Задачи ח0

Математическим Metoaam $\boldsymbol{\emptyset}_{\text {изики }}$

И. В. Колоколов, Е. А. Кузнецов, А. И. Мильштейн, Е.В. Подивилов, А. И.Черных, Д.А.Шапиро, Е.Г. Шапиро

Колоколов И. В., Кузнецов Е. А., Мильптейн А. И., Подивцлов Е. В., Черных А. И., Шапиро Д. А., Шапнро Е. Г.
Задачи по математическим методам фнзнки
М.: Эдиториал УРСС, 2000. 288 с.

ISBN 5-8360-0105-7
Предлагаемый сборник задач - результат 15 -летнего опыта преподавания по новой методике математических методов физики на физическом фахультете Новосибирского государственного университета. Сборник включает в себя бопее 350 задач по уравнениям в частных производных, специальным функциям, асимптотическим методам, методу функций Грина, интегральным уравнениям, геории конечных групп, групп Ли и их применениям в физике.

Книга рекомендована студентам, аспирантам и преподавателям физичегких и физико-технических специальностей. Все задачи снабжены ответами, у многие - подробными решениями. Сборник может быть полезным пля гамообразования.

Оглавление

Предислопие 5
Глава 1. Линейнме операторы 7
1.1. Конечномерное пространство 7
1.2. Функционалы и обобщенные функции 9
1.3. Гильбертово пространство и полнота 10
1.4. Самосопряженнье оператори 11
1.5. Кет- и бра-векторы 13
1.6. Примеры 14
1.7. Задачи 23
1.8. Ответы 26
Глава 2. Метод характеристик 29
2.1. Однородные и неоднородные линейные уравнения в частных производных 29
2.2. Квазилинейные уравнения в частных производных 31
2.3. Системы уравнений в частных производных 33
2.4. Примеры 35
2.5. Задачи 51
2.6. Ответы 52
Глава 3. Линейные уравненип в частных производних второго порядкя 54
3.1. Каноническй вид 54
3.2. Криволинейные системы координат 56
3.3. Разделение переменных 56
3.4. Простейшие уравнения, решаемые методом Фурье 57
3.5. Примеры 58
3.6. Задачи 78
3.7. Ответы 80
Глав 4. Автомодельность и нелинейные уравиения в частных промзводных 84
4.1. Автомодельность 84
4.2. Нелинейные уравнения в частных производных 84
4.3. Примеры 86
4.4. Задачи 105
4.5. Ответы 105
Глана 5. Спецмальные функини 106
5.1. Особые точки 106
5.2. Гилергеометрические функции 108
5.3. Ортогональные полиномы 109
5.4. Примеры 111
5.5. Задачи 136
5.6. Ответы 138
Глава 6. Асимптотические методы 141
6.1. Асимптотические ряды 141
6.2. Интеграл Лапласа 142
6.3. Метод стаиионарной фазы 143
6.4. Метод перевала 144
6.5. Метод усреднения 146
6.6. Примеры 148
6.7. Залачи 155
6.8. Ответы 158
Глава 7. Метод функций Грина 162
7.I. Функции Грина 162
7.2. Непрерывный слектр 167
7.3. Резольвента 169
7.4. Примеры 171
7.5. Задачи 190
7.6. Ответы 194
Плава 8. Интегральные уравнения 198
8.1. Уравнения Фредгольма 198
8.2. Вырожденные ядра 199
8.3. Теорема Гильберта- Пмидта 201
8.4. Обратная задача для оператора Шредингера 204
8.4.1. Прямая задача рассеяния 204
8.4.2. Уравнение Гельфанда-Левитана-Марченко 205
8.5. Примеры 208
8.6. Задачи 216
8.7. Ответы 222
Глава 9. Пруппы и представления 226
9.1. Группи 226
9.2. Представления 227
9.3. Примеры 229
9.4. Задачи 233
9.5. Ответы 235
Пава 10. Непрерывные группы 237
10.1. Группы и алгебры Ли 237
10.2. Представления группы врашений 238
10.3. Примеры 242
10.4. Задачи 249
10.5. Ответы 251
Глава 11. Применения теории прупп в физике 255
11.1. Гармонические колебания молекул 255
11.2. Расщепление уровней 259
11.3. Правила отбора 260
11.4. Примеры 263
11.5. Задачи 272
11.6. Ответы 272
Сводка формул по специальным функцням 273
П.І. Г-функция Эйлера 273
11.2. Гипергеометрическис функции 273
П.2.1. Гипергеометрическая функиия Гаусса ${ }_{2} \mathrm{~F}_{1}$ 273
П.2.2. Вырожденная гипергеометрическая функиия, F_{1} 273
П.3. Цилиндрические функцин 274
П.3.1. Функиии Бесселя J_{ν} и Неймана \mathbf{Y}_{ν} 274
П.3.2. Функции Бесселя целого порядка J_{n} 276
П.3.3. Модифицированная функиия Бесселя I_{ν} и функция Макдональда K_{ν} 276
П.4. Ортогональные лолиномы 277
П.4.І. Полиномы Лежандра P_{1} и присосдиненные функции Лежандра P_{t}^{m} 277
П.4.2. Полиномы Эрмита H_{n} 279
П.4.3. Полиномы Лагерра $L_{\text {/ }}^{\nu}$ 280
Литература 282

Предисловие

Предлагаемый сборник задач основан на 15 -летнем опыте обучения студентов физического факультета Новосибирского государственного университета методам математической физики (ММФ). В виде эксперимента преподавание ММФ было поручено физикам-теоретикам. Была поставлена цель не только обучить студентов основам теории, но и применению математических методов для решения конкретных физических задач квантовой механики, классической электродинамики, оптики, физики плазмы, механики жидкости и газа. В результате заметно изменилась хак программа курса, так и методика его преподавания. Упор был сделан на решение задач - от простых упражнений, иллюстрирующих основные понятия, до сравнительно сложных задач, например, квантовой механики. Сейчас мы можем с удовлетворением сказать, что новый подход к преподаванию ММФ полностью себя оправдал.

Обучение ММФ обычно завершает обшее математическое образование студентов-физиков третьего-четвертого года обучения. Считается, что эти студенты уже знакомы с линейной алгеброй, аналитической геометрией, математическим анатизом, обыкновенными дифференциальными уравнениями, теорией функций комплексной переменной в объеме университетского курса. Стандартный курс ММФ, через который прошли многие поколения студентов, включает в себя, как правило, теорию уравнений в частных производных. Элементы функционального анализа, теории специальных функций и теории групп в программах ММФ часто носят фрагментарный характер и не являются обязательными.

Методы математической физики как университетский курс является устоявшейся дисциплиной. Этому посвящены многие отечественные и переводные учебники по всем ее разделам. Но в них не содержится достаточного количества задач. Сборники задач по ММФ немногочисленны и неполны. Они не охватывают всех необходимых разделов математической физики и несколько оторваны от исходных физических задач, из которых возчикают эти уравнения. Практически нет задач по уравнениям Шрёдингера, Дирака и даже Максвелла. Приложения к физике, как правило, ограничены механикой, теорией теплопроводности, электричеством и магнетизмом. Устранение всех этих недостатков является одной из целей предлагаемого задачника.

Программа курса и, соответственно, содержание данного задачника включает в себя следующие разделы: гильбертовы пространства, метод характеристик, уравнения второго порядка с частными производными, автомодельность и нелинейные уравнения, специальные функции, асимптотические методы, функции Грина, интегральные уравнения (включая

обратную задачу для оператора Шрёдингера), группы и представления, группы Ли и их применение в физике.

Каждый раздел содержит краткое изложение теории, иллюстрируемое решением типичных задач, а также краткий список рекомендуемой литературы по данному вопросу. Более полная библиография, в которой изложены разделы теории, включенные в данный сборник, приведена в конце книги. Почти все задачи (за исключением простейших) содержат подробные указания и решения. Порядок расположения задач помогает усвоению сложных математических понятий и выработке навыков решения физических задач. Поэтому сборник будет также весьма полезным для самообразования. Если читатель после работы с этим задачником сможет самостоятельно решать задачи математической физики и использовать полученные знания в дальнейшей работе, то мы сочтем свою миссию выполненной.

Авторы считают своим приятным долгом выразить благодарность всем тем, кто в разные годы либо читали курс лекций ММФ на физическом факультете НГУ, либо вели практические занятия, за вклад в создание курса и, в частности, этого задачника. Особую признательность мы выражаем Б. Г. Конопельченко, В. М. Малкину, А. М. Рубенчику, М.Д. Спектору, М. Г. Степанову, Б. И. Стурману, С. К. Турицыну. Мы также благодарны А. В. Тельнову, указавшему на ряд опечаток.

Август 1999 г. Новосибирск

Глава 1

Линейные операторы

1.1. Конечномерное пространство

Линейным оператором, действуюшим в линейном пространстве X, называется такой оператор \widehat{A}, для которого для любых двух векторов f и g из X и двух произвольных комплексных чисел α и β выполнено свойство линейности

$$
\widehat{A}(\alpha f+\beta g)=\alpha \widehat{A} f+\beta \widehat{A} g .
$$

Если \boldsymbol{X} - \boldsymbol{n}-мерное пространство, то линейные операторы, действуюшие в X, суть матрицы $\boldsymbol{n} \times \boldsymbol{n}$.

Пусть \boldsymbol{A} - кваяратная $n \times n$ матрица. Матрица \boldsymbol{A}^{\dagger}, полученная транспонированием и комплексным сопряжением A, называется эpмитово сопряженной к \boldsymbol{A}. Если $\boldsymbol{A}=\boldsymbol{A}^{\dagger}$, то такую матрицу называют эрмитовой. Матрица A называется унитарной, если $A A^{\dagger}=A^{\dagger} A=E$. Следом $\operatorname{Tr} \boldsymbol{A}$ матрицы \boldsymbol{A} называется сумма ее диагональных элементов. Число λ называется собственным значением A, если найдется вектор $v \neq 0$ такой, что $\boldsymbol{A v}=\lambda \boldsymbol{v}$, причем v называется собственным векторам матрицы A, соответствуюшим значению $\boldsymbol{\lambda}$. Многочлен $|\lambda E-A|$ называется характеристическим многочленом матрицы A.

Последовательность квадратных матриц

$$
A_{1}, \ldots, A_{m}, A_{m+1}, \ldots
$$

одного и того же порядка называется сходящейся к матрице A, если сходится последовательность соответствующих матричных элементов. Очевидно, что если матрицы A_{m} и B_{m} стремятся к \boldsymbol{A} и B при возрастании m, то $\boldsymbol{A}_{m}+B_{m}$ и $\boldsymbol{A}_{m} B_{m}$ стремятся соответственно к $A+B$ и $A B$. В частности, если T - невырожденная матрица того же порядка n и матрицы $\boldsymbol{A}_{\boldsymbol{m}}$ при возрастании m стремятся к A, то $T^{-1} A_{m} T$ стремится к $T^{-1} A T$.

Прямой суммой матриц называется блочно-диагональная матрица

где $A^{(j)}$ - квадратные матрищы порядка $n^{(j)}$, стоящие вдоль диагонали A, а все прочие элементы \boldsymbol{A} равны нулю. Пусть $a_{0}+a_{1} \lambda+a_{2} \lambda^{2}+\ldots+$ $a_{m} \lambda^{m}+\ldots$ - формальный степенной ряд от комплексной переменной λ. Рассмотрим соответствующий степенной ряд от матрицы A :

$$
\begin{equation*}
a_{0} E+a_{1} A+a_{2} A^{2}+\ldots+a_{m} A^{m}+\ldots \tag{1.1}
\end{equation*}
$$

Обозначим $f_{n}(A)=a_{0} E+a_{1} A+a_{2} A^{2}+\ldots+a_{n} A^{n}$. Ряд (1.1) называется сходящимся, если последовательность частичных сумм $f_{1}(A), \ldots$, $f_{n}(A), \ldots$ имеет предел. Этот предел называется суммой ряда.

Если λ не равно какому-либо собственному значению λ_{i} матрицы A, то матрица $A-\lambda E$ обратима. Обратная ей матрица $R_{\lambda}=(A-\lambda E)^{-1}$ называется резольвентой. Под интегралом от матрицы понимается матрица, составленная из интегралов от матричных элементов. Пусть a произвольная константа, которая больше всех $\left|\lambda_{i}\right|$. Тогда справедливы равенства

$$
\begin{equation*}
A^{m}=-\frac{1}{2 \pi i} \oint_{|\lambda|=a} \lambda^{m} R_{\lambda} d \lambda, \quad m=0,1,2, \ldots, \tag{1.2}
\end{equation*}
$$

Рис. 1.1. Контур интегрирования $|\lambda|=a$ в комплексной плоскости спектрального параметра λ

следуюшие из разложения резольвенты в ряд при $|\lambda| \geqslant a$:

$$
\boldsymbol{R}_{\lambda}=-\frac{1}{\lambda}\left(E+\frac{A}{\lambda}+\frac{A^{2}}{\lambda^{2}}+\ldots\right) .
$$

Из (1.2) следует, что для любой функиии $f(\lambda)$, определенной степенным рядом при $|\lambda| \leqslant a$, выполняется равенство

$$
f(A)=-\frac{1}{2 \pi i} \oint_{|\lambda|=a} f(\lambda) R_{\lambda} d \lambda .
$$

Эта формула является обобшением формулы Коши на случай функций от матриц.

Стянем теперь контур интегрирования так, чтобы он превратился в набор малых контуров, каждый из которых окружает только одно собственное значение (рис. 1.1). Тогда формула (1.2) при $m=0$ дает

$$
\sum_{j} P_{j}=E, \quad P_{j}=\frac{1}{2 \pi i} \oint^{\left(\lambda_{j}-\right)} R_{\lambda} d \lambda
$$

где символ ($\lambda_{j}-$) обозначает контур интегрирования, охватывающий собственное значение λ_{j} в отрицательном направлении (по часовой стрелке). но не охватывающий при этом никаких других особых точек

подынтеграньной функции. Матрица P_{j} является оператором проектирования (проектором) на подпространство, соответствующее собственному значению λ_{j}, т.е.

$$
P_{j}^{\dagger}=P_{j}, \quad P_{j}^{2}=P_{j}
$$

Любой линейный эрмитов оператор \boldsymbol{A} можно разложить по проекторам: $A=\sum_{j} \lambda_{j} P_{j}$.

1.2. Функционалы и обобщенные функции

Функционалом, действующим на данном пространстве \mathcal{M} функций n переменных, называется отображение этого пространства в комплексную плоскость

$$
\Phi:=\left\{f(x), x \in \mathbb{R}^{n}\right\} \rightarrow \mathbb{C} .
$$

Обозначим значение функционала Φ на функции $f \in \mathcal{M}$ через $\Phi[f]$. Функционал называется линейным, если отображение линейно:

$$
\Phi[\alpha f+\beta g]=\alpha \Phi[f]+\beta \Phi[g] .
$$

Здесь α, β - комплексные числа, f и g - функции. По заданной функции $F(x)$ всегда можно построить линейный функционал, действуюший на некотором подмножестве функционального пространства

$$
\begin{equation*}
\Phi_{F}[g]=\int_{\mathbb{R}^{2}} d x F(x) g(x) . \tag{1.3}
\end{equation*}
$$

Однако не всякий линейный функционал можно записать в виде (1.3), применяя только гладкие функции $\bar{F}(x)$. В общем случае можно по данному функционалу Φ определить обобщенную функцию $F(x)$, так что $\Phi \mid g]$ выражается в виде (1.3). Если Φ является пределом последовательности функционалов Φ_{n}, каждый из которых имеет вид (1.3) с гладкой функцией $F_{n}(x)$, то обобшенная функция $F(x)$ может рассматриваться как предел последовательности $\left\{F_{n}(x)\right\}$ и ей можно приписать некоторые поточечные свойства (как функции аргумента x).

Важным цля приложений примером обобшенной функции является δ-функция Дирака, соответствуюшая линейному функционалу Φ_{6}, действующему на гладких функииях $g(x)$. По определению,

$$
\Phi_{\delta}[g]=\int_{\mathbb{R}^{*}} d x \delta(x) g(x)=g(0)
$$

для любой гладкой функции g. Это равенство эквивалентно следующему определению δ-функции:

$$
\delta(x)=0 \quad \text { при } \quad x \neq 0, \quad \int_{\Omega_{n}} d x \delta(x)=1
$$

где Ω_{0} - любая область n-мерного пространства \mathbb{R}^{n}, содержащая точку $x=0$. Производные одномерной δ-функиии определяются через функциональ

$$
\int_{\Omega_{0}} d x \frac{d \delta(x)}{d x} g(x)=-g^{\prime}(0), \quad \int_{\Omega_{0}} d x \frac{d^{n} \delta(x)}{d x^{n}} g(x)=(-1)^{n} g^{(n)}(0)
$$

где функция $g(x)$ подразумевается дифферениируемой достаточное количество раз.

Всегда следует помнить, что равенства, содержащие δ-функцию и ее производные, означают только равенства значений соответствуюших функционалов на достаточно гладких функциях.

1.3. Гильбертово пространство и полнота

Линейное пространство \mathcal{L} называется гильбертовым, если:

1. Для каждой пары f и g его элементов определено скалярное произведение (f, g) со значениями в \mathbb{C}, удовлетворяющее следующим свойствам:
(a) линейности по второму аргументу

$$
\left(f, \alpha g_{1}+\beta g_{2}\right)=\alpha\left(f, g_{1}\right)+\beta\left(f, g_{2}\right)
$$

для любых $f, g_{1,2} \in \mathcal{L}, \alpha, \beta \in \mathbb{C}$;
(6) эрмитовости

$$
(f, g)=(g, f)^{*}
$$

(в) неотрицательности нормы $\|f\|^{2} \equiv(f, f) \geqslant 0$, причем из $(f, f)=0$ следует $f=0$.
2. В пространстве \mathcal{L} имеется счетный бесконечномерный базис, т.е. счетное множество элементов

$$
\left\{f_{n}, n=1, \ldots, \infty\right\}
$$

такое, что любой элемент $g \in \mathcal{L}$ можно представить в виде линейной суперпозиции $f_{n}: g=\sum c_{n} f_{n}$.
Гильбертово пространство является линейным (векторным) пространством, поэтому его элементы можно называть векторами.

Любой базис можно превратить в ортонормированный относительно данного скалярного произведения, используя процедуру ГраммаШмидта. Основной пример гильбертова пространства - пространство $L^{2}(\Omega)$ функций $f(x)$, заданных в области Ω пространства \mathbb{R}^{n} и интегрируемых с квадратом модуля. Скалярное произведение функций f и g

определено следующим образом:

$$
(f, g)=\int_{\Omega} d x f^{*}(x) g(x)
$$

и, очевидно, удовлетворяет условиям (1(а)-(в)). В курсе математического анализа доказывается сушествование счетного базиса в $L^{2}(\Omega)$.

Рассмотрим в $L^{2}(\Omega)$ фиксированную ортонормированную бесконечную последовательность функций

$$
\left\{f_{n}, n=1, \ldots, \infty, \quad\left(f_{n}, f_{m}\right)=\delta_{n m}\right\}
$$

Она является базисом в $L^{2}(\Omega)$ тогда и только тогда, когда выполняется следующее соотношение полноты:

$$
\begin{equation*}
\sum_{n=1}^{\infty} f_{n}^{*}(x) f_{n}(y)=\delta(x-y) \tag{1.4}
\end{equation*}
$$

Эту формулу нужно понимать как равенство обобщенных функций, либо как равенство интегралов от произведений обеих частей с гладкой функцией из $L^{2}(\Omega)$, либо как предел последовательности равенств с обеими частями, принадлежашими $L^{2}(\Omega)$. Последнее возможно потому, что хотя сама δ-функция $\delta(x) \notin L^{2}(\Omega)$, но в этом пространстве имеется последовательность элементов, имеющая своим пределом δ-функцию (см., например, задачи к этой главе).

1.4. Самосопряженные операторы

Под линейностью оператора \widehat{A} понимается свойство

$$
\widehat{A}(\lambda f+\mu g)=\lambda \widehat{A} f+\mu \widehat{A} g
$$

где f и g - векторы гильбертова пространства, а μ и $\boldsymbol{\lambda}$ - комплексные числа*).

Всякий линейный оператор, действуюший в пространстве функций, можно записать как интегральный оператор, т.е.

$$
\widehat{A} f(x)=\int K(x, y) f(y) d y
$$

где $K(x, y)$ называется ядром интегрального оператора \widehat{A}. Ядро $K(x, y)$ обобшенная функция двух переменных. В частности, если $K(x, y)$ представляет собой линейную комбинацию δ-функции и ее производных $K(x, y)=\sum_{k=1}^{n} c_{k} \delta^{(k)}(x-y)$, то \widehat{A} называют дифференциальным оператором порядка n.

[^0]Рассмотрим линейный оператор $\widehat{\boldsymbol{A}}$, действующий в гильбертовом пространстве. Это значит, что заданы линейное правило соответствия $f \rightarrow \widehat{A} f$ и область определения $\mathcal{D}: f \in \mathcal{D}$. Последняя может быть значительно меньше всего пространства L^{2}. Например, в $L^{2}(0,1)$ (пространство интегрируемых с квадратом функций на отрезке $[0,1]$) оператор $\frac{d}{d x}$ может, очевидно, действовать только на те функции, у которых существует первая производная. Аналогичное утверждение можно сделать и про $\frac{d^{2}}{d x^{x}}$. Кроме того, для дифференциальных операторов подразумевается задание каких-либо граничных условии. В дальнейшем при указании области определения \mathcal{D} будем явно приводить только граничные условия или же условия, им эквивалентные. Например, в $L^{2}(\mathbb{R})$ действует

$$
\begin{equation*}
\frac{d^{2}}{d x^{2}}, \quad \mathcal{D}=\left\{f \in L^{2}(\mathbb{R})\right\} \tag{1.5}
\end{equation*}
$$

Иначе говоря, для функций из L^{2}, определенных на всей вещественной оси, граничным условием может служить квадратичная интегрируемость функции, в частности, это означает $f(x) \rightarrow 0$ при $x \rightarrow \pm \infty$.

Оператор $\widehat{\boldsymbol{A}}^{\dagger}$, сопряженный данному оператору $\widehat{\boldsymbol{A}}$, определяется равенством

$$
\begin{equation*}
(v, \widehat{A} u)=\left(\hat{A}^{\dagger} v, u\right) \tag{1.6}
\end{equation*}
$$

Эта формула фиксирует также область определения \mathcal{D}^{*} для оператора \widehat{A}^{\dagger}. Она состоит из таких векторов v, что для любого u из области определения \mathcal{D} оператора \widehat{A} скалярное произведение ($v, \widehat{A} u$) может быть переписано в виде (w, u). (Значит, если такой w существует, то w и есть $\widehat{A}^{\dagger} v$.) Область \mathcal{D}^{*}, вообще говоря, не совпадает с областью \mathcal{D}.

В качестве примера рассмотрим в $L^{2}(0,1)$ линейный оператор $i \frac{d}{d x}$ с областью определения, состоящей из функций, обращающихся в нуль на концах отрезка:

$$
\begin{equation*}
\mathcal{D}=\{u(0)=u(1)=0\} . \tag{1.7}
\end{equation*}
$$

Скалярное произведение

$$
\begin{equation*}
(v, \widehat{A} u)=\int_{0}^{1} v^{*} i \frac{d}{d x} u d x=\int_{0}^{1}\left(i \frac{d}{d x} v\right)^{*} u d x+\left.i v^{*} u\right|_{0} ^{1}=(\widehat{A} v, u) \tag{1.8}
\end{equation*}
$$

имеет вид $(w, u)=(\hat{A} v, u)$ для любых v. То есть

$$
\widehat{A}^{\dagger}=i \frac{d}{d x}, \quad \mathcal{D}^{*}=\text { граничных условий нет. }
$$

Значит, в этом случае сопряженный оператор \widehat{A}^{\dagger} имеет то же правило соответствия, что и \bar{A}, но более широкую область определения.

Оператор \widehat{A} называется самосопряжсенным (эрмитовым), если $\widehat{\boldsymbol{A}}^{\dagger}$ совпадает с $\overline{\boldsymbol{A}}$ вместе с областью определения. Примеры самосопряженных операторов:

$$
\begin{align*}
i \frac{d}{d x}, & \mathcal{D} & =\{f(0)=f(1)\} \tag{1.9}\\
\frac{d^{2}}{d x^{2}}, & \mathcal{D} & =\{f(0)=f(1)=0\} \tag{1.10}\\
-\triangle+V(r), & \mathcal{D} & =\left\{f \in L^{2}\left(\mathbb{R}^{3}\right)\right\} \tag{1.11}
\end{align*}
$$

В последнем примере подразумевается, что рассматриваются такие функции, для которых интеграл

$$
\int V(r)|f(r)|^{2} d r
$$

сходится.
Оператор U называется унитарным, если он сохраняет скалярное произведение: для любых u и v из области определения:

$$
(U u, U v)=(u, v)
$$

или

$$
U^{\dagger} U=I
$$

где I - единичный оператор.
Следует заметить, что эрмитовость и унитарность определены по отношению к данному скалярному произведению и не обязательно сохраняются при другом определении последнего.

1.5. Кет- и бра-векторы

Понятие линейного функционала можно ввести не только в функциональном, но и в абстрактном гильбертовом пространстве: это отображение векторов гильбертового пространства в \mathbb{C}, удовлетворяюшее обычным соотношениям линейности. Любому вектору v гильбертового пространства \mathcal{H} можно сопоставить линейный функционал следуюшим образом: для любого $u \in \mathcal{H}$

$$
\Phi_{v}[u]=(v, u)
$$

Из определения $\boldsymbol{\Phi}_{v}[u]$ следует, что эти функционалы сами образуют линейное пространство:

$$
\Phi_{a v+\beta w}=\alpha^{*} \Phi_{v}+\beta^{*} \Phi_{w} .
$$

Иными словами, это пространство изоморфно \mathcal{H}. Это пространство \mathcal{K}^{*} иазывается пространством элементов, сопряженных к элементам \mathcal{H}.

В физической литературе его элементы называют бра-векторами и обозначают Φ_{v} как $\langle v|$. Элементы \mathcal{H} называются при этом кет-векторами $|u\rangle$, а скалярное произведение v и \boldsymbol{u} - действие функционала $\boldsymbol{\Phi}_{v}$ на вектор u - записывается как $\langle v \mid u\rangle$.

В терминах кет- и бра-векторов

1. Проектор на вектор v можно записать как $P_{v}=|v\rangle\langle v|$.
2. Соотношения полноты записываются как

$$
\sum_{n}\left|u_{n}\right\rangle\left\langle u_{n}\right|=1
$$

3. Разложение вектора $|v\rangle$ по полной ортонормированной системе $\left|u_{n}\right\rangle$ выглядит как

$$
|v\rangle=\sum_{n}\left|u_{n}\right\rangle\left\langle u_{n} \mid v\right\rangle
$$

Детальное изложение теории гильбертовых пространств можно найти в учебниках [КГ51, КФ72]. Обобщенные функции рассмотрены, например, в книге [Вла88]. Самосопряженные операторы обсуждаются в монографии [Соб66].

1.6. Примеры

1. Доказать, что линейное преобразование U векторного пространства V унитарно тогда и только тогда, когда U не меняет длин векторов.

Решение. Пусть $a, b \in V$. Положим $U a=a^{\prime}, U b=b^{\prime}$. По условию для любого числа α имеем

$$
(a+\alpha b, a+\alpha b)=(U(a+\alpha b), U(a+\alpha b))=\left(a^{\prime}+\alpha b^{\prime}, a^{\prime}+\alpha b^{\prime}\right)
$$

Выполняя умножение и используя ($a, a)=\left(a^{\prime}, a^{\prime}\right),(b, b)=\left(b^{\prime}, b^{\prime}\right)$, получаем

$$
\alpha^{*}(b, a)+\alpha(a, b)=\alpha^{*}\left(b^{\prime}, a^{\prime}\right)+\alpha\left(a^{\prime}, b^{\prime}\right)
$$

При $\alpha=1$

$$
\begin{equation*}
(b, a)+(a, b)=\left(b^{\prime}, a^{\prime}\right)+\left(a^{\prime}, b^{\prime}\right) \tag{1.12}
\end{equation*}
$$

полагая $\alpha=i$ и сокрашая на i, получаем

$$
-(b, a)+(a, b)=-\left(b^{\prime}, a^{\prime}\right)+\left(a^{\prime}, b^{\prime}\right)
$$

Последнее равенство вместе с (1.12) дает $(a, b)=\left(a^{\prime}, b^{\prime}\right)$.

$$
\begin{aligned}
& \text { 2. Пусть } A, B, C, D-\text { квадратные матрицы } n \times n, A C=C A \text { и } A, C- \\
& \text { невырожденные матрицы. Доказать, что } \\
& \qquad\left|\begin{array}{ll}
A & B \\
C & D
\end{array}\right|=\left|\begin{array}{cc}
D & C \\
B & A
\end{array}\right|=|A D-C B|, \\
& \left|\begin{array}{ll}
A & C \\
B & D
\end{array}\right|=\left|\begin{array}{cc}
D & B \\
C & A
\end{array}\right|=|D A-B C| .
\end{aligned}
$$

Решение.

$$
\begin{align*}
\left|\begin{array}{ll}
A & B \\
C & D
\end{array}\right| & =|A C|^{-1}\left|\begin{array}{ll}
C & 0 \\
0 & A
\end{array}\right|\left|\begin{array}{ll}
A & B \\
C & D
\end{array}\right|=|A C|^{-1}\left|\begin{array}{ll}
C A & C B \\
A C & A D
\end{array}\right|= \\
& =|A C|^{-1}\left|\begin{array}{cc}
C A & C B \\
0 & A D-C B
\end{array}\right|=|A D-C B| \tag{1.13}
\end{align*}
$$

Другие равенства доказываются аналогично.
3. Доказать равенство:

$$
\begin{align*}
\operatorname{det} A & =\left|\begin{array}{cccc}
a+x_{1} & a & \ldots & a \\
a & a+x_{2} & \ldots & a \\
\cdots \cdots \cdots \cdots \cdots \cdots \cdots \\
a & a & \ldots & a+x_{n}
\end{array}\right|= \\
& =x_{1} \cdot x_{2} \cdot \ldots \cdot x_{n}\left(1+\frac{a}{x_{1}}+\ldots+\frac{a}{x_{n}}\right) . \tag{1.14}
\end{align*}
$$

Решенме. Введем диагональную матрицу

$$
X=\operatorname{diag}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

и перепишем определитель искомой матрицы в виде $\operatorname{det} A=\operatorname{det} X \times$ $\operatorname{det}\left(I+J X^{-1}\right)$, где все матричные элементы матрицы J равны a, а I единичная матрица. Ранг матрицы $J X^{-1}$ равен единице, поэтому единственное отличное от нуля собственное значение этой матрицы равно ее следу (все остатьные собственные значения равны нулю):

$$
\lambda_{1}=\operatorname{Tr} J X^{-1}=\frac{a}{x_{1}}+\frac{a}{x_{2}}+\ldots+\frac{a}{x_{n}} .
$$

Откуда $\operatorname{det}\left(I+J X^{-1}\right)=1+\lambda_{1}$, а определитель

$$
\operatorname{det} A=x_{1} \cdot x_{2} \cdot \ldots \cdot x_{n}\left(1+\frac{a}{x_{1}}+\ldots+\frac{a}{x_{n}}\right) .
$$

4. Пусть H - эрмитова матрица. Доказать, что $U=\exp (i H)$ унитарна.

Решение. Нам нужно показать, что $\boldsymbol{U} \boldsymbol{U}^{\dagger}=E$. Нетрудно показать (см. задачу 19), что ряды

$$
U=E+(i H)+\frac{1}{2!}(i H)^{2}+\ldots
$$

и

$$
U^{\dagger}=E+(-i H)+\frac{1}{2!}(-i H)^{2}+\ldots=\exp (-i H)
$$

сходятся. Поэтому

$$
U U^{\dagger}=\left[E+i H+\frac{1}{2!}(i H)^{2}+\ldots\right] \cdot\left[E+(-i H)+\frac{1}{2!}(-i H)^{2}+\ldots\right] .
$$

Меняя порядох суммирования, получаем требуемое равенство

$$
U U^{\dagger}=\sum_{j=0}^{\infty} \frac{(i H)^{j}}{j!} \sum_{m=0}^{j}(-1)^{m} C_{j}^{m}=E, \quad C_{j}^{m}=\frac{j!}{m!(j-m)!},
$$

поскольку

$$
\sum_{m=0}^{j}(-1)^{m} C_{j}^{m}=(1-1)^{j}=\delta_{j 0}
$$

5. Доказать, что для произвольной матрицы A

$$
\operatorname{det} e^{A}=\exp (\operatorname{Tr} A)
$$

Решение. Сначала заметим, что равенство, которое требуется доказать, инвариантно относительно преобразований подобия: если

$$
\operatorname{det} e^{A}=\exp (\operatorname{Tr} A)
$$

то

$$
\begin{aligned}
\operatorname{det}\left(\exp \left(Q A Q^{-1}\right)\right) & =\operatorname{det}\left(E+Q A Q^{-1}+\frac{1}{2!}\left(Q A Q^{-1}\right)^{2}+\ldots\right)= \\
& =\operatorname{det}\left(Q\left(E+A+\frac{1}{2!}(A)^{2}+\ldots\right) Q^{-1}\right)= \\
& =\operatorname{det} e^{A}=\exp (\operatorname{Tr} A)=\exp \left(\operatorname{Tr}\left(Q A Q^{-1}\right)\right)
\end{aligned}
$$

где Q - произвольная невырожденная матрица. Значит, доказав утверждение в каком-нибудь фиксированном базисе, мы докажем его сразу для всех базисов. Если A диагонализуема, то пусть Q - матрица перехода к диагональному для A базису: $\boldsymbol{Q A} Q^{-1}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. Тогда

$$
\begin{aligned}
\operatorname{det}\left(e^{A}\right) & =\operatorname{det}\left(\exp \left(Q A Q^{-1}\right)\right)=\operatorname{det} \operatorname{diag}\left(e^{\lambda_{1}}, \ldots, e^{\lambda_{n}}\right)= \\
& =\exp \left(\lambda_{1}+\ldots+\lambda_{n}\right)=\exp \left(\operatorname{Tr}\left(Q A Q^{-1}\right)\right)=\exp (\operatorname{Tr} A)
\end{aligned}
$$

В общем случае Q можно выбрать так, что $Q A Q^{-1}$ будет прямой суммой жордановых клеток. Произвольная жорданова клетка J_{m}

$$
J_{m}=\left(\begin{array}{cccccc}
\lambda & 1 & 0 & \ldots & \ldots & 0 \\
0 & \lambda & 1 & 0 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \\
0 & \ldots & \ldots & \ldots & 0 & \lambda
\end{array}\right),
$$

может быть представлена в виде $J_{m}=\lambda I_{m}+\tilde{J}_{m}$, где I_{m} - единичная матрииа. \widetilde{J}_{m} верхнетреугольная нильпотентная (все собственные значения

равны нулю) матрица. Так как единичная матрица коммутирует с любой другой, то

$$
\exp J_{m}=\exp \left(\lambda I_{m}\right) \exp \left(\widetilde{J}_{m}\right)
$$

Непосредственно убеждаемся, что $\exp \left(\bar{J}_{m}\right)$ - верхнетреугольная матрица с единичными элементами на диагонали. Следовательно,
det $\exp J_{m}=\operatorname{det} \exp \left(\lambda I_{m}\right)$ det $\exp \left(\bar{J}_{m}\right)=\operatorname{det} \exp \left(\lambda I_{m}\right)=\exp \left(\operatorname{Tr} J_{m}\right)$.
По свойству следа и детерминанта
$\operatorname{det} \exp \left(J_{m_{1}} \oplus J_{m_{2}} \oplus \ldots\right)=$

$$
\begin{aligned}
& =\operatorname{det}\left(\exp J_{m_{1}} \oplus \exp J_{m_{2}} \oplus \ldots\right)=\operatorname{det} \exp J_{m_{1}} \operatorname{det} \exp J_{m_{2}} \ldots= \\
& =\exp \left(\operatorname{Tr} J_{m_{1}}+\operatorname{Tr} J_{m_{2}}+\ldots\right)=\exp \left(\operatorname{Tr}\left(J_{m_{1}} \oplus J_{m_{2}} \oplus \ldots\right)\right)
\end{aligned}
$$

что доказывает равенство для любой матрицы A .
6. Доказать, что для любой матрицы A найдется такая унитарная матрица B, что матрица $A^{\prime}=B^{-1} A B$ яөляется верхнетреугольной (теорема Шура).

Решение. Пусть T - матрица, приводяшая \boldsymbol{A} к жордановой форме (т.е. $\boldsymbol{T}^{-1} A T$ является прямой суммой жордановых клеток (1.15)). Ортогонализуем столбцы матрицы T, используя процедуру ГраммаШмидта. Попутно заметим, что процесс ортогонализации эквивалентен умножению матрицы T на некоторую невырожденную верхнетреугольную матрицу S справа. Например, для того, чтобы к j-му столбцу матрицы T прибавить ее i-й столбец, умноженный на α, достаточно матрицу T умножить справа на матрицу S^{\prime}, у которой матричные элементы $S_{l l}^{\prime}=1, l=1, \ldots, n, S_{i j}^{\prime}=\alpha$, а остальные равны нулю. Если S - такая верхнетреугольная матрица, то столбцы $T S$ являются ортонормированной системой n векторов. Следовательно, $U=T S$ унитарна. Матрица $S^{-1}\left(T^{-1} A T\right) S$ является произведением верхнетреугольных матриц S^{-1}, $T^{-1} A T, S$. Поэтому $U^{\dagger} A U=\left(S^{-1} T^{-1}\right) A(T S)$ - верхнетреугольная.
7. Рассмотрим матрииу Ω вида

$$
\Omega=\left(\begin{array}{cc}
A & B \\
-B^{\dagger} & C
\end{array}\right)
$$

где A, B, C - матрицы $n \times n$, причем $А$ и $С$ эрмитовы. Поскольку

$$
\Omega \neq \Omega^{\dagger}
$$

то ее собственные векторы уже не будут ортогональны относительно обычного скалярного произведения, а ее собственные значения могут не быть вещественными. Пусть матрица Σ имеет вид

$$
\Sigma=\left(\begin{array}{cc}
I_{n} & 0 \\
0 & -I_{n}
\end{array}\right)
$$

где $I_{n}-$ единичная $n \times n$ матрица. Показать, что
(а) если собственный вектор е такой, что (e, $\Sigma \mathrm{e}) \neq 0$, то соответствующее собственное значение вещественное;
(б) для любых двух собственных векторов е е $и$ е \mathbf{e}_{2} оператора Ω

$$
\Omega \mathbf{e}_{1}=\lambda_{1} \mathbf{e}_{1}, \quad \Omega \mathbf{e}_{2}=\lambda_{1} \mathbf{e}_{2}, \quad \lambda_{1} \neq \lambda_{2},
$$

при $\left(\mathbf{e}_{1}, \Sigma \mathbf{e}_{1}\right) \neq 0$ и $\left(\mathbf{e}_{2}, \Sigma \mathbf{e}_{2}\right) \neq 0$ выпалнено условие кобобщенной» ортогональности

$$
\left(\mathbf{e}_{1}, \Sigma \mathbf{e}_{2}\right)=\left(\mathbf{e}_{1}\right)_{k}^{*}(\Sigma)_{k j}\left(\mathbf{e}_{2}\right)_{j}=\mathbf{0}
$$

Решение. (а) Явно проверяются соотношения

$$
\Sigma^{2}=I_{2 n}, \quad \Omega^{\dagger}=\Sigma \Omega \Sigma, \quad \Omega^{\dagger} \Sigma=\Sigma \Omega
$$

Из $\Omega e=\lambda е$ и эрмитовости Σ следует, что

$$
(\Sigma \mathbf{e}, \Omega \mathbf{e})=\lambda(\Sigma \mathbf{e}, \mathbf{e}), \quad(\Omega \mathbf{e}, \Sigma \mathbf{e})=\lambda^{*}(\mathbf{e}, \Sigma \mathbf{e})
$$

С учетом $\Omega^{\dagger} \Sigma=\Sigma \Omega$ получаем:

$$
\left(\lambda-\lambda^{*}\right)(\mathbf{e}, \Sigma \mathbf{e})=0,
$$

откуда при (e, $\mathbf{\Sigma e}) \neq 0$ имеем $\lambda=\lambda^{*}$.
Решенме. (б) Используем равенства

$$
\left(\mathbf{e}_{1}, \Sigma \Omega e_{2}\right)=\lambda_{2}\left(e_{1}, \Sigma e_{2}\right), \quad\left(\mathbf{e}_{1}, \Omega^{\dagger} \Sigma e_{2}\right)=\lambda_{1}^{*}\left(\mathbf{e}_{1}, \Sigma e_{2}\right)
$$

Вычитая эти равенства одно из другого и используя $\Omega^{\dagger} \Sigma=\Sigma \Omega$, получаем:

$$
\left(\lambda_{2}-\lambda_{1}^{*}\right)\left(e_{1}, \Sigma e_{2}\right)=0
$$

По условию задачи ($e_{i}, \Sigma \mathrm{e}_{\mathrm{i}}$) $\neq 0, i=1,2$. Поэтому λ_{i} - вешественны, и из $\lambda_{1} \neq \lambda_{2}$ следует, что $\left(\mathbf{e}_{1}, \Sigma \mathbf{e}_{2}\right)=0$.
8. Найти проектор матрицы

$$
A=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

на подпространство, отвечающее собственному значению $\lambda_{1}=1$.
Решение. Найдем сначала резольвенту:

$$
R_{\lambda}=\frac{1}{1-\lambda^{3}}\left(\begin{array}{lll}
\lambda^{2} & 1 & \lambda \\
\lambda & \lambda^{2} & 1 \\
1 & \lambda & \lambda^{2}
\end{array}\right) .
$$

Тогда проектор дается интеграном

$$
P_{1}=\frac{1}{2 \pi i} \stackrel{(1-)}{\oint} R_{\lambda} d \lambda=-\underset{\lambda=1}{\operatorname{Res}} R_{\lambda}=\frac{1}{3}\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right) .
$$

9. Доказать, что в любом гильбертовом пространстве выполняттся неравенство «треугальникаж:

$$
\|f\|+\|g\| \geqslant\|f+g\| .
$$

Решение. Если одна из норм равна нулю, то неравенство становится тождеством. Пусть $\|f\|>0,\|g\|>0$. Так как норма вектора $h=$ $\|f\| g-\|g\| f$ неотрицательна, получаем

$$
2\|f\| \cdot\|g\| \geqslant(f, g)+(g, f) .
$$

Отсюда следует, что

$$
\begin{aligned}
\|f+g\|^{2} & =\|f\|^{2}+\|g\|^{2}+(f, g)+(g, f) \leqslant \\
& \leqslant\|f\|^{2}+\|g\|^{2}+2\|f\| \cdot\|g\|=(\|f\|+\|g\|)^{2} .
\end{aligned}
$$

Извлекая квадратный корень, получаем требуемое неравенство.
10. Полиномы Чебшиева определены следующим образом:

$$
T_{n}(x)=\frac{1}{2^{n-1}} \cos (n \arccos x)
$$

Доказать, что семейство функций

$$
\begin{aligned}
f_{n}(x) & =\frac{2^{n}}{\sqrt{2 \pi}}\left(1-x^{2}\right)^{-1 / 4} T_{n}(x)= \\
& =\sqrt{\frac{2}{\pi}}\left(1-x^{2}\right)^{-1 / 4} \cos (n \arccos x), \quad n=0,1, \ldots, \infty,
\end{aligned}
$$

образует ортонормированный базис в $L^{2}(-1,1)$.
Решение. Воспользуемся полнотой тригонометрического базиса (см. запачу (a)):

$$
\frac{2}{\pi} \sum_{n=0}^{\infty} \cos \left(n x_{1}\right) \cos \left(n x_{2}\right)=\delta\left(x_{1}-x_{2}\right), \quad 0<x_{1,2}<\pi .
$$

Следовательно,

$$
\begin{aligned}
& \sum_{0}^{\infty} f_{n}(x) f_{n}(y)= \\
& \quad=\frac{2}{\pi}\left(1-x^{2}\right)^{-1 / 4}\left(1-y^{2}\right)^{-1 / 4} \sum_{n=0}^{\infty} \cos (n \arccos x) \cos (n \arccos y)= \\
& \quad=\left(1-x^{2}\right)^{-1 / 4}\left(1-y^{2}\right)^{-1 / 4} \delta(\arccos x-\arccos y)=\delta(x-y) .
\end{aligned}
$$

Последнее равенство получается с помощью формулы

$$
\delta(f(x))=\frac{1}{\left|f^{\prime}\left(x_{0}\right)\right|} \delta\left(x-x_{0}\right)
$$

где x_{0} - единственное решение уравнения $f\left(x_{0}\right)=0$ в рассматриваемом интервале (см. задачу (24)). Ортонормированность проверяется непосредственным вычислением интегралов.
11. Полиномы Эрмита определены следуюцим образом:

$$
H_{n}(x)=(-1)^{n} e^{x^{2}} \frac{d^{n}}{d x^{n}} e^{-x^{2}} .
$$

Доказать, что функции

$$
\phi_{n}(x)=\frac{1}{\pi^{1 / 4} \sqrt{2^{n} n!}} \exp \left(-\frac{x^{2}}{2}\right) H_{n}(x)
$$

образуют ортонормированный базис в $L^{2}(-\infty,+\infty)$.
Решение. Заметим, что $H_{n}(x)$ - полином n-й степени по x со старшим членом $2^{n} x^{n}$. Скалярное произведение

$$
\begin{aligned}
N_{n m}=\int_{-\infty}^{+\infty} d x \phi_{n}(x) \phi_{m}(x) & =\frac{(-1)^{m}}{\sqrt{\pi 2^{n+m} n!m!}} \int_{-\infty}^{+\infty} d x H_{n}(x) \frac{d^{m}}{d x^{m}} e^{-x^{2}}= \\
& =\frac{1}{\sqrt{\pi 2^{n+m} n!m}} \int_{-\infty}^{+\infty} d x e^{-x^{2}} \frac{d^{m}}{d x^{m}} H_{n}(x)
\end{aligned}
$$

при $\boldsymbol{m}>\boldsymbol{n}$ равно нулю, поскольку \boldsymbol{m}-я производная от любого полинома степени, меньшей m, равна нулю. При $m=n$, учитывая, что

$$
\frac{d^{n}}{d x^{n}} H_{n}(x)=\frac{d^{n}}{d x^{n}} 2^{n} x^{n}=2^{n} n!,
$$

и вычисляя интеграл Пуассона, получаем $N_{n n}=1$. Так как m и n входят симметрично, то

$$
N_{m n}=\delta_{m n}
$$

т.е. ортонормированность доказана.

При проверке полноты (необходимой для базиса) воспользуемся следуюшим равенством:

$$
\frac{d^{n}}{d x^{n}} x e^{-x^{2}}=\sqrt{\pi} \int_{-\infty}^{+\infty} \frac{d p}{2 \pi}(i p)^{n} \exp \left(-\frac{p^{2}}{4}+i p x\right)
$$

которюе можно получить прямым преобразованием Фурье левой части, n-кратным интегрированием по частям и взятием оставшегося гауссова

интеграла. Ряд

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \phi_{n}(x) \phi_{n}(y)=\frac{1}{\sqrt{\pi}} \exp \left(\frac{x^{2}+y^{2}}{2}\right) \sum_{n=0}^{\infty} \frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}} e^{-x^{2}} \frac{d^{n}}{d y^{n}} e^{-y^{2}}= \\
& \quad=\exp \left(\frac{x^{2}+y^{2}}{2}\right) \int_{-\infty}^{+\infty} \frac{d p}{2 \pi} \exp \left(-\frac{p^{2}}{4}+i p x\right) \sum_{n=0}^{\infty} \frac{(i p)^{n}}{2^{n} n!} \frac{d^{n}}{d y^{n}} e^{-y^{2}}
\end{aligned}
$$

суммируется как ряд Тейлора:

$$
\sum_{n=0}^{\infty} \frac{a^{n}}{n!} \frac{d^{n}}{d y^{n}} f(y)=f(y+a)
$$

Таким образом,

$$
\begin{aligned}
\sum_{n=0}^{\infty} \phi_{n}(x) \phi_{n}(y) & =\exp \left(\frac{x^{2}+y^{2}}{2}\right) \int_{-\infty}^{+\infty} \frac{d p}{2 \pi} \exp \left(-\frac{p^{2}}{4}+i p x-\left(y+\frac{i p}{2}\right)^{2}\right)= \\
& =\exp \left(\frac{x^{2}-y^{2}}{2}\right) \int_{-\infty}^{+\infty} \frac{d p}{2 \pi} \exp (i p(x-y))=\delta(x-y)
\end{aligned}
$$

что и требовалось доказать.
12. Показать, что оператор

$$
\widehat{A}=\exp \left(a \frac{d}{d x}\right)
$$

лде а - вещественное число, унитарен в $L^{2}(-\infty,+\infty)$.
Решение. $\widehat{\boldsymbol{A}}$ действует на функцию $f(x)$ следующим образом:

$$
\widehat{A} f(x)=f(x+a) .
$$

В этом можно убедиться, разлагая в выражении $\widehat{A} f(x)$ экспоненту в ряд и суммируя получившийся ряд Тейлора для $f(x)$. Таким образом,

$$
(\widehat{A} f, \widehat{A} g)=\int_{-\infty}^{+\infty} d x f^{*}(x+a) g(x+a)=\int_{-\infty}^{+\infty} d y f^{*}(y) g(y)=(f, g)
$$

13. $B L^{2}(0, l)$ дейстeyem onepamop

$$
\begin{aligned}
& \mathcal{H}=-\frac{d^{2}}{d x^{2}}+G \delta\left(x-\frac{l}{2}\right) \\
& \mathcal{D}=\left\{f(0)=f(l)=0, f \in L^{2}(0, l)\right\}
\end{aligned}
$$

Найти его спектр и собственные функции при различных значениях G.

Решение. Собственные функции оператора $-\frac{d^{2}}{d z^{1}}$, обращающиеся в 0 в точке $x=\frac{1}{2}$, являются собственными и для \mathcal{H} :

$$
\mathcal{H} \psi_{m}=\frac{4 m^{2} \pi^{2}}{l^{2}}, \quad \psi_{m}=\sin \frac{2 \pi m}{l} x, \quad m=1, \ldots
$$

Другая серия собственных функций не обращается в 0 при $x=\frac{1}{2}$ и удовлетворяет условию сшивки:

$$
\psi^{\prime}\left(\frac{l}{2}+0\right)-\psi^{\prime}\left(\frac{l}{2}-0\right)=G \psi\left(\frac{l}{2}\right)
$$

получаюшемуся из уравнения $\mathcal{H} \psi=\lambda \psi$ интегрированием по малому интервалу, включаюшему точку $x=\frac{l}{2}$. Если подставить

$$
\psi_{n}=\sin k_{n} x, x<\frac{l}{2}, \quad \psi_{n}=\sin k_{n}(l-x), x>\frac{l}{2}, \quad \lambda=k_{n}^{2},
$$

то условие сшивки дает уравнение на набор k_{n} :

$$
2 k_{n} \operatorname{ctg} \frac{k_{n} l}{2}=-G .
$$

Вешественному λ соответствуют как вешественные, так и чисто мнимые k_{n}. При $\boldsymbol{k}_{\mathbf{n}} \in \mathbb{R}$ сушествует бесконечное множество решений, определяюших вторую серию собственных значений. Для исследования чисто мнимых k_{n} сделаем подстановку

$$
k_{n}=i x, \quad x \in \mathbb{R},
$$

которая приводит к уравнению

$$
\operatorname{cth}\left(\frac{x l}{2}\right)=-\frac{G}{2 x} .
$$

Это уравнение имеет решение лишь при $G<0$ и начиная лишь с некоторого порогового значения $|G|$. Действительно, асимптотика левой части при $x \rightarrow+0$ равна $\frac{2}{x l}$ и при $|G|<\frac{4}{l}$ функиия $\operatorname{cth}\left(\frac{x l}{2}\right)$ проходит везде выше, чем $\frac{|G|}{2 x}:$ точек пересечения нет, то есть нет решений. Если $|G|>\frac{4}{1}$, то правая часть уравнения при малых $х$ больше, чем левая часть, а при больших x наоборот. Значит, имеется одна точка пересечения и, следовательно. одно отрицательное собственное значение λ оператора \mathcal{H}.

Заметим, что при $G<0,|G|>{ }_{7}^{4}$ минимальное вешественное значение k_{1} больше, чем $\frac{2 \pi}{i}$ (нет пересечения гиперболы с первой котангенсоидой), поэтому соответствуюшая ему $\psi_{1}(x)$ имеет нули на интервале $(0, l)$. По осцилляционной теореме ${ }^{*)} \psi_{1}$ не есть основное состояние, и $\lambda_{1}=k_{1}^{2}$ не является наименьшим собственным значением. Основное состояние описывает решение с отрицательным λ.

[^1]
1.7. Задачи

14. Пусть A_{i}, \ldots, A_{k}, - квадратные матрицы одинакового размера. Доказать, что

$$
\operatorname{Tr}\left(A_{1} \cdot A_{2} \cdot \ldots \cdot A_{k}\right)=\operatorname{Tr}\left(A_{2} \cdot \ldots \cdot A_{k} \cdot A_{1}\right)
$$

15. Пусть собственные значения матрицы \boldsymbol{A} размера $\boldsymbol{n} \times \boldsymbol{n}$ равны

$$
\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}
$$

: I - единичная матрица. Доказать, что

$$
\operatorname{det}(I+A)=\left(1+\lambda_{1}\right) \cdot\left(1+\lambda_{2}\right) \cdot \ldots \cdot\left(1+\lambda_{n}\right) .
$$

16. Вычислить характеристический многочлен и собственные значения матрицы

$$
\left(\begin{array}{rr}
\cos \alpha & \sin \alpha \\
-\sin \alpha & \cos \alpha
\end{array}\right)
$$

17. Пусть

$$
A=\left(\begin{array}{ccccc}
\rho & 1 & 0 & \ldots & 0 \tag{1.15}\\
0 & \rho & 1 & \ldots & 0 \\
\ldots & \cdots & \ldots & \ldots & . \\
0 & 0 & 0 & \ldots & \rho
\end{array}\right)
$$

клетка Жордана порядка \boldsymbol{n}. Показать, что для всех натуральных m имеет место формула

$$
A^{m}=\left(\begin{array}{ccccc}
\rho^{m} & C_{m}^{1} \rho^{m-1} & C_{m}^{2} \rho^{m-2} & \ldots & C_{m}^{n-1} \rho^{m-n+1} \\
0 & \rho^{m} & C_{m}^{1} \rho^{m-1} & \cdots & C_{m}^{m-2} \rho^{m-n+2} \\
0 & 0 & \rho^{m} & \cdots & C_{m}^{m-3} \rho^{m-n+3} \\
\cdots & 0 & \cdots & \cdots & \cdots
\end{array}\right)
$$

गие биномиальные коэффициенты $C_{m}^{k}, k \leqslant m$ определяются формулой

$$
C_{m}^{k}=\frac{m(m-1) \ldots(m-k+1)}{k!}
$$

" при $k>m, C_{m}^{k}=0$.
18. Пусть $f(\lambda)=a_{0}+a_{1} \lambda+\ldots+a_{k} \lambda^{k}$ - некоторый многочлен от λ. Доказать, что если A - жорданова клетка (1.15) порядка n, то

$$
f(A)=\left(\begin{array}{ccccc}
f(\rho) & \frac{1}{1!} f^{\prime}(\rho) & \frac{1}{2!} f^{\prime \prime}(\rho) & \ldots & \frac{1}{(n-1)!} f^{(n-1)}(\rho) \\
0 & f(\rho) & \frac{1}{1!} f^{\prime}(\rho) & \cdots & \frac{1}{(n-2)!} f^{(n-2)}(\rho) \\
0 & 0 & f(\rho) & \ldots & \frac{1}{(n-3)!} f^{(n-3)}(\rho) \\
\cdots & 0 & \cdots & \cdots & \cdots
\end{array}\right) .
$$

19. Пусть $f(\lambda)=a_{0}+a_{1} \lambda+\ldots+a_{m} \lambda^{m}+\ldots$ - формальный степенной ряд относительно переменной λ. Показать, что, для того чтобы степенной ряд от матрицы A сходился, необходимо и достаточно, чтобы каждое собственное значение ρ_{i} матрицы \boldsymbol{A} либо находилось внутри круга сходимости соответствующего степенного ряда $f(\lambda)$, либо лежало на границе круга сходимости. Если ρ_{i} лежит на границе круга сходимости, то требуется сходимость ряда, полученного ($n_{i}-1$)-кратным дифференцированием ряда $f(\lambda)$, где n_{i} - порядок жордановой клетки, отвечающей значению ρ_{i}.
20. Найти

$$
\ln \left(\begin{array}{ll}
1 & x \\
x & 1
\end{array}\right), \quad|x|<1
$$

21. Доказать равенства:
(a) $\lim _{\varepsilon \rightarrow+0} \frac{1}{\pi} \frac{\varepsilon}{x^{2}+\varepsilon^{2}}=\delta(x)$;
(б) $\lim _{\varepsilon \rightarrow+0} \frac{2}{\pi} \frac{x^{2} \varepsilon}{\left(x^{2}+\varepsilon^{2}\right)^{2}}=\delta(x)$;
(B) $\lim _{\varepsilon \rightarrow+0} \frac{2}{x} \frac{x \varepsilon}{\left(x^{2}+\varepsilon^{2}\right)^{2}}=-\frac{d \delta(x)}{d x}$;
(r) $\lim _{\varepsilon \rightarrow+0} \frac{1}{\sqrt{\pi \varepsilon}} \exp \left(-\frac{x^{2}}{\varepsilon}\right)=\delta(x)$;
(д) $x \frac{d \delta(x)}{d x}=-\delta(x) ;$
(e) $\lim _{n \rightarrow \infty} \frac{1-\cos (n x)}{\pi n x^{2}}=\delta(x)$.
22. Доказать, что

$$
\frac{1}{2 \pi} \int_{-\infty}^{\infty} d p \exp (i p x)=\delta(x)
$$

23. Доказать, что для любой гладкой функции $f(x)$ имеет место

$$
f(x) \frac{d \delta(x-a)}{d x}=f(a) \frac{d \delta(x-a)}{d x}-\delta(x-a) \frac{d f(x)}{d x}
$$

24. Доказать, что если $f^{\prime}\left(a_{n}\right) \neq 0$, где $\left\{a_{n}\right\}$ - множество нулей функции $f(x) ; f\left(a_{n}\right)=0$, то

$$
\delta(f(x))=\sum_{n} \frac{1}{\left|f^{\prime}\left(a_{n}\right)\right|} \delta\left(x-a_{n}\right)
$$

25. Доказать, что двумерную δ-функцию можно записать в полярных координатах на плоскости следующим образом:

$$
\delta\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right)=\frac{1}{\boldsymbol{r}^{\prime}} \delta\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right) \delta\left(\phi-\phi^{\prime}\right) .
$$

Здесь (\boldsymbol{r}, ϕ), $\left(\boldsymbol{r}^{\prime}, \phi^{\prime}\right)$ - полярные координаты точек $\boldsymbol{r}, \boldsymbol{r}^{\prime}$ соответственно.
26. Доказать, что в трехмерном случае

$$
\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right) \frac{1}{r}=-4 \pi \delta(r)
$$

27. Проверить, образуют ли базис гильбертова пространства следукнии последовательности функций:
(a) в пространстве $L^{2}(0, \pi)$ имеется ортонормированная последовательность функций

$$
f_{0}(x)=\sqrt{\frac{1}{\pi}}, \quad f_{n}(x)=\sqrt{\frac{2}{\pi}} \cos (n x), \quad n=1, \ldots, \infty
$$

(6) в пространстве $L^{2}(0,2 \pi)$ имеется ортонормированная последовагельность функций

$$
f_{n}(x)=\sqrt{\frac{1}{\pi}} \sin (n x), \quad n=1, \ldots, \infty
$$

28. Найти по оператору L сопряженный оператор L^{\dagger}, а также:
(a) определить, каким ограничениям должны удовлетворять функиии p, q, r и коэффициенты α, β в краевой задаче с условиями типа Illурмма:

$$
\begin{gathered}
L y=p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y, \quad x \in[0,1] \\
\alpha_{0} y(0)+\beta_{0} y^{\prime}(0)=0, \quad \alpha_{1} y(1)+\beta_{1} y^{\prime}(1)=0,
\end{gathered}
$$

чाкбы оператор L был самосопряжен;
(б) показать, что если граничные условия на замкнутой поверхно1 1 . S имеют вид

$$
\left.u\right|_{S}=0 \quad \text { или }\left.\quad \frac{\partial u}{\partial n}\right|_{s}=0
$$

1, ле n - нормаль к поверхности, то оператор Лапласа $L=\triangle$ самосопряach;
(в) выяснить, каким ограничениям должны удовлетворять $a_{i j}, b_{i}, c$ инератора

$$
L=a_{i j}(x) \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}+b_{i}(x) \frac{\partial}{\partial x_{i}}+c(x)
$$

" краевой задаче $\left.u\right|_{S}=0$, чтобы оператор L был самосопряжен.
29. При каких ограничениях на коэффициенты оператор ШтурмаЛиувилля

$$
L=\frac{d}{d x} q(x) \frac{d}{d x}+r(x)
$$

с линейно независимыми краевыми условиями

$$
\alpha_{\mu} y(a)+\beta_{\mu} y^{\prime}(a)=\gamma_{\mu} y(b)+\delta_{\mu} y^{\prime}(b), \quad \mu=1,2,
$$

является самосопряженным на отрезке $x \in[a, b]$?
30. Является ли эрмитовым оператор импульса $\hat{p}=-\frac{i d}{d x}$ на отрезке $x \in[0,2 \pi]$ с граничными условиями:
(a) $u(0)=u(2 \pi)=0$;
(б) $u(0)=u(2 \pi)$?
31. Показать, что для унитарности достаточно сохранения нормы: если для любого $y:(U y, U y)=(y, y)$, то U унитарен.
32. Показать, что унитарные операторы образуют группу, т.е. произведение унитарных операторов является унитарным оператором. Имеется ли аналогичное свойство для эрмитовых операторов?
33. Показать явно, что оператор

$$
\exp \left(a \frac{d}{d x}\right) e^{i b x}
$$

унитарен в $L^{2}(\mathbb{R})$ при $a, b \in \mathbb{R}$.
34. Доказать равенство

$$
\exp \left(-a \frac{d}{d x}\right) e^{-i b x} \exp \left(a \frac{d}{d x}\right) e^{i b x}=e^{i a b}
$$

35. Показать явно, что оператор

$$
U=\exp \left(i a \frac{d^{2}}{d x^{2}}\right)
$$

унитарен в $L^{2}(\mathbb{R})$ при $a \in \mathbb{R}$.

1.8. Ответы

14. Указание: Использовать определение следа матриц.
15. Указание: Собственные значения матрицы $I+A$ равны ($1+\lambda_{i}$), $i=1, \ldots, n$.
16. $\lambda^{2}-2 \lambda \cos \alpha+1$.
17. Указание: Воспользоваться методом математической индукции.
18. Указание: Воспользоваться результатом предыдушей задачи.
19. Указание: Достаточно доказать теорему для жордановой клетки, так как $f\left(\boldsymbol{T A T} \boldsymbol{T}^{-1}\right)=T f(A) T^{-1}$. Для этого воспользуемся результатом задачи 17.
20. Указание: Вычислить сначала резольвенту \boldsymbol{R}_{λ}

$$
R_{\lambda}=\frac{1}{(\lambda-1)^{2}-x^{2}}\left(\begin{array}{cc}
1-\lambda & -x \\
-x & 1-\lambda
\end{array}\right)
$$

и воспользоваться обобщением формулу Коши для матриц. B результате приходим к ответу

$$
\frac{1}{2}\left(\begin{array}{cc}
\ln \left(1-x^{2}\right) & \ln \frac{1+x}{1-x} \\
\ln \frac{1+x}{1-x} & \ln \left(1-x^{2}\right)
\end{array}\right) .
$$

21. Указание: Использовать определение δ-функции.
22. Указание: Рассмотреть интеграл в левой части как предел при $\alpha \rightarrow+0$ абсолютно сходящегося интеграла

$$
\lim _{\alpha \rightarrow+0} \frac{1}{2 \pi} \int_{-\infty}^{\infty} d p \exp (i p x-\alpha|p|)=\delta(x)
$$

23. Указание: Использовать определение производной δ-функции.
24. Указание: Использовать определение δ-функции.
25. Указание: Рассмотреть интеграл $\int d \boldsymbol{r}$ от обеих частей равенства в полярных координатах.
26. Указание: Записать лапласиан в сферических координатах и взять иитеграл $\int d r$ от обеих частей равенства.
27. (а) Указание: Сумму

$$
\sum_{n=1}^{\infty} \cos (n x) \cos (n y)
$$

надо вычислять как предел при $\alpha \rightarrow+0$ абсолютно сходяшегося ряда

$$
\sum_{n=1}^{\infty} \exp (-\alpha n) \cos (n x) \cos (n y) .
$$

Образует.
(б) Не образует. Базис образует полный набор

$$
\left\{\sqrt{\frac{1}{\pi}} \sin (n x), \quad \sqrt{\frac{1}{\pi}} \cos (n x)\right\} .
$$

Ралложение по этому базису - ряд Фурье данной функции.
28. (в) $a_{i j}=a_{j i}, \quad b_{i}=\frac{\partial a_{i j}}{\partial x_{j}}$.
29. $q(a)\left(\gamma_{1} \delta_{2}-\gamma_{2} \delta_{1}\right)=q(b)\left(\alpha_{1} \beta_{2}-\alpha_{2} \beta_{1}\right)$.

В частности, получаются краевые задачи I, II, III рода и периодическая краевая задача:

$$
\begin{aligned}
& 1^{\circ} y(a)=y(b)=0, \\
& 2^{\circ} y^{\prime}(a)=y^{\prime}(b)=0, \\
& 3^{\circ} \text { линейная комбинаиия } 1^{\circ} \text { и } 2^{\circ}, \\
& 4^{\circ} y(a)=y(b), y^{\prime}(a)=y^{\prime}(b), q(a)=q(b) .
\end{aligned}
$$

30. (a) Нет.
(б) Да.
31. Указание: Для любых u и v по условию сохраняется норма линейной комбинации $\lambda u+\mu v$, где λ и μ - произвольные комплексные числа (см. задачу 1).
32. Указание: Подействовать оператором на произвольную функцию $f(x)$, проверить сохранение нормы, и воспользоваться результатом предыдушей задачи.
33. Указание: Рассмотреть действие левой части на произвольную функцию $f(x)$.
34. Указание: Доказать равенство $(U f, U f)=(f, f)$, используя представление функции $f(x)$ в виде интеграла Фурье.

Глава 2

Метод характеристик

2.1. Однородные и неоднородные линейные уравнения в частных промзводных

Уравнение

$$
\begin{equation*}
a \frac{\partial u}{\partial x} \equiv a_{1} \frac{\partial u}{\partial x_{1}}+a_{2} \frac{\partial u}{\partial x_{2}}+\ldots+a_{n} \frac{\partial u}{\partial x_{n}}=0 \tag{2.1}
\end{equation*}
$$

1ие нектор $a=\left(a_{1}, \ldots, a_{n}\right)$ и неизвестная функция $u(x)$ зависят тольnы от n переменных $x=\left(x_{1}, \ldots, x_{n}\right)$, называется однородным линейным чриннением в частных производных первого порядка. Введем параметр t, записимость от которого функций $x_{j}(t)$ задается системой n обыкновенных ифференциальных уравнений первого порядка:

$$
\begin{equation*}
\frac{d x_{j}}{d t}=a_{j}(x), \quad j=1,2, \ldots, n . \tag{2.2}
\end{equation*}
$$

1 .ивяя система называется уравнениями характеристик. Любой первый ннеграл системы (2.2), т.е. функция $F(x)$, для которой

$$
\frac{d F}{d t}=0
$$

\rightarrow также произвольная функция $g\left(F_{1}, \ldots, F_{k}\right)$ от первых интегралов си-- гсмы обыкновенных дифференциальных уравнений (2.2) является решенисм уравнения в частных производных (2.1). Действительно, прямая пнистановка $u=g$ в (2.1) приводит к цепочке равенств

$$
a \frac{\partial u}{\partial x}=a_{i} \frac{\partial g}{\partial F_{j}} \frac{\partial F_{j}}{\partial x_{i}}=\frac{d x_{i}}{d t} \frac{\partial g}{\partial F_{j}} \frac{\partial F_{j}}{\partial x_{i}}=\frac{d F_{j}}{d t} \frac{\partial g}{\partial F_{j}}=0
$$

' тс по повторяющимся индексам подразумевается суммирование.
Антономная система (2.2) имеет $n-1$ первый интеграл, не зависяший ..) t. Решение

$$
\begin{equation*}
u(x)=g\left(F_{1}(x), \ldots, F_{n-1}(x)\right) \tag{2.3}
\end{equation*}
$$

" шиле произвольной функции от всех первых интегралов называется обмим решением (общим интегралом) уравнения (2.1). Здесь функция g предниааастся дважды непрерывно дифференцируемой. (Ниже мы для крат-- ксти не будем уточнять требования гладкости встречающихся функций.)

Уравнение (2.1) имеет простую геометрическую интерпретацию. Считая коэффициенты $a(x)$ компонентами вектора в n-мерном пространстве, уравнение (2.I) означает равенство нулю производной функции u вдоль направления вектора a. Таким образом, решение уравнения методом характеристик сводится к восстановлению интегральных кривых Γ по касательным к ним векторам a, заданным в каждой точке x. Вдоль таких кривых решение $u(x)$ постоянно. Если перейти в окрестности точки неособым преобразованием* к новой системе координат

$$
\tau, F_{1}, F_{2}, \ldots, F_{n-1}
$$

где τ - параметр вдоль интегральной кривой (характеристики), то уравнение в этой системе приобретает вид $\frac{d u}{d \tau}=0$, а общим решением будет произвольная функция $n-1$ координат $F_{1}, F_{2}, \ldots, F_{n-1}$ - первых интегралов уравнений характеристик (2.2).

Пример: Найдем характеристики однородного уравнения

$$
\frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=0 .
$$

Уравнения характеристик $\dot{x}=1, \dot{y}=y$ имеют решение $\left(x(t)=t+C_{1}\right.$, $y(t)=C_{2} e^{t}$) и один первый интеграл

$$
F(x, y)=y e^{-x}=\text { const }
$$

поэтому $u(x, y)=g\left(y e^{-x}\right)$, где g - произвольная функция, есть общее решение. На рис. 2.1 изображены характеристики - линии уровня функции g. Стрелками обозначены направления касательных векторов $a=(1, y)$ к интегральным кривым. Сами интегральные кривые $y=$ const $\cdot e^{x}$ показаны сплошными линиями. Pe щение однородного линейного

Рис. 2.1. Интегральные кривые и касательные векторы к ним для уравнения $\dot{y}=\boldsymbol{y}$ уравнения постоянно вдоль характеристик.

Задача Коши ставится к уравнению (2.1) следуюшим образом: требуется найти решение $u(x)$ уравнения, удовлетворяющее начальным условиям

$$
\begin{equation*}
\left.u(x)\right|_{x_{0} \in S}=f\left(x_{0}\right), \tag{2.4}
\end{equation*}
$$

где S - некоторая гиперповерхность (размерности $n-1$), $f\left(x_{0}\right)$ - заданная функция «начальных» переменных x_{0}. Задача Коши однозначно

[^2]ра зрешима по крайней мере в некоторой окрестности начальной гиперпо－ нгрхности S ，если S не касается характеристик．Решение уравнений для ，арактеристик（2．2）с начальными условиями（2．4）$x=x\left(x_{0}, t\right)$ предста－ шияет собой замену переменных．В этом смысле метод характеристик есть нс что иное，как применение вполне определенной замены переменных．

В том случае，когда удается получить общее решение（2．3），зада－ ＂у Коши можно также решить，находя фунхцию $g(F)$ из начального чсловия（2．4）．

Неоднородное линейное уравнение

$$
\begin{equation*}
a \frac{\partial u}{\partial x}=b \tag{2.5}
\end{equation*}
$$

lac $b(x)$－заданная функция，имеет，как обычно для линейных урав－ нний，решение в виде суммы общего решения（2．3）однородного урав－ нєиия（2．1）и частного решения неоднородного уравнения（2．5）．Чтобы ниии последнее，удобнее перейти на характеристики $x(t)$ ，тогда левая ＇．．кть（2．5）перепишется в виде полной производной

$$
a \frac{\partial u}{\partial x}=\dot{x} \frac{\partial u}{\partial x}=\frac{d u}{d t}=b(x(t)) .
$$

Һ⿺ачит，функция $b(x(t))$ есть производная по＊времени» t при движении шюль характеристики，откуда получаем искомое частное решение

$$
u_{i n h}=\int_{i_{0}}^{t} b(x(\tau)) d \tau
$$

॥ отличие от решения однородного уравнения，это решение уже не по－ －юянно вдоль характеристики Г．

2．2．Квазилинейные уравнения в частных производных

Если коэффициенты a и b уравнения（2．5）зависят не только от ко－ ＇риинат x ，но и от искомой функции $u(x): a=a(x, u), b=b(x, u)$ ， 10）уравнение называется квазилинейным．К квазилинейному уравнению в：кжс применим метод характеристик．Однако его решение уже не есть （ умма решений однородного и неоднородного уравнений．Единственная мидификация метода характеристик для квазилинейного уравнения－ миширение пространства，в котором ишутся интегральные кривые Γ ． Кроме n координат $x_{i}, i=1, \ldots, n$ введем $n+1$ ко координату u ．В рас－ แирснном пространстве вдоль характеристик $\dot{x}=a(x, u)$ уравнение（2．5） （ м）лится к обыкновенному．В результате получаем систему обыкновен－ いぃх дифференциальных уравнений первого порядка на функции x_{i}, u ＂，параметра t ：

$$
\left\{\begin{array}{l}
\dot{x}_{i}=a_{i}(x, u) \tag{2.6}\\
\dot{u}=b(x, u)
\end{array}\right.
$$

Общее решение \boldsymbol{u} квазилинейного уравнения дается неявно уравнением

$$
g\left(F_{1}, F_{2}, \ldots, F_{n}\right)=0
$$

где g - произвольная функция n первых интегралов F_{i} уравнений (2.6).
Пример: Найдем решение уравнения Хопфа

$$
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=0,
$$

описывающего одномерное течение облака невзаимодействующих пылинок (и имеем смысл скорости пыли). Уравнение для характеристики имеет вид

$$
\dot{\boldsymbol{x}}=\boldsymbol{u},
$$

а уравнение на характеристике

$$
\dot{u}=0
$$

с начальными условиями

$$
\left.x\right|_{t=0}=x_{0},\left.\quad u\right|_{t=0}=u_{0}\left(x_{0}\right) .
$$

Отсюда находим, что функция $x=u_{0}\left(x_{0}\right) t+x_{0}$ задает неявно зависимость $x_{0}=x_{0}(x, t)$, при подстановки которой в $u=u_{0}\left(x_{0}\right)$ дает искомое решение задачи Коши для уравнения Хопфа. В неявном виде

$$
\begin{equation*}
u=u_{0}(x-u t) \tag{2.7}
\end{equation*}
$$

Пусть при $t=0 \quad u(x, 0)=u_{0}(\mathrm{l}-\mathrm{th} x)$. Решение записывается в неявном виде: $u=u_{0}[1-\operatorname{th}(x-u t)]$. Отсюда частная производная решения по x равна:

$$
u_{x}=\frac{-u_{0}}{\operatorname{ch}^{2} \xi-u_{0} t}
$$

Рис. 2.2. Опрокидывание» решения уравнения Хопфа ($t_{3}>t_{2}>t_{1}$)

Видно, что при $t<t^{*}=\frac{1}{u_{0}}$ решение однозначно. При $t \rightarrow t^{*}$ производная u_{x} стремится к бесконечности при $\xi=x-u t=0-$ происходит опрокидывание волны. Peшение становится неоднозначным при $t>t^{*}$. Причина опрокидывания состоит в том, что быстрые пылинки догоняют медленные, что приводит к укручению профиля волны. Плотность пылинок $n(x, t)$, определяемая из уравнения непрерывности $n_{t}+\frac{\partial}{\partial x}(n u)=0$, может

бить явно найдена через начальную плотность и якобиан преобразования $x=x\left(x_{0}, t\right)$:

$$
n(x, t)=\frac{n_{0}\left(x_{0}\right)}{\left|\frac{\partial_{x} x}{\partial x_{0}}\right|}
$$

В момент времени $t=\boldsymbol{t}^{*}$ плотность обращается в бесконечность в точке опрокидывания $\boldsymbol{\xi}=0$.

Появление бесконечной производной в профиле скорости, а также ябращение плотности в точке опрокидывания в бесконечность означает, что в окрестности $t=t^{*}$ физическая модель - уравнение Хопфа геряет свою применимость.

2.3. Системы уравнений в частных производных

Метод характеристик в некоторых случаях можно обобщить на системы из m уравнений на m функций u_{i}. Если переменных всего две, x и t, то система линейных уравнений имеет вид

$$
\begin{equation*}
A u_{t}+B u_{x}=f \tag{2.8}
\end{equation*}
$$

где $A(x, t), B(x, t)$ - матрицы порядка $m, u(x, t)$ - вектор-столбец неизвестных функций, а $f(x, t)$ - вектор-столбец заданных правых частей размерности m. Если u - решение системы, то приращение функции u при смешении на бесконечно малый вектор ($d t, d x$) составляет

$$
\begin{equation*}
d u=u_{t} d t+u_{x} d x \tag{2.9}
\end{equation*}
$$

Зная дифференциал $d u$, мы можем найти производные u_{t} и u_{x} из системы $2 m$ линейных уравнений (2.8), (2.9). Однако разрешить систему при произвольной правой части нельзя, если ее определитель обрашается в нуль:

$$
\left|\begin{array}{cc}
A & B \tag{2.10}\\
E d t & E d x
\end{array}\right|=0,
$$

где E - единичная матрица порядка m. Действительные решения $x(t)$ обыкновенного дифференииального уравнения (2.10) называются характеристиками системы (2.8).

Уравнение (2.10) представляет собой полином степени m относительно производных $\frac{d x}{d t}$. Если $m=2$, а полином имеет два действительных корня, то система (2.8) называется системой гиперболического типа. Если же действительных решений нет, система (2.8) относится к эллиптическому типу. Промежуточный случай, в котором (2.8) имеет вырожденный корень, относится к параболическому типу.

Для гиперболических систем с двумя переменными (x, t) можно использовать метод характеристик. Решение системы (2.8), (2.9) существует на характеристиках, только если ранг матрицы системы равен

рангу расширенной матрицы
$\operatorname{rank}\left(\begin{array}{cc}A & B \\ E d t & E d x\end{array}\right)=\operatorname{rank}\left(\begin{array}{cc|c}A & B & f \\ E d t & E d x & d u\end{array}\right)$.
Это равенство называется соотношениями на характеристиках. Оно должно выполнятся при движении вдоль характеристик. Формулы (2.10), (2.11) могут быть применимы не только к линейным, но и квазилинейным гиперболическим системам.

Пример: Уравнения движения одномерного баротропного газа

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+\frac{\partial}{\partial x}(\rho v)=0, \quad \frac{\partial v}{\partial t}+v \frac{\partial v}{\partial x}=-\frac{c^{2}}{\rho} \frac{\partial \rho}{\partial x}, \tag{2.12}
\end{equation*}
$$

где $c=\sqrt{\frac{d p}{d \rho}}-$ скорость звука, p, ρ и $v-$ давление, плотность и скорость газа. Для этой квазилинейной однородной системы

$$
u=\binom{\rho}{v}, \quad A=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad B=\left(\begin{array}{cc}
v & \rho \\
\frac{c^{2}}{\rho} & v
\end{array}\right) .
$$

Формула (2.10) позволяет найти уравнения характеристик

$$
\begin{equation*}
\dot{x}=v \pm c \tag{2.13}
\end{equation*}
$$

а (2.11) - соотношения $d v \pm \frac{c d \rho}{\rho}=0$. Интегралы соотношений на характеристиках, в данном примере

$$
\begin{equation*}
J_{ \pm}=v \pm \int \frac{c d \rho}{\rho} \tag{2.14}
\end{equation*}
$$

называются инвариантами Римано. На инварианты $J_{ \pm}$из (2.12) следуют уравнения

$$
\frac{\partial J_{+}}{\partial t}+(v+c) \frac{\partial J_{+}}{\partial x}=0, \quad \frac{\partial J_{-}}{\partial t}+(v-c) \frac{\partial J_{-}}{\partial x}=0 .
$$

Нуль в правой части означает сохранение инвариантов Римана вдоль характеристик. Найти общее решение этой системы не удается, поскольку v и $с$ выражаются как через J_{+}, так и через J_{-}. Однако в частном случае, когда один из инвариантов (например, J_{-}) не зависит от координаты (например, в силу начальных условий), тогда он не зависит и от времени в силу второго уравнения. Остается одно квазилинейное уравнение аля J_{+}, решение которого можно найти. Такое решение называется простой волной Римана.

Понятие характеристик можно обобщить и на некоторые системы линейных уравнений в частных производных с числом переменных, большим двух. Характеристики таких систем суть поверхности или гиперповерхности, такие, что частные производные от решения в направлениях,

ортогональных этим поверхностям, не могут быть выражены через начальные данные Коши на них, а значит, не может быть найдено и само решение.

Рассмотрим систему m уравнений на функции от $n+1$ переменной:

$$
A u_{t}+B_{1} u_{x_{1}}+\ldots+B_{n} u_{x_{n}}=f, \quad u=\left(\begin{array}{c}
u_{1} \tag{2.15}\\
\vdots \\
u_{m}
\end{array}\right), \quad f=\left(\begin{array}{c}
f_{1} \\
\vdots \\
f_{m}
\end{array}\right)
$$

где A, B_{i} - матрицы порядка m. Пусть краевые условия задаются на гиперповерхности $\phi\left(t, x_{1}, \ldots, x_{n}\right)=0$ в $\pi+1$-мерном пространстве. Введем в пространстве (t, x_{1}, \ldots, x_{n}) новые координаты. В качестве одной координаты возьмем функцию ϕ а остальные $\alpha_{1}\left(t, x_{1}, \ldots, x_{n}\right), \ldots$, $\alpha_{n}\left(t, x_{1}, \ldots, x_{n}\right)$ ограничены только условием неравенства нулю якобиана преобразования:

$$
\frac{D\left(\phi, \alpha_{1}, \ldots, \alpha_{n}\right)}{D\left(t, x_{1}, \ldots, x_{n}\right)} \neq 0 .
$$

Система (2.15) запишется в новых переменных в виде

$$
\begin{equation*}
\left(A \phi_{t}+\sum_{i=1}^{n} B_{i} \phi_{x_{i}}\right) \frac{\partial u}{\partial \phi}+\ldots=f \tag{2.16}
\end{equation*}
$$

где точками обозначены слагаемые, не содержашие $\frac{\partial u}{\partial \phi}$. Систему (2.16) нельзя разрешить относительно $\frac{\partial u}{\partial \phi}$, если обращается в нуль определитель

$$
\begin{equation*}
\left|A \phi_{t}+B_{1} \phi_{x_{1}}+\ldots+B_{n} \phi_{x_{n}}\right|=0 . \tag{2.17}
\end{equation*}
$$

Характеристики для (2.15) определяются как поверхности уровня решения нелинейного уравнения в частных производных (2.17). Вектор градиента этой функции ($\phi_{t}, \phi_{\mathbf{x}_{1}}, \ldots, \phi_{x_{*}}$), ортогональный характеристическим поверхностям, называется характеристической нормалью.

Детальное изложение теории линейных и квазилинейных уравнений в частных производных можно найти в книгах [Арн97, Арн84, Арн78, Три57, Пет61, Кур64, КГ51].

2.4. Примеры

36. Найти и изобразить на плоскости (x, y) характеристики следующих однородных уравнений:
(a)

$$
\frac{\partial u}{\partial x}-y^{2} \frac{\partial u}{\partial y}=0 ;
$$

$$
\begin{equation*}
x \frac{\partial u}{\partial x}-y \frac{\partial u}{\partial y}=0 \tag{6}
\end{equation*}
$$

(в) $y \frac{\partial u}{\partial x}-x \frac{\partial u}{\partial y}=0$.

Найти общие рещения и проверить их прямой подстановкой.
Решение. (а) Введем параметр t и выпишем уравнения характеристик:

$$
\frac{d x}{d t}=1, \quad \frac{d y}{d t}=-y^{2} .
$$

Их решение

$$
x(t)=t-t_{1}, \quad y(t)=\frac{1}{t-t_{2}}
$$

задает параметрически семейство характеристик на плоскости (x, y). Они изображены на рис. 2.3. Уравнения характеристик имеют один первый интеграл

$$
F(x, y)=x-\frac{1}{y}=\text { const }
$$

Поэтому $u(x, y)=g\left(x-\frac{1}{y}\right)$, где $g-$ произвольная функция, есть общее решение. Действительно, вычисляя первые производные

$$
\frac{\partial u(x, y)}{\partial x}=g^{\prime}, \quad \frac{\partial u(x, y)}{\partial y}=\frac{1}{y^{2}} g^{\prime},
$$

видим, что уравнение превращается в тождество при любой функции g.

Рмс. 2.3. Семейство характеристик
Рис. 2.4. Семейство характеристик в задаче 36 (a) (- const $=-5$; в задаче 36 (6) (- const $=0$; - const $=0 ;-$ const $=5$)

- const $=-1$)

Решение. (б) Решение уравнений характеристик

$$
x=C_{1} e^{t}, \quad y=C_{2} e^{-t}
$$

задает параметрически семейство характеристик на плоскости (x, y). Они изобрахены на рис. 2.4. Общее решение имеет вид

$$
u(x, y)=g(x y)
$$

Решение. (в) Введем параметр t и выпишем уравнения характеристик:

$$
\frac{d x}{d t}=y, \quad \frac{d y}{d t}=-x .
$$

Их решение

$$
x(t)=A \sin \left(t-t_{1}\right), \quad y(t)=A \cos \left(t-t_{1}\right)
$$

задает параметрически семейство характеристик на плоскости (x, y) (окружности), которые изображены на рис. 2.5. Уравнения характеристик имеют один первый интеграл

Рис. 2.5. Семейство характеристик в задаче 36 (в)

$$
F(x, y)=x^{2}+y^{2}=\text { const }
$$

поэтому $u(x, y)=g\left(x^{2}+y^{2}\right)$, где $g-$ произвольная функция, есть общее решение.
37. Решить задачу Коии

$$
\frac{\partial u}{\partial x}=y \frac{\partial u}{\partial y}, \quad u(0, y)=\cos y
$$

Решение. Уравнения характеристик $\dot{x}=1, \dot{y}=-y$ имеют решение $\left(x(t)=t-t_{1}, y(t)=\exp \left(-t+t_{2}\right)\right)$ и один первый интеграл

$$
F(x, y)=y e^{x}=\text { const } .
$$

Позтому

$$
u(x, y)=g(y \exp (x))
$$

где g - произвольная функция, есть общее решение. Прямая $x=0$, на которой заданы граничные условия, не касается характеристик ($y=$ $\left.\exp \left(-x+x_{1}\right)\right)$. Поэтому, подставляя общее решение в граничные условия, найем частный вид функиии g для задачи Коши:

$$
u(0, y)=g(y)=\cos (y)
$$

Oткуда $u(x, y)=\cos (y \exp (x))$.
38. Решить задаиу Коши для уравнения 36 (в) при $u(1, y)=y^{2}$.

Репенме. Прямая $x=1$, на которой заданы граничные условия, касается в точке (1,0) характеристики, задаваемой уравнением $x^{2}+$ $y^{2}=1$ (см. решение задачи 36 (в) и рис. 2.5). То есть, решения задачи Коши может не существовать. Однако, с нашими граничными условиями

решение задачи Коши сушествует. В этом нетрудно убедиться, подставив общее решение задачи 36 (в) в граничные условия.

$$
u(\mathrm{l}, y)=g\left(1+y^{2}\right)=y^{2}, \quad \text { отхуда } \quad g(z)=z-1 .
$$

В результате $u(x, y)=g\left(x^{2}+y^{2}\right)=x^{2}+y^{2}-1$. Это решение определено и единственно вне единичного круга $x^{2}+y^{2}>1$. Внутри круга решением задачи является произвольная дифференцируемая функция переменной $\xi=x^{2}+y^{2}$, равная нулю на окружности единичного радиуса.
Замечание. Решение задачи вне круга нашлось благодаря симметрии граничных условий относительно преобразования $y \rightarrow-y$. Так, задача Коши при $u(1, y)=y$ уже не имеет гладкого решения на всей плоскости.
39. Показать, что уравнения характеристик бессталкновительного кинетического уравнения (уравнения Лиувилля)

$$
\frac{\partial f}{\partial t}+v \frac{\partial f}{\partial r}+e\left(E+\frac{1}{c}[v \times \boldsymbol{H}]\right) \frac{\partial f}{\partial p}=0
$$

для функции распределения заряженньд частии $f=f(p, r, t)$ в фазовом пространстве совпадают с уравнениями движения частиц в электрическом и магнитном полях.

Решение. Считая t параметром, получаем уравнения характеристик

$$
\dot{t}=1, \quad \dot{\boldsymbol{r}}=\boldsymbol{v}, \quad \dot{\boldsymbol{p}}=\boldsymbol{e}\left(\boldsymbol{E}+\frac{[\boldsymbol{v} \times \boldsymbol{H}]}{\boldsymbol{c}}\right)
$$

которые совпадают с уравнениями движения частиц в скрещенных полях.
40. Показать, что для уравнения Лиувилля

$$
\frac{\partial f}{\partial t}+\{H, f\}=0
$$

где H - функция Гамильтона, а $\{$,$\} - скобки Пуассона, уравнениями$ характеристик являются уравнения Гамильтона.

Решение. Вспоминая определение скобок Пуассона, перепишем уравнение Лиувилля в виде

$$
\frac{\partial f}{\partial t}+\frac{\partial H}{\partial p} \frac{\partial f}{\partial r}-\frac{\partial H}{\partial r} \frac{\partial f}{\partial p}=0 .
$$

Поэтому уравнения характеристик

$$
\dot{r}=\frac{\partial H}{\partial p}, \quad \dot{p}=-\frac{\partial H}{\partial r}
$$

совпадают с уравнениями Гамильтона.
41. Решить задачу Коши для неоднородного уравнения

$$
\frac{\partial u}{\partial x}-y \frac{\partial u}{\partial y}=y, \quad u(0, y)=\sin y .
$$

Решенне. Обшее решение однородного уравнения получено в задаче 37: $u(x, y)=g\left(y e^{x}\right)$. Частное решение неоднородного уравнения

$$
\frac{d u}{d t}=u_{x} \frac{d x}{d t}+u_{4} \frac{d y}{d t}=u_{x}-y u_{y}=y(t)=\exp \left(-t+t_{2}\right)
$$

имеет вид

$$
u=\int^{t} d \tau y(\tau)=\int^{t} d \tau \exp \left(-\tau+t_{2}\right)=-\exp \left(-t+t_{2}\right)+c_{1}=c_{1}-y
$$

где c_{1} постоянно вдоль характеристик. Полное решение является их суммои: $u(x, y)=g(y \exp (x))-y$. (Постоянная c_{1} включена в функцию g.) Подставляя его в праничные условия, находим

$$
u(0, y)=g(y)-y=\sin (y), \quad \text { откуда } \quad g(z)=\sin (z)+z,
$$

и $u(x, y)=\sin (y \exp (x))+y \exp (x)-y$.
42. Найти общее решение уравнения

$$
x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+2\left(x^{2}+y^{2}\right) \frac{\partial u}{\partial z}=0
$$

и решить задачу Коши при $\left.u(x, y, z)\right|_{x^{2}+y^{2}=1}=1-z$ в области $x^{2}+y^{2}>1$.
Решение. В силу симметрии задачи, преобразуем уравнение в цилиндрические координаты $\rho, \varphi_{\mathrm{i}} z$:

$$
\rho \frac{\partial u}{\partial \rho}+2 \rho^{2} \frac{\partial u}{\partial z}=0 .
$$

Отсутствие производной по φ означает, что коэффициент перед ней равен нулю. Уравнения характеристик $\dot{\rho}=\rho, \dot{\varphi}=0, \dot{z}=2 \rho^{2}$ решаются ($\varphi=\varphi_{0}, \rho=\rho_{0} \exp (t), z(t)=\rho^{2}+z_{0}$) и имеют два интеграла движения: $F_{1}=\varphi=$ const и $F_{2}=\rho^{2}-z=$ const. Характеристиками являются полупараболы (пересечение параболоидов вращения $F_{2}=$ const и полуплоскостей $F_{1}=$ const). Значит,

$$
u(\rho, \varphi, z)=g\left(\varphi, \rho^{2}-z\right)
$$

где g - произвольная функция двух аргументов, есть обшее решение. Цилиндр ($\rho^{2}=1$), на котором заданы граничные условия, не касается характеристик. Подставляя общее решение в граничные условия, находим конкретный вид функции g :

$$
u(1, \varphi, z)=g(\varphi, 1-z)=1-z, \quad \text { откуда } \quad g\left(F_{1}, F_{2}\right)=F_{2}
$$

$и u(x, y, z)=x^{2}+y^{2}-z$ при $x^{2}+y^{2}>1$.

Замечание. Общее решение может быть продолжено до всех точек, кроме точки $\rho=0$, где уравнение вырождается.
43. Для уравнения Хопфа

$$
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=0
$$

(а) найти момент «опрокидывания волны», после которого нарушаются условия применимости уравнения Хопфа для описания одномерного движения облака пылинок, если $u(x, 0)=\frac{\pi}{2}-\operatorname{arctg} x$;
(б) найти момент копрокидьвания волны» $n р и и(x, 0)=\frac{1}{\sqrt{x}} \int_{x}^{\infty} d \eta e^{-\eta^{2}}$.

Решение. (а) Согласно (2.7) обшее решение уравнения Хопфа имеет вид $u(x, t)=g(\xi), \xi=x-u(x, t) t$. Подставляя его в граничные условия, получаем решение в неявном виде

$$
\begin{gathered}
u(x, 0)=g(x)=\frac{\pi}{2}-\operatorname{arctg} x \\
u(x, t)=g(\xi)=\frac{\pi}{2}-\operatorname{arctg}(x-t u(x, t))
\end{gathered}
$$

Можно найти его частную производную по x :

$$
u_{x}=\frac{-1}{1+(x-t u)^{2}}\left(1-t u_{x}\right)=\frac{-1}{1-t+(x-t u)^{2}} .
$$

Видно, что $u_{x}<\infty$ для всех x при $t<t^{*}=1$ и решение однозначно. При $t \rightarrow t^{*}$ производная u_{x} стремится $к$ бесконечности в точке $x^{*}=$ $u\left(x^{*}, t^{*}\right) t^{*}=\frac{\pi}{2}$, и происходит опрокидывание - формирование ударной волны.

