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PREFACE

The theory of geometrical probability is, certainly, one of the oldest branches of
probability theory. It deals with probability distributions on spaces of geometrical
objects (points, lines, planes, triangles, sets etc.) and the corresponding random
elements, see Ambartzumian (1990). The notion of a random closed set was introduced
by Kendall (1974) and Matheron (1975). Since their studies the concept of probability
was defined in a satisfactory manner from the point of view of probability measure
on a space of closed sets.

Although a random closed set is a special case of general random elements, random
sets have special properties due to the topological structure of the space of closed sets
and specific features of set-theoretic operations. Therefore, well-known theorems of
classical probability theory gain new meanings and features within the framework of
the theory of random sets.

The role and place of limit theorems in probability theory can scarcely be exagger-
ated. Many important distributions appear as limiting ones with respect to various
operations. It is of great interest to derive limit theorems for random sets with respect
to set-theoretic operations such as union, intersection or Minkowski (element-wise) ad-
dition. It should be noted that limit theorems for random vectors will naturally follow
from limit theorems for random sets, since a random vector can be considered to be
a single-point random set. On the other hand, limit theorems for random sets gain
new features as long as we deal with shapes of limiting random sets and summands.

The limit theorems for random sets have been investigated mostly for the Min-
kowski addition. The properties of this operation imply that the limiting distribution
corresponds to a convex random closed set. Since any convex set can be associated
with its support function, limit theorems for Minkowski sums follow from the central
limit theorem for sums of random support functions as Banach-space-valued random
elements.

In these notes we consider limit theorems for unions of random sets. It should
be noted that the union scheme for random sets generalizes the max-scheme for ran-
dom vectors in a partially-ordered space, whereas Minkowski addition of random sets
generalizes the additive scheme for random vectors in a linear space. Limiting ran-
dom sets for normalized unions of independent identically distributed random sets are
naturally said to be union-stable.

It is well-known that the distribution of a random closed set is determined by
the corresponding capacity (or hitting) functional on the class of all compacts. This
functional is a so-called alternating Choquet capacity of infinite order. Although
there are many examples of capacities, sometimes they are not alternating or the
corresponding random sets are difficult to construct and simulate. The main stumbling
block in the theory of random sets and, especially, in statistics of random sets, is the
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shortage of convenient models of random sets. In fact, until now only the grain-germ
(or Boolean) model provides suitable examples of random sets. In this connection, it
should be noted that limit theorems for unions and convex hulls supply us with new
models of random sets, which appear as limits.

Unlikely distribution functions of random variables, a principal problem in the
theory of random sets is to reduce the number of compacts needed to determine the
distribution of a random set by means of its capacity functional on the chosen class.
Similar problems are of no interest in classical probability theory, since a distribution
function or density are defined naturally on the whole space. The chosen class of
compacts then appears in a strong law of large numbers for unions and in definitions
of probability metrics for random sets.

Similarly to the max-scheme for random variables or coordinate-wise-maximum-
scheme for random vectors, the analysis of unions of random closed sets uses the
technique of regularly varying functions. On the other hand, the theory of random sets
sparks the theory of regularly varying functions with new concepts such as regularly
varying capacities or multivalued regularly varying functions.

The probability metrics method elaborated by Zolotarev (1986) has proved its
efficiency in the study of limit theorems for random variables. We define some proba-
bility metrics for random closed sets and apply them to limit theorems for unions. The
essence of this method lies in proving limit theorems with respect to the most ”con-
venient” metric for the given operation. Then the speed of convergence is estimated
with respect to other metrics by the instrumentality of the appropriate inequalities
between probability metrics.

Many of the ideas of these notes originate in the pioneering work done by Matheron
(1975), who introduced the first notion of union-stability and infinite-divisibility of
random sets. Very general notions of infinite divisibility and stability of random sets
with respect to various set-theoretic operations were introduced by Trader (1981).
Some of the results presented in these notes are closely connected with recent works
on general extremal processes, max-stable random vectors and lattice-valued random
elements, see Norberg (1986b, 1987), Vervaat (1988), Pancheva (1988), Gerritse (1986,
1990).

The book begins with the introduction of the basic tools and known results on
random sets distributions and their weak convergence. Although the book is devoted
to the study of limit theorems for unions, in Chapter 2 we present several results
on Minkowski sums of random compact sets in the Euclidean space. In Chapter 3
we bring the notions of union-stable and convex-stable random closed sets. Their
distributions are characterized in terms of the corresponding capacity or inclusion
functionals. In Chapter 4 we prove limit theorems for scaled unions and convex
hulls of random sets. Limit theorems for unions of special random sets (random
triangles, balls) are considered too. Almost sure stability of unions is investigated in
Chapter 5. In Chapter 6 the limit theorems for unions are reformulated in terms of
regularly varying multivalued functions, whose definition is introduced too. Chapter
7 is devoted to the development of the probability metrics method in the framework of
random sets theory. In the last chapter we discuss several applications. The content
of Chapter 8 ranges from the estimates of the volume of random samples and the
corresponding statistical tests to the limit theorems for pointwise maxima of random



functions and polygonal approximations of convex compact sets.

In each chapter we use notations introduced in it without any comments. While
referring to theorems, propositions, examples, formulae etc. from the same chapter we
use two-digit notations, e.g., (3.2) designates the second formula from the third section
of the same chapter. Otherwise three-digit notations are used, e.g., Theorem 3.1.1
designates Theorem 1.1 from Chapter 3.

I am grateful to Professor V.M.Zolotarev for suggesting the idea of writing these
notes and for his further encouragement. These notes appeared as a result of an at-
tempt to generalize the probability metric method for random closed sets. The idea
originated in the annual workshop on stability problems for stochastic models orga-
nized by V.M.Zolotarev and V.V.Kalashnikov. I thank the organizers and participants
of this workshop for helpful comments.

This book was benefited from a lot of discussions with Professor D.Stoyan. His
suggestions led to a substantial improvement of the text. The final stage of the work
was carried out at the time of my stay at the Technical University Mining Academy
of Freiberg. This stay would have been impossible without the financial assistance
of the Alexander von Humboldt-Stiftung (Bonn, Germany) and the hospitality of the
Mining Academy. Many thanks for the help and concern of my colleagues from the
Institute of Stochastics of the Mining Academy.

I am indebted to all my colleagues for invitations, comments and stimulating
discussions of this work at different stages and sending me reprints and preprints,
especially, to A.J.Baddeley, N.Cressie, W.F.Eddy, F.Hiai, N.V.Kartashov, V.S.Ko-
rolyuk, E.Omey, E.Pancheva, T.Norberg, R.Rebolledo, A.D.Roitgartz, V.Schmidt,
F.Streit, W.Vervaat, R.Vitale, W.Weil, M.Zhle and many others.

Special thanks go out to my mother for her invaluable help and constant attention
to my research work.
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Chapter 1

Distributions of Random Closed
Sets

1.1 The Space of Closed Sets.

Roughly speaking, a random closed set is a random element in the space of all closed
subsets of the basic setting space E. The setting space E in the classical theory of
random sets (see Matheron (1975), Stoyan, Kendall and Mecke (1987), Cressie and
Laslett (1987) as principal references) is supposed to be locally compact, Hausdorff
and separable. It should be noted that Norberg and Vervaat (1989) recently showed
that non-Hausdorff E' is the natural setting too.

Everywhere below we consider random closed sets in R? only, i.e. we suppose E
to be equal to R?. Nevertheless, many results can be easily reformulated for random
closed sets in a general finite-dimensional linear space E. The dimension d of the
Euclidean space is supposed to be fixed. The Euclidean norm and metric in R¢ are
denoted by .|| and p(.,.) respectively. The ball of radius r centered at x is denoted
by B,(x). We shortly write B, instead of B,(0) and B instead of B;(0).

Define F to be the family of all closed subsets of R? (including the empty set ).
Introduce sub-classes of F by

Fr={FeF:FNX=0}Fx={FeF:FnX #0}, (1.1)

where X C R?. The class F is endowed with the topology T; (sometimes called
hit-or-miss topology) generated by
Férn = F N FG NN Fa,, (1.2)

.....

where n > 0, K runs through the class K of compacts in R?, G4, ..., G, belong to
the family G of all open sets. It was proven that the space F furnished with the
hit-or-miss topology is compact, separable and Hausdorff, see Matheron (1975).

A sequence of closed sets F,,n > 1, converges in T; to a certain closed set F' if
and only if the following conditions are valid

(F1) if KNF = () for a certain compact K, then K N F, = () for all sufficiently large

n;

(F2) if GNF # ( for a certain open set G, then G N F,, # () for all sufficiently large
n.
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We then write F = F—lim F, or F, > F.
Let T be the topology on K induced by T;. To ensure the convergence of a
sequence K,, n > 1, of compact sets in Tj an additional condition is required:

(F3) there exists a compact K’ such that K,, C K' for all n > 1.

We denote K = K—lim K, in case K, converges to K in T}.

The convergence of compact sets in Ty can be metrized by means of the Hausdorff
metric pg on K. The Hausdorff distance between two compacts K and K, is defined
as

pH(K,Kl):lnf{6>0KgKf,K1 QKE}, (13)

where
K*=U{B.(z):x € K} = K & B.(0)

is the e-envelope of K, @ is the Minkowski addition (see Section 1.5). The Hausdorff
distance between two closed sets is defined similarly. However, it can be infinite.

The upper limit F—limsup F;, is the largest closed set F' which satisfies the con-
dition (F1). Similarly, —limsup is defined by combining (F1) and (F3).

Lemma 1.1 Let K,,, n > 1, be a sequence of compact sets. Then K C K—limsup K,
if and only if
en=1inf{le >0: K C K.} -0 as n — oo.

PROOF. Let ¢, — 0 as n — oo. For any x from K there exists a sequence of points
z, € K,, n > 1, such that ||z — x,|| < &,. Thus, z, - = as n — o0, so that
x € K—limsup K,,.

Let K C K—limsup K,,. Suppose that £, > § > 0, n > ny. Then there exist points
xn € K, n > ng, such that B;(z,) N K,, = 0. Without loss of generality suppose that
Ty, = Tg € K as n — co. Then Byjs(wo) N K, =0, n > nyg, i.e. 9 ¢ K—limsup K.
Hence ¢, — 0 as n — oo. O

For later use we denote by M, IntM, M, M¢, conv(M) respectively the closure,
interior, boundary, complement in R? and the convex hull of any set M C R¢.

A set M is said to be canonically closed if M coincides with the closure of its
interior, i.e. M = IntM.

1.2 Random Closed Sets and Capacity Function-
als.

According to what has been said, a random closed set is an F-valued random ele-
ment. To complete this definition the class F is endowed with the Borel o-algebra o
generated by T;. Then a random element in (F, o) is said to be a random closed set
(RACS). Here are several examples of random closed sets: random points and point
processes, random spheres and balls, random half-spaces and hyperplanes etc.

The distribution of a random closed set A is described by the corresponding prob-
ability measure P on o;. In this connection

P{FNFe,Nn.. . NFao}=P{ANK=0,ANG, #0,...,ANG, #0}.



1.2. RANDOM CLOSED SETS AND CAPACITY FUNCTIONALS. 3

Clearly, these probabilities determine the measure P on oy. Fortunately, P is deter-
mined also by its values on Fx for K running through I only. Let T'(K) be equal to
P(Fk), ie.

T(K)=P{ANK #0},K € K. (2.1)

The functional T is said to be the capacity (or hitting) functional of A. Sometimes
we write T4 (K) instead of T'(K'). Considered as a function on K the capacity func-
tional T"is an alternating Choquet capacity of infinite order (briefly Choquet capacity).
Namely, T has the following properties:

(T1) T is upper semi-continuous on K, i.e. T(K,,) | T(K) in case K, | K as n — oc.
(T2) The following functionals recurrently defined by

Si (Ko K) = T(KoUK)—T(K,)

Sn(Ko; K1y, Kn) = Spoa(Ko; K,y ooy, K1) = Spoa (Ko U K Ky ooy K1)
are non-negative for all n > 0 and Ky, K1, ..., K,, from K.

The value of S,,(Ky; K1, ..., K;,) is equal to the probability that A misses Ky but
hits K, ..., K,,. In particular, T is increasing, since S; is non-negative.

The properties of T resemble those of the distribution function. Property (T1)
is the same as the right-continuity and (T2) is the extension of the notion of mono-
tonicity. However, in contrast to measures, the functional 7" is not additive, but only
subadditive.

EXAMPLE 2.1 Let A = (—o0,&] be a random set in R, where £ is a random variable.
Then T'(K) =P {{ > inf K} for all K € K.

EXAMPLE 2.2 Let A = {£} be a single-point random set in R?. Then T'(K) is equal
to P {¢ € K} and coincides with the corresponding probability distribution of £. Tt
can be proven that the capacity functional T is additive iff A is a single-point random
set.

The powerful result derived by Matheron (1975) and Kendall (1974) establishes
one-to-one correspondence between Choquet capacities and distributions of random
closed sets.

Theorem 2.3 (Choquet) Let T be a functional on IC. Then there is a (necessary
unique) distribution P on F with

P{Fk}=T(K), KeK,

if and only if T s an alternating Choquet capacity of infinite order such that 0 <
T(K) <1 and T(0) = 0.

Capacity functionals play in the theory of random sets the same role as distribution
functions in classical probability theory. However, the class I of all compacts is too
large to define efficiently the capacity functional on it. In this connection an important
problem arises to reduce the class of test sets needed. That is to say, is the distribution
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of a random closed set determined by the values T(K), K € M, for a certain class
M C K?

It was proven in Molchanov (1983) that if realizations of a random set belong to
a certain sub-class & C F then this extra knowledge reduces the class M of test sets
needed.

Theorem 2.4 Let © C F, and let M C K. Suppose that the following conditions
are valid.

1. M is closed with respect to finite unions.

2. There exists a countable sub-class B C G such that any compact K from M s
the limit of a decreasing sequence of sets from B, and also any G from ‘B 1is the
limit of an increasing sequence from M.

3. For any G € BU{D}, Ky, ..., K, € M, n >0, the class

G
Fr,

is non-empty, provided K; \ G is non-empty for all 1 < i < n.
4. The o-algebra o,, generated by
{7, c.NG KeMU{0},G,eB,1<i<n}

coincides with the o-algebra oy NG = {ANG&: A € o} induced by o; on the
class G.

Let G be the closure of & in T;. Then the functional T on M is a Choquet capacity
of infinite order on M (i.e. the conditions (T1)-(T2) are valid on M U{D}) such
that 0 < T <1 and T(D) = 0 if and only if there is a (necessary unique) probability
P on o, such that

P{FxN6}=T(K),KeM.

In general, the distribution of any random closed set is determined by the values of
its capacity functional on the class K,; of all finite unions of balls of positive radii, or
on the class IC,;, of all finite unions of parallelepipeds, see Salinetti and Wets (1986),
Lyashenko (1983). Norberg (1989) established deep relations between topological
properties of continuous partially ordered sets and distributions of random closed
sets.

The capacity functional T is said to be maxzitive if
T(Kl U Kg) = max (T(Kl), T(KQ))

for all compacts Ki, K5. Such capacities arise naturally in the theory of extremal
processes, see Norberg (1986b, 1987).

ExAMPLE 2.5 Define a maxitive capacity 7' by

T(K) = sup {f(2): = € K},
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where f:R¢ — [0,1] is an upper semi-continuous function. Then T describes the
distribution of the random set A defined as

A={zeR: f(x) >n},
where 7 is a random variable uniformly distributed on [0, 1].

A random closed set A is said to be stationary if A and A+ x coincide in distribu-
tion, whatever = in R¢ may be. Similarly, A is isotropic if A has the same distribution
as its any non-random rotation. Of course, the capacity functional of a stationary
(isotropic) random set is shift-invariant (rotation-invariant).

A random set is said to be compact if its realizations are almost surely compact.

1.3 Convex Random Sets.

Define C to be the class of convex closed sets in R?, and let C; = C N K be the class of
all convex compact sets. A random closed set is said to be convez if its realizations
are almost surely convex, i.e. A belongs to C almost surely. Of course, the distribu-
tion of any convex random closed set A is determined by the corresponding capacity
functional (2.1). Fortunately, the additional properties of the realizations of A (see
Theorem 2.4) yield the reduction of the class of test compacts needed. The following
result is due to Vitale (1983). It was proven independently by Molchanov (1983), see
also Trader (1981).

Theorem 3.1 The distribution of any convexr compact random set A is determined
uniquely by the values of the functional

t(K)=P{AC K}
for K running through the class Cy of convexr compact sets.

ProOOF. Check the conditions of Theorem 2.4. Having considered a single-point
compactification B/ = R? U {w}, we can regard A to be a convex RACS in the
compact space E'. Since A is supposed to be compact, it misses {w} almost surely.
Let M be the class of complements to all open bounded convex sets in R¢, and let B
be the class of complements to convex polyhedrons with rational vertices. It is easy
to show that the first and the second conditions of Theorem 2.4 are valid. The third
one is valid too, since for all G € BU {0}, K1, ..., K,, € M and z; belonging to K; \ G,
1 < < n, the convex hull of {z1, ..., z,} misses G, so that

Firtcn NCo # 0.

Verify the fourth condition. Let K be a compact set, and let ' € F¥ N Cy. Then
F € FEr N, for a certain K; from M. E.g., K can be chosen to be the complement
to a certain bounded neighborhood U(F') of F such that U(F) N K = ().

Let FF € Fg NCy for a certain open G, and let

Ty = (.’L’gl, ...,l‘od) e F'n G.
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Pick § > 0 such that

Gy = {:17 = (21, ...,mq): max |r; — xg;| < 5} C@.

1<i<d

For each collection of numbers [; = +1, 1 <1 < d, define

€ _ £
H] - Hllr ’l

d
= {x—xl,..., DY (g x01l>1—6},5>0,1§j§2d.

=1
If £ is sufficiently small, then every convex set, which misses Gfj and hits H5, 1 < j <

2%, also contains zy. Observe that G§ belongs to M. Thus

HE mCO C fG’mCO,

.....

whence o, = oy N Cy.
By Theorem 2.4, there exists the unique probability measure P on o, such that
P {]—" KN C_O} =T(K), K € M. The closure Cy consists of also convex sets containing

the point {w} (i.e. Co = C). However, since the random set A is compact, the cor-
responding probability P is concentrated within Cy. Thus, P {Fx NCy} = T(K) for
each compact K. Then the distribution of A is determined by the values P {A C K°},
whence the statement of Theorem easy follows. O

The functional t(K), K € Cy, is naturally extended onto the class C by
t(F)=P{ACF} FeC. (3.1)

This functional t is said to be the inclusion functional of A. Tt is a so-called
monotone capacity of infinite order (see Choquet, 1953/54). In other words, it satisfies
the following conditions.

(I1) t is upper semicontinuous, i.e. t(F,) — t(F) if F,, | F as n — oo for F,, F
belonging to C, n > 1.

(I2) The recurrently defined functionals

SYF;F) = H(F)—t(FnF)

S;L(F,Fl,,Fn) = S (F Fl,... ) St (FﬂFn;Fl,...,Fn_l)
are non-negative, whatever n > 1 and F), Fi, ..., F}, from C may be.

In fact, S!(F; Fy,..., F,) is the probability that A C Fand A ¢ F;, 1 <i < n.
Note that t is expressed in terms of the capacity functional 7' by means of

{F)=P{ACF}=T(F),F cC. (3.2)

The following example shows that the distribution of a non-compact convex RACS,
in general, cannot be determined via the functional t on C.
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EXAMPLE 3.2 Let A be the half-space which touches the unit ball B; at a random
point uniformly distributed on its boundary. Then t(F) = 0 whenever F' € C, F # R?.
Thus, the inclusion functional of A coincides with the inclusion functional of the set
A =R

Nevertheless, we sometimes consider the functional t(F'), F' € C, even for un-
bounded A. If A is non-convex, then this functional does not determine the distribu-
tion of A, but conv(A).

For any convex F' define the support function

sp(u) =sup{u-v: v e F}, (3.3)

where u - v is the scalar multiplication, « runs through the unit sphere S ! in R?.
The function sg is allowed to take infinite values if F' is unbounded. Of course, sp is
finite everywhere iff F' is compact.

If A is a convex compact random set, then s4(u) is the random element in the
space C(S? 1) of continuous functions on S¢1,

Let #H be the class of all finite intersections of half-spaces in R?.

Proposition 3.3 The distribution of a compact convex random set is determined by
the values of its inclusion functional on H.

PrOOF. The statement follows from the fact that the values t(F') for F' running
through H determine the finite-dimensional distributions of the random process s4(u),
we Sl 0O

1.4 Weak Convergence of Random Closed Sets.

Weak convergence of random sets is a particular case of weak convergence of prob-
ability measures, since a random closed set is associated with a certain probability
measure on oy. A sequence of random closed sets A,,, n > 1, is said to converge weakly
if the corresponding probability measures P,, n > 1, converge weakly in the usual
sense, see Billingsley (1968). Namely,

P,(2) - P(A) as n — o0 (4.1)

for each A € oy such that P(0) = 0 for the boundary of 2 with respect to Ty (i.e.
2( is a continuity set for the limiting measure).

However, it is rather difficult to check (4.1) for all A from o;. The first natural
reduction is in letting 2 to be equal to F for K running through K. It was proven
in Lyashenko (1983) and Salinetti and Wets (1986) that the class Fk is a continuity
set for P if

P{Fk} =P {Fuux}-

In other words,
P{ANK#0,ANIntK =0} =0 (4.2)
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for the corresponding limiting random closed set A. In terms of the limiting capacity

functional we get
Ti(K) =Ta(IntK), (4.3)

where
Ta(IntK) =sup{T(K"): K' € K,K' C IntK}.

The class of compacts satisfying (4.2) or (4.3) is denoted by Sr, i.e.
Sr={K € K: To(K) = Ta(IntK)}. (4.4)
Then A, converges weakly to A if
Th, (K) = Ta(K) as n — oo

for each K belonging to Sy. Thus, the pointwise convergence of capacity functionals
on Sy implies the weak convergence of the corresponding probability measures on oy.

Further reduction is due to Salinetti and Wets (1986), Norberg (1984). The class
St can be replaced with the class K., N S, where ICy; is the class of finite unions of
balls having positive radii. In turn, £, can be reduced to the countable class IC,,q of
finite unions of balls with rational midpoints and positive rational radii. Recent results

on the convergence of random sets and related topics from the theory of semi-lattices
are discussed in Norberg (1989).

In general, the class M C K is said to determine the weak convergence if the
pointwise convergence of capacity functionals on M NSy yields the weak convergence
of distributions of random closed sets.

It was proven in Lyashenko (1983) that the class ICy, of finite unions of paral-
lelepipeds and even the class K, of unions of parallelepipeds with rational vertices
also determine the weak convergence of random closed sets.

For general random sets there is likely no possibilities of further essential shortening
of the class determining the weak convergence. Nevertheless, for compact convex
random sets a further reduction is possible. Namely, the weak convergence of compact
convex random sets is characterized by the pointwise convergence of capacity (or
inclusion) functionals on a smaller class.

Consider convex compact random sets Z,,, n > 1, Z with the inclusion functionals
t,, n > 1, t and the corresponding probability measures P,,, P on Cy furnished with
the o-algebra induced by oy. We say that Z,, converges weakly to ZifP converges
weakly to P in the usual sense. Since the class Cy is measurable, this fact yields the
weak convergence of the random sets distributions on (F, o).

The following theorem shows that the pointwise convergence of inclusion func-
tionals on Cy implies the weak convergence of random compact convex sets, see
Molchanov (1993d).

Theorem 4.1 The conver compact random set Z, converges weakly to the random
closed set 7 if, for any K from Cy,

t.(K) — t(K) as n — oo, (4.5)

where t,,t are the inclusion functionals of random sets Z, and Z respectively.
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We begin with a lemma.

Lemma 4.2 Let B,(xy) C IntBg(0). Then there exist sets Fi, ..., F,, belonging to C
such that M N By.(x) # 0 for any M € C, M C Bg(0), provided M ¢ F;, 1 <i <mn,
and the family of such sets M 1is non-empty.

PROOF. Pick points ui, ..., u,, from the unit sphere S?~! such that for any (d — 1)-
dimensional plane ¢ crossing z

£N BR(0) C H (ug) N H, (u;) (4.6)
for some u;, where

Hf(u) = {x € Bgr(0): (x —x)-u<r},
H - (u) = {x€ Bg(0): (x —x)-u>—r}.

Denote Fy; = H(u), Fo;my = H, (u) for 1 < i < m, n =2m. If M ¢ Fj,
1 <i < n, then there are points

v € M\ H(u;), y; € M\ H (u;), 1<i<m,

and also
M > Ml = Conv{xla-"7$may17"'7ym}-

Suppose that o ¢ M;. Then M; C H for a certain (d — 1)-dimensional hyperplane
¢ hitting 7o and dividing R? into half-spaces H and H'. However, (4.6) is valid for
a certain i, whence the points x;,y; lie in the different half-spaces H and H', i.e.
M, ¢ H. Therefore, xy € M, that is M hits B,(xy). O

PROOF OF THEOREM 4.1. Denote for any X C R?

Cx={Me€Cy: MCX}, C*={McCy: M ¢ X}. (4.7)
The family

U={crnc"n...nc™ FFeC1<i<nn>0}

is closed with respect to intersections. It follows from (4.5) and (I2) that for any 2
from the family U

P,() = S"(F;Fy,...,F,) - P() =S (F;F,,...,F,) as n — cc. (4.8)

Let K be a compact set, and let M € FXNCy. Then M C IntF and FNK =0
for some convex compact F'. Hence

M € Crpp C Cr C .7:K

Let G' be any open set such that M € F5 NCy, i.e. M hits G. If M N G consists
of only one point xy, then M = {z,} and

M € CIntBr(mo) C CBT(“'O) - fG
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for a certain ball B,(z¢) C G.

Suppose that the set M NG contains at most m < d points xy, ..., ,, such that the
vectors x; — x1, 2 < j < m, are linearly independent. Then M is a subset of a certain
hyperplane ¢, containing these points. It is evident that M C Bg(0), By (z9) C G,
By, (x9) N € C M for some r, R > 0. Having applied Lemma 4.2 to the subspace ¢ and
balls Br(0) N ¢ and B, (xy) N ¢, we obtain the corresponding sets F}, ..., F},. Put

F; = {z € Bg(0): pryz € F},

where pr,z is the projection of z on ¢. Let F' be the intersection of Bg(0) and the
g-envelope of £. Then

M€ CwrnClin---nCH™ c ConCf'n---nC ¢ Fe.

If M NG contains the ball By, (zq) for some r > 0, then Lemma 4.2 immediately
yields
Mec"n.-.-nC™cC Fq

for Fi, ..., F,, belonging to Cy.
As stated in Section 1.1, the classes

A=FNFen---NFeq,

for K running through X and all open sets Gy, ..., Gy, n > 0, form the base of the
topology T; and generate the Borel o-algebra o; on F. Observe that C¥', Cryr are
open in this topology for each F' from Cy. We have proved above that for such a class
A and any M belonging to AN C,

Me,cAcC ANC

for a certain A € U, where 2, is the interior of A in T;. Thus, A is the union of at
most a countable collection of classes from Y. It follows from Billingsley (1968) and
(4.8) that P,, converges weakly to P. O

Let
Co={F €Cy: t(F) =tIntF)}.

It is easy to show that for each K € Cy and £ > 0 there exists a compact K’ € C, such
that K € K' C K*. Thus, the class C; can be used as a test class in Theorem 4.1.

Proposition 4.3 The conver compact random set Z,, converges weakly to the RACS
Z if

t(K) = t(K) as n — oo (4.9)
for any K from C,.

Similar to Theorem 4.1 the following proposition can be proven. Recall that H is
defined to be the class of all finite intersections of half-spaces.

Proposition 4.4 The convex compact RACS Z,, converges weakly to the RACS Z if,
for any F € H,
t.(F) — t(F) as n — oo,

where t,,t are the corresponding inclusion functionals of random sets.
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Corollary 4.5 If the finite dimensional distributions of the support function sz, of
random conver compact set Zy, n > 1, converge to the finite-dimensional distributions
of s;, then Z converges weakly to Z.

PRrROOF. The statement is evident, since the finite-dimensional distributions of sz,
are determined by the inclusion functional on H. O

Consider now the convergence of expectations of random convex sets. It will be
recalled that the (Aumann) ezpectation EZ of a convex RACS Z is defined as the
convex set with the support function sgz(u) = Esz(u), u € S¢°1, see Vitale (1988),
Stoyan (1989) and Section 2.1.

Theorem 4.6 Let Z,, n > 1, Z be convex random subsets of a certain compact K,
and let Z,, converge weakly to Z. Then EZ, converges to EZ in the Hausdorff metric
asn — oo and u(EZ,) — w(EZ), where p is the Lebesque measure in RY.

PROOF. It is obvious that Esy (u) — Esz(u) as n — oo for each u from S 1.
Suppose that
{tp,n > 1} C ST w, — up as n — oo.

By subadditivity of support functions,

Esz, (un) — Esz(ug)

Esz, (uy) — Esz, (ug — up) — Esz(u,) <
< Esgz, (uy) + Esz, (u, — ug) — Esz(up).

Clearly,
|Esz(up — up)| < |sk(up — uy)| = 0 as n — oo.

Hence

sup |Esz, (u) — Esz(u)] - 0 as n — oc.
ueS41

Thus, EZ, converges to EZ in the Hausdorff metric. The convergence of measures
immediately follows from convexity. O

1.5 Set-Theoretic Operations and Measurability.

It should be pointed out that many set-theoretic operations such as union, intersection,
Minkowski addition, convex hull etc. preserve measurability of F-valued random
elements, provided the result is a closed set. In other words, the result of such
operations (if closed) is a random closed set.

First, consider the usual union of sets. For any random closed sets X and Y the
set X UY is a random closed set too. Its capacity functional is evaluated as

provided X and Y are independent.
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The Minkowski sum of X and Y is defined as
XoY={z+yrzeX,yecY} (5.2)

If X and Y are independent then the capacity functional of X & Y is evaluated by
means of conditional expectations

Txev(K) =E [E[Tx(K @ Y) | Y]],

where

Y ={-yyeY} (5.3)

For single-point random sets the Minkowski addition coincides with the addition
of vectors in R¢. Thus, the Minkowski addition for random sets generalizes the usual
addition in R?. On the other hand, the union operation generalizes the maximum
scheme for random variables or coordinate-wise maxima for vectors in RY.

Thus, the Minkowski addition and the union are dual operations in a certain sense,
as the addition and the maximum are dual for real numbers. In contrast to its real
numbers prototype, the Minkowski addition does not allow to define inverse ones. In
other words, (F,®) is a semi-group only, and (F,U) is a lattice.

The convex hull of random sets X and Y is a convex random (not necessarily
closed) set. If X and Y are independent, then the inclusion functional of the confex
hull is given by

t(F) = P{conv(XUY)CF}
P{X CF}P{Y C F}=tx(F)ty(F). (5.4)

Furthermore, the intersection of X and Y is a random closed set. The Minkowsk:
subtraction defined as
XoY={zz+Y CX} (5.5)

is a random closed set too. However, the evaluation of the capacity functionals of
XNY and X 6V for general random sets is a very difficult problem.

For convex arguments the Minkowski addition and the convex hull allow a simple
translations in terms of support functions (3.3). Namely,

6)
7)

Thus, the Minkowski addition turns into addition of support functions, and the
convex hull turns into the pointwise maximum of support functions of arguments.

For detailed discussions of the above mentioned operations and their properties
see Matheron (1975), Serra (1982) and Stoyan et al. (1987).

Note that if X as a random compact set then the Lebesgue measure u(X), the
norm

sxay(u) = sx(u)+ sy(u),

(5.
sconv(xuy)(u) = max(sx(u),sy(u)),ue S (5.

1 X1 = sup{lzl]: = € X},

and the extent in a given direction sx(u) are usual real-valued random variables.
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1.6 Regularly Varying Functions.

Similarly to the study of the max-scheme for random variables the analysis of unions
of random closed sets involves the technique of regularly varying functions, cf. de
Haan (1970), Galambos (1978).

A measurable function f:R; = [0,00) — R, is reqularly varying with the expo-
nent (or index) « if, for each x > 0,

lim f(ta) ="
We then write indf = a. A function L is said to be slowly varying if L satisfies (6.1)
with o =0, i.e.

(6.1)

L(tx)
o L(t) 1,
For backgrounds of the theory of regular varying function see Seneta (1976), de

Haan (1970) and Feller (1971).
It is rather easy to see that

x > 0. (6.2)

fx) = 2*L(x) (6.3)

for a certain slowly varying function L. It was proven that (6.2) is valid uniformly
for x € [a,b], 0 < a < b < co. Moreover, a slowly varying function L admits the
representation

L(z) = exp {n(x) + /bm itt)dt} ,x >0, (6.4)

for a certain b > 0. Here n(z) is bounded on [b,00) and admits a finite limit as
x — 00, and £(t) is a continuous function such that (t) — 0 as t — oc.

Mention a few properties of regularly varying functions, which will be of use later
on. Proofs can be found in Seneta (1976). The letters f and L stand for arbitrary
regular varying and slowly varying functions.

1. For each v >0

2'L(z) — oo and z7"L(z) - 0 as x — oo.

2. Let f(x) be regularly varying, indf = 7. Then there exists a regularly varying
function f(z) with exponent 1/ such that

ji(f(x))wx as  x — 00,
f(f(z)) ~xz as x— oo.

Then f is said to be the asymptotic inverse function for f.

3. Let L be slowly varying on [a,00), a > 0, and let f(z) = z7L(x) be non-
decreasing on [a,c0) for a certain positive 7. Denote

f(x) =inf{y: f(y) > z,y € [a,00)}.

Then f(z) is the asymptotic inverse function for f. This fact is called the inverse
theorem for univariate regularly varying functions.
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For the generalizations to R we follow Yakimiv (1981), see also de Haan and
Resnick (1979), de Haan and Omey (1983), Resnick (1986) and references therein.

Let C be a cone in R?, and let S = C\ {0}. A measurable multivariate function
f:C — Ry is said to be regularly varying with exponent (or index) « if, for a certain
e € S there exists the finite limit

lim f(tz)
t—00 f(te)

whatever x belonging to S may be.
The function ¢ is homogeneous with exponent «, i.e.

