RINGS WITH GENERALIZED IDENTITIES

PURE AND APPLIED MATHEMATICS

A Program of Monographs, Textbooks, and Lecture Notes

EXECUTIVE EDITORS

Earl J. Taft
Rutgers University
New Brunswick, New Jersey
Zuhair Nashed
University of Delaware
Newark, Delaware

EDITORIAL BOARD

M. S. Baouendi
University of California,
San Diego
Jane Cronin
Rutgers University
Jack K. Hale
Georgia Institute of Technology
S. Kobayashi
University of California,
Berkeley
Marvin Marcus
University of California,
Santa Barbara
W. S. Massey
Yale University
Anil Nerode
Cornell University
Donald Passman
University of Wisconsin, Madison
Fred S. Roberts
Rutgers University
Gian-Carlo Rota
Massachusetts Institute of Technology
David L. Russell
Virginia Polytechnic Institute and State University
Walter Schempp
Universität Siegen

Mark Teply
University of Wisconsin, Milwaukee

MONOGRAPHS AND TEXTBOOKS IN PURE AND APPLIED MATHEMATICS

1. K. Yano, Integral Formulas in Riemannian Geometry (1970)
2. S. Kobayashi, Hyperbolic Manifolds and Holomorphic Mappings (1970)
3. V. S. Vladimirov, Equations of Mathematical Physics (A. Jeffrey, ed.; A. Littlewood, trans.) (1970)
4. B. N. Pshenichnyi, Necessary Conditions for an Extremum (L. Neustadt, translation ed.; K. Makowski, trans.) (1971)
5. L. Narici et al., Functional Analysis and Valuation Theory (1971)
6. S. S. Passman, Infinite Group Rings (1971)
7. L. Dornhoff, Group Representation Theory. Part A: Ordinary Representation Theory. Part B: Modular Representation Theory $(1971,1972)$
8. W. Boothby and G. L. Weiss, eds., Symmetric Spaces (1972)
9. Y. Matsushima, Differentiable Manifolds (E. T. Kobayashi, trans.) (1972)
10. L. E. Ward, Jt., Topology (1972)
11. A. Babakhanian, Cohomological Methods in Group Theory (1972)
12. R. Gilmer, Multiplicative Ideal Theory (1972)
13. J. Yeh, Stochastic Processes and the Wiener Integral (1973)
14. J. Barros-Neto, Introduction to the Theory of Distributions (1973)
15. R. Larsen, Functional Analysis (1973)
16. K. Yano and S. Ishihara, Tangent and Cotangent Bundles (1973)
17. C. Procesi, Rings with Polynomial Identities (1973)
18. R. Hermann, Geometry, Physics, and Systems (1973)
19. N. R. Wallach, Harmonic Analysis on Homogeneous Spaces (1973)
20. J. Dieudonné, Introduction to the Theory of Formal Groups (1973)
21. I. Vaisman, Cohomology and Differential Forms (1973)
22. B.-Y. Chen, Geometry of Submanifolds (1973)
23. M. Marcus, Finite Dimensional Multilinear Algebra (in two parts) $(1973,1975)$
24. R. Larsen, Banach Algebras (1973)
25. R. O. Kujala and A. L. Vitter, eds., Value Distribution Theory: Part A; Part B: Deficit and Bezout Estimates by Wilhelm Stoll (1973)
26. K. B. Stolarsky, Algebraic Numbers and Diophantine Approximation (1974)
27. A. R. Magid, The Separable Galois Theory of Commutative Rings (1974)
28. B. R. McDonald, Finite Rings with Identity (1974)
29. J. Satake, Linear Algebra (S, Koh et al., trans.) (1975)
30. J. S. Golan, Localization of Noncommutative Rings (1975)
31. G. Klambauer, Mathematical Analysis (1975)
32. M. K. Agoston, Algebraic Topology (1976)
33. K. R. Goodearl, Ring Theory (1976)
34. L. E. Mansfield, Línear Algebra with Geometric Applications (1976)
35. N. J. Pullman, Matrix Theory and Its Applications (1976)
36. B. R. McDonald, Geometric Algebra Over Local Rings (1976)
37. C. W. Groetsch, Generalized Inverses of Linear Operators (1977)
38. J. E. Kuczkowski and J. L. Gersting, Abstract Algebra (1977)
39. C. O. Christenson and W. L. Voxman, Aspects of Topology (1977)
40. M. Nagata, Field Theory (1977)
41. R. L. Long, Algebraic Number Theory (1977)
42. W. F. Pfeffer, Integrals and Measures (1977)
43. R. L. Wheeden and A. Zygmund, Measure and Integral (1977)
44. J. H. Curtiss, Introduction to Functions of a Complex Variable (1978)
45. K. Hrbacek and T. Jech, Introduction to Set Theory (1978)
46. W. S. Massey, Homology and Cohomology Theory (1978)
47. M. Marcus, Introduction to Modern Algebra (1978)
48. E. C. Young, Vector and Tensor Analysis (1978)
49. S. B. Nadler, Jr., Hyperspaces of Sets (1978)
50. S. K. Segal, Topics in Group Kings (1978)
51. A. C. M. van Rooij, Non-Archimedean Functional Analysis (1978)
52. L. Corwin and R. Szczarba, Calculus in Vector Spaces (1979)
53. C. Sadosky, Interpolation of Operators and Singular Integrals (1979)
54. J. Cronin, Differential Equations (1980)
55. C. W. Groetsch, Elements of Applicable Functional Analysis (1980)
56. I. Vaisman, Foundations of Three-Dimensional Euclidean Geometry (1980)
57. H. I. Freedan, Deterministic Mathematical Models in Population Ecology (1980)
58. S. B. Chae, Lebesgue Integration (1980)
59. C. S. Rees et al., Theory and Applications of Fourier Analysis (1981)
60. L. Nachbin, Introduction to Functional Analysis (R. M. Aron, trans.) (1981)
61. G. Orzech and M. Orzech, Plane Algebraic Curves (1981)
62. R. Johnsonbaugh and W. E. Pfaffenberger, Foundations of Mathematical Analysis (1981)
63. W. L. Voxman and R. H. Goetschel, Advanced Calculus (1981)
64. L. J. Corwin and R. H. Szczarba, Multivariable Calculus (1982)
65. V. I. Istrătescu, Introduction to Linear Operator Theory (1981)
66. R. D. Järvinen, Finite and Infinite Dimensional Linear Spaces (1981)
67. J. K. Beem and P. E. Ehrlich, Global Lorentzian Geometry (1981)
68. D. L. Armacost, The Structure of Locally Compact Abelian Groups (1981)
69. J. W. Brewer and M. K. Smith, eds., Emmy Noether: A Tribute (1981)
70. K. H. Kim, Boolean Matrix Theory and Applications (1982)
71. T. W. Wieting, The Mathematical Theory of Chromatic Plane Ornaments (1982)
72. D. B.Gauld, Differential Topology (1982)
73. R. L. Faber, Foundations of Euclidean and Non-Euclidean Geometry (1983)
74. M. Carmeli, Statistical Theory and Random Matrices (1983)
75. J. H. Carruth et al., The Theory of Topological Semigroups (1983)
76. R. L. Faber, Differential Geometry and Relativity Theory (1983)
77. S. Barnett, Polynomials and Linear Control Systems (1983)
78. G. Karpilovsky, Commutative Group Algebras (1983)
79. F. Van Oystaeyen and A. Verschoren, Relative Invariants of Rings (1983)
80. I. Vaisman, A First Course in Differential Geometry (1984)
81. G. W. Swan, Applications of Optimal Control Theory in Biomedicine (1984)
82. T. Petrie and J. D. Randall, Transformation Groups on Manifolds (1984)
83. K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings (1984)
84. T. Albu and C. Năstăsescu, Relative Finiteness in Module Theory (1984)
85. K. Hrbacek and T. Jech, Introduction to Set Theory: Second Edition (1984)
86. F. Van Oystaeyen and A. Verschoren, Relative Invariants of Rings (1984)
87. B. R. McDonald, Linear Algebra Over Commutative Rings (1984)
88. M. Namba, Geometry of Projective Algebraic Curves (1984)
89. G. F. Webb, Theory of Nonlinear Age-Dependent Population Dynamics (1985)
90. M. R. Bremner et al., Tables of Dominant Weight Multiplicities for Representations of Simple Lie Algebras (1985)
91. A. E. Fekete, Real Linear Algebra (1985)
92. S. B. Chae, Holomorphy and Calculus in Normed Spaces (1985)
93. A. J. Jerri, Introduction to Integral Equations with Applications (1985)
94. G. Karpilovsky, Projective Representations of Finite Groups (1985)
95. L. Narici and E. Beckenstein, Topological Vector Spaces (1985)
96. J. Weeks, The Shape of Space (1985)
97. P. R. Gribik and K. O. Kortanek, Extremal Methods of Operations Research (1985)
98. J.-A. Chao and W. A. Woyczynski, eds., Probability Theory and Harmonic Analysis (1986)
99. G. D. Crown et al., Abstract Algebra (1986)
100. J. H. Carruth et al., The Theory of Topological Semigroups, Volume 2 (1986)
101. R. S. Doran and V. A. Belfi, Characterizations of C*-Algebras (1986)
102. M. W. Jeter, Mathematical Programming (1986)
103. M. Altman, A Unified Theory of Nonlinear Operator and Evolution Equations with Applications (1986)
104. A. Verschoren, Relative Invariants of Sheaves (1987)
105. R. A. Usmani, Applied Linear Algebra (1987)
106. P. Blass and J. Lang, Zariski Surfaces and Differential Equations in Characteristic p >0 (1987)
107. J. A. Reneke et al., Structured Hereditary Systems (1987)
108. H. Busemann and B. B. Phadke, Spaces with Distinguished Geodesics (1987)
109. R. Harte, Invertibility and Singularity for Bounded Linear Operators (1988)
110. G. S. Ladde et al., Oscillation Theory of Differential Equations with Deviating Arguments (1987)
111. L. Dudkin et al., Iterative Aggregation Theory (1987)
112. T. Okubo, Differential Geometry (1987)
113. D. L. Stancl and M. L. Stancl, Real Analysis with Point-Set Topology (1987)
114. T. C. Gard, introduction to Stochastic Differential Equations (1988)
115. S. S. Abhyankar, Enumerative Combinatorics of Young Tableaux (1988)
116. H. Strade and R. Farnsteiner, Modular Lie Algebras and Their Representations (1988)
117. J. A. Huckaba, Commutative Rings with Zero Divisors (1988)
118. W. D. Wallis, Combinatorial Designs (1988)
119. W. Wieslaw, Topological Fields (1988)
120. G. Karpilovsky, Field Theory (1988)
121. S. Caenepeel and F. Van Oystaeyen, Brauer Groups and the Cohomology of Graded Rings (1989)
122. W. Kozlowski, Modular Function Spaces (1988)
123. E. Lowen-Colebunders, Function Classes of Cauchy Continuous Maps (1989)
124. M. Pavel, Fundamentals of Pattern Recognition (1989)
125. V. Lakshmikantham et al., Stability Analysis of Nonlinear Systems (1989)
126. R. Sivaramakrishnan, The Classical Theory of Arithmetic Functions (1989)
127. N. A. Watson, Parabolic Equations on an Infinite Strip (1989)
128. K. J. Hastings, Introduction to the Mathematics of Operations Research (1989)
129. B. Fine, Algebraic Theory of the Bianchi Groups (1989)
130. D. N. Dikranjan et al., Topological Groups (1989)
131. J. C. Morgan II, Point Set Theory (1990)
132. P. Biler and A. Witkowski, Problems in Mathematical Analysis (1990)
133. H. J. Sussmann, Nonlinear Controllability and Optimal Control (1990)
134. J.-P. Florens et al., Elements of Bayesian Statistics (1990)
135. N. Shell, Topological Fields and Near Valuations (1990)
136. B. F. Doolin and C. F. Martin, Introduction to Differential Geometry for Engineers (1990)
137. S. S. Holland, Jr., Applied Analysis by the Hilbert Space Method (1990)
138. J. Okniński, Semigroup Algebras (1990)
139. K. Zhu, Operator Theory in Function Spaces (1990)
140. G. B. Price, An Introduction to Multicomplex Spaces and Functions (1991)
141. R. B. Darst, Introduction to Linear Programming (1991)
142. P. L. Sachdev, Nonlinear Ordinary Differential Equations and Their Applications (1991)
143. T. Husain, Orthogonal Schauder Bases (1991)
144. J. Foran, Fundamentals of Real Analysis (1991)
145. W. C. Brown, Matrices and Vector Spaces (1991)
146. M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces (1991)
147. J. S. Golan and T. Head, Modules and the Structures of Rings (1991)
148. C. Small, Arithmetic of Finite Fields (1991)
149. K. Yang, Complex Algebraic Geometry (1991)
150. D. G. Hoffman et al., Coding Theory (1991)
151. M. O. González, Classical Complex Analysis (1992)
152. M. O. González, Complex Analysis (1992)
153. L. W. Baggett, Functional Analysis (1992)
154. M. Sniedovich, Dynamic Programming (1992)
155. R. P. Agarwal, Difference Equations and Inequalities (1992)
156. C. Brezinski, Biorthogonality and Its Applications to Numerical Analysis (1992)
157. C. Swartz, An Introduction to Functional Analysis (1992)
158. S. B. Nadler, Jr., Continuum Theory (1992)
159. M. A. Al-Gwaiz, Theory of Distributions (1992)
160. E. Perry, Geometry: Axiomatic Developments with Problem Solving (1992)
161. E. Castillo and M. R. Ruiz-Cobo, Functional Equations and Modelling in Science and Engineering (1992)
162. A. J. Jerri, Integral and Discrete Transforms with Applications and Error Analysis (1992)
163. A. Charlier et al., Tensors and the Clifford Algebra (1992)
164. P. Biler and T. Nadzieja, Problems and Examples in Differential Equations (1992)
165. E. Hansen, Global Optimization Using Interval Analysis (1992)
166. S. Guerre-Delabriere, Classical Sequences in Banach Spaces (1992)
167. Y. C. Wong, Introductory Theory of Topological Vector Spaces (1992)
168. S. H. Kulkarni and B. V. Limaye, Real Function Algebras (1992)
169. W. C. Brown, Matrices Over Commutative Rings (1993)
170. J. Loustau and M. Dillon, Linear Geometry with Computer Graphics (1993)
171. W. V. Petryshyn, Approximation-Solvability of Nonlinear Functional and Differential Equations (1993)
172. E. C. Young, Vector and Tensor Analysis: Second Edition (1993)
173. T. A. Bick, Elementary Boundary Value Problems (1993)
174. M. Pavel, Fundamentals of Pattern Recognition: Second Edition (1993)
175. S. A. Albeverio et al., Noncommutative Distributions (1993)
176. W. Fulks, Complex Variables (1993)
177. M. M. Rao, Conditional Measures and Applications (1993)
178. A. Janicki and A. Weron, Simulation and Chaotic Behavior of α-Stable Stochastic Processes (1994)
179. P. Neittaanmäki and D. Tiba, Optimal Control of Nonlinear Parabolic Systems (1994)
180. J. Cronin, Differential Equations: Introduction and Qualitative Theory, Second Edition (1994)
181. S. Heikkilä and V. Lakshmikantham, Monotone Iterative Techniques for Discontinuous Nonlinear Differential Equations (1994)
182. X. Mao, Exponential Stability of Stochastic Differential Equations (1994)
183. B. S. Thomson, Symmetric Properties of Real Functions (1994)
184. J. E. Rubio, Optimization and Nonstandard Analysis (1994)
185. J. L. Bueso et al., Compatibility, Stability, and Sheaves (1995)
186. A. N. Michel and K. Wang, Qualitative Theory of Dynamical Systems (1995)
187. M. R. Darnel, Theory of Lattice-Ordered Groups (1995)
188. Z. Naniewicz and P. D. Panagiotopoulos, Mathematical Theory of Hemivariational Inequalities and Applications (1995)
189. L. J. Corwin and R. H. Szczarba, Calculus in Vector Spaces: Second Edition (1995)
190. L. H. Erbe et al., Oscillation Theory for Functional Differential Equations (1995)
191. S. Agaian et al., Binary Polynomial Transforms and Nonlinear Digital Filters (1995)
192. M. I. Gil', Norm Estimations for Operation-Valued Functions and Applications (1995)
193. P. A. Grillet, Semigroups: An Introduction to the Structure Theory (1995)
194. S. Kichenassamy, Nonlinear Wave Equations (1996)
195. V. F. Krotov, Global Methods in Optimal Control Theory (1996)
196. K. I. Beidar et al., Rings with Generalized Identities (1996)
197. V. I. Arnautov et al., Introduction to the Theory of Topological Rings and Modules (1996)
198. G. Sierksma, Linear and Integer Programming

RINGS WITH GENERALIZED IDENTITIES

K. I. Beidar
National Cheng-Kung University
Tainan, Taiwan

W. S. Martindale III

University of Massachusetts
Amherst, Massachusetts

A. V. Mikhalev

Moscow M. V. Lomonosov State University Moscow, Russia

Library of Congress Cataloging-in-Publication Data

Beidar, K. I. (Konstantin I.).
Rings with generalized identities / K. I. Beidar, W. S. Martindale III, A. V. Mikhalev.
p. cm. - (Monographs and textbooks in pure and applied mathematics; 196)
Includes index.
ISBN 0-8247-9325-0 (alk. paper)
1. Polynomial rings. I. Martindale, W. S. (Wallace S.).
II. Mikhalev, A. V. (Aleksandr Vasil'evich). III. Title.
IV. Series.
QA251.3.B45 1995
512 '.4—dc20 95-40715

CIP

The publisher offers discounts on this book when ordered in bulk quantities. For more information, write to Special Sales/Professional Marketing at the address below.

This book is printed on acid-free paper.

Copyright © 1996 by MARCEL DEKKER, INC. All Rights Reserved.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage and retrieval system, without permission in writing from the publisher.

MARCEL DEKKER, INC.
270 Madison Avenue, New York, New York 10016
Current printing (last digit):
10987654321

PRINTED IN THE UNITED STATES OF AMERICA

Preface

A generalized polynomial identity $(G P I)$ of an algebra A over a field F is a polynomial expression f in noncommutative variables and fixed coefficients from A between the variables such that f vanishes upon all substitutions by elements of A. It is a natural extension of the notion of a polynomial identity $(P I)$, in which the coefficients come from the base field F. The theory of GPI's is in reality, however, quite separate from that of ordinary $P I$'s. It is a rather rare occurrence that results in GPI theory provide better proofs or insight into $P I$ results. Rather, the usefulness of GPI theory lies in the fact that in many problems in noncommutative ring theory involving elementwise calculations GPI's appear frequently and naturally, whereas PI's seldom make their appearance. Of course one expects PI's to have a stronger effect on a ring than do GPI's, and this shows up very clearly in the case of a primitive ring R, i.e., a dense ring of linear transformations of a vector space V over a division ring D. Here the presence of a $P I$ forces R to be finite dimensional central simple whereas a GPI, though forcing R to have minimal right ideals and D to be finite dimensional over its center, has no effect on the dimension of V over D. As a special case one has the ring R of all linear transformations of an infinite dimensional vector space over a field. If e is a rank one idempotent then R satisfies the GPI exeye $=$ eyexe for all x and y in R whereas R satisfies no $P I$.

Just as PI theory began with Kaplansky's 1948 paper on primitive PI rings, the theory of GPI's was initiated by Amitsur in 1965 with his fundamental paper on primitive GPI rings. In 1969 Martindale extended Amitsur's work to prime GPI rings. A key notion in making the transition to a prime ring R was that of the extended centroid C and the resulting central closure $R C$, it becoming clear that C (rather than the field of fractions of the centroid) was the proper field of scalars in the case of prime rings. A short time later generalizations in two directions occurred. In one GPI's involving involutions were studied by Martindale, Rowen, and others, and in another GPI theory was extended to semiprime rings by Beidar and Mikhalev using the technique of orthogonal completion, a powerful alternative to the usual method of reducing semiprime problems to prime rings.

One of the most significant advances was made in a series of fundamental papers by Kharchenko in the late 1970's in which GPI's involving derivations and automorphisms were studied, i.e., the variables were suggestively superscripted by compositions of derivations and automorphisms. (Let us henceforth refer to these more complicated identities simply as generalized identities ($G I$'s)). Indeed, Utumi's (1956) ring of quotients of a ring R was seen to contain elements which induce automorphisms and derivations in R (called X-inner automorphisms and derivations in honor of Kharchenko). In 1985 Lanski investigated the situation of GI's in prime rings with involution. Around 1990 Chuang carried the theory to its present state by adding arbitrary antiautomorphisms to the Kharchenko results. He introduced the important notion of Frobenius (anti)automorphism for prime rings using which he gave a description of the structure of (not necessarily multilinear) GI's involving derivations and (anti)automorphisms, thus extending Kharchenko's results even in the case of derivations and automorphisms.

The centerpiece of this book is Chapter 7 in which the theorems of Kharchenko and Chuang on GI's in prime rings are
presented. Special attention is paid to describing the "home" of GI's (a matter which is somewhat glossed over in the accounts of Kharchenko and Chuang). Also presented in this chapter is a striking application of Kharchenko's results to the characterization of algebraic derivations and automorphisms. The extension of the results of Chapter 7 to semiprime rings is accomplished in Chapter 8.

The choice of topics for Chapters 1 through 5 is generally dictated by what is needed for the exposition in Chapters 6 through 9. As mentioned earlier the extended centroid plays a key role in the definition of a $G I$ and a detailed discussion of its properties is included in Chapter 2. It has also been pointed out that certain rings of quotients (notably the symmetric ring of quotients, a subring of Utumi's ring of quotients) are also needed in order to properly define GI's, and accordingly a general account of rings of quotients is also given in Chapter 2. The "home" for GI's is a certain coproduct, and this notion is discussed in some detail in Chapter 1. A generalized Poincaré-BirkhoffWitt theorem (PBW theorem) for differential Lie algebras is precisely what is needed for characterizing nontrivial GI's involving derivations, and this topic forms the content of Chapter 5. The main tool used in our proof of the PBW theorem is the Diamond Lemma and we therefore present a careful exposition of this result in Chapter 1. The interplay between derivations and (anti)automorphisms leads naturally to skew group rings, which are briefly summarized in Chapter 1. The extension of $G I$ results to semiprime rings requires the theory of orthogonal completion (developed by Beidar and Mikhalev), and this subject, along with a review of first order logic in Chapter 1, is laid out in Chapter 3. Since the effect of a nontrivial GI on a prime ring is to force its central closure to have minimal right ideals, we have given a fairly detailed account of primitive rings with nonzero socle in Chapter 4.

GPI's are of course just a special case of GI's in which
derivations and (anti)automorphisms are not involved, and various results on GPI's are presented in Chapter 6. Included here is a very short proof (due to Chuang) of Martindale's result on prime GPI rings. To help prepare the reader for the transition from GPI's to the far more involved GI's of Chapter 7, we also present in Chapter 6 various results on GPI's with involution. The generators of the T-ideal of GPI's in prime rings have been determined by Beidar and an account of this is given here. At the end of Chapter 6 several results on special GPI's are presented.

A powerful feature of $G P I$ theory is that frequently one can (so to speak) have the best of both worlds: if the particular GPI is nontrivial then the ring is tractable (e.g., has nonzero socle) whereas if the GPI is trivial there is often a strong relation among the coefficients. A striking example of this phenomenon occurs in the recent solution of a long-standing conjecture of Herstein on Lie isomorphisms, which we present in Chapter 9. We also give here some details of the theory of n-additive commuting maps initiated by Bresar, which is a powerful tool in combinatorial ring theory and plays an important role in the Lie isomorphism problem.

Some comments for the reader's benefit are now in order. The subject matter of this book in its full generality, i.e., GI's with derivations and (anti)automorphisms in a semiprime setting, is admittedly both mathematically and notationally complicated. However, depending on the particular reader's interests and concerns, some of this burden may be alleviated. Most notably, for the reader solely interested in prime rings, a considerable portion of the material may be bypassed, namely, Section 1.6, Chapters 3 and 8, and those parts of Chapter 6 concerned with semiprime rings. Furthermore, without too much effort, most of the statements of the main results of Chapters 5, 6 and 7 can be easily understood and in fact have a natural intuitive appeal (even though lengthy rigorous proofs may be required).

The various Poincaré-Birkhoff-Witt theorems in Chapter 5 are a case in point. Another example is the set of "obvious" generators of the T-ideal of GPI's in Chapter 6. The main results of the book, to be found in Sections 7.5, 7.6 and 7.7, have rather short simple statements, and the very definition of a generalized identity and its "reduction" to a prescribed "nontrivial" form are often dismissed as being too self-evident to warrant much attention. At any rate the reader should not have the idea that Chapters 1 through 6 must be read line by line before he or she is able to find out (in Chapter 7) what the title of the book means!

With the book having already reached critical length, we have decided not to include a chapter on generalized rational identities. Another topic we shall not discuss is that of Galois theory of prime and semiprime rings. This subject is thoroughly treated in the recent book of Kharchenko, "Automorphisms and derivations of associative rings" (Kluwer, 1991). Various results on GPI's (with involution) are also to be found in Rowen's book, "Polynomial identities in ring theory" (Academic Press, 1980). GPI's are touched upon very briefly in Procesi's book, "Rings with polynomial identities" (Marcel Dekker, 1973).

The authors wish to extend their appreciation to the University of Massachusetts (Amherst), Moscow State University (Moscow), National Taiwan University (Taipei), and National Cheng-Kung University (Tainan) for use of their facilities and for hosting the authors. The content of some chapters was discussed at research seminars at the University of Massachusetts, at the Moscow State University, at the University of Southern California, at the National Cheng-Kung University and at the National Taiwan University, and we express our thanks to leaders and participants of these algebraic seminars, and especially to P. H. Lee, Y. Fong, C. L. Chuang, W.-F. Ke, S. Montgomery, V. N. Latyshev, Ch. Lanski and V. T. Markov. We are thankful to A. A. Mikhalev for his assistance in discussion of some
arguments of Chapter 5 and to M. A. Chebotar for his help in writing a part of Section 7.9. We benefitted also from the efforts of P. Blau, who carefully read the manuscript and pointed out numerous corrections incorporated in the text. We are grateful to W.-F. Ke for invaluable help in preparing the $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ version of this book. Finally, we are grateful to our publisher, Marcel Dekker, Inc., for being lenient about deadlines and understanding the communication problems between authors located many thousands of miles apart.

K. I. Beidar
W. S. Martindale III

A. V. Mikhalev

Contents

Preface iii
1 Preliminaries 1
1.1 Basic Notions 1
1.2 Tensor Products and Free Algebras 7
1.3 The Diamond Lemma 13
1.4 Coproducts 24
1.5 Introduction to First Order Logic 34
2 Rings of Quotients 51
2.1 Maximal Right Rings of Quotients 51
2.2 The Two-sided and Symmetric Rings of Quotients 63
2.3 The Extended Centroid 68
2.4 Rings of Quotients of Coproducts 83
2.5 Derivations and (Anti)automorphisms 86
3 The Method of Orthogonal Completions 97
3.1 Basic Notions and Constructions 98
3.2 Pierce Stalks 110
4 Primitive Rings 129
4.1 Rings of Quotients 129
4.2 Density Theorems 133
4.3 Primitive Rings with Nonzero Socle 139
4.4 Generalized Pivotal Monomials 150
4.5 Derivations 153
4.6 Involutions 156
4.7 Automorphisms 169
5 The Poincaré-Birkhoff-Witt Theorem 173
5.1 Lie Algebras 174
5.2 Restricted Lie Algebras 180
5.3 Differential Lie Algebras 186
5.4 Restricted Differential Lie Algebras 197
5.5 A Particular Differential Lie Algebra 206
6 Rings with Generalized Polynomial Identities 211
6.1 Prime GPI-rings 211
6.2 Identities with a Fixed Antiautomorphism 222
6.3 Semiprime GPI-rings 226
6.4 Lifting of GPI's 247
6.5 The T-ideal of GPI's 258
6.6 Special GPI's 289
$7 \quad T$-identities of Prime Rings 297
7.1 The Home of T-identities 297
7.2 Trivial and Reduced T-identities 305
7.3 Related Rings 310
7.4 Linear Formulas 316
7.5 Reduced T-identities 321
7.6 The Structure of T-identities (Fields) 332
7.7 The Structure of T-identities (General Case) 344
7.8 T-identities with Coefficients in $Q_{m r}$ 360
7.9 Applications 364
$8 \widehat{T}$-identities of Semiprime Rings 385
8.1 The Algebra $\hat{U}(D(R))$ 386
8.2 The Group $\widehat{G}(R)$ 398
8.3 The Home of \widehat{T}-identities 417
CONTENTS xi
8.4 Semiprime Rings with \widehat{T}^{\prime}-identities 422
9 Applications to Lie Theory 437
9.1 The Structure of K 438
9.2 The Lie Extended Centroid of K 451
9.3 Trilinear Symmetric Mappings 455
9.4 Lie Isomorphisms 471
List of Symbols 487
Bibliography 493
Index 519

This Page Intentionally Left Blank

RINGS WITH GENERALIZED IDENTITIES

This Page Intentionally Left Blank

Chapter 1

Preliminaries

1.1 Basic Notions

In this book we shall mainly be concerned with three types of rings. A ring R is prime if, for any two ideals U and V of R, $U V=0$ implies $U=0$ or $V=0$. As a special case of a prime ring, a ring is (right) primitive if it has a faithful irreducible right R-module. As a generalization of a prime ring, a ring R is semiprime if it has no nonzero nilpotent ideals. We will assume the reader is familiar with these concepts and with equivalent formulations thereof. We point out that prime (resp. primitive) rings are the basic "building blocks" in the structure theory of rings if one takes as the radical the Baer lower (resp. Jacobson) radical. A semiprime ring can always be written as a subdirect product of prime rings. However, a much more powerful method of reducing questions about rings to prime rings is the method of orthogonal completion (which will be developed in Chapter 3 and applied in Chapter 9).

Let K be a commutative ring with 1 . By definition a K-ring A is a ring with 1 for which there exists a ring homomorphism $\sigma: K \rightarrow A$ (sending 1 to 1). It follows that A is a unital (K, K) bimodule by defining $k a=k^{\sigma} a$ and $a k=a k^{\sigma}, a \in A, k \in K$.

As an important example, if R is a ring with center C, then $A=\operatorname{End}(R)$ (the ring of endomorphisms of the additive group R) is a C-ring by letting c^{σ} be the left multiplication of R by c, $c \in C$.

We will define a K-algebra A to be a K-ring in which K^{σ} is contained in the center of A (this is equivalent to the usual definition of an algebra with 1 over K). In case σ is injective (which will usually be the case) we shall assume that A contains K. Of particular interest to us is the situation where K is a field (when we study prime rings) or the more general situation where K is a von Neumann regular self-injective ring (when we study semiprime rings). Here we recall that K is self-injective if it is injective as a K-module. In case A contains K and K is self-injective it can be shown that $K \cdot 1$ is a K-direct summand of the algebra A.

A derivation of a ring R is an additive map $\delta: R \rightarrow R$ such that $(x y)^{\delta}=x^{\delta} y+x y^{\delta}$ for all $x, y \in R$. For $a \in R$ the mapping μ given by $x^{\mu}=[a, x]=a x-x a$ is easily seen to be a derivation and is called inner (sometimes denoted by $a d(a)$ or $[a$,$]). It is$ straightforward to show that the set $\operatorname{Der}(R) \subseteq \operatorname{End}(R)$ of all derivations is a Lie ring, i.e., is closed under addition and the Lie product $[\delta, \tau]$.

Given a natural number n, we set \mathcal{E}_{n} equal to the set of all subsets of $W(n)=\{1,2, \ldots, n\}$. For derivations $\delta_{1}, \delta_{2}, \ldots, \delta_{n} \in$ $\operatorname{Der}(R)$ and a subset $S=\left\{j_{1}, j_{2}, \ldots, j_{k}\right\} \in \mathcal{E}_{n}$, where $j_{t}<j_{t+1}$ for all $t<k$, we let Δ_{S} denote the product $\delta_{j_{1}} \delta_{j_{2}} \ldots \delta_{j_{k}}$ and Δ_{S}^{\prime} denote $\Delta_{W(n) \backslash S}$. It will be useful to have at our disposal the following

Remark 1.1.1 (Leibnitz Formulas) (a) For all $x, y \in R$, $\delta_{1}, \delta_{2}, \ldots, \delta_{n} \in \operatorname{Der}(R)$, and $\Delta=\delta_{1} \delta_{2} \ldots \delta_{n}$ the following equality holds

$$
(x y)^{\Delta}=\sum_{S \in \mathcal{E}_{n}} x^{\Delta_{S}} y^{\Delta_{S}^{\prime}}
$$

(b) (special case of (a)) For $x, y \in R$ and $\delta \in \operatorname{Der}(R)$

$$
(x y)^{\delta^{n}}=\sum_{i=0}^{n}\binom{n}{i} x^{\delta^{i}} y^{\delta^{n-i}}
$$

(It is understood that Δ_{\emptyset} and δ^{0} mean 1).
The proof is by induction on n and we leave the straightforward though notationally complicated details to the reader.

As an immediate corollary to Remark 1.1.1(b) we see that in characteristic p (p a prime) $\operatorname{Der}(R)$ is also closed under p th powers $\delta \mapsto \delta^{p}$.

Other mappings of major interest to us are the automorphisms and antiautomorphisms of R. An important special case is an involution of R, i.e., an antiautomorphism of period 1 or 2. We will denote the set of all automorphisms (resp. antiautomorphisms) of R by $\operatorname{Aut}(R)$ (resp. Antiaut (R)). It is easily seen that $G(R)=\operatorname{Aut}(R) \cup \operatorname{Antiaut}(R)$ is a group.

The center $Z(R)$ of R is also an important set, and we may (and often will) regard $Z(R)$ as acting on R via left multiplications.

If σ is a homomorphism of rings $K \rightarrow T$ and ${ }_{K} V,{ }_{T} W$ are modules then an additive map $\phi: V \rightarrow W$ is called σ-semilinear if $(k v)^{\phi}=k^{\sigma} v^{\phi}, k \in K, v \in V$. Analogously if μ is a derivation of K, an additive map $\phi: V \rightarrow V$ is called μ-semilinear if $(k v)^{\phi}=k^{\mu} v+k v^{\phi}, k \in K, v \in V$.

A derivation δ of a K-algebra A will mean a derivation of the ring A; we do not assume that δ is necessarily K-linear. In case μ is a derivation of K then a derivation δ of A is called a μ-derivation of A if δ is also a μ-semilinear map, i.e., $(k a)^{\delta}=k^{\mu} a+k a^{\delta}, k \in K, a \in A$. In a similar fashion an automorphism (antiautomorphism) g of a K-algebra will mean an automorphism (antiautomorphism) of the ring A. If
σ is an automorphism of K then g is a σ-automorphism (σ antiautomorphism) of A if g is also a σ-semilinear map, i.e., $(k a)^{g}=k^{\sigma} a^{g}$.

We continue this section with a brief discussion of skew group rings. For us the motivating example for this notion comes from two simple "skew" relationships connecting $\operatorname{Der}(R), G(R)$ and $Z(R)$ (all contained in $\operatorname{End}(R)$). Let $x, y \in R, \delta \in \operatorname{Der}(R)$, $g \in G(R)$ (we will just consider the case where g is an antiautomorphism). We then see from the equations

$$
\begin{aligned}
(x y)^{g^{-1} \delta g} & =\left(y^{g^{-1}} x^{g^{-1}}\right)^{\delta g}=\left(y^{g^{-1} \delta} x^{g^{-1}}+y^{g^{-1}} x^{g^{-1} \delta}\right)^{g} \\
& =x y^{g^{-1} \delta g}+x^{g^{-1} \delta g} y
\end{aligned}
$$

that
Remark 1.1.2 $g^{-1} \delta g$ is an element of $\operatorname{Der}(R)$ (notation: $\delta^{g}=$ $g^{-1} \delta g$).

Similarly, for $c \in Z(R)$, we see from $c^{g} x^{g}=x^{g} c^{g}$ and $x^{g^{-1} c g}=$ $\left(c x^{g^{-1}}\right)^{g}=c^{g} x$ that

Remark 1.1.3 $c^{g} \in Z(R)$ and $c^{g}=g^{-1} c g$.

We proceed now to recall the notion of skew group ring. Let R be a ring with $1, G$ a group, and $\psi: G \rightarrow \operatorname{Aut}(R)$ a group homomorphism. We refer to ψ as an action of G on R. However, we will usually suppress the ψ and simply write r^{g} for $r^{\left(g^{\psi}\right)}$. The skew group ring $R \propto G$ of R and G is then defined to be the free left R-module with basis G, where multiplication is given according to $g r=r^{g^{-1}} g$ and its consequences. It is straightforward to verify that $R \propto G$ is in fact a ring. Now let A be a ring with $1, \alpha$ a ring homomorphism of R into A, and β a group homomorphism of G into the multiplicative semigroup
of A sending 1 to 1 . Clearly the map $\gamma: R \propto G \rightarrow A$ given by $\sum r_{g} g \mapsto \sum r_{g}^{\alpha} g^{\beta}$ is a well-defined additive map. A useful criteria for γ to be a ring homomorphism is given by

Lemma 1.1.4 A necessary and sufficient condition for γ to be a ring homomorphism is the following: if R is generated as a ring by a subset X then

$$
x^{\alpha} g^{\beta}=g^{\beta} x^{g \alpha}, \quad x \in X, g \in G
$$

Proof. If γ is a homomorphism then from

$$
x^{\alpha} g^{\beta}=(x g)^{\gamma}=\left(g x^{g}\right)^{\gamma}=g^{\gamma}\left(x^{g}\right)^{\gamma}=g^{\beta} x^{g \alpha}
$$

the necessity is clear. To show the sufficiency, since X generates R as a ring, we need only show that $(u v)^{\gamma}=u^{\gamma} v^{\gamma}$ for $u=$ $x_{1} x_{2} \ldots x_{n} g$ and $y=y_{1} y_{2} \ldots y_{m} h, x_{i}, y_{j} \in X, g, h \in G$. We then have

$$
\begin{aligned}
(u v)^{\gamma} & =\left(x_{1} \ldots x_{n} y_{1}^{g^{-1}} \ldots y_{m}^{g^{-1}} g h\right)^{\gamma} \\
& =\left(x_{1} \ldots x_{n} y_{1}^{g^{-1}} \ldots y_{m}^{g^{-1}}\right)^{\alpha}(g h)^{\beta} \\
& =x_{1}^{\alpha} \ldots x_{n}^{\alpha} y_{1}^{g^{-1} \alpha} \ldots y_{m}^{g^{-1} \alpha} g^{\beta} h^{\beta}=x_{1}^{\alpha} \ldots x_{n}^{\alpha} g^{\beta} y_{1}^{\alpha} \ldots y_{m}^{\alpha} h^{\beta} \\
& =\left(x_{1} \ldots x_{n}\right)^{\alpha} g^{\beta}\left(y_{1} \ldots y_{m}\right)^{\alpha} h^{\beta}=u^{\gamma} v^{\gamma}
\end{aligned}
$$

and the proof is complete.
We close this section with a "weak density" theorem which will have important applications in several places later on. The motivation comes from the celebrated Jacobson Density Theorem; the reader will notice that virtually the same proof can be used.

For a ring S let N be a right S-module, let $\Delta=\operatorname{End}\left(N_{S}\right)$ (thus N is a (Δ, S)-bimodule), let ΔM be a left Δ-module, and let T be an S-submodule of the right S-module $\operatorname{Hom}\left({ }_{\Delta} M, \Delta N\right)$.

We shall refer to the above system as a (right) S-context. With reference to this S-context we make three definitions:
N is closed: given any homomorphism of S-modules f : $U_{S} \rightarrow N_{S}$ (where $0 \neq U_{S}$ is a submodule of N_{S}) there exists $\lambda \in \Delta$ such that $\lambda u=f(u)$ for all $u \in U$. (Note that closed simply means quasi-injective).
T is total: for any $0 \neq m \in M$ we have $m T \neq 0$.
T is weakly dense: given $m_{1}, m_{2}, \ldots, m_{k} \in M$, with $m_{1} \notin$ $\sum_{i=2}^{k} \Delta m_{i}$, there exists $t \in T$ such that $m_{1} t \neq 0, m_{i} t=0$ for $i>1$.

In an analogous fashion one may define a left S-context with a similar ensuing discussion.

Theorem 1.1.5 (Weak Density Theorem) Given an S-context as above such that N_{S} is closed and T is total, then T is weakly dense.

Proof. We proceed by induction on k. The case $k=1$ is clear because T is total. Now let $m_{1} \notin \sum_{i=2}^{k} \Delta m_{i}$. Suppose the result is not true, i.e., for all $t \in T m_{1} t=0$ whenever $m_{i} t=0$ for all $i=2,3, \ldots, k$. We set $J=\left\{t \in T \mid m_{i} t=\right.$ $0, i>2\}$ (if $k=2$ set $J=T$). Clearly J is an S-submodule. If $m_{2} \in \sum_{i=3}^{k} \Delta m_{i}$ then we are finished immediately by the induction hypothesis. Therefore, again by the induction hypothesis, $m_{2} J \neq 0$, and $m_{2} J$ is an S-submodule of N_{S}. We define $f: m_{2} J \rightarrow N$ by the rule $m_{2} t \mapsto m_{1} t$ for all $t \in J . \quad f$ is well-defined, since if $m_{2} t=0$ we have $m_{1} t=0$ by our earlier assumption. Certainly f is an S-module map and so (since N_{S} is closed) there exists $\lambda \in \Delta$ such that $\lambda\left(m_{2} t\right)=f\left(m_{2} t\right)=$ $m_{1} t$ for all $t \in J$, i.e., $\left(\lambda m_{2}-m_{1}\right) J=0$. But then consider the elements $\lambda m_{2}-m_{1}, m_{3}, \ldots, m_{k}$. Since $m_{1} \notin \sum_{i=2}^{k} \Delta m_{i}$, $\lambda m_{2}-m_{1} \notin \sum_{i=3}^{k} \Delta m_{i}$. By the induction hypothesis we would have $\left(\lambda m_{2}-m_{1}\right) J \neq 0$, and so we have reached a contradiction.

1.2 Tensor Products and Free Algebras

Let K be a commutative ring with 1 , let V be a right K-module and let W be a left K-module. For P any additive abelian group we say that a map $\phi: V \times W \rightarrow P$ is balanced if it is biadditive and satisfies $(v \alpha, w)^{\phi}=(v, \alpha w)^{\phi}, \quad v \in V, \quad w \in W, \quad \alpha \in K$. An abelian group T is called a tensor product of V and W over K if the following properties hold:
(i) There is a balanced map $\tau: V \times W \rightarrow T$ such that T is additively generated by the image of τ.
(ii) Given any abelian group P and any balanced map ρ : $V \times W \rightarrow P$ there exists an additive map $\psi: T \rightarrow P$ such that $\rho=\tau \psi$.

The existence of such a T is easily seen as follows. Let F be the free abelian group on the set $V \times W$, and let N be the subgroup of F generated by all elements of the form

$$
\begin{aligned}
& \left(v_{1}+v_{2}, w\right)-\left(v_{1}, w\right)-\left(v_{2}, w\right) \\
& \left(v, w_{1}+w_{2}\right)-\left(v, w_{1}\right)-\left(v, w_{2}\right) \\
& (v \alpha, w)-(v, \alpha w), \quad v, v_{1}, v_{2} \in V, w, w_{1}, w_{2} \in W, \alpha \in K .
\end{aligned}
$$

We claim that $\bar{F}=F / N$ is a tensor product of V and W over K. Indeed, the map $\tau:(v, w) \mapsto \overline{(v, w)}=(v, w)+N$ fulfills condition (i. For a mapping $\rho:(V, W) \rightarrow P$ balanced, define $\chi: F \rightarrow P$ according to $(v, w) \mapsto(v, w)^{\rho}$. Since χ maps N to 0 it induces the desired additive map $\psi: \bar{F} \rightarrow P$ satisfying (ii). The uniqueness of the tensor product (up to isomorphism) is easily seen from consideration of the commutative diagram

showing that ψ and ψ^{\prime} are inverses of each other. We will denote the tensor product of V and W over K by $V \otimes_{K} W$ and a typical generator $(v, w)^{\tau}$ by $v \otimes w$.

Suppose furthermore that W is a (K, L)-bimodule for some commutative ring L. Then $V \otimes_{K} W$ is a right L-module with multiplication given by $(v \otimes w) l=v \otimes w l, \quad l \in L$. The welldefinedness of this operation follows from the fact that for $l \in L$ the map $\rho:(v, w) \mapsto v \otimes w l$ is balanced. In particular, if V and W are K-modules, $V \otimes_{K} W$ is again a K-module.

Given one or more K-modules V, W, \ldots we will find it useful to form the tensor algebra determined by these modules over K. We proceed to briefly describe this construction for the case of two modules V and W.

First consider a fixed ordered sequence $S_{1}, S_{2}, \ldots, S_{n}$ where for each $i=1,2, \ldots, n \quad S_{i}=V \quad$ or $\quad S_{i}=W$. We define the n-fold tensor product to be that K-module S characterized by the properties:
(i) ${ }^{\prime}$ There is an n-linear map $\tau: S_{1} \times \ldots \times S_{n} \rightarrow S$ whose image generates S additively.
(ii)' Given $\phi: S_{1} \times \ldots \times S_{n} \rightarrow P$ any n-linear map into a K-module P, there exists a K-linear map $\psi: S \rightarrow P$ such that $\phi=\tau \psi$.

One shows the existence and uniqueness of S in a similar manner as earlier; we denote this n-fold tensor product by $S=$ $S_{1} \otimes \ldots \otimes S_{n}$.

We now define the tensor algebra T of V and W over K to be the direct sum of all the n-fold tensor products:

$$
\begin{aligned}
T= & K \oplus V \oplus W \oplus(V \otimes V) \oplus(V \otimes W) \oplus(W \otimes V) \\
& \oplus(W \otimes W) \oplus(V \otimes V \otimes V) \oplus \ldots
\end{aligned}
$$

Clearly the problem of defining multiplication reduces to the following situation. Let $S_{(n)}=S_{1} \otimes \ldots \otimes S_{n}, S_{(m)}^{\prime}=S_{1}^{\prime} \otimes \ldots \otimes S_{m}^{\prime}$, and $S_{(m+n)}=S_{1} \otimes \ldots \otimes S_{n} \otimes S_{1}^{\prime} \otimes \ldots \otimes S_{m}^{\prime}$, where each S_{i}, S_{j}^{\prime} is either V or W. If $s=\left(s_{1}, \ldots, s_{n}\right) \in S_{1} \times \ldots \times S_{n}, t=$ $\left(t_{1}, \ldots, t_{m}\right) \in S_{1}^{\prime} \times \ldots \times S_{m}^{\prime}$ we let $\bar{s}=s_{1} \otimes \ldots \otimes s_{n} \in S_{(n)}$, $\bar{t}=t_{1} \otimes \ldots \otimes t_{m} \in S_{m}^{\prime}$. We define a binary operation $S_{(n)} \times S_{(m)} \rightarrow$ $S_{(m+n)}$ as follows: for $x=\sum_{s} \bar{s}, y=\sum_{t} \bar{t}$ we set $x y=\sum_{s, t} \bar{s} \otimes \bar{t}$. We shall show this is well-defined, leaving associativity, etc., to the reader. Indeed, for each $t \in S_{1}^{\prime} \times \ldots \times S_{m}^{\prime}$ there is a K-linear $\operatorname{map} \psi_{t}: S_{(n)} \rightarrow S_{(m+n)}$ given by $x^{\psi_{t}}=\sum_{s} \bar{s} \otimes \bar{t}$, and for each $s \in S_{1} \times \ldots \times S_{n}$ there is a K-linear map $\chi_{s}: S_{(m)}^{\prime} \rightarrow S_{(m+n)}$ given by $y^{\chi_{s}}=\sum_{t} \bar{s} \otimes \bar{t}$. Now suppose $x=\sum_{s} \bar{s}=\sum_{u} \bar{u}$ and $y=\sum_{t} \bar{t}=\sum_{v} \bar{v}$. Then

$$
\begin{aligned}
& \sum_{s, t} \bar{s} \otimes \bar{t}=\sum_{t}\left(\sum_{s} \bar{s} \otimes \bar{t}\right)=\sum_{t} x^{\psi_{t}}=\sum_{t}\left(\sum_{u} \bar{u} \otimes \bar{t}\right) \\
& =\sum_{u, t} \bar{u} \otimes \bar{t}=\sum_{u} y^{\chi_{u}}=\sum_{u}\left(\sum_{v} \bar{u} \otimes \bar{v}\right)=\sum_{u, v} \bar{u} \otimes \bar{v} .
\end{aligned}
$$

In case we are dealing only with a single K-module V we shall denote the tensor algebra determined by V over K as $K\{V\}$.

In the following remarks V is a K-module, K a commutative ring with 1 .

Remark 1.2.1 Let P be a K-algebra and let $\phi: V \rightarrow P$ be a K-linear map. Then ϕ can be uniquely extended to a K-algebra map $\psi: K\{V\} \rightarrow P$.

Proof. Using property ($i i)^{\prime}$ the map $\chi: V \otimes \ldots \otimes V \rightarrow$ P given by $v_{1} \otimes \ldots \otimes v_{n} \mapsto v_{1}^{\phi} v_{2}^{\phi} \ldots v_{n}^{\phi}$ is a well-defined K linear map, and extension of χ by additivity to $K\{V\}$ yields the required K-algebra map ψ.

Corollary 1.2.2 Let σ be an automorphism of K, let P be a K-algebra, and let $\phi: V \rightarrow P$ be a σ-semilinear map. Then:
(a) ϕ can be uniquely extended to $a \sigma$-homomorphism of K algebras $\psi: K\{V\} \rightarrow P$.
(b) ϕ can be uniquely extended to a σ-antihomomorphism of K-algebras $\psi: K\{V\} \rightarrow P$.

Proof. To prove (a) we consider P as a K-algebra P^{*} by defining $k \cdot x=k^{\sigma} x, \quad k \in K, \quad x \in P$. Then $\phi: V \rightarrow P^{*}$ is a K-linear map and so by Remark 1.2 .1 may be extended to a K-algebra map $\psi: K\{V\} \rightarrow P^{*}$, i.e., a σ-homomorphism $\psi: K\{V\} \rightarrow P$. To prove (b) let P^{o} be the opposite algebra of P. Then by part (a) ϕ can be uniquely extended to a σ homomorphism $\psi: K\{V\} \rightarrow P^{o}$, i.e., a σ-antihomomorphism $\psi: K\{V\} \rightarrow P$.

Corollary 1.2.3 Let δ be a derivation of K and let $\phi: V \rightarrow$ $K\{V\}$ be a δ-semilinear map. Then ϕ can be uniquely extended to a δ-derivation μ of $K\{V\}$.

Proof. Set $T=K\{V\}$, let A be the set of all matrices of the form $a=\left(\begin{array}{cc}s & t \\ 0 & s\end{array}\right), \quad s, t \in T$, and let K^{\prime} be the set of all matrices of the form $k^{\prime}=\left(\begin{array}{cc}k & k^{\delta} \\ 0 & k\end{array}\right), \quad k \in K$. One readily checks that $K \cong K^{\prime}$ via the map $\nu: k \mapsto k^{\prime}$ and that A is a K-algebra under $k \cdot a=k^{\nu} a$. One then verifies that the map $\chi: V \rightarrow A$ given by $v \mapsto\left(\begin{array}{cc}v & v^{\phi} \\ 0 & v\end{array}\right)$, is a K-linear map and so may be uniquely extended to a K-algebra map $\psi: K\{V\} \rightarrow A$.

1.2. TENSOR PRODUCTS AND FREE ALGEBRAS

Since T is generated as a K-algebra by V it is clear that for each $t \in T$ we have $t^{\psi}=\left(\begin{array}{cc}t & t^{\mu} \\ 0 & t\end{array}\right), \quad t^{\mu} \in T$, whence μ is the desired δ-derivation of $K\{V\}$.

We now approach these matters in a less sophisticated way. Let X be an arbitrary set, let $S<X>$ be the free semigroup with 1 on the set X, let K be a commutative ring with 1 , and let $K<X>$ denote the free K-module with basis $S<X\rangle$. Multiplication is defined in the obvious way by juxtaposition, and $K<X>$ is in fact a K-algebra. Now let P be any K-algebra and $\phi: X \rightarrow P$ any set mapping. Then ϕ may be uniquely extended to a K-algebra map $\psi: K<X>\rightarrow P$ by simply sending each basis element $s=x_{1} x_{2} \ldots x_{n}$ to $x_{1}^{\phi} x_{2}^{\phi} \ldots x_{n}^{\phi}, \quad x_{i} \in X$. For this reason we call $K<X>$ the free algebra on the set X over K.

Let X be a set, let V be the free K-module with basis X^{\prime} in one-one correspondence with X. The K-linear map $V \rightarrow K<X>$ given by $x^{\prime} \mapsto x$ may be lifted to a K-algebra map $K\{V\} \rightarrow$ $K<X\rangle$, and conversely the set map $x \mapsto x^{\prime}$ may be lifted to a K-algebra $\operatorname{map} K<X>\rightarrow K\{V\}$. Thus $K\{V\} \cong K<X>$, and, identifying X and X^{\prime}, we may state:

Remark 1.2.4 If V is a free K-module with basis X, then $K\{V\}=K<X>$.

In view of Remark 1.2.4 the equivalent formulations of Corollaries 1.2 .2 and 1.2.3 for $K<X>$ can now be stated without further proof.

Remark 1.2.5 Let $K<X>$ be the free K-algebra in X over a commutative ring K and let P be a K-algebra with 1 . Then:
(a) If σ is an automorphism of K and $\phi: X \rightarrow P$ is a set map, then there is a unique σ-homomorphism $\psi: K<X>\rightarrow P$ extending ϕ and also a unique σ-antihomomorphism $\rho: K<X>$ $\rightarrow P$ extending ϕ.
(b) If δ is a derivation of K, and $\phi: X \rightarrow K<X>$ is a set map, then there is a unique δ-derivation ψ of $K<X>$ extending ϕ.

Finally, suppose A and B are K-algebras. Then $A \otimes_{K} B$ becomes a K-algebra under multiplication given by

$$
\left(a_{1} \otimes b_{1}\right)\left(a_{2} \otimes b_{2}\right)=a_{1} a_{2} \otimes b_{1} b_{2}
$$

and its consequences.
Remark 1.2.6 Let A, B, P be K-algebras and $\alpha: A \rightarrow P$, $\beta: B \rightarrow P K$-algebra maps such that $\left[A^{\alpha}, B^{\beta}\right]=0$. Then there is a unique K-algebra map $\gamma: A \otimes_{K} B \rightarrow P$ such that $(a \otimes b)^{\gamma}=a^{\alpha} b^{\beta}$.

Remark 1.2.7 Let A, B, P be K-algebras, let $\omega: K \rightarrow K$ be a ring homomorphism, and let $\alpha: A \rightarrow P, \beta: B \rightarrow P$ be ω semilinear ring homomorphisms such that $\left[A^{\alpha}, B^{\beta}\right]=0$. Then there is a unique ω-semilinear ring homomorphism $\gamma: A \otimes_{K} B \rightarrow$ P such that $(a \otimes b)^{\gamma}=a^{\alpha} b^{\beta}$.

Proof. We consider P as a K-algebra P^{*} by defining $k \cdot p=$ $k^{\omega} p, k \in K, p \in P$. Then $\alpha: A \rightarrow P^{*}, \beta: B \rightarrow P^{*}$ are $K-$ algebra maps and so the K-algebra map given by Remark 1.2.6 is the required ω-semilinear ring homomorphism $\gamma: A \otimes_{K} B \rightarrow P$.

Remark 1.2.8 Let A, B, P be K-algebras, let $\omega: K \rightarrow K$ be a ring homomorphism, and let $\alpha: A \rightarrow P, \beta: B \rightarrow P$ be ω-semilinear ring antihomomorphisms such that $\left[A^{\alpha}, B^{\beta}\right]=0$. Then there is a unique ω-semilinear ring antihomomorphism γ : $A \otimes_{K} B \rightarrow P$ such that $(a \otimes b)^{\gamma}=a^{\alpha} b^{\beta}$.

Proof. Let P° denote the opposite algebra of P, note that $\alpha: A \rightarrow P^{\circ}, \beta: B \rightarrow P^{\circ}$ are ω-semilinear ring homomorphisms such that $a^{\alpha} \circ b^{\beta}-b^{\beta} \circ a^{\alpha}=0$, and apply Remark 1.2.7.

Remark 1.2.9 Let A, B be K-algebras with 1, let $\rho: K \rightarrow K$ be a derivation, and let $\delta: A \rightarrow A, \mu: B \rightarrow B$ be ρ-derivations. Then there is a unique ρ-derivation $\tau: A \otimes B \rightarrow A \otimes B$ such that $(a \otimes b)^{\tau}=a^{\delta} \otimes b+a \otimes b^{\mu}$.

Proof. We set $C=A \otimes_{K} B$, let R be the set of all matrices in $M_{2}(C)$ of the form $r=\left(\begin{array}{cc}c & d \\ 0 & c\end{array}\right), \quad c, d \in C$, and let K^{\prime} be the set of all matrices of the form $k^{\prime}=\left(\begin{array}{cc}k & k^{\rho} \\ 0 & k\end{array}\right), \quad k \in$ K, One readily checks that $K^{\prime} \cong K$ via the map $\nu: k \mapsto$ k^{\prime} and R is a K-algebra under $k \circ r=k^{\nu} r$. The mappings $\alpha: a \mapsto\left(\begin{array}{cc}a \otimes 1 & a^{\delta} \otimes 1 \\ 0 & a \otimes 1\end{array}\right), \quad \beta: b \mapsto\left(\begin{array}{cc}1 \otimes b & 1 \otimes b^{\mu} \\ 0 & 1 \otimes b\end{array}\right)$ are respectively K-algebra maps of A into R and B into R such that $\left[A^{\alpha}, B^{\beta}\right]=0$. Consequently by Remark 1.2.6 there is a unique K-algebra map $\gamma: A \otimes B \rightarrow R$ such that $(a \otimes b)^{\gamma}=a^{\alpha} b^{\beta}$. Since $A \otimes B$ is generated by $A \otimes 1$ and $1 \otimes B$ it is clear that for $c \in C$, $c^{\gamma}=\left(\begin{array}{cc}c & c^{\tau} \\ 0 & c\end{array}\right)$, whence τ is the desired ρ-derivation of $A \otimes B$.

1.3 The Diamond Lemma

Our goal in this section is the Diamond Lemma, which is the main tool in our proof of the Poincaré-Birkhoff-Witt thorems. We note that the technique of composition for Lie algebras was introduced by A. I. Shirshov [273] in 1962 and further extended to the Composition (Diamond) Lemmas for Lie algebras and for associative algebras by L. A. Bokut ([56] and [57]) and by G. Bergman [52] (see also [58]).

Let (Y, \leq) be a partially ordered set and let $\mathcal{E}(Y)$ be the set of all finite subsets of Y consisting of pairwise incomparable elements. For $U, V \in \mathcal{E}(Y)$ we define: $U \leq V$ if for all $u \in U$ there exists $v \in V$ such that $u \leq v$. We claim $(\mathcal{E}(Y), \leq)$ is a
partially ordered set. Indeed, transitivity is clear. Next suppose $U \leq V$ and $V \leq U$ and let $u \in U$. If $u \notin V$ then $u<v$ for some $v \in V$ and from $v \leq u^{\prime}$ for some $u^{\prime} \in U$ we see that $u<u^{\prime}$, contradicting the incomparability of the elements of U : Thus $U=V$ and we have shown \leq is antisymmetric.

Lemma 1.3.1 If (Y, \leq) satisfies the $D C C$ then $(\mathcal{E}(Y), \leq)$ also satisfies the DCC.

Proof. Suppose $U_{0}>U_{1}>\ldots U_{n}>\ldots$ is an infinite descending chain in $\mathcal{E}(Y)$. Without loss of generality we may assume for each $n \geq 1$ there is an element $v_{n} \in U_{n}$ such that $v_{n}<w_{n-1}$ for some $w_{n-1} \in U_{n-1}$ (otherwise there would exist m such that $U_{m} \supset U_{m+1} \supset \ldots$ is a infinite sequence of proper inclusions, in contradiction to the finiteness of U_{m}). If $v_{k}=v_{n}$ for some $k<n$ then we obtain the contradiction $v_{k}=v_{n}<w_{n-1} \leq u_{k}$ for some $u_{k} \in U_{k}$. Therefore the $v_{n}^{\prime} \mathrm{s}$ are distinct and so in particular $\bigcup_{n=1}^{\infty} U_{n}$ is infinite.

A path is a sequence $p=\left(u_{0}, u_{1}, \ldots, u_{n}, \ldots\right), u_{n} \in U_{n}$ (which can be finite or infinite) such that $u_{n} \geq u_{n+1}$ for each n. Given $x \in U_{n}$ we say that p passes through x if $u_{n}=x$. For any finite sequence

$$
u_{i_{0}}, u_{i_{1}}, \ldots, u_{i_{k}}, \quad u_{i_{j}} \in U_{i_{j}}, \quad u_{i_{j}} \geq u_{i_{j+1}}, \quad i_{0}<i_{1}<\ldots<i_{k},
$$

$P\left(u_{i_{0}}, u_{i_{1}}, \ldots, u_{i_{k}}\right)$ is that subset of $\bigcup_{n=1}^{\infty} U_{n}$ formed from all paths passing simultaneously through $u_{i_{0}}, u_{i_{1}}, \ldots, u_{i_{k}}$. Since every element of $\cup_{n=1}^{\infty} U_{n}$ lies in some path, by the finiteness of U_{0} we may choose $u_{0} \in U_{0}$ such that $P\left(u_{0}\right)$ is infinite. Suppose some $P\left(u_{i_{0}}, u_{i_{1}}, \ldots, u_{i_{k}}\right)$ (as defined above) is infinite. Then there exists $x \in P\left(u_{i_{0}}, u_{i_{1}}, \ldots, u_{i_{k}}\right)$ such that $x \notin \bigcup_{j=0}^{i_{k}} U_{j}$, since $\bigcup_{j=0}^{i_{k}} U_{j}$ is finite. Thus $x \in U_{m}, m>i_{k}$ and so $x \leq u_{i_{k}}$. It follows that $u_{i_{k}} \notin U_{m}$ and accordingly there exists $u_{m} \in U_{m}, u_{m}<u_{i_{k}}$, such that $P\left(u_{i_{0}}, u_{i_{1}}, \ldots, u_{i_{k}}, u_{m}\right)$ is infinite. Repeated application of the above process then produces an infinite sequence
$u_{i_{0}}>u_{i_{1}}>\ldots>u_{i_{k}}>\ldots$ in contradiction to (Y, \leq) satisfying the $D C C$.

Let Φ be a commutative ring with 1 and let X be a set. Denote by $Y=S<X>$ the free semigroup (with 1) generated by X, and let $\Phi<X>$ be the free Φ-algebra (with 1) generated by X. Consider a subset $\Lambda \subseteq Y \times \Phi<X>$ of the Cartesian product of Y and $\Phi<X>$. For any $\sigma=\left(W_{\sigma}, f_{\sigma}\right) \in \Lambda, A, B \in Y$, denote by $R_{A \sigma B}$ the endomorphism of the Φ-module $\Phi\langle X\rangle$ given by the rule:

$$
\begin{aligned}
& R_{A \sigma B}\left(A W_{\sigma} B\right)=A f_{\sigma} B \text { and } \\
& R_{A \sigma B}(U)=U \quad \text { for } \quad U \neq A W_{\sigma} B, U \in S<X>
\end{aligned}
$$

We call this set Λ a reduction system and the Φ-endomorphisms $R_{A \sigma B}: \Phi<X>\rightarrow \Phi<X>$ are called reductions. We say that an element $f \in \Phi<X>$ is irreducible if f does not contain monomials of the form $A W_{\sigma} B$ where $A, B \in Y$ and $\sigma=\left(W_{\sigma}, f_{\sigma}\right)$. Clearly the subset $\Phi<X>_{\text {irr }}$ of all irreducible elements of $\Phi<X>$ is a Φ-submodule of the module $\Phi<X>$.

Lemma 1.3.2 Let $L=S<X>\cap \Phi<X>_{\text {irr }}$. Then L is a Φ-basis of the module $\Phi<X>_{i r r}$.

Proof. Clearly, the elements of the set L are linearly independent over Φ. Suppose that $\Phi<X>_{i r r} \neq \sum_{l \in L} \Phi l$. Let $h \in \Phi<X>_{i r r} \backslash \sum_{l \in L} \Phi l$. Further let $h=\sum_{i} k_{i} u_{i}$, where $k_{i} \in \Phi$, $u_{i} \in S<X>$. Clearly $u_{i} \notin L$ for some i. Hence there exists a reduction $R_{A \sigma B}$ such that $R_{A \sigma B}\left(u_{i}\right) \neq u_{i}$. Since $R_{A \sigma B}\left(u_{j}\right)=u_{j}$ for all $j \neq i, R_{A \sigma B}(h) \neq h$ in contradiction with $h \in \Phi<X>_{\text {irr }}$. Thus $\Phi<X>_{i r r}=\sum_{l \in L} \Phi l$.

Suppose that for $f \in \Phi<X>$ there exists a finite sequence R_{1}, \ldots, R_{n} of reductions such that $R_{n} R_{n-1} \ldots R_{1}(f) \in \Phi<X>_{\text {irr }}$. The element $R_{n} R_{n-1} \ldots R_{1}(f)$ is said to be a normal form of f (in general an element $g \in \Phi<X>$ may have no normal form,
several normal forms, or a unique normal form). Denote by $\Phi<X>_{\text {red }}$ the subset of all elements f of $\Phi<X>$ with a unique normal form $N(f)$ (possibly $\Phi<X>_{\text {red }}=0$).

A collection (σ, τ, A, B, C) is said to be an overlap ambiguity if $A, B, C \in Y, \sigma, \tau \in \Lambda$, and $W_{\sigma}=A B, W_{\tau}=B C$. We shall say that the overlap ambiguity (σ, τ, A, B, C) is resolvable if there exist compositions of reductions R and R^{\prime} such that $R\left(R_{\sigma C}(A B C)\right)=R^{\prime}\left(R_{A \tau}(A B C)\right)$.

A collection (σ, τ, A, B, C) is said to be an inclusion ambiguity if $A, B, C \in Y, \sigma, \tau \in \Lambda$, and $W_{\sigma}=B, W_{\tau}=A B C$. We shall say that the inclusion ambiguity (σ, τ, A, B, C) is resolvable if there exist compositions of reductions R and R^{\prime} such that $R\left(R_{A \sigma C}(A B C)\right)=R^{\prime}\left(R_{\tau}(A B C)\right)$.

A partial ordering \leq on the set $Y=S<X\rangle$ is said to be a semigroup ordering if $B<B^{\prime}$ with $B, B^{\prime} \in Y$ implies $A B C<A B^{\prime} C$ for all $A, C \in Y$. A partial ordering \leq on the set $S\langle X\rangle$ is said to be compatible with Λ if for any $\sigma \in \Lambda$ the element f_{σ} is a linear combination of monomials V with $V<W_{\sigma}$.

Denote by $I=I(\Lambda)$ the two-sided ideal of $\Phi<X>$ generated by the elements $W_{\sigma}-f_{\sigma}, \sigma \in \Lambda$. Clearly the Φ-module I is generated by the elements $A\left(W_{\sigma}-f_{\sigma}\right) B$, where $A, B \in Y, \sigma \in \Lambda$.

With reference to (Y, \leq) above and to Lemma 1.3.1, we denote by $O(h) \in \mathcal{E}(Y)$ the set of all maximal monomials in $h \in \Phi<X>$.

Lemma 1.3.3 Under the above notations suppose ($S<X>, \leq$) satisfies the DCC, where \leq is a semigroup partial order compatible with the reduction system Λ. Then:
(a) Every element $f \in \Phi<X>$ has a normal form (not necessarily unique).
(b) $\Phi<X>_{\text {red }}$ is a Φ-submodule of $\Phi<X>$ and the mapping $N: \Phi<X>_{\text {red }} \rightarrow \Phi<X>_{\text {irr }}$ is a Φ-module homomorphism.
(c) For any sequence R of reductions $R(f)-f \in I(\Lambda)$ for all $f \in \Phi<X>$.

Proof. (a) Suppose the contrary. Then the set H of all elements of $\Phi<X>$ which can not be reduced to a normal form is not empty. By Lemma 1.3.1 it follows that in the set $\{O(g) \mid g \in H\}$ there exist minimal elements. Choose an element $h \in H$ such that $O(h)$ is minimal in $\{O(g) \mid g \in H\}$, and the number $|O(h)|$ is minimal possible. Let $h=\sum_{u} k_{u} u$, where $k_{u} \in \Phi, u \in S<X>$. We set $p=\sum_{u \in O(h)} k_{u} u, q=h-p$. Clearly $O(q)<O(p)=O(h)$. By our choice of the element h, there exists a sequence of reductions R such, that $R(q) \in \Phi\langle X\rangle_{\text {irr }}$. Since the semigroup partial ordering \leq is compatible with Λ and monomials in $O(p)$ are pairwise incomparable, for any reduction $R_{A \sigma B}$ we have that either $R_{A \sigma B}(p)=p$ or $O\left(R_{A \sigma B}(p)\right)<O(p)$. Hence either $R(p)=p$, or $O(R(p))<O(p)$. By the choice of h, in the last case there exists a sequence of reductions R^{\prime} such that $R^{\prime} R(p) \in \Phi<X>_{i r r}$. Since $R(q) \in \Phi<X>_{i r r}, R^{\prime} R(q)=R(q)$. Hence we obtain

$$
R^{\prime} R(h)=R^{\prime} R(p)+R^{\prime} R(q)=R^{\prime} R(p)+R(q) \in \Phi<X>_{i r r} .
$$

By the choice of the element h this case is impossible. Therefore, $R(p)=p$. As $p \notin \Phi<X>_{i r r}$, there exists a reduction $R_{A \sigma B}$ such that $R_{A \sigma B}(p) \neq p$. By the above this is impossible and so we have a contradiction. Thus any element of $\Phi\langle X\rangle$ may be reduced to a normal form.
(b) Let $f, g \in \Phi\langle X\rangle_{\text {red }}, \alpha, \beta \in \Phi$ and R any sequence of reductions. Since the element $R(f)$ has a normal form and this normal form is also a normal form of the element f, there exists a sequence of reductions R^{\prime} such that $R^{\prime} R(f)=N(f)$. Analogously, $R^{\prime \prime} R^{\prime} R(g)=N(g)$ for some sequence of reductions $R^{\prime \prime}$. Hence we have

$$
\begin{aligned}
R^{\prime \prime} R^{\prime} R(\alpha f+\beta g) & =\alpha R^{\prime \prime}(N(f))+\beta N(g) \\
& =\alpha N(f)+\beta N(g) \in \Phi<X>_{i r r} .
\end{aligned}
$$

Therefore, $\alpha N(f)+\beta N(g)$ is a normal form of elements $\alpha f+\beta g$ and $R(\alpha f+\beta g)$. Since R is an arbitrary sequence of reductions, the element $\alpha f+\beta g$ has a unique normal form. Thus $\alpha f+\beta g \in$ $\Phi<X>_{\text {red }}$ and $N(\alpha f+\beta g)=\alpha N(f)+\beta N(g)$.
(c) Since $W_{\sigma}-f_{\sigma} \in I$ for all $\sigma \in \Lambda, R_{A \sigma B}(g)-g \in I$ for all $A, B \in S<X>, g \in \Phi<X>$. So $R(g)-g \in I$ for any sequence of reductions R.

Theorem 1.3.4 (Diamond Lemma) (see [52] and [57]). Let Λ be a reduction system for the free associative Φ-algebra $\Phi<X>$ and \leq be a semigroup partial ordering on $S<X>$ compatible with Λ and satisfying the descending chain condition. Then the following conditions are equivalent:
(a) All ambiguities of Λ are resolvable;
(b) $\Phi<X>=\Phi<X>_{\text {red }}$, i.e. any element of $\Phi<X>$ has a unique normal form;
(c) $\Phi<X>=\Phi<X>_{i r r} \oplus I(\Lambda)$.

If these conditions hold, then $\Phi<X>/ I(\Lambda)$ may be identified with the Φ-module $\Phi<X>_{\text {irr }}$, which is a Φ-algebra under the multiplication $f \times g=N(f g)$.

Proof. Assume that (c) holds. Then $\Phi<X\rangle=\Phi<X\rangle_{i r r} \oplus I$, where $I=I(\Lambda)$. Let $f \in \Phi<X>$. By Lemma 1.3.3, the element f has a normal form. Suppose that it has two different normal forms $g, g^{\prime} \in \Phi<X>_{i r r}$. Since $g-f \in I$ and $g^{\prime}-f \in I$, $g-g^{\prime} \in \Phi<X>_{\text {irr }} \cap I=0$, and we have a contradiction. Thus the element f has the unique normal form, $\Phi<X>=\Phi<X\rangle_{\text {red }}$ and (c) implies (b).

Suppose that (b) holds. Then N is a projection of the Φ module $\Phi<X>$ onto $\Phi<X>_{i r r}$. Since $N(g)-g \in I$, ker $N \subseteq I$. As elements of $\Phi<X\rangle=\Phi\langle X\rangle_{\text {red }}$ have a unique normal form,

$$
N\left(A\left(W_{\sigma}-f_{\sigma}\right) B\right)=N\left(A W_{\sigma} B\right)-N\left(A f_{\sigma} B\right)=0
$$

for all $A, B \in S<X>, \sigma \in \Lambda$. Furthermore, the Φ-submodule I is generated by the elements of the form $A\left(W_{\sigma}-f_{\sigma}\right) B$. Therefore,
ker $N \supseteq I$. Hence ker $N=I$ and $\Phi<X>=\Phi\langle X\rangle_{\text {irr }} \oplus I$. Thus, conditions (b) and (c) are equivalent.

Obviously, (b) implies (a). We show that (a) implies (b). By Lemma 1.3.3, $\Phi<X>_{\text {red }}$ is a Φ-submodule and the normal form mapping $N: \Phi<X>_{\text {red }} \rightarrow \Phi\langle X\rangle_{\text {irr }}$ is a homomorphism of Φ-modules. It is enough to prove that $S<X>\subseteq \Phi<X>_{\text {red }}$.

Assume that $S<X>\backslash \Phi<X\rangle_{\text {red }} \neq \emptyset$. Let w be a minimal element of the set $S<X>\backslash \Phi<X\rangle_{\text {red }}$. Furthermore let $R_{U \sigma V^{\prime}}$ and $R_{U^{\prime} \tau V}$ be two different reductions such that $R_{U \sigma V^{\prime}}(w) \neq$ $R_{U^{\prime} \tau V}(w)$. Clearly, $U W_{\sigma} V^{\prime}=w=U^{\prime} W_{\tau} V$. By the choice of the element $w, R_{U \sigma V^{\prime}}(w) \in \Phi<X>_{\text {red }}$ and $R_{U^{\prime} \sigma V}(w) \in \Phi<X>_{\text {red }}$. It is enough to prove that $N\left(R_{U \sigma V^{\prime}}(w)\right)=N\left(R_{U^{\prime} \tau V}(w)\right)$. Without loss of generality one can assume that $U^{\prime}=U A$ for some $A \in$ $S<X>$. Consider three possible cases.

Case 1. We have an overlap ambiguity $w=U A B C V, W_{\sigma}=$ $A B, W_{\tau}=B C, V^{\prime}=C V, U^{\prime}=U A$. By (a) this ambiguity is resolvable, i.e. the elements $f_{\sigma} C$ and $A f_{\tau}$ can be reduced to one and the same element f. Therefore the elements $R_{U \sigma V^{\prime}}(w)=$ $U f_{\sigma} C V, R_{U^{\prime} \tau V}(w)=U A f_{\tau} V$ can be reduced to the element $g=U f V$.

Case 2. We have an inclusion ambiguity $w=U A B C V^{\prime}$, $W_{\sigma}=A B C, W_{\tau}=B, V=C V^{\prime}, U^{\prime}=U A$. By analogy with the first case, one can show that the elements $R_{U \sigma V^{\prime}}(w)=U f_{\sigma} V$ and $R_{U^{\prime} \tau V}(w)=U A f_{\tau} C V$ can be reduced to one and the same element.

Case 3. The subwords W_{σ} and W_{τ} are disjoint in w (i.e. $\left.w=U W_{\sigma} B W_{\tau} V, U^{\prime}=U W_{\sigma} B, V^{\prime}=B W_{\tau} V\right)$. Then

$$
R_{U \sigma V^{\prime}}(w)=U f_{\sigma} B W_{\tau} V \quad \text { and } \quad R_{U^{\prime} \tau V}(w)=U W_{\sigma} B f_{\tau} V .
$$

For any $v=x_{1} x_{2} \ldots x_{k} \in S<X>$, where $x_{1}, x_{2}, \ldots, x_{k} \in X$, we set $l(v)=k$. Without loss of generality we may assume that

$$
f_{\sigma}=\sum_{i=1}^{m} \alpha_{i} p_{i} \quad \text { and } \quad f_{\tau}=\sum_{j=1}^{n} \beta_{j} q_{j}, \quad \text { where }
$$

$$
\begin{aligned}
& \alpha_{i}, \beta_{j} \in \Phi, p_{i}, q_{j} \in S<X> \\
& l\left(p_{i}\right) \leq l\left(p_{s}\right), \quad p_{i} \neq p_{s} \quad \text { for all } \quad 1 \leq i<s \leq m, \quad \text { and } \\
& l\left(q_{j}\right) \leq l\left(q_{t}\right), \quad q_{j} \neq q_{t} \quad \text { for all } \quad 1 \leq j<t \leq n
\end{aligned}
$$

We claim that

$$
R_{U p_{\mathrm{m}} B \tau V} R_{U p_{m-1} B \tau V} \ldots R_{U p_{1} B \tau V}\left(U f_{\sigma} B W_{\tau} V\right)=U f_{\sigma} B f_{\tau} V .
$$

Since $U f_{\sigma} B W_{\tau} V=\sum_{i=1}^{m} \alpha_{i} U p_{i} B W_{\tau} V$, it is enough to prove that

$$
R_{U p_{\mathrm{m}} B \tau V} R_{U p_{m-1} B \tau V} \ldots R_{U p_{1} B \tau V}\left(U p_{i} B W_{\tau} V\right)=U p_{i} B f_{\tau} V
$$

for all $1 \leq i \leq m$. Note that

$$
\begin{aligned}
& R_{U p_{i} B \tau V} R_{U p_{i-1} B \tau V} \ldots R_{U p_{1} B \tau V}\left(U p_{i} B W_{\tau} V\right)= \\
& R_{U p_{i} B \tau V}\left(U p_{i} B W_{\tau} V\right)=U p_{i} B f_{\tau} V .
\end{aligned}
$$

So it is enough to prove that

$$
R_{U p_{s} B \tau V}\left(U p_{i} B f_{\tau} V\right)=U p_{i} B f_{\tau} V
$$

for all $1 \leq i<s \leq m$. As $U p_{i} B f_{\tau} V=\sum_{j=1}^{n} \beta_{j} U p_{i} B q_{j} V$, we have to prove that

$$
R_{U p_{s} B \tau V}\left(U p_{i} B q_{j} V\right)=U p_{i} B q_{j} V
$$

for all $1 \leq j \leq n$ and $1 \leq i<s \leq m$. Suppose the contrary. Then $U p_{s} B W_{\tau} V=U p_{i} B q_{j} V$. Hence $p_{s} B W_{\tau}=p_{i} B q_{j}$. Since $l\left(p_{s}\right) \geq l\left(p_{i}\right)$ and $p_{s} \neq p_{i}, l\left(p_{s}\right)>l\left(p_{i}\right)$. Taking into account that

$$
l\left(p_{s} B W_{\tau}\right)=l\left(p_{s}\right)+l(B)+l\left(W_{\tau}\right)=l\left(p_{i}\right)+l(B)+l\left(q_{j}\right)
$$

we have that $l\left(W_{\tau}\right)<l\left(q_{j}\right)$. That is to say $q_{j}=D W_{\tau}$ for some $1 \neq D \in S<X\rangle$. Since the partial ordering \leq of $S<X>$ is compatible with the reduction system $\Lambda, D W_{\tau}=q_{j}<W_{\tau}$. As this ordering is a semigroup one, $D^{n+1} W_{\tau}<D^{n} W_{\tau}$ for all
$n \geq 0$ which is a contradiction to the descending chain condition. Therefore

$$
R_{U p_{m} B \tau V} R_{U p_{m-1} B \tau V} \ldots R_{U p_{1} B \tau V}\left(U f_{\sigma} B W_{\tau} V\right)=U f_{\sigma} B f_{\tau} V
$$

Analogously $R\left(U W_{\sigma} B f_{\tau} V\right)=U f_{\sigma} B f_{\tau} V$ for some sequence of reductions R. That is to say elements $R_{U \sigma V^{\prime}}(w)$ and $R_{U^{\prime} \tau V}(w)$ are reduced to one and the same element.

Therefore in all cases it follows from

$$
R_{U \sigma V^{\prime}}(w), R_{U^{\prime} \tau V}(w) \in \Phi<X>_{r e d}
$$

that $N\left(R_{U \sigma V^{\prime}}(w)\right)=N\left(R_{U^{\prime} \tau V}(w)\right)$. Thus the element w has a unique normal form and we have a contradiction.

We close this section with the famous Amitsur-Levitski Theorem [9]. The proof presented here is very simple and is due to S. Rosset [254]. Let X be an infinite set, \mathcal{Z} the ring of integers, Q the field of rational numbers and $\mathcal{Z}\langle X\rangle$ the free algebra over \mathcal{Z} generated by X. Further let $n>0$ be a natural number, S_{n} the symmetric group of order n and $\epsilon(\sigma)$ the sign of the permutation $\sigma \in S_{n}$. We set

$$
S t_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{\sigma \in S_{n}} \epsilon(\sigma) x_{\sigma(1)} x_{\sigma(2)} \ldots x_{\sigma(n)}
$$

where $x_{1}, x_{2}, \ldots, x_{n} \in X$ are distinct variables and we will call $S t_{n}$ the standard polynomial of degree n.

Theorem 1.3.5 (Amitsur-Levitski) Let R be a commutative ring, $n>0$ a natural number and $M_{n}(R)$ the $n \times n$-matrix ring over R. Then for all $A_{1}, \ldots, A_{2 n} \in M_{n}(R)$

$$
S t_{2 n}\left(A_{1}, A_{2}, \ldots, A_{2 n}\right)=0
$$

(i.e., $S t_{2 n}$ is a polynomial identity of $M_{n}(R)$).

We start with the following easy remarks (here $\operatorname{tr}(A)$ is the trace of the matrix $A \in M_{n}(R)$)

Remark 1.3.6 Let R be a commutative algebra over Q and $A \in$ $M_{n}(K)$. Suppose that $\operatorname{tr}\left(A^{i}\right)=0$ for all $i>0$. Then $A^{n}=0$.

Proof. Adjoining (if it is necessary) an identity element to R, we can assume that R has an identity. Consider the polynomial ring $K=Q\left[x_{i j} \mid 1 \leq i, j \leq n\right]$ and let $U=$ $\left(x_{i j}\right)_{i, j=1}^{n} \in M_{n}(K)$. The Newton formula on symmetric polynomials shows that the coefficients of the characteristic polynomial $\chi_{U}(t)=t^{n}+u_{1} t^{n-1}+\ldots+u_{n}$ of U are polynomials with rational coefficients (and with zero constant terms) in the traces $\operatorname{tr}\left(U^{i}\right)$, $i=1,2, \ldots, n$. Clearly there exists a Q-algebra map $\phi: K \rightarrow R$ such that for its canonical extension $\Phi: M_{n}(K) \rightarrow M_{n}(R)$ we have $\Phi(U)=A$. Then $\phi\left(u_{i}\right)=0$ for all $i=1,2, \ldots, n$ and

$$
A^{n}=\Phi\left(U^{n}\right)+\phi\left(u_{1}\right) \Phi\left(U^{n-1}\right)+\ldots+\phi\left(u_{n}\right)=\Phi\left(\chi_{U}(U)\right)=0
$$

Remark 1.3.7 If r is an even natural number, then

$$
\operatorname{tr}\left(S t_{r}\left(A_{1}, A_{2}, \ldots, A_{r}\right)\right)=0
$$

for all $A_{1}, A_{2}, \ldots, A_{r} \in M_{n}(R)$.
Proof. It is well-known that $\operatorname{tr}(A B)=\operatorname{tr}(B A)$. Let $\tau=$ $(1,2, \ldots, r) \in S_{r}$ be a cycle and let A_{r} be the alternating subgroup of S_{r}. Clearly $S_{r}=A_{r} \cup A_{r} \tau$ and $\epsilon(\sigma \tau)=-1$ for all $\sigma \in A_{r}$. Further we have

$$
\begin{aligned}
\operatorname{tr}\left(A_{\sigma(1)} A_{\sigma(2)} \ldots A_{\sigma(r)}\right) & =\operatorname{tr}\left(A_{\sigma(2)} A_{\sigma(3)} \ldots A_{\sigma(r)} A_{\sigma(1)}\right) \\
& =\operatorname{tr}\left(A_{\sigma \tau(1)} A_{\sigma \tau(2)} \ldots A_{\sigma \tau(r)}\right)
\end{aligned}
$$

for all $\sigma \in A_{r}$ and so

$$
\begin{aligned}
\operatorname{tr}\left(S t_{r}\left(A_{1}, A_{2}, \ldots, A_{r}\right)\right)= & \sum_{\sigma \in A_{r}} \operatorname{tr}\left(A_{\sigma(1)} A_{\sigma(2)} \ldots A_{\sigma(r)}\right) \\
& -\sum_{\sigma \in A_{r}} \operatorname{tr}\left(A_{\sigma \tau(1)} A_{\sigma \tau(2)} \ldots A_{\sigma \tau(r)}\right) \\
= & 0 .
\end{aligned}
$$

The proof is complete.
Let $K=Q\left[x_{i j k} \mid 1 \leq i, j \leq n, 1 \leq k \leq 2 n\right]$ be the polynomial ring in $x_{i j k}$ over Q and $B_{k}=\left(x_{i j k}\right)_{i, j=1}^{n} \in M_{n}(K)$. Consider the free algebra $F=K<Y>$ where $Y=\left\{y_{1}, \ldots, y_{2 n}\right\}$. Letting I denote the ideal of F generated by all elements of the form $y_{i} y_{j}+y_{j} y_{i}$, we set

$$
D=F / I, e_{i}=y_{i}+I, i=1,2, \ldots, 2 n
$$

The reduction system for F consisting of all pairs $\left(y_{j} y_{i},-y_{i} y_{j}\right)$, $i \leq j$, is clearly compatible with the usual ordering of monomials (i.e., first by length and then lexicographic). It then follows easily from the Diamond Lemma that 1 and all elements $e_{i_{1}} e_{i_{2}} \ldots e_{i_{k}}$, where $k \leq n$ and $i_{1}<i_{2}<\ldots<i_{k}$, form a basis of the K-module D. Clearly $e_{i_{1}} e_{i_{2}} \ldots e_{i_{k}} \in Z(D)=C$ if k is even where $Z(D)$ is the center of D. Noting that $M_{n}(K) \subseteq M_{n}(C) \subseteq$ $M_{n}(D)$, we set $B=B_{1} e_{1}+B_{2} e_{2}+\ldots+B_{2 n} e_{2 n} \in M_{n}(D)$. Obviously

$$
\begin{equation*}
B^{k}=\sum_{i_{1}<i_{2}<\ldots<i_{k}} S t_{k}\left(B_{i_{1}}, B_{i_{2}}, \ldots, B_{i_{k}}\right) e_{i_{1}} e_{i_{2}} \ldots e_{i_{k}} \tag{1.1}
\end{equation*}
$$

In particular, $B^{k}=0$ for $k>2 n$ and

$$
B^{2 n}=S t_{2 n}\left(B_{1}, B_{2}, \ldots, B_{2 n}\right) e_{1} e_{2} \ldots e_{2 n}
$$

For any natural number $r>0$ we have $B^{2 r}=\left(B^{2}\right)^{r} \in M_{n}(C)$. Now from (1.1) and Remark 1.3.7 it follows that

$$
\operatorname{tr}\left(\left(B^{2}\right)^{r}\right)=0
$$

and so $B^{2 n}=\left(B^{2}\right)^{n}=0$ by Remark 1.3.6. Therefore

$$
S t_{2 n}\left(B_{1}, B_{2}, \ldots, B_{2 n}\right)=0
$$

Consider the subring $L=\mathcal{Z}\left[x_{i j k} \mid 1 \leq i, j \leq n, 1 \leq k \leq 2 n\right] \subseteq$ K. Clearly $B_{i} \in M_{n}(L) \subseteq M_{n}(K)$. Since there exists a ring homomorphism $\phi: L \rightarrow R$ such that for its canonical extension $\Phi: M_{n}(L) \rightarrow M_{n}(R)$ we have $\Phi\left(B_{i}\right)=A_{i}$ for all $1 \leq i \leq 2 n$, we conclude that $S t_{2 n}\left(A_{1}, A_{2}, \ldots, A_{2 n}\right)=0$, and the proof of Amitsur-Levitski Theorem is complete.

1.4 Coproducts

The notion of a coproduct is fundamental to this book since (as we shall see in Chapter 6) it forms the "home" in which "generalized identities" live.

Let A_{1} and A_{2} be algebras with 1 over a commutative ring K. Then a K-algebra A with 1 is a coproduct of A_{1} and A_{2} over K if:
(i) There exist K-algebra homomorphisms $\alpha: A_{1} \rightarrow A$ and $\beta: A_{2} \rightarrow A$ such that $A_{1}^{\alpha} \cup A_{2}^{\beta}$ generates A as a K-algebra.
(ii) For any K-algebra P with 1 and homomorphisms σ : $A_{1} \rightarrow P$ and $\tau: A_{2} \rightarrow P$ there exists a homomorphism $\phi: A \rightarrow$ P such that $\alpha \phi=\sigma$ and $\beta \phi=\tau$, i.e., the diagram

can always be completed.
It is immediate from (i) and (ii) that ϕ is uniquely determined by σ and τ. It is also easy to see that if A and A^{\prime} are
any two coproducts of A_{1} and A_{2} over K then A and A^{\prime} are isomorphic via isomorphisms ϕ and ϕ^{\prime} as indicated in the following self-explanatory diagram:

Indeed, for the K-algebra maps ϕ and ϕ^{\prime} one simply checks that $\phi \phi^{\prime}$ (resp. $\phi^{\prime} \phi$) acts as the identity map on the generators $A_{1}^{\alpha} \cup A_{2}^{\beta}$ of A (resp. $A_{1}^{\alpha^{\prime}} \cup A_{2}^{\beta^{\prime}}$ of A^{\prime}).

We next show the existence of the coproduct of A_{1} and A_{2} over K by the following natural (if somewhat cumbersome) construction. The idea is to first "overshoot the mark" by finding an algebra generated by A_{1} and A_{2} (thus guaranteeing (i)) and then to factor out an appropriate ideal of this algebra (thus guaranteeing (ii)). Let

$$
T=A_{1} \oplus A_{2} \oplus A_{1} \otimes A_{1} \oplus A_{1} \otimes A_{2} \oplus A_{2} \otimes A_{1} \oplus \ldots
$$

be the tensor algebra of A_{1} and A_{2} (as defined in section 1.2), and let I be the ideal of T generated by all elements of the form

$$
\begin{equation*}
a_{1} \otimes b_{1}-a_{1} b_{1} ; \quad a_{2} \otimes b_{2}-a_{2} b_{2} ; \quad 1_{A_{1}}-1_{A_{2}} \tag{1.2}
\end{equation*}
$$

where $a_{1}, b_{1} \in A_{1}, a_{2}, b_{2} \in A_{2}$. We claim that $A=T / I$ is a coproduct of A_{1} and A_{2} over K. Let α_{0} and β_{0} be the respective inclusion maps $\alpha_{0}: A_{1} \rightarrow T, \beta_{0}: A_{2} \rightarrow T$, and, letting ν denote the natural homomorphism of T onto T / I, we define α_{1} : $A_{1} \rightarrow A$ by $\alpha_{1}=\alpha_{0} \nu$ and $\beta_{1}: A_{2} \rightarrow A$ by $\beta_{1}=\beta_{0} \nu$. Property (i) is then clear. Now consider homomorphisms $\sigma: A_{1} \rightarrow P$, $\tau: A_{2} \rightarrow P, P$ a K-algebra. We first complete the diagram

Indeed, it suffices to define ϕ_{0} on each direct summand $T_{1} \otimes$ $T_{2} \otimes \ldots \otimes T_{m}$ of T, where each T_{i} is either A_{1} or A_{2}, and then extend by linearity. The map $\chi: T_{1} \otimes T_{2} \otimes \ldots \otimes T_{m} \rightarrow P$ given by $t_{1} \otimes t_{2} \otimes \ldots \otimes t_{m} \mapsto t_{1}^{\rho} t_{2}^{\rho} \ldots t_{m}^{\rho}$ (where $\rho=\sigma$ or $\rho=\tau$ depending on whether $t_{i} \in A_{1}$ or $t_{i} \in A_{2}$) is already K-linear, and from the nature of multiplication in T it is easy to see that ϕ_{0} is a K-algebra homomorphism. Furthermore, by applying ϕ_{0} to the generators (1.2) it is clear that ϕ_{0} maps I to 0 . As a result ϕ_{0} may by lifted to a K-algebra homomorphism $\phi: T / I \rightarrow P$ by defining $(\bar{t})^{\phi}=t^{\phi_{0}}, \quad \bar{t}=t+I, \quad t \in T$. The commutativity of the above diagram then yields the commutativity of

which shows that property (ii) holds.
The existence and uniqueness of a coproduct of A_{1} and A_{2} having been established, we now refer to the coproduct of A_{1} and A_{2} and denote it by $A_{1} \amalg_{K} A_{2}$.

In general $A_{1}^{\alpha} \cap A_{2}^{\beta}$ may properly contain K. For instance, the reader may check that $Q \amalg_{\mathcal{Z}} Q$ provides such an example. Furthermore the maps α and β need not be injections. For example, $Q \amalg_{\mathcal{Z}} Z_{2}=0$. To alleviate these unwanted occurrences
we make the following
Remark 1.4.1 Let A_{1} and A_{2} be K-algebras with 1 such that
K is a K-direct summand of both A_{1} and A_{2}. (1.3)
Then:
(a) $A_{1}^{\alpha} \cap A_{2}^{\beta}=K$;
(b) α and β are injections.

Proof. Consider the commutative diagram

where $\sigma\left(a_{1}\right)=a_{1} \otimes 1$ and $\tau\left(a_{2}\right)=1 \otimes \dot{a}_{2}$ for all $a_{1} \in A_{1}, \quad a_{2} \in$ A_{2}. If $a_{1}^{\alpha}=a_{2}^{\beta}$ then $a_{1} \otimes 1=1 \otimes a_{2}$. Let $\pi: A_{1} \rightarrow K$ be the projection of A_{1} onto the direct summand K. Clearly the mapping $A_{1} \times A_{2} \rightarrow A_{2}$ given by the rule $\left(b_{1}, b_{2}\right) \mapsto \pi\left(b_{1}\right) b_{2}$ is balanced. Hence it may be lifted to a K-module homomorphism $\psi: A_{1} \otimes A_{2} \rightarrow A_{2}$. Now we have

$$
a_{2}=\pi\left(1_{A_{1}}\right) a_{2}=\psi\left(1 \otimes a_{2}\right)=\psi\left(a_{1} \otimes 1\right)=\pi\left(a_{1}\right) 1_{A_{2}} \in K
$$

Analogously one can show $a_{1} \in K$ and so (a) is proved. If $a_{2} \in \operatorname{ker} \beta$ then $1 \otimes a_{2}=0$ and so $a_{2}=\psi\left(1 \otimes a_{2}\right)=0$. Thus β (and similarly α) is an injection, whence (b) has been proved.

In particular (1.3) is satisfied in case K is a field (this situation will occur when we study prime rings) or more generally in case K is commutative von Neumann regular selfinjective (this situation will occur when we-study semiprime rings). With
this motivation in mind we will henceforth assume that all K algebras satisfy condition (1.3).

In view of Remark 1.4.1 we are now entitled to suppress α and β and to assume that A_{1} and A_{2} are in fact subalgebras of $A_{1} \amalg A_{2}$, with $A_{1} \cap A_{2}=K$.

Under certain conditions it is possible to simultaneously lift homomorphisms, anti-homomorphisms, and derivations of A_{1} and A_{2} to $A_{1} \amalg A_{2}$ even if these mappings are not K-linear. These considerations will be important ones in the sequel, and we proceed to indicate how they may be accomplished.

Remark 1.4.2 Let A_{1}, A_{2}, P be K-algebras, let $\omega: K \rightarrow K$ be a ring homomorphism, and let $\sigma: A_{1} \rightarrow P, \quad \tau: A_{2} \rightarrow P$ be ω semilinear ring homomorphisms. Then there is an ω-semilinear ring homomorphism $\phi: A_{1} 】 A_{2} \rightarrow P$ simultaneously extending σ and τ.

Proof. We consider P as a K-algebra P^{*} by defining $k \cdot p=$ $k^{\omega} p, \quad k \in K, p \in P$. Then $\sigma: A_{1} \rightarrow P^{*}, \tau: A_{2} \rightarrow P^{*}$ are $K-$ algebra maps and so by (ii) may be extended to K-linear map $\phi: A_{1} \amalg A_{2} \rightarrow P^{*}$, i.e., an ω-semilinear ring homomorphism $\phi: A_{1} \amalg A_{2} \rightarrow P$.

Remark 1.4.3 Let A_{1}, A_{2}, P be K-algebras, let $\omega: K \rightarrow K$ be a ring homomorphism, and let $\sigma: A_{1} \rightarrow P, \tau: A_{2} \rightarrow P$ be ω-semilinear ring anti-homomorphisms. Then there is an ω semilinear ring anti-homomorphism $\phi: A_{1} \amalg A_{2} \rightarrow P$ simultaneously extending σ and τ.

Proof. Let P° denote the opposite algebra of P, note that $\sigma: A_{1} \rightarrow P^{\circ}, \quad \tau: A_{2} \rightarrow P^{\circ}$ are ω-semilinear ring homomorphisms, and apply Remark 1.4.2.

Remark 1.4.4 Let A_{1} and A_{2} be K-algebras, and let $\rho: K \rightarrow$ $K, \quad \delta: A_{1} \rightarrow A_{1}, \quad \mu: A_{2} \rightarrow A_{2}$ be derivations (not necessarily
K-linear) such that δ and μ agree with ρ on K. Then δ and μ can be simultaneously extended to a derivation $\psi: A_{1} \amalg A_{2} \rightarrow$ $A_{1} \amalg A_{2}$.

Proof. We set $A=A_{1} \amalg A_{2}$, let R be the set of all matrices in $M_{2}(A)$ of the form $r=\left(\begin{array}{cc}a & b \\ 0 & a\end{array}\right), \quad a, b \in A$, and let K^{\prime} be the set of all matrices of the form $k^{\prime}=\left(\begin{array}{cc}k & k^{\rho} \\ 0 & k\end{array}\right), \quad k, k \in K$. One readily checks that K^{\prime} is isomorphic to K via the mapping $\nu: k \mapsto k^{\prime}$ and that R is a K-algebra under $k \cdot r=k^{\nu} r$. The mappings $\sigma: a_{1} \mapsto\left(\begin{array}{cc}a_{1} & a_{1}^{\delta} \\ 0 & a_{1}\end{array}\right)$ and $\tau: a_{2} \mapsto\left(\begin{array}{cc}a_{2} & a_{2}^{\mu} \\ 0 & a_{2}\end{array}\right)$ are respectively K-algebra maps of A_{1} into R and of A_{2} into R. Consequently σ and τ may be simultaneously extended to a unique K-algebra map $\phi: A \rightarrow R$. Since A is generated by A_{1} and A_{2} it is clear that, for $a \in A, \quad a^{\phi}=\left(\begin{array}{cc}a & a^{\psi} \\ 0 & a\end{array}\right)$, whence ψ is the desired derivation of $A_{1} \amalg A_{2}$.

As an application of the Diamond Lemma we prove the useful
Lemma 1.4.5 Let A_{1} and A_{2} be algebras with 1 over K with respective K-bases $\{1\} \cup B_{1}$ and $\{1\} \cup B_{2}$. Then $\{1\} \cup M$ is a K basis of $A_{1} \amalg A_{2}$, where M is the set of all alternating monomials from B_{1} and B_{2}.

Proof. We outline the proof, leaving some details for the reader to fill in. Writing $B_{1}=\left\{a_{i}\right\}$ we have for each i, k

$$
\begin{equation*}
a_{i} a_{k}=\alpha_{i k} 1+\sum_{a_{p} \in B_{1}} \alpha_{i k p} a_{p} \tag{1.4}
\end{equation*}
$$

Repeated use of (1.4) applied to $\left(a_{i} a_{k}\right) a_{m}=a_{i}\left(a_{k} a_{m}\right)$ then produces

$$
\begin{equation*}
\sum_{p} \alpha_{i k p} \alpha_{p m r}=\sum_{p} \alpha_{i p r} \alpha_{k m p} \tag{1.5}
\end{equation*}
$$

for each i, k, m, r. A similar set of equations results from considering $B_{2}=\left\{b_{j}\right\}$ and writing

$$
b_{j} b_{l}=\beta_{j l} 1+\sum_{q} \beta_{j l q} b_{q}
$$

Letting $X=\left\{x_{i}\right\}$ and $Y=\left\{y_{j}\right\}$ be sets of indeterminates corresponding respectively to B_{1} and B_{2}, we form the free algebra $K<X \cup Y>$ and let \leq be the partial ordering on the free semigroup $S<X \cup Y>$ determined by the length of a monomial. Clearly \leq is a semigroup partial ordering which satisfies the descending chain condition. The reduction system Λ of all pairs

$$
\sigma_{i k}=\left(x_{i} x_{k}, \alpha_{i k} 1+\sum_{x_{p} \in X} \alpha_{i k p} x_{p}\right), \quad \tau_{j l}=\left(y_{j} y_{l}, \beta_{j l} 1+\sum_{y_{q} \in Y} \beta_{j l q} y_{q}\right)
$$

is obviously compatible with \leq. It is easy to see that the only types of ambiguities which occur are overlapping ones of the form

$$
\begin{equation*}
\left(\sigma_{i k}, \sigma_{k m}, x_{i}, x_{k}, x_{m}\right) \quad \text { or } \quad\left(\tau_{j l}, \tau_{l n}, y_{j}, y_{l}, y_{n}\right) \tag{1.6}
\end{equation*}
$$

To resolve the first of these (the second is similarly resolved) we have only to note that

$$
\prod_{p} R_{\sigma_{p m}} R_{\sigma_{i k} x_{m}}\left(x_{i} x_{k} x_{m}\right)=\prod_{p} R_{\sigma_{i p}} R_{x_{i} \sigma_{k m}}\left(x_{i} x_{k} x_{m}\right)
$$

in view of (1.5). By Lemma 1.3.2, $\{1\} \cup N$ is a K-basis of $K<X \cup Y>_{\text {irr }}$, where N is the set of all alternating monomials of X and Y. Therefore by Theorem 1.3.4(c) the cosets determined by $\{1\} \cup N$ form a K-basis of $K<X \cup Y>/ I(\Lambda)$. The K module mapping of A_{1} into $K<X \cup Y>/ I(\Lambda)$ given by $1_{A_{1}} \mapsto$ $1+I(\Lambda), \quad a_{i} \mapsto x_{i}+I(\Lambda)$ is in fact a K-algebra map because of (1.4) and (1.6). Similarly $1_{A_{2}} \mapsto 1+I(\Lambda), \quad b_{j} \mapsto y_{j}+I(\Lambda)$ yields a K-algebra map of A_{2} into $K<X \cup Y>$, and these two maps can be extended simultaneously to a K-algebra map $\phi: A_{1} \amalg A_{2} \rightarrow$
$K<X \cup Y>/ I(\Lambda)$. On the other hand the K-algebra map from $K<X \cup Y>$ to $A_{1} \amalg A_{2}$ via $1 \mapsto 1, \quad x_{i} \mapsto a_{i}, \quad y_{j} \mapsto b_{j}$ sends $I(\Lambda)$ to 0 (because of (1.6)) and thus induces a K-algebra map $\psi: K<X \cup Y>/ I(\Lambda) \rightarrow A_{1} \amalg A_{2}$. Clearly ϕ and ψ are inverses of each other and thus $A_{1} \amalg A_{2} \cong K<X \cup Y>/ I(\Lambda)$, whence $\{1\} \cup M$ is a K-basis of $A_{1} \amalg A_{2}$.

In continuing our analysis of $A=A_{1} \amalg A_{2}$ we assume for the remainder of this section that K is a field. This assures the existence of respective K-bases $\{1\} \cup B_{1}$ and $\{1\} \cup B_{2}$ for A_{1} and A_{2}, and hence the basis $\{1\} \cup M$ for A as given by Lemma 1.4.5. The treatment we are embarking upon stems from a series of papers of P.M. Cohn ([94],[95],[96]) and we will freely borrow some terminology and portions of his account. We will make use of these matters in a later chapter, but in any case we feel this development is of independent interest.
A has a filtration given by $H^{-1}=0, \quad H^{0}=K, \quad H^{1}=A_{1}+$ $A_{2}, \quad H^{n}=\sum A_{i_{1}} A_{i_{2}} \ldots A_{i_{n}}, \quad n=1,2, \ldots$. For any subscript $i=1,2$ let us agree to the convention that $i^{\prime}=2$ if $i=1$ and $i^{\prime}=1$ if $i=2$, and also to the convention that $A_{i}=A_{1}$ if i is odd and $A_{i}=A_{2}$ if i is even. We will express the fact that an element a of H^{n} actually lies in H^{n-1} by saying that $a \equiv 0\left(\bmod H^{n-1}\right)$ or simply $a \equiv 0$ if the context is clear. For $i=1,2$ we set $H_{i j}^{n}=A_{i} A_{i+1} \ldots A_{i+n-1}$, where $j=i^{\prime}$ if n is even and $j=i$ if n is odd. It is easy to see that $H_{i j}^{n} \supseteq H^{n-1}$, $H_{i j}^{n} H_{j^{\prime} k}^{m}=H_{i k}^{m+n}$, and $H^{n}=H_{i j}^{n}+H_{i^{\prime} j^{\prime}}^{n}$. We denote the factor spaces H^{n} / H^{n-1} and $H_{i j}^{n} / H^{n-1}$ by $\overline{H^{n}}$ and $\overline{H_{i j}^{n}}$ respectively. With the aid of Lemma 1.4.5 we are able to show the following

Lemma 1.4.6 (a) $\overline{H^{n}}=\overline{H_{i j}^{n}} \oplus \overline{H_{i^{\prime} j^{\prime}}^{n}}$ (i.e., the decomposition of $H^{n}=H_{i j}^{n}+H_{i^{\prime} j^{\prime}}^{n}$ is unique modulo H^{n-1}).
(b) $\overline{H_{i j}^{n}} \otimes \overline{H_{j^{\prime} k}^{m}} \cong \overline{H_{i k}^{m+n}}$ via the mapping $\bar{u} \otimes \bar{v} \mapsto \overline{u v}$.

Proof. If $\{1\} \cup M$ is the basis of A given by Lemma 1.4.5, we let M^{n} be the subset of all elements of M of length n, and for
$i=1,2$ we let M_{i}^{n} be the subset of all elements of M^{n} whose left hand factors lie in B_{i}. Clearly $\{1\} \cup M^{n}$ is a K-basis of H^{n} and $\overline{M_{i}^{n}}$ is a K-basis of $\overline{H_{i j}^{n}}$. It follows that $H_{i j}^{n} \cap H_{i^{\prime} j^{\prime}}^{n}=H^{n-1}$ and so (a) is proved. To prove (b) we first note that the mapping $\phi: \overline{H_{i j}^{n}} \otimes \overline{H_{j^{\prime} k}^{m}} \rightarrow \overline{H_{i k}^{m+n}}$ given by $\bar{u} \otimes \bar{v} \mapsto \overline{u v}, u \in H_{i j}^{n}, v \in H_{i^{\prime} j^{\prime}}^{n}$, is a well-defined surjective K-linear map. Then the elements $\left\{\overline{x_{p}} \otimes \overline{y_{q}} \mid x_{p} \in M_{i}^{n}, y_{q} \in M_{j^{\prime}}^{n}\right\}$ are a K-basis of $\overline{H_{i j}^{n}} \otimes \overline{H_{j^{\prime} k}^{m}}$, whose images $\overline{x_{p} y_{q}}$ under ϕ are precisely the elements of $\overline{M_{i}^{n+m}}$. It follows that ϕ is injective and the proof of (b) is complete.

The height $|a|$ of an element $a \in A$ is defined as follows: $|a|=n$ if $a \neq 0, \quad a \in H^{n}, \quad a \notin H^{n-1}$ and $|a|=-\infty$ if $a=0$. The elements of $H_{i j}^{n}$ which are of height n (i.e., which do not lie in H^{n-1}) are called (i, j)-pure. Elements of height $n \geq 1$ which are not (i, j)-pure for some i, j are called 0 -pure. We shall frequently use the suggestive notation $a_{i j}$ for an element of $H_{i j}^{n}$.

Remark 1.4.7 Let $w \in H_{i j}^{m}, u \in H_{i k}^{n}, m \geq n$, and $u \not \equiv$ $0\left(\bmod H^{n-1}\right)$. Then there exist elements $u=u_{1}, u_{2}, \ldots, u_{q} \in$ $H_{i k}^{n}$ which are independent modulo H^{n-1} and elements v_{1}, \ldots, v_{q} $\in H_{k^{\prime} j}^{m-n}$ such that $w \equiv \sum_{p=1}^{q} u_{p} v_{p}\left(\bmod H^{m-1}\right)$.

Proof. Extend u to a basis of $H_{i k}^{n}\left(\bmod H^{n-1}\right)$ and use the fact that $H_{i j}^{m}=H_{i k}^{n} H_{k^{\prime} j}^{m-n}$.

Remark 1.4.8 Let elements $u_{1}, \ldots, u_{q} \in H_{i j}^{n}$ be independent $\left(\bmod H^{n-1}\right)$, let $v_{1}, \ldots, v_{q} \in H_{j^{\prime} k}^{m}$ and suppose $\sum_{p=1}^{q} u_{p} v_{p} \equiv 0$ $\left(\bmod H^{n+m-1}\right)$. Then $v_{p} \equiv 0\left(\bmod H^{m-1}\right), p=1,2, \ldots, q$.

Proof. In $\overline{H_{i j}^{n}} \otimes \overline{H_{j^{\prime} k}^{m}}$ the given condition implies that $\sum_{p=1}^{q} \overline{u_{p}} \otimes \overline{v_{p}}=0$. Since $\left\{\overline{u_{p}}\right\}$ is an independent subset it follows that each $\overline{v_{p}}=\overline{0}$, i.e., $v_{p} \equiv 0$.

The following lemma shows there is unique factorization modulo appropriate subspaces.

Lemma 1.4.9 Suppose $a b \equiv c d\left(\bmod H^{n+m-1}\right), m=|a|=|d|$, $n=|b|=|c|, m \geq n, a(i, j)$-pure, $b\left(j^{\prime}, k\right)$-pure, $c(i, l)$-pure, d $\left(l^{\prime}, k\right)$-pure. Then $a \equiv c e\left(\bmod H^{m-1}\right)$, where e is $\left(l^{\prime}, j\right)$-pure of height $m-n$ (or $e=\lambda \in K$ if $m=n$).

Proof. By Remark 1.4.7 $a \equiv c e+\sum c_{p} e_{p}\left(\bmod H^{m-1}\right), c$, c_{p} independent $\left(\bmod H^{n-1}\right), e, e_{p} \in H_{l^{\prime} j}^{m-n}$. Thus $a b \equiv c e b+$ $\sum c_{p} e_{p} b \equiv c d\left(\bmod H^{m+n-1}\right)$, i.e.,

$$
c(e b-d)+\sum c_{p}\left(e_{p} b\right) \equiv 0\left(\bmod H^{m+n-1}\right)
$$

By Remark 1.4.8 eb $\equiv d\left(\bmod H_{l^{\prime} k}\right)$ (hence e is $\left(l^{\prime}, j\right)$-pure of height $m-n)$ and $e_{p} b \equiv 0\left(\bmod H_{l^{\prime} k}\right)$. By Remark 1.4.8 again, we conclude that $e_{p} \equiv 0\left(\bmod H^{m-n-1}\right)$. Thus $a \equiv c e\left(\bmod H^{m-1}\right)$ and the proof is complete.

The height of an element has the expected properties in view of

Lemma 1.4.10 $|a b| \leq|a|+|b|$, with strict inequality if and only if for some i, j, k a is (i, j)-pure and b is (j, k)-pure.

Proof. Let $n=|a|$ and $m=|b|$. Without loss of generality we may assume $n, m \geq 1$. The inequality $|a b| \leq|a|+|b|$ is obvious. Suppose $|a b|<|a|+|b|$. We write $a=a_{i j}+a_{i^{\prime} j^{\prime}} \in$ $H^{n}, b=b_{k l}+b_{k^{\prime} l^{\prime}} \in H^{m}$. If $a_{i j} \not \equiv 0\left(\bmod H^{n-1}\right)$ and $b_{k l} \not \equiv$ $0\left(\bmod H^{m-1}\right)$ then by Remark $1.4 .8 a_{i j} b_{k l} \not \equiv 0\left(\bmod H^{m+n-1}\right)$ unless $j=k$. The conclusion follows from this observation.

Corollary 1.4.11 If each $\operatorname{dim}_{K}\left(A_{i}\right)>1$ then $A=A_{1} \amalg_{K} A_{2}$ is a prime ring.

Proof. Let $a, b \neq 0$, i.e., $|a| \geq 0$ and $|b| \geq 0$. According to Lemma 1.4.10 we may assume that for some $i, j, k \quad a$ is (i, j)pure and b is (j, k)-pure. Choosing r to be $\left(j^{\prime}, j^{\prime}\right)$-pure, we see that arb $\neq 0$.

In Corollary 1.4.11, if at least one of the $\operatorname{dim}_{K}\left(A_{i}\right)>2$, then Lichtman [189] has shown that A is in fact primitive. If each $\operatorname{dim}_{K}\left(A_{i}\right)=2$ it has been pointed out by Bergman [49] that A is not primitive. We close this section with the following useful remark whose proof is just a formal usage of the universal properties of coproducts and tensor products and we leave the straightforward details for the reader.

Remark 1.4.12 Let A and B be algebras over a field K and F a field extension of K. Then F-algebras $\left(A \amalg_{K} B\right) \otimes_{K} F$ and $\left(A \otimes_{K} F\right) \amalg_{F}\left(B \otimes_{K} F\right)$ are canonically isomorphic.

1.5 Introduction to First Order Logic

Operations and predicates. Given a set S and a natural number $n>0$, a mapping $\lambda: \overbrace{S \times S \times \ldots \times S}^{n} \rightarrow S$ is called an n-ary operation on S and the number n is called the arity of the operation λ. A constant mapping $\gamma: S \rightarrow S$ is said to be a 0 -ary operation. In what follows we will identify a 0 -ary operation with its image (i.e., γ with $\gamma(S)$). Further, let Z_{2} be the two element field. A mapping $\sigma: \overbrace{S \times S \times \ldots \times S}^{n} \rightarrow Z_{2}$ is said to be an n-ary predicate on S.

Examples. (1) Let R be a ring. Then 0 is a nullary operation, - is a unary operation and,$+ \cdot$ are binary operations. Further, the mapping $\mathcal{P}: R \times R \stackrel{\sim}{\rightarrow} Z_{2}$, given by the rule $\mathcal{P}(r, s)=1$ if and only if $r=s$, is a predicate. In what follows we will denote $\mathcal{P}(x, y)$ by $\|x=y\|$. Now let $\emptyset \neq T \subseteq R$ be a subset of R. Then the mapping $\mathcal{P}_{T}: R \rightarrow Z_{2}$ defined by $\mathcal{P}_{T}(r)=1$ if and only if $r \in T$, is a predicate also. We will denote it by $\|x \in T\|$.
(2) Let Z_{2} be the two element field. Define three binary operations \wedge, \vee and \Rightarrow and a unary operation \neg on Z_{2} as follows

$$
x \vee y=x+y+x y, x \wedge y=x y, x \Rightarrow y=1+x+x y, \neg x=1+x
$$

for all $x, y \in Z_{2}$. Note that

$$
\begin{aligned}
x \vee y & =1 \text { if and only if either } x=1 \text { or } y=1, \\
x \wedge y=1 & \text { if and only if } x=1 \text { and } y=1, \\
x \Rightarrow y=1 & \text { if and only if either } x=0 \text { or } y=1, \\
\neg x & =1 \text { if and only if } x=0 .
\end{aligned}
$$

Obviously $x \Rightarrow y=\neg x \vee y$ for all $x, y \in Z_{2}$.
Ω-rings. Let α be an ordinal number. We set

$$
W(\alpha)=\{\gamma \mid \gamma \quad \text { is ordinal and } \quad \gamma<\alpha\} .
$$

Given a pair $\Omega=(\tau ; \alpha)$ (where $\tau: W(\alpha) \rightarrow \mathcal{N}$ and \mathcal{N} is the set of all natural numbers), an Ω-ring R is a ring R with a set $\Omega_{F}=\left\{F_{\gamma} \mid \gamma \in W(\alpha)\right\}$ of operations such that the arity of F_{γ} is equals to $\tau(\gamma)$ for all $\gamma \in W(\alpha)$. It is assumed that $\{0,-;+, \cdot\} \subseteq \Omega_{F}$.

Example. A ring R together with the set of all its derivations, automorphisms and antiautomorphism is for us the most important example of an Ω-ring.

Given two Ω-rings R and S, the mapping $f: R \rightarrow S$ is said to be a homomorphism of Ω-rings if $F_{\gamma}\left(r_{1}, \ldots, r_{\tau(\gamma)}\right)^{f}=$ $F_{\gamma}\left(r_{1}^{f}, \ldots, r_{\tau(\gamma)}^{f}\right)$ for all $r_{1}, \ldots, r_{\tau(\gamma)} \in R$ and $\gamma \in W(\alpha)$. A subset $I \subseteq R$ of the Ω-ring R is said to be R an ideal of an Ω-ring if $F_{\gamma}\left(r_{1}+i_{1}, \ldots, r_{\tau(\gamma)}+i_{\tau(\gamma)}\right)-F_{\gamma}\left(r_{1}, \ldots, r_{\tau(\gamma)}\right) \in I$ for all $r_{1}, \ldots, r_{\tau(\gamma)} \in R, i_{1}, \ldots, i_{\tau(\gamma)} \in I$ and $\gamma \in W(\alpha)$. It is easy to see that an ideal of the Ω-ring R is an ideal of the ring R. Clearly the kernel $\operatorname{ker}(f)$ of a homomorphism f of Ω-rings R and S is an ideal of the Ω-ring R. Similarly to that of an ideal and a homomorphism one may easily formulate the notions of a factor Ω-ring, variety of Ω-rings and a free Ω-ring of a given variety generated by a given set X. Being only interested in Ω-rings in the case when the set $\Omega_{F}=\Omega_{d} \cup \Omega_{e} \cup \Omega_{a} \cup\{0,-,+, \cdot\}$ consists of certain sets (possibly empty) of derivations $\left(\Omega_{d}\right)$, endomorphisms (Ω_{e}) and antiendomorphisms (Ω_{a}) (such Ω-rings form a
variety determined by identities of the type $(x y)^{d}=x^{d} y+x y^{d}$, $d \in \Omega_{d}$, etc.), we proceed to describe a free Ω-ring in this case.

Let S be the free semigroup (with 1) generated by the set $\Omega_{d} \cup \Omega_{e} \cup \Omega_{a}$ and let \mathcal{Z} be the ring of integers. We set $Y=X \times S$, which we may write suggestively as X^{S}, and $K=\mathcal{Z}<Y>$. Define a mapping $\sigma: X \rightarrow K$, setting $x^{\sigma}=(x, 1)=x^{1} \in Y \subseteq K$. Further, let $\omega \in \Omega_{d} \cup \Omega_{e} \cup \Omega_{a}$. We set $\left(x^{s}\right)^{\omega}=x^{s \omega}$ for all $x \in X$, $s \in S$. Since ω is either a derivation, endomorphism, or antiendomorphism, there exists a unique extension of the mapping ω up to, respectively, a derivation, endomorphism or antiendomorphism of K. Now one may easily check that $(X ; \sigma ; K)$ is the free Ω-ring generated by the set X.

Terms. Let $X=\left\{x_{1}, x_{2}, \ldots, x_{n}, \ldots\right\}$ be an infinite set and \mathcal{T}_{Ω} the free Ω-ring generated by X. Then any element $t \in \mathcal{T}_{\Omega}$ is called a term of the signature Ω. Given any $\gamma \in W(\alpha)$ and $y_{1}, y_{2}, \ldots, y_{\tau(\gamma)} \in X$ (not necessarily distinct), we choose any linear ordering $\left\{z_{1}, z_{2}, \ldots, z_{m}\right\}$ of the set $\left\{y_{1}, y_{2}, \ldots, y_{\tau(\gamma)}\right\}$ where $z_{i} \neq z_{j}$ for all $1 \leq i \neq j \leq m$ and we will use the notation $t=t\left(z_{1}, z_{2}, \ldots, z_{m}\right)$ for the term $t=F_{\gamma}\left(y_{1}, y_{2}, \ldots, y_{\tau(\gamma)}\right)$. We let

$$
\mathcal{X}(t)=\left\{y_{1}, y_{2}, \ldots, y_{\tau(\gamma)}\right\}=\left\{z_{1}, z_{2}, \ldots, z_{m}\right\}
$$

be the set of all variables involved in t. Let now $\theta \in W(\alpha)$, $n=\tau(\theta)$ and let $t_{i}=t_{i}\left(y_{i, 1}, \ldots, y_{i, m_{i}}\right), i=1,2, \ldots, n$, be terms. Choosing any linear ordering $\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ of the set $\cup_{i=1}^{n} \mathcal{X}\left(t_{i}\right)$, we will use the notations

$$
\begin{gathered}
t=t\left(x_{1}, x_{2}, \ldots, x_{m}\right)=F_{\theta}\left(t_{1}, t_{2}, \ldots, t_{n}\right) \\
\mathcal{X}(t)=\bigcup_{i=1}^{n} \mathcal{X}\left(t_{i}\right) .
\end{gathered}
$$

Substitutions. Given any Ω-ring R and a mapping $\eta: X \rightarrow$ R, there exists a unique extension of η to a homomorphism of Ω-rings $\mathcal{T}_{\Omega} \rightarrow R$. Therefore we may identify the set of all homomorphisms of Ω-rings $\mathcal{T}_{\Omega} \rightarrow R$ with the set $\operatorname{Map}(X ; R)$ of
all mappings of the set X into R. Let $t=t\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathcal{T}_{\Omega}$ and $\eta \in \operatorname{Map}(X ; R)$. We set

$$
t\left(x_{1}^{\eta}, x_{2}^{\eta}, \ldots, x_{n}^{\eta}\right)=t^{\eta}
$$

Elements of the set $\operatorname{Map}(X ; R)$ are called substitutions.
Given any $u \in X$ and $v \in R$ define the mapping $\rho_{u, v}$: $\operatorname{Map}(X ; R) \rightarrow \operatorname{Map}(X ; R)$, setting

$$
u^{\rho_{u, v}(\eta)}=v \quad \text { and } \quad x^{\rho_{u, v}(\eta)}=x^{\eta} \quad \text { for all } \quad x \in X, x \neq u .
$$

Let $U=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in X^{(n)}$ and $V=\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in$ $R^{(n)}$ where $X^{(n)}$ and $R^{(n)}$ are n-th Cartesian power of X and R respectively. Assuming that $x_{i} \neq x_{j}$ for all $i \neq j$, we set

$$
\rho_{U, V}=\rho_{x_{1}, v_{1}} \rho_{x_{2}, v_{2}} \ldots \rho_{x_{n}, v_{n}} .
$$

Consider now a term t such that $t=t\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. Obviously $t^{\rho_{U, V}(\eta)}=t\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ for all $\eta \in M a p(X ; R)$.

Now we introduce the following useful notations. For any $y, x_{1}, x_{2}, \ldots, x_{m+1} \in X$ and $1 \leq i \leq m$, we set

$$
\begin{aligned}
& \left(x_{1}, x_{2}, \ldots, x_{m+1}\right)^{[i]}=\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{m+1}\right) ; \\
& \left(x_{1}, x_{2}, \ldots, x_{m}\right)^{[i ; y]}=\left(x_{1}, \ldots, x_{i-1}, y, x_{i+1}, \ldots, x_{m}\right)
\end{aligned}
$$

Ω - Δ-rings. Given pairs $\Omega=(\tau ; \alpha)$ and $\Delta=(\sigma ; \beta)$ (where $\tau: W(\alpha) \rightarrow \mathcal{N}$ and $\sigma: W(\beta) \rightarrow \mathcal{N})$, an Ω - Δ-ring R is an Ω-ring R with a set $\Delta_{P}=\left\{P_{\gamma} \mid \gamma \in W(\beta)\right\}$ of predicates such that the arity of P_{γ} is equal to $\sigma(\gamma)$ for all $\gamma \in W(\beta)$.

Let now $\left\{R_{t} \mid t \in T\right\}$, be a family of Ω - Δ-rings. We proceed to describe the Cartesian product $H=\prod_{t \in T} R_{t}$ of Ω - Δ-rings. We consider H as the set of all mappings $h: T \rightarrow \bigcup_{t \in T} R_{t}$ such that $h(t) \in R_{t}$ for all $t \in T$. Defining operations pointwise, we obtain an Ω-ring structure on H. Given any $\gamma \in W(\beta)$ and $h_{1}, h_{2}, \ldots, h_{\sigma(\gamma)} \in H$, we set $P_{\gamma}\left(h_{1}, h_{2}, \ldots, h_{\sigma(\gamma)}\right)=1$ if and only if $P_{\gamma}\left(h_{1}(t), h_{2}(t), \ldots, h_{\sigma(\gamma)}(t)\right)=1$ for all $t \in T$.

Note, that the "behavior" of predicates under taking of Cartesian products of Ω - Δ-rings "coincides" with the behavior of that predicate which is most important for us, namely, $\|x=y\|$.

First order formulas. Consider the set \mathcal{L} of logical symbols
\wedge (for conjunction, read AND),
\vee (for disjunction, read OR),
\neg (for negation, read NOT),
\Rightarrow (for implication, read IMPLIES),
\forall (for universal quantification, read FOR EVERY),
\exists (for existential quantification, read THERE EXISTS),
$=$ (for equality, read EQUALS).
Letting \mathcal{P}_{Δ} denote the set of all formal predicate symbols

$$
\left\{P_{\gamma}\left(t_{1}, t_{2}, \ldots, t_{\sigma(\gamma)}\right) \mid \gamma<\beta, t_{1}, t_{2}, \ldots, t_{\sigma(\gamma)} \in \mathcal{T}_{\Omega}\right\}
$$

we define \mathcal{S} to be the free semigroup generated by the disjoint sets $\mathcal{L}, \mathcal{T}_{\Omega}, \mathcal{P}_{\Delta}$ and $\{\{\},,(),,[],, \|\}$. Now we proceed to define the first order formulas (which we shall simply refer to as formulas) as a subset $\mathcal{F}_{\Omega, \Delta}$ of \mathcal{S}. Formulas ϕ, together with associated sets of free variables $\mathcal{X}(\phi)$ and complexity $\operatorname{Compl}(\phi)$, are defined inductively.
(i) If t_{1} and t_{2} are terms, then the element $\left\|t_{1}=t_{2}\right\| \in \mathcal{S}$ is called a formula. Choosing any linear ordering $\left\{z_{1}, z_{2}, \ldots, z_{m}\right\}$ of the set $\mathcal{X}\left(t_{1}\right) \cup \mathcal{X}\left(t_{2}\right)$, we set

$$
\begin{aligned}
& \phi=\phi\left(z_{1}, \ldots, z_{m}\right)=\left\|t_{1}=t_{2}\right\| \\
& \mathcal{X}(\phi)=\mathcal{X}\left(t_{1}\right) \cup \mathcal{X}\left(t_{2}\right) \quad \text { and } \quad \operatorname{Compl}(\phi)=1
\end{aligned}
$$

Such formulas are called atomic.
(ii) For any predicate symbol $P_{\gamma} \in \Delta$ and any terms t_{1}, \ldots, t_{n} where $n=\sigma(\gamma)$ the element $P_{\gamma}\left(t_{1}, t_{2}, \ldots, t_{n}\right) \in \mathcal{P}_{\Delta}$ is said to be a formula and, choosing an arbitrary linear ordering $\left\{z_{1}, \ldots, z_{m}\right\}$ of the set $\bigcup_{i=1}^{n} \mathcal{X}\left(t_{i}\right)$, we set

$$
\begin{aligned}
& \psi=\psi\left(z_{1}, \ldots, z_{m}\right)=P_{\gamma}\left(t_{1}, t_{2}, \ldots, t_{n}\right) \\
& \mathcal{X}(\psi)=\bigcup_{i} \mathcal{X}\left(t_{i}\right) \quad \text { and } \quad \operatorname{Compl}(\psi)=1
\end{aligned}
$$

Such formulas are also called atomic.
(iii) If ϕ is a formula, then $\neg \phi$ is a formula and we set

$$
\mathcal{X}(\neg \phi)=\mathcal{X}(\phi) \quad \text { and } \quad \operatorname{Compl}(\neg \phi)=\operatorname{Compl}(\phi)+1
$$

(iv) If ϕ and ψ are formulas, then $\phi \vee \psi, \phi \wedge \psi$ and $\phi \Rightarrow \psi$ are formulas and we set

$$
\begin{aligned}
\mathcal{X}(\phi \vee \psi) & =\mathcal{X}(\phi \wedge \psi)=\mathcal{X}(\phi \Rightarrow \psi)=\mathcal{X}(\phi) \cup \mathcal{X}(\psi) \text { and } \\
\operatorname{Compl}(\phi \vee \psi) & =\operatorname{Compl}(\phi \wedge \psi)=\operatorname{Compl}(\phi \Rightarrow \psi) \\
& =\max \{\operatorname{Compl}(\phi), \operatorname{Compl}(\psi)\}+1
\end{aligned}
$$

(v) If ϕ is a formula and $x \in X$, then $(\forall x) \phi$ and $(\exists x) \psi$ are formulas and we set

$$
\begin{aligned}
\mathcal{X}((\forall x) \phi) & =\mathcal{X}((\exists x) \phi)=\mathcal{X}(\phi) \backslash\{x\} \quad \text { and } \\
\operatorname{Compl}((\forall x) \phi) & =\operatorname{Compl}((\exists x) \phi)=\operatorname{Compl}(\phi)+1 .
\end{aligned}
$$

If ϕ is a formula and $\mathcal{X}(\phi)=\emptyset$, then the formula ϕ is called a sentence.

The notation in general $\phi=\phi\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ is introduced analogously to that for the cases (i) and (ii). We only note, that if either $\psi=\left(\forall y_{i}\right) \phi$ or $\psi=\left(\exists y_{i}\right) \phi$, then $\psi=\psi\left(y_{1}, \ldots, y_{n}\right)^{[i]}$.

Notations. We shall write $\|x \notin T\|$ instead of $\neg\|x \in T\|$ and $\|x \neq y\|$ instead of $\neg\|x=y\|$.

Formulas and substitutions. We shall put into correspondence with any substitution $\eta \in M a p(X ; R)$ of an Ω - Δ-ring R the mapping $\bar{\eta}: \mathcal{F}_{\Omega, \Delta} \rightarrow Z_{2}$. We proceed by induction on the complexity of formulas.

If $\phi=\left\|t_{1}=t_{2}\right\|$, then $\phi^{\bar{\eta}}=1$ if and only if $t_{1}^{\eta}=t_{2}^{\eta}$. Consider now the case $\phi=P_{\gamma}\left(t_{1}, t_{2}, \ldots, t_{\sigma(\gamma)}\right)$. Then we set $\phi^{\bar{\eta}}=P_{\gamma}\left(t_{1}^{\eta}, t_{2}^{\eta}, \ldots, t_{\sigma(\gamma)}^{\eta}\right)$.

Suppose that our mapping $\bar{\eta}$ is defined on formulas of complexity $\leq m$ and $\operatorname{Compl}(\phi), \operatorname{Compl}(\psi) \leq m$. We set

$$
(\neg \phi)^{\bar{\eta}}=\neg \phi^{\bar{\eta}},
$$

$$
\begin{aligned}
(\phi \vee \psi)^{\bar{\eta}} & =\phi^{\bar{\eta}} \vee \psi^{\bar{\eta}} \\
(\phi \wedge \psi)^{\bar{\eta}} & =\phi^{\bar{\eta}} \wedge \psi^{\bar{\eta}}, \\
(\phi \Rightarrow \psi)^{\bar{\eta}} & =\phi^{\bar{\eta}} \Rightarrow \psi^{\bar{\eta}}
\end{aligned}
$$

Further, $((\forall x) \phi)^{\bar{\eta}}=1$ if and only if $\overline{\phi^{\rho_{x, r}(\eta)}}=1$ for all $r \in R$. Analogously, $((\exists x) \phi)^{\tilde{\eta}}=1$ if and only if $\overline{\phi^{\rho_{x, r}(\eta)}}=1$ for some $r \in R$.

Proposition 1.5.1 Let $\phi=\phi\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ be a formula. Consider the subsets $Y=\left(y_{1}, \ldots, y_{n}\right) \in X^{(n)}$ and $V=\left(v_{1}, \ldots, v_{n}\right)$ $\in R^{(n)}$. Then $\overline{\phi^{\rho_{Y, V}(\eta)}}=\overline{\phi^{\rho_{Y, V}(\theta)}}$ for all $\eta, \theta \in \operatorname{Map}(X ; R)$.

Proof. We proceed by induction on the complexity of ϕ. Assume that $\operatorname{Compl}(\phi)=1$. Consider the case

$$
\phi=\left\|t_{1}\left(y_{i_{1}}, \ldots, y_{i_{m}}\right)=t_{2}\left(y_{j_{1}}, \ldots, y_{j_{t}}\right)\right\|
$$

where $\mathcal{X}\left(t_{1}\right) \cup \mathcal{X}\left(t_{2}\right)=Y$. Then

$$
\overline{\phi^{\overline{\rho_{Y, V}(\eta)}}}=\left\|t_{1}\left(v_{i_{1}}, \ldots, v_{v_{m}}\right)=t_{2}\left(v_{j_{1}}, \ldots, v_{j_{t}}\right)\right\|=\overline{\phi^{\rho_{Y, V}(\theta)}} .
$$

The case $\phi=P_{\gamma}\left(t_{1}, \ldots, t_{n}\right)$ is considered analogously.
Suppose now that $\operatorname{Compl}(\phi)=m+1$ and our statement is proved for formulas of complexity less than or equal to m. Consider the case $\phi=\neg \psi\left(y_{1}, \ldots, y_{n}\right)$. Then we have

$$
\begin{aligned}
\overline{\overline{\rho_{Y, V}(\eta)}} & =\neg \psi^{\overline{\rho_{Y, V}(\eta)}}=\neg \psi^{\overline{\rho_{Y, V}(\theta)}} \\
& =\phi^{\overline{\rho_{Y, V}(\theta)}}
\end{aligned}
$$

The cases $\phi=\psi_{1} \vee \psi_{2}, \phi=\psi_{1} \wedge \psi_{2}$ and $\phi=\psi_{1} \Rightarrow \psi_{2}$ are considered similarly. Assume now that $\phi=(\forall z) \psi\left(z_{1}, \ldots, z_{m}\right)$ where $\left(z_{1}, z_{2}, \ldots, z_{m}\right)^{[i]}=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ (for simplicity we assume that $z=z_{i}$ for some $1 \leq i \leq m$). Now we have

$$
\overline{\phi^{\rho_{Y, V}(\eta)}}=1 \quad \text { if and only if } \quad \psi^{\overline{\rho_{z, v} \rho_{Y, V}(\eta)}}=1 \quad \text { for all } \quad v \in R .
$$

Since $\rho_{z, r} \rho_{Y, V}=\rho_{Y^{\prime}, V^{\prime}}$ where $Y^{\prime}=\left(z, y_{1}, \ldots, y_{n}\right)$ and $V=$ (v, v_{1}, \ldots, v_{n}), by the inductive assumption we have

$$
\overline{\psi^{\rho_{z, v} \rho_{Y, V}(\eta)}}=\psi^{\overline{\rho_{z, v} \rho_{Y, V}(\theta)}}
$$

Therefore $\overline{\phi^{\rho_{Y, V}(\eta)}}=\phi^{\overline{\rho_{Y, V}(\theta)}}$. The last case $\phi=(\exists z) \psi$ is considered analogously.

Let $\phi=\phi\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ be a formula, $\eta \in \operatorname{Map}(X ; R)$. For any subset $v_{1}, v_{2}, \ldots, v_{n} \in R$ we set $Y=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}, V=$ $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and

$$
\phi\left(v_{1}, v_{2}, \ldots, v_{n}\right)=\phi^{\overline{\rho_{Y, V}(\eta)}}
$$

It follows from Proposition 1.5.1, that $\phi\left(v_{1} ; v_{2}, \ldots, v_{n}\right) \in Z_{2}$ is independent of η. We will write

$$
R \models \phi\left(v_{1}, v_{2}, \ldots, v_{n}\right)
$$

if $\phi\left(v_{1}, v_{2}, \ldots, v_{n}\right)=1$. In this case we will say that the formula $\phi\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ is true in the Ω - Δ-ring \dot{R}. Otherwise we will say that the formula $\phi\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ is false :

Examples. Let R be a ring.
(1) Consider the formula $\phi_{1}=(\forall x)(\forall y)\|x y=y x\|$. Then $R \models \phi_{1}$ if and only if R is commutative.
(2) Let $\phi_{2}(x)=(\forall y)\|x y=y x\|$: Given any $r \in R, R \models$ $\psi_{2}(r)$ if and only if r is a central element of R.
(3) Now let $\phi_{3}(x)=(\forall y)(\exists z)[\|y \neq 0\| \Rightarrow\{\|y z \neq 0\| \wedge \| x y z=$ $0 \|\}$]. For an element $r \in R, R \models \phi_{3}(r)$ if and only if the right annihilator of r in R is an essential right ideal of R.

Two formulas $\phi=\phi\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ and $\psi=\psi\left(z_{1}, z_{2}, \ldots, z_{m}\right)$ are said to be equivalent, if for any Ω - Δ-ring R and any substitution $\eta \in \operatorname{Map}(X, R)$, the formula $\phi\left(x_{1}^{\eta}, \ldots, x_{n}^{\eta}\right)$ is true in R if and only if $\psi\left(z_{1}^{\eta}, \ldots, z_{m}^{\eta}\right)$ is true.

The following proposition is easily proved by induction on complexity of formulas.

Proposition 1.5.2 Let $\phi=\phi\left(x_{1}, x_{2}, \ldots, x_{n}\right), \psi$ be formulas and $z \in X \backslash \mathcal{X}(\phi) \backslash \mathcal{X}(\psi)$. Then the following formulas are equivalent:

ϕ	and	$\neg(\neg \phi)$,
$\neg(\phi \wedge \psi)$	and	$(\neg \phi) \vee(\neg \psi)$,
$\neg(\phi \vee \psi)$	and	$(\neg \phi) \wedge(\neg \psi)$,
$\phi \Rightarrow \psi$	and	$(\neg \phi) \vee \psi$,
$\neg((\forall x)(\neg \phi))$	and	$(\exists x)(\phi)$,
$\neg((\exists x)(\neg \phi))$	and	$(\forall x)(\phi)$,
$\phi \wedge\left(\left(\forall x_{i}\right) \psi\right)$	and	$\left(\forall x_{i}\right)\left(\phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{[i ; z]} \wedge \psi\right)$,
$\phi \wedge\left(\left(\exists x_{i}\right) \psi\right)$	and	$\left(\exists x_{i}\right)\left(\phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{[i ; z]} \wedge \psi\right)$,
$\phi \vee\left(\left(\forall x_{i}\right) \psi\right)$	and	$\left(\forall x_{i}\right)\left(\phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{[i ; z]} \vee \psi\right)$,
$\phi \vee\left(\left(\exists x_{i}\right) \psi\right)$	and	$\left(\exists x_{i}\right)\left(\phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{[i ; z]} \vee \psi\right)$,
ϕ	and	$(\forall z) \phi$,
ϕ	and	$(\exists z) \phi$.

The next two corollaries follow immediately by an induction on the complexity of formulas from Proposition 1.5.2.

Corollary 1.5.3 Any formula ϕ is equivalent to a formula of the form $\left(Q_{1} y_{1}\right)\left(Q_{2} y_{2}\right) \ldots\left(Q_{m} y_{m}\right) \psi$, where $Q_{i} \in\{\forall, \exists\}, i=$ $1,2, \ldots, m$, and the formula ψ does not contain quantifiers \forall and \exists.

Corollary 1.5.4 Any formula is equivalent to a formula containing only atomic formulas, symbols \neg, \wedge, \exists, variables and bracket symbols.

Let $\phi=\phi\left(x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{k}}\right)$ be a formula such that

$$
\left\{x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{n}}\right\} \subseteq\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}
$$

Define a new formula ψ in free variables $x_{1}, x_{2}, \ldots, x_{n}$ as follows $\psi\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\phi\left(x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{k}}\right)$. Then clearly

The formulas ϕ and ψ are equivalent.
Horn formulas and multiplicative stability. The reader has seen already that formulas provide us with a formal way of writing properties of Ω - Δ-rings and their elements. It is rather interesting to note that the stability of properties under taking of Cartesian products mainly depends on the structure of the corresponding formulas. Now we shall describe an important class of formulas, stable under taking Cartesian products.

A formula ϕ is said to be a Horn formula if it is equivalent to a formula of the type $\left(Q_{1} y_{1}\right)\left(Q_{2} y_{2}\right) \ldots\left(Q_{m} y_{m}\right) \psi$, where $Q_{i} \in\{\forall, \exists\}, i=1,2, \ldots, m$, the formula ψ does not contain quantifiers \forall and \exists and is the conjunction of formulas each of which is either (a) an atomic formula; (b) the disjunction of one atomic formula and several negations of atomic formulas; or (c) the disjunction of negations of atomic formulas.

A formula $\phi=\phi\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ is called multiplicatively stable, if the following holds: for any family $\left\{R_{i} \mid i \in I\right\}$ of Ω - Δ-rings and all $h_{1}, h_{2}, \ldots, h_{n} \in H=\prod_{i \in I} R_{i}$ the relations

$$
R_{i} \models \phi\left(h_{1}(i), h_{2}(i), \ldots, h_{n}(i)\right), \quad \text { for all } \quad i \in I,
$$

imply that

$$
H \models \phi\left(h_{1}, h_{2}, \ldots, h_{n}\right) .
$$

Further a multiplicatively stable formula $\phi=\phi\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ is said to be a strictly multiplicatively stable formula, if for all $h_{1}, h_{2}, \ldots, h_{n} \in H$ the relation $H \models \phi\left(h_{1}, h_{2}, \ldots, h_{n}\right)$ implies that $R_{i} \models \phi\left(h_{1}(i), \ldots, h_{n}(i)\right)$ for all $i \in I$.

Example. The formula

$$
\phi=(\forall x)(\forall y)[(x=0) \vee(y=0) \vee(x y \neq 0)]
$$

is not multiplicatively stable, since the Cartesian product of domains is no longer a domain. But the formula

$$
\psi=(\forall x)\left[(x=0) \vee\left(x^{2} \neq 0\right)\right]
$$

is multiplicatively stable.
Theorem 1.5.5 (A. Horn [196]) Every Horn formula is multiplicatively stable.

Proof. It immediately follows from the definitions that atomic formulas are strictly multiplicatively stable.