Решение. (6) Общее решение уравнения Хопфа имеет вид (2.7): $u(x, t)=g(\xi), \xi=x-u(x, t) t$. Подставляя его в граничные условия, получаем решение в неявном виде

$$
u(x, 0)=g(x)=\frac{1}{\sqrt{\pi}} \int_{x}^{\infty} d \eta e^{-\eta^{2}}, \quad u(x, t)=g(\xi)=\frac{1}{\sqrt{\pi}} \int_{\xi}^{\infty} d \eta e^{-\eta^{2}} .
$$

Можно найти его частную производную по x :

$$
\begin{equation*}
u_{r}=-\frac{e^{-\xi^{2}}}{\sqrt{\pi}}\left(1-t u_{x}\right)=\frac{-1}{\sqrt{\pi} e^{t^{2}}-t} \tag{2.18}
\end{equation*}
$$

Видно, что $\left|u_{x}\right|<\infty$ и решение однозначно при $t<t^{*}=\sqrt{\pi}$. При $t \rightarrow t^{*}$ производная u_{f} стремится к бесконечности и происходит опрокидывание при $\xi^{*}=0$. Откуда $u^{*}=g\left(\xi^{*}\right)=\frac{1}{2}, x^{*}=u^{*} t^{*}=\frac{\sqrt{\pi}}{2}$.
44. Найти решение уравнений одномерных колебаний холодного электронного газа относительно однородного неподвижного ионного фона плотности n_{0}. При каких начальньхх значениях амлитуды скорости электронов V_{0} происходит опрокидывание? Начальное распределение скорости и и плотности $п$ электронов имеет вид

$$
\begin{equation*}
u(x, 0)=V_{0} \cos k x, \quad n(x, 0)=n_{0} \quad(k=\text { const }) \tag{2.19}
\end{equation*}
$$

Одномернье колебания холодного электронного газа описываются уравнением непрерывности для плотности эектронов $n(x, t)$,

$$
\begin{equation*}
n_{t}+(n u)_{x}=0 ; \tag{2.20}
\end{equation*}
$$

уравнением Эйлера для их скорости и,

$$
\begin{equation*}
u_{t}+u u_{x}=-\frac{e}{m} E, \tag{2.21}
\end{equation*}
$$

где е, m - заряд и масса электрона соответственно, E - электрическое поле, и уравнением Пуассона,

$$
\begin{equation*}
\frac{\partial E}{\partial x}=4 \pi e\left(n_{0}-n\right) . \tag{2.22}
\end{equation*}
$$

Решение. Выражая n из уравнения (2.22), подставляя его в (2.20) и интегрируя по x от $-\infty$ до x получим:

$$
\begin{equation*}
E_{t}+u E_{\tau}=4 \pi n_{0} u \tag{2.23}
\end{equation*}
$$

Постоянная интегрирования равна нулю, поскольку на бесконечности электроны покоятся и поле равно нулю. Для решения квазилинейной системы (2.23), (2.21) воспользуемся методом характеристик.

Имеется двукратно вырожденное семейство характеристик, задаваемых уравнением

$$
\dot{x}=u(x, t)
$$

с начальным условиям $\left.x\right|_{t=0}=x_{0}{ }^{*}$. Соотношения на характеристиках запишутся в виде

$$
u_{t}=-\frac{e}{m} E, \quad E_{t}=4 \pi n_{0} u
$$

Подчеркнем, что производные по времени вычисляются при постоянной координате x_{0}. Дифференцируя первое уравнение по t и выражая E_{t} из второго, сведем его к уравнению колебаний с плазменной частотой $\omega_{p}=\sqrt{\frac{4 \pi n_{0} e^{2}}{m}}:$

$$
u_{t t}=-\omega_{p}^{2} u
$$

Подставляя начальные данные, получим:

$$
u=V_{0} \cos \left(\omega_{p} t\right) \cos \left(k x_{0}\right)
$$

[^3]Интегрируя это выражение, найдем текушую координату \boldsymbol{x} электрона, имевшего начальную координату x_{0} :

$$
\begin{equation*}
x=x_{0}+\frac{V_{0}}{\omega_{p}} \sin \left(\omega_{p} t\right) \cos \left(k x_{0}\right) . \tag{2.24}
\end{equation*}
$$

При амплитуде $V_{0}>V_{c r}$, где $V_{c r}=\frac{\omega_{p}}{k}$, всегда найдется такой момент времени $t=t_{*}$, когда производная $\frac{\partial x}{\partial x_{0}}$ обратится в нуль в некоторой точке $x=x_{*}$, а значит произойдет опрокидывание волны.
45. Найти общие решения квазилинейных уравнений:
(a) $u_{t}+u u_{x}=-x$;
(б) $u_{i}+u u_{r}=-\frac{1}{r^{3}} n p u r>0$.

Решение. (а) Уравнения характеристик в расширенном пространстве $\dot{x}=u, \dot{u}=-x$ решаются $(x(t)=A \sin (t-\phi), u(t)=A \cos (t-\phi))$. Видно, что амплитуда и фаза

$$
A^{2}=u^{2}+x^{2}, \quad \phi=t-\operatorname{arctg}\left(\frac{x}{u}\right),
$$

постоянны вдоль характеристик. Поэтому решение неявно задается уравнением

$$
g\left(u^{2}+x^{2}, t-\operatorname{arctg}\left(\frac{x}{u}\right)\right)=0
$$

где $g(\xi, \eta)$ - произвольная функция. Общее решение можно переписать в ином виде ($f(\xi)$ - произвольная функция)

$$
t-\operatorname{arctg} \frac{x}{u}=f\left(u^{2}+x^{2}\right), \quad \text { или } \quad u=x \operatorname{ctg}\left(t-f\left(u^{2}+x^{2}\right)\right) .
$$

Решение. (б) Уравнения характеристик $\dot{\boldsymbol{r}}=u, \dot{u}=-\frac{1}{\Gamma^{1}}$ решаются в расширенном пространстве (вспомним задачу классической механики о свободном движении в сферических координатах с ненулевым моментом):

$$
u^{2}-\frac{1}{r^{2}}=E, \quad u r=E\left(t-t_{0}\right)
$$

где E и t_{0} постоянны вдоль характеристик. Общее решение можно выписать в неявном виде через произвольную функцию связи E и t_{0} :

$$
g\left(u^{2}-\frac{1}{r^{2}}, t-\frac{u r^{3}}{r^{2} u^{2}-1}\right)=0
$$

46. Решить задачу Коши дяя уравнения $u_{t}+u u_{x}=1 п р и и(x, 0)=$ $1-\operatorname{th} x$.

Решение. Уравнения характеристик в расширенном пространстве $\dot{x}=u, \dot{u}=1$ имеют решение $\left(u(t)=t+u_{0}, x(t)=\frac{u^{2}(t)}{2}+x_{0}\right)$. Величины

$$
x_{0}=x-\frac{1}{2} u^{2}=\mathrm{const}, \quad u_{0}=u-t=\mathrm{const}
$$

постоянны вдоль характеристик. Уравнение $g\left(u-t, u^{2}-2 x\right)=0$, где $g(\xi, \eta)$ - произвольная функция, неявно дает общее решение, которое можно переписать в более удобном виде

$$
u^{2}(x, t)=2 x+f(u(x, t)-t)
$$

где $f(\xi)$ - произвольная функция. Подставляя граничные условия в рещение, получаем уравнение на функцию f :

$$
u(x, 0)=\sqrt{2 x+f(u)}=1-\operatorname{th} x
$$

откуда

$$
f(u)=u^{2}-2 x=u^{2}-2 \operatorname{arth}(1-u) .
$$

В результате решение задачи Коши получается неявным:

$$
u^{2}(x, t)=2 x+(u(x, t)-t)^{2}-2 \operatorname{arth}(1-u(x, t)+t) .
$$

Его можно переписать в более простом виде

$$
u(x, t)=1+t-\operatorname{th}\left(x-t u(x, t)+\frac{t^{2}}{2}\right) .
$$

47. Найти характеристики системы, соотношения на них и выписать общее решение:
(a) $\left\{\begin{array}{l}u_{x}+v_{x}+u_{y}-3 v_{y}=0, \\ u_{z}+v_{z}-3 u_{y}+v_{y}=0 .\end{array}\right.$

$$
\left\{\begin{array}{l}
(x-1) u_{t}-(x+1) v_{t}+u_{x}=0 \tag{б}\\
(x+1) u_{t}-(x-1) v_{t}-v_{x}=0
\end{array}\right.
$$

Решение. (а) Перепишем систему в матричном виде

$$
A\binom{u_{x}}{v_{x}}+B\binom{u_{y}}{v_{y}}=0
$$

где матрицы имеют вид

$$
A=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right), \quad B=\left(\begin{array}{rr}
1 & -3 \\
-3 & 1
\end{array}\right) .
$$

Матрица \boldsymbol{A} вырождена, а матрица B - нет. Умножим систему слева на B^{-1}. Для этого умножим первое уравнение на 3 и прибавим ко вто-

рому, а также умножим второе уравнение на 3 и прибавим к первому. Получившиеся уравнения поделим на -8 :

$$
E\binom{u_{y}}{v_{y}}+C\binom{u_{x}}{v_{z}}=0, \quad C=B^{-1} A=\frac{-1}{2}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) .
$$

Уравнения на характеристики определяются из (2.10), которое перепишем в виде

$$
|E d x-C d y|=0
$$

Откуда $\frac{d x}{d y}=\lambda_{ \pm}$, где $\lambda_{-}=0, \lambda_{+}=-1-$ собственные числа матрицы C. Значит, семейства характеристик задаются уравнениями $x=c_{1}$ и $x+y=c_{2}$. Так как матрица C симметрична, не зависит от переменных, и ее собственные числа различны, ее можно диагонализовать $C \rightarrow T^{-1} C T$, сделав подстановку

$$
\binom{u}{v}=T\binom{f}{g}, \quad T=\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right),
$$

где T - матрица составленная из собственных нормированных векторов матрицы C, записанных в виде столбцов. В результате система принимает канонический вид

$$
\left\{\begin{array}{l}
f_{y}=0 \\
g_{z}-g_{y}=0
\end{array}\right.
$$

Уравнения на функции f и g расцепляются. Откуда $f=f(x), g=g(x+y)$ есть общее решение, где $f(x), g(z)$ - произвольные функции. (Фактически мы получили, что $f=$ const является соотношением на характеристике $x=c_{1}$, а $g=$ const на характеристике $x+y=c_{2}$.) Выражая u и v через f и g получаем

$$
\begin{aligned}
& u(x, y)=\left(\frac{1}{\sqrt{2}}\right)(f(x)+g(x+y)) \\
& v(x, y)=\left(\frac{1}{\sqrt{2}}\right)(-f(x)+g(x+y))
\end{aligned}
$$

Замечание. Этот способ - диагонализации - можно применять, даже если матрица C зависит от переменных, главное, чтобы от переменных не зависела диагонализующая матрица T.

Решенне. (б) Перепишем систему в матричном виде

$$
A\binom{u_{i}}{v_{t}}+B\binom{u_{x}}{v_{x}}=0, \quad A=\left(\begin{array}{rr}
x-1 & -x-1 \\
x+1 & 1-x
\end{array}\right), \quad B=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

Уравнения на характеристики определяются из (2.10), которое перепишем в виде

$$
|A d x-B d t|=0 .
$$

Откуда $\frac{d x}{d t}=-\frac{1}{2}$ для одного и $\frac{d x}{d t}=\frac{1}{2} x$ для другого семейства характеристик. Решая эти уравнения, получаем, что два семейства характеристик задаются уравнениями $2 x+t=c_{1}, x^{2}-t=c_{2}$. Формула (2.11) позволяет найти соотношения на характернстиках. Подставляя в нее $2 d x+d t=0$, получаем, что $d v+d u=0$ вдоль характеристик $2 x+t=c_{1}$. Значит, $v+u=f_{1}(2 x+t)$, где $f_{1}-$ произвольная функция. Аналогично вдоль второго семейства характеристик $x^{2}-t=c_{2}$ остается константой выражение $u-v=f_{2}\left(x^{2}-t\right)$, где $f_{2}-$ другая произвольная функция. Обшее решение получается из соотношений на характеристиках:

$$
\begin{aligned}
& u(x, t)=\frac{1}{2}\left(f_{1}(2 x+t)+f_{2}\left(x^{2}-t\right)\right) \\
& v(x, t)=\frac{1}{2}\left(f_{1}(2 x+t)-f_{2}\left(x^{2}-t\right)\right)
\end{aligned}
$$

48. Найти условие гипербаличности, характермстики и соотноиения на характеристиках системы

$$
\left\{\begin{array}{l}
u_{t}+a u_{x}+b v_{x}=0, \\
v_{t}+c u_{x}+d v_{x}=0,
\end{array}\right.
$$

где a, b, c, d - константьь.
Решение. Перепишем систему в матричном виде

$$
E\binom{u_{t}}{v_{t}}+A\binom{u_{x}}{v_{x}}=0, \quad A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) .
$$

Формула (2.10) позволяет найти уравнения характеристик

$$
|E d x-A d t|=0, \quad \dot{x}=\lambda_{ \pm}=\frac{a+d}{2} \pm \frac{1}{2} \sqrt{(a-d)^{2}+4 b c} .
$$

Система является гиперболической, если подкоренное выражение больше нуля:

$$
D=(a-d)^{2}+4 b c>0 .
$$

Если $D=0$, то система параболического типа и два семейства характеристик вырождаются в одно, если же $D<0$, то система имеет эллиптический тип и характеристик не существует. Соотношения на характеристиках в гиперболическом случае определяются формулой (2.11). Два из возможных представлений интегралов имеют вид

$$
v b+u\left(a-\lambda_{\mp}\right)=\text { const или } u c+v\left(d-\lambda_{F}\right)=\text { const } .
$$

49. Найти инварианты Римана (2.14) для палитропного газа, у которого давление и плотность связаны степенной зависимостью $p^{-\gamma}=$ const.

Решение. В политропном газе ($\boldsymbol{p} \rho^{-\gamma}=$ const) скорость звука не зависит от скорости среды

$$
c(\rho)^{2}=\frac{d p}{d \rho}=\gamma \frac{p}{\rho} .
$$

Вычисляя интеграл в выражении (2.14), получаем для инвариантов Римана

$$
\begin{equation*}
J_{ \pm}=v \pm \frac{2}{\gamma-1}\left(c(\rho)-c_{0}\right), \quad \gamma>1 \tag{2.25}
\end{equation*}
$$

где c_{0} - константа интегрирования, которую удобно положить равной скорости звука при $v=0, \rho=\rho_{0}$ в покоящемся газе.
50. Найти условия, при которых решение уравнений одномерной газодинамики (2.12) оказывается таким, что скорость v зависит от x, t только в єиде функции $\rho: v(x, t)=v(\rho(x, t))$. Такое решение называется простой волной Римана.

Решение. Выражая в уравнениях (2.12) частные производные от v как производные от сложной функции, получим систему из двух дифференциальных уравнений на одну функцию ρ :

$$
\begin{array}{r}
\frac{\partial \rho}{\partial t}+\left(v+\rho \frac{\partial v}{\partial \rho}\right) \frac{\partial \rho}{\partial x}=0 \\
\frac{\partial v}{\partial \rho} \frac{\partial \rho}{\partial t}+\left(v \frac{\partial v}{\partial \rho}+\frac{c^{2}}{\rho}\right) \frac{\partial \rho}{\partial x}=0 . \tag{2.26}
\end{array}
$$

Она имеет нетривиальные решения, если матрица из коэффициентов при частных производных от ρ имеет нулевой определитель, что приводит K условию

$$
\left(\frac{\partial v}{\partial \rho}\right)^{2}=\frac{c^{2}}{\rho^{2}}
$$

Извлекая квадратный корень и интегрируя, видим, что должно выполниться одно из равенств

$$
v+\int \frac{c(\rho)}{\rho} d \rho=\text { const, } \quad v-\int \frac{c(\rho)}{\rho} d \rho=\text { const }
$$

Таким образом, оказывается, что простая волна Римана возможна, только если в начальный момент времени $v(x, 0)$ и $\rho(x, 0)$ согласованы так, что один из инвариантов Римана имеет одинаковое значение для всех точек течения.
51. Пусть в газе задано начальное распределение плотности $\rho(x, 0)=$ $\boldsymbol{R}(x)$ и известно, что возникшее течение представляет собой простую волну Римана с заданным значением инварианта I_{+}. Найти решение $\rho(x, t)$.

Решение. В случае простой волны Римана уравнения в системе (2.26) эквивалентны, и для описания течения можно выбрать любое из них. Учитывая, что

$$
v=I_{+}-\int \frac{c(\rho)}{\rho} d \rho
$$

преобразуем первое из них к виду

$$
\frac{\partial \rho}{\partial t}+\left(I_{+}-\int \frac{c(\rho)}{\rho} d \rho-c(\rho)\right) \frac{\partial \rho}{\partial x}=0
$$

Это квазилинейное уравнение решается методом характеристик. Ero решение получается неявным:

$$
\rho=R\left[x-\left(I_{+}+\int \frac{c(\rho)}{\rho} d \rho-c(\rho)\right) t\right]
$$

52. Справа от пориня при $x>0$ находится палитропный газ (рис. 2.6). Поршень движется с ускорением а. Найти скорость газа $v(x, t)$ до момента образования ударной волны при $a>0$.

Рис. 2.6. Поршень в трубке с га30M

Решение. Пусть $a>0$. В этом случае на плоскости x, t (рис.2.7) газ находится в области, ограниченной с одной стороны полуосью $t=0, x>0$, на которой граничные условия имеют вид

$$
v(x, 0)=0, \quad \rho(x, 0)=\rho_{0} .
$$

Значит, вдоль характеристик, пересекающих эту границу, инварианты Римана (2.25) $J_{ \pm}=0$. Уравнения характеристик (2.13) в области, где оба инварианта равны нулю, становятся тривиальными и интегрируются

$$
x_{+}=c_{0} t+x_{0}, \quad x_{-}=-c_{0} t+x_{1}, \quad x_{0}, x_{1}>0 .
$$

Отсюда видно, что эта область ограничена прямой $x=c_{0} t$, она обозначена на рис. 2.7 цифрой I, а решение в ней имеет вид

$$
v(x, t)=0, \quad \rho(x, t)=\rho_{0} .
$$

Рис.2.7. Семейство характеристик $\dot{\boldsymbol{x}}=$ $c(\rho)+v$ (пунктир) для задачи о политропном газе перед равноускоренном поршнем: $\gamma=3, a=1, c_{0}=1$. I покояшийся газ; II - движушийся газ. Слева область II ограничена положением поршня $x(t)=\frac{a t^{2}}{2}$, а справа - фронтом возмущения $x(t)=c_{0} t$ (сплошные линии). Точка $t^{*}=0,5 \frac{c_{a}}{a}, x^{*}=0,5-$ время и координата опрокидывания волны

Характеристики x_{-}пересекают прямую $x=c_{0} t$ и переносят инвариант $J_{-}(x, t)=0$ с границы $(t=0)$ в область $x<c_{0} t$. Значит, во всей области II на рис. 2.7 выполняются соотношения

$$
\begin{gathered}
J_{-}(x, t)=v(x, t)-\frac{2}{\gamma-1}\left(c(\rho(x, t))-c_{0}\right)=0 \\
c(\rho(x, t))=c_{0}+\frac{\gamma-1}{2} v(x, t)
\end{gathered}
$$

Откуда

$$
J_{+}(x, t)=v(x, t)+\frac{2}{\gamma-1}\left(c(\rho(x, t))-c_{0}\right)=2 v(x, t),
$$

а $v=\frac{J_{+}}{2}$ удовлетворяет квазилинейному уравнению

$$
\frac{\partial v}{\partial t}=-(v+c(\rho)) \frac{\partial v}{\partial x}=-\left(c_{0}+\frac{\gamma+1}{2} v(x, t)\right) \frac{\partial v}{\partial x}
$$

общее решение которого имеет вид

$$
\begin{equation*}
f(v(x, t))=x-\left(c_{0}+\frac{\gamma+1}{2} v(x, t)\right) t \tag{2.27}
\end{equation*}
$$

где f - произвольная функиия.
С другой стороны газ ограничен поршнем $x=\frac{a t^{2}}{2}$, граничные условия на котором имеют вид $v\left(\frac{a t^{2}}{2}, t\right)=a t, x=\frac{v^{2}}{2 a}$. Подставляя их в обшее решение (2.27)

$$
f(a t)=\frac{a t^{2}}{2}-\left(c_{0}+\frac{\gamma+1}{2} a t\right) t, \quad f(v)=-\left(c_{0}+\frac{\gamma v}{2}\right) \frac{v}{a}
$$

получаем решение задачи Коши в области II

$$
\begin{gathered}
x=\left(c_{0}+\frac{\gamma+1}{2} v(x, t)\right) t-\frac{\gamma v^{2}(x, t)}{2 a}-\frac{c_{0} v(x, t)}{a}, \\
v(x, t)=\frac{(\gamma+1) a t-2 c_{0}}{2 \gamma}+\sqrt{\left(\frac{(\gamma-1) a t+2 c_{0}}{2 \gamma}\right)^{2}-\frac{2 a}{\gamma}\left(x-\frac{a t^{2}}{2}\right)}
\end{gathered}
$$

где знак плюс перед корнем выбран в силу граничного условия $v=a t$ при $x=\frac{a t^{2}}{2}$. Распределение плотности $\rho(x, t)$ находится из уравнения $J_{-}=0$.

Момент образования ударной волны можно найти, дифференцируя полученное решение

$$
\frac{d v}{d x} \rightarrow \infty \quad \text { при } \quad v^{*}=-\frac{c_{0}}{\gamma}+\frac{a(\gamma+1) t}{2 \gamma} .
$$

Поскольку скорость газа в нашем случае положительна, а v^{*} становится больше нуля только при $t>t^{*}=\frac{2 r_{\mathrm{o}}(\gamma+1)}{a}$, то t^{*} есть момент образования

ударной волны, при этом $v^{*}=0$. Из решения видно, что ударная волна образуется в точке $x^{*}=c_{0} t^{*}$, т. е. на фронте распространения возмущения.

При $a<0$ характеристики на плоскости x, t выглядят по другому. Однако снова существует область невозмушенного газа, а в области, где газ движется, применимы полученные формулы, в которых a надо заменить на $-|a|$. Попробуйте сами нарисовать графики характеристик и решение $v(x)$ при фиксированном t. Покажите, что в момент времени $t^{*}=\frac{2 c_{e}}{|a|(\gamma-1)}$ плотность газа вблизи поршня обращается в нуль, а при $t>t^{*}$ газ отсутствует в области $x<x^{*}=\frac{2 c_{0}^{2}(\gamma-1)^{2}}{|a|}-\frac{2 c_{0} t}{(\gamma-1)}$ справа от поршня.

53. Найти общее решение системы уравнений

$$
\left\{\begin{array}{l}
u_{i}-u_{x}=u v \\
v_{t}+v_{x}=-u v
\end{array}\right.
$$

Решенне. Сделаем замену переменных $\xi=\boldsymbol{x}+\boldsymbol{t}, \eta=\boldsymbol{x}-\boldsymbol{t}$, в которых система уравнений принимает вид

$$
\left\{\begin{array}{l}
u_{\eta}=-\frac{u v}{2} \\
v_{\xi}=-\frac{u v}{2}
\end{array}\right.
$$

Поскольку $u_{\eta}=v_{\xi}$, можно сделать подстановку $u=f_{\xi}, v=f_{\eta}$ и перейти от системы двух уравнений первого порядка к одному уравнению второго порядка:

$$
f_{\eta, \xi}=-\frac{f_{\eta} f_{\xi}}{2}
$$

Разделив это уравнение на f_{ξ} и интегрируя его по η, получаем

$$
\ln \left(f_{\xi}\right)=-\frac{f}{2}+\ln \left(\frac{d G(\xi)}{d \xi}\right),
$$

где $G(\xi)$ - произвольная функция. Интегрируя это уравнение по ξ, получаем

$$
2 \exp \left(\frac{1}{2} f(\xi, \eta)\right)=G(\xi)+H(\eta)
$$

где $H(\eta)$ - произвольная функция. Откуда

$$
f=2 \ln \left(\frac{G+H}{2}\right), \quad u(\xi, \eta)=2 \frac{G^{\prime}(\xi)}{G(\xi)+H(\eta)}, \quad v(\xi, \eta)=2 \frac{H^{\prime}(\eta)}{G(\xi)+H(\eta)} .
$$

54. Найти характеристические нормали для систем с четырьмя переменными:
(a) уравнений Дирака

$$
\frac{1}{c} \widehat{I} \frac{\partial \psi}{\partial t}+\widehat{\alpha}_{1} \frac{\partial \psi}{\partial x}+\widehat{\alpha}_{2} \frac{\partial \psi}{\partial y}+\widehat{\alpha}_{3} \frac{\partial \psi}{\partial z}+i \widehat{\beta} m \psi=0
$$

где \widehat{I} - единичная матрица,

$$
\begin{array}{ll}
\widehat{\alpha}_{1}=\left(\begin{array}{rrrr}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right), & \widehat{\alpha}_{2}=\left(\begin{array}{rrrr}
0 & 0 & 0 & -i \\
0 & 0 & i & 0 \\
0 & -i & 0 & 0 \\
i & 0 & 0 & 0
\end{array}\right), \\
\widehat{\alpha}_{3}=\left(\begin{array}{rrrr}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 \\
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right), & \widehat{\rho}=\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right) ;
\end{array}
$$

(б) уравнений Максвелла

$$
\left\{\begin{array}{l}
\frac{1}{c} \frac{\partial H_{1}}{\partial t}+\frac{\partial E_{3}}{\partial y}-\frac{\partial E_{2}}{\partial z}=0 \\
\frac{1}{c} \frac{\partial H_{2}}{\partial t}+\frac{\partial E_{1}}{\partial z}-\frac{\partial E_{3}}{\partial x}=0 \\
\frac{1}{c} \frac{\partial H_{3}}{\partial t}+\frac{\partial E_{2}}{\partial x}-\frac{\partial E_{1}}{\partial y}=0 \\
\frac{1}{c} \frac{\partial E_{1}}{\partial t}-\frac{\partial H_{3}}{\partial y}+\frac{\partial H_{2}}{\partial z}=0 \\
\frac{1}{c} \frac{\partial E_{2}}{\partial t}-\frac{\partial H_{1}}{\partial z}+\frac{\partial H_{3}}{\partial x}=0 \\
\frac{1}{c} \frac{\partial E_{3}}{\partial t}-\frac{\partial H_{2}}{\partial x}+\frac{\partial H_{1}}{\partial y}=0
\end{array}\right.
$$

Решенне. (а) Характеристические нормали $\xi_{\mu}=\frac{\partial \phi}{\partial x_{\mu}}$ задаются формулой (2.17)

$$
\left|\frac{1}{c} \widehat{I} \phi_{t}+\widehat{\alpha}_{1} \phi_{z}+\widehat{\alpha}_{2} \phi_{y}+\widehat{\alpha}_{3} \phi_{z}\right|=\left|\begin{array}{cc}
\widehat{I} \phi_{t} & \widehat{Q} \tag{2.28}\\
\widehat{Q} & \widehat{I} \frac{\phi_{t}}{c}
\end{array}\right|=0
$$

где \widehat{I} - единичная матрица, а

$$
\widehat{Q}=\sigma_{1} \phi_{z}+\sigma_{2} \phi_{y}+\sigma_{3} \phi_{z}
$$

- матрицы Паули. Пользуясь равенством (1.13) из задачи 2 , уравнение (2.28) можно упростить

$$
\left|\hat{I} \frac{\phi_{i}^{2}}{c^{2}}-\widehat{Q}^{2}\right|=0 .
$$

Поскольку $\widehat{Q}^{2}=\widehat{I}\left(\phi_{x}^{2}+\phi_{y}^{2}+\phi_{z}^{2}\right)$, получаем уравнение $\left(\frac{\phi_{1}^{2}}{c^{2}}-\phi_{x}^{2}-\right.$ $\left.\phi_{y}^{2}-\phi_{z}^{2}\right)^{2}=0$, решая которые, получаем, что характеристические нормали для уравнения Дирака в четырехмерном пространстве имеют вид $\left(\phi_{t}, \phi_{x}, \phi_{y}, \phi_{z}\right)$, где $\phi_{t}= \pm c \sqrt{\phi_{x}^{2}+\phi_{y}^{2}+\phi_{z}^{2}}$.

Решение. (б) Перепишем систему уравнений Максвелла в матричном ниде

$$
\frac{1}{c} \widehat{I}\binom{\boldsymbol{H}_{t}}{\boldsymbol{E}_{\boldsymbol{t}}}+\hat{\boldsymbol{A}}_{1}\binom{\boldsymbol{H}_{\boldsymbol{x}}}{\boldsymbol{E}_{\boldsymbol{x}}}+\hat{\boldsymbol{A}}_{2}\binom{\boldsymbol{H}_{y}}{\boldsymbol{E}_{y}}+\overline{\boldsymbol{A}}_{3}\binom{\boldsymbol{H}_{z}}{\boldsymbol{E}_{z}}=\mathbf{0},
$$

где \widehat{I} - единичная матрица, а

$$
\begin{array}{ll}
\widehat{A}_{i}=\left(\begin{array}{rr}
0 & \widehat{L}_{i} \\
-\widehat{L}_{i} & 0
\end{array}\right), & \widehat{L}_{1}=\left(\begin{array}{rrr}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right), \\
\widehat{L}_{2}=\left(\begin{array}{lll}
0 & 0 & -1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right), & \widehat{L}_{3}=\left(\begin{array}{rrr}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
\end{array}
$$

Характеристические нормали $\xi_{\mu}=\frac{\partial \phi}{\partial x_{\mu}}$ задаются формулой (2.17):

$$
\left|\frac{1}{c} \widehat{I} \phi_{t}+\widehat{A}_{1} \phi_{x}+\widehat{A}_{2} \phi_{y}+\widehat{A}_{3} \phi_{z}\right|=\left|\begin{array}{cc}
\widehat{I} \frac{\phi_{t}}{c} & \widehat{Q} \tag{2.29}\\
-\widehat{Q} & \widehat{I} \frac{\phi_{t}}{c}
\end{array}\right|=0,
$$

где $\widehat{Q}=\widehat{L}_{1} \phi_{x}+\widehat{L}_{2} \phi_{y}+\widehat{L}_{3} \phi_{z}$. Пользуясь формулой (L.13), перепишем этот определитель в виде

$$
\left|\widehat{I} \frac{\phi_{i}^{2}}{c^{2}}+\widehat{Q}^{2}\right|=0 .
$$

Определитель получившейся матрицы третьего порядка равен ($\frac{\phi_{1}^{2}}{\boldsymbol{c}^{2}}-\phi_{x}^{2}-$ $\left.\phi_{y}^{2}-\phi_{z}^{2}\right)^{2} \frac{\phi_{1}^{2}}{c^{2}}=0$. Характеристические нормали определяются векторами $\left(0, \phi_{x}, \phi_{y}, \phi_{z}\right)$ и $\left(\pm c \sqrt{\phi_{x}^{2}+\phi_{y}^{2}+\phi_{z}^{2}}, \phi_{x}, \phi_{y}, \phi_{z}\right)$.

2.5. Задачи

55. Для каких начальных условий $u(x, 0)=f(x)$ решение уравнения Хопфа остается глалким, т.е. $\left|\boldsymbol{u}_{\boldsymbol{x}}\right|<\infty$ при $t>0$.
56. Найти общее решение уравнения:

$$
u_{i}+u_{x}=u .
$$

57. Найти характеристики системы, соотношения на них и выписать общее решение:

$$
\left\{\begin{array}{l}
u_{t}+v_{t}-\frac{x}{t}\left(u_{x}+v_{x}\right)=0, \\
u_{t}-v_{t}+t\left(u_{x}-v_{x}\right)=0 .
\end{array}\right.
$$

58. Описать растекание тонкого слоя идеальной жидкости после поднятия заслонки. Проиесс описывается следующей системой уравнений:

$$
\frac{\partial h}{\partial t}+\frac{\partial}{\partial x}(h v)=0, \quad \frac{\partial v}{\partial t}+v \frac{\partial v}{\partial x}(h v)=-g \frac{\partial h}{\partial x},
$$

здесь h - толщина слоя, v - горизонтально направленная скорость жидкости, которая считается одинаковой по вертикальному сечению, g - ускорение свободного падения. Начальная толщина h_{0}.

2.6. Ответы

55. При $\frac{d f(x)}{d x}>0$.
56. $u(x, t)=g(x-t) \cdot e^{x}$.
57. Уравнения на характеристики

$$
\frac{d x}{d t}=t \quad \text { и } \quad \frac{d x}{d t}=-\frac{x}{t} .
$$

Соотношения на них

$$
d(u-v)=0 \quad \text { и } \quad d(u+v)=0 .
$$

Общее решение

$$
\left\{\begin{array}{l}
u=f(x t)-g\left(x-\frac{t^{2}}{2}\right) \\
v=f(x t)+g\left(x-\frac{t^{2}}{2}\right)
\end{array}\right.
$$

где f и g - произвольные функции.
58. $h(x, t)= \begin{cases}0, & x<-2 \sqrt{g h_{0}} t ; \\ \frac{1}{9 g}\left(\frac{x}{t}+2 \sqrt{g h_{0}}\right), & -2 \sqrt{g h_{0}} t<x<\sqrt{g h_{0}} t ; \\ h_{0}, & x>\sqrt{g h_{0}} t ;\end{cases}$

$$
v(x, t)= \begin{cases}\frac{2}{3}\left(\frac{x}{t}-\sqrt{g h_{0}}\right), & -2 \sqrt{g h_{0}} t<x<\sqrt{g h_{0}} t \\ 0, & x>\sqrt{g h_{0}} t .\end{cases}
$$

Глава 3

Линейные уравнения

в частных производных

второго порядка

3.1. Канонический вид

Наиболее общее линейное уравнение в частных производных второго порядка с двумя независимыми переменными имеет вид

$$
\begin{equation*}
a_{11} u_{x x}+2 a_{12} u_{x y}+a_{22} u_{y y}+b_{1} u_{x}+b_{2} u_{y}+c u+f=0 . \tag{3.1}
\end{equation*}
$$

Здесь все коэффициенты зависят только от \boldsymbol{x} и \boldsymbol{y}.
Обратимым преобразованием переменных уравнение может быть упрощено. Тип уравнения и его канонический вид определяются знаком дискриминанта

$$
D=a_{12}^{2}-a_{11} a_{22}
$$

Замена переменных, приводящая к каноническому виду, выполняется с помошью решения уравнений на характеристики:

$$
\begin{align*}
& \frac{d y}{d x}=\frac{a_{12}+\sqrt{D}}{a_{11}} ; \tag{3.2}\\
& \frac{d y}{d x}=\frac{a_{12}-\sqrt{D}}{a_{11}} . \tag{3.3}
\end{align*}
$$

Уравнения (3.2) и (3.3) имеют в общем случае различающиеся интегралы

$$
\begin{equation*}
\psi_{+}(x, y)=\text { const }, \quad \psi_{-}(x, y)=\text { const } . \tag{3.4}
\end{equation*}
$$

При $D>0$ уравнение (3.1) называется гиперболическим. В новых переменных

$$
\xi=\psi_{+}(x, y), \quad \eta=\psi_{-}(x, y)
$$

оно приводится к первому каноническому виду

$$
\begin{equation*}
u_{\xi \eta}+b_{1} u_{\xi}+b_{2} u_{\eta}+c u+f=0 \tag{3.5}
\end{equation*}
$$

Обозначения коэффициентов в уравнении (3.5) оставлены те же, что и в уравнении (3.1), хотя сами коэффициенты могут измениться после замены переменных. Это замечание следует учитывать и далее. Для

уравнений гиперболического типа принят еще и второй канонический вид. Сделав в (3.5) замену

$$
\alpha=\frac{\xi+\eta}{2}, \quad \beta=\frac{\xi-\eta}{2},
$$

получим

$$
\begin{equation*}
u_{\alpha a}-u_{\beta \beta}+b_{1} u_{\alpha}+b_{2} u_{\beta}+c u+f=0 . \tag{3.6}
\end{equation*}
$$

При $D=0$ уравнение называют параболическим. Уравнения (3.2), (3.3) и их интегралы ψ_{+}и ψ_{-}в этом случае совпадают. Замена

$$
\xi=\psi_{-}(x, y), \quad \eta=\varphi(x, y),
$$

где φ - любая функция такая, что φ и ψ функционально независимы, приведет (3.1) к каноническому виду параболического типа

$$
u_{\eta \eta}+b_{1} u_{\xi}+b_{2} u_{\eta}+c u+f=0 .
$$

При $D<0$ уравнение относится к эллиптическому типу. Уравнения (3.2) и (3.3) в этом случае комплексно сопряжены, их интегралы ψ_{+} и ψ - тоже. Заменой переменных

$$
\xi=\operatorname{Re} \psi_{+}(x, y), \quad \eta=\operatorname{Im} \psi_{+}(x, y)
$$

уравнение приводится к каноническому виду эллиптического типа

$$
u_{\xi \xi}+u_{\eta \eta}+b_{1} u_{\xi}+b_{2} u_{\eta}+c u+f=0 .
$$

Для дальнейшего упрощения уравнения любого типа нужно искать решение в виде

$$
u=F(\xi, \eta) v .
$$

Такая замена не испортит канонического вида, но при этом позволит получить условия на функцию F, при которых уравнение на v не будет содержать одку или обе производные $u_{\boldsymbol{\xi}}$ и u_{η}.

Если коэффициенты в уравнении постоянны, то, подставляя

$$
F=e^{\lambda \xi+\mu \eta}
$$

и подбирая λ и μ, можно привести уравнения гиперболического, параболического и эллиптического типов соответственно \mathbf{x} виду

$$
\begin{gathered}
v_{\xi \eta}+\gamma v+f=0, \\
v_{\xi \xi}+b_{2} v_{\eta}+f=0, \\
v_{\xi \xi}+v_{\eta \eta}+\gamma v+f=0 .
\end{gathered}
$$

Если коэффициенты γ и f уравнения гиперболического типа оказались равными нулю

$$
v_{\xi \eta}=0,
$$

то его общее решение на всей плоскости (ξ, η) имеет вид

$$
v(\xi, \eta)=f_{1}(\xi)+f_{2}(\eta) .
$$

Здесь f_{1} и f_{2} - произвольные функции. Возврашаясь к исходным переменным (x, y) и функции u, получаем

$$
u(x, y)=\left[f_{1}(\xi(x, y))+f_{2}(\eta(x, y))\right] F(x, y)
$$

Частный вид функций f_{1} и f_{2} для задачи Коши может быть определен по начальным условиям, заданным на линии в плоскости (x, y).

3.2. Криволинейные системы координат

В ортогональной криволинейной системе координат в трехмерном пространстве элемент длины может быть записан в виде

$$
d s^{2}=h_{1}^{2} d q_{1}^{2}+h_{2}^{2} d q_{2}^{2}+h_{3}^{2} d q_{3}^{2} .
$$

Величины

$$
h_{i}=\sqrt{\left(\frac{\partial x}{\partial q_{i}}\right)^{2}+\left(\frac{\partial y}{\partial q_{i}}\right)^{2}+\left(\frac{\partial z}{\partial q_{i}}\right)^{2}}
$$

называются коэффициентами Ламе. Градиент, дивергенция и ротор выражаются в криволинейных координатах формулами

$$
\begin{aligned}
\operatorname{grad} \varphi & =e_{1} \frac{1}{h_{1}} \frac{\partial \varphi}{\partial q_{1}}+e_{2} \frac{1}{h_{2}} \frac{\partial \varphi}{\partial q_{2}}+e_{3} \frac{1}{h_{3}} \frac{\partial \varphi}{\partial q_{3}}, \\
\operatorname{div} a & =\frac{1}{h_{1} h_{2} h_{3}}\left(\frac{\partial\left(h_{2} h_{3} a_{1}\right)}{\partial q_{1}}+\frac{\partial\left(h_{1} h_{3} a_{2}\right)}{\partial q_{2}}+\frac{\partial\left(h_{1} h_{2} a_{3}\right)}{\partial q_{3}}\right), \\
\operatorname{rot} a & =\left|\begin{array}{ccc}
\frac{e_{1} h_{3}}{h_{2} h_{3}} & \frac{e_{2}}{h_{1} h_{3}} & \frac{e_{3}}{h_{1} h_{2}} \\
\frac{\partial}{\partial q_{1}} & \frac{\partial}{\partial q_{2}} & \frac{\partial}{\partial q_{3}} \\
h_{1} a_{1} & h_{2} a_{2} & h_{3} a_{3}
\end{array}\right| .
\end{aligned}
$$

Здесь e_{1}, e_{2}, e_{3} - локальные орты заданной системы координат.

3.3. Разделение переменных

Метод разделения переменных состоит в том, что решение граничной задачи для уравнения в частных производных ишется в виде произведения функций, каждая из которых зависит только от одной координаты*). В большом числе практически важных случаев это позволяет свести задачу к поиску решений нескольких обыкновенных дифференциальных уравнений.

[^4]Для конкретного уравнения переменные могут разделяться в одних системах координат и не разделяться в других. Например, в стационарном уравнении Шрёдингера

$$
-\frac{1}{2} \Delta \psi+U \psi=E \psi
$$

переменные разделяются в той системе координат, в которой потенциал U может быть записан в виде

$$
U=\sum_{m=1}^{3} \frac{U_{m}\left(q_{m}\right)}{h_{m}^{2}}
$$

где $\boldsymbol{h}_{\boldsymbol{m}}$ - коэффициенты Ламе.

3.4. Простейшие уравнения, решаемые методом Фурье

Простейшее уравнение гиперболического типа (так называемое одномерное волновое уравнение) имеет вид

$$
u_{t t}-c^{2} u_{x x}=0
$$

В частности, оно описывает плоские свободные незатухающие колебания струны. Мы будем пользоваться этой наглядной интерпретацией. Тогда u - отклонение струны от равновесного положения, $c^{2}=\frac{T}{\rho}-$ квадрат скорости волны, выраженный через натяжение струны T и ее линейную плотность ρ. Для этого уравнения мы будем использовать два типа граничных условий ло координате. Граничное условие $u(a, t)=0$ моделирует конец струны, зажатый в точке a. Граничное условие $u_{x}(a, t)=0$ моделирует конец струны, закрепленный на невесомом кольце, которое без трения скользит по штанге, перпендикулярной равновесному положению струны. Начальное отклонение струны и ее начальная скорость задаются условиями

$$
u(x, 0)=\varphi(x), \quad u_{t}(x, 0)=\psi(x)
$$

Простейшее уравнение параболического типа (уравнение диффузии или теплопроводности)

$$
u_{t}=a^{2} u_{x x}
$$

описывает, например, распространение тепла вдоль однородного прямого стержня, теплоизолированного по всей длине и обмениваюшегося теплом с окружаюшей средой только через его концы. В этом случае \boldsymbol{u} соответствует отклонению температуры стержня от температуры охружаюшей среды. Граничное условие $u(a, t)=0$ означает совпадение в точке a температуры стержня с температурой окружающей среды. Граничное условие $u_{x}(a, t)=0$ моделирует конец стержня, на котором нет

теплобкена с окружающей средой. Начальное распределение температуры задается условием $u(x, 0)=\varphi(x)$.

Простейшее уравнение эллиптического типа (двумерное уравнение Лапласа)

$$
u_{x z}+u_{y y}=0
$$

описывает электростатический потенциал в области или стационарное распределение температуры. Мы будем рассматривать граничные задачи двух видов: задачу Дирихле, когда на границе области задано значение u, и задачу Неймана, когда на границе задано значение производной от u по внутренней нормали. Физически задача Дирихле ставится, когда на границе задан потенциал или температура, а задача Неймана, когда задана нормальная границе компонента напряженности электрического поля или плотность теплового потока.

Методы решения дифференциальных уравнений второго порядка, основанные на приведении к каноническому виду, изложены, например, в [ТС72, Год71]. Использование криволинейных координат описано в [МФ60]. Разделение переменных и метод Фурье рассмотрены [КГС62, Арс84, Сми81].

3.5. Примеры

59. Определить тип уравнения и привести его к каноническаму виду:
(a) $u_{x z}+u_{x y}-2 u_{y y}-3 u_{x}-15 u_{y}+27 x=0$;
(б) $u_{x x}+2 u_{x y}+5 u_{y y}-32 u=0$;
(в) $u_{x x}-2 u_{x y}+u_{y y}+u_{x}+u_{y}-u=0$.

Решение. (а) Уравнение везде имеет гиперболический тип, поскольку $D=\frac{9}{4}>0$. Имеется два семейства характеристик, задаваемых уравнениями:

$$
\frac{d y}{d x}=2 \quad \text { и } \quad \frac{d y}{d x}=-1
$$

Общие решения этих уравнений имеют вид

$$
y=2 x+\xi \quad \text { и } \quad y=-x+\eta
$$

соответственно. Здесь ξ, η - произвольные постоянные. Выражая их через x и y

$$
\xi=y-2 x, \quad \eta=y+x
$$

видим, что они являются интегралами характеристических уравнений и их можно использовать в качестве характеристических переменных. Выражая производные от u по x и y через производные по ξ и η получаем канонический вид

$$
u_{\xi \eta}+u_{\xi}+2 u_{\eta}+3(\xi-\eta)=0 .
$$

Решение. (б) Уравнение всюду имеет эллиптический тип, поскольку $D=-4<0$. Комплексное уравнение на характеристики

$$
\frac{d y}{d x}=1+2 i
$$

имеет решение

$$
y=(1+2 i) x+(\xi-i \eta) .
$$

Выбирая действительную $\xi=y-x$ и мнимую $\eta=2 x$ части интеграла в качестве новых переменных, получаем канонический вид

$$
u_{\xi \xi}+u_{\eta \eta}-8 u=0 .
$$

Решение. (в) Уравнение лараболического типа. Имеется одно семейство характеристик, которые задаются уравнением

$$
\frac{d y}{d x}=-1
$$

Одна из новых переменных является его интегралом $\xi=x+y$. В качестве второй можно взять любую независимую функцию, например $\eta=\boldsymbol{x}$. При таком выборе получится канонический вид

$$
u_{\eta \eta}+2 u_{\xi}+u_{\eta}-u=0 .
$$

Напомним, что условие функциональной независимости состоит в неравенстве нулю якобиана перехода от переменных x, y к переменным ξ, η. При ином выборе переменной η канонический вид будет другим.
60. Найти области гиперболичности, параболичности и эллиптичности и привести в них к каноническому виду:
(a) Уравнение Трикоми $u_{x x}+y u_{y y}=0$;
(б) $x u_{x x}+2 x u_{x y}+(x-1) u_{y y}=0$.

Решение. (a) В этом случае тип уравнения различен в разных областях плоскости. Вычисляя дискриминант и характеристики видим, что уравнение параболическое на оси \boldsymbol{x}. Гиперболическое при $\boldsymbol{y}<0$ и имеет вид

$$
u_{\xi \eta}+\frac{1}{2(\xi-\eta)}\left(u_{\xi}-u_{\eta}\right)=0
$$

в координатах $\xi=x+2 \sqrt{-y}, \eta=x-2 \sqrt{-\bar{y}}$. Эллиптическое при $y>0$ и имеет вид

$$
u_{\xi \xi}+u_{\eta \eta}-\frac{1}{\eta} u_{\eta}=0
$$

в координатах $\xi=x, \eta=2 \sqrt{y}$.
Решение. (б) Уравнение гиперболическое при $x>0$

$$
u_{\xi \eta}+\frac{1}{2(\xi-\eta)}\left(u_{\xi}-u_{\eta}\right)=0, \quad \xi=y-x+2 \sqrt{x}, \quad \eta=y-x-2 \sqrt{x},
$$

эллиптическое при $\boldsymbol{x}<0$

$$
u_{\xi \xi}+u_{\eta \eta}-\frac{1}{\eta} u_{\eta}=0, \quad \xi=y-x, \quad \eta=2 \sqrt{-x}
$$

параболическое при $x=0$ и имеет канонический вид $u_{y y}=0$.
61. Решить задаиу Коши:

$$
u_{x x}-2 u_{x y}-3 u_{y y}=0, \quad u(x, 0)=3 x^{2}, \quad u_{y}(x, 0)=0 .
$$

Решенне. Уравнение имеет гиперболический тип и в переменных $\xi=y-x, \eta=y+3 x$ приводится к каноническому виду $u_{\xi}=0$. Его общее решение имеет вид $u=f(\xi)+g(\eta)$, где $f, g-$ произвольные функции. Чтобы определить их вид в частном случае, необходимо воспользоваться граничными условиями, которые удобно переписать в переменные ξ, η. В плоскости ξ, η граничные условия заданы на прямой $\eta=-3 \xi$, получакщейся из условия $y=0 ; x$ как функция ξ на этой прямой выражается формулой $x=\frac{\xi-\pi}{4}=\xi$. Отсюда получаем первое граничное условие в виде

$$
\begin{equation*}
\left.u\right|_{y=0}=f(\xi)+g(-3 \xi)=3 \xi^{2} \tag{3.7}
\end{equation*}
$$

Второе граничное условие имеет вид

$$
\begin{equation*}
\left.u_{y}\right|_{y=0}=f^{\prime}(\xi)+g^{\prime}(-3 \xi)=0 \tag{3.8}
\end{equation*}
$$

где штрих означает производную по аргументу функции, а в скобках стоит то его значение, при котором она вычисляется.

Дифференцируя условие (3.7) по ξ, имеем

$$
f^{\prime}(\xi)-3 g^{\prime}(-3 \xi)=6 \xi .
$$

Из уравнений (3.7), (3.8) получим

$$
f^{\prime}(\xi)=\frac{3}{2} \xi \quad \text { и } \quad f(\xi)=\frac{3}{4} \xi^{2} .
$$

Из уравнения (3.7) найдем

$$
g(-3 \xi)=\frac{9}{4} \xi^{2} .
$$

Возвращаясь к переменной $\eta=-3 \xi$, получаем

$$
g(\eta)=\frac{\eta^{2}}{4} .
$$

Искомое частное решение имеет вид

$$
u(x, y)=\frac{3}{4}(y-x)^{2}+\frac{1}{4}(y+3 x)^{2}=y^{2}+3 x^{2}
$$

62. Показать, что в сферических координатах оператор Лапласа может быть записан в виде

$$
\Delta=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)-\frac{1}{r^{2}} \hat{l}^{2},
$$

где $\hat{\boldsymbol{\imath}}$ - оператор момента импульса:

$$
\hat{l}=-i[r \times \nabla], \quad \hat{l}^{2}=-[r \times \nabla][r \times \nabla] .
$$

Решенме. Запишем векторное произведение $[r \times \nabla$] в сферических координатах, используя его представление в форме определителя:

$$
[r \times \nabla]=\left|\begin{array}{ccc}
e_{r} & e_{\theta} & e_{\varphi} \\
r & 0 & 0 \\
\frac{\partial}{\partial r} & \frac{1}{r} \frac{\partial}{\partial \theta} & \frac{1}{r \sin \theta} \frac{\partial}{\partial \varphi}
\end{array}\right|
$$

Здесь

$$
\begin{align*}
& \boldsymbol{e}_{r}=(\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta), \\
& \boldsymbol{e}_{\theta}=(\cos \theta \cos \varphi, \cos \theta \sin \varphi,-\sin \theta), \tag{3.9}\\
& \boldsymbol{e}_{\varphi}=(\sin \varphi, \cos \varphi, 0)
\end{align*}
$$

- единичные взанмно-ортогональные векгоры локального базиса, касательные линиям r, θ, φ. Раскрывая определитель, имеем

$$
\begin{equation*}
[r \times \nabla]^{2}=\left(e_{\varphi} \frac{\partial}{\partial \theta}-e_{\theta} \frac{1}{\sin \theta} \frac{\partial}{\partial \varphi}\right)\left(e_{\varphi} \frac{\partial}{\partial \theta}-e_{\theta} \frac{1}{\sin \theta} \frac{\partial}{\partial \varphi}\right) . \tag{3.10}
\end{equation*}
$$

Здесь необходимо учесть, что дифференцирования левой скобки действуют и на единичные векторы $\boldsymbol{e}_{r}, \boldsymbol{e}_{\theta}, \boldsymbol{e}_{\varphi}$ правой скобки. Из определений (3.9) получаем

$$
\begin{array}{ll}
\frac{\partial e_{\varphi}}{\partial \theta}=0, & \frac{\partial e_{\varphi}}{\partial \varphi}=\cos \theta e_{\theta}-\sin \theta e_{r}, \\
\frac{\partial e_{\theta}}{\partial \varphi}=\cos \theta e_{\varphi}, & \frac{\partial e_{\theta}}{\partial \theta}=-e_{r} . \tag{3.11}
\end{array}
$$

Раскрывая выражение (3.10) и учитывая формулы (3.11), получаем, что отличны от нуля только три слагаемых, дающих угловую часть оператора Лапласа:

$$
\left[r \times\left.\nabla\right|^{2}=\frac{\partial^{2}}{\partial \theta^{2}}+\frac{\cos \theta}{\sin \theta} \frac{\partial}{\partial \theta}+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \varphi^{2}} .\right.
$$

63. Разделить переменные в уравнении Шрёдингера, если потенииал имеет вид
(a) в цилиндрических координатах

$$
U=f(\rho)+\frac{g(\varphi)}{\rho^{2}}+h(z)
$$

(б) в сферических координатах

$$
U=f(r)+\frac{g(\theta)}{r^{2}}+\frac{h(\varphi)}{r^{2} \sin ^{2} \theta} .
$$

Решение. (а) Отыскивая решение в виде

$$
\psi(\rho, \varphi, z)=R(\rho) \Phi(\varphi) Z(z)
$$

делим уравнение Шрёдингера на $\psi(\rho, \varphi, z)$ и преобразуем его к виду

$$
\begin{aligned}
\left(-\frac{1}{2 \rho R} \frac{\partial}{\partial \rho} \rho \frac{\partial R}{\partial \rho}+f(\rho)\right) & +\left(-\frac{1}{2 \rho^{2} \Phi} \frac{\partial^{2} \Phi}{\partial \varphi^{2}}+\frac{g(\varphi)}{\rho^{2}}\right)= \\
& =\left(\frac{1}{2 Z} \frac{\partial^{2} Z}{\partial z^{2}}-h(z)\right)+E=c_{1}
\end{aligned}
$$

Ясно, что равенство возможно, только если c_{1} - постоянная величина. Аналогично, разделяя переменные ρ и φ, получаем уравнения на Φ и R :

$$
\begin{gathered}
-\frac{1}{2} \frac{d^{2} \Phi}{d \varphi^{2}}+g(\varphi) \Phi=c_{2} \Phi \\
-\frac{1}{2} \rho \frac{d}{d \rho} \rho \frac{d R}{d \rho}+f(\rho) \rho^{2} R-c_{1} \rho^{2} R=-c_{2} R
\end{gathered}
$$

где c_{2} - тоже постоянная величина.
Решение. (б) Если искать решение в виде $\psi=R(r) P(\theta) \Phi(\varphi)$, то на R, P и Φ получится система уравнении

$$
\begin{gathered}
-\frac{1}{2} \frac{d^{2} \Phi}{d \varphi^{2}}+h(\varphi) \Phi=c_{1} \Phi \\
-\frac{1}{2 \sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d P}{d \theta}\right)+g(\theta) P+\frac{c_{1} P}{\sin ^{2} \theta}=c_{2} P \\
-\frac{1}{2 r^{2}} \frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)+\frac{c_{2} R}{r^{2}}=E R
\end{gathered}
$$

где c_{1}, c_{2} - постоянные.
64. Разделить переменные в уравнении Шрёдингера для пространственного осииілятора с потенциалом вида

$$
U=\frac{k r^{2}}{2}
$$

(a) в декартовых координатах;
(б) в сферических координатах.

Решение. (а) Если искать решение в виде $\psi(x, y, z)=X(x) Y(y) Z(z)$, то уравнение разделяется на три уравнения для одномерного гармонического осциллятора:

$$
\begin{gathered}
\frac{d^{2}}{d x^{2}} X+k x^{2} X=c_{1} X \\
\frac{d^{2}}{d y^{2}} Y+k y^{2} Y=c_{2} Y, \\
\frac{d^{2}}{d z^{2}} Z+k z^{2} Z=\left(2 E-c_{1}-c_{2}\right) Z
\end{gathered}
$$

Решение. (б) Если искать решение в виде

$$
\psi(r, \theta, \varphi)=R(r) P(\theta) \Phi(\varphi)
$$

то для R, P, Φ получим уравнения

$$
\begin{gathered}
\frac{d^{2} \Phi}{d \varphi^{2}}+c_{2} \Phi=0 \\
\sin \theta \frac{d}{d \theta}\left(\sin \theta \frac{d P}{d \theta}\right)-\left(c_{1} \sin ^{2} \theta+c_{2}\right) P=0 \\
\frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)+\left(2 E r^{2}+c_{1}-k r^{4}\right) R=0
\end{gathered}
$$

65. Разделить переменнве є уравнении Шрёдингера, используя параболические координаты, если поле представляет собой суперпозицию однородного и кулоновского полей:

$$
U=-\frac{1}{r}+a z
$$

Решение. Уравнение Шрёдингера в параболических координатах имеет вид (см. задачу (в))

$$
\frac{4}{\xi+\eta}\left[\frac{\partial}{\partial \xi}\left(\xi \frac{\partial \psi}{\partial \xi}\right)+\frac{\partial}{\partial \eta}\left(\eta \frac{\partial \psi}{\partial \eta}\right)\right]+\frac{1}{\xi \eta} \frac{\partial^{2}}{\partial \varphi^{2}}+2\left[E+\frac{2}{\xi+\eta}-\frac{a}{2}(\xi-\eta)\right]=0 .
$$

Отыскивая решение в виде

$$
\psi=f_{1}(\xi) f_{2}(\eta) \Phi(\varphi)
$$

получаем уравнения

$$
\begin{gathered}
\frac{d^{2} \Phi}{d \varphi^{2}}+c_{1} \Phi=0 \\
\frac{d}{d \xi}\left(\xi \frac{d f_{1}}{d \xi}\right)+\left(\frac{E}{2} \xi-\frac{c_{1}}{4 \xi}-a \frac{\xi^{2}}{4}+\frac{1}{2}+c_{2}\right) f_{1}=0 \\
\frac{d}{d \eta}\left(\eta \frac{d f_{2}}{d \eta}\right)+\left(\frac{E}{2} \eta-\frac{c_{1}}{4 \eta}+a \frac{\eta^{2}}{4}+\frac{1}{2}-c_{2}\right) f_{2}=0
\end{gathered}
$$

66. Найти выражение для оператора Лапласа в криволинейной неортогональной системе координат.

Решение. Задача на собственные значения оператора Лапласа $\Delta \psi=$ $\lambda \psi$ с нулевыми граничными условиями на бесконечности эквивалентна вариационному принципу $S[\psi]=\min$ для функционала

$$
S[\psi]=\int\left[(\nabla \psi)^{2}+\lambda \psi^{2}\right] d^{n} x
$$

Произведем невырожденное преобразование координат, т. е. перейдем от переменных x к новым переменным $y: x_{i}=x_{i}\left(y_{1}, \ldots, y_{n}\right), i=$ $1,2, \ldots, n$. Под невырожденностью понимается отличие от нуля якобиана преобразования:

$$
J=\frac{\partial\left(x_{1}, x_{2}, \ldots, x_{n}\right)}{\partial\left(y_{1}, y_{2}, \ldots, y_{n}\right)} \neq 0 .
$$

Квадрат длины интервала и квадрат градиента преобразуются следующим образом:

$$
d s^{2}=d x_{i} d x_{i}=\frac{\partial x_{i}}{\partial y_{j}} \frac{\partial x_{i}}{\partial y_{k}} d y_{j} d y_{k}, \quad(\nabla \psi)^{2}=\frac{\partial y_{j}}{\partial x_{k}} \frac{\partial y_{l}}{\partial x_{k}} \frac{\partial \psi}{\partial y_{j}} \frac{\partial \psi}{\partial y_{l}} .
$$

Поскольку, с другой стороны, по определению метрического тензора $d s^{2}=g_{j k} d y_{j} d y_{k}$, мы можем выразить метрический тензор $g_{j k}$ через частные производные функций x_{i},

$$
g_{j k}=\frac{\partial x_{i}}{\partial y_{j}} \frac{\partial x_{i}}{\partial y_{k}}
$$

Значит, квадрат градиента функции ψ можно записать через тензор, обратный метрическому:

$$
(\nabla \psi)^{2}=g_{j l}^{-1} \frac{\partial \psi}{\partial y_{j}} \frac{\partial \psi}{\partial y_{i}},
$$

а определитель метрического тензора равен

$$
g=\operatorname{det}\left(g_{j k}\right)=|J|^{2}
$$

В новой системе координат функционал запишется как

$$
S=\int\left(g_{i k}^{-1} \frac{\partial \psi}{\partial y_{i}} \frac{\partial \psi}{\partial y_{k}}+\lambda \psi^{2}\right) \sqrt{g} d^{n} y
$$

Остается его проварьировать, считая, что вариация функции ψ обрашается в нуль на бесконечности, и приравнять вариацию нулю:

$$
\delta S=2 \int \delta \psi\left[-\frac{1}{\sqrt{g}} \frac{\partial}{\partial y_{i}}\left(g_{i k}^{-1} \sqrt{g} \frac{\partial \psi}{\partial y_{k}}\right)+\lambda \psi\right] \sqrt{g} d^{n} y=0 .
$$

При выводе последнего равенства мы проинтегрировали по частям, а внеинтегральный член обратился в нуль из-за граничных условий. В силу

произвольности вариации $\delta \psi(x)$ должно обращаться в нуль выражение в квадратных скобках. Отсюда получается формула для лапласиана

$$
\Delta=\frac{1}{\sqrt{g}} \frac{\partial}{\partial y_{i}} g_{i k}^{-1} \sqrt{g} \frac{\partial}{\partial y_{k}} .
$$

67. Решить граничкую задачу

$$
\begin{gathered}
u_{u t}-c^{2} u_{x x}=0 \\
0 \leqslant x \leqslant L, \quad u(0, t)=u(L, t)=0, \quad u(x, 0)=\varphi(x), \quad u_{t}(x, 0)=\psi(x) .
\end{gathered}
$$

Рассмотреть частный случай

$$
u(x, 0)=0, \quad u_{t}(x, 0)=\sin \frac{2 \pi x}{L}
$$

Решение. Решение задачи методом Фурье распадается на два этапа.
Вначале находим частные решения, для которых выполняются только граничные условия по координате x. Отыскивая $u(x, t)$ в виде

$$
u(x, t)=X(x) T(t)
$$

и разделяя переменные, имеем

$$
\begin{equation*}
\frac{X^{\prime \prime}(x)}{X(x)}=\frac{T^{\prime \prime}(t)}{c^{2} T(t)}=-\lambda \tag{3.12}
\end{equation*}
$$

где $\boldsymbol{\lambda}$ - произвольная постоянная. Общее решение уравнения

$$
\begin{equation*}
\frac{X^{\prime \prime}(x)}{X(x)}+\lambda=0 \tag{3.13}
\end{equation*}
$$

при $\lambda>0$ имеет вид

$$
X=A \cos \sqrt{\lambda} x+B \sin \sqrt{\lambda} x
$$

Потребуем, чтобы для $X(x)$ выполнялись те же граничные условия, что и на решение задачи $u(x, t)$:

$$
\begin{equation*}
X(0)=X(L)=0 \tag{3.14}
\end{equation*}
$$

Это возможно, если

$$
A=0 \quad \text { и } \quad \sqrt{\lambda} L=n \pi, \quad n=1,2, \ldots .
$$

Отсюда получаем спектр допустимых значений λ и пространственную форму решения номер n :

$$
\lambda_{n}=\left(\frac{n \pi}{L}\right)^{2}, \quad X_{n}(x)=\sin \frac{n \pi x}{L}
$$

Нарисуйте их графики при $n=1,2,3$. Подставляя λ_{n} в уравнение (3.12), находим зависимость от времени решения номер n :

$$
T_{n}(t)=A_{n} \cos \frac{n \pi c t}{L}+B_{n} \sin \frac{n \pi c t}{L}
$$

где A_{n}, B_{n} - произвольные постоянные.
Собственные решения $X_{n}(x)$ образуют полный базис. Общее решение задачи может быть записано как линейная комбинация базисных решений:

$$
\begin{equation*}
u(x, t)=\sum_{n=1}^{\infty} X_{n}(x) T_{n}(t) \tag{3.15}
\end{equation*}
$$

На втором этапе амплитуды A_{n}, B_{n} выражаются через начальные условия $u(x, 0)=\varphi(x), u_{t}(x, 0)=\psi(x)$. При $t=0$, используя представление решения (3.15), имеем

$$
\begin{align*}
& \varphi(x)=\sum_{n=1}^{\infty} A_{n} X_{n}(x), \tag{3.16}\\
& \psi(x)=\sum_{n=1}^{\infty} \lambda_{n} B_{n} X_{n}(x) . \tag{3.17}
\end{align*}
$$

Собственные решения задачи (3.13), (3.14) взаимно ортогональны:

$$
\begin{equation*}
\int_{0}^{L} X_{n}(x) X_{m}(x) d x=\frac{L}{2} \delta_{n m} . \tag{3.18}
\end{equation*}
$$

Умножая равенства (3.16), (3.17) на $X_{m}(x)$, интегрируя от нуля до L и учитывая ортогональность собственных решений, имеем

$$
\begin{equation*}
A_{m}=\frac{2}{L} \int_{0}^{L} \varphi(x) X_{m}(x) d x, \quad B_{m}=\frac{2}{\lambda_{m} L} \int_{0}^{L} \psi(x) X_{m}(x) d x \tag{3.19}
\end{equation*}
$$

Частное решение равно

$$
u(x, t)=\frac{L}{2 \pi c} \sin \frac{2 \pi c t}{L} \sin \frac{2 \pi x}{L} .
$$

68. Решить задачу

$$
\begin{gathered}
u_{t t}-c^{2} u_{x x}=0 \\
0 \leqslant x \leqslant L, \quad u(0, t)=u_{x}(L, t)=0 \\
u(x, 0)=\sin \frac{5 \pi x}{2 L}, \quad u_{t}(x, 0)=\sin \frac{\pi x}{2 L}
\end{gathered}
$$

Попытайтесь решить эту задачу при условии $u_{t}(x, 0)=\cos \frac{\pi x}{2 L}$.

Решение. Решение задачи выполняется в той же последовательности, что и решение задачи 67. Отличие имеется только при решении спектральной задачи на функцию $X(x)$, изменившейся из-за граничных условий

$$
\begin{gathered}
X^{\prime \prime}+\lambda X=0 \\
X(0)=X^{\prime}(L)=0
\end{gathered}
$$

Из общего решения

$$
X=A \cos \sqrt{\lambda} x+B \sin \sqrt{\lambda} x
$$

используя граничные условия, получаем уравнение на λ :

$$
\sqrt{\lambda} \cos \sqrt{\lambda} L=0
$$

Его решения равны

$$
\lambda_{n}=\left(\frac{2 n-1}{2 L} \pi\right)^{2}, \quad n=1,2, \ldots
$$

Соответствующие собственные функции имеют вид

$$
X_{n}(x)=\sin \frac{2 n-1}{2 L} \pi x .
$$

Нарисуйте их графики при $n=1,2,3$. Число $\lambda=0$ не является собственным значением, поскольку ему соответствует нулевое решение X. Решение дается формулами (3.15)-(3.17). В частном случае, вычисляя коэффициенты, получаем

$$
u(x, t)=\cos \frac{5 \pi c t}{2 L} \sin \frac{5 \pi x}{2 L}+\frac{2 L}{\pi} \sin \frac{\pi c t}{2 L} \sin \frac{\pi x}{2 L} .
$$

При $u_{i}(x, 0)=\cos (\pi x /(2 L))$ задача не имеет решения. Причина в том, что такое начальное условие не согласовано с граничным условием $u(0, t)=0$, из которого следует, что должно быть $u_{t}(0, t)=0$ для любого момента времени.
69. Решить задачу

$$
\begin{gathered}
u_{t t}-u_{x x}=0 \\
0 \leqslant x \leqslant L, \quad u_{x}(0, t)=u_{x}(L, t)=0 \\
u(x, 0)=x, \quad u_{t}(x, 0)=1 .
\end{gathered}
$$

Описать движение струны.
Решение. Спектральная задача

$$
X^{\prime \prime}+\lambda X=0, \quad X^{\prime}(0)=X^{\prime}(L)=0
$$

имеет нетривиальные решения

$$
X_{n}(x)=\cos \frac{n \pi}{L} x, \quad \lambda_{\pi}=\left(\frac{n \pi}{L}\right)^{2}, \quad n=0,1, \ldots
$$

В этом случае $\lambda=0$ является собственным значением, которому соответствует собственная функция $X_{0}=1$. Зависимость этого собственного решения от времени носит неколебательный характер, так как из $T^{\prime \prime}=0$ следует $T=A_{0}+B_{0} t$. Общее решение задачи имеет вид

$$
u(x, t)=A_{0}+B_{0} t+\sum_{n=1}^{\infty}\left(A_{n} \cos \frac{n \pi}{L} t+B_{n} \sin \frac{n \pi}{L} t\right) \cos \frac{n \pi x}{L} .
$$

Используя начальные условия, видим, что $\boldsymbol{A}_{\boldsymbol{n}}, \boldsymbol{B}_{\mathbf{n}}$ являются коэффициентами разложения в ряд Фурье этих начальных условий. Вычисляя их, получаем

$$
u(x, t)=t+\frac{L}{2}-\frac{4 L}{\pi^{2}} \sum_{n=0}^{\infty} \frac{1}{(2 n+1)^{2}} \cos \frac{(2 n+1) \pi}{L} t \cos \frac{(2 n+1) \pi}{L} x .
$$

Струна колеблется относительно среднего положения, которое смещается с постоянной скоростью. Заметим, что начальное условие не удовлетворяет граничному условию: $u_{x}(0,0)=u_{x}(L, 0)=1 \neq 0$. Хотя ряд сходится $\mathbf{к}$ решению, для вычисления производной по x его нельзя дифференцировать почленно. Действительно, ряд, получающийся при почленном дифференцировании, расходится при $t=x=0$.
70. Струна длины L с закрепленными концами в начальный момент времени имеет парабалическую форму с максимальным отклонением в ее середине, равным h. Начальная скорость струны равна нулю. Найти зависимость отклонения от времени.

Решение. Краевая задача имеет вид

$$
\begin{gathered}
u_{t l}-c^{2} u_{x x}=0 \\
u(0, t)=u(L, t)=0 \\
u(x, 0)=\frac{4 h x(L-x)}{L^{2}}, \quad u_{t}(x, 0)=0 .
\end{gathered}
$$

Общее решение было получено в задаче 67. Из равенства нулю начальной скорости следует, что все B_{n} равны нулю. Коэффициенты A_{n} вычисляются разложением $u(x, 0)$ в ряд Фурье:

$$
\frac{4 h x(L-x)}{L^{2}}=\sum_{n=1}^{\infty} A_{n} \sin \frac{n \pi x}{L} .
$$

Отсюда имеем

$$
u(x, t)=\frac{32 h}{\pi^{3}} \sum_{n=0}^{\infty} \frac{1}{(2 n+1)^{3}} \cos \frac{(2 n+1) \pi c t}{L} \sin \frac{(2 n+1) \pi x}{L} .
$$

71. В начальный мамент өремени струку с закрепленными концами длины L отклонили на расстояние h в точке x_{0} и отпустили. Сформулировать граничную задачу и решить ее.

Решение. Граничная задача отличается от предыдущей только начальным условием

$$
u(x, 0)= \begin{cases}\frac{x}{x_{0}} h, & x<x_{0} \\ \frac{L-x}{L-x_{0}} h, & x>x_{0}\end{cases}
$$

Решение получается разложением начального отклонения в ряд Фурье

$$
\begin{equation*}
u(x, t)=\frac{2 h L^{2}}{\pi^{2} x_{0}\left(L-x_{0}\right)} \sum_{n=1}^{\infty} \frac{1}{n^{2}} \sin \frac{n \pi x_{0}}{L} \cos \frac{n \pi c}{L} t \sin \frac{n \pi}{L} x . \tag{3.20}
\end{equation*}
$$

Построим теперь качественную картину движения струны. Решение периодично по времени с периодом $\tau=\frac{2 L}{c}$. При $t=\frac{\tau}{4}$ отклонение струны от равновесного положения равно нулю. Получим форму струны при $0<t<\frac{7}{4}$. Выразим произведение тригонометрических функций через сумму

$$
\begin{equation*}
\cos \frac{n \pi c}{L} t \sin \frac{n \pi}{L} x=\frac{1}{2}\left(\sin \frac{n \pi}{L}(x-c t)+\sin \frac{n \pi}{L}(x+c t)\right) . \tag{3.21}
\end{equation*}
$$

Решение, задаваемое формулой (3.20), справедливо на всей прямой и периодично с периодом $2 L$ по координате. Это, очевидно, относится и к начальному отклонению струны, хотя оно задано только на отрезке $0<x<L$. Ясно, однако, что сумма ряда (3.20) нечетна относительно точки $x=0$. При $t=0$ этот ряд является разложением функиии, полученной нечетным продолжением начального отклонения с отрезка $0<x<L$ через точку $x=0$ на отрезок $-L<x<0$ и последующим периодическим повторением на всю прямую. Условимся далее называть начальным отклонением полученную функцию.

Если выражение (3.2!) подставить в ряд (3.20) и собрать слагаемые, содержащие $x-c t$, то получившаяся сумма представляет собой разложение начального отклонения половинной амплитуды, сдвинутое вправо на расстояние $c t$. Оставшиеся слагаемые дают половину начального отклонения, сдвинутого влево на то же расстояние. Таким образом,

$$
u(x, t)=\frac{1}{2}(u(x-c t, 0)+u(x+c t, 0))
$$

Например, для $x_{0}=\frac{L}{2}$ начальное условие представляет собой пилообразную функцик. Графически, складывая две пилообразнье слегка сдвинутые кривые, легко получить, что при $t<\frac{7}{4}$ струна имеет форму, изображенную на рис.3.1. Горизонтальный участок струны, расширяясь, опускается со скоростью равной $\frac{4 h}{7}$.

Рис. 3.1. Форма струны: - - начальное условие $u(x, 0)$; $-\quad-u\left(x, \frac{L}{5} c\right)$; ---$-\frac{1}{2} u\left(x \pm \frac{L}{5}, 0\right)$
72. Решить граничную задачу для неоднородного уравнения

$$
\begin{gathered}
u_{t t}-u_{x x}=b \operatorname{sh} x, \\
0 \leqslant x \leqslant L, \quad u(0, t)=u(L, t)=u(x, 0)=u_{t}(x, 0)=0 .
\end{gathered}
$$

Решение. Решение неоднородного уравнения, так же как и решение однородного уравнения, можно искать в виде разложения по базисным решениям граничной задачи, которые для данных граничных условий были получены в задаче 67. Решение в виде

$$
\begin{equation*}
u(x, t)=\sum_{n=1}^{\infty} A_{n}(t) \sin \frac{n \pi x}{L} \tag{3.22}
\end{equation*}
$$

удовлетворяет граничным условиям. Чтобы определить $\boldsymbol{A}_{\boldsymbol{n}}(\boldsymbol{t})$, разложим $b \operatorname{sh} x$ в ряд по базисным решениям:

$$
\begin{equation*}
b \operatorname{sh} x=-2 b \sum_{n=1}^{\infty} \frac{(-1)^{n} n \pi \operatorname{sh} L}{(n \pi)^{2}+L^{2}} \sin \frac{n \pi x}{L} . \tag{3.23}
\end{equation*}
$$

Подставляя выражения (3.22), (3.23) в уравнение и учитывая ортогональность функций $\sin \left(\frac{n \pi x}{L}\right)$, получаем систему обыкновенных дифференциальных уравнений:

$$
\begin{equation*}
\frac{d^{2} A_{n}}{d t^{2}}+\left(\frac{n \pi}{L}\right)^{2} A_{n}=-2 b \frac{(-1)^{n} n \pi \operatorname{sh} L}{(n \pi)^{2}+L^{2}}, \quad n=1,2, \ldots \tag{3.24}
\end{equation*}
$$

с начальными условиями, следуюшими из начальных условий на $u(x, t)$:

$$
\begin{equation*}
A_{n}(0)=\left.\frac{d A_{n}}{d t}\right|_{t=0}=0, \quad n=1,2, \ldots \tag{3.25}
\end{equation*}
$$

Решая задачу (3.24), (3.25) и подставляя $A_{n}(t)$ в (3.22). получаем

$$
\begin{equation*}
u(x, t)=2 b L^{2} \operatorname{sh} L \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n \pi\left((n \pi)^{2}+L^{2}\right)}\left(\cos \frac{n \pi t}{L}-1\right) \sin \frac{n \pi x}{L} . \tag{3.26}
\end{equation*}
$$

Иной способ решения задачи состоит в разбиении ее на две задачи. Вначале решим стационарную граничную задачу

$$
-w_{x x}=b \operatorname{sh} x, \quad w(0)=w(L)=0 .
$$

Затем методом Фурье найдем решение граничной задачи для однородного уравнения:

$$
\begin{aligned}
v_{t t}-v_{x x} & =0 \\
v(0, t) & =v(L, t)=0, \quad v(x, 0)
\end{aligned}=-w(x), \quad v_{t}(x, 0)=0 .
$$

Подстановкой убеждаемся, что $u(x, t)=v(x, t)+w(x)$ удовлетворяет как начальным, так и граничным условиям исходной задачи. Окончательно имеем

$$
\begin{align*}
u(x, t) & =b\left(\frac{x}{L} \operatorname{sh} L-\operatorname{sh} x\right)+ \\
& +2 b L^{2} \operatorname{sh} L \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n \pi\left((n \pi)^{2}+L^{2}\right)} \cos \frac{n \pi t}{L} \sin \frac{n \pi x}{L} \tag{3.27}
\end{align*}
$$

С физической точки зрения это решение означает следующее: $w(x)$ задает стационарный прогиб струны под действием внешней силы $b \operatorname{sh} x ; v(x, t)$ описывает колебания относительно стационарного прогиба. Заметим, что стационарный прогиб струны в (3.27) получен в явном виде, а в (3.26) в виде разожения в ряд.
73. Решить краевуь задачу на отрезке $0 \leqslant x \leqslant L$:

$$
\begin{gathered}
u_{i}=a^{2} u_{x x} \\
u(0, t)=u(L, t)=0, \quad u(x, 0)= \begin{cases}x, & x<\frac{L}{2} \\
L-x, & x>\frac{L}{2}\end{cases}
\end{gathered}
$$

Сравнить решение этой задачи с задмчей 71.
Решенне. Разделяя переменные, видим, что спектральная задача получается такой же, как и в задаче 67. Зависимость от времени получается из уравнения

$$
T_{n}^{\prime}=-\lambda_{n} T_{n}
$$

и теперь носит зкспоненциально затухающий характер:

$$
T_{n}=A_{n} \exp \left[-\left(\frac{n \pi}{L}\right)^{2} a^{2} t\right]
$$

Ралложение начальных условий в ряд Фурье совпадает с полученным в задаче 67. В результате имеем

$$
u(x, t)=\frac{4 L}{\pi^{2}} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)^{2}} \exp \left[-\left(\frac{(2 n+1) \pi}{L}\right)^{2} a^{2} t\right] \sin \frac{2 n+1}{L} \pi x
$$

Заметим, что решение симметрично относительно середины отрезка: $u(x, t)=u(L-x, t)$ и это свойство есть следствие симметрии начальных условий.
74. Решить краевую задачу

$$
\begin{gathered}
u_{t}=a^{2} u_{x x}-\beta u \\
0 \leqslant x \leqslant L, \quad u(0, t)=u_{x}(L, t)=0, \quad u(x, 0)=\sin \frac{\pi x}{2 L} .
\end{gathered}
$$

Решение. Задачу можно решать, так же как и задачу 72 , разложением в ряд по базисным функциям. Другой способ состоит в том, чтобы сделать подстановку $u=e^{-\beta t} v$ и для v получить однородное уравнение диффузии с теми же граничными и начальными условиями, что и для u. Решая задачу для v методом Фурье, получаем

$$
u(x, t)=\exp \left[-\beta t-\left(\frac{\pi}{2 L}\right)^{2} a^{2} t\right] \sin \frac{\pi x}{2 L}
$$

75. Решить краевую задачу

$$
\begin{gathered}
u_{t}=a^{2} u_{x x}-\beta u+\sin \frac{\pi x}{L}, \\
0 \leqslant x \leqslant L, \quad u(0, t)=u(L, t)=0, \quad u(x, 0)=0 .
\end{gathered}
$$

Решение. Задачу можно решать, так же как и задачу 72 , разложением в ряд по базисным функциям. Другой способ состоит в том, чтобы искать решение в виде

$$
u=v(x, t)+w(x)
$$

где $w(x)$ - решение задачи для стационарного уравнения теплопроводности:

$$
a^{2} w_{x x}-\beta w+\sin \frac{\pi x}{L}=0, \quad w(0)=w(L)=0
$$

$w(x)$ задает стационарное распределение температуры вдоль стержня. Частное решение линейного неоднородного уравнения, удовлетворяюшее граничным условиям, имеет вид

$$
w=\left(\left(\frac{\pi a}{L}\right)^{2}+\beta\right)^{-1} \sin \frac{\pi x}{L}
$$

Подставляя $v+w$ в исходные уравнения и предельные условия, получаем для $v(x, t)$ задачу

$$
\begin{gathered}
v_{i}=a^{2} v-\beta v \\
v(0, t)=v(L, t)=0, \quad v(x, 0)=-w(x)
\end{gathered}
$$

решая которую тем же способом, что и задачу 74 , получаем

$$
u=\left(\left(\frac{\pi a}{L}\right)^{2}+\beta\right)^{-1}\left[1-\exp \left[-\left(\beta+\left(\frac{\pi a}{L}\right)^{2}\right) t\right]\right] \sin \frac{\pi x}{L}
$$

76. В начальный момент времени в иаре имеется сферически симметричное распределение температурь $u(r, 0)=f(r)$. Найти зависимость распределения температуры от времени, если температура поверхности шара равна нулю. Рассмотреть случай $f(r)=T_{0}$.

Решение. Уравнение теплопроводности

$$
u_{t}=a^{2} \Delta u
$$

в сферических координатах записывается в виде

$$
\begin{equation*}
u_{t}=\frac{a^{2}}{r^{2}} \frac{\partial}{\partial r} r^{2} \frac{\partial u}{\partial r} . \tag{3.28}
\end{equation*}
$$

В операторе Лапласа учтено отсутствие зависимости в задаче от угловых переменных. Граничные и начальные условия имеют вид

$$
u(R, t)=0, \quad u(r, 0)=f(r)
$$

Вначале ищем базисные решения разделением переменных в виде

$$
\begin{equation*}
u(r, t)=P(t) Q(r) \tag{3.29}
\end{equation*}
$$

Подставляя (3.29) в уравнение (3.28), получаем

$$
\begin{equation*}
\frac{P^{\prime}(t)}{a^{2} P(t)}=\frac{1}{Q} \frac{1}{r^{2}} \frac{d}{d r} r^{2} \frac{d Q}{d r}=-\lambda . \tag{3.30}
\end{equation*}
$$

Для функции Q должны выполняться граничные условия. Одно из них следует непосредственно из граничного условия на функцию u на поверхности шара:

$$
\begin{equation*}
Q(R)=0 \tag{3.31}
\end{equation*}
$$

Второе граничное условие не столь очевидно и порождено тем, что уравнение на $Q(r)$

$$
\begin{equation*}
\frac{d^{2} Q}{d r^{2}}+\frac{2}{r^{2}} \frac{d Q}{d r}+\lambda Q=0 \tag{3.32}
\end{equation*}
$$

имеет особенность в точке $r=0$, и поэтому его общее решение расходится в этой точке. Поскольку нас интересуют только ограниченные решения, потребуем выполнения второго граничного условия:

$$
\begin{equation*}
Q(0)<\infty . \tag{3.33}
\end{equation*}
$$

Решение уравнения (3.32) может быть найдено следуюшим способом. Будем искать его в виде

$$
\begin{equation*}
Q(0)=p(r) q(r) \tag{3.34}
\end{equation*}
$$

и постараемся подобрать $p(r)$ так, чтобы в уравнении на $q(r)$ не было первой производной. Подставляя (3.34) в (3.32), получаем условие на $p(r)$ и уравнение на q :

$$
p^{\prime}+\frac{1}{r} p=0, \quad p q^{\prime \prime}+\left(p^{\prime \prime}+\frac{2}{r} p^{\prime}\right) q+\lambda p q=0
$$

Уравнение на p однородно и имеет решение $p=\frac{1}{r}$. Уравнение на q упрощается до элементарного:

$$
q^{\prime \prime}+\lambda q=0 .
$$

Обцее решение уравнения (3.32) при $\lambda>0$ имеет вид

$$
\begin{equation*}
Q(r)=\frac{A \cos \sqrt{\lambda} r+B \sin \sqrt{\lambda} r}{r} \tag{3.31}
\end{equation*}
$$

Собственные решения, удовлетворяюшие граничным условиям (3.33), и соответствуюшие им собственные значения равны:

$$
Q_{n}(r)=\frac{1}{r} \sin \frac{n \pi r}{R}, \quad \lambda_{n}=\frac{n \pi}{R}, \quad n=1,2, \ldots
$$

Собственные значения $\lambda<0$ невозможны (почему?). Зависимость собственного решения от времени получается из уравнения (3.30):

$$
T_{n}(t)=a_{n} \exp \left[-\left(\frac{n \pi a}{R}\right)^{2} t\right],
$$

а общее решение имеет вид

$$
u(r, t)=\sum_{n=1}^{\infty} a_{n} T_{n}(t) Q_{n}(r)
$$

Коэффициенты a_{n} определяются из начальных условий. Чтобы для их вычисления воспользоваться ортогональностью тригонометрических функций, умножим ряд на τ и положим $t=0$. Тогда

$$
r f(r)=\sum_{n=1}^{\infty} a_{n} \sin \frac{n \pi r}{R}, \quad \text { где } \quad a_{n}=\frac{2}{R} \int_{0}^{R} \rho f(\rho) \sin \frac{n \pi \rho}{R} d \rho .
$$

В частном случае $f(r)=T_{0}$ интеграл вычисляется и решение имеет вид

$$
u(r, t)=\frac{2 R T_{0}}{\pi r} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \exp \left[-\left(\frac{n \pi a}{R}\right)^{2} t\right] \sin \frac{n \pi r}{R}
$$

77. Найти распределение температуры в шаре, если в начальный момент времени в его центре включается точечный источник интенсивности Q. Начальная температура шара и температура его поверхности равны нулю.

Решенне. Распространение тепла в пространстве с распределенными источниками описывается уравнением

$$
u_{t}=\frac{x}{c} \Delta u+\frac{F}{c} .
$$

Здесь u - температура, x - теплопроводность, c - теплоемкость единицы объема вещества, \boldsymbol{F} - интенсивность тепловыделения в единице объема. В нашем частном случае получается граничная задача с плотностью тепловыделения, которая описывается δ-функцией Дирака:

$$
u_{t}=\frac{x}{c} \Delta u+\frac{Q \delta(r)}{c}, \quad u(r, 0)=0, \quad u(R, t)=0
$$

Разделим задачу на две: стационарную

$$
\begin{equation*}
\Delta w=-\frac{Q \delta(r)}{x}, \quad w(R)=0 \tag{3.35}
\end{equation*}
$$

и нестационарную

$$
v_{i}=\frac{\kappa}{c} \Delta v, \quad v(R, t)=0, \quad v(r, 0)=-w(r)
$$

Их сумма является решением исходной задачи. Решим стационарную задачу. При $r \neq 0$ уравнение на w однородно. Записывая радиальную часть оператора Лапласа, имеем

$$
\frac{d}{d r} r^{2} \frac{d w}{d r}=0
$$

Интегрируя дважды, получаем

$$
w=\frac{c_{1}}{r}+c_{2} .
$$

Константу c_{1} определим, интегрируя уравнение (3.35) по шару радиуса $r<\boldsymbol{R}$. Интеграл от его правой части равен $-\frac{Q}{x}$, а интеграл от левой преобразуется в интеграл по сфере от $\operatorname{grad} w$ использованием теоремы Гаусса-Остроградского, поскольку $\Delta=\operatorname{div}$ grad. Отсюда имеем

$$
c_{1}=\frac{Q}{4 \pi x} .
$$

c_{2} определяется из граничного условия $w(R)=0$. Окончательно получаем

$$
w(r)=\frac{Q}{4 \pi \mathcal{R}} \frac{R-r}{R r}
$$

Нестаиионарная часть задачи решается разделением переменных, как и в задаче 76. В результате получаем

$$
u(r, t)=\frac{Q}{4 \pi \kappa} \frac{R-r}{R r}-\frac{Q}{2 \pi^{2} \nless r} \sum_{n=1}^{\infty} \frac{1}{n} \exp \left[-\left(\frac{n \pi a}{R}\right)^{2} t\right] \sin \frac{n \pi r}{R}
$$

78. Решить краевую задачу

$$
\begin{gathered}
u_{x x}+u_{y y}=0, \quad 0<x<L, \quad 0<y<\infty, \\
u(0, y)=u(L, y)=0, \quad u(x, 0)=A \frac{(L-x) x}{L^{2}}, \quad u(x, \infty)=0 .
\end{gathered}
$$

Сравнить с задачами 70 и 93.

Решение. Отыскивая частное решение в виде $u(x, y)=X(x) Y(y)$ и разделяя переменные, получаем

$$
\frac{X^{\prime \prime}}{X}=-\frac{Y^{\prime \prime}}{Y}=-\lambda .
$$

Спектральная задача по координате x получается такой же, как и в задаче 67. Зависимость от y получается из уравнения

$$
Y_{n}^{\prime \prime}=\lambda_{n} Y_{n},
$$

решение которого представляется в виде суммы экспонент:

$$
Y_{n}=A_{n} \exp \left[-\left(\frac{n \pi}{L}\right) x\right]+B_{n} \exp \left[\left(\frac{n \pi}{L}\right) x\right] .
$$

Записывая решение в виде суммы ряда, из граничного условия при $y \rightarrow \infty$ имеем $\boldsymbol{B}_{\boldsymbol{n}}=0$ для всех n. Из граничного условия при $y=0$ вычисляем A_{n} и окончательно имеем

$$
u(x, t)=\frac{8 A}{\pi^{3}} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)^{3}} \exp \left[-\frac{(2 n+1) \pi}{L} y\right] \sin \frac{2 n+1}{L} \pi x
$$

79. Найти распределение потенциала между соосными цилиндрами радиусов а < \quad для задачи Дирихле:

$$
u(a, \varphi)=c, \quad u(b, \varphi)=h \cos \varphi .
$$

Решение. Задачи с цилиндрической симметрией удобно решать в цилиндрических координатах. Уравнение Лапласа имеет в них вид

$$
\begin{equation*}
\frac{1}{r} \frac{\partial}{\partial r} r \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \varphi^{2}}=0 \tag{3.36}
\end{equation*}
$$

Здесь учтено отсутствие в задаче зависимости от координаты z. Ищем частные решения в виде

$$
\begin{equation*}
u=R(r) \Phi(\varphi) \tag{3.37}
\end{equation*}
$$

Разделяя переменные, получаем уравнения на Φ и R :

$$
\begin{gather*}
\Phi^{\prime \prime}+\lambda \Phi=0, \tag{3.38}\\
\frac{d^{2} R}{d r^{2}}+\frac{1}{r} \frac{d R}{d r}-\lambda=0 \tag{3.39}
\end{gather*}
$$

Общее решение уравнения (3.38) имеет вид

$$
\begin{array}{lll}
\Phi=A \cos \sqrt{\lambda} \varphi+B \sin \sqrt{\lambda} \varphi & \text { при } \quad \lambda>0, \\
\Phi=A e^{\sqrt{-\lambda \varphi}}+B e^{-\sqrt{-\lambda \varphi}} & \text { при } \quad \lambda<0 .
\end{array}
$$

Поскольку решение u должно быть однозначным, изменение φ на 2π не должно менять значения Φ. При $\lambda<0$ периодично только нулевое

решение. При $\boldsymbol{\lambda}>0$ функция Φ периодична с периодом 2π, если $\boldsymbol{\lambda}=\boldsymbol{m}^{2}$ где $m=0,1, \ldots$. Собственные решения имеют вид

$$
\Phi_{m}=A_{m} \cos m \varphi+B_{m} \sin m \varphi .
$$

Уравнение (3.39) однородно. Отыскивая его решение при $\boldsymbol{\lambda}=\boldsymbol{m}^{2}$ в виде $\boldsymbol{R}=\boldsymbol{r}^{\boldsymbol{\alpha}}$, получаем

$$
\alpha= \pm m .
$$

При $m \neq 0$ имеется два линейно независимых решения: \boldsymbol{r}^{m} и \boldsymbol{r}^{-m}. При $m=0$ общее решение получается прямым интегрированием:

$$
\Phi_{0}=A_{0} \ln r+B_{0} .
$$

Таким образом, общее решение может быть записано в виде суммы

$$
\begin{aligned}
u(r, \varphi) & =A_{0} \ln r+B_{0}+ \\
+ & \sum_{m=1}^{\infty}\left[\left(A_{m} r^{m}+\frac{A_{-m}}{r^{m}}\right) \cos m \varphi+\left(B_{m} r^{m}+\frac{B_{-m}}{r^{m}}\right) \sin m \varphi\right] .
\end{aligned}
$$

Коэффициенты $\boldsymbol{A}_{m}, \boldsymbol{B}_{m}$ вычисляются разложением граничных условий в ряды Фурье.

Для заданных граничных условий ряд упрощается до вида

$$
u(r, \varphi)=A_{0} \ln r+B_{0}+\left(A_{1} r+\frac{A_{-1}}{r}\right) \cos \varphi .
$$

При $r=a$ имеем

$$
A_{0} \ln a+B_{0}=c_{1}, \quad A_{1} a+\frac{A_{-1}}{a}=0 .
$$

При $r=b$ имеем

$$
A_{0} \ln b+B_{0}=0, \quad A_{1} b+\frac{A_{-1}}{b}=h .
$$

Вычисяяя коэффициенты из получившейся системы уравнений, окончательно получаем

$$
u(r, \varphi)=c \frac{\ln b-\ln r}{\ln b-\ln a}+h \frac{b\left(r^{2}-a^{2}\right)}{\left(b^{2}-a^{2}\right) r} \cos \varphi .
$$

80. Найти стационарный прогиб прямоугольной мембраны размера $a \times b$ с закрепленной границей, если на мембрану действует однородное давление P, а ее натяжение равно T.

