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SECTION 1.6

T0 00 2 40 12 0
2 (l){z 4 o}RlHRZ{o 0 0}31%531{0 0 o}

(ii){o ! S}RlHRQ{l 2 4]RlﬁRl—2RQ{l 0 _2];

9

1 2 4 013 01 3
L R2—>R2—R1 1 1 0
i) {1 1 0 P R R 0 0 -1
1oo] 77 0 -1 -1 ]
Ri— R +Ry [1 0 0 Ry — R+ Ry 100
Ry — —Rj 01 1 R 010 |;
Ry < R, 00 —1 3 o0 1
(iv) 000 R g 00 0].
—4 0 0 | e 000
1 1 1 2 1 1 1 2
3.(a) |2 3 -1 8 %:%:251 0 1 -3 4
1 -1 —1 -8 3 P o0 =2 =2 —10
(10 4 —2 10 4 2
51:51;2% 01 -3 4 |R—=Ry|0 1 -3 4
S 100 -8 -2 00 11
R, — Ry — 4Rj3 (1) (1) 8 j’
R2—>R2+3R3 -0 0 1 %
The augmented matrix has been converted to reduced row—echelon form
and we read off the unique solution z = —3, y:14—9, z:i.
1 1 -1 210 1 1 -1 2 10
Ml 3 -1 7 4 1 22:2212? 0 —4 10 —2 —29
-5 3 —-15 =6 9 3 5 10 8 —20 4 59

1 1 -1 2 10
R3 - Rg + 2R2 0 —4 10 -2 —-29
0 0 0 0 1

From the last matrix we see that the original system is inconsistent.
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3 -1 70 1 -1 11
2 -1 4 1 2 -1 4 1
2 2
@17 o1 1 TR o7
6 —4 10 3 6 —4 10 3
_ =1
R2—>R2—2R1 é i ; __% R1—>R1+R2 é (1) ;) é
R3—>Rg—3R1 2 R4_>R4_R3 2
Ri—Ri—6R, |0 24 3 ppy—opr, V00 0
4 ! o 24 -3 3 ’ 1000 0
The augmented matrix has been converted to reduced row—echelon form
and we read off the complete solution x = —% -3z, y = —% — 2z, with z
arbitrary.
2 -1 3 a 2 -1 3 «a
4. 3 1 =5 b R2—>R2—R1 1 2 -8 b—a
-5 =5 21 ¢ -5 =5 21 c
1 2 -8 b—a 1 2 =8 b—a
Ri-R| 2 -1 3 a %:%;ggl 0 =5 19 —2b+3a
-5 -5 21 K K Y10 5 —19 sb—5a+tec
1 2 -8 b—a
R3 — Rs 1+ Ry 0 1 =19 2b—3a
Y 5 5
Re= 58000 "0 30— 3a+c

5 5
Rl — Rl — 2R2 01 7719 —ngga
00 0 3b—2a+c
From the last matrix we see that the original system is inconsistent if
3b—2a+c#0. If 3b — 2a + ¢ = 0, the system is consistent and the solution
is

(b+a) 2 (2b—3a) , 19
x = -z, y=——>4+—2z
5 57 5 5
where z is arbitrary.
111 T 111
5. O I IO A
14+t 2 3 3 3 10 1—¢t 2—t
1 1 1
R3—>R3—R2 01—t 0 = B.
0O 0 2-t



Case 1. t # 2. No solution.

1 1 01
Case2. t=2.B=10 —1 0 010
0 O 0 0
We read off the unique solutlon r=1 y=0.
6. Method 1.
-3 1 1 1 R, — R, — R, -4 0 0 4
1 -3 1 1 0 -4 0 4
R2—>R2—R4
1 1 -3 1 P R_ R 0O 0 —4 4
1 1 1 -3 3 5o 1 1 1 -3
10 0 -1 1 00 -1
010 —1 010 -1
Tloo 1 o [fem s Rl g ]
111 =3 000 O

Hence the given homogeneous system has complete solution
T1 = Ty, Tz = Ty, T3 = Ty,

with x4 arbitrary.

Method 2. Write the system as

T1+Tot+ax3+x4 = 4
T+ 2o+ ax3+2x4 = 4x9
T+ To+x3+x4 = 43
T+ 2o +a3+x4 = 4duy.

Then it is immediate that any solution must satisfy x1 = z9 = x3 = x4.
Conversely, if x1, w9, 3, x4 satisfy x1 = 19 = x3 = 24, We get a solution.

7.
A-3 1 1 A-3
{ 1 A—3]R“*R4A—3 1 ]

1 oa-3
R2—>R2—(A—3)R1{O _A2+6A_8] _ B



Case 1: —A\2+6X —8#0. That is —(A —2)(A —4) # 0 or A # 2, 4. Here B is
row equivalent to [ L0 ]:

01
1 A=-3 10

Hence we get the trivial solution x =0, y = 0.

Case 2: A =2. Then B = [ é _(1) } and the solution is x = y, with y arbitrary.

Case 3: A =4. Then B = {(1) (1)} and the solution is x = —y, with y arbitrary.
8.
3 11 1 1 I
- 3 3 3
[5 -1 1 —1}31 - 331[5 -1 1 —1
1 111
Ry — R2—5R1[0 g 3 %]
3 3 3
-3 1 L 1 1
_° 3 3 3
2 = 8R2[0 11
1 10310
R1—>R1—§R2|:01%1:|
Hence the solution of the associated homogeneous system is
1 1
Ty = _13337 Ty = _Zx3_$47
with x5 and x4 arbitrary.
9.
1l—-n 1 1 Ry — R, — R, -n 0 - n
A= .
1 1 l-n | R,.1—R,.1—R, 1 1 1—n
10 - -1 10 - -1
01 - -1 0o 1 - -1
- . . . RnﬁRn_Rn—l"'_Rl . . .
11 1—n 0 0 0



The last matrix is in reduced row—echelon form.
Consequently the homogeneous system with coefficient matrix A has the
solution
T1 = Tpy, g =Tpy...,Tp_1 = Tp,

with x, arbitrary.
Alternatively, writing the system in the form

T + . e + xn = nr

T1+ -+ T, = Nx2

1+ -+, = nr,
shows that any solution must satisfy nxy = nxy = -+ = nx,, so x1 = xy =
- = x,. Conversely if xr1 = x,,...,r,_1 = T,, we see that xq,...,x, is a

solution.

10. Let A = { Z Z } and assume that ad — bc # 0.

Case 1: a # 0.
a b 1 ¢ 1 b
o] mein ]y s [t

0 01

-[39)

So in both cases, A has reduced row—echelon form equal to { Lo } )

12 10
RQHﬁRQ[ T}R1—>R1—§R2[ }
Case 2: a = 0. Then bc # 0 and hence ¢ # 0.

0 b c d 1
A:[c d}RIHRQ[o b}_)[o

— ol

0 1
11. We simplify the augmented matrix of the system using row operations:
1 2 -3 4 Ry — Ry — 3R, 1 2 =3 4
3 -1 5 2 P Re— AR 0 -7 14 —10
4 1 a®>—14 a+2 K ’ Y10 -7 -2 a—14



Ry—Ry—Ry, [1 2 =3 4 10 1 2
Ry — =R, 01 =2 2 Ri—R —2R, |0 1 =2 D
R1—>R1—2R2 00 a2—16 a—4 0 0 CL2—16 a —

Denote the last matrix by B.

Case 1: a®> — 16 # 0. i.e. a # +4. Then

and we get the unique solution

8a + 25 10a + 54 1
T=c——, Y=o, £ = —.
a+4) Y " Ta+a) " a+4
10 1 %
Case 2: a=—4. Then B=| 0 1 -2 1—70 , SO our system is inconsistent.
00 0 =8
10 1 %
Case 3: a =4. Then B= | 0 1 -2 1—70 . We read off that the system is
00 0 O
consistent, with complete solution x = % -z, Y= 1—70 + 2z, where z is

arbitrary.

12. We reduce the augmented array of the system to reduced row—echelon

form:
10101 10101
0101 1 01011
111 10| Bzt 01
00110 00110
10101 1001 1
Rs—=Rs+ Ry g g g ¢ o Rs < Ry 00110
00110 00000



The last matrix is in reduced row—echelon form and we read off the solution
of the corresponding homogeneous system:

T1 = —XT4—T5=1=T4+ T5
Ty = —Xy—T5=2T4+ X5
Tz = —Ty = Ty,

where x4 and x5 are arbitrary elements of Zs. Hence there are four solutions:

Ty T2 T3 T4 Ts
0O 0 0 0 O
1 1 0 0 1.
1 1 1 1 O
0O 0 1 1 1

13. (a) We reduce the augmented matrix to reduced row—echelon form:

21 3 4 1 3 4 2
4 1 41| Ri—3R |41 41
3120 31 20
1 3 4 2 1 3 4 2
?:52;}2 043 3| RoodRy |01 2 2
K ’ Y1020 4 020 4
B mom [0 1) gy g, [LO0
R3—>R3+3R2 0010 R2—>R2+3R3 0010
Consequently the system has the unique solution z =1,y =2, 2 =0

(b) Again we reduce the augmented matrix to reduced row—echelon form:

9 1 3 4 1103
41 41| RReoR |41 41
110 3 2913 4
1103 110 3
§2:§2j3}2 02 44| Ry—3R, |0 1 2 2
3 3 L1043 3 0 4 3 3



R1—>R1+4R2 1031
Ry — R3+ R 0 122
3 T2 00 0 0 0

We read off the complete solution
r = 1-32=1+4+22
y = 2-—2z=2+ 3z,
where z is an arbitrary element of Zs.

14. Suppose that (aq,...,a,) and (04, ..., () are solutions of the system of
linear equations

n
Zai]ﬁf]’:bi, 1§Z§m
j=1

n n
E aijozj = bz and E aijﬁj = bl
Jj=1 Jj=1

Then

for1 <i<m.
Let 7, = (1 — t)ay +tf5; for 1 < i < m. Then (v1,...,7,) is a solution of
the given system. For

Y agy = > ag{(1—t)a; + 18}
=1 =1
= Y ay(l—ta; + Y ath
j=1 j=1
= (1 —1t)b; +tb;
= ;.
15. Suppose that (aq,...,q,) is a solution of the system of linear equations
Zaij.fllj = bi, 1 S 1 S m. (1)
j=1

Then the system can be rewritten as



or equivalently

n
Zaij(ﬂij—(lj):(), 1§z§m
j=1

So we have .

Zaijyj =0, 1<t1<m.

j=1
where x; — a; = y;. Hence z; = a; +y;, 1 < j <n, where (y1,...,y,) is a
solution of the associated homogeneous system. Conversely if (yi,...,y,) is
a solution of the associated homogeneous system and z; = a; +y;, 1 <j <
n, then reversing the argument shows that (xi,...,z,) is a solution of the
system 1 .

16. We simplify the augmented matrix using row operations, working towards
row—echelon form:

11 -11 1 1 1 -1 1 1
a1l 11 b gQ:QQiggl 0 1-a 14+a 1—a b-a
32 0a l+a 3 8 10 -1 3 a—3 a-—2
1 1 -1 1 1
RRQj_Ré 0 1 -3 3-a 2—a
2 2 0 1—-a 14+a 1—a b—a
11 -1 1 1
Ry — R3+(a—1)Ry [ 0 1 =3 3—a 2—a = B.
00 4—2a (1—a)(a—2) —a*+2a+b—2

Case 1: a # 2. Then 4 — 2a # 0 and

1 1 —1 1 1
B— 101 -3 3—a 2—a
a—1 —a?42a+b—2
00 1 o5 ==

Hence we can solve for x, y and z in terms of the arbitrary variable w.

Case 2: a = 2. Then

11 -1 1 1
B=]01-31 0
00 00 b-2



Hence there is no solution if b # 2. However if b = 2, then

11 -111 10 201
B=101-310|—-=(01-310
00 000 00 000

and we get the solution z = 1 — 2z, y = 32z — w, where w is arbitrary.

17. (a) We first prove that 1+ 141+ 1 = 0. Observe that the elements
140, 141, 14+a, 140

are distinct elements of F' by virtue of the cancellation law for addition. For
this law states that 1+ =14y =2 =y and hencex #y = 1+x # 1+y.

Hence the above four elements are just the elements 0, 1, a, b in some
order. Consequently

1+0)+(1+)+(1+a)+(1+b) = 0+14+a+b
(1+1+1+1)+0+14+a+b) = 0+0+1+a+d),

so 1+ 141+ 1=0 after cancellation.

Now 1+1+1+1=(1+1)(1+1), so we have z? =0, where z = 1 + 1.
Hence 2 =0. Thena+a=a(l+1)=a-0=0.

Next a+b = 1. For a+ b must be one of 0, 1, a, b. Clearly we can’t have
a+b=uaorb;alsoif a+b=0, then a + b = a+ a and hence b = a; hence
a+b=1. Then

a+l=a+(a+b)=(a+a)+b=0+b=0.

Similarly b 4+ 1 = a. Consequently the addition table for F' is

T~ O +
T | = OO
® T O | =
[l el Non <V
ol |T|T

We now find the multiplication table. First, ab must be one of 1, a, b;
however we can’t have ab = a or b, so this leaves ab = 1.

10



Next a? = b. For a? must be one of 1, a, b; however a> = a = a = 0 or
a = 1; also

*=1=a-1=0=>(a—1)(a+1)=0=(a—1)>*=0=a=1;

hence a? = b. Similarly b? = a. Consequently the multiplication table for F'
is

x 0 1 a b
0/0[0[0|O0
1(0|1]a|b|
al0la|b]|1l
b|i0O|b|1l]a

(b) We use the addition and multiplication tables for F"

1 a b a Ry — Ry + Rk, 1 a b a

A=1a b b 1 Ri— Ret R 0 0 a a

111 3 3 ! 0 b a 0

(1 a b a] 1 a b a

RyesRy |0 b a 0 %:Zﬁ? 01 b0

|00 aa] 7 loo 11
(1 0 a a 1 000
R, Ry +aR, |01 b 0 %:gﬁzgg 0106
001 1] 7 TR o011

The last matrix is in reduced row—echelon form.

11



Section 2.4

a b
2. Suppose B= | ¢ d | and that AB = I;. Then
f
a b
l—101] . d _{1 o]_[—a+e —b+f]
0 10 ¢ f 0 1 ct+e d+f
Hence
—a+e=1 —-b+f=0
c+e=0 " d+f=1"
e=a+1 f=05b )
c=—e=—(a+1) " d=1—f=1-0b"
a b
B=]| —-a—1 1-b
a+1 b
Next,

(BA)’B = (BA)(BA)B = B(AB)(AB) = Bl,I, = Bl, = B

4. Let p, denote the statement

A" — (3";1)A + (3;3”)12.

