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Preface

The advancement in data collection, storage, and distribution technologies has far
outpaced computational advances in techniques for analyzing and understanding data. This
encourages researchers and practitioners to develop a new generation of tools and tech-
niques for data mining (DM) and for knowledge discovery in databases (KDD). KDD is a
broad area that integrates concepts and methods from several disciplines including the fields
of statistics, databases, artificial intelligence, machine learning, pattern recognition, machine
discovery, uncertainty modeling, data visualization, high performance computing, optimiza-
tion, management information systems, and knowledge-based systems.

KDD is a multistep  iterative process. The preparatory steps of KDD include data selection
and/or sampling, preprocessing and transformation of data for the subsequent steps of the
process. Data mining is the next step in the KDD process. Data mining algorithms are used
to discover patterns, clusters and models from data. The outcomes of the data mining
algorithms are then rendered into operational forms that are easy for people to visualize and
understand.

The data mining part of KDD usually uses a model and search based algorithm to find
patterns and models of interests. The commonly used techniques are decision trees, genetic
programming, neural networks, inductive logic programming, rough sets, Bayesian statistics,
optimisation and other approaches. That means, heuristic and optimisation have a major role
to play in data mining and knowledge discovery. However, most data mining work resulting
from the application of heuristic and optimisation techniques has been reported in a scattered
fashion in a wide variety of different journals and conference proceedings. As such, different
journal and conference publications tend to focus on a very special and narrow topic. It is
high time that an archival book series publishes a special volume which provides critical
reviews of the state-of-art applications of heuristic and optimisation techniques associated
with  data mining and KDD problems. This volume aims at filling in the gap in the current
literature.

This special volume consists of open-solicited and invited chapters written by leading
researchers in the field. All papers were peer reviewed by at least two recognised reviewers.
The book covers the foundation as well as the practical side of data mining and knowledge
discovery.

This book contains 15 chapters, which can be categorized into the following five sections:
• Section 1: Introduction
• Section 2: Search and Optimization
• Section 3: Statistics and Data Mining
• Section 4: Neural Networks and Data Mining
• Section 5: Applications

In the first chapter, an introduction to data mining and KDD, and the steps of KDD are
briefly presented. The DM tasks and tools are also provided in this chapter. The role of
heuristic and optimisation techniques in KDD are also discussed.

Section 2 contains Chapters 2 to 6. Chapter 2 presents an algorithm for feature selection,
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which is based on a conventional optimization technique. The effectiveness of the proposed
algorithm is tested by applying it to a number of publicly available real-world databases.
Chapter 3 reports the results obtained from a series of studies on cost-sensitive classification
using decision trees, boosting algorithms, and MetaCost which is a recently proposed
procedure that converts an error-based algorithm into a cost-sensitive algorithm. The studies
give rise to new variants of algorithms designed for cost-sensitive classification, and provide
insight into the strengths and weaknesses of the algorithms. Chapter 4 presents an
optimization problem that addresses the selection of a combination of several classifiers such
as boosting, bagging and stacking. This is followed by the discussion of heuristic search
techniques, in particular, genetic algorithms applied to automatically obtain the ideal
combination of learning methods for the stacking system. Chapter 5 examines the use of the
Component Object Model (COM) in the design of search engines for knowledge discovery
and data mining using modern heuristic techniques and how adopting this approach benefits
the design of a commercial toolkit. The chapter also describes how search engines have been
implemented as COM objects and how the representation and problem components have
been created to solve rule induction problems in data mining. Chapter 6 discusses the
possibility of applying the logical combinatorial pattern recognition (LCPR) tools to the
clustering of large and very large mixed  incomplete data (MID) sets. This research is directed
towards the application of methods, techniques and in general, the philosophy of the LCPR
to the solution of supervised and unsupervised classification problems. In this chapter, the
clustering algorithms GLC, DGLC, and GLC+ are introduced.

Chapters 7 to 9 comprise Section 3. Chapter 7 introduces the Bayes’ Theorem and
discusses the applicability of the Bayesian framework to three traditional statistical and/or
machine learning examples: a simple probability experiment involving coin-tossing, Bayesian
linear regression and Bayesian neural network learning.  Some of the problems associated
with the practical aspects of the implementation of Bayesian learning are then detailed,
followed by the introduction of various software that is freely available on the Internet.  The
advantages of the Bayesian approach to learning and inference, its impact on diverse
scientific fields and its present applications are subsequently identified. Chapter 8 addresses
the question of how to decide how large a sample is necessary in order to apply a particular
data mining procedure to a given data set. A brief review of the main results of basic sampling
theory is followed by a detailed consideration and comparison of the impact of simple random
sample size on two well-known data mining procedures: naïve Bayes classifiers and decision
tree induction. The chapter also introduces a more sophisticated form of sampling, dispro-
portionate stratification, and shows how it may be used to make much more effective use of
limited processing resources. Chapter 9 shows how the Gamma test can be used in the
construction of predictive models and classifiers for numerical data. In doing so, the chapter
also demonstrates the application of this technique to feature selection and to the selection
of the embedding dimension when dealing with a time series.

Section 4 consists of Chapters 10 and 11. Neural networks are commonly used for
prediction and classification when data sets are large. They have a major advantage over
conventional statistical tools in that it is not necessary to assume any mathematical form for
the functional relationship between the variables. However, they also have a few associated
problems, like the risk of over-parametrization in the absence of P-values, the lack of
appropriate diagnostic tools and the difficulties associated with model interpretation. These
problems are particularly pertinent in the case of small data sets.
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Chapter 10 investigates these problems from a statistical perspective in the context of
typical market research data. Chapter 11 proposes an efficient on-line learning method called
adaptive natural gradient learning. It can solve the plateau problems and can successfully
be applied to learning involving large data sets.

The last section presents four application chapters, Chapters 12 to 15. Chapter 12
introduces rough clustering, a technique based on a simple extension of rough set theory to
cluster analysis, and the applicability where group membership is unknown. Rough cluster-
ing solutions allow the multiple cluster membership of objects. The technique is demon-
strated through the analysis of a data set containing scores associated with psychographic
variables, obtained from a survey of shopping orientation and Web purchase intentions.
Chapter 13 presents a survey of medical data mining focusing upon the use of heuristic
techniques. The chapter proposes a forward-looking responsibility for mining practitioners
that includes evaluating and justifying data mining methods–a task especially salient when
heuristic methods are used. The chapter specifically considers the characteristics of medical
data, reviewing a range of mining applications and approaches. In Chapter 14, machine
learning techniques are used to predict the behavior of credit card users. The performance
of these techniques is compared by both analyzing their correct classification rates and the
knowledge extracted in a linguistic representation (rule sets or decision trees). The use of a
linguistic representation for expressing knowledge acquired by learning systems aims to
improve the user understanding. Under this assumption and to make sure that these systems
will be accepted, several techniques have been developed by the artificial intelligence
community, under both the symbolic and the connectionist approaches. The goal of  Chapter
15 is to integrate evolutionary learning tools into the knowledge discovery process and to
apply them to the large-scale, archaeological spatial-temporal data produced by the surveys.
This heuristic approach presented in the chapter employs rough set concepts in order to
represent the domain knowledge and the hypotheses.

This book will be useful to policy makers, business professionals, academics and
students. We expect that the promising opportunities illustrated by the case studies and the
tools and techniques described in the book will help to expand the horizons of KDD and
disseminate knowledge to both the research and the practice communities.

We would like to acknowledge the help of all involved in the collation and the review
process of the book, without whose support the project could not have been satisfactorily
completed. Most of the authors of chapters included in this volume also served as referees
for articles written by other authors. Thanks also to several other referees who have kindly
refereed chapters accepted for  this volume. Thanks go to all those who provided constructive
and comprehensive reviews and comments. A further special note of thanks goes to all the
staff at Idea Group Publishing, whose contributions throughout the whole process from
inception to final publication have been invaluable.

In closing, we wish to thank all the authors for their insight and excellent contributions
to this book. In addition, this book would not have been possible without the ongoing
professional support from Senior Editor Dr. Mehdi Khosrowpour, Managing Editor Ms. Jan
Travers and Development Editor Ms. Michele Rossi at Idea Group Publishing. Finally, we
want to thank our families for their love and support throughout this project.

Ruhul Sarker, Hussein Abbass and Charles Newton
Editors
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Chapter I

Introducing Data Mining
and Knowledge Discovery

R. Sarker, H. Abbass and C. Newton
University of New South Wales, Australia

Copyright © 2002, Idea Group Publishing.

The terms Data Mining (DM) and Knowledge Discovery in Databases
(KDD) have been used interchangeably in practice. Strictly speaking,
KDD is the umbrella of the mining process and DM is only a step in KDD.
We will follow this distinction in this chapter and present a simple
introduction to the Knowledge Discovery in Databases process from an
optimization perspective.

INTRODUCTION
Our present information age society thrives and evolves on knowledge.

Knowledge is derived from information gleaned from a wide variety of reservoirs
of data (databases). Not only does the data itself directly contribute to information
and knowledge, but also the trends, patterns and regularities existing in the data files.
So it is important to be able to, in an efficient manner, extract useful information
from the data and the associated properties of the data, i.e., patterns and similarities.

A new area of research, data extraction or data mining, has evolved to enable
the identification of useful information existing in the data reservoirs. To understand
and recognize the major initiatives in this research area, we will briefly describe the
terminology and approaches to data mining and knowledge discovery in databases.

Knowledge discovery in databases (KDD) is the process of extracting models
and patterns from large databases. The term data mining (DM) is often used as a
synonym for the KDD process although strictly speaking it is just a step within
KDD. DM refers to the process of applying the discovery algorithm to the data. We
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define the KDD process as:
KDD is the process of model abstraction from large databases and
searching for valid, novel, and nontrivial patterns and symptoms within
the abstracted model.
There are four keywords in the definition: abstraction, search, patterns, and

symptoms. The database is a conventional element in KDD.
Abstraction: Abstraction is the process of mapping a system language Λ

1
 to

approximately an equivalent language Λ
2
. The mapping is strong when it maps

the system while neither losing existing patterns (completeness) nor introduc-
ing new patterns (soundness). Formally, Giunchiglia and Walsh (1992) define
an abstraction, written f: Σ

1
→Σ

2
, as a pair of formal systems (Σ

1
, Σ

2
) with

languages Λ
1
 and Λ

2
, respectively, and an effective total function fΛ: Λ

1
→Λ

2
.

Search: It is more convenient to visualize the discovery process in terms of
searching. One can measure the complexity and in turn the feasibility, of the
discovery process by studying the search space. Most KDD steps can be seen
as search-space reduction techniques. For example, the main goal for creating
a target data set, data cleaning, and data reduction and projection is to reduce
the noise in the data and to select a representative sample which then reduces
the search space. The mining algorithm is the search technique used to achieve
the overall process’s objective.

Patterns: A pattern is an expression, η, in a language, Λ, describing a subset of
facts, ϕη ⊆ ϕ, from all the facts, ϕ, which exist in the database (Fayyad,
Piatetsky-Shapiro & Smyth, 1996c).

Symptoms: Although symptoms can be seen as patterns, the process of discover-
ing the symptoms has more dimensions than finding simple descriptive
patterns. Identification of symptoms is a major task for KDD if it is the
intention to use it for decision support. The KDD process’s role is to clear the
noise within the system and discover abnormal signals (symptoms) that may
contribute to potential problems.

In this definition, the term process implies that KDD consists of different steps
such as: data preparation, search for patterns, knowledge evaluation and refinement.
The discovered patterns should be valid with some degree of certainty, and novel (at
least to the system and preferably to the users). Nontrivial delineates that the
discovered patterns should not be obvious in the domain knowledge. They should,
however, represent a substantial discovery to the user; otherwise the cost of the KDD
process will not be justified.

THE KDD STEPS
In the literature, there have been some variations of the different steps involved

in the KDD process. Although these variations do not differ in their entirety, some
of them are more descriptive than others. Before we present the proposed steps, it
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is worth listing the KDD steps suggested in the literature as well as the criteria for
selecting KDD’s applications. The steps for the KDD process have been varied in
the literature. Fayyad, Piatetsky-Shapiro and Smyth (1996c) identify nine steps:
application domain understanding, creating a target data set, data cleaning and
processing, data reduction and projection, choosing the mining task, choosing the
mining algorithm, mining the data, interpreting the mined patterns, and consolidat-
ing the discovered knowledge. John (1997) sums up these steps into six: data
extraction, data cleaning, data engineering, algorithm engineering, running the
mining algorithm, and analyzing the results.

As we saw in the previous discussion, there are different views of what should
be the steps for KDD. We believe the validity of a step is a case-by-case decision.
For example, if the database is robust, then data cleaning is not needed or at least it
will not take a significant effort or time. Nevertheless, we believe that the KDD steps
should be broken up into detail rather than being summarized to make each step as
clear as possible to the data analyst—whether it will take time or effort in the
application or not. For example, we will propose a data conversion step.  Most of the
applications reported in the literature (Bryant & Rowe, 1998; Fayyad, Piatetsky-
Shapiro, Smyth & Uthurusamy, 1996a) deal with advanced databases’ file systems
with high reliability at the level of data accuracy (see the NASA database in Fayyad,
Piatetsky-Shapiro, Smyth & Uthurusamy,1996 for example). In many real-life
applications, the data are in plain output files using old programming environments
such as COBOL. Data conversion becomes an issue that we will consider and
emphasize because it requires significant time as well as effort during the discovery
process.

We propose to have 13 steps for KDD to be efficiently automated. The base on
which each step is defined is either in terms of time span or technical knowledge and
human effort. These steps are:

• problem definition and determining the mining task,
• data description and selection,
• data conversion,
• data cleaning,
• data transformation,
• data reduction and projection,
• domain-specific data preprocessing,
• feature selection,
• choosing the mining algorithm,
• algorithm-specific data preprocessing,
• applying the mining algorithm,
• analyzing and refining the results, and
• knowledge consolidation.

In the rest of this section, we will highlight some issues concerning some of
these steps.

Problem definition and evaluation is the basic step used to conclude whether
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the mining process should take place or not and, if it should, what are its targets and
aims. In general, the aims may vary from prediction to classification, description,
etc. We will depend on the comprehensive criteria defined in Fayyad, Piatetsky-
Shapiro, Smyth & Uthurusamy (1996a) to evaluate the validity of the problem for
KDD.

In data description and selection, suitable files are selected as well as suitable
data fields. There may exist many files/tables in the database. However, not all are
suitable for knowledge discovery. After an initial study, suitable and unsuitable data
should be identified. The selection here may involve selection of fields that are
potentially useful for multiple mining tasks.

In data conversion, the database file system suitable for the mining process is
identified and the data is converted from its original stored format to the selected
one.

Data cleaning removes (or reduces) noise and errors in the data. If the
proportion of inconsistent or noise data is quite small, their deletion may have little
effect on the results.  Inconsistency may also cause sufficient trouble for the mining
algorithm and small SQL-like statements may track this type of inconsistency and
facilitate the mining task.

With data transformation we mean reflecting the logical relations between the
tables into a single table that contains all the information needed for the mining
process. Many of the mining algorithms do not work on multiple-tables and
therefore we need somehow to combine the tables into one. Redundancy may arise
as a result and one needs to be careful here as this combination of tables may change
the class frequency which will in turn affect the mining process.

We would like to differentiate between domain-specific data preprocessing
and data reduction and projection. When projecting data, information is condensed
into a fewer number of attributes; for example, calculating the financial ratios from
an accounting database.

Domain-specific data preprocessing is a set of operations, using domain-
specific knowledge, that makes the attribute valid from the domain viewpoint. For
example, assume that one of the attributes is the market price over 10 years. In some
cases, this attribute is only relevant if it is discounted to eliminate the effect of
inflation. From our point of view, this task is neither reduction nor projection but
data preprocessing imposed by the domain.

Furthermore, we prefer to divide the preprocessing into two types, domain-
specific and algorithm-specific preprocessing. In the market price example, the
algorithm does not impose the preprocessing. On the other hand, using feed-forward
neural networks with sigmoid activation functions requires the normalization of at
least the output. This is not the case when using decision trees, for example.
Accordingly, algorithm-specific preprocessing should not alter the database and a
view of the data should be made available to each algorithm with the preprocessing
taking place on the view level. On the contrary, domain-specific preprocessing
should be made available to all algorithms and not restricted to a specific one and
accordingly, it should alter the transformed database. Actually, we suggest that



Introducing Data Mining and  Knowledge Discovery   5

domain-specific preprocessing should be accounted for within the data warehouse
unlike algorithm-specific preprocessing, which works on a snapshot from the data
warehouse. The reason for this is that the significance of an attribute is a function
of the mining process and is valid over the whole set of the algorithms used for the
same mining process, but the form of this attribute presented to each mining-
algorithm is a function of the algorithm itself.

The DM step comprises the application of one or more computational tech-
niques that proved acceptable in terms of their computational efficiency and ability
to produce a particular enumeration of patterns (or models) over the data. It is
recognized that the search space of models is huge and sometimes infinite. Practical
computational constraints, therefore, place limits on the search space that can be
explored by a data mining algorithm.

DATA MINING AND SEARCH
In data mining, there are three primary components: model representation,

model evaluation and search. The two basic types of search methods used in data
mining consist of two components: Parameter Search and Model Search (Fayyad,
Piatetsky-Shapiro & Smyth 1996). In parameter search, the algorithm searches for
the set of parameters for a fixed model representation, which optimizes the model
evaluation criteria given the observed data. For relatively simple problems, the
search is simple and the optimal parameter estimates can be obtained in a closed
form. Typically, for more general models, a closed form solution is not available.
In such cases, iterative methods, such as the gradient descent method of back-
propagation for neural networks, are commonly used. The gradient descent method
is one of the popular search techniques in conventional optimization (Hillier &
Lieberman, 2001).

Model search occurs as a loop over the parameter search method: the model
representation is changed so that a family of models is considered. For each specific
model representation, the parameter search method is instantiated to evaluate the
quality of that particular model. Implementations of model search methods tend to
use heuristic search techniques since the size of the space of possible models often
prohibits exhaustive search and closed form solutions are not easily obtainable.
Here, heuristic search plays a key role in finding good solutions. A review of modern
heuristic techniques is provided in Abbass (2002). Moreover, conventional optimi-
zation techniques are gaining popularity among data mining researchers and
practitioners. Optimization theory provides the data mining community with a
mature set of techniques that are ready to provide high quality solutions. However,
research into the scalability of optimization techniques is still an open question.
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DATA MINING FUNCTIONS
The general data mining tools, classified by data mining tasks, are presented

below as provided by Abbass (2000):

Mining Task Data Mining Tool Chapters in Chapters in
Volume 1  Volume 2

Feature Dependency models, 3, 5, 13 2, 8
Selection Optimization
Point Prediction/ Regression methods, Neural 3, 13 7, 9
Estimation networks, Regression decision

trees, Support vector machines,
Optimization

Classification Statistical regression models, 3, 7, 13 3, 5, 10,
Neural networks, Classification 11, 14
decision trees, Support vector
machines, Optimization

Rule discovery Decision trees, Optimization, 3, 4, 6, 9, 10
Learning classifier systems

Clustering Density estimation methods, 3, 2, 12, 13 12
Neural networks, Clustering
techniques, Optimization

Association Association rules, Density 13
methods estimation models,

Optimization

The basic functions of the data mining process include feature selection,
summarization, association, clustering, prediction, and classification. These are
summarized below.

Feature selection is concerned with the identification of a subset of features
that significantly contributes to the discrimination or prediction problem. Bradley
et al. (1998) formulated the feature selection problem as a mathematical program
with a parametric objective function and linear constraints. Another approach uses
a very fast iterative linear-programming-based algorithm for solving the problem
that terminates in a finite number of steps (Mangasarian,1997).

Summarization involves methods for finding a compact description for a subset
of data. Summarization can be performed using a bar chart or statistical analysis.
This is useful for understanding the importance of certain attributes when compared
against each other (Hui & Jha , 2000). More sophisticated methods involve the
derivation of summary rules (Agrawal at al. 1996), multivariate visualization
techniques, and the discovery of functional relationships between variables
(Zembowicz & Zytkov, 1996).

Association rules determine how the various attributes are related. The asso-
ciation rules are also known as Dependency Modeling, which exists in two levels:
the structural level of the model specifies (often in graphical form) which variables
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are locally dependent on which, whereas the quantitative level of the model
specifies the strengths of the dependencies using some numerical scale (Fayyad,
Piatetsky-Shapiro & Smyth 1996).

Clustering identifies a finite set of categories or clusters to describe the data
(Jain & Dubes 1988). The categories may be mutually exclusive and exhaustive or
consist of a richer representation such as hierarchical or overlapping categories
(Fayyad, Piatetsky-Shapiro & Smyth 1996). Unlike classification, the number of
desired groups is unknown. As a result, the clustering problem is usually treated as
a two-stage optimization problem. In the first stage, the number of clusters is
determined followed by the next stage, where the data is fitted to the best possible
cluster. However, one needs to be careful here, as this type of sequential optimiza-
tion techniques does not guarantee the optimality of the overall problem.

The use of regression modeling for point estimation is basically an uncon-
strained optimization problem that minimizes an error function. Artificial neural
networks are widely used for prediction, estimation and classification (Balkin &
Ord, 2000; Shin & Han, 2000; Zhang, Patuwo & Hu, 2001). In terms of model
evaluation, the standard squared error and cross entropy loss functions for training
artificial neural networks can be viewed as log-likelihood functions for regression
and classification, respectively (Geman, Bienenstock & Doursat,1992; Ripley,
1994). Regression trees and rules are also used for predictive modeling, although
they can be applied for descriptive modeling as well.

In classification, the basic goal is to predict the most likely state of a categorical
variable (the class) given the values of the other variables. This is fundamentally a
density estimation problem (Scott, 1992). A number of studies have been under-
taken in the literature for modeling classification as an optimization problem
(Bradley, Fayyad  & Mangasaria, 1999) including discriminant analysis for classi-
fication which uses an unconstrained optimization technique for error minimization
(Ragsdale, 2001). Classification using decision trees and boosting algorithms is
presented in Chapter 3 of this volume.

Rule discovery (RD) is one of the most important data mining tasks. The basic
idea is to generate a set of symbolic rules that describe each class or category. Rules
should usually be simple to understand and interpret. RD can be a natural outcome
of the classification process as a path in a decision tree from the root node to a leaf
node represents a rule. However, redundancy is often present in decision trees and
the extracted rules are always simpler than the tree. It is also possible to generate the
rules directly without building a decision tree as an intermediate step. In this case,
learning classifier systems (LCS) play a key method to rule discovery.

DATA MINING TECHNIQUES
In  this section, we will present some of the most commonly used techniques

for data mining. This list should not be considered complete, but rather a sample of
the techniques for data mining.
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Bayesian methods (BM) represent a powerful class of techniques to data
mining. Actually, BM are the only set of techniques that can be proven in a strict
mathematical sense to work under uncertainty. The ability of these techniques to
capture the underlying relationship between the attributes and their use of probabili-
ties as their method of prediction increase their reliability and robustness in data
mining applications. However, BMs are slow and more research is needed to
overcome the scalability of these techniques.

Feed-forward Artificial Neural Networks (FFANNs) are one of the most
commonly used artificial neural networks (ANNs) architectures for data mining.
FFANNs are in essence non-parametric regression methods, which approximate the
underlying functionality in data by minimizing a loss function.  Artificial neural
networks are not so common among a part of the community as they are known to
be slow. However, recent advances in artificial neural networks present fast training
algorithms as well as adoptive networks (Yao, 1999). As a rule of thumb, ANNs are
more accurate than many data mining techniques and the choice decision of the
appropriate data mining tool is usually a cost-benefit analysis when it comes to real-
life applications. If 1% increase in the accuracy means thousands of dollars or a
human life, one can deposit more time and effort in the mining process to gain this
1%.

Decision trees (DTs) are either univariate or multivariate (Abbass, Towsey &
Finn, 2001). Univariate decision trees (UDTs) approximate the underlying distri-
bution by partitioning the feature space recursively with axis-parallel hyperplanes.
The underlying function, or relationship between inputs and outputs, is approxi-
mated by a synthesis of the hyper-rectangles generated from the partitions. Multi-
variate decision trees (MDTs) have more complicated partitioning methodologies
and are computationally more expensive than UDTs. The split at a node in an MDT
depends on finding a combination of attributes that optimally (or satisfactorily)
partitions the input space. The simplest combination of attributes is taken to be
linear. Even in the simple case, the process is very expensive since finding a single
linear hyperplane that optimally splits the data at a node is an NP-hard problem. A
path from the root node to a leaf node in both UDTs and MDTs represent the rule
for defining the class boundary of the class present at the leaf node.

Support Vector Machines (SVMs) (Burges, 1998; Cherkassky & Mulier, 1998;
Vapnik, 2000) are powerful tools for both classification and point estimation. They
classify points by assigning them to one of two disjoint halfspaces. These halfspaces
are either in the original input space of the problem for linear classifiers or in a higher
dimensional feature space for nonlinear classifiers. SVMs represent a good example
of data mining techniques that are based on optimization theory.

Optimization methods (Bradley, Fayyad & Mangasarian, 1999) provide an-
other alternative set of techniques that produce robust results. A major problem with
these techniques is scalability and slow convergence. Global optimization can be
combined with heuristics to overcome the slow performance of optimization
techniques (Bagirov, Rubinov & Yearwood, 2001). However, conventional heuris-
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tics are much faster by many orders of magnitude than conventional optimization.
This encourages more research into the scalability of optimization techniques for
data mining.

PRACTICAL ISSUES
The KDD process is usually very expensive and spans over a long period of

time. Therefore, one needs to be careful in all the steps involved as, for example, a
blind application of a data mining technique may lead to the discovery of meaning-
less patterns. A main objective of KDD is to simplify the underlying model in the
data for the use and understandability of the decision maker and those who own the
data, regardless of whether or not they have the prerequisite knowledge of the
techniques being used. The expected output from these steps is ‘knowledge for use’
– not a research output. In many cases, the steps need to be performed iteratively to
ensure the quality of the KDD process.

With respect to the issue of the basis for selecting KDD applications, Fayyad,
Piatetsky-Shapiro and Smyth (1996c) define four practical criteria and five techni-
cal criteria for selecting KDD applications. The former are the potential for
significant impact of the application, no good alternatives exist, organization
support and potential for privacy and legal issues. The latter are the availability of
sufficient data, relevance of attributes, low noise levels in the data, confidence
intervals, and prior knowledge.

We have briefly described the process to extract and elucidate the knowledge
locked up in large databases. As previously mentioned a major effort has been
experienced on data mining techniques so that knowledge can be extracted most
efficiently. Many approaches are being developed to assist in this process. This book
highlights many of the more successful approaches to facilitate the data mining
phase of knowledge discovery. In many real-life applications, most of the time
deposited for KDD is not spent in the mining step, but in the manipulation cleaning
of the database. Research publications, however, focus on the formal stages (the
feature selection and mining steps). We have tried in this book to avoid this bias and
give place to real-life applications that use ad hoc approaches or experience to “do”
KDD.

CONCLUSIONS
In this chapter, we have provided a brief introduction to data mining and

knowledge discovery from databases. From the discussion in this chapter, it is clear
that most KDD techniques are based on heuristic and optimization techniques. This
book is a collection of examples of the use of optimization methods for data mining.
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SECTION TWO

SEARCH AND OPTIMIZATION
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The feature selection problem involves the selection of a subset of features
that will be sufficient for the determination of structures or clusters in a
given dataset and in making predictions. This chapter presents an
algorithm for feature selection, which is based on the methods of optimi-
zation. To verify the effectiveness of the proposed algorithm we applied it
to a number of publicly available real-world databases. The results of
numerical experiments are presented and discussed. These results dem-
onstrate that the algorithm performs well on the datasets considered.

INTRODUCTION
Feature extraction and selection is an important stage in the solution of pattern

recognition problems. The feature selection problem involves the selection of a
subset of features that will be sufficient in making predictions. There are various
reasons for refining a feature set leading to the selection of suitable feature variables.
Schaafsma (1982) gives a comprehensive description of reviews for feature selec-
tion. Among these are: the use of a minimal number of features to construct a simpler
model, to give a simplest interpretation of such a model and to accelerate the
decision making process. In some datasets the number of features and observations
can reach several thousand and in such a situation the solution of classification
problems without feature selection becomes fairly hard.
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There exist various approaches to the solution of feature selection problems.
We can note statistical (John, Kohavi & Pfleger, 1994; Kira & Rendell, 1992;
Kittler, 1986; Koller & Sahami, 1996; McLachlan, 1992; Siedlecki & Sklansky,
1988), decision tree (Quinlan, 1993), neural network (Hecht, 1990; Hagan et al.,
1996) and mathematical programming (Bradley, Mangasarian & Street, 1998;
Bradley & Mangasarian, 1998; Chang, 1973; Fu, 1968; Hand, 1981) approaches
among them. The book by Liu & Motoda (1998) gives a comprehensive description
of statistical, decision tree and neural network approaches. In the papers by Bradley
et al. (1998), and Bradley and Mangasarian (1998) the feature selection is formu-
lated as a mathematical programming problem with a parametric objective function.
Feature selection is achieved by generating a separating plane in the feature space.
In the paper by Kudo and Sklansky (2000) a comparison of various feature selection
algorithms is presented.

In this chapter, we suggest an algorithm for the solution of the feature selection
problem based on techniques of convex programming. We consider feature selec-
tion in the context of the classification problem. In the above references, as a rule,
datasets with two classes are considered. For statistical methods the selection
problem with more than two classes is much more difficult than the problem with
two classes where there is a close tie with multiple regression (McLachlan, 1992).
The algorithm suggested in this paper allows one to consider datasets with an
arbitrary number of classes.

The algorithm calculates a subset of most informative features and a smallest
subset of features. The first subset provides the best description of a dataset whereas
the second one provides the description which is very close to the best one. A subset
of informative features is defined by using certain thresholds. The values of these
thresholds depend on the objective of the task. Numerical experiments with several
real-world databases have been carried out. We present their results and discuss
them.

FEATURE SELECTION
The purpose of a feature selection procedure is to find as small a set as possible

of informative features of the object under consideration, which describes this
object from a certain point of view. The following issues are very important for
understanding the problem.

1. It is convenient to consider (and define) informative features in the framework
of classification. In other words it is possible to understand whether a certain
feature is informative for a given example if we compare this example with
another one from a different class. The following example confirms this
observation.
Assume we consider a group A of people, who suffer from heart disease and
recover in a hospital in a city E

1
. We consider two features a

1
 and a

2
 of patients

from this group. The feature a
1
 describes a certain patient characteristic
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peculiar to this disease (for example, blood pressure). The feature a
2
 describes

how far from the hospital a patient resides. Consider a group B of patients from
the same hospital in city E

1
, who suffer from cancer. It is probable that a

1
 is an

informative feature for the group A in comparison with the group B and a
2
 is

not an informative feature.
Consider now a group C of patients from a hospital in a different city E

2
, who

suffer from heart disease. Then probably a
1
 is not an informative feature and

a
2 
is an informative feature for A in comparison with C. Now assume that we

consider a group D of patients from the hospital in E
2
 who suffer from cancer.

Then both a
1 
and a

2 
are informative features for the comparison of groups A and

D.
2. Our goal is to find a sufficiently small set of informative features and to remove

as many superfluous features as possible. We shall formalize this problem in
the framework of a model later on. Note that this problem can have many
different solutions. Assume for example, that it has been found that three
features a

1
, a

2
 and a

3
 of a certain object are informative. It is possible that there

exists a certain correlation between these features or even a functional
dependence between them (but this fact is unknown for the researcher).
Assume for the sake of simplicity that there is a linear dependence
c

1
a

1
+c

2
a

2
+c

3
a

3
=k. Then the feature a

3
 can be expressed through a

1
 and a

2
 so

it can be considered as superfluous. Thus we can consider (a
1
, a

2
) as a sufficient

set of informative features. In the same manner we can consider also (a
2
, a

3
)

and (a
1
, a

3
) as sufficient sets of informative features.

3. It follows from the above that the set of informative features, which describe
a given object, is a categorical attribute of this object. This is also a fuzzy
attribute in a certain informal sense. It leads to the following heuristic
conclusion: it is useless to apply very accurate methods in order to find this set.
However if we use heuristic not very accurate methods we need to have
experimental confirmation of the results obtained.

In order to confirm that the results obtained are correct, we will use the
following strategy: we consider a particular method for the search of a subset of
informative features. Then we apply an auxiliary method based on a completely
different idea to confirm that the discovered set of features describes the given
object. If the auxiliary method confirms that the obtained set of features gives a
correct description of the object, then the result of the main algorithm can be
accepted. Otherwise, further investigation is required.

We now describe the approach that will be used in this chapter for feature
selection (in the framework of classification). Assume we have a finite set A of
vectors in n-dimensional space  Rn and we wish to give a compact description of this
set in terms of informative variables. This description can be given by means of a
single point, which is called the centre of the set A. To define the centre, consider
the deviation d(x,A) of a point x∈Rn from the set A. By definition d(x,A) is the sum
of distances from x to points ai∈A:
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(1)

Here ||• || is a norm in Rn . In the sequel we will consider ||• ||=||• ||
p
 where

 Definition 1. The point x0 is called the centre of the set A (with respect to a norm
|| • || ) if x0 minimizes the deviation from A, that is, x0 is a solution of the problem

subject to (2)

As a rule, one point cannot give a sufficiently precise description of the entire
set A. To obtain this description, we need to have more points, which can be
considered as centres of clusters of the set A. However we accept the hypothesis that
for the search for such a categorical and fuzzy attribute as a set of informative
features it is enough to consider only one representative of a set, namely its centre.
It is assumed that this representative possesses some properties of the set, which
allow one to replace the set itself by its centre in the study of the problem under
consideration. The results of numerical experiments, which were confirmed by
another (different) approach, demonstrate that this hypothesis leads to good results
for many databases.

Consider now two subsets of the n-dimensional space Rn. To underline the
dimension we include n in the notation. Thus we denote these sets by A1(n) and A2(n).
Let xi(n) be the centre of the set Ai(n),i= 1,2. The quality of the description of the sets
A1(n) and A2(n) by their centres can be expressed by numbers N

1
(n) and N

2
(n), where

N
1
(n) is the number of the points from A1(n) which are closer to centre x2(n) of the

other set A2(n) than to the centre x1(n) of A1(n). N
2
(n) has a similar meaning. We shall

consider a four-tuple (A1(n),A2(n), x1(n), x2(n)). The number of “bad’’ points  N(n)
= N

1
(n)+N

2
(n) can be considered as a certain numerical characteristic of this four-

tuple. (A point belonging to one of the sets is “bad’’ if this point is closer to the centre
of the other set.)

We wish to find the most informative features which allow us to distinguish sets
A1(n) and A2(n) and remove the least informative features. Since x1(n) and x2(n) are
representatives of the sets A1(n) and A2(n), respectively, which can replace the
corresponding sets under consideration, we can assume that the closest coordinate
of centres indicates the least informative feature. Then we can try to remove this
coordinate. If we remove it, we will have new sets A1(n-1) and A2(n-1) and we can
find centres  x1(n-1) and x2(n-1) of these sets. Consider a new four-tuple and calculate
the numerical characteristic of this four-tuple (A1(n-1), A2(n-1), x1(n-1), x2(n-1)). If
this characteristic  N(n-1) = N

1
(n-1)+N

2
(n-1) is close enough to N(n), we can deduce

that the eliminated coordinate has little influence on this characteristic. So this

∑
∈

−=
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∑
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coordinate need not belong to a set of informative features. On the other hand if the
difference between  N(n) and N(n-1) is sufficiently large, then we can not remove
even the closest coordinate of centres, so all n coordinates belong to a set of
informative features.

To be more precise we need to define what “sufficiently large’’ means. To
achieve this we will introduce certain thresholds.

The procedure is based on an inner description of a set by means of its centre
and on comparison of two sets by means of their centres. We can treat this approach
as an inner approach to feature selection. The opposite to an inner approach is an
outer approach, which is based on a separation of two sets. The main idea behind the
outer approach is the following. Having two sets A

1
 and A

2
 we can find a

discrimination function c such that c(a1)>0 for a1∈ A
1
 and  c(a2)<0 for a2∈ A

2
. Then

if a new point is presented we can calculate c(a). If c(a)>0(c(a)<0,  respectively)
then we bring a to A

1 
(A

2 
, respectively). Various versions of this approach have been

studied in Abello, Pardalos & Resende (2001) and very sophisticated methods for
the determination of a discrimination function c have been proposed. However in
some instances we can use very simple discrimination functions. One of them is
applied in this paper, when we consider an auxiliary algorithm for confirmation of
our main feature selection algorithm.

FEATURE SELECTION AS A CONVEX
PROGRAMMING PROBLEM

We consider a dataset which contains m classes, that is, we have m nonempty
finite sets A

i
, i = 1,...,m in Rn consisting of r

i
, i = 1,...,m points, respectively. Using

the idea presented in the previous section we suggest an algorithm for the solution
of the feature selection problem. Below we will consider two cases for p=1 and p=2.
Let

 N
1
={j:j=1,...,|A

1
|},  N

i
={j:j=|A

i
|+1,...,|A

i-1
|+|A

i
|}, i=2,...,m

where  |A
i
| denotes the cardinality of the set A

i
=1,...,m. First we will consider the case

when m=2. Let ε>0 be some tolerance and T
i
∈{1,2,...}, i=1,2,3 be the thresholds.

Algorithm 1. Feature selection
Step 1. Initialization. Set k=0, I

k
={1,...,n}.

Step 2. Determination of centres of the sets A
i
, i=1,2. (See Definition 1). Compute

the centre of A
i
 by solving the following problems of convex programming:

subject to (3)

Here

∑
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Step 3. Find points of the set A
i
, i=1,2, which are closer to the centre of the other set.

Let  xi*, i=1,2  be solutions to the problem (3). Compute the sets:

Set N
3

k=N
1

k ∪ N
2
k. If k=0  then go to Step 5, otherwise go to Step 4.

Step 4. Calculate L
i
 = max{|N

i
t|:t=0,...,k}, i=1,2, L

3
 = max{|N

1
t|+N

2
t|:t=0,...,k}

If max{L
i
-T

i
:i=1,2,3}>0 then I

k-1
 is a subset of most informative features and the

algorithm terminates. Otherwise go to Step 5.
Step 5. To determine the closest coordinates. Calculate

d
0
=min{|x1*

l
-x2*

l
|:l∈ I

k
}

and define the following set: R
k
={l∈ I

k
:|x1*

l
-x2*

l
|≤d

0
+ε}.

Step 6. Construct the set: I
k+1 

= I
k
\R

k
 . If I

k+1 
= ∅  then I

k
 is the subset of most

informative features. If |I
k+1

|=1 then I
k+1

 is the subset of most informative features.
Then the algorithm terminates, otherwise set k=k+1 and go to Step 2.

 Remark 1. An algorithm for the case when the number of classes m>2 can be
obtained from Algorithm 1 by replacing Steps 3, 4 and 5 by the Steps 3’, 4’ and 5’,
respectively.
Step 3’. To find points of a set A

i
, i=1,...,m, which are closer to the centres of other

sets.
Let xi*, i=1,...,m be solutions to the problem (3). Compute the sets:

Set N
m+1

k=∪{N
i
k:i=1,...,m} If k=0 then go to Step 5’, otherwise go to Step 4’.

Step 4’. Calculate

If max{L
i
-T

i
:i=1,...,m+1}>0 then I

k-1
 is a subset of most informative features and the

algorithm terminates. Otherwise go to Step 5’.
Step 5’. To determine the closest coordinates. Calculate

 d
l
=max{|xi*

l
-xt*

l
|:i,t=1,...,m},  d

0
=min{d

l
:l∈ I

k
}.

and define the following set: R
k
={l∈ I

k
: d

l 
≤d

0
+ε}.

 Remark 2. It should be noted that the subset of most informative features
calculated by the Algorithm 1 depends on the vector of thresholds

).,...,,( 121 += mTTTT  In numerical experiments we shall consider two cases:

 1. 2.

 Remark 3. In order to confirm the results obtained by Algorithm 1 we shall
use cross-validation with the features calculated in the current stage.

 We shall use some indicators in order to confirm the results obtained by
Algorithm 1. One of them is the accuracy e

i
 for the set A

i
, i=1,...,m and total accuracy
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e
tot

 for all sets. Assume that misclassified points, that is, points from a given set,
which are closer to the centre of the other set, are known. Then the accuracy e

i
 for

the set A
i
 is calculated as follows:

e
i
 =100(|A

i
|-m

i
)/|A

i
|, (4)

where m
i 
is a number of misclassified points for the set A

i
, i=1,...,m . In the same

manner we can define total accuracy for all sets:
e

tot 
=100(|A|-M)|A|, (5)

where  .

As mentioned above, the centre of the set as a rule cannot give a sufficiently
precise description of the entire set, so the accuracies e

i
 and e

tot
 as a rule are not very

high. However, we use this indicator in order to recognize the importance of the
removed coordinate at each iteration of the algorithm. That is, we again include the
dimension n of the set under consideration in the notation. Assume that after some
iterations we have n-dimensional vectors. Denote the corresponding sets by A

i
(n)

and let  e
i
(n) be the accuracy for the set  A

i
(n). Assume that a particular coordinate

was removed, then we have the set A
i
(n-1) with the accuracy e

i
(n-1). The approxi-

mate equality e
i
(n)=e

i
(n-1) can be considered as confirmation that the removed

coordinate does not have any influence on the structure of the set A
i
. On the contrary,

if the difference between e
i
(n) and e

i
(n-1) sharply increases then we can suppose that

the structure of sets A
i
(n) and A

i
(n-1) is different, so the coordinate that was removed

is indeed informative.
We can consider different indicators which confirm the outcome of Algorithm

1. One of them is based on a very simple and rough classification algorithm. This
algorithm provides a classification with not very high accuracy, which is compatible
with the accuracy of the description of a set by its centre. However this algorithm
does not require very much computational time, so it can be used to verify the results
obtained by the feature selection algorithm. We suppose that the dataset under
consideration contains two classes A

i
, i=1,2. We define the following quantity for

any x∈Rn:

where ρ(x,A
i
) = min{||x-y||:y∈ A

i
}, i=1,2. It is easy to see that ω(x)=-ρ(x,A

2
)<0 for

all x∈ A
1
 and ω(x)=ρ(x,A

2
)>0 for all x∈ A

2
. Then knowing training sets A

1
 and  A

2

we can suggest the following algorithm for classification. Let B be a set of new
observations and N=|B|.

Algorithm 2. Classification algorithm
Step 1. Initialization. Set k=1
Step 2. Take xk∈B and calculate ρ

k
 = ρ(xk,A

i
)= min ||xk-a||,a∈A

i
, i=1,2.

Step 3. If
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then xk∈A
1
 otherwise xk∈A

2
. Set k=k+1. If k≤N then go to Step 2, otherwise stop.

 We shall apply this algorithm with cross-validation. The accuracy of Algo-
rithm 2 is not very high, however we again use it only for confirmation of results
obtained by the main Algorithm 1. If the coordinate, which is removed by Algorithm
1, does not change the accuracy of the classification algorithm, we can suppose that
the structure of sets A

i
 does not change, so this coordinate is not very informative.

Otherwise this coordinate is informative and cannot be removed. The following
observation is very important: two different verification approaches, based on the
accuracy for the set A

i
 and the total accuracy from the classification algorithm

confirm that the algorithm works well in all examples under consideration.
 Note that the confirmation approaches described above can be very easily

implemented; however, they can only indirectly verify the results. To obtain the real
confirmation of results obtained by the algorithm, we need to consider a very
difficult problem of clustering (Bagirov, Rubinov, Stranieri & Yearwood, 2001). If
the clustering based only on informative features can give a good description of
known sets under consideration, then we can be sure that the algorithm works well.
This procedure was carried out for all examples described in the next section
(Bagirov, Rubinov & Yearwood, 2001). The results obtained confirm that the
proposed feature selection algorithm works well.

RESULTS OF NUMERICAL EXPERIMENTS
In this section we discuss the results of numerical experiments for Algorithm

1 with some known datasets. We use the following notation for the description of
results from the numerical experiments:
list—the list of attributes calculated by the algorithm for feature selection;
e

i
 —accuracy for i-th set (in %); e

tot 
—total accuracy for all sets (in %);

n
f
 —the number of objective function evaluations for the calculation of the

corresponding subset of attributes. The number n
f
(i) for the i-th stage is calculated

by the following formula: n
f
(i)=n

f
(i-1)+n

fi
, where n

fi
 is the number of the objective

function evaluations during the i-th stage;
t—the computational time (in seconds). The computational time t(i) for the i-th stage
is calculated by the following formula: t(i)=t(i-1)+t

i
 where t

i
 is the computational

time during the i-th stage;
e

cv 
—accuracy reached by the Algorithm 1 using the corresponding set of attributes

and cross-validation (in %); e
cl
 —accuracy reached by Algorithm 2 using the

corresponding set of attributes and cross-validation (in %).
T denotes the vector of thresholds, I—the subset of most informative features.

Following Remark 2 we shall consider two vectors of thresholds. We use the list of
attributes as they are given in the description of the datasets. The accuracies e

i
 and

e
tot  

are calculated by (4) and (5), respectively. In the same manner accuracies e
cv

 and
e

cl
 are calculated.

We used the discrete gradient method (Bagirov, 1999) for solving the convex
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programming problem of (3). The first task in dealing with the data under consid-
eration was to normalize the features. This was done by a nonsingular matrix M so
that the mean values of all features were 1.

Numerical experiments have been carried out using a PC Pentium-S with a 150
MHz CPU and the code was written in Fortran-90. It should be noted that some
datasets under consideration contain both continuous and categorical features. We
consider categorical features as they are given in the datasets.

THE AUSTRALIAN CREDIT DATASET
The Australian credit dataset has been studied before by Quinlan (1993). It

contains two classes with 14 attributes (6 of them are continuous and the remaining
8 are categorical) and 690 observations. The set A

1
 consists of 383 instances and the

set A
2
  contains 307 instances. We used 10-fold cross validation. The results of the

numerical experiments are presented in Table 1.
For the 1-norm we obtain the following results:

1. T = (4,3,7): I={3,5,7,8,9,10,13,14}; 2. T=(8,6,14): I={5,7,8,910}.
For the 2-norm results were as follows:

1.T = (4,3,7): I={3,5,6,7,8,9,10,13,14}; 2. T= (8,6,14): I={3,5,7,8,9,10,11,14}.
The results for the 1-norm presented in Table 1 show that we can take

(3,5,7,8,9,10,13,14) as a subset of most informative features (Stage 3). This subset
provides the best description of the dataset. Results in columns e

cv
 and e

cl
 confirm

this. e
cv

 begins to decrease after Stage 3. As a smallest subset of most informative

Table 1: Results for the Australian credit dataset

Stages list e
1

e
2

e
tot

n
f

t e
cv

e
cl

1-norm
 1 1-14 85.9 68.1 78.0 - - 78.5 79.0
 2 2,3,5,7-10,13,14 85.9 68.1 78.0 16736 53.88 78.5 80.6
 3 3,5,7-10,13,14 86.2 68.1 78.1 26372 74.59 78.5 79.7
 6 5,7-10 85.6 67.4 77.5 40053 99.52 77.8 75.9
 7 7-10 83.8 67.4 76.5 42619 103.20 76.8 61.3
 8 8-10 77.6 68.1 73.3 43769 104.69 73.4 16.2
2-norm
1 1-14 87.5 74.9 81.9 - - 81.9 81.5
2 1-11,13,14 87.5 74.9 81.9 10242 37.79 81.9 80.6
5 3,5-11,13,14 87.2 74.6 81.6 34783 120.02 81.5 80.4
7 3,5,7-11,14 86.4 74.6 81.2 46194 152.20 81.2 80.1
8 3,5,7-10,14 84.3 75.9 80.6 50846 163.74 80.7 79.3
9 3,7-10,14 83.8 76.6 80.6 54690 172.64 80.6 78.8
10 7-10,14 81.2 75.6 78.7 57908 179.50 79.3 68.4
11 7-10 80.4 72.0 76.7 60128 183.84 77.4 61.2
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features we can take (5, 7, 8, 9, 10) (Stage 6). We can see that e
cv

 and e
cl
 sharply

decrease after Stage 6 which confirms our choice.
 The results for the 2-norm presented in Table 1 show that we can take

(3,5,6,7,8,9,10,11,13,14) as a subset of most informative features (Stage 5). It
provides a description of the dataset which slightly differs from the best one. e

cv
 and

e
cl
  begin to decrease after Stage 5. This subset contains the subset which was

obtained by using the 1-norm. As a smallest subset of most informative features we
can take (3,7,8,9,10,14) (Stage 9). This subset again contains the corresponding
subset obtained by using the 1-norm. We can again see that e

cv
 and e

cl
 sharply

decrease after Stage 9.

THE WISCONSIN DIAGNOSTIC
BREAST CANCER DATASET

 This dataset was created by W.H. Wolberg, General Surgery Department,
University of Wisconsin, Clinical Sciences Center, W.N. Street and O.L.
Mangasarian, Computer Sciences Department, University of Wisconsin. It contains
two classes, 30 continuous attributes and 569 observations. The sets A

1
 and A

2

contain 357 and 212 instances, respectively. We used 10-fold cross-validation.
Results of the numerical experiments are presented in Table 2.

 For the 1-norm results were as follows:
1. T = (4,2,6): I={3,4,6,7,8}; 2. T=(7,4,11): I={4,7,8}.

 We obtain the following results for the 2-norm:
1. T = (4,2,6): I={4,7,8}; 2. T=(7,4,11): I={4,7,8}.

 From the results for the 1-norm presented in Table 2 we see that (1, 2, 3, 4, 5,
6, 7, 8) is a subset of most informative features (Stage 3). The results in columns e

cv

and e
cl
 confirm this. As a smallest subset of most informative features we can take

(4, 7, 8) (Stage 8). We can see that e
cv

 and e
cl
 essentially decrease after Stage 8. It

follows from the results for the 2-norm presented in Table 2 that (1, 2, 3, 4, 6, 7, 8)
is the subset of most informative features (Stage 4). This is a subset of the
corresponding set obtained by using the 1-norm. We can see that e

cv
 and e

cl
  begin

to decrease after Stage 4. We can take (4, 7, 8) (Stage 8) as a smallest subset of most
informative features which coincides with the corresponding set obtained by using
the 1-norm.  e 

cv
 and e

cl
  sharply decrease after Stage 8.

THE HEART DISEASE DATASET
 The heart disease dataset comes from the Cleveland Clinic Foundation and

was supplied by Robert Detrano, V.A. Medical Center, Long Beach, USA. It is part
of the collection of databases at the University of California, Irvine collated by
David Aha. The dataset contains two classes, 13 attributes (9 of them are continuous
and 4 are categorical) and 297 observations. The sets A

1
 and A

2
 consist of 137 and

160 instances, respectively. Results of numerical experiments are given in Table 3.



A Heuristic Algorithm   23

Table 2: Results for the breast cancer dataset

Stages list e
1

e
2

e
tot

n
f

t e
cv

e
cl

1-norm
1 1-10 96.1 87.7 93.0 - - 92.9 91.6
2 1-9 96.1 87.7 93.0 6836 13.51 92.9 92.7
3 1-8 96.1 87.7 93.0 12974 24.44 92.9 92.5
5 1,3,4,6-8 96.1 87.3 92.8 19875 35.26 92.5 89.6
7 4,6-8 94.1 87.7 91.7 23443 39.87 91.6 90.0
8 4,7,8 96.1 85.4 92.1 24793 41.41 92.1 90.4
9 7,8 94.1 86.3 91.2 25597 42.23 90.9 88.9
10 7 90.8 84.0 88.2 26005 42.67 88.8 80.2
2-norm
1 1-10 95.2 87.3 92.3 - - 92.3 91.4
2 1-9 95.2 87.3 92.3 7192 17.19 92.1 91.8
4 1-4,6-8 95.2 87.3 92.3 17426 38.66 92.5 91.8
7 4,6-8 94.1 87.7 91.7 26325 54.04 91.4 90.4
8 4,7,8 95.5 87.3 92.4 27912 56.41 92.5 90.7
9 7,8 93.3 86.8 90.9 28885 57.67 90.9 87.9
10 7 90.8 84.0 88.2 29408 58.33 88.8 80.2

Table 3: Results for the heart disease dataset with

Stages list e
1

e
2

e
tot

n
f

t e
cv

e
cl

1-norm
1 1-13 67.9 89.4 79.5 - - 77.8 77.4
2 1,3,5,7-13 67.9 89.4 79.5 13981 11.91 77.8 76.4
5 3,7,9-13 67.9 90.0 79.8 35506 25.98 77.4 70.1
6 7,9-13 66.4 86.9 77.4 39635 28.23 76.0 59.4
7 7,9,10,12,13 66.4 89.4 78.8 42348 29.66 77.4 54.5
8 7,9,10,12 65.6 87.5 77.4 44274 30.59 75.4 48.6
9 7,10,12 64.2 85.6 75.8 45265 31.08 72.2 9.0
2-norm
1 1-13 75.2 80.0 77.8 - - 77.8 78.1
2 1-4,6-13 75.2 80.0 77.8 8651 10.16 77.8 77.1
4 2,3,6-13 75.2 80.0 77.8 24273 27.02 77.8 77.1
5 2,3,7-13 75.2 81.9 78.8 30629 33.23 77.4 77.4
8 2,7,9,10,12,13 75.2 81.9 78.8 44892 45.75 77.1 62.5
9 7,9,10,12,13 75.2 80.6 78.1 47920 48.11 77.8 54.2
10 7,9,10,12 74.5 79.4 77.1 50099 49.71 77.1 48.6
11 9,10,12 74.5 78.1 76.4 51898 50.97 76.0 43.1
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We used 9-fold cross-validation.

 Results for the 1-norm are as follows:
1. T= (2,3,5): I={3,7,9,10,11,12,13}; 2. T= (4,6,10): I= {7,9,10,12,13}.

 Results for the 2-norm are as follows:
1. T= (2,3,5): I={2,7,9,10,12,13}; 2. T= (4,6,10): I= {7,9,10,12,13}.

 The results for the 1-norm presented in Table 3 show that (3,7,9,10,11,12,13)
is a subset of most informative features (Stage 5) and (7,9,10,12,13) is a smallest
subset of most informative features (Stage 7). We can see that e

cv
 decreases and e

cl

sharply decreases after Stages 5 and 7, which confirms the obtained results. It
follows from the results for the 2-norm presented in Table 3 that (2, 7, 9, 10, 12, 13)
is a subset of most informative features (Stage 8) and (7, 9, 10, 12, 13) is a smallest
subset of most informative features (Stage 9). The results presented in columns e

cv

and e
cl
 confirm this. We can see the smallest subsets of most informative features are

the same for the 1-norm and 2-norm.

CONCLUSION
In this chapter an algorithm for feature selection in datasets has been proposed

and discussed. We formulated feature selection as a convex programming problem
and achieved this task by determining centres to describe classes in a feature space.
The closest coordinates of the centers are removed step by step. If removal of a
feature leads to significant changes in the structure of the classes then the algorithm
terminates and the previous subset of features is considered as the least a subset of
most informative features. One could represent the classes by their mean values, but
results of numerical experiments show that such an approach does not lead to good
results. This algorithm allows one to consider datasets with an arbitrary number of
classes.

Numerical experiments on publicly available real-world databases have been
carried out. The results from these experiments show that the proposed algorithm
quickly calculates subsets of informative features. They also show that the number
of such subsets is not, in general, unique.

The algorithm allows the calculation of sets of most informative features as
well as very small subsets of these features which consist of “almost all” informative
features. These subsets can be used further for solving classification problems.

Comparison of the proposed algorithm with other feature selection algorithms
and application of its results for solving classification problems are the subject of
further investigation.
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This chapter reports results obtained from a series of studies on cost-
sensitive classification using decision trees, boosting algorithms, and
MetaCost which is a recently proposed procedure that converts an error-
based algorithm into a cost-sensitive algorithm. The studies give rise to
new variants of algorithms designed for cost-sensitive classification, and
provide insights into the strength and weaknesses of the algorithms. First,
we describe a simple and effective heuristic of converting an error-based
decision tree algorithm into a cost-sensitive one via instance weighting.
The cost-sensitive version performs better than the error-based version
that employs a minimum expected cost criterion during classification.
Second, we report results from a study on four variants of cost-sensitive
boosting algorithms. We find that boosting can be simplified for cost-
sensitive classification. A new variant which excludes a factor used in
ordinary boosting has an advantage of producing smaller trees and
different trees for different scenarios; while it performs comparably to
ordinary boosting in terms of cost. We find that the minimum expected cost
criterion is the major contributor to the improvement of all cost-sensitive
adaptations of ordinary boosting. Third, we reveal a limitation of MetaCost.
We find that MetaCost retains only part of the performance of the internal
classifier on which it relies. This occurs for both boosting and bagging as
its internal classifier.
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INTRODUCTION
Cost-sensitive classification allows one to assign different costs to different

types of misclassifications. For example, in the field of natural disaster prediction,
the cost of having a disaster undetected is much higher than the cost of having a false
alarm. Thus, cost-sensitive classification seeks to minimize the total misclassification
cost. In contrast, conventional classification seeks to minimize the total errors
regardless of cost.

Cost-sensitive tree induction employing the greedy divide-and-conquer algo-
rithm has attracted much interest recently. Breiman, Friedman, Olshen and Stone
(1984) describe two different methods of incorporating variable misclassification
costs into the process of tree induction. These methods adapt the test selection
criterion in the tree growing process. Pazzani, Merz, Murphy, Ali, Hume and Brunk
(1994) reported negative empirical results when using one of Breiman et al.’s
formulations to induce cost-sensitive trees. They found that the cost-sensitive trees
do not always have lower misclassification costs, when presented with unseen test
data, than those trees induced without cost consideration. Using a post-processing
approach, Webb (1996) shows that applying a cost-sensitive specialization tech-
nique to a minimum error tree can reduce its misclassification costs by a small
margin. In contrast to Pazzani et al.’s study, Ting (in press) shows convincingly that,
by applying a simple heuristic, a truly cost-sensitive tree can be effectively learned
directly from the training data, employing the greedy divide-and-conquer algo-
rithm. The paper extends this line of research into improving the performance by
combining multiple trees.

Boosting has been shown to be an effective method of combining multiple
models in order to enhance the predictive accuracy of a single model (Quinlan, 1996;
Freund & Schapire, 1996; Bauer & Kohavi, 1999). Boosting is amenable to cost-
sensitive adaptation and recent research has reported some success (Ting & Zheng,
1998; Fan, Stolfo, Zhang & Chan, 1999). However, the relative performance
between the proposed methods has yet to be investigated, and other forms of
adaptations are also possible.

In this paper, we study two new variants of cost-sensitive boosting, and two
recently proposed variants by Fan et al (1999) and Ting and Zheng (1998). All these
variants must relearn their models when misclassification cost changes. An alterna-
tive method that converts an error-based model to a cost-sensitive model simply
applies a minimum expected cost criterion (Michie, Spiegelhalter & Taylor, 1994)
to the error-based model, and the same model can be reused when cost changes.
Therefore, it is important to investigate whether the cost-sensitive variants have any
advantage over this simple alternative. This study aims at improving our under-
standing of the behavior of the four cost-sensitive boosting algorithms and how
variations in the boosting procedure affect misclassification cost.

MetaCost (Domingos, 1999) is a recently proposed method for making an
arbitrary classifier cost-sensitive. The method has an interesting design that uses a
“meta-learning” procedure to relabel the classes of the training examples and then
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employs the modified training set to produce a final model. MetaCost has been
shown to outperform two forms of stratification which change the frequency of
classes in the training set in proportion to their cost.

MetaCost depends on an internal cost-sensitive classifier in order to relabel
classes of training examples. But the study by Domingos (1999) made no compari-
son between MetaCost’s final model and the internal cost-sensitive classifier on
which MetaCost depends. This comparison is worth making as it is credible that the
internal cost-sensitive classifier may outperform the final model without the
additional computation required to derive the final model.

We first provide background information about cost-sensitive decision tree
induction using instance weighting heuristic in the next section. Then, we describe
the boosting procedure used in this chapter: AdaBoost, along with cost-sensitive
adaptations and provide the details of the MetaCost procedure in the following two
sections. The next section reports the experiments and discusses the results and
findings. We conclude in the final section.