Решение. Уравнение равновесия мембраны имеет вид

$$
\begin{equation*}
-\Delta u=\frac{P}{T} \tag{3.40}
\end{equation*}
$$

Смещение u на границе прямоугольника равно нулю. Направим ось x вдоль стороны длины a, а ось y вдоль второй стороны.

Будем искать решение в виде разложения в ряд по собственным функциям оператора Лапласа для этой граничной задачи. Найдем собственные функции. Задача на собственные значения

$$
\begin{equation*}
-\Delta u=\lambda u,\left.\quad u\right|_{\Gamma}=0 \tag{3.41}
\end{equation*}
$$

решается разделением переменных. Собственные функции и собственные значения равны

$$
u_{n, m}=\sin \frac{n \pi x}{a} \sin \frac{m \pi y}{b}, \quad \lambda_{n, m}=\left(\frac{n \pi}{a}\right)^{2}+\left(\frac{m \pi}{b}\right)^{2},
$$

где n, m - целые положительные числа.
Раскладывая правую часть уравнения (3.40) в двойной ряд Фурье:

$$
\begin{equation*}
\frac{P}{T}=\sum_{n, m=1}^{\infty} c_{n, m} u_{n, m} \tag{3.42}
\end{equation*}
$$

получим ненулевые коэффициенты

$$
c_{2 k+1.2 l+1}=\frac{4}{\pi^{2}} \frac{P}{T} \frac{2}{(2 k+1)} \frac{2}{(2 l+1)}, \quad k, l=0,1, \ldots
$$

Ищем решение уравнения (3.40) в виде тахого же разложения

$$
\begin{equation*}
u=\sum_{n, m=1}^{\infty} d_{n, m} u_{n, m} . \tag{3.43}
\end{equation*}
$$

Подставляя разложения (3.42) и (3.43) в уравнение и используя взаимную ортогональность функций $u_{n, m}$, получим $d_{n, m}=\frac{c_{n, m}}{\lambda_{0 . m}}$. Окончательно имеем

$$
u(x, y)=\frac{16}{\pi^{2}} \frac{P}{T} \sum_{k, l=0}^{\infty} \frac{\sin \frac{(2 k+1) \pi x}{a} \sin \frac{(2 l+1) \pi y}{b}}{(2 k+1)(2 l+1)\left[\left(\frac{(2 k+1) \pi}{n}\right)^{2}+\left(\frac{(2 l+1) \pi}{b}\right)^{2}\right]} .
$$

3.6. Задачи

81. Определить тип уравнения и привести его к каноническому виду:
(a) $u_{f x}-\left(1+y^{2}\right)^{2} u_{y y}-2 y\left(1+y^{2}\right) u_{y}=0$;
(6) $u_{x x}-2 \sin x u_{r y}-\cos ^{2} x u_{y y}-\cos x u_{y}=0$:
(в) $\left(1+x^{2}\right)^{2} u_{s s}+u_{y y}+2 x\left(1+x^{2}\right) u_{x}=0$;
(r) $\frac{1}{x} \frac{\partial}{\partial x}\left(x \frac{\partial u}{\partial x}\right)+\frac{1}{x^{2}} \frac{\partial^{2} u}{\partial y^{2}}=0$;
(д) $x^{2} u_{r x}+2 x y u_{x y}+y^{2} u_{y y}-2 y u_{x}+y e^{y / x}=0$.
82. Найти области гиперболичности, параболичности и эллиптичности уравнения

$$
x u_{x x}+y u_{y y}+2 u_{x}+2 u_{y}=0
$$

и привести в них к каноническому виду.
83. Найти условие эллиптичности уравнения Чаплыгина

$$
\frac{\partial}{\partial x}\left(\rho \varphi_{x}\right)+\frac{\partial}{\partial y}\left(\rho \varphi_{y}\right)=0
$$

где $\rho=\rho\left(\sqrt{\varphi_{x}^{2}+\varphi_{y}^{2}}\right)$.
84. Привести к каноническому виду и избавиться от первых производных:
(a) $u_{x z}-4 u_{x y}+5 u_{y y}-3 u_{x}+u_{y}+u=0 ;$
(б) $u_{x x}-u_{y y}+u_{x}+u_{y}-4 u=0$.
85. Найти общее решение уравнения

$$
(x-y) u_{x y}-u_{x}+u_{y}=0 .
$$

86. Решить задачу Коши:

$$
\begin{gathered}
4 y^{2} u_{x x}+2\left(1-y^{2}\right) u_{x y}-u_{y y}-\frac{2 y}{1+y^{2}}\left(2 u_{x}-u_{y}\right)=0 \\
u(x, 0)=\varphi(x), \quad u_{y}(x, 0)=\psi(x)
\end{gathered}
$$

87. Написать выражение для оператора Лапласа в ортогональной системе координат.
88. Получить выражения для оператора Лапласа:
(a) в цилиндрических координатах (z, ρ, φ)

$$
x=\rho \cos \varphi, \quad y=\rho \sin \varphi, \quad z=z
$$

(б) в сферических координатах (r, θ, φ)

$$
x=r \sin \theta \cos \varphi, \quad y=r \sin \theta \cos \varphi, \quad z=r \cos \theta
$$

(в) в параболоидальных координатах (ξ, η, φ) :
$0 \leqslant \xi<\infty, 0 \leqslant \eta<\infty, 0 \leqslant \varphi<2 \pi$

$$
x=\sqrt{\xi \eta} \cos \varphi, \quad y=\sqrt{\xi \eta} \sin \varphi, \quad z=\frac{1}{2}(\xi-\eta)
$$

(г) в эллипсоидальных координатах (ξ, η, φ) :
$1 \leqslant \xi<\infty,-1 \leqslant \eta \leqslant 1,0 \leqslant \varphi<2 \pi$

$$
\begin{gathered}
x=\frac{1}{2} \sqrt{\left(\xi^{2}-1\right)\left(1-\eta^{2}\right)} \cos \varphi, \quad y=\frac{1}{2} \sqrt{\left(\xi^{2}-1\right)\left(1-\eta^{2}\right)} \sin \varphi, \\
z=\frac{1}{2} \xi \eta .
\end{gathered}
$$

89. Получить выражения для градиента, дивергенции, ротора
(a) в цилиндрических координатах;
(б) в сферических координатах.
90. Преобразовать в цилиндрические и сферические координаты оператор проекции момента импульса на ось z :

$$
l_{z}=-i\left(x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}\right)
$$

91. Разделить переменные и найти собственные решения уравнения Шрёдингера для свободного движения ($U=0$) в прямоугольном параллелепипеде с размерами по декартовым координатам $a \times b \times c$ при условии равенства решения нулю на границе параллелепипеда.
92. Найти колебания струны, левый конец которой закреплен, а правый, свободно, без трения скользящий по штанге, в начальный момент отклонен по штанге на расстояние h.
93. Решить краевую задачу

$$
\begin{gathered}
u_{t}=a^{2} u_{x x} \\
0 \leqslant x \leqslant L, \quad u(0, t)=u(L, t)=0, \quad u(x, 0)=\frac{c x(L-x)}{L^{2}} .
\end{gathered}
$$

Сравнить решение этой задачи с задачей 70.
94. Решить краевую задачу

$$
\begin{gathered}
u_{t}=a^{2} u_{x x} \\
0 \leqslant x \leqslant L, \quad u(0, t)=u_{x}(L, t)=0, \quad u(x, 0)=A x .
\end{gathered}
$$

95. Найти распределение потенциала в полуполосе $0<x<\infty$, $0<y<L$.

$$
u(x, 0)=u_{y}(x, L)=0, \quad u(0, y)=f(y), \quad u(\infty, y)=0
$$

96. Найти распределение потенциала между соосными цилиндрами радиусов $a<b$ для задачи Дирихле:

$$
u(a, \varphi)=0, \quad u(b, \varphi)=A b^{2} \sin ^{2} \varphi
$$

3.7. Ответы

81. (a) Уравнение имеет гиперболический тип на всей плоскости и приводится к виду $u_{\xi \eta}=0$ в переменных $\xi=x+\operatorname{arctg} y, \eta=x-\operatorname{arctg} y$. (б) Уравнение всюду имеет гиперболический тип и приводится к виду $u_{\xi \eta}=0$ в координатах $\xi=x+y-\cos x, \eta=-x+y-\cos x$.
(в) Уравнение имеет эллиптический тип и приводится $к$ виду $u_{\xi \xi}+$ $u_{\eta \eta}=0$ в переменных $\xi=y, \eta=\operatorname{arctg} x$.
(r) Уравнение имеет эллиптический тип. Приводится к виду $u_{\S \S}+$ $u_{\eta \eta}=0$ в координатах $\xi=y, \eta=\ln x$.
(д) Уравнение параболическое всюду и приводится к виду

$$
u_{\eta \eta}+2 \frac{\xi^{2}}{\eta^{2}} u_{\xi}+\frac{1}{\eta} e^{\xi}=0
$$

в координатах $\xi=y / x, \eta=y$.
82. Уравнение гиперболическое во втором и четвертом квадрантах ($x y<0$) и имеет там вид

$$
u_{\xi \eta}-\frac{3}{\xi^{2}-\eta^{2}}\left(\eta u_{\xi}-\xi u_{\eta}\right)=0
$$

в координатах

$$
\xi=\sqrt{|x|}+\sqrt{|y|}, \quad \eta=\sqrt{|x|}-\sqrt{|y|}
$$

Эллиптическое в первом и третьем квадрантах ($x y>0$) и имеет там вид

$$
u_{\xi \xi}+u_{\eta \eta}+3\left(\frac{1}{\xi} u_{\xi}+\frac{1}{\eta} u_{\eta}\right)=0
$$

в координатах

$$
\xi=\sqrt{|y|}, \quad \eta=\sqrt{|x|}
$$

На осях координат, разделяюших области параболического и гиперболического поведения, уравнение вырождается в параболическое. Канонический вид получается делением на ненулевую координату.
83. $\left(\rho+\rho^{\prime} \sqrt{\varphi_{x}^{2}+\varphi_{y}^{2}}\right) \rho>0$.
84. (a) Приводя к каноническому виду и отыскивая \boldsymbol{u} переменных $\xi=2 x+y, \eta=x$ в виде

$$
u=w(\xi, \eta) \exp \frac{5 \xi+3 \eta}{2}
$$

получаем

$$
w_{\xi \xi}+w_{\eta \eta}-\frac{15}{2} w=0 .
$$

(б) В переменных $\boldsymbol{\xi}=\boldsymbol{x}-\boldsymbol{y}, \boldsymbol{\eta}=\boldsymbol{x}+\boldsymbol{y}$ возможна замена

$$
u=w(\xi, \eta) \exp \left(-\frac{\xi}{2}\right)
$$

приводяшая уравнение к виду

$$
w_{\xi \eta}-w=0 .
$$

85. Избавьтесь от первых производных.
$u=\frac{f(x)+g(y)}{x-y}$, где f и $g-$ произвольные функции.
86. $u(x, y)=\varphi\left(x-\frac{2 y^{3}}{3}\right)+\frac{1}{2} \int^{x+2 y} \psi\left(x^{\prime}\right) d x^{\prime}$.

$$
x-\frac{43^{3}}{3}
$$

87. $\Delta=\frac{1}{h_{1} h_{2} h_{3}}\left[\frac{\partial}{\partial q_{1}}\left(\frac{h_{2} h_{3}}{h_{1}} \frac{\partial}{\partial q_{1}}\right)+\frac{\partial}{\partial q_{2}}\left(\frac{h_{3} h_{1}}{h_{2}} \frac{\partial}{\partial q_{2}}\right)+\frac{\partial}{\partial q_{3}}\left(\frac{h_{1} h_{2}}{h_{3}} \frac{\partial}{\partial q_{3}}\right)\right]$.
88. (a) $\Delta=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \varphi^{2}}+\frac{\partial^{2}}{\partial z^{2}}$.
(б) $\Delta=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2}}{\partial \varphi^{2}}$.
(в) $\Delta=\frac{4}{\xi+\eta}\left[\frac{\partial}{\partial \xi}\left(\xi \frac{\partial}{\partial \xi}\right)+\frac{\partial}{\partial \eta}\left(\eta \frac{\partial}{\partial \eta}\right)\right]+\frac{1}{\xi \eta} \frac{\partial^{2}}{\partial \varphi^{2}}$.
(r) $\Delta=\frac{4}{\xi^{2}-\eta^{2}}\left[\frac{\partial}{\partial \xi}\left(\left(\xi^{2}-1\right) \frac{\partial}{\partial \xi}\right)+\frac{\partial}{\partial \eta}\left(\left(1-\eta^{2}\right) \frac{\partial}{\partial \eta}\right)\right]+$

$$
+\frac{4}{\left(\xi^{2}-1\right)\left(1-\eta^{2}\right)} \frac{\partial^{2}}{\partial \varphi^{2}} .
$$

89. (a) $\operatorname{grad} U=e_{z} \frac{\partial U}{\partial z}+e_{\rho} \frac{\partial U}{\partial \rho}+e_{\varphi} \frac{1}{\rho} \frac{\partial U}{\partial \varphi}$,

$$
\begin{aligned}
\operatorname{rot} A & =e_{z}\left(\frac{1}{\rho} A_{\varphi}+\frac{\partial A_{\varphi}}{\partial \rho}-\frac{1}{\rho} \frac{\partial A_{\rho}}{\partial \varphi}\right)+ \\
& +e_{\rho}\left(\frac{1}{\rho} \frac{\partial A_{z}}{\partial \varphi}-\frac{\partial A_{\varphi}}{\partial z}\right)+e_{\varphi}\left(\frac{\partial A_{\rho}}{\partial z}-\frac{\partial A_{z}}{\partial \rho}\right),
\end{aligned}
$$

$$
\operatorname{div} A=\frac{\partial A_{z}}{\partial z}+\frac{1}{\rho} A_{\rho}+\frac{\partial A_{\rho}}{\partial \rho}+\frac{1}{\rho} \frac{\partial A_{\varphi}}{\partial \varphi} .
$$

(6) $\operatorname{grad} U=e_{r} \frac{\partial U}{\partial r}+e_{\theta} \frac{1}{r} \frac{\partial U}{\partial \theta}+e_{\varphi} \frac{1}{r \sin \theta} \frac{\partial U}{\partial \varphi}$,

$$
\begin{aligned}
\operatorname{rot} A & =e_{r}\left(\frac{\operatorname{ctg} \theta}{r} A_{\varphi}+\frac{1}{r} \frac{\partial A_{\varphi}}{\partial \theta}-\frac{1}{r \sin \theta} \frac{\partial A_{\theta}}{\partial \varphi}\right)+ \\
& +e_{\theta}\left(\frac{1}{r \sin \theta} \frac{\partial A_{r}}{\partial \varphi}-\frac{1}{r} A_{\varphi}-\frac{\partial A_{\varphi}}{\partial r}\right)+ \\
& +e_{\varphi}\left(\frac{1}{r} A_{\theta}+\frac{\partial A_{\theta}}{\partial \theta}-\frac{1}{r} \frac{\partial A_{r}}{\partial \theta}\right),
\end{aligned}
$$

$$
\operatorname{div} A=\frac{2}{r} A_{r}+\frac{\partial A_{r}}{\partial r}+\frac{\operatorname{ctg} \theta}{r} A_{\theta}+\frac{1}{r} \frac{\partial A_{\theta}}{\partial \theta}+\frac{1}{r \sin \theta} \frac{\partial A_{\varphi}}{\partial \varphi} .
$$

90. $l_{z}=-i \frac{\partial}{\partial \varphi}$.
91. Ненормированные волновые функции имеют вид

$$
\psi_{n, m, l}=\sin \left(\frac{n \pi x}{a}\right) \sin \left(\frac{m \pi y}{b}\right) \sin \left(\frac{l \pi z}{c}\right) .
$$

Соответствующие им энергии равны

$$
E_{n, m, l}=\frac{\pi^{2}}{2}\left(\frac{n^{2}}{a^{2}}+\frac{m^{2}}{b^{2}}+\frac{l^{2}}{c^{2}}\right) .
$$

Числа n, m, l - целые положительные.
92. Задача может быть решена стандартной последовательностью действий - решением спектральной задачи, представлением решения в виде суммы собственных колебаний и вычислением коэффициентов разложения по начальным данным. Ответ получается из формулы (3.20) заменой вначале L на $2 L$ а затем подстановкой $x_{0}=L$. Почему?
93. $u(x, t)=\frac{8 c}{\pi^{3}} \sum_{n=0}^{\infty} \frac{1}{(2 n+1)^{3}} \exp \left[-\left(\frac{(2 n+1) \pi}{L}\right)^{2} a^{2} t\right] \sin \frac{(2 n+1) \pi x}{L}$.
94. $u(x, t)=\frac{8 A L}{\pi^{2}} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)^{2}} \exp \left[-\left(\frac{(2 n+1) \pi}{2 L}\right)^{2} a^{2} t\right] \sin \frac{2 n+1}{2 L} \pi x$.
95. $u(x, \varphi)=\sum_{n=0}^{\infty} a_{n} \exp \left[-\frac{(2 n+1) \pi}{2 L} x\right] \sin \frac{(2 n+1) \pi}{2 L} y$,

$$
a_{n}=\frac{2}{L} \int_{0}^{L} f(y) \sin \left(\frac{(2 n+1) \pi}{2 L} y\right) d y .
$$

96. $u(r, \varphi)=\frac{A b^{2}}{2} \frac{\ln r-\ln a}{\ln b-\ln a}-\frac{A b^{4}\left(r^{4}-a^{4}\right)}{2\left(b^{4}-a^{4}\right) r^{2}} \cos 2 \varphi$.

Глава 4

Автомодельность и нелинейные уравнения в частных производных

4.1. Автомодельность

Говорят, что дифференциальное уравнение в частных производных для функции двух независимых переменных x, t имеет автомодельное решение, если существуют такие функции времени $A(t)$ и $l(t)$, что решение $u(x, t)$ может быть представлено в виде:

$$
u(x, t)=A(t) f\left(\frac{x}{l(t)}\right)
$$

Решение задачи сводится к обыкновенному дифференциальному уравнению для $f(\xi)$. В физических задачах обычно можно найти автомодельную подстановку, используя анализ размерностей.

Важным частным случаем автомодельных решений являются бегущие волны, т.е. решения вида

$$
\begin{equation*}
u(x, t)=f(x-V t), \tag{4.1}
\end{equation*}
$$

где f - функция одной переменной, а $V=$ const. Действительно, подстановка $\zeta=e^{x}, \tau=e^{t}$ приводит (4.I) к виду $u(\zeta, \tau)=g\left(\zeta \tau^{-V}\right)$, где $f(\xi)=g\left(e^{\xi}\right)$.

4.2. Нелинейные уравнения в частных производных

Помимо автомодельных решений, играюших важную роль в физике, для нелинейных уравнений в частных производных, вообще говоря, не существует общих методов решения. Однако иногда удается найти широкий класс решений или даже обшее решение нелинейного уравнения, превратив его заменой переменных в линейное. Таких преобразований известно немного.

Для некоторых важных в физике эволюционных уравнений удается определить зависимость от времени интегральных характеристик решений без явного их построения. Это, в свою очередь, позволяет увидеть сушественные черты решений, такие, как образование особенности за конечное время.

Особое место занимают нелинейные уравнения в частных производных первого порядка. Оказывается, что решение задачи Коши для такого уравнения сводится к нахождению общего решения некоторой системы обыкновенных дифференциальных уравнений. Рассмотрим для простоты случай двух переменных x и y. Уравнение рассматриваемого типа записывается в виде:

$$
\begin{equation*}
F(u, p, q, x, y)=0 \tag{4.2}
\end{equation*}
$$

где F - некоторая заданная функция, предполагаемая достаточно гладкой, $u=u(x, y)$ - искомое решение, и $p=u_{x}, q=u_{y}$.

Дифференцируя равенство (4.2) по x и y и учитывая, что

$$
\frac{\partial}{\partial x} q=\frac{\partial^{2} u}{\partial x \partial y}=\frac{\partial}{\partial y} p
$$

получим соотношения:

$$
\begin{align*}
& F_{p} \frac{\partial p}{\partial x}+F_{q} \frac{\partial p}{\partial y}=-F_{x}-p F_{u} \tag{4.3}\\
& F_{p} \frac{\partial q}{\partial x}+F_{q} \frac{\partial q}{\partial y}=-F_{y}-q F_{u}
\end{align*}
$$

Из них следует, что вдоль любой кривой $(x(\tau), y(\tau))$, удовлетворяющей уравнениям:

$$
\begin{equation*}
\dot{x}=F_{p}, \quad \dot{y}=F_{q}, \tag{4.4}
\end{equation*}
$$

где точка обозначает производную по параметру τ, функции p и q изменяются так, что

$$
\begin{equation*}
\dot{p}=-F_{z}-p F_{u}, \quad \dot{q}=-F_{y}-q F_{u} . \tag{4.5}
\end{equation*}
$$

Производная функции $u(x, y)$ вдоль кривой (4.4) также может быть выражена через u, p, q и x, y :

$$
\begin{equation*}
\dot{u}=u_{x} \dot{x}+u_{y} \dot{y}=p F_{p}+q F_{q} . \tag{4.6}
\end{equation*}
$$

Уравнения (4.4)-(4.6) образуют уже замкнутую систему. Она определяет семейство кривых в пятимерном пространстве с координатами (u, p, q, x, y). Эти кривые называются характеристиками уравнения (4.2). Обшее решение системы (4.4)-(4.6) зависит от пяти произвольных постоянных. Одна соответствует произволу в выборе начала отсчета параметра τ и фиксируется из соображений удобства. Начальные данные для уравнения (4.2) задаются на какой-нибудь кривой Г в плоскости (x, y). При этом определено как значение самой функции $\left.u(x, y)\right|_{\Gamma}$, так и производная вдоль этой кривой, то есть некоторая линейная комбинация p и q. Таким образом, начальные условия устраняют произвол еще в двух постоянных. Наконец, учет исходного соотношения (4.2) оставляет свободной только одну константу. Получившееся однопараметрическое семейство

кривых при проектировании на подпространство (u, x, y) образует график искомого решения, то есть поверхность $u=u(x, y)$. Аналитическое выражение может быть найдено исключением параметра τ и оставшейся произвольной постоянной.

Некоторые методы решения уравнений с помощью преобразований подобия описаны в [3P66] на примере задач газовой динамики. Начальные сведения по аналитической теории нелинейных волн можно найти в [Уиз77] и приведенной там библиографии.

4.3. Примеры

97. Требуется решить уравнение теплопроводности

$$
\begin{equation*}
u_{t}=\chi u_{x x} \tag{4.7}
\end{equation*}
$$

на вещественной оси ($-\infty<x<\infty$) при $t>0$. Ищем рещение, удовлетворяющее точечному начальному условию

$$
\begin{equation*}
u(x, 0)=Q \delta(x) \tag{4.8}
\end{equation*}
$$

и убывающее на бесконечности

$$
\begin{equation*}
u(\pm \infty, t) \rightarrow 0 \tag{4.9}
\end{equation*}
$$

Решение. Решение зависит от обеих независимых переменных x, t и от параметров задачи χ, Q. Размерности этих величин следуюшие: $[t]=T,[\chi]=L^{2} T^{-1},[Q]=[u] \cdot L,[x]=L$. Здесь $T, L,[u]-$ единицы размерности времени, длины и величины u соответственно. Найдем безразмерный параметр задачи $\xi=t^{n} x \chi^{k}$. На показатели степени имеем два уравнения: $n-k=0$ и $1+2 k=0$. Для подстановки следует взять $n=k=-\frac{1}{2}$, откуда $\xi=\frac{x}{\sqrt{x^{2}}}$. Тогда решение уравнения теплопроводности можно искать в виде

$$
\begin{equation*}
u(x, t)=\frac{Q}{\sqrt{\chi^{t}}} f\left(\frac{x}{\sqrt{\chi^{t}}}\right) \tag{4.10}
\end{equation*}
$$

где $f(\xi)$ - безразмерная функиия безразмерного аргумента. Подстановка (4.10) в уравнение (4.7) позволяет определить $f(\xi)$:

$$
f(\xi)=\frac{1}{2 \sqrt{\pi}} \exp \left(-\frac{\xi^{2}}{4}\right)
$$

Характерная ширина l энергосодержашей области (где u велико) растет со временем как $l(t) \sim \sqrt{\chi}$, а максимальное значение величины u убывает как $A(t) \sim \frac{Q}{\sqrt{x^{2}}}$.

Способ построения автомодельных решений можно сформулировать и в несколько более обшем виде. чем анализ размерностей. Именно. автомодельная подстановка проходит через уравнение, если оно

инвариантно относительно согласованных масштабных преобразований пространственных переменных \mathbf{r} и времени t. При этом автомодельной переменной ξ является инвариантная комбинаиия г и t. Закон же преобразования искомой функции может диктоваться как самим уравнением, так и требованием инвариантности начальных и граничных условий.

Начальное условие (4.8) задано в виде δ-функции. Если задать ненулевое начальное условие в области конечной ширины, например в виде гауссовой функции

$$
u(x, 0)=\frac{Q}{\sqrt{\pi} a} \exp \left(-\frac{x^{2}}{a^{2}}\right)
$$

в задаче появится второй масштаб a, и автомодельное решение (4.10) уже перестанет быть точным решением задачи Коши, но останется верным асимптотически на больших временах, когда

$$
l(t)=\sqrt{\chi^{t}} \gg a
$$

и конечностью а в сравнении с характерной шириной решения можно пренебречь. Вместо граничного условия (4.9) в задачах также может встретиться требование обращения решения в нуль на концах некоторого конечного интервала: $u(\pm L, t)=0$. В задаче тоже появится второй масштаб, поэтому автомодельное решение перестанет удовлетворять граничным условиям. Однако автомодельное решение справедливо на малых временах до тех пор, пока

$$
l(t)=\sqrt{\chi t} \ll L
$$

Таким образом, в задачах, где характерные масштабы начальных и граничных условий существенно различаются ($a \ll L$), автомодельное решение представляет собой промезсточную асимптотику.
98. Найти автомодельное решение одномерного уравнения теплопроводности

$$
u_{t}=u_{x x}
$$

при условии, что в начальный момент времени

$$
\int_{-\infty}^{\infty} u(x, 0) d x=1
$$

Решение. Изменение масштабов всех переменных

$$
t \longrightarrow \mu t, \quad x \longrightarrow \lambda x, \quad u \longrightarrow \nu u
$$

должно оставлять инвариантными уравнение и начальное условие, откуда

$$
\begin{align*}
& \frac{\nu}{\mu}=\frac{\nu}{\lambda^{2}}, \tag{4.11}\\
& \lambda \nu=1 . \tag{4.12}
\end{align*}
$$

Из (4.11), (4.12) получаем $\lambda=\mu^{1 / 2}, \nu=\mu^{-1 / 2}$. Поэтому можно искать неизвестную функцию в виде

$$
u(x, t)=\frac{1}{\sqrt{t}} f\left(\frac{x}{\sqrt{t}}\right) .
$$

Подставляя в уравнение теплопроводности, получаем обыкновенное дифференциальное уравнение для функции f :

$$
f^{\prime \prime}+\frac{1}{2}(\xi f)^{\prime}=0
$$

которое интегрируется $f^{\prime}+\xi \frac{1}{2}=$ const $=C$. Общее решение имеет вид

$$
f(\xi)=e^{-\xi^{2} / 4}\left(C_{1}+C \int_{0}^{\xi} d y e^{y^{2} / 4}\right)
$$

Функция f интегрируема только при $C=0$; постоянная C_{ℓ} находится из нормировки начального условия. Мы видим, что в этом случае условие автомодельности однозначно определяет решение $u(x, t)$, и, следовательно, оно совпадает с решением предыдущей задачи при $Q=1$:

$$
u(x, t)=\frac{1}{\sqrt{4 \pi t}} \exp \left(-\frac{x^{2}}{4 t}\right)
$$

99. Найти автомодельную подстановку для одномерного уравнения теплопроводности на полуоси $0 \leqslant x<\infty$ и решить задачу Коши, если
(a) $u(x, 0)=0, u(0, t)=1$;
(6) $u(x, 0)=0, u(0, t)=t$.

Решение. (а) Вместо (4.12) найдем второе уравнение для λ, μ, ν из условий задачи. Граничное условие фиксирует $\nu=1$, тогда автомодельная подстановка

$$
u(x, t)=f\left(\frac{x}{\sqrt{t}}\right)
$$

дает уравнение

$$
f^{\prime \prime}+\frac{1}{2} \xi f^{\prime}=0
$$

с граничным условием $f(0)=1, f(\infty)=0$. Его интегрирование дает:

$$
u(x, t)=\frac{1}{\sqrt{\pi}} \int_{s / \sqrt{t}}^{\infty} \exp \left(-\frac{\xi^{2}}{4}\right) d \xi .
$$

Решение. (б) Граничное условие дает $\nu=\mu$, откуда получается автомодельная подстановка

$$
u(x, t)=t f\left(\frac{x}{\sqrt{t}}\right)
$$

после которой надо решить задачу

$$
f^{\prime \prime}+\frac{1}{2} \xi f^{\prime}-f=0, \quad f(0)=1, \quad f(+\infty)=0
$$

Одно решение $f_{1}=\mathrm{I}+\frac{\xi^{2}}{2}$ легко угадать, но оно не удовлетворяет условию на бесконечности. Второе решение можно найти с помощью подстановки $f=f_{1} f_{2}$, где f_{2} - новая неизвестная функция. Таким образом,

$$
u(x, t)=C\left(x^{2}+t\right) \int_{x / \sqrt{t}}^{\infty} \frac{\exp \left(-\eta^{2} / 4\right) d \eta}{\left(2+\eta^{2}\right)^{2}}, \quad C^{-1}=2 \int_{0}^{\infty} \frac{\exp \left(-\eta^{2} / 4\right) d \eta}{\left(2+\eta^{2}\right)^{2}}
$$

100. Найти автомодельную подстановку и автомодельное решение нелинейного уравнения теплопроводности

$$
\frac{\partial u}{\partial t}=\frac{\partial}{\partial x}\left(u^{n} \frac{\partial u}{\partial x}\right), \quad \int_{-\infty}^{\infty} u(x, 0) d x=1, \quad u(-x, t)=u(x, t)
$$

Решение. В нелинейном уравнении теплопроводности (или диффузии) вместо (4.11) из инвариантности уравнения относительно преобразований растяжения получится

$$
\frac{\nu}{\mu}=\frac{\nu^{n+1}}{\lambda^{2}} .
$$

Отсюда и из (4.12)

$$
\lambda=\mu^{1 /(n+2)}, \quad \nu=\mu^{-1 /(n+2)},
$$

и, следовательно, автомодельная подстановка имеет вид

$$
u(x, t)=t^{-1 /(n+2)} \cdot f\left(x t^{-1 /(n+2\}}\right) .
$$

Уравнение приводится к обыхновенному дифференциальному

$$
\left(f^{n} f^{\prime}\right)^{\prime}+\frac{1}{n+2}(\xi f)^{\prime}=0
$$

которое можно проинтегрировать

$$
f^{n} f^{\prime}+\frac{1}{n+2} \xi f=C_{\mathrm{t}}
$$

В силу граничных условий $f^{\prime}(0)=0$, поэтому $C_{1}=0$. Переменные разделяются, а вторая константа интегрирования находится из условия

Pwс.4.1. Автомодельное решение нелинейного уравнения теплопроводности при $n=2$. Стрелкой показано направление распространения волны ($-t=1$;
$-t=2$; $--t=4$)
нормировки. Получается решение типа тепловой ударной волны с резким передним фронтом (рис.4.1).

$$
\begin{gathered}
u(x, t)=\frac{1}{t^{n+2}}\left[C-\frac{x^{2}}{2(n+2) t^{2 /(n+2)}}\right]^{1 / n}, \quad \text { при } x^{2}<2(n+2) t^{2 /(n+2)} \\
u(x, t)=0 \quad \text { при } x^{2}>2(n+2) t^{2 /(n+2)}, \quad n \neq 0 \\
C=\left[\frac{n(n+2)}{8 \pi} \frac{\Gamma^{2}\left(\frac{1}{n}+\frac{1}{2}\right)}{\Gamma^{2}\left(\frac{1}{n}\right)}\right]^{n /(n+2)}
\end{gathered}
$$

В частности, при $n=2: C=\frac{1}{\pi}$. При $n=0$ см. задачу 98.
101. В полупространстве $x>0$ было задано постоянное поле температур $u(0, x)=u_{0}>0$. Начиная с момента времени $t=0$ и далее температура на левой границе $x=0$ поддержсивается равной $u(t, 0)=-u_{0}$. Уравнение эволюции температурного поля $u(x, t)$ имеет вид

$$
\begin{equation*}
u_{t}-\chi u_{x x}=Q \frac{d y(t)}{d t} \delta(x-y(t)) \tag{4.13}
\end{equation*}
$$

где функция времени $y(t)$ определяется условием: $u(y(t), t)=0$. Найти $u(x, t) и y(t)$ при всех $t>0$. Рассмотреть, в частности, асимптотику $\boldsymbol{Q} \rightarrow+\boldsymbol{\infty}^{*}$.

Решение. Левая часть уравнения (4.13) при преобразовании подобия $x \rightarrow \lambda x, t \rightarrow \lambda^{2} t$ и $u \rightarrow u$, не меняющем граничных и начальных условий, приобретает общий множитель $\frac{1}{\lambda^{2}}$. Правая часть (4.13) будет преобразовываться по такому же закону, если мы положим

$$
y(t)=2 a \sqrt{\chi t}
$$

[^5]где a - безразмерная постоянная, а множитель $2 \sqrt{\chi}$ выделен для удобства. Это означает, что решение задачи имеет автомодельный вид:

$$
\begin{equation*}
u(x, t)=f(z), \quad z=\frac{x}{\sqrt{\chi t}} . \tag{4.14}
\end{equation*}
$$

После подстановки (4.14) уравнение (4.13) сводится к обыкновенному:

$$
\begin{equation*}
f^{\prime \prime}(z)+\frac{z}{2} f^{\prime}+a Q \delta(z-2 a)=0 \tag{4.15}
\end{equation*}
$$

Асимптотика функции $f(z)$ при $z \rightarrow+\infty$ следует из начального условия: $f(z \rightarrow+\infty) \rightarrow u_{0}$. Другим траничным условием для $f(z)$ является $f(0)=-u_{0}$. Обшее решение уравнения (4.15) в областях $z<2 a$ и $z>2 a$ находится без труда:

$$
\begin{aligned}
& f(z)=A_{1}+B_{1} \int_{0}^{z} d s e^{-z^{2} / 4}, \quad z<2 a \\
& f(z)=A_{2}+B_{2} \int_{z}^{\infty} d s e^{-s^{2} / 4}, \quad z>2 a .
\end{aligned}
$$

Константы $A_{1,2}, B_{1,2}$ и а определяются непрерывностью $f(z)$ при $z=2 a$, скачком производной $f^{\prime}(2 a+0)-f^{\prime}(2 a-0)=-a Q$ и требованием $u(y(t), t)=f(2 a)=0$. В результате получим

$$
A_{1}=-u_{0}, \quad A_{2}=u_{0}, \quad B_{1}=\frac{u_{0}}{\sqrt{\pi} \operatorname{erf} a}, \quad B_{2}=\frac{u_{0}}{\sqrt{\pi}(1-\operatorname{erf} a)}
$$

где егf $a=\frac{2}{\sqrt{\pi}} \int_{0}^{a} d s e^{-s^{2}}-$ интеграл вероятности, и константа a находится из трансцендентного уравнения:

$$
\frac{u_{0}}{\sqrt{\pi}}\left(\frac{1}{\operatorname{erf} a}-\frac{1}{1-\operatorname{erf} a}\right)=a Q e^{a^{2}}
$$

При $Q \rightarrow 0$ уравнение вырождается в erf $a=\frac{1}{2}$, так что в этом пределе $a \approx 0,48$ и $y=0,96 \sqrt{\chi t}$. При $Q \rightarrow+\infty$ получим $a \approx \frac{1}{2} \sqrt{\frac{2 u_{0}}{Q}}$, то есть

$$
y(t) \approx \sqrt{\frac{2 u_{0} \chi}{Q} t}
$$

Большое тепловыделение замедляет движение фронта кристаллизации.
102. Уравнение Бюргерса

$$
\begin{equation*}
u_{t}+\boldsymbol{u} u_{x}=\mu u_{x x}, \quad-\infty<x<+\infty \tag{4.16}
\end{equation*}
$$

описывает слабые ударные волны в среде с диссипацией энергии. Найти решение типа ударной волны, т. е. удовлетворяющее условиям

$$
\lim _{x \rightarrow-\infty} u(x, t)=u_{1}, \quad \lim _{x \rightarrow+\infty} u(x, t)=u_{2}
$$

Решение. Подстановка (4.1) в уравнение Бюргерса приводит к обыкновенному дифференциальному уравнению

$$
\begin{equation*}
\mu f^{\prime \prime}=f^{\prime}(f-V) \tag{4.17}
\end{equation*}
$$

с граничными условиями $f(-\infty)=u_{1}, f(+\infty)=u_{2}$. Интегрируя (4.17) от $-\infty$ до $+\infty$, получаем

$$
-V\left(u_{2}-u_{1}\right)+\frac{1}{2}\left(u_{2}^{2}-u_{1}^{2}\right)=0_{1}
$$

откуда $V=\frac{u_{1}+u_{2}}{2}$, поэтому скорость ударной волны зависит только от граничных значений и не зависит от параметра μ (вязкости среды).

Далее, интегрируя (4.17) один раз от $-\infty$ до ξ и учитывая явное выражение скорости фронта V через u_{1} и u_{2}, получим уравнение с разделяющимися переменными:

$$
\mu f^{\prime}=\frac{1}{2}\left(f-u_{1}\right)\left(f-u_{2}\right)
$$

Его решение

$$
f(\xi)=\frac{u_{1}+u_{2} \exp \left[\left(u_{1}-u_{2}\right) \xi / 2 \mu\right]}{1+\exp \left[\left(u_{1}-u_{2}\right) \xi / 2 \mu\right]}=V-\frac{u_{1}-u_{2}}{2} \operatorname{th}\left(\frac{\left(u_{1}-u_{2}\right) \xi}{2 \mu}\right)
$$

удовлетворяет граничным условиям только при $u_{i}>u_{2}$ (в противном случае профиль скорости начал бы "распрямляться», и ударная волна исчезла). Оно изображено на рис. 4.2 при $u_{2}=0$. Ширина фронта ударной волны (кинка) увеличивается с ростом вязкости среды μ.

Рис. 4.2. Решение уравнения Бюргерса типа ударной волны: $u_{1}=2, u_{2}=0$. Значения вязкости $\mu: \quad$ - 0,$1 ; \cdots 0,3$; - 0,5. С уменьшением μ фронт волны становится круче
103. Показать, что уравнение Кортевега-де Фриза

$$
u_{t}+6 u u_{x}+u_{x x x}=0
$$

имеет решение в виде бегущей волны. Найти частное решение, обращающееся на бесконечности в нуль вместе со своими первой и второй производными no x.

Решение. После подстановки $u(x, t)=f(x-V t)$ для функции f получается уравнение третьего порядка $f^{\prime \prime \prime}+(6 f-V) f^{\prime}=0$, которое можно два раза проинтегрировать:

$$
f^{\prime \prime}+3 f^{2}-V f+C_{1}=0, \quad \frac{1}{2} f^{\prime 2}+f^{3}-\frac{1}{2} V f^{2}+C_{1} f+C_{2}=0 .
$$

Чтобы при $x \rightarrow \infty$ функция f, ее первая и вторая производные обращались в нуль, следует выбрать $C_{1}=C_{2}=0$. Тогда уравнение интегрируется в элементарных функциях. Решение

$$
u(x, t)=\frac{V / 2}{\operatorname{ch}^{2}[\sqrt{V} / 2(x-V t)]}
$$

представляет собой уединенную волну (солитон - от англ. solitary wave), экспоненциально затухаюшую при $\xi=$ $x-V t \rightarrow \pm \infty$ (рис. 4.3). Характерная ширина солитона $\delta \xi \sim V^{-1 / 2}$ однозначно связана с его скоростью V и амплитудой $\frac{V}{2}$.

Уравнение Кортевега-де Фриза описывает волну в среде с дисперсией, где фазовая скорость зависит от длины волны. Для волны достаточно большой амплитуды расплывание волнового пакета из-за дисперсии может скомпенсироваться укручением волны за счет нелинейности. Солитон - это решение, в котором дисперсия и не-

Рис. 4.3. Солитонное решение уравнения Кортевега-де Фриза при $V=1,7$

линейность взаимно скомпенсированы, потому он и распространяется без изменения формы.
104. Найти решение типа уединенной бегущей волны уравнения нелинейной струны

$$
u_{i t}-u_{x x}+\left(u^{2}\right)_{x x}+u_{x x x x}=0
$$

Решение. Подставив бегушую волну $u=f(x-V t)$ в уравнение нелинейной струны, получим обыкновенное дифференциальное уравнение

$$
f^{\prime \prime}\left(V^{2}-1\right)+\left(f^{2}\right)^{\prime \prime}+f^{(I V)}=0
$$

которое два раза интегрируется

$$
f^{\prime \prime}+f^{2}+f\left(V^{2}-1\right)=C_{1} \xi+C_{2}
$$

Функция f обрашается на бесконечности в нуль вместе со своими производными, поэтому $C_{1}=C_{2}=0$. Тогда уравнение можно умножить на f^{\prime} и еще раз проинтегрировать. Получится

$$
\frac{1}{2} f^{\prime 2}+\frac{1}{3} f^{3}+\frac{1}{2} f^{2}\left(V^{2}-1\right)=C_{3} .
$$

Третья константа также равна нулю для уединенной волны. Получилось уравнение первого порядка с разделяющимися переменными. Ero решение существует только при $|V|<1$ (или в размерных единицах скорость волны должна быть меньше скорости звука):

$$
f(\xi)=\frac{3}{2} \frac{1-V^{2}}{\operatorname{ch}^{2} \frac{\sqrt{1-V^{2}}\left(\xi-\xi_{0}\right)}{2}} .
$$

105. Одномерное движение политропного газа описывается системой уравнений

$$
\begin{array}{r}
\frac{\partial \rho}{\partial t}+\frac{\partial}{\partial x}(\rho v)=0 \\
\frac{\partial v}{\partial t}+v \frac{\partial v}{\partial x}+\frac{c^{2}(\rho)}{\rho} \frac{\partial \rho}{\partial x}=0 \tag{4.18}\\
c^{2}(\rho)=c_{0}^{2}\left(\frac{\rho}{\rho_{0}}\right)^{\gamma-1} .
\end{array}
$$

Найти автомодельные решения для двух разных начальных условий:
(a) В начальный момент плотность имеет скачок при $x=0$:

$$
\rho(x, 0)= \begin{cases}\rho_{0}, & x>0 ; \\ 0, & x<0,\end{cases}
$$

скорость равна нулю: $v(x, 0)=0$.
(6) В начальный момент имеется порция газа, сосредоточенная в точке $\boldsymbol{x}=0$. Газ растекается без изменения полной массы.

Решенне. Выполняя преобразование подобия

$$
t \longrightarrow \mu t, \quad x \longrightarrow \lambda x, \quad u \longrightarrow \alpha u, \quad \rho \longrightarrow \nu \rho,
$$

получаем, что уравнения не изменятся, если

$$
\begin{equation*}
\frac{\nu}{\mu}=\frac{\nu \alpha}{\lambda}, \quad \frac{\alpha}{\mu}=\frac{\alpha^{2}}{\lambda}=\frac{\nu^{\gamma-1}}{\lambda} . \tag{4.19}
\end{equation*}
$$

В этой системе уравнений имеется два свободных параметра. Их число уменьшается до одного разными способами в зависимости от начальных условий.
(a) В этом случае нужно выбрать $\nu=1$, поскольку на бесконечности $\rho=\rho_{0}$. Решая (4.19), получаем

$$
\alpha=1, \quad \lambda=\mu
$$

Ищем решение системы в виде

$$
\rho=f\left(x t^{-1}\right), \quad v=g\left(x t^{-1}\right)
$$

На f, g получается система обыкновенных дифференииальных уравнений

$$
\begin{array}{r}
(g-\xi) f^{\prime}+f g^{\prime}=0 \\
\frac{c^{2}(f)}{f} f^{\prime}+(g-\xi) g^{\prime}=0 \tag{4.20}
\end{array}
$$

где $\xi=x t^{-1}$, а штрих означает производную по ξ.
Тривиальное автомодельное решение получается, если определитель линейной системы уравнений относительно f^{\prime}, g^{\prime} не равен нулю. Тогда

$$
\begin{equation*}
f^{\prime}=g^{\prime}=0 \tag{4.21}
\end{equation*}
$$

т. е. f, g постоянны.

Условие равенства определителя нулю дает связь между f и g :

$$
(g-\xi)^{2}=c^{2}(f)
$$

Отсюда получаем, что для нетривиальных решений

$$
\begin{equation*}
g=\xi \pm c(f) \tag{4.22}
\end{equation*}
$$

Если условия (4.22) выполнено, то уравнения в системе (4.20) становятся эквивалентными. Найдем решение, соответствуюшее выбору знака *минус* в уравнении (4.22). Тогда

$$
g=\xi-c_{0}\left(\frac{f}{\rho_{0}}\right)^{(\tau-1) / 2}
$$

Подставляя выражение для g в уравнение (4.20), получаем уравнение

$$
f-\frac{\gamma+1}{2}\left(\frac{f}{\rho_{0}}\right)^{(\gamma-1) / 2} f^{\prime}=0
$$

интегрируя которое, имеем

$$
\begin{equation*}
\frac{\gamma+1}{\gamma-1} c_{0}\left(\frac{f}{\rho_{0}}\right)^{(\gamma-1) / 2}=\frac{\gamma+1}{\gamma-1} c(f)=A+\xi \tag{4.23}
\end{equation*}
$$

где A - произвольная постоянная. Подставляя (4.23) в (4.22), получаем

$$
\begin{equation*}
g=-\frac{\gamma-1}{\gamma+1} A+\frac{2}{\gamma+1} \xi \tag{4.24}
\end{equation*}
$$

Решение, соответствуюшее выбору знака «плюс» в уравнении (4.22), получается изменением в формулах (4.23) и (4.24) знака перед ξ на обратный.

Сконструируем решение начальной задачи из автомодельных решений (4.23), (4.24) и (4.21). Предположим, что решение (4.23), (4.24) с ростом ξ справедливо до точки ξ_{0} и потребуем, чтобы начиная с нее оно непрерывно переходило в решение (4.21) с $f=\rho_{0}$ и $g=0$. Условие непрерывности дает систему уравнений на A, ξ_{0}, решая которую, получаем

$$
\xi_{0}=c_{0}, \quad A=\frac{2}{\gamma-1} c_{0} .
$$

Интервал, на котором справедливо решение (4.23), (4.24), слева ограничен условием $f>0$, которое выполняется при $\xi>\xi_{1}=-\frac{2 c_{0}}{\gamma-1}$. Окончательно имеем в момент времени $t>0$:

- при $x<\xi_{1} t$ находится вакуум; $v=0, \rho=0$;
- при $\xi_{1} t<x<c_{0} t$ скорость $v=-\frac{2}{\gamma-1}\left(c_{0}-\frac{x}{t}\right)$, а плотность определяется из (4.23);
- при $x>c_{0} t$ находится невозмущенный газ: $v=0, \rho=\rho_{0}$ (рис. 4.4).

Рис. 4.4. Автомодельное решение задачи 105 (а) с начальным профилем плотности в виде ступенчатой функции

При $t \rightarrow+0$ это решение стремится к начальным условиям.

Заметим, что полученное поле скорости разрывно на границе с вакуумом. Формально это не противоречит уравнениям (4.18), так как скорость вакуума не определена. Физически же это означает, что вблизи границы газ-вакуум становятся сушественными диссипативные процессы, не учтенные в системе (4.18). Им соответствуют члены в уравнениях эволюции, содержащие пространственные производные второго порядка. Если их принять во внимание, то разрыв сгладится. Такая тонкая структура ударной волны для одномерных движении может быть определена в рамках уравнения Бюргерса с некоторыми эффективными параметрами. Это замечание относится ко всем задачам подобного типа.
(б) Из сохранения массы получаем

$$
\begin{equation*}
\nu \lambda=1 . \tag{4.25}
\end{equation*}
$$

Выражая масштабные коэффициенты через μ, имеем

$$
\alpha=\mu^{(1-\gamma) /(1+\gamma)}, \quad \nu=\mu^{-2 /(1+\gamma)}, \quad \lambda=\mu^{2 /(1+\gamma)} .
$$

Отыскивая решение в виде

на функции f и g получаем систему обыкновенных дифференциальных уравнений

$$
\begin{align*}
& -\frac{2}{\gamma+1}(f \xi)^{\prime}+(f g)^{\prime}=0 \\
& -\frac{1}{\gamma+1}\left[(\gamma-1) g+2 \xi g^{\prime}\right]+g g^{\prime}+f^{\gamma-2} f^{\prime}=0 \tag{4.26}
\end{align*}
$$

Интегрируя первое уравнение, получаем, что при $f \neq 0$ значение $g(0)$ равно нулю, когда постоянная интегрирования равна нулю. Тогда имеем

$$
g(\xi)=\frac{2}{\gamma+1} \xi
$$

Интегрируя второе уравнение, получаем

$$
f=\left[C+\frac{(\gamma-1)^{2}}{(\gamma+1)^{2}} \xi^{2}\right]^{1 /(\gamma-1)}
$$

где C - произвольная постоянная. Второе решение системы (4.26) тривиально:

$$
f=g=0
$$

K сожалению, решения, полученные в предположении (4.25), выражающем сохранение массы газа, сами описывают движение бесконечной либо нулевой массы газа.
106. Построить автомодельное решение, описьвающее растекание газа с аотрицательным давлениемь:

$$
\begin{aligned}
& \frac{\partial \rho}{\partial t}+\frac{\partial}{\partial x}(\rho v)=0 \\
& \frac{\partial v}{\partial t}+v \frac{\partial v}{\partial x}-\frac{\partial \rho}{\partial x}=0,
\end{aligned}
$$

если в начальный момент вся масса M газа находилась в точке $\boldsymbol{x}=0$.
Решение. Вначале решение точно повторяет решение задачи (б) для $\gamma=2$. Вместо (4.26) получается система

$$
\begin{align*}
& -\frac{2}{3}(f \xi)^{\prime}+(f g)^{\prime}=0 \\
& -\frac{1}{3}\left[\left(g+2 \xi g^{\prime}\right]+g g^{\prime}-f^{\prime}=0\right. \tag{4.27}
\end{align*}
$$

решая которую, имеем

$$
g=\frac{2}{3} \xi, \quad f=C-\frac{1}{9} \xi^{2}
$$

Второе решение тривиально: $f=g=0$.

Рис.4.5. Коллапс параболического профиля плотности, $t_{0}=2(-t=0 ;-t=1$; $\cdots t=1,75 ;-t=1,95$)

Решение, описывающее расплывание конечной массы вешества, имеет вид

$$
\begin{aligned}
v(x, t) & = \begin{cases}\frac{2 x}{3 t}, & |x|<3 \sqrt{C} t^{2 / 3} ; \\
0, & |x|>3 \sqrt{C} t^{2 / 3},\end{cases} \\
\rho(x, t) & =\left\{\begin{array}{ll}
t^{-2 / 3}\left(C-\frac{x^{2}}{9 t^{4 / 3}}\right), & |x|<3 \sqrt{C} t^{2 / 3} ; \\
0, & |x|>3 \sqrt{C} t^{2 / 3} . \\
C & =\left(\frac{M}{4}\right)^{2 / 3} .
\end{array} .\right.
\end{aligned}
$$

Заметим, что заменой $t \longrightarrow t_{0}-t$ получается решение, в котором плотность обращается в бесконечность в момент $t=t_{0}$. Такое явление называется коллапсом (рис. 4.5).
107. Найти асимптотику при $t \rightarrow+\infty$ решения $f(x, t)$ неоднородного уравнения эволюции:

$$
\begin{equation*}
\frac{\partial}{\partial t} f-\frac{\partial^{2}}{\partial x^{2}}\left(1+x^{2}\right) f=\frac{d^{2}}{d x^{2}} \frac{1}{1+x^{2}} \tag{4.28}
\end{equation*}
$$

с нулевыми начальными условиями.
Решение. Оператор $\widehat{\mathcal{L}}=\frac{d^{2}}{d x^{2}}\left(1+x^{2}\right)$ эрмитов в гильбертовом пространстве со скалярным произведением

$$
\begin{equation*}
(f, g)=\int_{-\infty}^{+\infty} d x\left(1+x^{2}\right) f^{*} g \tag{4.29}
\end{equation*}
$$

и его собственные значения отрицательны. Это значит, что если решение нашей задачи Коши принашлежит такому гильбертовому пространству, то в асимптотике $t \rightarrow+\infty$ оно не зависит от времени t. Предлоложим, что искомое f нормируемо относительно скалярного произведения (4.29). Тогда при $t \rightarrow+\infty$ оно удовлетворяет стационарному уравнению:

$$
-\widehat{\mathcal{L}} f=\frac{d^{2}}{d x^{2}} \frac{1}{1+x^{2}},
$$

имеюшему обшее решение с двумя неопределенными константами:

$$
f=-\frac{1}{\left(1+x^{2}\right)^{2}}+\frac{C_{1} x}{1+x^{2}}+\frac{C}{1+x^{2}} .
$$

Они могут быть определены из начальных данных без решения полной эволюционной задачи, а с помощью соображений симметрии и закона

сохранения. Действительно, уравнение (4.28) и начальное условие инвариантны относительно отражения $x \rightarrow-x$. Такой же симметрией должно обладать и решение, что сразу фиксирует $C_{1}=0$. Далее, проинтегрировав обе части (4.28) по всей прямой x, мы получим, что интеграл $+\infty$
$\int_{-\infty}^{\infty} d x f(x, t)$ от t не зависит. Поскольку при $t=0$ он был равен нулю, то таким должен оставаться и при $t \rightarrow+\infty$. Отсюда определяем, что $C=\frac{1}{2}$. Итак, искомая асимптотика имеет вид

$$
f(x, t) \longrightarrow f=-\frac{1}{\left(1+x^{2}\right)^{2}}+\frac{1}{2\left(1+x^{2}\right)}
$$

Норма этой функции относительно (4.29), очевидно, конечна.
108. Эвалюция поля $\psi(\mathrm{r}, t)$ в деумерном пространстве определяется нелинейным уравнением ІІредингера

$$
\begin{equation*}
i \psi_{t}+\Delta \psi+|\psi|^{2} \psi=0 . \tag{4.30}
\end{equation*}
$$

(a) Доказать, что функционалы

$$
N=\int d r|\psi|^{2}, \quad H=\int d r\left(|\nabla \psi|^{2}-\frac{1}{2}|\psi|^{4}\right)
$$

яөляются интегралами движения.
(6) Доказать, что для локализованного в пространстве начального возмущения величина:

$$
I=\int d r r^{2}|\psi|^{2}
$$

удовлетворяет уравнению:

$$
\frac{d^{2}}{d t^{2}} I=-8 H
$$

Испальзуя это соотноиение, показать, что при положсительном значении \boldsymbol{H} в решении $\psi(\mathbf{r}, t)$ за конечное время образуется сингулярность (критерий Таланова). Иными словами, существуют такой момент времени t* и точка пространства \mathbf{r}^{*}, что при $t \rightarrow t^{*} u \mathbf{r} \rightarrow \mathbf{r}^{*}: \psi(\mathbf{r}, \boldsymbol{t}) \rightarrow \infty$.

Решение. (а) Выпишем вместе с уравнением (4.30) комплексно сопряженное:

$$
\begin{equation*}
-i \psi_{t}^{*}+\Delta \psi^{*}+|\psi|^{2} \psi^{*}=0 \tag{4.31}
\end{equation*}
$$

умножим (4.30) на ψ^{*} и (4.31) на ψ, вычтем одно из другого и проинтегрируем по пространству. Для $\psi(r, t)$, достаточно быстро убываюших при $r \rightarrow \infty$, получим $\frac{d N}{d t}=0$.

Далее, подействуем оператором ∇ на уравнение (4.30), умножим результат на $\nabla \psi^{*}$, из полученного равенства вычтем комплексно сопряженное и проинтегрируем по пространству. Результатом этих преобразований будет соотношение:

$$
i \frac{d}{d t} \int d \mathrm{r}|\nabla \psi|^{2}=\int d \mathrm{r}\left(\psi \Delta \psi^{*}-\psi^{*} \Delta \psi\right)|\psi|^{2}
$$

Умножение же (4.30) на $\psi^{*}|\psi|^{2}$, вычитание комплексно сопряженного и интегрирование по пространству даст

$$
\frac{i}{2} \frac{d}{d t} \int d \mathrm{r}|\psi|^{4}=\int d \mathrm{r}\left(\psi \Delta \psi^{*}-\psi^{*} \Delta \psi\right)|\psi|^{2}
$$

что вместе с предыдущим равенством приводит к закону сохранения $\frac{d H}{d t}=0$.

Решение. (б) Действие оператором $\frac{i d}{d t}$ на I и использование уравнения эволюции (4.30) даст равенство:

$$
\begin{equation*}
i \frac{d}{d t} I=\int d r r^{2}\left(\psi \Delta \psi^{*}-\psi^{*} \Delta \psi\right)=2 \int d r\left(\psi(\mathrm{r} \nabla) \psi^{*}-\psi^{*}(\mathrm{r} \nabla) \psi\right) . \tag{4.32}
\end{equation*}
$$

Повторно дифферениируя по времени, подействуем сначала оператором $\frac{i d}{d i}$ на первое слагаемое в (4.32). Используя явно проверяемое перестановочное соотношение

$$
\Delta(r \nabla)=(r \nabla) \Delta+2 \Delta
$$

получим

$$
2 i \frac{d}{d t} \int d \mathrm{r} \psi(\mathrm{r} \nabla) \psi^{*}=2 \int d \mathrm{r}\left(|\psi|^{2}(\mathrm{r} \nabla)|\psi|^{2}-2 \psi^{*} \Delta \psi\right)
$$

Если к этому выражению прибавить его комплексно сопряженное, то это и будет результат действия $\frac{i d}{d i}$ на $\frac{i d}{d i} I$, то есть:

$$
-\frac{d^{2}}{d t^{2}} I=8 \int d r\left(|\nabla \psi|^{2}+\frac{1}{4}(\mathrm{r} \nabla)|\psi|^{4}\right)=8 H
$$

Для перехода к последнему равенству нужно проинтегрировать по частям и учесть, что в двух измерениях $\operatorname{div} r=2$.

Интеграл H имеет смысл гамильтониана нашей континуальной системы, N - числа возбужденных степеней свободы. Постоянство \boldsymbol{H} приводит к тому, что уравнение эволюции функционала I легко решается:

$$
\begin{equation*}
I(t)=I(0)+C t-4 H t^{2} \tag{4.33}
\end{equation*}
$$

Здесь C - некоторая постоянная, определяемая начальной конфигурацией поля ψ. Предположим, что начальные условия таковы, что гамильтониан положителен: $\boldsymbol{H}>0$. Тогда при любом конечном значении \boldsymbol{C} наступит момент, когда $I(t)$ обратится в нуль. Однако функционал $I(t)$ по построению положителен. Единственный выход из получившегося

противоречия - это непродолжимость решения неограниченно по времени, то есть образование сингулярности, называемое коллапсом. Для симметричного относительно вращений начального распределения поля обращение $I(t)$ в какой-то момент времени в нуль означает, что вся плотность $|\psi(\mathbf{r}, t)|^{2}$ в этот момент сосредоточена в точке $\mathbf{r}=0$, где она, в силу сохранения интеграла N, бесконечна.

Нелинейное уравнение Шрёдингера описывает, в частности, распространение света в нелинейной среде. Критерий Таланова дает условие самофокусировки светового пучка. Нелинейность увеличивает показатель преломления на оси пучка и действует как собирающая линза. Коллапс происходит, когда нелинейность пересиливает расплывание пучка из-за дифракции.
109. Уравнения (4.18), описывающие одномерное движение баротропного газа, квазилинейны. Каждое частное решение дается двумя функциями ρ, v двух переменных x, t :

$$
\begin{equation*}
\rho=\rho(x, t), \quad v=v(x, t) \tag{4.34}
\end{equation*}
$$

Переменные ρ, v могут быть использованы вместо x, t как новые независимые координаты, если якобиан преобразования не равен нулю. Покажсите, что в переменных ρ, v уравнения на функции x, t будут линейны*).

Решение. Дифференцируя уравнения (4.34) по ρ и v и предполагая, что x, t являются функциями ρ, v, получаем систему

$$
\begin{array}{ll}
\frac{\partial \rho}{\partial x} \frac{\partial x}{\partial \rho}+\frac{\partial \rho}{\partial t} \frac{\partial t}{\partial \rho}=1, & \frac{\partial \rho}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial \rho}{\partial t} \frac{\partial t}{\partial u}=0 \\
\frac{\partial u}{\partial x} \frac{\partial x}{\partial \rho}+\frac{\partial u}{\partial t} \frac{\partial t}{\partial \rho}=0, & \frac{\partial u}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial u}{\partial t} \frac{\partial t}{\partial u}=1
\end{array}
$$

Решая эту систему относительно частных производных, входящих в уравнения (4.18), получаем

$$
\frac{\partial \rho}{\partial x}=\frac{1}{J} \frac{\partial t}{\partial u}, \quad \frac{\partial \rho}{\partial t}=-\frac{1}{J} \frac{\partial x}{\partial u}, \quad \frac{\partial u}{\partial x}=-\frac{1}{J} \frac{\partial t}{\partial \rho}, \quad \frac{\partial u}{\partial t}=-\frac{1}{J} \frac{\partial x}{\partial \rho},
$$

где $J=\frac{\partial x}{\partial \rho} \cdot \frac{\partial t}{\partial u}-\frac{\partial x}{\partial u} \cdot \frac{\partial t}{\partial \rho}-$ якобиан преобразования. Подставляя эти выражения в уравнения (4.18), получаем систему линейных уравнений на функции t, x переменных ρ, v :

$$
\begin{aligned}
& \frac{\partial x}{\partial u}+\rho \frac{\partial t}{\partial \rho}-v \frac{\partial t}{\partial u}=0 \\
& \frac{\partial x}{\partial \rho}-v \frac{\partial t}{\partial \rho}+\frac{c^{2}(\rho)}{\rho} \frac{\partial t}{\partial u}=0
\end{aligned}
$$

если $J \neq 0, \infty$. Ясно, что таким способом любая квазилинейная система двух уравнений на функции от двух переменных может быть преобразована в линейную, если коэффициенты в исходной системе зависят только от решения. При физически важных значениях $\gamma=\frac{2 n+3}{2 n+1}$ обшее решение этой линейной системы находится аналитически [ЛЛ88].

110.

(а) Показать, что уравнение Бюргерса (4.16) подстановкой КоулаXonфа

$$
u=-2 \mu \frac{\partial}{\partial x} \ln \theta(x, t)
$$

преобразуется в линейное уравнение на θ.
(б) С помощью такой подстановки найти периодическое в пространстве решение уравнения Бюргерса.

Решение. (а) На θ получается уравнение

$$
\frac{\partial}{\partial x}\left(\frac{\theta_{t}}{\theta}-\mu \frac{\theta_{x x}}{\theta}\right)=0
$$

Интегрируя по \boldsymbol{x}, имеем

$$
\begin{equation*}
\theta_{t}=\mu \theta_{x z}+f(t) \theta \tag{4.35}
\end{equation*}
$$

где $f(t)$ - произвольная функция. Ее можно положить равной нулю. Действительно, умножение $\theta(x, t)$ на любую не обращающуюся в нуль функцию только времени t не влияет на u. С другой стороны, легко убедиться, что, отыскивая решение уравнения (4.35) в виде $\theta=\varphi(t) \Phi(x, t)$ и выбирая в качестве φ решение уравнения

$$
\frac{d \varphi}{d t}=f(t) \varphi
$$

на Φ получаем уравнение (4.35) с $f(t)=0$.
Решение. (б) Одно из простейших периодических решений уравнения $\theta_{t}=\mu \theta_{x x}$ имеет вид $\theta(t, x)=A+e^{-\mu k^{2} t} \sin k x$, где $A-$ константа. Соответствующая функция

$$
\begin{equation*}
u(t, x)=-2 \mu \partial_{x} \ln \theta(t, x)=-2 \mu k \frac{e^{-\mu k^{2} t} \cos k x}{A+e^{-\mu k^{2} t} \sin k x} \tag{4.36}
\end{equation*}
$$

не будет иметь особенностей при $A>1$. Следовательно, (4.36) при $A>1$ является периодическим решением уравнения Бюргерса при всех $t \geqslant 1$.
111. Свести квазилинейное уравнение

$$
\Delta u-(\nabla u)^{2}=0
$$

κ линейному заменой неизвестной функции.

Решение. Подстановка $u=\omega(v)$ приводит к уравнению ($\omega^{\prime \prime}-\omega^{12}$) \times $(\nabla v)^{2}+\omega^{\prime} \Delta v=0$. Выбирая функцик $\omega(v)$ как решение обыкновенного дифференциального уравнения

$$
\begin{equation*}
\omega^{\prime \prime}-\left(\omega^{\prime}\right)^{2}=0 \tag{4.37}
\end{equation*}
$$

получаем для v уравнение Лапласа. Уравнение (4.37) имеет явное решение: $\omega=C_{1}-\ln \left|x-C_{2}\right|$.
112. Найти є системе квазиликейных уравнений єторого порядка

$$
\begin{aligned}
& \Delta \theta-\sin \theta \cos \theta(\nabla \varphi)^{2}=0, \\
& \Delta \varphi+2 \operatorname{ctg} \theta \nabla \theta \nabla \varphi=0
\end{aligned}
$$

решение вида $\theta=f(v), \varphi=g(v)$, где v - новая неизвестная функция. Показать, что при условии $\Delta v=0$ система сводится к системе обыкновенных дифференциальных уравнений на f, g. Решив ее, найти θ, φ.

Решение. Замена неизвестных функций $\theta=\theta(v), \varphi=\varphi(v)$ приводит к системе

$$
\begin{aligned}
& \theta^{\prime \prime}(\nabla v)^{2}+\theta^{\prime} \Delta v-\sin \theta \cos \theta \varphi^{\prime 2}(\nabla v)^{2}=0 \\
& \varphi^{\prime \prime}(\nabla v)^{2}+\varphi^{\prime} \Delta v+2 \operatorname{ctg} \theta \varphi^{\prime} \theta^{\prime}(\nabla v)^{2}=0
\end{aligned}
$$

Если v - гармоническая функция, то получится система обыкновенных уравнений

$$
\begin{align*}
& \theta^{\prime \prime}-\sin \theta \cos \theta \varphi^{\prime 2}=0, \tag{4.38}\\
& \varphi^{\prime \prime}+2 \operatorname{ctg} \theta \varphi^{\prime} \theta^{\prime}=0 \tag{4.39}
\end{align*}
$$

Уравнение (4.39) после деления на φ^{\prime} один раз интегрируется:

$$
\varphi^{\prime}=\frac{c_{1}}{\sin ^{2} \theta}
$$

Тогда можно проинтегрировать и уравнение (4.38):

$$
\theta^{\prime 2}+\frac{c_{1}^{2}}{\sin ^{2} \theta}=c_{2}
$$

где $c_{1}, c_{2}>0$ - константы. Полученное уравнение снова интегрируется. В результате имеем решение

$$
\theta=\operatorname{arctg} \sqrt{\frac{1+\beta^{2} \operatorname{ctg}^{2}\left(c_{1} \beta v\right)}{\beta^{2}-1}}, \quad \varphi=\operatorname{arctg} \frac{\operatorname{tg}\left(c_{1} \beta v\right)}{\beta}
$$

где $\beta=\frac{\sqrt{c_{2}}}{c_{1}} \geqslant 1$, а v - произвольная гармоническая функция. Эта система уравнений используется в теории ферромагнетика.
113. Найти решение $u(x, t)$ уравнения

$$
\begin{equation*}
u_{t} u_{x}-u=0 \tag{4.40}
\end{equation*}
$$

удовлетворяющее условию $u(x, 0)=x^{2}$.
Решение. Переписывая (4.40) в виде: $F=p q-u=0$, мы приходим к уравнениям для характеристик в пространстве (u, p, q, x, t):

$$
\begin{gather*}
\dot{x}=F_{p}=q, \quad \dot{t}=F_{q}=p, \quad \dot{p}=-F_{x}-p F_{u}=p \tag{4.41}\\
\dot{q}=-F_{t}-q F_{u}=q, \quad \dot{u}=p F_{p}+q F_{q}=2 p q
\end{gather*}
$$

Общее решение этой системы содержит пять произвольных констант C_{j}, $j=1, \ldots, 5$:

$$
\begin{gather*}
p=C_{1} e^{\tau}, \quad q=C_{2} e^{\tau}, \quad x=C_{2} e^{\tau}+C_{3} \\
t=C_{1} e^{\tau}+C_{4}, \quad u=C_{1} C_{2} e^{2 r}+C_{5} . \tag{4.42}
\end{gather*}
$$

Начало отсчета параметра τ зафиксируем условием $t(0)=0$. Это даст связь $C_{4}=-C_{1}$. Равенство $F=p q-u=0$ определяет $C_{5}=0$. Далее, из начального условия следует, что при $\tau=0: u=x^{2}, p=u_{x}=2 x$, что дает связи: $C_{1} C_{2}=\left(C_{2}+C_{3}\right)^{2}, C_{1}=2\left(C_{2}+C_{3}\right)$. Все это позволяет выразить постоянные (вдоль характеристик!) C_{2-4} через C_{1} :

$$
\begin{aligned}
p & =C_{1} e^{\tau}, \quad q=\frac{1}{4} C_{1} e^{\tau}, \quad x=\frac{1}{4} C_{1} e^{r}+\frac{1}{4} C_{1} \\
t & =C_{1}\left(e^{\tau}-1\right), \quad u=\frac{1}{4} C_{1}^{2} e^{2 \tau}
\end{aligned}
$$

Выражения (4.43) для u, t, x - ни что иное, как параметрическое задание поверхности $u=u(x, t)$, где параметрами служат τ и C_{1}. В нашем случае их можно исключить и получить явное выражение для $u(x, t)$:

$$
u(x, t)=\left(x+\frac{t}{4}\right)^{2}
$$

114. Найти решение $\psi(x, y, t)$ уравнения типа Гамильтона-Якоби

$$
\begin{equation*}
\psi_{t}^{2}-\psi_{x}^{2}-\psi_{y}^{2}=0 \tag{4.43}
\end{equation*}
$$

удовлетворяюиее условию

$$
\begin{equation*}
\psi(x, y, 0)=\sqrt{x^{2}+y^{2}} . \tag{4.44}
\end{equation*}
$$

Решенне. Обозначая $p_{0}=\psi_{t}, p_{1}=\psi_{z}$ и $p_{2}=\psi_{y}$, перепишем уравнение в виде $F \equiv p_{0}^{2}-p_{1}^{2}-p_{2}^{2}=0$. Его характеристики - кривые в семимерном пространстве, определяемые уравнениями:

$$
\dot{p}_{0}=\dot{p}_{1}=\dot{p_{2}}=0, \quad \dot{t}=2 p_{0}, \quad \dot{x}=-2 p_{1}, \quad \dot{y}=-2 p_{2}, \quad \dot{\psi}=0 .
$$

Требуя, чтобы значению параметра $\tau=0$ соответствовало $t=0$, получим решение этой системы с шестью произвольными постоянными:

$$
\begin{gathered}
p_{0}=C_{0}, \quad p_{1}=C_{1}, \quad p_{2}=C_{2}, \quad \psi=C_{3} \\
t=2 C_{0} \tau, \quad x=-2 C_{1} \tau+B_{1}, \quad y=-2 C_{2} \tau+B_{2} .
\end{gathered}
$$

При $t=0$ мы знаем выражения $\psi, p_{1}=\psi_{x}$ и $p_{2}=\psi_{y}$ через x и y. Поскольку $t=0$ при $\tau=0$, то отсюда следуют связи между константами C_{j} и $\boldsymbol{B}_{\boldsymbol{j}}$:

$$
C_{3}=\sqrt{B_{1}^{2}+B_{2}^{2}}, \quad C_{1}=\frac{B_{1}}{\sqrt{B_{1}^{2}+B_{2}^{2}}}, \quad C_{2}=\frac{B_{2}}{\sqrt{B_{1}^{2}+B_{2}^{2}}} .
$$

Условие $F=0$ дает $C_{0}= \pm \sqrt{C_{1}^{2}+C_{2}^{2}}= \pm 1$. Таким образом, решение нашей задачи Коши не единственно; имеются две функции $\psi_{ \pm}(x, y, t)$, удовлетворяюшие уравнению (4.43) и начальному условию (4.44). Поверхности $\psi=\psi_{ \pm}(x, y, t)$ могут быть заданы в параметрическом виде с помощью двух параметров B_{1} и B_{2}. Если их исключить, то получится явное выражение:

$$
\begin{equation*}
\psi_{ \pm}= \pm t+\sqrt{x^{2}+y^{2}} . \tag{4.45}
\end{equation*}
$$

4.4. Задачи

115. Решить задачу Коши для одномерного уравнения теплопроводности на полуоси $0 \leqslant x<\infty$, если $u(x, 0)=x^{3}, u(0, t)=0$.
116. Найти автомодельную подстановку для нелинейного уравнения Шрёдингера

$$
i \frac{\partial \psi}{\partial t}=\frac{\partial^{2} \psi}{\partial x^{2}}+|\psi|^{2} \psi
$$

117. Решить задачу Коши для нелинейного уравнения первого порядка:

$$
u_{t}+\frac{1}{2} u_{x}^{2}=0, \quad u(x, 0)=x^{2}
$$

4.5. Ответы

115. $u(x, t)=t^{3 / 2} f\left(\frac{x}{\sqrt{t}}\right)=x^{3}+6 t x$.
116. $\quad \psi=\frac{1}{\sqrt{t}} f\left(\frac{x}{\sqrt{t}}\right)$.
117. $u(x, t)=\frac{x^{2}}{1+2 t}$.

Глава 5

Специальные функции

5.1. Особые точки

Любое линейное однородное обыкновенное дифференциальное уравнение второго порядка можно привести к виду

$$
\begin{equation*}
\frac{d^{2} y}{d z^{2}}+p(z) \frac{d y}{d z}+q(z) y=0 \tag{5.1}
\end{equation*}
$$

Особыми точками этого уравнения называются точки, где $p(z)$ или $q(z)$ обращаются в бесконечность. Если $p(z), q(z)$ аналитичны в круге $\left|z-z_{1}\right|<R$ комплексной плоскости переменной z, то в окрестности z_{1} сушествует два линейно независимых решения $y_{1}(z), y_{2}(z)$, образуюших фундаментальную систему решений. Общее решение уравнения (5.1) выражается через их линейную комбинацию

$$
y(z)=A y_{1}(z)+B y_{2}(z)
$$

Из (5.1) следует, что вронскиан двух решении

$$
\begin{equation*}
W\left\{y_{1}(z), y_{2}(z)\right\}=y_{1}(z) \frac{d y_{2}(z)}{d z}-y_{2}(z) \frac{d y_{1}(z)}{d z} \tag{5.2}
\end{equation*}
$$

удовлетворяет уравнению

$$
\begin{equation*}
\frac{d W(z)}{d z}=-p(z) W(z) \tag{5.3}
\end{equation*}
$$

которое имеет решение

$$
\begin{equation*}
W\left(z^{\prime}\right)=W(z) \exp \left(-\int_{z}^{z^{\prime}} d t p(t)\right) \tag{5.4}
\end{equation*}
$$

обрашаюшееся в нуль только тогда, когда $y_{1}(z), y_{2}(z)$ линейно зависимы. Оба решения можно аналитически продолжить из z_{1} вдоль контура C, не проходящего через особые точки. Причем из (5.3) следует, что линейная независимость решений сохраняется.

Пусть z_{0} - изолированная особая точка. Рассмотрим два линейно независимых решения $y_{1}(z), y_{2}(z)$, заданных в окрестности неособой точки z, находящейся вблизи z_{0}. Аналитически продолжим эти решения

из точки z в точку z, обойдя по замкнутому контуру вокруг z_{0} (рис. 5.1). При этом решения $y_{i}(z)$ переходят в новые функции $y_{i}^{+}(z)$, которые являются линейными комбинациями решений $y_{i}(z)$:

$$
y_{i}(z) \rightarrow y_{i}^{+}(z)=a_{i j} y_{j}(z)
$$

Если функции $y_{j}(z)$ можно выбрать так, чтобы матрица $a_{i j}$ была диагональной:

$$
y_{j}^{+}(z)=\lambda_{j} y_{j}(z)
$$

Рис. 5.1. Контур в плоскости комплексной переменной z

то асимптотика решений в точке $z=z_{0}$ имеет вид

$$
\begin{equation*}
y_{i}(z)=\left(z-z_{0}\right)^{\rho_{i}} \sum_{k=-\infty}^{\infty} c_{k}^{i}\left(z-z_{0}\right)^{k} . \tag{5.5}
\end{equation*}
$$

Числа $\rho_{j}=\frac{1}{2 \pi i} \ln \left(\lambda_{j}\right)$ называются характеристическими показателями. В невырожденном случае ($\lambda_{1} \neq \lambda_{2}$) разность $\rho_{2}-\rho_{1}$ не является целым числом.

Если матрица $a_{i j}$ не диагонализуется, приведем ее $к$ жордановой форме, т. е. выберем решения, которые при обходе по замкнутому контуру (рис. 5.1) преобразуются по закону:

$$
\begin{aligned}
& y_{1}^{+}(z)=\lambda y_{1}(z), \\
& y_{2}^{+}(z)=\lambda y_{2}(z)+y_{1}(z) .
\end{aligned}
$$

Асимптотика решения y_{1} в точке $z=z_{0}$ имеет вид (5.5) с $\rho_{1}=\frac{\ln (\lambda)}{2 \pi i}$. Чтобы найти асимптотику y_{2}, заметим, что функция

$$
W(z)=\frac{y_{2}(z)}{y_{1}(z)}-\frac{1}{2 \pi i \lambda} \ln \left(z-z_{0}\right)
$$

при аналитическом продолжении вдоль контура (рис.5.1) переходит сама в себя: $W^{+}(z)=W(z)$, т. е. асимптотнка $W(z)$ в точке $z=z_{0}$ имеет вид (5.5) с $\rho=0$. Асимптотика $y_{2}(z)$ содержит логарифмические вклады.

Если ряд Лорана в выражении (5.5) обрывается снизу (т. е. $c_{k} \equiv 0$ при $k \leqslant k_{0}$), то z_{0} называют регулярной особой точкой. Если же рял не обрывается, то z_{0} - иррегулярная особая точка. Уравнение называется уравнением класса Фукса, если оно имеет только регулярные особые точки. Особая точка $z_{0} \neq \infty$ является регулярной в том и только в том случае, если коэффициенты уравнения (5.1) при $z \rightarrow z_{0}$ удовлетворяют условиям

$$
\left|p(z)\left(z-z_{0}\right)\right|<\infty, \quad\left|q(z)\left(z-z_{0}\right)^{2}\right|<\infty
$$

Пусть $z_{0}=\infty$, конформная замена $z=\frac{1}{i}, \frac{d}{d z}=-t^{2} \frac{d}{d t}$ приводит уравнение (5.1) к виду

$$
\frac{d^{2} y}{d t^{2}}+\tilde{p}(t) \frac{d y}{d t}+\tilde{q}(t) y=0
$$

где

$$
\tilde{p}(t)=\frac{2 t-p(1 / t)}{t^{2}}, \quad \tilde{q}(t)=\frac{q(1 / t)}{t^{4}} .
$$

Откуда следует, что $z_{0}=\infty$ является регулярной особой точкой, только если при $z \rightarrow \infty$

$$
|p(z) z|<\infty, \quad\left|q(z) z^{2}\right|<\infty .
$$

Точка $z_{0}=\infty$ является неособой, только если при $z \rightarrow \infty$

$$
|z[2-p(z) z]|<\infty, \quad\left|z^{4} q(z)\right|<\infty .
$$

Следовательно, коэффициенты уравнения (5.1) класса Фукса с $n+1$ регулярными особыми точками (одна из которых на бесконечности) можно привести к виду

$$
p(z)=\sum_{k=1}^{n} \frac{A_{k}}{\left(z-z_{k}\right)}, \quad g(z)=\sum_{k=1}^{n} \frac{B_{k}}{\left(z-z_{k}\right)^{2}}+\frac{C_{k}}{\left(z-z_{k}\right)},
$$

где A_{k}, B_{k}, C_{k} - фиксированные комплексные числа, причем

$$
\sum_{k=1}^{n} C_{k}=0
$$

5.2. Гипергеометрические функции

Уравнение с тремя регулярными особыми точками называется гипергеометрическим уравнением. Пусть z_{0}, z_{1}, z_{2} - особые точки. Замена переменной

$$
t=\frac{\left(z-z_{0}\right)}{\left(z-z_{2}\right)} \frac{\left(z_{1}-z_{2}\right)}{\left(z_{1}-z_{0}\right)},
$$

конформно отображающая комплексную плоскость переменной на себя, переводит регулярные особые точки в $t_{0}=0, t_{1}=1, t_{2}=\infty$. При этом козффициенты уравнения (5.1) должны принять вид

$$
p(t)=\frac{A_{0}}{t}+\frac{A_{1}}{(t-1)}, \quad q(t)=\frac{C}{t(t-1)}+\frac{B_{0}}{t^{2}}+\frac{B_{1}}{(t-1)^{2}} .
$$

Коэффициенты B_{k} при $\frac{1}{t^{2}}, \frac{1}{(t-1)^{2}}$ можно сделать равными нулю с помощью степенной замены $y=t^{\nu}(t-1)^{\mu} F$. В результате получим канонический вид гипергеометрического уравнения

$$
\begin{equation*}
t(t-1) \frac{d^{2} F}{d t^{2}}+[(\alpha+\beta+1) t-\gamma] \frac{d F}{d t}+\alpha \beta F=0 \tag{5.6}
\end{equation*}
$$

в котором α, β, γ связаны простыми соотношениями с A_{k}, B_{k}, C. Решением уравнения (5.6) служат гипергеометрические функции Гаусса. Во всех регулярных особых точках решения имеют степенные асимлтотики. Их можно найти, подставляя в уравнение (5.6) функцию вблизи особой точки t^{\prime} в виде $F \sim\left(t-t^{\prime}\right)^{\nu}\left(1+O\left(t-t^{\prime}\right)\right)$ и отбрасывая малые по $t-t^{\prime}$ члены:

$$
\begin{array}{lll}
F \sim t^{\nu_{0}}, & \text { при } t \rightarrow 0: & \nu_{0}=0,1-\gamma ; \\
F \sim(t-1)^{\nu_{1}}, & \text { при } t \rightarrow 1: & \nu_{1}=0, \gamma-\alpha-\beta ; \\
F \sim \frac{1}{t^{\nu_{x}}}, & \text { при } t \rightarrow \infty: & \nu_{\infty}=\alpha, \beta .
\end{array}
$$

Разложение в нуле решения с $\nu_{0}=0$ в ряд Тейлора имеет вид

$$
F \equiv{ }_{2} F_{1}(\alpha, \beta ; \gamma ; t)=1+\frac{\alpha \beta}{\gamma} \frac{t}{1!}+\frac{\alpha(\alpha+1) \beta(\beta+1)}{\gamma(\gamma+1)} \frac{t^{2}}{2!}+\ldots
$$

Из разложения видно, что если α или β - целое неположительное число, то ряд обрывается, а значит \boldsymbol{F} преврашается в полином.

Вырожденное гипергометрическое уравнение получается из гипергеометрического в результате слияния двух регулярных особых точек. Сделаем в гипергеометрическом уравнении замену $t=\frac{z}{\beta}$ и устремим β к бесконечности, тогда $x_{0}=t_{0} \beta=0, x_{1}=t_{1} \beta \rightarrow \infty, x_{2}=t_{2} \beta=\infty$, так что две особые точки x_{1}, x_{2} сливаются в одну. В результате получим вырожденное гипергеометрическое уравнение

$$
\begin{equation*}
x \frac{d^{2} F}{d x^{2}}+(\gamma-x) \frac{d F}{d x}-\alpha F=0 \tag{5.7}
\end{equation*}
$$

в котором точка $x=\infty$ является иррегулярной особой точкой. Асимптотика в нуле $x \rightarrow 0$ степенная: $F \sim x^{\nu_{0}}$, где $\nu_{0}=0$ или $\nu_{0}=1-\gamma$, а при $x \rightarrow \infty-$ зкспоненциальная: $\boldsymbol{F} \sim \boldsymbol{e}^{\boldsymbol{x}}$ и степенная: $\boldsymbol{F} \sim \boldsymbol{x}^{-\boldsymbol{a}}$.

Разложение в нуле решения с $\nu_{0}=0$ этого уравнения в ряд Тейлора имеет вид

$$
\begin{aligned}
{ }_{1} F_{1}(\alpha ; \gamma ; x) & =\lim _{\beta \rightarrow \infty}{ }_{2} F_{1}\left(\alpha, \beta ; \gamma ; \frac{x}{\beta}\right)= \\
& =1+\frac{\alpha}{\gamma} \frac{x}{1!}+\frac{\alpha(\alpha+1)}{\gamma(\gamma+1)} \frac{x^{2}}{2!}+\frac{\alpha(\alpha+1)(\alpha+2)}{\gamma(\gamma+1)(\gamma+2)} \frac{x^{3}}{3!}+\ldots
\end{aligned}
$$

Из разложения видно, что если α - целое неположительное число, то ряд обрывается, а значит, F_{1} становится полиномом.

5.3. Ортогональные полиномы

Полиномы, задаваемые обобщенной формулой Родрига

$$
\begin{equation*}
P_{n}(x)=\frac{A_{n}}{W(x)} \frac{d^{n}}{d x^{n}} W(x)[R(x)]^{n} \tag{5.8}
\end{equation*}
$$

где n - степень полинома $P_{n}(x)$, а $R(x)$ - полином, ортогональны с весом $W(x)$:

$$
\begin{equation*}
\int_{x_{1}}^{x_{2}} d x W(x) P_{n}(x) P_{m}(x)=\delta_{n m} h_{n}, \quad W\left(x_{1}\right) R\left(x_{1}\right)=W\left(x_{2}\right) R\left(x_{2}\right)=0 \tag{5.9}
\end{equation*}
$$

на интервале (x_{1}, x_{2}), ограниченном точками, в которых $W(x) R(x)$ обращается в нуль (см. задачу 124).

Сушествует три классических типа ортогональных полиномов (см, задачу 123), отличаюшихся областью определения.

1. Полиномы, заданные на всей числовой оси ($-\infty<x<\infty$),

$$
\begin{equation*}
R(x)=1, \quad W(x)=\exp \left(-b^{2}(x-a)^{2}\right) \tag{5.10}
\end{equation*}
$$

Сдвигом и растяжением переменной такие полиномы сводятся к полиномам Эрмита:

$$
\begin{equation*}
H_{n}(x)=\frac{A_{n}}{\exp \left(-x^{2}\right)} \frac{d^{n}}{d x^{n}} \exp \left(-x^{2}\right) . \tag{5.11}
\end{equation*}
$$

2. Полиномы, заданные на полуоси ($a \leqslant x<\infty$),

$$
\begin{equation*}
R(x)=x-a, \quad W^{\alpha}(x)=e^{-b(x-a)}(x-a)^{\alpha}, \quad \alpha>-1 . \tag{5.12}
\end{equation*}
$$

Сдвигом и растяжением переменной такие полиномы сводятся к обобщенным полиномам Лагерра:

$$
\begin{equation*}
L_{n}^{\alpha}(x)=\frac{A_{n}^{\alpha}}{x^{\alpha} e^{-x}} \frac{d^{n}}{d x^{n}} x^{\alpha+n} e^{-x} \tag{5.13}
\end{equation*}
$$

3. Полиномы, заданные на отрезке ($a_{1} \leqslant x \leqslant a_{2}$),

$$
\begin{gather*}
R(x)=\left(x-a_{1}\right)\left(a_{2}-x\right), \quad W^{\alpha, \beta}(x)=\left(x-a_{1}\right)^{\alpha}\left(a_{2}-x\right)^{\beta}, \tag{5.14}\\
\alpha>-1, \quad \beta>-1 .
\end{gather*}
$$

Сдвигом и растяжением переменной такие полиномы сводятся к полиномам Якоби:

$$
\begin{equation*}
P_{n}^{(\alpha, \beta}(x)=\frac{A_{n}^{\alpha, \beta}}{(x+1)^{\alpha}(1-x)^{\beta}} \frac{d^{n}}{d x^{n}}(x+1)^{\alpha+n}(1-x)^{\beta+n} . \tag{5.15}
\end{equation*}
$$

При $\alpha=\beta=\lambda$ полиномы Якоби сводятся к полиномам Гегенбауэра, а при $\lambda=0-к$ полиномам Лежандра.
Полиномы всех трех типов являются собственными функциями оператора (задача 125)

$$
\begin{gather*}
\widehat{L} P_{n}(x)=\frac{1}{W(x)} \frac{d}{d x}\left(W(x) R(x) \frac{d}{d x} P_{n}(x)\right)=-\lambda_{n} P_{n}(x), \tag{5.16}\\
x \in\left(x_{1}, x_{2}\right), \quad W\left(x_{1}\right) P_{n}\left(x_{1}\right)=W\left(x_{2}\right) P_{n}\left(x_{2}\right)=0,
\end{gather*}
$$

где весовая функция $W(x)$ и полином $R(x)$ имеют вид (5.10), (5.12) или (5.14). Оператор \widehat{L} является эрмитовым в гильбертовом пространстве со скалярным произведением, заданным формулой (5.9). Уравнение (5.16) для полиномов Якоби сводится к гипергеометрическому, а для полиномов Эрмита и Лагерра - к вырожденному гипергеометрическому уравнению (задача 154).

Аналитическая теория обыкновенных дифференциальных уравнений хорошо изложена в книгах [Сми74b, МФ58, Кам76] Читателям, интересующимся теорией специальных функций мы можем порекомендовать трехтомних [БЭ73, БЭ74, БЭ67, Олв90]. Таблицы и графики специальных функций можно найти в справочниках [АС79, ЯЭЛ77].

5.4. Примеры

118. Доказать, что если особая точка $x_{0} \neq \infty$ уравнения (5.1) является регулярной, то коэффициенты (5.1) имеют вид

$$
p(x)=\frac{p_{1}(x)}{\left(x-x_{0}\right)}, \quad q(x)=\frac{q_{1}(x)}{\left(x-x_{0}\right)^{2}}
$$

где $p_{1}(x)$ и $q_{1}(x)$ - аналитические в окрестности $x=x_{0}$ функции.
Решение. Не теряя общности, можно положить $x_{0}=0$. Если $x=0$ регулярная особая точка уравнения, то асимптотика решений (5.5) и вронскиана (5.2) при $x \rightarrow 0$ в невырожденном случае имеет вид

$$
y_{j}(x) \rightarrow x^{\rho_{j}}, \quad W(x) \rightarrow\left(\rho_{2}-\rho_{1}\right) x^{\rho_{1}+\rho_{2}-1}
$$

Выражая $p(x)$ и $q(x)$ через $y(x)$ и $W(x)$ с помощью уравнений (5.1) и (5.3), находим асимптотику при $x \rightarrow 0$:

$$
\begin{aligned}
& p(x)=-\frac{d W(x) / d x}{W(x)} \rightarrow \frac{A}{x} \\
& q(x)=-\frac{d^{2} y_{j}(x) / d x^{2}}{y_{j}(x)}-p(x) \frac{d y_{j}(x) / d x}{y_{j}(x)} \rightarrow \frac{B}{x^{2}} .
\end{aligned}
$$

119. Найти регулярные особые точки и характеристические показатели в уравнении Бесселя:

$$
x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+\left(x^{2}-\nu^{2}\right) y=0
$$

Решение. Переписывая уравнение в виде (5.1), находим $p(x)=\frac{1}{2}$, $q(x)=1-\frac{\nu^{2}}{x^{2}}$. Имеется одна регулярная особая точка $x=0$ и одна иррегулярная $x=\infty$. Асимптотику в регулярной особой точке надо

искать в степенном виде. Подставляя $y(x) \sim x^{\rho}$ в уравнение и отбрасывая малые по x члены, получаем при $x \rightarrow 0$

$$
\left(\rho(\rho-1)+\rho-\nu^{2}\right) x^{\rho}=0
$$

значит, характеристические показатели равны

$$
\rho_{ \pm}= \pm \nu
$$

В вырожденном случае ($\rho_{+}-\rho_{-}=2 \nu=n$, где $n-$ целое) в асимптотике второго решения могут появляться логарифмические члены. Обозначим за $J_{n / 2}(x) \sim x^{n / 2}$ регулярное в нуле решение $n \geqslant 0$. Асимптотику второго решения найдем с помощью подстановки

$$
y_{2}(x)=J_{n / 2}(x) \int^{2} d t f(t)
$$

На $f(x)$ получаем уравнение

$$
J_{n / 2}(x) \frac{d f(x)}{d x}+\left(2 \frac{d J_{n / 2}(x)}{d x}+\frac{J_{n / 2}(x)}{x}\right) f(x)=0
$$

решение которого

$$
f(x)=\frac{1}{x J_{n / 2}^{2}(x)}
$$

разложим в ряд по x вблизи $x=0$

$$
f(x)=x^{-n-1} \sum_{k=0}^{\infty} a_{k} x^{k}
$$

Интегрируя по x, находим асимптотику $y_{2}(x)$:

$$
\begin{array}{lll}
y_{2}(x) \rightarrow a_{0} \ln (x) & \text { при } & n=0 \\
y_{2}(x) \rightarrow a_{0} x^{-n / 2} & \text { при } & n>0 .
\end{array}
$$

Если козффициент $a_{n} \neq 0$, то в разложении $y_{2}(x)$ обязательно будут логарифмические члены, возникающие при интегрировании $f(x)$.

Асимптотику в иррегулярной особой точке будем искать в виде $y(x) \rightarrow \exp \left(\lambda x^{\sigma}\right)$ при $x \rightarrow \infty$. Подставляя ее в уравнение и отбрасывая малые по $\frac{1}{x}$ члены, получаем, что при $x \rightarrow \infty$ остается три члена.

$$
\lambda^{2} \sigma^{2} x^{2 \sigma}+\lambda \sigma^{2} x^{\sigma}+x^{2}=0
$$

Предполагая, что лидируюшими являются первые два члена, приравниваем их друг другу и получаем $\sigma=0$. Но поскольку последний член растет при $x \rightarrow \infty$ быстрее, мы заключаем, что предположение не верно. Предполагаем теперь, что лидируюшими являются последние два члена, приравнивая их друг другу, получаем $\sigma=2$. Но поскольку в этом случае

первый член растет при $x \rightarrow \infty$ быстрее, мы заключаем, что предположение опять не верно. Наконец, рассмотрим последнюю возможность и приравняем первый и последний члены уравнения. Откуда получаем, что $\sigma=1, \lambda= \pm i, y(x) \rightarrow \exp (\pm i x)$.
120. Выразить функиии Бесселя $J_{\nu}(x)$ через вырожденную гипергеометрическую функцию.