Then p; asserts that A = @A + (3;—3)]2, which is true. So let n > 1 and
assume p,,. Then from (1),

AT = A A= A G L G e oy

= @Dy 3r,) 4 BTE 4 o DG 4 oD

_ (437—3M)—1 (3—3n+1)
= T A+ TS

_ (3n+2171)A + (3732"“)]2_

Hence p,,11 is true and the induction proceeds.

12



5. The equation xz,1 = ax, + bx,_1 is seen to be equivalent to

e = el ]

or
X, = AXn—h

where X,, = [xnﬂ } and A = [(f 8] Then
Xn == AnXQ

if n > 1. Hence by Question 3,
Topn | _ B -1 (3-3") 1
[ - } _ { DA BE

Ul el e i)

n __ 3=3" n __ _
(3 1)2 4+ 5 (3 1)(=3) { - }
3n—1 3-—3n To

2 2
Hence, equating the (2, 1) elements gives

n_1 _an
xn:(32 )xl—i—(g 23)3:0 ifn>1

7. Note: A\ + Ay = a+d and MMy = ad — be.
Then

()\1 + /\2)k5n — Mok, = ()\1 + )\2)()\711_1 + )\711—2)\2 4t )\1>\g_2 1 )\g_l)
_)‘1/\2(/\711_2 + )\711_3)\2 + -+ )\1/\721—3 + /\;L—2>

= AN+ AT N+ A
AT A+ MATT A
—F g AT

= AN AT A4 NN AL =K

13



If A\ = Ao, we see

kn = )\?71 + )\?72/\2 4+ -4 )\1)\3*2 4 )\;,1
= AT o AN AT
= nAP!
If \; # )Xo, we see that
()‘1 - )\2>kn = ()\1 - )\2)()\?71 + )\71172>\2 4+ .4 )\1)\721*2 4 )\371)
= AN AT
—ONT g - AN D)
— AT

AL =27

Hence k,, = S

We have to prove
A" = knA — )\1)\2]{71,1[2. x

n=1:

Al = A, also klA — )\1)\2]€0[2 = ]{?114 — )\1)\20]2
= A

Let n > 1 and assume equation * holds. Then

A = A" A = (kA — MAgkn_115)A
- knAQ - )\1)\2]{,'”,114.

Now A2 = (CL + d)A — (CLd — bC)IQ = ()\1 + )\2)14 - /\1)\2]2. Hence

A = B O 4 M)A — Mol — Mk 1 A
= {En(M £ Aa) — Adakn 1 YA — A\ dokals
= kn+1A - )\1)\2kn[27

and the induction goes through.

8. Here A, Ay are the roots of the polynomial 22 — 2z — 3 = (z — 3)(z + 1).
So we can take Ay = 3, Ao = —1. Then

3" — (=1 _ 8"+ (=)

b =) 4

14



Hence

e {3"+(—1)”+1}A_(_3){3”1+(—1)”}I2

4 4
S]]

which is equivalent to the stated result.

9. In terms of matrices, we have

Fo | |11 E,
[ P ]_{1 O:|[Fnl] for n > 1.

=Ll IR -De] )

Now A;, Ay are the roots of the polynomial 2% — x + 1 here.

Hence \; = %g and Ay = 1_7*/5 and

2
1+2\/5 _ < —2\/5>
n—1 n—1
() - (%)
a V5
Hence
A" = k,A— X Mk,_11
= k,A—k, 11
So
F, 1
%] - a3
1 1 k, —k,_
IR IR R
Hence




10. From Question 5, we know that
T, | |1 r "l a
yo | |1 1 b |-

Now by Question 7, with A = { 1 710 ] ,

A" = kA= Mok, 11
= l{?nA — (1 — T)knfllg,

where \; = 1+ /7 and Ay = 1 — /7 are the roots of the polynomial z? —
20+ (1 —r) and
_AM A

k, = .
27

Hence

{%] - mwy-u—rm%gg{Z}

Un
RE <k£: L_ e DL
- Fon = (1 = 7)hon s kyr a
el
akn +b(kn — (1 = 1)kp1) |

Hence, in view of the fact that

n n n(1 _ fA2\n
ke N—x o xd hﬁ)«%M N

N

we have

Tn alky, — (1 —r)k,_1) + bk,r
[ Un } aky, + b(k, — (1 —1)kp_1)
a(ﬁ —(1—=r))+ bkf’_llr
e T (- 7)
a(A — (1 —=7r)) + b7
ar1 +b(A — (1 —1))

16



_a(Vr4r) +b(L+/r)r

a(l+/r)+b(y/r+7)

VAl V) U VYT

a(l+ 1) +b(yr+r)
VT

17



Section 2.7

1 4] 10 1 4|10
L [AH?]_{—?) 1' 0 1] Ity = Ity + 31, {0 13‘ 3 1]
Lo ral 1o - 1 0] 1/13 —4/13
RQ_’BR?{O 1] 313 113 | B Bm A g g

Hence A is non-singular and A™! = [ éﬁg _leﬁg ] .
Moreover
Ero(—4)E5(1/13)Ex (3)A = I,
SO
A7 = Eyy(—4)Ey(1/13) Ex (3).
Hence

A= {Exn(3)} {E2(1/13)} H{E12(—4)} " = En(—=3)Ey(13) E1p(4).

2. Let D = [d;;] be an m x m diagonal matrix and let A = [a;;] be an m x n
matrix. Then .
(DA)ik = Z dijajk: = di; Qi
j=1
asd;; = 0if 7 # j. It follows that the 7th row of DA is obtained by multiplying
the ith row of A by d;.

Similarly, post-multiplication of a matrix by a diagonal matrix D re-
sults in a matrix whose columns are those of A, multiplied by the respective
diagonal elements of D.

In particular,

diag (ay,...,a,)diag (by,...,b,) = diag (a1by,. .., anby,),

as the left-hand side can be regarded as pre—multiplication of the matrix
diag (b, ..., b,) by the diagonal matrix diag (ay,...,a,).
Finally, suppose that each of ai,...,a, is non-zero. Then a;',..., a "

all exist and we have
diag (ay,...,a,)diag (a;',...,a;') = diag(aia;’, ..., aza;,")

= diag(l,...,1)=1I,.

18



Hence diag (ai, . .., a,) is non-singular and its inverse is diag (a;*,...,a;").

Next suppose that a; = 0. Then diag(ay,...,a,) is row—equivalent to a
matix containing a zero row and is hence singular.

00 2
3. (AL =1 2
37

O O =

0 0
1 0 R1<—>R2
0 1

w O =
~N O N
Nelll \ViNe)

6
9
1
R3—>R3—3R1 0
0

1 2
R3—>%R3 01 —
0 0

Rl — Rl - 24R3
R2 — RQ + 9R3

-12 7 =2
Hence A is non-singular and A~' = | 9/2 -3 1
/2 0 0

Also

E23<9)E13(—24)E12(—2)E3(1/2)E23E31(—3)E12A = ]3.
Hence

A7 = Ey3(9)Ey3(—24)E19(—2) E3(1/2) Eys 31 (—3) B,
" A == E12E31 (3)E23E3(2>E12(2)E13(24)E23(—9>
4.

1 2 k 1 2 k 1 2 k
A=13 -1 1|—-|0 -7 1-3k|— |0 =7 1-3k |=0B.
5 3 =5 0 =7 —=5-5k 0 0 —6-2k

Hence if —6 — 2k # 0, i.e. if k # —3, we see that B can be reduced to I3
and hence A is non—singular.

19



1 2 =3
Ifk=-3,thenB= | 0 —7 10 | = B and consequently A is singular,
0O 0 0

as it is row—equivalent to a matrix containing a zero row.

5. E9(2) [ _; _Z } = [ (1) g } Hence, as in the previous question,

1 2 0. . 1
_o _y | 1ssingular.
6. Starting from the equation A% — 2A + 131, = 0, we deduce

Hence AB = BA = I, where B = T3(A — 2I;). Consequently A is non-
singular and A~ = B,

7. We assume the equation A% = 3A4% — 34 + I;.

(i) A* = A’A=(3A7-3A+)A=3A%-3A+ A
= 3(3A% —3A+I3) —3A% + A= 6A% — 8A + 315.

(iii) A® —3A% + 3A = I3. Hence
A(A? —3A+313) = I3 = (A* — 3A + 33) A.
Hence A is non—singular and

Al = A2 3443

-1 =3 1
= 2 4 -1
0O 1 0

8. (i) If B® =0 then

(I, — B)(I, + B+ B*) = I,(I,+ B+ B*) — B(I, + B+ B?)
= (I, +B+B%— (B+B*+ B
= I,-B*=1,-0=1,
Similarly (I,, + B + B*)(I, — B) = I,,.
Hence A = I,, — B is non-singular and A~ = I,, + B + B2.

20



It follows that the system AX = b has the unique solution

X=A"'"9=(I,+ B+ B*)b=b+ Bb+ B%.

0 r s 0 0 rt
(ii)Let B=|0 0 ¢t |. Then B = | 0 0 0 | and B®> = 0. Hence
000 00 0
from the preceding question
(I;—-B)™' = L+B+B?
(1.0 0 [0 r 0 0 rt
= 01 0[+]0O0¢t|+]000
| 0 0 1 | 0 0 0 00 0
(1 r s+t ]
= 01 t
| 00 I

9. (i) Suppose that A% = 0. Then if A~! exists, we deduce that A~'(AA) =
A710, which gives A = 0 and this is a contradiction, as the zero matrix is
singular. We conclude that A does not have an inverse.

(ii). Suppose that A% = A and that A~! exists. Then

ATV (AA) = A4,

which gives A = I,,. Equivalently, if A> = A and A # I,,, then A does not
have an inverse.
10. The system of linear equations
rT+y—z =
z = b
2r+y+2z = ¢

is equivalent to the matrix equation AX = B, where

1 1 -1 T a
A=10 0 11, X=1|y |, B=
2 1 2 z

21



By Question 7, A~! exists and hence the system has the unique solution

-1 -3 1 a —a—3b+c
X = 2 4 —1 b= 2a+4b—c¢
0 1 0 c b

Hence x = —a—3b+c¢, y=2a+4b—c, z=0.

12.
1000
0100
0301
030 1 030 1
0100 0100
= B(2) 0010 0020
1000 1000
Also

ATl = (B5(2)EuuBspn(3)™
= (En(3) "By (Es(2)"

= Ep(—3)EwE5(1/2)
10 0 0
01 0 0
= Eu(=3)Bu] 1/2 0
00 0 1
00 0 1
01 0 0
= Ee(=3)] 4 1/2 0
10 0

_ o O O

|Ol—‘©
w
—_
O~ O O
[\
S O O
e — |
=)

13. (All matrices in this question are over Z,.)
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1 000
0100
1 010
1 001
0001
1 001
1 010
1110

1101
0 011
0010
0100
1 001
0100
0010
0001

— — O O

— O

—

— O O

1 000
0100
0010
1000
1 001
1 010
0100
1111
1 001
1010
1110

0001

1101
0 011
1111
1 001
1101
0100
0010
0011
1 000
0100
0010
0001

Hence A is non—singular and

(b)A{

14.

] , S0 A is singular.

1 01
111
010
0 00

1
0
1
0

R3—>
R1—>R1—R3

Ry — Ry + Rs

R4—>R4+R1

— O

O - - O

— - O

1
0
1
1

|

1/2
1/2
10 —1/2

0
0
1

0
1
1

] |

2 s
R1<—>R3
0 1/2
1 1/2

—1
0 1/2
1 1/2
-1 -1

-1
0
23

0
1

0
0

|

0
1

0
0

0
1

0

0
1

1
0
0

0

0

1 1 1
(a) -1 10
2 0
Rg — Rg - RQ
Hence A~! exists and



2 2 4 1 0 0 R, — Ry — 2R, 1 0 1

(b) 101010 Ry < R, 010

01 0] 0 01 Ry «— Rj 0 2 2
1010 1 0
R3—>R3—2R2 010 0 0 1
0 0 2 1 -2 -2
1 01 0 1 0
Ry —1iR; | 0 1 0 0 0 1
00 1| 1/2 -1 —1
1 00| -1/2 2 1
R, — Ry — Rs 010 0 0 1
00 1| 1/2 -1 -1
Hence A1 exists and
~1/2 2 1
A7l = 0 0 1
1/2 -1 —1
4 6 —3] 1 4 6 -3
¢ |00 7 ?:Z? 00 1| Ry— Ry—R,
00 5] 2 5% 100 1
Hence A is singular by virtue of the zero row.
2 00]100] R—2iR [100]| 1/2
(d) 0 -5 0010 R2—>_?1R2 010 0
0O 07,001 R3—>%R3 0 01 0
Hence A™! exists and A~! = diag (1/2, —1/5, 1/7).

(Of course this was also immediate from Question 2.)
1246|1000 1 00
01200100 01 2

© 1901 2/0010| B7R=2R 4,
0002|0001 0 00
100 6|1 -2 00

010 -4 0 1 -2 0

o= T =28 g g 1 90 0 1 0

000 2|10 0 01
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N DO
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N O =
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1/7

O O =N
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Ri—R —-3R, [1000|1 -2 0 -3
Ry—Ry+2R, |0 1 000 1 —2 2
R3—>R3—R4 0 010 0 0 1 -1

Ry — 3Ry 00010 0 0 1/2
Hence A™1 exists and
1 -2 0 -3
. 0 1 -2 2
AT=10 0 1 -1
0 0 0 1/2
(f)

123 1 2 3 1 2

45 6 %:%:ggl 0 -3 6| Ry—Rs—Ry |0 -3 —6

579 3 5 10 -3 -6 0 0

Hence A is singular by virtue of the zero row.

15. Suppose that A is non—singular. Then
AAT =1, =AT1A
Taking transposes throughout gives
(AA) = I, =(A"14)
(AT)A" = I, = A(ATY),
so A! is non-singular and (A")~! = (A7)

a b

16. Let A = { e d ] , where ad — bc = 0. Then the equation

A* —(a+d)A+ (ad —be)l, =0

reduces to A? — (a + d)A = 0 and hence A% = (a + d)A. From the last
equation, if A~! exists, we deduce that A = (a + d) I, or

a b| |a+d O
c d| 0 a+d |’

Hence a =a+d, b=0, c=0, d=a+dand a = b =c = d = 0, which
contradicts the assumption that A is non-singular.
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17.

