonymous sequences
which can be regarded as the second task.

4.4
Training set selection

One of the most important steps in comparative sequence analysis is the
selection of suitable training sets of sequences. If a training set of pro-
moters consists only of constitutively expressed sequences (constant level of
expression, no or little regulation) little can be learned about any kind of
tissue-specific expression regardless of the methods applied. Also inclusion
of too many wrong sequences (e.g., that are no promoters at all) may pre-
vent any meaningful analysis. Although this appears a bit trivial at first, it is
a real issue when data are scarce and less well-characterized sequences have
to used.

Control sets known not to be functionally similar to the training sets are
about as important as the training sets themselves. However, true negative
regions are even scarcer than known regulatory regions. Negative often
means just “no positive functions found” which can also be due to failures
or simply means that the sequences have not been tested at all. Therefore,
statistical negative control sequences are often required. Random sequences
can be easily generated but often are of limited use, as they do not represent
several important features of natural DNA correctly. This includes under-
represented features (e.g., CpG islands), asymmetric features (e.g., strand
specificity), or repetitive DNA elements. Selection of appropriate control
sequences can be a major effort, but is also crucial for the validity of the
evaluation of any method. Common problems with controls are either
known or unknown biases in the control set or circularity problems, i.e. the
training and the test sets of sequences are related or overlap. The availability
of large continuous stretches of genomic DNA from the genome sequenc-
ing projects constantly improves this situation. Genomic sequences should
always be the first choice for controls as they reflect the natural situation.
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4.4.2
Statistical and biological significance

The quality of sequence pattern recognition is often optimized to improve
the correlation of the methods with the data (positive and negative training
sets). However, in most cases it is not possible to collect sufficient data to
perform a rigorous correlation analysis. Therefore, bioinformatics methods
often rely on statistical analysis of their training sequences and optimize for
statistically most significant features. Unfortunately, this kind of optimiza-
tion does not always reflect the evolutionary optimization of regulatory se-
quences that is always optimizing several features at once.

The dynamics of biological function often necessitates suboptimal sol-
utions. For example, real sequences usually do not contain binding sites
with the highest affinity for their cognate protein because binding AND
dissociation of the protein are required for proper function. The perfect
binding site would interfere with the dissociation and is therefore strongly
selected against.

443
Context dependency

The biological significance of any sequence element is defined by the regu-
latory function it can elicit. This is usually dependent on a functional con-
text rather than being a property of individual elements. Therefore, statisti-
cal significance of the features or scores of individual elements is neither
necessary nor sufficient to indicate biological significance. Recognition of
the functional context in an essentially linear molecule like DNA can be
achieved by correlation analysis of individual elements, which became an
important part of all semi-statistical or specific modeling approaches dis-
cussed below.

4.5
Methods for detection of regulatory regions

There are several methods available for the prediction of regulatory DNA
regions in new sequence data. Table 4.2 lists methods available with a spe-
cial focus on programs that provide a WWW-interface. Unfortunately, there
is no “one-does-it-all” method and all methods have their individual strong
and weak points. A program doing an excellent job in one case might be
a complete failure in another case where other methods are successful.
Therefore, we will describe a whole lot of methods without intending any
rank by order of discussion. We will rather follow the functional hierarchy
that appears to apply to the different regulatory regions.
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4.5.1
Types of regulatory regions

4.5.1.1 Matrix attachment regions

A chromatin loop is the region of chromosomal DNA located between two
contact points of the DNA with the nuclear matrix marked by so-called
Scaffold/Matrix Attachment Regions (S/MARs). The nuclear matrix is a
mesh of proteins lining the inner surface of the nuclear envelope. Tran-
scriptional regulation requires the association of DNA with this nuclear
matrix, which retains a variety of regulatory proteins. S/MARs are com-
posed of several elements including transcription factor binding sites, AT-
rich stretches, potential cruciform DNA, and DNA-unwinding regions to
name a few of the most important S/MAR elements. There is an excellent
review on chromatin domains and prediction of MAR sequences by Bouli-
kas [47], explaining S/MARs and their elements in detail. Kramer et al. [48]
published a method to detect potential S/MAR elements in sequences and
made the method available via WWW (http://www.ncgr.org/MAR-search/)
[49]. Their method is based on a statistical compilation of the occurrence
of a variety of S/MAR features (called rules). Accumulation of sufficient
matches to these rules will be predicted as potential S/MAR regions. The
specificity of the method depends critically on the sequence context of the
potential S/MAR sequences. Therefore, results are difficult to evaluate by
comparisons. However, so far this is the only method available to predict
S/MAR regions. We developed another approach to define especially AT-rich
MARSs called SMARTest which is available on the web at http://genomatix.
gsf.de-. SMARTest is based on a library of MAR-associated nucleotide
weight matrices and determines S/MARs independent of any larger se-
quence context. Therefore, the method is suitable to test isolated S/MAR
fragments. MARFinder and SMARTest are complementary and should be
seen in combination rather than as alternatives.

4.5.1.2 Enhancers/silencers

Enhancers are regulatory regions that can significantly boost the level of
transcription from a responsive promoter regardless of their orientation and
distance with respect to the promoter as long as they are located within
the same chromatin loop. Silencers are basically identical to enhancers and
follow the same requirements but exert a negative effect on promoter activ-
ities. At present there are no specific programs to detect enhancers and
silencers. However, programs designed to detect the internal organization
of promoters are probably also suitable to detect enhancers and silencers
since these elements often also show a similar internal organization as
promoters.
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4.5.1.3 Promoters

Promoters are DNA regions capable of specific initiation of transcription
(start of RNA synthesis) and consist of three basic regions (See Figure 4.2).
The part determining the exact nucleotide for transcriptional initiation is
called the core promoter and is the stretch of DNA sequence where the
RNA polymerase and its cofactors assemble on the promoter.

The region immediately upstream of the core promoter is called the
proximal promoter and usually contains a number of transcription factor
binding sites responsible for the assembly of an activation complex. This
complex in turn recruits the polymerase complex. It is generally accepted
that most proximal promoter elements are located within a stretch of about
250-500 nucleotides upstream of the actual transcription start site (TSS).

The third part of the promoter is located even further upstream and is
called the distal promoter. This region usually regulates the activity of the
core and the proximal promoter and also contains transcription factor
binding sites. However, distal promoter regions and enhancers exhibit no
principal differences. If a distal promoter region acts position and orienta-
tion independent it is called an enhancer.

4.5.2
Programs for recognition of regulatory sequences

There are several ways promoter recognition tools can be categorized. We
will focus on the main principles and intended usage of the programs
rather than technical details, as this will also be the main interest of exper-
imentally working scientists. Two generally distinct approaches have been
used so far in order to achieve in silico promoter recognition [50]. The ma-
jority of programs focused on general promoter recognition, which represents
the first category. One group of programs in this category (see below) con-
centrates on recognition of core promoter properties and infers promoter
location solely on that basis while the other group consists of programs that
take into account also the proximal promoter region of about 250-300
nucleotides upstream of the TSS. General recognition models are usually
based on training sets derived from the Eukaryotic Promoter Database (EPD
[51]) and various sets of sequences without known promoter activities. The
EPD is an excellent collection of DNA sequences that fulfil two conditions:
They have been shown experimentally to function as promoters and the
transcription start site is known. The beauty of these approaches is their
generality which does not require any specific knowledge about a particular
promoter in order to make a prediction. This appears ideal for the analysis
of anonymous sequences for which no a priori knowledge is available. The
bad news is that the specificity of all such general approaches implemented
so far is limited. The inevitable huge burden of false-positive predictions in
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longer sequences precludes large scale application of such approaches to
genomic sequences.

The second category of tools aims at specific promoter recognition relying on
more detailed features of promoter subsets like combinations of individual
elements. The beauty of this approach is excellent specificity, which is
extremely helpful if only promoters of a certain class are of interest or
megabases of sequences have to be analyzed. The bad news here is limited
applicability, i.e., each promoter group or class requires a specifically pre-
defined model before sequences can be analyzed for these promoters. This
may result in a huge number of false negatives in large-scale analysis.

We will briefly discuss individual methods in these two categories with
emphasis on the implementation of the biological principles of promoter
features. Recently, a practical comparison of the majority of available tools
based on general promoter models has been carried out, which has shown
that none of these methods is clearly superior to its peers [50]. Therefore, I
will not go into details about performance of the methods here (see Chapter
3 for details).

4.5.2.1 Programs based on statistical models (general promoter prediction)
These programs aim at the detection of pol II promoters by a precompiled
general promoter model that is part of the method. Despite the complicated
modular structure of promoters outlined above there is a solid rational basis
for this general model. All promoters must have a functional core promo-
ter module often containing a TATA box which is the prime target of the
majority of the general promoter prediction tools. This is also one of the
reasons why some programs confine their analysis to the core promoter re-
gion which avoids problems with the much more diverse proximal regions.
General models that include the proximal region consequently treat this
part of the promoter as a purely statistical problem of TF binding site ac-
cumulations, sometimes fine tuned by some sort of weighting based on
occurrence frequencies of TF binding sites in promoters as compared to a
negative sequence set.

However, the cost of generality without exception is a huge number of
false positive predictions (typically about one match in 10000-30000 nu-
cleotides). Sacrifice of a considerable percentage of true promoters (30% or
more) is also a necessity to maintain at least some specificity. There also is
inevitably no clue what kind of promoter was detected in case of a match.

4.5.21.1 PromoterScan

Several of the general promoter prediction programs followed the basic de-
sign of Prestridge who used the Eukaryotic Promoter Database (EPD) by
Bucher [51] to train his software for promoter recognition. His program
PromoterScan was the first published method to tackle this problem [52].
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He utilized primate non-promoter sequences from GenBank as a negative
training set and included the proximal promoter region in the prediction.
The program uses individual profiles for the TF binding sites indicative of
their relative frequency in promoters to accumulate scores for DNA se-
quences analyzed. PromoterScan employs the SignalScan IUPAC library
of TF binding sites [53], introducing a good deal of biological knowledge
into the method, although modular organization of the proximal region is
necessarily ignored. Results of the first version were combined with the
Bucher NWM for the TATA box, which served as a representation of the
core promoter module [32].

There is now a new version of PromoterScan available, PromoterScan
2.0. This new version is supposed to provide more information from inside
the “black box” which a promoter used to be for version 1.0 and is also able
to compare a predicted promoter to EPD promoter sequences on the basis
of the pattern of TF sites. Although this moves promoter comparisons with
PromoterScan 2.0 effectively closer to the specific recognition of individual
elements this approach is not used for the initial promoter prediction. Pro-
moterScan is available via WWW, which is a definitive advantage for occa-
sional promoter testing.

4.5.2.1.2 PromFD

This program [54], extends the model behind PromoterScan in two ways.
One major difference is use of the IMD matrix library [34] instead of
the SIGNAL SCAN IUPAC strings. The other feature is the inclusion of
patterns of strings of 5-10 nucleotides in length that were found to be
overrepresented in the training set of promoters. Basically, the intrinsic
model is the same as in PromoterScan but the overrepresented strings may
account for some so far unknown binding sites that are missing in the
libraries. PromFD requires local installation and is not available via a
WWW-interface. There have been no updates so far.

45.2.1.3 TSSG/TSSW

Two other methods (TSSG and TSSW) also including proximal promoter
regions are available via WWW and share the basic algorithm. They center
on detection of a TATA box as most prominent part of the core promoter.
Promoter prediction is then based on the score of the TATA box, and nu-
cleotide triplet distributions around the putative TSS. In analogy to Prom-
Find (see below) hexamer frequencies in three 100 nucleotide wide windows
upstream of the putative TSS are also considered. These data are combined
with potential TF binding sites, which are predicted either based on a TFD
derived compilation by Prestridge (in TSSG), or on the TRANSFAC data-
base [11] in TSSW. Fickett and Hatzigeorgiou did not report significant
improvements in the predictive capabilities by inclusion of triplets and
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hexamers [50]. However, the general aim of these programs is not inde-
pendent promoter prediction but to assist in finding exon-intron structures
of complete genes.

4.5.2.1.4 XlLandscape

The group of Stormo developed another method, which is called Xlandscape
and essentially determines nucleotide strings of various lengths called
words which are specifically associated with promoters, exons or introns
[55]. Then a score for a sequence is determined indicating by the different
promoter, exon, and intron scores whether a particular region is likely to
belong to one of these groups. Although this method was not developed for
promoter prediction it fares about as well as all other general promoter
prediction programs although it completely ignores even the core promoter
module. The program requires local installation.

4.5.2.1.5 PromFind

This program [56] is similar to Xlandscape. It relies on the difference in
hexamer frequencies between promoters and regions outside of promoters
which is a more restricted view as compared to the landscaping approach.
The advantage is less computational complexity. The program was also
trained on sequences from the EPD and corresponding coding and non-
coding regions outside the promoters taken from GenBank. Any region in
which the ratio of promoter to non-promoter hexamer-frequencies reaches a
threshold is considered and only the region where this measure is maximal
is defined as the promoter. This again relies on pure statistics disregarding
any organizational features of promoters. I am not aware of any updates
since the initial publication.

4.5.2.1.6 NNPP

This program [57] utilizes time delay neural networks to locate a TATA box
combined with an initiator region and thus is a representative of the second
subgroup which focuses on the minimum promoter region. Although the
program does allow for variable spacing between the elements, especially
distinct and null promoters will pose principal problems for this method as
it includes some modeling of a TATA box. An improved version of the pro-
gram was published recently and the program features a lower number of
false negatives (about 1 match/kb). This is good news if a short region of
DNA is to be analyzed (length should be less than 2 kb). However, long
DNA regions pose a problem, as the number of false positives becomes
overwhelming. The program is available via a WWW-interface (http://www-
hgc.lbl.gov/projects/promoter.html).
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4.5.2.1.7 CorePromoter Search

Michael Zhang [58] published a new method to detect TATA-box containing
core promoters by discrimination analysis. This method is available via a
WWW-interface, which already requires restriction of the sequence length
to 1 kb. Core Promoter Search and NNPP are alternative implementations
of a similar general promoter model and can be applied in parallel.

4.5.2.2 Programs utilizing mixed models

These programs also rely on statistical promoter models but include directly
or indirectly some organizational features of promoters placing them in
between the pure statistical models and attempts to approximate the bio-
logically important structured organization of promoters.

4.5.2.2.1 FunSiteP

This program [59] also takes into account proximal promoter regions and
utilizes a collection of TF binding sites [60] with which a promoter set taken
from EMBL (472 promoters) was analyzed. From this analysis a weight
matrix of TF binding site localization was derived representing regions
in promoters with lower or higher concentrations of TF binding sites.
FunSiteP not only reports potential promoter matches but also assigns
them to one of seven promoter classes. These were taken from Bucher’s
definition (from EPD) and consist of small nuclear RNAs, structural pro-
teins, storage and transport proteins, enzymes, hormones, growth factors,
and regulatory proteins, stress or defense related proteins, and unclassified
proteins. Although these classes are very broad as defined by biological
function, they represent an attempt towards more specific promoter recog-
nition. FunSiteP is also available via a WWW-interface.