Решение. Особые точки уравнения Бесселя (П.14) и вырожденного гипергеометрического уравнения (5.7) совпадают, а асимптотики в них отличаются. Решения уравнения Бесселя при $\boldsymbol{x} \rightarrow 0$ стремятся $\mathrm{k} \boldsymbol{x}^{ \pm \nu}$, а при $x \rightarrow \infty$ стремятся к $\exp (\pm i x)$ (задача 119). Выделив эти асимптотики

$$
J_{\nu}(x)=x^{\nu} \exp (-i x) f(x),
$$

на $f(x)$ получаем уравнение

$$
x \frac{d^{2} f}{d x^{2}}+[2 \nu+1-2 i x] \frac{d f}{d x}-i(2 \nu+1) f=0 .
$$

Сравнивая с уравнением (5.7), получаем

$$
J_{\nu}(x)=\left(\frac{x}{2}\right)^{\nu} \frac{\exp (-i x)}{\Gamma(\nu+1)}, F_{1}\left(\nu+\frac{1}{2} ; 2 \nu+1 ; 2 i x\right)
$$

Коэффициент пропорциональности найден из сравнения разложений в ряд (5.7) и (П.15) при $x \rightarrow 0$

$$
\left(\frac{x}{2}\right)^{-\nu} J_{\nu}(x) \rightarrow \frac{1}{\Gamma(\nu+1)}, \quad{ }_{1} F_{1}(\alpha ; \gamma ; 0)=1 .
$$

121. Найти характеристические показатели в регулярных особых точках уравнения Лежандра (уравнение на собственнье функции угловой части оператора Лапласа в сферических координатах):

$$
\begin{equation*}
\frac{1}{\sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d y}{d \theta}\right)-\frac{m^{2} y}{\sin ^{2} \theta}=-\lambda_{m} y \tag{5.17}
\end{equation*}
$$

Ревение. После замены переменной $x=\cos \theta$ уравнение принимает, с точностью до переобозначения λ на $l(l+1$), вид (П.36), в котором три регулярные особые точки $x= \pm 1, x=\infty$. Ишем асимптотики при $x \rightarrow \pm 1$ в степенном виде:

$$
y(x) \sim(1-x)^{\rho_{1}}, \quad y(x) \sim(1+x)^{\rho_{2}} .
$$

Подставляя их в уравнение (П.36) и отбрасывая малые по $1 \pm x$ члены, получаем

$$
\rho_{1}= \pm \frac{m}{2}, \quad \rho_{2}= \pm \frac{m}{2} .
$$

Асимптотику при $x \rightarrow \infty$ ищем также в степенном виде $x^{-\rho_{x}}$ и для характеристического показателя получаем квадратное уравнение

$$
\rho_{\infty}\left(\rho_{\infty}+1\right)=\lambda_{m} .
$$

122. Выразить функции Лежандра $P_{l}^{m}(x)$ через гипергеометрическую функцию Гаусса.

Решение. Особые точки уравнения Лежандра (П.36) $x_{0}=1, x_{1}=-1$, $x_{2}=\infty$ и гипергеометрического уравнения (5.6) отличаются. Сделаем конформную замену $t=\frac{1-x}{2}$, переводяшую регулярные особые точки $1,-1, \infty$ в $t_{0}=0, t_{1}=1, t_{2}=\infty$. В новых переменных уравнение примет вид

$$
t(t-1) \frac{d^{2} F}{d t^{2}}+[2 t-1] \frac{d F}{d t}-\left(\frac{m^{2}}{4 t(t-1)}+l(l+1)\right) F=0 .
$$

Выделяя асимптотики функции $F(t) \equiv P_{l}^{m}(1-2 t)$ при $t \rightarrow 0, \quad t \rightarrow 1$ (см. задачу 121), получаем, что функция

$$
f(t)=\frac{F(t)}{t^{m / 2}(t-1)^{m / 2}}
$$

удовлетворяет гипергеометрическому уравнению (5.6):

$$
\begin{gathered}
t(t-1) \frac{d^{2} f}{d t^{2}}+[2 t-1](m+1) \frac{d f}{d t}-(l(l+1)-m(m+1)) f=0, \\
f(t)=A_{2} F_{1}(m-l, m+l+1 ; m+1 ; t) .
\end{gathered}
$$

Осталось найти коэффициент пропорциональности A. Поскольку при $t \rightarrow 0(x \rightarrow 1)$ гипергеометрическая функция ${ }_{2} F_{1}$ стремится к 1 , а функции Лежандра (П.37) стремятся к

$$
\left.\frac{P_{i}^{m}(x)}{\left(1-x^{2}\right)^{m / 2}}\right|_{x \rightarrow 1} \rightarrow \frac{(l+m)!}{2^{m} m!(l-m)!},
$$

получаем

$$
P_{l}^{m}(x)=\frac{(l+m)!}{2^{m}(l-m)!m!}\left(1-x^{2}\right)^{m / 2} F_{1}\left(m-l, m+l+1 ; m+1 ; \frac{1-x}{2}\right)
$$

123. Найти, при каких $W(x)$ и $R(x)$ функции $P_{n}(x)$, задаваемые обобщенной формулой Родрига (5.8), являются полиномами n-й степени.

Решение. Выразим полином первой степени $P_{1}(x)=A_{1} \nu(\mu-x)$ через $W(x)$ и $R(x)$ с помощью обобщенной формулы Родрига (5.8):

$$
\begin{equation*}
\nu(\mu-x)=\frac{P_{1}(x)}{A_{1}}=\frac{R(x)}{W(x)} \frac{d W}{d x}+\frac{d R}{d x} . \tag{5.18}
\end{equation*}
$$

Рассмотрим (5.18) как дифференциальное уравнение для функции $W(x)$ при различных степенях k полинома $R(x): k=0, k=1$ и $k \geqslant 2$. Решения этого уравнения имеют следуюший вид:

1. При $R=1$ весовая функция равна с точностью до постоянного множителя $W(x)=\exp \left(-\frac{\nu(x-\mu)^{2}}{2}\right)$. Подставляя ее в формулу Родрига, убеждаемся, что

$$
P_{n}(x)=A_{n} \exp \left(\frac{\nu(x-\mu)^{2}}{2}\right) \frac{d^{n}}{d x^{n}} \exp \left(-\frac{\nu(x-\mu)^{2}}{2}\right)
$$

- полином n-й степени. Сдвигом и растяжением переменной такие полиномы сводятся к полиномам Эрмита.

2. При $R=x-a$ весовая функция $W^{a}(x)=(x-a)^{\alpha} \exp (-\nu(x-a))$ зависит от параметра $\alpha=\nu(\mu-a)-1$, который мы записали в виде верхнего индекса. Подставляя ее в формулу Родрига, убеждаемся, что

$$
P_{n}^{\alpha}(x)=A_{n}^{\alpha}(x-a)^{-\alpha} \exp (\nu(x-a)) \frac{d^{n}}{d x^{n}}(x-a)^{a+n} \exp (-\nu(x-a))
$$

- полином n-й степени. Сдвигом и растяжением переменной такие полиномы сводятся к обобщенным полиномам Лагерра.

3. При $R(x)=\prod_{r=1}^{k}\left(x-a_{r}\right)$, где $k \geqslant 2$, а все a_{r} предполагаются различными, уравнение (5.18) для $W(x)$ перепишем в виде

$$
\frac{1}{W(x)} \frac{d W}{d x}=\frac{\nu(\mu-x)}{R(x)}-\frac{1}{R(x)} \frac{d R}{d x}=\sum_{r=1}^{k} \frac{\alpha_{r}}{x-a_{r}}
$$

Здесь α_{r} - коэффициенты разложения на простые дроби. Решение этого уравнения для весовой функции можно записать в виде $\boldsymbol{W}(\boldsymbol{x})=$ $\prod_{r=1}^{k}\left(x-a_{r}\right)^{\alpha_{r}}$. Прямой подстановкой весовой функции $W(x)$ и $R(x)$ в обобщенную формулу Родрига получаем, что степень полинома P_{n} равна $\operatorname{deg} P_{n}=n(k-1)$. По условию задачи необходимо, чтобы $\operatorname{deg} P_{n}=n$, поэтому k может быть равно тольхо 2. Обозначим $\alpha_{1}=\alpha, \alpha_{2}=\beta$ и будем указывать эти параметры в виде верхних индексов

$$
\begin{gathered}
W^{\alpha, \beta}(x)=\left(x-a_{1}\right)^{\alpha}\left(a_{2}-x\right)^{\beta} \\
P_{n}^{\alpha, \beta}(x)=A_{n}^{\alpha, \beta}\left(x-a_{1}\right)^{-\alpha}\left(a_{2}-x\right)^{-\beta} \frac{d^{n}}{d x^{n}}\left(x-a_{1}\right)^{\alpha+n}\left(a_{2}-x\right)^{\beta+n} .
\end{gathered}
$$

Сдвигом и растяжением переменной такие полиномы сводятся к полиномам Якоби.
124. Доказать, что полиномь, задаваемье обобщенной формулой Родрига (5.8), ортогональны с весом $W(x)$ на интервале (x_{1}, x_{2}), ограниченном точками, в которьх $W(x) R(x)$ обращается в нуль: $W\left(x_{1}\right) R\left(x_{1}\right)=$ $W\left(x_{2}\right) R\left(x_{2}\right)=0$.

Решение. Выражение $W(x) R(x)$ для всех трех типов полиномов, найденных в задаче 123 , обращается в нуль в точках:

1) для (5.10) $x_{1}=-\infty, x_{2}=\infty$;
2) для (5.12) $x_{1}=a, x_{2}=\infty$;
3) для (5.14) $x_{1}=a_{1}, x_{2}=a_{2}$.

Обозначая $W^{\alpha \beta}(x)$ весовые функции всех трех типов (весовая функция может зависеть только от одного параметра (5.12) или не зависеть от параметров (5.10)), замечаем, что

$$
\begin{equation*}
W^{\alpha, \beta}(x) R(x)=W^{\alpha+1, \beta+1}(x) \tag{5.19}
\end{equation*}
$$

Пусть $n>m$. Полагая для простоты нормировочные константы $\boldsymbol{A}_{\boldsymbol{n}}$ равными единице, проинтегрируем по частям скалярное произведение

$$
\begin{align*}
I_{n m}^{\alpha, \beta}= & \int_{x_{1}}^{x_{2}} d x W^{\alpha, \beta}(x) P_{n}^{\alpha, \beta}(x) P_{m}^{\alpha, \beta}(x)= \\
= & \left.W^{\alpha, \beta}(x) R(x)\left[\left(W^{\alpha+1, \beta+1}(x)\right)^{-1} \frac{d^{n-1} W^{\alpha+1, \beta+1} R^{n-1}}{d x^{n-1}}\right] P_{m}^{\alpha, \beta}(x)\right|_{z_{1}} ^{x_{1}}- \\
& -\int_{x_{1}}^{x_{2}} d x\left(\frac{d^{n-1} W^{\alpha, \beta} R^{n}}{d x^{n-1}}\right) \frac{d P_{m}^{\alpha, \beta}(x)}{d x} \tag{5.20}
\end{align*}
$$

Выражение в квадратных скобках - полином $P_{n-1}^{\alpha+1, \beta+1}(x)$. Это, в частности, означает, что в точках x_{1}, x_{2}, где $W^{\alpha, \beta} R=0$, в нуль обращается также внеинтегральный член при $\alpha>-1, \beta>-1$. Повторяя интегрирование по частям $n-1$ раз (внеинтегральный член хаждый раз будет обращаться в нуль, в силу того что $W^{a, \beta}\left(x_{1}\right) R\left(x_{1}\right)=W^{\alpha, \beta}\left(x_{2}\right) R\left(x_{2}\right)=0$), получаем

$$
\begin{equation*}
I_{n m}^{\alpha, \beta}=\int_{x_{1}}^{x_{2}} d x(-1)^{n} W^{\alpha, \beta}(x) R^{n}(x)\left[\frac{d^{n} P_{m}^{\alpha, \beta}(x)}{d x^{n}}\right]=0 \quad \text { при } \quad m<n . \tag{5.21}
\end{equation*}
$$

Здесь мы учли, что производная n-го порядка от полинома степени m равна нулю при $m<n$. Если $m>n$, то для доказательства обращения интеграла в нуль надо поменять n и m местами. В результате $\boldsymbol{I}_{\boldsymbol{n} \boldsymbol{m}}^{\boldsymbol{\alpha} \beta}=$ $\boldsymbol{h}_{n}^{\text {o, }}{ }^{\boldsymbol{\beta}} \delta_{n m}$, и ортогональность полиномов дохазана.
125. Доказать, что полиномы, задаваемые обобщенной формулой Родрига (5.8), яаляются собственными функцияни оператора \widehat{L} (5.16), в которам функции $W(x)$ и $R(x)$ имеютт вид (5.10), (5.12) или (5.14). Найти собственные значения λ_{n} оператора \widehat{L}.

Решевие. Воспользуемся тем, что умножение весовой функции на полином $R(x)$ увеличивает ее верхние индексы на единицу (5.19). Oператор

$$
\hat{q}^{\alpha, \beta}=\frac{R(x)}{W^{\alpha, \beta}(x)} \frac{d}{d x} W^{\alpha, \beta}(x)
$$

где оператор производной действует на все стоящие справа функции, увеличивает степень полинома $P_{n}^{\alpha, \beta}(x)$ на единицу, переводя его в ортогональный набор полиномов с индексами α, β, уменьшенными на единицу:

$$
\begin{align*}
\hat{q}^{\alpha, \beta} P_{n}^{\alpha, \beta}(x) & =A_{n}^{\alpha, \beta} \frac{R(x)}{W^{\alpha, \beta}(x)} \frac{d^{n+1}}{d x^{n+1}}\left(\frac{W^{\alpha, \beta}(x)}{R(x)} R^{n+1}(x)\right)= \\
& =\frac{A_{n}^{\alpha, \beta}}{A_{n+1}^{\alpha-1, \beta-1}} P_{n+1}^{\alpha-1, \beta-1}(x) \tag{5.22}
\end{align*}
$$

Здесь $\boldsymbol{A}_{n}^{\boldsymbol{\alpha \beta} \boldsymbol{\beta}}$ - нормировочкая константа, а полиномы предполагаются нормированными на 1. Операторы, увеличиваюшие степень полинома на единицу, называются повышающими. Очевидно, что оператор $\frac{d}{d x}$ понижает степень полинома на единицу. Воспользуемся полнотой набора ортогональных полиномов $P_{m}^{\alpha, \boldsymbol{f}}(x)$ и разложим по этому базису полином n-й степени $\frac{d P_{x=1,1 /-1}^{n z}}{d z}$:

$$
\begin{aligned}
\int_{x_{1}}^{x_{2}} d x W^{\alpha, \beta}(x) & \left(\frac{d P_{n+1}^{\alpha-1, \beta-1}}{d x}\right) P_{m}^{\alpha, \beta}(x)= \\
& =-\int_{x_{1}}^{x_{2}} d x P_{n+1}^{\alpha-1, \beta-1}(x) W^{\alpha-1, \beta-1}(x) \hat{q}^{\alpha, \beta} P_{m}^{\alpha, \beta}(x)=-\delta_{n m} \frac{A_{n}^{\alpha, \beta}}{A_{n+1}^{\alpha-1, \beta-1}}
\end{aligned}
$$

Здесь мы проинтегрировали по частям, и внеинтегральный член обратился в нуль. Полученное равенство означает, что

$$
\frac{d P_{n+1}^{\alpha-1, \beta-1}}{d x}=-\frac{A_{n}^{\alpha, \beta}}{A_{n+1}^{\alpha-1, \beta-1}} P_{n}^{\alpha, \beta}(x)
$$

Подставляя это выражение в (5.22), получаем, что полиномы удовлетворяют уравнению

$$
\begin{gathered}
\frac{1}{W^{\alpha, \beta}(x)} \frac{d}{d x}\left(W^{\alpha, \beta}(x) R(x) \frac{d}{d x} P_{n}^{\alpha, \beta}(x)\right)=-\lambda_{n} P_{n}^{\alpha, \beta}(x) \\
\lambda_{n}^{\alpha, \beta}=\left(\frac{A_{n-1}^{\alpha+1, \beta+1}}{A_{n}^{\alpha, \beta}}\right)^{2}
\end{gathered}
$$

При выбранной нормировке полиномов собственные значения $\lambda_{n}^{\boldsymbol{\alpha \beta}}$ выражаются через нормировочные константы, которые, в свою очередь,

связаны с нормировочными интегралами $I_{n n}^{\alpha, f}$ (5.20). Найдем собственные значения для различных весовых функций $W^{\alpha, \beta}(x)$ во всех трех случаях (5.10), (5.12) и (5.14).

1. Для полиномов Эрмита (5.11)

$$
\hat{q}=\exp \left(x^{2}\right) \frac{d}{d x} \exp \left(-x^{2}\right)
$$

а нормировочные константы

$$
\left(A_{n}\right)^{-2}=\int_{-\infty}^{\infty} d x(-1)^{n} \exp \left(-x^{2}\right) \frac{d^{n}}{d x^{n}}\left(\exp \left(x^{2}\right) \frac{d^{n}}{d x^{n}} \exp \left(-x^{2}\right)\right)=\frac{2^{n} n!}{\sqrt{\pi}}
$$

Откуда $\lambda_{n}=2 n$.
2. Для полиномов Лагерра (5.13)

$$
\hat{q}^{\alpha}=x^{-\alpha+1} e^{x} \frac{d}{d x} x^{\alpha} e^{-x}
$$

а нормировочные константы

$$
\left(A_{n}^{\alpha}\right)^{-2}=\int_{0}^{\infty} d x(-1)^{n} x^{\alpha+n} e^{-x} \frac{d^{n}}{d x^{n}}\left(x^{-\alpha} e^{x} \frac{d^{n}}{d x^{n}} x^{\alpha+n} e^{-x}\right)=n!\Gamma(\alpha+n+1)
$$

Откуда $\lambda_{n}^{\boldsymbol{a}}=n$.
3. Для полиномов Якоби (5.15)

$$
\hat{q}^{\alpha, \beta}=\left(x-a_{1}\right)^{1-\alpha}\left(a_{2}-x\right)^{1-\beta} \frac{d}{d x}\left(x-a_{1}\right)^{\alpha}\left(a_{2}-x\right)^{\beta}
$$

а нормировочные константы

$$
\begin{aligned}
& \left(A_{n}^{\alpha, \beta}\right)^{-2}= \\
= & \int_{-1}^{1} d x(-1)^{n}(x+1)^{a+n}(1-x)^{\beta+n} \frac{d^{n}}{d x^{n}} \frac{\frac{d^{n}}{d x^{2}}(x+1)^{\alpha+n}(1-x)^{\beta+n}}{(x+1)^{\alpha}(1-x)^{\beta}}= \\
= & n!2^{\alpha+\beta+2 n+1} B(\alpha+n+1, \beta+n+1) \times \\
& \times \sum_{l=0}^{n} \frac{n!}{l!(n-l)!} \frac{\Gamma(n+\alpha+1) \Gamma(n+\beta+1)}{\Gamma(l+\alpha+1) \Gamma(n-l+\beta+1)} \\
= & n!2^{\alpha+\beta+2 n+1} \frac{\Gamma(\alpha+n+1) \Gamma(\beta+n+1)}{\Gamma(\alpha+\beta+n+1)} .
\end{aligned}
$$

Откуда $\lambda_{n}^{\boldsymbol{\alpha}, \boldsymbol{\beta}}=n(\alpha+\beta+n+1)$.
126. Выделив асимптотики в особых точках уравнения Лежандра

$$
\begin{equation*}
\frac{1}{\sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d y}{d \theta}\right)-\frac{m^{2} y}{\sin ^{2} \theta}=-\lambda_{m} y \tag{5.23}
\end{equation*}
$$

найти коэффициентья разложения в ряд по $x=\cos \theta$. При каких λ_{m} ряд обрывается и имеется ограниченное решение?

Решение. Выделяя степенные асимптотики в точках $x= \pm 1$ (см. задачу (121))

$$
f(x)=\frac{y(x)}{\left(1-x^{2}\right)^{m / 2}},
$$

получаем уравнение на функцию $f(x)$

$$
\begin{equation*}
\left(1-x^{2}\right) \frac{d^{2} f}{d x^{2}}-2 x(m+1) \frac{d f}{d x}+\left(\lambda_{m}-m(m+1)\right) f=0 . \tag{5.24}
\end{equation*}
$$

Подставим $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ в виде степенного ряда по x в уравнение и приравняем нулю сумму коэффициентов при одинаковых степенях x. На a_{n} получаем рекуррентные соотношения

$$
a_{n+2}=a_{n} \frac{(n+m)(n+m+1)-\lambda_{m}}{(n+1)(n+2)} .
$$

Коэффициент a_{k+2} обращается в нуль, а ряд обрывается, только если $\lambda_{m}=l(l+1), l \geqslant m$, при этом $k=l-m$.
127. Палучить из формуль Родрига (П.37) для полиномов Лежандра интегральное представление Шлефли (П.43).

Решение. По формуле для вычета в полюсе порядка $l+1$, вычет в точке \boldsymbol{x} равен

$$
\oint \frac{(x+)}{2 \pi i} \frac{f(z)}{(z-x)^{l+1}}=\frac{1}{l!} \frac{d^{l} f(x)}{d x^{l}}
$$

Подставляя сюда $f(x)=2^{-1}\left(x^{2}-1\right)^{\prime}$, получаем интегральное представление полиномов Лежандра:

$$
P_{1}(x)=\oint^{(x+)} \frac{d z}{2^{l+1} \pi i} \frac{\left(z^{2}-1\right)^{l}}{(z-x)^{l+1}}
$$

которое можно переписать в виде интеграла по отрезку, сделав замену переменной z на ϕ :

$$
\begin{gathered}
z=x+i \exp (i \phi) \sqrt{1-x^{2}}, \quad d z=(z-x) i d \phi \\
z^{2}-1=x^{2}+2 x(z-x)+(z-x)^{2}-1=2(z-x)\left(x+i \sqrt{1-x^{2}} \cos (\phi)\right)
\end{gathered}
$$

$$
P_{l}(\cos \theta)=\int_{0}^{2 \pi} \frac{d \phi}{2 \pi}(\cos \theta+i \sin \theta \cos \phi)^{l}
$$

128. Найти производяцчю функцик (П.41) для палиномов Лежсандра $P_{l}(x)$ с помощью интегрального представления (П.43).

Решение. Подставим в выражение для производящей функции интегральное представление для полиномов Лежандра

$$
\begin{aligned}
& F(r, \cos \theta)=\sum_{l=0}^{\infty} r^{\prime} P_{l}(\cos \theta)=\int_{0}^{2 \pi} \frac{d \phi}{2 \pi} \sum_{i=0}^{\infty} r^{l}(\cos \theta+i \sin \theta \cos \phi)^{l}, \quad r<1, \\
& F(r, \cos \theta)=\sum_{l=0}^{\infty} r^{-l-1} P_{l}(\cos \theta)=\int_{0}^{2 \pi} \frac{d \phi}{2 \pi} \sum_{l=0}^{\infty} r^{-l-1}(\cos \theta+i \sin \theta \cos \phi)^{l}, r>1
\end{aligned}
$$

Просуммируем геометрическую прогрессию

$$
\begin{aligned}
& F(r, \cos \theta)=\int_{0}^{2 \pi} \frac{d \phi}{2 \pi} \frac{1}{1-r \cos \theta-i r \sin \theta \cos \phi}, \quad r<1 \\
& F(r, \cos \theta)=\int_{0}^{2 \pi} \frac{d \phi}{2 \pi} \frac{1}{r-\cos \theta-i \sin \theta \cos \phi}, \quad r>1
\end{aligned}
$$

Сделаем замену переменной $y=i \exp (i \phi)$:

$$
\begin{aligned}
& F(r, \cos \theta)=\oint_{|y|=1} \frac{d y}{2 \pi i} \frac{-2}{r \sin \theta}\left(y^{2}-2 \frac{1-r \cos \theta}{r \sin \theta} y-1\right)^{-1}, \quad r<1, \\
& F(r, \cos \theta)=\oint_{|y|=1} \frac{d y}{2 \pi i} \frac{-2}{\sin \theta}\left(y^{2}-2 \frac{r-\cos \theta}{\sin \theta} y-1\right)^{-1}, \quad r>1 .
\end{aligned}
$$

Вклад в интеграл дает вычет в том из двух полюсов подынтегрального выражения, который находится внутри окружности единичного радиуса:

$$
\begin{array}{ll}
y^{ \pm}=\frac{1-r \cos \theta \pm \sqrt{1-2 r \cos \theta+r^{2}}}{r \sin \theta}, & r<1 \\
y^{ \pm}=\frac{r-\cos \theta \pm \sqrt{1-2 r \cos \theta+r^{2}}}{\sin \theta}, & r>1
\end{array}
$$

Используя равенство $y^{+} y^{-}=1$, находим, что $\left|y^{-}\right|<1$, а $\left|y^{+}\right|>1$. Поэтому вычет надо брать в точке $y=y^{-}$

$$
\begin{aligned}
& F(r, x)=\frac{2}{r \sin \theta} \frac{1}{\left|y^{+}-y^{-}\right|}=\frac{1}{\sqrt{1-2 r x+r^{2}}}, \quad r<1, \\
& F(r, x)=\frac{2}{\sin \theta} \frac{1}{\left|y^{+}-y^{-}\right|}=\frac{1}{\sqrt{1-2 r x+r^{2}}}, \quad r>1 .
\end{aligned}
$$

129. Палучить рекуррентные соотношения (П.39) и формуль дифференцирования (П.40) с помощью производящей функции (П.41).

Решение. Дифференцируя производящую функцию, получаем

$$
\frac{\partial F(r, x)}{\partial r}=\frac{x-r}{1+r^{2}-2 r x} F(r, x), \quad \frac{\partial F(r, x)}{\partial x}=\frac{r}{1+r^{2}-2 r x} F(r, x) .
$$

Умножим эти равенства на $I+r^{2}-2 r x$. Разлагая в ряд по степеням r и приравнивая коэффициенты при одинаковых степенях r, находим

$$
\begin{gathered}
(l+1) P_{l+1}(x)+(l-1) P_{l-1}(x)-2 x l P_{l}(x)=-P_{l-1}(x)+x P_{l}(x), \\
\frac{d}{d x} P_{l+1}(x)+\frac{d}{d x} P_{l-1}(x)-2 x \frac{d}{d x} P_{l}(x)=P_{l}(x) .
\end{gathered}
$$

Первое равенство перепишем в виде (П.39)

$$
(l+1) P_{l+1}(x)+l P_{l-1}(x)=x(2 l+1) P_{l}(x)
$$

Дифферениируя его и вычитая из второго равенства, умноженного на $l+\frac{1}{2}$ или $l+1$, получаем (П.40)

$$
\begin{aligned}
& \frac{d}{d x} P_{l+1}(x)-\frac{d}{d x} P_{l-1}(x)=(2 l+1) P_{l}(x) \\
& x \frac{d}{d x} P_{l}(x)-\frac{d}{d x} P_{l-1}(x)=l P_{l}(x)
\end{aligned}
$$

130. Доказать ортогональность и выразить нормированные сферические функции $Y_{l m}$ через P_{l}^{m}.

Решение. Нормированные ортогональные сферические функции

$$
Y_{l m}(\theta, \varphi)=A_{l}^{m} P_{l}^{|m|}(\cos \theta) \exp (i m \varphi)
$$

должны удовлетворять соотношению

$$
\int d \Omega Y_{l m}^{*}(\theta, \varphi) Y_{l^{\prime} m^{\prime}}(\theta, \varphi)=2 \pi \delta_{m m^{\prime}} A_{l}^{m} A_{l^{\prime}}^{m} \int_{-1}^{1} d x P_{l}^{|m|}(x) P_{r^{\prime}}^{|m|}(x)=\delta_{m m^{\prime}} \delta_{l r^{\prime}}
$$

Иначе говоря, присоединенные функции Лежандра должны быть ортогональны

$$
F=\int_{-1}^{1} d x P_{l}^{|m|}(x) P_{l^{\prime}}^{|m|}(x)=\delta_{l l^{\prime}} \frac{1}{2 \pi\left(A_{l}^{m}\right)^{2}}
$$

Положим $l^{\prime}>l$. Воспользуемся формулой Родрига для функций Лежандра. Интегрируя по частям, получаем

$$
\begin{aligned}
F & =\int_{-1}^{1} d x \frac{\left(1-x^{2}\right)^{|m|}}{2^{l+l^{\prime}}!!l^{\prime}!}\left(\frac{d^{l+|m|}}{d x^{l+|m|}}\left(x^{2}-1\right)^{l}\right)\left(\frac{d^{l^{\prime}+|m|}}{d x^{l+|m|}}\left(x^{2}-1\right)^{l}\right)= \\
& =\int_{-1}^{1} d x \frac{(-1)^{i^{l}+|m|}\left(x^{2}-1\right)^{l^{\prime}}}{2^{l+l^{\prime} l!l^{\prime}!}}\left[\frac{d^{l^{\prime}+|m|}}{d x^{l+|m|}}\left(\left(1-x^{2}\right)^{|m|} \frac{d^{l+|m|}}{d x^{l+|m|}}\left(x^{2}-1\right)^{l}\right)\right] .
\end{aligned}
$$

Произведение в квадратных скобках отлично от нуля только при $l=l^{\prime}$ и равно в этом случае $\frac{\left.(-1)^{\prime}\right)(21)!(l+\mid m)!}{(l-|m|)!}$. При $l^{\prime}<l$ надо поменять l, l^{\prime} местами, таким образом, ортогональность доказана. Вычисляя оставшийся интеграл F, получим выражение для коэффициентов A_{l}^{m} :

$$
F=\frac{2}{2 l+1} \frac{(l+|m|)!}{(l-|m|)!}, \quad A_{l}^{m}=\sqrt{\frac{(2 l+1)(l-|m|)!}{4 \pi(l+|m|)!}}
$$

131. Нарисовать график зависимости сферических гармоник

$$
\left|\mathbf{Y}_{l m}\right|(\cos \theta)
$$

от угла θ при $m=l$ и при $m=0, l \gg \mathrm{I}($ в квазиклассическам приближении) .
Решение. При $m=1$ из формулы Родрига находим $\left|Y_{l l}\right| \sim \sin ^{1} \theta$. При $\boldsymbol{m}=0$ приведем уравнение (П.36) к стандартному виду оператора Штурма-Лиувилля с помощью подстановки, исключаюшей члены с первой производнои:

$$
\begin{gathered}
Y_{l 0}(\theta)=\frac{f(\theta)}{\sqrt{\sin \theta}} \\
\frac{d^{2}}{d \theta^{2}} f(\theta)+\left[\left(l+\frac{1}{2}\right)^{2}-\frac{1}{4 \sin ^{2} \theta}\right] f(\theta)=0
\end{gathered}
$$

При $\sin \theta \gg \mid$ мы можем пренебречь вторым членом в квадратных скобках. Тогда, за исключением окрестностей $\theta<\frac{1}{1}, \pi-\theta \ll \frac{1}{1}$, функция имеет вид

$$
Y_{l 0} \sim \frac{\sin \left(\theta\left(l+\frac{1}{2}\right)+\frac{\pi}{4}\right)}{\sqrt{\sin \theta}} .
$$

Фаза $\frac{\pi}{4}$ определяется из требования симметрии функции

$$
Y_{10}(\theta)=(-1)^{l} Y_{10}(\pi-\theta) .
$$

При $\theta \rightarrow 0, \pi$ сферическая функция $Y_{l 0}(\theta)=\sqrt{\frac{(2 i+1)}{4 \pi}} P_{l}^{0}(\cos \theta)$ стремится к конечной величине (рис.5.2).

Рис. 5.2. Графики сферических rapмоник с орбитальным моментом $l=6$. На левом рисунке $m=l$, на правом $-\boldsymbol{m}=\mathbf{0}$
132. Привести радиальную часть трехмерного уравнения Шрёдингера для частицы, находящейся в связанном состоянии ($E<0$), в кулоновском поле $U=-\frac{1}{r}$ (атомные единицы):

$$
\Delta \Psi(r)+2\left(E+\frac{1}{r}\right) \Psi(r)=0
$$

κ уравнению Лагерра (П.58), выделив асимптотики в особьх точках.
Решение. После разделения переменных радиальная часть уравнения Шрёдингера принимает вид

$$
\frac{1}{r} \frac{d^{2}}{d r^{2}} r \Psi(r)+\left(\frac{2}{r}-\frac{l(l+1)}{r^{2}}+2 E\right) \Psi(r)=0 .
$$

В этом уравнении особые точки $-\boldsymbol{r}=0$ регулярная и $\boldsymbol{r}=\infty$ иррегулярная - совпадают с особыми точками вырожденного гипергеометрического уравнения (5.7), но асимптотики в них другие:

$$
\begin{array}{lll}
\text { при } & r \rightarrow 0: & \Psi(r) \sim r^{\prime} \text { или } r^{-l-1}, \\
\text { при } & r \rightarrow \infty: & \Psi(r) \sim \exp (\pm r \sqrt{-2 E}) .
\end{array}
$$

Выделяя асимптотики $\Psi(r)=r^{\prime} \exp (-r \sqrt{-2 E}) f(r)$, на $f(r)$ получаем уравнение

$$
\frac{d^{2} f}{d r^{2}}+\left(\frac{2(l+1)}{r}-2 \sqrt{-2 E}\right) \frac{d f}{d r}+\frac{2-2(l+1) \sqrt{-2 E}}{r} f(r)=0
$$

которое после перехода к новой переменной $\rho=2 r \sqrt{-2 E}$, сводится к вырожденному гипергеометрическому уравнению (5.7) с $\gamma=2(l+1)$ и $\boldsymbol{\alpha}=l+1-\frac{1}{\sqrt{-2 \mathbf{E}}}$:

$$
\rho \frac{d^{2} f(\rho)}{d \rho^{2}}+(2(l+1)-\rho) \frac{d f(\rho)}{d \rho}+\left(\frac{1}{\sqrt{-2 E}}-l-1\right) f(\rho)=0 .
$$

Требование убывания $\Psi(r)$ на бесконечности дает условие на

$$
E=-\frac{1}{2}(-\alpha+l+1)^{2}
$$

поскольку только при целых $\alpha \leqslant 0$ вырожденное гипергеометрическое уравнение сводится к уравнению Лагерра (П.58), которому удовлетворяет степенное решение ($П .59$): $f(\rho)=L_{-a}^{2+1}(\rho)$, растущее на бесконечности медленнее чем $\exp \left(\frac{\rho}{2}\right)$. Откуда

$$
\Psi(r)=r^{l} \exp \left(-\frac{r}{n}\right) L_{n-l-1}^{2 l+1}\left(\frac{2 r}{n}\right), \quad n=\frac{1}{\sqrt{-2 E}} \geqslant l+1
$$

133. Найти нормировку радиальной валновой функции электрона ө атоне водорода:

$$
R_{n}^{l}(r)=A_{n}^{l} x^{l} \exp \left(-\frac{x}{2}\right) L_{n-l-l}^{2 l+1}(x), \quad x=\frac{2 r}{n} .
$$

Решение. По определению нормированная волновая функция удовлетворяет уравнению (в атомных единицах),

$$
I=\int_{0}^{\infty} r^{2} d r\left|R_{n}^{l}(r)\right|^{2}
$$

Заменим переменную интегрирования r на $x=\frac{2 r}{n}$, где $n=\frac{1}{\sqrt{-2 E}} \geqslant l+1$ целое, и, воспользовавшись формулой Родрига для полиномов Лагерра (П.59), перепишем в виде:

$$
\left(A_{n}^{l}\right)^{-2}=\int_{0}^{\infty}\left(\frac{n}{2}\right)^{3} x^{2} d x x^{-2 l-2} \exp (x)\left[\frac{1}{(n-l-1)!} \frac{d^{n-l-1}}{d x^{n-1-1}}\left[x^{n+l} \exp (-x)\right]\right]^{2} .
$$

Интегрируя по частям, получаем

$$
\left(A_{n}^{l}\right)^{-2}=\left(\frac{n}{2}\right)^{3} \int_{0}^{\infty} d x \frac{(-1)^{n-l-1} x^{n+1} e^{-2}}{(n-l-1)!^{2}}\left\{\frac{d^{m-1-1}}{d x^{n-l-1}} x^{-2 l}\left[e^{x} \frac{d^{n-l-1}}{d x^{n-l-1}}\left(x^{n+1} e^{-x}\right)\right]\right\}
$$

Выражение в фигурных скобках равно

$$
(-1)^{n-t-1}(x(n-l)!-(n+l)(n-l-1)(n-l-1)!)
$$

поэтому интеграл выражается через Г-функции от целого аргумента:

$$
\begin{aligned}
\left(A_{n}^{l}\right)^{-2} & =\left(\frac{n}{2}\right)^{3} \int_{0}^{\infty} d x \frac{\exp (-x)}{(n-l-1)!}\left[(n-l) x^{n+l+1}-(n+l)(n-l-1) x^{n+l}\right]= \\
& =\left(\frac{n}{2}\right)^{3} \frac{(n-l)(n+l+1)!-(n+l)(n-l-1)(n+l)!}{(n-l-1)!}
\end{aligned}
$$

Откуда получаем нормированную функцию

$$
R_{n}^{\prime}(r)=\frac{2}{n^{2}} \sqrt{\frac{(n-l-1)!}{(n+l)!}}\left(\frac{2 r}{n}\right)^{l} \exp \left(-\frac{r}{n}\right) L_{n-l-1}^{2 l+1}\left(\frac{2 r}{n}\right)
$$

134. Найти собственные функции и энергию стационарных состояний уравнения Шрёдингера для осциллятора:

$$
-\frac{1}{2}\left(\frac{d^{2}}{d x^{2}}-x^{2}\right) \Psi(x)=E \Psi(x)
$$

Решение. Выделяя асимптотику при $x=\infty$, уравнение Шрёдингера для осциллятора можно свести к уравнению Эрмита. Мы поступим по-другому. Введя операторы

$$
\hat{a}=\frac{i}{\sqrt{2}}\left(\frac{d}{d x}+x\right), \quad \hat{a}^{\dagger}=\frac{i}{\sqrt{2}}\left(\frac{d}{d x}-x\right),
$$

перепишем уравнение Шрёдингера,

$$
\widehat{H} \Psi(x)=\hat{a}^{\dagger} \hat{a} \Psi(x)=\left(E-\frac{1}{2}\right) \Psi(x) .
$$

Нетрудно видеть, что оператор $\hat{\boldsymbol{H}}$ положительно определен для всех функций из L^{2} :

$$
\int d x \Psi^{\dagger}(x) \widehat{H} \Psi(x)=\int d x \Psi^{\dagger}(x) \hat{a}^{\dagger} \hat{a} \Psi(x)=\int d x|\hat{a} \Psi(x)|^{2} \geqslant 0 .
$$

Равенство нулю этого выражения достигается, только если

$$
\hat{a} \Psi_{0}(x)=\frac{i}{\sqrt{2}}\left(\frac{d}{d x}+x\right) \Psi_{0}(x)=0, \quad \text { т. е. } \quad \Psi_{0}(x)=A \exp \left(-\frac{x^{2}}{2}\right) .
$$

При этом $E_{0}=\frac{1}{2}$. Для нахождения всего спектра энергий рассмотрим коммутационные соотношения

$$
\begin{aligned}
\hat{a} \hat{a}^{\dagger} \Psi(x) & =\hat{a}^{\dagger} \hat{a} \Psi(x)+\Psi(x), \\
\hat{a}^{\dagger} \hat{a}\left(\hat{a}^{\dagger}\right)^{n} \Psi(x) & =\left(\hat{a}^{\dagger}\right)^{2} \hat{a}\left(\hat{a}^{\dagger}\right)^{n-1} \Psi(x)+\left(\hat{a}^{\dagger}\right)^{n} \Psi(x)= \\
& =n\left(\hat{a}^{\dagger}\right)^{n} \Psi(x)+\left(\hat{a}^{\dagger}\right)^{n+1} \hat{a} \Psi(x) .
\end{aligned}
$$

Поскольку $\hat{a} \Psi_{0}=0$, из коммутационных соотношений следует, что функция $\Psi_{n}(x)=\left(\hat{a}^{\dagger}\right)^{n} \Psi_{0}(x)$ удовлетворяет уравнению

$$
\left(E-\frac{1}{2}\right) \Psi_{n}(x)=\widehat{H} \Psi_{n}(x)=\hat{a}^{\dagger} \hat{a} \Psi_{n}(x)=n \Psi_{n}(x)
$$

Откуда видим, что собственные функции $\Psi_{n}(x)$ состояния с энергией

$$
E_{n}=n+\frac{1}{2}
$$

выражаются через полиномы Эрмита $\boldsymbol{H}_{\mathrm{n}}(\boldsymbol{x})$ (П.50):

$$
\begin{aligned}
\Psi_{n}(x) & =A_{n}\left(\frac{i}{\sqrt{2}}\left(\frac{d}{d x}-x\right)\right)^{n} \exp \left(-\frac{x^{2}}{2}\right)= \\
& =A_{n} \frac{i^{n}}{2^{(n / 2)}} \exp \left(\frac{x^{2}}{2}\right) \frac{d^{n}}{d x^{n}} \exp \left(-x^{2}\right)
\end{aligned}
$$

где мы воспользовались операторным тождеством $\left(\frac{d}{d x}-x\right) e^{x^{2} / 2}=e^{x^{2} / 2} \frac{d}{d x}$. Из соотношения ортогональности дия полиномов Эрмита (П.52) получаем величину нормировочного коэффициента

$$
A_{n}=\frac{1}{\sqrt{n!\sqrt{\pi}}}
$$

135. Найти собственнье функиии и энергию стационарных состояний уравнения Шрёдингера для двумерного (трехмерного) осциляттора в декартовых координатах:

$$
-\frac{1}{2}\left(\Delta-r^{2}\right) \Psi(r)=E \Psi(r) .
$$

Найти кратности вырождения состояний.
Решение. В декартовых координатах переменные в этом уравнении разделяются. Для двумерного случая полагаем

$$
\Psi(r)=\Psi^{1}\left(x_{1}\right) \Psi^{2}\left(x_{2}\right), \quad r=\left(x_{1}, x_{2}\right)
$$

На $\Psi^{j}\left(x_{j}\right)$ получаем одинаковые уравнения

$$
-\frac{1}{2}\left(\frac{d^{2}}{d x_{j}^{2}}-x_{j}^{2}\right) \Psi^{j}\left(x_{j}\right)=E^{j} \Psi^{j}\left(x_{j}\right), \quad j=1,2, \quad E=E^{1}+E^{2}
$$

Это уравнение Шрёдингера для одномерного осциллятора, собственные функции и спектр которого найдены в задаче 134. Таким образом, энергия стационарного состояния равна сумме энергий $E_{n}^{j}=n_{j}+\frac{1}{2}$ одномерных осцилляторов

а искомые собственные функции есть произведение функций $\Psi_{n_{1}}^{1}\left(x_{1}\right) \times$ $\Psi_{n_{2}}^{2}\left(x_{2}\right)$, явный вид которых приведен в задаче 134. Кратность вырождения N-го уровня g_{N} есть число линейно независимых собственных функций с одинаковой энергией E_{N}, т. е. $n_{1}+n_{2}=N$. Так как каждому $n_{1,2}$ соответствует только одна собственная функция, находим, что $g_{N}=\sum_{n_{1}, n_{2}=0}^{N} \delta\left(n_{1}+n_{2}-N\right)=N+1$.

В трехмерном случае действуем аналогично. Поскольку энергия стационарного состояния определяется теперь суммой трех целых чисел

$$
E_{N}=n_{1}+n_{2}+n_{3}+\frac{3}{2} \equiv N+\frac{3}{2}, \quad N, n_{1}, n_{2}, n_{3}=0,1,2, \ldots,
$$

то кратность вырождения уже другая:

$$
g_{N}=\sum_{n_{1}, n_{2}, n_{3}=0}^{N} \delta\left(n_{1}+n_{2}+n_{3}-N\right)=\frac{(N+1)(N+2)}{2}
$$

136. Найти собственнье функиии и энергию стационарных состояний уравнения Шрёдингера для трехмерного осциллятора в сферических координатах:

$$
-\frac{1}{2}\left(\Delta-r^{2}\right) \Psi(r)=E \Psi(r)
$$

Решеше. В сферических координатах переменные в уравненни Шрёдингера для трехмерного осциллятора разделяктся

$$
\Psi(r)=R(r) Y_{l m}(\theta, \varphi) .
$$

Здесь $\boldsymbol{Y}_{\mathrm{Jm}}(\boldsymbol{\theta}, \varphi)$ - сферические функции, вырахаюшиеся через решения уравнения Лежандра (задача 130). На радиальную функцию получается уравнение

$$
\frac{1}{r^{2}} \frac{d}{d r} r^{2} \frac{d}{d r} R(r)+\left(2 E-r^{2}-\frac{l(l+1)}{r^{2}}\right) R(r)=0
$$

Асимптотика решения в регулярной особой точке $r \rightarrow 0$ этого уравнения

$$
R(r) \sim r^{\rho}, \quad \rho(\rho+1)-l(l+1)=0, \quad \rho=l, \quad \rho=-l-1,
$$

а в иррегулярной $\boldsymbol{r} \rightarrow \infty$

$$
R(r) \sim \exp \left(\pm \frac{r^{2}}{2}\right)
$$

Выделяя асимптотики

$$
R(r)=f(r) r^{1} \exp \left(-\frac{r^{2}}{2}\right) \text {, для функции } f(r) \text { по- }
$$ лучаем

Сделаем неконформную замену переменной $z=\boldsymbol{r}^{2}$:

$$
z \frac{d^{2} f(z)}{d z^{2}}+\left(l+\frac{3}{2}-z\right) \frac{d f(z)}{d z}+\frac{E-l-3 / 2}{2} f(z)=0 .
$$

Это вырожденное гипергеометрическое уравнение (5.7) сводится к уравнению Лагерра (П.58) с индексами $\nu=l+\frac{1}{2}, 2 n=E-l-\frac{3}{2}$, если $n-$ целое неотрицательное число. Из условия убывания $\boldsymbol{R}(\boldsymbol{r})$ при $r \rightarrow \infty$ получаем, что $f(z)$ равна обобщенному полиному Лагерра $L_{n}^{\nu}(z)$, а собственные функции имект вид

$$
\begin{gathered}
\Psi_{n, l, m}(r)=A_{n}^{l} r^{l} \exp \left(-\frac{r^{2}}{2}\right) L_{n}^{l+1 / 2}\left(r^{2}\right) Y_{l m}(\theta, \varphi) \\
E_{N}=\frac{3}{2}+l+2 n \equiv N+\frac{3}{2}
\end{gathered}
$$

Для вычисления кратности вырождения g_{N} уровня с энергией E_{N} вспомним, что при фиксированном l имеется $2 l+1$ линейно независимых функций $Y_{l m}$ с различными m, поэтому
$g_{N}=\sum_{n=0}^{|N / 2|} \sum_{l=0}^{N}(2 l+1) \delta(l+2 n-N)=\sum_{n=0}^{|N / 2|} 2(N-2 n)+1=\frac{(N+1)(N+2)}{2}$.
Сравните с ответом к задаче 135 для трехмерного случая. Очевидно, что полученные собственные функиии для N-го уровня энергии являются линейными комбинациями собственных функиий с той же энергией из задачи 135.
137. Вывести интегральное представление (П.66) для палиномов Лагерра, используя преобразование Лапласа уравнения (П.58).

Решение. Подставляя обратное преобразование Лапласа

$$
L_{n}^{\nu}(x)=\frac{1}{2 \pi i} \int_{C} d t e^{t x} f(t)
$$

в уравнение (П.58), получим

$$
\left.\int_{C} d t f(t) e^{i x}\left[x t^{2}+(\nu+1-x) t+n\right)\right]=0
$$

Тождество $x e^{t x} \equiv \frac{d e^{\prime \prime}}{d t}$ позволяет переписать полученное уравнение в виде

$$
\int_{C} d t f(t)\left[\frac{d e^{i x}}{d t}\left(t^{2}-t\right)+((\nu+1) t+n) e^{t z}\right]=0
$$

Интегрируя по частям, находим, что

$$
\int_{C} d t e^{t x}\left[-\frac{d\left(t^{2}-t\right) f(t)}{d t}+((\nu+1) t+n) f(t)\right]=0
$$

если контур интегрирования C выбран так, чтобы внеинтегральные члены обращались в нуль. Выражение в квадратных скобках дает дифференциальное уравнение первого порядка для $f(t)$:

$$
\frac{d\left(t^{2}-t\right) f(t)}{d t}=((\nu+1) t+n) f(t)
$$

решение которого имеет вид

$$
f(t)=A \frac{(1-t)^{n+\nu}}{t^{n+1}}
$$

Эта функция имеет полюс при $t=0$, поэтому контур интегрирования C можно выбрать в виде окружности радиуса $t<1$, как указано в пояснении к формуле (П.66):

$$
L_{n}^{\nu}(x)=\frac{A}{2 \pi i} \int^{(0+)} \frac{(1-t)^{n+\nu}}{t^{n}} e^{t x} \frac{d t}{t}
$$

Нормировочная константа A не может быть определена из уравнения, а задается дополнительным условием нормировки $L_{n}^{\nu}(0)=\frac{\Gamma(n+\nu+1)}{\Gamma(\nu+1) n!}$, которое следует из формулы Роприга (П.59). Вычисляя интеграл при $x=0$, получаем интегральное представление

$$
L_{n}^{\nu}(x)=\frac{(-1)^{n}}{2 \pi i} \int^{(0+)} \frac{(1-t)^{n+\nu}}{t^{n}} e^{t x} \frac{d t}{t}
$$

138. Доказать, что функция Бесселя выражается через контурньй интеграл (представление типа Шлефли)

$$
J_{\nu}(x)=\frac{1}{2 \pi i} \int_{-\infty}^{(0+)} \frac{d z}{z^{\nu+1}} \exp \left(\frac{x z}{2}-\frac{x}{2 z}\right)
$$

где интегрирование идет по контуру, начинающемуся и заканчивающемуся в $-\infty$, обходящему точку $z=0$ в положительном направлении (рис. П.Л).

Решение. Подставляя разложение функции

$$
\exp \left(-\frac{x}{2 z}\right)=\sum_{n=0}^{\infty} \frac{1}{n!}\left(-\frac{x}{2 z}\right)^{n}
$$

в контурный интеграл, получим для n-го члена ряда при $\operatorname{Re}(n+\nu)<0$:

$$
\begin{aligned}
& \frac{(-1)^{n}(x / 2)^{2 n+\nu}}{n!} \frac{1}{2 \pi i} \int_{-\infty}^{(0+)} d t \frac{\exp (t)}{t^{n+\nu+1}}= \\
& =\frac{(-1)^{n}(x / 2)^{2 n+\nu}}{\pi n!} \sin (\pi(n+\nu+1)) \Gamma(-n-\nu)=\frac{(-1)^{n}(x / 2)^{2 n+\nu}}{n!\Gamma(n+\nu+1)} .
\end{aligned}
$$

Последнее равенство следует из формулы (П.3). Аналитическое продолжение этого выражения по ν дает n-ый член разложения функиии Бесселя в ряд по x (П.15).
139. Показать, что функции $J_{-n}(x)=(-1)^{n} J_{n}(x)$ линейно зависимы при целых n.

Решение. Воспользуемся разложением функций Бесселя в нуле (П.15) и тем, что $\Gamma(m)=\infty$ при целых $m \leqslant 0$ и $\Gamma(m+1)=m!$ при целых $m \geqslant 0$.

$$
\begin{aligned}
J_{-n}(x) & =\left(\frac{x}{2}\right)^{-n} \sum_{k=0}^{\infty}\left(\frac{-x^{2}}{4}\right)^{k} \frac{1}{k!\Gamma(k-n+1)}= \\
& =\left(-\frac{x}{2}\right)^{n} \sum_{l=-n}^{\infty}\left(\frac{-x^{2}}{4}\right)^{\prime} \frac{1}{(l+n)!\Gamma(l+1)}=(-1)^{n} J_{n}(x) .
\end{aligned}
$$

Здесь введено переобозначение $k=l+n$.
140. Показать, ито функция Неймана Y_{ν} (П.21) остается линейно независимой к J_{ν} (П.15) при $\nu \rightarrow n$.

Решение. Надо вычислить вронсхиан $W\left\{J_{\nu}(x), Y_{\nu}(x)\right\}$ (5.2) и устремить $\boldsymbol{\nu} \rightarrow \boldsymbol{n}$:

$$
\begin{aligned}
x W\left\{J_{\nu}(x), Y_{\nu}(x)\right\} & =-\frac{x W\left\{J_{\nu}, J_{-\nu}\right\}}{\sin (\pi \nu)}= \\
& =\lim _{x \rightarrow 0} \frac{x}{\sin (\pi \nu)}\left(J_{-\nu}(x) \frac{d J_{\nu}(x)}{d x}-J_{\nu}(x) \frac{d J_{-\nu}(x)}{d x}\right)= \\
& =\frac{2 \nu}{\Gamma(-\nu+1) \Gamma(\nu+1) \sin (\pi \nu)}
\end{aligned}
$$

Здесь мы воспользовались тем, что в силу (5.4) вронскиан двух решений уравнения Бесселя имеет вид $W(x)=\frac{\text { cons }}{x}$, а вычислять константу удобнее при $\boldsymbol{x}=0$. Поскольку получившаяся константа (см. (П.3))

$$
\text { const }=\frac{2 \nu}{\Gamma(-\nu+1) \Gamma(\nu+1) \sin (\pi \nu)}=\frac{2}{\Gamma(1-\nu) \Gamma(\nu) \sin (\pi \nu)}=\frac{2}{\pi}
$$

не зависит от ν, то в пределе $\nu \rightarrow n$ вронскиан остается конечным, а значит $Y_{n}(x)$ и $J_{n}(x)$ линейно независимы.
141. Выразить функции Бесселя с полуцелым индексом $J_{m+\frac{1}{2}}$ через элементарные функции.

Решение. Для $J_{1 / 2}(x)$ имеем (П.15)

$$
J_{\frac{1}{2}}(x)=\sqrt{\frac{x}{2}} \sum_{k=0}^{\infty} \frac{\left(-x^{2} / 4\right)^{k}}{k!\Gamma(k+3 / 2)}=\sqrt{\frac{x}{2}} \sum_{k=0}^{\infty} \frac{\left(-x^{2}\right)^{k}}{(2 k+1)!\Gamma(3 / 2)}=\sqrt{\frac{2}{\pi x}} \sin (x),
$$

где мы использовали соотношение (П.2)

$$
\Gamma\left(k+\frac{3}{2}\right)=(2 k+1)(2 k-1) \ldots 3 \cdot \frac{\Gamma(3 / 2)}{2^{k}}
$$

и значение функции $\Gamma\left(\frac{3}{2}\right)=\frac{\sqrt{\pi}}{2}$. Для того, чтобы выразить $J_{m+1 / 2}(x)$ через элементарные функции, воспользуемся формулами дифференцирования (П.18)

$$
\begin{aligned}
J_{m+\frac{1}{2}}(x) & =-x^{m-1 / 2} \frac{d}{d x}\left(x^{-m+1 / 2} J_{m-1 / 2}\right)= \\
& =(-1)^{m} x^{m+1 / 2}\left(x^{-1} \frac{d}{d x}\right)^{m} \frac{1}{\sqrt{x}} J_{\frac{1}{2}}(x) .
\end{aligned}
$$

142. Исходя из дифференциального уравнения (П.14), получить с помощью преобразования Лапласа интегральное представление типа Пуассона (П.20) для функции Бесселя с целым индексом. Чему равен лапласовский образ $\mathrm{J}_{0}(x)$?

Решение. Функция $f(x)=x^{-n} J_{n}(x)$ удовлетворяет уравнению

$$
x \frac{d^{2}}{d x^{2}} f(x)+(2 n+1) \frac{d}{d x} f(x)+x f(x)=0
$$

коэффициенты которого являются полиномами первой степени. Подставим в это уравнение обратное преобразование Лапласа

$$
f(x)=\int_{C} \frac{d t}{2 \pi i} \exp (x t) g(t)
$$

После интегрирования по частям приравняем подынтегральное выражение нулю и получим

$$
-\frac{d}{d t}\left(t^{2}+1\right) g(t)+(2 n+1) \operatorname{tg}(t)=0
$$

Чтобы внеинтегральные члены не давали вклада при интегрировании по частям, должно выполняться равенство

$$
\exp \left(x t_{0}\right)\left(t_{0}^{2}+1\right) g\left(t_{0}\right)=\exp \left(x t_{k}\right)\left(t_{k}^{2}+1\right) g\left(t_{k}\right)
$$

где t_{0}, t_{k} - начальная и конечная точки контура C. Решая получившееся дифференциальное уравнение на $g(t)$, находим

$$
g(t)=A\left(t^{2}+1\right)^{n-1 / 2}
$$

Контур C надо выбрать обходящим обе точки ветвления $t^{*}= \pm i$ функции $g(t)$, например, замкнутый контур, проходящий вдоль берегов разреза от $t=-i$ до $t=i$ в положительном направлении (рис.8.1). В результате

$$
J_{n}(x)=\frac{A_{n} x^{n}}{2 \pi i} \int_{C} d t \exp (x t)\left(t^{2}+1\right)^{n-1 / 2}
$$

где A_{n} - нормировочная константа. Полученное выражение переходит в интегральное представление (П.20) после замены переменной $t \rightarrow i \tau$. Так как $J_{0}(0)=1$, то, вычисляя интеграл, находим $A_{0}=1$, а образ Лапласа функции $J_{0}(x)$

$$
g_{0}(t)=\frac{1}{\sqrt{t^{2}+1}}
$$

143. Испальзуя формулы дифференцирования (П.18), показать, что производящая функция

$$
F(z, x)=\sum_{m=-\infty}^{\infty} z^{m} J_{m}(x)
$$

имеет вид (П.25).
Решение. Дифференцируя $F(z, x)$ по x и пользуясь формулами дифференцирования (П.18), получим

$$
\begin{aligned}
\frac{\partial F(z, x)}{\partial x} & =\sum_{m=-\infty}^{\infty} z^{m} \frac{d J_{m}(x)}{d x}= \\
& =\sum_{m=-\infty}^{\infty} \frac{z^{m}}{2}\left(J_{m-1}(x)-J_{m+1}(x)\right)=\frac{1}{2}\left(z-\frac{1}{z}\right) F(z, x) .
\end{aligned}
$$

Решая это дифференциальное уравнение, найдем

$$
F(z, x)=C(z) \exp \left(\frac{x}{2}\left[z-\frac{1}{z}\right]\right) .
$$

Константу $C(z)$ найдем из условия $J_{n}(0)=0$ при $n \neq 0$

$$
C(z)=F(z, 0)=J_{0}(0)=1 .
$$

144. Вывести интегральное представление Бесселя

$$
J_{n}(x)=\int_{0}^{\pi} \cos (n \theta-x \sin \theta) \frac{d \theta}{\pi},
$$

Ренение. Сделаем замену переменной $z=\exp (i \theta)$ в контурном интеграле, выражающем функцию Бесселя через производящую функцию (П.25)

$$
\begin{aligned}
J_{n}(x) & =\frac{1}{2 \pi i} \oint \frac{d z}{z^{n+1}} \exp \left(\frac{x}{2}\left[z-\frac{1}{z}\right]\right)= \\
& =\int_{0}^{2 \pi} \frac{d \theta}{2 \pi} \exp (i x \sin (\theta)-i n \theta)=\int_{0}^{\pi} \frac{d \theta}{\pi} \cos (x \sin (\theta)-n \theta)
\end{aligned}
$$

В последнем равенстве мы воспользовались симметрией и периодичностью функций $\sin (\theta)$ и $\exp (\operatorname{in} \theta)$.
145. Вывести формуау

$$
J_{0}\left(\left|r_{1}-r_{2}\right|\right)=\sum_{n=-\infty}^{\infty} J_{n}\left(r_{1}\right) J_{n}\left(r_{2}\right) \exp (i n \theta)
$$

где θ - угап мехсду векторами r_{1} и r_{2}.
Решенше. Подставив $z=i \exp (i \varphi)$ в выражение для производящей функции (П.25), получим равенство

$$
\begin{aligned}
\sum_{m=-\infty}^{\infty} i^{m} \exp (i m \varphi) J_{m}(q) & = \\
=\exp (i q \cos \varphi) & =\exp (i q n)
\end{aligned}
$$

где φ - угол между вектором q и единичным вектором $n, n^{2}=1$. Положим $q=r^{\prime}-r$, обозначив за θ угол между векторами r и r^{\prime}, а за α - угол между векторами r и \boldsymbol{n} (рис. 5.3). Проинтегрируем полученное равенство по n, заданному на окружности

Pwe. 5.3. Векторы r, $\boldsymbol{r}^{\prime}, q$ и n единичного радиуса:

$$
\begin{aligned}
& J_{0}\left(\left|r-r^{\prime}\right|\right)=\int_{0}^{2 \pi} \frac{d \varphi}{2 \pi} \sum_{m=-\infty}^{\infty} i^{m} \exp (i m \varphi) J_{m}\left(\left|r-r^{\prime}\right|\right)=\int \frac{d n}{2 \pi} \exp \left[i\left(r^{\prime}-r\right) n\right]= \\
& \quad=\int_{0}^{2 \pi} \frac{d \alpha}{2 \pi} \sum_{k=-\infty}^{\infty} i^{-k} \exp (-i k \alpha) J_{k}(r) \sum_{m=-\infty}^{\infty} i^{m} \exp \left[i m(\alpha+\theta) J_{m}\left(r^{\prime}\right)\right]= \\
& \quad=\sum_{m=-\infty}^{\infty} \exp (i m \theta) J_{m}(r) J_{m}\left(r^{\prime}\right) .
\end{aligned}
$$

146. Найти свертку $F(y)=\int_{0}^{y} d x J_{0}(x) J_{0}(y-x)$.

Решение. Выполним преобразование Лапласа, чтобы превратить свертку в произведение:

$$
\int_{C} \frac{d t}{2 \pi i} g(t) \exp (x t)=f(x) \theta(x), \quad \theta(x)= \begin{cases}1, & x>0 ; \\ 0, & x<0 .\end{cases}
$$

Контур C начинается и заканчивается в $-\infty$, обходя в положительном направлении все особенности в комплексной плоскости лапласовского образа $g(t)$ функции $f(x)$.

$$
\begin{aligned}
F(y) & =\int_{0}^{\infty} d x J_{0}(x) J_{0}(y-x) \theta(y-x)= \\
& =\int_{C} \frac{d t}{2 \pi i} e^{y t} g_{0}(t) \int_{0}^{\infty} d x J_{0}(x) e^{-x t}=\int_{C} \frac{d t}{2 \pi i} g_{0}^{2}(t) e^{y t} .
\end{aligned}
$$

Образ Лапласа функции Бесселя $g_{0}(t)$ найден в задаче 142 . Подставляя его, находим

$$
F(y)=\int_{C} \frac{d t}{2 \pi i} \frac{e^{y t}}{t^{2}+1}=\sin y
$$

где контурный интеграл дается вычетами в точках $t= \pm i$.
147. Доказать ортогональность функций Бесселя (П.26).

Решение. Запишем уравнение Бесселя на функцик $J_{k}\left(\lambda_{m} t\right)$ и умножим его на $J_{k}\left(\lambda_{n} t\right)$:

$$
J_{k}\left(\lambda_{n} t\right)\left(\frac{1}{t} \frac{d}{d t} t \frac{d}{d t} J_{k}\left(\lambda_{m} t\right)+\left(\lambda_{m}^{2}-\frac{k^{2}}{t^{2}}\right) J_{k}\left(\lambda_{m} t\right)\right)=0 .
$$

Перепишем это равенство, переставив индексы n, m. Затем вычтем уравнения друг из друга и проинтегрируем результат от 0 до 1 по $t d t$:

$$
\begin{aligned}
& \left(\lambda_{m}^{2}-\lambda_{n}^{2}\right) \int_{0}^{1} t d t J_{k}\left(\lambda_{n} t\right) J_{k}\left(\lambda_{m} t\right)= \\
& \quad=-\left.t\left(J_{k}\left(\lambda_{n} t\right) \frac{d}{d t} J_{k}\left(\lambda_{m} t\right)-J_{k}\left(\lambda_{m} t\right) \frac{d}{d t} J_{k}\left(\lambda_{n} t\right)\right)\right|_{0} ^{1}
\end{aligned}
$$

Если $\lambda_{n, m}$ являются нулями функции Бесселя $J_{k}\left(\lambda_{n, m}\right)=0$, то интеграл обращается в нуль при $m \neq n$, поскольку правая часть равенства обрашается в нуль. Интеграл обрашается в нуль и в том случае, когда $\lambda_{n, m}$

являются нулями производной $\frac{d J_{j}\left(\lambda_{m}\right)}{d \lambda_{m}}=0$. Чтобы найти значение интеграла при $n=m$, необходимо раскрыть неопределенность:

$$
\begin{aligned}
\int_{0}^{1} t d t & J_{k}\left(\lambda_{n} t\right) J_{k}\left(\lambda_{n} t\right)= \\
& =\lim _{n \rightarrow m} \frac{1}{\lambda_{n}^{2}-\lambda_{m}^{2}}\left(\lambda_{m} J_{k}\left(\lambda_{n}\right) \frac{d J_{k}\left(\lambda_{m}\right)}{d \lambda_{m}}-\lambda_{n} J_{k}\left(\lambda_{m}\right) \frac{d J_{k}\left(\lambda_{n}\right)}{d \lambda_{n}}\right)= \\
& =\frac{1}{2}\left(\frac{d J_{k}\left(\lambda_{m}\right)}{d \lambda_{m}}\right)^{2}+\left(1-\frac{k^{2}}{\lambda_{m}^{2}}\right) \frac{J_{k}^{2}\left(\lambda_{m}\right)}{2}
\end{aligned}
$$

Откуда следует первая или вторая формула (П.26) в зависимости от того, являются ли λ_{n} нулями функции Бесселя или производной от функции Бесселя.
148. Найти решение уравнения теплопроводности в цилиндре единичного радиуса с теплоизолирующими стенками и начальным условием $U_{t=0}=(1-r)^{2}:$

$$
\frac{\partial}{\partial t} U(t, r, \varphi, z)=\Delta U(t, r, \varphi, z)
$$

Решенне. В цилиндрической системе координат граничные и начальные условия не зависят от φ и z, поэтому решение будем искать как функцию только от r и t. Применяя метод разделения переменных

$$
U(r, t)=\sum_{i=0}^{\infty} A_{i} R_{i}(r) T_{i}(t)
$$

на функции $R_{i}(r)$ и $T_{i}(t)$, получаем обыкновенные дифференциальные уравнения:

$$
\frac{d}{d t} T_{i}(t)=-\lambda_{i}^{2} T_{i}(t), \quad \frac{1}{r} \frac{d}{d r} r \frac{d}{d r} R_{i}(r)=-\lambda_{i}^{2} R_{i}(r)
$$

Решения этих уравнений имеют вид

$$
T_{i}(t)=\exp \left(-\lambda_{i}^{2} t\right), \quad R_{i}(r)=J_{0}\left(\lambda_{i} r\right)
$$

где $J_{0}(x)$ - функция Бесселя. Константы λ_{i} определяются из условия отсутствия потока тепла через стенки $\frac{\partial U}{\partial r_{r=1}}=0$:

$$
0=\left.\frac{d}{d r} R_{i}(r)\right|_{r=1}=\left.\lambda_{i} \frac{d}{d x} J_{0}(x)\right|_{x=\lambda_{1}}=-\lambda_{i} J_{1}\left(\lambda_{i}\right) .
$$

Иначе говоря, $\lambda_{i}-$ нули функции $\frac{d J_{0}(\lambda)}{d \lambda}=-J_{1}(\lambda)$. Коэффициенты A_{i} найдем из начального условия, воспользовавшись ортогональностью

функций Бесселя (П.26). Интегрируя $U(r, 0)$ с функцией $J_{0}\left(\lambda_{j} r\right)$, найдем

$$
\int_{0}^{1} r d r U(r, 0) J_{0}\left(\lambda_{j} r\right)=\sum_{i=0}^{\infty} A_{i} \int_{0}^{1} r d r J_{0}\left(\lambda_{i} r\right) J_{0}\left(\lambda_{j} r\right)=A_{j} \frac{J_{0}^{2}\left(\lambda_{j}\right)}{2} .
$$

Откуда

$$
A_{i}=\frac{2}{J_{0}^{2}\left(\lambda_{i}\right)} \int_{0}^{1} r d r(1-r)^{2} J_{0}\left(\lambda_{i} r\right)=\frac{4}{\lambda_{i} J_{0}^{2}\left(\lambda_{i}\right)} \int_{0}^{\lambda_{i}} d x J_{0}(x) .
$$

Решение имеет вид

$$
U(r, t)=\sum_{i=0}^{\infty} A_{i} \exp \left(-\lambda_{i}^{2} t\right) J_{0}\left(\lambda_{i} r\right)
$$

5.5. Задачи

149. Выразить ${ }_{1} F_{1}(a ; a ; x)$ через элементарные функции.
150. Показать, что уравнение с двумя регулярными особыми точками можно привести к виду

$$
\frac{d^{2} y}{d x^{2}}+\frac{A}{x} \frac{d y}{d x}+\frac{B}{x^{2}} y=0
$$

Решить это уравнение.
151. Доказать формулу

$$
{ }_{1} F_{1}(\alpha ; \gamma ; x)=e_{1}^{x} F_{1}(\gamma-\alpha ; \gamma ;-x) .
$$

152. Выразить полиномы Лагерра $L_{n}^{m}(x)$ через вырожденную гипергеометрическую функцию.
153. Выразить полиномы Эрмита $H_{n}(x)$ через вырожденную гипергеометрическую функцию. Указание: Сделать нехонформную замену $x=\sqrt{t}$. В новых переменных в уравнении появляется регулярная особая точка $x=0$. Отдельно рассмотреть полиномы четной и нечетной степени.
154. Привести к гипергеометрическому виду (5.6), (5.7) уравнение

$$
\frac{d^{2} y}{d x^{2}}+\frac{r(x)}{s(x)} \frac{d y}{d x}+\frac{\sigma(x)}{s^{2}(x)} y=0
$$

где $r(x)$ - полином не старше первой степени, а $s(x)$ и $\sigma(x)$ - не старше второй степени.
155. Показать, что присоединенные функции Лежандра P_{i}^{m}, задаваемые формулой Родрига (П.37), удовлетворяют уравнению Лежандра (П.36).
156. Найти собственные функции и энергию стационарных состояний уравнения Шрёдингера для двумерного осциллятора в полярных координатах:

$$
-\frac{1}{2}\left(\triangle-r^{2}\right) \Psi(r)=E \Psi(r)
$$

Указание: Выделить асимптотики в особых точках радиального уравнения и, сделав замену $r^{2}=x$, свести его x уравнению Лагерра.
157. Вывести рекуррентное соотношение (П.54) и формулу дифференцирования (П.55) для полиномов Эрмита (П.50).
158. Найти производяшую функцию (П.56) для полиномов Эрмита, используя рекуррентные соотношения (П.54).
159. Найти производящую функцию (П.65) полиномов Лагерра с помощью интегрального представления (П.66).
160. Найти производящую функцию

$$
F(z, x)=\sum_{n=0}^{\infty} \frac{z^{n}}{n!} L_{n}(x)
$$

где $L_{n}(x) \equiv L_{n}^{0}(x)$ - полиномы Лагерра с $\nu=0$.
161. Найти разложение вблизи $x=0$ функций, удовлетворяюших уравнению

$$
x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+\left(x^{2}-\nu^{2}\right) y=0
$$

для нецелых ν.
162. Вывести формулы дифференцирования для функций Бесселя (П.18):

$$
\frac{d}{d x}\left(x^{ \pm \nu} J_{\nu}\right)= \pm x^{ \pm \nu} J_{\nu \mp 1}
$$

Показать, что функция Неймана (П.21)

$$
Y_{\nu}=\frac{J_{\nu} \cos (\pi \nu)-J_{-\nu}}{\sin (\pi \nu)}
$$

удовлетворяет тем же соотношениям.

5.6. Ответы

149. $\mathcal{F}_{1}(a ; a ; x)=\exp (x)$.
150. Уравнение имеет два линеино независимых решения $y_{1,2}=x^{\lambda_{ \pm}}$, где $\lambda_{ \pm}=\left(\frac{1}{2}\right)\left(1-A \pm \sqrt{(1-A)^{2}-4 B}\right)$.
151. Указание: Подставить равенство в уравнение (5.7). Воспользоваться тем, что правая и левая часть равенства являются регулярными в иуле функциями.
152. $L_{n}^{m}=\frac{(n+m)!}{m!n!}, F_{1}(-n, m+1, x)$.
153. $H_{n}(x)=(-1)^{k} \frac{n!}{k!}, F_{1}\left(-k, \frac{1}{2}, x^{2}\right) \quad$ при $n=2 k$,
$H_{n}(x)=x(-1)^{k} \frac{(n+1)!}{(k+1)!}, F_{i}\left(-k, \frac{3}{2}, x^{2}\right) \quad$ при $n=2 k+1$.
154. Указание: Рассмотрим три случая.
155. Если $s(x)=0$ имеет два различных корня (например, (П.36))

$$
s(x)=a\left(x-s_{1}\right)\left(x-s_{2}\right)
$$

то уравнение имеет три регулярных особых точки и приводится к виду (5.6) после замены переменных

$$
t=\frac{\left(x-s_{1}\right)}{\left(s_{2}-s_{1}\right)}
$$

и подстановки

$$
y(t)=t^{\nu}(t-1)^{\mu} F(t)
$$

где ν и μ - характеристические показатели в регулярных особых точках $t=0, t=1$.
2. Если корни трехчлена $s(x)$ совпадают, т. е. произошло слияние двух особых точек $x=s_{1}=s_{2}$, то надо перевести иррегулярную особую точку $x=s_{1}$ на бесконечность с помощью конформной замены переменных $x-s_{1}=\frac{1}{2}$. В новых переменных уравнение сохраняет свой вид, однако $s(z)=z$ теперь полином первой степени.
3. Если $s(x)$ - полином первой степени, сделаем линейную замену переменных $z=s(x)$, тогда уравнение имеет одну регулярную особую точку $z=0$ и одну иррегулярную особую точку $z=\infty$ (если $r(z)$ и $\sigma(z)$ - константы, то точка $z=\infty$

является регулярной, но в этом случае уравнение имеет степенные решения). С помощью подстановки $y(z)=z^{\nu} \exp (\mu z) F(z)$ уравнение приводится k виду

$$
z \frac{d^{2}}{d z^{2}} F+[\gamma-b z] \frac{d}{d z} F-\alpha F=0 .
$$

При $b \neq 0$ это вырожденное гипергеометрическое уравнение (5.7) в переменных $t=b z$. При $b=0$ асимптотика на бесконечности $F \sim \exp (\pm 2 \sqrt{\alpha z})$. Сравнивая с асимптотихой (5.7), видим, что в этом случае привести уравнение к виду (5.7) можно с помощью замены $t=4 \sqrt{\alpha z}$ и подстановки $F(t)=f(t) \exp \left(-\frac{t}{2}\right)$.
4. Если $s(x)=$ const, то подстановкой

$$
y(x)=f(x) \exp \left(-\int^{x} d \tau \frac{r(\tau)}{2 s}\right)
$$

коэффициенты уравнения приводятся к виду $r(x)=0, s(x)=1$. Выделяя в $\sigma(x)=-\left(a\left(x-x_{1}\right)\right)^{2}+a \epsilon$ полный квадрат и делая его новой переменной $z=\sqrt{a}\left(x-x_{1}\right)$, получаем уравнение для квантового осциллятора

$$
\frac{d^{2} f}{d z^{2}}+\left(\varepsilon-z^{2}\right) f=0
$$

у которого одна иррегулярная особая точка $z=\infty$ с асимптотикой $f \sim \exp \left(\pm \frac{z^{2}}{2}\right)$. Чтобы свести его $к$ уравнению (5.7), надо сделать неконформную замену $z^{2}=t$, которая приводит к появлению регулярной особой точки $t=0$ и подстановку $f(t)=F(t) \exp \left(-\frac{t}{2}\right)$.
155. Указакие: Подставьте формулу Родрига для присоединенных функцй Лежандра (П.37) в уравнение (П.36) и получите уравнение (5.24) на функцию $f=\left(\frac{d}{d x}\right)^{m} P_{1}$. Покажите, что уравнение (5.24) получается из уравнения (П.35) на полиномы Лежандра после применения к (П.35) операции \boldsymbol{m}-кратного дифференцирования.
156. $\Psi(r)=\sqrt{\frac{n!}{\pi(n+m)!}} r^{|m|} \exp \left(-\frac{r^{2}}{2}\right) L_{n}^{|m|}\left(r^{2}\right) \exp (i m \varphi)$,
$E_{N}=2 n+|m|+1 \equiv N+1, \quad n=0,1,2, \ldots, \quad m$ - целое.
157. Указание: Выразить первую производную полинома Эрмита через линейную комбинацию полиномов с помошью (П.50). Точно так же выразить вторую производную полинома Эрмита через линейную комбинацию полиномов. Затем воспользоваться уравнением (П.49).
158. Указание: Выразить производную по z производящей функции

$$
F(z, x)=\sum_{n=0}^{\infty}\left(\frac{z^{n}}{n!}\right) H_{n}(x)
$$

через $F(z, x)$ с помошью (П.54). Решить получившееся дифференциальное уравнение на $F(z, x)$ и воспользоваться нормировкой $F(0, x)=H_{0}(x)=1$.
159. Указание: Подставить интегральное представление (П.66) в определение производящей функции $F(z, x)=\sum_{n=0}^{\infty} z^{n} L_{n}^{\nu}(x)$, просуммировать ряд и взять интеграл.
160. $F(z, x)=\exp (z) J_{0}(2 \sqrt{z x})$.
161. Указание: Выделить степенную асимптотику при $x=0$ в виде $y(x)=x^{\rho} f(x)$. Подставить $y(x)$ в уравнение и разложить в ряд Теилора аналитическую в нуле функцию f. Сравнивая члены при одинаковых степенях x, найти хоэффициенты разложения $f(x)$ в ряд Тейлора. Функция $y(x)$ есть сумма двух линейно независимых решений $J_{v}(x)$ и $J_{-\nu}(x)$, разножение которых вблизи $x=0$ имеет вид (П.15).
162. Указание: Домножить разложение функций Бесселя в нуле (П.ІІ) на $x^{ \pm \nu}$ и продифференцировать.

Глава 6

Асимптотические методы

6.1. Асимптотические рдды

При решении различных задач возникает проблема приближенного вычмсления интегралов, содержаших болышие (или малые) параметры. При этом ответ представляется в виде так называемото асимптотического разломения. Формальныи ряд

$$
\begin{equation*}
f(z) \sim \sum_{n=0}^{\infty} a_{n} \phi_{n}(z) \tag{6.1}
\end{equation*}
$$

называется асимптотическим разложением функиии $f(z)$ при $z \rightarrow z_{0}$, если для каждого значения N

$$
f(z)-\sum_{n=0}^{N} a_{n} \phi_{n}(z)=o\left(\phi_{N}(z)\right)
$$

при $z \rightarrow z_{0}$. Здесь $\psi(z)=o\left(\phi_{N}(z)\right)$ означает, что отношение $\frac{\neq(z)}{\phi_{N}(z)} \rightarrow 0$ при $z \rightarrow z_{0}$. Отсюда следует, что

$$
\begin{equation*}
a_{N}=\lim _{z \rightarrow z_{i}} \frac{f(z)-\sum_{n=0}^{N-1} a_{n} \phi_{n}(z)}{\phi_{N}(z)} \tag{6.2}
\end{equation*}
$$

Формальный ряд (6.1) может быть расходящимся. Асимптотическое разложение зависит от выбора асимптотической последовательности $\left\{\phi_{n}(z)\right\}$. Кроме того, две разные функции могут иметь одинаковые асимптотические разложения, если они разиичаются на такую функцию $\psi(z)$, что для любых n

$$
\lim _{z \rightarrow \Sigma_{0}} \frac{\psi(z)}{\phi_{n}(z)}=0
$$

Точку z_{0} можно считать бесконечно удаленной, так как для конечной z_{0} можно перейти от переменной z к переменной $z^{\prime}=\frac{1}{z-z_{0}}$, которая стремится к бесконечности при $z \rightarrow z_{0}$. Если $\phi_{n}(z)=\frac{1}{z^{\star}}$, то такой асимптотический ряд называется степенным. Асимптотические степенные ряды допускают операции, аналогичные операциям с обычными степенными

рядами (сложение, умножение, почленное интегрирование) при выполнении определенных условий непрерывности и дифференцируемости соответствующей функции.

Очень часто для получения асимптотического разложения функции, представленной в виде определенного интеграла, удобно использовать интегрирование по частям. Иногда это эквивалентно почленному интегрированию разложения в ряд Тейлора.

Пример: Найдем асимптотическое разложение при $\boldsymbol{x} \rightarrow \infty$ функции

$$
\Gamma(a, x)=\int_{x}^{\infty} e^{-t} t^{a-t} d t
$$

Интегрируя по частям, находим

$$
\begin{aligned}
\Gamma(a, x) & \sim e^{-x} x^{a-1}\left(1+\frac{a-1}{x}+\frac{(a-1)(a-2)}{x^{2}}+\ldots\right) \sim \\
& \sim \sum_{n=1}^{\infty} \frac{\Gamma(a)}{\Gamma(a+1-n)} e^{-x} x^{a-n} .
\end{aligned}
$$

Тот же ответ можно получить, сдвигая переменную интегрирования $t=\tau+x$ и разлагая функцию $(x+\tau)^{a-1}$ в ряд Тейлора по $\frac{\tau}{x}$:

$$
\begin{aligned}
\Gamma(a, x) & \sim e^{-x} x^{a-1} \int_{0}^{\infty} d \tau e^{-\tau}\left(1+\frac{(a-1) \tau}{x}+\frac{(a-1)(a-2) \tau^{2}}{2 x^{2}}+\ldots\right) \sim \\
& \sim \sum_{n=1}^{\infty} \frac{\Gamma(a)}{\Gamma(a+1-n)} e^{-x} x^{a-n}
\end{aligned}
$$

6.2. Интеграл Лапласа

Рассмотрим интеграл вида

$$
g(\nu)=\int_{a}^{b} e^{\nu f(x)} \phi(x) d x
$$

где $\phi(x)$ и $f(x)$ - действительные непрерывные функции, а ν - большой параметр. Если функция $f(x)$ принимает максимальное значение на границе области (например, в точке a) и $f^{\prime}(a) \neq 0, \phi(a) \neq 0$, то

$$
\begin{equation*}
g(\nu) \sim-e^{\nu f(a)} \frac{\phi(a)}{\nu f^{\prime}(a)}\left(1+O\left(\nu^{-1}\right)\right) . \tag{6.3}
\end{equation*}
$$

Если же максимальное значение достигается в точке $x=c$ внутри интервала $a<c<b$ и $\phi(c) \neq 0$, то

$$
\begin{equation*}
g(\nu) \sim \sqrt{\frac{-2 \pi}{\nu f^{\prime \prime}(c)}} e^{\nu f(c)} \phi(c)\left(1+O\left(\nu^{-1}\right)\right) . \tag{6.4}
\end{equation*}
$$

Если максимальное значение достигается на транице (например, в точке a) и $\phi(a) \neq 0, f^{\prime}(a)=0$, а $f^{\prime \prime}(a)<0$, то

$$
\begin{equation*}
g(\nu) \sim \sqrt{\frac{-\pi}{2 \nu f^{\prime \prime}(a)}} e^{\nu f(a)} \phi(a) . \tag{6.5}
\end{equation*}
$$

Приведенные формулы получаются разложением $f(x)$ вблизи точки, в которой $f(x)$ принимает максимальное значение, и последуюшим интегрированием в бесконечных пределах или по частям. Тем же способом можно получить асимптотические формулы в случаях, когда $\phi(a)=0$ или $\phi(c)=0$.

6.3. Метод стационарной фазы

Рассмотрим интеграл вида

$$
g(x)=\int_{a}^{b} e^{i \nu f(x)} \phi(x) d x
$$

где $f(x)$ - действительная функция, а $\nu \rightarrow+\infty$. Тогда основной вклап в интеграл дают либо окрестности точек, в которых $f^{\prime}(x)=0$ (точки стационарной фазы), либо окрестности точек а и b, если на отрезке интегрирования нет точек стационарной фазы. В последнем случае

$$
g(\nu) \sim \frac{\phi(b)}{i \nu f^{\prime}(b)} e^{i \nu f(b)}-\frac{\phi(a)}{i \nu f^{\prime}(a)} e^{i \nu f(a)}+O\left(\nu^{-2}\right), \quad f^{\prime}(b) \neq 0, f^{\prime}(a) \neq 0 .
$$

Если внутри интервала $a<x<b$ есть только одна стационарная точка c, в которой $f^{\prime \prime}(c) \neq 0$ и $\phi(c) \neq 0$, то

$$
\begin{equation*}
g(\nu) \sim \sqrt{\frac{2 \pi}{\nu\left|f^{\prime \prime}(c)\right|}} \phi(c) \exp \left(i \nu f(c) \pm \frac{i \pi}{4}\right)\left[1+O\left(\nu^{-1}\right)\right] . \tag{6.6}
\end{equation*}
$$

Эта формула получается разложением $f(x)$ до квадратичных членов вблизи $x=c$ и вычислением интеграла Френеля. Знак при фазе $\frac{i \pi}{4}$ совпадает со знаком второй производной $\operatorname{sign}\left(f^{\prime \prime}(c)\right)$. Если внутри интервала интегрирования есть несколько стационарных точек, в которых $f^{\prime \prime}(c) \neq 0$ и $\phi(c) \neq 0$, то $g(\nu)$ дается суммой всех вкладов вида (6.6).

6.4. Метод перевала

Поставим задачу оценить интеграл вида

$$
\begin{equation*}
g(\nu)=\int_{\gamma} e^{\nu v(z)} \phi(z) d z, \quad \nu \rightarrow \infty \tag{6.7}
\end{equation*}
$$

где $w(z)$ и $\phi(z)$ - не зависящие от ν аналитические функции z в области Ω, содержащей контур интегрирования γ и стационарную точку z_{0}, в которой $w^{\prime}\left(z_{0}\right)=0$. Точка z_{0} может не принадлежать контуру интегрирования. Для простоты будем считать, что $w^{\prime \prime}\left(z_{0}\right) \neq 0$, а $\phi(z)=1$. Тогда сушествует контур $\Gamma \in \Omega, z_{0} \in \Gamma$, вдоль которого мнимая часть функиии $w(z)=u(x, y)+i v(x, y)$ постоянна:

$$
v(x, y)=v\left(x_{0}, y_{0}\right)=\text { const }
$$

где $z=x+i y$. Функцию $w(z)$ вдоль контура Γ можно записать в виде $w\left(z^{\star}\right)=w\left(z_{0}\right)-\tau\left(z^{\star}\right)$, где $z^{\star} \in Г$, а $\tau\left(z^{\star}\right)$ - действительная неотрицательная функция. Градиенты функций $u(x, y)$ и $v(x, y)$ ортогональны в силу соотношений Коши - Римана для аналитических функций

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x} \Longrightarrow(\nabla v, \nabla u)=\frac{\partial v}{\partial x} \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y} \frac{\partial u}{\partial y}=0 .
$$

Отсюда следует, что контур Г является линией наискорейшего спуска для функции $u(x, y)$. Последняя убывает вдоль контура Г в обе стороны от точки z_{0}, которая называется седловой точкой функции $u(x, y)$ (рис.6.1).

Рис. 6.1. Топография вешественной части функции $w(z)$ вблизи седловой точки $z=z_{0}$. Стрелками показано направления, в которых $u(z)=\operatorname{Re} w(z)$ убывает

Идея метода перевала состоит в деформировании контура интегрирования γ так, чтобы основной вклад в интеграл вдоль деформированного контура набирался на как можно более коротком отрезке, т. е. вдоль линии наискорейшего спуска. Будем рассматривать только такие деформации в области аналитичности функиии $\boldsymbol{w}(\boldsymbol{x})$, при которых конщы контура интегрирования остаются неподвижными. Контуры $\boldsymbol{\gamma}^{\prime}$, получающиеся при таких деформациях, называют эквивалентными, поскольку

величина интеграла (6.7) не зависит от γ^{\prime}. Контур γ^{\prime} называется минимаксным контуром, если на нем достигается

$$
\min _{\boldsymbol{\gamma}^{\prime} \in \mathcal{D}} \max _{z \in \boldsymbol{\gamma}^{\prime}}\left|e^{\nu w(z)}\right|=\min _{\gamma^{\prime} \in \boldsymbol{D}} \max _{z \in \boldsymbol{\gamma}^{\prime}} e^{\nu u(x, y)}=e^{\nu u\left(x_{0}, y_{0}\right)}
$$

где D - множество эквивалентных контуров γ^{\prime}. Другими словами, из всех эквивалентных контуров γ^{\prime} выбирается тот, который проходит через седловую точку z_{0} функции $u(x, y)$ и совпадает в окрестности z_{0} с контуром Г. При этом функция $u(x, y)$ должна иметь в точке z_{0} не только локальный, но и глобальный максимум на контуре γ^{\prime}.

Если минимаксный (перевальный) контур существует, то z_{0} называется точкой перевала для интеграла (6.7). К сожалению, общего алгоритма поиска перевального контура не существует. Это сложная топологическая задача. Облегчить ее решение можно, если соблюдать следуюшие три правила:

1. Нарисовать линии уровня функции $u(x, y)$ (как на топографической карте, рис. 6.1).
2. Выбрать такой путь от начальной до конечной точки контура интегрирования, чтобы максимальное вдоль пути значение $u(x, y)$ было как можно меньше. (Представьте, что вы путешественник, боящийся высоты, а $u(x, y)$ - высота в точке x, y над уровнем моря.)
3. Вблизи точки с максимальным вдоль выбранного пути значением $u(x, y)$ провести контур вдоль линии наискорейшего спуска. (Чтобы как можно более короткий отрезок вашего пути проходил на большой высоте и.)
В результате интеграл сведется к эталонному интегралу.
Рассмотрим два простейших случая:
I. Существует перевальный контур, и в стационарной точке z_{0} выполняется условие на старшие производные $\left|\nu^{(n-2) / 2} w^{\prime \prime}\left(z_{0}\right)\right| \gg\left|w^{(n)}\left(z_{0}\right)\right|$, тогда можно ограничиться разложением $w(z)$ в окрестности точки z_{0} до квадратичных членов:

$$
w(z)=w\left(z_{0}\right)+\frac{w^{\prime \prime}\left(z_{0}\right)}{2}\left(z-z_{0}\right)^{2}+\ldots
$$

Основной (экспоненциально большой) вклад в интеграл набирается вдоль контура Г. Чтобы оценить этот вклад, заменим переменную z на вещественную вдоль контура Γ переменную $s=e^{-i \phi}\left(z-z_{0}\right)$ и запишем вторую производную в виде $w^{\prime \prime}\left(z_{0}\right)=\rho e^{i 8}$. Тогда старший член асимптотического по $\frac{1}{\nu}$ разложения интеграла есть

$$
\begin{align*}
g(\nu) & \sim \phi\left(z_{0}\right) e^{\nu v\left(z_{0}\right)} \int_{\gamma^{\prime}} d s e^{i \notin} \exp \left(\frac{\nu}{2} \rho s^{2} e^{2 i \psi+i \theta}\right) \sim \\
& \sim \phi\left(z_{0}\right) e^{\nu i\left(z_{0}\right)} e^{i \phi^{*}} \int_{\Gamma} \exp \left(-\frac{\nu}{2} \rho s^{2}\right) d s \tag{6.8}
\end{align*}
$$

Направление наискорейшего спуска определяется условием $\exp (2 i \psi+$ $i \theta)=-1$, откуда $\psi_{1,2}=\frac{ \pm \pi-\theta}{2}$ являются углами между направлениями касательных к Г в точке z_{0} и положительным направлением вещественной оси. Фаза ψ^{\star} принимает то из значений $\psi_{1,2}$, которое соответствует направлению интегрирования вдоль контура γ ' в точке z_{0}. Последний интеграл в (6.8) является интегралом Лапласа (6.4), поэтому $g(\nu)$ асимптотически равен

$$
\begin{equation*}
g(\nu) \sim \phi\left(z_{0}\right) e^{\nu w\left(z_{0}\right)} \exp \left(i \psi^{*}\right) \sqrt{\frac{2 \pi}{\nu\left|w^{\prime \prime}\left(z_{0}\right)\right|}} . \tag{6.9}
\end{equation*}
$$

Следует отметить, что перевальный контур может проходить через несколько точек перевала z_{i}, в которых значения $\operatorname{Re} w\left(z_{i}\right)$ совпадают. В этом случае надо просуммировать вклады от каждой точки перевала.
II. Перевального контура не существует. Контур интегрирования можно деформировать так, чтобы максимальное значение $u(x, y)$ вдоль него находилось в начальной (или конечной) точке z_{1} контура γ. Если выполняется условие на старшие производные $\left|\nu^{n-1} w^{\prime}\left(z_{1}\right)\right| \gg\left|w^{(n)}\left(z_{1}\right)\right|$, то можно ограничиться разложением $w(z)$ до линейных членов в окрестности точки z_{1} :

$$
w(z)=w\left(z_{1}\right)+w^{\prime}\left(z_{1}\right)\left(z-z_{1}\right)+\ldots
$$

Из точки z_{1} выходит одна линия наискорейшего спуска $L \in \Omega$, вдоль которой $\operatorname{Im} w(z)=\operatorname{Im} w\left(z_{1}\right)$. Заменим переменную z на переменную $s=e^{-i 申}\left(z-z_{1}\right)$, вешественную вдоль линии наискорейшего спуска L. Запишем производную в виде $w^{\prime}\left(z_{1}\right)=-\rho \exp (-i \theta)$ и деформируем контур γ так, чтобы он совпадал с L вблизи точки z_{1}. Torда старший член асимптотического по $\frac{1}{\nu}$ разложения функции $g(\nu)$ имеет вид

$$
\begin{equation*}
g(\nu) \sim \phi\left(z_{1}\right) e^{\nu w\left(z_{1}\right)} \int_{L} d s e^{i \phi} \exp \left(-\nu \rho s e^{i(\phi-\theta)}\right) \sim-\frac{\phi\left(z_{1}\right) \exp \left(\nu w\left(z_{1}\right)\right)}{\nu w^{\prime}\left(z_{1}\right)}, \tag{6.10}
\end{equation*}
$$

где направление наискорейшего спуска определяется равенством $\psi=\theta$. Если максимальное значение $u(x, y)$ находится в конечной точке z_{2} контура γ, то аналогичными рассуждениями получим, что старший член асимптотического по $\frac{1}{\nu}$ разложения функции $g(\nu)$ имест вид (6.10), в котором z_{1} надо заменить на z_{2}, а знак минус перед дробью - на знак плюс.