1 a b 1 a b
A=| —a 1 ¢ 221221221 0 14+a®> c+ab
b —c 1 3 3 ! 0 ab—c 1+10°
1 a b
Ry— fzR |0 1 8%
0 ab—c 140
1 a b
Ry — Ry —(ab—c)Ry | 0 1 fi(gé’ o — B.
c—ab)(c+ab
0 0 1+b2+T
Now
1+b2+(c—ab)(c+ab) _ 1+bz+02—(ab)2
1+a? 1+ a?
1+ ad® 404
= o #0.

Hence B can be reduced to I3 using four more row operations and conse-
quently A is non—singular.

18. The proposition is clearly true when n = 1. So let n > 1 and assume
(P~'AP)" = P~'A"P. Then
(PrAP)"™ = (PT'AP)"(P7'AP)
(PA"P)(P'AP)
= P'AY PP HAP
= P'A"TAP
= P 1(A"A)P
= plA™p
and the induction goes through.

19. LetA:{z/3 1/4]andP:{ L 3}. ThenPlzé{il —?}

1/3 3/4 -1 4
. 1 5/12 0 .
We then verify that P~ AP = o 1l Then from the previous ques-
tion,
s ot g | B5/12 07" [ (/12 01 [ (5/12)" 0
PA"P=(P AP){ 0o 1| = 0 | = 0 e
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Hence

no (5/12)" 0 4 1 3 (5/12)» 0 |1]4 -3
AT = P[ 0 1 P = -1 4 0 1j7]1 1
_1 (5/12)" 3 4 -3
7| —(6/12)" 4 1
_ L] A/ + ( 3)(5/12)
7| —A(B/12)m +4 3(5/1
173 3 —
- 7l 4} L2 { ] |
3 3 : . .
Notice that A™ — = g o4 | @ST 0 This problem is a special case of a
more general result about Markov matrices.
20. Let A = [ ZL Z } be a matrix whose elements are non—negative real

numbers satisfying
a>0,b>0,¢>20,d>0,a+c=1=b+d.

Also let P = { ZC) _1 ] and suppose that A # Is.

(i)detP = —-b—c= —(b+c¢). Nowb+c > 0. Also if b+ ¢ = 0, then we
would have b = ¢ = 0 and hence d = a = 1, resulting in A = [,. Hence
det P < 0 and P is non-singular.

Next,

-1 [ -1 -1 a b b 1
1 .
PAP_b+c_—c b}[c d}{c —11

! —a—c —b—d b 1
~ btc| —ac+be —cb+bd c —1

- 1 -1 b1
~ btc| —ac+be —cb+bd c —1
-1 —b—c 0
b+c | (—ac+be)b+ (—cb+bd)c —ac+ be+ cb—bd

Now

—ach +b*c — *b+bdc = —cb(a+ c)+ be(b+d)
—cb+bc = 0.
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Also

—(a+d—-1)(b+¢) = —ab—ac—db—dc+b+c
= —ac+b(1—a)+c(l—d)—bd
= —ac+ bc+ cb—bd.

Hence

L =1 [—(ro) 0 10
PrAP =11 "0 " _(a4d=1b+e) | T |0 atd=1]"

. _ ' o .
(ii) We next prove that if we impose the extra restriction that A # [ (1) 0 1 ’

then |a +d — 1| < 1. This will then have the following consequence:

4 = P_(l)a—i-?i—l}P_l

AT = P_é a—f—?i—l} P
- P_(l) (a+c§)—1)n]P_l
Hp_ég}P—l

b 1][t o] -1 -1 -1
- c —1 0 O|b+c| —c b
1 [bo0][-1 -1

N b+c|c 0 —c b

I

 bdc| —c —c

1 [bob

" bdclc oc]’

where we have used the fact that (a +d —1)" — 0 as n — 0.

We first prove the inequality |a +d — 1| < 1:

a+d—1 < 14d-1=d<1
at+d—1 > 0+0—-1=-1.
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Next,ifa+d—1=1, we have a+d =2;s0a =1 = d and hence ¢ =0 = b,
contradicting our assumption that A # I,. Also if a +d — 1 = —1, then

a+d=0;s0a=0=dand hence c=1 =10 and hence A = {(1) (1)}

22. The system is inconsistent: We work towards reducing the augmented
matrix:

L2l 4] b p p [ 2]4
O N I - MU N
3 o 12 0 =110
1 2 4
R3—>R3—R2 0 —1 1
0 0| -1

The last row reveals inconsistency.
The system in matrix form is AX = B, where

1 2 4
35 y 12

The normal equations are given by the matrix equation

ATAX = A'B.
Now
- 212
1 1 3 11 18
AtA = 11 :{ ]
215 EE 18 30
- [ 4
1 1 3 45
AR — 5 :[ }
_215__12] 73

Hence the normal equations are

11z + 18y = 45
18z + 30y = T73.
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These may be solved, for example, by Cramer’s rule:

45 18
73 30 36

11 18 6
18 30

11 45
18 73 —7

11 18 6
18 30

23. Substituting the coordinates of the five points into the parabola equation
gives the following equations:

a =0
a+b+c = 0
a+2b+4c = -1
a+3b+9c = 4
a+4b+16c = 8.

The associated normal equations are given by

5 10 30 a 11
10 30 100 b | =1 42 |,
30 100 354 c 160

which have the solution a = 1/5, b= -2, ¢ = 1.
24. Suppose that A is symmetric, i.e. A' = A and that AB is defined. Then

(B'AB)' = B'A'(B")' = B'AB,

so B'AB is also symmetric.

25. Let A be m x n and B be n x m, where m > n. Then the homogeneous
system BX = 0 has a non—trivial solution Xy, as the number of unknowns
is greater than the number of equations. Then

(AB)X, = A(BX,) = A0 =0
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and the m x m matrix AB is therefore singular, as X, # 0.

26. (i) Let B be a singular n x n matrix. Then BX = 0 for some non-zero
column vector X. Then (AB)X = A(BX) = A0 = 0 and hence AB is also
singular.

(i) Suppose A is a singular n X n matrix. Then A is also singular and
hence by (i) so is B'A* = (AB)". Consequently AB is also singular
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Section 3.6

1. (a) Let S be the set of vectors [z, y| satisfying © = 2y. Then S is a vector
subspace of R%. For

(i) [0, 0] € S as x = 2y holds with x = 0 and y = 0.

(ii) S is closed under addition. For let [z1, y1] and [x2, yo] belong to S.
Then x; = 2y, and x5 = 2y,. Hence

T+ 2o = 2y1 + 22 = 2(y1 + Yo)
and hence
(21 + 22, y1 + y2] = [21, 1] + [22, 2]
belongs to S.

(iii) S is closed under scalar multiplication. For let [z, y] € S and t € R.
Then x = 2y and hence tz = 2(ty). Consequently

tx, ty] = t[z, y] € S.

(b) Let S be the set of vectors [z, y| satisfying © = 2y and 22 = y. Then S is
a subspace of R%. This can be proved in the same way as (a), or alternatively
we see that * = 2y and 2x = y imply = 42 and hence x = 0 = y. Hence
S = {[0, 0]}, the set consisting of the zero vector. This is always a subspace.

(c) Let S be the set of vectors [z, y] satisfying x = 2y + 1. Then S doesn’t
contain the zero vector and consequently fails to be a vector subspace.

(d) Let S be the set of vectors [z, y] satisfying xy = 0. Then S is not
closed under addition of vectors. For example [1, 0] € S and [0, 1] € S, but
[1,0]+[0, 1] =[1, 1] & S.

(e) Let S be the set of vectors [z, y] satisfying x > 0 and y > 0. Then S is
not closed under scalar multiplication. For example [1, 0] € S and —1 € R,
but (—1)[1, 0] = [-1, 0] &€ S.

2. Let X, Y, Z be vectors in R". Then by Lemma 3.2.1
(X+Y, X+2Z,Y+2)C(X,Y, Z),

as each of X +VY, X + Z, Y + Z is a linear combination of X, Y, Z.
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Also

X - fx v +ix 42 -y,

2 2 2
1 1 1
-1 1 1
Z = 7(X+Y)+§(X+Z)+§(Y+Z),
SO
(X, Y, Z2) C(X+Y, X+2Z, Y+ 2).
Hence
(X, Y, Z)=(X+Y, X+2Z Y+ 7).
1 0 1
0 1 1 L.
3. Let X; = BE Xy = 1 and X3 = e We have to decide if
2 2 3

X1, Xo, X3 are linearly independent, that is if the equation xX; + y X5 +
2X3 = 0 has only the trivial solution. This equation is equivalent to the
folowing homogeneous system

r+0y+z =
Or+y+2z =
rTt+ytz =
20+ 2y + 32 =

o o o o

We reduce the coefficient matrix to reduced row—echelon form:

10 1 100
01 1 010
111 7]o0oo01
2 2 3 00 0

and consequently the system has only the trivial solution z = 0, y = 0, 2 = 0.
Hence the given vectors are linearly independent.

4. The vectors

A -1 -1
Xl = —]_ 5 X2 = )\ 5 X3 - —1
-1 —1 A
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are linearly dependent for precisely those values of A for which the equation
X1 +yXs+ 2X3 = 0 has a non—trivial solution. This equation is equivalent
to the system of homogeneous equations
—y—z = 0
—xrx4+AXy—z = 0
—rx—y+iz = 0.

Now the coefficient determinant of this system is

A -1 -1
-1 A =1 |=0X+1*N-2).
-1 -1 A

So the values of A which make X;, X5, X3 linearly independent are those A
satisfying A #£ —1 and \ # 2.

5. Let A be the following matrix of rationals:

1 1 2 0 1
2 2 5 0 3
A= 0 0 0 1 3
8 11 19 0 11
Then A has reduced row—echelon form

1000 -1

0100 O

B = 0010 1

0001 3

From B we read off the following:

(a) The rows of B form a basis for R(A). (Consequently the rows of A also
form a basis for R(A).)

(b) The first four columns of A form a basis for C(A).

(c) To find a basis for N(A), we solve AX = 0 and equivalently BX = 0.
From B we see that the solution is

Ty = Ts

Ty = O

r3 = —Ts
Ty = —3xs,
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with x5 arbitrary. Then

5 1
0 0
X = —x5 | =x5 | —1 |,
—3ZE5 -3
T 1

so [1, 0, =1, =3, 1]* is a basis for N(A).

6. In Section 1.6, problem 12, we found that the matrix

1 01 01
01 011
A=111110
00110
has reduced row—echelon form
1 00 11
01 011
B= 00110
0 00O00O

From B we read off the following:

(a) The three non—zero rows of B form a basis for R(A).
(b) The first three columns of A form a basis for C'(A).

(¢) To find a basis for N(A), we solve AX = 0 and equivalently BX = 0.
From B we see that the solution is

T1 = —XT4—T5=2=T4+ T5
Ty = —Xy—T5=2T4+ 25
Tz = —Ty = Ty,

with z4 and x5 arbitrary elements of Z,. Hence

T4+ T5 1 1

Ty + Ts 1 1

X = T4 = T4 1 + 0
Ty 1 0

Ts 0 1

Hence [1, 1, 1, 1, 0]* and [1, 1, 0, 0, 1]* form a basis for N(A).
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7. Let A be the following matrix over Zs:

11 201 3

21 40 3 2

A= 000130

302 4 3 2
We find that A has reduced row—echelon form B:
1 00 0 2 4

01004 4

B= 001 00O

000130

From B we read off the following:

(a) The four rows of B form a basis for R(A). (Consequently the rows of
A also form a basis for R(A).

(b) The first four columns of A form a basis for C'(A).

(c¢) To find a basis for N(A), we solve AX = 0 and equivalently BX = 0.
From B we see that the solution is

r1 = —2x5—4xg =35+ 26
To = —dxs5—4xeg = x5+ T4
z3 = 0

Ty = —3x5 =25,

where x5 and xg are arbitrary elements of Z5. Hence

+ g

SO~ N O =W

_ O O oV =

so[3,1,0,2,1,0]" and [1, 1, 0, 0, 0, 1]* form a basis for R(A).
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8. Let ' =10, 1, a, b} be a field and let A be the following matrix over F:

A:

—_Q
— o Q

b
b
1

SIS

In Section 1.6, problem 17, we found that A had reduced row—echelon form

B =

o O =
O = O
_ o O
_ o O

From B we read off the following:

(a) The rows of B form a basis for R(A). (Consequently the rows of A also
form a basis for R(A).

(b) The first three columns of A form a basis for C'(A).

(c¢) To find a basis for N(A), we solve AX = 0 and equivalently BX = 0.
From B we see that the solution is

ry = 0
To — —bl’4 = bl’4
T3 = —Ty4 = Ty,

where x4 is an arbitrary element of F'. Hence

X:.T4

= = o O

so [0, b, 1, 1]* is a basis for N(A).

9. Suppose that Xy, ..., X,, form a basis for a subspace S. We have to prove
that

X1, X1+ Xoy oo, Xa 4o+ X

also form a basis for S.

37



First we prove the independence of the family: Suppose

21Xy +2o(Xy + Xo) + - F (X + -+ X)) = 0.

Then
(x1+zo+ - F+2,) X1+ + 2, X, =0,
Then the linear independence of X1, ..., X, gives
r1+reo+-+2,=0,...,2, =0,
form which we deduce that 1 =0,...,z,, = 0.

Secondly we have to prove that every vector of S is expressible as a linear
combination of Xy, Xj + Xs,..., Xy + -+ X,,. Suppose X € S. Then

X:a1X1+-~~—|—ame.
We have to find x4, ..., x,, such that

X = o Xi+2(X+ X))+ Fo,(Xa 4+ + Xy)
(x1+ x4 4+ Tp) X1+ + 20X

Then
Xy 4+t ap Xy, = (T F T+ 2) X A 2 Xy
So if we can solve the system
T+ Lo+ -+ Ty =0C1,y..., Ty = O,

we are finished. Clearly these equations have the unique solution

Ty =ay —az,...,Tm-1 = Uy — Am—1, Tm = Qm.
a b c . . .
10. Let A = [ 111 ] If [a, b, ] is a multiple of [1, 1, 1], (that is,

a=0b=c), then rank A = 1. For if
la, b, c] =t[1, 1, 1],
then

R(A) = <[a7 b, C]a [1’ L, 1]> = <t[17 1, 1]7 [17 L, 1]> = <[1> L, 1])7
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so [1, 1, 1] is a basis for R(A).

However if [a, b, ¢] is not a multiple of [1, 1, 1], (that is at least two of
a, b, c are distinct), then the left—to-right test shows that [a, b, | and [1, 1, 1]
are linearly independent and hence form a basis for R(A). Consequently
rank A = 2 in this case.

11. Let S be a subspace of F™ with dimS = m. Also suppose that
Xi, ..., X, are vectors in S such that S = (Xy,..., X,,). We have to prove
that Xi,...,X,, form a basis for S; in other words, we must prove that
Xy,...,X,, are linearly independent.