= QS(*T)a (65)

o(tx) = t%p(x),t > 0,2 € S. (6.6)

Following Yakimiv (1981), we then write indf = «, f € II; and ¢ € U;. Clearly,
the function ¢ depends on e. If C = RY, then e may be safely thought to be can
consider e to be equal to the d-tuple (1,...,1).

Sometimes (6.5) is too weak to ensure desirable properties of regular varying mul-
tivariate functions. The function f is said to belong to Il if (6.5) is valid uniformly
on S4 1N C. Namely,

f(tz)
f(te)

It is easy to show that II; = Il if and only if d = 1.

Let 205 be the class of slowly varying functions on S such that (6.7) is valid with
¢ = 1. Furthermore, let Us be the class of all continuous functions which satisfy (6.6).
It was proven in Yakimiv (1981) that f € I, if and only if

f=1Lé (6.8)

for some ¢ € Uy and L € W,. In fact, this is a multivariate generalization of (6.3).
It was proven in de Haan and Resnick (1987) that for any L € 20, and ¢ > 0,
£ > 0 there exists ¢y such that for ¢ > ¢y and ||z|| > c it is

ltlim sup
— 00
zeSInC

- qﬁ(x)‘ —0. 67)

(1 =2zl * < < (L+ )] (6.9)



Chapter 2

Survey on Stability of Random
Sets and Limit Theorems for
Minkowski Addition

2.1 Expectation of a Random Closed Set.

The family F admits two basic operations. The first one is the union of sets and the
second one is the Minkowski addition. In this notes we consider mainly the limit the-
orems for unions of random sets. Nevertheless, in this chapter a law of large numbers
and a limit theorem for Minkowski sums of random sets are shortly discussed. This
is explained by the duality between unions and Minkowski sums, which resembles the
duality between the addition-scheme and the maximum-scheme for random variables.
We discuss only results for random closed subsets of R?, although very general results
for random sets in Banach space are now available, see Gine et al. (1983), Puri and
Ralescu (1985), Hiai (1984) and Gine and Hahn (1985a).

First, define the Aumann expectation of a random compact set. This notion ap-
peared in Aumann (1965) and later on was extensively used in the theory of multival-
ued functions and related optimization problems. In context of random sets theory it
has been first explored in Artstein and Vitale (1975). In the present section we follow
the survey given in Vitale (1988).

Let

[A]] = sup {||z]|: = € A}
be the norm of a certain random closed set A. It is evident that ||A]| < oo almost
surely if and only if A is compact.

A random vector £ in R? is said to be a selector of A if & € A with probability
one. The expectation of A is defined to be the set

EA = {E&: € is a selector of A, E€ exists} .

The condition E||A|| < co is enough to determine that EA is non-void and com-
pact. It follows from Aumann (1965) that EA is convex even for non-convex A (if the
underlying probability space is atom-free). Moreover, EA = Econv(A).

The expectation EA can be also defined as the convex set having the support
function (see Section 1.3)

spa(u) = Esq(u), u € STL

15
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In this way also the expectation of an unbounded random set can be defined.
The following theorem and its various applications are due to Vitale (1988).

Theorem 1.1 (Vitale) If E||A|| < oo, then
p!(BA) > Ep'/4(4), (1.1)
where p is the d-dimensional Lebesgue measure (i.e. volume).

It was proven in Vitale (1987) that the sequence of convex sets Econv{¢y, ..., &,
n > 1, for iid random vectors &i,...,&, determines the distribution of &, provided
E||&1]| < co. In turn, the distribution of a random convex compact set A is determined
uniquely by the sequence

Econv {s,(.),...,s4,()}, n>1,

of convex subsets of C(S%7!), where A;, A,,... are independent copies of A, see
Molchanov (1993b).

The definition of the expectation is well-adjusted for the study of Minkowski sums
of random sets. The main inconvenience is the necessary convexity of expectations.
For instance, the expectation of a stationary random closed set is trivial and equal to
R,

The variance of A can be also defined to be the set of all variances of its appro-
priate selectors, see Kruse (1987). However this definition is rather peculiar, since
the variance of a non-random set is allowed to be non-trivial. Besides, the variance is
very difficult to evaluate.

Further references and discussion on the above mentioned and other notions of
expectations, medians and variances of random sets can be found in Stoyan (1989),
Stoyan and Stoyan (1992).

2.2 A Strong Law of Large Numbers for
Minkowski Sums.

The expectation of a random closed set appears in a strong law of large numbers
for normalized sums of random closed sets. Its first variant was proven by Artstein
and Vitale (1975). Their approach involved two main steps, which also are basic to
proving various central limit theorems and laws of the iterated logarithm.

Step 1 Reduce to consideration of random compact convex sets;

Step 2 Prove the result for random compact convex sets by invoking an appropriate
result in the space C(S%"!) of continuous functions on S4~!. The appropriate
result in C'(S?!) is then applied to the support functions of random sets.

Theorem 2.1 (Artstein and Vitale) Let A, Ay, As,... be a sequence of indepen-
dent, identically distributed (iid) random sets with E||Al| < oco. Then

(Ay@---dA,)/n— EA as as n— o0

with respect to the Hausdorff metric (or in Ty).
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The first step of the proof is provided by the following result of Shapley and
Folkmann (see Arrow and Hahn, 1971).

Lemma 2.2 (Shapley and Folkmann) For each n > 1 and closed compact sets
A, 1 <i<n,itis

pr (AL @ @ A, conv(A; @D A,)) < dY? max ||A;].

1<i<n

Then Theorem 2.1 simply follows from the strong law of large numbers in C'(S%~1),
since the Hausdorff distance between sets is equal to the uniform distance between
their support functions. Besides, the norm ||4;|| coincides with the norm in C(S¢1)
of the corresponding support function sg4,.

2.3 A Central Limit Theorem for Random Sets.

The formulation of a central limit theorem for random closed sets is more complicated
than the corresponding result for random vectors, since Minkowski sums of random
sets cannot be centered. It is caused by the lack of an inverse operation to the
Minkowski addition. Moreover, EA = {0} yields A = {0} with probability one, so
that a random set with zero mean is trivial.

Consider a limit theorem for random sets proved by Weil (1982). Let A be a
random convex set. Define the covariance function of the corresponding support
function s4 as

La(u,v) = E([sa(u) — Esa(u)][sa(v) — Esa(v)]), u,v € ST1
Let % designates the convergence in distribution of random variables.

Theorem 3.1 (Weil) Let A, Ay, Ay, ... be iid random close sets with E||A|| < oo.
Then
2oy (AL @+ @A) /n,EA) S sup ((u) as n — oo,
ueSa1

where ((u) is the Gaussian centered process on S ' with the covariance function
E¢(u)C(v) = Tx(u,v). for all u,v from S41.

PROOF is also based on the Shapley-Folkman lemma and the central limit theorem
in C'(S%"), see Araujo and Gine (1980). O

The particular case of random sets with finite numbers of values was considered
in Cressie (1978). It was actually the first limit theorem for random sets.

If the random function ((u) is the support function of a certain random closed
set Z, then this set Z is said to be Gaussian. It was proven in Lyashenko (1983)
and Vitale (1984) that Z = £ 4+ M for a certain Gaussian vector £ and a non-random
convex compact M. Thus, each Gaussian random set is represented as a Gaussian
shift of a non-random compact.

A more intrinsic definition of Gaussian as well as p-stable compact convex sets is
due to Gine and Hahn (1985b). A random compact convex set A is called p-stable,
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0 < p <2, if, for any Ay, Ay iid with the same law as A and for all a, 3 > 0, there
exist convex closed sets C', D such that

QA @ BA, ®C & (o + )P A® D,

where < designates coincidence of probability laws. For p = 2 we obtain Gaussian
random sets.

If 1 <p <2, then A = &+ M for a certain p-stable random vector £ and a
non-random convex compact M. If 0 < p < 1, then A is constructed by means of an
appropriate variant of the stochastic integral, see Gine and Hahn (1985b).

2.4 Generalized Expectations of Random Sets

The Aumann expectation of a random set was defined in Section 2.1. It originates
deeply in ideas of convex analysis and, for sure, leads to convex-valued results.

Certainly, a relevant expectation of a random set should be set-valued. The Au-
mann expectation is, moreover, convex-valued. It means that this expectation is
always convex, even in the case when the random set in question is of a general na-
ture. This property makes it not very useful for the analysis of non-convex, especially,
stationary random closed sets. In the latter case the expectation coincides with the
whole space, i.e. it is not informative. A variant of this expectation, proposed by
Vitale (1990), also cannot overwhelm its major shortcomings.

On the other hand, a relevant expectation should be closely related with the
corresponding law of large numbers, as the Aumann expectation and the strong law
of large numbers for the Minkowski addition, see Section 2.2.

Let us consider a more general approach. In special cases it leads to the Aumann
expectation or some other expectations discussed in Stoyan (1989), Stoyan and Stoyan
(1992). The notion of the expectation depends on a certain family of functions. If
this family consists of linear functions only, then we obtain the Aumann expectation.
Choosing the class of indicator functions leads to the set of fixed points of a random
closed set, see Matheron (1975).

The important tool in the definition of the Aumann expectation is the support
function. Clearly, the distribution of a general random closed set is not determined by
means of the corresponding support function. For general random sets the definition
of the expectation may be based on the corresponding capacity functional T'(K) =
P{ANK #0}.

Let U (U ) be the family of upper semi-continuous real-valued (positive) functions
on E. For any function f from U, put

Euf = /0°° T({u € E: f(u) > t})dt. (4.1)

This capacity integral can be as well defined for a general bounded capacity which is
not related to a certain random closed set. Note that if f is upper semicontinuous,
then the set {u: f(u) > t} is closed.

The capacity integral has been applied in Norberg (1985) to the study of the week
convergence of random closed sets. It was used also in robust statistics (see Huber,
1981) and the theory of large deviations (see Gerritse, 1993).
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The simplest case is when T coincides with a certain probability measure on R,
(in this case A is a certain singleton {£} for a positive random variable £). Then
E.f = Ef(§), i.e. the integral (4.1) coincides with the expectation of f(£). In
general it is easy to show that the integral (4.1) is equal to the expectation of the
maximum of f over A, i.e.

E,f = Esup f(a). (4.2)

acA

This functional can be defined also for any function f from U, provided the ex-
pectation exists. The functional E4f : &/ — R is said to be the capacity integral.
Sometimes we shall write f(A) instead of sup,c4 f(a).

If f(z) = ||z|| for each z € E, then E4f = E||A||. Put f(z) = (u-z) for a certain
unit vector u. Then

Eaf = Esulj(u -z) = Esa(u) = sga(u).
T

Furthermore, for the indicator function f(z) = 1,ex we get E4f = T(K).

Consider now some properties of the capacity integral E4f. First, it is positively
homogeneous, i.e. E4(cf) = cEaf for each ¢ > 0. It is easy to show that

E, max(fi, f) = Eafi + Eafo — Eamin(fy, f5)

if T is a C-additive capacity (see Matheron, 1975) and the functions f, fo are convex.
Furthermore, if f(xq,...,2,) = 211k, + 221k, +- - -+ 2,1k, for disjoint K;,..., K,
and x1 < 19 < ... < x,, then

+(xg — ) T(KoU...UK,) + -+ (0 — 201)T(K,).
The capacity integral may be used to define the corresponding set-valued expecta-
tion of a random closed set, depending on a certain family F of numerical functions.

Namely, the set
EpA = {z: f(z) < E4f, for all f € F} (4.3)

is said to be F-expectation of A.

If F C U, then the set EpA is closed. It is evident that E]FIA C EEA in the case
Fy C Fy. Similarly, EpA C EpB if A C B almost surely.

If the family F consists of only one function, i.e. F = {f}, then EpA is equal to
[~ (=00, E4f]). Furthermore,

E]FIU]F2A = E]FIA N EFQA’
EcIFA = E]FA’ c >0,
E]F-i—xA:EIFA’ rekFE,

where ¢F = {cf: f € F}, F+2 = {f +a: f € F}. Thus, EpA is invariant under linear
transformations of the family F.

EXAMPLE 4.1 Let F be the family of indicator functions 1,cx for all compact K
belonging to a certain class 9. Then

Epd = (U{K € M:T(K) < 1})°,
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where M€ denotes the complement to M. If the class 90t is sufficiently rich (e.g.,
consists of all singletons or all balls) then EpA is the set of all fixed points of A, see
Matheron (1975) and Section 3.1.

EXAMPLE 4.2 If F coincides with the class L. of all linear functions, then EpA coin-
cides with the Aumann expectation of A.

EXAMPLE 4.3 Let F be the family of functions

=]l ifx/z]] = v
fol@) = { 0 otherwise

for all v € S4='. Then
Esup f,(x) = Esup{r:rv € A}.

T€EA

Hence
EpA = {z: f,(z) < Esup{r:rv € A}}

is the so-called star-shaped expectation of A, see Stoyan (1989).

EXAMPLE 4.4 Let F be the family of all functions f.(z) = 23 + -+ + cqz3 for
c=(ci,...,cq) ERY, 2= (x1,...,24). Then

Esup f.(z) = Esup(clx? 4+ -4 cdxfl) =E sup (11 + - - + cqxq),
zEA TEA TEA2

i.e. EpA coincides with the Aumann expectation of the set

A% ={(},...,22): (21,...,2q) € A}.
For example, if A = {¢£} € R?, then Epd = {(E¢, ..., EE))}.

For any set A put

[Alp = {z: f(z) < sup,ey f(a), forall f € F}.

Evidently, EgA = [A]p for any non-random A. A set A is said to be F-closed if
[A]p = A. Tt can be easily shown that F-closure is an idempotent operator, i.e.

[AlplF = [Alf-

EXAMPLE 4.5 Let F = L. Then F-closeness is equivalent to the convexity, and also
[A]p = conv(A).

Theorem 4.6 The expectation EpA is F-closed.

PRroOOF. Evidently,

[EpAlp = {z:f(z) < f(EgA), forall f € F}
= {:L‘ f(:C) < su p{a ) <Efa), for all relFy f(a)a for all f € ]F}
= {m f(a:)SEFA,foralleF} =Epd O
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EXAMPLE 4.7 Let F be the set of all indicators 1,05, K € 9. If 901 is sufficiently
rich (see Example 4.1), then

Alp = {z: lyex < langz, KeM}= (| K°=A4
KnA=0,KcIN

ExaMPLE 4.8 Let A C R, and let F be the family of all monotone (increasing)
functions. Then

[Alp = (=00, sup A],

and

Epd = {z:f(z) <Ef(supA), for all f € F}
= (=00, iﬂ]%f_l(Ef(SupA))),

fe

where f~! is the inverse function to f.
Now consider a stationary random closed set A.

Theorem 4.9 Let A be a stationary random closed set. Suppose that the family F
is translation-invariant, i.e. B = {f(x +v):f €F} = F D v, v € RE. Then either
Epd =R? or EpA is empty.

PROOF. Since F is translation-invariant, the stationarity assumption yields

{z: f(z) < Esup,c, f(a), forall f e F} =
= {x: f(z) <Esupgca,, f(a), forall f € F}
= {z: f(z) <Esup,c, f(a+v), for all f € F}
{y+uv: fly+v) < Eilelgf(a+v), for all f € F}

= EIF@UA+U:EIFA +v

for all v € R?. Thus, if EpA is nonempty, then it coincides with the whole space.
O

Therefore, interesting particular examples of F-expectations of stationary random
sets can be obtained only in cases where the family F is not translation-invariant.
The following example proposes such a class F, which may be of use in the stationary
case.

ExaMPLE 4.10 Let Fy be a certain class of decreasing functions f: R, — R,. For
any real-valued random variable & put

Ep { = {z > 0: f(x) <Ef(E), forall f € Fo}.

Let F(K') be the family of functions f(p(z, K)) for a certain compact K and f running
through the family Fy. Here p(A, B) is the minimal distance between the points of A
and B. Then the F(K)-expectation of A
E]F(K)A = {z:p(z,K) € Ep p(A, K)}
= (& f(p(x, K)) < Bf (p(4, K), for all € Fy}.
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For example, if Fo consists of only linear functions, then Ep & = [0, E¢], and
Ef A =K @ b0, Ep(A, K)) = KP4,
Let A be the stationary Poisson point process with intensity A. Then
p {p(AJK) < .CL'} =1- exp{_)‘ﬂld(Kz)}a

where pi4 is the d-dimensional Lebesgue measure. If K is convex, then the expectation
Ep(A, K) can be expressed in terms of the corresponding Minkowski functionals of K,
since pq(K™) can be evaluated by means of the Steiner formula, see Matheron (1975).
Hence in this scheme we obtain a family of expectations, depending on K. E.g., let
d=1, and let K = [0, h]. Then

P{p(A,K) <z} =1—exp{—A(h+ 2x)}.
Hence Ep(A, K) = e */(2)\) = g(h). Thus

Ef 0, A = [g(h), b+ g(h)]

Other interesting examples may be obtained if the class Fy consists of the functions
e~ for different a > 0.

Now reformulate the definition of the F-expectation by means of selectors. The
selector variant of the F-expectation is defined as

EpA = {Ep{¢}: £ € S(4)}

where S(A) is the family of all selectors of A (of course, EpA is empty if Ep{¢} is
empty for all § € S(A)). In general, EgpA is not F-closed. For example, if the family F
coincides with the family of all linear functions, then the F-closeness is equivalent to
convexity, but the convexity property of E]SFA depends on the (atomic or non-atomic)
structure of the probability space in question, see Vitale (1990).

Unfortunately, the F-expectation does not always coincide with its selector variant.

Theorem 4.11 Suppose that for any random vector & in RY

sup{f(u):u € Ep¢} =Ef(¢),f € F (4.4)

Then EpA = [EfFA]]F, i.e. EpA is the F-closure of the family of F-expectations of all
selectors.

PrOOF. Evidently, EpA C EpA. Moreover, [EpA]p C EpA, since EpA is F-closed.
Furthermore,

[Epdlp = N {z:f(x) < sup fla)} = ({z:f(2) < sup f(ERE)}
felF acEpA reF ¢eS(A)

where f(ER&) = sup{f(u):u € Eg{} = Ef({) by the condition of Theorem. Thus,

Bipdlp = () L f(0) < sup BF©} = () {: f(2) <B(A)} = B
felF eeS(A) feF
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Suppose that ¥ € EpA \ [EAd]p. Then there exists a function f such that f(z) >
Ef(¢) for all £ € S(A). On the other hand, f(z) < Ef(A). Hence Ef(A) > Ef(§)
for all £ € S(A), contrary to the fact that sup,., f(x) = f(n) for a certain selector
neS(A). O

Corollary 4.12 If (4.4) is valid, then for each f € F
f(EpA) =Ea4f. (4.5)
PrOOF. Since Epd = [Epd]p, we get

f(EpA) = f(Epd) = sup f(ER{) = sup Ef(§)=Eaf. O
¢eS(A) ¢eS(A)

For example, the condition (4.4) is satisfied for the family of linear functions and
also for the functions of Example 4.3.

Similarly to the Aumann expectation, which comes over in the law of large numbers
for Minkowski addition, F-expectation appears in the strong law of large numbers for
a special addition defined by means of the family F.

For each A, B put

[A, Blp = {: f(z) < f(A) + f(B), for all f € F}.

Recall that f(A) denotes sup,c4 f(a).
If F = L, then [A, B]p is the convex hull of the Minkowski sum A @ B. For the
family FF of all indicator functions of all compacts we get

[A,Blp = {v:lserx < langzo + 1pnkso, K € K}
KN(AUB),KelC

If F is the family of indicators of convex sets, then [A, Bl is the convex hull of the
union of A and B. If F is the family of functions {cz?: ¢ > 0} on the real line then for
each point pair z,y their F-sum is (22 + y?)'/2.

For all non-random A, B and f € F suppose that

f([A, Blg) = f(A) + f(B), (4.6)

N sup{f(z): g(x) < g(A) + g(B), for all g € F} = f(A) + /(B)

(in general, the left-hand side is not greater than the right-hand one). Then F-addition
has especially good properties.

Theorem 4.13 If (/.6) is valid, then the F-addition is associative, i.e.

HA’ B]]F’ O]]F = [Aa [Ba C]]F]IF
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PROOF. It follows from (4.6) that

[A,Blp, Clp = {z:f(x) ([A, Blg) + f(C), for all f € F}
{z: f(x) (A) + f(B)+ f(C), for all f € F}
= [A, [B’C]F]F' O

<f
<f

Then we can write [A, B, C|p instead of [[A, B]p, C]g. The condition (4.4) implies
also the F-additivity of the F-expectation.

Theorem 4.14 It ({.4) and (4.6) are valid and EgA and EpB are non-void, then
Eg[A, Bl = [EpA, EpBlg.
PROOF. Formula (4.6) implies

Egr[A, Blp = {z:f(z) <Ef([A, Blp), for all f € F}
= {z:f(z) <Ef(A)+Ef(B), for all f € F}.

On the other hand, Corollary 4.12 yields

[EpA EpBlp = {2:f(z) < f(EgA) + f(EB), for all f € F}
{z: f(z) <Ef(A)+ Ef(B), forall feF}. O

For each nonnegative ¢ put
coA={z:f(x) <cf(A), forall f € F}.

Now consider the normed sums and the corresponding law of large numbers. For
each n and iid random sets A;,..., A, put

Lol A = (o f(0) < X0, (A, for all f € F) . (4.7)

If F = L, then the left-hand side is equal to = (4;&- - -®A,). For the family of functions
from Example 4.3 the set (4.7) coincides with star-shaped averages, considered in
Stoyan (1989).

The left-hand side can be defined also for a family F, which does not satisfy (4.6).
If F is the family of all indicators of compact sets, then (4.7) is equal to the closure
of (Ayn---NA,).

Define iid random functionals on F as &;(f) = f(A4;). Then

1

0 [Ar, . Aylp = {z: f(2) < G (f), forall f e F},

where

() = 12";@-@.

nhf
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For each f the strong law of large numbers yields (,(f) — Ef(A) = E&(f) a.s. as
n — oo.

Let us now introduce also a metric on the class of sets called the F-metric. Note
first that each F-closed set A can be obtained as

A={z:f(z) < f(A), forall f e F}.

For ¢ > 0 put
[Alp = {z: f(z) < f(A) +¢, forall f € F}.
Certainly,
N [AlF = [Alf-
e>0

If F = L, then [A]g is equal to the Minkowski sum conv(A4) @ b(o,€).
Define the distance between F-closed sets A and B as

pr(A, B) =inf{e > 0: A C [B]f, B C [A]p}-

If F =L, then pp coincides with the Hausdorff distance between the convex hulls of
A and B. If F is the family of indicators of compact sets, then [A]f is the closure of
Ain case ¢ < 1 and [A]p = R if ¢ > 1. Hence pp(A, B) =1 for A # B.

It is evident that A C [B]p iff f(z) < f(B) +cforallz € A and f €F. In other
words, f(A) < f(B) + ¢ for all f € F. Therefore,

pp(A,B) = inf{e > 0: f(A) < f(B) +¢, f(B) < f(A) +¢, forall f € F}
fszp]Flf(A) — f(B)]

In particular, for F = IL. we obtain the fact that the Hausdorff distance between convex
sets is equal to the uniform distance between their support functions.

Theorem 4.15 The set B =EgA gives the minimum to the functional E(pp(B, A))?
for B belonging to the family F of F-closed sets.

Proor. Clearly,
Epp(B,A)’ =E sup (f(B)— f(A))>.
feF

Then for each B € Fp the distance pp(B, A) coincides with the uniform distance
between two functionals ¢4, ¢p: Fp — R, where ¢4(f) = f(A), ¢5(f) = f(B). Then
the value

Epp(B,A)? =E sup (pa(f) — ¢5(f))?
ferF

is minimal if ¢5(f) = E¢a(f), f € F. Thus, f(B) = Ef(A) for each f € F. Since B
is F-closed, we get

B = {5f()

= {z:/f(z)

f(B), for all f € F}

< f(B),
<Ef(A), forall feF} =Epd. O

The following theorem is a strong law of large numbers for normalized F-sums of
random closed sets.
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Theorem 4.16 If (,
(i.e. the functional &;

~—~

f) = Ef(A) = E&(f) a.s. as n — oo uniformly for all f € F
f) satisfies the Glivenko-Cantelli theorem on the class ), then

~—~

o[Ar,..., A, EpAd) = 0 a.s. as n — oo. (4.8)

S|

PR (

Similarly a central limit theorem in the pp-metric can be derived from the central
limit theorem for the functionals on the class F, c¢f Weil (1982).

Now we shall find some sufficient conditions ensuring the uniform convergence of
the functional (,(f) to Ef(A) forall f € F. Let F be equipped with a certain topology
Tr-

Theorem 4.17 Suppose that (F,Tg) is a certain compact space, and for any f € F
and a family of its neighborhoods U(f) it is

E| sup g(A)— inf g(A)| =0 as U(f) L {f}. (4.9)
9€U(f) 9€u (/)

Then

sup |G (f) —Ef(A)] =0 a.s. as n — oo,
ferlF

and (4.8) is valid.
ProOOF. The proof follows the standard scheme, given in Bhattacharia and Ranga

Rao (1976) for general probability measures. O

Suppose that the convergence in I is compatible with the pp-metric in such a way
that for any f € I, its neighborhood U(f) in T, and A € F

FIAF) < inf o(4) < sup g(4) < f(4]) (4.10)

for a certain € > 0, where
[Alg” = {=:[{z}p C A}
The F-interior of A is defined as

IntpA = |J[Al5.

e>0

The set A is said to be a.s. F-canonically closed if
[Int]FA]IF =A a.s.,

i.e. A coincides almost surely with the F-closure of its F-interior, cf Molchanov (1987).
Then Theorem 4.17 can be reformulated as follows.

Theorem 4.18 Suppose that the space (F, Tg) is compact and for each f € F
Ef(A) = Ef(IntgA).

If A is a.s. F-canonically closed, then (,(f) converges to Ef(A) uniformly for f € F,
i.e. (4.8) is valid.
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PROOF. First combine (4.10) and (4.9). Then use the monotone convergence theorem
for expectations. O

The functional £ satisfies the Glivenko-Cantelli theorem on F for each random set
A if the class F is a so-called Vapnik-Chervonenkis class (VC-class) of functions, see
Dudley (1984). The family L is a VC-class, so that this theorem implies the strong
law of large numbers for the Aumann expectation. If F is the class of functions of
Example 4.3, then we obtain the law of large numbers for the star-shaped expectation.

If F is the class of indicators of compact sets then (,(f) is the empirical capac-
ity, defined for iid observations of the random set A, see Molchanov (1987), where
necessary and sufficient conditions for the uniform convergence were found.
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Chapter 3

Infinite Divisibility and Stability
of Random Sets with respect to
Unions

3.1 Union-Stable Random Sets.

The first to study the stability of random closed sets with respect to their unions
(U-stability) was Matheron (1975). He characterized union-infinitely-divisible ran-
dom sets and considered the simplest case of union-stable sets (without fixed points).
These notions were later discussed from a very general point of view by Trader (1981).
However Trader’s constructions evaded some difficulties. For instance, the character-
ization problem was merely reduced to some functional equations.

A random closed set A is said to be infinitely divisible for unions if, for any positive
integer n,

AL A U U Ay,

where A,;, 1 < i < n, are iid random closed sets, see Matheron (1975). Hereafter 4
designates equivalence in distributions.

To proceed further the notion of a fized point should be introduced. The point z
is said to be a fixed point of A if

P{re A} =T({z}) =1,

where T is the capacity functional of A. In other words, x is a fixed point if and only
if A contains x almost surely. The set of all fized points of A is denoted by Fj.

EXAMPLE 1.1 Let A = (—00,&] be a random subset of R'. If the random variable &
is a.s. positive, then Fy O (—o0,0].

The random closed set A is said to be non-trivial if P {A = Fa} < 1, i.e. A does
not coincide almost surely with the set of its fixed points.
Clearly, T(K) = 1 as soon as K hits F,4. To exclude such a case introduce the

class
ICA:{KEIC: KﬂFA:(b}.

It is easy to prove that F, is a closed set. Having replaced R? by the space R?\ Fy,
we can consider only union-infinitely-divisible random sets without fixed points, as it

29
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was shown in Matheron (1975). The following theorem provides a slight modification
of his result, see also Norberg (1984). The similar result can be obtained by the
instrumentality of the harmonic analysis on semigroups, see Berg, Christensen and
Ressel (1984).

Theorem 1.2 The RACS A is union-infinitely-divisible if and only if its capacity
functional is represented as

T(K) =1 — exp{—T(K)}, (1.1)

where W(K) is an alternating Choquet capacity of infinite order such that V(0)) = 0
and U(K) is finite for all K belonging to K .

Union-stable sets form a sub-class of union-infinitely-divisible random closed sets.
A random closed set A is said to be union-stable (U-stable) if, for any n > 0,

anAL AU U A, (1.2)

where a,, > 0 and A4, ..., A, are independent copies of A.

The notion of U-stable random closed set generalizes the famous definition of max-
stable random variables, see Galambos (1978) and Leadbetter et al. (1986). First,
recall several facts from the theory of extremes.

A random variable ¢ is said to be maz-stable if, for all n > 1,

ang + bn fil’ max({l, s an)a

where a, > 0, b, € R¢, and &,...,&, are iid copies of £. Tt is well-known (see,
e.g., Galambos, 1978) that up to a shift any nondegenerate max-stable distribution
function is of type one and only one distribution of the parametric family

F.(x) :exp{—(1+7x)_1/7},7x2 -1,yeR (1.3)

Besides, if v > 0 (type I), then F.(z) =0 for v < —1/7, if v < 0 (type II) then
F,(z) =1 for x > —1/v, and if v = 0 (type III), then (1 + vx)~'/7 is an abuse of
language for e™”.

Max-stable vectors in R? were studied by Balkema and Resnick (1977), de Haan
and Resnick (1977). Max-stable random processes were considered in de Haan (1984),
and from the very general point of view in Norberg (1986a, 1987), see also Gine et al.
(1990). There are close connections between max-stable random processes and union-
stable random sets, since the hypograph of any max-stable process is a union-stable
random set (cf. Section 8.3).

Union-stable sets without fixed points were characterized in Matheron (1975). He
proved that the capacity ¥ from (1.1) is homogeneous with the positive exponent «
if and only if A is U-stable and F4 = (0. It should be noted that the general situation
cannot be reduced to the case Fiy = () by considering the space R? \ F4, since R? \ Fy
is not a closed cone any longer. On the other hand, the following example shows
that even in R' there are simple examples of U-stable sets which do not fall in with
Matheron’s scheme.
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EXAMPLE 1.3 Let A = (—00,£] be a random subset of R'. It is evident that A is
U-stable iff £ is a max-stable random variable. Matheron’s characterization theorem
yields

exp{—c(—z)*} , <0

1 , xZO,xszK,

1—T(K):P{§<ian}:{

where v > 0 and ¢ is a certain positive constant. Thus, only max-stable laws of type II
can be characterized. It is evident that max-stable laws of type I cannot be obtained
from Matheron’s characterization theorem, since £ is positive almost surely, so that
F4 = (—00,0] is non-empty.

Although the proof in Matheron (1975) was relied essentially on the lack of fixed
points, a similar characterization theorem is valid for general U-stable random sets,
see Molchanov (1992). It should be noted that the characterization of union-stable
random sets is more difficult than the characterization of max-stable random variables.
The main difficulty is caused by the possible self-similarity of random sets. Namely,

if £ 4 c£ for a random variable £ and each ¢ > 0, then £ is equal to 1 a.s. On the

other hand, the relation A < ¢A for a random set A admits a lot of solutions, say the
set, of zeros of the Wiener process.

Theorem 1.4 A non-trivial random closed set A is U-stable iff its capacity functional
T is of the form (1.1), where ¥(K) is a Choquet capacity, ¥(0) =0 and

U(sK) = s*U(K),U(K) < oo, (1.4)
SFA = FA

for a certain a # 0, whatever positive s and K from K4 may be.

PROOF of the necessity falls into several stages.
I. Let T(aK) = T(a, K) for all K from K and certain a, a; > 0. Prove that a = a;.
It is sufficient to consider the case a; = 1, a < 1. Then, for any n > 1,

T(K) =T(a"K), K € K.
Hence T(K) < T(B.(0)) for each £ > 0. Semi-continuity of 7" implies T'(K) < T'({0}),

K € K. Thus, T({0}) > T(R?) > 0, since A is non-empty with positive probability.
It follows from (1.2) that

T({0}) =1- @1 =T{o})",

so that T({0}) = 1, whence 0 € F. If Fy = (), then the first step has been proven.
Let F4 be non-void. The condition (1.2) yields

T(K)=1-(1-T(a,K))",n>1,Ke Kk (1.6)
for some a, > 0. Since a # 1

a, = am(n)An,n > 1,
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for a certain integer m(n) and A,, belonging to (a, 1]. Then, for each compact K and
n>1,
T(K)=1-(1-T(a,/a™™))" =1— (1 -T(AK))". (1.7)

Choose ¢ > 0 such that F§ # R? and denote
K. = R4\ F5 N Bg(0).
Then for sufficiently small € and large R
0<T(K.) < 1.
It follows from (1.7) that
T(K) =1 - (1= T(AK))".

Then
T(AK.) — 0 as n — co.

It is obvious that
T(AK.) = P{ANA,K. # 0}
= 1-P{AC (A,K.)}
= 1-P{ACA,(F5 UBR(0)},
where F~ = IntF§. Without loss of generality suppose A, — A € [a, 1] as n — oc.

Hence
P{AC(AF,)™ " UB; (0)} =1 as n— oo,

where 0, | 0 as n — oo, Ry = A(R — dy), 6o > 0. Thus
P{AC (AF4) UB (0)} =1.
Letting £ go to zero and R go to infinity yields
P{ANK CAF,} =1

for any K from K. Hence A C AF 4 almost surely. It is easy to derive from (1.7) that
A, Fy = Fy. Thus, AF4 = F, and A C F4 with probability one, whence A is trivial,
contrary to the condition of Theorem. Thus, a = 1.

IT. Since a U-stable set is union-infinitely-divisible, its capacity functional has the
form (1.1). It follows from (1.2) that

nU(e,K) = Y(K), n>1, K€Ky,
anFA = FA.