4.5.2.2.2 Audic/Claverie

A program designed by Audic and Claverie [61] uses Markov models of
vertebrate promoters generated again by training on the EPD and non-pro-
moter sequences outside of the promoters. Markov models principally allow
for the inclusion of organizational features and the nature of the training
set determines whether this becomes part of the model or not. We describe
the program in this section because the many different promoters in EPD
most likely cause these Markov models to be more general than specific.

4.5.2.3 Programs relying on organizational models
This category of methods introduces the functional context in form of heu-
ristic rules or tries to learn the context from comparative sequence analysis.
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These methods emphasize specific modeling of promoters or promoter
substructures rather than general recognition. Therefore, it is not possible
to directly assess the promoter prediction capabilities of these methods.
However, in many cases recognizing a common substructure between pro-
moters can be very helpful especially for experimental design.

45231 FastM

This method was derived from the program ModelGenerator [22] and takes
advantage of the existence of NWM libraries. It can be accessed via a WWW-
interface (http://www.genomatix.de “free services”) and allows for a straight-
forward definition of any modules of two TF binding sites by simple selec-
tion from the MatInspector Library [33]. This now enables definition and
detection of wide variety of synergistic TF binding site pairs. These pairs
often are functional promoter modules conferring a specific transcriptional
function to a promoter [10, 62]. FastM models of two binding sites can
successfully identify promoters sharing such composite elements but are
not promoter specific. Composite elements can also be located in enhancers
or similar structures. A commercial version of FastM is available that en-
ables definition of complete, highly specific promoter class models includ-
ing up to 10 individual elements.

4.5.2.3.2 TargetFinder

Another approach aiming at modeling of promoter substructures consisting
of two distinct elements is TargetFinder [63]. This method combines TF
binding sites with features extracted from the annotation of a database
sequence to allow selective identification of sequences containing both fea-
tures within a defined length. The advantage is that TargetFinder basically
also follows the module-based philosophy but allows inclusion of features
that have been annotated by experimental work for which no search algo-
rithm exists. Naturally, this excludes analysis of new anonymous sequences.
The program is accessible via a WWW-interface (http://gcg.tigem.it/
TargetFinder.html).

It should be mentioned here that Fickett also employed the idea of a two
TF binding site module to successfully detect a subclass of muscle-specific
regulatory sequences governed by a combination of MEF2 and MyoD [64].
However, this was also a very specific approach and no general tool resulted
out of that work. The MEF2/MyoD model can be used to define a corre-
sponding module with FastM. Wasserman and Fickett [65] recently pub-
lished a modeling approach based on clustering of a preselected set of
NMW (defined in this study) correlated with muscle-specific gene expres-
sion. They were able to detect about 25% of the muscle-specific regulatory
regions in sequences outside their training set and more than 60% in their
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training set. They classify their method as regulatory module detection.
However, their results suggest that they probably detect a collection of dif-
ferent more specific modules with respect to the definition given above.
Although the method is not promoter-specific and the specificity is moder-
ate, it is a very interesting approach, which has potential for further devel-
opment. The authors will make the non-commercial software used in their
approach available on request (contact J. Fickett).

Generally, this group of methods achieves much higher specificity than
programs following general models. However, the price for this increase in
specificity is usually restriction of the promoter models to a small subset
(class) of promoters.

4.5.2.4 The organizational model of histone H1 promoters

The specific modeling of a promoter class can be demonstrated on a well-
known example from the cell-cycle regulation. Histone genes are required
during the DNA replication and they show up as a group of coregulated
genes in array analyses [66]. This suggests that they might have a common
promoter structure. Histone H1 gene promoters for example can be found
in the Eukaryotic Promoter Database (EPD, [51]).

The model for Histone H1 genes (Figure 4.4) was based on only 9 train-
ing sequences taken from homology group 17 of the EPD. They share a 100
bp fragment around the transcription start site but not much similarity
elsewhere in the 600 nucleotides (standard length of EPD promoter se-
quences). A model containing 5 different transcription factor binding sites
was derived from the set of sequences shown in Figure 4.4 using GEMS
Launcher (Genomatix Software, Munich).

Notably, the model generated contains one factor, E2F that is known to be
involved in cell cycle regulation of genes [67]. The model appears to be very
selective and only one match per 12 million base pairs of the mammalian
sections of the EMBL database was found. Almost all matches (total of 59)
are known Histone H1 genes, except in the human section where the ma-
jority of matches (25) are within anonymous sequences. However, given the
extraordinary specificity throughout the mammalian sections, it seems safe
to assume that most of the unknown matches within the human database
section actually identified new so far unannotated genes, that are subject to
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Fig. 4.4
Organizational model of histone H1 promoters containing
six transcription factor binding sites.
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a similar regulation as histones (There is no direct evidence that these are
histone genes). However, this is a working hypothesis which needs to be
verified.

4.6
Annotation of large genomic sequences

Almost all of the methods discussed above were developed before the data-
bases started to be filled with sequence contigs exceeding 100 000 nucleo-
tides in length. The complete human genome draft now contains more than
3 billion nucleotides. This changes the paradigm for sequence annotation.
While complete annotation remains an important goal, specific annotation
becomes mandatory when even individual sequences exceed the capabilities
of researchers for manual inspection. Annotation of genomic sequences
has to be fully automatic in order to keep pace with the rate of generation
of new sequences. Simultaneously, annotations are embedded into a large
natural context rather than residing within relatively short isolated stretches
of DNA. This has several quite important consequences.

4.6.1
The balance between sensitivity and specificity

I will confine the discussion here to regulatory regions but the problems are
general. A very sensitive approach will minimize the amount of false nega-
tive predictions and thus is oriented towards a complete annotation. How-
ever, this inevitably requires accepting large numbers of false positive hits,
which easily outnumber the true positive predictions by one order of mag-
nitude.

In order to avoid this methods can be designed to yield the utmost spe-
cificity (e.g., specific promoter modeling as discussed above). Here, the
catch is that inevitably a high number of false-negative results, which also
may obscure 70% to 90% of the true positive regions.

A little thought experiment demonstrates the dilemma of current meth-
ods for annotation of sequences. Assume we are analyzing a region of
3 billion bp of contiguous human genomic DNA (the total genome). The
human genome is estimated to contain about 60000 + 30000 promoters.
On average general promoter prediction programs detect one promoter per
1000 to 10 000 nucleotides according to the respective authors. Assuming an
optimistic value (1/10000) this would result in about 300000 predictions.
Given the true match rate determined by Fickett and Hatzigeorgiou [50] of
less than 20% on average the result would be 20 000 true predictions versus
280000 or more than 90% false positives.
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On the other hand specific methods were shown to produce more that
50% true positive matches in their total output [21] but recognize just a
small fraction of all promoters. A single specific model like the actin class
model [21] matches about once every 2.5 million bps and thus would yield a
total of 1200 matches, 600 of which can be expected to be true. This is great
in terms of specificity, but loosing more than 90% of the true promoters
present is certainly far from what sequence annotation is aiming at. The
existence of 100 or, most likely, even more promoter models of the specif-
icity of the actin model would be required to achieve specific recognition of
most of the promoters present within the genome. Definition of the re-
quired number of specific models based on current technologies is not a
feasible task. Therefore, new developments have already been initiated to
overcome the current obstacles.

The numbers mentioned above are necessarily very rough estimates.
However, two- or three-fold variations would not change the general results.
It is quite evident that functional promoter analysis in laboratories is capa-
ble of dealing with several hundred or even thousand predicted regions
while predicting several hundred thousand or even millions of regions re-
mains out of reach. It is safe to assume that further improvement of labo-
ratory high throughput technologies and enhancement of the specificity of
promoter recognition in silico will meet somewhere in the future to close the
gap in our knowledge about the functional regulation of the genome. It is
also quite clear from the past and present developments that bioinfomatics
will probably cover significantly more than half of that path.

4.6.2
The larger context

There will be help on the way towards more specific modeling of functional
regions in genomic sequences. The almost unlimited natural context of re-
gions in genomic sequences will allow for completely new approaches to
comparative sequences analysis, which has already proven to be the most
powerful approach in bioinformatics of genomic sequences (e.g., in detec-
tion of new sequence elements). Comparative analysis will be instrumental
in determining the anatomy of regulatory networks including MARs, LCRS,
enhancers, and silencers in addition to the promoter sequences. It can be
safely assumed that context-sensitive sequence analysis will prevail in the
long run over any methods dealing with short isolated sequences.

4.6.3
Aspects of comparative genomics

The context information is by no means restricted to other regions within
the same genome. Approaches based on comparative genomics employing
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sequence information from two or more genomes proved to be very power-
ful as they introduce phylogenetic aspects into the analysis. Phylogenetic
footprints have already shown this [67]. This way, discrimination between
noise and functionally conserved regions can be improved resulting in
easier detection of regions useful for predictive efforts.

4.6.4
Analysis of data sets from high throughput methods

Another field to which the bioinformatics of regulatory DNA regions can be
expected to contribute significantly is the analysis of results from high
throughput experiments in expression analysis (e.g., all forms of expression
arrays). Due to the discontinuous nature of regulatory regions there is
no way of deducing common regulatory features from the expression data
directly that are usually based on coding regions. However, the general
availability of the corresponding genomic regulatory regions for many (and
very soon all) of the genes analyzed in an expression array experiment en-
ables attempts to elucidate the genomic structures underlying common ex-
pression patterns of genes. Expression arrays (described in detail in Chapter
6, Volume 2) directly deliver information, which genes are where expressed
under the conditions tested. However, they cannot provide any clue to why
this happens or how the same genes would behave under yet untested con-
ditions. Identification of functional features by comparative sequence anal-
ysis (e.g., promoter modules) can reveal different functional subgroups of
promoters despite common regulation under specific conditions. Conse-
quently, the detection of known functional modules can suggest expression
patterns under yet untested conditions. Moreover, the organizational struc-
tures of promoters can also be used to identify additional potential target
genes either within the same organism in other genomes or via comparative
genomics. Given the exponential number of possibilities for combinations
of conditions, bioinformatics of regulatory sequences will also become in-
strumental for the rational design of expression arrays as well as for selec-
tion of experimental conditions.

4.7
Conclusions

The experimental dissection of functional mechanisms of transcription
control has gained an enormous momentum during recent years. The ever
rising number of publications on this topic bears witness to this develop-
ment which found one hallmark manifestation in the introduction of a new
section in the Journal of Molecular and Cellular Biology entirely devoted to
analysis of transcription control. The complex interleaved networks of tran-
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scription control certainly represent one of the cornerstones on which to
build our understanding of how life functions, in terms of embryonic de-
velopment, tissue differentiation, and maintenance of the shape and fitness
of adult organisms throughout life. This is also the reason why both the
experimental analysis as well as the bioinformatics of transcription con-
trol will move more and more into the focus of medical/pharmaceutical
research. A considerable number of diseases are directly or indirectly con-
nected to alterations in cellular transcription programs (e.g., most forms of
cancer). Furthermore, many drugs influence transcription control via sig-
naling pathways (triggering transcription factors) which could also be con-
nected to certain side effects of drugs. The human genome sequencing
project will provide us with a complete catalog of the components of a hu-
man probably within a year. This will constitute a blueprint of the material
basis of a human. However, only the analysis of the regulatory part of the
genome and the corresponding expression patterns and the complex meta-
bolic networks will provide deeper insight into how the complex machinery
called life is working. Definition and detection of regulatory regions by bio-
informatics will contribute to this part of the task.
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5
Homology Modeling in Biology and
Medicine

Roland L. Dunbrack, Jr.

5.1
Introduction

5.1.1
The concept of homology modeling

To understand basic biological processes such as cell division, cellular
communication, metabolism, and organismal development and function,
knowledge of the three-dimensional structure of the active components is
crucial. Proteins form the key players in all of these processes, and study
of their diverse and elegant designs is a mainstay of modern biology. The
Protein Databank (PDB) of experimentally determined protein structures
[1, 2] now contains some 18 000 entries, which can be grouped into between
300 and 700 related families based either on structure or on sequence sim-
ilarity [3-5]. The fact that proteins that share very little or no sequence
similarity can have quite similar structures has led to the hypothesis that
there are in fact on the order of 1000-7000 different families [6, 7] which
have been adapted by a process of duplication, mutation, and natural selec-
tion to perform all the biological functions that proteins perform.

Since it was first recognized that proteins can share similar structures [8],
computational methods have been developed to build models of proteins
of unknown structure based on related proteins of known structure [9].
Most such modeling efforts, referred to as homology modeling or compar-
ative modeling, follow a basic protocol laid out by Greer [10, 11]: 1) identify
a template or parent structure related to the target sequence of unknown
structure, and align the target sequence to the template sequence and
structure; 2) for core secondary structures and all well-conserved parts of the
alignment, borrow the backbone coordinates of the template according to
the sequence alignment of the target and template; 3) for segments of the
target sequence for which coordinates cannot be borrowed from the tem-
plate because of insertions and deletions in the alignment (usually in loop
regions of the protein), build these segments using some construction
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method based on our knowledge of the determinants of protein structure; 4)
build side chains determined by the target sequence on to the backbone
model built from the template structure and loop construction. In practice,
identifying a structural homologue requires aligning the sequences, and so
steps 1 and 2 are performed together. Step 2 is often a manual adjustment
of the alignment, but automated sequence alignment methods different
from those used to make the identification may be used. Also, Steps 3 and
4, backbone and side-chain modeling, may be coupled, since certain back-
bone conformations may be unable to accommodate the required side
chains in any low-energy conformation. An alternative strategy has been
developed by Blundell and colleagues, based on averaging a number of
template structures, if these exist, rather than using a single structure [12—
14]. More complex procedures based on reconstructing structures (rather
than perturbing a starting structure) by satisfying spatial restraints using
distance geometry [15] or molecular dynamics and energy minimization
[16-19] have also been developed.

Many methods have been proposed to perform each of the steps in the
homology modeling process. There are also a number of research groups
that have developed complete packages that take as input a sequence align-
ment or even just a sequence and develop a complete model. In this Chap-
ter, we describe some of the basic ideas that drive loop and side-chain
modeling individually and the programs publicly available that implement
them. We also discuss some of the programs that perform all of the steps in
modeling. The identification and alignment steps will be covered in the next
Chapter of this volume.