Consider now the case

$$
\phi=\vee_{j=1}^{n}\left(\neg \psi_{j}\right),
$$

where $\psi_{j}, j=1,2, \ldots, n$, are atomic formulas. By (1.7) we may assume that $\mathcal{X}\left(\psi_{i}\right)=\mathcal{X}\left(\psi_{j}\right)$ for all i, j. Let

$$
\phi=\phi\left(y_{1}, \ldots, y_{m}\right), \psi_{j}=\psi_{j}\left(y_{1}, \ldots, y_{m}\right), 1 \leq j \leq n
$$

and $h_{1}, h_{2}, \ldots, h_{m} \in H$. Suppose that $R_{i}=\phi\left(h_{1}(i), \ldots, h_{m}(i)\right)$ for all $i \in I$. Fix any $t \in I$. We have $R_{t} \models \phi\left(h_{1}(t), \ldots, h_{m}(t)\right)$ and so $R_{t}=\left(\neg \psi_{j}\left(h_{1}(t), \ldots, h_{m}(t)\right)\right)$ for some $1 \leq j \leq n$. Since all atomic formulas are strictly multiplicatively stable, we see that $H \models\left(\neg \psi_{j}\left(h_{1}, \ldots, h_{m}\right)\right)$. Therefore $H \models \phi\left(h_{1}, \ldots, h_{m}\right)$. Let now $\phi=\psi_{1} \vee\left[\vee_{j=2}^{n}\left(\neg \psi_{j}\right)\right]$. Again we suppose that $R_{i} \models$ $\phi\left(h_{1}(i), \ldots, h_{m}(i)\right)$ for all $i \in I$. If for some $t \in I$ and $2 \leq j \leq n$ we have that $R_{t} \models\left(\neg \psi_{j}\left(h_{1}(t), \ldots, h_{m}(t)\right)\right)$, then as above one may show that $H \models \phi\left(h_{1}, \ldots, h_{m}\right)$. Therefore without loss of generality we may assume that formulas $\neg \psi_{j}\left(h_{1}(i), \ldots, h_{m}(i)\right)$ are false in R_{i} for all $j=2,3, \ldots, n$ and $i \in I$. Since $R_{i} \models$ $\phi\left(h_{1}(i), \ldots, h_{m}(i)\right)$ for all $i \in I, R_{i} \vDash \psi_{1}\left(h_{1}(i), \ldots, h_{m}(i)\right)$ for all $i \in I$ also. Then $H \models \psi_{1}\left(h_{1}, \ldots, h_{m}\right)$ and $H \models \phi\left(h_{1}, \ldots, h_{m}\right)$.

If $\psi_{j}, j=1,2, \ldots, n$, are multiplicatively stable formulas, then one may easily check that the formula $\phi=\wedge_{j=1}^{n} \psi_{j}$ is multiplicatively stable also.

Let $1 \leq j \leq n$ and $\phi\left(y_{1}, \ldots, y_{m}\right)^{[j]}=\left(\exists y_{j}\right) \psi\left(y_{1}, \ldots, y_{m}\right)$ where ψ is a multiplicatively stable formula. Suppose that

$$
R_{i} \vDash \phi\left(h_{1}(i), \ldots, h_{j-1}(i), h_{j+1}(i), \ldots, h_{m}(i)\right)
$$

for all $i \in I$, where $h_{1}, \ldots, h_{j-1}, h_{j+1}, \ldots, h_{n} \in H$. Then for every $i \in I$ there exists an element $h_{j}(i) \in R_{i}$ such that $R_{i} \vDash \psi\left(h_{1}(i), \ldots, h_{m}(i)\right)$. Since ψ is multiplicatively stable, $H \models \psi\left(h_{1}, \ldots, h_{m}\right)$. But then again

$$
H \models \phi\left(h_{1}, \ldots, h_{j-1}, h_{j+1}, \ldots, h_{m}\right) .
$$

The case when $\phi=(\forall y) \psi$ is considered analogously. Thus the theorem is proved.

Ultrafilters. Let I be an infinite set and $\operatorname{Exp}(I)$ the set of all subsets of I. A subset $\mathcal{T} \subseteq \operatorname{Exp}(I)$ is said to be a filter on the set I, if it does not contain the empty subset and for every natural number n and all $T_{1}, T_{2}, \ldots, T_{n} \in \mathcal{T}, \bigcap_{j=1}^{n} T_{j} \in \mathcal{T}$.

Examples (1) Given any $i_{0} \in I$, we set $\mathcal{T}\left(i_{0}\right)=\{T \subseteq$ $\left.I \mid i_{0} \in T\right\}$. Clearly $\mathcal{T}\left(i_{0}\right)$ is a filter.
(2) We set $\mathcal{T}_{\infty}=\{T \subseteq I| | I \backslash T \mid<\infty\}$. Obviously \mathcal{T}_{∞} is a filter.

We note that the set of all filters on I is partially ordered by inclusion. A filter \mathcal{T} on the set I is said to be an ultrafilter on I if it is a maximal element in the partially ordered set of all filters on I.

Example. Clearly the filter $\mathcal{T}\left(i_{0}\right)$ is an ultrafilter on I. Such ultrafilters are called principal.

- Proposition 1.5.6 Let I be an infinite set, \mathcal{T} an ultrafilter on I and $X \subseteq I$. Then:
(a) Any filter on I is contained in some ultrafilter;
(b) $I \in \mathcal{T}$;
(c) if $X \cap T \neq \emptyset$ for all $T \in \mathcal{T}$, then $X \in \mathcal{T}$;
(d) if $T \in \mathcal{T}$ and $T=\bigcup_{j=1}^{n} B_{j}$, then $B_{j} \in \mathcal{T}$ for some $1 \leq j \leq n$;
(e) a filter \mathcal{F} on I is an ultrafilter if and only if for any $A \subseteq I$ either $A \in \mathcal{F}$, or $I \backslash A \in \mathcal{F}$;
(f) if $T \in \mathcal{T}$ and $T \subseteq A \subseteq I$, then $A \in \mathcal{T}$.

Proof. The first statement follows easily from Zorn's lemma. The second one is obvious.
(c) Consider the collection $\mathcal{T}^{\prime}=\mathcal{T} \cup\{X \cap T \mid T \in \mathcal{T}\}$ of subsets of I. Clearly it is a filter and $\mathcal{T} \subseteq \mathcal{T}^{\prime}$. Since \mathcal{T} is a maximal element of the set of all filters on $I, \mathcal{T}=\mathcal{T}^{\prime}$. So $X \in \mathcal{T}$.
(d) Suppose the contrary. By (c) for every $1 \leq j \leq n$ there exist an element $A_{j} \in \mathcal{T}$ such that $B_{j} \cap A_{j}=\emptyset$. Letting A denote the intersection of all A_{j}, we infer that $A \cap B_{j}=\emptyset$. Therefore $A \cap T=\emptyset$, a contradiction to $A, T \in \mathcal{T}$. Hence $B_{j} \in \mathcal{T}$ for some j.
(e) Taking into account the already proved statement (c), we have only to prove that if a filter \mathcal{F} on I is such that for any $A \subseteq I$ either $A \in \mathcal{F}$, or $I \backslash A \in \mathcal{F}$, then \mathcal{F} is an ultrafilter. Again suppose the contrary. Let $\mathcal{F} \subset \mathcal{H}$ for some filter \mathcal{H}. Then there exists an element $A \in \mathcal{H}$ which does not belong to \mathcal{F}. By assumption we then have that $I \backslash A \in \mathcal{F} \subset \mathcal{H}$. But $A \cap(I \backslash A)=\emptyset$, which contradicts the definition of a filter. Thus \mathcal{F} is an ultrafilter. The last statement follows from (c).

Corollary 1.5.7 Let I be an infinite set and \mathcal{T} an ultrafilter on I. Then either \mathcal{T} is a principal ultrafilter, or $\mathcal{T}_{\infty} \subseteq \mathcal{T}$.

Proof. Obviously an ultrafilter \mathcal{T} is principal if and only if there exists an element $i_{0} \in I$ such that $\left\{i_{0}\right\} \in \mathcal{T}$. Assume that \mathcal{T} is not principal. Let $J \subseteq I$ be any finite subset of I. Since $\{j\} \notin \mathcal{T}$ for all $j \in J$, it follows from Proposition 1.5.6, that $J \notin \mathcal{T}$. Then again by Proposition 1.5.6 we have that $I \backslash J \in \mathcal{T}$. Thus $\mathcal{T}_{\infty} \subseteq \mathcal{T}$.

Ultraproducts. Given any family $\left\{R_{i} \mid i \in I\right\}$, of $\Omega-\Delta$ rings, where I is an infinite set, and an element $h \in H=\prod_{i \in I} R_{i}$, we set

$$
I(h)=\{i \in I \mid h(i)=0\} .
$$

For an ultrafilter \mathcal{T} on I, we set

$$
I(\mathcal{T})=\left\{h \in \prod_{i \in I} R_{i} \mid I(h) \in \mathcal{T}\right\}
$$

We claim that $I(\mathcal{T})$ is an ideal of the Ω-ring $H=\prod_{i \in I} R_{i}$. Indeed, for all $h, g \in H$ we have $I(-h)=I(h), I(h g) \supseteq I(h) \cap$ $I(g), I(h+g) \supseteq I(h) \cap I(g)$. It is now immediate that $I(\mathcal{T})$ is an ideal of the ring H. Let $\gamma \in W(\alpha), n=\tau(\gamma), g_{1}, g_{2}, \ldots, g_{n} \in H$, $h_{1}, h_{2}, \ldots, h_{n} \in I(\mathcal{T})$ and $h=F_{\gamma}\left(g_{1}+h_{1}, g_{2}+h_{2}, \ldots, g_{n}+h_{n}\right)-$ $F_{\gamma}\left(g_{1}, g_{2}, \ldots, g_{n}\right)$. Since $I(h) \supseteq \bigcap_{t=1}^{n} I\left(h_{t}\right) \in \mathcal{T}, h \in I(\mathcal{T})$. Thus $I(\mathcal{T})$ is an ideal of the Ω-ring H. Consider the factor Ω-ring $H / I(\mathcal{T})$. Now we proceed to describe an Ω - Δ-ring structure on it. Given any $\gamma \in W(\beta), h_{1}, h_{2}, \ldots, h_{\sigma(\gamma)} \in H$, we set

$$
P_{\gamma}\left(h_{1}+I(\mathcal{T}), h_{2}+I(\mathcal{T}), \ldots, h_{\sigma(\gamma)}+I(\mathcal{T})\right)=1
$$

if and only if

$$
\left\{i \in I \mid P_{\gamma}\left(h_{1}(i), h_{2}(i), \ldots, h_{\sigma(\gamma)}(i)\right)=1\right\} \in \mathcal{T}
$$

The factor Ω - Δ-ring $H / I(\mathcal{T})$ is called the ultraproduct of Ω - Δ rings $R_{i}, i \in I$, and is denoted by $\prod_{i \in I} R_{i} / \mathcal{T}$. The canonical image of an element $h \in H$ in $H / I(\mathcal{T})$ is denoted by $h \mathcal{T}$.

Theorem 1.5.8 (Los [196]) Let $\left\{R_{i} \mid i \in I\right\}$ be an infinite family of Ω - Δ-rings, $H=\prod_{i \in I} R_{i}, \phi\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ a first order formula in free variables $y_{1}, y_{2}, \ldots, y_{n}, h_{1}, h_{2}, \ldots, h_{n} \in H$ and \mathcal{T} an ultrafilter on I. Then

$$
\prod_{i \in I} R_{i} \mathcal{T} \models \phi\left(h_{1} \mathcal{T}, h_{2} \mathcal{T}, \ldots, h_{n} \mathcal{T}\right)
$$

if and only if

$$
I_{\phi}\left(h_{1}, \ldots, h_{n}\right)=\left\{i \in I \mid R_{i} \models \phi\left(h_{1}(i), \ldots, h_{n}(i)\right)\right\} \in \mathcal{T}
$$

Proof. Suppose that $\operatorname{Compl}(\phi)=1$. Consider the case when

$$
\phi\left(y_{1}, y_{2}, \ldots, y_{n}\right)=\left\|t_{1}\left(y_{i_{1}}, \ldots, y_{i_{m}}\right)=t_{2}\left(y_{j_{1}}, \ldots, y_{j_{t}}\right)\right\|
$$

where $\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}=\mathcal{X}\left(t_{1}\right) \cup \mathcal{X}\left(t_{2}\right)$. Clearly

$$
\prod_{i \in I} R_{i} / \mathcal{T} \models \phi\left(h_{1} \mathcal{T}, \ldots, h_{n} \mathcal{T}\right)
$$

if and only if

$$
t_{1}\left(h_{i_{1}} \mathcal{T}, \ldots, t_{i_{m}} \mathcal{T}\right)=t_{2}\left(h_{j_{1}} \mathcal{T}, \ldots, t_{j_{t}} \mathcal{T}\right)
$$

The last condition is equivalent to

$$
t_{1}\left(h_{i_{1}} \mathcal{T}, \ldots, t_{i_{m}} \mathcal{T}\right)-t_{2}\left(h_{j_{1}} \mathcal{T}, \ldots, t_{j_{t}} \mathcal{T}\right)=0
$$

which in turn is equivalent to

$$
\left\{i \in I \mid t_{1}\left(h_{i_{1}}(i), \ldots, h_{i_{m}}(i)\right)-t_{2}\left(h_{j_{1}}(i), \ldots, t_{j_{t}}(i)=0\right\} \in \mathcal{T}\right.
$$

But

$$
\begin{aligned}
& \left\{i \in I \mid t_{1}\left(h_{i_{1}}(i), \ldots, h_{i_{m}}(i)\right)-t_{2}\left(h_{j_{1}}(i), \ldots, t_{j_{t}}(i)=0\right\}\right. \\
& =I_{\phi}\left(h_{1}, h_{2}, \ldots, h_{n}\right)
\end{aligned}
$$

Therefore

$$
\prod_{i \in I} R_{i} / \mathcal{T} \models \phi\left(h_{1} \mathcal{T}, \ldots, h_{n} \mathcal{T}\right)
$$

if and only if

$$
I_{\phi}\left(h_{1}, h_{2}, \ldots, h_{n}\right) \in \mathcal{T}
$$

The case $\phi=P_{\gamma}\left(t_{1}, t_{2}, \ldots, t_{\sigma(\gamma)}\right)$ follows directly from the definitions.

Assume now that our statement is proved for the formula $\psi\left(y_{1}, \ldots, y_{n}\right)$ and $\phi=\neg \psi$. It immediately follows from the definition that

$$
I_{\phi}\left(h_{1}, h_{2}, \ldots, h_{n}\right)=I \backslash I_{\psi}\left(h_{1}, h_{2}, \ldots, h_{n}\right)
$$

We have

$$
\prod_{i \in I} R_{i} / \mathcal{T} \models \phi\left(h_{1} \mathcal{T}, h_{2} \mathcal{T}, \ldots, h_{n} \mathcal{T}\right)
$$

if and only if $\psi\left(h_{1} \mathcal{T}, h_{2} \mathcal{T}, \ldots, h_{n} \mathcal{T}\right)$ is false in $\prod_{i \in I} R_{i} / \mathcal{T}$. By assumption the last is equivalent to $I_{\psi}\left(h_{1}, h_{2}, \ldots, h_{n}\right) \notin \mathcal{T}$, which in turn is equivalent to $I_{\phi}\left(h_{1}, h_{2}, \ldots, h_{n}\right) \in \mathcal{T}$ (see Proposition 1.5.6).

Suppose that $\phi=\psi_{1} \wedge \psi_{2}$ and our statement is proved for formulas ψ_{1} and ψ_{2}. By (1.7) we may assume that

$$
\phi=\phi\left(y_{1}, y_{2}, \ldots, y_{m}\right), \psi_{t}=\psi_{t}\left(y_{1}, y_{2}, \ldots, y_{m}\right), t=1,2
$$

Note that

$$
I_{\phi}\left(h_{1}, h_{2}, \ldots, h_{n}\right)=I_{\psi_{1}}\left(h_{1}, h_{2}, \ldots, h_{n}\right) \cap I_{\psi_{2}}\left(h_{1}, h_{2}, \ldots, h_{n}\right) .
$$

Obviously

$$
\prod_{i \in I} R_{i} / \mathcal{T} \models \phi\left(h_{1} \mathcal{T}, h_{2} \mathcal{T}, \ldots, h_{n} \mathcal{T}\right)
$$

if and only if $I_{\psi_{1}}, I_{\psi_{2}} \in \mathcal{T}$, which is equivalent to $I_{\phi}=I_{\psi_{1}} \cap I_{\psi_{2}} \in$ \mathcal{T}.

Now we consider the case $\phi=(\exists y) \psi$. We suppose that our statement is proved for ψ. For simplicity we assume that $\psi=$ $\psi\left(y, y_{1}, y_{2}, \ldots, y_{n}\right)$. Clearly

$$
\prod_{i \in I} R_{i} / \mathcal{T} \models \phi\left(h_{1} \mathcal{T}, h_{2} \mathcal{T}, \ldots, h_{n} \mathcal{T}\right)
$$

if and only if

$$
\prod_{i \in I} R_{i} / \mathcal{T} \models \psi\left(h \mathcal{T}, h_{1} \mathcal{T}, h_{2} \mathcal{T}, \ldots, h_{n} \mathcal{T}\right)
$$

for some $h \in \prod_{i \in I} R_{i}$. The last is equivalent to

$$
I_{\psi}\left(h, h_{1}, h_{2}, \ldots, h_{n}\right) \in \mathcal{T}
$$

So it is enough to prove that $I_{\phi}\left(h_{1}, h_{2}, \ldots, h_{n}\right) \in \mathcal{T}$ if and only if $I_{\psi}\left(h, h_{1}, h_{2}, \ldots, h_{n}\right) \in \mathcal{T}$ for some $h \in \prod_{i \in I} R_{i}$. The "if" part is clear since

$$
I_{\phi}\left(h_{1}, h_{2}, \ldots, h_{n}\right) \supseteq I_{\psi}\left(h, h_{1}, h_{2}, \ldots, h_{n}\right)
$$

Suppose that $J=I_{\phi}\left(h_{1}, h_{2}, \ldots, h_{n}\right) \in \mathcal{T}$. Then there exist elements $r_{j}, j \in J$, such that

$$
R_{j} \models \psi\left(r_{j}, h_{1}(j), h_{2}(j), \ldots, h_{n}(j)\right)
$$

Define the element $h \in \prod_{i \in I} R_{i}$ by setting $h(j)=r_{j}, h(i)=0$ for all $j \in J, i \in I \backslash J$. Clearly $I_{\psi}\left(h, h_{1}, h_{2}, \ldots, h_{n}\right) \supseteq J$. Thus $I_{\psi}\left(h, h_{1}, \ldots, h_{n}\right) \in \mathcal{T}$.

Since any formula is equivalent to a formula containing only atomic formulas, symbols \neg, \wedge, \exists, variables and bracket symbols, the theorem is proved (see Corollary 1.5.4).

Chapter 2

Rings of Quotients

2.1 Maximal Right Rings of Quotients

In the study of generalized identities in prime and semiprime rings it will be seen that rings of quotients play a crucial role. Not only will we want to extend generalized identities to rings of quotients, but the very presence of a suitable ring of quotients is necessary in order to properly define a generalized identity. For us the most important ring of quotients is the so called symmetric ring of quotients but at times we will want to employ the more general maximal ring of quotients.

For S a subset of R the left annihilator $\{x \in R \mid x S=0\}$ will be denoted by $l_{R}(S)$ or simply $l(S)$ when the context is clear. The right annihilator $r_{R}(S)$ is similarly defined. A right ideal J of R is dense if given any $0 \neq r_{1} \in R, r_{2} \in R$ there exists $r \in R$ such that $r_{1} r \neq 0$ and $r_{2} r \in J$. One defines a dense left ideal in an analogous fashion. The collection of all dense right ideal of R will be denoted by $\mathcal{D}=\mathcal{D}(R)$. For any submodule J of a right R-module M and any subset $S \subseteq M$ we set

$$
(S: J)_{R}=\{x \in R \mid S x \subseteq J\}
$$

When the context is clear we will simply write $(S: J)$.
Although occasionally a result may hold for arbitrary rings, we shall assume throughout this section that R is a semiprime ring.

Proposition 2.1.1 Let $I, J, S \in \mathcal{D}(R)$ and let $f: I \rightarrow R$ be a homomorphism of right R-modules. Then:
(i) $f^{-1}(J)=\{a \in I \mid f(a) \in J\} \in \mathcal{D}(R)$;
(ii) $(a: J) \in \mathcal{D}(R)$ for all $a \in R$;
(iii) $I \cap J \in \mathcal{D}(R)$;
(iv) If K is a right ideal of R and $K \supseteq I$, then $K \in \mathcal{D}(R)$;
(v) $l(I)=0=r(I)$;
(vi) If K is a right ideal of R and $(a: K) \in \mathcal{D}(R)$ for all $a \in I$, then $K \in \mathcal{D}(R)$;
(vii) If L is a right ideal of R and $g: L \rightarrow R$ is a homomorphism of right S-modules, then g is a homomorphism of right R-modules;
(viii) $I J \in \mathcal{D}(R)$.

Proof. (i) Let $r_{1} \neq 0, r_{2} \in R$. Since I is a dense right ideal of $R, r_{1} r^{\prime} \neq 0$ and $r_{2} r^{\prime} \in I$ for some $r^{\prime} \in R$. Analogously $\left(r_{1} r^{\prime}\right) r^{\prime \prime} \neq 0$ and $f\left(r_{2} r^{\prime}\right) r^{\prime \prime} \in J$ for some $r^{\prime \prime} \in R$. Setting $r=r^{\prime} r^{\prime \prime}$ we conclude that $r_{1} r \neq 0$ and $r_{2} r \in f^{-1}(J)$, which means that $f^{-1}(J)$ is a dense right ideal of R.
(ii) Letting l_{a} denote the left multiplication by a we note that $(a: J)=l_{a}^{-1}(J)$. Now apply (i).
(iii) If i is the inclusion map $I \rightarrow R$, then $I \cap J=i^{-1}(J)$. Now apply (i).
(iv) Is obvious.
(v) Suppose $I a=0$ for some $0 \neq a \in R$. Setting $r_{1}=a=r_{2}$ we see that there exists $r \in R$ such that $0 \neq a r \in I$. We then have a contradiction $\operatorname{ar} R a r \subseteq I a r=0$. Next we suppose $l(I) \neq 0$. Since R is semiprime, there exist $a, b \in l(I)$ such that $a b \neq 0$. Now we can find $r \in R$ such that $a b r \neq 0$ and $b r \in I$. But $a b r \in a I=0$ and again a contradiction is reached.
(vi) Let $0 \neq r_{1}, r_{2} \in R$. Since $I \in \mathcal{D}$, there is an element $r^{\prime} \in R$ such that $r_{1} r^{\prime} \neq 0$ and $r_{2} r^{\prime} \in I$. Hence $\left(r_{2} r^{\prime}: K\right) \in \mathcal{D}$. By part (v) we then have $l\left(\left(r_{2} r^{\prime}: K\right)\right)=0$ and hence $r_{1} r^{\prime} r^{\prime \prime} \neq 0$ and $r_{2} r^{\prime} r^{\prime \prime} \in K$ for some $r^{\prime \prime} \in\left(r_{2} r^{\prime}: K\right)$. Thus $K \in \mathcal{D}$.
(vii) Let $x \in L$ and $r \in R$. By (ii) $(r: S)_{R} \in \mathcal{D}$ and so by (iii) $M=(r: S)_{S} \cap S \in \mathcal{D}$. For every $y \in M \subseteq S$ we have $r y \in S$ and so

$$
(g(x r)-g(x) r) y=g(x r) y-g(x)(r y)=g(x r y)-g(x r y)=0
$$

It follows from (\mathbf{v}) that $g(x r)=g(x) r$ and thus g is a homomorphism of right R-modules.
(viii) Let $r_{1} \neq 0$ and $r_{2} \in R$. By (ii) $L=\left(r_{2}: I\right) \in \mathcal{D}(R)$, and so by (v) there exist $r^{\prime} \in L$ such that $r_{1} r^{\prime} \neq 0$ and $r^{\prime \prime} \in J$ such that $r_{1} r^{\prime} r^{\prime \prime} \neq 0$. Setting $r=r^{\prime} r^{\prime \prime}$ we then have $r_{1} r \neq 0$ and $r_{2} r=\left(r_{2} r^{\prime}\right) r^{\prime \prime} \in I J$.

As an alternate definition of dense right ideal we have
Corollary 2.1.2 Let J be a right ideal of R. Then $J \in \mathcal{D}$ if and only if $l_{R}((a: J))=0$ for all $a \in R$.

Proof. If $J \in \mathcal{D}$ we know from Proposition 2.1.1(ii) and (v) that $(a: J) \in \mathcal{D}$ and $l_{R}((a: J))=0$. Conversely, given $r_{1} \neq 0, r_{2} \in R$ we know that $r_{1}\left(r_{2}: J\right) \neq 0$, and so we may choose $r \in\left(r_{2}: J\right)$ such that $r_{1} r \neq 0$. But since $r \in\left(r_{2}: J\right)$, we also have $r_{2} r \in J$.

At this point we pause to mention the notion of essential right ideal. We recall that a right ideal J of R is essential if for every nonzero right ideal K of R we have $J \cap K \neq 0$. This notion may perhaps strike the reader as a more familiar and more natural one than that of a dense right ideal, but it does have the drawback that (even for primitive rings) the left annihilator of an essential right ideal may not be 0. A more through discussion of the relationship between essential and
dense right ideals will be given at the end of this section. For now we have the following remark.

Remark 2.1.3 Let J be a dense right ideal of R. Then J is an essential right ideal of R.

Proof. Indeed, for $0 \neq a \in R$, pick $r \in R$ such that $0 \neq a r \in J$. Then $0 \neq a r \in J \cap a R$.

There is one prominent situation, however, when the two notions coincide, and we leave it for the reader to verify the following

Remark 2.1.4 Let I be a 2-sided ideal of R. Then the following conditions are equivalent:
(i) $l(I)=0$;
(ii) I is a dense right ideal;
(iii) I is an essential right ideal;
(iv) I is essential as a 2 -sided ideal (i.e., for any ideal $J \neq 0$, $I \cap J \neq 0)$.

Because of the symmetry imposed by (iv) the words "left" and "right" may be interchanged. In case R is prime an ideal is essential if and only if it is nonzero. For semiprime rings we have the following result and we again leave it for the reader to verify the straightforward details of its proof.

Remark 2.1.5 Let I be a 2-sided ideal of R. Then:
(i) $l(I)=r(I)$;
(ii) $l(I) \cap I=0$;
(iii) $I+l(I)$ is a dense right ideal of R.

We continue now with our discussion of dense right ideals, pointing out the following useful properties.

Remark 2.1.6 Let J be a right ideal of R and let $f: J \rightarrow R$ be a right R-module homomorphism. Then:
(i) if $a \in R$ and $r(a) \in \mathcal{D}(R)$, then $a=0$;
(ii) if $\operatorname{ker}(f) \in \mathcal{D}(R)$, then $f=0$.

Proof. The first statement follows from Proposition 2.1.1(v). Suppose that $\operatorname{ker}(f) \in \mathcal{D}(R)$. Then we have $f(b)(b: \operatorname{ker}(f))=$ 0 for all $b \in J$. According to Proposition 2.1.1(ii), $(b: \operatorname{ker}(f)) \in$ $\mathcal{D}(R)$. By the first statement we then have $f(b)=0$. Thus $f=0$.

We are now in a position to construct the desired ring of quotients of R. Consider the set

$$
\mathcal{H}=\left\{(f ; J) \mid J \in \mathcal{D}(R), f: J_{R} \rightarrow R_{R}\right\}
$$

We define $(f ; J) \sim(g ; K)$ if there exists $L \subseteq J \cap K$ such that $L \in \mathcal{D}$ and $f=g$ on L. One readily checks that \sim is indeed an equivalence relation, and we let $[f ; J]$ denote the equivalence class determined by $(f ; J) \in \mathcal{H}$. We then define addition and multiplication of equivalence classes as follows (roughly speaking, just ordinary addition and composition of functions restricted to appropriate domains):

$$
\begin{align*}
{[f ; J]+[g ; K] } & =[f+g ; J \cap K] \tag{2.1}\\
{[f ; J][g ; K] } & =\left[f g ; g^{-1}(J)\right] \tag{2.2}
\end{align*}
$$

First of all we note that by Proposition 2.1.1 $J \cap K \in \mathcal{D}$ and $g^{-1}(J) \in \mathcal{D}$. One easily checks that addition is well-defined. We will show that multiplication is also well-defined. If $\left(f_{1} ; J_{1}\right) \sim$ $\left(f_{2} ; J_{2}\right)$ and $\left(g_{1} ; K_{1}\right) \sim\left(g_{2} ; K_{2}\right)$ we may find $L \in \mathcal{D}$ such that $L \subseteq J_{1} \cap J_{2}, f_{1}=f_{2}$ on L and $M \in \mathcal{D}$ such that $M \subseteq K_{1} \cap K_{2}$, $g_{1}=g_{2}$ on M. Set $N=g_{1}^{-1}(L) \cap M$, and let $x \in N$. Then $N \in \mathcal{D}$ and

$$
f_{1} g_{1}(x)=f_{1}\left(g_{1}(x)\right)=f_{1}\left(g_{2}(x)\right)=f_{2}\left(g_{2}(x)\right)
$$

(noting that $g_{1}(x)=g_{2}(x) \in L$). Thus (2.2) is well-defined. We leave it for the reader to verify that the ring axioms holds, and so our construction is complete.

We shall denote the ring just constructed by $Q_{m r}=Q_{m r}(R)$ and shall call it the maximal right ring of quotients of R. It was first constructed by Utumi [270], and although there are more "homological" constructions of it available (see, e.g., [155]) we have preferred Utumi's very simple and natural construction using "partial" homomorphisms (indeed, speaking very loosely, given $f: J_{R} \rightarrow R_{R}$ and $f a=r, a \in J, r \in R$ we may "solve" for f and get " $f=r a^{-1 "}$ which says in some sense that f is a "fraction").

We proceed by showing that $Q_{m r}$ is characterized by certain reasonable properties that any ring of quotients should have. First there is a ring injection $\beta: R \rightarrow Q_{m r}$ given by $a^{\beta}=\left[l_{a} ; R\right]$, where l_{a} is the left multiplication determined by a. Secondly, given $q=[f ; J] \in Q_{m r}$ one sees that $[f ; J]\left[l_{a} ; R\right]=\left[l_{f(a)} ; R\right]$ for all $a \in J$, i.e., $q J^{\beta} \subseteq R^{\beta}$. Thirdly, if $q=[f ; J] \in Q_{m r}$ and $K \in \mathcal{D}$ such that $q K^{\beta}=0$ then $q=0$. Indeed, we have $0=[f ; J]\left[l_{a} ; R\right]=\left[l_{f(a)} ; R\right]$ for all $a \in J \cap K$ forcing $f(a)=0$, whence $f(J)=0$ and $q=0$ (see Remark 2.1.6). Finally, suppose we are given a homomorphism of right R-modules $f: J_{R} \rightarrow R_{R}$, $J \in \mathcal{D}$. Then $[f ; J]\left[l_{a} ; R\right]=\left[l_{f(a)} ; R\right]$ for all $a \in J$, i.e., $q a^{\beta}=$ $f(a)^{\beta}$ for all $a \in J$, where $q=[f ; J]$.

In a similar fashion, using the filter of dense left ideals \mathcal{D}_{l}, one can construct the maximal left ring of quotients $Q_{m l}=Q_{m l}(R)$ (in so doing it is best to put mappings on the right and use ($J ; f$) instead of $(f ; J)$). One then embeds R into $Q_{m l}$ via $\alpha: a \mapsto$ $\left[R ; r_{a}\right]$ and goes on to show an analogous set of properties holds for $Q_{m l}$. However, we are not interested in pursuing further the relationship between $Q_{m r}$ and $Q_{m l}$; in any given situation we will just be working with one of them. For this reason we shall simplify matters by replacing R by its isomorphic image R^{β} in $Q_{m r}$, i.e., R is contained in $Q_{m r}$. We then summarize the four
properties derived in the preceding paragraph.
Proposition 2.1.7 $Q_{m r}(R)$ satisfies:
(i) R is a subring of $Q_{m r}$;
(ii) For all $q \in Q_{m r}$ there exists $J \in \mathcal{D}$ such that $q J \subseteq R$;
(iii) For all $q \in Q_{m r}$ and $J \in \mathcal{D}, q J=0$ if and only if $q=0$;
(iv) For all $J \in \mathcal{D}$ and $f: J_{R} \rightarrow R_{R}$ there exists $q \in Q_{m r}$ such that $f(x)=q x$ for all $x \in J$.

Furthermore, properties (i)-(iv) characterize ring $Q_{m r}(R)$ up to isomorphism.

Proof. We have only to prove the last statement. Let $Q \supseteq$ R be a ring having properties (i)-(iv). Define the mapping $\alpha: Q \rightarrow Q_{m r}$ by the rule $q^{\alpha}=\left[l_{q} ;(q: R)_{R}\right]$. One can readily check that α is an isomorphism of rings identical on R.

As a useful corollary to Proposition 2.1.7 we have
Lemma 2.1.8 Given $q_{1}, q_{2}, \ldots, q_{n} \in Q_{m r}$ and $I, J \in \mathcal{D}(R)$ there exists $L \in \mathcal{D}(R)$ such that $L \subseteq J$ and $q_{i} L \subseteq I$ for all $i=1,2, \ldots, n$.

Proof. Setting $J_{i}=\left(q_{i}: R\right)_{R}$ we note that $J_{i} \in \mathcal{D}$ for all i. Consider the map $f_{i}=l_{q_{i}}: J_{i} \rightarrow R_{R}$. By Proposition 2.1.1

$$
K_{i}=f_{i}^{-1}(I)=\left\{x \in J_{i} \mid q_{i} x \in I\right\} \in \mathcal{D}
$$

Setting $L=\left(\cap_{i=1}^{n} K_{i}\right) \cap J$, we have the desired dense right ideal.

Lemma 2.1.9 Let K be a dense right ideal of a semiprime ring R and S a subring of $Q_{m r}(R)$ such that $K \subseteq S$. Then:
(i) S is a semiprime ring;
(ii) A right ideal J of S is dense if and only if $(J \cap R) K \in$ $\mathcal{D}(R)$ (in particular $I S \in \mathcal{D}(S)$ if $I \in \mathcal{D}(R)$);
(iii) A right ideal J of S is essential if and only if $(J \cap R) K$ is an essential right ideal of R.

Proof. (i) Assume that I is a nonzero nilpotent ideal of S and pick $0 \neq q \in I$. By Proposition 2.1.7(ii), $q J \subseteq R$ for $J \in \mathcal{D}(R)$ and by Proposition 2.1.7(iii) $0 \neq q(J \cap K) \subseteq I \cap R$ is a nonzero nilpotent right ideal of the semiprime ring R, a contradiction.
(ii) Suppose that $J \in \mathcal{D}(S)$ and $r_{1} \neq 0, r_{2} \in R$. Since $K \in \mathcal{D}(R), L=\left(r_{1}: K\right)_{R} \cap\left(r_{2}: K\right)_{R} \in \mathcal{D}(R)$. By Proposition 2.1.1(v), $r_{1} r^{\prime} \neq 0$ for some $r^{\prime} \in L$. Clearly $r_{1} r^{\prime}, r_{2} r^{\prime} \in$ $K \subseteq S$. Therefore there exists an element $q \in S$ such that $r_{1} r^{\prime} q \neq 0$ and $r_{2} r^{\prime} q \in J$. Again by Proposition 2.1.1 we have that $r_{1} r^{\prime} q r^{\prime \prime} \neq 0$ for some $r^{\prime \prime} \in(q: R)_{R} \cap K$. Clearly $r_{2} r^{\prime} q r^{\prime \prime} \in J \cap R$. Pick $r^{\prime \prime \prime} \in K$ such that $r_{1} r^{\prime} q r^{\prime \prime} r^{\prime \prime \prime} \neq 0$. Since $r_{2} r^{\prime} q r^{\prime \prime} r^{\prime \prime \prime} \in$ $(J \cap R) K$ and $r^{\prime} q r^{\prime \prime} r^{\prime \prime \prime} \in R$, we conclude that $(J \cap R) K \in \mathcal{D}(R)$.

Conversely, let $(J \cap R) K \in \mathcal{D}(R)$ and $s_{1} \neq 0, s_{2} \in S$. According to Proposition 2.1.1 we have $s_{1} r^{\prime} \neq 0$ for some

$$
r^{\prime} \in\left(s_{1}: R\right)_{R} \cap\left(s_{2}: R\right)_{R} \cap K
$$

Clearly $s_{1} r^{\prime}, s_{2} r^{\prime} \in R$ and $r^{\prime} \in K \subseteq S$. Since $(J \cap R) K \in \mathcal{D}(R)$, $\left(s_{2} r^{\prime}:(J \cap R) K\right)_{R} \in \mathcal{D}(R)$ and therefore

$$
L=\left(s_{2} r^{\prime}:(J \cap R) K\right)_{R} \cap K \in \mathcal{D}(R) .
$$

Hence there exists an element $r^{\prime \prime} \in L$ such that $s_{1} r^{\prime} r^{\prime \prime} \neq 0$. Note that $s_{2} r^{\prime} r^{\prime \prime} \in(J \cap R) K \subseteq J$ and $r^{\prime}, r^{\prime \prime}, r^{\prime} r^{\prime \prime} \in K \subseteq S$. Therefore J is a dense right ideal of S. In particular, if $I \in \mathcal{D}(R)$, then $(I S \cap R) K \supseteq(I K \cap R) K \supseteq I K^{2}$, and so $I S \in \mathcal{D}(S)$.
(iii) Assume that J is an essential right ideal of S. We set $I=J \cap R$. Let M be any nonzero right ideal of R. By Remark 2.1.3 K is an essential right ideal of R and so $M \cap K \neq$ 0 . Then $(M \cap K) S$ is a nonzero right ideal of S, since S is semiprime and so $l_{S}(S)=0$. Then $(M \cap K) S \cap J \neq 0$. Let $0 \neq q=\sum_{i=1}^{n} k_{i} q_{i} \in(M \cap K) S \cap J$, where $k_{i} \in M \cap K$ and $q_{i} \in S$. By Lemma 2.1.8, $q_{i} L \in R$ for some dense right ideal $L \subseteq K$ of $R, i=1,2, \ldots, n$. Obviously $0 \neq q L \in M \cap(J \cap R)$
and so $0 \neq q L K \in M \cap((J \cap R) K)$. Therefore $(J \cap R) K$ is an essential right ideal of R.

Conversely, let $(J \cap R) K$ be an essential right ideal of R and let P be a nonzero right ideal of S. Choosing $0 \neq p \in P$ we see from Lemma 2.1.8 that $p L \subseteq K$ for some $L \subseteq K, L \in \mathcal{D}(R)$. Then $P \cap R \neq 0,(P \cap R) K \neq 0$ and hence $J \cap P \supseteq(J \cap R) K \cap$ $(P \cap R) K \neq 0$. Thus $J \cap P \neq 0$ and the proposition is proved.

Proposition 2.1.10 Let K be a dense right ideal of R and S a subring of $Q_{m r}(R)$ such that $K \subseteq S$. Then $Q_{m r}(S)=Q_{m r}(R)$.

Proof. We verify the four properties of Proposition 2.1.7. Since $S \subseteq Q_{m r}(R)$, (i) holds. Let $q \in Q_{m r}(R)$. By Lemma 2.1.8, $q I \subseteq K$ for some $I \in \mathcal{D}(R), I \subseteq K$. According to Lemma 2.1.9, $I S \in \mathcal{D}(S)$ and we have $q I S \subseteq K S \subseteq S$, thus proving (ii). Next suppose $q J=0$ for some $q \in Q_{m r}(R), J \in \mathcal{D}(S)$. By Lemma 2.1.9(ii) $(J \cap R) K \in \mathcal{D}(R)$ whence $q=0$ and so (iii) is proved. Finally suppose we are given $f: J_{S} \rightarrow S_{S}, J \in \mathcal{D}(S)$. Setting

$$
L=\{x \in(J \cap R) K \mid f(x) \in R\}
$$

we shall show that $L \in \mathcal{D}(R)$ and $f: L \rightarrow R$ is a homomorphism of right R-modules. Note that $(J \cap R) K \in \mathcal{D}(R)$ by Lemma 2.1.9(ii). Since $K \subseteq S, f$ is a homomorphism of right K-modules and so by Proposition 2.1.1(vii) f is a homomorphism of right R-modules. It follows from Proposition 2.1.1(i) that $L=f^{-1}((J \cap R) K) \in \mathcal{D}(R)$. Thus there exists $q \in Q_{m r}(R)$ such that $f(x)=q x$ for all $x \in L$. We claim that $f(z)=q z$ for all $z \in J$. Indeed, by Lemma 2.1.9 $L S \in \mathcal{D}(S)$. Clearly $L S \subseteq J$ and $f(z)=q z$ for all $z \in L S$. Given any $z \in J$ and $s \in(z: L S)_{S}$ we have

$$
(f(z)-q z) s=f(z) s-q z s=f(z s)-q z s=q z s-q z s=0
$$

Since $(z: L S)_{S} \in \mathcal{D}(S)$, we conclude that $f(z)=q z$ for all $z \in J$, and (vi) has thereby been shown.

The following result is an immediate corollary of the above Proposition.

Theorem 2.1.11 Let R be a semiprime ring and $Q=Q_{m r}(R)$. Then $Q_{m r}(Q)=Q$.

Corollary 2.1.12 Let R be a semiprime ring, I an ideal of R and $J=l_{R}(I)$. Then $Q_{m r}(R)=Q_{m r}(I) \oplus Q_{m r}(J)$.

Proof. By Remark 2.1.5, $I \oplus J \in \mathcal{D}(R)$. According to Proposition 2.1.10, $Q_{m r}(R)=Q_{m r}(I \oplus J)$. Now our statement follows from the obvious equality $Q_{m r}(I \oplus J)=Q_{m r}(I) \oplus Q_{m r}(J)$.

For a ring R we set

$$
Z_{r}(R)=\left\{x \in R \mid \dot{r_{R}}(x) \quad \text { is an essential right ideal }\right\} .
$$

We remark that $Z_{r}(R)$ is called the (right) singular ideal of R.
Lemma 2.1.13 Let R be a semiprime ring, K an essential right ideal of R and $r \in R$. Then:
(i) $(r: K)_{R}$ is an essential right ideal of R;
(ii) $Z_{r}(R)$ is an ideal of R;
(iii) $Z_{r}(R)=0$ if and only if every essential right ideal is dense;
(iv) for any subring $R \subseteq S \subseteq Q_{m r}(R), Z_{r}(R)=R \cap Z_{r}(S)$.

Proof. (i) Let $L \neq 0$ be a right ideal of R. If $r L=0$, then $L \subseteq(r: K)$ and hence $0 \neq L=L \cap(r: K)$. Suppose that $r L \neq 0$. Since $r L$ is a right ideal of $R, r L \cap K \neq 0$. But $r L \cap K=r[L \cap(r: K)]$. Therefore $L \cap(r: K) \neq 0$ and ($r: K$) is essential.
(ii) Let $r_{1}, r_{2} \in Z_{r}(R)$ and $x \in R$. Since $r_{R}\left(r_{1}-r_{2}\right) \supseteq$ $r_{R}\left(r_{1}\right) \cap r_{R}\left(r_{2}\right)$ and $r_{R}\left(r_{1}\right) \cap r_{R}\left(r_{2}\right)$ is an essential right ideal, $r_{R}\left(r_{1}-r_{2}\right)$ is essential as well. Hence $r_{1}-r_{2} \in Z_{\tau}(R)$. Further
as $r_{R}\left(x r_{1}\right) \supseteq r_{R}\left(r_{1}\right), x r \in Z_{r}(R)$. By the above result the right ideal $\left(x: r_{R}\left(r_{1}\right)\right)$ is essential. From $r_{R}\left(r_{1} x\right) \supseteq\left(x: r_{R}\left(r_{1}\right)\right)$ it follows that $r_{1} x \in Z_{r}(R)$. Therefore $Z_{r}(R)$ is an ideal of R.
(iii) Suppose that $Z_{r}(R)=0$. Let J be an essential right ideal of R. Taking into account (i), we get $l_{R}((a: J))=0$ for all $a \in R$. By Corollary 2.1.2 we then have $J \in \mathcal{D}$. The converse statement follows from Proposition 2.1.1(v).
(iv) Note that $r_{R}(x)=r_{S}(x) \cap R$ for all $x \in R$ and so by Lemma 2.1.9 $r_{R}(x)$ is an essential right ideal of R if and only if $r_{S}(x)$ is an essential right ideal of S. Hence $Z_{r}(R)=Z_{r}(S) \cap R$.

Lemma 2.1.14 Let R be a semiprime ring, $Q=Q_{m r}(R)$ and K a submodule of the right R-module Q. Suppose that $\alpha: K \rightarrow Q$ is a homomorphism of right R-modules. Then:
(i) The rule $\widehat{\alpha}\left(\sum_{i=1}^{n} k_{i} q_{i}\right)=\sum_{i=1}^{n} \alpha\left(k_{i}\right) q_{i}$ where $k_{i} \in K$ and $q_{i} \in Q$ defines a homomorphism of right Q-modules $\hat{\alpha}: K Q \rightarrow$ Q;
(ii) If K is a right ideal of the ring Q, then α is a homomorphism of right Q-modules.

Proof. (i) It is enough to check that $\hat{\alpha}$ is well-defined. Indeed, let $\sum_{i=1}^{n} k_{i} q_{i}=0$ where $k_{i} \in K, q_{i} \in Q$. By Lemma 2.1.8 there exists a dense right ideal L of R such that $q_{i} L \subseteq R$ for all i. For any $x \in L$ we have

$$
\left[\sum_{i=1}^{n} \alpha\left(k_{i}\right) q_{i}\right] x=\sum_{i=1}^{n} \alpha\left(k_{i}\right)\left(q_{i} x\right)=\alpha\left(\sum_{i=1}^{n} k_{i} q_{i} x\right)=0
$$

Therefore $\sum_{i=1}^{n} \alpha\left(k_{i}\right) q_{i}=0$ and $\hat{\alpha}$ is well-defined.
(ii) If K is a right ideal of the ring Q, then $\alpha=\widehat{\alpha}$ which means that α is a homomorphism of right Q-modules.

Recall that a ring R is called von Neumann regular if for any $r \in R$ there exists an element $x \in R$ such that $r x r=r$. The
following result is valid for arbitrary rings, but for simplicity we shall prove it only for semiprime rings.

Theorem 2.1.15 Let R be a semiprime ring and $Q=Q_{m r}(R)$. Then the following conditions are equivalent:
(i) Q is a von Neumann regular ring;
(ii) $Z_{r}(R)=0$.

Furthermore, if the above conditions are fulfilled, then Q is an injective right R-module and Q-module.

Proof. Setting $Q=Q_{m r}(R)$, we suppose that Q is von Neumann regular. Let $0 \neq q \in Q$. Then $q x q=q$ for some $x \in Q$. Obviously $r_{Q}(x q)=r_{Q}(q)$ and $(x q)^{2}=x q$. Hence $r_{Q}(x q)=(1-x q) Q$. Since $(1-x q) Q \cap x q Q=0$, the right ideal $(1-x q) Q$ is not essential. Therefore $Z_{r}(Q)=0$. By Lemma 2.1.13, $Z_{r}(R)=0$.

Conversely, let $Z_{r}(R)=0$. Then by Lemma 2.1.13, the set $\mathcal{D}(R)$ coincides with the set of all essential right ideals of R. Let $q=[f ; J] \in Q=Q_{m r}(R)$. We set $K=\operatorname{ker}(f)$. Choosing L to be a right ideal of R maximal with respect to the properties $L \subseteq J$ and $L \cap K=0$, we note that $L \cong q L$. One can easily check that $K+L$ is an essential right ideal of R and hence $K+L \in \mathcal{D}(R)$. Now we choose M to be a right ideal of R maximal with respect to the property $M \cap q L=0$. It is well known that $M \oplus q L$ is an essential right ideal of R. Hence $M \oplus q L \in \mathcal{D}(R)$. Define the mapping $g: M \oplus q L \rightarrow L$ by the rule $g(m+q l)=l$ for all $m \in M, l \in L$. Clearly $p=[g ; M \oplus q L] \in Q$ and $f g f(k+l)=f(k+l)$ for all $k \in K$ and $l \in L$. Therefore $q p q=q$ and Q is von Neumann regular.

We show now that Q is an injective right R-module. Let K be a submodule of the right R-module Q and $\alpha: K \rightarrow Q$ a homomorphism of right R-modules. According to Lemma 2.1.14 we can assume that K is a right ideal of the ring Q and α is a homomorphism of right Q-modules. Choosing L to be a right
ideal of Q maximal with respect to the property $L \cap K=0$, we extend α up to homomorphism $\hat{\alpha}: K+L \rightarrow Q$ by the rule $\widehat{\alpha}(k+l)=\alpha(k)$ for all $k \in K, l \in L$. Clearly $K+L$ is an essential right ideal of Q. Since $Z_{r}(Q) \cap R=Z_{r}(R)=0$, we infer that $Z_{r}(Q)=0$ (see Lemma 2.1.13 and Proposition 2.1.7). Then according to Lemma 2.1.13(iii), $K+L$ is a dense right ideal of Q. Hence $[\widehat{\alpha} ; K+L] \in Q_{m r}(Q)$. Since $Q_{m r}(Q)=Q$ by Theorem 2.1.11, there exists an element $q \in Q$ such that $\hat{\alpha}=l_{q}$ where l_{q} is left multiplication by q. Thus we have extended the mapping $\alpha: K \rightarrow Q$ up to an endomorphism of Q_{Q}. Applying this observation to the case $K \subseteq R$ we conclude that Q_{R} is an injective module. On the other hand, applying this observation to the case $K_{Q} \subseteq Q_{Q}$ we infer that Q_{Q} is an injective Q-module.

2.2 The Two-sided and Symmetric Rings of Quotients

The notion of two-sided rings of quotients (in which two-sided ideals are used) was introduced by W.S. Martindale [205] for prime rings (and extended to semiprime rings by Amitsur [8]). The construction of a two-sided ring of quotients is much simpler than of the maximal ring of quotients. Since the annihilator of any nonzero ideal of a prime ring is equal to zero, any nonzero ideal of a prime ring is dense and so the construction of the twosided ring of quotients has an especially simple form for prime rings. We proceed to describe this construction for semiprime rings. In what follows R is a semiprime ring and

$$
\mathcal{I}=\mathcal{I}(R)=\{I \mid I \quad \text { is an ideal of } \quad R \quad \text { and } \quad l(I)=0\}
$$

We note that \mathcal{I} is closed under products and finite intersections. We also mention that any $I \in \mathcal{I}$ is dense and essential as
a right (or left) ideal and accordingly we shall call such ideals dense. Consider the set

$$
\mathcal{T}=\left\{(f ; J) \mid J \in \mathcal{I}, f: J_{R} \rightarrow R_{R}\right\}
$$

and define $(f ; J) \simeq(g ; K)$ if there exists $L \subseteq J \cap K$ such that $L \in \mathcal{I}$ and $f=g$ on L. We let $\{f ; J\}$ denote the equivalence class determined by $(f ; J) \in \mathcal{T}$. We now define addition and multiplication of equivalence classes as follows:

$$
\begin{align*}
\{f ; J\}+\{g ; K\} & =\{f+g ; K J\} \tag{2.3}\\
\{f ; J\}\{g ; K\} & =\{f g ; K J\} \tag{2.4}
\end{align*}
$$

We will only show that multiplication is well-defined. First of all we note that $K J \in \mathcal{I}$ whenever $K, J \in \mathcal{I}$. Indeed, let $r K J=0$ for some $R \in R$. Then $r K \subseteq l(J)=0$ and so $r K=0$. Hence $r \in l(K)=0, r=0$ and $K J \in \mathcal{I}$. Further $g(K J)=g(K) J \subseteq J$ and so the composition $f g$ is well-defined on $K J$. If $\left(f_{1} ; J_{1}\right) \simeq$ $\left(f_{2} ; J_{2}\right)$ and $\left(g_{1} ; K_{1}\right) \simeq\left(g_{2} ; K_{2}\right)$ we may find $L \in \mathcal{I}$ such that $L \subseteq J_{1} \cap J_{2}, f_{1}=f_{2}$ on L and $M \in \mathcal{I}$ such that $M \subseteq K_{1} \cap K_{2}$, $g_{1}=g_{2}$ on M. Set $N=M L$, and let $x \in N$. Then $N \in \mathcal{I}$ and

$$
f_{1} g_{1}(x)=f_{1}\left(g_{1}(x)\right)=f_{1}\left(g_{2}(x)\right)=f_{2}\left(g_{2}(x)\right)
$$

(noting that $g_{1}(x)=g_{2}(x) \in L$). Thus (2.4) is well-defined. The reader can readily verify that the ring axioms hold, and so our construction is complete.

We shall denote the ring constructed above by $Q_{r}=Q_{r}(R)$ and shall call it the two-sided right ring of quotients of R.

We are now in a position to characterize the two-sided ring of quotients by its properties. First of all we note that the mapping $\gamma: R \rightarrow Q_{r}$ given by the rule $a^{\gamma}=\left\{l_{a} ; R\right\}$ where l_{a} is the left multiplication determined by a, is a monomorphism of rings. Secondly, given $q=\{f ; J\} \in Q_{r}$ and $a \in J$ one can easily check that $\{f ; J\}\left\{l_{a} ; R\right\}=\left\{l_{f(a)} ; R\right\}$, i.e., $q J^{\gamma} \subseteq R^{\gamma}$. Thirdly,
if $q=\{f ; J\} \in Q_{r}$ and $K \in \mathcal{I}$ such that $q K^{\gamma}=0$, then $q=0$. Indeed, one sees that

$$
\{f ; J\}\left\{l_{a} ; R\right\}=\left\{l_{f(a)} ; R\right\}=0 \quad \text { for all } \quad a \in K \cap J
$$

which means that $q=\{f ; J\}=0$. Finally, for any ideal $J \in \mathcal{I}$ and any given homomorphism $f: J_{R} \rightarrow R_{R}, J \in \mathcal{I}$, we have that $q a^{\gamma}=f(a)^{\gamma}$ where $a \in J, q=\{f ; J\}$. We simplify matters by replacing R by its isomorphic image R^{γ} in Q_{r}, i.e., R is contained in Q_{r}, and summarize the four properties derived above.

Proposition 2.2.1 Let R be a semiprime ring. Then $Q_{r}(R)$ satisfies:
(i) R is a subring of Q_{r};
(ii) For all $q \in Q_{r}$ there exists $J \in \mathcal{I}$ such that $q J \subseteq R$;
(iii) For all $q \in Q_{r}$ and $J \in \mathcal{I}, q J=0$ if and only if $q=0$;
(iv) For any ideal $J \in \mathcal{I}(R)$ and $f: J_{R} \rightarrow R_{R}$ there exists $q \in Q_{r}$ such that $f(x)=q x$ for all $x \in J$;

Furthermore, properties (i)-(iv) characterize ring $Q_{r}(R)$ up to isomorphism.

Proof. There remains only the last statement to prove. Let Q be a ring satisfying (i) - (iv). For $q \in Q$, using (i) and (ii), we define $q^{\alpha}=f ; J$, where $q J \subseteq R, J \in \mathcal{I}$, and $f(x)=q x$ for all $x \in J$. One readily checks that $\alpha: Q \rightarrow Q_{r}$ is a ring homomorphism. By (iii) α is an injection and by (iv) α is surjective, and so α is a ring isomorphism.

The next proposition describes the relation between $Q_{m r}(R)$ and $Q_{r}(R)$.

Proposition 2.2.2 Given a semiprime ring R, there exists a unique ring monomorphism $\sigma: Q_{r}(R) \rightarrow Q_{m r}(R)$ such that $r^{\sigma}=r$ for all $r \in R$. Further,

$$
\operatorname{Im}(\sigma)=\left\{q \in Q_{m r}(R) \mid q J \subseteq R \quad \text { for some } \quad J \in \mathcal{I}\right\}
$$

Proof. Define the mapping $\sigma: Q_{r} \rightarrow Q_{m r}$ by the rule $\{f ; J\}^{\sigma}=[f ; J]$ for all $\{f ; J\} \in Q_{r}$. It follows directly from the definitions of \sim and \simeq that σ is well-defined. Obviously $r^{\sigma}=\left\{l_{r} ; R\right\}^{\sigma}=\left[l_{r} ; R\right]=r$ for all $r \in R$. Let $\{f ; J\},\{g ; K\} \in$ Q_{r}. Since $K J \subseteq K \cap J$ and $K J \in \mathcal{I}$, we have

$$
\begin{aligned}
(\{f ; J\}+\{g ; K\})^{\sigma} & =\{f+g ; K J\}^{\sigma}=[f+g ; K J] \\
& =[f ; J]+[g ; K]
\end{aligned}
$$

and σ is additive. Noting that $K J \subseteq g^{-1}(J)$, one easily checks that σ preserve products. If $\{f ; J\}^{\sigma}=0$, then $f(L)=0$ for some dense right ideal $L \subseteq J$. Then by Remark 2.1.6 $f=0$ and therefore σ is a monomorphism. If $\sigma^{\prime}: Q_{r}(R) \rightarrow Q_{m r}(R)$ is another ring monomorphism such that $r^{\sigma^{\prime}}=r$ for all $r \in R$, then for every $q \in Q_{r}(R)$ and $x \in(q: R)_{R}$ we have

$$
\left(q^{\sigma}-q^{\sigma^{\prime}}\right) x=q^{\sigma} x^{\sigma}-q^{\sigma^{\prime}} x^{\sigma^{\prime}}=(q x)^{\sigma}-(q x)^{\sigma^{\prime}}=q x-q x=0
$$

and so $q^{\sigma}=q^{\sigma^{\prime}}$ for all $q \in Q_{r}(R)$ thus proving the uniqueness.
We set

$$
Q=\left\{q \in Q_{m r}(R) \mid q J \subseteq R \quad \text { for some } \quad J \in \mathcal{I}\right\} .
$$

Clearly $\operatorname{Im}(\sigma) \subseteq Q$. Let $q \in Q$. Then $q J \subseteq R$ for some $J \in \mathcal{I}$. We define $f: J \rightarrow R$ by the rule $f(x)=q x$ for all $x \in J$. Setting $q^{\prime}=\{f ; J\}^{\sigma}$, we note that $q a=q^{\prime} a$ for all $a \in J$. Applying Proposition 2.1.7(iii), we infer that $q=q^{\prime}$ and thus $Q=\operatorname{Im}(\sigma)$.

In what follows we shall identify Q_{r} with Q via σ. We set

$$
Q_{s}=\left\{q \in Q_{m r}(R) \mid q J \cup J q \subseteq R \quad \text { for some } \quad J \in \mathcal{I}\right\}
$$

One can easily check that Q_{s} is a subring of Q_{r}. We shall call it the symmetric ring of quotients of R. As noted by Passman ([236], Proposition 1.4) Q_{s} may be characterized by four properties analogous to those which characterize $Q_{m r}$ (see Proposition 2.1.7).

Proposition 2.2.3 Let R be a semiprime ring. Then $Q_{s}(R)$ satisfies:
(i) R is a subring of Q_{s};
(ii) For all $q \in Q_{s}$ there exists $J \in \mathcal{I}$ such that $q J \cup J q \subseteq R$;
(iii) For all $q \in Q_{s}$ and $J \in \mathcal{I}, q J=0$ (or $J q=0$) if and only if $q=0$;
(iv) Given $J \in \mathcal{I}, f: J_{R} \rightarrow R_{R}$ and $g:{ }_{R} J \rightarrow{ }_{R} R$ such that $x f(y)=g(x) y$ for all $x, y \in J$, there exists $q \in Q$ such that $q x=f(x), x q=g(x)$ for all $x \in J$.

Furthermore, properties (i)-(iv) characterize ring $Q_{s}(R)$ up to isomorphism.

Proof. We leave for the reader the straightforward verification that Q_{s} enjoys the properties (i) - (iv). Now assume that Q is a ring satisfying (i) - (iv). We define a map $Q \rightarrow Q_{m r}$ by the rule $q \mapsto q^{\prime}=[f ; J]$, where J is given by (ii) and f is defined by $f(x)=q x$ for all $x \in J$. Again by (ii) one shows that for all $a \in J$

$$
\left[l_{a} ; R\right][f ; J]=\left[l_{a} f ; J\right]=\left[l_{a q} ; J\right]
$$

i.e. $a q^{\prime} \in R$, whence $q^{\prime} \in Q_{s}$. It is straightforward to show that $q \mapsto q^{\prime}$ is a ring homomorphism. That $q \mapsto q^{\prime}$ is an injection follows from property (iii). Finally, given $p \in Q_{s}$ we have $p J+$ $J p \subseteq R$ for some $J \in \mathcal{I}$. We then define $f: J_{R} \rightarrow R_{R}$ by $f(x)=p x$ for all $x \in J$ and $g:{ }_{R} J \rightarrow{ }_{R} R$ by $g(x)=x p$ for all $x \in J$. Thus $g(x) y=(x p) y=x(p y)=x f(y)$ for all $x, y \in J$, and so by property (iv) there exists $q \in Q$ such that $q x=f(x)$, $x q=g(x)$ for all $x \in J$. Clearly $q^{\prime}=p$ and so $q \mapsto q^{\prime}$ is surjective. The proof of Proposition 2.2.3 is now complete.

We have defined Q_{s} as a subring of $Q_{r} \subseteq Q_{m r}$ and so, more accurately, we should have called Q_{s} the right symmetric ring of quotients of R. Analogously, the left symmetric ring of quotients Q_{s}^{\prime} may be defined as a subring of $Q_{l} \subseteq Q_{m l}$. For $q \in Q_{s}$ we
define $q^{\prime}=J ; g \in Q_{s}^{\prime}$, where $x g=x q$ for all $x \in J$. Then the $\operatorname{map} q \mapsto q^{\prime}$ is an isomorphism of Q_{s} onto Q_{s}^{\prime} (the key observation being that the map $l_{a} \rightarrow r_{a}$ is a ring homomorphism if one writes left multiplications on the left and right multiplications on the right). Thus we are able to make the following

Remark 2.2.4 $Q_{s} \cong Q_{s}^{\prime}$ (via the map defined above).

2.3 The Extended Centroid

The center of the two-sided ring of quotients plays a key role in the definition of generalized identities. We will call the center $C=Z\left(Q_{r}\right)$ of the two-sided right ring of quotients Q_{r} of a semiprime ring R the extended centroid of R. We start our discussion of the extended centroid with the following obvious remark.

Remark 2.3.1 Let R be a semiprime ring. Then

$$
Z\left(Q_{s}\right)=C=Z\left(Q_{m r}\right)=\left\{q \in Q_{m r} \mid q r=r q \quad \text { for all } \quad r \in R\right\}
$$

Proof. If $c \in Z\left(Q_{m r}\right), x \in(c: R)_{R}$ and $r \in R$, then $c(r x)=r(c x) \in R, r x \in(c: R)_{R}$, and so $J=(c: R)_{R}$ is a dense ideal of R. Since $J c=c J \subseteq R, c \in Q_{s}$ and $Z\left(Q_{m r}\right) \subseteq$ $Z\left(Q_{s}\right)$. According to Proposition 2.1.10, $Q_{m r}\left(Q_{s}\right)=Q_{m r}(R)$. Therefore $Z\left(Q_{s}\right) \subseteq Z\left(Q_{m r}\right)$ and $Z\left(Q_{s}\right)=Z\left(Q_{m r}\right)$. Analogously one can show that $Z\left(Q_{r}\right)=Z\left(Q_{m r}\right)$.

If $q \in Q_{m r}$ and $q r=r q$ for all $r \in R$, then $(q x-x q) r=$ $q(x r)-x q r=x r q-x r q=0$ for all $x \in Q_{m r}, r \in(x: R)_{R}$. Thus $q \in C$.

Given a semiprime ring R, the subring $R C$ of $Q_{m r}(R)$ is said to be the central closure of R. Further, R is called centrally
closed if it coincides with its central closure (i.e., R is a C subalgebra of $Q_{m r}$).

Next we prove the following important property of the extended centroid.

Theorem 2.3.2 Let R be a semiprime ring, $Q=Q_{m r}(R)$, ${ }_{R} U_{R} \subseteq{ }_{R} Q_{R}$ a subbimodule of Q and $f:{ }_{R} U_{R} \rightarrow{ }_{R} Q_{R}$ a homomorphism of bimodules. Then there exists an element $\lambda \in$ C such that $f(u)=\lambda u$ for all $u \in U$.

Proof. By Proposition 2.1.7, $W=U \cap R$ is a nonzero ideal of R. We set $I(w)=(f(w): R)_{R}$ and $V=\sum_{w \in W} w I(w)$. Since $f(r w)=r f(w)$ for all $r \in R$ and $w \in W$, we have $f(r w) I(w) \subseteq$ R and $I(w) \subseteq I(r w)$. It follows that V is a left ideal of R. Hence, being a sum of right ideals, V is an ideal of R. Note that $f(V)=\sum f(w)(f(w): R) \subseteq R$. Define a mapping g : $V \oplus r_{R}(V) \rightarrow R$ by the rule $g\left(v+v^{\prime}\right)=f(v)+v^{\prime}$ for all $v \in V$, $v^{\prime} \in r_{R}(V)$. Clearly g is a homomorphism of R - R-bimodules. Since $V \oplus r_{R}(V) \in \mathcal{D}(R)$, there exists an element $\lambda \in Q$ such that $g(x)=\lambda x$ for all $x \in V \oplus r_{R}(V)$. Note that

$$
\lambda r x=g(r x)=r g(x)=r \lambda x \quad \text { for all } \quad x \in V \oplus r(V), r \in R .
$$

Hence $r \lambda=\lambda r$ for all $r \in R$ and so $\lambda \in C$ by Remark 2.3.1. Further, let $u \in U, D=(u: R)_{R}$ and $d \in D$. Then for all $r \in(f(u d): R)_{R}$ we have $u d r \in V$ and

$$
f(u) d r=f(u d r)=g(u d r)=\lambda u d r,(f(u)-\lambda u) d r=0
$$

Therefore $(f(u)-\lambda u) d=0$ for all $d \in D$ and so $f(u)=\lambda u$ for all $u \in U$ (see Proposition 2.1.7(iii)). The proof is complete.

Now, using the above theorem and the Weak Density Theorem (Theorem 1.1.5), we will prove the following result. We consider Q as a left C-module. Then Q is a right $E n d_{C}(Q)$-module. Denote by $R_{(l)}\left(R_{(r)}\right)$ the subring of $E n d_{C}(Q)$ generated by all left (respectively, by all right) multiplications by elements of R and put $S=R_{(l)} R_{(r)} \subseteq \operatorname{End}_{C}(Q)$.

Theorem 2.3.3 Let R be a semiprime ring, $Q=Q_{r}(R), C=$ $Z(Q)$ and $q_{1}, q_{2}, \ldots, q_{n} \in Q$. Suppose that $q_{1} \notin \sum_{i=2}^{n} C q_{i}$. Then there exist an element $p=\sum_{i=1}^{m} l_{a_{i}} r_{b_{i}} \in R_{(l)} R_{(r)}$ such that

$$
q_{1} \cdot p=\sum_{i=1}^{m} a_{i} q_{1} b_{i} \neq 0 \quad \text { and } \quad q_{j} \cdot p=0 \quad \text { for } \quad j \geq 2
$$

Proof. According to Theorem 2.3.2 Q is a closed right S module and $C=\operatorname{End}\left(Q_{S}\right)$. Setting $T=S, \Delta=C$ and $M=$ $N=Q$, we note that T is a total S-submodule of the right S-module $\operatorname{Hom}(\Delta M, \Delta N)=\operatorname{End}_{C}(Q)$. Indeed, for any $0 \neq$ $q \in Q$ we have $q T=R q R \supseteq R q(q: R)_{R} \neq 0$. Now apply Theorem 1.1.5.

For the convenience of the reader who is interested in the prime ring case only we will first prove the most important properties of the extended centroid of prime rings and then continue the discussion of the semiprime ring case.

The extended centroid of prime rings First of all we note that the extended centroid C of a prime ring R is a field. Indeed, let $0 \neq c \in C$. We shall show that c is invertible. Clearly $c U \subseteq R$ for some nonzero ideal U of R and $c U$ is an ideal of R. Since any nonzero ideal of R is dense and the annihilator in R of a central element of Q is a two sided ideal, we infer from Proposition 2.2.1(iii) that $r_{R}(c)=0$. Hence $c U_{R} \cong U_{R}$ and the mapping $f: c U \rightarrow U$ given by the rule $f(c u)=u$ for all $u \in U$ is well-defined. Letting t denote the element $\{f ; c U\} \in Q$, we note that $t r=r t$ for all $r \in R$, and so by Remark 2.3.1, $t \in C$. Obviously $t c u=u$ for all $u \in U$ and so $t c=1$.

Theorem 2.3.4 Let R be a prime ring, $Q=Q_{m r}(R)$ and $a, b \in$ Q. Suppose that $a x b=b x a$ for all $x \in R$. Then a and b are C-dependent.

Proof. If a, b are C-independent, then by Theorem 2.3.3 there exists an element $p=\sum_{i=1}^{m} l_{a_{i}} r_{b_{i}} \in R_{(l)} R(r)$ such that
$d=a \cdot p \neq 0$ and $b \cdot p=0$. For all $r \in R$ we have

$$
\begin{aligned}
0 & =a r \sum_{i=1}^{m} a_{i} b b_{i}=\sum_{i=1}^{m}\left(a r a_{i} b\right) b_{i} \\
& =\sum_{i=1}^{m}\left(b r a_{i} a\right) b_{i}=b r \sum_{i=1} a_{i} a b_{i}=b r d
\end{aligned}
$$

and $b R d=0$. Choosing $x, y \in R$ such that $0 \neq b x \in R$ and $0 \neq d y \in R$ we conclude that $(b x) R(d y)=0$ in contradiction to primeness of R. Thus a, b are C-dependent.

Theorem 2.3.5 Let A be a centrally closed prime ring with extended centroid C and let B be any C-algebra such that $r_{B}(B)=0=l_{B}(B)$. Then any nonzero ideal W of the ring $A \otimes_{C} B$ contains a nonzero element of the form $a \otimes b$.

Proof. Pick $0 \neq w \in W$ and write $w=\sum_{i=1}^{n} x_{i} \otimes y_{i}$ where we may assume without loss of generality that $x_{1}, x_{2}, \ldots, x_{n}$ are C-independent. We choose $p=\sum_{i=1}^{m} l_{a_{i}} r_{b_{i}} \in A_{(l)} A_{(r)}$ satisfying Theorem 2.3.3. Clearly $r y_{1} s \neq 0$ for some $r, s \in B$. Then W contains the element
$\sum_{i=1}^{m}\left(a_{i} \otimes r\right) w\left(b_{i} \otimes s\right)=\sum_{j} \sum_{i} a_{i} x_{j} b_{i} \otimes r y_{j} s=\sum_{i} a_{i} x_{1} b_{i} \otimes r y_{1} s \neq 0$.

Theorem 2.3.6 Let A be a centrally closed prime ring with extended centroid C and let A° be its opposite C-algebra. Then $A^{\circ} \otimes_{C} A \cong A_{(l)} A_{(r)} \subseteq E n d_{C}(A)$ under the mapping $a \otimes b \mapsto l_{a} r_{b}$ (here we regard $\operatorname{End}_{C}(A)$ as acting from the right).

Proof. By Remark 1.2.6 the mapping $\tau: A^{\circ} \otimes_{C} A \rightarrow A_{(l)} A_{(r)}$ given by the rule $\sum_{i} a_{i} \otimes b_{i} \mapsto l_{a_{i}} r_{b_{i}}$ is a well-defined surjective C-algebra map. Suppose that $\operatorname{ker}(\tau) \neq 0$. By Theorem 2.3.5 the
ideal $\operatorname{ker}(\tau)$ contains a nonzero element of the form $a \otimes b$. Then $0=\tau(a \otimes b)=l_{a} r_{b}$ and $a A b=A\left(l_{a} r_{b}\right)=0$, a contradiction to the primeness of A. Therefore the mapping τ is an isomorphism.

Let R be a prime ring, $Q=Q_{m r}(R)$ and $a, b \in Q$. Suppose that $a R b=0$. Then either $a=0$, or $b=0$. Indeed, let $a \neq 0$ and $b \neq 0$. Then $0 \neq a x \in R$ and $0 \neq b y \in R$ for some $x, y \in R$. We have $(a x) R(b y)=0$, a contradiction to the primeness of R. Now we are in a position to prove the following generalization of Theorem 2.3.4.

Theorem 2.3.7 Let R be a prime ring, $Q=Q_{m r}(R)$ and $q_{i} \in$ $Q, 1 \leq i \leq n$. Set $M=\sum_{i=1}^{n} C q_{i}$. Then the following conditions are equivalent:
(i) For all $r_{1}, r_{2}, \ldots, r_{n-1} \in R$

$$
\begin{equation*}
\sum_{\sigma \in S_{n}} \epsilon(\sigma) q_{\sigma(1)} r_{1} q_{\sigma(2)} r_{2} \ldots r_{n-1} q_{\sigma(n)}=0 \tag{2.5}
\end{equation*}
$$

where S_{n} is the permutation group;
(ii) $\operatorname{dim}_{C}(M)<n$.

Proof. To prove that (i) implies (ii) we proceed by induction on n. The case $n=2$ follows from Theorem 2.3.4. Consider now the general case. Suppose that $q_{n} \notin \sum_{i=1}^{n-1} C q_{i}$. Then by Theorem 2.3.3 there exists an element $p=\sum_{j=1}^{m} l_{a_{j}} r_{b_{j}} \in R_{(l)} R_{(r)}$ such that

$$
q_{n} p=\sum_{j=1}^{m} a_{j} q_{n} b_{j} \neq 0 \quad \text { and } \quad q_{i} p=0 \quad \text { for } \quad i<n
$$

Substituting in (2.5) $r_{n-1} a_{j}$ in place of r_{n-1} and multiplying by b_{j} from the right, we infer that

$$
0=\sum_{j=1}^{m} \sum_{\sigma \in S_{n}} \epsilon(\sigma) q_{\sigma(1)} r_{1} q_{\sigma(2)} r_{2} \ldots r_{n-1} a_{j} q_{\sigma(n)} b_{j}
$$

$$
\begin{aligned}
& =\sum_{\sigma \in S_{n}} \epsilon(\sigma) q_{\sigma(1)} r_{1} q_{\sigma(2)} r_{2} \ldots r_{n-1}\left(\sum_{j} a_{j} q_{\sigma(n)} b_{j}\right) \\
& =\left(\sum_{\sigma \in S_{n-1}} \epsilon(\sigma) q_{\sigma(1)} r_{1} \ldots r_{n-2} q_{\sigma(n-1)}\right) r_{n-1}\left(\sum_{j} a_{j} q_{n} b_{j}\right)
\end{aligned}
$$

for all $r_{n-1} \in R$ and so

$$
\sum_{\sigma \in S_{n-1}} \epsilon(\sigma) q_{\sigma(1)} r_{1} q_{\sigma(2)} r_{2} \ldots r_{n-2} q_{\sigma(n-1)}=0
$$

for all $r_{1}, r_{2}, \ldots, r_{n-2} \in R$. Setting $M^{\prime}=\sum_{i=1}^{n-1} C q_{i}$, we infer from the induction hypothesis that $\operatorname{dim}_{C}\left(M^{\prime}\right)<n-1$. Thus

$$
\operatorname{dim}_{C}(M)=\operatorname{dim}_{C}\left(M^{\prime}+C q_{n}\right) \leq n-2+1<n
$$

The proof that (ii) implies (i) rests on the well-known argument that the standard polynomial vanishes on dependent vectors.

Let $Q=Q_{m r}(R)$ and $n>0$. An element $a \in Q$ is called an algebraic element of degree $\leq n$ over C if there exists a polynomial $h(x)=x^{n}+c_{1} x^{n-1}+\ldots+c_{n} \in C[x]$ such that $h(a)=0$. We set $a^{0}=1$.

Corollary 2.3.8 Let R be a prime ring, $Q=Q_{m r}(R), C=$ $Z(Q)$ and $a \in Q$. Then the following conditions are equivalent:
(i) a is an algebraic element of degree $\leq n$;
(ii) $\sum_{\sigma \in S_{n+1}} a^{\sigma(0)} r_{0} a^{\sigma(1)} r_{1} \ldots r_{n-1} a^{\sigma(n)}=0$ for all $r_{i} \in R$.

The extended centroid of semiprime rings We begin with the following theorem which describes the properties of the extended centroid C of a semiprime ring R and the local structure of the C-module $Q_{m r}(R)$ as well.

Theorem 2.3.9 Let R be a semiprime ring and $Q=Q_{m r}(R)$. Then:
(i) For any subset $V \subseteq Q$ there exists a unique idempotent $E(V)$ such that $r_{C}(V)=(1-E(V)) C$; moreover $r_{Q}(Q V Q)=$ $(1-E(V)) Q$ and $E(V) v=v$ for all $v \in V$;
(ii) For any subset $V \subseteq Q$ and idempotent $e \in C, E(e V)=$ $e E(V)$;
(iii) C is a von Neumann regular selfinjective ring (and hence $\left.Q_{m r}(C)=C\right)$;
(iv) Any finitely generated submodule $M=\sum_{i=1}^{n} C a_{i}$ of the C-module Q contains a finite subset of nonzero elements $\left\{m_{1}, m_{2}, \ldots, m_{k}\right\}$, where k is the minimal number of generators of M, such that $M=\oplus_{i=1}^{k} C m_{i}$ and $E\left(m_{i}\right) E\left(m_{i+1}\right)=E\left(m_{i+1}\right)$ for all $i=1,2, \ldots, k-1$;
(v) Any finitely generated C-submodule M of Q is projective and injective.

Proof. (i) Letting I denote the ideal of $Q=Q_{m r}$ generated by the subset V, we note that $r_{C}(V)=r_{C}(I)$. Put $J=r_{Q}(I)$. According to Remark 2.1.5, $I \oplus J$ is a dense ideal of Q. Define the mapping $h: I \oplus J \rightarrow Q$ by the rule $h(i+j)=i$ for all $i \in I, j \in J$. Clearly $e=[h ; I \oplus J] \in Q_{m r}(Q)=Q$ (see Theorem 2.1.11). We note also that $e^{2}=e$ and $e q=q e$ for all $q \in Q$. Hence $e \in C$. We claim that $r_{C}(I)=(1-e) C$. Indeed, let $c \in C$ be such that $I c=0$. Then $c(1-e)(i+j)=$ $c j=c(i+j)$ for all $i \in I, j \in J$. Since $I \oplus J$ is a dense ideal of $Q, c=c(1-e)$ and $c \in(1-e) C$. On the other hand the equality $(1-e) I=0$ implies that $r_{C}(I) \supseteq(1-e) C$. Therefore $r_{C}(V)=r_{C}(I)=(1-e) C$. Being an identity element of the ring $(1-e) C$, the element $1-e$ (and so e) is uniquely determined. Note that $(1-e)(I+J)=J$. Hence $r_{Q}(I)=J \subseteq(1-e) Q$. On the other hand the inclusion $r_{Q}(I) \supseteq(1-e) Q$ is obvious, since $e I=I$. Therefore $r_{Q}(I)=(1-e) Q$.
(ii) Let $c \in r_{C}(e V)$. Since $c e V=0$, ce $\in r_{C}(V)=$ $(1-E(V)) C$ and so

$$
c=c e+c(1-e) \in(1-E(V)) C+(1-e) C
$$

and $r_{C}(e V) \subseteq(1-E(V)) C+(1-e) C$. On the other hand $(1-E(V)) C+(1-e) C \subseteq r_{C}(e V)$ and hence

$$
\begin{aligned}
r_{C}(e V) & =(1-E(V)) C+(1-e) C \\
& =[1-E(V)+1-e-(1-E(V)(1-e))] C \\
& =(1-e E(V)) C
\end{aligned}
$$

Thus $E(e V)=e E(V)$.
(iii) Let $c \in C$ and $I=Q c Q=Q c$. Setting $J=r_{Q}(I)$, we note that $I \oplus J$ is a dense ideal of Q. By Lemma 2.1.9, Q is a semiprime ring. Since c is a central element, $r_{Q}(c)=r_{Q}\left(c^{2}\right)$ and so $c Q_{Q} \cong c^{2} Q_{Q}$. In particular $r_{Q}\left(c^{2} Q\right)=r_{Q}(c Q)=J$. Hence $c^{2} Q \oplus J$ is a dense ideal of Q. Define the mapping $f: c^{2} Q \oplus J \rightarrow$ Q by the rule $f\left(c^{2} q+j\right)=c q+j$ for all $q \in Q, j \in J$. Clearly $t=\left[f ; c^{2} Q \oplus J\right] \in Q_{m r}(Q)=Q$ and $t q=q t$ for all $q \in Q$. Hence $t \in C$. Since $c t c(c q+j)=c^{2} q=c(c q+j)$ for all $c q \in c Q$ and $j \in J, c t c=c$ and so C is von Neumann regular.

Now we show that C is selfinjective. Let K be an ideal of C and $f: K \rightarrow C$ a homomorphism of C-modules. It is enough to prove that there exists an element $c \in C$ such that $f(x)=c x$ for all $x \in K$. To this end we set $e=1-E(K)$ and note that $K \oplus e C$ is a dense ideal of C. By Zorn's Lemma K has a maximal subset D^{\prime} of orthogonal idempotents. Setting $D=D^{\prime} \cup\{e\}$, we claim that $r_{C}(D)=0$. Indeed, if $r_{C}(D) \neq 0$, by (i) $r_{C}(D)=v C$ for some $0 \neq v=v^{2} \in C$. Since $D v=0$ and $K+e C$ is a dense ideal of C, we infer that $K v \neq 0$. Then $v k \neq 0$ and $v k y v k=v k$ for some $k \in K, y \in C$. Therefore $w=v k y \in K$ is a nonzero idempotent orthogonal to all idempotents in D^{\prime}, a contradiction to the choice of D^{\prime}. Hence $r_{C}(D)=0$ and so by the above result $r_{Q}(Q D Q)=0$, which means that $L=D Q=Q D Q$ is a dense
ideal of Q and $D C=D^{\prime} C+e C$ is a dense ideal of C as well. Clearly $L=\oplus_{d \in D} d Q$. Define the mapping $f^{\prime}: L \rightarrow Q$ by the rule

$$
f^{\prime}\left(\sum_{d \in D} d q_{d}\right)=\sum_{d \in D^{\prime}} f(d) q_{d}
$$

where $q_{d} \in Q$ and only a finite number of q_{d} 's are nonzero. Obviously $c=\left[f^{\prime} ; L\right] \in C$ and $f^{\prime}(x)=c x$ for all $x \in L$. It follows immediately from the definition that $c x=f^{\prime}(x)=f(x)$ for all $x \in D^{\prime} C$. For $y \in K, d \in D^{\prime}$ we then have $f(y) d^{\prime}=$ $f\left(d^{\prime}\right) y=c y d^{\prime}$ and $f(y) e=f(y e)=0$. It follows that $(c y-$ $f(y))(D C)=0$, whence $f(y)=c y$ for all $y \in K$, i.e. C is selfinjective.
(iv) First of all we note that given any $q \in Q$, the C-modules $C q$ and $C E(q)$ are isomorphic. Since $C=C E(q) \oplus C(1-E(q))$, we conclude that $C q$ is an injective C-module.

We proceed by induction on n. The case $n=1$ is obvious. Suppose that our statement is proved for $t<n$. Then the module $M^{\prime}=\sum_{i=1}^{n-1} C a_{i}$ contains a finite subset $m_{1}^{\prime}, m_{2}^{\prime}, \ldots, m_{k^{\prime}}^{\prime}$ of nonzero elements such that k^{\prime} is the the minimal number of generators of $M^{\prime}, M^{\prime}=\oplus_{i=1}^{k^{\prime}} C m_{i}^{\prime}$ and $E\left(m_{i}^{\prime}\right) E\left(m_{i+1}^{\prime}\right)=E\left(m_{i+1}^{\prime}\right)$ for all $i=1,2, \ldots, k^{\prime}-1$. From the above observation it follows that M^{\prime} is an injective C-module and so $M=M^{\prime} \oplus N$ for some C-submodule N. Since $a_{i} \in M^{\prime}$ for all $i \leq n-1$, we infer that the module N is generated by the canonical projection a of a_{n}. We set

$$
\begin{aligned}
& e_{0}=1, e_{i}=E\left(m_{i}^{\prime}\right), m_{i}=m_{i}^{\prime}+\left(e_{i-1}-e_{i}\right) a \text { for } 1 \leq i \leq k^{\prime}, \\
& k=\left\{\begin{array}{ccc}
k^{\prime} & \text { if } & e_{k^{\prime}} a=0 ; \\
k^{\prime}+1 & \text { if } & e_{k^{\prime}} a \neq 0 .
\end{array}\right. \\
& m_{k}=\left\{\begin{array}{lll}
m_{k^{\prime}} & \text { if } & k=k^{\prime} ; \\
e_{k^{\prime}} a & \text { if } & k \neq k^{\prime} .
\end{array}\right.
\end{aligned}
$$

One can easily check that $M=\oplus_{i=1}^{k} C m_{i}$ and $C m_{i} \cong C e_{i} \oplus$ $C\left(e_{i-1}-e_{i}\right) E(a)$. Hence $m_{i} C=\left(e_{i}+\left(e_{i-1}-e_{i}\right) E(a)\right) C$ and
$E\left(m_{i}\right)=e_{i}+\left(e_{i-1}-e_{i}\right) E(a)$. We leave it for the reader to check that $E\left(m_{i}\right) E\left(m_{i+1}\right)=E\left(m_{i+1}\right)$ for all $i=1,2, \ldots, k-1$.

We show that k is the minimal number of generators of M. It was noted above that the mapping $\alpha: C m_{k} \rightarrow C E\left(m_{k}\right)$ given by the rule $c m_{k} \mapsto c E\left(m_{k}\right)$ is an isomorphism of C modules. Pick P to be a maximal ideal of C containing $1-$ $E\left(m_{k}\right)$. Clearly $E\left(m_{k}\right) \notin P$. Hence $P C E\left(m_{k}\right) \neq C E\left(m_{k}\right)$ and so $P C m_{k} \neq C m_{k}$. Since $E\left(m_{i}\right) E\left(m_{k}\right)=E\left(m_{k}\right), E\left(m_{i}\right) \notin P$ for all $i=1,2, \ldots, k$. Therefore $P C m_{i} \neq C m_{i}$ for all i. Taking into account the equality $P M=\oplus_{i=1}^{k} P C m_{k}$, we conclude that $M / P M \cong \oplus_{i=1}^{k} C m_{i} / P m_{i}$ and so $M / P M$ is a k-dimensional linear space over the field C / P. Since any generating subset of the C-module M determines a generating subset of the vector space $M / P M$, we conclude that k is the minimal number of generators of M.
(v) By the above result $M=\oplus_{i} C m_{i}$. Since $C m_{i} \cong C E\left(m_{i}\right)$ and $C E\left(m_{i}\right)$ is a projective and injective C-module, we conclude that M is projective and injective.

Keeping the notations of Theorem 2.3.9(iv), we will call the number k the dimension of the C-module M and denote it by $\operatorname{dim}_{C}(M)$. The idempotents just introduced have the following useful property.

Lemma 2.3.10 Let R be a semiprime ring, $Q=Q_{m r}(R)$ and S, T subsets of Q. Then the following conditions are equivalent:
(i) SIT $=0$ for some $I \in \mathcal{D}(R)$;
(ii) $T Q S=0$;
(iii) $E(S) T=0$;
(iv) $E(T) E(S)=0$.

Proof. (i) \Rightarrow (ii) Consider $V=T Q S I$. Clearly V is a submodule of the right R-module Q and $V^{2}=0$. Since R is a semiprime ring and $V \cap R$ is a nilpotent right ideal of R, we have $V \cap R=0$. It follows from Proposition 2.1.7 that $T Q S=0$.
(ii) \Rightarrow (iii) Letting I denote the ideal of Q generated by the set S, we note that

$$
T \subseteq l_{Q}(I)=r_{Q}(I)=(1-E(S)) Q
$$

(see Theorem 2.3.9). It follows that $E(S) T \subseteq E(T) r_{Q}(I)=0$.
(iii) \Rightarrow (iv) By Theorem 2.3 .9 we have $0=E(E(S) T)=$ $E(S) E(T)$.
(iv) \Rightarrow (i) According to Theorem 2.3.9(i), $E(S) S=S$ and $E(T) T=T$. Hence

$$
S R T=(E(S) S) A(E(T) T)=(E(S) E(T)) S R T=0
$$

Using the above results, we are now able to state and prove the analog of Theorem 2.3.4 for semiprime rings.

Theorem 2.3.11 Let R be a semiprime ring, $Q=Q_{m r}(R)$, $a, b \in Q$ and $e=E(a) E(b)$. Suppose that $a x b=b x a$ for all $x \in R$. Then there exists an invertible element $c \in C$ such that $e a=c e b$.

Proof. Without loss of generality we can assume that $e \neq 0$. Suppose that $e a \notin(e b) C$. By Theorem 2.3 .3 there exists an element $p=\sum_{i=1}^{m} l_{a_{i}} r_{b_{i}} \in R_{(l)} R(r)$ such that $d=(e a) \cdot p \neq 0$ and $(e b) \cdot p=0$. Note that eaxeb $=e(a x b)=e b x e a$ for all $x \in R$. Further for all $r \in R$ we have

$$
\begin{aligned}
0 & =e a r \sum_{i=1}^{m} a_{i} e b b_{i}=\sum_{i=1}^{m}\left(e a r a_{i} e b\right) b_{i} \\
& =\sum_{i=1}^{m}\left(e b r a_{i} e a\right) b_{i}=e b r \sum_{i=1} a_{i} e a b_{i}=e b r d
\end{aligned}
$$

and $e b R d=0$. Then $E(e b) d=0$ by Lemma 2.3.10(iii). On the other hand $E(e b)=e E(b)=e$ by Theorem 2.3.9(ii). Hence

$$
0=e d=e \sum_{i=1}^{m} a_{i} e a b_{i}=\sum_{i=1}^{m} a_{i} e^{2} a b_{i}=\sum_{i=1}^{m} a_{i} e a b_{i}=d
$$

a contradiction to $d \neq 0$. Therefore $e a \in(e b) C$ and $e a=c^{\prime} e b$ for some $c^{\prime} \in C$. Since $E(e a)=e$ and $r_{C}(e a) \supseteq r_{C}\left(c^{\prime}\right)$, we conclude that

$$
(1-e)\left(1-E\left(c^{\prime}\right)\right)=1-E\left(c^{\prime}\right), \quad \text { and } \quad e E\left(c^{\prime}\right)=e
$$

and so $E\left(e c^{\prime}\right)=e$. It follows that $r_{C}\left(e c^{\prime}+1-e\right)=0$. Since C is von Neumann regular, $c=e c^{\prime}+1-c$ is invertible. Clearly $c e b=c^{\prime} e b=e a$.

Corollary 2.3.12 Let R be a semiprime ring with extended centroid C and $v=v^{2} \in R$. Set $C_{v}=\{c \in C \mid c v \in R\}$. Then $Z(v R v)=C_{v} v$. In particular, if R is centrally closed, then $Z(v R v)=C v$.

Proof. Obviously $C_{v} v \subseteq Z(v R v)$. Let $d \in Z(v R v)$. Then $v d=d$ and $r_{C}(d) \supseteq r_{C}(v)$. It follows that $e=E(d) E(v)=E(d)$. For any $x \in R$ we have $v x d=(v x v) d=d(v x v)=d x v$ and so by Theorem 2.3.11 $d=e d=c e v$ for some invertible element $c \in C$. Therefore $d \in C_{v} v$ and $Z(v R v)=C_{v} v$.

Theorem 2.3.13 Let A be a centrally closed semiprime ring with extended centroid C and let A° be its opposite C-algebra. Then $A^{\circ} \otimes_{C} A \cong A_{(l)} A_{(r)} \subseteq E n d_{C}(A)$ under the mapping $a \otimes b \mapsto$ $l_{a} r_{b}$.

Proof. By Remark 1.2 .6 the mapping $\tau: A^{\circ} \otimes_{C} A \rightarrow A_{(l)} A_{(r)}$ given by the rule $\sum_{i} a_{i} \otimes b_{i} \mapsto l_{a_{i}} r_{b_{i}}$ is a well-defined surjective C-algebra map. Suppose that $0 \neq \sum_{i=1}^{n} a_{i} \otimes b_{i} \in \operatorname{ker}(\tau)$. Consider the C-submodule $M=\sum_{i=1}^{n} C a_{i}$. By Theorem 2.3.9 $M=\oplus_{j=1}^{m} C d_{j}$ for some $d_{1}, d_{2}, \ldots, d_{m} \in M$. Since all a_{i} 's are linear combinations of d_{j} 's with coefficients in C, we can assume without loss of generality that $M=\oplus_{i=1}^{n} C a_{i}$. Furthermore, since

$$
a_{i} \otimes b_{i}=\left(a_{i} E\left(a_{i}\right)\right) \otimes\left(E\left(b_{i}\right) b_{i}\right)=\left(E\left(b_{i}\right) a_{i}\right) \otimes\left(E\left(a_{i}\right) b_{i}\right),
$$

we can also assume that $E\left(a_{i}\right)=E\left(b_{i}\right)$ (see Theorem 2.3.9(ii)). By Theorem 2.3.3 there exists an element $p=\sum_{k=1}^{t} l_{u_{k}} r_{v_{k}} \in$ $A_{(l)} A_{(r)}$ such that

$$
a_{1} p=\sum_{k=1}^{t} u_{k} a_{1} v_{k} \neq 0 \quad \text { and } \quad a_{i} p=0 \quad \text { for } \quad i \geq 2
$$

The inclusion $\sum_{i} a_{i} \otimes b_{i} \in \operatorname{ker}(\tau)$ is equivalent to the equality $\sum_{i} a_{i} x b_{i}=0$ for all $x \in A$. Substituting $v_{k} x$ instead of x and multiplying by u_{k} from the left the above equality, we infer that

$$
0=\sum_{k=1}^{t} \sum_{i=1}^{n} u_{k} a_{i} v_{k} x b_{i}=\sum_{i}\left(\sum_{k} u_{k} a_{i} v_{k}\right) x b_{i}=\left(\sum_{k} u_{k} a_{1} v_{k}\right) x b_{1}
$$

for all $x \in A$. Taking into account that $E\left(b_{1}\right)=E\left(a_{1}\right)$ and $E\left(a_{1}\right) a_{1}=a_{1}$, we infer from Lemma 2.3.10 that

$$
0=E\left(b_{1}\right) \sum_{k} u_{k} a_{1} v_{k}=\sum_{k} u_{k}\left(E\left(b_{1}\right) a_{1}\right) v_{k}=\sum_{k} u_{k} a_{1} v_{k}
$$

a contradiction to $\sum_{k} u_{k} a_{1} v_{k} \neq 0$. The proof is complete.
We close this section with the following useful result due to S. Montgomery [230].

Proposition 2.3.14 Let R be a semiprime (prime) ring, $Q=$ $Q_{s}(R), 0 \neq e^{2}=e \in Q$ and $A=e Q e \cap R$. Then A is a semiprime (respectively, prime) ring and $e Q e=Q_{s}(A)$.

Proof. Pick $I \in \mathcal{I}(R)$ such that $e I \cup I e \subseteq R$. Letting $J=I^{2}$ we note that $e J e \subseteq R$ and so $e J e \subseteq A$. Suppose that $a A a=0$ for some $a \in A$. In particular $a e J e a=0$. Since $a e=a=e a$, $a J a=0$ and hence $(a J)^{2}=0$. As R is semiprime, we conclude that $a J=0$ and so $a=0$. Therefore A is semiprime. Suppose now that R is prime and $a A b=0$ for some $a, b \in A$. Then again $a J b=0$ and hence $(b R a J)^{2}=0$. It follows that $b R a=0$ and so either $a=0$, or $b=0$. Hence A is prime.

We claim that if eqeIe $=0, q \in Q, I \in \mathcal{I}(R)$, then eqe $=0$. Indeed, by Lemma 2.3.10 we have eqe $=e q e E(e)=0$. As a corollary we see that if $I \in \mathcal{I}(R)$ such that $e I e \subseteq R$, then $e I e \subseteq$ $I(A)$. Indeed, suppose (eqe) $(e I e)=0$ for eqe $\in A$. Then by the above claim we have $e q e=0$, which shows that $l_{A}(e I e)=0$, i.e., $e I e \in \mathcal{I}(A)$.

We now proceed to show that $e Q e=Q_{s}(A)$ by verifying the four properties (i) - (iv) of Proposition 2.2.3. Clearly $A \subseteq$ $e Q e$. Next, given eqe $\in e Q e$, let $I \in \mathcal{I}(R)$ be such that $e I, I e$, eqe I, Ieqe are contained in R. Setting $J=I^{2}$, we see from the preceding paragraph that eJe $\in \mathcal{I}(A)$, and it is also clear that $(e q e)(e J e),(e J e)(e q e)$ are contained in A, thus proving (ii). Now suppose eqe $K=0$ for some $K \in \mathcal{I}(A)$ and $0 \neq e q e \in e Q e$. Pick $I \in \mathcal{I}(R)$ such that $e I \subseteq R$ and Ieqe $\subseteq R$ and set $J=I^{2}$. By the above claim $0 \neq$ eJeqe $\subseteq A$. Thus eJeqeK $=0$, a contradiction to $K \in \mathcal{I}(A)$, and so eqe $=0$ and (iii) is proved.

To prove (iv) we are given mappings $f: K_{A} \rightarrow A_{A}, g:$ ${ }_{A} K \rightarrow{ }_{A} A, K \in \mathcal{I}(A)$, such that $x f(y)=g(x) y$ for all $x, y \in K$. Our task is to find an element eqe $\in e Q e$ for which $f(x)=e q e x$ and $g(x)=$ xeqe for all $x \in K$. Again letting $J=I^{2}$, where $I \in \mathcal{I}(R)$ such that $e I$, $I e$ are contained in R, we set $U=J K J$, $V=r_{R}(U)$ and note that $U+V \in \mathcal{I}(R)$. We define a map $F: U+V \rightarrow R$ by the rule:

$$
\sum a_{i} k_{i} b_{i}+v \mapsto \sum f\left(e a_{i} k_{i}\right) b_{i}, \quad k_{i} \in K, a_{i}, b(i) \in J, v \in V
$$

(using the fact that $e a_{i} k_{i}=\left(e a_{i} e\right) k_{i} \in A K \subseteq K$). To prove that F is well-defined suppose that $\sum a_{i} k_{i} b_{i}=0$ and set $z=$ $\sum f\left(e a_{i} k_{i}\right) b_{i}$. On the one hand $z E(e)=\sum f\left(e a_{i} k_{i}\right) e b_{i} E(e)=z$. On the other hand, for all reR,

$$
\begin{aligned}
z r e & =\sum f\left(e a_{i} k_{i}\right)\left(e b_{i} r e\right)=\sum f\left(e a_{i} k_{i} b_{i} r e\right) \\
& =f\left(e\left[\sum a_{i} k_{i} b_{i}\right] r e\right)=0 .
\end{aligned}
$$

By Lemma 2.3.10 $z E(e)=0$ and so $z=0$. Clearly F is a right R-module map and so there is an element $q \in Q_{r}$ such that
$q(u+v)=F(u+v), u \in U, v \in V$. In particular $q a k=f(e a k)$, $a \in J, k \in K$, and $q v=0, v \in V$.

From $q V=0$ it is easy to see that $V q=0$. From $J K J V=0$ we first obtain $K J V=0$, whence from Lemma 2.3 .10 we see that $K e^{\prime}=0$, where $e^{\prime}=E(V)$. Suppose $e e^{\prime} \neq 0$. Choose $I \in \mathcal{I}(R)$ such that $e e^{\prime} I, I e e^{\prime}$ are contained in R and set $L=I^{2}$. Then $e e^{\prime} L \neq 0$ and so $0 \neq e e^{\prime} L e e^{\prime} \subseteq A$. But $K e e^{\prime} L e e^{\prime}=0$, in contradiction to $K \in \mathcal{I}(A)$, and so $e e^{\prime}=0$, and with it $e V=0$.

Next, for $k, l \in K, a, b \in J$, we see that

$$
k a q b l=k a f(e b l)=k a e f(e b l)=g(k a e) e b l=g(k a e) b l .
$$

Thus $[k a q-g(k a e)] b l=0$ and, from the preceding paragraph, we then have $[k a q-g(k a e)](U+V)=0$, whence $k a q=g(k a e)$. Therefore $q \in Q_{s}$. Then from

$$
\operatorname{laf}(k)=\operatorname{lae} f(k)=g(l a e) k=l a q k
$$

we see that $U[f(k)-q k]=0$ and, in view of the preceding paragraph, that $(U+V)[f(k)-q k]=0$. Thus $f(k)=q k$, from which it follows that $f(k)=k e q e$ for all $k \in K$. Similarly, one shows that $g(k)=k e q e$ for all $k \in K$, and the proof is complete.

The most important properties of the extended centroid of prime rings and its key role in the definition of generalized identities of prime rings were discovered by W. S. Martindale [205]. Theorem 2.3.4 and Theorem 2.3.6 are taken from [205] (see also [214]). Regularity of extended centroids of semiprime rings was proved by S. Amitsur [8]. Other properties of extended centroids of semiprime rings were proved by K. I. Beidar [21]. Theorem 2.3.7 was proved in the more general situation of prime (not necessarily associative) Ω-rings by Yu. P. Razmyslov [247].

2.4 Rings of Quotients of Coproducts

Let $A=A_{1} \amalg_{K} A_{2}$ be the coproduct of algebras A_{1} and A_{2} with 1 over a field K, with each $\operatorname{dim}_{K}\left(A_{i}\right)>1$. By Corollary 1.4.11 we know that A is a prime ring. It is our purpose in the present section to prove that if each $\operatorname{dim}_{K}\left(A_{i}\right)>2$ and at least one A_{i} is a domain, then $Q_{s}(A)=A$, i.e., A is equal to its own symmetric ring of quotients. This is a special case of far more general results but is the only result needed in this book (§7.4). For more general coproducts $R=R_{1} \amalg_{\Delta} R_{2}$, where R_{1} and R_{2} are so-called Δ-rings with 1 over a division ring $\Delta, Q_{s}(R)$ has also been determined (see [217], also [190], [215], [216], [223]).

For the time being we assume that $A=A_{1} \amalg_{K} A_{2}, A_{1}$ and A_{2} with 1 over a field K, with each $\operatorname{dim}_{K}\left(A_{i}\right)>2$. We shall use the terminology and lemmas developed in section 1.4 and suggest the reader reacquaint himself with these matters. We let $Q=Q_{s}(A)$ denote the symmetric ring of quotients of A.

We fix a nonzero ideal I of A and let

$$
Q_{I}=\{q \in Q \mid q I+I q \subseteq A\}
$$

Next we fix $a \in I$ such that a is 0-pure of even height $n=|a|>0$ and thus we may write $a=a_{12}+a_{21}$. For $q \in Q_{I}$, we let $b_{q}=q a$ and $c_{q}=a q$ (when the context is clear we will sometimes write $b=b_{q}$ and $c=c_{q}$). We have immediately the simple relationship

$$
\begin{equation*}
c_{q} a=a b_{q}, \quad q \in Q_{I} \tag{2.6}
\end{equation*}
$$

Since a is 0-pure of even height it follows easily from (2.6) and Lemma 1.4.10 that $\left|b_{q}\right|=\left|c_{q}\right|=m_{q}$. Clearly b_{q} is 0-pure if and only if c_{q} is 0 -pure, and b_{q} is (i, j)-pure if and only if c_{q} is (i, j)-pure.

Lemma 2.4.1 If $q \in Q_{I}$ is such that $m_{q}<n$, then $q=0$.

Proof. If $q \neq 0$, choose $r \in I$ such that $0 \neq r q \in A$. Therefore $r q a \neq 0$ (since a is 0 -pure), whence $b=q a \neq 0$. We write $b=b_{1 j}+b_{2 j^{\prime}}$, whence without loss of generality we may assume $b_{1 j} \neq 0\left(\bmod H^{m-1}\right)$, where $m=m_{q}$. Now choose $y^{\prime}, y^{\prime \prime} \in A_{2}$ such that y^{\prime} and $y^{\prime \prime}$ are K-independent $\bmod H^{0}$ (this is possible since $\operatorname{dim}_{K}\left(A_{2}\right)>2$). Setting $c^{\prime}=a y^{\prime} q \in A$, we see from ($\left.a y^{\prime} q\right) a=a y^{\prime}(q a)$ that

$$
\begin{equation*}
c^{\prime} a=a y^{\prime} b . \tag{2.7}
\end{equation*}
$$

It follows from (2.7) that $\left|c^{\prime}\right|=m+1$, and examination of the $(2, j)$-component of (2.7) yields

$$
c_{2 j}^{\prime} a j^{\prime} j \equiv a_{21} y^{\prime} b_{1 j}\left(\bmod H^{n+m}\right)
$$

By Lemma 1.4.9 (we are assuming $m+1 \leq n$) there exists $e_{j^{\prime} 1} \in H_{j^{\prime} 1}^{n-m-1}$ such that $a_{j^{\prime} j} \equiv e_{j^{\prime} 1} y^{\prime} b_{1 j}\left(\bmod H^{n-1}\right)$. Similarly there exists $f_{j^{\prime} 1}$ such that $a_{j^{\prime} j} \equiv f_{j^{\prime} 1} y^{\prime \prime} b_{1 j}$. It follows that $e_{j^{\prime} 1} y^{\prime} \equiv$ $f_{j^{\prime} 1} y^{\prime \prime}$. By Remark 1.4 .8 we see in particular that $e_{j^{\prime} 1} \equiv 0$ (since $y^{\prime}, y^{\prime \prime}$ are K-independent $\bmod H^{0}$). This forces the contradiction $a_{j^{\prime} j} \equiv 0$ and the lemma is proved.

Lemma 2.4.2 If $q \in Q_{I}$ is such that $m_{q}>n$, then there exists $r \in A$ such that $m_{q-r}<m_{q}=m$.

Proof. We let $b=b_{q}$ and write $b=b_{1 j}+b_{2 j^{\prime}}$ (possibly $b_{1 j} \equiv 0$ or $b_{2 j^{\prime}} \equiv 0$). Likewise we have $c=c_{q}=c_{1 j}+c_{2 j^{\prime}}$. Examination of the (i, j)-component of $c a=a b$ shows that

$$
\begin{equation*}
c_{1 j} a_{j^{\prime} j} \equiv a_{12} b_{1 j} \tag{2.8}
\end{equation*}
$$

Applying Lemma 1.4.9 to (2.8), we see in particular that $b_{1 j} \equiv$ $e_{1 j} a_{j^{\prime} j}\left(\bmod H^{m-1}\right)$ for some $e_{1 j} \in H_{i j}^{m-n}$. In exactly the same fashion $b_{2 j^{\prime}} \equiv f_{2 j^{\prime}} a_{j j^{\prime}}$ for suitable $f_{2 j^{\prime}} \in H_{2 j^{\prime}}^{m-n}$. Setting $r=$ $e_{1 j}+f_{2 j^{\prime}}$ we have

$$
\begin{aligned}
(q-r) a & =b-r a \equiv b_{1 j}+b_{2 j^{\prime}}-\left(e_{1 j}+f_{2 j^{\prime}}\right)\left(a_{j j^{\prime}}+a_{j^{\prime} j}\right) \\
& \equiv\left(b_{1 j}-e_{1 j} a_{j^{\prime} j}\right)+\left(b_{2 j^{\prime}}-f_{2 j^{\prime}} a_{j^{\prime} j}\right) \equiv 0\left(\bmod H^{m-1}\right)
\end{aligned}
$$

In other words $m_{q-r}<m$ and the lemma is proved.
Lemma 2.4.3 If $q \in Q_{I}$ is such that $m_{q}=m$ and i is given, then there exist $\lambda, \mu \in K$ such that $(q-\lambda) a \equiv \mu a_{i i^{\prime}}$

Proof. We write $b=b_{q}=b_{1 j}+b_{2 j^{\prime}}, c=c_{q}=c_{1 j}+c_{2 j^{\prime}}$. We may assume that $b_{12} \not \equiv 0$. From (2.8) we obtain $c_{12} a_{12} \equiv a_{12} b_{12}$ and application of Lemma 1.4.9 yields $b_{12} \equiv \alpha a_{12}$ for some $\alpha \in$ K. Suppose $b_{21} \equiv 0$. Then

$$
(q-\alpha) a=b-\alpha a \equiv b_{12}-\alpha\left(a_{12}+a_{21}\right) \equiv-\alpha a_{21}
$$

Also $q a=b \equiv b_{12} \equiv \alpha a_{12}$. Suppose that $b_{21} \not \equiv 0$, and hence $b_{21} \equiv \beta a_{21}$ for some $\beta \in K$. Then

$$
(q-\alpha) a=b-\alpha a \equiv b_{12}+b_{21}-\alpha a_{12}-\alpha a_{21} \equiv(\beta-\alpha) a_{21}
$$

On the other hand

$$
(q-\beta) a=b-\beta a \equiv b_{12}+b_{21}-\beta a_{12}-\beta a_{21} \equiv(\alpha-\beta) a_{12}
$$

The four cases just discussed show that the lemma has been proved.

With these lemmas to draw on we are now in a position to prove

Theorem 2.4.4 Let $A=A_{1} \amalg_{K} A_{2}$ be the coproduct of algebras A_{1} and A_{2} with 1 over a field K, with each $\operatorname{dim}_{K}\left(A_{i}\right)>2$ and at least one of the A_{i} 's a domain. Then $Q_{s}(A)=A$.

Proof. We may assume that A_{1} is a domain. Suppose there exists $q \in Q_{s}$ such that $q \notin A$. We have $q I+I q \subseteq A$ for some nonzero ideal I of A, and we fix $a \in I, a 0$-pure of even height n. Repeated application of Lemma 2.4.2 (if necessary) together with Lemma 2.4 .1 shows that we may assume without
loss of generality that $m_{q}=n$, whence by Lemma 2.4 .3 we may assume that $q a \equiv \mu a_{12}, \mu \in K$. In fact we may furthermore assume that $q a \equiv a_{12}$ (just replace q by $\mu^{-1} q$). It then follows from (2.6) that also $a q \equiv a_{12}$.

We claim now that $A_{1}=K \oplus T_{1}$ where $T_{1}=\left\{x \in A_{1} \mid x q=\right.$ $0\}$. Indeed, for $x \in A_{1}$ we see immediately that $|x q a|=\left|x a_{12}\right| \leq$ n. In case $|x q a|<n$ the by Lemma 2.4.1 $x q=0$ and we are finished. If $|x q a|=n$ then by Lemma 2.4.3 there exist $\alpha, \beta \in K$ such that $(x q-\alpha) a \equiv \beta a_{12} \equiv \beta q a$, i.e., $(x q-\alpha-\beta q) a \equiv$ $0\left(\bmod H^{n-1}\right)$. By Lemma 2.4.1 again $x q-\alpha-\beta q=0$, i.e., $(x-\beta) q=\alpha$. If $\alpha \neq 0$, we set $x_{0}=\alpha^{-1}(x-\beta)$ and note that $x_{0} q=1$. From this we obtain a contradiction $a=x_{0} q a=$ $x_{0} a_{12}+\ldots$ (just compare the (2,1)-components of both sides). Therefore we are left with $\alpha=0$ and accordingly $(x-\beta) q=0$. This places $x-\beta \in T_{1}$, and so we have shown that $A_{1}=K \oplus T_{1}$.

We next claim that $A_{1}=K \oplus T_{2}$, where $T_{2}=\left\{x \in A_{1} \mid q x=\right.$ $x\}$. Indeed, since

$$
a(1-q)=a-a q \equiv a_{12}+a_{21}-a_{12} \equiv a_{21}
$$

the obvious analogue of the preceding claim may be invoked, with $1-q$ playing the role of q.

Since $\operatorname{dim}_{K}\left(A_{1}\right)>2$ and $A_{1}=K \oplus T_{1}, T_{1} \neq 0$. Choose $t_{1} \neq 0$ in T_{1} and let $t_{2} \in T_{2}$. We see that $0=t_{1} q t_{2}=t_{1} t_{2}$ and by our assumption that A_{1} is a domain we conclude that $T_{2}=0$. We therefore reach the contradiction that $A_{1}=K$ and the theorem is proved.

2.5 Derivations and (Anti)automorphisms

Let R be a semiprime ring. We set $Q_{m r}=Q_{m r}(R), Q_{r}=Q_{r}(R)$ and $Q_{s}=Q_{s}(R)$.

Proposition 2.5.1 Any derivation δ of a semiprime ring R can be extended uniquely to a derivation of $Q_{m r}$ (we shall let δ also denote its extension to $Q_{m r}$). Furthermore $Q_{r}^{\delta} \subseteq Q_{r}$ and $Q_{s}^{\delta} \subseteq$ Q_{s}.

Proof. Given any dense right ideal K of R, we set $K_{\delta}=$ $\sum_{x \in K} x\left(x^{\delta}: K\right)_{R}$. Clearly $K_{\delta} \subseteq K$ is a right ideal of R and $\left(K_{\delta}\right)^{\delta} \subseteq K$. We claim that K_{δ} is a dense right ideal of R. Indeed, let $u, v \in R$ and $u \neq 0$. Since K is a dense right ideal of $R, v r \in K$ and $u r \neq 0$ for some $r \in R$. As we already know $\left((v r)^{\delta}: K\right)_{R}$ is a dense right ideal of R. Therefore urr ${ }^{\prime} \neq 0$ for some $r^{\prime} \in\left((v r)^{\delta}: K\right)_{R}$ (see Proposition 2.1.1). Clearly $v r r^{\prime} \in K_{\delta}$ and so our claim is proved.

Let $q \in Q_{m r}$. Then $q J \subseteq R$ for some $J \in \mathcal{D}(R)$. We define $f: J_{\delta} \rightarrow R$ by the rule $f(x)=(q x)^{\delta}-q x^{\delta}$ for all $x \in J_{\delta}$. For $r \in R, a \in J_{\delta}$ we have

$$
\begin{aligned}
f(a r) & =(q a r)^{\delta}-q(a r)^{\delta}=((q a) r)^{\delta}-q(a r)^{\delta} \\
& =(q a)^{\delta} r+(q a) r^{\delta}-q a r^{\delta}-q a^{\delta} r=f(a) r
\end{aligned}
$$

Therefore $\left[f ; J_{\delta}\right] \in Q_{m r}$ and we define $q^{\delta}=\left[f ; J_{\delta}\right]$. Hence $q^{\delta} \in Q_{m r}$, and so δ has been extended uniquely to an element δ of $E n d_{\mathcal{Z}}\left(Q_{m r}\right)$ such that

$$
\begin{equation*}
q^{\delta} a=(q a)^{\delta}-q a^{\delta},(q a)^{\delta}=q^{\delta} a+q a^{\delta} \quad \text { for all } a \in J_{\delta} . \tag{2.9}
\end{equation*}
$$

Note that $q^{\delta} J_{\delta} \subseteq R$.
Let $p, q \in Q_{m r}$. By Lemma 2.1.8 there exist dense right ideals J, I of R such that $p J, q J, p q J \subseteq R, I \subseteq J_{\delta}$ and $q I \subseteq J_{\delta}$ as well. Then according to (2.9) we have

$$
\begin{aligned}
(p q)^{\delta} x & =(p q x)^{\delta}-p q x^{\delta}=p^{\delta}(q x)+p(q x)^{\delta}-p q x^{\delta} \\
& =\left(p^{\delta} q+p q^{\delta}\right) x
\end{aligned}
$$

for all $x \in I$. Hence $\left[(p q)^{\delta}-p^{\delta} q-p q^{\delta}\right] x=0$ and so by Proposition 2.1.7 we have $(p q)^{\delta}-p^{\delta} q-p q^{\delta}=0$. Therefore δ is a derivation of $Q_{m r}$.

Now let $q \in Q_{r}$. Then $q I \subseteq R$ for some dense ideal I of R. Clearly $\left(I^{2}\right)^{\delta} \subseteq I$. Letting J denote I^{2}, we conclude that $q^{\delta} J \subseteq(q J)^{\delta}+q J^{\delta} \subseteq R$ and so $q^{\delta} \in Q_{r}$.

Given any $q \in Q_{s}$, we have $q I+I q \in R$ for some dense ideal I of R. We already know that $q^{\delta} \in Q_{r}$. Again for $J=I^{2}$ we infer that $J q^{\delta} \subseteq(J q)^{\delta}+J^{\delta} q \subseteq R$ and thus $q^{\delta} \in Q_{s}$. The proof is complete.

Let $Q \in\left\{Q_{m r}, Q_{r}, Q_{s}\right\}$. Proposition 2.5.1 enables us to regard $\operatorname{Der}(R)$ as a Lie subring of $E n d_{\mathcal{Z}}(Q)$ where \mathcal{Z} is the ring of integers. We may also regard C as contained in $\operatorname{End}_{\mathcal{Z}}(Q)$ via the multiplication $x \mapsto c x$. $\operatorname{End} d_{\mathcal{Z}}(Q)$ becomes a C-ring according to $x^{t c}=c x^{t}, x \in Q, t \in \operatorname{End} \mathcal{Z}_{\mathcal{Z}}(Q), c \in C$. If $\delta \in \operatorname{Der}(Q)$, $c \in C$, and $x, y \in Q$, then

$$
(x y)^{\delta c}=c(x y)^{\delta}=c x^{\delta} y+c x y^{\delta}=x^{\delta c} y+x y^{\delta c}
$$

and so $\delta c \in \operatorname{Der}(Q)$. Thus $\operatorname{Der}(Q)$ is a submodule of the right C-module $E n d z(Q)$ and in particular $(\operatorname{Der}(R)) C$ is a C submodule of $\operatorname{Der}(Q)$. It is important to point out that in general $c \in C$ does not commute with $\delta \in \operatorname{Der}(Q)$, but we do have the commutation formula

$$
\begin{equation*}
c \delta=\delta c+c^{\delta}, c \in C, \delta \in \operatorname{Der}(R) . \tag{2.10}
\end{equation*}
$$

We let $D_{i}=D_{i}(R)$ denote the inner derivations of Q, i.e., all derivations of Q of the form $a d(q), q \in Q$. This is a (possibly) larger set of derivations than the set of X-inner derivations of R (so named by S. Montgomery in honor of Kharchenko), the latter being those of the form $\operatorname{ad}(q)$ where $[R, q] \subseteq R$.

Remark 2.5.2 Let $q \in Q_{m r}$ be such that ad (q) is an X-inner derivation of R. Then $q \in Q_{s}$.

Proof. Let $J=(q: R)_{R}$. Since $[R, q], q J \subseteq R, J q \subseteq$ R as well. Hence $R J q \subseteq R$. Letting I denote $R J$, we note
that $l_{R}(I)=0$ and so $I \in \mathcal{I}(R)$ (see Proposition 2.1.1 and Remark 2.1.4). Further, again since $I q,[R, q] \subseteq R, q I \subseteq R$ as well and so $q \in Q_{s}$.

Note that D_{i} is a Lie ideal of $\operatorname{Der}(Q)$, and in fact we have the specific formula:

$$
\begin{equation*}
[a d(q), \delta]=a d\left(q^{\delta}\right) \tag{2.11}
\end{equation*}
$$

The Lie ring in which we are primarily interested is

$$
D=D(R)=\operatorname{Der}(R) C+D_{i}
$$

If R is a prime ring and Φ is the prime subfield of C, then D is a Lie algebra over Φ.

We now turn our attention to the set of all automorphisms and antiautomorphisms of a semiprime ring R. This set forms a group under composition of mappings and we denote this group by $G=G(R)$.

Proposition 2.5.3 Any automorphism σ of a semiprime ring R can be extended uniquely to an automorphism of $Q_{m r}$ (we shall let σ also denote its extension to $Q_{m r}$). Furthermore $Q_{r}^{\sigma}=Q_{r}$ and $Q_{s}^{\sigma}=Q_{s}$.

Proof. Let $q \in Q_{m r}$. Then $q J \subseteq R$ for some dense right ideal J of R. Setting $I=J^{\sigma}$, we note that I is a dense right ideal of R. Define $f: I \rightarrow R$ by the rule $f(x)=\left(q x^{\sigma^{-1}}\right)^{\sigma}$ for all $x \in I$. Then for $r \in R$ we have

$$
f(x r)=\left(q(x r)^{\sigma^{-1}}\right)^{\sigma}=\left(\left(q x^{\sigma^{-1}}\right) r^{\sigma^{-1}}\right)^{\sigma}=\left(q x^{\sigma^{-1}}\right)^{\sigma} r=f(x) r
$$

and so $[f ; I] \in Q_{m r}$. We define $q^{\sigma}=[f ; I]$. Clearly the mapping $\sigma: Q_{m r} \rightarrow Q_{m r}$ is additive, and so σ has been extended uniquely to an element σ of $E n d_{\mathcal{Z}}\left(Q_{m r}\right)$ such that

$$
\begin{equation*}
q^{\sigma} x^{\sigma}=(q x)^{\sigma} \quad \text { for all } \quad x \in J \tag{2.12}
\end{equation*}
$$

Note that $q^{\sigma} J^{\sigma} \subseteq R$.
Let now $p, q \in Q_{m r}$. By Lemma 2.1.8 $q J \subseteq(p: R)_{R}$ for some dense right ideal J of R. It follows from (2.12) that for $x \in J$ we have

$$
(p q)^{\sigma} x^{\sigma}=(p q x)^{\sigma}=(p(q x))^{\sigma}=p^{\sigma}(q x)^{\sigma}=p^{\sigma} q^{\sigma} x^{\sigma}
$$

and so $(p q)^{\sigma}=p^{\sigma} q^{\sigma}$. Therefore σ is an endomorphism of $Q_{m r}$. Applying the above argument to σ^{-1}, we conclude that σ is invertible and so an automorphism of $Q_{m r}$. Obviously $Q_{r}^{\sigma}=Q_{r}$ and $Q_{s}^{\sigma}=Q_{s}$.

Proposition 2.5.4 Any antiautomorphism σ of a semiprime ring R can be extended uniquely to an antiautomorphism of $Q=$ Q_{s} (and thus we have $G(R) \subseteq G(Q)$).

Proof. Let $q \in Q$. Then $q J+J q \subseteq R$ for some dense ideal J of R. Note that $I=J^{\sigma}$ is a dense ideal of R as well. We define $f: I \rightarrow R$ by the rule $f(x)=\left(x^{\sigma^{-1}} q\right)^{\sigma}$. It is easy to check that f is a homomorphism of right R-modules and so $\{f ; I\} \in Q_{r}$. We set $q^{\sigma}=\{f ; I\}$ and note that

$$
q^{\sigma} x^{\sigma}=(x q)^{\sigma} \quad \text { for all } \quad x \in J
$$

Further, for all $a, b \in J$ we have

$$
a^{\sigma} q^{\sigma} b^{\sigma}=a^{\sigma}(b q)^{\sigma}=(b q a)^{\sigma}=(q a)^{\sigma} b^{\sigma}
$$

and so $(q a)^{\sigma}=a^{\sigma} q^{\sigma}$. It follows that $q^{\sigma} \in Q_{s}$ and hence $\sigma: Q_{s} \rightarrow Q_{s}$. Clearly σ is an additive mapping. Let now $p, q \in Q$. Choose a dense ideal J of R such that $J p, p J, J q$, $q J, J p q, p q J$ are all contained in R and let $I=J^{2}$. Then $I q, q I, I p, p I \subseteq J$. For all $x \in I$ we have

$$
(p q)^{\sigma} x^{\sigma}=(x p q)^{\sigma}=q^{\sigma}(x p)^{\sigma}=q^{\sigma} p^{\sigma} x^{\sigma},
$$

which implies that $(p q)^{\sigma}=q^{\sigma} p^{\sigma}$. Now it is clear that σ is an antiautomorphism of Q.

We let $G_{i}=G_{i}(R)$ be the set of all automorphisms σ of R for which there exists an invertible element $t \in Q_{m r}$ such that $r^{\sigma}=t^{-1} r t$ for all $r \in R$ (i.e., $\sigma=\operatorname{inn}(t)$). It is easy to see that in fact $t \in Q_{s}$. Following S. Montgomery such automorphism is called X-inner and the element t is called a normalizing element for R. Clearly G_{i} is a normal subgroup of G and includes the ordinary inner automorphisms of R.

In Chapter 7 certain mappings involving derivations, automorphisms, and antiautomorphisms will be very useful in induction arguments, and we now describe some of them.

Consider the ring $Q^{\circ} \otimes_{\mathcal{Z}} Q$, the tensor product of $Q=$ $Q_{m r}(R)$ and its opposite ring Q° over the integers \mathcal{Z}, and the ring $E n d_{\mathcal{Z}}(Q)$. For any $\epsilon \in E n d_{\mathcal{Z}}(Q)$ the mapping of $Q^{\circ} \otimes_{\mathcal{Z}} Q$ into $Q^{\circ} \otimes_{\mathcal{Z}} Q$ given by $a \otimes b \mapsto a^{\epsilon} \otimes b$ is always well-defined. Further for $\beta=\sum_{j} x_{j} \otimes y_{j} \in Q^{\circ} \otimes_{\mathcal{Z}} Q$ we denote the image under this map by β^{ϵ}. The mapping $x \mapsto \sum_{j} x_{j} x y_{j}, x \in Q$ is also welldefined and we denote the image under this mapping by $x \cdot \beta$. Clearly Q is a right $Q^{\circ} \otimes_{\mathcal{Z}} Q$-module under the multiplication $x \cdot \beta, x \in Q, \beta \in Q^{\circ} \otimes_{\mathcal{Z}} Q$.

We will often be interested in cutting down the domain of mappings to subsets $N_{I, J}$ of $Q^{\circ} \otimes_{\mathcal{Z}} Q$ defined as follows: given $I \in \mathcal{I}(R), J \in \mathcal{D}(R), N_{I, J}$ is the subring of $Q^{\circ} \otimes_{\mathcal{Z}} Q$ generated by all elements of the form $r \otimes r^{\prime}$, where $r \in I, r^{\prime} \in J$. In case $I=J \in \mathcal{I}(R)$ we let $N_{I}=N_{I, I}$. We remark that N_{I} is always an ideal of $N=N_{R}$ and $N_{I, J}$ is always a right ideal of N.

Remark 2.5.5 Let R be a semiprime ring with extended centroid $C, Q=Q_{m r}(R), I$ a dense ideal of R and $q_{1}, q_{2}, \ldots, q_{n} \in$ Q. Suppose that $q_{1} \notin \sum_{i=2}^{n} C q_{i}$. Then there exists $\beta \in N_{I}$ such that

$$
q_{1} \cdot \beta \neq 0 \quad \text { but } \quad q_{i} \cdot \beta=0 \quad \text { for all } i=2,3, \ldots, n \text {. }
$$

Proof. By Proposition 2.1.10, $Q_{m r}(I)=Q$. Now applying Theorem 2.3.3 (with I instead of R), we complete the proof.

Of particular interest to us is the situation where $\epsilon=\sigma$, an element of $G=G(R)$ (especially when $\sigma \in \operatorname{Aut}(R)$), or $\epsilon=\delta$, an element of $D=D(R)$.

For $\sigma \in \operatorname{Aut}(R)$ the map $\beta \mapsto \beta^{\sigma}$ is a ring homomorphism.
For $\delta \in D$ and $y \in Q$, and $\beta \in Q^{\circ} \otimes_{\mathcal{Z}} Q$ we have the following formulas whose straightforward verification will be left to the reader.

$$
\begin{align*}
& \text { If } \gamma=\beta(y \otimes 1), \quad \text { then } \quad \gamma^{\delta}=\beta^{\delta}(y \otimes 1)+\beta\left(y^{\delta} \otimes 1\right) ; \\
& \text { If } \gamma=\beta(1 \otimes y), \quad \text { then } \quad \gamma^{\delta}=\beta^{\delta}(1 \otimes y) . \tag{2.13}
\end{align*}
$$

Associated with each element $\sigma \in \operatorname{Aut}(R)$ is the set

$$
M_{\sigma}=\left\{s \in Q_{m r} \mid r s=s r^{\sigma} \quad \text { for all } \quad r \in R\right\}
$$

Clearly M_{σ} is a C-submodule of $Q_{m r}$. It is called the conjugation module of σ. If $\tau \in \operatorname{Aut}(R)$, then one can easily prove that

$$
\begin{equation*}
M_{\sigma} M_{\tau}=M_{\sigma \tau} \tag{2.14}
\end{equation*}
$$

We next note that

$$
\begin{equation*}
M_{\sigma} \subseteq Q_{s} \tag{2.15}
\end{equation*}
$$

Indeed, let $0 \neq t \in M_{\sigma}$. We have $t I \subseteq R$ where $I=(t: R)_{R}$. Clearly $I^{\sigma^{-1}} t=t I \subseteq R$ and so for $J=R I^{\sigma^{-1}}$ we have $J t \subseteq R$ and $J \in \mathcal{I}(R)$. Now from $J t=t J^{\sigma}$ we conclude that $t \in Q_{s}$.

Another characterization of M_{σ} for prime rings is given in the following

Lemma 2.5.6 Let R be a prime ring, $\sigma \in \operatorname{Aut}(R)$ and $Q=Q_{s}$. Then

$$
M_{\sigma}=\{s \in Q \mid s \text { is invertible in } Q \text { and } \sigma=\operatorname{inn}(s)\} \cup\{0\} .
$$

Proof. It is immediate that M_{σ} contains the right side of the above equation. Let $0 \neq s \in M_{\sigma}$. By (2.15) there exists a dense ideal K of R such that $K s+s K \subseteq R$. We next note that $s K$ is an ideal of R since $r s K=s r^{\sigma} K$ for all $r \in R$. The mapping $f: s K \rightarrow R$ given by $s k \mapsto k$ is well-defined since if $s k=0$, then $0=r s k=s r^{\sigma} k$ for all $r \in R$ which implies that $k=0$. Clearly f is a right R-module map and thus determines an element $q \in Q_{r}$ such that $q s k=k$ for all $k \in K$. It follows that $q s=1$, and from $s q s k=s k$ for all $s k \in s K$ we see that $s q=1$ and so s is invertible in Q_{r}. From the definition of s we then have $s^{-1} r s=r^{\sigma}$ and $s^{-1} r=r^{\sigma} s^{-1}$ for all $r \in R$. Substituting $r=a^{\sigma^{-1}}$, we obtain $a s^{-1}=s^{-1} a^{\sigma^{-1}}$ for all $a \in R$, i.e. $s^{-1} \in M_{\sigma^{-1}}$. Hence from (2.15) we infer that $s^{-1} \in Q$ and so s is invertible in Q. The proof is complete.

Corollary 2.5.7 Let R be a prime ring and $\sigma \in \operatorname{Aut}(R)$. Then $M_{\sigma} \neq 0$ if and only if $\sigma \in G_{i}$.

Remark 2.5.8 If $\sigma=1$, then $M_{\sigma}=C$.
Now we generalize the notion of C-independence as follows:
Let $q_{1}, q_{2}, \ldots, q_{n} \in Q_{m r}$ and $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n} \in \operatorname{Aut}(R)$. Then q_{1} is said to be left dependent on $q_{2}, q_{3}, \ldots, q_{n}$ re $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}$ if $q_{1} \in \sum_{i=2}^{n} M_{\sigma_{1}^{-1} \sigma_{i}} q_{i}$ (for $n=1 q_{1}=0$).

Equivalently, q_{1} is left independent of q_{2}, \ldots, q_{n} re $\sigma_{1}, \ldots, \sigma_{n}$ if $q_{1} \notin \sum_{i=2}^{n} M_{\sigma_{1}^{-1} \sigma_{i}} q_{i}$ with $q_{1} \neq 0$ in case $n=1$.

In view of the preceding remark, if each $\sigma_{i}=1$, then the notion of left independence coincides with C-independence. We now prove a useful "weak density" result for left independence due to Kharchenko.

Theorem 2.5.9 Let R be a semiprime ring, $Q=Q_{m r}(R), I \in$ $\mathcal{I}(R), J \in \mathcal{D}(R)$ and let q_{1} be left independent of $q_{2}, q_{3}, \ldots, q_{n}$ re $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}$ where $q_{i} \in Q, \sigma_{i} \in \operatorname{Aut}(R)$. Then there exists $\beta \in N_{I, J}$ such that $q_{1} \cdot \beta^{\sigma_{1}} \neq 0$ and $q_{i} \cdot \beta^{\sigma_{i}}=0$ for all $i \geq 2$.

Proof. The proof is by induction on n. The result is clear for $n=1$ since $I^{\sigma_{1}} q_{1} J \neq 0$. We now assume the result true for $n-1$ and prove it for n. We suppose it is not true for n. By Lemma 2.1.8 there exists $L \in \mathcal{D}(R)$ such that $L \subseteq J$ and $q_{i} L \subseteq R$ for all $i=1,2, \ldots, n$. We let $N^{\prime}=N_{I, L}$ and set

$$
B=\left\{\beta \in N^{\prime} \mid q_{i} \cdot \beta^{\sigma_{i}}=0 \quad \text { for } \quad i=2,3, \ldots, n-1\right\}
$$

(in case $n=2$, we just set $B=N^{\prime}$). It is easy to see that B is a right ideal of the ring $R^{\circ} \otimes R$. Hence $K=\left\{q_{n} \cdot \beta^{\sigma_{n}} \mid \beta \in B\right\}$ (which lies in R since $q_{n} L \subseteq R$) is an ideal of R (since it is a subbimodule of the right $R^{\circ} \otimes R$-module R). Suppose that $K=0$. Applying the induction assumption to $q_{1}, q_{2}, \ldots, q_{n-1}$, we find an element $\beta \in N^{\prime}$ such that $q_{1} \cdot \beta^{\sigma_{1}} \neq 0$ and $q_{i} \cdot \beta^{\sigma_{i}}=0$ for all $i=2,3, \ldots, n-1$. Clearly $\beta \in B$. Hence $q_{n} \cdot \beta^{\sigma_{n}}=0$ and our statement is proved. Therefore we may assume that $K \neq 0$. Now we define $f: K \rightarrow R$ by the rule $q_{n} \cdot \beta^{\sigma_{n}} \mapsto q_{1} \cdot \beta^{\sigma_{1}}, \beta \in B$. By our assumption that the theorem is not true we see that f is well-defined. Clearly f is a right R-module homomorphism. By Proposition 2.2.2 there exists an element $t \in Q_{r}$ such that $f(x)=t x$ for all $x \in K$. This means that $t\left(q_{n} \cdot \beta^{\sigma_{n}}\right)=q_{1} \cdot \beta^{\sigma_{1}}$ for all $\beta \in B$. Now let $\beta=\sum_{j} x_{j} \otimes y_{j} \in B$ and $r \in R$. Setting $\gamma=\beta(r \otimes 1)$, we note that $\gamma \in B$. We have

$$
\begin{aligned}
\operatorname{tr}^{\sigma_{n}}\left(q_{n} \cdot \beta^{\sigma_{n}}\right) & =\sum_{j} t r^{\sigma_{n}} x_{j}^{\sigma_{n}} q_{n} y_{j}=\sum_{j} t\left(r x_{j}\right)^{\sigma_{n}} q_{n} y_{j} \\
& =t\left(q_{n} \cdot \gamma^{\sigma_{n}}\right)=q_{1} \cdot \gamma^{\sigma_{1}}=\sum_{j}\left(r x_{j}\right)^{\sigma_{1}} q_{1} y_{j} \\
& =\sum_{j} r^{\sigma_{1}} x_{j}^{\sigma_{1}} q_{1} y_{j}=r^{\sigma_{1}}\left(q_{1} \cdot \beta^{\sigma_{1}}\right)=r^{\sigma_{1}} t\left(q_{n} \cdot \beta^{\sigma_{n}}\right)
\end{aligned}
$$

and hence $\left(t r^{\sigma_{n}}-r^{\sigma_{1}} t\right) k=0$ for all $k \in K$, i.e., $\left(t r^{\sigma_{1}^{-1} \sigma_{n}}-r t\right) K=$ 0 for all $r \in R$. Setting $e=E(K)$ and $U=r_{R}(K)$, we recall from Theorem 2.3.9 that $e U=0$. Therefore $\left(\right.$ ter $\left.^{\sigma_{1}^{-1} \sigma_{n}}-r t e\right)(K+U)=$ 0 , whence ter $\sigma_{1}^{-1} \sigma_{n}-r t e=0$ since $K+U \in \mathcal{I}(R)$. It follows
that $s=t e \in M_{\sigma_{1}^{-1} \sigma_{n}}$. Since $k e=k$ for all $k \in K, s k=t k=$ $f(k)$. Now $q_{1}-s q_{n}$ must be left independent of $q_{2}, q_{3}, \ldots, q_{n-1}$ re $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n-1}$ since otherwise $q_{1}-s q_{n} \in \sum_{i=2}^{n-1} M_{\sigma_{1}^{-1} \sigma_{i}} q_{i}$, that is, $q_{1} \in \sum_{i=2}^{n} M_{\sigma_{1}^{-1} \sigma_{i}} q_{i}$, a contradiction to the original hypothesis. By our induction hypothesis again, this time applied to $q_{1}-$ $s q_{n}, q_{2}, \ldots, q_{n-1}$ re $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n-1}$ there exists $\beta \in B$ such that $\left(q_{1}-s q_{n}\right) \cdot \beta^{\sigma_{1}} \neq 0$. But on the other hand, writing $\beta=\sum_{j} x_{j} \otimes y_{j}$, we have

$$
\left(s q_{n}\right) \cdot \beta^{\sigma_{1}}=\sum x_{j}^{\sigma_{1}} s q_{n} y_{j}=\sum s x_{j}^{\sigma_{n}} q_{n} y_{j}=s\left(q_{n} \cdot \beta^{\sigma_{n}}\right)=q_{1} \cdot \beta^{\sigma_{1}}
$$

and thus we have the contradiction $\left(q_{1}-s q_{n}\right) \cdot \beta^{\sigma_{1}}=0$. The theorem is thereby proved.

This Page Intentionally Left Blank

Chapter 3

The Method of Orthogonal Completions

Our goal in this chapter is to describe the method of orthogonal completions (see [25], [33], [32], [35], and [228]). In the study of semiprime rings it turns out to be useful if one can reduce the problem to the case of prime rings. However, directly factoring a semiprime ring by a prime ideal turns out to be ineffective in certain cases. For example, it is known (special case of Theorem 6.4.4) that every polynomial identity of a prime ring R is an identity of its maximal right ring of quotients $Q_{m r}(R)$. It is natural to try to prove an analogous result for semiprime rings. The direct reduction to the case of prime rings is difficult here, since, in general, there is no homomorphism $Q_{m r}(R) \rightarrow Q_{m r}(R / P)$ for a prime ideal P of R.

Similar difficulties arise in considering a number of other questions connected with the maximal right ring of quotients of semiprime rings, in the study of semiprime rings with involution or in the study of derivations of semiprime rings. As we shall show, many of this difficulties of reducing the "semiprime case" to the "prime case" can be successfully overcome by the method of orthogonal completions.

3.1 Basic Notions and Constructions

In what follows C will be a von Neumann regular selfinjective commutative ring with 1 . Clearly $Q_{m r}(C)=C$ and so

$$
r_{C}(T)=(1-E(T)) C
$$

for any subset $T \subseteq C$ by Theorem 2.3.9. A unital right C module N is called nonsingular if for any element $0 \neq x \in N$ its right annihilator $r_{C}(x)$ is not essential.

Lemma 3.1.1 Let N be a right C-module. Then the following conditions are equivalent:
(i) N is nonsingular;
(ii) For any subset $T \subseteq N$ there exists a unique idempotent $E(T) \in C$ such that $r_{C}(T)=(1-E(T)) C$;
(iii) $E(T e)=E(T) e$ for any subset $T \subseteq N$ and $e=e^{2} \in C$.

Proof. (i) \Rightarrow (ii) Let $T \subseteq N$. Setting $e=E\left(r_{C}(T)\right)$, we note that $I=(1-e) C+r_{C}(T)$ is a dense ideal of C by Remark 2.1.5. Since $T e I=0$, it follows from our assumptions that $T e=0$ and so $e \in r_{C}(T)$. On the other hand $e c=c$ for all $c \in r_{C}(T)$ by Theorem 2.3.9(i). Therefore $r_{C}(T)=e C$ and (ii) is proved. From (ii) it follows that $r_{C}(x)=(1-E(x)) C$ for all $x \in N$. Hence if $x \neq 0$, then $r_{C}(x)$ is not essential for and so N is nonsingular. The last statement is proved analogously to Theorem 2.3.9(ii).

The criteria of Lemma 3.1.1 yields two corollaries. The first one follows directly from Theorem 2.3.9.

Corollary 3.1.2 Let R be a semiprime ring. Then $Q_{m r}(R)$ is a nonsingular module over its center C.

Corollary 3.1.3 Let R be a semiprime ring, $Q=Q_{m r}(R)$ and $D=\operatorname{Der}(Q)$. Then D is a nonsingular right C-module.

Proof. Let $d \in D$. Then $r_{C}(d)=r_{C}\left(Q^{d}\right)=\left(1-E\left(Q^{d}\right)\right) C$ which completes the proof.

Applying the same arguments as in the proof of the Theorem 2.3.9(iv), one can prove the following

Remark 3.1.4 Let N be a nonsingular right C-module, $M=$ $\sum_{i=1}^{n} a_{i} C$ a finitely generated submodule of N and let k be the minimal number of generators of M. Then there exist elements $m_{1}, \ldots, m_{k} \in M$ such that $M=\oplus_{i=1}^{k} m_{i} C$ and $E\left(m_{i}\right) E\left(m_{i+1}\right)=$ $E\left(m_{i+1}\right)$ for all $i=1, \ldots, k-1$.

We set

$$
B=B(C)=\left\{e \in C \mid e^{2}=e\right\} .
$$

A convenient partial ordering of B is given as follows: for $e, f \in$ $B e \leq f$ if $e=e f$. Clearly $e \leq f$ if and only if $1-e \geq 1-f$. A subset $U \subseteq B$ is called dense if $r_{C}(U)=0$ (i.e., $E(U)=1$). Further, a subset U is said to be orthogonal if $u v=0$ for all $u \neq v \in U$. We note that for any dense orthogonal subsets $U, V \subseteq B$ the subset

$$
\begin{equation*}
U V=\{u v \mid u \in U, v \in V\} \tag{3.1}
\end{equation*}
$$

is dense orthogonal as well.
Remark 3.1.5 Let T be a subset of B such that $e T \subseteq T$ for any $e \in B$, and let V be a maximal orthogonal subset of T. Then $U=V \cup\{1-E(T)\}$ is a dense orthogonal subset of B and $E(V)=E(T)$.

Proof. Clearly U is an orthogonal subset of B. Suppose that $0 \neq e^{2}=e \in r_{C}(U)$. Since $e(1-E(T))=0$ and $r_{C}(T)=$ $(1-E(T)) C$, we have $e T \neq 0$ and so et $\neq 0$ for some $t \in T$. By assumption et $\in T$. Then $V \cup\{e t\}$ is an orthogonal subset of T. By the maximality of V we conclude that $e t \in V$ and so $0=(e t) e=e t$, a contradiction.

We set $e=E(V)$. Since $r_{C}(V) \supseteq r_{C}(T)$, we infer that $e E(T)=e$. Clearly $U(1-e) E(T)=0$. By the density of U we conclude that $(1-e) E(T)=0$ and so $E(T)=e$. The proof is complete.

In what follows N will be a nonsingular right C-module. A subset $T \subseteq N$ is called orthogonally complete if for any orthogonal dense subset $U \subseteq B$ and any subset $\left\{t_{u} \mid u \in U\right\} \subseteq T$ there exists an element $t \in T$ such that $t u=t_{u} u$ for all $u \in U$.

We note that the element $t \in T$ is uniquely determined by the conditions $t u=t_{u} u$ for all $u \in U$. Indeed, assume that for some $x \in N$ we have that $u x=u t_{u}$ for all $u \in U$. Then $(x-t) u=0$ for all $u \in U$ and so $U \subseteq r_{C}(x-t)=(1-E(x-t)) C$. Since U is dense, $r_{C}(x-t)=C$ and $x=t$. We denote this element t by

$$
t=\sum_{u \in U}{ }^{\perp} t_{u} u
$$

Now it is clear that the intersection of any family of orthogonally complete subsets of N is again orthogonally complete. Consider next an arbitrary orthogonal subset V of B and $t_{v} \in T$ where T is an orthogonally complete subset containing 0 . Set $w=$ $1-E(V), U=V \cup\{w\}$ and $t_{w}=0$. We then define $\sum_{v \in V}^{\perp} t_{v} v=$ $\sum_{u \in U}^{\perp} t_{u} u$.

The following example plays a key role in the demonstration of connections of the orthogonally completion method with the classical Los and Horn theorems.

Example. Let $\left\{R_{i} \mid i \in I\right\}$ be a family of prime rings with extended centroids C_{i} and maximal right rings of quotients Q_{i}. It is easy to see that $Q=Q_{m r}\left(\prod_{i \in I} R_{i}\right)=\prod_{i \in I} Q_{i}$ and the extended centroid C of $\prod_{i \in I} R_{i}$ is equal to $\prod_{i \in I} C_{i}$. One can easily check that a subset $T \subseteq Q$ is orthogonally complete if and only if $T=\prod_{i=1} T_{i}$ where T_{i} is the canonical projection of T into Q_{i}.

The following proposition gives a characterization of orthogonally complete C-modules.

Proposition 3.1.6 Let N be a nonsingular C-module. Then N is orthogonally complete if and only if N is an injective C module.

Proof. Suppose that N is orthogonally complete and let $f: L \rightarrow N$ is a homomorphism of an ideal L of the ring C. According to Baer's criteria, it is enough to prove that there exists an element $x \in N$ such that $f(y)=x y$ for all $y \in L$. Let V be a maximal orthogonal subset of $L \cap B$. Since C is von Neumann regular, $L=C(L \cap B)$ and so $E(L)=E(L \cap B)$. By Remark 3.1.5, $U=V \cup\{1-E(L)\}$ is a dense orthogonal subset of $B=B(C)$. We set $x_{v}=f(v)$ for all $v \in V, w=1-E(V)$, $x_{w}=0$ and $x=\sum_{u \in U}^{\perp} x_{u} u$. Let now $y \in L$. Then for all $v \in V$ we have

$$
(x y) v=(x v) y=x_{v} v y=f(v) v y=f(v y)=f(y v)=f(y) v .
$$

Since $V w=0, L w=0$ as well. Hence $y w=0$ and

$$
(x y) w=(x w) y=0=f(y w)=f(y) w .
$$

Therefore $r_{C}(x y-f(y)) \supseteq U$ and so $r_{C}(x y-f(y))=C$, and $f(y)=x y$. Hence N is injective.