For any positive rational number s = m/n € Q, put a(s) = a,,/a,. It is easy to show
that a(s) does not depend on the representation of s. Then, for any s from Q,

sU(a(s)K) = Y(K), s> 0, K € Ka, (1.8)
CL(S)FA = FA.
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III. Let s, s; belong to Q.. It follows from (1.8) that
U (a(s)a(s))K) = ¥ (a(ss1)K) .
The first step of the proof and (1.1) yield
a(ss1) = a(s)a(sy). (1.9)

IV. Prove that a(s,) — 1 as s, — 1, i.e. the function a(s) is continuous on Q at
s = 1. It follows from (1.1), (1.8) that

T(a(sp)K) = T(K) as n — oo, K € K.

Without loss of generality suppose that the sequence a(s,), n > 1, has the limit
(which is allowed to be infinite).
Let this limit be finite and equal to a > 0. Then, for any ¢ > 0 and sufficiently
large n,
T(a(sy)K) < T(aK*).

Hence T'(K) < T'(aK). Similarly we get T'(K/a) > T(K). Thus, T'(aK) is equal
to T'(K) for each K € K, so that a = 1.
Since

U(a(sy,)K) =Y(K)/s, and V(K /a(s,)) = s, V(K),

it is sufficient to consider either case a(s,) — 0 or a(s,) — o0 as n — oc.
Choose an integer m > 1. Let a,, > 1. Suppose that a(s,) — oo as n — oo.
Then, for any n > 1,
a(sn) = (am)F WA,

where 1 < A, < a,, and k(n) is a certain positive integer. It follows from (1.6) and
(1.9) that
(am)k(n) = Qupk(n) -

Hence
T(AK) = 1-[1=T ((am)™A,K)]
= 11— T (a(s) )™

Let 0 < T(K). Then T(A,K) — 1, since T'(a(s,)K) — T(K) > 0. Without
loss of generality suppose that A, — A as n — oco. Semicontinuity of T" implies
T(AK) = 1. Hence AK N Fy # 0 as soon as T(K) > 0. It is easy to show that
A,Fy = F, for all n > 1, whence AF4 = F4. Thus, KN F4 # () as soon as
T(K) > 0, so that A = F4 almost surely.

It is obvious that a,, # 1. If a,,, < 1, then suppose a(s,) — 0 as n — oo and use
the same arguments as above.

Thus, a(s,) = 1 =a(l) as s, — 1.

V. Let s, - s € Q, as n — co. Then

a(sp) = a(s)a(s,/s) — a(s) as n — oo,

since s,,/s — 1 and a(s,/s) — 1. Thus, the function a(s) is continuous on Q.
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VI. Extend the function a(s) onto the whole half-line. For any positive s denote
a(s) = lima(sy,), where s, — s as n — o0, s, € Q,. Then the function a(s) is
continuous on Ry, and a(ss;) = a(s)a(s;) for each s,s; > 0. Thus, a(s) = s for a
certain real 7. If v = 0, then sV(K) = U(K), i.e. A = F, almost surely. Hence
v # 0, i.e. (1.4) and (1.5) are valid for « = —1/7.

Sufficiency. The capacity functional of A; U---U, is equal to

T.(K)=1—exp{—nV¥(K)}.
On the other hand, the capacity functional of a, A is equal to
T/(K) = 1 — exp{—¥(Ka,)}.

If a, = n~'/% then T, = T on K. Thus, (1.2) follows from the Choquet, theorem.
]

Corollary 1.5 A union-stable RACS A has no fized points iff « > 0 in (1.4). If
a < 0, then Fj is non-empty and 0 € Fy.

Proor. If Fy = 0, then ¥(B,(0)) < oo for each r > 0. On the other hand,
U(B,(0)) = r*W(B;(0)). Thus, o > 0.
Let o > 0. If F4 is non-empty, then, by (1.5), F4 contains the origin. On the

other hand, K N F; = () yields ¥(sK) — 0 for s | 0, contrary to the semicontinuity
of the capacity functional. O

Corollary 1.6 A stationary U-stable RACS A has positive parameter o in (1.4).

PROOF. Indeed, otherwise A has a fixed point, so that A = R¢ by stationarity. O

Corollary 1.7 For any F C R? denote its inversion transformation
F* = {ullu| ™ uwe F}. (1.10)

Then a random closed set A (with a closed inverse A*) is U-stable with parameter
a # 0 iff its inverse set A* is U-stable with parameter —a.

PRrROOF. Evidently,
P{A*NK#0}=P{ANK"#0} =1—exp{—V(K")}.

By (1.4), U(sK*) = s*WU(K*), whence ¥((sK)*) = s “¥(K*). O
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3.2 Examples of Union-stable Random Closed
Sets.

It is easy to show that the random set A = (—o0,&] C R! is U-stable iff £ is max-stable
with parameter v # 0, see (1.3). Consider other examples of U-stable sets related with
Poisson point processes.

The Poisson point process 11, with the intensity measure A is a random countable
subset of R? such that the following conditions are valid (see Stoyan et al., 1987).

1. For each bounded set I" the random variable card(ITy NT') has a Poisson distri-
bution with parameter A(T).

2. For all disjoint sets I'y, ..., I, the random variables card(ITy N T;) are indepen-
dent, 1 < i < n, for each n > 2.

Here A is a Borel measure on R? called the intensity measure.
The capacity functional of I, is equal to

T(K)=P{l[, N K # 0} = 1 — exp{—A(K)}.

It is evident that any Borel measure satisfies the conditions (T1) and (T2) from
Section 1.2. By Theorem 1.2, any Poisson point process is union-infinitely-divisible
and the corresponding Choquet capacity W(K) coincides with the intensity measure
A(K). However, if T, is union-stable, then the measure A has to satisfy additional
conditions.

ExAaMPLE 2.1 Let A be the Poisson point process IT,. Assume that A has the density
A with respect to the Lebesgue measure. Then A is U-stable iff A is homogeneous, i.e.

A(su) = 5"\ (u) (2.1)

for a certain real o, whatever u from R? and positive s may be. If a < 0, then the
origin is a fixed point of A. For o« = 0 the random set A is the stationary Poisson
point process.

The Poisson point process is of use to construct more complicated random closed
sets called Boolean (or germ-grain) models, see Matheron (1975).

EXAMPLE 2.2 Let [Ty = {21, x,...} be points of the Poisson point process from Ex-
ample 2.1, and let Ay, A}, AZ, ... be a sequence of independent identically distributed
random sets in R?. Then the random closed set A defined as

A= (w; + Ap)

z; €1IA

is said to be the Boolean model with the primary grain Ay, see Matheron (1975),
Stoyan et al. (1987). It was shown in Matheron (1975) that the capacity functional
of A is defined by (1.1), where

U(K) = BA(4o © K),
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K ={-z2 e K}. If sAy £ A, for each s > 0, then the Boolean model A is U-stable.
We can choose Ay to be a non-random cone, or the trajectory of a certain stable
process, or the set {ex:x € 3}, where e is a unit vector, 39 = {t > 0: w; = 0} is the
zero set of the Wiener process. We only have to ensure the finiteness of EA(Ao® B.(x))
for some £ > 0 and all # from R?. Thus, the parameter a in (1.4) and (2.1) is to be
negative.

The following example is not related with Poisson point processes.

EXAMPLE 2.3 Let f:R? — [0, 00] be an upper semi-continuous function. Then

U(K) = sup f(z) (2.2)

zeK

is a maxitive Choquet capacity. The capacity functional (1.1) determines the distri-
bution of the random closed set A defined as

A= {z: f(x) > ¢},

where £ is a random variable, having the exponential distribution with parameter 1.
The RACS A is U-stable iff the function f is homogeneous, i.e. f(sz) = s*f(z) for
each s > 0 and x € R?. In this connection, Fy = {z: f(z) = oo}.

Next, consider one quite general method of construction of capacities and, re-
spectively, distributions of random sets. Let k(z,y):R? x R? — [0, 00] be a lower
semi-continuous function which is said to be a kernel. Furthermore, let

Uk@) = [ bl y)udy)

denote the potential of the measure 1, and let S, be the support of ;1. Assume that &
satisfies the maximum principle, i.e. U, Zf (r) < M for all z € S, implies this inequality
everywhere on R?. Then the functional

C(K):sup{u(K): Ulf(x)gl,xEK,SﬂgK},KElC, (2.3)

is a Choquet capacity on I, see Landkof (1966) and Choquet (1953/54). Note that the

supremum is taken over all measures satisfying the imposed conditions. For instance,

the capacity ¥ defined in (2.2) can be obtained for k(z,y) = 1/ max(f(x), f(y))-
According to the Choquet theorem, the functional 7" defined as

T(K) =1 — exp{—C(K)} (2.4)

is the capacity functional of a certain random closed set A. Then A is U-stable if and
only if
k(sw,sy) = s™k(z,y), (2.5)

whatever s > 0 and x,y € R? may be. If A is stationary and isotropic, then k(x,y)
depends on ||z — y|| only. Thus

Clle —yl|™* , =
k(fr,y)z{q” /| xig
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for a certain a # 0.

Let us prove that ¢ = co. If ¢ = 0, then C'({z}) = o0, so that A = R? a.s. by
stationarity. If 0 < ¢ < oo, then C({z}) = 1/q, C({z,y}) = 2(q¢ + k(z,y)). If & < 0,
then

lim C({z,y}) = 2/q > C(a),

i.e. C is not upper semi-continuous. In case a > 0 we get C'({z,y}) < C(z) for
sufficiently small ||z — y||, i.e. C'is not increasing. Thus, ¢ = co and

k(z,y) = Clle —ylI™, = #y. (2.6)

This kernel is equal up to a certain constant factor to the Riesz kernel kg, ||z—yl|7~¢
for ¥ = d — . Hence C is the Riesz capacity. It is known (see Landkof, 1966) that C
is an alternating capacity of infinite order incase 0 < a < 1ford=1ord—2 < a <d
for d > 2. Thus, the above described technique allows to construct examples of U-
stable sets with such parameters. These U-stable sets can be described constructively
as it follows, cf. Matheron (1975).

Let us construct the RACS A with the capacity functional (2.4) and kernel (2.6).
Let 1 be the equilibrium probability measure on B,.(0) with respect to the kernel given
by (2.6), i.e.

Uk(x) = 1/C(B,(0)), € B, (0),
and let N be the Poisson random variable of mean C'(B,(0)). At the moment ¢t = 0
we launch N mutually independent and independent of N random stable processes
&(t), 1 <i < N, with the index d — « and the initial distribution p. Then A is the
union of their trajectories. Indeed, the capacity functional of A is equal to

T(K) = 1 - exp {~C(B,(0)) Ti(K)} .

Here T:(K) is the capacity functional of the random set A; defined to be the
trajectory of one process & (.). Let P, be the distribution of the stable process which
starts from x, mg = inf{t: & (t) € K}. Since P,{mg < oo} is the potential of the
equilibrium measure px on K (see Ito and McKean, 1965), we get

T\(K) = /B P {my < oo} u(d)
= [ [ k) (dy)udo)

= [ nicldy)/C (B, (0)
= C(K)/C(B(0)).
Hence A has the capacity functional (2.4).
It should be noted that the capacity functionals (2.4) for C' given in (2.3) and the

kernel (2.6) do not exhaust all examples of capacity functionals of U-stable stationary
isotropic random closed sets.

3.3 Convex-Stable Random Sets.

The definition (1.2) of U-stable sets is rarely applicable to convex random sets since
the set A; U---U A, is usually non-convex. A convex RACS must satisfy very strong
conditions to be U-stable.
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Let A be a convex RACS in R?. This random set is said to be C-stable (convez-
stable) if, for every n > 2 and independent copies Ay, ..., A, of A,

anA L conv(A; U UA,) @ K, (3.1)

for some a,, > 0, K, € K. In case K, = {b,}, n > 1, i.e. K, is a singleton set for all
n > 1, the random set A is said to be strictly C-stable.

This definition is due to Gine, Hahn and Vatan (1990), where such a set A is
additionally supposed to be compact and its support function is assumed to have a
non-degenerate distribution.

Convex-stable random sets arise in applied sciences while treating objects deter-
mined by convex hulls of their elementary components. For example, a star-cluster
can be considered to be the convex hull of the stars or sub-clusters, the natural habi-
tat of a certain species is the convex hull of the sightings of animals, the dangerous
region to be placed in quarantine in epidemiology is the convex hull of the primary
regions where the infectious disease has manifested. The corresponding random sets
are C-stable, since they arise as limits for convex hulls (see Chapter 8).

It should be noted that convex hulls of random samples were studied in the theory
of approximations of convex sets (see Schneider, 1988) and in statistics while testing
for lack of circular symmetry (see Davis et al., 1988).

Reformulating (3.1) in terms of support functions, we obtain

ansa(u) & max {sa, (u),..., 54, (W)} + sk, (u), ue St (3.2)

If Ais compact and s4(u) has non-degenerate distribution for each u € S%1, then
the support function s4(-) is a random max-stable sample continuous process. This
fact leads to the characterization of compact C-stable sets, see Gine et al. (1990).
Meanwhile, even for R' these conditions are more restrictive than it seems to be.

EXAMPLE 3.1 Let &, &, & be max-stable random variables with distributions of
types I, II, TIT respectively, see (1.3) and Galambos (1978). Then the random sets
A =10,&)], Ay = (=00, &), A3 = (—00, &3] are even strictly C-stable. However these
sets do not fall in with the scheme given in Gine et al. (1990), since Ay and Az are
unbounded and the support function s4, (u) is degenerated for u = —1. Respectively,
these sets cannot be represented as the sum of a certain non-random compact and a
C-stable set whose interior almost surely contains the origin (this representation is an
essential result of Gine et al., 1990).

Below we characterize C-stability of random set in terms of its inclusion functional
t. We show also that slightly modified methods proposed by Gine et al. (1990) work
well even in general case.

First, give a modified version of Lemma 3.3 from Gine et al. (1990).

Theorem 3.2 Let = be a random closed subset of a o-compact space satisfying

(11

d — -
~=ziN---Nz=,,n > 1,

for =; iid copies of =. Then = almost surely coincides with the set of its fixed points.
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For any RACS A define
L, = {u € ST P {sa(u) < oo} = 1},
Hy = {ou+ pv: u,v € La,a,3 €R},
i.e. H, is the minimal linear span of L 4.
Theorem 3.3 If A is a C-stable RACS, then
A=Ay® Hy (3.3)

where Ay = AN Hy is a C-stable subset of Hy, Hx is the orthogonal complement to
H,.
PRrROOF. Put

Ea= {u € S s4(u) < oo}

It can be shown that =, is a random closed subset of S4!, and

n

(1]

i=1
Theorem 3.2 yields =4 = L4 a.s., since L, is the set of fixed points of =4. Further-

more, Ay # ) a.s., since otherwise s, (u) is finite with positive probability for a certain
u from Hy. Hence, (3.3) is valid. O

Corollary 3.4 The distribution of a C-stable RACS is determined uniquely by the
inclusion functional t(F), F € C.

PROOF is obvious, since the functional t(F') determines uniquely finite-dimensional
distributions of s4(u), u € L4, and, therefore, the distribution of A, c¢f. Example 1.3.2.
|

The following theorem provides a characterization of inclusion functionals of C-
stable sets. The class C4 defined as

Ca={F®Hy: FEC,FANHyCF C Hy}

plays the same role as the class K 4 in Theorem 1.4. It follows from (3.3) that t(F') = 0
for F belonging to C \ C4.

Theorem 3.5 A non-trivial convex RACS A is C-stable if and only if its inclusion
functional t is equal to

(F) = exp{e(F)}, F e C, (3.4)

where 1 is a non-positive functional satisfying conditions (I1), (I2) (see Section 1.3)
and Y(F) > —oo iff F € C4. In addition, for a certain convex compact H C Hy and
v # 0, one of the following two groups of relations is valid

Y(F) = syp(F o Hlogs), Fia© Hlogs = Fy, (3.5)
Y(F) = sY(s"Fe(s"—1)H), (FA\e H)s=Fa, (3.6)

whatever positive s and F from C4 may be. If La consists of at least two centrally
symmetric points, then only (3.6) is valid with vy > 0.
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PROOF. Necessity. It follows from Theorem 4.2 of Gine et al. (1990) that there exists
a measure v on C such that

v({M eC: M ¢ F})=—logt(F).
Then it is easy to show that the functional
P(F)=-v({MeC: M¢F})

satisfies conditions (I1), (I2) and is finite on C4, see also Trader (1981). In addition,
we have to derive (3.5) and (3.6) from (3.1).

The random process sa(u), u € L4, is continuous max-stable on L. It follows
from (3.2) and results of Gine et al. (1990) that a, = n” for some real v. If v =0,
then

sk, (u) = —h(u)logn,u € L.

Suppose that L, does not consists of any pair of centrally symmetric points. Then
there exists a compact set H such that K, = Hlogn, n > 1 (the set H, e.g., may be
chosen to be centrally symmetric). Hence

A& conv(A U---UA,) @ Hlogn, (3.7)

and
ny(F & Hlogn) = (F)

for all n > 1 and F € C4. Thus, for any ¢ = m/n > 0
n(F © Hlogn) = miy(F © Hlogm).
Put F'= F' & H logn for a certain F’ from C4. Then
qV(F' © Hlogq) = Y(F"),G € C,.

Here the Minkowski subtraction is replaced with the addition for ¢ < 1. By semi-
continuity, (3.5) is valid for any positive ¢. It follows from (3.7) that FA@®H logn = Fjy,
so that

Fy® Hlogq= Fy, q>0.

If v # 0, then
sk, (u) = (n" = 1)h(u), u € La,

so that K,, = (n” — 1)H. Similar arguments as above lead to (3.6). If L consists
of two points {y, —y} then the proof of Proposition 4.4 from Gine et al. (1990) is
applicable, so that the possibility of v < 0 is rejected.

Sufficiency immediately follows from Corollary 3.4. O

The characterization theorem for compact C-stable sets follows from Theorem 3.3,
since in this case L, = S% ! and, evidently, L does contain centrally symmetric
points. This case (y > 0) was considered in Gine et al. (1990). Besides, a spectral
representation for the inclusion functional t was obtained. It was proven that each
C-stable set with v > 0 and nondegenerately distributed support function can be
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represented as © @ H, where O is a C-stable random set containing the origin as an
interior point almost surely.

We shall say that the C-stable RACS A belongs to the first type if (3.5) is valid
and to the second type otherwise. If A belongs to the second type, then (3.6) is
transformed to

Y(sF@H)=s"YEF@®H),s>0,F €Cy, (3.8)

where oo = —1/7.
It should be noted that H D F)4 in case v > 0, and H is a singleton if A is strictly
C-stable.

Corollary 3.6 Let A be the C-stable set of the second type. If 0 < t(F & H) < 1
for some conver F containing the origin, then the parameter o in (3.8) is negative.
IfO<HFe®H) <1 for some F € C such that 0 ¢ F, then a > 0.

PROOF. f 0 < t(F® H) < 1 and 0 € F, then
$9F D SIF, S9 > 51> 0.

Hence s (F @ H) increases and —oo < ¢(F @ H) < 0. Therefore, a < 0.

Note that t(Fy @ H) < 1 for any half-space F, missing the origin. In fact, t(Fy &
H) =1 implies t(sFy @ H) = 1 for sufficiently large s, so that A = (). Suppose that
0<tF)<1,and 0 ¢ F. Then t(F, ® H) > 0 for a certain half-space F}, such that
0 §é Fy, F C Fy. ThUS, 0< t(F() ©® H) < 1 and soFy C s1Fp for s > s; > 0. Hence
s*(Fy @ H) decreases for s > 0, and also —oo < ¢(Fy & H) < 0. Therefore, « is
positive. O

EXAMPLE 3.7 Let £ = (&,...,&;) be a random vector in R?. Put
A=conv{er;: 1<i<dz; <&},

where ey, ..., €4 is the basis in RY. Then A is strictly C-stable iff £ is max-stable ran-

dom vector with respect to coordinate-wise maximum, see Galambos (1978), Balkema
and Resnick (1977). Evidently,

t(C(x)) =P{A C C(a)} = Fe(x),
where F¢ is the distribution function of &,
O(ZL‘) = (—OO,ZL'I] X X (_OO,.fUd], xr = (1'1, ...,l'd).

Thus, A is strictly C-stable iff Fe(x) = exp{¢(x)}, where ¢(z) < ¢(y) <0ifx <y
coordinate-wisely, and one of the following conditions is valid for a certain v € R?

W(x) = syY(x+wvlogs),
Y(x) = sp(s’z+ (7 — 1)v),

whatever positive s and # € R? may be.
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EXAMPLE 3.8 Let 1 be the exponential random variable with parameter A, f: R —
[0, +00] be a certain upper semi-continuous function. Then

A = conv {x e R%: f(x) > 77}

is a convex RACS. Its inclusion functional is equal to

(F) =P {sup 1) < 0} = exp{u(F)
for (F) = —Asup{f(z):z € F°}. Note that Fy = conv{xr € R%: f(z) = +oo}.
The set A is of the first type iff sf(x + vlogs) = f(x), and of the second type iff
sf(s7x+(s7 —1)v) = f(z) for certain v € R, v # 0, whatever z € R? and s > 0 may
be.

It should be noted that for any U-stable RACS A its convex hull conv(A) (if
non-trivial) is strictly C-stable.

ExXAMPLE 3.9 Let II, be a Poisson point process from Example 2.1, with a < 0.
Then the random set A = conv(II,) is C-stable. Its inclusion functional is evaluated

" P{ACF} =exp{-A(F9)},F (.

3.4 Generalizations and Remarks.

A possible generalization of the notion of U-stable random sets is based on the analog
of (3.1). A random set A is said to be generalized union-stable (GU-stable) if, for any
collection Ay, ..., A,, of independent copies of A,

an AL (A U--UA,) @ K, (4.1)

for certain a,, > 0, K,, € K. A random set is said to be strictly GU-stable if it satisfies
(4.1) with single-point compacts K,, = {b,}.

Generalized union-stable random sets are very difficult to characterize, since, in
general, the characterization problem cannot be reduced to examination of max-stable
support functions. The situation is getting worse in case A is unbounded, since in this
case A may coincide in distribution with A + u for some u # 0. The main obstacle is
the lack of the Khinchin lemma (see Leadbetter et al., 1986) for random closed sets.
Namely,

T(a,K +b,) = T(K) as n — o

for each K from KC does not imply the boundedness of a,, ||b,||, n > 1.

It was proven in Trader (1981) that any strictly GU-stable random set A with
as # 1 can be reduced to a U-stable random set by means of a non-random shift. In
other words, there exists b € R? such that A + b is U-stable. It was proven also that
in this case a,, is equal to n”, n > 1.

Consider the special case of (4.1) for a, = 1 and K,, = {—b,}. The random set A
is said to be additive union-stable (AU-stable) if

A+b, L (A U---UA,). (4.2)
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Let
Hy={ueR: AL A+u} (4.3)

be the set of all invariant shifts for A. Suppose that H,4 is a cone and A is not
stationary, i.e. H, # R?.
The RACS A is said to be homogeneous at infinity if, for each sequence {b,,n >
1} C RY,
lim T(K + b,) = JLIEOT(K +u+b,),K € K,uecR?, (4.4)

n—0o0

as soon as at least one limit exists, and p(b,, Ha) — 00 as n — oo. It is evident that
any compact random set is homogeneous at infinity.

Lemma 4.1 If A is homogeneous at infinity, then A satisfies the Khinchin lemma,
i.e. for each sequence b, € RY, n > 1, the pointwise convergence T (b, + K) — T(K)
as n — oo for K € K implies sup{||b,||:n > 1} < co.

PROOF. Suppose that p(b,, Ha) — oo as n — oo. It follows from (4.4) that the limit
of T(K + u + b,) exists and is equal to T(K'). On the other hand T(K + u + b,) —
T(K +u) as n — oo. Thus T(K) = T(K + u) for each u, i.e. Hy = R?. Hence the
sequence b,, n > 1, is bounded. O

Theorem 4.2 The RACS A is AU-stable if (and only if in case A is homogeneous
at infinity) its capacity functional is of the form (1.1), where V() = 0, and, for a
certain v 1L Hy,

U(K +uvs) =e *U(K), Fa+vs=Fy, (4.5)

whatever K from K4 and s from R may be.

PRrROOF. Sufficiency can be obtained from (4.5) and (4.1) for b, = vlogn.
Necessity. Since A is union-infinitely-divisible, (1.1) is valid. It is easy to prove
the existence of an Hy-valued function b(s), s € Q,, such that

S\If(b(s)—FK) :\II(K), KEICA, b(S)+FA:FA. (46)
As in the proof of Theorem 1.4, we can show that
b(ss1) = b(s) + b(s1)

for all positive rational numbers s, s;. It follows from (4.6) that T'(b(s,)+K) — T(K),
K € K, as soon as s, — 1, n — oo. Lemma 4.1 yields

sup{||b(sn)|]: n > 1} < 0.

Without loss of generality assume that b(s,) — b as n — oo. It is easy to show
that T'(b + K) = T(K) for each K € K, and b = 0. Thus, b(s) is continuous at
s = 1 and, therefore, may be continuously extended onto the positive half-line. Hence
b(s) = vlogs for a certain vector v L Hy, so (4.5) follows from (4.6). O

ExXAMPLE 4.3 Let A = (—00,&]. Then A is AU-stable iff £ is a max-stable random
variable with distribution (1.3), v = 0.
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Note that the random closed sets from Examples 2.1 and 2.2 are AU-stable as long

as

Mu+wvs) =e*Au),u € R4, s €R

for a certain vector v belonging to R? \ {0}.

Mention several open problems related with characterization of generalized union-
stable sets.

1.

Characterization of generalized union-stable sets for one-point compacts K, can
be obtained in case the random sets are supposed to satisfy an analog of the
Khinchin lemma. It can be shown that either A+ v is union-stable for a certain
vector v, or A is additive union-stable. The problem is to find examples of
GU-stable sets which do not satisfy the Khinchin lemma.

. It seems interesting to characterize GU-stable sets for arbitrary compacts K,

and, in particular, for circular K,.

. The random set A is said to be inverted union-stable if

a, ADK, LA U---UA, (4.7)

in the above introduced notations. The matter is that an inverted union-stable
set is no longer infinitely divisible by definition, so that we cannot use the
representation theorem for capacities of infinitely-divisible random sets. The
conjecture is that in this case (AS K,,) ® K, converges to A a.s. in the Hausdorff
metric as n — 0o, so that A can be approximated by union-infinitely-divisible
random sets. The problem is to find a representation theorem for their capacity
functionals and to characterize random closed sets which do not satisfy (4.1),
but (4.7). The same problem arises for inverted convex stable sets.

. The statement of Lemma 4.1 is valid for homogeneous at infinity random sets.

The problem is to find other conditions, which implies this statement (i.e. to
prove the Khinchin lemma for random sets).

. Find out examples of non-strictly C-stable random sets defined by random vec-

tors (see Example 3.7). Which vectors are stable with respect to this definition?



Chapter 4

Limit Theorems for Normalized
Unions of Random Closed Sets

4.1 Sufficient Conditions for the Weak Conver-
gence of Unions of Random Sets.

In this chapter we consider limit theorems for normalized unions of random sets, where
U-stable sets appear as limits. The reader is referred to Section 1.4 for generalities
on the weak convergence of random closed sets.

Let Aq,..., A, be independent identically distributed random closed sets with the
common capacity functional 7', and let X be their union, i.e.

We investigate the weak convergence of a,'X, where a,, n > 0, is a suitable
sequence of real numbers. Tt is evident that the limiting RACS X (if exists) is U-
stable. Hence its capacity functional T  is characterized by Theorem 3.1.4, i.e.

T(K) =1 — exp{—T(K)} (1.1)

for a certain homogeneous capacity ¥ such that U(sK) = s*¥U(K), s > 0, for each
compact K missing the set of fixed points F'x. We shall show that the corresponding
parameter « is positive in case a, — 0 and is negative if a,, — oo.

The union-scheme generalizes well-known limit theorems for normalized extremes
of random variables. For instance, if A; = (—o0,&], then a;'X, converges weakly
as soon as the random variable a ! max(£y,...,&,) has a weak limit. Thus, the limit
theorems for scaled extremes of random variables will follow from our results for
A = (—o0,& or A = [§,+00). Naturally, while handling with unions of random
sets we use similar methods as in the theory of extremes, see e.g. Galambos (1978).
However, the direct generalization fails due to specific properties of capacities. For
example, the function 1 — T'(zK), > 0, plays in our consideration the same role as
the distribution function in limit theorems for extremes, but this function is no longer
monotone and even may not tend to 1 as x — oo.

First, consider the case a,, — oo as n — oo. The limiting random set X has the
origin as a fixed point, so that Corollary 3.1.5 yields a < 0. For any compact K put

a,(K) =sup{z: T(zK) > 1/n}, (1.2)

45
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where a,(K) =0 in case T(xK) < 1/n for all x > 0. The values a,(K), n > 1, stand
for the ”best” norming constants for the given compact K, see Molchanov (1993e).
The reader is referred to Section 1.6 for necessary facts from regular variation
theory.
Introduce the function 74 (z), z > 0, and the class T of compacts by

% (z) = T(2K), (1.3)
T = {K: lim inf 7'(rK) = 0} . (1.4)

Theorem 1.1 Assume that for any K from T there exists the limit of a,(K)/ay,
(which is not necessary finite), and let T (x) be a regularly varying function with the
negative exponent . Then a;'X, converges weakly to the U-stable set X with the
capacity functional given by (1.1) for

lim(a,(K)/a,) > , KeT

00 , otherwise (1.5)

U(K) = {

We begin with a lemma.

Lemma 1.2 Let f(x) be a reqularly varying function, indf = o < 0, and let g(x)
be a non-negative function such that xg(x) — oo as r — oo and g(x) has a certain
(maybe infinite) limit as v — oo. Then

- flzg(z) o
My T e (L6)
PRrROOF follows from the representation of a regularly varying function, see Seneta
(1976) and Section 1.6. Namely, f(z) = x*L(z), where L(z) is a slowly varying
function, and also for a certain B > 0:

L(z) = exp {77(:5) + /; #dt} x> B.

Here £(t) tends to zero as t — oo, and n(x) has the finite limit as x — oo. If g(z)
possesses a finite positive limit, then (1.6) is obvious, see also Theorem 1.1 from Seneta
(1976).

Suppose that g(z) — oo as © — oco. Let ¢ € (0, —a) be specified. Then g(z)* — 0
as * — 0o. Hence

- flzg(x) o 9@ £(t)
Q}LIQOW = lim g(z)"exp {n(g(x)x) —n(z) +/B Tdt}
= lim g(x)%exp {/Bg(m)x itt)dt}
< lim g(z)"exp{clogg(z)}
= lim g(z)*** = 0.

T—00
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Let g(z) — 0 as x — oco. Then g(z)x > B for sufficiently large =, and

lim Jleg() = lim g(x)o‘exp{—/: #dt}

T c
> lim g(x aexp{—/ —dt}
T—00 ( ) g(z):z:t

— ; atc
= g 9@)™ =oco.

Thus, (1.6) is valid too. O

PrROOF OF THEOREM 1.1. If T is the capacity functional of the random set A;,
then the RACS a,'X,, has the capacity functional T, given by

T,(K)=1- (1 - T(a,K))". (1.7)

If K¢ T,thenT,(K)— 1=T(K)asn — oo, i.e. (1.5) is valid. Further suppose
that K € 7. It follows from (1.7) that

T(K) = lim T,(K) = 1 — exp{—¥(K)}, (1.8)
as long as the limit
Jim nT(a,K) = ¥(K) (1.9)

exists (it may be infinite).
Suppose that
limsupT(zK) > ¢ > 0,

T—00
cf. (1.4). Then a,(K) = oo for all n > ny, i.e.
@n(K) = an(K)/an =00, n > no.

Let A > 1 be specified. Then for each n > ng there exists A, > A such that
T(an\yK) > 1/n. Hence

T(anAn K n
lim nT(a,K) = limn (a )7 (n)
n—00 n—00 TK(an)\n)
> liminf A\
n—0o0
> AN

Letting A go to infinity yields

lim nT(a,K) = co.
n—o0
Hence T(K) =1, i.e. (1.5) is valid with ¥(K) = lim ¢, (K) = oc.
Let 7x(x) — 0 as * — oo. In this case a,(K) < oo for all n > 1. If the
sequence a,(K), n > 1, is bounded, then T(xK) = 0 for all sufficiently large x, so
that lim 7, (K) = 0. Hence (1.5) is valid, since

U(K) = lim (a,(K)/a,)~* = 0.

n— 00
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Further assume that a,(K) — oo as n — oo. Lemma 1.2 yields

. 7-K(a/n) . TK(an) . —a
lim ————— = lim = lim (q,(K . 1.10
n500 1 (an(K)) | m0%0 7 (qn(K )ay) | moroo (n(K)) (1.10)
Let us prove that nT'(a,(K)K) — 1 as n — oco. For arbitrary n > 1 choose x,,,
m > 1, such that
an(K) —1/m <z, < a,(K)

and T'(x,, K) > 1/n. Semi-continuity of 7" implies
1/n < lim T(a,K) < T(a,(K)K),

Thus, nT(a,(K)K) > 1 for all n > 1. It follows from (1.2) that T(a,(K)AK) < 1/n
for A > 1. Regular variation of 75 implies

1 < lim nT(a,(K)K) = lim nT(an(K))\K)M

<)\
— n—oo n— 00 TK()\an(K)) - A

Letting A go to 1 yields

lim nT(a,(K)K) = 1.

n—0o0

From (1.10) we get

Jim T (0, ()K) = Jim T (1)) 20

= lim <Ln(K)> .
n—o0 an

Thus, (1.5) is valid for every compact K. It is easy to verify that for any K € T
and s > 0 the compact sK belongs to 7, and also

U(sK) = lim <M> . s"U(K).

n—oo an

Therefore, the limiting random set is U-stable with parameter . O

The limiting random set X in the scheme of Theorem 1.1. has the origin as a fixed
point, since a,(B,(0)) = oo for each r > 0.

If the norming factor a, converges to a certain positive constant a, then a,'X,
converges almost surely in the Hausdorff metric to the non-random set M defined as
is the closure of

U ({aB.(@): T(B,(x)) = 0,r >0,z e R*}).