COST-SENSITIVE DECISION TREE
INDUCTION VIA INSTANCE WEIGHTING

Let N be the total number of instances from the given training set, and N
i
 be the

number of class i instances. Similarly, let N(t) and N
i
(t) be the number of instances

and class i instances in node t of a decision tree. The probability that an instance is
in class i given that it falls into node t is given by the ratio of the total number of class
i instances to the total number of instances in this node.

When node t contains instances that belong to a mixture of classes, the standard
greedy divide-and-conquer procedure for inducing trees (e.g., Breiman et al.,1984;
Quinlan, 1993) uses a test selection criterion to choose a test at this node such that
the training instances which fall into each branch, as a result of the split, become
more homogeneous. One of the commonly used criteria is entropy, that is, – Σ

i
 p(i|t)

log[p(i|t)]. At each node, the tree growing process selects a test which has the
maximum gain in entropy until the node contains only a single-class collection of
instances.

To avoid overfitting, a pruning process is employed to reduce the size of the tree
such that the estimated error is a minimum. In short, the standard tree induction
procedure seeks to produce a minimum error tree. For a detail account of the
decision tree induction algorithm, please refer to Breiman et al. (1984) and Quinlan
(1993).

Our intuition for cost-sensitive tree induction is to modify the weight of an
instance proportional to the cost of misclassifying the class to which the instance
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belonged, leaving the sum of all training instance weights still equal to N. The last
condition is important because there is no reason to alter the size of the training set,
which is equivalent to the sum of all training instance weights, while the individual
instance weights are adjusted to reflect the relative importance of instances for
making future prediction with respect to cost-sensitive classification. The heuristic
is formalized as follows.

Let C(i) be the cost of misclassifying a class i instance; the weight of a class i
instance can be computed as

such that the sum of all instance weights is Σ
i
 w(i) N

i
 = N. For C(i) ≥ 1, w(i) has the

smallest value 0 < [(N)/(Σ
j
 C(j) N

j
)] ≤ 1 when C(i)=1; and the largest value w(i) =

[(C(i) Σ
j
 N

j
)/(Σ

j
 C(j) N

j
)] ≥ 1 when C(i) = max

j
 C(j).

Similar to p(i|t), p
w
(i|t) is defined as the ratio of the total weight of class i

instances to the total weight in node t:

The standard greedy divide-and-conquer procedure for inducing minimum
error trees can then be used without modification, except that W

i
(t) is used instead

of N
i
(t) in the computation of the test selection criterion in the tree growing process

and the error estimation in the pruning process. Thus both processes are affected due
to this change.

We modified C4.5 (Quinlan, 1993) to create C4.5CS. We only need to initialize
the training instance weights to w(i) since C4.5 has already employed W

i
(t) for the

computation discussed above1.
This modification effectively converts the standard tree induction procedure

that seeks to minimize the number of errors regardless of cost to a procedure that
seeks to minimize the number of errors with high weight or cost. Note that
minimizing the latter does not guarantee that the total misclassification cost is
minimized; this is because the number of low cost errors is usually increased as a
result.

The advantage of this approach is that the whole process of tree growing and
tree pruning is the same as that used to induce minimum error trees. This can be
viewed as a generalization of the standard tree induction process where only the
initial instance weights determine the type of tree to be induced—minimum error
trees or minimum high cost error trees.

Figure 1 shows an example of a split on the same attribute test using unit
instance weights (in the left diagram) and different instance weights (in the right
diagram). The sum of the instance weights for each class is shown in each node. With
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unit weights, each sum is equivalent to the number of instances for each class, N
i
(t).

This example has two equiprobable classes, where N
1
=N

2
=50 at the root of the tree.

The right diagram shows the result of the same split when C(1)=3 and C(2)=1.
Employing Equation (1), the weights of all instances are modified to w(1)=1.5 and
w(2)=0.5. As a result, the sums of the class i instance weights at the root are W

1
 =

75 and W
2
 = 25. This example shows that initializing the instance weights to w(i)

amounts to changing the class distribution of the training data.
To classify a new instance, C4.5CS predicts the class that has the maximum

weight at a leaf, as in C4.5.
Ting (in press) has demonstrated the instance weighting heuristic works well.

Compared with C4.5, the cost-sensitive version (C4.5CS) performs better by an
average relative reduction of 14% in term of misclassification cost and an average
relative reduction of 34% in terms of tree size over twelve data sets. Compared with
C5 (Quinlan, 1997), the improved version of C4.5 which can produce a cost-
sensitive tree, C4.5CS performs comparably in terms of cost and significantly better
in term of tree size with an average relative reduction of 16%. The summarized result
reported by Ting (in press) is given in Table 1.

Here we describe how the cost of misclassification can be specified in a cost
matrix, and how the cost matrix is related to C(i) in Equation (2). In a classification
task of J classes, the misclassification costs can be specified in a cost matrix of size
J xJ. The rows of the matrix indicate the predicted class, and the column indicates
the actual class. The off-diagonal entries contain the costs of misclassifications; and

Figure 1: Splitting on the same test—using unit instance weights (left) and different
instance weights (right)

Table 1: Mean ratios for C4.5CS versus C4.5 and C4.5CS versus C5 over twelve
data sets (from Ting, in press)

C4.5CS vs C4.5 C4.5CS vs C5

Misclassification Cost ratio .86 .98

Tree Size ratio .66 .84

N
i
(t)

50
50

W
i
(t)

75
25

40 10            60          15
20 30            10          15
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on the diagonal lie the costs for correct classifications, which are zero in this case
since our main concern here is total misclassification costs of an induced tree.2

Let cost(i,j) be the cost of misclassifying a class i instance as belonging to class
j. In all cases, cost(i,j)=0.0 for i = j. A cost matrix must be converted to a cost vector
C(i) in order to use Equation (2) for instance, weighting. In this paper, we employ
the form of conversion suggested by Breiman et al. (1984):

In our experiments, without loss of generality, we impose a unity condition—
at least one cost(i,j)=1.0 which is the minimum misclassification cost. The only
reason to have this unity condition or normalization3 is to allow us to measure the
number of high cost errors, which is defined as the number of misclassification
errors that have costs more than 1.0.

ADABOOST AND COST-SENSITIVE
ADAPTATIONS

AdaBoost uses a base learner to induce multiple individual classifiers in
sequential trials, and a weight is assigned to each training example. At the end of
each trial, the vector of weights is adjusted to reflect the importance of each training
example for the next induction trial. This adjustment effectively increases the
weights of misclassified examples and decreases the weights of the correctly
classified examples. These weights cause the learner to concentrate on different
examples in each trial and so lead to different classifiers. Finally, the individual
classifiers are combined to form a composite classifier. The AdaBoost procedure,
shown in Figure 2, is a version of boosting that uses the confidence-rated predictions
described in Schapire and Singer (1999).

In order to have a fair comparison with other cost-sensitive algorithms,
AdaBoost can be made cost-sensitive by applying a minimum expected cost
criterion during classification. This is made possible by assuming weighted votes
for each class are proportional to class probability,

            ∝

where cost(i,j) is the cost of misclassifying a class i example as class j.
Four modifications of AdaBoost are assessed in this chapter. All these variants

evaluate cost during the training process. The simplest is the only variant that does
not use confidence-rated predictions in the weight-update rule of Step (iii). This
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Figure 2: The AdaBoost procedure

Given a training set T containing N examples (x
n
,y

n
) where x

n
 is a vector of

attribute values and y
n
 ∈ Y is the class label, w

k
(n) denotes the weight of the nth

example at the kth trial.

Initialization: w
1
(n)=1.

In each trial k = 1,...,K, the following three steps are carried out.

(i) A model H
k
 is constructed using the training set under the weight distribu-

tion w
k
. Let H

k
(x) denote the predicted class, and H

k
(x) ∈ [0,1] denote the

confidence level of the prediction.

(ii) Classify T using H
k
, and compute r

k
 as defined by

where δ = -1 if H
k
(x

n
) ≠ y

n
 and δ = +1 otherwise. Then, compute

(iii) The weight vector w
(k+1)

 for the next trial is updated as follows:

If w
(k+1)

(n) < 10-8, set it to 10-8 to solve the numerical underflow problem
(Bauer & Kohavi, 1999). Normalize w

(k+1)
(n) so that the sum of all w

(k+1)
(n)

equals to N.

After K models are induced, they are ready for prediction. For each classification,
the final prediction is the combined prediction from the K models using the
maximum vote criterion, computed as follows.
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variant, denoted CSB0, can be obtained by modifying Equation (7) to

w
k+1

(n)=Cδ wk
 (n),      (11)

where C
-
 = cost(y

n
, H

k
(x

n
)) and C

+
 = 1. Ting and Zheng (1998) introduced this variant.

The next two variants are created in this paper to study the effects of including
cost and the parameter α in the weight-update rule. Both utilize cost in the same form
but one does not use α in the formulation. The second variant CSB1 is obtained by
modifying Equation (7) to

w
k+1

(n)=Cδ wk
 (n) exp(-δ H

k
(x

n
)).                   (12)

Because α is not used, CSB1 requires only the computation classify T using H
k
 in

Step (ii) to update weights.
The third variant CSB2 is obtained by changing Equation (7) to

w
k+1

(n)=Cδ wk
 (n) exp(-δ H

k
(x

n
)α

k
),      (13)

CSB2 reduces to AdaBoost if cost(i,j)=1, ∀ i ≠ j.
The last variant called AdaCost is due to Fan et al. (1999). This procedure

incorporates a cost adjustment function βδ in Equations (5) and (7). The first
modified equation is

where β
+
 = -0.5c

n
 + 0.5 and β

-
 = 0.5c

n
 + 0.5; and c

n
 is the cost of misclassifying the

nth example.
The weight-update rule in AdaCost is

w
k+1

(n)=Cδ wk
 (n) exp(-δ H

k
(x

n
)α

k 
βδ).      (15)

For two-class problems, c
n
 is equivalent to the cost of misclassifying class y

n

example in a fixed cost scenario. This is described by a cost matrix c
n
 = cost(y

n
,j) for

y
n
 ≠ j. Because c

n
 must be normalized to [0,1] (Fan et al., 1999), each value is divided

by the maximum misclassification cost.
In our implementation all four variants incorporate the minimum expected cost

criterion defined in Equation (10) and also a weight initialization process defined in
Equation (2).

To conduct the experiments described in the experiment section, C4.5 (Quinlan,
1993) underlies the model H

k
 in the boosting procedure. Only the default settings of

C4.5 are used. The confidence level of a prediction is a Laplacian estimate of the
class probability. The parameter K controlling the number of classifiers generated
in the procedure is set at 10 for all experiments.
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METACOST
MetaCost (Domingos, 1999) is based on the Bayes optimal prediction that

minimizes the expected cost R(j|x) (Michie, Spiegelhalter & Taylor, 1994):

To apply the Bayes optimal prediction rule, first compute the expected cost for
each class and then choose the class that has the minimum expected cost to be the
final prediction. Note that this is the same rule that is used to derive Equation (10).

The Bayes optimal prediction rule implies a partition of the example space into
I regions, such that class i is the minimum expected cost prediction in region i. If
misclassifying class i becomes more expensive relative to misclassifying others,
then parts of the previously non-class i regions shall be reassigned as region i since
it is now the minimum expected cost prediction.

The MetaCost procedure applies the above principle by first estimating class
probabilities using bagging (Bauer & Kohavi, 1999), and then relabeling the
training examples with their minimum expected cost classes, and finally relearning
a model using the modified training set.

We interpret the process of estimating class probabilities and applying the
Bayes optimal prediction rule as constructing an internal cost-sensitive classifier for
MetaCost. With this interpretation, we formalize the MetaCost procedure as a three-
step process, depicted in Figure 3.

The procedure begins to learn an internal cost-sensitive model by applying a
cost-sensitive procedure which employs a base learning algorithm. Then, for each
of the training examples, assign the predicted class of the internal cost-sensitive
model to be the class of the training example. Finally, learn the final model by
applying the same base learning algorithm to the modified training set.

Figure 3: The MetaCost procedure

Given T: a training set containing N examples (x
n
,y

n
) where x

n
 is a vector of

attribute-values and y
n
 is the class label, L: a base learning algorithm, C: a cost-

sensitive learning procedure, and cost: a cost matrix.

 MetaCost(T,L,C,cost)

(i) Learn an internal cost-sensitive model by applying C:
H* = C(T,L, cost).

(ii) Modify the class of each example in T from the prediction of H*:
y

n
 = H* (x

n
).

(iii) Construct a model H by applying L to T.

 Output: H.
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The performance of MetaCost relies on the internal cost-sensitive procedure in
the first step. Getting a good performing internal model in the first step is crucial to
getting a good performing final model in the third step.

MetaCost in its original form (Domingos, 1999) assumes that its internal cost-
sensitive procedure is obtained by applying the Bayes optimal prediction rule to an
existing error-based procedure. Thus, the cost-sensitive procedure C consists of first
getting the class probability from a model h defined as follows. Choose an error-
based procedure E which employs a training set T and a base learning algorithm L
to induce the model h = E(T,L), without reference to cost. Given a new example x,
h produces a class probability for each class:

P(i | x) = h(x), for each class i.

Then, apply the Bayes rule or minimum expected cost criterion:

However, a cost-sensitive procedure, that takes cost directly into consideration
in the training process is another option. In this paper, both types of cost-sensitive
procedures are used to evaluate their effects on MetaCost. We use the error-
minimizing boosting algorithm AdaBoost in place of E and a cost-sensitive version
of the boosting procedure in place of C. Both AdaBoost and the cost-sensitive
boosting procedures have been described in the last section.

Data set Size      No. of Attributes
Numeric Nominal

breast cancer (W) 699 9 0
liver disorder 345 6 0
credit screening 690 6 9
echocardiogram 131 6 1
solar flare 1389 0 10
heart (Cleveland) 303 13 0
hepatitis 155 6 13
horse colic 368 7 15
house-voting 84 435 0 16
hypothyroid 3168 7 18
kr-vs-kp 3169 0 36
pima diabetes 768 8 0
sonar 208 60 0
tic-tac-toe 958 0 9

                                ),()|(
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Table 2: Description of data sets
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EXPERIMENTS
In this section, we empirically evaluate the performances of the cost-sensitive

boosting procedures as well as the MetaCost procedure. Fourteen two-class natural
data sets from the UCI machine learning repository (Blake, Keogh & Merz, 1998)
are used in the experiments. Table 2 shows the characteristics of the data sets. They
are breast cancer (Wisconsin), liver disorder, credit screening, echocardiogram,
solar flare, heart disease (Cleveland), hepatitis, horse colic, house-voting 84,
hypothyroid, king-rook versus king-pawn, pima Indian diabetes, sonar and tic-tac-
toe data sets. Only two-class data sets are used because AdaBoost, in its basic form,
is designed for two-class problems only (Schapire & Singer, 1999).

Recall that a cost matrix must be assigned for AdaBoost and its variants.
Suppose i is the majority class, that is, P(i) > P(j), then assign cost(i,j)=1 and
cost(j,i)=f > 1. This means misclassifying a minority class example is f times more
costly than misclassifying a majority class example. This simulates the situation
often found in practice where it is most important to correctly classify the rare
classes. In this paper, all correct classifications are assumed to have no cost, that is,
for all i, cost(i,i)=0.

For each of the data sets, we report the sum of three averages, where each
average is the result of a run of two 10-fold cross-validations using a fixed cost
factor. The three cost factors used are f = 2, 5, and 10. Thus, in each set of
experiments (having three cost factors and 14 data sets), there are altogether 42 runs.
We also show the number of runs in which one algorithm wins, draws and loses to
another to indicate whether the difference in performance is significant. We conduct
a one-tail sign-test on the number of win/loss records and consider the difference is
significant only if the level is better than 95%.

The key measure to evaluate the performance of the algorithms for cost-
sensitive classification is the total cost of misclassifications made by a classifier on
a test set (i.e., Σ

m
 cost(actual(m), predicted(m)) ). In addition, we also use a second

measure: the number of high cost errors. It is the number of misclassifications
associated with costs higher than unity made by a classifier on a test set. The second
measure is used primarily to explain the behavior of the algorithms.

Empirical Evaluation of Cost-Sensitive Boosting
Algorithms

Comparison With AdaBoost
We evaluate the four variants of cost-sensitive boosting and AdaBoost in this

section and investigate the reason(s) why one is performing better than the other. We
first take AdaBoost as the baseline for comparison because it is the base algorithm
for the cost-sensitive variants. To investigate the relative performance among the
variants, we then take AdaCost, the most complex adaptation, as the baseline
comparison. Note that all algorithms use the minimum expected cost criterion,
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Cost Cost Ratio
Data AdaBoost CSB0 CSB1 CSB2 AdaCost CSB0 CSB1 CSB2 AdaC
set vs AdaB vs AdaBvs AdaBvsAdaB
bcw 14.55 14.85 15.85 14.65 14.70 1.02 1.09 1.01 1.01
bupa 71.95 59.60 60.25 58.45 108.40 .83 .84 .81 1.51
crx 68.00 59.35 60.80 59.60 66.80 .87 .89 .88 .98
echo 35.75 22.75 24.40 24.10 38.20 .64 .68 .67 1.07
flare 315.85 259.30 246.75 244.00 318.20 .82 .78 .77 1.01
h-d 42.55 36.50 34.75 35.65 40.45 .86 .82 .84 .95
hepa 24.35 20.20 20.20 19.60 22.30 .83 .83 .80 .92
horse 58.05 47.65 50.05 49.55 58.05 .82 .86 .85 1.00
hv84 11.25 11.35 10.40 11.85 10.80 1.02 .92 1.05 .96
hypo 26.10 25.15 24.65 26.95 24.40 .96 .94 1.03 .93
krkp 14.55 19.25 21.20 19.60 16.70 1.32 1.46 1.35 1.15
pima 123.15 111.55 113.15 110.95 136.85 .91 .92 .90 1.11
sonar 26.75 23.25 23.25 23.65 23.70 .87 .87 .88 .89
ttt 52.10 76.00 80.60 75.65 68.15 1.46 1.55 1.45 1.31
mean 63.21 56.20 56.16 55.30 67.69
geomean .92 .94 .93 1.05

High Cost Errors High Cost Error Ratio
Data AdaBoost CSB0 CSB1 CSB2 AdaCost CSB0 CSB1 CSB2 AdaC
set vs AdaBvs AdaBvs AdaBvs AdaB
bcw 1.25 1.00 0.85 0.90 1.10 .80 .68 .72 .88
bupa 9.00 6.00 5.40 5.60 16.60 .67 .60 .62 1.84
crx 9.05 7.05 5.25 5.70 9.45 .78 .58 .63 1.04
echo 5.05 2.85 2.80 2.65 5.15 .56 .55 .52 1.02
flare 55.90 43.80 37.60 39.90 56.80 .78 .67 .71 1.02
h-d 5.40 4.20 3.05 3.45 5.85 .78 .56 .64 1.08
hepa 3.50 2.50 2.35 2.45 3.35 .71 .67 .70 .96
horse 9.00 5.95 5.60 5.70 9.30 .66 .62 .63 1.03
hv84 1.20 0.95 0.65 0.75 1.20 .79 .54 .63 1.00
hypo 3.70 3.35 3.00 3.10 3.55 .91 .81 .84 .96
krkp 2.00 1.55 1.50 1.45 1.95 .78 .75 .73 .98
pima 16.55 11.10 10.80 10.45 20.05 .67 .65 .63 1.21
sonar 2.65 2.00 1.15 1.55 2.55 .75 .43 .58 .96
ttt 4.30 2.85 1.55 1.65 7.15 .66 .36 .38 1.66
mean 9.18 6.80 5.83 6.09 10.29
geomean .73 .60 .63 1.09

Table 3: Cost for AdaBoost, CSB0, CSB1, CSB2 and AdaCost

Table 4: High cost errors for AdaBoost, CSB0, CSB1, CSB2 and AdaCost

including AdaBoost.
Tables 3 and 4 show the experimental results of AdaBoost, CSB0, CSB1, CSB2

and AdaCost in terms of cost and the number of high cost errors, respectively. The
tables include ratios taking AdaBoost as the baseline, reported in the last four
columns. A ratio of less than 1 represents an improvement due to a variant relative
to AdaBoost. The mean values for each of the five algorithms and the geometric
mean of the ratios are provided in the last row.

From the last row in each table note that:
• In terms of cost, CSB0, CSB1 and CSB2 have comparable performance. Each
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performs better than AdaBoost. The mean relative cost is reduced by 8%, 6%
and 7%, respectively over the 14 data sets. AdaCost performs worse than
AdaBoost with a mean relative cost increase of 5%.

• In terms of high cost errors, CSB0, CSB1 and CSB2 perform significantly
better than AdaBoost in all data sets. The mean relative reductions are 27%,
40% and 37%. Again, AdaCost performs worse than AdaBoost with a mean
relative increase of 9%.

Relative to AdaBoost, the first three variants work harder in reducing high cost
errors when the cost factor increases. Figure 4 shows this effect for CSB1. The mean
high cost error ratio for CSB1 versus AdaBoost decreases from .82 to .49 and then
to .21 as the cost factor increases from 2 to 5 and then to 10. Similar trends emerge
using cost, though to a lesser degree. The mean cost ratios are .96, .94 and .90 for
f= 2, 5, and 10, respectively.

Even though the first three variants are adept at reducing high cost errors, net
increase in cost can arise. For example note the higher relative costs in Table 3 for
the krkp and ttt data sets, yet the reduced incidence of high cost error in Table 4. In
these two data sets, cost increases because the gain from reducing high cost errors
is outweighed by introducing more low cost errors. Figure 4(b) shows the trade-off
between the two types of errors for AdaBoost and CSB1 as cost factor increases.

Figure 4: The average cost and numbers of high and low cost errors for AdaBoost
and CSB1 as cost factor increases. Each bar shows the average value over all data
sets for each cost factor. (a) CSB1 has lower average cost than AdaBoost in each
cost factor. (b) CSB1 has fewer high cost errors than AdaBoost in each cost factor,
but more low cost errors.
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The mean high cost errors for the four variants in Table 4 reveal some
interesting features of these algorithms. The simplest variant has a mean high cost
error of 6.80; the next two variants have comparable means of 5.83 and 6.09; and
the most complex variant has a mean of 10.29. For the two simplest variants (CSB0
versus CSB1), the mean ratio is 1.23. CSB0 performs significantly worse than
CSB1. The win/tie/loss record is 7/8/27, which is significant at a level better than
99.9%. That is, it is evident that the confidence-rated prediction used in the weight-
update rule, which is the only difference between the two algorithms, plays a
significant role in minimizing high cost errors for cost-sensitive boosting.

The comparison between CSB1 and CSB2 shows that incorporating an
additional factor α into the weight-update rule (the only difference between the two)
does not help to further minimize high cost errors. CSB1 versus CSB2 has a mean
ratio of .94. The win/tie/loss record is 21/10/11, which is not significant at the 95%
level. In fact, incorporating a second factor β into the rule, as in AdaCost, increases
the number of high cost errors significantly.

Relative to AdaCost, both CSB1 and CSB2 perform better with a mean
reduction of 10% in relative cost and a mean reduction of more than 40% in relative
high cost errors. Figure 5 shows the relative performance of all 42 runs for CSB1
versus AdaCost. The distribution of the scatter plots for CSB2 versus AdaCost is
similar to Figure 5. Note that to enhance readability, one extreme point in the cost
scatter plot is excluded.
Figure 5: CSB1 versus AdaCost in terms of cost and the number of high cost errors
in all 42 runs
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In terms of cost, CSB1 performs better than AdaCost in 30 runs and worse in
12 runs; and CSB2 performs better than AdaCost in 31 runs and worse in 11 runs.
Both results are significant at a level better than 99.5%. In terms of high cost errors,
CSB1 has fewer errors than AdaCost in 40 runs and has 2 equal runs; and CSB2 has
fewer errors in all except 1 equal run. In addition, AdaCost is more likely to produce
much higher cost and more high cost errors than either CSB1 or CSB2. This latter
result leads us to investigate why AdaCost performs poorly in the next section.

Why Does AdaCost Perform Poorly?
Fan et al. (1999) require that β

+
 is nonincreasing with respect to c

n
. This means

that the reward for correct classification is low when the cost is high, and vice versa.
This seems to be counter-intuitive, and it could be the source of AdaCost’s poor
performance.

We alter the form of βδ and assume β
+
 is non-decreasing as is β

-
, and they are

both equal to the cost of misclassification, that is, β
+
 = β

-
 = c

n
. We denote the resultant

algorithm as AdaCost(β
1
). We also employ a second modification, called AdaCost(β

2
),

which is identical to AdaCost(β
1
) except that βδ is excluded in Equation (14). In

other words, Equation (5) is used instead. This is to investigate whether cost needs
to be taken into consideration in Step (ii) of the boosting procedure.

The experimental results of these two variants of AdaCost are shown in Tables
5 and 6. Taking AdaCost as the baseline, ratios are also shown.

Changing to β
+
 = β

-
 = c

n
, there is a mean reduction of 11% in relative cost over

the original algorithm, and a mean reduction of 30% in relative high cost errors. This
is on a par with CSB0, CSB1 and CSB2 in terms of cost. However performance
remains worse than CSB1 and CSB2 in terms of high cost errors. Taking AdaCost(β

1
)

as the base, the mean high cost error ratios are .78 and .83 for CSB1 and CSB2,
respectively. The wins/draw/loss records are 31/9/1 for CSB1 and 34/5/3 for CSB2,
which are both significant at a level better than 99.99%.

This result clearly shows that the original form of βδ and the requirement that
β

+
 is nonincreasing were poorly selected (Fan et al., 1999). In fact, Fan et al.’s

derivation of the upper bound on the training misclassification cost implies both β
+

and β
-
 must be nondecreasing. Note also that in its original form, AdaCost does not

reduce to AdaBoost when c
n
 = 1 because β

+
 ≠ β

-
 whereas AdaCost(β

1
) does reduce

to AdaBoost under the same condition.
The second result in this section demonstrates that AdaCost(β

2
) performs

comparably with AdaCost(β
1
). Both in terms of cost and high cost errors, AdaCost(β

2
)

wins in eight data sets and loses in six data sets to AdaCost(β
1
). This result suggests

that the inclusion of βδ in Step (ii) of the boosting procedure has minimal effect on
its overall performance, and it can be excluded.

The Effects of Weight Initialization
and Minimum Expected Cost Criterion

In this section, we investigate the effects of weight initialization and the
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minimum expected cost criterion on the performance of CSB1, CSB2 and AdaCost.
For each of the cost-sensitive boosting algorithms, we change parameters one at a
time. Begin with equal initial weights and the maximum vote criterion; then change
only the initial weight setting as defined in Equation (2); and finally introduce
unequal initial weights and the minimum expected cost criterion. The results are
summarized in Figure 6.

From both in terms of cost and high cost errors, note that:
• Initial weights proportional to cost improve the variants’ performance with a

small percentage gain compared with using equal initial weights.

Cost Cost Ratio
Data set AdaC(β

1
) AdaC(β

2
) AdaC(β

1
) AdaC(β

2
)

vs AdaC vs AdaC
bcw 14.65 15.80 1.00 1.07
bupa 57.65 60.30 .53 .56
crx 57.00 59.60 .85 .89
echo 26.60 28.05 .70 .73
flare 273.75 287.15 .86 .90
h-d 38.05 37.05 .94 .92
hepa 20.35 19.35 .91 .87
horse 50.45 49.80 .87 .86
hv84 11.15 10.85 1.03 1.00
hypo 25.10 25.00 1.03 1.02
krkp 18.75 18.30 1.12 1.10
pima 111.05 112.25 .81 .82
sonar 23.30 22.00 .98 .93
ttt 70.40 67.20 1.03 .99
mean 57.02 58.05
geomean .89 .89

High Cost Errors            High Cost Error
                     Ratio

Data set AdaC(β
1
) AdaC(β

2
) AdaC(β

1
) AdaC(β

2
)

vs AdaC vs AdaC
bcw 0.95 1.05 .86 .95
bupa 5.90 6.30 .36 .38
crx 6.55 7.05 .69 .75
echo 3.70 3.75 .72 .73
flare 48.80 50.95 .86 .90
h-d 4.35 4.10 .74 .70
hepa 2.75 2.50 .82 .75
horse 6.50 6.35 .70 .68
hv84 1.00 0.90 .83 .75
hypo 3.35 3.30 .94 .93
krkp 1.60 1.45 .82 .74
pima 12.05 12.25 .60 .61
sonar 1.85 1.60 .73 .63
ttt 3.10 2.65 .43 .37
mean 7.32 7.44
geomean .70 .68

Table 5: Cost for two variants of AdaCost

Table 6: High cost errors for two variants of AdaCost
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• The minimum expected cost criterion contributes significantly to the perfor-
mance of cost-sensitive boosting, compared with the maximum vote criterion.
The three variants which use the minimum expected cost criterion reduce
mean relative cost by more than 30% over variants that don’t. In terms of high
cost errors, AdaCost improves its performance by a mean relative reduction of
43%, and both CSB1 and CSB2 improve by a mean relative reduction of more
than 60%.

• Without the minimum expected cost criterion, the influence of α on the
weight-update rule is the only reason for the better performance of CSB2 over
CSB1. With the criterion, the influence becomes minimal as CSB1 and CSB2
perform comparably.
In fact, CSB1 performs better by excluding α altogether. This is in the

minimum expected cost criterion described in Equations (9) and (10). Comparing
CSB1 without and with α, the mean ratios are 1.00 and .96 for cost and high cost
error, respectively. The latter accounts for CSB1 without a to win in 21 runs, lose
in 7 runs and draw in 14 runs. This is significant at a level better than 99%. As a
consequence, a simplified CSB1 procedure is prominent, consisting of only Steps (i)
and (iii), in which ‘classify T using H

k
’ can be done in conjunction with the weight

update, as there is no need to compute r
k
 and α

k
.

Figure 6: The effects of initial weights and the minimum expected cost (MEC)
criterion on CSB1, CSB2 and AdaCost
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Using Confidence Levels of All Classes in Each Model
Thus far, we use the confidence level of the predicted class only (which has the

highest level among all classes) in each of the K models. This follows directly from
the AdaBoost procedure. However, the minimum expected cost criterion may
perform better if the confidence levels of all classes in each model are taken into
consideration. We investigate this issue in this section.

Let H i
k
(x) be the confidence level for class i from model k when classifying

example x. We modify Equation (10) accordingly, and exclude α
k
 since it has

minimal effect on the performance.

Variants that use confidence levels of all classes are denoted as AdaBoost' and
CSB1', for example. Tables 7 and 8 show the results using AdaBoost' and CSB1'.

In terms of high cost errors, AdaBoost' and CSB1' perform better than
AdaBoost and CSB1, respectively, with a mean relative reduction of more than
25%. But the result is mixed in terms of cost. Using confidence levels of all classes
improves AdaBoost’s performance by a mean reduction of 9% in relative cost.
However, it increases the mean relative cost by 2% for CSB1.

Note that both AdaBoost and AdaBoost' induce exactly the same K models.
This is the same for CSB1 and CSB1'. Thus, the difference in performance is solely
due to how the same models are used in conjunction with the minimum expected cost
criterion during classification. Confidence levels of all classes provide complete
information on how to minimize high cost errors. This method is almost always
better in reducing high cost errors than that using only the confidence level of the
predicted class. The reduction comes at a price of increasing low cost errors. At
times, the increase of low cost errors could outweigh the gain due to the high cost
error reduction. This explains why CSB1' has higher cost than CSB1 in eight out of
the fourteen data sets while reducing the number of high cost errors in all but one
data set.

In terms of high cost errors, the best performing algorithm CSB1' performs
significantly better than AdaBoost' with a mean ratio of .62 and the win/tie/loss
record is 37/4/1. It performs marginally better than its closest contender CSB2', with
a mean ratio of .93. In terms of cost, AdaBoost' and the four variants have almost
similar performance. Figure 7 shows the performances of the four variants relative
to AdaBoost'.

Figure 8 shows the mean tree size and high cost errors over the fourteen data
sets for AdaBoost' and the four variants. The tree size is the total number of nodes
for all models generated in each boosting session. The result shows a strong
correlation between an algorithm that produces small trees and its success in
reducing high cost errors among the five variants. Bauer and Kohavi (1999) have a

                              ),()(
min  arg

)(* ∑∑=
i k

i
k jicostx

j
xH H (16)
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Cost                             Cost Ratio
Data set AdaBoost' CSB1' AdaBoost' CSB1'

vs AdaBoost vs CSB1
bcw 14.45 16.40 .99 1.03
bupa 58.50 57.05 .81 .95
crx 59.30 65.85 .87 1.08
echo 24.90 23.20 .70 .95
flare 242.75 223.95 .77 .91
h-d 40.45 37.45 .95 1.08
hepa 22.65 19.90 .93 .99
horse 49.00 52.75 .84 1.05
hv84 10.95 11.15 .97 1.07
hypo 26.10 24.30 1.00 .99
krkp 14.15 20.70 .97 .98
pima 111.95 113.10 .91 1.00
sonar 26.05 25.55 .97 1.10
ttt 58.70 91.25 1.13 1.13
mean 54.28 55.90
geomean .91 1.02

Table 8: High cost errors for AdaBoost' and CSB1' which employ confidence levels
of all classes for each model

High Cost Errors          High Cost Error Ratio
Data set AdaBoost' CSB1' AdaBoost' CSB1'

vs AdaBoost vs CSB1
bcw 1.15 0.90 .92 1.06
bupa 4.40 2.90 .49 .54
crx 7.15 4.45 .79 .85
echo 2.25 1.65 .45 .59
flare 33.30 27.85 .60 .74
h-d 4.20 2.45 .78 .80
hepa 2.75 1.80 .79 .77
horse 5.35 3.55 .59 .63
hv84 1.05 0.55 .88 .85
hypo 3.70 2.90 1.00 .97
krkp 1.85 1.40 .93 .93
pima 10.40 7.40 .63 .69
sonar 2.50 0.70 .94 .61
ttt 2.25 0.95 .52 .61
mean 5.88 4.25
geomean .71 .74

related finding: For data sets in which tree size increases in boosting trials,
AdaBoost fails to reduce the total errors of a single tree, and vice versa.

Figure 9 shows that the number of high cost leaves and low cost leaves for each
algorithm. A high cost leaf in a tree is the terminal node in which the predicted class
incurs high cost if it misclassifies a test example; a low cost leaf is similarly defined.

Table 7: Cost for AdaBoost' and CSB1'  which employ confidence levels
of all classes for each model.
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Except AdaBoost', the other variants produce smaller trees as cost factor increases.
This is reflected in the reduced number of both high cost leaves and low cost leaves.
CSB1' produces the smallest trees in all three cost factors. The result shows that cost-
sensitive induction is able to adapt to different cost scenarios by producing different
trees, whereas cost-insensitive induction always uses the same trees.

It is interesting to compare the difference between the performance of the old
version of AdaBoost that does not use confidence-rated predictions (Schapire,
Freund, Bartlett, & Lee, 1997) with AdaBoost' described in this chapter. Table 9
shows AdaBoost' is better than the old version with a relative mean cost reduction
of 12%. While the performance difference is small (within 10%) in eleven out of the
fourteen data sets, the performance difference is much larger in favour of AdaBoost'
in the other three data sets; in particular in the krkp data set, the relative performance

Figure 7: The geometric mean cost ratio and high cost error ratio for the four cost-
sensitive boosting algorithms relative to AdaBoost'

Figure 8: Correlation between tree size and high cost errors
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can be more than 300% in favor of AdaBoost'. The same table also provides results
for C4.5CS, and it shows that both versions of cost-sensitive AdaBoost perform
significantly better than C4.5CS with a great margin.

Empirical Evaluation of MetaCost
In this section, we empirically evaluate the performance of MetaCost’s final

model H and its internal classifier H* produced by boosting and bagging. We denote
MetaCost_A as the algorithm that uses AdaBoost in MetaCost, and MetaCost_CSB
uses CSB (CSB is equivalent to CSB0 whose weight update rule is described in
Equation (11)), and MetaCost_B uses bagging. The experimental setting is the same
as the previous section unless stated otherwise. When bagging is used, we also
employ 10 classifiers in each run, as in boosting.

MetaCost using AdaBoost and CSB
Table 10 shows the results of the comparison between MetaCost_A and

AdaBoost and between MetaCost_CSB and CSB in terms of misclassification costs
and cost ratios. The relative performance between the two versions of MetaCost are
shown in the last column. A summary of the mean costs and geometric mean ratios
are also shown.

In terms of cost, we have the following observations:
• MetaCost usually does not perform better than its internal classifier. AdaBoost

performs better than MetaCost_A in nine data sets, performs worse in four data
sets, and has equal performance in one data set. CSB performs better than
MetaCost_CSB in ten datasets and only marginally worse in four datasets.
MetaCost retains only a portion of performance of its internal classifier. Using
CSB, MetaCost_CSB retains between 68% and 99% of CSB’s performance.
In only six out of fourteen data sets, MetaCost_CSB performs comparably to
CSB, with a maximum gain of 2% in relative cost.

Figure 9: The average number of high cost leaves and low cost leaves in the trees
produced by AdaBoost', CSB0', CSB2'and CSB1' as cost factor increases.
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• MetaCost_CSB is not significantly better than MetaCost_A with six wins,
seven losses, and one draw. Nevertheless, MetaCost_CSB performs better
than MetaCost_A on average across the fourteen data sets. In cases where
MetaCost_CSB performs better, the gain can be as much as 60% in relative
cost as in the kr-vs-kp data set. In cases where MetaCost_CSB performs worse,
the maximum loss is only 22% in relative cost in the sonar data set.

MetaCost Using Bagging
MetaCost originally uses bagging as its internal classifier (Domingo, 1999).

The aims of this section are to investigate how well it performs compared with
MetaCost using boosting and whether MetaCost’s final model performs better than
bagging. Table 11 shows the result.

MetaCost using bagging is found to perform significantly worse than bagging
in terms of cost. Bagging performs better, though not significantly, than AdaBoost
in terms of cost (AdaBoost' is comparable to bagging, nevertheless. Refer to results
in Table 9.) But the result does not carry over to MetaCost; both MetaCost_A and
MetaCost_B have comparable mean relative performance across the fourteen data
sets. Boosting has been shown to outperform bagging (Bauer & Kohavi, 1999) in
reducing total errors. Our experiment here clearly shows that the result does not
carry over to cost-sensitive classification and MetaCost in terms of cost.

In addition, we compute the percentage of training examples in which the
original class is altered to a different class in Step (ii) of the MetaCost procedure.
Bagging modified an average of 9% of training examples across the twenty-four
datasets, and AdaBoost modified an average of 22%. AdaBoost modified more

Table 9: Comparison of C4.5CS, the old version of AdaBoost and AdaBoost' in
terms of cost.

                                                  Cost                   Cost Ratio
Data Set C4.5CS AdaBoost(old) AdaBoost' AdaBoost(old)

vs AdaBoost'
bcw 29.80 14.90 14.45 1.03
bupa 84.60 56.75 58.50 .97
crx 69.20 63.45 59.30 1.07
echo 30.25 22.85 24.90 .92
flare 251.05 219.45 242.75 .90
h-d 61.60 36.95 40.45 .91
hepa 32.10 21.55 22.65 .95
horse 52.75 49.80 49.00 1.02
hv84 14.60 14.15 10.95 1.29
hypo 25.80 27.60 26.10 1.06
krkp 23.90 52.75 14.15 3.73
pima 151.35 108.55 111.95 .97
sonar 57.75 24.85 26.05 .95
ttt 110.85 80.20 58.70 1.37
mean 71.11 56.70 54.28
geomean 1.12
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Table 10: Comparison of MetaCost, AdaBoost and CSB in terms of cost

Data Set MetaC_A AdaB vs MetaC_CSB CSB vs MetaC_CSB vs
MetaC_A MetaC_CSB MetaC_A

cost cost ratio cost cost ratio  cost ratio
bcw 18.50 .85 20.35 .74 1.10
bupa 57.75 .99 57.90 .99 1.00
crx 64.25 1.00 61.10 .92 .95
echo 23.15 .97 24.10 1.01 1.04
flare 215.15 1.02 226.05 1.02 1.05
h-d 39.30 .96 39.70 .95 1.01
hepa 25.15 .90 21.95 .95 .87
horse 53.40 .95 50.65 .99 .95
hv84 13.45 1.14 11.30 1.02 .84
hypo 27.60 1.11 25.45 1.01 .92
krkp 54.45 1.15 21.95 .86 .40
pima 110.70 .99 112.35 .96 1.01
sonar 26.40 .99 32.25 .76 1.22
ttt 114.95 .73 120.05 .68 1.04
mean 60.30 58.94
geomean .98 .91 .93

Table 11: Result for MetaCost using bagging, AdaBoost and CSB in terms of cost

Data Set Bagging MetaC_B Bagging vs Bagging vs MetaC_B vs MetaC_B vs
MetaC_B AdaB MetaC_A MetaC_CSB

cost cost cost ratio cost ratio cost ratio cost ratio
bcw 13.75 21.10 .65 .92 1.14 1.04
bupa 63.30 74.85 .85 1.12 1.30 1.29
crx 59.65 57.55 1.04 .94 .90 .94
echo 26.15 29.40 .89 1.14 1.27 1.22
flare 243.40 242.75 1.00 1.11 1.13 1.07
h-d 38.05 49.50 .77 1.03 1.26 1.25
hepa 21.65 25.25 .86 1.00 1.00 1.15
horse 48.35 51.15 .95 .97 .96 1.01
hv84 10.55 11.10 .95 .75 .83 .98
hypo 24.45 23.25 1.05 .89 .84 .91
krkp 15.20 24.45 .62 .29 .45 1.11
pima 113.15 128.60 .88 1.04 1.16 1.14
sonar 25.85 40.15 .64 1.04 1.52 1.24
ttt 59.80 107.95 .55 .75 .94 .90
mean 54.52 63.36
geomean .82 .89 1.01 1.08

examples than bagging in all datasets. The detailed results are given in Table 12. The
aggressiveness of AdaBoost in relabeling classes indicates that its prediction is
comparatively easier to be influenced by the cost factor. This in turn implies that
AdaBoost’s class probabilities could be more evenly distributed across different
classes than those by bagging.
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The Effect of K
It has been shown that increasing K, the number of classifiers, in the boosting

procedure can reduce the number of errors. It is interesting to see the effect of K on
MetaCost and its internal boosting procedures in terms of cost and high cost errors.

Figure 10 shows an example of performance comparison between
MetaCost_CSB and CSB as K in the boosting procedure increases from 5, 10, 20,
50, 75 to 100 classifiers in the satellite dataset. In terms of high cost errors, both
MetaCost_CSB and CSB initially reduce the errors as K increases and then stabilize.
Although CSB stabilizes earlier at K=20, with comparison to MetaCost_CSB which
stabilizes at K=75, CSB always has fewer errors than MetaCost_CSB. Both
MetaCost_CSB and CSB have similar profiles in the figures. As K increases cost
initially falls, but then increases. For MetaCost_CSB, the cost increases beyond the
point at which the high cost errors stabilized at K=75; for CSB it is at K=20. The
increased total cost is due to the increase in low cost errors while the boosting
procedure continues its effort to reduce high cost errors, eventually without success.

In terms of tree size, MetaCost_CSB produces a smaller tree as K increases,
from a size of 550 nodes at K=5 to 398 at K=100. On the other hand, CSB produces
a combined tree size of 2166 nodes at K=5, and increases to 18881 at K=100.

The results in this section indicate that it is possible to use the number of high
cost errors as a stopping criterion to determine the optimal number of trees in the
cost-sensitive boosting procedure.

CONCLUSIONS
This chapter provides a systematic study on the various issues relating to two

cost-sensitive algorithms: cost-sensitive boosting and MetaCost. In both cases we
have found that the current algorithms can be simplified without loss of perfor-
mance. For instance, among the four increasingly complex variants of cost-sensitive
boosting algorithms studied, one of the simplest (CSB1') has been shown to be
comparable to the others in terms of cost but better in terms of model size. In the
study involving MetaCost, we find that the internal classifier does not benefit from
the meta-learning process in terms of cost. This occurs for both boosting and
bagging as its internal classifier. Based on our results, we do not recommend using
MetaCost when the aim is to minimize the misclassification cost. MetaCost is only
recommended if the aim is to have a more comprehensive model and the user is
willing to sacrifice part of the performance.

We have studied several variations of AdaBoost by changing the following
independent variables: the weight update rules (which produces the four main
variants), with or without (i) confidence-rated predictions, (ii) unequal initial
instance weights, (iii) the minimum expected cost criterion, and (iv) confidence
levels of all classes in the minimum expected cost criterion. We have measured the
following dependent variables: misclassification cost, number of high cost errors
and tree size.
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Table 12: Average percentage of training examples in which the original class is
altered

Data Set MetaCost_Bagging MetaCost_AdaBoost
bcw 2.3 5.6
bupa 14.3 41.1
crx 7.6 18.6
echo 16.7 43.3
flare 23.9 29.2
h-d 9.3 26.6
hepa 7.4 20.1
horse 18.1 36.4
hv84 2.5 7.1
hypo 0.4 1.7
krkp 0.3 4.9
pima 11.3 32.7
sonar 10.1 25.6
ttt 6.5 21.6
mean 9.3 22.5

Figure 10: The satellite data set: Comparing MetaCost_CSB with CSB in terms of
cost and the number of high cost errors as K in the boosting procedure increases
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It turns out that reducing high cost errors often increases low cost errors. In
some situations, the gain of reducing high cost errors is outweighed by introducing
more low cost errors, resulting in a net increase in cost.

The minimum expected cost criterion is the major contributor to the improve-
ment of all cost-sensitive adaptations of AdaBoost. Using confidence levels of all
classes works better with the criterion than using only the highest confidence level.

Incorporating the confidence-rated predictions in the weight-update rule is an
important ingredient in cost-sensitive boosting. A new variant, which uses the
confidence-rated predictions but not other factors such as α and β, performs best at
minimizing high cost errors. It almost always performs better than AdaBoost (with
the minimum expected cost criterion) in this measure in our experiments. This
variant simplifies boosting by excluding Step (ii) in the AdaBoost procedure. We
also find a strong correlation between an algorithm that produces small tree size and
its success in reducing high cost errors.

AdaCost performs worse than other forms of adaptations because it uses an
inappropriate form of β. With an appropriate form, it improves the performance
substantially, and β can be excluded from Step (ii) of the boosting procedure without
losing performance. Nevertheless, AdaCost is not the best choice for cost-sensitive
classification because even with an appropriate form of β, it still performs worse
than the other three variants of cost-sensitive boosting in terms of tree size and high
cost errors.

An interesting result we find is that it is possible to use the number of high cost
errors as a stopping criterion to determine the optimal number of trees in the cost-
sensitive boosting procedure.
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ENDNOTES
1    C4.5 uses fractional weights for the treatment of missing values. See Quinlan

(1993) for details.
2    In general, the costs of correct classifications can be non-zero. Minimizing the

costs of correct classifications is a different issue outside the scope of this chapter.
3   Note that an arbitrary cost matrix can be normalized to become a cost matrix

satisfying this unity condition.
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Currently, the combination of several classifiers is one of the most active
fields within inductive learning. Examples of such techniques are boost-
ing, bagging and stacking. From these three techniques, stacking is
perhaps the least used one. One of the main reasons for this relates to the
difficulty to define and parameterize its components: selecting which
combination of base classifiers to use and which classifiers to use as the
meta-classifier. The approach we present in this chapter poses this
problem as an optimization task and then uses optimization techniques
based on heuristic search to solve it. In particular, we apply genetic
algorithms to automatically obtain the ideal combination of learning
methods for the stacking system.

INTRODUCTION
One of the most active and promising fields in inductive machine learning is

the ensemble of classifiers approach. An ensemble of classifiers is a set of classifiers
whose individual decisions are combined in some way to classify new examples
(Dietterich, 1997). The purpose of combining classifiers consists of improving the
accuracy of a single classifier. Experimental results show that this is usually
achieved.

There are several ways to construct such ensembles, but currently the most
frequently used ones are bagging (Breiman, 1996), boosting (Freund & Schapire,
1995) and, less widely used, stacking (Wolpert, 1992).  Bagging constructs a set of
classifiers by subsampling the training examples to generate different hypotheses.
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After the different hypotheses are generated, they are combined by a voting
mechanism. Boosting also uses the voting system to combine the classifiers. But,
instead of subsampling the training examples, it generates the hypotheses sequen-
tially. In each repetition, a new classifier is generated whose focus are those
instances that were handled incorrectly by the previous classifier. This is achieved
by giving a weight to each instance in the training examples and adjusting these
weights according to their importance after every iteration. Both, bagging and
boosting use classifiers generated by the same base-learning algorithm and obtained
from the same data. Finally, stacking can combine classifiers obtained from
different learning algorithms using a high level classifier–the metaclassifier—to
combine the lower level models. This is based on the fact that different classifiers
are obtained from the same data and different learning algorithms use different
biases to search the hypothesis space. This approach expects that the metaclassifier
will be able to learn how to decide between the predictions provided by the base
classifiers to improve their accuracy, much in the same way as a committee of
experts.

  One problem associated with stacked generalization is identifying which
learning algorithm should be used to obtain the metaclassifier, and which ones
should be the base classifiers.  The approach we present in this chapter poses this
problem as an optimization task, and then uses optimization techniques based on
heuristic search to solve it. In particular, we apply genetic algorithms (Holland,
1975) to automatically obtain the ideal combination of learning methods for the
stacking system.

BACKGROUND
The purpose of this section is to give enough background to understand the rest

of the paper. Here, we will explain concepts related to ensembles of classifiers,
bagging, boosting, stacking, and genetic algorithms.

Ensemble of Classifiers
The combination of multiple classifiers to improve the accuracy of a single

classifier has had good results over several datasets that appear in recent papers
about ensembles of classifiers (Bauer & Kohavi, 1999; Breiman, 1996; Freund &
Schapire, 1996; Quinlan, 1996). According to Dietterich  (1997), an ensemble of
classifiers is a set of classifiers whose individual decisions are combined in some
way to classify new examples. There are many ways to construct an ensemble of
classifiers. Bauer and Kohavi (1999) have made a comparison of algorithms based
on voting systems. Dietterich (2000) carried out a survey of the main methods to
construct an ensemble of classifiers. One way to construct an ensemble of classifiers
is based on subsampling the training set to generate a different set of hypotheses and
then combine them. This is called bagging (Breiman, 1996). The second way is to
create classifiers sequentially, giving more importance to examples that were
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misclassified in the previous classifier. The latter is called boosting (Schapire,
1990). Both bagging and boosting use a single learning algorithm to generate all the
classifiers, whereas stacking combines classifiers from different learning algo-
rithms.  There are other methods to combine a set of classifiers (Dietterich, 2000),
but for experimental purposes in this study we consider here the most well known
methods, bagging, boosting and stacking.

Bagging
Breiman (1996) introduced the Bootstrap aggregating algorithm (bagging) that

generates different classifiers from different bootstrap samples and combines
decisions from the different classifiers into a single prediction by voting (the class
that gets more votes from the classifiers wins). Figure 1 shows the bagging
algorithm.

Each bootstrap sample is generated by sampling uniformly (with replacement)
the m-sized training set until a new set with m instances is obtained. Obviously,
some of the instances of the training set will be cloned in the bootstrap sample, and
some will be missing. Then, a classifier C

i
 is built from each of the bootstrap samples

B
1
, B

2
, … B

T
. Each classifier corresponding to each bootstrap sample will focus on

some instances of the training set, and therefore the resulting classifiers will usually
differ from each other. The final classifier C* is the ensemble of the C

i
 classifiers

combined by means of the uniform voting system (all classifiers have equal weight).
Since an instance has probability 1-(1-1/m) m of being in the bootstrap sample,

each bootstrap replicate has, on average, 63.2% of unique training instances (1 - 1/
e = 63.2%).  For this reason the generated classifiers will be different if the base
learning algorithm is unstable (e.g., decision tree or neural networks). If the
generated classifiers are good and do not correlate, the performance will be
improved. This will occur if they make few mistakes and different classifiers do not
misclassify the same instances frequently.

Figure 1: The bagging algorithm

The Bagging Algorithm
Input:
Training set S
Base Learning Algorithm B
Number of bootstrap samples T

Procedure:
For i = 1 to T {

S' = bootstrap sample from S  (S' is a sample with replacement from S)
Ci

= B (S')    (crea te a new classifier from S')
}
C*(x) =              (the most often predicted label y)

Output
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∑
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Boosting
Another method to construct an ensemble of classifiers is known as boosting

(Schapire, 1990), which is used to boost the performance of a weak learner. A weak
learner is a simple classifier whose error is less than 50% on training instances.
There are many variants of the boosting idea, but in this study we will describe the
widely used AdaBoost algorithm (adaptive boosting) that was introduced by Freund
& Schapire (1995). Sometimes the AdaBoost algorithm is also known as
AdaBoostM1.

Figure 2: AdaBoostM1 Algorithm.
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Similarly to bagging, boosting manipulates the training set to generate a set of
classifiers of the same type (e.g., decision trees). But, while in bagging, classifiers
are generated independently from each other, in boosting they are generated
sequentially, in such a way that each one complements the previous one. First, a
classifier is generated using the original training set. Then, those instances
misclassified by this classifier are given a larger weight (therefore, misclassifying
this instance makes the error larger). Next, a new classifier is obtained by using the
previously weighted training set. The training error is calculated and a weight is
assigned to the classifier in accordance with its performance on the training set.
Therefore, the new classifier should do better on the misclassified instances than the
previous one, hence complementing it. This process is repeated several times.
Finally, to combine the set of classifiers in the final classifier, AdaBoost (like
bagging) uses the voting method. But unlike bagging that uses equal weights for all
classifiers, in boosting the classifiers with lower training error have a higher weight
in the final decision.

More formally, let S be the training set and T the number of trials, the classifiers
C

1
, C

2
,…. C

T
 are built in sequence from the weighted training samples (S

1
, S

2
,…,S

T
)

.

The final classifier is the combination of the set of classifiers in which the weight
of each classifier is calculated by its accuracy on its training sample. The AdaBoost
algorithm is displayed in Figure 2.

An important characteristic of the AdaBoost algorithm is that it can combine
some weak learners to produce a strong learner, so long as the error on the weighted
training set is smaller than 0.5. If the error is greater than 0.5, the algorithm finishes
the execution. Were it not so, the final prediction of the ensemble would be random.

Stacking
Stacking is the abbreviation used to refer to stacked generalization (Wolpert,

1992). Unlike bagging and boosting, it uses different learning algorithms to
generate the ensemble of classifiers. The main idea of stacking is to combine
classifiers from different learners such as decision trees, instance-based learners,
etc. Since each one uses different knowledge representation and different learning
biases, the hypothesis space will be explored differently, and different classifiers
will be obtained. Thus, it is expected that they will not be correlated.

Once the classifiers have been generated, they must be combined. Unlike
bagging and boosting, stacking does not use a voting system because, for example,
if the majority of the classifiers make bad predictions, this will lead to a final bad
classification. To solve this problem, stacking uses the concept of meta learner. The
meta learner (or level-1 model) tries to learn, using a learning algorithm, how the
decisions of the base classifiers (or level-0 models) should be combined.

Given a data set S, stacking first generates a subset of training sets S
1,…,

S
T 
 and

then follows something similar to a cross-validation process: it leaves one of the
subsets out (e.g., S

j
 ) to use later.  The remaining instances S(-j)= S - S

j
 are used to

generate the level-0 classifiers by applying K different learning algorithms, k = 1,
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…, K,  to obtain K classifiers. After the level-0 models have been generated, the S
j

set is used to train the meta learner (level-1 classifier). Level-1 training data is built
from the predictions of the level-0 models over the instances in S

j
 , which were left

out for this purpose. Level-1 data has K attributes, whose values are the predictions
of each one of the K level-0 classifiers for every instance in S

j
 . Therefore, a level-

1 training example is made of K attributes (the K predictions) and the target class,
which is the right class for every particular instance in S

j
. Once the level-1 data has

been built from all instances in S
j
, any learning algorithm can be used to generate

the level-1 model. To complete the process, the level-0 models are regenerated from
the whole data set S (this way, it is expected that classifiers will be slightly more
accurate). To classify a new instance, the level-0 models produce a vector of
predictions that is the input to the level-1 model, which in turn predicts the class.

There are many ways to apply the general idea of stacked generalization. Ting
and Witten (1997) use probability outputs from level-0 models instead of a simple
class prediction as inputs to the level-1 model.  LeBlanc and Tibshirani (1993)
analyze the stacked generalization with some regularization (nonnegative con-
straint) to improve the prediction performance on one artificial dataset. Other works
on stacked generalization have developed a different focus (Chan & Stolfo, 1995;
Fan, Chan & Stolfo, 1996).

Genetic Algorithms for Optimization Problems
Genetic algorithms (GAs) are search procedures loosely connected to the

theory of evolution by means of artificial selection (Holland, 1975). In classical
search terms, GAs can be viewed as a kind of beam search procedure. Its main three
components are:

• The beam (or population). It contains the set of points (candidate solutions or
individuals) in the search space that the algorithm is currently exploring. All
points are usually represented by means of bit strings. This domain indepen-
dent representation of candidate solutions makes GAs very flexible.

• The search operators. They transform current candidate solutions into new
candidate solutions. Their main characteristic is that, as they operate on bit
strings, they are also domain independent. That is, they can be used to search
in any domain. GAs operators are also based in biological analogies. The three
most frequently used operators are:
- Reproduction: it just copies the candidate solution without modification.
- Crossover: it takes two candidate solutions, mixes them and generates two

new candidate solutions. There are many variations of this operator (mainly,
single point, two point and uniform). See Figure 3.

- Mutation: it flips a single bit of a candidate solution (it mutates from 0 to 1,
or from 1 to 0). The bit is selected randomly from the bits in the individual.

• The heuristic function (or fitness function). This function measures the worth
of a candidate solution. The goal of a GA is to find candidate solutions that
maximize this function.
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GA’s start from a population made up of randomly generated bit strings. Then,
genetic operators are applied to worthy candidate solutions (according to the
heuristic function) until a new population is built (the new generation). A GA
continues producing new generations until a candidate solution is found that is
considered to be good enough, or when the algorithm seems to be unable to improve
candidate solutions (or until the number of generations reaches a predefined limit).
More exactly, a GA follows the algorithm below:

1. Randomly generate initial population G(0)
2. Evaluate candidate solutions in G(0) with the heuristic function
3. Repeat until a solution is found or population converges

3.1. Apply selection-reproduction: G(i) -> G
a
(0)

3.2. Apply crossover: G
a
(i) -> G

b
(i)

3.3. Apply mutation: G
b
(i) -> G

c
(i)

3.4. Obtain a new generation G(i+1) = G
c
(i)

3.5. Evaluate the new generation G(i+1)
3.6. Let i=i+1

The production of a new generation G(i+1) from G(i) (Steps 3.1, 3.2, and 3.3)
is as follows. First, a new population G

a
(i) is generated by means of selection. In

order to fill up a population of n individuals for G
a
(0), candidate solutions are

stochastically selected with replacement from G(i) n times. The probability for
selecting a candidate solution is the ratio between its fitness and the total fitness of
the population. This means that there will be several copies of very good candidate
solutions in G

a
(0), whereas there might be none of those whose heuristic evaluation

is poor. However, due to stochasticity, even bad candidate solutions have a chance
of being present in G

a
(0).  This method is called ‘selection proportional to fitness’,

but there are several more, like tournament and ranking (Goldberg,1989).
G

b
(i) is produced by applying crossover to a fixed percentage p

c
 of randomly

selected candidate solutions in G
a
(i). As each crossover event takes two parents and

Figure 3. One and two point crossover operations
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produces two offspring, crossover happens p
c
/2 times. In a similar manner, G

c
(i) is

obtained from G
b
(0) by applying mutation to a percentage p

m
 of candidate solutions.

GA-STACKING APPROACH
In this section, the approach we have taken to build stacking systems will be

explained. Given that stacked generalization is composed by a set of classifiers from
a different set of learning algorithms, the question is: What algorithm should be used
to generate the level-0 and the level-1 models? In principle, any algorithm can be
used to generate them. For instance, Ting and Witten (1997) showed that a linear
model is useful to generate the level-1 model using probabilistic outputs from level-
0 models. Also, our classifiers at level-0 are heterogeneous, and any algorithm can
be used to build the metaclassifier. In the present study, to determine the optimum
distribution of learning algorithms for the level-0 and level-1 models, we have used
a GA.