Assume now that N is injective and let U be dense orthogonal subset of $B, x_{u} \in N, u \in U$. Note that $L=\sum_{u \in U} u C=$ $\oplus_{u \in U} u C$. Define a homomorphism $f: L \rightarrow N$ by the rule $f(u)=x_{u} u, u \in U$, and its consequences. By assumption there exists an element $x \in N$ such that $f(y)=x y$ for all $y \in L$. In particular $x u=f(u)=x_{u} u$ for all $u \in U$ and so N is orthogonally complete.

We continue with the following useful remarks.
Remark 3.1.7 Let R be a semiprime ring with extended centroid $C, U \subseteq B(C)$ a dense orthogonal subset, $I_{u}=(u: R)_{R}$, $D_{u} \in \mathcal{D}(R), u \in U$. Then:
(i) $I=\sum_{u \in U} I_{u} u$ is a dense ideal of R;
(ii) $D=\sum_{u \in U} D_{u} I_{u} u$ is a dense right ideal of R.

Proof. Since $u \in C, I_{u}$ is a dense ideal of R. Hence I is an ideal of R. Consider $x \in r_{R}(I)$. We have $I_{u} u x=0$ for all $u \in U$. As I_{u} is dense, $x u=u x=0$ by Proposition 2.1.7. Hence $U \subseteq r_{C}(x)=(1-E(x)) C$ and so $r_{C}(x)=C$ by the density of U. It follows that $x=0$ and so I is dense.

Now let $r_{1}, r_{2} \in R$ with $r_{1} \neq 0$. Hence $E\left(r_{1}\right) \neq 0$ and so $u E\left(r_{1}\right) \neq 0$ for some $u \in U$. By Theorem 2.3.9(ii) $E\left(u r_{1}\right)=$ $u E\left(r_{1}\right) \neq 0$ and hence $u r_{1} \neq 0$ as well. Since D_{u} is a dense right ideal of R, there exists an element $r^{\prime} \in R$ such that $u r_{1} r^{\prime} \neq 0$ and $r_{2} r^{\prime} \in D_{u}$. Recalling that I_{u} is a dense ideal of R, we infer that $u r_{1} r^{\prime} r^{\prime \prime} \neq 0$ for some $r^{\prime \prime} \in I_{u}$. Setting $r=u r^{\prime} r^{\prime \prime}$, we note that $r_{2} r=r_{2} r^{\prime} r^{\prime \prime} u \in D_{u} I_{u} u \subseteq D$ and $r_{1} r \neq 0$. Thus D is a dense right ideal of R.

Remark 3.1.8 Let $x=\sum_{u \in U}^{\perp} x_{u} u \in N, y=\sum_{v \in V}^{\perp} y_{v} v \in N$ where $x_{u}, y_{v} \in N$ and U, V are dense orthogonal subsets of B. Then $x+y=\sum_{u v \in U V}^{\perp}\left(x_{u}+y_{v}\right) u v$.

Proof. By (3.1) $U V$ is a dense orthogonal subset of B. For all $u \in U, v \in V$ we have

$$
(x+y) u v=(x u) v+(y v) u=x_{u} u v+y_{v} u v=\left(x_{u}+y_{v}\right) u v
$$

which means that $x+y=\sum_{u v \in U V}^{\perp}\left(x_{u}+y_{v}\right) u v$.
The proof of the following remark is similar to that of the preceding one and is left to the reader.

Remark 3.1.9 Let R be a semiprime ring with extended centroid $C, Q=Q_{m r}(R), a \in Q, x=\sum_{u \in U}^{\perp} x_{u} u \in Q, y=$ $\sum_{v \in V}^{\perp} y_{v} v \in Q$ where $x_{u}, y_{v} \in Q$ and U, V are dense orthogonal subsets of $B(C)$. Then $x y=\sum_{u v \in U V}^{\perp} x_{u} y_{v} u v$ and $x a=$ $\sum_{u \in U}^{\perp} x_{u} a u$.

Now we are in a position to prove the following important results.

Proposition 3.1.10 Let R be a semiprime ring, $Q_{s}=Q_{s}(R)$, $Q_{r}=Q_{r}(R), Q_{m r}=Q_{m r}(R)$, and $D_{i}=\{a d(q) \mid q \in Q\}$. Then each of the right C-modules $Q_{m r}, Q_{r}, Q_{s}$ and D_{i} is orthogonally complete.

Proof. Let $\left\{q_{u} \mid u \in U\right\} \subseteq Q_{m r}$ where U is a dense orthogonal subset of B. We set $I_{u}=(u: R)_{R}, D_{u}=\left(q_{u}: R\right)_{R}$ and $D=\sum_{u \in U} D_{u} I_{u} u$. By Remark 3.1.7 D is a dense right ideal of R. Since U is an orthogonal subset, $D=\oplus_{u \in U} D_{u} I_{u} u$. Define a homomorphism of right R-modules $f: D \rightarrow R$ by the rule $f\left(d_{u} i_{u} u\right)=q_{u} d_{u} i_{u} u$ (where $d_{u} \in D_{u}$ and $i_{u} \in I_{u}$) and its consequences. Setting $q=[f ; D] \in Q_{m r}$, we note that $q d_{u} i_{u} u=q_{u} d_{u} i_{u} u$ and so $\left(q u-q_{u} u\right) d_{u} i_{u}=0$ for all $d_{u} \in D_{u}$ and $i_{u} \in I_{u}$. Since I_{u} and D_{u} are dense right ideals, we have $q u=q_{u} u$ for all $u \in U$ and so $Q_{m r}$ is orthogonally complete.

If in the above consideration all q_{u} are in Q_{r}, then we take each D_{u} to be some dense ideal of R such that $q_{u} D_{u} \subseteq R$. Hence D is a dense ideal of R and so $q \in Q_{r}$. If all q_{u} are in Q_{s}, we can assume that the dense ideals D_{u} are chosen in such a way that $q_{u} D_{u}+D_{u} q_{u} \subseteq R$. Then one can easily check that $D q \subseteq R$ which implies that $q \in Q_{s}$.

Now let be given $U \subseteq B$ a dense orthogonal subset. For any subset $\left\{a d\left(q_{u}\right) \mid q_{u} \in Q_{s}\right\} \subseteq D_{i}(R)$ we set $q=\sum_{u \in U}^{\perp} q_{u} u$ and note that $(x q-q x) u=x(q u)-(q u) x=\left(x q_{u}-q_{u} x\right) u$ for all $x \in Q$ and $u \in U$. Hence $a d(q) u=a d\left(q_{u}\right) u$ for all $u \in U$ which completes the proof.

Proposition 3.1.11 Let $0 \in T$ be an orthogonally complete subset of a nonsingular right C-module N. Then:
(i) $T e \subseteq T$ for all $e \in B(C)$;
(ii) There exists an element $t \in T$ such that $E(t)=E(T)$ (or, equivalently, $r_{C}(T)=r_{C}(t)$).

Proof. (i) Let $x \in T$ and $e \in B$. Since T is orthogonally complete, there exists an element $y \in T$ such that $y e=x e$ and $y(1-e)=0$. It follows that $y=y e=x e$ and so $x e \in T$.
(ii) Consider the set $W=\{E(x) \mid x \in T\}$. By Lemma 3.1.1 (iii) we have $E(x e)=E(x) e$ for all $e \in B$ and $x \in T$. Hence $W e \subseteq W$. Let V be a maximal orthogonal subset of W and $U=V \cup\{1-E(W)\}$. According to Remark 3.1.5 U is a dense orthogonal subset of B. By definition of the set W for every $v \in V$ there exists an element $t_{v} \in T$ such that $v=E\left(t_{v}\right)$. Set $t_{1-E(W)}=0$ and $t=\sum_{u \in U}^{\perp} t_{u} u$. Clearly $t \in T$. We claim that $E(t)=E(T)$. It is enough to prove that $r_{C}(T)=r_{C}(t)$. Clearly $r_{C}(t) \supseteq r_{C}(T)$. Suppose $r_{C}(t) \neq r_{C}(T)$. Then $(1-E(t)) x \neq 0$ for some $x \in T$. We set $e=1-E(t), y=e x$ and $w=E(y)$. Note that $w \neq 0$ since $y \neq 0$. From Lemma 3.1.1(iii) we infer that $w=e w$. Since $t e=0$, we have $0=t(v w)=(t v) w=t_{v} v w$ for all $v \in V$. Therefore $v w \in r_{C}\left(t_{v}\right)=(1-v) C$ and so $v w=0$ for all $v \in V$, a contradiction to the maximality of V. Thus $E(t)=E(T)$.

Proposition 3.1.12 Let R be a semiprime ring $Q=Q_{m r}(R)$ and $\sigma \in \operatorname{Aut}(R)$. Then M_{σ} is a cyclic C-module and its generator m_{σ} is an invertible element of the ring $Q E\left(m_{\sigma}\right)$.

Proof. We claim that M_{σ} is an orthogonally complete subset of Q. Indeed, let U be a dense orthogonal subset of $B=B(C)$ and $m_{u} \in M_{\sigma}, u \in U$. Consider the element $m=\sum_{u \in U}^{\perp} m_{u} u$. According to Remark 3.1.9 we have

$$
x m=\sum_{u \in U}^{\perp} x m_{u} u=\sum_{u \in U}^{\perp} m_{u} x^{\sigma} u=m x^{\sigma}
$$

for all $x \in R$. Therefore $m \in M_{\sigma}$ and our claim is proved.
By Proposition 3.1.11 $E\left(M_{\sigma}\right)=E(m)$ for some $m \in M_{\sigma}$. Let $e=E(m), I=(e: R)_{R}, J=e I$ and $K=r_{R}(J)$. Clearly $J \oplus K$ is a dense ideal of R. We note that $m J=J^{\sigma^{-1}} m$ is an ideal of R and $m J K=0$. We claim that $r_{R}(m J)=K$. If $m J r=0$ where $r \in R$, then meIr $=m J r=0$. Since I is a dense ideal of R,
$Q_{m r}(I)=Q$ by Proposition 2.1.10. It follows from Lemma 2.3.10 that $E(m e) r=0$. Recall that $e=E(m)$ and $m e=m$. Hence $e r=0$ and $J r=I e r=0$ which proves our claim. Define a homomorphism of right R-modules $f: m J \oplus K \rightarrow J \oplus K$ by the rule $m x+y \mapsto x$ for all $x \in J, y \in K$. If $m x=0$ where $x \in J$, then $m J x=J^{\sigma^{-1}} m x=0$ and so $x \in J \cap K=0$. Therefore f is well-defined. Setting $q=[f ; m J+K] \in Q$, we note that $q e=q$ and $q m=e$. Note that $I e K=J K=0$. Since I is dense, $e K=0$. Hence $m q K=(m e) q K=m q e K=0$. It follows that $(m q-e)(m J+K)=0$ and so $m q=e$. Therefore m is an invertible element of the ring $e Q$. Clearly $r q=q r^{\sigma^{-1}}$ for all $r \in R$. Hence $r m^{\prime} q=m^{\prime} q r$ for all $r \in R, m^{\prime} \in M_{\sigma}$. It follows that $M_{\sigma} q \subseteq C$ and so $M_{\sigma}=M_{\sigma} e=M_{\sigma} q m \subseteq C m$. The proof is complete.

We set $i(\sigma)=E\left(M_{\sigma}\right)$. It follows from the above result that the ring $Q=Q_{m r}(R)$ is a direct sum $Q=Q i(\sigma) \oplus Q(1-i(\sigma))$ of σ-invariant ideals and σ induces an inner automorphism on Qi(σ).

Now let μ be a derivation of a semiprime ring R and $Q=$ $Q_{m r}(R)$. We set

$$
M_{\mu}=\left\{m \in Q \mid r m-m r=E(m) r^{\mu} \quad \text { for all } \quad r \in R\right\} .
$$

Since $E(e x)=e E(x)$ for all $e \in B(C)$ and $x \in Q$, we conclude that $M_{\mu} e \subseteq M_{\mu}$. We leave for the reader the straightforward verification of the following remark (see the proof of (2.15) in section 2.5).

Remark 3.1.13 The subset M_{μ} is orthogonally complete and $M_{\mu} \subseteq Q_{s}$.

We set $i(\mu)=E\left(M_{\mu}\right)$ and note that $i(\mu)=E(m)$ for some $m \in M_{\mu}$ according to Proposition 3.1.11. Clearly μ induces the inner derivation : $a d(m)$ on the direct summand $\operatorname{Qi}(\mu)$.

Let N be an orthogonally complete nonsingular C-module and $T \subseteq N$ a subset. The intersection of all orthogonally complete subsets of N containing T is called the orthogonal completion of T and is denoted by $O(T)$.

Since the intersection of orthogonally complete subsets is orthogonally complete, $O(T)$ is an orthogonally complete subset as well.

Proposition 3.1.14 Let N be a nonsingular orthogonally complete right C-module and $T \subseteq N$ a subset. Then

$$
\begin{aligned}
& O(T)=\left\{\sum_{u \in U}{ }^{\perp} t_{u} u \mid U \quad\right. \text { is a dense orthogonal subset } \\
& \text { of } \left.B \quad \text { and } \quad\left\{t_{u} \mid u \in U\right\} \subseteq T\right\} \text {. }
\end{aligned}
$$

Proof. Letting H denote the right side of the above equality, we note that it is enough to prove that H is orthogonally complete. To this end consider any dense orthogonal subset W of B and let $h_{w}=\sum_{u_{w} \in U_{w}}^{\perp} x_{u_{w}} u_{w} \in H, w \in W$, where $x_{u_{w}} \in T$ and U_{w} is a dense orthogonal subset of B. We set $V=\left\{w u_{w} \mid w \in W, u_{w} \in U_{w}\right\}$. One can easily check that V is a dense orthogonal subset of B. For $v=w u_{w} \in V$ we set $t_{v}=x_{u_{w}}$. We now claim that

$$
\sum_{w \in W}{ }^{\perp} h_{w} w=\sum_{v \in V}^{\perp} t_{v} v
$$

Indeed, for any $v=w u_{w} \in V$ we have

$$
\left(\sum_{w \in W}{ }^{\perp} h_{w} w\right) w u_{w}=h_{w} w u_{w}=\left(h_{w} u_{w}\right) w=x_{u_{w}} u_{w} w=t_{v} v
$$

which completes the proof.
The following result follows directly from the preceding proposition, Proposition 3.1.10, Remark 3.1.8 and Remark 3.1.9.

Corollary 3.1.15 Let R be a semiprime ring. Then:
(i) its orthogonal completion $O(R)$ is a subring of the ring $Q_{s}(R)$;
(ii) If I is a (right) ideal of R, then $O(I)$ is a (right) ideal of $O(R)$ as well.

Example. We keep the notations of the preceding example. Let $R=\oplus_{i \in I} R_{i} \subseteq \prod_{i \in I} R_{i}$. Clearly $Q_{m r}(R)=\Pi_{i \in I} Q_{i}$. It is easy to see that $O(R)=\prod_{i \in I} R_{i}$.

Remark 3.1.16 Let R be a semiprime ring, $Q=Q_{m r}(R), \mu \in$ $\operatorname{Der}(Q), g \in G(Q)$ and $q=\sum_{u \in U}^{\perp} q_{u} u$ where $q_{u} \in Q, u \in U$. Then:

$$
q^{\mu}=\sum_{u \in U}^{\perp} q_{u}^{\mu} u \quad \text { and } \quad q^{g}=\sum_{u \in U}{ }^{\perp} q_{u}^{g} u^{g} .
$$

Proof. We first note that

$$
e^{\mu}=\left(e^{2}\right)^{\mu}=e e^{\mu}+e^{\mu} e=2 e e^{\mu}, e \in B
$$

Multiplying both sides by e, we infer that $e e^{\mu}=2 e e^{\mu}$ and so $e e^{\mu}=0$. Hence $e^{\mu}=2 e e^{\mu}=0$. We now have

$$
q^{\mu} u=(q u)^{\mu}=\left(q_{u} u\right)^{\mu}=q_{u}^{\mu} u
$$

for all $u \in U$ which implies the first formula. The second one is proved similarly.

Corollary 3.1.17 Let R be a semiprime ring, $Q=Q_{m r}(R)$, $\mu \in \operatorname{Der}(Q)$ and $g \in G(Q)$. Suppose that $R^{\mu} \subseteq R$ and $R^{g}=R$. Then $O(R)^{\mu} \subseteq O(R)$ and $O(R)^{g}=O(R)$ as well.

We continue our discussion of orthogonally complete subsets with the following useful lemmas.

Lemma 3.1.18 Let N be a nonsingular right C-module, $T_{i} \subseteq$ N an orthogonally complete subset of N containing $0,1 \leq i \leq n$, and $f: T_{1} \times T_{2} \times \ldots T_{n} \rightarrow N$ a mapping such that $f\left(t_{1}, \ldots, t_{n}\right) e=$ $f\left(t_{1} e, \ldots, t_{n} e\right)$ for all $e \in B=B(C)$ and $t_{i} \in T_{i}$. Then $H=$ $f\left(T_{1}, T_{2}, \ldots, T_{n}\right)$ is orthogonally complete.

Proof. Let $U \subseteq B$ be a dense orthogonal subset and $h_{u}=$ $f\left(t_{u 1}, t_{u 2}, \ldots, t_{u n}\right) \in H$ for all $u \in U$ where $t_{u i} \in T_{i}$. Setting $t_{i}=$ $\sum_{u \in U}^{\perp} t_{i u} u$, we leave to the reader the straightforward verification of the equality $\sum_{u \in U}^{\perp} h_{u} u=f\left(t_{1}, t_{2}, \ldots, t_{n}\right)$, which completes the proof.

The proof of the following lemma is straightforward and we leave it to the reader.

Lemma 3.1.19 Let R be a semiprime ring and let T and H be orthogonally complete subsets of $Q=Q_{m r}(R)$. Then for any $a \in Q$ the subset

$$
(a: T)_{H}=\{h \in H \mid a h \in T\}
$$

is either empty or orthogonally complete.

Theorem 3.1.20 Let T be an orthogonally complete subset of $Q=Q_{m r}(R)$ containing 0 , and let $q \in Q$. Then there exists a unique element $E(T ; q) \in B=B(C)$ such that $q(1-E(T ; q)) \in$ T and $1-E(T ; q) \geq e$ for all $e \in B$ such that $q e \in T$. Further, $E(T ; e q)=e E(T ; q)$ for all $e \in B$.

Proof. Since B is an orthogonally complete subset of $Q, L=$ $(q: T)_{B}$ is orthogonally complete by Lemma 3.1.19. Because $0 \in T$ (and hence $0 \in L$) we have by Proposition 3.1.11 that $T e \subseteq T$ for all $e \in B$ and $E(L)=E\left(e_{0}\right)=e_{0}$ for some $e_{0} \in$ L. Clearly (i) $q e_{0} \in T$ and (ii) $e \leq e_{0}$ for all $e \in L$ (since $\left.e e_{0}=e E(L)=e\right)$. We see that $E(T ; q)=1-e_{0}$ is the required
element. Next let $e \in B$ and write $E(T ; q e)=1-f_{0}$. We wish to prove that $1-f_{0}=e\left(1-e_{0}\right)$. Indeed, from

$$
q e\left(1-e\left(1-e_{0}\right)\right)=q e e_{0} \in T e \subseteq T
$$

we have $1-e\left(1-e_{0}\right) \leq f_{0}$ and hence $e\left(1-e_{0}\right) \geq 1-f_{0}$ and so $e\left(1-e_{0}\right) \geq e\left(1-f_{0}\right)$. From $q e f_{0} \in T$ we have $e f_{0} \leq e_{0}$ whence $1-e f_{0} \geq 1-e_{0}$ and $e\left(1-f_{0}\right) \geq e\left(1-e_{0}\right)$. It follows that $e\left(1-e_{0}\right)=e\left(1-f_{0}\right) \leq 1-f_{0} \leq e\left(1-e_{0}\right)$ and so $e\left(1-e_{0}\right)=1-f_{0}$ and the theorem is proved.

We close this section with the following useful lemma.
Lemma 3.1.21 Let $B=B(C)$ and $V=\left\{v_{i} \mid i \in I\right\}$ a subset of B such that $V \nsubseteq M$ for every $M \in \operatorname{Spec}(B)$. Then there exists a finite subset $i_{1}, i_{2}, \ldots, i_{k} \in I$ and pairwise orthogonal idempotents $e_{1}, e_{2}, \ldots, e_{k} \in B$ whose sum is equal to 1 such that $e_{j} \leq v_{i_{j}}$ for all $j=1,2, \ldots, k$.

Proof. We have that the ideal of the Boolean ring B generated by V is equal to B and so $1=v_{i_{1}} b_{1} \oplus \ldots \oplus v_{i_{k}} b_{k}$ for some $i_{1}, \ldots, i_{k} \in I$ and $b_{j} \in B$, where \oplus is the Boolean addition (i.e., $u \oplus v=u+v-2 u v$ for all $u, v \in B$). Therefore $v_{i_{1}} B+v_{i_{2}} B+\ldots+v_{i_{k}} B=B$. We set $e_{1}=v_{i_{1}}$. Suppose that we already have found pairwise orthogonal idempotents $e_{1}, e_{2}, \ldots, e_{l}$ such that $e_{j} \leq v_{i_{j}}$ and

$$
\sum_{j=1}^{l} e_{j} B+\sum_{t=l+1}^{k} v_{i_{t}} B=B
$$

Then we set

$$
e_{l+1}=v_{i_{l+1}}\left(1-e_{1}-\dot{e}_{2}-\ldots-e_{l}\right)
$$

Continuing in this fashion we find pairwise orthogonal idempotents $e_{1}, e_{2}, \ldots, e_{k}$ such that $e_{1}+\ldots+e_{k}=1$ and $e_{j} \leq v_{i_{j}}$ for all j.

3.2 Pierce Stalks

The content of the present section will depend heavily on section 1.5.

Let R be a semiprime ring with extended centroid $C, B=$ $B(C)$ and $Q=Q_{m r}(R)$. The ring R is called orthogonally complete, if $R=O(R)$. If R is orthogonally complete, then $e R \subseteq R$ for all $e \in B$ by Proposition 3.1.11. Let α be an ordinal number, $\tau: W(\alpha) \rightarrow \mathcal{N}$ and $\Omega=(\tau ; \alpha)$. An Ω-ring R is said to be orthogonally complete if R is an orthogonally complete semiprime ring and for any $e \in B, \gamma \in W(\alpha)$ and $r_{1}, r_{2}, \ldots, r_{n} \in R$, where $n=\tau(\gamma)$, we have

$$
e F_{\gamma}\left(r_{1}, r_{2}, \ldots, r_{n}\right)=F_{\gamma}\left(e r_{1}, e r_{2}, \ldots, e r_{n}\right)
$$

In what follows R will be an orthogonally complete Ω-ring with extended centroid C and $B=B(C)$. Given any term $t=$ $t\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of signature $\Omega, r_{1}, r_{2}, \ldots, r_{n} \in R$ and $e \in B$, one can easily prove by induction on a number of operation symbols appearing in t that

$$
\begin{equation*}
e t\left(r_{1}, r_{2}, \ldots, r_{n}\right)=t\left(e r_{1}, e r_{2}, \ldots, e r_{n}\right) \tag{3.2}
\end{equation*}
$$

Let Δ_{P} be the set of all predicates either of type " $\|x \in T\|$ ", where T is an orthogonally complete subset of R containing 0 , or $"\|x=y\| "$. In what follows we will consider R as an Ω - Δ-ring.

It follows directly from the above definition that $e R$ is an Ω-subring of R for all $e \in B$. Further, any predicate $\|x \in T\|$ where T is an orthogonally complete subset of R containing 0 defines a predicate on $e R$ as on a subset of R. Here we note that if $x \in e R$, then $\|x \in T\|=1$ if and only if $\|x \in e T\|=1$.

Proposition 3.2.1 Let R be an orthogonally complete $\Omega-\Delta$ ring, U an orthogonal subset of B and $e=\sum_{u \in U}^{\perp} u$. Then the mapping $\eta_{U}: \prod_{u \in U} R u \rightarrow R e$ given by the rule $\left\{r_{u} u \mid u \in U\right\} \mapsto$ $\sum_{u \in U}^{\perp} r_{u} u$ is an isomorphism of $\Omega-\Delta$-rings.

Proof. Using the same argument as in the proofs of Remark 3.1.8 and Remark 3.1.9, one can easily prove that η_{U} is a homomorphism of Ω-rings. Clearly it is a monomorphism. Since

$$
e a=\left(\sum_{u \in U}{ }^{\perp} u\right) a=\sum_{u \in U}{ }^{\perp} a u
$$

η_{U} is surjective and so η_{U} is an isomorphism of Ω-rings. Now let T be an orthogonally complete subset of $R e$ containing 0 and $x \in R e$. Since T is orthogonally complete and $e=\sum_{u \in U}^{\perp} u$, the inclusion $x \in T$ is equivalent to the inclusions $x u \in T u$ for all $u \in U$. Therefore $\|x \in T\|=1$ if and only if $\|x u \in T u\|=1$ for all $u \in U$. Recalling the definition of the Cartesian product of Ω - Δ-rings, we conclude that η_{U} is an isomorphism of Ω - Δ-rings.

Recall that B is a Boolean ring with addition given by the rule $u \oplus v=u+v-2 u v$ for all $u, v \in B$ and multiplication the same as that in C. We let $\operatorname{Spec}(B)$ denote the set of all maximal ideals of the Boolean ring B. It is well known that an ideal M of B is maximal if and only if for any $e \in B$ either $e \in M$, or $1-e=1 \oplus e \in M$, but not both.

Let $M \in \operatorname{Spec}(B)$. We set

$$
R M=\left\{\sum_{i} r_{i} e_{i} \mid r_{i} \in R \quad \text { and } \quad e_{i} \in M\right\}
$$

Remark 3.2.2 Let M be a maximal ideal of B and $a \in R$. Then:
(i) $R M=\left\{x \in R \mid r_{C}(x) \cap(B \backslash M) \neq \emptyset\right\}$;
(ii) $a \in R M$ if and only if $E(a) \in M$.

Proof. (i) Let $x=\sum_{i=1}^{n} r_{i} e_{i} \in R M$ where $r_{i} \in R, e_{i} \in M$. We set $e=\left(1-e_{1}\right)\left(1-e_{2}\right) \ldots\left(1-e_{n}\right)$. Since $1-e_{i} \notin M$, we see that $e \notin M$. Clearly $e x=0$. On the other hand, let $r u=0$ for some $u \in B \backslash M$. As $u \notin M, 1-u \in M$. Now we have $r=r(1-u) \in R M$.
(ii) If $E(a) \in M$, then $a=a E(a) \in R M$. Conversely, let $a \in R M$. Then $a e=0$ for some $e \in B \backslash M$. Since $e \in$ $r_{C}(a)=(1-E(a)) C$, we infer that $1-E(a) \notin M$. But then $E(a)=1-(1-E(a)) \in M$.

Corollary 3.2.3 Let $M \in \operatorname{Spec}(B)$. Then $R M$ is an ideal of the Ω-ring R.

Proof. Being a sum of ideals $R e, e \in M, R M$ is an ideal of the ring R. Let $\gamma \in W(\alpha), n=\tau(\gamma), r_{1}, r_{2}, \ldots, r_{n} \in R$ and $a_{1}, a_{2}, \ldots, a_{n} \in R M$. By Remark 3.2.2 for every index i there exists an idempotent $e_{i} \in B \backslash M$ such that $a_{i} e_{i}=0$. Setting $s_{i}=r_{i}+a_{i}$ and $e=e_{1} e_{2} \ldots e_{n}$, we note that $s_{i} e=r_{i} e$ for all i. Therefore for $z=F_{\gamma}\left(s_{1}, \ldots, s_{n}\right)-F_{\gamma}\left(r_{1}, \ldots, r_{n}\right)$ we have

$$
\begin{aligned}
e z & =F_{\gamma}\left(e s_{1}, \ldots, e s_{n}\right)-F_{\gamma}\left(e r_{1}, \ldots, e r_{n}\right) \\
& =F_{\gamma}\left(e r_{1}, \ldots, e r_{n}\right)-F_{\gamma}\left(e r_{1}, \ldots, e r_{n}\right)=0
\end{aligned}
$$

and so $z \in R M$. Thus $R M$ is an ideal of the Ω-ring R.
The factor Ω-ring $R / R M$ is called the Pierce stalk of R at the point M of $\operatorname{Spec}(B)$. Letting R_{M} denote the factor Ω-ring $R / R M$ and $\phi_{M}: R \rightarrow R_{M}$ the canonical projection and taking into account Proposition 3.1.11 we summarize what has been proved in the following

Corollary 3.2.4 Let R be an orthogonally complete Ω-ring, T an orthogonally complete subset of R containing 0 and $M \in$ $\operatorname{Spec}(B)$. Then:
(i) the canonical homomorphism $\phi_{M}: R \rightarrow R_{M}=R / R M$ of rings is a homomorphism of Ω-rings as well;
(ii) $\operatorname{ker}\left(\phi_{M}\right)=\{r \in R \mid E(r) \in M\}$;
(iii) $\phi_{M}(T)=0$ if and only if $E(T) \in M$.

Example With reference to the example of the preceding section, we consider $R=\prod_{i \in I} R_{i}$ and note that the extended centroid C of R coincides with $\prod_{i \in I} C_{i}$. Hence the Boolean ring $B=B(C)$ coincides with the set of all functions $I \rightarrow \mathcal{Z}_{2}$. Given any maximal ideal M of B, the set

$$
\mathcal{T}_{M}=\left\{f^{-1}(0) \mid f \in B \backslash M\right\}
$$

is an ultrafilter on I. We close this example with the note that $R_{M}=\prod_{i \in I} R_{i} / T_{M}$.

We continue our discussion of properties of Pierce stalks with following lemmas.

Lemma 3.2.5 Let R be an orthogonally complete Ω-ring, $a \in$ R, T an orthogonally complete subset of R containing 0 and $M \in \operatorname{Spec}(B)$. Then the following conditions are equivalent:
(i) $\phi_{M}(a) \in \phi_{M}(T)$;
(ii) $a e \in T$ for some $e \in B \backslash M$;
(iii) $E(T ; a) \in M$.

Proof. First of all we recall that $T e \subseteq T$ for all $e \in B$ by Proposition 3.1.11.
(i) \Rightarrow (ii) Let $\phi_{M}(a) \in \phi_{M}(T)$. Then $\phi_{M}(a)=\phi_{M}(t)$ for some $t \in T$. Hence $\phi_{M}(a-t)=0$ and so $(a-t) e=0$ for some $e \in B \backslash M$. Therefore $a e=t e \in T$.
(ii) \Rightarrow (iii) Assume that $a e \in T$ for some $e \in B \backslash M$. By Theorem 3.1.20 we have that $e(1-E(T ; a))=e$ and so $1-$ $E(T ; a) \notin M$. Therefore $E(T ; a) \in M$ by the maximality of M.
(iii) \Rightarrow (i) Let $u=E(T ; a) \in M$. Then $a(1-u) \in T$ and $a u \in R M$. Thus $\phi_{M}(a)=\phi_{M}(a(1-u)) \in \phi_{M}(T)$.

Lemma 3.2.6 Let R be an orthogonally complete Ω-ring, $a \in$ R, T and H orthogonally complete subsets of R containing 0 and $M \in \operatorname{Spec}(B)$. Then:

$$
\phi_{M}\left((a: T)_{H}\right)=\left(\phi_{M}(a): \phi_{M}(T)\right)_{\phi_{M}(H)} .
$$

Proof. Clearly $\phi_{M}\left((a: T)_{H}\right) \subseteq\left(\phi_{M}(a): \phi_{M}(T)\right)_{\phi_{M}(H)}$. Let $\phi_{M}(a) \phi_{M}(h) \in \phi_{M}(T)$ where $h \in H$. Then $a h e=t e$ for some $e \in B \backslash M$ and $t \in T$. Clearly $h e \in H$ and $t e \in T$. Hence $h e \in(a: T)_{H}$. Since $e \notin M, 1-e \in M$ and so $\phi_{M}(e)=1$. Thus $\phi_{M}(h)=\phi_{M}(h e) \in \phi_{M}\left((a: T)_{H}\right)$.

Now we are in a position to prove the following important result.

Theorem 3.2.7 Let R be a semiprime orthogonally complete ring with extended centroid $C, B=B(C)$ and $M \in \operatorname{Spec}(B)$. Then the ring $R_{M}=R / R M$ is prime.

Proof. Suppose that $\phi_{M}(a) R_{M} \phi_{M}(b)=0$ for some $a, b \in R$. Then $\phi_{M}(a R b)=0$. Applying Lemma 3.1.18 to the mapping $R \rightarrow R, x \mapsto a x b$, we conclude that $a R b$ is an orthogonally complete subset of R. By Corollary 3.2 .4 we have $e=1-$ $E(a R b) \notin M$. Without loss of generality we can assume that $\phi_{M}(a) \neq 0$. Then $E(a) \notin M$. Now we have $e(a R b)=0$. Hence according to Theorem 2.3.9(ii) and Lemma 2.3.10, $e E(a) b=$ $E(e a) b=0$. Since $e E(a) \notin M$, we conclude that $b \in \operatorname{ker}\left(\phi_{M}\right)$. Thus R_{M} is prime.

Let $\Phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a first order formula of signature Ω $\Delta, \vec{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in R^{(n)}$ and $v \in B$. We set $B^{*}=B \backslash\{0\}$, $v \vec{a}=\left(v a_{1}, v a_{2}, \ldots, v a_{n}\right)$,

$$
H(\Phi ; \vec{a})=\left\{e \in B^{*} \mid v R \models \Phi(v \vec{a}) \text { for all } 0 \neq v \leq e\right\} \cup\{0\}
$$

and

$$
E(\Phi(\vec{a}))=E(H(\Phi ; \vec{a}))
$$

In the case of the atomic formulas $\|x=y\| x, y \in X$, and $\|x \in T\|, T$ orthogonally complete with 0 , the above concept takes a very concrete form. Indeed, we see that

$$
\begin{equation*}
H(\|x=y\| ; a, b)=r_{C}(a-b) \cap B \tag{3.3}
\end{equation*}
$$

since
$\left\{e \in B^{*} \mid v(a-b)=0\right.$ for all $\left.0 \neq v \leq e\right\} \cup\{0\}=r_{C}(a-b) \cap B$.
From (3.3) it is immediate that

$$
\begin{equation*}
E(\|a=b\|)=1-E(a-b) \tag{3.4}
\end{equation*}
$$

Similarly, we see that

$$
\begin{equation*}
H(\|x \in T\|, a)=(a: T)_{B} \tag{3.5}
\end{equation*}
$$

since

$$
\left\{e \in B^{*} \mid v a \in T \text { for all } 0 \neq v \leq e\right\} \cup\{0\}=(a: T)_{B}
$$

From (3.5) it is clear that

$$
\begin{equation*}
E(\|a \in T\|)=1-E(T ; a) \tag{3.6}
\end{equation*}
$$

in view of Theorem 3.1.20.
We have in fact proved parts (i) and (iii) of the following corollary, which will in turn provide the basis for induction in our main theorem.

Corollary 3.2.8 Let R be an orthogonally complete Ω-ring, a, $b \in R, T$ an orthogonally complete subset of R containing 0 and $M \in \operatorname{Spec}(B)$. Then:
(i) $E(\|a=b\|)=1-E(a-b)$;
(ii) $\left\|\phi_{M}(a)=\phi_{M}(b)\right\|=1$ if and only if $E(\|a=b\|) \notin M$;
(iii) $E(\|a \in T\|)=1-E(T ; a)$;
(iv) $\left\|\phi_{M}(a) \in \phi_{M}(T)\right\|=1$ if and only if $E(\|a \in T\|) \notin M$.

Proof. (ii) follows from part (i) and Corollary 3.2.4(ii).
(iv) follows from part (iii) and Lemma 3.2.5(iii).

The following lemma plays an important role in the proof of Theorem 3.2.10, and it is here that Horn's Theorem (Theorem 1.5.5) is deployed.

Lemma 3.2.9 Let R be an orthogonally complete Ω - Δ-ring, $\Phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ a Horn formula of signature $\Omega-\Delta$ in free variables $x_{1}, x_{2}, \ldots, x_{n}$, and $\vec{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in R^{(n)}$. Then

$$
E(\Phi(\vec{a})) \in H(\Phi ; \vec{a})
$$

(i.e., $v R \models \Phi(v \vec{a})$ for all $0 \neq v \leq E(\Phi(\vec{a}))$).

Proof. We set $U=H(\Phi ; \vec{a})$. It follows immediately from the definition that $e U \subseteq U$ for all $e \in B$. Let V be a maximal orthogonal subset of U. By Remark 3.1.5 we have $E(V)=E(U)$. Setting $w=\sum_{v \in V}^{\perp} v$, we note that $r_{C}(V)=(1-w) C$ and so $E(U)=E(V)=w$. If $w=0$, then $w=0 \in U$ and there is nothing to prove. Assume that $w \neq 0$ and let $0 \neq f \in w B$. We claim that $f R \vDash \Phi(f \vec{a})$. Indeed, let $V_{0}=\{v \in V \mid v f \neq 0\}$. Note that

$$
f=f w=\sum_{v \in V}^{\perp} f v=\sum_{v \in V_{0}}^{\perp} f v
$$

Since $V \subseteq H(\Phi ; \vec{a})$, we have

$$
R v f \vDash \Phi(v f \vec{a}) \quad \text { for all } \quad v \in V_{0} .
$$

By Theorem 1.5.5 it follows that

$$
\left(\prod_{v \in V_{0}} R v f\right) \models \Phi\left(\left\{f v a_{1}\right\}_{v \in V_{0}}, \ldots,\left\{f v a_{n}\right\}_{v \in V_{0}}\right) .
$$

According to Proposition 3.2.1, the mapping η given by the rule

$$
\{f v a\}_{v \in V_{0}} \mapsto \sum_{v \in V_{0}}^{\perp} a f v=\left(\sum_{v \in V}{ }^{\perp} v\right) f a=w f a=f a
$$

is an isomorphism of Ω - Δ-rings $\Pi_{v \in V_{0}} R v f$ and $R w f=R f$. Hence $R f \vDash \Phi(f \vec{a})$ for all $0 \neq f \in w B$ and so

$$
E(\Phi(\vec{a}))=E(U)=w \in H(\Phi ; \vec{a})
$$

We note that for $u, v \in B$ the inequality $u \leq v$ is equivalent to the statement that for all $M \in \operatorname{Spec}(B) u$ not an element of M implies v not an element of M. We are now in a position to prove the main result of this chapter.

Theorem 3.2.10 Let R be an orthogonally complete Ω - Δ-ring with extended centroid $C, B=B(C), M \in \operatorname{Spec}(B)$ and ϕ_{M} : $R \rightarrow R_{M}=R / R M$ the canonical projection of $\Omega-\Delta$-rings. Further let $\Psi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a Horn formula of signature $\Omega-\Delta$ and $\vec{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in R^{(n)}$. Suppose that

$$
R_{M} \vDash \Psi\left(\phi_{M}\left(a_{1}\right), \ldots, \phi_{M}\left(a_{n}\right)\right) .
$$

Then $e=E(\Psi(\vec{a})) \notin M$ and $v R \vDash \Psi(v \vec{a})$ for all $0 \neq v \leq e$.
Proof. We set $\phi_{M}(\vec{a})=\left(\phi_{M}\left(a_{1}\right), \phi_{M}\left(a_{2}\right), \ldots, \phi_{M}\left(a_{n}\right)\right)$. First we suppose that Ψ is an atomic formula (i.e., a formula either of the type $\| t_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=t_{2}\left(x_{1}, x_{2}, \ldots, x_{n} \|\right.$, where t_{1}, t_{2} are terms, or of the type $\|x \in T\|$, where T is an orthogonally complete subset of R containing 0). Then it follows from Corollary 3.2 .8 that $R_{M} \vDash \Psi\left(\phi_{M}(\vec{a})\right)$ if and only if $E(\Psi(\vec{a})) \notin M$.

Here we note that for any atomic formula $P\left(z_{1}, z_{2}, \ldots, z_{k}\right)$ and any $\overrightarrow{\boldsymbol{c}}=\left(c_{1}, c_{2}, \ldots, c_{k}\right) \in R^{(k)}$ the reader can easily check that $E(\neg P(\vec{c}))=1-E(P(\vec{c}))$. It follows from Corollary 3.2.8 that

$$
\begin{equation*}
R_{M} \vDash \neg P\left(\phi_{M}(\vec{c})\right) \quad \text { if and only if } \quad E(\neg P(\vec{c})) \notin M . \tag{3.7}
\end{equation*}
$$

Next we consider the case when the formula Ψ is equivalent to the formula $\vee_{i=1}^{k}\left(\neg P_{i}\right)$ where P_{1}, \ldots, P_{n} are atomic formulas. For simplicity we assume that all P_{i} 's depend on $x_{1}, x_{2}, \ldots, x_{n}$. Since $R_{M} \vDash V_{i=1}^{k}\left(\neg P_{i}\left(\phi_{M}(\vec{a})\right)\right), R_{M} \vDash\left(\neg P_{i}\left(\phi_{M}(\vec{a})\right)\right)$ for some $1 \leq i \leq k$. Then by (3.7) we have $E\left(\neg P_{i}(\vec{a})\right) \notin M$. Clearly $E\left(\neg P_{i}(\vec{a})\right) \in H(\Psi ; \vec{a})=H$ and so $E\left(\neg P_{i}(\vec{a})\right) \leq E(\Psi(\vec{a}))=$ $E(H)$. Hence $E(\Psi(\vec{a})) \notin M$.

Suppose now that the formula Ψ is equivalent to the formula $P_{0} \vee\left(\mathrm{~V}_{i=1}^{k}\left(\neg P_{i}\right)\right)$ where $P_{0}, P_{1}, \ldots, P_{k}$ are atomic formulas. As above we assume that all P_{i} 's depend on $x_{1}, x_{2}, \ldots, x_{n}$. Clearly $E\left(P_{0}(\vec{a})\right) \in H(\Psi ; \vec{a})$ as well as $E\left(\neg P_{i}(\vec{a})\right) \in H(\Psi ; \vec{a})$ for all $i=1,2, \ldots, k$. Hence $E\left(P_{0}(\vec{a})\right), E\left(\neg P_{i}(\vec{a})\right) \leq E(\Psi(\vec{a}))$ and so it is enough to prove that either $E\left(P_{0}(\vec{a})\right) \notin M$, or $E\left(\neg P_{i}(\vec{a})\right) \notin M$ for some $1 \leq i \leq k$. We note that $R_{M} \models P_{0} \vee\left(\vee_{i=1}^{k}\left(\neg P_{i}\right)\right)$ if and only if either $R_{M} \models P_{0}$, or $R_{M} \models \vee_{i=1}^{k}\left(\neg P_{i}\right)$. Applying the above result, we complete the consideration of the case.

Assume now that the formula Ψ is equivalent to the formula $\wedge_{i=1}^{m} \Psi_{i}$ where each formula Ψ_{i} is equivalent to either an atomic formula, or a disjunction of negations of atomic formulas, or a disjunction of an atomic formula and several negations of atomic formulas. As above we assume that all Ψ_{i} 's depend on $x_{1}, x_{2}, \ldots, x_{n}$. We set $e=E(\Psi(\vec{a})), e_{i}=E\left(\Psi_{i}(\vec{a})\right)$ and $v=e_{1} e_{2} \ldots e_{m}$. Since $R_{M} \models \wedge_{i=1}^{m} \Psi_{i}\left(\phi_{M}(\vec{a})\right), R_{M} \models \Psi_{i}\left(\phi_{M}(\vec{a})\right)$ for all $i=1,2, \ldots, m$ as well. By the above result we then have $e_{i} \notin M$ for all i and so $v \notin M$. Note that $v \leq e_{i}$ and so $R u \models \Psi_{i}(u \vec{a})$ for all $0<u \leq v$. Thus $R u \vDash \Psi(u \vec{a})$ whence $v \in H(\Psi ; \vec{a})$, i.e., $v \leq e$. Now it follows that $e \notin M$.

Next consider the case when the formula Ψ is equivalent to the formula $\left(\exists x_{n+1}\right) \Phi\left(x_{1}, x_{2}, \ldots, x_{n+1}\right)$ where Φ is such that for all $\vec{c}=\left(c_{1}, c_{2}, \ldots, c_{n+1}\right) \in R^{(n+1)}$ the relation $R_{M} \models \Phi\left(\phi_{M}(\vec{c})\right)$ implies that $E(\Phi(\vec{c})) \notin M$, and Φ is a Horn formula. Since $R_{M} \models\left(\exists x_{n+1}\right) \Phi\left(\phi_{M}(\vec{a}), x_{n+1}\right)$, there exists an element $a_{n+1} \in R$ such that $R_{M} \models \Phi\left(\phi_{M}\left(\vec{a}^{\prime}\right)\right)$, where $\vec{a}^{\prime}=\left(a_{1}, a_{2}, \ldots, a_{n+1}\right)$, and so $E\left(\Phi\left(\vec{a}^{\prime}\right)\right) \notin M$. Clearly $E\left(\Phi\left(\vec{a}^{\prime}\right)\right) \in H(\Psi ; \vec{a})$. Hence $E\left(\Phi\left(\vec{a}^{\prime}\right)\right) \leq$ $E(\Psi(\vec{a}))$ and so $E(\Psi(\vec{a})) \notin M$.

Finally assume that the formula Ψ is equivalent to the formula $\left(\forall x_{n+1}\right) \Phi\left(x_{1}, x_{2}, \ldots, x_{n+1}\right)$ where again Φ is such that for all $\vec{c}=\left(c_{1}, c_{2}, \ldots, c_{n+1}\right) \in R^{(n+1)}$ the relation $R_{M} \models \Phi\left(\phi_{M}(\vec{c})\right)$ implies that $E(\Phi(\vec{c})) \notin M$ and Φ is a Horn formula. We set
$W=\left\{w \in B^{*} \mid\right.$ there exists $a_{w} \in R \quad$ such that for every
$v \in B^{*}, v \leq w \quad$ there exists $\quad u \in B^{*}, u \leq v$, with the property $\left.u R \models \neg \Phi\left(u a_{1}, u a_{2}, \ldots, u a_{n}, u a_{w}\right)\right\}$

Note that for $e \in B$ and $w \in W$ the relation $e w \neq 0$ implies that $e w \in W$ (with $a_{e w}=e a_{w}$). Let V be a maximal orthogonal subset of $W \cup\{0\}$. By Remark 3.1.5 we have $E(W)=E(V)=\sum_{v \in V}^{\perp} v$. We set $a_{0}=0, a=\sum_{v \in V}^{\perp} a_{v} v$ and $e=E\left(\Phi\left(a_{1}, a_{2}, \ldots, a_{n}, a\right)\right)$. Since

$$
R_{M} \vDash\left(\forall x_{n+1}\right) \Phi\left(\phi_{M}\left(a_{1}\right), \ldots, \phi_{M}\left(a_{n}\right), x_{n+1}\right),
$$

we have in particular that $R_{M} \vDash \Phi\left(\phi_{M}\left(a_{1}\right), \ldots, \phi_{M}\left(a_{n}\right), \phi_{M}(a)\right)$. Then by our assumption

$$
e=E\left(\Phi\left(a_{1}, a_{2}, \ldots, a_{n}, a\right)\right) \notin M
$$

Now we suppose that $e W \neq 0$. Since V is a maximal orthogonal subset of $W, e v \neq 0$ for some $v \in V$. Recalling that Φ is a Horn formula, we infer from Lemma 3.2.9 that for every nonzero u, $u \leq e v \leq e=E\left(\Phi\left(a_{1}, a_{2}, \ldots, a_{n}, a\right)\right)$, we have that

$$
u R \models \Phi\left(u a_{1}, u a_{2}, \ldots, u a_{n}, u a\right) .
$$

Note that $u e a_{v}=u a_{v}=u v a_{v}=u v a=u a$. On the other hand by the definition of W, there exist a nonzero idempotent $u \leq e v$ such that

$$
u R \models \neg \Phi\left(u a_{1}, u a_{2}, \ldots, u a_{n}, u a\right)
$$

a contradiction. Hence $e W=0$.
Next we suppose that $E\left(\Phi\left(a_{1}, a_{2}, \ldots, a_{n}, b\right)\right) e \neq e$ for some $b \in R$. Then

$$
u=e\left(1-E\left(\Phi\left(a_{1}, a_{2}, \ldots, a_{n}, b\right)\right) \neq 0\right.
$$

and

$$
u E\left(\Phi\left(a_{1}, a_{2}, \ldots, a_{n}, b\right)\right)=0
$$

Consider any $0 \neq u^{\prime} \leq u$. Clearly $u^{\prime} E\left(\Phi\left(a_{1}, a_{2}, \ldots, a_{n}, b\right)\right)=0$ and so $u^{\prime} \notin H\left(\Phi ; a_{1}, a_{2}, \ldots, a_{n}, b\right)$. By the definition of the set $H\left(\Phi ; a_{1}, a_{2}, \ldots, a_{n}, b\right)$ it follows that

$$
u^{\prime \prime} R \models \neg \Phi\left(u^{\prime \prime} a_{1}, \ldots, u^{\prime \prime} a_{n}, u^{\prime \prime} b\right)
$$

for some $0 \neq u^{\prime \prime} \leq u^{\prime}$. Recalling the definition of the set W, we conclude that $u \in W$ (with $a_{u}=b$). But $e u=u \neq 0$ in contradiction with $e W=0$. Therefore $E\left(\Phi\left(a_{1}, a_{2}, \ldots, a_{n}, b\right)\right) e=$ e for all $b \in R$ and so

$$
e R \models\left(\forall x_{n+1}\right) \Phi\left(e a_{1}, e a_{2}, \ldots, e a_{n}, x_{n+1}\right) .
$$

Hence $e \in H(\Psi ; \vec{a})$ and $e \leq E(\Psi(\vec{a}))$. Recalling that $e \notin M$, we conclude that $E(\Psi(\vec{a})) \notin M$. According to the definition of Horn formulas the proof is complete.

Let R be an orthogonally complete Ω - Δ-ring. A first order formula $\Phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of signature $\Omega-\Delta$ is called hereditary if for all $0 \neq u \leq v \in B$ and $a_{1}, a_{2}, \ldots, a_{n} \in R$ the relation $v R \models \Phi\left(v a_{1}, \ldots, v a_{n}\right)$ implies that $u R \models \Phi\left(u a_{1}, \ldots, u a_{n}\right)$. Further a hereditary formula Φ is said to be strictly hereditary if for all $0 \neq v \in B$ and $a_{1}, a_{2}, \ldots, a_{n} \in R$ the relation $v R \models \Phi\left(v a_{1}, \ldots, v a_{n}\right)$ implies that there exist $b_{1}, b_{2}, \ldots, b_{n} \in R$ such that $R \models \Phi\left(b_{1}, \ldots, b_{n}\right)$ and $v b_{i}=v a_{i}$ for all i.

Example Let $R=F \oplus F$ where F is a field. Then the formula $\Psi=(\forall x)(\forall y)\|x y \neq 0\| \vee\|x=0\| \vee\|y=0\|$ is hereditary but is not strictly hereditary.

Corollary 3.2.11 Let R be an orthogonally complete $\Omega-\Delta$-ring, $\vec{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in R^{(n)}, M \in \operatorname{Spec}(B), R_{M}=R / R M$ and $\phi_{M}: R \rightarrow R_{M}$ the canonical projection. Further let $\Psi\left(x_{1}, \ldots, x_{n}\right)$ be a hereditary formula of signature $\Omega-\Delta$ such that $\neg \Psi$ is a Horn formula. Suppose that $v R \models \Psi\left(v a_{1}, \ldots, v a_{n}\right)$ for some $v \notin M$. Then

$$
R_{M} \models \Psi\left(\phi_{M}\left(a_{1}\right), \ldots, \phi_{M}\left(a_{n}\right)\right) .
$$

Proof. If $R_{M} \models \neg \Psi\left(\phi_{M}\left(a_{1}\right), \ldots, \phi_{M}\left(a_{n}\right)\right)$, then by Theorem 3.2.10 we have $e=E(\neg \Psi(\vec{a})) \notin M$. Hence $e v \neq 0$ and by Lemma 3.2.9 we have

$$
e v R \models \neg \Psi(e v \vec{a}) .
$$

On the other hand since Ψ is hereditary and $v R \models \Psi(v \vec{a}), e v R \models$ $\Psi(e v \vec{a})$ as well, a contradiction. Thus $R_{M} \models \Psi\left(\phi_{M}(\vec{a})\right)$.

Some important subsets of rings (for example, the center, the right singular ideal, the Jacobson radical) are defined by first order formulas in the following sense. Let $\Psi(x)$ be a first order formula of signature $\Omega-\Delta$. We set

$$
\mathcal{S}_{\Psi}(R)=\{r \in R \mid R \models \Psi(r)\} .
$$

Corollary 3.2.12 Let R be an orthogonally complete Ω - Δ-ring, $M \in \operatorname{Spec}(B), R_{M}=R / R M$ and $\phi_{M}: R \rightarrow R_{M}$ the canonical projection. Further let $\Psi(x)$ be a strictly hereditary Horn formula of signature $\Omega-\Delta$ such that $\neg \Psi$ is a Horn formula. Then $\phi_{M}\left(\mathcal{S}_{\Psi}(R)\right)=\mathcal{S}_{\Psi}\left(R_{M}\right)$.

Proof. If $a \in \mathcal{S}_{\Psi}(R)$, then $R \models \Psi(a)$ and so by Corollary 3.2.11 $R_{M} \models \Psi\left(\phi_{M}(a)\right)$. Hence $\phi_{M}(a) \in \mathcal{S}_{\Psi}\left(R_{M}\right)$ and

$$
\phi_{M}\left(\mathcal{S}_{\Psi}(R)\right) \subseteq \mathcal{S}_{\Psi}\left(R_{M}\right)
$$

On the other hand if $\phi_{M}(b) \in \mathcal{S}_{\Psi}\left(R_{M}\right)$, then $R_{M} \models \Psi\left(\phi_{M}(b)\right)$ and so by Theorem 3.2.10 $e=E(\Psi(b)) \notin M$ and $e R \models \Psi(e b)$. Since Ψ is strictly hereditary, there exists an element $d \in R$ such that $e d=e b$ and $R \models \Psi(d)$. Therefore $d \in \mathcal{S}_{\Psi}(R)$. Since $e \notin M$ and $e b=e d, \phi_{M}(d)=\phi_{M}(b)$ and so $\phi_{M}\left(\mathcal{S}_{\Psi}(R)\right) \supseteq \mathcal{S}_{\Psi}\left(R_{M}\right)$ which completes the proof.

Corollary 3.2.13 Let R be an orthogonally complete ring with center $Z(R)$ and right singular ideal $Z_{r}(R), M \in \operatorname{Spec}(B)$, $R_{M}=R / R M$ and $\phi_{M}: R \rightarrow R_{M}$ the canonical projection. Then $\phi_{M}(Z(R))=Z\left(R_{M}\right)$ and $\phi_{M}\left(Z_{r}(R)\right)=Z_{r}\left(R_{M}\right)$.

Proof. Consider the formulas

$$
\begin{aligned}
& \Phi(x)=(\forall y)\|x y=y x\| \\
& \Psi(x)=(\forall y)(\exists z)(\|y=0\| \vee\|y z \neq 0\|) \wedge\|x y z=0\|
\end{aligned}
$$

Clearly $Z(R)=\mathcal{S}_{\Phi}(R)$ and $Z_{r}(R)=\mathcal{S}_{\Psi}(R)$. Since $Z(e R)=$ $e Z(R)$ and $Z_{r}(e R)=e Z_{r}(R)$ for all $0 \neq e \in B$, both formulas Φ and Ψ are strictly hereditary. Obviously they are Horn formulas. Further

$$
\begin{aligned}
\neg \Phi(x)= & (\exists y)\|x y \neq y x\|, \\
\neg \Psi(x)= & (\exists y)(\forall z)(\|y \neq 0\| \wedge\|y z=0\|) \vee\|x y z \neq 0\| \\
= & (\exists y)(\forall z)(\|y \neq 0\| \vee\|x y z \neq 0\|) \\
& \wedge(\|y z=0\| \vee\|x y z \neq 0\|)
\end{aligned}
$$

are Horn formulas. By Corollary 3.2.12

$$
Z\left(R_{M}\right)=\mathcal{S}_{\Phi}\left(R_{M}\right)=\phi_{M}\left(\mathcal{S}_{\Phi}(R)\right)=\phi_{M}(Z(R))
$$

Analogously $Z_{r}\left(R_{M}\right)=\phi_{M}\left(Z_{r}(R)\right)$.

Lemma 3.2.14 Let R be an orthogonally complete ring, $M \in$ $\operatorname{Spec}(B), R_{M}=R / R M$ and $\phi_{M}: R \rightarrow R_{M}$ the canonical projection. Further, let D be an orthogonally complete dense right ideal of R. Then $\phi_{M}(D)$ is a dense right ideal of R_{M}.

Proof. Consider the sentence

$$
\Phi=(\forall x)(\forall y)(\exists z)(\|x=0\| \vee\|x z \neq 0\|) \wedge\|y z \in D\| .
$$

Since $e D$ is a dense right ideal of $e R$ for all $0 \neq e \in B, \Phi$ is a hereditary formula. Further,

$$
\begin{aligned}
\neg \Phi= & (\exists x)(\exists y)(\forall z)(\|x \neq 0\| \wedge\|x z=0\|) \vee\|y z \notin D\| \\
= & (\exists x)(\exists y)(\forall z)(\|x \neq 0\| \vee\|y z \notin D\|) \\
& \wedge(\|x z=0\| \vee\|y z \notin D\|)
\end{aligned}
$$

is a Horn formula. Now by Corollary 3.2.11 we have

$$
\begin{aligned}
R_{M} \models & (\forall x)(\forall y)(\exists z)(\|x=0\| \vee\|x z \neq 0\|) \\
& \wedge\left(\left\|y z \in \phi_{M}(D)\right\|\right)
\end{aligned}
$$

and so $\phi_{M}(D)$ is a dense right ideal of R_{M}.
Here we note that if R is an orthogonally complete ring with maximal right ring of quotients $Q=Q_{m r}(R)$ and $M \in \operatorname{Spec}(R)$, then $(Q M) \cap R=R M$ by Remark 3.2.2(ii). Therefore we can identify the ring $R_{M}=R / R M$ with the subring $(R+Q M) / Q M$ of $Q / Q M$.

Theorem 3.2.15 Let R be an orthogonally complete ring with extended centroid C and $Q=Q_{m r}(R), B=B(C), M \in \operatorname{Spec}(B)$, $Q_{M}=Q / Q M$ and $\phi_{M}: Q \rightarrow Q_{M}$ the canonical projection. Then:
(i) $Q_{M} \subseteq Q_{m r}\left(R_{M}\right)$;
(ii) $\phi_{M}\left(Q_{r}\right) \subseteq Q_{r}\left(R_{M}\right)$;
(iii) $\phi_{M}\left(Q_{s}\right) \subseteq Q_{s}\left(R_{M}\right)$;
(iv) The extended centroid of R_{M} is equal to $\phi_{M}(C)$.

Proof. Let $q \in Q$ and $D=(q: R)_{R}$. By Lemma 3.1.19 D is an orthogonally complete dense right ideal of R. According to Lemma 3.2.14, $\phi_{M}(D)$ is a dense right ideal of R_{M}. Clearly $\phi_{M}(q) \phi_{M}(D) \subseteq R_{M}$. Suppose that $\phi_{M}(q) \phi_{M}(D)=0$. Then $\phi_{M}(q D)=0$. By Lemma 3.1.18 $q D$ is an orthogonally complete subset of R and so eq $D=0$ for $e=1-E(q D) \in B \backslash M$ (see Corollary 3.2.4). Since D is a dense right ideal of R, we conclude that $e q=0$ and hence $\phi_{M}(q)=\phi_{M}(e q)=0$. Therefore for any $x \in Q_{M}$ we have proved that $K_{x}=\left(x: R_{M}\right)_{R_{M}}$ is a dense right ideal of R_{M} and $x K \neq 0$. Then the mapping $x \mapsto\left[l_{x} ; K_{x}\right]$, where l_{x} is the left multiplication by x, gives an embedding of Q_{M} into $Q_{m r}\left(R_{M}\right)$. Statements (ii) and (iii) are proved analogously.
(iv) Since $Q_{M} \subseteq Q_{m r}\left(R_{M}\right)$, it is enough to prove that Q_{M} is centrally closed. The mapping $E: Q \rightarrow Q, q \mapsto E(q)$, defines an
unary operation on Q. By Theorem 2.3.9(ii) $E(e q)=e E(q)$ for all $e \in B, q \in Q$. Hence Q is an orthogonally complete Ω-ring of signature $\{0,+,-, \cdot, E\}$. The rule $E\left(\phi_{M}(q)\right)=\phi_{M}(E(q))$, $q \in Q$, defines an Ω-ring structure on Q_{M}. For all $x \in Q_{M}$, clearly $E(x) \in\{0,1\}$, and $E(x)=0$ if and only if $x=0$. Consider the formulas

$$
\begin{aligned}
\Phi(x, y)= & \{(\forall z)\|x z y=y z x\|\} \Rightarrow \\
& \{(\exists c)\|E(x) y=c x\| \wedge\|c \in C\|\} \\
= & (\forall z)(\exists c)\{\|x z y=y z x\| \Rightarrow \\
& (\|E(x) y=c x\| \wedge\|c \in C\|)\} \\
= & (\forall z)(\exists c)\{\|x z y \neq y z x\| \\
& \vee(\|E(x) y=c x\| \wedge\|c \in C\|)\} \quad \text { and } \\
\Psi= & (\forall x)(\forall y) \Phi(x, y) .
\end{aligned}
$$

Then
$\neg \Psi=(\exists x)(\exists y)(\exists z)(\forall c)\|x z y=y z x\| \wedge(\|E(x) y \neq c x\| \vee\|c \notin C\|)$
is a Horn formula. Since $e Q$ is centrally closed with extended centroid $e C, e Q \vDash \Psi$ for all $e \in B$ (see Theorem 2.3.11). Therefore Ψ is hereditary. By Corollary $3.2 .11, Q_{M} \vDash \Psi$, that is to say, for every nonzero $x, y \in Q_{M}$ such that $x z y=y z x$ for all $z \in Q_{M}$ there exists $c \in \phi_{M}(C)$ such that $x=c y$. Let K be the extended centroid of Q_{M}. Clearly $\phi_{M}(C) \subseteq K$. Consider any element $0 \neq k \in K$. Pick $0 \neq y \in Q_{M}$ such that $x=k y \in Q_{M}$. Clearly $x z y=y z x$ for all $z \in Q_{M}$ and so $x=c y$ for some $c \in \phi_{M}(C)$. Therefore $(k-c) y=0$. Since $y \neq 0$ and K is a field, we infer from $k-c \in K$ that $k=c$ and so $K=\phi_{M}(C)$.

Now we are in a position to prove the analogs of Theorem 2.3.7 and Corollary 2.3.8 for semiprime rings. We refer the reader to the remark after Theorem 2.3.9 for the definition of $\operatorname{dim}_{C}(L)$.

Theorem 3.2.16 Let R be a semiprime ring, $Q=Q_{m r}(R)$, $q_{1}, q_{2}, \ldots, q_{n} \in Q$. Set $L=\sum_{i=1}^{n} C q_{i}$. Then

$$
\begin{equation*}
\sum_{\sigma \in S_{n}} \epsilon(\sigma) q_{\sigma(1)} r_{1} q_{\sigma(2)} r_{2} \ldots r_{n-1} q_{\sigma(n)}=0 \tag{3.8}
\end{equation*}
$$

for all $r_{1}, r_{2}, \ldots, r_{n-1} \in R$ (where S_{n} is the permutation group on n symbols) if and only if $\operatorname{dim}_{C}(L) \leq n-1$.

Proof. Let $A=O(R)$. By Remark 3.1.8 and Remark 3.1.9 the identity (3.8) holds for all $r_{1}, r_{2}, \ldots, r_{n-1} \in A$. Hence it holds also for all $r_{1}, r_{2}, \ldots, r_{n-1} \in A_{M} \subseteq Q_{M}$ where $M \in$ $\operatorname{Spec}(B)$. According to Theorem 3.2.7, A_{M} is a prime ring. By Theorem 3.2.15 $Q_{M} \subseteq Q_{m r}\left(A_{M}\right)$ and $\phi_{M}(C)=C_{M}$ is an extended centroid of A_{M}. Since A_{M} is a homomorphic image of A,

$$
\sum_{\sigma \in S_{n}} \epsilon(\sigma) \phi_{M}\left(q_{\sigma(1)}\right) r_{1} \ldots r_{n-1} \phi_{M}\left(q_{\sigma(n)}\right)=0
$$

for all $r_{1}, r_{2}, \ldots, r_{n-1} \in A_{M}$. Further, by Theorem 2.3.9 L is an injective C-module and so L is an orthogonally complete subset of Q (see Proposition 3.1.6). Consider the following formula

$$
\begin{aligned}
\Phi= & \left(\exists a_{1}\right) \ldots\left(\exists a_{n-1}\right)(\forall x)\left(\exists c_{1}\right) \ldots\left(\exists c_{n-1}\right)\left(\wedge_{i=1}^{n-1}\left\|a_{i} \in L\right\|\right) \\
& \wedge\|x \in L\| \wedge\left(\wedge_{i=1}^{n-1}\left\|c_{i} \in C\right\|\right) \wedge\left\|x=\sum_{i=1}^{n-1} c_{i} a_{i}\right\| .
\end{aligned}
$$

Clearly Φ is a Horn formula. By Theorem 2.3.7 $Q_{M} \models \Phi$ for all $M \in \operatorname{Spec}(B)$. Therefore $E(\Phi) \notin M$ for all $M \in \operatorname{Spec}(B)$, $E(\Phi)=1$ and $Q \vDash \Phi$ (see Theorem 3.2.10). The proof is complete.

Corollary 3.2.17 Let R be a semiprime ring, $Q=Q_{m r}(R)$, $C=Z(Q)$ and $a \in Q$. Then the following conditions are equivalent:
(i) a is an algebraic element of degree $\leq n$;
(ii) $\sum_{\sigma \in S_{n+1}} \epsilon(\sigma) a^{\sigma(0)} r_{0} a^{\sigma(1)} r_{1} \ldots r_{n-1} a^{\sigma(n)}=0$ for all $r_{i} \in$ R.

Proof. The proof is analogous to that of the above theorem. The only difference is that instead of the formula Φ we consider the following formula

$$
\Psi=\left(\exists c_{1}\right) \ldots\left(\exists c_{n}\right)\left(\wedge_{i=1}^{n}\left\|c_{i} \in C\right\|\right) \wedge\left\|q^{n}=\sum_{i=1}^{n} c_{i} q^{n-i}\right\|
$$

The last important result of this chapter is the following
Theorem 3.2.18 Let R be an orthogonally complete $\Omega-\Delta$-ring with extended centroid $C, \Psi_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ Horn formulas of signature $\Omega-\Delta, i=1,2, \ldots$, and $\Phi\left(y_{1}, y_{2}, \ldots, y_{m}\right)$ a hereditary first order formula such that $\neg \Phi$ is a Horn formula. Further, let $\vec{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in R^{(n)}, \vec{c}=\left(c_{1}, c_{2}, \ldots, c_{m}\right) \in R^{(m)}$. Suppose that $R \models \Phi(\vec{c})$ and for every maximal ideal M of the Boolean ring $B=B(C)$ there exists a natural number $i=i(M)>0$ such that

$$
R_{M} \models \Phi\left(\phi_{M}(\vec{c})\right) \Rightarrow \Psi_{i}\left(\phi_{M}(\vec{a})\right)
$$

Then there exist a natural number $k>0$ and pairwise orthogonal idempotents $e_{1}, e_{2}, \ldots, e_{k} \in B$ such that $e_{1}+e_{2}+\ldots+e_{k}=1$ and $e_{i} R \models \Psi_{i}\left(e_{i} \vec{a}\right)$ for all $e_{i} \neq 0$.

Proof. By Corollary 3.2.11 $R_{M} \models \Phi\left(\phi_{M}(\vec{c})\right)$ and so for every maximal ideal M we have $R_{M} \models \Psi_{i}\left(\phi_{M}(\vec{a})\right)$ for some $i=i(M)$. According to Theorem 3.2.10, $v_{i}=E\left(\Psi_{i}(\vec{a})\right) \notin M$. Therefore by Lemma 3.1.21 there exist a natural number k and pairwise orthogonal idempotents $e_{1}, e_{2}, \ldots, e_{k}$ whose sum is equal to 1 such that $e_{i} \leq v_{i}$ for all $i=1,2, \ldots, k$. If $e_{i} \neq 0$, then by Lemma 3.2 .9 we conclude that $e_{i} R=\Psi_{i}\left(e_{i} \vec{a}\right)$.

We close this chapter with an example of an application of Theorem 3.2.18. We shall extend to semiprime rings the following theorem proved by Herstein [119] for prime rings. For completeness we include a proof of Herstein's theorem.

Theorem 3.2.19 Let R be a prime ring with a derivation d : $R \rightarrow R$ such that $x^{d} y^{d}=y^{d} x^{d}$ for all $x, y \in R$. Then either R is a commutative domain, or $d^{2}=0$.

Proof. We set $[x, y]=x y-y x$ for all $x, y \in R$. Let D be the subring of R generated by R^{d}. Clearly $\left[x^{d}, D\right]=0$ for all $x \in R$. Suppose that $d^{2} \neq 0$. Then $a^{d^{2}} \neq 0$ for some $a \in R$. Let $b=a^{d}$. We have

$$
z b^{d}=(z b)^{d}-z^{d} b \in D
$$

for all $z \in R$. Hence

$$
\left[x^{d}, u v b^{d}\right]=0=\left[x^{d}, v b^{d}\right]
$$

for all $u, v \in R$. Now we infer that

$$
0=\left[x^{d}, u v b^{d}\right]=\left[x^{d}, u\right] v b^{d}
$$

for all $v \in R$. Since $b^{d} \neq 0$ and R is prime, we conclude that $\left[x^{d}, u\right]=0$ for all $x, u \in R$ and so $D \subseteq Z(R)$. In particular

$$
\left[x, u v b^{d}\right]=0=\left[x, v b^{d}\right]
$$

for all $x, u, v \in R$. Hence

$$
0=\left[x, u v b^{d}\right]=[x, u] v b^{d}
$$

for all $x, u, v \in R$ and therefore R is commutative.
Corollary 3.2.20 Let A be a semiprime ring with a derivation $d: A \rightarrow A$ such that $x^{d} y^{d}=y^{d} x^{d}$ for all $x, y \in A$. Further, let $R=O(A)$ be the orthogonal completion of A and $B=B(C)$ where C is the extended centroid of A. Then there exists an idempotent $e \in B$ such that $e R$ is a commutative ring and d induce a square zero derivation on $(1-e) R$.

Proof. By Proposition 2.5 .1 the derivation d can be extended uniquely to a derivation $d: Q_{m r}(A) \rightarrow Q_{m r}(A)$. According to Remark 3.1.16 $R^{d} \subseteq R$ and $e^{d}=0$ for all $e \in B$. Therefore R is an orthogonally complete Ω - Δ-ring where $\Omega=$ $\{0,+,-, \cdot, d\}$. Consider formulas

$$
\begin{aligned}
\Phi & =(\forall x)(\forall y)\left\|x^{d} y^{d}=y^{d} x^{d}\right\|, \\
\Psi_{1} & =(\forall x)(\forall y)\|x y=y x\|, \\
\Psi_{2} & =(\forall x)\left\|x^{d^{2}}=0\right\| .
\end{aligned}
$$

Using Theorem 3.2.19, one can easily check that all the conditions of Theorem 3.2.18 are fulfilled. Hence there exist two orthogonal idempotent e_{1} and e_{2} such that $e_{1}+e_{2}=1$ and if $e_{i} \neq 0$, then $e_{i} A \models \Psi_{i}, i=1,2$. The proof is complete.

Chapter 4

Primitive Rings

4.1 Rings of Quotients

A ring R is (left) primitive if there exists a faithful irreducible left R-module V. This is equivalent to saying that there is an abelian group V for which R is a subring of $\operatorname{End}(V)$ acting irreducibly on V (i.e., V has no R-invariant subgroups). We will generally find it useful to adopt this latter approach. For R a subring of $E=E n d(V)$ the set

$$
N(R)=N_{E}(R)=\{t \in \operatorname{End}(V) \mid t r=r t \quad \text { for all } \quad r \in R\}
$$

is called the commuting ring of R. We consider the ring $D=$ $\operatorname{End}\left({ }_{R} V\right)$ as acting from the right on V. It is well-known (and easy to show) that $D=N_{E}(R)^{\circ}$ is a division ring, where $N_{E}(R)^{\circ}$ is the opposite ring of $N_{E}(R)$. Given V we shall call $D=$ $E n d_{R}(V)$ the associated division ring of R relatively to V (in general a primitive ring may have many nonisomorphic faithful irreducible modules with corresponding nonisomorphic associated division rings). We may regard V as a left vector space over $D^{\circ}=N_{E}(R)$. Equivalently, V is a right vector space over D. In this case we may regard V as an (R, D)-bimodule. We
also regard $\operatorname{End}(V)$ as a left vector space over D° by defining:

$$
(d \cdot t) v=t(v) d, \quad d \in D^{\circ}, t \in \operatorname{End}(V), v \in V
$$

Clearly $R \subseteq \operatorname{End}\left(V_{D}\right)$. For S a subset of V we let $[S]_{D}$ (or simply [S] if context is clear) denote the D-subspace of V generated by S. An element $t \in \operatorname{End}(V)$ is said to be of finite D-rank in case $[t V]_{D}$ is finite dimensional over D.

A right primitive ring is defined in a similar fashion and the preceding remarks have their analogous counterparts in this situation.

We begin by showing that for primitive rings the symmetric ring of quotients is reasonably well-behaved. The following result is due to Whelan [275].

Theorem 4.1.1 If R is primitive then $Q_{s}(R) \subseteq E n d\left(V_{D}\right)$ (hence $Q_{s}(R)$ is also primitive).

Proof. We set $Q_{s}=Q_{s}(R)$. Let $q \in Q_{s}, v \in V$, and let I and J be nonzero ideals of R such that $q I, I q, J q, q J$ are all contained in R. Since $V=I V=J V$ we may write $v=\sum_{i=1}^{n} a_{i} v_{i}=\sum_{j=1}^{m} b_{j} w_{j}, a_{i} \in I, b_{j} \in J, v_{i}, w_{j} \in V$. For $r \in I$ we see that

$$
\begin{aligned}
r\left[\sum_{i=1}^{n}\left(q a_{i}\right) v_{i}-\sum_{j=1}^{m}\left(q b_{j}\right) w_{j}\right] & =\sum_{i=1}^{n} r\left(q a_{i}\right) v_{i}-\sum_{j=1}^{m} r\left(q b_{j}\right) w_{j} \\
& =(r q)\left[\sum_{i=1}^{n} a_{i} v_{i}-\sum_{j=1}^{m} b_{j} w_{j}\right]=0
\end{aligned}
$$

making use of $r q \in R$. It follows that $\sum_{i=1}^{n}\left(q a_{i}\right) v_{i}=\sum_{j=1}^{m}\left(q b_{j}\right) w_{j}$. What we have just established shows first of all that

$$
\Phi_{q}: \sum_{i=1}^{n}\left(a_{i}\right) v_{i} \mapsto \sum_{i=1}^{n}\left(q a_{i}\right) v_{i}
$$

is well-defined element of $\operatorname{End}(V)$ and secondly that Φ is a welldefined mapping of Q_{s} into $\operatorname{End}(V)$. Additivity is clear and we claim that Φ is multiplicative. Indeed, for $q_{1}, q_{2} \in Q_{s}$ there exists a nonzero ideal I of R such that $q_{1} I, I q_{1}, q_{2} I, I q_{2}$ are all contained in R. Then for $a, b \in I$ we have

$$
\begin{aligned}
\Phi_{q_{1} q_{2}}(a b v) & =\left[\left(q_{1} q_{2}\right)(a b)\right] v=\left(q_{1}\left[\left(q_{2} a\right) b\right]\right) v \\
& =\Phi_{q_{1}}\left[q_{2}(a b)\right] v=\Phi_{q_{1}} \Phi_{q_{2}}(a b v)
\end{aligned}
$$

Furthermore if $\Phi_{q}=0$ then from $(I q) I V=I(q I) V=0$ we see that $I q=0$, hence $q=0$ and so Φ is $1-1$.

Finally, for $q \in Q_{s}, d \in D, a \in I, v \in V$ we have

$$
\begin{aligned}
\Phi_{q}(a v d)-\left(\Phi_{q} a v\right) d & =(q a)(v d)-([q a] v) d \\
& =(q a)(v d)-(q a)(v d)=0
\end{aligned}
$$

since $q a \in R$. Consequently $\Phi_{q} \in \operatorname{End}\left(V_{D}\right)$ and the theorem is proved.

As a result of Theorem 4.1.1 we may assume that $Q_{s}(R) \subseteq$ $\operatorname{End}\left(V_{D}\right)$. In particular the central closure $R C$ and the C subalgebra $A=R^{\prime} C=R C+C$ are contained in $\operatorname{End}\left(V_{D}\right)$. Clearly $C \subseteq D^{\circ}$. Since $C \subseteq \operatorname{End}\left(V_{D}\right)$, we conclude that $c d=d c$ for all $d \in D^{\circ}$ and so $C \subseteq Z\left(D^{\circ}\right)$ where $Z\left(D^{\circ}\right)$ is the center of D°. Identifying $\left(D^{\circ}\right)^{\circ}$ with D and C° with C we summarize what we have thus shown in the following

Corollary 4.1.2 If R is primitive then the central closure $A=$ $R^{\prime} C$ is contained in $\operatorname{End}\left(V_{D}\right)$ and C is contained in the center of D.

The following example shows that C need not be equal to the center of D.

Example. Let $F=Q(x)$ be the field of rational expressions in x, where Q is the rational number field, let σ be the automorphism of F given by $x \mapsto x+1$, and let $E=F\langle y ; \sigma\rangle$ be
the set of all Laurent series

$$
\sum_{i=m}^{\infty} a_{i} y^{i}, \quad a_{i}=f_{i}(x) \in Q(x), m \in \mathcal{Z}
$$

with componentwise addition and multiplication determined by $y a=a^{\sigma} y$ and its consequences. Since σ is of infinite period it is well known (and straightforward to show) that E is a division ring with center Q and maximal subfield $F=Q(x)$. We let $K=$ $Q\left(x^{2}\right)$ and let R be the subring $E_{(l)} K_{(r)}$ of $E n d(E)$, where $E_{(l)}$ denotes the left multiplications by elements of E (i.e., $\left\{l_{x} \mid x \in\right.$ $E\}$) and $K_{(r)}$ the right multiplications by elements of $K . R$ acts irreducibly on E since E is a division ring, and so R is primitive. As $E_{(l)} \cong E$ is centrally closed, $E_{(l)} K_{(r)} \cong E \otimes_{Q} K$ and K is the extended centroid of R. On the other hand we claim that the commuting ring $D=\operatorname{End}_{R}(E)$ of R is $F_{(r)}$. Indeed, we first observe that for every $i \in \mathcal{Z} \quad x^{\sigma^{i}}=x+i$ and so from $\left(x^{2}\right)^{\sigma^{i}}=x^{2}+2 i x+i^{2}$ we see that σ^{i} is the identity on K if and only if $i=0$. Now let $d \in D$. Since d commutes with $E_{(l)}$ we have $d=r_{b}$ for some $b=\sum_{i=m}^{\infty} a_{i} y^{i} \in E$. From $b a=a b$ for all $a \in K$ we have $\sum_{i=m}^{\infty} a_{i}\left(a^{a^{i}}-a\right) y^{i}=0$. If $a_{i} \neq 0$ for some $i \neq 0$ we have the contradiction that $a^{\sigma^{i}}=a$ for all $a \in K$. Hence $i=0$, which says that $b=a_{0} \in F$, therefore $d=r_{b} \in F_{(r)}$. Since D clearly contains $F_{(r)}$ it follows that $D=F_{(r)} \cong F$ and our claim is established.

With reference to Theorem 4.1.1 one might ask if either Q_{l} or Q_{r}. lies in $\operatorname{End}\left(V_{D}\right)$. The following example ([133]) shows that the answer is no. Let V be a countably infinite dimensional vector space over a field F with basis $v_{1}, v_{2}, \ldots, v_{n}, \ldots$ Let x be the linear transformation given by $x v_{1}=0, x v_{i+1}=v_{i}$ and y the linear transformation given by $y v_{i}=v_{i^{2}+1}$. Let R be the F-subalgebra (with 1) of $\operatorname{End}_{F}(V)$ generated by x and y. It can be shown that R acts irreducibly on V (hence is primitive), the commuting ring of R is F, and R is the free algebra in x and y
over F. The set $U=R x \oplus R y=x R \oplus y R$ is a two-sided ideal of R. Suppose first that $Q_{l} \subseteq \operatorname{End}_{F}(V)$. Let $q \in Q_{l}$ be the element defined by $x q=y, y q=0$. Since $q \neq 0, q v_{j}=\sum \alpha_{i} v_{i} \neq 0$ for some j. Then

$$
0=y q v_{j}=\sum \alpha_{i} y v_{i}=\sum \alpha_{i} v_{i^{2}+1} \neq 0
$$

a contradiction. Suppose next that $Q_{r} \subseteq \operatorname{End}_{F}(V)$. We define $q \in Q_{r}$ according to $q x=x, q y=0$. Then $q v_{i}=q x v_{i+1}=$ $x v_{i+1}=v_{i}$ for all i. But a contradiction is reached since $0=$ $q y v_{1}=q v_{2}=v_{2}$.

For primitive rings containing minimal left idealss, however, the story is quite different, and we shall discuss this matter in section 4.4.

4.2 Density Theorems

As a consequence of Theorem 1.1.5 we begin with the celebrated Jacobson Density Theorem.

Theorem 4.2.1 Let R be a (left) primitive ring with ${ }_{R} V$ a faithful irreducible R-module and $D=E n d\left({ }_{R} V\right)$ (thus V is an (R, D)-bimodule). Then for any positive integer n, if v_{1}, \ldots, v_{n} are D-independent in V and w_{1}, \ldots, w_{n} are arbitrary in V there exists $r \in R$ such that $r v_{i}=w_{i}, i=1,2, \ldots, n$.

Proof. We set $M=V_{D}, N={ }_{R} V_{D}$, and $S=T=R$. $N=V$ is closed (by the irreducibility of ${ }_{R} V$ and the definition of D). $T=R$ is total (again by the irreducibility of $\left.{ }_{R} V\right)$. Therefore Theorem 1.1 .5 may be applied. Let $v_{1}, v_{2}, \ldots, v_{n}$ be D-independent and $w_{1}, w_{2}, \ldots, w_{n}$ arbitrary in V. For each $i=1,2, \ldots, n$ set $J_{i}=\left\{r \in R \mid r v_{j}=0, j \neq i\right\}$. Then by Theorem 1.1.5 $J_{i} v_{i} \neq 0$. But then $J_{i} v_{i}=V$ (since ${ }_{R} V$ is irreducible) and so we may choose $r_{i} \in J_{i}$ such that $r_{i} v_{i}=w_{i}$. Setting $r=r_{1}+r_{2}+\ldots+r_{n}$, we have the desired conclusion.

Any division ring D is a division algebra over its center C. It follows from Zorn's Lemma that D contains a maximal subfield F (i.e., a subfield which is not a proper subfield of any other subfield of D) which necessarily contains C.

Corollary 4.2.2 Let D be a finite dimensional division algebra over its center C, F a maximal subfield of D. Then there exists a natural number n such that $D \otimes_{C} F \cong M_{n}(F), \operatorname{dim}_{C}(D)=n^{2}$ and $\operatorname{dim}_{C}(F)=n$.

Proof. Let R be the subalgebra $D_{(l)} F_{(r)}$ of $E n d_{C}(D)$, where $D_{(l)}$ denotes the left multiplications by D and $F_{(r)}$ the right multiplications by F. Since D is a division ring, R acts irreducibly on D. Thus R is a primitive ring. Let $f \in E n d_{R}(D)$. As f commutes with $D_{(l)}, f(d)=f\left(l_{d} \cdot 1\right)=l_{d} f(1)=d f(1)$ for all $d \in D$, where l_{d} is the left multiplication by d. Hence $f=r_{f(1)}$. Since f commutes with $F_{(r)}$, we have that $[f(1), x]=0$ for all $x \in F$. Taking into account the maximality of F, we infer that $f(1) \in F$. Thus $E n d_{R}(D)=F$. Clearly $\operatorname{dim}_{F}(D) \leq \operatorname{dim}_{C}(D)<\infty$. By the Jacobson Density Theorem we have that $D_{(l)} F_{(r)} \cong M_{n}(F)$, where $n=\operatorname{dim}_{F}(D)$. According to Theorem 2.3.6, $D_{(l)} F_{(r)} \cong$ $D \otimes_{C} F$. Hence $\operatorname{dim}_{C}(D)=\operatorname{dim}_{F}\left(D \otimes_{C} F\right)=n^{2}$. On the other hand

$$
n^{2}=\operatorname{dim}_{C}(D)=\operatorname{dim}_{C}(F) \operatorname{dim}_{F}(D)=n \operatorname{dim}_{C}(F)
$$

and so $\operatorname{dim}_{C}(F)=n$. The proof is complete.
The present proof of Wedderburn's theorem on finite division rings is due to T. Nagahara and H. Tomnaga

Theorem 4.2.3 (Wedderburn) Any finite division ring D is commutative.

Proof. Suppose that D is not commutative. Without loss of generality we can assume that all proper subrings (which are
in fact subdivision rings) are commutative. Let C be the center of D with $|C|=q$. If $d \notin C$, then $N(d)=\{x \in D \mid x d=$ $d x\}$, being a proper subring of D, is commutative and hence contained in and therefore equal to a maximal subfield. By Corollary 4.2.2 $\operatorname{dim}_{C}(N(d))=n$ and $\operatorname{dim}_{C}(D)=n^{2}$ for some $n>1$. Therefore $|N(d)|=q^{n}$ and $|D|=q^{n^{2}}$. Set $D^{*}=D \backslash\{0\}$, $N(d)^{*}=N(d) \backslash\{0\}$, and $C^{*}=C \backslash\{0\}$, and let $C_{x}=\left\{z x z^{-1} \mid z \in\right.$ $\left.D^{*}\right\}$ be the conjugacy class in D^{*} determined by x. By the above $\left|C_{x}\right|=\left|D^{*}\right| /\left|N(x)^{*}\right|=\left(q^{n^{2}}-1\right) /\left(q^{n}-1\right)$ for $x \notin C^{*}$ and $\left|C_{x}\right|=1$ for $x \in C^{*}$. The class equation for D^{*} then reads

$$
q^{n^{2}}-1=q-1+m\left[\left(q^{n^{2}}-1\right) /\left(q^{n}-1\right)\right], \quad m \geq 1
$$

whence the contradiction that $q-1$ is divisible by

$$
\left(q^{n^{2}}-1\right) /\left(q^{n}-1\right)=q^{n(n-1)}+q^{n(n-2)}+\ldots+1>q-1 .
$$

Therefore D is commutative.
Our aim in the rest of this section is to prove a useful "density" result due to Amitsur. In contrast to the Jacobson Density Theorem the situation will be (loosely speaking) that given independent linear transformations $\tau_{1}, \tau_{2}, \ldots, \tau_{n}$ a vector v will be found such that $\tau_{1} v, \tau_{2} v, \ldots, \tau_{n} v$ are independent. We start with

Remark 4.2.4 Let R be primitive with commuting ring $\Delta=$ $N(R)$ and central closure $A=R^{\prime} C$. Then $A \Delta \cong A \otimes_{C} \Delta$.

Proof. The map $\sum a_{i} \otimes d_{i} \mapsto \sum a_{i} d_{i}, a_{i} \in A, d_{i} \in \Delta$, is clearly a ring surjection. Suppose its kernel K is nonzero. Then by Theorem 2.3.5, $0 \neq a \otimes d \in K$ for some $a \in A, d \in \Delta$ which yields the contradiction $0=a d V=a V$.

Corollary 4.2.5 Under the conditions of Remark 4.2.4 suppose that $a_{1}, a_{2}, \ldots, a_{n}$ are C-independent elements of A. Then $a_{1}, a_{2}, \ldots, a_{n}$ are also Δ-independent.

Lemma 4.2.6 Under the conditions of Remark 4.2.4, AD has a nonzero element of finite D-rank if and only if R has a nonzero element of finite D-rank, where $D=\operatorname{End}\left({ }_{R} V\right)$.

Proof. Let $0 \neq t=\sum_{i=1}^{m} a_{i} d_{i}$ be an element of finite D-rank with m minimal. Necessarily the a_{i} 's are C-independent and the d_{i} 's are C-independent. If $m>1$ choose (and fix) $r \in R$. Then $s=a_{1} r t-t r a_{1}=\sum_{i=2}^{m}\left(a_{1} r a_{i}-a_{i} r a_{1}\right) d_{i}$, hence $s V \subseteq a_{1} r t V+t V$. Therefore s has finite D-rank and so $s=0$ by the minimality of m. Since $A \Delta$ is a tensor product (by Remark 4.2.4) and since the d_{i} 's are C-independent we conclude in particular that $a_{1} r a_{i}=$ $a_{i} r a_{1}$. Since r is arbitrary in R we arrive at the contradiction that a_{1} and a_{2} are C-dependent by Theorem 2.3.4. Therefore we have shown that $m=1$, i.e., $t=a_{1} d_{1}$. Since $a_{1} V=a_{1} d_{1} V=t V$ we see that a_{1} has finite D-rank. But $0 \neq b=a_{1} r \in R$ for some $r \in R$ and so b is the required element in R of finite D-rank.

Let B be an abelian group and and let U be a left vector space over a division ring Δ. Then $M=\operatorname{Hom}(B, U)$ is a left vector space over Δ by defining:

$$
(\alpha m)(b)=\alpha m(v), \quad \alpha \in \Delta, m \in M, b \in B .
$$

Theorem 4.2.7 (Amitsur's Lemma) Let B be an abelian group, let U. be a left vector space over a division ring Δ, U_{0} be a finite dimensional subspace of U and let $T=\Delta t_{1}+\Delta t_{2}+$ $\ldots+\Delta t_{k} \subseteq \operatorname{Hom}(B, U)$, where $t_{1}, t_{2}, \ldots, t_{k}$ are Δ-independent elements. Suppose that T does not contain a nonzero element of finite Δ-rank. Then there exists $b \in B$ such that $t_{1}(b), \ldots, t_{k}(b)$ are Δ-independent $\bmod \left(U_{0}\right)$.

Proof. The proof is by induction on k. The case $k=1$ is obvious, since the inclusion $t_{1}(B) \subseteq U_{0}$ means that t_{1} is of finite Δ-rank. We assume the theorem true for $k-1$ and show it for k. To this end we assume the theorem is not true. This
means that for every $b \in B$ there exist elements $d_{1}, \ldots, d_{k} \in$ Δ not all equal zero such that $\sum_{i=1}^{k} d_{i} t_{i}(b) \in U_{0}$. It follows that if $t_{2}(x), t_{3}(x), \ldots, t_{k}(x)$ are Δ-independent modulo U_{0}, then $t_{1}(x)=\sum_{i=2}^{k} \delta_{i} t_{i}(x)+u$ for some uniquely determined $u \in U_{0}$, $\delta_{2}, \ldots, \delta_{k} \in \Delta$. By the induction hypothesis there exists $b_{1} \in B$ such that $t_{2}\left(b_{1}\right), t_{3}\left(b_{1}\right), \ldots, t_{k}\left(b_{1}\right)$ are Δ-independent modulo U_{0}. Hence

$$
\begin{equation*}
t_{1}\left(b_{1}\right)=\sum_{i=2}^{k} \alpha_{i} t_{i}\left(b_{1}\right)+u_{1} \tag{4:1}
\end{equation*}
$$

for some uniquely determined $u_{1} \in U_{0}, \alpha_{i} \in \Delta$. It is enough to show that $\left(t_{1}-\sum_{i=2}^{k} \alpha_{i} t_{i}\right) B \subseteq U_{0}$. To this end let $b \in B$ be an arbitrary element. We set $U_{1}=U_{0}+\sum_{i=2}^{k} \Delta t_{i}\left(b_{1}\right)+$ $\sum_{j=1}^{k} \Delta t_{j}(b)$. Let b_{2} be an arbitrary element of B such that $t_{2}\left(b_{2}\right), \ldots, t_{k}\left(b_{2}\right)$ are Δ-independent modulo U_{1} (the existence of such an element follows from the induction hypothesis). In particular $t_{2}\left(b_{2}\right), \ldots, t_{k}\left(b_{2}\right)$ are Δ-independent modulo U_{0} and so

$$
\begin{equation*}
t_{1}\left(b_{2}\right)=\sum_{i=2}^{k} \beta_{i} t_{i}\left(b_{2}\right)+u_{2} \tag{4.2}
\end{equation*}
$$

for some uniquely determined $u_{2} \in U_{0}, \beta_{i} \in \Delta$. Setting $V_{1}=$ $\left[\left\{t_{i}\left(b_{1}\right) \mid i=2,3, \ldots, k\right\}\right]$ and $V_{2}=\left[\left\{t_{i}\left(b_{2}\right) \mid i=2,3, \ldots, k\right\}\right]$, we infer from the choice of b_{2} that $V_{2} \cap\left(U_{0}+V_{1}\right)=0$ and so

$$
\begin{equation*}
\left(U_{0}+V_{1}\right) \cap\left(U_{0}+V_{2}\right)=U_{0} \tag{4.3}
\end{equation*}
$$

Since $t_{i}\left(b_{1}+b_{2}\right) \equiv t_{i}\left(b_{2}\right) \bmod U_{1}, t_{2}\left(b_{1}+b_{2}\right), \ldots, t_{k}\left(b_{1}+b_{2}\right)$ are $\Delta-$ independent modulo U_{1} and so $t_{1}\left(b_{1}+b_{2}\right)=\sum_{i=2}^{k} \gamma_{i} t_{i}\left(b_{1}+b_{2}\right)+u_{3}$ for some uniquely determined $u_{3} \in U_{0}, \gamma_{i} \in \Delta$. Hence

$$
\begin{equation*}
t_{1}\left(b_{1}\right)-\sum_{i=2}^{k} \gamma_{i} t_{i}\left(b_{1}\right)=\sum_{i=2}^{k} \gamma_{i} t_{i}\left(b_{2}\right)-t_{1}\left(b_{2}\right)+u_{3} . \tag{4.4}
\end{equation*}
$$

It follows from (4.1) that the left side of (4.4) belongs to $U_{0}+V_{1}$. On the other hand by (4.2) the right side of (4.4) belongs to
$U_{0}+V_{2}$. Now (4.3) implies that each side of (4.4) belongs to U_{0}. Then by (4.1) and (4.2) we conclude that $\alpha_{i}=\gamma_{i}=\beta_{i}$ for all $i=2,3, \ldots, k$. In particular

$$
\begin{equation*}
t_{1}\left(b_{2}\right)-\sum_{i=2}^{k} \alpha_{i} t_{i}\left(b_{2}\right) \in U_{0} \tag{4.5}
\end{equation*}
$$

Since $t_{i}\left(b+b_{2}\right) \equiv t_{i}\left(b_{2}\right) \bmod U_{1}, t_{2}\left(b_{2}+b\right), t_{3}\left(b_{2}+b\right), \ldots, t_{k}\left(b_{2}+b\right)$ are Δ-independent modulo U_{1}. Applying what we just have proved we conclude that $t_{1}\left(b_{2}+b\right)-\sum_{i=2}^{k} \alpha_{i} t_{i}\left(b_{2}+b\right) \in U_{0}$ and so by (4.5)

$$
\left(t_{1}-\sum_{i=2}^{k} \alpha_{i} t_{i}\right)(b) \in t_{1}\left(b_{2}\right)-\sum_{i=2}^{k} \alpha_{i} t_{i}\left(b_{2}\right)+U_{0}=U_{0}
$$

With this contradiction the proof is complete.
We now let R be a primitive ring, recalling the framework that R acts densely on a vector space V_{D} over a division ring D, with $A=R^{\prime} C \subseteq R^{\prime} D^{\circ} \subseteq \operatorname{End}_{C}(V)$. We consider V as a left D°-space and note that $t \in R^{\prime} D^{\circ}$ has finite D°-rank if and only if it has finite D-rank. Furthermore $U \subseteq V$ is a D° subspace if and only if it is D-subspace. If U is D-subspace, then $\operatorname{dim}_{D}(U)=\operatorname{dim}_{D^{\circ}}(U)$. Also we recall that $D^{\circ}=N(R)$. The following corollary of Amitsur's Lemma is crucial to our needs in the section 4.4.

Lemma 4.2.8 Let R be a primitive ring, let $a_{1}, a_{2}, \ldots, a_{n}$ be C-independent elements of $A=R^{\prime} C$, let U_{0} be a finite dimensional D-subspace of V, and let $T=\sum_{i=1}^{n} a_{i} D^{\circ}$. Then either T contains a nonzero element of finite D-rank or there exist $v_{0}, v_{1}, \ldots, v_{m}, \ldots \in V$ such that $a_{i} v_{j}, i=1,2, \ldots, n, j=0,1, \ldots$, are D-independent modulo U_{0}.

Proof. By Corollary $4.2 .5 a_{1}, a_{2}, \ldots, a_{n}$ are also D°-independent. Suppose there is no $0 \neq t \in T$ of finite D-rank. By Amitsur's Lemma one finds $v_{0} \in V$ such that $a_{1} v_{0}, a_{2} v_{0}, \ldots, a_{n} v_{0}$ are
D°-independent modulo U_{0} (and hence D-independent modulo U_{0}). Again by Amitsur's Lemma (here $B=U=V$ and $\Delta=$ D°) there exists $v_{1} \in V$ such that $a_{1} v_{1}, a_{2} v_{1}, \ldots, a_{n} v_{1}$ are D independent modulo the D-span of U_{0} and $a_{1} v_{0}, a_{2} v_{0}, \ldots, a_{n} v_{0}$. Continuing in this fashion we obtain the desired result.

4.3 Primitive Rings with Nonzero Socle

Our main object in this book is the study of rings satisfying certain "generalized identities" and it will be seen in this connection that primitive rings with nonzero socle arise quite naturally. Accordingly we feel it is appropriate to present in some detail the basic facts about this class of rings. The following account is an abbreviated version of the full treatment given in [133, Chapter IV]. We will then close this section with the determination of the various rings of quotients in this situation.

We begin by discussing dual spaces. A left vector space ${ }_{\Delta} V$ and right vector space W_{Δ} over a division ring Δ are called a pair of dual spaces over Δ if there exists a nondegenerate bilinear form on V and W (denoted by \langle,$\rangle):$

$$
\begin{array}{ll}
\text { (a) } & \langle,\rangle: V \times W \rightarrow \Delta ; \\
\text { (b) } & \left\langle v_{1}+v_{2}, w\right\rangle=\left\langle v_{1}, w\right\rangle+\left\langle v_{2}, w\right\rangle ; \\
& \left\langle v, w_{1}+w_{2}\right\rangle=\left\langle v, w_{1}\right\rangle+\left\langle v, w_{2}\right\rangle ; \\
\text { (c) } & \langle\alpha v, w\rangle=\alpha\langle v, w\rangle \\
& \langle v, w \alpha\rangle=\langle v, w\rangle ; \\
\text { (d) } & \langle v, W\rangle=0 \quad \text { implies } \quad v=0 ; \\
\text { (e) } & \langle V, w\rangle=0 \quad \text { implies } \quad w=0 .
\end{array}
$$

for all $v, v_{i} \in V, w, w_{i} \in W, \alpha \in \Delta$. A map $a:{ }_{\Delta} V \rightarrow$ ${ }_{\Delta} V$ has an adjoint $a^{*}: W_{\Delta} \rightarrow W_{\Delta}$ if $\langle v a, w\rangle=\left\langle v, a^{*} w\right\rangle$ for
all $v \in: V, w \in W$. An important example of dual spaces is the pair ${ }_{\Delta} V, V_{\Delta}^{*}$, where $V^{*}=\operatorname{Hom}\left({ }_{\Delta} V, \Delta \Delta\right)$ is the right vector space of linear functionals of V. Two sets of vectors $v_{1}, v_{2}, \ldots, v_{k} \in V$ and $w_{1}, w_{2}, \ldots, w_{k} \in W$ are called dual to each other in case $\left\langle v_{i}, w_{j}\right\rangle=\delta_{i j}, i, j=1,2, \ldots, k$. If V, W are a dual pair then W is isomorphic to a subspace W^{\prime} of V^{*} via the map $w \mapsto\langle, w\rangle$ (making use of (e)). The Weak Density Theorem (Theorem 1.1.5) now enters the picture if we set $M={ }_{\Delta} V$, $N=\Delta_{\Delta}, T=W^{\prime}, S=\Delta . T=W^{\prime}$ is total in view of (d). Next consider $f: \Delta_{\Delta} \rightarrow \Delta_{\Delta}$. Setting $f(1)=\lambda$ we have

$$
f(\gamma)=f(1 \cdot \gamma)=f(1) \gamma=\lambda \gamma
$$

for all $\gamma \in \Delta$. Therefore $N=\Delta \Delta_{\Delta}$ is closed. Now let v_{1}, \ldots, v_{n} be Δ-independent in V and for each i set $J_{i}=\left\{w^{\prime} \in W^{\prime} \mid v_{j} w^{\prime}=\right.$ $0, \quad j \neq i\}$. By Theorem 1.1.5 $v_{i} J_{i} \neq 0, i=1,2, \ldots, n$, and since $v_{i} J_{i}=\Delta$ we can find $w_{i}^{\prime} \in J_{i}$ such that $v_{i} w_{i}^{\prime}=1$. Since $w_{i}^{\prime}=\left\langle, w_{i}\right\rangle$ we have proved

Theorem 4.3.1 If V and W are a pair of dual spaces over Δ and $v_{1}, v_{2}, \ldots, v_{n}$ are Δ-independent in V then there exists $w_{1}, w_{2}, \ldots, w_{n} \in W$ such that $\left\langle v_{i}, w_{j}\right\rangle=\delta_{i j}, i, j=1,2, \ldots, n$.

We now define two sets:

$$
\begin{aligned}
\mathcal{L}_{W}(V)= & \left\{a \in \operatorname{End}\left({ }_{\Delta} V\right) \mid a \text { has an adjoint }\right\} ; \\
\mathcal{F}_{W}(V)= & \left\{a \in \operatorname{End}\left({ }_{\Delta} V\right) \mid a\right. \text { has an adjoint and is of } \\
& \text { finite rank }\} .
\end{aligned}
$$

$\mathcal{F}_{W}(V)$ is an ideal of the ring $\mathcal{L}_{W}(V)$ and may be characterized according to

Theorem 4.3.2 $a \in \mathcal{F}_{W}(V)$ if and only if a is a sum of elements of the form $x \mapsto\langle x, w\rangle u$,

Proof. Since any mapping of the form $x \mapsto\langle x, w\rangle u$ is of rank one and has an adjoint $y \mapsto w\langle u, y\rangle$, any sum of a finite number of such mappings is of finite rank and has an adjoint. Therefore it is enough to prove that any $a \in \mathcal{F}_{W}(V)$ is a sum of elements of the above form. Clearly $V a=\sum_{i=1}^{n} \Delta v_{i}$, where $v_{1}, v_{2}, \ldots, v_{n}$ are Δ-independent. By Theorem 4.3.1 there exist elements $w_{1}, w_{2}, \ldots, w_{n} \in W$ such that $\left\langle v_{i}, w_{j}\right\rangle=\delta_{i j}$ for all i, j. Obviously

$$
v a=\sum_{i=1}^{n}\left\langle v a, w_{i}\right\rangle v_{i}=\sum_{i=1}^{n}\left\langle v, a^{*} w_{i}\right\rangle v_{i}
$$

for all $v \in V$, which completes the proof.
Recall that a nonzero left ideal L of an arbitrary ring A is said to be minimal if its does not properly contain any nonzero left ideal of A. We continue with the following general

Proposition 4.3.3 Let L be a minimal left ideal of a ring A. Suppose that $L^{2} \neq 0$. Then there exists an idempotent $e \in L$ such that $L=A e$. Moreover eAe is a division ring. Further, if A is a semiprime ring and $v \in A$ is an idempotent such that $v A v$ is a division ring, then $A v$ is a minimal left ideal of A.

Proof. Since $L^{2} \neq 0, L x \neq 0$ for some $x \in L$. Then by the minimality of L we have $L=L x$. Therefore $e x=x$ for some $e, \in L$. Hence $e^{2} x=e x=x$ and $\left(e^{2}-e\right) x=0$. Letting $l(x)$ denote the left annihilator of x in A we infer that $e^{2}-e \in$ $l(x) \cap L$. Since $L x \neq 0, L \nsubseteq l(x)$. Again by the minimality of L we have $L \cap l(x)=0$ and $e^{2}-e=0$. Therefore e is an idempotent. Clearly $0 \neq e=e^{2} \in A e \subseteq L$ and $L=A e$. Now let exe $\in e A e$ be any nonzero element. Then exe $=e($ exe $) \in$ Aexe and $0 \neq$ Aexe $\subseteq L$. By the minimality of L we have Aexe $=L$ and in particular yexe $=e$. Hence (eye) $($ exe $)=e$ and exe is an invertible element of $e A e$. Therefore $e A e$ is a division ring.

Suppose that v is a nonzero idempotent of a semiprime ring A such that $v A v$ is a division ring. Let $y=a v \in A v$ be a
nonzero element. Being a semiprime ring A has no nontrivial right annihilator. Hence $A y \neq 0$. Therefore $(A y)^{2} \neq 0$ and avbav $\neq 0$ for some $b \in A$. We have $v b a v \neq 0$ and vbav $\in v A v$. This implies that $(v z v)(v b a v)=v$ for some $z \in A$. Thus $v \in A y$, $A v \subseteq A y \subseteq A v$ and $A y=A v$ which completes the proof.

Given any ring A the sum of all minimal left ideals of A is called the left socle of A and is denoted by $\operatorname{Soc}_{l}(A)$. The notion of right socle is introduced analogously. We note that in general left and right socles are not necessarily equal. For example if A is the ring of upper triangular (2×2)-matrices over a field, then $S o c_{l}(A) \neq \operatorname{Soc}_{r}(A)$. The following corollary follows immediately from Proposition 4.3.3.

Corollary 4.3.4 Let A be a semiprime ring and $e=e^{2} \in A$. Then:
(i) Ae is a minimal left ideal if and only if $e A$ is a minimal right ideal of the ring A;
(ii) $\operatorname{Soc}_{l}(A)=\operatorname{Soc}_{r}(A)$.

Remark 4.3.5 Let A be a ring. Then $\operatorname{Soc}_{l}(A)$ is an ideal of A and is a direct sum of minimal left ideals.

Proof. For an element $a \in A$ we let r_{a} to be the right multiplication by a (i.e., $r_{a}: A \rightarrow A, x r_{a}=x a$ for all $x \in A$). Since the homomorphic image of a minimal left ideal under a right multiplication is either zero or again a minimal left ideal, we have that $\operatorname{Soc}_{l}(A) a=\operatorname{Soc}_{l}(A) r_{a} \subseteq \operatorname{Soc}_{l}(A)$ and $S o c_{l}(A)$ is an ideal of A. Making use of Zorn's lemma we conclude that there exists a family $\left\{L_{\gamma} \mid \gamma \in \Gamma\right\}$ of left ideals of A maximal with respect to the property $\sum_{\gamma \in \Gamma} L_{\gamma}$ is direct. If L is a minimal left ideal which does not belong to $\sum_{\gamma \in \Gamma} L_{\gamma}$, then $L \cap \sum_{\gamma \in \Gamma} L_{\gamma}=0$ and the sum $L+\sum_{\gamma \in \Gamma} L_{\gamma}$ is direct, in contradiction with the choice of the family $\left\{L_{\gamma} \mid \gamma \in \Gamma\right\}$. Thus $L \subseteq\left\{L_{\gamma} \mid \gamma \in \Gamma\right\}$ and $\sum_{\gamma \in \Gamma} L_{\gamma}=\operatorname{Soc}_{l}(A)$.

An idempotent $e \neq 0$ of a semiprime ring A is called minimal if $A e$ is a minimal left ideal of A. It follows immediately from Proposition 4.3.3, that a semiprime ring A has a nonzero socle if and only if it has a minimal idempotent. Furthermore, if e is a minimal idempotent of a semiprime ring A, then $e A e$ is a division ring.

Now let R be a prime ring with nonzero socle and let e be a minimal idempotent of R. Then $V=e R$ is a faithful irreducible right R-module and also a left vector space over $\Delta=e R e$. If $\phi \in D=\operatorname{End}_{R}(V)$, then $\phi(e)=\phi\left(e^{2}\right)=\phi(e) e \in e R e$ and, in view of this observation, it is straightforward to show that $D \cong \Delta$ (here we are letting D act on V from the left). Thus Δ is the associated division ring of R relative to $V=e R$.

Theorem 4.3.6 Let R be a primitive ring and let V be any faithful irreducible right R-module with associated division ring D (thus we may regard R as acting densely on ${ }_{D} V$ in view of the Jacobson Density Theorem). Then:
(i) $\operatorname{Soc}(R)=\{r \in R \mid$ rank $\quad r<\infty\}$;
(ii) $\operatorname{Soc}(R)=\operatorname{Soc}(H)$ (recall Theorem 4.1.1) where H is any ring such that $R \subseteq H \subseteq Q_{s}(R)$.

Proof. Let $S=\{r \in R \mid$ rank $r<\infty\}$. Let $a \in S$ be of rank n and let $w_{1}, w_{2}, \ldots, w_{n}$ be a D-basis of $V a$. By density for each $i=1,2, \ldots, n$ there exists $r_{i} \in R$ such that $w_{j} r_{i}=\delta_{i j} w_{i}$, whence $a=\sum_{i=1}^{n} a r_{i}$. Therefore, in order to prove (i), it suffices to show that $a \in R$ has rank 1 if and only if the right ideal J generated by a is minimal. Suppose a has rank 1. Setting $W=\operatorname{ker}(a)$ we may write $V=W \oplus D v$, with $W a=0$ and $u=v a \neq 0$. Now let $0 \neq b \in J$. Since $W b=0$ we must have $w=v b \neq 0$. By density there exists $c \in R$ such that $w c=u$ and so $v b c=u$, which shows that $a=b c$. It follows that J is minimal. Conversely, suppose J is minimal but a has rank >1. Then we may find two D-independent vectors $v a$, wa in V. By
density there exists $r \in R$ such that var $=0$ but war $\neq 0$. Then

$$
0 \neq a r \in L=\{y \in J \mid v y=0\} \subset J
$$

since $a \in J$ but $a \notin L$, a contradiction to the minimality of J.
To prove (ii) we first recall from Theorem 4.1.1 that $Q_{s}=$ $Q_{s}(R) \subseteq \operatorname{End}_{D}(V)$. Since $R \subseteq H$ it is immediate from (i) that $\operatorname{Soc}(R) \subseteq \operatorname{Soc}(H)$. Now let $q \in \operatorname{Soc}(H)$ and let $v_{1} q, v_{2} q, \ldots, v_{n} q$ be a D-basis for $V q$. There exists $0 \neq I \triangleleft R$ such that $I q+q I \subseteq R$. It is easy to see that V is an irreducible right I-module and so I acts densely on V. Hence there exists $r \in I$ such that $v_{i} q r=v_{i} q$ for all $i=1,2, \ldots, n$. Clearly $V=\operatorname{ker}(q) \oplus \sum_{i=1}^{n} D v_{i}$ and so $V(q-q r)=0$. Thus $q=q r \in R$ and the proof is complete.

The next theorem shows that primitive rings with nonzero socle have many nice properties.

Theorem 4.3.7 Let R be a primitive ring with nonzero socle, let V be any faithful irreducible right R-module (with associated division ring D), and let e be any minimal idempotent (with $\Delta=e R e)$. Then:
(i) There are a ring isomorphism $\tau: \Delta \rightarrow D$ and a τ semilinear isomorphism $\sigma: e R \rightarrow V$ such that σ is also a right R-module map;
(ii) Every nonzero right (left) ideal of R contains a minimal idempotent;
(iii) $\operatorname{Soc}(R)$ is a right ideal of $\operatorname{End}\left({ }_{D} V\right)$;
(iv) $\operatorname{Soc}(R)$ is contained in every essential right (left) ideal of R;
(v) $\operatorname{Soc}(R)$ is the unique minimal ideal of R;
(vi) $\operatorname{Soc}(R)$ is a simple ring;
(vii) $Q_{m l}(R)=Q_{l}(R)$;
(viii) $Q_{m l}(R)=\operatorname{End}\left({ }_{\Delta} e R\right) \cong \operatorname{End}\left({ }_{D} V\right)$ with $e Q_{m l} e=e R e$;
(ix) The extended centroid C of R is isomorphic to the center of D.

Proof. Since V is faithful, $v e \neq 0$ for some $v \in V$. Define the mapping $\sigma: e R \rightarrow V$ by the rule (er) ${ }^{\sigma}=v e r$. Clearly σ is an isomorphism of right R-modules. Now we define the mapping $\tau: \Delta \rightarrow D$ setting

$$
(e r e)^{\tau} x=\left[(e r e) x^{\sigma^{-1}}\right]^{\sigma}
$$

for all $x \in V$ and ere $\in e R e$. One can easily check that all desired properties are fulfilled and so (i) has been established.

To prove (ii) let $0 \neq L$ be a right ideal of R and pick $0 \neq$ $a \in L$. Since $a \operatorname{Soc}(R) \neq 0$ we must have $a J \neq 0$ for some minimal right ideal J. Then the map $x \mapsto a x$ is a right R module isomorphism and so $a J$ is a minimal right ideal of R contained in L. By Proposition 4.3.3 aJ (and hence L) contains a minimal idempotent.

To prove (iii) let $s \in \operatorname{Soc}(R)$ and let $t \in \operatorname{End}\left({ }_{D} V\right)$. By Theorem 4.3.6(i) s has finite rank and we choose a D-basis $v_{1} s, v_{2} s, \ldots, v_{n} s$ for $V s$. By density there exists $r \in \operatorname{Soc}(R)$ such that $v_{i} s r=v_{i} s t, i=1,2, \ldots, n$. From $V=\operatorname{ker} s \oplus \sum_{i=1}^{n} D v_{i}$ we infer that $s t=s r \in \operatorname{Soc}(R)$.

Given any essential left ideal I of R and a minimal left ideal L we have $I \cap L \neq 0$. Since L is a minimal left ideal, $L=I \cap L \subseteq I$. Hence $I \supseteq \operatorname{Soc}(R)$. As any nonzero ideal of a prime ring is an essential left ideal, it contains the socle. Suppose now that K is a nonzero ideal of $\operatorname{Soc}(R)$. Since $\operatorname{Soc}(R)$ is a nonzero ideal of the prime ring $R, K^{\prime}=\operatorname{Soc}(R) K \operatorname{Soc}(R)$ is a nonzero ideal of R. Therefore $\operatorname{Soc}(R) \subseteq K^{\prime} \subseteq K \subseteq \operatorname{Soc}(R)$ and $K=\operatorname{Soc}(R)$. We have thus proved (iv), (v) and (vi).

Let $q \in Q=Q_{m l}(R)$. Then $K q \subseteq R$ for some dense left ideal K of R. Since any dense left ideal is an essential left ideal, $K \supseteq \operatorname{Soc}(R)$ by (iv). This means that $q \in Q_{l}(R)$, and so $Q_{m l}(R)=Q_{l}(R)$, thus proving (vii). Since $e R \subseteq \operatorname{Soc}(R) \subseteq K$, we conclude that $e R q \subseteq R$. But then $e R q=e(e R q) \subseteq e R$ and hence $e R$ is a right ideal of Q. Since $r_{Q}(e R) \cap R=0$ and $r_{Q}(e R)$ is an ideal of Q, we conclude that $r_{Q}(e R)=0$.

Therefore we may regard Q as a subring of $\operatorname{End}(\Delta e R)$. Consider any linear transformation $t \in \operatorname{End}(\Delta e R)$. Define the mapping $f_{t}: R e R \rightarrow R$ according to the rule

$$
\left(\sum_{i=1}^{n} r_{i} e s_{i}\right) f_{t}=\sum_{i=1}^{n} r_{i} e\left(e s_{i} t\right)
$$

We claim that f_{t} is well-defined. Indeed, let $\sum_{i=1}^{n} r_{i} e s_{i}=0$ and set $z=\sum_{i=1}^{n} r_{i} e\left(e s_{i} t\right)$. Then $\operatorname{er}\left(\sum_{i=1}^{n} r_{i} e s_{i}\right)=0$ for all $r \in R$ and so

$$
e r z=\sum_{i=1}^{n} e r r_{i} e\left(e s_{i} t\right)=\left(\sum_{i=1}^{n} e r r_{i} e s_{i}\right) t=0
$$

and $z=0$, since R is prime. Therefore the mapping f_{t} is a well-defined homomorphism of left R-modules. Setting $q_{t}=$ $\left[R e R ; f_{t}\right]$, we see that $\operatorname{erq} q_{t}=e r f_{t}=e r t$ for all $r \in R$ and hence $q_{t}=t$. Therefore $Q=\operatorname{End}(\Delta e R)$. Finally we note that the τ-semilinear isomorphism $\sigma: e R \rightarrow V$ yields $\operatorname{End}(\Delta e R) \cong$ $\operatorname{End}\left({ }_{D} V\right)$. By (iii) we then have $e Q \subseteq \operatorname{Soc}(R)$ and so $e Q e=$ e Re. In view of Corollary 2.3 .12 we conclude that $C \cong Z(\Delta)$ and $Z(\Delta)$ is isomorphic to $Z(D)$ via τ.

We now show the relationship between primitive rings with nonzero socle and bilinear forms.

Theorem 4.3.8 Let ${ }_{\Delta} V, W_{\Delta}$ be a dual pair of vector spaces over a division ring Δ, let R be a ring such that $\mathcal{F}_{W}(V) \subseteq$ $R \subseteq \mathcal{L}_{W}(V)$, and let $a \mapsto a^{*}$ denote the adjoint map $\mathcal{L}_{W}(V) \rightarrow$ $\operatorname{End}\left(W_{\Delta}\right)$. Then:
(i) $\mathcal{F}_{W}(V) \neq 0$;
(ii) R acts densely on ΔV (hence R is primitive);
(iii) The map $a \mapsto a^{*}$ is a ring injection and W_{Δ} is a faithful irreducible left R^{*}-module;
(iv) $\operatorname{Soc}(R)=\mathcal{F}_{W}(V)$;
(v) $Q_{s}(R)=\mathcal{L}_{W}(V)$.

Proof. Let 〈, 〉 denote the given nondegenerate bilinear form. Clearly $\mathcal{F}_{W}(V) \neq 0$ since, e.g., the rank one transformation $\langle, w\rangle v$ has as its adjoint $w\langle v$,$\rangle . Next let v_{1}, v_{2}, \ldots, v_{n}$ be Δ-independent vectors in V and let $u_{1}, u_{2}, \ldots, u_{n} \in V$. By Theorem 4.3.1 there exist $w_{1}, w_{2}, \ldots, w_{n} \in W$ such that $\left\langle v_{i}, w_{i}\right\rangle=$ $\delta_{i j} i, j=1,2, \ldots n$. Then

$$
t=\sum_{i=1}^{n}\left\langle, w_{i}\right\rangle u_{i} \in \mathcal{F}_{W}(V)
$$

is such that $v_{i} t=u_{i}, i=1,2, \ldots, n$. Thus $\mathcal{F}_{W}(V)$ (and hence R) acts densely on V_{Δ}

To prove (iii) first let $a, b \in R, v \in V, w \in W$ and conclude from

$$
\left\langle v,(a b)^{*} w\right\rangle=\langle v a b, w\rangle=\left\langle v a, b^{*} w\right\rangle=\left\langle v, a^{*} b^{*} w\right\rangle
$$

that $(a b)^{*}=a^{*} b^{*}$. If $a^{*}=0$, then $\langle v a, w\rangle=\left\langle v, a^{*} w\right\rangle=0$ and so $a=0$. Thus $a \mapsto a^{*}$ is a ring injection. Now let $0 \neq w \in W$ and y an arbitrary element of W. Picking $v \in V$ such that $\langle v, w\rangle=1$ we note that $t=\langle, y\rangle v \in R$ and that $t^{*}=y\langle v,\rangle \in R^{*}$ is such that $t^{*} w=y$. It follows that W_{Δ} is a faithful irreducible left R^{*}-module.
(iv) is an immediate consequence of Theorem 4.3.6(i). To prove (\mathbf{v}) we first pick a minimal idempotent e and an element v such that $v e \neq 0$, and write $V=v e R$. By Theorem 4.3.7(viii) we may assume that $Q_{s}=Q_{s}(R) \subseteq \operatorname{End}\left({ }_{\Delta} V\right)$ and for $q \in Q_{s}$ we have (ver) $q=v(e r q)$ where $r \in R$. Now e^{*} is a minimal idempotent of R^{*} and, in view of (iii), we may analogously write $W=R^{*} e^{*} w$. We define a transformation $q^{*} \in \operatorname{End}\left(W_{\Delta}\right)$ by $q^{*}\left(r^{*} e^{*} w\right)=[q(r e)]^{*} w$, noting that $q(r e) \in R$ since $r e \in S o c(R)$. As the mapping $R^{*} e^{*} \rightarrow R^{*} e^{*} w, r^{*} e^{*} \mapsto r^{*} e^{*} w$ is an isomorphism of R^{*}-modules, the transformation q^{*} is well-defined. From

$$
\begin{aligned}
& \left\langle v e r q, s^{*} e^{*} w\right\rangle=\left\langle v,(e r q)^{*} s^{*} e^{*} w\right\rangle \\
& =\left\langle v,(\text { erqse })^{*} w\right\rangle=\left\langle v,(e r)^{*}(q s e)^{*} w\right\rangle \\
& =\left\langle\text { ver }, q^{*}\left(s^{*} e^{*} w\right)\right\rangle
\end{aligned}
$$

we see that q^{*} is the adjoint of q and hence $Q_{s} \subseteq \mathcal{L}_{W}(V)$. On the other hand, let $t \in \mathcal{L}_{W}(V) \subseteq \operatorname{End}\left({ }_{\Delta} V\right)=Q_{m l}(R)$ (see Theorem 4.3.7(viii)). Letting $S=\operatorname{Soc}(R)$ we know from Theorem 4.3.7(iii) that $S t \subseteq S$. To show that $t \in Q_{s}$ we need only show that $t S \subseteq S$. By part (iii) S^{*} is the socle of R^{*} and by Theorem 4.3.7(iii) (applied to $\operatorname{End}\left(W_{\Delta}\right)$) we see that $t^{*} S^{*} \subseteq S^{*}$. Since $a \mapsto a^{*}$ is a ring injection, we conclude that $t S \subseteq S$ and the proof of the theorem is complete.

Conversely we have the important fact that the primitive rings with nonzero socle which arise in Theorem 4.3.8 are a general phenomenon.

Theorem 4.3.9 Let R be a primitive ring with nonzero socle. Then there is a dual pair $\Delta V, W_{\Delta}$ such that $\mathcal{F}_{W}(V) \subseteq R \subseteq$ $\mathcal{L}_{W}(V)$.

Proof. Let e be any minimal idempotent of R. We know that $V=e R$ is a faithful irreducible right R-module and R is a right primitive ring acting densely on V over $\Delta=e R e$. Setting $W=R e$ we define a bilinear form $\langle\rangle:, V \times W \rightarrow \Delta$ by $\langle e r, s e\rangle=$ erse $\in \Delta$ for all $r, s \in R$. Since R is a prime ring, \langle,$\rangle is nondegenerate and so { }_{\Delta} V, W_{\Delta}$ is a pair of dual spaces. Since $\langle e x r, y e\rangle=$ exrye $=\langle e x, r y e\rangle$ for all $e x \in V$, ye $\in W$ and $r \in R$, any element $r \in R$ has an adjoint $r^{*}: y e \mapsto r y e$. Hence $R \subseteq \mathcal{L}_{W}$. Next let $a \in \mathcal{F}_{W}$. By Theorem 4.3.2 there exist elements $b_{i}, c_{i} \in R, i=1,2, \ldots, n$, such that

$$
e x a=\sum_{i=1}^{n}\left\langle e x, b_{i} e\right\rangle e c_{i}=e x\left(\sum_{i=1}^{n} b_{i} e c_{i}\right)=e x d
$$

for all $e x \in V$, where $d=\sum_{i=1}^{n} b_{i} e c_{i} \in R$. Therefore $a=d$ and $\mathcal{F}_{W} \subseteq R$.

We come finally to Litoff's Theorem. Our feeling is that this theorem deserves an important place in the structure theory since it furnishes the device by which many problems in prime
rings (especially those in which a "generalized identity" appears) can eventually be reduced to problems in $M_{n}(\Delta)$.

One first makes a general observations about dual spaces. For a subset S of W, where V, W is a pair of dual spaces over a division ring Δ, we set

$$
S^{\perp}=\{v \in V \mid\langle v, S\rangle=0\}
$$

Clearly S^{\perp} is a subspace of V.
Remark 4.3.10 If V, W are dual spaces, P and Q finite dimensional subspaces of V and W respectively, then there exist finite dimensional subspaces $P^{\prime} \supseteq P$ and $Q^{\prime} \supseteq Q$ of V and W respectively which are dual to each other (i.e., $\langle\rangle:, P^{\prime} \times Q^{\prime} \rightarrow \Delta$ is nondegenerate).

Proof. If $\langle\rangle:, P \times Q \rightarrow \Delta$ is nondegenerate, then there is nothing to prove. Suppose now that there exists $q \in Q$, say, with $\langle P, q\rangle=0$. Then choose $v \in V$ such that $\langle v, q\rangle \neq 0$ and replace P by $P_{0}=P+\Delta v$. In a straightforward way one verifies that

$$
Q^{\perp} \cap P_{0}=Q^{\perp} \cap P
$$

but

$$
Q \cap P_{0}^{\perp} \quad \text { is a proper subspace of } Q \cap P^{\perp}
$$

(since $q \in P^{\perp}$ but $q \notin P_{0}^{\perp}$). A dimension argument shows that this process must stop in a finite number of steps, and so the remark is established.

We are now in a position to prove
Theorem 4.3.11 (Litoff's Theorem) Let R be a primitive ring with nonzero socle $H=\operatorname{Soc}(R)$, let $b_{1}, b_{2}, \ldots, b_{m} \in H$ and let s be a positive integer $\leq \max \{\operatorname{rank}(h) \mid h \in H\}$. Then there exists an idempotent e in H such that $b_{1}, b_{2}, \ldots, b_{m} \in e R e$ and the ring eRe is isomorphic to $n \times n$-matrix ring over the associated division ring Δ of R, where $n \geq s$ is the Δ-rank of e.

Proof. By assumption we may pick an element $b_{m+1} \in H$ such that $\operatorname{rank}\left(b_{m+1}\right) \geq s$. By Theorem 4.3 .9 we have $\mathcal{F}_{W}(V) \subseteq$ $R \subseteq \mathcal{L}_{W}(V)$. According to Theorem 4.3 .2 we may assume without loss of generality that $b_{i}=\left\langle, w_{i}\right\rangle u_{i}, \mathrm{i}=1,2, \ldots, \mathrm{~m}+1$. Then the preceding observation show that $P=\sum_{i=1}^{m+1} \Delta u_{i}$ and $Q=\sum_{i=1}^{m+1} w_{i} \Delta$ are contained in finitely dimensional subspaces P^{\prime} and Q^{\prime} of V and W respectively such that P^{\prime} and Q^{\prime} are dual to each other. By Theorem 4.3.1 we may select dual bases $x_{1}, x_{2}, \ldots, x_{n} \in P^{\prime}$ and $y_{1}, y_{2}, \ldots, y_{n} \in Q^{\prime}$. We leave it for reader to verify that the elements $e_{i j}=\left\langle, y_{i}\right\rangle x_{j}$ behave as matrix units and that each b_{k} (and more generally, each $r \in e R e$, where $e=\sum_{i=1}^{n} e_{i i}$) may be written in the form $\sum_{i j}\left\langle, y_{i}\right\rangle \lambda_{i j} x_{j}, \lambda_{i j} \in \Delta$. Then for $e=\sum_{i=1}^{n} e_{i i}$ we have $b_{k}=e b_{k} e \in e R e \cong M_{n}(\Delta)$. Clearly $n \geq s$ since $b_{m+1} \in e R e$.

4.4 Generalized Pivotal Monomials

The notion of a generalized pivotal monomial was introduced by Amitsur in his 1965 paper [3], simultaneously generalizing on the one hand generalized polynomial identities and on the other hand pivotal monomials (first studied by Drazin in 1965 [99]). We give the definition in case R is a prime ring, although up to the present substantional results have only been obtained in case R is primitive. As we shall presently see (Theorem 4.4.2), a necessary and sufficient condition for a primitive ring to have a nonzero socle is that it possess a generalized pivotal monomial.

Let R be a prime ring, let $A=R^{\prime} C=R C+C$, and let $S=$ $\left\{a_{1}=1, a_{2}, \ldots, a_{n}\right\}$ be a finite set of C-independent elements of A. For a monomial of "length" m in $A<X\rangle=A \coprod_{C} C<X>$ (here X is an infinite set and $C<X>$ is the free C-algebra generated by X)

$$
\pi(x)=a_{i_{m}} x_{j_{m}} a_{i_{m-1}} \ldots a_{i_{1}} x_{j_{1}} a_{i_{0}}, \quad a_{i_{k}} \in S
$$

the complement P_{π} is defined to be the set of all monomials $\tau(x)$ of the form

$$
\tau(x)=a_{p_{l}} x_{q_{l}} a_{p_{l-1}} \ldots a_{p_{1}} x_{q_{1}} a_{p_{0}}, \quad a_{p_{k}} \in S
$$

subject to the following condition: if $l \leq m$ then either some $j_{k} \neq q_{k}, k \leq l$ or some $i_{k} \neq p_{k}, k<l$. For $l>m$ there is no restriction. We shall say that $\pi(x)$ is a generalized pivotal monomial (abbreviated GPM) if for each substitution $r: x_{j} \mapsto$ $r_{j}, r_{j} \in R$, the element $\pi(r)$ lies in $\sum_{\sigma(x) \in P_{\pi}} A \sigma(r)$, the left ideal of A generated by all the elements $\sigma(r)$. Without loss of generality we may assume that the $\sigma(x) \in P_{\pi}$ involve only those x_{j} 's which appear in $\pi(x)$ (just substitute 0 for any other variable). In the special case $S=\{1\}$ the notion of a $G P M$ reduces to the notion of a pivotal monomial (abbreviated $P M$) in the sense of Drazin.

Our goal is to characterize primitive rings having a $G P M$. The main body of the arguments of Theorem 4.4.2 is given in the following lemma.

Lemma 4.4.1 Let R be a primitive ring with faithful irreducible left module $V, D=\operatorname{End}\left({ }_{R} V\right)$, let $a_{1}=1, a_{2}, \ldots, a_{n}$ be C independent elements of $A=R^{\prime} C$, and let $T=\sum_{i=1}^{n} a_{i} D^{\circ}$. If R has a GPM $\pi(x)=a_{i_{m}} x_{j_{m}} a_{i_{m-1}} \ldots a_{i_{1}} x_{j_{1}} a_{i_{0}}$, then T contains a nonzero element of finite D-rank.

Proof. If the conclusion does not hold by Lemma 4.2 .8 we can find elements $v_{0}, v_{1}, \ldots, v_{m} \in V$ such that the elements $a_{i} v_{j}$, $i=1,2, \ldots, n, j=0,1, \ldots, m$, are D-independent. For each variable x_{j} appearing in $\pi(x)$ (the same variable may appear in several places) we let I_{j} denote the set of all integers $k, 0 \leq k \leq$ m, for which x_{j} is immediately to the left of $a_{i_{k}}$. By the density of R we may define $r_{j} \in R$ as follows:

$$
\begin{aligned}
r_{j} a_{i_{k}} v_{k} & =v_{k+1}, \quad k \in I_{j}, \\
r_{j} a_{i} v_{p} & =0, \quad(i, p) \neq\left(i_{k}, k\right), \quad k \in I_{j} .
\end{aligned}
$$

Notice in particular that $r_{j} a_{i} v_{m}=0$ for all i. We now make the substitution $r: x_{j} \mapsto r_{j}$ and write

$$
\pi(r)=\sum_{\sigma(x) \in P_{\pi}} b_{\sigma} \sigma(r), \quad b_{\sigma} \in A
$$

A careful look at how the r_{j} 's are defined shows that $\pi(r) v_{0}=$ $a_{i_{m}} v_{m} \neq 0$ but $\sigma(r) v_{0}=0$ for each $\sigma \in P_{\pi}$.

We are now able to establish the main result.
Theorem 4.4.2 (Amitsur) ([3, Theorem 16]) If R is a primitive ring then R has a generalized pivotal monomial if and only if $\operatorname{Soc}(R) \neq 0$.

Proof. If $\operatorname{Soc}(R) \neq 0$ we choose an idempotent e such that $R e$ is a minimal left ideal, hence $e R e$ is a division ring. It follows that exe is a GPM. Conversely, if R has a $G P M$ by Lemma 4.4.1 $R D$ contains a nonzero element of finite D-rank. Then by Lemma4.2.6 R itself contains a nonzero element of finite D-rank and the proof is complete.

As a corollary to Lemma 4.4.1 we can easily obtain Drazin's result.

Theorem 4.4.3 (Drazin, [99]) If R is primitive, then R has a pivotal monomial if and only if $R=E n d_{D}(V)$ with $\operatorname{dim}_{D}(V)<$ ∞.

Proof. If R has a $P M$ then the set S consists solely of the element 1 and so by Lemma 4.4.1 there exists $0 \neq d \in D$ such that d has finite D-rank. But d is invertible and so $V=d V$ is a finite dimensional left vector space over D. Conversely, if $R \cong M_{n}(D)$ then R is an n^{2}-dimensional left vector space over D. Therefore every element $t \in R$ satisfies $\sum_{i=0}^{n^{2}} d_{i} t^{i}=0$, some $d_{i} \neq 0$, and hence one may conclude that $t^{n^{2}} \in R t^{n^{2}+1}$. It follows that $x^{n^{2}}$ is a $P M$ for R.

4.5 Derivations

Our aim in this section is to show that if R is a primitive ring with nonzero socle whose associated division ring is finite dimensional over its center then any derivation of R which vanishes on the center must be X-inner. This result is needed in the study of generalized identities in Chapter 7.

We begin with a very special case.
Lemma 4.5.1 Let δ be a derivation of $R=M_{n}(F), F$ a field, which vanishes on F. Then δ is inner.

Proof. The proof is by induction on n. The case $n=1$ is clear. Let $\left\{e_{i j} \mid i, j=1,2, \ldots, n\right\}$ denote the usual matrix units. We set $e_{1}=e_{11}, e_{2}=e_{22}+e_{33}+\ldots+e_{n n}$, and write R in its Pierce decomposition $\oplus_{i, j=1}^{2} R_{i j}, R_{i j}=e_{i} R e_{j}$. Then

$$
e_{1}^{\delta}=e_{1} e_{1}^{\delta}+e_{1}^{\delta} e_{1}=\alpha e_{1}+a_{12}+a_{21}
$$

$\alpha \in F, a_{i j} \in R_{i j}, i \neq j$. From this we see that $e_{1} e_{1}^{\delta}=\alpha e_{1}+a_{12}$ and $e_{1}^{\delta} e_{1}=\alpha e_{1}+a_{21}$. It follows that $e_{1}^{\delta}=2 \alpha e_{1}+a_{12}+a_{21}$, whence $\alpha=0$. Therefore

$$
e_{1}^{\delta}=a_{12}+a_{21}=\left[e_{1}, a_{12}-a_{21}\right], ~,
$$

and so, by replacing δ with $\delta-\operatorname{ad}\left(a_{12}-a_{21}\right)$, we may assume without loss of generality that $e_{1}^{\delta}=0$. Hence $e_{2}^{\delta}=\left(1-e_{1}\right)^{\delta}=0$ and $R_{22}^{\delta} \subseteq R_{22}$. By induction there exists $b \in R_{22}$ such that $a^{\delta}=[a, b]$ for all $a \in R_{22}$. Since $\left[e_{1}, b\right]=0$ we may replace δ by $\delta-a d(b)$ and assume that $e_{1}^{\delta}=0$ and $\delta=0$ on R_{22}. In particular $e_{i i}^{\delta}=0, i=1,2, \ldots, n$, whence $e_{1 i}^{\delta}=\left(e_{11} e_{1 i} e_{i i}\right)^{\delta}=\lambda_{i} e_{1 i}, i>1$, and $e_{j 1}^{\delta}=\mu_{j} e_{j 1}, j>1$. Applying δ to $e_{j i}=e_{j 1} e_{1 i}, i, j>1$, we obtain $0=\mu_{j} e_{j i}+\lambda_{i} e_{j i}$ and so $\lambda_{i}=-\mu_{j}$ for all $i, j>1$. Setting $\mu=\mu_{j}=-\lambda_{i}, i, j>1$ we see that

$$
\left[e_{1 i}, \mu e_{1}\right]=-\mu e_{1 i}=\lambda_{i} e_{1 i}=e_{1 i}^{\delta}
$$

and

$$
\left[e_{j 1}, \mu e_{1}\right]=\mu e_{j 1}=e_{j 1}^{\delta} .
$$

It is then clear that $\delta=a d\left(\mu e_{1}\right)$ and the proof is complete.
Corollary 4.5.2 Let D be a finite dimensional division algebra over its center C. Then any C-linear derivation δ of D is inner.

Proof. Let F be a maximal subfield of D. Since δ is C-linear it may be lifted to an F-linear derivation $\hat{\delta}$ of $R=D \otimes_{C} F \cong$ $M_{n}(F)$ (see Corollary 4.2.2). By Lemma 4.5.1

$$
\widehat{\delta}=a d\left(\sum a_{i} \otimes \lambda_{i}\right),\left\{a_{i}\right\} \subseteq D,\left\{\lambda_{i}\right\} C \text {-independent in } F,
$$

with $\lambda_{1}=1$ (we do not assume that $a_{1} \neq 0$, but it will follow from our further considerations). For $x \in D$ we see in particular from

$$
x^{\delta} \otimes 1=(x \otimes 1)^{\hat{\delta}}=\left[x \otimes 1, \sum a_{i} \otimes \lambda_{i}\right]=\sum\left[x, a_{i}\right] \otimes \lambda_{i}
$$

that $x^{\delta}=\left[x, a_{1}\right]$, and the proof is complete.
Theorem 4.5.3 Let R be a centrally closed primitive ring with nonzero socle H, with extended centroid C and with faithful irreducible right R-module M. Suppose furthermore that the associated division ring $\Delta=\operatorname{End}_{R}(M)$ is finite dimensional over its center. Then any C-linear derivation δ of R is X-inner.

Proof. We shall regard $V=M \oplus M=\{(x, y) \mid x, y \in M\}$ as an R-module under the multiplication $(x, y) \circ a=\left(x a, x a^{\delta}+y a\right)$. We let $M_{1}=(M, 0)$ and $M_{2}=(0, M)$, noting that M_{2} is an R-module. Since R has nonzero socle we may write $M=m K$ for some $m \in M$ and minimal right ideal K of R. Then $N=$ ($m, 0$) $\circ K$ is an irreducible R-submodule of V which is not contained in M_{2}, hence $N \cap M_{2}=0$. The equation

$$
(m a, 0)=\left(m a, m a^{\delta}\right)-\left(0, m a^{\delta}\right)=(m, 0) \circ a-\left(0, m a^{\delta}\right)
$$

$a \in K$, shows that $V=N \oplus M_{2}$. We define an additive map $E: V \rightarrow M$ by sending $(x, y) \mapsto y$, and an R-map $F: V \rightarrow M$ by writing $V=N \oplus M_{2}$ and sending $n \oplus m_{2} \mapsto y$, where $m_{2}=$ $(0, y)$. We set $D=E-F$, noting that D maps M_{2} to 0 . For $a \in R$ we see that

$$
\begin{aligned}
(x, y)[a, E] & =((x, y) \circ a) E-((x, y) E) a \\
& =\left(x a, x a^{\delta}+y a\right) E-y a \\
& =x a^{\delta}+y a-y a=x a^{\delta} .
\end{aligned}
$$

Since F is an R-map we have $(x, y)[a, F]=0$. It follows that

$$
(x, y)[a, D]=x a^{\delta}
$$

Now let $\bar{V}=V / M_{2}$. Since D maps M_{2} to $0, D$ induces a map $\bar{D}: \bar{V} \rightarrow M$ and so we have $\overline{(x, y)}[a, \bar{D}]=x a^{\delta}$. We next note that the map $\nu: M \rightarrow \bar{V}$ given by $x \mapsto \overline{(x, 0)}$ is an R isomorphism. We note that $x a^{\delta}=x \nu[a, \bar{D}]$ for all $x \in M$. Since ν is an R-map we may rewrite this equation as $x a^{\delta}=x[a, \nu \bar{D}]$. Setting $g=\nu \bar{D}$ we then have

$$
\begin{equation*}
a^{\delta}=[a, g], \quad a \in R, \tag{4.6}
\end{equation*}
$$

where $g: M \rightarrow M$ is an additive map. Considering the ring $E=\operatorname{End}(M)$ as acting from the right on M, we remark that

$$
0=\left[\lambda, a^{\delta}\right]=[\lambda,[a, g]]=[a,[\lambda, g]]
$$

for all $\lambda \in \Delta^{\circ}=N_{E}(R), a \in R$, i.e., $[\lambda, g] \in \Delta^{\circ}$. Thus $[, g]$ induces a C-linear derivation of Δ° and so by Theorem 4.3.7(ix) and Corollary 4.5.2 there exists $\alpha \in \Delta^{\circ}$ such that $[\lambda, g]=[\lambda, \alpha]$ for all $\lambda \in \Delta^{\circ}$. This says that $q=g-\alpha \in N_{E}\left(\Delta^{\circ}\right)=\operatorname{End}\left(\Delta^{\prime} M\right)$, and furthermore we have

$$
a^{\delta}=[a, q], \quad a \in R .
$$

By Theorem 4.3.9 End $\left({ }_{\Delta} M\right)=Q_{l}(R)$ (the left two sided quotient ring of R), which says that $H q \subseteq R$. Since $H^{2}=H$, $H^{\delta} \subseteq H$. Therefore from $a^{\delta}=a q-q a, a \in H$, we obtain $q H \subseteq R$, hence $q \in Q_{s}(R)$ (the symmetric ring of quotients of R). Thus we have shown that δ is X-inner and the proof is complete.

We point out that the condition that Δ be finite dimensional in Theorem 4.5 .3 is needed. For example let $F=Q(t)$ be the field of rational functions over the field of rationals and let σ be the automorphism of F given by $t \mapsto t+1$. Then the fixed field of F is just Q. Now let $D=F\langle x ; \sigma\rangle$ be the division ring of all Laurent series $\sum_{i=m}^{\infty} a_{i} x^{i}, m \in \mathcal{Z}, a_{i} \in F$, with multiplication given according to $x a=a^{\sigma} x, a \in F$. Then the center of D is Q and $\operatorname{dim}_{Q}(D)=\infty$. We leave it for the reader to check that the map $\delta: D \rightarrow D$ given by $a x^{n} \mapsto n a x^{n}$ is a derivation of D which is not inner.

4.6 Involutions

We recall from section 1.1 that an involution $*$ of a ring R is an antiautomorphism of period 1 or 2 . An element $x \in R$ is called symmetric if $x^{*}=x$ and is called skew if $x^{*}=-x$. The subset $S=S(R)$ of all symmetric elements is closed under addition and the Jordan product $x \circ y=x y+y x$ and the subset $K=K(R)$ of all skew elements is closed under addition and the Lie product $[x, y]=x y-y x$. In dealing with involutions we will always make the blanket assumption that R has no 2 -torsion, hence $S \cap K=0$ and $2 R \subseteq S+K$. In case every element is divisible by 2 we have the decomposition $R=S \oplus K$. An ideal I of R such that $I^{*}=I$ will be called a *-ideal. For instance the socle of a primitive ring with involution is a *-ideal.

In this section we first prove Kaplansky's Theorem (Theorem 4.6.8) characterizing involutions of primitive rings with
nonzero socle in terms of Hermitian and alternate forms. This result is then applied to give a very tight description of involutions of $M_{n}(C), C$ an algebraically closed field. Finally we shall present an involution version of Litoff's Theorem.

We define an involution * of a prime ring R with nonzero socle to be of transpose type if there exists a symmetric minimal idempotent and to be of symplectic type if $e e^{*}=0$ for any minimal idempotent $e \in R$.