6.5. Метод усреднения

Если невозмущенная система с n степенями свободы совершает движение в ограниченной области фазового пространства, то иногда можно перейти к переменным действие-угол, в которых дифференциальные уравнения имеют вид

$$
\begin{equation*}
\dot{I}=0, \quad \dot{\phi}=\omega(I) ; \quad I=\left(I_{1}, I_{2}, \ldots, I_{n}\right), \quad \phi=\left(\phi_{1}, \phi_{2}, \ldots, \phi_{n}\right) . \tag{6.11}
\end{equation*}
$$

В невозмущенной системе I - набор интегралов движения, а переменные ϕ меняются в интервале $0 \leqslant \phi_{i} \leqslant 2 \pi$. Возмущенные уравнения содержат в правых частях добавку, пропорциональную малому параметру ε :

$$
\begin{equation*}
\dot{I}=\varepsilon g(I, \phi, \varepsilon), \quad \dot{\phi}=\omega(I)+\varepsilon f(I, \phi, \varepsilon), \tag{6.12}
\end{equation*}
$$

где f и g являются 2π-периодическими функциями каждой из переменных ϕ_{i}. Поскольку переменные I меняются медленно (вследствие малости параметра ε), то возмущенную систему можно заменить гораздо более простой усредненной системой для медленных переменных $J(t)=I(t)+O(\varepsilon)$:

$$
\begin{equation*}
\dot{J}=\varepsilon G(J), \quad G(J)=\frac{\oint g(J, \phi, 0) d \phi}{\oint d \phi} \tag{6.13}
\end{equation*}
$$

При переходе от уравнений (6.12) к усредненным уравнениям (6.13) проводится процедура усреднения по периодам колебаний функций g. Эта процедура корректна при $n=1$. В случае нескольких степеней свободы усреднение по ϕ может стать неприменимым, если в системе имеются резонансы, т.е. частоты ω_{i} - комлоненты вектора ω в формуле (6.11) удовлетворяют уравнению

$$
\sum_{i=1}^{n} N_{i} \omega_{i}=0
$$

где N_{i} - целые числа.
Пример: Дана возмущенная одномерная система с постоянной частотой ω

$$
\dot{I}=\varepsilon(a+b \cos \phi), \quad \dot{\phi}=\omega .
$$

Она приводит к усредненному уравнению

$$
\dot{J}=\varepsilon a,
$$

которое имеет решение $J(t)=J_{0}+\varepsilon a t$ (рис.6.2). В этом случае мы знаем точное решение $I(t)=\varepsilon a t+\frac{\varepsilon b \sin \omega t}{\omega}$ и можем убедиться, что решение усредненного уравнения не уходит от точного решения, если $\omega \neq 0:|J(t)-I(t)| \leqslant$ const $\cdot \varepsilon$.

В гамильтоновой системе переменные ϕ играют роль обобшенных координат, а I -

Рнс. 6.2. Графики зависимости от времени переменной $I(t)$ и медленной переменной $J(t)(-I(t) ; \cdots J(t))$ обобшенных импульсов, так что уравнения всегда имеют вид

Усредняя по ϕ производную $\frac{\partial H}{\partial \phi}$, получаем $\dot{J}=0$. Это означает, что эволюции медленных переменных не происходит (J - адиабатические инварианты). Главная трудность применения метода усреднения в общем случае - выбор подходящих переменных I, которые являются интегралами движения невозмущенной системы.

Теория асимптотических рядов и асимптотические методы вычисления интегралов детально разобраны в книгах [МУ72, Фед87, СФШ76, Эрд62, Олв90, Коп66, ДБ61, Хед65]. Метод усреднения по высокочастотным колебаниям изложен в книгах [БМ74, Арн78, Коу72, Най76].

6.6. Примеры

163. Найти асимптотику Г-функции Эйлера при $x \rightarrow+\infty$

$$
\Gamma(x)=\int_{0}^{\infty} t^{x-1} \exp (-t) d t
$$

Вывести уточненную формулу Стирлинга, содержамую два члена асимптотического разложения.

Решение. Перепишем интеграл в виде

$$
\Gamma(x)=\int_{0}^{\infty} \exp (-t+(x-1) \ln t) d t
$$

Стоящая множителем при большом параметре x функция $\ln t$ неограниченно растет при $t \rightarrow \infty$, поэтому ни одна из асимптотических формул (6.3)-(6.5) неприменима. Дело в том, что точка максимума t_{0} подынтегрального выражения зависит от большого параметра $t_{0}=x-1$. В этом случае необходимо сделать такую замену переменной (остановить точку максимума), чтобы в новых переменных точка максимума не зависела от $x: t=x \tau$, тогда

$$
\Gamma(x+1)=x^{x+1} \int_{0}^{\infty} \exp (x(\ln \tau-\tau)) d \tau
$$

Махсимум функции $f(\tau)=\ln \tau-\tau$ достигается при $\tau_{0}=1$ внутри интервала интегрирования, поэтому главный член асимптотики дается формулой (6.4). Чтобы получить следующий член асимптотического разложения, необходимо разложить функцию $f(\tau)$ в ряд по $\xi=\tau-1$ до четвертого члена включительно:

$$
f(\xi)=-1-\frac{\xi^{2}}{2}+\frac{\xi^{3}}{3}-\frac{\xi^{4}}{4}+O\left(\xi^{5}\right)
$$

Подставим это разложение в интеграл и сделаем замену $\boldsymbol{\xi}=z \sqrt{\frac{2}{x}}$:

$$
\Gamma(x+1)=\sqrt{2 x} x^{x} e^{-x} \int_{-\sqrt{x / 2}}^{\infty} d z \exp \left(-z^{2}+\frac{2 \sqrt{2} z^{3}}{3 \sqrt{x}}-\frac{z^{4}}{x}+z^{2} O\left(\frac{z^{3}}{x^{3 / 2}}\right)\right)
$$

При $x \rightarrow \infty$ можно разложить экспоненциальную функцик в ряд по членам, содержашим степени x в знаменателе, а пределы интегрирования с экспоненциальной точностью расширить до бесконечности:

$$
\Gamma(x+1)=\sqrt{2 x} x^{x} e^{-x} \int_{-\infty}^{\infty} d z e^{-z^{2}}\left(1+\frac{2 \sqrt{2} z^{3}}{3 \sqrt{x}}+\frac{4 z^{6}}{9 x}-\frac{z^{4}}{x}+O\left(x^{-3 / 2}\right)\right)
$$

В результате получаем уточненную формулу Стирлинга:

$$
\begin{aligned}
\Gamma(x) & =\frac{\Gamma(x+1)}{x} \sim \sqrt{\frac{2}{x}}\left(\frac{x}{e}\right)^{x}\left(\Gamma(1 / 2)+\frac{4 \Gamma(7 / 2)}{9 x}-\frac{\Gamma(5 / 2)}{x}+O\left(x^{-2}\right)\right) \sim \\
& \sim \sqrt{\frac{2 \pi}{x}}\left(\frac{x}{e}\right)^{x}\left(1+\frac{1}{12 x}+O\left(x^{-2}\right)\right)
\end{aligned}
$$

Здесь мы учли, что члены, пропорциональные $x^{-3 / 2}$, содержат нечетные степени переменной интегрирования z, поэтому обращаются в нуль при интегрировании в бесконечных пределах.
164. Найти асимптотику интеграла

$$
g(\nu)=\int_{-\infty}^{\infty} e^{i \nu f(x)} \phi(x) d x
$$

при $\nu \rightarrow+\infty$, если $f^{\prime}(c)=f^{\prime \prime}(c)=0, \phi(c) \neq 0, f^{\prime \prime \prime}(c) \neq 0$ и нет других стационарных точек.

Решение. Поскольку вторая производная в стационарной точке $x=c$ обращается в нуль, разложение показателя экспоненты в ряд по $\xi=x-c$ начинается с кубического члена:

$$
i \nu f(x)=i \nu\left[f(c)+\frac{1}{6} f^{\prime \prime \prime}(c) \xi^{3}+O\left(\xi^{4}\right)\right] .
$$

При $\nu \rightarrow \infty$ функцию $\phi(x)$ можно вынести в точке $с$ из-под знака интеграла. Получившийся эталонный интеграл

$$
\begin{aligned}
g(\nu) & \sim \phi(c) e^{i \nu f(c)} \int_{-\infty}^{\infty} \exp \left(\frac{i \nu}{6} f^{\prime \prime \prime}(c) \xi^{3}\right) d \xi= \\
& =2 \phi(c) e^{i \nu f(c)} \operatorname{Re} \int_{0}^{\infty} \exp \left(\frac{i \nu}{6}\left|f^{\prime \prime \prime}(c)\right| \xi^{3}\right) d \xi
\end{aligned}
$$

с помощью комплехсной замены переменной интегрирования $\frac{\left.\nu\left|f^{\prime \prime \prime}(c)\right|\right\}^{3}}{6}=i t$ сводится к $Г$-функции. Контур интегрирования по ξ вблизи стационарной точки $\xi=0$ деформируем в комплексной плоскости так, чтобы новая переменная интегрирования была вешественной

$$
d \xi=\frac{e^{i \pi / 6}}{3}\left[\frac{6}{\nu\left|f^{\prime \prime \prime}(c)\right|}\right]^{1 / 3} \frac{d t}{t^{2 / 3}}
$$

В результате получаем главный член асимптотического разложения:

$$
g(\nu) \sim \frac{2}{3} \phi(c) e^{i \nu f(c)} \cos \frac{\pi}{6}\left(\frac{6}{\nu\left|f^{\prime \prime \prime}(c)\right|}\right)^{1 / 3} \Gamma\left(\frac{1}{3}\right) .
$$

165. Найти асимптотику функиии Эйри при $x \rightarrow+\infty$

$$
\operatorname{Ai}(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \exp \left[i\left(\frac{t^{3}}{3}+x t\right)\right] d t .
$$

Решение. Заменой переменной $t=\sqrt{x} z$ интеграл приводится к виду

$$
\mathrm{Ai}(x)=\frac{\sqrt{x}}{2 \pi} \int_{\gamma} \exp \left\{x^{3 / 2} w(z)\right\} d z, \quad w(z)=i\left(\frac{z^{3}}{3}+z\right)
$$

где контур интегрирования γ идет вдоль вещественной оси. Записывая переменную интегрирования в виде $z=R e^{i \theta}$, видим, что интеграл сходится при $R \rightarrow \infty$ вдоль луча $\theta=$ const, если выполняется условие $\operatorname{Re} w(z) \rightarrow \frac{R^{3} \cdot \text { Reice't. }}{3}<0$. Откуда находим секторы сходимости на бесконечности: $\theta \in\left[0, \frac{\pi}{3}\right] \cup\left[\frac{2 \pi}{3}, \pi\right] \cup\left[\frac{4 \pi}{3}, \frac{5 \pi}{3}\right]$, которые заштрихованы на рис. 6.3.

Точки перевала $z_{1,2}= \pm i$ находятся из условия $\frac{d w}{d z}=i\left(z^{2}+1\right)=0$. В обеих точках $\operatorname{Im} w\left(z_{1,2}\right)=0$, поэтому для нахождения минимаксного контура достаточно построить линии нулевого уровня мнимой части фазы. Уравнение $\operatorname{Im} w\left(z^{\prime}+i z^{\prime \prime}\right)=0$ имеет три решения $z^{\prime}=0$ и $z^{\prime}= \pm \sqrt{3\left(z^{\prime \prime 2}-1\right)}$, которые изображены на рис. 6.3. Точки пересечения линий нулевого уровня совпадают со стационарными $z_{1,2}= \pm i$.

Ршс. 6.3. Секторы сходимости интегрального представления функиии Эйри при $z \rightarrow \infty$. В плоскости комплексного переменного z имеется три линии $\operatorname{Im} w=0$: прямая $\operatorname{Rez}=0$ и две ветви гиперболы. Направление убывания $\operatorname{Re} \boldsymbol{w}$ указано стрелками

Вдоль этих линий между точками пересечения вешественная часть фазы изменяется монотонно.

Контур интегрирования можно деформировать в верхнюю ветвь гиперболы. Максимальное значение $\operatorname{Re} w(z)$ вдоль такого контура достигается в гочке $z_{1}=i$ и никакой деформацией контура не может быть уменьшено. Концы выбранного нами контура остаются в секторе сходимости, а сам контур проходит через точку перевала $z_{1}=\boldsymbol{i}$ вдоль линии наискорейшего спуска: $\operatorname{Re} w$ вблизи $z=i$ убывает вдоль верхней ветви гиперболы и возрастает вдоль прямой $\operatorname{Re} z=0$. Вблизи точки перевала разложение $w(z)$ по $\zeta=z-i$ имеет вид

$$
v(\zeta)=-\frac{2}{3}-\zeta^{2}+O\left(\zeta^{3}\right)
$$

и для вычисления интеграла можно применить метод Лапласа. Поэтому главный член асимптотического разложения интеграла по $x^{-3 / 2}$ можно получить по формуле (6.4).

$$
\mathrm{Ai}(x) \sim \frac{1}{2 x^{1 / 4} \sqrt{\pi}} \exp \left(-\frac{2}{3} x^{3 / 2}\right)
$$

166. Найти асимптотику Г-функции комплексноzо переменного

$$
\Gamma(z)=\int_{0}^{\infty} t^{z-1} \exp (-t) d t
$$

$n p u|z| \rightarrow+\infty, \theta=|\arg z| \leqslant \frac{\Gamma}{2}-\varepsilon<\frac{\pi}{2}$.
Решенме. Сделаем замену переменной интегрирования $t=z \tau$, чтобы остановить стационарную точку:

$$
\Gamma(z+1)=z^{x+1} \int_{0}^{e^{-1 \infty}} \exp (z(\ln \tau-\tau)) d \tau
$$

Поскольку $\operatorname{Re} z>0$, то конечная точка интегрирования находится в правоИ полуплоскости комплексной переменной τ на бесконечности. Подынтегральное выражение обращается в нуль на обоих краях интервала.

Контур интегрирования можно деформировать так, чтобы он проходил через стаиионарную точку $\tau_{0}=1$. Поэтому перевальный контур сушествует.

Контур наискорейшего спуска задается уравнением

$$
\operatorname{Im} z(\ln \tau-\tau)=\operatorname{Im} z\left(\ln \tau_{0}-\tau_{0}\right)=-\operatorname{Im} z
$$

и имеет сложную форму. Однако вблизи точки перевала направление наискорейшего спуска в комплексной плоскости τ легко находится по второй производной функции $\frac{z d^{2}(\ln \tau-\tau)}{d \tau^{2}}=-z$ в точке перевала $\tau_{0}=1$ и составляет угол $-\frac{\theta}{2}$ с положительным направлением вещественной оси:

$$
z(\ln \tau-\tau)=-z-\frac{|z| \xi^{2}}{2}+|z| O\left(\xi^{3}\right), \quad \xi=(\tau-1) e^{i \theta / 2}
$$

Откуда, заменяя пределы интегрирования на бесконечные, при $|z| \rightarrow \infty$ находим асимптотику Г-функции

$$
\Gamma(z)=\frac{\Gamma(z+1)}{z} \sim\left(\frac{z}{e}\right)^{z} \int_{-\infty}^{\infty} \exp \left(-\frac{|z| \xi^{2}}{2}\right) e^{-i \theta / 2} d \xi \sim \sqrt{\frac{2 \pi}{z}}\left(\frac{z}{e}\right)^{z}
$$

167. вывести усредненнье по периоду осцилляций уравнения для медленных переменных слабо нелинейного осциляятора

$$
\begin{equation*}
\ddot{x}+\omega_{0}^{2} x=-\varepsilon f(x, \dot{x}), \quad \varepsilon \rightarrow 0 \tag{6.14}
\end{equation*}
$$

Решение. Запишем решение невозмущенной системы в виде

$$
x=I \cos \phi, \quad \dot{x}=-I \omega_{0} \sin \phi, \quad \phi \equiv \omega_{0} t+\vartheta
$$

и будем рассматривать эти соотношения как переход к новым переменным действие-угол (I, ϑ) для возмушенной системы (преобразование Боголюбова-Крылова). Считая переменные (I, ϑ) медленно зависяшими от времени, продифференцируем функцию $x(t)=I \cos \phi$:

$$
\dot{x}=\dot{I} \cos \phi-I\left(\omega_{0}+\dot{\vartheta}\right) \sin \phi .
$$

Поскольку $\dot{x}=-I \omega_{0} \sin \phi$, получаем первое уравнение на медленные переменные:

$$
\begin{equation*}
\dot{I} \cos \phi=I \dot{v} \sin \phi . \tag{6.15}
\end{equation*}
$$

Дифферениируя $\dot{x}(t)=-I \omega_{0} \sin \phi$ и подставляя в уравнение (6.14), получаем второе уравнение на медленные переменные:

$$
\begin{equation*}
\ddot{x}+\omega_{0}^{2} x=-\omega_{0}(\dot{I} \sin \phi+I \dot{\theta} \cos \phi)=-\varepsilon f\left(I \cos \phi,-I \omega_{0} \sin \phi\right) . \tag{6.16}
\end{equation*}
$$

Систему (6.15). (6.16) можно разрешить относительно новых неизвестных функиий

$$
\dot{I}=\frac{\varepsilon \sin \phi}{\omega_{0}} f\left(I \cos \phi,-I \omega_{0} \sin \phi\right), \quad \dot{\vartheta}=\frac{\varepsilon \cos \phi}{\omega_{0} I} f\left(I \cos \phi,-I \omega_{0} \sin \phi\right) .
$$

Усредняя по быстрой переменной ϕ и обозначая медленные переменные в усредненных уравнениях за $J(t), \theta(t)$, получаем уравнения Боголюбова-Крылова.

$$
\begin{align*}
& \dot{J}=\frac{\varepsilon}{\omega_{0}} G(J), \quad G(J)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(J \cos \phi,-J \omega_{0} \sin \phi\right) \sin \phi d \phi, \tag{6.17}\\
& \dot{\theta}=\frac{\varepsilon}{\omega_{0} J} F(J), \quad F(J)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(J \cos \phi,-J \omega_{0} \sin \phi\right) \cos \phi d \phi . \tag{6.18}
\end{align*}
$$

Правые части усредненных уравнений содержат фурье-компоненты вынуждающей силы.
168. Найти и исследовать на устойчивость предельный цикя уравнения Ван-дер-Поля

$$
\bar{x}+\omega_{0}^{2} x=\varepsilon\left(1-x^{2}\right) \dot{x}
$$

где $\varepsilon \rightarrow 0$.
Решение. Усредняя вынуждающую силу $f(x, \dot{x})=-\left(1-x^{2}\right) \dot{x}$ по периоду, получаем согласно формуле (6.17)

$$
\dot{J}=\frac{\varepsilon}{\omega_{0}} G(J)=\frac{\varepsilon}{2} J\left(1-\frac{J^{2}}{4}\right) .
$$

Это уравнение первого порядка имеет три стационарные точки, в которых $\dot{J}=0$, а именно $J=0$ и $J= \pm 2$. Первая из них при $\varepsilon>0$ неустойчива, а две других устойчивы. Устойчивая стационарная точка соответствует предельному циклу в исходном уравнении второго порядка. Уравнение Ван-дер-Поля описывает установление автоколебательного режима в генераторе.
169. Найти зависиность от времени усредненной амплитуды линейного осииллятора при резонансе с внеиней силой $f(t)=f_{0} \cos \omega_{0} t$

$$
\bar{x}+\omega_{0}^{2} x=f(t)
$$

Решение. Перейдем к медленным переменным I, ϑ

$$
x=I \cos \phi, \quad \dot{x}=-I \omega_{0} \sin \phi, \quad \phi \equiv \omega_{0} t+\vartheta
$$

При точном резонансе явную зависимость внешней силы от времени можно выразить через быструю фазу осциллятора ϕ в виде $f(t)=$ $f_{0} \cos (\phi-\vartheta)$. Усредняя вынуждающую силу по периоду, получаем согласно формулам (6.17), (6.18) уравнения для усредненных переменных (J, θ):

$$
\dot{J}=-\frac{f_{0}}{2 \omega_{0}} \sin \theta, \quad \dot{\theta}=-\frac{f_{0}}{2 \omega_{0}} \cos \theta
$$

Уравнение на θ имеет одну устойчивую стационарную точку $\theta=-\frac{\pi}{2}$. Средняя амплитуда колебаний нарастает линейно по времени: $J(t)=\frac{p_{0}}{2 \omega_{0}}$. Этот результат совпадает с асимптотикой точного решения на больших временах: $x=\frac{f_{0}\left(\sin \left(\omega_{0}\right)\right)}{\left.2 \omega_{0}\right)}$.
170. Найти зависимость от времени усредненной амплитудь линейноzо осциллятора при параметрическом резонансе $\Omega=2 \omega_{0}$, коzда собственная частота изменяется по закону $\omega^{2}(t)=\omega_{0}^{2}(1+\varepsilon \sin \Omega t)$:

$$
\ddot{x}+\omega_{0}^{2}(1+\varepsilon \sin \Omega t) x=0 .
$$

Рещение. Перейдем к медленным переменным $I, \boldsymbol{\theta}$:

$$
x=I \cos \phi, \quad \dot{x}=-I \omega_{0} \sin \phi, \quad \phi \equiv \omega_{0} t+\theta
$$

При параметрическом резонансе член, описываюший возмушение, можно записатъ в виде $-2 \varepsilon \omega_{0}^{2} x \cos (\phi-v) \sin (\phi-\vartheta)$. Откуда, согласно формулам (6.17), (6.18), получаем уравнения для усредненных переменных (J, θ):

$$
\dot{J}=\frac{\varepsilon \omega_{0}}{4} J \cos 2 \theta, \quad \dot{\theta}=-\frac{\varepsilon \omega_{0}}{4} \sin 2 \theta
$$

Уравнение на θ имеет две устойчивые стационарные точки $\theta=0$, либо $\theta=\pi$ (бистабильность). Средняя амплитуда колебаний меняется в обоих случаях экспоненциально $J(t)=J_{0} \exp \left(\frac{\varepsilon \omega_{0} t}{4}\right)$.
171. Найти зависимость от времеки амплитуды колебаний осииллятора с малым кубическим затуханием

$$
\overline{\boldsymbol{x}}+\varepsilon \dot{x}^{3}+\omega_{0}^{2} x=0 .
$$

Решение. Усредненное уравнение (6.17)

$$
j=\frac{\varepsilon}{\omega_{0}} G(J), \quad G(J)=-J^{3} \omega_{0}^{3} \frac{1}{2 \pi} \int_{0}^{2 \pi} d \phi \sin ^{4} \phi=-\frac{3}{8} J^{3} \omega_{0}^{3}
$$

легко интегрируется. Усредненная амплитуда колебаний затухает по следуюшему закону:

$$
J(t)=\frac{J_{0}}{\sqrt{1+\frac{3}{4} J_{0}^{2} \omega_{0}^{2} t}}
$$

172. Найти нелинейный сдвиг частоты ангармонического осцилятора (уравнение Дюффинга)

$$
\ddot{x}+\omega_{0}^{2} x=-\varepsilon x^{3}
$$

Решение. Усреднение по формуле (6.17) дает $\dot{J}=0$, что является следствием гамильтоновости системы. Усредняя по формуле (6.18), получаем уравнение на усредненную фазу

$$
\dot{\theta}=\frac{3 \varepsilon J^{2}}{8 \omega_{0}}
$$

Величина $\dot{\theta}$ называется нелинейным сдвигом частоты $\omega_{0} \rightarrow \omega_{N L}=$ $\omega_{0}+\frac{3 \varepsilon J^{2}}{8 \omega_{0}}$ и пропорциональна квадрату амплитуды колебаний:

$$
x=J \cos \left(\omega_{N L} t\right)
$$

6.7. Задачи

173. Найти асимптотическое разложение интегралов Френеля при $x \rightarrow+\infty$

$$
F_{1}(x)=\int_{x}^{\infty} \cos \left(\theta^{2}\right) d \theta, \quad F_{2}(x)=\int_{x}^{\infty} \sin \left(\theta^{2}\right) d \theta .
$$

174. Найти асимптотическое разложение интеграла при $a \rightarrow \infty$

$$
F(a)=\int_{0}^{\infty} \frac{d x e^{-x}}{x^{2}+a^{2}}
$$

175. Найти асимптотическое разложение интеграла при $\nu \rightarrow+\infty$, $a=$ const

$$
F(\nu, a)=\int_{0}^{\infty} \frac{d x e^{-\nu x}}{x+a}
$$

176. Найти асимптотику интеграла при $n \rightarrow+\infty$

$$
S_{n}=\int_{0}^{\pi / 2} \sin ^{n} t d t
$$

177. Найти асимптотическое разложение функции ошибок при $x \rightarrow+\infty$

$$
\operatorname{Erfc} x=\int_{x}^{x} \exp \left(-t^{2}\right) d t
$$

178. Найти асимптотическое разпжение интегральной показательнои функции при $\boldsymbol{x} \rightarrow+\infty$

$$
E_{n}(x)=\int_{z}^{\infty} \frac{\exp (-t)}{t^{n}} d t
$$

179. Найти асимптотику интеграла при $\alpha \rightarrow+\infty$

$$
F(\alpha)=\int_{0}^{\infty} \exp \left(-\frac{t^{2}}{2}-\frac{a}{t}\right) d t .
$$

180. Найти асимптотику полиномов Лежандра для $x>1$ при $l \rightarrow+\infty$

$$
P_{1}(x)=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(x+\sqrt{x^{2}-1} \cos t\right)^{\prime} d t .
$$

181. Найти асимптотику модифицированной функции Бесселя при $x \rightarrow+\infty$

$$
I_{n}(x)=\frac{1}{\pi} \int_{0}^{\pi} \cos n \theta \exp (x \cos \theta) d \theta
$$

182. Найти асимптотику функции Макдональда при $x>0$ и $\nu \rightarrow+\infty$

$$
K_{\nu}(x)=\frac{1}{2} \int_{-\infty}^{\infty} \exp (-\nu t-x \operatorname{ch} t) d t
$$

183. Найти асимптотику функцки $K_{\nu}\left(\frac{\nu}{\operatorname{sha}}\right)$ при $\nu \rightarrow \infty$ и фиксированном $\alpha>0$.
184. Найти асимптотику интеграла Френеля при $x \rightarrow+\infty$

$$
\Phi(x)=\int_{x}^{\infty} \exp \left({ }^{2}\right) d t
$$

185. Найти главный член асимптотики функции Эйри при $x \rightarrow-\infty$

$$
\mathrm{Ai}(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \exp \left[i\left(\frac{t^{3}}{3}+x t\right)\right] d t .
$$

Указание: Сделать замену $t=\tau \sqrt{-x}$.
186. Найти асимптотику функции Бесселя целого порядка при $n=$ const и $x \rightarrow+\infty$

$$
J_{n}(x)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \exp (i x \sin \phi-i n \phi) d \phi .
$$

187. Найти асимптотику функции Бесселя $J_{n}(n)$ при $n \rightarrow+\infty$.

Указание: Использовать результат задачи 164.
188. Найти асимптотику функции Бесселя $J_{n}\left(\frac{n}{\cos \beta}\right)$ при $n \rightarrow+\infty$ и фиксированном $0<\beta<\frac{\pi}{2}$.
189. Найти секторы сходимости на бесконечности в комплексной плоскости следующих интегралов

$$
\begin{gathered}
F_{1}=\int_{-\infty}^{\infty} \exp \left(-x^{2}\right) d x ; \quad F_{2}=\int_{-\infty}^{\infty} \exp \left(i x^{3}\right) d x ; \quad F_{3}=\int_{\gamma} \exp \left(x^{n}\right) d x, \\
n>0-\text { целое. }
\end{gathered}
$$

190. Качественно изобразить на комплексной плоскости линии уровня вещественных и мнимых частей функций
(a) $w(z)=z$;
(б) $w(z)=z^{2}-1$;
(в) $w(z)=z^{3}$;
(r) $w(z)=\ln z$;
(д) $w(z)=\ln \left(z^{2}-1\right)$;
(e) $w(z)=e^{z}$.
191. Найти стационарные точки z_{0} функций

$$
w_{1}(z)=z^{2}-1 ; \quad w_{2}(z)=z^{3} ; \quad w_{3}(z)=\ln \left(z^{2}+1\right) .
$$

В каких направлениях от стационарных точек функции $\operatorname{Re} \boldsymbol{w}(z)$ убывают, а в кахих возрастают?
192. Доказать тождество

$$
\mathrm{Ai}(x)+\omega \mathrm{Ai}(\omega x)+\omega^{2} \mathrm{Ai}\left(\omega^{2} x\right)=0
$$

где $\omega=\exp \left(\frac{2 \pi i}{3}\right)$, для функций Эйри

$$
\mathrm{Ai}(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \exp \left[i\left(\frac{t^{3}}{3}+x t\right)\right] d t .
$$

193. Найти асимптотику интеграла

$$
F(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \exp \left[i\left(\frac{t^{3}}{3}+x t\right)\right] \frac{t^{2} d t}{1+t^{2}}
$$

при $x \rightarrow+\infty$ и сравнитъ с результатом задачи 165.
Указание: Учесть вклад вычета в полюсе $t=i$ при деформации исходного контура интегрирования в перевальный контур (см. рис.6.3).
194. Найти асимптотику полиномов Лежандра при $l \rightarrow \infty$, используя интегральное представление Шлефли

$$
P_{1}(\cos \theta)=\frac{1}{2^{i} 2 \pi i} \oint_{c} \frac{\left(z^{2}-1\right)^{1}}{(z-\cos \theta)^{1+1}} d z
$$

где контур C обходит полюс $z=\cos \theta$ в положительном направлении.
195. Найти закон затухания амплитуды колебаний осциллятора с вязким трением

$$
\bar{x}+2 \gamma \dot{x}+\omega_{0}^{2} x=0 .
$$

196. Найти закон затухания амплитуды колебаний осциллятора с сухим трением

$$
\ddot{x}+2 \gamma \operatorname{sign}(\dot{x})+\omega_{0}^{2} x=0 .
$$

197. Найти нелинейный сдвиг частоты маятника

$$
l \ddot{\alpha}+g \sin \alpha=0
$$

с малой амплитудой колебаний a.
198. Найти и исследовать на устойчивость предельный цикл уравнения

$$
\ddot{x}-\varepsilon(1-|x|) \dot{x}+\omega_{0}^{2} x=0 .
$$

6.8. Ответы

173. При $x \rightarrow+\infty$

$$
\begin{aligned}
& F_{1} \sim-\sum_{n=0}^{\infty} \frac{\Gamma(n+1 / 2)}{2 \Gamma(1 / 2)} x^{-2 n-1} \sin \left(x^{2}-n \frac{\pi}{2}\right), \\
& F_{2} \sim \sum_{n=0}^{\infty} \frac{\Gamma(n+1 / 2)}{2 \Gamma(1 / 2)} x^{-2 n-1} \cos \left(x^{2}-n \frac{\pi}{2}\right) .
\end{aligned}
$$

174. При $a \rightarrow \infty$

$$
F(a) \sim \sum_{n=0}^{\infty}(-1)^{n} \frac{(2 n)!}{a^{2 n+2}}
$$

175. При $\nu \rightarrow+\infty$ и фиксированном a

$$
F(\nu, a) \sim \sum_{n=0}^{\infty}(-1)^{n} \frac{n!}{(\nu a)^{n+1}} .
$$

176. При $n \rightarrow+\infty$

$$
S_{n} \sim \sqrt{\frac{\pi}{2 n}}\left(1+O\left(n^{-1}\right)\right) .
$$

177. При $x \rightarrow+\infty$

$$
\operatorname{Erfc} x \sim \frac{\exp \left(-x^{2}\right)}{2 x} \sum_{n=0}^{\infty} \frac{\Gamma(n+1 / 2)}{\Gamma(1 / 2)}\left(-x^{2}\right)^{-n} .
$$

178. При $x \rightarrow+\infty$

$$
E_{n} \sim \frac{\exp (-x)}{x^{n}} \sum_{m=0}^{\infty} \frac{\Gamma(n+m)}{\Gamma(n)}(-x)^{-m} .
$$

179. При $\alpha \rightarrow+\infty$

$$
F(\alpha) \sim \sqrt{\frac{2 \pi}{3}} \exp \left(-\frac{3}{2} \alpha^{2 / 3}\right)\left(1+O\left(\alpha^{-2 / 3}\right)\right)
$$

180. При $l \rightarrow+\infty$ и фиксированном $x>1$

$$
P_{i}(x) \sim \frac{\left(x+\sqrt{x^{2}-1}\right)^{1+1 / 2}}{\sqrt{2 \pi l}\left(x^{2}-1\right)^{1 / 4}}\left(1+O\left(l^{-1}\right)\right)
$$

181. При $x \rightarrow \infty$ и фиксированном n

$$
I_{n}(x) \sim \frac{e^{x}}{\sqrt{2 \pi x}}\left(1+O\left(x^{-1}\right)\right)
$$

182. При $\nu \rightarrow \infty$ и фиксированном $x>0$

$$
K_{\nu}(x) \sim \sqrt{\frac{\pi}{2 \nu}}\left(\frac{2 \nu}{x e}\right)^{\nu}\left(1+O\left(\nu^{-1}\right)\right)
$$

183. При $\nu \rightarrow \infty$ и фиксированном $\alpha>0$

$$
K_{\nu}\left(\frac{\nu}{\operatorname{sh} \alpha}\right) \sim \sqrt{\frac{\pi \operatorname{th} \alpha}{2 \nu}} \exp (\nu(\alpha-\operatorname{cth} \alpha))\left(1+O\left(\nu^{-1}\right)\right)
$$

184. При $x \rightarrow+\infty$

$$
\Phi(x) \sim \frac{i e^{i x^{2}}}{2 x}\left(1+O\left(x^{-2}\right)\right) .
$$

185. При $x \rightarrow-\infty$

$$
\mathrm{Ai}(x) \sim \frac{1}{|x|^{1 / 4} \sqrt{\pi}} \cos \left(\frac{2}{3}|x|^{3 / 2}-\frac{\pi}{4}\right)\left(1+O\left(|x|^{-3 / 2}\right)\right)
$$

186. При $\boldsymbol{x} \rightarrow+\infty$ и фиксированном n

$$
J_{n}(x) \sim \sqrt{\frac{2}{\pi x}} \cos \left(x-\frac{\pi n}{2}-\frac{\pi}{4}\right) \cdot\left(1+O\left(x^{-1}\right)\right)
$$

187. При $n \rightarrow+\infty$

$$
J_{n}(n) \sim \frac{\Gamma(1 / 3)}{2 \pi \sqrt{3}}\left(\frac{6}{n}\right)^{1 / 3}\left(1+O\left(n^{-1 / 3}\right)\right)
$$

188. При $n \rightarrow+\infty$ и фиксированном β

$$
J_{n}\left(\frac{n}{\cos \beta}\right) \sim \sqrt{\frac{2}{\pi n \operatorname{tg} \beta}} \cos \left\{n(\beta-\operatorname{tg} \beta)+\frac{\pi}{4}\right\}\left(1+O\left(n^{-1}\right)\right) .
$$

189. Секторы сходимости интегралов в комплексной плоскости переменной $x=|x| e^{i \theta}$

$$
\begin{aligned}
& F_{1}: \quad \theta \in\left[-\frac{\pi}{4}, \frac{\pi}{4}\right] \cup\left[\frac{3 \pi}{4}, \frac{5 \pi}{4}\right] ; \\
& F_{2}: \quad \theta \in\left[0, \frac{\pi}{3}\right] \cup\left[\frac{2 \pi}{3}, \pi\right] \cup\left[\frac{4 \pi}{3}, \frac{5 \pi}{3}\right] \\
& F_{3}: \quad q \frac{2 \pi}{n}+\frac{\pi}{2 n}<\theta<q \frac{2 \pi}{n}+\frac{3 \pi}{2 n}, \quad q-\text { целое. }
\end{aligned}
$$

190. Указание: Записать комплексную переменную в виде $z=x+i y$ и найти уравнения кривых на плоскости (x, y) из $\operatorname{Re} w(z)=$ const или $\operatorname{Im} w(z)=$ const. Обратить внимание на нули и особенности функций $w(z)$.
191. Bсе функции имеют одну стационарную точку $z_{0}=0$. Функции $\operatorname{Re} w_{1}(z)$ и $\operatorname{Re} w_{3}(z)$ возрастают вдоль вешественной оси и убывают вдоль мнимой оси от седловой точки. Функция $\operatorname{Re} w_{2}(z)$ возрастает вдоль направлений $\theta=0, \frac{2 \pi}{3}, \frac{4 \pi}{3}$, а убывает вдоль направлений $\theta= \pm \frac{\pi}{3}, \pi$ от стационарной точки, где θ - аргумент $z=|z| e^{i \theta}$.
192. Указание: Сделать замену переменной в интегральном представлении функции Эйри: $t \rightarrow \frac{y}{w}$ во втором слагаемом тождества и $t \rightarrow$ $\boldsymbol{t} \boldsymbol{\omega}$ в третьем слагаемом. Преобразовать сумму интегралов в один контурный интеграл (см. рис.6.3).
193. При $x \rightarrow+\infty$

$$
F(x) \sim-\frac{1}{2} \exp \left(\frac{1}{3}-x\right)+O\left(\exp \left(-\frac{2}{3} x^{3 / 2}\right)\right)
$$

194. При $l \rightarrow \infty$ и фиксированном θ

$$
\begin{gathered}
P_{l}(\cos \theta) \sim \sqrt{\frac{2}{\pi l \sin \theta}} \sin \left[\theta\left(l+\frac{1}{2}\right)+\frac{\pi}{4}\right]\left(l+O\left(l^{-1}\right)\right) ; \\
\theta l \gg 1, \quad(\pi-\theta) l \gg 1 .
\end{gathered}
$$

195. Усредненная амплитуда осциллятора уменьшается по закону

$$
J(t)=J(0) \exp (-\gamma t) .
$$

196. Усредненная амплитуда осциллятора уменьшается по закону

$$
J(t)=J(0)-\frac{4 \gamma t}{\pi \omega_{0}}, \quad \text { при } \quad 0<t<\frac{\pi \omega_{0} J(0)}{4 \gamma} .
$$

197. Частота колебаний маятника равна

$$
\omega_{N L}=\sqrt{\frac{g}{l}}\left(1-\frac{a^{2}}{16}\right)
$$

где a - амплитуда малых колебаний.
198. Уравнение на усредненную амплитуду колебаний имеет вид

$$
\dot{J}=\frac{\varepsilon J}{2}\left(1-\frac{4 J}{3 \pi}\right)
$$

При $\varepsilon>0$ это уравнение имеет одну устойчивую стационарную точку $J=\frac{3 \pi}{4}$.

Глава 7

Метод функций Грина

7.1. Функции Грина

1. Метод функций Грина позволяет решать неоднородные линейные дифференциальные уравнения с произвольными правыми частями. Функция Грина первого рода $G\left(x, x^{\prime}\right), x, x^{\prime} \in \mathcal{D} \subset \mathbb{R}^{n}$ краевой задачи

$$
\begin{equation*}
\mathcal{C} u=f,\left.\quad \mathcal{B} u\right|_{x \in S}=0, \tag{7.1}
\end{equation*}
$$

где \mathcal{L} и \mathcal{B} - некоторые линейные дифференциальные операторы, удовлетворяет уравнению

$$
\begin{equation*}
\mathcal{L} G\left(x, x^{\prime}\right)=\delta\left(x-x^{\prime}\right) \tag{7.2}
\end{equation*}
$$

и граничному условию $\left.B G\left(x, x^{\prime}\right)\right|_{x \in S}=0$. Область \mathcal{D} и ее граница S схематически изображены на рис. 7.1. Решение задачи (7.1) выражается интегралом Дюамеля

$$
u(x)=\int_{\mathcal{D}} G\left(x, x^{\prime}\right) f\left(x^{\prime}\right) d x^{\prime}
$$

Ршс. 7.1. Область определения краевои задачи

Из разложений прямого и обратного оператора по проекторам на подпространства собственных функций $|\boldsymbol{n}\rangle$

$$
\begin{equation*}
\mathcal{L}=\sum_{n} \lambda_{n}|n\rangle\langle n|, \quad \mathcal{L}^{-1}=\sum_{n} \frac{1}{\lambda_{n}}|n\rangle\langle n|, \quad \lambda_{n} \neq 0 \tag{7.3}
\end{equation*}
$$

видно, что функция Грина - это интегральное ядро обратного оператора $G\left(x, x^{\prime}\right)=\langle x| \mathcal{L}^{-1}\left|x^{\prime}\right\rangle$. Отсюда же выводится уравнение (7.2). Функция Грина существует и единственна, если спектральная задача

$$
\begin{equation*}
\mathcal{L}|n\rangle=\lambda_{n}|n\rangle,\left.\quad B|n\rangle\right|_{x \in S}=0 \tag{7.4}
\end{equation*}
$$

не имеет нулевого собственного значения. Из разложения (7.3) также следует, что функиия Грина самосопряженного оператора ($\mathcal{C}=\mathcal{L}^{\dagger}$, см. главу 1) подчиняется принципу взаимности

$$
G\left(x, x^{\prime}\right)=G^{*}\left(x^{\prime}, x\right)
$$

Чтобы найти функцию Грина дифференциального уравнения, следует придерживаться следующих правил. Пусть \mathcal{L} - обыкновенный дифференциальный оператор N-го порядка. Проинтегрируем (7.2) по бесконечно малой окрестности точки x^{\prime} и найдем скачок ($N-1$)-й производной от G в точке $\boldsymbol{x}=\boldsymbol{x}^{\prime}$. Остается выполнить три шага:

1. Решить однородное уравнение.
2. Записать решение в областях $x<x^{\prime}$ и $x>x^{\prime}$ в виде двух различных линейных комбинаций решений однородного уравнения, содержащих $2 N$ неизвестных коэффициентов.
3. Найти эти коэффициенты, используя N краевых условий, $N-1$ условие непрерывности производных порядков $0,1, \ldots, N-2$ и одно условие на скачок производной порядка $N-1$ при $x=x^{\prime}$.

Функция Грина представляется, вообше говоря, разными формулами при $x<x^{\prime}$ и $x>x^{\prime}$. Если функция Грина симметрична, т.е. $G\left(x, x^{\prime}\right)=$ $G\left(x^{\prime}, x\right)$, эти формулы отличаются только тем, что в них меняются местами x и x^{\prime}. Для сокрашения записи вместо x, x^{\prime} будет использоваться обозначение $x_{<}=\min \left(x, x^{\prime}\right), x_{>}=\max \left(x, x^{t}\right)$.
2. Если задача (7.4) имеет нетривиальные решения $|i\rangle, i=1, \ldots, k$, с $\lambda_{i}=0$ (тах называемые нулевые моды), то неоднородная задача (7.I) разрешима, когда ее правая часть f ортогональна нулевым модам задачи

$$
\begin{equation*}
\mathcal{L}^{\dagger} v=0,\left.\quad \mathcal{B}^{\dagger} v\right|_{\mathcal{x} \in S}=0 \tag{7.5}
\end{equation*}
$$

где \mathcal{L}^{\dagger} - оператор, сопряженный к $\mathcal{L}:(v, \mathcal{L} u)=\left(\mathcal{L}^{\dagger} v, u\right)$, а B^{\dagger} - сопряженный оператор граничных условий. Для разрешимых неоднородных задач используется обобщенная (модифицированная) функция Грина, которая вместо (7.2) удовлетворяет уравнению

$$
\begin{equation*}
\mathcal{L} G\left(x, x^{\prime}\right)=\delta\left(x-x^{\prime}\right)-\sum_{i=1}^{k} u_{i}(x) v_{i}^{*}\left(x^{\prime}\right) \tag{7.6}
\end{equation*}
$$

где нулевые моды u_{i} и v_{i} прямой и сопряженной задачи взаимно ортогональны и нормированы условием

$$
\int_{\mathcal{D}} v_{i}^{*}(x) u_{j}(x) d x=\delta_{i j}, \quad i, j=1, \ldots, k
$$

Обобщенная функиия Грина определяется единственным образом, если потребовать ее ортогональности к нулевым модам однородной сопряженной задачи (7.5):

$$
\begin{equation*}
\int_{\mathcal{D}} v_{i}^{*}(x) G\left(x, x^{\prime}\right) d x=0, \quad i=1, \ldots, k . \tag{7.7}
\end{equation*}
$$

Разложение по проекторам в подпространстве, ортогональном нулевым модам, записывается как $\boldsymbol{C}^{-1}=\sum_{n}^{\prime} \frac{1}{\lambda_{n}}|n\rangle\langle n|$, где $\sum_{n}^{1}=\sum_{n=k+1}^{\infty}$ означает суммирование по ненулевым модам.

Чтобы найти обобщенную функцию Грина обыкновенного дифференциального уравнения с нулевыми модами, надо сначала их нормировать. В шагах 1,2 к решению однородного уравнения надо добавить частное решение уравнения (7.6) без δ-функции. В шаге 3 для нахождения неопределенных коэффициентов не хватает k условий, поскольку каждая нулевая мода удовлетворяет одновременно двум граничным условием. Поэтому следует добавить k требований ортогональности (7.7). Решение запишется как

$$
u(x)=\int_{\mathcal{D}} G\left(x, x^{\prime}\right) f\left(x^{\prime}\right) d x^{\prime}+\sum_{i=1}^{k} c_{i} u_{i}(x)
$$

где c_{i} - произвольные коэффициенты.
3. Когда вместо (7.1) надо исследовать задачу с неоднородными граничными условиями

$$
\begin{equation*}
\mathcal{L} u=0,\left.\quad B u\right|_{x \in S}=g, \tag{7.8}
\end{equation*}
$$

тогда требуется найти функцию Грина второго рода $G_{s}\left(x, x^{t}\right)$. Решение задачи (7.8) записывается в виде интеграла по границе S области \mathcal{D} :

$$
u(x)=\int_{S} G_{s}\left(x, x^{\prime}\right) g\left(x^{\prime}\right) d x^{\prime}, \quad x \in \mathcal{D}
$$

Решение линейной задачи с отличной от нуля правой частью и ненулевыми граничными условиями

$$
\mathcal{L} u=f,\left.\quad \mathcal{B} u\right|_{x \in S}=g
$$

можно искать в виде суммы решений двух задач (7.1) и (7.8). Получается сумма объемного интеграла по \mathcal{D} с функцией f и поверхностного по S с функцией g.

Функции Грина первого и второго рода связаны. Их связь для конкретного уравнения находится с помощью соответствуюшей формулы Грина, для вывода которой надо рассмотреть разность скалярных произведений ($u, \mathcal{L} v)$ - ($\mathcal{L}^{\dagger} u, v$) и свести ее к поверхностному интегралу.
4. Назовем фундаментальным решением любое решение уравнения (7.2), не обязательно удовлетворяющее граничным условиям. Фундаментальное решение определено с точностью до любого решения однородного уравнения. Вид особенности фундаментального решения уравнения Пуассона

$$
\Delta g\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)=\delta\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right)
$$

можно найти интегрированием по \boldsymbol{r} вблнзи точки $\boldsymbol{r}=\boldsymbol{r}^{\prime}$. Для размерности $n=1,2,3$ получится

Размерность	$g\left(r, r^{\prime}\right)$
1	$\frac{\left\|x-x^{\prime}\right\|}{2}$
2	$\frac{\ln \left\|r-r^{\prime}\right\|}{2 \pi}$
3	$-\frac{1}{4 \pi\left\|r-r^{\prime}\right\|}$

Функцию Грина первого рода $G\left(x, x^{\prime}\right)$ можно построить по фундаментальному решению $g\left(x, x^{\prime}\right)$, если добавить линейную комбинацию решений однородного уравнения, не имеюших особенностей при $\boldsymbol{r}=\boldsymbol{r}$ ', и потребовать выполнения граничных условий. Реально найти такую комбинацию удается, когда область \mathcal{D} симметрична. В трехмерном случае иногда помогает метод изображений, а в двумерном также метод конформных преобразований. Применение метода изображений основано на преобразовании инверсии $r^{\prime} \rightarrow \frac{R^{2}}{r^{\prime}}$ уравнения Лапласа (см. задачу 203) относительно сферы радиуса R, если \mathcal{D} - шар радиуса R, или отражения относительно плоскости, если \mathcal{D} - полупространство. В двумерном случае уравнение Лапласа ковариантно относительно конформных преобразований. Конформные преобразования полезны, если с их помощью удается отобразить область на более простую, для которой функцию Грина легче построить.

Для элиитического оператора Гельмгольца $\mathcal{L}=\triangle-k^{2}$ или оператора Лапласа $\mathcal{L}=\triangle$ разность интегралов по объему выражается через интеграл по поверхности следуюшей формулой Грина:

$$
\begin{equation*}
(v, \mathcal{C} u)-\left(\mathcal{L}^{\dagger} v, u\right)=-\int_{S}\left(v^{*} \frac{\partial u}{\partial n}-\frac{\partial v^{*}}{\partial n} u\right) d S, \tag{7.9}
\end{equation*}
$$

где $\frac{\partial}{\partial \text { б }}$ обозначает производную по внутренней нормали. Формула выводится из тождества $v \Delta u-u \Delta v=\operatorname{div}(v \nabla u-u \nabla v)$ с помошью преобразования объемного интеграла в поверхностный.

Возьмем в качестве $v(x)$ функцию $G\left(x, x^{\prime}\right)$, которая подчиняется уравнению (7.2), а в качестве $u(x)$ - решение задачи (7.8) и воспользуемся формулой Грина (7.9). Теперь поменяем обозначения $x \leftrightarrow x^{\prime}$, применим принцип взаимности и получим

$$
\begin{equation*}
u(x)=\int_{S}\left(G\left(x, x^{\prime}\right) \frac{\partial u\left(x^{\prime}\right)}{\partial n^{\prime}}-\frac{\partial G\left(x, x^{\prime}\right)}{\partial n^{\prime}} u\left(x^{\prime}\right)\right) d x^{\prime} \tag{7.10}
\end{equation*}
$$

Отсюда находится функция Грина второго рода для разных граничных условий. Для задачи Дирихле $\left.u(x)\right|_{x \in S}=g(x)(B=1)$ функцию Грина первого рода надо выбрать удовлетворяющей граничному условию

$$
\left.G\left(x, x^{\prime}\right)\right|_{x \in S}=\mathbf{0} .
$$

Функция Грина второго рода (потенциал двойноzо слоя) получится из формулы

$$
G_{s}\left(x, x^{\prime}\right)=-\left.\frac{\partial}{\partial n^{\prime}} G\left(x, x^{\prime}\right)\right|_{z \in S} .
$$

Для задачи Неймана $\left.\frac{\partial u(x)}{\partial n}\right|_{x \in S}=g(x)\left(B=\frac{\theta}{\partial n}\right)$ функцию Грина первого рода надо выбрать удовлетворяюшей граничному условию

$$
\left.\frac{\partial G\left(x, x^{\prime}\right)}{\partial n}\right|_{x \in S}=0
$$

Функция Грина второго рода (потенциал простого слоя) получитея из формулы

$$
G_{x}\left(x, x^{\prime}\right)=\left.G\left(x, x^{\prime}\right)\right|_{x^{\prime} \in \mathcal{S}}
$$

5. Для оператора параболинеского типа, например, оператора теплопроводности $\mathcal{L}=\frac{\delta}{\mathscr{\beta}}-\triangle$, можно ввести две функции Грина. В безграничной по координатам области функция Грина первого рода убывает на бесконечности и удовлетворяет уравнению

$$
\begin{gathered}
\mathcal{L} G\left(r, t ; \boldsymbol{r}^{\prime}, t^{\prime}\right)=\delta\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right) \delta\left(\boldsymbol{t}-\boldsymbol{t}^{\prime}\right), \\
G\left(\boldsymbol{r}, \boldsymbol{t} ; \boldsymbol{r}^{\prime}, \boldsymbol{t}^{\prime}\right) \rightarrow 0 \text { при }\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right| \rightarrow \infty .
\end{gathered}
$$

Функция G позволяет решать задачу

$$
\mathcal{C} u=f(r, t), \quad u(r, t) \rightarrow 0 \quad \text { при } \quad t \rightarrow-\infty .
$$

Решение задачи Коши с начальными условиями

$$
\mathcal{C} u=0, \quad u(r, 0)=\phi(r)
$$

выражается через функцию Грина второго рода G_{s}, которая стремится к δ-функции в начальный момент

$$
\mathcal{L} G_{s}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}, \boldsymbol{t}\right)=0, \quad G_{s}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}, t\right) \rightarrow \delta\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right) \quad \text { при } \quad t \rightarrow+0 .
$$

6. Для оператора \mathcal{L} гиперболического типа, например, $\mathcal{L}=\square$, существует несколько разных функиий Грина. Нами будет использоваться только запаздшвающая функиия Грина, определяемая из решения волнового уравнения

$$
\begin{equation*}
\square G=\delta\left(r-r^{\prime}\right) \delta\left(t-t^{\prime}\right), \quad \square \equiv \frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}-\Delta . \tag{7.11}
\end{equation*}
$$

Запаздывающая функция обрашается в нуль при $t<t^{\prime}$ и убывает на бесконечности вместе со своими первыми производными

$$
G\left(r, t: r^{\prime}, t^{\prime}\right)=0, \quad t<t^{\prime}: \quad G\left(r, t: r^{\prime}, t^{\prime}\right) \rightarrow 0, \quad\left|r-r^{\prime}\right| \rightarrow \infty .
$$

Если коэффициенты дифференциального уравнения постоянны, то функцию Грина можно найти с помощью преобразования Фурье. При выполнении обратного преобразования может возникнуть трудность, если полюс функции Грина в ω, k-представлении попадает на контур интегрирования. Правила обхода полюсов находятся из физических соображений. Для задачи Коши с начальными условиями вместо преобразования Фурье можно использовать преобразование Лапласа.

7.2. Непрерывный спектр

Мы будем рассматривать в основном дифференциальные операторы, действующие в $L^{2}(\Omega)$ - в пространстве квадратично-интегрируемых функций аргумента $x \in \Omega$. Величина λ называется собственным значением оператора \mathcal{A}, если сушествует решение $\psi_{\lambda}(x)$ уравнения

$$
\mathcal{A} \psi_{\lambda}(x)=\lambda \psi_{\lambda}(x)
$$

принадлежашее $L^{2}(\Omega)$. Это решение называется собственной функцией. Принято говорить, что λ - собственные значения дискретного спектра и что все такие λ образуют дискретный спектр σ_{p}. Для самосопряженного оператора $\mathcal{A}=\mathcal{A}^{\dagger}$, действуюшего в $L^{2}(\Omega)$, где $\Omega=\mathcal{D}-$ какая-нибудь конечная область пространства, имеет место утверждение: собственные значения \mathcal{A} образуют дискретный набор $\sigma_{p}=\left\{\lambda_{n}\right\}, n=0,1, \ldots$ и соответствующие собственные функции, отвечаюощие различным собственным значениям, ортогональны.

Для большинства дифференциальных операторов, применяемых в физике (например, операторов Штурма - Лиувилля и Лапласа), множество собственных функций образует полный набор в $L^{2}(\Omega)$. Из них можно построить ортонормированный базис, выбирая и нормируя подходяшие линейные комбинации в вырожденных случаях. При этом оператор \mathcal{A} можно представить в каноническом виде (7.3)

$$
\mathcal{A}=\sum_{n} \lambda_{n}|n\rangle\langle n| .
$$

Если $A\left(x, x^{\prime}\right)$ - ядро интегрального оператора

$$
(\mathcal{A} \psi)(x)=\int_{\mathbf{\Omega}} A\left(x, x^{\prime}\right) \psi\left(x^{\prime}\right) d x^{\prime}
$$

то его можно разложить по собственным функииям

$$
\begin{align*}
A\left(x, x^{\prime}\right) & =\langle x| \mathcal{A}\left|x^{\prime}\right\rangle=\sum_{n} \lambda_{n} \psi_{n}(x) \psi_{n}^{*}\left(x^{\prime}\right), \tag{7.12}\\
\psi_{n}(x) & =\langle x \mid n\rangle, \quad \psi_{n}^{*}\left(x^{\prime}\right)=\left\langle n \mid x^{\prime}\right\rangle .
\end{align*}
$$

Такое представление оператора называется спектральным разложением.

Если же Ω - некомпактная область, то (7.12) может быть уже неверно и должно быть модифицировано, поскольку у оператора \mathcal{A} может быть непрерывный спектр. Пусть \mathcal{A} по-прежнему самосопряжен. Мы говорим, что интервал (a, b) вещественной оси принадлежит непрерывному спектру σ_{c}, если для всех $\lambda \in \sigma_{c}=(a, b)$ существуют решения $\psi_{\lambda}(x)$ уравнения

$$
\mathcal{A} \psi_{\lambda}(x)=\lambda \psi_{\lambda}(x),
$$

не принадлежащие $L^{2}(\Omega)$, но такие, что любая их суперпозиция вида

$$
\Psi(x)=\int_{a}^{b} a(\lambda) \psi_{\lambda}(x) d \lambda, \quad a(\lambda) \in L^{2}(a, b)
$$

уже лежит в $L^{2}(\Omega)$. Говоря на языке квантовой механики, из волновых функций непрерывного спектра можно построить нормируемые волновые пакеты, сколь угодно близкие какой-нибудь данной $\psi_{\lambda}(x)$ в сколь угодно большой области пространства. Например, функция

$$
a(\lambda)=\frac{\varepsilon}{\left(\lambda-\lambda_{0}\right)^{2}+\varepsilon^{2}}
$$

с малым, но конечным ε имеет конечную норму, и нормируемый пакет $\Psi(x)$ в области с линейным размером $\sim \frac{1}{\varepsilon}$ будет мало $(\sim \varepsilon)$ отличаться от функции $\psi_{\lambda_{0}}(x)$.

Собственные функции непрерывного спектра самосопряженного оператора \mathcal{A} взаимно ортогональны:

$$
\left(\psi_{\lambda}, \psi_{\lambda^{\prime}}\right)=\int_{\Omega} d x \psi_{\lambda}^{*}(x) \psi_{x^{\prime}}(x)=0, \quad \lambda \neq \lambda^{\prime},
$$

и вместе с функциями дискретного спектра образуют полный набор: любая $f \in L^{2}(\Omega)$ может быть представлена в виде линейной суперпозиции

$$
\begin{equation*}
f(x)=\sum_{n} a_{n} \psi_{n}(x)+\int_{\sigma_{r}} d \lambda a(\lambda) \psi_{\lambda}(x) \tag{7.13}
\end{equation*}
$$

Для функций непрерывного спектра принято выбирать нормировку *на δ-функиию*

$$
\begin{equation*}
\int_{\Omega} d x \psi_{\lambda}^{*}(x) \psi_{\lambda_{0}}(x)=\delta\left(\lambda-\lambda_{0}\right) \tag{7.14}
\end{equation*}
$$

 циентов $a(\lambda)$ находим

$$
\begin{equation*}
a(\lambda)=\int_{\Omega} f(x) \psi_{\lambda}^{0}(x) d x \tag{7.15}
\end{equation*}
$$

Заметим, что изменение нормировки, т. е. появление коэффициента $C(\lambda)$ при δ-функции в (7.14), повлечет за собой появление коэффициента $\frac{1}{c(\lambda)}$ в правой части (7.15).

Будем считать, что выбрана нормировка (7.14). Тогда спектральное разложение ядра $A\left(x, x^{\prime}\right)$ принимает вид

$$
\begin{equation*}
A\left(x, x^{\prime}\right)=\sum_{n} \lambda_{n} \psi_{n}(x) \psi_{n}^{*}\left(x^{\prime}\right)+\int_{\sigma_{c}} d \lambda \lambda \psi_{\lambda}(x) \psi_{\lambda}^{*}\left(x^{\prime}\right), \tag{7.16}
\end{equation*}
$$

где суммирование производится по дискретному спектру σ_{p}, интегрирование - по непрерывному. В формуле (7.16) подразумевается, что собственные значения непрерывного спектра оператора \mathcal{A} невырождены. Если же имеется вырождение, то в каждом собственном подпространстве с собственными значениями λ можно выбрать ортонормированный в смысле (7.14) базис $\psi_{\lambda}^{(j)}(x)$. Спектральное разложение при этом дополняется суммированием по всем собственным функциям, принадлежашим данному собственному значению λ

$$
\begin{equation*}
A\left(x, x^{\prime}\right)=\sum_{n} \lambda_{n} \psi_{n}(x) \psi_{n}^{*}\left(x^{\prime}\right)+\int_{\sigma_{c}} d \lambda \lambda \sum_{j} \psi_{\lambda}^{(j)}(x) \psi_{\lambda}^{(j)^{\prime}}\left(x^{\prime}\right) \tag{7.17}
\end{equation*}
$$

Возможность вырождения собственных значений дискретного спектра учитывается в (7.16), (7.17) тем, что некоторые λ_{n} в первом слагаемом могут совпадать.

7.3. Резольвента

Резольвентой \widehat{R}_{2} данного самосопряженного оператора \widehat{H} называется следующий оператор, зависящий от комплексной переменной z как or параметра

$$
\widehat{R}_{z}=(z-\widehat{H})^{-1}
$$

Из определения следует уравнение на интегральное ядро $R_{z}\left(x, x^{\prime}\right)$ оператора $\widehat{R}_{\boldsymbol{z}}$

$$
(z-\widehat{H}) R_{2}\left(x, x^{\prime}\right)=\delta\left(x-x^{\prime}\right) .
$$

Собственные функции $\psi_{\lambda}(x)$ у $\widehat{\boldsymbol{H}}$ и \widehat{R}_{2}, очевидно, одни и те же, а собственные значения тривиально пересчитываются. В итоге мы получаем спектральное разложение для $R_{2}\left(x, x^{\prime}\right)$:

$$
\begin{equation*}
R_{z}\left(x, x^{\prime}\right)=\sum_{n} \frac{1}{z-\lambda_{n}} \psi_{n}(x) \psi_{n}^{*}\left(x^{\prime}\right)+\int_{\sigma_{r}} \frac{d \lambda}{z-\lambda} \sum_{j} \psi_{\lambda}^{(j)}(x) \psi_{\lambda}^{(j) v}\left(x^{\prime}\right) \tag{7.18}
\end{equation*}
$$

При $z=0$ резольвента с точностью до знака переходит в функцию Грина. Видно, что в резольвенте $R_{z}\left(x, x^{\prime}\right)$ заключена вся информация о спектре оператора \widehat{H}. Как аналитическая функиия переменной $z \in \mathbb{C}$ резольвента

определена в плоскости с разрезом вдоль участка вещественной оси, соответствующим непрерывному спектру, и полюсами, соответствующими дискретному спектру оператора \widehat{H} (рис. 7.2). Вычет в полюсе $z=\lambda_{n}$ резольвенты $R_{z}\left(x, x^{\prime}\right)$, как следует из (7.18), равен

$$
\underset{z=\lambda_{n}}{\operatorname{Res}} R_{z}=\sum_{j} \psi_{n j}(x) \psi_{n j}^{*}\left(x^{\prime}\right),
$$

где $\psi_{n j}(\boldsymbol{x})-$ собственные функции: $\hat{\boldsymbol{H}} \psi_{n j}=$ $\lambda_{n} \psi_{n j}, j=1, \ldots, x_{n}$, где χ_{n} - кратность вы-

Рис. 7.2. Комплексная плоскость спектрального параметра z с полюсами в точках дискретного спектра и разрезом, соответствующим непрерывному спектру рождения собственного числа λ_{n}.

Скачок резольвенты на разрезе может быть найден с помощью формулы

$$
\lim _{\varepsilon \rightarrow+0}\left(\frac{1}{z+i \varepsilon}-\frac{1}{z-i \varepsilon}\right)=-2 \pi i \delta(z)
$$

и равен

$$
\begin{equation*}
\left.R_{z}\right|_{z=\lambda_{0}+i 0}-\left.R_{z}\right|_{z=\lambda_{0}-i 0}=-2 \pi i \sum_{j} \psi_{\lambda_{0}}^{(j)}(x) \psi_{\lambda_{0}}^{(j)}\left(x^{\prime}\right) \tag{7.19}
\end{equation*}
$$

Это соотношение позволяет по известной резольвенте найти нормированные согласно (7.14) собственные функции непрерывного спектра с точностью до унитарного поворота в их собственном подпространстве. Такой поворот оставляет инвариантной билинейную форму

$$
\sum_{j} \psi_{\lambda_{0}}^{(j)}(x) \psi_{\lambda_{0}}^{(j)}\left(x^{\prime}\right)
$$

Таким образом, знание особенностей резольвенты как функции своего комплексного параметра z эквивалентно знанию собственных значений и собственных функций как дискретного, так и непрерывного спектра.

Метод функций Грина разобран в книгах [Со666, МУ72, МФ58]. Понятие резольвенты и свойства функций непрерывного спектра описаны в [Рих82].

7.4. Примеры

199. Найти функцию Грина и выписать решение неоднородного уравнения $u^{\prime \prime}=f(x)$, если $u(0)=u(1)=0, x \in[0,1]$.

Решение. Решение однородного уравнения - линейная функция. Функцию Грина сразу ишем в виде, удовлетворяющем граничным условиям

$$
G\left(x, x^{\prime}\right)= \begin{cases}A x, & \text { если } x<x^{\prime} \\ B(x-1), & \text { если } x>x^{\prime}\end{cases}
$$

Здесь $0 \leqslant x \leqslant 1,0<x^{\prime}<1$. Условия непрерывности функции и единичного скачка производной дают систему двух уравнений для коэффициентов A, B

$$
A x^{\prime}-B\left(x^{\prime}-1\right)=0, \quad B-A=1 .
$$

Ответ удобно выразить через переменные $x_{>}, x_{<}: G\left(x, x^{\prime}\right)=x_{<}\left(x_{>}-1\right)$.
200. Доказать, что функция Грина уравнения $\mathcal{L}_{r} u(r)=f(r)$ с оператором

$$
\mathcal{L}_{r}=\frac{d^{2}}{d r^{2}}+k^{2}(r)
$$

и граничными условиями $u(0)=u(1)=0$ представина в виде

$$
G\left(r, r^{\prime}\right)=\frac{\chi_{1}\left(r_{<}\right) \chi_{2}\left(r_{>}\right)}{W\left(r^{\prime}\right)}, \quad W(r)=\left|\begin{array}{ll}
\chi_{1}(r) & \chi_{2}(r) \tag{7.20}\\
\chi_{1}^{\prime}(r) & \chi_{2}^{\prime}(r)
\end{array}\right|,
$$

если нулевые моды отсутствуют. Здесь функции $\chi_{i}(r)$ - линейко независимые решения однородного уравнения

$$
\mathcal{L}_{r} \chi_{i}(r)=0, \quad i=1,2, \quad \chi_{1}(0)=\chi_{2}(1)=0 .
$$

Решение. Поскольку χ_{1} удовлетворяет левому граничному условию, а χ_{2} - правому, можно сразу искать функцию Грина в виде

$$
G\left(r, r^{\prime}\right)= \begin{cases}A \chi_{1}(r), & \text { если } r<r^{\prime} \\ B \chi_{2}(r), & \text { если } r>r^{\prime}\end{cases}
$$

Граничные условия выполнены автоматически, а требования непрерывности при $r=r^{\prime}$ дают систему уравнений на коэффициенты A, B

$$
A \chi_{1}\left(r^{\prime}\right)-B \chi_{2}\left(r^{\prime}\right)=0, \quad B \chi_{2}^{\prime}\left(r^{\prime}\right)-A \chi_{1}^{\prime}\left(r^{\prime}\right)=1 .
$$

Отсутствие нулевой моды означает, что $\chi_{1} \neq \chi_{2}$. Определитель системы совпадает с вронскианом (7.20) фундаментальной системы решений в точке $r=r^{\prime}$, а поэтому отличен от нуля. В данном случае вронскиан $W\left(r^{\prime}\right)$ не зависит от r^{\prime}.

Если граничные условия не разделяются на правое и левое, то формула (7.20) уже дает не функцию Грина $G\left(r, r^{\prime}\right)$, а только фундаментальное решение $g\left(r, r^{\prime}\right)$. Фундаментальное решение можно превратить в функцию Грина, прибавив линейную комбинацию решений однородного уравнения, а граничные условия позволят определить коэффициенты.

Приведем формулу для функции Грина, когда нулевые моды отсутствуют. Пусть вместо нулевых условий на функцию $u(r)$ в задаче заданы однородные граничные условия общего вида $\mathcal{B}_{1} u=0, \mathcal{B}_{2} u=0$, где $\mathcal{B}_{1,2}$ - операторы граничных условий, представляюшие собой линейные комбинации значений функции и первой производной на левой и правой границах. Функиия Грина строится по фундаментальному решению

с помощью формулы

$$
G\left(r, r^{\prime}\right)=\frac{Z\left(r, r^{\prime}\right)}{\Delta}, \quad \Delta=\left|\begin{array}{ll}
\mathcal{B}_{1} \chi_{1} & B_{1} \chi_{2} \\
\mathcal{B}_{2} \chi_{1} & \mathcal{B}_{2} \chi_{2}
\end{array}\right|, \quad Z=\left|\begin{array}{ccc}
g\left(r, r^{\prime}\right) & \chi_{1}(r) & \chi_{2}(r) \\
B_{1} g & B_{1} \chi_{1} & B_{1} \chi_{2} \\
\mathcal{B}_{2} g & \mathcal{B}_{2} \chi_{1} & \mathcal{B}_{2} \chi_{2}
\end{array}\right| .
$$

Действительно, формула дает сумму фундаментального решения $g\left(r, r^{\prime}\right)$ и линейной комбинации функций $\chi_{1,2}(r)$, не имеющих особенностей при $r=r^{\prime}$. При действии операторов \mathcal{B}_{1} или \mathcal{B}_{2} на определитель Z получается определитель с парой совпадающих строк, поэтому $B_{1,2} Z=0$. Значит $G\left(r, r^{\prime}\right)$ удовлетворяет уравнению и краевым условиям*).
201. Найти обобщенную функцию Грина однородной краевой задачи $L=\frac{d^{2}}{d x^{2}}, u^{\prime}(0)=u^{\prime}(1)=0$.

Решение. Нулевая мода в данном случае - постоянное решение, если его нормировать, то $u_{0}(x)=1$. Поэтому функция Грина удовлетворяет уравнению

$$
\begin{equation*}
G^{\prime \prime}\left(x, x^{\prime}\right)=\delta\left(x-x^{\prime}\right)-1 \tag{7.21}
\end{equation*}
$$

Решение уравнения без δ-функции есть $-\frac{x^{2}}{2}$, поэтому ищем G в виде

$$
G\left(x, x^{\prime}\right)=-\frac{x^{2}}{2}+ \begin{cases}A x+B, & \text { если } x<x^{\prime} \\ C x+D, & \text { если } x>x^{\prime}\end{cases}
$$

Граничные условия позволяют наити два коэффициента $A=0, C=1$. Сшивка при $x=x^{\prime}$ дает только одно условие $B=x^{\prime}+D$. Недостаюцее условие возникает из требования ортогональности нулевой моде

$$
\int_{0}^{1} d x G\left(x, x^{\prime}\right)=-\frac{1}{2} \int_{0}^{1} x^{2} d x+\int_{0}^{x^{\prime}} B d x+\int_{z^{\prime}}^{1}(x+D) d x=0
$$

откуда найдем $B=x^{\prime}-\frac{x^{\prime 2}}{2}-\frac{1}{3}, D=-\frac{x^{\prime 2}}{2}-\frac{1}{3}$, а

$$
G\left(x, x^{\prime}\right)=-\frac{1}{3}-\frac{x_{>}^{2}+x_{<}^{2}}{2}+x_{>}
$$

202. При каких условиях разрешима неоднородная задача $u^{\prime \prime}=f(x)$, $u^{\prime}(0)=a, u^{\prime}(1)=b$? Выписать решение.

Решение. Умножим уравнение на нулевую моду $u_{0}(x) \equiv 1$ и проинтегрируем от 0 до 1 . Получаем условие разрешимости

$$
\begin{equation*}
b-a-\int_{0}^{1} f(x) d x=0 \tag{7.22}
\end{equation*}
$$

[^6]т.е. условие ортогональности нулевой моде сопряженной однородной залачи.

Наглядно можно понять алгебраический смысл получившегося условия, если вместо дифференциального рассмотреть разностное уравнение, как бы подготовив дискретную модель для численного решения. Для этого приблизим первую производную разностной схемой $u^{\prime}(x) \approx \frac{|u(x+h)-u(x)|}{h}$, а вторую - схемой

$$
u^{\prime \prime}(x) \approx \frac{[u(x-h)-2 u(x)+u(x+h)]}{h^{2}}, \quad h=\frac{1}{N} .
$$

Тогда расширенная матрица системы $(N+1) \times(N+2)$ примет вид

$$
A=\left(\begin{array}{rrrrrrrrr|l}
-1 & 1 & 0 & 0 & 0 & \ldots & 0 & 0 & 0 & a h \\
1 & -2 & 1 & 0 & 0 & \ldots & 0 & 0 & 0 & f(h) h^{2} \\
0 & 1 & -2 & 1 & 0 & \ldots & 0 & 0 & 0 & f(2 h) h^{2} \\
0 & 0 & 1 & -2 & 1 & \ldots & 0 & 0 & 0 & f(3 h) h^{2} \\
\ldots & & \cdots & \cdots & \cdots & \ldots & \ldots & \cdots & \cdots & \cdots \\
0 & 0 & 0 & 0 & 0 & \ldots & 1 & -2 & 1 & f(1-h) . . \\
0 & 0 & 0 & 0 & 0 & \ldots & 0 & 1 & -1 & -b h
\end{array}\right) .
$$

Первая и последняя строки соответствуют граничным условиям, а остальные отвечают дифференциальному уравнению. Вертикальная черта отделяет матрицу системы от столбца правых частей. Как нетрудно заметить, сумма всех строк матрицы системы равна нулю, а значит, обрашается в нуль определитель, и нуль является собственным значением. Собственный вектор, отвечающий нулевому собственному значению, есть дискретный аналог нулевой моды. Для разрешимости необходимо, чтобы сумма элементов последнего столбца тоже обращалась в нуль

$$
h(a-b)+h^{2} \sum_{k=1}^{N-1} f(k h)=0 .
$$

Тогда ранг расширенной матрицы системы N совпадет с рангом матрицы системы. Отсюда при $N \rightarrow \infty$ и получается условие (7.22).

Если бы были наложены условия не на производную, а на функцию $u(0)=a, u(1)=b$, то в первой строке пропала бы вторая, а в последней строке - предпоследняя единица. Тогда матрица системы была бы невырожденной, нулевые моды бы исчезли, а краевая задача стала бы разрешимой при произвольных $a, b, f(x)$.

Чтобы выписать решение неоднородной задачи, нужно найти ка-кую-нибудь простую функцию, удовлетворяющую граничным условиям $U^{\prime}(0)=a, U^{\prime}(1)=b$. Выберем, например, $U(x)=\frac{a x+(b-a) x^{2}}{2}$. Будем искать решение в виде $u(x)=v(x)+U(x)$. Тогда функция $v(x)$ удовлетворяет уравнению $v^{\prime \prime}=f(x)+a-b$ и нулевым граничным условиям на производную $v^{\prime}(0)=v^{\prime}(1)=0$. Задача сводится к предыдушей, а решение

запишется как

$$
u(x)=\int_{0}^{1} G\left(x, x^{\prime}\right) f\left(x^{\prime}\right) d x^{\prime}+a x+\frac{(b-a) x^{2}}{2}+C
$$

где произвольная константа C - коэффициент при нулевой моде. Мы не написали $a-b$ под знаком интеграла, воспользовавшись условием ортогональности модифицированной функции Грина и нулевой моды.

Если бы мы выбрали другую функцию $U(x)$, получилось бы решение

$$
\begin{equation*}
u(x)=\int_{0}^{1} G\left(x, x^{\prime}\right)\left[f\left(x^{\prime}\right)-U^{\prime \prime}\left(x^{\prime}\right)\right] d x^{\prime}+U(x)+C \tag{7.23}
\end{equation*}
$$

которое совпадает с предыдущим с точностью до нулевой моды. Последнее можно показать интегрированием по частям. Проверим, что (7.23) является решением задачи. Для этого продифференцируем (7.23) дважды и воспользуемся уравнением на функцию Грина (7.21), получится

$$
u^{\prime \prime}(x)=f(x)-\int_{0}^{1}\left[f\left(x^{\prime}\right)-U^{\prime \prime}\left(x^{\prime}\right)\right] d x^{\prime}
$$

Из условия разрешимости (7.22) следует, что интеграл в правой части этого выражения равен нулю.
203. Показать, что если $\phi(r)$ - решение трехкерного уравнения Лапласа, то и $\psi(r)=\frac{\phi\left(r / r^{2}\right)}{r}$ - также решение.

Решение. В сферических координатах

$$
\Delta_{r} \psi(r)=\left[\frac{1}{r} \frac{\partial^{2}}{\partial r^{2}} r+\frac{\Delta_{\Omega}}{r^{2}}\right] \psi(r)=\frac{1}{r}\left[\frac{\partial^{2}}{\partial r^{2}}+\frac{\Delta_{\Omega}}{r^{2}}\right] \phi\left(\frac{r}{r^{2}}\right) .
$$

Сделаем замену $\boldsymbol{\xi}=\frac{r}{r^{2}}$, так что $\xi=\frac{1}{r}$.

$$
\frac{\partial^{2}}{\partial r^{2}}=\xi^{4} \frac{\partial^{2}}{\partial \xi^{2}}+2 \xi^{3} \frac{\partial}{\partial \xi},
$$

$\phi\left(\frac{r}{r^{2}}\right)=\phi\left(\frac{1}{r}, \theta, \varphi\right)=\phi(\xi, \theta, \phi)$. Тогда

$$
\Delta_{r} \psi(r)=\xi^{5}\left[\frac{\partial^{2}}{\partial \xi^{2}}+\frac{2}{\xi} \frac{\partial}{\partial \xi}+\frac{\Delta_{\Omega}}{\xi^{2}}\right] \phi(\xi, \theta, \varphi)=\xi^{5} \Delta_{\xi} \phi(\xi)=0 .
$$

204. Наити функиию Грина двумерного уравнения Пуассона $\Delta u=f(r)$ в круге радиуса $R,\left.u\right|_{\text {т }=R}=0$. Получить решение задачи Дирихле для уравнения Лапласа $\triangle u=0$ в круге с граничным условием $\left.u\right|_{r=R}=A(\varphi)$, где φ - угол. Выразить решение в виде контурного интеграла в плоскости компиексного переменного.

Решение. Функцию первого рода найдем методом изображений, поместив заряженную *нить» противоположного знака в точке инверсии $r_{*}^{\prime}=\frac{R^{2}}{r^{\prime}}$ и добавив подходящую константу. Тогда

$$
G\left(r, \varphi ; r^{\prime} \varphi^{\prime}\right)=\frac{1}{4 \pi} \ln \frac{r^{2}-2 r r^{\prime} \cos \psi+r^{\prime 2}}{r^{2} r^{\prime 2} / R^{2}-2 r r^{\prime} \cos \psi+R^{2}} ; \quad \psi=\varphi-\varphi^{\prime}
$$

тах что $\left.G\right|_{r=R}=0$, независимо от $r^{\prime}, \varphi^{\prime}$. Функция второго рода находится дифференцированием

$$
G_{s}\left(r, \varphi, \varphi^{\prime}\right)=\left.\frac{\partial G}{\partial r^{\prime}}\right|_{r^{\prime}=R}=\frac{1}{2 \pi R} \frac{R^{2}-r^{2}}{R^{2}-2 R r \cos \psi+r^{2}}
$$

Решение задачи Дирихле дается формулой Пуассона

$$
\begin{equation*}
u(r, \varphi)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{R^{2}-r^{2}}{R^{2}+r^{2}-2 R r \cos \left(\varphi-\varphi^{\prime}\right)} A\left(\varphi^{\prime}\right) d \varphi^{\prime} \tag{7.24}
\end{equation*}
$$

Задача «Найти аналитическую в круге функцию, вещественная часть которой принимает на границе круга значение $f(z) »$, решается с помощью формулы Швариа

$$
\begin{equation*}
w(z)=\frac{1}{2 \pi i} \oint \frac{d \zeta}{\zeta} \frac{\zeta+z}{\zeta-z} f(\zeta)+i C \tag{7.25}
\end{equation*}
$$

вещественная часть которой сводится к (7.24) с помощью замены $z=r e^{i \varphi}$, $\zeta=R e^{i \varphi^{\prime}}$. Тогда $|\zeta-z|^{2}=R^{2}+r^{2}-2 R r \cos \psi$ дает знаменатель функции Грина, а $\frac{\left\lvert\, \frac{|c|^{2}-\left.z\right|^{2}}{\mid\left(-\left.z\right|^{2}\right.}\right.}{|c|} \frac{\operatorname{Re}(\zeta+z)}{(-z}$ - саму функцию Грина G_{8}. Гармоническая функция $u(z)$ есть вешественная часть аналитической функции $w(z)$.
205. Труба радиуса \boldsymbol{R} и бесконечной длины помещена е грунт на глубину h и поддерживается при постоянной температуре T_{0}. Найти распределение температуры, если на поверхности земли $T=0$.

Решение. Распределение температуры подчиняется уравнению Лапласа $\Delta T=0$. Поскольку T не зависит от координаты вдоль трубы, область, в которой предстоит решить уравнение Лапласа, двумерная (рис. 7.3). Воспользуемся методом конформных преобразований. При помоши дробнолинейной функции

$$
\begin{equation*}
\zeta=\frac{z-c}{z+c}, \quad z=x+i y \tag{7.26}
\end{equation*}
$$

Рис. 7.3. Двумерная область к задаче 205

можно отобразить в кольцо рассматриваемую область. Прямая $z=i y$ перейдет в единичную окружность $|\zeta|^{2}=1$, если c - действительное число. Поверхность трубы также перейдет в окружность $|\zeta|^{2}=a^{2}$ радиуса
$a=\sqrt{\frac{h-c}{h+c}}<1$, если $c=\sqrt{h^{2}-R^{2}}$. Это можно проверить, подставив $z=h+\boldsymbol{R} e^{i \varphi}$ в дробно-линейное преобразование (7.26). Двумерное уравнение Лапласа ковариантно относительно конформных преобразований, поэтому в новых переменных температура также удовлетворяет уравнению Лапласа. Условия на границах кольца останутся теми же

$$
\left.T\right|_{|K|=1}=0,\left.\quad T\right|_{|K|=a}=T_{0}
$$

Поскольку граничные условия не зависят от угла φ в полярных координатах, задача может быть сведена к одномерной. Двумерное уравнение Лапласа имеет два решения, не зависящих от угла: $\ln |\zeta|$ и I. Их комбинация, удовлетворяющая граничным условиям, имеет вид

$$
T(\zeta)=T_{0} \frac{\ln |\zeta|}{\ln a}
$$

Возвращаясь к исходным переменным $\zeta=\frac{x+i y-c}{x+i y+c}$, находим решение задачи:

$$
T(x, y)=\frac{T_{0}}{2} \frac{\ln \frac{(x+c)^{2}+y^{2}}{\left(x-c^{2}+y^{2}\right.}}{\ln \frac{h+c}{R}} .
$$

206. Найти функцию Грина трехмерного ураенения Гельмгольца

$$
\Delta u+k_{0}^{2} u=f(r)
$$

удовлетворяюцую условию излучения Зоммерфельда (сходящаяся волна, приходлщая из бесконечности. отсутствует) $\left.u\right|_{r \rightarrow \infty} \sim \frac{e^{\boldsymbol{x} \boldsymbol{0}^{\prime}}}{r}$.

Решенне. Коэффициенты оператора не зависят от \boldsymbol{r}, поэтому уравнение

$$
\left(\Delta+k_{0}^{2}\right) G\left(r, r^{\prime}\right)=\delta\left(r-r^{\prime}\right)
$$

можно свести к алгебранческому с помошью преобразования Фурье по переменной $\boldsymbol{r}-\boldsymbol{r}^{\prime}$:

$$
\left(k_{0}^{2}-k^{2}\right) G_{k}=1
$$

Функиия Грина $G\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)$ зависит только от разности $\boldsymbol{r}-\boldsymbol{r}^{\prime}$, поэтому равна $\boldsymbol{G}\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}, 0\right)$ и находится с помощью обратного преобразования:

$$
G(r, 0)=\int \frac{d k}{(2 \pi)^{3}} \frac{e^{i k r}}{k_{0}^{2}-k^{2}}
$$

Интегрирование удобно проделать в сферической системе координат, выбрав ось z вдоль вектора r. Интегрирование по φ дает 2π, после интегрирования по θ остается однократный интеграл

$$
G(r, 0)=\frac{1}{i r} \frac{1}{(2 \pi)^{2}} \int_{-\infty}^{\infty} \frac{k e^{i k r} d k}{k_{0}^{2}-k^{2}}
$$

Полюсы подынтегральной функции лежат на контуре интегрирования, поэтому надо выбрать правило их обхода, исходя из граничных условий. Чтобы получить функцию, удовлетворяющую условию илучения, надо оставить расходящуюся волну и отбросить сходящуюся. Поскольку r - положительная величина, замкнуть контур следует сверху. Чтобы интеграл сводится к вычету в точке

Рис. 7.4. Контур интегрирования для уравнения Гельмгольца $k=k_{0}$, выбираем контур, указанный на замены $\boldsymbol{r} \rightarrow \boldsymbol{r}-\boldsymbol{r}^{\prime}$) имеем

$$
G^{(+)}\left(r, r^{\prime}\right)=-\frac{e^{i k_{0}\left|r-r^{\prime}\right|}}{4 \pi\left|r-r^{\prime}\right|} .
$$

Такая функция Грина в виде расходящейся сферической волны используется, например, в задачах дифракции и теории рассеяния (см. задачу 237).
207. Найти функции Грина трехмерного уравнения теплопроводности $\boldsymbol{u}_{i}=\triangle$ и и нестационарного свободного уравнения ІІрддингера $\boldsymbol{i} u_{t}=-\frac{\Delta и}{2}$.

Решение. Поскольку коэффициенты уравнений постоянны, функция Грина может зависеть только от разностей времен и координат. Тогда уравнения для функций Грина можно записать в виде

$$
G_{i}-\Delta G=\delta(r) \delta(t), \quad i G_{t}+\frac{1}{2} \Delta G=\delta(r) \delta(t)
$$

а в окончательном ответе вернуть исходные аргументы, т. е. выполнить замену $\boldsymbol{r} \rightarrow \boldsymbol{r}-\boldsymbol{r}^{\prime}, \boldsymbol{t} \rightarrow \boldsymbol{t}-\boldsymbol{t}^{\prime}$.

Преобразование Фурье

$$
u_{k \omega}=\int u(r, t) e^{i \omega t-i k r} d r d t, \quad u(r, t)=\int u_{k \omega} e^{-i \omega t+i k r} \frac{d k d \omega}{(2 \pi)^{4}}
$$

приводит уравнения к виду

$$
\left(-i \omega+k^{2}\right) G_{k \omega}=1, \quad\left(\omega-\frac{k^{2}}{2}\right) G_{k \omega}=1 .
$$

Обратное преобразование Фурье для уравнения теплопроводности можно выполнить, интегрируя в плоскости комплексного переменного ω. При $t<0$ контур следует замкнуть в верхней полуплоскости, чтобы исчезал интеграл по бесконечно удаленной полуокружности. Единственный полюс подынтегральной функции расположен вне области, которую охватывает контур, поэтому при $t<0$ функиия Грина обрашается в нуль.

При $t>0$ контур замыкаем в нижней полуплоскости (рис.7.5). Интеграл выражается через вычет

$$
G_{k}(t)=\int \frac{d \omega}{2 \pi} \frac{e^{-i \omega t}}{-i \omega+k^{2}}=-i \underset{\omega=-i k^{2}}{\operatorname{Res}} \frac{e^{-i \omega t}}{-i \omega+k^{2}}=e^{-k^{2} t}
$$

Преобразование по \boldsymbol{k} сводится к вычислению гауссового интеграла и дает

$$
G\left(r, t ; r^{\prime}, 0\right)=\frac{\theta(t)}{(4 \pi t)^{3 / 2}} \exp \left[-\frac{\left(r-r^{\prime}\right)^{2}}{4 t}\right] .
$$

В случае уравнения Шрёдингера полюс попадает на вещественную ось, поэтому для сходимости интеграла следует сместить контур интегрирования с вещественной оси (выбрать правило обхода полюса). Дополнительным соображением, позволяющим выбрать из двух возможностей, может служить принцип причинности - условие обращения функции Грина в нуль при при $t<0$. Тогда при $t>0$ контур выбирается согласно рис. 7.5 , а интеграл равен

$$
G_{k}(t)=-i \operatorname{Res}_{\omega=k^{2} / 2} \frac{e^{-i \omega t}}{\omega-k^{2} / 2}=-i e^{-i k^{2} t / 2}
$$

После обратного преобразования по k получится запаздываюшая функция Грина

$$
\begin{equation*}
G\left(r, t ; r^{\prime}, 0\right)=\frac{\theta(t)}{(2 \pi i t)^{3 / 2}} \exp \left[\frac{i\left(r-r^{\prime}\right)^{2}}{2 t}\right], \tag{7.27}
\end{equation*}
$$

которая описывает расплывание волнового пакета, локализованного в начальный момент. Запаздываюшая функиия Грина позволяет решить задачу Коши с начальными условиями.

Для решения задачи Коши можно вместо преобразования Фурье вылолнить преобразование Лапласа по времени

$$
\left(i p+\frac{k^{2}}{2}\right) G_{p k}=1, \quad G_{p k}=\int_{0}^{\infty} G_{k}(t) e^{-p t} d t
$$

Рнс. 7.5. Контуры интегрирования для уравнений теплопроводиости (слева) и Шрёдингера (справа)

Обратное преобразование Лапласа определяется контурным интегралом

$$
G_{k}(t)=\frac{1}{2 \pi i} \oint G_{p k} e^{p t} d p
$$

При $t>0$ правило обхода полюса определено однозначно: все полюсы в плоскости комплексного переменного \boldsymbol{p} надо обходить справа. B результате также получается запаздывающая функция Грина (7.27).

В некоторых физических задачах требуется функция, обращающаяся в нуль при $t>0$. Для ее получения полюс надо обходить снизу, и получается так называемая опережсаюая функиия Грина $G^{(-)} \propto \theta(-t)$.
208. Найти функцию Грина $G\left(x, x^{\prime}, t\right)$ одномерного уравнения Фокке-ра-Планка

$$
\frac{\partial u}{\partial t}=\frac{\partial}{\partial x}(x u)+\frac{1}{2} \frac{\partial^{2} u}{\partial x^{2}}, \quad u(x, 0)=g(x) .
$$

Решенме. Решение задачи Коши

$$
\begin{equation*}
G_{t}=G+x G_{x}+\frac{1}{2} G_{x x}, \quad G\left(x, x^{\prime}, 0\right)=\delta\left(x-x^{\prime}\right) \tag{7.28}
\end{equation*}
$$

для функции Грина второго рода G ищем в виде гауссовой функции

$$
\begin{equation*}
G=C(t) \exp \left[-\frac{(x-a(t))^{2}}{2 D(t)}\right] \tag{7.29}
\end{equation*}
$$

Уравнение Фоккера-Планка сохраняет нормировку (число частии)

$$
\int G\left(x, x^{\prime}, t\right) d x=1
$$

откуда находится $C(t)=(2 \pi D(t))^{-1 / 2}$. Подставляя (7.29) в (7.28) и приравнивая коэффиниенты при x, x^{2}, получим обыкновенные дифференциальные уравнения для среднего $a(t)$ и дисперсии $D(t)$

$$
\dot{a}=-a, \quad \dot{D}=1-2 D .
$$

Начальные условия $a(0)=x^{\prime}, D(0)=0$ должны обеспечить предельный переход в δ-функцию при $t \rightarrow+0$. Найдем

$$
G\left(x, x^{\prime}, t\right)=\frac{1}{\sqrt{\pi}} \frac{\exp \left[-\left(x-x^{\prime} e^{-t}\right)^{2} /\left(1-e^{-2 t}\right)\right]}{\sqrt{1-e^{-2 t}}}
$$

В пределе $t \ll 1$ ответ переходит в функиию Грина диффузионного процесса:

На больших временах $t \gg 1$ функция Грина перестает зависеть от координаты \boldsymbol{x}^{\prime} :

$$
G\left(x, x^{\prime}, t\right)=\frac{\exp \left(-x^{2}\right)}{\sqrt{\pi}}
$$

Уравнение Фоккера-Планка описывает случайное блуждание частиц, и такой вид асимптотики на больших временах означает, что после нескольких столкновений броуновская частица ззабывает начальные условия.