5.1.2
How do homologous proteins arise?

By definition, homologous proteins arise by evolution from a common
ancestor. But there are several different mechanisms in play, and these are
illustrated in Figure 5.1. The first is random mutation of individual nu-
cleotides that change protein sequence, including missense mutations
(changing the identity of a single amino acid) as well as insertions and de-
letions of a number of nucleotides that result in insertion and deletion of
amino acids. As a single species diverges into two species, a gene in the
parent species will continue to exist in the divergent species and over time
will gather mutations that change protein sequence. In this case, the genes
in the different organisms will usually maintain the same function. These
genes are referred to as orthologues of one another. A second mechanism is
duplication of a gene or of a gene segment within a single organism or
germ line cell. As time goes by, the two copies of the gene may begin to
gather mutations. If the parent gene performed more than one function,
for example similar catalytic activity on two different substrates, one of the
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Fig. 5.1 functions, or the two genes may specialize
Orthologues vs. paralogues. Schematic of  in carrying out two or more functions of
evolutionary process that gives rise to the ancestral gene, thus improving the
homologous proteins. Left: A single gene X fitness of the organism. These genes in

in one species is retained as the species one species are paralogous. If the species
diverges into two separate species. The diverges, each daughter species may
genes in these two species are orthologous. maintain the duplicated genes, and

Right: A single gene X in one species is therefore each species contains an
duplicated. As each gene gathers orthologue and a paralogue to each gene
mutations, it may begin to perform new in the other species.

duplicated genes may gain specificity for one of the reactions, while the
other gene gains specific activity for the other. If this divergence of specif-
icity in the two proteins is advantageous, the duplication will become fixed
in the population. These two genes are paralogues of one another. If the
species with the pair of paralogues diverges into two species, each species
will contain the two paralogues. Each gene in each species will now have an
orthologue and a paralogue in the other species.

5.1.3
The purposes of homology modeling

Homology modeling of proteins has been of great value in interpreting the
relationships of sequence, structure, and function. In particular, ortholo-
gous proteins usually show a pattern of conserved residues that can be in-
terpreted in terms of three-dimensional models of the proteins. Conserved
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residues often form a contiguous active site or interaction surface of the
protein, even if they are distant from each other in the sequence. With a
structural model, a multiple alignment of orthologous proteins can be
interpreted in terms of the constraints of natural selection and the require-
ments for protein folding, stability, dynamics, and function.

For paralogous proteins, three-dimensional models can be used to inter-
pret the similarities and differences in the sequences in terms of the related
structure but different functions of the proteins concerned [20]. In many
cases, there are significant insertions and deletions and amino acid changes
in the active or binding site between paralogues. But by grouping a set of
related proteins into individual families, orthologous within each group, the
evolutionary process that changed the function of the ancestral sequences
can be observed. Indeed, homology models can serve to help us identify
which protein belongs to which functional group by the conservation of
important residues in the active or binding site [21]. A number of recent
papers have been published that use comparative modeling to predict or
establish protein function [22-26].

Another important use of homology modeling is to interpret point mu-
tations in protein sequences that arise either by natural processes or by ex-
perimental manipulation. Now that the human genome project has pro-
duced a rough draft of the complete human genome sequence, there are
starting to be collected voluminous data concerning polymorphisms and
other mutations related to differences in susceptibility, prognosis, and treat-
ment of human disease. There are now many such examples, including the
Factor V/Leiden R506Q mutation [27] that causes increased occurrence of
thrombosis, mutations in cystathionine beta synthase that cause increased
levels of homocysteine in the blood, a risk factor for heart disease [28], and
BRCA1 for which many sequence differences are known, some of which
may lead to breast cancer [29]. At the same time, there are many poly-
morphisms in important genes that have no discernible effect on those who
carry them. At least for some of these, there may be some effect that has yet
to be measured in a large enough population of patients, and the risk of
cancer, heart disease, or other illness to these patients is unknown. This is
yet another important application of homology modeling, since a good
model may indicate readily which mutations pose a likely risk and which do
not.

Homology models may also be used in computer-aided drug design, es-
pecially when a good template structure is available for the target sequence.
For enzymes which maintain the same catalytic activity, the active site may
be sufficiently conserved that a model of the protein provides a reason-
able target for computer programs which can suggest the most likely com-
pounds that will bind to the active site (see also Chapter 7 of this volume).
This has been used successfully in the early development of HIV protease
inhibitors [30, 31] and in the development of anti-malarial compounds that
target the cysteine protease of P. falciparum [32].
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5.1.4
The effect of the genome projects

The many genome projects now completed or underway have greatly
affected the practice of homology modeling of protein structures. First, the
many new sequences have provided a large number of targets for modeling.
Second, the large amount of sequence data makes it easier to establish re-
mote sequence relationships between proteins of unknown structure and
those of known structure on which a model can be built. The most com-
monly used methods for establishing sequence relationships such as PSI-
BLAST [33] are dependent on aligning many related sequences to compile a
pattern or profile of sequence variation and conservation for a sequence
family. This profile can be used to search among the sequences in the PDB
for a relative of the target sequence. The more numerous and more varied
sequences are in the family the more remote are the homologous relation-
ships that can be determined, and the more likely it is that a homologue of
known structure for a target sequence can be found. Third, it is likely that
the accuracy of sequence alignments between the sequence of unknown
structure that we are interested in (referred to as the target sequence) and
the protein sequence of known structure used for model building (referred
to as the template structure) are also greatly improved with profiles estab-
lished from many family members of the target sequence [34]. Fourth, the
completion of a number of microbial genomes has prodded a similar effort
among structural biologists to determine the structures of representatives
of all common protein sequence families, or all proteins in a prototypical
genome, such as E. coli or yeast [35]. Protein structures determined by X-ray
crystallography or NMR spectroscopy are being solved at a much faster pace
than was possible even 10 years ago. The great increase in the number of
solved protein structures has a great impact on the field of homology mod-
eling, since it becomes ever more likely that there will be a template struc-
ture in the PDB for any target sequence of interest.

Given the current sequence and structure databases, it is of interest to
determine what fraction of sequences might be modeled and the range of
sequence identities between target sequences and sequences of known
structure. In Figure 5.2, we show histograms of sequence identities of the
sequences in several genomes and their nearest relatives of known structure
in the Protein Data Bank. These relationships were determined with PSI-
BLAST as described in the legend. PSI-BLAST is fairly sensitive in deter-
mining distant homology relationships [34, 36, 37]. The results indicate that
on average 30-40% of genomic protein sequences are related to proteins of
known structure, which presents a large number of potential targets for
homology modeling. But it should also be pointed out that the average se-
quence identity between target sequences and template structures in the
PDB is less than 25%. It is likely that as sequence comparison methods
improve, our ability to identify increasingly remote homologies will in-
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Fig. 5.2 explanation of this value) used to
Distribution of sequence identities determine sequences which are included in
between proteins in four genomes and the position-specific similarity matrix. After
their closest homologues in the four iterations, each matrix was used to
Protein Databank for those sequences in  search each of the four genomes. Coiled-
genomes with homologues in the PDB. coil and low-sequence complexity
PSI-BLAST was used to search the non- sequences were removed from each

redundant protein sequence database with genome and the non-redundant sequence
a representative set of PDB sequences as  database. All hits in the genomes with E-

queries. The program was run for four values less than 0.001 were saved, and the
iterations, with a maximum expectation histograms were built from the PSI-BLAST
value of 0.0001 (see Chapter 2 for an derived sequence identities.

crease, and we will be able to determine relationships at even lower se-
quence identity with confidence [38].

The low sequence identity between target and template sequences in
Figure 5.2 presents a major challenge for homology modeling practitioners,
since a major determinant in the accuracy of homology modeling is the se-
quence identity between the target sequence and the sequence of the tem-
plate structure. At levels below 30% sequence identity, related protein
structures diverge significantly and there may be many insertions and de-
letions in the sequence [39]. At 20% sequence identity, the average RMSD
of core backbone atoms is 2.4 A [39]. But as demonstrated in Figure 5.2, it is
likely that we will most often face a situation where the target and template
sequences are remotely related. Most widely used homology modeling
methods have been predicated on much higher sequence identities between
template and target, usually well above 30% [40—42]. What methods should
be used at sequence identities in the 10-30% range is of crucial importance
in this so-called post-genomic era.
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5.2
Input data

To produce a protein model that will be useful and informative requires
more than placing a new sequence onto an existing structure. A large
amount of sequence data and other kinds of experimental data can often be
gathered on the target sequence and on its homologue of known structure
to be used for model building. This information can be used to build a
better model and as the data to be interpreted in light of the model. The goal
is to forge an integrated model of the protein sequence, structure, and
function, not merely to build a structure. In Table 5.1, we list the kinds of
information which might be available for a target protein and how these
data might be processed. With the large amount of sequence information
available, it is almost always possible to produce a multiple alignment of

Tab. 5.1
Input information for homology model building

Target sequence

+ Target orthologous relatives (from PSI-BLAST)

» Target paralogous relatives (from PSI-BLAST)

+ Multiple sequence alignment of orthologues and paralogues (either BLAST multiple
alignment or (preferably) other multiple alignment program)

* Sequence profile of ortho/paralogues

Template sequence

» Homologue(s) of known structure (template(s)) determined by database search
methods (BLAST, PSI-BLAST, intermediate-sequence-search methods, HMM'’s, fold
recognition methods)

+ Template orthologous sequences

+ Template paralogous sequences

» Multiple sequence alignment of parent orthologues and paralogues

Alignment of target sequence to template sequence and structure

+ Pairwise alignment

+ Profile alignment

» Multiple sequence alignment of target and template sequence relatives

* Profile-profile alignment

» Fold recognition alignment

* Visual examination of proposed alignments and manual adjustment

* Assessment of confidence in alignment by residue (some regions will be more
conserved than others)

Structure alignment of multiple templates, if available

« Align by structure (fssp, VAST, CE, etc.)

» Compare sequence alignments from structure to sequence alighments from multiple
sequence alignments (see above)

Experimental information

+ Mutation data (site-directed, random, naturally occurring)

« Functional data — e.g. DNA binding, ligands, metals, catalysis, etc.




152

5 Homology Modeling in Biology and Medicine

sequences related to the target protein. The first step in modeling therefore
is to use a database search program such as PSI-BLAST [33] against a non-
redundant protein sequence database such as NCBI's nr database [43] or the
curated SwissProt database [44]. With some care, a list of relatives to the
target sequence can be gathered and aligned. PSI-BLAST provides reason-
able multiple alignments, but it may be desirable to take the sequences
identified by the database search and realign them with a multiple sequence
alignment program such as CLUSTAL W [45], prrp [46], and multalin [47].
Another source of protein sequences related to the target is the database of
expressed sequence tags (ESTS) available at NCBI. ESTs are derived from
sequencing DNA transcriptions of mRNAs derived from cellular samples
from various species or tissue types. While these sequences contain some
non-coding nucleotides, the bulk of the sequence represents transcribed
codons. This DNA sequence database can be searched with protein sequence
queries using the TBLASTN program (http://www.ncbi.nlm.nih.gov/blast).
NCBI also makes available the sequences of unfinished microbial gen-
omes for TBLASTN searches (http://www.ncbi.nlm.nih.gov/Microb_blast/
unfinishedgenome.html), and a search of these may provide additional se-
quences related to the target.

It may be that a database search consisting of several rounds of PSI-
BLAST will provide one or more sequences of known three-dimensional
structure. If this is not the case then more sensitive methods based on fold
recognition [48-79] (see Chapter 6 of this volume) or hidden Markov mod-
els (see Appendix to this volume) [80-87] of protein superfamilies may
identify a suitable template structure. Once a template structure is identi-
fied, a sequence database search will provide a list of relatives of the tem-
plate, analogous to searches for relatives of the target. At this stage it is
useful to divide the sequences related to the target into orthologues and
paralogues of either the target or the template (or both). The sequence
variation within the set of proteins that are orthologous to the target pro-
vides information as to what parts of the sequence are most conserved and
therefore likely to be most important in the model. Similarly variation in the
set of proteins that are orthologous to the template provide a view of the
template protein family that can be used to identify features in common or
distinct in the template and target families. These features can be used to
evaluate and adjust a joint multiple alignment of both families.

If there are multiple structures in the Protein Data Bank that are homol-
ogous to the target sequence, then it is necessary to evaluate them to deter-
mine which PDB entry will provide the best template structure and whether
it will be useful to use more than one structure in the modeling process. In
the case of a single sequence that occurs in multiple PDB entries, it is
usually a matter of selecting the entry with the highest resolution or the
most appropriate ligands (DNA, enzyme inhibitors, metal ions). In other
cases, there may be more than one homologue related to the target se-
quence, and the task is to select the one more closely related to the target
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or to combine information from more than one template structure to build
the model. To do this, a structure alignment of the potential templates can
be performed by one of a number of computer programs available on the
Internet (Dali [88], CE [89], etc., see Table 5.6). From alignments of the tar-
get to the available templates, the location of insertions and deletions can be
observed and often it will be clear that one template is better than others.
This may not be uniform, however, such that some regions of the target
may have no insertions or deletions with respect to one template, but other
regions are more easily aligned with the other template. In this case, a hy-
brid structure may be constructed [13].

Finally, any other experimental information available on the target or
template proteins may be very helpful in producing and interpreting a
structural model. This can include inhibitor studies, DNA binding and se-
quence motifs, proteolysis sites, metal binding, mutagenesis data, and so
forth. A number of databases are available on the web that summarize in-
formation on particular genes, or that collect information on mutations and
polymorphisms linked to disease including: the Cancer Genome Anatomy
Project [90]; the Online Mendelian Inheritance in Man (OMIM) [91]; YDB
(Yeast database), WormDB (C. elegans database), and PombeDB (Schizosac-
charomyces pombe database), all available from http://www.proteome.com/
databases/); and the Human Gene Mutation Database [92].

Finally, we note that many methods in homology modeling rely on sta-
tistical data on protein conformations. We present a primer on some aspects
of protein structure in the Appendix to this Chapter.

53
Methods

5.3.1
Modeling at different levels of complexity

Once an alignment is obtained between the target and a protein of known
structure (as described in “Input Data” or in Chapter 6 of this volume), it is
possible to build a series of models of increasing sophistication.

5.3.1.1 Simple model

Keep backbone and conserved side chains by renaming and renumbering
coordinates in the template structure with the new sequence using the
alignment of target and template; rebuild other side chains using a side-
chain modeling program (e.g., SCWRL [93, 94]); do not model insertions or
deletions; that is, do not build new loops and do not close up gaps. For this
purpose, we have made available a Perl program called blast2model that
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uses BLAST alignments as input and the SCWRL program to build model
structures (http://www.fccc.edu/research/labs/dunbrack/software.html).

5.3.1.2 Stepwise model

Borrow core backbone from template structure, minus coil regions with in-
sertions or deletions in the sequence alignment; rebuild core side chains;
rebuild coil regions with loop prediction method in conjunction with side-
chain prediction method. Core backbone and side chains may or may not be
held fixed during loop prediction (e.g., CONGEN [95]).

5.3.1.3 Global model
Build entire protein from spatial restraints drawn from known structure(s)
and sequence alignment (e.g., MODELLER (16, 17]).