Lemma 4.6.1 Let A be a prime ring and $u, v \in A$ minimal idempotents. Then either vu $=0$ or $u A v$ is a division ring with an identity e and $u A v=e A e$.

Proof. It is enough to consider the case $v u \neq 0$. Then uavu $\neq 0$ for some $a \in A$, since A is prime. We set $b=u a v$. Taking into account the minimality of $u A$ we infer from $0 \neq$ $b u \in b u A \subseteq u A$ that $b u A=u A$. Multiplying both sides by v we obtain that $b u A v=u A v$. Since $b \in u A v$, we conclude that $b e=b$ for some $e \in u A v$. Therefore $b\left(e^{2}-e\right)=0$. Letting T denote the right annihilator of b we infer that $e^{2}-e \in T \cap u A$. Since $u A$ is a minimal right ideal and $b u A \neq 0$, we have $e=e^{2}$. Recalling that $e \in u A v$ we obtain that $e A=u A$ by minimality of $u A$. Therefore e is a minimal idempotent. Analogously $A e=$ $A v$. Thus $e A e=u A v$.

Theorem 4.6.2 Let R be a primitive ring with nonzero socle and involution *. Then the involution * is either of transpose type or of symplectic type.

Proof. Suppose that the involution $*$ is not of symplectic type. Then there exists a minimal idempotent $v \in R$ such that $v v^{*} \neq 0$. By Lemma 4.6.1 $v^{*} R v$ is a division ring with identity e and $v^{*} R v=e R e$. Therefore $e R e$ is a $*$-invariant subring and in particular $e^{*}=e$.

Our next goal is a characterization of involutions of primitive rings with a nonzero socle in terms of bilinear forms. To this end we proceed to define the following two types of forms which will be relevant. Let Δ be a division ring with involution $\alpha \mapsto \bar{\alpha}$, ΔV a vector space, and $\langle\rangle , V \times V \rightarrow \Delta$ a biadditive mapping such that

$$
\begin{equation*}
\langle\alpha v, \beta w\rangle=\alpha\langle v, w\rangle \bar{\beta} \tag{4.7}
\end{equation*}
$$

for all $\alpha, \beta \in \Delta, v, w \in V$.
We say that \langle,$\rangle is Hermitian relative to \alpha \mapsto \bar{\alpha}$ if

$$
\langle v, w\rangle=\overline{\langle w, v\rangle} \text { for all } v, w \in V
$$

We say that \langle,$\rangle is alternate if \bar{\alpha}=\alpha$ for all $\alpha \in \Delta$, $\operatorname{char}(\Delta) \neq 2$ and

$$
\langle v, w\rangle=-\langle w, v\rangle \quad \text { for all } \quad v, w \in V
$$

We remark that if \langle,$\rangle is alternate then \Delta$ is necessarily a field and $\langle v, v\rangle=0$ for all $v \in V$.

Of secondary importance is the notion of a skew Hermitian form:

$$
\overline{\langle v, w\rangle}=-\langle w, v\rangle \quad \text { for all } \quad v, w \in V
$$

The reason for this is given by the following lemma.
Lemma 4.6.3 If \langle,$\rangle is a skew Hermitian form then one of$ the following must occur
(i) 〈, 〉 is alternate;
(ii) If $\lambda \in \Delta$ is any nonzero skew element, then the map $\sim: \Delta \rightarrow \Delta$ defined by $\alpha \mapsto \tilde{\alpha}=\lambda^{-1} \bar{\alpha} \lambda$ is an involution of Δ and the form (,) defined by $(v, w)=\langle v, w\rangle \lambda$ is Hermitian relative to $\alpha \mapsto \widetilde{\alpha}$.

Proof. If there are no nonzero skew elements in Δ then $\bar{\alpha}=$ α for all $\alpha \in \Delta$ and \langle,$\rangle is alternate. Now let 0 \neq \lambda \in \Delta$ with $\bar{\lambda}=-\lambda$. It is straightforward to check that $\alpha \mapsto \tilde{\alpha}=\lambda^{-1} \bar{\alpha} \lambda$ is
an involution. The form defined by $(v, w)=\langle v, w\rangle \lambda$ is clearly biadditive. Furthermore we have

$$
\begin{aligned}
(\alpha v, \beta w) & =\langle\alpha v, \beta w\rangle \lambda=\alpha\langle v, w\rangle \bar{\beta} \lambda \\
& =\alpha\langle v, w\rangle \lambda\left(\lambda^{-1} \bar{\beta} \lambda\right)=\alpha(v, w) \widetilde{\beta}
\end{aligned}
$$

Finally, from

$$
\begin{aligned}
(\widetilde{v, w}) & =\langle\widetilde{v, w}\rangle \lambda=\lambda^{-1} \overline{\langle v, w\rangle \lambda} \lambda \\
& =\lambda^{-1} \overline{\lambda\langle v, w\rangle} \lambda=(-1)\{-\langle w, v\rangle\} \lambda=\langle w, v\rangle \lambda \\
& =(w, v)
\end{aligned}
$$

we see that (,) is Hermitian.
We make the useful observation that if $\langle\rangle:, V \times V \rightarrow V$ is a nondegenerate biadditive mapping satisfying (4.7) then, turning V into a right Δ-space V_{Δ} by defining $v \cdot \alpha=\bar{\alpha} v$, we see that ${ }_{\Delta} V, V_{\Delta}$ is a dual pair. Accordingly, the notions and results of section 4.3 are available. In particular we shall write \mathcal{F}_{V} for $\mathcal{F}_{V_{\Delta}}(\Delta V)$ and \mathcal{L}_{V} for $\mathcal{L}_{V_{\Delta}}(\Delta V)$. It is straightforward to verify that the mapping $a \mapsto a^{*}, a^{*}$ the adjoint of a, is an involution on \mathcal{L}_{V}.

The next four results show that involutions of transpose type correspond to Hermitian forms and involutions of symplectic type correspond to alternate forms.

Proposition 4.6.4 If R is a prime ring with nonzero socle and with involution * of transpose type, then

$$
\mathcal{F}_{V} \subseteq R \subseteq \mathcal{L}_{V}
$$

where ${ }_{\Delta} V$ is a vector space with a nondegenerate Hermitian form \langle,$\rangle and *$ is the adjoint mapping relative to \langle,$\rangle .$

Proof. Since * is of transpose type, there exists a symmetric minimal idempotent e. We set $V=e R, \Delta=e R e$, define $\overline{\text { ere }}=$
$e r^{*} e$, and define $\langle\rangle:, V \times V \rightarrow V$ by the rule $\langle e x, e y\rangle=e x y^{*} e$. It is easily verified that this is a nondegenerate Hermitian form. The property $\langle e x r, e y\rangle=\left\langle e x, e y r^{*}\right\rangle$ shows that $*$ is the adjoint mapping re \langle,$\rangle and R \subseteq \mathcal{L}_{V}$. Finally, let $t=\langle, e a\rangle e b \in \mathcal{F}_{V}$, $a, b \in R$. For all $r \in R$

$$
e r t=\langle e r, e a\rangle e b=e r a^{*} e b
$$

and so $t=a^{*} e b \in R$. It follows from Theorem 4.3.2 that $\mathcal{F}_{V} \subseteq$ R, and the proposition is proved.

Conversely, we now prove
Proposition 4.6.5 Let ΔV be a vector space over a division ring Δ of $\operatorname{char}(\Delta) \neq 2$ with a nondegenerate Hermitian form \langle,$\rangle relative to \alpha \mapsto \bar{\alpha}$, and suppose R is a*-invariant subring of \mathcal{L}_{W} such that $\mathcal{F}_{V} \subseteq R$. Then the involution induced on R by * is of transpose type.

Proof. Suppose the involution induced on R is not of transpose type. Then by Theorem 4.6 .2 it is of symplectic type, i.e., for every minimal idempotent e we have $e e^{*}=0$. Let $0 \neq v \in V$ and pick $w \in V$ such that $\langle v, w\rangle=1$. Then $e=\langle, w\rangle v \in \mathcal{F}_{V} \subseteq R$ is a minimal idempotent. Indeed, for $x \in V$, we have

$$
\begin{aligned}
x e^{2} & =[\langle x, w\rangle v] e=\langle\langle x, w\rangle v, w\rangle v \\
& =\langle x, w\rangle\langle v, w\rangle v=x e
\end{aligned}
$$

and so $e=e^{2}$. Since e is of rank one, it is a minimal idempotent. Since $e^{*}=\langle, v\rangle w$, we see by assumption that

$$
\begin{aligned}
0 & =v e e^{*}=[\langle v, w\rangle v] e^{*}=\langle\langle v, w\rangle v, v\rangle w \\
& =\langle v, w\rangle\langle v, v\rangle w=\langle v, v\rangle w
\end{aligned}
$$

Since $w \neq 0$, we conclude that $\langle v, v\rangle=0$ for all $v \in V$. Linearizing, we have $\langle x, y\rangle+\langle y, x\rangle=0$ for all $x, y \in V$. In particular

$$
0=\langle v, w\rangle+\langle w, v\rangle=1+\overline{\langle v, w\rangle}=2
$$

in contradiction to $\operatorname{char}(\Delta) \neq 2$.
Proposition 4.6.6 If R is a prime ring with nonzero socle and with involution $*$ of symplectic type, then

$$
\mathcal{F}_{V} \subseteq R \subseteq \mathcal{L}_{V}
$$

where ${ }_{\Delta} V$ is a vector space with a nondegenerate alternate form \langle,$\rangle and *$ is the adjoint mapping relative to \langle,$\rangle .$

Proof. Let e be any minimal idempotent. By assumption $e e^{*}=0=e^{*} e$. We set $u=e+e^{*}$. Clearly u is a symmetric idempotent of rank 2 and $H=u R u \cong M_{2}(\Delta)$ (by the Jacobson Density Theorem). Let $e_{11}=e, e_{22}=e^{*}, e_{12}, e_{21}$ be a system of matrix units of H. We have

$$
e_{12}^{*}=\left(e_{11} e_{12} e_{22}\right)^{*}=e_{22}^{*} e_{12}^{*} e_{11}^{*}=e_{11} e_{12}^{*} e_{22}
$$

and $e_{12}^{*}=\alpha e_{12}$ for some $\alpha \in \Delta$. Consider $v=e_{11}+e_{12}$. Since $v R=e_{11} R=e R, v$ is a minimal idempotent of R. Hence

$$
0=v v^{*}=\left(e_{11}+e_{12}\right)\left(e_{22}+\alpha e_{12}\right)=e_{12}+\alpha e_{12}
$$

and $\alpha=-1$. Analogously one can show that $e_{21}^{*}=-e_{21}$. Define the additive mapping $\#: \Delta \rightarrow \Delta$ by the rule

$$
(e x e)^{\#}=e_{12}(e x e)^{*} e_{21}
$$

for all exe $\in e R e=\Delta$. First we note that

$$
\begin{aligned}
{[(e x e)(e y e)]^{\#} } & =e_{12} e_{22} y^{*} e_{22} x^{*} e_{22} e_{21} \\
& =e_{12} e_{22} y^{*} e_{22} e_{21} e_{12} e_{22} x^{*} e_{22} e_{21} \\
& =(\text { eye })^{\#}(\text { exe })^{\#}
\end{aligned}
$$

Further

$$
\begin{aligned}
(e x e)^{\# \#} & =\left[e_{12}(e x e)^{*} e_{21}\right]^{\#}=\left[e_{12} x^{*} e_{21}\right]^{\#} \\
& =e_{12}\left(e_{12} x^{*} e_{21}\right)^{*} e_{21} \\
& =e_{12}\left(-e_{21}\right) x\left(-e_{12}\right) e_{21}=e_{11} x e_{11}=e x e
\end{aligned}
$$

which means that \# is an involution of the division ring Δ. Now we define the bilinear form \langle,$\rangle by the rule$

$$
\langle e x, e y\rangle=e x y^{*} e_{21}
$$

for all $e x, e y \in e R$. From

$$
\begin{aligned}
\langle e y, e x\rangle^{\#} & =e_{12}\left(e y x^{*} e_{21}\right)^{*} e_{21}=e_{12}\left(-e_{21}\right) x y^{*} e^{*} e_{21} \\
& =-e x y^{*} e_{21}=-\langle e x, e y\rangle
\end{aligned}
$$

we infer that \langle,$\rangle is a skew Hermitian bilinear form. Since R$ is prime, this form is nondegenerate. The property $\langle e x r, e y\rangle=$ $\left\langle e x, e y r^{*}\right\rangle$ for all $e x, e y \in e R$ and $r \in R$ is obvious. It shows that $*$ is the adjoint mapping re \langle,$\rangle and also that R \subseteq \mathcal{L}_{V}$. If $t=\langle, e a\rangle e b \in \mathcal{F}_{V}$, then for all $r \in R$

$$
e r t=\langle e r, e a\rangle e b=e r a^{*} e_{21} e b
$$

and so $t=a^{*} e_{21} e b \in R$. Hence $\mathcal{F}_{V} \subseteq R \subseteq \mathcal{L}_{V}$.
Suppose that \langle,$\rangle is not an alternate form. It follows from$ Lemma 4.6.3 that the form (,) defined by $(v, w)=\langle v, w\rangle \lambda$, $\lambda^{\#}=-\lambda \neq 0$, is a Hermitian form relative to the involution $\alpha \mapsto \widetilde{\alpha}=\lambda^{-1} \alpha^{\#} \lambda$. It is easy to see that * remains the adjoint mapping relative to (,) and that the rings \mathcal{L}_{V} and \mathcal{F}_{V} remains unchanged. But now by Proposition 4.6.5, * must be of transpose type, in contradiction to our hypothesis. Therefore \langle,$\rangle is$ an alternate form and the proof is complete.

The converse of Proposition 4.6 .6 is easily shown.
Proposition 4.6.7 Let ΔV be a vector space over a division ring Δ of $\operatorname{char}(\Delta) \neq 2$ with a nondegenerate alternate form \langle,$\rangle ,$ and suppose R is a*-invariant subring such that $\mathcal{F}_{V} \subseteq R \subseteq \mathcal{L}_{W}$. Then the involution induced on R by* is of symplectic type.

Proof. By Theorem 4.3.8 R is primitive with nonzero socle. Suppose $*$ is of transpose type, i.e., there is a symmetric minimal
idempotent $e=e^{*} \in R$. We can then write $V=\Delta w \oplus V(1-e)$, where $w e=w \neq 0$. Let $v=\alpha w+u(1-e)$ be any element of V. Then

$$
\begin{aligned}
\langle w, v\rangle & =\langle w, \alpha w+u(1-e)\rangle=\langle w, w\rangle \alpha+\langle w e, u(1-e)\rangle \\
& =\langle w, u(1-e) e\rangle=0 .
\end{aligned}
$$

Thus $\langle w, V\rangle=0$ in contradiction to nondegeneracy of \langle,\rangle , and the proposition is proved.

Taken together Propositions 4.6.4, 4.6.5, 4.6.6, 4.6 .7 give us
Theorem 4.6.8 (Kaplansky's Theorem) Let R be a primitive ring with nonzero socle (and of char $\neq 2$). Then any involution of R is either of transpose type or of symplectic type. Furthermore R has an involution * of transpose (resp. symplectic) type if and only if there is a vector space ${ }_{\Delta} V$ with a nondegenerate Hermitian (resp. alternate) form $\langle w, v\rangle$ such that $\mathcal{F}_{V} \subseteq R \subseteq \mathcal{L}_{V}$ and $*$ is the adjoint map relative to $\langle w, v\rangle$.

We now apply Kaplansky's Theorem to obtain a more precise determination of involutions of $E n d_{C}(V)\left(\cong M_{n}(C)\right)$ where $\operatorname{dim}_{C}(V)=n<\infty$ and C is an algebraically closed field. Although this is admittedly a rather special case we shall see in Chapter 9 that our exposition of Herstein's Lie theory of prime rings with involution ultimately reduces to this situation.

Let V be an n-dimensional vector space over a field C of characteristic $\neq 2$, and let $E n d_{C}(V)$ denote the n^{2}-dimensional algebra of linear transformations of V. A set $\left\{e_{i j}\right\}, i, j=1,2, \ldots, n$, of elements of $E n d_{C}(V)$ satisfying

$$
\begin{equation*}
e_{i j} e_{k l}=\delta_{j k} e_{i l} \tag{4.8}
\end{equation*}
$$

will be referred to as a set of transformation units. Given a basis $v_{1}, v_{2}, \ldots, v_{n}$ of V the mappings $\left\{e_{i j}\right\}$ given by $v_{k} e_{i j}=$ $\delta_{i k} v_{j}$ will be called the transformation units re $v_{1}, v_{2}, \ldots, v_{n}$ and
conversely, given any set of transformation units $\left\{e_{i j}\right\}$ there is a basis $v_{1}, v_{2}, \ldots, v_{n}$ whose transformation units are the given $e_{i j}$ (just pick $v_{1}=v e_{11} \neq 0$ and define $v_{j}=v_{1} e_{1 j}$). It follows that if $a=\sum_{i j=1}^{n} \alpha_{i j} e_{i j}, \alpha_{i j} \in C$, then $A=\left(\alpha_{i j}\right)$ is the matrix of a re $v_{1}, v_{2}, \ldots, v_{n}$ in the sense that $v_{i} a=\sum_{j=1}^{n} \alpha_{i j} v_{j}$.

Two important involutions of $E n d_{C}(V)$ can now be defined. The map $\tau: \sum_{i j=1}^{n} \alpha_{i j} e_{i j} \mapsto \sum_{i j=1}^{n} \alpha_{j i} e_{i j}$ will be called the transpose involution re $\left\{e_{i j}\right\}$ and, if $n=2 m$ and
$s=e_{1,2 m}+e_{2,2 m-1}+\ldots+e_{m, m+1}-\left(e_{m+1, m}+e_{m+2, m-1}+\ldots+e_{2 m, 1}\right)$,
the map $a \mapsto s a^{\tau} s^{-1}$ will be called the symplectic involution re $\left\{e_{i j}\right\}$.

Remark 4.6.9 Let $v_{1}, v_{2}, \ldots, v_{n}$ and $w_{1}, w_{2}, \ldots, w_{n}$ be bases of V with corresponding transformation units $\left\{e_{i j}\right\}$ and $\left\{f_{i j}\right\}$. Then $f_{i j}=t^{-1} e_{i j} t$, where t is the linear transformation given by t : $v_{i} \mapsto w_{i}$.

Let (,) be a nondegenerate symmetric or alternate form on V. A symmetric form on ${ }_{C} V$ is just a Hermitian form in case $\bar{\alpha}=\alpha$ for all $\alpha \in C$, and thus $(v, w)=(w, v)$ for all $v, w \in V$. Given a basis $v_{1}, v_{2}, \ldots, v_{n}$ of V the matrix $A=\left(\sigma_{i j}\right)$, where $\sigma_{i j}=\left(v_{i} ; v_{j}\right)$, is called the matrix of (,) re $v_{1}, v_{2}, \ldots, v_{n}$. If $w_{1}, w_{2}, \ldots, w_{n}$ is a second basis of V (where $w_{i}=\sum_{j=1}^{n} \rho_{i j} v_{j}$) and B is the matrix of (,) re $w_{1}, w_{2}, \ldots, w_{n}$ then $B=P A\left({ }^{t} P\right)$, where $P=\left(\rho_{i j}\right)$ and ${ }^{t} P$ is the transposed matrix.

Lemma 4.6.10 If C is algebraically closed and (,) is a nondegenerate symmetric form, then there is a basis $w_{1}, w_{2}, \ldots, w_{n}$ of V such that the matrix of $($,$) re w_{1}, w_{2}, \ldots, w_{n}$ is the identity $n \times n$-matrix I.

Proof. Suppose $(v, v)=0$ for all $v \in V$. Picking $v, w \in V$ such that $(v, w)=\alpha \neq 0$ we immediately reach the contradiction that $(v+w, v+w)=2 \alpha \neq 0$. Thus $(w, w)=\beta \neq 0$ for
some w. Since C is algebraically closed we may write $\beta=\alpha^{2}$ for some $\alpha \in C$. Setting $w_{1}=\alpha^{-1} w$ we then have $\left(w_{1}, w_{1}\right)=1$. The map $e: v \mapsto\left(v, w_{1}\right) w_{1}$ is a projection with $V(1-e)$ orthogonal to w_{1} (i.e., $\left(V(1-e), w_{1}\right)=0$), and so (,) induces a nondegenerate symmetric form on $V(1-e)$. By induction $V(1-e)$ has a basis $w_{2}, w_{3}, \ldots, w_{n}$ such that $\left(w_{i}, w_{j}\right)=\delta_{i j}$ and the proof is complete.

Lemma 4.6.11 If (,) is a nondegenerate alternate form then $n=2 m$ is even number and there is a basis $w_{1}, w_{2}, \ldots, w_{n}$ such that the matrix of (,) re $w_{1}, w_{2}, \ldots, w_{n}$ is $\left(\begin{array}{cc}0 & I_{m} \\ -I_{m} & 0\end{array}\right)$, where I_{m} is the identity $m \times m$-matrix.

Proof. Choosing $v, w \in V$ such that $(v, w)=\alpha \neq 0$ we set $w_{1}=\alpha^{-1} v, w_{n}=w$ and note that $\left(w_{1}, w_{n}\right)=1$, whence $\left(w_{n}, w_{1}\right)=-1$. The map $e: v \mapsto\left(v, w_{n}\right) w_{1}-\left(v, w_{1}\right) w_{n}$ is a projection of V on $V e$ with $V(1-e)$ orthogonal to w_{1} and w_{n}, and so (,) induces a nondegenerate alternate form on $V(1-e)$. By induction, $n-2=2(m-1)$ is even and $V(1-e)$ has a basis $w_{2}, w_{3}, \ldots, w_{n-1}$ such that $\left(w_{i}, w_{n-i}\right)=1$ for $i=2,3, \ldots, m$, $\left(w_{m+i}, w_{i}\right)=-1$ for $i=1,2, \ldots, m-1$ and all other products are 0 . The lemma is thereby proved.

Now assume $*$ is any involution of $E n d_{C}(V)$. We shall furthermore assume $*$ acts as the identity map on C; such involutions are called involutions of the first kind. (Problems concerning prime rings with involutions which do not act as the identity map on the extended centroid can be frequently reduced to prime rings without involution). By Kaplansky's Theorem * is the adjoint map relative to a Hermitian or alternate form \langle,$\rangle . Since we are assuming that *$ is the identity map on C it follows easily that in the Hermitian case \langle,$\rangle is symmetric,$ i.e., $\langle v, w\rangle=\langle w, v\rangle$ for all $v, w \in V$. By Lemma 4.6.10 and Lemma 4.6.11 V has a basis $w_{1}, w_{2}, \ldots, w_{n}$ such that the matrix
$S=\left(\sigma_{i j}\right)$ of \langle,$\rangle re w_{1}, w_{2}, \ldots, w_{n}$ is either I (if \langle,$\rangle is symmet-$ ric) or $\left(\begin{array}{cc}0 & I_{m} \\ -I_{m} & 0\end{array}\right), \quad n=2 m$ (if \langle,$\rangle is alternate). Let \left\{f_{i j}\right\}$ be the set of transformation units re $w_{1}, w_{2}, \ldots, w_{n}$ and $a \in R$. Writing $a=\sum_{i j}^{n} \alpha_{i j} f_{i j}, a^{*}=\sum_{i j}^{n} \beta_{i j} f_{i j}$ and setting $A=\left(\alpha_{i j}\right)$, $B=\left(\beta_{i j}\right)$ we see from the equations

$$
\left\langle w_{i} a^{*}, w_{j}\right\rangle=\sum_{k} \beta_{i k}\left\langle w_{k}, w_{j}\right\rangle=\sum_{k} \beta_{i k} \sigma_{k j}
$$

and

$$
\left\langle w_{i}, w_{j} a\right\rangle=\left\langle w_{i}, \sum_{k} \alpha_{j k} w_{k}\right\rangle=\sum_{k} \sigma_{i k} \alpha_{j k}
$$

that $B S=S\left({ }^{t} A\right)$, i.e., $B=S\left({ }^{t} A\right) S^{-1}$. Translated back to an equation in R this says that $a^{*}=s a^{\tau} s^{-1}$, where a^{τ} is the transpose involution re $\left\{f_{i j}\right\}$. If $S=I$, then $s=1$ and $*$ is the transpose involution re $\left\{f_{i j}\right\}$ and if $S=\left(\begin{array}{cc}0 & I_{m} \\ -I_{m} & 0\end{array}\right)$, then

$$
s=f_{1,2 m}+\ldots+f_{m, m+1}-\left(f_{m+1, m}+\ldots+f_{2 m, 1}\right)
$$

and $*$ is the symplectic involution re $\left\{f_{i j}\right\}$. We have thus completed the proof of the following

Theorem 4.6.12 Let * be an involution of the first kind of $R=E n d_{C}(V)$, where C is an algebraically closed field. Then there is a set of transformation units $\left\{f_{i j}\right\}$ such that $*$ is either the transpose involution or the symplectic involution relative to $\left\{f_{i j}\right\}$.

Corollary 4.6.13 Let * be an involution of $M_{n}(C)$ of the first kind, where C is an algebraically closed field. Then there exists a set of matrix units $\left\{F_{i j}\right\}$ in $M_{n}(C)$ such that $*$ is one of the following two maps:
(a) $\sum \alpha_{i j} F_{i j} \mapsto \sum \alpha_{i j} F_{j i}$ (transpose);
(b) $\sum \alpha_{i j} F_{i j} \mapsto S\left(\sum \alpha_{i j} F_{j i}\right) S^{-1}, n=2 m$ (symplectic), where $S=F_{1,2 m}+\ldots+F_{m, m+1}-\left(F_{m+1, m}+\ldots+F_{2 m, 1}\right)$.

Proof. This is easily seen by letting $\phi: E n d_{C}(V) \rightarrow M_{n}(C)$ be a C-algebra isomorphism, defining an involution $*$ on $E n d_{C}(V)$ by $a^{*} \phi=(a \phi)^{*}$, and setting $F_{i j}=f_{i j} \phi$, where $\left\{f_{i j}\right\}$ are the transformation units given by Theorem 4.6.12.

We turn our attention now to developing the analogue of Litoff's Theorem for rings with involution. In what follows R will denote a primitive ring with involution $*$ and with nonzero socle $\operatorname{Soc}(R)$.

We start with the following general observations about spaces with a nondegenerate Hermitian or skew Hermitian bilinear form. For a subset S of V, where V is a left vector space over a division ring Δ with a nondegenerate Hermitian or skew Hermitian bilinear form $\langle\rangle:, V \times V \rightarrow \Delta$, we set

$$
S^{\perp}=\{v \in V \mid\langle v, S\rangle=0\}
$$

Clearly S^{\perp} is a subspace of V.

Remark 4.6.14 If V is a left vector space over a division ring Δ with a nondegenerate Hermitian or skew Hermitian bilinear form $\langle\rangle:, V \times V \rightarrow \Delta$ and P is a finite dimensional subspace of V, then there exists a finite dimensional subspace $P^{\prime} \supseteq P$ such that $\left.\langle\rangle\right|_{,P^{\prime}}$ is nondegenerate.

Proof. If $\langle\rangle:, P \times P \rightarrow \Delta$ is nondegenerate, then there is nothing to prove. Suppose now that there exists $v \in P$, say, with $\langle v, P\rangle=0$. Then choose $w \in V$ such that $\langle v, w\rangle \neq 0$ and replace P by $P_{0}=P+\Delta w$. We claim that

$$
\operatorname{dim}_{\Delta}\left(P_{0}^{\perp} \cap P_{0}\right)<\operatorname{dim}_{\Delta}\left(P^{\perp} \cap P\right)
$$

Indeed, let $p+\alpha w \in P_{0}^{\perp}$. Since $v \in P_{0}$ and $\langle p, v\rangle= \pm \overline{\langle v, p\rangle}=0$,

$$
0=\langle p+\alpha w, v\rangle=\alpha\langle w, v\rangle
$$

and hence $\alpha=0$ and $p \in P^{\perp}$. On the other hand $v \notin P_{0}^{\perp}$ which proves the claim. A dimension argument shows that this process must stop in a finite number of steps, and so the proof is complete.

We are now in a position to prove
Theorem 4.6.15 (*-Litoff Theorem) Let R be a primitive ring with nonzero socle $H=S o c(R)$ and with involution $*$. Let $b_{1}, b_{2}, \ldots, b_{m} \in H$. Then there exists a symmetric idempotent e in H such that $b_{i} \in e R e$ for all i and the ring eRe is isomorphic to $n \times n$-matrix ring over the associated division ring Δ of R, where n is the Δ-rank of e. If $n>1$, then the type of the restriction of the involution $*$ on the subring eRe coincides with that of the involution $*$ of the ring R.

Proof. Taking into account Theorem 4.6 .8 we can assume that there exists a left vector space V over Δ with a nondegenerate Hermitian or alternate form \langle,$\rangle such that \mathcal{F}_{V}(V) \subseteq R \subseteq$ $\mathcal{L}_{V}(V)$ and the involution $*$ coincides with the adjoint relative to \langle,$\rangle . By Theorem 4.3 .2$ we may assume without loss of generality that $b_{i}=\left\langle, w_{i}\right\rangle u_{i}$. Then Remark 4.6 .14 shows that $P=$ $\sum_{i=1}^{m}\left(\Delta u_{i}+\Delta w_{i}\right)$ is contained in a finitely dimensional subspace Q of V such that $\left.\langle\rangle\right|_{Q$,$} is nondegenerate. By Theorem 4.3.1 the$ subspace Q has dual bases $x_{1}, x_{2}, \ldots, x_{n}$ and $y_{1}, y_{2}, \ldots, y_{n}$. We leave it for the reader to verify that the elements $e_{i j}=\left\langle, y_{i}\right\rangle x_{j}$ behave as matrix units and that each b_{k} (and more generally, each $r \in e R e$, where $e=\sum_{i=1}^{n} e_{i i}$) may be written in the form $\sum_{i j}\left\langle, y_{i}\right\rangle \lambda_{i j} x_{j}, \lambda_{i j} \in \Delta$. Then for $e=\sum_{i=1}^{n} e_{i i}$ we have $b_{k}=e b_{k} e \in e R e \cong M_{n}(\Delta)$. Let $v \in V$. Then $v e=0$ if and only if $\sum_{i=1}^{n}\left\langle v, y_{i}\right\rangle x_{i}=0$. Since $x_{1}, x_{2}, \ldots, x_{n}$ are linearly independent, the last condition is equivalent to $\left\langle v, y_{i}\right\rangle=0$ for all $i=1,2, \ldots, n$. But $y_{1}, y_{2}, \ldots, y_{n}$ is a basis of Q. Hence we have proved that $\operatorname{ker}(e)=Q^{\perp}$. Since $V e=P$, it follows that

$$
\langle x e, y\rangle=\langle x e, y e+y(1-e)\rangle=\langle x e, y e\rangle=\langle x, y e\rangle
$$

which means that $e^{*}=e$. The last statement of the theorem is obvious.

We remark that clearly the symmetric idempotent e in Theorem 4.6.15 may be chosen so that the $\operatorname{ran} k_{\Delta}(e) \geq k$, where k is any prescribed positive integer for which $k \leq \operatorname{dim}_{\Delta}(V)$. Indeed, let e_{1} denote the symmetric idempotent guaranteed by Theorem 4.6.15, take any element c of sufficiently high finite rank in $\left(1-e_{1}\right) R$, and reapply Theorem 4.6.15 to the elements e_{1}, c to obtain the desired symmetric idempotent e.

The *-Litoff Theorem will prove to be useful in Chapter 9 when we shall give an exposition of Herstein's Lie theory for prime rings with involution.

4.7 Automorphisms

Our aim in this section is a description of automorphisms of primitive rings with nonzero socle whose associated division ring is finite dimensional over its center. We show that any automorphism acting on the extended centroid identically is X-inner. We start with the following easy remark.

Remark 4.7.1 Let α be an automorphism of $R=M_{n}(F), F$ a field, which acts identically on F. Then α is inner.

Proof. Let $\left\{e_{i j}\right\}$ be a set of matrix units in $M_{n}(F)$. Obviously $\left\{e_{i j}^{\alpha}\right\}$ is again a set of matrix units. By Remark 4.6.9 there exists an invertible matrix $t \in M_{n}(F)$ such that $e_{i j}^{\alpha}=t^{-1} e_{i j} t$ for all i, j which proves the remark.

Corollary 4.7.2 Let D be a finite dimensional division algebra over its center C. Then any C-linear automorphism α of D is inner.

Proof. Let F be a maximal subfield of D. Since α is C linear it may be lifted to an F-linear automorphism $\hat{\alpha}$ of $R=$ $D \otimes_{C} F \cong M_{n}(F)$ (see Corollary 4.2.2). By Remark 4.7.1 $\widehat{\alpha}=$ $\operatorname{inn}\left(\sum a_{i} \otimes \lambda_{i}\right),\left\{a_{i}\right\} \subseteq D,\left\{\lambda_{i}\right\} C$-independent in F, with $\lambda_{1}=1$ (otherwise we replace $\left(\sum a_{i} \otimes \lambda_{i}\right)$ with $\left.\left(\sum a_{i} \otimes \lambda_{i}\right)\left(1 \otimes \lambda_{1}\right)^{-1}\right)$. For $x \in D$ we see in particular from

$$
\left[\sum a_{i} \otimes \lambda_{i}\right]\left(x^{\alpha} \otimes 1\right)=(x \otimes 1)\left[\sum a_{i} \otimes \lambda_{i}\right]
$$

that $a_{1} x^{\alpha}=x a_{1}$, and the proof is complete.

Theorem 4.7.3 Let R be a primitive ring with nonzero socle, with faithful irreducible right R-module M and $\Delta=\operatorname{End}\left(M_{R}\right)$. Suppose that α is an automorphism of R. Then there exist an automorphism $\tau: \Delta \rightarrow \Delta$ and a τ-semilinear automorphism S of M such that $r^{\alpha}=S^{-1} r S$ for all $r \in R$.

Proof. Here we consider R as a subring of $E n d_{\Delta}(M)$. Further we consider M as an R-module M^{\prime} with multiplication given by the rule $m * r=m r^{\alpha}$. Clearly $\operatorname{End}\left(M_{R}^{\prime}\right)=\Delta$. By Theorem 4.3.7 there exist an automorphism $\tau: \Delta \rightarrow \Delta$ and a τ-semilinear isomorphism $S: M \rightarrow M^{\prime}$ which is an isomorphism of right R-modules as well. We have

$$
(m r) S=(m S) * r=(m S) r^{\alpha}
$$

for all $m \in M$ and $r \in R$. Hence $r S=S r^{\alpha}$ and $r^{\alpha}=S^{-1} r S$, which completes the proof.

Theorem 4.7.4 Let R be a centrally closed primitive ring with nonzero socle H and with extended centroid C, and let M be a faithful irreducible right R-module whose associated division ring $\Delta=\operatorname{End}\left(M_{R}\right)$ is finite dimensional over its center. Then any C-linear automorphism α of R is X-inner.

Proof. By Theorem 4.3.7(ix) we can identify the center of Δ with $1_{\Delta} C$. It follows from Theorem 4.7.3 that $r^{\alpha}=S^{-1} r S$ for some τ-semilinear automorphism of M. Consider $c \in C$. Since $c^{\alpha}=c, c S=S c$. Note that $m c=c m$ for all $m \in M$. We have

$$
c(m S)=(m S) c=(m c) S=(c m) S=c^{\tau}(m S)
$$

and hence $c=c^{\tau}$ for all $c \in C$. Applying Corollary 4.7.2 we infer that $\tau=\operatorname{inn}(a)$ for some $a \in \Delta$. Consider now the endomorphism $T: M \rightarrow M$ of the abelian group M given by the rule $m T=a(m S)$ for all $m \in M$. Clearly T is an automorphism. Further

$$
(m r) T=a[(m r) S]=a\left[(m S) r^{\alpha}\right]=[a(m S)] r^{\alpha}=(m T) r^{\alpha}
$$

which means that $r^{\alpha}=T^{-1} r T$. Moreover

$$
\begin{aligned}
(d m) T & =a[(d m) S]=a\left[d^{\tau}(m S)\right]=a d^{\tau}(m S) \\
& =d a(m S)=d(m T)
\end{aligned}
$$

for all $m \in M$ and $d \in \Delta$. Therefore $T \in \operatorname{End}\left({ }_{\Delta} M\right)$. By Theorem 4.3.7 End $\left({ }_{\Delta} M\right)=Q_{l}(R)$ and $\operatorname{Soc}(R)$ is a right ideal of $Q_{l}(R)$. Clearly $\operatorname{Soc}(R)^{\alpha}=\operatorname{Soc}(R)$ and so for every $r \in \operatorname{Soc}(R)$ we have $\operatorname{Tr}^{\alpha}=r T \in \operatorname{Soc}(R)$. Thus

$$
T \operatorname{Soc}(R)=T \operatorname{Soc}(R)^{\alpha} \subseteq \operatorname{Soc}(R)
$$

and we conclude that $T \in Q_{s}(R)$.

This Page Intentionally Left Blank

Chapter 5

The

Poincaré-Birkhoff-Witt Theorem

In this chapter we shall prove a generalization of the well-known Poincaré-Birkhoff-Witt theorem for Lie algebras. Aside from our feeling that this result is of independent interest, we have a very tangible motivation for this project. One of the central goals in this book (Chapter 7) is the study of so-called generalized identities which involve derivations (along with automorphisms and antiautomorphisms). To be specific let R be a prime ring with extended centroid C, prime subfield Φ of C, and symmetric ring of quotients Q. Letting $D=D(R)=\operatorname{Der}(R) C+D_{i}$ (where D_{i} is the set of inner derivations of Q) we recall from Chapter 2 that D is a certain set of derivations of Q which satisfies the following properties
(i) D is a Φ-algebra;
(ii) D is a right C-space;
(iii) There is Φ-Lie algebra map $\Lambda: D \rightarrow \operatorname{Der}(C)$;
(iv) $[\delta c, \mu]=[\delta, \mu] c+\delta c^{\hat{\mu}}$, where $\hat{\mu}=\Lambda(\mu), \delta, \mu \in D$ and $c \in C$.

In case of char. $p \quad D$ is also closed under p th powers (in this situation D is called restricted) and there are further natural properties (which we will not mention here).

In view of this motivation, in this chapter we shall abstract the above properties and define accordingly the notion of a (restricted) differential F-Lie algebra L (F playing the role of C). For such a Lie algebra we will construct a universal enveloping algebra (which is an F-ring) and then show that it has the expected right F-basis (Theorem 5.3.6 and Theorem 5.4.5). The main tool in the proof will be the Diamond Lemma. Since there are various level of complications, depending on whether L is an F-algebra rather than just a right F-space and on whether L is restricted or not, we have chosen to divide the chapter into four separate sections (with each succeeding section building upon the previous case). In this way the reader may restrict his attention to the level of generality in which he is interested. We have also carried through our arguments in the generality where F is a commutative ring with 1 rather than just being a field, since there is no appreciable change in the arguments. In the few instances in which there is some simplification in case F is a field these matters will be pointed out.

The main results of sections 5.1 and 5.2, namely, Theorem 5.1.1, Theorem 5.2.3, are of course well-known, although the use of the Diamond Lemma in their proof may be of interest (in preparation of these sections we used some material from [19] and [20]). Theorem 5.3.6 is a special case of a more general theorem proved by homological methods in [264] whereas we have not seen Theorem 5.4.5 in the literature.

5.1 Lie Algebras

Let Φ be a commutative ring with 1 . Recall that a Φ-algebra K with multiplication $(x, y) \mapsto[x, y]$ is said to be a Lie algebra
over Φ if it satisfies the identities

$$
[x, x]=0, \quad[x,[y, z]]+[y,[z, x]]+[z,[x, y]]=0
$$

for all $x, y, z \in K$. The last identity is called the Jacobi identity.

Further let A be an associative Φ-algebra with an identity element 1. We set $[x, y]=x y-y x$ for all $x, y \in A$. Denote by $A^{(-)}$the additive group A with new multiplication [,]. Clearly $A^{(-)}$is a Lie algebra over Φ.

Let K be a Lie algebra over Φ. A pair $(A ; f)$ is said to be a cover of the Lie algebra K if A is an associative Φ-algebra with 1 and $f: K \rightarrow A^{(-)}$is a homomorphism of Φ-algebras. A cover ($A ; f$) of the Lie algebra K is called an enveloping algebra of the Lie algebra K if $A=\left\langle K^{f}\right\rangle+\Phi \cdot 1$, where $\left\langle K^{f}\right\rangle$ is the subalgebra of A generated by the image K^{f} of the mapping f. An enveloping algebra ($U ; \phi$) of the Lie algebra K is said to be a universal enveloping algebra of the Lie algebra K, if for any cover algebra ($A ; f$) of the Lie algebra K there exists a (necessarily unique) homomorphism $\psi: U \rightarrow A$ of Φ-algebras with identity elements (i.e. $1^{\psi}=1$) such that $\phi \psi=f$.

Two covers $(A ; f)$ and $(B ; g)$ of a Lie algebra K are said to be isomorphic if there exists an isomorphism $h: A \rightarrow B$ of Φ-algebras with 1 such that $f h=g$. Clearly a universal enveloping algebra of a given Lie algebra is determined uniquely up to isomorphism.

Any Lie algebra K over Φ has a universal enveloping algebra. Indeed, let $\left\{\left(A_{i}, f_{i}\right) \mid i \in I\right\}$ be a set of all pairwise nonisomorphic enveloping algebras of the Lie algebra K. We let $A=\prod_{i \in I} A_{i}$ be the Cartesian product of $A_{i}, i \in I$. Define the mapping $\phi: K \rightarrow A$ by the rule $\phi(x)=\left\{f_{i}(x)\right\}_{i \in I}$ for all $x \in K$. Denote by U the subalgebra of A generated by the identity element and K^{ϕ}. It immediately follows from our construction that $(U ; \phi)$ is the universal enveloping algebra of K.

However, we are only interested in Lie algebras which are free Φ-modules. In this case we proceed to describe the universal enveloping algebra ($U(K) ; \rho$) in a more tangible fashion as follows. Let X be a Φ-basis of $K, Z=\{\bar{x} \mid x \in X\}, S=S<Z>$ the free semigroup (with 1), and $\Phi<Z>$ the free algebra (with 1) generated by Z. Denote by L the Φ-span of Z in $\Phi<Z>$ and let $\psi: K \rightarrow L$ be the Φ-map given by $x \mapsto \bar{x}, x \in X$. It is clear that ψ is an isomorphism of Φ-modules, and we set $\phi=\psi^{-1}$. We now define $I=I(K)$ to be the ideal of $\Phi<Z>$ generated by all elements of the form $\left[u^{\prime} \psi, v^{\psi}\right]-[u, v]^{\psi}, u, v \in K$, or, equivalently, $[\bar{x}, \bar{y}]-[x, y]^{\psi}, x, y \in X$. Letting ν denote the projection of $\Phi<Z>$ onto $\Phi<Z>/ I$, we set $\rho=\psi \nu$. The reader may then verify the straightforward details that ($\Phi<Z>/ I ; \rho$) is a universal enveloping algebra of K (if $(A ; f)$ is any cover of K, first lift f to a homomorphism $\sigma: \Phi<Z>\rightarrow A$ and then just check that σ sends I to 0).
Theorem 5.1.1 Let K be a Lie algebra over Φ with universal enveloping algebra $(U(K) ; \rho)$. Assume that K is a free Φ-module with a well-ordered basis X. Then $U(K)$ is a free Φ-module with the basis

$$
V=\left\{x_{1}^{\rho} x_{2}^{\rho} \ldots x_{m}^{\rho} \mid x_{j} \in X, x_{1} \leq x_{2} \leq \ldots \leq x_{m}\right\} \cup\{1\}
$$

(we shall refer to V as a PBW-basis of the universal enveloping algebra $U(K)$ of the Lie algebra $K)$.

Proof. Let Δ be the reduction system of $\Phi<Z\rangle$, given by

$$
\sigma_{y x}=\left(\bar{y} \bar{x}, \bar{x} \bar{y}+[y, x]^{\psi}\right) \quad \text { for all } \quad y>x \in X .
$$

Further let $x, y \in X, P, Q \in S$. We set $R=R_{P \sigma_{x y} Q}$ for $x>$ y, and $R=R_{P \sigma_{y x} Q}$ for $y>x$. Then $R(P[\bar{x}, \bar{y}] Q)=P[x, y]^{\psi} Q$.

We claim that for any $P, Q \in S, u_{1}, u_{2}, \ldots, u_{n}, v_{1}, v_{2}, \ldots, v_{n} \in$ L there exists a sequence of reductions R such that

$$
\begin{equation*}
R\left(\sum_{i=1}^{n} P\left[u_{i}, v_{i}\right] Q\right)=\sum_{i=1}^{n} P\left[u_{i}^{\phi}, v_{i}^{\phi}\right]^{\psi} Q . \tag{5.1}
\end{equation*}
$$

Indeed, let $u_{i}=\sum_{x} \nu_{i x} \bar{x}, v_{i}=\sum_{y} \mu_{i y} \bar{y}$, where $\nu_{i x}, \mu_{i x} \in \Phi$, $x, y \in X$. Using reductions of the form $R_{P \sigma_{x y} Q}$ (or $R_{P \sigma_{y x} Q}$) we may reduce the element

$$
\begin{aligned}
\sum_{i=1}^{n} P\left[u_{i}, v_{i}\right] Q & =\sum_{i, x, y} \nu_{i x} \mu_{i y} P[\bar{x}, \bar{y}] Q \\
& =\sum_{i, x<y}\left(\nu_{i x} \mu_{i y}-\nu_{i y} \mu_{i x}\right) P[\bar{x}, \bar{y}] Q
\end{aligned}
$$

to the element

$$
\begin{aligned}
\sum_{i, x<y}\left(\nu_{i x} \mu_{i y}-\nu_{i y} \mu_{i x}\right) P[x, y]^{\psi} Q & =\sum_{i, x, y} \nu_{i x} \mu_{i y} P[x, y]^{\psi} Q \\
& =\sum_{i=1}^{n} P\left[\sum_{x} \nu_{i x} x, \sum_{y} \mu_{i y} y\right]^{\psi} Q \\
& =\sum_{i=1}^{n} P\left[u_{i}^{\phi}, v_{i}^{\phi}\right]^{\psi} Q
\end{aligned}
$$

Let $w=\bar{x}_{1} \bar{x}_{2} \ldots \bar{x}_{m} \in S$. The number m is called the length of w. A linear order \leq is defined on S as follows: $u<v$, if either
(a) u is of smaller length than v, or
(b) u and v have the same length but u is less then v relatively to the lexicographic order.
It is clear that this ordering \leq is a semigroup ordering compatible with the reduction system Δ and that it satisfies the descending chain condition.

Denote by $I=I(\Delta)$ the ideal of the algebra $\Phi<Z>$ generated by the reduction system Δ, noting that $U(K)=\Phi<Z>/ I$. We will show, that all ambiguities of Δ are resolvable and the set

$$
V^{\prime}=\left\{\bar{x}_{1} \bar{x}_{2} \ldots \bar{x}_{m} \mid x_{j} \in X, x_{1} \leq x_{2} \leq \ldots \leq x_{m}\right\} \cup\{1\}
$$

is a Φ-basis of $\Phi<Z>_{i r r}$.

Indeed, only the overlap ambiguity ($\sigma_{z y}, \sigma_{y x}, \bar{z}, \bar{y}, \bar{x}$), where $x, y, z \in X$ and $z>y>x$, is possible. We set

$$
\begin{aligned}
w & =R_{\sigma_{z y} x}(\bar{z} \bar{y} \bar{x})-R_{z \sigma_{y x}}(\bar{z} \bar{y} \bar{x}) \\
& =\left(\bar{y} \bar{z} \bar{x}+[z, y]^{\psi} \bar{x}\right)-\left(\bar{z} \bar{x} \bar{y}+\bar{z}[y, x]^{\psi}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
w^{\prime} & =R_{x \sigma_{z y}} R_{\sigma_{y x}} R_{\sigma_{z x} y} R_{y \sigma_{z x}}(w) \\
& =\bar{x} \bar{y} \bar{z}+[y, x]^{\psi} \bar{z}+\bar{y}[z, x]^{\psi}+[z, y]^{\psi} \bar{x} \\
& -\bar{x} \bar{y} \bar{z}-\bar{x}[z, y]^{\psi}-[z, y]^{\psi} \bar{y}-\bar{z}[y, x]^{\psi} \\
& =\left[[y, x]^{\psi}, \bar{z}\right]+\left[\bar{y},[z, x]^{\psi}\right]+\left[[z, y]^{\psi}, \bar{x}\right] .
\end{aligned}
$$

By (5.1) there exists a sequence of reductions R such that

$$
\begin{aligned}
& R\left(\left[[y, z]^{\psi}, \bar{z}\right]+\left[\bar{y},[z, x]^{\psi}\right]+\left[[z, y]^{\psi}, \bar{x}\right]\right) \\
& =[[y, x], z]^{\psi}+[y,[z, x]]^{\psi}+[[z, y], x]^{\psi} .
\end{aligned}
$$

The last expression is equal to zero by Jacobi identity. Thus

$$
R R_{x \sigma_{z y}} R_{\sigma_{y x} z} R_{\sigma_{z x} y} R_{y \sigma_{z x}}(w)=0
$$

and this ambiguity is resolvable. Therefore by the Diamond Lemma $U(K)=\Phi<Z>/ I \cong \Phi<Z>_{i r r}$. By Lemma 1.3 .2 it is clear that V^{\prime} is a Φ-basis of $\Phi<Z>_{\text {irr }}$ and so V is a Φ-basis for $U(K)$.

Corollary 5.1.2 Keeping the notations of the proof of Theorem 5.1.1, we set $\operatorname{ad}(\bar{x})(v)=[v, \bar{x}]$ and $\operatorname{Ad}(\bar{x})(v)=\left[v^{\phi}, x\right]^{\psi}$ for all $x \in X, v \in L$. Let t be a natural number. Then there exists a sequence R of reductions of the form $R_{A \sigma_{u w} B}$ such that $R\left(a d(\bar{x})^{t}(v)\right)=\operatorname{Ad}(\bar{x})^{t}(v)$.

Proof. Clearly $[\bar{z}, \bar{x}]-[z, x]^{\psi} \in I(\Delta)$ for all $z \in X$. Hence $[u, \bar{x}]-\left[u^{\phi}, x\right]^{\psi} \in I(\Delta)$ for all $u \in L$. Therefore

$$
\begin{equation*}
a d(\bar{x})(v)-A d(\bar{x})(v) \in I(\Delta) \tag{5.2}
\end{equation*}
$$

Suppose that

$$
a d(\bar{x})^{t-1}(v)-A d(\bar{x})^{t-1}(v) \in I(\Delta)
$$

Then

$$
\begin{align*}
& a d(\bar{x})^{t}(v)-a d(\bar{x})\left(a d(\bar{x})^{t-1}(v)\right) \\
& =a d(\bar{x})\left(a d(\bar{x})^{t-1}(v)-\operatorname{Ad}(\bar{x})^{t-1}(v)\right) \in I(\Delta) \tag{5.3}
\end{align*}
$$

Clearly $\operatorname{Ad}(\bar{x})^{t-1}(v)=\left(\operatorname{Ad}(x)^{t-1}\left(v^{\phi}\right)\right)^{\psi} \in L$ for all $t>0$. By (5.2) it follows that

$$
\begin{align*}
& \operatorname{ad}(\bar{x})\left(\operatorname{Ad}(\bar{x})^{t-1}(v)\right)-\operatorname{Ad}(\bar{x})^{t}(v) \\
& =a d(\bar{x})\left(\operatorname{Ad}(\bar{x})^{t-1}(v)\right)-\operatorname{Ad}(\bar{x})\left(\operatorname{Ad}(\bar{x})^{t-1}(v)\right) \in I(\Delta) \tag{5.4}
\end{align*}
$$

From (5.3) and (5.4) it follows that

$$
a d(\bar{x})^{t}(v)-A d(\bar{x})^{t}(v) \in I(\Delta)
$$

Since $A d(\bar{x})^{t}(v) \in L \in \Phi<Z>_{i r r}$,

$$
\begin{aligned}
& N\left(a d(\bar{x})^{t}(v)\right)-\operatorname{Ad}(\bar{x})^{t}(v) \\
& =N\left(a d(\bar{x})^{t}(v)-\operatorname{Ad}(\bar{x})^{t}(v)\right) \in I(\Delta) \cap \Phi<Z>_{i r r}=0
\end{aligned}
$$

where $N: \Phi<Z>\rightarrow \Phi<Z>_{i r r}$ is the normal form mapping (its existence follows from Theorem 5.1.1 and the Diamond Lemma). Hence $N\left(a d(\bar{x})^{t}(v)\right)=\operatorname{Ad}(\bar{x})^{t}(v)$. Now our statement follows from the definition of a normal form of an element.

Corollary 5.1.3 Let $\left.w, u_{1}, u_{2}, \ldots, u_{n}, v_{1}, v_{2}, \ldots, v_{n} \in \Phi<Z\right\rangle$ and $r=\sum_{i=1}^{n} u_{i} w v_{i}$. Keeping the notations of the proof of the Theorem 5.1.1, we suppose that there exists a sequence R of reductions of the form $R_{A \sigma_{x y} B}$ such, that $R(w)=0$. Then there exists a sequence R^{\prime} of reductions of the same form such that $R^{\prime}(r)=0$.

Proof. Since $R(w)=0, w \in I(\Delta)$. Hence $r \in I(\Delta)$. Clearly $N(r)=0$. Now our statement follows from the definition of a normal form of an element.

Corollary 5.1.4 Let K be a Lie algebra over Φ with universal enveloping algebra $(U(K) ; \rho)$. Assume that K is a free Φ module. Then $\rho: K \rightarrow U(K)^{(-)}$is a monomorphism of Lie algebras.

5.2 Restricted Lie Algebras

Let L be a Lie algebra over Φ and $x \in L$. We denote by $\operatorname{ad}(x)$ the mapping $L \rightarrow L$ given by $a d(x)(y)=[y, x]$. Further let A be an associative ring and $a \in A$. We let r_{a} and l_{a} stand for the mappings $A \rightarrow A$, given by $r_{a}(x)=x a, l_{a}(x)=a x$ for all $x \in A$.

Lemma 5.2.1 Let p be a prime number, Φ the p-element field, X an infinite set, $A=\Phi<X>$ the free Φ-algebra with 1 generated by $X, L \subseteq A$ the Lie subalgebra generated by X, and $x, y \in X$ Then:
(a) $a d(x)^{p}=a d\left(x^{p}\right)$;
(b) $a d(x)^{p-1}=\sum_{i=0}^{p-1} r_{x}^{i} l_{x}^{p-1-i}, a d(x)^{p-1} y=\sum_{i=0}^{p-1} x^{i} y x^{p-1-i}$;
(c) $W(x, y)=(x+y)^{p}-x^{p}-y^{p} \in L$.

Proof. (a) Clearly, $r_{x} l_{x}=l_{x} r_{x}$ and $a d(x)=r_{x}-l_{x}$. Since $\binom{p}{i}=\frac{p!}{i!(p-i)!} \equiv 0 \bmod p$ for $i \neq 0, p$,

$$
a d(x)^{p}=\left(r_{x}-l_{x}\right)^{p}=\sum_{i}(-1)^{i}\binom{p}{i} r_{x}^{p-i} l_{x}^{i}=a d\left(x^{p}\right)
$$

(b) We show that $\binom{p-1}{i} \equiv(-1)^{i} \bmod p$ for all $i=0,1, \ldots, p-$ 1. We proceed by induction on i. For $i=0$ this is true. Suppose this is true for $i=k$. Since

$$
(-1)^{k}+\binom{p-1}{k+1} \equiv\binom{p-1}{k}+\binom{p-1}{k+1}=\binom{p}{k+1} \equiv 0 \bmod p
$$

$\binom{p-1}{k+1} \equiv(-1)^{k+1} \bmod p$ and we are done.
Thus

$$
\begin{gathered}
a d(x)^{p-1}=\left(r_{x}-l_{x}\right)^{p-1}=\sum_{i}(-1)^{i}\binom{p-1}{i} r_{x}^{i} l_{x}^{p-1-i}=\sum_{i} r_{x}^{i} l_{x}^{p-1-i}, \\
a d(x)^{p-1} y=\sum_{i=0}^{p-1} x^{i} y x^{p-1-i} .
\end{gathered}
$$

(c) Consider the polynomial ring $A[t]$ and let $\delta: A[t] \rightarrow A[t]$ be the derivation given by $t^{\delta}=1$ and $a^{\delta}=0$ for all $a \in A$.

Note, that the Lie $\Phi[t]$-subalgebra generated by X is equal to $L[t]$. Thus the coefficients of the polynomial $[a d(t x+y)]^{p-1}(x) \in$ $L[t]$ belong to L.

We have:

$$
\begin{equation*}
(t x+y)^{p}=t^{p} x^{p}+y^{p}+\sum_{i=1}^{p-1} t^{i} s_{i}(x, y) \tag{5.5}
\end{equation*}
$$

where $s_{i}(x, y)$ is the coefficient of t^{i} in the polynomial $(t x+y)^{p}$. Applying δ to (5.5) one obtains

$$
\sum_{i=0}^{p-1}(t x+y)^{i} x(t x+y)^{p-1-i}=\sum_{i=1}^{p-1} i t^{i-1} s_{i}(x, y)
$$

Taking into account (b) we have

$$
[a d(t x+y)]^{p-1}(x)=\sum_{i=0}^{p-1}(t x+y)^{i} x(t x+y)^{p-1-i}=\sum_{i=1}^{p-1} i t^{i-1} s_{i}(x, y)
$$

Thus $i s_{i}(x, y)$ is the coefficient of t^{i-1} in the polynomial $[a d(t x+y)]^{p-1}(x) \in L[t]$. Hence $s_{i}(x, y) \in L$. Substituting $t=1$ into (5.5) we see that $(x+y)^{p}=x^{p}+y^{p}+\sum_{i=1}^{p-1} s_{i}(x, y)$ and thus $W(x, y)=\sum_{i=1}^{p-1} s_{i}(x, y) \in L$.

Corollary 5.2.2 Let A be an associative ring and $p A=0$ for some prime number p. Then ad $(x)^{p}=a d\left(x^{p}\right)$ and $(x+y)^{p}=$ $x^{p}+y^{p}+W(x, y)$ for all $x, y \in A$.

Let p be a prime number and Φ an associative commutative ring with 1 such that $p \Phi=0$. We recall that a Lie algebra K over Φ with an unary operation $x \mapsto x^{[p]}$ satisfying the identities

$$
\begin{align*}
& (\lambda x)^{[p]}=\lambda^{p} x^{[p]}, \quad \lambda \in \Phi, x \in K, \tag{5.6}\\
& \operatorname{ad}\left(x^{[p]}\right)=\operatorname{ad}(x)^{p}, \quad x \in K, \tag{5.7}\\
& (x+y)^{[p]}=x^{[p]}+y^{[p]}+W(x, y), \quad x, y \in K, \tag{5.8}
\end{align*}
$$

is said to be restricted Lie algebra (or p-Lie algebra). Further the operation $x \mapsto x^{[p]}$ is called a p-operation .

Note that from Corollary 5.2 .2 it follows that the Lie Φ algebra $A^{(-)}$with unary operation $x \mapsto x^{p}$ is restricted.

Let K be a restricted Lie algebra over Φ. A pair $(A ; f)$ is said to be a cover of the Lie algebra K if A is an associative Φ-algebra with 1 and $f: K \rightarrow A^{(-)}$is a homomorphism of restricted Lie algebras (i.e. $f\left(x^{[p]}\right)=f(x)^{p}$ for all $x \in K$). Notions of enveloping algebra and universal enveloping algebra for restricted Lie algebra are defined analogously to corresponding notions for Lie algebras. The existence of a universal enveloping algebra $(U(K) ; \phi)$ of a restricted Lie algebra K is proved in the same way as that of a Lie algebra.

Being only interested in restricted Lie algebras which are free Φ-modules, we construct a universal enveloping algebra $(U(K) ; \rho)$ in much the same fashion as we did for ordinary Lie algebras. The only difference is that we define the ideal $I(K)$ of $\Phi<Z>$ to be the ideal generated by all elements of the following two forms:

$$
\left[u^{\psi}, v^{\psi}\right]-[u, v]^{\psi}, \quad u^{[p] \psi}-\left(u^{\psi}\right)^{p}, \quad u, v \in K .
$$

Again we leave it for the reader to verify that $(U(K) ; \rho)$ is indeed a universal enveloping algebra (here $U(K)=\Phi<Z>/ I(K)$ and $\rho=\psi \nu$, where $\psi: K \rightarrow L$ and $\nu: \Phi<Z>\rightarrow \Phi<Z>/ I(K))$.

Consider now the ideal I of $\Phi<Z>$ generated by all elements of the forms:

$$
[\bar{x}, \bar{y}]-[x, y]^{\psi}, \quad x^{[p] \psi}-\bar{x}^{p}, \quad x, y \in X .
$$

We claim that $I(K)=I$. Indeed, the inclusion $I \subseteq I(K)$ is obvious. We denote by μ the projection of $\Phi<Z>$ onto $\Phi<Z>/ I$ and set $\tau=\psi \mu$. Since τ is a Φ-linear map and $\left[x^{\tau}, y^{\tau}\right]=[x, y]^{\tau}$ for all $x, y \in X,\left[u^{\tau}, v^{\tau}\right]=[u, v]^{\tau}$ for all $u, v \in K$. Hence τ is a homomorphism of Lie Φ-algebras. It is enough to prove that $\left(u^{\tau}\right)^{p}=u^{[p] \tau}$ for all $u \in K$ (i.e. τ is a homomorphism of restricted Lie algebras). Let $H=\left\{u \in K \mid\left(u^{\tau}\right)^{p}=u^{[p] \tau}\right\}$. It is clear that $X \subseteq H$. For any $u, v \in H, \alpha, \beta \in \Phi$ we have

$$
\begin{aligned}
(\alpha u+\beta v)^{[p] \tau} & =\left\{(\alpha u)^{[p]}+(\beta v)^{[p]}+W(\alpha u, \beta v)\right\}^{\tau} \\
& =\left\{\alpha^{p} u^{[p]}+\beta^{p} v^{[p]}+W(\alpha u, \beta v)\right\}^{\tau} \\
& =\alpha^{p} u^{[p] \tau}+\beta^{p} v^{[p] \tau}+W(\alpha u, \beta v)^{\tau} \\
& =\alpha^{p}\left(u^{\tau}\right)^{p}+\beta^{p}\left(v^{\tau}\right)^{p}+W(\alpha u, \beta v)^{\tau} \\
& =\left\{(\alpha u)^{\tau}\right\}^{p}+\left\{(\beta v)^{\tau}\right\}^{p}+W(\alpha u, \beta v)^{\tau}
\end{aligned}
$$

Taking into account that $W(x, y)$ is a Lie polynomial in x, y we have

$$
\begin{aligned}
(\alpha u+\beta v)^{[p] \tau} & =\left\{(\alpha u)^{\tau}\right\}^{p}+\left\{(\beta v)^{\tau}\right\}^{p}+W(\alpha u, \beta v)^{\tau} \\
& =\left\{(\alpha u)^{\tau}\right\}^{p}+\left\{(\beta v)^{\tau}\right\}^{p}+W\left((\alpha u)^{\tau},(\beta v)^{\tau}\right) \\
& =\left\{(\alpha u)^{\tau}+(\beta v)^{\tau}\right\}^{p}=\left\{(\alpha u+\beta v)^{\tau}\right\}^{p} .
\end{aligned}
$$

(see Lemma 5.2.1). Hence $\alpha u+\beta v \in H$ and H is a Φ-submodule of K. Since $X \subseteq H, H=K$. Thus τ is a homomorphism of restricted Lie algebras and $I=I(K)$.

Theorem 5.2.3 Let p be a prime number, Φ an associative commutative ring with 1 such that $p \Phi=0, K$ a restricted Lie algebra over Φ and $(U(K) ; \rho))$ the universal enveloping algebra of the restricted Lie algebra K. Assume that K is a free Φ-module with a well-ordered basis X. Then the set

$$
\begin{aligned}
& V=\left\{x_{1}^{\rho} x_{2}^{\rho} \ldots x_{m}^{\rho} \mid x_{j} \in X, x_{1} \leq x_{2} \leq \ldots \leq x_{m} \quad\right. \text { and } \\
& \text { if } \left.x_{k}=x_{k+1}=\ldots=x_{k+s-1}, \quad \text { then } \quad s<p\right\} \cup\{1\}
\end{aligned}
$$

is a Φ-basis of $U(K)$ (we shall refer to V as a $P B W$-basis of the universal enveloping algebra $U(K)$ of the restricted Lie algebra $K)$.

Proof. We continue with the same notations as in Theorem 5.1.1. Consider the reduction system Δ of $\Phi<Z>$,

$$
\begin{aligned}
\sigma_{y x} & =\left(\bar{y} \bar{x}, \bar{x} \bar{y}+[y, x]^{\psi}\right) \quad \text { for all } \quad y>x \in X \\
\sigma_{x} & =\left(\bar{x}^{p}, x^{[p] \psi}\right) \quad \text { for all } \quad x \in X
\end{aligned}
$$

Let \leq be the linear order on S which was introduced in the proof of Theorem 5.1.1. Clearly this ordering is a semigroup ordering compatible with the reduction system Δ and satisfying the descending chain condition.

It was shown in the proof of Theorem 5.1.1 that for any $P, Q \in S, u_{1}, u_{2}, \ldots, u_{n}, v_{1}, v_{2}, \ldots, v_{n} \in L$ there exists a sequence of reductions R such that

$$
\begin{equation*}
R\left(\sum_{i=1}^{n} P\left[u_{i}, v_{i}\right] Q\right)=\sum_{i=1}^{n} P\left[u_{i}^{\phi}, v_{i}^{\phi}\right]^{\psi} Q . \tag{5.9}
\end{equation*}
$$

Let $I=I(\Delta)$ be the ideal of the algebra A generated by the reduction system Δ. It is clear that the ideal I is generated by all elements of the form $[\bar{x}, \bar{y}]-[x, y]^{\psi}$ and $\bar{x}^{p}-x^{[p] \psi}, x, y \in X$.

We will show that all ambiguities of Δ are resolvable and the set

$$
\begin{aligned}
V^{\prime}= & \left\{\bar{x}_{1} \bar{x}_{2} \ldots \bar{x}_{m} \mid x_{i} \in X x_{1} \leq x_{2} \leq \ldots \leq x_{m}\right. \text { and } \\
& \text { if } \left.x_{k}=x_{k+1}=\ldots=x_{k+s-1}, \quad \text { then } s<p\right\} \cup\{1\}
\end{aligned}
$$

is a Φ-basis of $\Phi<Z>_{i r r}$.
Indeed, let us consider the various ambiguities.
Case 1. Overlap ambiguity ($\sigma_{z y}, \sigma_{y x}, \bar{z}, \bar{y}, \bar{x}$), where $x, y, z \in$ X and $z>y>x$. It was shown in the proof of Theorem 5.1.1 that this ambiguity is resolvable.

Case 2. Overlap ambiguity ($\sigma_{y x}, \sigma_{x}, \bar{y}, \bar{x}, \bar{x}^{p-1}$), where $x, y \in$ X and $y>x$.We set

$$
\begin{aligned}
w & =R_{y \sigma_{x}}\left(\bar{y} \bar{x}^{p}\right)-R_{\sigma_{y x} x^{p-1}}\left(\bar{y} \bar{x}^{p}\right) \\
& =\bar{y} x^{[p] \psi}-\left(\bar{x} \bar{y}+[y, x]^{\psi}\right) \bar{x}^{p-1}, \\
w^{\prime} & =R_{x^{p-1} \sigma_{y x}} \cdots R_{x^{2} \sigma_{y x} x^{p-3}} R_{x \sigma_{y x} x^{p-2}}(w) \\
& =\bar{y} x^{[p] \psi}-\bar{x}^{p} \bar{y}-\sum_{i=0}^{p-1} \bar{x}^{i}[y, x]^{\psi} \bar{x}^{p-1-i},
\end{aligned}
$$

and

$$
w^{\prime \prime}=R_{\sigma_{x} y}\left(w^{\prime}\right)=\bar{y} x^{[p] \psi}-x^{[p] \psi} \bar{y}-\sum_{i=0}^{p-1} \bar{x}^{i}[y, x]^{\psi} \bar{x}^{p-1-i} .
$$

Assume that $p=2$. Then

$$
w^{\prime \prime}=\left[\bar{y}, x^{[2] \psi}\right]-[y, x]^{\psi} \bar{x}-\bar{x}[y, x]^{\psi}=\left[\bar{y}, x^{[2] \psi}\right]-\left[[y, x]^{\psi}, \bar{x}\right] .
$$

By (5.9) we may reduce this element to

$$
\left[y, x^{[2]}\right]^{\psi}-[[y, x], x]^{\psi}=0,
$$

since K is a restricted Lie algebra.
We consider now the case $p>2$. Then the length of any monomial in $\bar{y} x^{[p] \psi}-x^{[p] \psi} \bar{y}$ is equal to 2 while the length of any monomial in $\sum_{i=0}^{p-1} \bar{x}^{i}[y, x]^{\psi} \bar{x}^{p-1-i}$ is equal to $p>2$. Obviously, we may reduce the element $\left[\bar{y}, x^{[p] \psi}\right]$ to $\left[y, x^{[p]}\right]^{\psi}$, such that the element $\sum_{i=0}^{p-1} \bar{x}^{i}[y, x]^{\psi} \bar{x}^{p-1-i}$ will not change. By Lemma 5.2.1 it follows that

$$
\sum_{i=0}^{p-1} \bar{x}^{i}[y, x]^{\psi} \bar{x}^{p-1-i}=a d(\bar{x})^{p-1}\left([y, x]^{\psi}\right) .
$$

Taking into account Corollary 5.1 .2 we find that this element may be reduced to

$$
\begin{aligned}
\operatorname{Ad}(\bar{x})^{p-1}\left([y, x]^{\psi}\right) & =\left\{\operatorname{ad}(x)^{p-1}([y, x])\right\}^{\psi} \\
& \left.=\left\{\operatorname{ad}(x)^{p}(y)\right]\right\}^{\psi}=\left[y, x^{[p]}\right]^{\psi}
\end{aligned}
$$

Thus, the element $w^{\prime \prime}$ (and, therefore, the element w) may be reduced to 0 and this ambiguity is resolvable.

Case 3. Overlap ambiguity ($\sigma_{x}, \sigma_{x y}, \bar{x}^{p-1}, \bar{x}, \bar{y}$), where $x, y \in$ X and $x>y$. This case is considered by analogy with case 2.

Case 4. Overlap ambiguity ($\sigma_{x}, \sigma_{x}, \bar{x}^{l}, \bar{x}^{p-l}, \bar{x}^{l}$), where $x \in X$. We set

$$
\begin{aligned}
w & =R_{\sigma_{x} x^{l}}\left(\bar{x}^{p+l}\right)-R_{x^{l} \sigma_{x}}\left(\bar{x}^{p+l}\right)=x^{[p] \psi} \bar{x}^{l}-\bar{x}^{l} x^{[p] \psi} \\
& =\left[x^{[p] \psi}, \bar{x}^{l}\right]=\sum_{i=0}^{l-1} \bar{x}^{i}\left[x^{[p] \psi}, \bar{x}\right] \bar{x}^{l-i-1} .
\end{aligned}
$$

By (5.9) it follows that $R\left(\left[x^{[p] \psi}, \bar{x}\right]\right)=\left[x^{[p]}, x\right]^{\psi}$ for some sequence R of reductions of the form $R_{A \sigma_{y z} B}$. Since K is a restricted Lie algebra,

$$
\left[x^{[p]}, x\right]=a d(x)^{p}(x)=a d(x)^{p-1}(a d(x)(x))=0
$$

Taking into account Corollary 5.1 .3 we find that the element w may be reduced to 0 . Thus this ambiguity is resolvable.

With all ambiguities resolved, we can now assert (just as in the proof of Theorem 5.1.1) that the Diamond Lemma together with Lemma 1.3.2 imply that V is a Φ-basis for $U(K)$.

Corollary 5.2.4 Let K be a restricted Lie algebra over Φ with universal enveloping algebra $(U(K), \rho)$. Assume that K is a free Φ-module. Then $\rho: K \rightarrow U(K)^{(-)}$is a monomorphism of restricted Lie algebras.

5.3 Differential Lie Algebras

Let Φ be an associative commutative ring with an identity element e and $F \supseteq \Phi$ an associative commutative Φ-algebra with same identity e. Furthermore let A be a Φ-algebra with 1 which is also an F-ring.

Slightly generalizing the definition of a differential Lie algebra (see Baer [14], Jacobson [131], Kharchenko [146] and [147]) we make the following

Definition 5.3.1 A subset $L \subseteq A$ is said to be a special differential F-Lie algebra over Φ (SDL-algebra) with cover algebra A, if the following conditions hold:
(a) $[a, b] \in L$ for all $a, b \in L$;
(b) $a \lambda+b \mu \in L$ for all $a, b \in L, \lambda, \mu \in F$;
(c) $[1 \cdot \lambda, a] \in 1 \cdot F$ for all $a \in L, \lambda \in F$;
(d) $A n n_{F}(L)=A n n_{F}(A)$ (i.e., $L \lambda=0$ implies $1 \cdot \lambda=0$ for all $\lambda \in F)$.

Let I be an ideal of the Φ-algebra F. We denote by $\operatorname{Der}(F / I)$ the set of all derivations of the factor algebra F / I. One may verify that $\operatorname{Der}(F / I)$ with multiplication $\left[\delta_{1}, \delta_{2}\right]=\delta_{1} \delta_{2}-\delta_{2} \delta_{1}$ is a Lie Φ-algebra. Further let $\delta \in \operatorname{Der}(F / I), c \in F$. We set $x^{\delta c}=x^{\delta} c$ for all $x \in F / I$. Clearly δc is a derivation of F / I. Thus $\operatorname{Der}(F / I)$ is a right F-module. Analogously $\operatorname{Der}(F / I)$ is a right F / I-module.

Definition 5.3.2 A triple $(K ; F ; \Lambda)$ is said to be a differential F-Lie algebra (DL-algebra), if the following conditions hold:
(a) K is a Lie Φ-algebra;
(b) K is a right F-module;
(c) $\Lambda: K \rightarrow \operatorname{Der}\left(F / A n n_{F}(K)\right.$ is a homomorphism of Lie Φ-algebras, which is also a homomorphism of right F-modules;
(d) $[\delta c, \mu]=[\delta, \mu] c+\delta c^{\hat{\mu}}$ (where $\left.\hat{\mu}=\Lambda(\mu)\right)$ for all $\delta, \mu \in K$, $c \in F$.

In what follows $\hat{\mu}=\Lambda(\mu)$ for a $D L$-algebra K. Let $L \subseteq A$ be an $S D L$-algebra. Note that $F / A n n_{F}(L) \cong 1 \cdot F$ under the mapping $c+A n n_{F}(L) \mapsto 1 \cdot c$ for all $c \in F$. Define the mapping $\Lambda: L \rightarrow \operatorname{Der}(1 \cdot F)$, setting $(1 \cdot c)^{\Lambda(a)}=[1 \cdot c, a]$ for all $c \in F, a \in$
L. It immediately follows from Definition 5.3.1 that $(L ; F ; \Lambda)$ is a $D L$-algebra.

We remark that in case F is a field some obvious simplifications occur. Part (d) of Definition 5.3.1 may be omitted, and the ideal $A n n_{F}(K)=0$ wherever it appears (i.e., in Definitions 5.3.2 and 5.3.9 and Proposition 5.3.10).

Definition 5.3.3 Let K, L be $D L$-algebras. Then a mapping $f: K \rightarrow L$ is said to be a homomorphism of DL-algebras, if the following conditions hold:
(a) f is a homomorphism of Lie Φ-algebras;
(b) f is a homomorphism of right F-modules;
(c) $\widehat{\delta^{f}}=\hat{\delta}$ for all $\delta \in K$.

Definition 5.3.4 Let K be a differential F-Lie algebra. A pair $((A ; L) ; f)$ is said to be a cover of the $D L$-algebra K, if $L \subseteq A$ is a special differential F-Lie algebra with the cover A and $f: K \rightarrow$ L is a homomorphism of $D L$-algebras. A cover $((A ; L) ; f)$ of the $D L$-algebra K is called an enveloping algebra of K if $A=\left\langle K^{f}\right\rangle+$ $1 \cdot F$, where $\left\langle K^{f}\right\rangle$ is the subalgebra of A generated by the set K^{f}. Two covers $((A ; L) ; f)$ and $((B ; M) ; g)$ of a DL-algebra K are said to be isomorphic if there exists an isomorphism $h: A \rightarrow B$ of F-rings such that $f h=g$. An enveloping algebra $((U ; M) ; \phi)$ of the $D L$-algebra K is said to be a universal enveloping algebra of K if for any cover algebra $((A ; L) ; f)$ of K there exists a (necessarily unique) homomorphism of F-rings $\psi: U \rightarrow A$ such that $\phi \psi=f$.

It would perhaps be more realistic to refer to a cover algebra as a cover ring (since F rather than Φ is the important ring of scalars) and accordingly use the term universal enveloping ring. However, we shall keep the (more customary) terms of cover algebra and universal enveloping algebra.

Clearly, a universal enveloping algebra of a given $D L$-algebra, if it exists, is determined uniquely up to isomorphism. We shall presently construct the universal enveloping algebra of K.

Lemma 5.3.5 Let $(K ; F ; \Lambda)$ be a differential F-Lie algebra and let $K^{\prime}=K \oplus F$ be the direct sum of right F-modules. We set

$$
[x+f, y+g]=[x, y]+f^{\hat{y}}-g^{\hat{x}} \quad \text { for all } \quad x, y \in K, f, g \in F .
$$

Define the mapping $\Lambda^{\prime}: K^{\prime} \rightarrow \operatorname{Der}(F)$, setting $\Lambda^{\prime}(x+f)=\Lambda(x)$ for all $x \in K, f \in F$. Then $\left(K^{\prime} ; F ; \Lambda^{\prime}\right)$ is a differential F-Lie algebra.

Proof. First of all we show that K^{\prime} is a Lie Φ-algebra. Clearly $[x+f, x+f]=0$ for all $x \in K, f \in F$. It is enough to prove that the Jacobi identity holds in K^{\prime}. For all $x, y, z \in K$, $f, g, h \in F$ we have

$$
\begin{aligned}
& {[x+f,[y+g, z+h]]+[z+h,[y+g, x+f]]} \\
& +\left[y+g,\left[x+f^{2}, z+h\right]\right]=\left[x+f,[y, z]+g^{\hat{z}}-h^{\hat{y}}\right] \\
& +\left[z+h,[x, y]+f^{\hat{y}}-g^{\hat{x}}\right]+\left[y+g,[z, x]+h^{\hat{x}}-f^{\hat{z}}\right] \\
& =[x,[y, z]]+f^{\Lambda([y, z])}-g^{\hat{z} \hat{x}}+h^{\hat{y} \hat{x}} \\
& +[z,[x, y]]+h^{\Lambda([x, y))}-f^{\hat{y} \hat{z}}+g^{\hat{x} \hat{z}} \\
& +[y,[z, x]]]+g^{\Lambda([z, x])}-h^{\hat{x} \hat{y}}+f^{\hat{z} \hat{z}} \\
& =f^{\Lambda([y, z])}-\left(f^{\hat{y} \hat{z}}-f^{\hat{z} \hat{y}}\right)+g^{\Lambda([z, x])}-\left(g^{\hat{z} \hat{x}}-g^{\hat{x} \hat{z}}\right) \\
& +h^{\Lambda([x, y])}-\left(h^{\hat{x} \hat{y}}-h^{\hat{y} \hat{x}}\right)=0,
\end{aligned}
$$

since the Jacobi identity holds in K and Λ is a homomorphism of Lie algebras.

Clearly Λ^{\prime} is a homomorphism of Lie Φ-algebras. Further

$$
\begin{aligned}
{[(x+f) c, y+g] } & =[x c+f c, y+g]=[x c, y]+(f c)^{\hat{y}}-g^{\Lambda(x c)} \\
& =[x, y] c+x c^{\hat{y}}+f^{\hat{y}} c+f c^{\hat{y}}-g^{\hat{x} c} \\
& =[x, y] c+x c^{\hat{y}}+f^{\hat{y}} c+f c^{\hat{y}}-g^{\hat{x}} c \\
& =\left([x, y]+f^{\hat{y}}-g^{\hat{x}}\right) c+(x+f) c^{\hat{y}} \\
& =[x+f, y+g] c+(x+f) c^{\Lambda^{\prime}(y+g)}
\end{aligned}
$$

for all $x, y \in K, f, g, c \in F$. Thus all the conditions of Definition 5.3.2 hold in K^{\prime} and K^{\prime} is a differential F-Lie algebra.

Before proving the main theorem of this section, we make the following observations. Assume that K is a free right F-module with a basis X, F is a free Φ-module with a basis G and the identity element e of the ring F belongs to G. Now we proceed to describe the universal enveloping algebra $U(K)$ as a factor algebra of a free Φ-algebra. Clearly $G \cup\{x g \mid x \in X, g \in G\}$ is a basis of the Φ-module $K^{\prime}=K \oplus F$. Let $Z=\{\bar{x} \mid x \in$ $X\} \cup\{\bar{g} \mid g \in G\}, S=S<Z>$ the free semigroup (with 1), and $\Phi<Z>$ the free Φ-algebra (with 1) generated by the set Z. Denote by L the Φ-span of $\{\bar{g} \mid g \in G\} \cup\{\bar{x} \bar{g} \mid x \in X, g \in G\}$ in $\Phi<Z>$ and let $\psi: K^{\prime} \rightarrow L$ be the Φ-map given by $g \mapsto \bar{g}$, $x g \mapsto \bar{x} \bar{g}$ for all $g \in G, x \in X$. Obviously ψ is an isomorphism of Φ-modules and we set $\phi=\psi^{-1}$. We define $I(K)$ to be the ideal of $\Phi<Z\rangle$ generated by $\bar{e}-1$ and all elements of the form $(u a)^{\psi}-u^{\psi} a^{\psi},[u, v]^{\psi}-\left[u^{\psi}, v^{\psi}\right]$ for all $a \in F, u, v \in K^{\prime}$, or, equivalently, $\bar{e}-1,(b a)^{\psi}-\bar{b} \bar{a},[x, y]^{\psi}-[\bar{x}, \bar{y}],[a, x]^{\psi}-\left(a^{\hat{x}}\right)^{\psi}$ for all $a, b \in G, x, y \in X$. Letting ν denote the projection of $\Phi<Z>$ onto $U=U(K)=\Phi<Z>/ I(K)$, we set $\rho=\psi \nu$ and $M=L^{\nu}=K^{\prime \rho}$. Note that $(u a)^{\rho}=u^{\rho} a^{\rho},[u, v]^{\rho}-\left[u^{\rho}, v^{\rho}\right]$ for all $a \in F, u, v \in K^{\prime}$. Hence $M F^{\rho}=M$ and $[M, M] \subseteq M$. Moreover ρ is a homomorphism of Lie algebras over Φ. Recalling that $F \subseteq K^{\prime}$ and $\bar{e}-1 \in I(K)$, we infer that $F^{\rho} F^{\rho}=F^{\rho}$ and $1 \in F^{\rho}$. Therefore F^{ρ} is a subalgebra of the Φ-algebra U. Clearly ρ induces a homomorphism $F \rightarrow F^{\rho}$ of Φ-algebras. Thus the algebra U is a right F-module under the operation $u \cdot a=u a^{\rho}$ for all $u \in U, a \in F$. It immediately follows from the above that M is a submodule of the right F-module U and ρ is a homomorphism of right F-modules. Further

$$
\left[1 \cdot c, u^{\rho}\right]=\left[c^{\rho}, u^{\rho}\right]=[c, u]^{\rho}=c^{\hat{u} \rho}=1 \cdot c^{\hat{u}} \in 1 \cdot F
$$

for all $c \in F, u \in K^{\prime}$. Hence M is a special differential F-Lie algebra over Φ. The reader may now verify the straightforward
details that ρ is a homomorphism of $D L$-algebras.
Let $((A ; N) ; f)$ be any cover of the $D L$-algebra K. Define the mapping $f^{\prime}: K^{\prime} \rightarrow N+1 \cdot F$, setting $(k+c)^{f^{\prime}}=k^{f}+1 \cdot c$ for all $k \in K, c \in F$. It easily follows from the definitions that $\left((A ; N) ; f^{\prime}\right)$ is a cover of the $D L$-algebra K^{\prime}. Lifting f^{\prime} to a homomorphism $\sigma: \Phi<Z>\rightarrow A$ and recalling that f^{\prime} is a homomorphism of right F-modules and Lie algebras over Φ, we see that $I(K)^{f^{\prime}}=0$. Thus $(U(K) ; \rho)$ is the universal enveloping algebra of K^{\prime}, whence, with ρ restricted to $K,((U ; M) ; \rho)$ is also the universal enveloping algebra $(U ; \rho)$ of K.

Now we are ready to prove the main theorem of this section.
Theorem 5.3.6 Let $(K ; F ; \Lambda)$ be a $D L$-algebra with the universal enveloping algebra $(U(K) ; \rho)$, assuming that F is a free Φ-module and K is a free right F-module with a well-ordered ordered basis X. Then the set

$$
V=\left\{x_{1}^{\rho} x_{2}^{\rho} \ldots x_{m}^{\rho} \mid x_{j} \in X, x_{1} \leq x_{2} \leq \ldots \leq x_{m}\right\} \cup\{1\}
$$

is a basis of the right F-module $U(K)$ (we shall refer to V as a PBW-basis of the universal enveloping algebra $U(K)$ of the DL-algebra K).

Proof. Without loss of generality we may assume that G is well-ordered. Define a well-ordering on the set $Z=\{\bar{x} \mid x \in$ $X\} \cup\{\bar{g} \mid g \in G\}$, setting $\bar{u}<\bar{v}$ if either $u, v \in X$ and $u<v$, or $u, v \in G$ and $u<v$, or $u \in X$ and $v \in G$, for all $\bar{u}, \bar{v} \in Z$.

We continue with the same notations as in Theorem 5.1.1. Consider the reduction system Δ of $\Phi<Z\rangle$,

$$
\begin{aligned}
\sigma_{y x} & =\left(\bar{y} \bar{x}, \bar{x} \bar{y}+[y, x]^{\psi}\right), \quad \text { for all } y>x \in X ; \\
\chi_{g x} & =\left(\bar{g} \bar{x}, \bar{x} \bar{g}+\left(g^{\hat{x}}\right)^{\psi}\right), \quad \text { for all } g \in G, x \in X ; \\
\omega_{g q} & =\left(\bar{g} \bar{q},(g q)^{\psi}\right), \quad \text { for all } g, q \in G ; \\
\pi_{e} & =(\bar{e}, 1) .
\end{aligned}
$$

Let \leq be the linear order on S which was introduced in the proof of Theorem 5.1.1. Clearly this ordering is a semigroup ordering compatible with the reduction system Δ and satisfying the descending chain condition. Further, let $I=I(\Delta)$ be the ideal of the algebra $\Phi\langle Z\rangle$ generated by the reduction system Δ. We note that $I(K)=I(\Delta)$ and so $U(K)=\Phi<Z>/ I(\Delta)$.

Now let $c \in F$ and $x \in X$. We claim that there exists a sequence R of reductions of the form $R_{\chi_{g x}}$ such that

$$
R\left(c^{\psi} \bar{x}\right)=\bar{x} c^{\psi}+\left(c^{\hat{x}}\right)^{\psi}
$$

Indeed, let $c=\sum_{i=1}^{n} \alpha_{i} g_{i}$, where $\alpha_{i} \in \Phi$. We set

$$
R=R_{\chi_{g_{1} x}} R_{\chi_{g_{2} x}} \ldots R_{\chi_{g_{n} x}}
$$

Then

$$
\begin{aligned}
R\left(c^{\psi} \bar{x}\right) & =R\left(\sum_{i} \alpha_{i} \bar{g}_{i} \bar{x}\right)=\sum_{i} \alpha_{i} R\left(\bar{g}_{i} \bar{x}\right) \\
& =\sum_{i} \alpha_{i} \bar{x} \bar{g}_{i}+\sum_{i} \alpha_{i}\left(g_{i}^{\hat{x}}\right)^{\psi} \\
& =\bar{x} c^{\psi}+\left(c^{\hat{x}}\right)^{\psi}
\end{aligned}
$$

Analogously one may prove the following statements. For any $c \in F$ and $u \in K$ there exists a sequence R of reductions of the form $R_{\chi_{g x}}$ such that

$$
\begin{equation*}
R\left(c^{\psi} u^{\psi}\right)=u^{\psi} c^{\psi}+\left(c^{\hat{u}}\right)^{\psi} \tag{5.10}
\end{equation*}
$$

Further for all $c \in F$ and $x, y \in X$ there exists a sequence R of reductions of the form

$$
R_{\chi_{g x} y}, R_{\chi_{g y}}, \quad \text { and } \cdot R_{x \chi_{g y}}
$$

such that

$$
\begin{equation*}
R\left(c^{\psi} \bar{x} \bar{y}\right)=\bar{x} \bar{y} c^{\psi}+\bar{x}\left(c^{\hat{y}}\right)^{\psi}+\bar{y}\left(c^{\hat{x}}\right)^{\psi}+\left(c^{\hat{x} \hat{y}}\right)^{\psi} \tag{5.11}
\end{equation*}
$$

Moreover for all $c \in F$ and $x, y \in X$ there exists a sequence R of reductions of the form $R_{y \chi_{g x}}$ such that

$$
\begin{equation*}
R\left(\bar{y} c^{\psi} \bar{x}\right)=\bar{y} \bar{x} c^{\psi}+\bar{y}\left(c^{\hat{x}}\right)^{\psi} . \tag{5.12}
\end{equation*}
$$

Now let $a, b \in F$ and $x \in X$. In a similar fashion one may show that

$$
\begin{equation*}
R\left(a^{\psi} b^{\psi}\right)=(a b)^{\psi}, R^{\prime}\left(a^{\psi} b^{\psi} \bar{x}\right)=\bar{x}(a b)^{\psi}+\left((a b)^{\hat{x}}\right)^{\psi} \tag{5.13}
\end{equation*}
$$

for some sequences R and R^{\prime} of reductions of the forms $R_{\omega_{g h}}$ and $R_{\omega_{g h} x}, R_{\chi_{g x}}$ respectively.

We show that all ambiguities of Δ are resolvable and the set

$$
V^{\prime}=\left\{\bar{x}_{1} \bar{x}_{2} \ldots \bar{x}_{m} \bar{g} \mid x_{j} \in X, g \in G, x_{1} \leq x_{2} \leq \ldots \leq x_{m}\right\} \cup \bar{G}
$$ is a Φ-basis of $\Phi<Z\rangle_{i r r}$.

Indeed, let us consider the various ambiguities.
Case 1. Overlap ambiguity ($\sigma_{z y}, \sigma_{y x}, \bar{z}, \bar{y}, \bar{x}$), where $x, y, z \in$ X and $z>y>x$. It was shown in the proof of Theorem 5.1.1 that this ambiguity is resolvable.

Case 2. Overlap ambiguity ($\chi_{g y}, \sigma_{y x}, \bar{g}, \bar{y}, \bar{x}$), where $x, y \in X$, $g \in G$ and $y>x$. We set

$$
\begin{aligned}
& u=R_{g \sigma_{y x}}(\bar{g} \bar{y} \bar{x})=\bar{g}[y, x]^{\psi}+\bar{g} \bar{x} \bar{y}, \\
& v=R_{x_{g y} x}(\bar{g} \bar{y} \bar{x})=\bar{y} \bar{g} \bar{x}+\left(g^{\hat{y}}\right)^{\psi} \bar{x} .
\end{aligned}
$$

Since $R_{\chi_{g z}}(\bar{g} \bar{x} \bar{y})=\bar{g} \bar{x} \bar{y}$ for all $z \in X$, from (5.10) it follows that there exists a sequence R_{1} of reductions such that

$$
R_{1}(u)=[y, x]^{\psi} \bar{g}+\left(g^{\widehat{y, x]}}\right)^{\psi}+\bar{g} \bar{x} \bar{y}
$$

As $\left(g^{\widehat{y y, x]}}\right)^{\psi}=\left(g^{\hat{y} \hat{x}}\right)^{\psi}-\left(g^{\hat{x} \hat{y}}\right)^{\psi}$, we infer from (5.11) that $R_{2} R_{1}(u)$

$$
\begin{align*}
& =[y, x]^{\psi} \bar{g}+\left(g^{[\hat{y, x]}}\right)^{\psi}+\bar{x} \bar{y} \bar{g}+\bar{x}\left(g^{\hat{y}}\right)^{\psi}+\bar{y}\left(g^{\hat{x}}\right)^{\psi}+\left(g^{\hat{x} \hat{y}}\right)^{\psi} \\
& =[y, x]^{\psi} \bar{g}+\bar{x} \bar{y} \tilde{g}+\bar{x}\left(g^{\hat{y}}\right)^{\psi}+\bar{y}\left(g^{\hat{x}}\right)^{\psi}+\left(g^{\hat{y} \hat{x}}\right)^{\psi} \tag{5.14}
\end{align*}
$$

for some reduction sequence R_{2}. From (5.10) it follows that

$$
R_{3}(v)=\bar{y} \bar{g} \bar{x}+\bar{x}\left(g^{\hat{y}}\right)^{\psi}+\left(g^{\hat{y} \hat{x}}\right)^{\psi}
$$

for some reduction sequence R_{3}. Using (5.12) we obtain

$$
R_{4} R_{3}(v)=\bar{y} \bar{x} \bar{g}+\bar{y}\left(g^{\hat{x}}\right)^{\psi}+\bar{x}\left(g^{\hat{y}}\right)^{\psi}+\left(g^{\hat{y} \hat{x}}\right)^{\psi}
$$

for some reduction sequence R_{4}. Now we have

$$
R_{\sigma_{y x} g} R_{4} R_{3}(v)=[y, x]^{\psi} \bar{g}+\bar{x} \bar{y} \bar{g}+\bar{y}\left(g^{\hat{x}}\right)^{\psi}+\bar{x}\left(g^{\hat{y}}\right)^{\psi}+\left(g^{\hat{y} \hat{x}}\right)^{\psi}
$$

Comparing with (5.14) we conclude that this ambiguity is resolvable.

Case 3. Overlap ambiguity $\left(\omega_{h g}, \sigma_{g x}, \bar{h}, \bar{g}, \bar{x}\right)$, where $x \in X$, $g, h \in G$. We set

$$
\begin{aligned}
u & =R_{h \chi_{g x} x}(\bar{h} \bar{g} \bar{x})=\bar{h} \bar{x} \bar{g}+\bar{h}\left(g^{\hat{x}}\right)^{\psi} \\
v & =R_{\omega_{h g} x}(\bar{h} \bar{g} \bar{x})=(h g)^{\psi} \bar{x}
\end{aligned}
$$

From (5.13) we infer that $R_{1}(u)=\bar{h} \bar{x} \bar{g}+\left(h g^{\hat{x}}\right)^{\psi}$ for some reduction sequence R_{1}. Clearly $R_{\chi h x} R_{1}(u)=\bar{x} \bar{h} \bar{g}+\left(h^{\hat{x}}\right)^{\psi} \bar{g}+\left(h g^{\hat{x}}\right)^{\psi}$. Again by (5.13) we have that

$$
\begin{aligned}
R_{2} R_{x_{h x} g} R_{1}(u) & =\bar{x} \bar{h} \bar{g}+\left(h^{\hat{x}} g\right)^{\psi}+\left(h g^{\hat{x}}\right)^{\psi} \\
& =\bar{x} \bar{h} \bar{g}+\left(h^{\hat{x}} g+h g^{\hat{x}}\right)^{\psi} \\
& =\bar{x} \bar{h} \bar{g}+\left((h g)^{\hat{x}}\right)^{\psi}
\end{aligned}
$$

for some reduction sequence R_{2}. Now we have

$$
\begin{aligned}
R_{x \omega_{h g}} R_{2} R_{\chi_{h x} g} R_{1}(u) & =\bar{x}(h g)^{\psi}+\left((h g)^{\hat{x}}\right)^{\psi} \\
& =R_{3}(v)
\end{aligned}
$$

for some reduction sequence R_{3} (see (5.10)). Therefore this ambiguity is resolvable also.

Case 4. Inclusion ambiguity ($\pi_{e}, \chi_{e x}, \bar{e}, \bar{x}$), where $x \in X$. Since e is the identity of $F, e^{\hat{x}}=\left(e^{2}\right)^{\hat{x}}=e e^{\hat{x}}+e^{\hat{x}} e=2 e^{\hat{x}}$ and $e^{\hat{x}}=0$. So $R_{x \pi_{e}} R_{\chi_{e x}}(\bar{e} \bar{x})=x=R_{\pi_{e} x}(x)$ and this ambiguity is resolvable.

Case 5. Overlap ambiguity ($\omega_{g p}, \omega_{p q}, \bar{g}, \bar{p}, \bar{q}$), where $g, p, q \in$ G. It easily follows from (5.13) that this ambiguity is resolvable.

Case 6. Inclusion ambiguity ($\left.\pi_{e}, \omega_{e g}, \bar{e}, \bar{g}\right)$, where $g \in G$. Since $R_{\pi_{e} g}(\bar{e} \bar{g})=\bar{g}=(e g)^{\psi}=R_{\omega_{e g}}(\bar{e} \bar{g})$, this ambiguity is resolvable.

Case 7. Inclusion ambiguity ($\omega_{g e}, \pi_{e}, \bar{g}, \bar{e}$), where $g \in G$. Obviously it is resolvable.

Again we are in the situation where the Diamond Lemma and Lemma 1.3.2 imply that V^{\prime} is a Φ-basis for $U(K)$. It follows immediately that V is a right F-module basis of $U(K)$ and the proof is complete.

Corollary 5.3.7 Let $(K ; F ; \Lambda)$ be a $D L$-algebra with the universal enveloping algebra $(U(K) ; \phi)$. Assume that F is a free Φ module, and K is a free right F-module. Then $\rho: K \rightarrow U(K)^{(-)}$ is a monomorphism of differential Lie algebras.

In section 5.4 we will need the following (we keep the notations of the proof of Theorem 5.3.6)

Lemma 5.3.8 Suppose that $p \Phi=0$ for some prime number p. Let $g \in G$ and $x \in X$. Then there exists a sequence R of reductions of the form

$$
R_{A \sigma_{y z} B}, R_{A \chi_{h y} B}, R_{A \omega_{h t} B}, R_{A \pi_{e} B}
$$

such that $R\left(\bar{x} \bar{g} \bar{x}^{p-1}+g^{\hat{x} \psi} \bar{x}^{p-1}\right)=\bar{x}^{p} \bar{g}+\operatorname{Ad}(\bar{x})^{p}(\bar{g})$.

Proof. Let $u=\bar{g} \bar{x}^{p}$ and $v=\bar{x} \bar{g} \bar{x}^{p-1}+g^{\hat{x} \psi} \bar{x}^{p-1}$. Since $R_{\chi g x x^{p-1}}(u)=v, u-v \in I(K)$. By Lemma 5.2.1, $a d(\bar{x})^{p}(\bar{g})=$ $\bar{g} \bar{x}^{p}-\bar{x}^{p} \bar{g}$. Now it follows from Corollary 5.1 .2 that $\bar{g} \bar{x}^{p}-\bar{x}^{p} \bar{g}-$ $\operatorname{Ad}(\bar{x})^{p}(\bar{g}) \in I(K)$. Thus the element u is reducible to the element $\bar{x}^{p} \bar{g}+A d(\bar{x})^{p}(\bar{g}) \in \Phi<Z>_{i r r}$. Since $u-v \in I(K)$, they have the same normal form and we are done.

In order to discuss some useful properties of universal enveloping algebras, we need the following notion.

Definition 5.3.9 Let K, L be differential Lie algebras and let $\tau: F / A n n_{F}(K) \rightarrow F / A n n_{F} L$ be an isomorphism of Φ-algebras. Then a mapping $f: K \rightarrow L$ is said to be a τ-semilinear homomorphism of DL-algebras, if the following conditions hold:
(a) f is a homomorphism of Lie Φ-algebras;
(b) $(\delta c)^{f}=\delta^{f} c^{\tau}$ for all $\delta \in K, c \in F / A n n_{F}(K)$;
(c) $\widehat{\delta^{f}}=\tau^{-1} \hat{\delta} \tau$ for all $\delta \in K$.

Proposition 5.3.10 Let $(K ; F ; \Lambda)$ be a DL-algebra, $(U(K) ; \rho)$ the universal enveloping algebra of $K, L \subseteq A$ a special differential F-Lie algebra over Φ and $h: K \rightarrow L$ a τ-semilinear homomorphism of DL-algebras. Then there is a unique homomorphism $h^{\prime}: U(K) \rightarrow A$ of Φ-algebras such that $\rho h^{\prime}=h$ and $h^{\prime}(u c)=h^{\prime}(u)\left(c+A n n_{F}(K)\right)^{\tau}$ for all $u \in U(K), c \in F$.

Proof. According to Definition 5.3.1, $A n n_{F}(L)=A n n_{F}(A)$. We consider A and L as Φ-algebras A^{*} and L^{*} respectively with right F-module structures given by the rule $a \circ c=a(c+$ $\left.A n n_{F}(K)\right)^{\tau}, l \circ c=l\left(c+A n n_{F}(K)\right)^{\tau}$ for all $a \in A . l \in L, c \in F$. Clearly L^{*} is a submodule of the right F-module A^{*}. Further

$$
[1 \circ c, l]=\left[1 \cdot\left(c+A n n_{F}(K)\right)^{\tau}, l\right] \in 1 \cdot F=1 \circ F
$$

Hence $L^{*} \subseteq A^{*}$ is an $S D L$-algebra. The reader may now verify the straightforward details that h is a homomorphism of $D L$ algebras. By the definition of a universal enveloping algebra of a
$D L$-algebra, it follows that there exists a unique homomorphism $h^{\prime}: U(K) \rightarrow A$ of F-rings with identity such that $\rho h^{\prime}=h$. Since $h^{\prime}(u c)=h^{\prime}(u) \circ c=h^{\prime}(u)\left(c+A n n_{F}(K)\right)^{\tau}$, we are done.

Corollary 5.3.11 Let $(K ; F ; \Lambda)$ be a $D L$-algebra with the universal enveloping algebra $(U(K) ; \phi)$. Then for any τ-semilinear automorphism $h: K \rightarrow K$ of $D L$-algebras there exists a unique τ-semilinear automorphism $h^{\prime}: U(K) \rightarrow U(K)$ of Φ-algebras such that $\rho h^{\prime}=h \rho$.

Proof. We apply Proposition 5.3.10 to h and h^{-1}.

5.4 Restricted Differential Lie Algebras

Let p be a prime number, Φ a commutative ring with identity element e such that $p \Phi=0$ and $F \supseteq \Phi$ a commutative Φ algebra with same identity. Furthermore let A be a Φ-algebra with 1 which is also an F-ring.

Definition 5.4.1 A subset $L \subseteq A$ is said to be a special restricted differential F-Lie algebra over Φ (p-SDL-algebra) with the cover algebra A, if L is an $S D L$-algebra and $a^{p} \in L$ for all $a \in L$.

As motivation for the definition of an abstract restricted differential F-Lie algebra we have the following lemma.

Lemma 5.4.2 Let $L \subseteq A$ be a $p-S D L$ algebra, $H=1 \cdot F$ and $a \in L$. Define mappings $T_{n, a}: H \rightarrow H, n=1,2, \ldots, p$, setting

$$
T_{1, a}(c)=c, \quad T_{n+1, a}(c)=\left[T_{n, a}(c), a\right] c
$$

for all $c \in H$. Then:
(a) $\left(\left.a d(a)\right|_{H} c\right)^{p}=\left(\left.a d(a)\right|_{H}\right)^{p} c^{p}+\left(\left.a d(a)\right|_{H}\right) T_{p, a}(c) ;$
(b) $(a c)^{p}=a^{p} c^{p}+a T_{p, a}(c)$;
(c) $(a+c)^{p}=a^{p}+c^{p}+a d(a)^{p-1}(c)$.

Proof. (a) Letting μ denote the mapping $\left.a d(a)\right|_{H}$, we note that μ is a derivation of the Φ-algebra H (recall that $[H, a] \subseteq H$). Setting $T_{n, \mu}(c)=T_{n, a}(c)$, we observe that

$$
T_{1, \mu}(c)=c, \quad T_{n+1, \mu}(c)=\left(T_{n, \mu}(c)\right)^{\mu} c
$$

Let R be a commutative ring such that $p R=0, x \in R$, and let $\delta: R \rightarrow R$ be a derivation. Recall that $x^{\mu r}=x^{\mu} r$ for all $r \in R$. One may prove the following formula by an obvious induction on n :

$$
\begin{equation*}
x^{(\delta r)^{n}}=x^{\delta^{n}} r^{n}+\sum_{i=2}^{n-1} x^{\delta^{i}} P_{n, i, \delta}(r)+x^{\delta} T_{n, \delta}(r) \tag{5.15}
\end{equation*}
$$

where $P_{n, i, \delta}(r)$ is a polynomial in $r, r^{\delta}, \ldots, r^{\delta^{n-i}}$ with integral coefficients. We claim that $P_{p, i, \delta}(r)=0$ for all $i=2,3, \ldots, p-1$.

Indeed, consider the polynomial ring $K=\Phi\left[x_{i}, y_{i}, z_{i} \mid i=\right.$ $1,2, \ldots]$. Let ν be the derivation of K given by the rule

$$
x_{i}^{\nu}=x_{i+1}, y_{i}^{\nu}=y_{i+1}, z_{i}^{\nu}=z_{i+1} \quad \text { for all } i=1,2, \ldots
$$

Clearly for all $x \in R$ there exists a homomorphism of Φ-algebras $\phi_{x}=\phi: K \rightarrow R$ such that $\phi\left(z_{i}\right)=\phi\left(z_{1}^{\nu^{i}}\right)=r^{\delta^{i}}, \phi\left(y_{i}\right)=0$ and $\phi\left(x_{i}\right)=\phi\left(x_{1}^{\nu^{i}}\right)=x^{\delta^{i}}$. Since $\phi\left(P_{p, i, \nu}\left(z_{1}\right)\right)=P_{p, i, \delta}(r)$, it is enough to prove that $P_{p, i, \nu}\left(z_{1}\right)=0$. We set $z=z_{1}$. Then according to 5.15 we have

$$
r^{(\nu z)^{p}}=r^{\nu^{p}} z^{p}+\sum_{i=2}^{p-1} r^{\nu^{i}} P_{p, i, \nu}(z)+r^{\nu} T_{p, \nu}(z),
$$

for all $r \in K$. In particular,

$$
\begin{align*}
\left(x_{1} y_{1}\right)^{(\nu z)^{p}}= & \left(x_{1} y_{1}\right)^{\nu^{p}} z^{p}+\sum_{i=2}^{p-1}\left(x_{1} y_{1}\right)^{\nu^{i}} P_{p, i, \nu}(z) \\
& +\left(x_{1} y_{1}\right)^{\nu} T_{p, \nu}(z) \tag{5.16}
\end{align*}
$$

$$
\begin{align*}
x_{1}^{(\nu z)^{p}=} & x_{1}^{\nu^{p}} z^{p}+\sum_{i=2}^{p-1} x_{1}^{\nu^{i}} P_{p, i, \nu}(z) \\
& +x_{1}^{\nu} T_{p, \nu}(z), \tag{5.17}\\
y_{1}^{(\nu z)^{p}=}= & y_{1}^{\nu^{p}} z^{p}+\sum_{i=2}^{p-1} y_{1}^{\nu^{i}} P_{p, i, \nu}(z) \\
& +y_{1}^{\nu} T_{p, \nu}(z), \tag{5.18}
\end{align*}
$$

Multiplying (5.17) by y_{1} and (5.18) by x_{1} we obtain

$$
\begin{align*}
x_{1}^{(\nu z)^{p}} y_{1}= & x_{1}^{\nu^{p}} y_{1} z^{p}+\sum_{i=2}^{p-1} x_{1}^{\nu^{i}} y_{1} P_{p, i, \nu}(z) \\
& +x_{1}^{\nu} y_{1} T_{p, \nu}(z) \tag{5.19}\\
x_{1} y_{1}^{(\nu z)^{p}}= & x_{1} y_{1}^{\nu^{p}} z^{p}+\sum_{i=2}^{p-1} x_{1} y_{1}^{\nu^{i}} P_{p, i, \nu}(z) \\
& +x_{1} y_{1}^{\nu} T_{p, \nu}(z) \tag{5.20}
\end{align*}
$$

Since ν^{p} and $(\nu z)^{p}$ are derivations, substracting (5.19) and (5.20) from (5.16), we obtain

$$
\sum_{i=2}^{p-1}\left[\left(x_{1} y_{1}\right)^{\nu^{i}}-x_{1}^{\nu^{i}} y_{1}-x_{1} y_{1}^{\nu^{i}}\right] P_{p, i, \nu}(z)=0
$$

From the Leibnitz formula and the definition of the derivation ν we infer that

$$
\begin{aligned}
0 & =\sum_{i=2}^{p-1}\left[\sum_{j=1}^{i-1}\binom{i}{j} x_{1}^{\nu^{j}} y_{1}^{\nu^{i-j}}\right] P_{p, i, \nu}(z) \\
& =\sum_{i=2}^{p-1}\left[\sum_{j=1}^{i-1}\binom{i}{j} x_{j+1} y_{i-j+1}\right] P_{p, i, \nu}(z) .
\end{aligned}
$$

The coefficient of $x_{2} y_{i}$ in this polynomial is equal to $\binom{i}{1} P_{p, i, \nu}(z)$. Since $\binom{i}{1}=i \neq 0, P_{p, i, \nu}(z)=0$.

Therefore

$$
\begin{equation*}
x_{1}^{(\nu z)^{p}}=x_{1}^{\nu^{p}} z^{p}+x_{1}^{\nu} T_{p, \nu}(z) . \tag{5.21}
\end{equation*}
$$

Let $x \in R$. Applying ϕ_{x} we infer from (5.21) that $x^{(\delta r)^{p}}=x^{\delta p} r^{p}+$ $x^{\delta} T_{p, \delta}(r)$ for all $x \in R$. In particular $x^{(\mu c)^{p}}=x^{\mu^{p}} c^{p}+x^{\mu} T_{p, a}(c)$ for all $x \in H$ and so $(\mu c)^{p}=\mu^{p} c^{p}+\mu T_{p, a}(c)$. Since $\mu=\left.a d(a)\right|_{H}$, (a) is proved.
(b) We let K be the polynomial ring with derivation ν as defined in (a) and consider the skew polynomial ring $K[t ; \nu]$, where $k t=t k+k^{\nu}$ for all $k \in K$. Obviously $\nu=\left.a d(t)\right|_{K}$. Since K is commutative, it follows from Lemma 5.2.1 and (5.21) that

$$
\begin{aligned}
\left.a d\left((t z)^{p}\right)\right|_{K} & =\left(\left.a d(t z)\right|_{K}\right)^{p}=\left(\left.a d(t)\right|_{K} z\right)^{p} \\
& =\left(\left.a d(t)\right|_{K}\right)^{p} z^{p}+\left.a d(t)\right|_{K} T_{p, \nu}(z)
\end{aligned}
$$

Hence $\left[x_{1},(t z)^{p}\right]=\left[x_{1}, t^{p}\right] z^{p}+\left[x_{1}, t\right] T_{p, \nu}(z)$ and

$$
\left[x_{1},(t z)^{p}-t^{p} z^{p}-t T_{p, \nu}(z)\right]=0 .
$$

We claim that $(t z)^{p}-t^{p} z^{p}-t T_{p, \nu}(z)=0$. Assume the contrary. Clearly $(t z)^{p}-t^{p} z^{p}-t T_{p, \nu}(z)=\sum_{i=1}^{n} t^{i} k_{i}$, where $k_{i} \in \Phi\left[z_{i} ; i=\right.$ $1,2, \ldots], n<p$ and $k_{n} \neq 0$. Note that $n>0$ and the coefficient of t^{n-1} in $\left[x_{1},(t z)^{p}-t^{p} z^{p}-t T_{p, \nu}(z)\right]$ is equal to $n x_{2} k_{n}+x_{1} k_{n-1} \neq$ 0 which contradicts $\left[x_{1},(t z)^{p}-t^{p} z^{p}-t T_{p, \nu}(z)\right]=0$. Therefore $(t z)^{p}-t^{p} z^{p}-t T_{p, \nu}(z)=0$. Define the mapping $\psi: K[t ; \nu] \rightarrow A$, setting $\psi(t)=a$ and $\psi(k)=\phi_{x}(k)$ for all $k \in K$. The reader may now easily verify that ψ is a homomorphism of Φ-algebras. Thus $(a c)^{p}-a^{p} c^{p}-a T_{p, a}(c)=\psi\left((t z)^{p}-t^{p} z^{p}-t T_{p, \nu}(z)\right)=0$.
(c) By Lemma 5.2.1 we have $(a+c)^{p}=a^{p}+c^{p}+W(a, c)$, where $W(x, y)$ is a sum of Lie monomials of degree p in x, y. Since F is commutative, all Lie monomials in which c appears twice are equal to zero. So $W(a, c)=m \cdot a d(a)^{p-1}(c)$ for some integer m. Therefore we have

$$
\begin{aligned}
{\left[a,(a+c)^{p}\right] } & =\left[a, a^{p}\right]+\left[a, c^{p}\right]+m\left[a, a d(a)^{p-1}(c)\right] \\
& =-m \cdot a d(a)^{p}(c)
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
{\left[a,(a+c)^{p}\right] } & =[\ldots[[a, a+c], a+c], \ldots, a+c] \\
& =[\ldots[[a, c], a+c], \ldots, a+c] \\
& =[\ldots[[a, c], a], \ldots, a] \\
& =-a d(a)^{p}(c) .
\end{aligned}
$$

Therefore $m \cdot a d(a)^{p}(c)=a d(a)^{p}(c)$ and we are done.
Definition 5.4.3 A triple $(K ; F ; \Lambda)$ is said to be a restricted differential F-Lie algebra (p-DL-algebra), if the following condition holds:
(a) $(K ; F ; \Lambda)$ is a differential F-Lie algebra;
(b) K is a restricted Lie algebra over Φ with a p-operation $\delta \mapsto \delta^{[p]}$ satisfying the following identity:

$$
(\delta c)^{[p]}=\delta^{[p]} c^{p}+\delta T_{p, \delta}(c)
$$

where $T_{1, \delta}(c)=c, T_{n+1, \delta}(c)=c\left(T_{n, \delta}\right)^{\hat{\delta}}$, and $c \in F / A n n_{F}(K), \delta$ $\in K$.
(c) the mapping Λ is a homomorphism of restricted Lie Φ algebras.

For a p-SDL-algebra $L \subset A$ and the mapping $\Lambda: A \rightarrow$ $\operatorname{Der}(1 \cdot F)$ given by the rule $c^{\Lambda(a)}=[c, a]$ for all $a \in A$ and $c \in 1 \cdot F$, we infer from Corollary 5.2.2 and Lemma 5.4.2 that ($L ; F ; \Lambda$) is a p - $D L$-algebra.

In what follows $\hat{\mu}=\Lambda(\mu)$ for a p - $D L$-algebra K and $\mu \in K$.
Definition 5.4.4 Let K and L be p - $D L$-algebras over Φ. Then a mapping $f: K \rightarrow L$ is said to be a homomorphism of $p-D L$ algebras if it is a homomorphism of DL-algebras and a homomorphism of restricted Lie algebras (i.e. $\left(\delta^{[p]}\right)^{f}=\left(\delta^{f}\right)^{[p]}$ for all $\delta \in K)$.

Notions of cover algebras, enveloping algebras and the universal enveloping algebras for p - $D L$-algebras are defined analogously to corresponding notions for restricted Lie algebras and $D L$-algebras.

Now we are in a position to describe a universal enveloping algebra $(U(K) ; \rho)$ of a $p-D L$-algebra K as a factor of a free Φ algebra in the case when F is a free Φ-module and K is a free right F-module. Let X be a basis of the right F-module K and G a basis of F over Φ. We set $Z=\{\bar{g} \mid g \in G\} \cup\{\bar{x} \bar{g} \mid x \in$ $X, g \in G\}$. Let $S=S<Z>$ be the free semigroup (with 1), $\Phi<Z\rangle$ the free Φ-algebra (with 1) generated by the set Z and L the Φ-span of Z in $\Phi<Z>$. Denote by K^{\prime} the differential F-Lie algebra $K \oplus F$ (see Lemma 5.3.5) and let $\psi: K^{\prime} \rightarrow L$ be the Φ-map given by the rule $g \mapsto \bar{g}, x g \mapsto \bar{x} \bar{g}$ for all $g \in G$ and $x \in X$. Obviously ψ is an isomorphism of Φ-modules. We define $I(K)$ to be the ideal of $\Phi<Z>$ generated by $\bar{e}-1$ and all elements of the form

$$
(u a)^{\psi}-u^{\psi} a^{\psi},[u, v]^{\psi}-\left[u^{\psi}, v^{\psi}\right],\left(k^{[p]}\right)^{\psi}-\left(k^{\psi}\right)^{p}
$$

for all $a \in G, u, v \in K^{\prime}$ and $k \in K$. Further letting I be the ideal of $\Phi<Z>$ generated by $\bar{e}-1$ and all elements of the form

$$
\begin{aligned}
& (b a)^{\psi}-\bar{b} \bar{a},(x a)^{\psi}-\bar{x} \bar{a},[x, y]^{\psi}-[\bar{x}, \bar{y}], \\
& {[x, a]^{\psi}-\left(a^{\hat{x}}\right)^{\psi},\left(k^{[p]}\right)^{\psi}-\left(k^{\psi}\right)^{p}}
\end{aligned}
$$

we claim that $I=I(K)$. Indeed, letting ν denote the projection of $\Phi<Z>$ onto $U=U(K)=\Phi<Z>/ I$, we set $\rho=\psi \nu$ and $M=L^{\nu}=K^{\prime \rho}$. It was shown before the proof of Theorem 5.3.6 that F^{ρ} is a subalgebra of U containing the identity 1 and ρ induces a homomorphism $F \rightarrow F^{\rho}$. Moreover U and M have a canonical F-module structure via ρ, M is a special differential F-Lie algebra and ρ is a homomorphism of $D L$-algebras. Before the proof of Theorem 5.2.3 it was shown that $\left(u^{[p]}\right)^{\rho}=\left(u^{\rho}\right)^{p}$ for all $u \in K$. Now it is clear that $I=I(K)$.

Consider any cover $((A ; N) ; f)$ of the p - $D L$-algebra K. Define the mapping $f^{\prime}: K^{\prime} \rightarrow N+1 \cdot F$, setting $(k+c)^{f^{\prime}}=k^{f}+1 \cdot c$ for all $k \in K, c \in F$. It follows easily from the definitions that $\left((A ; N) ; f^{\prime}\right)$ is a cover of the $D L$-algebra K^{\prime}. Lift f^{\prime} to a homomorphism $\sigma: \Phi<Z>\rightarrow A$. Recall that f^{\prime} is a homomorphism of right F-modules and Lie algebras over Φ. Furthermore, $\left(k^{[p]}\right)^{f^{\prime}}=\left(k^{f^{\prime}}\right)^{[p]}$ for all $k \in K$. Hence $I(K)^{f^{\prime}}=0$ and f^{\prime} induces a homomorphism $\phi: U \rightarrow A$ such that $\rho \phi=f^{\prime}$. Thus U is a universal enveloping algebra of the p - $D L$-algebra K.

Now we are ready to prove the main theorem of this section.
Theorem 5.4.5 Let $(K ; F ; \Lambda)$ be a p-DL-algebra with the universal enveloping algebra $(U(K) ; \phi)$, assuming that F is a free Φ-module and K is a free right F-module with a well-ordered basis X. Then the set

$$
\begin{array}{r}
V=\left\{x_{1}^{\phi} x_{2}^{\phi} \ldots x_{m}^{\phi} \mid x_{j} \in X, x_{1} \leq x_{2} \leq \ldots \leq x_{m} \quad\right. \text { and } \\
\text { if } \left.x_{k}=x_{k+1}=\ldots=x_{k+s-1}, \quad \text { then } \quad s<p\right\} \cup\{1\}
\end{array}
$$

is a basis of the right F-module $U(K)$ (we shall refer to V as a PBW-basis of the universal enveloping algebra $U(K)$ of the p-DL-algebra K).

Proof. Without loss of generality we may assume that G is well-ordered. Define a well-ordering on the set $Z=\{\bar{x} \mid x \in$ $X\} \cup\{\bar{g} \mid g \in G\}$, setting $\bar{u}<\bar{v}$ if either $u, v \in X$ and $u<v$, or $u, v \in G$ and $u<v$, or $u \in X$ and $v \in G$, for all $\bar{u}, \bar{v} \in Z$.

We continue with the same notations as in Theorems 5.1.1, 5.2.3 and 5.3.6. Consider the reduction system Δ of $\Phi<Z>$,

$$
\begin{aligned}
\sigma_{y x} & =\left(\bar{y} \bar{x}, \bar{x} \bar{y}+[y, x]^{\psi}\right), \quad \text { for all } y>x \in X \\
\chi_{g x} & =\left(\bar{g} \bar{x}, \bar{x} \bar{g}+\left(g^{\hat{x}}\right)^{\psi}\right), \quad \text { for all } g \in G, x \in X \\
\omega_{g q} & =\left(\bar{g} \bar{q},(g q)^{\psi}\right), \quad \text { for all } g, q \in G
\end{aligned}
$$

$$
\begin{aligned}
\pi_{e} & =(\bar{e}, 1) \\
\sigma_{x} & =\left(\bar{x}^{p}, x^{[p] \psi}\right) \quad \text { for all } \quad x \in X .
\end{aligned}
$$

Letting \leq denote the linear order on S which was introduced in the proof of Theorem 5.1.1 we note that this ordering is a semigroup one compatible with the reduction system Δ and satisfying the descending chain condition. Further, let $I=I(\Delta)$ be the ideal of the algebra $\Phi\langle Z\rangle$ generated by the reduction system Δ.

We claim that all ambiguities of Δ are resolvable and the set

$$
\begin{aligned}
V^{\prime}= & \left\{\bar{x}_{1} \bar{x}_{2} \ldots \bar{x}_{m} \bar{g} \mid x_{j} \in X, g \in G, x_{1} \leq x_{2} \leq \ldots \leq x_{m}\right. \\
& \text { and if } \left.x_{k}=x_{k+1}=\ldots=x_{k+s-1}, \text { then } s<p\right\} \cup \bar{G}
\end{aligned}
$$

is a Φ-basis of $\Phi<Z\rangle_{i r r}$.
Indeed, consider the various ambiguities. It was shown in the proof of Theorem 5.1.1 that the following ambiguity is resolvable.

Case 1. Overlap ambiguity ($\left.\sigma_{z y}, \sigma_{y x}, \bar{z}, \bar{y}, \bar{x}\right)$, where $x, y, z \in$ X and $z>y>x$.

It was shown in the proof of Theorem 5.3.6 that the ambiguities listed below in cases 2-7 are resolvable.

Case 2. Overlap ambiguity ($\chi_{g y}, \sigma_{y x}, \bar{g}, \bar{y}, \bar{x}$), where $x, y \in X$, $g \in G$ and $y>x$.

Case 3. Overlap ambiguity ($\left.\omega_{h g}, \sigma_{g x}, \bar{h}, \bar{g}, \bar{x}\right)$, where $x \in X$, $g, h \in G$.

Case 4. Inclusion ambiguity ($\pi_{e}, \chi_{e x}, \bar{e}, \vec{x}$), where $x \in X$.
Case 5. Overlap ambiguity ($\omega_{g p}, \omega_{p q}, \bar{g}, \bar{p}, \bar{q}$), where $g, p, q \in$ G.

Case 6. Inclusion ambiguity ($\pi_{e}, \omega_{e g}, \bar{e}, \bar{g}$), where $g \in G$.
Case 7. Inclusion ambiguity $\left(\omega_{g e}, \pi_{e}, \bar{g}, \bar{e}\right)$, where $g \in G$.
In the proof of Theorem 5.2 .3 we showed that the ambiguities listed below in cases 8-10 are resolvable.

Case 8. Overlap ambiguity ($\sigma_{y x}, \sigma_{x}, \bar{y}, \bar{x}, \bar{x}^{p-1}$), where $x, y \in$ X and $y>x$.

Case 9. Overlap ambiguity ($\sigma_{x}, \sigma_{x y}, \bar{x}^{p-1}, \bar{x}, \bar{y}$), where $x, y \in$ X and $x>y$.

Case 10. Overlap ambiguity ($\sigma_{x}, \sigma_{x}, \bar{x}^{l}, \bar{x}^{p-l}, \bar{x}^{l}$), where $x \in$ X.

Case 11. Overlap ambiguity ($\chi_{g x}, \sigma_{x}, \bar{g}, \bar{x}, \bar{x}^{p-1}$), where $g \in G$ and $x \in X$. We set $v=R_{\chi_{g x} x^{p-1}}\left(\bar{g} \bar{x}^{p}\right)=\bar{x} \bar{g} \bar{x}^{p-1}+g^{\hat{x} \psi} \bar{x}^{p-1}$ and $w=R_{g \sigma_{x}}\left(\bar{g} \bar{x}^{p}\right)=\bar{g} x^{[p]} \psi$. By Lemma 5.3.8 there exists a sequence R of reductions such that $R(v)=\bar{x}^{p} \bar{g}+A d(\bar{x})^{p}(\bar{g})$. Obviously $R_{\sigma_{x} g} R(v)=x^{[p] \psi} \bar{g}+A d(\bar{x})^{p}(\bar{g})$. It follows from (5.10) that $R^{\prime}(w)=x^{[p] \psi} \bar{g}+g^{\widehat{x^{\widehat{p}]}} \psi}$ for some sequence of reductions R^{\prime}. Since K is a p-DL-algebra, $a d(x)^{p}(g)=g^{\widehat{x p]}}$. Thus $R_{\sigma_{x} g} R(v)=$ $R^{\prime}(w)$ and this ambiguity is resolvable.

The Diamond Lemma may therefore be invoked, and in view of Lemma 1.3.2 we again conclude that V^{\prime} is a Φ-basis for $U(K)$. It follows that V is a right F-module basis of $U(K)$.

Corollary 5.4.6 Let $(K ; F ; \Lambda)$ be a p-DL-algebra with the universal enveloping algebra $(U(K) ; \phi)$. Assume that F is a free Φ module, and K is a free right F-module. Then $\rho: K \rightarrow U(K)^{(-)}$ is a monomorphism of differential restricted Lie algebras.

As in Section 5.3 we make the following
Definition 5.4.7 Let K, L be restricted differential Lie algebras and let $\tau: F / A n n_{F}(K) \rightarrow F / A n n_{F} L$ be an isomorphism of Φ-algebras. Then a mapping $f: K \rightarrow L$ is said to be a τ-semilinear homomorphism of p-DL-algebras, if the following conditions hold:
(a) f is a homomorphism of restricted Lie Φ-algebras;
(b) $(\delta c)^{f}=\delta^{f} c^{\tau}$ for all $\delta \in K, c \in F / A n n_{F}(K)$;
(c) $\widehat{\delta^{f}}=\tau^{-1} \hat{\delta} \tau$ for all $\delta \in K$.

The following statements are proved analogously to Proposition 5.3.10 and Corollary 5.3.11

Proposition 5.4.8 Let $(K ; F ; \Lambda)$ be a p-DL-algebra, $(U(K) ; \rho)$ the universal enveloping algebra of $K, L \subseteq A$ a special restricted differential F-Lie algebra over Φ and $h: K \rightarrow L$ a τ-semilinear homomorphism of p-DL-algebras. Then there is a unique homomorphism $h^{\prime}: U(K) \rightarrow A$ of Φ-algebras such that $\rho h^{\prime}=h$ and $h^{\prime}(u c)=h^{\prime}(u)\left(c+A n n_{F}(K)\right)^{\tau}$ for all $u \in U(K), c \in F$.

As in Section 5.3 we note that in case F is a field the ideal $A n n_{F}(K)=0$ where it appears in Definition 5.4.7 and Proposition 5.4.8.

Corollary 5.4.9 Let $(K ; F ; \Lambda)$ be a p-DL-algebra with the universal enveloping algebra $(U(K) ; \phi)$. Then for any τ-semilinear automorphism $h: K \rightarrow K$ of $D L$-algebras there exists a unique τ-semilinear automorphism $h^{\prime}: U(K) \rightarrow U(K)$ of algebras such that $\rho h^{\prime}=h \rho$.

5.5 A Particular Differential Lie Algebra

The preceding sections of this chapter were devoted to proving a generalized PBW theorem for abstract differential Lie algebras. In this book, however, we will be mainly interested in a particular differential Lie algebra, one which arises from the set $\operatorname{Der}(R)$ of derivations of prime ring R.

Let R be a prime ring with extended centroid C, prime field Φ, and symmetric ring of quotients Q. We let $\operatorname{Der}(R)$ denote the Φ-Lie algebra of derivations of R. We have previously seen (Proposition 2.5.1) that any derivation of R can be uniquely extended in an obvious way to a derivation of Q, and so we may regard $\operatorname{Der}(R) \subseteq \operatorname{Der}(Q) \subseteq \operatorname{End}_{\Phi}(Q)$. We mention here that it is useful to view C as left multiplications acting on Q. For $c \in C$ and $\delta \in \operatorname{Der}(R) \delta c$ is clearly a derivation of Q and so
$\operatorname{Der}(Q)$ is a right C-space. For $q \in Q$ we see from

$$
0=[c, q]^{\delta}=\left[c^{\delta}, q\right]+\left[c, q^{\delta}\right]=\left[c^{\delta}, q\right]
$$

that δ induces a derivation on C which we denote by $\hat{\delta}$. From

$$
q^{c \delta}=(c q)^{\delta}=c^{\delta} q+c q^{\delta}=q^{c^{\delta}}+q^{\delta c}
$$

we have the important commutation formula in $\operatorname{End}(Q)$:

$$
\begin{equation*}
c \delta=\delta c+c^{\hat{\delta}}, \quad \delta \in \operatorname{Der}(Q), c \in C \tag{5.22}
\end{equation*}
$$

The set $D_{i}=\{a d(a) \mid a \in Q\}$ of all inner derivations of Q is a C-Lie algebra and also a Lie ideal of $\operatorname{Der}(Q)$ (in fact, $\left.[\operatorname{ad}(a), \delta]=a d\left(a^{\delta}\right), \delta \in \operatorname{Der}(Q)\right)$. The subset of $\operatorname{Der}(Q)$ we are primarily interested in is

$$
\begin{equation*}
D=D(R)=(\operatorname{Der}(R)) C+D_{i} \tag{5.23}
\end{equation*}
$$

From the preceding observations it is clear that $D(R)$ is a special differential C-Lie algebra over Φ with cover $\operatorname{End}(Q)$.

Suppose $\operatorname{char}(C)=p$. From Remark 1.1.1(b) we see that $\operatorname{Der}(R)$ is closed under p th powers and from Lemma 5.2.1(a) that D_{i} is closed under p th powers as well. For $\delta \in \operatorname{Der}(R)$ and $c \in C$ we see from Lemma 5.4.2(b) that $(\delta c)^{p} \in(\operatorname{Der}(R)) C$ and consequently from Lemma 5.2 .1 (c) that $D(R)$ is a special restricted differential C-Lie algebra over Φ with cover $\operatorname{End}(Q)$.

Now let U be the (restricted) universal enveloping algebra of D and pick an ordered right C-basis \mathcal{B} of D. Then by Theorem 5.3.6 and Theorem 5.4.5 U has a (restricted) $P B W$ right C-basis induced by \mathcal{B}. By Corollary 5.3.7 and Corollary 5.4.6 the canonical mapping of D into U is injective and so (with some abuse of notation) we may identify D with its image in U. On the other hand $D \subseteq E n d_{\Phi}(Q)$ whence there is a C ring map $\rho: U \rightarrow \operatorname{End}(Q)$ such that the following diagram is commutative:

Thus there is a copy of D in both U and $\operatorname{End}(Q)$, each designated by D, and the context will always make it clear which copy of D we are using.

If σ is an automorphism of C and K, L are any differential C Lie algebras we recall from Definition 5.3.9 and Definition 5.4.7 the notion of a σ-semilinear differential Lie map $f: K \rightarrow L$ (the key features are $(\delta c)^{f}=\delta^{f} c^{\sigma}$ and $\widehat{\delta^{f}}=\sigma^{-1} \hat{\delta} \sigma$). Then $f: K \rightarrow L^{*}$ is an ordinary differential Lie map, where L^{*} is simply L made into a new differential C-Lie algebra by defining $\delta \cdot c=\delta c^{\sigma}$ and $\tilde{\delta}=\sigma^{-1} \hat{\delta} \sigma$. These considerations, of course, apply in particular to the case $K=D$. For instance, any σ semilinear differential C-Lie map of D into itself can, in view of Proposition 5.3.10 and Proposition 5.4.8, be uniquely extended to a σ-semilinear Φ-algebra homomorphism of U into itself.

In the sequel it will be important to choose the basis \mathcal{B} of D so that it reflects the nature of D. To this end let \mathcal{B}_{0} be a wellordered right C-basis for D modulo D_{i} and \mathcal{B}_{i} a well-ordered C-basis for D_{i}. Then, taking $\mathcal{B}_{0}<\mathcal{B}_{i}$, we see that $\mathcal{B}=\mathcal{B}_{0} \cup \mathcal{B}_{i}$ is a well-ordered right C-basis for D. Let \mathcal{W} be the $P B W$ right C basis of U relative to $(\mathcal{B},<)$ as provided by Theorem 5.3.6 and Theorem 5.4.5. If $\Delta=\delta_{i_{1}} \delta_{i_{2}} \ldots \delta_{i_{n}}, \delta_{i_{j}} \in \mathcal{B}$, then the length $|\Delta|$ of Δ is m, the number of factors. \mathcal{W} is then ordered as follows: if $|\Delta|<|\Gamma|$ then $\Delta<\Gamma$ and if $|\Delta|=|\Gamma|$ then the ordering is lexicographic. We remark that the well-ordering of \mathcal{B} implies that \mathcal{W} is also well-ordered. We denote by \mathcal{W}_{0} the set of all elements of \mathcal{W} whose factors lie in \mathcal{B}_{0} (and also including 1) and

5.5. A PARTICULAR DIFFERENTIAL LIE ALGEBRA

by \mathcal{W}_{i} the subset of \mathcal{W} arising from \mathcal{B}_{i}. It is an easy exercise to show that $U_{i}=U\left(D_{i}\right)$ may be taken to be the subring of $U(D)$ generated by C and D_{i} and \mathcal{W}_{i} is the $P B W$ basis of U_{i} with respect to $\left(\mathcal{B}_{i},<\right)$.

Finally, from the definition of U, we note that the commutation formula corresponding to (5.22) is also valid in U :

$$
\begin{equation*}
c \delta=\delta c+c^{\hat{\delta}}, \quad \delta \in D \subseteq U, c \in C \subseteq U \tag{5.24}
\end{equation*}
$$

Setting $\Delta=\delta_{1} \delta_{2} \ldots \delta_{n}, \delta_{i} \in D \subseteq U$ and referring the reader to the notations preceding Remark 1.1.1 we have the following useful formula in U for slipping an element $c \in C$ through Δ :

$$
\begin{equation*}
c \Delta=\sum_{s} \Delta_{s} c^{\widehat{\Delta_{s^{\prime}}}} \tag{5.25}
\end{equation*}
$$

The proof is a formal inductive one making repeated use of (5.24) and we omit it. However, to give the reader a concrete illustration of the formula (5.25) when written out in detail, we write out the case $n=3$ in full:

$$
\begin{aligned}
c \delta_{1} \delta_{2} \delta_{3} & =\delta_{1} \delta_{2} \delta_{3} c+\delta_{1} \delta_{2} c^{\hat{\delta}_{3}}+\delta_{1} \delta_{3} c^{\delta_{2}}+\delta_{2} \delta_{3} c^{\delta_{1}} \\
& +\delta_{1} c^{\hat{\delta}_{2} \hat{\delta}_{3}}+\delta_{2} c^{\hat{\delta}_{1} \delta_{3}}+\delta_{3} c^{\delta_{1} \hat{\delta}_{2}}+c^{\hat{\delta}_{1} \hat{\delta}_{2} \hat{\delta}_{3}} .
\end{aligned}
$$

Of course, using the map $\rho: U \rightarrow \operatorname{End}(Q)$, the formula in $\operatorname{End}(Q)$ corresponding to (5.25) is also valid.

This Page Intentionally Left Blank

Chapter 6

Rings with Generalized Polynomial Identities

6.1 Prime GPI-rings

It is hoped that much of the material developed in the first five chapters is of interest in its own right. However, it must also be said that the choice of these topics was to a large extent dictated by the background requirements of the remaining chapters, in which the structure theory for generalized identities is laid out and some applications are given.

Although there were earlier scattered examples of situations where "generalized identities" appeared (e.g., [248], [194]), for all intents and purposes the subject began in 1965 with the appearance of Amitsur's fundamental paper [3] characterizing primitive rings satisfying a so-called generalized polynomial identity (this notion, abbreviated as GPI, will presently be formally defined). In 1969 Martindale simultaneously generalized Amitsur's theorem on primitive GPI-rings and Posner's theorem on prime $P I$-rings [205], obtaining a characterization of prime GPI-rings. Our main purpose in the present section is to present a proof (due to C.-L. Chuang) of this result.

Let R be a prime ring with extended centroid C and symmetric ring of quotients Q. We let X be an (infinite) set and form the coproduct $Q_{C}<X>$ of the C-algebra Q and the free algebra $C<X>$ over C. If P is any C-algebra with 1 containing Q then, in view of Remark 1.2.5, any set-theoretic map $X \rightarrow P$ can be extended uniquely to a C-algebra map $Q_{C}<X>\rightarrow P$ such that $q \mapsto q, q \in Q$. Such a map will be called a substitution. Given an element $\phi=\phi\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in Q_{C}<X>$ and elements $p_{1}, p_{2}, \ldots, p_{n} \in P, \phi\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ will denote the image of ϕ under the substitution determined by $x_{i} \mapsto p_{i}$. Let $0 \neq U$ be an additive subgroup of R. An element $\phi=\phi\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in$ $Q_{C}<X>$ is said to be a generalized polynomial identity on U if $\phi\left(u_{1}, u_{2}, \ldots, u_{n}\right)=0$ for all $u_{1}, u_{2}, \ldots, u_{n} \in U$. Henceforth we will use the abbreviation GPI, and (with some grammatical license) make statements such as " ϕ is a GPI on U " or " U is GPI".

We first look at linear elements of $Q_{C}<X>$ in a single variable x, i.e., elements of $Q x Q$, and make the following

Remark 6.1.1 $Q_{(l)} Q_{(r)} \cong Q \otimes_{C} Q \cong Q x Q$ as C-spaces, with the isomorphisms given by $\alpha: l_{a} r_{b} \mapsto a \otimes b, \beta: a \otimes b \mapsto a x b$, $a, b \in Q$.

Proof. We know already by Theorem 2.3.6 that α is an isomorphism and clearly β is a well defined surjection. If $\phi=$ $\sum_{i} a_{i} \otimes b_{i} \in \operatorname{ker}(\beta)$, then $\sum_{i} a_{i} x b_{i}=0$ whence $\sum_{i} a_{i} q b_{i}=0$ for all $q \in Q$, i.e., $\sum_{i} l_{a_{i}} r_{b_{i}}=0$, and so $\sum_{i} a_{i} \otimes b_{i}=0$ in view of the isomorphism α.

Lemma 6.1.2 Let $0 \neq \phi=\sum_{i=1}^{m} a_{i} x b_{i} \in Q x Q$. Then:
(i) For all nonzero ideals I of $R \phi(I) \neq 0$;
(ii) If $0 \neq I \triangleleft R$ is such that $\operatorname{dim}_{C}(\phi(I) C)<\infty$ then there exist nonzero elements $a, b \in R$ such that $\operatorname{dim}_{C}(a R C b)<\infty$.

Proof. Without loss of generality we may assume that $m \geq 1$ and that $\left\{a_{i}\right\}$ and $\left\{b_{i}\right\}$ are each C-independent sets. By Theorem 2.3.3 there exists $\beta=\sum_{k} l_{u_{k}} r_{v_{k}} \in R_{(l)} R_{(r)}$ such that $a_{1} \cdot \beta \neq 0$ but $a_{i} \cdot \beta=0, i>1$. We set $\psi(x)=\sum_{k} u_{k} \phi\left(v_{k} x\right)$ and note that $\psi(x)=a^{\prime} x b_{1}$ where $a^{\prime}=a_{1} \cdot \beta \neq 0$. Let $0 \neq I \triangleleft R$ and suppose $\phi(I)=0$. Then $\psi(I)=0$ whence we have the contradiction $a^{\prime} I b_{1}=0$. Part (i) has thereby been proved. Now suppose $0 \neq I \triangleleft R$ is such that $\operatorname{dim}_{C}(\phi(I) C)<\infty$. Since $u_{k} \phi\left(v_{k} I\right) \subseteq u_{k} \phi(I)$, it follows that $\operatorname{dim}_{C}(\psi(I) C)<\infty$ that is, $\operatorname{dim}_{C}\left(a^{\prime} I b_{1} C\right)<\infty$. Pick $s \in I$ such that $0 \neq a=a^{\prime} s \in R$ and $t \in R$ such that $0 \neq b=t b_{1} \in R$. As a result we see that $a R b \subseteq a^{\prime} I b_{1}$ and accordingly $\operatorname{dim}_{C}(a R b C)<\infty$. The proof of (ii) is thereby complete.

Lemma 6.1.2 yields the immediate
Corollary 6.1.3 If $\phi \in Q x Q$ is a $G P I$ on some $0 \neq I \triangleleft R$ then $\phi=0$, i.e., there are no nonzero linear GPI's in one variable.

The next lemma continues where the preceding lemma left off.

Lemma 6.1.4 Let $A=R C$ be the central closure of R and let $a, b \in A$ be nonzero elements such that $\operatorname{dim}_{C}(a A b)<\infty$. Then the ring A has a nonzero idempotent e such that $e A$ is a minimal right ideal of A and $\operatorname{dim}_{C}(e A e)<\infty$ (In particular A is a primitive ring with nonzero socle).

Proof. Without loss of generality we may assume that the elements $a, b \in A$ are such that $\operatorname{dim}_{C}(a A b) \leq \operatorname{dim}_{C}(u A v)$ for all nonzero $u, v \in A$. We claim that $M=a A b A$ is a minimal right ideal of A. Indeed, since A is prime and $a \neq 0 \neq b, M \neq 0$. Let $0 \neq z=\sum_{i} a x_{i} b y_{i} \in M$ where $x_{i}, y_{i} \in A$. Setting $u=\sum_{i} x_{i} b y_{i}$, we note that $z=a u$. Further we have $a u A b \subseteq a A b$ and so $a u A b=a A b$ by the choice of a, b. Hence $a u A b A=M$ and hence

$$
M=a u A b A \subseteq z A \subseteq M \quad \text { and } \quad z A=M
$$

for all nonzero $z \in M$. Therefore M is a minimal right ideal of A. By Proposition 4.3.3 $M=e A$ for some idempotent e and $e A e$ is a division ring. Clearly $e=\sum_{i=1}^{m} a u_{i} b v_{i}$. Hence $e A e \subseteq \sum_{i=1}^{m} a A b v_{i}$ and so $\operatorname{dim}_{C}(e A e)<\infty$, and the lemma is proved.

Before taking up the matter of arbitrary GPI's we shall first describe the linearization process in $Q_{C}<X>$. We mention that this process works equally well for $Q=Q_{m r}$ as for $Q=Q_{s}$. We fix a C-basis \mathcal{A} of Q containing 1 which in conjunction with the usual C-basis of $C<X>$ leads to the monomial basis $\mathcal{M}(\mathcal{A})$ of $Q_{C}<X>$. For $M \in \mathcal{M}(\mathcal{A})$ we define

$$
\begin{aligned}
\operatorname{deg}_{x}(M)= & \text { number of times } x \text { appears in } M \\
\operatorname{deg}(M)= & \sum_{x \in X} \operatorname{deg}_{x}(M) \\
h t_{x}(M)= & \max \left\{\operatorname{deg}_{x}(M)-1,0\right\} \\
h t(M)= & \sum_{x \in X} h t_{x}(M) \\
= & \operatorname{deg}(M) \text { minus the number of distinct } x \text { 's } \\
& \text { appearing in } M .
\end{aligned}
$$

Now we write

$$
\begin{aligned}
& \phi=\phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{M} c_{M} M \in Q_{C}<X> \\
& M \in \mathcal{M}(\mathcal{A}), c_{M} \in C
\end{aligned}
$$

We shall say that M belongs to ϕ if $c_{M} \neq 0$. We define:

$$
\begin{aligned}
\operatorname{deg}_{x}(\phi) & =\max \left\{\operatorname{deg}_{x}(M) \mid c_{M} \neq 0\right\} \\
\operatorname{deg}(\phi) & =\max \left\{\operatorname{deg}(M) \mid c_{M} \neq 0\right\} \\
h t_{x}(\phi) & =\max \left\{h t_{x}(M) \mid c_{M} \neq 0\right\} \\
h t(\phi) & =\max \left\{h t(M) \mid c_{M} \neq 0\right\}
\end{aligned}
$$

Given $k>0$ and $x \in X$ we say that ϕ is k-homogeneous in x if $\operatorname{deg}_{x}(M)=k$ for each M belonging to ϕ. Given a sequence
$\tau=\left(m_{1}, m_{2}, \ldots, m_{n}\right)$ of nonegative integers we say that ϕ is τ-homogeneous if ϕ is m_{i}-homogeneous in $x_{i}, i=1,2, \ldots, n$. If, in addition, each $m_{i}=1$ we say that ϕ is multilinear of degree n. Clearly, given $x \in X$ appearing in ϕ, we may write ϕ uniquely as a sum $\sum_{k=0}^{m} \phi_{k}(x), \phi_{k} k$-homogeneous in $x, m=\operatorname{deg}_{x}(\phi)$. Also we may write ϕ uniquely as a sum $\sum \phi_{\tau}$ where ϕ_{τ} is τ homogeneous.