Данную задачу также можно решить с помощью преобразования Фурье по координате, которое понижает порядок уравнения со второго до первого. Получившееся уравнение первого порядка с частными производными можно решить методом характеристик (см. главу 2).
209. Найти функиию Грина одномерного волнового уравнения

$$
\frac{1}{c^{2}} u_{t t}-u_{x x}=f(x, t), \quad u(x, t) \rightarrow 0 \quad n p u \quad t \rightarrow-\infty
$$

Решение. После преобразования Фурье по координате и времени получим функцию Грина в ω, \boldsymbol{k}-представлении

$$
G_{k \omega}=\frac{1}{k^{2}-\omega^{2} / c^{2}}
$$

Проведем обратное преобразование Фурье по ω. Обходя полюсы сверху из соображений причинности, получаем

$$
G_{k}(t)=\theta(t) \frac{i c}{2 k}\left(e^{-i k c t}-e^{i k c t}\right)
$$

После обратного преобразования по k имеем

$$
\begin{equation*}
G(x, t ; 0,0)=\frac{c}{2}[\theta(x+c t)-\theta(x-c t)] \theta(t) . \tag{7.30}
\end{equation*}
$$

Значит, локальное возмушение в точке x^{\prime}, подействовавшее в момент времени t^{\prime}, оказывает влияние только внутри интервала $x^{\prime}-c\left(t-t^{\prime}\right)<$ $x<x^{\prime}+c\left(t-t^{\prime}\right)$ из-за конечной скорости с распространения возмущения (область влияния).
210. Показать, что решение задачи Коши

$$
\begin{equation*}
\square u=0, \quad u(r, 0)=\varphi(r), \quad u_{t}(r, 0)=\psi(r) \tag{7.31}
\end{equation*}
$$

для волнового уравнения выражсается через функцию Грина по формуле

$$
u(r, t)=\frac{1}{c^{2}} \int\left[\frac{\partial}{\partial t} G\left(r, t ; r^{\prime}, 0\right) \varphi\left(r^{\prime}\right)+G\left(r, t ; r^{\prime}, 0\right) \psi\left(r^{\prime}\right)\right] d r^{\prime}
$$

Решение. Волновое уравнение имеет второй порядок по времени, поэтому задача Коши для него содержит два начальных условия на функцию и первую производную. Следовательно, имеется пара функций Грина второго рода $G_{s}^{(1)}$ и $G_{s}^{(2)}$, а решение дается формулой

$$
\begin{equation*}
u(r, t)=\int G_{s}^{(1)}\left(r, r^{\prime}, t\right) \varphi\left(r^{\prime}\right) d r^{\prime}+\int G_{s}^{(2)}\left(r, r^{\prime}, t\right) \psi\left(r^{\prime}\right) d r^{\prime} \tag{7.32}
\end{equation*}
$$

Найдем связь функций $G_{s}^{(1)}, G_{s}^{(2)}$ с функцией Грина первого рода, которая подчиняется уравненню

$$
\begin{equation*}
\square G\left(r, t ; r^{\prime}, t^{\prime}\right)=\delta\left(r-r^{\prime}\right) \delta\left(t-t^{\prime}\right) \tag{7.33}
\end{equation*}
$$

и стремится к нулю вместе со своими первыми производными при $t \rightarrow \infty$ или $r \rightarrow \infty$. Для этого умножим уравнение (7.33) на $u(r, t)$ и вычтем из него уравнение (7.31), умноженное на $G\left(r, t ; \boldsymbol{r}^{\prime}, t^{\prime}\right)$, а затем проинтегрируем по r по всему пространству и по t в пределах от 0 до ∞ при $t^{\prime}>0$:

$$
\begin{aligned}
u\left(r^{\prime}, t^{\prime}\right) & =\int d r d t(u \square G-G \square u)= \\
& =\int d r \int d t \frac{1}{c^{2}} \frac{\partial}{\partial t}\left(u \frac{\partial G}{\partial t}-G \frac{\partial u}{\partial t}\right)-\int d t \int d r \operatorname{div}(u \nabla G-G \nabla u)
\end{aligned}
$$

Интеграл от дивергенции преобразуется в силу теоремы Гаусса в интеграл по бесконечно удаленной поверхности и обращается в нуль. В первом слагаемом интеграл по t берется, причем из-за убывания G и G_{i} при $t \rightarrow \infty$ остается вклад только нижнего предела $t=0$:

$$
u\left(r^{\prime}, t^{\prime}\right)=\left.\frac{1}{c^{2}} \int d r\left[-\frac{\partial G}{\partial t} \varphi(r)+G \psi(r)\right]\right|_{t=0}
$$

Меняя обозначения переменных $r \leftrightarrow r^{\prime}, t \leftrightarrow t^{\prime}$ и переходя от дифференцирования функции Грина по t^{\prime} к дифференцированию по $t\left(\frac{\partial}{\partial t^{\prime}}=-\frac{\partial}{\partial t}\right)$, находим

$$
u(r, t)=\frac{1}{c^{2}} \int d r^{\prime}\left[\frac{\partial G}{\partial t}\left(r, t ; r^{\prime}, 0\right) \varphi\left(r^{\prime}\right)+G\left(r, t ; r^{\prime}, 0\right) \psi\left(r^{\prime}\right)\right]
$$

Сравнивая с формулой (7.32), получаем искомую связь:

$$
G_{s}^{(1)}\left(r, r^{\prime}, t\right)=\frac{1}{c^{2}} \frac{\partial}{\partial t} G\left(r, t ; r^{\prime}, 0\right), \quad G_{s}^{(2)}\left(r, r^{\prime}, t\right)=\frac{1}{c^{2}} G\left(r, t ; r^{\prime}, 0\right)
$$

211. Зная функиию Грина одномерного волнового уравнения (задача 209), решить задачу Коии

$$
\frac{1}{c^{2}} u_{t t}-u_{x x}=0 ; \quad u(x, 0)=\varphi(x), \quad u_{t}(x, 0)=\psi(x)
$$

Решение. Решение задачи Коши можно записать в виде суммы двух интегралов (задача 210)

$$
\begin{equation*}
u(x, t)=\int_{-\infty}^{\infty} G_{s}^{(1)}\left(x, x^{\prime}, t\right) \varphi\left(x^{\prime}\right) d x^{\prime}+\int_{-\infty}^{\infty} G_{s}^{(2)}\left(x, x^{\prime}, t\right) \psi\left(x^{\prime}\right) d x^{\prime} \tag{7.34}
\end{equation*}
$$

Воспользуемся выражением (7.30) для функции Грина одномерного уравнения, тогда получится

$$
\begin{aligned}
& G_{s}^{(1)}\left(x, x^{\prime}, t\right)=\frac{1}{c^{2}} \frac{\partial}{\partial t} G\left(x, t ; x^{\prime}, 0\right)=\frac{1}{2}\left[\delta\left(x-x^{\prime}+c t\right)+\delta\left(x-x^{\prime}-c t\right)\right] \\
& G_{s}^{(2)}\left(x, x^{\prime}, t\right)=\frac{1}{c^{2}} G\left(x, t ; x^{\prime}, 0\right)=\frac{1}{2}\left[\theta\left(x-x^{\prime}+c t\right)-\theta\left(x-x^{\prime}-c t\right)\right]
\end{aligned}
$$

Отсюда следует формула Даламбера

$$
\begin{equation*}
u(x, t)=\frac{1}{2}[\varphi(x+c t)+\varphi(x-c t)]+\frac{1}{2 c} \int_{x \sim c t}^{x+c t} \psi\left(x^{\prime}\right) d x^{\prime} \tag{7.35}
\end{equation*}
$$

Решение в точке x определяется значениями функций φ в точках $x^{\prime}=$ $x \pm c t$ и ψ на интервале $x^{\prime} \in(x-c t, x+c t)$, который называется областьо зависимости.
212. Построить функции Грина второго рода и выписать решение задачи Коши для трехмерного волнового уравнения. Показать, что решение $u(r, t)$ в точке r полностью определяется значениями функций

$$
\phi(r)=u(r, 0), \quad \psi(r)=u_{t}(r, 0)
$$

и нормальной производной $\frac{\frac{\partial \phi}{\partial п}}{\partial}$ на сфере радиуса ст с центром в точке r (принцип Гюйгенса).

Решение. Пользуясь функцией Грина первого рода (задача 246) и результатом задачи 210, находим функции Грина второго рода

$$
G_{s}^{(1)}=-\frac{\delta^{\prime}(\rho-c t)}{4 \pi \rho}, \quad G_{s}^{(2)}=\frac{\delta(\rho-c t)}{4 \pi \rho c}
$$

где $\rho=\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|$. Решение задачи Коши для волнового уравнения

$$
u(r, t)=\frac{1}{4 \pi} \int\left[-\frac{\delta^{\prime}(\rho-c t)}{\rho} \varphi\left(r^{\prime}\right)+\frac{\delta(\rho-c t)}{\rho c} \psi\left(r^{\prime}\right)\right] d r^{\prime}
$$

можно переписать через функиионал M. действуюший на функииях трех переменных $\mu(r)$ и обозначающий усреднение по единичной сфере

$$
M[\mu(r)]=\frac{1}{4 \pi} \int_{|\xi|=1} \mu(r+c t \xi) d^{2} S_{\xi}
$$

Получается формула Кирхгофа

$$
u(r, t)=\frac{\partial}{\partial t}(t M[\varphi])+t M[\psi]
$$

213. Найти убывающую на бесконечности функцию Грина уравнения Гельмгальца

$$
\begin{equation*}
\left(\Delta_{D}-q^{2}\right) G\left(x, x^{\prime}\right)=\delta\left(x-x^{\prime}\right) \tag{7.36}
\end{equation*}
$$

где Δ_{D} - лапласиан в D-мерном пространстве,
Решение. С помощью преобразования Фурье найдем

$$
G(x, 0)=-\int \frac{d^{D} k}{(2 \pi)^{D}} \frac{e^{i k x}}{k^{2}+q^{2}}
$$

Знаменатель можно записать как

$$
\frac{1}{k^{2}+q^{2}}=\int_{0}^{\infty} d t e^{-\left(k^{2}+q^{2}\right) t}
$$

и поменять порядок интегрирования. Внутренний D-кратный интеграл является гауссовым и вычисляется по формуле

$$
\int d^{D} y \exp \left\{-\frac{1}{2}(y, A y)+i(b, y)\right\}=\frac{(2 \pi)^{D / 2}}{(\operatorname{det} A)^{1 / 2}} \exp \left\{-\frac{1}{2}\left(b, A^{-1} b\right)\right\}
$$

где A - матрица $D \times D$, а b - D-мерный вектор, получается

$$
\int d^{D} k e^{-k^{2} t+i k x}=\left(\frac{\pi}{t}\right)^{D / 2} e^{-x^{2} / 4 t}
$$

Остается вычислить интеграл по t, который сводится к интегральному представлению функции Макдональда (П.31)

$$
G(x, 0)=-\frac{1}{(4 \pi)^{D / 2}} \int_{0}^{\infty} d s s^{D / 2-2} e^{-x^{2} s / 4-q^{2} / s}=-\frac{q^{\alpha}}{(2 \pi)^{D / 2}} \frac{K_{a}(q|x|)}{|x|^{\alpha}}
$$

где $\alpha=\frac{D}{2}-1, s=\frac{1}{i}$. Отсюдда

$$
G\left(x, x^{\prime}\right)=-\frac{q^{\alpha}}{(2 \pi)^{D / 2}} \frac{K_{\alpha}\left(q\left|x-x^{\prime}\right|\right)}{\left|x-x^{\prime}\right|^{\alpha}}
$$

Рассмотрим частные случаи. Если $D=2$, то $\alpha=0$, а поведение функции Макдональда порядка 0 при малых значениях аргумента логарифмическое (П.33)

$$
G(r, 0) \sim \frac{1}{2 \pi} \ln r
$$

что согласуется с общей таблицей особенностей фундаментального решения (с. 165). При $D>2$ получим для $q|x| \ll 1$

$$
G(r, 0) \sim-\frac{\Gamma(\alpha)}{4 \pi^{D / 2} r^{D-2}} .
$$

В частности,

$$
G(r, 0) \sim \begin{cases}-\frac{1}{4} \pi r, & D=3 \\ -\frac{1}{4} \pi^{2} r^{2}, & D=4\end{cases}
$$

При нечетных размерностях $D=$ $3,5, \ldots$ функиия K_{α} выражается через элементарные функции.

Рассмотрим подробнее частный случай $D=4, x=\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$. Если в качестве первой координаты подставить $x_{0} \rightarrow$ it (совериить поворот на $\frac{\pi}{2}$ в комплексной плоскости x_{0}), а вместо q записать m, то из (7.36) получится уравнение Клейна-Гордона-Фока

$$
\left(\square+m^{2}\right) G(x, 0)=-\delta(x),
$$

которое описывает движение релятивистской бесепиновой частниы массы m.

Функция Грина (называемая феѝнмановской) сведется к виду

$\operatorname{Im} G(s)$

Рис. 7.6. Мнимая часть фейнмановской функиии Грина в зависимости от величины $s=\sqrt{t^{2}-r^{2}}$ времениподобного интервала для трех разных масс: $---m ;-2 m ;-4 m$

$$
G(x, 0)=-\frac{m K_{1}(m z)}{4 \pi^{2} z}, \quad z=\sqrt{r^{2}-t^{2}}
$$

где $r^{2}=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$. $c=1$. Когда интервал пространственноподобный $\left(r^{2}>t^{2}\right) . z$ - действительное число и функция g убывает экспоненциально в области $r>t: K_{1}(m z) \simeq \sqrt{\frac{\pi}{2 m z}} e^{-m z}$. Если же интервал времениподобный ($r^{2}<t^{2}$), то величина $z \simeq i \sqrt{t^{2}-r^{2}}-$ чисто мнимая, а функиия G осциллирует (рис.7.6). В нерелятивистском пределе $r^{2} \ll t^{2}, m t \gg 1$ можно разложить $z \simeq i\left(t-\frac{r^{2}}{2 t}\right)$ в аргументе функции Макдональда и получить

$$
G(x, 0) \simeq \frac{m}{2(2 \pi i t)^{3 / 2}} e^{-i m\left(t-r^{2} / 2 t\right)} .
$$

С точностью до постоянного множителя получилась функция Грина уравнения Шрёдингера (7.27).
214. Найти непрерывный спектр оператора $A=-\frac{i d}{d x}, x \in \mathbb{R}$.

Решение. Чтобы показать, что собственная функция $u(x)=\exp (i \lambda x)$ оператора $A=-\frac{i d}{d x}$ принадлежит непрерывному спектру, убедимся, что $A u=\lambda u$. Остается построить приближенную нормированную собственную функцию \tilde{u} и убедиться, что норма $\|A \tilde{u}-\lambda \tilde{u}\|$ стремится к нулю. Выберем приближенную функцию в виде волнового пакета, например $\tilde{u}(x)=\alpha(x) \exp (i \lambda x), \alpha(x)=\varepsilon^{1 / 4} \pi^{-1 / 4} \exp \left(-\frac{\varepsilon x^{2}}{2}\right)$, где $\|\alpha\|=1$. Найдем

$$
\|A \tilde{u}-\lambda \tilde{u}\|^{2}=\int_{-\infty}^{\infty} \alpha^{\prime 2}(x) d x=\frac{\varepsilon}{2} \rightarrow 0, \quad \varepsilon \rightarrow 0
$$

Таким образом, непрерывный спектр совпадает со всей вещественной осью \mathbb{R}.
215. Найти резольвенту оператора $-\frac{d^{2}}{d x^{2}}$.

Решение. Уравнение

$$
\left(z+\frac{d^{2}}{d x^{2}}\right) R_{z}\left(x, x^{\prime}\right)=\delta\left(x-x^{\prime}\right)
$$

с нулевыми граничными условиями на бесконечности имеет решение

$$
R_{z}\left(x, x^{\prime}\right)=\frac{1}{2 i \sqrt{z}} e^{i \sqrt{z}\left|x-x^{\prime}\right|}
$$

При этом подразумевается главная ветвь функции $\sqrt{z}: \operatorname{Im} \sqrt{z}>0$. Резольвента аналитична во всей z-плоскости с разрезом вдоль вещественной положительной полуоси $\mathbb{R}_{+}=\{z \in \mathbb{R}, z>0\}$. Скачок на разрезе определяется значениями квадратного корня из $z=k^{2} \pm i \varepsilon$ на берегах разреза

$$
k>0, \quad \lim _{\varepsilon \rightarrow+0} \sqrt{k^{2}+i \varepsilon}=k, \quad \lim _{\varepsilon \rightarrow+0} \sqrt{k^{2}-i \varepsilon}=-k
$$

и равен

$$
R_{k^{2}+i 0}-R_{k^{2}-i 0}=\frac{1}{i k} \cos k\left(x-x^{\prime}\right)=-\frac{i}{k}\left(\cos k x \cos k x^{\prime}+\sin k x \sin k x^{\prime}\right)
$$

Сравнивая с (7.19), мы получаем, что оператор - $\frac{d^{2}}{d x^{2}}$ имеет только непрерывный спектр $z=k^{2}>0$, каждое собственное значение двукратно вырождено и возможный, нормированный согласно (7.14) базис в двумерном собственном подпространстве, соответствуюшем собственным значениям $z=k^{2}$, состоит из пары функций

$$
\psi_{k}^{(1)}(x)=\frac{\cos k x}{\sqrt{2 \pi k}}, \quad \psi_{k}^{(2)}(x)=\frac{\sin k x}{\sqrt{2 \pi k}} .
$$

216. Найти резоаьөенту радиального оператора

$$
\mathcal{L}_{r}=-\frac{1}{r} \frac{\partial}{\partial r} r \frac{\partial}{\partial r}
$$

на пространстве со скалярным произведением $(v, u)=\int r d r v^{*}(r) u(r)$.
Решение. Резольвента подчиняется уравнению

$$
\left(\frac{1}{r} \frac{d}{d r} r \frac{d}{d r}+z\right) g_{z}^{0}\left(r, r^{\prime}\right)=\frac{\delta\left(r-r^{\prime}\right)}{r}
$$

откуда интегрированием по $r d r$ получается, что скачок производной при $r=r^{\prime}$ равен $\frac{1}{r^{\prime}}$. Два линейно независимых решения - это $\chi_{1}(r)=$ $J_{0}(k r)$, удовлетворяюшее условию регулярности при $k r \rightarrow 0$, и $\chi_{2}(r)=$ $J_{0}(k r)+i Y_{0}(k r)$, переходящее в расходяшуюся цилиндрическую волну при $k r \rightarrow \infty$, где $k=\sqrt{z}$.

Асимптотику второго решения можно проверить, пользуясь определением функции Неймана

$$
\begin{equation*}
Y_{0}(x)=\lim _{\nu \rightarrow 0} \frac{J_{\nu}(x) \cos \pi \nu-J_{-\nu}(x)}{\sin \pi \nu} \tag{7.37}
\end{equation*}
$$

получится

$$
\begin{gathered}
J_{0}(x) \sim \sqrt{\frac{2}{\pi x}} \cos \left(x-\frac{\pi}{4}\right), \quad Y_{0}(x) \sim \sqrt{\frac{2}{\pi x}} \sin \left(x-\frac{\pi}{4}\right), \\
\chi_{2}(r) \sim \sqrt{\frac{2}{\pi i k r}} e^{i k r} .
\end{gathered}
$$

Вронскиан можно найти из асимптотики при $r \rightarrow \infty: W\left(r^{\prime}\right)=\frac{2 i}{\pi^{\prime}}$. Действуя аналогично задаче (200), получим резольвенту

$$
g_{z}^{0}\left(r, r^{\prime}\right)=\frac{\pi}{2 i} J_{0}\left(k r_{<}\right)\left[J_{0}\left(k r_{>}\right)+i Y_{0}\left(k r_{>}\right)\right]
$$

Ветвь \sqrt{z} в плоскости z, разрезанной по \mathbb{R}_{+}, выбираем из условия $\sqrt{1}=+1$ на нерхнем берегу разреза. При переходе через разрез четная функция $J_{0}(x)$ не меняется, а скачок Y_{0} находится из формулы $J_{\nu}(-x)=$ $e^{i \pi \nu} J_{\nu}(x)$ и определения (7.37):

$$
Y_{0}(+x)-Y_{0}(-x)=-2 i J_{0}(x) .
$$

Сравнивая выражение

$$
g_{k^{2}+i \varepsilon}^{0}-g_{k^{2}-i \varepsilon}^{0}=-i \pi J_{0}(k r) J_{0}\left(k r^{\prime}\right)
$$

с (7.19), найдем собственные функции непрерывного спектра

$$
\psi_{k}(r)=\frac{1}{\sqrt{2}} J_{0}(k r) .
$$

Подчеркнем, что эти функцни нормируются условием

$$
\int \psi_{k}^{*}(r) \psi_{k^{\prime}}(r) r d r=\delta\left(k^{2}-k^{\prime 2}\right) .
$$

217. Найти резальвенту оператора $-\triangle$ в трех измерениях в сферических координатах и построить сферически симметричную нормированную собственную функцию.

Репенне. Уравнение

$$
(z+\Delta) R_{z}\left(r, r^{\prime}\right)=\delta\left(r-r^{\prime}\right)
$$

решается преобразованием Фурье, потому что это уравнение Гельмгольца с граничными условиями $\boldsymbol{R}_{z} \rightarrow 0$ при $\operatorname{Im} \sqrt{z}>0$ и $r \rightarrow \infty$ (задача 206). Получается

$$
R_{z}\left(r, r^{\prime}\right)=-\frac{e^{i \sqrt{2}\left|r-r^{\prime}\right|}}{4 \pi\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|}
$$

Резольвента определена в плоскости с разрезом вдоль \mathbb{R}_{+}.
Можно разложить резольвенту в ряд по сферическим гармоникам

$$
R_{z}\left(r, r^{\prime}\right)=\sum_{l, m} g^{l m}\left(r, r^{\prime}\right) Y_{l m}(n) Y_{l m}^{*}\left(n^{\prime}\right)
$$

где $n=\frac{r}{r}, n^{\prime}=\frac{r^{\prime}}{r}-$ единичные векторы. Нас интересует только козффициент при $Y_{00}^{2}=\frac{1}{4 \pi}$, который находится интегрированием по всем четырем углам в сферических координатах $\boldsymbol{n}=(\boldsymbol{\theta}, \varphi), \boldsymbol{n}^{\prime}=\left(\boldsymbol{\theta}^{\prime}, \varphi^{\prime}\right)$. Перейдем к интегрированию по углу ψ между векторами \boldsymbol{n} и \boldsymbol{n}^{\prime}

$$
g_{2}^{00}\left(r, r^{\prime}\right)=2 \pi \int_{0}^{\pi} d \psi \sin \psi R_{2}\left(\left|r-r^{\prime}\right|\right)
$$

а затем к переменной $t=\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|^{2}=\boldsymbol{r}^{2}+\boldsymbol{r}^{\prime 2}-2 \boldsymbol{r} \boldsymbol{r}^{\prime} \cos \psi$

$$
g^{00}\left(r, r^{\prime}\right)=-\frac{1}{4 r r^{\prime}} \int_{\left(r-r^{\prime}\right)^{2}}^{\left(r+r^{\prime}\right)^{2}} d t \frac{e^{i \sqrt{2 t}}}{\sqrt{t}}=-\frac{e^{i \sqrt{2}\left(r+r^{\prime}\right)}-e^{i \sqrt{z}\left|r-r^{\prime}\right|}}{2 r r^{\prime} i \sqrt{z}}=-\frac{e^{i \sqrt{2} r} \sin \sqrt{z} r_{<}}{r r^{\prime} \sqrt{z}}
$$

Функция g_{z}^{90} аналитична в плоскости z, разрезанной вдоль положительной вещественной полуоси \mathbb{R}_{+}. Скачок на разрезе $z=k^{2}$

$$
g_{k^{2}+i 0}^{00}-g_{k^{2}-i 0}^{00}=-\frac{e^{i k r_{>}} \sin k r_{<}-e^{-i k r} \sin k r_{<}}{k r r^{\prime}}=-\frac{2 i \sin k r \sin k r^{\prime}}{k r r^{\prime}}
$$

приравниваем $к-2 \pi i \psi_{k}(r) \psi_{k}\left(r^{\prime}\right)$. Так можно найти сферически симметричные собственные функции непрерывного спектра

$$
\psi_{k}(r)=\frac{\sin k r}{r \sqrt{\pi k}} Y_{(x)}(n) .
$$

Подчеркнем, что эти функции нормируются условием

$$
\int \psi_{k}^{*}(r) \psi_{k}(r) d r=\delta\left(k^{2}-k^{2}\right)
$$

где интеграл берется по всему трехмерному пространству.
218. Найти значение резольвенты $R_{2}\left(x, x^{\prime}\right)$ оператора

$$
\widehat{H}=-\frac{d^{2}}{d x^{2}}+G[\delta(x+a)+\delta(x-a)]
$$

при $x=0$ и $x^{\prime}=0$. Как ведет себя $R_{x}(0,0) ~ п р и ~ G a \gg 1 ? ~$
Решение. Резольвента удовлетворяет уравнению

$$
(z-\widehat{H}) R_{i}\left(x, x^{\prime}\right)=\delta\left(x-x^{\prime}\right)
$$

и может быть представлена в виде (7.20)

$$
R_{z}\left(x, x^{\prime}\right)=\frac{v\left(x_{<}\right) u\left(x_{>}\right)}{W}
$$

где $u(x)$ и $v(x)$ - решения однородной задачи

$$
(z-\widehat{H}) u(x)=(z-\widehat{H}) v(x)=0
$$

с асимптотическими условиями: $u(x) \rightarrow 0$ при $x \rightarrow+\infty$ и $v(x) \rightarrow 0$ при $x \rightarrow-\infty, W=v(x) u^{\prime}(x)-u(x) v^{\prime}(x)-$ их вронскиан.

В интервалах $x<-a, x>a$ и, $-a<x<a$ однородная задача выглядит просто:

$$
\left(z+\frac{d^{2}}{d x^{2}}\right) u(x)=\left(z+\frac{d^{2}}{d x^{2}}\right) v(x)=0
$$

и их решения являются там линеиными суперпозициями экспонент $\boldsymbol{e}^{ \pm i x \sqrt{2}}$. Как функции параметра z они однозначны в комплексной плоскости с разрезом от $z=0$ до бесконечно удаленной точки. Асимптотическим условиям при $x \rightarrow \pm \infty$ можно удовлетворить, если мнимая часть \sqrt{z} знакопостоянна. Это так, если разрез проведен вдоль \mathbb{R}_{+}.

Выберем в комплексной плоскости такую ветвь $\sqrt{2}$, что $\operatorname{Im} \sqrt{z}>0$, тогда

$$
u(x)=e^{i x \sqrt{2}}, \quad x>a ; \quad v(x)=e^{-i x \sqrt{2}}, \quad x<-a .
$$

Значения $u(x)$ и $v(x)$ при $-a<x<a$ (коэффициенты в линейных комбинациях экспонент $e^{ \pm i x^{2}}$) определяются из требования непрерывности этих функций при $x= \pm a$ и скачков производной

$$
\begin{aligned}
u^{\prime}(a+0)-u^{\prime}(a-0) & =G u(a), \\
v^{\prime}(-a+0)-v^{\prime}(-a-0) & =G v(-a) .
\end{aligned}
$$

В результате для $-a<x<a$ получим

$$
\begin{aligned}
& u(x)=\left(1+\frac{i G}{2 \sqrt{z}}\right) e^{i x \sqrt{z}}-\frac{i G}{2 \sqrt{z}} e^{-i x \sqrt{2}+2 i a \sqrt{z}}, \\
& v(x)=\left(1+\frac{i G}{2 \sqrt{z}}\right) e^{-i x \sqrt{2}}-\frac{i G}{2 \sqrt{z}} e^{i z \sqrt{z}+2 i a \sqrt{2}},
\end{aligned}
$$

и вронскиан

$$
W=2 i \sqrt{z}\left[1+\frac{i G}{2 \sqrt{z}}\left(1-e^{2 i a \sqrt{z}}\right)\right]\left[1+\frac{i G}{2 \sqrt{z}}\left(1+e^{2 i a \sqrt{z}}\right)\right] .
$$

Отсюда следует, что искомое значение резольвенты равно

$$
R_{z}(0,0)=-\frac{i}{2 \sqrt{z}} \frac{2 \sqrt{z}+i G\left(1-e^{2 i a \sqrt{z}}\right)}{2 \sqrt{z}+i G\left(1+e^{2 i a \sqrt{z}}\right)}
$$

Функиия $R_{z}(0,0)$ имеет точку ветвления при $z=0$, и ее скачок на разрезе \mathbb{R}_{+}определяет точные собственные функции \widehat{H}, принадлежащие непрерывному спектру. Пусть теперь $G a \gg 1$, а $z \sim \frac{1}{a^{2}}$. В ведущем приближении по ($G a)^{-1}$ резольвента имеет вид

$$
R_{2}(0,0) \approx-\frac{i}{2 \sqrt{z}} \frac{1-e^{2 i a \sqrt{2}}}{1+e^{2 i a \sqrt{2}}}
$$

а особенностями в таком приближенном выражении оказываются полюсы на вешественной оси в точках, соответствуюших значениям квадратного корня

$$
\sqrt{z_{n}}=\frac{\pi(2 n+1)}{2 a}
$$

Учет следующих порядков по (Ga) ${ }^{-1}$ дает для полюсов значения с ненулевой мнимой частью

$$
\begin{equation*}
\sqrt{z_{n}} \approx \frac{\pi(2 n+1)}{2 a}-\frac{\pi(2 n+1)}{2 G a^{2}}+\frac{\pi(2 n+1)}{2 G^{2} a^{3}}-i \frac{\pi^{2}(2 n+1)^{2}}{4 G^{2} a^{3}}+\ldots \tag{7.38}
\end{equation*}
$$

Мы видим, что знак мнимой части не coomeemcmвует выбранной ветви функции \sqrt{z}, и резольвента для тех z, для которых мы ее строили, полюсов не имеет. Можно сказать, что ее полюсы лежат на другом листе римановой поверхности квадратного корня $\sqrt{2}$. Тем не менее, при $G a \gg 1$ эти «нефизические» полюсы лежат близко к разрезу, то есть к нашему листу римановой поверхности \sqrt{z}, и это дает основания для полюсной аппроксимации $R_{2}\left(x, x^{\prime}\right)$. Таким образом, для z из верхней полуплоскости резольвента может быть приближенно представлена в виде суммы полюсных вкладов в точках (7.38).

Положения таких полюсов обычно интерпретируют как комплексные энергии распадающихся квазистационарных состояний, энергии которых имеют малую мнимую часть. Квазистационарные состояния используются для описания распада радиоактивных ядер и нестабильных частиц [БЗП7І]. Пользоваться, однако, полюсным приближением нужно с осторожностью, потому что, строго говоря, квазистационарные состояния принадлежат непрерывному спектру. В частности, если определить собственные функции $\bar{\psi}_{n}(x)$ с комплексными энергиями через вычеты резольвенты в таких полюсах, то они окажутся экспоненциально растушими при $|x| \rightarrow \infty$. Это, впрочем, не означает, что их нельзя использовать ни в каких задачах. В ограниченной области пространства волновая функция распадающегося состояния может быть представлена как линейная суперпозиция таких ненормируемых собственных функций с комлексными энергиями. При этом необходимо, чтобы размер этой области был меньше, чем характерный обратный показатель экспоненциального роста функиии $\bar{\phi}_{n}(x)$.

7.5. Задачи

219. Найти функцию Грина оператора $L=\frac{d}{d x}+1$, действующего на пространстве функиий $u(x), x \in[0,1]$, с периодическим граничным условием $\boldsymbol{u}(0)=u(1)$.
220. Найти функцию Грина и выписать решение неоднородного уравнения $u^{\prime \prime}=f(x)$, если:
(a) $u(-1)=u(1)=0, \quad x \in[-1,1]$;
(б) $u(0)=u^{\prime}(1)=0, \quad x \in[0,1]$.
221. Найти функцию Грина уравнения третьего порядка $u^{\prime \prime \prime}=f(x)$, если $u(0)=u(1)=0, u^{\prime}(0)=u^{\prime}(1)$.
222. Построить функцию Грина задач с граничными условиями:
(a) $\frac{d G}{d x}+k G=\delta\left(x-x^{\prime}\right), G\left(x, x^{\prime}\right)=0$ при $x<x^{\prime}$;
(б) $\frac{d^{2} G}{d x^{2}}+k^{2} G=\delta\left(x-x^{\prime}\right), G\left(x, x^{\prime}\right)=0$ при $x>x^{\prime}$.
223. Построкть функцию Грина для оператора

$$
L=\frac{d^{2}}{d x^{2}}-\frac{2}{x^{2}}, \quad u(0)=0, \quad u(\infty)<\infty, \quad 0 \leqslant x<\infty .
$$

224. Найти функцию Грина следуюших краевых задач для уравнения колебаний струны $u^{\prime \prime}+k^{2} u=f(x), x \in[0,1]$:
(a) $u(0)=u(1)=0$;
(б) $u^{\prime}(0)=u^{\prime}(1)=0$;
(в) $u(0)=u(1), \quad u^{\prime}(0)=u^{\prime}(1)$.
225. Найти функцию Грина уравнения $u^{\prime \prime}-k^{2} u=f(x)$ с граничными условиями:
(a) $u(0)=0$, функция $u(x)$ ограничена при $x \rightarrow+\infty$ на полуоси $x \geqslant 0$;
(б) $u(x) \rightarrow 0$ при $x \rightarrow \pm \infty$.
226. Используя функцию Грина из задачи (б), получить решение уравнения

$$
\psi^{\prime \prime}+k^{2} \psi=f(x), \quad \operatorname{Im} k=0
$$

с граничным условием $\psi \rightarrow e^{i k x}$ при $x \rightarrow+\infty ; f(x) \rightarrow 0$ при $x \rightarrow \pm \infty$.
227. Найти функцию Грина уравнения

$$
u^{\prime \prime}+\frac{1}{x} u^{\prime}-\frac{m^{2}}{x^{2}} u=f(x), \quad x \in[0,1]
$$

с граничными условиями: $u(x)$ ограничена при $x \rightarrow 0, u(1)=0$. Почему функция получается несимметричной: $G\left(x, x^{\prime}\right) \neq G\left(x^{\prime}, x\right)$?
228. Найти обобщенную функцию Грина для операторов:
(a) $L=\frac{d^{2}}{d x^{2}}, \quad u(0)=u(1), \quad u^{\prime}(0)=u^{\prime}(1)$;
(6) $L=\frac{d^{2}}{d x^{2}}+\pi^{2}, \quad u(0)=u(1)=0$;
(в) $L=\frac{d^{2}}{d x^{2}}+\pi^{2}, \quad u^{\prime}(0)=u^{\prime}(1)=0 ;$
(r) $L=\frac{d^{2}}{d x^{2}}-1, \quad u(0)=u^{\prime}(0), \quad u(1)=u^{\prime}(1)$.
229. Как будет выражаться через обобщенную функцию Грина решение неоднородных уравнений с неоднородными граничными условиями:
(a) $L u=f(x), \quad u(0)=a, u(1)=b, \quad L=\frac{d^{2}}{d x^{2}}+\pi^{2} ;$
(6) $L y=f(x), \quad u(0)-u^{\prime}(0)=a, \quad u(1)-u^{\prime}(1)=b, \quad L=\frac{d^{2}}{d x^{2}}-1 ?$

При каких условиях на $f(x)$ уравнения имеют решения?
230. Найти функиию Грина трехмерного уравнения Пуассона $\Delta u=$ $f(x, y, z)$ в полупространстве $z>0$ с граничным условием $u(x, y, 0)=0$.
231. Найти функцию Грина уравнения Пуассона $\Delta u=f(x, y, z)$ в области $x>0, y>0$ с граничным условием $u(0, y \geqslant 0, z)=u(x \geqslant 0,0, z)=0$.
232. Найти функцию Грина уравнения Гельмгольца

$$
\Delta u-k^{2} u=f(x, y, z)
$$

в полупространстве $z>0$ с граничным условием $u(x, y, 0)=0$.
233. Найти функцию Грина уравнения Пуассона внутри полусферы $x^{2}+y^{2}+z^{2}<R^{2}, z>0$ с нулевым граничным условием $G\left(x^{2}+y^{2}+\right.$ $\left.z^{2}=R^{2}\right)=G(z=0)=0$.
234. Показать, что двумерное уравнение Лапласа ковариантно относительно преобразования инверсии $r \rightarrow \xi=\frac{1}{r} *$.
235. Используя функцию Грина из задачи 204, решить задачу Дирихле $\left.u\right|_{S}=\sin 2 \varphi$ в круге $r \leqslant R$.
236. Найти решение задачи Неймана для уравнения Пуассона в полупространстве $z>0$:

$$
\left.\frac{\partial}{\partial z} u(x, y, z)\right|_{z=0}=g(x, y)
$$

237. С помощью функции Грина трехмерного уравнения Шрёдингера

$$
\frac{1}{2}\left(\Delta+k^{2}\right) G\left(r, r^{\prime}\right)=\delta\left(r-r^{\prime}\right), \quad \lim _{r \rightarrow \infty} G\left(r, r^{\prime}\right)=0
$$

вывести интегральное уравнение для волновой функции $\psi^{(+)}(\boldsymbol{r})$ с асимптотическим поведением на бесконечности: плоская плюс расходящаяся волна (основное уравнение теории рассеяния). Потенциал предлолагается убывающим $U(r) \rightarrow 0$ при $r \rightarrow \infty$.
238. Доказать, что функция Грина уравнения теплопроводности $u_{t}=u_{x x}$ позволяет получить оператор эволюции (функцию Грина второго рода) по формуле

$$
G_{s}\left(x-x^{\prime}, t\right)=G\left(x, t ; x^{\prime}, 0\right)
$$

239. Найти функцию Грина $G_{t}\left(x-x^{\prime}, t\right)$ уравнения теплопроводности с помошью преобразования Фурье: по времени, по координате, по обеим переменным.
240. Начальное распределение температуры гауссово:

$$
u(x, 0)=\frac{\exp \left(-x^{2} / 2 a^{2}\right)}{a \sqrt{2 \pi}}
$$

Как оно будет эволюционировать по времени?
241. Найти функцию Грина уравнения теплопроводности $u_{t}=u_{x x}$ с граничными условиями $u(t, 0)=0, u(t, \infty)=0$.
242. Найти решение задачи Коши $u(x, 0)=x^{5}, u(0, t)=0$ для уравнения теплопроводности в области $x \geqslant 0, t \geqslant 0$.

[^7]243. Построить временну́ю функцию Грина задачи Коши к уравнению Шрёдингера для одномерного гармонического осциллятора
$$
i \frac{\partial \Psi}{\partial t}=\widehat{H} \Psi, \quad \hat{H}=\frac{\hat{p}^{2}}{2}+\frac{\omega^{2} x^{2}}{2}, \quad \hat{p}=-i \frac{\partial}{\partial x} .
$$
244. Найти функцию Грина неоднородного двумерного волнового уравнения.
245. Найти функции Грина второго рода двумерного волнового уравнения.
246. Определить запаздывающую функцию Грина трехмерного волнового уравнения (7.11).
247. Точечный заряд движется по закону $\boldsymbol{r}=\boldsymbol{R}(t)$. Пользуясь функцией Грина, найти скалярный потенциал во всем пространстве (потенциал Лменара-Вихерта).
248. Показать, что решение неоднородного волнового уравнения $u_{t t}-u_{x x}=f(x, t)$ может быть получено из решения задачи Коши для вспомогательной функции $v(x, t ; \tau)$:
$$
v_{t t}-v_{x x}=0, \quad v(x, \tau ; \tau)=0,\left.\quad \frac{\partial v}{\partial t}(x, t ; \tau)\right|_{t=\tau}=f(x, \tau),
$$

где $0 \leqslant \tau \leqslant t$ - параметр, с помощью формулы

$$
u(x, t)=\int_{0}^{t} v(x, t ; \tau) d \tau
$$

249. Найти непрерывный спектр следующих операторов, определенных на всей вещественной оси:
(a) $A=x$;
(6) $A=-\frac{d^{2}}{d x^{2}}$;
(в) $A=-\frac{d^{2}}{d x^{2}}+x^{2}$.
250. Найти непрерывный спектр бесконечной матрицы, у которой элементы над и под главной диагональю равны единице, а остальные элементы - нулю:

$$
\boldsymbol{A}=\left(\begin{array}{ccccc}
0 & 1 & 0 & 0 & \ldots \\
1 & 0 & 1 & 0 & \ldots \\
0 & 1 & 0 & 1 & \ldots \\
0 & 0 & 1 & 0 & \ldots \\
\ldots & & \ldots & \ldots & \ldots
\end{array}\right) .
$$

7.6. Ответы

219. $G\left(x, x^{\prime}\right)= \begin{cases}\frac{e^{-\left(x-x^{\prime}\right)}}{e-1}, & \text { если } x<x^{\prime} ; \\ \frac{e^{1-\left(x-x^{\prime}\right)}}{e-1}, & \text { если } x>x^{\prime} .\end{cases}$
220. (a) $G\left(x, x^{\prime}\right)=\frac{\left(x_{<}+1\right)\left(x_{>}-1\right)}{2}$,
$u(x)=\frac{x-1}{2} \int_{0}^{x}\left(x^{\prime}+1\right) f\left(x^{\prime}\right) d x^{\prime}+\frac{x+1}{2} \int_{z}^{1}\left(x^{\prime}-1\right) f\left(x^{\prime}\right) d x^{\prime}$.
(6) $G\left(x, x^{\prime}\right)=-\min \left(x, x^{\prime}\right)=-x_{<}, \quad u(x)=-\int_{0}^{x} x^{\prime} f\left(x^{\prime}\right) d x^{\prime}-x \int_{z}^{1} f\left(x^{\prime}\right) d x^{\prime}$.
221. $G\left(x, x^{\prime}\right)=\frac{1}{2} x_{<}\left(x_{>}-1\right)\left(x-x^{\prime}\right)$.
222. (a) $G\left(x, x^{\prime}\right)=\theta\left(x-x^{\prime}\right) e^{-k\left(x-x^{\prime}\right)}$.
(6) $G\left(x, x^{\prime}\right)=-\theta\left(x^{\prime}-x\right) \sin \frac{k\left(x-x^{\prime}\right)}{k}$.
223. $G\left(x, x^{\prime}\right)=-\frac{x_{<}^{2}}{3 x_{>}}$.
224. (a) $G\left(x, x^{\prime}\right)=\frac{\sin k x_{<} \sin k\left(x_{>}-1\right)}{k \sin k}, \quad k \neq \pi n, n=0,1, \ldots$
(б) $G\left(x, x^{\prime}\right)=\frac{\cos k x_{<} \cos k\left(x_{>}-1\right)}{k \sin k}, \quad k \neq \pi n, n=0,1, \ldots$
(B) $G\left(x, x^{\prime}\right)=\frac{\cos k\left(x_{>}-x_{<}-1 / 2\right)}{2 k \sin (k / 2)}, \quad k \neq 2 \pi n, n=0,1, \ldots$.
225. (a) $G\left(x, x^{\prime}\right)=-\frac{1}{k} \exp \left(-k x_{>}\right) \operatorname{sh} k x_{<}, \quad k \neq 0$.
(б) $G\left(x, x^{\prime}\right)=-\frac{1}{2 k} \exp \left(-k\left(x_{>}-x_{<}\right)\right)=-\frac{1}{2 k} \exp \left(-k\left|x-x^{\prime}\right|\right), \quad k \neq 0$.
226. $\psi(x)=e^{i k x}-\frac{1}{k} \int_{x}^{\infty} \sin k\left(x-x^{\prime}\right) f\left(x^{\prime}\right) d x^{\prime}$.
227. $G\left(x, x^{\prime}\right)= \begin{cases}\left(\frac{x^{\prime}}{2 m}\right) x_{<}^{m}\left(x_{>}^{m}-x_{>}^{-m}\right), & m>0 ; \\ x^{\prime} \ln x_{>}, & m=0 .\end{cases}$
228. (a) $G\left(x, x^{\prime}\right)=-\frac{1}{2}\left(x_{>}-x_{<}\right)^{2}+\frac{1}{2}\left(x_{>}-x_{<}\right)-\frac{1}{12}$.
(б) $G\left(x, x^{\prime}\right)=\frac{x_{>} \cos \pi x>\sin \pi x_{<}+x_{<} \cos \pi x_{<} \sin \pi x_{>}}{\pi}-$

$$
-\frac{\sin \pi x_{>} \sin \pi x_{<}}{2 \pi^{2}}-\frac{\sin \pi x_{<} \cos \pi x_{>}}{\pi} .
$$

(в) $G\left(x, x^{\prime}\right)=-\frac{x_{>} \sin \pi x_{>} \cos \pi x_{<}+x_{<} \sin \pi x_{<} \cos \pi x_{>}}{\pi}-$

$$
-\frac{\cos \pi x_{>} \cos \pi x_{<}}{2 \pi^{2}}+\frac{\sin \pi x_{<} \cos \pi x_{<}}{\pi} .
$$

(r) $G\left(x, x^{\prime}\right)=\alpha e^{x+z^{\prime}}\left[2 \alpha e^{2}-\left(x+x^{\prime}\right)\right]-\alpha \operatorname{ch}\left(x-x^{\prime}\right)-\frac{1}{2} e^{-\left|x-x^{\prime}\right|}$,

$$
\alpha=\frac{1}{e^{2}-1} .
$$

229. (a) $u(x)=a(1-x)+b x+\int_{0}^{1} G\left(x, x^{\prime}\right)\left[f\left(x^{\prime}\right)+\pi^{2}\left(a\left(1-x^{\prime}\right)+b x^{\prime}\right)\right] d x^{\prime}+$ $+C \sin \pi x$,

$$
\pi(a+b)=\int_{0}^{1} \sin \pi x f(x) d x
$$

(б) $u(x)=b(1+x)-a x+\int_{0}^{1} G\left(x, x^{\prime}\right)\left[f\left(x^{\prime}\right)+a x^{\prime}-b\left(1+x^{\prime}\right)\right] d x^{\prime}+C e^{x}$,

$$
a-b e=\int_{0}^{1} e^{x} f(x) d x
$$

230. $G\left(x, y, z ; x^{\prime}, y^{\prime}, z^{\prime}\right)=F\left(z^{\prime}\right)-F\left(-z^{\prime}\right)$;

$$
F(x, y, z)=-\frac{1}{4 \pi \sqrt{\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}+\left(z-z^{\prime}\right)^{2}}}
$$

231. $G\left(x, y, z ; x^{\prime}, y^{\prime}, z^{\prime}\right)=F\left(x^{\prime}, y^{\prime}\right)-F\left(-x^{\prime}, y^{\prime}\right)-F\left(x^{\prime},-y^{\prime}\right)+F\left(-x^{\prime},-y^{\prime}\right)$;

$$
F\left(x^{\prime}, y^{\prime}\right)=-\frac{1}{4 \pi \sqrt{\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}+\left(z-z^{\prime}\right)^{2}}}
$$

232. $G\left(x, y, z ; x^{\prime}, y^{\prime}, z^{\prime}\right)=F\left(x, y, x ; x^{\prime}, y^{\prime}, z^{\prime}\right)-F\left(x, y, x ; x^{\prime}, y^{\prime},-z^{\prime}\right)$;

$$
F\left(x, y, x ; x^{\prime}, y^{\prime}, z^{\prime}\right)=-\frac{\exp \left(\sqrt{\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}+\left(z-z^{\prime}\right)^{2}}\right)}{4 \pi \sqrt{\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}+\left(z-z^{\prime}\right)^{2}}}
$$

233. $G\left(r, \theta, \varphi ; r^{\prime}, \theta^{\prime}, \varphi^{\prime}\right)=F\left(r, r^{\prime}, \psi\right)-F\left(r, r^{\prime}, \tilde{\psi}\right)-\frac{R}{r^{\prime}} F\left(r, \frac{\boldsymbol{R}^{2}}{r^{\prime}}, \psi\right)+$

$$
+\frac{R}{r^{\prime}} F\left(r, \frac{R^{2}}{r^{\prime}}, \tilde{\psi}\right)
$$

$F\left(r, r^{\prime}, \psi\right)=-\frac{1}{4 \pi \sqrt{r^{2}+r^{\prime 2}-2 r r^{\prime} \cos \psi}} ;$
$\cos \psi=\cos \theta \cos \theta^{\prime}+\sin \theta \sin \theta^{\prime} \cos \left(\varphi-\varphi^{\prime}\right)$, $\cos \tilde{\psi}=-\cos \theta \cos \theta^{\prime}+\sin \theta \sin \theta^{\prime} \cos \left(\varphi-\varphi^{\prime}\right)$.
234. $\Delta_{r}=\xi^{4} \Delta_{\xi}$.
235. $u(r, \varphi)=r^{2} \sin \frac{2 \varphi}{R^{2}}$.
236. $u(x, y, z)=\frac{1}{2 \pi} \iint \frac{g\left(x^{\prime}, y^{\prime}\right) d x^{\prime} d y^{\prime}}{\sqrt{\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}+z^{2}}}$.
237. $\psi^{(+)}(\boldsymbol{r})=\exp (i k r)-\frac{1}{2 \pi} \int \frac{\exp \left(i k\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|\right)}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|} U\left(\boldsymbol{r}^{\prime}\right) \psi^{(+)}\left(\boldsymbol{r}^{\prime}\right) d \boldsymbol{r}^{\prime}$.
238. Указание: Начальное условие $u(x, 0)=\phi(x)$ можно перенести в правую часть уравнения, получится $u_{4}=u_{x x}+\phi(x) \delta(t)$.
239. $G\left(x, t ; x^{\prime}, 0\right)=\frac{\theta(t)}{\sqrt{4 \pi t}} \exp \left[-\frac{\left(x-x^{\prime}\right)^{2}}{4 t}\right] \rightarrow \delta\left(x-x^{\prime}\right), \quad t \rightarrow+0$.
240. $\frac{1}{\sqrt{2 \pi}} \frac{1}{a^{2}+2 t} \exp \left(-\frac{x^{2}}{2\left(a^{2}+2 t\right)}\right)$. Дисперсия при расплывании гауссового пакета растет линейно со временем $\sigma^{2}(t)=a^{2}+2 t$.
241. $G\left(x, t ; x^{\prime}, 0\right)=\frac{\theta(t)}{\sqrt{4 \pi t}}\left[e^{-\frac{\left(x-x^{\prime}\right)^{2}}{\pi}}-e^{-\frac{\left.\left(x+t^{\prime}\right)^{2}\right)^{2}}{4}}\right]$.
242. $u(x, t)=x^{5}+20 x^{3} t+60 x t^{2}$.
243. $G\left(x, t ; x^{\prime}, 0\right)=\frac{\theta(t)}{\sqrt{2 \pi i}} \sqrt{\operatorname{ctg} \omega t} \exp \left[i \frac{\omega\left(x \cos \omega t-x^{\prime}\right)^{2}}{\sin 2 \omega t}\right]$.
244. $G\left(r, t ; r^{\prime}, t^{\prime}\right)=\frac{c}{2 \pi} \frac{\theta(c r-\rho)}{\sqrt{c^{2} \tau^{2}-\rho^{2}}}$.
245. $G_{s}^{(1)}\left(r, r^{\prime}, t\right)=\frac{c}{2 \pi} \frac{\partial}{\partial t} \frac{1}{\sqrt{c^{2} t^{2}-\rho^{2}}}, \quad G_{s}^{(2)}\left(r, r^{\prime}, t\right)=\frac{c}{2 \pi} \frac{1}{\sqrt{c^{2} t^{2}-\rho^{2}}}$.

Решение дается формулой Пуассона

$$
u(r, t)=\frac{1}{2 \pi c} \frac{\partial}{\partial t} \int_{D} \frac{\varphi\left(r^{\prime}\right) d^{2} r^{\prime}}{\sqrt{c^{2} t^{2}-\left(r-r^{\prime}\right)^{2}}}+\frac{1}{2 \pi} \int_{D} \frac{\psi\left(r^{\prime}\right) d^{2} r^{\prime}}{\sqrt{c^{2} t^{2}-\left(r-r^{\prime}\right)^{2}}}
$$

246. $G\left(r, t ; r^{\prime}, t^{\prime}\right)=\frac{c}{4 \pi \rho} \delta(\rho-c \tau), \quad \rho=\left|r-r^{\prime}\right|, \quad \tau=t-t^{\prime}$.
247. $\phi(\boldsymbol{r}, t)=\frac{c}{4 \pi} \frac{1}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|-1 / c \dot{\boldsymbol{R}}\left(t^{\prime}\right)\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right)}, \quad \boldsymbol{r}^{\prime}=\boldsymbol{R}(t), \quad t^{\prime}=t-\frac{1}{c}\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|$.
248. Указание: По формуле Даламбера (7.35) найдем решение вспомогательной задачи

$$
v(x, t ; \tau)=\frac{1}{2} \int_{x-(t-\tau)}^{x+(t-\tau)} f\left(x^{\prime}, \tau\right) d x^{\prime}
$$

Дифференцируя по t и x функцию $u(x, t)$, покажите, что она удовлетворяет неоднородному волновому уравнению.
249. (а) Непрерывный спектр совпадает со всей вещественной осью.
(б) Непрерывный спектр $\lambda \geqslant 0$.
(в) Непрерывного спектра нет. Собственные функции дискретного спектра - полиномы Эрмита - образуют полный набор.
250. Непрерывный спектр на отрезке $-2 \leqslant \lambda \leqslant 2$.

Глава 8

Интегральные уравнения

8.1. Уравнения Фредгольма

Уравнения, содержащие неизвестную функиию под знаком интеграла, называются интегральными. Как было показано в предыдущей главе, линейное дифференциальное уравнение

$$
L \psi(x)=U(x) \psi(x)+g(x)
$$

с дифференциальным оператором L, действуюшим на определенном классе функций $\psi(x), x \in \Omega$, и линейными траничными условиями может быть сведено к интегральному уравнению

$$
\begin{equation*}
\psi(x)=\int_{\Omega} G\left(x, x^{\prime}\right) U\left(x^{\prime}\right) \psi\left(x^{\prime}\right) d x^{\prime}+f(x) \tag{8.1}
\end{equation*}
$$

Здесь $G\left(x, x^{\prime}\right)$ - функция Грина оператора L,

$$
f(x)=\int_{\Omega} G\left(x, x^{\prime}\right) g\left(x^{\prime}\right) d x^{\prime}+r(x)
$$

$r(x)$ - вклад от неоднородных граничных условий.
Уравнением Фредгольма первого рода называется уравнение

$$
\begin{equation*}
0=\int_{\Omega} K\left(x, x^{\prime}\right) \psi\left(x^{\prime}\right) d x^{\prime}+f(x) \tag{8.2}
\end{equation*}
$$

Уравнение вида

$$
\begin{equation*}
\psi(x)=\lambda \int_{\Omega} K\left(x, x^{\prime}\right) \psi\left(x^{\prime}\right) d x^{\prime}+f(x) \tag{8.3}
\end{equation*}
$$

называется уравнением Фредгольма второго рода. В этом уравнении $\boldsymbol{\lambda}$ спектральный параметр.

Если ядро $\bar{K}\left(x, x^{\prime}\right)$ интегрального оператора в (8.3), (8.2) удовлетворяет условию

$$
\tilde{K}\left(x, x^{\prime}\right)=\left\{\begin{array}{lll}
K\left(x, x^{\prime}\right) & \text { при } & x^{\prime} \leqslant x ; \\
0 & \text { при } & x^{\prime}>x,
\end{array}\right.
$$

то интегральные уравнения называют уравнениями Вольтерра соответственно 1 -го и 2-го рода:

$$
\begin{gather*}
0=\int_{x^{\prime} \leqslant x} K\left(x, x^{\prime}\right) \psi\left(x^{\prime}\right) d x^{\prime}+f(x) \tag{8.4}\\
\psi(x)=\lambda \int_{x^{\prime} \leqslant x} K\left(x, x^{\prime}\right) \psi\left(x^{\prime}\right) d x^{\prime}+f(x) \tag{8.5}
\end{gather*}
$$

Уравнение (8.3) (а также (8.5)) может быть записано в обозначениях бра и кет:

$$
\begin{equation*}
(1-\lambda \widehat{K})|\psi\rangle=|f\rangle \tag{8.6}
\end{equation*}
$$

Здесь \widehat{K} - интегральный оператор, имеющий ядро $K\left(x, x^{\prime}\right)$.
Уравнение (8.6) разрешимо, если существует обратный оператор к $A=1-\lambda \widehat{K}$, называемый резольвентой. В этом случае решение (8.6) записывается в виде

$$
\begin{equation*}
|\psi\rangle=\widehat{R}|f\rangle, \quad \widehat{R}=(1-\lambda \widehat{K})^{-1} \tag{8.7}
\end{equation*}
$$

Явное выражение для резольвенты может быть представлено в виде ряда по λ (разложение Неймана, оно же - метод последовательных приближений):

$$
\begin{equation*}
\widehat{\boldsymbol{R}}=1+\lambda \widehat{K}+\lambda^{2} \widehat{K}^{2}+\ldots=\sum_{n=0}^{\infty} \lambda^{n} \widehat{K}^{n} \tag{8.8}
\end{equation*}
$$

Здесь $\widehat{\boldsymbol{K}}^{\text {n }}$ также интегральный оператор, его ядро называют повторным. Ядро задается формулой:

$$
K_{n}\left(x, x^{\prime}\right)=\int_{\Omega} d x_{1} \int_{\Omega} d x_{2} \ldots \int_{\Omega} d x_{n-1} K\left(x, x_{1}\right) K\left(x_{1}, x_{2}\right) \ldots K\left(x_{n-1}, x^{\prime}\right)
$$

Если $\int_{\Omega}\left|K\left(x, x^{\prime}\right)\right| d x^{\prime}<M$, то ряд $\psi=\sum \lambda^{n} \widehat{K}^{n} f$ равномерно сходится в круге радиуса $|\lambda| \leqslant \frac{1}{M}$. В частности, это означает, что однородное уравнение

$$
\begin{equation*}
(1-\lambda \widehat{K})|\psi\rangle=0 \tag{8.9}
\end{equation*}
$$

имеет только тривиальное решение $|\psi\rangle=0$. При этом решение (8.7) является единственным.

8.2. Вырожденные ядра

В другом важном случае - вырожденных ядер, когда

$$
\begin{equation*}
K(x, y)=\sum_{n=1}^{N} \psi_{n}(x) \widetilde{\psi}_{n}(y) \tag{8.10}
\end{equation*}
$$

решение уравнения Фредгольма (8.3) сводится к чисто алгебраической процедуре.

Функции $\left\{\psi_{n}(x)\right\}$, а также $\left\{\widetilde{\psi}_{n}(y)\right\}$ можно считать линейно независимыми (в противном случае вначале необходимо выразить все линейно зависимые функции через линейно независимые).

Для нахождения решения уравнения Фредгольма второго рода с вырожденным ядром

$$
\begin{equation*}
\psi(x)=\lambda \sum_{n=1}^{N} \psi_{n}(x) \int_{\Omega} \tilde{\psi}_{n}(y) \psi(y) d y+f(x) \tag{8.11}
\end{equation*}
$$

рассмотрим разность $\varphi(x)=\psi(x)-f(x)$. Если разложить эту разность по функциям $\psi_{n}(x)$,

$$
\varphi(x)=\lambda \sum_{n=1}^{N} C_{n} \psi_{n}(x)
$$

то из (8.11) видно, что на коэффициенты C_{n} получается система линейных алгебраических уравнений

$$
\begin{equation*}
C_{n}-\lambda \sum_{i=1}^{N} M_{n l} C_{l}=f_{n}, \tag{8.12}
\end{equation*}
$$

где $f_{i}=\int_{\Omega} \bar{\psi}_{1}(y) f(y) d y \equiv\left\langle\bar{\psi}_{i} \mid f\right\rangle, \quad M_{n l}=\int \bar{\psi}_{n}(y) \psi_{l}(y) d y \equiv\left\langle\bar{\psi}_{n} \mid \psi_{l}\right\rangle$.
Решение уравнений (8.12) может быть, например, найдено с помошью правила Крамера. Если $\operatorname{det}(1-\lambda M) \neq 0$, то

$$
C=(1-\lambda M)^{-1} f
$$

Здесь C, f - векторы с компонентами C_{n} и f_{n}. Если $\operatorname{det}(1-\lambda M)=0$, то матрина $L=1-\lambda M$ не имеет обратную и решение уравнений (8.12) разрешимо не для всех f. Для разрешимости необходимо найти решение сопряженной задачи для оператора L :

$$
\begin{equation*}
\langle\widetilde{C}| L=0, \tag{8.13}
\end{equation*}
$$

где $\langle\tilde{C}$) - строка. Число линейно независимых решений $\langle\widetilde{C}$) этой системы равно $N-q$, где q - ранг матрицы L.

Условие разрешимости уравнения

$$
\begin{equation*}
(1-\lambda M)|C\rangle=|f\rangle \tag{8.14}
\end{equation*}
$$

состоит в ортогональности правой части ко всем векторам сопряженной задачи (8.13):

$$
\begin{equation*}
\left(\tilde{C}^{r}|f\rangle=0\right. \tag{8.15}
\end{equation*}
$$

Это условие является необходимым и достаточным. В этом случае решение уравнения (8.15) определено с точностью до $N-q$ констант A_{r} :

$$
\begin{equation*}
|C\rangle=\sum_{r=1}^{N-q} A_{r}\left|C^{r}\right\rangle+(1-\lambda M)^{-1}\left|f_{\perp}\right\rangle \tag{8.16}
\end{equation*}
$$

Здесь $\left|f_{\perp}\right\rangle=P_{\perp}|f\rangle, \quad P_{\perp}=1-\sum_{r=1}^{N-q}\left|C^{r}\right\rangle\left\langle\tilde{C}^{r}\right|$ - поперечный к векторам $\left|C^{r}\right\rangle$ проектор, а вектора $\left|C^{\alpha}\right\rangle$ и $\left\langle\bar{C}^{\beta}\right|$ предполагаются взаимно-ортогональными: $\left\langle\bar{C}^{\beta} \mid C^{\alpha}\right\rangle=\delta_{\alpha \beta}$.

Сформулированные выше утверждения представляют собой теорему (альтернатива Фредгольма), которая в общем случае гласит:

- Уравнение (8.5) имеет единственное решение, если однородное уравнение (8.9) имеет только тривиальное решение $|\psi\rangle=0$. При этом сопряженное к (8.9) уравнение имеет также только тривиальное решение.
- Если однородное уравнение (8.9) имеет n линейно независимых решений, то сопряженное к (8.9) уравнение имеет ровно столько же линейно независимых решений $\left\langle\bar{\psi}_{k}\right.$, а для разрешимости уравнения (8.5) необходимо и достаточно, чтобы $\left\langle\widetilde{\psi}_{k} \mid f\right\rangle=0$ для каждого $k=1, \ldots, n$. При выполнении этого условия обшее решение записывается в виде (8.16).

8.3. Теорема Гильберта—Шмидта

Для симметричных операторов $K(x, y)=K(y, x)$, удовлетворяющих условию интегрируемости модуля $\boldsymbol{K}(\boldsymbol{x}, \boldsymbol{y})$ в квадрате

$$
\int_{\Omega} \int_{\Omega}|K(x, y)|^{2} d x d y<+\infty
$$

справедлива теорема Гильерта-Шмидта: Если $f(x)$ представима через ядро $K(x, y)$,

$$
f(x)=\int_{\Omega} K(x, y) g(y) d y
$$

то эта функиия может быть разложена в ряд по собственным функциям $\left|\psi_{n}\right\rangle$ интегрального оператора $\widehat{K},\left(1-\lambda_{n} \widehat{K}\right)\left|\psi_{n}\right\rangle=0$:

$$
f(x)=\sum_{n} f_{n} \psi_{n}(x) \text { или } \quad|f\rangle=\sum f_{n}\left|\psi_{n}\right\rangle,
$$

где $f_{n}=\left\langle\psi_{n} \mid \boldsymbol{f}\right\rangle$.

Используя эту теорему, можно установить, что ядро $K(x, y)$ может быть представимо в виде (билинейная формула):

$$
\begin{equation*}
K(x, y)=\sum_{n=1}^{\infty} \lambda_{n}^{-1} \psi_{n}(x) \psi_{n}^{*}(y) \tag{8.17}
\end{equation*}
$$

или соответственно

$$
\begin{equation*}
\widehat{K}=\sum_{n=1}^{\infty} \lambda_{n}^{-1}\left|\psi_{n}\right\rangle\left\langle\psi_{n}\right| . \tag{8.18}
\end{equation*}
$$

Пример: Доказать, что для интегральных операторов вида

$$
\widehat{K} \psi=\int K(x, y) \rho(y) \psi(y) d y
$$

где $\rho(x) \geqslant 0$ - вещественное и $K(x, y)=K^{*}(y, x)$, собственные функции с различными собственными значениями взаимно ортогональны с весом $\rho(x)$:

$$
\int \psi_{n}^{*}(x) \psi_{m}(x) \rho(x) d x=\delta_{n m} .
$$

Решение. Собственные функции $\psi_{n}(x)$ и $\psi_{m}(x)$ удовлетворяют уравнениям:

$$
\begin{aligned}
& \int K(x, y) \rho(y) \psi_{n}(y) d y=\mu_{n} \psi_{n}(x) \\
& \int K(x, y) \rho(y) \psi_{m}(y) d y=\mu_{m} \psi_{m}(x)
\end{aligned}
$$

Сначала покажем, что все собственные значения $\mu_{n} \equiv \lambda_{n}^{-1}$ - вешественные. Умножим обе части, например, первого равенства на $p(x) \psi_{n}^{*}(x)$ и проинтегрируем по x. Слева получится выражение

$$
\int K(x, y) \rho(y) \rho(x) \psi_{n}(y) \psi_{n}^{*}(x) d x d y
$$

вешественное в силу симметрии $K(x, y)=K^{*}(y, x)$ (проверяется комплексным сопряжением и заменой переменных интегрирования $x \leftrightarrow y$). Вещественность правой части эквивалентна вещественности собственного значения. Далее, умножим первое равенство на $\rho(x) \psi_{m}^{*}(x)$, второе на $\rho(x) \psi_{n}^{*}(x)$ и проинтегрируем по x. Левые части окажутся комплексно сопряженными друг другу в силу той же симметрии ядра $K(x, y)$. Условие же комплехсной сопряженности правых частей, вместе с вещественностью μ_{n} и μ_{m}, даст:

$$
\left(\mu_{n}-\mu_{m}\right) \int \rho(x) \psi_{n}(x) \psi_{m}^{*}(x) d x=0
$$

Отсюда и следует при $\mu_{n} \neq \mu_{m}$ ортогональность $\psi_{n}(x)$ и $\psi_{m}(x)$ с весом $\rho(x)$.

Применение теоремы Гильберта-Шмидта, в частности билинейной формулы, оказывается весьма важным для решения спектральной задачи для оператора Штурма-Лиувилля

$$
\begin{equation*}
L \psi=-\rho^{-1} \frac{d}{d x}\left(p(x) \frac{d \psi}{d x}\right)+q(x) y=\lambda \psi \tag{8.19}
\end{equation*}
$$

с однородными граничными условиями и некоторыми функциями $\rho(x)$ и $q(x)$. В этом случае уравнение (8.19) посредством функции Грина может быть представлено в виде интегрального уравнения

$$
\psi(x)=\lambda \int_{\Omega} G(x, y) \rho(y) \psi(y) d y
$$

где функция Грина является симметричной: $G(x, y)=G(y, x)$. Отсюда, используя теорему Гильберта-Шмидта, можно показать, что собственные функции аля оператора Гильберта-Шмидта ортогональны с весом $\rho(x)$. При этом собственные функции образуют полный набор.

Пример: Определить весовые функиии для: а) функций Бесселя $J_{n}(x)$; б) полиномов Лагерра; в) полиномов Эрмита, исходя из дифференциальных уравнений, их определяющих.

Решение. а) Уравнение Бесселя может быть переписано в виде задачи на собственные значения:

$$
\left(x \frac{d}{d x} x \frac{d}{d x}+x^{2}\right) J_{n}(x)=n^{2} J_{n}(x)
$$

так что весовая функция $\rho(x)=\frac{1}{x}$. В целом соотношение ортогональности выглядит так:

$$
\int_{0}^{\infty} \frac{d x}{x} J_{n}(x) J_{m}(x)=0, \quad m \neq n
$$

б) Уравнение для полиномов Лагерра переписывается в виде:

$$
e^{x} x^{-m} \frac{d}{d x} e^{-x} x^{m+1} \frac{d}{d x} L_{n}^{m}(x)=-n L_{n}^{m}(x)
$$

$\boldsymbol{n} \rho(x)=e^{-x} x^{m}$.
в) Уравнение, определяющее полиномы Эрмита, переписывается в виде:

$$
e^{x^{2}} \frac{d}{d x} e^{-x^{2}} \frac{d}{d x} H_{n}=-2 n H_{n}
$$

так что $\rho(x)=e^{-x^{2}}$.

8.4. Обратная задача для оператора Шредимгера

Под обратной задачей для оператора Шрёдингера

$$
L=\frac{\partial^{2}}{\partial x^{2}}+U(x)
$$

с $U(x) \rightarrow 0$ при $|x| \rightarrow \infty$ понимается задача восстановления потенциала по данным рассеяния, т.е. асимптотическим состояниям для спектральной задачи для оператора L :

$$
\begin{equation*}
L \Psi=\left(\frac{\partial^{2}}{\partial x^{2}}+U(x)\right) \Psi=-k^{2} \Psi \tag{8.20}
\end{equation*}
$$

Оператор L, как известно, относится к самосопряженным операторам. Его спектр чисто действителен: $\operatorname{Im} k^{2}=0$. Непрерывный спектр оператора Шрёдингера лежит при $\boldsymbol{k}^{2}>0$, дискретному спектру отвечают состояния с отрицательными энергиями $E_{n}=k_{n}^{2}<0$.

8.4.1. Прямая задача рассеяния

Для любых двух решений (8.20) Ψ_{1} и Ψ_{2} вронскиан

$$
\begin{equation*}
W\left\{\Psi_{1}, \Psi_{2}\right\}=\Psi_{1} \Psi_{2 x}-\Psi_{1 x} \Psi_{2} \tag{8.21}
\end{equation*}
$$

не зависит от x. Причем функции Ψ_{1} и Ψ_{2} линейно независимы, если вронскиан между ними отличен от нуля. Для определения данных рассеяния среди решений из непрерывного спектра удобно рассмотреть специальный класс решений - функции Йоста, определяемые через асимптотики при $|x| \rightarrow \infty$:

$$
\begin{array}{rll}
\psi(x, k) \rightarrow e^{i k x} & \text { при } & x \rightarrow \infty, \\
\Phi(x, k) \rightarrow e^{-i k x} & \text { при } & x \rightarrow-\infty . \tag{8.23}
\end{array}
$$

Определенные таким образом функции ψ и ψ^{*} очевидно линейно независимы, образуя при заданном k^{2} полный базис решений. Поэтому Φ и Φ^{*} могут быть разложены по ψ и ψ^{*} :

$$
\begin{align*}
\Phi(x, k) & =a(k) \psi^{*}(x, k)+b(k) \psi(x, k) \tag{8.24}\\
\Phi^{*}(x, k) & =b^{*}(k) \psi^{*}(x, k)+a^{*}(k) \psi(x, k) \tag{8.25}
\end{align*}
$$

или в матричной записи:

$$
\binom{\Phi}{\Phi^{*}}=\left(\begin{array}{ll}
a & b \\
b^{*} & a^{*}
\end{array}\right)\binom{\psi^{*}}{\psi} \equiv \widehat{S}\binom{\psi^{*}}{\psi} .
$$

Из (8.24) и (8.25) с помощью (8.21) следует, что

$$
\begin{equation*}
a(k)=\frac{1}{2 i k} W(\Phi, \psi), \quad b(k)=-\frac{1}{2 i k} W\left(\Phi, \psi^{*}\right), \tag{8.26}
\end{equation*}
$$

а также определитель матрицы перехода (или матрицы рассеяния) $\widehat{\boldsymbol{S}}$ равен единице:

$$
\begin{equation*}
\operatorname{det} \widehat{S}=|\boldsymbol{a}|^{2}-|\boldsymbol{b}|^{2}=1 \tag{8.27}
\end{equation*}
$$

Последнее соответствует обычному закону сохранения:

$$
|\boldsymbol{r}|^{2}+|d|^{2}=1
$$

где $r=\frac{b}{a}$ - коэффициент отражения, а $d=\frac{1}{a}$ - коэффициент прохождения. Из (8.24) и (8.25) следует также, что при $\operatorname{Im} k=0$

$$
\begin{equation*}
a(k)=a^{*}(-k), \quad b(k)=b^{*}(-k) . \tag{8.28}
\end{equation*}
$$

В силу определения (8.22), (8.23) функции Йоста ψ и Ф аналитически продолжимы в верхнюю полуглоскость k ($\operatorname{Im} k>0$), соответственно ψ^{*} и Φ^{*} аналитичны в нижней полуплоскости (см. задачу 257). Поэтому функция $a(k)$ согласно (8.26) аналитически продолжима в верхнюю полуплоскость. Поскольку при $k \rightarrow \infty \quad \psi \rightarrow e^{i k z}, \Phi \rightarrow e^{-i k z}$, функция $a(k)$ при $k \rightarrow \infty$ стремится к единице. Точки верхней полуплоскости, где $a\left(k_{n}\right)=0$, соответствуют дискретному спектру. Вронскиан в этих точках согласно (8.26) равен нулю, т. е. функции Φ и ψ линейно зависимы: $\Phi\left(k_{n}\right)=C_{n} \psi\left(k_{n}\right)$. С другой стороны, это есть решение уравнения (8.20), затухаюшее как при $x \rightarrow \infty$, так и при $x \rightarrow-\infty$ (по определению функции Йоста (8.22) и (8.23)). Таким образом, данное решение описывает связанное состояние, а нули функции $a(k) k_{n}=i \varkappa_{n}$ расположены на мнимой оси.

Совокупность величин $a(k), b(k), x_{n}$ и C_{n} образуют полный набор данных рассеяния для оператора L.

8.4.2. Уравнение Гельфанда-Левитана-Марченко

Для решения обратной задачи, т.е. восстановления потенциала $U(x)$ по данным рассеяния, существенную роль играют аналитические свойства функций Йоста ψ и Φ. Поскольку ψ аналитически продолжима в верхнюю полуплоскость $\operatorname{Im} k>0$ (см. задачу 257), то функция $\psi(x, k)$ может быть представлена в виде

$$
\begin{equation*}
\psi(x, k)=e^{i k x}+\int_{z}^{\infty} K(x, y) e^{i k y} d y \tag{8.29}
\end{equation*}
$$

где $K(x, y)$ - некоторое действительное ядро. Из этого представления сразу следует, что ψ аналитична при $\operatorname{Im} k>0$. Это представление называют треугольным.

Подставим (8.29) в уравнение (8.20). В результаге дифференцирования получим:

$$
\begin{aligned}
U(x) e^{i k x} & -\frac{\partial}{\partial x}\left[K(x, x) e^{i k x}\right]-\left.\frac{\partial}{\partial x} K(x, y)\right|_{y=x} e^{i k x}+ \\
& +\int_{x}^{\infty} \frac{\partial^{2}}{\partial x^{2}} K(x, y) e^{i k y} d y=-\left(U(x)+k^{2}\right) \int_{x}^{\infty} K(x, y) e^{i k y} d y .
\end{aligned}
$$

Заменяя в последнем интеграле $-k^{2} e^{i k y}=\frac{\partial^{2}}{\partial y^{2}} e^{i k y}$ и интегрируя дважды по частям, найдем, что

$$
\begin{aligned}
\int_{x}^{\infty}\left[\frac{\partial^{2}}{\partial x^{2}} K(x, y)\right. & \left.-\frac{\partial^{2}}{\partial y^{2}} K(x, y)+U(x) K(x, y)\right] e^{i k y} d y+ \\
& +\left[U(x)-2 \frac{d}{d x} K(x, x)\right] e^{i k x}=0
\end{aligned}
$$

Это равенство должно быть выполнено при всех k. Поскольку функции $e^{i k y}$ при различных значениях y линейно независимы, то это равенство удовлетворяется тогда и только тогда, когда

$$
\begin{gather*}
\frac{\partial^{2}}{\partial x^{2}} K(x, y)-\frac{\partial^{2}}{\partial y^{2}} K(x, y)+U(x) K(x, y)=0, \tag{8.30}\\
U(x)=2 \frac{d}{d x} K(x, x) . \tag{8.31}
\end{gather*}
$$

Полученное уравнение (8.30) с граничным условием (8.31) представляет собой так называемую задачу Гурса, которая при условии

$$
K(x, x+y) \rightarrow 0 \quad \text { при } \quad x \rightarrow \infty
$$

однозначно разрешима.
К этому следует добавить, что формула (8.31), связываюшая ядро $K(x, y)$ с потенциалом $U(x)$, следует также из асимптотического разложения треугольного представления при $k \rightarrow \infty$ с последующим применением формулы (8.45) задачи 258.

Перейдем теперь к выводу уравнений обратной задачи, определяющих связь ядра $K(x, y)$ с данными рассеяния. Исходим из соотношения (8.24), которое поделим на $a(k)$, затем вычтем из правой и левой частей их асимптотическое (при $k \rightarrow \infty$) значение - $e^{i k x}$, умножим далее на $e^{i k y}(y \geqslant x)$ и проинтегрируем по k от $-\infty$ до ∞ :

$$
\begin{align*}
& \int_{-\infty}^{\infty}\left[\frac{\Phi(x, k)}{a(k)}-e^{-i k x}\right] e^{i k y} d k=\int_{-\infty}^{\infty} d k \int_{x}^{\infty} K(x, s) e^{i k(y-s)} d s+ \tag{8.32}\\
& +\int_{-\infty}^{\infty} r(k) e^{i k(x+y)} d k+\int_{x}^{\infty} K(x, s) \int_{-\infty}^{\infty} r(k) e^{i k(y+s)} d k .
\end{align*}
$$

При $y>x$ подынтегральная функция в левой части равенства стремится к нулю с ростом мнимой части k, поэтому контур интегрирования можно замкнуть в верхней полуплоскости. Интеграл равен сумме вычетов в нулях функции $a(k)$.

Если $a(k)$ не имеет нулей, т. е. связанные состояния отсутствуют, то интеграл слева тождественно равен нулю. В результате получим

$$
\begin{equation*}
K(x, y)+F(x+y)+\int_{x}^{\infty} K(x, s) F(s+y) d s=0 \tag{8.33}
\end{equation*}
$$

где

$$
F(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} r(k) e^{i k x} d k
$$

Это уравнение и есть искомое уравнение обратной задачи рассеяния, называемое часто уравнением Гельфанда-Левитана-Марченко (ГЛМ).

Если $a(k)$ имеет нули, то левая часть (8.32) равна сумме вычетов

$$
\begin{equation*}
2 \pi i \sum_{n} \frac{\Phi\left(x, i x_{n}\right)}{a^{\prime}\left(i x_{n}\right)} e^{-x_{n} y} . \tag{8.34}
\end{equation*}
$$

В точках $k=i \kappa_{n}$ функции Φ и ψ связаны $\Phi\left(x, i \chi_{n}\right)=C_{n} \psi\left(x, i \kappa_{n}\right)$. Для ψ справедливо представление (8.29) через ядро $K(x, y)$. Группируя все члены в уравнении, окончательно убеждаемся, что уравнение ГЛМ имеет ту же форму, только в F возникает дополнительная сумма, отвечающая дискретному спектру оператора L :

$$
\begin{equation*}
F(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} r(k) e^{i k x} d k-\sum_{n} \frac{i C_{n}}{a^{\prime}\left(i k_{n}\right)} e^{-x_{2} x} . \tag{8.35}
\end{equation*}
$$

Если продолжить первое из равенств (8.28) на комплексные k,

$$
a(k)=a^{*}\left(-k^{*}\right)
$$

то функция $a(k)$ при мнимых $k=i 火$ чисто действительна: $a(i x)=a^{*}(i x)$. Отсюда следует, что производная $a^{\prime}(i x)$ чисто мнимая, так что коэффициент $M_{n}^{2}=-\frac{i C_{a}}{a^{\prime}\left(i \chi_{a}\right)}$ действителен. Более того, этот коэффициент положителен (см. задачу 279). Уравнение (8.33) позволяет найти ядро $K(x, y)$, а вместе с тем и $U(x)=2 \frac{d}{d x} K(x, x)$ по данным рассеяния $a(k), b(k), x_{n}$ и C_{n}.

Обратимся теперь к простейшим решениям уравнения ГЛМ, когда в ядре $F(x)$ отсутствует интегральный член. Для таких решений коэффициент $r(k)=0$. Соответствующие потенциалы называются безотражательными, они полностью задаются набором $\left\{x_{n}\right\}$ - дискретным спектром оператора L - и величинами M_{n}^{2}.

Пусть $\boldsymbol{F}(x)$ определяется одним значением x :

$$
F(x)=M^{2} e^{-x x}
$$

Подставляя это значение в уравнение ГЛМ, убеждаемся, что зависимость ядра $K(x, y)$ от y полностью определяется:

$$
\begin{equation*}
K(x, y)=\psi_{0}(x) e^{-x y} \tag{8.36}
\end{equation*}
$$

Легко видеть, что в силу (8.30) функция $\psi_{0}(x)$ есть собственная функция дискретного спектра, для нее

$$
\left(\frac{d^{2}}{d x^{2}}+U(x)\right) \psi_{0}(x)=\varkappa^{2} \psi_{0}(x)
$$

Подставляя (8.36) в уравнение ГЛМ (8.33) и интегрируя, находим, что

$$
\psi_{0}(x)=-\frac{M^{2} e^{-x x}}{1+\frac{M^{2}}{2 x} e^{-2 x x}}=-\frac{\sqrt{2 \kappa} M}{2} \operatorname{ch}^{-1} \kappa(x-q),
$$

где

$$
q=\frac{1}{2 x} \ln \frac{M^{2}}{2 x} .
$$

Соответствующий потенциал

$$
\begin{equation*}
U(x)=2 \frac{d}{d x} K(x, x)=\frac{2 x^{2}}{\operatorname{ch}^{2} x(x-q)} . \tag{8.37}
\end{equation*}
$$

Этот потенциал является простейшим безотражательным потенциалом. В нем только одно связанное состояние с $\boldsymbol{E}=\boldsymbol{x}^{2}$.

Традиционные методы решения интегральных уравнений разобраны в книгах [Пет65, Со666, Сми74c]. Методы решения обратной задачи рассеяния для операторов Шрёдингера обсуждаются в книгах [3МНП80, Map77, Нью89].

8.5. Примеры

251. Решить уравнение

$$
\begin{equation*}
u(x)=\int_{0}^{x} s \ln \left(\frac{s}{x}\right) u(s) d s+\frac{x^{4}}{16} . \tag{8.38}
\end{equation*}
$$

Решение. Дифференцируя уравнение (8.38) последовательно два раза, получим

$$
\begin{aligned}
u^{\prime}(x) & =-\frac{1}{x} \int_{0}^{x} s u(s) d s+\frac{x^{3}}{4} \\
u^{\prime \prime}(x) & =\frac{1}{x^{2}} \int_{0}^{x} s u(s) d s-u(x)+\frac{3 x^{2}}{4}
\end{aligned}
$$

откуда следует дифференциальное уравнение

$$
u^{\prime \prime}+\frac{1}{x} u^{\prime}+u=x^{2}
$$

с граничным условием $u(0)=u^{\prime}(0)=0$, которое следует из (8.38). Фундаментальная система решений состоит из функций Бесселя J_{0} и Неймана Y_{0} нулевого порядка. Для решения неоднородного уравнения построим функцик Грина, обращающуюся в нуль при $x=0$,

$$
\begin{aligned}
G(x, y) & =\frac{Y_{0}(y) J_{0}(x) \Theta(y-x)+J_{0}(y) Y_{0}(x) \Theta(x-y)}{W\left\{J_{0}(x), Y_{0}(x)\right\}}= \\
& =\frac{\pi}{2} y\left[Y_{0}(y) J_{0}(x) \Theta(y-x)+J_{0}(y) Y_{0}(x) \Theta(x-y)\right]
\end{aligned}
$$

где вронскиан равен

$$
\begin{equation*}
W\left\{J_{0}(y), Y_{0}(y)\right\}=J_{0} Y_{0}^{\prime}-J_{0}^{\prime} Y_{0}=\frac{2}{\pi y} \tag{8.39}
\end{equation*}
$$

(см. задачу 140). Теперь можно выписать решение

$$
u(x)=\int_{0}^{\infty} G(x, y) y^{2} d y
$$

Если воспользоваться рекуррентными соотношениями для цилиндрических функций (П.18) и проинтегрировать по частям два раза, решение $u(x)$ можно записать явно:

$$
u(x)=x^{2}-4+4 J_{0}(x) .
$$

252. Метод определителей Фредгольма позволяет найти резольвенту по формуле

$$
R(x, y ; \lambda)=\frac{\Delta(x, y ; \lambda)}{\Delta(\lambda)}, \quad \Delta(\lambda) \neq 0
$$

где определитель Фредгольма $\Delta(\lambda)$ и минор Фредгальма $\Delta(x, y ; \lambda)$ находятся как суммы рядов

$$
\begin{gathered}
\Delta(x, y ; \lambda)=K(x, y)+\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n!} \lambda^{n} B_{n}(x, y), \\
\Delta(\lambda)=1+\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n!} \lambda^{n} C_{n} .
\end{gathered}
$$

Фуккции $B_{n}(x, y)$ и коэффициенты C_{n} в свою очередь определяются рекуррентными формулами

$$
B_{n}(x, y)=C_{n} K(x, y)-n \int_{0}^{1} K(x, t) B_{n-1}(t, y) d t
$$

$$
C_{n}=\int_{0}^{1} B_{n-1}(x, x) d x, \quad n=1,2, \ldots
$$

где $C_{0}=1, B_{0}(x, y)=K(x, y)$.
Найти методом определителей Фредгальма резальвенту ядра $K(x, y)=$ $x^{2} y-x y^{2}$.

Репение. Последовательно получаем $C_{0}=1, \quad B_{0}(x, y)=x^{2} y-x y^{2}$, $C_{1}=0$,

$$
B_{1}(x, y)=x y\left[-\frac{x+y}{4}+\frac{1}{5}+\frac{x y}{3}\right],
$$

$C_{2}=\frac{1}{120}, B_{2}=0$, а значит, обращаются в нуль все последующие коэффициенты C_{n} и функции B_{n}. Причиной обрывания ряда является специальный вид ядра $K(x, y)=f(x) g(y)-g(x) f(y)$ (покажите, что для таких ядер справедливо соотношение

$$
\int_{0}^{1} \int_{0}^{1} K(x, y) K(y, z) K(z, t) d y d z=\frac{1}{2} K(x, t) \int_{0}^{1} \int_{0}^{1} K(z, y) K(y, z) d y d z,
$$

с помошью которого можно выразить все повторные ядра через первое и второе).

$$
R(x, y ; \lambda)=\frac{x^{2} y-x y^{2}-\lambda x y\left(\frac{1}{5}+\frac{x y}{3}-\frac{x+y}{4}\right)}{1+\frac{\lambda^{2}}{240}}
$$

253. Решить спектральнук задачу для уравнений с ненормируемым ядром:

$$
\phi(x)=\sqrt{\frac{2}{\pi}} \lambda \int_{0}^{\infty} \sin (x y) \phi(y) d y .
$$

Решение. Обозначим синус-преобразование Фурье функции $\phi(y)$:

$$
\Phi(x) \equiv \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \sin (x y) \phi(y) d y .
$$

Применяя синус-преобразование к обеим частям исходного уравнения, получаем

$$
\Phi(x)=\lambda \phi(x)
$$

откуда

$$
\phi(x)=\lambda \Phi(x)=\lambda^{2} \phi(x) .
$$

Значит у оператора только два собственных значения $\lambda= \pm 1$, а собственные функции имеют вид

$$
\phi(x)=g(x)+\lambda G(x)
$$

где $g(x)$ - произвольная функция, для которой существует образ $G(x)$ при синус-преобразовании Фурье, например,

$$
\phi(x)=\exp (-a x) \pm \sqrt{\frac{2}{\pi}} \frac{x}{a^{2}+x^{2}}, \quad 0<x<\infty, \quad a>0 .
$$

254. Найти собственные функции, убывающие на бесконечности быстрее любой степени, и собственные значения интегрального уравнения

$$
\lambda \int_{-\infty}^{\infty} K(x, y) \phi(y) d y=\phi(x)
$$

с ядром Килсона-Сторера

$$
\begin{equation*}
K(x, y)=\frac{1}{\sqrt{\pi\left(1-\alpha^{2}\right)}} \exp \left[-\frac{(x-\alpha y)^{2}}{1-\alpha^{2}}\right], \quad 0 \leqslant \alpha<1 . \tag{8.40}
\end{equation*}
$$

Решение. Применяя преобразование Фурье к обеим частям исходного уравнения, получаем функциональное уравнение на фурье-образ $\Phi(k)$ функции $\phi(x)$

$$
\Phi(k)=\lambda \Phi(k \alpha) \exp \left(-\left(1-\alpha^{2}\right) \frac{k^{2}}{4}\right) .
$$

Функция $g(k)=\Phi(k) \exp \left(\frac{k^{2}}{4}\right)$ растягивается в λ раз при растяжении ее аргумента в α раз:

$$
g(k)=\lambda g(k \alpha)
$$

откуда $g(k)=k^{\nu}$ - степенная функция, а значит,

$$
\Phi_{\nu}(k)=k^{\nu} \exp \left(-\frac{k^{2}}{4}\right), \quad \lambda=\alpha^{-\nu}
$$

Если $\nu>-1$ не целое, собственная функция $\phi(x)$ убывает на бесконечности степенным образом. При целых $\nu=n$ можно явно выполнить обратное преобразование Фурье, в результате получаем

$$
\phi_{n}(x)=H_{n}(x) \exp \left(-x^{2}\right), \quad \lambda_{n}=\alpha^{-n}, \quad n=0,1,2, \ldots,
$$

где H_{n} - полиномы Эрмита.
255. Найти собственнье функции преобразования Фурье

$$
\lambda \int_{-\infty}^{x} \phi(y) \exp (i x y) \frac{d y}{\sqrt{2 \pi}}=\phi(x)
$$

Решение. Обозначим преобразование Фурье функции $\phi(y)$:

$$
\Phi(x) \equiv \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \exp (i x y) \phi(y) d y .
$$

Применяя преобразование к обеим частям исходного уравнения, получаем

$$
\Phi(x)=\lambda \phi(-x)
$$

откуда

$$
\phi(x)=\lambda \Phi(x)=\lambda^{2} \phi(-x)=\lambda^{3} \Phi(-x)=\lambda^{4} \phi(x) .
$$

Значит у оператора четыре собственных значения $\lambda= \pm i, \pm 1$, а собственные функции имеют вид

$$
\phi(x)=g(x)+\lambda G(x)+\lambda^{2} g(-x)+\lambda^{3} G(-x)
$$

где $g(x)$ - произвольная функция, для которой существует образ $G(x)$ при преобразовании Фурье, например,

$$
\phi_{n}(x)=H_{n}(x) \exp \left(-\frac{x^{2}}{2}\right) .
$$

Это собственные функции задачи о квантовомеханическом осцилляторе. Заметим, что уравнение Шрёдингера осциллятора

$$
\frac{d^{2} \psi}{d x^{2}}-x^{2} \psi=2 E \psi
$$

переводится преобразованием Фурье в то же уравнение. Четные функции соответствуют собственным значениям $\lambda= \pm 1$, а нечетные $-\lambda= \pm i$.
256. Найти решения $f(y)$ уравнений Урысона:
(a) $2 \int_{-\infty}^{+\infty} f(x-y) f(y) y d y=x(|x|+1) e^{-|x|}$;
(6) $\int_{-\infty}^{+\infty} f(x-y) f(y)\left(1+y^{2}\right) d y=1$.

Решенне. (а) Вспомним, что если $f(\omega)$ - фурье-образ функции $f(x)$, то фурье-образ функции $x f(x)$ равен $i f^{\prime}(\omega)$. Выполняя преобразование Фурье, получаем

$$
2 i f^{\prime}(\omega) f(\omega)=4 i \frac{d}{d \omega} \frac{1}{\left(1+\omega^{2}\right)^{2}}
$$

Чтобы $f(x)$ была ограниченной, необходимо, чтобы ее фурье-образ стремился к нулю при $\omega \rightarrow \pm \infty$, что позволяет найти константу интегрирования. Таким образом

$$
f(\omega)= \pm \frac{2}{1+\omega^{2}}, \quad f(x)= \pm e^{-|x|}
$$

Решение. (б) Выполняя преобразование Фурье, получаем

$$
f^{2}(\omega)-f^{\prime \prime}(\omega) f(\omega)=2 \pi \delta(\omega)
$$

Стремящееся к нулю при $\omega \rightarrow \pm \infty$ решение этого уравнение имеет вид

$$
f(\omega)= \pm \sqrt{\pi} e^{-|\omega|}
$$

Откуда

$$
f(x)= \pm \frac{1}{\sqrt{\pi}\left(1+x^{2}\right)}
$$

257. Показать, что функции Йоста $\psi(x, k)$ и $\Phi(x, k)$ аналитически продалжсаемы в верхнюю полуплоскость k ($\operatorname{Im} k>0$).

Решение. Вначале для свободного оператора Шрёдингера $\frac{d^{2}}{d x^{2}}+k^{2}$ определим функцию Грина G как решение уравнения

$$
\left(\frac{d^{2}}{d x^{2}}+k^{2}\right) G=\delta\left(x-x^{\prime}\right)
$$

Полагая $G\left(x-x^{\prime}\right)=0$ при $x>x^{\prime}$, легко находим, что

$$
G\left(x-x^{\prime}\right)=\left\{\begin{array}{ccc}
-\frac{1}{k} \sin k\left(x-x^{\prime}\right) & \text { при } & x^{\prime}>x \tag{8.41}\\
0 & \text { при } & x>x^{\prime}
\end{array}\right.
$$

С помощью функции Грина уравнение для функции ψ превращается в уравнение Вольтерра

$$
\begin{equation*}
\psi(x, k)=e^{i k x}+\frac{1}{k} \int_{x}^{\infty} \sin k\left(x-x^{\prime}\right) U\left(x^{\prime}, k\right) \psi\left(x^{\prime}, k\right) d x^{\prime} \tag{8.42}
\end{equation*}
$$

Рассмотрим функцию $\chi(x, k)=\psi(x, k) \exp (-i k x)$, которая удовлетворяет уравнению

$$
\begin{equation*}
\chi(x, k)=1+\frac{1}{2 i k} \int_{x}^{\infty}\left[1-\exp \left(2 i k\left(x^{\prime}-x\right)\right)\right] U\left(x^{\prime}\right) \chi\left(x^{\prime}, k\right) d x^{\prime} \tag{8.43}
\end{equation*}
$$

При вещественных k, по предположению, решение уравнения (8.42) существует, т. е. интеграл в (8.43) сходится. При выходе в верхнюю

полуплоскость его сходимость улучшится, откуда и следует аналитичность функции $\chi(x, k)$ и, соответственно, функции $\psi(x, k)$. Аналогичным образом можно показать, что функиия $\Phi(x, k)$ аналитически продолжима в верхнюю полуплоскость.
258. Найти связь межсду асимптотикой функции Йоста $\psi(x, k)$ при больших k и потенциалом $U(x)$.

Решение. Из (8.43) следует, что при $k \rightarrow \infty$

$$
\begin{equation*}
\chi(x, k)=1+\frac{1}{2 i k} \int_{x}^{\infty} U\left(x^{\prime}\right) d x^{\prime}+o\left(\frac{1}{k}\right) \tag{8.44}
\end{equation*}
$$

таким образом,

$$
\begin{equation*}
\frac{d}{d x} \lim _{k \rightarrow \infty} 2 i k \chi(x, k)=-U(x) . \tag{8.45}
\end{equation*}
$$

259. Найти общий вид безотражательного потенциала с дискретныли уровнями $k_{n}=i 火_{n}(n=1, \ldots, N)$.