GA-Stacking
Two sets of experiments were carried out to determine whether stacked

generalization combinations of classifiers can be successfully found by genetic
algorithms. We also wanted to know whether GA stacking can obtain improvements
over the most popular ensemble techniques (bagging and boosting) as well as any
of the stand-alone learning algorithms.

As indicated previously, the application of genetic algorithms to optimization
problems requires one to define:

• the representation of the individuals (candidate solutions)
• the fitness function that is used to evaluate the individuals
• the selection-scheme (e.g., selection proportional to fitness)
• the genetic operators that will be used to evolve the individuals
• the parameters (e.g., size of population, generations, probability of crossover,

etc.)
The representations of the possible solutions (individuals) used in the two sets

of performed experiments are chromosomes with five genes (see Figure 4). Each
gene represents the presence of a learning algorithm. Since we want to use seven
possible learning algorithms, each gene has three binary digits to represent them.
The first four genes of the chromosome represent the four learning algorithms to
build the level-0 classifiers and the last gene represents the algorithm to build the

010111000110001
level-0 models

level-1 model

010111000110001
level-0 models

level-1 model

Figure 4:  Individual description
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metaclassifier.
To evaluate every individual, we used the classification accuracy of the

stacking system as the fitness function.

EXPERIMENTAL RESULTS
In this section, we present the empirical results for our GA-stacking system.

GA-Stacking has been evaluated in several domains of the UCI database (Blake &
Merz, 1998). We have performed two sets of experiments. In the first one, we show
some preliminary results, which are quite good but suffer some overfitting. In the
second set of experiments, steps were taken to avoid the said overfitting. Both sets
of experiments differ only in the way GA individuals are tested (i.e., the fitness
function). In this work, we have used the algorithms implemented in Weka (Witten
& Frank, 2000). This includes all the learning algorithms used and a implementation
of  bagging, boosting and stacking.

Basically, the implementation of GA-stacking combines two parts: a part
coming from Weka that includes all the base learning algorithms and another part,
which was integrated into Weka, that implements a GA. The parameters used for the
GA in the experiments are shown in Table 1. The elite rate is the proportion of the
population carried forward unchanged from each generation. Cull rate refers to the
proportion of the population that is deemed unfit for reproduction. Finally, the
mutation rate is the proportion of the population that can suffer change in the
configuration at random.

For the experimental test of our
approach we have used seven data sets
from the repository of machine learn-
ing databases at UCI. Table 2 shows
the data sets’ characteristics.

The candidate learning algorithms
for GA stacking we used were:

• C4.5 (Quinlan, 1996). It gener-
ates decision trees—(C4.5)

Table 2: Datasets description

Dataset Attributes Attributes Type Instances Classes
Heart disease 13 Numeric-nominal 303 2
Sonar classification 60 Numeric 208 2
Musk 166 Numeric 476 2
Ionosphere 34 Numeric 351 2
Dermatology 34 Numeric-nominal 366 6
DNA splice 60 Nominal 3190 3
Satellite images 36 Numeric 6435 6

Table 1: Genetic algorithm’s parameters

Parameters Values
Population size 10
Generations 10
Elite rate 0.1
Cull rate 0.4
Mutation rate 0.067
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• PART (Frank & Witten, 1998). It forms a decision list from pruned partial
decision trees generated using the C4.5 heuristic—(PART)

• A probabilistic Naive Bayesian classifier (John & Langley, 1995)—(NB)
• IB1. This is Aha’s instance based learning algorithm (Aha & Kibler, 1991)—

(IB1)
• Decision Table. It is a simple decision table majority classifier (Kohavi, 1995)

—(DT)
• Decision Stump. It generates single-level decision trees—(DS)

Preliminary Experiments
Experiments in this subsection are a first evaluation of GA-stacking. They use

the GA-stacking scheme described in previous sections. Here, we will describe in
more detail how individuals are tested (the fitness function), and how the whole
system is tested. Each data set was split randomly in two sets. One of them was used
as the training set for the GA fitness function. It contained about 85% of all the
instances. Individual fitness was measured as the accuracy of the stacking system
codified in it. The rest was used as a testing set to validate the stacked hypothesis
obtained. In these experiments we used only two of the data sets shown in Table 2
(dermatology and ionosphere).

Table 3 shows the results for this preliminary approach. Training and test
accuracy columns display how many instances in the training and testing sets were
correctly predicted for each of the systems. The first part of the table contains the
stand-alone algorithms. The second part shows results corresponding to traditional
bagging and boosting approaches (with C4.5 as the base classifier). Finally, results
for GA-Stacking are shown. The best GA-stacking individual in the last generation

Table 3: Preliminary results

Algorithm Ionosphere Dermatology
Training Test Training Test
Accuracy Accuracy  Accuracy Accuracy

C4.5 98.42 82.86 96.67 92.42
Naive Bayes 85.13 82.86 98.67 96.97
PART 98.73 88.57 96.67 93.94
IBk (one neighbor) 100.00 82.86 100.00 92.42
IB1 100.00 82.86 100.00 92.42
Decision Stump 84.18 80.00 51.33 45.45
Decision Table 94.94 88.57 96.67 87.88
Ensembles
Bagging with C4.5 97.78 85.71 97.00 93.94
Boosting with C4.5 100.00 91.43 100.00 96.97
GA-Stacking(last
generation solutions) 100.00 85.71 100.00 95.45
GA-Stacking (solutions
of previous generations) 97.78 94.29 98.67 98.48
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has a 100% in the training set in both domains, but drops to 85.71% and 95.45% in
testing. On the other hand, some individuals from previous generations manage to
get a 94.29% and 98.48% testing accuracies. This means that GA-stacking overfits
the data as generations pass on. Despite this overfitting, GA-stacking found
individuals which are better than most of the base classifiers. Only in the ionosphere
domain, the decision table is better in testing than the overfitted individual (88.57
vs. 85.71). Also, performance of GA-Stacking is very close to bagging and boosting
(both using C4.5 to generate base classifiers). Non-overfitted individuals (those
obtained in previous generations) show an accuracy better than any of the other
ensemble systems. In addition, stacking systems only use four level-0 classifiers
whereas bagging and boosting use at least 10 base classifiers. This shows that the
approach is solid. The following section shows how we overcame the problem of
overfitting.

Main Experiments (Overfitting avoidance)
In the preliminary experiments, individuals overfit because they were evalu-

ated with the same training instances that were used to build the stacking associated
with the individual. Obviously, the individual will do very well with the instances
it has been trained with. Therefore, in order to avoid the overfitting, the fitness value
was calculated with a separate validation set (different from the testing set used to
evaluate GA-stacking itself). To do so, the set of training instances was partitioned
randomly into two parts. Eighty percent of training instances were used to build the
stacking system associated with each individual, and the remaining 20%–the
validation set- was used to give a non-biased estimation of the individual accuracy.
The latter was used as the fitness of the individual. It is important to highlight that
now fewer instances are used to build the stacking systems, as some of them are used
to prevent overfitting.

For testing all the systems we used the testing data set, just as we did in the
preliminary experiments. However, now a five-fold cross-validation was used.
Therefore, results shown are the average of the five cross-validation iterations. In
the satellite images domain no cross-validation was carried out because the sets for
training and testing are available separately and the data set donor indicated that it
is better not to use cross-validation.

Results are divided in two tables. Table 4 shows the testing accuracy of all the
base algorithms over the data sets.

Table 5 displays testing results for the three ensemble methods, including GA-
stacking. The best results for each domain are highlighted. Only in the heart domain,
one of the base classifiers obtained greater accuracy than any ensemble method.  The
configuration of the stacked generalization found by the genetic algorithms ob-
tained a greater accuracy in four of the seven domains used in the experiment in
contrast to the other ensemble methods.  In the domains where stacking has lesser
accuracy than bagging or boosting the difference is very small except in the musk
domain, where the difference is +5% in favor of boosting.
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CONCLUSIONS
In this chapter, we have presented a new way of building heterogeneous

stacking systems. To do so, a search on the space of stacking systems is carried out
by means of a genetic algorithm. Empirical results show that GA-stacking is
competitive with more sophisticated ensemble systems such as bagging and
boosting. Also, our approach is able to obtain high accuracy classifiers which are
very small (they contain only five classifiers) in comparison with other ensemble
approaches.

Even though the GA-Stacking approach has already produced very good
results, we believe that future research will show its worth even more clearly:

• Currently, GA-stacking searches the space of stacked configurations. How-
ever, the behavior of some learning algorithms is controlled by parameters. For
instance, the rules produced by C4.5 can be very different depending on the
degree of pruning carried out. Our GA-stacking approach would only have to
include a binary coding of the desired parameters in the chromosome.

• Search depends on the representation of candidate hypothesis. Therefore, it
would be interesting to use other representations for our chromosomes. For
instance, the chromosome could be divided into two parts, one for the level 0
learners and another for the level 1 metaclassifier. A bit in the first part would

Table 4: Average accuracy rate of independent classifiers in the second experiment
*without cross-validation.

Dataset C4.5 PART NB IB1 DT DS
Heart 74.00 82.00 83.00 78.00 76.33 70.67
Sonar 72.38 73.81 67.62 79.52 71.90 73.93
Musk 83.33 85.21 74.38 86.46 82.08 71.46
Ionosphere 90.14 89.30 82.82 87.61 89.30 82.82
Dermatology 94.33 94.59 97.03 94.59 87.83 50.40
DNA splice 94.12 92.11 95.63 75.62 92.49 62.42
Satellite images* 85.20 84.10 79.60 89.00 80.70 41.75

Table 5: Average accuracy rate of ensemble methods in the second experiment

Dataset Bagging Boosting GA-Stacking
Heart 76.33 79.67 80.67
Sonar 80.00 79.05 80.47
Musk 87.29 88.96 83.96
Ionosphere 92.11 91.83 90.42
Dermatology 94.59 97.03 98.11
DNA splice 94.56 94.43 95.72
Satellite images 88.80 89.10 88.60
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indicate whether a particular classifier is included in level 0 or not. The
metaclassifier would be coded in the same way we have done in this paper (i.e.,
if there are 8 possible metaclassifiers, 3 bits would be used).

• Different classifiers could be better suited for certain regions of the instance
space. Therefore, instead of having a metaclassifer that determines what
output is appropriate according to the level 0 outputs (as currently), it would
be interesting to have a metaclassifier that knows what level 0 classifier to trust
according to some features of the instance to be classified. In that case, the
inputs to the metaclassifier would be the attributes of the instance and the
output the right level 0 classifier to use.
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The overall size of software packages has grown considerably over recent
years. Modular programming, object-oriented design and the use of static
and dynamic libraries have all contributed towards the reusability and
maintainability of these packages.  One of the latest methodologies that
aims to further improve software design is the use of component-based
services. The Component Object Model (COM) is a specification that
provides a standard for writing software components that are easily
interoperable.  The most common platform for component libraries is on
Microsoft Windows, where COM objects are an integral part of the
operating system and used extensively in most major applications.
This chapter examines the use of COM in the design of search engines for
knowledge discovery and data mining using modern heuristic techniques
and how adopting this approach benefits the design of a commercial
toolkit. The chapter describes how search engines have been implemented
as COM objects and how representation and problem components have
been created to solve rule induction problems in data mining.
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BACKGROUND
In traditional software projects the application was a single executable, built by

a specific compiler and linker for a particular operating system and platform.  As
projects got larger, code was separated out into modules, or libraries, to improve the
management of the source code but ultimately was still built into a single program
file; this is referred to as static linking of libraries. An improvement on static
libraries was dynamic libraries, where only the prototypes of available library
functions are supplied to the core program at compile time.  When the program is
executed, the operating system has to locate the library using path rules to scan the
file system and dynamically link the two together.  As well as further improving the
management of larger projects, dynamically linked libraries have the added advan-
tage of being reusable by multiple programs.  For example, when two programs use
the same graphics library to build the user interface, the programs are built using
function prototypes and require only a single copy of the dynamic library to be
located on the system.  By removing common functionality from the executables,
the overall size of the executables is reduced and only one copy of the library is
required to support multiple programs.  In addition, isolating the shared functions
is not only good software engineering practice but also reduces problems caused by
numerous copies of the same code in different locations, making projects and
version control easier to manage.  Even with these improvements there are still a
number of drawbacks.  Firstly, if the library needs to be updated or changed (maybe
for just one program), existing programs will need to be rebuilt to use this new
version even if the prototypes have not changed and the library is backward
compatible with earlier versions.  Secondly, sharing libraries between different
platforms and even compilers is not straightforward, for example, a dynamic library
created for Digital Unix would not work under Solaris, and getting a Windows
dynamic linked library (DLL) written in Microsoft Visual Basic to work with
Borland C++ is not always an easy task.

The problem being addressed in this chapter is the design of component-based
software with a particular application to rule generation for data mining.  The
problem of generating rules describing a class of records in a database can be
formulated as an optimisation problem (Rayward-Smith, Debuse, & de la Iglesia,
1996).  Heuristic search engines can be used to generate and evaluate rules whilst
taking into account a number of constraints such as limiting the complexity of the
rule and biasing either accuracy or coverage. A feasible solution in the data mining
problem domain is represented by any valid rule that can be evaluated against the
database. A number of data mining toolkits using techniques such as genetic
algorithms and simulated annealing are listed on the KDNugetts Web site
(KDNuggets, 2001), in particular the Datalamp toolkit (Howard, 1999a), which is
based on much of the work described in this chapter.
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INTRODUCTION TO COM
The Component Object Model (COM) is a specification that provides a

standard for writing software components (Microsoft, 1999a).  The standard is
based on defining clear interfaces between components to promote interoperability
and reusability across multiple languages and platforms using object interaction at
the binary level (Microsoft, 1999b). The major design goals of COM are:

• Language Independence.  COM components can be written in most modern
programming languages including C++, Visual Basic, Java, etc., and the
requirement being that the language can produce compiled code that is capable
of calling functions via function pointers.  In short, compiled objects must be
compatible with the v-tables (virtual tables) found in C++.   An additional
advantage of this approach is that many scripting languages used in web pages,
e.g., VBScript, are also compatible using dispatch interfaces making it
possible for Web sites to create and call COM objects.  Web pages can
therefore create COM objects that, for example, talk to backend database
servers to extract data required to build the page.

• Vendor Independence.  A COM object exports the interfaces it implements
in a standardised format known as the Interface Definition Language (IDL)
using type libraries; as such there are no details of the underlying implemen-
tation.  If two objects export identical interfaces, one can transparently replace
the other.

• Reduced Version Problems. Interfaces should be immutable. Once an
interface has been published and used by anyone outside the development
environment, it must not change even to the extent that it must retain the
original order of the functions (this maintains a consistent and compatible v-
table).  If an interface is modified in some way then it should be republished
using a version number or different name.
COM is sometimes described as being middleware (Sherlock & Cronin, 2000)

as it is most often used to develop components that sit between the presentation tier
and data tier of an n-tier application.  The reusable pieces of software implement
services that make up the main functionality of an application; the ability to easily
replace one component with another simplifies the process of fixing or modifying
services without having to touch the user interface or backend databases.  With the
advent of the Internet and cheaper office PCs, it is common for hundreds of clients
(or more) to be accessing data and carrying out tasks through various front-end
applications.  By having the functionality of a system placed at the middle (business)
layer, the internal operations are separated from both the users and the data, thus
improving the maintainability of the overall application.

Development of software components has increased rapidly in the past few
years with most vendors of tools and applications having made some commitment
to the component-based paradigm (Allen & Frost, 1998). Since much of the
development of COM took place at Microsoft, and given wide support by the
industry, it is easy to see why the majority of COM-based software is found on the
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Windows platform. However, support for COM is steadily growing on other
platforms as the popularity of this design methodology continues to grow; one such
platform is the Unix operating system.  Support for component design has been
implemented in COM for OpenVMS and TruUnix as well as other commercial
versions which support Linux, Digital and HP Unix.  Although COM is the most
widely used approach to designing middleware components, it is not the only
method available.  One alternative comes from the Object Management Group who
produced the Common Object Request Broker Architecture (CORBA) (OMG,
2000).  In a similar nature to COM, CORBA invokes applications on remote
machines but has a stronger emphasis on design using the object-oriented software
model and communication between objects involving marshalling.  More recently,
Enterprise Java Beans (EJB) has become available with the Java language (Matena
& Hapner, 1999). The local execution environment for Java applications on a
particular machine is provided by a platform specific virtual machine (JVM);
Enterprise Java extends applications to work and communicate across machine
boundaries and the Internet.  EJB is a component model based on the Enterprise Java
API that promotes reusable, network-ready components.

Building Component-Based Software
The communication channels between one object and another are defined by

a set of interfaces, which are supported by a component.  A COM interface is a
collection of related function prototypes (pure virtual in C++).  For a component to
support an interface it must implement that interface; that is, it must provide code
to implement each function declared in the interface.  There are two main interface
types, custom and dispatch, which are described in more detail later in this section.
Any component must meet two architecture requirements: first, the ability to link
dynamically to other applications and components; secondly, the ability to hide
(encapsulate) the implementation details.  The ability to dynamically link at the
binary level means that the process of updating software is greatly simplified.  It is
no longer necessary to rebuild and replace the entire application, but merely the
component that has been updated.  Software components can therefore be transpar-
ently updated such that no change is visible to the user (subject to there being no need
to change the way in which it communicates).

Four main tasks must be completed when building components. The low-level
COM API and the higher-level approaches that follow have to complete each of
these stages.  However, with the API each section is written from scratch with no
help from macros or template libraries provided by a framework.  The four tasks are:

• declare the interfaces;
• build the required COM objects;
• build the class factory to instantiate the COM objects;
• create the container module (DLL or EXE server).
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Interfaces.  Defining sensible interfaces is the key to developing a usable, and
reusable, component.  The interfaces should reflect the outcome of sufficient
analysis and design having been carried out for a project.  The interface defines
how clients will access the component; what data can be transferred; what
functions can be called; and how the functions are grouped together.  Once
published, that is, deployed outside the development environment, an inter-
face should not be modified as any changes will render existing clients
unusable until they have been rebuilt. An interface must be assigned an
interface identifier (IID), which is a Globally Unique Identifier (GUID)
represented by a 128-bit number, that can be used to access details of the
interface in the system registry (Shepherd & Wingo, 1996).  There is one
mandatory interface that all components must implement: IUnknown.  The
methods exposed by IUnknown handle reference counting to manage the
lifetime of an object and allow clients to query an object to determine whether
a particular interface is supported.

COM Classes.  To build the concrete COM object, a standard C++ class must be
derived from the interfaces that provide the required functionality for the
components.  This type of class is often referred to as the COM class.  Each of
the pure virtual methods from the custom interfaces and the inherited IUnknown
interface must be implemented inside the COM class.  Apart from these
exposed functions, the class behaves in the same way as any other C++ class
and can use member variables and functions in the normal way.

Class Factories.  Class factories are used to construct COM objects in a language
independent manner. Inside the class factory, the creation process is dependent
upon the implementation language; in C++, the new operator would be used

Table 1: Differences between in-process and out-of-process COM servers

In process server (DLL) Out of process server (EXE)
Runs on local machine only Runs on local or remote machine
Runs in address space of client Runs in its own address space
application
Will terminate if application terminates Will continue running should
or crashes application crash
Efficient function calls since inside Slower function calls due to proxy-
same process stub, RPC and marshalling over

networks
Custom interfaces do not require extra Custom interfaces require standard
standard marshalling code marshalling to be provided using IDL
One instance of server resides inside Multiple clients can connect to, and
one instance of client.  Multiple clients share, a single out-of-process server.
require multiple servers.
Allows reuse through aggregation and Allows reuse through containment
containment only
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to dynamically create an instance of the COM class. Once created, a pointer
to the new object is returned to the client, who will be unaware of how the
object was actually created.  The call to the class factory is usually made
indirectly via the COM API.

COM Servers.  The final decision when building COM objects is what type of
container will be used to house the components: in-process or out-of-process
server.  The advantages and disadvantages of these container types are listed
in Table 1 although out-of-process (EXE) servers are mandatory for Distrib-
uted COM.
There are three main approaches to implementing COM objects in C++.

COM API.  Developing software components using the COM API is the most
verbose, and often most complex, of all the available approaches.  However,
it is also the most explicit and informative method that clearly shows what is
happening at each stage of the objects’ lifecycle; how clients interact with
objects; how objects interact with COM and how COM interacts with the
operating system.  Unlike the methods that follow, programming the COM
API, as with most APIs, means that the user has to do most of the work and
there is no support from macros or other code-saving techniques found in
application frameworks.

Microsoft Foundation Classes (MFC).  The MFC framework provides classes
and macros to wrap the COM API much the same as it wraps the Win32 API.
In addition to adding a layer of abstraction, the MFC COM extensions simplify
most of the repetitive and time-consuming tasks when defining interfaces and
implementing COM classes, the most obvious example being writing repeated
blocks of code to implement the IUnknown interface when is implemented by
an MFC class.

Active Template Library (ATL).  The ATL is the most recent collection of C++
classes that aid writing COM components.  The ATL is a set of template-based
classes designed specifically to create small, fast and extensible COM objects.
As with the MFC extensions, ATL wraps the underlying COM API to provide
a level of abstraction and simplified code for common procedures such as
aggregation, dual interfaces (for OLE automation), connection points and
enumerated types. Unlike MFC, the ATL does not depend on a large external
library of routines that are also used for application and GUI design.

Distributed COM
Distributed COM (DCOM) is an infrastructure for software components to

communicate over a network. DCOM components, commonly referred to as
DCOM servers, must be implemented as out-of-process EXE servers as they will be
running on remote machines and not loaded into the address space of a local client.
One of the key benefits of DCOM is the transparency of the network layer as the
client is unaware of the physical location of the server.  Any data passing across a
network has to undergo marshalling, a process where complex and customised data
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structures are broken down into simple types and sent between machines.  The data
transfer procedure uses a proxy/stub connection which is illustrated in Figure 1.  The data
transfer takes place between a proxy on the client and a stub on the server; for
standard data types the OLE automation library handles the proxy and stubs. At both
client and server, the components appear to be talk directly to one another; the
intervention of the automation library is transparent to the user.

Marshalling data across process boundaries obviously incurs an overhead and
the interface definition language (described in a later section) goes some way to
improving the efficiency of this process.  Nevertheless, there are still significant
overheads in making the function call via remote procedure calls (RPC), as shown
in an experiment using null method invocation (no parameters and no work carried
out by the method) (Box, 1997).  With both client and server on the same machine
and in the same process (in-process DLLs), it was possible to invoke a null method
over 28 million times in one second.  The corresponding value for out-of-process
servers on different machines was just under 1,000.  Although this figure seems
quite alarming and a considerable drawback of distributing components for data
mining, examining what happens during the search for rules reveals that it is not as
bad as it seems.   Most of the time associated with solving data mining problems is
spent evaluating solutions, and therefore the number of methods invoked would
more likely be dependent upon the number of evaluations, which are expensive
compared to the overheads of calling the method out-of-process.

COM Automation
Interfaces can be defined to be custom interfaces, dispatch interfaces, or both.

Custom interfaces usually inherit directly from IUnknown and are accessed through
v-tables, these interfaces are used in languages such as C++ as this is the most
efficient approach of method invocation.  The alternative, dispatch interfaces allow
methods and properties to be accessed using their names and a dispatch ID;
accessing methods and properties in this way is also known as (OLE) automation.
Automation exposes the functionality of a component to applications and languages
that do not support the use of v-tables or are not strongly typed.  Scripting languages
such as Javascript and VBScript are examples of such languages commonly used to

Figure 1: Proxy/stub connection using the standard automation library
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access COM objects in web pages, i.e. ActiveX objects. Components can also be
designed to have dual interfaces, that is, they support access through custom
interfaces and automation. Accessing functions via their names introduces a
significant performance hit; however, in some cases such as using scripting
languages, it is the only method available.  It is therefore important when designing
the component to identify how the component is likely to be used, on what platforms,
and through which clients.  Designing for access by multiple clients in multiple
languages (using a dual interface) will result in the most flexible component but
require slightly longer development time and will be most efficient when accessed
through the custom interface.

IDL and Type Libraries
The interface definition language, or IDL, is a way of describing the function-

ality provided by interfaces (Hludzinski, 1998).  On the Windows platform, IDL
source is compiled into a type library using the MIDL compiler; MIDL also
generates proxy and stub code used to marshal parameters between process
boundaries.  The type library is a compiled version of the IDL code and contains
meta-data describing the component server such as the logical definitions for the
dispatch interfaces and v-table descriptions for custom interfaces. MIDL uses
attributes to determine the data transfer direction of parameters during marshalling.
By knowing that a parameter is not modified by the server function, the marshaller
does not have to copy the parameter back to the client when the function has ended,
thus reducing the amount of work involved.

Component Reuse
Recent programming languages and development frameworks all promote

code and software reuse; COM is no exception, especially with its design goal to
promote reuse at the binary level. Until recently, the most common form of reuse
was code reuse through inheritance; however, the language independence nature of
COM complicates this issue.  There are two distinct types of items that can be reused
and take part in inheritance relationships: interfaces (code reuse) and implementa-
tions (software, or binary reuse). Implementation inheritance is extremely impor-
tant in the development of small reusable components.  It is implemented using one
of two approaches, aggregation and containment, which logically embed one
component inside another.

DESIGNING COMPONENT-BASED
HEURISTIC SEARCH ENGINES

Application Design Using Static Libraries
The Templar framework (Jones, McKeown &  Rayward-Smith, 2001) was

used to develop an early version of the toolkit that used simulated annealing for data
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mining.  Templar is an object-oriented framework for the implementation of search
techniques and provides a collection of C++ classes. Three main components—the
problem, representation and engine—make up a software solution suitable for
solving an optimisation problem, in this case finding an optimal rule describing a
class of records within a database.  The framework provides full code for search
engines, such as hill climbers and simulated annealing, which work on problem
classes and representation classes.  Standard representations, including bitstrings,
integer arrays and permutations, are part of the basic framework as are a number of
sample problem classes.

Rather than encode a rule as a standard representation type, a class was derived
from the representation base class to model solutions more logically. The class
consists of a data structure to store the conditions in a rule and a number of
neighbourhood move operators used by the engine to generate new solutions.  For
the data mining problem, a class was derived from the base problem class provided
by the framework. The primary requirement of this class is to implement an
evaluation function that returns a fitness value for a given representation.  Functions
in the problem class use database and rule evaluation routines from a dynamic linked
library to perform the evaluation.  Once these classes have been written, all of the
code is compiled and linked into the main client application (with the exception of
the database DLL), as shown in Figure 2.

It is clear from the above illustration that any changes made to classes used by
the SAEngine or the client will force recompilation and/or relinking of dependent
modules. Therefore, changing the evaluation function in the problem class or
modifying the cooling schedule would mean the client application, and SAEngine,
would need to be rebuilt.  Similarly, if the engine is to be used with a different
problem, possibly inside a different client application, it is necessary to rebuild the
program or maintain two versions of the source code.  One possible solution, which
is more elegant for cooling schedules than problem classes, is to embed multiple

Figure 2: Traditional application design using mostly static libraries
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approaches inside the engine/client and make the selection at runtime by means of
a large conditional statement inside the code.

Benefits of a Component-Based Approach
The decision to move to component-based design using COM was based on the

following reasons that have been subdivided into programming and design factors;
maintenance and future development; and other commercial benefits and influ-
ences.

Programming and Design Factors
Improved Project Management.  Large projects are generally undertaken by

development teams that work on many different parts of the application at the same
time.  Dividing the project up into smaller components makes it easier to assign jobs
and handle the source code for the project.  From a developer’s point of view, a
significant amount of time is spent waiting for machines to recompile and link
projects after changes have been made.  As the dependencies between components
are defined by their interfaces, only changes to the interface structure would require
rebuilding other components to take advantage of the changes.

Support for Multiple Languages. Components can be developed in and used
by many languages supporting the COM standard. Clients can be written in
languages including C++, Visual Basic and Java as well as scripting languages, such
as VBScript and JavaScript, which in turn can be used in web pages through Active
Server Pages (ASP).  Another useful client environment is Visual Basic inside the
Microsoft Excel and Access office applications which can be used to control the
components.

Maintenance and Future Development
Improved Maintenance Paths.  With the client application and search engine

split up into a number of smaller components, the system is easier to maintain as
fixes and updates will only apply to the component in question.  The smaller size of
the update increases the number of potential channels for deployment to users.
Small updates can easily and relatively quickly be downloaded from support Web
sites or even attached to emails.  The cost of issuing updates over the Internet is
significantly cheaper than distributing diskettes or CD-ROMs by mail.  Updates can
also occur on a more regular basis making it easier for users to keep up to date by
having the latest version of the software.

Development of New Components. The ability to effortlessly add and remove
components from engines makes developing new and improved techniques simpler
to manage.  COM’s vendor independence goal allows one component to replace
another, providing it supports the same interface. An example would be the
development of a new cooling schedule for a simulated annealing engine.  Providing
the new component supports the same interfaces as the original, existing engines and
client applications can use the new technique without making changes to the source
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code or needing rebuilding.  Similarly, new problem classes can be developed to
solve other optimisation problems without having to have or see source code from
the engines.  Developers require only the type libraries of the components they need
to reference, hence hiding much of the complexity of the engines internal routines.
This benefit makes it easier for software developers to design and experiment with
new algorithms to solve data mining problems.

Commercial Benefits and Influences
Emerging Technology. The use of COM in software development has grown

rapidly since its launch (when it was originally known as OLE).  The majority of
modern applications make heavy use of its technology and the ability to easily
integrate third-party components.  COM is used as a mechanism for communicating
with current software libraries such as user interface objects, web browser controls
and database access controls. Connecting to database servers was traditionally made
through proprietary clients provided by the database vendor although the develop-
ment of the Open Database Connectivity standard (ODBC) was the first step in
having a universal method of talking to databases.  The advent of COM has brought
a new standard: ActiveX Data Objects (ADO).  ADO is a set of components that a
client uses to connect to and query any data source that can be represented in tabular
format.  ADO is the primary method of database connectivity used in Web site
design.

Reusing components in software design is still on the increase, and emerging
technologies such as XML (Bray, Paoli, & Sperberg-McQueen, 1998) and SOAP
(Box, 2000) are good examples.  The Extensible Mark-up Language (XML) is a
method for storing structured data in text files.  Because it is platform independent
and well supported, XML is becoming a popular method for data storage in both
desktop and Web-based applications.  Access to XML documents is usually made
through a Document Object Model (DOM) either from a client application or web
browser.  The XML DOM is itself a COM object and exposes a number of interfaces
for creating, modifying and traversing XML documents.  The Predictive Model
Markup Language (PMML) is an emerging standard for representing data mining
models and rules using XML (DMG, 2001).  The Simple Object Access Protocol
(SOAP) is an alternative to standard RPC as a method of interoperations between
components running on remote machines.  SOAP uses HTTP as a transport layer and
XML to describe the data being sent and received; the approach overcomes many
of the shortcomings of both DCOM and CORBA.

Reusable Across Multiple Projects.  Developing reusable components is a
necessity in business.  For a company working with many related products and
projects, it is a great benefit to have a collection of reusable components that can
readily be used to solve a new problem.  Approaching projects in this way provides
a more rapid solution to writing custom and prototype software and leads to an
increased return on the original investment spent developing the components.
Components that model data mining algorithms can also be used to develop
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software for niche markets, such as customer relationship management and fraud
detection, and can be embedded in other packages.  For example, data mining
components can now be linked into SQL Server 2000 and models can be constructed
using extensions to the standard SQL language.  For a component to be made
compatible, it must support a number of interfaces defined in the OLE-DB for Data
Mining specification (Microsoft, 2000).

Improved Test Environment.  The testing phase of the software development
lifecycle is a key phase for any commercial vendor.  Test plans are created to analyse
the stability and efficiency of programs.  For a data mining toolkit, testing the
algorithm is a separate task to testing the interface.  The use of scripting languages
to access the algorithm components directly, without the need or overhead of the
user interface, creates a more workable testing environment.  Once the tests have
been completed and any problems have been fixed, providing the interfaces have not
been modified, the same script can be used to retest and validate the component.

Software Development Kits.  As this chapter shows, component-based
software such as the heuristic search engines and data mining problems can be
embedded inside full commercial products such as a data mining toolkit.  The
previous sections have also described how these components can be reused within
the organisation to solve other optimisation problems and rapidly prototype and
develop custom applications.   Furthermore, it is possible for a company to market
their collection of components as a software development kit (SDK).  SDKs allow
other users to embed the techniques into their own applications, develop new
problems and add their own user interface.  In the case of the components described
here, there is potential to market a set of generic components to solve optimisation
problems or an SDK for rule discovery. Some data mining SDKs are already
available and are listed at KDNuggets.

Implementing Heuristic Search Engines Using COM
The original Templar framework design used engines, problems and represen-

tations as a method of implementing solutions to optimisation problems.  These core
modules have been retained in the move from static libraries to components, as the
framework is stable, well documented and justified (Jones, 2000).  The original
design uses C++ base classes as a generic method of accessing classes.  This is a
framework for code reuse at the source code level and allows different problems to
be recompiled into the application with minimal changes to the source code.  The
COM design takes this a stage further.  By having each core component support a
generic interface, the components can be interchanged within the application at
runtime.  Components supporting a similar set of interfaces can be reused at the
binary level without the need to recompile or rebuild the client application.  Figure
3 shows how components can be snapped into an engine, and likewise the engine
snaps into the client application.  As an example of the generic nature, the engine
can work with any problem component as long as it implements the IProblem
interface, the method of communication used between engines and problems.
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In the same way that a problem exposes a generic interface, the engine exposes
a number of generic interfaces that can be used by client applications.  In the case
of the engine in Figure 3, the client can communicate with the engine through three
generic interfaces.  The design allows the client to work with different heuristic
search engines requiring minimal changes to the internal code.  The above design
works well for developing different problem and representation components that
can be embedded inside commercial software. However, from an algorithm re-
search and development perspective, internal changes to the engines would still
mean the entire component has to be rebuilt.

The next stage in the design process was to isolate key areas of the search
algorithms that could be abstracted into snap-in components; two areas were
chosen: the section where moves are generated and the section where they are
accepted.  A number of methods common to each section were identified and
grouped together to form generic interfaces.  Acceptor components would support
IAcceptor and implement a method that determines whether or not a move is
accepted and return the decision to the engine. Similarly, a generator would
implement IGenerator and methods to generate new solutions.  For example, a hill
climber engine would usually have an acceptor based simply on whether one fitness
value is an improvement of another, and a generator that builds moves for the entire
neighbourhood of the current solution.  For modern heuristic algorithms, such as
simulated annealing, further components can be created.  The cooling schedule is
central to the design of a SA engine and numerous techniques exist to control the
cooling rate of the temperature.  Cooling schedules can therefore be implemented
as components and snapped into the engine at runtime, eliminating the need to store
all available schedules inside the engine.  In all of the above areas, it is important to
remember two major benefits of using COM from a research and development point
of view.  First, components can be added and removed without changing the engine,
making it very easy to experiment with different approaches, especially batch runs
controlled by a script.  Secondly, when developing and modifying algorithms only
the component being updated has to be rebuilt; the engine, client application and test

Figure 3: Application structure using COM-based search engine components
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environment will require no modifications.  Figure 4 shows how a simulated
annealing search engine (described in the next section) has a number of snap-in
components that communicate through generic interfaces.  The full design describ-
ing the snap-in components as well as detailed interface definitions and engine
components for hill climbers, SA and tabu search can be found in Howard (2001).

Of the three possible implementation methods, the ActiveX Template Library
(ATL) was chosen because of the support for automating much of the repetitive
tasks required in building COM objects and the ability to generate small and
efficient components.  The ATL is the most recent C++ library for developing COM
objects and was designed to build lightweight and efficient components with
minimal dependencies on other libraries unlike MFC.  Many of the recurring tasks,
such as writing IUnknown and dispatch methods, managing inheritance of multiple
interfaces and standard marshalling are provided automatically through using the
ATL.  By removing most of the overheads of COM programming, the programmer
is left to concentrate on the design and implementation details of the custom
components.  IDL was used to generate the type libraries so that the engine could
easily reference and use the snap-in components, and similarly, the client can
reference the engine.  The current design has all component servers implemented as
in-process DLLs as this is the most efficient method of communication between
objects.  As a result of this decision, proxy and stub marshalling code is not required
as all of the components will be running within the same process on the same
machine.

Figure 4: Application design using the SAEngine and snap-in components
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A SIMULATED ANNEALING ENGINE SERVER
    The SA engine server is an in-process (DLL) component server that contains

the COM class for the simulated annealing search engine shown in Figure 4.  The
SA engine is more complex than the basic hill climber but still uses the same basic
algorithm structure and modules. Throughout the following section, m refers to a
move structure; s refers to a solution; and f refers to the fitness of a solution.  Three
suffixes are also used: p for proposed solutions; c for current solutions; and b for best
solutions.

s
c
 = Generate initial solution

f
c
 = Evaluate(s

c
)

s
b
 = s

c

f
b
 = f

b

terminated = false
t = CoolingSchedule.InitialTemp
while terminated = false

Perform Iteration
t = CoolingSchedule.CalculateNextTemp
if iteration >= iteration limit

terminated = true
end if

end while

An iteration of the SA engine is defined to be:

n = number of proposed moves per iteration
while n <= proposed moves limit

m
p
 = GenerateNextMove(s

c
)

s
p
 = PerformMove(m

p
, s

c
)

f
p
 = Evaluate(s

p
)

if Accepted(f
c
, f

p
, t)

s
c
 = s

p

f
c
 = f

p

if f
c
 < f

b

s
b
 = s

c

f
b
 = f

c

end if
end if
increment n

end while

SAEngine Component
The SAEngine COM class supports the four generic interfaces that must be

supported by all heuristic search engines but also has two engine-specific interfaces:
ISAEngine and ISAEngineValues. During each iteration, the engine uses interface
pointers to access the snap-in components RandomGenerator, BasicSAAcceptor
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and GeomtricCoolingSchedule.  The SAEngine also has a number of functions that
are local to the COM class. One of the important tasks during the initialisation stage
of the engine is to create the internal solutions and components. Representations for
current, best and proposed solutions are created using the ProgID for the RuleRep
class.  The client is required to call set the representation type through the IEngine
interface to define this value.

RandomGenerator Component
Move generators are one collection of snap-in components used to supply the

engine with a move structure capable of generating the next solution.  The
RandomGenerator component exposes its functionality through the IGenerator
interface.  The generator selects at random one of the move operators from the
representation as well as a random position at which it will be applied.  This
information is returned to the engine and used to describe and perform the next
move.

BasicSAAcceptor Component
Acceptors form another group of snap-in components for the engines.  Accep-

tors are used to determine whether or not a solution should be accepted.  The simplest
acceptor would be found in a hill-climber engine and based simply on whether one
fitness value was an improvement of another.  The SA algorithm is based on the
concept of probabilistically allowing worsening moves to be accepted during the
search.  The probability is calculated e-δ/t using  where δ is the difference between
current and proposed fitness values and t is the current temperature.  BasicSAAcceptor
uses a method from the generic IAcceptor interface to calculate whether a move
should be accepted.  The ISAAceptor interface is used to pass the current tempera-
ture value from the engine to the acceptor.

GeometricCoolingSchedule Component
Modifying the initial temperature and selecting an alternative cooling schedule

is a common method of trying to find better solutions using a SA engine.  By making
the cooling schedule a snap-in component of the engine, the schedule can easily be
changed by the client to perform further experimentation. Components that support
ICoolingSchedule could be based on techniques such as geometric or arithmetic
progressions, or the Lundy and Mees (1986) cooling schedule. Some approaches
will require additional parameters and thus require additional interfaces to set these
values.  For example, the Lundy and Mees calculation requires the value of β to be
set, whereas the ratio will be necessary for a geometric cooling schedule.
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THE DATABASE AND DATA MINING
COMPONENT SERVER

The DMEngSvr server is comprised of three core components which are
central to solving data mining problems and do not form part of the generic set of
engine components.  The three components are: DMDBase, the database server;
DMProblem, the module which defines how rules are evaluated and scored; and
RuleRep, which represents a rule as a solution to an optimisation problem.

DMDBase Component
The DMEngine library (Howard, 1999b) is a collection of C++ classes that

provide database access and data mining algorithms.  The DMDBase component
wraps the functionality provided by DMEngine with COM interfaces.  The existing
classes are statically linked into the component which only exposes a limited
number of methods and properties through two interfaces: IDBase and IDMDBase.
As the internal operations of the component are hidden to the client, the database
implementation can be changed and improved at any time without the need to
rebuild the client.  IDBase is an interface for setting parameters and accessing
information about the underlying database.  The implementation details of the
database are hidden to the client, who would be unaware of whether the database was
being held entirely in memory using C-style arrays or stored in a DBMS on a remote
server.

DMProblem Component
The DMProblem component is similar to the DataMine class used with the

search engines from the Templar framework.  The problem component encapsulates
the data, evaluation routines and parameters associated with solving data mining
optimisation problems.  The component supports two custom interfaces: IProblem
and IDMProblem.  The IProblem interface is used to initialise the problem and
provide the engine with fitness values by evaluating solutions.  The generic nature
of this interface allows different problems to be added and removed from the engine
at run-time.  Unlike the generic IProblem interface, IDMProblem exposes proper-
ties and methods specific to the data mining class of problems.  Parameters include
the coefficient used to bias rule accuracy or coverage and a value that controls the
complexity of the rules generated.

RuleRep Component
The RuleRep component represents solutions in the form of rules. The

RuleRep component supports two custom interfaces.  IRepresentation is the generic
interface that must be provided by all representation components that are capable of
interacting with search engines.  Generic representation types usually include arrays
of integers or doubles, bitstrings and permutations; the RuleRep class described here
is a more specialised representation used for rule discovery.  IRepresentation
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exposes methods to perform and undo moves on a representation; selects a
initialisation routine; and generates neighbourhood moves using a number of
operators.  The IRuleRep interface exposes the additional methods to get and set
clauses in a rule representation object as well as a single property, Length, to set the
length of the solution.

RuleMove Component
To perform a move on a representation the engine could simply request that a

change be made to an existing solution. However, a two-phase process of perform-
ing a move using a structure (in this case, another component) to store the attributes
of the representation to be changed has a number of benefits.  First, as the component
can also store a set of previous values, a move can be undone if it has been rejected
by the engine; in most cases the undo process will be more efficient than cloning the
previous solution.  Secondly, as information is stored about which attributes of the
solution have been changed, this data can be in attribute-based memory structures
such as those used in Tabu Search (Glover & Laguna, 1995).

CONCLUSIONS
This chapter justifies and describes the movement of libraries for solving

optimisation problems from the object-oriented paradigm to the component-based
paradigm.  In doing so, a number of important commercial and research develop-
ment issues have been addressed including how a component-based approach
would benefit the development of data mining software.  The design uses a COM
approach to build applications with embedded search engines using many small
components that can readily be interchanged at run-time.  Constituent parts of the
core search algorithms have been identified and modelled with snap-in components;
by doing so, the overall development of a large application becomes easier, as is
designing and testing new algorithms.  A data mining problem component, repre-
sentation and move structure have been written to solve data mining rule induction
problems.  Heuristic search engines are used to find rules describing one particular
class of records in a database, a technique sometimes referred to as nugget
discovery.

There is wide support for COM in the industry and developing software in this
way is becoming normal practice.  The major benefits of components for software
vendors are:

• reuse between projects;
• useful for rapidly developing prototype applications, e.g., for consultancy

services;
• could form part of a software development kit that could be marketed for users

to develop their own applications.
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FUTURE WORK
The work described here focuses on a collection of components designed and

developed to solve optimisation problems.  The movement to a COM-based
approach acts as a proof of concept as a number of working search engines have been
written, tested and exploited in the area of data mining.  Two sections of the
algorithms, namely acceptors and generators, were identified as areas that could be
developed into components. Other sections, such as initialisation routines and
iterations could similarly be developed but have more of an impact on the overall
design.  If enough areas can be factored out, it becomes possible to implement a
generic engine component that can be transformed into a particular engine based on
the components that are snapped into it.  A side effect of generalising too far is that
it becomes more difficult to set algorithm specific parameters.  Consider a GUI
based application that allows users to change which engine they use to solve data
mining problems. The user interface must allow users to set parameters on all
components associated with the system.  But, as components are updated and new
parameters are added, the user interface needs to adapt to show the correct
configuration options.  This means that the GUI needs to be built dynamically using
a list of parameters that can be retrieved from the component at run-time.  One
solution may be for components to have an IParameterList interface which can be
queried to dynamically build a list of parameters.  Finally, using DCOM, the
components can be configured to work over remote systems with the engines
running on one machine and the problem component (linked to a database server)
running on another.  However, in data mining problems, the majority of the work
performed by the system is on evaluating the rules.  This would still take place on
a single machine, as the database server is the only component that can evaluate rules
and provide the problem with enough information to calculate a fitness value.  To
overcome this, the database problem (and possibly database) needs to be split up into
smaller problems and distributed across a number of machines, which means
looking at the area of distributed data mining (Chattratichat, Darlington & Ghanem,
1997).
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In this chapter, we expose the possibilities of the Logical Combinatorial
Pattern Recognition (LCPR) tools for Clustering Large and Very Large
Mixed Incomplete Data (MID) Sets. We start from the real existence of a
number of complex structures of large or very large data sets. Our
research is directed towards the application of methods, techniques and
in general, the philosophy of the LCPR to the solution of supervised and
unsupervised classification problems. In this chapter, we introduce the
GLC and DGLC clustering algorithms and the GLC+ clustering method
in order to process large and very large mixed incomplete data sets.
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CLUSTERING MIXED INCOMPLETE DATA
In the process of Knowledge Discovery from Data (KDD), one of the most

important tasks is to classify data. It is well known that one of the most powerful
tools to process data in order to extract knowledge is the class of clustering
algorithms, whose purpose is (in the KDD context) to solve the following problem.
Given a similarity measure Γ (not necessarily a distance function) between pairs of
object descriptions in some representation space and a collection of object descrip-
tions in that space, find a structuralization of this collection. These sets could form
hard or fuzzy cover or partition (Martínez-Trinidad, Ruiz-Shulcloper, & Lazo-
Cortés, 2000a; Ruiz-Shulcloper, & Montellano-Ballesteros, 1995) of the data set. In
other words, finding the similarity relationship between any pair of objects under a
certain clustering criterion without utilizing a priori knowledge about the data and
with the following additional constraints: i) the use of computing resources must be
minimized and ii) the data set could be large or very large.

Also, it is well known today that in some areas such as finance, banking,
marketing, retail, virtual libraries, healthcare, engineering and in diagnostic prob-
lems in several environments like geosciences and medicine among many others,
the amount of stored data has had an explosive increase (Fayyad, Piatetsky-Shapiro,
Smyth, & Uthurusamy, 1996). In these areas, there are many instances where the
description of the objects is nonclassical, that is, the features are not exclusively
numerical or categorical. Both kinds of values can appear simultaneously, and
sometimes, even a special symbol is necessary to denote the absence of values
(missing values). A mixed and incomplete description of objects should be used in
this case. Mixed in the sense that there are simultaneously categorical and numerical
features; incomplete because there are missing values in the object descriptions.

The study of the similarity relationships with mixed incomplete descriptions of
objects is the principal aim of LCPR (Martínez-Trinidad et al., 2000a; Ruiz-
Shulcloper, & Montellano-Ballesteros, 1995; Dmitriev, Zhuravlev, & Krendelev,
1966).

In order to gain clarity and understanding, we will establish conventional
differences between Data Set (DS), Large Data Set (LDS) and Very Large Data Set
(VLDS). In a mining clustering (also in a supervised classification) process DS will
be understood to mean a collection of object descriptions where the size of the set
of descriptions together with the size of the result of the comparison of all pair wise
object descriptions, that is, the similarity matrix, does not exceed the available
memory size. LDS will mean the case where only the size of the set of descriptions
does not exceed the available memory size, and VLDS will mean the case where
both sizes exceed the available memory size.

In addition, we propose conventional differences between the Very Large Data
Set Clustering Algorithm (VLDSCA), the Large Data Set Clustering Algorithm
(LDSCA), and the Data Set Clustering Algorithm (DSCA). If we denote OT

A
 as the

run-time complexity, and OE
A
 as the space complexity of a clustering algorithm CA,

then we have a VLDSCA iff OT
A
 < O(m2) and OE

A
 < O(m). We have a LDSCA iff
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OT
A
 ≤ O(m2) and O(m) ≤ OE

A
 < O(m2). Otherwise, the CA will be a DSCA.

In this chapter we will discuss how the ideas of LCPR could be extended to
KDD, what is done today, and what is possible and necessary to do in the near future.
First of all, several necessary concepts and results from LCPR will be introduced in
order to have a clearer understanding about the ideas and possibilities of the LCPR
in KDD. Some related works are considered and their contribution to the solution
of the formulated problem are discussed. After that, three mixed incomplete data
(MID) clustering algorithms are presented and several experimental results are
analyzed. Finally, a brief projection of future ideas and work are commented.

BACKGROUND
First of all, it is important to be reminded of the principal differences and

connections between the two concepts: distance and similarity functions. Some-
times the term distance is intended as a synonym of metric (measure), and
sometimes it is a particular case of a metric. The latter is our preference. Both
distance and similarity functions are particular cases of metrics. There are many
types of distance functions or dissimilarity measures (pseudo-distance, semi-
distance, distance, pre-distance, ultra-distance, etc.) depending on the presence of
certain properties. In general, when we are talking about distance, it is assumed to
be a symmetric function with two additional important properties in the case of the
distance function: the triangular inequality and the requirement to be positive-
definite, that is, the function can take the value zero (minimal value of the image of
the distance function) only when comparing an element with itself. Only in this case
is the function zero. Furthermore, it is true that the dual of each of all these particular
cases of metrics are similarity functions. Following Goldfarb (1985) let us see these
definitions in more detail.

Definition 1. By a pseudo-distance function (dissimilarity coefficient) we mean
a non-negative real-valued function π defined under the Cartesian product of a set
P, satisfying the following two conditions:

a) ∀p
1
,p

2
∈P π(p

1
,p

2
)=π(p

2
,p

1
) (symmetry)

b) ∀p∈P π(p,p)=0 (reflexivity)
Definition 2. A pseudo-distance function which satisfies the following addi-

tional property
c) ∀p

1
,p

2
∈P π(p

1
,p

2
)=0 ⇒p

1
=p

2
(definiteness)

is called a semi-distance function (definite dissimilarity coefficient).
Finally,
Definition 3. A semi-distance function which satisfies the following condition

d) ∀p
1
,p

2
,p

3
∈P π(p

1
,p

3
)≤π(p

1
,p

2
)+π(p

2
,p

3
) (triangle inequality)

is called a distance function or simply a distance.
Although the similarity function is responsible for the very origin of pattern

recognition (Goldfarb, 1985), in general, it has been considered practically as an
equivalent to a dissimilarity function. That is why, for many authors, it is very easy
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to think that if we have a distance function (dissimilarity measure) we can get a
similarity function by using the opposite (or the inverse) of this function. And that
is right: the opposite or the inverse of a distance function is a similarity function, but
there are many other similarity functions for which there is no distance function
from which they can be obtained. In general, it is not true that a similarity function
is the dual function of a distance.

In the literature, the similarity functions have not received the same attention
that the distance functions have received. We can find a simple definition of a
similarity function in Jain & Dubes (1998) or a more complex one in Martínez-
Trinidad et al. (2000) and Alba-Cabrera (1998). The necessity to work with a more
flexible function than a distance function, even with other similarity functions that
are not dual of some distance, is a requirement imposed by real-world practice.
There are many practical problems in which this flexibility is necessary, see for
example Gómez-Herrera et al., 1994; Ortíz-Posadas, Martínez-Trinidad, & Ruiz-
Shulcloper, 1996; Martínez-Trinidad, Velasco-Sánchez, & Contreras-Arévalo,
2000b).

Now we will discuss the principal concepts and results of LCPR and the
possibilities of the use of its tools for KDD using mixed incomplete (large, very
large) data sets.

LCPR originated in the Soviet Union, with the publication by Dmitriev,
Zhuravlev and Krendelev (1966). The principal task of that paper was to find a
solution to the prognosis of mineral resources. Later on, other works appeared in
which features of different natures were considered, that did not involve first
Boolean alone or qualitative features alone without transformation (Gómez-Herrera,
et al. 1994; Ortíz-Posadas, et al. 1996; Martínez-Trinidad et al., 2000b).

SOME NECESSARY CONCEPTS
Let U be a universe of objects, which could be structured in K

1
,..., K

r 
classes

(where r ≥ 2), and described in terms of a finite set of features R = {x
1
,...,x

n
} used

to study these objects. Each of these features has associated with them a set of
admissible values M

i
, i=1,...,n. For M

i
 no algebraic, topologic or logic structure is

assumed. These sets of values, unlike the previous approaches, could be of any
nature: quantitative and qualitative simultaneously. They could be a subset of real
numbers; spatial points; terms of some dictionary; propositions or predicates of
some artificial or natural language; functions; matrices; and so on. Each of these sets
contains a special symbol “*” denoting the absence of a value for the feature x

i
 in

the description of an object O (missing data).
Definition 4. By mixed incomplete description of object O, an n-ary tuple of

nominal, ordinal and/or numerical values can be defined as I(O)=(x
1
(O),...,x

n
(O)),

where x
i
:U→M

i
, x

i
(O)∈M

i
; i=1,...,n. Let T be a subset of R, I|

T
(O) will denote a sub

description of O exclusively in terms of the features of T.
From here on consider that U=M

1
x…xM

n
, the Cartesian product of the
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admissible value sets of features of R and I(O)=O, in order to simplify the notation
in all the cases that will not necessarily specify the type of description.

Let M={O
1
,...,O

m
}⊆U, which in the case of feature selection and supervised

classification problems will be the union of the sets K
1

',..., K
r
',     K

i
', i = 1,...,r, which

are not necessarily disjoint sets and not necessarily crisp sets.

Similarity Measures
Definition 5. A comparison criterion ϕ

i
:M

i
×M

i
→L

i 
 is associated to each x

i

(i = 1,...,n), where: a) ϕ
i
 (x

i
(O),x

i
(O)) = min{y| y∈ L

i
} if ϕ

i
 is a dissimilarity

comparison criterion between values of variable x
i
 or b) ϕ

i
 (x

i
(O),x

i
(O)) = max{y|

y∈ L
i
} if ϕ

i
  is a similarity comparison criterion between values of variable x

i
 for i

= 1,…n. ϕ
i
 is an evaluation of the degree of similarity or dissimilarity between any

two values of the variable x
i 
when L

i
 is a totally ordered set, i=1,…,m.

A magnitude may be calculated for each pair of objects in U. This magnitude
is obtained by applying a function, which will be called a similarity function. This
similarity function can be defined for any subset of R.

Definition 6 (Martínez-Trinidad et al., 2000a). Let a function Γ: ∪Τ⊆R

(M
i1
x...xM

ip
)2 →L, where L is a totally ordered set; T={x

i1
,...,x

ip
}⊆R, p≥1, and

where Γ satisfies the following two conditions:
1) Let T

1
,…,T

s
 nonempty disjoint subsets of R,

 
< is the order in L and T= ∪ T

i
,

i=1,...,s, then we have:
if for all h=1,…,s  Γ(I|

Th
(O

i
),I|

Th
(O

j
))<Γ(I|

Th
(O

f
),I|

Th
(O

g
)), then

Γ(I|
T
(O

i
),I|

T
(O

j
))< Γ(I|

T
(O

f
),I|

T
(O

g 
))

2) For all sub-description in ∪Τ⊆R
 (M

i1
x...xM

ip
)2 we have

a) max{Γ(I|
T
(O

i
),I|

T
(O

j
))}={Γ(I|

T
(O

i
),I|

T
(O

j
))}, O

j
∈M

b) Γ(I|
Ti

(O),I|
Ti

(O)) = Γ(I|
Tj

(O),I|
Tj

(O))
c) Γ(I|

T
(O

i
),I|

T
(O

i
)) = Γ(I|

T
(O

j
),I|

T
(O

j
))

Γ denotes a similarity function and it is an evaluation of the degree of similarity
between any two descriptions of objects belonging to U.

Similarity Matrices
In LCPR, clustering criteria are essentially based on topological (not necessar-

ily metrical) relationships between objects. This approach responds to the following
idea: given a set of object descriptions, find or generate a natural structuralization
of these objects in the representation space.

Any structuralization of a representation space depends on a similarity function
Γ (also on comparison feature values criteria) and a clustering criterion that
expresses the way in which we can use Γ.

In general, the clustering criteria have as parameters: a symmetric matrix (if Γ
is a symmetric function) Γ

ij


mxm
 denominated similarity matrix for which each

Γ
ij
=Γ(O

i
,O

j
)∈L; a property Π, which establishes the way that Γ may be used, and a

threshold β
0
∈L.

Definition 7. O
i
, O

j
∈M are β

0
-similar objects if Γ(O

i
,O

j
)≥β

0
. In the same way

⊃
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O
i
∈M is β

0
-isolated object if ∀O

j
≠O

i
∈M Γ(O

i
,O

j
)<β

0
.

The β
0
-threshold value can be used to control how close a pair of objects must

be in order to considered similar. Depending on the desired closeness, an appropri-
ate value of β

0
 may be chosen by the expert/user.

The determination of this threshold is not easy, but it is not an impossible
process. β

0
 could be obtained by expert criteria. Also, it is possible to conduct some

numerical experiments.
Definition 8 (Martínez- Trinidad et al., 2000a). For a crisp clustering criterion

Π(M,Γ,β
0
) we mean a set of propositions with parameters M, Γ and β

0
 such that:

a) It generates a family τ={NU
1
,...,NU

c
} of subsets (called nucleus) of M (crisp

clusters) that:
I)∀ NU∈τ [NU≠∅];
II) ∪ΝU =M, NU∈τ
III)¬∃ NU

r
, NU

j1
,..., NU

jk
∈τ [NU

r
⊆ ∪NU

jt
, t=1,...,k; jt ≠ r];  and

b) it defines a relationship RΠ⊆Μ×Μ×2M (where 2M denotes the power set of M)
such that:

IV) ∀O
i
,O

j
∈M [∃NU∈τ ∃S⊆M[O

i
,O

j
∈NU⇔(O

i
,O

j
,S)∈RΠ].

Definition 9. We say that a subset NU
r
≠∅ of M is a β

0
-connected nucleus

(component) with respect to Γ and β
0 
if

a)∀O
i
,O

j
∈NU

r
∃∈ O

i1
,...,O

iq
∈ NU

r 
[O

i
=O

i1
∧O

j
=O

iq
∧∀p∈{1,...,q-1} Γ(O

ip
,O

ip-1
)≥β

0
]

b) ∀O
i
∈M [(O

j
∈NU

r
∧Γ(O

i
,O

j
)≥β

0
)⇒O

i
∈NU

r
],   and

c) Any β
0
-isolated element is a -connected nucleus (degenerated).

ALGORITHMS FOR CLUSTERING
MIXED INCOMPLETE DATA

Several techniques have been developed to cluster large and very large data
sets. CLARANS (Ng & Han, 1994), DBSCAN (Ester, Kriegel, Sander & Xu, 1996),
GDBSCAN (Sander, Ester, Kriegel & Xu, 1998), BIRCH (Zhang, Ramakrishnan &
Livny, 1996) and IncDBSCAN (Ester, Kriegel, Sander, Wimmer & Xu, 1998) have
given solutions, with higher or lower efficiencies. The objects handled by these
algorithms are described in metric spaces, and these algorithms use a distance D to
compare two objects of the data set. That is, D is a numerical symmetric function,
which fulfills the triangle inequality. One of the drawbacks of the mentioned
algorithms is that they were not developed to cluster data sets defined in spaces in
which the similarity relationships do not satisfy the triangle inequality and in some
cases are not symmetric.