Let $\phi \neq 0$ be of degree n and suppose $\operatorname{deg}_{x}(\phi)=m>1$ for some $x \in X$. We can then perform the following operation which we shall refer to as an operation of type A. Notationally suppressing all $x_{i} \neq x$ appearing in ϕ we shall write $\phi=\phi(x)$. Let M belong to ϕ such that $\operatorname{deg}_{x}(M)=m$ and write

$$
M=M(x)=P_{i_{0}} x P_{i_{1}} \ldots x P_{i_{m}}
$$

where $P_{i_{j}} \in \mathcal{M}(\mathcal{A})$ does not contain x. Choose $y \in X$ not appearing in ϕ and form

$$
\psi=\phi(x+y)-\phi(x)-\phi(y) .
$$

One observes in particular that the monomial

$$
P_{i_{0}} x P_{i_{1}} \ldots x P_{i_{m-1}} y P_{i_{m}}
$$

belongs to ψ, thereby showing

$$
(i) \operatorname{deg}(\psi)=\operatorname{deg}(\phi) \quad(\text { and hence } \psi \neq 0)
$$

Furthermore it is clear that

$$
\begin{aligned}
& \text { (ii) } \operatorname{deg}_{x}(\psi)=m-1=\operatorname{deg}_{y}(\psi) ; \\
& \text { (iii) } \operatorname{deg}_{x_{i}}(\psi) \leq \operatorname{deg}_{x_{i}}(\phi), x_{i} \neq x, y ; \\
& \text { (iv) } h t(\psi)<h t(\phi) \text { (because of (ii)); } \\
& \text { (v) If } \phi \text { is a } G P I \text { then } \psi \text { is a } G P I .
\end{aligned}
$$

An operation of type B may be performed in case there is an $x \in X$ appearing in ϕ but not in each M belonging to ϕ.

Here we simply replace ϕ by the element ρ obtained from ϕ by sending x to 0 . Clearly $\rho \neq 0, \operatorname{deg}(\rho) \leq \operatorname{deg}(\phi), h t(\rho) \leq h t(\phi)$, and if ϕ is a GPI, then ρ is a GPI.

We say that ψ is a linearization of ϕ if ψ is multilinear and is obtained from ϕ by a finite sequence of operations of types A and B. Evidently every $\phi \neq 0$ has a linearization and as a result we have

Remark 6.1.5 If $0 \neq \phi$ is a GPI on I of degree n then there exists a nonzero multilinear GPI on I of degree $\leq n$.

We are now in a position to prove the main result of this section (which we shall sometimes in the future refer to as "the prime GPI theorem"). The proof we give is due to Chuang [87] who greatly simplified the original proof in [205].

Theorem 6.1.6 Let R be a prime ring with extended centroid C and central closure $A=R C$. Then there is a nonzero GPI ϕ on I for some $0 \neq I \triangleleft R$ if and only if A has a nonzero idempotente such that $e A$ is a minimal right ideal of A (hence A is primitive with nonzero socle) and $e A e$ is a finite dimensional division algebra over C.

Proof. If $\operatorname{dim}_{C}(e A e)=n<\infty$ and $S t_{n+1}$ is the standard polynomial in $n+1$ variables, then

$$
\phi=S t_{n+1}\left(e x_{1} e, e x_{2} e, \ldots, e x_{n+1} e\right)
$$

is the required a $G P I$.
Conversely let $0 \neq \phi$ be a GPI on some $0 \neq I \triangleleft R$. By Remark 6.1 .5 we may assume that $\phi=\phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is multilinear of degree n. Pick any C-basis \mathcal{A} of Q. The element ϕ, when written in terms of the monomial basis $\mathcal{M}(\mathcal{A})$, only involves a finite subset F of \mathcal{A}. By suitable reordering of the variables we may write

$$
\phi=b_{0} x_{1} \ldots b_{n-2} x_{n-1} \psi\left(x_{n}\right)+\sum \alpha_{M} M+\sum \beta_{N} N+\sum \gamma_{P} P
$$

$\alpha_{M}, \beta_{N}, \gamma_{P} \in C$ where
(i) $0 \neq \psi\left(x_{n}\right) \in Q x_{n} Q$;
(ii) M is of the form $b_{0}^{\prime} x_{1} \ldots b_{n-2}^{\prime} x_{n-1} \chi\left(x_{n}\right)$,
with $\left(b_{0}^{\prime}, \ldots, b_{n-2}^{\prime}\right) \neq\left(b_{0}, \ldots, b_{n-2}\right)$ and
$\chi\left(x_{n}\right) \in Q x_{n} Q ;$
(iii) N is of the form
$b_{0}^{\prime \prime} x_{1} \ldots b_{i-1}^{\prime \prime} x_{i} b_{i}^{\prime \prime} x_{n} b_{i+1}^{\prime \prime} x_{i+1} \ldots b_{n-1}^{\prime \prime} x_{n-1} b_{n}^{\prime \prime} ;$
(iv) $x_{1}, x_{2}, \ldots, x_{n-1}$ appear in a different order in P.

By Lemma 6.1.4 we may assume that $\psi(I) C \nsubseteq V=\sum_{d \in F} d C$. Choose $r \in I$ such that $\psi(r) \notin V$ and set

$$
\rho\left(x_{1}, x_{2}, \ldots, x_{n-1}\right)=\phi\left(x_{1}, x_{2}, \ldots, x_{n-1}, r\right) .
$$

Let \mathcal{A}^{\prime} be a C-basis of Q containing $F \cup\{\psi(r)\}$, and consider ρ as being written in terms of the monomial basis $\mathcal{M}\left(\mathcal{A}^{\prime}\right)$ of $Q_{C}\langle X\rangle$ induced by \mathcal{A}^{\prime}. It is then clear that the monomial $H=b_{0} x_{1} \ldots b_{n-2} x_{n-1} \psi(r)$ cannot be canceled by any monomials which arise from M, N, or P. For instance, N ends in $b_{n}^{\prime \prime} \in F$ whereas H ends in $\psi(r) \notin F$. Thus $0 \neq \rho$ is a GPI of degree $n-1$ on I, and so by induction the proof is complete.

Although in this section our framework is that of the symmetric ring of quotients Q_{s}, the following corollary shows that the effect of a GPI carries up to the maximal right ring of quotients $Q_{m r}$.

Corollary 6.1.7 Let R be a prime ring with extended centroid C, central closure $A=R C$ and $Q=Q_{m r}(R)$. Then the following conditions are equivalent:
(i) There is a nonzero GPI ϕ on I for some $0 \neq I \triangleleft R$;
(ii) Any subring $A \subseteq H \subseteq Q$ is primitive with nonzero socle and a nonzero idempotent $e \in H$ such that eHe is a finite dimensional division algebra over C;
(iii) The ring Q is isomorphic to the complete ring of linear transformations of a right vector space over a division ring which is finite dimensional over its center;
(iv) R is GPI.

Proof. (i) \Rightarrow (ii) By Theorem 6.1.6 A has nonzero socle and (ii) then follows immediately from Theorem 4.3.6(ii).
(ii) \Rightarrow (iii) By Lemma 2.1.9, $Q=Q_{m r}(H)$. Now the statement (iii) follows from the symmetric version of Theorem 4.3.7 (viii).
(iii) \Rightarrow (iv) We identify the ring Q with this complete ring of linear transformations over a division ring Δ. Let n be the dimension of Δ over its center and let e be an idempotent of rank 1 of the linear transformation ring Q. Clearly $e Q e \cong \Delta$. Hence the generalized polynomial

$$
\phi=S t_{n+1}\left(e x_{1} e, \ldots, e x_{n+1} e\right)=S t_{n+1}\left(e x_{1}, \ldots, e x_{n+1}\right) e
$$

where $S t_{n+1}$ is the standard polynomial in $(n+1)$ variables vanishes under all substitutions $x_{i} \mapsto q_{i} \in Q, i=1,2, \ldots, n+1$. Pick any $a \in(e: R)_{R}$ such that $e a \neq 0$. Then

$$
0 \neq \psi=S t_{n+1}\left(e a x_{1}, e a x_{2}, \ldots, e a x_{n+1}\right) e a \in Q_{C}<X>
$$

is a $G P I$ on R. The implication (iv) \Rightarrow (i) is obvious. The proof is thereby complete.

Theorem 6.1.6 says that prime GPI rings are "well-behaved", but for non GPI prime rings we have the following positive result which will prove useful in the sequel.

Lemma 6.1.8 Let R be a prime ring, let U be an additive subgroup of R which is not GPI, and fix $x \in X$. Let $T_{i}=$ $\left\{\phi_{i j}(x) \mid j=1,2, \ldots, n_{i}\right\}, i=1,2, \ldots, m$, be m given subsets of $Q_{C}<X>$ each of which is C-independent. Then there exists $u \in$ U such that the subset $T_{i}(u)=\left\{\phi_{i j}(u) \mid j=1,2, \ldots, n_{i}\right\} \subseteq Q$ is C-independent for each $i=1,2, \ldots, m$.

Proof. Suppose to the contrary that for each $u \in U$ there exists $1 \leq i \leq m$ such that $T_{i}(u)$ is a C-dependent subset of Q. Then the set

$$
T_{i}\left(u, v_{i}\right)=\left\{\phi_{i j}(u) v_{i} \mid j=1,2, \ldots, n_{i}\right\}
$$

remains a C-dependent subset of Q for all $v_{i} \in U$. We form the element

$$
\phi=\prod_{i=1}^{m} S t_{n_{i}}\left(\phi_{i 1}(x) y_{i}, \phi_{i 2}(x) y_{i}, \ldots, \phi_{i n_{i}}(x) y_{i}\right) z_{i}
$$

where $y_{1}, \ldots, y_{m}, z_{1}, \ldots, z_{m} \in X$ (distinct from x) and $S t_{n_{i}}$ is the standard polynomial in n_{i} variables. Clearly $\phi \neq 0$ but, since $S t_{k}\left(a_{1}, a_{2}, \ldots, a_{k}\right)=0$ whenever $a_{1}, a_{2}, \ldots, a_{k}$ are C-dependent, ϕ is a $G P I$ on U, contrary to our hypothesis.

We close this section by showing how Theorem 6.1.6, with assistance from other results we have obtained, implies the pathbreaking theorems of Kaplansky [137], Amitsur [3], and Posner [242].

Let us take a closer look at the situation when R is a primitive $G P I$ ring. By Theorem 6.1.6, $R C$ has a nonzero socle $\operatorname{Soc}(R C)$ and so by Theorem 4.3.6(ii) R has socle $\operatorname{Soc}(R)=$ $\operatorname{Soc}(R C)$. Furthermore Theorem 6.1.6 assures us of a minimal idempotent e (necessarily in R) such that $e R e=e R C e$ is finite dimensional over C, and we know from Theorem 4.3.7(ix) that $e R e$ has center isomorphic to C.

The fundamental theorem of Amitsur ([3], Theorem 10), which in essence originated the theory of generalized polynomial identities in 1965, follows immediately from the preceding paragraph.

Theorem 6.1.9 (Amitsur) Let R be a primitive ring with extended centroid C. Then R is GPI if and only if R contains a minimal idempotent e such that $\operatorname{dim}_{C}(e R e)<\infty$.

Now we recall that a ring R is called a $P I$-ring if there exists a nonzero element $f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in C<X>$ which vanishes under all substitutions $x_{i} \mapsto r_{i} \in R, 1 \leq i \leq n$. Next suppose that R is a primitive $P I$ ring over C with faithful irreducible right R-module M and $D=\operatorname{End}\left(M_{R}\right)$. We may assume without loss of generality that R has a multilinear polynomial identity

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{\sigma \in S_{n}} \lambda_{\sigma} x_{\sigma(1)} x_{\sigma(2)} \ldots x_{\sigma(n)}
$$

of degree n with $\lambda_{1}=1$. Then

$$
x_{1} x_{2} \ldots x_{n} \in \sum_{\sigma \in S_{n} \backslash\{1\}} \lambda_{\sigma} x_{\sigma(1)} x_{\sigma(2)} \ldots x_{\sigma(n)} R
$$

is a pivotal monomial of R. By Theorem 4.4.3 we have that $R=\operatorname{End}_{D}(M)$ where $\operatorname{dim}_{D}(M)<\infty$. On the other hand our preceding remarks show that $\operatorname{dim}_{C}(D)<\infty$. We have thereby completed the proof of Kaplansky's Theorem [137], which originated the theory of polynomial identities in 1948.

Theorem 6.1.10 (Kaplansky) Let R be a primitive ring with extended centroid C. Then R is PI over C if and only if R is finite dimensional central simple over C.

Finally, we come to Posner's Theorem [242] of 1960, which became a fundamental tool in the theory of prime rings (an area which had recently been opened up by Goldie's Theorems). We state and prove the original version. Here we recall that given a ring R, a ring $S \supseteq R$ with 1 is said to be a two-sided classical ring of quotients of R if all regular element (i.e., nonzero divisors) of R are invertible in S and for every $s \in S$ there exist regular elements $t_{1}, t_{2} \in R$ such that $s t_{1}, t_{2} s \in R$.

Theorem 6.1.11 (Posner) Let R be a prime ring with extended centroid C. Then R is PI over C if and only if $A=R C$ is a two-sided classical ring of quotients of R and $\operatorname{dim}_{C}(A)<\infty$.

Proof. We may assume that the $P I$ is multilinear and hence satisfied by A. By Theorem 6.1.6, A is a primitive ring with nonzero socle and so by Kaplansky's Theorem $A=M_{n}(D)$ for some $n \geq 1$, where D is a division algebra finite dimensional over its center C. Let $e_{1}, e_{2}, \ldots, e_{n}$ be the usual diagonal matrix units. We now claim that every nonzero ideal U of R contains a regular element of A. We may choose a nonzero ideal W of R such that $W \subseteq U, W e_{i} \subseteq U$ and $e_{i} W \subseteq U$ for all i, whence $0 \neq e_{i} W^{3} e_{i} \subseteq U$. Selecting $0 \neq u_{i} \in e_{i} W^{3} e_{i} \subseteq U$, we see that $u=u_{1}+u_{2}+\ldots+u_{n} \in U$ has rank n and so must be a regular element of A. Now let $a \in A$, choose a nonzero ideal U of R such that $a U+U a \subseteq R$, and by the preceding claim select a regular element $b \in U$. Clearly $a b, b a \in R$. Next let $d \in R$ be a regular element. Suppose $d x=0$ for some $x \in A$. Choose a nonzero ideal V of R such that $x V \subseteq R$. Then $d(x V)=0$ and so $x V=0$. Hence $x=0$ and $r_{A}(d)=0$. Analogously one may show that $l_{A}(d)=0$. Therefore d is a regular element of A. Since $\operatorname{dim}_{C}(A)<\infty$, every regular element of A is invertible. It follows that every regular element of R is invertible in A and thus A is a two-sided classical ring of quotients of R.

It must be added that our methods do not enable us to prove the sharper version of Posner's Theorem, namely, the one that asserts additionally that C is the field of fractions of the center of R. This latter improvement stems from the existence of central polynomials in $M_{n}(F)$ (see Formanek [105] and Razmyslov [246]) and was proved by Rowen [255].

As a final note we mention that in section 6.3, where our main purpose will be to study GPI's in semiprime rings, we shall at the same time also broaden the definition of a $G P I$ to allow its coefficients to lie in $Q_{m r}$ (rather than just in Q_{s}). As we shall see the theory will not be weakened by this generalization since the fundamental prime GPI theorem will remain intact.

6.2 Identities with a Fixed Antiautomorphism

The first step in extending the notion of GPI's for prime rings to that of more general identities in prime rings was taken in [207], [208] and [257] where R was a prime ring with involution $*$ satisfying an identity of the form $\phi\left(x_{1}, \ldots, x_{n}, x_{1}^{*}, \ldots, x_{n}^{*}\right)$. The special case of an ordinary GPI satisfied by the symmetric elements was studied by Martindale [208] and the more general situation by Rowen [257] (also independently by Skinner [265]).

Our motivation for including this topic in the present chapter (rather than delegating it to Chapter 7 as a special case of a far more general situation) is severalfold. First, some readers may be primarily interested in rings with involution but not in further generality. Secondly, this particular theory has important applications in its own right (e.g., in Chapter 9 the solution of Herstein's Lie isomorphism problem uses it in a crucial way). Thirdly, the lemma on linear identities (Lemma 6.2.1) forms an important step in reducing the general theory in Chapter 7 to the prime GPI theorem (Theorem 6.1.6). Lastly, it is hoped that the exposition in this section will help in a small way to bridge the gap between section 6.1 and the vastly more complicated setting in Chapter 7.

For the remainder of this section R will denote a prime ring with a fixed antiautomorphism g. This includes the special case when g is an involution. The arguments required for the general antiautomorphism case are essentially no different from those needed in the involution case. We have previously noted (section 2.5) that g may be uniquely extended to an antiautomorphism of the symmetric ring of quotients $Q=Q_{s}(R)$. Let X be an arbitrary infinite set, let $X^{g}=\left\{x^{g} \mid x \in X\right\}$ be a copy of X with the elements suggestively superscripted by g, and let $X \cup X^{g}$ be the disjoint union of these two sets. We then form the coproduct
$Q_{C}<X \cup X^{g}>$ of Q and the free algebra $C<X \cup X^{g}>$ over C. As in the preceding section any set-theoretic map of $X \cup X^{g}$ into a C-algebra P containing Q can be uniquely lifted to a C algebra map of $Q_{C}<X \cup X^{g}>\rightarrow P$ such that $q \mapsto q, q \in Q$. Such maps are called substitutions. We will be primarily interested in the situation where $P=Q$ or $P=Q_{C}<X \cup X^{g}>$. As the notation for the set X^{g} suggests, it is natural to focus on substitutions of $Q_{C}<X \cup X^{g}>$ into Q which are restricted by the requirement $x^{g} \mapsto r^{g}$ whenever $x \mapsto r, r \in Q$. Such substitutions will be called g-substitutions. Let U be an additive subgroup of R. Then an element $\phi=\phi\left(x_{1}, \ldots, x_{n}, x_{1}^{g}, \ldots, x_{n}^{g}\right) \in Q_{C}<X \cup X^{g}>$ is said to be a g-identity on U if ϕ is mapped to 0 under all g-substitutions for which $x_{i} \mapsto r_{i}, r_{i} \in U$ (Our main concern is the situation in which $0 \neq U=I \triangleleft R$).

We begin with a seemingly very specialized result, but as it turns out one which plays a key role in the proof of Theorem 7.5.8 (as well as Theorem 6.2.3). We fix $x \in X$ and set $L_{x}=Q x Q+Q x^{g} Q$.

Lemma 6.2.1 Let g be an antiautomorphism of R and let

$$
0 \neq \phi(x)=\sum_{i=1}^{m} a_{i} x b_{i}+\sum_{j=1}^{n} c_{j} x^{g} d_{j} \in L_{x}
$$

be such that $\operatorname{dim}_{C}(\phi(I) C)<\infty$ for some $0 \neq I \triangleleft R$. Then R is GPI (in particular if ϕ is a g-identity on I then R is GPI).

Proof. The proof is by induction on n. The case $n=0$ is obvious in view of Lemma 6.1.2, Lemma 6.1.4 and Theorem 6.1.6. We assume that the lemma is true for $n-1$ and show it for n. Without loss of generality we may assume that $m>$ 0 and the elements $a_{1}, a_{2}, \ldots, a_{m}$ are C-independent. Therefore $c_{n} x a_{1}, \ldots, c_{n} x a_{m}, a_{1}, \ldots, a_{m}$ are C-independent elements of $Q_{C}<X \cup X^{g}>$. By Corollary 6.1.7 it is enough to consider the
case when I is not GPI. By Lemma 6.1.8 there exists $r \in I$ such that

$$
\begin{equation*}
c_{n} r a_{1}, \ldots, c_{n} r a_{m}, a_{1}, \ldots, a_{m} \text { are } C \text {-independent. } \tag{6.1}
\end{equation*}
$$

Then we have

$$
\begin{aligned}
\phi^{\prime}(x)= & \phi\left(x c_{n}^{g^{-1}} r^{g^{-1}}\right)-c_{n} r \phi(x) \\
= & \sum_{i=1}^{m} a_{i} x c_{n}^{g^{-1}} r^{g^{-1}} b_{i}+\sum_{j=1}^{n} c_{j} r c_{n} x^{g} d_{j} \\
& -\sum_{i=1}^{m} c_{n} r a_{i} x_{i} b_{i}-\sum_{j=1}^{n} c_{n} r c_{j} x^{g} d_{j} \\
= & \sum_{i=1}^{m} a_{i} x c_{n}^{g^{-1}} r^{g^{-1}} b_{i}-\sum_{i=1}^{m} c_{n} r a_{i} x_{i} b_{i} \\
& +\sum_{j=1}^{n-1}\left(c_{j} r c_{n}-c_{n} r c_{j}\right) x^{g} d_{j} .
\end{aligned}
$$

From (6.1) it follows that $\phi^{\prime}(x) \neq 0$. Clearly $\phi^{\prime}(I) C \subseteq \phi(I) C+$ $c_{n} r \phi(I) C$ and so $\operatorname{dim}_{C}\left(\phi^{\prime}(I) C\right)<\infty$. Therefore by induction the proof is complete.

Before taking up the matter of arbitrary g-identities we describe a linearization process compatible with g. With only a few adjustments it is similar to the usual linearization process described in the previous section and we will omit most of the details. For a nonzero monomial M in $Q_{C}<X \cup X^{g}>$ we define the g-degree of M in $x\left(g-\operatorname{deg}_{x}(M)\right)$ to be the number of times x or x^{g} appears in M. Similarly we define the g-height of M in $x\left(g-h t_{x}(M)\right)$ to be $\max \left\{g-\operatorname{deg}_{x}(M)-1,0\right\}$ and the g-height of $M(g-h t(M))$ to be $\sum_{x \in X} g-h t_{x}(M)$. For example if

$$
M=a_{0} x_{2} a_{1} x_{2}^{g} a_{2} x_{3}^{g} a_{3} x_{2}^{g} a_{4}
$$

then $g-\operatorname{deg}_{x_{2}}(M)=3, g-\operatorname{deg}_{x_{3}}(M)=1$ and

$$
\operatorname{deg}_{x_{2}}(M)=1, \operatorname{deg}_{x_{2}^{g}}(M)=2, \operatorname{deg}_{x_{3}}(M)=0, \operatorname{deg}(M)=4
$$

We say that ϕ is g-multilinear of degree n in $x_{1}, x_{2}, \ldots, x_{n}$ if for each monomial M in ϕ and each i we have $g-\operatorname{deg}_{x_{i}}(M)=1$ and $\operatorname{deg}(M)=n$. For example $x_{1} a x_{2}^{g}+x_{2}^{g} b x_{1}^{g}$ is g-multilinear of degree 2 in x_{1} and x_{2} but is not multilinear. On the other hand $x_{1} a x_{1}^{g}$ is multilinear of degree 2 in x_{1}, x_{1}^{g} but is not g-multilinear. With these adjustments in mind, together with the fact that g is additive, a process similar to that described in the preceding section results in

Remark 6.2.2 If $0 \neq \phi$ is a g-identity of degree n on $0 \neq I \triangleleft R$ then there exists a nonzero g-multilinear identity on I of degree $\leq n$.

Theorem 6.2.3 Let R be a prime ring with an antiautomorphism g, and let $0 \neq \phi \in Q_{C}<X \cup X^{g}>$ be a g-identity on I, where $0 \neq I \triangleleft R$. Then R is GPI.

Proof. In view of Remark 6.2 .2 we may assume that $\phi=$ $\phi\left(x_{1}, \ldots, x_{n}, x_{1}^{g}, \ldots, x_{n}^{g}\right)$ is g-multilinear of degree n in x_{1}, \ldots, x_{n}. Let $r_{2}, r_{3}, \ldots, r_{n} \in I$ and set

$$
\psi\left(x_{1}\right)=\phi\left(x_{1}, r_{2}, r_{3}, \ldots, r_{n}, x_{1}^{g}, r_{2}^{g}, r_{3}^{g}, \ldots, r_{n}^{g}\right)
$$

We note that $\psi \in L_{x_{1}}$ is a g-identity on I. If $\psi \neq 0$, then by Lemma 6.2.1 R is GPI. Therefore we may assume without loss of generality that for every choice of $r_{2}, r_{3}, \ldots, r_{n} \in I$

$$
\phi\left(x_{1}, r_{2}, r_{3}, \ldots, r_{n}, x_{1}^{g}, r_{2}^{g}, r_{3}^{g}, \ldots, r_{n}^{g}\right)
$$

is the zero element of $Q_{C}<X>$. In particular

$$
\phi\left(r_{1}, r_{2}, r_{3}, \ldots, r_{n}, s_{1}, r_{2}^{g}, r_{3}^{g}, \ldots, r_{n}^{g}\right)=0
$$

for all $r_{1}, \ldots, r_{n}, s_{1} \in I$. Continuing this process with x_{2}, \ldots, x_{n} we may eventually assume that

$$
\phi\left(r_{1}, r_{2}, r_{3}, \ldots, r_{n}, s_{1}, s_{2}, \ldots, s_{n}\right)=0
$$

for all $r_{i}, s_{i} \in I, i=1,2, \ldots, n$, i.e., $\phi\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)$ is a GPI on I.

As an important special case we have the
Corollary 6.2.4 If R is a prime ring with involution $*$ and $0 \neq \phi$ is $a *$-identity on $0 \neq I \triangleleft R$ then R is GPI.

Included in this corollary are the following special cases.
Corollary 6.2.5 Let R be a prime ring of characteristic different from 2 with involution $*$ with skew elements K and symmetric elements S.
(i) If K is GPI, then R is GPI.
(ii) If S is GPI, then R is GPI.

Proof. In either (i), or (ii) let $0 \neq \phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a GPI. Then

$$
\psi=\left(x_{1}-x_{1}^{*}, x_{2}-x_{2}^{*}, \ldots, x_{n}-x_{n}^{*}\right)
$$

is a *-identity on R in case (i) and

$$
\psi=\left(x_{1}+x_{1}^{*}, x_{2}+x_{2}^{*}, \ldots, x_{n}+x_{n}^{*}\right)
$$

is *-identity on R in case (ii). By Corollary $6.2 .4 R$ is $G P I$.

6.3 Semiprime GPI-rings

Our main purpose in the present section is the extension of the notion of generalized polynomial identities to semiprime rings. At the same time, as promised at the end of section 6.1, we will extend the definition of GPI so that the coefficients may lie in $Q_{m r}$. It is debatable which ring of quotients is better to use. On the one hand Q_{s} is a less complicated ring not as far removed from R as is $Q_{m r}$, and working with (dense) two-sided
ideals is generally a simpler matter than working with dense right ideals. In Chapter 7 we shall choose to use Q_{s}. On the other hand, $Q_{m r}$ has the advantage of more generality and also has the useful property that if J is a dense right ideal of R then for any subring $J \subseteq S \subseteq Q_{m r}(R)$ we have $Q_{m r}(S)=Q_{m r}(R)$. Also $Q_{m r}$ includes classical rings of quotients not included in Q_{s}, e.g., for R a simple right Ore domain $Q_{s}=R$ whereas $Q_{m r}$ coincides with the classical ring of right quotients. At any rate for the remainder of this chapter we elect to use $Q_{m r}$ instead of Q_{s}, and we proceed to define the notion of GPI in this wider sense.

Let R be a semiprime ring with extended centroid C and maximal right ring of quotients $Q=Q_{m r}(R)$. Letting X be an infinite set, we form the coproduct $Q_{C}<X>$ of the free C algebra $C<X>$ and Q. As we already know any set-theoretic map $X \rightarrow Q$ can be extended uniquely to a C-algebra map $Q_{C}<X>\rightarrow Q$ such that $q \mapsto q$ for all $q \in Q$. As usual we will call such a map a substitution. Now let $0 \neq U$ be an additive subgroup of R. An element $\phi=\phi\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in Q_{C}<X>$ (where $Q=Q_{m r}(R)$) is said to be a generalized polynomial identity on U if $\phi\left(u_{1}, u_{2}, \ldots, u_{n}\right)=0$ for all $u_{1}, u_{2}, \ldots, u_{n} \in U$.

Before beginning our investigation of GPI's in the general semiprime setting we shall first establish the reassuring fact that in the prime case no weakening of the theory has taken place.

Remark 6.3.1 Let R be a prime ring with extended centroid C and $Q=Q_{m r}(R)$. Further let $q_{1}, q_{2}, \ldots, q_{n} \in Q$ be C-independent and $J=\cap_{i=1}^{n}\left(q_{i}: R\right)_{R}$. Then either $\operatorname{dim}_{C}(R C)<\infty$, or there exists an element $r \in J$ such that $q_{1} r, q_{2} r, \ldots, q_{n} r$ are C independent elements.

Proof. Suppose that $q_{1} r, q_{2} r, \ldots, q_{n} r$ are C-dependent for all $r \in J$. Consider the C-linear mappings $l_{q_{i}}: V=J C \rightarrow R C$ given by the left multiplications by q_{i}. By Amitsur's Lemma there exist elements $c_{1}, c_{2}, \ldots, c_{n}$ such that $\tau=\sum_{i=1}^{n} c_{i} l_{q_{i}}$ is a
nonzero linear transformation of finite rank (see Theorem 4.2.7). Setting $q=\sum_{i=1}^{n} c_{i} q_{i}$, we note that $\tau=l_{q}$. Hence $K=q J C$ is a nonzero finite dimensional right ideal of $R C$. Since $R C$ is a prime ring, $R C \subseteq E n d_{C}(q J C)$ which proves our remark.

Corollary 6.3.2 Let R be a prime ring with extended centroid $C, Q=Q_{m r}(R), Q_{s}=Q_{s}(R)$ and $0 \neq \phi \in Q_{C}<X>a G P I$ on a nonzero ideal U of R. Then U has a nonzero generalized polynomial identity $\psi \in Q_{s_{C}}<X>$.

Proof. Pick any C-basis \mathcal{A} of Q containing 1 and consider the monomial basis $\mathcal{M}(\mathcal{A})$ of $Q_{C}\langle X\rangle$. The element ϕ, when written in terms of the monomial basis $\mathcal{M}(\mathcal{A})$, involves only a finite subset b_{1}, \ldots, b_{m} of \mathcal{A}. If $\operatorname{dim}_{C}(R C)=k<\infty$, then R is a $P I$-ring and then $S t_{k+1}\left(x_{1}, x_{2}, \ldots, x_{k+1}\right) \in \psi \in Q_{s C}<X>$ is a GPI of R. Suppose $\operatorname{dim}_{C}(R C)=\infty$. By Remark 6.3.1 there exists an element $r \in R$ such that $b_{1} r, b_{2} r, \ldots, b_{m} r$ are C independent elements of $A=R C$. Write $\phi=\sum_{i=1}^{k} \alpha_{i} M_{i}$ where $M_{i} \in \mathcal{M}(\mathcal{A})$ and $\alpha_{i} \in C$. It follows that

$$
M_{i}\left(r x_{1}, \ldots, r x_{n}\right) r \neq M_{j}\left(r x_{1}, \ldots, r x_{n}\right) r \text { for } i \neq j
$$

Therefore $\phi\left(r x_{1}, r x_{2}, \ldots, r x_{n}\right) r$ is a nonzero GPI on U with coefficients belonging to A, and the proof is complete.

The preceding corollary, in conjunction with Theorem 6.1.6, yields

Corollary 6.3.3 Let R be a prime ring with extended centroid $C, Q=Q_{m r}(R)$ and $\phi=\phi\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in Q_{C}<X>$ a nonzero $G P I$ on R. Then the central closure $A=R C \subseteq Q$ contains a nonzero idempotent e such that $e A e$ is a finite dimensional division C-algebra (Hence A is a primitive ring with nonzero socle).

Corollary 6.3.3 tells us that if a prime ring is GPI in the "wider" sense then it is GPI in the sense of section 6.1. We will, however, in the course of the present section establish the analogues of Corollary 6.1.3 (Lemma 6.3.12), Theorem 6.2.3 (Theorem 6.3.18), and Lemma 6.1.8 (Corollary 6.3.14) for prime rings.

We return now to the investigation of GPI's in semiprime rings and make the following important definition. A GPI $\phi \in$ $Q_{C}<X>$ is called strict, if $r_{C}(\phi)=0$. The following example shows us the importance of the condition $r_{C}(\phi)=0$.

Example. Let K be any commutative semiprime ring with an identity e and let A be any semiprime ring. We set $R=K \oplus A$ and $u=(e, 0)$. Then $\phi(x, y)=u x y-u y x$ is a GPI of R and $r_{C}(\phi)=(1-u) C$. Thus the GPI ϕ only contains nontrivial information about a "part" of R, namely about the direct summand K of R. We shall see that in general the situation is analogous to that of the example.

Remark 6.3.4 $Q_{C}<X>$ is a nonsingular C-module. In particular for any $\phi \in Q_{C}<X>$ there exists a unique idempotent $E(\phi) \in C$ such that $r_{C}(\phi)=(1-E(\phi)) C$.

Proof. Let A be the set of all finite sequences of elements of X. For any $\alpha=\left(x_{1}, x_{2}, \ldots, x_{m}\right), \beta=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in A$ we set $|\alpha|=m+1$ and $\alpha \cup \beta=\left(x_{1}, x_{2}, \ldots, x_{n}, y_{1}, y_{2}, \ldots, y_{n}\right) \in A$. Given any natural number n, we define $Q^{[n]}$ to be the n-fold tensor product $Q \otimes_{C} Q \otimes_{C} \ldots \otimes_{C} Q$ of Q. Now we set

$$
Q_{\alpha}=Q^{[|\alpha|]} \quad \text { and } \quad H=\oplus_{\alpha \in A} Q_{\alpha}
$$

We note that for $\tau=\emptyset,|\tau|=1$ and $Q_{\tau}=Q$. Define a multiplication in H by the rule

$$
\begin{aligned}
& \left(q_{1} \otimes \ldots \otimes q_{m} \otimes q_{m+1}\right)\left(p_{1} \otimes p_{2} \otimes \ldots \otimes p_{n+1}\right) \\
& =q_{1} \otimes \ldots \otimes q_{m} \otimes\left(q_{m+1} p_{1}\right) \otimes p_{2} \otimes p_{n+1} \in Q_{\alpha \cup \beta}
\end{aligned}
$$

and its consequences, where

$$
\begin{aligned}
& \alpha=\left(x_{1}, x_{2}, \ldots, x_{m}\right), \beta=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in A \\
& q_{1} \otimes \ldots \otimes q_{m} \otimes q_{m+1} \in Q_{\alpha} \quad \text { and } \\
& p_{1} \otimes p_{2} \otimes \ldots \otimes p_{n+1} \in Q_{\beta} .
\end{aligned}
$$

Now we define a mapping $f: Q_{C}<X>\rightarrow H$ by the rule

$$
q_{1} x_{1} q_{2} \ldots x_{m} q_{m+1} \mapsto q_{1} \otimes q_{2} \otimes \ldots \otimes q_{m+1} \in Q_{\alpha}
$$

and its consequences, where $\alpha=\left(x_{1}, \ldots, x_{m}\right)$. We leave it to the reader to check the straightforward details that H is an associative C-algebra and f is an isomorphism of C-algebras. Since a direct sum of nonsingular C-modules is a nonsingular C-module and Q is a nonsingular C-module by Corollary 3.1.2, it is enough to show that the tensor product of nonsingular C modules is nonsingular as well. To this end consider nonsingular C-modules M and N. Let $z=\sum_{i=1}^{m} x_{i} \otimes y_{i} \in M \otimes N$ where $x_{i} \in M, y_{i} \in N$. We set $M^{\prime}=\sum_{i=1}^{m} C x_{i}$ and $N^{\prime}=\sum_{i=1}^{m} C y_{i}$. According to Remark 3.1.4 and Lemma 3.1.1, the C-modules M^{\prime} and N^{\prime} are isomorphic to direct sums of principal ideals of the ring C and are injective C-modules. In particular they are direct summands of M and N respectively. The reader can easily check that the operation of tensor product commutes with the operation of direct sum. Hence $M^{\prime} \otimes_{C} N^{\prime}$ is a direct summand of $M \otimes_{C} N$ and furthermore the C-module $M^{\prime} \otimes_{C} N^{\prime}$ is isomorphic to a direct sum of tensor products of principal ideals of C. Therefore it is enough to show that $U=(C u) \otimes_{C}(C v)$ is a nonsingular C-module for all idempotents $u, v \in C$. Consider the mapping $h: C u \times C v \rightarrow C u v$ given by the rule $(x u, y v) \mapsto x y u v$, $x, y \in C$. Clearly h is a balanced mapping. Hence there exists a homomorphism of C-modules $F: U \rightarrow C u v$ such that $F(x u \otimes y v)=x y u v$ for all $x, y \in C$. Obviously F is a surjective homomorphism. Further let $z=\sum x_{i} u \otimes y_{i} v \in U$ where $x_{i}, y_{i} \in C$. Then $z=\left(\sum x_{i} y_{i} u v\right) \otimes v$ and so F is injective. Thus
$U \cong C u v$ is a nonsingular C-module and our remark now follows from Lemma 3.1.1.

Let $\phi \in Q_{C}<X>$ be a $G P I$ on $R, e=E(\phi), I=(e: R)_{R}$ and $J=e I$. Since e is a central element of Q, I is a dense ideal of R. Setting $K=(1-e) I$, we note that K is an ideal of R, $K \cap J=0$ and $I=J \oplus K$. Using Proposition 2.1.10 one checks that

$$
Q=Q_{m r}(J \oplus K)=Q_{m r}(J) \oplus Q_{m r}(K)=e Q \oplus(1-e) Q,
$$

$Q_{m r}(J)=e Q$ and $e Q_{C}<X>=(e Q)_{e C}<X>$. Hence

$$
\phi \in e Q_{C}<X>=(e Q)_{e C}<X>
$$

is a strict $G P I$ on the ring J and determines a zero generalized polynomial identity on the ring K.

These comments show that in the study of semiprime rings with GPI's one may confine one's attention to strict GPI's.

There are two ways to characterize semiprime rings with strict GPI's. The first one is using the results of section 2.3 and the skeleton of the proof of Theorem 6.1.6 to give a direct proof of a semiprime ring version of the prime GPI theorem. This approach was used in [21] and [22]. The second possibility is using the method of orthogonal completion to derive the desired description from the prime GPI theorem. We will follow this approach in order to demonstrate the method of orthogonal completion.

Let R be a semiprime ring with extended centroid $C, Q=$ $Q_{m r}(R), Q_{s}=Q_{s}(R)$, and $A=R C \subseteq Q_{s}$. We let $D=O(R)$, $H=O(A)$ denote the orthogonal completions of R and A, noting (by Proposition 3.1.10) that $O(Q)=Q$ and $O\left(Q_{s}\right)=Q_{s}$. Further let $B=B(C), P \in \operatorname{Spec}(B)$, and let $\phi_{P}: Q \rightarrow Q / P Q=$ \bar{Q} be the canonical surjection of rings. By Theorem 3.2.7 $\bar{D}=$ $\phi_{P}(D)$ is a prime ring, and by Theorem 3.2.15(iv) $\bar{C}=\phi_{P}(C)$ is the extended centroid of \bar{D}. By Theorem 3.2.15(i) $\bar{Q} \subseteq Q_{m r}(\bar{D})$
and by Theorem 3.2.15(iii) $\bar{D} \bar{C} \subseteq \bar{H} \subseteq \overline{Q_{s}} \subseteq Q_{s}(\bar{D})$. The following remark shows that the canonical C-algebra map

$$
\Phi_{P}: Q_{C}<X>\rightarrow \bar{Q}_{\bar{C}}<X>\subseteq Q_{m r}(\bar{D})_{\bar{C}}<X>
$$

behaves properly.
Remark 6.3.5 Let R be a semiprime ring with extended centroid $C, B=B(C)$ the Boolean ring of all idempotents of C, $Q=Q_{m r}(R), F=Q_{C}<X>$ and P a maximal ideal of B. Further let $\phi_{P}: Q \rightarrow Q / P Q=\bar{Q}$ be the canonical homomorphism of C-algebras and $\Phi_{P}: F \rightarrow \bar{Q}_{\bar{C}}<X>$ the canonical extension of ϕ_{P}. Then:
(i) Φ_{P} is a surjective homomorphism with $\operatorname{ker}\left(\Phi_{P}\right)=P F$;
(ii) If $\psi \in Q_{C}<X>$, then $\psi \in \operatorname{ker}\left(\Phi_{P}\right)$ if and only if $E(\psi) \in P$.

Proof. (i) Let M and N be nonsingular left C-modules. We set $\bar{M}=M / P M$ and $\bar{N}=N / P N$. Consider the mapping $g: M \times N \rightarrow \bar{M} \otimes_{\bar{C}} \bar{N}$ given by the rule

$$
(m, n) \mapsto(m+P M) \otimes(n+P N), m \in M, n \in N
$$

Clearly g is balanced. Therefore there exists a mapping

$$
G: M \otimes_{C} N \rightarrow \bar{M} \otimes_{\bar{C}} \bar{N}
$$

such that

$$
m \otimes n \mapsto(m+P M) \otimes(n+P N), m \in M, n \in N
$$

We claim that $\operatorname{ker}(G)=P\left(M \otimes_{C} N\right)$. Indeed,

$$
P\left(M \otimes_{C} N\right)=(P M) \otimes_{C} N=M \otimes_{C}(P N)
$$

Note that \bar{M} and \bar{N} are vector spaces over the field \bar{C}. Pick subsets $\left\{u_{\gamma} \mid \gamma \in \Gamma\right\} \subseteq M$ and $\left\{v_{\delta} \mid \delta \in \Delta\right\} \subseteq N$ such that
$\left\{u_{\gamma}+P M \mid \gamma \in \Gamma\right\}$ and $\left\{u_{\delta}+P N \mid \delta \in \Delta\right\}$ are \bar{C}-bases of \bar{M} and \bar{N} respectively. Let $z=\sum_{i} x_{i} \otimes y_{i} \in M \otimes_{C} N$ where $x_{i} \in M$, $y_{i} \in N$. Obviously $z=\sum_{\gamma, \delta} c_{\gamma \delta} u_{\gamma} \otimes v_{\delta}+z^{\prime}$ where $c_{\gamma \delta} \in C$ and $z^{\prime} \in P\left(M \otimes_{C} N\right)$. If $z \notin P\left(M \otimes_{C} N\right)$, then $c_{\gamma_{0} \delta_{0}} \notin P$ for some $\gamma_{0} \in \Gamma, \delta_{0} \in \Delta$. Since $\left\{\left(u_{\gamma}+P M\right) \otimes\left(v_{\delta}+P N\right) \mid \gamma \in \Gamma, \delta \in \Delta\right\}$ is a \bar{C}-basis of $\bar{M} \otimes_{\bar{C}} \bar{N}$, we conclude that $G(z) \neq 0$. Therefore $\operatorname{ker}(G)=P\left(M \otimes_{C} N\right)$.

Taking into account the isomorphism of the C-algebras H and $Q_{C}<X>$ established in the proof of the preceding remark, we infer now that $\operatorname{ker}\left(\Phi_{P}\right)=P F$.
(ii) The proof is similar to that of Remark 3.2.2.

Returning to our general setting we suppose now that

$$
\psi=\psi\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in Q_{C}<X>
$$

is a strict $G P I$ on R. We claim that $\bar{\psi}=\Phi_{P}(\psi)$ is a nonzero GPI on \bar{D}. Indeed, it follows from Remark 3.1.8 and Remark 3.1.9 that ψ is a strict GPI on D. For any $d_{1}, d_{2}, \ldots, d_{n} \in$ D we have

$$
\bar{\psi}\left(\phi_{P}\left(d_{1}\right), \ldots, \phi_{P}\left(d_{n}\right)\right)=\phi_{P}\left(\psi\left(d_{1}, \ldots, d_{n}\right)\right)=0
$$

and so $\bar{\psi}$ is a $G P I$ on \bar{D}. Since $E(\psi)=1, \Phi_{P}(\psi) \neq 0$ by Remark 6.3.5. We summarize what we have proved in the following

Corollary 6.3.6 Let R be a semiprime ring with extended centroid $C, B=B(C), Q=Q_{m r}(R), D=O(R)$ the orthogonal completion of R and P a maximal ideal of B. Further let $\phi_{P}: Q \rightarrow Q / P Q=\bar{Q}$ and $\Phi_{P}: Q_{C}<X>\rightarrow \bar{Q}_{\bar{C}}<X>$ be canonical homomorphisms of C-algebras and let $\psi \in Q_{C}<X>$ be a strict GPI on R. Then $\Phi_{P}(\psi)$ is a nonzero GPI on the prime ring $\phi_{P}(D)$.

An idempotent e of a C-algebra A is said to be of finite C rank n if $e A e$ is a free C-module with a basis of n elements.

Further, an idempotent e is called abelian if $e A e$ is a von Neumann regular ring all of whose idempotents are central. Finally an idempotent $e \in A$ is called faithful (or C-faithful for emphasis) if $r_{C}(e)=0$. The notion of a faithful abelian idempotent e of finite C-rank n lends itself very nicely to the following description by Horn formulas:

$$
\begin{align*}
& \chi_{0}(e, c)=\|c \in C\| \wedge(\|c=0\| \vee\|c e \neq 0\|) \wedge\left\|e^{2}=e\right\| ; \\
& \chi_{1}\left(e, x_{1}, x_{2}\right)=\left\|\left(e x_{1} e\right)\left(e x_{2} e\right)\left(e x_{1} e\right)=e x_{1} e\right\| ; \\
& \chi_{2}\left(e, y_{1}, y_{2}\right)=\left\|\left(e y_{1} e\right)^{2} \neq e y_{1} e\right\| \\
& \vee\left\|\left(e y_{1} e\right)\left(e y_{2} e\right)=\left(e y_{2} e\right)\left(e y_{1} e\right)\right\| ; \\
& \eta_{n}\left(e, z, z_{1}, \ldots, z_{n}, c_{1}, \ldots, c_{n}, t_{1}, \ldots, t_{n}\right)= \\
& \wedge_{i=1}^{n}\left\|c_{i} \in C\right\| \wedge\left\|e z e=\sum_{i=1}^{n} c_{i} e z_{i} e\right\| \\
& \wedge_{i=1}^{n}\left\|t_{i} \in C\right\| \wedge\left[\left(\wedge_{i=1}^{n}\left\|t_{i}=0\right\|\right) \vee\left\|\sum_{i=1}^{n} t_{i} e z_{i} e \neq 0\right\|\right] ; \\
& \theta_{n}(e)=(\forall c)\left(\forall x_{1}\right)\left(\exists x_{2}\right)\left(\forall y_{1}\right)\left(\forall y_{2}\right)\left(\exists z_{1}\right) \ldots\left(\exists z_{n}\right)(\forall z) \\
&\left(\exists c_{1}\right) \ldots\left(\exists c_{n}\right) \chi_{0}\left(e, x_{1}, x_{2}\right) \\
& \wedge \chi_{1}\left(e, y_{1}, y_{2}\right) \wedge \chi_{2}\left(e, y_{1}, y_{2}\right) \\
& \wedge \eta_{n}\left(e, z, z_{1}, \ldots, z_{n}, c_{1}, \ldots, c_{n}, t_{1}, \ldots, t_{n}\right) ; \\
& \Theta_{n}=(\exists e) \theta_{n}(e) \tag{6.2}
\end{align*}
$$

Clearly $e \in A$ is a faithful abelian idempotent of finite C-rank if and only if $A \models \theta_{n}(e)$ for some $n>0$.

Lemma 6.3.7 Let R be a semiprime ring, $A=R C, H=O(A)$, let $\psi \in Q_{C}<X>$ be a strict GPI of R and $0 \neq a \in A$. Then:
(i) For all $P \in \operatorname{Spec}(B)$ there exists a number $n=n(P)$, $n=k^{2}$, such that $\phi_{P}(H) \models \Theta_{n}$;
(ii) For all $P \in S p e c(B)$ with $E(a) \notin P$ there exists a number $n=n(P)$ such that $\phi_{P}(H) \models(\exists x)(\exists e)\left(\theta_{n}(e) \wedge\|e=a x\|\right)$.

Proof. Let e be any minimal idempotent of \bar{H} and let $n=$ $\operatorname{dim}_{\bar{C}}(\Delta)$ where $\Delta=e \bar{H} e$. Clearly $n=k^{2}<\infty$ and

$$
\phi_{P}(H) \models \theta_{n}(e) \quad \text { and } \quad \phi_{P}(H) \models \Theta_{n}
$$

which proves (i).
Now let $E(a) \notin P$. Then $\bar{a}=\phi_{P}(a) \neq 0$ by Corollary 3.2.4. Therefore the right ideal $0 \neq \bar{a} \bar{H}$ of \bar{H} contains a minimal idempotent of \bar{H} and so $\phi_{P}(H) \models(\exists x)(\exists e)\left(\theta_{n}(e) \wedge\|e=a x\|\right)$.

It is well-known that any right (left) ideal of a centrally closed prime GPI ring contains a minimal idempotent e such that $e R e$ is a finite-dimensional vector space over its center $e C$. We now prove the analogue of this result for semiprime rings.

Theorem 6.3.8 Let R be a semiprime ring with extended centroid $C, Q=Q_{m r}(R), A=R C \subseteq Q$ the central closure of R, and N a nonzero right (left) ideal of A. Suppose that $\phi \in$ $Q_{C}<X>$ is a strict GPI on R. Then there is a central idempotent $u \in C$ and a uC-faithful abelian idempotent h^{\prime} in A of finite $u C-\operatorname{rank} n$.

Proof. We set $H=O(A)$ and let $0 \neq a \in N$. Note that $a H$ is an orthogonally complete subset of H by Lemma 3.1.18. Choose a maximal ideal P of B such that $\phi_{P}(a) \neq 0$ (i.e., $E(a) \notin$ P). Then by Lemma 6.3 .7 (ii) $\phi_{P}(H) \models \Theta_{n}^{\prime}$ for some natural number n where $\Theta_{n}^{\prime}=(\exists x)(\exists h)\left(\theta_{n}(h) \wedge\|h=a x\|\right)$. According to Theorem 3.2.10, there exists a central idempotent $f \notin P$ such that $f H \models \Theta_{n}^{\prime}$. Therefore there exists an abelian idempotent $h \in f a H$ of finite $f C$-rank n such that $r_{f C}(h)=0$. Pick a basis $z_{1}, z_{2}, \ldots, z_{n} \in h H h$ of the $f C$-module $h H h$. Note that $h H h=\oplus_{i=1}^{n} f C z_{i}$. By Proposition 3.1.14

$$
h=\sum_{v \in V}{ }^{\perp} h_{v} v \quad \text { and } \quad z_{i}=\sum_{v_{i} \in V_{i}}{ }^{\perp} z_{v_{\mathrm{i}}} v_{i},
$$

where V, V_{i} are dense orthogonal subsets of B and $h_{v} \in a A$, $z_{v_{i}} \in A$ for all $v \in V, v_{i} \in V_{i}, i=1,2, \ldots, n$. Pick idempotents $v \in V, v_{1} \in V_{1}, \ldots, v_{n} \in V_{n}$ such that $u=f v v_{1} \ldots v_{n} \neq 0$. Since $r_{f C}(h)=0, h^{\prime}=h_{v} u=h u \neq 0$. Clearly $h^{\prime} \in a A$ is an idempotent and $z_{i}^{\prime}=z_{i} u=z_{v_{i}} u \in h^{\prime} A h^{\prime}, i=1,2, \ldots, n$. From $h H h=\oplus_{i=1}^{n} f C z_{i}$ we conclude that

$$
h^{\prime} A h^{\prime} \subseteq h^{\prime} H h^{\prime}=u h H h=\sum_{i=1}^{n} C u z_{i}=\sum_{i=1}^{n} C z_{i}^{\prime} \subseteq h^{\prime} A h^{\prime}
$$

Therefore $h^{\prime} \in a A \subseteq N$ is a nonzero abelian idempotent of finite $u C$-rank. The proof is complete.

The following decomposition theorem for semiprime rings will be especially useful for the determination of generators of the \mathcal{T}-ideal of GPI's in section 6.5.

Theorem 6.3.9 Let R be a semiprime ring with extended centroid $C, Q=Q_{m r}(R)$ and H the orthogonal completion of the central closure $R C \subseteq Q$ of R. Suppose that R has a strict GPI $h(X) \in Q_{C}<X>$. Then there exist a natural number $t>0$ and nonzero idempotents $u_{1}, u_{3}, \ldots, u_{t} \in H$ such that:
(i) The $E\left(u_{i}\right)$'s are an orthogonal set whose sum is 1 ;
(ii) u_{i} is a faithful abelian idempotent of finite rank $n_{i}=k_{i}^{2}$ of $E\left(u_{i}\right) C$-algebra $E\left(u_{i}\right) H, i=1,2, \ldots, t$;
(iii) If $M \in \operatorname{Spec}(B)$ with $E\left(u_{i}\right) \notin M$ then $\phi_{M}\left(u_{i} Q u_{i}\right)$ is an n_{i}-dimensional division algebra over its center $\phi_{M}\left(u_{i} C\right)$;
(iv) $e=u_{1}+u_{2}+\ldots+u_{t}$ is a faithful abelian idempotent of the C-algebra H such that $u H u$ is a finitely generated C-module.

Proof. By Lemma 6.3.7(i) for every $P \in \operatorname{Spec}(B) \phi_{P}(H) \models$ $\Theta_{n(P)}$ for some natural number $n(P)=k^{2}$. According to Theorem 3.2.18 (with H playing the role of R) there exists a family of pairwise orthogonal nonzero idempotents $\left\{f_{1}, f_{2}, \ldots, f_{t}\right\} \subseteq C$ and natural numbers $n_{1}, n_{2}, \ldots, n_{t}$ such that $f_{1}+f_{2}+\ldots+f_{t}=1$
and $f_{i} H \models \Theta_{n_{i}}, i=1,2, \ldots, t$. Thus $f_{i} H$ contains an $f_{i} C$ faithful abelian idempotent u_{i} of rank n_{i} over $f_{i} C$. Clearly $E\left(u_{i}\right)=f_{i}$ and so both (i) and (ii) have been proved. Now suppose $E\left(u_{i}\right) \notin M$. By Corollary 3.2.4 $\phi_{M}\left(u_{i}\right) \neq 0$. Setting $D=O(R)$ and $\bar{D}=\phi_{M}(D)$, we recall that \bar{D} is a prime ring with extended centroid $\phi_{M}(C)$ and $\bar{D} \subseteq \phi_{M}(H) \subseteq Q_{s}(\bar{D})$. Therefore $\phi_{M}(H)$ is a prime ring. Since $\phi_{M}\left(u_{i}\right)$ is a nonzero idempotent, it follows that $\phi_{M}\left(u_{i}\right) \phi_{M}(H) \phi_{M}\left(u_{i}\right)=\phi_{M}\left(u_{i} H u_{i}\right)$ is a prime ring as well. Obviously a prime von Neumann regular ring all of whose idempotents are central is a division ring. Therefore $\phi_{M}\left(u_{i} H u_{i}\right)$ is a division ring. By Corollary 2.3.12 the center $Z\left(\phi_{M}\left(u_{i}\right) \phi_{M}(H) \phi_{M}\left(u_{i}\right)\right)$ is equal to $\bar{C} \phi_{M}\left(u_{i}\right)=\phi_{M}\left(u_{i} C\right)$. Consider the following decomposition of the C-module H :

$$
H=u_{i} H u_{i} \oplus\left(1-u_{i}\right) H u_{i} \oplus u_{i} H\left(1-u_{i}\right) \oplus\left(1-u_{i}\right) H\left(1-u_{i}\right)
$$

It follows that $(P H) \cap\left(u_{i} H u_{i}\right)=P u_{i} H u_{i}$ and so $\operatorname{ker}\left(\phi_{M}\right) \cap$ $\left(u_{i} H u_{i}\right)=P u_{i} H u_{i}$. Choose a basis $z_{1}, z_{2}, \ldots, z_{n}$ of the C module $u_{i} H u_{i}$, where $n=n_{i}$. Then $P u_{i} H u_{i}=\oplus_{i=1}^{n} P C z_{i}$ and so $\phi_{M}\left(u_{i} H u_{i}\right)=\oplus_{i=1}^{n} \bar{C} \phi_{M}\left(z_{i}\right)$. Therefore $\operatorname{dim}_{\phi_{M}\left(u_{i} C\right)}\left(\phi_{M}\left(u_{i} H u_{i}\right)\right)$ $=n_{i}$ and (iii) is proved. Finally it is an easy matter to see that $e=u_{1}+u_{2}+\ldots+u_{t}$ is a faithful abelian idempotent over C (in fact $e H e=\oplus_{i=1}^{t} u_{i} H u_{i}$) and that $e H e$ is finitely generated over C (the number of generators being $\leq n_{1} n_{2} \ldots n_{t}$). The proof is complete.

Corollary 6.3.10 Let R be a semiprime ring with extended centroid $C, B=B(C), Q=Q_{m r}(R)$ and $D=O(R)$ the orthogonal completion of R and $H=O(R C)$. Then the following conditions are equivalent:
(i) R has a strict GPI $\phi \in Q_{C}<X>$;
(ii) The orthogonal completion $O(R C)$ contains a faithful abelian idempotent e such that eHe is finitely generated over C;
(iii) For all $P \in \operatorname{Spec}(B)$ the ring $\phi_{P}(D)$ is $G P I$;
(iv) For all $P \in \operatorname{Spec}(B)$ the ring $\phi_{P}(H)$ is primitive with nonzero socle and the associated division ring is a finite dimensional over its center;
(v) For all $P \in \operatorname{Spec}(B)$ the ring $\phi_{P}(Q)$ is primitive with nonzero socle and the associated division ring is a finite dimensional over its center.

Proof. The implication (i) \Rightarrow (iii) is an immediate consequence of Lemma 6.3.7(i). Since the proof of Theorem 6.3.9 only rested on the assumption that each $\phi_{P}(H)$ was $G P I$, it follows that (iii) implies (ii). The equivalence of (iii), (iv) and (v) follows from Corollary 6.1.7. Now we proceed to prove that (ii) \Rightarrow (i). Let $e O(R C) e$ be an n-generated C-module. It is clear that

$$
S t_{n+1}\left(e x_{1} e, \ldots, e x_{n+1} e\right)=\sum_{\sigma \in S_{n+1}} \epsilon(\sigma) e x_{\sigma(1)} e \ldots e x_{\sigma(n+1)} e
$$

is a GPI on R. Since

$$
\begin{aligned}
& \Phi_{P}\left(S t_{n+1}\left(e x_{1} e, \ldots, e x_{n+1} e\right)\right) \\
& =S t_{n+1}\left(\phi_{P}(e) x_{1} \phi_{P}(e), \ldots, \phi_{P}(e) x_{n+1} \phi_{P}(e)\right) \neq 0
\end{aligned}
$$

for all $P \in \operatorname{Spec}(B), S t_{n+1}\left(e x_{1} e, \ldots, e x_{n+1} e\right)$ is strict.

Theorem 6.3.11 Let R be a semiprime ring with extended centroid C and $Q=Q_{m r}(R)$. Suppose that $\phi \in Q_{C}<X>$ is a strict GPI on R. Then:
(i) R is right and left nonsingular (i.e, $Z_{r}(R)=0=Z_{l}(R)$);
(ii) Q is a right selfinjective von Neumann regular ring with a faithful abelian idempotent e such that eQe is a finitely generated C-module.

Proof. (i) Since $O(R C) \subseteq Q_{s}(R)$, it is enough to show that the orthogonal completion H of the central closure $A=R C$ is
right and left nonsingular (see Corollary 3.1.15, Lemma 2.1.13).
According to Corollary 6.3.10, $\phi_{P}(H)$ is a primitive ring with nonzero socle for any maximal ideal P of $B=B(C)$. By Theorem 4.3.7(iv) the socle of a primitive ring belongs to any essential left (right) ideal. Hence $Z_{l}\left(\phi_{P}(H)\right)=0=Z_{r}\left(\phi_{P}(H)\right)$. Then by Corollary 3.2.13

$$
\phi_{P}\left(Z_{l}(H)\right)=0=\phi_{P}\left(Z_{r}(H)\right)
$$

for all $P \in \operatorname{Spec}(B)$. It follows from Corollary 3.2.4 that H is left and right nonsingular.
(ii) First of all we note that Q is a centrally closed orthogonally complete ring by Theorem 2.1.11 and Proposition 3.1.10. According to Corollary 6.3.10, $\phi_{P}(Q)$ is a primitive ring with nonzero socle and the associated division ring is finite dimensional over its center. Since $Q_{m r}(Q)=Q$, it follows from Corollary 6.3.10 (with Q instead of R) that Q has a faithful abelian idempotent e such that $e Q e$ is a finitely generated C-module. In view of (i) the other properties of Q are given by Theorem 2.1.15. The proof is complete.

Our next aim is to show that Corollary 6.1.3 also holds for semiprime rings. To this end the following lemma will be useful.

Lemma 6.3.12 Let R be a semiprime ring with extended centroid $C, Q=Q_{m r}(R)$ and $\phi(x)=\sum_{i=1}^{m} a_{i} x b_{i} \in Q_{C}\langle X\rangle$. Suppose that $\sum_{i=1}^{m} C a_{i}=\oplus_{i=1}^{m} C a_{i}$ and $E\left(a_{i}\right)=E\left(b_{i}\right) \neq 0$ for all $i=1,2, \ldots, m$. Then ϕ is not a GPI on R.

Proof. Suppose that ϕ is a GPI on R. By Theorem 2.3.3 there exist elements $u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{n} \in R$ such that

$$
a=\sum_{j=1}^{n} u_{j} a_{1} v_{j} \neq 0 \quad \text { but } \quad \sum_{j=1}^{n} u_{j} a_{i} v_{j}=0 \quad \text { for } \quad i>1 .
$$

Clearly $\sum_{j=1}^{n} u_{j} \phi\left(v_{j} x\right)=a x b_{1}$ is a GPI on R. Therefore $a R b_{1}=$ 0 and so $a E\left(b_{1}\right)=0$ by Lemma 2.3.10. Then

$$
0=a E\left(b_{1}\right)=\left(\sum_{j=1}^{n} u_{j} a_{1} v_{j}\right) E\left(b_{1}\right)=\sum_{j=1}^{n} u_{j}\left(E\left(b_{1}\right) a_{1}\right) v_{j}=a
$$

a contradiction.

Proposition 6.3.13 Let R be a semiprime ring with extended centroid C and $Q=Q_{m r}(R)$. Suppose that $\phi(x)=\sum_{i=1}^{m} a_{i} x b_{i} \in$ $Q_{C}<X>$ is a GPI on R. Then $\phi=0$.

Proof. Suppose that $\phi \neq 0$. Taking into account Theorem 2.3.9(iv), we can assume without loss of generality that

$$
\sum_{i=1}^{m} C a_{i}=\oplus_{i=1}^{m} C a_{i} .
$$

Replacing (if it is necessary) a_{i} and b_{i} by $E\left(b_{i}\right) a_{i}$ and $E\left(a_{i}\right) b_{i}$ we can assume also that $E\left(a_{i}\right)=E\left(b_{i}\right)$ for all $i=1,2, \ldots, m$ (see Theorem 2.3.9(ii)). The conditions of Lemma 6.3.12 are now fulfilled, and by Lemma 6.3.12 a contradiction is reached.

Now we proceed to prove the analogs of the results of Section 6.2 for semiprime rings. We start with the following

Corollary 6.3.14 Let R be a prime ring with extended centroid C and $Q=Q_{m r}(R)$, let U be an additive subgroup of R which is not GPI, and fix $x \in X$. Let $T_{i}=\left\{\phi_{i j}(x) \mid j=1,2, \ldots, n_{i}\right\}$, $i=1,2, \ldots, m$, be m given subsets of $Q_{C}<X>$ each of which is C-independent. Then there exists $u \in U$ such that for each $i=1,2, \ldots, m$ the subset $T_{i}(u)=\left\{\phi_{i j}(u) \mid j=1,2, \ldots, n_{i}\right\} \subseteq Q$ is C-independent.

Proof. Exactly the same proof as that of Lemma 6.1.8 can be used, with Q_{s} now replaced by $Q_{m r}$.

Our next goal is to prove the analogue of Theorem 6.2.3 for semiprime rings. Let R be a semiprime ring with a (fixed) antiautomorphism g and $Q=Q_{m r}(R)$. The notions of g-substitution and g-identity $\phi \in Q_{C}<X>$ for semiprime rings are defined analogously to that of prime ring.

Lemma 6.3.15 Let R be a prime ring with extended centroid C and $Q=Q_{m r}(R)$. Suppose that g is an antiautomorphism of R and

$$
0 \neq \phi(x)=\sum_{i=1}^{m} a_{i} x b_{i}+\sum_{j=1}^{n} c_{j} x^{g} d_{j} \in Q_{C}<X \cup X^{g}>
$$

be such that $\operatorname{dim}_{C}(\phi(I) C)<\infty$ for some $0 \neq I \triangleleft R$. Then R is GPI (in particular if ϕ is a g-identity on I then R is GPI).

Proof. Suppose that R is not $G P I$ and $n=0$. Without loss of generality we can assume that $a_{1}, a_{2}, \ldots, a_{m}$ are C independent. Multiplying by a suitable element r from the right we can assume also that $b_{i} \in R$. By Remark 6.3 .1 there exist an element $r^{\prime} \in R$ such that $a_{1} r^{\prime}, a_{2} r^{\prime}, \ldots, a_{m} r^{\prime}$ are C-independent elements of R. Hence $\phi^{\prime}(x)=\phi\left(r^{\prime} x\right) \neq 0$. Since $\phi^{\prime}(I) C=$ $\phi\left(r^{\prime} I\right) C \subseteq \phi(I) C$, we conclude that $\operatorname{dim}_{C}\left(\phi^{\prime}(I) C\right)<\infty$ and so by Lemma 6.1.2 and Lemma 6.1.4 R is GPI, a contradiction. The general case is considered analogously to that of Lemma 6.2.1.

Now the proof of Theorem 6.2.3 yields the following
Corollary 6.3.16 Let R be a prime ring with an antiautomorphism g and extended centroid $C, Q=Q_{m r}(R)$ and let $0 \neq \phi \in$ $Q_{C}<X \cup X^{g}>$ be a g-identity on $0 \neq I \triangleleft R$. Then R is $G P I$.

Lemma 6.3.17 Let R be a semiprime ring with an antiautomorphism g and extended centroid $C, Q=Q_{m r}(R)$ and let

$$
0 \neq \phi=\phi\left(x_{1}, \ldots, x_{n}, x_{1}^{g}, \ldots, x_{n}^{g}\right) \in Q_{C}<X \cup X^{g}>
$$

be a g-identity of R. Then there exists an ideal I of R such that $\phi\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)$ is a GPI on I and $e^{g}=e$ for all $e^{2}=e \in(1-E(I)) C$.

Proof. First of all we recall that by Proposition 2.5 .4 g can be uniquely extended to an antiautomorphism of $Q_{s}=Q_{s}(R)$. Clearly $C^{g}=C$. By Zorn's Lemma there exists an ideal I of R maximal with respect to the property that

$$
\phi\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right) \text { is a } G P I \text { on } I .
$$

Suppose that $u^{g} \neq u$ for some $u^{2}=u \in(1-E(I)) C$. If $u u^{g^{-1}}=$ $u=u u^{g}$, then

$$
u^{g}=\left(u u^{g^{-1}}\right)^{g}=u^{g} u=u
$$

a contradiction. Therefore either $u \neq u^{g} u$, or $u \neq u^{g^{-1}} u$. In the first case we set $v=u\left(1-u^{g}\right)$ and $w=u^{g^{-1}}(1-u)$, otherwise we let $v=u\left(1-u^{g^{-1}}\right)$ and $w=u^{g^{-1}}\left(1-u^{g^{-2}}\right)$. Clearly $w^{g}=v$ and $v w=0$. Hence $0=(v w)^{g}=v^{g} v$ and

$$
\begin{equation*}
v w=0=v^{g} v \tag{6.3}
\end{equation*}
$$

Let $J=v(v: R)_{R}$ and $K=w(w: R)_{R}$. Since $v=w^{g}, J=K^{g}$ as well. Obviously

$$
\psi=\phi\left(v x_{1}+w z_{1}, \ldots, v x_{n}+w z_{n}, v^{g} x_{1}^{g}+v z_{1}^{g}, \ldots, v^{g} x_{n}^{g}+v z_{n}^{g}\right)
$$

vanishes under all substitutions $x_{i} \mapsto r_{i} \in J, z_{i} \mapsto s_{i} \in K$, $i=1,2, \ldots, n$. We now infer from (6.3) that

$$
v \psi=v \phi\left(x_{1}, \ldots, x_{n}, z_{1}^{g}, \ldots, z_{n}^{g}\right)
$$

Recall that $v r=r$ for all $r \in J$ and $J^{g^{-1}}=K$. Pick any $r_{1}, r_{2}, \ldots, r_{n}, s_{1}, s_{2}, \ldots, s_{n} \in J$. By the above results ψ vanishes under the substitution $x_{i} \mapsto r_{i}, z_{i} \mapsto s_{i}^{g^{-1}}, i=1,2, \ldots, n$. Therefore $\phi\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)$ is a $G P I$ on J. Recalling that $J=v(v: R)_{R}$ and $v \in(1-E(I)) C$, we note that $E(I) J=0$ and so $I Q J=0$. Therefore $I+J=I \oplus J$. Since $I Q J=0$,

$$
\begin{aligned}
& \phi\left(a_{1}+b_{1}, \ldots, a_{n}+b_{n}, c_{1}+d_{1}, \ldots, c_{n}+d_{n}\right) \\
& =\phi\left(a_{1}, \ldots, a_{n}, c_{1}, \ldots, c_{n}\right)+\phi\left(b_{1}, \ldots, b_{n}, d_{1}, \ldots, d_{n}\right)=0
\end{aligned}
$$

for all $a_{i}, c_{i} \in I, d_{i}, b_{i} \in J, 1 \leq i \leq n$. It follows that $\phi\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)$ is a $G P I$ on $I+J$ in contradiction to the choice of I. Thus $u^{g}=u$ for all $u \in(1-E(I)) C$ and the proof is complete.

Theorem 6.3.18 Let R be a semiprime ring with an antiautomorphism g and extended centroid $C, Q=Q_{m r}(R), Q_{s}=Q_{s}(R)$ and let

$$
0 \neq \phi=\phi\left(x_{1}, \ldots, x_{n}, x_{1}^{g}, \ldots, x_{n}^{g}\right) \in Q_{C}<X \cup X^{g}>
$$

be a strict g-identity of R. Then the ring R has a strict GPI $\psi \in Q_{s_{C}}<X>$.

Proof. By Corollary 6.3 .10 it is enough to show that $\phi_{P}(Q)$ is a primitive ring with nonzero socle and an associated division ring is finite dimensional over its center for all $P \in \operatorname{Spec}(B)$ where $B=B(C)$. Let an ideal I of R be as in Lemma 6.3.17. Clearly $O(I)$ is an ideal of $D=O(R)$ and

$$
\psi=\phi\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)
$$

is a $G P I$ on $O(I)$ (see Remark 3.1.8 and Remark 3.1.9). We also note that $r_{C}(\psi)=r_{C}(\phi)=0, r_{C}(O(I))=r_{C}(I)$ and so $E(O(I))=E(I)$. We set $v=(1-E(I))$ and $J=v(v: R)_{R}$.

Since $(v: R)_{R}$ is a dense ideal, $r_{C}(J)=r_{C}(v)=E(I) C$ and so $E(J)=v$. Let $P \in \operatorname{Spec}(B)$. Then either $E(I) \notin P$ or $v \notin P$. Suppose that $E(I) \notin P$. Then by Corollary 3.2.4 $\phi_{P}(O(I))$ is a nonzero ideal with a nonzero $G P I$ on a prime ring $\phi(D)$ and so $\phi_{P}(Q)$ has the desired properties (see Corollary 6.1.7). Consider now the case when $v \notin P$. Since $v=E(J)=E(O(J))$, we conclude that $\phi_{P}(O(J)) \neq 0$. According to Lemma 6.3.17, $u^{g}=u$ for all $u \in v C$. We infer from Remark 3.1.8, Remark 3.1.9 and Remark 3.1.16 that ϕ is a g-identity of $O(J)$. Further $P=$ $(1-v) B+P \cap v B$ and so $P^{g}=P$. Hence g induces an antiautomorphism h of $\phi_{P}(D)$. We set $\bar{Q}=\phi_{P}(Q)$ and $\bar{C}=\phi_{P}(C)$. Consider the canonical extension $\Phi_{P}: Q_{C}<X \cup X^{g}>\rightarrow \bar{Q}_{\bar{C}}<X \cup X^{h}>$ of ϕ_{P}. Clearly $\Phi_{P}(\phi)$ is an h-identity on $0 \neq \phi_{P}(O(J)) \triangleleft \phi(D)$. By Lemma 6.3.15 $\phi_{P}(D)$ is GPI and so by Corollary 6.1.7 the ring \bar{Q} has the desired properties. The proof is complete.

Remark 6.3.19 Let R be a semiprime ring with extended centroid C and $Q=Q_{m r}(R)$. Further let K be a submodule of Q_{R}. Then $E(K)=E(K \cap R)$ and $r_{R}(K)=r_{R}(K \cap R)=r_{R}(E(K))$.

Proof. We set $L=K \cap R$. Let $L c=0$ for some $c \in C$. Pick any $q \in K$ and set $I=(q: R)_{R}$. We note that I is a dense right ideal of R and $q I \subseteq L$. Hence $0=q I c=(q c) I$ and so $q c=0$ by Proposition 2.1.7. It follows that $r_{C}(L)=r_{C}(K)$ which implies $E(K)=E(L)$.

It follows from Lemma 2.3.10 that for any submodule $U \subseteq$ Q_{R} and element $r \in R$ the relation $U r=0$ is equivalent to $E(U) r=0$. Applying what we just proved, we infer that $r_{R}(K)=r_{R}(K \cap R)$.

We close this section with the following useful result (here we call a ring R a $P I$-ring if it has a polynomial identity with integral coefficients at least one of which equals 1).

Theorem 6.3.20 Let R be a semiprime ring with extended centroid C and $Q=Q_{m r}(R)$. Then the following conditions are equivalent:
(i) R has a strict $G P I$ belonging to $Q_{C}<X>$;
(ii) R contains a right (left) ideal L such that $r_{R}(L)=0$ $\left(l_{R}(L)=0\right)$ and L is a PI-ring;
(iii) Any right (left) ideal K of R contains a right (left) ideal N such that $r_{R}(K)=r_{R}(N)\left(l_{R}(K)=l_{R}(N)\right)$ and N is a PI-ring.

Proof. (i) \Rightarrow (ii) We set $A=R C \subseteq Q$ and $H=O(A)$. By Theorem 6.3.9(iv) H contains a faithful abelian idempotent v (hence $E(v)=1$) such that $v H v$ is an n-generated C-module for some natural number n. Then $S T_{n+1}(v ; X)$ is a strict $G P I$ on H. Since $H \subseteq Q_{s}(R)$, it is enough to prove only the "right" version of (ii) and (iii) (see Proposition 3.1.10). We set $L=v H \cap R$ and claim that L is a $P I$-ring and $r_{R}(L)=0$. Indeed, since $v x=x$ for all $x \in L, S t_{n+1}\left(x_{1}, \ldots, x_{n+1}\right) x_{n+2}$ is a polynomial identity of L. Further by Remark 6.3.19 $r_{R}(L)=r_{R}(v H)$. Let $r \in r_{R}(v H)$. Then $v H r=0$ and so $r=E(v) r=0$ by Lemma 2.3.10.
(ii) \Rightarrow (iii) Let K be a nonzero right ideal of R and $f=$ $f\left(x_{1}, \ldots, x_{m}\right)$ a polynomial identity of L. Then $O(K)$ and $O(L)$ are right ideals of the orthogonal completion $O(R)$ of R. It follows from Remark 3.1.8 and Remark 3.1.9, that f is a polynomial identity on $O(L)$. By Proposition 3.1.11 there exist $k \in O(K)$, $l \in O(L)$ such that $E(k)=E(O(K))$ and $E(l)=E(O(L))$. According to Lemma 3.1.18 $k O(R) l$ is an orthogonally complete subset of $O(R)$ and so there exists $r \in O(R)$ such that $E(k r l)=$ $E(k O(R) l)$ by Proposition 3.1.11. For all $d_{1}, \ldots, d_{m+1} \in O(R)$ we have $l d_{i} k r \in O(L), 1 \leq i \leq m+1$, and so

$$
\begin{aligned}
& f\left(k r l d_{1}, k r l d_{2}, \ldots, k r l d_{m}\right) k r l d_{m+1}= \\
& k r f\left(l d_{1} k r, l d_{2} k r, \ldots, l d_{m} k r\right) l d_{m+1}=0 .
\end{aligned}
$$

Therefore the ring $\operatorname{krlO}(R)$ satisfies the polynomial identity $f\left(x_{1}, \ldots, x_{n}\right) x_{n+1}$. Setting $N=(k r l O(R)) \cap K$, we claim that $r_{R}(N)=r_{R}(K)$. Indeed, let $N r=0$ for some $a \in R$. Since N is a right ideal, we have $N R a=0$. By Lemma 2.3 .10 we have that $E(a) N=0$. Suppose that $E(a) k r l \neq 0$. By Proposition 3.1.14 $k=\sum_{v \in V} k_{v} v$ where V is a dense orthogonal subset of $B=B(C)$ and $k_{v} \in K$ for all $v \in V$. Then $k_{v}(E(a) r l)=v(E(a) k r l) \neq 0$ for some $v \in V$ (see Theorem 2.3.9(i)). Since $I=(r l: R)_{R}$ is a dense right ideal of $R, E(a) k_{v} r l I=k_{v}(E(a) r l) I \neq 0$. On the other hand $k_{v} r l I \subseteq N$ and so $E(a) k_{v} r l I=0$, a contradiction. Therefore $E(a) k r l=0$. By the choice of r we then have $E(a) k O(R) l=0$ and hence $E(a) k E(l)=0$ by Lemma 2.3.10. By the choice of l we have $E(l)=E(L)$. Since $r_{R}(L)=0$ and $L(1-E(L))(E(L): R)_{R}=0$, it follows that $E(L)=1$ and so $E(a) k=0$. By the choice of k we then have that $K E(a)=0$ and hence $K a=0$ by Lemma 2.3 .10 which proves our claim.
(iii) \Rightarrow (i) Taking $K=R$, we conclude that there exists a right ideal L of R such that $r_{R}(L)=0$ and L is a $P I$-ring. Let $f=f\left(x_{1}, \ldots, x_{m}\right)$ be a polynomial identity of L and let $l \in O(L)$ be as above. Without loss of generality we can assume that f is multilinear and the monomial $x_{1} x_{2} \ldots x_{m}$ is involved in f with the coefficient 1. We claim that $\phi=f\left(l x_{1}, l x_{2}, \ldots, l x_{m}\right) l x_{m+1}$ is a strict GPI on $O(R)$. Indeed, clearly ϕ is a GPI on R. Setting $e=1-E(L)$ and $I=(e: R)_{R}$, we see that $0=L e I$ and $e I \subseteq R$. Hence $e I=0$ and $E(L)=E(l)=1$. Suppose $c \phi=0$ for some $c \in C$. Then $c l x_{1} l x_{2} \ldots l x_{m+1}=0$. Recall that the C-module $Q x_{1} Q x_{2} \ldots Q x_{m+1} Q$ is isomorphic to the ($m+2$)-fold tensor product $Q \otimes_{C} Q \ldots \otimes_{C} Q$ via the mapping given by the rule $q_{1} x_{1} q_{2} \ldots x_{m+1} q_{m+1} \mapsto q_{1} \otimes q_{2} \otimes \ldots \otimes q_{m+2}$ and its consequences. Since $C l \cong C, C l$ is an injective C-module and so $C l$ is a direct summand of the C-module Q. Therefore the C-submodule $C(l \otimes$ $l \otimes \ldots \otimes l \otimes 1)$ is isomorphic to $C \otimes_{C} C \otimes_{C} \ldots \otimes_{C} C \cong C$ and hence $r_{C}\left(l x_{1} l x_{2} \ldots l x_{m+1}\right)=0$. The proof is complete.

Semiprime rings with GPI were investigated by K. I. Beidar
in [21], [22], [24] and [27] where Theorem 6.3.8, Theorem 6.3.11 and Proposition 6.3 .13 were proved. The proofs presented here are new. Besides the method of orthogonal completions, we have used here some ideas from [81]. The prime ring case of Theorem 6.3.20 was proved in S. K. Jain [135] and extended to semiprime rings in [27].

6.4 Lifting of GPI's

Our aim in this section is to prove the following theorem.
Theorem 6.4.1 Let R be a semiprime ring with extended centroid C and $Q=Q_{m r}(R)$. Then any GPI $\psi=\psi\left(x_{1}, \ldots, x_{n}\right) \in$ $Q_{C}<X>$ on R is a GPI on Q.

We start with the following useful
Proposition 6.4.2 Let R be a prime ring with extended centroid C and $Q=Q_{m r}(R)$. Suppose that $0 \neq \phi \in Q_{C}<X>$ is a GPI on $0 \neq K \triangleleft R$ and $|C|<\infty$. Then R is a primitive ring with nonzero socle and a nonzero idempotent e such that $e R e=e C$.

Proof. Obviously $I=\left(\cap_{c \in C}(c: R)_{R}\right) \cap K$ is a nonzero ideal of R and $I C=I$. Recalling that $Q_{m r}(I)=Q$, we conclude that C is the extended centroid of I and so I is centrally closed (see Lemma 2.1.9). Since ϕ is a nonzero GPI on I, we infer from Corollary 6.3.3 that $I=I C$ has a nonzero idempotent e such that $e I e$ is a finite dimensional division C-algebra. Therefore $e I e$ is a finite division ring. By Wedderburn's theorem on finite division rings eIe is a field (see Theorem 4.2.3). According to Corollary 2.3.12, the center $Z(e I e)$ is equal to $e C$ and so $e I e=$ $e C$. Since I is an ideal of R and $e \in I, e I e \subseteq e R e=e(e R e) e \subseteq$ $e I e$ and so $e R e=e I e=e C$. Applying Proposition 4.3.3, we
conclude that R is a primitive ring with nonzero socle. The proof is thereby complete.

Let R be a prime ring with extended centroid C and $Q=$ $Q_{m r}(R)$. We fix a C-basis \mathcal{A} containing 1 and consider the corresponding monomial basis $\mathcal{M}(\mathcal{A})$ of $Q_{C}<X>$ determined by \mathcal{A}. Any element $\phi \in Q_{C}<X>$ may be written $\phi=\sum_{M} \alpha_{M} M \in$ $Q_{C}<X \cup X^{g}>$, where $M \in \mathcal{M}(\mathcal{A})$ and $0 \neq \alpha_{M} \in C$. We refer the reader to the linearization process described in section 6.1 and section 6.2 , in which various notions of degree, g-degree, height, g-height, and homogeneity are defined. Here we recall that ϕ is multilinear if and only if it is homogeneous of zero height.

Lemma 6.4.3 Let R be a prime ring with extended centroid C and $Q=Q_{m r}(R)$. Suppose that

$$
0 \neq \phi=\phi\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in Q_{C}<X>
$$

is a GPI on $0 \neq K \triangleleft R$. Then ϕ is a GPI on the socle $\operatorname{Soc}(A)$ of $A=R C$.

Proof. By Corollary 6.3.3 A is primitive with $\operatorname{Soc}(A) \neq 0$. Replacing (if it is necessary) K by $K \cap \operatorname{Soc}(A)$, we can suppose that $K \subseteq \operatorname{Soc}(A)$. It follows from Theorem 4.3.7(iv) that $K C=$ $\operatorname{Soc}(A)$. In a view of Proposition 6.4 .2 without loss of generality we can assume that $|C|=\infty$. Let $\phi=\sum_{M} \alpha_{M} M$ where $M \in$ $\mathcal{M}(\mathcal{A})$ and $0 \neq \alpha_{M} \in C$. Further let $\operatorname{deg}_{x_{1}}(\phi)=m$. For every $0 \leq k \leq m$ we set

$$
\phi_{k}=\sum_{M}\left\{\alpha_{M} M \mid \operatorname{deg}_{x_{1}}(M)=k\right\}
$$

Pick $m+1$ distinct elements $c_{1}, c_{2}, \ldots, c_{m+1} \in C$. Clearly there exists a nonzero ideal $I \subseteq K$ of R such that $c_{t} I \subseteq R$ for all $t=1,2, \ldots, m+1$. For any $1 \leq t \leq m+1, r_{1} \in I$ and $r_{2}, r_{3}, \ldots, r_{n} \in K$ we have

$$
0=\phi\left(c_{t} r_{1}, r_{2}, \ldots, r_{n}\right)=\sum_{k=0}^{m} c_{t}^{k} \phi_{k}\left(r_{1}, r_{2}, \ldots, r_{n}\right)
$$

Using a Vandermonde determinant argument, we conclude that $\phi_{k}\left(r_{1}, r_{2}, \ldots, r_{n}\right)=0$ for all $k=0,1, \ldots, m$. Continuing in this fashion we find a nonzero ideal J of R such that all homogeneous components ϕ_{τ} of ϕ are GPI's on J. It is enough to show that every ϕ_{τ} is an identity on $\operatorname{Soc}(A)$. Therefore without loss of generality we can assume that ϕ is τ-homogeneous where $\tau=$ $\left(k_{1}, k_{2}, \ldots, k_{n}\right)$.

We proceed by induction on $h t(\phi)$. If $h t(\phi)=0$, then ϕ is multilinear and so ϕ is an identity on $J C$. Further, $J C$ is an ideal of A. By Theorem 4.3.7 $\operatorname{Soc}(A) \subseteq J C$ (in fact $\operatorname{Soc}(A)=$ $J C)$ and hence ϕ is an identity on $\operatorname{Soc}(A)$. Suppose now that $h t(\phi)=m$ and our statement is proved for GPI's of height less then m. Notationally suppressing all variables in ϕ other than $x \in\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ (where $h t_{x}(\phi)>0$) and picking a new variable $y \in X$ which does not appear in ϕ we form the element

$$
\psi(x, y)=\phi(x+y)-\phi(x)-\phi(y)
$$

and note the following properties of ψ :

$$
\begin{aligned}
& h t_{x}(\psi)<\operatorname{deg}_{x}(\phi)-1=h t_{x}(\phi) ; \\
& h t(\psi)<h t(\phi) ; \\
& \psi \text { is a GPI on } J .
\end{aligned}
$$

By the induction assumption every homogeneous component of ψ (and hence ψ itself) is a GPI on $\operatorname{Soc}(A)$. Therefore

$$
0=\psi(r, s)=\phi(r+s)-\phi(r)-\phi(s)
$$

for all $r, s \in \operatorname{Soc}(A)$ and so ϕ is additive in every variable x_{i} on $\operatorname{Soc}(A)$. Let

$$
a_{i}=\sum_{j} c_{i j} r_{i j} \in S o c(A) \subseteq J C
$$

where $c_{i j} \in C, r_{i j} \in J$. Then we have

$$
\phi\left(a_{1}, \ldots, a_{n}\right)=\sum_{j_{1}, \ldots, j_{n}} c_{1 j_{1}}^{k_{1}} \ldots c_{n j_{n}}^{k_{n}} \phi\left(r_{1 j_{1}}, \ldots, r_{n j_{n}}\right)=0
$$

and hence ϕ is an identity on $\operatorname{Soc}(A)$. The proof is complete.

Theorem 6.4.4 Let R be a prime ring with extended centroid C and $Q=Q_{m r}(R)$. Suppose that

$$
0 \neq \phi=\phi\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in Q_{C}<X>
$$

is a GPI on $0 \neq K \triangleleft R$. Then ϕ is a GPI on Q.
Proof. Letting A denote the central closure $R C$ of R, we infer from Corollary 6.3 .3 and Lemma 6.4 .3 that $\operatorname{Soc}(A) \neq 0$ and ϕ is an identity on $\operatorname{Soc}(A)$. Pick a nonzero idempotent $e \in \operatorname{Soc}(A)$ such that $A e$ is a minimal left ideal of A. By Theorem 4.3.7 $Q=\operatorname{End}\left(A e_{\Delta}\right)$ where $\Delta=e A e$ is a division ring. Furthermore

$$
Q \operatorname{Soc}(A)=Q A e A=A e A=\operatorname{Soc}(Q)
$$

Suppose that ϕ is not a $G P I$ on Q. Then there exist elements $q_{1}, q_{2}, \ldots, q_{n} \in Q$ and $a \in A e$ such that

$$
\begin{equation*}
\phi\left(q_{1}, q_{2}, \ldots, q_{n}\right) a \neq 0 \tag{6.4}
\end{equation*}
$$

Let $m=\operatorname{deg}(\phi)+2$ and $\phi=\sum_{M} \alpha_{M} M$ where $M \in \mathcal{M}(\mathcal{A})$ and $0 \neq \alpha_{M} \in C$. Denote by T^{\prime} the set of all coefficients appearing in ϕ and set $T^{\prime \prime}=T^{\prime} \cup\left\{q_{1}, \ldots, q_{n}\right\}$. Further let T be the set of all m-fold products of elements from $T^{\prime \prime}$. Obviously $T^{\prime}, T^{\prime \prime}$ and T all are finite. By Litoff's theorem there exists an idempotent $v \in \operatorname{Soc}(A)$ such that $v t a=t a$ for all $t \in T$. Consider now any monomial

$$
M=a_{i_{0}} x_{j_{1}} a_{i_{1}} \ldots x_{j_{k}} a_{i_{k}}
$$

appearing in ϕ where $0 \neq a_{i_{s}} \in Q, x_{j_{r}} \in X$. We claim that

$$
\begin{align*}
& a_{i_{0}} v q_{j_{1}} v \ldots v q_{j_{r}} v a_{i_{r}} q_{j_{r+1}} \ldots q_{j_{k}} a_{i_{k}} a= \\
& a_{i_{0}} q_{j_{1}} \ldots q_{j_{r}} a_{i_{r}} q_{j_{r+1}} \ldots q_{j_{k}} a_{i_{k}} a \tag{6.5}
\end{align*}
$$

for all $r=1,2, \ldots, k$. Indeed, letting

$$
t_{1}=a_{i_{r}} q_{j_{r+1}} \ldots q_{j_{k}} a_{i_{k}} \quad \text { and } \quad t_{2}=q_{j_{r}} t_{1}
$$

we note that $v t_{1} a=t_{1} a$ and $v t_{2} a=t_{2} a$ by the choice of v. Hence

$$
\begin{aligned}
& a_{i_{0}} v q_{j_{1}} v \ldots v q_{j_{r}} v a_{i_{r}} q_{j_{r+1}} \ldots q_{j_{k}} a_{i_{k}} a= \\
& a_{i_{0}} q_{j_{1}} \ldots v q_{j_{r-1}-1} v a_{i_{r-1}} q_{j_{r}} a_{i_{r}} \ldots q_{j_{k}} a_{i_{k}} a
\end{aligned}
$$

which proves our claim. Since $v q_{i} v \in S o c(A)$ and ϕ is an identity on $\operatorname{Soc}(A)$, it follows from (6.5) that

$$
\phi\left(q_{1}, q_{2}, \ldots, q_{n}\right) a=\phi\left(v q_{1} v, v q_{2} v, \ldots, v q_{n} v\right) a=0
$$

a contradiction to (6.4). The proof is thereby complete.
Proof of Theorem 6.4.1. Let $q_{1}, q_{2}, \ldots, q_{n} \in Q$. We set $q=\psi\left(q_{1}, \ldots, q_{n}\right)$ and $B=B(C)$. It is enough to prove that $\phi_{P}(q)=0$ for all $P \in \operatorname{Spec}(B)$ where $\phi_{P}: Q \rightarrow \bar{Q}=Q / P Q$ is the canonical projection of rings (see Corollary 3.2.4). We set

$$
D=O(R), \bar{D}=\phi_{P}(D) \quad \text { and } \quad \bar{C}=\phi_{P}(C)
$$

Letting Φ_{P} denote the canonical extension of ϕ_{P} to a homomorphism $Q_{C}<X>\rightarrow \bar{Q}_{\bar{C}}<X>$, we note that if $\bar{\psi}=\Phi_{P}(\psi)=0$, then

$$
\phi_{P}(q)=\bar{\psi}\left(\phi_{P}\left(q_{1}\right), \ldots, \phi_{P}\left(q_{n}\right)\right)=0
$$

as well. If $\bar{\psi} \neq 0$, then it is a nonzero $G P I$ on \bar{D} by Corollary 6.3.6 and by Theorem 6.4.4 we have

$$
\phi_{P}(q)=\bar{\psi}\left(\phi_{P}\left(q_{1}\right), \ldots, \phi_{P}\left(q_{n}\right)\right)=0 .
$$

Thus $\phi_{P}(q)=0$ for all $P \in \operatorname{Spec}(B)$ and the proof is thereby complete.

Now we proceed to prove the analogous result for g-identities of a semiprime ring where g is an antiautomorphism. Let R be a
semiprime ring with extended centroid C and a fixed antiautomorphism g. We set $Q=Q_{m r}(R)$ and $Q_{s}=Q_{s}(R)$. The notions of g-substitution, g-identity $\phi \in Q_{C}<X \cup X^{g}>$ and g-degree are introduced analogously to that of prime rings (see section 6.2) and we leave the straightforward details for the reader. Let

$$
\begin{aligned}
& \phi=\phi\left(x_{1}, \ldots, x_{n}, x_{1}^{g}, \ldots, x_{n}^{g}\right)=\sum_{M} \alpha_{M} M \in Q_{C}<X \cup X^{g}> \\
& \text { where } \quad M \in \mathcal{M}(\mathcal{A}) \text { and } \quad 0 \neq \alpha_{M} \in C
\end{aligned}
$$

be a g-polynomial, $\tau=\left(m_{1}, \ldots, m_{n}\right)$ and $\sigma=\left(m_{1}, \ldots, m_{2 n}\right)$ sequences of natural numbers. We set

$$
\begin{aligned}
\phi_{\tau}= & \sum\left\{\alpha_{M} M \mid g-\operatorname{deg}_{x_{i}}(M)=m_{i} \text { for all } 1 \leq i \leq n\right\} ; \\
\phi_{\sigma}= & \sum\left\{\alpha_{M} M \mid \operatorname{deg}_{x_{i}}(M)=m_{i}, \operatorname{deg}_{x_{i}^{g}}(M)=m_{n+i}\right. \\
& \text { for all } 1 \leq i \leq n\} .
\end{aligned}
$$

We will call ϕ_{τ} a g-homogeneous component of ϕ. Clearly ϕ_{σ} is a homogeneous component of ϕ. Here we note that ϕ is g multilinear if and only if it is g-homogeneous of zero g-height.

Lemma 6.4.5 Let R be a prime ring with extended centroid C, an antiautomorphism g and $Q=Q_{m r}(R)$. Suppose that

$$
0 \neq \phi=\phi\left(x_{1}, \ldots, x_{n}, x_{1}^{g}, \ldots, x_{n}^{g}\right) \in Q_{C}<X \cup X^{g}>
$$

is a g-identity on $0 \neq K \triangleleft R$. Then ϕ is a g-identity on the socle $\operatorname{Soc}(A)$ of $A=R C$.

Proof. First of all we note that g can be uniquely extended to an antiautomorphism of the ring $Q_{s}(R) \supseteq A$ by Proposition 2.5 .4 (which we again denote by g). Secondly replacing (if it is necessary) K by $K \cap \operatorname{Soc}(A)$, we can suppose that $K \subseteq \operatorname{Soc}(A)$. It follows from Theorem 4.3.7 that $K C=\operatorname{Soc}(A)$.

Suppose now that

$$
\begin{aligned}
& \phi\left(r_{1}, \ldots, r_{n}, r_{1}^{g}, \ldots, r_{n}^{g}\right)=0 \\
& \text { for all } r_{1}, \ldots, r_{t} \in \operatorname{Soc}(A), r_{t+1}, \ldots, r_{n} \in K
\end{aligned}
$$

where $t \geq 0$ is given. We claim that

$$
\phi\left(r_{1}, \ldots, r_{n}, r_{1}^{g}, \ldots, r_{n}^{g}\right)=0
$$

for all $r_{1}, \ldots, r_{t+1} \in \operatorname{Soc}(A), r_{t+2}, \ldots, r_{n} \in K$. (6.6)
We proceed by induction on $g-h t(\phi)$. If it is equal to 0 , then any monomial appearing in ϕ is g-multilinear. Substituting zero instead of some variables (if it is necessary), we conclude that ϕ is a sum of g-multilinear identities on K. Therefore without loss of generality we can assume that ϕ is g-multilinear. If $\left.g\right|_{C}=i d_{C}$, then ϕ is a g-identity on $K C \supseteq \operatorname{Soc}(R)$. Otherwise $a^{g} \neq a$ for some $a \in C$. Clearly $a J \subseteq K$ for some nonzero ideal $J \subseteq K$ of R. Since ϕ is g-multilinear,

$$
\begin{aligned}
\phi= & \phi^{\prime}\left(x_{1}, \ldots, x_{n}, x_{1}^{g}, \ldots, x_{t}^{g}, x_{t+2}^{g}, \ldots, x_{n}^{g}\right) \\
& +\phi^{\prime \prime}\left(x_{1}, \ldots, x_{t}, x_{t+2}, \ldots, x_{n}, x_{1}^{g}, \ldots, x_{n}^{g}\right) .
\end{aligned}
$$

Now for all $b \in J, r_{1}, \ldots, r_{t} \in \operatorname{Soc}(A)$ and $r_{t+2}, \ldots, r_{n} \in K$ we have

$$
\begin{aligned}
0= & \phi^{\prime}\left(r_{1}, \ldots, r_{t}, b, r_{t+2}, \ldots, r_{n}, r_{1}^{g}, \ldots, r_{t}^{g}, r_{t+2}^{g}, \ldots, r_{n}^{g}\right) \\
& +\phi^{\prime \prime}\left(r_{1}, \ldots, r_{t}, r_{t+2}, \ldots, r_{n}, r_{1}^{g}, \ldots, r_{t}^{g}, b^{g}, r_{t+2}^{g} \ldots, r_{n}^{g}\right) \\
0= & a \phi^{\prime}\left(r_{1}, \ldots, r_{t}, b, r_{t+2}, \ldots, r_{n}, r_{1}^{g}, \ldots, r_{t}^{g}, r_{t+2}^{g}, \ldots, r_{n}^{g}\right) \\
& +a^{g} \phi^{\prime \prime}\left(r_{1}, \ldots, r_{t}, r_{t+2}, \ldots, r_{n}, r_{1}^{g}, \ldots, r_{t}^{g}, b^{g}, r_{t+2}^{g} \ldots, r_{n}^{g}\right) .
\end{aligned}
$$

Since $a^{g} \neq a$, we conclude that

$$
\begin{aligned}
\phi^{\prime}\left(r_{1}, \ldots, r_{t}, b, r_{t+2}, \ldots, r_{n}, r_{1}^{g}, \ldots, r_{t}^{g}, r_{t+2}^{g}, \ldots, r_{n}^{g}\right) & =0 \quad \text { and } \\
\phi^{\prime \prime}\left(r_{1}, \ldots, r_{t}, r_{t+2}, \ldots, r_{n}, r_{1}^{g}, \ldots, r_{t}^{g}, b^{g}, r_{t+2}^{g} \ldots, r_{n}^{g}\right) & =0
\end{aligned}
$$

Consider now

$$
\psi^{\prime}(x)=\phi^{\prime}\left(r_{1}, \ldots, r_{t}, x, r_{t+2}, \ldots, r_{n}, r_{1}^{g}, \ldots, r_{n}^{g}\right)
$$

and

$$
\psi^{\prime \prime}(y)=\phi^{\prime \prime}\left(r_{1}, \ldots, r_{n}, r_{1}^{g}, \ldots, r_{t}^{g}, y, r_{t+2}^{g}, \ldots, r_{n}^{g}\right)
$$

By the above result they are generalized polynomial identities on J and $J^{g^{-1}}$ respectively. According to corollary 6.1.3, we have $\psi^{\prime}=0=\psi^{\prime \prime}$. Therefore our claim is true for g-identities of zero g-height.

Suppose now that our claim is proved for g-identities of g height less then g - $h t(\phi)$. Assume $\phi\left(r_{1}, \ldots, r_{n}, r_{1}^{g}, \ldots, r_{n}^{g}\right) \neq 0$ for some $r_{1}, \ldots, r_{t+1} \in \operatorname{Soc}(A), r_{t+2}, \ldots, r_{n} \in K$. We set
$\psi\left(x, x^{g}\right)=\phi\left(r_{1}, \ldots, r_{t}, x, r_{t+2}, \ldots, r_{n}, r_{1}^{g}, \ldots, r_{t}^{g}, x^{g}, r_{t+2}^{g}, \ldots, r_{n}^{g}\right)$.
Clearly ψ is a nonzero g-identity on K and g - $h t(\psi) \leq g$ - $h t(\phi)$. Let $g-\operatorname{deg}_{x}(\phi)=m$ and $\psi=\sum_{M} \alpha_{M} M$ where $M \in \mathcal{M}(\mathcal{A})$, $0 \neq \alpha_{M} \in C$. For every $0 \leq k, l \leq m$ with $k+l \leq m$ we set

$$
\begin{aligned}
\psi_{k l} & =\sum\left\{\alpha_{M} M \mid \operatorname{deg}_{x}(M)=k \quad \text { and } \quad \operatorname{deg}_{x^{g}}(M)=l\right\} ; \\
\|\psi\| & =\left|\left\{(k, l) \mid \phi_{k l} \neq 0\right\}\right| .
\end{aligned}
$$

Since $\psi\left(r_{t+1}, r_{t+1}^{g}\right)=\phi\left(r_{1}, \ldots, r_{n}, r_{1}^{g}, \ldots, r_{n}^{g}\right) \neq 0, \psi$ is not a g identity on $\operatorname{Soc}(A)$. Consider the set \mathcal{T} of all nonzero g-identities $\tau\left(x, x^{g}\right)$ on $0 \neq J_{\tau} \triangleleft R$ having the properties τ is not a g-identity on $\operatorname{Soc}(A)$ and $g-h t(\tau) \leq g-h t(\phi)$. Clearly $\psi \in \mathcal{T}$ and so $\mathcal{T} \neq \emptyset$. Pick $\tau \in \mathcal{T}$ with a minimal possible value of $\|\tau\|$. Without loss of generality we can assume that $N=J_{\tau} \subseteq \operatorname{Soc}(A)$. Pick any pair of natural numbers s, t such that $\tau_{s t} \neq 0$. Let $c \in C$. Clearly $c L \subseteq N$ for some nonzero ideal $L \subseteq N$ of R. Then for all $b \in L$ we have

$$
\begin{aligned}
& 0=\sum_{k l} \tau_{k l}\left(b, b^{g}\right) \\
& 0=\sum_{k l} c^{k}\left(c^{g}\right)^{l} \tau_{k l}\left(b, b^{g}\right)
\end{aligned}
$$

Setting

$$
\beta\left(x, x^{g}\right)=\sum_{k l}\left(c^{k}\left(c^{g}\right)^{l}-c^{s}\left(c^{g}\right)^{t}\right) \tau_{k l}\left(x, x^{g}\right)
$$

we conclude that β is a g-identity on L and $\|\beta\|<\|\tau\|$. Hence β is a g-identity on $\operatorname{Soc}(A)$. In particular $\beta\left(a, a^{g}\right)=0$ for all $a \in N$. Now it follows that

$$
\begin{align*}
\tau\left(c a, c^{g} a^{g}\right) & =\sum_{k l} c^{k}\left(c^{g}\right)^{l} \tau_{k l}\left(a, a^{g}\right) \\
& =c^{s}\left(c^{g}\right)^{t} \sum_{k l} \tau_{k l}\left(a, a^{g}\right) \\
& =c^{s}\left(c^{g}\right)^{t} \tau\left(a, a^{g}\right)=0 . \tag{6.7}
\end{align*}
$$

We consider

$$
\chi\left(x, y, x^{g}, y^{g}\right)=\tau\left(x+y, x^{g}+y^{g}\right)-\tau\left(x, x^{g}\right)-\tau\left(y, y^{g}\right) .
$$

Clearly χ is a g-identity on N and

$$
g-h t(\chi)<g-h t(\tau)<g-h t(\phi)
$$

By induction assumption we then have that χ is a g-identity on $\operatorname{Soc}(A)$. Therefore

$$
0=\chi\left(r, s, r^{g}, s^{g}\right)=\tau\left(r+s, r^{g}+s^{g}\right)-\tau\left(r, r^{g}\right)-\tau\left(s, s^{g}\right)
$$

for all $r, s \in \operatorname{Soc}(A)$. Let

$$
a=\sum_{j} c_{j} r_{j} \in \operatorname{Soc}(A)=N C
$$

where $c_{j} \in C, r_{j} \in N$. Then by (6.7) we have

$$
\tau\left(a, a^{g}\right)=\sum_{j} \tau\left(c_{j} r_{j}, c_{j}^{g} r_{j}^{g}\right)=0
$$

and hence τ is an identity on $\operatorname{Soc}(A)$, a contradiction. The claim is thereby proved. From (6.6) it follows immediately that ϕ is a g-identity on $\operatorname{Soc}(A)$. The proof is complete.

Theorem 6.4.6 Let R be a prime ring with extended centroid C, an antiautomorphism g and $Q=Q_{m r}(R)$. Suppose that

$$
0 \neq \phi=\phi\left(x_{1}, \ldots, x_{n}, x_{1}^{g}, \ldots, x_{n}^{g}\right) \in Q_{C}<X \cup X^{g}>
$$

is a g-identity on $0 \neq K \triangleleft R$. Then ϕ is a g-identity of $Q_{s}=$ $Q_{s}(R)$.

Proof. As we know g can be uniquely extended to an antiautomorphism of the ring $Q_{s}(R)$ by Proposition 2.5.4 and we denote the extension again by g. Letting A denote the central closure $R C$ of R, we infer from Corollary 6.3.3 and Lemma 6.4.5 that $\operatorname{Soc}(A) \neq 0$ and ϕ is a g-identity on $\operatorname{Soc}(A)$. Pick a nonzero idempotent $e \in S o c(A)$ such that $A e$ is a minimal left ideal of A. According to Theorem 4.3.7 $Q=\operatorname{End}\left(A e_{\Delta}\right)$, where $\Delta=e A e$ is a division ring, and

$$
Q \operatorname{Soc}(A)=Q A e A=\operatorname{Ae} A=\operatorname{Soc}(Q)
$$

Suppose that ϕ is not an identity on Q_{s}. Then there exist elements $q_{1}, q_{2}, \ldots, q_{n} \in Q_{s}$ and $a \in A e$ such that

$$
\begin{equation*}
\phi\left(q_{1}, \ldots, q_{n}, q_{1}^{g}, \ldots, q_{n}^{g}\right) a \neq 0 \tag{6.8}
\end{equation*}
$$

We set $m=g-\operatorname{deg}(\phi)+2$ Let $\phi=\sum_{M} \alpha_{M} M$ where $M \in \mathcal{M}(\mathcal{A})$ and $0 \neq \alpha_{M} \in C$. Denote by T^{\prime} the set of all coefficients appearing in ϕ and set $T^{\prime \prime}=T^{\prime} \cup\left\{q_{1}, \ldots, q_{n}, q_{1}^{g}, \ldots, q_{n}^{g}\right\}$. Further let T be the set of all m-fold products of elements from $T^{\prime \prime}$. Obviously $T^{\prime}, T^{\prime \prime}$ and T all are finite. By Litoff's theorem there exists an idempotent $v \in \operatorname{Soc}(A)$ such that $v t a=t a$ and $(t a)^{g^{-1}} v=(t a)^{g^{-1}}$ for all $t \in T$. Applying g to the last equality we infer that $v^{g} t a=t a$ for all $t \in T$. Hence

$$
v t a=t a=v^{g} t a \quad \text { for all } t \in T .
$$

At this point we note that the rest of proof is analogous to that of Theorem 6.4.4. In particular, making use of Lemma 6.4.5, we
infer that

$$
\phi\left(q_{1}, \ldots, q_{n}^{g}\right) a=\phi\left(v q_{1} v, \ldots, v^{g} q_{n}^{g} v^{g}\right) a=0
$$

a contradiction. The proof is thereby complete.

Theorem 6.4.7 Let R be a semiprime ring with extended centroid C, an antiautomorphism g and $Q=Q_{m r}(R)$. Then any g-identity

$$
\psi=\psi\left(x_{1}, \ldots, x_{n}, x_{1}^{g}, \ldots, x_{n}^{g}\right) \in Q_{C}<X \cup X^{g}>
$$

is a g-identity of $Q_{s}=Q_{s}(R)$.
Proof. The proof is similar to that of Theorem 6.4.1. Pick $q_{1}, q_{2}, \ldots, q_{n} \in Q_{s}$ and set $q=\psi\left(q_{1}, \ldots, q_{n}, q_{1}^{g}, \ldots, q_{n}^{g}\right)$. It is enough to prove that $q=0$. By Lemma 6.3.17 there exists an ideal I of R such that $\phi=\psi\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)$ is a GPI on I and $e^{g}=e$ for all $e^{2}=e \in(1-E(I)) C$. By Theorem 6.4.1 $E(I) \phi$ is a $G P I$ on $Q_{m r}(I)=E(I) Q$. In particular $E(I) q=0$. We set $e=1-E(I)$ and $J=e(e: R)_{R}$. It is enough to prove $e q=0$. Clearly $Q_{s}(J)=e Q_{s}$ and

$$
e q=\psi\left(e q_{1}, \ldots, e q_{n},\left(e q_{1}\right)^{g}, \ldots,\left(e q_{n}\right)^{g}\right)
$$

Hence without loss of generality we can assume that $I=0, e=1$ and $v^{g}=v$ for all $v^{2}=v \in C$.

It is enough to prove that $\phi_{P}(q)=0$ for all $P \in \operatorname{Spec}(B)$ where $B=B(C)$ and $\phi_{P}: Q \rightarrow \bar{Q}=Q / P Q$ is the canonical projection of rings (see Corollary 3.2.4). Since $P^{g}=P, g$ induces an antiautomorphism of $Q_{s} / P Q_{s}$ which we denote again by g for simplicity. We set

$$
D=O(R), \bar{D}=\phi_{P}(D), \overline{Q_{s}}=\phi_{P}\left(Q_{s}\right) \quad \text { and } \quad \bar{C}=\phi_{P}(C) .
$$

Letting Φ_{P} denote the canonical extension of ϕ_{P} to a homomorphism $Q_{C}<X \cup X^{g}>\rightarrow \bar{Q}_{\bar{C}}<X \cup X^{g}>$, we note that if
$\bar{\psi}=\Phi_{P}(\psi)=0$, then $\phi_{P}(q)=0$ as well. If $\bar{\psi} \neq 0$, then it is a nonzero g-identity of \bar{D} as it was shown in the proof of Theorem 6.3.18. In the last case $\bar{\psi}$ is a g-identity of $Q_{s}(\bar{D}) \supseteq \overline{Q_{s}}$ by Theorem 6.4.6 and so $\phi_{P}(q)=0$. Thus $\phi_{P}(q)=0$ for all $P \in \operatorname{Spec}(B)$ which completes the proof.

In [209] W. S. Martindale proved that every multilinear polynomial identity of a semiprime ring is an identity of its maximal right ring of quotients. Theorem 6.4.1 is a generalizarion of this result and it was proved by K. I. Beidar in [24]. Since the original proof used the existence of a central polynomial of a prime PIring, we used here the proof given in [81] for the prime ring case. The involution case of Theorem 6.4 .7 was proved by K. I. Beidar, A. V. Mikhalev and K. Salavova in [37] (see also [36]) and here we used some ideas from their proof.

6.5 The \mathcal{T}-ideal of GPI's

The aim of this section is to describe the \mathcal{T}-ideal of generalized polynomial identities of prime and semiprime rings. The results we present are due to K.I.Beidar (except Proposition 6.5 .5 which is due to Littlewood [194]). Although there are considerable technical and notational aspects as well as case-by-case arguments involved in the proof, the end products are quite definitive and simply stated. The main results for centrally closed prime GPI rings (Theorem 6.5.7 and Theorem 6.5.12) show that the \mathcal{T}-ideal of all GPI's has a single "obvious" generator, and for semiprime rings the finite generation of the \mathcal{T}-ideal of all GPI's depends solely on the boundedness of the orders of the extended centroids of the Pierce stalks.

Let R be a semiprime ring with extended centroid $C, Q=$ $Q_{m r}(R)$ and $R C \subseteq H \subseteq Q$ a C-subalgebra. Consider the ring $A=H_{C}\langle X\rangle$. An endomorphism $\tau: A \rightarrow A$ is said to be an H-endomorphism if $h^{\tau}=h$ for all $h \in H \subseteq A$. An ideal
I of A is called a \mathcal{T}-ideal if it is an ideal of A and $I^{\tau} \subseteq I$ for any H-endomorphism $\tau: A \rightarrow A$. The last condition is equivalent to the following one: $f\left(g_{1}, g_{2}, \ldots, g_{n}\right) \in I$ for every $f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in I$ and all $g_{1}, g_{2}, \ldots, g_{n} \in A$ (i.e., I is closed under all substitutions). Obviously the set of all GPI's on R forms a \mathcal{T}-ideal which we shall denote by $\mathcal{G}(H ; R)$. We also note that sums and intersections of \mathcal{T}-ideals are again \mathcal{T}-ideals. Given a subset $L \subseteq H_{C}<X>$, the intersection of all \mathcal{T}-ideals of $H_{C}<X>$ containing L is said to be the \mathcal{T}-ideal of $H_{C}<X>$ generated by L. We shall denote it by $\mathcal{T}(H ; L)$ or simply $\mathcal{T}(L)$ when the context is clear. Here we note that $\mathcal{T}(L)$ is just the ideal of A generated by all $f\left(g_{1}, g_{2}, \ldots, g_{n}\right)$ where $f\left(x_{1}, \ldots, x_{n}\right) \in$ L and $g_{1}, \ldots, g_{n} \in A$.

Now let R be a primitive centrally closed algebra over a field C with minimal idempotent e such that $e R e=e C$. Given any natural number $q>0$ we set
$S T_{2}(e ; X)=e x_{1} e x_{2} e-e x_{2} e x_{1} e$, and $L_{q}(e ; X)=\left(e x_{1} e\right)^{q}-e x_{1} e$.
Clearly $S T_{2}(e ; X)$ is a $G P I$ on R. Further if $|C|=q$, then $L_{q}(e ; X)$ is a GPI on R as well.

The polynomial ring $K=C\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ will play an important role in the sequel. In particular in case $q=|C|<\infty$ we will need the following well-known result (Remark 6.5.1). For any monomial $M=x_{1}^{t_{1}} x_{2}^{t_{2}} \ldots x_{n}^{t_{n}}$ we set $M^{\rho}=x_{1}^{m_{1}} x_{2}^{m_{2}} \ldots x_{n}^{m_{n}}$ where $0 \leq m_{i}<q, t_{i} \equiv m_{i} \bmod (q-1)$ and $m_{i}=0$ if and only if $t_{i}=0, i=1,2, \ldots, n$. Extending ρ by linearity to $K \rightarrow K$, we denote the resulting map again by ρ. A polynomial $f \in K$ is said to be reduced if $f^{\rho}=f$.

Remark 6.5.1 Let $f \in C\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ where $q=|C|<\infty$. Then:

> (i) f and f^{ρ} determine the same functions on C^{n};
> (ii) f vanishes on C^{n} if and only if $f^{p}=0$;

Proof. The first statement easily follows from the obvious fact that $a^{q}=a$ for all $a \in C$.

Clearly it is enough to prove that a nonzero reduced polynomial g determines a nonzero function on C^{n}. We proceed by induction on n. If $n=1$, then $\operatorname{deg}(g) \leq q-1$. Hence g has at most $q-1$ roots in C and so it determines a nonzero function on C. Suppose now that our claim is proved for $C\left[x_{1}, \ldots, x_{n-1}\right]$ and $0 \neq g \in C\left[x_{1}, \ldots, x_{n}\right]$ is a reduced polynomial. We write $g=\sum_{i=0}^{k} h_{i}\left(x_{1}, \ldots, x_{n-1}\right) x_{n}^{i}$ where $k<q, h_{i} \in C\left[x_{1}, \ldots, x_{n-1}\right]$, $i=0,1, \ldots, k$ and $h_{k} \neq 0$. Clearly all h_{i} are reduced polynomials. Since $h_{k} \neq 0$, by the induction assumption there exist elements $c_{1}, \ldots, c_{n-1} \in C$ such that $h_{k}\left(c_{1}, \ldots, c_{n-1}\right) \neq 0$. Then

$$
p\left(x_{n}\right)=g\left(c_{1}, \ldots, c_{n-1}, x_{n}\right)=\sum_{i=0}^{k} h_{i}\left(c_{1}, \ldots, c_{n-1}\right) x_{n}^{i}
$$

is a nonzero reduced polynomial. Hence $p\left(c_{n}\right) \neq 0$ for some $c_{n} \in C$ and so $g\left(c_{1}, \ldots, c_{n}\right) \neq 0$. The proof is thereby complete.

The \mathcal{T}-ideal of GPI's on the ring of $n \times n$ matrices. In this subsection we determine $\mathcal{G}(R ; R)$ for $R=M_{n}(C)$ (Proposition 6.5.5), and in the course of doing so we introduce the flavor of the arguments used in a more general situation.

Let C be a field, $n>0$ a natural number and $A=M_{n}(C)$ the ring of $n \times n$-matrices over C. We fix a set $\mathcal{A}=\left\{e_{i j} \mid 1 \leq\right.$ $i, j \leq n\}$ of matrix units of A. Clearly \mathcal{A} is a basis of the C space A and it determines a monomial basis $\mathcal{M}(\mathcal{A})$ of $A_{C}<X>$ where $X=\left\{x_{1}, x_{2}, \ldots, x_{n}, \ldots\right\}$ is a countable set. We note that $\mathcal{M}(\mathcal{A})$ consists of all monomials of the form

$$
\begin{equation*}
M=e_{i_{0} j_{1}} x_{k_{1}} e_{i_{1} j_{2}} x_{k_{2}} \ldots, x_{k_{m}} e_{i_{m} j_{m+1}}, \tag{6.9}
\end{equation*}
$$

where $e_{i_{t-1} j_{t}} \in \mathcal{A}, x_{k_{t}} \in X$. Setting

$$
\Lambda=\{[i, j],[i, k, j] \mid 1 \leq i, j \leq n, k \geq 1\}
$$

we form the polynomial ring $C[\Lambda]$ over C. Define a linear mapping $\pi: A_{C}<X>\rightarrow C[\Lambda]$ by the rule

$$
M^{\pi}=\left[i_{0}, j_{m+1}\right]\left[j_{1}, k_{1}, i_{1}\right]\left[j_{2}, k_{2}, i_{2}\right] \ldots\left[j_{m}, k_{m}, i_{m}\right] \in C[\Lambda]
$$

and its consequences where M is as in (6.9).
We fix any linear order of Λ such that $[i, j]<[r, k, s]$ for all $1 \leq i, j, r, s \leq n, k \geq 1$ and define a linear mapping $\eta: C[\Lambda] \rightarrow$ $A_{C}<X>$ as follows. If a monomial $f \in C[\Lambda]$ is representable in the form

$$
\begin{equation*}
\left[i_{0}, j_{m+1}\right]\left[j_{1}, k_{1}, i_{1}\right]^{n_{1}} \ldots\left[j_{m}, k_{m}, i_{m}\right]^{n_{m}} \tag{6.10}
\end{equation*}
$$

where $\left[j_{t}, k_{t}, i_{t}\right]<\left[j_{t+1}, k_{t+1}, i_{t+1}\right]$ for all $t=1,2, \ldots, m-1$, then we set

$$
f^{\eta}=e_{i_{0} 1}\left(e_{1 j_{1}} x_{k_{1}} e_{i_{1} 1}\right)^{n_{1}}\left(e_{1 j_{2}} x_{k_{2}} e_{i_{2} 1}\right)^{n_{2}} \ldots\left(e_{1 j_{m}} x_{k_{m}} e_{i_{m} 1}\right)^{n_{m}} e_{1 j_{m+1}} .
$$

Otherwise we set $f^{\eta}=0$.

Lemma 6.5.2 Let

$$
M=e_{i_{0} j_{1}} x_{k_{1}} e_{i_{1} j_{2}} x_{k_{2}} \ldots, x_{k_{m}} e_{i_{m} j_{m+1}} \in A_{C}<X>
$$

Then:
(i) $M-M^{\pi \eta} \in \mathcal{T}\left(A ; S T_{2}\left(e_{11} ; X\right)\right)=I$;
(ii) If $|C|=q<\infty$, then

$$
M-M^{\pi \rho \eta} \in \mathcal{T}\left(A ; S T_{2}\left(e_{11} ; X\right)+L_{q}\left(e_{11} ; X\right)\right)=J
$$

Proof. (i) Let $u(X), v(X) \in A_{C}<X>$. We claim that

$$
e_{1 j} u e_{k 1} e_{l r} v e_{s 1}-e_{1 r} v e_{s 1} e_{1 j} u e_{k 1} \in I
$$

for all $1 \leq j, k, r, s \leq n$. Define an A-endomorphism

$$
\phi: A_{C}<X>\rightarrow A_{C}<X>
$$

by the rule

$$
\begin{aligned}
& \phi\left(x_{1}\right)=e_{1 j} u(X) e_{k 1}, \phi\left(x_{2}\right)=e_{1 r} v(X) e_{s 1} \\
& \phi\left(x_{t}\right)=x_{t} \text { for all } t>2
\end{aligned}
$$

Then

$$
e_{1 j} u e_{k 1} e_{1 r} v e_{s 1}-e_{1 r} v e_{s 1} e_{1 j} u e_{k 1}=\phi\left(S T_{2}\left(e_{11} ; X\right)\right) \in I
$$

and our claim is proved. The statement (i) follows now directly from the definitions of the mappings π and η.
(ii) Letting $L_{q}=L_{q}\left(e_{11} ; X\right)$ and setting $x_{2}=0$, we infer that $L_{q} \in J$. Clearly

$$
\left(e_{1 j} u(X) e_{k 1}\right)^{q}-\left(e_{1 j} u(X) e_{k 1}\right) \in \mathcal{T}\left(A ; L_{q}\right) \subseteq J
$$

and so

$$
M^{\pi \eta}-M^{\pi \rho \eta} \in \mathcal{T}\left(A ; L_{q}\right) \subseteq J
$$

Now we have

$$
M-M^{\pi \rho \eta}=M-M^{\pi \eta}+M^{\pi \eta}-M^{\pi \rho \eta} \in J
$$

and the proof is thereby complete.

Corollary 6.5.3 Let $h(X) \in A_{C}<X>$. Suppose that $h(X)^{\pi \eta}=$ 0 . Then $h(X) \in \mathcal{T}\left(A ; S T_{2}\left(e_{11} ; X\right)\right)=I$.

Proof. Writing $h(X)=\sum_{M} \alpha_{M} M$ where $M \in \mathcal{M}(\mathcal{A})$ and $0 \neq \alpha_{M} \in C$, we note that

$$
h(X)=h(X)-h(X)^{\pi \eta}=\sum_{M} \alpha_{M}\left(M-M^{\pi \eta}\right) \in I
$$

by Lemma 6.5.2. The proof is complete.
Analogously one can prove the following

Corollary 6.5.4 Let $h(X) \in A_{C}<X>$. Suppose that $|C|=$ $q<\infty$ and $h(X)^{\pi \rho \eta}=0$. Then $h(X) \in \mathcal{T}\left(A ; S T_{2}\left(e_{11} ; X\right)+\right.$ $\left.L_{q}\left(e_{11} ; X\right)\right)$.

Proposition 6.5.5 Let C be a field, $n>0$ a natural number and $A=M_{n}(C)$ the ring of $n \times n$-matrices over the field C. Suppose that $h\left(x_{1}, x_{2}, \ldots, x_{\tau}\right) \in A_{C}<X>$ is a GPI on A. Then:
(i) If $|C|=\infty$ or $h(X)$ is multilinear, then

$$
h(X) \in \mathcal{T}\left(A ; S T_{2}\left(e_{11} ; X\right)\right)
$$

(ii) If $|C|=q<\infty$, then

$$
h(X) \in \mathcal{T}\left(A ; S T_{2}\left(e_{11} ; X\right)+L_{q}\left(e_{11} ; X\right)\right)
$$

Proof. Clearly $h(X)=\sum_{i, j=1}^{n} e_{i 1}\left(e_{1 i} h(X) e_{j 1}\right) e_{1 j}$ and all $e_{1 i} h(X) e_{j 1}$ are GPIs. Hence without loss of generality we can assume that $e_{11} h(X) e_{11}=h(X)$. Let $\gamma: C[\Lambda] \rightarrow C$ be any homomorphism of C-algebras such that $[1,1]^{\gamma}=1$. We set

$$
a_{k}=\sum_{j, i=1}^{n} e_{j, i}[j, k, i]^{\gamma} \quad \text { for all } \quad k=1,2, \ldots
$$

Then for any monomial

$$
M\left(x_{1}, x_{2}, \ldots, x_{r}\right)=e_{1 j_{1}} x_{k_{1}} e_{i_{1} j_{2}} x_{k_{2}} \ldots x_{k_{m}} e_{i_{m} 1}
$$

we have

$$
M\left(a_{1}, a_{2}, \ldots, a_{\tau}\right)=e_{11} M^{\pi \gamma}
$$

Therefore

$$
0=h\left(a_{1}, a_{2}, \ldots, a_{\tau}\right)=e_{11} h(X)^{\pi \gamma}
$$

and $h(X)^{\pi \gamma}=0$ for all $\gamma: C[\Lambda] \rightarrow C$. If $|C|=\infty$ or $h(X)$ is multilinear, then $h(X)^{\pi}=0$. If $|C|=q<\infty$, then $h(X)^{\pi \rho}=0$ by Remark 6.5.1. Applying Corollary 6.5.3 and Corollary 6.5.4, we complete the proof.

Lemma 6.5.6 Let C be a field, $n>0$ a natural number and $A=M_{n}(C)$ the ring of $n \times n$-matrices over the field C. Then:

$$
\mathcal{T}\left(A ; S t_{2 n}\left(x_{1}, \ldots, x_{2 n}\right)\right)=\mathcal{T}\left(A ; S T_{2}\left(e_{11} ; X\right)\right)
$$

Proof. We have

$$
S t_{2 n}\left(x_{1}, \ldots, x_{2 n}\right)=\sum_{\sigma \in S_{2 n}} \epsilon(\sigma) \dot{x}_{\sigma(1)} x_{\sigma(2)} \ldots x_{\sigma(2 n)}
$$

where $S_{2 n}$ is the symmetric group and $\epsilon(\sigma)$ is the sign of σ. Letting $h\left(x_{1}, \ldots, x_{2 n}\right)$ denote the polynomial in noncommutative indeterminates

$$
\sum_{\substack{\sigma \in S_{2 n} \\ \sigma(1)<\sigma(2)}} \epsilon(\sigma) x_{\sigma(1)} x_{\sigma(2)} \ldots x_{\sigma(2 n)},
$$

we note that h is not a polynomial identity of A because

$$
h\left(e_{11}, e_{11}, e_{12}, e_{22}, e_{23}, e_{33}, \ldots, e_{n-1, n} e_{n n}\right)=e_{1 n} \neq 0
$$

Hence

$$
p\left(x_{1}, x_{2}\right)=S t_{2 n}\left(x_{1}, x_{2}, e_{12}, e_{22}, e_{23}, \ldots, e_{n-1, n} e_{n n}\right) \neq 0
$$

By Amitsur-Levitsky theorem $S t_{2 n}$ is a polynomial identity of A and so $p\left(x_{1}, x_{2}\right)$ is a GPI (see Theorem 1.3.5). Clearly

$$
g\left(x_{1}, x_{2}\right)=e_{1 i} p\left(x_{1}, x_{2}\right) e_{j 1} \neq 0
$$

for some $1 \leq i, j \leq n$. We write

$$
g=\sum_{i, j, k, l=1}^{n} \beta_{i j k l} e_{1 i} x_{1} e_{j k} x_{2} e_{l 1}-\sum_{i, j, k, l=1}^{n} \delta_{i j k l} e_{1 k} x_{2} e_{l i} x_{1} e_{j 1}
$$

where $\beta_{i j k l}, \delta_{i j k l} \in C$ and pick $1 \leq i, j, k, l \leq n$ such that $\beta_{i j k l} \neq$ 0 . Then

$$
\begin{aligned}
f\left(x_{1}, x_{2}\right) & =g\left(e_{i 1} x_{1} e_{1 j}, e_{k 1} x_{2} e_{1 l}\right) \\
& =\beta_{i j k l} e_{11} x_{1} e_{11} x_{2} e_{11}-\delta_{i j k l} e_{11} x_{2} e_{11} x_{1} e_{11}
\end{aligned}
$$

Clearly f is a GPI. In particular $f\left(e_{11}, e_{11}\right)=0$ and so $\beta_{i j k l}=$ $\delta_{i j k l}$. Therefore

$$
S T_{2}\left(e_{11} ; X\right)=\beta_{i j k l}^{-1} f\left(x_{1}, x_{2}\right) \in \mathcal{T}\left(A ; S t_{2 n}\left(x_{1}, \ldots, x_{2 n}\right)\right)
$$

and hence

$$
\mathcal{T}\left(A ; S t_{2 n}\left(x_{1}, \ldots, x_{2 n}\right)\right) \supseteq \mathcal{T}\left(A ; S T_{2}\left(e_{11} ; X\right)\right)
$$

The converse inclusion follows from Proposition 6.5.5.

The \mathcal{T}-ideal of GPI's on primitive algebras over a field.

 In this rather lengthy subsection we determine $\mathcal{G}(R ; R)$ for R a centrally closed prime ring over C. If R is not $G P I$ then $\mathcal{G}(R ; R)=0$ and nothing more needs to be said. Therefore we may assume, in view of Theorem 6.1.6 and Theorem 4.3.7, that there exists an idempotent $w \in R$ such that $\Delta=w R w$ is a finite-dimensional division algebra over C whose center is $w C$.We begin by looking at the case where $\Delta \cong C$, i.e. $w R w=$ $C w$. First of all we show that any $h \in R_{C}<X>$ has a so-called S - W-representation, which may then be used to develop a useful connection with a polynomial ring $C[\Lambda]$.

Let $h\left(x_{1}, x_{2}, \ldots, x_{k}\right) \in R_{C}<X>$. Clearly $h(X)$ is a sum of monomials of the form $a_{1} x_{k_{1}} a_{2} x_{k_{2}} \ldots a_{m} x_{k_{m}} a_{m+1}$ where $1 \leq$ $k_{i} \leq k, a_{j} \in R, i=1,2, \ldots, m, j=1,2, \ldots, m+1$. Letting V_{h} denote the C-subspace of R generated by all coefficients of $h(X)$ together with $\overline{1}$ and w, we note that $\operatorname{dim}_{C}\left(V_{h}\right)<\infty$. We note that V_{h} depends upon the choice of monomials in the representation of $h(X)$. By Litoff's theorem it follows that there exists an idempotent $u \in \operatorname{Soc}(R)$ such that $u v u=v$ for all
$v \in V_{h} \cap \operatorname{Soc}(R)$ and $u R u \cong M_{t}(C)$ for some natural number t. Since $w \in V_{h} \cap \operatorname{Soc}(R), u w u=w$ as well. Recalling that $w R w=w C$, we conclude that there exists a system of matrix units $W=\left\{e_{i j} \mid 1 \leq i, j \leq t\right\}$ such that $w=e_{11}$. Clearly $u=e_{11}+e_{22}+\ldots+e_{t t}$ and $V_{h} \cap \operatorname{Soc}(R) \subseteq \sum_{i j} C e_{i j}$. Choose elements $v_{1}=\overline{1}, v_{2}, \ldots, v_{m} \in V_{h}$ such that they form a basis of V_{h} modulo $V_{h} \cap \operatorname{Soc}(R)$. Obviously $V_{h} \subseteq \sum_{l=1}^{m} C v_{l}+\sum_{i, j=1}^{t} C e_{i j}$. Setting $S=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$, we note that $h(X)$ is representable uniquely as a linear combination of monomials whose coefficients belongs to the set $S \cup W$. We will refer to this representation as an S - W-representation of $h(X)$. Let $h(X)=\sum \alpha_{i} h_{i}(X)$ be the S - W-representation of $h(X)$ where $0 \neq \alpha_{i} \in C$ and $h_{i}=h_{j}$ if and only if $i=j$. We consider monomials h_{i} as elements of the subsemigroup \mathcal{S} of $R_{C}<X>$ generated by $S \cup W \cup X$. A submonomial (subword) g of h_{i} is said to be W-free if it belongs to the subsemigroup generated by $S \cup X$. Let H be the set of all W-free subwords of all monomials h_{i}. We consider the element $\overline{1}$ as a W-free submonomial of all monomials h_{i}. Clearly $|H|<\infty$. Setting

$$
\Lambda=\{[g],[g ; i],[j ; g ; i],[j ; g] \mid g \in H, 1 \leq i, j \leq t\}
$$

we form the polynomial ring $C[\Lambda]$ over C. We fix any linear order < on Λ such that

$$
[g ; i]<\left[a ; g^{\prime} ; b\right]<\left[j ; g^{\prime \prime}\right]
$$

for all $g, g^{\prime}, g^{\prime \prime} \in H, 1 \leq i, j, a, b \leq t$. For any monomial h_{s} we have the following possibilities (the seemingly complicated description is simply a rigorous way of insuring that no element of S is ever adjacent to an $e_{i j}$):
(1) $h_{s}=g \in H$;
(2) $h_{s}=g x_{r} e_{i j} \quad$ for some $g \in H, 1 \leq r \leq k, 1 \leq i, j \leq t$;
(3) $h_{s}=e_{i j} x_{r} g$ for some $g \in H, 1 \leq r \leq k, 1 \leq i, j \leq t$;
(4) $h_{s}=g x_{r} e_{i j} x_{l} g^{\prime}$ for some $g, g^{\prime} \in H, 1 \leq r, l \leq k$, $1 \leq i, j \leq t ;$
(5) $h_{s}=g_{0} e_{i_{0} j_{1}} g_{1} e_{i_{1} j_{2}} \ldots g_{n} e_{i_{n} j_{n+1}} g_{n+1}$
where :
(a) either $g_{0}=\overline{1}$ or $g_{0}=g_{0}^{\prime} x_{r_{0}}$ for some $g_{0}^{\prime} \in H, 1 \leq r_{0} \leq k ;$
(b) either $g_{i}=x_{r_{i}}$ or $g_{i}=x_{r_{i}} g_{i}^{\prime} x_{l_{i}}$
for some $g_{i}^{\prime} \in H, 1 \leq r_{i}, l_{i} \leq k$,
where $1 \leq i \leq n$;
(c) either $g_{n+1}=\overline{1}$ or $g_{n+1}=x_{r_{n+1}} g_{n+1}^{\prime}$ for some $g_{n+1}^{\prime} \in H, 1 \leq r_{n+1} \leq k$.

We define a polynomial $h_{s}^{\pi} \in C[\Lambda]$, respectively, in the cases just described:

Case $1 h_{s}^{\pi}=[g]$;
Case $2 h_{s}^{\pi}=\left[g x_{r} ; i\right][j ; \overline{1}] ;$
Case $3 h_{s}^{\pi}=[\overline{1} ; i]\left[j ; x_{\tau} g\right]$;
Case $4 h_{s}^{\pi}=\left[g x_{r} ; i\right]\left[j ; x_{l} g^{\prime}\right]$;
Case $5 h_{s}^{\pi}=\left[g_{0} ; i_{0}\right]\left[j_{1} ; g_{1} ; i_{1}\right] \ldots\left[j_{n} ; g_{n} ; i_{n}\right]\left[j_{n+1} ; g_{n+1}\right]$.
Further we put

$$
h^{\pi}=\sum \alpha_{i} h_{i}^{\pi}
$$

Consider a monomial $M \in C[\Lambda]$ which is written in the following form

$$
P=\left[f_{0} ; b_{0}\right]\left[c_{1} ; f_{1} ; b_{1}\right] \ldots\left[c_{m} ; f_{m} ; b_{m}\right]\left[c_{m+1} ; f_{m+1}\right] \in C[\Lambda]
$$

where $\left[c_{i} ; f_{i} ; b_{i}\right] \leq\left[c_{i+1} ; f_{i+1} ; b_{i+1}\right]$ for all $1 \leq i \leq m-1$. We set

$$
\begin{aligned}
P^{\eta} & =f_{0} e_{b_{0} c_{1}} f_{1} e_{b_{1} c_{2}} \ldots f_{m} e_{b_{m} c_{m+1}} f_{m+1} \in R_{C}<X> \\
([g ; i][j ; \overline{1}])^{\eta} & =g e_{i j} \\
([\overline{1} ; i][j ; g])^{\eta} & =e_{i j} g
\end{aligned}
$$

$$
\begin{aligned}
\left([g ; i]\left[j ; g^{\prime}\right]\right)^{\eta} & =g e_{i j} g^{\prime} \\
{[g]^{\eta} } & =g
\end{aligned}
$$

By linearity we extend η to linear combinations of the monomials just described. As in Lemma 6.5.2, Corollary 6.5.3 and Corollary 6.5.4 one can prove that

$$
\begin{aligned}
& h_{s}-h_{s}^{\pi \eta} \in \mathcal{T}\left(R ; S T_{2}(w ; X)\right) \\
& \text { If } \quad|C|=q<\infty, \quad \text { then } \\
& h_{s}-h_{s}^{\pi \rho \eta} \in \mathcal{T}\left(R ; S T_{2}(w ; X)+L_{q}(w ; X)\right) \\
& \text { If } \quad h^{\pi \eta}=0, \quad \text { then } \quad h(X) \in \mathcal{T}\left(R ; S T_{2}(w ; X)\right) \\
& \text { If } \quad|C|=q<\infty \quad \text { and } \quad h^{\pi \rho \eta}=0, \\
& \text { then } \quad h \in \mathcal{T}\left(R ; S T_{2}(w ; X)+L_{q}(w ; X)\right)
\end{aligned}
$$

We let $I=\mathcal{T}\left(R ; S T_{2}(w ; X)\right)$ if h is multilinear or $|C|=$ ∞, or $I=\mathcal{T}\left(R ; S T_{2}(w ; X)+L_{q}(w ; X)\right)$ if $|C|=q<\infty$. We therefore have the following sufficient condition for h to belong to I :

$$
\begin{array}{ll}
h^{\pi}=0 & \text { (if } h \text { is multilinear or }|C|=\infty) \\
h^{\pi \rho}=0 & \text { (if }|C|=q<\infty) \tag{6.11}
\end{array}
$$

In view of Remark 6.5 .1 (6.11) is equivalent to the single sufficient condition:

$$
\begin{equation*}
h^{\pi \gamma}=0 \quad \text { for any } C \text {-algebra map } \gamma: C[\Lambda] \rightarrow C \tag{6.12}
\end{equation*}
$$

We are now in a position to prove the key result of this subsection.

Theorem 6.5.7 Let R be a primitive algebra with unity element $\overline{1}$ over a field C and let $\mathcal{G}(R ; R) \subseteq R_{C}<X>$ be the \mathcal{T}-ideal of GPI's on R. Assume that R contains a nonzero idempotent w such that $w R w=C w$. Then:
(i) If a GPI $h(X) \in R_{C}<X>$ is multilinear, then $h(X) \in$ $\mathcal{T}\left(R ; S T_{2}(w ; X)\right) ;$
(ii) If $|C|=\infty$, then

$$
\mathcal{G}(R ; R)=\mathcal{T}\left(R ; S T_{2}(w ; X)\right) ;
$$

(iii) If $|C|=q<\infty$, then

$$
\mathcal{G}(R ; R)=\mathcal{T}\left(R ; S T_{2}(w ; X)+L_{q}(w ; X)\right) .
$$

Proof. We shall assume that h is written in an S - W-representation and that linear maps π and η are as described near the beginning of this section. We shall prove all the statements of the theorem simultaneously. According to (6.12) it is suffices to show that $h^{\pi \gamma}=0$ for all C-algebra maps $\gamma: C[\Lambda] \rightarrow C$. Unlike the simpler situation encountered in the proof of Proposition 6.5.5 the increased generality in the present situation entails a case-by-case series of technical arguments. We begin by setting the stage using Amitsur's Lemma.

We set

$$
V=\sum_{s \in S} \sum_{j=1}^{t} C s e_{j 1} \subseteq R e_{11}
$$

and note that $V \supseteq \sum_{j=1}^{t} C e_{j 1}$ since $\overline{1} \in S$. By Lemma 4.2.8 there exist distinct elements $y_{g, i} \in R e_{11}, g \in H, 0 \leq i \leq t$, such that the elements $\left\{s y_{g, i} \mid s \in S, g \in H, 0 \leq i \leq t\right\}$ are C independent modulo the subspace V. In particular $s y_{g, i}=s^{\prime} y_{g^{\prime}, i^{\prime}}$ if and only if $(s ; g ; i)=\left(s^{\prime} ; g^{\prime} ; i^{\prime}\right)$.

Let $\gamma: C[\Lambda] \rightarrow C[\Lambda]$ be a homomorphism of C-algebras. We set

$$
\begin{aligned}
z_{g, 0} & =y_{g, 0}-u y_{g, 0}+\sum_{j=1}^{t}[j ; g]^{\gamma} e_{j 1} \\
z_{g, i} & =y_{g, i}-u y_{g, i}+\sum_{j=1}^{t}[j ; g ; i]^{\gamma} e_{j 1}
\end{aligned}
$$

where $g \in H, 1 \leq i \leq t$. Let $s \in S$. Since $u=e_{11}+e_{22}+\ldots+e_{t t}$ and $s u \operatorname{Re}_{11} \subseteq \sum_{j=1}^{t} C s e_{j 1} \subseteq V$, we have $s z_{g, i} \equiv s y_{g, i}(\bmod V)$ and so the elements

$$
\left\{s z_{g, i} \mid s \in S, 0 \leq i \leq t\right\} \cup\left\{e_{j 1} \mid 1 \leq j \leq t\right\}
$$

are C-independent. Since $e_{11} R e_{11}=C e_{11}$ and $R e_{11}$ is a faithful irreducible left R-module, R is a dense subring of $E n d_{C}\left(R e_{11}\right)$ by the Jacobson Density Theorem. Hence there exist elements

$$
a, a_{1}, a_{2}, \ldots, a_{k} \in R
$$

such that:

$$
\begin{align*}
& \text { If } x_{r} s g \in H, \quad \text { then } \quad a_{r} s z_{g, i}=z_{x_{r} s g, i} ; \tag{6.13}\\
& a_{r} e_{i 1}=z_{x_{r}, i} ; \tag{6.14}\\
& \text { If } s g \in H \text { and } i \geq 1, \quad \text { then } \\
& a s z_{g, i}=[s g ; i]^{\gamma} e_{11} ; \tag{6.15}\\
& \text { If } s g \in H, \quad \text { then } a s z_{g, 0}=[s g]^{\gamma} e_{11} ; \tag{6.16}\\
& a e_{i 1}=[\overline{1} ; i]^{\gamma} e_{11}, \tag{6.17}
\end{align*}
$$

where $1 \leq r \leq k, s \in S, g \in H, 1 \leq i \leq t$. Since $u=$ $e_{11}+e_{22}+\ldots+e_{t t}, e_{1 j}\left(y_{g, i}-u y_{g, i}\right)=0$ and so

$$
\begin{align*}
e_{1 j} z_{g, i} & =e_{1 j}\left(y_{g, i}-u y_{g, i}+\sum_{j=1}^{t}[j ; g ; i]^{\gamma} e_{j 1}\right) \\
& =[j ; g ; i]^{\gamma} e_{11} \tag{6.18}
\end{align*}
$$

for all $1 \leq j \leq t$ and $g \in H$. Analogously

$$
\begin{equation*}
e_{1 j} z_{g, 0}=[j ; g]^{\gamma} e_{11} \tag{6.19}
\end{equation*}
$$

for all $1 \leq j \leq t$ and $g \in H$. We claim that

$$
\begin{equation*}
a h_{q}\left(a_{1}, a_{2}, \ldots, a_{k}\right) z_{\overline{1}, 0}=h_{q}^{\pi \gamma} e_{11} \tag{6.20}
\end{equation*}
$$

for all monomials h_{q} involved in h. Indeed, consider the following five cases listed above.