However if Xi,...,X,, were linearly dependent, then one of these vec-
tors would be a linear combination of the remaining vectors. Consequently
S would be spanned by m — 1 vectors. But there exist a family of m lin-
early independent vectors in S. Then by Theorem 3.3.2, we would have the
contradiction m < m — 1.

12. Let [z, y, z]" € S. Then x + 2y 4+ 3z = 0. Hence x = —2y — 3z and

T —2y — 3z —2 -3
Y| = Y =y 1| +=z 0
z z 0 1

Hence [—2, 1, 0]" and [—3, 0, 1]* form a basis for S.

Next (—1) +2(—1) +3(1) =0, so [-1, —1, 1]* € S.

To find a basis for S which includes [—1, —1, 1], we note that [-2, 1, 0]
is not a multiple of [—1, —1, 1]*. Hence we have found a linearly independent
family of two vectors in S, a subspace of dimension equal to 2. Consequently
these two vectors form a basis for S.

13. Without loss of generality, suppose that X; = X5. Then we have the
non-trivial dependency relation:

14. (a) Suppose that X,,;; is a linear combination of Xj, ..., X,,. Then
<X17 s 7Xm7 Xm+l> = <Xl> s 7Xm>

and hence
dim <)(17 c. 7Xm7 Xm+1> = dim <)(17 c. 7Xm>
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(b) Suppose that X,,,; is not a linear combination of Xy,..., X,,. If not
all of X1,...,X,, are zero, there will be a subfamily X, ,..., X, which is a
basis for (Xi,..., Xp).

Then as X,,,11 is not a linear combination of X,,,..., X, , it follows that
Xeyy ooy Xe,y Xy are linearly independent. Also

<X17 s 7Xm7 Xm+1> = <X017 R JXCT7 Xm+1>'
Consequently
dim(Xl,...,Xm, Xm+1> =r—+1 :d1m<X1,,Xm>+1

Our result can be rephrased in a form suitable for the second part of the

problem:
dim <X1, ce ,Xm, Xm+1> = dim <X1, ce 7Xm>

if and only if X,,; is a linear combination of X,..., X,,.
If X =[z1,...,2,)", then AX = B is equivalent to
B = l'lA*l +oe 4+ an*n

So AX = B is soluble for X if and only if B is a linear combination of the
columns of A, that is B € C'(A). However by the first part of this question,
B € C(A) if and only if dim C([A|B]) = dim C(A), that is, rank [A|B] =
rank A.

15. Let aq,...,a, be elements of F, not all zero. Let S denote the set of
vectors [z1, ..., x,]", where xq, ..., x, satisfy

axy + -+ apx, = 0.

Then S = N(A), where A is the row matrix [ay,...,a,]. Now rank A = 1
as A # 0. So by the “rank + nullity” theorem, noting that the number of
columns of A equals n, we have

dim N(A) = nullity (A) =n —rank A =n — 1.

16. (a) (Proof of Lemma 3.2.1) Suppose that each of X,..., X, is a linear
combination of Y7, ..., Y,. Then

XZ:ZG’UY;? (1 SZST‘)
j=1
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Now let X = >""_ 2;X; be a linear combination of X, ..., X,. Then
X = m(anYr + -+ aYs)
_l’_
+ SCT(G/”Yi + -+ ars}/s)
= y1Y1++st:s>

where y; = a1;21 4 - - +a,;x,. Hence X is a linear combination of Y7, ..., Y.
Another way of stating Lemma 3.2.1 is

(Xi,...X,)C (Vi,....Y)), (1)

if each of X1,..., X, is a linear combination of Y7, ...,Y,.
(b) (Proof of Theorem 3.2.1) Suppose that each of Xi,..., X, is a linear
combination of Y7, ..., Y, and that each of Y7,...,Y} is a linear combination

of X1,...,X,. Then by (a) equation (1) above
<X17"'7X7’> g <}/177Y;>

and
(Vi,...,V2) C(Xi,..., X,).

Hence
(X1,..., X)) =(Y1,...,Y,).

(c) (Proof of Corollary 3.2.1) Suppose that each of Z;,..., 7, is a linear
combination of Xy,...,X,. Then each of X;,...,X,, Z1,...,%; is a linear
combination of X4,..., X,.

Also each of X1, ..., X, is a linear combination of Xy,..., X,, Z1,..., Z;,
so by Theorem 3.2.1

<X17--'7Xr7 Zl;--th> == <X1,...,Xr>.
(d) (Proof of Theorem 3.3.2) Let Y7, ..., Y; be vectors in (X7, ..., X,) and

assume that s > r. We have to prove that Y7, ..., Y; are linearly dependent.
So we consider the equation

1’1Y1—|——|—.%'3Y;:O
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Now Y; = Z;Zl a;; X, for 1 <i < s. Hence
Y1+ aY, = ri(enXy+ -+ anX,)
+ xr(alel +- asrXr)-
= pXi+ o +uX, (1)
where y; = a2 + - -+ + a7, However the homogeneous system
ylzoa"'ayT’:O

has a non—trivial solution x1, ...,z as s > r and from (1), this results in a
non—trivial solution of the equation

Hence Yi,...,Y, are linearly dependent.
17. Let R and S be subspaces of F", with R C S. We first prove
dim R < dim S.

Let X1,..., X, beabasis for R. Now by Theorem 3.5.2, because X1,..., X,
form a linearly independent family lying in S, this family can be extended
to a basis X1,...,X,,..., X, for S. Then

dimS =s>r =dimR.

Next suppose that dim R = dim S. Let Xy,..., X, be a basis for R. Then
because X, ..., X, form a linearly independent family in S and S is a sub-
space whose dimension is 7, it follows from Theorem 3.4.3 that Xy,..., X,
form a basis for S. Then

S=(X,....X,)=R.

18. Suppose that R and S are subspaces of F" with the property that RU.S
is also a subspace of ™. We have to prove that R C S or S C R. We argue
by contradiction: Suppose that R € S and S € R. Then there exist vectors
u and v such that

ueRandvgS, wveSandov¢R.
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Consider the vector u +v. As we are assuming RU S is a subspace, RU S is
closed under addition. Hence u+v € RUS andsou+v € Roru+v € S.
However if u + v € R, then v = (u+ v) — u € R, which is a contradiction;
similarly if u +v € S.

Hence we have derived a contradiction on the asumption that R € S and
S & R. Consequently at least one of these must be false. In other words
RC SorSCR.

19. Let X4,..., X, be a basis for 5.
(i) First let

Yi = anXi+- - +an X,
: (2)
Y, = anXy "‘"“"@err,

where A = [a;;] is non-singular. Then the above system of equations can be
solved for X7,..., X, in terms of Y7, ..., Y,. Consequently by Theorem 3.2.1

Yi,....Y,) = (X),...,X,) = S.

It follows from problem 11 that Y7,...,Y, is a basis for S.

(ii) We show that all bases for S are given by equations 2. So suppose
that Y7,...,Y, forms a basis for S. Then because X1,..., X, form a basis
for S, we can express Y7,...,Y, in terms of X;,..., X, as in 2, for some
matrix A = [a;;]. We show A is non-singular by demonstrating that the
linear independence of Y7,...,Y, implies that the rows of A are linearly
independent.

So assume

1’1[(111,...,(117«] + - —l—xr[arl,...,aw] = [0,,0]
Then on equating components, we have

a1y + -+ AT, = 0

ay,xy + - +apr, = 0.
Hence
oY1+ +zY, = z(anXi+-+a,. X))+ -+ (a0 Xy + -+ a0 X))
= (anzi+ -+ anz) Xy + -+ (a2 + -+ appay) X
— 0X, 4+ +0X, =0.
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Then the linear independence of Y7,...,Y, implies 1 =0,...,x, = 0.
(We mention that the last argument is reversible and provides an alter-
native proof of part (i).)
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Section 4.1

1. We first prove that the area of a triangle P, P, P3, where the points are
in anti—clockwise orientation, is given by the formula

1
2
Area PP, Py = AreaOP, P, + AreaOP,P; — AreaOP, P

Referring to the above diagram, we have
1 1 1

2 2 2

Ty T2
Yyr Yo

To I3
Y2 Y3

T3 I1
Ys Y

T1 T2
Yyr Yo

Ty XT3
Y2 Y3

Ty T3
1 Y3

which gives the desired formula.

We now turn to the area of a quadrilateral. One possible configuration
occurs when the quadrilateral is convex as in figure (a) below. The inte-
rior diagonal breaks the quadrilateral into two triangles P, P, P3 and Py P3Py.
Then

AreaP1P2P3P4 = AreaP1P2P3 + AreaP1P3P4

- )

r1 T2
Yy Y2

T2 I3
Y2 Y3

r3 X1
Ys U1
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Py Py

P3
P
(a) (b) 4
Py Py
PQ P2
1{ T T3 T3 Ty Ty T }
+_
2w s Yz Ya Ya N
B 1{ T Xy Ty I3 T3 Ty Ty T }
2 v Y2 Y3 Ys Ya va |7

after cancellation.

Another possible configuration for the quadrilateral occurs when it is not
convex, as in figure (b). The interior diagonal P, P, then gives two triangles
P, PP, and P,P3P, and we can proceed similarly as before.

2.
a+xr b+y c+z a b c x Yy z
A=|lz+u y+v z4+w |=|2z4+u y+v z4+w |+ z4+u y+v z4+w
ut+a v+b w+ec ut+a v+b w+ec ut+a v+b w+tc
Now
a b c a b c a b c
r+u y+v z4+w | = T Y z + U v w
ut+a v+b wHec ut+a v+b w+ec ut+a v+b w+e
a b c a b c a b c a b c
= rT Yy z|+|lxr Yy z|+|u w U vow
u vow a b c u v w||la b c
a b c
= |z y =z
U vow
Similarly
x Y z Ty z x Yy z a b c
r4+u y+v z+w |=|u v w|=—|a b c|=|x y =z
u+a v+b w+c a b c U vow U vow
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a b ¢
Hence A=2|x y =z
U vow
n? (n+1)2 (n+2)?| C3— Cs5—Cy n? 2n+1 2n+3
3.1 (n+1)? n+2)? n+3)?| Co—Cy—C; | (n+1)* 2n+3 2n+5
(n+2)? (n+3)? (n+4)? = (n+2)? 2n+5 2n+7
n? 2n+1 2
o= C=Ca )2 2043 2
N (n+2)? 2n+5 2
R3—>R3—R2 Tl2 2n+1 2
R2—>R2—R1 2n+1 2 0| =-8&
= 2n+ 3 2 0
4. (a)
246 427 327 246 100 327 246 1 327
1014 543 443 | =| 1014 100 443 | =100| 1014 1 443
—342 721 621 —342 100 621 —342 1 621
246 1 327
= 100 768 0 116 | = 100(—1)’ _;gg ééi ‘ = —29400000.
—588 0 294
(b)
1 2 3 4 1 2 3 4
-2 1 -4 3| |0 5 2 11
3 =4 -1 2| |0 =10 =10 -10
4 3 -2 -1 0 -5 —-14 -—-17
5 2 1 5 2 1
= | —-10 =10 —-10 |=-10| 1 1 1
-5 —14 17 -5 —14 17
5 —3 6 3 6
= —-10f 1 O 0| =-10(-1) ‘ 9 _12 ’ = 900.
-5 -9 —12
1 0 =2 1 0 O 1 10
5. detA=|3 1 4|=|31 10 |= 5 7 = —13.
5 2 =3 5 2 7



Hence A is non—singular and

1 1 011 021 031 1 —-11 —4 2
Ail:_lSade:—li’, 012 022 032 = 13 29 7 —10
B B Ciz Caz Csg B I =2 1
6. (i)
2a 26 b—c 20 +2b 2b+2a b+a
2b 2 a-+tc R1H§1+R2 2b 2a a+c
a+b a+b b o a+b a+b b
2 2 1 0 2 1
= (a+b)| 2b 20 a+c CIHE'I_CQ (a+b) | 2(b—a) 2a a+c
a+b a+b b o 0 a+b b
_ 2 1 _ 2
—2(a+b)(a—b)‘a+b b‘_ 2(a+0b)(a —b)".
(i)
b+c b c c b c
C c+a Cl_>(_jl_02 —a cH+a a
b a a+b - b—a a a+b
c b 0 c b 0
C3_>C_73_Cl —a c+a 2a|=2a| —a c+a 1
- b—a a 2a b—a a 1
c b 0
By = Ity = Ity 2| —a c+a 1|=-2a|¢ bl 2a(c* + b?).
- b —c 0 b —c

7. Suppose that the curve y = ax? + bx + ¢ passes through the points
(z1, 1), (%2, y2), (23, y3), where z; # x; if i # j. Then

ari +bri+c = y
aazg +bro+c = 1y
am% +bxs+c = ys.
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The coefficient determinant is essentially a Vandermonde determinant:

2 2 .2 .2

x% T 1 r] x5 % 1 1 1

x5 my 1 |=|x1 ®o2 w3 |=—| a1 Ty w3 |=—(r2—71)(T3—71)(T3—22).
2 2 .2 .2

x5 x3 1 1 1 1 r] T X%

Hence the coefficient determinant is non-zero and by Cramer’s rule, there is
a unique solution for a, b, c.

11 -1
8 Let A=detA=|2 3 k|. Then
1k 3
1 0 0
_ C3 = Cs+ (4 1 k42
A N P 'k—l 4 ‘

= 4—(k=1)(k+2) ==k —k—6)=—(k+3)(k—2).

Hence det A = 0 if and only if k = —3 or k = 2.
Consequently if k # —3 and k # 2, then det A # 0 and the given system

r+y—2z = 1
2¢0+3y+kz = 3
r+ky+3z =2
has a unique solution. We consider the cases £ = —3 and k = 2 separately.
k=—
1 1 -1 1 1 1 -1 1
AM=|2 3 -3 3 %:%:flo 1 -1 1
1 -3 32 U0 4 401
11 —-11
R3 — Rg + 4R2 01 -1 1 s
00 05
from which we read off inconsistency.
k=
11 -11 1 1 —-11
AM=|23 23 %1%:?101 41
12 32 PRl 401
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1
R3—>R3—R2 0
0

o = O
O = Ot
S = O

We read off the complete solution x = 5z, y = 1 — 4z, where z is arbitrary.
Finally we have to determine the solution for which z? + 3% + 2?2 is least.