It was stated in Section 1.4 that the weak convergence of random closed sets follows
from the pointwise convergence of their capacity functionals on the subclass IC,;, C K.
This class Ky consists of all finite unions of balls with positive radii. Hence a,'X,
converges weakly even in case the conditions of Theorem 1.1 are valid on T N ICy
instead of T .
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Below we provide only the outline of the limit theorem in case a,, — 0 as n — oc.
The limiting random set X is U-stable with parameter o > 0.
Denote for K € K

an(K) =inf{z > 0: T(zK) > 1/n}, (1.11)

where a,(K) = oo in case T(zK) < 1/n for all z > 0. Let
T = {K; lim inf T(zK) = 0} .
z—0

The function f(z) is said to be regularly varying at zero with exponent « if f(x) =
f(1/z) is a regularly varying function with indf = —a.

Theorem 1.3 Assume that for any K from T there exists the limit of a,(K)/a,
(which is not necessary finite) and let the function Ty (x) be regularly varying at zero
with exponent o > 0. Then a, ' X,, converges weakly to the U-stable set X with capacity
functional (1.1) where

lim(a,(K)/a,)~® , KeT.

00 , otherwise - (1.12)

U(K) = {

PROOF is quite similar to the proof of Theorem 1.1. O

4.2 Necessary Conditions in Limit Theorems for
Unions.

It is well-known that regular variation conditions are both sufficient and necessary in
limit theorems for extremes of random variables, see Galambos (1978). However, for
random sets the situation is different to some extent, since the pointwise convergence
of T,,(zK) for all positive x no longer implies the uniform convergence. Nevertheless,
the sufficient conditions in the scheme of Theorems 1.1, 1.3 are very close to the
necessary ones.

Theorem 2.1 Let the capacity functional T, of a,'X converge uniformly on K to
the capacity functional T of a U-stable random closed set X with parameter o, see
(1.1). Consider a compact K such that T(K) < 1 (i.e. K misses the set of fired
points of X ). If « < 0, then K € T and the function T (x) is reqularly varying with
ezponent . If o > 0 then K € T, and Tx(x) is reqularly varying at zero with the
same exponent .

PROOF. Let T be the capacity functional of A;. Denote

[ 1-T@K) , >0
F(x) _{ 0 , otherwise
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Since T'(K) < 1, the corresponding functional ¥(K) from (1.1) is finite. It follows
from (1.7) that

F™(apz) — exp{—¥(zK)} = exp{—2°U(K)} = F(z) as n — oo (2.1)

uniformly for > 0. If @ < 0, then F(z) is the distribution function of a certain
max-stable random variable of type I, see (3.1.3). For # < 0 we suppose F(z) = 0.
Denote
F.(x) =inf F(t), F*(x)= sup F(¢).

z<t 0<t<z

Uniform convergence in (2.1) yields
(F*(anz))" = F(x), (F.(anz))® — F(z) as n — oo (2.2)

for each positive . Since T is a Choquet capacity, the function F' is lower semi-
continuous. Hence the functions F* and F, are left-continuous. For example,

Fi(z) 2 F'(z—0) = lmF(y)
> liminf F(y) > F(z).

y—x

Since ¥ (K) is finite, F*(c0) = F,(o0) = 1, i.e. F* and F, are distribution func-
tions, and K belongs to 7.

From (2.2) and the necessary conditions in limit theorems for maxima (Galambos,
1978) we derive that the functions 1 — F,(z) and 1 — F*(x) are regularly varying with
exponent .

Evidently,

1—F*(z)<1-=F(z) <1-F.(x).

Let s > 1 be specified, and let n(k) be the integer part of s*. Then, for all
sufficiently large ¢, there exists k such that a,) <t < a,,41) and also

Filany) < Fult) < Ful@ngriny),
Fanw)) < F*(t) < F*(an@r1))-
Hence
log F.(an(kt1)) < log F.(t) < log F.(an))
log F*(an)) ~— log F*(t) — log F*(an(k41))
It follows from (2.2) that

log F,(t)
221 51 as t — oo,
log F*(t)
whence |~ F(a)
— <X
lim ———— =
2500 1 — ()

This fact and the regular variation of F* and F, imply the regular variation of the
function 7y ().

The dual case a > 0 is considered similarly. It is reduced to the limit theorem for
minima. O

Consider an example of a random set such that the capacity functional of the
corresponding unions converges only pointwise.
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EXAMPLE 2.2 Let Y C (—o0,0] be a U-stable RACS with o = —1, and let M}, be
equal to [k, k+1/2], k > 1, with probability £~3 and be empty otherwise. Furthermore,
let Ay, As, ... be iid copies of the random set A defined as

Put a, = n. Then the capacity functional of n !X, is equal to
T.(K) = 1—(1-T(nK))"(1-T(nK))"
1-(1-T(K))(1-T'(nK))",

where T',T" are the capacity functionals of Y and M; U M, U ... respectively.
Let 0 ¢ K C [a,b] for a certain positive a. Then

1= T(K) > (1 - [na]7%)"" 7"

where [na| designates the integer part of na. Hence
(1-T'(nK))" =1 as n — oo,

so that T,,(K) — T(K) as n — oo. Thus, n™'X,, converges weakly to Y as n — oo.

However, corresponding capacity functionals do not converge uniformly on the family
{zK,x > 0} even for K = {1}. Indeed, T'({z}) = 0 for all x > 0, and also

sup [T ({2}) = T({z})] = Tu({zn})

>0

= 1—(1—[nmn]_3)n—>1—6_1 as n — 00

for z, = [n**]n~', n > 1. Note that the function T'(zK) is not regularly varying for
the given K.

It seems interesting to construct an example such that T'(zK) is regularly varying,
but the uniform convergence fails. If there is no such example, then, perhaps, the
capacity functionals converge uniformly in conditions of Theorems 1.1 and 1.3. In
this case it is interesting to find out exact necessary and sufficient conditions for the
pointwise convergence.

4.3 Limit Theorems for Normalized Convex
Hulls.

First, consider pointwise convergence of inclusion functionals of convex hull of random
sets. The limiting random set is necessary convex-stable (see Sections 1.4 and 3.3 for
notations and definitions).

Let A,, n > 1, be iid random sets with the inclusion functional

t(F)=P{A, C F},F e,

and let
Zn =conv(A; U---UA,).
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Note that the sets A,, n > 1, are allowed to be non-convex and unbounded.
We consider limit theorems for the inclusion functional of a,'Z, for a certain
normalizing sequence a,, n > 1, of positive real numbers. Evidently, for any convex

F

)

ta(F) =P {a,'Z, C F} = (t(a, F))". (3.1)

If t,(F) tends to t(F) as n — oo for each convex F, then the limiting functional

t (if non-trivial) is a capacity functional of a certain strictly C-stable random set Z.

The limiting functional satisfies (3.3.8). In other words, Z is of the second type with
H = {0}. Thus

t(F) = exp{t)(F)}, FeC, FDFy, (3.2)

and, for a certain a # 0, R .
U(sF) = s*P(F), s > 0. (3.3)

The notations below resemble notations introduced in Section 4.1. Let a,, — +0o0
as n — 0o. Then the origin is a fixed point of the limiting random set, so that « < 0
by Corollary 3.3.6. Define for any convex F

a,(F)=sup{z: t(zF)<1-1/n}. (3.4)

If t(xF) > 1—1/n for all x > 0, then put a,(F) = 0. Introduce the sub-family of
convex sets by

T = {F € C: limsupt(zF) = 1}.

T—00

The following theorem resembles Theorem 1.1, although its proof is simpler, since
the limit theorem for convex hulls can be reduced directly to the limit theorem for
extremes of random variables.

Theorem 3.1 Let F € T.. Suppose that there is
Tim a,(F)/ay = a(F),

which s allowed to be infinite. Then

lim t,(F) = exp {—q(F) "}, (3.5)
if (and only if in case 0 < q(F) < oc) the function
r(x) =1—t(zF), x >0,
is reqularly varying with exponent o < 0. If F' ¢ T, then t,(F) — 0 as n — oc.
PRrROOF. Evidently, t,(F) - 0asn —ocoif 0 ¢ F. Let 0 € F. Put
€(A4;) =inf{s > 0: A; C sF}.

The distribution function of the random variable £(A4;) is evaluated as

Fe(r) = P{{(A) <z}
= P{ACaF}=t(zF).
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Hence
an(F) =sup{z: Fe(r) <1-—1/n},

and F' belongs to 7. if and only if F¢(z) — 1 as z — co. Moreover,
Gn =& (conv(Ay U---UAp)) = max {{(4;),1 <i <n}.
As in Galambos (1978), we get
P{(, < a,(F)x} — exp{—z“} as n — oc.
Then (3.5) is valid, since

tn(anF) = P{C < an}
= P{<n<an(F)m7})}

If 0 < ¢(F) < oo, then the necessity follows from the corresponding theorem for
extremes of random variables, see Galambos (1978).

It is easy to show that for any F' € 7. and s > 0 the set sF' belongs to 7. and
U(sF) = s*)(F), so that the limiting distribution corresponds to a certain C-stable
set. O

It was proven in Section 1.4 that the pointwise convergence of inclusion functionals
implies the weak convergence of convex compact random sets. Thus, the following
theorem is valid.

Theorem 3.2 Let the conditions of Theorem 3.1 be valid for each F from T. N Cy,
and let the random set A; be compact almost surely. Then a,'Z, converges weakly to
the C-stable set Z with the inclusion functional t given by

W :{ exp{—q(F)*} , FeT. (3.6)

0 , otherwise -

In fact, the class Cy in Theorem 3.2 can be replaced with the class P of all bounded
convex polyhedrons in R?, see Proposition 1.4.4.

Now consider a limit theorem for the Aumann expectation of convex compact sets
(see Section 2.1 for the definition of expectation).

Theorem 3.3 Let a,'Z, converge weakly to the random set Z. Then, for any R > 0,
the random set a;;' Z, N Br(0) converges weakly to Z N Br(0), and also

E |a,'Z, N Br(0)] = E[ZN Bg(0)] as n — oo
wn the Hausdorff metric. Moreover,
a, 10 (B [Z, N ayBg(0)]) — p (E[Z N Br(0)]) as n — oo, (3.7)

where 11 is the Lebesque measure in R?.
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PROOF is straightforward and simply follows from Theorem 1.4.6. O

We provide only the outline of the case of convergence to the limiting functional
with o« > 0. Let a, — 0 as n — oo. Define for any F' belonging to C

a,(F)=inf{x > 0: t(zF) <1—1/n}.
If t(xF) >1—1/n for all x > 0, then put @, (F) = co. Let

T. = {F € C: limsupt(zF) = 1}.

z—0

Theorem 3.4 Let F € T,. Suppose that there is
lim a,(F)/a, = q(F),

n— 00

which is allowed to be infinite. Then
lim t,(F) = exp {—q(F)™}, (3.8)

if (and only if in case 0 < q(F) < o) the function Tp(r) = 1 — t(zF), v > 0, is
reqularly varying at zero with exponent a > 0. If F ¢ 7., then t,(F) — 0 as n — oo.

Note that the limiting functional in Theorem 3.4 corresponds to necessary un-
bounded random set, so that (3.8) cannot be reformulated directly in terms of the
weak convergence.

Naturally, limit theorems for convex hulls follow from the corresponding results
for unions. However, to prove the convergence of unions we have to check regular
variation conditions for all compacts. This is sometimes more tiresome than to check
conditions of Theorem 3.1. Besides, for the convergence of convex hulls the necessary
and sufficient conditions have been obtained.

4.4 Limit Theorems for Unions and Convex Hulls
of Special Random Sets

First, consider convergence of random samples in R? and their convex hulls. In this
case Ay = {&} is a single-point random set and X,, = {{,...,&,} for iid random
vectors &1, ...,&,. We shall prove that the random set a,'X, admits a non-trivial
weak limit if the random vector £ has a regularly varying density.

Hereafter in this section the numerical function f:RY — R is called regularly
varying if f belongs to the class TIy (see Section 1.6). It means that

Bl — go(u)] >0 as x— oo (4.1)

sup
g1 f(@e)

ue 1

for any vector e from R? \ {0}. To make this section more self-contained recall that
any regularly varying function f admits the representation

f(u) = ¢(u)L(u), (4.2)

where L is a slowly varying function and ¢(u) is a continuous homogeneous function.
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Theorem 4.1 Let Ay = M + &, where £ is a random vector with a reqularly varying
positive density f, indf = a —d, a < 0, and M is a non-empty RACS independent
of £. Suppose that M C Ky a.s. for a certain compact Ky. Furthermore, let ¢ and L
be the corresponding factors in (4.2). Put

a, = sup {z: z*L(ze) > 1/n} (4.3)

for a certain e belonging to R? \ {0}. Then a;'X, = a;'(A; U---UA,) converges
weakly to the U-stable compact RACS X with the capacity functional

T(K) =1 - exp {— /K ¢(u)du} . (4.4)

Proor. Evidently, a,, — oo as n — oo. Check the conditions of Theorem 1.1 on
the class KCyp. Let K € Ky, and let 0 € K. Then there exists a ball K; such that
0 € Ky C K. Since f is positive, we get

x(x) =T@@K) > P{M+£&naK, #0}
= P{¢eaK @M}
> Pl{ce KoM} >0

where M = {—2:2 € M}. Thus, K ¢ T, and
P{a;anﬂK;é@} — 1 as n — oo.
Let K € Ky, and, moreover, 0 ¢ K¢ for a certain £ > 0. Then

k() = P{{eaK o M)}

/ ~ f(u)du
KD Ko
= ¢ /Keako/mf(xu)du

= z° /K6¢(U)L(xu)du.

IN

for sufficiently large x.
It follows from (1.6.9) (see also Lemma 6.3.2) that

/K é(u) L(zu)du ~ L(ze) / d(u)du as x — oo.

K

Thus
T () < 2%L(xe)(1 + Ap)A(K?), (4.5)

where A\, — 0 as © — oo and
A(K) = / (u)du, K € K. (4.6)
K

It follows from the theory of regularly varying functions that z*L(ze) — 0 as
x — oo for @ < 0, see Section 1.6. Hence 7x(z) — 0 as x — oo, whence it follows
that K belongs to the class 7 defined in (1.4).
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Estimate 7y (z) from below in the similar way

T(x) > inf z° /Ky/m é(u)L(xu)du

reEKy

> inf xo‘/K é(u) L(zu)du.
~y

y€B:(0)

Since K € ICyp, we get

N (K—y)=K*={y: B.(y) CK}.

y€B:(0)

Hence, in the above introduced notations,
Tr () > x*L(ze)(1 — \)A(K ).

Thus, for all K belonging to the class ICy; of finite unions of balls,

o L(tze)(1 — Agy) A(K79) < Tx (xt) < xaL(t:Ee)(l + Apt) A(KF)
Lte)(1 4+ M)A(Ke) = 71x(t) = L(te)(1 — M)A(K—=)’

provided K misses the origin. Hence

Since K € Ky, we get K¢ 1 IntK as ¢ | 0. The continuity of ¢ yields A(K®) |
A(K) and A(K~°) T A(K) as € | 0. Hence

Ti (xt) _ o

.
—)

i.e. the function 7k (z) is regularly varying with exponent o.
It follows from (1.2), (4.5) that for all 3 > 0 and sufficiently large n

an(K) < sup{x: x*L(ze)(l + B)A(K®) > 1/n}
= sup{z: s(z) < nA(K°)(1+5)},
where s(z) = x~*L(ze) is a regularly varying function such that inds = —a. Ac-

cording to Seneta (1976), s(x) admits the asymptotic inverse function §(x), which is
regular varying with

1

inds =y =——.

o

Then ()
a
li = <1
nSeo s(nA(K(1+ 5)) —
and, by (4.3),

a, = sup{z: s(x) <n} ~35n) as n — oo.
Theorem 1.1 yields

S(nA(K®)(1 + 7))
5(n)

n—0o0

U(K) < lim ( >_a = A(K*)(1 + B).
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Similarly,
U(K) > AK™)(1 = p).

Letting € go to zero yields ¥(K) = A(K), whence (4.5) is valid for each K from /Cyp.
It follows from the general results on distributions of random sets (see Matheron, 1975)
that (4.5) is valid for each compact K (if 0 € K we assume [ ¢(u)du = 00). O

NoTE. If f(zu) ~ ¢(zu) as  — oo, for a certain homogeneous function ¢ and any
u from R? \ {0}, then the statement of Theorem 4.1 is valid for a, = n?, v = —1/a.

The limiting random set X in Theorem 4.1 is the Poisson point process in R? with
the intensity measure A given by (4.6). Its distribution does not depend on the shape
of M, provided M is contained a.s. inside a certain compact.

The following theorem deals with the convergence of convex hulls of random sam-
ples.

Theorem 4.2 Let the conditions of Theorem 4.1 be valid, and let
Zn =conv(A; U---UA,).

Then a,,' Z,, converges weakly to Z = conv(X), where X is the weak limit of a,*(A; U
---UA,). The inclusion functional of the limiting random set Z is defined as

(F) = exp{— / d)(u)du}. (4.7)
FC
PRrROOF follows from Theorem 4.1, since for any convex F'
P{ZCF}=P{XNF'=0}=1-T(F°).

The limiting random set 7 is strictly C-stable with v = —1/a > 0 and H = {0}
(see Theorem 3.3.5). O

It was proven in Vitale (1987) that expectations of convex hulls for n iid random
vectors, n > 1, determine uniquely the distribution of the random vector in question.
Let us proceed to evaluate the expectation of the limiting convex random set Z in
Theorem 4.2.

Theorem 4.3 Ifa < —1, then the expectation of the C-stable set Z with the inclusion
functional (4.7) is the convex compact set EZ having the support function

se2(0) =T =) [y [ ow)(u- v au] v e, (49

v

where St = {u € S (u-v) >0}, v = —1/a, T is the gamma-function.
PRroOF. It is obvious that

P{sz(v) <z} =P{ACzH} =exp{—z%a(v)}
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where H, = {u:u-v > 1} is the half-space touching the unit sphere at the point v
and a(v) = [y, ¢(w)dw. Ordinary evaluations yield

sgz(v) = Esz(v) =a(v) VT (1/a+1)
= a(v)"T(1 —7). (4.9)

Let w = uy, for u € S, and let y > 1/(u - v). Thus, dw = y? tdudy and

a(v) = /Seru/u o (yu)y®~'dy
o /S . ¢(u)(u-v)*adu.

Now (4.8) follows from (4.9). Note that integrals over any part of S ! are un-
derstood with respect to the (d — 1)-dimensional Lebesgue measure on S¢1. O

The expectation EZ may be used in statistics for testing for lack of circular sym-
metry for random samples.

EXAMPLE 4.4 Let the function ¢ be spherically symmetric, i.e. ¢(u) = C for all
u € S4°1. Then the inclusion functional of Z is equal to

(F) = exp {—o/ ||u||°‘_ddu},
FC
and EZ is the ball B,(0) for r given by
o
=I(1—-7) [7C/+(u : v)”%lu] : (4.10)
Sy

Similarly to the expectation of the random set Z, the expectation of its norm
|1 Z]| = sup{||z||: z € Z} is evaluated as

BI|Z]) = T(1 =) [0 fjao, 6]

where s;_; is the surface area of the unit sphere in R?.
If ¢ is spherically symmetric, then

[EZ]] _ 1 -
EZ| " [/Sj(uv) 7du/sdl] :

In particular, for d = 2 it is
|EZ]| 1 m/2 v
W = |—= /0 (cos B)Y7dp

e era]

-
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Applications of the results above will be discussed in Section 8.2. Note only that
from Theorems 4.2 and 4.3 estimates for tail probabilities for the volume of convex
hulls of random samples can be derived.

As it was stated above, the limiting distribution of a,'X in the scheme of Theo-
rem 4.1 does not depend on the shape of M, provided M is contained almost surely
in a certain compact. Otherwise the limiting distribution becomes more complicated.

The following theorem deals with iid copies of the random closed set defined as
Ay = M(&), where M:R™ — F is a multivalued function and £ is a random vector in
R™ having a regularly varying density. Suppose that

sup {||M (u)||: v € S™ '} < oo.
Theorem 4.5 Let & be a random vector in R™ having positive regularly varying den-

sity f, indf = a—m, a < 0, and let M:R™ — K be a homogeneous set-valued
function whose values are compact convex subsets of R?, i.e.

M (zu) = 2" M (u) (4.11)

for a certain n > 0, whatever x > 0 and u € R™ may be. Furthermore, let Ay = M (&)
be a random closed set. For a certain vector e € R™ \ {0} denote

Lx = {ueR™ Mu)NnK #0}, (4.12)
a, = sup{a": x“L(zxe) > 1/n}, (4.13)

where f = ¢L for a slowly varying function L and homogeneous ¢. Then the random

closed set
a,' X, =a, (A, U---UA,)

converges weakly to the U-stable set X with the capacity functional T defined as
P(K) = 1—exp{—fﬁK¢(u)du} : 0¢K- . (4.14)
1 , otherwise

PRrROOF. It is obvious that
L.k = xl/nﬁK

for all x > 0 and K € K. Note that 0 € Lk aslong as 0 € K. In the above introduced
notations we get

(7)) = P{§EEzK}:P{§Ex1/"ﬁK}
— g0/ 1/
= "/EK d(u) L(x M) du.
If 0 ¢ K, then 7x(x) — 0 as z — oo and
M2 ) (1 — A)A(Lk) < Tre(@) < z"L(2'/"e)(1 4+ A\p)A(Lk).

Hence 7x(z) is regularly varying with exponent «/n. The proof is completed
similarly to the proof of Theorem 4.1. O

NoOTE. The dimension m is allowed to be different from d. If the vector £ is
distributed in a certain cone C C R™, and M:C — K, then (4.14) remains true for

Lx={ueC: Mu)nK # 0}.
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EXAMPLE 4.6 Let m = d =1, and let £ be a random variable having Cauchy distri-
bution. Furthermore, let A; = £ M be a random subset of R, where M is a non-random
compact missing the origin. Then a,, = n, and the random set n=*((EM U -+ - U &, M)
converges weakly to the U-stable random set X with e = —1. The capacity functional

of X is evaluated as
T(K) = 1—exp{—/ u2du}.
K/M

where K/M = {x/y:x € K,y € M}. In particular, for M = {1} the random sample
n Y&, ..., &} converges weakly to the random set X with the capacity functional
given by

T(K)=1—exp {—/ u_2du} :
K
Clearly, X is the Poisson point process with the intensity function u 2.

Then consider convergence of convex hulls of special random closed sets. Similar
to Theorem 4.2, we obtain the following result.

Theorem 4.7 Let the conditions of Theorem 4.5 be valid. Then
a,'Z, =a, 'conv(A,U---UA,)
converges weakly to the C-stable random closed set Z with the inclusion functional

dﬁﬁ::exp{—iﬁwﬂﬂwﬁF}¢00du},F’ECl (4.15)

If K is a convex compact set and 0 € IntK, then

- 1 sk (u) o/
ﬂm:wpaéml inf ] le)de b, (4.16)

uESmil,SM(E)(U)>0 SM(B) (U)

where sk (+), sme)(+) are the support functions of K and M(e).
If a/n < —1, then the expectation EZ of the limiting conver RACS Z exists and
has the support function

sgz(v) =T(1 —yn) lfyn/{ qb(u)durn,v e St

w: M (uw)NHy#0}
where H, = {u € R¢:u-v > 1}, v = —1/a.
PrOOF. Evidently, (4.15) follows from (4.14). Then

{u: M(u) ¢ K} = {ze: 2"M(e) ¢ K}
= {ze: 2" > hg(e)},

where
sk (u)
Sm(e) (u)

hi(e) = inf{ tu € S™ Sy (u) > 0} :
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Thus

o0

o(u)du = /Sm71¢(e)de/ r* tda

[hxc(e)]/n
1
= L b ooy

Then (4.16) follows from (4.15). The evaluation of the support function of EZ is
straightforward. O

Note that Theorem 4.5 and 4.7 make it possible to obtain limit theorems for unions
and convex hulls of random balls (m = d + 1, M(uy,...,ug441) is the ball in R? of
radius ugy1 centered at (uq, ..., uq)) or random triangles (m = 3d, and M (uy,. .., usq)
is the triangle with the vertices (u1,...,uq), (Uas1,---,U24), (U2di1,--.,U3q)) €tc. In
these cases M (su) = sM(u) for all u € R™ and s > 0, whence n = 1.

Consider a consequence from Theorems 4.5 and 4.7.

Theorem 4.8 Let (&1,...,&4,C) be a random vector in RY x [0, 00) with the regularly

varying density f(u;y), indf = a—d -1, a < 0, and let Ay = &+ (M, where
E=(&,...,8), M € K, 0€ M. Furthermore, let

flusy) = d(uy)L(wsy), u € RY, y >0,
where ¢ is homogeneous and L is slowly varying. Put
a, = sup{z: z*L(ze;xt) > 1/n}

for a certain point (e;t) from (R?\ {0}) x (0,00). Then a,'X, converges weakly to
the U-stable RACS X with the capacity functional

T(K)=1—exp {— /Ooo dy /KEByM o (u; y)du} : (4.17)

Moreover, a,'Z, = a,*conv(X,,) converges weakly to the C-stable RACS Z with the
inclusion functional

t(F) = exp {— /Ooo dy /FC@yM o (u; y)du} . (4.18)

If v =—1/a < 1, then the expectation EZ has the support function
00 v
spz(v) =T(1 —7) [7/0 dy /s+ d(w:y) (w-v) + ysp ()" dw} . (4.19)

PRrROOF. Formulae (4.17) and (4.18) simply follow from (4.14) and (4.15) for n = 1.
Theorem 4.7 yields

v

sw2(0) =P(1 =) |7 [ ¢lui)dudy|",v € 54, (4.20)

v

where
Fy={(u,...,u4,9): u € Ry > 0, M(u,y) N H, # 0},
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M(u,y) = u+yM,

Fy = {(uw,...,uaq,y): Suspym(v) > 1}
= {(ug,...,uqy): u-v>1—ysy(v)}.

Similar to the proof of Theorem 4.3 we get
a(v) = /F ¢(u; y)dudy

o o0
= / dy [ dw / o(rw; y)r¢='dr.
0 Chi (I-ysn (v))/(w-v)

Let y = yyr. Then

r> 1- y17“8M(U),
w-v
whence
r> ((w-v)+ysu(v)™
Hence

a(v) = oord / dw/ w; g )re dr
= [T o] Sy

= /000 dy /sj d(w;y) (w-v) + ysu(v)"" dw.

Now (4.19) follows from (4.20). O

Corollary 4.9 Let the conditions of Theorem 4.8 be valid, and let M be a random
compact set. Then the statements of Theorem 4.8 remain valid with

T(K) = 1—exp{—/000dyE /K@yMng(u;y)du]},

tr) = exp{—/ooodyE /FC@yMcb(U;y)dU]},
swa(v) = T=9) {7 [“dy [ sinB[((w-0) +ysa) ] du}

instead of (4.17), (4.18), (4.19) respectively.

Let the conditions of Theorem 4.8 be valid, and let £ have a spherically symmetric
distribution. Then ¢(w,y) = ¢(y) for any w from S? 1. Therefore, (4.19) yields

00 _ v
sm2(0) =T(1 =) |y [ 3wy [, ((w-o) + ysu() dw]
If v 1 1, then the support function sgz(v)/T'(1 — v) can be approximated with

er [ oy +ex [ ydly)dysuv),
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where ¢, is the surface area of S, and

€ = sj(w -v)dw.

Roughly speaking, EZ/T'(1 — 7) can be approximated with the set B,(0) & cM,
where

ro= cl/ooosﬁ(y)dy,

c = o /0 yo(y)dy
Thus, the set EZ/T'(1 — 7) inherits the shape of M as v 1 1.

EXAMPLE 4.10 Let d = 2, « = —2, and let £ have circular symmetric distribution.
Furthermore, put ¢(w;y) = (1 + y*)~" for each w from S4=1. Tt follows from (4.19)
that the support function of EZ is equal to

T /7 1/2
SEz(’U) = W <§ + 23/2SM(U) + SM(’U)2> .
Below we provide only the outline of analogues of the previous results for conver-

gence to U-stable and C-stable random sets with y = —1/a < 0.

Theorem 4.11 Let A; = {£} be a single-point random set, and let & be distributed
with the density g in a certain conver cone C C R which does not contain any
half-space. Suppose that the function f(u) = g(ullu||=2), u # 0, is reqularly varying,
indf =d—a, a >0, with ¢ and L as factors in (4.2). For a certain e € C\ {0} put

a, =inf {x > 0: z*L(e/x) > 1/n}. (4.21)

Thena,' X, = a,'{&, ..., &} converges weakly to the U-stable set X with the capacity
functional

T(K) =1 — exp {— /CﬂK ¢(u||u||2)du} L Kek. (4.22)

The normalized conver hull a7'Z, = a;'conv{&y,...,&,} converges weakly to the
strictly C-stable random set Z with parameters v = —1/a < 0, H = {0} and the
inclusion functional

tH(F) = exp{ /(C o (ul|ul| =2 du}, Fec. (4.23)

If the function p(w) = inf{y: yw € F} is finite for each w from S 1N C, then

i(F) —exp{ /c ci1 0 )O‘dw}. (4.24)

It should be noted that the limiting random set Z is unbounded almost surely, so
that the expectation EZ does not exist. However, Esz(v) may be finite for some v.

Corollary 4.12 Let H,(z) = {u:u-v > x}. Then, for any v from CN S

E(Hv(l‘)) = eXp{—.CL‘aCL(U)},
Esy(—v) = —I'(1+1/a)a(v)”"e,

1 —a
= E/Cmgd_lqﬁ(w)(w-v) dw.

where



64 CHAPTER 4. LIMIT THEOREMS

4.5 Further Remarks and Open Problems.

Consider a general normalization scheme for unions of random sets. Let X, be the
union of iid random sets A;,..., A,. For a sequence a, = (a1, -..,anq) of points
belonging to R = [0,00)%, n > 1 put

a;loX, = {(a;llxl, o) (T, .., 1g) € Xn} . (5.1)

Similarly to Section 4.1, a limit theorem for a,! o X, can be obtained. Define a
subset a,(K) C R% as

an(K) ={a=(a1,...,a0) €R}: T(ao K) > 1/n} (5.2)
(cf. (1.2)), where
ao K ={(a1x1,...,aqxq): (x1,...,24) € K}.

Furthermore, let
k(1) = T(ro K), = € RY, (5.3)

T = {K €K litrginfT(ton) =0 forevery z € IntR‘i},

qn(K) =sup {t > 0: ta, € a,(K)}. (5.4)
Note that ¢,(K) is the analog of a,(K)/a, from Theorem 1.1.

Theorem 5.1 Assume that for any K from T there exists the limit of q,(K) (which
is not necessary finite) as n — oo, and let T () be a regularly varying multivariate
function from the class Iy having a negative index a. If ayl|a,||™" tends to a certain
vector belonging to IntR?: , then a,' o X,, converges weakly to the random closed set
X. The capacity functional of X s equal to

_ | T—exp{-lim(q,(K))*} , KeT
T(K) _{ 1 , otherwise °

The limiting random set X is stable in the following sense. For any n > 1 and iid
copies X1,..., X, of X there exists a, € R‘i such that

a0 X L X, U UX,.

It should be pointed out that all results on the pointwise convergence of capac-
ity functionals remain true for unions of random sets in Banach spaces. However,
they do not imply the weak convergence, since a random set distribution in infinite-
dimensional Banach spaces is no longer determined by the corresponding capacity
functional.

Enlist several open problems worth mentioning. It has been stated above that the
necessity conditions from Section 4.2 do not coincide with the sufficient ones. The
problem is to derive necessary and sufficient conditions for convergence of unions.
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It follows from Example 2.2 that the regular variation condition for the function
T () is too restrictive. But in general it cannot be weakened, since for the random
set A = (—o0,£] the regular variation condition is necessary and sufficient. On the
other hand, Example 2.2 is too artificial, since, in fact, the limiting random set is
degenerated on [0,00). Maybe, the regular variation condition in Theorem 1.1 is
necessary and sufficient in case the limiting random set is non-degenerated in a certain
sense.

Multivalued homogeneous functions appear naturally in the scheme of Theorem 4.5.
It will be shown in Chapter 6 that some results of Section 4.4 remain true for so-called
multivalued reqularly varying functions.

It seems interesting to prove analogs of limit theorems for more general norming
schemes than purely multiplicative (e.g., a,'X,, + b, or H,X,, where H, is the se-
quence of linear operators). Similarly to characterization problems the main obstacle
here is the lack of an analog of the Khinchin lemma for random sets distributions.
For convex hulls this problem is more simple and can be reduced to limit theorems
for coordinate-wise maximums of random vectors.

For non-identical distributed summands the limiting distribution corresponds to a
certain union-infinitely-divisible random set, see Norberg (1986a). Then the null-array
of random sets have to satisfy usual uniform conditions found by Norberg (1986h).
However it is rather difficult to reformulate these conditions in terms of regular varia-
tion properties of capacities or other analytical properties of random sets distributions.
Certainly, some limit theorems for unions of random sets can be derived from general
limit theorems for lattice-valued random elements, see Gerritse (1990). Nevertheless,
the main problem is to verify the general conditions for particular examples of random
closed sets.

It is important to extend the results of this chapter for weakly dependent random
sets. The corresponding limit theorems can be applied to the study of processes of
random growth.

Pancheva (1985,1988) and Zolotarev (1986) considered very general norming scheme
for maxima of random variables. It was shown that the use of non-linear normaliza-
tions allowed to unify max-stable and self-decomposable laws and even to drop the
condition of the uniform smallness of summands. Of course, it is interesting to gen-
eralizes their approach for random closed sets. The main obstacle here lies in the
solving some functional equations on the space of closed sets.
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Chapter 5

Almost Sure Convergence of
Unions of Random Closed Sets

5.1 Almost Sure Convergence of Random Closed
Sets.

Many investigations concern with finding the almost sure limit for a random sample
in R? or its convex hull as the sample size increases. This problem was solved in
Davis, Mulrow and Resnick (1988), where further references and commentaries can
be found.

This chapter is intended to prove a strong law of large numbers for unions of
random sets. It deals with the almost sure convergence of normalized unions to a
non-random limit. Note that the results for samples of random vectors are imbedded
in our scheme since a random vector is a single-point random set.

Let A be a random closed set in the Euclidean space RY, and let Ay, ..., A4, be iid
copies of A. Denote

Yo=a (A U---UA,). (1.1)

Of course, Y, is a random closed set. We shall find conditions which ensure
convergence and the limit of the sequence Y,, as n — oo.