Case 1. $h_{q}=g \in H$. Then it follows directly from (6.13) and (6.16) that

$$
a h_{q}\left(a_{1}, a_{2}, \ldots, a_{k}\right) z_{\overline{1}, 0}=[g]^{\gamma} e_{11}=\left[h_{q}\right]^{\gamma} e_{11} .
$$

Case 2. $h_{q}=g x_{r} e_{i j}$. Then $e_{i j} z_{\overline{1}, 0}=[j ; \overline{1}]^{\gamma} e_{i 1}$ by (6.19). Further

$$
a_{r}[j ; \overline{1}]^{\gamma} e_{i 1}=[j ; \overline{1}]^{\gamma} z_{x_{r}, i}
$$

by (6.14). Now from (6.13) and (6.15) we infer that

$$
a h_{q}\left(a_{1}, a_{2}, \ldots, a_{k}\right) z_{\overline{1}, 0}=\left[g x_{r} ; i\right]^{\gamma}[j ; \overline{1}]^{\gamma} e_{11}=\left[h_{q}\right]^{\gamma} e_{11} .
$$

Case 3. $h_{q}=e_{i j} x_{r} g$. Then from (6.13) we conclude that $a_{r} g\left(a_{1}, \ldots, a_{k}\right) z_{\overline{1}, 0}=z_{x_{r} g, 0}$. Hence by (6.19) we have

$$
e_{i j} a_{r} g\left(a_{1}, \ldots, a_{k}\right) z_{\overline{1}, 0}=e_{i j} z_{x_{r} g, 0}=\left[j ; x_{r} g\right]^{\gamma} e_{i 1} .
$$

Applying (6.17) we obtain

$$
a h_{q}\left(a_{1}, a_{2}, \ldots, a_{k}\right) z_{\overline{1}, 0}=\left[j ; x_{r} g\right]^{\gamma}[\overline{1} ; i]^{\gamma} e_{11}=\left[h_{q}\right]^{\gamma} e_{11} .
$$

Case 4. $h_{q}=g x_{r} e_{i j} x_{l} g^{\prime}$. We already know that

$$
e_{i j} a_{l} g^{\prime}\left(a_{1}, \ldots, a_{k}\right) z_{\overline{1}, 0}=\left[j ; x_{l} g^{\prime}\right]^{\gamma} e_{i 1} .
$$

Applying (6.14) we obtain that

$$
a_{r} e_{i j} a_{l} g^{\prime}\left(a_{1}, \ldots, a_{k}\right) z_{\overline{1}, 0}=\left[j ; x_{l} g^{\prime}\right]^{\gamma} z_{x_{r}, i}
$$

Now from (6.13) and (6.15) we infer that

$$
a h_{q}\left(a_{1}, a_{2}, \ldots, a_{k}\right) z_{\overline{1}, 0}=\left[j ; x_{l} g^{\prime}\right]^{\gamma}\left[i ; g x_{r}\right]^{\gamma} e_{11}=\left[h_{q}\right]^{\gamma} e_{11} .
$$

Case 5. $h_{q}=g_{0} e_{i_{0} j_{1}} g_{1} e_{i_{1} j_{2}} \ldots g_{n} e_{i_{n} j_{n+1}} g_{n+1}$. We set

$$
f=e_{i_{0} j_{1}} g_{1} e_{i_{1} j_{2}} \ldots g_{n} e_{i_{n} j_{n+1}} g_{n+1}
$$

and note that $h_{q}=g_{0} f$. If $g_{n+1}=\overline{1}$, then

$$
e_{i_{n} j_{n+1}} z_{\overline{1}, 0}=\left[j_{n+1} ; \overline{1}\right]^{\gamma} e_{i_{n} 1}=\left[j_{n+1} ; g_{n+1}\right]^{\gamma} e_{i_{n} 1} .
$$

If $g_{n+1}=x_{r_{n+1}} g_{n+1}^{\prime}$, then we already know from Case 3 that

$$
\begin{aligned}
e_{i_{n}, j_{n+1}} a_{r_{n+1}} g_{n+1}^{\prime}\left(a_{1}, \ldots, a_{k}\right) z_{\overline{1}, 0} & =\left[j_{n+1} ; x_{r_{n+1}} g_{n+1}^{\prime}\right]^{\gamma} e_{i_{n} 1} \\
& =\left[j_{n+1} ; g_{n+1}\right]^{\gamma} e_{i_{n} 1} .
\end{aligned}
$$

If $g_{n}=x_{r_{n}}$, then by (6.14) we have

$$
a_{r_{n}}\left[j_{n+1} ; g_{n+1}\right]^{\gamma} e_{i_{n} 1}=\left[j_{n+1} ; g_{n+1}\right]^{\gamma} z_{x_{r n}, i_{n}}=\left[j_{n+1} ; g_{n+1}\right]^{\gamma} z_{g_{n}, i_{n}} .
$$

If $g_{n}=x_{r_{n}} g_{n}^{\prime} x_{l_{n}}$, then we infer from (6.14) and (6.13) that

$$
a_{r_{n}} g_{n}^{\prime}\left(a_{1}, \ldots, a_{k}\right) a_{l_{n}}\left[j_{n+1} ; g_{n+1}\right]^{\gamma} e_{i_{n} 1}=\left[j_{n+1} ; g_{n+1}\right]^{\gamma} z_{g_{n}, i_{n}}
$$

Therefore

$$
\begin{aligned}
& e_{i_{n-1} j_{n}} g_{n}\left(a_{1}, \ldots, a_{k}\right) e_{i_{n} j_{n+1}} g_{n+1}\left(a_{1}, \ldots, a_{k}\right) \\
& =\left[j_{n+1} ; g_{n+1}\right]^{\gamma} e_{i_{n-1} j_{n}} z_{g_{n}, i_{n}} \\
& =\left[j_{n+1} ; g_{n+1}\right]^{\gamma}\left[j_{n} ; g_{n} ; i_{n}\right]^{\gamma} e_{i_{n-1}, 1}
\end{aligned}
$$

by (6.18). Repeated application of the above argument yields that

$$
f\left(a_{1}, a_{2}, \ldots, a_{k}\right) z_{\overline{1}, 0}=f^{\pi \gamma} e_{i_{0}, 1}
$$

and so

$$
\begin{aligned}
a h_{q}\left(a_{1}, \ldots, a_{k}\right) z_{\overline{1}, 0} & =a g_{0}\left(a_{1}, \ldots, a_{k}\right) f\left(a_{1}, \ldots, a_{k}\right) z_{\overline{1}, 0} \\
& =a g_{0}\left(a_{1}, \ldots, a_{k}\right) f^{\pi \gamma} e_{i_{0}, 1} .
\end{aligned}
$$

If $g_{0}=\overline{1}$, then by (6.17) we have

$$
a f^{\pi \gamma} e_{i_{0}, 1}=\left[\overline{1} ; i_{0}\right]^{\gamma} f^{\pi \gamma} e_{11}=\left[g_{0} ; i_{0}\right]^{\gamma} f^{\pi \gamma} e_{11}=h_{q}^{\pi \gamma} e_{11} .
$$

If $g_{0}=g_{0}^{\prime} x_{r_{0}}$, then from (6.14), (6.13) and (6.15) we infer that

$$
a g_{0}\left(a_{1}, \ldots, a_{k}\right) f^{\pi \gamma} e_{i_{0}, 1}=\left[g_{0} ; i_{0}\right]^{\gamma} f^{\pi \gamma} e_{11}=h_{q}^{\pi \gamma} e_{11}
$$

and our claim is thereby established.
Now from (6.20) it follows that

$$
0=a h\left(a_{1}, \ldots, a_{k}\right) z_{\overline{1}, 0}=h^{\pi \gamma} e_{11}
$$

and so $h^{\pi \gamma}=0$ for all C-algebra maps $\gamma: C[\Lambda] \rightarrow C$. The proof is thereby complete.

If h is a $G P I$ on R, then the proof of the preceding theorem shows that condition (6.11), or equivalently (6.12), is a necessary and sufficient condition for an element $h \in R_{C}<X>$ to belong to the \mathcal{T}-ideal I. We proceed to draw further conclusions. If a monomial h_{i} appearing in h has a form described in (1) - (4), then $h_{i}^{\pi} \neq h_{j}^{\pi}$ for any other monomial h_{j} appearing in the $S-W$-representation of $h(X)$. From this we conclude that monomials of the form described in (1) - (4) do not appear in $h(X)$ and so any monomial appearing in the S - W-representation of $h(X)$ has at least two coefficients in W. If either $h(X)$ is multilinear or $|C|=\infty$, then any monomial appearing in the S -W-representation of $h(X)$ has at least three coefficients in W. Given a natural number $s>1$ we let $h_{(s)}$ denote the sum of all $\alpha_{i} h_{i}$ such that h_{i} has exactly $s-1$ coefficients in W. We note that $h_{(s)}^{\pi}$ is exactly the s-homogeneous component of the polynomial h^{π}. Clearly a polynomial is equal to zero if and only if all its homogeneous components are equal to zero. Furthermore if $|C|=q<\infty$ and $f \in C[\Lambda]$ with homogeneous components $f_{(s)}$, then $f^{p}=0$ if and only if $\sum\left\{f_{(i)} \mid i \equiv \operatorname{rmod}(q-1)\right\}=0$ for all $r=1,2, \ldots, q-1$.

Although the notion of an S - W-representation is a crucial one (it provides the important connection with the polynomial ring $C[\Lambda]$), it is not so natural to expect a given GPI h to be presented in such a restrictive representation. Fortunately we are able to partially loosen this restriction. To be sure we must continue to prescribe a subset S of elements of R of infinite rank which together with $\overline{1}$ is C-independent modulo $\operatorname{Soc}(R)$.

However it is less artificial to assume now that h is a GPI on R which is written in the form $h=\sum \alpha_{j}^{\prime} h_{j}^{\prime}, 0 \neq \alpha_{j}^{\prime} \in C$, where the coefficients of all the h_{j}^{\prime} 's are either of finite rank or belong to S. As we have seen earlier the C-span of all coefficients of finite rank lies inside the C-span of a set W of matrix units $e_{i j}$, with e_{11} equal to the prescribed idempotent w. Thus we may also write h in its S - W-representation $h=\sum \alpha_{i} h_{i}$. It is clear that $h_{(s)}$ is equal to the sum of all $\alpha_{j}^{\prime} h_{j}^{\prime}$ such that h_{j}^{\prime} has exactly $s-1$ coefficients of finite rank. The following corollary then follows from our discussion in the preceding paragraph.

Corollary 6.5.8 Let R be a primitive algebra with unity element $\overline{1}$ over a field C having a nonzero idempotent w such that $w R w=C w$ and let $h(X)=\sum \beta_{i} f_{i}$ be a GPI on R where $0 \neq \beta_{i} \in C$ and f_{i} 's are monomials. Suppose that the set S of all coefficients of all f_{i} 's of infinite rank together with $\overline{1}$ is C-independent modulo $\operatorname{Soc}(R)$. Given a natural number $s \geq 1$ we set
$h_{(s)}=\sum\left\{\beta_{i} f_{i} \mid f_{i}\right.$ has exactly s-1 coefficients of finite rank $\}$.
Then:
(i) $h_{(1)}=0=h_{(2)}$;
(ii) If either $h(X)$ is multilinear or $|C|=\infty$, then $h_{(3)}=0$ and $h_{(k)}$ is a GPI on R for all $k>3$;
(iii) If $|C|=q<\infty$, then

$$
\sum_{s \equiv r \bmod (q-1)} h_{(s)}
$$

is a GPI on R for all $r=1,2, \ldots, q-1$.
Let $h(X)=\sum \beta_{i} f_{i}$ be a GPI on R as in Corollary 6.5.8. Our aim now is to produce a closely related but simpler $G P I \sum \beta_{i} f_{i}^{\prime}$ (see (6.21) ahead). Clearly any monomial f_{i} can be written in the following form:

$$
f_{i}=g_{i 0} y_{i 0} a_{i 0} y_{i 1} g_{i 1} x_{i 1} a_{i 1} \ldots y_{i n_{i}} g_{i n_{i}} x_{i n_{i}} a_{i n_{i}} y_{i, n_{i}+1} g_{i, n_{i}+1}
$$

where the following conditions are fulfilled:
(i) $a_{i j} \in \operatorname{Soc}(R), j=0,1, \ldots, n_{i}$;
(ii) $x_{i j} \in X, y_{i l} \in X \cup\{\overline{1}\}, 1 \leq j \leq n_{i}, 0 \leq l \leq n_{i}+1$;
(iii) The $g_{i l}$ are alternating monomials in S and X such that if $y_{i l}=\overline{1}$, then $g_{i l}=\overline{1}, l=0,1, \ldots, n_{i}+1$;
(iv) The set S of all (distinct) coefficients of all $g_{i j}$ together with $\overline{1}$ is C-independent modulo $\operatorname{Soc}(R)$.

Picking a C-basis of R modulo $\operatorname{Soc}(R)$ containing $\overline{1}$ and all the coefficients of all the $g_{i j}$'s and extending it to a C-basis \mathcal{A} of R, we note that $g_{i j} \in \mathcal{M}(\mathcal{A})$. We shall refer to the form of writing of h just described as an \mathcal{A}-standard form of writing of $h(X)$. Here we also note that any C-basis \mathcal{A}^{\prime} of R will be called standard if $\overline{1} \in \mathcal{A}^{\prime}$ and $\mathcal{A}^{\prime} \backslash \operatorname{Soc}(R)$ is a C-basis of R modulo $\operatorname{Soc}(R)$. Clearly the basis \mathcal{A} just constructed is standard.

We set

$$
g_{i 0}^{\prime}=g_{i 0} y_{i 0}, g_{i, n_{i}+1}^{\prime}=y_{i, n_{i}+1} g_{i, n_{i}+1}, g_{i j}^{\prime}=y_{i j} g_{i j} x_{i j}
$$

where $1 \leq j \leq n_{i}$. Pick elements $z_{i j} \in X \cup \overline{1}$ such that:
(a) $z_{i 0}=\overline{\overline{1}}$ if and only if $g_{i 0}^{\prime}=\overline{\overline{1}}$;
(b) $z_{i, n_{i}+1}=\overline{1}$ if and only if $g_{i, n_{i}+1}^{\prime}=\overline{1}$;
(c) $z_{i j} \in X$ if $1 \leq j \leq n_{i}$;
(d) $z_{i j}=z_{p q}$ if and only if $g_{i j}^{\prime}=g_{p q}^{\prime}$.

Now we set

$$
\begin{align*}
f_{i}^{\prime} & =z_{i 0} a_{i 0} z_{i 1} a_{i 1} \ldots z_{i n_{i}} a_{i n_{i}} z_{i, n_{i}+1} \\
h^{\prime} & =\sum \beta_{i} f_{i}^{\prime} \tag{6.21}
\end{align*}
$$

As we have earlier noted, without loss of generality we can assume that $a_{i j} \in \sum_{e \in W} C e$ for all i, j. Also we can assume that all $z_{i j} \in H$ (just adjoin them to H). We write $h=\sum \alpha_{i} h_{i}$ in its S - W-representation. Now we have $h^{\prime}=\sum \alpha_{i} h_{i}^{\prime}$ where the monomials h_{i}^{\prime} are obtained from the monomials h_{i} according to the above described procedure. We consider the case when either $h(X)$ is multilinear or $|C|=\infty$, since the case $|C|=q<\infty$
is considered analogously. Our comment after Theorem 6.5.7 indicates that $h^{\pi}=0$. This means that for any monomial h_{j} appearing in the S - W-representation

$$
\sum\left\{\alpha_{i} h_{i}^{\pi} \mid h_{i}^{\pi}=h_{j}^{\pi}\right\}=0
$$

Since $h_{i}^{\pi}=h_{j}^{\pi}$ if and only if $\left(h_{i}^{\prime}\right)^{\pi}=\left(h_{j}^{\prime}\right)^{\pi}$, we conclude that $h^{\prime \pi}=0$ and so by (6.11) h^{\prime} is a GPI on R. Thus we have proved the following

Corollary 6.5.9 Let R be a primitive algebra with unity element $\overline{1}$ over a field C having a nonzero idempotent w such that $w R w=C w$, let \mathcal{A} be a standard basis of R and let $h(X)=$ $\sum \beta_{i} f_{i}$ be a GPI on R written in an \mathcal{A}-standard form. Then $h^{\prime}(X)$ is a GPI on R where $h^{\prime}(X)$ is obtained from $h(X)$ according to the procedure described in (6.21)

Corollary 6.5.9 was pointed out to the first author by Prof. C.-L. Chuang in 1994, but no ideas of proof were presented.

Corollary 6.5.10 Let R be a primitive algebra with unity element $\overline{1}$ over a field C having a nonzero idempotent w such that $w R w=C w$, let \mathcal{A} be a standard basis of R and let $h(X)=$ $\sum \beta_{i} f_{i}$ be a GPI on R written in an \mathcal{A}-standard form. Further let $g=g^{\prime} x_{k}$ where $g^{\prime} \in \mathcal{M}(\mathcal{A})$ is a monomial without coefficients of finite rank and $x_{k} \in X$. We set

$$
I(g)=\left\{i \mid f_{i}=g a_{i} \widehat{h}_{i} \quad \text { for some } \quad a_{i} \in \operatorname{Soc}(R), \widehat{h}_{i} \in \mathcal{M}(\mathcal{A})\right\}
$$

Then $\widehat{h}=\sum_{i \in I(g)} \beta_{i} a_{i} \widehat{h}_{i}$ is a GPI on R.
Proof. We note that \widehat{h}^{π} is exactly the sum of all $\alpha_{i} h_{i}^{\pi}$ such that h_{i}^{π} involves the variable of the form $[g ; i], 1 \leq i \leq t$. We consider the case when $|C|=\infty$, since the case $|C|<\infty$ is considered analogously. Since h is a GPI on $R, h^{\pi} r=0$. Hence $\hat{h}^{\pi}=0$ and so \widehat{h} is a GPI on R.

The following corollary answers a very natural question.

Corollary 6.5.11 Let R be a primitive algebra with unity element $\overline{1}$ over a field C having a nonzero idempotent w such that $w R w=C w, f, h \in R_{C}<X>$ and let $x_{k} \in X$ be a variable which is not involved in f and h. Suppose that $f x_{k} h$ is a GPI on R and $\operatorname{deg}_{x}(f)+\operatorname{deg}_{x}(g)<|C|$ for all $x \in X$. Then either f or h is a GPI on R.

Proof. Assume that neither f nor h is a $G P I$ on R. As in the discussion at the beginning of this subsection we choose S and W such that both f and h have an S - W-representation (i.e., all their coefficients belong $\left.\sum_{s \in S} C s+\sum_{v \in W} C v\right)$. Let $f=\sum \alpha_{i} f_{i}$ and $h=\sum \beta_{j} h_{j}$ be S - W-representations. Then

$$
\begin{aligned}
f_{i}= & f_{i 0} y_{i 0} e_{p_{i 0} q_{i 1}} y_{i 1} f_{i 1} x_{i 1} e_{p_{i 1} q_{i 2}} \ldots \\
& y_{i n_{i}} f_{i n_{i}} x_{i n_{i}} e_{p_{i_{n_{i}} q_{i, n_{i}+1}+1}} y_{i, n_{i}+1} f_{i, n_{i}+1}
\end{aligned}
$$

and

$$
\begin{aligned}
h_{j}= & h_{j 0} z_{j 0} e_{u_{j 0} v_{j 1}} z_{j 1} h_{j 1} t_{j 1} e_{u_{j 1} v_{j 2}} \cdots \\
& z_{j m_{j}} h_{j m_{j}} t_{j m_{j}} e_{u_{j m_{j}} v_{j, m_{j}+1}} z_{j, m_{j}+1} h_{j, m_{j}+1}
\end{aligned}
$$

where $x_{i j}, t_{r s} \in X, y_{a b}, z_{c d} \in X \cup\{\overline{1}\}$ satisfy the conditions (iii) and (iv) listed after Corollary 6.5.8.

We fix any $r=q_{i, n_{i}+1}, f^{\prime}=y_{i, n_{i}+1} f_{i, n_{i}+1}, s=u_{j 0}$ and $h^{\prime}=$ $h_{j 0} z_{j 0}$. Let $f_{\left(r, f^{\prime}\right)}=\widehat{f}$ denote the sum of all $\alpha_{l} f_{l}$ such that $q_{l, n_{l}+1}=r$ and $y_{l, n_{l}+1} f_{l, n_{l}+1}=f^{\prime}$ and let $h_{\left(s, h^{\prime}\right)}=\widehat{h}$ denote the sum of all $\beta_{l} h_{l}$ such that $u_{l 0}=s$ and $h_{l 0} z_{l 0}=h^{\prime}$. Clearly $f=\sum f_{\left(r, f^{\prime}\right)}$ and $h=\sum h_{\left(s, h^{\prime}\right)}$. Since f and h are not GPI on R, we can choose r, f^{\prime}, s and h^{\prime} such that \widehat{f} and \widehat{h} are not GPI on R.

We note that $\left(\hat{f} x_{k} \hat{h}\right)^{\pi}$ is exactly the sum of all monomials (together with their coefficients) appearing in $\left(f x_{k} h\right)^{\pi}$ which involve the variable $\left[r ; f^{\prime} x_{k} h^{\prime} ; s\right]$. Recall that $\operatorname{deg}_{x}(f)+\operatorname{deg}_{x}(g)<$ $|C|$. Hence if $|C|<\infty,\left(f x_{k} h\right)^{\pi \rho}=\left(f x_{k} h\right)^{\pi}$. Since $f x_{k} h$ is
a GPI on R, we infer from the proof of Theorem 6.5.7 that $\left(f x_{k} h\right)^{\pi}=0$. It follows that $\left(\widehat{f} x_{k} \widehat{h}\right)^{\pi}=0$. But

$$
\left(\widehat{f} x_{k} \widehat{h}\right)^{\pi}=(\widehat{f})^{\pi}\left[r ; f^{\prime}\right]^{-1}\left[r ; f^{\prime} x_{k} h^{\prime} ; s\right](\widehat{h})^{\pi}\left[h^{\prime} ; s\right]^{-1}
$$

Hence either $(\hat{f})^{\pi}=0$ or $(\widehat{h})^{\pi}=0$ and respectively either \hat{f} is a GPI or \widehat{h} is a GPI, a contradiction to the choice of \widehat{f} and \widehat{h}. The proof is thereby complete.

Keep the notation of preceding corollary. Then setting $f=w$ and $h=x_{1} w x_{k} x_{2} w-x_{2} w x_{k} x_{1} w$ we see that

$$
f x_{k} h_{4}=S T_{2}\left(w ; x_{k} x_{1}, x_{k} x_{2}\right)
$$

is a GPI on R. Therefore the condition that x_{k} is not involved in f and h is essential. Further let $|C|=q<\infty$. Setting $f=\left(w x_{1} w\right)^{q-1}+\left(w x_{1} w\right)^{q-2}+\ldots+w$ and $h=w x_{1} w-w$ we conclude that

$$
f x_{k} h=w x_{k} w f h=w x_{k} w L_{q}(w ; X)
$$

is a GPI on R. Thus the condition $\operatorname{deg}_{x}(f)+\operatorname{deg}_{x}(h)<|C|$ for all $x \in X$ is essential as well.

We now come to the general situation in which R is a centrally closed prime GPI ring, i.e. there is a minimal idempotent w such that $\Delta=w R w$ is finite-dimensional over C. If C is finite, then $\Delta=C$ (by Theorem 4.2.3) in which case $\mathcal{G}(R ; R)$ is already characterised in Theorem 6.5.7. Therefore without loss of generality we may assume for the remainder of this subsection that C is finite.

Let $n>1$ be a natural number and $w \in R$. We set

$$
S T_{2 n}(w ; X)=S t_{2 n}\left(w x_{1}, w x_{2}, \ldots, w x_{2 n}\right) w
$$

where $S t_{2 n}$ is the standard polynomial in $2 n$ noncommuting variables.

Theorem 6.5.12 Let R be a primitive algebra with identity over an infinite field C and let $\mathcal{G}(R ; R)$ be the \mathcal{T}-ideal of $G P I$'s on R. Assume that R has a nonzero idempotent w such that $w R w$ is a division C-algebra of dimension n^{2} over the field C and $Z(w R w)=w C$. Then:

$$
\mathcal{G}(R ; R)=\mathcal{T}\left(R ; S T_{2 n}(w ; X)\right)
$$

Proof. One can easily show that R is a centrally closed prime ring with extended centroid C. Let C^{\prime} be a maximal subfield of the division ring $w R w$. Clearly C^{\prime} is a subalgebra of the C-algebra R. By Corollary 4.2.2 $w R w \otimes_{C} C^{\prime} \cong M_{n}\left(C^{\prime}\right)$. Since $R^{\prime}=R \otimes_{C} C^{\prime} \supseteq w R w \otimes_{C} C^{\prime}$, we conclude that R^{\prime} has a nonzero idempotent w^{\prime} such that $w^{\prime} R^{\prime} w^{\prime}=w^{\prime} C^{\prime}$. From Theorem 2.3.5 it follows that R^{\prime} is a closed prime C^{\prime}-algebra. Hence the conditions of Theorem 6.5.7 hold in R^{\prime} and

$$
\begin{equation*}
\mathcal{G}\left(R^{\prime} ; R^{\prime}\right)=\mathcal{T}\left(R^{\prime} ; S T_{2}\left(w^{\prime} ; X\right)\right) \tag{6.22}
\end{equation*}
$$

Making use of the universal property of free algebras one can easily prove that $C<X>\otimes_{C} C^{\prime} \cong C^{\prime}<X>$ canonically. We will identify them. According to Remark 1.4 .12 the C^{\prime}-algebras $R_{C}<X>\otimes_{C} C^{\prime}$ and $R_{C^{\prime}}^{\prime}<X>$ are isomorphic canonically. We will identify them. Further we will identify R with the subring $R \otimes 1$ of R^{\prime}. Clearly

$$
\mathcal{G}(R ; R) \otimes_{C} C^{\prime} \supseteq \mathcal{T}\left(R ; S T_{2 n}(w ; X)\right) \otimes_{C} C^{\prime}
$$

are both ideals of $R^{\prime}{ }_{C^{\prime}}<X>$. It is enough to show that

$$
\mathcal{G}(R ; R) \otimes_{C} C^{\prime} \subseteq \mathcal{T}\left(R ; S T_{2 n}(w ; X)\right) \otimes_{C} C^{\prime}
$$

To this end we claim that any $G P I h(X)$ on R is a $G P I$ on R^{\prime}. Indeed, since C is infinite, all homogeneous components of h are $G P I$'s on R. Hence without loss of generality we can assume that $h(X)$ is homogeneous. Making use of induction on $h t(h)$,
one can easily reduce consideration to the case when $h(X)$ is additive. But then it is immediate that $h(X)$ is a GPI on R^{\prime}. Therefore

$$
\mathcal{G}(R ; R) \otimes_{C} C^{\prime} \subseteq \mathcal{G}\left(R^{\prime} ; R^{\prime}\right) .
$$

Next we claim that

$$
\mathcal{T}\left(R ; S T_{2 n}(w ; X)\right) \otimes_{C} C^{\prime}=\mathcal{T}\left(R^{\prime} ; S T_{2 n}(w ; X)\right)
$$

Indeed, any R-endomorphism ϕ of $R_{C}<X>$ (i.e., any endomorphism such that $r^{\phi}=r$ for all $r \in R$) has a unique extension to an R^{\prime}-endomorphism of $R^{\prime} C^{\prime}<X>$ and so

$$
\mathcal{T}\left(R ; S T_{2 n}(w ; X)\right) \otimes_{C} C^{\prime} \subseteq \mathcal{T}\left(R^{\prime} ; S T_{2 n}(w ; X)\right)
$$

On the other hand let ψ be an R^{\prime}-endomorphism of $R^{\prime} C^{\prime}<X>$. Pick any C-basis $v_{1}, v_{2}, \ldots, v_{n}$ of C^{\prime} and write

$$
x_{i}^{\psi}=\sum_{j=1}^{n} f_{i j} \otimes v_{j}, 1 \leq i \leq 2 n .
$$

Since $S T_{2 n}(w ; X)$ is multilinear, we have

$$
\left(S T_{2 n}(w ; X)\right)^{\psi}=\sum_{j_{1} \ldots j_{2 n}} v_{j_{1}} v_{j_{2}} \ldots v_{j_{2 n}} S T_{2 n}\left(w ; f_{1_{1},}, f_{2 j_{2}} \ldots f_{2 n, j_{2 n}}\right) .
$$

As

$$
S T_{2 n}\left(w ; f_{1 j_{1}}, f_{2 j_{2}} \ldots f_{2 n, j_{2 n}}\right) \in \mathcal{T}\left(R ; S T_{2 n}(w ; X)\right)
$$

we conclude that

$$
\left(S T_{2 n}(w ; X)\right)^{\psi} \subseteq \mathcal{T}\left(R ; S T_{2 n}(w ; X)\right) \otimes_{C} C^{\prime}
$$

and so

$$
\mathcal{T}\left(R ; S T_{2 n}(w ; X)\right) \otimes_{C} C^{\prime} \supseteq \mathcal{T}\left(R^{\prime} ; S T_{2 n}(w ; X)\right)
$$

which proves our claim.
Secondly we note that

$$
\begin{aligned}
\mathcal{T}\left(R^{\prime} ; S T_{2 n}(w ; X)\right) & \supseteq \mathcal{T}\left(w R^{\prime} w ; S T_{2 n}(w ; X)\right) \\
& =\mathcal{T}\left(w R^{\prime} w ; S t_{2 n}(X)\right)
\end{aligned}
$$

From Lemma 6.5 .6 it now follows that

$$
S T_{2}\left(w^{\prime} ; X\right) \in \mathcal{T}_{e}\left(R^{\prime} ; S T_{2 n}(w ; X)\right)
$$

and so

$$
\mathcal{G}\left(R^{\prime} ; R^{\prime}\right) \subseteq \mathcal{T}\left(R^{\prime} ; S T_{2 n}(w ; X)\right)
$$

by Theorem 6.5.7. Summarizing what is proved, we see that

$$
\begin{aligned}
\mathcal{G}(R ; R) \otimes_{C} C^{\prime} & \subseteq \mathcal{G}\left(R^{\prime} ; R^{\prime}\right) \\
& \subseteq \mathcal{T}\left(R^{\prime} ; S T_{2 n}(w ; X)\right) \\
& =\mathcal{T}\left(R ; S T_{2 n}(w ; X)\right) \otimes_{C} C^{\prime} \\
& \subseteq \mathcal{G}(R ; R) \otimes_{C} C^{\prime}
\end{aligned}
$$

and hence

$$
\mathcal{G}(R ; R) \otimes_{C} C^{\prime}=\mathcal{T}\left(R ; S T_{2 n}(w ; X)\right) \otimes_{C} C^{\prime}
$$

which completes the proof.
Keep the notation of Theorem 6.5.12 and recall that we identified R and $R \otimes 1 \subseteq R \otimes_{C} C^{\prime}=R^{\prime}$. As an easy exercise we leave it to the reader to show that $\operatorname{Soc}(R) \otimes_{C} C^{\prime}=\operatorname{Soc}\left(R^{\prime}\right)$. Clearly any C-basis \mathcal{A} of R is a C^{\prime}-basis of R^{\prime}. Further, if \mathcal{A} is a standard C-basis of R, then it is a standard C^{\prime}-basis of R^{\prime} as well. We are thus able to infer from Corollary 6.5.8, Corollary 6.5.9, Corollary 6.5.10, and Corollary 6.5.11 their respective analogues in the more general case where $w R w$ is finite-dimensional over C. We shall merely state these, leaving the details of the proofs to the reader.

Corollary 6.5.13 Let R be a primitive algebra with identity over an infinite field C having a nonzero idempotent w such that $w R w$ is a finite dimensional division C-algebra with the center $w C$. Further let \mathcal{A} be a standard C-basis of R and $h(X)=$ $\sum \beta_{i} f_{i}$ a GPI on R written in an \mathcal{A}-standard form. Given a natural number $s \geq 1$ we set
$h_{(s)}=\sum\left\{\beta_{i} f_{i} \mid f_{i}\right.$ has exactly $s-1$ coefficients of finite rank $\}$.
Then $h_{(1)}=h_{(2)}=h_{(3)}=0$ and $h_{(k)}$ is a GPI on R for all $k>3$.

Corollary 6.5.14 Let R be a primitive algebra with identity over an infinite field C having a nonzero idempotent w such that $w R w$ is a finite dimensional division C-algebra with the center $w C$. Further let \mathcal{A} be a standard C-basis of R and $h(X)=$ $\sum \beta_{i} f_{i}$ be a GPI on R written in an \mathcal{A}-standard form. Then $h^{\prime}(X)$ is a GPI on R where $h^{\prime}(X)$ is obtained from $h(X)$ according to the procedure described in (6.21)
Corollary 6.5.15 Let R be a primitive algebra with identity over an infinite field C having a nonzero idempotent w such that $w R w$ is a finite dimensional division C-algebra with center $w C$. Further let \mathcal{A} be a standard basis of R and let $h(X)=\sum \beta_{i} f_{i}$ be a GPI on R written in an \mathcal{A}-standard form. Let $g=g^{\prime} x_{k}$ where $g^{\prime} \in \mathcal{M}(\mathcal{A})$ be a monomial without coefficients of finite rank and $x_{k} \in X$. We set

$$
I(g)=\left\{i \mid f_{i}=g a_{i} \widehat{h}_{i} \quad \text { for some } \quad a_{i} \in \operatorname{Soc}(R), \widehat{h}_{i} \in \mathcal{M}(\mathcal{A})\right\}
$$

Then $\widehat{h}=\sum_{i \in I(g)} \beta_{i} a_{i} \widehat{h}_{i}$ is a GPI on R.
Corollary 6.5.16 Let R be a primitive algebra with identity over an infinite field C having a nonzero idempotent w such that $w R w$ is a finite dimensional division C-algebra with center $w C$. Further let $f, h \in R_{C}<X>$ and let $x_{k} \in X$ be a variable which is not involved in f and h. Suppose that $f x_{k} h$ is a GPI on R. Then either f or h is a GPI on R.

The \mathcal{T}-ideal of GPI's on semiprime rings. Throughout this subsection R will be a semiprime ring with extended centroid C, $Q=Q_{m r}(R), A$ the orthogonal completion of $R C$ and $A \subseteq H \subseteq$ Q a C-algebra. We start with the following useful

Lemma 6.5.17 Let R be a semiprime ring with extended centroid C and $B=B(C)$. Then there exists an orthogonal subset $\left\{e_{i} \mid i=2,3, \ldots\right\} \subseteq B$ such that:
(i) For any $M \in \operatorname{Spec}(B)\left|\phi_{M}(C)\right|=n>1$ if and only if $e_{n} \notin M$;
(ii) $x^{n}=x$ for all $x \in e_{n} C$.

Proof. First of all we recall that $\phi_{M}(C)$ is a field. Consider the sentences

$$
\begin{aligned}
\Psi_{n}= & \left(\exists x_{1}\right) \ldots\left(\exists x_{n}\right)(\forall y)\left(\wedge_{i \neq j}\left\|x_{i} \neq x_{j}\right\|\right) \wedge\|y \in C\| \\
& \wedge\left(\wedge_{i=1}^{n}\left\|x_{i} \in C\right\|\right) \wedge\left(\left\|\prod_{i=1}^{n}\left(y-x_{i}\right)=0\right\|\right)
\end{aligned}
$$

where $n=2,3, \ldots$ Clearly the Ψ_{n} 's are Horn formulas. Setting $e_{n}=E\left(\Psi_{n}\right) \in B, n=2,3, \ldots$, we infer from Theorem 3.2.10 that $\left|\phi_{M}(C)\right|=n$ if and only if $e_{n} \notin M$.

Now we consider the sentences

$$
\Phi_{n}=(\forall x)\|x \in C\| \wedge\left\|x^{n}=x\right\|, \quad n=2,3, \ldots
$$

Note that the Φ_{n} 's are Horn formulas. If $\left|\phi_{M}(C)\right|=n$, then we have $\phi_{M}(C) \models \Phi_{n}$. Therefore $e_{n} \notin M$ implies that $E\left(\Phi_{n}\right) \notin M$ and so $E\left(\Phi_{n}\right) e_{n}=e_{n}$ (see Theorem 3.2.10). From the definition of the idempotents $E\left(\Phi_{n}\right)$ we infer that $e_{n} C \models \Phi_{n}$ which means that $x^{n}=x$ for all $x \in e_{n} C$. The proof is complete.

We remark that in Lemma 6.5.17 some or all of the e_{i} 's may be 0 .

Lemma 6.5.18 Let R be a semiprime ring with extended centroid $C, Q=Q_{m r}(R)$ and A the orthogonal completion of the
central closure $R C \subseteq Q$ of R. Further let idempotents e_{2}, e_{3}, \ldots be as in Lemma 6.5.17. Suppose that R has a strict generalized polynomial identity $h(X) \in Q_{C}<X>$. Then there exist idempotents $v_{2}, v_{3}, \ldots \in A$ such that $E\left(v_{i}\right)=e_{i}$ and $v_{i} Q v_{i}=v_{i} C$ for all $i=2,3, \ldots$ Furthermore $L_{n}\left(v_{n} ; X\right)=\left(v_{n} x_{1} v_{n}\right)^{n}-v_{n} x_{1} v_{n}$ is a GPI on Q for all $n=2,3, \ldots$.

Proof. We first note that if $e_{i}=0$ then one need only choose $v_{i}=0$. Thus we shall only be concerned with those e_{i} for which $e_{i} \neq 0$. Consider the sentence

$$
\begin{aligned}
\Psi= & (\exists x)(\forall y)(\exists z)(\forall t)\left\|x^{2}=x\right\| \wedge\|z \in C\| \\
& \wedge\|t \in C\| \wedge\|x y x=x z\| \wedge(\|t x \neq 0\| \vee\|t=0\|)
\end{aligned}
$$

Clearly Ψ is a Horn formula. Let $B=B(C)$ and $M \in \operatorname{Spec}(B)$. Suppose that $e_{n} \notin M$. As we already know then $\left|\phi_{M}(C)\right|=n$. By Corollary 6.3.10 $\phi_{M}(A)$ is a primitive ring with nonzero idempotent w such that $w \phi_{M}(A) w$ is division ring finite dimensional over $\phi_{M}(C)$. From Wedderburn's Theorem we infer that $w \phi_{M}(A) w$ is commutative and hence is equal to $w \phi_{M}(C)$ (see Theorem 4.2.3). Therefore $\phi_{M}(A) \vDash \Psi$, whence $E(\Psi) \notin M$ by Theorem 3.2.10. We conclude that $E(\Psi) e_{n}=e_{n}$ and $e_{n} A \models \Psi$, which means that $e_{n} A$ contains an idempotent v_{n} such that $v_{n}\left(e_{n} A\right) v_{n}=v_{n}\left(e_{n} C\right)$ and $r_{e_{n} C}\left(v_{n}\right)=0$. Hence $E\left(v_{n}\right)=e_{n}$, $e_{n} v_{n}=v_{n}$ and $v_{n} A v_{n}=v_{n} C$. Since $v_{n} C \cong e_{n} C$, it follows from Lemma 6.5.17 that $L_{n}\left(v_{n} ; X\right)$ is a GPI on A. Applying Theorem 6.4.1, we complete the proof.

Now we are in a position leading up to the main results of the present section, namely, to give a list of generators for the \mathcal{T}-ideal $\mathcal{G}(H ; R)$ and a criterion for this \mathcal{T}-ideal to be finitely generated. We make the natural assumption that R has a strict $G P I h(X) \in Q_{C}<X>$. Let $u_{1}, u_{2}, \ldots, u_{t}$ be the idempotents given by Theorem 6.3.9, recalling that each u_{i} is an $E\left(u_{i}\right) C$ faithful abelian idempotent of $E\left(u_{i}\right) C$-rank $n_{i}=k_{i}^{2}$. We claim
that each $S_{i}=S T_{2 k_{i}}\left(u_{i} ; X\right)$ is a $G P I$ on Q. Indeed, let

$$
\Psi_{i}=\left(\forall r_{1}\right)\left(\forall r_{2}\right) \ldots\left(\forall r_{2 k_{i}}\right)\left\|S T_{2 k_{i}}\left(r_{1}, r_{2}, \ldots, r_{2 k_{i}}\right)=0\right\| .
$$

Let $M \in \operatorname{Spec}(B)$. If $\phi_{M}\left(u_{i}\right)=0$, then $S T_{2 k_{i}}\left(\phi_{M}\left(u_{i}\right) ; X\right)=0$ and so $\phi_{M}(Q) \models \Psi_{i}$. Suppose now that $\phi_{M}\left(u_{i}\right) \neq 0$. Then by Theorem 6.3.9 $\phi_{M}\left(u_{i} Q u_{i}\right)$ is n_{i}-dimensional division algebra over its center $\phi_{M}\left(u_{i} C\right)$. According to Corollary 4.2.2 the ring $\phi_{M}\left(u_{i} Q u_{i}\right)$ is embeddable into $k_{i} \times k_{i}$ matrix ring over a field. Then by Theorem 1.3 .5 we see that $S t_{2 k_{i}}(X)$ is a polynomial identity of $\phi_{M}\left(u_{i} Q u_{i}\right)$. It follows that $\phi_{M}(Q) \models \Psi_{i}$ for all $M \in \operatorname{Spec}(B)$. By Theorem 3.2.10 we have that $E\left(\Psi_{i}\right) \notin M$ for all $M \in \operatorname{Spec}(B)$. Therefore $E\left(\Psi_{i}\right)=1, S T_{2 k_{i}}\left(u_{i} ; X\right)$ is a GPI on Q and our claim is established. Further let $v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{k}}, \ldots$ (possibly empty or infinite in number) be the nonzero idempotents given in Lemma 6.5.18, and so we know that each $L_{i_{j}}=$ $L_{i_{j}}\left(v_{i_{j}} ; X\right)$ is also a $G P I$ on Q. We set

$$
\mathcal{P}=\left\{S_{1}, S_{2}, \ldots, S_{t}, L_{i_{1}}, L_{i_{2}}, \ldots, L_{i_{k}}, \ldots\right\}
$$

and show in Theorem 6.5.19 that \mathcal{P} is a set of generators of the \mathcal{T}-ideal $\mathcal{G}(H ; R)$.

In preparation for this theorem we continue with the following remarks. It follows from Theorem 6.4.1 that $\mathcal{G}(H ; R)=$ $\mathcal{G}(H ; H)$. Let $B=B(C)$. Since C is von Neumann regular, the mapping $\operatorname{Spec}(C) \rightarrow \operatorname{Spec}(B)$ given by the rule $P \mapsto P \cap B$, $P \in \operatorname{Spec}(C)$, is a bijection with the inverse mapping given by the rule $M \mapsto C M, M \in \operatorname{Spec}(B)$. For any $M \in \operatorname{Spec}(B)$ let ϕ_{M} denotes the canonical homomorphism of rings $Q \rightarrow \bar{Q}=Q / M Q$. We set $\bar{A}=\phi_{M}(A), \bar{C}=\phi_{M}(C)$ and $\bar{H}=\phi_{M}(H)$. As we already know \bar{A} is a prime ring with the extended centroid \bar{C} and $\bar{Q} \subseteq Q_{m r}(\bar{A})$ (see Theorem 3.2.7 and Theorem 3.2.15).

Letting Φ_{M} denote the canonical extension of ϕ_{M} to666 $Q_{C}<$ $X>\rightarrow \bar{Q}_{\bar{C}}<X>$, we infer from Remark 6.3.5 and Corollary 6.3.6 that Φ_{M} is surjective and $\Phi_{M}(h)$ is a nonzero $G P I$ on \bar{H}. Since
\bar{H} is centrally closed with the extended centroid \bar{C}, we conclude that it is a primitive ring with a nonzero idempotent w such that $w \bar{H} w$ is a finite dimensional \bar{C}-algebra with center $w \bar{C}$ (see Theorem 6.1.6). Therefore the \bar{C}-algebra \bar{H} satisfies all the conditions either of Theorem 6.5.7 (if $w \bar{H} w$ is commutative) or of Theorem 6.5.12 (if $w \bar{H} w$ is not commutative).

We claim that

$$
\Phi_{M}(\mathcal{G}(H ; H))=\mathcal{G}(\bar{H} ; \bar{H})
$$

Indeed, we already know that $\Phi_{M}(\mathcal{G}(H ; H)) \subseteq \mathcal{G}(\bar{H} ; \bar{H})$. Suppose now that $\Phi_{M}(f)$ is a $G P I$ on \bar{H} where

$$
f=f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in Q_{C}<X>
$$

We consider the formula

$$
\Psi=\left(\forall r_{1}\right) \ldots\left(\forall r_{n}\right)\left\|f\left(r_{1}, r_{2}, \ldots, r_{n}\right)=0\right\| .
$$

Let $a_{1}, a_{2}, \ldots, a_{m} \in H$ be all the coefficients appearing in f. Considering them as 0 -ary operations of the orthogonally complete Ω - Δ-ring Q where

$$
\Omega=\left\{0,1, a_{1}, a_{2}, \ldots, a_{n},-,+, \cdot\right\}
$$

and $\Delta=\{\|x=y\|\}$, we note that Ψ is a Horn sentence. If $\bar{Q} \models \Psi$, then there exists an idempotent $e \in B \backslash M$ such that $e Q \models \Psi$ (see Theorem 3.2.10). This means that $e f$ is a GPI on $e Q$ and hence it is a $G P I$ on Q. Therefore ef $\in \mathcal{G}(H ; H)$. Since $\Phi_{M}(e f)=\Phi_{M}(f)$, we conclude that $\Phi_{M}(\mathcal{G}(H ; H)) \supseteq \mathcal{G}(\bar{H} ; \bar{H})$ which proves our claim.

Now we consider any H-endomorphism τ of $H_{C}<X>$ (i.e., an endomorphism τ such that $a^{\tau}=a$ for all $a \in H$). Clearly it induces an \bar{H}-endomorphism $\bar{\tau}$ of $\bar{H}_{\bar{C}}<X>$. We claim that any \bar{H}-endomorphism σ of $\bar{H}_{\bar{C}}<X>$ is of this form. Indeed, pick $g_{x} \in H_{C}<X>$ such that $x^{\sigma}=\Phi_{M}\left(g_{x}\right)$ for all $x \in X$ and define
the H-endomorphism τ of $H_{C}<X>$ by the rule $x^{\tau}=g_{x}, x \in X$, and its consequences. Obviously $\bar{\tau}=\sigma$ and our claim is proved. Now it follows that for any subset $F \subseteq H_{C}<X>$ we have

$$
\Phi_{M}(\mathcal{T}(H ; F))=\mathcal{T}\left(\bar{H} ; \Phi_{M}(F)\right) .
$$

Theorem 6.5.19 Let R be a semiprime ring with extended centroid C and $Q=Q_{m r}(R)$. Further let A be the orthogonal completion of the subalgebra $R C+C \subseteq Q$. Suppose that R has a strict $G P I h(X) \in Q_{C}<X>$ and $A \subseteq H \subseteq Q$ is a C subalgebra. Then \mathcal{P} (given above) is a set of generators for the \mathcal{T}-ideal $\mathcal{G}(H ; R)$ of all generalized identities on R.

Proof. In view of $\mathcal{G}(H ; R)=\mathcal{G}(H ; H)$ and the fact that $\mathcal{T}(H ; \mathcal{P}) \subseteq \mathcal{G}(H ; H)$ we need only show that

$$
\mathcal{G}(H ; H) \subseteq \mathcal{T}(H ; \mathcal{P})
$$

For any $M \in \operatorname{Spec}(B)$ we have $\mathcal{G}(\bar{H} ; \bar{H})=\mathcal{T}\left(\bar{H} ; \Phi_{M}(\mathcal{P})\right)$ by Theorem 6.5.7 and Theorem 6.5.12, and hence

$$
\Phi_{M}(\mathcal{G}(H ; H))=\mathcal{G}(\bar{H} ; \bar{H})=\mathcal{T}\left(\bar{H} ; \Phi_{M}(\mathcal{P})\right)=\Phi_{M}(\mathcal{T}(H ; \mathcal{P}))
$$

by the remark preceding the statement of this theorem. Now consider any element $f \in \mathcal{G}(H ; H)$. Then for each $M \in \operatorname{Spec}(B)$ $\Phi_{M}(f)=\Phi_{M}\left(h_{M}\right)$ for some $h_{M} \in \mathcal{T}(H ; \mathcal{P})$. By Remark 3.2.2(i) $v_{M}\left(f-h_{M}\right)=0$ for some $v_{M} \in B \backslash M$. We note that $v_{M} f=$ $v_{M} h_{M}$. By Lemma 3.1.21 (with suitable relabeling of subscripts) there is a finite subset $v_{1}, v_{2}, \ldots, v_{s}$ of the v_{M} 's for which there are central idempotents $0 \neq e_{i} \leq v_{i}, e_{1}+e_{2}+\ldots+e_{s}=1$, and $e_{i} e_{j}=0$ for $i \neq j$. Therefore for each $j=1,2, \ldots, s e_{j} f=$ $e_{j} h_{M}=h_{j} \in \mathcal{T}(H ; \mathcal{P})$ and so $f=\sum_{j=1}^{s} e_{j} f \in \mathcal{T}(H ; \mathcal{P})$. The proof is complete.

As our final result in this section we have

Theorem 6.5.20 Under the assumptions and notation of Theorem 6.5.19 the following conditions are equivalent:
(i) $\mathcal{G}(H ; R)$ is finitely generated as a \mathcal{T}-ideal;
(ii) There is a natural number N such that for any maximal ideal P of C either $|C / P| \leq N$ or $|C / P|=\infty$.

Proof. (i) \Rightarrow (ii) Let F be a finite generating set of $\mathcal{G}(H ; R)$ $=\mathcal{G}(H ; H)$ and $m=\max _{f \in F} \operatorname{deg}(f)$. Further let $M \in \operatorname{Spec}(B)$ and $\left|\phi_{M}(C)\right|=n<\infty$. It is enough to show that $n \leq m$. Suppose that $n>m$. Using Vandermonde determinant arguments, one can easily show that all homogeneous components of any $f \in \Phi_{M}(F)$ are a $G P I$'s on \bar{H}. Letting F^{\prime} denote the set of all homogeneous components of all $f \in \Phi_{M}(F)$, we note that

$$
\begin{aligned}
\mathcal{G}(\bar{H} ; \bar{H}) & =\Phi_{M}(\mathcal{G}(H ; H))=\Phi_{M}(\mathcal{T}(H ; F)) \\
& =\mathcal{T}\left(\bar{H} ; \Phi_{M}(F)\right)=\mathcal{T}\left(\bar{H} ; F^{\prime}\right)
\end{aligned}
$$

Further as we already know from the proof of Lemma 6.5.18, \bar{H} contains a nonzero idempotent w such that $w \bar{H} w=w \bar{C}$ and $L_{n}(w ; X)$ is a GPI on \bar{H}. Therefore

$$
\begin{equation*}
L_{n}(w ; X) \in \mathcal{T}\left(\bar{H} ; F^{\prime}\right) \tag{6.23}
\end{equation*}
$$

Let K be the field of rational expressions in t with coefficients in \bar{C}. We identify the ring \bar{H} with the subring $1 \otimes \bar{H} \subseteq K \otimes_{\bar{C}} \bar{H}=$ G. Clearly $w G w=w K$ and $G=\bar{H} K$. Using the induction on the height of GPI and the relations $\operatorname{deg}(f)<|C|$ for all $f \in F^{\prime}$, one can prove that every $f \in F^{\prime}$ vanishes on G (see the proof of Lemma 6.4.3 for the details). It follows from (6.23) that $L_{n}(w ; X)$ vanishes on G which means that $(w k)^{n}=w k$ for all $k \in K$, a contradiction. Thus $n \leq m$.
(ii) \Rightarrow (i) By Theorem 6.5.19

$$
\mathcal{P}=\left\{S_{1}, S_{2}, \ldots, S_{t}, L_{i_{1}}, L_{i_{2}}, \ldots, L_{i_{k}}, \ldots\right\}
$$

is a set of generators for the \mathcal{T}-ideal $\mathcal{G}(H ; R)$. We claim that $i_{k} \leq N$ for all k. Indeed, if $i_{k}>N$, we choose $M \in \operatorname{Spec}(B)$ such
that $E\left(v_{i_{k}}\right) \notin M$. Then by Lemma 6.5.18 and Lemma 6.5.17(i) we have that $\left|\phi_{M}(C)\right|=i_{k}>N$ forcing the contradiction to our assumptions. Therefore our claim is established. But then $\mathcal{P}=\left\{S_{1}, \ldots, S_{t}, L_{i_{1}}, \ldots, L_{i_{s}}\right\}$ for some s such that $i_{s} \leq N$ and so $\mathcal{G}(H ; R)$ is finitely generated as a \mathcal{T}-ideal. The proof is complete.

Theorem 6.5.7, Theorem 6.5.12 and Theorem 6.5.19 were proved by K. I. Beidar (see [23] and [26]). The case of generalized polynomial identities with involution was considered in [250], [237], [238], and [239]. Corollary 6.5.9 was pointed out to him by Prof. C.-L. Chuang in 1994, but no ideas of proof were presented.

6.6 Special GPI's

In this section we shall discuss some special generalized polynomial identities. We start with the following

Lemma 6.6.1 Let V be a nonzero right vector space over a division ring Δ with proper subspaces $V_{1}, V_{2}, \ldots, V_{n}$ such that $V=\cup_{i=1}^{n} V_{i}$. Then Δ is a finite field with $|\Delta|<n$.

Proof. Without loss of generality we may assume that $\cup_{i \neq j} V_{i} \neq V$ for all $j=1,2, \ldots, n$. Pick $v_{j} \in V \backslash \cup_{i \neq j} V_{i}$. We note that $v_{j} \in V_{i}$ if and only if $i=j$. Thus if $\lambda v_{j} \in V_{i}$, $0 \neq \lambda \in \Delta$, then $v_{j} \in V_{i}$ forcing $i=j$. The case $n=2$ cannot exist and so we may assume $n>2$. Suppose $|\Delta| \geq n$. Then (by the pigeon-hole principle) there exists $i>2$ such that $v_{1}+\lambda v_{2}, v_{1}+\mu v_{2} \in V_{i}$ for some $\lambda \neq \mu \in \Delta$. Thus $\lambda \mu^{-1} v_{1}+\lambda v_{2} \in V_{i}$ and so $\left(1-\lambda \mu^{-1}\right) v_{1} \in V_{i}$, forcing the contradiction $\lambda=\mu$. By Theorem 4.2.3 Δ is a field and the proof is complete.

Theorem 6.6.2 Let R be a prime ring with extended centroid C and $Q=Q_{m r}(R)$. Then the following conditions are equivalent:
(i) There exist nonzero elements $r_{1}, r_{2}, \ldots, r_{n+1} \in R$ such that $r_{1} x r_{2} x \ldots r_{n} x r_{n+1}=0$ for all $x \in R$;
(ii) There exist nonzero elements $q_{1}, q_{2}, \ldots, q_{n+1} \in Q$ such that $q_{1} x q_{2} x \ldots q_{n} x q_{n+1}=0$ for all $x \in R$;
(iii) $|C| \leq n$ and R is a noncommutative primitive ring with nonzero socle containing a minimal idempotent e such that $e R e=e C$.

Proof. The implication (i) \Rightarrow (ii) is obvious. We show that (ii) \Rightarrow (iii). Clearly

$$
\begin{equation*}
q_{1} x q_{2} x \ldots q_{n} x q_{n+1} \tag{6.24}
\end{equation*}
$$

is a GPI on R. In view of Proposition 6.4.2 it is enough to show that $|C| \leq n$. By Theorem 6.4.4 $q_{1} x q_{2} x \ldots q_{n} x q_{n+1}=0$ for all $x \in Q$ and so Q is GPI. In particular Q is a primitive ring with nonzero socle K. Let e be a minimal idempotent of Q. Consider the right vector space $V=Q e$ over the division ring $\Delta=e Q e$. Clearly $Q \subseteq \operatorname{End}\left(V_{\Delta}\right)$ and $\operatorname{ker}\left(q_{i}\right)$ is a subspace of V for all $i=1,2, \ldots, n+1$. If $V=\cup_{i=1}^{n+1} \operatorname{ker}\left(q_{i}\right)$, then by Lemma 6.6.1 $|\Delta| \leq n$ and so $|C| \leq n$. Hence without loss of generality we may assume that $\cup_{i=1}^{n+1} \operatorname{ker}\left(q_{i}\right) \neq V$ and there exists $q \in Q$ such that $q_{i} q e \neq 0$ for all $i=1,2, \ldots, n+1$. Substituting $q e x$ for x in (6.24) and multiplying by $q e$ from the right, we infer that

$$
\begin{equation*}
q_{1} q e x q_{2} q e x \ldots q_{n} q e x q_{n+1} q e \tag{6.25}
\end{equation*}
$$

is a nonzero GPI on Q. Now we consider the faithful right Q module $W=e Q$. If $W \neq \cup_{i=1}^{n+1} \operatorname{ker} q_{i} q e$, then there exists $q^{\prime} \in Q$ such that $e q^{\prime} q_{i} q e \neq 0$ for all $i=1,2, \ldots, n+1$. Since $\Delta=e Q e$ is a division ring, we conclude that

$$
\begin{aligned}
& \left(e q^{\prime}\right)\left[\left(q_{1} q e\right)\left(e q^{\prime}\right)\left(q_{2} q e\right)\left(e q^{\prime}\right) \ldots\left(q_{n} q e\right)\left(e q^{\prime}\right)\left(q_{n+1} e\right)\right. \\
& =\left(e q^{\prime} q_{1} q e\right)\left(e q^{\prime} q_{2} q e\right) \ldots\left(e q^{\prime} q_{n+1} q e\right) \neq 0,
\end{aligned}
$$

a contradiction to (6.25). Thus $W=\cup_{i=1}^{n+1}$ ker $q_{i} q e$ and so $|\Delta| \leq$ n by Lemma 6.6.1.
(iii) \Rightarrow (i) Clearly $\operatorname{Soc}(R)$ contains an idempotent v such that $v R v \cong M_{2}(C)$. Let $\left\{e_{i j} \mid 1 \leq i, j \leq 2\right\}$ be matrix units of $v R v$. Obviously $v R v=E n d_{C}\left(v R e_{11}\right)$ and the vector space $v R e_{11}$ contains exactly $m=|C|+1 \leq n+1$ distinct one dimensional subspaces $V_{1}, V_{2}, \ldots, V_{m}$. It is well-known that any proper subspace of a vector space is the kernel of a nonzero linear endomorphism. Pick $a_{i} \in v R v$ such that $V_{i}=\operatorname{ker}\left(a_{i}\right), i=1,2, \ldots, m$. Further choose $b_{i} \in v R v$ such that $r_{i}=e_{11} b_{i} a_{i} \neq 0$. We set $r_{m+1}=e_{11}$. Then for all $x \in R$ we have

$$
\begin{aligned}
& r_{1} x r_{2} x \ldots r_{m} x r_{m+1} \\
& =e_{11} b_{1}\left[a_{1}\left(v x e_{11}\right)\right] b_{2}\left[a_{2}\left(v x e_{11}\right)\right] \ldots\left[a_{m}\left(v x e_{11}\right)\right]=0
\end{aligned}
$$

since $v x e_{11} \in V_{i}$ for some $1 \leq i \leq m$. The proof is complete.

Corollary 6.6.3 Let $n>0$ be a natural number and R a prime ring with infinite extended centroid. Further let $r_{1}, r_{2}, \ldots, r_{n+1} \in$ R. Suppose that $r_{1} x r_{2} x \ldots r_{n} x r_{n+1}=0$ for all $x \in R$. Then $r_{i}=0$ for some $1 \leq i \leq n+1$.

Proof. Let C be the extended centroid of R. Then $|C|>n$. Now apply Theorem 6.6.2.

Proposition 6.6.4 Let R be a semiprime ring with extended centroid C and $Q=Q_{m r}(R)$. Further let $B=B(C), M \in$ $\operatorname{Spec}(B)$ and $\phi_{M}: Q \rightarrow Q / M Q$ the canonical surjection of rings. Suppose $\phi_{M}(Q)$ is GPI with $\left|\phi_{M}(C)\right|=m<\infty$. Then there exists an idempotent $e \in B \backslash M$ such that every right (left) ideal L of R with eL $\neq 0$ contains a nonzero idempotent $w \in L$ such that $w R w$ is a commutative ring and $x^{m}=x$ for all $x \in w R w$.

Proof. Let $H=Q_{s}(R)$. Consider the formula

$$
\begin{align*}
\Phi= & (\exists v)\left(\forall c_{1}\right)(\forall x)\left(\exists c_{2}\right)\left\|c_{1} \in C\right\| \wedge\left\|c_{1}^{m}=c_{1}\right\| \\
& \wedge\left(\left\|c_{1}=0\right\| \vee\left\|c_{1} v \neq 0\right\|\right) \wedge\left\|c_{2} \in C\right\| \\
& \wedge\left\|v x v=v c_{2}\right\| \wedge\left\|v^{2}=v\right\| \tag{6.26}
\end{align*}
$$

Clearly Φ is Horn sentence. It follows from Proposition 6.4.2 that $\phi_{M}(H) \vDash \Phi$. By Theorem 3.2.10 $e=E(\Phi) \notin M$ and $e H \models \Phi$. Hence there exists an idempotent $v \in H$ such that $E(v)=e$ and $v H v=v C$. We also note that $x^{m}=x$ for all $x \in e C$.

Now let L be a right ideal of R such that $e L \neq 0$. Then ae $\neq 0$ for some $a \in L$ and so $e E(a) \neq 0$. Pick any $N \in$ $\operatorname{Spec}(B)$ such that $E(a) e \notin N$. According to Corollary 3.2.4 $\bar{a}=\phi_{N}(a) \neq 0$ and $\bar{v}=\phi_{N}(v) \neq 0$. Clearly $\bar{v} \bar{H} \bar{v}=\bar{v} \bar{C}$ and $x^{m}=x$ for all $x \in \bar{C}$ where $\bar{H}=\phi_{N}(H)$ and $\bar{C}=\phi_{N}(C)=$ $\phi_{N}(e C)$. Clearly \bar{H} is a primitive ring with nonzero socle and \bar{v} is a minimal idempotent of \bar{H}. By Theorem 4.3.7(ii) the right ideal $\bar{a} \bar{H}$ contains a minimal idempotent u. Obviously $u \bar{H} u=u \bar{C}$. Consider the formula (here we note that it is understood that the element a is a 0 -ary operation on H)

$$
\begin{aligned}
\Psi= & (\exists b)\left(\forall c_{1}\right)(\forall x)\left(\exists c_{2}\right)\left\|c_{1} \in C\right\| \wedge\left\|c_{1}^{m}=c_{1}\right\| \wedge\left\|(\bar{a} b)^{2}=\bar{a} b\right\| \\
& \wedge\left(\left\|c_{1}=0\right\| \vee\left\|c_{1} \bar{a} b \neq 0\right\|\right) \wedge\left\|c_{2} \in C\right\| \wedge\left\|\bar{a} b x \bar{a} b=\bar{a} b c_{2}\right\| .
\end{aligned}
$$

By the preceding observations $\bar{H} \models \Psi$. It follows from Theorem 3.2.10 that $f H \vDash \Psi$ for some $f \notin N$. Hence there exists an idempotent $w^{\prime} \in a H$ such that $E\left(w^{\prime}\right)=f$ and $w^{\prime} H w^{\prime}=w^{\prime} C$. Furthermore $x^{m}=x$ for all $x \in f C$. Since $f C \cong w^{\prime} C$, we conclude that $x^{m}=x$ for all $x \in w^{\prime} C$. Write $w^{\prime}=a h$ where $h \in H$ and choose a dense ideal I of R such that $I h+h I \subseteq R$. Then $w^{\prime} I^{2} w^{\prime} \subseteq a R \subseteq L$. Clearly $w^{\prime} I^{2} w^{\prime}$ is a nonzero subring of the commutative ring $w^{\prime} C$. Hence $x^{m}=x$ for all $x \in w^{\prime} I^{2} w^{\prime}$. Pick any nonzero $y \in w^{\prime} I^{2} w^{\prime}$ and set $w=y^{m-1}$. Obviously
$w^{2}=w, w \in L$ and $w R w \subseteq w^{\prime} H w^{\prime}=w^{\prime} C$. Thus $x^{m}=x$ for all $x \in w R w$ and the proof is complete.

Our final result along these lines is a corollary to Theorem 6.6.2 and Proposition 6.6.4.

Theorem 6.6.5 Let R be a semiprime ring with extended centroid $C, Q=Q_{m r}(R)$ and $q_{1}, q_{2}, \ldots, q_{n+1} \in Q$. We set $e=$ $E\left(q_{1}\right) E\left(q_{2}\right) \ldots E\left(q_{n+1}\right)$. Suppose $q_{1} x q_{2} x \ldots q_{n} x q_{n+1}=0$ for all $x \in R$ and $e \neq 0$. Let L be a right (left) ideal of R such that $e L \neq 0$. Then there exist a natural number m and a nonzero idempotent $w \in L$ such that $0<m<n+1, w R w$ is a commutative ring and $x^{m}=x$ for all $x \in w R w$.

Proof. Let Φ be the Horn formula given in (6.26) and set $e^{\prime}=E(\Phi)$. Suppose $e \not \leq e^{\prime}$. Then there exists $0 \neq f \leq e$ such that $f e^{\prime}=0$. Pick $M \in \operatorname{Spec}(B)$ such that $f \notin M$. Then $e \notin M$ and so $E\left(q_{i}\right) \notin M$ for all $i=1,2, \ldots, n+1$. By Remark 3.2.2 each $\phi_{M}\left(q_{i}\right) \neq 0$ and we have

$$
\phi_{M}\left(q_{1}\right) x \phi_{M}\left(q_{2}\right) \ldots x \phi_{M}\left(q_{n+1}\right)
$$

is a nonzero $G P I$ on $\phi_{M}(Q)$. By Theorem 6.6.2 $\left|\phi_{M}(C)\right| \leq n$. We note that $\phi_{M}(Q) \models \Phi$ and see by Theorem 3.2.10 that $e^{\prime}=$ $E(\Phi) \notin M$. We then have the contradiction $f e^{\prime}=0 \in M$, $f \notin M, e^{\prime} \notin M$, and so we conclude that $e \leq e^{\prime}$. Now let L be a right (left) ideal of R such that $e L \neq 0$. It follows that $e^{\prime} L \neq 0$ (noting that $e^{\prime}=E(\Phi)$ is precisely the central idempotent obtained in the proof of Proposition 6.6.4). The conclusion then follows from Proposition 6.6.4

The following result extends to prime rings a theorem originally proved by Slater for primitive rings [266]. The latter result is noteworthy since it was one of the very first results in GPI theory (slightly predating the fundamental theorem of Amitsur [3]).

Theorem 6.6.6 Let R be a prime ring with extended centroid $C, 0 \neq p\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in C<X>$ and $a \in R$. Suppose that $p\left(a, x_{2}, x_{3}, \ldots, x_{n}\right)$ is a GPI on R. Then a is algebraic over C.

Proof. Let A be the central closure of R and $n=\operatorname{deg}_{x_{1}} p(x)$ Suppose that a is not algebraic over C. Then $p\left(a, x_{2}, \ldots, x_{n}\right) \neq$ 0 . Hence R is GPI. According to the prime GPI theorem A is a primitive ring with nonzero socle whose associated division ring is a finite dimensional C-algebra. By Corollary 6.5.13 $\left\{1, a, a^{2}, \ldots, a^{n}\right\}$ is a C-dependent set modulo $\operatorname{Soc}(A)$, whence there exists an element $0 \neq b=\sum_{i=0}^{n} \beta_{i} a^{i} \in S o c(A), \beta_{i} \in C$. By Litoff's Theorem there exists an idempotent $e \in \operatorname{Soc}(A)$ such that $b \in e A e$ and $\operatorname{dim}_{C}(e A e)<\infty$. Thus b (and so a) is algebraic over C.

A standard application of the method of orthogonal completion (Theorem 3.2.18) together with the above theorem yields

Theorem 6.6.7 Let R be a semiprime ring with extended centroid $C, p\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in C<X>$ and $a \in R$. Suppose that $p\left(a, x_{2}, x_{3}, \ldots, x_{n}\right)$ is a GPI on R and at least one coefficient of $p(x)$ equals 1 . Then a is algebraic over C.

Our final application in this chapter gives equivalent conditions for an involution to be symplectic.

Theorem 6.6.8 Let R be a prime ring $(\operatorname{char}(R) \neq 2)$ with involution *, extended centroid C and central closure $A=R C$. Then the following conditions are equivalent:
(i) A is a primitive ring with nonzero socle and $*$ is of symplectic type;
(ii) There exists a nonzero element $a \in R$ such that $a x x^{*} a^{*}=$ 0 for all $x \in R$;
(iii) There exists a nonzero element $a \in R$ such that $a x a^{*}+$ $a x^{*} a^{*}=0$ for all $x \in R$.

Proof. (i) \Rightarrow (ii) Since $*$ is of symplectic type, A contains a minimal idempotent e such that $e e^{*}=0$. We claim that $e x x^{*} e^{*}=0$ for all $x \in A$. Indeed, by Kaplansky's Theorem there exists a vector space $C_{C} V$ over a field C with a nondegenerate alternate form \langle,$\rangle such that \mathcal{F}_{V} \subseteq A \subseteq \mathcal{L}_{V}$ and $*$ is the adjoint map relatively to \langle,$\rangle (see Theorem 4.6.8). Pick 0 \neq v \in V$ such that $v e=v$. Clearly $V=C v \oplus V(1-e)$. Let $u, w \in V$. Then $u=\lambda v+u^{\prime}(1-e)$ and $w=\mu v+w^{\prime}(1-e)$ for some $\lambda, \mu \in C$ and $u^{\prime}, w^{\prime} \in V$. We have

$$
\left\langle u, w e x x^{*} e^{*}\right\rangle=\langle u e x, \text { wex }\rangle=\lambda \mu\langle v x, v x\rangle=0
$$

because $\langle t, t\rangle=0$ for all $t \in V$. Since \langle,$\rangle is nondegenerate,$ wexx*** $=0$ for all $w \in V$ and so $e x x^{*} e^{*}=0$. Pick any $r \in$ R such that $0 \neq r e \in R$. Setting $a=r e$ we conclude that $a x x^{*} a^{*}=0$ for all $x \in R$.
(ii) \Rightarrow (i) By Theorem 6.2.3 R is $G P I$ and so by the prime $G P I$ theorem A is a primitive ring with nonzero socle. By Kaplansky's Theorem * is either of transpose type or of symplectic type. Suppose $*$ is of transpose type. Then there exists a vector space ΔV over a division ring Δ with a nondegenerate Hermitian form \langle,$\rangle such that \mathcal{F}_{V} \subseteq A \subseteq \mathcal{L}_{V}$ and $*$ is the adjoint map relatively to \langle,$\rangle (see Theorem 4.6.8). Pick v \in V$ such that $v a \neq 0$. Clearly $v a A=V$. Since \langle,$\rangle is Hermitian, there exists$ $x \in A$ such that $\langle v a x, v a x\rangle \neq 0$. Then

$$
0 \neq\langle v a x, v a x\rangle=\left\langle v, v a x x^{*} a^{*}\right\rangle=0,
$$

a contradiction. Thus * is of symplectic type.
(ii) \Rightarrow (iii) Linearizing the $*$-identity $a x x^{*} a^{*}$ we obtain that $a x y^{*} a^{*}+a y x^{*} a^{*}$ is a -identity of R. By Theorem 6.4.7 $a x y^{*} a^{*}+$ ayx*** is a $*$-identity of $Q_{s}(R)$. Substituting $1 \in Q_{s}(R)$ for y we conclude that $a x a^{*}+a x^{*} a^{*}$ is a $*$-identity of R.
(iii) \Rightarrow (ii) Substituting $x x^{*}$ for x we obtain $2 a x x^{*} a^{*}$ is a $*$-identity of R. Since $\operatorname{char}(R) \neq 2, a x x^{*} a^{*}$ is a $*$-identity of R.

Theorem 6.6.2 was proved by Posner and Schneider [243] in the case of primitive rings with nonzero socle. Corollary 6.6.3 is due to Richoux [249] and Herstein and Small [125].

Chapter 7

T-identities of Prime Rings

7.1 The Home of T-identities

We come now to one of the central topics of this book. Our aim is to give a rigorous and detailed account of the powerful results of Kharchenko concerning prime rings satisfying identities involving derivations and automorphisms (and of the extension of his work by Chuang to include antiautomorphisms). The first order of business is to carefully define these identities, and there are several approaches one can take.

One approach is to naively say that an identity is simply an expression involving fixed ring elements and variables superscripted by composites of derivations and (anti)automorphisms which is sent to zero when the variables are replaced by arbitrary ring elements. But questions about the precise nature of "expressions" and "superscripted variables" quickly indicate the lack of rigor in this simplistic approach. Before describing more acceptable approaches we must first set in place some necessary terminology.

Throughout this chapter R will be a prime ring, C its
extended centroid, Φ the prime subfield of C, Q the symmetric ring of quotients of R, D_{i} the inner derivations of $Q, D=$ $\operatorname{Der}(R) C+D_{i}, G_{i}$ the X-inner automorphisms of R, and $G=$ $\operatorname{Aut}(R) \cup \operatorname{Antiaut}(R)$. We let G_{0} denote a set of representatives of G modulo G_{i}, and let
$A_{t_{0}}(R)=G_{0} \cap A u t(R)$ and $A n t i a u t ~_{0}(R)=G_{0} \cap \operatorname{Antiaut}(R)$.
Furthermore we let V be a vector space over C and let X be a C-basis for V, recalling that $C<X>=C\{V\}$. We have seen in earlier chapters that C, D, and G are all contained in $E n d_{\Phi}(Q)$, and we let N denote the subring of $E n d_{\Phi}(Q)$ generated by C, D, and G.

Keeping in mind that the "home" for GPI's is

$$
Q \coprod_{C} C<X>=Q \coprod_{C} C\{V\}
$$

it seems reasonable that the framework we are seeking should be of the form $Q 山_{C} A$ where (for temporary purpose) we shall refer to A as a suitable "algebra of variables".

An appealing choice for A (although one which we shall presently reject) is $A=C<X^{N}>$ where X^{N} is simply a suggestive way of writing $X \times N$. The substitutions we allow are of the form $q \mapsto q, x \mapsto r, r \in Q, x^{s} \mapsto r^{s}, s \in N$. Then an "identity" is an element of $Q \amalg_{C} C<X^{N}>$ which vanishes under all substitutions just described. Although this definition of identity is quite rigorous it has the drawback that there is no uniqueness to writing the elements of N, and so attempts to work in this framework are fraught with ambiguities. For this reason we must reject this approach.

In order to counteract the lack of uniqueness inherent in the approach just described we shall go to the end of the spectrum (so to speak) and construct the algebra of variables A to be as "free" as possible. To this end let \bar{D} denote the set D, \bar{G} the set $G, \Phi<\bar{D} \cup \bar{G}>$ the free algebra in the set $\bar{D} \cup \bar{G}$ over
$\Phi, \bar{T}=C \amalg_{C} \Phi<\bar{D} \cup \bar{G}>, V$ a vector space over $C, V^{\bar{T}}$ the Cartesian product of V and \bar{T}, and $A=C\left\langle V^{\bar{T}}\right\rangle$. We let $\sigma: \bar{T} \rightarrow E n d_{\Phi}(Q)$ be the Φ-algebra map given by $c \mapsto c, \bar{\delta} \mapsto \delta$, $\bar{g} \mapsto g, c \in C, \delta \in D, g \in G$. Let $\psi: V \rightarrow Q$ be any C space map and let $\hat{\psi}: C<V^{\bar{T}}>\rightarrow Q$ be the C-algebra map given by $v^{t} \mapsto \psi(v)^{\sigma(t)}, v \in V, t \in \bar{T}$. Then the C-algebra map $Q \amalg_{C} A \rightarrow Q$ which simultaneously lifts $i d_{Q}$ and $\hat{\psi}$ will be called a \bar{T}-substitution. The notion of identity we require can now be defined: $\phi \in Q \amalg_{C} A$ is a \bar{T}-identity on I (where $0 \neq I \triangleleft R$) if ϕ mapped to 0 by all \bar{T}-substitutions for which $\psi(X) \subseteq I$.

The favorable aspects of this approach are that there are no hidden relations (because of the freedom of its construction), it has a nice algebraic structure, and it is reasonably natural (if one thinks of v^{t} as a "variable" v acted on by an "endomorphism" $t)$. However, it has the considerable disadvantage that $Q \amalg_{C} A$ contains many types of elements which are "trivial" \bar{T}-identities in the sense that they have no effect on the ring R. To give the reader an accurate view of the extent of this phenomenon we proceed with the following list of "obvious" identities. Those of type (A) simply reflect the nature of endomorphisms and of $E n d_{\Phi}(Q)$ being a left and right C-space:

$$
\begin{aligned}
& \left(A_{1}\right)(v+w)^{t}-v^{t}-w^{t} ; \\
& \left(A_{2}\right) v^{s+t}-v^{s}-v^{t} ; \\
& \left(A_{3}\right) v^{c t}-(v c)^{t} ; \\
& \left(A_{4}\right) v^{t c}-v^{t} \cdot c
\end{aligned}
$$

where $v, w \in V, s, t \in \bar{T}, c \in C$. Those of type (B) reflect the interrelations among C, D, and G. They are of the form $v^{s u t}$ where $v \in V, s, t, u \in \bar{T}$, and u is one of the following:

$$
\begin{aligned}
& \left(B_{1}\right) c \bar{g}-\bar{g} c^{g} \\
& \left(B_{2}\right) c \bar{\delta}-\left(\bar{\delta} c+c^{\delta}\right) ; \\
& \left(B_{3}\right) \overline{\delta c}-\bar{\delta} c ;
\end{aligned}
$$

```
( \(\left.B_{4}\right) \overline{g h}-\bar{g} \cdot \bar{h}\);
\(\left(_{B_{5}}\right) \bar{\delta} \cdot \bar{g}-\bar{g} \cdot \overline{\delta g}\), where \(\delta^{g}=g^{-1} \delta g\);
( \(\left.B_{6}\right) \bar{\delta}+\bar{\mu}-\overline{\delta+\mu}\);
\(\left(B_{7}\right)[\bar{\delta}, \bar{\mu}]-\overline{[\delta, \mu]} ;\)
\(\left(B_{8}\right) \bar{\delta}^{p}-\overline{\delta^{p}} \quad\) (if \(\left.\operatorname{char}(R)=p\right)\)
```

where $c \in C, \delta, \mu \in D, g, h \in G$. Those of type (C) arise from the elements of D_{i} and G_{i} :

$$
\begin{aligned}
& \left(C_{1}\right) v^{t \bar{\mu}}-\left[a, v^{t}\right], \mu=a d(a) \in D_{i}, a \in Q ; \\
& \left(C_{2}\right) v^{v^{t h}}-s^{-1} v^{t} s, h=\operatorname{inn}(s) \in G_{i},
\end{aligned}
$$

where $t \in \bar{T}, v \in V$.
Ultimately, however, we are interested in identities which are "nontrivial" in the sense that they have an impact on the ring R. What we are seeking is a "home" for identities whose structure still retains a degree of freedom to make it tractable to work with but is one in which the identities corresponding to the trivial ones $\left(A_{1}\right)-\left(A_{4}\right),\left(B_{1}\right)-\left(B_{8}\right)$ have already "collapsed" to the zero element. Therefore we shall reject the preceding approach.

It is now time to take the positive step of constructing what we feel is the proper "home" for the identities we will be considering. We begin by focusing our attention on U, the universal enveloping ring of the (restricted) differential C-Lie algebra D. At this point the reader should review the remarks concerning D and U made in section 5.5 , as we shall feel free to draw upon the terminology and notations given there without further comment.

We proceed to show that there is an action of G on U, and hence the skew group ring $U \propto G$ exists. (That this is possible should come as no surprise in view of the relations $\left(B_{1}\right)-\left(B_{5}\right)$ previously listed.) Indeed, given $g \in G$ we will define $g^{\pi}: U \rightarrow$ U as follows. Consider the diagram:

where $f: \delta \mapsto \delta^{g}$. We define an automorphism σ of C by $c^{\sigma}=c^{g}$ for all $c \in C$. Considering C as a subring of $E n d_{\Phi}(Q)$, we have $c^{g}=g^{-1} c g$ for all $c \in C$. We proceed to check that f is a σ-semilinear differential C-Lie automorphism of D :

$$
\begin{aligned}
& \text { (a) }[\delta, \mu]^{f}=g^{-1}[\delta, \mu] g=\left[g^{-1} \delta g, g^{-1} \mu g\right]=\left[\delta^{f}, \mu^{f}\right] ; \\
& \text { (b) }(\delta c)^{f}=g^{-1} \delta c g=g^{-1} \delta g g^{-1} c g=\delta^{f} c^{\sigma} ; \\
& \text { (c) } \widehat{\delta^{f}}=g^{-1} \delta g=g^{-1} \widehat{\delta} g=\sigma^{-1} \widehat{\delta} \sigma ; \\
& \text { (d) }(\operatorname{char}(C)=p)\left(\delta^{p}\right)^{f}=g^{-1}\left(\delta^{p}\right) g=\left(g^{-1} \delta g\right)^{p}=\left(\delta^{f}\right)^{p}
\end{aligned}
$$

where $\delta, \mu \in D, c \in C$. Therefore by our discussion in section 5.5 there exists a σ-semilinear Φ-algebra automorphism $g^{\pi}: U \rightarrow U$ completing the diagram. One verifies that π is a homomorphism by applying $\left(g_{1} g_{2}\right)^{\pi}$ to the generators of U, i.e., to the elements of C and D. We leave the details for the reader.

We let T denote the skew group ring $U \propto G$ just defined. Clearly T is both a left and right C-space. We then form the right C-space $V \otimes_{C} T$, with scalar multiplication given by

$$
(v \otimes t) c=v \otimes t c, v \in V, t \in T, c \in C
$$

We now take our "algebra of variables" to be the tensor algebra $C\{V \otimes T\}$ of the C-space $V \otimes T$ over C.

The ring

$$
\mathcal{S}(Q ; R)=\mathcal{S}(R)=\mathcal{S}=Q_{C}\{V \otimes T\}=Q \coprod_{C} C\{V \otimes T\}
$$

will then be the primary point of reference for the remainder of this chapter, and we shall call \mathcal{S} the setting of R. (One notes that the elements corresponding to $\left(A_{1}\right)-\left(A_{4}\right)$ are 0 because of the tensor product $V \otimes T$, and those corresponding to $\left(B_{1}\right)-\left(B_{8}\right)$ are 0 because of the nature of U and of T). Of course we want to view elements such as $v \otimes t$ as an "indeterminate v " acted on by t.

We proceed to describe, at first in a rather general way, a substitution process which is compatible with the idea that an arbitrary C-linear mapping out of V completely determines the substitution. Let P by any C-algebra with 1 which contains Q, and let $\gamma: T \rightarrow \operatorname{End}_{\Phi}(P)$ be a fixed C-ring map (i.e., $c^{\gamma}=c$ for all $c \in C$). Now let $\psi: V \rightarrow P$ be any C-space map. Then the map: $V \times T \rightarrow P$ given by $(v, t) \mapsto \psi(v)^{\gamma(t)}$ is balanced. Indeed,

$$
(v c, t) \mapsto \psi(v c)^{\gamma(t)}=[\psi(v) c]^{\gamma(t)}
$$

whereas

$$
\begin{aligned}
(v, c t) \mapsto \psi(v)^{\gamma(c t)} & =\psi(v)^{\gamma(c) \gamma(t)}=\psi(v)^{c \gamma(t)} \\
& =[\psi(v) c]^{\gamma(t)} .
\end{aligned}
$$

The additive map: $V \otimes_{C} T \rightarrow P$ so determined is in fact C-linear since

$$
\begin{aligned}
(v \otimes t) c=v \otimes t c \mapsto \psi(v)^{\gamma(t c)} & =\psi(v)^{\gamma(t) c} \\
& =\left[\psi(v)^{\gamma(t)}\right] c .
\end{aligned}
$$

It can therefore be lifted to a C-algebra map of $C\{V \otimes T\}$ into P in view of Remark 1.2.1. Hence there exists a (necessarily unique) C-algebra map $\tilde{\psi}$ of \mathcal{S} into P such that $q \mapsto q$ and $v \otimes t \mapsto \psi(v)^{\gamma(t)}$ for all $q \in Q, v \in V, t \in T$. Such a map will be called the T-substitution determined by ψ (relative to $\left.\gamma: T \rightarrow \operatorname{End}_{\Phi}(P)\right)$.

For now the particular choice of P and γ we are interested in is $P=Q$ and γ defined as follows. Recall the map $\rho: U \rightarrow$
$E n d_{\Phi}(Q)$ (see section 5.5) and the inclusion $\operatorname{map} G \rightarrow \operatorname{End}_{\Phi}(Q)$. The observations $c g=g c^{g}$ and

$$
\rho(\delta) g-g \rho\left(\delta^{g}\right)=\delta g-g \delta^{g}=0
$$

show that the hypothesis of Lemma 1.1.4 is satisfied, and hence there is a C-ring map $\gamma: T \rightarrow \operatorname{End}_{\Phi}(Q)$. Until further notice the term T-substitution will refer to the γ just described.

We are now in a position to define the notion of T-identity. Fix any C-basis X of V. Let I be a nonzero ideal of R. Then an element ϕ of \mathcal{S} is said to be a T-identity on I if ϕ is mapped to 0 under all T-substitutions $\tilde{\psi}$ for which $\psi(X) \subseteq I$. It is straightforward to see that the set of all T-identities (the I may vary, of course) is an ideal of \mathcal{S}, and we denote this ideal by $\mathcal{G}_{T}(Q ; R)$.

The use of the ring $\mathcal{S}=Q_{C}\{V \otimes T\}$ as the framework for T-identities has the advantage that "basis-free" arguments can be used. On the other hand the tensor product notation may not have an immediate suggestive appeal for denoting a "variable", and so we shall indicate here an alternative but equivalent description. Let \mathcal{W} be any right C-basis of U (we shall in the sequel usually take \mathcal{W} to be the particular $P B W$ basis given in section 5.5). Then

$$
\mathcal{W} G=\{w g \mid w \in \mathcal{W}, g \in G\}
$$

is a right C-basis of T which we denote by T_{1}. Let X be any C-basis of V. Then the set

$$
X \otimes T_{1}=\left\{x \otimes t \mid x \in X, t \in T_{1}\right\}
$$

is a C-basis of $V \otimes T$, and we may accordingly write $C\{V \otimes T\}$ as the free algebra $C<X \otimes T_{1}>$ (as indicated by Remark 1.2.4). Since the set $X \otimes T_{1}$ is in one-one correspondence with the Cartesian product $X^{T_{1}}$ we will the write $\left.C<X \otimes T_{1}\right\rangle=C<X^{T_{1}}>$, it being understood that the element $x^{w g}$ means the element
$x \otimes w g$. Therefore we may write \mathcal{S} alternatively as $Q_{C}\left\langle X^{T_{1}}\right\rangle$. If $\psi: X \rightarrow Q$ is a set-theoretic map then the unique C-algebra map of \mathcal{S} into Q given by $q \mapsto q, x^{t} \mapsto \psi(x)^{\gamma(t)}, q \in Q$, $x \in X, t \in T_{1}$ will be called the T-substitution determined by ψ, and $\phi \in \mathcal{S}$ is a T-identity on I if ϕ is mapped to 0 by all T-substitutions for which $\psi(X) \subseteq I$.

Next, if C is any field we shall replace the usual setting $\mathcal{S}(C ; C)$ by a simpler setting as follows. First, since the situation will arise when C is the extended centroid of R and we thus have both $\mathcal{S}(C ; C)$ and $\mathcal{S}(Q ; R)$ to contend with simultaneously, we shall pick N to be a C-space with basis Λ disjoint from V with basis X. Then

$$
\mathcal{S}(C ; C)=\mathcal{S}(C)=C\{N \otimes T\}=C<\Lambda^{T_{1}}>
$$

Clearly the commutator ideal I_{1} of $\mathcal{S}(C)$ is contained in $\mathcal{G}(C ; C)$ (the ideal of all T-identities of C). Therefore it is natural to replace $\mathcal{S}(C)$ by the algebra

$$
\mathcal{S}_{0}(C)=C\{N \otimes T(C)\} / I_{1}
$$

which in turn may by identified with the (commutative) polynomial algebra $C\left[\Lambda^{T_{1}}\right]$. Since any T-substitution of $\mathcal{S}(C)$ into C maps I_{1} to 0 it induces a well-defined C-algebra map $\mathcal{S}_{0} \rightarrow C$, which we continue to refer to as the T-substitution determined by $\psi: N \rightarrow C$. Accordingly a T-identity on C will mean any element of $\mathcal{S}_{0}(C)$ mapped to 0 by all T-substitutions.

Finally, when we study the structure of T-identities in section 7.7, it will be useful to have available the extended setting of R

$$
\mathcal{S}(Q ; R)=\mathcal{S}_{1}(R)=\mathcal{S}_{0}(C) \otimes_{C} \mathcal{S}(R)
$$

More will be said about $\mathcal{S}_{1}(R)$ in section 7.3.

7.2 Trivial and Reduced T-identities

We continue to assume R is a prime ring together with the terminology developed in the preceding section. Again we suggest that the reader review section 5.5 since we will feel free to use any remarks and notations made there without further comment.

In section 7.1 we set the stage for the study of T-identities of R by defining the setting \mathcal{S} for R in two equivalent formulations

$$
\mathcal{S}=Q_{C}\left\{V \otimes_{C} T\right\}=Q_{C}<X^{T_{1}}>
$$

where V is a C-space with C-basis $X, T=T(R)=U \propto G$ with right C-basis $T_{1}=\mathcal{W} G, \mathcal{W}$ a $P B W$ right C-basis of U. Since the elements of \mathcal{S} corresponding to the trivial identities $\left(A_{1}\right)-$ $\left(A_{4}\right),\left(B_{1}\right)-\left(B_{8}\right)$ listed in the preceding section are all equal to the zero element of \mathcal{S} we define the set I_{0} of trivial T-identities of R to be the ideal of \mathcal{S} generated by all elements of the following two forms:

$$
\begin{aligned}
& \left(C_{1}^{\prime}\right) v \otimes t \mu-[a, v \otimes t], \mu=a d(a) \in D_{i} \\
& \left(C_{2}^{\prime}\right) v \otimes t h-s^{-1}(v \otimes t) s, h=\operatorname{inn}(s) \in G_{i}
\end{aligned}
$$

where $v \in V, t \in T$.
It will also be useful to have an alternate formulation of I_{0}. In fact, we claim that I_{0} is the ideal of \mathcal{S} generated by all elements of the following forms

$$
\begin{aligned}
& \left(C_{1}^{\prime \prime}\right) x \otimes \Delta g \mu-[a, x \otimes \Delta g], \mu=a d(a) \in D_{i} \\
& \left(C_{2}^{\prime \prime}\right) x \otimes \Delta g h-s^{-1}(x \otimes \Delta g) s, h=\operatorname{inn}(s) \in G_{i}
\end{aligned}
$$

where $x \in X, \Delta \in \mathcal{W}, g \in G$. Indeed, we may assume without loss of generality that a generator of type $\left(C_{1}^{\prime}\right)$ has the form $x c \otimes \Delta g \mu-[a, x c \otimes \Delta g]$. We note that $x c \otimes \Delta g=x \otimes c \Delta g$. Using the formula (5.25) from section 5.5 we may write

$$
c \Delta g=\sum_{s} \Delta_{s} g c_{\Delta g s}, \Delta_{s} \in \mathcal{W}
$$

Therefore we may furthermore assume the generator is of the form $x \otimes \Delta g \mu-[a, x \otimes \Delta g]$ (since $c \mu=\mu c$), which is of the desired one. A similar argument works for generators of type $\left(C_{2}^{\prime}\right)$, and so our claim is established.

We now take T_{1} to be the right C-basis of T dictated by the basis $\mathcal{B}=\mathcal{B}_{0} \cup \mathcal{B}_{i}$ of D (see section 5.5) and the representatives G_{0} of G modulo G_{i}. Thus $T_{1}=\mathcal{W} G=\mathcal{W}_{0} \mathcal{W}_{i} G_{0} G_{i}$, where $\mathcal{W}=$ $\mathcal{W}_{0} \mathcal{W}_{i}$ is a $P B W$ basis of U, \mathcal{W}_{i} a $P B W$ basis of $U_{i}=U\left(D_{i}\right)$.

It will be useful in the sequel to "translate" the basis \mathcal{B} of D and the set of representatives G_{0} in the following manner: given $h \in G$ we set $\mathcal{B}^{h}=\left\{\delta^{h} \mid \delta \in \mathcal{B}\right\}$ and $h^{-1} G_{0}=\left\{h^{-1} g \mid g \in G_{0}\right\}$.

Lemma 7.2 .1 (i) \mathcal{B}_{0}^{h} is a right C-basis for D modulo D_{i};
(ii) \mathcal{B}_{i}^{h} is a right C-basis for D_{i};
(iii) $h^{-1} G_{0}$ is a set of representatives of G modulo G_{i}.

Proof. Suppose $\sum \delta_{j}^{h} c_{j}=a d(a) \in D_{i}, \delta_{j} \in B_{0}, c_{j} \in C$. Writing

$$
\sum \delta_{j}^{h} c_{j}=\sum h^{-1} \delta_{j} h c_{j}=h^{-1}\left(\sum \delta_{j} c_{j}^{h^{-1}}\right) h
$$

we then obtain $\sum \delta_{j} c_{j}^{h^{-1}}=a d\left(a^{h^{-1}}\right)$, which forces each $c_{j}^{h^{-1}}$, and hence each c_{j}, to equal zero. Next, given $\delta \in D$, we may write

$$
\begin{aligned}
\delta & =\left(\delta^{h^{-1}}\right)^{h}=\left(\sum \delta_{j} c_{j}\right)^{h}=\sum h^{-1} \delta_{j} c_{j} h \\
& =\sum h^{-1} \delta_{j} h h^{-1} c_{j} h=\sum \delta_{j}^{h} c_{j}^{h} .
\end{aligned}
$$

Together these remarks prove (i). A similar argument, along with the observation that if $\mu=a d(a)$, then $\mu^{h}=a d\left(a^{h}\right)$, establishes (ii), and the proof of (iii) is immediate.

The bijection between $\mathcal{B}=\mathcal{B}_{0} \cup \mathcal{B}_{i}$ and $\mathcal{B}^{h}=\mathcal{B}_{0}^{h} \cup \mathcal{B}_{i}^{h}$ given in Lemma 7.2.1 of course induces a well-ordering $<^{h}$ of $\mathcal{B}^{h}: \delta<\mu$ if and only if $\delta^{h}<^{h} \mu^{h}$. We can then form the well-ordered $P B W$ right C-basis $\mathcal{W}^{h}=\mathcal{W}_{0}^{h} \mathcal{W}_{i}^{h}$ of U with respect to $\left(\mathcal{B}^{h},<^{h}\right)$.

We now state our aim in this section: to show that \mathcal{S} is the (semi)direct sum of the ideal I_{0} of trivial T-identities and the subring $\left.\mathcal{E}=Q_{C}<X^{T_{0}}\right\rangle$, where $T_{0}=\mathcal{W}_{0} G_{0}$. We shall refer to \mathcal{E} as the subring of reduced elements of \mathcal{S} relatively to ($\mathcal{B},<$).

Our first step toward this goal is to note that since $c \in C$, $\delta=a d(a) \in D_{i}$, and $i n n(s) \in G_{i}$ are each elements of $E n d_{C}(\mathcal{S})$ it follows from Lemma 1.1.4 that there is a C-algebra map ρ : $T_{i} \rightarrow \operatorname{End}_{C}(\mathcal{S})$ where $T_{i}=U_{i} \propto G_{i} \subseteq U \propto G=T$ extending $\alpha: D_{i} \rightarrow \operatorname{End}_{C}(\mathcal{S})$ and $\beta: G_{i} \rightarrow \operatorname{End}_{C}(\mathcal{S})$.

Next we claim that $\mathcal{W}_{0} G_{0}$ is a right T_{i}-basis of T. Indeed, $\mathcal{W}_{0} \mathcal{W}_{i} G_{0} G_{i}$ is a right C-basis of T and the equation $\Gamma g=g \Gamma^{g}$, $\Gamma \in \mathcal{W}_{i}, g \in G_{0}$, shows that $\mathcal{W}_{0} \Gamma_{0}$ generates T as right $T_{i^{-}}$ module. Now suppose that

$$
\sum_{\Delta, g} \Delta g \Omega_{\Delta g}=0, \Delta \in \mathcal{W}_{0}, g \in G_{0}, \Omega_{\Delta g} \in T_{i}
$$

Using the fact that \mathcal{W}_{i}^{g} is a right C-basis of $U_{i}=U\left(D_{i}\right)$ we write $\Omega_{\Delta g}=\sum w^{g} h c_{\Delta g w h}$, whence

$$
0=\sum \Delta g \Omega_{\Delta g}=\sum \Delta g w^{g} h c_{\Delta g w h}=\sum \Delta w g h c_{\Delta g w h},
$$

where the summation runs over $\Delta \in \mathcal{W}_{0}, g \in G_{0}, w \in \mathcal{W}_{i}$, $h \in G_{i}$. Thus $c_{\Delta g w h}=0$ and so each $\Omega_{\Delta g}=0$, which establishes the claim.

We proceed to define a C-space map $\Psi: V \otimes T \rightarrow \mathcal{S}$. In preparation for this we again recall the commutation formula

$$
c \Delta=\sum_{s} \Delta_{s} c^{\widehat{s_{s^{\prime}}}}, \Delta, \Delta_{s}, \Delta_{s^{\prime}} \in \mathcal{W}_{0}, c \in C
$$

(see (5.25) in section 5.5 for details). From this we see that, for $c \in C, \Delta \in \mathcal{W}_{0}, g \in G_{0}$,

$$
c \Delta g=\sum_{s} \Delta_{s} g c_{\Delta g s}
$$

where $c_{\Delta g s}=c^{\widehat{\Delta_{s^{\prime}} g}}$. We now claim that the map from $V \times T$ to \mathcal{S} sending ($v, \sum \Delta g \Omega_{\Delta g}$) to $\sum(v \otimes \Delta g)^{\rho\left(\Omega_{\Delta g}\right)}$ is balanced. Indeed, on the one hand

$$
\begin{aligned}
\left(v c, \sum \Delta g \Omega_{\Delta g}\right) & \mapsto \sum(v c \otimes \Delta g)^{\rho\left(\Omega_{\Delta g}\right)} \\
& =\sum(v \otimes c \Delta g)^{\rho\left(\Omega_{\Delta g}\right)} \\
& =\sum_{\Delta, g, s}\left(v \otimes \Delta_{s} g c_{\Delta g s}\right)^{\rho\left(\Omega_{\Delta g}\right)} \\
& =\sum_{\Delta, g, s}\left(v \otimes \Delta_{s} g\right)^{\rho\left(c_{\Delta g s} \Omega_{\Delta g}\right)} .
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
\left(v, c \sum \Delta g \Omega_{\Delta g}\right) & =\left(v, \sum_{\Delta, g, s} \Delta_{s} g c_{\Delta g s} \Omega_{\Delta g}\right) \\
& \mapsto \sum_{\Delta, g, s}\left(v \otimes \Delta_{s} g\right)^{\rho\left(c_{\Delta g s} \Omega_{\Delta g}\right)}
\end{aligned}
$$

We therefore have an additive map $\Psi: V \otimes T \rightarrow \mathcal{S}$, and one easily sees that Ψ is a C-space map.
Ψ can be lifted to a C-algebra map of $C\{V \otimes T\}$ into \mathcal{S}, and this map together with the inclusion map of Q into \mathcal{S} can be lifted simultaneously to a C-algebra map $\psi: \mathcal{S} \rightarrow \mathcal{S}$. Any element of the form $v \otimes t, v \in V, t \in T$, can be written as a sum of elements of the form $x \otimes \Delta g \Omega, x \in X, \Delta \in \mathcal{W}_{0}, g \in G_{0}$, $\Omega \in T_{i}$. Since it is easily seen that $x \otimes \Delta g \Omega-(x \otimes \Delta g)^{\rho(\Omega)}$ lies in I_{0}, it follows that $\mathcal{S}=I_{0}+\mathcal{E}$. Furthermore the generators $\left(C_{1}^{\prime}\right)$ and $\left(C_{2}^{\prime}\right)$ of I_{0} are clearly sent to zero by ψ, and so $\psi\left(I_{0}\right)=0$. However ψ acts as the identity map on \mathcal{E}, whence $I_{0} \cap \mathcal{E}=0$ and $\mathcal{S}=I_{0} \oplus \mathcal{E}$. We have thus proved

Theorem 7.2.2 Let $\mathcal{S}=Q_{C}\{V \otimes C\}=Q_{C}<X^{T_{1}}>$ be the setting of R, I_{0} the ideal of trivial T-identities, and \mathcal{E} the subring $Q_{C}<X^{T_{0}}>\subseteq \mathcal{S}$ where $T_{0}=\mathcal{W}_{0} G_{0}$. Then $\mathcal{S}=I_{0} \oplus \mathcal{E}$.

The generators of I_{0} are of a particularly nice "linear" form, which makes it easy to decompose various subspaces of \mathcal{S} into trivial and reduced components in a very concrete way. Of special interest to us are certain "linear" subspaces of \mathcal{S}. For instance most of the proof of Kharchenko's Theorem in section 7.5 takes place in the (Q, Q)-bimodule $Q x^{T_{1}} Q$. We are also interested in the situation where only derivations and automorphisms are involved. We therefore set in place the following terminology: $G^{*}=\operatorname{Aut}(R), T^{*}=U \propto G^{*} \subseteq T, G_{0}^{*}=G_{0} \cap G^{*}, T_{1}^{*}=\mathcal{W} G^{*}$, $T_{0}^{*}=\mathcal{W}_{0} G_{0}^{*}$. We also recall (from the first part of the proof of Theorem 7.2.2) the C-algebra map $\rho: T_{i} \rightarrow \operatorname{End}_{C}(\mathcal{S})$ extending the maps $\alpha: D_{i} \rightarrow \operatorname{End}_{C}(\mathcal{S})$ and $\beta: G_{i} \rightarrow \operatorname{End}_{C}(\mathcal{S})$.

Let us denote by Z the set of generators of I_{0} (given in the form $\left(C_{1}^{\prime \prime}\right)$ and $\left.\left(C_{2}^{\prime \prime}\right)\right)$:

$$
x \otimes t \mu-[a, x \otimes t], x \otimes t h-s^{-1}(x \otimes t) s
$$

$x \in X, t \in T, \mu=a d(a) \in D_{i}, h=\operatorname{inn}(s) \in G_{i}$. We set $Z^{*}=$ $\left\{z \in Z \mid t \in T_{1}^{*}\right\}, Z_{x}=\{z \in Z \mid x$ is fixed $\}$, and $Z_{x}^{*}=Z^{*} \cap Z_{x}$. As we have already noted in the proof of Theorem 7.2.2, any variable $v \otimes t$ is a sum of variables of the form $x \otimes \Delta g \Omega, x \in X$, $\Delta \in \mathcal{W}_{0}, g \in G_{0}$ (or G_{0}^{*} if no automorphisms are involved), $\Omega \in T_{i}$. As a corollary of Theorem 7.2 .2 we may then conclude from writing

$$
x \otimes \Delta g \Omega=x \otimes \Delta g \Omega-(x \otimes \Delta g)^{\rho(\Omega)}+(x \otimes \Delta g)^{\rho(\Omega)}
$$

that the following decompositions into T-trivial and reduced components hold.

Corollary 7.2.3 (i) $Q X^{T_{1}} Q=Q Z Q \oplus Q X^{T_{0}} Q$;
(ii) $Q X^{T_{1}^{*}} Q=Q Z^{*} Q \oplus Q X^{T_{0}^{*}} Q$;
(iii) $Q x^{T_{1}} Q=Q Z_{x} Q \oplus Q x^{T_{0}} Q$;
(iv) $Q x^{T_{1}^{*}} Q=Q Z_{x}^{*} Q \oplus Q x^{T_{0}^{*}} Q$.

Finally, let $\mathcal{S}^{*}=Q_{C}<X^{T_{1}^{*}}>, \mathcal{E}^{*}=Q_{C}<X^{T_{0}^{*}}>$, and I_{0}^{*} the ideal of \mathcal{S}^{*} generated by Z^{*}. Since \mathcal{S}^{*} is generated as a ring by $Q X^{T_{1}^{*}} Q$, Corollary 7.2.3(ii) together with Theorem 7.2.2 imply

Corollary 7.2.4 $\mathcal{S}^{*}=I_{0}^{*} \oplus \mathcal{E}^{*}$.

7.3 Related Rings

Let R be a prime ring with extended centroid C. Henceforth we may frequently abbreviate "centrally closed" as "closed". In section 7.1 we introduced several rings related to R and C :

$$
\begin{aligned}
\mathcal{S}(R) & \left.=Q_{C}\left\{V \otimes_{C} T(R)\right\}, \quad \text { (the setting of } R\right) \\
\mathcal{S}_{0}(C) & \left.=C\left[\Lambda^{T(C)}\right], \quad \text { (the setting of } C\right), \text { and } \\
\mathcal{S}_{1}(R) & \left.=\mathcal{S}_{0} \otimes_{C} \mathcal{S}(R) \quad \text { (the extended setting of } R\right)
\end{aligned}
$$

By Corollary 1.4.11, Theorem 2.3.5, and Theorem 2.4.4, each of these rings is a prime C-algebra with 1 , with $\mathcal{S}(R)$ closed over C (i.e, its extended centroid is equal to C). If P denotes any one of these rings we shall be interested in considering $T(P)$ (in case P is closed) or $E n d_{\Phi}(P)$ (in any case). Both $T(P)$ and $E n d(P)$ are C-rings. The important connection we shall make between R and any of these rings P will be to define certain C-ring maps from $T(R)$ to $T(P)$ or $E n d_{\Phi}(P)$ which preserve a sufficient part of the structure. Our primary motivation is the need later on for making T-substitutions into larger rings than Q. For instance, in section 7.4 we will need to make the substitution $x \mapsto x d$, $d \in Q$, of X into \mathcal{S}. In section 7.7 it will prove useful to make the substitution of X into \mathcal{S}_{1} given by $x \mapsto x+\lambda y, x, y \in X$, $\lambda \in \Lambda$.

We begin by translating Lemma 1.1.4 to our present context.
Lemma 7.3.1 Let A be a C-ring with 1 , let $\alpha: D(R) \rightarrow A$ be a differential C-Lie algebra map, and let $\beta: G(R) \rightarrow A$ be a
group homomorphism into the units of A. Suppose

$$
\begin{align*}
c g^{\beta} & =g^{\beta} c^{g}, \quad \text { i.e., } \quad c^{g^{\beta}}=c^{g} \tag{7.1}\\
\delta^{\alpha} g^{\beta} & =g^{\beta}\left(\delta^{g}\right)^{\alpha}, \quad \text { i.e., } \quad\left(\delta^{\alpha}\right)^{g^{\beta}}=\left(\delta^{g}\right)^{\alpha} \tag{7.2}
\end{align*}
$$

for all $c \in C, g \in G, \delta \in D$. Then α and β may be uniquely extended to a C-ring map $\gamma: T(R) \rightarrow A$.

Proof. We know (from the definition of $U(D)$) that α may be extended to a C-ring map of $U(D)$ into A. Since $U(D)$ is generated as a ring by $D(R) \cup C$, we see by Lemma 1.1.4 that α and β may be uniquely extended to a C-ring homomorphism of $T(R)$ into A.

Let P be a closed prime algebra over $C . D(P)$ and $G(P)$ are primarily subsets of $E n d_{\Phi}(P)$. They are also embedded in $T(P)$ (with some abuse of notation we have been writing them as being contained in $T(P)$), but some care must be exercised when considering situations where $T(P)$ and $E n d_{\Phi}(P)$ are being discussed simultaneously. For instance, an equation involving the elements of $D(P)$ and $G(P)$ may hold in $E n d_{\Phi}(P)$ whereas the corresponding equation in $T(P)$ need not hold. Fortunately, because of the special nature of equations (7.1) and (7.2), we have the following useful corollary of Lemma 7.3.1.

Corollary 7.3.2 Let R be a prime ring with extended centroid C and let P be a prime algebra over C. Let $\alpha: D(R) \rightarrow \operatorname{Der}(P)$ be a differential C-Lie algebra map and $\beta: G(R) \rightarrow G(P)$ a group homomorphism. Suppose the equations (7.1) and (7.2) hold in $E n d_{\Phi}(P)$. Then:
(i) α and β may be uniquely extended to C-ring map γ : $T(R) \rightarrow E n d_{\Phi}(P) ;$
(ii) If P is furthermore closed over C, then the equations (7.1) and (7.2) also hold in $T(P)$ and α and β may be uniquely extended to a C-ring map $\gamma: T(R) \rightarrow T(P)$.

We now take up the connection between R and $\mathcal{S}=\mathcal{S}(R)=$ $Q_{C}\{V \otimes T(R)\}$ in the following series of lemmas. We note that $\operatorname{Der}(\mathcal{S})=D(\mathcal{S})$ (see Theorem 2.4.4).

Lemma 7.3.3 There is a differential C-Lie algebra injection $\alpha: D(R) \rightarrow D(S)$ given by $\delta \mapsto \delta^{\alpha}$ where δ^{α} sends $q \rightarrow q^{\delta}$ and $v \otimes t$ to $v \otimes t \delta, \delta \in D(R), q \in Q, v \in V, t \in T(R)$. Furthermore a right C-basis $\mathcal{B}(\mathcal{S})$ of $D(S)$ may be chosen so that $\mathcal{B}(R)^{\alpha} \subseteq \mathcal{B}(\mathcal{S})$, and $\mathcal{B}_{0}(R)^{\alpha} \subseteq \mathcal{B}_{0}(\mathcal{S})$.

Proof. For $\delta \in D(R)$, with the aid of Corollary 1.2.3, let δ^{α} be the derivation of $C\{V \otimes T(R)\}$ determined by $c \mapsto c^{\delta}$ and $v \otimes t \mapsto v \otimes t \delta$. By Remark 1.4.4 the derivation $q \mapsto q^{\delta}$ and δ^{α} can be simultaneously lifted to a uniquely determined derivation of \mathcal{S}, which we again denote by δ^{α}. It is then straightforward to verify that $\delta \mapsto \delta^{\alpha}$ is a differential C-Lie algebra map of $D(R)$ into $D(\mathcal{S})$. That α is injective follows immediately from the fact that $q^{\delta^{\alpha}}=q^{\delta}$ for all $q \in Q$. Thus a right C-basis of $D(\mathcal{S})$ may be chosen so as to contain $\mathcal{B}(R)^{\alpha}$. Next suppose that $\delta^{\alpha} \in D_{i}(\mathcal{S})$, that is, $\delta^{\alpha}=a d(\phi)$ for some $\phi \in \mathcal{S}$. In particular we have $q^{\delta}=q^{\delta^{\alpha}}=[\phi, q]$ for all $q \in Q$. We then map \mathcal{S} into Q by sending every variable $x \in X$ to 0 and q to $q, q \in Q$. If a denotes the image of ϕ the preceding equation becomes $q^{\delta}=[a, q]$, whence $\delta \in D_{i}(R)$. As a result $\mathcal{B}_{0}(R)^{\alpha}$ is a right C-independent set in $D(\mathcal{S})$ modulo $D_{i}(\mathcal{S})$, and so a basis $\mathcal{B}^{\prime}(\mathcal{S})=\mathcal{B}_{0}^{\prime}(\mathcal{S}) \cup \mathcal{B}_{i}^{\prime}(\mathcal{S})$ of $D(\mathcal{S})$ may be chosen so that $\mathcal{B}_{0}(R)^{\alpha} \subseteq \mathcal{B}_{0}^{\prime}(\mathcal{S})$.

Lemma 7.3.4 There is a group injection $\beta: G(R) \rightarrow G(\mathcal{S})$ given by $g \mapsto g^{\beta}$ where g^{β} sends q to q^{g} and $v \otimes t$ to $v \otimes t g$, $g \in G(R), q \in Q, v \in V, t \in T(R)$. Furthermore given a set of representatives $G_{0}(R)$ of $G(R)$ modulo $G_{i}(R)$, a set of representatives $G_{0}(\mathcal{S})$ of $G(\mathcal{S})$ modulo $G_{i}(\mathcal{S})$ may be chosen such that $G_{0}(R)^{\beta} \subseteq G_{0}(\mathcal{S})$. Finally $(\operatorname{Aut}(R))^{\beta} \subseteq \operatorname{Aut}(\mathcal{S})$, and $(\operatorname{Antiaut}(R))^{\beta} \subseteq \operatorname{Antiaut}(\mathcal{S})$.

Proof. For $g \in G(R)$ the additive map of the right C space $V \otimes T(R)$ determined by $v \otimes t \mapsto v \otimes t g$ is σ-semilinear where σ denotes the automorphism $c \mapsto c^{g}$ of C. By Corollary 1.2 .2 we may extend this map to a σ-endomorphism g^{β} of $C\{V \otimes T(R)\}$ (resp. σ-antiendomorphism) if $g \in \operatorname{Aut}(R)$ (resp. $g \in \operatorname{Antiaut}(R)$). Clearly $\left(g^{-1}\right)^{\beta}$ is the inverse of g^{β} and so g^{β} is a σ-automorphism (resp. σ-antiautomorphism) of $C\{V \otimes T(R)\}$. The (anti)automorphism g of Q is also a σ (anti)automorphism of the C-ring Q, and so by Remark 1.4.2 and Remark 1.4.3 $g: Q \rightarrow Q$ and g^{β} can be simultaneously extended to an (anti)automorphism of \mathcal{S} which we again denote by g^{β}. It is easily verified that $g \mapsto g^{\beta}$ is a group homomorphism of $G(R)$ into $G(\mathcal{S})$ with (as we already know) $\operatorname{Aut}(R)^{\beta} \subseteq \operatorname{Aut}(\mathcal{S})$ and $\operatorname{Antiaut}(R)^{\beta} \subseteq \operatorname{Antiaut}(\mathcal{S})$. That β is injective follows from the fact that $q^{g^{\beta}}=q^{g}$ for all $q \in Q$. Next suppose $g^{\beta} \in G_{i}(\mathcal{S})$, that is, $g^{\beta}=\operatorname{inn}(\phi)$ for some unit $\phi \in \mathcal{S}$. In particular we have

$$
q^{g}=q^{g^{\beta}}=\phi^{-1} q \phi \quad \text { for all } \quad q \in Q .
$$

We then map \mathcal{S} into Q by sending every $x \in X$ to 0 and q to q, $q \in Q$. The image a of ϕ is thus a unit in Q and the preceding equation becomes $q^{g}=a^{-1} q a$, i.e., $g \in G_{i}(R)$. Consequently, if

$$
\left(g_{2}^{\beta}\right)^{-1} g_{1}^{\beta}=\left(g_{2}^{-1} g_{1}\right)^{\beta} \in G_{i}(\mathcal{S})
$$

for $g_{2}, g_{1} \in G_{0}(R)$, we have $g_{1}=g_{2}$, and so we can choose $G_{0}(\mathcal{S})$ such that $G_{0}(R)^{\beta} \subseteq G_{0}(\mathcal{S})$.

Theorem 7.3.5 Let $\alpha: D(R) \rightarrow D(\mathcal{S})$ and $\beta: G(R) \rightarrow G(\mathcal{S})$ be the mappings given in Lemma 7.3.3 and Lemma 7.3.4. Then:
(i) α and β may be uniquely extended to a C-ring map $t \mapsto t^{\prime}$ of $T(R) \rightarrow \operatorname{End}_{\Phi}(\mathcal{S})$;
(ii) α and β may be uniquely extended to a C-ring injection $\gamma: T(R) \rightarrow T(\mathcal{S})$ such that $T_{0}(R)^{\gamma} \subseteq T_{0}(\mathcal{S})$.

Proof. In either (i) or (ii), in order to show that α and β can be simultaneously extended, it suffices in view of Corollary 7.3.2 to show that equations (7.1) and (7.2) hold in $E n d_{\Phi}(\mathcal{S})$. It is immediate that (7.1) holds since $c^{g^{\beta}}=c^{g}, c \in C$, by the definition of β. To verify equation (7.2), it suffices to show that (7.2) agrees on the set $Q \cup(V \otimes T(R))$, which generates \mathcal{S} as a ring. Now using the definitions of α and β, we see that

$$
\begin{aligned}
q^{\left(g^{\beta}\right)^{-1} \delta^{\alpha} g^{\beta}} & =q^{\left(g^{-1}\right)^{\beta} \delta^{\alpha} g^{\beta}}=q^{g^{-1} \delta g}=q^{\delta g}=q^{\left(\delta^{\alpha}\right)^{\alpha}}, \\
(v \otimes t)^{\left(g^{\beta}\right)^{-1} \delta^{\alpha} g^{\beta}} & =v \otimes t g^{-1} \delta g=v \otimes t \delta^{g}=(v \otimes t)^{(\delta g)^{\alpha}}
\end{aligned}
$$

for all $\delta \in D(R), g \in G(R), q \in Q, v \in V, t \in T(R)$. It remains to be shown in (ii) that the extension γ of α and β is injective and that $T_{0}(R)^{\gamma} \subseteq T_{0}(\mathcal{S})$. From Lemma 7.3.3 it follows that α induces an injection of $\mathcal{B}(R)$ into some right C basis $\mathcal{B}(\mathcal{S})$ and so, with the $P B W$ theorem in mind, the $P B W$ basis $\mathcal{W}(R)$ determined by $\mathcal{B}(R)$ is mapped injectively into the PBW basis $\mathcal{W}(\mathcal{S})$ determined by $\mathcal{B}(\mathcal{S})$. Thus γ induces an injection on $U(D(R))$ into $U(D(\mathcal{S}))$ and, since by Lemma 7.3.4 β is an injection, it follows that γ is an injection of $T(R)$ into $T(\mathcal{S})$. Finally, from $\mathcal{B}_{0}(R)^{\alpha} \subseteq \mathcal{B}_{0}(\mathcal{S})$ (Lemma 7.3.3) implying $\mathcal{W}_{0}(R)^{\gamma} \subseteq \mathcal{W}_{0}(\mathcal{S})$ and $G_{0}(R)^{\beta} \subseteq G_{0}(\mathcal{S})$ (Lemma 7.3.4), we conclude that $T_{0}(R)^{\gamma} \subseteq T_{0}(\mathcal{S})$.

We move on now to the connection between R and $\mathcal{S}_{0}(C)$. For the present purposes it is best to view $\mathcal{S}_{0}(C)$ in its original form $\mathcal{S} / I_{1}(C)$, where $I_{1}(C)$ is the commutator ideal of $\mathcal{S}(C)$, rather than in its alternative form $C\left[\Lambda^{T_{1}(C)}\right]$. The elements of $\mathcal{S}_{0}(C)$, cosets by nature, will be denoted by $\bar{\phi}, \phi \in \mathcal{S}(C)$. Let $\delta \in$ $D(\mathcal{S}(C))$. Since any derivation of a ring leaves the commutator ideal invariant, it follows that δ induces a derivation $\bar{\delta}$ of $\mathcal{S}_{0}(C)$ by defining: $\bar{\phi} \mapsto \overline{\phi^{\delta}}, \phi \in \mathcal{S}(C)$. We thus have a differential C-Lie algebra map: $D(\mathcal{S}(C)) \rightarrow \operatorname{Der}\left(\mathcal{S}_{0}(C)\right)$. Similarly there is a group homomorphism $G(\mathcal{S}(C)) \rightarrow G\left(\mathcal{S}_{0}(C)\right)$ given by $g \mapsto \bar{g}$, where \bar{g} sends $\bar{\phi}$ to $\overline{\phi^{g}}, \phi \in \mathcal{S}(C)$. The equations (7.1) and
(7.2) being easily verified, it follows from Corollary 7.3 .2 that $\delta \mapsto \bar{\delta}$ and $g \mapsto \bar{g}$ may be simultaneously lifted to a C-ring map: $T(\mathcal{S}(C)) \rightarrow \operatorname{End}_{\Phi}\left(\mathcal{S}_{0}(C)\right)$. A connecting link between R and $\mathcal{S}_{0}(C)$ is now indicated by the following

$$
\begin{align*}
& D(R) \rightarrow D(C) \rightarrow D(\mathcal{S}(C)) \rightarrow \operatorname{Der}\left(\mathcal{S}_{0}(C)\right) \tag{7.3}\\
& G(R) \rightarrow G(C) \rightarrow G(\mathcal{S}(C)) \rightarrow G\left(\mathcal{S}_{0}(C)\right) \tag{7.4}\\
& T(R) \rightarrow T(C) \rightarrow T(\mathcal{S}(C)) \rightarrow \operatorname{End}_{\Phi}\left(\mathcal{S}_{0}(C)\right) \tag{7.5}
\end{align*}
$$

In (7.3) the composite differential C-Lie algebra map will be denoted by $\delta \mapsto \widetilde{\delta}$, where $\widetilde{\delta}$ sends $\overline{v \otimes \tau}$ to $\overline{v \otimes \tau \delta}, v \in N$, $\tau \in T(C), \delta \in D(R)$.

In (7.4) the composite group homomorphism will be denoted by $g \mapsto \tilde{g}$, where \tilde{g} sends $\overline{v \otimes \tau}$ to $\overline{v \otimes \tau g}$.

In (7.5) the composite C-ring map is determined by the mappings in (7.3) and (7.4).

Earlier in this section we have defined a differential C-Lie algebra map $\delta \mapsto \delta^{\prime}$ of $D(R)$ into $D(\mathcal{S}(R))$, where δ^{\prime} sends q to q^{δ} and $v \otimes t$ to $v \otimes t \delta, q \in Q, v \in V, t \in T(R)$. Also we defined a group homomorphism $g \mapsto g^{\prime}$ of $G(R)$ into $G\left(\mathcal{S}(R)\right.$), where g^{\prime} sends q to q^{g} and $v \otimes t$ to $v \otimes t g$. Together these induce a C-ring $\operatorname{map} T(R) \rightarrow \operatorname{End}_{\Phi}(\mathcal{S}(R))$.

Now consider the extended setting $\mathcal{S}_{1}(R)=\mathcal{S}_{0}(C) \otimes_{C} \mathcal{S}(R)$. Let $\delta \in D(R)$. By Remark 1.2.9 $\tilde{\delta}: \mathcal{S}_{0}(C) \rightarrow \mathcal{S}_{0}(C)$ and $\delta^{\prime}:$ $\mathcal{S}(R) \rightarrow \mathcal{S}(R)$ can be uniquely extended to a derivation of $\mathcal{S}_{1}(R)$ which we denote by δ^{α}. It is straightforward to verify that α : $D(R) \rightarrow \operatorname{Der}\left(\mathcal{S}_{1}(R)\right)$ is a differential C-Lie algebra map.

By Remark 1.2.7 and Remark 1.2.8 $\tilde{g}: \mathcal{S}_{0}(C) \rightarrow \mathcal{S}_{0}(C)$ and $g^{\prime}: \mathcal{S}(R) \rightarrow \mathcal{S}(R)$ can be extended to an (anti)homomorphism of $\mathcal{S}_{1}(R)$ into itself, which we denote by g^{β}. Clearly $\left(g^{-1}\right)^{\beta}$ is the inverse of g^{β} and so g^{β} is an (anti)automorphism of $\mathcal{S}_{1}(R)$. It is easily shown that $\beta: G(R) \rightarrow G\left(\mathcal{S}_{1}(R)\right)$ is a group homomorphism.

For the maps α and β defined in the preceding paragraph one proceeds to verify the equations (7.1) and (7.2). It suffices to
show they agree on ring generators of $\mathcal{S}_{1}(R)$, namely on elements of the form $q(q \in Q), v \otimes \tau(v \in N, \tau \in T(C))$, and $v \otimes t$ ($v \in V, t \in T(R)$). We leave these details to the reader. Hence by Corollary 7.3 .2 we have the following

Remark 7.3.6 There is a C-ring $\operatorname{map} \gamma: T(R) \rightarrow \operatorname{End}_{\Phi}\left(\mathcal{S}_{1}(R)\right)$ simultaneously extending α and β.

Finally, let P be any C-algebra with 1 containing Q, and let $\gamma: T(R) \rightarrow E n d_{\Phi}(P)$ be a C-ring map. By Remark 1.2 .6 we have

Remark 7.3.7 Any T-substitution $\mathcal{S}_{0}(C) \rightarrow C$ and any T substitution $\mathcal{S}(R) \rightarrow P$ (relative to γ) can be uniquely extended to a C-algebra map $\mathcal{S}_{1}(R) \rightarrow P$.

The import of Remark 7.3.7 is that we can now make T substitutions involving "central" indeterminates, which will be useful in section 7.7.

7.4 Linear Formulas

In the study of reduced T-identities coming up in section 7.5 the crucial arguments will occur when the T-identity lies in $L_{x}=$ $Q x^{T_{0}} Q$. We recall from Corollary 7.2.3(i) the decomposition of the (Q, Q)-bimodule

$$
Q x^{T_{1}} Q=Q Z_{x} Q \oplus L_{x}
$$

into its T-trivial and reduced components. Any element $\phi(x) \in$ L_{x} may be uniquely decomposed as follows

$$
\begin{align*}
\phi(x) & =\sum_{g \in G_{0}} \phi_{g}(x) \\
\phi_{g}(x) & =\sum_{\Delta \in \mathcal{W}_{0}} \phi_{\Delta, g}(x) \tag{7.6}\\
\phi_{\Delta, g}(x) & \in Q x^{\Delta g} Q \tag{7.7}
\end{align*}
$$

The support of $\phi(x)$ (briefly, $\sup (\phi)$) consists of all $g \in G_{0}$ for which $\phi_{\Delta, g}(x) \neq 0$ for some $\Delta \in \mathcal{W}_{0}$ (or, equivalently, $\phi_{g} \neq 0$). The set of all such Δ being finite (given ϕ and g) and \mathcal{W}_{0} being linearly ordered, there exists a unique largest such Δ; we call it the leading g-term and denote it by $\Delta_{\phi, g}$.

We next define a useful partial ordering < for L_{x} which has the property that every nonempty subset S of L_{x} contains a least element ϕ (in the sense that if $\psi \in L_{x}$ and $\psi<\phi$ then $\psi \notin S$). We define $<$ as follows. For $\phi, \psi \in L_{x}$ we say that $\phi<\psi$ precisely when either of the following two conditions holds:
(1) $\sup (\phi)$ is a proper subset of $\sup (\psi)$;
(2) $\sup (\phi)=\sup (\psi), \Delta_{\phi, g} \leq \Delta_{\psi, g}$ for all $g \in \sup (\phi)$, and $\Delta_{\phi, g}<\Delta_{\psi, g}$ for some $g \in \sup (\phi)$.
Otherwise ϕ and ψ are not compatible. Since \mathcal{W}_{0} is well-ordered it is easily seen that < is indeed a partial well-ordering for L_{x}.

Remark 7.4.1 If $\phi_{1}, \phi_{2} \in L_{x}$ with $\sup \left(\phi_{1}\right) \subseteq \sup \left(\phi_{2}\right)$ and $\Delta_{\phi_{1}, g} \leq \Delta_{\phi_{2}, g}$ for all $g \in \sup \left(\phi_{1}\right)$, then for $\psi \in L_{x} \psi<\phi_{1}$ implies $\psi<\phi_{2}$.

Next let $h \in G$ and let $L_{x}^{h}=Q x^{T_{0}^{h}} Q$, where $T_{0}^{h}=\mathcal{W}_{0}^{h}\left(h^{-1} G_{0}\right)$ (recall Lemma 7.2.1 and the subsequent discussion for details). L_{x}^{h} is endowed with the partial well-ordering $<^{h}$ based on ($\mathcal{B}_{0}^{h}, h^{-1} G_{0}$) and the C-space isomorphism between L_{x} and L_{x}^{h} given by $x^{\Delta g} \mapsto x^{\Delta^{h} h^{-1} g}, \Delta \in \mathcal{W}_{0}, g \in G_{0}, \Delta^{h}=h^{-1} \Delta h \in \mathcal{W}_{0}^{h}$ is order preserving. In particular we make the important observation that ϕ is a minimal element of a subset S of L_{x} if and only if ϕ^{h} is a minimal element of corresponding set S^{h} in L_{x}^{h}.

For future reference we recall from section 2.5 some definitions concerned with the tensor product $Q^{\circ} \otimes_{\Phi} Q$. For $\beta=$ $\sum c_{k} \otimes d_{k} c_{k}, d_{k} \in Q$ we have

$$
\begin{aligned}
q \cdot \beta & =\sum c_{k} q d_{k}, q \in Q \\
\beta^{\delta} & =\sum c_{k}^{\delta} \otimes d_{k}, \delta \in D(R) \\
\beta^{g} & =\sum c_{k}^{g} \otimes d_{k}, g \in G(R)
\end{aligned}
$$

For $J \in \mathcal{I}(R) N_{J}$ denotes the subring of $Q^{\circ} \otimes_{\Phi} Q$ generated by all elements of the form $r \otimes r^{\prime}, r, r^{\prime} \in J$.

At this point we recall the C-ring map $t \mapsto t^{\prime}$ of $T(R)$ into $\operatorname{End}_{\Phi}(\mathcal{S})$ given by Theorem 7.3.5. We let ρ_{d} denote the T substitution of \mathcal{S} into \mathcal{S} determined by $x \mapsto x d$ relative to $t \mapsto t^{\prime}$, $d \in Q t \in T_{1}$ (all other indeterminates in X are sent to 0). With some abuse of notation, we may sometimes write $\rho_{d}(\phi)$ as $\phi(x d)$, and it is understood that $(x d)^{t}$ means $(x d)^{t^{\prime}}$. Now for $a, b \in Q$, $\Delta \in \mathcal{W}_{0}, g \in G_{0}$, we have

$$
\rho_{d}\left(a x^{\Delta g} b\right)=a(x d)^{(\Delta g)^{\prime}} b=a(x d)^{\Delta^{\prime} g^{\prime}} b .
$$

Applying the Leibnitz Formula to $(x d)^{\Delta^{\prime}}$ we then can write

$$
\rho_{d}\left(a x^{\Delta g} b\right)=\left\{\begin{array}{lll}
a x^{\Delta g} d^{g} b+\psi(x) & \text { if } & g \in A u t_{0}(R), \tag{7.8}\\
a d^{g} x^{\Delta g} b+\psi(x) & \text { if } & g \in \text { Antiaut }_{0}(R)
\end{array}\right.
$$

where $\sup (\psi) \subseteq\{g\}$ and $\Delta_{\psi, g}<\Delta$. It follows from (7.8) that ρ_{d} maps L_{x} into itself. Clearly the map: $Q \rightarrow \operatorname{End}_{\Phi}\left(L_{x}\right)$ given by $d \mapsto \rho_{d}$ is additive. Fixing $\phi \in L_{x}$ we then see that the map $d \mapsto \rho_{d}(\phi)$ of Q into L_{x} is additive, and from this we obtain an additive $\operatorname{map} \tilde{\phi}: Q^{\circ} \otimes_{\Phi} Q \rightarrow L_{x}$ given by $d \otimes c \mapsto \rho_{d} r_{c}$ where r_{c} is the right multiplication by c. Clearly $\phi \mapsto \widetilde{\phi}$ is additive and so we have a biadditive map: $L_{x} \times Q^{\circ} \otimes_{\Phi} Q \rightarrow L_{x}$ given by $(\phi, \beta) \mapsto \phi \cdot \beta=\widetilde{\phi}(\beta), \beta \in Q^{\circ} \otimes Q, \phi \in L_{x}$. Thus for $\beta=\sum d_{k} \otimes c_{k} \in Q^{\circ} \otimes Q$ and $\phi \in L_{x}$ we see that

$$
\begin{equation*}
\phi \cdot \beta=\sum \rho_{d_{k}}(\phi) c_{k}=\sum \phi\left(x d_{k}\right) c_{k} \tag{7.9}
\end{equation*}
$$

In particular, for $a, b, c, d \in Q, \Delta \in \mathcal{W}_{0}, g \in G_{0}$ we have

$$
\begin{equation*}
\left(a x^{\Delta g} b\right) \cdot(d \otimes c)=\rho_{d}\left(a x^{\Delta g} b\right) c \tag{7.10}
\end{equation*}
$$

Together (7.8) and (7.9) imply

$$
\begin{equation*}
\sup \left(\phi_{g} \cdot \beta\right) \subseteq\{g\} \tag{7.11}
\end{equation*}
$$

$$
\begin{align*}
\Delta_{\phi \cdot \beta, g} & \leq \Delta_{\phi, g} \tag{7.12}\\
\sup (\phi \cdot \beta) & \subseteq \sup (\phi) \tag{7.13}\\
(\phi \cdot \beta)_{g} & =\phi_{g} \cdot \beta \tag{7.14}
\end{align*}
$$

We now look at the special case of (7.9) where $\phi(x)=a x^{\Delta g} b$, $a, b \in Q, \Delta \in \mathcal{W}_{0}, g \in A u t_{0}(R)$, and we set $\beta=\sum d_{k} \otimes c_{k}$. Together (7.9) and (7.10) enable us to write

$$
\begin{align*}
\phi \cdot \beta & =\sum_{k} a\left(x d_{k}\right)^{\Delta^{\prime} g^{\prime}} b c_{k} \\
& =\sum_{k} a x^{\Delta g} d_{k}^{g} b c_{k}+\psi(x) \\
& =a x^{\Delta g}\left(b \cdot \beta^{g}\right)+\psi(x) \tag{7.15}
\end{align*}
$$

where $\sup (\psi) \subseteq\{g\}$ and $\Delta_{\psi, g}<\Delta$.
More generally we consider $\phi \in L_{x}, g \in \sup (\phi) \cap A u t_{0}(R)$, set $\Delta=\Delta_{\phi, g}$, and write $\phi_{\Delta, g}=\sum_{i} a_{i} x^{\Delta g} b_{i}$, with $\left\{a_{i}\right\} C$-independent and $\left\{b_{i}\right\} C$-independent. Then from (7.15) we obtain the formula

$$
\begin{equation*}
(\phi \cdot \beta)_{\Delta, g}(x)=\sum_{i} a_{i} x^{\Delta g}\left(b_{i} \cdot \beta^{g}\right) \tag{7.16}
\end{equation*}
$$

We thus have a criteria for testing when $\Delta_{\phi \cdot \beta, g}<\Delta_{\phi, g}$, namely
Remark 7.4.2 Given the above notations $\Delta_{\phi \cdot \beta, g}<\Delta_{\phi, g}$ if and only if $b_{i} \cdot \beta^{g}=0$ for each i.

The following lemma and its corollary will be of crucial importance in section 7.5.

Lemma 7.4.3 Let $d \in Q, \Delta=\delta_{1} \delta_{2} \ldots \delta_{n} \in \mathcal{W}_{0}$, and let $s \geq 1$ be the largest subscript such that $\delta_{1}=\delta_{2}=\ldots=\delta_{s}$ (necessarily $\delta_{s}<\delta_{s+1}$, and in case of characteristic $p, s<p$). Then

$$
(x d)^{\Delta^{\prime}}=x^{\Delta} d+s x^{\Omega} d^{\delta_{1}}+\psi(x)
$$

where $\Omega=\delta_{2} \delta_{3} \ldots \delta_{n}$ and the leading term $\Delta_{\psi, 1}$ of ψ is less than Ω.

Proof. We set $\Delta_{i}=\delta_{1} \ldots \delta_{i-1} \delta_{i+1} \ldots \delta_{n}, i=1,2, \ldots, n$. For $1 \leq i \leq s$ we see that $\Delta_{i}=\Omega$, whereas for $s+1 \leq i \leq n$ we have

$$
\Delta_{i}=\delta_{1} \ldots \delta_{s} \ldots \delta_{i-1} \delta_{i+1} \ldots \delta_{n}<\delta_{2} \delta_{3} \ldots \delta_{n}=\Omega
$$

Now, expanding $(x d)^{\Delta^{\prime}}$ according to the Leibnitz Formula we may conclude that

$$
\begin{aligned}
(x d)^{\Delta^{\prime}} & =x^{\Delta} d+\sum_{i=1}^{n} x^{\Delta_{i}} d^{\delta_{i}}+\theta(x) \quad\left(\left|\Delta_{\theta, 1}\right|<n-1\right) \\
& =x^{\Delta} d+s x^{\Omega} d^{\delta_{1}}+\sum_{i=s+1}^{n} x^{\Delta_{i}} d^{\delta_{i}}+\theta(x) \\
& =x^{\Delta} d+s x^{\Omega} d^{\delta_{1}}+\psi(x) \quad\left(\Delta_{\psi, 1}<\Omega\right)
\end{aligned}
$$

The proof is complete.
Corollary 7.4.4 Let $\phi=a x^{\Delta} b, a, b \in Q, \Delta=\delta_{1} \delta_{2} \ldots \delta_{n} \in \mathcal{W}_{0}$, $s=s(\Delta)$ as described in Lemma 7.4.3, $J \in \mathcal{I}(R)$, and $\beta \in N_{J}$. Then:

$$
\phi \cdot \beta=a x^{\Delta}(b \cdot \beta)+s a x^{\Omega}\left(b \cdot \beta^{\delta_{1}}\right)+\rho(x)
$$

where $\Omega=\delta_{2} \delta_{3} \ldots \delta_{n}$ and $\Delta_{\rho, 1}<\Omega$.
Proof. We set $\beta=\sum d_{k} \otimes c_{k}, c_{k}, d_{k} \in J$. By Lemma 7.4.3

$$
\left(x d_{k}\right)^{\Delta^{\prime}}=x^{\Delta} d_{k}+s x^{\Omega} d_{k}^{\delta_{1}}+\psi_{k}(x)
$$

with $\Delta_{\psi_{k}, 1}<\Omega$. Therefore

$$
\begin{aligned}
\phi \cdot \beta & =\sum_{k} \phi\left(x d_{k}\right) c_{k}=\sum_{k} a\left(x d_{k}\right)^{\Delta^{\prime}} b c_{k} \\
& =\sum_{k} a\left[x^{\Delta} d_{k}+s x^{\Omega} d_{k}^{\delta_{1}}+\psi_{k}(x)\right] b c_{k} \\
& =a x^{\Delta}(b \cdot \beta)+s a x^{\Omega}\left(b \cdot \beta^{\delta_{1}}\right)+\rho(x)
\end{aligned}
$$

where $\Delta_{\rho, 1}<\Omega$, and the proof is complete.

7.5 Reduced T-identities

We are now able to attain one of the main goals of this book, namely, to establish the fundamental result of Kharchenko (together with Chuang's generalization) which says that if a prime ring R satisfies a nonzero reduced T-identity then R is GPI (Theorem 7.5.8).

Most of the arguments will take place in the special situation where the T-identity is linear and we shall draw heavily upon the material developed in section 7.4. We first recall from Corollary 7.2 .3 various linear settings and their decompositions into T-trivial and reduced components

$$
\begin{aligned}
Q X^{T_{1}} Q & =Q Z Q \oplus Q X^{T_{0}} Q \\
Q x^{T_{1}} Q & =Q Z_{x} Q \oplus L_{x}, \quad L_{x}=Q x^{T_{0}} Q
\end{aligned}
$$

and the particular cases where no antiautomorphisms are involved:

$$
\begin{aligned}
Q X^{T_{1}^{*}} Q & =Q Z^{*} Q \oplus Q X^{T_{0}^{*}} Q \\
Q x^{T_{1}^{*}} Q & =Q Z_{x}^{*} Q \oplus L_{x}^{*}, \quad L_{x}^{*}=Q x^{T_{0}^{*}} Q
\end{aligned}
$$

It turns out that the proof of the main result (Theorem 7.5.8) ultimately rests on Lemma 6.2.1, which we now restate as

Lemma 7.5.1 Let $h \in \operatorname{Antiaut}(R)$ and let $0 \neq \phi \in Q x Q+$ $Q x^{h} Q$ be a T-identity on some $0 \neq I \triangleleft R$. Then R is GPI.

Also useful will be the following corollary of Corollary 6.1.3.
Lemma 7.5.2 Let $g \in G$ and let $\phi \in Q x^{g} Q$ be a T-identity on some $0 \neq I \triangleleft R$. Then $\phi=0$.

Proof. Simply note that $\psi(x)=\phi\left(x^{g^{-1}}\right) \in Q x Q$ is a $G P I$ on I^{g} and apply Corollary 6.1.3.

Lemma 7.5.1, Lemma 7.5.3 and Lemma 7.5 .4 will, taken together, show that if there is a nonzero reduced linear T-identity on R then R is $G P I$ (Theorem 7.5.5), which in turn will rather quickly yield Theorem 7.5.8. Along the way sharper results will be obtained in case no antiautomorphisms are involved and $\operatorname{char}(R)=0$.

The following lemma is the crucial step in the proof of Theorem 7.5.8.

Lemma 7.5.3 Let $\phi \in L_{x}$ be minimal with respect to the property that $\phi \neq 0, \phi$ is a T-identity on some I, and $\sup (\phi) \subseteq$ $\{g, h\}$ for some $g \in A u t_{0}(R)$ and $h \in$ Antiaut $_{0}(R)$. Then $\Delta_{\phi, f}=1$ for each $f \in \sup (\phi)$.

Proof. Without loss of generality we may assume that $g=1$ (since ϕ is minimal in L_{x} with the given property if and only if ϕ^{f} is minimal in L_{x}^{f} with the same property; see section 7.4 for the details). Furthermore it suffices to show that $\Delta_{\phi, 1}=1$ (since $\Delta_{\phi, h}=1$ if and only if $\Delta_{\phi^{h}, 1}=1$). Suppose $\Delta=\Delta_{\phi, 1} \neq 1$. Then we write $\Delta=\delta_{1} \delta_{2} \ldots \delta_{n} \in \mathcal{W}_{0}$ and set $\Omega=\delta_{2} \delta_{3} \ldots \delta_{n}$.

We claim that without loss of generality we may assume that $\phi_{\Delta, 1}(x)=a x^{\Delta} b$. Indeed, we may write

$$
\phi_{\Delta, 1}=\sum_{i=1}^{m} a_{i} x^{\Delta} b_{i}
$$

with $\left\{a_{i}\right\} C$-independent and $\left\{b_{i}\right\} C$-independent, $a_{1} \neq 0 \neq b_{1}$. By Remark 2.5.5 there exists $\beta \in N_{I}$ such that $b_{1} \cdot \beta \neq 0$, $b_{i} \cdot \beta=0, i>1$. Now by formula (7.16), with $g=1$, we have

$$
\left(\phi_{\Delta, 1} \cdot \beta\right)=\sum_{i} a_{i} x^{\Delta}\left(b_{i} \cdot \beta\right)=a_{1} x^{\Delta}\left(b_{1} \cdot \beta\right)
$$

Now $0 \neq \phi \cdot \beta \in L_{x}$ is a T-identity on I, by (7.13)

$$
\sup (\phi \cdot \beta) \subseteq \sup (\phi) \subseteq\{1, h\}
$$

and by (7.12) $\Delta_{\phi \cdot \beta, f} \leq \Delta_{\phi, f}$ for each $f \in \sup (\phi \cdot \beta)$. Thus the conditions of Remark 7.4.1 are met, and it follows that $\phi \cdot \beta$ must also be a minimal element of L_{x} relatively to the given requirements. Our claim is thereby established and we will assume that $\phi_{\Delta, 1}(x)=a x^{\Delta} b$ where $a, b \neq 0$.