Y+ = (52)P 4+ (1—42)? + 22 =427 — 82+ 1

4 1 2\> 1 2\°
= 42(2° — —z2+ —) =42 - — — =
-5+ ) {(Z 21) U (21)}
2\> 13
— a2 (-2) 224
{(z 21) +882}

We see that the least value of 22 4y? 422 is 42 x g = 22 and this occurs when

z = 2/21, with corresponding values x = 10/21 and y =1 —4 x £ = 13/21.
1 -2 b
9. Let A= | a 0 2 | be the coefficient determinant of the given system.
5 20
Then expanding along column 2 gives
A= 2|92 ot M g0 —ap)
750 a 2|° ¢
1

= 2ab— 24 = 2(ab — 12).

Hence A = 0 if and only if ab = 12. Hence if ab # 12, the given system has
a unique solution.
If ab = 12 we must argue with care:

1 -2 b 3 1 -2 b 3
AM = |a 02 2| =0 2¢ 2—ab 2—3a
5 201 0 12 —5b —14
1 -2 b 3 1 —2 b 3
B - b
- |01 B FI |0 1 F I
| 0 2a 2—ab 2-—3a 0 0 12gab 6—32a
1 -2 b 3
= o 2| =s
_0 0 0 6;2a
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Hence if 6 — 2a # 0, i.e. a # 3, the system has no solution.
If a =3 (and hence b = 4), then

1 -2 4 3 1 0 —2/3 2/3
B=10 1 3 F =01 3
0 0 0 0 00 O 0

Consequently the complete solution of the system is x = §+ %z, Yy = %7 +
where z is arbitrary. Hence there are infinitely many solutions.

10.

Zs

wlot

2 1 R4—>R4—2R1
3 4 R3—>R3—2R1
7 2t—|—6 R2—>R2—R1
6-t ¢ — 2t t—2
1 3 11 3
3 grpa| e fm20 g gy
2t t—2 B 02—t t—2
1 262 1 2t—2
T 2-t t-2 ’:(t_Q)‘—1 1

2 1
1 3
3 2t+4+4

DN = NN
DN =~ DN
S O O
O N ==

‘ = (t—2)(2t — 1).

Hence A =0 if and only if t =2 or t = % Consequently the given matrix B
is non—singular if and only if t # 2 and t # %

11. Let A be a 3 x 3 matrix with det A £ 0. Then
(i)

AadjA = (detA)l3 (1)
(det A)det (adj A) = det(det A-I3) = (det A)>.

Hence, as det A # 0, dividing out by det A in the last equation gives

det (adj A) = (det A)2.

(ii) . Also from equation (1)

1 :
(mA) adJ A = ]3,
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so adj A is non-singular and

1
. 71 .
(adjA)™ = ot A AA

Finally
A7adj (A7) = (det AN I3

and multiplying both sides of the last equation by A gives

1

(AH =A AN = A.
adj ( ) (det )13 et A

12. Let A be a real 3 x 3 matrix satisfying A*A = I3. Then

(i) AlA—I;) = A'A— Al =T, — A
(AP L) = — (At — ') = —(A - L,)".

Taking determinants of both sides then gives

det A'det (A —I3) = det(—(A4—I3)")
det Adet (A—I3) = (—1)%det (A — I3)"
= —det(A—1Iy) (1).

(i) Also det AA" = det I3, so
det A'det A = 1 = (det A)*.

Hence det A = £1.
(iii) Suppose that det A = 1. Then equation (1) gives

det (A — I3) = —det (A — I3),

so (14 1)det (A — I3) = 0 and hence det (A — I3) = 0.

13. Suppose that column 1 is a linear combination of the remaining columns:

A*l = xQA*Q + o+ an*n
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Then

Tolig + -+ TpQipy Q12 - Gip

Tolg + +++ + TpGn Q22 -+ Aoy
det A = . ]

Tolp2 + -+ Tnlpn Ap2 - App

Now det A is unchanged in value if we perform the operation

Cl—>01—l‘202—"'—l‘n0n1
0 aip -+ amp
0 axp - ax
detA=| | ) | =0.
0 Ap2 = Qpp

Conversely, suppose that det A = 0. Then the homogeneous system AX = 0
has a non-trivial solution X = [z1,...,z,]". So

Suppose for example that z; # 0. Then

A*l — <_@) 4+ 4 (_a:_”) A*n
T T

and the first column of A is a linear combination of the remaining columns.

14. Consider the system

—2r4+3y—2z2 = 1
r+2y—z = 4
—2r—-y+z = —3
-2 3 -1 07 =3 7 _3
Let A = 1 2 -1(=]1 2 -1 :—‘3 _1‘:—27&0.
-2 -1 1 0 3 —1
Hence the system has a unique solution which can be calculated using
Cramer’s rule:
Ay Ay Ag
TA YDA T A



where

1 3 -1
A = 4 2 —1|=-4,
-3 -1 1
-2 1 -1
Ay = 1 4 —1|=-6,
-2 -3 1
-2 3 1
Ay = 1 2 4|=-8
-2 -1 -3
Hence:zc::—‘;:Q7 yzi—§=3, z::_gzzl‘

15. In Remark 4.0.4, take A = I,,. Then we deduce
(a) det E;; = —1;
(b) det E;(t) =t;
(c) det Eyj(t) = 1.

Now suppose that B is a non—singular n x n matrix. Then we know that B
is a product of elementary row matrices:

B=E---E,.
Consequently we have to prove that

det By --- B, A=det F;--- E,, det A.

We prove this by induction on m.
First the case m = 1. We have to prove det 1A = det E; det A if E; is
an elementary row matrix. This follows form Remark 4.0.4:

(a) det Ej;A = —det A = det E;;j det A;
(b) det E;(t)A = tdet A = det F;(t) det A;
(c) det E;;(t)A = det A = det Ej;(t) det A.
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Let m > 1 and assume the proposition holds for products of m elementary
row matrices. Then

det By EpEpiA = det(Ey-- Ep)(EpA)
= det(E; - E,)det (E,11A)
= det (Fy- - E,)det B, det A
= det ((Fy-- Ep)Eny)det A

and the induction goes through.

Hence det BA = det Bdet A if B is non-singular.

If B is singular, problem 26, Chapter 2.7 tells us that BA is also singlular.
However singular matrices have zero determinant, so

det B=0 detBA=0,

so the equation det BA = det B det A holds trivially in this case.
16.

a+b+c a+b a a
a+b a+b+c a a
a a a+b+c a+b
a a a-+b a+b+c
R1—>R1—R2 C —C 0 0
R2—>R2—R3 b b+c¢c —b—c —b
Ry —Rs—Rs |0 O c —c
= a a a+b a+b+c
c 0 0 0
Cy—CotCy | b 2b4c¢ —b—c —b | _ 250“ “bme b
= 0 0 c —c - ¢ —c

a 2a a+b a+b+c 2a atb a+tbte

2b4+c¢c —b—c —2b—c

03_)€3+C2 ¢ 0 ¢ 0 = 2b2zc Qa_—szE—ic
- 2a a+b 2a+2b+c
=c*(2b+c) L -1 = c*(2b + c)(4a + 2b + ¢)
2a 2a+2b+c '
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1+ Uy U1 Uy U1

17. Let A = uz Ltup 12 . Then using the operation
us us 1+ Us us
Uy Uy Uy 1 —+ Uy
Rl —>R1+R2+R3+R4
we have
t t t t
up l+wuy  up U
A —
Uug Uug 1+ us Uug
Uy Uy Uy 1+ uy

(where t = 1 4 uy + us + ug + uy)

1 1 1 1
_ ue 1+ us Ug Usy
_(1+U1+U2+U3+U4> us Us 1+U3 Us
Uy Uy Uy 1+ Uy
The last determinant equals
1 0 0 0
C= =Gl 100
03 — Cg — Cl 2 =1.
4 P w0001

18. Suppose that A = —A, that A € M,,»,,(F), where n is odd. Then

det A* = det(—A)
det A = (=1)"det A= —det A.

Hence (1 +1)det A =0 and consequently det A=0if 14+ 1#0in F.
19.

r 1 1 1 _ C3->C3—CQ r 1—r 0 0 :(1—7’)3
rr 11 Cy—Cy—=C; | r 0 1—r 0 '
ror or 1 = T 0 0 1—r
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20.

1 a>—=bc a* | Ry - R, — Ry | 1 a® — bc a’
1 b®>—ca b* | Ry — Ry— Ry | 0 V> —ca—a®+bc b*—at
1 2—ab = 0 ¢2—ab—a’+bc ¢t —a*

b —ca—a*+bc b*—at
Z—ab—a*+bc ct—at
(b—a)(b+a)+c(b—a) (b—a)
c+a)+blc—a) (c—a)c+a)(c®+ad?)
b+a+c) (b—a)(b+a) b2+a2)‘
cta+b) (c—a)lc+a)(c®+a?)
b+a+c (b+a)b*+a?)
ct+a+b (c+a)®+a?)
1 (b+a)(b2+a2)’
1 (c+a)(c®+a?)

b+ a)(b? + a?) ’
(c—a)
(b—a)
(c—a)

cC—a

NN NN
N N N N

— (b-a)c—a)

= (b—a)(c—a)la+b+c) ‘
Finally

2 2
i (b+a)(b +a)‘ A+ ac® + ca + a®) — (* + ab? + ba? + a®)

(c+a)(+a?)
& —b*) +a(c® —b*) +a*(c—1D)

c—b)(c? +cb+ b+ alc+b) + a?)
c—b)(c® +cb+ b+ ac+ ab+ a?).

(
(
(
(
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Section 5.8

1.
(1) (=3 +i)(14 —20) = (=3)(14 — 2i) 4 (14 — 2i)
= {(=3)14 — (=3)(20)} +1i(14) — (2)
= (=42 +67) + (140 + 2) = —40 + 20i.
(i) 2+ 31 (2 + 3i)(1 + 44)
11 =
1—4i (1 — 44)(1 + 44)
(24 34) 4 (2 + 30)(44)
B 12 + 42
_ Zlo+1 —10 11
- T 17 1
14 2i)? 14 4i + (20)?
(iﬁ)( + ?) _ 1+ z—l—.( 7)
—1 1—1
14 4i—4 344
I T
(=34 4)(1+14) —7+z‘__z+1i
B 2 2 227
2. (i)
iz+(2-100)2 =32+2i < 2(i+2—10i —3) =2
& 2(-1-9)=2 < 2
= 2(—1—N) =27 & 2=
14 9i
0 —2i(1-9) -—18—-2 —9—i
B 1+81 82 41
(ii) The coefficient determinant is
14+ 2—1 . . 4 . .
‘1+22. 51 =(1+9)3+i)—(2—i)(1+2i)=—-2+17#0.

Hence Cramer’s rule applies: there is a unique solution given by

-3t 2—1
2421 341 -3 —-11z .
z = - = — = —1457
—24+1 —24+1
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‘ 14+4¢ —=3i

1+2i 242 —6+7 19-8i
w e == — .
—2+1 -2+ 5
3.

, , 1419)1% —1
1+ (1 cee 4 (1 9 _ (—
+ (T +i)+---+ (1+19) A1
(1+4)100 —1

- =—i{(1+i)""—1}.

Now (1 + ) = 2i. Hence
(14 0)100 = (24)%0 = 250750 — 930(_1)% — 930,
Hence —i {(1 44)'1% — 1} = —i(=2% — 1) = (250 + 1)i.
4. (i) Let 22 = —8 — 6i and write z=x-+iy, where = and y are real. Then
22 = a? — y* + 22yi = —8 — 61,

so 22 — y?> = —8 and 22y = —6. Hence

—3\?2
y=—-3/x, x2—<—) = -8,

so 2t 4+ 822 — 9 = 0. This is a quadratic in 2. Hence 2?> = 1 or —9 and

consequently 22 = 1. Hence v = 1, y = —3 or x = —1 and y = 3. Hence
z=1—3to0or z=—1+ 31.

(ii) 22 — (3 +14)z + 4 + 3i = 0 has the solutions z = (3 + i + d)/2, where d is
any complex number satisfying

d?> = (3+1i)* —4(4 + 3i) = —8 — 6i.
Hence by part (i) we can take d = 1 — 3i. Consequently

3 4i (1 30)

=2— 1+ 2.
5 7 Or + 21

z
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(i)

(iii)

The number lies in the first quadrant
of the complex plane.

|4 +i| = V42 + 12 = V17.

Also Arg(4 4 i) = a, where tana =
1/4 and 0 < a < 7/2. Hence a =
tan ~1(1/4).

The number lies in the third quadrant
of the complex plane.

-3 —1| |=3—1
2 | 2
1 1
= /(BT (C12=2voF1=
VR (IR = VT
Also Arg(=2=!) = —7 + o, where
tanow = 1/2 = 1/3 and 0 < a < /2.

3
2
Hence o = tan ~*(1/3).

The number lies in the second quadrant
of the complex plane.

| —1+2i] = /(=1)2+22 = V5.
Also Arg(—1+ 2i) = m — «, where

tana = 2 and 0 < o < 7/2. Hence
a = tan ~12.
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2+ By
(iv) The number lies in the second quadrant Y
of the complex plane.
3 | —1+iv3 a
2 B 2
1 1
Also Arg (5 + ¥%%) = m — o, where
tana = L2/1 = /3 and 0 < o < 7/2
Hence o = /3
6. (i) Let 2 = (1 +14)(1+ v/34)(v/3 — i). Then
2] = 14|11+ V3i||V3 — i
= VI 1+ (VB (VB + (12
= V2VIVA=4V2.
Argz = Arg(1+4) + Arg(1+V3) + Arg(v3 —4) (mod 27)
T n T m )
4 3 6 12°
Hence Argz = % and the polar decomposition of z is
2 =42 Cos——i-zsur15—7T
B 12 12
.. _ (149)5(1—iV/3)°
(ii) Let z = A Then
: , 5
P (T [ CE
(V3 +0)! 2¢
Argz = Arg(1+14)° + Arg (1 —V3i)° — Arg (V3 +4)*  (mod 27)

5Arg (14 i) 4 5Arg (1 — V/3i) — 4Arg (V3 + 1)

s —T —137 117
— — —4———5 .
54+5( 3 ) 6 12 12
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Hence Arg z = LT and the polar decomposition of z is

12

11 11
2= 27/2 cos—ﬂ %—z'sin—7T .
12 12

7. (i) Let z = 2(cos § +isin}) and w = 3(cos § + isin §). (Both of these

numbers are already in polar form.)

(a) zw = 6(cos (§ + §) +isin(§ + %))

_ 5T 4 iain B
= 6(cos 55 +isin 7).

(b) 2= %(cos (53— %) +isin(§ —%))

= 2(cos

117

11
= )

+ 7 8in ED)
(a) (1+14)?=2i,so

(144)12 = (20)° = 2° = 64(:*)® = 64(—1)* = —64.