Recently, algorithms for processing qualitative data and also mixed incomplete
large and very large data sets have started to develop. ROCK (Guha, Rastogi &
Shim, 1999), Chameleon (Karypis, Han & Kumar, 1999), GLC (Sánchez-Díaz &
Ruiz-Shulcloper, 2000), DGLC (Ruiz-Shulcloper et al., 2000), and GLC+ (Sánchez-
Díaz, Ruiz-Shulcloper, 2001) are the most representative instances in this vein.
These techniques handle objects defined in nonmetric spaces and use a similarity
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function S to compare two objects of the data sets.
ROCK is a hierarchical algorithm developed for clustering data sets with only

categorical attributes with missing values, but not for mixed incomplete data. This
algorithm uses the concept of link in order to measure the similarity between two
objects. The concept of neighbor used in this algorithm is the same as the previously
mentioned concept of β

0
-similar. In this algorithm, the threshold is a user-defined

parameter. The number of links between two objects is the number of common
neighbors of the objects. The number of links will determine the membership of an
object to a cluster. This algorithm uses a criterion that maximizes the sum of links
between all pairs of objects that belong to the same cluster, while minimizing the
sum of links of any two objects in different clusters. The whole process is supported
by the determination of the neighbors of an object that is employed in the similarity
function. The authors suggested for the treatment of the categorical attributes to use
the Jaccard coefficient.

ROCK calculates the similarity matrix (pair-wise object similarities), so if the
number of objects is very large, it is ineffective to cluster these data sets. The
authors’ proposal is to take only a few samples of the original data set in order to
make the algorithm scalable for large data sets. After that, each of the remaining
objects is assigned to the cluster in which the object has the maximum number of
links. But, it is clear that the results are dependent on the order. Besides, ROCK is
unworkable for clustering large and very large mixed incomplete data sets.

Another important attempt to solve a problem resembling the mixed incom-
plete data clustering is Chameleon. Chameleon is also an agglomerative hierarchi-
cal algorithm proposed for clustering data sets not necessarily described in a metric
space. Chameleon considers both the interconnectivity and the closeness between
clusters to identify the most similar pair of clusters. These values are obtained from
the k-nearest-neighbor graph associated with the assumed given matrix of the
similarities between data. So, Chameleon is applicable to any data set for which a
similarity matrix is available (or can be obtained). The assumption that a similarity
matrix is given avoids the problem of treating the mixed incomplete data, so this
problem is assumed resolved. When this matrix is not given, the problem is
obviously associated with the similarity function. In the Chameleon case it is not
clear how to deal with mixed incomplete data.

The main limitation of Chameleon is that the runtime complexity to generate
the similarity matrix is quadratic, making it inoperative for clustering large and very
large data sets.

Other efficient algorithms for clustering data sets have been developed in
artificial intelligence, such as Kohonen’s self organizing feature maps (Kohonen,
1982), and learning vector quantizer (Kohonen, 1986). However, none of these
models process input objects described by quantitative and qualitative attributes
(mixed data). In addition, these techniques were not developed to address clustering
large or very large data sets.

Starting from the real existence of a number of complex data sets and the
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incapability of the previously developed clustering algorithms to address mixed
incomplete data processing, several other approaches in which the methods, the
techniques and in general, the philosophy of the LCPR were applied to the solution
of supervised and unsupervised classification problems, using huge data sets
containing merged quantitative and qualitative data, have recently appeared. These
approaches constitute the conceptual base and have produced the first results in an
emerging new research area in Data Mining that we called Mixed Incomplete Data
Mining (MID Mining).

Global Logical-Combinatorial
(GLC) Clustering Algorithm

There are several traditional methods for calculating connected components in
a mixed incomplete data set. In Martínez-Trinidad et al. (2000a), a methodology is
described that performs this calculation as a part of the solution to other problems.
In general, these techniques have two fundamental phases: the calculation of the
similarity matrix of the objects and the generation of the clustering following some
clustering criterion. The main drawback that these algorithms show is the necessity
to calculate and store the similarity matrix, and when the number of objects in the
data set grows considerably, then it becomes practically inefficient for their
application (in size and time).

GLC is an incremental clustering algorithm for large mixed incomplete data
sets that obtains a partition in connected components. This algorithm is based on
LCPR.

GLC handles data in any space (not necessarily metric) and it is based on any
similarity function G that compares two objects. This algorithm uses the connected
component criterion to generate clusters from the data set. This algorithm generates
the only clustering of the data set, without relying on the input order of data. The
GLC algorithm detects all the connected components of the data set. Also, GLC
neither calculates nor stores the similarity matrix. This is the main improvement and
advantage of the GLC algorithm over the other traditional methods.

The GLC algorithm generates (incrementally) all the connected components
while it is reading the objects of the data set. It uses only the necessary memory to
store the clusters that are created by the algorithm. It is important to point out that
the algorithm never compares two objects more than once.

The GLC algorithm proceeds in the following way: upon the arrival of a new
object O

i
, it is verified for some cluster G

k
 determined by the condition Γ(O

i
,O

j
)≥β0,

for an object O
j
∈G

k
 (similarity condition). If no cluster fulfills the similarity

condition, then O
i
 builds up a new cluster. Otherwise, the object O

i
 is added to the

cluster G
k
 that contains the object O

j
 that was similar to it. At this time, further

comparisons with the residual objects of the cluster G
k
 are not necessary.

Object O
i
 is then compared with the objects of the clusters G

h
, with h≠k, and

if Γ(O
i
,O

j
)≥β0, for some O

j
∈G

h
, no additional comparisons with the remaining

objects of G
h
 are needed and clusters G

k
 and G

h
 are merged to form a unique one.
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This procedure is carried out with all the existent clusters. The previous process shall
be performed with each object of the cluster in the data set. The GLC algorithm is
shown in detail in Sánchez-Díaz and Ruiz-Shulcloper (2000).

Density-Based Global Logical
Combinatorial (DGLC) Clustering Algorithm

The DGLC clustering algorithm for discovering β0-density connected compo-
nents from large mixed incomplete data sets combines the ideas of LCPR with the
density-based (Ester et al., 1996) notion of cluster.

Let a similarity function Γ, a similarity threshold β0, a natural number MinPts,
and a large MID M={O

1
,...,O

m
,...}⊆U be given. Let U be a dynamical universe of

objects described in terms of several kinds of features x
i
, with M

i
 as an admissible

values set for i=1,...,n.
Definition 10. An object O∈Π M

i
, i=1,...,n has a β0-dense neighborhood with

respect to Γ, β0, and MinPts, iff |Vβ0
| ≥ MinPts, where= Vβ0 

(O)={O
j
∈M |Γ(O,O

j
) ≥

β0}. We say that O is a dense point.
Definition 11. A non–empty set C={O

1
,...,O

s
} is named a β

0
-chain with respect to

Γ, β0, iff for all O
j
∈C, Γ(O

j
,O

j+1
) ≥ β0. In other words, C={O

1
,...,O

s
| for j=1,...,s-1 O

j+1∈
Vβ0 

(Ο
j
)}.

Definition 12. A β0- chain with respect to Γ, β0, and MinPts C={O
1
,...,O

s
} is

named a β0-dense chain with respect to Γ, β0, MinPts, iff for all O
j
∈C, O

j
 is a dense

point. In other words
C={O

1
,...,O

s
| [for j=1,...,s-1,O

j+1
∈ Vβ0

(O
j
)]∧|Vβ0

(O
j
) |≥MinPts, j=1,...,s}.

Definition 13. A non–empty set NK={O
1
,...,O

m
}⊆K⊆M is named nucleus of

the β
0
-dense connected component K with respect to Γ, β0, and MinPts, iff for all

O
j
∈NK and for all O∈M holds: O∈ NK iff there is C={O

i1
,...,O

is
}⊆M, a β0-dense

chain such that O
j
=, O

i1
,O

 
= O

is
,
 
O

it
∈ NK, for t=1,...,s-1.

Definition 14. A non–empty set BK={O
1
,...,O

m
}⊆M is named border of the β

0
-

dense connected component K with respect to Γ, β0, and MinPts, iff for all O
j
∈BK

there is Vβ0
(O

j
), 0<|Vβ0

(O
j
)|<MinPts and there is O∈NK such that O∈ Vβ0

(O
j
).

Definition 15. A non-empty set K={O
1
,...,O

m
,...}⊆M is named a β0-dense

connected component with respect to Γ, β0, and MinPts iff K=NK∪BK.
The DGLC algorithm is shown in detail in Ruiz-Shulcloper et al. (2000).

A Method for Cluster Generation
in Very Large Mixed Data Sets

The GLC+ method (Global Logical-Combinatorial Clustering method plus)
has been introduced for clustering very large, mixed and incomplete data sets.

This is a new incremental clustering method for very large mixed incomplete
data sets. This method uses the connected set criterion to generate clusters from the
data set. The GLC+ method does not store all objects in the available memory.
Instead, GLC+ only keeps the subset of these objects, which have a large number
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of similarity objects, named skeleton objects. Instead of comparing a new object
with all of the objects in a cluster, this method only compares the new objects with
the cluster’s skeleton objects. In this way, GLC+ combines local and semi-global
criteria to generate the clusters. Also, GLC+ neither calculates nor stores the
similarity matrix.

Definition 16. Let S⊆O, S≠∅, S is a b
0
-connected set with respect to Γ and β0

if:
∀O

i
,O

j
∈S, ∃{O

s1
,O

s2
,...,O

st
} such that O

i
=O

s1
, O

st
=O

j
 and Γ(O

si-1
,O

si
)≥β0, for all

i=2,...,t.
Each β0-isolated object is a β0-connected set with respect to Γ.
Definition 17. Let β0∈V and S be a β0-connected set. We say that E={O

1
,...,O

t
},

E⊆S, is a skeleton of S if ∀O
i
∈S, ∃O

j
∈E, j=1,...,t, such that Γ(O

i
,O

j
)≥β0.

Definition 18. Let S be a β0-connected set and E
i
 be all possible skeletons of S.

E
min

 is a minimal skeleton of S if ∀E
i
⊆S, |E

min
|≤|E

i
|, where |A| is as before, the number

of elements in A.
Note that neither skeletons nor minimal skeletons are unique for a given β0-

connected set.
The GLC+ method has two phases. In the first phase, GLC+ clusters the objects

in subclusters, which will be connected sets. In the second phase, GLC+ merges
these generated subclusters, giving the final clustering of connected sets. The GLC+
method phases are shown in Figure 1.

Description of the GLC+ Clustering Method
The GLC+ method uses the GLC incremental algorithm and the SCS (Skeleton

of a Connected Set, illustrated below). Like GLC, DGLC, ROCK and other
clustering algorithms, GLC+ utilizes similarity threshold values. Usually, GLC
calculates all connected components of the data set (we can see a connected
component as a maximal connected set, see Definition 9), but here it is used in order
to calculate only connected sets. From each connected set, the SCS algorithm
generates a minimal skeleton or approximates a minimal skeleton. The idea of the
GLC+ method is to calculate a partition of the data set in connected sets, which
approximates a partition in connected components. This approximation is due to the
size of the available memory.

The GLC+ method works in the following way: in the first phase, all possible

Figure 1: GLC+ method phases

Partitioning in
Connected Sets Subclusters

Merging
Subclusters Final Clusters

DB Phase 1 Phase 2



98  Ruiz-Shulcloper, Sánchez-Díaz and Abidi

connected sets are calculated until the given percentage of objects is reached or the
available memory is full. In this process, an adjacent object list is created for each
object O

i
 in which all of its β0-similar objects in its cluster appear. In fact, at this stage

we only have β0-connected sets because not all the objects have been considered.
After that, the SCS algorithm processes these sets in order to find the skeleton of
each one in its corresponding cluster. Currently, we find the minimal skeletons. By
doing that, we keep enough available memory in order to continue the clustering
process, and at the same time, all of the remaining objects not belonging to the
skeletons are kept also in their clusters, but not in the available memory. These
objects are marked as border objects, and will be used in the second phase of GLC+.
The SCS algorithm is called while the available memory is not fully used. The
remaining objects are clustered, but they will be compared only with the objects
stored in the available memory. This procedure is applied until all the objects have
been clustered. In the second phase, GLC+ compares the border objects O

b
∈G

h
 and

the skeleton objects O
s
∈G

l
, h≠l. If O

b
 and O

s
 are similar, then the G

h
 and G

l
 clusters

are merged. Both phases of GLC+ are incremental.
The GLC+ method proposed in this work is the following:

Phase 1.
Input: O={O

1
,...,O

m
}(data set), β0 (similarity threshold value), % obj (percentage of

objects to reach, optional).
Output: cCS (β0-Connected Set Sub-clustering), SO and BO (skeleton objects and
border objects)

1. Generate the β0-connected sets until the %obj value is reached or the memory
is still available (call GLC algorithm). Create an adjacent object list for each
object in each cluster.

2. Extract the (minimal) skeletons from the β0-connected sets formed in the
previous step (call SCS algorithm).

3. Cluster new incoming objects as follows:
3.1. If the object belongs to one skeleton, then tag it with the label of the

skeleton, and mark it like a border object. If the object belongs to more than
one skeleton, then these skeletons are merged. The object in the skeleton is
not stored.

3.2. If the object does not belong to any skeleton, then check if it belongs to
any β0-connected set. In the affirmative case, add the object to this β0-
connected set, and check if it belongs to any other β0-connected sets in order
to merge them in the same way that the skeletons merged. Otherwise, the
object will form a new β0-connected set.

4. If all objects have been clustered, then the algorithm finishes. In the other case,
verify if the available memory is exhausted. In the affirmative case, apply the
SCS algorithm to the β0-connected sets already computed. Go to 3.
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Phase 2.
Input: cCS (β0-connected set sub-clustering), SO, BO (skeleton objects and border
objects) and β0 (similarity threshold value).
Output: Final β0-connected sets clustering.
Repeat for i=1:m

If %obj have been reached then Obtain_new_objects()
If O

i
 is border object, and O

i
∈G

k
, then

If Γ(O
i
,O

j
)≥β0, Oj

 is skeleton object, and O
j
∈G

h
, h≠k then G

h
←G

h
∪G

k

Otherwise
If O

i
 is skeleton object, and O

i
∈G

k
, then

If Γ(O
i
,O

j
)≥β0, Oj

 is border object, and O
j
∈G

h
, h≠k then G

k
←G

k
∪G

h

SCS Algorithm for Finding the Skeletons
of the β0-Connected Sets

This algorithm calculates a minimal skeleton E
min 

(or near to it) of a β0-
connected set S. The objects that will be in the skeleton E

min
 are those objects O

i
∈S

with the largest number of adjacent objects, excluding the remaining objects from
S.

An object O
i
, with the largest number of adjacent objects, forms a β0-connected

set with its neighbors and has more possibilities to be β0-similar than other new
incoming objects. That is why we calculate these objects.

The SCS algorithm works in the following way:
Input: G

k
={O

k1
,...,O

ks
} (β

0
-connected set), AL (adjacency list of the objects in

G
k
).

Output: E
k
 (skeleton of the connected set G

k
).

1. Repeat for i=1:s
Tag(O

ki
)←“SKELETON”

Valence(O
ki
)←Adjacency_Grade(AL,i)

2. Repeat
If Valence(O

ki
)≥Valence(O

kj
), i≠j, and Valence(O

ki
)>0,

and Tag(O
ki
)←“SKELETON” then

Tag(O
kp

)←“NOT_SKELETON”, O
kp

 adjacent to O
ki

Until Valence(O
ki
)≤0

3. If Tag(O
kq

)←“NOT_SKELETON”, q=1,...,s then Delete(G
k
,O

kq
) else

E
k
←E

k
∪{O

kq
}

RUNTIME COMPLEXITY
OF GLC, DGLC AND GLC+

In the worst case, the runtime complexity of the GLC and DGLC algorithms
is quadratic. And, in the best case, the runtime complexity of these algorithms is
lineal with respect to the number of objects. For the GLC+ method, the runtime
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complexity is lineal, with respect to the number of objects.
In general, the GLC and the DGLC algorithms do not use any index structure

support because they handled quantitative and qualitative attributes simultaneously,
defined not necessarily in a metric space. The concept of index structure to handle
spatial databases, numerical data sets and log databases (Sander, et al., 1998;
Ciaccia et al., 1997) is defined in metric spaces. This important tool should be
extended to the case of mixed incomplete data. To do the same as GDBSCAN and
IncDBSCAN, the runtime complexity of GLC and DGLC without index structure
support is quadratic.

PERFORMANCE OF THE ALGORITHMS
In this section, two examples of applications of the GLC algorithm to data sets

are presented. The first data set shows graphically an example where this method
could be applied (synthetic data). The second data set shows the behavior of GLC
running real-life data. Also, we used a data set in order to show the fulfillment in time
of GLC when it is applied to a large mixed real-life data set.

Synthetic Data Sets
We carried out a 2D projection (a LDS) of the Covtype data set (Blackard, Dean

& Anderson, 1998). This 2D projection was made taking the attributes X
6
 and X

8
 of

the Covtype data set. This 2D data set is shown in Figure 2(a). Figures 2(b) and 2(c)
show the clusters generated by a traditional hierarchical algorithm and CLARANS,
respectively. The clusters discovered by GLC, DGLC and GLC+ are shown in
Figures 2(d), 2(e) and 2(f), respectively. Points in different clusters are represented
by using several shades. In Figures 2(d), 2(e) and 2(f), we present the low cardinal
clusters using the same shade, because we consider these clusters to be noisy.

Comparison of the Results Obtained
of Running the 2D Projection

In this same figure, we show that the 2D projection contains one cluster with
high density and cardinality, formed by the majority of the objects in the data set.
The remaining clusters have low cardinality (i.e., they are formed by one, two, three,
etc. objects). In this sense, the clusters discovered by GLC, DGLC and GLC+ are
genuine, because these techniques generate one cluster with high density and
cardinality, and the remaining clusters obtained by GLC, DGLC and GLC+, have
low cardinality. The traditional hierarchical algorithm and CLARANS obtain four
clusters, with high density and cardinality. These algorithms split (into four clusters)
the cluster with high density and cardinality. In this sense, the clustering generated
by GLC, DGLC and GLC+ is better than the clustering obtained by the traditional
hierarchical algorithm and CLARANS.
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Real-Life Data Sets
The second data sets shown is a real-life database denominated “Mushroom”

(Aha, 1988).
The mushroom data set (a LDS, according to our definitions) contains records

with information that describes the physical characteristics of a single mushroom
(e.g., color, odor, shape, etc.). This data set contains 8,124 records. All attributes are
categorical, and contain missing values. Each record also contains a poisonous or
edible label for the mushroom.

Table 1 contains the results of running the Mushroom data set, on the
hierarchical algorithm and the ROCK algorithm. Table 2 contains the result of
processing the Mushroom data set, on the GLC, DGLC algorithms, and GLC+
method. The notation handled in Tables 1 and 2 is as follows: CN denotes the cluster
number; NE indicates the number of edible mushrooms, and, NP denotes the number
of poisonous mushrooms.

Comparison of the Results Obtained
of Running the Mushroom Data Set

Table 3 illustrates the result of clustering the mushroom database using the
traditional hierarchical algorithm and the ROCK algorithm (Guha, et al.). For this
example, the quality of the clusters generated by the traditional hierarchical
algorithm was very poor. Table 3 indicates also that all except one (Cluster 15) of
the clusters discovered by the ROCK algorithm are pure clusters, in the sense that
mushrooms in every cluster were either all poisonous or all edible. In the cluster (15)

Figure 2. (a) Original data set; (b) clusters generated by a traditional hierarchical
algorithm; (c) clustering obtained by CLARANS; (d) clusters discovered by GLC
algorithm; (e) clusters generated by DGLC algorithm; and (f) clustering obtained
by GLC+ method.

(a) (b) (c)

(d) (e) (f)
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for poisonous mushrooms found by the ROCK algorithm, around 30% of the
members are edible.

In this experimental result, all the clusters generated by all these techniques
contain either all poisonous or all edible. Thus, the clusters discovered by GLC,
DGLC, and GLC+ are, unlike ROCK, pure clusters, in the same sense previously
mentioned.

EXECUTION TIME OF GLC, DGLC AND GLC+
We show the behavior of the run time of GLC with two mixed-incomplete-data

sets. The first data set Adult was obtained from Kohavi and  Becker (1996). This
database contains records of the United States Census in 1994. This data set contains
32,561 records. The attributes are nominal and numerical simultaneously (age,
education, capital-gain, etc.), with 7% of missing values. The Adult database is a

Table 1: Clustering result for mushroom data

Traditional Hierarchical Algorithm ROCK Algorithm
CN NE NP CN NE NP CN NE NP CN NE NP
1 666 478 11 120 144 1 96 0 12 48 0
2 283 318 12 128 140 2 0 256 13 0 288
3 201 188 13 144 163 3 704 0 14 192 0
4 164 227 14 198 163 4 96 0 15 32 72
5 194 125 15 131 211 5 768 0 16 0 1728
6 207 150 16 201 156 6 0 192 17 288 0
7 233 238 17 151 140 7 1728 0 18 0 8
8 181 139 18 190 122 8 0 32 19 192 0
9 135 78 19 175 150 9 0 1296 20 16 0
10 172 217 20 168 206 10 0 8 21 0 36

11 48 0

Table 2: Clusters discovered by GLC, DGLC and GLC+, for mushroom data

GLC, DGLC algorithms, and GLC+ method
CN NE NP CN NE NP CN NE NP CN NE NP
1 0 512 7 0 192 13 0 16 19 72 0
2 0 768 8 0 48 14 256 0 20 32 0
3 0 96 9 0 48 15 1296 0 21 8 0
4 0 96 10 0 192 16 192 0 22 36 0
5 0 192 11 0 288 17 288 0 23 8 0
6 0 1728 12 0 32 18 1728 0
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Large Data Set (LDS), because the similarity matrix exceeds the available memory
size, but the object descriptions do not exceed the available memory size.

The second data set is named covtype. It was obtained from Blackard et al.
(1998), and contains records from cartographic data for forest prognosis. This
database has 581,012 instances, without missing values. There are numerical and
Boolean features simultaneously (hill, aspect, hydrological-horizontal-distance).

The Covtype database is a Very Large Data Set (VLDS), because both the
similarity matrix size and the objects descriptions size exceed the available memory
size (i.e., the size of the objects descriptions is approximately 76 Megabytes).

The experiments were implemented in C language on a personal computer with
the Pentium processor running at 350 mHz and 64 megabytes of RAM.

Figures 3(a) and 3(b) show the behavior of the runtime required by the GLC and
DGLC algorithms respectively, in order to create the clusters of the Adult and
Covtype databases. In addition, in Figures 3(a) and 3(b), are shown the run times
required to calculate the similarity matrix of the objects by a traditional algorithm
described in Martínez-Trinidad et al. (2000a). Figure 3(c) shows the behavior of the
runtime required by GLC+ method in order to create the clusters of the Adult and
Covtype databases. Finally, Figure 3(d) shows the runtime of the traditional
algorithm, GLC, DGLC, and GLC+ techniques.

FUTURE TRENDS
Starting from the achieved results, the next steps in this area should be: The

development of new methods based on other clustering criteria such as compact sets,
strictly compact sets, among others (Martínez-Trinidad et al., 2000): the develop-
ment of procedures to resolve the above mentioned problems, but in the case of
unsupervised restricted classification, that is, when the number of clusters to be
obtained is given.

The development of methods and procedures based on fuzzy clustering criteria
like fuzzy connected components, fuzzy compact sets; fuzzy strictly compact sets,
among others (Martínez-Trinidad et al., 2000a).

Given the practical importance of the introduction to the index structure used
in algorithms like DBSCAN, IncDBSCAN, and BIRCH, it is necessary to extend
this idea to the mixed incomplete data case. Finally, it is worth mentioning the
possibilities of all these results in the image processing and analysis fields. These
are only some of the most important objectives that will be considered in the near
future.

CONCLUSION
The existence of many mixed incomplete databases in different areas of real-

world problems is a big motivation for the development of new methods for MID
processing. In the cases of the three techniques discussed above we can conclude the
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following
The objects in the data set to be clustered may be described by quantitative and

qualitative mixed attributes and with the presence of missing data. This eliminates
the limitation that hinders some classical algorithms, which are capable of handling
only one type of attribute. This improvement means an important step in order to
solve practical real problems especially in the soft sciences, in which the descrip-
tions of objects are almost never homogeneous in the sense of the kind of feature
descriptions.

The GLC algorithm allows the generation of β
0
-connected components from

large mixed incomplete data sets. DGLC is a clustering algorithm, which works with
large mixed incomplete data sets based on the density cluster notion introduced in
(Ester et al., 1996, 1998). The GLC+ method allows the generation of β

0
-connected

sets from very large mixed incomplete data sets. GLC, DGLC and GLC+ do not
establish any assumptions about the form, the size or cluster density characteristics
of the resultant clusters. These algorithms could use any kind of distance, or
symmetric similarity function. Nevertheless, these techniques have some restric-
tions. Indeed, they are still susceptible to outliers and artifacts.

Figure 3. (a) Graphic objects-time required by GLC and a traditional algorithm;
(b) behavior of the run time required by the DGLC algorithm; (c) run time growth
of the GLC+ method; and (d) graphic objects-time required by the traditional
algorithm, GLC, DGLC and GLC+ techniques.
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Learning from the Bayesian perspective can be described simply as the
modification of opinion based on experience.  This is in contrast to the
Classical or “frequentist” approach that begins with no prior opinion,
and inferences are based strictly on information obtained from a random
sample selected from the population.  An Internet search will quickly
provide evidence of the growing popularity of Bayesian methods for data
mining in a plethora of subject areas, from agriculture to genetics,
engineering, and finance, to name a few.  However, despite acknowledged
advantages of the Bayesian approach, it is not yet routinely used as a tool
for knowledge development.  This is, in part, due to a lack of awareness
of the language, mechanisms and interpretation inherent in Bayesian
modeling, particularly for those trained under a foreign paradigm.  The
aim of this chapter is to provide a gentle introduction to the topic from the
KDD perspective.  The concepts involved in Bayes’ Theorem are intro-
duced and reinforced through the application of the Bayesian framework
to three traditional statistical and/or machine learning examples: a
simple probability experiment involving coin tossing, Bayesian linear
regression and Bayesian neural network learning.  Some of the problems
associated with the practical aspects of the implementation of Bayesian
learning are then detailed, and various software freely available on the
Internet is introduced.  The advantages of the Bayesian approach to
learning and inference, its impact on diverse scientific fields and its
present applications are identified.
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INTRODUCTION
Learning from the Bayesian perspective can be described very simply as the

modification of opinion based on experience.  The Bayesian approach to learning
combines a prior subjective opinion with new information, in the form of data, to
develop a revised opinion.  This process can be repeated any number of times and
occurs in a cyclical fashion, with the revised opinion becoming the prior opinion
with the arrival of new data. This is in contrast to the classical, traditional or
“frequentist” approach that begins with no prior opinion, and inferences are based
strictly on information obtained from the data.

This chapter is intended to provide a gentle introduction of Bayesian methods
by beginning with simple examples and explanations and later reviewing more
complex applications in data mining.  The concepts involved in Bayes’ Theorem are
established with the example case of a simple coin-tossing experiment, after which
the typical hierarchical methods used in Bayesian modeling are described.  Graphi-
cal models, in which the essential structures implicit in a model are defined, are
introduced as a convenient method of breaking down a complex model into simple
components that provide the basis for Bayesian computation.  Bayesian linear
regression is examined to illustrate the Bayesian approach to a well-known statis-
tical technique.  The application of Bayesian inference to hybrid methods of
machine learning is illustrated with the discussion of Bayesian neural network
learning.  Some of the problems and pitfalls associated with the practical implemen-
tation of the Bayesian framework are discussed, after which the reader is then
introduced to powerful software for Bayesian inference and diagnostics freely
available on the Internet.  In conclusion, the present and predicted future impact of
the Bayesian approach to learning and inference on diverse scientific fields is
discussed. Some texts are recommended for further reading.

BACKGROUND
The essential characteristic of Bayesian methods is their explicit use of

probability for quantifying uncertainty of parameter estimates of interest in scien-
tific analysis.  Bayesian statistics are used to analyse the plausibility of alternative
hypotheses that are represented by probabilities, and inference is performed by
evaluating these probabilities and making consequent decisions or estimates.

There has been a long-standing debate between Bayesian and classical statis-
ticians regarding the approach to data analysis and knowledge acquisition. The
interested reader can pursue this largely philosophical discussion by referring to
Press and Tanur (2001).  Recently there has been a revival of interest, fuelled by
pragmatic rather than philosophical concerns, in the Bayesian approach in all areas
of scientific research.  It is no coincidence that this revival has occurred in parallel
with the burgeoning of computer technology, allowing computationally intensive
algorithms to be implemented easily and inexpensively.  The most far-reaching of
these algorithms is the Markov Chain Monte Carlo (MCMC) approach for simulat-
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ing draws from complex probability distributions (Besag, Green, Higdon &
Mengersen, 1995).

Bayes’ Theorem
We will begin our discussion with a description of the foundation of the

Bayesian approach, namely Bayes’ Theorem. Assume there are a number of
plausible models, H

1
, H

2
, ..., H

m
, which might account for the data to be gathered,

where each model proposes a possible set of parameter values or model structure of
interest.  Our initial beliefs about the relative plausibility of these parameters or
models can be quantified by assigning prior probabilities to each model, P(H

1
),

P(H
2
), ..., P(H

m
), which must sum to one. Each model H

i
 can be used to make

predictions in the form of a probability distribution, P(D|H
i
), about the probability

of a dataset D if H
i
 is true.  Bayes’ Theorem then describes how these prior beliefs

should be updated in view of the evidence given by the data.  This posterior
probability P(H

i
|D) is thus the plausibility of the model H

i
 given the observed data

D, and is calculated by multiplying together two quantities: firstly P(H
i
), how

plausible we believed the model  to be before the data arrived; and secondly P(D|H
i
),

how much the model predicted the data (MacKay, 1992).  Equation 1 gives both a
symbolic and informal expression of Bayes’ Theorem.

i.e., (1)

The evidence, P(D), which is the denominator of Equation 1, is the prior
probability of the data, and serves as a normalising constant that makes the posterior
probabilities, P(H

i
|D), add to one.  In the discrete case, such as the coin-tossing

experiment discussed in the following section, the evidence P(D) can be summed.
In the continuous case, P(D) must be integrated.  It is in the process of integration
that the practical application of Bayes’ Theorem may become intractable in all but
the most simple cases, and simulation techniques such as MCMC are required to
approximate the posterior distribution.

A Simple Example of Bayes’ Theorem
in Practice–A Coin-Tossing Experiment

Since the intention of this chapter is to illustrate the power of the Bayesian
approach as a tool for integrating knowledge, we detail here a simple example from
which complex applications follow. Consider the illustration of guessing the
outcome of a coin-tossing experiment.  We could formalise this by saying that we
wish to estimate the true probability of a head, i.e., P(H)=θ, using our prior beliefs
and some observed data.  The discussion below is reflected in Table 1, which shows
the various calculations made.  Firstly, we need to formalise our prior belief.  If there

)(

)|()(
)|(

DP

HDPHP
DHP ii

i
=

evidence
likelihoodprior

Posterior
×=



Bayesian Learning   111

is prior information or belief that the coin is biased and more likely to land heads,
a prior probability distribution can be modelled that assigns a higher probability to
this latter event.  Assume the case where there is no prior knowledge of the coin,
except that the coin may be biased either way, and we wish to investigate nine
different models, H

i
, for the probability of throwing a head.  Here, H

i
 represents the

model that P(Head) = 0.1, H
2
 represents the model that P(Head) = 0.2, and finally

to H
9
 which represents the model that P(Head) = 0.9.  In this case the fairness of the

coin may be represented as a uniform prior, with the prior probability partitioned
among the nine models, so that each model is assigned a prior probability of 1/9.  The
next issue in Bayesian modelling concerns our data set.  Suppose that the coin is
tossed eight times resulting in the data D= (THTTHTTT), or two heads in a total of
eight tosses.  This then leads to the question of the likelihood of each model, P(D|H

i
),

which is the probability of seeing the data D if that model H
i
 is correct.  For example,

under the first model H
i
, P(Head) = 0.1, and the likelihood of seeing two heads from

eight tosses is 8C
2
 x (0.1)2 x (0.9)6 = 0.1487.  Similarly under the second model H

2
,

P(Head) = 0.2, and the likelihood is 8C
2
 x (0.2)2 x (0.8)6  = 0.2937, and so on for each

model.   Next, how do we calculate P(D), the prior probability of the data?  This is
the sum of the likelihoods over all models.  Armed with all the above calculations,
the posterior probability for each model can be calculated using Equation 1, as
shown in Table 1.

How is this posterior probability influenced by the prior probabilities and the
data?  Notice that the model with the largest posterior probability is  H

3
:P(Head) =

0.3, closely followed byH
2
:P(Head) = 0.2, in accordance with the data that was

Table 1: The calculation of the likelihood and posterior probabilities for nine
alternative models in the coin tossing experiment given a uniform prior probability
for each model of 1/9 (0.11)

Proposed Model Prior Likelihood Prior x Posterior
Probability Likelihood Probability

H
i
:P(Head) P(H

i
) P(D|H

i
) P(H

i
).P(D|H

i
) P(H

i
|D)

H
1
:0.1 0.11 0.1488 0.0165 0.1341

H
2
:0.2 0.11 0.2936 0.0326 0.2646

H
3
:0.3 0.11 0.2965 0.0329 0.2672

H
4
:0.4 0.11 0.2090 0.0232 0.1883

H
5
:0.5 0.11 0.1094 0.0121 0.0986

H
6
:0.6 0.11 0.0413 0.0046 0.0372

H
7
:0.7 0.11 0.0100 0.0011 0.0090

H
8
:0.8 0.11 0.0012 0.0001 0.0010

H
9
:0.9 0.11 0.0000 0.0000 0.0000

Sum 1.00 P(D)=0.1233 1.0000
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observed, since the prior probability does not lend much information.  Figure 1
shows graphically the result of combining the prior with the likelihood function,
leading to a posterior distribution that is concentrated in the vicinity of the value
corresponding to the observed frequency of heads.  Note that this convergence to the
result anticipated from the data may be modified by the prior.  As an extreme case,
if the prior belief were that P(Head) =1, then no amount of data to the contrary can
sway this opinion.  In a less extreme scenario, if we believed the coin to be possibly
biased towards heads, we could assign small prior probabilities for H

1
  through H

5

(say, 0.04 each), describe H
6
 and H

7
 as much more likely (with priors of 0.3 each)

and attach 10% probability to each of H
8
 and H

9
 .  In this case, the integration of this

prior information with the data (two heads out of eight tosses) leads to posterior
probabilities for H

1
 through H

9
 of 0.10, 0.20, 0.20, 0.14, 0.08, 0.21, 0.05, 0.00 and

0.00, respectively.  Notice that the posterior probabilities for H
2
 and H

6
 are both

similar and relatively large; in the case of H
2
 this is due to a relatively large likelihood

for the model, whilst in the case of H
6
 it is the result of a relatively large prior

probability on this model.

Prior and Posterior Probabilities
The prior probability in Bayesian statistics is used as a means of quantifying

uncertainty about unknown quantities or model parameters.  It is generally the case
that the parameters being estimated have a precise meaning in the problem under
study, and it is therefore likely that the researcher (or expert opinion) has some
knowledge about their true values. The prior may therefore be a subjective
probability that describes the researcher’s personal view of what values the model
parameters might have, and it is at this point that the Bayesian and classical

Figure 1:  The posterior probabilities for nine alternative models in the coin tossing
experiment, based on the likelihood and a uniform prior probability for each model
of 0.11
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approaches diverge.  For a discussion on the aptness of incorporating this historic
information into the analysis, see Efron (1986).

The concepts of prior and posterior are relative to the data being considered at
the time.  If a new toss of the coin y becomes available after observing the data D
and obtaining a posterior, the posterior relative to D becomes the prior relative to y,
and a new posterior is obtained through a re-application of Bayes’ Theorem.  This
updating process can be continuously applied so that inference is a dynamic process
in which new data are used to revise the current knowledge.

Conjugacy of Prior and Posterior Distributions
When the posterior distribution derives from the same family as the prior, the

distributions are termed conjugate and the integration can be performed analyti-
cally.  However, in the case of non-conjugacy, analytical integration is impossible.
Non-conjugacy was an insuperable problem in Bayesian learning prior to the
accessibility of computers and computer-intensive approximation methods such as
MCMC (see later section).

BAYESIAN HIERARCHICAL MODELLING
Hierarchical models are traditionally used to describe the structure inherent in

the experimental model.  For example, the allocation of similar individuals or
observations into groups is commonly known as blocking, and an agricultural
experiment could be made up of three levels in a hierarchy, the upper level being
farms, the middle level being blocks within farms, and the lower level being plots
within blocks.  Hierarchical models are extended in Bayesian analysis to describe
levels of prior specification.

Consider an alternative prior for the coin-tossing experiment described earlier.
As before, the likelihood of each model, P(D|H

i
) is modelled as a binomial

distribution r~Binomial(n,θ) with r successes (or heads) in n independent trials (or
eight tosses of the coin), which here becomes the first level in the hierarchy.  Now
θ is the probability of throwing a head, and in place of the discrete prior distributions
for the H

i
 defined previously, we can instead assign continuous prior probabilities

for θ using a Beta(α,β) distribution, which is defined over the entire range of 0 to
1.  Manipulation of  the values of α and β allow, this distribution to be highly skewed
towards either end of the range, reflecting strong prior belief in the bias of the coin,
or be fairly symmetric around 0.5. This prior introduces a second level in the
hierarchy.  Now if the parameters  α and β  are not able to be specified they may be
assigned a vague (but proper) exponential prior, say, Exponential(0.01),  which is
the third level in the hierarchy.  Bayes’ Theorem is applied simultaneously to the
joint probability model for the entire set of parameters (θ,α,β) to obtain a joint
posterior distribution (see Gilks, Richardson & Spiegelhalter, 1996).
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BAYESIAN GRAPHICAL MODELLING
Graphical models allow the essential structures implicit in a model to be

defined, interpreted and communicated, and are a convenient method of breaking
down a complex model into the simple components that provide the basis for
Bayesian computation.  They are an extension of the concept of the directed acyclic
graph (DAG) built from a sequence of conditional independence assumptions,
allowing factorization of the joint distribution.  Figure 2 shows a graphical model
for the coin-tossing example under the hierarchical model, in which circular shapes
depict variables (data or parameters), boxes surround probability distributions,
dashed arrows define deterministic relationships and solid arrows show stochastic
relationships.

MARKOV CHAIN MONTE CARLO
(MCMC) METHODS

As discussed earlier, when the prior and
posterior distributions are non-conjugate or the
quantity of interest is nonstandard (which repre-
sents the majority of cases in practice), the inte-
gration cannot be performed analytically and ap-
proximate solutions must suffice.  This provides
the motivation for MCMC methods in which
parameter values are repeatedly drawn from their
posterior distributions.  The resultant sequence of
values is a Markov chain, which has special statis-
tical properties, particularly with regard to the
true posterior distribution.  The quandary of de-
signing a Markov chain with the posterior distri-
bution as its unique stationary distribution was
solved by Metropolis, Rosenbluth, Rosenbluth,
Teller and Teller (1953).  Gibbs sampling (see
Geman & Geman, 1984) is a special case of
MCMC that generates a Markov chain by sam-
pling from the full conditional distributions.  Besag,
Green, Higdon and Mengersen (1995) provide a
complete discussion and worked examples of
these algorithms.

Figure 2:  A graphical model
for the coin-tossing example
with three hierarchical levels
described as likelihood:
r~Binomial(n,θ) ; prior on
θ~Beta(α,β);  prior on α, β~
Exponential(0.01).
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THE APPLICATION OF BAYES’ THEOREM
TO THE MODELLING PROCESS

In order to demonstrate the wide applicability of Bayesian analysis, let us now
examine three areas, familiar to both the KDD and statistical communities, that are
more complex than the coin-tossing example.

Bayesian Networks
The graphical models described earlier to define the inherent structures in a

model can be further extended to a powerful formal knowledge representation
widely used in KDD, known as Bayesian Belief Networks (BBNs).  BBNs describe
associations between sets of variables based on probabilities and Bayes’ Theorem,
from which predictions about the value of a variable in a given situation can be made
by computing the conditional probability distribution of the variable, given the
values of a set of some other variables in the network.  BBNs are initially constructed
from prior knowledge, with Bayesian statistical methods being used to improve the
network by learning both the parameters and the structure from the data.  Some
persuasive arguments, made by scientists working in commercial environments, for
using BBNs over other KDD technologies such as traditional rule-based expert
systems and neural networks can be viewed at (www.auai.org/BN-Testimonial).

Bayesian Linear Regression (BLR)
Under the classical framework, multiple linear regression is performed using

the method of least squares or maximum likelihood.  Under the Bayesian approach,
posterior probabilities and expected values of the regression parameters are ob-
tained by learning from both prior information and the data.  In contrast to the coin-
tossing experiment, the prior probabilities for the response and predictor variables
in this example will be modelled using the common Normal distribution, a bell-
shaped continuous distribution defined over the whole real line.  The analytical
approach taken is as follows.  A linear regression model with j observations and m
predictor variables x

1
, x

2
, ..., x

m
 could be described by Equation 3, with α constant,

the Β
i
(i=1,...,m) representing the coefficients of the predictor variables of interest,

and e
j
 representing the error or difference between the predicted and observed

values.
y

j
=µ

j
+e

j
=α+β

1
x

1j + 
β

2
x

2j
+......+β

m
x

mj
+e

j
(3)

A Bayesian approach might model the response variable y
j
 ~ N(µ

j
,σ) so that y

j
 =  µ

j

is the predicted response and e
j 
~N(0,σ). The little information known about the

regression parameters can be reflected through the priors α~N(0,100), β
i
~N(0,100)

and 1/σ2 ~ Gamma(0.001, 0.001).  MCMC methods are then used to carry out the
necessary numerical integrations using simulation to obtain estimates of α and the
β

i
. Other quantities of interest may be, for example, the posterior probability that

β
i
>0 (i.e., a positive relationship between y and x

i
) or predictive probabilities for

ˆ
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unseen or missing observations.

Bayesian Neural Networks
Bayesian nonlinear regression can be performed using the hybrid machine

learning approach of a Bayesian neural network (BNN), where a probabilistic
interpretation is applied to the traditional ANN technique (Neal, 1996).  In the
Bayesian approach to ANN prediction, the objective is to use the training set of
inputs and targets to calculate the predictive distribution for the target values in a
new “test” case, given the inputs for that case.  The Bayesian framework allows the
objective evaluation of a number of issues involved in complex modelling including
network architecture and the effective number of parameters used.

In a typical ANN with one hidden layer and one output unit, the output or target
(y

n
) might be computed from the inputs (x

i
) as in Equation 4, where u

ij
 is the weight

on the connection from input value i to hidden unit j; v
j
 is the weight on the

connection from hidden unit j to the single output unit and the a
j
 and b are the biases

of the hidden and output units respectively.  These weights and biases are the
parameters of the network.  Thus, each output value, y

n
, is a weighted sum of hidden

unit values plus a bias.  Each hidden unit computes a similar weighted sum of input
values and then passes it through a nonlinear activation function.

;  where (4)

Figure 3 provides an illustration of Bayesian inference for the ANN learning
of a simple nonlinear regression model using Equation 4.  The ANN architecture
used consisted of a single input and output unit, representing a single predictor and
response variable, and a single layer of 16 hidden units.  The hidden weights and
hidden and output biases were drawn at random from a N(0,1) distribution, and the
output weights were drawn from a N(0,0.25) distribution. The functions were
computed using the small data set consisting of six data points shown in Table 2.
Figure 3 shows one such “random” ANN function computed.  For each data point
a probability is estimated that this calculated value came from a normal distribution
with a mean of the response value and a standard deviation of 0.1 (describing the
network “noise”).  These six individual probabilities are combined (as in the coin-
tossing experiment) to give a likelihood estimate for the model ANN.  Large
numbers of ANNs can be computed and compared through their likelihood func-
tions to give the ANN with the maximum likelihood. Additionally, Figure 3
demonstrates the range of functions capable of being represented by the ANN. The
four examples labelled “boundary” ANNs represent networks whose weights and
biases were artificially assigned boundary or extreme values from the appropriate
normal distribution (e.g., boundary values from a N(0,1) distribution might be ±3),
as opposed to making random draws from the distribution.  Using different
combinations of such boundary values, these “boundary” ANNs can theoretically
compute any function within the limitations set by the data and the chosen prior
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distributions.  The illustration could be taken a step further by allowing components
of the ANN model architecture, such as the number of hidden units and layers, to be
also drawn from sample distributions.

Although the above method is useful for illustration purposes, obviously a
more efficient algorithm, namely, MCMC, is required to find the optimal set of
weights and biases in the BNN to compute any useful function with a realistically
sized data set.  Some practical examples of the use of BNNs in KDD are Ma, Wang
and Wu (2000), who demonstrate biological data mining using BNNs to carry out
sequencing classification in DNA, and Macrossan, Abbass, Mengersen, Towsey
and Finn (1999), who demonstrate the use of BNN learning in a data mining
application concerning prediction of milk production in the Australian dairy
industry.

Table 2: Predictor and associated response variables for the small data set used in
the illustration of ANN learning

Predictor Variable Response Variable
-0.85 2.10
-0.55 2.60
-0.45 3.55
1.10 4.21
1.20 4.25
1.30 4.41

Figure 3:  An illustration of Bayesian inference for an ANN for a small data set of
six input values.  “Random” refers to an ANN with weights and biases being drawn
from Normal distributions.  “Boundary” refers to an ANN with extreme values from
the Normal distributions used for the weights and biases.
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PRACTICAL ISSUES IN THE IMPLEMENTATION
OF BAYESIAN LEARNING

An area still to be addressed in Bayesian inference is the need for standards for
analysis and reporting (Best, Marshall & Thomas, 2000).  The results of Bayesian
inference need to be justified to an outside world such as reviewers, regulatory
bodies and the public, and such standards would assist in this regard.  Additionally,
in the public reporting of the results of Bayesian analysis, the assignment of prior
probabilities must be explained and justified.  Kass and Greenhouse (1989)
advocate what they term “a community of priors” which undergo a sensitivity
analysis to assess whether the current results will be convincing or otherwise to a
broad spectrum of opinion. This community of priors includes “reference”, “clini-
cal”, “sceptical” and “enthusiastic” priors. In the coin-tossing example given
earlier, a uniform or reference prior was used to reproduce the maximum likelihood
results as opposed to a clinical prior based on genuine clinical or exact opinion (e.g.,
P(Head) can only be greater than 0.5) or sceptical and enthusiastic priors (i.e.,
opinions can be either strongly or weakly biased).

Convergence of the MCMC algorithm to the target distribution is a problem
that Bayesian computation has in common with many other numerical analysis
methods.  The advantage of MCMC is that it has mathematical results from Markov
chain theory to verify the algorithms.  However, convergence checking requires
considerable care and should be validated both visually and through diagnostics (see
next section).

SOFTWARE FOR BAYESIAN INFERENCE
First Bayes is a teaching package for elementary Bayesian statistics, available

freely on the Internet (http://www.shef.ac.uk/~st1ao/1b.html).  The emphasis is on
obtaining an understanding of how the Bayesian approach works, using simple and
standard statistical models.  Binomial, gamma, Poisson and normal data may be
analysed using an arbitrary mixture of distributions from the conjugate family,
allowing the user to obtain an understanding of how the likelihood and prior
distributions are combined using Bayes’ Theorem to give a posterior distribution.

Bayesian inference using Gibbs sampling (WinBUGS) (Spiegelhalter, Tho-
mas, Best & Gilks, 1995) assumes a full probability model in which all quantities,
observed (the data) and unobserved (parameters and missing data), are treated as
random variables.  WinBUGS incorporates DoodleBUGS, a graphical interface for
model specification, whilst GeoBUGS provides spatial modelling.  All BUGS
software may be freely obtained from the Internet site (http://www.mrc-
bsu.cam.ac.uk/bugs).

Convergence diagnostics of BUGS output can be performed using CODA
(Convergence Diagnostics and Output Analysis; Best, Cowles and Vines, 1995),
which is written and maintained by the BUGS research team.  Additionally, the
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convergence diagnostics of Raferty and Lewis (1992), gibbsit, and Gelman and
Rubin (1992), itsim, are available from their respective authors at the WWW site
(http://lib.stat.cmu.edu).

Neal (www.cs.utoronto.ca/~radford/) provides software that implements Baye-
sian models based on artificial neural networks, Gaussian processes and mixtures
using MCMC methods, which is freely available on the Internet site.

AutoClass is an unsupervised Bayesian classification system that seeks a
maximum posterior probability classification.  AutoClass C is the public domain
version available at ic-www.arc.nasa.gov/ic/projects/bayes-group/group/autoclass.

DISCUSSION AND CONCLUSIONS
Data mining is a burgeoning area of scientific interest involving the analysis of

patterns in large volumes of raw data by integrating methods from such diverse
fields as machine learning, statistics, pattern recognition, artificial intelligence and
database systems.  The Bayesian approach to data mining has a potentially
significant role to play whenever complex modelling is required, by providing
extremely powerful simulation techniques based in relatively unsophisticated and
easily implemented statistical theory.  However, this potential role will only be
realized if researchers are prepared to embrace the paradigm shift required for
achieving an understanding of the mechanisms inherent in Bayesian modeling.  This
chapter has attempted to provide the impetus for this, by providing a nonthreatening
introduction to the Bayesian paradigm from the KDD perspective.

In conclusion, it is fitting to quote from a paper entitled “Quantitative Genetics
in the Age of Genomics” (Walsh, in press).  With the publicity and budget afforded
the Human Genome Project it could be argued that the area of scientific endeavour
receiving the most public attention at present and in the foreseeable future is that of
genetics.  The key to unfolding the mysteries of the human genome lies in the ability
to discover patterns and meanings in large volumes of raw data, an impossible task
prior to the computational revolution of recent times.  This computational and data
mining revolution which has been instrumental in ushering in the “Age of Genomics,”
and which has also been responsible for the development of MCMC methods
prompts Walsh to predict a “Bayesian Future” for quantitative genetics.  Such a
strong prediction is typical of the type of growth being forecast in the popularity of
Bayesian techniques in all areas of scientific endeavour.

FURTHER READING
The following introductory statistical texts, delving further into the theory of

Bayesian statistics, are recommended to the interested reader: Carlin and Louis
(1996), Gilks et al. (1996), Gelman, Carlin, Stern and Rubin (1995), and Gamerman
(1997). A useful introductory text that presents Bayesian inference and learning
from the KDD perspective is that of Ramoni and Sebastiani (1999). An informal
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discussion on practical aspects of MCMC methods can be found in Kass, Carlin,
Gelman and Neal (1998).
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This chapter addresses the question of how to decide how large a sample
is necessary in order to apply a particular data mining procedure to a
given data set. A brief review of the main results of basic sampling theory
is followed by a detailed consideration and comparison of the impact of
simple random sample size on two well-known data mining procedures:
naïve Bayes classifiers and decision tree induction. It is shown that both
the learning procedure and the data set have a major impact on the size
of sample required but that the size of the data set itself has little effect.
The next section introduces a more sophisticated form of sampling,
disproportionate stratification, and shows how it may be used to make
much more effective use of limited processing resources. This section also
includes a discussion of dynamic and static sampling. An examination of
the impact of target function complexity concludes that neither target
function complexity nor size of the attribute tuple space need be consid-
ered explicitly in determining sample size. The chapter concludes with a
summary of the major results, a consideration of their relevance for small
data sets and some brief remarks on the role of sampling for other data
mining procedures.

INTRODUCTION
When data mining emerged as a distinct field, it was plausibly claimed that the

total quantity of information stored in databases doubled every 20 months (Frawley,
Piatetsky-Shapiro & Matheus, 1991). The credo of the new discipline was that the
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effort expended on accumulating and storing this prodigious quantity of data should
be regarded as an investment that had created a resource ripe for exploitation.
Machine learning had produced a number of well-proven techniques for automati-
cally discovering regularities and patterns in data sets. The idea of applying these
techniques to find the untapped seams of useful information in these vast deposits
of data was the starting point of the new discipline. In the subsequent decade, size
appears to have undergone a seismic shift in status: very large databases are now
regarded as problematic because it may not be possible to process them efficiently
using standard machine learning procedures. The problem is particularly acute
when the data is too large to fit into main memory.

There are three basic approaches to dealing with this problem: first, develop
new algorithms with more modest space/time requirements; second, use existing
algorithms but implement them on parallel hardware (see Freitas & Lavington, 1998
for review); and third, apply the learning procedures to an appropriate sample drawn
from the data set.

Machine learning practitioners appear uncomfortable with the idea of sam-
pling; for them, it is what John and Langley (1996) describe as “a scary prospect”.
Why this should be is something of a puzzle, since sampling theory is a long-
established area of study. Standard introductory texts on statistics (e.g. Wonnacott
& Wonnacott, 1990) typically include a treatment of those basic aspects of the
subject that bear directly on hypothesis testing; Mitchell (1997) covers similar
material in a machine learning context. Sampling itself is usually treated in separate
texts: Kalton (1983) provides a concise introduction, while Kish (1965) provides a
more comprehensive and mathematically grounded coverage.

In this chapter I shall be concerned with one central question: how do you
decide how large a sample you need in order to apply a particular data mining
procedure to a given data set. In the next section I discuss why sampling is
unavoidable and review the main results of basic sampling theory. The following
section comprises a detailed examination of the impact of sample size on two well-
known data mining procedures: naïve Bayes classifiers and decision tree induction.
The next section introduces disproportionate stratification and shows how it may be
used to make much more effective use of limited processing resources. This section
also includes a discussion of dynamic and static sampling. This is followed by a
section devoted to the impact of target function complexity on sample size. The final
section provides a summary of the major results, a consideration of their relevance
for small data sets and some brief remarks on the role of sampling for other data
mining procedures.

SAMPLING
Many people reject the idea of sampling on intuitive grounds. Unfortunately,

human intuition is often poor on matters concerning sampling; the erroneous belief
that a larger population implies the need for a correspondingly larger sample is very
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common. Nevertheless, it is obvious that, all other things being equal, using the
whole population will never be worse even if it is not significantly better. There are
two major difficulties with this position. First, other things seldom are equal. In most
practical situations, resources are limited and appropriate sampling strategies can
lead to more effective use of limited resources. Second, the issue of sampling is
usually inescapable. In data mining we are seldom given the whole of a population.
Even very large data sets are usually samples of some larger population. An
objection to sampling in principle is not a coherent position because data mining is
almost always concerned with data sets that are themselves samples. A principled
approach to data mining must therefore include a systematic consideration of the
effect of sample size.

Confidence Limits on Proportion Estimates
The majority of machine learning procedures seek to discover associations

between particular sets of attribute values. Most of them do this by counting,
explicitly or implicitly, the occurrences of particular attribute value combinations
in a training set and hence estimating the proportion of the population in which those
combinations are found. These proportion estimates are often interpreted as prob-
abilities. Consequently, the question of what effect sample size has on the accuracy
of such proportion estimates is central to any examination of the effective and
efficient mining of very large data sets.

The mathematical development of sampling theory assumes that a random
sample has been taken from a larger population. A range of random sampling
procedures are considered in the literature (Kish, 1965) but only a few of these are
relevant to this discussion. A simple random sampling (SRS) procedure is defined
as one that is equally likely to choose any of the possible subsets of the specified
number of items from the population.

Suppose that we have an SRS, comprising n items selected from a population
of size N, and that we wish to estimate the proportion of these that have some
particular attribute value (or combination of attribute values) and to place confi-
dence limits on our estimate. This problem is actually a special case of a more
general one: estimating the population mean, E(Y), of a numeric attribute, Y, from
a simple random sample of n items. Common sense suggests that the best estimate
of E(Y) would be the sample mean, denoted E(y), obtained by taking the average of
the Y attribute values across the sample. In this case common sense is right; E(y) is
an unbiased estimator of E(Y): if the population were sampled repeatedly, the mean
of the resulting means would itself converge to E(Y). The extent to which the sample
means, E(y), obtained through such repeated sampling, are scattered about their
mean determines the confidence we can place in any one of them as an estimate of
the population mean. The variance of such a sample mean, V(E(y)) is given by
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where N is the size of the population from which the sample was taken and S2 is the
population variance (see e.g., Kish, 1965, for derivation). It is convenient to define
n/N as the sampling fraction, denoted by the symbol f.  The equation may thus be
rewritten:

Provided the sample size is large enough to justify using a normal approximation,
the 95% confidence interval (that is, the range within which all but 5% of values will
fall) is given by

where the coefficient 1.96 is z
0.025

, the value cutting off the upper 2.5% of a
standardised normal distribution, and s2 is the sample variance.

This result can be used to determine the confidence limits when using sample
proportions as estimators for population proportions. Suppose that an additional
attribute is added to all the items; it  takes a value of 1 when the item has the
combination of attribute values under consideration and 0 otherwise. Estimating the
proportion of items having that set of values is directly equivalent to estimating the
mean of the new attribute. Since the latter has only two values the sample means will
be distributed binomially with mean P and variance P (1-P). Hence the 95%
confidence interval for a proportion estimate is

where p is the sample proportion and P is the estimated population proportion.
Equation (1) shows that the accuracy of such a proportion estimate depends on

three factors: the sampling fraction f, the sample size n, and the proportion estimate
itself, p.  There is a widespread but incorrect intuition that a larger population
implies the need for a significantly larger sample. The sampling fraction, f, will be
very small if the population from which the sample is drawn is much larger than the

Table 1: The effect of sample size and proportion (P) on the 95% confidence interval
for proportion estimate from a sample

P Sample Size
100 1000 10000 100000

0.1 ±0.0591 ±0.0186 ±0.00588 ±0.00186
0.3 ±0.0903 ±0.0284 ±0.00898 ±0.0284
0.5 ±0.0985 ±0.0310 ±0.00980 ±0.00310
0.7 ±0.0903 ±0.0284 ±0.00898 ±0.0284
0.9 ±0.0591 ±0.0186 ±0.00588 ±0.00186
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sample; hence, the sample size required for a given precision is almost independent
of population size.

Equation (1) has a maximum when p is 0.5, so the confidence interval will be
widest when the proportion, P, to be estimated has this value. It is also clear that the
width of the confidence interval will be inversely proportional to the square root of
the sample size. Both these effects are demonstrated in Table 1, which shows the
95% confidence intervals for a range of proportions and samples of different sizes
drawn from a population of 108 items.

This description of the effect of P on the confidence interval must be interpreted
cautiously. Although the confidence intervals for p and (1-p) are necessarily the
same, that interval may be a much larger fraction of one than of the other. The
relative confidence interval, that is, the width of the confidence interval expressed
as a percentage of the proportion to be estimated, is proportional to √((1-p)/p).
Hence, the sample needed to estimate a proportion of 0.1 is almost 100 times larger
than that needed to estimate one of 0.9 with the same relative confidence interval.
This effect is demonstrated in Figure 1 in which the data from Table 1 are presented
as percentages of the proportions to be estimated. In most machine learning
procedures, it is the relative rather than the absolute error in parameter estimates that
is important, and hence small probabilities will play an important role in determin-
ing the necessary sample size.
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Figure 1: The 95% confidence interval widths, given in Table 1, plotted as a
percentage of the proportion to be estimated for sample sizes ranging from 100 to
100000
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IMPACT OF SAMPLE SIZE ON MACHINE
LEARNING PROCEDURES

These results identify the factors that influence the precision of proportion
estimates and hence determine how large a sample is needed to estimate a
probability with a specified confidence. In data mining many such estimates are
typically compared or combined. In this section we investigate the impact of such
estimates on the performance of machine learning procedures. Two well-known
procedures, naïve Bayes classification and decision tree induction, are examined in
detail. These particular procedures were chosen because they build very different
models of the data and hence have very different sampling requirements.

Naïve Bayes Classifiers
We begin by considering naïve Bayes classifiers (Duda & Hart, 1973). Such

classifiers are based on the assumption that all the attributes to be used for prediction
are independent given the class to be predicted. Hence the probability of a particular
combination of attribute values given a specific classification is

where a
1
…a

k
 denote particular values of the predicting attributes and y

j
 is the

classification. The classification most likely to give rise to this combination of
attributes, y

MAP
, can be found by applying Bayes Theorem:

where Y is the set of possible classifications. Only a set of unconditional prior
probabilities P(y

j
) and a set of conditional probabilities P(a

i
|y

j
) are required to

determine y
MAP

. These will be estimated from proportions determined by counting
appropriate items in the training set.