The convergence of closed sets in F (F-convergence) was defined in Section 1.1,
see also Matheron (1975). Recall that a sequence F,, n > 1, of closed sets is said to
converge to F' if the following conditions are satisfied:

(F1) If KNF = { for a certain compact K from K, then there exists a number N > 0
such that K N F,, = () whenever n > N.

(F2) If GNF # 0 for a certain G from the class G of all open sets, then there exists
a number N > 0 such that G N F,, # () whenever n > N.

In our scheme the sets Y,,, n > 1, are allowed to be unbounded, so that we cannot
use convergence in K (compare with Davis et al. (1988), where the convergence in K
was investigated).

A random set Y;, is said to converge to Y almost surely if Y = F—limY, with
probability one. We then write Y, %5V a.sasn — 0o. The almost sure convergence
in /C is defined similarly.

67
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The conditions (F1) and (F2) can be safely reformulated for the sets K and G
belonging to some countable subfamilies of IC and G respectively. Then we can render
these conditions for a sequence of random sets with a non-random limit, see Davis et

al. (1988).

Lemma 1.1 (Davis, Mulrow and Resnick) Let Y,, n > 1, be a sequence of ran-

dom closed sets and let Y be a non-random closed set. Then Y, 5 Y almost surely
as n — oo iff the following conditions are valid:

(R1) If KNY =0 for a certain K from K, then

P{Y,NK # i.o.}:P{ﬁ G{Yan;«é(b}}ZO.

n=1m=n

(R2) IfGNY #0 for a certain G from G then

P{V,nG =0 i.o.}zp{ﬁ G{Ynmazm}}:o.

n=1m=n

These conditions may be weakened by replacing the class K in (R1) and G in
(R2) with some their sub-classes M and M’ respectively. It is rather easy to show
that we can choose the class of all balls (open balls) instead of M (respectively M').
We may as well take parallelepipeds as their elements.

The classes M and M’ are said to determine F-convergence if Lemma, 1.1 is valid
after replacing I with M and G with M’.

We always assume that the following assumptions is valid.

ASSUMPTIONS.

1. Each K from M coincides with the closure of its interior (i.e. K is canonically
closed).

2. The interior Int K is the limit of an increasing sequence of sets from M.

3. The class M’ contains interiors of all sets from M, i.e.

M' D {IntK: K € M}.

4. For any ¢ > 0
cM={cK: K e M} =M.

Let S?~! be the unit sphere in R?. Assume that S¢~! is furnished with the topology
induced by the standard topology in R?. Then the class

M = {{ux u € S,a <z <b}: S isa closed subset of S471,0 < a < b} (1.2)

can be used in Lemma 1.1 instead of I as well. Indeed, each K from K, such that
K N F =, can be covered with a collection of sets K, ..., K, belonging to M and
missing F'. Besides, any open G hitting F' contains a set G; € M’ which hits F' too.
[t can be also shown that the set S in (1.2) can be assumed to take values only in the
class of canonically closed subsets of S~
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5.2 Regularly Varying Capacities.

Investigating random closed sets, we deal with capacities instead of functions. Now
we translate to capacities some notions from multivariate regular variation theory, see
Section 1.6.

Let M be a sub-class of F and let R: M — [0,00] be a nonnegative capacity.
Suppose that R is an upper semicontinuous decreasing capacity without any restric-
tions on signs of higher differences inherent to Choquet capacities, see Section 1.2 and
Matheron (1975).

The capacity R is said to be regularly varying on M with the limit capacity A if,
for all F' from M,

lim ZUE) _ 5 (. (2.1)
t—00 g(t)
where g: (0, 00) — (0, 00) is a regularly varying function of index 3, see Seneta (1976)
and Section 1.6. We then write R € RV(3, M, A, g).

The limiting capacity A(F) is allowed to take zero or infinite values. However we
suppose that A is not equal to zero or infinity identically.

It is easy to prove that A is a decreasing functional on M, and, for any C > 0, F}

from M, the limit (2.1) exists for the set F' = C'F;. Moreover,

ACF) = CPA(F).

Lemma 2.1 Let T be the capacity functional of a certain random closed set A, and
let
R(K) = —logT(K) (2.2)

belong to RV(3, M, A, g) with positive 3. Then, for any Fy and Fy from M, the limit
(2.1) exists for the set F' = F; U Fy, and also

A(F) = min(A(F), A(F)). (2.3)

PrROOF. It is evident that for z = 1,2

RGF) _ . R(GF)
AT R L TS
< min(A(F), A(F)).

If either A(F}) or A(F3) is equal to zero then (2.3) is evident. Let both A(F}) and
A(F3) be finite and non-vanishing. Then, for any £ > 0 and sufficiently large ¢,

T(tF;) <exp{—gt)A(F;)(1—¢)},i=1,2. (2.4)
Hence, by subadditivity of T', we get

R(tF) log(T(tF,) + T(tF))

lim inf > liminf —
t=oo g(t) t—00 9(t)
o liminf 08 (2exp {—g(t) min(A(£1), A(F2))( —)})
- g(t)

= min (A(F}), A(F)) (1 — ¢).
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Note that g(t)™" — 0 as t — oo, since 3 > 0. Hence (2.3) is valid.
If A(F}) = oo, then (2.4) is replaced with the inequality

T(tF) <exp{—g(t)C},

which holds for any positive C' and sufficiently large t. Then, for C' > A(F3),

fming BEF) o oo Jog(exp{—g(1)C} + exp{—g(NA(F) (1 — £)})
t—00 g(t) - i—oo g(t)
> lim g log(2exp{—g(t)A(£)(L — 2)})
= AF)(1-¢)

— min(A(F), A(F))(1 —¢). O

Below we always associate the capacity R with the capacity functional of a certain
random closed set A by means of (2.2). It follows from Lemma 2.1 that A is a
minitive capacity (compare with maxitive capacities introduced in Norberg, 1986b).
Nevertheless, the value A(F) cannot be represented as the minimum value of A({z})
for = belonging to F', since, in general, the class M does not contain single-point sets
and A({z}) can be infinite.

The functional A is said to be strictly monotone (decreasing) on M if A(K;) >
A(K) for any K, K; from M such that K; C IntK, A(K) < oc.

Denote for any compact K

K =U{sK: s> 1}.
It is evident that K is closed and sK - K for all s > 1.

Lemma 2.2 Suppose that R € RV(8, M, A,g), 8 > 0, and the capacity A is contin-
uous in the following sense: AN(K,) | A(F) as long as K, 1 F, whatever F from F
and a sequence of compacts K,,, n > 1, belonging to M may be. Moreover, let the
limit (2.1) exist for the limiting set F. Then the limit (2.1) exists for the set F = K

A~

and also A(K') = A(K), whatever K from M may be.

PROOF. It is obvious that K,, 1 K for K,, defined as
Kn - U SinKa
i=1

where {S1p,...,Sun} C [1,00) for all n. The homogeneous property of A yields
A(sinK) = s7 A(K) > A(K).
Then, by Lemma 2.1, we get

A() = min A(sinK) > A(K).

1<2
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It follows from the condition of Lemma 2.2 that

A~

AK) =limA(K,) > A(K).
On the other hand, A(K) < A(K), since K D K. Thus, A(K) = A(K). O

Note that the condition of Lemma 2.2 is valid in case (2.1) is satisfied uniformly

on K. Namely,
lim UKD _ A(K)
t—00 g(t)

as soon as K; T K € K as t — oo, cf. the class II, in Section 1.6.

For any functional A: M — [0, oo| denote
Z(A M) = ({IntF: F e M,A(F) > 1})". (2.5)
Lemma 2.3 Let A be a limiting capacity in (2.1). Then
sZ(A; M) C Z(A; M), s > 1.
PROOF immediately follows from the inequality
A(sF) = s°A(F) > A(F)

for all s > 1. O

5.3 A Strong Law of Large Numbers for Unions
of Random Closed Sets.

Now that we have introduced all necessary notions we investigate almost sure con-
vergence of the random set Y}, defined in (1.1), as a,, — oo, n — oo. The following
theorem (see Molchanov, 1993c) resembles to some extent Theorem 2.1 from the cited
work by Davis et al. (1988) which, in fact, dealt with the similar problem for single-
point random sets A; = {&;}.

Theorem 3.1 Let A be a random closed set with the capacity functional T, and let
the class M determine F-convergence. Define the capacity R with possibly infinite
values by (2.2). Furthermore, let R € RV(5, M, A, g) for 3 > 0. Suppose that A is a
strictly monotone capacity on M and for any K from M

R(tK)
Since 3 >0 , we can define a, to satisfy g(a,) ~ logn. Then

= A(K) = A(K). (3.1)

Yy=a;' (4 U---UA,) L5 Z(A; M) as. as n— oo, (3.2)

and
conv(Y,) =5 conv(Z(A; M)) a.s. as n — oo.
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PROOF. Verify the conditions of Lemma 1.1 for the class M and the class M’ =
{IntK: K € M}.
Let K belong to M and miss Z(A; M). Then

K c |J{IntF: A(F) > 1,F € M}.

Hence K is covered by the finite collection of sets IntF;, 1 < ¢ < m, for F; belonging
to M such that A(F;) > 1
It follows from (2.1) and the choice of a,, that
R(a, F;
lim L) _ gy

n—00 logn
Lemma 2.1 yields

lim 2Ry (g

n—o0 log n

>  min A(F)

1<i<m
= a>1
It follows from (3.1) that
nK >
lim 75 ey AR >

n—00 logn
Pick ¢ > 0 such that a — ( > 1. Then, for all sufficiently large n,
T(a,K) < n~@=9, (3.3)

Note that
P{YNK#0io }=P{A Na,K#0 io. },

where 1 <1, <n,n > 1. It is easy to show that the sequence 7,,, n > 1, is unbounded.
Since a, K C ap11 K for n > 1, we get

P{V,nK#0io} = P{(AU---UA)Na,K#£D io. |
= P{a, manK7éwlo}
< P{A Na K # 0 10}
<

P(ﬂ U{Anﬂanf(;é@}>.

n=1m=n

The latter probability is equal to zero due to (3.3) and the Borel-Cantelli lemma,
since

oo

P{A,Nna, K #0} = ;T(anf()
S n @0
n=1

n=1

IN
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Let z belong to G N Z(A; M) for a certain G from M'. Then
G ¢ |J{IntK: A(K)>1,K € M}.
Choose an open neighborhood U(z) C G and pick K and K; from M such that
U(x) C Ky cIntK C K C G.
If A(K)>1, then A(K) > 1, since A is strictly monotone. Hence
r € IntK; and A(Ky) > 1,
so that = ¢ Z(A; M). Thus, A(K) =a <1 and KN Z(A; M) # (. Clearly,
P{Y,NG=0io0. }<P{Y,NK=10 io.}.
Pick ¢ > 0 such that a + { < 1. Then
T(apK) > n~@*)
for all sufficiently large n. Thus
P{(AiU---UA,) Na,K =0}

(1—-T(a,K))"
exp{—nT(a,K)}
exp{nn_(“ﬂ)}
exp{—nl_(aﬂ)}.

ININA

Since 6 =1 — (a+¢) > 0, we get

SP,NK =0} <) exp{-n’} < o0.
n=1 n=1
Hence P{Y, NG =0 i.o0.}=0.
Thus, both conditions of Lemma 1.1 are valid. The convergence of convex hulls fol-

lows from the continuity of the function ' — conv(F') with respect to F-convergence,
see Matheron (1975). O

Corollary 3.2 Suppose that the conditions of Theorem 3.1 are valid, and A(K§) #
0,00 for a certain convex compact Ky such that 0 € IntKy, K§ € M'. ThenY,, almost
surely converges to Z(A; M) with respect to the Hausdorff metric.

PRrROOF. The convergence in the Hausdorff metric is equivalent to K-convergence of
compacts (see Sectionl.1). We have to check additionally that

P {sup sup ||z|| < oo} =1,
n>1 x€Yy
see also Davis et al. (1988). It suffices to show that

P {supinf{t >0: Y, CtKy} < oo} =

n>1

:P{supanlinf{t>0: AyU---UA, CtKy} < oo} =1.

n>1
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Denote
Cp=inf{t >0: A4, U---UA, C tKy}.
Then (, = max(n;,...,n,) for iid random variables 7, ..., n, with the common dis-
tribution

P{m >y} =P{AnyK;#0}.

Hence —log(P {m > y}) is a regularly varying function. This is sufficient for almost
sure stability of sup,~, a,'(,, see Resnick and Tomkins (1973). O

It can be shown that for a single-point set A = {£} all conditions of Theorem 3.1
follow from the conditions on the distribution of £ imposed in Theorem 2.1 of Davis
et al. (1988). In this case it is reasonable to choose the class of all parallelepipeds as
the class M. Note that in this case the functional A of any parallelepiped K depends
on the lower-left vertex of K only.

Preserve all notations from Davis et al. (1988). Let A = {¢}, and let & be
distributed in R%Z = [0, 00)* only. Put

r(r) = —log P {¢ <z},

where the inequality is understood coordinate-wisely. Choose parallelepipeds to be
elements of M.

Theorem 3.3 (Davis, Mulrow, Resnick) Let r(x) be a reqularly varying function
on R% \ {0}, with the index of variation 3 > 0, i.e.

o r(tr)
tlirgn g(t —A(l‘),

~—

where
A(tz) = t7A(z), t >0, z € RL \ {0},

and g is a regularly varying function of index (3 > 0. Suppose that X\ is strictly
monotone (increasing) coordinate-wisely. Then in IC

a; {&, ..., &) = {z € RL: A(z) <1} a.s. as n— <.
PROOF. Check the conditions of Theorem 3.1. Introduce the capacity R(K') by
R(K)=—logP{{ € K}.

It suffices to prove that R € RV(8, M, A, g), and A(K) for any parallelepiped K
is equal to A(a), where a is its lower-left vertex. Indeed, then A(K) = A(K), A is
strictly monotone on M, so that the statement of Theorem follows from Theorem 3.1.

So let K be a parallelepiped [a, b] = [aq, b1] X" - - X[ag, bg]. Denote F(x) =P {£ > z}
for z € RZ (all inequalities are coordinate-wise). Then, similarly to Davis et al. (1988),

d
P{{ € tK}=F(ta) - > F(tz
=1

+ Y F(tx(i, ) — -+ (1) F(tb),

1<i<5<d
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where x(i) is the vector with the ;th component b; and whose pth component is a,,
p # i, etc. It follows from the assumptions of Theorem that for any ¢ > 0 there exists

to = to(C, a, b) such that
exp {—g(t)(A(z) + )} < F(tz) < exp{—g(t)(A(2) — ()},

where z = a, or b, or (i), x(i,j) etc. for some i, j, .. ..
Then

d
P{¢ctK} > q(t) @+ _ S g(t) AEEN-Q

=1

—(A(z(i,5 _ _1)d
+ Z q(t) (Ae@iD+e) ... 4 (—1)%q(#) AO+-D)
1<i<j<d

where ¢(t) = exp{g(t)}. Hence

P {f c tK} > q(t)f(k(a)ﬂ)

—(A(z(2,5))—A(a — —Aa)— —1)d
+ Z q(t) M=(i,4))—Xa)) _ . .. + (—1)dq(t) (A(b)=A(a)—C+(=1)4¢) .
1<i<j<d

Since A is increasing, letting ¢ be sufficiently small yields

P{{etK} > q(t)*()\(a)JrC) 1— Zd:q(t)c(i)
D M OR R CRTON

1<i<j<d

where ¢(i) > 0, ¢(i,j) > 0,...,¢ > 0. It was established in Davis et al. (1988) that
the term in brackets is no less that 1/2 for all sufficiently large ¢. Thus, for K = [a, b,

1
T(tK) =P{{ € tK} > Sexp{—g(t)(A(a) + O} -
Hence, for a certain ty and all ¢t > ¢,

S exp (~g(1)(\a) + O} S T(K) < P{€>1a)
= F(at) < exp {~g()(\(a) — O)}.

Hhos R(tK) log 2
0g
Ma) — ¢ < < Ma)+ ¢ — 282
@ C= Ty ST
Therefore R(tK)
T A(K) = A([a, b)) = Aa).
Thus, in complete accordance with Davis et al. (1988), a'{&,,...,&,} converges

in IC to the set

Z(AM) = (U{lz,00): AMz) > 1}) = {z e Rl Az) <1}, O
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It should be noted also that the lack of preferable directions in Theorem 3.1 (in
contrast to Theorem 3.3 where ¢ is distributed within ]Ri and the distribution function
F is defined on upper-right unbounded sets only) makes it possible to apply it for
random samples in all quadrants of R? without any changes, ¢f Davis et al. (1988).

We can also apply Theorem 3.1 to the random set

A= (—oo,{] = (—00,61] XX (—OO,fd]-
Then for a parallelepiped [a,b] = [a1,b1] X -+ X [ag, by]
P {ANtla,b] # 0} =P {¢ > ta} = F(ta).

Thus, regular variation of the function — log F(ta) for any a € R with the strictly
monotone limiting function A ensures almost sure convergence of the appropriate
normalized unions to the deterministic limit

{yERd: yﬁxERﬁ_,)\(x)gl}.

In case we are interested in the convergence of convex hulls only, a simpler condi-
tion can be obtained.

Let Y, = a;'conv(A; U---U A,), where Ay,..., A, are iid copies of a compact
random set A. Then, in terms of support functions,

sy, (u) = a; ' max {sa, (u),...,54, (u)},u€ S
The following theorem simply follows from Resnick and Tomkins (1973).

Theorem 3.4 Let for any u € S4 ! and x > 0 there exists the finite limit

oy logPlsalur) >ty
Am (1) = Aua).

Then Y, a.s. converges in K to the set

{ux: ue ST x>0, \MNur) > 1}.

5.4 Almost Sure Limits for Unions of Special Ran-
dom Sets.

Now that a general theorem on almost sure convergence of scaled unions has been
derived, we consider one special but rather general example of random sets and the
corresponding law of large numbers.
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Let h be a regularly varying function on R™ with the limiting function A (see
Section 1.6), and let indh = o > 0, i.e.

Atx) = t*\(z)

for all t > 0, x # 0. Suppose that ) is non-vanishing on S™ !. Moreover, let h € I,
i.e. h satisfy the uniformity condition (see Yakimiv, 1981, de Haan and Resnick,
1987):

lim sup ‘Z((iﬁ)) — )\(x)‘ =0 (4.1)

=00 1z)1=1

for a certain e from R? \ {0}, see also Section 1.6. Sometimes it is convenient to put

e=1=(1,...,1). It was proven in Yakimiv (1981) that X is a continuous function.
Let £ be a random vector in R™ with the probability density exp{—h(x)}, and

let M:R™ — K be a continuous in the Hausdorff metric multivalued homogeneous

function of index n > 0, i.e.
M (tu) = t"M (u)

for all ¢ > 0, u # 0. Suppose also that M(u) = {0} iff u = 0. It is easy to show that
|M(e)]| is continuous on S™!. Hence

sup M (@) < o

Note that the values of M are compact subsets of R¢, so m is allowed to be different
from d.
Denote

A = M(),
g(t) = h(t*"e).

Let A, As, ... be independent copies of the RACS A.
For simplicity suppose that for any open cone I' C R?

pm-1 ({e €S™ 1 M(e)NT #0}) >0 (4.2)

where g, 1 is the (m — 1)-dimensional Lebesgue measure on S™~'. Otherwise the
range of possible values of A is a certain cone G, so that all results below can be safely
reformulated after replacing R? with G and S¢ ! with SN G.

For each S C S¢°! denote

I's = {zv: z>0,ve S},
L(S) {eeS™ 1 M(e)NnTs # 0},
qgs(e) = |[M(e)NTgl||,e € L(S).

For a single-point set S = {v} the corresponding notations are replaced with I',,
L(v) and g,(e) respectively.

Theorem 4.1 Suppose that the following assumption is valid
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(i) for any canonically closed set S C ST=', eq € L(S), § > 0 and ug from M(eo) N
there exists e; € L(S) such that

M(ey) NIntTs N Bgs(ug) # 0.
Pick a,, such that g(a,) ~ logn. Then, in IC,
V,=a,'(AU---UA,) = 7= {vx: veSlo<z< f(v)} a.s. as n — 0o,

where

f(v) = sup {A‘ée()f;za ee L(U)} .

We begin with a lemma.

Lemma 4.2 Let F' C (0,+00) be a finite union of disjoint segments of positive lengths
with possibly infinite right end-points, and let g(y) = e Yy'~', v > 0. Then

/th(y)dy ~ g(tinf F) as t — oo. (4.3)

PROOF. Let F' = [a,00). Then the statement of Lemma 4.2 follows from

/oo g(y)dy ~ g(at) as t — oc.
at

It is evident that g(bt)/g(at) — 0 as t — oo in case a < b. Thus, for F' = [a, b] we get
o Jut 9@y _
tmoo g(at)

By induction, (4.3) is valid for any F. O

ProOF OF THEOREM 4.1. For any K from K denote
Lrx={ueR™ Mu)NnK #0}.

It is easy to show that £,z = t'/"Lg and [|z|| > & for some & > 0 and all z from Lg
in case 0 ¢ K.
It is obvious that the limiting set Z contains the origin. Suppose that 0 ¢ K i.e.
K misses the origin. Then
TtK) = P{tKNA#0}
= P {f € EtK}
— L/n
= —h(tmu) Lty
/c exp{ ( u)} u

K

It follows from (4.1) and Lemma 6.2 from Davis et al. (1988) (see also Lemma 6.3.2)
that for all ¢ > 0 and sufficiently large ¢

1K) < L= [ e {-(0- Rl g} (14)

T(K) > L) = /EK exp {—(1 + &) A(w)||ul"g(t)} t*"du. (4.5)



5.4. SPECIAL CASES 79

It suffices to verify the conditions of Theorem 3.1 for the class M defined by (1.2).
Let
K ={uzr: ue S,a<z<b}, (4.6)

where 0 < @ < b < 0o and S is a canonically closed subset of S¢'.
Denote additionally for e belonging to L(S)

Lx(e) = {r>0:r"M(e)N K # 0},

a 7
lk(e) = infLg(e) = (qs(e)> : (4.7)
The function gg(e) is bounded on L(S), since
q =sup{qs(e): e € L(S)} <sup{||M(e)|: e € S" !} < 0. (4.8)
Thus
fr =inf {lxg(e): e € L(S)} > (a/q)"/".
Since

Ly ={ereec L(S),r € Lx(e)},
the integral I (¢) from (4.4) is equal to
It:/ m_d/ —(1 = &)A(e)r*cg(t) } t¥npd=1 g,
)= [ o) [ oo {=0 = A g0}
Letting y be equal to (1 —£)r*A(e)g(t) yields
L(t) = (o)t |
L(

) fim—1(de)

o P = 2)A@)g ()] dy,

S

L (e)g
where
Lic(e) = {r* (1= 2)A(e): 7 € Li(e)} .

Since A(e) is continuous and non-vanishing on S™~! A(e) > ¢ for some constant
¢ > 0. Then for a certain positive constant c¢;

o0 d
1) < ag®) 0 [ i) [ sl

!
K\€)g

where

U (e) = inf L% (e) = Lx(e)* (1 — &) A(e).
Lemma 4.2 yields

L) < el It () [,

~ crg(t) YOI, (L(S)) exp{—frg()}(frg(t)

as t — oo, where

o0

_d__
exp{—y}ya—""dy

fix = inf{li(e): e € L(S)}
= inf {{x(e)**(1 = £)A(e): e € L(S)}. (4.9)
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Note that
fie 2 e(L=2)(fk)* " > 0.
It follows from (4.2) that p, 1(L(S)) > 0. Since g(t) is regularly varying with
positive index,
) > lim inf M
t—o0 g(t)
Estimate the function I5(¢) from (4.4) in the following way

> fx.

d
b(t) > epg(t) e opln [ o / R e T
K e

where

Lic(e) = {r*"*(1+e)A(e): 7 € Li(e)} .
The definition of Lx(e) yields
Lic(e) D [a'",0"Mgs(e) .
It follows from (4.8) that
Li(e) D [Cx(e), tile) + (b7 —a'm) g H/1].
Hence for a certain £ > 0 and all e from L(S) it is
[0 (e), i (€) + k] C Lic(e),

where
U (e) = inf L (€) = lx (€)™ (1 + ) \(e). (4.10)

Denote

» = inf{{%(e): e € L(S)}
= inf {lx(e)***(1+2)\(e): e € L(S)}. (4.11)

It follows from (i) and continuity of M (e) that for each ¥ > 0 and ey € L(S)
pm—1 ({e € L(S): gs(e) > gs(eo) —}) > 0. (4.12)

Indeed, gs(eg) = ||ugl| for a certain ug from I's. By (i) there exists a point wuy
belonging to M (e;) N (Intl'g) N By/a(uo). It follows from continuity of the function M
in the Hausdorff metric that for a certain § > 0 and each e € Bjs(e;) C L(S)

M(e) NIntT's N Byo(ur) # 0.

Hence gs(e) > gs(eg) — o for all e from Bj(e;), whence (4.12) is valid.
Pick § from the interval (0,x). It follows from (4.7) and (4.10) that (% (e) is a
continuous transformation of ¢s(e). From (4.12) we derive that the set

Fs={ee€ L(S): lik(e) < frr+0}

is of positive (m — 1)-dimensional Lebesgue measure, i.e. fi,, 1(Fj5) > 0.
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It follows from Lemma 4.2 that for a certain constant cs

(Fx+r)9(t) d
(1) > eyt e [ ey [ exp{—yhyeldy

Fs (Fr+0)g(t)

~ eag(t) O (F5) exp {— (i + 0)g(t)} (Fh + (1) 7

as t — oo. Thus
_ —logT(tK)
limsup ——————=
1500 g(t)

Letting d go to zero yields

< fr+0.

log T(tK “log T(tK
fio < i inf 08T qup T8 L)

Since ¢ in (4.9) and (4.11) is arbitrary positive, we get

. —logT(tK) . a
tliglo 0 AK) = eelil(f;() lk(e)*A(e). (4.13)

It is evident that A(K) = A(K) and A(K;) > A(K) if K; is a subset of IntK.
Thus, the conditions of Theorem 3.1 are valid for the class M defined in (1.2), i.e.

R(K) = —logT(K) € RV(a, M, A, g).
To prove K-convergence put K = {v:||v|| > 1}. Then
Li(e) ={r=0: r"[|[M(e)]| = 1}

and
U (e) = [M(e)|| ",

whence
AK) = inf{||M(e)||*a/n)\(e): . c Sd—l} 40,50,
Theorem 3.1 and Corollary 3.2 yield K-convergence of Y,, to the set

7 =Z(MM) = (J{ItF: F e M,A(F) > 1})

For K given in (4.6) we get

A(K) = inf { (%)a/n Ae): e € L(K)} .

If S in (4.6) tends to the single-point set {v} for some v € S4~1, then A(K) tends

in { (q;(‘e)f/n Ae): e € L(v)} |

to




82 CHAPTER 5. ALMOST SURE CONVERGENCE

Hence
a a/n ¢
Z(AM) = Qub: v e S b>a, inf Ale) > 1
ecL(v) qv(e)
a a/n
= {vr: v eSS 0<r<aq, inf Ae) <1
ecL(v) qv(e)

= {v:z:: veSlo<r < f(v)},

where

If L(v) =0 we put f(v)=0. O

NoOTE. Theorem 4.1 can be easily generalized for a random vector ¢ distributed
in a certain cone C C R™ and M:C — K.

Corollary 4.3 Let M(u) = {u}. Then (i) is valid, n = 1, Ay = {£}, L(v) = {v}
and q,(e) = ||e||. Hence a,'{&, ..., &} converges in K to the set

Z=7Z(AMM)= {vx: v eSS >0 \Mur) < 1}.

Note that this result coincides with the statement of Theorem 6.3 from Davis et
al. (1988). Moreover, we removed the conditions of monotonicity imposed on A in
that paper.

Corollary 4.4 Let the assumptions of Theorem 4.1 be valid and let A(e) = A for all
e from S¥"'. Then the limiting set in Theorem 4.1 is equal to

{v:z:: ve S0 <z < A sup{g,(e): e € L(U)}} :

Assumption (i) is the most awkward in Theorem 4.1. Fortunately, it is valid in
case the multivalued function M is defined as

M(zy,...,T4y) = conv {(:171, ey Tq)s e (T n1)dgs - - ,xnd)}
@$dn+1M1 ©---D xdnHMla

where M, ..., M are closed subsets of R?. This representation covers many important
examples of random sets. For example, if n = 1, I = 1, and M; = B;(0), then
M(xy,...,x4,2441) is the ball of radius x4, centered at (z1,...,x,).

Note that (i) can be replaced with the condition of lower semi-continuity of the
function gg(e) on L(S).

Having replaced infima in (4.9) and (4.11) with essential infima, we may drop the
assumption (i). Then the following theorem is valid.
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Theorem 4.5 Let a, be defined in Theorem 4.1. Then

ecL(S)

n/a
Y, 2 {vx: veES,SCSL0<x<ess sup (qs 6)> }

a.s. as n — 0Q.

Consider a few examples of random closed sets and almost sure limits of their
normalized unions.

EXAMPLE 4.6 Let M be a non-random convex subset of R? and let wg be the turn
(say clockwise) to the angle ¢. Denote

M(te) = t"wys M
for t > 0 and e = (cos ¢, sin ¢). Then the conditions of Theorem 4.1 are valid and
q(e) = sup{r: rv € weM} = q(w,'v),

where
q(u) = sup{r: ru e M},u €S

Similarly,
L(v) = {e = (cos ¢, sin ¢) € S* w;lv € So},

where Sy = {ul|u||"':u € M\ {0}}. The assumption (i) is, evidently, valid. Then the
limiting set in Theorem 4.1 is given by

/e
Z=Laxv:veS,0<zr<su ﬂ .
(o vestozesp (i

If A(e) = A = const, then Z = B,(0), where
r=XA"sup {||z||: z € M} = X" M]||.

EXAMPLE 4.7 Let A; = B¢(¢) be arandom ball in R?. Define M (u) = By, (u, - . ., uq)
for a vector u = (ug, uy,...,uq) from R, ug >0, m =d+ 1. Then A; = M (&, Q).

The function M satisfies the conditions of Theorem 4.1 with n = 1. For any
v € S and e = (eg,e1,...,e4) € S™ ! we get

qy(e) =sup {r: v € Be,(e1,...,€q4)}.

It should be noted that, in general, the evaluation of f(v) in Theorem 4.1 is very
complicated. If A(e) = A, then Corollary 4.4 can be applied. Since ¢,(e) attains its
maximum for (ey,...,eq) =tv and €3 + €3 + -+ +e2 =1, we get

sup{q,(e): e € L(v)} = sup {t+ eo: t2+es =1,t,e0 > 0} =2,

Thus, Y, converges to B,(0) for r = A\~1/*/2,
In more general case

Ae) = Aoleo) + Aileq, .-y €eq).
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(But the center and the radius of A; = B¢(() are still independent.) Suppose that
A1 is a circular symmetric function, i.e. the center ( of A; has a circular symmetric
distribution. Then the function f(v) in Theorem 4.1 is equal to

€ +1
()\0(60) + Al(tv))l/a

:tQ—i—eg:l}:r.

f() :SUP{

Hence Y,, converges almost surely as n — 0o to the ball B,(0). If Ag(ey) = Aoed
and A (tv) = t*A\;]|v||%, then

13
r:sup{( Cot 't2+eg:1}.

)\068 + )\lta)l/a )

EXAMPLE 4.8 Let m = 6, d = 2 and let M(u) for u = (uy,...,us) be the triangle
with the vertices (uq,us), (us,us) and (us,ug). Then the condition (i) is valid and
the limiting set is equal to

Z=3vr: veST0<zr< su 9(€) },
{ =TT ity M)

where

Lv)={e=(e1,...,e6) € S™ 1 M(e)NT, # 0}.
The function ¢,(e) = gy(e1,...,€6) attains its minimum for (ey; 1,ez;) = t;v,
i =1,2,3, i.e for the degenerated triangle M (u). Thus, in case A(e) = X\ we get
f(v) = sup {qv(e))\(e)_l/o‘: ee€ L(U)}
= A Yesup {max(tl, to ta): t]+ 15+ 15 = 1}
= 1.

Hence Y, almost surely converges to Z = B,(0), r = A~%/®. For a general function A
the evaluation of f(v) is much more complicated.



Chapter 6

Multivalued Regularly Varying
Functions and Their Applications
to Limit Theorems for Unions of
Random Sets

6.1 Definition of Multivalued Regular Variation.

Multivalued functions (multifunctions) have become an important object of optimiza-
tion theory and control, see Aubin and Ekeland (1984), Clarke (1983), Rockafel-
lar and Wets (1984), Aubin and Frankowska (1990). A multivalued (or set-valued)
function describe, e.g., the set of states of a control system for all admissible con-
trols. Random multivalued functions appear in the theory of controlled random pro-
cesses, random differential inclusions and stochastic optimization, see Artstein (1984),
Salinetti (1987), Papageorgiou (1987), Molchanov (1991). As a rule, multivalued func-
tions are supposed to be closed-valued.

A random closed set can be considered to be a multivalued function A(w) defined
on a probability space (€2, 0, P), see Hiai and Umegaki (1977). Clearly, the space of
elementary events €2 can be chosen to be the Euclidean space R?. Then the random set
can be considered to be a multivalued function whose argument is a random vector.
In such a way many examples of random sets can be obtained. For instance, a random
ball B¢(§) in R? with random center £ and radius ¢ can be represented as M (&, (),
for the multivalued function M(u,y): R > (u,y) — B,(u). Some examples of
homogeneous multivalued functions have been mentioned in Sections 4.4 and 5.4 in
connection with limit theorems for unions of random sets.

It should be noted that random closed sets defined as multivalued functions of a
random vector are easy to simulate. Then such random sets can be used as elements
for the simulation of more complicated random closed sets (see Section 8.1).

In this chapter we introduce regularly varying multivalued functions and prove that
the homogeneity condition in limit theorems and laws of large numbers for unions of
special random sets can be replaced with the condition of the regular variation.

It will be shown also that the concept of multivalued regular variation is of use even
within the frameworks of the classical theory of regularly varying functions. Namely,
this concept allow to establish the inverse theorem for multivariate numerical regularly

85
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varying functions.

The main concepts of multivariate regular variation theory have been reviewed in
Section 1.6. The reader is referred to Section 1.1 for definitions of the convergence in
the space of closed sets.