5.3.1.4 Choosing a model

It is not always the case that more sophisticated models are better than
simpler, less complete ones. If elements of secondary structures are allowed
to move away from their positions in the template and large changes are
made to accommodate insertions and deletions, it may be the case that the
model is further away from the target structure (if it were known) than the
template structure was to begin with. This is the “added value” problem
discussed by John Moult at the CASP meetings [96-98]. We would like
methods that change the template structure closer to the target structure,
such that they “add value” to a simple model based on an unaltered tem-
plate structure, perhaps with side chains replaced. Extensive energy mini-
mization or molecular dynamics simulations often bring a model further
away from the correct structure than toward it [99].

The simple model is sometimes justified when there are no insertions
and deletions between the template and target or when these sequence
length changes are far from the active site or binding site of the protein to
be modeled. This often occurs in orthologous enzymes that are under
strong selective pressure to maintain the geometry of the active site. Even in
non-orthologous enzymes, sometimes we are most interested in an accurate
prediction of the active site geometry and not in regions of the protein dis-
tant from the active site. Unless loop modeling is accurate, it is possible that
modeled loops in more sophisticated models may get in the way of side-
chain modeling. If uncertain parts of the chain are not modeled, then side
chains may find their correct positions and the model may be superior to a
more complete version.

A stepwise model is probably the most common method used in homol-
ogy modeling, since it is conceptually simpler than the more complex
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models and since each piece can be constructed and examined in turn.
Some programs therefore proceed by taking the sequence-structure align-
ment, removing all regions where there are insertions and deletions, and
reconstructing loops and side chains against the fixed template of the re-
maining atoms. Some methods may also allow all parts of the template
structure to adjust to the changes in sequence and insertions and deletions.
This usually takes the form of a Monte Carlo or molecular dynamics simu-
lation [18]. A global model, as described above, rebuilds a structure accord-
ing to constraints derived from the known template structure or structures.
This is in contrast to stepwise models that proceed essentially by replacing
parts of the template structure and perhaps perturbing the structure.

Many computer programs for homology modeling are developed to solve
a single problem — such as loop or side-chain building, and may not be set
up to allow all atoms of the protein to adjust or to model many components
simultaneously. In many cases these methods have been tested by using
simplified modeling situations with the newly developed software. Such
examples include experiments with removing and rebuilding loops onto
single protein structures, and stripping and rebuilding all side chains.
Therefore in the next sections we review some of the work in these two
areas.

53.2
Loop modeling

5.3.2.1 Input information

In stepwise construction methods, backbone segments which differ in
length between the template and target (according to the sequence align-
ment) need to be rebuilt. In some situations, even when the sequence
length of a coil segment is maintained, it may be necessary to consider
alternative conformations to accommodate larger side chains or residues
with differing backbone conformational requirements, Gly < non-Gly, or
Pro «» non-Pro mutations (see Appendix). Most such loop construction
methods have been tested only on native structures from which the loop to
be built has been removed. But the reality in homology modeling is more
complicated, requiring several choices to be made in building the complete
structure. These include how much of the template structure to remove
before loop building; whether to model all side-chains of the core before
rebuilding the loops; and whether to rebuild multiple loops simultaneously
or serially.

Deciding how much of the template structure to remove before loop
building depends on examination of the sequence alignment and the tem-
plate structure. Sequence alignments with insertions and deletions are
usually not unambiguous. Most sequence alignment methods ignorant of
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structure will not juxtapose a gap in one sequence immediately adjacent to a
gap in another sequence. That is, they will produce an alignment that looks
like this alignment:

AGVEPMENYKLS

SG---LDDFKLT
rather than like this one:

AGVEPMEN---YKLS

SGL-=--- LDDFKLT

However, the latter alignment is probably more realistic [100], indicating
that a 5 amino acid loop in the first sequence and structure is to be replaced
with a 3 amino acid loop in the second sequence. The customary practice is
to remove the whole segment between two conserved secondary structures
units. Even with this practice, ambiguity remains, since the ends of sec-
ondary structures, especially o-helices, are not well determined. If loop
building methods were accurate, then removing more of the segment would
be a good idea. But long loops (longer than 6 amino acids) are difficult to
rebuild accurately, and hence there is cause to preserve as much of the
starting structure as possible. Once the backbone has been borrowed from
the template in stepwise modeling, one has to decide the order of building
the core side chains, the backbone of loops to be built, and their side chains.
They may be built sequentially, or allowed to vary simultaneously. Side
chains from the core may guide the building of the loop, but at the same
time may hinder correct placement. It is certainly the case that in the final
structure there must be a reasonably low-energy conformation that can ac-
commodate all loops and side chains simultaneously. Different authors have
made different choices, and there has been little attempt to try vary the
procedure while keeping the search algorithm and potential energy function
used [74, 101-105] fixed.

5.3.2.2 Loop conformational analysis

Loop structure prediction is always based in one way or another on an
understanding of loop conformations in experimentally determined struc-
tures. Loop conformational analysis has been performed on a number of
levels, ranging from classification of loops into a number of distinct types to
statistical analysis of backbone dihedral angles. Loop classification schemes
have usually been restricted to loops of a particular size range: short loops of
1-4 residues, medium loops of 5-8 residues, and long loops of 9 residues or
longer.
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Thornton and coworkers have classified g-turns, which are short loops of
2-5 amino acids that connect two anti-parallel f-sheet strands [106-109].
These loops occur in a limited number of conformations that depend on the
sequence of the loop, especially on the presence of glycine and proline res-
idues at specific positions. The backbone conformation can be characterized
by the conformations of each amino acid in terms of regions of the Ram-
achandran map occupied (usually defined as ag, fp, fg, Y&, o1, and y;; see
Appendix) [108]. Usually one or more positions in the loops requires an oy
conformation and therefore a glycine, asparagine, or aspartic acid residue.
One useful aspect of this analysis is that if a residue varies at certain posi-
tions or there are short insertions at certain positions, the effect on the loop
can be predicted [109] since the number of possibilities for each length class
is small. The program BTPRED is available (see Table 5.6) to predict the
locations of specific types of f-turns from protein sequences and secondary
structure predictions derived from other programs [110]. Single amino acid
changes tend to maintain the loop conformations, except when Pro residues
substitute for residues with ¢ > 0° (see Appendix to this Chapter), while
insertions change the class of the loop.

In recent years with a larger number of structures available, medium
length loops have also been classified [111-117] by their patterns of back-
bone conformation residue by residue (ag, fp, etc.). A number of regularly
occurring classes have been found, depending on length, type of secondary
structure being connected, and sequence. These classes cover many but by
no means all of the loops seen in non-# turn contexts. The work of Oliva et
al. [114] is probably the most thorough classification to date.

Longer loops (>8 amino acids) have been investigated by Martin et al.
[118] and Ring et al. [119]. Martin et al. found that long loops fall into 2
classes, those that connect spatially adjacent secondary structures and those
that connect secondary structures separated by some distance. Ring et al.
provided a useful classification of longer loops as either strap (long ex-
tended loops), Q loops (similar to those described by Leszczynski [113])
which resemble the Greek letter, and ( loops, which are non-planar and
have a zigzag appearance. The different loop types were found to have dif-
ferent distributions of virtual Ca-Ca-Co-Co dihedrals to accommodate their
shapes.

Swindells et al. [120] have calculated the intrinsic ¢, y propensities of the
20 amino acids from the coil regions of 85 protein structures. The distri-
bution for coil regions is quite different than for the regular secondary
structure regions, with a large increase in fp and «; conformations and
much more diverse conformations in the f; and or regions. Their results
also indicate that the 18 non-Gly, Pro amino acid type are in fact quite dif-
ferent from each other in terms of their Ramachandran distributions, de-
spite the fact that they are usually treated as identically distributed in pre-
diction methods [95, 121]. Their analysis was divided into the main broad
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regions of the Ramachandran map, ignoring the o; region. The results are
intriguing, in that the probability distributions are distinct enough even
when calculated from a relatively small protein dataset. See the Appendix to
this Chapter for examples.

5.3.2.3 Loop prediction methods

Loop prediction methods can be analyzed for a number of important factors
in determining their usefulness: 1) method of backbone construction; 2)
what range of lengths are possible; 3) how widely is the conformational
space searched; 4) how are side chains added; 5) how are the conformations
scored (i.e., the potential energy function); and 6) how much has the
method been tested (length, number, self/non-self ). We summarize a large
number of published methods in Table 5.2. Only a subset of these methods
are available as programs that can be downloaded or as web-servers that can
perform calculations on input structures. This is indicated in Table 5.2, and
the addresses for available programs are listed in Table 5.6.

5.3.2.3.1 Database methods

The most common approach to loop modeling involves using “spare parts”
from other (unrelated) protein structures [11, 13, 119, 122-133]. These
database methods begin by measuring the orientation and separation of the
backbone segments flanking the region to be modeled, and then search the
PDB for segments of the same length which span a region of similar size
and orientation. This work was pioneered by Jones and Thirup [122]. They
defined a procedure in which Co-Co distances were measured among six
residues, three on either side of a backbone segment to be constructed.
These 15 Co-Co distances were used to search structures in the Protein
Databank for segments with similar Co-Ca distances and the appropriate
number of intervening residues. Other authors have used the same method
for locating potential database candidates for the loop to be constructed
[124, 127, 128, 130].

In recent years, as the size of the PDB has increased, database methods
have continued to attract attention. With a larger database, recurring struc-
tural motifs have been classified for loop structures [111, 114, 116, 129,
134], including their sequence dependence. Database methods have been
applied only for loops of up to 8 residues. Fidelis et al. [126] found that for
loops of length greater than 7 there is not likely to be a segment in the PDB
that corresponds to the correct loop conformations for the 58 protein they
looked at. Some authors report that when the database contains a loop of
similar structure to the target to be modeled, their methods perform well,
with RMSD values around 1A or better. Otherwise they tend to fail [124,
127, 130].
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Although many methods have been published, they have usually only
been tested on a small number of loops, and then usually in the context of
rebuilding loops onto their own backbones, rather than in the process of
homology modeling. These numbers are listed in Table 5.2. One exception
to the small numbers of tests is the work of Fechteler et al. [128], who de-
veloped a database method (implemented in the program BRAGI) and
tested it on 71 insertion and 74 deletion regions of 1-3 amino acids in
length. Another is the work of Rufino et al., who used their loop classifica-
tion scheme predictively on 1785 loops [129]. Unfortunately, they found
their database not particularly successful in making predictions. Their
database could only be used to make a prediction in 63% of cases, and only
54% of these predictions were considered correct.

5.3.2.3.2 Construction methods

The main alternative to database methods is construction of loops by ran-
dom or exhaustive search mechanisms. Moult and James [135] early on
used a systematic search to predict loop conformations up to 6 residues
long. They pioneered several useful concepts in loop modeling by construc-
tion: the use of a limited number of ¢, y pairs for construction; construction
from each end of the loop simultaneously; discarding conformations of par-
tial loops that cannot span the remaining distance with those residues left
to be modeled; using side-chain clashes to reject partial loop conformations;
and the use of electrostatic and hydrophobic free energy terms in evaluating
predicted loops. Their method successfully predicted the structures of two
loops in trypsin. The CONGEN program of Bruccoleri and Karplus [18, 95,
136, 137] is also based on an exhaustive search algorithm, this time based
on an evenly spaced grid of backbone conformations (either 15° or 30°) in
accessible regions of the Ramachandran map. Gly and Pro are treated as
separate classes, while the remaining 18 amino acids are treated identically
in terms of their backbone energies and allowed range. Amino acids are
built in turn, with partial conformations discarded if it will be impossible to
close the loop with the remaining amino acids to be built. Energies are
evaluated with the CHARMM polar-hydrogen force field [138]. Side chains
are built by exhaustive search on 30° increments of side-chain dihedrals, as
each residue is built. Since the method has been tested only on a small
number of immunoglobulin CDR loops, it is difficult to tell how generally
successful the algorithm is likely to be.

A particularly interesting loop construction algorithm is the scaling-
relaxation method of Zheng et al. [139-141]. In this method, a full segment
is sampled and its end-to-end distance is measured. If this distance is
longer than the segment needs to be, then the segment is scaled in size so
that it fits the end-to-end distance of the protein anchors. This results in
very short bond distances, and unphysical connections to the anchors. From
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there, energy minimization is performed on the loop, slowly relaxing the
scaling constant, until the loop is scaled back to full size. The method is
efficient, since many loops can be generated which span the anchors, clos-
ing the loop with reasonable dihedral angles. Again, this method has been
tested on only a few proteins, mostly immunoglobulins. Using the same
methodology, Rosenbach and Rosenfeld have addressed the important issue
of simultaneously modeling two or more loops in proteins [142]. In one test
case, they found it advantageous to model two loops simultaneously, so that
each felt the presence of the other in energy calculations

Other methods have built chains by sampling Ramachandran conforma-
tions randomly, keeping partial segments as long as they can complete the
loop with the remaining residues to be built [143-145] For longer loops,
these methods seem to be much more promising, since they spend less
time in unlikely conformations searched in the grid method. Many of these
methods are based on Monte Carlo or molecular dynamics simulations with
simulated annealing to generate many conformations which can then be
energy minimized and tested with some energy function to choose the
lowest energy conformation for prediction [143, 144, 146—148]. Several au-
thors have developed Monte Carlo methods that draw ¢,y values from
probability distributions derived from the PDB [149, 150] for other pur-
poses, such as NMR structure refinement and ab initio peptide folding.
These methods are promising because they are faster than exhaustive cal-
culations, but have not been designed or tested on loop generation.

One important aspect in the development of a prediction method based
on random (or exhaustive) construction of backbone conformations is the
free energy function used to discriminate among those conformations
which successfully bridge the anchors (see Table 5.2). Janardhan and Vajda
[102] have found that a free energy function including a molecular me-
chanics term for the conformational energy, and a hydrophobic surface
free energy term for the solvation is able to discriminate between decoy
loops and real loops and to locate the correct conformation. Rapp and
Friesner [104] reported recently that the AMBER94 force field and a gener-
alized Born solvation model coupled with molecular dynamics and Monte
Carlo simulations was able to regenerate conformations close to the crystal
structure for one 8 and one 12 amino acid loop segment of ribonuclease.
Their energy function was able to discriminate between good and poor
conformations.

5.3.2.4 Available programs

Apart from complete modeling packages (discussed below), only a small
number of programs are freely and publicly available from the many meth-
ods that have been published (see Table 5.6). Among database methods, this
includes only Swiss-PDBViewer [151], and BRAGI which implements the
method of Fechteler et al. [128]. Several loop databases are available. Among
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construction methods, CONGEN is currently available [95]. CODA runs
both a database and an ab initio construction method [152].