How large a sample is needed to construct a naïve Bayes classifier for a given
data set? Clearly the sample should contain sufficient items to provide a good
estimate of each of the probabilities. Since the naïve Bayesian method involves a
comparison of the products of probability estimates, relative accuracy is important.
As shown above, larger samples are needed to estimate the relative accuracies of
smaller probabilities. Hence the size of sample needed will be determined by both
the smallest non-zero probability to be estimated and the precision with which that
estimate must be made.

How precisely should the conditional probabilities be estimated? If the at-
tributes were all highly correlated given the class then it is very likely that all the
probability estimates in a product would be too low (or too high) if any one of them
is. In such circumstances, the relative errors would combine to produce a larger
relative error in the product. However the assumption underlying the naïve Bayes
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approach is that the conditional probabilities are independent; under such circum-
stances some estimates will be too high while others are too low, and their
accumulation as the product is formed will be much slower. In practice, a relative
accuracy of ±10% is likely to be adequate.

In order to demonstrate how these ideas can be applied, we will consider a
particular example. The data set chosen is a very small one used as a running
expository example in Witten and Frank (2000). It comprises a set of five-tuples,
which we will denote <a,b,c,d,y>. The task is to predict the value of the binary
classification y from the values of a, b, c and d. a and b have three possible values;
c and d are binary. The data set includes only 14 tuples; 9 have a classification y

1

while the remaining 5 have a classification y
2
. The lowest non-zero probabilities are

P(b
3
|y

2
) and P(c

2
|y

2
) which each have a value of 0.2. Applying Equation (1) implies

a sample of about 1,530 would be needed to estimate these probabilities with ±10%
accuracy. Since P(y

2
) is 0.36, a total sample of about 4,250 would be needed to

produce enough examples of class y
2
 and hence this is the size of training set that is

needed.
The validity of this conclusion can be demonstrated by examining the behaviour

of the confidence limits on the probability estimates as the sample size is increased.
For the original set of only 14 items, applying Equation (1) gives the 95% confidence
intervals for the unconditional prior probabilities as

P(y
1
) = 0.643±0.261,      P(y

2
) = 0.357±0.261

Estimates for the 20 conditional probabilities needed and their associated confi-
dence intervals can be computed in a similar way. The conditional probabilities
given y

1
 will be based on a sample of 9 while those given y

2
 will be based on a sample

of only 5. The results are shown in Table 2. (Confidence intervals derived from such
small samples should be calculated using the binomial distribution rather than the
much more convenient normal distribution. The results are accurate enough for
present purposes for all the estimates except those based on zero counts, where the

Table 2: Conditional probability estimates and their 95% confidence intervals for
a sample of 14 items (see text).

y = y
1

y = y
2

P(a
1
|y) 0.222 ± 0.288 0.600 ± 0.480

P(a
2
|y) 0.444 ± 0.344 0.000 + 0.451

P(a
3
|y) 0.333 ± 0.327 0.400 ± 0.480

P(b
1
|y) 0.222 ± 0.288 0.400 ± 0.480

P(b
2
|y) 0.444 ± 0.344 0.400 ± 0.480

P(b
3
|y) 0.333 ± 0.327 0.200 ± 0.392

P(c
1
|y) 0.333 ± 0.327 0.800 ± 0.392

P(c
2
|y) 0.667 ± 0.327 0.200 ± 0.392

P(d
1
|y) 0.667 ± 0.327 0.400 ± 0.480

P(d
2
|y) 0.333 ± 0.327 0.600 ± 0.480
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binomial distribution has been used). Note that most of the confidence interval
widths exceed the magnitudes of the conditional probability estimates.

What is the impact of this high uncertainty on the behaviour of the naïve Bayes
classifier? Witten & Frank (2000) use the tuple <a

1
,b

3
,c

1
,d

2
> as an illustrative

example. The probability estimates just derived produce values for P(<a
1
,b

3
,c

1
,d

2
>)

of 0.0053 if the class is y
1
 and 0.0206 if the class is y

2
. Hence the naïve Bayes

classification would be y
2
. However, this conclusion depends on the assumption that

the ten probability estimates involved in the calculation are accurate. The worst case
results, obtained when all the estimates are at either the lowest or highest bounds of
their confidence intervals, are shown in the first column of Table 3. The ranges of
possible values for the two estimates of P(<a

1
,b

3
,c

1
,d

2
>) overlap completely, so the

conclusion appears decidedly dubious.
Suppose exactly the same probability estimates had been produced from a

larger sample. The confidence interval widths would be reduced by a factor of
approximately ÷10 for every order of magnitude increase in sample size. The effect
of such increased precision on the worst case bounds for the estimates of
P(<a

1
,b

3
,c

1
,d

2
>) is shown in the rest of Table 3. With 140 items, the ranges still

overlap, with 1,400 items the ranges are clearly distinct, and only a small increase
in their separation is achieved by increasing the sample to 14,000.

For classifying this particular item there appears to be no point in using a
sample substantially larger than 1400. This does not contradict the conclusion that
a sample of 4,250 was required. In this case, the alternative values for P(<a

1
,b

3
,c

1
,d

2
>)

are well separated; had they been closer the greater precision produced by a larger
sample would have been necessary.

These conclusions suggest that a naïve Bayes classifier need not consider all
the items in a very large data set. A small initial random sample could be taken to
provide rough estimates of the probability parameters and these estimates could be
used to determine how large a sample was necessary. The potential saving is not as
large as that for many other machine learning procedures because constructing a
naïve Bayes model has a constant space complexity for a given set of attributes and
classes. Furthermore, in contrast to the method to be considered next, only one
model is constructed.

Table 3: Bounds on probability of a specified attribute tuple given class y for
different sample sizes (see text). Expected values are: y

1
 0.0053; y

2
 0.021.

Sample
14 140 1400 14000

y1 Low 0.000 0.001 0.003 0.005
High 0.132 0.017 0.008 0.006

y2 Low 0.000 0.004 0.012 0.018
High 0.508 0.068 0.031 0.023
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Decision Tree Induction
Decision tree induction (Breiman, Freidman, Olsen & Stone 1984; Quinlan,

1986) depends fundamentally on deriving probabilities by estimating proportions
from a sample. Although there are many variations, all decision tree induction
procedures construct the tree in a top down fashion; at each stage of construction a
terminal node is expanded by selecting the attribute that best partitions the set of
examples associated with that node. Various attribute selection criteria have been
used but all depend on probability estimates. We will use information gain but
similar conclusions would apply to all the alternatives.

Information gain for attribute a is defined

where U
0
 is the entropy for the entire set of examples and U(a

i
) is the entropy for the

subset of examples having the ith value of attribute a. Entropy is defined

where the sum is taken over the set of all possible values of classification y. Thus
calculating U

0
 requires estimates of the unconditional prior probabilities P(y), while

calculating each U(a
i
) requires estimates of the conditional probabilities P(y

j
|a

i
).

The derivation of confidence intervals for the probability estimates is similar to that
for the naïve Bayes classifier. However, because entropy is not a monotonic
function of its constituent probabilities, the bounds of the confidence interval for U

Table 4: Estimated values and bounds of confidence intervals at two sample sizes
for entropies U(a

i
) (see text).

x U(x)
Sample Size

14 140
Estimate Low High Low High

a
1

0.971 0.000 1.000 0.831 1.000
a

2
0.000 0.000 0.998 0.000 0.374

a
3

0.971 0.000 1.000 0.831 1.000
b

1
1.000 0.000 1.000 0.927 1.000

b
2

0.918 0.000 1.000 0.747 0.994
b

3
0.811 0.000 1.000 0.512 0.962

c
1

0.985 0.207 1.000 0.895 1.000
c

2
0.592 0.000 1.000 0.329 0.770

d
1

0.811 0.000 1.000 0.621 0.930
d

2
1.000 0.334 1.000 0.953 1.000

∑
=

−≡
k

i
iia

aUaPUGain
1

0
)()( (3)

∑
∈

−≡
Yy

yPyPU )(log)( 2
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do not necessarily correspond to the bounds of the probability estimates. Where
there are only two possible classifications, dealing with this complication is a matter
of determining if the probability interval includes the point 0.5; if it does then the
upper bound on U is 1 and the lower bound is the lesser of the two values
corresponding to the probability bounds estimate.

We shall explore the impact of sample size on decision tree induction using the
same example data set as in our discussion of naïve Bayes classification. We begin
by considering the choice of attribute for expanding the root node. The smallest non-
zero probability to be estimated is P(y

2
|c

2
), which is 0.143. Equation (1) implies that

a sample of about 2,300 would be needed to estimate this with a relative error of
±10%. Since P(c

2
) is 0.5 in this data set, a total sample of 4,600 is required.

As before, we demonstrate the validity of this conclusion and the effect of
varying sample size by considering the consequences of different-sized samples for
the entropy and information gain estimates.  In the example data set of 14 items, the
estimated value of U

0
 is 0.940. However, because the sample is small, the confidence

interval is broad with a lower bound of 0.562 and an upper bound of 1.0. The
estimates for the entropies U(a

i
) are derived from smaller samples: in each case, the

examples having the ith value of attribute a. Consequently the confidence intervals
are very wide (see Table 4); in the majority of cases they cover the entire possible
range from 0 to 1. It is clear that 14 is far too small a sample size on which to base
a reliable selection of the best attribute. Table 4 also shows the corresponding values
for a sample ten times larger that produced the same probability estimates. The
confidence interval for U

0
 is reduced to the range 0.860..1.00.

What are the implications of this imprecision for the estimates of information
gain that determine the choice of best attribute? The estimated values are: Gain

a

0.247, Gain
b
 0.029, Gain

c
 0.152 and Gain

d
 0.048. These values suggest attribute a

should be chosen. The associated confidence intervals for different sample sizes are
shown in Table 5. As the results in Table 4 suggested, a sample size of 14 does not
provide a useful estimate of the gains; their ranges overlap substantially and cover

Table 5: Bounds on information gain provided by each attribute for different sample
sizes (see text). Expected values are: a 0.247; b 0.029; c 0.152; d 0.048.

Information Gain Sample
14 140 1400 14000

a Low 0 0.072 0.193 0.232
High 0.940 0.409 0.291 0.260

b Low 0 0 0 0.017
High 0.940 0.240 0.077 0.043

c Low 0 0.036 0.106 0.136
High 0.893 0.376 0.236 0.166

d Low 0 0 0.019 0.038
High 0.887 0.205 0.085 0.059
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most of the possible range of values. With a sample of 140, there is some evidence
that a is the best choice, but its range still overlaps those of the others, particularly
that of attribute c.  Even a sample of 1,400 is insufficient to separate a and c, but
when it is increased to 14,000, a is very clearly the attribute producing the greatest
information gain. This result is consistent with the original calculation that a sample
of 4600 was required.

At this point, it might appear that a naïve Bayes classifier and decision tree
induction require similar sample size but this is not the case. The naïve Bayes
method, which simply constructs one model to be used for classification, has
finished whereas decision tree induction has only just started. Four models have
been built, one for each attribute, and the best selected. The remaining models are
discarded. If the final tree is to reflect any association between the rejected attributes
and the class, the process must be repeated for each of the newly created daughter
nodes. Thus, the same considerations of sample size must now be applied to each
of the sample subsets created by partitioning on the selected attribute. Only a
proportion of the original sample is associated with each daughter node. Hence, the
original sample size must normally be increased substantially to provide large
enough subsamples for the reliable selection of attributes to expand the daughter
nodes.

It is thus clear that the repeated fragmentation of the original sample, as the
decision tree is constructed, is likely to increase the sample size required very
significantly. It is also clear that, in contrast to the naïve Bayes classifier, it is usually
impossible to estimate the necessary sample size on the basis of a small initial
sample, since the relevant probabilities depend on the particular tree that is
developed. One way of addressing this problem is to build new trees, using
successively larger samples, until a satisfactory performance is achieved: an early
example is the windowing method employed in ID3 (Quinlan, 1979). This approach
is known variously as iterative sampling and dynamic sampling  (John & Langley,
1996).  It will be discussed in more detail later in the section on stratification.

Comparison of Naïve Bayes Classifiers
and Decision Tree Induction

These detailed examinations of the impact of sample size on the performance
of naïve Bayes classification and decision tree induction demonstrate that there are
important differences. This implies that there can be no simple answer to the
question “How big a sample do you need for data mining?” since the answer will
depend on the particular procedure employed.

The fragmentation of the sample that occurs as the tree is built up means that
a decision tree induction procedure will typically, though not necessarily, require a
larger sample than a naïve Bayes classifier. The sample economy of the latter is a
direct consequence of its basic assumption that the conditional probabilities are
independent given the classification. There is a penalty for this economy. The
resulting model cannot reflect any attribute interactions: that is, dependencies on
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combinations of attribute values other than those implied by the independence
assumption. No such restriction applies to decision trees. Thus, decision tree
induction procedures typically require larger samples because they must acquire
evidence of attribute interactions. It is not surprising that more data is needed to
build a model that is both more complex and potentially, though not necessarily,
more accurate.

These differences are demonstrated in Figure 2. This shows the results obtained
when a naïve Bayes classifier and a decision tree induction procedure are applied to
samples of different sizes, taken from the well-known Adult Census data set,
available in the UCI repository of machine learning databases (Blake & Merz,
1998). This comprises 48,842 examples. Samples ranging from 147 to 32578 were
selected as training sets; in each case the unselected examples were used as the test
set. The samples were randomly selected and the experiments run using MLC++
(1998). The naïve Bayes procedure was that distributed with MLC++; the decision
tree induction procedure was C4.5 (Release 8) (Quinlan, 1993, 1996).

The naïve Bayes classifier improves rapidly as the sample size increases and
is close to its best performance by the time the sample size reaches 300. The further
improvement produced using training sets 100 times as big (32,578) was only just
statistically significant at the 5% level. The decision tree procedure performed less
well than the naïve Bayes classifier for small sample sizes but continued to improve
as larger training sets were used and ultimately performed significantly better.
Samples of at least 4,800 were needed to bring it close to its best performance. Thus,
for this particular data set, decision tree induction requires at least an order of
magnitude more training data than naïve Bayes classification.

The disparity in sample requirements of naïve Bayesian classifiers and deci-
sion tree induction also explains why the latter is much more vulnerable to
overfitting. It is not a major problem for naïve Bayes classifiers since the entire
sample is available for all parameter estimates. In contrast, because decision tree
induction procedures repeatedly fragment the original sample, a stage is eventually

Figure 2: Error rate as a function of sample size for naïve Bayes classification and
decision tree induction Each point is derived from the average of 5 runs (see text).
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reached in which the probability estimates may be very inaccurate and hence
overfitting occurs. The preceding discussion suggests that directly addressing the
question of sample size might provide a robust method of pre-pruning.

The results discussed in this section could also provide an explanation for the
comparative success of naïve Bayes classifiers. A number of studies have shown
that such programs achieve results comparable with those obtained using decision
tree induction or neural net methods (see, for example, Michie, Spiegelhalter &
Taylor,1994). This is a surprising finding because real data sets seldom conform to
the independence assumptions upon which naïve Bayes classification is based.
However, as we have seen, a method that is not based on such assumptions may
require very substantially more data in order to achieve a significant performance
advantage.

STRATIFIED SAMPLING
Considerable reductions in sample size can be realised through a technique

known as stratification (Kalton, 1983; Kish, 1965). It is particularly useful when
there are large differences in the frequencies of class or attribute values. The basic
idea of stratification is simple: the population is partitioned into subsets, called
strata, using the values of some attribute (or group of attributes); a separate random
sample is then selected from each stratum. If the strata sample sizes are proportional
to the strata population sizes, such a procedure is called proportionate stratification;
otherwise it is known as disproportionate stratification.

Stratification for the Naïve Bayes Classifier
In the preceding section, it was shown that the size of sample required for a

naïve Bayes classifier was determined by the need to have enough items to make a
sufficiently accurate estimate of the smallest non-zero conditional probabilities. In
the example data set the lowest such probabilities are P(b

3
|y

2
) and P(c

2
|y

2
) which

were each 0.2. These are derived from those items in class y
2
, which constituted 36%

of the whole sample. Suppose that items of class y
2
 had been much rarer and

comprised only 3.6% of the population. In order to obtain enough items to estimate
P(b

3
|y

2
) and P(c

2
|y

2
), it would have been necessary to increase the total sample

tenfold from 4,250 to 42,500. Of these, 96.4% (i.e., 40,970) would be items of class
y

1
. This is greatly in excess of the number needed to make estimates of the

conditional probabilities of form P(x|y
1
). Consequently confidence intervals for

these probability estimates would be about five times narrower than those for the
conditional probabilities P(x|y

2
). This additional precision would be of no benefit

since the ultimate objective is to compare the posterior probabilities of y
1
 and y

2
.

Hence over 90% of the sample, and the effort required to process it, would be wasted.
This type of problem, which arises from major disparities in the class or attribute
frequencies, is very common with real data sets.
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Disproportionate stratification offers a solution to the problem of major
disparities in class or attribute frequencies. The earlier discussion of naïve Bayes
classifiers assumed that the same single random sample would be used for all
probability estimates. An alternative approach would be to stratify the data set by
class; each stratum would be used to estimate the corresponding conditional
probabilities and hence each stratum sample need only be larger enough to estimate
those probabilities. The example data set would require samples of about 1340 from
the y

1
 stratum and 1530 from the y

2
 stratum, giving a total of 2870. These numbers

would be the same whatever the relative proportions of y
1
 and y

2
, so very big savings

may be achieved when the disparities are large.
The estimates of the prior unconditional probabilities, P(y), require consider-

ation of the whole population. They cannot be estimated from the strata samples
since these are based on assumptions about their values. The example data set would
require about 700 items to estimate the priors. If the initial small random sample,
taken to estimate the approximate magnitude of the probabilities, was large enough
no further sampling would be necessary. Alternatively, a further simple random
sample of the whole population would be needed.

It should also be noted that using disproportionate stratification could enable
a model to be built when simple random sampling would suggest it not feasible. If
one class is very rare, the simple sample size required may be too large to be
processed. Such a sample would be almost entirely made up of the commoner
classes; these items would contribute little to the accuracy of the model and so are
not necessary. Provided the data set contains sufficient examples of the rare class,
disproportionate stratification eliminates this potential problem.

Stratification for Decision Tree Induction
Disproportionate stratification could be used in a similar way to select the best

attribute for expanding the root node of a decision tree. The procedure would be
more complex because a different stratification would be needed for each candidate
attribute. These strata samples would be large enough to select the best attribute for
the root node, but unfortunately, they would usually be too small for the expansion
of its daughter nodes.

This problem could be addressed by resampling every time a node is expanded.
The stratum sample inherited when the parent was expanded would be used to
provide approximate probability estimates; these would be used to select the
appropriate disproportionate strata samples for the candidate attributes. Note that it
would only be necessary to select sufficient additional items to increase the stratum
sample to the required size. There are two advantages in this approach: first, all node
expansions would be based on sufficient evidence, thus greatly reducing the chances
of overfitting, and, second, none of the samples would be unnecessarily large. The
disadvantage is that it could involve a lot of strata sampling, though this would be
reduced if it was confined to plausible candidates for the best attribute using the
peepholing method (Catlett, 1992).
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Static and Dynamic Sampling
This procedure of taking new strata samples every time a node is expanded is

an example of what John and Langley (1996) call dynamic sampling. They propose
a different form of dynamic sampling, applicable in principle to any learning
procedure, in which the sample is repeatedly increased, and a complete new model
derived, until no significant performance improvement is achieved. This is
computationally efficient only if it is easy to derive the new model from its
predecessor. As they point out, their approach automatically adjusts the choice of
sample size to that appropriate for the learning procedure employed.

It was therefore somewhat perverse of John and Langley to use naïve Bayes
classification as the learning method to demonstrate experimentally the value of
their approach. As we have seen, because it builds a simple model, the naïve Bayes
classifier has no need of dynamic sampling, except in a very trivial sense. It is
possible to determine the optimal sample size on the basis of a small initial sample
before constructing the naïve Bayes model: in other words, static sampling is
sufficient for such systems. John and Langley (1996) claim that “static sampling
ignores the data-mining tool that will be used”. As the detailed discussions above
demonstrate, this is not true; it is not only possible but also highly desirable to use
information about the tool to be used in determining sample size statically.

COMPLEXITY OF THE TARGET FUNCTION
So far we have only been indirectly concerned with the influence of the

complexity of the target classification function. It has been addressed implicitly in
that procedures that can model interactions between attributes (such as decision tree
induction) can model more complex classification functions than can those that
assume independence (such as naïve Bayes classifiers). However, target function
complexity forms the main plank of the argument against sampling advanced by
Freitas and Lavington (1998).

Their argument hinges on two closely related concepts: small disjuncts and
dispersion. Small disjuncts occur whenever small regions of the attribute tuple space
belong to a different class of all neighbouring regions. Freitas and Lavington argue
that a small sample may not include items from such a region and hence the resulting
model will be inaccurate. It is certainly true that too small a sample will indeed lead
to such errors. The approach advocated in this chapter is to use the smallest sample
that will provide good estimates of all the probabilities contributing to the model.
The existence of such a small disjunct would imply the need for a larger sample, and
stratification would avoid the need to consider large numbers of items from the rest
of the attribute tuple space.

Even if a single small disjunct is not represented in the training sample, the
effect on performance accuracy will be slight because the classifier will rarely be
required to classify items from this region of tuple space. However, there are target
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functions that are composed entirely of such small disjuncts. Freitas and Lavington
(1998) describe such functions as highly dispersed. A simple artificial example of
a maximally dispersed target function is the parity of an N-bit binary vector. Target
functions with high dispersion can arise in real data sets (Danyluk & Provost, 1993).
As with single small disjuncts, a highly dispersed target function will require a large
sample. Indeed, extreme examples, such as parity, usually require samples that
cover the whole tuple space. As with single simple disjuncts, using the smallest
sample that will provide good estimates of all the probabilities contributing to the
model will lead to an appropriately large sample for a highly dispersed target
function. The major difference is that the scope for economy through stratification
will be reduced.

Sampling can help avoid wasted effort even with maximally dispersed target
functions. Consider using naïve Bayes classification when the target function is the
parity of a 20-bit binary vector. All probabilities are 0.5, so the sample size
suggested by an initial small sample would be about 800, a small fraction of the 220

items in the tuple space. The performance of the resulting classifier would be dismal,
but the model parameter estimates would be reasonably accurate. However, further
increases in sample size would produce no improvement because a naïve Bayes
classifier cannot model this target function. There is nothing to be gained by
increasing the sample size beyond that suggested by sampling theory.

Freitas and Lavington (1998) are right that target function complexity has a
major effect on the required sample size, but this is not an argument against
sampling. Rather it is an argument against a too simplistic approach to sampling.
The sample size must be large enough to estimate the parameters of the model, and
this will depend on both the target function and the particular model being built.
Determining sample size on the basis of an initial small sample will avoid both
sampling too few items for a complex target function and sampling an unnecessarily
large number of items for a simple model.

Freitas and Lavington (1998) also suggest that the sample size should be a
function of the size of the attribute tuple space. Their argument is an appeal to
intuition. Although data sets with large tuple spaces may require large samples, this
is because they offer greater scope for dispersed target functions and because the
probabilities to be estimated will often be smaller. There is no need to consider this
factor explicitly in determining the sample size, and to do so would be a mistake
since large regions of the tuple space may be empty.

DISCUSSION
This section provides a summary of the major results, a consideration of their

relevance for small data sets and some brief remarks on the role of sampling for other
data mining procedures.
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Conclusions: Implications for Large Data Sets
A number of important conclusions can be drawn from this investigation into

the effect of sample size on naïve Bayes classifiers and decision tree induction:
• Basic sampling theory can be applied to determine the sample size needed

when a particular learning procedure is applied to a particular data set.
(Equation (1)).

• The use of sampling theory can often show that it is unnecessary to use more
than a small fraction of a very large data set.

• Both the learning procedure and the data set have a major impact on the size
of sample that is required. The learning procedure is important because the
sample will be used to estimate the parameters that will determine its
behaviour. Only data pertinent to those parameters has relevance to the
required sample size.  The data set is important because the actual distribution
of items pertinent to estimating model parameters will determine how much
data is necessary.

• The size of a large data set has no impact on the size of sample necessary.
• The necessary sample size can be determined without explicit consideration

of the size of the attribute tuple space or the complexity of the target function.
• The sample size needed for a naïve Bayes classifier can be determined

statically on the basis of a small initial sample used to gain information about
the approximate values of the relevant probabilities.

• The sample size required to expand the root node of a decision tree can be
determined in a similarly static manner, but expansion of subsequent nodes
requires some form of dynamic sampling.

• Disproportionate stratification can be used to eliminate the need for very large
samples when some classes or groups of attributes are uncommon. Very large
economies in sample size are possible using this form of sampling.

• Disproportionate stratification is the natural form of dynamic sampling for
decision tree induction and could be used as a basis for principled pre-pruning.

• Disproportionate stratification offers a solution to the dilemma presented by
huge data sets because it concentrates resources on items of relevance to the
model while potentially considering every item in the data set.

Implications for Small Data Sets
It is probably obvious that it is not necessary to consider 108 items if you want

to estimate a probability of around 0.2, but the discovery that as many as 1,500 are
required may be more of a surprise. Naïve Bayes classification and decision tree
induction have been successfully applied to many data sets considerably smaller
than this. These successes do not contradict the conclusions presented in this
chapter. The calculated sample sizes were derived from the arbitrary, though
reasonable, assumption that it was desirable to estimate probabilities with an
accuracy of ±10%. Had a larger figure been chosen, the required samples would
have been smaller. Thus, success with a smaller data set implies that particular
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classification task can be performed using cruder estimates for the model param-
eters.

These bounds on sample size have important implications for the results of
comparative studies of machine learning procedures. A recent example (Lim, Loh
& Shih, 2000) compares 33 procedures using 16 data sets, of which only 3 contained
more than 2000 items.. Had larger data sets been used the performance rank ordering
may have been very different. As Figure 2 demonstrates, a sample of nearly 5,000
items may be needed before C4.5 demonstrates a clear advantage over the naïve
Bayes classifier. If the results of such studies are to be applied in choosing data-
mining procedures for very large data sets, they must be based on large data sets.

Other Machine Learning Procedures
The discussion in this chapter has been largely confined to two particular

machine learning methods. We conclude with a few remarks on how far they apply
to other techniques. In some cases extrapolation is straightforward. Procedures that
use a sequential covering strategy to learn sets of propositional rules (e.g. CN2;
Clark & Niblett, 1989) closely resemble decision tree induction in that the available
sample is progressively reduced as further terms are added to a rule. Thus the
required sample will depend on the number of terms included in the rules and it will
not, in general, be possible to determine this in advance from a small initial sample.
Thus dynamic proportionate sampling will be necessary.

The simplest form of Bayesian belief network (Pearl, 1988), in which the
network structure is known and all variables are observable, has much in common
with naïve Bayes classifiers. The fundamental difference is that some specified
conditional independence assumptions are dropped. As with naïve Bayes classifiers
it is known a priori which probability estimates will be required, so static sampling
using a small initial sample is possible. How practical this would be depends on the
number of conditional independence assumptions that are dropped. As more
conditional dependencies are included in the model, so the number of probability
estimates needed rises exponentially and the proportion of the sample relating to
each of them diminishes. Thus the required sample size will grow rapidly with the
number of included dependencies.

Instance based learning procedures (Aha, 1992) are fundamentally incremen-
tal in nature and hence lend themselves to an extreme form of dynamic sampling.
It is not possible to estimate the required sample from a small initial sample, but it
is possible to derive a bound on the likelihood of a future example being misclassified.
This can be done by keeping a count of the number of correctly classified training
examples that have been presented since the most recent misclassified example. The
training set should be increased until this falls to an acceptably low level or no more
data items are available.

Other data mining procedures have less resemblance to either naïve Bayes
classification or decision tree induction. A large and important group is made up of
those methods that data mining has acquired from statistics rather than machine
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learning. These are outside the scope of this chapter because there is a very
substantial literature on these methods which includes discussions of the relation-
ship between sample size and standard error of the model parameters (see, for
example, Fox, 1984, on linear models). With these results, it is possible to determine
the necessary sample size from an initial run using a small sample of the data.

Neural network methods, such as back-propagation using the extended delta
rule (Rumelhart & McClelland, 1986) form another important group. It is notori-
ously difficult to derive simple models of the behaviour of such networks. Some
insight into what might be expected from a back-propagation network can be
obtained from the fact that its simpler forebear, the delta rule (Widrow & Hoff,
1960), is essentially a computationally expensive way of performing multiple
regression on the training set; the weights will converge on the values of the
regression coefficients.  Hence the standard results for regression also apply to the
delta rule. These provide lower bounds to the sample size that will be needed by
back-propagation networks since the nonlinear modelling they perform is likely to
require more data than finding the best fitting linear model. While such bounds may
provide a useful warning when there is too little data, they can offer no reassurance
that sufficient data has been used.
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The Gamma Test is a non-linear modelling analysis tool that allows us to
quantify the extent to which a numerical input/output data set can be
expressed as a smooth relationship. In essence, it allows us to efficiently
calculate that part of the variance of the output that cannot be accounted
for by the existence of any smooth model based on the inputs, even though
this model is unknown. A key aspect of this tool is its speed: the Gamma
Test has time complexity O(Mlog M), where M is the number of data-
points. For data sets consisting of a few thousand points and a reasonable
number of attributes, a single run of the Gamma Test typically takes a few
seconds.
In this chapter we will show how the Gamma Test can be used in the
construction of predictive models and classifiers for numerical data. In
doing so, we will demonstrate the use of this technique for feature
selection, and for the selection of embedding dimension when dealing
with a time-series.

 INTRODUCTION
The Gamma test was originally developed as a tool to aid the construction of

data-derived models of smooth systems, where we seek to construct a model directly
from a set of measurements of the system’s behaviour, without assuming any a
priori knowledge of the underlying equations that determine this behaviour. Neural
networks may be considered as the generic example of a data-derived modelling
technique.

 We think of the system as transforming some input into a corresponding
output, so the output is in some way ‘determined’ by the input. This is a fairly general
representation – in the case of a dynamical system ,the current state of the system
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may be thought of as the input, with the output representing the state of the system
after some time interval has elapsed.

One problem in constructing models solely on the basis of observation is that
measurements are often corrupted by noise. We define noise to be any component
of the output that cannot be accounted for by a smooth transformation of the
corresponding input.

The Gamma test (Aoalbjörn Stefánsson, Koncar & Jones, 1997; Koncar, 1997)
is a technique for estimating the noise level present in a data set. It computes this
estimate directly from the data and does not assume anything regarding the
parametric form of the equations that govern the system. The only requirement in
this direction is that the system is smooth (i.e. the transformation from input to
output is continuous and has bounded first partial derivatives over the input space).

Noise may occur in a set of measurements for several reasons:
• Inaccuracy of measurement.
• Not all causative factors that influence the output are included in the input.
• The underlying relationship between input and output is not smooth.

The applications of a data-derived estimate of noise for non-linear modelling
are clear. In the first instance, it provides a measure of the quality of the data – if the
noise level is high we may abandon any hope of fitting a smooth model to the data.
In cases where the noise level is moderately low, the Gamma test can be used to
determine the best time to stop fitting a model to the data set. If we fit a model beyond
the point where the mean squared error over the training data falls significantly
below the noise level, we will have incorporated some element of the noise into the
model itself, and the model will perform poorly on previously unseen inputs despite
the fact that its performance on the training data may be almost perfect. Taking our
noise estimate as the optimal mean squared error by running the Gamma test for an
increasing number of data points and seeing how many points are required for the
noise estimate to stabilize, we may also obtain an indication of the number of data
points required to build a model which can be expected to perform with this mean
squared error .

It is not immediately apparent that a technique for estimating noise levels can
be of use in data mining applications. Its usefulness derives from the fact that low
noise levels will only be encountered when all of the principal causative factors that
determine the output have been included in the input. Some input variables may be
irrelevant, while others may be subject to high measurement error so that incorpo-
rating them into the model will be counter productive (leading to a higher effective
noise level on the output). Since performing a single Gamma test is a relatively fast
procedure, provided the number of possible inputs is not too large, we may compute
a noise estimate for each subset of the input variables. The subset for which the
associated noise estimate is closest to zero can then be taken as the “best selection”
of inputs.

The objectives of this chapter are to provide a clear exposition of what the
Gamma test is, to describe how it works, and to demonstrate how it can be used as
a data mining tool.

∨ ∨x
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BACKGROUND
Suppose we have a set of input-output observations of the form:

         {(x
i
, y

i
):1≤ i ≤ M} (1)

where the inputs x ∈ ℜm are vectors confined to some closed bounded set C ⊂     m,
and the corresponding outputs y ∈      are scalars (in the case where the outputs are
vectors, the method may be applied independently to each component with very
little extra computational cost).

The relationship between an input x and the corresponding output y is
expressed as

y = f(x)+r (2)

where
• f is a smooth function representing the system.
• r is a random variable representing noise.

Without loss of generality, since any constant bias can be absorbed into the
unknown function f we may assume that the mean of the noise variable r is zero.
Despite the fact that f is unknown, subject to certain conditions, the Gamma test
provides an estimate for Var(r), the variance of the noise. This estimate is called the
Gamma statistic, denoted by Γ, and may be derived in O(MlogM) time2 where the
implied constant depends only on the dimension m of the input space. The Gamma
test is a non-parametric technique and the results apply regardless of the particular
methods subsequently used to build a model.

Before describing how the Gamma test works, we state the conditions under
which the method may be applied.

Assumptions
First we restrict the domain of possible models to the class of functions having

bounded first and second partial derivatives. We require:

F.1. The function f has bounded first and second partial derivatives. In particular,
there exists some finite constant B such that |∇f(x)| ≤ B for every x ∈ C.

Next we consider the question of how the input points are generated. In some
situations it may be possible for the experimenter to set values for the inputs and then
measure the corresponding output. However, in many data analysis situations, the
system we seek to model may generate input and output values autonomously.

In general we suppose that inputs x
i
 are selected according to some sampling

distribution having density function ϕ, whose support3 is some closed bounded
subset C ⊆     m. We call this set the input space. As we shall see, the Gamma test
computes its estimate for the variance of the noise by considering the hypothetical

R
R

R
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behaviour of arbitrarily close near neighbours in input space. We require that the
distances between nearest neighbours become small as the number of points
increases, and it is therefore a prerequisite of the method that the input space C is
perfect so that in addition to being closed and bounded, the input space C contains
no isolated points.

C.1 The input space C is a perfect set.

In many cases the support C has positive measure in the classical (Lebesgue)
sense. Another case of interest is the analysis of chaotic time series. Here, following
Takens (1981), we seek to model a time series by predicting the next value (the
output) based on a number m of previous values (the input vector). For many chaotic
time series this relationship is smooth and so the Gamma test might reasonably be
applied. In such cases the input space C is a very often a chaotic attractor of non-
integral dimension and of zero measure but this appears to be largely irrelevant to
the estimates of noise variance returned by the Gamma test. Indeed, in the zero
measure case the Gamma test may be more efficient (in terms of the number of data
points required) because the input data is confined to some lower dimensional subset
of the full input space.

Finally we must consider the random variable r representing the noise on an
output. The probability density function of this random variable is denoted by η. To
avoid confusion, an expectation taken with respect to η will be denoted by Eη while
an expectation taken with respect to the sampling density function ϕ is denoted by
Eϕ.

As we have seen, by including any bias within the system into the (unknown)
smooth component f, we may suppose without loss of generality that Eη(r) = 0 and
as we aim to estimate the variance of the noise, we also require that Eη(r

2) is finite4:

N.1 Eη(r) = 0 and Eη(r2) < ∞

We also need the following:

 N.2 The noise is independent of the input vector x corresponding to the output
y being measured, i.e. we assume that the noise on an output is homogeneous
over the input space (if the noise is not homogeneous, the Gamma test will
compute an estimate of the average noise variance—this can still provide
useful information when selecting relevant inputs).

 N.3 Two noise values r
i
 and r

j
 measured on two different outputs  y

i
 and y

j
  are

independent so that Eη(r
i
r

j
) = 0 whenever i ≠ j.

Description of the Method
The Gamma test works by exploiting the hypothesised continuity of the

unknown function  f. If two points x and x' are close together in input space then since
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f is continuous, we can also expect that ƒ(x) and ƒ(x')  are close together in output
space. If this is not the case, this can only be because of the addition of noise to each
of these values.

Since y=f(x)+r we have that:

(3)

The continuity of f implies that as   so:

(4)

Taking the expectation of both sides we get:

(5)

Here, the expectation is defined with respect to the noise and sampling distributions.
However, for any finite data set we cannot evaluate this limit directly.

Since f is assumed continuous over a closed bounded region C⊆        m, the error
involved in estimating Var(r) by the expectation E(1/2(y'-y)2) essentially depends
on the distance |x'-x|. Clearly, this error will be minimised if we consider the
differences 1/2(y'-y)2 between pairs of output values  y and y'  where the correspond-
ing inputs x and x' are nearest neighbours in input space.

Let x
N[i,k]

 denote the kth nearest neighbour of the point x
i
 in the input set

{x
1
,...,x

M
}. This is defined to be the point for which there are exactly k-1 other points

closer to x
i
5. Nearest neighbour lists can be found in O(MlogM) time, for example,

using the kd-tree method developed by Friedman, Bentley and Finkel (1977).
For k in the range 1 ≤ k ≤ p (where p is typically taken in the range 10-50), we

compute a sequence of estimates for E(1/2(y'-y2)) by the sample means6:

(6)

and in each case, we obtain an indication of the “error” by computing the mean
square distance between kth nearest neighbours, defined by:

(7)

where |.| denotes the Euclidean distance7. As in (5) we can show that:

γ
M

(k)→Var(r)  as  δ
M
(k)→0      (8)

However, given any finite data set we cannot make the distances between
nearest neighbours arbitrarily small, so as in (5), we cannot evaluate this limit
directly.

The Gamma test is based on the assertion that the relationship between γ
M
(k)

( ) xxE →→
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and δ
M
(k) is approximately linear near δ

M
(k) = 0, i.e., there exists some constant A

such that:

                γ
M
(k) = Var(r)+Aδ

M
(k)+o(δ

M
(k))  as  δ

M
(k)→0            (9)

As a result of our condition that the input space has no isolated points, we can expect
that the mean distance between nearest neighbours converges to zero (in probabil-
ity) as the number of data points increases, that is:

      δ
M
→0  as  M→∞           (10)

Thus (9) becomes:

                  γ
M
(k) = Var(r)+Aδ

M
(k)+o(δ

M
(k))  as  M→∞           (11)

and we see that a linear relation-
ship between γ

M
(k) and δ

M
(k) can

be established subject to the con-
dition that we have sufficiently
many data points.

Having established the lin-
earity of γ

M
(k) and δ

M
(k) we esti-

mate the limit (8) of  γ
M
(k) as

δ
M
(k)→0 by performing linear re-

gression on the pairs {δ
M

(k),
γ

M
(k)):1 ≤ k ≤ p}.

As illustrated in Figure 1, our
estimate for Var(r) is determined by the intercept Γ of this regression line with the
δ

M
(k)=0 axis.

THE GAMMA TEST ALGORITHM
The method used to calculate the Gamma value is given in Algorithm 1.  As

well as returning the intercept Γ of the regression line the algorithm also returns its
gradient, denoted by A. As we shall see, this often contains useful information
regarding the system under investigation, represented by the (unknown) smooth
function f.

Formal Justification of the Method
A rigorous mathematical justification of the Gamma test is established by the

following result (Evans, 2001). The theorem states that with probability approach-
ing one, the relationship between the points (δ

M
(k), γ

M
(k)) becomes approximately

linear as M → ∞, with constant term equal to Var(r).

Figure 1: The Gamma test regression plot
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Theorem. Subject to conditions F.1, C.1 and N.1 - N.3 stated above, for every κ >
0 we have:

             γ
M
(k) = Var(r) + A(M,k) δ

M
(k) + o(δ

M
(k))+O(M-1/2+κ) (12)

with probability greater than  1 - O(1/M2κ) as M → ∞, where  A(M, k) is defined by:

              A(M,k) Eϕ (|xN[i,k]
-x

i
|2) =  1/2 Eϕ(((x

N[i,k] 
-x

i
 ) •∇ f(x

i
))2)          (13)

and satisfies:

0 ≤ A(M,k) ≤  1/2B2 < ∞ (14)

where B is the upper bound on  |∇ƒ | over the input space C given in condition F.1.
The term O(M-1/2+κ) is due to sampling error. It may be shown that for a smooth

positive sampling density ϕ the expected value of δ
M
(k) is of order  O(M -2/m) as

M→∞, where m is the dimension of the input space. Hence for m ≤ 4, it is possible
that δ

M
(k) is of smaller order than the sampling error and that linearity will not hold.

In this case Algorithm 1 is effectively estimating the noise variance directly
according to (8). Despite this, in practice we often see that linearity does hold when
m ≤ 4 (see Figures 3 and 4 in which m =1).

In general, the gradient A(M,k) may depend on the number of points M and also
on the nearest neighbour index k. First we note that any dependence on M is of no
consequence, since each regression point (δ

M
(k), γ

M
(k)) is computed with M fixed.

If the input space C is of integral dimension, it can be shown that A(M,k) is

Algorithm 1: The Gamma test

Procedure Gamma test (data)
 (* data is a set of points {(x

i
,y

i
):1 ≤ i ≤ M} where x

i
 ∈     m and y

i
∈    *)

(* Compute the nearest neighbour lists for each point—this can be done in
O(MlogM) time *)
For i = 1 to M

For k = 1 to p
Compute the index N[i, k] of the kth nearest neighbour of x

i
.

endfor k
endfor i

(* If multiple outputs do the remainder for each output *)
For k = 1 to p

Compute γ
M

(k) as in (6)
Compute δ

M
(k) as in (7)

endfor k

Perform linear regression on {δ
M
(k),γ

M
(k)):1 ≤ k ≤ p}, obtaining (say) γ  = Ax + Γ

Return (Γ, A)

R R
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independent of k and by (12), the points (δ
M
(k), γ

M
(k)) all lie on a straight line which

intercepts the δ
M
(k)=0 axis at Var(r).

Potential problems arise in the case where C is of nonintegral dimension, where
experimental evidence suggests that A(M,k) does indeed depend on k. However,
subject to a fairly weak condition8 on the relative magnitude of δ

M
(p) in terms of

δ
M
(1), by virtue of the fact that the gradient A(M,k) is bounded it can be shown that

the intercept of the regression line determined by the points (δ
M
(k), γ

M
(k)) ap-

proaches Var(r) as M→∞ and hence the method remains valid.

The Gradient as an Indicator of System Complexity
In many cases the gradient A(M,k) of the regression line contains useful

information regarding the underlying system, represented by the unknown function
f.  To see this, consider:

               ((x
N[i,k]

-x
i
 ) • ∇ f(x

i
))2 = |x

N[i,k] 
-x

i
|2 |∇ f(x

i
)2 |cos2θ

i
(15)

where θ
i
 is the angle between the vectors x

N[i,k]
-x

i
 and ∇ f(x

i
).

Since the near neighbour vector x
N[i,k]

-x
i
 depends only on the sampling density

ϕ, we may suppose that its magnitude |x
N[i,k]

-x
i
 | is independent of | f(x

i
)|. Further-

more, if the sampling density is approximately isotropic in small neighbourhoods
of the points of C, the near neighbour distances |x

N[i,k]
-x

i
 | can be assumed to be

independent of the direction of the near neighbour vectors9.
Under these circumstances,

Eϕ(((x
N[i,k] 

-x
i
 ) •∇ f(x

i
))2) = Eϕ (|x

N[i,k]
-x

i
 |2) Eϕ (|∇ f(x

i
)|2 cos2θ

i
) (16)

so we have

                         A(M,k) = 1/2 Eϕ (|∇ f(x
i
) |2 cos2θ

i
) (17)

In many cases it is also reasonable to suppose that |∇ f(x
i
)| is independent of θ

i
 so that

             Eϕ (|∇ f(x
i
)|2 cos2θ

i
) = Eϕ (|∇ f(x

i
)|2 ) Eϕ(cos2θ

i
) (18)

Furthermore, if the angles θ
i
 are uniformly distributed over [0,2π] then Eϕ(cos2θ

i
)=1/2

and hence

                             A(M,k) =   1/4  Eϕ (|∇ f(x
i
)2 |) (19)

Thus, particularly if the input/output variables are normalised to a standard range,
we may consider the gradient of the regression line computed by the Gamma test as
a crude estimate of the complexity of the system under investigation, proportional
to the mean squared value of the gradient over the input space.
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Figure 2: The smooth function with sampled “noisy” points.

DATA ANALYSIS USING THE GAMMA TEST
We will now demonstrate how the Gamma test can assist with non-linear data

analysis as a precursor to modelling. The techniques shown here are used to
illustrate that non-linear data sets can be assessed for quality, and to demonstrate
how the Gamma test can be used to find important features.

A Simple Example
We will illustrate the utility of the Gamma test using the following smooth

function:

                                     f(x) = sin(4πx) + cos(2πx) (20)

Uniformly distributed noise with variance 0.03 was added to the function and
sampled M=1000 times over the interval [0,1]. Figure 2 shows the underlying
smooth function and the sampled “noisy” points.

We may visualise the Gamma test by considering the pairs

δ = |x
i
-x

j
|2

γ = 1/2 |y
i
-y

j
|2 (21)

for each 1 ≤ i ≠ j ≤ M. Plotting each γ against the corresponding δ we obtain a scatter
plot which visually indicates the noise level. Superimposed on this we plot γ

M
(k) and

δ
M
(k) defined in (6) and (7), and perform a linear regression through these points.

The intercept with the axis at δ = 0 gives the estimate for the variance of the noise.
Figure 3 shows a Gamma scatter plot for the smooth function (20) with no

added noise. As expected, for a noise-free function we have γ → 0 as δ → 0 and the
estimate for the variance of the noise is 7.53 x10-7, i.e., very close to zero.

When the Gamma test is run on the “noisy” data set, the form of the Gamma
scatter plot changes. The effect of the noise is apparent in Figure 4 because as δ tends

2

1

0

-1

-2

y

0 0.2 0.4 0.6   0.8     1
x
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to 0, γ does not. Here, the estimate for the noise level produced by the Gamma test
is equal to 0.031, close to the actual noise variance of 0.03.

This simple example illustrates that the Gamma test does indeed estimate the
variance of the noise correctly, even though it has no knowledge of the underlying
smooth function f.

Figure 5 further illustrates that the Gamma statistic Γ converges to the true
noise variance as the number of points M increases. Indeed, for M > 600 we can be
reasonably confident that the estimate lies within 10% of the true noise variance.

Feature Selection
Although the Gamma test is, in the first instance, an algorithm designed to

estimate noise, it can be used very effectively to select relevant features for a non-
linear model in both noisy and low or zero noise situations. The following examples
will first illustrate why the Gamma test can be used to select relevant features in a
zero noise case.

The technique of feature selection is used to extract useful information (or
features) from a data set. Redundant or irrelevant variables in the data should be
excluded. With the Gamma test we can define useful information as being those
inputs that contribute to lowering the noise estimate of our input-output data set. In
theory, the combination of inputs with the lowest noise estimate will provide the best
model. In a mathematical context the features correspond to the independent
variables and the output corresponds to the dependent variable.

Feature selection algorithms have two main components: a criterion function
and a search strategy (Scherf & Brauer, 1997). The criterion function determines
how good a particular feature set is and the search strategy decides which set to try
next.

The search through feature space has to be performed to ensure that all (or as
many) combinations of inputs are tested within reasonable computational time. For
a small number, 20 say, of inputs, all possible combinations can be tested. However,
this “exhaustive” search strategy quickly becomes impractical as the number of
inputs increases. In general, for m inputs, there are 2m-1 combinations of those
inputs10. For larger data sets or for rapid feature selection, a heuristic search

Figure 3: Gamma scatter plot for the smooth function with no added noise.
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Figure 4: Gamma scatter plot for the smooth function with noise of variance 0.03
added.

technique must be applied. The primary technique that we propose uses a genetic
algorithm (Holland, 1975), but we have also implemented hillclimbing and other
heuristics. We must recognise that these heuristic methods are not guaranteed to find
the best possible feature set.

Whatever search strategy we choose, we clearly need an efficient criterion
function. The two main types are filters and wrappers (Pfleger, John & Kohavi
1994). A wrapper uses a model to evaluate the feature set: the performance of a
model constructed using the chosen features determines the significance of the
feature set. The filter method does not rely on model building for the evaluation of
a set of features. Instead, it uses the data directly to evaluate a given feature set. Our
intention here is to show that the Gamma test performs this task and has other
benefits, such as determining the variance of the noise. For reference, some other
examples of filter methods are described in Cherkauer & Shavlik (1995).

Figure 5: The Gamma statistic computed for increasing M. The dashed line
indicates the true noise variance and the dotted line indicates a 10% error.
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Masks: Describing a Combination of Inputs
We describe feature sets in an efficient way using a mask. For any given data

set, the inputs (x
1
,x

2
,x

3
, ... ,x

m
) can be masked off to describe a subset of inputs. Using

a m = 4 input data set as an example, we can describe the selection of input  x
4
 using

the mask 0001, and the selection of all the inputs using the mask 1111. We use this
representation within the context of feature selection to describe which inputs are
used (1) and which are not (0).  A complete feature space search requires all possible
combinations of inputs to be analysed.

As an example of why the Gamma-test can be used for feature selection, we will
consider a section through a three-dimensional cone. Five hundred data points were
sampled uniformly in input space across the surface to produce a 3-dimensional data
structure of two inputs (x,y) and one output z. Part of the cone is shown in Figure 6.
The height of the cone z is dependent on the (x,y) coordinates. We should discover
that using x or y alone will not determine z, but using x and y together will.

The darkly shaded projection onto the x-z plane in Figure 6 corresponds to the
component part of the signal that is expected to act like noise when data is sampled
from across the cone but where only the x input is used to model z. This effective
noise is not uniform across the x-input space and the variation of noise variance as
a function of x is shown in Figure 7. If we average this noise variance across the x
input space we obtain the value 14.0126. Thus we might expect the associated
Gamma statistic to be approximately this value. Similarly, if we project the cone
onto the y-z plane (shown as the lighter shaded region in Figure 6) we see an even
larger effective noise variance when sampling across the cone but using only input
y to model z. These projections allow us to see geometrically that z is far more
sensitive to variation in x than in y.

Figure 6: A conical function. The darkly shaded projection on the x-z plane shows
the effective noise from sampling in the x-dimension only. The lighter shaded
projection on the y-z plane shows the effective noise from sampling in the y-
dimension only.
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Figure 7: The effective noise variance of output z determined by input x. The dashed
line indicates the average noise variance 14.0126 in the sampling interval.

Table 1: Feature space search results for the cone section (M = 500)

Γ A xy
0.44217 11.257 11
14.76000 6.642 10
52.56900 4896 01

Table 1 lists the feature space search results. As expected, the effective noise
variance was lowest when inputs x and y were used together. For the results where
either x or y were exclusively used, the noise variance corresponds to the variance
of z sampled in the interval over which x or y were also sampled. When input x is
used to determine z, the estimated noise variance of Γ=14.76 closely corresponds to
the average noise variance shown in Figure 7.

A 16-Dimensional Input Space (With No Noise)
The previous example was intended to give an intuitive understanding of why,

even using noise-free data, the Gamma test results for different selections of input
variables can be used to discriminate significant inputs for a non-linear model. In
this section we illustrate that this procedure remains effective where functional
dependences are subtler and many more input variables are present.

We consider m=16 inputs and 1 output. The first 10 inputs, x
1
, x

2
, ... , x

10
, are

all random numbers in the range [0, π]. The final 6 inputs are defined to be

x
11

= sin(2x
1
)

x
12

= cos(4x
2
)

x
13

= sin(x
3
2)+cos(x

4
2) (22)

x
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= ex
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Table 2: Best results from a complete feature space search (Γ < 10-5), M = 5000

Γ A                               Mask
                                                                            x

1
 x

2  
...x

11
 x

12
...x

16

3.01x10-7 0.142124 0000110100110011
6.35x10-7 0.12549 0001101010111100
2.00x10-6 0.0881483 0101111110111001
2.49x10-6 0.33071 0000010000110000
4.08x10-6 0.293724 0100000001110000
4.15x10-6 0.0955764 0100111101111001
4.79x10-6 0.506928 0000000000110000
5.71x10-6 0.149792 0001000010111001
5.80x10-6 0.17813 0000000101110010
6.31x10-6 0.0997976 0110101010111010
6.36x10-6 0.224083 0000000000111010
6.86x10-6 0.143837 0010110100110010
8.70x10-6 0.0910738 0111011100111100
9.79x10-6 0.107996 0001110011110001

The target output y is defined by the equivalent expressions

y= sin(2x
1
)-cos(4x

2
)

y= x
11 

-cos(4x
2
)

y= sin(2x
1
)-x

12
             (23)

y= x
11

-x
12

A set of M = 5000 points were generated and no noise was added to the output.
The output y is a relatively complicated function of inputs x

1
 and x

2
. There is

a much simpler relationship between the output and x
11

 and x
12

. There are also the
intermediate relationships involving x

1
 and x

12
, and x

2
 and x

11
. In order to demon-

strate the effectiveness of the Gamma test, the feature space search should discover
these relationships. It should also highlight the simplest relationship as being the
best.

The best results from the complete feature space search are shown in Table 2
where Γ represents the estimate for the variance of the noise and A is the gradient
of the regression line fit.

Inputs, x
1
, x

2
, x

11
 and x

12
 are underlined in the mask to highlight their expected

significance as defined by (23). The results do show the importance of inputs x
11

 and
x

12
 in determining the output y as they are each included11 in all of the best results,

defined to be those for which Γ < 1x10-5.
The results in Table 2 therefore show that the Gamma test is able to select the
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best combination of inputs. If we were to take any of the individual results we would
include more inputs than are required to model the function. However, the necessary
information would be incorporated as both x

11
 and x

12
 appear in all of these results.

The power of this technique is increased by the analysis of a set of results. If
we examine the frequency of occurrence of each input in the set of best results given
in Table 2, we are able to establish that only a small subset of inputs are actually
relevant in determining the output. The frequency histogram of features shown in
Figure 8 illustrates this.

In the following section we discuss this in more detail by analysing the Γ  value
corresponding to each of the feature sets encountered during the feature space
search.

The Gamma Histogram
We construct a Gamma histogram to show the distribution of the noise variance

estimates  Γ  over the space of feature sets. Using the complete feature space search
of the previous section, we obtain the histogram shown in Figure 9.

Figure 9: Gamma histogram for a complete feature-space search over 16 inputs.
The output of the function contained no noise so the histogram starts at Γ≈ 0.

Figure 8: Frequency of the features for the best results (Γ < 1x10-5)
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Figure 10: Frequency of the features for the worst results (Γ ≥  0.95).

There are six significant parts to this distribution:
1. The first peak, Γ < 0.03.
2. The second peak, 0.03  ≤ Γ < 0.1.
3. The space between the second and third peaks, 0.1 ≤ Γ < 0.4
4. The third peak, 0.4 ≤ Γ < 0.6.
5. The space between the third and fourth peaks, 0.6 ≤ Γ < 0.95.
6. The fourth peak, Γ > 0.95.

The first peak in the Gamma histogram consists of those features that produced
results having Γ < 0.03. From the frequency graph shown in Figure 8, we see that
x

11
 and x

12
 are the most important features in the low Γ region, corresponding to the

two features that best predict the output. A similar frequency graph (not shown) for
the second peak 0.03 ≤ Γ < 0.1 indicates that x

1
 and x

12
 are the most important features

in this region.
For higher Γ values, we may expect that less favourable but nevertheless useful

features become apparent. A frequency graph for 0.1 ≤ Γ < 0.4 (not shown) indicates
the significance of x

1
 and x

2
 in this region. From (23) we see that x

1
 and x

2
 are

involved in more complex relationships with the output than the relationships
between inputs x

11
 and x

12
 and the output.

For high values of Γ we may expect favourable features to be noticeable by their
absence. Indeed, the frequency graph for Γ  >  0.95 shown in Figure 10 illustrates
this, where we observe that x

1
, x

2
, x

11
 and x

12
 all occur with low frequency.

The overall conclusions are very striking: favourable features have a higher
frequency than average in regions of low Γ and lower frequency than average in
regions of high Γ.

A 16-Dimensional Input Space (With Added Noise)
Next we examine how the feature selection algorithm performs in the presence

of noise. We adapt the previous example by adding noise of variance Var(r) = 0.25
to the output y. We remark that this is a relatively high noise variance considering
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Figure 12: Frequency of the features for the best results (Γ < 0.3).

the size of the outputs (which are restricted to the range [-2,2]).
Comparing Figure 11 with Figure 9, we see how the addition of noise affects

the Gamma histogram. The histogram is offset from the origin by an amount
approximately equal to the noise variance. However, again we have three major
peaks which are in roughly the same relative positions as in the noise-free case. We
now examine these peaks and show that the selection of relevant features as
determined by their relative frequency in the high and low peaks of the Gamma
histogram remains essentially unchanged in the presence of noise.

The first peak contains the feature sets that produced results having Γ < 0.3. A
frequency graph of these features is shown in Figure 12. As in the noise-free case
of Figure 8, this again shows that inputs x11

 and x
12

 are the most significant features
since they appear in most of the results. The remaining inputs appear with
approximately equal frequency (with the exception of x

1
 which appears slightly

Figure 11: Gamma histogram of a complete feature-space search over 16 inputs
with added noise having variance 0.25. Note that the histogram begins at a Γ ≈ 0.25.
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more often) and on this evidence we may again conclude that x
11

 and x
12

 provide the
information necessary to model the output y.

As before, a frequency graph (not shown) for the intermediate region 0.3 ≤ Γ
< 0.7 indicates that the feature combination of x

1
 and x

2
 is also significant. Again,

as in the zero noise case of Figure 10, the frequency graph for Γ > 1.2 shown in Figure
13 provides additional evidence that inputs x

1
, x

2
, x

11
 and x

12
 are significant,

demonstrated by the absence of these inputs in the worst results.
These experiments demonstrate that feature selection via a Gamma test

analysis remains effective in the presence of noise. For fixed M, as the noise
increases, the Gamma histogram gradually degrades as a feature selection tool, but
it does so gracefully. For high levels of noise we can still apply this technique, but
it may be necessary to increase the number of points M accordingly.

In conclusion, a peak at the lower end of the Gamma histogram should contain
results that use all of the available relevant input variables. A peak at the higher end
of the Gamma histogram should show results generated from input variables that
have little or no relevance in determining the output (Durrant, 2001).

TIME-SERIES MODELLING
One important application area of these techniques is that of modelling time

series data. This can arise in many diverse situations from predicting sunspot
activity (Tsui, 1999; Tsui, Jones & Oliveira, 2000) to the analysis of economic or
financial time series data.

If the underlying process is a dynamical system, where the behaviour is
determined by a system of differential equations, then we may construct a smooth
non-linear input/output model that generates new states of the system based on a
finite window of previous states (see Takens,1981), or the later extensions by Sauer,

Figure 13: Frequency of the features for the worst results (Γ ≥ 1.2).
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Yorke and Casdagli, 1991). Of course the extent to which economic or financial time
series data reflects underlying smooth dynamics is, in many instances, somewhat
conjectural but it is customary to use the same approach to modelling such data and
the Gamma test can at least tell us the extent to which such an assumption is justified
in practice.

We will now illustrate how the Gamma test can be used for feature selection
in a zero noise chaotic time series. In this case, feature selection corresponds to the
determination of appropriate lags in an embedding model, and the sampling
distribution over the input space corresponds to sampling an attractor with fractional
dimension. In this context the Gamma test can be applied first to estimate an
appropriate embedding dimension, i.e., the number of past values of the time series
to be used as inputs in predicting the next value (the output). Then, once the
embedding dimension has been fixed, it can be used to determine an appropriate
irregular embedding, i.e., an appropriate subset of these past values

We first compare the initial estimate of the embedding dimension as calculated
using the Gamma test using an “increasing embedding” algorithm, with that found
by the more conventional false nearest neighbour algorithm (Kennel, Brown &
Abarbanel, 1992). We shall see that both approaches give similar results.