1 -1 1
— — -3 = — —= - = —‘_
= =g

8. (i) To solve the equation z? = 1 + V/3i, we write 1 + v/3i in modulus—
argument form:

1+/3i = 2(cosg+z’sin%).

Then the solutions are

T4+ 2k 2 +2k
zk:ﬂ(005<¥>+isin(%>), k=0, 1.
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Now k = 0 gives the solution

2 = \/i(cos%—i—z’sin%) =2 <£+3> — \/ig_i_
Clearly z; = —2.

4

(ii) To solve the equation z* = i, we write ¢ in modulus—argument form:

. 7T+, LT
1 = CoS — +¢sin —.
2 2

Then the solutions are

T 42k T 42k
2k = COS (%) + isin (%) k=0,1,2, 3.

X +2km
Novvcos(2 >:cos(g+k—’r),so

4
Tl km ‘0 7 km
ko= o8 8 2 i 8 2

( 7r+..7r>k< 7r+..7r)
= |(cos— sin — COS — sin —
5 zm2 S 21118
-k T .. T
= COS — + 78In — ).
i"( A 21118)

Geometrically, the solutions lie equi—spaced on the unit circle at arguments

Tom m_Smom,  9rom m It
8 8 2 88 8 8 2 8
Also 29 = —zp and z3 = —2;.
(iii) To solve the equation 2% = —8i, we rewrite the equation as

() -

(z) —14++/3i —1—/3i
=1, ——— o ——.

—2i) 7 2 2
Hence z = —21, V3+ior —V3+i.

Then
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Geometrically, the solutions lie equi-spaced on the circle |z| = 2, at ar-

guments
2r  5m ow 2t 3w

7T7T+
66 3 6 6 3 2
2-2

(iv) To solve 2* = 1, we write 2 — 2 in modulus—argument form:

9 _ 95 — 93/2 T e T )
1 <cos 1 + 181n 1

Hence the solutions are

=+ 2k =+ 2k
2 = 2%/ cos (4T7T> + ¢ sin <4T7T), k=0,1, 2, 3.

We see the solutions can also be written as

2 = 23/8k (COS I—g + 7sin I—g)
_ 23/8‘k:< 1_.. i)
1" | cos 1sin 16

Geometrically, the solutions lie equi-spaced on the circle |z| = 23/8, at argu-
ments

-7 -7 7r_77T —T 7r_157r —T 7T_237T

6 16 72-16 16 2 16 16 2 16

Also z9 = —zp and z3 = —2;.
9.
2447 —14+2 2 1 i1
1+i —1+i 1 ?:?:% 1+i —1+i 1
142 —2+4 14i 3 3o i —-1
. 1 i 1 1 i 1
&;§§ngloo_4 Ry—iRy | 0 0 1
3 3 ! 00 0 000
1 i 0
Rl — R1 — RQ 0 0 1
000
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The last matrix is in reduced row—echelon form.
10. (i) Let p=1+im and z = x + iy. Then
pz+pz = (I—im)(z+y)+ (I +im)(xz —iy)
= (lz + liy —imz + my) + (lx — liy + imz + my)
= 2(lx +my).
Hence pz + pz = 2n & lz + my = n.

(ii) Let w be the complex number which results from reflecting the complex
number z in the line [x + my = n. Then because p is perpendicular to the
given line, we have

w—z=1tp, teR. (a)

Also the midpoint of the segment joining w and z lies on the given line,

(<59 () - »
(55 v o

Taking conjugates of equation (a) gives

w—+z
2

w—Z=1p. (c)
Then substituting in (b), using (a) and (c), gives

_ (2w —tp N 2Z+1p
=n
A P{ ™

pw + pz = n.

and hence

(iii) Let p=b —a and n = |b|> — |a|*>. Then

lz—a|=|z—b & |z—al*=|z-b?
& (z—a)(z—a) = (z—b)(z—0)
s (z—a)(z—a) = (¢2-0b)(Z—0D)
& Z—aZ—za+aqd = 2Z—bz—zb+bb
sb-az+b—az = [b*—]a?
S pz+pz = n.



Suppose z lies on the circle |§:‘;‘ and let w be the reflection of z in the

line pz + pz = n. Then by part (ii)

pw + pz = n.
Taking conjugates gives pw + pz = n and hence
_n—pw

i=— (a)

Substituting for z in the circle equation, using (a) gives

n_ﬁpw—a n — pw — pa
A= |—— = — . (b)
%—b n — pw — pb
However
n—pa = |b*—|a*—(b—a)a
= bb—da— ba+aa
= b(b—a) = bp.

Similarly n — pb = ap. Consequently (b) simplifies to

w—a
w—b

which gives ‘

66



11. Let a and b be distinct complex numbers and 0 < o < 7.
(i) When 2z lies on the circular arc shown, it subtends a constant angle
«. This angle is given by Arg(z; —a) — Arg(z; — b). However

Arg (Zl — a) = Arg(z1 —a) — Arg(z; — b) + 2k7

Z1 — b
= «+ 2km.
It follows that £k =0, as 0 < a < w and —7 < Argf < 7. Hence
Arg (21 — a) = a.
21 — b
Similarly if z5 lies on the circular arc shown, then

Arg <Z2_a) = = —(r—a)=a—T.

Zg—b

Replacing a by m — «, we deduce that if z, lies on the circular arc shown,

then
Arg (24—a) =7 — q,
Z4—b

while if z3 lies on the circular arc shown, then

Arg <Z3 — a) = —a.
Zg—b

The straight line through a and b has the equation

z=(1—-1t)a+tb,

where ¢ is real. Then 0 < ¢t < 1 describes the segment ab. Also

z—a 1
z—b t—1
Hence 2= is real and negative if 2 is on the segment a, but is real and positive

if z is on the remaining part of the line, with corresponding values

Arg (z—a) =m, 0,
z—b
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respectively.

(ii) Case (a) Suppose z1, 29 and z3 are not collinear. Then these points
determine a circle. Now z; and z, partition this circle into two arcs. If z3
and z4 lie on the same arc, then

Z3 — 21 24 — 21
A =A :
e <Z3_Z2> e ('24_Z2>7

whereas if z3 and z, lie on opposite arcs, then

and

Hence in both cases
23 — 21 R4 — 21
Arg /
23 — 29 Z4 — 29

In other words, the cross—ratio

Il
=
(]
(0]
VR
N
w
|
RN
~_
|
>
=
(0]
VR
N
Ny
|
N
o
~
—~
=
o
o,
[\
2

0 or 7.

23 — 21,24 — 21

Z3 T 22 24 — 29

is real.
(b) If z1, 29 and z3 are collinear, then again the cross-ratio is real.
The argument is reversible.

(iii) Assume that A, B, C, D are distinct points such that the cross—ratio

23 — 21 24 — 21
r =

23 — 22 24 — 22
is real. Now r cannot be 0 or 1. Then there are three cases:
i) 0<r <1,

(i) r < 0;
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(iii) 7 > 1.

Case (i). Here |r|+ |1 —r|=1. So

+’1_(Z4—Zl .Z3—ZQ>’:1.
24 —R9 R3 — 21

Multiplying both sides by the denominator |z4 — 2zo||23 — 21| gives after sim-
plification

Z4 —R1 R3 — k2

Z4 —R2 23— X1

|24 — 21|23 — 22| + |22 — 21|24 — 23| = |24 — 22|23 — 21,

or

(a) AD-BC+ AB-CD = BD - AC.
Case (ii). Here 1+ |r| = |1 — r|. This leads to the equation

(b) BD-AC + AD - BC+ = AB - CD.
Case (iii). Here 1+ |1 — r| = |r|. This leads to the equation
(¢) BD-AC+ AB-CD = AD - BC.

Conversely if (a), (b) or (c) hold, then we can reverse the argument to deduce
that r is a complex number satisfying one of the equations

[+ =rl=1 T4pl=l=r] 14+[1-rl=]r

from which we deduce that r is real.
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Section 6.3
4 -3

1. Let A = [ L0 } Then A has characteristic equation A2 — 4\ +3 = 0

or (A —3)(A—1) =0. Hence the eigenvalues of A are A\ =3 and Ay = 1.
A1 = 3. The corresponding eigenvectors satisfy (A — A1) X =0, or

st

or equivalently = — 3y = 0. Hence

and we take X; = [i’]

Similarly for Ay = 1 we find the eigenvector Xy = [ ! 1

Hence if P = [X;]|X3] = { ? } ] , then P is non—singular and
o 30
P AP = [ 01l

Hence
A:P[go}P”

and consequently

S L B
L
o [3 1] 071 1 -1
N 11 0 1™ |2 —1 3
13 1 -1
) 3" 1 -1 3
B 1 3n+1_1 _3n+1+3
) 3" —1 —3"+3
3" —1 3—3"
- A 1.
y At h
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2. Let A= [ g?g 411?2 ] Then we find that the eigenvalues are A\; = 1 and
Ao = —1/5, with corresponding eigenvectors

2 —1
Xl_{l:| and X2—|: 1:|
Then if P = [X;]X3], P is non-singular and

PlAP:{1 0 } and A:P{l 0 }Pl.

0 —1/5 0 —1/5
Hence
A= PH (_1/5)3}131
Hp[ég]Pl
SR
- 5li o]l s
SHHEEE|

3. The given system of differential equations is equivalent to X = AX, where

=[23] mxeg]

. 2 1. . . .
The matrix P = 51 } is a non-singular matrix of eigenvectors corre-

sponding to eigenvalues Ay = —2 and Ay = 1. Then

., -2 0
pap-[ 2 0]

The substitution X = PY, where Y = [z1, 11|, gives
. -2 0
SEE
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or equivalently 21 = —2x; and 3j; = y;.
Hence 21 = x1(0)e™* and y; = y;(0)e’. To determine z1(0) and y;(0), we
note that

(oo = o =318 ][ a]-[3]

Hence 71 = 3e™% and y; = 7et. Consequently

T =21 +y =6e 2 +7 and y =5z, +y = 15e 2 + 7€'

4. Introducing the vector X, = [ n } , the system of recurrence relations

Tpt1 = 3x, — Yn
Ynt1 = —Tp+ 3yn7
3 -1
becomes X, .1 = AX,,, where A = 1 3| Hence X, = A" X, where

1
%[5
To find A™ we can use the eigenvalue method. We get

g L2 2 —an
T2 2n—4r 2npyn
Hence
120447 1
An = 22" —4n 2n+4NHQ]
L[ 2r4ar 4 2(2m —4m)
22" =4 42020 +47)
L[ 3x2n—ar] [ (3x2"—4m)/2
T 3x2n4dan | | 3x2m+4m)/2 |°

Hence z,, = 5(3 x 2" —4") and y, = 5(3 x 2" 4 4").

a b
5. LetA—[C J

A1, A2 and corresponding eigenvectors X, Xs. Also let P = [X;]X5)].

} be a real or complex matrix with distinct eigenvalues
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(a) The system of recurrence relations

Tpt+1 = a$n+byn

Yn+1 = an+dyn

has the solution
Tn n Zo )\1 0 1 " i
= A =(P P
MR NG LN
A0 T
— P 1 P*l 0
R
- AT 0 o

= [X1’X2] [ i\\gg

a x
— P*l 0 :| )
5]=[a
(b) In matrix form, the system is X = AX, where X = [ 5 ] . We substitute
X = PY, where Y = [z1, 11]". Then

} = NaX; + AIBXo,

where

X = PY = AX = A(PY),
SO

Y = (P'AP)YY = {AOI AOZ} {"y“”

Hence 151 = )\1%1 and yl = )\le. Then
z1=21(0)eM" and  yi = 1 (0)e™.

But

SO



Consequently z1(0) = « and y;(0) = 5 and

At
z T oe
- p — XX
M [y} ) ]{5}
= CJéeAltXl + ﬁe’\2tX2.

a b
6. LetA[c d

and \ = a—ib, with corresponding eigenvectors X = U+iV and X = U—iV,
where U and V are real vectors. Also let P be the real matrix defined by
P = [U|V]. Finally let a + ib = re®, where r > 0 and 6 is real.

} be a real matrix with non-real eigenvalues A = a + b

(a) As X is an eigenvector corresponding to the eigenvalue A, we have AX =
AX and hence

AU +1V) = (a+ib)(U+iV)
AU +iAV = aU — bV +i(bU + aV).

Equating real and imaginary parts then gives

AU = aU =bV
AV = bU +aV.

(b)

a b a b
AP = A[U|V]| = [AU|AV] = [aU—-bV |bU+aV] = [U|V] | ol = P
Hence, as P can be shown to be non—singular,

piap—| @b
—b a |’

(The fact that P is non—singular is easily proved by showing the columns of
P are linearly independent: Assume zU + yV = 0, where x and y are real.
Then we find

(x+iy)(U —iV)+ (x —iy)(U +iV) = 0.
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Consequently z+iy = 0 as U —iV and U +14V are eigenvectors corresponding
to distinct eigenvalues a — ib and a + b and are hence linearly independent.
Hence x = 0 and y = 0.)

(c) The system of recurrence relations

Tp4+1 = a$n+byn

Yn+1 = Cmn+dyn

has solution
HERIES
Yn Yo
]
= P P
—b a Yo
_p rcosf rsind |"[ a
n —rsinf rcosf 16
_ Pr”[ cos 6 sm@} [a}

—sinf cosf I}
cosnd sinn@] [a}

—sinnf cosnb o)

acosnf + [Fsinnd }
—asinnf + 3 cosnf

r" {(acosnb + Bsinnb)U + (—asinnd + G cosnd)V'}
" {(cosnb)(aU + V) + (sinnb)(BU — aV)}.

- |

- oWl

(d) The system of differential equations

L~ ar+b
g = artby
d

d_?i = cr+dy

is attacked using the substitution X = PY, where Y = [z1, y1]*. Then
Y = (PT*AP)Y,

SO



Equating components gives
fl = ar;+ by1
Y1 = —bri+ay:.

Now let z = x1 + 2y;. Then

z= 1:1 + Zyl = (axl + byl) + Z'(—bl’l + ayl)
(a —ib)(x1 +iy;) = (a —ib)z.
Hence
P Z(Q)e(afz’b)t
1 +iyr = (21(0) + iy1(0))e™(cos bt — isin bt).

Equating real and imaginary parts gives

71 = e {x1(0)cosbt + y,(0) sin bt}
v = e {y1(0)cosbt — x1(0)sinbt} .

Now if we define o and (3 by

31 3]

we see that o = 21(0) and 8 = y1(0). Then

HEEH

_ V] [ e (a cosbt + Bsin bt) }

e (3 cos bt — asin bt)
= e"™{(acosbt + Bsinbt)U + (B cosbt — asinbt)V'}
= e™{cosbt(alU + BV) + sinbt(BU — aV)}.