Let C be a canonically closed cone in R™, C' = C\ {0}, and let M:C — F
be a multivalued function on C with values in the class F of closed subsets of R?.
Hereafter we suppose that M (0) = {0} and M is measurable, i.e. for any compact K
the set
{ueC: M(u)Nn K # 0}

is measurable. Note again that the dimensions d and m are not supposed to be equal.
The function M is said to be regularly varying with the limit function ® and index
«a if, for any u from C',
Mt
F—tim M0 g, (1.1)
t—00 g(t)
where ®(u) is a non-trivial closed subset of R, ®(u) # {0} for u # 0, and g: (0, 00) —
(0, 00) is a numerical univariate regularly varying function of index a. We then write
M €T, (g,C', F,a, ®) or, shortly, M € II;.
If M has compact values only and (1.1) is valid for KC-limit, i.e.

o M(tu) "
K- lim ) = & (u), (1.2)

then M is said to belong to IT;(g,C', K, o, ®). Here K is the class of all compacts in
RY.
We denote M € IIy(g,C', F, o, @) if, for any sequence u; € C', such that u; — u #
0 as t — oo, we have
M(t
Ftim 00 _ gy, (1.3)
t—00 g(t)

The class Ty(g,C', K, o, ®) is defined similarly. As in Section 1.6, II; = II, if
m = 1.

The classes Iy and Il of numerical multivariate regularly varying functions were
introduced in Section 1.6. We may safely think that the function h: C' — R! belongs
to II; if and only if the one-point-valued function M (u) = {h(u)} € II;, j = 1, 2.

The limiting multifunction ®(u) is, evidently, homogeneous. Namely,

O (su) = s*®(u),

whatever s > 0 and u from R”™ may be.
A multivalued function M is said to be F-continuous (respectively K-continuous)
if
F—lim M (u) = M(v)

uU—v
(respectively for IC-limit). It was shown by Yakimiv (1981) that the limiting function
A for any numerical function from the class Il is continuous. The following theorem
generalizes this result for multivalued functions.
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Theorem 1.1 If M belongs to Iy(g,C', F, o, ®) (respectively M € Tly(g,C', K, o, )),
then the multifunction ® is F-continuous on C' (respectively K-continuous).

PROOF. Let u, — u € C" as n — co. Verify the first condition of F-convergence for
the sequence ®(uy,), n > 1. Suppose that K N®(u) = () and, moreover, K*N®(u) =
for some K € K and ¢ > 0. If K N ®(u,) # 0 for sufficiently large n, then without
loss of generality we can assume that

Int K° N ®(uy,) # 0
for all sufficiently large n. Then

M (tuy,)
g(t)

for all ¢ > t, and some t,. Suppose that ¢, T oo and put u; = u for t € [t,,t,41).
Then (1.3) yields

IntK* N # 0

Int K° N ®(u) # 0,

i.e. ®(u) hits K* for all ¢ > 0, so that ®(u) hits K, contrary to the conjecture.
Let ®(u) hit a certain open set G. Then G N ®(u) # () for open G} with compact
closure, such that G; C G. If G N ®(u,,) = O for all sufficiently large n, then

for t > t,. Similar arguments as above and (1.3) yield G; N ®(u) = (). Thus, ®(u,)
F-converges to ®(u) as n — o0.

For M belonging to Iy(g,C', K, o, @) the proof repeats the proof of Theorem 1
of Yakimiv (1981) reformulated for the Hausdorff distance instead of the Euclidean
metric. O

Corollary 1.2 If M € Tl,(g,C", K, o, ®), then there exists a > 0 such that for all
b > a and some C > 0
M(u) € Be(0), a < [Jul <b.

If, additionally, 0 ¢ ®(u) for all u # 0, then, for a certain 6 > 0,
Bs(0) N M (u) =0
as soon as a < |lul| < b.

PrROOF. Consider an arbitrary compact K missing the origin. It follows from (1.3)
that there exists ¢ty such that

M (tu) C ®(u)g(t),t > to,
for u € C' N K. Since g is regularly varying,

0<Cy= inf g(t) < sup g(t) = Cy < 0
tefa,b] te[a,b]
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for some b > a > t;. Hence
M (u) € ®(ullul~%)g(l|ul]),

whence the statement of Corollary 1.2 easily follows. O

For compact convezr-valued multifunctions (1.2) can be reformulated in terms of
corresponding support functions.

Proposition 1.3 Let M be a compact convez-valued multifunction. Then
M e Hl(ga (Cla ICJ Q, (I))

if and only of
SM(t'u,) (U)
9(t)

uniformly for v belonging to the unit sphere S™ 1.

— Sow)(v) as t — 00

PROOF is straightforward, since the uniform convergence of support functions is equiv-
alent to the IC-convergence of compact sets. O

Consider several examples of regularly varying multivalued functions.

EXAMPLE 1.4 Let F:S™ ! — F be a multivalued function on the unit sphere S™ 1.
The function M defined as

M (u) = [[ul|*F(ullul| ), u € R, (1.4)

is said to be homogeneous. It is evident that M € I1;(g,R™ \ {0}, F, o, F') for g(s) =
s*. If F is continuous in F (in K), then M € II,. It should be noted that the
function M remains regularly varying after replacing ||u||* in (1.4) with g(||u||) for
any numerical regularly varying function g.

EXAMPLE 1.5 Let m =6, d = 2, and let M (uy, ..., ug) be the triangle in R? with the
vertices (uy, us), (us,us) and (us, ug). Then M is homogeneous and regularly varying
of index 1. If (M) is the area of M, then the function

M, (u) = p(M (u))’ M (u)
is regularly varying of index 23 + 1.

EXAMPLE 1.6 Let h;: R™ — R!, 1 < i < d, be regularly varying numerical multi-
variate functions from the class II; on C', i.e.

= ¢i(u), 1 <i<duecC. (1.5)

Then
M(u) = {(hy(u), ..., hq(u))} € Ty (g9,C", K, a, D),
where ®(u) = {(é1(u),...,pq(u))} is a singleton for each u. The function M is one-

point-valued function from R™ into the class of single-point subsets of R?. Note that
Mellyifh; €Il,, 1 < <d.
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EXAMPLE 1.7 Let M € II;, and let h: R™ — R' be a multivariate function belong-
ing to the class II; of numerical functions. Then h(u)M (u) is a multivalued function
of the class II;, j = 1, 2.

The following lemma shows that main set-theoretic operations preserve the regular
variation property.

Lemma 1.8 Let j = 1 or j = 2, and let M; € Ilj, ¢; > 0, 1 <4 < p. Then the
functions

MY = ¢ MyU---Uc,M,,
M® = cony(MW),
M(3) = 01M1®"'®CpMp

belong to the same class I1; (if the results are closed).

PROOF follows from the continuity of the enlisted operations with respect to the
convergence in F (in £). O

6.2 Inversion Theorem for Multivalued Regularly
Varying Functions.

The following theorem is the analog of the inversion theorem for numerical univariate
regularly varying functions, see Section 1.6. It should be noted that this theorem can-
not be generalized within the framework of numerical multivariate regularly varying
functions only, since the inverse function for a multivariate one is necessary multival-
ued, see also Theorem 2.6 below.

Theorem 2.1 Let M € Ty(g,C', F, o, ®) for a positive o, and let
M(K)={ueC: M(u)NnK # 0} (2.1)

for K € K, 0 ¢ K. Suppose that for all ug from C' and e > 0 there exists § > 0 such
that

B(ug)’ U M (tu)

(2.2)
UEBe(UO) g(t)

for all sufficiently large t. Then the function M is regqularly varying of index v =1/«
on the set C, = {u € C:||u|]| > a} for any a > 0. Namely,

F—lim gmcazél(l{)mca. (2.3)

Here gy is the asymptotically inverse function for g, see Seneta (1976) and Section 1.6,

O (K) = {ueC ou)nK #0}, (2.4)
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and K—lim K, = K, 0¢ K. If M € Tl(9,C', K, a, ®) and 0 ¢ ®(u), whatever u € C'
may be, then F-limit in (2.3) can be replaced with K-limit. If

IC— lim M (tu,)
t—00 g(t)

= {0}, (2:5)
provided u; — 0 as t — oo, then (2.3) is valid for a = 0.

PROOF. It is evident that
M, (tK)

OB {ueC: Mu)n f(t)K #0}, (2.6)
where
M, (u) = % (2.7)
and .
)= oy Lt

It follows from Theorem 1.1 that the set ®;(K)NC, is closed for all @ > 0. Check
the first condition of the F-convergence in (2.3). Suppose that K' N ®;(K) = for a
certain compact K’ C C,, but

! Ml(th)
K'n @ # 0

for sufficiently large values of . By (2.6) we can choose a point u; from K’ such that

W) 0 F (1)1, 4 0. 2.5)
Without loss of generality suppose u; — ug € K" as t — oo. Then (1.3) yields
f_tll}g) Mt(ut) = @(UU)

From (2.8) we get ®(ug) N K® # () for all § > 0, whence ®(ug) N K # 0, contrary to the
conditions uy € K" and K'N®;(K) = (). Thus the first condition of F-convergence is
valid even without assumption (2.2).

If @ = 0, then we have to consider additionally the case 0 € K', u; — ug = 0 as
t — oco. From (2.5) and (2.8) we get

0€ (f(t)K)’

for all § > 0 and sufficiently large ¢. However we assumed that 0 ¢ K. Thus, the
condition (F1) from Section 1.1 is valid.

Verify the second condition of F-convergence (F2) in (2.3) for a = 0 at once. Let
®,(K) have non-void intersection with a certain open set G. Since 0 ¢ ®;(K), the
common point of G and ®;(K) is not zero, so that we can safely think that 0 ¢ G.
Let ug belong to G N @, (K), and, moreover, B.(ug) C G for a certain £ > 0. Suppose
that
M, (tKy)

BE(UO) : g1 (t)

=10 (2.9)
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for sufficiently large t. Hence

U M) ft)K, = 0. (2.10)

u€ B (uo)

From (2.2) we get
D(ug)’ N f(1) K, = 0.
Hence ®(ug) misses K, i.e. ug ¢ ®1(K). Thus, (2.3) has been proven.
Finally, suppose that M € Ty(g,C', K, a, ®) and 0 ¢ ®(u) whenever v € C'. In

order to prove K-convergence in (2.3) we have to verify that sets M (tK;)/g:(t) are
contained in a certain compact for all sufficiently large . Suppose that

M, (tKy)

t

9:(1)

for an unbounded sequence of points u;, ¢ > 0. Without loss of generality suppose
that the unit vector e; = u;/||us|| converges to e as t — co. From (1.3) we get

M ®)le)
B @) el

= B(e), (2.11)

and
9(g1 () [uel])

9(9:1(1))

Since B.(0) N ®(e) = () for a certain € > 0, (2.11) yields

~ [|ug]|* as t — oo.

y 4\ B(0)g(g1(0)]|ul)
Miur) © R 9(g1(t))

for sufficiently large t. Hence

contrary to the choice of u,. O

Note that the function M; defined by (2.1) is said to be the inverse for the mul-
tifunction M, see Rockafellar and Wets (1984).

The condition (2.2) is the most awkward in Theorem 2.1. However it can be
weakened a little.

Denote for any closed F' and positive

[FIP = J{Fy: 1-6<y<1+4}. (2.12)

Theorem 2.2 Suppose that all conditions of Theorem 2.1 are valid except (2.2), and,
for all ug € C', € > 0, there exists § > 0 such that

P c |y Mlawh)

(2.13)
1-e<g<l+¢ g(t)

for all sufficiently large t. Then (2.3) is valid for K, = K, t > 0.
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PROOF of Theorem 2.1 is applicable except the following implication. From (2.9) we
get R
U Mluwg)n f)K =10

1-e<g<l+e¢

(cf. (2.10)), so that (2.13) implies
[®(up)]° N fF(HK = 0.
Since f(t) — 1 as t — oo,

[ (uo)]°
()

for a certain ¢’ > 0 and sufficiently large ¢. Thus ®(ug) N K = (). This fact contradicts
the choice of . O

2 [®(ug)]” 2 ®(up)

Note that if d = 1 (values of M are closed subsets of the line), then (2.2) and
(2.13) are equivalent.
Reformulate (2.2) for particular functions M.

Lemma 2.3 Let M(u) = {(hi(u),...,hq(uw))} be the single-point-valued function
from Example 1.6, where h;, 1 <1 < d, are continuous multivariate functions from
the class Tly. If the function g in (1.5) is continuous, then (2.2) is valid.

PROOF. Let ¢;, 1 <i < d, be limiting homogeneous functions from (1.5). Then

M(tu
UEBUE(UO) ggt)) ueg(uo) {(D1(w), ..., da(u))
+Hoq(u), ... aq(u) },
where
o(u) = (al(u),...,a5u): R" — RY

is continuous function for any given ¢, and

sup ||af(u)|| = 0 as t — oo.
w€Be(uo)

Thus, (2.2) follows from
U {(@1(w).-,da(w)} 2 {(d1(uo), -, daluo))}’

w€Be(uo)

for a certain § > 0. O

Lemma 2.4 Let M(u) = g(||u||)F(ey), where F:S™ ' — F is a multivalued func-
tion on the unit sphere and e, = u/||u||. Then (2.13) is valid if g is a continuous

numerical reqularly varying function. The condition (2.5) is valid if F' is bounded on

S and
g(txy)

g(t)

—0 as ; = 0,t — oo.
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PROOF. It is evident that ®(u) = ||ul|*F(e,). Hence

U M(gllullt) _ U F(eu)g(thull)

1-e<q<lte g(t) 1—e<q<l+e g(t)
U Fle)g™|lul”
1—£1<q<l+¢1

2 [B(w)

U

for some £; < ¢ and § > 0. Indeed,

{g(thUII)_

.1—5§q§1+6}
g(t)

converges in the Hausdorff metric to the set
{¢*|ul|** 1 —e<qg<1+¢},
so that, for some ; > 0 and sufficiently large ¢,

{g(thIUII)

0 : 1—5§q§1+5}2{q°‘||u||°‘: l—e1<¢<1l+4+&}. O
g

Note also that all functions from Lemma 1.8 satisfy the conditions (2.2) or (2.13)
in case all their components M;, 1 < ¢ < p, satisfy the same condition.
Without (2.2) or (2.13) the following result is valid.

Corollary 2.5 If the conditions of Theorem 2.1 are valid except (2.2), then (2.3) is
replaced with

M, (tK
JF—lim sup k22 (tK3)

NC, C & (K)NC,. 2.14
tvoo 01(t) () (2.14)

PROOF follows from Lemma 1.1.1 (for definition of the upper limit in F see Sec-
tion 1.1). O

Note that the closed sets K, K;, t > 0 in Theorem 2.1 are allowed to be non-
compact, provided pg (K, K;) — 0 as t — oo.

Now consider a particular case of Theorem2.1, which, in fact, is the inversion
theorem for multivariate regularly varying functions.

Theorem 2.6 Let h: C — R be a continuous reqularly varying numerical function
(h € Tly) with the limiting function ¢ and index « > 0. Suppose that the corresponding
norming function g in (1.5) is continuous. Define for any x > 0, a > 0

M(z) ={u € C: ||ul]]| > a,h(u) > x}. (2.15)

Then
Ml S H?(gla (ano)afaf}/) @1)7

where g is the asymptotically inverse function for g, v = 1/a and

Qi (x) ={ueC: ¢(u) >=x}.
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PROOF. Since M; is defined on (0, 00), the corresponding classes IT; and II; coincide.
Let us apply Theorem 2.2 to the one-point-valued function M (u) = {h(u)}, u € C.
Then (2.13) is equivalent to

h(qut)
g(t)p(u)

The inclusion (2.16), in turn, follows from continuity of h, ¢ and g. Note that
the continuity condition can be replaced with a certain analog of coordinate-wise
monotonicity.

The function h can be redefined on C\ C, to ensure (2.5). Indeed, (2.5) is valid
in case u,t is divided from the origin. Otherwise, letting h be equal to zero on C\ C,
ensures (2.5). It follows from Theorem 2.1 that

F—lim = o (x),
=00 gy (1) 1(#)

[1—5,1+5]g{ :1—6§q§1+8}. (2.16)

i.e. M is regularly varying. O

Note that we can construct the next inverse function to A defined by (2.15). This
function M, is defined as

My(K) = [0,sup h(u)], K C C.

ueK

Naturally, the function M, is regularly varying too.

6.3 Integrals on Multivalued Regularly Varying
Functions.

Results, concerning asymptotic properties of integrals of regularly varying functions,
constitute a large part of classical regular variation theory. In this section we con-
sider asymptotic properties of an integral, whose domain of integration is a certain
multivalued regularly varying function.

Theorem 3.1 Let L:G' — R' be a slowly varying function (i.e. L € 25, see Sec-
tion 1.6), and let ¢: G — R' be a continuous homogeneous function of index o — d,
a < 0, where G = G\ {0}, G is a cone in R, Furthermore, let

M: R — F(G)={FeF: FCG}

be a multivalued function, whose values are closed subsets of G'. Suppose that for
some canonically closed set D, missing the origin, and, for every compact K,

M(t
inf{6>0: D_EHKCLHKCDEHK}%O as t — oo, (3.1)

g(t)
where g: (0,00) — (0,00) is a reqularly varying function of index v > 0. Then, for
any e € @,

/M(t) ¢(u)L(u)du ~ L(g(s)e)g(s)® /D ¢(u)du as s — 0. (3.2)



6.3. INTEGRALS 95

First, derive a lemma concerning integrals of regularly varying functions.

Lemma 3.2 Let F be a closed subset of R\ {0}, and let ¢, L be defined in Theo-
rem 3.1. Then, for any e from R\ {0},

/Fd>(u)L(xu)du~ L(xe)/Fd>(u)du as T — oo. (3.3)

PRroOF. Evidently,
c=inf{||z|: x € F} > 0.

It was proven in de Haan and Resnick (1987) that, for any ¢ > 0, there exists x
such that for x > zg and ||z|| > ¢ it is

(1 =&)llull = < < (L+)ull”.

Let A € (0,1) be specified. Since o < 0, we can choose R > 0 such that

frogs o Sl < & [
/FﬂBR(O) o(u)du > (1—A)/F¢(u)du_
Thus
Sy @000 =l Lae)du < [ o) Lzu)du
< L($6)(1+8)/ ¢(U)||U||€du

FﬂBR(O)

+A /F d(u)du.

Hence

—€ fF qS(u)L(xu)du €
(1-A)1—e)R*°< L0 I, g(alda < (14£)R° + A.

Since € may be chosen sufficiently small, (3.3) is valid. O

PROOF OF THEOREM 3.1. If x = ¢(t), then

/M(t) ¢(u)L(u)du = xa/ o (u) L(uz)du.

M(t)/x

Since 0 ¢ D, it is
| sl < oo
M(t)/x

for sufficiently large ¢ and any n € (0, —«a). Hence, for all R > 0,
x /D—enBR(o) o(u)L(uz)du < = /@ . é(u) L(uzx)du

< /DE é(u) L(uzx)du (3.4)
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Denote
A(F) = /Fd)(u)du, FeF

Lemma 3.2 and (3.4) yield

A(D= N Br(0) _ 1o Ju () L{w)du _ A(D?)
A(D) "o Liwe)seA(D) — A(D)

To obtain (3.2) we have to put R — oo, € | 0 and use continuity of ¢. O

Note. The condition (3.1) is more restrictive than

F—lim ——~ =D
t—o0 g(t)

Nevertheless, for convezr-valued multifunctions these conditions are equivalent.

Corollary 3.3 Let M € Ily(g,C', K, a, ®) be a conver-valued multifunction, and let
the functions ¢ and L satisfy the conditions of Theorem 3.1. Then

is a reqularly varying multivariate function from the class Ily. In particular p(M(v)) €
Iy, where p is the Lebesgue measure.

6.4 Limit Theorems for Unions:
Multivalued Functions Approach.

In this section we apply the above mentioned results to limit theorems for unions of
random sets considered in Sections 4.1 and 4.4.

Let £ be a random point in C C R™ having the density f. Suppose that f € Il
on C' = C\ {0} and indf = a — m for a certain negative a. Then f = ¢L, where
¢ is a homogeneous continuous function of the same index, and L is a slowly varying
function on C'.

Furthermore, let M be a multivalued function from the class (g, C', K, n, ®),
n > 0. Then A = M(£) is a random compact set. Consider its independent copies
Ay, Ay, ... and define

' Xp=a (A U---UA,),

for the norming constants a,, n > 1, given by
a, =sup {g(s): s*L(se) > 1/n}, (4.1)

for a certain e € C'.

In this section we investigate the weak convergence of random closed sets a, ' X,,,
n > 1. As it was stated in Section 1.4, the weak convergence of random sets is
equivalent to the pointwise convergence of the corresponding capacity functionals

T.(K) =P {a;' X, K #0}.
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Moreover, the pointwise convergence of 7;, on the class Ky, of all finite unions of
balls ensures the weak convergence of the random sets in question.

Hereafter in this section we suppose that the above mentioned conditions on the
function M, the random variable £ and its density are satisfied.

Theorem 4.1 Suppose that, for every uy € C', positive r and K from K., the con-
ditions
O(ug) N K #0 and P(up) NInt K = 0,

yield the erxistence of some points uy and us belonging to B,.(ug) such that
O(ur) NK =0 and P(ug) NIntK # (.

In addition, let (2.5) be valid for the multivalued function M. Then a,' X, converges
weakly to the random closed set X with the capacity functional T given by

T(K) _ 1 —exp{—fq>1(K) ¢(u)du} , 0 gé K,
1 , otherwise

where @y is the inverse function to ®, see (2.4).

PROOF. Since a,, — 0o as n — 00, the origin is a fixed point of the limiting random
set, i.e. T(K) =1 as soon as 0 € K.

Let us verify the pointwise convergence of capacity functionals. Due to Theo-
rem 4.1.1, it suffices to show that the function

(r) = P{ANzK # 0}
P {M(€) 1K #0)

is regularly varying at infinity for any K from K,;. Using the notations of Theorem 2.1
we get

x(x) = P{{e M (zK)}

= L(u)du.
S o, S0 )
It follows from Corollary 2.5 that
M (zK
inf{6>0: MHBR(O) C (I>1(K)€}—>0 as T — 00 (4.2)
91(x)
for any R > 0.
Let us show that
M (zK
inf {6 > 0: % D O (K)*n BR(O)} — 0 as  — oo. (4.3)
1
Suppose that
M1 (IL’K)

@ (K)*NBgr(0) ¢ (@)
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for some € > 0 and © = x, k > 1, where x;, — oo as k — oo. Then pick points wuy,
k > 1, such that

M1 (l‘kK)
gi(z)

Let ur, — up € IntBg(0) as k — oo. Since 0 ¢ &1(K), we get ug # 0. Thus,
®(u) N K # O whenever u € B.5(ug). On the other hand,

ug € (®1(K)™ N Bg(0)) \

i.e. ®(ug) NIntK = (). On the contrary, by the assumption, ®(u;) misses K for a
certain u; belonging to B >(ug). Thus, (4.3) is valid.

Let us show that ®;(K) is canonically closed. If ®(ug) N IntK # (), then uy €
Int®, (K') by Theorem 1.1. Let

D (ug) NIt K =0 and P(up) N K # 0.

In view of the assumption of Theorem, there exists a sequence of points ug, £ > 1,
such that v, — ug as k — oo and

O(ug) NInt K # 0, k> 1.

Hence any point uy from ®;(K) is a limit of a sequence of points from Int®, (K), i.e.
the set ®;(K) is canonically closed.
It follows from (4.2), (4.3) and Theorem 3.1 that

Tk (1) ~ v(z) = L(g1(x)e)(g1(x))" AI(K) (u)du as x — oo.

The function v(z) is regularly varying of index «/n. It follows from Theorem 4.1.1
that

lim 7,,(K) = T(K)
—a/n
K
= 1—exp{— lim (an( )> },
n—0o0 an

a,(K) =sup{s: 7x(s) > 1/n}.

where

Let us define
ME) = [ ou)du
D1 (K)

y(@) = (9(2)"L{gi(x)e)) .

Then
an = sup {z: y(x) <n},

and, for sufficiently large n,

|

S|

a,(K) < sup {x: g1(z)*L{gi(x)e)(1 + B)A(K) >
= sup{z: y(z) < nA(K)(1+3)}.
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Let y be the asymptotically inverse function for y. Since y is regularly varying of
index (—a/n), we get

. <an(K)>—a/n P (y(nA(K)(

1
n—00 Qnp, n—00 g (n)

= AK)(L+5),

+6))>_“/”

for any 3 > 0. The estimates from below are obtained similarly. Thus, the formula
for T"in Theorem 4.1 is valid. O

NoTE. We can choose instead of K., another class M determining the weak
convergence, see Section 1.4 and Norberg (1984). The statement of Theorem 4.1 is
also true even in case the conditions is valid for the class M’ such that

K*cK cKcK,CK*®

for any K from M, & > 0 and some K, K, from M.
Note also that the conditions of Theorem 4.1 are valid for all examples of regularly
varying multifunctions from Section 6.1.

EXAMPLE 4.2 Let M = g(||u||)B,(ey), where r > 0, e, = u/||u]| and g is a regularly
varying univariate function of index n > 0 such that

g(@it)
g(t)
Furthermore, let £ be a random vector which satisfies the conditions of Theorem 4.1.

Then the RACS a,, ' X,, converges weakly to the random closed set X with the capacity
functional

—0 as x; — 0,t — oo.

T(K)=1—exp{— oy Ole)de v dry, 0¢ K,
S (e)

Fr

where

Fr(e) ={z > 0: 2"B,(e) N K # 0} .

Suppose that the distribution of & is spherically symmetric, i.e. ¢(e) = C for all e
belonging to S™ . Then

T(K) = 1 - exp {—o/ooo Ly (S™1 N (K /2")) dx} 0¢K,

where p,,_; is the Lebesgue measure on S™~1.
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Chapter 7

Probability Metrics in the Space
of Random Sets Distributions

7.1 Definitions of Probability Metrics.

In this chapter we discuss probability metrics in the space of random closed sets
distributions. Probability metrics method and its applications to limit theorems were
elaborated by Zolotarev (1986), Kalashnikov and Rachev (1988), Rachev (1991). This
method is developed mostly for distributions of random variables. There are many
examples of probability metrics for random variables and inequalities between these
metrics.

The probability metrics method enables to prove limit theorems for the most
convenient metric. Afterwards, estimates of the speed of convergence are reformulated
for other metrics by the instrumentality of inequalities between metrics. Sometimes
this method allows to drop the condition of the uniform smallness of summands in
limit theorems, i.e. to prove "non-classical” versions of limit theorems.

The probability metric m(&, n) is a numerical function on the space of distributions
of random elements. It satisfies the following conditions:

1. m(&,n) =0 implies P {( =n} = 1.
2. m(&,n) = m(n, ).
3. m(&, ) <m(&¢) +m(C,n).

In this section several probability metrics for random sets are defined. They enable
to determine distances between random sets distributions. Later on their applications
to limit theorems for unions are considered.

Since a random set is an F-valued random element, probability metrics for random
sets can be defined by specializing general metrics for the case of random elements in
the space F furnished with o-algebra o and the Hausdorff distance py.

In such a way the Levy-Prohorov metric can be defined, because its form does not
depend essentially on the structure of the setting space. We can also define the metric
Ky as

Ky(X,Y)=inf{e > 0: P{pu(X,Y) >} <¢},

where X and Y are random compact sets. It can be shown that K metrizes the
convergence of random compact sets in probability with respect to the Hausdorff

101
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metric. The analog of so-called ”engineering” metric (see Zolotarev, 1986) is defined
as

The enlisted metrics are composite, i.e. their values depend on the mutual dis-
tributions of X and Y. It is well-known that simple metrics are more convenient,
since they can be naturally applied to limit theorems. A probability metric is said
to be simple if its values depend only on marginal distributions of random elements
(random sets).

Many interesting simple metrics for random variables are defined by the corre-
sponding densities or characteristic functions. Unfortunately, they cannot be refor-
mulated for random sets directly, since the space F of closed sets does not admit a
group operation and there are not analogues of the Lebesgue measure and densities
for F-valued random elements (random sets).

Another approach is based on the notion of selector for random sets, see Wag-
ner (1979). The random element £ is said to be a selector of X if £ € X almost
surely. We then write £ € S(X). If the random closed set X is nonempty almost
surely, then the class S(X) is non-void too. Moreover, X coincides with the closure
of a certain countable collection of its selectors. This collection is called the Castaign
representation of X.

Let m be a probability metric on the space of distributions of random vectors in
R?. Then the metric my on the space of random sets distributions is introduced in
the same way as the Hausdorff metric py is defined by the Euclidean metric p in R?.
Put

mp (X,Y) = max { costn) " m(&,n), b el m(&,n) }

It is easy to show that my is a probability metric on the space of random sets
distributions. Moreover, my inherits the homogeneous property of m. Namely, if m
is homogeneous of degree 7, i.e.

m(c, en) = |e|'m(&,n), ¢ # 0,

then my is homogeneous too. Indeed, the class S(¢X) coincides with ¢S(X), whatever
¢ # 0 may be.

EXAMPLE 1.1 Let m be the simple “engineering metric”, i.e. m(&,n) = p(EE, En).
Then

my(X,Y) = maxq su inf p(E& En), su inf p(EE
(X,Y) {ges&)nes(y)p(f n) nes@)sesmp(g 77)}

= max{ sup inf p(z,y), sup inf p(z,y)
ccEx veEy yeEy zeEx

i.e. in this case my coincides with the Hausdorff distance between the corresponding
expectations of random sets. As in Section 2.1, EX designates the Aumann expecta-
tion of the random set X.
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EXAMPLE 1.2 Let m(&,n) = Ep(&,n). Then
my (&, n) = Epn(X,Y).

Unfortunately, for a more complicated metric m the evaluation of my for random
sets is very difficult, since the class of all selectors is very large even for simple random
sets.

EXAMPLE 1.3 Let X = {&,&} and Y = {n;, 72} be two-point random sets in R!.
Clearly, the class S(X) consists of trivial selectors & and &, as well as all selectors
defined as &, ¢,), where f:R* — {1,2} is a Borel function. Then

p {gf(fl,@) < f} = P{& <2, (6,8%) € FH+P{& <, (6,6) ¢ 1Y
- P{(flaf?) € Fl‘})

where

F o= {(z,y) €R: f(z,y) =1},
F, = (FN((-=00,z) xR)) U (F°N (R x (—00,x))).

Let m be the uniform distance between random variables. It is defined as the uni-
form distance between the corresponding distributions functions, see Zolotarev (1986).
Then the distance my between X and Y is evaluated by

= max{sup inf sup [P {(&,&) € Fo} —P{(m,n2) € G. };

FeBGEB —co<a<oo

sup inf  sup
GeBFEB —co<a<oo

P{(€6) € B} — P () € Gm}|},

where B designates the class of Borel subsets of R?. Thus, the evaluation of mz even
for simple m and two-point random sets is very complicated.

Meaningful generalizations of famous probability metrics can be obtained by re-
placing distribution functions in their definitions with capacity functionals of random
sets. The capacity functional of X is defined as Tx(K) = P{XNK # 0} for K
belonging to the class K of all compact subsets of R?. Sometimes we consider the
restriction of Ty on a certain sub-class M C IC.

The uniform distance between the random sets X and Y is defined as

t(X, Vs M) =sup {|Tx (K) — Ty (K)|: K € M}, (1.1)

where M is a subclass of K. The Levy metric is defined as follows (see also Rachev,
1986, and Baddeley, 1991)

L(X,V; M) =inf{e > 0: (1.2)
Tx(K) <Ty(K®)4¢e,Ty(K) < Tx(K°) +¢, K € M},

where K¢ is the e-envelope of K, see Section 1.1.
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Hereafter we omit M if M = K, ie. t(X,Y) = ¢(X,Y;K) and £(X,Y) =
L£(X,Y; M) etc.

We prove below that the Levy metric determines the weak convergence of random
sets, see Section 1.4 for the notion of the weak convergence. The RACS X,, with the
capacity functional T, converges to the RACS X, having the capacity functional T,
if

T.(K) > T(K) as n — o0 (1.3)

for all K belonging to the class
Sr={KeK: T(K)=T(IntK)}.

The class M C K is said to determine the weak convergence of random sets if the
pointwise convergence (1.3) for all K belonging to MNSy yields the weak convergence
of random sets. It was noted in Section 1.4 that such classes as the class K, of finite
unions of balls or the class IC,, of finite unions of parallelepipeds determine the weak
convergence of random closed sets.

For each compact K, put

M(Ky) = {K € M: K C K,}.

Theorem 1.4 Let the class M C K determine the weak convergence of random sets,
and let IntK for each K € M be equal to the limit of an increasing sequence {K,,n >
1} € M. Then a sequence X,, n > 1, of random sets converges weakly to X if and
only if, for each Ky € K,

(X, X; M(Kp)) = 0 as n — oo.

Proor. Sufficiency. Let £(X,, X; M(K,)) — 0 asn — oo, and let K € M(K,)NSy.
It follows from (1.2) that

T(K) < Ty(K*") + &, and Tp(K) < T(K®) +en, n>1, (1.4)

where ¢, | 0 as n — oo. It follows from the conditions on M imposed in Theorem
that
T(K,) 1t T(IntK) =T(K) (1.5)

for a sequence K,, n > 1, from M. Having renumbered the sequence K,, n > 1, one
can ensure that
K, CK,n>1.

Since (1.4) is valid on M (K),
To(Kn) < To(KG) +en < Th(K) + en.
Thus
T(K) — e — (T(K) = T(Ky) < To(K) < T(K) + e, + (T(K™) = T(K)) .

Upper semi-continuity of 7" and (1.5) yield T,,(K) — T'(K) as n — oo.
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Necessity. Let X, converges weakly to X. Then (1.3) is valid, whatever K be-
longing to M N Sy may be.

Let £ > 0 and Ky € K be specified. Consider compacts K1, ..., K,,, which form
the e-net of M(Kj) in the Hausdorff metric pg. It is easy to show that K;* belongs
to Sy for a certain r; € [g,2¢], 1 < i < m. It follows from (1.3) that for a certain
integer ng and every n > ng, 1 <1 < m,

[ To(KY) = T(K")| <e.