We now extend $\{a\}$ to C-basis $\left\{a_{\xi} \mid \xi \in \Xi\right\}$ of Q and note that $\left\{a_{\xi} x^{t} \mid t \in T_{0}, \xi \in \Xi\right\}$ is a right Q-module basis for L_{x}. We write $\phi(x)$ in terms of this basis, being at this time only interested in those basis elements of the form: $a x^{\cdots \Omega}$ (where $\Omega=\delta_{2} \delta_{3} \ldots \delta_{n}$)

$$
\begin{equation*}
\phi(x)=a x^{\Delta} b+\sum a x^{\mu_{i} \Omega} v_{i}^{\prime}+\ldots+a x^{\Omega} w^{\prime}+\ldots \tag{7.17}
\end{equation*}
$$

$\delta_{1}>\mu_{1}>\mu_{2}>\ldots \in \mathcal{W}_{0}, v_{i}^{\prime}, w^{\prime} \in Q$. At this point we note that $\delta_{2} \geq \delta_{1}>\mu_{i}$ and so $s\left(\mu_{i} \Omega\right)=1$ for all i (see Corollary 7.4.4 for the definition of $s(\Delta))$. Now choose $J \subseteq I$ such that $a J, b J, v_{i}^{\prime} J$, $w^{\prime} J$ are all contained in R. (Remark: our eventual aim is to show that $\delta_{1}+\sum \mu_{i} \alpha_{i}=a d(u)$ for suitable $\alpha_{i} \in C u \in Q$, which will be a contradiction to $\delta_{1}, \mu_{1}, \mu_{2}, \ldots$ being right C-independent modulo D_{i}). Let $\beta \in N_{J}$. We compute $\psi_{\beta}(x)=(\phi \cdot \beta)(x)$, being only concerned in knowing the terms beginning with $a x^{\Delta}$ and $a x^{\Omega}$. Note that $\psi_{\beta}(x)$ remains a T-identity on I. Applying the full force of Corollary 7.4.4 to (7.17), we see that

$$
\begin{aligned}
\psi_{\beta}(x)= & a x^{\Delta}(b \cdot \beta)+s a x^{\Omega}\left(b \cdot \beta^{\delta_{1}}\right)+\ldots \\
& +\sum_{i} a x^{\Omega}\left(v_{i}^{\prime} \cdot \beta^{\mu_{i}}\right)+\ldots+a x^{\Omega}\left(w^{\prime} \cdot \beta\right)+\ldots \\
= & a x^{\Delta}(b \cdot \beta)+\ldots \\
& +a x^{\Omega}\left[s b \cdot \beta^{\delta_{1}}+\sum_{i} v_{i}^{\prime} \cdot \beta^{\mu_{i}}+w^{\prime} \cdot \beta\right]+\ldots
\end{aligned}
$$

where $s=s(\Delta) \neq 0$ (recall $s<p$ in case of characteristic p, and $s\left(\mu_{i} \Omega\right)=1$ for all i). Since s is invertible, we can set $v_{i}=s^{-1} v_{i}^{\prime}$, $w=s^{-1} w^{\prime}$ and rewrite $\psi_{\beta}(x)$ as follows:

$$
\psi_{\beta}(x)=a x^{\Delta}(b \cdot \beta)+\ldots
$$

$$
\begin{equation*}
+s a x^{\Omega}\left[b \cdot \beta^{\delta_{1}}+\sum_{i} v_{i} \cdot \beta^{\mu_{i}}+w \cdot \beta\right]+\ldots(\tag{7.18}
\end{equation*}
$$

Now we define $f: J b J \rightarrow R$ as follows:

$$
b \cdot \beta \mapsto b \cdot \beta^{\delta_{1}}+\sum_{i} v_{i} \cdot \beta^{\mu_{i}}+w \cdot \beta, \quad \beta \in N_{J}
$$

We note that v_{i} and w as well as b are now fixed elements of Q independent of β, that $J b J$ is an ideal of R, and that the image of f does indeed lie in R (since $b J, v_{i}^{\prime} J, w^{\prime} J$ and hence $v_{i} J, w J$ all lie in R). To show f is well-defined suppose $b \cdot \beta=0$. But then the leading 1-term of $\psi_{\beta}(x)$ is less than Δ, which says that $\psi_{\beta}(x)<\phi(x)$, and so by the minimality of $\phi(x)$ we conclude that $\psi_{\beta}(x)=0$. In particular we then see from (7.18) that

$$
s\left[b \cdot \beta^{\delta_{1}}+\sum_{i} v_{i} \cdot \beta^{\mu_{i}}+w \cdot \beta\right]=0
$$

whence

$$
b \cdot \beta^{\delta_{1}}+\sum_{i} v_{i} \cdot \beta^{\mu_{i}}+w \cdot \beta=0
$$

(since s is invertible).
It is straightforward to check that f is a right R-map. Indeed, letting $y \in R$, setting $\gamma=\beta(1 \otimes y)$, and noting that

$$
\gamma^{\delta}=\beta^{\delta}(1 \otimes y), \delta \in D(R)
$$

we have

$$
\begin{aligned}
b \cdot \beta y & =b \cdot \gamma \mapsto b \cdot \gamma^{\delta_{1}}+\sum_{i} v_{i} \cdot \gamma^{\mu_{i}}+w \cdot \gamma \\
& =\left[b \cdot \beta^{\delta_{1}}+\sum_{i} v_{i} \cdot \beta^{\mu_{i}}+w \cdot \beta\right] y=f(b \cdot \beta) y
\end{aligned}
$$

Next we set $u=\{f, J b J\} \in Q_{r}(R)$ and note that

$$
\begin{equation*}
u(b \cdot \beta)=f(b \cdot \beta)=b \cdot \beta^{\delta_{1}}+\sum_{i} v_{i} \cdot \beta^{\mu_{i}}+w \cdot \beta \tag{7.19}
\end{equation*}
$$

for all $\beta \in N_{J}$. Multiplication of (7.19) on the left by $y \in R$ yields

$$
\begin{equation*}
y u(b \cdot \beta)=y\left(b \cdot \beta^{\delta_{1}}\right)+\sum_{i} y\left(v_{i} \cdot \beta^{\mu_{i}}\right)+y(w \cdot \beta) \tag{7.20}
\end{equation*}
$$

On the other hand, setting $\gamma=\beta(y \otimes 1)$ and using formula (2.13)

$$
\gamma^{\delta}=\beta^{\delta}(y \otimes 1)+\beta\left(y^{\delta} \otimes 1\right)
$$

we have

$$
\begin{align*}
u y(b \cdot \beta)= & u(b \cdot \gamma)=b \cdot \gamma^{\delta_{1}}+\sum_{i} v_{i} \cdot \gamma^{\mu_{i}}+w \cdot \gamma \\
= & y^{\delta_{1}}(b \cdot \beta)+y\left(b \cdot \beta^{\delta_{1}}\right)+\sum_{i} y^{\mu_{i}}\left(v_{i} \cdot \beta\right) \\
& +\sum_{i} y\left(v_{i} \cdot \beta^{\mu_{i}}\right)+y(w \cdot \beta) \tag{7.21}
\end{align*}
$$

Subtraction of (7.21) from (7.20) yields

$$
\begin{equation*}
(y u-u y)(b \cdot \beta)=y^{\delta_{1}}(b \cdot \beta)+\sum_{i} y^{\mu_{i}}\left(v_{i} \cdot \beta\right) \tag{7.22}
\end{equation*}
$$

for all $y \in R$ and $\beta \in N_{J}$.
Finally, we extend $\{b\}$ to a C-basis $\left\{b_{\xi} \mid \xi \in \Xi\right\}$ of Q with $b=b_{1}$. For each i (only a finite number) we write

$$
v_{i}=\sum_{j} \alpha_{i j} b_{j}, \quad \alpha_{i j} \in C
$$

This only involves a finite number of b_{j} 's, say, $b=b_{1}, b_{2}, \ldots, b_{m}$. By Remark 2.5.5 we may choose $\gamma \in N_{J}$ such that $b \cdot \gamma=b_{0} \neq 0$ and $b_{j} \cdot \gamma=0, j>1$. We note that $b_{0} \in J b J \subseteq J$. Then, for any $\beta \in N_{J}$, we use (7.22) to compute

$$
\begin{aligned}
{[y, u]\left(b_{0} \cdot \beta\right) } & =[y, u](b \cdot(\gamma \beta)) \\
& =y^{\delta_{1}}\left(b \cdot(\gamma \beta)+\sum_{i} y^{\mu_{i}}\left(v_{i} \cdot(\gamma \beta)\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& =y^{\delta_{1}}\left(b_{0} \cdot \beta\right)+\sum_{i j} \alpha_{i j} y^{\mu_{i}}\left(b_{j} \cdot(\gamma \beta)\right) \\
& =y^{\delta_{1}}\left(b_{0} \cdot \beta\right)+\sum_{i} \alpha_{i 1} y^{\mu_{i}}((b \cdot \gamma) \cdot \beta) \\
& =y^{\delta_{1}}\left(b_{0} \cdot \beta\right)+\sum_{i} \alpha_{i} y^{\mu_{i}}\left(b_{0} \cdot \beta\right) \quad\left(\alpha_{i}=\alpha_{i 1} \in C\right)
\end{aligned}
$$

Therefore

$$
\left(y^{\delta_{1}}+\sum_{i} \alpha_{i} y^{\mu_{i}}-[y, u]\right)\left(b_{0} \cdot \beta\right)=0
$$

for all $y \in R$ and $\beta \in N_{J}$. Hence

$$
y^{\delta_{1}}+\sum_{i} \alpha_{i} y^{\mu_{i}}=[y, u]
$$

for all $y \in R$, in other words,

$$
\delta_{1}+\sum_{i} \mu_{i} \alpha_{i}=a d(u) \in D_{i} .
$$

This is a contradiction since $\delta_{1}, \mu_{1}, \mu_{2}, \ldots$ are C-independent modulo D_{i}, and the proof is complete.

The next lemma shows that if there is a nontrivial linear T-identity then the conditions of Lemma 7.5 .3 will be fulfilled.

Lemma 7.5.4 If $\phi \in L_{x}$ is minimal with respect to the property that $0 \neq \phi$ is a T-identity for some $0 \neq I \triangleleft R$, then $\sup (\phi) \subseteq$ $\{g, h\}$ for some $g \in A u t_{0}(R)$ and $h \in$ Antiaut $_{0}(R)$.

Proof. If the lemma is false we claim that we may assume without loss of generality that $\sup (\phi)$ contains two automorphisms g_{1} and g_{2}. Indeed, if g and h are two antiautomorphisms in $\sup (\phi)$, then $\sup \left(\phi^{g}\right)$ contains the two automorphisms 1 and $g^{-1} h$, and our claim is thereby established. Therefore let g_{i},
$i=1,2$ be two automorphisms in $\sup (\phi)$, and let $\Delta_{i}=\Delta_{\phi, g_{i}}$ be the leading g_{i}-term of ϕ. We write

$$
\phi_{\Delta_{i}, g_{i}}=\sum_{j=1}^{m_{i}} a_{i j} x^{\Delta_{i} g_{i}} b_{i j}, \quad i=1,2
$$

with $\left\{a_{i 1}, a_{i 2}, \ldots, a_{i m_{i}}\right\} C$-independent and $\left\{b_{i 1}, b_{i 2}, \ldots, b_{i m_{i}}\right\} C$ independent. We claim that b_{11} is left independent of

$$
b_{12}, b_{13}, \ldots, b_{1 m_{1}}, b_{21}, b_{22}, \ldots, b_{2 m_{2}}
$$

with respect to

$$
\underbrace{g_{1}, g_{1}, \ldots, g_{1}}_{m_{1} \text { times }}, \underbrace{g_{2}, g_{2}, \ldots, g_{2}}_{m_{2} \text { times }} .
$$

If not we have (in view of Remark 2.5.8)

$$
b_{11} \in \sum_{j=2}^{m_{1}} M_{g_{1}^{-1} g_{1}} b_{1 j}+\sum_{j=1}^{m_{2}} M_{g_{1}^{-1} g_{2}} b_{2 j}=\sum_{j=2}^{m_{1}} C b_{1 j}
$$

a contradiction to $b_{11}, b_{12}, \ldots, b_{1 m_{1}}$ being C-independent. Now by Theorem 2.5.9 there exists $\beta \in N_{I}$ such that

$$
\begin{aligned}
b_{11} \cdot \beta^{g_{1}} & \neq 0, \quad b_{1 j} \cdot \beta^{g_{1}}=0, \quad j=2,3, \ldots, m_{1} \\
b_{2 j} \cdot \beta^{g_{2}} & =0, \quad j=1,2, \ldots, m_{2}
\end{aligned}
$$

The element $\phi \cdot \beta \in L_{x}$ is a T-identity on I and, in view of (7.16), $\phi \cdot \beta \neq 0$ since $b_{11} \beta^{g_{1}} \neq 0$. By the criterion of Remark 7.4.2 we see that $\Delta_{\phi \cdot \beta, g_{2}}<\Delta_{\phi, g_{2}}$, whence $\phi \cdot \beta<\phi$ in contradiction to the minimality of ϕ. The proof is thereby complete.

Theorem 7.5.5 Let $0 \neq \phi \in Q X^{T_{0}} Q$ be a T-identity on some $0 \neq I \triangleleft R$. Then R is GPI.

Proof. Without loss of generality we may assume that $\phi \in L_{x}$ for some $x \in X$. Furthermore we may assume that ϕ is a minimal nonzero T-identity on I. Then Lemma 7.5.4, Lemma 7.5.3 and Lemma 7.5.1 together imply that R is GPI.

Theorem 7.5.5 may be improved upon if there are no antiautomorphisms present.
Theorem 7.5.6 If $\phi \in Q X^{T_{0}^{*}} Q$ is a T-identity on some $0 \neq$ $I \triangleleft R$, then $\phi=0$.

Proof. We may assume without loss of generality that $\phi \in$ L_{x}^{*} and is a minimal nonzero T-identity on I. By Lemma 7.5.4 $\sup (\phi) \subseteq\{g, h\}, g \in A u t_{0}(R), h \in \operatorname{Antiaut}_{0}(R)$ and, since $\phi \in L_{x}^{*}$, we must in fact have $\sup (\phi) \subseteq\{g\}$. By Lemma 7.5.3 $\Delta_{\phi, g}=1$ and, in view of Lemma 7.5.2, we reach the contradiction that $\phi=0$.

Before moving on to the general case of a T-identity we shall briefly review the linearization process in $\mathcal{S}=Q_{C}\left\langle X^{T_{1}}\right\rangle$. With some obvious adjustments it is basically the same as that described in section 6.1, and the reader can refer to the account given there (preceding Remark 6.1.5). Again we start with the usual monomial basis $\mathcal{M}(\mathcal{A})$ of \mathcal{S}. For each $M \in \mathcal{M}(\mathcal{A})$ let $\widehat{M} \in \mathcal{M}(\mathcal{A})$ be obtained by replacing each x^{t} by $x, x \in X$, $t \in T_{1}$. Then, if ν represents any of the functions deg_{x}, deg , $h t_{x}, h t$, we define $\nu(M)=\nu(\widehat{M})$. For $\phi=\sum c_{M} M$ we define $\nu(\phi)=\max _{M} \nu(M)$ where M belongs to ϕ. As a notational example, if $M \in \mathcal{M}(\mathcal{A})$ is such that $\operatorname{deg}_{x}(M)=k$, then one may write

$$
M=M(x)=P_{i_{0}} x^{t_{1}} P_{i_{1}} x^{t_{2}} \ldots x^{t_{k}} P_{i_{k}}
$$

where $t_{j} \in T_{1}$ and $P_{i_{j}} \in \mathcal{M}(\mathcal{A})$ containing only variables of the form $x_{i}^{t}, x_{i} \neq x, t \in T_{1}$. Now let $\phi=\phi\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathcal{S} . \phi$ is k-homogeneous in x if $\operatorname{deg}_{x}(M)=k$ for every M belonging to ϕ, and given a sequence $\tau=\left(m_{1}, m_{2}, \ldots, m_{n}\right) \phi$ is τ-homogeneous
if ϕ is m_{i}-homogeneous in $x_{i}, i=1,2, \ldots, n$. Clearly any $\psi \neq 0$ may be uniquely written as a sum $\sum \psi_{\tau}, \psi_{\tau} \tau$-homogeneous, or, for a fixed $x, \sum_{k=0}^{m} \psi_{k}(x), \psi_{k}(x) k$-homogeneous in $x, m=$ $\operatorname{deg}_{x}(\psi)$. We say ϕ is T-multilinear of degree n if ϕ is τ-homogeneous with each $m_{i}=1, i=1,2, \ldots, n$.

With this terminology in hand the linearization process proceeds exactly as described in section 6.1. An operation of type A may be used whenever $\operatorname{deg}_{x}(\phi)>1$ for some $x \in X$: deg is preserved, height is lowered, and T-identity is preserved. An operation of type B may be used whenever there is an $x \in X$ appearing in some but not all monomials belonging to $\phi: T$ identity is preserved, and neither degree nor height is raised. As in section 6.1 every $0 \neq \phi \in \mathcal{S}$ has a linearization and so we may state

Remark 7.5.7 If $0 \neq \phi \in \mathcal{S}$ is a reduced T-identity of degree n on some $0 \neq I \triangleleft R$, then there is a nonzero reduced T-multilinear identity of $\operatorname{deg} \leq n$.

We come now to one of the main results in the theory of generalized identities. In the case of derivations and automorphisms it was proved by Kharchenko in 1978, and it was extended to include antiautomorphisms by Chuang in 1990 ([143], [146], [82], [86], [88]).

Theorem 7.5.8 Let R be a prime ring and let ϕ be a nonzero reduced T-identity on some nonzero ideal I of R. Then R is GPI.

Proof. The proof is by induction on $n=\operatorname{deg}(\phi)$. The case $n=1$ is given by Theorem 7.5.5. Now let ϕ be a T identity of degree n.on some $0 \neq I \triangleleft R$. By Remark 7.5.7 we may assume that $\phi=\phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is T-multilinear of degree n. Let $r_{2}, r_{3}, \ldots, r_{n} \in I$ and let $\psi\left(x_{1}\right)=\phi\left(x_{1}, r_{2}, r_{3}, \ldots, r_{n}\right)$ be the image of ϕ under the T-substitution $x_{1}^{t} \mapsto x_{1}^{t}, x_{i}^{t} \mapsto$ $r_{i}^{\gamma(t)}, t \in T_{0}, i=2,3, \ldots, n$, relative to the mapping $\gamma: T \rightarrow$
$E n d_{\Phi}(\mathcal{S})$ described in section 7.1. We note that $\psi\left(x_{1}\right) \in L_{x_{1}}$ is a T-identity on I. If $\psi\left(x_{1}\right) \neq 0$ we are again finished by Theorem 7.5.5. Therefore we may assume $\psi\left(x_{1}\right)=0$ which implies that ψ maps to 0 under the substitution $x_{1}^{t} \mapsto r_{t} \in I$ for any choice $r_{t} \in I, t \in T_{0}$. Thus the image $\rho=\rho\left(x_{2}, \ldots, x_{n}\right)$ of ϕ under the substitution $x_{1}^{t} \mapsto r_{t}, x_{i}^{t} \mapsto x_{i}^{t}, i=2,3, \ldots, n$ is a T-identity on I of $\operatorname{deg} \leq n-1$, and so by induction we may assume that $\rho=0$. Altogether this shows that ϕ maps to 0 under any substitution $x_{i}^{t} \mapsto r_{i, t} \in I, t \in T_{0}, i=1,2, \ldots, n$. Thus we have found a GPI $\chi\left(x_{i, t}\right)$ such that the substitution $x_{i, t} \mapsto x_{i}^{t}$ maps it to ϕ. Hence $\chi \neq 0$ and R is GPI.

In case $\operatorname{char}(R)=0$ and ϕ is a T-identity without antiautomorphisms we have the following sharper result.

Theorem 7.5.9 Let $\operatorname{char}(R)=0$ and let

$$
0 \neq \phi=\phi\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in Q_{C}<X^{T_{0}^{*}}>
$$

be a T-identity on some $0 \neq I \triangleleft R$. Let $\left\{y_{i t}\right\}$ be distinct elements of X in one-one correspondence with the variables x_{i}^{t}. Then $\phi\left(y_{i t}\right)$ is a GPI on Q (it is understood that $\phi\left(y_{i t}\right)$ is mapped to $\phi(x)$ under the substitution $\left.y_{i t} \mapsto x_{i}^{t}, t \in T_{0}^{*}, 1 \leq i \leq n\right)$.

Proof. The proof is by induction on $h t(\phi)$. We first claim that it suffices to assume that ϕ is homogeneous. Indeed, we write $\phi=\sum_{k=0}^{m} \phi_{k}$ where ϕ_{k} is k-homogeneous in x_{1}, noting that

$$
0=\phi\left(j r_{1}, r_{2}, \ldots, r_{n}\right)=\sum_{k=0}^{m} j^{k} \phi_{k}\left(r_{1}, r_{2}, \ldots, r_{n}\right)
$$

for $j=1,2, \ldots, m+1$. Since $\operatorname{char}(R)=0,1,2, \ldots, m+1$ are distinct elements in the prime field Φ and so, using a Vandermonde determinant argument, each $\phi_{k}\left(r_{1}, r_{2}, \ldots, r_{n}\right)=0$, i.e., ϕ_{k} is a T-identity on $I, k=0,1, \ldots, m$. Repeated use of the above argument ultimately shows that we may write $\phi=\sum \phi_{\tau}$,
where each ϕ_{τ} is a τ-homogeneous T-identity on I. By assumption each ϕ_{τ} is a GPI on Q whence ϕ is a GPI on Q and the claim is established.

For $h t(\phi)=0$ we know that $\phi=\phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is T multilinear (since we are assuming ϕ is homogeneous). Let $r_{2}, r_{3}, \ldots, r_{n} \in I$ and set $\psi\left(x_{1}\right)=\phi\left(x_{1}, r_{2}, \ldots, r_{n}\right) \in L_{x}^{*}$. Since ψ is a T-identity on I we know by Lemma 7.5 .2 that $\psi\left(x_{1}\right)=0$. In particular, for any choice $q_{t} \in Q, t \in T_{0}^{*}, \phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is mapped to 0 by $x_{1}^{t} \mapsto q_{t}, x_{i}^{t} \mapsto r_{i}^{\gamma(t)}, i=2,3, \ldots, n$. Continuing this process with $x_{2}, x_{3}, \ldots, x_{n}$ we see that, given any choice $q_{i, t} \in Q, t \in T_{0}^{*}, i=1,2, \ldots, n, \phi$ is mapped to 0 by $x_{i}^{t} \mapsto q_{i, t}$. The conclusion of the theorem follows immediately in this case.

We now suppose that $h t(\phi)>0$. We may assume, say, that $r=\operatorname{deg}_{x_{n}}>1$. We then apply an operation of type A in the linearization process, namely, for $y \in X$ distinct from $x_{1}, x_{2}, \ldots, x_{n}$ we replace ϕ by

$$
\begin{aligned}
\psi\left(x_{1}, \ldots, x_{n}, y\right)= & \phi\left(x_{1}, \ldots, x_{n-1}, x_{n}+y\right) \\
& -\phi\left(x_{1}, \ldots, x_{n}\right)-\phi\left(x_{1}, \ldots, x_{n-1}, y\right)
\end{aligned}
$$

noting that $h t(\psi)<h t(\phi)$ and ψ is again a T-identity on I. Then the induction hypothesis says that ψ is a $G P I$ on Q. Furthermore, since ϕ is r-homogeneous in x_{n} we see that

$$
\begin{aligned}
\psi\left(x_{1}, \ldots, x_{n}, x_{n}\right) & =\phi\left(x_{1}, \ldots, x_{n-1}, 2 x_{n}\right)-2 \phi\left(x_{1}, \ldots, x_{n}\right) \\
& =\left(2^{r}-2\right) \phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)
\end{aligned}
$$

whence ϕ is a GPI on Q (in a view of $\operatorname{char}(R)=0$). The proof of the theorem is complete.

Under the conditions of Theorem 7.5.9, if ϕ is a T-identity on $0 \neq I \triangleleft R$, one may say, in somewhat looser language, that the variables x_{i}^{t} can be "freed" (replaced by $y_{i, t}$) and that the resulting element vanishes on all of Q. In general, if $\operatorname{char}(R)=p$ and/or ϕ involves antiautomorphisms, the conclusion of Theorem 7.5.9 is no longer always valid. However, as we shall show
in sections 7.6 and 7.7 , the variables x_{i}^{t} may be "partially" freed and the resulting element will be a T-identity on Q.

7.6 The Structure of T-identities (Fields)

In section 7.5 the central result (Theorem 7.5.8) was that a nonzero reduced T-identity on a nonzero ideal of a prime ring forced the ring to be GPI. However, there was no special effort to keep track of the original T-identity. In the present section and section 7.7 our aim is to prove some results about the T identities themselves. The case in which $R=C$ is a field, for which we give a complete analysis in this section, is not only used heavily in the general situation of prime rings in the following section, but may be of independent interest in its own right.

Let C be a field. In this special situation we recall from section 7.1 that the setting for C is defined to be the commutative polynomial ring

$$
\mathcal{S}_{0}(C)=C\left[\Lambda^{T_{1}(C)}\right]=C<\Lambda^{T_{1}(C)}>/ I_{1}(C)
$$

where $I_{1}(C)$ is the commutator ideal of $C<\Lambda^{T_{1}(C)}>$. We recall too in this situation that since $D_{i}=0$ and $G_{i}=1, \mathcal{W}=\mathcal{W}_{0}$, $G=G_{0}$ and accordingly $T_{1}=\mathcal{W}_{0} G_{0}=T_{0}$.

It will prove useful to further refine G as follows. We define an automorphism $g \in G$ to be Frobenius if either $g=1$ or, in case $\operatorname{char}(C)=p$ and $\theta: c \mapsto c^{p}$ is an automorphism, $g=\theta^{l}$ for some $l \in \mathcal{Z}$. We let G_{f} denote the set of all Frobenius automorphisms of C and note that G_{f} is a normal subgroup of G. If $\operatorname{char}(C)=0$ or $\operatorname{char}(C)=p$ and θ is not onto, then $G_{f}=1$. In case char $(C)=p$ and θ is onto then G_{f} is the cyclic group generated by θ, being infinite (resp. finite) if and only if C
is infinite (resp. finite). We choose a set $G_{0 f}$ of representatives of G modulo G_{f} and accordingly take $G=G_{0}$ to be $G_{o f} G_{f}=$ $\left\{g_{k} f_{l} \mid g_{k} \in G_{0 f}, f_{l} \in G_{f}\right\}$. We note in passing that if $G_{f} \neq 1$, then necessarily $\mathcal{W}=\{1\}$. Indeed, every element of C in this case is a p th power c^{p} and if $\delta \in \operatorname{Der}(C)$, then $\left(c^{p}\right)^{\delta}=p c^{p-1} c^{\delta}=$ 0 . Also, if C is a finite field of order $p^{n}, G=G_{f}$ is cyclic of order n (hence $G_{0 f}=1$) and of course $\mathcal{W}=\{1\}$.

With the above decomposition of G in mind it is clear that the set of all finite products

$$
\begin{equation*}
M=\prod\left(\lambda_{i}^{\Delta_{j} g_{k} f_{l}}\right)^{m_{i j k l}}, \quad m_{i j k l} \in \mathcal{N} \tag{7.23}
\end{equation*}
$$

forms a C-basis of $C\left[\Lambda^{T_{0}}\right]$, where $\mathcal{N}=\{0,1,2, \ldots\}, \lambda_{i} \in \Lambda$, $\Delta_{j} \in \mathcal{W}, g_{k} \in G_{o f}, f_{l} \in G_{f}$.

In analyzing the T-identities of C it is convenient to consider separate situations which we label as follows:
(1a) $G_{f}=1$ and $\operatorname{char}(C)=0$;
(1b) $G_{f}=1$ and $\operatorname{char}(C)=p>0$;
(2a) $G_{f} \neq 1$ and C is infinite (hence G_{f} is the infinite cyclic group $\left\{\theta^{l} \mid l \in \mathcal{Z}\right\}$ and $\mathcal{W}=\{1\}$);
(2b) $G_{f} \neq 1$ and C is finite (hence G_{f} is the finite cyclic group $\left\{\theta^{l} \mid l=0,1, \ldots, n-1\right\}$ and $\mathcal{W}=\{1\}$).

There are in some cases some "obvious" T-identities of C which we describe as follows.

In cases (1a) and (1b) there are no other "obvious" T identities and we set $I_{2}(C)=0$.

In case (2a) we define $I_{2}(C)$ to be the ideal of $C\left[\Lambda^{T_{0}}\right]$ generated by all elements of the form

$$
\left(\lambda^{g \theta^{l}}\right)^{p}-\lambda^{g \theta^{l+1}}, \quad \lambda \in \Lambda, g \in G_{0 f}
$$

where θ is the basic Frobenius automorphism $c \mapsto c^{p}, c \in C$.
In case (2b) we define $I_{2}(C)$ to be the ideal of $C\left[\Lambda^{T_{0}}\right]$ generated by all elements of the form

$$
\lambda^{\theta^{l}}-\lambda^{p^{l}}, \quad \lambda \in \Lambda, l=1,2, \ldots, n
$$

where $|C|=p^{n}$. We note that

$$
\lambda-\lambda^{p^{n}}=\lambda^{\theta^{n}}-\lambda^{p^{n}} \in I_{2}(C) .
$$

We shall call $I_{2}=I_{2}(C)$ the ideal of F-trivial T-identities of $C\left[\Lambda^{T_{0}}\right]$. Our goal in this section is to show that every T-identity of C is F-trivial.

To this end it is first of all important to determine an explicit C-basis for $C\left[\Lambda^{T_{0}}\right]$ modulo $I_{2}(C)$. For future reference it will be useful to have a simpler description of the monomials in (7.23) in the various cases (1a), (1b), (2a) and (2b):

$$
\begin{aligned}
M= & \prod\left(\lambda_{i}^{\Delta_{j} g_{k}}\right)^{m_{i j k}} \\
& m_{i j k} \in \mathcal{N} \text { in cases (1a) and (1b) } \\
M= & \prod\left(\lambda_{i}^{g_{k} \theta^{l}}\right)^{m_{i k l}}, \\
& m_{i k l} \in \mathcal{N}, l \in \mathcal{Z} \quad \text { in case (2a) } \\
M= & \prod\left(\lambda_{i}^{\theta^{l}}\right)^{m_{i l}}, \\
& m_{i l} \in \mathcal{N}, l=0,1, \ldots, n-1 \quad \text { in case }(\mathbf{2 b}) ; .(7.26)
\end{aligned}
$$

We define $N=\mathcal{N}$ (in cases (1a) and (1b)) and $N=\mathcal{N}_{p}=$ $\left\{\sum_{l=-q}^{q} \dot{s}_{l} p^{l} \mid q \in \mathcal{N}, 0 \leq s_{l}<p\right\}$ (case (2a)).

We next define the important notion of F-degree in cases (1a), (1b),(2a) and (2b). For a monomial given in (7.23) we define the F-degree of $\lambda_{i}^{\Delta_{j}} g_{k_{0}}$ in M by consideration of the three forms of M as shown in (7.24)-(7.26):

$$
\begin{aligned}
& m_{i_{0} j_{0} k_{0}} \quad \text { in cases }(1 \mathbf{a}) \text { and }(\mathbf{1 b}), \\
& \sum_{l} m_{i_{0} k_{0} l} p^{l} \quad \text { in case }(2 \mathbf{a}), \\
& r \text { in case }(2 \mathbf{b}), \text { where } \\
& \sum_{l} m_{i_{0} l} p^{l}-1=q\left(p^{n}-1\right)+r_{0}, \\
& 0 \leq r_{0}<p^{n}-1, r=r_{0}+1 .
\end{aligned}
$$

We remark that in cases (1a) and (1b) the F-deg of $\lambda^{\Delta g}$ in M is just the ordinary degree of the variable $\lambda^{\Delta g}$ in M. In case (2a) we note that F-deg of λ^{g} in M need not be an integer (if $l<0$). In all cases the notion of F-deg is quite natural if one thinks of it as the "power" to which $\lambda^{\Delta g}$ occurs in M when θ^{l} is replaced by p^{l}. Finally if

$$
\phi=\sum_{M} c_{M} M, \quad c_{M} \in C, M \quad \text { of form (7.23) }
$$

is an arbitrary element of $C\left[\Lambda^{T_{0}}\right]$ we define:

$$
F \text {-deg of } \lambda^{\Delta g} \text { in } \phi=\max \left\{F-\operatorname{deg} \text { of } \lambda^{\Delta g} \text { in } M\right\}
$$

Again we remark that if $G_{f}=1$, then the F-deg of $\lambda^{\Delta g}$ in ϕ coincides with the ordinary degree of $\lambda^{\Delta g}$ in ϕ.

We consider now the Cartesian product $\Lambda \times \mathcal{W} \times G_{0 f}$, a typical element of which will be denoted by $\alpha=\left(\lambda_{i}, \Delta_{j}, g_{k}\right)$ (with $\alpha_{1}=\lambda_{i}, \alpha_{2}=\Delta_{j}, \alpha_{3}=g_{k}$), and mappings

$$
s: \Lambda \times \mathcal{W} \times G_{0 f} \rightarrow N
$$

it being understood that s always has finite support, i.e., $s(\alpha) \neq$ 0 for only a finite number of α 's. Using these notations we next define certain monomials

$$
V_{\alpha, s}=\left\{\begin{array}{lc}
\left(\lambda_{i}^{\triangle_{j} g_{k}}\right)^{s(\alpha)}, & \text { in cases (1a) and (1b) }, \\
\prod_{l}\left(\lambda_{i}^{g_{k} \theta^{l}}\right)^{s_{l}(\alpha)}, & s(\alpha)=\sum_{l} s_{l}(\alpha) p^{l}, 0 \leq s_{l}(\alpha)<p, \\
\text { in case (2a) } \\
\lambda_{i}^{s(\alpha)}, & 0 \leq s(\alpha)<p^{n} \text { in case (2b) } \\
& \left(|C|=p^{n}\right) .
\end{array}\right.
$$

We then set

$$
\begin{equation*}
V_{s}=\prod_{\alpha} V_{\alpha, s} \tag{7.27}
\end{equation*}
$$

noting that these are finite products in view of s having finite support. We make the important observation that for each $\alpha=$ $\left(\lambda_{i}, \Delta_{j}, g_{k}\right)$ involved in V_{s} the F-deg of $\lambda_{i}^{\Delta_{j} g_{k}}$ in V_{s} is precisely $s(\alpha)$. Conversely we have

Lemma 7.6.1 Let M be given by (7.23) and $h_{i j k}=h(\alpha)$ be the F-deg of $\lambda_{i}^{\Delta_{j} g_{k}}$ in M for each $\alpha=\left(\lambda_{i}, \Delta_{j}, g_{k}\right)$. Then $M \equiv$ $V_{s}\left(\bmod I_{2}(C)\right)$ where $s(\alpha)=h(\alpha)$ for all α.

Proof. In cases (1a) and (1b) there is nothing to prove. Case (2a) is a consequence of repeated applications of the observation that, given $m=p+q$ (thus $q<m$)

$$
\left(\lambda^{g \theta^{l}}\right)^{m} \equiv\left(\lambda^{g \theta^{l}}\right)^{p}\left(\lambda^{g \theta^{l}}\right)^{q} \equiv\left(\lambda^{g \theta^{l+1}}\right)\left(\lambda^{g \theta^{l}}\right)^{q} .
$$

If $|C|=p^{n}<\infty$, then $\lambda^{p^{n}}-\lambda \in I_{2}(C)$ and $\lambda^{\theta^{l}}-\lambda^{p^{l}} \in I_{2}(C)$. Hence case (2b) follows from repeated application of the following fact that, given $m=p^{n}+k\left(\right.$ thus $\left.m \equiv k+1\left(\bmod p^{n}-1\right)\right)$

$$
\lambda^{m} \equiv \lambda^{p^{n}} \lambda^{k} \equiv \lambda^{k+1} .
$$

Theorem 7.6.2 The V_{s} 's (as defined in (7.27)) are a C-basis for $C\left[\Lambda^{T_{0}}\right]$ modulo $I_{2}(C)$.

Proof. In cases (1a) and (1b) the result is clear since $I_{2}(C)=0$ and the V_{s}^{\prime} 's coincide with the monomials given in (7.23).

In case (2a) the fact that the V_{s} 's are a C-spanning set modulo $I_{2}(C)$ is given by Lemma 7.6.1. To show that the V_{s} 's are C-independent modulo $I_{2}(C)$ we define a C-linear transformation $\chi: C\left[\Lambda^{T_{0}}\right] \rightarrow C\left[\Lambda^{T_{0}}\right]$ as follows. For each monomial M in (7.23) we map M to that V_{s} in (7.27) such that for each $\lambda^{g_{k}}$ the F-deg of $\lambda^{g_{k}}$ in M is the same as F-deg of $\lambda^{g_{k}}$ in V_{s}. Clearly χ acts as the identity on each V_{s}. On the other hand consider an element of the form

$$
\begin{equation*}
M\left[\left(\lambda^{g \theta^{l}}\right)^{p}-\lambda^{g \theta^{l+1}}\right]=M\left(\lambda^{g \theta^{l}}\right)^{p}-M \lambda^{g \theta^{l+1}} \tag{7.28}
\end{equation*}
$$

where M is as in (7.23). Evidently the F-deg of $\lambda_{i}^{g_{k}}$ in each summand of (7.28) is the same and so χ maps (7.28) to 0 , whence χ maps $I_{2}(C)$ to 0 . If $\sum c_{s} V_{s} \in I_{2}(C)$ then

$$
0=\chi\left(\sum c_{s} V_{s}\right)=\sum c_{s} \chi\left(V_{s}\right)
$$

and so $c_{s}=$ for all s.
In case (2b) we conclude from Lemma 7.6 .1 that the V_{s} 's are a C-spanning set of $C\left[\Lambda^{T_{0}}\right]$ modulo $I_{2}(C)$. Next we consider the C-linear transformation χ of $C\left[\Lambda^{T_{0}}\right]$ defined as in the case (2a). For any element of the form

$$
\begin{equation*}
M\left[\lambda^{\theta^{l}}-\lambda^{p^{l}}\right]=M \lambda^{\theta^{l}}-M \lambda^{p^{l}} \tag{7.29}
\end{equation*}
$$

where M is as in (7.23), the F-deg of λ_{i} in each summand of (7.29) is the same and so χ maps (7.29) to 0 . Hence χ maps $I_{2}(C)$ to 0 . Since χ acts as the identity on each V_{s}, we infer that the V_{s} 's are linearly independent modulo $I_{2}(C)$. The theorem is thereby proved.

The C-span of the V_{s}^{\prime} 's in Theorem 7.6 .2 will be denoted by $P(C)$ and the elements of $P(C)$ will be called F-reduced . Clearly we have the C-space decomposition

$$
C\left[\Lambda^{T_{0}}\right]=I_{2}(C) \oplus P(C)
$$

where $I_{2}(C)$ is the set of F-trivial T-identities of C. Thus our stated goal of showing that any T-identity of C is F-trivial is equivalent to showing any F-reduced T-identity of C is 0 .

The analysis of case (1b) will prove to the most complicated and we first require a digression into the theory of algebraically dependent homomorphisms of a field into itself (the need for this is brought about by the fact that in case (1b) the map $c \mapsto c^{p}$ is a homomorphism but not an automorphism).

Let C be a field, and let $C[\Lambda]$ be the free commutative algebra in Λ over C. We note that $C[\Lambda]$ is a subalgebra of $C\left[\Lambda^{T_{0}}\right]$ and
we may on occasion use this inclusion to connect results in $C[\Lambda]$ with our usual general setting. For example if C is a finite field of order p^{m} a polynomial $\phi\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) \in C[\Lambda]$ is commonly called "reduced" if $\operatorname{deg}_{\lambda_{i}}(\phi)<p^{m}$ for each i or, equivalently, ϕ is an F-reduced element of $C\left[\Lambda^{T_{0}}\right]$. We begin with the well-known

Remark 7.6.3 Let $\phi=\phi\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) \in C[\Lambda]$ (and assumed to be "reduced" if C is finite) such that $\phi\left(c_{1}, c_{2}, \ldots, c_{n}\right)=0$ for all $c_{1}, c_{2}, \ldots, c_{n} \in C$. Then $\phi=0$.

A polynomial $\phi\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ is said to be additive if

$$
\phi\left(\lambda_{1}+\mu_{1}, \ldots, \lambda_{n}+\mu_{n}\right)=\phi\left(\lambda_{1}, \ldots, \lambda_{n}\right)+\phi\left(\mu_{1}, \ldots, \mu_{n}\right),
$$

where $\lambda_{1}, \ldots, \lambda_{n}, \mu_{1}, \ldots, \mu_{n}$ are distinct indeterminates in Λ. Next let A be an additive abelian group and let $h_{1}, h_{2}, \ldots, h_{n}$ be additive mappings of A into the additive group of C (we are primarily interested in the case when $A=C$). Then $h_{1}, h_{2}, \ldots, h_{n}$ are said to be algebraically dependent via ϕ over C if $0 \neq$ $\phi\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) \in C[\Lambda]$ is such that

$$
\phi\left(a^{h_{1}}, a^{h_{2}}, \ldots, a^{h_{n}}\right)=0 \quad \text { for all } \quad a \in A
$$

Theorem 7.6.4 (Artin) If $h_{1}, h_{2}, \ldots, h_{n}: A \rightarrow C$ are algebraically dependent via $\phi\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ over C then there exists a nonzero additive polynomial $\psi\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ such that

$$
\psi\left(a^{h_{1}}, a^{h_{2}}, \ldots, a^{h_{n}}\right)=0 \quad \text { for all } \quad a \in A
$$

and $\operatorname{deg}_{\lambda_{i}}(\psi) \leq \operatorname{deg}_{\lambda_{i}}(\phi)$ for each i.
Proof. For convenience we shall write $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$, $\mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right), \widehat{a}=\left(a^{h_{1}}, a^{h_{2}}, \ldots, a^{h_{n}}\right), \vec{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$. Let $\psi(\lambda)$ be a nonzero polynomial of smallest total degree $\operatorname{deg}_{\lambda} \psi$ for which $\operatorname{deg}_{\lambda_{i}}(\psi) \leq \operatorname{deg}_{\lambda_{i}}(\phi)$ for each i and for which $\psi(\widehat{a})=0$ for all $a \in A$. We claim that $\psi(\lambda)$ is the desired polynomial.

Indeed, suppose to the contrary that ψ is not additive. Choosing new variables $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$ we are thus assuming that

$$
\chi(\lambda, \mu)=\psi(\lambda+\mu)-\psi(\lambda)-\psi(\mu) \neq 0
$$

It is easy to see that

$$
\operatorname{deg}(\chi) \leq \operatorname{deg}(\psi), \operatorname{deg}_{\lambda_{i}}(\chi) \leq \operatorname{deg}_{\lambda_{i}}(\psi), \operatorname{deg}_{\mu_{i}}(\chi) \leq \operatorname{deg}_{\lambda_{i}}(\psi)
$$

and $\chi(\widehat{a}, \widehat{b})=0$ for all $a, b \in A$. Suppose first that $\chi(\vec{c}, \widehat{b})=0$ for all $c_{1}, c_{2}, \ldots, c_{\epsilon} C^{n}, b \in A$. By Remark 7.6 .3 we may pick $\vec{c}, \vec{d} \in$ C^{n} such that $\chi(\vec{c}, \vec{d}) \neq 0$, since $\chi \neq 0$. Setting $\sigma(\mu)=\psi(\vec{c}, \mu)$ we note that $\sigma(\mu) \neq 0, \sigma(\widehat{b})=0$ for all $b \in A$,

$$
\left.\operatorname{deg}(\sigma) \leq \operatorname{deg}_{(} \mu\right)(\chi)<\operatorname{deg}(\phi), \operatorname{deg}_{\mu_{\mathrm{i}}}(\sigma) \leq \operatorname{deg}_{\mu_{\mathrm{i}}}(\psi)
$$

and thus we have a contradiction to the choice of ψ. Therefore we may suppose there exist $\vec{c} \in C^{n}, b \in A$ such that $\chi(\vec{c}, \widehat{b}) \neq 0$. Setting $\tau(\lambda)=\chi(\lambda, \widehat{b})$, we see that $\tau(\lambda) \neq 0, \tau(\widehat{a})=0$ for all $a \in A$,

$$
\operatorname{deg}(\tau) \leq \operatorname{deg}(\lambda)(\chi)<\operatorname{deg}(\phi), \operatorname{deg}_{\lambda_{\mathbf{i}}}(\tau) \leq \operatorname{deg}_{\lambda_{i}}(\psi)
$$

and again we have a contradiction to the choice of ψ.
We next characterize additive polynomials.
Theorem 7.6.5 A polynomial $\phi=\phi\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) \in C[\Lambda]$ is additive if and only if it has the form $\sum a_{i} \lambda_{i}(\operatorname{char}(C)=0)$ or $\sum_{i=1}^{n} \sum_{j \geq 0} a_{i j} \lambda_{i}^{p^{j}} \quad(\operatorname{char}(C)=p)$.

Proof. Clearly the indicated polynomials are additive. Conversely, setting $\phi_{i}\left(\lambda_{i}\right)=\phi\left(0, \ldots, 0, \lambda_{i}, 0, \ldots, 0\right)$, we see by the additivity of ϕ that $\phi\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)=\sum_{i=1}^{n} \phi_{i}\left(\lambda_{i}\right)$, and so we may assume without loss of generality that $\phi=\sum a_{j} \lambda^{j}$ is a polynomial in one variable. It is immediate from additivity that $a_{0}=0$. Suppose that $a_{r} \neq 0$ for some $r>0$. From
$\phi(\lambda+\mu)-\phi(\lambda)-\phi(\mu)=0$ (μ a new indeterminate) it follows that $a_{r}\left[(\lambda+\mu)^{r}-\lambda^{r}-\mu^{r}\right]=0$ and in particular $r a_{r} \lambda^{r-1} \mu=0$. If $\operatorname{char}(C)=0$ then we have the immediate contradiction $a_{r}=0$ and we are done. If $\operatorname{char}(C)=p$, then p divides r and we may write $r=s p^{k}, k \geq 1$ and $(p, s)=1$. Then

$$
\begin{aligned}
0 & =(\lambda+\mu)^{r}-\lambda^{r}-\mu^{r}=(\lambda+\mu)^{p^{k} s}-\lambda^{p^{k} s}-\mu^{p^{k} s} \\
& =\left(\lambda^{p^{k}}+\mu^{p^{k}}\right)^{s}-\left(\lambda^{p^{k}}\right)^{s}-\left(\mu^{p^{k}}\right)^{s} .
\end{aligned}
$$

If $s>1$ it follows that $s\left(\lambda^{p^{k}}\right)^{s-1} \mu^{p^{k}}=0$, a contradiction since $(p, s)=1$. Therefore $r=p^{k}$ and the proof of the theorem is complete.

Functions $h_{1}, h_{2}, \ldots, h_{n}$ of a set S into C are said to be linearly dependent over C if there exists $0 \neq \sum_{i=1}^{n} c_{i} \lambda_{i}$ such that $\sum_{i=1}^{n} c_{i} s^{h_{i}}=0$ for all $s \in S$. A useful condition for linear independence is given in

Theorem 7.6.6 (Artin) If h_{1}, \ldots, h_{n} are distinct homomorphisms of a group G into the multiplicative group of C, then they are linearly independent over C.

Proof. Suppose $h_{1}, h_{2}, \ldots, h_{n}$ are linearly dependent. By suitable reordering we may assume that $h_{1}, h_{2}, \ldots, h_{m}$ is a minimal dependent subset of $\left\{h_{1}, \ldots, h_{n}\right\}$, satisfying, say, $\sum_{i=1}^{m} c_{i} \lambda_{i}$. Clearly $m>1$. We pick $a \in G$ such that $a^{h_{1}} \neq a^{h_{2}}$, and let $g \in G$. On the one hand $0=\sum c_{i}(a g)^{h_{i}}=\sum c_{i} a^{h_{i}} g^{h_{i}}$ whereas on the other hand $0=a^{h_{1}} \sum c_{i} g^{h_{i}}=\sum c_{i} a^{h_{1}} g^{h_{i}}$. Subtracting second equation from the first yields $\sum_{i=2}^{m} c_{i}\left(a^{h_{i}}-a^{h_{1}}\right) g^{h_{i}}=0$ contradicting the minimality of m since $c_{2}\left(a^{h_{2}}-a^{h_{1}}\right) \neq 0$.

Our digression is now complete and we return to the task of showing that F-reduced T-identities of C are 0 .

Lemma 7.6.7 Fix $\lambda \in \Lambda$ and let ϕ be an F-reduced T-identity of C involving only λ. Then $\phi=0$.

Proof. We suppose $\phi \neq 0$ and write ϕ in the standard form

$$
\sum_{s} c_{s} V_{s}, \quad V_{s}=\prod_{\alpha} V_{\alpha, s}, \quad \alpha_{1}=\lambda
$$

according to (7.27). In case (2b) (C finite) $\phi=0$ by Remark 7.6.3 since ϕ is a reduced polynomial in λ. In case (1a) we choose new indeterminates λ_{α} for each α involved in ϕ (finite in number), set $h_{\alpha}=\Delta_{j} g_{k} \in E n d_{\Phi}(C)$, set

$$
\sigma=\sum_{s} c_{s}\left(\prod_{\alpha} \lambda_{\alpha}^{s(\alpha)}\right)
$$

and note that the h_{α} 's are algebraically dependent via σ (here $\alpha=\left(\lambda, \Delta_{j}, g_{k}\right)$). In case (2a) for each (α, l) involved in ϕ (finite in number) we choose a new indeterminate $\lambda_{\alpha, l}$, set $h_{\alpha, l}=g_{k} \theta^{l} \in$ $E n d_{\Phi}(C)$, set

$$
\sigma=\sum_{s} c_{s}\left(\prod_{\alpha, l} \lambda_{\alpha, s}^{s_{s}(\alpha)}\right)
$$

and note that the $h_{\alpha, l}$'s are algebraically dependent via σ. By Theorem 7.6.4 and Theorem 7.6.5 the h_{α} 's are linearly dependent over C and also the $h_{\alpha, l}$'s are linearly dependent over C (since in case (2a) we have $s_{l}(\alpha)<p$). Translated back to our usual setting, this simply says that there exists a nonzero reduced linear T-identity in λ satisfied by C. This is contradictory to Theorem 7.5.6 and so the proof is complete in cases (1a), (2a) and (2b).

For the remainder of the proof we assume case (1b) and write in detail

$$
\phi=\sum_{s} c_{s} \prod_{j, k}\left(\lambda^{\Delta_{j} g_{k}}\right)^{s_{j k}} .
$$

This in turn may be further explicitly written as

$$
\phi=\sum_{s} c_{s} \prod_{j, k, l}\left[\left(\lambda^{\Delta_{j} g_{k}}\right)^{p^{p}}\right]^{s_{j k l}}, 0 \leq s_{j k l}<p
$$

where $s_{j k}=\sum_{l \geq 0} s_{j k l} p^{l}$. Setting $\beta=(j, k, l)$ we let $\left\{\lambda_{\beta}\right\}$ be distinct indeterminates in Λ, and for each β let h_{β} denote that additive $\operatorname{map} \Delta_{j} g_{k} \sigma_{l}$, where σ_{l} stands for the homomorphism $c \mapsto c^{p^{\prime}}$. Now set $\psi=\sum_{s} c_{s} \Pi_{\beta} \lambda_{\beta}^{s_{\beta}}$, where $s_{\beta}=s_{j k l}<p$ and note that $\psi\left(c^{h_{\beta}}\right)=0$ for all $c \in C$, i.e., the maps h_{β} are algebraically dependent. By Theorem 7.6.4 and Theorem 7.6.5 there is a nonzero linear element $\sum_{\beta} c_{\beta} \lambda_{\beta}$ (since $s_{\beta}<p$) such that

$$
\chi=\sum_{\beta} c_{\beta}\left(\lambda^{\Delta_{j} g_{k}}\right)^{p^{l}}
$$

is a nonzero T-identity on C. We choose $\mu \neq \lambda \in \Lambda$ and make the substitution $\lambda \mapsto \lambda \mu^{p}$ in χ. From $\left(\mu^{p}\right)^{\delta}=p \mu^{p-1} \mu^{\delta}=0$ it is clear that $\left(\mu^{p}\right)^{\Delta_{j}}=0$, whence we see that

$$
\chi\left(\lambda \mu^{p}\right)=\sum_{\beta} c_{\beta}\left[\left(\lambda \mu^{p}\right)^{\Delta_{j} g_{k}}\right]^{p^{l}}=\sum_{\beta} c_{\beta}\left(\lambda^{\Delta_{j} g_{k}}\right)^{p^{l}}\left(\mu^{g_{k}}\right)^{p^{l+1}}
$$

$\chi\left(\lambda \mu^{p}\right)$ of course remains a T-identity on C and so, recalling the notation $\sigma_{l}: c \mapsto c^{p^{l}}$, we have

$$
\sum_{\beta} c_{\beta}\left(c^{\Delta_{j} g_{k}}\right)^{p^{l}} r^{g_{k} \sigma_{l+1}}=0 \quad \text { for all } \quad c, r \in C
$$

We claim that the homomorphisms $\left\{g_{k} \sigma_{l+1}\right\}$ are distinct. Indeed, suppose $g_{k_{1}} \sigma_{l_{1}+1}=g_{k_{2}} \sigma_{l_{2}+1}$, with $l_{1} \geq l_{2}$. Then $\sigma_{l_{1}+1}=$ $g_{k_{1}}^{-1} g_{k_{2}} \sigma_{l_{2}+1}$, i.e.,

$$
c^{p^{l_{1}+1}}=\left(c^{g_{k_{1}}^{-1} g_{k_{2}}}\right)^{p^{l_{2}+1}}
$$

whence $c^{p^{m}}=c^{g_{k_{1}}^{-1} g_{k_{2}}}, m=l_{1}-l_{2} \geq 0$. Thus $g_{k_{1}}^{-1} g_{k_{2}} \in G_{f}=1$ and so $k_{1}=k_{2}$ and accordingly $l_{1}=l_{2}$. Therefore by Theorem 7.6.6 we see that for each $k, l \sum_{j} c_{j}\left(c^{\Delta_{j} g_{k}}\right)^{p^{l}}=0$ for all $c \in C$, where $c_{j}=c_{\beta}, \beta=(j, k, l)$, i.e.,

$$
\begin{equation*}
\sum_{j} c_{j}\left(\lambda^{\Delta_{j} g_{k}}\right)^{p^{t}} \tag{7.30}
\end{equation*}
$$

is a nonzero T-identity. Applying g_{k}^{-1} to (7.30) we see that

$$
\begin{equation*}
\sum_{j} c_{j}^{g_{k}^{-1}}\left(\lambda^{\Delta_{j}}\right)^{p^{l}} \tag{7.31}
\end{equation*}
$$

is a nonzero T-identity. Now we let $L=\left\{c^{p^{t}} \mid c \in C\right\}$, choose an L-basis $\left\{v_{i}\right\}$ of C, and write $c_{j}^{g_{k}^{-1}}=\sum_{i} c_{i j}^{p^{l}} v_{i}$. Then, substituting $\lambda \mapsto c$ in (7.31), we have

$$
\sum_{i}\left(\sum_{j} c_{i j}^{p^{p}}\left(c^{\Delta_{j}}\right)^{p^{p}}\right) v_{i}=0
$$

whence for each $i \sum_{j} c_{i j}^{p^{l}}\left(c^{\Delta_{j}}\right)^{p^{l}}=0$, and hence $\sum_{j} c_{i j} c^{\Delta_{j}}=0$. Thus $\sum_{j} c_{i j} \lambda^{\Delta_{j}}=0$ is a nonzero linear T-identity, a contradiction to Theorem 7.5.6, and the proof of the lemma is complete.

We are ready to show that for a field C the only T-identities are F-trivial.

Theorem 7.6.8 If ϕ is an F-reduced T-identity on a field C, then $\phi=0$. In other words, every T-identity is F-trivial.

Proof. We suppose $\phi \neq 0$. Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be the indeterminates involved in ϕ. We proceed by induction on n. The case $n=1$ is given by Lemma 7.6.7. We may write ϕ in the form $\phi=$ $\sum_{s_{1}} \Psi_{s_{1}} V_{s_{1}}$, where $V_{s_{1}}=\prod_{\alpha_{1}=\lambda_{1}} V_{\alpha, s}$ and $\Psi_{s_{1}}$ is an F-reduced element in $\lambda_{2}, \lambda_{3}, \ldots, \lambda_{n}$. Taking into account the induction assumption, we conclude that it is enough to prove that $\Psi_{s_{1}}$ is a T-identity of C. If not there is a T-substitution $\lambda_{i} \mapsto r_{i}, r_{i} \in C$, $i=2,3, \ldots, n$ such that for some $s_{1} \Psi_{s_{1}}\left(r_{2}, r_{3}, \ldots, r_{n}\right) \neq 0$. We set $c_{s_{1}}=\Psi_{s_{1}}\left(r_{2}, r_{3}, \ldots, r_{n}\right)$ and note that $\sum c_{s_{1}} \Psi_{s_{1}}$ is a nonzero F-reduced T-identity of C, a contradiction to Lemma 7.6.7. Thus $\Psi_{s_{1}}=0$ and so $\phi=\sum_{s_{1}} \Psi_{s_{1}} V_{s_{1}}=0$, a contradiction. The proof of the theorem is thereby complete.

We close this section with the following well-known criteria of linear independence of functions and its corollary.

Lemma 7.6.9 Functions $h_{1}, h_{2}, \ldots, h_{n}$ of a set S into C are linearly independent if and only if there exist $a_{1}, a_{2}, \ldots, a_{n} \in S$ such that $\operatorname{det}\left(h_{i}\left(a_{j}\right)\right) \neq 0$.

Proof. The "if" part is almost immediate. Indeed, suppose $\sum_{i=1}^{n} c_{i} h_{i}=0, c_{i} \in C$. Since $\operatorname{det}\left(h_{i}\left(a_{j}\right)\right) \neq 0$, the n equations $\sum_{i=1}^{n} c_{i} h_{i}\left(a_{j}\right)=0, j=1,2, \ldots, n$ have only the trivial solution for the c_{i} 's.

Suppose that $h_{1}, h_{2}, \ldots, h_{n}$ are linearly independent. We proceed by induction on n. The case $n=1$ is obvious. For the $n \times n$ matrix $A=\left(h_{i}\left(a_{j}\right)\right)$ we denote by $A_{i j}$ the i, j-cofactor. By the induction assumption there exist $a_{1}, a_{2}, \ldots, a_{n-1} \in S$ such that $A_{n, n}=\operatorname{det}\left(h_{i}\left(a_{j}\right)\right)_{i, j=1}^{n-1} \neq 0$. Suppose that $\operatorname{det}\left(h_{i}\left(a_{j}\right)\right)_{i, j=1}^{n}=$ 0 for all $a_{n} \in S$. Then expanding we obtain $\sum_{i=1}^{n} A_{i, n} h_{i}\left(a_{n}\right)=0$ and so $\sum_{i=1}^{n} A_{i, n} h_{i}(t)=0$ in $t \in S$ which means that h_{1}, \ldots, h_{n} are linearly dependent, a contradiction.

Corollary 7.6.10 Let $\phi_{1}, \phi_{2}, \ldots, \phi_{m}$ be F-reduced elements of $C\left[\Lambda^{T_{0}}\right]$ involving the indeterminates $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}$. Then ϕ_{i}, $1 \leq i \leq m$, are C-independent if and only if there exist m substitutions $a^{(j)}=\left(a_{j 1}, a_{j 2}, \ldots, a_{j m}\right) \in C^{m}$ such that $\operatorname{det}\left(\phi_{i}\left(a^{(j)}\right)\right) \neq$ 0.

7.7 The Structure of T-identities (General Case)

One of the main results proved so far in this chapter (Theorem 7.5.8) states that if R is a prime ring and ϕ is a nonzero reduced T-identity on a nonzero ideal I of R, then R is $G P I$. This result will be used in the present section, in which our aim is to show that such a ϕ above enjoys two very strong properties:
(a) (very roughly stated) the variables involved in ϕ may be partially "freed";
(b) ϕ is a T-identity on $Q=Q_{s}(R)$.

We mention that if $\phi \in \mathcal{E}^{*}$ (reduced with no antiautomorphisms involved) and $\operatorname{char}(R)=0$ then nothing further need be said - Theorem 7.5.9 says that the variables may be completely "freed" and ϕ is a GPI on Q. Thus this section is of interest only if $\operatorname{char}(R)=p$ or antiautomorphisms are involved.

Whereas the meaning of (b) is quite clear we need to extend the notion of Frobenius automorphism defined in the preceding section for fields to prime rings in order to clarify (a). To this end let $g \in G=G(R)$, the group of automorphisms and antiautomorphisms of the prime ring R, and let \hat{g} be the restriction of g to C. We say that g is a Frobenius element if \hat{g} is a Frobenius automorphism of C (as defined in section 7.6), and we let G_{f} denote the set of all Frobenius elements of G. We leave it as a routine exercise for the reader to show that $G_{i} \subseteq G_{f} \subseteq G$. We now fix (for the remainder of this section) a set $G_{0 f}$ of representatives of G modulo G_{f} and a set $G_{f i}$ of representatives of G_{f} modulo G_{i}. We may then set $G_{0}=G_{0 f} G_{f i}$ and therefore take $T_{0}=T_{0}(R)$ to be the set

$$
\left\{\Delta g f \mid \Delta \in \mathcal{W}_{0}, g \in G_{0 f}, f \in G_{f i}\right\}
$$

Given a C-basis \mathcal{A} of Q we know that a typical C-basis monomial M in $Q_{C}<X^{T_{0}}>$ may now be written

$$
\begin{equation*}
M=a_{0} x_{i_{1}}^{\Delta_{j_{1}} g_{k_{1}} f_{l_{1}}} a_{1} \ldots x_{i_{n}}^{\Delta_{j_{n}} g_{k_{n}} f_{l_{n}}} a_{n} \tag{7.32}
\end{equation*}
$$

where

$$
a_{i} \in \mathcal{A}, x_{i_{q}} \in X, \Delta_{j_{q}} \in \mathcal{W}_{0}, g_{k_{q}} \in G_{0 f}, f_{l_{q}} \in G_{f i}
$$

An arbitrary $\phi \in Q_{C}<X^{T_{0}}>$ can thus be written

$$
\begin{equation*}
\phi=\sum c_{M} M, c_{M} \in C \tag{7.33}
\end{equation*}
$$

where M is of the form (7.32). To remind us of the variables involved in ϕ we will sometimes write $\phi=\phi\left(x_{i}^{\Delta j g_{k} f_{l}}\right)$.

We are now in a position to accurately explain property (a) stated at the beginning of this section. Let $\left\{y_{i j k}\right\}$ be a set of distinct indeterminates of X in one-one correspondence with the variables $x^{\Delta j g_{k}}$, and let $\phi=\phi\left(x_{i}^{\Delta j g_{k} f_{l}}\right)$ be a nonzero reduced T-identity on some nonzero ideal I of R. Then ((a)) may be restated as
(a) ${ }^{\prime} \phi\left(y_{i j k}^{f_{j}}\right)$ is a T-identity on some nonzero ideal J of R.

If we wish to focus on a particular x in the monomial M in (7.32) it is convenient to rewrite (7.32) as

$$
\begin{equation*}
M=P_{0} x^{\Delta_{j_{1}} g_{k_{1}} f_{l_{1}}} P_{1} \ldots P_{n-1} x^{\Delta_{j_{n}} g_{k_{n}} f_{l_{n}}} P_{n} \tag{7.34}
\end{equation*}
$$

where $P_{0}, P_{1}, \ldots, P_{n}$ are monomials of the form (7.32) not involving x. In turn if we wish to concentrate on a particular triple x, Δ, g in (7.34) we shall write

$$
\begin{equation*}
M=Q_{0} x^{\Delta g f_{1}} Q_{1} \ldots Q_{n-1} x^{\Delta g f_{n}} Q_{n} \tag{7.35}
\end{equation*}
$$

where $Q_{0}, Q_{1}, \ldots, Q_{n}$ are monomials of the form (7.32) whose variables are not $x^{\Delta g f_{l}}$ for any l.

At this point we make an observation relating $T_{0}(R)$ and $T_{0}(C)$ which will be used in the sequel.

Remark 7.7.1 If R is GPI then $T_{0}(C)$ may be chosen so that (i) $\mathcal{W}_{0}(R) \subseteq \mathcal{W}_{0}(C)$ and (ii) $G_{0 f}(R) \subseteq G_{0 f}(C)$.

Proof. Since R is a GPI we know by Theorem 4.5.3 that if $\delta \in D(R)$ is such that δ vanishes on C, i.e. $\widehat{\delta}=0$, then $\delta \in D_{i}(R)$. In this situation we then conclude that a basis $\mathcal{B}_{0}(C)$ of $\operatorname{Der}(C)$ may be chosen so that $\mathcal{B}_{0}(R)$ maps injectively into $\mathcal{B}_{0}(C)$. It follows (from the $P B W$ Theorem) that $\mathcal{W}_{0}(R)$ maps injectively into $\mathcal{W}_{0}(C)$, thus proving (i). The proof of (ii) follows easily from the definition of Frobenius elements.

Now assume that R is GPI and consider the extended setting

$$
\mathcal{S}_{\mathbf{1}}(R)=\mathcal{S}_{0}(C) \otimes_{C} \mathcal{S}(R)
$$

together with the C-ring map $\gamma: T(R) \rightarrow \operatorname{End}_{\Phi}\left(\mathcal{S}_{1}(R)\right)$ given by Remark 7.3.6. Given $x, y \in X, \lambda \in \Lambda$ we now make the T substitution $x \mapsto x+\lambda y$ of $\mathcal{S}(R)$ into $\mathcal{S}_{1}(R)$ relatively to γ (Here, to simplify the notation, we are writing $x+\lambda y$ for $1 \otimes x+\lambda \otimes y)$. For any $\Delta_{j}=\delta_{1} \delta_{2} \ldots \delta_{q} \in \mathcal{W}_{0}(R), g_{k} \in G_{0 f}, f_{l} \in G_{f i}$, we may use the Leibnitz formulas to obtain

$$
\begin{equation*}
(x+\lambda y)^{\widetilde{\Delta_{j}} \tilde{g}_{k} \widetilde{f}_{l}}=\sum_{\Delta_{j}^{\prime}} \lambda^{\Delta_{j}^{\prime} g_{k} \widehat{f}_{i}} y^{\Delta_{j}^{\prime \prime} g_{k} f_{l}} \tag{7.36}
\end{equation*}
$$

where the summation is as described in Remark 1.1.1 and

$$
\begin{aligned}
& \Delta_{j}, \Delta_{j}^{\prime}, \Delta_{j}^{\prime \prime} \in \mathcal{W}_{0}(R) \subseteq \mathcal{W}_{0}(C), \quad g_{k} \in G_{0 f}(R) \subseteq G_{0 f}(C), \\
& \widetilde{\Delta_{j}}=\gamma\left(\Delta_{j}\right), \quad \widetilde{g_{k}}=\gamma\left(g_{k}\right), \quad \tilde{f}_{l}=\gamma\left(f_{l}\right) .
\end{aligned}
$$

Notice that the slight abuse of notation in (7.36) is justified in view of our tacit use of Remark 7.7.1. However we definitely want to distinguish between $f_{l} \in G_{f i}$ and $\widehat{f}_{l} \in G_{f}(C)$, e.g. it might well be the case that the \widehat{f}_{l} are all equal to 1 .

Next let $\left\{V_{s}\right\}$ be the C-basis of $C<\Lambda^{T_{0}(C)}>$ modulo $I_{2}(C)$ as given by (7.27) and Theorem 7.6.2. We fix a nonzero ideal I of R. Then any $\psi \in \mathcal{S}_{1}$ can be written uniquely as

$$
\begin{equation*}
\psi=\sum_{s} V_{s} \otimes \phi_{s}+\chi \tag{7.37}
\end{equation*}
$$

where $\phi_{s} \in Q_{C}<X^{T_{0}(R)}>$ and $\chi \in \mathcal{S}_{1}$ is sent to 0 (in view of Remark 7.3.7) by every C-algebra map $\lambda_{j} \mapsto c_{j} \in C\left(\lambda_{j} \in \Lambda\right)$, $x_{i} \mapsto r_{i} \in J\left(x_{i} \in X\right)$, with $c_{j} J \subseteq I$ (for a given ψ only a finite number of λ_{i} 's are involved). For future reference we shall call ϕ_{s} the coefficient of V_{s} in (7.37).

Given $x \in X, \Delta \in \mathcal{W}_{0}, g \in G_{0 f}$ we proceed to define the notion of the Frobenius degree (briefly, F-deg) of $x^{\Delta g}$ in any
element ϕ of $Q_{C}<X^{T_{0}(R)}>$. We begin by defining for each $f \in$ $G_{f i}$ according to the cases (1a), (1b),(2a) and (2b) described in section 7.6:

$$
|f|=\left\{\begin{array}{llc}
1 & & \text { in cases (1a) and (1b) } \\
p^{l} & \text { if } & \widehat{f}=\theta^{l}
\end{array} \quad \text { in cases (2a) and (2b) } . ~ \$\right.
$$

Here we recall that \hat{f} (the restriction of f to C) is a Frobenius automorphism of C by the definition of $G_{0 f}$. Note that in case (2a) $|f|$ is not an integer if $l<0$, whereas in case (2b) $|f|$ is an integer since $0 \leq l<m$ where $|C|=p^{m}$. We also remark that in view of Theorem 4.5.3 $D(R)=D_{i}(R)$ (and so $\mathcal{W}_{0}=1$) in cases (2a) and (2b) since $\operatorname{Der}(C)=0$ as was shown in section 7.6.

Regarding a monomial M as written in the form (7.35) we then define the F-deg of $x^{\Delta g}$ in M to be equal to

> 0 if $x^{\Delta g}$ does not appear in M, $\sum_{l=1}^{n}\left|f_{l}\right|=n$ in cases (1a) and (1b),
> $\sum_{l=1}^{n}\left|f_{l}\right|$ in case (2a)
r in case (2b), where $\quad \sum_{l=1}^{n}\left|f_{l}\right|-1=q\left(p^{n}-1\right)+r_{0}$,

$$
0 \leq r_{0}<p^{n}-1, r=r_{0}+1
$$

We remark that in cases (1a) and (1b) the F-deg of $x^{\Delta g}$ in M is just the ordinary degree of the variable $x^{\Delta g}$ in M. In case (2a) we note that the F-deg of x^{g} (since $\Delta=1$) in M need not be an integer (if $l<0$). For $\phi \in Q_{C}<X^{T_{0}}>$ we write $\phi=\sum c_{M} M$ as in (7.33) and define the F-deg of $x^{\Delta g}$ in ϕ to be the maximal F-deg of $x^{\Delta g}$ in all M 's belonging to ϕ.

For induction purposes later on the following partially ordered set will be useful. For fixed $x \in X, g \in G_{0 f}$ any variable of the form $x^{\Delta_{j} g f_{i}}$ will be called an (x, g)-variable. If
$\phi \in Q_{C}<X^{T_{0}}>$, i.e., ϕ is reduced, the largest Δ_{j} appearing in any (x, g)-variable belonging to ϕ will be denoted by $\bar{\Delta}=\bar{\Delta}(\phi ; x ; g)$. (In case no (x, g)-variable belongs to ϕ we have $\bar{\Delta}=1$). If m is a fixed integer, possibly negative, we define $S=S(m ; x ; g)$ to be the set of all reduced elements ϕ whose (x, g)-variables $x^{\Delta_{j} g f_{l}}$ are such that $\left|f_{l}\right| \geq p^{m}$. We partially order S as follows
(i) First compare $\bar{\Delta}(\phi ; x ; g)$,
(ii) If (i) is inconclusive, then compare the F-deg of $x^{\bar{\Delta} g}$ in ϕ. We note that for any $\phi \in S$ the F-deg of $x^{\overline{\Delta g} g}$ in ϕ lies in the set N_{m} of all rational numbers $\left\{\sum_{l \geq m} a_{l} p^{l} \mid a_{l} \geq 0\right\}$. Since both \mathcal{W}_{0} and N_{m} are well ordered sets it follows that S satisfies the minimum condition under the partial ordering just described. We set $N_{-\infty}=\cup_{m \in \mathcal{Z}} N_{m}$.

We now come to a rather technical lemma in which in a special instance of (7.35) we are able to compute the coefficient of one of the V_{s} 's. This will be of crucial importance when we come to establishing property (a).

Lemma 7.7.2 Assume C is infinite and R is $G P I$, fix $x, y \in X$, $\lambda \in \Lambda, g \in G_{0 f}(R), h \in N_{-\infty}$, and let $M \in Q_{C}<T_{0}(R)>$ be a monomial of the form

$$
\begin{equation*}
M=Q_{0} x^{\bar{\Delta} g f_{1}} Q_{1} \ldots Q_{n-1} x^{\bar{\Delta} g f_{n}} Q_{n} \tag{7.39}
\end{equation*}
$$

where (as in (7.35)) the Q_{i} 's do not involve any variable of the form $x^{\bar{\Delta} g f}$ for any f and $\bar{\Delta}=\bar{\Delta}(M ; x ; g)$. Let $M(x+\lambda y)$ be the element of \mathcal{S}_{1} obtained from M by replacing x by $x+\lambda y$ and leaving $x_{i}, x_{i} \neq x$, alone, and let V be the C-basis monomial in $C\left[\Lambda^{T_{0}(C)}\right]$ given by $V=V_{\alpha, s}=V_{s}$, where $\alpha=(\lambda, \bar{\Delta}, g)$ is the sole support of s and $s(\alpha)=h$. Then the coefficient M_{V} of V in the expansion of $M(x+\lambda y)$ in \mathcal{S}_{1} is nonzero if and only if $h=\sum_{l=1}^{n}\left|f_{l}\right|$, in which case

$$
M_{V}=Q_{0}(x) y^{g f_{1}} Q_{1}(x) \ldots Q_{n-1}(x) y^{g f_{n}} Q_{n}(x)
$$

Proof. As a first step we consider any variable $x^{\Delta_{j} g_{k} f_{l}}$ appearing in M, look at the expansion of $(x+\lambda y)^{\widetilde{\Delta_{j}} \tilde{g_{k}} \widetilde{f_{l}}}$ in (7.36), and ask under what circumstances does

$$
\lambda^{\Delta_{j}^{\prime} g_{k} \widehat{\hat{f}_{l}}}=\lambda^{\bar{\Delta} g \theta^{q}} \quad \text { for some } \quad q
$$

Necessarily $g_{k}=g$ and $\Delta_{j}^{\prime}=\bar{\Delta}$. But $\Delta_{j}^{\prime} \leq \Delta_{j}$ and by the maximality of $\bar{\Delta}$ we then have $\Delta_{j}=\bar{\Delta}$. Since all of the variables involved in the Q_{i} 's in (7.39) are distinct from $x^{\bar{\Delta} g f_{l}}$, it follows by completely expanding $(x+\lambda y)$ by means of (7.36) that the one and only one summand in this expansion containing V as a factor is

$$
\begin{aligned}
& Q_{0}(x) \lambda^{\bar{\Delta} g \hat{f}_{1}} y^{g f_{1}} Q_{1}(x) \ldots Q_{n-1}(x) \lambda^{\bar{\Delta} g \hat{f}_{n}} y^{g f_{n}} Q_{n}(x) \\
& =\left(\prod_{l=1}^{n} \lambda^{\bar{\Delta} g \hat{f}_{l}}\right) \otimes Q_{0}(x) y^{g f_{1}} Q_{1}(x) \ldots Q_{n-1}(x) y^{g f_{n}} Q_{n}(x)
\end{aligned}
$$

subject to the condition

$$
\begin{equation*}
V \equiv \prod_{l=1}^{n} \lambda^{\bar{\Delta} g \widehat{f}_{l}}\left(\bmod I_{2}(C)\right) \tag{7.40}
\end{equation*}
$$

But (7.40) is equivalent to $\sum_{l=1}^{n}\left|f_{l}\right|=h$, and the lemma is proved.

The preceding lemma will be used in proving the following lemma, which in turn goes a long way towards establishing property (a).

Lemma 7.7.3 Let C be infinite and let ϕ be a reduced T-identity on a nonzero ideal I of R. For fixed $x \in X, g \in G_{0 f}, \bar{\Delta}=$ $\bar{\Delta}(\phi ; x ; g)$, and $y \in X$ not appearing in ϕ, let τ be the element obtained from ϕ by substituting y^{g} in place of $x^{\overline{\Delta g} g}$ but leaving all other variables $x_{i}^{\Delta j g_{k} f_{l}}$ intact. Then τ is a reduced T-identity on some nonzero ideal J of R.

Proof. We may suppose $\phi \neq 0$ and hence by Theorem 7.5.8 that R is GPI. Suppose to the contrary that τ is not a reduced identity on any $0 \neq J \triangleleft R$ and choose $m \in \mathcal{Z}$ such that for every (x, g)-variable $x^{\triangle j g f_{l}}$ belonging to ϕ we have $\left|f_{l}\right| \geq p^{m}$ (If $G_{f}=1$ we take $m=0$). The subset S_{0} of $S(m ; x ; g)$ consisting of all reduced T-identities ϕ_{0} on some nonzero ideal of R which are no longer T-identities on some nonzero ideal of R when $x^{\bar{\Delta}_{09}}$ is replaced by $y^{g}, \bar{\Delta}_{0}=\bar{\Delta}\left(\phi_{0} ; x ; g\right)$, is therefore nonempty. Hence S_{0} has a minimal member which, without loss of generality, we shall again designate as ϕ (and assume is a T-identity on I). We set $h=F$-deg of $x^{\bar{\Delta} g}$ in $\phi, \bar{\Delta}=\bar{\Delta}(\phi ; x ; g)$ and write

$$
\phi=\sum c_{M} M, c_{M} \in C
$$

where (with (7.33) in mind) M is of the form

$$
M=Q_{0} x^{\bar{\Delta} g f_{1}} Q_{1} \ldots Q_{n-1} x^{\bar{\Delta} g f_{n}} Q_{n}
$$

where in turn the Q_{l} 's are monomials whose variables are distinct from $x^{\overline{\Delta g} g f_{l}}$. In

$$
\mathcal{S}_{1}(R)=C\left[\Lambda^{T_{0}(C)}\right] \otimes_{C} Q_{C}<X^{T_{0}(R)}>
$$

we form the element $\phi(x+\lambda y), \lambda \in \Lambda, y \in X$ distinct from all indeterminates in ϕ, by replacing any variable $x^{\Delta_{j} g_{k} f_{l}}$ by $(x+$ $\lambda y)^{\widetilde{\Delta_{j}} \widetilde{g}_{k} \tilde{f}_{l}}$ as expanded in (7.36) but leaving all variables $x_{i}, x_{i} \neq$ x alone. We may then write

$$
\phi(x+\lambda y)=\sum_{s \in K} V_{s}(\lambda) \otimes \phi_{s}\left(x, x_{1}, x_{2}, \ldots, x_{q}, y\right)+\chi
$$

according to (7.37), where $w=|K|<\infty$. By Corollary 7.6.10 there exists elements $c_{t} \in C, t \in K$, such that the $w \times w$ matrix $\left(V_{s}\left(c_{t}\right)\right)_{s, t \in K}$ is nonsingular. We may choose a nonzero ideal $J \subseteq I$ such that $c_{t} J \subseteq I$ for $t \in K$. Hence $\phi(x+\lambda y)$ vanishes
under any substitution in which λ is mapped to c_{t} and x, x_{i}, y are mapped arbitrarily into J. Now consider the w equations

$$
\sum_{s \in K} V_{s}\left(c_{t}\right) \phi_{s}\left(r, r_{1}, \ldots, r_{q}, a\right)=0, \quad t \in K
$$

formed by sending

$$
\lambda \mapsto c_{t}, x \mapsto r, x_{i} \mapsto r_{i}, y \mapsto a, r, r_{i}, a \in J .
$$

Since $\left(V_{s}\left(c_{t}\right)\right)$ is nonsingular, each $\phi_{s}\left(r, r_{1}, \ldots, r_{q}, a\right)=0$, i.e., each $\phi_{s}\left(x, x_{1}, \ldots, x_{q}, y\right)$ is a T-identity on J.

In particular let $V=V_{\alpha, s}=V_{s}$, where $\alpha=(\lambda, \bar{\Delta}, g)$ is the sole support of s and $s(\alpha)=h$ (here we recall that h is the F-deg of $x^{\bar{\Delta} g}$ in ϕ). We have just shown that the coefficient of $\phi_{V}=\phi_{s}$ of V in the expansion of $\phi(x+\lambda y)$ in \mathcal{S}_{1} is also a T-identity on some nonzero ideal $J \subseteq I$ of R. We now proceed to determine ϕ_{V}. Let

$$
M=Q_{0} x^{\bar{\Delta} g f_{1}} Q_{1} \ldots Q_{n-1} x^{\bar{\Delta} g f_{n}} Q_{n}
$$

written in the form (7.35), be any one of the monomials in (7.37) belonging to ϕ. By Lemma 7.7.2 the coefficient M_{V} of V in the expansion of $M(x+\lambda y)$ is nonzero if and only if the F-deg of $x^{\bar{\Delta} g}$ in M is equal to h (the F-deg of $x^{\bar{\Delta} g}$ in ϕ), in which case

$$
M_{V}=Q_{0}(x) y^{g f_{1}} Q_{1}(x) \ldots Q_{n-1}(x) y^{g f_{n}} Q_{n}(x)
$$

Therefore

$$
\phi_{V}=\sum\left\{c_{M} M_{V} \mid F \text {-deg of } x^{\bar{\Delta} g} \text { in } M \text { is equal to } h\right\}
$$

and M_{V} is obtained from M by replacing $x^{\overline{\Delta g} f_{l}}$ by $y^{g f_{l}}, l=$ $1,2, \ldots, n$. Now let ϕ^{\prime} be the element of $\left.Q_{C}<X^{T_{0}}\right\rangle$ obtained from ϕ_{V} by substituting $x^{\bar{\Delta}}$ for y, i.e.

$$
\phi^{\prime}=\sum\left\{c_{M} M \mid F \text {-deg of } x^{\bar{\Delta} g} \text { in } M \text { is equal to } h\right\}
$$

There exists a nonzero ideal $K \subseteq J$ such that $K^{\bar{\Delta}} \subseteq J$ (e.g., take $K=J^{r}$, where $r=|\bar{\Delta}|+1$). Since ϕ_{V} is a T-identity on J it follows that ϕ^{\prime} is a T-identity on K. Clearly $\phi^{\prime} \in S=S(m, x, g)$, but $\phi^{\prime} \notin S_{0}$. Consider the element $\psi=\phi-\phi^{\prime}$. Certainly $\psi \neq 0$, since otherwise we would have the contradiction $\phi \notin S_{0}$. From the definition of ϕ^{\prime} it is clear that $\bar{\Delta}(\psi ; x ; g) \leq \bar{\Delta}(\phi ; x ; g)$, and that the F-deg of $x^{\bar{\Delta} g}$ in ψ is strictly less than h (the F-deg of $x^{\bar{\Delta} g}$ in ϕ). Therefore $\psi<\phi$ (in the ordering in S) and so by the minimality of ϕ in S_{0} we conclude that $\psi \notin S_{0}$, i.e. substitution of $x^{\overline{\Delta g} g}$ by y^{g} in ψ produced a T-identity ρ on some nonzero ideal $L \subseteq K$. The element $\phi_{V}+\rho$ is then the required element, and the proof of the lemma is complete.

We are now in a position to establish property (a)'.
Theorem 7.7.4 Let R be a prime ring, let $\phi\left(x_{i}^{\Delta_{j} g_{k} f_{l}}\right)$ be a reduced T-identity on a nonzero ideal I of R, and let $\left\{y_{i j k}\right\}$ be distinct elements of X in one-one correspondence with the variables $x_{i}^{\Delta_{j} g_{k}}$. Then $\phi\left(y_{i j k}^{f_{l}}\right)$ is a T-identity on some nonzero ideal J of R.

Proof. If $\phi=0$ there is nothing to prove, and so we may assume that $\phi \neq 0$. Then by Theorem 7.5.8 R is GPI and so by Remark 7.7.1 $\mathcal{W}_{0}(R) \subseteq \mathcal{W}_{0}(C)=\mathcal{W}(C)$ and $G_{0 f}(R) \subseteq G_{0 f}(C)$.

Suppose C is finite. Then $\operatorname{Der}(C)=0$ and $G_{0 f}(C)=1$, whence $\mathcal{W}_{0}(R)=1$ and $G_{0 f}(R)=1$. Therefore in this case $\phi=\phi\left(x_{i}^{f_{l}}\right)$ is already of the required form.

We may therefore assume that C is infinite. For fixed $x \in X$, $g \in G_{0 f}$ let

$$
\bar{\Delta}(\phi ; x ; g)=\Delta_{1}>\Delta_{2}>\ldots>\Delta_{t}
$$

be the $\Delta_{j} \in \mathcal{W}_{0}(R)$ involved in the (x, g)-variables of ϕ. Let ψ_{1} be the element obtained from ϕ by by substituting z_{1}^{g} in place of $x^{\Delta_{1 g} g}$ (and leaving all other variables intact) where z_{1} is a new indeterminate. By Lemma 7.7.3 ψ_{1} is a T-identity on some
nonzero ideal $I_{1} \subseteq I$. Since $\Delta_{2}=\bar{\Delta}\left(\psi_{1} ; x ; g\right)<\Delta_{1}$ we see again by Lemma 7.7.3 that ψ_{2}, the element obtained from ψ_{1} by replacing $x^{\Delta_{2} g}$ by z_{2}^{g}, is a T-identity on some nonzero ideal $I_{2} \subseteq I_{1} \subseteq I$. Continuing in this fashion, after t steps we have shown that by substituting z_{j}^{g} for $x^{\Delta_{j g}}$ in $\phi, j=1,2, \ldots, t$, the element $\psi=\psi_{x, g}$ so obtained is a T-identity on some nonzero ideal J of R. Substituting now $y_{i}^{g^{-1}}$ for $z_{i}, i=1,2, \ldots, t$ (and leaving all other variables intact) where $y_{1}, y_{2}, \ldots, y_{t}$ are new variables, we obtain the element $\tau=\tau_{x, g}$ which is a T-identity on $U=J \cap J^{g}$. We note that the element τ is obtained from ϕ by replacing $x^{\Delta_{j g}}$ by y_{j}. Now let

$$
(x, g)=\left(x_{i_{1}}, g_{i_{1}}\right),\left(x_{i_{2}}, g_{i_{2}}\right), \ldots,\left(x_{i_{n}}, g_{i_{n}}\right)
$$

be the (necessarily finite) subset of $X \times G_{0 f}$ such that ϕ has $\left(x_{i_{j}}, g_{i_{j}}\right)$-variables. Repeated application of the preceding argument then completes the proof of the theorem.

We now turn our attention to verifying property (b). In view of Theorem 7.7.4 we shall assume for the remainder of this section that any T-identity ϕ is of the form $\phi=\phi\left(x_{i}^{f_{1}}\right)$. As an initial goal our aim will be to show that any T-identity on $0 \neq I \triangleleft R$ is a T-identity on the socle of $R C$. To do this we first need some further definitions. We shall say that ϕ is additive on an additive subgroup A of Q if for each $x_{i} \in X$ involved in ϕ we have

$$
\phi\left(r_{i}+s_{i}\right)=\phi\left(r_{i}\right)+\phi\left(s_{i}\right) \quad \text { for all } \quad r_{i}, s_{i} \in A .
$$

Next recall the definition of N :

$$
N=\left\{\begin{array}{lll}
\mathcal{N} & \text { if } & G_{f}(C)=1 \\
\mathcal{N}_{p} & \text { if } & G_{f}(C) \neq 1,|C|=\infty
\end{array}\right.
$$

Now let x be an indeterminate involved in ϕ (where ϕ is as shown in (7.33)) and let $h \in N$. The $\binom{x}{h}$-homogeneous part of
ϕ is defined to be

$$
\begin{array}{r}
\mu_{h}=\sum\left\{c_{M} M \mid M \text { belongs to } \phi\right. \text { and } \\
F \text {-deg of } x \text { in } M \text { equals } h\} .
\end{array}
$$

Clearly, for fixed x, ϕ is uniquely representable as a sum of its $\binom{x}{h}$-homogeneous parts:

$$
\phi=\sum \mu_{h}
$$

Likewise if $x_{1}, x_{2}, \ldots, x_{m}$ are all the indeterminates involved in ϕ and $h_{1}, h_{2}, \ldots, h_{m} \in N$, then the $\binom{x_{1}, x_{2}, \ldots, x_{m}}{h_{1}, h_{2}, \ldots, h_{m}}$-homogeneous part of ϕ (which will sometimes be referred to as an F-homogeneous part of ϕ) is defined to be

$$
\mu=\sum\left\{c_{M} M \mid F \text {-deg of } x_{i} \text { in } M \text { equals } h_{i}, 1 \leq i \leq m\right\}
$$

As above ϕ can be written as the direct sum of its F-homogeneous parts.

Lemma 7.7.5 Let C be infinite. Then $\phi\left(x_{i}^{f_{l}}\right)$ is a T-identity on a nonzero ideal of R if and only if each F-homogeneous component of ϕ is a T-identity on a nonzero ideal of R.

Proof. The "if" part being obvious, we assume ϕ is a T identity on I and fix any one of the indeterminates involved in ϕ. Let $h_{1}, h_{2}, \ldots, h_{n}$ be the distinct F-deg's of x in the various monomials belonging to ϕ. We write $\phi=\sum_{i=1}^{n} \tau_{i}$ where $\tau_{i}=\mu_{h_{i}}$ is the $\binom{x}{h_{i}}$-homogeneous part of ϕ. In the extended setting

$$
\mathcal{S}_{1}=\mathcal{S}_{1}(R)=S_{0}(C) \otimes_{C} \mathcal{S}(R)
$$

we choose $\lambda \in \Lambda$ and consider the element $\phi(\lambda x)$ obtained from ϕ by substituting λx for x and leaving $x_{i}, x_{i} \neq x$, alone. From

$$
(\lambda x)^{\gamma(f)}=\lambda^{\widehat{f}} x^{f}
$$

(where γ is given by Remark 7.3.6) it is easy to see that $\tau_{i}(\lambda x)=$ $M_{i}(\lambda) \tau_{i}(x)+\chi_{i}$ (as in (7.37)), where $M_{i}(\lambda)$ is one of the basis monomials (7.23) in which the F-deg of λ is h_{i}. By Lemma 7.6.1

$$
M_{i}(\lambda) \equiv V_{s_{i}}(\lambda)\left(\bmod I_{2}(C)\right)
$$

Therefore

$$
\phi(\lambda x)=\sum_{i=1}^{n} V_{s_{i}}(\lambda) \tau_{i}(x)+\chi
$$

noting that $V_{s_{1}}, V_{s_{2}}, \ldots, V_{s_{n}}$ are C-independent modulo $I_{2}(C)$. By Corollary 7.6.10 there exist $c_{1}, c_{2}, \ldots, c_{n} \in C$ such that the $n \times n$ matrix $\left(V_{s_{i}}\left(c_{j}\right)\right)$ is invertible. Let $0 \neq J \triangleleft R$ be such that $J \subseteq I$ and $J c_{j} \subseteq I, j=1,2, \ldots, n$, and note that the following n equations hold:

$$
0=\phi\left(c_{j} r\right)=\sum_{i=1}^{n} V_{s_{i}}\left(c_{j}\right) \tau_{i}(r), \quad j=1,2, \ldots, n
$$

for all $r \in J$ and $r_{k} \in J, x_{k} \neq x$. From the invertibility of ($V_{s_{i}}\left(c_{j}\right)$) we conclude that $\tau_{i}(r)=0$ for all $r, r_{k} \in J$, i.e., $\tau_{i}=\mu_{h_{i}}$ is a T-identity on J for $i=1,2, \ldots, n$. Repetition of the above process applied to each $\mu_{h_{\mathrm{i}}}$ and using indeterminates involved in ϕ other than x clearly leads ultimately to each F-homogeneous part of ϕ being a T-identity on some nonzero ideal of R.

Lemma 7.7.6 Let C be infinite and let $\phi=\phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be $a T$-identity on $0 \neq I \triangleleft R,\binom{x_{1}, x_{2}, \ldots, x_{n}}{h_{1}, h_{2}, \ldots, h_{n}}$-homogeneous, and additive on IC. Then ϕ is a T-identity on $I C$.

Proof. In $\mathcal{S}_{1}=\mathcal{S}_{0}(C) \otimes_{C} \mathcal{S}(R)$ we select indeterminates $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \in \Lambda$ and, using the homogeneity of ϕ and Theorem 7.6.2 we observe that

$$
\phi\left(\lambda_{1} x_{1}, \lambda_{2} x_{2}, \ldots, \lambda_{n} x_{n}\right)=V \phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)+\chi
$$

where V is that basis monomial in (7.27) whose F-deg in each λ_{i} is h_{i}. It follows that

$$
\begin{equation*}
\phi\left(c_{1} r_{1}, \ldots, c_{n} r_{n}\right)=V\left(c_{1}, \ldots, c_{n}\right) \phi\left(r_{1}, \ldots, r_{n}\right)=0 \tag{7.41}
\end{equation*}
$$

for all $c_{i} \in C, r_{i} \in I$. We now compute, using (7.41) and the additivity of ϕ on $I C$,

$$
\begin{aligned}
& \phi\left(\sum c_{1 j_{1}} r_{1 j_{1}}, \sum c_{2 j_{2}} r_{2 j_{2}}, \ldots, \sum c_{n j_{n}} r_{n j_{n}}\right) \\
& =\sum_{j_{1}, j_{2}, \ldots, j_{n}} \phi\left(c_{1 j_{1}} r_{1 j_{1}}, c_{2 j_{2}} r_{2 j_{2}}, \ldots, c_{n j_{n}} r_{n j_{n}}\right) \\
& =\sum_{j_{1}, j_{2}, \ldots, j_{n}} V\left(c_{1 j_{1}}, c_{2 j_{2}}, \ldots, c_{n j_{n}}\right) \phi\left(r_{1 j_{1}}, r_{2 j_{2}}, \ldots, r_{n j_{n}}\right)=0
\end{aligned}
$$

where $c_{i j_{i}} \in C$ and $r_{i j_{i}} \in I$.
Lemma 7.7.7 If $\phi\left(x_{i}^{f_{l}}\right)$ is a T-identity on $0 \neq I \triangleleft R$, then $\phi\left(x_{i}^{f_{l}}\right)$ is a T-identity on $J C$ for some $0 \neq J \triangleleft R$.

Proof. If C is finite we can pick $0 \neq K \triangleleft R$ such that $K C \subseteq R$. Setting $J=I K$ we have

$$
J C=I(K C) \subseteq I R \subseteq I
$$

and the lemma is proved.
We may therefore assume that C is infinite. The proof is by induction on $h t(\phi)$. Suppose first that $h t(\phi)=0$. Writing $\phi=$ $\sum \mu$ as the sum of its F-homogeneous parts we know that each μ is of height 0 and consequently each μ is additive. Furthermore, by Lemma 7.7.5, there is a nonzero ideal J of R such that each μ is a T-identity on J. Lemma 7.7 .6 then says that each μ, and hence ϕ, is a T-identity on $J C$ and the lemma is proved in this case.

Now suppose the lemma is true for all ϕ of height less than n satisfying the conditions of the lemma. Let ϕ of height n satisfy the conditions of the lemma. Without loss of generality, in view
of Lemma 7.7 .5 , we may assume that ϕ is F-homogeneous. This implies in particular that any x that appears in ϕ must appear in each monomial M involved in ϕ. Now let x be such an x, select a new indeterminate y, and form the element $M(x+y)-M(x)-$ $M(y)$. If $\operatorname{deg}_{x}(M)=1$ then $M(x+y)-M(x)-M(y)=0$. If $\operatorname{deg}_{x}(M)>1$ then $h t(M(x+y)-M(x)-M(y))<h t(M)$. From these considerations it follows that for any x appearing in ϕ either $\phi(x+y)-\phi(x)-\phi(y)=0$ (if $\operatorname{deg}_{x}(\phi)=1$) or (if $\left.\operatorname{deg}_{x}(\phi)>1\right) h t(\phi(x+y)-\phi(x)-\phi(y))<h t(\phi)$. Setting $\psi=\phi(x+y)-\phi(x)-\phi(y)$ we have that either $\psi=0$ (if $\operatorname{deg}_{x}(\phi)=1$) or (if $\left.\operatorname{deg}_{x}(\phi)>1\right) h t(\psi)<h t(\phi)$. By induction the latter possibility implies that ψ is a T-identity on $J C$ for some $0 \neq J \triangleleft R$. In either case we see that ϕ is x-additive on $J C$. Since x was arbitrary it follows that ϕ is additive on $K C$ for some $0 \neq K \triangleleft R$, whence by Lemma 7.7.6 the proof is complete.

In view of Theorem 7.7.4 we are now in a position to establish property (b).
Theorem 7.7.8 Let R be a prime ring and let ϕ be a reduced T-identity on $0 \neq I \triangleleft R$ of the form $\phi=\phi\left(x_{i}^{f_{l}}\right)$. Then ϕ is a T-identity on $Q_{s}(R)$.

Proof. We may assume $\phi \neq 0$, whence by Theorem 7.5.8 R is $G P I$. In this situation we know that $R C$ is primitive with nonzero socle H, acting densely on a vector space V over a division ring D. By Theorem 4.3.8(v) $Q_{s}(R C) \subseteq E n d_{D}(V)$. Since $Q_{s}(R) \subseteq Q_{s}(R C)$ it suffices to show that ϕ is a T-identity on $Q_{s}(R C)$. By Lemma 7.7.7 ϕ is a T-identity on an ideal $J C$ of $R C$ for some $0 \neq J \triangleleft R$ and so in particular ϕ is a T-identity on the socle H. Let \mathcal{A} be a C-basis of $Q_{s}(R)$ and write

$$
\phi=\sum c_{M} M, c_{M} \in C, \operatorname{deg}(\phi)=s
$$

where M is a basis monomial of the form

$$
M=a_{j_{0}} x_{i_{1}}^{f_{1_{1}}} a_{j_{1}} \ldots a_{j_{n-1}} x_{i_{n}}^{f_{l_{n}}} a_{j_{n}}
$$

$$
x_{i} \in X, \quad a_{j} \in \mathcal{A}, \quad f_{l} \in G_{f i} .
$$

Let $\mathcal{A}^{\prime}, X^{\prime}, G_{f i}^{\prime}$ denote respectively the sets (necessarily finite) of all $a_{j} \in \mathcal{A}, x_{i} \in X, f_{l} \in G_{f i}$ appearing in ϕ. We may assume $X^{\prime}=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ and we make an arbitrary but fixed substitution $x_{i} \mapsto q_{i} \in Q_{s}(R C), i=1,2, \ldots, m$. Letting $v \in V$, our task is to show that $v \phi\left(q_{1}, q_{2}, \ldots, q_{m}\right)=0$. To this end consider the D-span V_{0} of all vectors $w \in V$ which are of one of the following two forms

$$
\begin{align*}
w & =v a_{j_{0}} q_{i_{1}}^{f_{1}} a_{j_{1}} \ldots a_{j_{r-1}} q_{i_{r}}^{f_{l_{r}}} a_{j_{r}} \quad \text { or } \\
w & =v a_{j_{0}} q_{i_{1}}^{f_{1}} a_{j_{1}} \ldots a_{j_{r-1}} q_{i_{r}}^{f_{r_{r}}} \tag{7.42}
\end{align*}
$$

where $0 \leq r \leq s, a_{j} \in \mathcal{A}^{\prime}, f_{l} \in G_{f i}^{\prime}, q_{i} \in\left\{q_{1}, q_{2}, \ldots, q_{m}\right\}$. V_{0} is finite dimensional over D and therefore, since H acts densely on V, there exists $b \in H$ such that b is the identity on V_{0}. By Litoff's theorem there exists $e_{0} \in H$ such that $b \in e_{0} H e_{0}$. It follows that e_{0} acts as the identity on V_{0}. Now consider the finite set $L=\left\{e_{0}^{f^{-1}} \mid f \in G_{f i}^{\prime}\right\} \subseteq H$. Using Litoff's theorem again we know there is an idempotent $e \in H$ such that $L \subseteq e H e$. We claim that

$$
e_{0}=e_{0} e^{f}=e^{f} e_{0}, \quad f \in G_{f i}^{\prime} .
$$

Indeed, first assuming f is an automorphism, we have

$$
e^{f} e_{0}=\left(e e_{0}^{f^{-1}}\right)^{f}=\left(e_{0}^{f^{-1}}\right)^{f}=\left(e_{0}^{f^{-1}} e\right)^{f}=e_{0} e^{f}
$$

A similar argument prevails if f is an antiautomorphism. We next claim that if w is of the form (7.42) then $w q^{f}=w(e q e)^{f}$, $f \in G_{i f}^{\prime}, q \in\left\{q_{1}, q_{2}, \ldots, q_{m}\right\}$. Indeed,

$$
\begin{aligned}
w(e q e)^{f} & =w e^{f} q^{f} e^{f}=w e_{0} e^{f} q^{f} e^{f}=w e q^{f} e^{f}=w q^{f} e^{f} \\
& =\left(w q^{f} e_{0}\right) e^{f}=\left(w q^{f}\right) e e^{f}=w q^{f} e=w q^{f} .
\end{aligned}
$$

From repeated use of this claim it follows that

$$
\begin{aligned}
& v a_{j_{0}} q_{i_{1} f_{1}} a_{j_{1}} \ldots a_{j_{n-1}} q_{i_{n}}^{f_{n}} a_{j_{n}} \\
& =v a_{j_{0}}\left(e q_{i_{1}} e\right)^{f_{1}} a_{j_{1}} \ldots a_{j_{n-1}}\left(e q_{i_{n}} e\right)^{f_{n}} a_{j_{n}} .
\end{aligned}
$$

and thus

$$
v \phi\left(q_{1}, q_{2}, \ldots, q_{m}\right)=v \phi\left(e q_{1} e, e q_{2} e, \ldots, e q_{m} e\right)=0
$$

since $e q_{i} e \in H, i=1,2, \ldots, m$. This completes the proof of the theorem.

By combining Theorem 7.7.4 and Theorem 7.7.8 we have
Theorem 7.7.9 Let R be a prime ring, let $\phi=\phi\left(x_{i}^{\Delta_{j} g_{k} f_{i}}\right)$ be a reduced T-identity on some nonzero ideal of R, and let $\left\{y_{i j k}\right\}$ be distinct elements of X in one-one correspondence with variables $x_{i}^{\Delta g_{k}}$. Then $\phi\left(y_{i j k}^{f_{f}}\right)$ is a T-identity on $Q_{s}(R)$.

7.8 T-identities with Coefficients in $Q_{m r}$

This brief section is an appendix in which we indicate that, by making some natural alterations in the definitions but otherwise essentially keeping the same proofs, the main results on T-identities remain valid even when the coefficients are allowed to be in $Q_{m r}$. The main obstacle to overcome is the fact that whereas derivations and automorphisms of R can be lifted to $Q_{m r}$ (Proposition 2.5.1 and Proposition 2.5.3) antiautomorphisms can in general only be lifted to Q_{s} (Proposition 2.5.4). This problem, however, is easily solved by modifying the definition of a T-substitution. All other obstacles have already been anticipated by results on $Q_{m r}$ proved in Chapter 2, Chapter 4, and Chapter 6, and we shall indicate where these are used.

Let R be a prime ring with D, G, T, G^{*}, and T^{*} defined exactly as in sections 7.1 and 7.2. There are two obvious ways of generalizing the notion of the setting \mathcal{S} of R. One is defined to be

$$
\mathcal{S}_{m}=Q_{m r} \coprod_{C} C\left\{V \otimes_{C} T\right\}
$$

which we shall call the maximal setting of R. The other is defined to be

$$
\mathcal{S}_{m}^{*}=Q_{m r} \coprod_{C} C\left\{V \otimes_{C} T^{*}\right\}
$$

which we shall call the $*$-maximal setting of R.
A substitution process compatible with \mathcal{S}_{m} is, in general terms at first, described as follows. Let P be a C-algebra with 1 such that
(i) $P \supseteq Q_{m r}$;
(ii) $P \supseteq N, N$ a C-subalgebra of P;
(iii) There is a C-ring map $\gamma: T \rightarrow \operatorname{End}_{\Phi}(N)$.

Let $\psi: V \rightarrow N$ be any C-space map. Then (as in section 7.1) it is shown that there is a unique C-algebra map $\tilde{\psi}: \mathcal{S}_{m} \rightarrow P$ given by $q \mapsto q, q \in Q_{m r}$, and $v \otimes t \mapsto \psi(v)^{\gamma(t)}$. Such a map will be called the T^{\prime}-substitution determined by ψ relative to γ. Fix any C-basis X of V. Now let $P=Q_{m r}, N=Q_{s}$, and $\gamma: T \rightarrow \operatorname{End}_{\Phi}\left(Q_{s}\right)$ as given in section 7.1. Any nonzero ideal I of R is of course contained in Q_{s} and we shall say that an element ϕ of \mathcal{S}_{m} is a T^{\prime}-identity on I if ϕ is mapped to 0 under all T^{\prime}-substitutions $\tilde{\psi}$ for which $\psi(X) \subseteq I$. As in sections 7.5 and 7.7 T^{\prime}-substitutions of \mathcal{S}_{m} into itself are needed, and here we take $P=\mathcal{S}_{m}, N=\mathcal{S}$, and $\gamma: T \rightarrow \operatorname{End}_{\Phi}(\mathcal{S})$ as given by Theorem 7.3.5.

As for \mathcal{S}_{m}^{*} let P be a C-algebra with 1 containing $Q_{m r}$ and let $\gamma: T^{*} \rightarrow \operatorname{End}_{\Phi}(P)$ be a fixed C-ring map. For any C-space $\operatorname{map} \psi: V \rightarrow P$ the C-algebra map $\tilde{\psi}: \mathcal{S}_{m}^{*} \rightarrow P$ determined by $q \mapsto q, q \in Q_{m r}$, and $v \otimes t \mapsto \psi(v)^{\gamma(t)}, t \in T^{*}$, is called the $T^{*}-$ substitution determined by ψ relative to γ. Now let $P=Q_{m r}$. Since derivations and automorphisms of R can be lifted to $Q_{m r}$ (Propositions 2.5.1 and 2.5.3) it is clear that there are resulting maps $\alpha: U \rightarrow \operatorname{End}_{\Phi}\left(Q_{m r}\right)$ and $\beta: G^{*} \rightarrow \operatorname{End}_{\Phi}\left(Q_{m r}\right)$ which can be simultaneously extended to a C-ring map $\gamma: T^{*} \rightarrow$ $E n d_{\Phi}\left(Q_{m r}\right)$. We shall say that $\phi \in \mathcal{S}_{m}^{*}$ is a T^{*}-identity on $0 \neq$ $I \triangleleft R$ if ϕ is mapped to 0 under all T^{*}-substitutions $\tilde{\psi}$ for which
$\psi(X) \subseteq I$. It is clear that the analogue of Theorem 7.3.5 is valid, namely, there is an appropriate C-ring map $\gamma: T^{*} \rightarrow \operatorname{End}_{\Phi}\left(\mathcal{S}_{m}^{*}\right)$, and so we have the T^{*}-substitutions of \mathcal{S}_{m}^{*} into itself which are needed for extending the results of sections 7.5 and 7.7.

By definition the set I_{0}^{\prime} of all trivial T^{\prime}-identities (resp. the set I_{0}^{*} of all trivial T^{*}-identities) is the ideal of \mathcal{S}_{m} (resp., ideal of \mathcal{S}_{m}^{*}) generated by the same elements $C_{1}^{\prime}, C_{2}^{\prime}$ as were used to generate I_{0}. By definition the set of reduced elements of \mathcal{S}_{m} relative to $(\mathcal{B},<)$ (resp., reduced elements of \mathcal{S}_{m}^{*}) is the subring $\mathcal{E}_{m}=Q_{m r C}<X^{T_{0}}>$ (resp., $\mathcal{E}_{m}^{*}=Q_{m r C}<X^{T_{0}^{*}}>$). With no changes in the proof we have the decomposition theorem

Theorem 7.8.1 $\mathcal{S}_{m}=I_{0}^{\prime} \oplus \mathcal{E}_{m}$ and $\mathcal{S}_{m}^{*}=I_{0}^{*} \oplus \mathcal{E}_{m}^{*}$.

We proceed to state the analogues of the main results proved in sections 7.5 and 7.7 (there are, of course, no problems with section 7.6), providing remarks at the key places where the coefficients of the identities are involved. We begin by stating the analogues of Theorem 7.5.5 (concerning linear T^{\prime}-identities) and Theorem 7.5.6 (concerning linear T^{*}-identities).

Theorem 7.8.2 Let $0 \neq \phi \in Q_{r, r} X^{T_{0}} Q_{m r}$ be a T^{\prime}-identity on some $0 \neq I \triangleleft R$. Then R is $G P I$.

Theorem 7.8.3 If $\phi \in Q_{m r} X^{T_{0}^{*}} Q_{m r}$ is a T^{*}-identity on some $0 \neq I \triangleleft R$, then $\phi=0$.

Their proofs follow from the analogues of Lemmas 7.5.4, 7.5.3, 7.5.1, 7.5.2.

Concerning Lemma 7.5 .4 the elements $b_{i j}, j=1,2, \ldots, m_{i}$, $i=1,2$ are only assumed to be in $Q_{m r}$ rather than in Q_{s}. But Theorem 2.5.9 already anticipates this situation by providing $\beta=N_{I, J}, I$ an ideal, J a dense right ideal, to be used instead of $\beta \in N_{I}$.

Concerning the analogue of the crucial Lemma 7.5.3 Remark 2.5 .5 can be applied to the C-independent elements b_{1}, \ldots, b_{m} in the reduction to equation (7.17). Next, for the finite collection $b, v_{i}^{\prime}, w^{\prime}$ in the equation (7.17), we must choose a dense right ideal J, with $J \subseteq I$, such that $b J, v_{i}^{\prime} J, w^{\prime} J$ are all contained in R. Immediately following equation (7.18) we may use the ideal $I b J$ in the definition of f, noting that a typical element of $I b J$ can be expressed as $b \cdot \beta, \beta \in N_{I, J}$. Following equation (7.22) we need to know that $b_{0}=b \cdot \gamma \in I b J$. Indeed, since $Q_{m r}(J)=Q_{m r}(R)$ (Proposition 2.1.10), we may use Remark 2.5.5 (with J playing the role of R) to conclude that there exists $\gamma \in N_{I \cap J}$ such that $b_{0}=b \cdot \gamma \in I b J, b_{0} \neq 0, b_{j} \cdot \gamma=0$, $j=2,3, \ldots, m$. Finally, we need to make certain that the element u lies in Q_{s}. Having noted that $u \in Q_{r}$ we have $u K \subseteq R$ for some $0 \neq K \triangleleft R$. But there is an ideal $0 \neq L \triangleleft R$ such that $L^{\delta_{1}+\sum \mu_{i} \alpha_{i}} \subseteq R$. From $\delta_{1}+\sum \mu_{i} \alpha_{i}=a d(u)$, taking $P=K \cap L$, it is clear that $P u \subseteq R$ whence $u \in Q_{s}$.

Concerning Lemma 7.5 .1 we simply replace it by Corollary 6.3.16, and Lemma 7.5.2 may be replaced by Proposition 6.3.13.

With these remarks in place the proofs of Theorem 7.8.2 and Theorem 7.8.3 follow.

For the analogue of Theorem 7.5.8 the same proof by induction on $\operatorname{deg}(\phi)$ goes through, the case $n=1$ having been given by Theorem 7.8.2. We therefore may state

Theorem 7.8.4 Let R be a prime ring and let $\phi \in \mathcal{E}_{m}$ be a nonzero reduced $T^{\prime \prime}$-identity on some nonzero ideal I of R. Then R is GPI.

The analogue of the "freeness" theorem (Theorem 7.7.4) holds true without comment.

Theorem 7.8.5 Let R be a prime ring, let $\phi\left(x_{i}^{\Delta g_{k} f_{l}}\right) \in \mathcal{E}_{m}$ be a reduced $T^{\prime \prime}$-identity on a nonzero ideal I of R, and let $\left\{y_{i j k}\right\}$ be distinct elements of X in one-one correspondence with the
variables $x_{i}^{\Delta_{j} g_{k}}$. Then $\phi\left(y_{i j k}^{f_{j}}\right)$ is a T^{\prime}-identity on some nonzero ideal J of R.

Finally, we remark that it is the "extension" theorem (Theorem 7.7.8) that really necessitated the creation of the two settings \mathcal{S}_{m} and \mathcal{S}_{m}^{*}. For the setting \mathcal{S}_{m} the analogue of Theorem 7.7.8 goes through with the same proof, since $x_{i} \mapsto q_{i} \in Q_{s}$ is the T^{\prime}-substitution being used. For the setting \mathcal{S}_{m}^{*} a slight adjustment must be made since the T^{*}-substitution $x_{i} \mapsto q_{i} \in Q_{m r}$ is required. The vector space V on which $R C$ acts densely should be taken to be a right vector space V_{Δ}. Then by (the symmetric version of) Theorem 4.3.7(viii) we have $Q_{m r} \subseteq \operatorname{End}\left(V_{\Delta}\right)$. Accordingly $Q_{m r}$ acts on V from the left and the elements given in (7.42) should be appropriately rewritten to reflect this. We now state the two analogues of Theorem 7.7.8

Theorem 7.8.6 Let R be a prime ring and let $\phi \in \mathcal{S}_{m}$ be a reduced T^{\prime}-identity on $0 \neq I \triangleleft R$ of the form $\phi=\phi\left(x_{i}^{f_{l}}\right), f_{l} \in G_{f i}$. Then ϕ is a T^{\prime}-identity on $Q_{s}(R)$.

Theorem 7.8.7 Let R be a prime ring and let $\phi \in \mathcal{S}_{m}^{*}$ be a reduced T^{*}-identity on $0 \neq I \triangleleft R$ of the form $\phi=\phi\left(x_{i}^{f_{l}}\right), f_{l} \in$ $G_{f i} \cap G^{*}$. Then ϕ is a T^{*}-identity on $Q_{m r}(R)$.

7.9 Applications

We present in this section several applications of the preceding results. Perhaps the most well-known is Kharchenko's characterization of algebraic derivations [146], and we begin with a generalization of this result (due to Leroy and Matczuk). Following this we present analogous results for algebraic automorphisms, and lastly we present some results on composition of derivations (due to Chebotar, Chuang and Lanski) which are generalizations of the well-known Posner's theorem on composition of two derivations of a prime ring.

Algebraic derivations. Let R be a prime ring with symmetric ring of quotients Q. We continue to use the various notations developed in earlier sections of this chapter. We shall also need on occasion to utilize the two-sided ring of right quotients $Q_{r}=Q_{r}(R) \supseteq Q$. Both C (acting on Q via right multiplications) and $D(R)=\operatorname{Der}(R) C+D_{i}$ are subsets of $E n d_{\Phi}(Q)$ and in this framework we define the notion of an algebraic derivation.

Definition 7.9.1 Let $\delta \in D(R), S$ a subring of Q, and $0 \neq$ $I \triangleleft R$. Then δ is S-algebraic on I if

$$
\begin{equation*}
\left.\sum_{i=0}^{n} \delta^{i} a_{i}=0 \quad \text { (acting on } I\right) \tag{7.43}
\end{equation*}
$$

for some $n>0, a_{i} \in S, a_{n} \neq 0$.
The condition (7.43) is equivalent to:

$$
\sum_{i=0}^{n} x^{\delta^{i}} a_{i} \text { is a } T \text {-identity on } I
$$

An application of Corollary 7.2.3(ii) and Theorem 7.5 .6 yields
Remark 7.9.2 $\sum_{i=0}^{n} \delta^{i} a_{i}=0$ on I if and only if $\sum_{i=0}^{n} \delta^{i} a_{i}=0$ on Q.

In view of Remark 7.9 .2 we may simply refer to δ as being S-algebraic (it is no longer necessary to add the phrase "on I "). If n is minimal in Definition 7.9.1 then n is called the S-deg of δ. Clearly, if δ is Q-algebraic, then δ is R-algebraic, with Q-deg of $\delta=R$-deg of δ. The question arises as to whether δ being Q algebraic implies that δ is C-algebraic, and in the forthcoming characterization of algebraic derivations this question will be answered in the affirmative.

We look first at inner derivations.

Lemma 7.9.3 Let $a \in Q$. Then the following are equivalent:
(i) ad(a) is C-algebraic;
(ii) ad(a) is Q-algebraic;
(iii) a is C-algebraic.

Proof. Clearly (i) implies (ii). If $a d(a)$ is Q-algebraic, then $\sum_{i=0}^{m}\left(l_{a}-r_{a}\right)^{i} a_{i}=0, a_{i} \in Q, a_{m} \neq 0$, Since $Q_{(l)} Q_{(r)} \cong Q^{\circ} \otimes_{C} Q$ in view of Theorem 2.3.6, the above equation translates to $\sum_{i=0}^{m} a^{i} \otimes$ $b_{i}=0$ for suitable $b_{i} \in Q$, with $b_{m}=a_{m} \neq 0$. Choose a C-basis $v_{1}=b_{m}, v_{2}, \ldots, v_{n}$ of the vector space $\sum_{i=0}^{m} C b_{i}$. Then we obtain that $\sum_{i=1}^{n} f_{i}(a) \otimes v_{i}=0$ for suitable polynomials $f_{i}(x) \in C[x]$ and so $f_{1}(a)=0$. Clearly $\operatorname{deg}\left(f_{1}(x)\right)=m$ and hence $f_{1}(x) \neq 0$. As a result a is C-algebraic and therefore (ii) implies (iii). If a is C-algebraic, then the subring of $E n d_{\Phi}(Q)$ generated by l_{a}, r_{a}, and C is finite dimensional over C. Then $a d(a)=l_{a}-r_{a}$ is C-algebraic and so (iii) implies (i).

We will also need the following
Remark 7.9.4 Given $\delta \in D(R)$ and $0 \neq K \triangleleft R$ there exist nonzero ideals $K=L_{0} \supseteq L_{1} \supseteq L_{2} \supseteq \ldots$ such that $L_{k}^{\delta} \subseteq L_{k-1}$ for $k=1,2,3, \ldots$.

Proof. Writing $\delta=\sum \delta_{i} c_{i}+\mu, \delta_{i} \in \operatorname{Der}(R), c_{i} \in C, \mu=$ $a d(b), b \in Q$, we may chose a nonzero ideal J of R such that $J+c_{i} J+b J+J b \subseteq K$. Setting $L_{0}=K$ and $L_{1}=J^{3}$ we see that $L_{1}^{\delta} \subseteq L_{0}$. Now we set $L_{k}=L_{1}^{k}$ and see by an easy induction on k that $L_{k}^{\delta} \subseteq L_{k-1}$.

We now proceed to prove a result of Leroy and Matczuk [187] which describes the nature of the equation of minimal degree satisfied by a Q-algebraic derivation.

Theorem 7.9.5 Let $\delta \in D(R)$ be Q-algebraic of $Q-\operatorname{deg} n$. Then there exist $q_{0}, q_{1}, \ldots, q_{n} \in Q, q_{n}=1$, such that:
(i) $\sum_{i=0}^{n} \delta^{i} q_{i}=0$, i.e., $\sum_{i=0}^{n} x^{\delta^{i}} q_{i}$ is a T-identity on Q;
(ii) $q_{i}^{\delta}=0$ for all i, i.e., $\left[\delta, q_{i}\right]=0$;
(iii) $\left[q_{i}, q_{j}\right]=0$ for all i, j.

Proof. Without loss of generality we may assume that δ is R-algebraic of degree n. Let I be the subset of all $r \in R$ for which there exist $r_{i} \in R, i=0,1, \ldots, n-1$, such that

$$
\begin{equation*}
\delta^{n} r+\sum_{i=0}^{n-1} \delta^{i} r_{i}=0 \tag{7.44}
\end{equation*}
$$

The r_{i} 's are uniquely determined by r (by the minimality of n), and it is clear that I is a nonzero right ideal of R. It follows from Remark 7.9.4 that there exists $0 \neq J \triangleleft R$ such that $J^{\delta^{i}} \subseteq R$ for all $i \leq n$. Now let $s \in Q, t \in J, r \in I$. From (7.44) we have

$$
\begin{equation*}
(s t)^{\delta^{n}} r+\sum_{i=0}^{n-1}(s t)^{\delta^{i}} r_{i}=0 \tag{7.45}
\end{equation*}
$$

Expansion of (7.45) by repeated use of the Leibnitz formulas results in

$$
s^{\delta^{n}}(t r)+\sum_{i=0}^{n-1} s^{\delta^{i}} u_{i}=0
$$

where each u_{i} is of the form $\sum_{j=0}^{i} z_{j} t^{\delta^{j}} r_{i+j}, z_{j}$ an integer. Since $J^{\delta^{j}} \subseteq R$ for each $j=0,1, \ldots, n$, we see that $u_{i} \in R$. We have thereby shown that $J I \subseteq I$. Now for each $i=0,1, \ldots, n-$ 1 we have a well-defined right R-module map $f_{i}: J I \rightarrow R$ given by $r \mapsto r_{i}$. Accordingly there exists $q_{i} \in Q_{r}$ such that $f(r)=r_{i}=q_{i} r$ for all $r \in J I$. Setting $q_{n}=1$ we conclude that $\left(\sum_{i=0}^{n} \delta^{i} q_{i}\right) J I=0$, whence

$$
\sum_{i=0}^{n} \delta^{i} q_{i}=0, q_{i} \in Q_{r}, q_{n}=1
$$

We now claim that the q_{i} 's lie in Q. Indeed, let $0 \neq K \triangleleft R$ such that $q_{i} K \subseteq R$ for all i. By Remark 7.9.4 there exist nonzero ideals $K=L_{0} \supseteq L_{0} \supseteq L_{1} \supseteq \ldots \supseteq L_{n}$ such that $L_{k}^{\delta} \subseteq L_{k-1}$,
$k=1,2, \ldots, n$. Now let $s, t \in Q$. Making use of the Leibnitz formulas and the fact that $q_{n}=1$ we have

$$
\begin{equation*}
0=\sum_{i=0}^{n}(s t)^{\delta^{i}} q_{i}-\sum_{i=0}^{n} s^{\delta^{i}} q_{i} t=\sum_{i=0}^{n-1} s^{\delta^{i}} u_{i} \tag{7.46}
\end{equation*}
$$

where

$$
\begin{equation*}
u_{i}=\sum_{j=i+1}^{n}\binom{j}{i} t^{\delta^{j-i}} q_{j}+t q_{i}-q_{i} t=0 \tag{7.47}
\end{equation*}
$$

by the minimality of n. We now make the subclaim that $L_{k} q_{n-k}$ $\subseteq R$ for $k=0,1, \ldots, n$, which we shall prove by induction on k. For $k=0$ we have $L_{0} q_{n}=K \subseteq R$. In the equation (7.47) we replace i by $n-k$ and set $l=j-(n-k)$. From the resulting equation we conclude that

$$
\begin{equation*}
L_{k} q_{n-k} \subseteq q_{n-k} L_{k}+\sum_{l=1}^{k} L_{k}^{\delta^{l}} q_{n-k+l} \tag{7.48}
\end{equation*}
$$

By induction all summands on the right hand side of (7.48) lie in R and so the subclaim is proved. In particular $L_{n} q_{i}+q_{i} L_{n} \subseteq R$ for $i=0,1, \ldots, n$, i.e., each $q_{i} \in Q$, and so (i) is established.

An application of δ to $\sum_{i=0}^{n} s^{\delta i} q_{i}=0, s \in Q$, yields

$$
\sum_{i=0}^{n}\left(s^{\delta}\right)^{\delta^{i}} q_{i}+\sum_{i=0}^{n-1} s^{\delta^{i}} q_{i}^{\delta}=0
$$

Thus $\sum_{i=0}^{n-1} s^{\delta^{i}} q_{i}^{\delta}=0$ and by the minimality of n we have $q_{i}^{\delta}=0$ for each i and so (ii) is proved. Finally, making use of (ii) and the minimality of n, we see from

$$
0=\sum_{i=0}^{n}\left(s q_{j}\right)^{\delta^{i}} q_{i}-\sum_{i=0}^{n} s^{\delta^{i}} q_{i} q_{j}=\sum_{i=0}^{n-1} s^{\delta^{i}}\left[q_{i}, q_{j}\right]
$$

that $\left[q_{i}, q_{j}\right]=0$, thus establishing (iii).

Proposition 7.9.6 Let $\delta \in D(R)$ be Q-algebraic of Q-deg n and let $q_{0}, q_{1}, \ldots, q_{n} \in Q$ be given by Theorem 7.9.5. Suppose that $1 \cdot n \neq 0$ in Q. Then $\delta=a d\left(q_{n-1}\right) / n$.

Proof. We keep the notation of the proof of Theorem 7.9.5. Setting $i=n-1$ in (7.47), we obtain that $n t^{\delta} q_{n}+\left[t, q_{n-1}\right]=0$ for all $t \in J$. Therefore $\delta-a d\left(-q_{n-1}\right) / n$ vanishes on J. Since $Q=Q_{s}(J)$ and any derivation has a unique extension to Q, we see that $\delta=a d\left(-q_{n-1}\right) / n$.

Theorem 7.9.7 Let R be a prime ring of characteristic zero and let $\delta \in D(R)$. Then the following conditions are equivalent:
(i) δ is C-algebraic;
(ii) δ is Q-algebraic;
(iii) $\delta=a d(a), a \in Q, a$ algebraic over C.

Proof. It is obvious that (i) implies (ii). If δ is Q-algebraic, then $\delta=a d(a)$ for some $a \in Q$ by Proposition 7.9.6, because $1 \cdot n \neq 0$. Applying Lemma 7.9.3(iii), we conclude that a is C-algebraic and so (ii) implies (iii). The fact that (iii) implies (i) follows immediately from Lemma 7.9.3.

Theorem 7.9.8 Let R be a prime ring of characteristic $p>0$, and let $\delta \in D(R)$. Then the following conditions are equivalent:
(i) δ is C-algebraic;
(ii) δ is Q-algebraic;
(iii) $\sum_{i=0}^{m} \delta^{p^{i}} c_{i}=a d(a)$ where $c_{0}, c_{1}, \ldots, c_{m} \in C, c_{m} \neq 0$, $a \in Q$, a algebraic over C.

Proof. The implication (i) implies (ii) is immediate. We now assume that (ii) holds. We know that $D(R)$ is a special restricted differential Lie algebra. Suppose first that $\delta_{i}=\delta^{p^{i}}$, $i=0,1, \ldots$, are right C-independent modulo D_{i}. Hence δ_{i}, $i=0,1, \ldots$, is a part of a well-ordered basis \mathcal{B}_{0} of $D(R)$ modulo
D_{i} with $\delta_{i}<\delta_{j}$ in case $i<j$. Any positive integer i may be written uniquely in the form $\sum_{j=0}^{m_{i j}} \alpha_{i j} j^{j}, 0 \leq \alpha_{i j}<p$, and so $\delta^{i}=\prod_{j=0}^{m_{i}} \delta_{j}^{\alpha_{i j}}$ are part of a $P B W$-basis of $U(R)$ in view Theorem 5.4.5. This forces the contradiction to Theorem 7.5.6 that $\sum_{i=0}^{n} x \prod_{j}^{\delta_{j}^{\alpha_{i j}}} a_{i} \in Q x^{T_{0}^{*}} Q$ is a nonzero T-identity. We may thus conclude that $\mu=\sum_{i=0}^{m} \delta^{p^{i}} c_{i}=\operatorname{ad}(a)$ for some choice of $c_{i} \in C, a \in Q, c_{m} \neq 0$. By Theorem 7.9.5

$$
\begin{equation*}
\sum_{i=0}^{n} \delta^{i} q_{i}=0, \quad q_{i} \in Q, q_{n}=1,\left[q_{i}, q_{j}\right]=0, q_{i}^{\delta}=0 \tag{7.49}
\end{equation*}
$$

where n is the Q-deg of δ. Let $S=C\left[q_{0}, q_{1}, \ldots, q_{n-1}\right]$ be the subring of $E n d_{\Phi}(Q)$ generated by $C, q_{0}, q_{1}, \ldots, q_{n-1}$ (regarded as right multiplications), and let M be the right S-submodule of $\operatorname{End}_{\Phi}(Q)$ generated by $1, \delta, \delta^{2}, \ldots$. Since n is the Q-deg of δ, it follows from (7.49) that M is an n-generated free right module over the commutative ring S with the basis $1, \delta, \delta^{2}, \ldots, \delta^{n-1}$. Clearly $\delta \cdot M \subseteq M$ and so $\mu \cdot M \subseteq M$. Let $A \in M_{n}(S)$ be a matrix of the mapping $x \mapsto \mu \cdot x, x \in M$, and let $f(t)=|t E-A|$ be the characteristic polynomial of A. By Cayley-Hamilton theorem $f(\mu) \cdot x=0$ for all $x \in M$. In particular $f(\mu)=f(\mu) \cdot 1=0$. Thus μ is Q-algebraic, and by Lemma 7.9.3 the element a is C-algebraic. Therefore (ii) implies (iii).

Finally, assuming (iii), we know that $a d(a)$ is C-algebraic by Lemma 7.9.3, and so we may write

$$
\begin{equation*}
\sum_{j=0}^{t}\left(\sum_{i=0}^{m} \delta^{p^{i}} c_{i}\right)^{j} d_{j}=0, \quad c_{i}, d_{j} \in C, c_{m} \neq 0 \neq d_{t} \tag{7.50}
\end{equation*}
$$

Expansion of (7.50) using the commutation formula $c \delta=\delta c+c^{\delta}$ results in an equation

$$
\delta^{t p^{m}} c_{m} d_{t}+\sum_{i=0}^{t p^{m}-1} \delta^{i} c_{i}^{\prime}=0, \quad c_{i}^{\prime} \in C
$$

and so δ is C-algebraic, thus proving that (iii) implies (i).

In closing we note that in 1957 Amitsur [1] proved the equivalence of (i) and (iii) in Theorem 7.9.7 in the case that R was a simple ring, the equivalence of (i) and (iii) in Theorem 7.9.7 and Theorem 7.9 .8 was proved by Kharchenko [146] in 1978, and the additional equivalence with (ii) was proved by Leroy and Matczuk [187] in 1985.

Algebraic automorphisms. In this subsection we characterize algebraic automorphisms of prime rings in a somewhat analogous fashion to the results of preceding subsection. We refer the reader to the papers of Leroy and Matczuk [187], Page and Maoulaoui [199] from which these results are drawn.

Let R be a prime ring. The basic definitions we need are entirely analogous to those concerning derivations in the preceding subsection, and so we shall indicate these rather briefly. Let S be a subring of Q, and let $0 \neq I \triangleleft R$. An element $g \in \operatorname{Aut}(R)$ is S-algebraic on I if $\sum_{i=0}^{n} g^{i} a_{i}=0$ on I for some $n>0, a_{i} \in S$, $a_{n} \neq 0$, or, equivalently, $\sum_{i=0}^{n} x^{g^{i}} a_{i}$ is a T-identity on I. As before, by Corollary 7.2.3 (ii) and Theorem 7.5.6, g is S-algebraic on I if and only if g is S-algebraic on Q (with the same equation in either case). The minimal such n is called the S-deg of g. We begin by characterizing X-inner automorphisms.

Theorem 7.9.9 Let R be a prime ring and let $h=\operatorname{inn}(s) \in G_{i}$ be an X-inner automorphism of R where $s \in Q$. Then the following conditions are equivalent:
(i) h is C-algebraic;
(ii) h is Q-algebraic;
(iii) s is C-algebraic.

If this situation holds, let l be the Q-deg of h, k the C deg of h and m the C-deg of s. Then $l=m, k \leq l^{2}$, and $\sum_{j=0}^{l} h^{j} s^{l-j} c_{j}=0$ for some $c_{j} \in C, c_{l}=1$.

Proof. In the course of showing the equivalence of (i), (ii) and (iii) the second part of the theorem will be evident. The implication (i) implies (ii) being obvious, we assume $\sum_{j=0}^{l} h^{j} a_{j}=$
$0, a_{j} \in Q, a_{l} \neq 0$. This says that $\sum_{j=0}^{l} s^{-j} q s^{j} a_{j}=0$ for all $q \in Q$, whence by Theorem 2.3.6 $\sum_{j=0}^{l} s^{-j} \otimes s^{j} a_{j}=0$. Since $a_{l} \neq 0$ (and hence $s^{l} a_{l} \neq 0$) it follows that s^{-1} (and hence s) is C-algebraic of degree $m \leq l$ (thus establishing (iii)). Furthermore, writing $\sum_{j=0}^{m} s^{-j} c_{j}=0, c_{j} \in C, c_{m}=1$, we have

$$
0=\sum_{j=0}^{m} s^{-j} c_{j} q s^{m}=\sum_{j=0}^{m} s^{-j} q s^{j}\left(s^{m-j} c_{j}\right)=\sum_{j=0}^{m} q^{h^{j}}\left(s^{m-j} c_{j}\right)
$$

for all $q \in Q$, i.e., $\sum_{j=0}^{m} h^{j}\left(s^{m-j} c_{j}\right)=0$. From the minimality of l we conclude that $m=l$ and we have $\sum_{j=0}^{l} h^{j}\left(s^{l-j} c_{j}\right)=0$.

Now assume that s is C-algebraic of degree m. Then l_{s} and r_{s} are algebraic elements of degree m in $E n d_{\Phi}(Q)$ and so the subring generated by l_{s}, r_{s}, and C in $E n d_{\Phi}(Q)$ is of dimension $\leq m^{2}$ over C, whence $h=\operatorname{inn}(s)=l_{s^{-1}} r_{s}=l_{s}^{-1} r_{s}$ is C-algebraic of C-degree $k \leq m^{2}$. Having now shown (i) (and hence (ii)), we know that $m=l$ and so $k \leq l^{2}$. The proof is now complete.

Theorem 7.9.10 Let R be a prime ring and let $g \in \operatorname{Aut}(R)$. Then the following conditions are equivalent:
(i) g is C-algebraic;
(ii) g is Q-algebraic;
(iii) For some positive integer v we have $g^{v}=\operatorname{inn}(t)$ is X-inner, with $t C$-algebraic.

If this situation holds, let m be the least positive integer for which $g^{m}=\operatorname{inn}(s)$ is X-inner. Then s is C-algebraic (of, say, degree l), and if n is the Q - deg of g and k is the $C-\operatorname{deg}$ of g, then we have $n=m l, k \leq m l^{2}$, and $\sum_{j=0}^{l} g^{m j} s^{l-j} c_{j}=0$ for some $c_{j} \in C, c_{l}=1$.

Proof. In the course of showing the equivalence of (i), (ii), (iii), we shall at the same time be proving the rest of the theorem. Clearly (i) implies (ii). Now assume g is Q-algebraic
of degree n and write

$$
\begin{equation*}
\sum_{i=0}^{n} g^{i} a_{i}=0, \quad a_{i} \in Q, a_{n} \neq 0 \tag{7.51}
\end{equation*}
$$

Suppose first that for all $i \leq n g^{i}$ is not X-inner. Then $1, g, \ldots$, g^{n} are distinct elements of $G_{0}(R)$ and

$$
\sum_{i=0}^{n} x^{g^{i}} a_{i} \in Q x^{T_{0}^{*}} Q
$$

is a T-identity on Q in contradiction to Theorem 7.5.6. Therefore $h=g^{m}=\operatorname{inn}(s) \in G_{i}$ for some $0<m \leq n$ and we may assume that m is minimal. Writing $n=m l+r, 0 \leq r<m$ we rewrite (7.51) as

$$
\sum_{i=0}^{r} g^{i} h^{l} a_{i l}+\sum_{i=0}^{m-1} \sum_{j=0}^{l-1} g^{i} h^{j} a_{i j}, \quad a_{i j} \in Q, a_{r l} \neq 0
$$

in other words,

$$
\sum_{i=0}^{r} s^{-l} x^{g^{i}} s^{l} a_{i l}+\sum_{i=0}^{m-1} \sum_{j=0}^{l-1} s^{-j} x^{g^{i}} s^{j} a_{i j} \in Q x^{T_{0}^{*}} Q
$$

is a reduced T-identity on Q. By Theorem $7.5 .6 \phi(x)=0$ in $Q x^{T_{0}^{*}} Q$ and in particular for $i=r$ we have

$$
s^{-l} x^{g^{r}} s^{l} a_{r l}+\sum_{j=0}^{l-1} s^{-j} x^{g^{r}} s^{j} a_{r j}=0
$$

that is,

$$
0=g^{r} h^{l} a_{r l}+\sum_{j=0}^{l-1} g^{r} h^{j} a_{r j}=g^{r}\left(\sum_{j=0}^{l} h^{j} a_{r j}\right)
$$

and so

$$
\begin{equation*}
\sum_{j=0}^{l} g^{j m} a_{r j}=\sum_{j=0}^{l} h^{j} a_{r j}=0, \quad a_{r l} \neq 0 \tag{7.52}
\end{equation*}
$$

By the minimality of n we see that $r=0$, and hence $n=m l$. Again by the minimality of n (7.52) says that h is Q-algebraic of degree l. By Theorem 7.9 .9 we see that s is C-algebraic of degree l (thus proving (iii)), $\sum_{j=0}^{l} h^{j} s^{l-j} c_{j}=0$ for some $c_{j} \in C$, $c_{l}=1$, and the C-degree w of h satisfies $w \leq l^{2}$. It follows that $\sum_{j=0}^{l} g^{m j} s^{l-j} c_{j}=0$ and $\sum_{i=0}^{w} g^{m i} d_{i}=0$ for some $d_{i} \in C$, $d_{w} \neq 0$, whence the C-degree k of g satisfies the relation $k \leq m l^{2}$. Finally, suppose $f=g^{v}=\operatorname{inn}(t)$ is X-inner with $t C$-algebraic. Let m be the least positive integer for which $h=g^{m}=\operatorname{inn}(s)$ is X-inner. Writing $v=m q+r, 0 \leq r<m$, we see from $f=h^{q} g^{r}$ that g^{r} is X-inner, whence $r=0$ by the minimality of m. Thus $g^{v}=\left(g^{m}\right)^{q}$, leading to $i n n(t)=\operatorname{inn}\left(s^{q}\right)$, and so $s^{q}=t c$ for some $c \in C$. Therefore s is C-algebraic. By Theorem 7.9.9, h is C algebraic and so g is C-algebraic, thus proving that (iii) implies (i).

Products of derivations. In 1957 Posner proved that if R is a prime ring of characteristic distinct from 2 with nonzero derivations d_{1} and d_{2}, then $d_{1} d_{2}$ is not a derivation [241]. The question when a product of derivations is again a derivation was investigated by a number of authors, in particular by Krempa and Matczuk [153], by Chuang [84], by Lanski [168] and by Chebotar [78], some of whose results we shall present in this subsection. We begin with the following generalization of Martindale's lemma (i.e., Theorem 2.3.4) and a result of Bresar [68].

Lemma 7.9.11 Let S be any set and R a prime ring with extended centroid C. Suppose that $F: S \rightarrow R, G: S \rightarrow R$ are nonzero mappings such that $F(s) x G(t)=\epsilon G(s) x F(t)$ for all $s, t \in S, x \in R$ and some fixed $0 \neq \epsilon \in C$. Then:
(i) F and G are C-dependent;
(ii) $\epsilon=1$.

Proof. Pick $t_{0}, s_{0} \in S$ such that $F\left(t_{0}\right) \neq 0 \neq G\left(s_{0}\right)$. Then from $F\left(s_{0}\right) x G\left(t_{0}\right)=\epsilon G\left(s_{0}\right) x F\left(t_{0}\right)$ we conclude that $G\left(t_{0}\right) \neq$ 0 . Now from $F(s) x G\left(t_{0}\right)=\epsilon G(s) x F\left(t_{0}\right)$ we see that $F(s)=$ 0 if and only if $G(s)=0$. Suppose that $G(s) \neq 0$. Then $F(s) x G\left(t_{0}\right)-\epsilon G(s) x F\left(t_{0}\right)$ is a GPI on R and so by Corollary 6.1.3 we have that $G\left(t_{0}\right)=\lambda F\left(t_{0}\right)$ for some $\lambda \in C$. Hence

$$
(\lambda F(s)-\epsilon G(s)) x F\left(t_{0}\right)=0 \quad \text { for all } \quad x \in R, s \in S
$$

Therefore $G=\epsilon^{-1} \lambda F$. Now we have

$$
0=F\left(t_{0}\right) x G\left(t_{0}\right)-\epsilon G\left(t_{0}\right) x F\left(t_{0}\right)=\left(\epsilon^{-1} \lambda-\lambda\right) F\left(t_{0}\right) x F\left(t_{0}\right)
$$

for all $x \in R$. Thus $\epsilon=1$ and the lemma is proved.
We continue with the following result of Posner [241].
Theorem 7.9.12 Let R be a prime ring with extended centroid C and with nonzero derivations d_{1}, d_{2} such that $d_{1} d_{2}$ is again a derivation of R. Then $\operatorname{char}(R)=2$ and there exists an element $c \in C$ such that $d_{2}=d_{1} c$.

Proof. Let $x, y \in R$. Then we have

$$
\begin{equation*}
(x y)^{d_{1} d_{2}}=x^{d_{1} d_{2}} y+x^{d_{1}} y^{d_{2}}+x^{d_{2}} y^{d_{1}}+x y^{d_{1} d_{2}} \tag{7.53}
\end{equation*}
$$

On the other hand, since $d_{1} d_{2}$ is a derivation, we have

$$
(x y)^{d_{1} d_{2}}=x^{d_{1} d_{2}} y+x y^{d_{1} d_{2}}
$$

and so we conclude from (7.53) that

$$
\begin{equation*}
x^{d_{1}} y^{d_{2}}+x^{d_{2}} y^{d_{1}}=0 \quad \text { for all } \quad x, y \in R \tag{7.54}
\end{equation*}
$$

Substituting $x z$ for x, we infer from (7.54) that

$$
\begin{equation*}
x^{d_{1}} z y^{d_{2}}+x^{d_{2}} z y^{d_{1}}=0 \quad \text { for all } \quad x, y, z \in R \tag{7.55}
\end{equation*}
$$

Hence by Lemma 7.9.11 $d_{2}=d_{2} c$ for some $0 \neq c \in C$ and $-1=1$ which yields $\operatorname{char}(R)=2$.

Now we need the following general observation. Let R be a prime ring with extended centroid C and $D=D(R)$. Further let \mathcal{B}_{i} be a linearly ordered C-basis of D_{i} and let \mathcal{B}_{0} be a linearly ordered C-basis of D modulo D_{i}. As usual we assume that $\mathcal{B}_{0}<\mathcal{B}_{i}$. Then $\mathcal{B}_{0} \cup \mathcal{B}_{i}$ is a linearly ordered basis of D. Consider the corresponding $P B W$ basis $\mathcal{W}=\mathcal{W}_{0} \mathcal{W}_{i}$ of the universal enveloping algebra U of the (restricted) differential C-Lie algebra D. Given $\Delta=\delta_{1} \delta_{2} \ldots \delta_{n} \in \mathcal{W}_{0}$, where $\delta_{i} \in \mathcal{B}_{0}$ for all i, we set $|\Delta|=n$. Now let $x=\sum_{i=1}^{m} \Delta_{i} \Omega_{i} c_{i}$, where the $\Delta_{i} \Omega_{i}$'s are distinct elements of \mathcal{W} and $0 \neq c_{i} \in C$. We set $|x|=\max \left\{\left|\Delta_{i}\right| \mid 1 \leq i \leq m\right\}$. Further given a natural number n, we denote by U_{n} the C-linear span of all products of the form $\Delta \Omega$, where $\Delta \in \mathcal{W}_{0}$ with $|\Delta| \leq n$ and $\Omega \in \mathcal{W}_{i}$. For ease with forthcoming formulas we also set $U_{-1}=\{0\}$.

Let $d_{1}, d_{2}, \ldots, d_{n} \in D$. Suppose that $d_{s_{1}}, d_{s_{2}}, \ldots, d_{s_{m}}$, where $1 \leq s_{1}<s_{2}<\ldots<s_{m} \leq n$, forms a right C-basis of $\sum_{i=1}^{n} d_{i} C$ modulo D_{i}. Setting $\mu_{j}=d_{s_{j}}$ for $1 \leq j \leq m$, we shall assume that $\mu_{1}<\mu_{2}<\ldots \mu_{m} \in \mathcal{B}_{0}$. Then we have that $d_{i}=\sum_{j=1}^{m} \mu_{j} c_{i j}+$ $a d\left(a_{i}\right)$ for suitable $c_{i j} \in C$ and $\operatorname{ad}\left(a_{i}\right) \in D_{i}$. Now consider the polynomial ring $A=C\left[x_{1}, x_{2}, \ldots, x_{m}, y_{1}, y_{2}, \ldots, y_{n}\right]$. Given a monomial $M=x_{1}^{k_{1}} \ldots x_{m}^{k_{m}} y_{1}^{l_{1}} \ldots y_{n}^{l_{n}}$ we set $\operatorname{deg}(M)=k_{1}+k_{2}+$ $\ldots+k_{m}, \operatorname{deg}_{x_{i}}(M)=k_{i}, \phi(M)=\mu_{1}^{k_{1}} \ldots \mu_{m}^{k_{m}} a d\left(a_{1}\right)^{l_{1}} \ldots a d\left(a_{n}\right)^{l_{n}}$ and extend ϕ to a right C-space map $\phi: A \rightarrow U$ by linearity. With reference to the observations and terminology just developed, the following lemma is due to Chebotar.

Lemma 7.9.13 Let $i_{1}<i_{2}<\ldots<i_{k} \leq n$ be those indices i such that $d_{i}=a d\left(a_{i}\right)$ (i.e., $c_{i j}=0$ for all $j=1,2, \ldots, m$). Suppose that either $\operatorname{char}(R)=0$, or $\operatorname{char}(R)>n+1-k-m$. Set $f_{i}=\sum_{j=1}^{m} x_{j} c_{i j}+y_{i}$. Then:
(i) $\left|d_{1} d_{2} \ldots d_{n}\right|=n-k$;
(ii) $d_{1} d_{2} \ldots d_{n}-\phi\left(f_{1} f_{2} \ldots f_{n}\right) \in U_{n-k-1}$.