7. (The case of repeated eigenvalues.) Let A = [ i Z } and suppose that

the characteristic polynomial of A, \* — (a + d)\ + (ad — be), has a repeated
root . Also assume that A # als.
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N —(a+dA+(ad —be) = (A—a)?
= A\ —2a)\+ o

Hence a + d = 2a and ad — be = o and

(a+d)?* = 4(ad — be),
a’+2ad+d*> = 4ad — 4be,
a’ —2ad+d* 4+ 4bc = 0,
(a —d)* +4bc = 0.

Let B— A — al5. Then

B*=(A-al)? = A*—-2aA+d’l
A% — (a+ d)A + (ad — be) s,

But by problem 3, chapter 2.4, A? — (a + d)A + (ad — bc)ly = 0, so
B? =0.

Now suppose that B # 0. Then BE; # 0 or BE, # 0, as BE; is the
i—th column of B. Hence BXs # 0, where Xy, = Fy or Xy, = Ejs.

Let X; = BX,; and P = [X;|X5]. We prove P is non-singular by
demonstrating that X; and X, are linearly independent.
Assume X7 + yXs = 0. Then

rBXo+yXes = 0
B(xBX,+yX,) = B0=0
tB*X, +yBX, = 0

x0Xo +yBXy =

yBX

Hence y = 0 as BX, # 0. Hence xtBX, = 0 and so z = 0.
Finally, BX1 = B(BXQ) = BQXQ = O, SO (A - OéIQ)Xl =0 and

AXl = CMXl. (2)
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Also
Xl = BX2 = (A - OéIQ)XQ = AXQ - CYXQ.

Hence
AX2 = X1 + OéXQ. (3)
Then, using (2) and (3), we have
AP = A[X1[Xs] = [AXy|AX;]
= [QX1|X1 + OZXQ]

_ [X1|X2][g ;]

Hence
AP_P[O‘ 1]
0 «

and hence

-1 . a 1
par[o 1]

8. The system of differential equations is equivalent to the single matrix

equation X = AX, where A = [ j _é

The characteristic polynomial of A is A> — 12X+ 36 = (A — 6)?, so we can
use the previous question with a = 6. Let

B:A—612:{_Z _”

Then BX, = -2 0 if Xy = UL Also let X, = BX,. Then if
4 0 0

P = [X;]X3], we have
U
PTAP = { 0 6 ] :

X1

Now make the change of variables X = PY, where Y = [ y
1

] . Then

S -1 161
Y =(P AP)Y[O G}Y’
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or equivalently 2, = 6x1 4+ y; and 1, = 6y;.
Solving for y; gives y; = y1(0)e%. Consequently

£y = 621 + y1(0)e’.
Multiplying both side of this equation by =% gives

d
—(e %)) = e %% —6e %z = y,(0)

dt(
e %z, = y(0)t +ec,
where ¢ is a constant. Substituting ¢ = 0 gives ¢ = x1(0). Hence
e %2y = y1(0)t + 21(0)

and hence
zy = % (y1(0)t + 21(0)).

However, since we are assuming z(0) = 1 = y(0), we have
{ 21(0) } _ p [ (0) }
y1(0) y(0)

1[0 -1 1 [-1] [1/4
4| -4 =2 1| —4| -6 |3/2]
Hence zy = % (3¢ + 1) and y; = 3.

2
Finally, solving for x and v,

z] [ -2 1]'3;1]
Yy i 4 0 | Y1

o 1 eSt(3t+ 1)
o)

Hence x = €%(1 — 3t) and y = (6t + 1).
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9. Let
1/2 1/2 0
A= | 1/4 1/4 1)2
1/4 1/4 1/2

(a) We first determine the characteristic polynomial ch4 ().

A—1/2 —1/2 0
chy(A) = det (A3 — A) = 1/4 A—1/4  —1/2
—1/4 —1/4 A—1/2

O=2)[ "5 T s

N S
D)

M0 005

= /\(A2—%+i>

- A(A—l)()\—i).

(b) Hence the characteristic polynomial has no repeated roots and we can
use Theorem 6.2.2 to find a non—singular matrix P such that

1
0, ).

P71AP = diag(1, I

We take P = [X|X;|X3], where X7, Xy, X3 are eigenvectors corresponding
to the respective eigenvalues 1, 0, i.
Finding X;: We have to solve (A — I3)X = 0. we have

—1/2  1/2 0 10 -1
A—IL=| 1/4 =3/4 12| >|01 -1
1/4  1/4 —1/2 00 0

Hence the eigenspace consists of vectors X = [z, y, z|' satisfying x = z and
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y = z, with z arbitrary. Hence

z 1
X=|z|=2z]1
z 1

and we can take X; = [1, 1, 1]".
Finding X5: We solve AX = 0. We have

/2 1/2 0 1 10
A=11/4 1/4 1/)2 | —= |0 0 1
1/4 1/4 1/2 0 00
Hence the eigenspace consists of vectors X = [z, y, 2]’ satisfying x = —y and

z = 0, with y arbitrary. Hence

X = y | =y 1
0 0

and we can take X, = [—1, 1, 0]
Finding X3: We solve (4 — 113)X = 0. We have

/4 1/2 0 10 2
A—=-I3=1]1/4 0 1/2| —=1]0 1 -1
1/4 1/4 1/4 00 O
Hence the eigenspace consists of vectors X = [z, y, z|' satisfying x = —22

and y = z, with z arbitrary. Hence

—2z -2
X = z | ==z 1
0 0
and we can take X3 = [-2, 1, 1]".
1 -1 =2
Hence we cantake P= | 1 1 1
1 0 1
(c) A= Pdiag(1, 0, 3)P~! so A® = Pdiag(1, 0, )P
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Hence

A" =

10. Let

1 —1 -2
1 1 1
1 0 1
B 2
1 1 0 —?
ol IO
L 4n
B 2
[ 1
ol
L+ an -
1 1 1 1
— 1 1 1 +
111
A=

1 0 0 1 1 1
00 O 3 0
00 -1 -1
1 1 1
0o 3 -3
-1 -1 2
2 4
oy
vty
o lts
] 2 2 —4
s | L L2
‘ -1 -1 2
5 2 =2
2 5 —2
-2 =2 5

(a) We first determine the characteristic polynomial ch4(A).

ChA(A)

C&-—>C&——C§

>

>

(
(A
(
(

A

3

3
3
3

)
)
)
)

-2 A=5 =247

0
A—54'

—A+T

5
{A=5)(=A+T7)+8}

(_
(_

A 45N+ TA — 354 8)
A4+ 12X — 27)
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= ~(A=3)(-DA-3)(A~9)
= (A=3)*(A—9).

We have to find bases for each of the eigenspaces N(A—913) and N(A—313).
First we solve (A — 313)X = 0. We have

2 2 =2 11 -1
A—3I3 = 2 2 -2 —=100 0
-2 -2 2 00 O
Hence the eigenspace consists of vectors X = [z, y, 2]" satisfying v = —y+z,
with y and z arbitrary. Hence
—y+z -1 1
X = Y =y 11+2]0],
z 0 1
so Xj =[-1, 1, 0]" and X5 = [1, 0, 1]* form a basis for the eigenspace corre-
sponding to the eigenvalue 3.
Next we solve (A —913)X = 0. We have
-4 2 =2 1 01
A—-9I3 = 2 -4 2| —=1[1011
-2 =2 —4 0 00
Hence the eigenspace consists of vectors X = [z, y, 2] satisfying x = —z and
y = —z, with z arbitrary. Hence
-z -1
X=| -2 |=2z| —1
z 1
and we can take X3 = [—1, —1, 1]* as a basis for the eigenspace corresponding

to the eigenvalue 9.
Then Theorem 6.2.3 assures us that P = [X|X5|Xj3] is non-singular and

PlAP =

O O W

0
3
0

o O O
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Figure 1: (a): 22 — 8z + 8y + 8 = 0; (b): y* — 122 +2y +25=0

Section 7.3

1. (i) 22 —8z+8y+8 = (z—4)*4+8(y—1). So the equation 2 —8z+8y+8 = 0
becomes
(1)

if we make a translation of axes x —4 =11, y — 1 = y;.
However equation (1) can be written as a standard form

1
1= -3,

8
which represents a parabola with vertex at (4, 1). (See Figure 1(a).)

(ii) y* — 122+ 2y + 25 = (y + 1) — 12(x — 2). Hence y* — 122+ 2y +25=10
becomes
(2)

if we make a translation of axes xt —2 =1, y+ 1 =y;.
However equation (2) can be written as a standard form

7+ 8y, =0

Y2 — 122, =0

y% = 12x4,

which represents a parabola with vertex at (2, —1). (See Figure 1(b).)
0 2
2 =3
ues of A are the roots of A2 4+ 3\ —4 = 0, namely \; = —4 and \y = 1.

2. 4oy —3y* = X'AX, where A = [ ] and X = [ ; ] . The eigenval-
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The eigenvectors corresponding to an eigenvalue A are the non-zero vec-

tors [z, y]" satisfying
0-X 2 z]1 [0
2 —=3-A y| 0]

A1 = —4 gives equations
dr+2y = 0
2c+y = 0
which has the solution y = —2x. Hence

x| x| 1
y | | =2z | T2 |
A corresponding unit eigenvector is [1/v/5, —2/v/5]".

Ay = 1 gives equations

—x+2y = 0
2c —4y = 0

which has the solution = = 2y. Hence

HEFEIH

A corresponding unit eigenvector is [2/4/5, 1/v/5]".

Hence if
12
P=|Y3 [,
NS

then P is an orthogonal matrix. Also as det P = 1, P is a proper orthogonal

matrix and the equation
Y Y1

represents a rotation to new xy, y; axes whose positive directions are given
by the respective columns of P. Also

cn [—4 00
PAP[ 01l
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Then X'AX = —42% + y? and the original equation 4zy — 3y? = 8 becomes
—42? 4+ y? = 8, or the standard form

2 2
—r Y
— = = 17
2 8
which represents an hyperbola.
The asymptotes assist in drawing the curve. They are given by the equa-

tions

2 2
%—I—%:O, or 1y, = £2x.
Now
1 =2
HEdMEEEH
n Y VAR y |’
SO
x — 2y 2 +y

Ir =

Hence the asymptotes are

2r+y (:c—Zy)
2TV 4o ,
V5 V5

which reduces to y = 0 and y = 42/3. (See Figure 2(a).)

_g _g} and X = {z] The
eigenvalues of A are the roots of \> — 13\ + 36 = 0, namely A\; = 4 and
Xy = 9. Corresponding unit eigenvectors turn out to be [1/4/5, 2/+/5]* and
[—2/+/5, 1/4/5]t. Hence if

3. 822 — 4xy + 5y = X'AX, where A = [

1 -2
P=1% ¥,
VARV

then P is an orthogonal matrix. Also as det P = 1, P is a proper orthogonal

matrix and the equation
{ } - { 1 }
Y Y1

represents a rotation to new xy, y; axes whose positive directions are given
by the respective columns of P. Also

cin [40
PAP{OQ.
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Figure 2: (a): 4zy — 3y* = §; (b): 822 — 4y + 5y* = 36

Then X!AX = 42? + 9y? and the original equation 8z% — 4xy + 5y* = 36
becomes 4z? + 9y? = 36, or the standard form

which represents an ellipse as in Figure 2(b).
The axes of symmetry turn out to be y = 2z and x = —2y.

4. We give the sketch only for parts (i), (iii) and (iv). We give the working
for (ii) only. See Figures 3(a) and 4(a) and 4(b), respectively.
(ii) We have to investigate the equation

522 — dxy + 8y* + 4v/5x — 16v/5y +4 = 0. (3)

Here 52 — 4xy + Sy?> = X'AX, where A = [_g _é] and X = {;1

The eigenvalues of A are the roots of A2 — 13\ + 36 = 0, namely A\; = 9 and
Ay = 4. Corresponding unit eigenvectors turn out to be [1/v/5, —2/4/5]* and

[2/+/5, 1/4/5]t. Hence if

42
P=|Y% |,
Vi VB

then P is an orthogonal matrix. Also as det P = 1, P is a proper orthogonal

matrix and the equation
Yy Y1

87



Figure 3: (a): 42? — 9y? — 24z — 36y — 36 = 0;

Vhr — 1635y +4 =0

(b): 5z? — day + 8y* +

y ,yz
19 //
. L45
9 ‘-4% 45
S
/// "'9

Figure 4: (a): 42 + y* — 4oy — 10y — 19 = 0;

70 — 30y +29 =0

: T7x% + T8xy — 27Ty? +



represents a rotation to new x1, y; axes whose positive directions are given
by the respective columns of P. Also

con [90
par-[20]

Moreover
5x% — day + 8y® = 9z + 4y

To get the coefficients of 21 and y; in the transformed form of equation (3),
we have to use the rotation equations

1
r=—=(r1 + 2y1),

V5

Then equation (3) transforms to

1
= —(—2z1+y1).
Y \/5( 1+ 1)
922 4 4y? + 362, — 8y, +4 =0,
or, on completing the square,
9(x1 +2)° + 4y — 1)* = 36,

or in standard form

2 2
Ty Y

—= 4+ 2= =1
4+9 ’

where x5 = x1+2 and y» = y; — 1. Thus we have an ellipse, centre (2, y2) =
(0, 0), or (z1, 1) = (=2, 1), or (z, y) = (0, V/5).

The axes of symmetry are given by o =0 and y» =0, or 1 +2 = 0 and
1 —1=0,or

1 1
\/—g(x—Qy)+2:0 and %(213—1—3;)—1:0,

which reduce to = — 2y + 2v/5 = 0 and 2z +y — /5 = 0. See Figure 3(b).
5. (i) Consider the equation

222 +y? + 3zy — 5z — 4y + 3 = 0. (4)
2 3/2 —5/2 4 3 =5 1 1 -1
A=| 3/2 1 —-2|=8| 3 2 —4|=8| 3 2 —4]|=0.
—5/2 =2 3 -5 —4 6 —2 -2 2
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Let x = x1 + «, y = 31 + § and substitute in equation (4) to get
21+ a)’ +(y1 +8)° +3(x1 +a)(y1 + 8) = 5(x1+a) —4(y1 +8)+3=0 (5).
Then equating the coefficients of z; and y; to 0 gives

da+33-5 = 0

Ja+26—-4 = 0,

which has the unique solution a = 2, § = —1. Then equation (5) simplifies
to
227 + yi + 3z = 0 = (221 4 y1) (21 + 1)

So relative to the x, y; coordinates, equation (4) describes two lines: 2x; +
y1 = 0 and 21 +y; = 0. In terms of the original x, y coordinates, these lines
become 2(x —2)+ (y+1)=0and (z —2)+ (y+1)=0,ie. 22+y—3=0
and z + y — 1 = 0, which intersect in the point

(I’, y) = (O[, ﬁ) = <2a _1)
(ii) Consider the equation

922 +¢* — 6y + 62 —2y+1=0. (6)

Here
9 -3 3
A=1|3 1 —-1|=0,
3 —1 1
as column 3 = — column 2.