Let K € M(K)), and let K be its nearest neighbor from the chosen e-net. Then,
for all n > ny,

T\(K) < To(Kj) < Tu(Kj)
< T(Kj)+e <T(K*)+ 3. (1.6)
Similarly,
T(K) < T,(K*) + 3e. (1.7)

Thus, £(X,, X; M(K))) < 3e. Letting € be sufficiently small proves the necessity.
|

Corollary 1.5 The random closed set X,, converges weakly to a compact random set
X if and only if
L£(X,, X) =0 as n — cc.

Proor. Sufficiency immediately follows from Theorem 1.4.
Necessity. Let K,, n > 1, be an increasing sequence of compacts, such that
K, 1 R? as n — oo. Then, for a certain n,

T(RY) — T(K,) < .

It is easy to show that the compact K’ = K’ belongs to S for a certain § > 0.

Then

T,(RY) — T, (K') < ¢
for sufficiently large n. For each K C K’ the inequalities (1.6) and (1.7) hold. If
K ¢ K', then

T.(K) < T, (KNK')+e <T(K*)+4e

and

T(K) < T, (K*) 4+ 4e.

Thus, £(X,,X) - 0asn —oo0. O

The introduced metrics depend on the class M C K. Tt is of great importance to
choose this class properly. Hereafter we suppose that

cM={cK: Ke M} =M

for all ¢ > 0, and also K" € M for all » > 0 and K from M. We then say that M is
standard. In the sequel a standard class may be safely thought to be the class of all
closed balls.
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7.2 Some Inequalities between Probability Met-
rics.

Derive several inequalities between the introduced probability metrics on the space of
random sets distributions. Recall that the classical inequality between uniform and
Levy metrics involves concentration functions of random variables. First, introduce
the same notion for random sets.

The concentration function of a random closed set X is defined as

Qe, X; M) =sup {Tx(K°) — Tx(K): K € M}, >0, (2.1)

cf. Hengartner and Theodorescu (1973). Evidently, Q(s, X; M) coincides with the
uniform distance between the distributions of X and X¢, i.e. Q(¢, X; M) is equal to
t(X, X%, M). Other examples of concentration functions can be obtained by replacing
v with other probability metrics. As above, Q(g, X) means Q(e, X; K).

The following theorem provides an inequality between uniform and Levy metrics.

Theorem 2.1 If L = £(X,Y; M), then
L<t(X,Y;M)<L+min{Q(L,X;M),Q(L,Y; M)}. (2.2)
PROOF follows from the obvious inequalities L < t(X,Y; M) and

Tx(K) —Ty(K) = Tx(K)-Tyv(K°) + Ty (K") — Ty (K)
< (X, Y M) +Q(e,Y; M)

fore < £(X,Y; M). O

Consider some properties of the concentration function (2.1).

Theorem 2.2 Let X andY be independent random closed sets. Then, for each e > 0
and M C K:

1. Q(e, X UY; M) <Q(e, X; M) + Q(e,Y; M).
2. Qe, X/e; M) =Q(e,X;eM) , ¢ #0.
3. Q(E, X®Y) <min(Q(s, X),Q(s,Y)).
PROOF. It follows from (1.5.1) that
Qe, XUY;M) = sup{[Tx(K*) — Tx(K)] (1 — Ty (K?))

+ [Ty (K7) = Ty (K)] (1 = Tx (K)): K € M}
< Qe, ;M) +Q(e,Y; M),
The second statement is obvious.

Note that
Q(e,X) =sup {Ix(F°) = Tx(F): F € F},
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since any F' € F is approximated by an increasing sequence of compact sets. Then

Qe XaY) = sup{E[Tx(K°aY)-Tx(K®Y)|Y]: K €K}
< sup{E[Q(s,X)]|Y]: K € K}
= Q(‘C:?X)J

where E[-|-] stands for conditional expectation. O

Considered as a function of z the concentration function Q(z, X'; M) is monotone.
Moreover, it is left-continuous in case M C Sr.

Let L, be the Levy distance between the distribution functions Fx (z) = Q(z, X; M)
and Fy(2) = Q(z,Y; M), i.e.

L,=inf{e >0: Fx(z) < Fy(z+¢e)+¢, Fy(2) < Fx(z+¢)+¢e,2>0}.
Theorem 2.3 Let the class M be standard. Then
L, <2L+max{Q(L,X; M),Q(L,Y; M)},
where L = £(X,Y; M).
ProOOF. If L < §, then K** € M for each K € M, z > 0, and

TX (Kz+5)
Ty (K)

Ty(Kz-I-%) + 5,

<
< Tx(K°) +6.

Thus
Tx (K — Tx (K°) < Ty (K**?) 46 — (Ty (K) — 0).

It is obvious that

Tx(K*") = Tx(K’) > Tx(K?)—Tx(K)+Tx(K) — Tx(K’)
Hence
Tx(K?) —Tx(K) — Q(8, X; M) < Ty (K**?°) — Ty (K) + 29,
i.e.
Qlz, X; M) < Q(2+25,Y; M) +2+Q(2,X; M),z > 0.
Thus

Fx(z) < Fy(z +26)+ 20 + Q(6, X; M).
The similar inequality is valid on replacing X with Y. O

Evaluate concentration functions and distances for several examples of random
closed sets.
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EXAMPLE 2.4 Let X = {{} and Y = {n} be single-point random sets. Then £(X,Y")
is the Levy-Prohorov distance between & and 7, see Zolotarev (1986). The uniform
distance between X and Y is equal to

(X, Vs M) =sup{|P{{ e K} -P{neK}|: Ke M}.

If M = K, then ¢(X,Y) coincides with the total variation distance between the
distributions of ¢ and 7. The concentration function of X is equal to

Qle, X;M)=sup{P{{ e K} —-P{{e€K}: Ke M}.

EXAMPLE 2.5 Let X = (—o0,€] and Y = (—o0, 7] be random subsets of R', and let
{inf K: K € M} =R! (i.e. the class M is sufficiently "rich”). Then t(X,Y; M) coin-
cides with the uniform distance between £ and 7. Furthermore, £(X,Y; M) is equal
to the Levy distance between these random variables. The concentration functions
of X and Y are equal to the classical concentration functions of the corresponding
random variables, see Hengartner and Theodorescu (1973).

EXAMPLE 2.6 Let X and Y be the Poisson point processes in R? with the intensity
measures Ay and Ay respectively. Then

Tx(K) — Ty (K)| < [Ax(K) — Ay(K)],

so that t(X,Y) is not greater than the total variation distance between Ay and Ay.
Similarly,

Qe, X; M) <sup{Ax(K°) — Ax(K): K € M}.
If X and Y are stationary and have intensities Ay and Ay, then

A A

_ X _Y
Ax Vv —Ax _ (Ax \Av-Ax
/\y /\Y ’

EXAMPLE 2.7 Let X and Y be the Boolean models in R? generated by the stationary
Poisson point processes with the intensities Ax, Ay and the primary grains Ay, Ay
(see Example 3.2.2). The capacity functional of the Boolean model X is equal to

t(X,Y) =

Tx(K)=1—exp {_)\XE [M(K ® AX)] } ;
where Ax = {—z:2 € Ax}. Let My be the class of all balls. Then, by stationarity,
(X, Y; M) = sup {|exp {AxEu(A%)} —exp {\vEu(A})}H: r > 0}.
If Ax and Ay are almost surely convex, then the Steiner formula (see Stoyan et

al., 1987, Matheron, 1975) yields

Ay _

B %) = 3 () BwiAn)r
i=0

where W;(Ax), 0 < i < d, are Minkowski functionals of Ax. Hence, the distance
t(X,Y; Mp) can be expressed in terms of the intensities Ax, Ay and the expected
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values of the Minkowski functionals of the grains Ay, Ay. For example, in R? the
functional Wy is the area, Wy is the perimeter length, and W5 = 7. Hence

(X, Y3 Mo) = sup {] exp {Ax(Sx + 2Pxr + 1)
_exp{)\y(Sy +2Pyr +7r7"2)} |:r > 0},

where Sy, Px and Sy, Py are the mean values of the area and the perimeter length
of Ay, Ay respectively. For example, if A\x = Ay = X and Py = Py, then

t(X,Y; Mp) = |exp{—ASx} — exp{—=ASy }|.

Now evaluate distances between U-stable random closed sets defined in Chapter 3.
It was proven that the capacity functional of a U-stable random set X is equal to

Tx(K)=1-exp{¥x(K)}, (2.3)
where Uy is a homogeneous Choquet capacity such that
\Ifx(SK) = Sa\Ifx(K)

for s > 0 and all K, which misses the set of fixed points of X. The value « is said to
be the index of X.
Hereafter
My = {Br(x): r>0,x € ]Rd}

designates the class of all balls and
Mg ={sK: s >0}

is the class of all scale transformations of the compact set K.
If X and Y are U-stable with the same index « then

t(X,Y; Mg) = sup {|exp{—s°‘\IfX(K)} —exp{—s*Uy(K)}|: s > 0}.

Hence
X,V M) = h @j Eg) , (2.4)
where
h(z) = |z¢ — 2|, ¢=1/(1—x)
Similarly,
Qe, X; Mk) =h (i);(g{))) : (2.5)
It follows from (2.4) and (2.5) that
t(X,Y; My) = sup {h (%) fa€ Rd} , (2.6)
(Buy<(a

Qe xis) = sup i (0 e mel
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If the random sets X and Y are stationary, then

t(X, Y M) = (X, Y5 My (0)

¥4 (B(0))
. (%(Bm ))) (27)
O X M) = h((L+2)%). (28)

For example, if X and Y are stationary Poisson point processes, then

t(X,Y; M) = t(X, Y)_h@);)

7.3 Ideal Metrics for Random Closed Sets.

[t was shown in Zolotarev (1979, 1986) that so-called ideal metrics play a significant
role in the study of limit theorems.

The probability metric m is said to be ideal if m is homogeneous and regular.
Namely, m is homogeneous of degree =y if

m(cX,cY) = |¢/'m(X,Y), (3.1)
whatever ¢ # 0 may be. The metric m is said to be reqular with respect to unions if
m(XUZYUZ)<m(X,Y) (3.2)

for any random set Z independent of X and Y. Regular metrics with respect to the
Minkowski addition are defined similarly.

Hereafter suppose that the class M is standard if otherwise is not stated. Then
the uniform metric ¢(X,Y; M) is ideal of zero degree. Indeed,

t(eX,cY; M) =e(X,Y; M/c) =¢(X,Y; M), (3.3)
and
t(XUZYUZ,M) = sup{|Tyuz(K)—Tyuz(K)|: K € M}
sup {|Tx(K) +Tz(K) — Tx (K)Tz(K) — Ty(K)
—T7(K) +Tz(K)Ty(K)|: K € M}

= sup {|(Tx (K) = Ty (K))|(1 = Tz(K)): K € M}
< (X, Y3 M).

If M = K, then the metric t(X,Y) = v(X,Y;K) is regular with respect to the
Minkowski addition. Indeed,

(Yo zYeZ) = swpf{E[k(Ke2)-Ty(Ke )| 2] Kck}
< (X,Y).
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The Levy metric £(X,Y; M) is also regular with respect to unions and with
respect to the Minkowski addition in case M = K. For example, £(X,Y; M) < ¢
yields

Txuz(K)

IN AN

I
=
C
N
g
+
‘.(“)

so that £(X U Z,Y U Z; M) < ¢ too.

It follows from (3.1) and (3.3) that v and £ are ideal metrics of zero degree. Never-
theless, ideal metrics of a positive degree are preferable. To apply the probability
metrics method to limit theorems for unions of random sets we have to find out an
ideal metric of positive degree . Such a metric can be constructed by generalizing
the uniform metric v. Put

to (X, Y; M) = sup {Q(K)|Tx (K) — Ty (K)|: K € M}, (3.4)

where ®: K — [0,00) is a non-negative increasing and homogeneous functional of
degree v > 0, i.e.
O(sK) = s"P(K), (3.5)

whatever positive s and K from I may be.
We may put, for example, ®(K) = (u(K))"/% or ®(K) = (C(K))?, where y is the
Lebesgue measure, C' is the Newton capacity, see Landkof (1966), Matheron (1975).
Hereafter suppose that ® is chosen in such a way that for each K € K
(K’ — ®(K) as 6 —¢ > 0.

Clearly, the metric tg is an ideal metric of degree v with respect to unions.

Derive an inequality between te and the Levy metric £. For any Ky € K and
0 > 0 introduce the family of compacts by means of

Us(Ko) = {K € K: Ko C K C K{}.

Lemma 3.1 The value £(X,Y; M) is equal to the supremum L of all positive § such
that, for a certain compact Ko € M and any Ky, Ky belonging to Us(Ky,) N M,

T () — Ty (15)| > 6.
PROOF. Let L < 4, and let K € M be specified. Then
Tx (K1) = Ty (Ka)| <6

for some K, K5 from Us(Ky) N M. Hence

Tx(K) < Tx(K,) < Ty (Ky) + 6 < Ty (K°) + 6.
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Similarly,
Ty(K) < Tx(K

’) +
Thus, £(X,Y; M) < 6, so that £(X,Y; M) < L
Let £(X,Y; M) < d. For sufficiently small ¢ > 0 there exists a compact K, such
that
Tx(Ko) > Ty (K) ) +6 —¢

or
Ty(Ko) 2 Tx(Kgig) + d—e.
Then, for each K from Us_.(K),
Tx(K) > Tx(Ko) > Ty(K; ) +6—e>Ty(K)+0 —¢
or

Hence L < &z and, therefore, L < LX,Y; M), O

It is well-known that the Levy distance between distribution functions is equal
to the side of the maximal square inscribed between the graphs of the functions
in question. Lemma 3.1 generalized this property for the Levy distance between
capacities. The family Us(K,) plays the role of the side of the ”square” inscribed
between the graphs of capacities, see also Baddeley (1991).

Theorem 3.2 If L = £(X,Y; M), then
te(X,Y; M) > LMY infd O (B (x)). (3.6)

zeR

PRrROOF. If § < L, then Lemma 3.1 yields
‘TX TY(K(S)‘ >0
for a certain compact Ky € M. Hence
(X, Y M) > O(KQ)|Tx(K§) — Ty (K)|
> 60(KY).

It follows from (3.5) that

. : L
w(XVM) > L inf ®(K")

> L inf ®(Bg(x))
zeRY

= L' inf ®(Bi(z)). O
zeR?

Corollary 3.3 If the functional ® is shift-invariant, then

to (X, Y; M) > £(X,Y; M) ®(B,(0)). (3.7)
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From (2.2) and (3.7) we obtain the following inequality between ts and t:

t(X,Y; M) < ¢ +min (Q(g, X; M), Q(q,Y; M)), (3.8)
where
(e (XY M)\
q‘( 3(5,(0) ) 39)
and .
*yl:m. (3.10)

It follows from (2.8) that
(X, Y M) < g+ h((1+q)?), (3.11)
in case X is stationary and U-stable.
If the functional ® is decreasing and satisfies (3.5) with v < 0, then
te (X, V; M(Ky)) > LO(Ky)
for all K, € K.

The statement of Theorem 3.2 is valid for any class M such that K° belongs to
M for all § > 0 and K € M. However, this condition is too restrictive. Consider a
generalization of Theorem 3.2 for the shift-invariant functional .

Theorem 3.4 Let M C M, C K, and let K" € My for each K belonging to M,
r € [0,e] and a certain € > 0. Then

to(X,Y; M) > min (£(X,Y; M), 2)'T &(B,(0)).
PROOF. Let § < £(X,Y; M). Lemma 3.1 yields
T (K3) = Ty (K8)| > 6
in case 6 < ¢ or
Tx (KG) — Ty (KG§)| = 6
when § > =.
The definition of the metric tg yields

te (X, Y My) > ®(KJ)o
for § < ¢, since K € M;. Otherwise
to(X,Y; My) > O(Kj)d > O(Kj)e.
The proof can be finished similar to the proof of Theorem 3.2. O

Corollary 3.5 Let
M(a) ={B,(z): 7 > 0,z € R%, ||z|| = r > a}
for a certain positive a. Then, for each ay < a,
to(X,Y; M(ag)) > min {&(X,Y; M(a)),a — ag}' ™ &(B1(0)).
Note that M(ag) D M(a) when ay < a.



114 CHAPTER 7. PROBABILITY METRICS

7.4 Applications to Limit Theorems for Unions.

In this section previously obtained results are applied to the study of limit theorems
for unions of random closed sets. Let A;, As,... be iid copies of a certain random
closed set A, and let

Y, =n'*(A;U---UA,).

If Y,, converges weakly to a certain non-trivial random set X, then the limiting
random set is U-stable with index a.
For any F' C R? denote its "inverse” set by

F*={z)z| z € F}, (4.1)
see also Section 3.1.

Theorem 4.1 Let X be a U-stable random set with the negative index o, and let @ be
a homogeneous increasing functional, which satisfies (3.5) for v > —«. If the distance

te (A1, X; M) is finite, then

ta(Vo, X; M) < n'taeg(4y, X; M). (4.2)
If X is U-stable with index o > 0 and ve (A, X*; M) < 00, v > «, then

to(Vy, X; M) < n' ot (AL, X5 M). (4.3)

PROOF is similar to the proof of the corresponding result for random variables, see
Zolotarev (1986). Since X is U-stable,

X L np/e XU UX,),
for iid random sets Xi, ..., X, equivalent to X. It follows from (3.1), (3.2) that
ta(V, ;M) = e (n/(A U UA,), n/*(X U+ UX,); M)
< 0 Y (A X M)
k=1
= n'Farg(A, X; M),

Thus, (4.2) is valid.
It is easy to show that (cF)* = ¢~ 'F*. Hence

YV =n"YYArU- - UAY),

so that (4.3) immediately follows from (4.2). O

Note that Theorem 4.1 is valid for all classes M C I, such that eM = M for all
sufficiently large c.

If the class M is standard, then Theorem 4.1 and (3.8) yield

t(Yo, X5 M) < g+ Q(q, X; M), (4.4)
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where

_ ( Hzt@(Al,X;M))”“”)
= (B, (0))

The inequality (4.4) provides an estimate for the speed of convergence of capacity
functionals in the limit theorem for unions of random sets.

Naturally, the pointwise and even the uniform convergence of capacity functionals
on M follow from (4.4). In particular, let M = Mp, and let ®(K) = (u(K))"/?

Then W (K)
. X
t(YnaXaMK) S Q+h ( \I’)((K) > )

where

)

_ B e (A, X; Mg) Y
¢ = n b’Y/d
d
o+

i

by is the volume of the unit ball in R?.

Let us estimate the distance tg (A, X; M) in the scheme of Theorem 4.4.5.

Let Ay = M(§) be defined in Theorem 4.4.5. Here £ is a random vector in R™
having the positive regularly varying density f, and M:R”™ — K is a homogeneous
multifunction with values in the class K of compacts in R? such that M (su) = s"M (u)
for each s > 0, u € R™ and a certain n > 0.

Suppose that indf = o — m for some a < 0, and f(u) = ¢(u)L(u), where ¢ is
homogeneous and L is slowly varying. These conditions have been already used in
Theorem 4.4.5. In addition, suppose that

L(su) -1 as s = co.
The functional ®(K) from (3.4) is defined as
®(K) = (u(K))"",

where v > 0 and p is the Lebesgue measure.
Consider the U-stable random set X with the capacity functional

T(K)=1-exp{A(Lk)}, (4.5)

where
ML) = [ o(u)du, (4.6)
Lx = {ueR: M(u)nK #0}. (4.7)

Note that L is compact in case 0 ¢ K and the index of the U-stable random set
X is equal to a/n, since A(L,x) = 2*/"A(Lg).
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Theorem 4.2 Let = —a/n, and let § < v < 2(. Suppose that for K € K, 0 ¢ K

sup (L(us) — 1) = o(s"® ") as s — oo. (4.8)

ueL g
Then to (A, X; M) is finite. Moreover,
v (A1, X5 M) < p(K)(C 1/ B)ALk)" + w(Lk))
where

C(z) =supy “(y—1+e"),
y=>0

and
k(F) = sup s”‘ﬂfF b(u) (L(usl/") - 1) du‘.
5>0
PROOF. It is evident that
ta(A1, X;My) = sup {u(K)/*s"|P{¢ € Lox} — (1 — exp {~A(Lx)})]: s > 0}

= M(K)7/dsup{s7 s’ﬁ/ﬁ o(u) L(us'/")du
s> 0}

—1+exp{—tA(Lk)} ‘: t> 0}. (4.9)

(1 e (- AE0))

= M(K)V/dsup{t”’/ﬁ‘t/ﬁ o(u) L(ut*)du

In view of 0 < v < 23, we get

=18 <t /ﬁ o) L(t"*u)du — 1 + exp {—tA(ﬁx)})

~ t’WﬁtL(tl/ae)/ d(u)du — 0 as t — 0.
L

It follows from (4.8) that
18 (t /E Gu)L (" u)du — 1+ exp {—tA(LK)}>
~ 8 <t /ﬁK d(u) L(tY*u)du — tA(Lx) + O(t2)>
~ 10 <t /ﬁK o(u) (L(t"/*u) — 1) du + O(t2)> 50 as t — 0.

Thus, the distance tg (A1, X; M) is finite.
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It follows from (4.9) that
te(A, X;Mg) < M(K)”d<sup {777 RA(Lx) — 1+ exp {~A(Lx)}: t > 0}
+sup {77 [ () (L(#/2u) = 1) dul: + > 0})
= p(K) (A(EK)W sup {y Py — 1+e7): y >0}

+ sup {y”’ﬁ‘fﬁK o(u) (L(yl/"u) - 1) du‘: y > O})

= wE) " (COIBHMLR) + K(Lk)). O

NotTE. If
|L(us) — 1] < min (1,6 (u)s™")

for A < 3 —~, then

() = AT ([ gwoman)

Lk

We can apply Theorem 4.1 to the metric te(A;, X; My) and obtain an estimate
for ve(Y,, X; M), which, in fact, represents the speed of convergence with respect
to this metric. Nevertheless, these estimates cannot be reformulated in terms of the
uniform metric t(Y,, X; M), since Theorem 3.2 is no longer applicable to the class
M.

Recall that in Theorem 3.2 we assumed that K° € M for each K € M and § > 0.
Thus, we have to consider, e.g., the distance tg (A1, X; My), where M, is the class of
all balls. However, for this class M, the distance tgp(A;, X; M,) is infinite, since the
origin is a fixed point of the random set X. To obtain essential estimates in this case
we make use of Theorem 3.4 and Corollary 3.5.

Let us estimate the distance te for the class Mg(a, R) defined as
Mo(a, R) = {B.(x): r > 0,2 € R, ||z]| - r > a, Bx(z) € Br(0)}

for some R > a > 0. Unfortunately, the metric to(A1, X; My(a, R)) is no longer
homogeneous, since cMg(a, R) # My(a, R) for an arbitrary c.

To overcome this difficulty note that in Theorem 4.1 we did not use the full strength
of the homogeneous property (3.3). It is sufficient to ensure

m(cX,cY) <m(X,Y) (4.10)

for all sufficiently small ¢. Then the metric m is said to be semi-homogeneous.
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It is easy to show that the metric ve(A;, X; M) is semi-homogeneous if, for a

certain ¢y > 0,
cM C M forall ¢ > . (4.11)

Introduce the class M(a, R) by
M(a,R) = {cK: K € My(a,R),c>1}. (4.12)

Then eM(a, R) € M(a,R) for all ¢ > 1, whence the corresponding metric tg is
semi-homogeneous. Evidently,

te (A1, X; M(a, R)) = sup {te(A, X; Mg): K € M(a,R)}.

Theorem 4.2 yields
te (A, X; M(a, R)) <

< sup {mBr(x)W [COIBME )" + KL, )]

r> 0,2 €RY B, ()N B,(0) =0, B,(x) C BR(O)}

~ sup {rvbz/d [COBIM L, )" + (L)
0<r<(R—a)/2,a+r <z SR—T}
= bg/d sup {C(’Y/ﬁ)A(EBl(I/r))’Y/B + K:(EBI(QT/T)):
0<r<(R—a)/2,a+r < || gR—r}
< 5" sup { COIDMEL ) 17+ KL 0):
0<r < (R-a)/2a/r+1< ull},
where by is the volume of the unit ball in R?. Finally,

to(Ar, X; M(a, R)) <
2a
< 03/ sup {COIDAL, )" + KLy 0] 2 1+ 5},

Consider the particular case M(u) = {u}, i.e. M(u) is a single-point-valued
function (see Theorem 4.4.1). Then

Lp,w) = Bi(v),
and # = —a. Suppose also that
| L(urs) — 1] < |L(uzs) — 1|



7.4. APPLICATIONS TO LIMIT THEOREMS FOR UNIONS. 119

if [Jus || > [lua]l. Then
te(A1, X; M(a, R)) < b/ sup {C(7/B)A(Bi(qw))""? + k(Bi(qu)): [[w]| =1},

where ¢ = 1+ 2a/(R — a). If the distribution of £ is spherically symmetric, then, for
a certain e € S%!

(A1, X5 M(a, B) < 57 (COv/B)A(B1(ge))"? + w(B1 (ge)).
If, additionally, L(u) = 1 whenever u ¢ B,_;(0) and n = 1, then
ta(A1, X; M(a, R)) < b}/ {C(—v/a) A(Bi(ge)) 7"} (4.13)

EXAMPLE 4.3 Let & have Cauchy distribution in R'. Then a = —1, ¢(u) = 7u 2
and L(u) = u?/(1 + u?) for u # 0. Hence

q+1

A(Bi(q)) = /,, ru tdu=m((g-1)"~(g+1)"),

-1

and

B = o

q+1

< msupmin <s7 / Tu”%du, 87_3/
q—1

5>0 q—1

q+1 (v+1)/2 q+1 (v—1)/2
= T (/ U 2du> </ 7ru4du>
q—1 q—1

< 73(1—7)/2((] — 1)~

= 3002 <R - “)27_1
2a '

7Tu_4du>

Thus

to(Ar, X; M(a, R)) < 727 [C(—y/a) <R2; “) + 3072 (%)QH] .

In view of (4.13), Theorem 4.1 allows to estimate the distance tg(Y,, X; M(a, R)).
It follows from Theorem 3.4 that, for any ag > a and Ry < R,

to (Y, X; M(a, R)) > min (£(Y,,, X; M(ag, Ro)), €)' ®(B,(0)),

where ¢ = min(ag — a, R — Ry).
Thus, for sufficiently large n such that

te (Y, X; M(a, R)) < e'7bg, (4.14)

we get
te(Vy, X; M(a, R)) > £(Ys, X; M(ao, Ro)) " ba.
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Hence, for sufficiently large n satisfying (4.14),

A1, X3 M(a, R)))” )

E(YH,X;M(CL(),R())) S (TlHJY/ﬂtq)( b
d

Finally, Theorem 2.1 allows to estimate the distance v(Y;, X; M(aq, Ro))-

The estimate of t4 (A, X; M(a, R)) can be refined in the following way. Note that
M(a, R) does not consist of the whole classes Mk for K belonging to My(a, R), but
only compacts cK for ¢ > 1 and K belonging to My(a, R) (cf. (4.12)). Denote

w={cK: ¢c>1}.

Similarly to Theorem 4.2, we get
ta (A, Xs My) < p(K) (A(EK)W sup {y Py — 1+ €7): 0 <y < A(Lk)}
+sup {y7 |z, S(u) (L") — 1) dul: y > 1})
In particular,
WA XMy, ) < 0 (M) s {u P 1
OSySAwmmﬁ
o (7, 000 (00 - ) 1))

Yoo
= bg/d<0 (B, r 5A(£B1(m/r))> A(‘CBI(I/T))V/B

(LB, (a/r); 7”)) ,
where
C(x;2) = sup{y_’”(y —1+4+e):0<y< z}

and
k(Lg;r) = sup {y“’_ﬁ‘fﬁK B(u) (L(yl/"u) - 1) du‘: y > 7“} :

Finally, estimate the distance to(A;, X; M(a, R)) by

te (A1, X5 M(a, R)) =
= sup {re (A4, X; MY%): K € My(a, R)}

< bg/d sup { {C' (%, T_BA(EBI(I/T)> A(EBI(‘”/’"))WM

R—a a
bilomin) ) 0 < r< Tone <o,
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Unfortunately, this estimate tends to infinity as R — oo or a | 0.
In particular, let M (£) = {£} be an isotropic random set (singleton), and let L(u)

be equal to 1 outside B,(0). Then
ta( A1, X5 M(a, ) < 0/ "C(3/5; 50) A(Ba(ge) /%,

where e is a certain unit vector,

and
R—a}
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Chapter 8

Applications of Limit Theorems

8.1 Simulation of Stable Random Sets.

Many difficulties in the theory of random sets and in statistics of random sets are
caused by the shortage of models or distributions of random sets. A good model of
random sets should be easy to simulate and have a wide spectrum of possible shapes
of realizations. It is desirable to have an explicit formula for its distribution (e.g., for
its capacity functional), which could be computed without serious difficulties.

In fact, until now only one such a model of random sets is known. It is the well-
known Boolean model of random sets, see Matheron (1975), Serra (1982). The Boolean
model is applicable in many branches of natural science, see Stoyan et al. (1987) and
references therein.

The Boolean model A is defined by

A= | (z;+ AY), (1.1)
z; €1Ip

where TT, is the Poisson point process in R? with the intensity measure A, the A} |
1 > 1, form a sequence of iid random sets. These sets are assumed to be copies of a
certain random closed set Ag called the “typical” grain of the Boolean model A.

The simulation of a Boolean model within a set W falls into the following stages.
First, the number of points is determined by simulating a Poisson random variable N
with parameter A(W;). The set W, is the enlarged window defined as W, = W@ Bg(0)
for sufficiently large R. (If Ag is bounded a.s., then it is advisable to put R > || 4o||.)
Then N independent random points in Wy with the distribution A(dz)/A(W;) and N
iid copies of Ay are to be simulated. Finally, A is constructed by (1.1). The "typical”
grain A is supposed to have a simple distribution. In many applications the grain is
chosen to be a disc, polygon or ellipse of random size and/or orientation etc. Even
Boolean models with deterministic grains are sometimes considered.

The capacity functional of the Boolean model A is equal to

T(K)=1-exp {~-EA(4 ® K)}, (1.2)

see also Example 3.2.2.
A generalization of Robbins formula for expected volumes of random sets (see
Robbins, 1944, Matheron 1975) yields

T(K)=1— exp {— /Rd T (K + x)A(dx)} , (1.3)

123
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where T'4,(K) is the capacity functional of Ag. Note that (1.3) may be obtained very
simple from the Fubini theorem.

Although the Boolean model is a convenient model and is applied to many practical
problems, new models of random sets are most appreciated to be derived. There is a
special need of models of random compact sets, since they can be used as models for
the typical grain Ay of a certain Boolean model. In this connection U-stable and C-
stable random sets may serve as relevant models of random closed sets. It follows from
limit theorems for unions that U-stable sets can be simulated with given accuracy by
means of an appropriate sequence of iid random sets. Besides, capacity functionals
of stable random sets are expressed by explicit formulae, see Chapter 4. Below we
mention several examples confirming that U-stable sets may be of various shapes.

It should be noted that sometimes the Boolean model is U-stable. For example,
this is true in case A is a homogeneous measure and Ay is a single-point random set
(random point). Then A coincides with the Poisson point process II,, see Exam-
ples 3.2.1 and 3.2.2.

In general, U-stable sets can be simulated by means of a certain sequence Ay, Ao, ...
of iid random closed sets and scale transformation of their union, that is we put

X,=a, (A U---UA,) (1.4)

for suitable constants a,, n > 1. In practice, the random sets A;, As, ... (Summands)
are supposed to have a simple distribution. Since, in fact, we can simulate random
variables and random vectors only, the scheme of Theorem 4.4.5 is applicable. Then A,
is supposed to be equal to M (), where ¢ is a random vector in R™, and M: R™ — K
is a multivalued homogeneous function with compact values in R?. Below we consider
random closed sets in R? only (i.e. d = 2).

In the simplest case M is a single-point-valued function, i.e. M(£) = {£}. Here £
is assumed to have the probability density

C(m, )
flx) = —F"—, d=m =2, (1.5)
1L [Ja|m=e
for a suitable constant C'(m, «). In fact,
C(m,a)=T (%) (m — a)m ™/ (M= gin <mm_7ra> , (1.6)

since the integral of f(z) is to be equal to 1. Evidently, the density f is spherically
symmetric. It is also regularly varying with indf = a — m.
By (4.4.13), the norming constants are to be equal to

a, = (C(2,a)n) 1.

Furthermore, the limiting random set X has the capacity functional T given by

T(K) =1 — exp {— /K ||u||°‘2du} . (1.7)

Figure 1 presents simulation results of the set X, from (1.4) for « = —2 and
several values of n (n = 100, 1000, 10000).
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Figure 1

It should be noted that all sets on Figure 1 consist of points only. They are
countable and non-fractal. Since f is rotation invariant, random sets on Figure 1 are
isotropic.

An example of a non-isotropic U-stable set can be constructed similarly by taking

C
) = T Gl el

Such a random set can be simulated either directly or by means of the transformation
x — x¢(z/||z]|) applied to the isotropic random sets from Figure 1.

Assume that m = 6 and M (&) = M(&,...,&) is a random triangle having the
vertices (&1,&2), (&,&) and (&5,&). In this case M is homogeneous of degree n = 1.
Put a, = n~"/*, where

C(m,a)

flu) = ————— u € R",m =6. (1.8)
L+ [Juffm=e
is the density of & = (&1, ...,&). Then the capacity functional of the limiting random

sett X in the union scheme is equal to

T(K) =1 exp {—0(6, a)/ﬁ

Simulation results are presented in Figure 2 for the parameters & = —1 and a = —3.
The number n is equal to 200.

Furthermore, we can consider the Boolean model whose typical grain Ay coincides
(in distribution) with a certain U-stable random set X, say presented on Figure 2.

||u||°‘_6du} 0K, (1.9)

K
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Figure 2

A sample of such a Boolean model simulated by the stationary Poisson point
process with intensity A = 0.0055 is given in Figure 3 within the unit 60 x 55 for
«a = —3. Here each copy of X is produced by an appropriate scale transformation of
the union of n = 100 triangles.

Note that the Boolean model A has the capacity functional

T(K)=1— exp {—)\ /Rd (1 —exp {—0(6, Q) /CM ¢(u)du}> dx} . (1.10)

where the function ¢ is given by

$(u) = [Juf™".