533
Side-chain modeling

5.3.3.1 Input information

Side-chain modeling is a crucial step in predicting protein structure by
homology, since side-chain identities and conformations determine the
specificity differences in enzyme active sites and protein binding sites. The
problem has been described as “solved” [153], although new methods [154]
or improvements on older ones [94] continue to be published. Some side-
chain prediction methods stand on their own, and are meant to be used
with a fixed backbone conformation and sequence to be modeled given as
input. Other methods have been developed in the context of general homol-
ogy modeling methods, including the prediction of insertion-deletion re-
gions. Even when using general modeling procedures, such as MODELLER,
it may be worthwhile subsequently to apply a side-chain modeling step with
other programs optimized for this purpose. This is especially the case when
side-chain conformations may be of great importance to interpretation of
the model. It is also often the case that insertion-deletion regions are far
away from the site of interest, and loop modeling may be dispensed with.
Indeed, significant alterations of the backbone of the template, if they are
not closer to the target to be modeled (if it were known) than the template,
may in fact result in poorer side-chain modeling than if no loop modeling
were performed. As described above, the choice of the template may depend
not only on sequence identity but also on the absence of insertions and de-
letions near the site of interest. If this is successful, side-chain modeling
rises in importance in relation to loop prediction.

Side-chain prediction methods described in detail in the literature have a
long history, although only a small number of programs are currently pub-
licly available (see Tables 5.3 and 5.6). Nearly all assume a fixed backbone,
which may be from a homologous protein of the structure to be modeled,
or may be the actual X-ray backbone coordinates of the protein to be mod-
eled. Many methods have in fact only been tested by replacing side chains
onto backbones taken from the actual three-dimensional coordinates of the
proteins being modeled (“self-backbone predictions”). Nevertheless, these
methods can be used for homology modeling by substituting the target se-
quence onto the template backbone. When a protein is modeled from a
known structure, information on the conformation of some side chains may
be taken from the template. This is most frequently the case when the
template and target residue are identical, in which case the template resi-
due’s Cartesian coordinates may be used. These may be kept fixed as the
other side chains are placed and optimized, or they may be used only as a
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starting conformation and optimized with all other side chains. Only a
small number of methods use information about non-identical side chains
borrowed from the template. For instance, Phe < Tyr substitutions only
require the building or removal of a hydroxyl group while Asn < Asp sub-
stitutions require changing one of ¢ atoms from NH2 to O or vice versa.
Summers and Karplus [155, 156] used a more detailed substitution scheme,
where for instance the y; angle of very different side-chain types (e.g.,
Lys < Phe) might be used in building side chains (see Appendix for defi-
nition of side-chain dihedral angles). In the long run, this is probably
not advantageous, since the conformational preferences of non-similar side-
chain types may be quite different from each other.

5.3.3.2 Rotamers and rotamer libraries

Nearly all side-chain prediction methods depend on the concept of side-
chain rotamers. From conformational analysis of organic molecules, it was
predicted long ago [157, 158] that protein side chains should attain a limited
number of conformations because of steric and dihedral strain within each
side chain and between the side chain and the backbone (dihedral strain
occurs because of Pauli exclusion between bonding molecular orbitals in
eclipsed positions) [159]. For sp*~sp* hybridized bonds, the energy minima
for the dihedral are at the staggered positions that minimize dihedral strain
at approximately 60°, 180°, and —60°. For sp*-sp? bonds, the minima are
usually narrowly distributed around 4+90° or —90° for aromatics and widely
distributed around 0° or 180° for carboxylates and amides (e.g., Asn/Asp y,
and Glu/Gln y3).

As crystal structures of proteins have been solved in increasing numbers,
a variety of rotamer libraries have been compiled with increasing amounts
of detail and greater statistical soundness; that is, with more structures at
higher resolution [160-169]. The earliest rotamer libraries were based on
a small number of structures [160-163]. Even the widely used Ponder
& Richards library was based on only 19 structures, including only 16 me-
thionines [163]. The most recent libraries are based on over 600 structures
with resolution of 1.8 A or better and mutual sequence identity less than
50% between any two chains used.

Most rotamer libraries are backbone-conformation-independent. In these
libraries, the dihedral angles for side chains are averaged over all side chains
of a given type and rotamer class, regardless of the local backbone confor-
mation or secondary structure. These libraries include two in common use
in side-chain conformation prediction methods, that of Ponder & Richards
and that of Tuffery et al. [165]. It should be noted that the Ponder-Richards
library is based on a very small sample of proteins and should not be used
for conformation prediction (which was not its intended use anyway). The
Tuffery library is based on 53 structures, which is also a very small sample
compared to the PDB now available. Kono and Doi also published a rotamer
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library based on a cluster analysis of 103 structures [170]. Richardson et al.
have compiled rotamers recently from proteins with resolution better than
1.7 A (compared to the more common 2.0 A resolution cutoff), while ex-
cluding residues whose conformation is likely to be poorly determined, for
example, partially disordered residues (high X-ray temperature factors) and
those with unfavorable steric overlaps. This winnowing process leaves a
smaller sample but one with more tightly clustered dihedral values [171].

Several libraries have been proposed that are dependent on the confor-
mation of the local backbone [164, 166-169]. McGregor et al. [164] and
Schrauber et al. [167] compiled rotamer probabilities and dihedral angle
averages in different secondary structures. To my knowledge these libraries
are not used in any available side-chain conformation prediction programs.
We have used Bayesian statistical methods to compile a backbone-dependent
rotamer library with rotamer probabilities and average angles and standard
deviations at all values of the backbone dihedral angles ¢ and w in 10° in-
crements [166, 168, 169]. The current version of this library is based on 699
chains with resolution better than 1.8 A and less than 50% mutual sequence
identity. The library is described in greater detail in the appendix.

5.3.3.3 Side-chain prediction methods

Side-chain prediction methods can be classified in terms of how they treat
side-chain dihedral angles (rotamer library, grid, or continuous dihedral
angle distribution), potential energy function used to evaluate proposed
conformations, and search strategy. These factors are summarized in Table
5.3 for nearly all side-chain prediction methods published to date. It is also
useful to know how well each method has been tested, and this information
is also given in the table.

As demonstrated in Table 5.3, the potential energy functions in side-chain
prediction methods have varied tremendously from simple steric exclusion
terms to full molecular mechanics potentials. In most cases, the potential
energy function is a standard Lennard-Jones potential:

w =] (5)" - a(3)] o

In this equation, r is the distance between two non-bonded atoms and ¢ and
o are parameters that determine the shape of the potential. This potential
has a minimum at the distance r = 2/ and a well depth of ¢. Different
values of ¢ and ¢ may be chosen for different pairs of atom types. Some
potential energy functions for side chains may also include a hydrogen
bond term. Depending on the potential parameters, these potentials may
not accurately model the relative energies of rotamers for each side-chain
type that are determined from local interactions within each side chain and
between the side chain and the local backbone. For instance, in molecular
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mechanics potentials, interactions between atoms connected by 3 covalent
bonds (atoms i and i + 3 in a chain) are not usually treated by van der Waals
terms, but rather in torsion terms of the form [172],

E(t) = > Ky cos(mz + ay,) (5.2)

where the sum over m may include one-fold, two-fold, three-fold, four-fold,
and six-fold cosine terms. The K, and a,, are constants specific for each
dihedral angle and each term in the sum. These torsion terms are included
in some side-chain prediction methods, but ignored in others [173].

Electrostatic interactions in the form of a Coulomb potential have been
included in methods that rely on full molecular mechanics potentials, usu-
ally with a distance-dependent dielectric, &(r) = r:

9i9;
E= ﬁ (5.3)

Solvent interactions are also usually ignored, since these can be difficult or
expensive to model properly (for exceptions see [174, 175]).

SCWRL uses an alternative strategy, based on a probabilistic potential
based on the backbone-dependent rotamer library. There are two terms: the
internal side-chain energy and the local side-chain-backbone interaction
are modeled with an energy term proportional to —In p,,, where p,,, is the
probability of the rotamer for the particular side-chain type and backbone
conformation and a simple truncated linear steric term that models the re-
pulsive interactions between atoms [93, 94].

Side-chain conformation prediction is a combinatorial problem, since
there are on the order of n}, possible conformations, where n,; is the aver-
age number of rotamers per side chain and N is the number of side chains.
But in fact the space of conformations is much smaller than that, since side
chains can only interact with a small number of neighbors, and in most
cases clusters of interacting side chains can be isolated and each cluster can
be solved separately [93, 165]. Also, many rotamers have prohibitively large
interactions with the backbone and are at the outset unlikely to be part of
the final predicted conformation. These can be eliminated from the search
early on.

Many standard search methods have been used in side-chain conforma-
tion prediction, including Monte Carlo simulation [176-178], simulated
annealing [179], self-consistent mean field calculations [154, 173, 180], and
neural networks [170]. Self-consistent mean field calculations represent
each side chain as a set of conformations, each with its own probability.
Each rotamer of each side chain has a certain probability, p(r;). The total
energy is a weighted sum of the interactions with the backbone and inter-
actions of side chains with each other:
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N 1) N-1ma(i) N o))
B = Z p(ri) Epp(ri) + Z p(ri)p(rj) Exc(ri, 17) (5-4)
i=1 r=1 i=1 r=1 j=i+1 =1

In this equation, p(r;) is the density or probability of rotamer r; of residue i,
Eyy(r;) is the energy of interaction of this rotamer with the backbone, and
Eq(r;,7;) is the interaction energy (van der Waals, electrostatic) of rotamer
r; of residue i with rotamer r; of residue j. Some initial probabilities are
chosen for the p’s in Eq. (5.4), and the energies calculated. New probabilities
p'(r;) can then be calculated with a Boltzmann distribution based on the
energies of each side chain and the probabilities of the previous step:

E(ri) = Bp(ri) + > (1) Eee(ri,75)

(5.5)

Alternating steps of new energies and new probabilities can be calculated
from the expressions in Eq. (5.5) until the changes in probabilities and en-
ergies in each step become smaller than some tolerance.

The dead-end elimination algorithm is a method for pruning the number
of rotamers used in a combinatorial search by removing rotamers that can
not be part of the global minimum energy conformation [181-185]. This
method can be used for any search problem that can be expressed as a sum
of single-side-chain terms and pairwise interactions. Goldstein’s improve-
ment on the original DEE can be expressed as follows [183]. If the total
energy for all side chains is expressed as the sum of singlet and pairwise
energies,

N N-1 N
E=Y Ew(r)+ Y > Eurin) (5.6)
i=1 i=1 j>i

then a rotamer r; can be eliminated from the search if there is another
rotamer s; for the same side chain that satisfies the following equation:

N
Epp(ri) — Ewp(s)) + D min{Ee(r,n) — Ex(si,1;)} > 0 (5.7)
i 0

In words, rotamer r; of residue i can be eliminated from the search if
another rotamer of residue i, s;, always has a lower interaction energy with
all other side chains regardless of which rotamer is chosen for the other side
chains. More powerful versions have been developed that eliminate certain
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pairs of rotamers from the search [183, 185]. DEE-based methods have also
proved very useful in protein design, where there is variation of residue type
as well as conformation at each position of the protein [186-188].

Our side-chain prediction program SCWRL [93, 94] begins by determin-
ing the ¢ and y angles of the input backbone conformation, and then plac-
ing side chains initially in the most favored position according to the back-
bone-dependent rotamer library [166, 168, 169]. The y; side-chain dihedrals
vary as a function of the backbone conformation for each rotamer type, in
contrast to the use of backbone-independent rotamer libraries. Once the
side chains are placed, steric clashes are calculated and side chains are
grouped into clusters of clashing residues. If any rotamer for any side chain
in one of the original clusters can produce steric overlaps with other side
chains not in the clusters, then these side chains are added to the clusters.
The rotamers of these side chains are searched for interactions with other
side chains, and so on. Once the clusters are determined, they are solved
using a branch-and-bound algorithm. It should also be noted that SCWRL
uses what is essentially a dead-end elimination step, since side chains which
never get added to the clusters are not searched, since they are already in
their optimum rotamer with respect to the backbone. Any other rotamer
choice would increase the energy, consistent with Eq. (5.7) above.

If the clusters are too large to be solved quickly, the clusters are divided by
finding a residue which when removed will divide the cluster into two parts
with the smallest number of combinations for solving each subcluster. For
instance if a cluster of N residues can be broken into two non-interacting
parts by removing one residue (called the keystone residue), then the num-
ber of combinations required to solve each group separately once for each
rotamer of the keystone residue, is approximately n,(n%, +nk ) where
N = a + b and n, is the average number of rotamers for each side chain. If
a ~ b, then the number of combinations is approximately the square root of
the number of combinations of the undivided cluster.

In most methods, the search is over a well-defined set of rotamers for
each residue. As described above, these represent local minima on the side-
chain conformational potential energy map. In several methods, however,
non-rotamer positions are sampled. Summers and Karplus used CHARMM
to calculate potential energy maps for side chains based on 10° grids [155,
156]. Dunbrack and Karplus used CHARMM to minimize the energy of
rotamers from canonical starting conformations (—60°, 180°, and +60°)
[166]. Vasquez also used energy minimization [189], Lee and Subbiah used
a search over 10° increments in dihedral angles with a simple van der Waals
term and a threefold alkane potential on side-chain dihedrals [190]. Very
recently Mendes et al. [154, 180] used a mean-field method to sample from
Gaussian distributions about the conformations in the rotamer library of
Tuffery et al. [165]. On a test-set of 20 proteins, they claim a higher rate of
prediction of core residues than SCWRL but a lower rate for surface-exposed
residues.
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5.3.3.4 Available programs for side-chain prediction
While many methods for side-chain prediction have been presented over the
years, only a small number of programs are publicly available at this time.
Information on obtaining these programs is given in Table 5.6. The avail-
able programs include SMD [165, 191], Sidemod [192], Confmat [173],
Torso [176], GeneMine [190], RAMP [193], and SCWRL [93, 94]. We found
most of these programs easy to obtain, compile, and execute. One compli-
cation for using Torso and Confmat in modeling situations is that the pro-
grams do not maintain the residue numbering of the input file, but instead
renumber the residues from 1 to N, the number of residues in the input
file. This complicates the use of these programs for homology modeling.
Also, only SCWRL provides a method for constraining the conformations of
certain side chains, usually those that are preserved in amino acid type be-
tween the target sequence and template structure used for modeling.
Modeling programs which include backbone modeling also produce side-
chain conformation predictions, although in most cases their side-chain
prediction rates have not been studied. These programs include Whatlf,
which uses a segment library (5-7 amino acids long) to determine a popu-
lation of side-chain conformations for the central residue with a similar
backbone conformation over the segment [194]. Whatlf’s side-chain model-
ing is available on the web (see Table 5.6). MODELLER [16, 17] uses con-
straints based on the known side-chain conformations in the template struc-
ture. As such, it is not appropriate for modeling side chains on a backbone
with no prior information on side-chain conformation. SwissModel [151]
uses a backbone-independent rotamer library followed by energy minimiza-
tion. ICM [147] uses a statistical potential energy function to sample side-
chain conformations.

53.4
Methods for complete modeling

Homology modeling is a complex process. Automated protocols that begin
with a sequence and produce a complete model are few, and the resulting
models should be examined with great care (as of course should all models).
But these methods usually allow for (and indeed recommend) some manual
intervention in the choice of template structure or structures, and in the
sequence alignment. In these steps, manual intervention is likely to have
important consequences. Later stages of modeling (actual building of the
structure) are more easily automated, and there are not usually obvious
manual adjustments to make.