Let x = x1 + a, y = y1 + [ and substitute in equation (6) to get
91+ )’ + (y1 + B)* —6(x1 +a)(y1 + B) +6(x1 + ) —2(y1 + B) + 1 =0.
Then equating the coefficients of z; and y; to 0 gives

18a—-66+6 = 0
—6a+26-2 = 0,

or equivalently —3c+ 3 — 1 =0. Take & = 0 and § = 1. Then equation (6)
simplifies to

922 +yf — 6m1y1 = 0= (321 — y1)* (7)
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In terms of x, y coordinates, equation (7) becomes
Bz —(y—1)*=0, or3z —y+1=0.
(iii) Consider the equation
2 +day+ 4yt —ax—2y—2=0. (8)
Arguing as in the previous examples, we find that any translation
r=x14+a, y=uy+p

where 2a+ 43 — 1 = 0 has the property that the coefficients of z; and y; will
be zero in the transformed version of equation (8). Take =0 and o = 1/2.

Then (8) reduces to

9
x} + dzyy + 4yt — 1 0,

or (z1 + 2y;)? = 3/2. Hence x; + 2y; = +3/2, with corresponding equations

r+2y=2 and z+2y=—1.
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Section 8.8

1. The given line has equations
3+t(13 —3) =3+ 10t,

—2+t(3+2) = -2+ 5t,
T+t(—-8—-7)=7-— 15t

The line meets the plane y = 0 in the point (x, 0, z), where 0 = —2 + 5¢, or
t =2/5. The corresponding values for z and z are 7 and 1, respectively.

2. E=1(B+C),F=(1-t)A+tE, where
AF/FE 2

t =

AF

AE

Hence

3. Let A= (2,1,4), B=(1,

t AB for some real t. We have

AF+FE (AFJ/FE)+1 3

AC=

Hence AC= (—1) AB and consequently C is

1
3

3

3

3

1 1
A+ Z(B+CQ)

1
“(A+B+C).

—A+§<;B+CO

—1,2), C = (3, 3,6). Then we prove AC=

1
2
2

Y

between C' and B, with AC' = AB.
4. The points P on the line AB which satisfy AP = %PB are given by

P = A+t AB, where |t/(1—t)] =2/5. Hence t/(1 — t) = +2/5.
The equation t/(1 —t) = 2/5 gives t = 2/7 and hence

_—

AB=

on the line AB. In fact A is

16/7
29/7
3/7



Hence P = (16/7, 29/7, 3/7).
The equation t/(1 —t) = —2/5 gives t = —2/3 and hence

27 L1 4/3
P=| 3|-3]4|= 1/3
~1 5 ~13/3

Hence P = (4/3, 1/3, —13/3).
5. An equation for M is P =A +t BC , which reduces to

T 14 6t
y = 2—3t
z 3+ Tt

An equation for N is Q = E + s EF, which reduces to

r = 1+4+9s
= —1
z = 8+ 3s.

To find if and where M and N intersect, we set P = (Q and attempt to solve
for s and ¢. We find the unique solution ¢ = 1, s = 2/3, proving that the
lines meet in the point

(x,y,2)=(1+46,2-3,347) = (7, —1, 10).
6. Let A=(3,5,6), B=(-279), C=(2 1, 7). Then
(1)
cos LZABC = (EA . ?C’)/(BA - BC),

where BA= [-1, —2, —3]* and BC'= [4, —6, —2]'. Hence
—44+124+6 14 1

VILVEG  VIAVEG 2
Hence ZABC = w/3 radians or 60°.

cos LZABC =
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cos ZBAC = (/TB . TC)/(AB - AC),

where AB= [1, 2, 3] and AC'= [5, —4, 1]*. Hence
5-8+3
V141/42
Hence ZABC = 7/2 radians or 90°.

(iii)

cos LZBAC = 0.

cos LACB = (CA - CB)/(CA - CB),

where CA= =5, 4, —1]* and CB= [—4, 6, 2]'. Hence

20 +24 — 2 42 V42 V3
cos LZACB = = = .
V42+/56 V42+/56 5 2

Hence ZACB = 7 /6 radians or 30°.

7. By Theorem 8.5.2, the closest point P on the line AB to the origin O is
given by P =A +t ZB, where

,_A0-AB A AB

AB? AB?
Now
-2 3
A- AB= 1 1| =-2
3 1
Hence t = 2/11 and
) , [3 —16/11
P=| 1|+ |1]=| 131
3 1 35/11

and P = (—16/11, 13/11,35/11).
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Consequently the shortest distance OP is given by

—16 2+ 13 2+ 35\* V1650 VI5EXIIx10 /150

11 11 1, 1 11 VI
Alternatively, we can calculate the distance OP?, where P is an arbitrary
point on the line AB and then minimize OP?:

. ) 3 —2+ 3t
P=A+tAB= 1| +t]l 1] = 14t
3 1 3+t
Hence
OP? = (=243t +(1+t)>+ (3+1)?
= 112 —4t+ 14
4 14
= 11 (= —t+—
< 11+11>
21? 14 4
= 11(dt=-= —
({ 11}+11 121>
21?150
= 11 [<{t— = .
({ 11} +121>
Consequently
150
P?>11x —
O =2 11 x 157
for all t; moreover
150
P?=11x —
0 * 191

when ¢t = 2/11.
8. We first find parametric equations for A by solving the equations

r+y—2z =1
r+3y—z = 4.

11 -2 1
13 -1 4|’
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The augmented matrix is



which reduces to
1 0 —5/2 —1/2
01 12 3/2|
Hence z = —% + gz, y = 5 — 5, with z arbitrary. Taking z = 0 gives a point
A= (—%, %, 0), while z = 1 gives a point B = (2, 1, 1).
Hence if C' = (1, 0, 1), then the closest point on A to C' is given by

P =A+tAB, where t = (/Té . /TB)/ABQ.

3
2

Now
. 3/2 . 5/2
AC=| —3/2 and AB= | —-1/2 |,
1 1
SO
t_gxg+—73x—71+1><1_11
- 2 1\ 2 — 9
G+ @i B
Hence
—1/2 11 5/2 4/3
P = 3/2 —I—B —-1/2 | = | 17/15 |,
0 1 11/15

so P = (4/3,17/15, 11/15).
Also the shortest distance PC' is given by

4\ 2 17\? 11\? /330
PC=4/(1-= i 11— — ) =X
(e IR (I N (R

9. The intersection of the planes z +y — 22 = 4 and 3x — 2y + 2z = 1 is the
line given by the equations

3 11 7
PEEYER YT E TR
where z is arbitrary. Hence the line £ has a direction vector [3/5, 7/5, 1]*
or the simpler [3, 7, 5]*. Then any plane of the form 3z + 7y + 5z = d will
be perpendicualr to £. The required plane has to pass through the point
(6, 0, 2), so this determines d:

3X64+7x04+5x2=d=28.
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10. The length of the projection of the segment AB onto the line C'D is
given by the formula

|CD - AB|
cD

Here C D= [—8, 4, —1]* and AB= [4, —4, 3]*, so

|CD - AB | (=8) x 4+ 4 x (—4) + (—1) x 3|
¢o V(=82 + 2+ (-1
| =51 5117
VB 9 37

11. A direction vector for £ is given by BC= [—5, —2, 3]*. Hence the plane
through A perpendicular to £ is given by

5 —2y+32=(-5) x3+(-2)x(-1)+3x2=—T.

The position vector P of an arbitrary point P on L is given by P = B+t BO ,

T 2 -5
y|l=11]+t] =21,
z 4 3

or equivalently t =2 —5t, y =1 —2t, 2 =4 + 3t.

To find the intersection of line £ and the given plane, we substitute the
expressions for z, y, z found in terms of ¢ into the plane equation and solve
the resulting linear equation for ¢:

—5(2 = 5t) — 2(1 — 2t) + 3(4 + 3t) = -7,

which gives t = —7/38. Hence P = (%, %7 %) and

1112 52\ 2 131\
AP = 3= 1= 2 =
oY (- 2Y (o 2
V11134 /293 x 38 /293
38 38 /38
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12. Let P be a point inside the triangle ABC. Then the line through P and
parallel to AC' will meet the segments AB and BC'in D and FE, respectively.
Then

P = (1-rD+rE, 0<r<I;
D = (1-s5B+sA, 0<s<l;
E = (1-t)B+tC, 0<t<Ll
Hence
P = (1-r{1-5B+sA}+r{(1-t)B+tC}
= 1-7msA+{(1—-r)(1—=s)+r(l—1t)}B+rtC
= oA+ B +1C,
where

a=1-=r)s, f=0=-r)(1—=8)+r(l—=1t), ~v=rt.
Then0<a<1, 0<y<1l,0<f<(l=r)+r=1. Also

a+fB+y=0-r)s+(1—=r)(1—38)+r(1—t)+rt=1.
13. The line AB is given by P = A +¢[3, 4, 5]*, or
r=606+4+3t, y=-1+4t 2=11+45t.
Then B is found by substituting these expressions in the plane equation
3r + 4y + 5z = 10.

We find t = —59/50 and consequently

B—(6—1—77,—1—@ 11_295)_(123 —286 255>.

50 50 50 507 50 7 50
Then
. 3
AB = [[AB||=|t]| 4 ||
5
59 59
= [t|V32 442452 = — xV5H0=——.
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14. Let A =(-3,0,2), B=(6,1,4), C = (=5,1,0). Then the area of
triangle ABC' is 3| AB x AC ||. Now

9 -2 —4
ABx AC=| 1| x 1| = 14
2 -2 11

Hence || AB x AC || = v/333.

15. Let Ay = (2,1,4), Ay = (1, —1,2), A3 = (4, —1, 1). Then the point
P = (z, y, ) lies on the plane A; A3 A; if and only if

—

AP (AjAy x AjAs) =0,
or
r—2 y—1 z—4
-1 —2 -2 | =2x—-Ty+62—-21=0.
2 -2 -3

16. Non-parallel lines £ and M in three dimensional space are given by
equations

P=A+sX, Q=B+t
(i) Suppose ]7@ is orthogonal to both X and Y. Now
PO=Q—-P=(B+tY)— (A +sX)=AB +tY — sX.
Hence

(AB +tY +sX)-X = 0
(AB +tY +sX)-Y = 0.

More explicitly

Hy -X)—s(X-X) = —AB-X
HY - Y)—s(X-Y) = —ABY.
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However the coefficient determinant of this system of linear equations
in ¢t and s is equal to

Y- X -X-X

V.V -xX.v | = —(X-Y)+ (X - X)(Y-Y)

= |[[X x Y[ #0,

as X #0, Y # 0 and X and Y are not proportional (£ and M are not
parallel).

(ii) P and @ can be viewed as the projections of C' and D onto the line PQ),
where C' and D are arbitrary points on the lines £ and M, respectively.
Hence by equation (8.14) of Theorem 8.5.3, we have

PQ < CD.

Finally we derive a useful formula for P(). Again by Theorem 8.5.3

|AB-PQ| |

where N = % 17@ is a unit vector which is orthogonal to X and Y.

Hence
n=tXxY),

where ¢t = +1/||X x Y||. Hence

_ | AB (X xY)|
X x Y]]

PQ

17. We use the formula of the previous question.
Line £ has the equation P = A + sX, where

. 2
X =AC=| -3
3
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X

Line M has the equation Q = B + tY, where

1
Y =BDh=| 1
1

Hence X x Y = [-6, 1, 5]* and || X x V|| = v/62.
Hence the shortest distance between lines AC' and BD is equal to

0 —6
—2 -] 1
| AB (X xY)| 1 51 3
IX < Y] V62 V62

18. Let F be the foot of the perpendicular from A4 to the plane A;AjAs;.
Then

vol A1A2A3A4 = %( area AAlAQAg) . A4E

Now !
areaAAlAgAg = 5” ATAQ X ATAg ||

Also A4F is the length of the projection of A;A; onto the line A4E. See
figure below.)
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Hence A F = | AT;LL -X|, where X is a unit direction vector for the line
A4E. We can take

—_  —

A1A2 X A1A3

X = — —.
|| A1A2 X A1A3 H

Hence

| AT;M '(ATzzlz X ATA3)|
|| AiAy x AjAs ||
]_ —_— —_— —

= 6’ A1A4 ‘(A1A2 X A1A3)|

1 — —
V01A1A2A3A4 = EH A1A2 X AIA?; ||

1 — — —
6|(A1A2 X A1A3)' A1A4 |

19. We have CB= [1, 4, —1]t, CD=[-3, 3, 0], AD=[3, 0, 3]*. Hence

CB x CD=3i + 3j + 15k,

so the vector i+ j + bk is perpendicular to the plane BCD.

Now the plane BC'D has equation x +y + 52z =9, as B = (2, 2, 1) is on
the plane.

Also the line through A normal to plane BC'D has equation

T 1 1 1
yl=1|+t]1|=(010+1t)|1
z 5) 5 )



Hence x =1+t, y=1+1t, z=5(1+1).
[We remark that this line meets plane BC'D in a point E which is given
by a value of ¢ found by solving

(1+t)+(1+¢t)+505+5t)=09.

Sot=—-2/3and E = (1/3,1/3,5/3).]
The distance from A to plane BC'D is

Ix14+1x14+5x5=9| 18
= =2V 3.
12 + 12 + 52 V27 va
To find the distance between lines AD and BC', we first note that
(a) The equation of AD is

1 3 1+ 3¢
P=|1|+tlo|=] 1 |;
5 3 5+ 3t
(b) The equation of BC'is
2 1 2+s
Q=12 +s 4 | = | 2+4s
1 —1 S

Then ]7@: [1+s—3t 1+4s, —4 — s — 3t]" and we find s and ¢ by solving
the equations F@ - AD=0 and F@ . BC= 0, or

(1+s5s—3t)3+(14+45)0+(-4—s—3t)3 = 0
(1+s—3t)+4(1+4s) —(-4—s—3t) = 0.
Hence t = —1/2 = s.
Correspondingly, P = (—1/2, 1, 7/2) and Q = (3/2, 0, 3/2).
Thus we have found the closest points P and () on the respective lines
AD and BC. Finally the shortest distance between the lines is

PQ=|PQ| =3
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