False Nearest Neighbours
The false nearest neighbour (FNN) algorithm (Kennel, Brown & Abarbanel,

1992) is a technique to determine the embedding dimension for phase-space
reconstruction. A chaotic attractor is typically a compact object in phase-space, such
that points of an orbit on the attractor acquire neighbours. If the embedding
dimension of an attractor is sufficient there will be a one-to-one mapping from the
delay-space (the time series) to the original phase-space of the attractor such that the
topological properties of the attractor will be maintained.

The assumed smoothness of the function means that neighbourhoods of points
in delay-space will map to neighbourhoods of points in phase-space. An embedding
dimension that is too small will not preserve the topological structure of the
attractor, so that points that are neighbours in one embedding dimension, m, will not
necessarily be neighbours in the next higher embedding dimension, m+1, because
the attractor has not been completely unfolded. It is these points that are classified
as false nearest neighbours, and the number present for a particular embedding
dimension determine whether that embedding dimension, m, sufficiently describes
the attractor. The FNN algorithm identifies these points for a range of embedding
dimensions, and (in theory) the optimal embedding dimension has the minimum
number of false nearest neighbours.

Increasing Embedding
An increasing embedding technique based on the Gamma test can perform the

same task of identifying the optimal embedding dimension.
Suppose we have a time series consisting of M points x

1
, ..., x

M
. For each
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embedding dimension m ranging from 1 to some predefined maximum, we con-
struct the set of m-1 dimensional delay vectors defined by:

z
i
 = (x

i
, ..., x

i+m-1
) (24)

We use the Gamma test to measure how smoothly the vectors z
i
 determine the

“next” point x
i+m

 of the time series. The value of m for which the Gamma statistic
is closest to zero is taken to be the optimal embedding dimension of the time series.

Example: The Henon Map
The Henon map is generated iteratively by the equation

x
t
 = 1 - ax2

t-1
 + bx

t-2
                                       (25)

where x
0
 = 0, x

1
 = 0, a = 1.4 and b = 0.3 (these values are known to generate a chaotic

time series).
Figure 14 shows the first 50 points of this time series. The points of the map are

sampled from the attractor of the map which can be extracted from the time series
data and visualised by simply plotting the inputs to the function against the output
as shown in Figure 15. At the bottom of the diagram (in the 3-dimensional
representation), the relationship between the output x

t  
and the input variables x

t-1
 and

x
t-2

 is shown (this is the hypothetical surface that we may seek to construct in a
modelling exercise). At the top of the diagram a projection shows the distribution
of the input variables (x

t-1
, x

t-2
).

Figure 16 shows the results from the FNN algorithm, and Figure 17 shows the
increasing embedding on the time-series data generated from the Henon map. The
optimal embedding dimension selected by both methods is equal to 2.

Hence the increasing embedding algorithm can be used to recover the embed-

Figure 14: The first 50 points of the Henon time series x
t
 against t
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ding dimension of a time series in much the same way as the FNN algorithm.

Irregular Embeddings
For a more complex time series, once the embedding dimension has been fixed

the Gamma test can be used to select an appropriate irregular embedding using a full
embedding search—in much the same way that we selected features in the 16-
dimensional example given earlier.

Although it might appear that choosing an optimal subset of the input variables
should not be critical, since in principle all the information required is present if the
embedding dimension has been correctly estimated, nevertheless in practice correct
choice of an irregular embedding, with a consequent reduction in the number of
input variables, can make a significant improvement to both model quality and
training time.

Figure 16: False nearest neighbour embedding for the Henon map. The graph
shows that an embedding dimension m=2 would be suitable.

Figure 15: The Henon attractor with no added noise. The input space sampling is
shown above the attractor.
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winGamma™
The results above were generated with the help of winGamma™. This is an

easy-to-use non-linear data-analysis and modelling package produced by Cardiff
University as a Windows application. Its primary use is as a research and teaching
tool for academics and students, but it is also available as a commercial product for
data modellers requiring state-of-the-art analysis and modelling techniques12.

FUTURE TRENDS

Data Mining With the Gamma Test
winGamma™ was constructed as a non-linear analyst’s workbench, and as

with any such tool there is a learning curve which must be ascended to acquire the
necessary skills to apply the tool effectively. However, as we have gained more
experience in the use of winGamma, and began to develop an analysis protocol, it
has become apparent that the analysis process could be automated with little loss of
effectiveness.

Because the Gamma test runs extremely quickly one can therefore envisage a
more sophisticated program (GammaMiner) which automatically scans large data-
bases looking for relationships between numerical fields which can be used for
smooth modelling and prediction. The user could define which attributes were of
particular interest (the targets or outputs required to be predicted) and which other
attributes the targets might reasonably depend on (these would form the set of
potential inputs to the model). Designing such a program is not without pitfalls. For
example, attribute values may not be time-stamped and one could easily find the

Figure 17: Increasing embedding for the Henon map. The graph shows that an
embedding dimension d between 2 and 7 may be suitable. Empirical evidence
suggests that selecting the lowest embedding dimension from a range of possible
solutions is best, in this case m = 2.
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program “predicting” values that predate the attribute values used as inputs. There
are some problems regarding database semantics that need to be addressed. Because
not all data falls into the category of numerical fields which might be modelled by
a smooth function and because other types of tools (e.g., decision trees) may be more
appropriate for constructing predictive models on discrete inputs or categorical
outputs, one could also envisage engineering a subset of GammaMiner as a re-
usable component designed to be integrated into existing or future data mining tools.

Nevertheless, it is possible to imagine such a program running continually in
the background and notifying its owner only when it found something interesting;
e.g., “By the way I have a predictive model for X for one month ahead which gives
an accuracy of 0.5% are you interested?” While such program behaviour is arguably
not intelligent in any real sense, there is no doubt that such a tool would be useful.

 Many users of winGamma are explicitly interested in time series prediction of
economic data. Here the most promising approach seems to be to bring to bear user
domain knowledge to determine which other available time series data can act as
leading indicators for the target time series. We propose in the first instance to
provide a set of time-series editing tools that facilitate the alignment in time of
attribute values from different time series and the selection of subsets of lagged data
to be explored by GammaMiner in seeking to evaluate predictive capability.

The GammaMiner project seeks to prototype an automated model extraction
capability with special reference to time series. Whilst it is indeed possible that
genuine new scientific knowledge might result from the use of such a program, it is
worthwhile to reflect briefly on the scientific value of such opportunistic model
building.

The Status of Data-Derived Predictions
When physicists try to make predictions they are following one of the basic

principles of science:
• Postulate the basic laws—they are supposed to hold for all time and in all

places.
• Calculate the consequences.
• Perform experiments or observations to verify the predictions. Successful

verification does not constitute a “proof” of the law but failure to verify might
constitute a disproof (if all the loopholes in the logic have been plugged).
The philosophical study of our sources of knowledge is known as epistemol-

ogy. Since the laws of physics are supposed to be invariant over all time and space
we could say loosely that physics espouses a Platonian view of knowledge in which
the “laws” are there and fixed and it is up to us to discover them, usually in some very
pure mathematical form.

• The advantage of having such laws available is that because they are suppos-
edly invariant over time and space one may be able to make predictions for
circumstances that have never been observed before—we call this extrapola-
tion.
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• The disadvantage is that sometimes the calculations directly from the laws (or
“first principles” as it is often called) may be so complicated or take so long
as to be impractical.

The barrier that often presents itself is one of computational complexity. As a
simple example consider the protein-folding problem. A big protein has thousands
of constituent atoms and we might know its atomic structure exactly. The biological
action of the protein is what we would like to predict. Now if you were to hold the
protein by both ends and let go it would collapse into something that on the right
scale would look like a tangled ball of wool. The biological action of the protein is
largely determined by what is left on the outside of the ball of wool. So the problem
is simple: we know the effects of atomic bonds, we know the structure so let’s just
plug all this into a computer program and compute the folded structure. That sounds
good, but except for fairly small molecules it can’t be done—the program takes too
long to run. But things are even worse than this!

Indeed even without the Heisenberg uncertainty principle (which says you
cannot measure both the position and momentum of a particle with an arbitrary
degree of precision) the universe a la Newton really contained the seeds of its own
destruction. Even if you know all the initial conditions of some quite simple chaotic
process exactly, then the amount of computation required to predict a long way into
the future with the fastest computer one could imagine would still require a time
greater than the estimated life expectancy of the universe.

This is the first lesson of chaos. An example is the weather—where we know
all the laws and can measure to our heart’s content but we cannot even predict
reliably several days into the future, let alone several months. But there are other,
more pragmatic, approaches. When we talk about “predicting the future” in this
context we have a rather cavalier approach in mind—a kind of opportunistic
epistemology which runs more along the following lines

• A model is “good” just as long as it is predicting well. When it stops predicting
well, we just try to build another model.

This is because we come at the question of prediction from an artificial
intelligence perspective. What we need are predictive models which work and
which can be computed rapidly. Of course, the extent to which economic or
sociological models discovered by application of tools such as the Gamma test are
truly scientific depends on the context.

CONCLUSIONS
The Gamma test is an interesting new tool for model discovery and these ideas

have already been used in diverse applications. Examples are:
• Chuzhanova, Jones and Margetts (1998) use the Gamma test to produce a fast

algorithm for feature selection and hence classifications of the large subunits
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of ribosomal RNA according to RDP (Ribosomal Database Project) phyloge-
netic classes. In plain language:  to quickly recognise the species described by
a DNA sequence.

• Connellan  and James (1998) and James and Connellan (2000), use the Gamma
test to model short term property prices based on the time series of valuations
and 15-year gilts (British Government Securities).

• Oliveira (1999) shows how these techniques can be used to extract digital
signals masked by a chaotic carrier.

• We are developing the application of these ideas to a Modular Automated
Prediction and Flood Warning System (MAPFLOWS) for the non-linear
modelling of river systems.

• We expect to see them applied to many other problems of prediction and
control.
One very interesting and potentially extremely beneficial application of these

ideas, and other techniques for dealing with discrete input and output variables, is
to large medical databases. A not inconsiderable problem in this respect is that even
anonymised data is protected to an extent that hampers access for such blanket
research approaches.
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ENDNOTES
1 This process is known as the M-test
2. In practice on a 300 MHz PC with M ≈ 1000 and m ≈ 50 a single Gamma test

computation is complete within a few seconds.
3 The support is defined to be the set of points where the probability density

function is non-zero.
4 A formal proof of the method also requires that both the third and fourth

moments of the noise distribution are finite.
5 In practice we consider the possibility that several points may be equidistant

from a given point and maintain the index N[i,k] as a list where each of these
points are considered to the kth nearest neighbour of the given point. This is
done in order to detect unusual distributions of input data.

6. Note that y
N[i, k]

 is not necessarily the kth nearest neighbour of y
i
.

7. Of course, other metrics are possible and which is most effective may be
problem dependent, but since any two metrics in a finite dimensional space are
equivalent to within a positive constant, the asymptotics of interest are

ˇ
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essentially invariant with respect to a change of metric.
8 The condition requires that for some fixed p, 0 < c < 1 such that

δ
M
(1)/δ

M
(p) ≤ c < 1 as M → ∞.  This enforces a reasonable “spread” of the δ

M
(k)

values.
9 This is certainly the case for a smooth positive sampling density ϕ over C.
10 To perform a full search of 10 inputs requires 1,023 Gamma test experiments,

whereas 1,048,575 experiments are required for 20 inputs.
11 A 1 in the mask indicates the inclusion of the input in the calculation and a 0

indicates exclusion.
12 See http://www.cs.cf.ac.uk/wingamma for more information about

winGamma™.
13 This name is of Icelandic extraction and so the first name must be given in full.
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Feed forward neural networks or multilayer perceptrons have been
successfully applied to a number of difficult and diverse applications by
using the gradient descent learning method known as the error
backpropagation algorithm. However, it is known that the backpropagation
method is extremely slow in many cases mainly due to plateaus. In data
mining, the data set is usually large and the slow learning speed of neural
networks is a critical defect. In this chapter, we present an efficient on-line
learning method called adaptive natural gradient learning. It can solve
the plateau problems, and can be successfully applied to the learning
associated with large data sets. We compare the presented method with
various popular learning algorithms with the aim of improving the
learning speed and discuss briefly the merits and defects of each method
so that one can get some guidance as to the choice of the proper method
for a given application. In addition, we also give a number of technical
tips, which can be easily implemented with low computational cost and
can sometimes make a remarkable improvement in the learning speed.
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INTRODUCTION
Neural networks are one of the most important methodologies in the field of

data mining and knowledge discovery, in which one needs to extract abstract
knowledge such as rules or consistent properties from large data sets. With a large
data set, one sometimes wants to find a functional mapping from input to output in
order to give a prediction for a new input. On the other hand, one sometimes wants
to cluster enormous amounts of data into several groups in order to get some
information about the distributions of the data sets. Neural networks can manage
such tasks well through the “learning process.”  Even though there are various neural
network models, the multilayer perceptron (MLP) is one of the most popular models
and so has been widely used for a variety of applications. In addition, it is also
theoretically proven that MLP with one hidden layer can approximate any continu-
ous function to any desired accuracy (Cybenko, 1989). In practical situations,
however, those who are trying to use MLP as an application tool are often
disappointed by the low learning performance such as poor generalization and slow
convergence. In most cases, the low learning performance is caused by the use of
a network with a bad structure or by the use of an inappropriate learning algorithm.

Following the development of the backpropagation learning algorithm
(Rumelhart & McClelland, 1986), the MLP has been successfully applied to various
fields of application such as pattern recognition, system control, time series
prediction as well as data mining (Haykin, 1999; Michalski, Bratko, & Kubat,
1998). However, its slow learning speed has been a serious obstacle when used for
real-world applications. Many studies have tried to solve this problem. Some of the
studies are based on simple heuristics, while others are theoretical in nature. Even
though there is little theoretical justification in the heuristic solutions, they are
simple to apply and perform well in many cases. On the other hand, the theoretically
inspired methods can give rigorous proof about their theoretical learning efficiency.
However, they are sometimes too complex to apply to practical applications. Thus,
it is important to select a method that is appropriate for an application in order to
succeed.

In this chapter, we focus on the problem of slow convergence and propose a
solution especially for learning using large data sets. We present an efficient
learning method called adaptive natural gradient learning, which has been recently
developed by Park, Amari, and Fukumizu (2000). We also give a number of
technical tips for training MLP, which can be easily combined with general learning
algorithms and the adaptive natural gradient learning method. In addition, we
compare the adaptive natural gradient method with various popular learning
algorithms for improving the learning speed and give short comments on the merits
and defects of each method so that one can get some guidance towards choosing a
proper method for a given problem.

In the Background section, we start our discussion by describing the structure
of MLP and its learning process. In the section on How to Train Networks, we
present simple tips for when designing MLP and explain various methods for
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accelerating the learning speed including the adaptive natural gradient learning
method. In the Future Trends section, we mention current trends and some
interesting issues relating to the learning of neural networks. Some brief discussion
and conclusions are stated in the Conclusions section.

BACKGROUND

Network Model
The overall architecture of MLP is shown in Figure 1, which can be defined by

(1)

(2)

where y
k
 is the output value of k-th output node, x

i
 is the input value of i-th input node,
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weight parameter from the j-th hidden node to the k-th output node, b
j
 is the bias to

the j-th hidden node, and d
k 
is the bias to the k-th output node. All of these parameters

are represented by the vector θ, for simplicity. The functions ϕ
o
 and ϕ

h
 are the

activation functions for hidden nodes and output nodes, respectively. The network
has N input nodes, M hidden nodes in one hidden layer, and L output nodes. We are
focusing on the model with only one hidden layer for simplicity, even though most
methods presented in this chapter can be used for more general models. Theoreti-
cally, MLP with one hidden layer has been proven to have universal approximation
ability (Cybenko, 1989).

Now, let us talk about the learning of the network. The multilayer perceptrons
are trained by a supervised learning scheme, which means that the desired output y*
for a given input x is presented as learning data of the form (x,y*). More formally,
given a learning data set D = {xp,(y*)p}

p=1,...,P
  with P observations, the goal of

learning is to find an optimal function mapping f(x,θ*), which predicts desired
outputs for given inputs. To this end, we first need to define an error function E(θ)
that measures the goodness of the outputs of the network function f(x,θ) specified
by the current parameter θ. Then the learning is a process of searching for an optimal
parameter  that minimizes the value of the error function E(θ), starting from an initial
parameter θ

1
  in the parameter space.

The search process proceeds step by step, according to a learning algorithm. At
each step, we need to decide the direction and the amount of movement for
parameter θ. The equation of one-step movement of the parameter at time t can be
written by

θ
t+1

=θ
t
+∆θ

t
(3)

∆θ
t
= η

t 
d

t
(4)

where d
 t
  is the search direction, and the learning rate  η

 t
  is the amount of movement

at that step. In gradient descent learning, the search direction d
 t
 is determined

according to the negative derivative of the error function —E(θ).  Thus, the standard
rule for updating parameters in the gradient descent method is expressed by the
form,

θ
t+1

= θ
t
−η

t
∇Ε(θ

t
). (5)

From Equation 5, we can sense the problem of the gradient descent learning method.
Since the search direction is mainly dependent on the gradient of the error function,
the size of update is very small in the region where the error surface is flat. Such a
flat region in the error surface is called a plateau, and so the problem of slow learning
convergence in the gradient descent method is called the plateau problem.

The overall process for designing a neural network system is illustrated in
Figure 2. First, we are given a large data set, in which each piece of data consists of
an input vector and an output vector. Then, we need to transform the data set into
a suitable form for learning by a neural network, the process of which is usually
called the preprocessing stage. With the preprocessed data set, the next stage is to
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determine the detailed structure of the network to be trained. For example, we need
to determine the number of hidden layers and hidden nodes, the form of the
activation function of the nodes, and so on. We then define the goal of learning,
namely, the error function, under the determined architecture. Finally, after taking
a starting point of the learning through an initialization process of parameters, the
network starts the search process, using a learning algorithm. After this whole
process is finished successfully, we expect the network to produce an appropriate
function mapping.

HOW TO TRAIN NETWORKS
In this chapter, we are concentrating on the learning algorithm based on the

gradient descent method. There are many variations of the gradient descent method
depending on how the derivative of the error function is used and how the learning
rate is determined, and thus we can expect to improve the learning speed by selecting
a method in a suitable way. In this section, we will briefly describe some of the
popular learning methods, discuss their characteristics, and finally give an efficient
learning method for the problem of large data sets. In addition, we should note that
there are some other important factors to be considered when improving the learning
performance. In some cases, handling of these factors in an appropriate manner can
give remarkable improvement with small computational cost. Thus, before discuss-
ing learning algorithms, we present a number of useful technical tips for preparing
for the actual learning process.

Preparation for Learning

Data Preprocessing
We can expect remarkable improvement of the learning speed just by trans-

forming given raw data into appropriate values for learning. If the range of input

Figure 2: Overall process of designing a neural network system
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values of the raw data set is too wide, then the search space for the weight parameter
becomes large and it will take a significant amount of time to find an optimal
parameter. On the other hand, if the range is too narrow, it can make the adjustment
of parameter values difficult. Moreover, if the range of values corresponding to each
input node is much different from the others, then the influence of each input node
on each hidden node differs, which also can make the learning process difficult.
Therefore, it is necessary to transform the values of input nodes so that they exist in
the same range. The most basic and popular method is to standardize the input data.
The following algorithm can achieve this.

1. For a given data set D = {xp,(y*)p}
p=1,...,P

  with P observations, calculate the
sample mean µ

i 
and the standard deviation σ

i 
for each element x

i
 (i=1,...,N) of

the input vector by using

 (6)

 (7)

2. For each element of each data input (xp(p=1,...,P), transform it to generate a
new value by

(8)

Then we use the transformed data xp as the input data for learning instead of the raw
data xp. However, we should note here that we apply the same transformation
process to the new data as used for testing the network trained by the transformed
data. For this purpose, the mean and the standard deviation need to be stored for each
variable. The effect of this preprocessing is shown in the section on Computational
Experiments.

For the output nodes, on the other hand, there are two cases to be considered
separately. In the case of continuous output values, no special transformation is
necessary except when the desired output values are too large or their variance is too
small. In these cases, the standardized transformation technique used for the input
values above may give a better representation for the output values. However, in the
application of data mining and pattern recognition, the final outputs are often
nominal, indicating the class that the input data belongs to. In this case, 1-of-L code
scheme is used for making a proper output representation. If the number of classes
is L, then the number of output nodes should be L. The value of the k-th output node
is one only when the input data belongs to the k-th class and is zero otherwise.
Besides the above two cases, we should note that the value of the output data is
sometimes closely related to the activation function of the output nodes, as we shall
explain in the next subsection.
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Definition of Network Architecture
Though there are many factors to be considered when designing a network

model, we consider only two factors in this section: the form of the activation
function and the number of hidden nodes.  For the activation function, the most
general one is a sigmoidal function, such as the logistic sigmoid and the hyperbolic
tangent function, but there are other special forms of activation function. The most
common activation functions and their characteristics are listed in Table 1.

Even though every sigmoidal function can be used for hidden nodes, LeCun,
Bottou, Orr, and Müller (1998) claim that the hyperbolic tangent is better than the
logistic sigmoid because it has a similar effect of standardizing input values to the
output nodes. With more specialized activation functions such as the circular
function (Ridella, Rovetta, & Zunino, 1997) or the second order function (Hassoun,
1995), we can expect better performance when the decision boundaries among
classes are complex. For the activation function of the output nodes, we need to
consider the type of output value and the type of error function, as we will discuss
later. In the case of continuous output values, the linear or identity function is
desirable. In the case of nominal outputs with 1-of-L coding, the sigmoidal function
with bounded range is recommended. In addition, if one uses the cross entropy error
function, it is required to use the softmax activation function for output nodes so as
to force the sum of values for all output nodes to be one. The formal definition of
the softmax function is shown in Table 1.

Another important factor in defining the network architecture is the number of
hidden nodes. Unfortunately, there is no clear guide for determining this because it
is strongly dependent on the application and the learning data set. However, there
has been a significant amount of research carried out to determine the optimal

Table 1:  Common activation functions

Name Definition Derivative Properties of ϕ(u)
ϕ(u) ϕ'(u)

Identity Appropriate for output nodes
(Linear) u 1 of regression problems with

continuous outputs
Logistic
Sigmoid ϕ(u)(1−ϕ(u)) Bounded to (0,1)
Hyperbolic
Tangent (1+ϕ(u))(1−ϕ(u)) Bounded to (-1,1)
Softmax ϕ(u)(1−ϕ(u)) Appropriate for output nodes

of classification problem
with the cross entropy error
function

1
1 - e-u

eu - e-u

eu + e-u

eu
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number of hidden nodes. Methods such as pruning and growing can be well applied
when we need an optimal and compact architecture (Haykin, 1999), but they are
computationally costly and the implementation is not simple. In this section, we give
a theoretical result as a hint for determining the number of hidden nodes. Hassoun
(1995) showed that the lower bound for the necessary number of hidden nodes in a
one-hidden-layer MLP with the linear threshold activation function for classifying
two patterns of arbitrary shapes is P/(Nlog

2
(Pe/N)), where P is the number of

observations, e is the natural base of logarithms, and N is the number of input nodes.
From this result, we can get some hints as to the necessary number of hidden nodes.
If we have a large number of learning data sets and a small dimension of the input,
we may need many hidden nodes. On the contrary, with the same number of data sets
and a large input dimension, we may need a much smaller number of hidden nodes,
relatively speaking.

Definition of Error Function
It is also very important to choose an appropriate error function for a given

application. On the basis of the output values, most applications can be divided into
two types of problems: the regression problem and the classification problem. While
the regression problem such as function approximation, time series prediction or
non-linear system identification generally has continuous output values, the classi-
fication problem has nominal output values in general. From the statistical point of
view, these two types of problems should be described by strictly different
stochastic models, and thus we get different forms of error function from the
stochastic approach (Bishop, 1995). Since the details about the stochastic models
are beyond the purpose of this chapter, we only give the definition of error functions
appropriate for each problem so that they can be used for the practical implemen-
tation of learning.

For the regression problem with continuous output values, the sum of the
squared error (SE) function can be used successfully. The sum of the SE function
is defined by

    (9)

If we use the error function of Equation 9, then the whole data set needs to be shown
to the network for calculating the corresponding error value and the one-step
updating of parameters. This type of learning is called batch learning. However, we
can take on-line learning by updating the learning parameters whenever each point
of data is shown. For this case, the on-line version of the SE function is defined by

                (10)

On the other hand, for the classification problem with binary output (zero or
one), we need to consider a different type of stochastic model from that for the
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regression problem, and the cross entropy error function is obtained by using an
appropriate stochastic model (See Bishop, 1995, for details). In the section on
Computational Experiments, we show that the cross entropy error function gives a
better performance than the SE function. The cross entropy function for L classes
is defined by

 (11)

Its on-line version has the form of

  (12)

Note that when one uses the cross entropy function, the softmax activation function
should be used for output nodes in order to make the sum of values of all output nodes
to be one (Bishop, 1995).

Network Initialization
The starting point of learning also has some influence on the learning speed.

Unfortunately, however, it is difficult to find a good starting point for general
problems. The most common and safe but not so efficient method is just to initialize
all parameters as small random values extracted either from a normal distribution
with zero mean and small standard deviation, say, 0.1, or from the uniform
distribution with small interval, say, [-0.2, 0.2]. The reason why we prefer small
initial values is to avoid the node-saturation phenomena, which means that the input
to the activation function is so large and its derivative is almost zero. When a node
is saturated, the weights related to the nodes can hardly learn.

Learning Algorithms
In this section, we first give a number of widely used learning methods and

discuss their theoretical and practical characteristics. Especially for the learning
with large data sets, we present explicit algorithms of the adaptive natural gradient
learning method. Before going into the discussion on the explicit learning algo-
rithms, let us briefly mention two different learning modes: the batch learning and
the on-line learning. As shown in the definition of error functions of Equations 9 and
11 for batch mode and Equations 10 and 12 for on-line mode, the batch mode uses
the whole data set for one update, whereas the on-line mode uses just one piece of
data for each update. Since the goal of learning is to minimize the error for the whole
data set, the batch learning is more natural and stable. However, the batch mode
approach is often trapped in plateaus due to the stability. By taking the on-line mode,
we can bring stochastic randomness into the learning process to escape from
plateaus or some local minima (Saad & Solla, 1995; Fukumizu & Amari, 2000). In
addition, for the learning with large data sets, the batch mode takes a great deal of
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time for even a one-step update, and the batch mode could make the whole learning
very slow. Thus, practically, the on-line learning is more efficient in most cases,
even though there are some learning algorithms that can be used only for the batch
mode.

Heuristic Methods
Many heuristic methods have been developed from experimental or empirical

points of view to hasten the learning. Here, we explain three popular methods: the
momentum method, the adaptive learning rate method, and the local adaptive
learning rate method.

Let us start with the momentum method which is one of the simpler methods
to speed up the gradient descent learning. The learning rule is the same as the
standard gradient descent learning rule of Equations 3, 4, and 5, except that there is
an extra term of momentum that provides the information about the latest update of
parameters. The updated rule can be written as

(13)

 where (θ−θ
t-1

)  is called a momentum and α
t
 is a momentum rate usually chosen as

a small constant between 0 and 1. By adding the momentum term, we can expect to
accelerate the learning speed in the average downhill direction instead of fluctuating
with every change of sign of the associated partial derivative of the error function.

Another simple heuristic method is to use the adaptive learning rate. Even
though there are many different approaches to the adaptive learning rate, the basic
rule originates from the same concept as the momentum method. Let us describe a
very straightforward procedure where a learning rate is adapted according to the
change of error. The rule to adjust the learning rate can be explained using three sub-
rules.

1. If the error increases by more than a threshold value ξ, after a weight update,
then the weight update is discarded and the learning rate is decreased.

2. If the error decreases after a weight update, the update is accepted and the
learning rate is increased.

3. If the error increases by less than ξ, then the weight update is accepted but the
learning rate is unchanged.
Even though the use of the adaptive learning rate method and the momentum

method can, to some extent, improve the learning speed, they cannot avoid plateaus
because they basically use the same direction as that of the standard gradient descent
learning algorithm (Orr, 1995).

There is a slightly more sophisticated heuristic method called the local learning
rate adaptation, which uses a separate learning rate η

i
 for each parameter component

θ
i
. Although there exist a lot of algorithms that use the local learning rate, such as

the delta-bar-delta rule (Jacobs, 1988), RPROP (Riedmiller & Braun, 1992), and the
Quick propagation (Fahlman, 1990), the basic rule to update each learning rate is the
same as that of the adaptive learning rate method mentioned above. Unlike the
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adaptive learning rate method, the search directions given by this method can differ
significantly from that of the standard gradient descent learning method. However,
this method is still heuristic and there is no theoretical justification for using it.

Second Order Methods
The second order methods based on optimization theory use the Hessian matrix

H(θ), which is obtained from the second derivative of an error function (Equations
9 and 11) with respect to parameter θ, in order to use the curvature information of
the error surface during the learning. The basic and theoretic method is the Newton
method. It starts from the local quadratic approximation to obtain an expression for
the location of the minimum of the error function. When the error surface around an
optimal point is quadratic, the optimal point θ∗ can be obtained by just one update
of the form,

θ∗=θ−(Η(θ∗))−1∇Ε(θ),                        (14)

where Η(θ∗) is the Hessian at the optimal point, and needs to be approximated
through real implementation. In most practical problems, however, the error surface
is hardly quadratic, so the Newton method is efficient only around the optimal point.
Moreover, since the Hessian matrix is not always positive definite, it cannot
guarantee the convergence of the algorithm. From a practical point of view, the
calculation of the Hessian matrix and its inverse is very time-consuming, as well.

As a solution for the problem of computational cost, the Quasi-Newton method
iteratively computes an estimate  of the inverse of the Hessian directly by using only
the first-order derivative of the error function. The Broyden-Fletcher-Goldfarb-
Shannon (BFGS) method is the most successful and commonly used formula for
updating the estimate  at each learning step t (see Bishop, 1995; LeCun et al., 1998
for details of the method). Even though the Quasi-Newton method can reduce the
computational cost, it is still based on the quadratic approximation of the error
surface. Thus the Quasi-Newton method can also only achieve good convergence
around the optimal points where the error surface can be well approximated by the
quadratic form. Moreover, it can only be applied to batch learning because it is based
on the Hessian that gives the information of the surface of the error function for the
whole learning data. Therefore, the Newton method and Quasi-Newton method are
unsuitable for large data sets.

The more practically useful methods are the Gauss-Newton method and the
Levenberg-Marquardt (L-M) algorithm designed for minimizing the sum of the SE
function (Bishop, 1995). Even though there are theoretically more robust deriva-
tions of these methods, it is interesting to note the relationships with the basic
Newton method. The Gauss-Newton method uses an approximated form of the pure
Hessian of the sum of the SE function. The approximated Hessian is defined by

                   (15)
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where the function  specifies the mapping function of a neural network (refer
Equations 1 and 2). Therefore, the Gauss-Newton method can be written as

 (16)

The L-M method has almost the same formula except that it adds a small term λI to
the approximated Hessian in order to avoid too steep changes of the parameter
values. Note that these methods are designed for the sum of the SE function and are
appropriate for regression problems, and so they are not appropriate for the
classification problems. Like other second order methods using the Hessian, they
can only be applied for batch mode, which is not appropriate for the learning of large
data sets.

On the other hand, the conjugate gradient method (Press, Teukolsky, Vetterling
& Flannery, 1992) takes a slightly different approach but still uses second order
information. The basic concept is that the search direction at each step should be
given so as not to destroy the minimization at the previous step. To achieve this, we
create two successive search directions d

t
 and d

t+1
 to satisfy the condition defined by

                              (17)

If the two direction vectors satisfy the condition of Equation 17, then the two
directions are said to be H-conjugate to each other. Since the evaluation of H

t+1
 at

each step is computationally costly, several algorithms for calculating H-conjugate
directions without explicit knowledge of Hessian have been developed. The Polark
Riebiere method (Bishop, 1995), which is generally known to show good perfor-
mances, is given by

d
t+1 

= -∇Ε(θ
t+1

)+β
t
d

t
,    (18)

where

    (19)

Even though the conjugate gradient method has been applied to the training of MLP
with great success, it can only be applied to batch learning and needs the line search
method for the learning rate,  requiring high computational cost. Consequently, the
second order methods are only appropriate for problems with small networks and
small data sets requiring high accuracy, in general. On the contrary, it is not suitable
for the learning of large networks or data sets.

Natural Gradient Method
The natural gradient learning method, which is a kind of stochastic gradient

descent learning method, originated from information geometry (Amari & Nagaoka,
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2000). By considering the geometric structure of the space of learning systems such
as neural networks, the information geometrical approach gives a more appropriate
metric, the Fisher information metric, than the Euclidean metric. Theoretically, we
can calculate a gradient of any differentiable error function defined on the space
using this metric, and the gradient gives the steepest descent direction of the error
surface at any point on the space. This gradient is called the “natural gradient,” and
the natural gradient learning method can be obtained directly by using the natural
gradient instead of the ordinary gradient obtained by using Euclidean metric.

Several researchers have shown the ideal performances of the natural gradient
learning method. Amari (1998) showed that the natural gradient learning algorithm
gives the Fisher-efficient estimator in the sense of asymptotic statistics. Park and
Amari (1998) suggested that the natural gradient algorithm has the possibility of
avoiding or reducing the effect of plateaus. This possibility has been theoretically
confirmed by statistical-mechanical analysis (Rattray & Saad, 1999). Comparing
with the second order methods such as the Gauss-Newton method and the L-M
method, the natural gradient method can give a more general learning scheme in the
sense that it can be exploited for various error functions. Moreover, it has a
theoretically rigorous justification (Amari, Park & Fukumizu, 2000). Rattray and
Saad (1998) also analyzed the dynamics of a number of second order on-line
learning algorithms and the natural gradient learning algorithm, and showed the
superiority of the natural gradient learning method in the transient dynamics of
learning.

Let us start our explanation of the natural gradient learning algorithm through
its basic form. The update rule for parameters is written as

θ
t+1 

= θ
t
-η

t
(G(θ

t
))-1∇Ε(θ

t
). (20)

One can see that the rule is very similar to that of the Gauss-Newton method except
for the matrix part. The matrix G(θ

t
) is the well-known Fisher information matrix,

and its explicit form is determined by the stochastic model of the learning network.
(Since theoretical definition of the Fisher information matrix and the theoretical
derivation of the natural gradient learning method is beyond the scope of this
chapter, please see Amari, 1998; Amari et al., 2000 and Park et al., 2000 for details.)

The problem of the pure natural gradient method is that it is almost impossible
to obtain the explicit form of the Fisher information matrix and its computational
cost is very high. Accordingly, it is required to find an estimate of G(θ

t
), and the

method of estimation could be different depending on the stochastic model assumed
for learning system. Recently, Amari et al. (2000) developed an adaptive method of
realizing the natural gradient learning for MLP, which is called the adaptive natural
gradient descent method. Park et al. (2000) extended it to a general stochastic neural
network model. In this chapter, based on the results of Park et al. (2000), we give
the explicit algorithms of the adaptive natural gradient learning method for two error
functions, the squared error function and the cross entropy error function.

The algorithm for the squared error function can be implemented by the
following steps:
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1. Choose an initial parameter vector θ
1
 of small values randomly, and set the

initial estimate of the Fisher information matrix G
0
 as the identity matrix.

2. For each learning data (x
t
,y

t
*) and the current learning parameter, calculate the

output of the network,y
k
=f

k
(x

t
, θ

t
), (k=1,...,L).

3. Calculate the current error E(θ
t
) using the on-line definition of the squared

error function written in Equation 10. If the error satisfies the terminating
condition, then stop the learning process; otherwise proceed to the next step.

4. Update the estimation of the inverse of the Fisher information matrix using
Equations 21 and 22,

     (21)

     (22)

where ε
t
 could be a small constant c or c/t.

5. Update the current parameter using the updating rule of Equation 23,

    (23)

where the learning rate η
t
(<<1) can be chosen as a small value.

6. Go to step 2.

For the cross entropy error function, the overall process is the same as that for
the squared error function except for just two steps. In Step 3, the cross entropy error
function of Equation 12 should be used instead of the squared error function. In Step
4, the estimation of the inverse of the Fisher information matrix should be calculated
using Equations 24 and 25.

(24)

(25)

Note that one needs to use the softmax activation function for output nodes when
learning with the cross entropy error function.

Compared to the standard gradient descent method and heuristic methods, the
computational cost of the adaptive natural gradient descent method is high.
However, since it can be applied to the on-line learning mode, it could be a good
solution for the learning of large data sets and small size of network.

COMPUTATIONAL EXPERIMENTS
We conducted computational experiments for showing the efficiency of the

adaptive natural gradient learning algorithm and some techniques mentioned above.
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Since we are focusing on the problem including large data sets, we used only the on-
line learning that is suitable for large data sets. Even though we presented various
tips and learning algorithms in the previous section, we are focusing on showing the
performance of the adaptive natural gradient learning method which has been
recently developed, and showing how simple tips improve the learning speed, which
is often ignored. The problem used is the thyroid disease problem, which is one of
the well-known benchmark problems and can be obtained from the UCI machine
learning repository (http://www.ics.uci.edu/~mlearn/MLRepository.html). The task
is to determine whether or not a patient referred to the clinic is hypothyroid. Three
classes are built: normal(not hypothyroid), hyperfunctioning, and subnormal func-
tioning. Each observation has 21 attributes. Fifteen of these attributes have binary
values, and the others have continuous values. The number of data points for the
training set is 3,772, and the number of data points for the test set is 3,428.

The details of the network used are as follows: 21 input nodes, 5 hidden nodes
in one hidden layer, 3 output nodes, and 1-of-3 coding scheme for the output.
Considering the generalization performance we tried to use as small a number of
hidden nodes as possible so that we can obtain the desirable training error. We
exploited four approaches to the problem to compare the performance according to
the various techniques as stated above. We conducted ten independent trainings for
each approach with different initial values to get average results. The approaches
that we chose are as follows:

Approach A: Raw input data + Squared error function + Basic updating rule
Approach B: Preprocessing for input data + Squared error function +Basic
updating rule
Approach C: Preprocessing for input data + Cross entropy error function +
Basic updating rule
Approach D: Preprocessing for input data + Cross entropy error function

+ Adaptive natural gradient algorithm with periodical update of the
 matrix G

t
-1

The basic learning rule is the standard gradient descent learning algorithm
defined by Equation 5 with a constant learning rate. The learning rate for each
algorithm is optimized to get the fast convergence and the high success rate
empirically. We terminated the learning process when the sum of SE was smaller
than  10-3 or when the number of the learning cycle exceeded 50,000. We regarded
the learning task as a failure if the error did not fall below  10-3 before 50,000 cycles.
The results of each approach are described in Tables 2, 3, 4, and 5, respectively. The
relative processing times in the tables mean that the processing time for each trial
of each approach divided by the processing time for a trial of approach A. The results
showed that some techniques for learning can give remarkable improvements in the
learning speed and that the adaptive natural gradient descent learning algorithm has
the practical advantage, especially.

ˆ
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Table 2:  Results for Approach A

Approach training learning relative classification classification
A error cycles processing rate for rate for

 time   training data   test data
Trial 1 0.0039 50000 (fail) 1.0 99.44 98.25
Trial 2 0.0039 50000 (fail) 1.0 99.28 97.96
Trial 3 0.0034 50000 (fail) 1.0 99.52 98.63
Trial 4 0.0037 50000 (fail) 1.0 99.31 97.99
Trial 5 0.0038 50000 (fail) 1.0 99.34 98.07
Trial 6 0.0042 50000 (fail) 1.0 99.28 98.13
Trial 7 0.0035 50000 (fail) 1.0 99.44 97.99
Trial 8 0.0035 50000 (fail) 1.0 99.36 98.13
Trial 9 0.0038 50000 (fail) 1.0 99.47 98.16
Trial 10 0.0037 50000 (fail) 1.0 99.34 97.93
Average
over No No No No No
success success success success success success
Best result 0.0034 50000 1.0 99.52 98.63
Rate of
success 0/10

Table 3:  Results for Approach B

Approach training learning relative classification classification
B error cycles processing rate for rate for

 time   training data   test data
Trial 1 0.0010 8123 0.16 99.84 98.67
Trial 2 0.0010 41844 0.84 99.79 98.51
Trial 3 0.0010 9814 0.20 99.84 98.63
Trial 4 0.0010 9088 0.18 99.84 98.80
Trial 5 0.0010 7025 0.14 99.84 98.60
Trial 6 0.0010 13667 0.27 99.84 98.63
Trial 7 0.0013 50000 (fail) 1.00 99.76 98.37
Trial 8 0.0012 50000 (fail) 1.00 99.79 98.57
Trial 9 0.0010 15941 0.32 99.81 98.71
Trial 10 0.0010 7840 0.16 99.84 98.89
Average
over success 0.0010 14168 0.28 99.83 98.69
Best result 0.0010 7025 0.14 99.84 98.89
Rate of
success 8/10
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Table 5:  Results for Approach D

Approach training learning relative classification classification
D error cycles processing rate for rate for

 time   training data   test data
Trial 1 0.0010 81 0.04 99.89 98.63
Trial 2 0.0010 150 0.07 99.87 98.16
Trial 3 0.0010 84 0.04 99.92 97.93
Trial 4 0.0010 92 0.04 99.87 98.72
Trial 5 0.0010 135 0.06 99.84 98.25
Trial 6 0.0010 215 0.09 99.84 98.20
Trial 7 0.0010 57 0.02 99.87 98.10
Trial 8 0.0010 53 0.02 99.87 98.60
Trial 9 0.0010 42 0.02 99.87 98.63
Trial 10 0.0010 65 0.03 99.89 98.72
Average
over
success 0.0010 97 0.04 99.87 98.39
Best result 0.0010 42 0.02 99.92 98.72
Rate of
success 10/10

Table 4:  Results for Approach C

Approach training learning relative classification classification
C error cycles processing rate for rate for

 time   training data   test data
Trial 1 0.0010 962 0.09 99.76 98.51
Trial 2 0.0010 1875 0.04 99.87 98.75
Trial 3 0.0010 1285 0.59 99.84 98.45
Trial 4 0.0010 3294 0.07 99.87 98.60
Trial 5 0.0010 7440 0.15 99.84 98.16
Trial 6 0.0010 4348 0.09 99.87 98.37
Trial 7 0.0010 1531 0.08 99.84 98.60
Trial 8 0.0010 26638 0.53 99.84 98.37
Trial 9 0.0010 3546 0.07 99.84 98.40
Trial 10 0.0011  50000 (fail) 1.00 99.81 98.42
Average
over
success 0.0010 5658 0.19 99.84 98.47
Best result 0.0010 962 0.04 99.87 98.75
Rate of
success 9/10
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FUTURE TRENDS
The neural network models and their learning algorithms can be explained and

investigated from various points of view. For example, by considering a neural
network as a stochastic model, we can discuss its learning based on the statistical
estimation theory. Bishop (1995) showed how the statistical theory can be applied
to neural networks and their applications. The dynamics of learning can be also
analyzed by statistical mechanical methodology. Saad and Solla (1995) gave a set
of first-order differential equations that describe the dynamical evolution of the
overlaps among hidden nodes. By simulating the dynamical equations, they claim
that all hidden nodes try to learn the same weight values in the early stage of learning,
and this phenomenon is a main reason for the plateaus. In addition, a geometrical
approach for analyzing the characteristics of the neural manifold has been studied.
Fukumizu and Amari (2000) showed that plateaus and local minima exist in the sub-
manifold of a neural manifold, in which more than two hidden nodes have the same
weight values. In the future, the combination of research from various fields may be
essential in order to make a breakthrough in the field of neural networks.

On the other hand, even though we concentrate on the methods for accelerating
the learning speed, there is another important point to be considered. We should note
that the ultimate goal of learning is not to minimize the training error, but to
accurately predict an output for a newly given input. Namely, we need to minimize
the generalization error, not the training error, through the learning process. This
kind of problem is called the generalization problem or model selection.

Considering the generalization problem, we first need a criterion of generali-
zation performance of neural networks. Murata, Yoshizaka, and Amari (1994)
proposed the network information criterion (NIC) for determining the number of
hidden units of a neural network that maximizes the generalization performance.
Mackey (1992) proposed a somewhat different criterion for stochastic models,
which is called the Bayesian evidence. A more practical and popular method is to
use some validation data that has not been used in the learning to estimate the
generalization error of learning networks (Haykin, 1999; Larsen, Svarer, Andersen
& Hansen, 1998).

We also need to consider how to achieve a good neural network model based
on a criterion mentioned above. One simple method is the early stopping, which tries
to stop learning before a learning network is overtrained by noisy training data
(Haykin, 1999; Prechelt, 1998). Another method for achieving the good generali-
zation performance through learning is the regularization method (Bishop, 1995;
Sigurdsson, Larsen, & Hansen, 2000). By adding some extra terms to the standard
error function we can expect to get a smooth mapping function. On the other hand,
we can also change the number of hidden nodes during or after the learning. The
growing method is to grow the network structure until we get a desirable error. The
cascade correlation method (Fahlman & Lebiere, 1990) is one of the well-known
growing methods. On the contrary, the pruning method is to delete unnecessary
parameters from a trained network. Since the Optimal Brain Damage (LeCun,
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Denker & Solla, 1990) and the Optimal Brain Surgeon (Hassibi, Stork, & Wollf,
1992) were developed, there has been much study to extend or to improve them
(Haykin,1999; Laar & Heskes, 1999). In future research, it is necessary and
important to consider these issues together with learning efficiency in order to get
a total solution for learning machines. Finally, the hardware implementation of
neural networks is also an important issue for future studies.

CONCLUSIONS
In this chapter, we consider the training of neural networks with large data sets,

which often occurs in the field of data mining, and give explicit algorithms of the
adaptive natural gradient learning as a solution. In addition, we also explain various
heuristics and methods for accelerating the learning speed of MLP. It should be
noted that there is no best method from the overall viewpoint because all of them
have their own merits and defects. We finally summarize the tips for selecting a
suitable method according to the characteristics of the problems to be solved.

1. For a given data set, we need some preprocessing. Use 1-of-L coding scheme
for output data in the case of a classification problem. Transform the input data
by using Equations 6, 7 and 8. Make sure that the same preprocessing is applied
to the test data.

2. Choose an error function suitable for the given application. In the case of the
regression problem, such as the prediction of stock prices, use the sum of the
SE function. In the case of the classification problem, such as ranking
consumers’ levels, the cross entropy error function is better. The learning
scheme needs to be decided at this stage, but generally the on-line learning is
recommended.

3. Choose the number of hidden nodes by considering the number of input nodes,
the number of output nodes, and the number of observations. Generally, the
necessary number of hidden nodes is proportioned to the number of training
data and output nodes, whereas it is proportioned reciprocally to the number
of input nodes.

4. Choose an activation function. For the hidden nodes, any of the sigmoidal
activation functions can be used. For the output nodes, however, if the output
values of learning data are continuous, one should use the linear activation
function. If the output values are binary, the sigmoidal activation function is
better. Note that the softmax activation function should be used when the cross
entropy error function is exploited.

5. Initialize network parameters with small random values.
6. Choose a learning algorithm. If the network is large and the learning data set

is small, the standard gradient descent method with the momentum term or the
adaptive learning rate may give a reasonable convergence speed. However,
when the size of a network is small, more sophisticated methods such as the
second order methods and the adaptive natural gradient methods are better.



Learning With Large Data Sets        205

Especially when the data set is large, the adaptive natural gradient method is
a better choice.
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Cluster analysis is a common market segmentation technique, usually
using k-means clustering. Techniques based on developments in compu-
tational intelligence are increasingly being used. One such technique is
the theory of rough sets. However, previous applications have used rough
sets techniques in classification problems, where prior group member-
ship is known. This chapter introduces rough clustering, a technique
based on a simple extension of rough sets theory to cluster analysis, and
applicable where group membership is unknown. Rough clustering solu-
tions allow multiple cluster membership of objects. The technique is
demonstrated through the analysis of a data set containing scores on
psychographic variables, obtained from a survey of shopping orientation
and Web purchase intentions. The analysis compares k-means and rough
clustering approaches. It is suggested that rough clustering can be
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considered to be extracting concepts from the data. These concepts can be
valuable to marketers attempting to identify different segments of con-
sumers.

 INTRODUCTION
Cluster analysis has been a fundamental technique in marketing research for

many decades, both as a general data reduction technique and as the basis for market
segmentation (Arabie & Hubert, 1994; Punj & Stewart, 1983). While there are
numerous ways to undertake market segmentation, the grouping of similar objects
through cluster analysis remains one of the fundamental starting points. In market-
ing research, objects are usually the measured demographic or psychographic
characteristics of consumers. Forming groups that are homogenous with respect to
these measured characteristics segments the market. One psychographic measure
often used in segmentation studies is shopping orientation.

Consumers go shopping for a variety of reasons, not just for the procurement
of goods (Tauber, 1972). Reasons may include social interaction, sensory stimula-
tion, role enactment, and physical exercise, to name a few (Tauber, 1972). The
psychographic characteristic of shopping orientation refers to the general predispo-
sition of consumers toward the act of shopping and has been used to partially explain
retail shopping behaviour (Dholakia, Pedersen & Hikmet, 1995). Six core shopping
orientations have been identified in the published marketing literature: economic,
recreational, apathetic, convenience-oriented, ethical, and personalising (Brown,
1999).

Economic shoppers are essentially concerned with buying products at the
lowest price or getting the best value for the money they spend (Bellenger &
Korgaonkar, 1980; Shim & Mahoney, 1992). Recreational shoppers enjoy the act
of shopping regardless of whether a purchase is made or not (Bellenger &
Korgaonkar, 1980). Apathetic or inactive shoppers are mostly interested in mini-
mizing shopping effort (Darden & Reynolds, 1971). Convenience-oriented shop-
pers are those under time constraints and possibly also under space and effort
constraints (Gehrt, Yale & Lawson, 1996). Ethical shoppers can be distinguished by
their loyalty, with studies investigating store loyalty, brand loyalty, or both (Darden
& Reynolds, 1971). Personalizing shoppers demonstrate a propensity to value
relationships with suppliers (Darden & Reynolds, 1971; Peppers & Rogers, 1997).

The starting point for many of these market segmentation studies has been
cluster analysis. Many clustering methods have been identified, including partition-
ing, hierarchical, nonhierarchical, overlapping, and mixture models (Arabie &
Hubert, 1994; Hair, Anderson, Tatham & Black, 1998). One of the most commonly
used nonhierarchical methods is the k-means approach. This approach will be
considered in more detail in the following section.

In the last few decades many new techniques based on developments in
computational intelligence have started to be more widely used as clustering
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algorithms. For example, the theory of fuzzy sets developed by Zadeh (1965)
introduced the concept of partial set membership as a way of handling imprecision
in mathematical modeling. Hruschka (1986) has applied the theory to market
segmentation. Neural networks, another technique from computational intelli-
gence, have also been applied to a range of marketing problems (Mazanec, 1992;
Venugopal & Baets, 1994). A third technique from computational intelligence
currently receiving considerable attention is the theory of rough sets (Pawlak, 1981,
1982).

Rough sets theory is also being applied to an increasing number of marketing
problems (Kowalczyk & Slisser, 1997; Van den Poel & Piasta, 1998). In these
papers, the technique has been used in classification problems, where prior group
membership is known, and results are usually expressed in terms of rules for group
membership (Pawlak, 1984). This chapter introduces rough clustering, a new
technique based on a simple extension of rough sets theory, and applicable where
prior group membership is not known. The technique is demonstrated through the
analysis of a data set containing 437 responses to an Internet-based survey investi-
gating purchase intentions and behaviour over the Web (Brown, 1999). The
example uses five psychographic variables relating to measures of shopping
orientation. The results of this analysis are compared with the results of a standard
nonhierarchical clustering method using k-means.

The following Background section presents an overview of issues in cluster
analysis in marketing research, a brief overview of the k-means approach, a more
extended introduction to rough sets theory, and an introduction to rough clustering.
The Results section of the chapter presents the results of the k-means and rough
clustering approaches. The Conclusion compares the results of both clustering
approaches and outlines some possible extensions.

BACKGROUND

Cluster Analysis in Marketing Research
Cluster analysis is an important area of application in both marketing research

and data mining. Hartigan (1975, p. 1) offered an early definition of clustering as
“the grouping of similar objects.”  A more comprehensive definition is provided by
Hair et al. (1998, p. 470): “Cluster analysis groups individuals or objects into
clusters so that objects in the same cluster are more similar to one another than they
are to objects in other clusters.” There is an extensive literature on cluster analysis
in marketing. [For comprehensive review see, for example, Arabie and Hubert
(1994) and Punj and Stewart (1983).]

A common application of cluster analysis is the segmentation of a market by
identifying homogeneous groups of buyers (Beane & Ennis, 1987; Punj & Stewart,
1983). Market segmentation has been a central idea in marketing theory and practice
since the introduction of the concept by Smith (1956). Smith recognized the
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existence of heterogeneity in the market demand for goods and services and viewed
this heterogeneous market as consisting of a number of smaller homogeneous
submarkets. These submarkets consist of groups of consumers who respond
differently to the marketing mix (Dickson & Ginter, 1987; Mahajan & Jain, 1978;
Wind, 1978). Wind (1978) identified many of the problems of market segmentation
and concluded that clustering was the principal method for identifying homoge-
neous subgroups of consumers within a market. Marketing applications of cluster
analysis include studies of price sensitivity (Blozan & Prabhaker, 1984), patterns of
information search (Furse, Punj & Stewart, 1984), brand loyalty and brand switch-
ing (Grover & Srinivasan, 1992), and consumer choice models (Currim & Schneider,
1991).

Non-Hierarchical Cluster Analysis
Traditionally, non-hierarchical methods of cluster analysis in marketing have

been based on the k-means approach (MacQueen, 1967). Data points are randomly
selected as initial seeds or centroids, and the remaining data points are assigned to
the closest centroid on the basis of the distance between them. The aim is to obtain
maximal homogeneity within subgroups or clusters and maximal heterogeneity
between clusters.

Consider a data matrix with M cases (1  ≤ i  ≤ M) and N variables (1≤  j ≤ N),
with the ith case of the jth variable having value R ( i, j ). The partition of this data
matrix obtained by the cluster analysis, P (M, K), contains K clusters. Each of the
M cases lies in only one of the K clusters. Let N (k) denote the number of cases in
cluster k, and C(k, j) denote the mean of the jth variable over the cases in the kth cluster.
The (Euclidean) distance, D, between the ith case and the kth cluster is defined as:

The error of the partition is:

where k( i ) is the cluster containing the i th case. The usual approach is to search for
a partition with small e by moving cases from one partition to another (Hartigan,
1975).

The search through the problem space to find the lowest value of e is considered
computationally expensive and traditionally local optimization has been used. The
number of clusters in each partition is decided prior to the analysis, and centroids
are selected as the initial estimates of cluster centres. Objects in the data set are
allocated to the closest cluster (usually using the Euclidean distance), the cluster
centroid is often updated after each object is added, and the process continues until
the local minimum for e [P ( M, K)] is found. The partition obtained is not necessarily
the global minimum of e. K-means cluster analysis has been shown to be both robust

e P M k D i k i
i

M

[ ( , )] [ , ( )]= ( )
=
∑ 2

1

2
1

1

2)],(),([),( 







−= ∑

=

N

j

jkCjiRkiD



212  Voges, Pope and Brown

and less affected by data idiosyncrasies than hierarchical clustering techniques
(Punj & Stewart, 1983). Despite this, the approach suffers from many of the
problems associated with all traditional multivariate statistical analysis methods.
These methods were developed for use with variables which are normally distrib-
uted and which have an equal variance-covariance matrix in all groups. In most
realistic marketing data sets, neither of these conditions necessarily holds.

In an attempt to overcome the limitations of these conditions, other approaches
to data analysis have been used. These approaches are often used in data mining and
are of increasing importance in marketing (Berry & Linoff, 1997; Voges, 1997;
Voges & Pope, 2000). Most of the techniques have been derived from advances in
computational intelligence. The major advantage of such techniques is that most of
them make few assumptions about the statistical characteristics of the data being
analysed. This paper explores the application of one of these new techniques, rough
sets, to cluster analysis.

Rough Sets
The concept of rough or approximation sets was introduced by Pawlak (1981,

1982, 1984, 1991) and is based on the assumption that with every record in the data
matrix (in rough set terminology, every object of the information system) there is
associated a certain amount of information. This information is expressed by means
of some variables (in rough set terminology, attributes) used as descriptions of the
objects. The data is treated from the perspective of set theory and none of the
traditional assumptions of multivariate analysis are relevant. For a comprehensive
introduction to rough set theory, see Pawlak (1991) or Munakata (1998).

Rough sets techniques differ from other techniques in their attitude towards the
data. The initial detailed data is used as the basis for the development of subsets of
the data that are “coarser” or “rougher” than the original set. As with any data
analysis technique, detail is lost, but the removal of detail is controlled to uncover
the underlying characteristics of the data. The technique works by “lowering the
degree of precision in data, based on a rigorous mathematical theory. By selecting
the right roughness or precision of data, we will find the underlying characteristics”
(Munakata, 1998, p. 141).

In rough sets theory, the data matrix is represented as a table, the information
system. The complete information system expresses all the knowledge available
about the objects being studied. More formally, the information system is a pair
S = ( U, A ), where U  is a non-empty finite set of objects called the universe and
A = { a

1
, …, a

j
 } is a non-empty finite set of attributes on U. With every attribute

a  ∈ A we associate a set Va such that a : U → Va. The set Va is called the domain
or value set of a.

A core concept of rough sets is that of indiscernibility. Two objects in the
information system about which we have the same knowledge are indiscernible.
This indiscernibility leads to redundancy within the information system, which can
make it unnecessarily large. This can happen in two ways. Objects may be
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represented several times (i.e., two objects in the information set may have the same
values for their attributes), or some of the attributes may be superfluous (i.e., two of
the variables may have a correlation of 1.0). Consequently one attribute could be
removed without losing any of the information in the information system).

Let S = ( U, A ) be an information system, then with any B ⊆ A there is associated
an equivalence relation, IND

A
 (B), called the B-indiscernibility relation. It is defined

as:
IND

A
 (B) = { ( x, x’ ) ∈ U 2 | ∀ a ∈ B a( x ) = a( x’ ) }

If ( x, x’ ) ∈ IND
A
 (B), then the objects x and x’ are indiscernible from each other when

considering the subset B of attributes.
Equivalence relations lead to the universe being divided into partitions, which

can then be used to build new subsets of the universe. Let S = ( U, A ) be an
information system, and let B ⊆ A and X ⊆ U. We can describe the set X using only
the information contained in the attribute values from B by constructing the B-lower
and B-upper approximations of X, denoted B

*
(X) and B*(X) respectively, where:

B
*
(X) = { x | [x]

B
 ⊆ X }, and

B*(X) = { x | [x]
B
 ∩ X ≠ ø  }

The set BN
B
(X) is referred to as the boundary region of X, and is defined as:

BN
B
(X) = B*(X) - B

*
(X)

If the boundary region of X is the empty set ( BN
B
(X) = ø  ), then X is a crisp (exact)

set with respect to B. If the boundary region is not empty ( BN
B
(X) ≠  ø ), X is referred

to as a rough (inexact) set with respect to B.
Most of the published applications literature in rough sets has concentrated on

a specific type of information system, the decision system. In a decision system at
least one of the attributes is a decision attribute. This decision attribute partitions the
information system into groups (in rough set terminology, concepts). In this form,
rough sets analysis performs the same type of classification function as discriminant
analysis, where there is a known subgrouping identified by the decision attribute.
The problem is expressed in rough set theory as finding mappings from the partitions
induced by the equivalence relations in the condition attributes to the partitions
induced by the equivalence relations in the decision attribute(s). These mappings are
usually expressed in terms of decision rules. More formally, with an information
system S = ( U, A ), we can associate a formal language L(S). Expressions in this
language are logical formulas built up from attributes and attribute-value pairs and
standard logical connectives (Pawlak, 1999). A decision rule in L is an expression
φ → ψ (read if φ then ψ), where φ  and ψ are, respectively, the conditions and
decisions of the rule.