There are several publicly available programs available for homology
modeling that are intended to make complete models from input se-
quences. These are MODELLER, developed by Andrej Sali and colleagues
[16, 17, 41, 195], SwissModel, developed by Manuel Peitsch and colleagues
[151, 196, 197], RAMP developed by Ram Samudrala and John Moult [193,
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198, 199], and COMPOSER by Blundell and colleagues [13, 14]. Some de-
tails are summarized in Table 5.4. Program availability is given in Table 5.6.
We described each program in turn.

5.3.5.1 Modeller

Modeller takes as input a protein sequence and a sequence alignment to the
sequence(s) of known structure(s), and produces a comparative model. The
program uses the input structure(s) to construct constraints on atomic dis-
tances, dihedral angles, and so forth, that when combined with statistical
distributions derived from many homologous structure pairs in the Protein
Data Bank, form a conditional probability distribution function for the de-
grees of freedom of the protein. For instance, a probability function for the
backbone dihedrals of a particular residue to be built in the model can be
derived by combining information in the known structure (given the align-
ment) and information about the amino acid type’s Ramachandran distri-
bution in the PDB. The number of restraints is very large; for a protein of
100 residues there may be as many as 20000 restraints. The restraints
are combined with the CHARMM force field to form a function to be opti-
mized. This function is optimized using conjugate gradient minimization
and molecular dynamics with simulated annealing.

Modeller provides some help with homologue identification and se-
quence alignment, but the full PDB should be searched outside of Modeller
unless a very recent update of the program and database is obtained. Addi-
tional sequences of unknown structure can also be added to the information
used by Modeller, although these must be obtained with other programs
such as BLAST and FASTA. Modeller can combine the sequences and
structures into a complete alignment which can then be examined using
molecular graphics programs and edited manually.

5.3.5.2 SwissModel

SwissModel is intended to be a complete modeling procedure accessible via
a web server that accepts the sequence to be modeled, and then delivers the
model by electronic mail [151, 196]. In contrast to Modeller, SwissModel
follows the standard protocol of homologue identification, sequence align-
ment, determining the core backbone, and modeling loops and side chains.
SwissModel will search a sequence database of proteins in the PDB with
BLAST, and will attempt to build a model for any PDB hits with p-values
less than 107> and at least 30% sequence identity to the target (for a de-
scription of p-values and BLAST, see Chapter 2 of this volume). SwissModel
allows for user intervention by specifying the template(s) and alignments to
be used. If more than one structure is found, they will be superimposed on
the template structure closest in sequence identity to the target. The struc-
tural superposition is accomplished by aligning the structures according to
the initial sequence alignment, and then minimizing Co-Co distances be-
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Tab. 5.4

Programs for complete homology modeling (alignment, loops, side chains)

Authors Availability Potential energy ~ Search method

Sutcliffe, COMPOSER Averaging several structures;
Blundell picking fragments from each
[13, 14] most similar to average

Sali, Blundell, MODELLER CHARMM + Satisfaction of spatial restraints
Sanchez constraints (prob. distribution functions)
[16, 17, 195] from statis- by minimization and simu-

tical analysis lated annealing

Yang, Honig PrISM Multiple structures are aligned,
[204] and the most appropriate

template is used for each
segment of the target to be
built. Loops are built ab
initio and side chains are
built using the template or
based on mainchain torsions
and a neural network
algorithm.

Li, Tejero, CONGEN +2 CHARMM; Distance constraints derived
Bruccoleri, set-up e=T1 from known structure and
Montelione programs alignment; random subset is
[18, 19] used as input to CONGEN

simulated annealing/
restrained molecular
dynamics simulations

Peitsch, Guex SwissModel GROMOS Alignment determines core
[151, 196] backbone, while loops are

built with database method.
Side chains are built using
the template side chain
where possible, and
GROMOS minimization
otherwise.

Havel, Snow DISGEOQ/Co- None Distance geometry; constraints
[15, 210] nsensus based on alignment and

(MSI, Inc.) multiple structures

Samudrala, RAMP Atom distance Graph theory method that
Moult [193, energy func- selects compatible confor-
198, 199, tion from mations from multiple
209] statistical templates, multiple database

analysis loops, and side-chain

rotamers
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tween the proteins. This is in contrast to methods that compare internal
distances in one structure with internal distances in the other, such as DALI
[88] and CE [89].

SwissModel determines the core backbone from the alignment of the
target sequence to the template sequence(s) by averaging the structures ac-
cording to their local degree of sequence identity with the target sequence.
The program builds new segments of backbone for loop regions by a data-
base scan of the PDB using anchors of 4 Co atoms on each end. This
method is used to build only the Cx atoms, and the backbone is completed
with a search of pentapeptide segments in the PDB that fit the Cu trace
of the loop. Side chains are now built for those residues without infor-
mation in the template structure by using the most common (backbone-
independent) rotamer for that residue type. If a side chain can not be placed
without steric overlaps, another rotamer is used. Some additional refine-
ment is performed with energy minimization with the GROMOS [200]
program.

SwissModel has been extensively tested by building over 1200 models of
proteins of known structure, with template-target sequence identities rang-
ing from 25 to 95%. It was found that 30% of models with sequence identity
less than 30% could be built with backbone RMSD less than 3 A. This rose
rapidly with sequence identity, such that over 80% of models with sequence
identity better than 50% could be built with RMSD’s better than 3 A. As-
sessments of side chain and loop modeling quality however have not been
published.

5.3.5.3 CONGEN with Homology-derived constraints

Montelione et al. have used CONGEN [95, 201] to produce comparative
models [18, 19, 202, 203]. Their method derives distance restraints from the
template structure and the sequence alignment of the target and template
for atoms they consider “homologous.” These atoms include all backbone
atoms and side-chain atoms of the same chemical type and hybridization
state (i.e., sp®, sp?). In the vicinity of an insertion or deletion in the align-
ment (+3 amino acids), no homologous atoms are defined so that loop
regions are free to move. From the very large number of constraints gen-
erated by this procedure, a small fraction (< 2%) are chosen randomly and
used with restrained molecular dynamics and simulated annealing in the
CONGEN program. CONGEN’s side-chain loop and search routines can
also be used. The method has only been tested on 4 proteins [18, 19], and so
it is difficult to assess the accuracy.

5.3.5.4 PrISM
Yang and Honig have developed the PrISM package of programs that per-
forms structure alignment, PDB sequence search, fold recognition, se-
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quence alignment, secondary structure prediction, and homology modeling
[204-208]. Its methods for homology modeling [204], in contrast to struc-
ture alignment [206-208], have not been published in detail. If multiple
structures are available, PrISM aligns them and builds a composite tem-
plate by selecting each secondary structure from the most appropriate tem-
plate. Loop modeling is performed ab initio and side-chain dihedrals are
taken either from the template or predicted based on mainchain torsion
angles and a neural network algorithm.

5.3.5.5 COMPOSER

COMPOSER by Blundell and colleagues [13, 14] exploits the use of multiple
template structures for building homology models. If a target sequence is
related to more than one template (of different sequence) then all templates
are used to provide an ‘“‘average” framework for building the structure.
Modeling of loops and side-chains is accomplished by borrowing from one
of the template structure where possible, and by database methods in other
cases.

5.3.5.6 RAMP

Samudrala and Moult described a method for “handling context sensitivity”
of protein structure prediction, that is, simultaneous loop and side-chain
modeling, using a graph theory method [198, 209] and an all-atom distance-
dependent statistical potential energy function [199]. Their program RAMP
is listed in Table 5.6.

5.3.5.7 DISGEO/Consensus

Havel and coworkers [15, 210] have described a method of producing com-
parative models by distance geometry based on restricted ranges for certain
Co-Co distances, dihedrals, and mainchain-side-chain distances. This
method has become part of the InsightIl package from Molecular Simu-
lations, Inc.

5.4
Results

5.4.1
Range of targets

A very large number of homology models have been built over the years by
many authors. Targets have included antibodies [211-216] and many pro-
teins involved in human biology and medicine 19, 31, 217-256].
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Two databases of homology models are available on the Internet — Mod-
Base and SwissModel. ModBase [257], produced by Andrej Sali and col-
leagues at Rockefeller University, contains homology models built with the
program MODELLER [16] for as many sequences in several complete ge-
nomes that can be modeled with structural homologues of better than 30%
sequence identity. The models include evaluations for predicting their ac-
curacy.

5.4.2
Example: amyloid precursor protein f-secretase

Alzheimer’s disease is characterized by plaques in the brain consisting pri-
marily of the 40-42 amino acid amyloid -peptide (Af) [258]. Ap derives
from proteolysis of the amyloid precursor protein (APP) by the § and y sec-
retases to create the N and C-termini of the peptide respectively [259]. The
f-secretase has recently been identified as a 501 amino-acid transmembrane
protein by several research groups [260-263]. The enzyme, variously named
BACE, memapsin2, and Asp2, is an aspartic protease related to pepsin,
cathepsin D, and renin, with all the properties expected of the S-secretase.

Because BACE is a potential target for drug design to treat or prevent
Alzheimer’s disease, we recently built models of the BACE extracellular
domain based on crystal structures of two aspartyl proteases. As described
above, perhaps the most important step in homology modeling is to gather
available experimental data on the protein’s function. Even before the iden-
tification of BACE, the specificity of the f-secretase had already been studied
extensively [264]. The sequence of APP at the protease cleavage site is
EVKM-DAEF, where the protease breaks the peptide bond between M and
D. These residues are labeled P4-P3-P2-P1-P1'-P2’-P3’-P4’ in standard pro-
tease nomenclature. The protease also cleaves at another position within the
Ap peptide, at Glu 11, with sequence DSGY-EVHH. It is clear that there is at
least some preference for a negatively charged residue at the P1’ position,
an unusual feature in aspartic proteases. This led us to hypothesize that
the substrate binding site was very likely to contain a positively charged
residue.

BACE also cleaves at the same location of APP with the so-called “Swedish
mutation’, KM — NL at P2-P1, found in families with early-onset Alz-
heimer’s disease. This indicates that a hydrophobic residue seems to be
preferred at the P1 position and a hydrophilic residue at P2. One other piece
of data was a mutant of the APP substrate of M — V at position P1, which
greatly reduced activity of BACE for the substrate [264, 265].

The second step was to gather orthologous sequences of BACE to define
the family of sequences to which BACE belongs. We searched both the
non-redundant protein sequence database at NCBI as well as the EST data-
bases. The resulting alignment of BACE orthologues is shown in Figure 5.3
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(s. p. 189). In mammals, there are two closely related sequences, now called
BACE1 and BACE2, that appear to have arisen from a recent duplication. In
zebrafish and seq squirts, there is a single BACE sequence in EST databases
that shares feature of both BACE1 and BACE2. We include BACE1 and
BACE2 in the alignment of orthologues, even though these sequences exist
in the same species, because they are very closely related and their specific
functions have not yet been determined.

To build the model we used PSI-BLAST to search the non-redundant
protein sequence database and to produce a position-specific scoring matrix
for BACE. This matrix was used to search the Protein Data Bank to identify
homologues of known structure that could be used as templates to build a
model of BACE. This process identified many aspartyl proteases. After
looking at the alignments, we decided to use a 2.0A resolution crystal
structure of human pepsin in a complex with pepstatin (Protein Databank
entry 1PSO) [266]. This structure had no insertions and deletions in close
proximity to the enzyme active site, while most other aspartyl proteases had
insertions in the loops covering the active site. We were also interested in
building in a model of the substrate sequence from APP. The crystal struc-
tures of most aspartyl proteases in the PDB contain a peptide-like inhi-
bitor in the active site. To make these small molecules inhibitors rather
than substrates, the peptide bond at the cleavage site is replaced with non-
hydrolysable linkages. This is almost always accomplished with an extra
atom or two in the backbone of the inhibitor. The only exception to this is a
reduced peptide inhibitor in a 1.8 A crystal structure of rhizopuspepsin
(PDB entry 3APR) [267]. In this inhibitor, the carbonyl group of the scissile
bond has been replaced with a methylene group (-CH,—). We chose this
substrate to model the APP substrate since the backbone of the substrate to
be modeled could be borrowed directly from the substrate in the rhizopus-
pepsin structure. To model the interaction of the substrate with the enzyme,
we superimposed the structure of the reduced peptide inhibitor onto the
peptide portion of the pepstatin inhibitor in 1PSO. The backbone atoms of
the peptide inhibitor before the scissile bond superimpose with the pep-
statin backbone with an RMSD of 0.16 A.

In Figure 5.4 we show the major proposed interactions of the APP sub-
strate with the enzyme. For the wild-type peptide in Figure 5.4A with se-
quence EVKMDA, the P1’ aspartic acid makes a salt-bridge with Arg296 of
the enzyme. This is the hypothesized positive charge in the BACE active
site. It is conserved in the closely related human transmembrane protein
BACE2 [268], which indicates that this enzyme is likely to have similar
substrate specificity to BACE. In other aspartic proteases, this residue is an
Ala, Ser, Thr, Val, Leu, or Ile residue. In the model, the P2 lysine also makes
a salt-bridge with the enzyme at Asp379. There are several hydrophobic
contacts between the P1 methionine and enzyme residues Leu91, Tyr132,
and Ile179, while the P3 valine interacts with Phe170.
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Fig. 5.4 Met (sequence EVKV*DA). (C) Swedish
Models of f-secretase with APP-derived mutation substrate with P2-P1 sequence of
substrates. (A) Wild-type substrate Asn-Leu (red) in place of wild-type Lys-Met
residues 592-597 of APP (GenBank (sequence EVNL*DA). (D) Alternative
accession CAA312830.1) with sequence p-secretase cleavage site at APP residue
EVKM#*DA (P4-P3-P2-P1-P1’-P2’) with Glu607 (P1') (sequence DSGY*EV). The

cleavage site marked with *. (B) Mutant figure was generated with MOLSCRIPT
substrate with Val (red) substitute for P1 [287], Raster3D [288], and the GIMP [289].

We also modeled the mutant substrate EVKVDA shown in Figure 5.4B.
The differences in interaction between the side chain and the enzyme ex-
plain why this substrate is cleaved less well by BACE [264]. While the C,; of
Val and C, of Met are in the same location (7; = —65°), the C,, atom of Val
contacts the catalytic Asp93 C,, Os1, and Oy, atoms. This is likely to interfere
with the catalytic activity. Also, many of the hydrophobic contacts between
P1 Met and the enzyme are missing in P1 Val. In Figure 5.4C a model of
the “Swedish mutation” KM — NL at P2, P1, which is associated with early-
onset Alzheimer’s disease [269], shows that the Asn can hydrogen bond to
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Fig. 5.5 The crystal structure side-chains in contact
Superposition of BACE crystal structure with the peptide are shown in blue ball-

with homology model of BACE. The crystal and-stick figures, while the model side-
structure of BACE (PDB entry 1FKN) was  chains are shown in yellow. Crystal

superimposed on the model using the structure Arg296 is shown in red and
MIDAS program [290]. The model peptide  model structure Arg296 is shown in green,
is shown in green stick figure and the with a hydrogen bond depicted by dotted
crystal structure peptide is shown in red.  lines to Asp at P1’.