Решение. В этом случае $a(k)$ имеет N нулей в точках $k=i x_{n}$, а $r(k)$ тождественно равно нулю, поэтому F задается в виде дискретной суммы

$$
F(x+y)=\sum_{n} M_{n}^{2} \exp \left[-\chi_{n}(x+y)\right] .
$$

Зависимость ядра $K(x, y)$ от y имеет вид*)

$$
K(x, y)=\sum_{n} \psi_{n}(x) e^{-\alpha_{n} y} .
$$

Простые вычисления для $\psi_{\mathrm{n}}(x)$ дают следующую линейную систему алгебраических уравнений:

$$
\begin{equation*}
\psi_{n}(x)+M_{n}^{2} e^{-x_{n} x}+M_{n}^{2} \sum_{m=1}^{N} \frac{\psi_{m}(x) \exp \left[-\left(x_{n}+x_{m}\right) x\right]}{x_{n}+x_{m}}=0 \tag{8.46}
\end{equation*}
$$

или в матричной форме

$$
\sum_{m=1}^{N} A_{n \pi n} \psi_{m}=-M_{n}^{2} e^{-x_{a} x},
$$

rae

$$
A_{n m}=\delta_{n m}+M_{n}^{2} \frac{\exp \left[-\left(\chi_{n}+\varkappa_{m}\right) x\right]}{\varkappa_{n}+\varkappa_{m}} .
$$

[^8]Решение (8.46) находится по правилу Крамера

$$
\psi_{n}(x)=\frac{\operatorname{det} B_{n}(x)}{\operatorname{det} A(x)}
$$

где матрица $\boldsymbol{B}_{n}(\boldsymbol{x})$ получается из матрицы $\boldsymbol{A}(\boldsymbol{x})$ заменой n-го столбца на столбец ($-M_{n}^{2} e^{-x_{n} x}$). Заметим теперь, что потенциал $U(x)$ (8.31) определяется только $K(x, x)$, т.е.

$$
\sum_{n=1}^{N} \psi_{n}(x) e^{-x_{n} x}=\frac{\sum_{n=1}^{N} \operatorname{det} B_{n} e^{-x_{n} x}}{\operatorname{det} A(x)}
$$

Нетрудно убедиться, что $\sum_{n=1}^{N} \operatorname{det} B_{n} e^{-\chi_{n} x}=\frac{d(d e 1 A)}{d x}$, для чего достаточно заметить, что производная от определителя есть сумма определителей, в n-м из которых n-й столбец заменен на его производную $-M_{n}^{2} \exp \left[-\left(\varkappa_{n}+\varkappa_{m}\right) x\right]$. Таким образом,

$$
U(x)=2 \frac{d^{2}}{d x^{2}} \ln \operatorname{det} A
$$

260. Найти выражение для малых потенциалов $U(x)$ в отсутствии дискретного спектра через амплитуду коэффициента отражения $r(k)=\frac{b(k)}{a(k)}$ (первое борновское приближение).

Решение. В отсутствии дискретного спектра

$$
F(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} r(k) e^{i k x} d x
$$

Для малых потенциалов в уравнении (8.33) следует пренебречь интегральным членом. В результате

$$
K(x, x) \approx-F(2 x)
$$

или для потенциала

$$
U(x)=-2 \frac{d}{d x} F(2 x)=-\frac{2 i}{\pi} \int_{-\infty}^{\infty} r(k) k e^{2 i k x} d k
$$

261. Восстановить амплитуду прохождения $d(k)$ (или а(k)) по ее модулю при $\operatorname{Im} k=0$ и положению дискретного спектра $k_{n}=i \chi_{n}$.

Решение. В силу свойства $a(k): a(k)=a^{*}(-k)$ при $\operatorname{Im} k=0$ функция может быть представлена в виде

$$
a(k)=\tilde{a}(k) \prod_{n=1}^{N} \frac{k-i \gamma_{n}}{k+i \kappa_{n}},
$$

где $\tilde{a}(k)$ - аналитическая функция в верхней полуплоскости без нулей, имеющая предельное при $k \rightarrow \infty$ значение, равное единице.

Рассмотрим функцию $\ln a(k)$ и выпишем для нее одно из соотношений Крамерса-Кронига

$$
\arg \tilde{a}(k)=-\frac{1}{\pi} \text { v.p. } \int_{-\infty}^{\infty} \frac{\ln \left|\tilde{a}\left(k^{\prime}\right)\right|}{k^{\prime}-k} d k^{\prime}
$$

Очевидно, что для $\operatorname{lm} k=0$ выполняется равенство $\ln |\bar{a}(k)|=\ln |a(k)|$. Поскольку функция $\ln |\tilde{a}(k)|$ четная, интеграл преобразуется к виду

$$
\text { v.p. } \int_{-\infty}^{\infty} \frac{\ln \left|\tilde{a}\left(k^{\prime}\right)\right|}{k^{\prime}-k} d k^{\prime}=-\frac{2}{k} v . p . \int_{0}^{\infty} \frac{\ln \left|\tilde{a}\left(k^{\prime}\right)\right|}{1-k^{\prime 2} / k^{2}} d k^{\prime} .
$$

Таким образом,

8.6. Задачи

262. Используя разложение (8.17), найти выражение для ядра резольвенты $R(x, y)=(1-\lambda K)^{-1}$.
263. Решение уравнения Вольтерра II рода

$$
\begin{equation*}
\phi(x)-\int_{0}^{x} K(x, y) \phi(y) d y=f(x) \tag{8.47}
\end{equation*}
$$

можно записать через резольвенту интегрального оператора $R(x, y)$

$$
\begin{equation*}
\phi(x)=f(x)+\int_{0}^{r} R(x, y) f(y) d y . \tag{8.48}
\end{equation*}
$$

(a) Показать, что резольвента подчиняется интегральному уравнению

$$
\begin{equation*}
R(x, y)=K(x, y)+\int_{y}^{x} K(x, t) R(t, y) d t \tag{8.49}
\end{equation*}
$$

(б) Показать, что резольвента представляется в виде суммы

$$
\begin{equation*}
R(x, y)=\sum_{n=1}^{\infty} K_{n}(x, y) \tag{8.50}
\end{equation*}
$$

повторных ядер

$$
K_{1}(x, y) \equiv K(x, y), \quad K_{n+1}(x, y)=\int_{y}^{x} K(x, t) K_{n}(t, y) d t, \quad n=1,2, \ldots
$$

264. С помошью формулы (8.50) найти резольвенты следуюших ядер уравнения Вольтерра:
(a) $K(x, y)=1$;
(б) $K(x, y)=\lambda(x-y), \lambda>0$;
(в) $K(x, y)=\exp (x-y)$;
(r) $K(x, y)=\lambda \exp \left(x^{2}-y^{2}\right)$;
(д) $K(x, y)=\frac{\lambda \operatorname{ch} x}{\operatorname{ch} y}$.
265. С помощью преобразования Лапласа найти резольвенты следуюших разностных ядер уравнения Вольтерра:
(a) $K(x, y)=\sin (x-y)$;
(б) $K(x, y)=\operatorname{sh}(x-y)$;
(в) $K(x, y)=\operatorname{ch}(x-y)$.
266. Пусть $u(x)$ - решение обыкновенного дифференииального уравнения второго порядка

$$
\begin{equation*}
\widehat{L} u(x)=\frac{d^{2} u}{d x^{2}}+p(x) \frac{d u}{d x}+q(x) u=f_{0}(x) \tag{8.51}
\end{equation*}
$$

с начальными условиями $u(0)=C_{0}, u^{\prime}(0)=C_{1}$. Здесь $p(x), q(x)$ предполагаются аналитическими функциями.
(a) Свести (8.51) к интегральному уравнению Вольтерра на функцию $\phi(x)=u^{\prime \prime}(x)$.
(6) Показать, что если известна функция Грина уравнения (8.51), удовлетворяюшая уравнению

$$
\widehat{L} G(x, y)=\delta(x-y)
$$

с граничным условием $G \equiv 0$ при $x<y$, то резольвента ядра $K(x, y)=$ $-p(x)-q(x)(x-y)$ при $x>y$ выражается формулои

$$
R(x, y)=\frac{\theta^{2} G(x, y)}{\partial x^{2}}
$$

(в) Методом сведения \mathbf{x} дифференциальному уравнению найти резольвенту уравнения Вольтерра с ядром

$$
K(x, y)=\frac{2}{x^{2}}(x-y) .
$$

267. Показать, что для разностного степенного ядра

$$
K(x, s)=a_{0}(x)+a_{1}(x)(x-s)+\ldots+\frac{a_{n-1}(x)}{(n-1)!}(x-s)^{n-1}
$$

резольвента дается выражением

$$
R(x, s)=\frac{\theta^{n} g}{\partial x^{n}}
$$

где функция $g(x, s)$ подчиняется уравнению

$$
\frac{\partial^{n} g}{\partial x^{n}}-\left[a_{0}(x) \frac{\partial^{n-1} g}{\partial x^{n-1}}+a_{1}(x) \frac{\partial^{n-2} g}{\partial x^{n-2}}+\ldots+a_{n-1}(x) g\right]=\delta(x-s)
$$

с нулевыми граничными условиями на бесконечности.
268. Решить уравнение с неограниченным ядром (уравнение Абеля)

$$
\int_{0}^{x} \frac{\phi(s)}{\sqrt{x-s}} d s=x .
$$

269. Решение уравнения Фредгольма II рода*)

$$
\begin{equation*}
\phi(x)-\lambda \int_{0}^{1} K(x, y) \phi(y) d y=f(x) \tag{8.52}
\end{equation*}
$$

можно записать через резольвенту $R(x, y ; \lambda)$

$$
\phi(x)=f(x)+\lambda \int_{0}^{1} R(x, y ; \lambda) f(y) d y .
$$

[^9](a) Показать, что резольвента подчиняется интегральному уравнению
$$
R(x, y ; \lambda)=K(x, y)+\lambda \int_{0}^{1} K(x, t) R(t, y ; \lambda) d t .
$$
(б) Показать, что резольвенту можно записать в виде ряда Неймана
\[

$$
\begin{equation*}
R(x, y ; \lambda)=\sum_{n=1}^{\infty} \lambda^{n-1} K_{n}(x, y) \tag{8.53}
\end{equation*}
$$

\]

где повторные ядра находятся из рекуррентных соотношений

$$
K_{1}(x, y) \equiv K(x, y), \quad K_{n+1}(x, y)=\int_{0}^{1} K(x, t) K_{n}(t, y) d t, \quad n=1,2, \ldots
$$

(в) Показать, что произвольное повторное ядро подчиняется формуле

$$
K_{n}(x, y)=\int_{0}^{1} K_{m}(x, t) K_{n-m}(t, y) d t, \quad n=2,3, \ldots
$$

(г) Показать, что для фредгольмова ядра, для которого

$$
\|K\|^{2}=\int_{0}^{1} \int_{0}^{1}|K(x, y)|^{2} d x d y<\infty
$$

радиус сходимости ряда Неймана (8.53) дается неравенством $|\lambda|<\frac{1}{\|K\|}$.
270. С помощью прямого суммирования ряда Неймана (8.53) найти резольвенты следующих ядер уравнения Фредгольма:
(a) $K(x, y)=1$;
(б) $K(x, y)=\exp (x-y)$;
(в) $K(x, y)=x y$.
271. Найти решение уравнений Фредгольма с вырожденными ядрами:
(a) $\int_{-\infty}^{\infty} \exp \left(-x^{2}-s^{2}\right) \phi(s) d s=\phi(x)+x^{2}$;
(б) $\int_{-1}^{1} x^{2} s^{2} \phi(s) d s=\phi(x)+x^{2}$;
(в) $\phi(x)-\lambda \int_{0}^{1}\left(1+x^{2} y^{2}\right) \phi(y) d y=x^{3}$;
(r) $\phi(x)-\lambda \int_{0}^{1} \exp (x-y)(1+x y) \phi(y) d y=\exp (x)$.
272. Показать, что если известна функция Грина $G(x, y)$ краевой задачи

$$
\begin{aligned}
\widehat{L} u & =p_{0}(x) u^{(n)}+p_{1}(x) u^{(n-1)}+\ldots+p_{n}(x) u=f_{0}(x), \\
V_{k}(u) & =\alpha_{k}^{(0)} u(0)+\alpha_{k}^{(1)} u^{\prime}(0)+\ldots+\alpha_{k}+ \\
& +\beta_{k}^{(0)} u(1)+\beta_{k}^{(1)} u^{\prime}(1)+\ldots+\beta_{k}^{(n-1)} u^{(n-1)}(1)=0,
\end{aligned}
$$

где $\alpha_{k}^{(j)}, \beta_{k}^{(j)}$ - константы, $k=1,2, \ldots, n$, то уравнение Фредгольма

$$
u(x)=\lambda \int_{0}^{1} G(x, y) u(y) d y+f(x)
$$

сводится к задаче на собственные значения

$$
\widehat{L} u=\lambda u+f_{0}(x), \quad V_{k}(u)=0
$$

если $V_{k}(f)=0$. Как связаны функции $f(x)$ и $f_{0}(x)$?
273. Путем сведения к дифференциальным уравнениям решить уравнения Фредгольма:
(a) $\phi(x)+\lambda \int_{0}^{1} K\left(x, x^{\prime}\right) \phi\left(x^{\prime}\right) d x^{\prime}=x^{2}-x, \quad K\left(x, x^{\prime}\right)=x_{<}\left(x_{>}-1\right), \lambda>0 ;$
(б) $\phi(x)+\int_{-1}^{1}|x-s| \phi(s) d s=\frac{x^{3}}{3}-x$.
274. Найти решение уравнения с ненормируемым ядром:

$$
\phi(x)=e^{-x}+\lambda \int_{0}^{\infty} \cos (2 x s) \phi(s) d s
$$

275. Решить спектральную задачу для уравнении с ненормируемьм ядром:

$$
\phi(x)=\lambda \int_{-\infty}^{\infty} \exp (-|x-y|) \phi(y) d y
$$

276. Решить задачу Коши с начальным условием $u(x, 0)=2 \exp \left(-x^{2}\right) x^{2}$ для интегро-дифференциального уравнения

$$
\frac{\partial u}{\partial t}=-\nu u(x, t)+\nu \int_{-\infty}^{\infty} K(x, s) u(s, t) d s
$$

с ядром Килсона-Сторера (8.40).
277. Найти решения $\phi(s)$ уравнений Урысона:
(a) $\int_{-\infty}^{\infty} \phi(s) \phi(x-s) d s=e^{-x^{2}}$;
(б) $\int_{0}^{x} \phi(s) \phi(x-s) d s=\sin x$.
278. Найти все решения уравнений Гаммеритейна с вырожденным ядром:
(a) $\phi(x)=\int_{0}^{1} x s \phi^{2}(s) d s+\frac{3}{4} x ;$
(б) $\phi(x)=\int_{0}^{x} \frac{\cos ^{2} s}{\cos x} \phi^{2}(s) d s+\frac{1}{\cos x}, \quad x \in(0,1)$.
279. Показать, что в ядре $F(x+y)$, определенном формулой (8.35), коэффициент

$$
M_{n}^{2}=\frac{-i C_{n}}{a^{\prime}\left(i x_{n}\right)}
$$

положителен.
280. Для потенциала $U(x)=\frac{2 x^{2}}{\operatorname{ch}^{2} \times x}$ с помошью треугольного представления найти собственные функции непрерывного спектра.
281. Найти коэффициент прохождения $d(k)=\frac{1}{a(k)}$ для потенциала $U(x)=\frac{2 x^{2}}{\operatorname{ch}^{2} x x}$.
282. Для безотражательных потенциалов показать, что ядро треугольного представления $K(x, y)$ выражается в виде

$$
K(x, y)=\sum \psi_{n}(x) e^{-x_{n} y},
$$

где $\psi_{n}(x)$ есть собственная функция n-го дискретного уровня.

8.7. Ответы

262. $R(x, y)=\sum_{n=1}^{\infty} \frac{\lambda_{n}}{\lambda_{n}-\lambda} \psi_{n}(x) \psi_{n}^{*}(y)$.
263. (а) Указание: Подставим решение (8.48) в уравнение Вольтерра (8.47) и, меняя порядок интегрирования, получим уравнение на резольвенту (8.49).
264. (a) $R(x, y)=\exp (x-y)$.
(6) $R(x, y)=\sqrt{\lambda} \operatorname{sh} \sqrt{\lambda}(x-y)$.
(в) $R(x, y)=\exp 2(x-y)$.
(r) $R(x, y)=\lambda \exp \left[\lambda(x-y)+x^{2}-y^{2}\right]$.
(д) $R(x, y)=\lambda \exp [\lambda(x-y)] \frac{\operatorname{ch} x}{\operatorname{ch} y}$.
265. (a) $R(x, y)=x-y$.
(6) $R(x, y)=\frac{1}{\sqrt{2}} \operatorname{sh} \sqrt{2}(x-y)$.
(в) $R(x, y)=\exp \left(\frac{x-y}{2}\right)\left(\operatorname{ch} \tau+\frac{1}{\sqrt{5}} \operatorname{sh} \tau\right), \tau=\frac{\sqrt{5}(x-y)}{2}$.
266. (a) Дифференциальное уравнение сводится к уравнению Вольтерра (8.47) с ядром $K(x, y)=-p(x)-q(x)(x-y)$ и правой частью

$$
f(x)=f_{0}(x)-p(x) C_{1}-q(x)\left(C_{1} x+C_{0}\right)
$$

(в) $\quad R(x, y)=\frac{2}{3 y}\left(1-\frac{y^{3}}{x^{3}}\right)$.
268. Указание: Уравнение Абеля решается с помощью преобразования Абеля. Переобозначить $x \rightarrow t$, умножить на $\frac{1}{\sqrt{x-t}}$, проинтегрировать по $d t$ в пределах от 0 до x, поменять порядок интегрирования и воспользоваться тем, что $\int_{:}^{2} d t(x-t)^{-1 / 2}(t-s)^{-1 / 2}=\pi$.

$$
\phi(x)=\frac{2 \sqrt{x}}{\pi} .
$$

270. (a) $R(x, y ; \lambda)=\frac{1}{(1-\lambda)}$.
(б) $R(x, y: \lambda)=\frac{\exp (x-y)}{(1-\lambda)}$.
(B) $R(x, y ; \lambda)=\frac{x y}{(1-\lambda / 3)}$.
271. (а) Указание: Уравнение Фредгольма с вырожденным ядром сводится к системе алгебраических уравнении.

$$
\phi(x)=-x^{2}+\frac{\sqrt{\pi} / 2}{\sqrt{\pi / 2}-1} \exp \left(-x^{2}\right) .
$$

(б) $\phi(x)=-\frac{5 x^{2}}{3}$.
(в) $\phi(x)=x^{3}+\frac{\lambda / 6(1-\lambda / 2)}{\Delta} x^{2}+\frac{\lambda / 4(1+\lambda / 45)}{\Delta}$,

$$
\Delta=\frac{1}{45}\left(4 \lambda^{2}-54 \lambda+45\right) \neq 0
$$

(r) $\phi(x)=\exp (x)\left[1+\frac{\lambda}{\Delta}\left(1-\frac{\lambda}{12}+\frac{x}{2}\right)\right], \quad \Delta=1-\frac{4}{3} \lambda+\frac{\lambda^{2}}{12} \neq 0$.
272. $f(x)=\int_{0}^{1} G(x, y) f_{0}(y) d y$.
273. (а) Ядро $K\left(x, x^{\prime}\right)$ служит функцией Грина краевой задачи (a):

$$
u^{\prime \prime}=f_{0}(x), \quad u(0)=u(1)=0
$$

а функция $f(x)$ удовлетворяет тем же граничным условиям. Значит уравнение Фредгольма эквивалентно краевой задаче

$$
\phi^{\prime \prime}+\lambda \phi=f^{\prime \prime}(x)=2, \quad \phi(0)=\phi(1)=0 .
$$

Функция Грина такой краевой задачи построена в (а).

$$
\phi(x)=\frac{2}{k^{2}}\left[1-\cos k x-\frac{1-\cos k}{\sin k} \sin k x\right], \quad k=\sqrt{\lambda} \neq \pi n, \quad n=1,2, \ldots
$$

(б) Указание: Уравнение сводится к дифференциальному $\phi^{\prime \prime}+2 \phi=2 x$ с граничными условиями $\phi^{\prime}(-1)+\phi^{\prime}(1)=0, \phi(0)+\phi(1)=\phi^{\prime}(-1)-$ $\phi^{\prime}(1)$. Решение имеет вид

$$
\phi(x)=x-\frac{\sin \sqrt{2} x}{\sqrt{2} \cos \sqrt{2}} .
$$

274. $\phi(x)=\frac{\exp (-x)+\lambda /\left(1+4 x^{2}\right)}{1-\pi \lambda^{2} / 4}, \quad \lambda \neq \pm \frac{2}{\sqrt{\pi}}$.
275. У оператора нет собственных функций в классе $L^{2}(-\infty, \infty)$. Имеются решения на классе ненормируемых, но ограниченных функций:

$$
\lambda=\frac{1+k^{2}}{2}, \quad \phi(x)=\exp (i k x)
$$

Здесь $\operatorname{Im} k=0$, иначе решение не будет ограниченным на всей оси. Всякое действительное $\lambda \geqslant \frac{1}{2}$ является собственным значением.
276. Указание: Разделить переменные \boldsymbol{x} и \boldsymbol{t} и воспользоваться методом Фурье: разложить решение по найденным в задаче 254 собственным функциям.

$$
u(x, t)=\left[1+\left(-1+2 x^{2}\right) \exp \left(-\nu t\left(1-\alpha^{2}\right)\right)\right] \exp \left(-x^{2}\right) .
$$

277. (а) Указание: Уравнение Фредгольма-Урысона типа свертки решается преобразованием Фурье.

$$
\phi(x)= \pm \frac{2^{1 / 2}}{\pi^{1 / 4}} \exp \left(-2 x^{2}\right) .
$$

(б) Указание: Выполнить преобразование Лапласа и решить получившееся уравнение. Обратное преобразование дается контурным интегралом

$$
\begin{equation*}
\phi(x)= \pm \frac{1}{2 \pi i} \int_{C} \frac{\exp (\lambda x)}{\sqrt{1+\lambda^{2}}} d \lambda, \tag{8.54}
\end{equation*}
$$

где контур C охватывает точки ветвления $\pm i$. Деформируем его так, чтобы он проходил вдоль берегов разреза (рис.8.1). После замены $\lambda=i \sin \varphi$ (8.54) превращается в интегральное представление Бесселя.

$$
\phi(x)= \pm J_{0}(x) .
$$

Рис.8.1. Контур интегрирования аля обратного преобразования Лапласа можно замкнуть и деформировать в контур $С$. Разрез, соединяюший точки ветвления подынтегральной функиии, заштрихован
278. (a) Указание: Воспользовавшись тем же приемом, что и в задаче (а), можно свести задачу к квадратному уравнению. Ответ имеет вид

$$
\phi_{1}(x)=x, \quad \phi_{2}(x)=3 x .
$$

(6) $\phi(x)=\frac{1}{(1-x)} \cos x$.
279. Указание: Воспользоваться формулой теории возмущений для сдвига энергии $\delta E=-\langle\psi| \delta U|\psi\rangle$ для оператора Шрёдингера.
280. $\psi(k, x)=e^{i k x} \frac{i \kappa \operatorname{th} \kappa x+k}{i \kappa+k}$.
281. $a(k)=\frac{(k-i x)}{(k+i x)}$.

Глава 9

Группы и представления

9.1. Группы

Группой называется множество элементов $G=\{a, b, c, \ldots\}$ с бинарнои операцией. Бинарной операцией называется отображение, сопоставляющее двум элементам $g_{1}, g_{2} \in G$ элемент $g_{3} \in G$, который называется *произведением* g_{1} и g_{2}, а обозначается как $g_{3}=g_{1} g_{2}$. Причем выполняются следующие условия:
(a) (ab) $c=a(b c)$ (ассоцкативность);
(б) сушествует такой элемент 1 , что $1 a=a 1=a$ для любого $a \in G$ (существование единицы);
(в) для всякого элемента $a \in G$ существует такой элемент $a^{-1} \in G$, что $a^{-1} a=a a^{-1}=1$ (сушествование обратного элемента).
Группа, состоящая из конечного числа элементов, называется конечной. Мощность $|G|$ множества элементов группы G называется порядкан группы G. Подмножество H элементов группы G, само являющееся группой, называется подгруппой группы G. Если для любых элементов $g_{1}, g_{2} \in G$ имеет место равенство $g_{1} g_{2}=g_{2} g_{1}$, то такая группа называется абелевой или коммутативной. Порядком (периодом) элемента \boldsymbol{x} называется такое наименьшее натуральное число n, что $x^{n}=1$, если такое n найдется.

Отображение $\boldsymbol{G} \rightarrow \boldsymbol{H}$ элементов группы \boldsymbol{G} на элементы группы \boldsymbol{H} называется гомоморфизмом группы G на группу H, если оно сохраняет операцию, т.е. из $g_{1} \rightarrow h_{1}$ и $g_{2} \rightarrow h_{2}$ следует, что $g_{1} g_{2} \rightarrow h_{1} h_{2}$. Гомоморфизм группы G на группу \boldsymbol{H}, являюшийся взаимно однозначным отображением, называется изоморфизном группы G и группы H. Пусть дана группа G и подгруппа \boldsymbol{H}. Множество элементов вида $h x$, где h - любой элемент из H, а x - фиксированный элемент из G, называется правым смежным классом по \boldsymbol{H} н обозначается $\boldsymbol{H x}$. Аналогично, множество элементов вида $x h$, где опять h - любой элемент из H, называется левым смежным классом $x H$ по подгруппе H. Кардинальное число (мошность множества) r различных смежных классов называется индексом подгруппы H в группе \boldsymbol{G} и обозначается $r=|G: H|$. Пусть $\boldsymbol{H}, \boldsymbol{H} x_{2}, \ldots, H x_{r}$ - множество смежных классов, которые не пересекаются и исчерпывают всю группу, что обозначается как $\boldsymbol{G}=\boldsymbol{H}+\boldsymbol{H} \boldsymbol{x}_{2}+\ldots+\boldsymbol{H} \boldsymbol{x}_{\boldsymbol{r}}$.

Будем говорить, что элемент x группы G сопряжен с элементом y, если найдется такой $z \in G$, что $y=z^{-1} x z$. Множество элементов, сопряженных с x, называется классом сопряженных элементов σ, содержащим x. Подгруппа H группы G называется инвариантной подгруппой или нормальным делителем, если $\boldsymbol{x}^{-1} \boldsymbol{H} \boldsymbol{x}=\boldsymbol{H}$ для всех $\boldsymbol{x} \in \boldsymbol{G}$. Это обозначается $\boldsymbol{H} \triangleleft G$.

Пусть $T \triangleleft G$ и $G=T+T x_{2}+\ldots+T x_{r}$. В качестве элементов новой группы \bar{G} возьмем смежные классы $T x_{i}$. Определим произведение в \bar{G} формулой $\left(T x_{i}\right)\left(T x_{j}\right)=T x_{k}$, если $x_{i} x_{j} \in T x_{k}$ в G. Проверим, что произведение определено однозначно. Пусть $t_{1} x_{i} \in T x_{i}$ и $t_{2} x_{j} \in T x_{j}$. Тогда $t_{1} x_{i} t_{2} x_{j}=t_{1} x_{i} t_{2} x_{i}^{-1} \cdot x_{i} x_{j}=t_{3} x_{i} x_{j}$, так как $T \triangleleft G$. Но если $x_{i} x_{j} \in T x_{k}$, то $t_{3} x_{i} x_{j} \in T x_{k}$. Таким образом, все произведения элементов из $T x_{i}$ на элементы из $T x_{j}$ попадают в тот же смежный класс $T x_{k}$. Группа \bar{G} называется фактор-группой G по T и обозначается $\bar{G}=\frac{G}{T}$.

9.2. Представления

Будем называть представлением группы G любой гомоморфизм α группы G в некоторую группу \boldsymbol{W}. Матричным представлением степени (размерности) n группы G над полем комплексных чисел \mathbb{C} называется гомоморфизм $T: g \rightarrow T(g)$ группы G в подгруппу группы $G L(n, \mathbb{C})$, где $G L(n, \mathbb{C})$ - группа невырожденных матриц размерности n над полем комплексных чисел \mathbb{C}. Представление называется точным, если отображение α - изоморфизм. Матричное представление является точным, если из $T(g)=E$, где E - единичная матрица, следует, что g - единичный элемент.

Примерами матричного представления конечной группы могут служить единичное и регулярное представления. Единичное (тривиальное) представление получается, если все элементы группы отображаются в единицу, которая рассматривается как матрица размера 1×1. Пусть $G=\left\{g_{1}, \ldots, g_{n}\right\}$ - конечная группа порядка n, а $V-n$-мерное векторное пространство с базисом v_{1}, \ldots, v_{n}. Для того, чтобы определить еше одно матричное представление $T(g)$, поступим следуюшим образом: для каждого $i, 1 \leqslant i \leqslant n$ сушествует такое однозначно определенное число j, $1 \leqslant j \leqslant n$, что $g g_{i}=g_{j}$. Тогда положим $T(g) v_{i}=v_{j}$. Таким образом, $T(g)-$ матрица преобразования пространства V в базисе v_{1}, \ldots, v_{n}, переводящая i-й базисный вектор v_{i} в j-й базисный вектор v_{j}. Элемент в (j, i)-й клетке этой матрицы равен 1 , а остальные элементы i-го столбца и j-й строки матрицы $T(g)$ равны нулю. Отображение $g \rightarrow T(g)$ и называется регулярным представлением группы G.

Будем говорить, что два прелставления T и T^{\prime} эквивалентны, если сушествует такая матрица $S \in G L(n, \mathbb{C})$, что $T^{\prime}(g)=S^{-1} T(g) S$ для любого $g \in G$. Матричное представление $U: G \rightarrow G L(n, \mathbb{C})$ называется приводимым, если оно эквивалентно представлению T вида

$$
T(g)=\left(\begin{array}{cc}
T_{1}(g) & V(g) \tag{9.1}\\
0 & T_{2}(g)
\end{array}\right)
$$

где $T_{j}(g)$ матрица $r_{j} \times r_{j}(j=1,2), r_{1}+r_{2}=n$. В противном случае представление называется неприводимым. Если $V(g)$ - нулевая матрица, то представление называется впоане приводимым. Характером $\chi(g)$ представления Q группы G называется след $G: \chi(g)=\operatorname{Tr} Q(g)$. Характер неприводимого представления называется соответственно неприводимым характером.

Число неэквивалентных неприводимых представлений равно числу классов сопряженных элементов в G. Пусть $\sigma_{1}, \ldots, \sigma_{3}$ - множество классов сопряженных элементов, $D^{(1)}(g), \ldots, D^{(s)}(g)$ - матрицы всех неприводимых неэквивалентных представлений, $\chi^{\prime}(g), \ldots, \chi^{\prime}(g)$ - все неприводимые неэквивалентные характеры группы G. Тогда справедливо соотнощение ортогональности неприводимьх представлений

$$
\begin{gather*}
\sum_{g \in G} D_{i j}^{(\alpha) *}(g) D_{k l}^{(\beta)}(g)=\frac{|G|}{n_{\alpha}} \delta_{\alpha \beta} \delta_{i k} \delta_{j l}, \tag{9.2}\\
\alpha, \beta=1, \ldots, s, \quad i, j=1, \ldots, n_{\alpha}, \quad k, l=1, \ldots, n_{\beta},
\end{gather*}
$$

где n_{a} - размерность представления $D^{(a)}(g), s$ - количество различных неприводимых представлений группы G.

Рассмотрим какое-нибудь представление, тогда характеры элементов $\chi\left(g^{\prime}\right)$, входящих в один класс сопряженных элементов $g^{\prime} \in \sigma^{\prime}$, равны между собой, что можно записать в виде $\chi\left(g^{\prime}\right)=\chi\left(\sigma^{\prime}\right)$. Напишем таблицу характеров группы G

	σ_{1}	\ldots	σ_{s}
$\chi^{\prime}(g)$	χ_{1}^{1}	\ldots	χ_{s}^{1}
\ldots	\ldots	\cdots	\ldots
$\chi^{3}(g)$	χ_{1}^{3}	\ldots	χ_{s}^{s}

Для строх этой таблицы справедливо соотношение ортоzональности характеров, являющееся следствием (9.2):

$$
\begin{equation*}
\sum_{i=1}^{s} h_{i} \chi^{\alpha *}\left(\sigma_{i}\right) \chi^{\beta}\left(\sigma_{i}\right)=|G| \delta_{\alpha \beta}, \tag{9.3}
\end{equation*}
$$

где h_{i} - число элементов в классе σ_{i}. При этом столбцы таблицы (которую можно рассматривать как квадратную матрицу) также ортогональны между собой, т.е.

$$
\begin{equation*}
\sum_{\alpha=1}^{s} \chi^{\alpha *}\left(\sigma_{i}\right) \chi^{\alpha}\left(\sigma_{j}\right)=\frac{|G|}{h_{i}} \delta_{i j} . \tag{9.4}
\end{equation*}
$$

Поскольку характер единичного элемента группы равен размерности представления $\chi^{(\kappa)}(1)=n_{\sigma}$, то для $n_{\boldsymbol{q}}$ справедлива формула

$$
\begin{equation*}
\sum_{\alpha=1}^{2} n_{a}^{2}=|G|, \tag{9.5}
\end{equation*}
$$

связываюная размерности представлений и порядок группы.
Произвольное представление $T(g)$ конечной группы G можно разложить в прямую сумму неприводимых представлений $T(g)=c_{1} T^{(1)}(g) \oplus$ $c_{2} T^{(2)}(g) \oplus \ldots \oplus c_{s} T^{(s)}(g)$. Числа c_{α} показывакт, сколько раз неприводимое представление $T^{(a)}$ встречается в $T(g)$. Другими словами, существует базис, в котором матрица приводится к блочно-диагональному виду, причем блок $T^{(1)}(g)$ встречается c_{1} раз, блок $T^{(2)}(g)-c_{2}$ раз и т. д. Коэффициенты разложения c_{α} находятся с помощью соотношения ортогональности характеров (9.3):

$$
c_{\alpha}=\frac{1}{|G|} \sum_{i} h_{i} \chi^{*}\left(\sigma_{i}\right) \chi^{\alpha}\left(\sigma_{i}\right)=\left\langle\chi^{*}(g) \chi^{\alpha}(g)\right\rangle .
$$

Здесь $\chi(g)$ - характер представления $T(g)$, а 〈...〉 означает усреднение по группе.

Основы теории групп и представлении изложены с доказательствами в [Хол62, Сми74а].

9.3. Примеры

283. Построить изоморфизм группы симметрий треугольника D_{3} и группы подстановок трех элементов:

$$
S_{3}=\left\{\left(\begin{array}{ccc}
1 & 2 & 3 \\
i_{1} & i_{2} & i_{3}
\end{array}\right)\right\} .
$$

Репенне. Занумеруем вершины треугольника против часовой стрелки цифрами $1,2,3$ (рис.9.1). Пусть p поворот на 120° против часовой стрелки, c - поворот, переставляюший вершины I и 3 и оставлякшей вершину 2 на месте. Тогда

$$
\begin{array}{lll}
p \rightarrow\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right) & p^{2} \rightarrow\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right) & c \rightarrow\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right) \\
p c \rightarrow\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right) & p^{2} c \rightarrow\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right) & 1 \rightarrow\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right) .
\end{array}
$$

Легко убедиться, что построенное отображение является изоморфизмом.
284. Доказать, что два левых (правыхх) смежньх класса группы G по H или не пересекаются, или совпадают.

Решение. Если $\boldsymbol{H} \boldsymbol{x}$ и $\boldsymbol{H y}$ не имеют общих элементов, то нечего доказывать. Поэтому пусть $z \in H x$ и $z \in H y$. Тогда $z=h_{1} x=h_{2} y$. Отсюда $x=h_{1}^{-1} h_{2} y$ и $h x=h h_{1}^{-1} h_{2} y=h^{\prime} y$. Поэтому $H x \subseteq H y$. Аналогично $H y \subseteq$ $\boldsymbol{H x}$. Значит, $\boldsymbol{H} \boldsymbol{x}=\boldsymbol{H} \boldsymbol{y}$.
285. Пусть G - конечная группа, \boldsymbol{H} - подгруппа группы G. Доказать, что $|\boldsymbol{G}|=|\boldsymbol{H}| \cdot|\boldsymbol{G}: \boldsymbol{H}|$.

Решение. $G=\boldsymbol{H}+\boldsymbol{H} \boldsymbol{x}_{2}+\ldots+\boldsymbol{H} \boldsymbol{x}_{r}$, смежные классы $\boldsymbol{H} \boldsymbol{x}_{i}$ и $\boldsymbol{H} \boldsymbol{x}_{j}$ содержат одинаковое число элементов, равное $|\boldsymbol{H}|$, а число r различных смежных классов и есть $|\boldsymbol{G}: \boldsymbol{H}|$.

286.

(а) Пусть $C_{G}(x)$ - множество элементов группы G, перестановочных с $x \in G$. Доказать, что тогда $C_{G}(x)$ - подгруппа группи G.
(б) Пусть C_{i} некоторый класс сопряэсенных элементов, $x \in C_{i}$. Тоzда мощность $\left|C_{i}\right|$ множества элементов в классе C_{i} равна индексу $\left|G: C_{G}(x)\right|$ подгруппы $C_{G}(x)$.

Решение. Пусть $C=C_{G}(x)$ и элементы, сопряженные с x с помощью $g_{1}, g_{2} \in G$, равны, т.е. $g_{1}^{-1} x g_{1}=g_{2}^{-1} x g_{2}$. Обозначим $c=g_{1} g_{2}^{-1}$, тогда

$$
c^{-1} x c=g_{2} g_{1}^{-1} x g_{1} g_{2}^{-1}=x \Rightarrow x c=c x .
$$

Значит $c \in C \Rightarrow C g_{1}=C g_{2}$, т.е. g_{1}, g_{2} лежат в одном правом смежном классе G по C.

Пусть g_{1}, g_{2} лежат в одном правом смежном классе группы G по подrpynne C, т.е.

$$
C g_{1}=C g_{2} \Rightarrow c=g_{1} g_{2}^{-1} \in C
$$

Тогда

$$
x=c^{-1} x c=\left(g_{1} g_{2}^{-1}\right)^{-1} x g_{1} g_{2}^{-1} \Rightarrow g_{1}^{-1} x g_{1}=g_{2}^{-1} x g_{2}
$$

т.е. элементы, сопряженные x с помошью g_{1}, g_{2}, равны. Таким образом, число различных элементов, сопряженных с элементом x, равно числу правых смежных классов группы G по подгруппе C.
287. Найти порядок группы симметрий куба.

Решение. Пронумеруем вершины куба. Симметриями, порождаюшими группу, являются два врашения вокруг осей третьего и четвертого порядка (рис. 9.2) и отражение.

$$
\begin{aligned}
& a=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
2 & 3 & 4 & 1 & 6 & 7 & 8 & 5
\end{array}\right) \\
& b=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
1 & 4 & 8 & 5 & 2 & 3 & 7 & 6
\end{array}\right) \\
& c=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
5 & 6 & 7 & 8 & 1 & 2 & 3 & 4
\end{array}\right)
\end{aligned}
$$

$n=2$

Рис.9.2. Элементы симметрии куба: оси второго, третьего и четвертого порядков

Элементы a и b порождают группу G_{1}, отображающие каждую вершину в любую другую. Это видно из диаграммы

$$
1 \xrightarrow{a} 2 \xrightarrow{a} 3 \xrightarrow{G} 4 \xrightarrow{b} 5 \xrightarrow{a} 6 \xrightarrow{a} 7 \xrightarrow{a} 8 .
$$

Здесь $i \xrightarrow{x} j$ означает, что элемент x переводит i в j. Элементы, оставляющие I на месте, образуют подгруппу H_{1} группы G_{1}, и мы можем разложить \boldsymbol{G}_{1} по \boldsymbol{H}_{1} :

$$
G=H_{1}+H_{1} x_{2}+H_{1} x_{3}+H_{1} x_{4}+H_{1} x_{5}+H_{1} x_{6}+H_{1} x_{7}+H_{1} x_{8} .
$$

Поскольку все элементы класса $H_{1} x_{i}$ переводят I в вершину i, а вершин всего 8 , то здесь выписаны все смежные классы по H_{1} и $\left|G_{1}: H_{1}\right|=8$. Очевидно, что $H_{1}=\left\{e, b, b^{2}\right\}$, где e - тождественное отображение. Поэтому $\left|G_{1}\right|=\left|H_{1}\right| \cdot\left|G: H_{1}\right|=3 \cdot 8=24$. Отображение c не содержится в G_{1}, но так как $c^{2}=1, c a=a c, c b=a^{2} b a^{2} c$, мы видим, что $G=G_{1}+G_{1} c$, поэтому $|G|=48$.
288. Показать, что подгруппа индекса 2 - инвариантная подгруппа.

Решение. Если $G=H+H x$, то $G=H+\boldsymbol{H} \boldsymbol{H}$. Следовательно, $\boldsymbol{H} \boldsymbol{x}=\boldsymbol{x} \boldsymbol{H}$.
289. Показать, что:
(а) характер является функцией класса сопряженных элементов, т.е. характеры сопряженных элементов равны;
(б) эквивалентные представления имеют равнье характеры.

Решение. Если A - матрица $n \times n$, то ее характеристический многочлен равен

$$
f(\lambda)=|A-\lambda E|=(-1)^{n}\left[\lambda^{n}-a_{1} \lambda^{n-1}+\ldots+(-1)^{n} a_{n}\right]
$$

где $a_{1}=\operatorname{Tr} A$. Пусть T - невырожденная матрица, тогда $\left|T^{-1} A T-\lambda E\right|=$ $\left|T^{-1}(A-\lambda E) T\right|=\left|T^{-1}\right| \cdot|A-\lambda E| \cdot|T|=|A-\lambda E|$. Таким образом, матрицы \boldsymbol{A} и $T^{-1} A T$ имеют один и тот же характеристический многочлен и тем более один и тот же след. Поэтому матрицы $T\left(g_{1}^{-1} g g_{1}\right)=T^{-1}\left(g_{1}\right) T(g) T\left(g_{1}\right)$ и $T(g)$ имеют равные следы, т.е.

$$
\chi\left(g_{1}^{-1} g g_{1}\right)=\chi(g)
$$

290. Показать, что всякое преставление конечной группы эквивалентно унитарному (представление унитарно, если его матрицв унитарны).

Ремение. Пусть $T(g), g \in G$ - комплексное представление степени π конечной группы G и пусть $g_{1}=1, g_{2}, \ldots, g_{t}$ - элементы группы G. Тогда

$$
M=E+T^{\dagger}\left(g_{2}\right) T\left(g_{2}\right)+\ldots+T^{\dagger}\left(g_{i}\right) T\left(g_{i}\right)
$$

- положительно определенная эрмитова матрица, так как каждое слагаемое в отдельности есть положительно определенная эрмитова матрица.

Заметим, что для любого $g \in G$

$$
\begin{align*}
T^{\prime}(g) M T(g) & =\sum_{i=1}^{t} T^{\dagger}(g) T^{\dagger}\left(g_{i}\right) T\left(g_{i}\right) T(g)= \tag{9.6}\\
& =\sum_{i=1}^{t} T^{\dagger}\left(g_{i} g\right) T\left(g_{i} g\right)=\sum_{i=1}^{t} T^{\dagger}\left(g_{i}\right) T\left(g_{i}\right)=M
\end{align*}
$$

В курсе линейной алгебры доказывается, что для любой положительно определенной эрмитовой матрииы M сушествует такая невырожденная матрица C, что $C^{\dagger} M C=E$. Отсюда получаем $M=\left(C^{-1}\right)^{\dagger} C^{-1}$. Подставляя это выражение для M в тождество (9.6), получаем

$$
T^{\dagger}(g)\left(C^{-1}\right)^{\dagger} C^{-1} T(g)=\left(C^{-1}\right)^{\dagger} C^{-1}
$$

откуда

$$
\left(C^{-1} T(g) C\right)^{\dagger}\left(C^{-1} T(g) C\right)=E
$$

поэтому препставление $T^{\prime}(g)=C^{-1} T(g) C$ унитарно.
291. Написать таблииу характеров группы D_{3}.

Решение. Группа D_{3} имеет три класса сопряженных элементов:

$$
\sigma_{1}=\{1\}, \quad \sigma_{2}=\left\{p, p^{2}\right\}, \quad \sigma_{3}=\left\{c, p c, p^{2} c\right\} .
$$

Поэтому сушествует три неприводимых представления группы S_{3} размерности n_{1}, n_{2} и n_{3}. Пользуясь формулой (9.5), получаем

$$
n_{1}^{2}+n_{2}^{2}+n_{3}^{2}=\left|D_{3}\right|=6
$$

Это равенство выполняется только, если $n_{1}=1, n_{2}=1, n_{3}=2$. Группа S_{3} имеет два одномерных представления, которые можно отождествить с их характерами:
a) тривиальное представление $\chi^{1}(g)=1$ - гомоморфизм группы S_{3} на группу, состоящую из одного элемента;
6) представление $\chi^{2}(g)= \pm 1$ - гомоморфизм группы S_{3} на группу $\{1,-1\}$, ядром которого является подгруппа, порожденная поворотом на $\frac{2 \pi}{3}$. Т.е., если $p-$ поворот на $\frac{2 \pi}{3}$, то $1, p, p^{2} \rightarrow 1$, а $c, p c, p^{2} c \rightarrow-1$. Из ортогональности столбцов таблицы характеров (9.3) получим

	σ_{1}	σ_{2}	σ_{3}
χ^{1}	1	1	1
χ^{2}	1	1	-1
χ^{3}	2	-1	0

9.4. Задачи

292. Показать, что в любой группе ($a b)^{-1}=b^{-1} a^{-1}$ и вообще

$$
\left(a_{1} a_{2} \ldots a_{n-1} a_{n}\right)^{-1}=a_{n}^{-1} a_{n-1}^{-1} \ldots a_{2}^{-1} a_{1}^{-1}
$$

293. Показать, что аи а ${ }^{-1}$ - элементы равных порядков.
294. Показать, что если элементы x и y сопряжены, то они имеют равные порядки.
295. Показать, что элементы $a b$ и $b a$ имеют равные порядки.
296. Показать, что преобразования симметрии равностороннего треугольника образуют группу. Построить таблицу умножения. Найти подгруппы.
297. Пусть G - группа, \boldsymbol{H} - подгруппа \boldsymbol{G}. Доказать, что множество правых смежных классов равномошно множеству левых смежных классов.
298. Показать, что
(a) элемент x группы G сопряжен сам с собой;
(б) если x сопряжен с y, то y сопряжен с x;
(в) если x сопряжен с y, а y сопряжен с z, то x сопряжен с z;
(г) группа G есть объединение непересекающихся классов сопряженных элементов:

$$
G=C_{1}+\ldots+C_{s} .
$$

299. Показать, что единственной конечной группой с двумя классами сопряженных элементов является группа порядка 2.
300. Показать, что в группе преобразований пространства повороты на угол φ вокруг двух осей сопряжены, если в группе существует преобразование, переводяшее одну ось в другую.
301. Показать, что повороты вокруг одной и той же оси $O O^{\prime}$ на углы φ и $-\varphi$ сопряжены, если:
(a) имеется ось второго порядка, перпендикулярная $O O^{\prime}$;
(б) имеется зеркальная плоскость, проходящая через ось OO^{\prime}.
302. Найти классы сопряженных элементов для следующих групп симметрии:
(a) равностороннего треугольника;
(б) квадрата;
(в) правильного тетраэдра.
303. Подгруппа \boldsymbol{H} в G инвариантна тогда и только тогда, когда каждый левый смежный класс $H x$ есть также и правый смежный класс $\boldsymbol{x H}$.
304. Пусть \boldsymbol{H} - гомоморфный образ группы G. Рассмотрим множество T элементов $t \in G$, отображающихся на единицу группы H. Показать, что T - инвариантная подгруппа в G.
305. Показать, что группа симметрий куба гомоморфна группе подстановок трех символов.
306. Доказать, что если порядок конечной группы не простое число, то группа имеет нетривиальные*) подгрупны.
307. Множество элементов $Z(G)$, перестановочных со всеми элементами группы G, называется центром груплы G. Доказать, что если $\frac{G}{Z(G)}$ - циклическая группа, то $G-$ абелева группа.
308. Доказать, что все неприводимые представления абелевой группы одномерны.
309. Пусть G - группа симметрии квадрата.
(a) Показать, что эта группа порождается двумя элементами симметрии a и b, которые удовлетворяют соотношениям $a^{4}=1, b^{2}=1,(a b)^{2}=1$.

[^10](б) Пусть матрицы $T(a)$ и $T(b)$ такие, что
\[

$$
\begin{equation*}
[T(a)]^{4}=E, \quad[T(b)]^{2}=E, \quad[T(a) T(b)]^{2}=E . \tag{9.7}
\end{equation*}
$$

\]

Тогда, очевидно, отображение $a^{i} b^{j} \rightarrow[T(a)]^{i}[T(b)]^{j}$ задает представление группы G. Привести примеры матриц, которые уповлетворяют условиям (9.7).
310. Пусть $\boldsymbol{T}(\boldsymbol{G})$ - представление конечной группы матрицами над \mathbb{C}. Показать, что тогда:
(a) характер $\chi(g)$ равен сумме корней из единицы;
(б) $\chi\left(g^{-1}\right)=\chi(g)^{*}$.
311. Показать, что представление фактор-группы $\frac{G}{H}(H \triangleleft G)$ является и представлением G.
312. Разложить трехмерное представление группы S_{3}, матрицы которого получаются из единичной перестановками строк, на неприводимые представления.
313. Задать регулярное представление группы S_{3}.
314. Разложить регулярное представление группы S_{3} на неприводимые.

9.5. Ответы

295. Указание: Они сопряжены.
296. Воспользуемся обозначениями задачи 283. Тогда таблица умножения группы треугольника имеет следующий вид:

	1	p	p^{2}	c	$p c$	$p^{2} c$
1	1	p	p^{2}	c	$p c$	$p^{2} c$
p	p	p^{2}	1	$p c$	$p^{2} c$	c
p^{2}	p^{2}	1	p	$p^{2} c$	c	$p c$
c	c	$p^{2} c$	$p c$	1	p^{2}	p
$p c$	$p c$	c	$p^{2} c$	p	1	p^{2}
$p^{2} c$	$p^{2} c$	$p c$	c	p^{2}	p	1

В группе треугольника имеется четыре подгруппы, отличных от единичной и всей группы: $\boldsymbol{H}_{1}=\left\{1, p, \boldsymbol{p}^{2}\right\}, \boldsymbol{H}_{2}=\{1, c\}, H_{3}=\{1, p c\}$, $H_{4}=\left\{1, p^{2} c\right\}$.
297. Указание: Классу $\boldsymbol{g} \boldsymbol{H}$ ставим в соответствие $(\mathrm{gH})^{-1}=\mathrm{Hg}^{-1}$.
299. Указание: Пусть $\sigma_{1}=1$ и σ_{2} - классы сопряженных элементов группы G. Тогда $G=\sigma_{1}+\sigma_{2}$. Если $|G|=n$ и $\left|\sigma_{2}\right|=m$, то $n=1+m$, причем m делит нацело n (задача (б)).
305. Указание: Пусть x, y, z - три прямые, соединяюшие центры противоположных граней куба. Тогда симметрии куба индуцируют группу подстановок множества (x, y, z).
306. Указание: Пусть $g \in G$ и $g \neq 1$. Рассмотрите подгруппу, состояшую из всех степеней элемента $g: 1, g, g^{2}, \ldots$
308. Указание: Рассмотрим векторное пространство V, на котором абелева группа G реализована как группа линейных преобразовании. Пусть $g \in G$ и $g \neq 1$, тогда подпространство собственных векторов элемента g, отвечаюших некоторому собственному значению λ, явпяется G-инвариантным подпространством, а значит совпадает с V. Преобразованию g соответствует матрица, пропорциональная единичнои.
309. (б) Приведем пример точного неприводимого матричного представления группы квапрата:

$$
T(a)=\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right), \quad T(b)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad T(a b)=\left(\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right) .
$$

312. $T(g)=T^{(1)}(g) \oplus T^{(3)}(g)$.
313. $T\left(\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 3\end{array}\right)\right)=\left(\begin{array}{cccccc}0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0\end{array}\right)$,

$$
T\left(\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right)\right)=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right) .
$$

314. $T(g)=T^{(1)}(g) \oplus T^{(2)}(g) \oplus 2 T^{(3)}(g)$.

Глава 10

Непрерывные группы

10.1. Группы и алгебры Ли

Рассмотрим группу линейных преобразований, элементы матриц которых являются аналитическими функциями вещественных параметров. Пусть $g\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}\right)$ - элемент нашей группы G. Параметры $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}\right)$ выбираются таким образом, что сушествует взаим-но-однозначное соответствие между окрестностью начала координат в \boldsymbol{r}-мерном пространстве параметров и окрестностью единичного элемента группы. Причем нулевому набору параметров соответствует единица группы. Если

$$
g\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}\right) g\left(\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{r}^{\prime}\right)=g\left(\alpha_{1}^{\prime \prime}, \alpha_{2}^{\prime \prime}, \ldots, \alpha_{r}^{\prime \prime}\right)
$$

то

$$
\alpha_{k}^{\prime \prime}=\phi_{k}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r} ; \alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{r}^{\prime}\right), \quad k=1, \ldots, r .
$$

Если функции ϕ_{k} бесконечно дифференцируемы по всем аргументам, то такие группы принадлежат к классу груnn Ли. Число параметров r называется размерностью группы \boldsymbol{G}.

Алгеброй Ли называется линейное пространство L, снабженное операцией, называемой скобкой Ли (коммутированием) и обозначаемой $[x, y]$, для которой вылолняются следующие условия ($x, y, z \in L, a \in \mathbb{C}$):

1) $[a x+y, z]=a[x, z]+[y, z]$ (линейность);
2) $[x, y]=-[y, x]$ (антисимметричность);
3) $[x,[y, z]]+[z,[x, y]]+[y,[z, x]]=0$ (тождество Якоби).

Примерами скобок Ли могут служить операции коммутирования квадратных матриц, скобки Пуассона и векторное произведение векторов из \mathbb{R}^{3}.

Рассмотрим матричную реализацию группы G линейных преобразований, имеюшую матричные элементы $g_{i k}=g_{i k}\left(\alpha_{1}, \ldots, \alpha_{r}\right)$. Введем в рассмотрение производные от этих матриц по параметрам α_{l} в точке нуль, т. е. рассмотрим матрицы I_{I} с элементами

$$
\left(I_{l}\right)_{i k}=\left(\frac{\partial g_{i k}}{\partial \alpha_{l}}\right)_{a_{1}=a_{2}=\ldots=\alpha_{r}=0} .
$$

Матрицы I_{i} называются инфинитезимальными операторами (генераторами) группы G. Коммутатор $\left[I_{k}, I_{s}\right]=I_{k} I_{s}-I_{s} I_{k}$ является линейной комбинацией матриц I_{l}

$$
\left[I_{k}, I_{s}\right]=\sum_{l} c_{k+1} I_{l}
$$

Линейная оболочка генераторов группы образует алгебру Ли L, поскольку введенный коммутатор удовлетворяет свойствам 1-3 скобки Ли. Эта алгебра называется алгеброй Ли группы Ли. Коэффициенты $c_{k \neq 1}$ называются структурнвкии константами алгебры Ли L группы Ли G.

Группу Ли можно восстановить по ее алгебре Ли однозначно, если группа Ли связна и односвязна (многообразие называется односвязным, если каждая замкнутая кривая может быть непрерывно стянута в точку). Так, для восстановления однопараметрической группы справедливо экспоненциальное отображение:

$$
\exp (\theta I)=1+\theta I+\frac{1}{2!} \theta^{2} I^{2}+\ldots
$$

10.2. Представления группы вращений

Представлением группы Ли G называется гомоморфизм G в группу преобразований $T(g)$ линейного пространства V. Представление группы Ли в векторном пространстве V называется приводимым, если V содержит инвариантное относительно G подпространство, отличное от V и нулевого подпространства.

Линейное пространство представления может быть и бесконечномерным, например, гильбертовым, или таким пространством, пополнение которого - гильбертово пространство. Обозначим \mathcal{F} пространство бесконечно дифференцируемых функций $f(x), x \in \mathbb{R}^{3}$, заданных на сфере. Каждому элементу $g \in S O(3)$ поставим в соответствие линейное преобразование

$$
\begin{equation*}
T(g): f(x) \rightarrow f^{\prime}(x)=f\left(g^{-1} x\right) \tag{10.1}
\end{equation*}
$$

отображаюшее пространство \mathcal{F} на себя. Формула (10.1) определяет действие элемента группы на функиию. Если за преобразованием $T\left(g_{1}\right)$ следует новое преобразование $T\left(g_{2}\right)$, а именно

$$
T\left(g_{2}\right): f^{\prime}(x) \rightarrow f^{\prime \prime}(x)=f^{\prime}\left(g_{2}^{-1} x\right)
$$

то результатом будет композиция

$$
T\left(g_{2}\right) T\left(g_{1}\right): f(x) \rightarrow f^{\prime \prime}(x)=f^{\prime}\left(g_{2}^{-1} x\right)=f\left(g_{1}^{-1}\left(g_{2}^{-1} x\right)\right)=f\left(\left(g_{2} g_{1}\right)^{-1} x\right)
$$

Таким образом, $T\left(g_{2}\right) T\left(g_{1}\right)=T\left(g_{2} g_{1}\right)$. Поэтому соответствие $g \rightarrow T(g)$ является представлением группы $S O(3)$ на бесконечномерном пространстве функиий.

Для определения неприводимых представлений группы вращений $S O(3)$ достаточно рассмотреть ее алгебру so(3), генераторы которой (см. задачу (а)) удовлетворяют коммутационным соотношениям

$$
\left[J_{a}, J_{\beta}\right]=i \varepsilon_{\alpha \beta \gamma} J_{\gamma}
$$

где $J_{a}-$ с точностью до множителя i инфинитезимальные операторы поворота вокруг оси $\boldsymbol{\alpha}$. В квантовой механике оператор J называют оператором момента. Поскольку по алгебре Ли может быть восстановлена группа, то для выделения неприводимых представлений достаточно рассмотреть соответствующие представления алгебры. Эта задача сводится к нахождению спектра оператора момента J^{2} и его собственных векторов. Каждое неприводимое представление задается собственным значением $j(j+1)$ оператора J^{2}. Размерность неприводимого представления равна $2 j+1$ - числу (при заданном j) возможных проекций момента на ось квантования (z).

Пусть V и U - конечномерные векторные пространства над полем \mathbb{C} размерности m и n соответственно. Пусть $\left\{v_{i}\right\}$ и $\left\{u_{i}\right\}$ - базисы пространств V и U соответственно. Для любых $v \in V, u \in U$ рассмотрим множество конечных сумм формальных произведений вида $v \otimes u$ со следующими свойствами:

$$
\begin{aligned}
& v \otimes\left(u^{\prime}+u^{\prime \prime}\right)=v \otimes u^{\prime}+v \otimes u^{\prime \prime}, \\
& \left(v^{\prime}+v^{\prime \prime}\right) \otimes u=v^{\prime} \otimes u+v^{\prime \prime} \otimes u, \\
& \lambda(v \otimes u)=(\lambda v) \otimes u=v \otimes(\lambda u), \quad \lambda \in \mathbb{C} .
\end{aligned}
$$

Построенное таким образом множество является векторным пространством, натянутым на $m \times n$ базисных векторов $v_{i} \otimes u_{j}=\boldsymbol{w}_{i j}$, где $i=$ $1, \ldots, m, \quad j=1, \ldots, n$. Оно называется тензорным произведением пространств \boldsymbol{V} и \boldsymbol{U} и обозначается $\boldsymbol{W}=\boldsymbol{V} \otimes \boldsymbol{U}$. Если \boldsymbol{V} и \boldsymbol{U} - пространства со скалярным произведением (.,.), то скалярное произведение в $V \otimes U$ может быть определено формулой

$$
\left(v_{1} \otimes u_{1}, v_{2} \otimes u_{2}\right)=\left(v_{1}, v_{2}\right)\left(u_{1}, u_{2}\right) .
$$

Введем понятие тензорного (прямого) произведения матриц. Пусть имеется две квадратные матрицы $T=\left\|t_{i j}\right\|$ и $R=\left\|r_{i j}\right\|$ порядка n и m соответственно. Прямым произведением матрицы T на матрицу \boldsymbol{R} является квадратная матрица порядка $n \times m$, имеющая следующий вид:

$$
T \otimes R=\left(\begin{array}{cccc}
t_{11} R & t_{12} R & \ldots & t_{1 n} R \\
t_{21} R & t_{22} R & \ldots & t_{2 n} R \\
\ldots \ldots & \ldots & \ldots & \ldots \\
t_{n 1} R & t_{n 2} R & \ldots & t_{n n} R
\end{array}\right)
$$

Заметим, что $\operatorname{Tr}(T \otimes R)=\operatorname{Tr} T \cdot \operatorname{Tr} R$.
Пусть заданы представления $T(g)$ и $T^{\prime}(g)$ группы $G, g \in G$, т. е. каждому элементу g группы G соответствует линейный оператор $T(g)$

пространства V и линейный оператор $T^{\prime}(g)$ пространства U, причем $T\left(g_{1} g_{2}\right)=T\left(g_{1}\right) T\left(g_{2}\right)$ и $T^{\prime}\left(g_{1} g_{2}\right)=T^{\prime}\left(g_{1}\right) T^{\prime \prime}\left(g_{2}\right)$ для любых элементов g_{1} и g_{2} из G. Определим тензорное (прямое) произведение представлений группы. Выберем базисы пространства V и пространства U : $V=\left\langle v_{1}, v_{2}, \ldots, v_{n}\right\rangle, \quad U=\left\langle u_{1}, u_{2}, \ldots, u_{m}\right\rangle$. Пусть в этих базисах оператору $T(g)$ соответствует матрица $D(g)$, а оператору $T^{\prime}(g)$ соответствует матрица $D^{\prime}(g)$, т. е.:

$$
T(g) v_{i}=\sum_{j=1}^{n} D_{j i}(g) v_{j}, \quad T^{\prime}(g) u_{k}=\sum_{i=1}^{m} D_{i k}(g) u_{j}
$$

Определим линейные операторы $T^{\prime \prime}(g)$, действуюшие в пространстве $V \otimes U$ формулой:

$$
\begin{aligned}
T^{\prime \prime}(g)\left(v_{i} \otimes u_{k}\right) & =T(g) v_{i} \otimes T^{\prime}(g) u_{k}= \\
& =\sum_{j} D_{j i}(g) v_{j} \otimes \sum_{l} D_{l k}^{\prime}(g) u_{i}=\sum_{j, l} D_{j i}(g) D_{l k}^{\prime}(g)\left(v_{j} \otimes u_{l}\right)
\end{aligned}
$$

Легко проверить, что матрица, соответствуюшая оператору $T^{\prime \prime}(g)$, есть прямое произведение матрии $D(g) \otimes D^{\prime}(g)$. Это и есть прямое (тензорное) произведение представлений группы. Прямое произведение представлений может быть разложено на неприводимые представления (задача Клебша-Гордана). Для группы $S O$ (3) эта задача соответствует квантовомеханической задаче сложения моментов.

Пусть $D^{\left({ }_{1}\right)}$ и $D^{\left(j_{2}\right)}$ - два неприводимых представления группы вращения со значениями момента j_{1} и j_{2} соответственно. Tогда прямое произведение представлений $D^{\left(j_{1}\right)} \otimes D^{\left(j_{2}\right)}$ разлагается на неприводимые представления в виде (см. задачу 334):

$$
\begin{equation*}
D^{\left(j_{1}\right)} \otimes D^{\left(j_{2}\right)}=D^{\left(j_{1}+j_{2}\right)} \oplus D^{\left(j_{1}+j_{2}-1\right)} \oplus \ldots \oplus D^{\left(j_{1}-j_{2} \mid\right)} \tag{10.2}
\end{equation*}
$$

Это и есть разложение Клебша-Гордана для группы $S O(3)$.
Из разложения (10.2) следует, что базисы представлений $D^{(J)}:|J M\rangle$ $(-J \leqslant M \leqslant J)$, могут быть разложены по базису прямого произведения представлений $\left|j_{1} m_{1}\right\rangle \otimes\left|j_{2} m_{2}\right\rangle$:

$$
\left|J M, j_{1} j_{2}\right\rangle=\sum_{m_{1}+m_{2}=M} C_{j_{1} m_{1} j_{2} m_{2}}^{J M}\left|j_{1} m_{1}\right\rangle \otimes\left|j_{2} m_{2}\right\rangle
$$

Коэффиииенты разложения $C_{j_{1} m_{1} j_{2} m_{2}}^{J M}$ называются коэффициентами Клеб-ша-Гордана.

Пусть имеется матричное представление размерности n группы G, т. е. каждому элементу g группы соответствует матрица $D_{i k}(g)$. Набор чисел $T=T_{i, i_{2} \ldots,}, T_{i_{1} \ldots, i,} \in \mathbb{C}, i_{k}=1, \ldots, n, k=1, \ldots, r$, называется тензором ранга r относительно группы G. если T преобразуется по закону:

$$
\begin{equation*}
T_{i_{1} i_{2} \ldots i_{r}}^{\prime}=D_{i, k_{1}}(g) D_{i, k_{2}}(g) \ldots D_{i, k_{r}}(g) T_{k_{i} k_{2} \ldots k_{r}} \tag{10.3}
\end{equation*}
$$

(Здесь по повторяющимся индексам подразумевается суммирование.) Числа $T_{i, i_{2} \ldots i,}$, называются компонентами (координатами) тензора. Множество всех тензоров данного ранга r образуют векторное пространство размерности \boldsymbol{n}^{r}. Тензор T называется инвариантным относительно действия группы G, если его компоненты не меняются под действием преобразований из группы G. Заметим, что инвариантный тензор имеет столько независимых компонент, сколько раз входит единичное представление в разложение тензорного произведения представлений группы.

Важным свойством тензоров является тот факт, что операция перестановки индексов коммутирует с действием группы G. Пусть S_{r} группа подстановок r символов. Эта группа состоит из элементов вида

$$
\sigma=\left(\begin{array}{cccc}
1 & 2 & \ldots & r \tag{10.4}\\
i_{1} & i_{2} & \ldots & i_{r}
\end{array}\right) .
$$

Каждая перестановка определяет линейное преобразование пространства тензоров ранга r в соответствии с формулой $\sigma T_{a_{1} \alpha_{2} \ldots a_{r}}=T_{a_{t_{1}} \alpha_{a_{2}} \ldots \alpha_{\alpha_{r}}}=$ $T_{\alpha_{\sigma(1)} \ldots \alpha_{(r)}}$. Эти линейные преобразования, соответствующие группе S_{r}, коммутируют с действием группы G. Тензор $T=T_{i_{1} i_{2}}$..i, называется симметричным, если $s T=T$ для любой подстановки $s \in S_{r}$ и кососимметричным, если для нечетных подстановок s выполняется $s T=-T$, а для четных $s T=T$. Таким образом, симметричные тензоры являются собственными векторами любой подстановки из S_{r}, отвечаюшими собственному значению I. Поэтому симметричные тензоры образуют инвариантное относительно G подпространство. Аналогично, множество всех кососиммтричных тензоров является G-инвариантным подпространством.

Если G - группа врашений $S O(3), T_{i_{1} i_{2} \ldots i_{,}}$- тензоры n-го ранга, заданные в трехмерном евклидовом пространстве (точнее говоря, они - элементы пространства $R^{3} \otimes \ldots \otimes R^{3}$), то $D(g)$ в законе преобразования (10.3) есть стандартное представление группы врашений, отвечаюшее неприводимому представлению с моментом $j=1$. В этом случае $D_{i, k_{1}}^{(1)} D_{i_{2} k_{2}}^{(1)} \ldots D_{i_{x} k_{x}}^{(1)}$ в (10.3) есть тензорное произведение неприводимых представлений с $j=1$. Это произведение может быть разложено по неприводимым представлениям. Каждое из неприводимых представлений для данного тензора n-го ранга будет выделять его инвариантную часть. Например, тензор второго ранга $a_{i k}$ может быть представлен в виде

$$
\begin{equation*}
a_{i k}=\frac{1}{2}\left(a_{i k}+a_{k i}-\frac{2}{3} a_{l l} \delta_{i k}\right)+\frac{1}{2}\left(a_{i k}-a_{k i}\right)+\frac{1}{3} a_{l l} \delta_{i k} . \tag{10.5}
\end{equation*}
$$

Каждый член в этой сумме есть инвариантный тензор относительно группы вращений $S O(3)$. Первое слагаемое в (10.5) имеет нулевой след и соответственно 5 независимых компонент. Этот тензор соответствует моменту $J=2$. Второе слагаемое отвечает вектору (момент $J=1$), а последнее - скаляру ($J=0$).

По теории групп Ли можно отослать читателя к книгам 【Кир78, Рих84, ДНФ79]. Некоторые вопросы теории групп, имеюшие приложение к атомной и молекулярной физике, рассмотрены в [ЛЛ74].

10.3. Примеры

315. Рассмотрим однопараметрическую группу $G=g(\theta)$. Параметр θ выберем таким образом, что

$$
\begin{align*}
g\left(\theta_{1}\right) g\left(\theta_{2}\right) & =g\left(\theta_{1}+\theta_{2}\right), \tag{10.6}\\
g(0) & =E . \tag{10.7}
\end{align*}
$$

Пусть $I_{\theta}=\left(\frac{d g}{d \theta}\right)_{\theta=0}$ - инфинитезимальная матрица, соответствуючая параметру ө. Показать, что тогда

$$
\begin{equation*}
g(\theta)=\exp \left(I_{\theta} \theta\right) \tag{10.8}
\end{equation*}
$$

Решение. Продифференцируем обе части равенства (10.6) по θ_{1} и положим затем $\theta_{1}=0, \theta_{2}=\theta$. Получим $\frac{d g}{d t}=I_{\theta} g(\theta)$. Эти уравнения имеют единственное решение, удовлетворяюцее начальному условию (10.7).
316. Пусть $g\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ - матрица, соответствующая повороту вокруг оси вращения $\alpha=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ на угол $\theta=\left(\alpha_{1}^{2}+\alpha_{2}^{2}+\alpha_{3}^{2}\right)^{1 / 2}$. Показать, что тоzда

$$
g\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)=\exp \left(I_{1} \alpha_{1}+I_{2} \alpha_{2}+I_{3} \alpha_{3}\right),
$$

где I_{1}, I_{2}, I_{3} - икфинитезимальные матрицы группы $S O(3)$.
Решение. Рассмотрим однопараметрическую группу поворотов вокруг оси, направленной по вектору α. Воспользуемся формулой (10.8)

$$
g(\theta)=\exp \left(I_{\theta} \theta\right)=\left.\exp \theta \sum_{j=1}^{3} I_{j} \frac{d \alpha_{j}}{d \theta}\right|_{\theta=0}
$$

Здесь

$$
\alpha_{1}=\theta \cos (\widehat{O x, \alpha}), \quad \alpha_{2}=\theta \cos (\widehat{O y, \alpha}), \quad \alpha_{3}=\theta \cos (\widehat{O z, \alpha})
$$

Поэтому

$$
g\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)=\exp \left(I_{1} \alpha_{1}+I_{2} \alpha_{2}+I_{3} \alpha_{3}\right) .
$$

317. Найти инфинитезинальныве матрицв:
(а) группы вращений $\operatorname{SO}(3)$, параметризованной как указано в задаче 316.
(б) специальной унитарной группы $S U(2)$, состоящей из матриц вида

$$
U=\left(\begin{array}{cc}
e^{i \xi} \cos \eta & e^{i \varphi} \sin \eta \\
-e^{-i \varphi} \sin \eta & e^{-i \xi} \cos \eta
\end{array}\right), \quad-\pi \leqslant \eta, \xi, \varphi \leqslant \pi .
$$

Решенме. (а) В качестве параметров группы $S O$ (3) возьмем три составляюшие $\alpha_{1}, \alpha_{2}, \alpha_{3}$ вектора α, направленного по оси вращения и равного по длине углу поворота:

$$
g\left(\alpha_{1}, 0,0\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \alpha_{1} & \sin \alpha_{1} \\
0 & -\sin \alpha_{1} & \cos \alpha_{1}
\end{array}\right) .
$$

Отсюда

$$
I_{1}=\left.\frac{\partial g\left(\alpha_{1}, 0,0\right)}{\partial \alpha_{1}}\right|_{\alpha_{1}=0}=\left(\begin{array}{rrr}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right)
$$

Аналогично

$$
I_{2}=\left(\begin{array}{rrr}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right), \quad I_{3}=\left(\begin{array}{rrr}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Решение. (б) Унитарные унимодулярные матрицы 2-го порядка имеют вид

$$
U=\left(\begin{array}{cc}
e^{i \xi} \cos \eta & e^{i \varphi} \sin \eta \\
-e^{-i \varphi} \sin \eta & e^{-i \xi} \cos \eta
\end{array}\right)
$$

и зависят от трех вешественных параметров ξ, η, φ. В качестве двух генераторов можно выбрать производные

$$
\begin{aligned}
& X_{\xi}=\frac{\partial U}{\partial \xi}(0,0,0)=\left(\begin{array}{rr}
i & 0 \\
0 & -i
\end{array}\right)=i \sigma_{3}, \\
& X_{\eta}=\frac{\partial U}{\partial \eta}(0,0,0)=\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right)=i \sigma_{2} .
\end{aligned}
$$

Поскольку $U(\xi, \eta, \varphi)$ не зависит от φ при $\eta=0$, в качестве третьего генератора можно взять

$$
X_{\varphi}=\frac{1}{\sin \eta} \frac{\partial U}{\partial \varphi}(0,0,0)=\left(\begin{array}{ll}
0 & i \\
i & 0
\end{array}\right)=i \sigma_{1} .
$$

318. Построить гамоморфизм группы $S U(2)$ на груnпу $S O(3)$.

Решение. Матрицы из $S U(2)$ имеют вид

$$
\left(\begin{array}{cc}
\alpha & \beta \\
-\beta^{*} & \alpha^{*}
\end{array}\right)
$$

где α и β - произвольные комплексные числа, подчиняюшиеся только условию $\alpha \alpha^{*}+\beta \beta^{*}=1$. Группа $S U(2)$ всех таких матриц - это группа линейных преобразований

$$
\begin{equation*}
u=\alpha u^{\prime}+\beta v^{\prime}, \quad v=-\beta^{*} u^{\prime}+\alpha^{*} v^{\prime} \tag{10.9}
\end{equation*}
$$

оставляющих инвариантной форму $u u^{*}+v v^{*}$. С помощью комплексных переменных можно определить три действительных переменные

$$
\begin{equation*}
x_{1}=u^{*} v+v^{*} u, \quad x_{2}=-i\left(u^{*} v-v^{*} u\right), \quad x_{3}=u u^{*}-v v^{*} . \tag{10.10}
\end{equation*}
$$

При этом

$$
\begin{equation*}
x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=\left(u^{*} u+v^{*} v\right)^{2} . \tag{10.11}
\end{equation*}
$$

Линейное преобразование (10.9), примененное к (10.10), индуцирует линейное преобразование переменных x_{1}, x_{2}, x_{3}, принадлежащее в силу равенства (10.11) ортогональной группе $S O(3)$.

Выпишем это линейное преобразование:

$$
\begin{aligned}
x_{1} & =\frac{1}{2}\left(\alpha^{2}+\alpha^{2 *}-\beta^{2}-\beta^{2 *}\right) x_{1}^{\prime}+ \\
& +\frac{i}{2}\left(-\alpha^{2}+\alpha^{2 *}-\beta^{2}+\beta^{2 *}\right) x_{2}^{\prime}+\left(-\alpha \beta-\alpha^{*} \beta^{*}\right) x_{3}^{\prime} \\
x_{2} & =\frac{i}{2}\left(\alpha^{2}-\alpha^{2 *}-\beta^{2}+\beta^{2 *}\right) x_{1}^{\prime}+ \\
& +\frac{1}{2}\left(\alpha^{2}+\alpha^{2 *}+\beta^{2}+\beta^{2 *}\right) x_{2}^{\prime}+i\left(-\alpha \beta+\alpha^{*} \beta^{*}\right) x_{3}^{\prime}, \\
x_{3} & =\left(\alpha \beta^{*}+\alpha^{*} \beta\right) x_{1}^{\prime}+i\left(\alpha^{*} \beta-\alpha \beta^{*}\right) x_{2}^{\prime}+\left(\alpha \alpha^{*}-\beta \beta^{*}\right) x_{3}^{\prime}
\end{aligned}
$$

Это отображение не точно, матрицы

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \text { и }\left(\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right)
$$

представляются единицей группы $S O(3)$.
319. Показать, что трехмерное евклидово пространство, где скобкой Ли служит операция векторного умножсения, есть алгебра Ли. Какой групnе соответствует данная алгебра Ли?

Решение. R^{3} есть линейное пространство, в котором задано векторное произведение: $[\mathbf{a} \times \mathbf{b}] \in \mathbb{R}^{3}$. Векторное произведение удовлетворяет всем свойствам скобок Ли. Поэтому \mathbb{R}^{3} есть алгебра Ли, ее размерность равна 3. Для восстановления группы Ли по ее алгебре достаточно заметить, что любому вектору можно поставить во взаимно-однозначное соответствие антисимметричную матрицу 3×3 :

$$
\mathbf{a} \rightarrow\left(\begin{array}{ccc}
0 & a_{1} & -a_{3} \\
-a_{1} & 0 & a_{2} \\
a_{3} & -a_{2} & 0
\end{array}\right) .
$$

Таким образом, \mathbb{R}^{3} изоморфно алгебре антисимметричных матриц 3×3, причем в этом случае векторное произведение переходит в коммутатор матрии. В качестве базисных векторов в алгебре можно взять единичные вектора, которые, как легко видеть, соответствуют генераторам I_{1}, I_{2}, I_{3} -

инфинитезимальным матрицам поворота (найдены в задаче (a)). Отсюда следует, что соответствующая группа есть группа ортогональных матриц 3×3, которая представляет собой стандартное представление группь вращений $S O$ (3). Данное представление $D^{(1)}$ неприводимо, соответствует моменту $j=1$.
320. Пусть $f(\theta, \varphi)$ - функция, заданная на сфере единичного ради$y с а, g$ - поворот на угол а вокруг оси $O z$, которому соответствует матрица $T(g)$. Найти $I_{3} f(\theta, \varphi)$, где I_{3} - генератор поворота вокруг оси z.

Решение. Поскольку $T(g) f(\theta, \varphi)=f(\theta, \varphi-\alpha)$, то

$$
T(g) f(\theta, \varphi)=f(\theta, \varphi)-\alpha \frac{\partial f(\theta, \varphi)}{\partial \varphi}+\ldots \Longrightarrow \quad I_{3} f(\theta, \varphi)=-\frac{\partial f(\theta, \varphi)}{\partial \varphi}
$$

321. Пусть A_{1}, A_{2}, A_{3} - антиэрмитовы матрицы, удовлетворяющие соотношениям

$$
\begin{gather*}
A_{1} A_{2}-A_{2} A_{1}=A_{3}, \quad A_{2} A_{3}-A_{3} A_{2}=A_{1}, \\
A_{3} A_{1}-A_{1} A_{3}=A_{2} . \tag{10.12}
\end{gather*}
$$

Рассмотрим линейные комбинации

$$
H_{+}=i A_{1}-A_{2}, \quad H_{\sim}=i A_{1}+A_{2}, \quad H_{3}=i A_{3} .
$$

(a) Показать, что

$$
\left[\boldsymbol{H}_{+}, \boldsymbol{H}_{-}\right]=2 \boldsymbol{H}_{3}, \quad\left[H_{ \pm}, H_{3}\right]=\mp \boldsymbol{H}_{ \pm} .
$$

(б) Пусть v_{λ} - собственный вектор матрицы H_{3}, соответствующий собственному значению λ. Показать, что $H_{+} v_{\lambda}$ - собственный вектор H_{3}, соответствующий собственному значению $\lambda+1$, а $H_{-} v_{\lambda}$ - собственнвй вектор H_{3}, соответствующий собственному значению λ - I. Найти норму векторов $H_{ \pm} v_{\lambda}$, если $\left\|v_{\lambda}\right\|=1$.

Решение. (а) Коммутационное соотношение получается прямым вычислением.

Решение. (б) Пусть $H_{3} v_{\lambda}=\lambda v_{\lambda}$ - собственный вектор матрицы H_{3}, отвечающий собственному значению λ. Тогда, согласно коммутационному соотношению $\boldsymbol{H}_{ \pm}$с \boldsymbol{H}_{3},

$$
H_{3} H_{ \pm} v_{\lambda}=H_{ \pm}\left(H_{3} \pm 1\right) v_{\lambda}=(\lambda \pm 1) H_{ \pm} v_{\lambda} .
$$

Значит, $\boldsymbol{H}_{+}, H_{-}$- соответственно повышающий и понижаюший операторы. Таким образом,

$$
\boldsymbol{H}_{+} \boldsymbol{v}_{\boldsymbol{\lambda}}=\boldsymbol{\beta}_{\lambda} v_{\lambda+1}, \quad \boldsymbol{H}_{-} \boldsymbol{v}_{\lambda}=\boldsymbol{\alpha}_{\lambda} \boldsymbol{v}_{\lambda-1}
$$

где числа α_{λ} и β_{λ} определяются условиями нормировки $\left|v_{\lambda}\right|=1$ для всех λ. Найдем числа α_{λ} и β_{λ}. Так как матрицы \boldsymbol{H}_{+}и \boldsymbol{H}_{-}эрмитово сопряжены,

$$
\begin{aligned}
& \left(H_{+} v_{\lambda}, v_{\lambda+1}\right)=\beta_{\lambda}\left(v_{\lambda+1}, v_{\lambda+1}\right)=\beta_{\lambda}, \\
& \left(v_{\lambda}, H_{-} v_{\lambda+1}\right)=\alpha_{\lambda+1}\left(v_{\lambda}, v_{\lambda}\right)=\alpha_{\lambda+1},
\end{aligned}
$$

поэтому

$$
\begin{equation*}
\beta_{\lambda}=\alpha_{\lambda+1} . \tag{10.13}
\end{equation*}
$$

Три генератора группы $\boldsymbol{A}_{1}, \boldsymbol{A}_{2}, \boldsymbol{A}_{3}$ образуют замкнутую алгебру. Из них можно построить оператор, который коммутирует со всеми генераторами группы (оператор Казимира) $C=-\left(A_{1}^{2}+A_{2}^{2}+A_{3}^{2}\right)$. Выразим оператор Казимира через матрицы \boldsymbol{H} :

$$
\begin{align*}
C & =\frac{1}{2}\left(H_{+} H_{-}+H_{-} H_{+}\right)+H_{3}^{2}= \tag{10.14}\\
& =H_{3}^{2}+H_{-} H_{+}+H_{3}=H_{3}^{2}+H_{+} H_{-}-H_{3} .
\end{align*}
$$

Пусть J максимальное собственное значение оператора \boldsymbol{H}_{3}, т. е. $\boldsymbol{H}_{+} \boldsymbol{v}_{\boldsymbol{J}}=\mathbf{0}$, тогда из (10.14) получим

$$
\left(v_{J}, C v_{J}\right)=J(J+1)
$$

Выберем среди собственных векторов H_{3} те, которые одновременно являются собственными векторами оператора C с собственными значениями $J(J+1)$. Они получаются из $v_{\boldsymbol{j}}$ с помощью многократного действия оператора \boldsymbol{H}_{-}.

Пусть λ - собственное значение, которое меньше J. Тогда

$$
\begin{aligned}
H_{+} v_{\lambda-1} & =\frac{1}{\alpha_{\lambda}} H_{+} H_{-} v_{\lambda}=\frac{1}{\alpha_{\lambda}}\left(H_{-} H_{+}+2 H_{3}\right) v_{\lambda}= \\
& =\frac{1}{\alpha_{\lambda}}\left(\alpha_{\lambda+1} \beta_{\lambda}+2 \lambda\right) v_{\lambda}=\beta_{\lambda-1} v_{\lambda} .
\end{aligned}
$$

Отсюда, учитывая (10.13), получаем

$$
\begin{equation*}
\beta_{\lambda}^{2}+2 \lambda=\beta_{\lambda-1}^{2} \tag{10.15}
\end{equation*}
$$

Если $\lambda=J$, то $H_{+} v_{\lambda}=0$ и, следовательно, $\beta_{J-1}^{2}=2 J$. Используя (10.15), по индукции легко получить $\beta_{\lambda}^{2}=J(J+1)-\lambda(\lambda+1)$. Отсюда по (10.13) нмеем $\alpha_{\lambda}^{2}=J(J+1)-\lambda(\lambda-1)$. Таким образом,

$$
\begin{gathered}
H_{3} v_{\lambda}=\lambda v_{\lambda} \\
H_{-} v_{\lambda}=\sqrt{J(J+1)-\lambda(\lambda-1)} v_{\lambda-1}, \\
H_{+} v_{\lambda}=\sqrt{J(J+1)-\lambda(\lambda+1)} v_{\lambda+1} .
\end{gathered}
$$

322. Доказать, что все собственнье значения матрицы \boldsymbol{H}_{3} суть целые или полуцелье числа: $-\boldsymbol{j},-\boldsymbol{j}+1, \ldots, j-1, j$.

Решение. Действуя последовательно степенями понижающего оператора H_{-}на собственный вектор старшего веса v_{J}, получаем набор собственных векторов v_{J}, v_{J-1}, \ldots. Последним вектором в этом наборе будет вектор v_{-J}, так как $H_{-} v_{-J}=0$. Число всех собственных векторов в представлении с данным J равно $2 J+1$. Значит, J - целое или полуцелое число.

323. Найти коэффициенть Клебша-Гордана

$$
\begin{gathered}
C_{j_{1} m_{1} j_{2} m_{2}}^{j{ }_{2}}=\left\langle j m \mid j_{1} m_{1} j_{2} m_{2}\right\rangle, \\
\left|j_{1} m_{1} j_{2} m_{2}\right\rangle \equiv\left|j_{1} m_{1}\right\rangle \otimes\left|j_{2} m_{2}\right\rangle, \quad|j m\rangle \equiv\left|j m, j_{1} j_{2}\right\rangle
\end{gathered}
$$

для $j_{1}=1, j_{2}=2, j=1, m=0$.
Решение. Начнем с вектора с максимально возможным при $j=1$ значением $\boldsymbol{m}=1$ (вектора старшего веса), который разложим по возможным состояниям с моментами j_{1} и j_{2}, используя соотношение $m=m_{1}+m_{2}$,

$$
\begin{equation*}
|11\rangle=\alpha|10\rangle|21\rangle+\beta|11\rangle|20\rangle+\gamma|1-1\rangle|22\rangle, \tag{10.16}
\end{equation*}
$$

где коэффициенты α, β, γ надлежит найти. Обозначим буквой V пространство с базисом

$$
|1-1\rangle,|10\rangle,|11\rangle
$$

a U - пространство с базисом

$$
|2-2\rangle,|2-1\rangle,|20\rangle,|21\rangle,|22\rangle .
$$

Тогда повышающий оператор J_{+}, действуюший в пространстве $V \otimes U$, можно записать как

$$
J_{+}=J_{+}^{1} \otimes E^{2}+E^{1} \otimes J_{+}^{2}
$$

где E^{1}, E^{2} - единичные операторы, а J_{+}^{1}, J_{+}^{2} - повышающие операторы, действуюшие в пространствах V, U.

Подействуем на обе части (10.16) повышающим оператором J_{+} и воспользуемся формулой для его матричным элементов

$$
J_{ \pm}|j m\rangle=\sqrt{j(j+1)-m(m \pm 1)}|j m \pm 1\rangle
$$

Получится

$$
0=\sqrt{2} \alpha|11\rangle|21\rangle+2 \alpha|10\rangle|22\rangle+\sqrt{6} \beta|11\rangle|21\rangle+\sqrt{2} \gamma|10\rangle|22\rangle,
$$

откуда найдем

$$
\alpha \sqrt{2}+\beta \sqrt{6}=0, \quad 2 \alpha+\gamma \sqrt{2}=0 .
$$

Третье соотношение дается нормировкой $\alpha^{2}+\beta^{2}+\gamma^{2}=1$, отсюда $\alpha=$ $\sqrt{\frac{3}{10}}, \beta=-\frac{1}{\sqrt{10}}, \gamma=-\sqrt{\frac{3}{5}}$.

Теперь подействуем на вектор старшего веса (10.16) понижающим оператором и приведем подобные члены. Получится разложение

$$
\sqrt{2}|10\rangle=(\alpha \sqrt{2}+2 \gamma)|1-1\rangle|21\rangle+(\alpha \sqrt{6}+\beta \sqrt{2})|10\rangle|20\rangle+\beta \sqrt{6}|11\rangle|2-1\rangle .
$$

В итоге найдем все три искомых коэффициента Клебша-Гордана

$$
C_{1-121}^{10}=C_{112-1}^{10}=-\sqrt{\frac{3}{10}}, \quad C_{1020}^{10}=\frac{2}{\sqrt{10}} .
$$

324. Сколько независимьх компонент у тензора 2-го ранга, инвариантного относительно действия группы G, если G яөляется группой симметрий треугольника?

Решение. Заметим, что симметрии треугольника образуют подгруппу группы собственных вращений трехмерного пространства. Далее, воспользовавшись тем, что повороту на угол φ соответствует характер $1+2 \cos \varphi$, и тем, что след тензорного произведения матриц равен произведению следов сомножителей, можно вычислить характер представления группы треугольника. Пусть $\sigma_{1}, \sigma_{2}, \sigma_{3}$ - классы сопряженных элементов группы треугольника, как в задаче 291, тогда

	σ_{1}	σ_{2}	σ_{3}
χ	9	0	1

Кратность вхождения единичного представления равна двум, значит имеется две независимые компоненты.
325. Показать, что операция перестановки индексов коммутирует с действием группы G на пространстве тензоров ранга r.

Решение. Этот факт устанавливается непосредственной проверкой. Пусть элементу g из G соответствует матрица $D_{i j}$, тогда

$$
\begin{aligned}
& (\sigma T)_{\sigma_{1} \alpha_{2} \ldots \alpha_{r}}=T_{\sigma_{\sigma(1)} \sigma_{\sigma(2)} \ldots a_{\sigma(t)}}^{\prime}=D_{\sigma_{\sigma\{14} k_{\sigma(1)}} \ldots D_{\alpha_{\sigma(r)} k_{\sigma(t)}} T_{k_{\sigma(1)} \ldots k_{r(t)}}= \\
& =D_{\alpha_{1} k_{1}} \ldots D_{\alpha_{r} k_{r}}(\sigma T)_{k_{1} \ldots k_{r}}=(\sigma T)_{\alpha_{1} \ldots \alpha_{r}}^{\prime} .
\end{aligned}
$$

326. Какова размерность подпространства симметричных тензоров 3-го ранга?

Решение. Для компонент симметричных тензоров 3-го ранга выполняются равенства: $S_{i j k}=S_{j k i}=S_{k i j}=S_{j i k}=S_{k j i}=S_{i k j}, \quad i=1,2,3, j=$ $1,2,3, k=1,2,3$. Легко видеть, что имеется 17 независимых условий на компоненты. Поскольку размерность пространства тензоров 3-го ранга равна 27 , то подпространство симметричных тензоров имеет размерность 10.
327. Представление D^{*} конечной группы G получается из данного D путем простого комплексного сопряжения. ($Е с л и \quad D^{*}$ и D совпадают, то D называют вецественным представлением.) Рассмотрим прямое произведение $D=D^{(\boldsymbol{(1 *}} \otimes D^{(f)}$ неприводимых представлений группы G. Доказать, что в разиожении D на неприводимые тождественное представление может встретиться только в том случае, если $D^{(\alpha)}=D^{(\beta)}$.

Решение. Разложим прямое произведение двух неприводимых представлений в прямую сумму неприводимых представлений: $D=\underset{\lambda}{\bigoplus} c_{\lambda} D^{(\lambda)}$. Найдем, сколько раз встречается тривиальное представление в D. Для этого умножим характер $\chi(g)=\chi^{(\alpha) *}(g) \chi^{(\beta)}(g)$ представления D на характер тривиального представления $\chi^{(1) *}(g)=1$ и просуммируем по группе:

$$
c_{1}=\frac{1}{|G|} \sum_{g} \chi^{(1) *}(g) \chi^{(\alpha) *}(g) \chi^{(\beta)}(g)=\delta_{\alpha \beta} .
$$

Последнее равенство получается в силу формулы (9.3).