For any concept in the information system, rules induced from its lower
approximation are called certain, as by definition they are valid rules. Rules induced
from the boundary region of the concept are called uncertain, as they can lead to
different values for a decision attribute. A confidence factor can be defined as the
number of objects in the condition attribute subset that also satisfy the decision
subset (concept), divided by the total number of objects in the condition attribute
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subset.
Let φ

i
 be a partition of the condition attributes and ψ

i
 be a partition of the

decision attribute (concept). The confidence factor, α , for a rule φ → ψ is:

where | A | is the cardinality of set A.
The canonical version of rough sets theory as briefly presented above has been

extended in a number of ways (Yao, Wong & Lin, 1997). One common extension
is that of probabilistic rough sets (Pawlak, Wong & Ziarko, 1988). Other extensions
include modified rough sets using genetic algorithms (Hashemi, Pearce, Arani,
Hinson & Paule, 1997), rough genetic algorithms (Lingras & Davies, 1999), and the
relationship between rough sets and concept lattices (Hu, Lu, Zhou & Shi, 1999;
Oosthuizen, 1994). In this paper, the focus is on the information table, not the
decision table. Applications of this nature are still rare in the literature, although
Pawlak (1991) devotes a chapter to it. However, he used the information table to
analyse dissimilarity, rather than similarity. We apply rough set theory to discover-
ing clusters in a data set (cluster analysis) based on a similarity (or distance) measure
for objects with ordered values of attributes. The approach has been called rough
clustering.

Rough Clustering
Rough clusters are a simple extension of the notion of rough sets. A measure

of the distance between each object is defined, and clusters of objects are formed on
the basis of this distance measure. The value set needs to be ordered to form a
meaningful distance measure. Clusters are formed in a similar manner to
agglomerative hierarchical clustering (Hair et al., 1998). However, an object can
belong to more than one cluster. Clusters can then be defined by a lower approxi-
mation (objects exclusive to that cluster) and an upper approximation (all objects in
the cluster which are also members of other clusters), in a similar manner to rough
sets.

Let S = ( U, A ) be an information system, where U is a non-empty finite set of
M objects (1≤  i ≤ M), and A is a non-empty finite set of N attributes (1≤  j≤  N) on
U. The jth attribute of the ith object has value R ( i, j ) drawn from the ordered value
set Va.

For any pair of objects, p and q, the distance between the objects is defined as:

That is, the absolute differences between the values for each object pair’s attributes
are summed. The distance measure ranges from 0 (indicating indiscernible objects)
to a maximum determined by the number of attributes and the size of the value set
for each attribute. In the example discussed in this chapter, there are five attributes
ranging from 1 to 7, so the maximum possible distance between any two objects
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would be 30. As will be seen later, considering small distances up to 5 can form
viable clusters.

The algorithm for producing rough clusters is as follows. Initially, a distance
matrix for all paired object comparisons is calculated. As this matrix is symmetric,
only the lower triangle is calculated, reducing computational load. All object pairs
at interobject distance D, where D steps from 1 to a determined maximum, are
identified. Each object pair ( a

j
, a

k
 ) can be in one of three situations in relation to

current cluster membership, with the following consequences:
1. Both objects have not been assigned to any prior cluster. A new cluster is

started with a
j
 and a

k
 as the first members.

2. Both objects are currently assigned to clusters. Object a
j
 is assigned to object

a
k
‘s earliest cluster, and object a

k
 is assigned to object a

j
‘s earliest cluster. The

earliest cluster is the first cluster the object was assigned to.
3. One object, a

j
 is assigned to a cluster and the other object, a

k
 is not assigned

a cluster. Object a
k
 is assigned to object a

j
‘s earliest cluster.

Increasing the maximum inter-object distance in this systematic way leads to a
lowering of precision in a controlled manner, with objects becoming members of
rough clusters. An application of this simple algorithm to the survey data is reported
in the following section.

RESULTS

Description of the Data Set
The comparison between k-means cluster analysis and rough set cluster

analysis was conducted on a sample of 437 useable responses from a larger study
of the relationship between shopping orientation, perceived risk and intention to
purchase products via the Internet (Brown, 1999; Brown, Pope & Voges, 2001). The
cluster analysis presented here was based on five measures of shopping orientation:
enjoyment, personalization, convenience, loyalty, and price. All measures were
constructed as Likert-type statements with responses ranging from strongly dis-
agree (1) to strongly agree (5). A brief description of the operationalization of these
five psychographic measures follows. More detail is available in Brown (1999).

Shopping enjoyment measures the degree to which individuals take pleasure
from the shopping process itself, regardless of whether they purchase or not. The
construct was measured with a five-item summated scale based on the original scale
of Bellenger and Korgaonkar (1980). A modified three-item scale developed by
Hawes and Lumpkin (1984) was used to assess the extent to which individuals
possess a personalizing orientation toward shopping. Convenience was measured
using a three-item scale initially employed by Shamdasani and Ong (1995) to
measure the importance of convenience to in-home shoppers. Loyalty was measured
by a three-item scale developed by Hawes and Lumpkin (1984). Consumers’
propensity to be price conscious when engaging in shopping activities was mea-
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sured using a four-item scale developed by Tat and Schwepker (1998).
As rough clustering requires ordered discretized data, the factor score data was

mapped onto an ordered variable with a range of seven. Discretization is the process
by which a set of values is grouped together and is an ongoing problem in data
mining approaches (Komorowski, Pawlak, Polkowski & Skowron, 1999). In this
research, each variable (originally obtained as factor scores) was mapped onto an
ordered variable with each value for the variable representing 14 to 15 percent of the
data set. This discretization scheme was found to provide a rough cluster solution
that was most comprehensible.

Non-Hierarchical Cluster Analysis
Non-hierarchical cluster analysis of the sample was undertaken, based on

responses to the core shopping orientation scales (Brown, 1999). Testing the
stability of the cluster solution was conducted in accordance with the recommenda-
tions of Punj and Stewart (1983). The seven-cluster solution was used as it had the
highest kappa value of 0.90, and this was subsequently found to provide more
efficient and interpretable results than the six-cluster solution, which was used as a
comparison. After choosing the most appropriate number of clusters, the entire
sample was then subjected to k-means analysis to obtain a final cluster solution.
These clusters were interpreted according to the centroids of the shopping orienta-
tions within each cluster. A centroid of zero represented a neutral position toward
a shopping orientation.

Positive centroids were considered to be indicative of the nature of a cluster.
The higher the centroid, the more a cluster was interpreted as being oriented toward
that construct. Conversely, negative centroids indicated the degree to which a
construct was unimportant to members of that cluster. Table 1 shows the cluster
centroids for the seven-cluster solution. As expected, multiple shopping orienta-
tions are identifiable. These shoppers can be differentiated by the degree to which

Table 1: Cluster means and standard deviations for shopping orientation variables
k-means clustering

Shopping Orientation
Enjoyment Loyalty Price Convenience Personalizing
Mean (sd) Mean (sd) Mean (sd) Mean (sd) Mean (sd)

Cluster
1 -1.30(1.66) -0.60 (1.55) -2.76 (0.48) 0.02 (1.57) 0.90 (1.78)
2 1.92(1.09) -0.44 (1.70) -0.33 (1.82) -2.11 (1.02) 0.14 (1.72)
3 -2.13(0.96) -0.47 (1.73) 1.12 (1.42) -1.72 (1.20) -0.37 (1.80)
4 0.42(1.77) 1.31 (1.37) 1.12 (1.65) 0.88 (1.69) 2.34 (0.75)
5 1.33(1.57) -0.15 (1.59) 1.10 (1.65) 1.46 (1.15) -1.79 (1.18)
6 -0.31(1.64) 2.41 (0.75) -1.03 (1.52) 0.33 (1.77) -1.36 (1.41)
7 -0.30(1.72) -2.61 (0.56) 0.22 (1.79) 1.85 (1.25) 0.15 (1.88)

Centroids equal to or greater than (+ or -) 0.90 are shown in italics
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they responded to shopping orientation statements. To aid in interpretation, cen-
troids equal to or greater than ± 0.90 have been highlighted. Positive numbers equal
to or above 0.90 suggest a strong positive orientation towards that particular aspect
of shopping. Negative numbers equal to or below –0.90 suggest a strong negative
orientation towards that aspect. In other words, that particular aspect would be
sacrificed. For example, Cluster 3 in Table 1 could be interpreted as a shopper
looking for the best price, who is prepared to sacrifice convenience and enjoyment
to obtain that price.

Cluster 1 members showed moderately high values on the personalising
shopper dimension, with negative responses to enjoyment and price. A high value
on the shopping enjoyment factor and a strong negative value for convenience
characterise Cluster 2. Price consciousness was the positive factor in Cluster 3, with
enjoyment and convenience strongly negative. Values for Cluster 4 were moderate
to high positive on the loyalty, price and personalising shopping orientations.
Cluster 5 had similar positive values on the convenience, shopping enjoyment, and
price dimensions and a strongly negative value on the personalising dimension.
Cluster 6 was characterised by their preference for patronising local merchants and
low concern for price and personal shopping. Cluster 7 was characterised by its high
score on the convenience orientation and a low score on loyalty.

Rough Cluster Analysis
Rough clusters are based on a simple distance measure between objects in the

data set as described above. Objects can belong to more than one cluster. Conse-
quently, rough clustering produces more clusters than standard cluster analysis. The
number of clusters that is required to account fully for the data is a function of the
interobject distance. In addition, the lower approximation of each cluster is depen-
dent on the number of clusters selected for the solution. More clusters in the solution
means an object has more chance of being in more than one cluster, therefore
moving from the lower approximation to the boundary region and reducing the size
of the lower approximation.

As outlined above, the algorithm steps the interobject distance D from 1 to a
set maximum. Table 2 shows the number of objects assigned to clusters, the
percentage of the data set that this represents, and the number of clusters obtained

Table 2: Data set coverage for different values of interobject distance (D)

D Number of Objects % of Data Number of Clusters
1 69 15.8 31
2 291 66.6 98
3 424 97.0 76
4 437 100.0 39
5 437 100.0 24
6 437 100.0 18
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for each maximum D value from 1 to 6. As would be expected, using a maximum
D of 1 only identifies a limited number of similar objects. As shown in Table 2, a
maximum D of 4 fully accounts for the data set in 39 clusters. Increasing the
maximum D to 5 and 6 fully accounts for the data set in 24 and 18 clusters,
respectively.

A number of factors need to be considered when determining the best
maximum value for D and the best number of clusters to include in the solution. The
number of clusters chosen needs to cover a reasonable proportion of the data set. As
described below, we defined a “reasonable proportion” as over 90% of the objects
in the information system. A solution with too few factors will not provide a
particularly useful interpretation of the partitioning of the data. On the other hand,
too many clusters will make interpretation difficult. In addition, the degree of
overlap between the clusters should be minimised to ensure that each cluster
identified provides additional information to aid with interpretation. One way to
achieve this is to maximise the sum of the lower approximations of the clusters being
used to provide a possible solution. Determining a good solution requires a trade-
off between these factors. Tables 3 and 4 and related discussion report an analysis
of a number of possible solutions to determine the best solution for the current data
set.

Table 3 shows what happens to the cluster solution as D is progressively
increased from 2 to 6. For clarity, only values for the first twelve clusters obtained
from these five separate maximum D solutions are shown. The table shows the size
of the upper approximation for these twelve clusters for each value of maximum D.

Table 3: Size of upper and lower approximations for values of maximum D from 2
to 6

Max D = 2 Max D = 3 Max D = 4 Max D = 5 Max D = 6
|B*(k)|  |B

*
(k)| |B*(k)|  |B

*
(k)| |B*(k)|  |B

*
(k)| |B*(k)|  |B

*
(k)| |B*(k)| |B

*
(k)|

12 6 12 6 12 6 12 6 12 6
1 11 11 11 40 14 26 85 8 15 139 4 17 186 2 10
2 10 7 10 35 25 29 69 28 47 116 12 54 186 0 0
3 10 10 10 30 23 28 82 2 23 131 0 14 160 4 43
4 8 8 8 25 6 18 57 22 35 121 1 8 186 0 9
5 7 7 7 25 15 18 62 18 27 113 9 19 161 4 15
6 7 7 7 19 14 17 61 6 19 94 8 38 171 7 23
7 7 7 34 6 62 1 96 8 141 4
8 6 6 25 14 54 10 105 2 114 5
9 6 6 17 14 40 16 105 2 133 0
10 6 6 23 12 50 7 87 8 130 2
11 8 3 20 13 48 11 83 10 122 3
12 7 5 17 12 46 9 81 6 137 1
Σ |B

*
(k)|

83 53 168 136 138 166 70 150 32 100
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Two values of the lower approximation are shown; the first is the value when all
twelve clusters are considered, and the second is the value when only the first six
clusters are considered. For the first two solutions, the sum of the lower approxima-
tions is larger for the 12 clusters than for the 6 clusters. Further investigation showed
that for these two values of maximum D, the sum of the lower approximations
continues to increase as the number of clusters is increased. This shows that for these
two solutions, the algorithm is mainly performing Step 1, that is, as new objects are
being incorporated into the solution they are being assigned to new clusters.

For a maximum D value of 4, this pattern reverses. That is, the sum of the lower
approximations for the first six clusters is larger than the sum of the lower
approximations for the first twelve clusters. The sum of lower approximations then
decreases as the value of maximum D increases. This shows that for maximum
values for D of 4 and above, the rough clustering algorithm is starting to assign
objects based on Steps 2 and 3, that is, as new objects are being incorporated into
the solution they are being assigned to existing clusters. This suggests that the best
maximum value for D is at least 4.

Table 4 shows the results of applying varying criteria relating to the percentage
of objects assigned to the cluster solution. The table shows the percentage of data
assigned to clusters, the number of clusters, and the sum of the lower approximations
for minimum data set coverage of 70%, 80%, and 90%. The maximum D value of
3 has been shown for comparison only. While this produces the largest sum of lower
approximations for all percentages of data set coverage shown, it requires a large
number of clusters to achieve this result. Only maximum D values of 4, 5, or 6 will
be considered as providing viable solutions. Table 4 shows that if we account for
only 70% of the data set, a maximum D of 4 and nine clusters produces the best
solution (defined as maximising the sum of lower approximations).

When accounting for at least 80% or 90% of the coverage, the best solution is
obtained with a maximum D of 5. For a minimum of 80% data set coverage, six
clusters with a sum of lower approximations of 150 is obtained. For a minimum of
90% data set coverage, nine clusters with a sum of lower approximations of 108 is
obtained. The analysis presented in Tables 3 and 4 suggests that a nine-cluster
solution with a maximum D of 5 produces the best solution, taking into account the
factors suggested above. This solution accounts for over 90% of the data set and
produces a solution that does not contain too many clusters.

Table 5 shows the cluster centroids for the rough cluster solution for interobject
distance 5, set out in a similar manner to Table 1. As with the k-means solution,
multiple shopping orientations are identifiable, with shoppers being differentiated
by the degree to which they responded to statements regarding shopping orientation.
Again, positive numbers above 0.90 suggest a strong positive orientation towards
that particular aspect of shopping. Negative numbers below –0.90 suggest a strong
negative orientation towards that aspect. Cluster 2 in Table 5, for example, could be
interpreted as a shopper looking for the best price, who is prepared to sacrifice
convenience to obtain that price.
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Cluster 1 shows a strong loyalty orientation, Cluster 3 shows loyalty at the
expense of convenience, and Cluster 4 shows loyalty at the expense of price. Cluster
5 shows positive scores on enjoyment, loyalty and convenience. Three of the
clusters show complex combinations of orientations, including Cluster 5 described
above. Cluster 6 shows a concern for price and convenience at the expense of
loyalty, while Cluster 7 shows concern for enjoyment, price and personal shopping.
Two of the clusters form combinations of orientations that might be considered
more difficult to interpret or, at best, reflections of a negative shopping orientation.
Cluster 9 has a negative value for convenience, and Cluster 8 shows concern for
personal shopping at the expense of enjoyment.

CONCLUSION

Comparison of Cluster Solutions
To distinguish between the two solutions, clusters from the k -means solution

(Table 1) are referred to as Clusters, while clusters from the rough clustering
solution (Table 5) are referred to as Rough Clusters. Cluster 1 showed a moderately
high positive score on the personalizing dimension. Two of the nine rough clusters
also had high scores on personalizing, but neither of them matched the negative

Table 4: Number of clusters and sum of lower approximations for different
percentage coverage of the data set and different values of D.

D % of Data Number of Clusters Σ |B
*
(k)|

At least 70% coverage
3 70.3 22 203
4 73.2 9 155
5 74.6 5 144
6 78.0 4 131

At least 80% coverage
3 80.5 31 208
4 80.5 12 138
5 80.8 6 150
6 85.1 5 107

At least 90% coverage
3 90.4 49 197
4 90.6 18 83
5 90.2 9 108
6 90.8 6 100
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Table 5: Cluster means and standard deviations for shopping orientation variables
rough clustering - Interobject distance of 5

Shopping Orientation
Enjoyment Loyalty Price Convenience Personalizing
Mean (sd) Mean (sd) Mean (sd) Mean (sd) Mean (sd)

Cluster
1 -0.22(1.70) 1.48 (1.39) -0.64 (1.77) 0.23 (1.77) 0.58 (1.67)
2 -0.01(1.98) -0.69 (1.64) 1.03 (1.58) -1.84 (1.19) -0.33 (1.73)
3 -0.05(1.93) 1.07 (1.43) -0.71 (1.52) -1.13 (1.32) 0.54 (1.57)
4 0.21(1.69) 0.93 (1.35) -0.91 (1.48) 0.38 (1.64) -0.17 (1.52)
5 1.26(1.43) 0.95 (1.46) -0.06 (1.43) 0.93 (1.74) 0.07 (1.99)
6 -0.26(1.48) -1.28 (1.45) 1.10 (1.63) 1.27 (1.41) -0.68 (1.67)
7 0.92(1.51) 0.15 (1.82) 1.60 (1.20) 0.84 (1.59) 1.56 (1.41)
8 -1.32(1.47) -0.01 (1.56) -0.66 (1.80) -0.39 (1.90) 1.50 (1.23)
9 -0.86(1.50) 0.64 (1.54) -0.82 (1.55) -1.57 (1.25) 0.53 (1.67)

values for enjoyment and price of Cluster 1. The closest match was Rough Cluster
8, which had a negative value for enjoyment. In contrast, Rough Cluster 7 had
positive values for enjoyment and price as well as personalizing.

Cluster 2 showed a high positive value for enjoyment. Rough Cluster 5 also had
a high positive value for enjoyment, but it did not show the high negative value for
convenience characteristic of Cluster 2. Rough Cluster 9 shows this high negative
value for convenience but does not match Cluster 2 on the other dimensions. As
mentioned above, Rough Cluster 9 presents difficulties in interpretation. Cluster 3
showed a positive value for price, with negative values for enjoyment and conve-
nience. Two of the rough clusters had positive values for price and two had negative
values on other dimensions, convenience for Rough Cluster 2, and loyalty for Rough
Cluster 6. It appears that the rough cluster analysis has segmented the price-
conscious shopper into more specific subsegments of consumers, prepared to
sacrifice different aspects of the shopping experience in exchange for price savings.

Cluster 6 had a high positive value for loyalty and negative values for price and
personalizing. Three of the rough clusters also had positive values for loyalty.
Rough Cluster 1 is a loyalty cluster, and all other dimensions are neutral. Rough
Cluster 4 had a negative value for price and Rough Cluster 3 had a negative value
for convenience. The rough clustering analysis, in addition to finding similar trade-
offs for loyalty as the k-means approach, has found a major cluster defined by only
the loyalty dimension. Cluster 7 had a positive value for convenience and a negative
value for loyalty. Two rough clusters had positive value for convenience, one
(Rough Cluster 5) with a positive value for loyalty and one (Rough Cluster 6) with
a negative value for loyalty and positive for price. These rough clusters appear to be
identifying different sub-segments of the data to those identified by the k-means
approach.

Centroids equal to or greater than (+ or -) 0.90 are shown in italics
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More complex combinations of dimension values were found in Clusters 4 and
5 of the solution obtained via k -means. Cluster 4 had a strongly positive value for
the personalizing dimension, coupled with moderately high values for loyalty and
price. The closest match was Rough Cluster 7, with moderately high values on the
personalizing, price and enjoyment dimensions. Cluster 5 showed a positive value
for enjoyment, coupled with positive values for price and convenience and a
strongly negative value for personalizing. The closest match was Rough Cluster 5,
with positive values for enjoyment, loyalty and convenience.

As expected, rough clustering and k-means clustering have resulted in different
interpretations of the data set, but with some degree of overlap in these interpreta-
tions. The rough clustering solution is necessarily different because of the possibil-
ity of multiple cluster membership of objects. Rough clustering provides a more
flexible solution to the clustering problem. We suggest that the data regularities
found by the rough clustering technique should be conceptualized as extracting
concepts from the data, rather than strictly delineated subgroupings (Pawlak, 1991).
The concepts provide interpretations of different shopping orientations present in
the data without the restriction of attempting to fit each object into only one
subsegment. Such concepts can be an aid to marketers attempting to uncover
potential new segments of consumers. As such, it is a promising technique deserving
further investigation.

Extensions
In a paper relating to the use of models in marketing decision making, Lilien

and Rangaswamy (2000, p. 234) suggested that “we should explore alternative
approaches, like Artificial Intelligence (AI), that are beyond our traditional toolkits
derived from statistics, operations research, and psychology.” Many of these
approaches, such as neural networks and evolutionary algorithms, are already being
regularly used in marketing research applications. This chapter has outlined the use
and extension of another computational intelligence technique. This technique,
rough sets, has been applied to a marketing problem, the clustering of a data set into
homogeneous clusters. Rough clustering derives concepts from the data set as an aid
to interpretation and is a valuable addition to the marketer’s attempt to identify
subgroups of consumers. The technique could be used with other demographic and
psychographic measures to search for possible niche markets.

The research reported here is at the beginning of a program to explore the
applicability of rough sets theory to problems in marketing research. A number of
extensions are planned. One future extension of the work is to produce more
efficient methods for the discretization of intervals of real data (Komorowski et al.,
1999) rather than the simple method that was used in this example. Hybrid rough-
fuzzy techniques are one way of addressing this problem (Pal & Skowron, 1999).
A second extension of this research would be to compare the rough clustering
solutions with solutions obtained by the more established technique of clustering
using fuzzy sets. A third extension relates to the algorithm itself. When an object pair
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is identified, the current algorithm assigns one or both objects to the other object’s
earliest cluster. If the lower approximations are not maximized, there is likely to be
a loss of information. Assigning an object to other than the earliest cluster may result
in “less rough” clusters, that is clusters that maximize lower approximations and
retain more information about the data set. Such clusters will have maximum
uniqueness, but still allow the possibility of multiple cluster memberships. Because
of the variety of possible solutions that could be found if this change to the clustering
algorithm is made, a suitable optimizing algorithm is needed. We suggest that the
use of evolutionary algorithm techniques would be most suitable for this optimizing
task. Using such techniques to develop better cluster solutions is the next major
extension of our research program.
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This chapter presents a survey of medical data mining focusing upon the
use of heuristic techniques. We observe that medical mining has some
unique ethical issues because of the human arena in which the conclu-
sions are outworked. The chapter proposes a forward looking responsi-
bility for mining practitioners that includes evaluating and justifying data
mining methods–a task especially salient when heuristic methods are
used. We define heuristics broadly to include those methods that are
applicable for large volumes of data, as well as those specifically directed
to dealing with uncertainty, and those concentrated upon efficiency. We
specifically consider characteristics of medical data, reviewing a range
of mining applications and approaches. We conclude with some sugges-
tions directed towards establishing a set of guidelines for heuristic
methods in medicine.

INTRODUCTION
Deriving—or discovering—information from data has come to be known as

data mining. It is a popular activity in many domains, from stock market prediction
to healthcare. There are varied and diverse applications of the knowledge derived
from mining as conclusions are utilised in various capacities. Knowledge derived
from medical mining has been used to assist tasks as diverse as patient diagnosis and
inventory stock control; it has formed the knowledge behind intelligent interfaces
for patient record systems and been the tool of medical discovery. This chapter
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reviews some of the applications that have been made and identifies the need for a
set of guidelines for heuristic methods in medicine.

Data mining presents many challenges since data is often present in huge
volumes, distributed across many sources and highly complex in nature with many
hundreds of variables and relationships among those variables varying in time,
space or both often with a measure of uncertainty. Data mining is sometimes
distinguished from statistics because of the vastness of the data sets with which data
miners are concerned. Large data sets mean an increased algorithmic complexity
and with that complexity comes the corresponding need to address issues in
efficiency, hence the focus of this volume on a synergy of heuristics and data mining.

Artificial intelligence gives a very specific meaning to the term “heuristic.” A
heuristic is something that aids discovery of a solution. Heuristic methods are
typically employed within the context of problem solving, where the solution to a
problem must be found via a process of graph search (elements in the graph represent
problem states, or operations that transform problem states). In search heuristic
methods are able to guide exploration in an appropriate way and achieve faster
solutions or more optimal solutions; occasionally the heuristic prevents a solution.
Thus there are classic graph search algorithms such as the A* algorithm which is
heuristic search (under the right conditions). However, we may broaden the
definition of heuristics to include those techniques that are specifically relevant to
dealing with large volumes of data or uncertainty within data. In doing so we can
move away from traditional heuristic methods and encompass a wider range of
techniques that may be regarded as “heuristic” because they “aid discovery,” the
crux of data mining.

In the remainder of this chapter we consider the nature of medical data mining
and identify it as a unique arena for heuristic techniques. This is not just because the
data is sensitive or highly private or that ethical concerns shadow every stage of
mining from data collection to analytic procedures, from storage to appropriate data
access; privacy, accuracy and security are issues in other domains (Walhstrom,
Roddick, & Sarre, 2000). Rather, medical data mining is unique because of the
implications for human life that may arise from the conclusions drawn. We propose
that a set of guidelines for medical data mining is necessary, and that this is a natural
consequence of forward-looking responsibility within this field. Forward-looking
responsibility is accountable for high quality products and methods and requires
appropriate evaluation of results and justification of conclusions. The proposed
guidelines relate to the evaluation and justification of data mining results (so
important when heuristic “aids to discovery” are utilised that “may” benefit a
solution) and extend to both where and how the conclusions may be utilised and
indeed where heuristic techniques are relevant in this field.

This chapter continues by providing a short review of some techniques that
may be regarded as heuristic,  including the classic A* search algorithm, tabu search,
genetic approaches, fuzzy logic, rough sets, case-based reasoning and neural
networks. We also examine the nature of medical data that present particular
challenges for mining tasks and the diverse range of medical mining applications
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that have been made linking the mining application with the particular challenges
of the data. In most instances we observe that the heuristics methods are not
evaluated, justified or explained, but simply employed–and this does not demon-
strate good forward looking responsibility.  We conclude the chapter with the
guideline suggestions in this important human arena in which conclusions are
outworked.

HEURISTICS
“Heuristic” comes from the Greek word heuriskein, meaning “to discover,”

and refers to theories that describe how humans make discoveries. Plesk (1997)
reports that heuristics are key to good higher-order thinking in human problem
solving and creativity, whether we are trying to play chess or plan a business. Eight
basic heuristics for human creativity are suggested. These heuristics of human
discovery are translated into computer discovery, where they conventionally
function as ‘rules of thumb.’ Artificial intelligence popularised the heuristic as
something that captures, in a computational way, the knowledge which people use
to solve everyday problems.

The A* state-space search algorithm (Hart, Nilsson, & Raphael, 1975) is
sometimes known as heuristic search because it incorporates a way for domain-
specific knowledge to be incorporated into a search process. The A* graph search
algorithm guides the exploration of the search process using a heuristic evaluation
function which assigns a numeric value to quantify the goodness of a node in terms
of a problem state. Built into this function is domain-specific knowledge about how
close a given node is to the goal node. This knowledge is only approximate and may
or may not work in guiding the search to a solution or to the best solution (in
optimisation terms we may reach a local rather than a global minimum/maximum).

More recently Tabu search (Glover, 1986) has been used on combinatorial
optimization problems. It is regarded as “a meta-heuristic” superimposed on other
heuristics. It forbids moves (hence, tabu) which take the solution to states in the
solution space previously visited, but rather it forces new regions to be investigated,
possibly accepting a new poor solution to avoid a path already investigated. The
Tabu method was partly motivated by the observation that human behaviour appears
to operate with a random element that leads to inconsistent behaviour given similar
circumstances—but that this can often be fruitful! Forcing the search to a particular
non-promising solution can ultimately lead to finding the desired solution, even
though it may appear a random move in contrast to a move to the local optimum.

Increasingly, heuristics are used to refer to techniques that are inspired by
nature, biology and physics. The genetic search algorithm (Holland, 1975) may be
regarded as a heuristic technique. In this search approach, populations of solutions
(represented as character strings) are evolved over a number of generations until the
optimal one is located (the strings are evolved by a technique mimicking the
crossover in the chromosomes of human reproduction). A “fitness” function
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determines the quality of a string and is based upon domain-specific knowledge.
Additionally, the more recent Memetic Algorithm (Moscato, 1989) approach also
demonstrates a population-based paradigm; combining local search heuristics with
the crossover operations that produce new solution strings.

Brameier and Banzhauf (2001) provide the major example of a general
heuristic technique being successfully utilised for mining medical data. They use a
population-based paradigm but make an interesting modification to the genetic
programming based on an inspiration from nature about how ‘introns’ (denoting
DNA segments with information removed before proteins are synthesised) are used
in generating new strings. They suggest that introns may help to reduce the number
of destructive recombinations between chromosomes by protecting the advanta-
geous building blocks from being destroyed by crossover. Complete protein
segments are more frequently mixed than interrupted during evolution and this
biological finding can be used as a heuristic approach within the genetic algorithm.
Massive efficiency improvements in the algorithm are reported compared to neural
networks as this general heuristic mechanism is applied to the genetic algorithm.

There are also a number of methods that are particularly useful when dealing
with data that contains uncertainty. Fuzzy logic assesses data in terms of possibility
and uncertainty. A fuzzy system helps to improve cognitive modelling of a problem
because fuzzy logic encodes knowledge directly in a form that is very close to the
way experts themselves think. It has the power to represent multiple cooperating,
collaborating and even conflicting experts. However, using fuzzy logic requires a
careful analysis of the value range of fuzzy variables. Rough set modeling  can also
aid uncertainty. Rough sets use a pair of standard sets, the lower approximation S
and the upper approximation ‘S, to represent uncertainty and vagueness. The
difference between upper and lower approximation‘S - S is called a boundary region,
or the area of uncertainty of a rough set. In contrast, case-based reasoning stores past
examples and assigns decisions to new data by relating it to past examples. Here,
each of the past examples refers to a case that can be defined as the description of
a problem that has been successfully solved in the past, along with its solution.
When a new problem is encountered, case-based reasoning recalls similar cases and
adapts the solutions that worked in the past. Finally, artificial neural networks
classify or cluster sets of data using a network structure of simple processing units
connected by weighted links. The weights are established by a process of training
from initially random values, and the network comes to represent a potentially
complex statistical model of some aspect of the world. This range of methods
(sometimes regarded as “heuristic”) has all been applied to medical data. We shall
review some, especially in light of dealing with large data sets.
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ISSUES IN MEDICAL DATA MINING

Responsibility in Medical Data Mining
Data security, accuracy and privacy are issues within many domains and

ethical responsibility in these areas is not restricted to practitioners within the
medical domain. Nor are data miners isolated from the even more general respon-
sibilities faced by computing/engineering professionals, who produce software and
systems upon which people come to depend. Unfortunately, responsibility for
quality is frequently only highlighted when there is some breakdown or malfunction
resulting in devastation to human life, but it need not be like this. Johnson and
Nissenbaum (1995) distinguish “backward-looking” responsibility from “forward-
looking” responsibility.

A “backward-looking” responsibility asks questions in the wake of a harmful
event and seeks to discover who is to blame for the harm and who should be
punished. It is often conducted in the context of discovering legal liability. The
Therac-25 computer-controlled radiation treatment is a shocking example of a
malfunction disaster that resulted in loss of life for people who were receiving
computer-controlled radiation treatment for cancer. If medical data mining products
are ever produced by “professionals” or are ever exploited “commercially,” there
may be the same serious legal consequences for their creators in the wake of harmful
consequences from information produced. In contrast a “forward-looking” respon-
sibility addresses the particular responsibilities in advance; it defines guidelines for
creating quality products, measures the quality of the product, and defines the
method of evaluation, the limitations and scope of operation in advance of harmful
incidents. Any computer medical data mining “product” must have this forward-
looking responsibility. In the context of software engineering, the computer field
seeks to promote high quality software products, so too data miners should be
seeking to guarantee high quality data mining techniques. Later we shall consider
some guidelines for forward-looking responsibility in medical data mining. First we
review the nature of medical data and data mining applications.

The Nature of Medical Data
Cios and Moore (2001) identify a number of unique features of medical data

mining, including the use of imaging and need for visualisation techniques, the large
amounts of the unstructured nature of free text within records, data ownership and
the distributed nature of data, the legal implications for medical providers, the
privacy and security concerns of patients requiring anonymous data used where
possible together with the difficulty in making a mathematical characterisation of
the domain. We concur with this view that medical data presents some particular
mining challenges, particularly  because of the human situation within which the
data occurs and in which the derived information is used. Its human context is
unique. It is perhaps one of the last areas of society to be “automated,” with a
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relatively recent increase in the volume of electronic data and many paper-based
clinical record systems in use. It shares difficulties of a young domain with lack of
standardisation (for example, among coding schemes) and still some reluctance
among healthcare providers to use computer technology. Nevertheless, the rapidly
increasing volume of electronic medical data is perhaps one of the domain’s current
distinguishing characteristics, as one of the last components of society to be
“automated.” Large electronic medical data sets arise from the slow but sure
penetration of technology into practice with the increasing use of electronic record
keeping systems, digital medical imaging, remote video surgery, the database of
genetic materials from the human genome research project and other ventures that
produce data in volumes not previously encountered within the domain. With large
datasets come all the issues in efficient storage, communication across networks,
transfer to and from main memory, optimal processing and the complexities of
dealing with distributed data dispersed over disparate sites.

Beyond the challenges of the sheer volume of medical data come the additional
complexities that arise from highly structured data, with inter-related components,
perhaps changing over time in multi-dimensional space. For example, the interre-
lations between patient symptom and diagnosis code, range over many hundreds of
variables, often time-dependent and sparse—with any inherent structure potentially
empty for a large portion of the population making it particularly difficult to detect
structure. We face particular challenges with incremental data and time-series data,
complexities in two or three-dimensional space with spatiotemporal pattern recog-
nition increasingly the complexity. Medical data perhaps also faces some of the
greatest uncertainty, inaccuracy and incompleteness that we may find. Natural
patient variability contributes to “noise” that may be present in the data as inherent
differences between people mean one miraculously recovers and another deterio-
rates. We must deal with missing records, erroneous values, nonstandard nomencla-
tures – with data in slightly different formats, using different coding, different
symbols used with the same meaning and a variety of meanings for the same symbol.
Medications may be referred to by a variety of names (generic or tradename), there
may be duplication, error and redundancy. For example, patient age appearing in
several places, medical terms misspelled and other noise present that calls for data
preprocessing and cleaning. In short, medicine faces a rapidly increasing volume of
complex, structured data without the accompanying rigour that might be expected
from domains with established electronic data sets.

APPLICATIONS OF MEDICAL DATA MINING
Many ventures within medical data mining are better described as machine

learning exercises where the main issues are, for example, discovering the complex-
ity of relationships among data items or making predictions in light of uncertainty
rather than dealing with the volume of data. With the exception of some medical
imaging applications and mining of electronic medical records, the databases are
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small. There are even fewer instances where traditional heuristics from artificial
intelligence (e.g., A* search) have been applied to handling data volume, although
there are many examples of case based reasoning, neural networks, fuzzy logic and
other approaches that may be regarded as “heuristic” and “data mining.” We review
some data mining applications before considering those techniques and applications
areas specifically relevant to data volume. We broadly categorise applications as
clinical, administrative and research according to whether they are used (or
potentially used) in a clinical context, are infrastructure related or exploratory in
essence.

Clinical Applications of Data Mining
There are a wide variety of automated systems that have been designed for

diagnosis–systems that detect a problem, classify it and monitor change. Brameier
and Banzhauf (2001) describe the application of linear genetic programming to
several diagnosis problems in medicine, including tests for cancer, diabetes, heart
condition and thyroid. Their focus is upon an efficient algorithm that operates with
a range of complex data sets. These diagnosis systems may be used in decision
support or for a training tool. Decision support systems aid human judgement and
decision making via statistical summaries, visualisations, and other forms of data
presentation and analysis that highlight potentially important trends within the data.
The National University of Singapore  (Cao, Leong, Leong, & Seow, 1998) uses a
data-driven approach based upon Bayesian probabilities to address time dependent
conditional probabilities for follow-up of patients who have undergone cancer
treatment. One of the main issues in this context was the temporal nature of the data.
The Department of Optometry and Vision Sciences at Cardiff University of Wales,
(Henson, Spenceley, & Bull, 1996) also demonstrated a decision-making aid in the
context of managing the treatment of glaucoma patients, using an artificial neural
network model derived from data mining a patient database of visual fields. In this
particular work, many problems of medical data mining were addressed including
spatiotemporal data, variation from psychophysical measurement, difficulties in
diagnosis and lack of gold standard.

Carnegie Mellon University studied a medical database containing several
hundred medical features of some 10,000 pregnant women over time. They applied
data-mining techniques to this collection of historical data to derive rules that better
predict the risk of emergency caesarian sections for future patients. One pattern
identified in the data predicts that when three conditions are met, the patient’s risk
of an emergency caesarian section rises from a base rate of about seven percent to
approximately 60 percent. Again the justification and explanation of the data mining
conclusions have particular importance as there are definite clinical outcomes
associated with the results of the mining.

Mani, Shankle, Dick, and Pazzani (1999) report on the use of machine learning
as a data mining method to develop practice guidelines for managing dementia in
Alzheimer’s disease and determining its severity. They measure memory, orienta-
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tion, judgment and problem solving, community affairs, home and hobbies and
personal care in order to assign a global level of impairment based on the individual
indicators. They hope to determine appropriate drug treatment and plan for future
methods of patient care. Early identification of dementia can optimise quality of life
and reduce costs. Dementia staging is not often used in practice because of its cost
and the complexity of logic for scoring a patient. They used decision tree learners
and rule inducers comparing both approaches with a Bayesian approach, concluding
that  a two-stage learning model improves classification accuracy over a single stage
one. In applications such as this one, where the results of data mining have direct
implications for patients, it is clearly vital that the methodologies and techniques
that are applied are properly evaluated.

Administrative Applications of Data Mining
An interesting administrative application of data mining in a medical context

comes in the area of interfaces for electronic medical records systems, which are
appropriate for speedy, accurate, complete entry of clinical data. At the University
of South Australia, George and Warren (2000) report on the use of a data mining
model underlying an adaptive interface for clinical data entry. As records are entered
a database is established from which predictive Bayesian models are derived from
the diagnosis and treatment patterns. This model is used to predict the treatment
from new diagnoses that are entered, producing intelligent anticipation. The
predictive model is also potentially incremental and may be re-derived according to
physician practice. One interesting issue in the data of this application is the
discovery of appropriate mining methodologies that extract the valuable relation-
ships between the data items. Various statistical and other techniques were reported,
with the Bayesian being the most productive. This application addresses issues in
incremental mining, temporal data and highly complex data with duplication, error
and nonstandard nomenclatures. The more data available the better the models.

Epidemiology  is concerned with the incidence of disease within a population
and necessarily involves combining information from various sources. One obstacle
to nationwide studies is the absence of standard nomenclatures. For example, there
are several different coding schemes that may be used for recording problem
diagnosis codes in general practice, while medications may be referred to by generic
name or trade name. Combining data in epidemiology requires standardisation of
coding and nomenclature.  Such re-coding for standardisation in epidemiology may
also be regarded as a form of “data compression,” where the granularity of different
diagnoses can be controlled (e.g., trauma to left and right hand may have separate
codes which can be combined in some contexts), and “data cleaning,” where
erroneous values are removed, and “data preprocessing,” where significant relation-
ships are identified and enhanced.

Dawson (1998) reports on the software package from Orlando’s MedAI called
“Chronic Disease Identification,” which directly uses data mining to analyse large
volumes of data in order to predict life-threatening diseases. In particular it uses a
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neural network to examine a health provider’s claims data, medical records
information and other healthcare data to identify which individuals within a patient
population will develop severe medical problems over the next three years. The
system also predicts the costs of treatment. In the American insurance context this
is valuable information for now it is possible to determine who is most at risk of
given conditions with huge implications for insurance premiums. This application
of mining must address some of the ethical issues associated with medical data and
the need to respect individual confidentiality.

Bansal, Vadhavkar, and Gupta (2000) report on an important application of
data mining to medical inventory control to forecast sales demand. “Medicorp” is
a large retail distribution company that dispenses pharmaceutical drugs to custom-
ers in a number of states in the US. Medicorp is forced to have a large standing
inventory of products ready to deliver on customer demand. The problem is how
much quantity of each drug should be kept in the inventory at each store and
warehouse. Significant financial cost is incurred if excess quantities are carried
compared to customer demand, but too little supply leads to unsatisfied customers.
Neural networks are used to optimize the inventory in a large medical distribution
using traditional statistical techniques to evaluate the best neural network type.
Serious experimentation was conducted with parameters for multi-layer perceptrons,
time delay neural networks and recurrent neural networks. The first two were
especially promising in forecasting sales demand, with the discovery that short
interval predictions were particularly hard to make, although they gave more useful
predictions. This application must cope with issues in epidemiology as temporal
(seasonal and other) variations in demand of drugs  are present.

Medical Research
Medical data mining is a natural method of performing medical research where

new relationships and insights are discovered in human health. One such aid to
medical research is the visualisation of data, producing digital images, perhaps 3-
dimensional reconstruction of shapes (of organs, bones, tumors etc.) to aid inves-
tigation. For example, combining information from computerised tomography and
Magnetic Resonance Imaging. Image fusion considers combining images of a single
object taken by different sensors under different illumination conditions to create a
single image that is better than any of the individual images. Stevan, Brooks,
Downing, and  Katz (1996) have used matching/fusion strategies are based on rule-
based knowledge representation and tree search.  The techniques are loosely within
what might be defined as data mining in the sense that they extract information from
the collection of points and produce a single fused image, importantly using search
– with all the potential for conventional heuristics of artificial intelligence. The two-
dimensional reference and target images are segmented into non-touching and non-
overlapping regions (often using domain-specific information of knowledge about
the shape of human organs). Region matches are then obtained using a tree search
maximising a goodness of match. This application addresses a highly challenging



Heuristics in Medical Data Mining   235

area of 3-dimensional spatiotemporal change.
The application of artificial neural networks to medical imaging is also

important. The University of Aberdeen addresses the problem of mammographic
image analysis using neural nets together with conventional image analysis tech-
niques to assist the automated recognition of pathology in mammograms (Undrill,
Gupta, Henry, Downing and Cameron, 1996). The group also address the use of
genetic algorithms for image analysis, applying this powerful general optimisation
technique to a variety of problems in texture segmentation and shape analysis in
two-dimensional and three-dimensional images (Delibassis and Undrill, 1996).
Mining information from the data in these tasks must address many of the problems
of finding patterns within large volumes of highly complex data.

Banerjee (1998) describes the use of data mining in medical discovery,
reporting on a data mining tool which uncovered some important connections
between diseases from mining medical literature. The data mining tool compared
the article titles in various medical journals. Medical discoveries were made, such
as the connection between estrogen and Alzheimer’s disease and the relationship
between migraine headaches and magnesium deficiency. Ngan, Wong, Lam,
Leung, and Cheng (1999) have reported on medical discovery using data mining
based upon evolutionary computation search for learning Bayesian networks and
rules. They were able to discover new information regarding the classification and
treatment of scoliosis as well as knowledge about the effect of age on fracture
diagnoses and operations, and length of hospital stay.

LARGE SCALE MEDICAL DATA MINING
There are a few medical data mining applications that are specifically aimed at

dealing with large volumes of data and scope within this context for drawing upon
heuristics that specifically handle that data volume. Dealing with large-scale
databases has its own unique difficulties that are simply not present in smaller scale
machine learning projects. We continue to review some such mining applications
and make suggestions for where heuristics will be of value. Applications have had
to address issues such as distributed data, incremental mining and massive data-
bases.

Distributed Data
Combining data from heterogeneous sites is frequently an issue with very large

databases which cannot be combined into data within one location. Kargupta, Park,
Hershberger and Johnson (1999) are interested in an epidemiological study that
involves combining data from distributed sources. Their study investigates what it
is that affects the incidence of disease in a population, focusing upon hepatitis and
weather. They illustrate the collective data mining approach, emphasising the
importance within medicine of merging data from heterogeneous sites. Their
solution minimises data communication using decision tree learning and polyno-
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mial regression. As more and more hospitals and general practitioners, pharmacists
and other healthcare related professions utilise electronic media, mining ventures
are going to have to cope with mining across data sources. They will have to address
issues as this study addresses, such as minimising data exchange, adopting suitable
heuristic approaches.

Incremental Mining
One interesting on-going database mining project at Rutgers is the develop-

ment of efficient algorithms for query-based rule induction, where users have tools
to query, store, and manage rules generated from data. An important component of
the research is a facility to remember past mining sessions producing an incremental
approach. They are using heuristics for efficiently “re-mining” the same or similar
data in the face of updates and modifications.  In their trials a major insurance
company was trying to explore anomalies in their medical claims database. The new
data mining techniques aided the isolation of high cost claims and scenarios in each
disease group that would lead to high cost claim. They also identified characteristics
of people who were likely to drop out of their health plan and locations where there
were higher dropout rates. In this general approach to mining, information from
prior mining is utilised in new mining to prevent the need to compute relationships
from scratch every time data is added to the database. This is naturally a general
approach to mining large-scale changing databases that may be considered in a
variety of fields.

Massive Databases
In June 2000 the completion of a rough draft of the human genome was

announced. This landmark achievement promises to lead to a new era of molecular
medicine, an era that will bring new ways to prevent, diagnose, treat and cure
disease. The ultimate goal of genome research is to find all the genes in the genetic
sequence and to develop tools for using this information in the study of human
biology and medicine. The analysis firstly involves dividing the chromosomes into
smaller fragments that can be propagated and characterized and then ordering
(mapping) them to correspond to their respective locations on the chromosomes.
After mapping is completed, the next step is to determine the base sequence of each
of the ordered genetic fragments. The result of this multinational project is a
sequence of approximately three billion base pairs of genetic material that make
human beings what they are. New tools will be needed for analyzing the data from
genome maps and sequences. Data mining technology is already pinpointing tiny
differences in the genetic sequence and defects that cause disease. Identifying such
anomalies is the first step toward finding cures. Musick, Fidelis, and  Slezak (2000)
describe an effort in large-scale data mining at Lawrence Livermore National Labs.
They adapt current data mining techniques to the genome domain and lay the
groundwork for a more extensive research and development effort in large-scale
data mining. The results will be directly applicable to other large spatial, multi-
dimensional data.
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Data Compression
The American  National Academy of Science identifies scalability of algo-

rithms as a key research issue and suggests approaches that include selecting data
subsets by random sampling and summarizing them. In particular they suggest the
compression of images, working with reduced versions of the data, and the
derivation of smaller data sets by performing regression. A four-terabyte database
may be sampled down to 200 gigabytes, aggregated and the results filtered down to
ten gigabytes. In the context of mining medical images it may be possible to utilise
some of these heuristic approaches to data compression and reduction.

GUIDELINES FOR HEURISTIC APPLICATION IN
MEDICAL DATA MINING

One of the biggest ethical issues in medical mining concerns what is done with
the knowledge derived. There is tremendous potential for good in improving quality
of human life, managing disease effectively, efficiently administering programs and
preserving life, but the same knowledge can also be put to less constructive ends, or
benefit only a few, or conform to the contemporary political agendas influenced by
the philosophy of the age. For example, the mapping of the human genome presents
unique possibilities and challenges for ethically employing the knowledge derived.
There is the potential to predict genetic diseases in unborn children or the develop-
ment of cancer in an elderly person, and with that knowledge comes a new
responsibility, to appropriately employ it. The National Human Genome Research
Institute has already issued statements concerning, for example, the need not to
discriminate in issues of insurance and employment based on genetic information.
There has never been quite the same potential and responsibility for using the
knowledge we derive or discover.

Forward-looking responsibility requires ensuring the quality of automated
techniques and knowing the limitations and scope of methods in advance of harmful
consequences. It asks about the reliability of the derived knowledge and defines a
way to evaluate products. This is none so pertinent as when heuristic methods are
utilised to derive that knowledge. Whatever is ultimately done with the conclusions
we know that heuristics do not guarantee “optimality” or even the “accuracy” or
“validity” of the conclusion. Forward looking responsibility within medical data
mining will address, among other things, how knowledge is evaluated, how
conclusions are justified, and what are the scope of validity and the limitations of
“products.”

Evaluation
Evaluation is a notoriously difficult component of many ventures. Evaluation

in a medical context has its own complications. One of the best forms of evaluation
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for clinical data mining solutions is a clinical trial where the information derived
from data mining solutions is used by experts; it is subsequently possible to compare
and contrast the automated solutions with a range of expert opinion. However, such
evaluation can be complicated by lack of consensus among medical experts,
including differences of opinion in diagnosis statements, treatment preferences and
other areas. Clinical trial is notoriously difficult to organise due to various con-
straints upon medical practitioners. Even with appropriate opportunity and incen-
tive there are barriers to genuine evaluation that medical data mining projects would
do well to anticipate and ensure that this vital evaluation stage is not omitted.

 Clinical trial is not the only form of evaluation that is desirable for data mining
solutions. Even before products are clinically trialed there are many other methods
of ensuring the reliability and quality of knowledge derived. One such approach
makes use of benchmark data sets where various techniques (heuristic and other)
could be compared to assess quality and efficiency of solutions. Additionally some
types of specialist data may be invaluable resources for data mining researchers. The
American National Health and Nutrition Examination Survey X-ray Image Archive
has made some effort to make substantial X-ray data available. The data set contains
more than 17,000 X-ray cervical and lumbar spine digitised images, accessible on-
line under controlled circumstances via Web tools.

Justification and Explanation
Explanation and justification of a conclusion and process that led to that

conclusion are important components of automated reasoning systems that would
also benefit automated discovery systems. Traditional rule-based expert systems
have a “how and why” explanation facility, where it is possible to ask “how” a
conclusion was obtained and follow back the chain of rule applications or ”why” a
particular fact is being requested and explore the proposed chain of reasoning to see
what the system is attempting to prove. Data mining would benefit from a similar
facility. Indeed if we cannot verify the information discovered we may as well not
utilise data mining since the conclusions derived would not be reliable.

Scope and Limitations
It is important to define the scope and limitations of systems. There may be

constraints in many areas from clinical applicability to the efficiency of algorithms/
storage requirements of databases. We also need to define the time and space
complexity of the algorithm especially whether the algorithm is scalable for large
amounts of data, whether it is robust to errors, invalid input, and memory shortage,
and to consider whether the output of the system is interpretable for humans or is
itself input to another procedure. The scope of clinical applicability is important to
define, since an algorithm may only be suitable for certain types of data or models
built from certain populations. For example, an algorithm that can predict diagnosis/
treatment patterns among adult diseases may be unsuitable for prediction among
children. Whether the system can reason with missing data, uncertainty or erroneous
data influences its scope of operation as does whether it requires static or incremen-
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tal data sets of patient data. Prior knowledge may be necessary for the algorithm or
a certain amount of data may need to be available before mining, which again
influences the scope of applicability of the method. Knowing the scope and
limitations of a system is none the more poignant than when heuristics are used,
since there is even more potential that a heuristic method is specific to a particular
population and context.

CONCLUSION
This chapter has reviewed some methods and techniques of medical data

mining relating them to heuristic techniques. We have identified the need for
forward-looking responsibility as a unique concern of medical mining that is
especially relevant given the application of heuristic techniques. We have identified
some of the particular problems of medical data and related these to some of the
applications of medical mining that have been made, and we have also identified
where heuristic techniques are applied. We have found that many heuristic tech-
niques are essentially small-scale machine learning methods rather than approaches
related to the management of large volumes of medical data, although a few heuristic
methods specifically related to volume of data have been reviewed. The chapter
advocates a forward-looking responsibility, with the data mining practitioner aware
of the guidelines for medical mining in regard to quality, its evaluation, the
constraints on operation and the limitations of algorithms and even when mining
should not be applied due to the inability to verify the information discovered, or
other reasons. These guidelines would be very timely in a field with some unique
ethical considerations, at a point when the amount of electronic medical data is
rapidly increasing and heuristic techniques may be employed to “speed the quality”
of solution or  “improve a solution” in the information discovered in these vast
datasets.
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In the last few years, a large number of companies are starting to realize
the value of their databases. These databases, which usually cover
transactions performed over several years, may lead to a better under-
standing of the customer’s profile, thus supporting the offer of new
products or services. The treatment of these large databases surpasses the
human ability to understand and efficiently deal with these data, creating
the need for a new generation of tools and techniques to perform
automatic and intelligent analyses of large databases. The extraction of
useful knowledge from large databases is named knowledge discovery.
Knowledge discovery is a very demanding task and requires the use of
sophisticated techniques. The recent advances in hardware and software
make possible the development of new computing tools to support such
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tasks. Knowledge discovery in databases comprises a sequence of stages.
One of its main stages, the data mining process, provides efficient
methods and tools to extract meaningful information from large data-
bases. In this chapter, data mining methods are used to predict the
behavior of credit card users. These methods are employed to extract
meaningful knowledge from a credit card database using machine learn-
ing techniques. The performance of these techniques are compared by
analyzing both their correct classification rates and the knowledge
extracted in a linguistic representation (rule sets or decision trees). The
use of a linguistic representation for expressing knowledge acquired by
learning systems aims to improve the user understanding. Under this
assumption, and to make sure that these systems will be accepted, several
techniques have been developed by the artificial intelligence community,
using both the symbolic and the connectionist approaches.

INTRODUCTION
The widespread use of databases and the fast increase in volume of data in these

databases are creating a problem and a new opportunity for a large number of
companies. These companies are realizing the necessity of making an efficient use
of their stored databases.

Moreover, as a result of the “information technology revolution,” storage and
processing capabilities have faced an explosive increase in the last decades. Today,
commercial and scientific applications easily produce gigabytes or terabytes of data
in a few hours. These data hold variable information, e.g., trends and patterns, which
can be used to improve business decisions and to optimize performance.

However, today’s databases contain so much data that it has become almost
impossible to manually analyze them for valuable decision-making information. In
many cases, hundreds of independent attributes need to be simultaneously consid-
ered in order to accurately model systems behavior. Nowadays, this need for
automatic extraction of useful knowledge from large amounts of data is widely
recognized.

Data mining (DM) techniques are employed to discover strategic information
hidden in large databases. Before they are explored, these databases are cleaned.
Next, a representative set of samples is selected. Machine learning techniques are
then applied to these selected samples.

This chapter investigates three different machine learning techniques. Two of
these techniques are the symbolic learning algorithms C4.5 (Quinlan, 1993) and
CN2 (Clark & Boswell, 1991). The other technique is a multilayer perceptron neural
network (Rumelhart & McClelland, 1986) with a knowledge extraction technique,
the TREPAN algorithm (Craven, 1996).

Despite their successful use on a large number of tasks, artificial neural
networks (ANNs) have been much criticized for not presenting a clear indication of
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their decision process.  It is usually very difficult to figure out what an ANN has
learned and to understand how it generates answers to queries posed to it. This
feature is found in functional models that are strongly based on the discovery of
input-output relationships. For a large number of applications, the users should be
able to perceive how this relationship is built internally and why the network has
chosen one solution instead of another.

In contrast to ANNs, symbolic learning methods exhibit a high degree of
understanding to the external user. They are able to explain the path from the query
to the answer in an easy-to-understand language. Some examples of symbolic
learning methods are the C4.5 (Quinlan, 1993), CN2 (Clark & Boswell, 1991) and
CART (Breiman, Friedman, Olshen & Stone, 1984) learning algorithms.

Systems that have both the ability of generalization found in ANNs and the
external understanding of symbolic learning algorithms are now being sought. This
class of systems includes the so-called hybrid intelligent systems, whose main idea
is to put together the abilities of two or more artificial intelligence paradigms, such
as symbolic learning algorithms and ANNs, to improve the overall performance
obtained.

In this direction, a large effort has recently been made to develop techniques
able to extract knowledge from ANNs. It is common sense that, in order to have high
user acceptance and to improve their usefulness as learning tools, it is necessary that
the explanation ability becomes an integral part of trained ANNs, allowing them to
explain their structure in an easy language.

Algorithms used to extract knowledge from trained ANNs allow the descrip-
tion of this knowledge as a decision tree, a information path through the network or
a set of rules generated in a language externally understandable. Classical examples
of these algorithms are SUBSET (Towell & Shavlik, 1993), MofN (Towell &
Shavlik, 1993), Rulex (Andrews & Geva, 1994) and TREPAN (Craven, 1996).

THE KNOWLEDGE EXTRACTION PROCESS
In building intelligent systems, the most important and difficult step is the

extraction of patterns, which is a process that involves the extraction itself and the
interpretation and expression of knowledge. It is a time-consuming task and, as a
result, the most expensive step in building knowledge systems in general.

The term “knowledge” has been largely discussed from a philosophical point
of view. It can be either explicitly acquired from specialists or implicitly extracted
from data sets representing the application domain.

Most of the machine learning experiments use data sets derived from a database
that have been previously cleaned and treated. Real-world applications need to deal
with data coming from large databases with a large amount of noise, missing data
and irrelevant features.

Knowledge discovery in databases (KDD) is the process of knowledge extrac-
tion from large volumes of data. Fayyad (Fayyad, Piatetsky-Shapiro, Amith &
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Smyth, 1996; Fayyad, Piatetsky-Shapiro, & Amith, 1996; Fayyad, 1996) defines the
KDD process as a nontrivial process of identification of valid, new, potentially
useful and understandable patterns present in the data. This definition is easier to
understand by taking each of its components individually:

• Data: The set of facts or cases in a data repository. As an example, consider the
field values of a sale record in a database.

• Pattern: Refers to the set of models or information that represents some
abstraction of a data subset in any descriptive language.

• Process: The KDD process involves several stages, such as data preparation,
search for patterns and knowledge evaluation. This process is usually very
complex;

• Valid: The patterns discovered must have a certainty degree. They must satisfy
functions or thresholds that assure that the samples covered and the cases
related to the patterns found are acceptable.

• New: A pattern found must provide new information about the data. The
novelty degree is used to define how new a pattern is. It can be measured
through either comparisons among the data changes (how much a defined
value differs from the expected or predicted value) or absence of previous
knowledge (the relationship between a new discovery and older discoveries).

• Useful: The patterns discovered must be incorporated in order to be used;
• Understandable: One of the main goals of KDD is to allow the user to

understand the patterns through a descriptive language, thus allowing a deeper
understanding of the data.

• Knowledge: Knowledge is defined according to the domain, considering
usefulness, originality and understanding.
It is then important to stress the different meanings of the terms KDD and DM.

While KDD denotes the whole process of knowledge discovery, DM is a component
of this process. The data mining stage is used as the extraction of patterns or models
from observed data. Knowledge discovery from databases can be understood as a
process that contains, at least, the steps of application domain understanding,
selection and preprocessing of data, data mining, knowledge evaluation and
consolidation and use of the knowledge.

The KDD process begins with the understanding of the application domain,
considering aspects such as the objectives of the application and the data sources.
Next, a representative sample, selected according to statistical techniques, is
removed from the database, preprocessed and submitted to the methods and tools of
the DM stage with the objective of finding patterns/models (knowledge) in the data.
This knowledge is then evaluated as to its quality and/or usefulness so that it can be
used to support a decision-making process.

The search for patterns, as well as the understanding of the results from all the
phases that compose the KDD process, can be accomplished with the aid of
visualization techniques. These techniques facilitate the understanding, on the part
of the users, of the knowledge extracted from the data, which can be accomplished
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by identifying structures, characteristics, tendencies, anomalies and relationships in
the data (Rezende, Oliveira, Félix & Rocha, 1998).