Arg296, which also hydrogen bonds to the P1’ Asp. The leucine also makes
good hydrophobic contacts with Leu91, Tyr132, and Ile179. In Figure 5.4D,
the minor cleavage site for f-secretase, at Glull of the A peptide, is mod-
eled as the substrate. The P1’ Glu is within hydrogen bonding distance of
Arg296, although the hydrogen bond geometry is poor. This may explain
why the Glull site is cleaved by BACE, but only as a minor component of
BACE activity on APP.

The crystal structure of BACE was recently determined by Tang and col-
leagues [270]. In Figure 5.5, we show the substrate binding site from a
structure alignment of the model and the crystal structure. A number of the
substrate-specificity-determining residues were correctly determined both in
location and conformation. In this crystal structure, an inhibitor is bound in
the active site. This inhibitor has sequence EVNL-AAEF, where the L-A se-
quence has a non-peptide backbone. The P1’ position is occupied by an
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alanine rather than a negatively charged residue, as in both APP substrate
positions. In our model, Arg296 forms a salt-bridge to Asp at P1’. This
arginine is in nearly the exact same position in the crystal structure, but in a
different rotamer and making a hydrogen bond to substrate Asn at P2. In
the natural substrate, P2 is Lys and therefore very unlikely to make a hy-
drogen bond to Arg296. We believe that with a conformational change,
Arg296 is easily able to form a salt bridge with P1’ negatively charged resi-
dues and is thus one of the prime determinants of specificity of BACE
for APP. It is notable that because the crystal structure did not contain the
native substrate sequence this interaction of Arg296 with P1’ was not dis-
cussed by the crystallographers, even though it is the only evident positively
charged residue able to interact with P1’ side chains.

It is clear from this example that choosing templates and modeling goals
is a process that takes some care and understanding of biological function.
Automated procedures are less than satisfactory for the purposes described
here.

5.5
Strengths and limitations

The strengths of homology modeling are based on the insights provided
for protein function, structure, and evolution which would not be avail-
able in the absence of an experimental structure. In many situations, a
model built by homology is sufficient for interpreting a great deal of ex-
perimental information and will provide enough information for designing
new experiments. Homology modeling may also provide functional in-
formation beyond the identification of homologous sequences to the target.
That is, a model may serve to distinguish orthologous and paralogous
relationships.

The limitations are due to decreasing accuracy as the evolutionary dis-
tance between target and template increases. Alignment becomes more
uncertain, insertions and deletions more frequent, and even secondary
structural units may be of different lengths, numbers, and positions in very
remote homologues. Predicting the locations of secondary structure units
that are not present in the template structure is a difficult problem and
there has been little attention paid to it.

The limitations of homology modeling also arise when we have insuffi-
cient information to build a model for an entire protein. For instance, we
may be able to model one or more domains of a multi-domain protein or
a multisubunit complex, but it may not be possible to predict the relative
organization of the domains or subunits within the full protein. This re-
mains a challenge for further research. And we are of course limited by
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structures present in the PDB, which are almost exclusively soluble pro-
teins. Up to 30% of some genomes are membrane proteins, which are at
present difficult to model because of the small number of membrane pro-
teins of known structure. The recent structure of the G-protein-coupled re-
ceptor rhodopsin [271] creates an opportunity to model many of these
membrane proteins more accurately than the previously available structure
of bacteriorhodopsin [272, 273].

Another problem is the quality of data in sequencing and structure de-
termination. There are substantial errors in determining protein sequences
from genome sequences, either because of errors in the DNA sequence or
in locating exons in eukaryotic DNA [274]. Over 50% of X-ray structures are
solved at relatively low resolution, levels of greater than 2.0 A. Despite
progress in determining protein structures by NMR, these structures are of
lower resolution than high quality X-ray structures. While high throughput
structure determination will be of great value to modeling by homology, one
concern is the quality of structure determination when the function of the
proteins being determined is unknown.

5.6
Validation

Validation for homology modeling is available in two distinct ways: 1) the
prediction rates for each method based on the prediction of known struc-
tures given information from other structures; 2) criteria used to judge each
model individually. As shown in Tables 5.2-5.4, most structure prediction
method papers have included predictions of known structures, serving as
test sets of their accuracy. However, in many cases the number of test cases
is inadequate. It is also very easy to select test structures that behave parti-
cularly well for a given method, and many methods do not stand up to
scrutiny of large test sets performed by other researchers. Test sets vary in
number of test cases as well as whether predictions of loops or side chains
are performed by building replacements on the template structure scaffold,
or in real homology modeling situations where the loops/side-chains are
built on non-self scaffolds. The realistic case is more difficult to perform in
a comprehensive way, since it requires many sequence-structure alignments
to provide the input information on which models are to be built. Another
problem is that each method is judged using widely varying criteria, and so
no head-to-head comparison is possible from the published papers. The
problem of biased test sets and subsequent development of larger bench-
marks has a long history in the secondary structure prediction field [275,
276], but testing of loop and side-chain methods in this way has been much
more limited.
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5.6.1
Side-chain prediction accuracy

To remedy this situation for protein side-chain prediction, we developed a
benchmark and tested several publicly available side-chain prediction pro-
grams. In the original publications, these methods were tested on very dif-
ferent test sets and using varying criteria for a “correct” prediction. In some
cases, the test sets are rather small. To see why, recall that the standard de-
viation of the mean of a sample is the population standard deviation divided
by the square root of the number of data points. If we treat the fraction of
correct y; rotamers for a single protein as a data point, we observe that the
standard deviation of the data is approximately 0.06 (6%) on a large test set.
If a test set consists of 10 proteins, then the standard deviation of the mean
is 0.06/1/10 = 0.02. The 95% confidence interval is therefore the mean
+0.04, or an eight percentage point spread. Larger test sets are therefore
called for.

We performed a test on 180 monomeric (at least within each asymmetric
unit of the crystal structure) proteins with resolution better than 1.8 A and
less than 30% sequence identity between any two proteins in the list. The
same criteria were used to assess each of the methods: a y angle prediction
within 40° of the crystal structure conformation. Pro residues were judged
correct if the y; angle was within 20° of the crystal structure conformation.
All residues other than Gly and Ala were included. The results for the 18
amino acid types and for all residues together are shown in Table 5.5. In
this table, “bbdep” means the prediction that would be made simply by
choosing the most common rotamer in the backbone-dependent rotamer
library, that is, the rotamer determined by ¢, v for each residue. “bbind”
indicates a prediction based on simply choosing the most common rotamer
for each side chain in the backbone-independent rotamer library of Dun-
brack. In this prediction, all non-Pro side chains are given a y; dihedral of
approximately —60°, except for Val which is most commonly near 180°
(trans), and Ser and Thr which are most commonly near +60°. The most
interesting result is that some of the methods currently available provide
worse predictions than simply choosing the most common rotamer in the
backbone-dependent rotamer library, a prediction that proceeds with simply
looking up a conformation in a table. The bbdep library on its own can
predict 73% of y; rotamers correctly. SCWRL, Confmat, and Torso perform
better than this prediction by optimizing rotamers based on interactions
between side chains and between side chains and the backbone.

5.6.2
The CASP meetings

Another forum for testing homology modeling methods has been the on-
going series of CASP meetings (for “Critical Assessment of Protein Struc-
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ture Prediction’”) organized by John Moult and colleagues [96-98, 277-280].
In the spring and summer before each meeting held in December 1994,
1996, 1998, and 2000, sequences of proteins whose structure was under
active experimental determination by NMR or X-ray crystallography were
distributed via the Internet. Anyone could submit structure predictions at
various levels of detail (secondary structure predictions, sequence align-
ments to structures, and full 3-dimensional coordinates) before specific ex-
piration dates for each target sequence. The models were evaluated via a
number of computer programs written for the purpose, and then assessed
by experts in each field, including comparative modeling, fold recognition,
and ab initio structure prediction. The organizers invited predictors whose
predictions were outstanding to present their methods and results at the
meeting, and to described their work in a special issue of the journal Pro-
teins, published in the following year.

Ordinarily when protein structure prediction methods are developed, they
are tested on sets of protein structures where the answer is known. Un-
fortunately, it is easy to select targets, even subconsciously, for which a par-
ticular method under development may work well. Also, it is easy to opti-
mize parameters for a small test set that do not work as well for larger test
sets. While the number of prediction targets in CASP is limited to numbers
on the order of 10-20 per category, these numbers are still higher than
many of the test sets used in testing new methods under development, as
shown in Tables 5.2 and 5.3.

5.6.3
Protein health

A number of programs have been developed to ascertain the quality of ex-
perimentally determined structures and these can be used to determine
whether a protein model obeys appropriate stereochemical rules. The two
most popular programs are ProCheck [281-283] and WhatCheck [284].
These programs check bond lengths and angles, dihedral angles, planarity
of sp? groups, non-bonded atomic distances, disulfide bonds, and other
characteristics of protein structures. One of the more useful checks is to see
whether backbone geometries are in acceptable regions of the Ramachan-
dran map. Backbone conformations in the forbidden regions are very likely
to be incorrect. We have also developed a program, bbdep, that assesses
whether side-chain rotamers in a structure are low-energy or high-energy
conformations. The program reports unusual rotamers for the ¢,y posi-
tions of each residue, as well as unusual y, 15, 12, x4 Totamer combinations,
and unusual dihedral angles.

It should be noted once again that correct geometry is no guarantee of
correct structure prediction. In some cases, it may be better to tolerate a few
steric conflicts or bad dihedral angles, rather than to minimize the struc-
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ture’s energy. While the geometry may look better, the final structure may
be further away from the true structure (if it were known) than the un-
minimized structure.

The availability of these programs is listed in Table 5.6.

5.7
Availability

Many programs are publicly available for the various steps in homology
modeling and for evaluating and comparing structures, and for sequence
alignment. I define “publicly available” as those programs which can be
downloaded or used on a webserver for free or for a nominal charge to aca-
demic and non-profit research groups. There are commercial programs that
cost on the order of $2000-$3000 per year or more (such as InsightII and
ICM), and these are not included in this list. I have included as many pro-
grams as I could find by searching the Internet and contacting authors of
papers that present methods for loop, side-chain, or full comparative mod-
eling. The websites or electronic mail addresses for publicly available pro-
grams are listed in Table 5.6.

5.8
Appendix

5.8.1
Backbone conformations

In this Appendix, we describe some of the basic structural properties of
proteins. Proteins are heteropolymers of 20 amino acid types with a back-
bone consisting of -NH-C(H)R-CO- (except proline) where R is some
functional group defined for each amino acid type. A fragment of 3 amino
acids is shown in Figure 5.6. As with all organic molecules, there are char-
acteristic bond lengths and angles associated with the types of chemical
bonds formed, and proteins have been found to conform to the properties of
small organic molecules as determined by very high resolution structures of
small peptides [285]. The structures of proteins can therefore be defined
approximately by a set of dihedral angles that determine the orientation of
chemical groups in the peptide chain. As shown in Figure 5.7, a dihedral
angle is defined for a set of 4 bonded atoms, say A-B-C-D, as the angle be-
tween the planes A-B-C and B-C-D. Looking down the B-C bond (atom B
nearest the viewer, C further away), a positive dihedral angle is determined
by rotation of bond A-B (or rather plane A-B-C) in a counter-clockwise
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Tab. 5.6

Web-sites and publicly available programs

Down- Web-  Internet address
load server
Structure alignment
CE X X http://cl.sdsc.edu/ce.html
Dali X X http://www2.ebi.ac.uk/dali/
VAST X http://www.ncbi.nlm.nih.gov:80/
Structure/VAST/vast.shtml
MINAREA X http://www.cmpharm.ucsf.edu/cohen/
pub/minarea.html
LOCK X X http://gene.stanford.edu/lock/
SARF2 X http://genomic.sanger.ac.uk/123D/
sarf2.html
SSAP X http://www.biochem.ucl.ac.uk/
~orengo/ssap.html
CATH http://www.biochem.ucl.ac.uk/bsm/
cath/
STAMP X http://www.hgmp.mrc.ac.uk/
Registered/Option/stamp.html
COMPARER X X http://www-cryst.bioc.cam.ac.uk/
~robert/cpgs/ COMPARER/
comparer.html
Loop libraries
Protein Loop Classification X http://www.bmm.icnet.uk/loop/
(Oliva and Sternberg) index.html
Sloop (Burke, Deane, X http://www-cryst.bioc.cam.ac.uk/
Blundell) ~sloop/
Lessel & Schomburg X ftp://ftp.uni-koeln.de/institute/
biochemie/pub/loop_db
Loop prediction methods
BRAGI X ftp://ftp.gbf.de/pub/Bragi/
BTPRED X http://www.biochem.ucl.ac.uk/bsm/
btpred
CODA X http://www-cryst.bioc.cam.ac.uk/
~charlotte/ Coda/coda.html
RAMP X http://www.ram.org/computing/ramp/
ramp.html
CONGEN X http://www.congenomics.com/congen/
congen_toc.html
Drawbridge X http://www.cmpharm.ucsf.edu/cohen/
pub/
Confmat X Contact: koehl @allegro.stanford.edu
Protein Loop Classification X http://www.bmm.icnet.uk/loop/
(Oliva et al.)
Swiss-PdbViewer X X http://www.expasy.ch/spdbv
Rotamer libraries
Backbone-dependent X http://www.fccc.edu/research/labs/

rotamer library
(Dunbrack)

dunbrack/sidechain.html
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Down- Web-
load server

Internet address

Lovell

DeMaeyer

Tuffery

Ponder & Richards

Side-chain prediction
methods

Confmat

FAMS

RAMP

SCWRL

Segmod/CARA
(Genemine/Look3)

Sidemod

SMD
torso

WhatIf

General Modeling
Programs

COMPOSER

MODELLER

PrISM

CONGEN (Montelione)

RAMP
SwissModel
WhatIf
Protein health
ProCheck
WhatCheck

Promotif

BBDEP

X

http://kinemage.biochem.duke.edu/
website/rotamer.htm
http://www.fccc.edu/research/labs/
dunbrack/sidechain/demaeyer.rot
http://condor.urbb.jussieu.fr/
rotamer.html
http://www.fccc.edu/research/labs/
dunbrack/sidechain/
ponder_richards.rot

Contact: Patrice Koehl,
koehl@allegro.stanford.edu
http://physchem.pharm kitasato-u.ac.jp/
FAMS/fams.html
http://www.ram.org/computing/ramp/
ramp.html
http://www.fccc.edu/research/labs/
dunbrack/scwrl
http://www.bioinformatics.ucla.edu/
~genemine
http://www.rtc.riken.go.jp/~hkono/
SideChain
http://condor.urbb.jussieu.fr/Smd.html
http://www2.ebi.ac.uk/dali/maxsprout/
maxsprout.html
http://www.cmbi.kun.nl/whatif

http://www-cryst.bioc.cam.ac.uk/
http://guitar.rockefeller.edu/modeller/
modeller.html
http://www.columbia.edu/~ay1/
http://www-nmr.cabm.rutgers.edu/
software/html/nmr_software. html
http://www.ram.org/computing/ramp/
ramp.html
http://www.expasy.ch/swissmod/
SWISSMODEL.html
http://www.cmbi.kun.nl/whatif

http://www.biochem.ucl.ac.uk/~roman/
procheck/procheck.html
http://www.cmbi.kun.nl/whatif/
whatcheck/
http://www.biochem.ucl.ac.uk/bsm/
promotif/ promotif.html
http://www.fccc.edu/research/labs/
dunbrack/sidechain.html
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Fig. 5.6
Diagram of tripeptide with sequence Lys-Ala-Asn.
Backbone dihedrals ¢, w, w of the central Ala residue are
indicated. Side-chain dihedrals y;, 5,73, and x4, of Lys are
also indicated.

direction about the B-C axis. Alternatively, a positive dihedral is determined
by rotation of bond C-D in a clockwise direction about the B-C axis.