10.4. Задачи

328. Образуют ли непрерывную группу:
(a) повороты на плоскости;
(б) растяжения и сдвиги на плоскости;
(в) преобразования Лоренца;
(г) дробно-линейные преобразования комплексной плоскости

$$
z^{\prime}=\frac{a z+b}{c z+d} .
$$

329. Какова размерность следующих матричных групп Ли, если это:
(a) полная линейная группа $G L(n, \mathbb{C})$;
(б) унимодулярная группа $S L(n, \mathbb{C})$, включаюшая все матрицы, определитель которых равен 1 ;
(в) унитарная группа $U(n, \mathbb{C})$;
(г) ортогональная группа $O(n, \mathbb{R})$;
(д) группа врашений $S O(3)$.
330. Проверить, что для генераторов группы $S O(3)$, параметризованной как в задаче 316, справедливы следуюшие коммутационные соотношения:

$$
I_{1} I_{2}-I_{2} I_{1}=I_{3}, \quad I_{2} I_{3}-I_{3} I_{2}=I_{1}, \quad I_{3} I_{1}-I_{1} I_{3}=I_{2}
$$

331. Пусть $f(\theta, \varphi)$ - функиия, заданная на сфере единичного радиуса, g - поворот на угол α вокруг оси $O z$, которому соответствует матрица $T(g)$.
(a) Пусть $f=Y_{l m}(\theta, \varphi)$. Как действует $i I_{3}$ на f ?
(б) Рассмотрим векторное пространство, натянутое на векторы

$$
Y_{l,-l}, Y_{l,-l+l}, \ldots, Y_{l l} .
$$

Найти в этом базисе матрицу $D(g)$, соответствующую повороту на угол α вокруг оси Oz.
332. Похазать, что повороты на один и тот же угол вокруг различных осей входят в один и тот же класс сопряженных элементов группы $S O(3)$.
333. Найти характер $2 l+1$-мерного представления группы $S O(3)$ (из задачи (б)).
334. Пусть $D^{(j)}$ и $D^{\left(j^{\prime}\right)}-$ неприводимые представления группы SO(3). Доказать, что

$$
D^{(j)} \otimes D^{\left(j^{\prime}\right)}=D^{\left(j+j^{\prime}\right)} \oplus D^{\left(j+j^{\prime}-1\right)} \oplus \ldots \oplus D^{\left(j-j^{\prime} \mid\right)}
$$

(разложение Клебша-Гордана).
335. Найти коэффициенты Клебша-Гордана для разложения $D^{(1 / 2)} \otimes$ $D^{(1 / 2)}$ на неприводимые представления.
336. Сколько независимых компонент у тензора 2-го ранга, инвариантного относительно действия группы G, если $G=S O(3)$?
337. Сколько независимых компонент у тензора 3-го ранга, инвариантного относительно действия группы G, если а) $G=S O(3) ;$ б) G является груплой симметрий треугольника?
338. Разложить тензор 2-го ранга на неприводимые части относительно действия группы $G=S O(3)$.
339. Пусть \mathcal{F} - пространство всех бесконечно дифференцируемых функций $f(x)$ в \mathbb{R}^{3}. Для каждой матрицы вращения $T(g), g \in S O(3)$ положим $(g f)(x)=f\left(T^{-1}(g) x\right)$. Построить генераторы этого представления.
340. Рассмотрим множество однородных полиномов степени \boldsymbol{n} вида

$$
\sum_{k+l+m=n} a_{k l m} x^{k} y^{l} z^{m}, \quad k, l, m \geqslant 0 .
$$

Все полиномы образуют векторное пространство.
(a) Найти размерность этого пространства.
(б) Найти размерность подпространства гармонических полиномов (т.е. полиномов, удовлетворяющих уравнению Лапласа).
(в) Показать, что представление группы $S O$ (3) на пространстве гармонических полиномов является неприводимым.
341. Движение в вещественном двумерном пространстве \mathbb{R}^{2} состоят из врашений $T \in S O(2)$ и сдвигов. Обозначим группу движений плоскости M_{2}. Пусть $g=g_{\xi, \eta, 8}$ - элемент группы M_{2}, задающий следующее отображение плоскости на себя:

$$
g:\binom{x}{y} \rightarrow\binom{x^{\prime}}{y^{\prime}}=\binom{x \cos \theta-y \sin \theta+\xi}{x \sin \theta+y \cos \theta+\eta} .
$$

Напишем соответствие между элементами M_{2} и матрицами 3×3 :

$$
g \rightarrow\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & \xi \tag{10.17}\\
\sin \theta & \cos \theta & \eta \\
0 & 0 & 1
\end{array}\right)
$$

Проверить, что (10.17) является представлением группы M_{2}.
342. Пусть \mathcal{F} обозначает пространство всех бесконечно дифференцируемых функций, определенных для всех x и y. Представление группы M_{2} из задачи 341 на \mathcal{F} получается путем преобразования каждой функции $f(x, y)$ в функцию

$$
(g f)(x, y)=f((x-\xi) \cos \theta+(y-\eta) \sin \theta-(x-\xi) \sin \theta+(y-\eta) \cos \theta) .
$$

(a) Показать, что для инфинитезимальных операторов группы $L_{1,2,3}$ справедливы равенства

$$
L_{1}=-\frac{\partial}{\partial x}, \quad L_{2}=-\frac{\theta}{\partial y}, \quad L_{3}=y \frac{\partial}{\partial x}-x \frac{\partial}{\partial y} .
$$

(б) Найти $\left[L_{1}, L_{2}\right],\left[L_{1}, L_{3}\right],\left[L_{2}, L_{3}\right]$.
(в) Пусть r и φ - полярные координаты плоскости $x, y, L^{ \pm}=$ $L_{1} \pm i L_{2}$. Убедиться, что

$$
\begin{aligned}
& L^{ \pm}=-\mathrm{e}^{ \pm i \varphi}\left(\frac{\partial}{\partial r} \pm \frac{i}{r} \frac{\partial}{\partial \varphi}\right), \\
& L_{3}=-\frac{\partial}{\partial \varphi}, \\
& L^{+} L^{-}=L^{-} L^{+}=\Delta .
\end{aligned}
$$

(r) Проверить, что Δ коммутирует со всеми операторами L_{1}, L_{2}, L_{3}.
343. Рассмотрим множество функций

$$
\Psi_{m}(x, y)=e^{i m \varphi} J_{m}(\alpha r)
$$

где $J_{m}(\alpha r)$ - функция Бесселя порядка $m(\alpha \neq 0)$. Показать, что на пространстве \mathcal{F}, базисом которого являются функиии Ψ_{m} с целыми m, осуществляется неприводимое бесконечномерное представление группы M_{2}.

10.5. Oтветы

328. (г) Да, если $\left|\begin{array}{ll}a & b \\ c & d\end{array}\right| \neq 0$.
329. (a) $2 n^{2}$ вешественных переменных.
(6) $2 n^{2}-2$.
(в) n^{2}.
(r) $\frac{n(n-1)}{2}$.
(д) 3.
330. (a) $i I_{3} f=m f$.
(б) $D(g)=\exp \left(I_{3} \alpha\right)=$

$$
\begin{aligned}
& =\exp \left(\begin{array}{cccccc}
i l \alpha & 0 & 0 & 0 & \ldots & 0 \\
0 & i(l-1) \alpha & 0 & 0 & \ldots & 0 \\
0 & 0 & i(l-2) \alpha & 0 & \ldots & 0 \\
0 & 0 & 0 & i(l-3) \alpha & \ldots & 0 \\
\ldots & \ldots & \ldots & \cdots & \cdots & \ldots \\
0 & 0 & 0 & 0 & \ldots & -i l \alpha
\end{array}\right)= \\
& =\left(\begin{array}{cccccc}
e^{i l \alpha} & 0 & 0 & 0 & \ldots & 0 \\
0 & e^{i(l-1) a} & 0 & 0 & \ldots & 0 \\
0 & 0 & e^{i(l-2) a} & 0 & \ldots & 0 \\
0 & 0 & 0 & e^{i(l-3) \alpha} & \ldots & 0 \\
\ldots & \ldots & 0 & \ldots \ldots \ldots \ldots \\
0 & 0 & 0 & 0 & \ldots & e^{-i l a}
\end{array}\right) .
\end{aligned}
$$

333. $\chi^{(l)}(\varphi)=\frac{\sin (l+1 / 2) \varphi}{\sin (\varphi / 2)}$.
334. Указание: Воспользоваться тем, что для каждого $g \in S O(3)$

$$
\operatorname{Tr}\left(D^{(j)} \otimes D^{\left(j^{\prime}\right)}\right)=\operatorname{Tr} D^{(j)} \operatorname{Tr} D^{\left(j^{\prime}\right)}
$$

335. Разложение представления $D^{(1 / 2)} \otimes D^{(1 / 2)}$ на неприводимые представления эквивалентна задаче о сложении двух спинов $S_{1}=\frac{1}{2}$ и $S_{2}=\frac{1}{2}$. В разложении присутствуют только два мультиплетас $S=1$ (триплет, когда спины параллельны) и $S=0$ (синглет с антипараллельными спинами):

$$
D^{(1 / 2)} \otimes D^{(1 / 2)}=D^{(1)} \oplus D^{(0)}
$$

Коэффициенты Клебша-Гордана есть коэффициенты в разложении волновых функций. Для $S=1$

$$
\begin{aligned}
|11\rangle & =\left|\frac{1}{2} \frac{1}{2}\right\rangle_{1}\left|\frac{1}{2} \frac{1}{2}\right\rangle_{2} \\
|10\rangle & =\frac{1}{\sqrt{2}}\left(\left|\frac{1}{2} \frac{1}{2}\right\rangle_{1}\left|\frac{1}{2}-\frac{1}{2}\right\rangle_{2}+\left|\frac{1}{2}-\frac{1}{2}\right\rangle_{1}\left|\frac{1}{2} \frac{1}{2}\right\rangle_{2}\right), \\
|1-1\rangle & =\left|\frac{1}{2}-\frac{1}{2}\right\rangle_{1}\left|\frac{1}{2}-\frac{1}{2}\right\rangle_{2}
\end{aligned}
$$

Для $S=0$

$$
|00\rangle=\frac{1}{\sqrt{2}}\left(\left|\frac{1}{2} \frac{1}{2}\right\rangle_{1}\left|\frac{1}{2}-\frac{1}{2}\right\rangle_{2}-\left|\frac{1}{2}-\frac{1}{2}\right\rangle_{1}\left|\frac{1}{2} \frac{1}{2}\right\rangle_{2}\right)
$$

336. Одна компонента.
337. а) Одна компонента. б) Четыре компоненты.
338. $D^{(1)} \otimes D^{(1)}=D^{(0)} \oplus D^{(1)} \oplus D^{(2)}$, представление $D^{(2)}$ реализуется на подпространстве симметричных бесследовых тензоров ранга 2 , $D^{(1)}$ - на подпространстве кососимметрических тензоров, $D^{(0)}$ на тензорах вида $с \delta_{i j}$, где $с$ - число.
339. $L_{1}=z \frac{\partial}{\partial y}-y \frac{\partial}{\partial z}, \quad L_{2}=x \frac{\partial}{\partial z}-z \frac{\partial}{\partial x}, \quad L_{3}=y \frac{\partial}{\partial x}-x \frac{\partial}{\partial y}$.
340.

(a) $\frac{(n+1)(n+2)}{2}$.
(б) $2 n+1$.
(в) Указание: Воспользовавшись формулой Родрига (П.37), получим

$$
\begin{gathered}
r^{n} Y_{n m}(\theta, \varphi) \propto r^{n} e^{i m \varphi}\left(1-\cos ^{2} \theta\right)^{m / 2}\left(\frac{d}{d \cos \theta}\right)^{n+m}\left(\cos ^{2} \theta-1\right)^{n} \\
m=-n,-n+1, \ldots, n
\end{gathered}
$$

Переходя к декартовым координатам

$$
r \cos \theta=z, \quad r \sin \theta e^{i \varphi}=x+i y, \quad r^{2}=x^{2}+y^{2}+z^{2}
$$

можно установить, что $r^{\boldsymbol{n}} \boldsymbol{Y}_{\mathrm{nm}}$ является однородным полиномом степени n. Любое ограниченное решение уравнения

$$
\Delta r^{n} f(\theta, \varphi)=0=r^{n-2}\left(n(n+1)+\Delta_{\Omega}\right) f
$$

для функции f, где $\Delta_{\Omega}-$ угловая часть оператора Лапласа, можно записать в виде линейной комбинации сферических гармоник $\boldsymbol{Y}_{\mathrm{lm}}(\boldsymbol{\theta}, \varphi)$. Поэтому линейная оболочка полиномов $\boldsymbol{r}^{n} \boldsymbol{Y}_{n m}$, $m=-n,-n+1, \ldots, n$ совпадает со всем пространством гармонических полиномов.
342. (б) $\left[L_{1}, L_{2}\right]=0, \quad\left[L_{1}, L_{3}\right]=-L_{2}, \quad\left[L_{2}, L_{3}\right]=L_{1}$.
343. Указание: Пространство \mathcal{F} должно преобразовываться само в себя под действием каждого из операторов L_{1}, L_{2}, L_{3}. Заметим, что

$$
L_{3} \Psi_{m}=-i m \Psi_{m}, \quad L^{+} \Psi_{m}=-\alpha \Psi_{m+1}, \quad L^{-} \Psi_{m}=\alpha \Psi_{m-1}
$$

Это следует из рекуррентных соотношений $J_{m+1}(z)=-J_{m}^{\prime}(z)+$ $\frac{m J_{m}(z)}{2}, J_{m-1}(z)=J_{m}^{\prime}(z)+\frac{m J_{m}(z)}{z}$. Поскольку L_{1}, L_{2}, L_{3} - линейные комбинации операторов L^{+}, L^{-}, L_{3}, получаем, что пространство \mathcal{F}

переходит в себя под действием группы M_{2}. Действуя оператором L^{+}на функцию Ψ_{m} для любого m, получаем необрываюшийся ряд, поэтому представление бесконечномерно. Для доказательства неприводимости надо воспользоваться тем, что множество функций $\left\{c \Psi_{m}\right\}, m=0, \pm 1, \pm 2, \ldots, c \in \mathbb{C}, c \neq 0$, исчерпывает все собственные векторы оператора L_{3} в пространстве \mathcal{F}, и тем, что в любом М $_{2}$-инвариантном подпространстве содержится собственный вектор L_{3}. Далее, действуя операторами L^{+}и L^{-}, получим весь набор функций $\Psi_{m}, m=0, \pm 1, \pm 2, \ldots$.

Глава 11

Применения теории групп в физике

11.1. Гармонические колебания молекул

В классической механике гамильтониан молекулы, состоящей из n атомов с массами $M_{i}, l=l, \ldots, n$, в гармоническом приближении имеет вид

$$
\begin{equation*}
\boldsymbol{H}=\sum_{\alpha=1}^{3} \sum_{l=1}^{n} \frac{\left(p_{l}^{\alpha}\right)^{2}}{2 M_{l}}+\frac{1}{2} \sum_{\alpha, \beta=1 l, m=1}^{3} \sum_{l m}^{n} V_{l}^{\alpha, \beta} q_{l}^{\alpha} q_{m}^{\beta} . \tag{11.1}
\end{equation*}
$$

Здесь $q_{l}^{\alpha}-\alpha$-компонента малого смешения атома относительно положения равновесия в некоторой декартовой системе координат, p_{l}^{α} сопряженный импульс, а $V_{l m}^{\boldsymbol{\alpha} \beta}$ - постоянные коэффициенты. В дальнейшем для упрощения записи будем объединять индекс декартовой компоненты α и номер атома l в один индекс k, меняющийся от 1 до $3 n$ $(k=3(l-1)+\alpha)$. Уравнения движения

$$
\begin{equation*}
M_{k} \bar{q}_{k}=-\sum_{j=1}^{3 n} V_{k j} q_{j} \tag{11.2}
\end{equation*}
$$

определяют набор собственных частот ω_{1}^{2} и собственных мод (нормальных калебаний) $a_{k}^{(\boldsymbol{\sigma})}$. Будем искать решение уравнений (11.2) в виде $q_{k}=$ $a_{k} \cos (\omega t+\delta)$. Подставляя эти зависимости в (11.2), получаем систему алгебраических уравнений на коэффициенты a_{k} :

$$
\omega^{2} M_{k} a_{k}=\sum_{j=1}^{3 n} V_{k j} a_{j} .
$$

В терминах амплитуд $b_{k}=\sqrt{M_{k}} a_{k}$ задача определения нормальных колебаний системы сводится к задаче о диагонализации эрмитовой матрицы $\boldsymbol{B}_{k j}$:

$$
\begin{equation*}
\omega^{2} b_{k}=\sum_{j=1}^{3 n} B_{k j} b_{j}, \quad B_{k j}=\frac{V_{k j}}{\sqrt{M_{k} M_{j}}} \tag{11.3}
\end{equation*}
$$

Симметрии нашей системы - это перестановки атомов с одинаковыми массами, повороты и отражения векторов малых смещений атомов,

сохраняющие вид гамильтониана (11.1). Иначе говоря, группа симметрии молекулы - это некоторая подгруппа прямого произведения группы S_{n} перестановок n атомов и n экземпляров группы несобственных врашений $O(3)$ (поворотов и отражений):

$$
S_{n} \times O(3) \times \ldots \times O(3)
$$

Любой ее элемент можно представить в виде прямого произведения простых перестановок T пары атомов и линейных преобразований $R \in O(3)$ поворотов и отражений координат b_{j} каждого атома. Напомним, что перестановка номеров k и l в любой матрице B осуществляется линейным преобразованием

$$
\begin{equation*}
B \rightarrow T_{(k)}^{-1} B T_{(k l)}, \quad T_{(k l)}^{2}=E \tag{11.4}
\end{equation*}
$$

где матрица $T_{(k l)}$ получается из единичной перестановкой k-ого и l-ого столбцов. При действии на данный вектор b_{j} матрица $T_{(k l)}$ переставляет его k-ю и l-ю компоненты. Таким образом, в пространстве компонент $3 n$-мерных векторов-амплитуд $b=\left(b_{1}, \ldots, b_{3 n}\right)$ действует линейное представление группы симметрии молекулы, причем перестановкам атомов соответствуют преобразования T, а поворотам и отражениям - преобразования R.

Симметрия системы относительно перестановки одинаковых атомов T, поворотов и отражений R или их комбинаций Q означает, что

$$
\begin{equation*}
B=Q^{-1} B Q \Rightarrow[B, Q]=0 \tag{11.5}
\end{equation*}
$$

где Q - любая матрица из представления группы симметрии, осуществляюшая перестановки, повороты и отражения компонент $3 n$-мерных векторов амплитуд. Это представление (мы будем называть его исходным) чаще всего является приводимым. С другой стороны, равенство (11.5) означает, что если b - собственный вектор матрицы B, то и $Q b$ - тоже собственный вектор, соответствующий тому же собственному значению. Следовательно, любое подлространство V_{m} собственных векторов, соответствуюших собственному значению $\omega_{\text {In }}^{2}$

$$
\omega_{m}^{2} b_{i}^{\alpha}=\sum_{j=1}^{3 n} B_{i j} b_{j}^{\alpha}, \quad \alpha=1,2, \ldots, k, \quad b^{\alpha} \in V_{m}
$$

будет инвариантно относительно действия операторов Q :

$$
Q b^{\pi}=\sum_{\beta=1}^{k} q_{m \beta} b^{\beta}, \quad b^{\pi}, b^{\beta} \in V_{m}
$$

Это означает, что операторы Q будут осушествлять в $\boldsymbol{V}_{\mathrm{m}}$ некоторое k-мерное представление группы симметрии, а $q_{\alpha \beta}$ будут матрицами этого представления. Как правило, такое представление является неприводимым. Если оно оказывается приводимым, то говорят о случайном

вырождении, которое свидетельствует о том, что система обладает более высокой симметрией, чем мы предполагали. Итак, разбивая исходное представление группы симметрии на неприводимые, мы можем определить размерности собственных подпространств, т.е. кратности вырождения собственных частот колебаний молекулы.

Если нормальные моды колебаний использовать в качестве базиса в $3 n$-мерном пространстве векторов амплитуд, то гамильтониан системы в таких переменных приобретает вид диагональной квадратичной формы. Иными словами, он становится суммой гамильтонианов, каждый из которых зависит от амплитуды только одной нормальной моды. Переходя к квантовомеханическому рассмотрению, заметим, что можно произвести квантование сразу в базисе нормальных колебаний. Тогда структура уровней и вид волновых функций станет очевидным: система представляет собой совокупность независимых линейных осцилляторов. Собственные функции ее гамильтониана являются произведениями стационарных волновых функций каждого из осцилляторов. Если у k осцилляторов совпадают частоты, то это приводит к k-кратному вырождению колебаний классической системы. Таким образом, с помощью теории групп можно найти кратности вырождения колебательных уровней молекулы. Для этого с помощью теории характеров надо разложить по неприводимым исходное представление группы симметрии нашей системы в пространстве $3 n$-мерных векторов амплитуд.

Заметим, что матрицы преобразования, отвечающие симметрии молекулы, действуют на векторы малых смещений атомов из равновесных положений. Энергия, соответствующая данному смещению атома, зависит в общем случае от направления вектора смещения. Поэтому преобразования симметрии должны сохранять относительную ориентацию атомов, т.е. группа симметрии молекулы является подгруппой группы движений (изометрий) трехмерного пространства. Исходное же представление возникает, когда мы рассматриваем действие элементов g этой подгруппы на векторы амплитуд атомных смещений.

Характер $\chi_{i}(g)$ исходного представления, где преобразование g - поворот, или отражение, или их суперпозиция, является суммой характеров 3 -мерных векторных представлений в подпространствах векторов малых смещений отдельных атомов, не перемещаюшихся при преобразовании g. В трехмерном векторном V (псевдовекторном $P V$) представлениях матрица поворота $R_{V}(\theta)=R_{P V}(\theta)=\boldsymbol{R}(\theta)$ на угол θ нокруг оси z и матрицы отражения $R_{V}(\sigma), R_{P V}(\sigma)$ относительно плоскости $x y$ имеют вид

$$
\begin{gathered}
\boldsymbol{R}(\theta)=\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right), \\
\boldsymbol{R}_{V}(\sigma)=\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right), \quad \boldsymbol{R}_{P V}(\sigma)=\left(\begin{array}{rrr}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right) .
\end{gathered}
$$

Поскольку все повороты на данный угол вокруг любой оси принадлежат одному классу сопряженных элементов, характер поворота на угол θ вокруг произвольной оси симметрии равен

$$
\chi_{i}(\theta)=N_{C} \cdot \chi\left(R_{V}(\theta)\right), \quad \chi\left(R_{V}(\theta)\right)=1+2 \cos \theta,
$$

где N_{C} - число атомов, не перемещающихся при повороте молекулы на угол θ вокруг оси симметрии (число атомов, лежаших на этой оси). Характер отражения относительно произвольной плоскости равен

$$
\chi_{i}(\sigma)=N_{P} \cdot \chi\left(R_{V}(\sigma)\right), \quad \chi\left(R_{V}(\sigma)\right)=1,
$$

где N_{P} - число атомов, не перемещающихся при отражении молекулы относительно плоскости симметрии (число атомов, лежащих на этой плоскости). Характер поворота вокруг произвольной оси, сопровождающийся отражением относительно перпендикулярной плоскости, зеркального поворота равен

$$
\chi_{i}(\sigma \theta)=N_{S} \cdot \chi\left(R_{V}(\sigma) R(\theta)\right), \quad \chi\left(R_{V}(\sigma) R(\theta)\right)=2 \cos \theta-1
$$

где N_{S} - число атомов, лежащих на пересечении оси и плоскости ($N_{S}=0,1$).

Следует помнить, что для свободной молекулы из n атомов в трехмерном пространстве имеются степени свободы, соответствуюшие движению молекулы как иелого: три степени свободы соответствуют трансляции, а три - повороту молекулы как целого*). Им соответствуют 6 нормальных мод с нулевой частотой - нулевых мод. Удобно с самого начала исключить эти степени свободы, оставив только колебательные. Исходное $3 n$-мерное представление $D_{i}(g)$ группы симметрии нашей системы раскладывается в прямую сумму 6 -мерного представления $D_{0}(g)$ в подпространстве нулевых мод и ($3 n-6$)-мерного представления $D_{\text {osc }}(g)$ в подпространстве, оргогональном нулевым модам $D_{i}=D_{0} \oplus D_{o s c}$. Чтобы найти характер $\chi_{\text {osc }}(g)$ представления в таком колебательном подпространстве, нужно вычесть из характера $\chi_{i}(g)$ исходного представления характер $\chi_{0}(g) 6$-мерного представления, который определяется только трансформационными свойствами нулевых мод (трансляций и вращений молекулы как целого), но не их явным видом.

Трансляция задается трехмерным вектором, а вращение - трехмерным псевдовектором, причем и тот, и другой инвариантны относительно перестановки T номеров атомов. Значит, действие элемента $R T$ группы симметрии молекулы на нулевую моду совпадает с действием одного линейного преобразования \boldsymbol{R}. Следовательно, характер $\chi_{0}(g)$ равен сумме характеров трехмерных векторного V и псевдовекторного $P V$ представлений. Характер поворота на угол θ вокруг произвольной оси равен

$$
\chi_{0}(\theta)=\chi\left(R_{V}(\theta)\right)+\chi\left(R_{P V}(\theta)\right)=2(1+2 \cos \theta) .
$$

[^11]Характер отражения относительно произвольной плоскости равен

$$
\chi_{0}(\sigma)=\chi\left(R_{V}(\sigma)\right)+\chi\left(R_{P V}(\sigma)\right)=0 .
$$

Характер поворота вокруг произвольной оси, сопровождаюшийся отражением относительно перпендикулярной плоскости, равен

$$
\chi_{0}(\sigma \theta)=\chi\left(R_{V}(\sigma) R_{V}(\theta)\right)+\chi\left(R_{P V}(\sigma) R_{P V}(\theta)\right)=0 .
$$

11.2. Расщепление уровней

В квантовой механике встречаются группы унитарных преобразований в линейном пространстве векторов-состояний. Рассмотрим гамильтониан вида

$$
\widehat{H}=\widehat{H}_{0}+\widehat{V},
$$

где \widehat{H}_{0} - основной гамильтониан, а \widehat{V} - возмущение. Пусть гамильтониан $\widehat{\boldsymbol{H}}_{0}$ обладает группой симметрии G, т.е. $\widehat{\boldsymbol{H}}_{0}$ коммутирует с каждым из операторов представления этой группы (см. главу 8). Тогда в любом d-мерном собственном подпространстве \widehat{H}_{0} действует d-мерное неприводимое представление группы G.

Рассмотрим какое-нибудь одно такое подпространство, причем пусть $d>1$. Тогда мы говорим, что соответствующее собственное значение E оператора $\widehat{H}_{0} d$-кратно вырождено вследствие симметрии системы. Если симметрия \widehat{V} ниже, чем симметрия основного гамильтониана \widehat{H}_{0}, то возмущение частично снимает вырождение. Действительно, в этом случае группа симметрии F полного гамильтониана \widehat{H} является подгруппой группы G. В результате нехоторые неприводимые представления группы G становятся приводимыми представлениями подгруппы F, что приводит к расщеплению соответствующих вырожденных уровней E на подуровни \boldsymbol{E}_{j}. Каждый из \boldsymbol{E}_{j} является собственным значением оператора \widehat{H} в собственном подпространстве, в котором действует неприводимое представление группы F.

Пример: Пусть $\|\widehat{V}\| \rightarrow 0$, тогда мы можем учесть \widehat{V} по теории возмушений. Для этого в начале найдем собственные функиии оператора \widehat{H}_{0}, принадлежащие d-мерному собственному подпространству, и выберем в этом подпространстве некоторый базис $\left\{\psi_{n}\right\}$:

$$
\begin{equation*}
\widehat{H}_{0} \psi_{n}=E \psi_{n}, \quad n=1,2, \ldots, d . \tag{11.6}
\end{equation*}
$$

Из функций ψ_{n} всегда можно построить такие линейные комбинации, чтобы

$$
\left(\Psi_{i}, \widehat{V} \Psi_{j}\right)=\Delta E_{j} \delta_{i j}, \quad \Psi_{j}=\sum_{n=1}^{d} \alpha_{j n} \psi_{n} .
$$

Значения ΔE_{j} определяются из секулярного уравнения

$$
\left|V_{m n}-\Delta E \delta_{m n}\right|=0,
$$

где $V_{m n}=\left(\psi_{m}, \widehat{V} \psi_{n}\right)$ - матричные элементы оператора возмушения в базисе $\left\{\psi_{n}\right\}$. Подставляя Ψ_{j} в уравнение Шрёдингера, получаем собственные значения олератора \widehat{H} с точностью до линейных по $\|\widehat{V}\|$ членов включительно:

$$
\begin{equation*}
\left(\widehat{H}_{0}+\widehat{V}\right) \Psi_{j}=\left(E+\Delta E_{j}\right) \Psi_{j} \tag{11.7}
\end{equation*}
$$

Поправки к энергии ΔE_{j} являются собственными значениями матрицы $V_{m n}$. Заметим, что собственные функции оператора \widehat{H} при $\|\widehat{V}\| \rightarrow 0$ стремятся к Ψ_{j}.

Частичное вырождение тем не менее может остаться. Поскольку оператор \widehat{V} коммутирует с операторами группы симметрии F полного гамильтониана, то в подпространстве функций $\psi_{j}, j=1,2, \ldots, d$ матрица $V_{m n}$ коммутирует с операторами исходного d-мерного представления группы симметрии \boldsymbol{F}. Формально задача становится эквивалентной задаче о линейных колебаниях молекулы с d степенями свободы, рассмотренной в предыдушей главе. Поэтому кратности вырождения получившихся подуровней E_{j} можно найти как размерности неприводимых представлений в разложении исходного представления группы F. Известным примером в квантовой механике является вырождение уровней атома в электрическом поле по знаку проекции M углового момента J.

11.3. Правила отбора

В квантовой механике часто требуется найти матричный элемент оператора $O_{f i} \equiv\langle f| \widehat{O}|i\rangle$. Многие матричные элементы вычислять не надо, потому что они обрашаются в нуль благодаря симметрии системы. Правила, по которым можно заранее определить, какие из матричных элементов обращаются в нуль, называются правилами отбора. В квантовой механике квадрат матричного элемента оператора \widehat{V} (11.7) пропорционален вероятности перехода. Если $V_{f i}=0$, говорят, что переход из состояния $|i\rangle$ в состояние $|f\rangle$ запрещен.

Пусть в гильбертовом пространстве \mathcal{L} состояний квантовой системы действует представление группы G : элементу $g \in G$ соответствует унитарное преобразование $U(g)$. Говорят, что набор операторов $\left\{\widehat{O}_{i}\right\}$, действуюших в \mathcal{L}, преобразуется по представлению Φ группы G, если

$$
\begin{equation*}
\widehat{\widehat{O}_{j}}=U(g) \widehat{O}_{j} U^{-1}(g)=\Phi_{j k}(g) \widehat{O}_{k} \tag{11.8}
\end{equation*}
$$

Такие операторы называются тензорными по отношению к группе G.
Пусть $U(R)$ - унитарный оператор в гильбертовом пространстве, отвечающий оператору поворота \boldsymbol{R} трехмерного пространства ($\boldsymbol{r}^{\prime}=\boldsymbol{R r}$

или $r_{\alpha}^{\prime}=R_{\alpha \beta} r_{\beta}$). По определению, преобразованные волновые функции есть

$$
\begin{equation*}
\widetilde{\psi}\left(r^{\prime}\right)=U(R) \psi\left(r^{\prime}\right)=\psi(r)=\psi\left(R^{-1} r^{\prime}\right) \tag{11.9}
\end{equation*}
$$

Опуская штрихи, запишем эти равенства в виде

$$
\begin{equation*}
U(R) \psi(r)=\psi\left(R^{-1} r\right), \quad U^{-1}(R) \psi(r)=\psi(R r) \tag{11.10}
\end{equation*}
$$

Для любых состояний $\widetilde{\psi}$ и \tilde{f}, которые получены из ψ и f под действием оператора $U(R)$, имеем

$$
\begin{align*}
\int d r \tilde{f}^{*}(r) r_{\alpha} \tilde{\psi}(r) & =\int d r f^{*}\left(R^{-1} r\right) r_{\alpha} \psi\left(R^{-1} r\right)= \tag{11.11}\\
& =\int d r f^{*}(r)(R r)_{\alpha} \psi(r)
\end{align*}
$$

Здесь мы использовали замену переменных $\boldsymbol{R}^{-1} \boldsymbol{r} \rightarrow \boldsymbol{r}$ и инвариантность меры интегрирования при поворотах. Таким образом, мы доказали, что трансформационные свойства операторов r_{α} совпадают с трансформационными свойствами соответствующего матричного элемента

$$
\begin{equation*}
\langle\tilde{f}| \boldsymbol{r}_{\boldsymbol{\alpha}}|\bar{\psi}\rangle=\boldsymbol{R}_{\boldsymbol{a} \beta}\langle f| \boldsymbol{r}_{\boldsymbol{\beta}}|\psi\rangle \tag{11.12}
\end{equation*}
$$

Для других операторов это свойство доказывается аналогично.
Пример: Пусть $G=S O(3)$ - группа вращений трехмерного пространства. Неприводимые представления этой группы имеют размерность $2 l+1(l=0,1,2, \ldots)$, где l в физической литературе называется орбитальным моментом. Тогда:
(a) лапласиан \triangle инвариантен относительно врашений, т. е. преобразуется по тождественному представлению ($l=0$);
(б) тройка операторов $r_{\alpha}(\alpha=1,2,3)$ - компонент радиус-вектора r преобразуется по неприводимому представлению с орбитальным моментом $l=1$;
(в) тройка операторов - проекций углового момента $l_{\alpha}=-i\left[r \times\left.\nabla\right|_{\alpha}-\right.$ также преобразуется по представлению с $l=1$;
(г) пятерка операторов - компонент тензора квадрупольного момента $Q_{\alpha \beta}=r_{\alpha} r_{\beta}-\frac{1}{3} \delta_{\alpha \beta} r^{2}$ преобразуется по неприводимому представлению с $\boldsymbol{l}=\mathbf{2}$.
Рассмотрим теперь два набора волновых функций: $\left\{\psi_{n}\right\}$ и $\left\{\phi_{n}\right\}$, преобразуюшихся по неприводимым представлениям V и W группы G :

$$
\begin{equation*}
U(g) \psi_{n}=V_{n m} \psi_{m}, \quad U(g) \phi_{n}=W_{n m} \phi_{m}, \tag{11.13}
\end{equation*}
$$

и набор операторов $\left\{\widehat{O}_{j}\right\}$, преобразуюшихся по неприводимому представлению (11.8). Тогда справедливо следующее утверждение: для того, чтобы матричный элемент $M_{n m}^{j}=\left\langle\psi_{n}\right| \widehat{O}_{j}\left|\phi_{m}\right\rangle$ был отличен от нуля, необходимо, чтобы в разложении прямого произведения представлений
$V^{*} \otimes \Phi \otimes W$ в прямую сумму неприводимых хотя бы один раз встретилось тождественное представление. Для доказательства рассмотрим тождество

$$
\begin{aligned}
M_{n m}^{j} & =\left\langle\psi_{n}\right| U^{-1}(g) U(g) \widehat{O}_{j} U^{-1}(g) U(g)\left|\phi_{m}\right\rangle= \\
& =\left\langle U(g) \psi_{n}\right| U(g) \widehat{O}_{j} U^{-1}(g)\left|U(g) \phi_{m}\right\rangle,
\end{aligned}
$$

при выводе которого мы использовали унитарность оператора $U(g)$. Учитывая трансформационные свойства $\psi_{n}, \phi_{m}(11.13)$ и $\bar{O}_{j}(11.8)$, получаем

$$
\begin{equation*}
M_{n m}^{j}=V_{n n^{\prime}}^{*}(g) \Phi_{j j^{\prime}}(g) W_{m m^{\prime}}(g) M_{n^{\prime} m^{\prime}}^{j^{\prime}} \equiv T_{n n^{\prime}, m m^{\prime}}^{j j^{\prime}}(g) M_{n^{\prime} m^{\prime}}^{j^{\prime}} \tag{11.14}
\end{equation*}
$$

Это равенство справедливо для произвольного элемента g из группы G, а матричный элемент $M_{n m}^{j}$ в этом равенстве никак от g не зависит. Матрицы $T_{n n^{\prime}, m m^{\prime}}^{j j^{\prime}}(g)$ образуют представление группы G, являющееся прямым произведением неприводимых представлений V^{*}, Φ и W. Разложим это представление в прямую сумму неприводимых

$$
T(g)=\sum_{\lambda} c_{\lambda} D^{(\lambda)}(g)
$$

и просуммируем обе части равенства (11.14) по элементам g группы G. При этом сумма матриц $D^{\lambda}(g)$, соответствуюших неприводимому представлению, отличному от тождественного, дает нуль. Это является следствием соотношения ортогональности неприводимых представлений (9.2). Отсюда следует, что матричный элемент $M_{n m}^{j}$ может быть отличен от нуля, только если в разложении прямого произведения представлений $T=V^{*} \otimes \Phi \otimes W$ в прямую сумму неприводимых присутствует тождественное представление.

Согласно результату задачи 327 , правило отбора можно переформулировать так: чтобы матричный элемент $\left\langle\psi_{n}\right| \widehat{O}_{j}\left|\phi_{m}\right\rangle$ был отличен от нуля, необходимо (но недостаточно!), чтобы в разложении прямого произведения представлений $\Phi \otimes W$ на неприводимые хотя бы один раз встретилось V. Заметим, что доказанное утверждение есть следствие только трансформационных свойств волновых функций и операторов, а также инвариантности меры.

Если оператор \widehat{O} преобразуется по приводимому представлению, то следует разбить его на неприводимые составляюшие и установить переходы, разрешенные для каждой неприводимой компоненты отдельно.

Многочисленные примеры использования теории групп в разнообразных физических задачах можно найти в книгах [ПТ67, МУ72, ЛЛ74, PФ70].

11.4. Примеры

344. Найти кратнасти вырождения собственных мод малых колебаний «молекулы», состоящей из трех одинаковых «атомов», которые могут двигаться только вдоль окружности (рис. 11.1). Гамильтониан системь имеет вид

$$
\begin{equation*}
H=\frac{1}{2 m} \sum_{j=1}^{3} p_{j}^{2}+\frac{k}{2} \sum_{j=1}^{3}\left(x_{j}-x_{j-1}\right)^{2}, \quad x_{3} \equiv x_{0} \tag{11.15}
\end{equation*}
$$

где x_{j} - отклонение j-го атома от положения равновесия, p_{j} - сопряженный импуаьс.

Решение. Группа симметрии системы совпадает с группой $D_{3}=S_{3}$ симметрии равностороннего треугольника. Она разбивается на три класса сопряженных элементов: \boldsymbol{e} - единичный элемент, σ_{2} - циклические перестановки всех трех атомов (содержит 2 элемента), σ_{3} - перестановки пары атомов (содержит 3 элемента). Имеется 3 неэквивалентных неприводимых представления этой группы, и соответствующая таблица характеров приведена в решении задачи 291. Поскольку в данном случае движение каждого атома одномерно, то исходное представление группы D_{3} действует в трехмерном простран-

Рис. 11.1. Массы на кольие, моделирующие «молекулу* с треугольной симметрией стве векторов-амплитуд. Чтобы найти вырождение по частотам, разложим исходное представление на неприводимые. Дяя этого найдем характер этого представления. Он равен числу векторов-амплитуд атомов, не подвергающихся изменению при действии данного элемента группы:

$$
\chi(e)=3, \quad \chi\left(\sigma_{2}\right)=0, \quad \chi\left(\sigma_{3}\right)=1 .
$$

Разложим характер в сумму непринодимых характеров

$$
\chi(g)=\sum_{i} c_{l} \chi_{l}(g)
$$

где $\chi_{l}(g)$ - характер элемента g в l-м неприводимом представлении. а c_{l} - кратность вхождения представления в разложение. Воспользовавшись ортогональностью характеров, найдем коэффициенты $c_{l}: c_{1}=1$, $c_{2}=0, c_{3}=1$. Таким образом, исходное представление разлагается на одно единичное и одно двумерное неприводимые представления. Это означает, что система имеет две собственные частоты, одна из которых двукратно вырождена. Найдем эти частоты. Собственным для тождественного представления является вектор-амплитуда, не мененяшаяся при любых

групповых преобразованиях, т. е. перестановках атомов. Это, очевидно, $b^{t}=(1,1,1)$.

Из уравнений движения

$$
\begin{align*}
-\frac{m}{k} \omega^{2} b_{1} & =-2 b_{1}+b_{2}+b_{3}, \\
-\frac{m}{k} \omega^{2} b_{2} & =b_{1}-2 b_{2}+b_{3}, \tag{11.16}\\
-\frac{m}{k} \omega^{2} b_{3} & =b_{1}+b_{2}-2 b_{3}
\end{align*}
$$

находим, что собственная частота моды b^{t} равна нулю (однородная трансляция вдоль окружности не требует сжатия пружин). Ортогональное дополнение к b^{t} образует двумерное собственное подпространство. Выберем в нем какой-нибудь вектор, например $b^{d}=(0,1,-1)$, и подставим в (11.16). В результате получим выражение для второй частоты: $\omega=\sqrt{\frac{3 k}{m}}$.

Правильность нахождения частоты симметричного колебания легко проверить, заметив, что при таком движении неподвижными остаются атом и середина противоположной *пружины", поэтому жесткость «пружины*, действующей на массу m, составляет $3 k$.
345. То же для системы из четырех одинаковых атомов, расположенных в равновесии в вериинах квадрата. Гамильтониан палучается из (11.15) заменой верхнего предела суммирования по j на 4 и периодического граничного $у с л о в и я ~ н а ~ x_{4} \equiv x_{0}$.

Решение. Группа симметрии системы совпадает с группой D_{4} симметрии квадрата. Последняя состоит из 8 элементов и содержит 5 классов сопряженных элементов: e - единичный элемент, σ_{2} - поворот вокруг центра на $180^{\circ}, \sigma_{3}$ - отражения относительно пвух диагоналей, σ_{4} - отражения относительно двух прямых, проходяших через середины противоположных сторон квадрата, σ_{5} - повороты вокруг центра на 90° и 270°. Размерности неприводимых представлений можно найти из условия (9.5). Только одна сумма пяти квадратов дает число 8, именно $1^{2}+1^{2}+1^{2}+1^{2}+2^{2}=8$. Так что имеется 4 одномерных представления E, A_{2}, A_{3}, A_{4} и одно двумерное представление B. Соответствуюшая таблица характеров имеет вид

	\boldsymbol{e}	σ_{2}	σ_{3}	σ_{4}	σ_{5}
\boldsymbol{E}	1	1	1	1	1
\boldsymbol{A}_{2}	1	1	-1	-1	1
\boldsymbol{A}_{3}	1	1	1	-1	-1
\boldsymbol{A}_{4}	1	1	-1	1	-1
\boldsymbol{B}	2	-2	0	0	0

Характер четырехмерного исходного представления $T(g)$ в пространстве векторов-амплитуд:

$$
\chi(e)=4, \quad \chi\left(\sigma_{2}\right)=0, \quad \chi\left(\sigma_{3}\right)=2, \quad \chi\left(\sigma_{4}\right)=0, \quad \chi\left(\sigma_{5}\right)=0 .
$$

Воспользуемся ортогональностью характеров неприводимых представлений и с помощью усреднения по группе найдем коэффициенты разложения исходного представления по неприводимым:

$$
T=E \oplus A_{3} \oplus B
$$

Это означает, что имеется две невырожденные и одна двукратно вырожденная частоты колебаний. Частота, соответствуюшая тождественному представлению, как и в предыдущей задаче, равна нулю: $b^{t}=(1,1,1,1)$, $\boldsymbol{w}^{\boldsymbol{t}}=\mathbf{0}$. Для определения нормальных мод, преобразующихся по представлениям A_{3}, B, воспользуемся тем, что оператор

$$
P_{R}=\frac{1}{|G|} \sum_{g \in G} \chi^{(R) *}(g) T(g)=\left\langle\chi^{(R) *}(g) T(g)\right\rangle
$$

является с точностью до численного множителя проектором на инвариантное подпространство, соответствующее неприводимым представлениям $R=E, A_{3}$ или B, если последнее встречается в разложении $T(g)$ по неприводимым ровно один раз. Усреднение проводится здесь по всем элементам группы, а $\chi^{(R)}(g)$ обозначает характер представления $\boldsymbol{R}(g)^{*)}$.

В нашем случае неприводимые представления A_{3} и B встречаются ровно по одному разу. Проще всего построить проектор на подпространство, преобразуюшееся по представлению В. Для этого, как это видно из таблицы неприводимых характеров, нужно знать явный вид матриц исходного представления T только для двух элементов e и σ_{2} :

$$
\begin{gathered}
P_{B}=\frac{1}{8}\left(2 T(e)-2 T\left(\sigma_{2}\right)\right), \\
T(e)=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \quad T\left(\sigma_{2}\right)=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right) .
\end{gathered}
$$

Действуя последовательно оператором P_{B} на базисные векторы исходного представления (достаточно первых двух), получаем, что подпространство, преобразующееся по представлению B, является двумерным пространством с базисом:

$$
b=(1,0,-1,0), \quad b^{\prime}=(0,1,0,-1) .
$$

[^12]Подставляя b или \boldsymbol{b}^{\prime} в уравнения движения

$$
\begin{align*}
& -\frac{m}{k} \omega^{2} b_{1}=-2 b_{1}+b_{2}+b_{4}, \\
& -\frac{m}{k} \omega^{2} b_{2}=b_{1}-2 b_{2}+b_{3}, \\
& -\frac{m}{k} \omega^{2} b_{3}=b_{2}-2 b_{3}+b_{4}, \tag{11.17}\\
& -\frac{m}{k} \omega^{2} b_{4}=b_{1}+b_{3}-2 b_{4},
\end{align*}
$$

получаем выражение $\omega_{2}=\sqrt{\frac{2 k}{m}}$ для собственной частоты двукратно вырожденного колебания системы.

Вектор b^{a}, преобразующийся по представлению \boldsymbol{A}_{3}, однозначно определяется условием ортогональности к векторам b^{i}, b, b^{\prime} :

$$
b^{a}=(1,-1,1,-1) .
$$

Частота, соответствующая этой моде, вычисляется аналогично ω_{2} и равна $\omega_{3}=2 \sqrt{\frac{k}{m}}$.
346. Найти кратности вырождения нормальных калебаний малекуль воды $\mathrm{H}_{2} \mathrm{O}$, которую можно схематически представить себе в виде равнобедренного треугольника (рис. 11.2).

Решенне. В случае молекулы $\mathrm{H}_{2} \mathrm{O}$ группа симметрии $C_{2 v}$ состоит из четырех элементов: единичного e, поворота r на 180° вокруг оси l, отражения ξ_{1} относительно плоскости молекулы и отражения ξ_{2} относительно плоскости, перпендикулярной плоскости молекулы и проходящей через ось ! (см. рис. 11.2). Группа, очевидно, абелева, и каждый элемент образует

Рис.11.2. Молекула $\mathrm{H}_{2} \mathrm{O}$ класс сам по себе. Следовательно, имеются 4 одномерных неприводимых представления с таблицей характеров:

	e	r	ξ_{1}	ξ_{2}
χ_{B}	1	1	1	1
χ_{A}	1	1	-1	-1
χ_{B}	1	-1	1	-1
χ_{C}	1	-1	-1	1

Буква E здесь и ниже обозначает тождественное представление. Из одномерности неприводимых представлений следует, что все частоты колебаний невырожденные. Исходное представление Φ_{i} в пространстве размерности $3 n=9$ имеет следуюшие значения характера:

$$
\chi_{i}(e)=9, \quad \chi_{i}(r)=1+2 \cos \pi=-1, \quad \chi_{i}\left(\xi_{1}\right)=3, \quad \chi_{i}\left(\xi_{2}\right)=1 .
$$

Вычитая из них значения характера представления в подпространстве нулевых мод (поступательное движение и вращение молекулы как целого), для характера представления Φ в колебательном подпространстве с размерностью $3 n-6=3$ получим:

$$
\begin{gathered}
\chi(e)=9-6=3, \quad \chi(r)=-1-(-2)=1, \\
\chi\left(\xi_{1}\right)=3, \quad \chi\left(\xi_{2}\right)=1 .
\end{gathered}
$$

Используя ортогональность характеров неприводимых представлений, находим разложение Φ в прямую сумму $\Phi=2 E \oplus B$. Все три частоты в этом слу-

Рис. 11.3. Нормальные колебания молекулы $\mathrm{H}_{2} \mathrm{O}$ чае невырожденные. Равенство единице характера элемента ξ_{1} в представлениях \boldsymbol{E} и \boldsymbol{B} означает, что во всех трех нормальных модах атомы колеблются в плоскости треугольника (рис. 11.3).
347. Определить кратности вырождения нормальньхх колебаний линейной молекулы углекислого газа CO_{2} (рис. 11.4).

Решение. Линейная молекула CO_{2} имеет две вращательные степени свободы, поэтому число колебательных степеней свободы равно $3 n-5=4$. Группа симметрии $D_{\infty v}$ является прямым произведением

Рис. 11.4. Линейная молекула CO_{2} $C_{i} \otimes C_{\infty v}$ группы инверсии и группы $C_{\infty v}$, которая содержит непрерывную группу вращений нокруг оси молекулы и отражения в плоскостях, проходящих через ось молекулы. Это приводит к двукратному вырождению частоты колебаний, нарушаюших прямолинейность молекулы: колебания в двух взаимно перпендикулярных плоскостях, проходящих через ось молекулы, одинаковы. Что касается движений вдоль оси, то в этом трехмерном подпространстве действует представление Φ фактор-группы $\frac{b_{x i}}{C_{x}}=C_{i}$ группы симметрии, состоящей из двух элементов: единичного и инверсии i относительно положения атома углерода. Из таблицы характеров этой группы

	e	i
χ_{E}	1	1
$\chi_{E *}$	1	-1

следует разложение нашего исходного представления отклонений атомов от равновесия вдоль оси молекулы, характер которого равен $\chi(e)=3$,
$\chi(i)=-1^{*}$, на неприводимые

$$
\Phi=E \oplus 2 E^{*},
$$

соответствующее симметричному (E) и антисимметричному (E^{*}) нормальным колебаниям и сдвигу молекулы как целого (E^{*}).
348. Определить кратности вырождения нормальных колебаний молекулы аммиака NH_{3}, представляющей собой пирамиду с равносторонним треугольником в основании, в вершинах которого находятся атомы водорода.

Решение. Группа симметрии $C_{3 v}$ молекулы состоит из 6 элементов, распадаюшихся на три класса: единичный $e ; 2$ поворота r на 120^{c} irc и 240° вокруг вертикальной оси, проходяшей через атом $N ; 3$ отражения σ относительно плоскостей, перпендикулярных основанию и проходящих через атом \mathbf{N} и один из атомов H . Таблица характеров этой группы приведена в решении задачи 291. Исходное представление Φ_{i} в пространстве размерности $4 n=12$ имеет следуюший характер:

$$
\chi_{i}(e)=12, \quad \chi_{i}(r)=1+2 \cos \frac{2 \pi}{3}=0, \quad \chi(\sigma)=2 .
$$

Вычитая из них характеры представления в подпространстве нулевых мод, для характеров представления Φ в колебательном подпространстве размерности $4 n-6=6$ получим:

$$
\chi(e)=12-6=6, \quad \chi(r)=0, \quad \chi(\sigma)=2 .
$$

Разлагая на неприводимые представления, получаем (в обозначениях задачи 291)

$$
\Phi=2 T^{(1)} \oplus 2 T^{(3)} .
$$

Таким образом, имеется две невырожденные и две двукратно вырожденные частоты колебаний.
349. Атом с полным моментом $J=1$ помешен в вериину тетраэдра с основанием в виде равностороннего треугольника, образованного атомами другоzо сорта (см. рис. 11.5). Учитывая влияние этих атомов, найти кратности вырождений и разбиение по подуровням состояний с разными проекциями момента на ось симметрии (высота h).

Решение. Группа симметрии F системы состоит из единицы, двух поворотов на углы $\frac{2 \pi}{3}$ и $\frac{4 \pi}{3}$ вокруг высоты h тетраэдра (один класс r, r^{2}) и трех отражений относительно плоскостей, проходяших через эту высоту и одну из вершин треугольника основания (класс $\sigma, \sigma r, \sigma r^{2}$). Эта группа изоморфна группе S_{3} перестановок трех элементов, ее таблица характеров вычислена в решении задачи 291. Основной гамильтониан инвариантен

[^13]

Рис. 11.5. Атом в поле, создаваемом тремя
атомами другого сорта, расположенными
в вершинах правильного треугольника
относительно полной группы вращений $O(3)$, исходное состояние имело степень вырождения $2 J+1=3$. В нем действовало трехмерное представление группы $O(3)$. Группа F является подгруппой $O(3)$. Характер исходного представления можно найти, пользуясь трансформационными свойствами функций $Y_{J, m}(\theta, \varphi)$, где θ и φ - углы в сферической системе координат с осью h вдоль высоты тетраэдра:

$$
\begin{align*}
& U(r) Y_{J, m}(\theta, \varphi)=Y_{J, m}\left(\theta, \varphi-\frac{2 \pi}{3}\right)=e^{-i m \frac{2 \pi}{3}} Y_{J, m}(\theta, \varphi), \tag{11.18}\\
& U(\sigma) Y_{J, m}(\theta, \varphi)=Y_{J, m}(\theta,-\varphi)=Y_{J,-m}(\theta, \varphi)
\end{align*}
$$

Откуда для $J=1$

$$
\chi(e)=3, \quad \chi(r)=\sum_{m=-1}^{1} e^{i m \frac{2 x}{3}}=0, \quad \chi(\sigma)=\operatorname{Tr}\left(\begin{array}{lll}
0 & 0 & 1 \tag{11.19}\\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)=1 .
$$

Используя ортогональность характеров неприводимых представлений, получаем

$$
\begin{equation*}
D=T^{(1)} \oplus T^{(3)} \tag{11.20}
\end{equation*}
$$

где $T^{(1)}$ - тривиальное, а $T^{(3)}$ - двумерное неприводимое представление группы S_{3}. Таким образом, исходный трехкратно вырожденный уровень расщепится на два подуровня, один из которых невырожденный, а другой - двукратно вырожденный. Волновая функция, преобразующаяся по тождественному представлению, инвариантна относительно поворотов. Отсюда следует, что ей соответствует проекция момента на ось симметрии, равная нулю (нет φ-зависимости):

$$
\begin{equation*}
\Psi_{I}=Y_{1,0} . \tag{11.21}
\end{equation*}
$$

Волновые функции двукратно вырожденного подуровня ортогональны к подуровню (11.21), поэтому они являются линейными комбинациями состояний с проекциями моментов ± 1 на ось симметрии.
350. Атом с полным угловым моментом $J=2$ находится в центре равностороннего треугольника, образованного одинаковыми атомами другого сорта. Рассматривая их влияние как возмущение, найти, на сколько подуровней и какой кратности расцепится исходный пятикратно вырожденныи уровень.

Решение. По сравнению с предыдушей задачей появляется дополнительная образуюшая группы симметрии F - отражение $\widetilde{\sigma}$ относительно плоскости треугольника, $\tilde{\sigma}^{2}=e$. Этот элемент группы образует класс сам по себе, так как коммутирует с каждым элементом группы. Количество элементов группы F удваивается ($|F|=12$), так как для любого элемента группы существует парный, умноженный на $\bar{\sigma}$. Отсюда следует, что наряду с классами сопряженных элементов r и σ появляются классы r^{\prime} и σ^{\prime} - результат умножения на $\widetilde{\boldsymbol{\sigma}}$. Так как $\widetilde{\boldsymbol{\sigma}}$ коммутирует со всеми элементами F, то в любом представлении $T(\tilde{\sigma})= \pm I$, где I - единичная матрица. Количество неприводимых представлений также удваивается по сравнению с предыдущей задачей. Рассматривая таблицу характеров как матрицу, мы получим таблицу характеров как тензорное произведение матрицы

$$
\left(\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right)
$$

и матрицы характеров группы D_{3} :

	e	r	$\boldsymbol{\sigma}$	$\tilde{\sigma}$	\boldsymbol{r}^{\prime}	σ^{\prime}
χ_{E}	1	1	1	1	1	1
χ_{A}	1	1	-1	1	1	-1
χ_{B}	2	-1	0	2	-1	0
$\chi_{E^{\prime}}$	1	1	1	-1	-1	-1
$\chi_{\boldsymbol{A}^{\prime}}$	1	1	-1	-1	-1	1
$\chi_{B^{\prime}}$	2	-1	0	-2	1	0
χ_{D}	5	-1	1	1	1	1

Внизу таблицы выписаны характеры исходного представления D, которые можно получить, если в качестве базиса в 5 -мерном пространстве состояний с полным моментом $J=2$ выбрать, например, $Y_{J m}$, с проекцией момента на ось симметрии третьего порядка $m=-2,-1,0,1,2$, и воспользоваться трансформационными свойствами (11.18), а также

$$
\begin{gather*}
U(\widetilde{\sigma}) Y_{J m}(\theta, \varphi)=U(\widetilde{\sigma}) Y_{J m}(-\theta, \varphi)=(-1)^{m} Y_{J m}(\theta, \varphi), \\
U\left(r^{\prime}\right)=U(\widetilde{\sigma}) U(r), \quad U\left(\sigma^{\prime}\right)=U(\tilde{\sigma}) U(\sigma) \tag{11.22}
\end{gather*}
$$

Заметим, что относительно преобразований группы вращений состояние с моментом 2 преобразуется как следуюшие функции единичного вектора $\boldsymbol{n}=\left(n_{x}, n_{y}, n_{z}\right)$:

$$
\begin{equation*}
n_{+}^{2}, \quad n_{+} n_{z}, \quad n_{z}^{2}-\frac{1}{3}, \quad n_{-} n_{z}, \quad n_{-}^{2}, \tag{11.23}
\end{equation*}
$$

где $n_{ \pm}=n_{x} \pm i n_{y}$.
Соотношение (9.3) ортогональности характеров неприводимых представлений дает разложение

$$
\begin{equation*}
D=E \oplus B \oplus B^{\prime} \tag{11.24}
\end{equation*}
$$

Таким образом, исходный уровень расщепился на три подуровня: один невырожден, а два - двукратно вырождены.
351. Найти правила отбора по четности операторов электрического д и магнитного m дипольных моментов.

Решение. Группа инверсии $G=\{e, P\}, P^{2}=e$ имеет только одномерные неприводимые представления, поэтому функции состояний $\langle f$ | и $|i\rangle$ могут быть либо четными, либо нечетными, т. е. преобразуются по одномерным представлениям $D_{i}(P), D_{f}(P)= \pm 1$. Так как электрический дипольный момент меняет знак при инверсии, а магнитный не меняет, то $D_{d}=-1, D_{m}=1$. Прямое произведение представлений содержит тривиальное представление $D_{f} \otimes D_{0} \otimes D_{i}=1$, если $D_{f} D_{i}=-1$ для \boldsymbol{d} или $D_{f} D_{i}=1$ для \boldsymbol{m}. Матричный элемент $d_{f i}\left(m_{f i}\right)$ может быть отличен от нуля, а переходы разрешены, если состояния ($f \mid$ и $|i\rangle$ имеют противоположную (одинаковую) четность.
352. Найти правила отбора оператора электрического дипольного момента $\boldsymbol{d}=\boldsymbol{e r}$:
(a) по полному орбитальному моменту L.
(б) по проекции орбитального момента М.

Решение. (а) Оператор электрического дипольного момента представляет собой вектор, поэтому преобразуется по трехмерному неприводимому представлению D_{J} группы $S O(3)$, с $J=1$. Обозначим через L момент начального состояния, а через L^{\prime} - момент конечного, тогда при $L \geqslant$ I разложение

$$
D=D_{L^{\prime}}^{*} \otimes D_{1} \otimes D_{L}=D_{L^{\prime}}^{*}\left(D_{L-1} \oplus D_{L} \oplus D_{L+1}\right)
$$

содержит тривиальное представление только при

$$
L^{\prime}=L, L \pm 1 ; \quad L \geqslant 1 .
$$

Если же $L=0$, то $D_{1} \otimes D_{0}=D_{1}$, поэтому $D=D_{L^{\prime}}^{*} \otimes D_{1}$ содержит тривиальное представление только при $L^{\prime}=1$. Поэтому матричный элемент между двумя S-состояниями обращается в нуль. Заметим, что в атоме водорода, содержащем один электрон, переход в состояние с $L^{\prime}=L$ запрещен по четности.

Решение. (б) Вращения вокруг направления оси квантования z образуют абелеву группу $S O(2)$, все неприводимые представления которой одномерны: $D_{M}=\exp (i M \varphi)$. Поэтому произведение $D=D_{M^{\prime}}^{*} \otimes D_{m} \otimes D_{M}$ содержит тривиальное, если $M^{\prime}=M+m$. Матричный элемент проекции дипольного момента на ось квантования d_{z} отличен от нуля, если $M^{\prime}=M$, а для $M^{\prime}=M \pm 1$ отличны от нуля матричные элементы операторов $d_{ \pm}=d_{x} \pm i d_{y}$, которые преобразуются по представлениям $D_{ \pm 1}$ соответственно.

11.5. Задачи

353. Показать, что матричные элементы скалярного оператора между состояниями, преобразующимися по различным неприводимым представлениям, обращаются в нуль.
354. Доказать, что в разложении прямого произведения двух разных неприводимых представлений на неприводимые нет тривиального представления.
355. Найти правила отбора для векторного оператора при наличии симметрии D_{3}.

11.6. Ответы

353. Указание: Использовать соотношения ортогональности характеров.
354. Запрещены переходы между состояниями, преобразующимися по разным одномерным представлениям.

Сводка формул

по специальным функциям

П.1. Г-функция Эйлера

$$
\begin{gather*}
\Gamma(x)=\int_{0}^{\infty} d z z^{x-1} e^{-x}, \tag{ח.1}\\
\Gamma(x+1)=x \Gamma(x) \tag{П.2}\\
\Gamma(x) \Gamma(1-x)=\frac{\pi}{\sin \pi x} \tag{П.3}
\end{gather*}
$$

П.2. Гипергеометрические функции

П.2.1. Пипергеометрияеская функиия Гаусса $2 \boldsymbol{F}_{1}$

Дифференциальное уравнение для ${ }_{2} F_{1}(a, b ; c ; x)$:

$$
\begin{equation*}
x(1-x) y^{\prime \prime}+[c-(a+b+1) x] y^{\prime}-a b y=0 \tag{П.4}
\end{equation*}
$$

Ралложение в степенной ряд возле $x=0$:

$$
\begin{equation*}
{ }_{2} F_{1}(a, b ; c ; x)=1+\frac{a b}{c} \frac{x}{1!}+\frac{a(a+1) b(b+1)}{c(c+1)} \frac{x^{2}}{2!}+\ldots \tag{П.5}
\end{equation*}
$$

Преобразование Эйлера:

$$
\begin{equation*}
{ }_{2} F_{1}(a, b ; c ; x)=(1-x)^{-b}{ }_{2} F_{1}\left(c-a, b ; c ; \frac{x}{x-1}\right) . \tag{П.6}
\end{equation*}
$$

Интегральное представление:

$$
\begin{equation*}
{ }_{2} F_{1}(a, b ; c ; x)=\frac{\Gamma(c)}{\Gamma(a) \Gamma(b)} \int_{0}^{1} d t \frac{t^{b-1}(1-t)^{c-b-1}}{(1-t x)^{a}} \tag{П.7}
\end{equation*}
$$

ПІ.2.2. Вырожденная гипергеометрическая функиия ${ }_{\mathbf{I}} \boldsymbol{F}_{1}$
Дифференциальное уравнение для ${ }_{1} F_{1}(a ; c ; x)$:

$$
\begin{equation*}
x y^{\prime \prime}+(c-x) y^{\prime}-a \quad y=0 \tag{ח.8}
\end{equation*}
$$

Раложение в степенной ряд возле $x=0$:

$$
\begin{equation*}
F_{1}(a ; c ; x)=\lim _{b \rightarrow \infty} F_{1}\left(a, b ; c ; \frac{x}{b}\right)=1+\frac{a}{c} \frac{x}{1!}+\frac{a(a+1)}{c(c+1)} \frac{x^{2}}{2!}+\ldots \tag{П.9}
\end{equation*}
$$

Второе решение:

$$
\begin{equation*}
y=x^{1-\varepsilon}, F_{1}(a-c+1 ; 2-c ; x) . \tag{П.10}
\end{equation*}
$$

Преобразование Куммера:

$$
\begin{equation*}
F_{1}(a ; c ; x)=e^{x} F_{1}(c-a ; c ;-x) . \tag{П.11}
\end{equation*}
$$

Интегральное представление:

$$
\begin{gather*}
{ }_{1} F_{1}(a ; c ; x)=\frac{\Gamma(c)}{\Gamma(a) \Gamma(c-a)} \int_{0}^{1} d t t^{a-1}(1-t)^{c-a-1} e^{x t} \tag{ח.12}\\
\operatorname{Re} c>\operatorname{Re} a>0
\end{gather*}
$$

Асимптотическое поведение:

$$
\begin{array}{ll}
{ }_{1} F_{1}(a ; c ; x) \simeq \frac{\Gamma(c)}{\Gamma(a)} e^{x} x^{a-c}, & x \rightarrow+\infty, \tag{П.13}\\
{ }_{1} F_{1}(a ; c ; x) \simeq \frac{\Gamma(c)}{\Gamma(c-a)}(-x)^{-a}, & x \rightarrow-\infty .
\end{array}
$$

П.3. Цилиндрические функции

П.3.1. Функшии Бесселя \boldsymbol{J}_{ν} и Неймана \boldsymbol{Y}_{ν}

Дифференциальное уравнение для $J_{\nu}(x)$:

$$
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\nu^{2}\right) y=0 \tag{ח.14}
\end{equation*}
$$

Разложение в степенной ряд возле $x=0$;

$$
\begin{equation*}
J_{\nu}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}(x / 2)^{2 n+\nu}}{n!\Gamma(n+\nu+1)} . \tag{7.15}
\end{equation*}
$$

Выражение через гипергеометрическую функиию:

$$
\begin{equation*}
J_{\nu}(x)=\frac{(x / 2)^{\nu}}{\Gamma(\nu+1)} e^{-i x} F_{1}\left(\nu+\frac{1}{2} ; 2 \nu+1 ; 2 i x\right) \tag{П.16}
\end{equation*}
$$

Рекуррентное соотношение:

$$
\begin{equation*}
\frac{2 \nu}{x} J_{\nu}(x)=J_{\nu-1}(x)+J_{\nu+1}(x) . \tag{П.17}
\end{equation*}
$$

Формулы дифференцирования:

$$
\begin{align*}
& 2 \frac{d}{d x} J_{\nu}(x)=J_{\nu-1}(x)-J_{\nu+1}(x), \tag{П.18}\\
& \frac{d}{d x}\left(x^{ \pm \nu} J_{\nu}(x)\right)= \pm x^{ \pm \nu} J_{\nu \mp 1}(x) .
\end{align*}
$$

Интегральные представления:

$$
\begin{align*}
J_{\nu}(x) & =\frac{1}{2 \pi i} \int_{-\infty}^{(0+1} \frac{d z}{z^{\nu+1}} \exp \left(\frac{x}{2}\left(z-\frac{1}{z}\right)\right)= \\
& =\int_{-\pi}^{\pi} \frac{d \varphi}{2 \pi} e^{i z \sin \varphi-i \nu \varphi}-\frac{\sin \pi \nu}{\pi} \int_{0}^{\infty} d t e^{-x \operatorname{sht} i-\nu t} \tag{п.19}\\
J_{\nu}(x) & =\frac{2}{\sqrt{\pi} \Gamma(\nu+1 / 2)}\left(\frac{x}{2}\right)^{\nu} \int_{0}^{\pi / 2} d \varphi \cos ^{2 \nu}(\varphi) \cos (x \sin (\varphi))= \\
& =\frac{1}{\sqrt{\pi} \Gamma(\nu+1 / 2)}\left(\frac{x}{2}\right)^{\nu} \int_{-1}^{1} d t e^{i x t}\left(1-t^{2}\right)^{\nu-1 / 2} \tag{П.20}
\end{align*}
$$

В первом интегральном представлении интегрирование идет по контуру, начинающемуся и заканчивающемуся в $-\infty$, обходящему точку $z=0$ в положительном направлении (рис. П.І). В интегральном представлении Шлефли (П.19) при иелом ν остается только первое слагаемое. В интеграле Пуассона (П.20) $\operatorname{Re} \nu>-\frac{1}{2}$.
(t)

Рис. П.І. Контур интегрирования, обходящий разрез $t \in(-\infty, 0]$ в положительном направлении

Второе решение:

$$
\begin{equation*}
Y_{\nu}(x)=\frac{1}{\sin \pi \nu}\left[J_{\nu}(x) \cos \pi \nu-J_{-\nu}(x)\right] . \tag{ח1.21}
\end{equation*}
$$

Асимптотическое поведение:

$$
\begin{equation*}
J_{\nu}(x) \simeq \sqrt{\frac{2}{\pi x}} \cos \left(x-\frac{\nu \pi}{2}-\frac{\pi}{4}\right), \quad x \rightarrow+\infty . \tag{П.22}
\end{equation*}
$$

Случай полуцелого индекса:

$$
\begin{equation*}
J_{1 / 2}(x)=\sqrt{\frac{2}{\pi x}} \sin x, \quad J_{-1 / 2}(x)=\sqrt{\frac{2}{\pi x}} \cos x . \tag{П.23}
\end{equation*}
$$

П.3.2. Функции Бесселя целого порядка $\boldsymbol{J}_{\boldsymbol{n}}$

$$
\begin{equation*}
J_{-n}(x)=(-1)^{n} J_{n}(x) \tag{П.24}
\end{equation*}
$$

Производящая функция:

$$
\begin{equation*}
\exp \left(\frac{x}{2}\left(z-\frac{1}{z}\right)\right)=\sum_{n=-\infty}^{\infty} z^{n} J_{n}(x) . \tag{П.25}
\end{equation*}
$$

Соотношения ортогональности:

$$
\begin{align*}
& \int_{0}^{1} d x x J_{k}\left(\gamma_{n} x\right) J_{k}\left(\gamma_{m} x\right)=\frac{\delta_{n m}}{2}\left(\frac{d J_{k}\left(\gamma_{m}\right)}{d \gamma_{m}}\right)^{2}, \quad J_{k}\left(\gamma_{m}\right)=0, \tag{П.26}\\
& \int_{0}^{1} d x x J_{k}\left(\lambda_{n} x\right) J_{k}\left(\lambda_{m} x\right)=\frac{\delta_{n m}}{2}\left(1-\frac{k^{2}}{\lambda_{m}^{2}}\right) J_{k}^{2}\left(\lambda_{m}\right), \quad \frac{d J_{k}\left(\lambda_{m}\right)}{d \lambda_{m}}=0 .
\end{align*}
$$

П.3.3. Модифицированная функцня Бесселя \boldsymbol{I}_{ν} и функция Макдональда \boldsymbol{K}_{ν}

Дифференииальное уравнение для $I_{\nu}(x), K_{\nu}(x)$:

$$
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}-\left(x^{2}+\nu^{2}\right) y=0 \tag{П.27}
\end{equation*}
$$

Разложение в степенной ряд возле $x=0$:

$$
\begin{equation*}
I_{\nu}(x)=\sum_{n=0}^{\infty} \frac{(x / 2)^{2 n+\nu}}{n!\Gamma(n+\nu+1)} \tag{П.28}
\end{equation*}
$$

Выражение через обычные функции Бесселя:

$$
\begin{equation*}
I_{\nu}(x)=e^{-i \nu \pi / 2} J_{\nu}(i x) \tag{П.29}
\end{equation*}
$$

Выражение для K_{ν} через $I_{\nu}, I_{-\nu}$:

$$
\begin{equation*}
K_{\nu}(x)=\frac{\pi\left[I_{-\nu}(x)-I_{\nu}(x)\right]}{2 \sin \pi \nu} \tag{П1.30}
\end{equation*}
$$

Интегральные представления:

$$
\begin{align*}
& I_{\nu}(x)=\frac{(x / 2)^{\nu}}{\sqrt{\pi} \Gamma(\nu+1 / 2)} \int_{-1}^{1} d t e^{-x t}\left(1-t^{2}\right)^{\nu-1 / 2}, \quad \operatorname{Re} \nu>-\frac{1}{2}, \\
& K_{\nu}(x)=\int_{0}^{\infty} d t e^{-x \operatorname{cht}} \operatorname{ch} \nu t, \quad \operatorname{Re} x>0, \tag{П.31}\\
& K_{\nu}(2 \sqrt{p q})=\frac{1}{2}\left(\frac{p}{q}\right)^{\nu / 2} \int_{0}^{\infty} x^{\nu-1} e^{-p x-q / x} d x, \quad \operatorname{Re} p>0, \quad \operatorname{Re} q>0 .
\end{align*}
$$

Асимптотическое поведение:

$$
\begin{align*}
& I_{\nu}(x) \simeq \sqrt{\frac{\pi x}{2}} e^{x}, \quad K_{\nu}(x) \simeq \sqrt{\frac{\pi}{2 x}} e^{-x}, \quad x \rightarrow+\infty . \tag{ח1.32}\\
& I_{\nu}(x) \simeq \frac{(x / 2)^{\nu}}{\Gamma(\nu+1)}, \quad K_{0}(x) \simeq-\ln x, \quad x \rightarrow+0 \tag{ח1.33}\\
& K_{\nu}(x) \simeq \frac{\Gamma(\nu)}{2}\left(\frac{x}{2}\right)^{-\nu}, \quad x \rightarrow+0, \quad \nu \neq 0 . \tag{П1.34}
\end{align*}
$$

П.4. Ортогональные полиномы

П.4.1. Полиномы Лешамдра \boldsymbol{P}_{1}

 н присоединеннье функции Лежандра $\boldsymbol{P}_{1}{ }^{\boldsymbol{m}}$Дифференциальное уравнение для $P_{f}(x)$:

$$
\begin{equation*}
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+l(l+1) y=0 \tag{п1.35}
\end{equation*}
$$

Дифференциальное уравнение пля $P_{1}^{m}(x)$:

$$
\begin{equation*}
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+\left(l(l+1)-\frac{m^{2}}{1-x^{2}}\right) y=0 \tag{ח.36}
\end{equation*}
$$

Формулы Родрига:

$$
\begin{aligned}
P_{l}(x) & \equiv P_{l}^{0}(x)=\frac{1}{2^{\prime} l!} \frac{d^{l}}{d x^{l}}\left(x^{2}-1\right)^{l} \\
P_{l}^{m}(x) & =\left(1-x^{2}\right)^{m / 2} \frac{d^{m}}{d x^{m}} P_{l}(x)
\end{aligned}
$$

Первые 3 полинома:

$$
\begin{equation*}
P_{0}(x)=1, \quad P_{1}(x)=x, \quad P_{2}(x)=\frac{3 x^{2}-1}{2} . \tag{П.37}
\end{equation*}
$$

Соотношение ортогональности:

$$
\begin{equation*}
\int_{-1}^{1} d x P_{l}^{m}(x) P_{l^{\prime}}^{m}(x)=\frac{2}{2 l+1} \frac{(l+m)!}{(l-m)!} \delta_{l^{\prime}} \tag{ח.38}
\end{equation*}
$$

Рекуррентное соотношение:

$$
\begin{equation*}
x(2 l+1) P_{l}(x)=(l+1) P_{l+1}(x)+l P_{-1}(x) . \tag{П.39}
\end{equation*}
$$

Формулы дифференцирования:

$$
\begin{align*}
(2 l+1) P_{l}(x) & =\frac{d}{d x} P_{l+1}(x)-\frac{d}{d x} P_{i-1}(x), \\
l P_{l}(x) & =x \frac{d}{d x} P_{l}(x)-\frac{d}{d x} P_{i-1}(x) . \tag{П.40}
\end{align*}
$$

Производящие функции:

$$
\frac{1}{\sqrt{1-2 x r+r^{2}}}=\left\{\begin{array}{ll}
\sum_{l=0}^{\infty} r^{l} P_{l}(x), & r<1 ; \tag{П.41}\\
\sum_{l=0}^{\infty} \frac{1}{r^{l+1}} P_{l}(x), & r>1 ;
\end{array} \quad-1<x<1\right.
$$

Интегральные представления:

$$
\begin{align*}
P_{1}(x) & =\frac{1}{2 \pi i} \int^{(0+)} \frac{d z z^{-l-1}}{\sqrt{1-2 x z+z^{2}}} \tag{П.42}\\
P_{l}(\cos \theta) & =\frac{1}{\pi} \int_{0}^{\pi} d \varphi(\cos \theta+i \sin \theta \cos \varphi)^{l} \tag{П.43}
\end{align*}
$$

В формуле (П.42) интегрирование идет по замкнутому контуру вокруг точки $t=0$ в положительном направлении.
Асимптотическое поведение:

$$
\begin{equation*}
P_{1}(\cos \theta) \simeq \sqrt{\frac{2}{\pi l}} \frac{\sin \left[\left(l+\frac{1}{2}\right) \theta+\frac{\pi}{4}\right]}{\sqrt{\sin \theta}}, \quad l|\sin \theta| \gg 1 . \tag{П.44}
\end{equation*}
$$

Сферические гармоникн $\boldsymbol{Y}_{\mathbf{l m}}$

$$
\begin{equation*}
Y_{l m}(\theta, \varphi)=C_{l m} e^{i m \varphi \varphi} P_{l}^{|m|}(\cos \theta) \tag{П1.45}
\end{equation*}
$$

Дифференииальные уравнения для $Y_{l m}$:

$$
\begin{equation*}
\Delta_{\mathfrak{\Omega}} Y_{l m}=-l(l+1) Y_{l m}, \quad i \frac{d}{d \varphi} Y_{l m}=-m Y_{l m} \tag{П.46}
\end{equation*}
$$

где $\Delta_{\boldsymbol{\Omega}}$ - угловая часть трехмерного оператора Лапласа в сферических координатах.
Соотношение ортогональности:

$$
\begin{equation*}
\int \sin \theta d \theta d \varphi Y_{l m}(\theta, \varphi) Y_{l^{\prime} m^{\prime}}(\theta, \varphi)=\delta_{l \prime} \delta_{m m^{\prime}} \tag{П.47}
\end{equation*}
$$

Соотношение полноты:

$$
\begin{equation*}
\sum_{l=0}^{\infty} \sum_{m=-1}^{1} Y_{l m}(n) Y_{l m}^{*}\left(n^{\prime}\right)=\delta\left(n-n^{\prime}\right) . \tag{П.48}
\end{equation*}
$$

П.4.2. Палыноми Эрметте $\boldsymbol{H}_{\boldsymbol{n}}$

Дифференциальное уравнение для $H_{n}(x)$:

$$
\begin{equation*}
y^{\prime \prime}-2 x y^{\prime}+2 n y=0 \tag{II.49}
\end{equation*}
$$

Формула Родрига:

$$
\begin{equation*}
H_{n}(x)=(-1)^{n} e^{x^{2}} \frac{d^{n}}{d x^{n}} e^{-x^{2}} . \tag{П.50}
\end{equation*}
$$

Первые 3 полинома:

$$
\begin{equation*}
H_{0}(x)=1, \quad H_{1}(x)=2 x, \quad H_{2}(x)=4 x^{2}-2 . \tag{ח.51}
\end{equation*}
$$

Соотношение ортогональности:

$$
\begin{equation*}
\int_{-\infty}^{\infty} d x e^{-x^{2}} H_{m}(x) H_{n}(x)=\sqrt{\pi} 2^{n} n!\delta_{m n} \tag{П.52}
\end{equation*}
$$

Соотношение полноты:

$$
\begin{equation*}
\frac{e^{-\left(x^{2}+x^{\prime 2}\right) / 2}}{\sqrt{\pi}} \sum_{n=0}^{\infty} \frac{H_{n}(x) H_{n}\left(x^{\prime}\right)}{2^{n} n!}=\delta\left(x-x^{\prime}\right) \tag{ח.53}
\end{equation*}
$$

Рекуррентное соотношение:

$$
\begin{equation*}
H_{n+1}(x)-2 x H_{n}(x)+2 n H_{n-1}(x)=0 . \tag{n.54}
\end{equation*}
$$

Формула дифференцирования:

$$
\begin{equation*}
\frac{d}{d x} H_{n}(x)=2 n H_{n-1}(x) \tag{П.55}
\end{equation*}
$$

Производящая функция:

$$
\begin{equation*}
\exp \left(2 x z-z^{2}\right)=\sum_{n=0}^{\infty} \frac{z^{n}}{n!} H_{n}(x) \tag{П1.56}
\end{equation*}
$$

Интегральные представления:

$$
\begin{align*}
H_{n}(x) & =\frac{2^{n+1} e^{x^{2}}}{\sqrt{\pi}} \int_{0}^{\infty} d z z^{n} e^{-z^{2}} \cos \left(2 x z-\frac{n \pi}{2}\right) \\
& =\frac{2^{n}}{\sqrt{\pi}} \int_{-\infty}^{\infty}(x+i t)^{n} e^{-t^{2}} d t \tag{П.57}
\end{align*}
$$

П.4.3. Полиномы Лагерра $\boldsymbol{L}_{\boldsymbol{n}}^{\boldsymbol{\nu}}$

Дифференциальное уравнение для $L_{n}^{\nu}(x)$:

$$
\begin{equation*}
x y^{\prime \prime}+(\nu+1-x) y^{\prime}+n y=0 . \tag{П.58}
\end{equation*}
$$

Формула Родрига:*)

$$
\begin{equation*}
L_{n}^{\nu}(x)=\frac{x^{-\nu} e^{x}}{n!} \frac{d^{n}}{d x^{n}} e^{-x} x^{n+\nu} \tag{П.59}
\end{equation*}
$$

Первые 3 полинома:

$$
\begin{gather*}
L_{0}^{\nu}(x)=1, \quad L_{1}^{\nu}(x)=\nu+1-x, \\
L_{2}^{\nu}(x)=\frac{(\nu+1)(\nu+2)}{2}-(\nu+2) x+\frac{x^{2}}{2} . \tag{П.60}
\end{gather*}
$$

Соотношение ортогональности:

$$
\begin{equation*}
\int_{0}^{\infty} d x e^{-x} x^{\nu} L_{m}^{\nu}(x) L_{n}^{\nu}(x)=\frac{\Gamma(n+\nu+1)}{n!} \delta_{m n} . \tag{П.61}
\end{equation*}
$$

Соотношение полноты:

$$
\begin{equation*}
\left(x x^{\prime}\right)^{\nu / 2} e^{-\left(x+x^{\prime}\right) / 2} \sum_{n=0}^{\infty} \frac{n!L_{n}^{\nu}(x) L_{n}^{\nu}\left(x^{\prime}\right)}{\Gamma(n+\nu+1)}=\delta\left(x-x^{\prime}\right) . \tag{П.62}
\end{equation*}
$$

Рекуррентное соотношение:

$$
\begin{equation*}
(n+1) L_{n+1}^{\nu}(x)-(2 n+\nu+1-x) L_{n}^{\nu}(x)+(n+\nu) L_{n-1}^{\nu}(x)=0 \tag{П.63}
\end{equation*}
$$

Формулы дифферениирования:

$$
\begin{align*}
x \frac{d}{d x} L_{n}^{\nu}(x) & =n L_{n}^{\nu}(x)-(n+\nu) L_{n-1}^{\nu}(x) \tag{П.64}\\
\frac{d}{d x} L_{n}^{\nu}(x) & =-L_{n-1}^{\nu+1}(x)
\end{align*}
$$

[^14]Производящая функция:

$$
\begin{equation*}
(1-z)^{-\nu-1} \exp \left(\frac{x z}{z-1}\right)=\sum_{n=0}^{\infty} z^{n} L_{n}^{\nu}(x) \tag{П.65}
\end{equation*}
$$

Интегральное представление:

$$
\begin{align*}
L_{n}^{\nu}(x) & =\frac{1}{2 \pi i} \int^{(0+)}\left(1+\frac{x}{t}\right)^{n} e^{-t}\left(1+\frac{t}{x}\right)^{\nu} \frac{d t}{t}= \\
& =\frac{(-1)^{n}}{2 \pi i} \int^{(0+)} \frac{(1-t)^{n+\nu}}{t^{n}} e^{t x} \frac{d t}{t} \tag{П.76}
\end{align*}
$$

Здесь интегрирование идет по замкнутому контуру вокруг точки $t=0$ в положительном направлении.
[АС79] Абрамовиц М., Стиган И. Справочник по специальным функциям. М.: Наука, 1979.
[Арн78] Арнольд В. И. Дополнительные главы теории обыкновенных дифференциальных уравнений. М.: Наука, 1978.
[Арн84] Арнольд В. И. Обыкновенные дифференциальные уравнения. М.: Наука, 1984.
[Арн89] Арнольд В. И. Математические методы классической механики. М.: Наука, 1989.
[Арн97] Арнольд В. И. Лекции об уравнениях с частными производными. М.: Фазис, 1997.
[Арс84] Арсенин В. Я. Методы математической физики и специальные функции. М.: Наука, 1984.
[Арф70] Арфкен Г. Математические методы в физике. М.: Атомиздат, 1970.
[БЗП71] Базь А. И., Зельдович Я. Б., Переломов А. М. Рассеяния, реакции, распады в нерелятивистской квантовой механике. М.: Наука, 1971.
[БЭ73] Бейтмен Г., Эрдейи А. Высшие трансцендентные функции. Т. I: Гипергеометрическая функция. Функции Лежандра. СМБ. М.: Наука, 1973.
[БЭ74] Бейтмен Г., Эрдейи А. Высшие трансцендентные функции. T. II: Функции Бесселя. Функции параболического цилиндра. Ортогональные многочлены. СМБ. М.: Наука, 1974.
[БЭ67] Бейтмен Г., Эрдейи А. Высшие трансцендентные функции. T. III: Эллиптические и автоморфные функции. Функции Ламе и Матье. СМБ. М.: Наука, 1967.
[Биц78] Бицадзе А. В. Уравнения математической физики. М.: Наука, 1978.
[БК77] Бицадзе А. В., Калиниченко Д. Ф. Сборник задач по уравнениям математической физики. М.: Наука, 1977.
[БК98] Боголюбов А. Н., Кравиов В. В. Задачи по математической физике. М.: Изл-во Московского университета, 1998.
[БМ74] Боголюбов Н. Н., Митропольский Ю. А. Асимптотические методы в теории нелинейных колебаний. М.: Наука, 1974.
[БСТ87] Будак Б. М., Самарский А. А., Тихонов А. Н. Сборник задач по математической физике. М.: Наука, 1987.
[ВдВ38] Ван-дер-Варден Б. Л. Метод теории групn в квантовой механике. Харьков: Изд-во ХГУ, 1938.
[Вигб1] Вигнер Е. Теория групп. М.: ИЛ, 1961.
[Вла88] Владимиров В.С. Уравнения математической физики. М.: Наука, 1988.
[Год71] Годунов С. К. Уравнения математической физики. М.: Наука, 1971.
[ГР71] Градштейк И. С., Рыхик И. М. Таблицы интегралов, сумм, рядов и произведений. М.: Наука, 1971.
[ДБ61] Де Брейн Н. Г. Асимптотические методы в анализе. М.: ИЛ, 1961.
[ДНФ79] Дубровин Б. А., Новиков С. П., Фоменко А. Т. Современная геометрия. М.: Наука, 1979.
[ЗМНП80] Захаров В. Е., Манаков С. в., Новиков С. П., Питаевский Л. П. Теория солитонов: Метод обратной задачи. М.: Наука, 1980.
[3Р66] Зельдович Я. Б., Райзер Ю. П. Физика ударных волн и высокотемпературных гидродинамических явлений. М.: Наука, 1966.
[KA84] Канторович Л. В., Акилов Г. П. Функциональный анализ. М.: Мир, 1984.
[Кам66] Камке Э. Справочник по дифференциальным уравнениям в частных производных первого порядка. М.: Наука, 1966.
[Кам76] Камке Э. Справочник по обыкновснным дифференциальным уравнениям. М.: Наука, 1976.
[Кир78] Кириллов А. А. Элементм теории представлений. М.: Наука, 1978.
[КФ72] Колмоzоров А. Н., Фамин С. В. Элементы теории функций и функционального анализа. М.: Наука, 1972.
[КГС62] Коиляков Н.С., Глинер Э. Б., Смирнов М. М. Основные дифференииальные уравнения математической физики. М.: Физматгиз, 1962.
[Kon66] Копсон Э. Асимптотические ралложения. М.: Мир, 1966.
[Кос77] Кострикин А. И. Введение в алгебру. М.: Наука, 1977.
[Koy72] Коул Дж. Методы возмущений в прикладной математике. М.: Мир, 1972.
[КГ51] Курант P., Гиаьберт Д. Методы математической физики. М.: Гостехиздат, 1951.
[Кур64] Курант Р. Уравнения с частными производными. М.: Мир, 1964.
[ЛШ87] Лаврентьев М. А., Шабат Б. В. Методы теории функций комплексного переменного. М.: Наука, 1987.
[ЛЛ74] Ландау Л. Д., Лифиии Е. М. Квантовая механика. М.: Наука, 1974.
[ЛЛ88] Ландау Л. Д., Лифиии Е. М. Гидродинамика. М.: Наука, 1988.
[ЛСУ55] Лебедев Н. Н., Скальская И. П., Уфлянд Я. С. Сборник задач по математической физике. М.: ГИТТЛ, 1955.
[Люб58] Любарский Г.Я. Теория групп и ее применение к физике. М.: ГИФМЛ, 1958.
[Люб86] Любарский Г.я. Теория групп и физика. М.: Наука, 1986.
[Мар77] Марченко В. А. Операторы Штурма-Лиувилля и их приложения. Киев: Наукова Думка, 1977.
[Мес79] Мессиа А. Квантовая механика. М.: Наука, 1979.
[Мих68] Михлин С. Г. Курс математической физики. М.: Наука, 1968.
[МФ58] Морс Ф. М., Фешбах Г. Методы теоретической физики, т. I. ИЛ, М., 1958.
[МФ60] Морс Ф.М., Фешбах Г. Методы теоретической физики. Т. II. М.: ИЛ, 1960.
[Мус63] Мусхелиивили Н. И. Сингулярные интегральные уравнения. М.: Наука, 1963.
[Му72] Мэтьюз Дж., Уокер Д. Математические методы в физике. М.: Атомиздат, 1972.
[Най76] Найфэ А. Методы возмущений. М.: Мир, 1976.
[Ньк89] Ньюэлл А. Солитоны в математике и физике. Мир, М., 1989 (neperoд: Newell A. C. Solitons in Mathematics and physics. SIAM, 1985).
[Олв90] Олвер Ф. Асимптотика и спениальные функции. М.: Наука, 1990.
[ПТ67] Петрашень М. И., Трифонов Е. А. Применения теории групп в квантовой механике. М.: Наука, 1967.
[Пет6І] Петровский И. Г. Лекции об уравнениях в частных производных. М.: Наука, 1961.
[Пет65] Петровский И. Г. Лекции по теории интегральных уравнений. М.: Наука, 1965.
[ПБМ81] Прудников А. П., Брычков Ю. А., Маричев О. И. Интегралы и ряды. Элементарные функиии. М.: Наука, 1981.
[ПГБМ3] Прудников А. П., Брычков Ю. А., Маричев О. И. Интегралы и ряды. Специальные функции. М.: Наука, 1983.
[ПБМ86] Прудников А. П., Брычков Ю. А., Маричев О. И. Интегралы и ряды. Дополнительные главы. М.: Наука, 1986.
[Рих82] Рихтмайер P. Принципы современной математической физики. Т.І. М.: Мир, 1982.
[Рих84] Рихтмайер P. Принципы современной математической физики. Т. 2. М.: Мир, 1984.
[РФ70] Румер Ю. Б., Фет А. И. Теория унитарной симметрии. М.: Наука, 1970.
[СФШ76] Сидоров Ю. В., Федорюк М. В., Шабунин М. И. Лекиии по теории функций комплексного переменного. М.: Наука, 1976.
[Сми74а] Смирнов В. И. Курс высшей математики. Т.3. Ч. І. М.: Наука, 1974.
[Сми74b] Смирнов В. И. Курс высшей матемагики. Т. 3. Ч. 2. М.: Наука, 1974.
[Сми74c] Смирнов В. И. Курс высшей математики. Т.4. Ч. 1. М.: Наука, 1974.
[Сми81] Смирнов В. И. Курс высшей математики. Т.4. Ч. 2. М.: Наука, 1981.
[Сми76] Смирнов М. М. Задачи по уравнениям математической физики. М.: Наука, 1976.
[Соб66] Соболен С.Л. Уравнения математической физики. М.: Наука, 1966.
[ТС72] Тихонов А. Н., Самарский А. А. Уравнепия математической физики. М.: Наука, 1972.
[Три57] Трикоми Ф. Јекпии по уравнениям в частных производных. М.: ИЛ, 1957.
[Уиз77] Уизем Дж. Линейные и нелинейные волны. М.: Мир, 1977.
[Фед87] Федорюк М. В. Асимптотика. Интегралы и ряды. СМБ. М.: Наука, 1987.
[Хам66] Хамермеш М. Теория групп и ее применение к физическим проблемам. М.: Мир, 1966.
[Хед65] Хединг Дмс. Введение в метод фазовых интегралов. М.: Мир, 1965.
[Хол62] Холл М. Теория групп. М.: ИЛ, 1962.
[ЭД83] Эллиот Джс., Добер П. Симметрия в физике. М.: Мир, 1983.
[Эрд62] Эрдейи А. Асимптотические разложения. М.: Физматгиз, 1962.
[ЯЭЛ77] Янке Е., Эмде Ф., Лёш Ф. Специальные функции. Формулы, графики, таблицы. М.: Наука, 1977.

Колоколов Игорь Валентинович
 Кузнецов Евгений Александрович
 Мильштейн Александр Ильич
 Подивилов Евгений Вадимович
 Черных Александр Иванович
 Шапиро Давид Абрамович
 Шапиро Елена Геннадьевна

Задачи по математическим методам физнхи

Группа подготовки издания:
Директор - Доминго Марин Рикой
Заместители директора - Наталья Финогенова, Ирина Макеева
Компььтерный дизаин -- Виктор Романов
Верстка - Наталия Бекетова
Редакционно-корректурнье работь -- Елена Кудряшова, Акна Шабалина
Обработка графики - Елена Ефремова
Обработка текста - Анна Тюрина, Андрей Стулов
Техническая поддержкка - Наталья Аринчева

[^15]
[^0]: ${ }^{\text {* }}$ Аятииинейным называется оператор \widehat{A}, для которого $\widehat{A}(\lambda f+\mu g)=\lambda * \widehat{A} f+\mu \cdot \widehat{A} g$.

[^1]: ${ }^{\text {² }}$ Cм. например. |ЛЛ74. §21|.

[^2]: - Oсобоіі точкої пргобразонания называется точка. в которой обрашается в нуль якобиан $\frac{\partial\left(r_{,} F_{1}, F_{2}, \ldots, F_{n-1}\right)}{\partial\left(r_{1}, r_{2}, \ldots, r_{n}\right)}$.

[^3]: ${ }^{\text {* }}$ В гидродинамике замену переменных $x, t \times x_{0}, t^{\prime}=t$ называют переходом от зйлерового описания к лагранжевому.

[^4]: *) В некоторых случаях решенне ишут не в внде произведения. Например, в уравнении Гамильгона-Якоби переменные могут разделиться, если искать решение в виде суммы функций от отдельных координат.

[^5]: *) Такая постановка является частным случаем задачи Стефана о движении фронта кристаллизации жидкости, охлаждаемой на поверхности $x=0$. Функция $y(t)$ определяет положение поверхности раздела фаз, и величина Q пропорииональна удельной тепиоте плавления.

[^6]: ${ }^{\text {* }}$ Ках обобшить данную формулу на уравнение N-го порядха и на оператор с нулевыми модами указано в справочнике |Кам76|.

[^7]: *) Преобралование инверсии - только о.дно из целоһ группк конформных преобразованиіи |नТ11871. оставляоиих тармоническую функиияо гармоническор.

[^8]: ${ }^{\circ}$ В этом случае об уравнении (8.33) говорят как об уравнении с вырожленным ядрам.

[^9]: ${ }^{\text {* }}$ В случае произвольных конечных пределов интегрирования уравнение Фредгольма сводится к виду (8.52) линейной заменой независимой переменной.

[^10]: *) Тривиальными подгруппами назы вают единину группы и саму группу.

[^11]: * Для линейной молекулы - ротатора - имеется всего две врашательные степени снободы, а значит 5 нулевых мод.

[^12]: ${ }^{\text {') }}$ Если одно неприводимое представление встречается более одного раза, то P_{R} проектирует в прямую сумму подпространств, в которых действуют прелставления $\boldsymbol{R}(g)$.

[^13]: *) Иняерсию всегда можно представить виде поворота вокрут оси на 180° и отражения в пиоскости, перпендикулярной этой оси. В нашем случае $\chi(i)=-1$, а не -3 , поскольку рассматривается одномернсе диижение.

[^14]: - В киигс |ЛЛ74| обобшснныс полиномы Лагерра определены мначе.

[^15]: Издательство *Эдиториал УРСС. 113208 , г. Москва, ул. Чертановская, $л 2 / 11$, к и Лицензия ЛР N0 064418 от 24.0196 г. Гигпенический сертификат на выпуск книжной иродукции №77.ФЦ8.953.П.270.399 от 30.03 .99 г Подписано к петати 20.03 .2000 г. Формат $00 \times 84 / 16$ Тираж 1000 экз. Печ. л. 18. Зак. No $2 \mathscr{2}$