Any realistic knowledge discovery process is not linear, but rather iterative and
interactive. Any step may result in changes in earlier steps, thus producing a variety
of feedback loops. One cannot simply expect an extraction of useful knowledge by
submitting a group of data to a “black box.”

Although at the core of the knowledge discovery process, the DM step usually
takes only a small part (estimated at 15% to 25%) of the overall effort  (Brachman
& Anand, 1996).

Since the main focus of this chapter is on data mining, the next section
concentrates on its main features.

DATA MINING
By representing the main stage in the KDD process, the DM task can also be

divided into several stages. A representative outline containing all these steps is
illustrated in Figure 1.

As mentioned in the previous section, DM involves the following activities:
• Choice of DM functions or tasks: Analyze the task to define if the goal of the

KDD is classification, grouping, regression, segmentation, etc.
• Choice of algorithms: Select the methods that will be employed in order to find

patterns in the data. This may include the definition of which models and
parameters would be more appropriate and the choice of a particular method
from the criteria defined in the domain definition stage. The algorithms may
be either supervised or non-supervised and they can follow the symbolic,
statistical, instance-based, connectionist or genetic paradigms. Examples of
algorithms used for data mining are decision trees (Quinlan, 1993), Bayesian
networks (Russel & Norvig, 1995), clustering algorithms (Kohonen, 1984)
and artificial neural networks (Rumelhart & McClelland, 1986). The algo-
rithm choice is considered as an analytical process, since no one algorithm has
an optimum performance in every application domain.

• Data preparation: Even after the data have been prepared and selected in the

Figure 1: Main stages in a data mining process
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previous stages in the KDD process, they may still be too large to be used by
the algorithms. A large data volume might even increase the complexity of the
knowledge extracted representation, making the understanding harder. The
data preparation involves the following steps:
1. Preprocess the data to the format specified by the algorithm to be used.
2. Reduce the number of samples/instances. This can be achieved either by

simple reduction (random choice of samples) or by sampling techniques.
3. Reduce the number of features/attributes. This can be carried out either

through suggestions from specialists or by using FSS (Feature Subset
Selection—embedded filters or wrappers).

4. Features construction, which is the combination of one or more attributes
in order to transform irrelevant attributes to more significant attributes. It
is worth to mentioning that this manipulation may result in both the
reduction and the increase in the number of features (becoming interesting
in cases where there is a small number of features and a large number of
examples).

5. Noise elimination, missing values treatment, etc.
• Knowledge Extraction: This activity involves a search for relevant patterns in

one or more particular representations, like rules and decision trees, regres-
sions, clusterings, among others. The success of this search depends on the two
previous activities.
In this stage, the data already prepared by the previous stage are used as input
for the chosen algorithm. The extraction of patterns is then responsible to find
patterns, models or classifications inside the data set.

• Pre-evaluation: Verifies the algorithm’s accuracy, the model representation,
the complexity of the rule sets or decision trees produced to represent
knowledge, etc. Evaluates how difficult it is to understand the knowledge
extracted. Checks what was learned, looking for new pieces of information and
overfitting avoidance. Filters the information, eliminating useless and too
obvious knowledge. For example, using a cattle database, produced rules like
“only cows produce milk” should be ignored.
Figure 1 illustrates these steps. Once the patterns are discovered, they should

be interpreted, analyzed and validated by the users of the KDD process.
Several different methods and techniques can be used to extract knowledge

from data. The variety of methods and techniques currently used for extracting
knowledge from databases comes from diverse disciplines such as statistics,
machine learning, database, and visualization.

In order to evaluate the effectiveness of the knowledge extracted from different
machine learning approaches, this work compares the knowledge extracted from
ANNs using TREPAN to that extracted by two symbolic learning algorithms. The
quality of a knowledge extraction technique can be evaluated by three different
measures:
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• Accuracy;
• Comprehensibility;
• New useful knowledge.

This chapter evaluates the performance of the three knowledge extraction
techniques, measuring their classification accuracy and comprehensibility of the
knowledge extracted.

The next section will briefly discuss different techniques that can be used for
the knowledge extraction process.

KNOWLEDGE EXTRACTION TECHNIQUES
Several techniques have been successfully used to extract knowledge from

databases. They range from numeric to symbolic, parametric to non-parametric and
supervised to nonsupervised methods. In this section, three techniques are described
and evaluated.

The first two techniques, the C4.5 (Quinlan, 1993) and CN2 (Clark & Boswell,
1991) symbolic learning algorithms, extract knowledge directly from the data set.
The last technique, the TREPAN algorithm (Craven, 1996) extracts knowledge
from a previously trained neural network. The CN2 algorithm induces if...then rules
from a given data set. The C4.5 algorithm extracts decision trees, although it can also
extract a set of ordered rules from the data set. Decision trees are also the knowledge
representation produced by the TREPAN algorithm.

Knowledge Extraction by ANNs
There are several advantages in the extraction of knowledge from ANNs. A few

of them are discussed in Andrews and Diederich (1995). They include:
• Validation: System interface and external understanding are essential factors

to allow the analysis and understanding of the hypothesis learned by the
system.

• Integration between connectionist and symbolic systems: Besides providing
a precise and short symbolic description of the neural network knowledge, the
knowledge extracted in the format if...then rules or decision trees facilitates the
integration of ANNs with symbolic knowledge based systems.

• Investigation of data and scientific theory induction: The data analysis
carried out by the knowledge extraction process may find out new theories
previously unknown. Without this process, theories discovered by ANNs
would not become explicit.

• Explanation ability: One of the main criticisms of ANNs is their inability to
explain their decision process. The main goal of explanation procedures is to
provide the user with a capability to explore the knowledge embedded in a
system. Explanations must be clear and provide answers to the most relevant
aspects of the knowledge acquired.
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The knowledge acquired by ANN is represented by  its bias and weight values
in a numerical format. This representation is, in principle, not readily understand-
able by users. Knowledge extraction algorithms try to analyze, either directly or
indirectly, this numerical representation in order to explain the ANN behavior. This
analysis explores three different aspects of ANNs: topology, activation function and
bias and weight values. According to Andrews and  Diederich (1995), three different
approaches can be considered in this analysis.

The first approach, known as decompositional or local, extracts knowledge
individually  from the nodes of a trained network. The rules for each unit take into
account all the units in the previous layers. This approach produces rules with
simpler intermediate terms. On the other hand, it requires the hidden units to be
approximated by threshold units. Among the algorithms following this approach,
one can mention the SUBSET (Towell & Shavlik, 1993), MofN (Towell & Shavlik,
1993) and Rulex (Andrews & Geva, 1994) algorithms.

However, these algorithms have restricted generalization and scalability
capabilities. Most of them have limited applicability because they either require the
use of a special training procedure (Craven & Shavlik, 1994; Setiono & Liu, 1995)
or impose some restrictions on the network architecture or transfer function
(Andrews & Geva, 1994; Tan, 1994; Fu, 1991).

The second approach involves the so-called global methods. These methods
describe the behavior of the output units as a function of the input units. The most
known methods using this approach are the VIA (Thrun, 1994) and the TREPAN
(Craven, 1996) algorithms. The TREPAN algorithm is described in the next section.

The third approach, named combinational, is a combination of the two previous
approaches and includes techniques which use the network architecture and weight
values in order to complement a symbolic learning algorithm.

The TREPAN Algorithm
The TREPAN (TREes PArroting Networks) algorithm (Craven, 1996) repre-

sents the knowledge acquired by a trained ANN as a decision tree. It generates the
decision tree by taking as input the trained ANN together with the input data used
for its training. This algorithm does not take into consideration the internal network
structure, which makes it general enough to be used together with most of the ANN’s
models.

TREPAN uses the same principle that is found in a few well-known algorithms
for induction of decision trees, like C4.5 (Quinlan, 1993) and CART (Breiman et al.,
1984). These algorithms build a decision tree through recursive partitioning of a
dataset. In particular, TREPAN builds a decision tree by using the best-first search
technique, instead of the traditional depth-first search technique, used by most of the
other algorithms.

When TREPAN is used, the class assigned to each example used in the
construction of the decision tree is defined by an oracle or classifier, which is the
trained ANN itself. Thus, when an example is presented to the oracle, it returns its
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class as defined by the ANN. The TREPAN algorithm aims to obtain a decision tree
that represents in an accurate way the knowledge obtained by a trained ANN.

The expansion of the decision tree by TREPAN is controlled by a list that
contains only leaf nodes. For each node in this list, a subset of the training samples,
a set of complementary samples and a set of constraints are stored.

A new node inserted in this list is later removed either by expanding into other
offspring leaf nodes or to finally become a leaf node which cannot be expanded any
further. Once removed, a node cannot return to the list. Instead, the offsprings
created as a result of the expansion are inserted in the list. The expansion of a node
is carried out by using a special test that selects the nodes that must be divided and
generates leaf offsprings.

The training subset contains examples that reach the related leaf node. The
subset of complementary examples is composed by randomly generated examples
and by some other examples that were not part of the ANN training set. These
examples also can reach the related leaf node. These two subsets are used either in
the division test of the internal nodes or to help define the class of the leaf nodes. The
set of constraints stored in each node is formed from tests for conditional node
division. These tests are performed on the sample attributes. In order to reach the
related leaf node, the training examples and the complementary examples must
satisfy this set of constraints.

According to the decision function used by the tree nodes, the TREPAN
algorithm can generate three different formats of decision trees.

• Original or m-of-n: Extracts trees whose internal nodes present tests of the m-
of-n type.

• Disjunctive or 1-of-n: Variation of the original method, uses disjunctive (OR)
tests to generate the trees.

• Simple test: The decision tests have only one attribute, which is evaluated as
true or false.
The next section presents the CN2 technique, which extracts a group of rules

from a set of training examples.

The CN2 Algorithm
Systems that induce rules or knowledge from examples are very useful in the

building of knowledge based systems (Clark & Boswell, 1991). The CN2 algorithm
was designed to induce rules with the format if...then. It combines the ability to
process noisy data, which is an attribute of ID3 based algorithms, with the ability to
generate if...then rules and use search strategies employed by AQ based algorithms.
When a set of rules is used, each rule is associated with a specific class.

CN2 is composed of two functions: the first function searches for the best rule
to be extracted from the data. The second function controls the search for the rules
by performing each selected rule several times. During the search process, CN2
evaluates the rules currently generated and defines the best one of them. One of the
possible choices for a quality evaluation strategy is to evaluate the rule precision on
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the training set. Another possibility is the use of an entropy measure. However, this
technique has a tendency of selecting rules that are too much biased towards
particular cases, thus covering a low number of examples. As a result, the rules may
present a poor generalization ability.

In order to avoid the generation of rules too specialized, CN2 uses a signifi-
cance test. This test guarantees a fair distribution of the examples among the existing
classes. Thus, rules that cover only part of the examples are discarded. But even
discarding these rules that are below a specified threshold, the precision of the rules
may be reduced because the remaining rules will probably be more general.

Another problem with the original CN2 is that the set of rules produced is
ordered (Clark & Boswell, 1991). This set is also known as a decision list (Rivest,
1987), and the ordering makes its analysis more difficult. A solution to these
problems is the use of the Laplace error estimate. CN2 with Laplacian error estimate
was developed by Clark and Boswell (1991) and uses the original CN2 algorithm
with entropy. This estimation is obtained by using the following equation (Clark &
Boswell, 1991):

LaplaceAccuracy = (n
c
 + 1)/(n

t
ot + k) (1)

where k is the number of classes in the domain, n
c
 is the number of examples in the

class c covered by the rule and n
t
ot is the total number of examples covered by the

rule.
When the list of rules is generated, the class c  predicted by a rule is the one with

the largest number of examples covered by this rule. One advantage of this method
is that it can generate a non-ordered list of rules that is both smaller and simpler than
the corresponding ordered set.

A rule in an ordered list can not be evaluated separately, since the order must
be followed. Thus, the complexity of the evaluation of an ordered set of rules
increases with the number of rules in the set.

The C4.5 Algorithm
The C4.5 algorithm (Quinlan, 1993) uses a decision tree to represent the

knowledge extracted from a given data set. When C4.5 is used in a classification
problem, the classes are represented by leaf nodes of the tree produced. The other
nodes correspond to the attributes used for the classification. The tree branches are
labelled with either discrete attribute values or continuous attribute intervals. In
order to improve its generalization, a decision tree can later be pruned. It must be
noticed that the knowledge represented by a tree can also be described by production
rules.

The generation of decision trees by C4.5 is based on the Hunt algorithm (Hunt,
Marin & Stone, 1966), which given a test set T containing examples from the classes
C

1
, C

2
, ..., C

k
, chooses one among three possible decisions:

• T contains one or more examples, all of them belonging to the class C
j
. The

decision tree generated for T is a leaf that identifies the class C
j
.

• T does not contain examples. The decision tree is also a leaf, but the class
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associated to this leaf must be defined through information extracted from
other sources. As an example, the leaf node can be associated to the class with
the largest number of occurrences.

• T contains examples belonging to more than one class. In this case, T is divided
into subsets, where each subset should have examples from the smallest
possible number of classes. A criterion to divide T is chosen and the division
of T through this criterion generates the subsets T

1
, T

2
, ..., T

n
. The decision tree

for the set T is then composed by a decision node and a set of child nodes. For
each of the child nodes, one of these three possible decisions is recursively
applied.
Usually, among several trees generated from the same dataset, the smaller the

tree, the better its generalization. This occurs due to the smaller number of tests
required and because the leaf nodes can be applied to a larger number of examples.

Each rule extracted from a decision tree corresponds to a path between the tree
root node and a leaf node. Thus, the premises may be very large, i.e., they might have
a large number of tests. If there is more than one path leading to a leaf node
representing the same class, all these paths represent OR disjunctions.

It should be observed that all the tree paths are mutually exclusive. Only one
path is satisfied for each query.

The next section describes the application domain used for the experiments
presented in this chapter, credit risk analysis.

CREDIT RISK ANALYSIS
Credit can be defined as the delivery of a value in exchange for a promise that

this value will be paid back in the future. However, there is always the risk of this
promise not being consummated. Formal contracts are usually employed in order to
guarantee to the creditor the right of receiving the debt. But even these contracts do
not ensure that the debt will be paid to the creditor, since the debtor may not have
the resources necessary to make the payment.

In order to reduce the risks of unpaid debts, a technical analysis is advisable
before a credit is granted to a client. This analysis is named credit risk analysis.

Credit risk analysis has attracted a large deal of attention lately. Credit analysis
is essentially a classification task that involves evaluation of the reliability and
profitability of a credit application. In most of the cases of credit assessment, bank
managers must deal with a large variety of information from a large variety of
sources. Much of this information can be characterized as being:

• Incomplete;
• Ambiguous;
• Partially incorrect;
• Possibly relevant.

The traditional approach employed by bank managers largely depends on their
previous experience and does not follow the procedures defined by their institutions.
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Credit risk analysis is concerned with the evaluation of the profit and guaranty
of a credit application. Credit applications can either be in benefit of companies or
people. Examples of personal credit applications are student loan, personal loan,
credit card concession and home mortgage. Examples of company credits are loans,
stocks and bonds.

Nowadays, a growing number of shops ask for personal data from clients who
want to finance their purchase. These data are used to consult a credit database that
informs if the client has any history of unpaid debts. In sectors where the credit value
is high, like home loans, a large amount of information may be required of the client.
If the database does not return any negative information about the client, the credit
is usually authorized.

The higher the value of the credit asked, the more rigorous is the credit risk
analysis. Some large companies have whole departments dedicated to credit risk
analysis. These departments carry out several activities before a credit is conceded,
like:

• Elaborate files with clients’ identification data;
• Elaborate financial analysis about the clients;
• Collect information regarding unpaid bills and clients’ bankruptcy;
• Visit clients to create a more solid concept of the amount of credit they are

able to assume;
• Consult other suppliers/creditors of the clients.

The next section discusses the different approaches that can be followed for
credit risk evaluation.

Methods for Credit Risk Evaluation
The approaches usually employed for credit risk evaluation may be basically

divided into two groups of methods:
• Subjective methods;
• Quantitative methods.

Subjective Methods
Subjective methods are those methods based on previous experience. The use

of previous experience is the oldest and still the most used method for credit risk
analysis. It is a valuable method, mainly if the involved issues are subjective. These
methods take into account information like: the potential management of a com-
pany, the age of the production machinery, the client honesty, the analysis of the
country’s current economic situation, etc. However, this previous experience is not
easily acquired and only time and participation in relevant situations can provide it.

Since loan officers rely on their own heuristics (result of their previous
experience) when assessing credit applications, different officers may arrive to
different decisions for the same application. Several companies follow the five Cs
of credit when a credit request risk is evaluated (Ross, Westerfield, & Jaffe, 1993):
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• Character;
• Capability;
• Conditions;
• Capital;
• Collateral.

Quantitative Methods
These methods, among them credit scoring, are used to classify quantitatively

if a credit should be granted or not to a company (client). They belong to a more
general class of methods and techniques named pattern recognition.

There are a large number of methods to deal with pattern recognition problems
and, in principle, all of them can be used for credit risk analysis.

Subjective Versus Quantitative Methods
Models developed by quantitative methods present the following advantages

over the use of previous experience:
• Consistency: Since different analysts have different judgement criteria, the

use of previous experience can lead to different decisions for the same credit
application. The use of quantitative models eliminates this subjective factor,
allowing a financial institution to obtain a higher consistency in its credit
decisions.

• Flexibility: Since they can be adapted to changes in the economic scenario, the
quantitative models provide more flexibility. Quantitative models can be
redesigned using a new data set representing the current economic situation.
Subjective methods do not have this flexibility. These methods demand a long
period of time before the analyst acquires the knowledge necessary to deal
with the new situation. Besides, the previous experience may not be useful in
the next period. The ideal situation would be the use of quantitative methods
by credit analysts in addition to their previous experience. This combination
could proportionate more efficient evaluation of credit requests, leading to
better decisions.

• Speed: Quantitative methods reduce the time spent in credit risk evaluations,
allowing the daily analysis of a larger amount of credit requests by financial
institutions. Moreover, rather than analyzing factors that can be analysed by
the model, the analysts can use their time to analyse the most relevant requests,
to keep up to date with the current economic situation, to work in more
complex requests, etc.

• Confidence: the analyst can use the decision generated by quantitative meth-
ods to support his/her final decision.
Additional advantages are the lack of racial, regional or ethnical discrimina-

tions. But one has to be aware that the quantitative methods also have their
disadvantages:

• As time goes by, the economic situation changes and the models defined with
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outdated samples loose their efficiency. However, this problem may be
overcome by redefining the models using more up-to-date samples.

• In many situations, the precision is not the only issue of interest. In general,
quantitative methods are known as “black boxes”, not explaining how they
arrive at a particular decision. Financial institutions may want an explanation
of the decision process. When neural networks are used, knowledge extraction
techniques can explain the decisions taken by the network. However, these
techniques are still restricted to academic environments.

• Quantitative models depend on the geographical region where the samples
were generated. Thus, the data should be collected from all the regions where
a financial institution has clients.

• The financial institution may become too dependent on the company who
developed the quantitative model. Techniques to automate the model design
could be used to reduce this dependency.
The next section presents the experiments performed with a credit risk analysis

dataset and discusses the results obtained.

EXPERIMENTS
This section presents a set of experiments performed using a real dataset of

credit risk assessment and discusses the results obtained. The dataset used in the
classification and knowledge extraction experiments is comprised of 5,635 samples
selected from a very large dataset containing 100,000 credit card users.

Initially, these experiments evaluate the classification accuracy presented by
ANNs, CN2, C4.5 and TREPAN. Afterwards, they compare the knowledge ex-
tracted by CN2, C4.5 and TREPAN. The ANNs used in this article are MLP
networks (Rumelhart & McClelland, 1986), trained by the Rprop algorithm
(Riedmiller & Braun, 1993).

In the comparison of the knowledge extracted, the first comparison juxtaposes
the rules set generated by the CN2 algorithm with that produced by the C4.5
algorithm. Since C4.5 can generate knowledge using both the rules set and decision
tree representations, the decision tree produced by the C4.5 algorithm for the same
dataset that produced its rules set is compared to the three formats of decision trees
generated by the TREPAN algorithm.

The experiments were carried out using a real dataset obtained from a Brazilian
bank. The experiments were performed according to the principles recommended
by the neural networks benchmark Proben1 (Prechelt, 1994). The Proben1 bench-
mark consists of a set of rules and guidelines on how to perform experiments with
ANNs.

The credit card dataset consists of 5,635 examples divided in two classes: good
payers and bad payers. 5,414 of the examples (96.07%) belong to the good payer
class and 221 of the examples (3.93%) come from the bad payer class. This is an
unbalanced dataset. Each example has 31 input attributes and 2 output attributes.
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The input attributes have continuous and discrete values. A number of examples
present missing values for some of the attributes. Input attributes include data like
client credit history, credit purpose, years with employer, credit cards, savings
account/bonds, personal status, sex, age, salary, type of residency, properties,
education, address, etc.

Symbolic data, like sex, personal status and type of residency, were converted
to numerical data. Two approaches were adopted to convert the values of each
symbolic attribute. When the attribute values follow an order, the symbolic values
were converted to real numbers obeying that order. Otherwise, the attribute values
were converted to unary vectors, where the vector size was equal to the number of
values for that particular attribute.

Once all the attributes were converted to numeric values, they were normalized
and randomly divided into three subsets: training, validation and test subsets.
Proben1 suggests the following partition: 50% of the samples for the training subset,
25% for the validation subset and 25% for the test subset. However, the large
unbalance of the credit card dataset, with less than 4% of the samples belonging to
one of the classes, could bias the training process toward the majority class if these
proportions were used. In order to overcome this problem, the following numbers
of samples were used:

• Bad payers: 177 samples for training, 22 for validation and 22 for test;
• Good payers: 177 samples for training, 541 for validation and 541 for test.

The samples for the good payers’ class were randomly selected from the set of
all samples belonging to this class. The experiments were conducted three times for
each network; each time the dataset was shuffled in order to generate different
partitions. In these partitions, the same proportion of samples present in each class
for the training, validation (for the experiments with ANNs) and test subsets was
preserved.

For the experiments with TREPAN, CN2 and C4.5, the validation subset was
added to the training subset. Thus, the same number of samples was used for the
training of the techniques investigated. For the experiments using ANN, part of the
training data was used as a validation subset to support early stop.

Accuracy Evaluation
Table 1 shows the average correct recognition rates obtained from the different

techniques investigated, along with their corresponding standard deviation.
Table 1 suggests that the CN2 algorithm with Laplacian method is more

efficient to classify new patterns. The worst correct classification rates were
achieved by the decision trees produced by C4.5. It is interesting to see that the rules
set produced by the same method, C4.5, presents the second highest average of
correct classification rates for the test subset. The performance achieved by
TREPAN 1-of-n and m-of-n methods are superior to those achieved by TREPAN
simple test method. It must also be noticed that the correct classification rates
obtained during the training were close to 100% for the CN2 and ANN techniques.
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Since TREPAN’s task is to learn the knowledge represented by an ANN model,
it is desirable that TREPAN and this model have a high percentage of classification
correlation. The results presented in Table 1 do not clearly show this relationship.
TREPAN provides a measure, named fidelity, which defines these correlations.

Table 2 presents the correlation of the classification provided by TREPAN and
the MLP network used.

As can be seen in Table 2, the classification obtained by TREPAN was very
fidel to the classification achieved by the associated MLP network.

Comprehensibility Evaluation
This section presents the rule sets generated by the CN2 and the C4.5 algoritms

and the decision trees produced by the C4.5 algorithm and by the TREPAN
algorithm.

Rules Set Generated by CN2
For the partition with the average performance, the CN2 algorithm using the

Laplacian method produced a set of 11 rules (including the default rule), which is
a small number of rules. The classification of a new example is performed by testing
each rule until a rule able to classify this example is found. The rules do not have a
predefined order. The result of each rule does not depend on the results of previously
tested rules. Figure 2 shows some rules produced by the CN2 algorithm.

In order to compare the knowledge extracted by CN2, C4.5 and TREPAN, the
same partitions are used in the next sections by C4.5 and TREPAN to generate rule
sets and decision trees.

Table 1: Correct classification rates

Method Training Test
ANN 96.7 �  0.4 98.0 �  1.4
TREPAN (1-of-n) 96.7 �  0.3 99.0 �  0.8
TREPAN (m-of-n) 96.3 �  0.8 99.1 �  0.7
TREPAN (simp.) 96.4 �  1.0 99.1 �  0.7
C4.5 (rules) 97.6 �  0.8 98.1 �  0.2
C4.5 (trees) 96.9 �  0.4 99.2 �  0.4
CN2 98.6 �  0.8 98.1 �  0.2

Table 2: Fidelity for the test set

Method Fidelity
TREPAN (1-of-n)  0.979
TREPAN (m-of-n)  0.972
TREPAN (simp.)  0.989
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Rules Set and Decision
Tree Generated by C4.5

Figure 3 illustrates some of
the rules extracted by the C4.5 al-
gorithm. The C4.5 algorithm ex-
tracted only 4 rules (including the
default rule). Like the rules pro-
duced by the CN2 algorithm with
the Laplacian method, the rules
generated by C4.5 are unordered.

A decision tree was also ex-
tracted by C4.5. A branch of the
decision tree produced by C4.5  is
shown on Figure 4. The tree pro-
duced has 10 internal nodes and 14
leaves. Each internal node tests a
group of hypotheses related to the
customer situation, which can as-
sume values like “single”, “own

house”, etc. Each hypothesis evaluates the values of a subset of the applicant
attributes. As all the paths in a tree are mutually exclusive, only one path is satisfied
for each question.

Decision Trees Created
by TREPAN

The MLP networks used in this
article have 38 input nodes, 20 nodes
in the first hidden layer, 8 nodes in
the second and an output layer with 2
nodes. For the output values 0 1, the
class is positive (the customer is a
good payer). For the values 1 0, the
class is negative (the customer is a
bad payer).

Figures 5, 6 and 7 show the
decision trees obtained by using
TREPAN with the simple test, the 1-
of-n and m-of-n methods, respec-
tively. For each tree, the internal
nodes, shown as rectangles, repre-
sent the tests, and the leaves, shown
as circles, represent the positive or
negative outputs.

Figure 2: Some rules generated by CN2

if pt_cred > 57.50
and hon_val < 1000.00
and ath_sou < 29150.00
then class = good payer [88 0]

if prop_lim > 2250.00
and pt_cred < 73.50
then class = good payer [69 0]

if prop_lim > 750.00
and card_lim < 2250.00
and sou_com < 4600.00
then class = good payer [96 0]

(default) good payer [200 1999]

Figure 3: Some rules extracted by C4.5

Rule 1:
Lim_prop <= 1
-> bad payer class [99.3%]

Rule 2:
Lim_prop > 1
-> good payer class [93.4%]

Rule 3:
Properties > 25000
Card_lim <= 400
Res_tem <= 72
-> bad payer class [70.7%]

default class: good payer
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The assignment of an unknown example to one of the classes, using the m-of-
n or 1-of-n methods, obeys a straightforward procedure. The test starts by applying
the unknown input to the rule in the root node. According to the result (TRUE or
FALSE), the process continues in the top node of either the left tree branch (TRUE)
or the right tree branch (FALSE). This step is repeated for each square node until a
leaf node is reached. The class associated to this leaf node is then the class of the
unknown input. For the simple test method, each test node can produce two different
values: good payer or bad payer.

As an example of the classification obtained by using the TREPAN m-of-n
method, consider a credit card application represented by the premise: “pt_cred >
18.5”. A customer with this profile is classified as a good payer by TREPAN, as
shown in Figure 8. Thus, given a customer satisfying the rule shown, TREPAN
would classify it as a good payer.

Figure 4: Branch of tree generated by C4.5

Figure 5: Branch of tree generated by TREPAN simple test method
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The main features of the trees generated by each method are shown Table 3.
According to this table, the shorter trees were produced by the TREPAN algorithms,
mainly TREPAN 1-of-n and TREPAN simple. There is a large difference in the
number of nodes, leaves and height of the trees produced by TREPAN and the tree
produced by C4.5. Tall trees are more difficult to understand. Although a small
number of nodes makes the tree understanding easier to the user, it must be pointed
out that the test used by the tree generated by the TREPAN m-of-n method is more
difficult to understand than the test used by the other methods. Moreover, trees
usually provide a clearer view of the knowledge extracted than rules.

CONCLUSION
The application of data mining techniques to extract useful knowledge from

large databases is gaining a great deal of attention. While there are fundamental

Figure 6:  Branch of tree generated by TREPAN 1-of-n method

Figure 7: Branch of tree generated by TREPAN m-of-n method
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Bad payer

Good payer

Good payer

1 of (main_act = retired)



260  Carvalho, Braga, Rezende, Ludermir and Martineli

problems that remain to be solved, there have also been numerous significant
successful stories reported, and the results and gains are impressive (Simoudis &
Emde, 1996). Although the current methods still rely on fairly simple approaches,
the benefits from data mining technology have been convincingly demonstrated in
the broad range of application domains.

Several techniques have been proposed to use in data mining tasks. This paper
investigated the performance of three techniques, two of them symbolic and one
connectionist, towards understanding credit card users behavior. Experiments were
carried out using MLP neural networks (from which decision trees were extracted
using the TREPAN algorithm), the CN2 algorithm, which generates a set of rules
from a given dataset and the C4.5 algorithm, which can produce either a set of rules
or a decision tree from a given dataset.

In order to evaluate the quality of the knowledge extracted by machine learning
methods, three aspects should be considered: accuracy, comprehensibility and new
useful knowledge. In this article, the knowledge extracted by these techniques was
evaluated in terms of correct classification rates and the comprehensibility of the
knowledge representation.

Table 3: Tree generated features

Method Nodes Leaves Height
TREPAN (1-of-n) 1 2 2
TREPAN (m-of-n) 2 3 3
TREPAN (simple) 1 2 2
C4.5 10 14 7

Figure 8: Classification obtained by TREPAN m-of-n

1 of (pt_cred �  18.5)

Bad payer

Good payer

Good payer

1 of (main_act = retired)
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Regarding the classification accuracy, the highest correct classification rates
were achieved by the rules generated by the CN2 algorithm (for the training subsets)
and C4.5 trees (for the test subsets). The performance achieved by the trees extracted
by the three TREPAN methods were similar to those achieved by the C4.5 decision
trees and at least 1% superior, for the test subsets, to those obtained by the ANNs.

It must be pointed out that while C4.5 associates to each rule its correct
classification rate, CN2 defines for each rule the number of examples covered by the
rule. Although CN2 extracted less rules than C4.5, CN2 rules have, in general, a
larger number of premises than C4.5. Usually, rules with more premises are less
clear. While a set of CN2 rules indicates if a given client C

i
 will be a good payer, a

TREPAN tree indicates if C
i
 can be a good payer, thus providing higher quality

information.
Usually, it is easier to understand the knowledge represented by a decision tree

than that described by a set of rules. There is a clear relationship between the
complexity of the nodes test and the size of the decision tree. While the trees
produced by TREPAN m-of-n and TREPAN 1-of-n methods allow only two options
from each node, the trees produced by C4.5 and TREPAN simple test methods have
three options for each test node. Besides being shorter, the number of nodes and
leaves of the tree produced by the TREPAN simple test method were smaller than
those of the tree produced by C4.5.
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The goal of this research is to investigate and develop heuristic tools in
order to extract meaningful knowledge from archeological large-scale
data sets. Database queries help us to answer only simple questions.
Intelligent search tools integrate heuristics with knowledge discovery
tools and they use data to build models of the real world. We would like
to investigate these tools and combine them within the genetic algorithm
framework. Some methods, taken from the area of soft computing tech-
niques, use rough sets for data reduction and the synthesis of decision
algorithms. However, because the problems are NP-hard, using a heuris-
tic approach by combining Boolean reasoning with genetic algorithms
seems to be one of the best approaches in terms of efficiency and
flexibility. We will test our tools on several large-scale archeological data
sets generated from an intensive archaeological survey of the Valley of
Oaxaca in Highland Mesoamerica.
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INTRODUCTION

Archaeological Knowledge Discovery Problem
Anthropologists interested in ancient societies of Highland Mesoamerica,

Valley of Oaxaca, have used intensive archaeological survey in order to study the
state formation. Since these archaeological surveys were begun in the 1960s, the
computer was an essential tool because of the large quantity of data resulting from
the surveys. After the data was collected, it was placed on punch cards and the
additional results were published in several books (Blanton, 1989; Blanton,
Kowalewski, Feinman, & Appel, 1982; Kowalewski, Feinman, Finsten, Blanton, &
Nicholas, 1989) along with extensive site maps. The reason behind this archaeologi-
cal survey was to find answers to the following questions: What were the character-
istics of Mesoamerican agricultural systems? What role did hydraulic agriculture
play in prompting or facilitating the growth of large population centers? When was
irrigation first introduced? What was the nature of these population centers? When
and where did urbanism first arise? What decision making structures and adapta-
tions were necessary to facilitate these changes? (Blanton et al., 1982).

Our goal for the proposed research is to integrate evolutionary learning tools
into the knowledge discovery process and to apply them to the large-scale,
archaeological spatial-temporal data produced by the surveys. This heuristic based
approach used here will employ rough set concepts in order to represent the domain
knowledge and the hypotheses.

While answers to the questions above can possibly be found by investigating
the large-scale database resulting from the archaeological survey, this database
contains over 6,000 regional sites and over 2,000 residential sites at the Monte Albán
urban center. Each site is comprised of one or more components and can be occupied
in one or more archaeological periods, spanning a period from approximately 9000
B.C. to 1500 A.D. Thus, the total spatial and temporal scope is so vast as to make
manual interpretation a difficult if not impossible task. In addition, each temporal
and spatial instance of a site component can be described in terms of several hundred
variables of different types. We can clearly see a gap between data generation and
data understanding here. Tools and techniques from artificial intelligence can be
used to fill this gap and to aid in the extraction of emergent patterns hidden in the
data, as is shown by Reynolds (1994, 1999).

Heuristics
Uninformed or blind search, which processes and evaluates all nodes of a

search space in the worst case, is not realistic here because of time constraints that
are closely related to the dimension of the data. Generally, the search space increases
exponentially with problem size, thereby limiting the size of problems which can
realistically be solved using exact techniques such as exhaustive search. An
alternative solution is represented by heuristic techniques, which can provide much
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help in areas where classical search methods failed.
The word “heuristic” comes from Greek and means “to know”, “to find”, “to

discover” or “to guide a investigation”. Specifically, “Heuristics are techniques
which seek good (near optimal) solutions at a reasonable computational cost without
being able to guarantee either feasibility or optimality, or even in many cases to state
how close to optimality a particular feasible solution is” (Russell & Norvig, 1995).

 Heuristic refers to any technique that improves the average-case performance
on a problem-solving task but does not necessarily improve the worst-case perfor-
mance. Heuristic techniques search the problem space “intelligently” using knowl-
edge of previously tried solutions to guide the search into fruitful areas of the search
space. Often, search spaces are so large that only heuristic search can produce a
solution in reasonable time. These techniques improve the efficiency of a search
process, sometimes by sacrificing the completeness or the optimality of the solution.
Heuristics are estimates of the distance remaining to the goal, estimates computed
based on the domain knowledge.

Of special interest is the integration of heuristic search principles with the
dynamic processes in which data becomes available in successive stages, or where
data and inputs are subject to uncertainties, or with large-scale data sets. The
integration is a vehicle to generate data-driven hypotheses. The process is shown in
figure 1. Our goal is to generate hypotheses in terms of the archaeological data in
order help anthropologists answer their questions.

The kind of knowledge produced and the heuristic search algorithm selected
will reflect the nature of the data analysis task. In this chapter, the hypotheses will
be represented as sets of decision rules and the extracted rules will be represented
in terms of rough sets. Rough sets were selected because of the nature of our data
sets as we will discuss later.

From a mathematical point of view the problems that we want to solve can be
formulated in terms of the well-known minimal set cover problem, which is a

Figure 1: Knowledge discovery
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combinatorial optimization problem.
Traditional methods for combinatorial optimization problems are not appro-

priate here for several reasons. These methods are NP-hard in the worst case and
would be costly to use given the size of the data set. Also, since archaeological
efforts in the valley are ongoing, new sites can be added to the database, which
would require the traditional combinatorial approach to be restarted from scratch.
The techniques used to solve these difficult optimization problems have slowly
evolved from constructive methods, like uniformed search, to local search tech-
niques and to population-based algorithms.

Genetic algorithms, as population-based algorithms, are good vehicles in
which to build meta-level heuristics to guide the search more efficiently. That
knowledge—here we will use rough sets concepts, or rules—can be employed to
direct the evolutionary search. The rules can reflect spatial and temporal patterns
that will guide the generation of new candidate search objects by the evolutionary
engine. The spatial and temporal continuity of the data will facilitate this process.
The organization of the chapter is as follows. The first section briefly describes
evolutionary learning and queues a short literature review about related approaches.
The next section presents the archeological data sets and the data-related problems.
The third section is dedicated to the theory of rough sets. Next section presents a
genetic algorithms approach for reduct computation using rough sets, and for
decision system minimization. The next section describes the experiments, and the
last section presents the summary, the discussions and the future work.

EVOLUTIONARY LEARNING
UNDER UNCERTAINTY

Population-based heuristic methods are iterative solution techniques that
handle a population of individuals which are evolving according to a given search
strategy. At each iteration, periods of self-adaptation (mutations) alternate with
periods of cooperation (crossover) and periods of competition (selection). The
population-based heuristic search (Conrad, 1978) is dependent on the following
components: the knowledge representation for the specific problem we want to
solve and the search strategy or the evolution process. The adaptability of an
individual represents its ability to survive in an uncertain environment (Conrad,
1975). Artificial intelligence researchers have explored different ways to represent
uncertainty (Russell & Norvig,1995): belief networks, default reasoning, Dempster-
Shafer theory, fuzzy set theory and rough set theory.

For the problems we want to solve, the learning task will require a representa-
tion that explicitly deals with uncertainty. The evolutionary learning methods that
are employed must be able to work with such a representation. In this chapter we
look first at basic ways to represent uncertainty in developing rules. And then we
will investigate how that uncertain knowledge can be used to direct evolutionary
search and learning.



Heuristic Knowledge Discovery   267

Uncertainty
Uncertainty, as well as evolution, is a part of nature. When humans describe

complex environments, they use linguistic descriptors of cognized real-world
circumstances that are often not precise, but rather “fuzzy”. The theory of fuzzy sets
(Zadeh, 1965) provides an effective method of describing the behavior of a system
which is too complex to be handled with the classical precise mathematical analysis.
The theory of rough sets (Pawlak, 1991) emerged as another mathematical approach
for dealing with uncertainty that arises from inexact, noisy or incomplete informa-
tion. Fuzzy set theory assumes that the membership of the objects in some set is
defined as a degree ranging over the interval [0,1]. Rough set theory focuses on the
ambiguity caused by the limited distinction between objects in a given domain.

Rough Sets
A good approach to represent uncertainty is with rough sets. Rough sets are

based on equivalence relations and set approximations, and the algorithms for
computing rough set properties are combinatorial in nature. Wróblewski (1995)
implemented a genetic algorithm for computing reducts, based on permutation code
as well as a “greedy” algorithm. Another approach for building reducts is described
by Vinterbo (1999) and it is based on the set cover problem, in particular on finding
minimal hitting sets using a classical genetic algorithm. Finding a minimal set of
decision rules or a satisfactory set is an NP-complete problem. Agotnes (1999) used
genetic algorithms to build a optimal set of decision rules, where the fitness function
was based on the quality of each rule. In conclusion, there are many hybrid methods
that integrate evolutionary algorithms and other methods from soft computing,
methods such as rough sets. Our goal is to find a suitable knowledge representation
for our data and then to develop a cultural algorithm framework that combines that
representation with the appropriate evolution method.

Evolutionary Computation
Evolution can be defined in one word, “adaptation” in an uncertain environ-

ment. Nature has a robust way of dealing with the adaptation of organisms to all kind
of changes and to evolve successful organisms. According to the principles of
natural selection, the organisms that have a good performance in a given environ-
ment survive and reproduce, whereas the others die off. After reproduction, a new
generation of offspring, derived from the members of the previous generation, is
formed. The selection of parents from these offspring is often based upon fitness.
Changes in the environment will affect the population of organisms through the
random mutations. Evolution is a dynamic two-step process of random variation and
selection (Fogel, 1995). Using examples from natural systems and theories of
adaptive behavior, researchers have been trying to build heuristic evolutionary
learning systems.

Evolutionary algorithms are heuristic optimization methods inspired from
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natural evolution processes. Currently there are three basic population-only mecha-
nisms that model evolution: genetic algorithms (Goldberg, 1989), evolutionary
strategies and evolutionary programming. Each one of the methods models the
evolution of a population of individuals at a different scale and applies selection and
reproduction operators to find an individual that is fit with regard to the fitness
function.

EXTRACTING PATTERNS
FROM ARCHAEOLOGICAL DATA

Here we will work with the archeological data from Blanton et al. (1982), a
survey of Monte Albán, named the Terrace Data Set. This volume describes and
analyses the data collected during the first phase of the Valley of Oaxaca Settlement
Project. The project consisted of a detailed mapping and surface collection of the
region’s major archaeological site, Monte Albán, part of the Oaxaca valley.

Large-Scale Data
One of the most important problems in data analysis relates to the dimension-

ality of the data because many data analysis techniques involve exhaustive search
over the object space. They are very sensitive to the size of the data in terms of time
complexity and it is hard to generate compact rules. The solution is to reduce the
search space horizontally (in terms of records or objects) and vertically (in terms of
fields or attributes or variables) and to use heuristics to guide the search through the
large space of possible combinations of attribute values and classes. Our data set,
for example, contains 2,073 records and 224 attributes.

Uncertainty in Data
Uncertainty in a data set can appear for different reasons. One reason is noise.

Errors, which can occur during data collection or data entry, are referred as noise in
the data. It is also possible that the data set can have missing attribute values. In this
case, the objects containing missing attribute values can be discarded or the missing
values can be replaced with the most common values. Another problem is that the
available knowledge in many situations is incomplete and imprecise. This means
that sometimes the attribute values for a set of objects are not sufficient and precise
enough to differentiate between classes of objects. When we are talking about the
Terrace Data Set, errors and noise may have occurred for many reasons. The ancient
sites are damaged because of plowing, erosion, pot hunting and grazing. Also,
human perception is subjective, and many people worked on the collection of the
data. Some errors are possible due to the scanning process since much of the data
was available from printed text only.  Many different ways of representing and
reasoning about uncertainty have been developed in artificial intelligence. These
theories include: belief networks, non-monotonic logic, fuzzy sets along with fuzzy
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logic and rough sets. The well-known fuzzy set theory (Zadeh, 1965) characterizes
a concept approximately using a set membership function with a range of values
between 0 and 1. Another approach based on the rough set theory (Pawlak, 1991)
provides a lower and upper approximation in terms of set belonging to a concept
depending on how the relationship between two partitions of a finite universe is
defined.

Fuzzy sets are good approaches for problems with multiple membership grade
requirements, where judgment on set membership grades is possible and where the
ability to deal with vague predicates is required. They are very good for real-valued
data. On the other hand, rough sets with the three-valued simplicity, lower, upper,
and boundary approximation sets, work well on discrete and categorical data. Rough
sets can be useful even with missing data, changes of scale, problems where
membership grades are hard to define, and problems requiring changes in the
partition. Checking the attributes table for the Terrace Data Set we can see that out
of the 92 attributes only 4 attributes are integer in type, with no real-valued data
types. All the other attributes are of the categorical data type, nominal, ordinal, or
binary. We want to find which sites where occupied in each period of time so we
have to deal with data partitions. These facts suggest that rough sets methods are
more appropriate here.

ROUGH SETS FORMALIZATION
Pawlak (1991) introduced rough set theory in the early 1980s as a tool for

representing imprecise or uncertain information and for reasoning about it. Based
on the notion of indiscernability, rough set theory deals with the approximation of
sets, using equivalence relations. These approximations can form model hypoth-
eses. Many different applications can be found in the literature, but here we focus
on the applications to the classification problem since our goal will be to learn to
classify occupied terraces and not occupied terraces in Monte Albán and their
characteristics for each archaeological period in order to answer the questions posed
in the first section.

Formal Definitions and Properties
An information system can be defined as a pair S = (U, A), where U is a finite

set of objects and A is a finite set of attributes. Each attribute a ∈ A is a function that
maps elements of U into a set V

a
 called the attribute domain, of attribute a, a:U→V

a
.

Let S = (U, A) be an information system and let C,D ⊂ A be two subsets of attributes,
called the condition and the decision attributes respectively. A condition attribute
is an attribute that is thought to influence another attribute, the decision attribute.
An information system with distinguished conditions and decision attributes it is
called decision table and it is denoted by T = (U, A, C, D). Because a table with more
than one decision attribute can be easily transformed into a similar table with only
one decision attribute, usually the set of decision attributes contains only one
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decision attribute, denoted D = {d}, and T = (U, C, {d}). The decision attribute d
determines a partition in the object space U. The partition’s elements are named
decision classes.

With every x ∈ U we associate a function d
x
, which gives the value from V

c
 for

a given attribute c, d
x
:C→ V

c
 (Pawlak, 1991), such that d

x
 = c(x), for every c ∈ C

∪{d}. d
x
|C and d

x
|d are the restrictions of d

x
 to C, respectively d.

For every x,y ∈ U, we say that the object x is discernible if for every y, such
that x ≠ y, d

x
|C = d

y
|C implies d

x
|d = d

y
|d, otherwise the object is indiscernible. A

decision table is consistent if all of the objects are discernible; otherwise it is
inconsistent.

Discernibility Matrix
A decision table T = (U,C,{d}), defines a matrix M

C
d called the discernibility

matrix modulo decision attribute d (Øhrn, 1999). For ∀  x,y ∈ U with the condition
that x and y are from different decision classes d

x
|d ≠ d

y
|d.

M
C

d(x,y) = {c ∈ C| c(x) ≠ c(y)   and   d(x) ≠ d(y) } (1)
Since objects are divided into decision classes, we do not have to discern between
objects that belong to the same class.

Indiscernibility Relations
A discernibility matrix M

C
d defines a binary relation R

C
d ⊆ U2. The relation R

C
d

is called an indiscernibility relation with respect to C and d, and reveals the pairs of
objects from different classes that we cannot discern between. For ∀  x,y ∈ U under
the condition that x and y are from different decision classes, d

x
|d ≠ d

y
|d,

xR
C

dy   ⇔   M
C

d(x,y) = φ. (2)
The equivalence relation R

C
d, induces a partition over the universe U, meaning that

the resultant equivalence classes are disjoint and the union equals the universe U.

Rough Sets
The idea behind rough sets is to approximate a set of interest in terms of other

sets. With each subset X ⊆ U and an equivalence relation R
C

d defined over U we can
associate two subsets: R

C
d X = {x ∈ U | R

C
d (x) ⊆ X and R

C
d X = {x ∈ U | R

C
d (x) ∩

X≠ φ} are called the lower and upper approximations of X respectively.

Reducts and the Core of Knowledge
One problem is whether some of the attributes in a decision system are

redundant with respect to the object classifications. If an attribute set B⊂ C preserves
the indiscernibility relation, R

C
d, then the attributes that form the set C-B are said to

be dispensable. All minimal subsets, in terms of size, of attributes B that preserve
the relation R

C
d are called reducts and we denoted the set by Red(T).

Now, we can define the full set of reducts in terms of the discernibility matrix.
The set B, such that B⊂C is the reduct of C if B is a minimal, with respect to
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inclusion, subset of C such that B∩M
C

d ≠φ for any nonempty M
C

d (M
C

d(x,y)≠ φ).
Besides the full reducts defined above, we can define reducts that are relative to a
particular object in the decision table. We call these reducts object-related reducts.
If indiscernibility is relative to an object x, two other objects y and z are considered
to be indiscernible in comparison with x. Reducts that are related to a particular
object x are called x-relative reducts, Red(T,x), since they contain the minimum
information needed to select that particular object from other objects in the decision
table. There are several algorithms for computing reducts or reduct approximations.
Some of these algorithms assume that any attributes subset of C can be an
approximation to a reduct. The exhaustive reducer algorithm (Øhrn & Komorowski,
1997; Øhrn, Komorowski, Skowron, & Synak, 1998; Øhrn, Ohno-Machado, &
Rowland, 1998; Øhrn 2000a, 2000b) computes all the reducts by brute force, by
exhaustive search. The algorithm takes exponential time in terms of the number of
objects, so it is not suitable for very large decision systems as it may be very time
consuming. Another algorithm is the Johnson Reducer (Øhrn & Komorowski, 1997;
Øhrn, Komorowski, Skowron & Synak, 1998; Øhrn, Ohno-Machado & Rowland,
1998; Øhrn 2000a, 2000b), which invokes a simple greedy algorithm to compute
only a single reduct. Because of the NP-completness of the problem, heuristic
methods can be more effective. Wróblewski (1995) proposed a variation of a genetic
algorithm to search for reducts, either until the search space is exhausted or until a
given maximum number of reducts has been found. Another heuristic approach was
proposed by Vinterbo (1999). It is based on minimal hitting sets.

Reducts, Hitting Sets, Approximate Hitting Sets
Multisets are unordered collections of elements where an element can occur as

a member more than once. A hitting set (Vinterbo & Øhrn, 1999; Vinterbo, 1999)
for a given multiset, MS, of elements from P(C) is a set B, B⊂C, such that the
intersection between B and every set in MS is nonempty.

HS(MS) = {B ⊆C | B∩MS
i
 ≠ φ  for  all  MS

i
 ∈ MS} (3)

The set B∈ HS(MS) is a minimal hitting set of MS, if B is no longer a hitting set,
whenever any of its elements are removed. The set of minimal hitting sets is denoted
by minHS(MS). An approximation to the hitting set is a set that covers enough
elements of the multiset MS as denoted by a constant ε. The set of ε-approximate
hitting sets of S is denoted by εHS(MS, e), where the parameter ε controls the degree
of approximation,

(4)

The set B ∈ εSH(MS, ε) is a minimal ε-approximation hitting set if it is no
longer an ε-approximation hitting set when any of its elements are removed.

 The problem of computing the minimal hitting set, like the reducts computa-
tion, is an NP-hard problem. Again it is necessary to use heuristics in order to find
reducts using hitting sets, but we still cannot guarantee the minimality of the reducts.
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Decision System Construction
A decision rule is an assertion of the form “if p then s,” denoted by p→ s, where

p and s are logical formulas in the first order logic. For each object, certain values
of the condition attributes determine the value of the decision attribute. We define
a decision system as a finite collection or set of decision rules. In order to obtain a
decision system with a minimum number of rules, superfluous decision rules
associated with the same decision class can be eliminated without disturbing the
decision-making process.

The problem of decision system construction is to induce a set of rule
descriptors of decision classes from the input set of objects. These sets of descrip-
tors, named decision systems, consist of a set of decision rules. We can classify the
decision system as follows:

1. Decision systems with a minimum set of rules. They are focused on describing
input objects using a minimum number of necessary rules.

2. Decision systems with an exhaustive set of rules. These decision systems
contain all possible decision rules.

3. Decision systems with a satisfactory set of rules. This category represents sets
of decision rules which satisfy, given a priori user’s requirement for an
acceptable decision system.
One strategy for finding a simple decision system with good classificatory

capabilities is to first induce an exhaustive set of rules and then to prune away those
rules that do not lower the decision system’s performance significantly. An
exhaustive decision system can be generated from the object-related reducts (Øhrn,
1999, 2000).

Pruning can be done by identifying and removing components of the decision
system that only explain small parts of the data, thereby preserving general trends
in the underlying data material. In order to find a minimal decision system we can
use a simple greedy heuristic algorithm described by Lazar and Sethi (1999). This
algorithm computes only one decision system. If more than one minimal decision
system is required we can use a genetic algorithm, which solves the minimal cover
set problem. Agotnes (1999) proposed two algorithms for generating satisfactory
decision systems, a quality-based rule filtering algorithm and a genetic rule-filtering
algorithm. Rule filtering operates on an existing exhaustive decision system,
pruning it while retaining a high performance. Both of the above solutions make no
assumptions about the minimal set cover condition. As a result, the decision system
may not be minimal. We will propose a new solution based on the genetic algorithm
which addresses the minimal set cover problem explicitly.

A FRAMEWORK FOR SOLVING
THE PROBLEM USING GENETIC ALGORITHM

In this section we will present an existing genetic algorithms solution for the
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reduct computation problem and we will propose a new method for finding minimal
and satisfactory decision systems using genetic algorithms.

Genetic Algorithm for Reduct Problem
For the reduct problem using a minimal hitting set, the population for the

genetic algorithm is a set P of N individuals, each from the space P(C), where C is
the condition attributes set. Each individual is encoded as a binary vector, where
each bit indicates the presence of an attribute in the set.

For this population, the fitness function rewards individuals hitting more sets
in the collection of sets corresponding to the discernibility function.

A possible fitness function proposed by Vinterbo (1999) is the following:

(5)

The first term rewards smaller-sized individuals, and the second is used to ensure
that we reward sets that are hitting sets.

If we want to find the subsets B in C that are “good enough” hitting sets, i.e.,
have a fraction hit of at least ε, which tells us how many sets in the multiset, B has
to hit. Vinterbo (1999) found that we can additionally control the importance of an
individual hitting set by introducing the parameter α that defines a weighting
between the two parts of the fitness function.

The resultant fitness function is a discrete, multimodal function. The algorithm
used by Vinterbo (1999) is the traditional genetic algorithm implementation.

Genetic Algorithm for Minimal
Decision Set of Rules Problem

The problem of producing a minimal decision set of rules can be formulated in
set theoretical terms in two ways, because the minimal set cover problem and the
minimal hitting set problem are complementary problems.

In the first approach, the minimal set cover problem, let us denote  X as the set
of objects and R as the set of rules derived from the set X. Then, we can define two
functions: one, rX:R→ P(X), which associates with each rule r

i
 ∈ R a set of elements

X
i
 ⊆ X, and another one, xR:X→ P(R), which associates each element x

i
 ∈ X with

a set of rules R
i
 ⊆ R. Now, having the function rX defined, and a set X we want to

find the subsets of rules Rm ⊆ R that are of minimal cardinality and ∪
ri ε Rm

X
i
 = X.

In the second approach, the complementary minimal hitting set problem,
having the function xR defined we want to find subsets of rules Rm ⊆ R that are of
minimal cardinality and have a nonempty intersection with all the sets R

i
 ⊆ R. We

can see that this is the problem of finding minimal hitting sets.
In both of the cases above each individual is a binary vector, with a length equal

to the cardinality of the rule set R. Each bit is associated with one rule, and it tells
us whether the rule is included in the set or not.
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Following the ideas above we can define two new fitness functions for the two
variants. For the minimal set cover problem we propose the following fitness
function:

(6)
For the minimal hitting set problem we propose the following fitness function:

(7)

Develop the Model
Knowledge discovery techniques are applied to the training data in order to

generate a set of hypothesized relations. Following the rough set methodology, the
full set of reducts is computed, a set of minimal reducts is chosen, and the data table
is vertically pruned. Then the object-related reducts are computed and the exhaus-
tive decision-rule system is generated.

At the end a pruning method for the decision rule set is applied in order to obtain
a performant decision system, with a good balance between the number of rules and
the accuracy of the classifications. The process is shown in Figure 2. The above
procedure was followed exactly and the results are shown in next section.

EXPERIMENTS
The example problem we will investigate here is to discern the differences

between the sites occupied in early I and late I in terms of the location and cultural

Figure 2: Model construction phases
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attributes. The experts gave us a list with the diagnostic ceramic types for these two
periods. The early I period, from 500 B.C. to 300 B.C., is named Ia and the late I
period, from 300 B.C. to 200 B.C., combines Ib and Ic since a clear distinction
between Ib and Ic cannot be made with the available data. Two binary variables were
constructed for early I and late I for each site. A 0 means that the site was not present
in the respective period, and 1 means present. Since we do not have sites which
appear in period early I and do not appear in period late I we recode the two variables
the following way: 0 means the site is present in both early I and late I, 1 means the
site is present in late I, but not in early I, 2 means the site is present neither in early
I nor in late I, and 3 was designated for site present in early I and not in late I. This
will be our decision attribute. Then we selected only the sites with values 0 and 1
for the decision attribute. Out of the 92 attributes, we selected only 74 because some
of them were not significant for our problem here such as: terrace number, card
number, north grid coordinate, east grid coordinate, recorder, published informa-
tion, comment written, reference in literature etc. Other attributes were removed
because they were duplicates. For this experiment we have 875 sites, 306 sites with
a 0 value, and 569 with a 1 value for the decision attribute. Only 2 sites have missing
values for the attribute and we did not remove them. The genetic algorithm was used
first to compute the full reducts.

Reduct  (length=20):
east square #, area designation, elevation of the terrace in meters above the valley
floor, silting, damage due to erosion and plowing, barranca or wash adjacent,
vegetation, vegetation abundance, special resources, number of unnumbered tombs
visible on the surface, estimated area of the terrace in square meters, prevailing wall
orientations, presence of well-defined structure or structures less than 1 meter,
plaster floor or floors visible on the surface, carved stone, ancient burning visible
on the surface, miscellaneous obsidian, miscellaneous other chipped stone pieces
(usually nondescript chunks of quartz, chert, or flint), number of whole or fragmen-
tary manos, pottery density .

The reducts give us an idea about the most important variables related to the
decision we want to make. They are related primarily with location; i.e., east square
# and area designation, with elevation, vegetation, structures present in the site and
tools. We picked the 20 attributes in the smallest reduct, and using the object-related
reducts, we generated an exhaustive set of decision rules. It contains 16,574 rules.
The rules were divided in two subsets, one for decision attribute value 0, and one for
the decision attribute 1. After that we performed a quality-looping filter and kept
approximately 20 rules for each class. Some of the rules are shown below:

• east square #(10) AND damage due to erosion and plowing(none) AND plaster
floor or floors visible on the surface(present) AND pottery density(sparse to
light) → diffiaibc(0)

• barranca or wash adjacent(absent) AND special resources(none) AND pres-
ence of well-defined structure or structures less than 1 meter(present) AND
plaster floor or floors visible on the surface(present) → diffiaibc(0)
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• east square #(10) AND area designation(2) AND damage due to erosion and
plowing(none) AND plaster floor or floors visible on the surface(present) →
diffiaibc(0)

• elevation of the terrace in meters above the valley floor, to t(375) AND
barranca or wash adjacent(absent) AND vegetation(grass and brush) AND
prevailing wall orientations(none) AND number of whole or fragmentary
manos(1) → diffiaibc(0)
We can briefly give an interpretation for the rules produced for late I. In terms

of location the sites expanded into new areas, for example area 15, and they went to
east, east-square 4. The wall orientation doesn’t have a precise direction anymore
since more sites are present and there is little space left on the top hill, so they begin
to colonize the sides. Pottery density becomes sparse, from light to sparse in the early
I. Elevation is still high, 300, but less than in early I, 375. A lot of rules tell us that
sites from late I have moderate to heavy damage due to erosion and plowing. We can
see that better filtering is needed since we get multiple rules which fire the same set
of objects and don’t do a good set covering for the decision table. This is why we
strongly need the genetic algorithm approach suggested in order to find a more
satisfactory set of rules.

CONCLUSION
We proposed a methodology to develop and model hypotheses and to derive

patterns from archaeological data using heuristics. The methodology is based on
rough sets as a knowledge representation for uncertainty in data, combined with the
evolutionary algorithms. A genetic algorithms, for reduct computation, have been
already developed by Vinterbo (1999). A novel representation and performance
function were proposed in this chapter for a genetic algorithm in order to solve the
minimal and satisfactory decision rule systems problem. Since the search space is
big large improvements over the genetic algorithm are needed in order to intensify
the search in some regions of the search spaces. Further work will be done to
integrate the cultural algorithm framework with the genetic algorithm. Comparisons
in terms of time complexity and completeness of the solutions, between runs with
the cultural algorithm  (Reynolds, 1994) and genetic algorithm will be done.
Following the archaeological expert’s questions, we will run experiments for other
periods of time or for other problems by changing the decision attribute. We will
develop good decision rule systems for each of these questions. An integration of
the decision rule systems with a GIS (geographical information system) is also
possible.
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