Along the protein backbone, the dihedral angles w,¢, and y are used
to describe the conformation, as shown in Figure 5.6. These are defined
as w; = Cai,l-Ci,l-Ni-Cai, ¢i = Ci,l-Ni-CO{i-Ci, v, = N,‘-COCE-CL‘-NH]. Because
the peptide bond between C and N has partial double-bond character, the
amide group is nearly flat. That is, the atoms N, Ca, H, C;_1, O;_1, and
Co;i_q all lie in a plane. w is therefore always close to 180° (trans) or 0° (cis).
For all residues except proline, w is nearly always trans (less than 0.1% are
cis). Approximately 5% of proline peptide bonds are cis.

Only certain ¢,y conformation pairs are observed. This is usually de-
scribed in terms of the Ramachandran diagram, as shown in Figure 5.8,
with ¢ as the horizontal axis and y as the vertical axis. In Figure 5.8, the
experimentally determined backbone dihedral angles for the alanine, gly-
cine, and proline residues of 699 proteins are depicted. There are three basic
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factors that determine the broad features of backbone conformations ob-
served in proteins as shown in Figure 5.8: (1) steric interactions along the
protein backbone that prevent the existence of some conformations; (2)
electrostatic interactions in the formation of secondary structures by hydro-
gen bonding of backbone NH and CO groups; and (3) backbone-side-chain
interactions, both steric and electrostatic (and covalent in the case of pro-
line), that account for the variation in Ramachandran distributions among
the 20 amino acids. We describe each of these in turn.

5.8.1.1 Steric interactions

Both the ¢ and y dihedrals are composed of 4 atoms with hybridization sp?-
sp*-sp®-sp®. The energy of a conformation with either ¢ or w approaching 0°
is up to 5 kcal/mol higher than the energy minimum because of steric
interactions of the terminal atoms. In the case of ¢ these are the carbonyl
carbon of succeeding residues. In the case of y, these are the nitrogen
atoms of succeeding residues. The Ramachandran distribution for alanine
clearly demonstrates that these conformations (¢ ~ 0° or y ~ 0°) are rare in
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Fig. 5.8 resolution better than or equal to 1.8 A and
Ramachandran plot. The density of ¢, y less than 50% sequence identity among all
values for alanines, glycines, and prolines  pairs in the list using the culledpdb
in 699 proteins of known structure. algorithm (http://www.fccc.edu/research/

Proteins were selected from the PDB with  labs/dunbrack/culledpdb.html).

the database. We must also consider the presence of the f carbon in all non-
glycine amino acids. The dihedral C;_;-N;-Co;-Cf;, is equal to ¢; — 120°.
This dihedral is near 0° when ¢ = +120°. There are very few alanines (or
other residues with f8 carbons) in the database with this conformation. The
dihedrals CpB;-Co,-Ci-Njy1 and CB;-Co,-C;-O; are equal to w; +120° and
w; — 60° respectively. These dihedrals are 0° when y; is —120° and +60°.
Conformations with y; near these values are also clearly relatively rare for
residues with Cf atoms. Because glycine lacks Cf (its side chain is simply a
hydrogen atom), glycine can not incur these steric penalties. In Figure 5.8B,
the Ramachandran conformations of glycine residues in the same 699 pro-
teins are plotted.

Another important effect is the steric interactions of non-hydrogen atoms
separated by 4 covalent bonds. Let us label them A-B-C-D-E. There are two
dihedrals that determine the separation in space of atoms A and E in this
chain: 6; = A-B-C-D and 6, = B-C-D-E. When both 6; and 0, are 0°, atoms
A and E are very close together. The distance between A and E falls off
quickly when both 6; and 6, increase, or when they both decrease. The
distance falls off much more slowly when 6; increases while 0, decreases or
vice versa. In Figure 5.9, the distance between atoms A and E is shown as a
function of the two dihedrals #; and 6,, assuming the bond lengths are
1.55 A and the bond angles are 115° (the average of sp? and sp> angles). To
determine the effect of this interaction on Ramachandran distributions we
have to consider all chains of 5 atoms that vary with ¢ and/or y (along with
the dihedrals A-B-C-D and B-C-D-E connecting them). These are shown
in Table 5.7. The reader can confirm that these interactions reduce the
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Fig. 5.9 The A-E distance was calculated by

Distance between atoms A and E in a five  assuming the bond lengths are 1.55A and
atom chain, A-B-C-D-E as a function of the the bond angles are 115° (the average of
A-B-C-D () and B-C-D-E () dihedrals.  sp? and sp? angles).

probability of certain Ramachandran conformations as seen in Figure 5.8A.
Because glycine lacks Cf it can attain backbone conformations that other
residue types can not — those listed in Table 5.7 that include Cf. Because
proline contains a five-membered ring consisting of N-Ca-Cp-Cy-Cd atoms,
the ¢ dihedral is highly constrained to be near ¢ = —60 + 30°. The Ram-
achandran distribution for proline is shown in Figure 5.8C.

5.8.1.2 Electrostatic interactions

Because the carbonyl and amide NH groups are highly polar, they form
hydrogen bonds easily with water molecules. To bury these groups away
from solvent (on the interior of a protein structure), requires that they are
almost always involved in hydrogen bonds with other portions of the back-
bone or with side-chain groups. An efficient way of fulfilling this obligation
occurs in the regular secondary structures of a-helices and f-sheets. In the

205



206

5 Homology Modeling in Biology and Medicine

Tab. 5.7
Steric interactions along backbone that determine Ramachandran distributions

A B (o D E 01 02 (2] ¢ /4
CO(,,I Ci—l Ni CO(,' Ci w ¢ 0 0

Coq Cip N Coy Cp; w ¢ —120° 0 120

0,1 C N; Coy G w—180° ¢ 180 0

0,1 C1 N; Coy; Cp; w—180° ¢ —120° 180 120

Ci1 N; Coyy G N1 ¢ v 0 0

Ci1 N; Co; C; O; b v — 180° 0 180

N; Co; C; Niy1 Coiyr ® 0 0
Cp; Cu C; Nij1 Coitq v+ 120° w 0 —120

Possible steric interactions of 2 atoms (A and E) on the ends of a
5-atom chain (A-B-C-D-E). The dihedral A-B-C-D is denoted 6; and the
dihedral B-C-D-E is denoted 0,. These dihedrals for each set of atoms
are expressed as functions of backbone dihedrals ¢, v, and w. The
values of ¢, y, and o when 6; and 0, are zero are given in the last
three columns. Large steric interactions will occur when 60; and 0,

are both 0°. This interaction will fall off quickly as both dihedrals
decrease or both dihedrals increase, but much more slowly as one
increases from 0° and the other decreases (see Figure 5.7).

case of o-helices, hydrogen bonds are formed between the C=O of amino
acid i and the amide HN group of amino acid i + 4 when the backbone di-
hedral angles are close to (—45°, —55°). Most o-helices are at least 2 turns
long, and often longer. f-sheets are secondary structures consisting of two
or more parallel or anti-parallel backbone segments that form hydrogen
bonds between them with their backbone NH and C=0 groups. For several
residue types, we have drawn Ramachandran diagrams for residues in o-
helices, f-sheets, and coil regions in separate plots in Figure 5.10 to dem-
onstrate that regular secondary structures populate only certain portions of
the map, and that coil residues occur in many areas.

5.8.1.3 Backbone-side-chain interactions

We describe the effect of backbone conformations on side-chain con-
formations below, but first we show that non-Gly, non-Pro amino acids do
not have identical Ramachandran distributions, due to interactions between
the side chain and the backbone. In Figure 5.10B and 5.10C we show the
Asn and Val Ramachandran distributions in each secondary structure to
demonstrate this effect. Asn in particular has high content of residues with
¢ > 0° in coil because of backbone-side-chain hydrogen bonds. Val has very
few residues with ¢ > 0° because of steric clashes of the two Cy atoms with
the backbone.



E H
F0.8
0.6
All C
0.4
0.2
0.0
B
Fig. 5.10 structure as described in the caption to
Ramachandran distributions of A) Alanine; Figure 5.8. Secondary structure was
B) Asparagine; C) Valine separated by determined with the STRIDE program

secondary structure type. Data was taken  [291]. H denotes Helix, E denotes Sheet,
from the same 699 proteins of known and C denotes Coil.
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C
Fig. 5.10 (continued)

5.8.2
Side-chain conformational analysis

5.8.2.1 Backbone-conformation-independent interactions
Side chains can also be described by their dihedral angles, and these are
denoted x4, x,,3, and y,. Except for glycine, whose side chain is only a
single hydrogen atom bonded to the o-carbon of the backbone, and alanine,
whose side chain is only a single methyl group bonded to the «-carbon
of the backbone, all other side chains have a y; dihedral angle defined as N-
Ca-Cp-X where X is either Cy, or Cyl (Val, Ile), Oy (Ser), Oyl (Thr), or Sy
(Cys). Longer side chains have additional y dihedrals, as shown in Figure
5.6. In Figure 5.11 we show the distribution of y; dihedrals and y,, y,. for
Lys. As we expect from organic chemistry, the dihedrals are clustered near
+60°, 180°, and —60°. These conformations are denoted as g, ¢, and g~
respectively, where g represents “gauche” and t represents trans. It should
be noted that some authors reverse the g* and g~ definitions.

The rotamers are not at all evenly distributed among the possible stag-
gered dihedrals. The reason for this can be seen in the Newman diagram in
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caption to Figure 5.8 were used to produce
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Figure 5.12. First, the gauche interaction (dihedral = +60° or —60°) of the
x1 dihedral, N-Ca-Cp-Cy, increases the energy by about 0.9 kcal/mol per
gauche interaction [286]. The ¢t and g~ rotamers each have one gauche in-
teraction with the backbone (backbone C and N respectively), while the g*
has gauche interactions with both the backbone C and N atoms. Its energy is
therefore about 0.9 kcal/mol higher than the other two rotamers. This is a
backbone-conformation independent interaction; that is, it does not depend
on backbone dihedrals ¢ and . Second, both gauche and 1-5 interactions
(as shown in Figure 5.9) affect the distribution of y;—y, pairs of dihedrals.
As discussed earlier for interactions along the backbone, the distance be-
tween atoms A and E of a 5-atom chain remain close to one another if the
dihedrals are of opposite sign. For y;—y, dihedral pairs, this means that
when y; is +60° and y, is —60°, or vice versa, the energy rises because of
the steric interaction of the nitrogen and C5 atoms in the 5-atom chain N-
Co-Cp-Cy-Cé. But this kind of interaction also occurs between Cé and the
carbonyl carbon. This occurs when y; is +60° and y, is +60° and when y;, is
180° and y, is —60°. The effects of these interactions can be observed in the
21—x, distribution for lysine in Figure 5.11B.

5.8.2.2 Backbone-conformation-dependent interactions

One of the prime determinants of y; rotamer choice is steric interaction of
the y heavy atom with the backbone in a manner that is dependent on the
conformation of the backbone, that is, the dihedrals ¢ and . In Figure 5.13,
the proportions of the g*, ¢, and g~ rotamers are shown on the Ramachan-
dran map for Lys, Phe, Asp, and Val. The patterns of low energy and high
energy rotamers are immediately apparent, with some regularities (and
some differences) between the different amino acid types. The reason for
strong backbone dependence can be observed in Figure 5.12B. The possible
interactions are listed in Table 5.8. Steric interactions can occur between
heavy atoms at positions i and i+ 4 when the two dihedrals connecting
them take on values in the gray region of Figure 5.9. We count from the y
carbon to atoms C;_1, O;, and N;,; of the backbone, and determine the dis-
allowed combinations of dihedrals in these 5-atom chains, C;_;-N;-Ca-Cp-
Cy, 0;-C;-Ca-CB-Cy, and Nj1-C;-Ca-Cp-Cy respectively. The second dihedral
in each of these sequences is either y; or y; — 120° (see Figure 5.6). Since
the y; dihedral is likely to be in a staggered position (60°, 180°, —60°) rela-
tive to backbone N and C, we need to determine the range of the dihedrals
Ci—1-N;-Co-CB, 0;-C;-Ca-Cf, and N;;1-C;-Co-Cp allowed. For instance, if y; is
—60°, Figure 5.9 indicates that C;_;-N;-Ca-Cp is disallowed when it takes on
values of +30° + 50°. Since this dihedral is equal to ¢ — 120°, the g* ro-
tamer is disallowed when ¢ = +150° + 50°. This is evident in the plots of
Figure 5.13, where the g~ rotamer is uncommon on the far left of each plot
(¢ ~ —180°). By the same reasoning, the g* rotamer is not allowed when
¢ = +90° + 50°.
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The dihedral O;-C;-Ca-Cp is equal to w — 60°. y; — 120° is —60° for the
g™ rotamer, and therefore the g* rotamer is forbidden when y — 60°
is +30° 4 50°, or when y = +90° + 50°, because of a steric interaction
between Cy and O;. The interaction with backbone atom N;,; occurs
180° away from this, or when y is —90° + 50°. Both of these interactions
are evident in the low proportions of the g rotamers in these regions
in Figure 5.13. Finally, the same interactions occur for the t rotamer
(1 — 120° = +60°) when w — 60° is —30° 4+ 50° or when w = +30° + 50°
and again 180° away when y = —150° + 50°. Because valine, isoleucine,
and threonine have two y heavy atoms, interactions with both atoms must
be considered in this analysis. It is clear in Figure 5.13C that valine is highly
restricted by the backbone conformation, since in most regions of the
Ramachandran map two out of three y; rotamers are disallowed, leaving
only one likely conformation.
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