Figure 3

Let M(&) = M(&,&,&3) be the ball of radius &3 centered at (£, &2), and let £ have
the density
C(m, a)
flu) =2———"—,
1+ [ufm=e
for u = (uy,us,u3), us > 0. In this case the radius and the center of the ball are
dependent and their common distribution is spherically symmetric.

m=3,d=2, (1.11)
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Figure 4 shows two samples of the set
X,=a ' (A U---UA,),

where Aj,..., A, are iid copies of M(£), a, = (2C(m,a)n) "/* and a = —3. The
number of "summands” n is equal to 100 and 1000 respectively.

Figure 4

It should be noted that the accuracy of simulation can be estimated by means
of the probability metrics method, see Chapter 7. This technique may be used to
estimate the uniform or Levy distances between the capacity functional of X,, and
the limiting random set X, see Section 7.4.

Convex-stable sets are simulated similarly as convex hulls of union-stable random
closed sets. The corresponding pictures can be obtained by taking convex hulls of
sets shown on Figures 1,2 and 4. It was proven in Davis, Mulrow and Resnick (1987)
that the convex hull for the setting of Figure 1 has almost surely a finite number of
vertices.

Our models of union-stable and convex-stable random sets are likely useful for
modeling and description of objects in many practical examples.

EXAMPLE 1.1 Assume that a random vector & represents the location of a star in a
star-cluster. Then the star-cluster itself is the union of stars (or their convex hull).
After scale transformation we obtain a U-stable (respectively C-stable) random closed
set. Such sets are depicted in Figure 1 for £ having the density (1.5) and several values
of n.

EXAMPLE 1.2 Suppose a certain disease has appeared in circular elementary regions
Ay, Ay ... on a map. The origin stands for the primary center of the disease prop-
agation. Then scaled unions of these elementary regions tend to a U-stable random
set. Of course, their scaled convex hull is C-stable. It might be appropriate to assume
that the convex hull describes the region to be placed in quarantine. We can apply
Theorem 4.4.8 with m = 3, d = 2 and M = B;(0). Hence the weak limit for unions
with suitable norming factors a,, is a U-stable set X with the capacity functional given
by

T(K)=1—exp {—/OOO dy /Ky o (u; y)du}, (1.12)
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where KY = K @ B,(0) C R? and f = ¢L is the representation (1.6.8) of the regularly
varying density of the random vector (&1, &, &3). Here an elementary region is defined
as Ay = (&1,&) + &M. For f defined in (1.11) we get

Busy) = Blur s y) = (Jlull” +47) "

and a, = (2nC(m,a))~"/* see (1.6). The corresponding examples of simulated sets
are shown in Figure 4. The scaled convex hull a,'Z, of these elementary regions
Ay, Ay, ... converges weakly to the random C-stable set Z with the inclusion functional

) e {= [Ty [ stunan}, (119

where F7¥ = F © B,(0). The support function of the Aumann expectation of Z is
equal to

v

sw2(0) =D =) [y [ dy [, o(wiy) (w-0)+) " du| ', vest (114)

where v = —1/a, S} = {u € S (u-v) >0} and d = 2.

Similarly, original sets A, Ay, ... (summands) can be used to describe polluted
regions (e.g., oil spots in the sea). Then their scaled union is union-stable, so that
U-stable random sets may be of use for the simulation pollution propagation. In this
case the origin stands for the primary source of pollution.

ExXAMPLE 1.3 Let A; = [0,&] be the segment with one end-point in the origin and
the other one in the random point ¢ in R%. This set may represent the direction and
the strength of the wind at a fixed place. Then X, = a,'(A; U---A,) represents
the extremal rose of directions of the wind (compare with the Minkowski sum of
Ay, Ag, ..., Ay, which is the usual rose of directions).

In order to find the capacity functional of the corresponding weak limit of X,, we
can apply Theorem 4.4.5 to the multivalued function M (u) = [0, u]. Then

Lrx = {u: M(u)nK # 0}
= {er:zeK,c>1} =K.

If £ admits a regularly varying density f = ¢L, then X,, converges weakly to the
random closed set X with the capacity functional

T(K) =1 — exp {— /K ¢(u)du} K e K.

A sample of such a set is obtained from the sets given in Figure 1 after joining all
points with the origin. The expected convex hull of scaled unions describes the rose
of extremal directions too. Its support function is given by (4.4.8). For £ having the
density (1.5) we get

-1/

1
sz (v) = T(1+ 1/0) {_E /S+ ]| 4w, v)du| v estLd=2.
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Stable random sets with positive indices come from the scheme of Theorem 4.4.11.
Consider the following example, which may be of use, say for the study of corrosion
propagation.

EXAMPLE 1.4 Let C be a cone in R?, and let us suppose that random points &;, &, . . .
describe defects in this cone. Then the random convex set Z,, = conv{¢i,...,&,} may
be interpreted as the destroyed region. Its limit distribution is defined by (4.4.23).
For example, take d = 2 and C = {(uy, u3): uy,us > 0}. Then

(F) = e {—— [ 3@},
where

¢(B8) = ¢(cos 3,sin ),
p(B) = inf{x >0: (xcosf,zsinf) € F}.

Thus, the expectation of the limiting random set Z is given by means of the
corresponding mean support function

Esz(—v) = —T <1 + é) (_é /0”/2 5(6) cos( - f@)dﬁ) ~1/a

for v = (cosk,sink) and 0 < k < 7/2. For other v the left-hand side is infinite. If
#(B) = ¢, 0 < B < m/2 (the angle distribution of & is uniform within C), then

—1/a

Esz(—v) =-T(1+1/a) (—cofl(cosm + sin H))

8.2 Estimation of Tail Probabilities for Volumes
of Random Samples.

The limit behavior of functionals of convex hulls of random samples is an important
subject of stochastic geometry (see Schneider, 1988). Limit theorems for convex hulls
of random sets imply weak convergence of any continuous and bounded functional
of normalized convex hulls to its value on the limiting C-stable random closed set.
The simplest functional is the volume of a convex set. The unboundedness of this
functional is overcome by considering truncated random sets, i.e. intersections of
scaled convex hulls with a certain non-random ball. Below we deal with volumes of
random samples and their convex hulls.

Following Vitale (1988), consider the similar problem for Gaussian random sam-
ples. It was proven in Vitale (1988) that

Ept/Y(X) < p!(EX) (2.1)

for any random set X with E||X|| < co. Here ||X|| = sup{|jul:u € X}, EX is the
Aumann expectation of X (see Chapter 2), and s is the Lebesgue measure in R?.
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Suppose that &,...,&, are iid random points in R¢ each having standard Gaussian
distribution and X, is their convex hull. Then the expectation EX,, is equal to a,B,
where B is the unit ball and a,, is the expected value of the maximum of n standard
Gaussian variables in R'. Then, for each z > 0,

P{uX)>z} = P {Ml/d(Xn) > xl/d}

x*l/dElul/d(Xn)

<
< an(bd/x)l/d, (2.2)

where by = p(B) is the volume of the unit ball.

We derive the similar inequality for general random samples, provided the condi-
tions of limit theorems for convex hulls are satisfied. Let Aq,..., A, be iid copies of
a certain random closed set A. Suppose that their convex hull

a,'Z, = a, 'conv(A,U---UA,)

converges weakly to a certain C-stable random set Z with parameter a. The reader
is referred to the notations introduced in Chapter 4.

Theorem 2.1 Let EZ be compact. Then for any R,c > 0 and sufficiently large n

wEZ) +e

P {pu(conv(A; U---UA,) Na,Br(0)) >z} <a, ;

1/d
] L >0 (2.3)

PROOF. It follows from (2.1) that for any R > 0
Ep'/* (a,'Zn 0 Br(0)) < uM* (E |a,' Z, 0 Br(0)]). (2.4)

The functional F' — u(F N Bg(0)) is bounded and continuous for convex F' in
the Hausdorff metric. Theorem 1.4.6 yields

1 (E [a;lZn N BR(O)]) — pu(E[Z N Bg(0)]) as. as n — oo.

Then, by (2.4) and Markov’s inequality, we get
P {u(conv(4;U---UA,) Na,Bgr(0
=P {,u (a;lZn N Bg(0

) > xt =
)1/d > anlxl/d}

- Eup'/4(a;' Z, N Br(0))

)
)

—1,.1/d
a;txl/

1 (E(a;tZ, N BR(O))] 1/

It follows from (2.3) that

EZ 1/d
u] 1> 0, (2.5)

P {}(a,'Z, N BR(0)) > z} < .
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for all sufficiently large n.

The expectation EZ was computed in Section 4.4 for several special examples of
random sets Ay, A, .... It is determined by the corresponding support function sg.
If d = 2, then the volume u(EZ) is evaluated by

p®2)=1/2 [ (5 ~ ' (9)?) . (2.6

see Santal6 (1976). Here p() = sgz(cos 3,sin ), 0 < 3 < 27, is the support function

of EZ. For general d
1
WEZ) < W/S‘“l sz (u)du, (2.7)

see Uryson (1924).

Now consider convex hulls of random points. In this case A, = {£} is a single-
point-random set. Then (2.3) and (2.5) estimate the tail probabilities of distribution

of /L(COHV{fI, s 7577,})
Suppose that the conditions of Theorems 4.4.1 and 4.4.3 are valid. Then the

normalized random sample
a, 'conv{&l, ..., &}

converges weakly to the C-stable random set Z with the inclusion functional

t(F) = exp {— /FC qb(u)du} , FeC, (2.8)

The expectation of Z is determined by

y
spz(v) =T(1 — ) [fy /51jr d(u)(w - v)”%lu] , v e S (2.9)
where v = —1/a, a < =1, S = {u € S (u-v) > 0} and (a — d) is the index of
the regularly varying density f of &. Suppose that f(tu) ~ ¢(tu) as t — oo. Then
a, =n”. Thus

lim P {4 (n"Z, N Br(0)) >z} <

n—o0

EZ 1/d
u] 2> 0. (2.10)
X

Let ¢ be circular symmetric, i.e. ¢(u) = C for all u € S Then EZ = B,(0),
where

o
r=T(1-7) [7C/+(u : U)I/Vdu] : (2.11)
Sy
It follows from (2.10) that
_ . 1d —1/d
lim P {u (n Zn N BR(O)) > x} < b/ “ra= x> 0. (2.12)

For planar samples (d = 2) we get

™

lim P {u (n_“’Zn N BR(O)) > x} < <—>1/2 T

n— 00 x
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and

w/2 v
r=T(1—7) [yo/ / (cosﬁ)l/mﬁl .
—7/2
For example, if & = —2, then r = 7C"/2/2.

The above estimators for tail probabilities for volumes of random samples are
useful in constructing statistical tests for C-stable random sets.

It was explained in Example 1.1 that C-stable sets may describe distributions of
normalized convex hulls of star-clusters, provided the location of a star has regularly
varying density f. Now we can check also whether or not a collection of stars forms
one or several clusters, provided the density f is known. It can be done as follows.
For simplicity suppose that f(zu) ~ ¢(zu) as x — oo and u € R? \ {0}. Here ¢ is a
homogeneous function.

First, evaluate the expectation of the limiting C-stable random set Z by Theo-
rem 4.4.3 and its volume p(EZ) (e.g., by (2.6) or (2.7)). Then compute

= (M%RZU " (2.13)

where V,, is the volume of the convex hull Z,, of the collection of n random locations
of stars (or random points). If ¢ is small, then the collection of stars unlikely forms a
unique cluster.

The values of ¢ were computed for random samples in R? having the density f
given by (1.5) with o = —2. In this case ¢ = (u(EZ)/nV,)"/?, and EZ is the ball B,.(0)
with 7 = 271/4. Tt has been done for 100 independent samples of sets a. '{&, ..., &}
each having n points. The empirical counterparts i,(n) of quantiles z, of ¢ defined
by P {( < z,} = ¢ are presented in Table 1.

Table 1: Empirical quantiles #,(n) and expected values of ¢ evaluated by 100 inde-
pendent samples, each having n points.

T10.01]0025]005] 01|02 03] 09 |EZ

100 0.88| 0.94 | 1.02 |1.05|1.20| 1.33 | 2.06 | 1.55

1000 0.80 | 0.85 | 0.91 | 0.98 | 1.22 | 1.28 | 2.12 | 1.52

10000 | 098 | 1.05 | 1.16 | 1.28 | 1.38 | 1.51 | 2.29 | 1.71

Now consider unions of random closed sets with positive volumes. In this case the
expected value of the volume of the limiting random set are to be computed.

Let X, = AjU---UA,, and let X be the limiting random set of a; ' X,, for suitable
constants a,, n > 1. Suppose that the conditions of Theorem 4.4.5 are valid. Robbins
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formula (see, e.g., Matheron, 1975) yields

Eu(X) = /Rd P {r € X}dx.
From (4.4.14) we get

Eu(X) = [0, T({a})ds

- oo f o]

where £, = {u € R":x € M(u)}. Recall that M: R™ — K is a multivalued function
whose values are closed compacts in R?. Suppose that nd/a > —1, i.e. o < —nd. If
x = ye for some y > 0 and e € S4!, then £, = y'/"L,. Hence

Eu(X) = /Sd—l f1g—1(de) /Ooo <1 — exp {—y“/” /c ¢(U)dU}> y'~dy
_ T (%l + 1) Jo s [ / E¢(u)du} T e (de), (2.14)

where p4_; is the uniform measure on S%1.
If £ from Theorem 4.4.5 have a circular symmetric distribution, then

2m42T (nd /o + 1) —nd/a
BuX) = —rwm) Ugeqb(“)d“} '

Note that Ex(X) does not depend on e belonging to S4-1.
For v € R™ denote

¢1(e,v) = inf{y>0: ye€ M(v)},
q2(e,v) = sup{y>0: ye€ M(v)}.

In case the set in question is empty we put ¢;(e,v) = 0 and go(e,v) = +o0o. Then

[ o= [, 9(0) [ale,0) " — ar(e, 0] ().
Finally, for any positive b, R, e and sufficiently large n, we get
P{p((AyU---UA,) Na,Bgr(0)) > b} =

—P {u (a;an N BR(O))W > a;db}

_ Bp(az' X, 1 Ba(0))
- a, b

wEZ) +¢
- a
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8.3 Convergence of Random Sets Generated by
Graphs of Random Functions.

In this section we apply limit theorems for random sets to unions of hypographs of
random upper semi-continuous functions. It should be noted that limit theorems
for unions of hypographs imply similar limit theorems for maximums of random
functions. Related results for extremes of random processes can be found in Nor-
berg (1986b,1987).

A real-valued function ¢g: E — R on a locally compact Hausdorff separable linear
space E is said to be upper semi-continuous if limsup, ., g(z) < g(a) for all a € E.
(In the following E is considered to be the Euclidean space R?.) Tt can be shown that
g is upper semi-continuous if and only if its hypograph

hypog = {(z,t): t < g(x),x € E,t € R} (3.1)

is closed in £ x R furnished with the product-topology.

If £ is a random function with almost surely upper semi-continuous realizations,
then hypo¢ is a random closed subset of £ x R. Thus, basic concepts of random sets
theory can be reformulated for random functions. Following Molchanov (1993a), we
say that ¢, hypo-converges to ( if hypo(, converges weakly to hypo( as random closed
sets, cf. Salinetti and Wets (1986), Attouch and Wets (1990), where this idea was
introduced and discussed for epigraphs of random lower semi-continuous functions.

Let &1, &, ... be iid copies of a certain upper semi-continuous random function &.
In the hypographical language pointwise maxima of functions turn into unions of their
hypographs. Namely,

hypo (max(&,...,&,)) = U hypoé&;. (3.2)
i=1

To proceed further we normalize unions of hypographs or maxima of random pro-
cesses. In previous chapters we use only scale transformation. However, hypographs
of random functions are subsets of the Cartesian product F x R. Hence scale factors
for parameters and values are naturally allowed to be different from each other. Define

Co(u) = ¢ max (& (bpu), . .., En(byu)) (3.3)

for certain positive constants ¢, and b,. Thus
n
Zn = hypo(,(z) = a;l o U hypoé&;, (3.4)
i=1

where a, = (b,,c,) € R2 = C and
a,;'oF = {(b;lxl,crjlxg): (w1, x9) € F}, F C E xR, (3.5)

cf. Section 4.5. Thus, (, hypo-converges to a certain random function ( if the random
closed set A = hypo¢ satisfies the conditions of Theorem 4.5.1. It means that the
function

x(7) =Ta(zo K)=P{ANzo K #£0},2 = (21, 2,)
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is regularly varying on C for each K such that liminf, ,o, T'(z o K) = 0.
Besides,
¢n(K) =sup {t > 0: 7x(ta,) > 1/n} (3.6)

should have a limit (maybe infinite).

General results on the weak convergence of random closed sets are presented in
Norberg (1984), Salinetti and Wets (1986) (see also Section 1.4 for a brief discussion).
It is known that pointwise convergence of capacity functionals on the class Ky, of
all finite unions of parallelepipeds implies the weak convergence of the corresponding
random closed sets. The class KC,,, consists of compacts of the form

K= LnJKZ X [Ci,di], (37)

=1

where K;, 1 < ¢ < m, are compact subsets of £. We can safely suppose that
Ky,...,K,, are convex and their intersections are pair-wise disjoint. Since hypo&
consists of entire vertical half-lines, we may put d; = co.

Now we check conditions of Theorem 4.5.1 for such a compact K and a special
example of random function . Put

E(u) = mag(u—m), ueRY, (3.8)

where g: R — [0, 00) is a bounded continuous non-random function, 7, is a random
vector in R?, and 7, is a positive random variable independent with 7;. Suppose
that 7, and 7y have regularly varying densities f; and f; admitting representations
fi = ¢;L;, i = 1,2. Moreover, let indf; = a3 — d and indf; = ay — 1 for a certain
negative constants a; and ay.

We assume also that the origin is the maximum point of g, that is

g(0) = sup {g(u): u € Rd} = g,

and
g(r)= sup g(u) =o(r") as r — oo (3.9)
ug By (0)
for a certain v < 0.
Let us consider a compact set of the form K = K; x [¢,00), 0 ¢ K;, ¢ > 0, and
estimate the probability P {hypo NtK # (0} as ¢t — oco. This probability is equal to

P {hypof NtK # ()} =

=P { sup neg(u —m) > ct}

ueKit
o0
= /Rd filys dy1/0 f2(y2) yZSuPu€K1t9(u_yl)ZCtdy2

0
= 4! /]Rd fi(ty d?h/o Fo(tyo) Lym(tyn)>cdye
0

= ¢! /]Rd fi(tyr)dy / fa(tya)dy;

/r(ty1)

00 tc
=t /Rd fi(ty dyl/l f2 ( & >C’€(tay1)1dy2;
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where

K(t, ) = Sup g (v —=yi)t).

If y; € Ky, then k(t,y;) = go and

P {hypot NeK 0} > 0 [ fity)dy [ 1, (t—y2> dy,  (3.10)
9o K 1
== 11.

It follows from properties of regularly varying functions (see Section 1.6) that as
t— 00

C _ c «
Il ~ _td-l-ltal dLl(tel)/ ¢1(y1)dy1 (t—) teg / Y 2— 1dy2
9o K1 9o

1 c\™
= —— 1" L (tey) Ly(tes) (g_> ¢1(y1)dys
0

6%)

— Q) <_i> (;())m /K b1 (y1)dys (3.11)

for certain e; € R? \ {0} and ey € (0, 00).
Let us estimate the capacity functional of hypo¢ from above. Since 0 ¢ K, the set
K*® misses the origin for sufficiently small €. Then

P {hypof NtK # 0} < I, + I3,

where

c tc
I, = —td+1/ fl(tyl)dyl/ fa ( y2> dy»
Jo K: 1

~ @ () (L) [ ot (512

and

o0

I = td“/ ty,)d / tya)d
3 Rd\Kf f1(tyr)dy C/n(t’yl)ﬁ( Y2)dys

< td+1/ ty)d / tys)d
< Rd\Kf(yl) Y1 /()f2(y2) Y2

I c/g(et

=1 )tf1(y1)dy1/100f2<fy20> NC dyso

g(et)
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for e5 > 0. It follows from (3.9) that
Q1(t) = o(t*> 72 as t — o0

for each 6 > 0. If v < —ay/ag, then Q1(t) = o(Q(t)). Hence P {hypof NtK # 0} is
asymptotically less than

Q()(1+ X\y) /Ke o1 (y1)dyn,

where \; — 0 as t — oo.
Similarly, for K given in (3.7), we get

P {hypo{ NtK # (0} o 1\
Q) ~ ( a2> L

c{”/K é1(y1)dyr as t — oo

P i

= gy "A(K),

where A = ®; x ®, is the product of measures ®; and ®,. Here
¢1(K1) = /K ¢1(y)dy
is a measure on R¢, and

Da(le,00)) = [ () e

is a measure on [0, +00).
If K =K; X [¢,00), where 0 € IntK and ¢ > 0, then, for sufficiently small r, we
get

ct > feys
P {hypol NiK # 0} > % /Btr(o) fl(yl)dyl/l 2 <?> i

oo 1
~ <£> (——) 1% Ly(tey) as t — oo.
90 %

Similarly to the proof of Theorem 4.4.1 we can show that the conditions of Theo-
rem 4.5.1 are valid. Finally, put a,, = (b,, ¢,), where b, = k¢, 0 < k < 0o, and

cn = sup {y: K%y + Ly (te)) Lo(tes) > 1/n}. (3.13)

Then a,'oZ, = a; ' ohypo(, converges weakly to the U-stable random set Z with
the capacity functional given by

. {1—exp{—go_a2/\(-f()} , KN(FRUR) =10 : (3.14)

T(K) = .
1 , otherwise

where F} = {0} x [0,00), F, = R? x {0} and the measure A is defined by

A(K) = /Kqﬁl(yl)yé”’ldyldyz, K c R? x [0, 00). (3.15)
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Thus, the random process

Co(u) = ¢, max (& (bpu), . .., En(bpu))

hypo-converges to the random process ¢ such that hypo( = Z. The random set
Z is constructed in the following way. Take points of the Poisson point process in
R? x R, with the intensity measure A, and attach to each point vertical half-line
unbounded from below. Then Z is the union of these half-lines, c¢f. Norberg (1987),
Lyashenko (1986).

Now outline the principal result for another normalization scheme. Put b, =1 in
(3.3), that is

Cu(u) = ¢, max (&i(w), ..., &a(u)).

Consider ¢ defined in (3.8) and suppose that (3.9) is valid. Now 7, is not assumed
to have regularly varying density. Put

e = sup {y > 0 Y Lo(tes) > 1/n}, n > 1.

Then ¢, hypo-converges to ¢, such that hypo( has the capacity functional T given by

T(K) =

- {1—exp{—goa2/\(k)} , KNk =10 (3.16)

1 , otherwise

where

AMK) = /K filyn)ys® tdyidys, K C R x [0, 00).

Note that the capacity functionals (3.14) and (3.16) do not depend on the shape
of g, provided (3.9) is valid with 7 < —ay/ay. Let us modify (3.8) a little to ensure
the dependence on the shape of g. Put

E(u) = mag(uny ' —m), ueR?, (3.17)

where (11, 72) is a random vector in R? x [0, 00) with positive regularly varying density
f (on the product-space R? x [0, 00)) such that f = ¢L, for homogeneous ¢ and slowly
varying L, and indf =a —d — 1, a < 0. Then

hypo§ = 1, G +

where G = hypog is a non-random set. The function g is supposed to be bounded
and have bounded support. Define the multivalued function M:R? x [0, 00) — K as

M(ula BRI ud-i—l) = ud-l-lG + (ula BRI Ud)-
Then M is homogeneous. From Theorem 4.4.5 we obtain that the random function

Co(u) = a; ' max (& (ayu), . . ., & (apu))
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(cf. (3.3)) hypo-converges to the random function ¢, such that hypo( has the capacity

functional
T(K) = l—exp{chd)(u)du} , OgéK‘ ’
1 , otherwise

where
L = {UERd+12 ud+1G+(u1,...,ud)ﬂK7é®}.

For example, if K = {(z,y)}, v € R? and y > 0, then

/EK d(u)du = /Ooo dv /_UG(y/UHx o(w,v)dw,

where G(a) = {w € R¢: g(w) > a}.

8.4 Convergence of Random Processes Generated
by Approximations of Convex Compact Sets.

Let F be a convex compact set in R? with the smooth (twice differentiable) boundary
OF, and let n(u) be the unit outer normal vector at the point u from OF. Furthermore,
let P be a probability measure on F' with continuous density f. Consider iid random
points &1,...,&,, distributed according to the probability law P. Suppose that f is
non-vanishing on IntF. Then convex hulls of random points =, = conv(&y,...,&,)
(random polyhedrons) approximate F' as n increases.

Various problems of approximation of compact sets by convex hulls of sample
points were considered in Schneider (1988), McClure and Vitale (1975), Groeneboom
(1988). The main subjects to study were limit theorems for the volume of =,,, distances
between F' and its polygonal approximation =,, the number of vertices and other
geometric functionals of =,,. Here we prove a limit theorem for the difference between
the support functions of =, and F.

Define sz, (u) and sp(u) to be the support functions of = and F' respectively,
u € S9! and let

m(v) = si(u) = s=,(u)
= min{sp(u) — (u-&): 1 <i<n}, ueS (4.1)

In this section we prove a limit theorem for the normalized function a,'n,(u).
Since this function is the minimum of n iid random functions, the epigraph of 7, is
the union of epigraphs of functions sp(u) — (u- &), 1 < i < n. Here (u-&;) is the
scalar multiplication in R?.

Recall that the epigraph of the function ¢ is defined as

epig = {(u, z): g(u) <},

cf. the definition of the hypograph in Section 8.3 Hence epin, C S ! x R', and

n
H, = epin, = U A,
i=1
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where Ay, ..., A, are iid random sets,
A; = {(u,x): u € S (u-&) > sp(u) — :1:} :
Consider the sequence of scaled random sets
a,'oH, = {(u, a,'r): (u,z) € Hn},

where a, — 0 as n — oo. In fact, the set a,! o H, is the epigraph of the random
function a;'n,(u), u € S4~L. Similarly to Section 8.3, a;'n, is said to epi-converge if
corresponding epigraphs converge weakly as random closed sets, see also Salinetti and
Wets (1986). The weak convergence of a;, ' o H,, follows from the pointwise convergence
of the corresponding capacity functionals on all compacts, which can be represented
as

m

i=1
Here K, ..., K,, are compact subsets of S*~!, z1,..., 2, > 0 and m > 1. We can
safely suppose that K, ..., K, are canonically closed (with respect to the induced

topology on the unit sphere S¢°1) and have disjoint interiors.
First, put K = K x [0, z] and estimate the capacity functional P {A1 Nto K # @}

as t — 0. Here K is a canonically closed subset of S* 1, and to K = K x [0, tz].
Introduce also the sets

M(K,z) ={v € F: inf{sp(u) — (u-v): ue K} <z}
and

N(K) = {v€dF: sp(u)=(v-u) for a certain u € K}
= {veodF: n(v)e K}.
Then

P{A,ntoK +#0} =P (M(K,at) = /M(Km) F(u)du

Furthermore, introduce a set N(K,z) by
N(K,z) ={v—yn(v): v € N(K),0 <y <z}.
Then, for all £ > 0 and sufficiently small ,
N(K,zt) C M(K,xt) C M(K®, xt), (4.3)

where K¢ = {v € S"1: B.(v) N K # 0}.
It can be shown that for a certain constant C' and every sufficiently small positive
t

aeny F ) = [yt (dv) J§* F(o = ya(v))dy| < C sup  flu)(at)?, (4.4)

u€EN(K,xt)

where j14 1 is the (d — 1)-dimensional Lebesgue measure on OF.
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Furthermore,
xt
/()wlww/'fw—ymwMyz (4.5)
= [ Mldv/ [F0) = (£ () - 8(0))y + (v, wt)y?] dy

G :
5 S 0) D)1 () + ()

iy [OF of
o= (g2,
Suppose that f(v) # 0 for at least one point v from F. Then

pa—r ({v € OF: f(v) #0}) >0
From (4.4), (4.5) we get

—xt/ V) g1 (dv) —

as t — 0, where

t_l/ f(u)du — :17/ f(v)pg—1(dv) as t — 0.
N(K,at) N(K)
It follows from (4.3) that

:U/N(K) f()pg—1(dv) <limt~ 1/]V[(K’mt)f(u)du < x/ f(0)pa—1(dv).

t—0 N(K¢?)

Similar inequality is valid for K given in (4.2):
sz/ o V) g1 (dv) < g%t’lP {Aﬂ tof(%(b}
< sz/ o T ().

Thus, for a,, = n~!, the random closed set a, ' o H,, converges weakly to the random
sett H having the capacity functional

T(K)=1-— exp{—/s(K)f(v)dvdy} K C S* 1 x [0, +o0), (4.6)

where

S(K) :( L_)J {(v,2): ve N{u}),0<z2<y} C (OF) x [0,00). (4.7)

Respectively, nn, epi-converges to the lower semi-continuous random process 7
such that epin = H.

Consider now an important particular case. Let &,...,&, have the uniform dis-
tribution on F. Then the limiting capacity functional is given by

T(K) = 1 — exp{—pu(S(K))/pa(F)},
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where 1 = pg_1 X pq and gy is the Lebesgue measure on the line.

Now suppose that f(v) = 0 for all v from OF, and f is continuously differentiable
in a certain neighborhood of 0F. Then

sup  f(u) -0 as t — 0,
ueN(K,xt)

Hence

1,2

e /N(K,mt) f(w)du — 9 /N(K)(f'(v) -n(v))pg_1(dv) as t — 0.

Thus, for a, = n~'/2, the limiting random set H = epin (the epi-limit of the
random function a,'n,) has the capacity functional T' given by

T(K)=1-—exp {/S(K) y(f'(v) - ﬁ(v))dvdy}, K C (ST x[0,+00)) (4.8)

for S(K') given by (4.7).

8.5 A Limit Theorem for Intersections of Ran-
dom Half-Spaces.

For any point u € R? define the corresponding half-space H(u) as
H(u)={z e R%: (z-u) < [lul*}.

In this section we consider normalized unions of intersections of random half-spaces
defined as
Xp=ay (HE)N- - NH(E)) (5.1)

Here a, — 0 as n — oo, and &, ...,&, are iid random copies of a certain random
vector €. Suppose that its density f is regularly varying at zero with index o — d for
o > 0. Tt means that the function f(u) = f(ul|u||~2) is regularly varying in the usual
sense (see Section 1.6), and indf = d — a.

Let Y}, be the closure of R?\ X,,. Then P{Y, N K =0} =P {K C X,,}. Thus, X,,
converges weakly to a certain random convex closed set X if and only if Y,, converges
weakly to the closure of RY \ X. Moreover, for any compact K

P{YNK=0}=P{K C X}. (5.2)
The random closed set Y, is the union of complement half-spaces, that is
Yo=a, (M(&)U---UM()),

where
M(u) = {x eR: (z-u) > ||u||2} .u € R
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Let us verify the conditions of Theorem 4.1.3 for the random set A = M (). First,
estimate its capacity functional. Evidently,

{u: KN M(u) #0} = {u e R sy(ullul|™") > IIUII}
= {yv:ve S(K),y>0,sx(v) >y},

where sg is the support function of K, and
S(K) = {U € S sg(v) > 0}. (5.3)
Then
P{ANtK #0} = P{M(§)NtK # 0}

st (V)
= / dv/ y* ! f(yv)dy
sy Jo
sk (v)
= ¢4 / dv / y{=" fyivt)dy
sy Jo
1
~ ("Lt / “h(v)dv as t — 0,
~L(teo) S(K)(SK(U)) d(v)dv as

where ey > 0, L is slowly varying at zero and ¢ is a homogeneous function, such that
f = ¢L. Note that similar statements as in Section 1.6 are valid for regularly varying
at zero functions.

Put

1
ay, = inf{t > 0: t“L(tey) > —} .
n

Then the random set Y, admits the weak limit Y with the capacity functional T
given by

T(K)=1—exp {—al /S(K)(SK(’U))Q¢(U)d’U} : (5.4)
From (5.2) we get

P{K C X} =exp {—a—l /S (K)(SK(U))aqs(v)dv} . (5.5)

Consider two particular cases.

1. If K = B,(0), then

P {B,(0) C X} = exp {—ro‘a_l /Sd_1d>(v)dv}. (5.6)
2. If K = {z} is a singleton, then

P{zeX)=exp {—a—l /S+ () (- v)o‘dv} , (5.7)

x

where S = {v € S4 L (z-v) > 0}.
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For example, if d = 2 and ¢(v) = C for all v from S¢~! (i.e. the function ¢ is
circular symmetric) then (5.6) and (5.7) turn into

P{B,(0) C X} =exp{—27Cr%/a}

The expected volume of the limiting random set X is finite. It can be evaluated

and

C
P{z e X} =exp {—Eﬂ'l/ZHZL‘“a

Eu(X) = /Rd P{z e X)}de

= Jardw [Ty e { a7y [ ow)w-vdv} dy

= 0 (5)a ot [ o]

dw.
Intersections of random half-spaces appear in linear programming problems with
random constraints. Consider n random constraints given by

N1+ -+ NigTa < Miagr), 1 <1 <n, (5.8)
where (91, ..., Mids Miga+1)), 1 <@ < n, are iid random vectors in R™™'. Put
5' _ (nila BRI nld)
' (771'(d+1))1/2

Then X, given by (5.1), coincides with the normalized set of all admissible so-
lutions of (5.8). If the density of the random vector & is regularly varying at zero,
indf > —d, then the weak limit X of the set of solutions of (5.8) exists and its
distribution is given by (5.5).

It is particularly interesting to obtain limit theorems for maxima values of linear
functionals on X,,. Let

(hl‘) :h1$1+"'+hd$d

be a linear functional on R?, where h = (hy,...,hq). For simplicity suppose that
||h]| = 1. Then

sup(h - x) = sx(h),

reX
and sy, (h) converges weakly to sx(h). The exact distribution of sy (h) is very difficult
to evaluate, since, in fact, we do not know the capacity functional of X, but only
probabilities given by (5.5).

Let us estimate the distribution function of sx(h) from below in the following way

P{sx(h) >a} >P{ha € X}.

It follows from (5.7) that

Plax(h) 2 o) 2exp {ata® [ oh-opin).

h
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Then the expectation of sy (h) is estimated from below as follows

Esx(h) > /Ooo exp {—a_lyo‘ /S,j B(v)(h - v)o‘dv} dy

= (D))

h

é(v)(h - v)o‘dv] o
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