Proof. Let $t_{1}, t_{2}, \ldots, t_{m}$ be nonnegative integers with $t_{1}+$ $t_{2}+\ldots+t_{m}=r, 1 \leq i \leq m, 1 \leq s \leq k$ and $c \in C$. It follows from the formulas

$$
\begin{align*}
c \mu_{i} & =\mu_{i} c+c^{\mu_{i}}, \\
\operatorname{ad}(a) \mu_{i} & =\mu_{i} a d(a)+\operatorname{ad}\left(a^{\mu_{i}}\right) \quad \text { and } \\
\mu_{j} \mu_{i} & =\mu_{i} \mu_{j}+\left[\mu_{j}, \mu_{i}\right] \tag{7.56}
\end{align*}
$$

that

$$
\begin{align*}
& \mu_{1}^{t_{1}} \ldots \mu_{m}^{t_{m}} a d\left(a_{i_{1}}\right) \ldots a d\left(a_{i_{s}}\right) c \mu_{i} \\
& -\mu_{1}^{t_{1}} \ldots \mu_{i-1}^{t_{i-1}} \mu_{i}^{t_{i}+1} \mu_{i+1}^{t_{i+1}} \ldots \mu_{m}^{t_{m}} \operatorname{ad}\left(a_{i_{1}}\right) \ldots a d\left(a_{i_{s}}\right) c \\
& \in U_{r} \tag{7.57}
\end{align*}
$$

We shall prove (ii) by induction on n. The case $n=1$ is clear. Suppose now that our statement is proved for $d_{1}, d_{2}, \ldots, d_{n-1}$. Let $f_{1} f_{2} \ldots f_{n-1}=\sum_{j=1}^{t} M_{t} c_{t}$ where M_{t} 's are distinct monomials and $0 \neq c_{t} \in C$. Consider the case $d_{n}=a d\left(a_{n}\right)$. Then among $d_{1}, d_{2}, \ldots, d_{n-1}$ there are exactly $k-1 X$-inner derivations and so

$$
\begin{align*}
& d_{1} d_{2} \ldots d_{n-1}-\phi\left(f_{1} f_{2} \ldots f_{n-1}\right) \\
& \in U_{(n-1)-(k-1)-1}=U_{n-k-1} \tag{7.58}
\end{align*}
$$

Clearly

$$
\phi\left(M_{i}\right) c_{i} a d\left(a_{n}\right)=\phi\left(M_{i}\right) a d\left(a_{n}\right) c_{i}=\phi\left(M_{i} y_{n}\right) c_{i}
$$

and so $\phi\left(f_{1} \ldots f_{n-1}\right) d_{n}=\phi\left(f_{1} \ldots f_{n}\right)$. It follows from (7.58) that

$$
\begin{aligned}
d_{1} \ldots d_{n}-\phi\left(f_{1} \ldots f_{n}\right)= & \left(d_{1} \ldots d_{n-1}-\phi\left(f_{1} \ldots f_{n-1}\right)\right) d_{n} \\
& \in U_{n-k-1} d_{n} \subseteq U_{n-k-1}
\end{aligned}
$$

and so in this case our statement is proved. Now suppose that $d_{n} \notin D_{i}$. Then we have

$$
\begin{equation*}
d_{1} d_{2} \ldots d_{n-1}-\phi\left(f_{1} f_{2} \ldots f_{n-1}\right) \in U_{n-k-2} \tag{7.59}
\end{equation*}
$$

It follows from (7.57) that

$$
\phi\left(f_{1} f_{2} \ldots f_{n-1}\right) \mu_{i} c_{n i}-\phi\left(f_{1} f_{2} \ldots f_{n-1} x_{i} c_{n i}\right) \in U_{n-k-1}
$$

and so

$$
\phi\left(f_{1} f_{2} \ldots f_{n-1}\right) d_{n}-\phi\left(f_{1} f_{2} \ldots f_{n}\right) \in U_{n-k-1}
$$

Now it is clear that

$$
\begin{aligned}
d_{1} \ldots d_{n}-\phi\left(f_{1} \ldots f_{n}\right)= & \left(d_{1} \ldots d_{n-1}-\phi\left(f_{1} \ldots f_{n-1}\right)\right) d_{n} \\
& +\phi\left(f_{1} f_{2} \ldots f_{n-1}\right) d_{n}-\phi\left(f_{1} f_{2} \ldots f_{n}\right) \\
& \in U_{n-k-2} d_{n}+U_{n-k-1} \subseteq U_{n-k-1}
\end{aligned}
$$

thus proving (ii). Now let $f_{1} f_{2} \ldots f_{n}=\sum_{l=1}^{r} M_{l} c_{l}$, where the M_{l} 's are distinct monomials in x_{i} 's and y_{j} 's and $0 \neq c_{l} \in C$. Since

$$
\operatorname{deg}\left(f_{1} f_{2} \ldots f_{n}\right)=\operatorname{deg}\left(f_{1}\right)+\operatorname{deg}\left(f_{2}\right)+\ldots+\operatorname{deg}\left(f_{n}\right)=n-k
$$

there exists an index l_{0} such that $M_{l_{0}}=N y_{i_{1}} y_{y_{2}} \ldots y_{i_{k}}$, where N is a monomial in x_{j} 's of degree $n-k$. Recall that $f_{i_{t}}=y_{i_{t}}$ and $f_{s_{j}}=x_{j}$ for all $t=1,2, \ldots, k, j=1,2, \ldots, m$. Hence $\operatorname{deg}_{x_{j}}(N) \leq n-k-(m-1)=n+1-k-m$. By our assumptions either $\operatorname{char}(R)=0$, or $\operatorname{char}(R)>n+1-k-m$. Therefore $\phi(N) \in \mathcal{W}_{0}$ and so $|\phi(N)|=n-k$. It follows from (ii) that $\left|d_{1} d_{2} \ldots d_{n}\right|=|\phi(N)|=n-k$ and the lemma is proved.

The following theorem is due to Chebotar [78].
Theorem 7.9.14 Let R be a prime ring with extended centroid C and $d_{1}, d_{2}, \ldots, d_{n} \in D=D(R) \backslash\{0\}$ where $n>1$. Further let $d_{i_{1}}, d_{i_{2}}, \ldots, d_{i_{k}}, 1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq n$, be all the X-inner derivations from the set $\left\{d_{1}, d_{2}, \ldots, d_{n}\right\}$ and let $d_{s_{1}}, d_{s_{2}}, \ldots, d_{s_{m}}$, $1 \leq s_{1}<s_{2}<\ldots<s_{m} \leq n$, be a maximal C-independent subset of $\left\{d_{1}, d_{2}, \ldots, d_{n}\right\}$ modulo D_{i}. Suppose that $d_{1} d_{2} \ldots d_{n}=$
$d \in D(R)$ and either $\operatorname{char}(R)=0$, or $\operatorname{char}(R)>n+1-k-m$. Then:
(i) $d \in D_{i}$;
(ii) If $\operatorname{char}(R) \neq 2$, then $k \geq 3$;
(iii) If $k<n$, then $k>0$ and $d_{i_{1}} d_{i_{2}} \ldots d_{i_{k}}=0$.

Proof. Setting $\mu_{j}=d_{s_{j}}$ for all $j=1,2, \ldots, m$, we may choose a linearly ordered C-basis \mathcal{B}_{0} of D modulo D_{i} such that $\mu_{1}<\mu_{2}<\ldots<\mu_{m} \in \mathcal{B}_{0}$. We may also assume that $d=$ $\sum_{j=1}^{q} \mu_{j} c_{j}+a d(a)$ for some $q \geq m, c_{j} \in C, a \in Q=Q_{s}(R)$ and $\mu_{j} \in \mathcal{B}_{0}$ for all $j=1,2, \ldots, q$. Clearly $d_{i}=\sum_{j=1}^{m} \mu_{j} c_{i j}+a d\left(a_{i}\right)$ for some $c_{i j} \in C, a_{i} \in Q$ where $i=1,2, \ldots, n$. It follows from (7.56) that

$$
\begin{equation*}
d=d_{1} d_{2} \ldots d_{n}=\sum_{s=1}^{r} \Delta_{s} \Omega_{s} \tag{7.60}
\end{equation*}
$$

where $\Delta_{s} \in \mathcal{W}_{0}$, and the Ω_{s} 's belong to the right C-span of C, \mathcal{B}_{i}, $\mathcal{B}_{i}^{2}, \ldots \mathcal{B}_{i}^{n}$. Here we note that if $k>0$, then the Ω_{s} 's belong to the right C-span of $\mathcal{B}_{i}, \mathcal{B}_{i}^{2}, \ldots \mathcal{B}_{i}^{n}$. According to Lemma 7.9.13 (i) $|d|=n-k$ and so $\left|\Delta_{s}\right| \leq n-k$ for all s. Furthermore there exists at least one index s_{0} such that $\left|\Delta_{s_{0}}\right|=n-k$ and $\Omega_{s_{0}}=d_{i_{1}} d_{i_{2}} \ldots d_{i_{k}} h_{s_{0}}$ where $0 \neq h_{s_{0}} \in C$, and all Δ_{s} 's with $\left|\Delta_{s}\right|=n-k$ appearing in (7.60) are distinct and are products of μ_{j} 's (see Lemma 7.9.13 (ii)). Consider the following reduced T-identity on R :

$$
\begin{equation*}
\sum_{j=1}^{q} x^{\mu_{j}} c_{j}+[x, a]-\sum_{s=1}^{r} x^{\Delta_{s} \rho\left(\Omega_{s}\right)} \tag{7.61}
\end{equation*}
$$

where $\rho: T_{i} \rightarrow \operatorname{End}_{C}(S)$ is the C-algebra map introduced in section 7.2. By Theorem 7.7.9 we have that

$$
\begin{equation*}
\sum_{j=1}^{q} y_{\mu_{j}} c_{j}+[x, a]-\sum_{\Delta_{s} \neq 1} y_{\Delta_{s}}^{\rho\left(\Omega_{s}\right)}-\sum_{\Delta_{s}=1} x^{\rho\left(\Omega_{s}\right)} \tag{7.62}
\end{equation*}
$$

is a T-identity on Q. Only the following two cases are possible:

Case 1. Suppose that $k=n$. Then $\Delta_{s}=1$ for all $s=$ $1,2, \ldots, r$. Setting $x=0$, we conclude from (7.62) that $c_{j}=0$ for all $j=1,2, \ldots, q$ and so $d=a d(a) \in D_{i}$. Next suppose that $\operatorname{char}(R) \neq 2$. Then in view of Theorem 7.9.12, $n \neq 2$. Since $n>1$, we have that $k=n \geq 3$. Thus in this case the theorem is proved.

Case 2. Suppose that $k<n$. We claim that $k>0$. Indeed, let $k=0$. By Lemma 7.9.13 there exists at least one index s_{0} such that $\left|\Delta_{s_{0}}\right|=n$ and $\Omega_{s_{0}}=h_{s_{0}} \in C$. Since $n>1$ and $\Delta_{s} \in \mathcal{W}_{0}$, we see that $\Delta_{s_{0}} \neq \mu_{j}$ for all $j=1,2, \ldots, q$. Now recall that $\Delta_{s_{0}} \neq \Delta_{p}$ for $p \neq s_{0}$. Sending to zero all the variables in (7.62) distinct from $y_{\Delta_{s_{0}}}$, we obtain that $y_{\Delta_{s_{0}}} h_{s_{0}}$ is a T-identity on Q, a contradiction. Thus $k>0$ and our claim is established. It was noted that the relation $k>0$ implies that all Ω_{s} 's belong to the right C-span of $\mathcal{B}_{i}, \mathcal{B}_{i}^{2}, \ldots, \mathcal{B}_{i}^{n}$. In particular in this case $1^{\Omega_{s}}=0$ for all $s=1,2, \ldots, r$. Pick any $1 \leq j \leq q$. Sending to zero all the variables in (7.62) distinct from $y_{\mu_{j}}$ we obtain that

$$
y_{\mu_{j}} c_{j}-\sum_{\Delta_{s}=\mu_{j}} y_{\mu_{j}}^{\rho\left(\Omega_{s}\right)}
$$

Letting $y_{\mu_{j}}=1$, we see that $c_{j}=0$. Therefore $d=a d(a) \in D_{i}$ and (7.62) yields

$$
\begin{equation*}
[x, a]-\sum_{\Delta_{s} \neq 1} y_{\Delta_{s}}^{\rho\left(\Omega_{s}\right)}-\sum_{\Delta_{s}=1} x^{\rho\left(\Omega_{s}\right)} \tag{7.63}
\end{equation*}
$$

is a T-identity on Q. Since $k<n,\left|\Delta_{s_{0}}\right|=n-k>0$. It follows from (7.63) that $y_{\Delta_{s_{0}}}^{\rho\left(\Omega_{s_{0}}\right)}=0$. Recalling that $d_{i_{1}} d_{i_{2}} \ldots d_{i_{k}}=$ $\Omega_{s_{0}} h_{s_{0}}^{-1}$, we conclude that the composition $d_{i_{1}} d_{i_{2}} \ldots d_{i_{k}}$ of derivations is equal to zero. From Theorem 7.9.12 we infer that $k \geq 3$. The theorem is thereby proved.

The following theorem is due to Chuang [84].

Theorem 7.9.15 Let R be a prime ring of characteristic $p>0$ and $d_{1}, d_{2}, \ldots, d_{p} \in D=D(R)$. Suppose that $d_{1} d_{2} \ldots d_{p}=d \in$ D. Then:
(i) If $\left\{d_{1}, d_{2}, \ldots, d_{p}\right\} \cap D_{i} \neq \emptyset$, then $d \in D_{i}$;
(ii) If $\left\{d_{1}, d_{2}, \ldots, d_{n}\right\} \cap D_{i}=\emptyset$, then $d_{j} \in d_{1} C+D_{i}$ for all $j=2,3, \ldots, p$ and there exists $c \in C$ such that $d=d_{1}^{p} c$.

Proof. If $\left|\left\{d_{1}, d_{2}, \ldots, d_{p}\right\} \cap D_{i}\right|=k>0$, then $\operatorname{char}(R)=$ $p>p-k$ and so Theorem 7.9.14 is applicable. Therefore $d \in$ D_{i}. Next suppose that $\left\{d_{1}, d_{2}, \ldots, d_{p}\right\} \cap D_{i}=\emptyset$. Let $V=$ $\sum_{i=1}^{p} d_{i} C$ and $m=\operatorname{dim}_{C}\left(\left(V+D_{i}\right) / D_{i}\right)$. If $m>1$, then $\operatorname{char}(R)=$ $p>p+1-m$ and so by Theorem 7.9 .14 (iii) we have that $\left\{d_{1}, d_{2}, \ldots, d_{p}\right\} \cap D_{i} \neq \emptyset$, a contradiction. Therefore $m=1$ and so $d_{i} \in d_{1} C+D_{i}$. For simplicity we set $\delta=d_{1}$. Then $d_{i}=$ $\delta c_{i}+a d\left(a_{i}\right)$ for some $0 \neq c_{i} \in C, a_{i} \in Q$, where $i=2,3, \ldots, p$. We set $\nu_{1}=\delta$. Let ν_{i} be equal to either δc_{i} or $a d\left(a_{i}\right)$, where $i=2,3, \ldots, p$. Consider the product $\nu=\nu_{1} \nu_{2} \ldots \nu_{p}$. If at least one of the ν_{i} 's is X-inner, then $\nu=\sum_{j=1}^{p-1} \delta^{j} \Omega_{j}$ where the Ω_{j} 's belong to the right C-span of $\mathcal{B}_{i}, \mathcal{B}_{i}^{2}, \ldots, \mathcal{B}_{i}^{p-1}$. On the other hand if $\nu_{i}=\delta c_{i}$ for all $i=2,3, \ldots, p$, then

$$
\nu=\delta \delta c_{1} \delta c_{2} \ldots \delta c_{p}=\sum_{j=2}^{p} \delta^{j} \alpha_{j}
$$

for some $\alpha_{j} \in C$. Therefore

$$
\begin{equation*}
d=\delta^{p} \alpha_{p}+\sum_{j=2}^{p-1} \delta^{j} \alpha_{j}+\sum_{j=1}^{p-1} \delta^{j} \Omega_{j} . \tag{7.64}
\end{equation*}
$$

The following two cases are the only possible ones.
Case 1. δ and δ^{p} are C-independent modulo D_{i}. Then setting $\mu_{1}=\delta$ and $\mu_{2}=\delta^{p}$ we may choose a C-basis \mathcal{B}_{0} of D modulo D_{i} such that $\mu_{1}, \mu_{2} \in \mathcal{B}_{0}$. Clearly $d=\sum_{i=1}^{q} \mu_{i} r_{i}+a d(a)$ for some $\mu_{3}, \mu_{4}, \ldots, \mu_{q} \in \mathcal{B}_{0}, r_{i} \in C, a \in Q$. Consider the following
reduced T-identity on R :

$$
\sum_{i=1}^{q} x^{\mu_{i}} r_{i}+[x, a]-x^{\mu_{2}} \alpha_{p}-\sum_{j=2}^{p-1} x^{\mu_{1}^{j}} \alpha_{j}-\sum_{j=1}^{p-1} x^{\mu_{1}^{j} \rho\left(\Omega_{j}\right)}
$$

It follows from Theorem 7.7.9 that

$$
\sum_{i=1}^{q} y_{\mu_{\mathrm{i}}} r_{i}+[x, a]-y_{\mu_{2}} \alpha_{p}-\sum_{j=2}^{p-1} y_{\mu_{1}^{j}} \alpha_{j}-\sum_{j=1}^{p-1} y_{\mu_{1}^{j}}^{\rho\left(\Omega_{j}\right)}
$$

is a T-identity on Q. Now we conclude that $r_{i}=0$ for all $i>2$, $r_{2}=\alpha_{p}, \alpha_{j}=0$ for all $j=2,3, \ldots, p-1$, and $y_{\mu_{1}^{j}}^{\rho\left(\Omega_{j}\right)}=0$ for all $j=2,3, \ldots, p-1$ (in particular $x^{\mu_{1}^{j} \rho\left(\Omega_{j}\right)}=0$ for all $x \in Q$). Hence we see that

$$
\begin{equation*}
y_{\mu_{1}} r_{1}+[x, a]-y_{\mu_{1}}^{\rho\left(\Omega_{1}\right)} \tag{7.65}
\end{equation*}
$$

is a T-identity on Q. Sending $y_{\mu_{1}}$ to 1 and x to 0 , we obtain that $r_{1}=0$. On the other hand, sending $y_{\mu_{1}}$ to zero we see that $[x, a]$ is a T-identity on Q and so $\operatorname{ad}(a)=0$. It follows from (7.65) that $y_{\mu_{1}}^{\rho\left(\Omega_{1}\right)}=0$. Summarizing what we have proved, we conclude that $d=\mu_{2} \alpha_{p}=\delta^{p} \alpha_{p}$.

Case 2. $\delta^{p}=\delta c+a d(b)$ for some $0 \neq c \in C$ and $a \in Q$. We set $\mu_{1}=\delta$ and we may assume that $\mu_{1} \in \mathcal{B}_{0}$. Then one can show that $d=\mu_{1} r+a d(a)$ for some $r \in C, a \in Q$, and $x^{\mu_{1}^{j} \rho\left(\Omega_{j}\right)}=0=\alpha_{j}$ for all $j=2,3, \ldots, p-1$, and (7.64) yields the following T-identity on Q :

$$
y_{\mu_{1}} r+[x, a]-y_{\mu_{1}} c \alpha_{p}-[x, b] \alpha_{p}-y_{\mu_{1}}^{\rho\left(\Omega_{1}\right)} .
$$

Sending $y_{\mu_{1}}$ to 0 we see that $[x, a]=[x, b] \alpha_{p}$. On the other hand, sending x to 0 and $y_{\mu_{1}}$ to 1 we obtain that $r=c \alpha_{p}$. Now it follows that $y_{\mu_{1}}^{\rho\left(\Omega_{1}\right)}=0$. Therefore $x^{\mu_{1} \rho\left(\Omega_{1}\right)}=0$ and so $d=\delta c \alpha_{p}+[x, b] \alpha_{p}=\delta^{p} \alpha_{p}$ thus proving the theorem.

We close this section with the following result of Lanski [168]

Theorem 7.9.16 Let R be a prime ring of characteristic distinct from 2 with extended centroid C and $d_{1}, d_{2}, d_{3} \in D=$ $D(R)$. Suppose that $d_{1} d_{2} d_{3}=d \in D$. Then either $d_{1}, d_{2}, d_{3} \in$ D_{i}, or char $(R)=3, d_{i}=d_{1} c_{i}$ for some $c_{i} \in C, i=2,3$, where $c_{2}^{d_{1}}=0$.

Proof. If either $\operatorname{char}(R)=0$ or $\operatorname{char}(R)>3$, then $d_{1}, d_{2}, d_{3} \in$ D_{i} by Theorem 7.9.14. Suppose that $\operatorname{char}(R)=3$. First we consider the case $\left|\left\{d_{1}, d_{2}, d_{3}\right\} \cap D_{i}\right|=k>0$. Then $\operatorname{char}(R)=3>$ $3-k$ and so by Theorem 7.9 .14 we have $k=3$. Next suppose that $k=0$. Then $d_{1}, d_{2}, d_{3} \notin D_{i}$. Now it follows from Theorem 7.9.15 that $d_{2}=d_{1} u+a d(a)$ and $d_{3}=d_{1} v+a d(b)$ for some $0 \neq u, v \in C, a, b \in Q$. Setting for simplicity $\delta=d_{1}$ we see that

$$
\begin{aligned}
d= & d_{1} d_{2} d_{3}=\delta(\delta u+a d(a))(\delta v+a d(b)) \\
= & \delta^{3} u v+\delta^{2} u^{\delta} v+\delta^{2} a d(a) v+\delta a d\left(a^{\delta}\right) v \\
& +\delta^{2} a d(b) u+\delta a d(a) a d(b)
\end{aligned}
$$

By Theorem 7.9.15(ii) we have $d=\delta^{3} c, c \in C$, and so
$\delta^{3}(c-u v)-\delta^{2}\left(u^{\delta} v+a d(a) v+a d(b) u\right)-\delta\left(a d\left(a^{\delta}\right) v+a d(a) a d(b)\right)=0$
We claim that there exists $\gamma \in C$ such that

$$
\begin{align*}
& \gamma+a d\left(a^{\delta}\right) v+a d(a) a d(b)=0 \tag{7.67}\\
& u^{\delta} v+a d(a v+b u)=0 \tag{7.68}
\end{align*}
$$

Indeed, if δ, δ^{3} are C-independent $\bmod D_{i}$ we may assume $\delta, \delta^{3} \in$ \mathcal{B}_{0}. Then the T-identity determined by (7.66) is reduced and so by Theorem 7.5.6 (7.67) and (7.68) hold (taking $\gamma=0$). Otherwise we substitute $\delta^{3}=\delta \beta+a d(g), \beta \in C, g \in Q$, into (7.66), and from the resulting reduced identity we see again by Theorem 7.5.6 that (7.67) and (7.68) hold (taking $\gamma=-\beta(c-u v)$). Applying (7.67) to 1 we see that $\gamma=0$, whence by Theorem 7.9.12 either $a \in C$ or $b \in C$. On the other hand applying
(7.68) to 1 results in $u^{\delta} v=0$ and so $u^{\delta}=0$. But this forces $a v+b u \in C$ and since $u, v \neq 0$, we conclude that both a and b lie in C. Thus $d_{2}=d_{1} u, d_{3}=d_{1} v$, and $u^{d_{1}}=u^{\delta}=0$, which completes the proof.

Chapter 8

\widehat{T}-identities of Semiprime Rings

The aim of the present chapter is to prove for semiprime rings the results analogous to the main theorems for prime rings with T-identities (see Chapter 7).

We first set in place some notations. Throughout this chapter R will be a semiprime ring with extended centroid $C, Q=$ $Q_{m r}(R), S=O(R)$ the orthogonal completion of $R, Q_{s}=Q_{s}(S)$ and $B=B(C)$. Further D_{i} will be the Lie algebra of inner derivations of $Q_{s}, D=D(R)=\operatorname{Der}(S) C+D_{i}, G_{i}$ the X-inner automorphisms of S, and $G=G(R)=\operatorname{Aut}(S) \cup \operatorname{Antiaut}(S)$. Further let $M \in \operatorname{Spec}(B)$ and let $\phi_{M}: Q \rightarrow \bar{Q}=Q / M Q$ be the canonical surjection of rings. We set

$$
\bar{S}=\phi_{M}(S), \overline{Q_{s}}=\phi_{M}\left(Q_{s}\right), \quad \text { and } \quad \bar{C}=\phi_{M}(C)
$$

We already know that \bar{S} is a prime ring with extended centroid $\bar{C}, \bar{Q} \subseteq Q_{m r}(\bar{S})$ and $\overline{Q_{s}} \subseteq Q_{s}(\bar{S})$ by Theorem 3.2.7 and Theorem 3.2.15.

The first problem which we have to overcome is that in the semiprime ring case the universal enveloping algebra $U(D(R))$ of the differential C-Lie algebra $D(R)$ is not working as well as
in the prime ring case. The reasons are the following. First of all it is easy to see that $D(R)$ is not a restricted Lie algebra in general, but it may have some direct summands of the form $e D(R)$, $e \in B$, which are restricted differential $e C$-Lie algebras. In the first section we construct a reduced enveloping algebra $\widehat{U}(D(R))$ which reflects this situation. Next the algebra $\widehat{U}(D(R))$ has no $P B W$ basis because $D(R)$ is not a free right C-module in general. But we show that this algebra locally has a basis of $P B W$ type. The second problem is that in the semiprime ring case the group $G(R)$ does not serve our needs as well as in the prime ring case. In the second section we construct a larger group $\widehat{G}(R)$ and discuss its properties. The first two sections form a base for the notion of a reduced T-identity on an ideal of a semiprime ring which is introduced and discussed in third section. The last section is devoted to proofs of the analogs of the results in Chapter 7 about prime rings with T-identities.

8.1 The Algebra $\widehat{U}(D(R))$

Let R be a semiprime ring, let \mathcal{P} be the set of all prime numbers and let $\mathcal{P}_{0}=\mathcal{P} \cup\{0\}$. Setting $I_{p}=\{r \in R \mid p r=0\}, p \in \mathcal{P}$, and $I_{0}=r_{R}\left(\sum_{p \in \mathcal{P}} I_{p}\right)$, we note that $I=\sum_{p \in \mathcal{P}_{0}} I_{p}=\oplus_{p \in \mathcal{P}_{0}} I_{p}$ is a dense ideal of R and the additive group of I_{0} is torsionfree. We leave it to the reader as an easy exercise to show that $Q_{s}=$ $Q_{s}(I)=\prod_{p \in \mathcal{P}_{0}} Q_{s}\left(I_{p}\right)$ and $Q_{s}\left(I_{p}\right)^{\mu}, Q_{s}\left(I_{p}\right)^{\alpha} \subseteq Q_{s}\left(I_{p}\right)$ for all $\mu \in$ $D, \alpha \in G, p \in \mathcal{P}_{0}$. Letting e_{p} denote the identity of $Q_{s}\left(I_{p}\right) \subseteq Q_{s}$, we remark that $\left\{e_{p} \mid p \in \mathcal{P}_{0}\right\}$ is a dense orthogonal subset of B and $e_{p}^{\alpha}=e_{p}$ for all $\alpha \in G, p \in \mathcal{P}_{0}$. Clearly $p Q_{s}\left(I_{p}\right)=0$ and $Q_{s}\left(I_{p}\right)=e_{p} Q_{s}$ for all $p \in \mathcal{P}_{0}$. We note the following important property of the e_{p} 's, the proof of which we leave to the reader. Let $M \in \operatorname{Spec}(B)$. Then, for $p \in \mathcal{P}_{0}$,

$$
\begin{equation*}
\operatorname{char}(C / M C)=p \quad \text { if and only if } e_{p} \notin M \tag{8.1}
\end{equation*}
$$

Next recall that $v^{\mu}=0$ for all $v \in B, \mu \in D$. Therefore $(x v)^{\mu}=$ $x^{\mu} v=x^{\mu v}$ for all $x \in Q_{s}$. In particular

$$
\left(Q_{s}\left(1-e_{p}\right)\right)^{\mu e_{p}}=0 \quad \text { and } \quad\left(Q_{s}\right)^{\mu e_{p}} \subseteq Q_{s} e_{p}
$$

for all $p \in \mathcal{P}_{0}$. Since $p Q_{s} e_{p}=0$, we infer from Remark 1.1.1(b) that $\left(\mu e_{p}\right)^{p} \in D$ for all $p \in \mathcal{P}$. Further the commutation formula (5.22) was proved for prime rings, but the same proof is valid also for semiprime rings. Therefore in $\operatorname{End}\left(Q_{s}\right)$ the following formula holds:

$$
\begin{equation*}
c \delta=\delta c+c^{\widehat{\delta}}, \quad \delta \in D, c \in C, \tag{8.2}
\end{equation*}
$$

where $\hat{\delta}$ is the restriction of the derivation δ on C. Letting Φ_{p} denote the prime subfield of $e_{p} C$, we infer from Lemma 5.2.1(c) that $e_{p} D$ is a special restricted differential $e_{p} C$-Lie algebra over Φ_{p} with cover $E n d\left(e_{p} Q_{s}\right), p \in \mathcal{P}$.

Now let Φ be the subring of C generated by the identity. We note that $\Phi_{p}=e_{p} \Phi$ for all $p \in \mathcal{P}$. We identify the ring C with the subring $i d_{Q_{s}} C$ of $\operatorname{End}\left(Q_{s}\right)$ and set $\widehat{D}=C+D$. We claim that $D \cap C=0$. Indeed, suppose that $\mu=c$ where $\mu \in D$, $c \in C$. Then
$x y c=(x y)^{\mu}=x^{\mu} y+x y^{\mu}=(x c) y+x(y c)=2 x y c \quad$ and $\quad x y c=0$
for all $x, y \in R$. Therefore $R^{2} c=0$ and so $c=0$ because R^{2} is a dense ideal of R. Thus our claim is established and so $\widehat{D}=C \oplus D$. From (8.2) we conclude that \widehat{D} is a special differential C-Lie algebra over Φ with cover $\operatorname{End}\left(Q_{s}\right)$. According to Lemma 5.4.2(c) $e_{p} \widehat{D}$ is a restricted differential $e_{p} C$-Lie algebra over Φ_{p} with cover $\operatorname{End}\left(e_{p} Q_{s}\right)$ for all $p \in \mathcal{P}$. Thus we have proved the following
Remark 8.1.1 \widehat{D} is a special differential C-Lie algebra over Φ with cover End $\left(Q_{s}\right)$. Moreover $e_{p} \widehat{D}$ is a restricted differential $e_{p} C$-Lie algebra over Φ_{p} with cover End $\left(e_{p} Q_{s}\right)$ for all $p \in \mathcal{P}$.

Let \mathcal{Z} be the ring of integers and $X=\{\bar{x} \mid x \in \widehat{D}\}$. We consider the ideal $I=I(\widehat{D})$ of $F=\mathcal{Z}\langle X\rangle$ generated by all elements of the following forms:

$$
\begin{aligned}
& \text { (1) } 1_{F}-\overline{\bar{I}_{C}} \text {; } \\
& \text { (2) } \bar{x}+\bar{y}-\overline{x+y} \text { for all } x, y \in \widehat{D} ; \\
& \text { (3) } \bar{x}-\overline{x c} \text { for all } x \in \widehat{D}, c \in C \text {; } \\
& \text { (4) }[\bar{x}, \bar{y}]-[x, y] \text { for all } x, y \in \widehat{D} ; \\
& \text { (5) } \bar{x}^{p}-\overline{x^{p}} \text { for all } x \in e_{p} \widehat{D}, p \in \mathcal{P} .
\end{aligned}
$$

Setting $\hat{U}=\hat{U}(D(R))=F / I$ we note that the mapping $C \rightarrow \hat{U}$ given by the rule $c \mapsto \bar{c}+I, c \in C$, is a homomorphism of rings with identity by (1)-(3). Therefore \hat{U} is a C-ring. From (4) it follows that the mapping $\rho: \widehat{D} \rightarrow \hat{U}$ given by $x \mapsto \bar{x}+I$, $x \in \widehat{D}$, is a homomorphism of Lie rings. Moreover by (3) ρ is a homomorphism of right C-modules. According to (4) we have

$$
\rho\left(c^{\widehat{\delta}}\right)=\rho([c, \delta])=[\bar{c}, \bar{\delta}] \subseteq 1 \cdot C
$$

for all $c \in C, \delta \in D$. Now it follows that $\rho(\widehat{D})$ is a special differential C-Lie algebra over Φ with cover \hat{U} and ρ is a homomorphism of differential C-Lie algebras. Moreover by (5) $\rho: e_{p} \bar{D} \rightarrow e_{p} \hat{U}$ is a homomorphism of restricted differential $e_{p} C$-Lie algebras. Finally we note that the C-ring \widehat{U} is generated by $\rho(D(R))$ and 1 according to (1).

Our next goal is to show that ρ is an injection. To this end we set

$$
N(B)=\left\{\tau \in \operatorname{End}\left(Q_{s}\right) \mid \tau e=e \tau \text { for all } e \in B\right\} .
$$

Let $M \in \operatorname{Spec}(B)$ and let $\phi_{M}: Q_{s} \rightarrow \overline{Q_{s}}=Q_{s} / M Q_{s}$ be the canonical surjection of C-algebras. Since $\tau\left(M Q_{s}\right)=M \tau\left(Q_{s}\right)$ for all $\tau \in N(B)$, we conclude that τ induces an endomorphism $\tilde{\tau}$ of the additive group of $\overline{Q_{s}}$. Clearly the mapping $\psi_{M}: N(B) \rightarrow$ $\operatorname{End}\left(\overline{Q_{s}}\right)$ given by $\psi_{M}(\tau)=\tilde{\tau}, \tau \in N(B)$, is a homomorphism of C-rings.

Remark 8.1.2 The following conditions are fulfilled:
(i) $N(B)$ is a nonsingular right C-module;
(ii) D_{i} is an injective submodule of the C-module $N(B)$. In particular D_{i} is an orthogonally complete subset of $N(B)$;
(iii) $\operatorname{ker}\left(\psi_{M}\right)=M N(B)=\{\tau \in N(B) \mid E(\tau) \in M\}$;
(iv) $\psi_{M}(\widehat{D}) \subseteq \phi_{M}(C)+D\left(\phi_{M}(S)\right) \subseteq \operatorname{End}\left(Q_{s}\left(\phi_{M}(S)\right)\right)$;
(v) $\psi_{M}: \widehat{D}(R) \rightarrow \phi_{M}(C)+D\left(\phi_{M}(S)\right)=\widehat{D}\left(\phi_{M}(S)\right)$ is a homomorphism of differential C-Lie algebras;
(vi) If $e_{p} \notin M$, then $\psi_{M}(\widehat{D})=\psi_{M}\left(\widehat{D} e_{p}\right)$ and $\psi_{M}: \widehat{D} e_{p} \rightarrow$ $\phi_{M}(C)+D\left(\phi_{M}(S)\right)$ is a homomorphism of restricted differential $e_{p} C$-Lie algebras.

Proof. (i) It follows directly from the definition of $N(B)$ that it is a C-submodule of $\operatorname{End}\left(Q_{s}\right)$. Clearly $r_{C}(\tau)=r_{C}\left(Q_{s}^{\tau}\right)=$ $\left(1-E\left(Q_{s}^{\tau}\right)\right) C$ by Theorem 2.3.9(i) for all $\tau \in N(B)$. Therefore $N(B)$ is a nonsingular C-module and $E(\tau)=E\left(Q_{s}^{\tau}\right)$.
(ii) Clearly D_{i} is a C-submodule of $N(B)$. By Proposition 3.1.10 D_{i} is orthogonally complete. It follows from Proposition 3.1.6 that D_{i} is an injective C-module.
(iii) The equality $M N(B)=\{\tau \in N(B) \mid E(\tau) \in M\}$ is proved similarly to Remark 3.2.2(ii). Assume that $\widetilde{\tau}=0$ where $\tau \in N(B)$. Then $\phi_{M}\left(Q_{s}^{\tau}\right)=0$. By Lemma 3.1.18 Q_{s}^{τ} is an orthogonally complete subset of Q_{s}. Now it follows from Corollary 3.2.4(iii) that $E(\tau)=E\left(Q_{s}^{\tau}\right) \in M$. On the other hand if $E(\tau) \in M$, then $\phi_{M}\left(Q_{s}^{\tau}\right)=0$ by Corollary 3.2.4(iii) and so $\tau \in \operatorname{ker}\left(\psi_{M}\right)$.

Noting that $\overline{Q_{s}} \subseteq Q_{s}\left(\phi_{M}(S)\right)$ by Theorem 3.2.15(iii), we leave it for the reader to check the straightforward details of (iv)-(vi).

Consider now the universal enveloping algebra $(U(D(\bar{S})) ; \chi)$ of the (restricted) differential \bar{C}-Lie algebra $D(\bar{S})$. As we already know \bar{C} is a field. By Corollary 5.3.7 and Corollary 5.4.6 χ is a monomorphism. Clearly $D(\bar{S})^{x} \subseteq U(D(\bar{S}))$ is a special differential \bar{C}-Lie algebra. We identify $D(\bar{S})$ and $D(\bar{S})^{x}$
via χ. From Lemma 5.4.2(c) it follows that all the conditions of Definition 5.3.1 and Definition 5.4.1 hold for $\bar{C}+D(\bar{S})$ and so it is a special (restricted) differential \bar{C}-Lie subalgebra of $U(D(\bar{S}))$. Clearly $\bar{C}+D(\bar{S})$ is a special (restricted) differential C-Lie subalgebra of $U(D(\bar{S}))$ as well. Define the mapping $\alpha_{M}: \widehat{D} \rightarrow \bar{C}+D(\bar{S})$ by the rule $\alpha_{M}(c+\mu)=\phi_{M}(c)+\psi_{M}(\mu)$ for all $\mu \in D(R), c \in C$. Clearly α_{M} is a homomorphism of differential C-Lie algebras. It follows directly from the definition of \widehat{U} that there exists a unique homomorphism $\Psi_{M}: \widehat{U} \rightarrow U(D(\bar{S}))$ of C-rings such that $\alpha_{M}=\Psi_{M} \rho$. Therefore

$$
\operatorname{ker}(\rho) \subseteq \cap_{M \in \operatorname{Spec}(B)} \operatorname{ker}\left(\alpha_{M}\right) .
$$

Clearly $\operatorname{ker}\left(\alpha_{M}\right)=\operatorname{ker}\left(\phi_{M}\right) \oplus \operatorname{ker}\left(\psi_{M}\right)$. It follows that

$$
\begin{aligned}
\cap_{M \in \operatorname{Spec}(B)} \operatorname{ker}\left(\alpha_{M}\right)= & \left(\cap_{M \in \operatorname{Spec}(B)} \operatorname{ker}\left(\phi_{M}\right)\right) \\
& \oplus\left(\cap_{M \in \operatorname{Spec}(B)} \operatorname{ker}\left(\psi_{M}\right)\right)=0
\end{aligned}
$$

by Remark 8.1.2(iii). Thus we have proved the following
Corollary 8.1.3 The mapping $\rho: \widehat{D} \rightarrow \hat{U}(\widehat{D})$ is a monomorphism.

In what follows we shall identify (via ρ) C and D with $\rho(C)$ and $\rho(D)$ respectively. We shall call $\hat{U}(D(R))$ the reduced universal enveloping algebra of the differential C-Lie algebra $D(R)$.

Lemma 8.1.4 Let $\delta \in D(R)$ be such that $0 \neq \psi_{M}(\delta) \in D_{i}(\bar{S})$. Then there exist elements $a_{1}, a_{2}, b \in S$ such that $E\left(a_{1}\right)=E\left(a_{2}\right)$ $=E(b) \notin M$ and $b x^{\delta} b+a_{1} x b+b x a_{2}=0$ for all $x \in Q_{s}$.

Proof. Let $\psi_{M}(\delta)=a d(q)$ where $q \in Q_{s}(\bar{S})$. Clearly $I q+$ $q I \subseteq \bar{S}$ for some nonzero ideal I of \bar{S}. Suppose that for all $x \in I$ either $q x=0$ or $x q=0$. According to Proposition 2.2.1 $L=q I \neq 0$. It follows that $y^{2}=0$ for all $y \in L$. We have

$$
0=(y+z)^{2}=y^{2}+y z+z y+z^{2}=y z+z y \text { and } y z=-z y
$$

for all $y, z \in L$. Therefore $(y z)(y t)=y(z y) t=-y^{2} z t=0$ for all $y, z, t \in L$ and so $(y L)^{2}=0$. By Theorem 3.2.7 \bar{S} is a prime ring and hence $y L=0$ for all $y \in L$. It follows that $L^{2}=0$ which implies that $L=0$, a contradiction. Therefore $d q \neq 0 \neq q d$ for some $d \in I$. We choose $b^{\prime}, a_{1}^{\prime}, a_{2}^{\prime} \in S$ such that $\phi_{M}\left(b^{\prime}\right)=d, \phi_{M}\left(a_{1}^{\prime}\right)=d q$ and $\phi_{M}\left(a_{2}^{\prime}\right)=-q d$. Consider the mapping $\tau: S \rightarrow S$ given by $x^{\tau}=b^{\prime} x^{\delta} b^{\prime}+a_{1}^{\prime} x b^{\prime}+b^{\prime} x a_{2}^{\prime}, x \in S$. Since $d x^{a d(q)} d+d q x d-d x q d=0$ for all $x \in \bar{S}$, we conclude that $\phi_{M}\left(S^{\tau}\right)=0$. By Lemma 3.1.18 S^{τ} is an orthogonally complete subset of S. Now it follows from Corollary 3.2.4(iii) that $v S^{\tau}=$ 0 for some $v \in B \backslash M$. Since $d, q d, d q$ are nonzero elements, we infer from Corollary 3.2.4(ii) that $e=v E\left(b^{\prime}\right) E\left(a_{1}^{\prime}\right) E\left(a_{2}^{\prime}\right) \notin M$. We set $b=e b^{\prime}, a_{1}=e a_{1}^{\prime}$ and $a_{2}=e a_{2}^{\prime}$. From $e S^{\tau}=0$ we conclude that $b x^{\delta} b+a_{1} x b+b x a_{2}=0$ for all $x \in S$. It follows from Theorem 2.3.9(ii) that $e=E(b)=E\left(a_{1}\right)=E\left(a_{2}\right)$. The proof is complete.

Given $\delta \in D(R)$, we recall from section 3.1 that

$$
M_{\delta}=\{m \in Q \mid \delta E(m)=a d(m)\}
$$

Lemma 8.1.5 Let $\delta \in D(R)$ and $a_{1}, a_{2}, b \in S$ be such that $E\left(a_{1}\right)=E\left(a_{2}\right)=E(b)=e$ and

$$
\begin{equation*}
b x^{\delta} b+a_{1} x b+b x a_{2}=0 \quad \text { for all } \quad x \in Q_{s} \tag{8.3}
\end{equation*}
$$

Then there exists an element $q \in Q_{s}$ such that $E(q) \leq e$ and $\delta e=a d(q)$. In particular $q \in M_{\delta}$.

Proof. We define the mapping $\tau: S b S \rightarrow S$ by the rule $b \cdot \beta \mapsto b \cdot \beta^{\delta}+a_{2} \cdot \beta, \beta \in S^{\circ} \otimes_{C} S$. Suppose $b \cdot \beta=0$ for some $\beta=\sum r_{i} \otimes s_{i} \in S^{\circ} \otimes_{C} S$. Substituting $x r_{i}$ for x in (8.3) and multiplying by s_{i} from the right, we obtain

$$
b x^{\delta} r_{i} b s_{i}+b x r_{i}^{\delta} b s_{i}+a_{1} x r_{i} b s_{i}+b x r_{i} a_{2} s_{i}=0
$$

for all $x \in S$. Since $b \cdot \beta=0$, we have

$$
0=b x\left(b \cdot \beta^{\delta}\right)+b x\left(a_{2} \cdot \beta\right)=b x\left(b \cdot \beta^{\delta}+a_{2} \cdot \beta\right)
$$

for all $x \in S$. According to Lemma 2.3.10 we have that

$$
\begin{aligned}
0 & =E(b)\left(b \cdot \beta^{\delta}+a_{2} \cdot \beta\right) \\
& =(E(b) b) \cdot \beta^{\delta}+\left(E(b) a_{2}\right) \cdot \beta \\
& =b \cdot \beta^{\delta}+a_{2} \cdot \beta
\end{aligned}
$$

since $E(b)=E\left(a_{2}\right)$. Therefore the mapping τ is well-defined. Clearly τ is a homomorphism of right S-modules. By Proposition 2.2.1(iv) there exists an element $q^{\prime} \in Q_{r}=Q_{r}(S)$ such that $x^{\tau}=q^{\prime} x$ for all $x \in S b S$. Let $t \in S$ and $\beta \in S^{\circ} \otimes_{C} S$. We set $\gamma=\beta(t \otimes 1)$. We have

$$
\begin{aligned}
q^{\prime} t(b \cdot \beta) & =q^{\prime}(b \cdot \gamma)=(b \cdot \gamma)^{\tau}=b \cdot \gamma^{\delta}+a_{2} \cdot \gamma \\
& =t^{\delta}(b \cdot \beta)+t\left(b \cdot \beta^{\delta}\right)+t\left(a_{2} \cdot \beta\right) \\
& =t^{\delta}(b \cdot \beta)+t q^{\prime}(b \cdot \beta)
\end{aligned}
$$

and so

$$
\left(\left[q^{\prime}, t\right]-t^{\delta}\right) S b S=0
$$

for all $t \in S$. It follows from Lemma 2.3.10 that

$$
\left(\left[q^{\prime}, t\right]-t^{\delta}\right) E(S b S)=0 .
$$

Since $r_{C}(S b S)=r_{C}(b)$, we obtain that $E(S b S)=E(b)$. Setting $q=-q^{\prime} E(b)$ we conclude that $a d(q)=\delta E(b)$ (whence $q \in Q_{s}$). We recall from Theorem 2.3.9(ii) that $E(q)=E(b) E\left(q^{\prime}\right) \leq$ $e=E(b)$. Finally we note that $E(a d(q)) \leq E(q) \leq e$ and so $\delta E(q)=\delta e E(q)=a d(q) E(q)=a d(q)$. Thus $q \in M_{\delta}$ and the proof is complete.

Corollary 8.1.6 Let $\delta \in D(R)$ and $P \in \operatorname{Spec}(B)$. Then

$$
\phi_{P}\left(M_{\delta}\right)=M_{\psi_{P}(\delta)} .
$$

Proof. First of all we note that $0 \in M_{\delta}$ since $0=a d(0)=$ $\delta 0=\delta E(0)$. Let $m \in M_{\delta}$. If $E(m) \in P$, then $\psi_{P}(a d(m))=0 \in$ $M_{\psi_{P}(\delta)}$. If $E(m) \notin P$, then $\psi_{P}(a d(m))=\psi_{P}(\delta E(m))=\psi_{P}(\delta)$ and so $\phi_{P}(m) \in M_{\psi_{P}(\delta)}$. Therefore $\phi_{P}\left(M_{\delta}\right) \subseteq M_{\psi_{P}(\delta)}$. Suppose that $\phi_{P}\left(M_{\delta}\right)=0$ but $M_{\psi_{P}(\delta)} \neq 0$. From Lemma 8.1.4 it follows that the conditions of Lemma 8.1.5 are fulfilled with $E(b)=$ $e \notin P$. By Lemma 8.1.5 we conclude that $\delta e=a d(q)$ for some $q \in M_{\delta}$. According to our assumption $\phi_{P}(q)=0$. Therefore

$$
\psi_{P}(\delta)=\psi_{P}(\delta e)=\psi_{P}(a d(q))=a d\left(\phi_{P}(q)\right)=0
$$

and so $E(\delta) \in P$ by Remark 8.1.2(iii). Setting $v=1-E(\delta)$ we note that $v \notin P$ and $\delta v=0$. Therefore $C v \subseteq M_{\delta}$ and hence

$$
0 \neq \phi_{P}(C)=\phi_{P}(C v) \subseteq \phi_{P}\left(M_{\delta}\right)=0
$$

a contradiction. Now assume that $\phi_{P}\left(M_{\delta}\right) \neq 0$. Let $0 \neq a=$ $\phi_{P}(q)$ where $q \in M_{\delta}$ and $b \in M_{\psi_{P}(\delta)}$. Clearly $[x, b-a]=0$ for all $x \in \phi_{M}(S)$. Therefore $b-a \in \phi_{P}(C)$ by Theorem 3.2.15(iv). Pick $c \in C$ such that $\phi_{P}(c)=b-a$. Since $(q+c E(q)) E(q)=$ $q+c E(q)$, we conclude that $E(q+c E(q)) \leq E(q)$. Clearly

$$
a d(q+c E(q))=a d(q)=\delta E(q)
$$

and so

$$
a d(q+c E(q))=a d(q+c E(q)) E(q+c E(q))=\delta E(q+c E(q))
$$

It follows that $q+c E(q) \in M_{\delta}$. Next since $\phi_{P}(q)=a \neq 0$, $E(q) \notin P$. Therefore $\phi_{P}(q+c E(q))=a+\phi_{P}(c)=b$ and so $\phi_{P}\left(M_{\delta}\right)=M_{\psi_{P}(\delta)}$. The proof is complete.

We are now in a position to fulfill the main goal of this section (Lemma 8.1.7 and Proposition 8.1.8). These results will show that $\widehat{U}(D(R))$ has "local" $P B W$-type bases which are "compatible" with the $P B W$ bases of $U(D(\bar{S}))$ for various prime homomorphic images \bar{S} of $S=O(R)$.

Let $\mathcal{M}=\left\{\mu_{i} \mid 1 \leq i \leq n\right\} \subseteq D(R)$. The set \mathcal{M} is said to be strongly independent if for all $c_{i} \in C, 1 \leq i \leq n$, the relation $\sum_{i=1}^{n} \mu_{i} c_{i} \in D_{i}$ implies that $\mu_{i} c_{i}=0$ for all $i=1,2, \ldots, n$. Obviously \mathcal{M} is strongly independent if and only if $\sum_{i=1}^{n} \mu_{i} C=$ $\oplus_{i=1}^{n} \mu_{i} C$ and ($\sum_{i=1}^{n} \mu_{i} C$) $\cap D_{i}=0$. The notion of strong independence is of course motivated by the fact that in the special case when R is a prime ring $\mu_{1}, \mu_{2}, \ldots, \mu_{n} \in D(R)$ are strongly independent if and only if they belong to some $\mathcal{B}_{0}(R)$ (see section 5.5).

Given a number $m>0$ a product $\Delta=\mu_{i_{1}} \mu_{i_{2}} \ldots \mu_{i_{m}} \in \hat{U}$, $\mu_{i_{k}} \in \mathcal{M}$, is called a monomial in \mathcal{M} of degree m. The monomial Δ is said to be correct if $i_{1} \leq i_{2} \leq \ldots \leq i_{m}$ and for every $p \in \mathcal{P}$, $p \leq m$, the relations $e_{p} \mu_{i_{k}} \neq 0$ and $\mu_{i_{k}}=\mu_{i_{k+1}}=\ldots=\mu_{i_{k+s-1}}$, where $k+s-1 \leq m$, imply that $s<p$.

Lemma 8.1.7 Let $\mathcal{M}=\left\{\mu_{i} \mid 1 \leq i \leq n\right\} \subseteq D(R)$ be a strongly independent subset of derivations, $t, m>0$ natural numbers, $\mathcal{D}=\left\{\Delta_{j} \mid 1 \leq j \leq t\right\}$ a set of pairwise distinct correct monomials in \mathcal{M} of degree $\leq m, P \in \operatorname{Spec}(B), \phi_{P}: Q \rightarrow \bar{Q}=Q / M Q$, $\psi_{P}: \widehat{D}(R) \rightarrow \widehat{D}(\widehat{S})$ and $\Psi_{P}: \widehat{U}(D(R)) \rightarrow U(D(\bar{S}))$ the canonical homomorphisms. Then:
(i) There exists a basis $\mathcal{B}=\mathcal{B}_{0} \cup \mathcal{B}_{i}$ of $D(\bar{S})$ such that

$$
\mathcal{D}^{\prime}=\left\{\Psi_{P}(\Delta) \mid \Delta \in \mathcal{D} \quad \text { and } \quad \Psi_{P}(\Delta) \neq 0\right\} \subseteq \mathcal{W}_{0},
$$

where $\mathcal{W}=\mathcal{W}_{0} \mathcal{W}_{i}$ is a $P B W$-basis of $U(D(\bar{S}))$ (see section 5.4);
(ii) If $\Delta_{j}=\mu_{j i_{1}} \mu_{j i_{2}} \ldots \mu_{j i_{k}}$ where $k=k(j)$ and the $\mu_{j i_{s}}$'s are in \mathcal{M}, then $r_{C}\left(\Delta_{j}\right)=\left(1-E\left(\Delta_{j}\right)\right) C$ where

$$
E\left(\Delta_{j}\right)=E\left(\mu_{j i_{1}}\right) E\left(\mu_{j i_{2}}\right) \ldots E\left(\mu_{j i_{k}}\right) ;
$$

(iii) $\sum_{j=1}^{t} \Delta_{j} C=\oplus_{j=1}^{t} \Delta_{j} C$.

Proof. We recall from Theorem 3.2.7 and Theorem 3.2.15 that \bar{S} is a prime ring with extended centroid \bar{C}. Further we claim that the set

$$
\mathcal{M}^{\prime}=\left\{\mu_{i}^{\prime}=\psi_{P}\left(\mu_{i}\right) \mid 1 \leq i \leq n \quad \text { and } \quad \psi_{P}\left(\mu_{i}\right) \neq 0\right\}
$$

is \bar{C}-independent modulo $D_{i}(\bar{S})$. Indeed, suppose to the contrary that $\sum \mu_{i}^{\prime} \bar{c}_{i}=\operatorname{ad}(y), \mu_{i}^{\prime}, \bar{c}_{i} \neq 0$, for some $y \in Q_{s}(\bar{S})$. In other words, setting $\mu=\sum \mu_{i} c_{i}$, we have $\psi_{P}(\mu)=a d(y)$ where $y \in M_{\psi_{P}(\mu)}$. By Corollary 8.1.6 $y=\phi_{P}(x), x \in M_{\mu}$, whence $\sum \mu_{i} c_{i} E(x)=a d(x)$. Since the μ_{i} 's are strongly independent, we have that $\mu_{i} c_{i} E(x)=0$ for each i. As $\mu_{i}^{\prime} \bar{c}_{i} \neq 0$ and $\mu_{i}^{\prime} \bar{c}_{i} \phi_{P}(E(x))=0$, we conclude that $E(x) \in P$. Now from

$$
\psi_{P}(\mu)=a d(y)=a d\left(\phi_{P}(x)\right)=\psi_{P}(a d(x))
$$

we obtain $\mu=a d(x)+\tau$, where $\tau \in \operatorname{ker}\left(\psi_{P}\right)$. It follows that $E(\tau) \in P$. Clearly $e=(1-E(x))(1-E(\tau)) \notin P$ and $0=$ $\mu e=\sum \mu_{i} c_{i} e$. It follows that $\phi_{P}(e)=1$ and each $\mu_{i} c_{i} e=0$. Applying ψ_{P} we obtain the contradiction $\mu_{i}^{\prime} \bar{c}_{i}=0$ which proves our claim. Therefore there exists a linearly ordered basis $\mathcal{B}=$ $\mathcal{B}_{0} \cup \mathcal{B}_{i}$ of $D(\bar{S})$ such that $\mathcal{M}^{\prime} \subseteq \mathcal{B}_{0}$ and $\mu_{i}^{\prime}<\mu_{j}^{\prime}$ if and only if $i<j$. If $\operatorname{char}(\bar{C})>m$ or $\operatorname{char}(\bar{C})=0$, then clearly $\mathcal{D}^{\prime} \subseteq \mathcal{W}_{0}$. Suppose that $\operatorname{char}(\bar{C})=p \leq m$. Then by (8.1) $e_{p} \notin M$ and so $\psi_{P}\left(e_{p} \mu_{i}\right)=\psi_{P}\left(\mu_{i}\right)$ for all $i=1,2, \ldots, n$. We conclude from the definition of correct monomials that $\mathcal{D}^{\prime} \subseteq \mathcal{W}_{0}$.

It follows that $\Psi_{P}\left(\Delta_{j}\right)=0$ if and only if $\psi_{P}\left(\mu_{j i_{s}}\right)=0$ for some $1 \leq s \leq k$. We already know that $\psi_{P}\left(\mu_{j i_{s}}\right)=0$ if and only if $E\left(\mu_{j i_{s}}\right) \in P$. Therefore $\Psi_{P}\left(\Delta_{j}\right)=0$ if and only if

$$
e=E\left(\mu_{j i_{1}}\right) E\left(\mu_{j i_{2}}\right) \ldots E\left(\mu_{j i_{k}}\right) \in P .
$$

Let now $0 \neq c \in e C$. Then we choose $M \in \operatorname{Spec}(B)$ such that $E(c) \notin M$. Clearly then $e \notin M$ and so $\Psi_{M}\left(\Delta_{j} c\right)=$ $\Psi_{M}\left(\Delta_{j}\right) \phi_{M}(c) \neq 0$. Therefore $c \notin r_{C}\left(\Delta_{j}\right)$ and so $r_{C}\left(\Delta_{j}\right) \subseteq$ $(1-e) C$. On the other hand

$$
\begin{aligned}
\Delta_{j} E\left(\mu_{j i_{s}}\right) & =\mu_{j i_{1}} \ldots \mu_{j i_{i}} E\left(\mu_{j i_{i}}\right) \ldots \mu_{j i_{k}} \\
& =\mu_{j i_{1}} \ldots \mu_{j i_{s}} \ldots \mu_{j i_{k}}=\Delta_{j}
\end{aligned}
$$

and hence $\Delta_{j} e=\Delta_{j}$. It follows that $r_{C}\left(\Delta_{j}\right) \supseteq(1-e) C$ and therefore $r_{C}\left(\Delta_{j}\right)=(1-e) C$, which shows that $E\left(\Delta_{j}\right)=$ $E\left(\mu_{j i_{1}}\right) E\left(\mu_{j i_{2}}\right) \ldots E\left(\mu_{j i_{k}}\right)$.

Suppose now that $\sum_{i=1}^{t} \Delta_{j} c_{j}=0$ for some $c_{1}, c_{2}, \ldots, c_{t} \in C$. Then $\sum_{j=1}^{t} \Psi_{M}\left(\Delta_{j} c_{j}\right)=0$ and so $\Psi_{M}\left(\Delta_{j} c_{j}\right)=0$ for all $j=$ $1,2, \ldots, t$ and $M \in \operatorname{Spec}(B)$. Thus $\Delta_{j} c_{j}=0$ and the proof is complete.

Proposition 8.1.8 Let $\mathcal{M}=\left\{\mu_{i} \mid 1 \leq i \leq n\right\} \subseteq D(R)$ and $m>0$ a natural number. Then there exist a strongly independent subset $\mathcal{M}_{0}=\left\{\delta_{j} \mid 1 \leq j \leq t\right\} \subseteq D(R)$ and a subset $\mathcal{M}_{i}=\left\{\nu_{k} \mid 1 \leq k \leq s\right\} \subseteq D_{i}(R)$ such that any monomial Θ in \mathcal{M} of degree $\leq m$ is a right C-linear combination of products of the form $\Delta \Omega$, where Δ is a correct monomial in \mathcal{M}_{0}, Ω is a monomial in \mathcal{M}_{i} and $\operatorname{deg}(\Delta)+\operatorname{deg}(\Omega) \leq \operatorname{deg}(\Theta)$.

Proof. We set $\mathcal{P}_{m}=\{p \in \mathcal{P} \mid p \leq m\}, \mathcal{P}^{\prime}=\mathcal{P}_{m} \cup\{0\}$, $v_{p}=e_{p}, p \in \mathcal{P}_{m}, v_{0}=1-\sum_{p \in \mathcal{P}_{m}} e_{p}$ and

$$
\mathcal{M}^{\prime}=\left\{v_{l} \mu_{i} \mid 1 \leq i \leq n, l \in \mathcal{P}^{\prime}\right\} .
$$

Clearly any monomial of degree $l \leq m$ in \mathcal{M} is a sum of monomials in \mathcal{M}^{\prime} of the same degree. Furthermore any monomial in \mathcal{M}^{\prime} involving simultaneously $v_{p} \mu_{i}$ and $v_{q} \mu_{j}$ with $p \neq q \in \mathcal{P}^{\prime}$ is equal to zero. Therefore it is enough to construct the desired subsets for each $\left\{v_{l} \mu_{i} \mid 1 \leq i \leq n,\right\}, l \in \mathcal{P}^{\prime}$, provided that they will belong to $v_{l} D(R)$. Replacing S by $v_{l} S$ we reduce the proof to the following two cases:

Case $1 p S=0$ for some $p \leq m$;
Case $2 e_{p}=0$ for all $p \in \mathcal{P}_{m}$.
We shall consider only the first case since in the second case the proof is virtually the same (but slightly simpler). Since $p S=0, D(S)$ is a restricted differential C-Lie algebra over Φ_{p}.

By Remark 8.1.2 D_{i} is a direct summand of the right C module D. Let $D=D_{0} \oplus D_{i}$ and π_{0}, π_{i} be the projections on D_{0} and D_{i} respectively. We set $K_{1}=\sum_{i=1}^{n} \mu_{i} C, L_{1}=\pi_{0}\left(K_{1}\right)$ and $N_{1}=\pi_{i}\left(K_{1}\right)$. Clearly L_{1} and N_{1} are finitely generated nonsingular C-modules. It follows from Remark 3.1.4 that the
C-module L_{1} has a strongly independent generating set $\mathcal{L}_{1}=$ $\left\{\delta_{j} \mid 1 \leq j \leq t_{1}\right\}$. We fix any finite generating set of the C module N_{1} and denote it by \mathcal{N}_{1}.

We proceed to construct by induction ordered 5 -tuples (K_{i}, $\left.L_{i}, \mathcal{L}_{i}, N_{i}, \mathcal{N}_{i}\right), i=2,3, \ldots$, such that:
(a) K_{i} is a finitely generated right C-submodule of D containing K_{i-1};
(b) $L_{i}=\pi_{0}\left(K_{i}\right)$ and $\mathcal{L}_{i}=\left\{\delta_{1}, \delta_{2}, \ldots, \delta_{t_{i}}\right\}$ is a strongly independent generating set of L_{i}, where $t_{i} \geq t_{i-1}$;
(c) $N_{i}=\pi_{i}\left(K_{i}\right)$ and \mathcal{N}_{i} is a finite generating set of the C module N_{i} containing \mathcal{N}_{i-1}.

Suppose that we have already constructed a 5 -tuple (K_{i}, L_{i}, $\left.\mathcal{L}_{i}, N_{i}, \mathcal{N}_{i}\right)$. Then we set

$$
K_{i+1}=L_{i}+N_{i}+\sum_{x, y \in \mathcal{L}_{i} \cup \mathcal{N}_{i}}[x, y] C+\sum_{x \in \mathcal{L}_{i}} x^{p} C .
$$

Clearly K_{i+1} is finitely generated. Since $K_{i} \subseteq L_{i}+N_{i}$, we see that $K_{i} \subseteq K_{i+1}$. Next we set $L_{i+1}=\pi_{0}\left(K_{i+1}\right)$ and $N_{i+1}=$ $\pi_{i}\left(K_{i+1}\right)$. Clearly L_{i+1} and N_{i+1} are finitely generated C-modules, $L_{i} \subseteq L_{i+1}$ and $N_{i} \subseteq N_{i+1}$. Choose any finite generating set \mathcal{N}_{i+1} of N_{i+1} containing \mathcal{N}_{i}. Since L_{i} is an injective C module (see Remark 3.1.4 and Theorem 2.3.9), $L_{i+1}=L_{i} \oplus L^{\prime}$ for some submodule $L^{\prime} \subseteq L_{i+1}$. According to Remark 3.1.4 the C-module L^{\prime} has a strongly independent generating set, say, $\left\{\delta_{t_{i}+1}, \delta_{t_{i}+2}, \ldots, \delta_{t_{i+1}}\right\}$. Finally we set $\mathcal{L}_{i+1}=\left\{\delta_{j} \mid 1 \leq j \leq\right.$ $\left.t_{i+1}\right\}$.

Next we prove by induction on m the following statement. For all $i=1,2, \ldots$ any monomial Θ in K_{i} of degree m is a right C-linear combination of products of the form $\Delta \Omega$, where Δ is a correct monomial in $\mathcal{L}_{i+m-1}, \Omega$ is a monomial in \mathcal{N}_{i+m-1} and $\operatorname{deg}(\Delta)+\operatorname{deg}(\Omega) \leq m$.

If $m=1$, then $\Theta=x \in K_{i}$. Since $K_{i} \subseteq L_{i} \oplus N_{i}$, we conclude that $x=\sum_{j=1}^{t_{j}} \delta_{j} c_{j}+\sum_{z \in \mathcal{N}_{i}} z d_{z}$ for some $c_{j}, d_{z} \in C$. Therefore our statement holds for $m=1$. Suppose now that our statement
holds for all $1 \leq k \leq m-1$. Writing elements involved in Θ as linear combinations of elements belonging to $\mathcal{L}_{i} \cup \mathcal{N}_{i}$ and using the commutation formula (5.22)

$$
c \delta=\delta c+c^{\delta}, \quad \delta \in D, c \in C
$$

we obtain that Θ is a C-linear combination of monomials of the form $x_{1} x_{2} \ldots x_{k}$ where the x_{j} 's belong to $\mathcal{L}_{i} \cup \mathcal{N}_{i}$ and $k \leq m$. It follows from the induction assumption that it is enough to consider only one such monomial $x_{1} x_{2} \ldots x_{m}$ of degree m. First assume that there exists an index j such that $1 \leq j \leq m-1$, $x_{j} \in \mathcal{N}_{i}$ and $x_{j+1} \in \mathcal{L}_{i}$. Clearly

$$
\begin{align*}
x_{1} x_{2} \ldots x_{m}= & x_{1} \ldots x_{j-1} x_{j+1} x_{j} x_{j+2} \ldots x_{m} \\
& +x_{1} \ldots x_{j-1}\left[x_{j}, x_{j+1}\right] x_{j+2} \ldots x_{m} \tag{8.4}
\end{align*}
$$

Since $x_{1} \ldots x_{j-1}\left[x_{j}, x_{j+1}\right] x_{j+2} \ldots x_{m}$ is a monomial in K_{i+1} of degree $m-1$, we can apply the induction assumption. It follows that without loss of generality we may assume that there exists k such that $k \leq m, x_{1}, x_{2}, \ldots, x_{k} \in \mathcal{L}_{i}$ and $x_{k+1}, x_{k+2}, \ldots, x_{m} \in$ \mathcal{N}_{i}. Next assume that there exists an index j such that $1 \leq j \leq$ $k-1, x_{j}=\delta_{r}, x_{j+1}=\delta_{s}$ with $1 \leq s<r \leq t_{i}$. Then the equation (8.4) together with the induction assumption yields that without loss of generality we may assume that

$$
x_{1}=\delta_{j_{1}}, x_{2}=\delta_{j_{2}}, \ldots, x_{k}=\delta_{j_{k}}
$$

with $j_{1} \leq j_{2} \leq \ldots \leq j_{k}$. Finally we note that the case when $j_{l}=j_{l+1}=\ldots=j_{l+p-1}$ is considered analogously. Therefore our statement is proved

Taking $\mathcal{M}_{0}=\mathcal{L}_{m}$ and $\mathcal{M}_{i}=\mathcal{N}_{m}$ we complete the proof.

8.2 The Group $\widehat{G}(R)$

The following example shows that in the case of semiprime rings some new trivial T-identities appear.

Example Let A be any semiprime ring with 1 . We set $R=$ $A \oplus A \oplus A \oplus A$ and $e=(1,1,0,0)$. Define automorphisms α and β of R by the rule

$$
(a, b, c, d)^{\alpha}=(b, a, d, c),(a, b, c, d)^{\beta}=(b, a, c, d)
$$

for all $(a, b, c, d) \in R$. Clearly $\alpha \neq \beta$ and $\phi(x)=e x^{\alpha}-e x^{\beta}$ is a T-identity on R.

At this point we note that the situation with the group $G(R)$ is in some sense analogous to that of $U(D(R))$: it does not work as well as in the prime ring case. We shall need to construct a larger group $\widehat{G}(R)$. To this end we recall that $\operatorname{End}\left(Q_{s}\right)$ is a right C-module and for all $\gamma \in \operatorname{End}\left(Q_{s}\right)$ we have $r_{C}(\gamma)=r_{C}\left(Q_{s}^{\gamma}\right)=$ $\left(1-E\left(Q_{s}^{\gamma}\right)\right) C$ (see Theorem 2.3.9(i)). Therefore $\operatorname{End}\left(Q_{s}\right)$ is a nonsingular C-module. Given a dense orthogonal subset $V \subseteq B$ and a subset $\left\{\gamma_{v} \mid v \in V\right\} \subseteq \operatorname{End}\left(Q_{s}\right)$ we define a mapping $\gamma: Q_{s} \rightarrow Q_{s}$ by the rule $x^{\gamma}=\sum_{v \in V}^{\perp} x^{\gamma_{v}} v$ for all $x \in Q_{s}$. Clearly

$$
x^{\gamma v}=x^{\gamma} v=x^{\gamma_{v}} v=x^{\gamma_{v} v}
$$

for all $x \in Q_{s}$ and so $\gamma v=\gamma_{v} v$ for all $v \in V$. Noting that all that we have just shown is valid for $\operatorname{End}(S)$ as well, we summarize these results in the following

Remark 8.2.1 $\operatorname{End}\left(Q_{s}\right)$ is a nonsingular orthogonally complete right C-module and End (S) is an orthogonally complete subset of $\operatorname{End}\left(Q_{s}\right)$.

We consider $G(R)$ as a subgroup of $\operatorname{End}\left(Q_{s}\right)$ and we identify C with $i d_{Q_{s}} C$. Then the products αe and $e \alpha$ are defined, where $\alpha \in G(R), e \in B$. Given $e \in B$, we may consider End $\left(e Q_{s}\right)$ as a subring of $\operatorname{End}\left(Q_{s}\right)$ defining $x^{t}=(e x)^{t}$ for all $x \in Q_{s}$, $t \in \operatorname{End}\left(e Q_{s}\right)$. We note that

$$
\operatorname{End}\left(e Q_{s}\right)=\left\{t \in \operatorname{End}\left(Q_{s}\right) \mid e t=t=t e\right\} .
$$

400 CHAPTER 8. \widehat{T}-IDENTITIES OF SEMIPRIME RINGS

Since $e Q_{s}=Q_{s}(e S)$, by Proposition 2.5.3 and Proposition 2.5.4 we have

$$
G(e S) \subseteq \operatorname{End}\left(e Q_{s}\right)
$$

The following remark will be especially useful when we come to defining "Frobenius elements".

Remark 8.2.2 Let V be a dense orthogonal subset of B and

$$
g_{v} \in G(v S) \subseteq \operatorname{End}\left(v Q_{s}\right) \subseteq \operatorname{End}\left(Q_{s}\right), v \in V
$$

Suppose that $w^{g_{v}}=w$ for $v \in V$ and $w \in v B$. We set $g=$ $\sum_{v \in V}^{\perp} g_{v} v$. Then:
(i) g is an automorphism of additive groups of S and Q_{s} such that $e^{g}=e$ for all $e \in B$;
(ii) There exist orthogonal idempotents $u_{1}=u_{1}(g), u_{2}=$ $u_{2}(g) \in B$ such that $u_{1}+u_{2}=1, g u_{1} \in \operatorname{Aut}\left(u_{1} S\right) \subseteq \operatorname{Aut}\left(u_{1} Q_{s}\right)$ and $g u_{2} \in \operatorname{Antiaut}\left(u_{2} S\right) \subseteq \operatorname{Antiaut}\left(u_{2} Q_{s}\right)$;
(iii) If $g_{v} \in \operatorname{Aut}(v S)$ for all $v \in V$, then $g \in \operatorname{Aut}(S) \subseteq$ Aut $\left(Q_{s}\right)$;
(iv) If $g_{v} \in \operatorname{Antiaut}(v S)$ for all $v \in V$, then $g \in \operatorname{Antiaut}(S)$ $\subseteq \operatorname{Antiaut}\left(Q_{s}\right)$;
$\left.(v) g\right|_{C}$ is an automorphism of C.
Proof. We shall prove (i), (iii) and (iv) simultaneously. We show that g is an automorphism of the additive group of S. The case of Q_{s} is proved analogously. Let $x, y \in S$. Then
$v(x+y)^{g}=[v(x+y)]^{g_{v}}=(v x)^{g_{v}}+(v y)^{g_{v}}=v x^{g}+v y^{g}=v\left(x^{g}+y^{g}\right)$
for all $v \in V$ and so $(x+y)^{g}=x^{g}+y^{g}$ since V is a dense subset of B (see Theorem 2.3.9(i)). Here we note that if $g_{v} \in \operatorname{Aut}(S)$ for all $v \in V$, then the equality $(x y)^{g}=x^{g} y^{g}$ is proved analogously. Now suppose that $x^{g}=0$. Then $0=x^{g} v=(v x)^{g_{v}}$ and so $v x=0$ for all $v \in V$ which implies that $x=0$. It follows that g is injective. Now let $z \in S$. Since g_{v} is either an automorphism or
an antiautomorphism of $v S, v z=\left(y_{v}\right)^{g_{v}}$ for some $y_{v} \in v S$. It is not difficult to see that $y^{g}=z$ where $y=\sum_{v \in V}^{\perp} y_{v} v$. Therefore g is an automorphism of the additive group of S. Next since $e=\sum_{v \in V}^{\perp} e v$, we see that

$$
e^{g}=\sum_{v \in V}^{\perp}(e v)^{g_{v}}=\sum_{v \in V}^{\perp} e v=e
$$

and hence $e^{g}=e$ for all $e \in B$. Therefore (i), (iii) and (iv) are proved.
(ii) We set $V_{1}=\left\{v \in V \mid g_{v} \in \operatorname{Aut}(v S)\right\}, V_{2}=V \backslash V_{1}, u_{1}=$ $E\left(V_{1}\right)$ and $u_{2}=E\left(V_{2}\right)$. Since $0=V_{1} V_{2} S=V_{1} S V_{2}$, we infer from Lemma 2.3.10 that $E\left(V_{1}\right) E\left(V_{2}\right)=0$ and so $u_{1} u_{2}=0$. We have $V=V_{1} \cup V_{2}, v_{1} u_{1}=v_{1}$ and $v_{2} u_{2}=v_{2}$ for all $v_{1} \in V_{1}, v_{2} \in V_{2}$. Therefore $v\left(u_{1}+u_{2}\right)=v$ for all $v \in V$ and so $v\left(1-u_{1}-u_{2}\right)=0$, $v \in V$. Recalling that V is a dense subset of B, we conclude that $u_{1}+u_{2}=1$. Further $V u_{1}=V_{1}$ is a dense orthogonal subset of $u_{1} B$. Obviously $Q_{s}\left(u_{1} S\right)=u_{1} Q_{s}$, the extended centroid of $u_{1} Q_{s}$ equals $u_{1} C$ and $B\left(u_{1} C\right)=u_{1} B$. Finally $g u_{1}=\sum_{v \in V}^{\perp} g_{v} v u_{1}=$ $\sum_{v \in V_{1}}^{\perp} g_{v} v$. By (iii) $g u_{1}$ is an automorphism of $u_{1} S$. Analogously one can show that $g u_{2}$ is an antiautomorphism of $u_{2} S$. The proof is complete.

Following section 7.6 we define an automorphism g of C to be Frobenius if either $g=1$ or, in case $p C=0$ for some prime p and $\theta: c \mapsto c^{p}$ is an automorphism of $C, g=\theta^{n}$ for some $n \in \mathcal{Z}$. Following section 7.7 we then define $g \in G(R)$ to be a Frobenius (anti)automorphism of S if the restriction \widehat{g} of g to C is a Frobenius automorphism of C. We note that if g is a Frobenius (anti)automorphism, then $e^{g}=e$ for all $e \in B$. A mapping $g: S \rightarrow S$ is called a Frobenius element if there exist a dense orthogonal subset V of B and
$\left\{g_{v} \mid g_{v}\right.$ is a Frobenius (anti)automorphism of $\left.v S, v \in V\right\}$
such that $g=\sum_{v \in V}^{\perp} g_{v} v$. Since any (anti)automorphism of $v S$ has a unique extension to $v Q_{s}=Q_{s}(v S)$, we may assume that
every g_{v} is an (anti)automorphism of $v Q_{s}, v \in V$. The following corollary follows immediately from Remark 8.2.2.

Corollary 8.2.3 If g is a Frobenius element of End (S), then g is an automorphism of the additive group of $Q_{s}, e^{g}=e$ for all $e \in B$, and g induces an automorphism of C.

We denote by $G_{f}=G_{f}(R)$ the subset of all Frobenius elements of End(S).

Proposition 8.2.4 G_{f} is a subgroup of the multiplicative semigroup End $\left(Q_{s}\right)$ containing G_{i} and $\alpha^{-1} G_{f} \alpha=G_{f}$ for all $\alpha \in$ $G(R)$.

Proof. Let $g=\sum_{v \in V}^{\perp} g_{v} v$ and $h=\sum_{u \in U}^{\perp} h_{u} u$ be Frobenius elements. One can check that $f=g h=\sum_{v \in V, u \in U}^{\perp} g_{v} h_{u} v u$ and $g_{v} h_{u}$ is a Frobenius (anti)automorphism of $v u S$. Setting $W=$ $V U$ and $f_{w}=g_{v} h_{u}$ for all $w=v u \in W, v \in V, u \in U$, we see that $f=\sum_{w \in W}^{\perp} f_{w} w$. As g_{v} is a Frobenius (anti)automorphism of $v S, g_{v}^{-1}$ is a Frobenius (anti)automorphism of $v S$ as well. Setting $h=\sum_{v \in V}^{\perp} g_{v}^{-1} v$ we note that h is a Frobenius element and

$$
g h=\sum_{v \in V}^{\perp} g_{v} g_{v}^{-1} v=\sum_{v \in V}^{\perp} i d_{v S} v=i d_{S}
$$

Analogously $h g=i d_{S}$ and so $g^{-1}=h \in G_{f}$. Therefore G_{f} is a subgroup of $\operatorname{End}\left(Q_{s}\right)$. Obviously $G_{i} \subseteq G_{f}$. Finally let $\alpha \in G(R)$. We note that $e \alpha=\alpha e^{\alpha}$ for every $e \in B$. It follows that

$$
\alpha^{-1} g \alpha=\sum_{v \in V}{ }^{\perp} \alpha^{-1} g_{v} \alpha v^{\alpha}
$$

Since g_{v} is either a Frobenius automorphism or a Frobenius antiautomorphism of $v S, \alpha^{-1} g_{v} \alpha$ is respectively either a Frobenius automorphism or a Frobenius antiautomorphism of $v^{\alpha} S$. Noting that V^{α} is a dense orthogonal subset of B, we conclude that
$\alpha^{-1} g \alpha$ is a Frobenius element of $\operatorname{End}(S)$ which completes the proof.

We set $\widehat{G}(R)=G(R) G_{f}(R)$ and continue with the following
Corollary 8.2.5 $\widehat{G}(R)$ is a subgroup of $\operatorname{End}\left(Q_{s}\right)$ and G_{f}, G_{i} are normal subgroups of $\hat{G}(R)$.

Proof. It follows from Proposition 8.2 .4 that $\hat{G}(R)$ is a subgroup of $\operatorname{End}\left(Q_{s}\right)$ with the normal subgroup G_{f}. Since G_{i} is a normal subgroup of $G(R)$, it is enough to show that $f=$ $g^{-1} i n n(s) g \in G_{i}$ for all $g \in G_{f}$. Here we note that $e^{f}=e$ for all $e \in B$. Let $g=\sum_{v \in V}^{\perp} g_{v} v$ where V is a dense orthogonal subset of B and g_{v} is a Frobenius (anti)automorphism of $v Q_{s}$ for all $v \in V$. We set $t_{v}=(v s)^{g_{v}}$ if g_{v} is an automorphism of $v Q_{s}$. Otherwise we set $t_{v}=\left(v s^{-1}\right)^{g_{v}}$. Letting t denote the element $\sum_{v \in V}^{\perp} t_{v} v$, we see that

$$
\begin{aligned}
v x^{f} & =(v x)^{f v}=(v x)^{g_{v}^{-1} i n n(s) g_{v}} \\
& =\left[\left(v s^{-1}\right)\left(v x^{g_{v}^{-1}}\right)(v s)\right]^{g_{v}}=i n n\left(t_{v}\right)(v x)=v x^{i n n(t)}
\end{aligned}
$$

for all $v \in V, x \in Q_{s}$ and so $f=\operatorname{inn}(t) \in G_{i}$. The proof is complete.

A subgroup $H \subseteq \widehat{G}(R)$ is called an O-subgroup if H is an orthogonally complete subset of $\operatorname{End}\left(Q_{s}\right)$ and $e^{h}=e$ for all $e \in B, h \in H$.

Remark 8.2.6 G_{f} and G_{i} are O-subgroups of $\widehat{G}(R)$.
Proof. Let $V \subseteq B$ be a dense orthogonal subset and $g_{v} \in$ $G_{f}, v \in V$. Then $g_{v}=\sum_{u \in U_{v}}^{\perp} g_{v, u} u$. Setting $W=\{v u \mid v \in$ $\left.V, u \in U_{v}, u v \neq 0\right\}$ and $g=\sum_{v \in V}^{\perp} g_{v} v$ we see that W is a dense orthogonal subset of B and $g w=g v u=g_{v} v u=g_{v} u v=$ $g_{v, u} u v=g_{v, u} w$ for all $w=u v \in W$. Letting h_{w} denote $g_{v, u}$ where $w=v u, v \in V$ and $u \in U_{v}$, we conclude that $g=\sum_{w \in W}^{\perp} h_{w} w$.

Note that h_{w} is a Frobenius (anti)automorphism of $w Q_{s}$ and so $g \in G_{f}$.

Next we recall that G_{i} is the group of all X-inner automorphisms of $S=O(R)$. Clearly $e^{h}=e$ for any $h=\operatorname{inn}(s) \in G_{i}$ and $e \in B$. Now let V be any dense orthogonal subset of B and let $\alpha_{v}=i n n\left(s_{v}\right) \in G_{i}, v \in V$. Setting $s=\sum_{v \in V}^{\perp} s_{v} v$ and $t=\sum_{v \in V}^{\perp} s_{v}^{-1} v$, we infer from Remark 3.1.9 that $t s=s t=$ $\sum_{v \in V}^{\perp} v=1$. Furthermore by Proposition 3.1.10 $s, t \in Q_{s}$. Next we see that trs $=\sum_{v \in V}^{\perp} s_{v}^{-1} r s_{v} v \in S$ for all $r \in S$. Finally, letting $g=\sum_{v \in V}^{\perp} i n n\left(s_{v}\right) v$, we note that $r^{g}=\sum_{v \in V}^{\perp} r^{i n n\left(s_{v}\right)} v=$ $r^{i n n(s)}$ for all $r \in S$. Thus $g=\operatorname{inn}(s) \in G_{i}$.

The following remark is needed in the course of forming the skew group ring $\widehat{U} \propto \widehat{G}$ which will be needed in section 8.3 when we define the "home" for T-identities.

Remark 8.2.7 Let $f \in \widehat{G}(R)$ and $\mu \in D(R)$. Then $f^{-1} \mu f \in$ $D(R)$. Furthermore if $\mu \in D_{i}$, then $f^{-1} \mu f \in D_{i}$ as well.

Proof. Clearly $f=\alpha h$ for some $\alpha \in G(R), h \in G_{f}(R)$. We already know that $\alpha^{-1} \mu \alpha$ is a derivation. Hence without loss of generality we may assume that $\alpha=1$. Let $h=\sum_{v \in V}^{\perp} h_{v} v$, where $V \subseteq B$ is a dense orthogonal subset and h_{v} is a Frobenius (anti)automorphism of $v Q_{s}$ such that $(v S)^{h_{v}}=v S, v \in V$. Recall that $h^{-1}=\sum_{v \in V}^{\perp} h_{v}^{-1} v$. Since $e \mu=\mu e$ and $e h=h e$ for all $e \in B$, we see that

$$
h^{-1} \mu h=\left(\sum_{v \in V}{ }^{\perp} h_{v}^{-1} v\right) \mu h=\sum_{v \in V}{ }^{\perp} h_{v}^{-1} \mu h v=\sum_{v \in V}^{\perp}\left(h_{v}^{-1} \mu h_{v}\right) v .
$$

Clearly $h_{v}^{-1} \mu h_{v} v$ is a derivation of $v S$ for all $v \in V$. Recalling the relation $\operatorname{End}(v S) \subseteq \operatorname{End}(S)$ we conclude that it is a derivation of S. Setting $\nu=\sum_{v \in V}^{\perp}\left(h_{v}^{-1} \mu h_{v}\right) v$ we see that $\nu v=h_{v}^{-1} \mu h_{v} v$ is a derivation of S for all $v \in V$. Since V is dense subset of B, we infer that ν is a derivation of S. Thus $h^{-1} \mu h=\nu$ is a derivation of S. The proof is complete.

For $f \in \widehat{G}$ the map $\sigma: c \mapsto f^{-1} c f, c \in C$, is an automorphism of C. With Remark 8.2.7 in mind we leave it for the reader to check (just as in section 7.1) that the map $c+\mu \mapsto c^{\sigma}+f^{-1} \mu f$ is indeed a σ-semilinear differential C-Lie algebra automorphism of \widehat{D}. This leads to an action of \widehat{G} on \widehat{U} and hence to the skew group ring $\hat{U} \propto \widehat{G}$.

We recall the partial ordering on B which is given as follows: for $e, f \in B e \leq f$ if $e=e f$. Let H be an O-subgroup of $\widehat{G}(R)$. Elements $\alpha, \beta \in \widehat{G}(R)$ are called completely distinct on $e \in B$ modulo H, if either $e=0$ or for every $0 \neq v \leq e$ we have $\alpha v \notin \beta H v$. Using the fact that $v h=h v$ for all $v \in B, h \in H$, it is easy to see that α, β are completely distinct on e modulo H if and only if β, α are completely distinct on e modulo H.

Let $A=\left\{\alpha_{i} \mid 1 \leq i \leq n\right\}$ and $e_{1}, e_{2}, \ldots, e_{n} \in B$. Suppose that either $A \subseteq A u t(S)$, or $A \subseteq \operatorname{Antiaut}(S)$, and the following conditions are fulfilled:
(a) $e_{i} e_{j}=0$ for all $1 \leq i \neq j \leq n$;
(b) $e_{1}+e_{2}+\ldots+e_{n}=1$;
(c) $e_{k}^{\alpha_{i}^{-1}}=e_{k}^{\alpha_{j}^{-1}}$ for all $1 \leq i, j, k \leq n$.

Setting $g=\sum_{i=1}^{n} \alpha_{i} e_{i}$ we claim that

$$
\begin{equation*}
g \in \operatorname{Aut}(S) \cup \operatorname{Antiaut}(S) \tag{8.5}
\end{equation*}
$$

Indeed, clearly $S=\oplus_{i=1}^{n} S e_{i}=\oplus_{i=1}^{n} S e_{i}^{\alpha_{1}^{-1}}$. By (c) we have that $g=\sum_{i=1}^{n} e_{i}^{\alpha_{1}^{-1}} \alpha_{i}$. Now it is clear that g is an (anti)isomorphism of $S=\oplus_{i=1}^{n} S e_{i}^{\alpha_{1}^{-1}}$ onto $S=\oplus_{i=1}^{n} S e_{i}$.

Let $g \in \widehat{G}(R) \subseteq E n d\left(Q_{s}\right)$. We set

$$
e(g)=E(g-1)
$$

Then we have

$$
((1-e(g)) r)^{g}=(1-e(g)) r \quad \text { for all } \quad r \in S
$$

Moreover

$$
\begin{equation*}
\text { if } e \in B \text { and }(e r)^{g}=e r \text { for all } r \in S \text {, then } e \leq 1-e(g) \tag{8.6}
\end{equation*}
$$

Lemma 8.2.8 Let $\alpha, \beta \in \widehat{G}(R)$ and let H be an O-subgroup of $\widehat{G}(R)$. Given any $0 \neq u \in B$ there exist an element $h=h_{\alpha, \beta, u} \in$ H and an idempotent $e=e_{\alpha, \beta, u} \in B$ such that:
(i) $e(h) \leq e \leq u$;
(ii) $v^{\alpha^{-1}}=v^{\bar{\beta}^{-1}}$ for all $v \leq e$;
(iii) $\beta e=\alpha$ he (and hence $\beta=\alpha h e+\beta(1-e)$);
(iv) α and β are completely distinct on $u-e$ modulo H.

Proof. We set $g=\alpha^{-1} \beta$ and $W=\{w \in B u \mid g w \in H w\}$. Clearly if $w \in W, v \in B$ and $v \leq w$, then $v \in W$ as well. Let U be a maximal orthogonal subset of W. By Remark 3.1.5 $E(U)=E(W)$ and $V=U \cup\{1-E(U)\}$ is a dense orthogonal subset of B. According to the definition of the set W for every $v \in U$ there exists an element $h_{v} \in H$ such that $g v=h_{v} v$. We set $e=E(U), v_{0}=1-e, h_{v_{0}}=1, h=\sum_{v \in V}^{\perp} h_{v} v$. One can readily check that $e(h) \leq e \leq u$ and $\beta e=\alpha h e$. Therefore $\beta=\alpha h e+\beta(1-e)$. According to the definition of an O-subgroup $v^{h}=v$ for all $v \in B$. From $\beta e=\alpha h e$ one obtains $\alpha^{-1} \beta v=h v$ whence $v^{\alpha^{-1} \beta} v=v$ or $v^{\alpha^{-1} \beta} \leq v$ for all $v \leq e$. Likewise from $\beta h^{-1} e=\alpha e$ one obtains $v^{\beta^{-1} \alpha} \leq v$. Thus $v^{\alpha^{-1}} \leq v^{\beta^{-1}} \leq v^{\alpha^{-1}}$ and so $v^{\alpha^{-1}}=v^{\beta^{-1}}$ for all $v \leq e$. Finally if $0 \neq \bar{w} \leq u-e$ and $\alpha w \in \beta H w$, then $\alpha w=\beta f w$ for some $f \in H$. Since $f w=w f$, we conclude that $f^{-1} w=\alpha^{-1} \beta w$ and hence $w \in W$. Recalling that $e \leq u$ we see that $e(u-e)=0$. Therefore $e w=0$ and so $E(U) w=0$. It follows that $U w=0$, a contradiction to the maximality of U. Thus α and β are completely distinct on $u-e$ modulo H and the proof is complete.

Proposition 8.2.9 Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in \widehat{G}(R)$ and H an O subgroup of $\hat{G}(R)$. We set $\alpha_{0}=1$. Then there exist idempotents
$u_{k i} \in B$ and elements $h_{k i} \in H, k=1,2, \ldots, n, i=0,1, \ldots, k$ such that:
(i) $u_{k 0}, \ldots, u_{k k}$ are pairwise orthogonal idempotents whose sum is equal to 1 for all $k=1,2, \ldots, n$;
(ii) $\alpha_{k}=\sum_{i=0}^{k} \alpha_{i} h_{k i} u_{k i}$ for all $k=1,2, \ldots, n$;
(iii) α_{k} and α_{j} are completely distinct on $u_{j j}\left(1-\sum_{i=0}^{j} u_{k i}\right)$ modulo H for all $k=1,2, \ldots, n$ and $j=1,2, \ldots, k-1$;
(iv) α_{k} and α_{j} are completely distinct on $u_{k k} u_{j j}$ modulo H for all $k \neq j$;
(v) $h_{k k}=1$ for all $k=1,2, \ldots, n$;
(vi) $e\left(h_{k i}\right) \leq u_{k i} \leq u_{i i}$ for all $k=1, \ldots, n, i=1, \ldots, k-1$;
(vii) $u_{k 0} \geq 1-e\left(\alpha_{k}\right)$ for all $k=1,2, \ldots, n$;
(viii) $v^{\alpha_{k}^{-1}}=v^{\alpha_{i}^{-1}}$ for all $k=1,2, \ldots, n, i=0,1, \ldots, k-1$ and $v \leq u_{k i}$.

Proof. The lower triangular array of idempotents $u_{k j} \in B$ (along with the accompanying elements $h_{k j} \in H$) is constructed column by column as follows. For column 0 we let $u_{00}=1$ play the role of u in Lemma 8.2.8 and set $u_{k 0}=e_{1, \alpha_{k}, 1}$ and $h_{k 0}=$ $h_{1, \alpha_{k}, 1}$. Now assume columns $0,1, \ldots, t$ have been constructed and we proceed to construct column $t+1$. We set

$$
\begin{equation*}
u_{t+1, t+1}=1-\sum_{i=0}^{t} u_{t+1, i}, \quad h_{t+1, t+1}=1 \tag{8.7}
\end{equation*}
$$

For each $k>t+1$ we let

$$
\begin{equation*}
w_{k, t+1}=u_{t+1, t+1}\left(1-\sum_{i=0}^{t} u_{k, i}\right) \tag{8.8}
\end{equation*}
$$

play the role of u in Lemma 8.2.8 and set

$$
\begin{align*}
u_{k, t+1} & =e_{\alpha_{t+1}, \alpha_{k}, w_{k, t+1}} \tag{8.9}\\
h_{k, t+1} & =h_{\alpha_{t+1}, \alpha_{k}, w_{k, t+1}} \tag{8.10}
\end{align*}
$$

$\operatorname{By}(8.7) \sum_{j=0}^{k} u_{k j}=1$. $\operatorname{By}(8.9) u_{k j} \leq w_{k j} \leq 1-\sum_{i=0}^{j-1} u_{k i}$. The sum $\sum_{i=0}^{k} u_{k i}$ is therefore direct and so (i) is proved. By the definition of $e\left(\alpha_{k}\right)$ we have $\left(\alpha_{k}-1\right)\left(1-e\left(\alpha_{k}\right)\right)=0$, i.e., $\alpha_{k}\left(1-e\left(\alpha_{k}\right)\right)=1 \cdot\left(1-e\left(\alpha_{k}\right)\right), k=1,2, \ldots, n$. Since $1 \in$ H this puts $1-e\left(\alpha_{k}\right) \leq u_{k 0}, k=1,2, \ldots, n$ and so (vii) is proved. By (8.7) $h_{k k}=1$ by definition, which establishes (v). An appropriate application of Lemma 8.2.8 gives $e\left(h_{k i}\right) \leq w_{k i}$ (see (8.10). It follows from (8.8) that $w_{k i} \leq u_{k i}$ and so $e\left(h_{k i}\right) \leq$ $u_{k i}$. By (8.8) and (8.9) we have $u_{k i} \leq u_{i i}$. Thus ($\mathbf{v i}$) is proved. By Lemma 8.2.8(ii), (viii) is clear. Since

$$
\begin{aligned}
\alpha_{k} & =\alpha_{k}\left(u_{k 0}+u_{k 1}+\ldots+u_{k k}\right) \\
& =\alpha_{k} u_{k 0}+\alpha_{k} u_{k 1}+\ldots+\alpha_{k} u_{k k} \\
& =\alpha_{0} h_{k 0} u_{k 0}+\alpha_{1} h_{k 1} u_{k 1}+\ldots+\alpha_{k} h_{k k} u_{k k}
\end{aligned}
$$

(using Lemma 8.2.8(iii)) we have thereby proved (ii). From Lemma 8.2.8(iv) we know that $\alpha_{k}, \alpha_{j}, k>j$, are completely distinct on

$$
w_{k j}-u_{k j}=u_{j j}\left(1-\sum_{i=0}^{j-1} u_{k i}\right)-u_{k j}=u_{j j}\left(1-\sum_{i=0}^{j} u_{k i}\right),
$$

which proves (iii). In particular, since $u_{k k} \leq 1-\sum_{i=0}^{j} u_{k i}$, we see that α_{k}, α_{j} are completely distinct on $u_{j j} u_{k k}$. Thus (iv) is shown and the proof is complete.

Lemma 8.2.10 Let $\alpha \in \hat{G}(R)$. Then:
(i) The restriction $\left.\alpha\right|_{B}$ of α on B is an automorphism of B; In particular $M^{\alpha} \in \operatorname{Spec}(B)$ for all $M \in \operatorname{Spec}(B)$;
(ii) Given $M \in \operatorname{Spec}(B)$, the mapping $\alpha_{M}: Q_{s} / M Q_{s} \rightarrow$ $Q_{s} / M^{\alpha} Q_{s}$ defined by the rule $x+M Q_{s} \mapsto x^{\alpha}+M^{\alpha} Q_{s}, x \in Q_{s}$, is either an isomorphism (if $u_{1}(g) \notin M$) or an antiisomorphism (if $u_{2}(g) \notin M$).

Proof. (i) Since $\widehat{G}=G G_{f}, \alpha=g h$ for some $g \in G, h \in G_{f}$. By Corollary 8.2.3 we have $e^{h}=e$ for all $e \in B$. Therefore $e^{\alpha}=e^{g}$ for all $e \in B$ and so $\left.\alpha\right|_{B}=\left.g\right|_{B}$ is an automorphism of B.
(ii) It follows from Remark 8.2 .2 that there exist two orthogonal idempotents $u_{1}=u_{1}(g), u_{2}=u_{2}(g) \in B$ such that $u_{1}+u_{2}=1, h u_{1} \in \operatorname{Aut}\left(u_{1} S\right)$ and $h u_{2} \in \operatorname{Antiaut}\left(u_{2} S\right)$. If $u_{1} \in M^{\alpha}$, then $\left(x+M Q_{s}\right)^{\alpha_{M}}=x^{g h u_{2}}+M^{\alpha} Q_{s}$. Otherwise $\left(x+M Q_{s}\right)^{\alpha_{M}}=x^{g h u_{1}}+M^{\alpha} Q_{s}$. Thus in the first case α_{M} is an antiisomorphism while in the second case it is an isomorphism. The proof is complete.

The following general result may be of independent interest since it gives a decomposition of B relative to an automorphism α.

Lemma 8.2.11 Let α be any automorphism of the Boolean ring $B \subseteq C$. Then there exists pairwise orthogonal idempotents $e_{\alpha, 0}, e_{\alpha, 1}, e_{\alpha, 2}, e_{\alpha, 3} \in B$ such that:
(i) $e_{\alpha, 0}+e_{\alpha, 1}+e_{\alpha, 2}+e_{\alpha, 3}=1$;
(ii) $e_{\alpha, 1}^{\alpha} \leq e_{\alpha, 2}, e_{\alpha, 2}^{\alpha}=e_{\alpha, 3}$ and $e_{\alpha, 3}^{\alpha}=e_{\alpha, 1}+e_{\alpha, 2} e_{\alpha, 3}^{\alpha}$;
(iii) If $e \leq e_{\alpha, 0}$, then $e^{\alpha}=e$.

Proof. Let $A \subseteq B$. We note that $r_{B}(A)=r_{C}(A) \cap B=$ $(1-E(A)) B$. Next we claim that

$$
\begin{equation*}
E\left(A^{\alpha}\right)=E(A)^{\alpha} \tag{8.11}
\end{equation*}
$$

Indeed, we have

$$
\left(1-E\left(A^{\alpha}\right)\right) B=r_{B}\left(A^{\alpha}\right)=r_{B}(A)^{\alpha}=\left(1-E(A)^{\alpha}\right) B
$$

which proves our claim. Next we claim that

$$
\begin{equation*}
\text { if } A A^{\alpha}=0, \text { then } E(A) E(A)^{\alpha}=0 \tag{8.12}
\end{equation*}
$$

Indeed, since $A C A^{\alpha}=0$, from Lemma 2.3 .10 (with C instead of R) we see that $E(A) E\left(A^{\alpha}\right)=0$. Now by (8.11) we have $E(A) E(A)^{\alpha}=0$ and our claim is established.

Given $v \in B$ we set $U(v)=\left\{u \in B \mid u u^{\alpha}=0=u v\right\}$. Consider any chain $A \subseteq U(v)$ (i.e., a subset $A \subseteq U(v)$ such that for all $a, b \in A$ either $a \leq b$, or $b \leq a$). We claim that $E(A) \subseteq U(v)$. Indeed, let $a, b \in A$. Then either $a \leq b$, or $b \leq a$. In the first case we have

$$
a^{\alpha} b=(a b)^{\alpha} b=a^{\alpha}\left(b^{\alpha} b\right)=0
$$

In the second case we see that

$$
a^{\alpha} b=a^{\alpha}(a b)=\left(a^{\alpha} a\right) b=0
$$

Therefore $A A^{\alpha}=0$ and so $E(A) E(A)^{\alpha}=0$ by (8.12). Finally since $A v=0, v \in r_{C}(A)=(1-E(A)) C$ and hence $v E(A)=0$. Thus $E(A) \in U(v)$. Since $E(A) a=a$ for all $a \in A$, we see that every chain in $U(v)$ has an upper bound. Therefore Zorn's Lemma is applicable and so

$$
\begin{equation*}
U(v) \text { contains maximal elements. } \tag{8.13}
\end{equation*}
$$

Clearly α^{-1} preserves the partial ordering \leq and $U(v)^{\alpha^{-1}}=$ $U\left(v^{\alpha^{-1}}\right)$. Hence if a is a maximal element of $U(v)$, then

$$
\begin{equation*}
a^{\alpha^{-1}} \text { is a maximal element of } U\left(v^{\alpha^{-1}}\right) \tag{8.14}
\end{equation*}
$$

Let $v \in B$ and let a be a maximal element in $U(0)$. We now show

$$
\begin{equation*}
\text { if } v v^{\alpha}=0=v\left(a+a^{\alpha}\right) \text {, then } v^{\alpha} a=v^{\alpha} . \tag{8.15}
\end{equation*}
$$

To this end we set $w=v\left(1-a^{\alpha^{-1}}\right)$ and note that $v w=w$. We claim that

$$
\begin{equation*}
w w^{\alpha}=w a=w a^{\alpha}=w^{\alpha} a=0 \tag{8.16}
\end{equation*}
$$

Indeed, since $v v^{\alpha}=0, w w^{\alpha}=0$ as well. As $a a^{\alpha}=0$ and $v\left(a+a^{\alpha}\right)=0$, we infer that $v a=0=v a^{\alpha}$. Recalling that
$w=v w$, we conclude that $w a=w a^{\alpha}=0$. Finally since $w^{\alpha}=$ $v^{\alpha}(1-a)$, we see that $w^{\alpha} a=0$ which proves our claim. It follows from (8.16) that $(w+a)(w+a)^{\alpha}=0,(w+a)^{2}=w+a$ and so $w+a \in U(0)$. Since $w+a \geq a$ and a is a maximal element in $U(0)$, we conclude that $w=0$ and hence $v=v a^{\alpha^{-1}}$. Applying α we see that $v^{\alpha}=v^{\alpha} a$.

Let e be a maximal element in $U(0)$ and let u be a maximal element in $U\left(e+e^{\alpha}\right)$. Then by (8.15) we have that

$$
\begin{equation*}
u^{\alpha} e=u^{\alpha} . \tag{8.17}
\end{equation*}
$$

Let $v \in B$. We claim that

$$
\begin{equation*}
\text { if } v\left(u+e+e^{\alpha}\right)=0 \text {, then } v^{\alpha} v=v^{\alpha} \tag{8.18}
\end{equation*}
$$

Indeed, suppose that $v^{\alpha} v \neq v^{\alpha}$. Then $v v^{\alpha^{-1}} \neq v$ and so $w=$ $v\left(1-v^{\alpha^{-1}}\right) \neq 0$. We show that

$$
\begin{equation*}
w\left(e+e^{\alpha}\right)=w u=w u^{\alpha}=w w^{\alpha}=u w^{\alpha}=0 . \tag{8.19}
\end{equation*}
$$

Indeed, since u, e and e^{α} are pairwise orthogonal, we infer from $v\left(u+e+e^{\alpha}\right)=0$, that $v u=v e=v e^{\alpha}=0$. Recalling that $v w=w$, we conclude that $w u=w e=w e^{\alpha}=0$ and so $w(e+$ $\left.e^{\alpha}\right)=0$. From (8.17) and $w e=0$ we infer that $w u^{\alpha}=0$. Since $w^{\alpha}=v^{\alpha}(1-v)$ and $w v=w, w w^{\alpha}=0$. Finally since $w\left(e+e^{\alpha}\right)=0=w w^{\alpha}$, we have by (8.15) that $w^{\alpha} e=w^{\alpha}$. Now from $u e=0$ we obtain that $u w^{\alpha}=0$. Thus (8.19) is proved. From (8.19) we see that $w+u$ is an idempotent such that $(w+u)\left(e+e^{\alpha}\right)=0=(w+u)(w+u)^{\alpha}$. Hence $w+u \in U\left(e+e^{\alpha}\right)$ which contradicts the maximality of u. Thus $v^{\alpha} v=v^{\alpha}$ and our claim is proved. Next we claim that

$$
\begin{equation*}
\text { if } v\left(u+e+e^{\alpha}\right)=0, \text { then } v^{\alpha}=v \tag{8.20}
\end{equation*}
$$

Indeed, let $w=v\left(1-v^{\alpha}\right)$. Then clearly $w\left(u+e+e^{\alpha}\right)=0$. Now from (8.18) (with w instead of v) we see that $0=w w^{\alpha}=w^{\alpha}$ and
so $w=0$. Hence $v=v v^{\alpha}$. By (8.18) we have $v v^{\alpha}=v^{\alpha}$ and so $v=v^{\alpha}$ which proves our claim. In particular $\left(1-u-e-e^{\alpha}\right)^{\alpha}=$ $1-u-e-e^{\alpha}$. Therefore $\left(u+e+e^{\alpha}\right)^{\alpha}=u+e+e^{\alpha}$ and so $\left(u+e+e^{\alpha}\right)^{\alpha^{-1}}=u+e+e^{\alpha}$. It follows that $u^{\alpha^{-1}} \leq u+e+e^{\alpha}$ and hence $u^{\alpha^{-1}}=u_{1}+u_{2}+u_{3}$ where $u_{1} \leq u, u_{2} \leq e$ and $u_{3} \leq e^{\alpha}$. We have $u=u_{1}^{\alpha}+u_{2}^{\alpha}+u_{3}^{\alpha}$. Since $u_{1} \leq u, u_{1}^{\alpha} \leq u^{\alpha}$. On the other hand $u u^{\alpha}=0$ and we conclude from $u=u_{1}^{\alpha}+u_{2}^{\alpha}+u_{3}^{\alpha}$ that $u_{1}=0$. As $u_{2} \leq e, u_{2}^{\alpha} \leq e^{\alpha}$. Now from $u e^{\alpha}=0$ we infer that $u_{2}=0$. Hence $u^{\alpha^{-1}}=u_{3} \leq e^{\alpha}$ and so $u \leq e^{\alpha^{2}}$. Further $e^{\alpha^{2}} e^{\alpha}=\left(e^{\alpha} e\right)^{\alpha}=0$. Since $e^{\alpha} \leq u+e+e^{\alpha}$ and $\left(u+e+e^{\alpha}\right)^{\alpha}=u+e+e^{\alpha}$, we infer that $e^{\alpha^{2}} \leq u+e^{\prime}$ where $e^{\prime} \leq e$. Recalling that $u e=0$ we see that $e^{\prime}=e e^{\alpha^{2}}$. Now setting $e_{\alpha, 0}=1-u-e-e^{\alpha}, e_{\alpha, 1}=u$, $e_{\alpha, 2}=e$ and $e_{\alpha, 3}=e^{\alpha}$ and recalling that $e_{\alpha, 1}^{\alpha} \leq e_{\alpha, 2}$ by (8.17) we complete the proof.

Corollary 8.2.12 Let α be any automorphism of the Boolean ring $B \subseteq C$ and let idempotents $e_{\alpha, 0}, e_{\alpha, 1}, e_{\alpha, 2}, e_{\alpha, 3} \in B$ be as in Lemma 8.2.11. Further let $M \in \operatorname{Spec}(B)$. Then $M^{\alpha}=M$ if and only if $e_{\alpha, 0} \notin M$.

Proof. We set $e_{i}=e_{\alpha, i}, i=0,1,2,3$. Let $M^{\alpha}=M$. Then $M^{\alpha^{-1}}=M$ as well. Since $e_{i}^{\alpha} e_{i}=0$ for $i=1,2,3$, we obtain that either $e_{i} \in M$ or $e_{i}^{\alpha} \in M$. In the last case $e_{i} \in M^{\alpha^{-1}}=M$. Therefore $e_{i} \in M$ for $i=1,2,3$ and so $e_{0}=1-e_{1}-e_{2}-e_{3} \notin M$.

Next let $e_{0} \notin M$. Recall that the addition \oplus of the Boolean ring B is given by the rule $u \oplus v=u+v-2 u v, u, v \in B$. Now suppose that $M^{\alpha} \neq M$. Since M is a maximal ideal of the Boolean ring B, we infer that $M \oplus M^{\alpha}=B$. It follows that $u+v-2 u v=e_{0}$ for some $u \in M, v \in M^{\alpha}$. Setting $x=u(1-v)$ and $y=v(1-u)$, we see that

$$
x y=0, x+y=e_{0}, x \in M \quad \text { and } \quad y \in M^{\alpha}
$$

It follows that $y \leq e_{0}$. By Lemma 8.2.11(iii) we have $y^{\alpha}=y$ and so $y=y^{\alpha^{-1}} \in M$. Therefore $e_{0}=x+y \in M$ which contradicts
the relation $e_{0} \notin M$. Thus $M^{\alpha}=M$ and the proof is complete.

Given $\alpha \in \widehat{G}(R)$ and $P \in \operatorname{Spec}(B)$, recall that the map $\alpha_{P}: S / P S \rightarrow S / P^{\alpha} S$ defined by the rule $x+P S \mapsto x^{\alpha}+P^{\alpha} S$, $x \in S$, is either an isomorphism or an antiisomorphism of rings (see Lemma 8.2.10). The next two results lead up to Corollary 8.2.15, which makes possible an important link between completely distinct elements modulo G_{i} and $G_{0}(\bar{S})$ in certain situations.

Lemma 8.2.13 Let $\alpha \in \widehat{G}$ and $P \in \operatorname{Spec}(B)$. Suppose that $P^{\alpha}=P$ and $\alpha_{P} \in G_{i}(S / P S)$. Then there exist elements b, a_{1}, a_{2} $\in S$ such that:
(i) $E\left(a_{1}\right)=E\left(a_{2}\right)=E(b) \notin P$;
(ii) $b x^{\alpha} b=a_{1} x a_{2}$ for all $x \in S$;
(iii) $\alpha E(b) \in A u t(E(b) S)$;

Proof. Let $\phi_{P}: S \rightarrow \bar{S}=S / P S$ be the canonical ring surjection and let $e_{i}=e_{\alpha, i}, i=0,1,2,3$ (see Lemma 8.2.11). We have $\alpha_{P}=\operatorname{inn}(s)$ for some $s \in Q_{s}(\bar{S})$. Obviously $I s^{-1}, s I \subseteq$ \bar{S} for some nonzero ideal of \bar{S}. Pick any $0 \neq \bar{b} \in I$ and set $\bar{a}_{1}=\bar{b} s^{-1}, \bar{a}_{2}=s \bar{b}$. Since s is an invertible element of $Q_{s}(\bar{S})$, $\bar{a}_{1} \neq 0 \neq \bar{a}_{2}$. We note that

$$
\begin{equation*}
\bar{b} x^{\alpha_{P}} \bar{b}-\bar{a}_{1} x \bar{a}_{2}=0 \quad \text { for all } \quad x \in \bar{S} . \tag{8.21}
\end{equation*}
$$

Clearly $\widetilde{b}=\phi_{P}\left(b^{\prime}\right), \bar{a}_{1}=\phi_{P}\left(a_{1}^{\prime}\right)$ and $\bar{a}_{2}=\phi_{P}\left(a_{2}^{\prime}\right)$ for some $b, a_{1}^{\prime}, a_{2}^{\prime} \in S$. It follows from Corollary 3.2.4 that

$$
E\left(b^{\prime}\right), E\left(a_{1}^{\prime}\right), E\left(a_{2}^{\prime}\right) \notin P .
$$

Since $P^{\alpha}=P$, we conclude from Corollary 8.2.12 that $e_{0} \notin P$. Hence $\left(1-e_{0}\right) x \in P S$ for all $x \in S$ and so $\phi_{P}\left(e_{0} x\right)=\phi_{P}(x)$. Therefore without loss of generality we can assume that $e_{0} b^{\prime}=b^{\prime}$, $e_{0} a_{1}^{\prime}=a_{1}^{\prime}$ and $e_{0} a_{2}^{\prime}=a_{2}^{\prime}$. Further it follows from Lemma 8.2.10

414 CHAPTER 8. \widehat{T}-IDENTITIES OF SEMIPRIME RINGS

that $u_{1}=u_{1}(\alpha) \notin P$ and so we can assume that $u_{1} b^{\prime}=b^{\prime}$, $u_{1} a_{1}^{\prime}=a_{1}^{\prime}$ and $u_{1} a_{2}^{\prime}=a_{2}^{\prime}$. Setting $H=\left\{b^{\prime} x^{\alpha} b^{\prime}-a_{1}^{\prime} x a_{2}^{\prime} \mid x \in\right.$ S \}, we claim that H is an orthogonally complete subset of S. Indeed, let V be a dense orthogonal subset of B and $\left\{h_{v}=\right.$ $\left.b^{\prime} x_{v}^{\alpha} b^{\prime}-a_{1}^{\prime} x_{v} a_{2}^{\prime} \mid v \in V\right\}$. By Lemma 8.2.11(iii) we have

$$
v^{\alpha} e_{0}=v^{\alpha} e_{0}^{\alpha}=\left(v e_{0}\right)^{\alpha}=v e_{0} \quad \text { for all } \quad v \in V .
$$

Letting $x=\sum_{v \in V}^{\perp} x_{v} v$ and recalling that $b^{\prime} e_{0}=b^{\prime}$, we see that

$$
\begin{aligned}
\sum_{v \in V}^{\perp}\left(b^{\prime} x_{v}^{\alpha} b^{\prime}-a_{1}^{\prime} x_{v} a_{2}^{\prime}\right) v & =\sum_{v \in V}^{\perp}\left(b^{\prime} x_{v}^{\alpha} b^{\prime}\right)\left(e_{0} v\right)-a_{1}^{\prime} x a_{2}^{\prime} \\
& =b^{\prime}\left(\sum_{v \in V}^{\perp} x_{v} e_{0} v\right)^{\alpha} b^{\prime}-a_{1}^{\prime} x a_{2}^{\prime} \\
& =b^{\prime}\left[\left(\sum_{v \in V}{ }^{\perp} x_{v} v\right) e_{0}\right]^{\alpha} b^{\prime}-a_{1}^{\prime} x a_{2}^{\prime} \\
& =b^{\prime}\left(\sum_{v \in V}^{\perp} x_{v} v\right)^{\alpha}\left(e_{0} b^{\prime}\right)-a_{1}^{\prime} x a_{2}^{\prime} \\
& =b^{\prime} x^{\alpha} b^{\prime}-a_{1}^{\prime} x a_{2}^{\prime} \in H
\end{aligned}
$$

and hence H is orthogonally complete.
It follows from (8.21) that $\phi_{P}(H)=0$ and so $e H=0$ for some $e \in B \backslash P$ (see Corollary 3.2.4(iii)). Setting

$$
\begin{aligned}
b & =E\left(b^{\prime}\right) E\left(a_{1}^{\prime}\right) E\left(a_{2}^{\prime}\right) e b^{\prime}, \\
a_{1} & =E\left(b^{\prime}\right) E\left(a_{1}^{\prime}\right) E\left(a_{2}^{\prime}\right) e a_{1}^{\prime} \quad \text { and } \\
a_{2} & =E\left(b^{\prime}\right) E\left(a_{1}^{\prime}\right) E\left(a_{2}^{\prime}\right) e a_{2}^{\prime},
\end{aligned}
$$

we see that $b x^{\alpha} b-a_{1} x a_{2}=0$ for all $x \in S$. Further by Theorem 2.3.9(ii) we have that

$$
E(b)=E\left(a_{1}\right)=E\left(a_{2}\right)=E\left(b^{\prime}\right) E\left(a_{1}^{\prime}\right) E\left(a_{2}^{\prime}\right) e \notin P .
$$

Since $u_{1} b^{\prime}=b^{\prime}$, we see that $u_{1} b=b$ and so $u_{1} \geq E(b)$. It is now clear that $\alpha E(b) \in \operatorname{Aut}(E(b) S)$. The proof is thereby complete.

Given $\alpha \in \widehat{G}$, we set

$$
M_{\alpha}=\left\{s \in Q \mid r s=s r^{\alpha} \text { for all } r \in S\right\} .
$$

Lemma 8.2.14 Let $\alpha \in \widehat{G}$. Suppose that there exist $b, a_{1}, a_{2} \in$ S such that $E(b)=E\left(a_{1}\right)=E\left(a_{2}\right)=e \neq 0, \alpha e \in \operatorname{Aut}(e S)$ and

$$
\begin{equation*}
b x^{\alpha} b-a_{1} x a_{2}=0 \quad \text { for all } \quad x \in S . \tag{8.22}
\end{equation*}
$$

Then there exists an element $s \in M_{\alpha}$ such that $E(s)=e, a_{1} s=b$ and $a_{2}=s b$.

Proof. Replacing S by $e S$, we may assume that $e=1$ (whence $E(b)=E\left(a_{1}\right)=E\left(a_{2}\right)=1$) and $\alpha \in \operatorname{Aut}(S)$. Suppose that $a_{2} \notin M_{\alpha} b$. Then a_{2} is left independent of b re $1, \alpha$ (see Section 2.5). By Theorem 2.3.3 there exists $\beta=\sum r_{i} \otimes s_{i} \in$ $S^{\circ} \otimes_{C} S$ such that $a_{2} \cdot \beta \neq 0$ but $b \cdot \beta^{\alpha}=0$. Substituting $x r_{i}$ for x in (8.22) and multiplying by s_{i} from the right, we obtain

$$
b x^{\alpha} r_{i}^{\alpha} b s_{i}-a_{1} x r_{i} a_{2} s_{i}=0
$$

and so

$$
b x^{\alpha}\left(b \cdot \beta^{\alpha}\right)-a_{1} x\left(a_{2} \cdot \beta\right)=0
$$

for all $x \in S$. Since $b \cdot \beta^{\alpha}=0$, we see that $a_{1} x\left(a_{2} \cdot \beta\right)=0$ for all $x \in S$. As $E\left(a_{1}\right)=1$, it follows from Lemma 2.3.10 that $0=E\left(a_{1}\right)\left(a_{2} \cdot \beta\right)=a_{2} \cdot \beta$ in contradiction to the choice of β. Therefore $a_{2} \in M_{\alpha} b$ and so $a_{2}=s b$ for some $s \in M_{\alpha}$. Clearly $E(s) \geq E\left(a_{2}\right)=1$. Hence $E(s)=1$. By Proposition 3.1.12 we have that s is an invertible element of Q_{s} and so $\alpha=\operatorname{inn}(s)$. Now we have $\left(b s^{-1}-a_{1}\right) x s b=b s^{-1} x s b-a_{1} x s b=0$ for all $x \in S$. Applying Lemma 2.3.10, we obtain that $E(s b)\left(b s^{-1}-a_{1}\right)=0$. Since $E(s b)=E(b)=1$, it follows that $b s^{-1}=a_{1}$ and so $b=a_{1} s$. The proof is complete.

The following result will be useful in section 8.4.

Corollary 8.2.15 Let $\alpha \in \widehat{G}(R)$ and $P \in \operatorname{Spec}(B)$. Suppose that $P^{\alpha}=P$. Then $\phi_{P}\left(M_{\alpha}\right)=M_{\alpha_{P}}$ and $\alpha e \in G_{i} e$ for some $e \in B \backslash M$.

Proof. Obviously $\phi_{P}\left(M_{\alpha}\right) \subseteq M_{\alpha_{P}}$. Now suppose that $M_{\alpha \rho} \neq 0$. It follows from Lemma 8.2.13 and Lemma 8.2.14 that there exists an element $s \in M_{\alpha}$ such that $E(s) \notin P$ and $\alpha E(s) \in \operatorname{Aut}(S E(s))$. Hence $\phi_{P}(s) \neq 0$ by Corollary 3.2.4. From Proposition 3.1.12 we know that $M_{\alpha_{P}}$ is a cyclic $\phi_{P}(C)$ module. Since $\phi_{P}(C)$ is a field and $0 \neq \phi_{P}(s) \in M_{\alpha P}$, we conclude that $\phi_{P}\left(M_{\alpha}\right)=M_{\alpha P}$. By Proposition 3.1.12 we have that s is an invertible element of $Q_{s} E(s)$ and so $\alpha E(s)=i n n(s) \in$ $G_{i}\left(Q_{s} E(s)\right)$. Therefore $t=s+1-E(s)$ is an invertible element of Q_{s} and $\alpha E(s)=\operatorname{inn}(t) E(s)$. The proof is thereby complete.

Our final result of this section is important because it makes possible a link between completely distinct elements modulo G_{f} and representatives of $G(\bar{S})$ modulo $G_{f}(\bar{S})$ in certain situations.

Lemma 8.2.16 Let $\alpha \in \widehat{G}(R)$ and $P \in \operatorname{Spec}(B)$. Suppose that $P^{\alpha}=P$ and α_{P} is a Frobenius (anti)automorphism of $\bar{S}=$ $S / P S$. Then there exists an idempotent $e \in B \backslash P$ such that $\alpha e \in G_{f} e$.

Proof. We set

$$
p=\left\{\begin{array}{cll}
\operatorname{char}(\bar{C}) & \text { if } & \operatorname{char}(\bar{C})>0, \\
1 & \text { if } & \operatorname{char}(\bar{C})=0
\end{array}\right.
$$

and $e_{i}=e_{i, \alpha}, i=0,1,2,3$ (see Lemma 8.2.11). By Corollary 8.2.12 we have that $e_{0} \notin P$. Recall that $v^{\alpha}=v$ for all $v \leq e_{0}$ (see Lemma 8.2.11). It follows from our assumptions that there exists a natural number n such that for all $x \in \bar{C}$ either $\alpha_{P}(x)=x^{p^{n}}$ or $\left(\alpha_{P}(x)\right)^{p^{n}}=x$. Accordingly we set H to be equal to either $\left\{\alpha(x)-x^{p^{n}} \mid x \in e_{0} C\right\}$ or $\left\{\alpha(x)^{p^{n}}-x \mid x \in e_{0} C\right\}$. Since $v^{\alpha}=v$ for all $v \leq e_{0}$, one can easily check that H is an
orthogonally complete subset of S. Clearly $\phi_{P}(H)=0$ and so $u H=0$ for some $u \in B \backslash P$ (see Corollary 3.2.4). Next we set T to be equal $\left\{\alpha(x) \alpha(y)-\alpha(x y) \mid x, y \in e_{0} S\right\}$ if α_{P} is an automorphism and $\left\{\alpha(y) \alpha(x)-\alpha(x y) \mid x, y \in e_{0} S\right\}$ if α_{P} is an antiautomorphism of \bar{S}. Again one can easily check that T is an orthogonally complete subset of S and $\phi_{P}(T)=0$. Therefore $v T=0$ for some $v \in B \backslash P$. Setting $e=e_{0} u v$, we see that for all $x \in e C$ either

$$
\alpha(x)=\alpha(e x)=e \alpha(x)=e x^{p^{n}}=x^{p^{n}}
$$

or

$$
(\alpha(x))^{p^{n}}=(\alpha(e x))^{p^{n}}=e(\alpha(x))^{p^{n}}=e x=x
$$

and hence α is a Frobenius (anti)automorphism of $e_{0} S$. We define $\beta: S \rightarrow S$ by the rule $\beta(x)=\alpha(e x)+(1-e) x$ for all $x \in S$. Clearly $\beta \in G_{f}$ and $\alpha e=\beta e$. The proof is complete.

8.3 The Home of \widehat{T}-identities

Let R be a semiprime ring, $S=O(R)$ its orthogonal completion, $Q_{s}=Q_{s}(S)$, and $Q=Q_{m r}(R)=Q_{m r}(S)$. Our first task is to define the notion of \widehat{T}-identity, and it turns out that this may be done in the way it was done for prime rings in Chapter 7. We have already mentioned in section 8.2 (see Remark 8.2 .7 and the comments following it) that the skew group ring $\widehat{T}=\widehat{T}(R)=$ $\widehat{U} \propto \widehat{G}$ can be formed. Proceeding in an analogous fashion to section 7.1 one can readily show that \widehat{T} is a C-ring and that there exists a C-ring homomorphism $\gamma: \widehat{T} \rightarrow \operatorname{End}\left(Q_{s}\right)$ defined in a natural way. Let V be a free right C-module with infinite basis X. We then form the right C-module $V \otimes_{C} \hat{T}$ with scalar multiplication given by

$$
(v \otimes t) c=v \otimes t c, \quad v \in V, c \in C
$$

418 CHAPTER 8. \widehat{T}-IDENTITIES OF SEMIPRIME RINGS

(since C is a commutative ring, the tensor product of right C modules is a right C-module as well). Further we form

$$
\hat{\mathcal{S}}_{m}=Q \coprod_{C} C\left\{V \otimes_{C} \hat{T}\right\}
$$

which we shall call the maximal setting of R (here we are emulating section 7.8 but the reader may feel more comfortable using Q_{s} instead of Q and simply forming the setting $\hat{\mathcal{S}}$ with reference to section 7.1).

A substitution process compatible with $\hat{\mathcal{S}}_{m}$ is described analogously to that in section 7.8 as follows. Let P be a C-algebra with 1 such that
(i) $P \supseteq Q$;
(ii) $P \supseteq K, K$ a C-subalgebra of P;
(iii) There is a C-ring map $\sigma: \widehat{T} \rightarrow \operatorname{End}_{\Phi}(K)$.

Let $\psi: V \rightarrow K$ be any C-module map. Then (as in section 7.1) it can be shown that there is a unique C-algebra map $\widetilde{\psi}: \widehat{\mathcal{S}}_{m} \rightarrow P$ given by $q \mapsto q, q \in Q$, and $v \otimes t \mapsto \psi(v)^{\sigma(t)}, v \in V$, $t \in \widehat{T}$. Such a map will be called a \widehat{T}^{\prime}-substitution determined by ψ relatively to σ. Now let $P=Q, K=Q_{s}$, and $\sigma=\gamma$. Given a nonzero ideal I of R, an element g of $\widehat{\mathcal{S}}_{m}$ is called a \widehat{T}^{\prime}-identity on I if g is mapped to 0 under all \widehat{T}^{\prime}-substitutions $\tilde{\psi}$ for which $\psi(X) \subseteq I$. Further a \widehat{T}^{\prime}-identity $g \in \widehat{\mathcal{S}}_{m}$ on an ideal I of R is said to be strict if $r_{C}(g) \subseteq r_{C}(I)$.

We define the set \widehat{I}_{0} of trivial \widehat{T}^{\prime}-identities of R to be the ideal of $\widehat{\mathcal{S}}_{m}$ generated by all elements of the following two forms:

$$
\begin{aligned}
& \left(C_{1}^{\prime}\right) v \otimes t \mu-[a, v \otimes t], \mu=a d(a) \in D_{i} \\
& \left(C_{2}^{\prime}\right) v \otimes t h-s^{-1}(v \otimes t) s, h=\operatorname{inn}(s) \in G_{i}
\end{aligned}
$$

where $v \in V, t \in \widehat{T}$.
In contrast to the situation for prime rings in Chapter $7 \hat{U}$ has no $P B W$-basis and Q and \widehat{T} need not be free C-modules. As a result the notion of degree and height for elements of $\hat{\mathcal{S}}_{m}$ as well as the notion of (Frobenius) reduced element of $\hat{\mathcal{S}}_{m}$ cannot be defined in the usual way. Fortunately weaker definitions for
these notions can be given which will suffice for our purposes. We now proceed to present these in a rigorous fashion and then, having done so, we will feel free to take some liberty with the notation.

In these last two sections we shall be interested in arbitrary, reduced, and G_{f}-reduced elements of $\widehat{\mathcal{S}}_{m}$. It is therefore appropriate to consider respectively the following types of finite sequences:

$$
\begin{align*}
\tau & =\left(\left(x_{1}, \Delta_{1}, \alpha_{1}\right),\left(x_{2}, \Delta_{2}, \alpha_{2}\right), \ldots,\left(x_{n}, \Delta_{n}, \alpha_{n}\right)\right) \tag{8.23}\\
\tau & =\left(\left(x_{1}, \Delta_{1}, \alpha_{1}, v_{1}\right), \ldots,\left(x_{n}, \Delta_{n}, \alpha_{n}, v_{n}\right)\right) \tag{8.24}\\
\tau & =\left(\left(x_{1}, \Delta_{1}, \alpha_{1}, h_{1}, v_{1}\right), \ldots,\left(x_{n}, \Delta_{n}, \alpha_{n}, h_{n}, v_{n}\right)\right) \tag{8.25}
\end{align*}
$$

where $x_{i} \in X, \Delta_{i} \in \hat{U}, \alpha_{i} \in \hat{G}, h_{i} \in G_{f}, v_{i} \in B$. In (8.24) and (8.25) the Δ_{i} 's will be appropriate correct monomials, and the α_{i} 's and h_{i} 's will be appropriate completely independent elements. We then define $\operatorname{deg}(\tau)$ and $h t(\tau)$ in the obvious way, i.e., $\operatorname{deg}(\tau)=n$ and $h t(\tau)=n$ minus the number of distinct x_{i} 's appearing in τ. Any finite sum S_{τ} of elements of the form

$$
a_{0} x_{1}^{\Delta_{1} \alpha_{1}\left(h_{1} v_{1}\right)} a_{1} \ldots x_{n}^{\Delta_{n} \alpha_{n}\left(h_{n} v_{n}\right)} a_{n}
$$

will be called a generalized monomial determined by τ or simply a τ-monomial. For $S_{\tau} \neq 0$ we define $\operatorname{deg}\left(S_{\tau}\right)=\operatorname{deg}(\tau)$ and $h t\left(S_{\tau}\right)=h t(\tau)$. Next let $\rho=\left\{S_{\tau_{1}}, S_{\tau_{2}}, \ldots, S_{\tau_{m}}\right\}$ be a finite subset of distinct τ-monomials and let $f \in \widehat{\mathcal{S}}_{m}$ be such that $f=f_{\rho}=\sum_{i=1}^{m} S_{\tau_{i}}$. We shall call ρ a support of f and refer to f_{ρ} as the representation of f with respect to ρ. Then the $\rho-\operatorname{deg} f=$ $\max \left\{\operatorname{deg}\left(S_{\tau}\right) \mid 0 \neq S_{\tau} \in \rho\right\}$ and the $\rho-h t(f)=\max \left\{h t\left(S_{\tau}\right) \mid 0 \neq\right.$ $\left.S_{\tau} \in \rho\right\}$. It will also be useful to define $M_{\rho}(f)=|\rho|=m$. Since the same element f may have many different supports, it will of course have many different ρ-degrees and ρ-heights attached to it. When the context is clear (i.e., when a particular support has been determined) we will often simply write $f, \operatorname{deg}(f), h t(f)$, $M(f)$ in place of, respectively, $f_{\rho}, \rho-\operatorname{deg}(f), \rho-h t(f), M_{\rho}(f)$.

An element $g \in \widehat{\mathcal{S}}_{m}$ is called reduced if there is a strongly independent subset \mathcal{M} of $D(R)$ such that $g=\sum S_{\tau}, \tau$ of the form (8.24), where
$\left(R_{1}\right)$ Every Δ_{j} is a correct monomial in \mathcal{M};
$\left(R_{2}\right) 0 \neq v_{t} \leq E\left(\Delta_{j}\right)^{\alpha_{k}}$ for each $x^{\Delta_{j} \alpha_{k} v_{t}}$ involved in g;
$\left(R_{3}\right) \alpha_{k_{1}}, \alpha_{k_{2}}$ are completely distinct on $v_{t_{1}} v_{t_{2}}$ modulo G_{i} for all $x^{\Delta_{1} \alpha_{k_{1}} v_{l_{1}}}$ and $x^{\Delta_{j_{2}} \alpha_{k_{2}} v_{L_{2}}}$ involved in g such that $k_{1} \neq k_{2}$.

Similarly, an element $g \in \widehat{\mathcal{S}}_{m}$ is called G_{f}-reduced if there is a strongly independent subset \mathcal{M} of $D(R)$ such that $g=\sum S_{\tau}$, τ of the form (8.25), where
$\left(G R_{1}\right)$ Every Δ_{j} is a correct monomial in \mathcal{M};
$\left(G R_{2}\right) v_{t} \leq E\left(\Delta_{j}\right)^{\alpha_{k}}$ for all $x^{\Delta_{j} \alpha_{k} h_{l} v_{t}}$ involved in g;
$\left(G R_{3}\right) \alpha_{k_{1}}$ and $\alpha_{k_{2}}$ are completely distinct on $v_{t_{1}} v_{t_{2}}$ modulo G_{f} for all $x^{\Delta_{j} \alpha_{1} k_{1} h_{1} v_{t_{1}}}$ and $x^{\Delta_{j_{2}} \alpha_{k_{2}} h_{2} v_{t_{2}}}$ involved in g such that $k_{1} \neq k_{2}$;
$\left(G R_{4}\right) h_{l_{1}}$ and $h_{l_{2}}$ are completely distinct on $v_{t_{1}} v_{t_{2}}$ modulo G_{i} for all $x^{\Delta_{j_{1}} \alpha_{k_{1}} h_{l_{1}} v_{i_{1}}}$ and $x^{\Delta_{j_{2}} \alpha_{k_{2}} h_{2} v_{2}}$ involved in g such that $l_{1} \neq l_{2}$.
Since $G_{i} \subseteq G_{f}$, we conclude from $\left(G R_{2}\right)$ and $\left(G R_{3}\right)$ that $\alpha_{k_{1}} f_{l_{1}}$ and $\alpha_{k_{2}} f_{l_{2}}$ are completely distinct on $v_{t_{1}} v_{t_{2}}$ modulo G_{i} for all $x^{\Delta_{j_{1}} \alpha_{k_{1}} h_{1} v_{1} v_{1}}$ and $x^{\Delta_{j_{2}} \alpha_{k_{2}} h_{t_{2}} v_{t_{2}}}$ involved in g such that $\left(k_{1}, l_{1}\right) \neq$ $\left(k_{2}, l_{2}\right)$. Therefore every G_{f}-reduced element $g \in \widehat{\mathcal{S}}_{m}$ is reduced.

Recall that $c \alpha=\alpha c^{\alpha}$ for all $c \in C$ and $\alpha \in \widehat{G}$. Further

$$
x^{\Delta \alpha} c=x^{\Delta \alpha c}=x^{\Delta c^{\alpha^{-1}} \alpha}
$$

for all $x \in X, \Delta \in \hat{U}, \alpha \in \widehat{G}, c \in C$. Therefore, for any τ as given in (8.23), we have

$$
\begin{equation*}
r_{C}\left(S_{\tau}\right) \supseteq \sum_{i=1}^{n} r_{C}\left(\Delta_{i}\right)^{\alpha_{i}} \tag{8.26}
\end{equation*}
$$

We now prove the main result of this section.
Theorem 8.3.1 Let $f \in \hat{\mathcal{S}}_{m}$ be a \hat{T}^{\prime}-identity on $I \triangleleft R$. Then there exists a reduced \widehat{T}^{\prime}-identity $g \in \hat{\mathcal{S}}_{m}$ on I such that $f-g \in$ \hat{I}_{0}.

Proof. We choose a subset $\mathcal{M}=\left\{\nu_{j} \mid 1 \leq j \leq r\right\}$ and a natural number s such that f is expressible in the form $f=$ $f\left(x_{q}^{\Theta_{l} c_{m} \alpha_{i}}\right), x_{q} \in X$, where $c_{m} \in C, \alpha_{i} \in \widehat{G}$, the Θ_{l} 's are monomials in \mathcal{M} and $\operatorname{deg} \Theta_{l} \leq s$. Since
$x_{q}^{\Theta_{l} c_{m} \alpha_{i}}=x_{q} \otimes \Theta_{l} c_{m} \alpha_{i}=x_{q} \otimes \Theta_{l} \alpha_{i} c_{m}^{\alpha_{i}}=\left(x_{q} \otimes \Theta_{l} \alpha_{i}\right) c_{m}^{\alpha_{i}}=x_{q}^{\Theta_{l} \alpha_{i}} c_{m}^{\alpha_{i}}$,
the \widehat{T}^{\prime}-identity f can be written in the form $f=f^{\prime}\left(x_{q}^{\Theta_{l} \alpha_{i}}\right)$ for some f^{\prime}. Applying Proposition 8.1 .8 we obtain that there exist a strongly independent subset $\mathcal{M}_{0} \subseteq D(R)$ and a finite subset $\mathcal{M}_{i} \subseteq D_{i}$ such that any monomial Θ_{l} is a right C-linear combination of the monomials of the form $\Delta \Omega$ where Δ is a correct monomial in \mathcal{M}_{0} and Ω is a monomial in \mathcal{M}_{i}. By Remark 8.2.7 we see that $\alpha_{i}^{-1} \mathcal{M}_{i} \alpha_{i} \subseteq D_{i}$ for all i. Therefore f is equivalent modulo \widehat{I}_{0} to a \widehat{T}^{\prime}-identity f^{\prime} of the form $f^{\prime}=f^{\prime}\left(x_{q}^{\Delta_{j} \alpha_{i}}\right)$ where the Δ_{j} 's are correct monomials in \mathcal{M}_{0}. Next applying Proposition 8.2.9(ii) (with $H=G_{i}$) to the set of all the α_{i} 's and using the equalities of the form $x^{t_{1}+t_{2}}=x^{t_{1}}+x^{t_{2}}$ where $t_{1}, t_{2} \in \widehat{T}$, we obtain that f^{\prime} can be written in the form $f^{\prime}=f^{\prime}\left(x_{q}^{\Delta_{j} \alpha_{s} h_{i s} u_{i s}}\right)$ where $s \leq i$ and $h_{i s} \in G_{i}$. Hence f^{\prime} is equivalent modulo \hat{I}_{0} to a \hat{T}^{\prime}-identity g of the form $g=g\left(x_{q}^{\Delta_{j} \alpha_{s} u_{i s}}\right)$. Since $\Delta_{j}=\Delta_{j} E\left(\Delta_{j}\right)$ and $E\left(\Delta_{j}\right) \alpha_{s}=\alpha_{s} E\left(\Delta_{j}\right)^{\alpha_{s}}$, replacing $u_{i s}$ by $u_{i s} E\left(\Delta_{j}\right)^{\alpha_{s}}$ we may assume that $u_{i s} \leq E\left(\Delta_{j}\right)^{\alpha_{s}}$ for all $x_{q}^{\Delta_{j} \alpha_{s} u_{i s}}$ involved in g. Now we infer from Proposition 8.2.9(ii) and (iv) that g is a reduced \widehat{T}^{\prime}-identity on I and the proof is thereby complete.

The following theorem is proved analogously to that of Theorem 8.3.1.

Theorem 8.3.2 Let $f \in \hat{\mathcal{S}}_{m}$ be a \hat{T}^{\prime}-identity on $I \triangleleft R$. Then there exists a G_{f}-reduced \widehat{T}^{\prime}-identity $g \in \widehat{\mathcal{S}}_{m}$ on I such that $f-g \in \widehat{I}_{0}$.

Finally, we touch very briefly on the situation where we are only interested in the group $G^{*}=A u t(S)$ rather than in the
group \widehat{G}. The development and arguments being very similar to those used in the preceding exposition, we shall leave all details to the reader. One forms the skew group ring $\widehat{T}^{*}=\hat{U} \propto G^{*}$, shows that there exists a C-ring homomorphism $\gamma^{*}: \widehat{T}^{*} \rightarrow$ $\operatorname{End}(Q)$ in a natural way, and defines the $*$-maximal setting of R to be

$$
\hat{\mathcal{S}}_{m}^{*}=Q \coprod_{C} C\left\{V \otimes_{C} \hat{T}^{*}\right\}
$$

One then defines the notions of \widehat{T}^{*}-substitution and \hat{T}^{*}-identity (see section 7.8). Set $G_{f}^{*}(R)=G_{f}(R) \cap G^{*}(S)$. The concept of a G_{f}^{*}-reduced element of $\hat{\mathcal{S}}_{m}^{*}$ is introduced analogously to that of a G_{f}-reduced element of $\widehat{\mathcal{S}}_{m}$. Next we define the set \hat{I}_{0}^{*} of trivial \widehat{T}^{*}-identities of R to be the ideal of $\widehat{\mathcal{S}}_{m}^{*}$ generated by all elements of the forms given by $\left(C_{1}^{\prime}\right)$ and $\left(C_{2}^{\prime}\right)$. We close this section with the following theorem which is proved similarly to that of Theorem 8.3.1

Theorem 8.3.3 Let $f \in \widehat{\mathcal{S}}_{m}^{*}$ be a \widehat{T}^{*}-identity on $I \triangleleft R$. Then there exists a G_{f}^{*}-reduced \widehat{T}^{*}-identity $g \in \widehat{\mathcal{S}}_{m}^{*}$ on I such that $f-g \in \hat{I}_{0}^{*}$.

8.4 Semiprime Rings with \widehat{T} '-identities

We are now in a position to prove the analogues of the main results of Chapter 7 for semiprime rings. We begin with

Theorem 8.4.1 Let I be a nonzero ideal of R and let $f \in \widehat{\mathcal{S}}_{m}$ be a \widehat{T}^{\prime}-identity on I. Then f is a \widehat{T}^{\prime}-identity on $E(I) Q_{s}$.

Proof. Let $f=f_{\rho}$ where ρ is some support of f. We write $f=f\left(x_{i}^{\Delta_{j} \alpha_{k}}\right)$ where $x_{i} \in X, i=1,2, \ldots, n, \Delta_{j} \in \widehat{U}, \alpha_{k} \in \widehat{G}$, and $\left\{\alpha_{1}, \ldots, \alpha_{m}\right\} \subseteq \widehat{G}$ are all the elements of \widehat{G} appearing in f_{ρ}.
(The notation is suggestive of the fact that $\left(x_{i}, \Delta_{j}, \alpha_{k}\right)$ appears in some τ where $S_{\tau} \in \rho$). Given $1 \leq i \leq n$ we let A_{i} to be the set of all α_{k} 's such that $x_{i}^{\Delta_{j} \alpha_{k}}$ is involved in f_{ρ} for some $j=j(i, k)$. We define
$N_{I}\left(f_{\rho}\right)=\sum_{i=1}^{n} \mid\left\{\left(\alpha^{\prime}, \alpha^{\prime \prime}\right) \in A_{i} \times A_{i} \mid e^{\alpha^{\prime}} \neq e^{\alpha^{\prime \prime}}\right.$ for some $\left.e \leq E(I)\right\} \mid$
Of course $N_{I}(f)=N_{I}\left(f_{\rho}\right)$ depends on the support ρ. Supposing that our theorem is not true, we let F to be the set of all pairs (J, g, σ) such that:
(1) J is an nonzero ideal of R;
(2) $g \in \hat{\mathcal{S}}_{m}$ is a \widehat{T}^{\prime}-identity on J with support σ;
(3) our theorem is not valid for the triple (J, g, σ).

We set

$$
\begin{aligned}
& F_{1}=\{(J, g, \sigma) \in F \mid \sigma-h t(g)+\sigma-\operatorname{deg}(g) \text { is minimal }\}, \\
& F_{2}=\left\{(J, g, \sigma) \in F_{1} \mid N_{J}(g) \text { is minimal }\right\}, \text { and } \\
& F_{3}=\left\{(J, g, \sigma) \in F_{2} \mid M_{\sigma}(g) \text { is minimal }\right\} .
\end{aligned}
$$

Since our theorem is not valid for $(I, f, \rho), F_{3} \neq \emptyset$. Let $(J, g, \sigma) \in F_{3}$. Write $g=g\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ where $x_{1}, x_{2}, \ldots, x_{n} \in$ X are all the variables involved in g. We make the following general remark. In what follows we shall transform g into some other \widehat{T}^{\prime}-identities ($g^{\prime}, g-g^{\prime}, h, g_{1}$ and so on). In all cases it will be clear how the support σ of g induces a support of corresponding identity. With this remark in mind we shall use the simplified notations for degree, height and so on. We now claim that g vanishes under the substitution $x_{i} \mapsto 0, x_{j} \mapsto x_{j}, j \neq i$, where $1 \leq i \leq n$ is fixed. Indeed, if g^{\prime} is the result of this substitution, then g^{\prime} and $g-g^{\prime}$ are \widehat{T}^{\prime}-identities on J and so they are \widehat{T}^{\prime}-identities on $E(J) Q_{s}$ because $M\left(g^{\prime}\right), M\left(g-g^{\prime}\right)<M(g)$. But then we have a contradiction to the choice of (J, g, σ). Thus our claim is established. It follows that every τ-monomial of g involves all the variables $x_{1}, x_{2}, \ldots, x_{n}$.

Next we claim that $n=1$. Indeed, let $0 \leq i<n$ be such number that $g\left(q_{1}, \ldots, q_{i}, r_{i+1}, \ldots, r_{n}\right)=0$ for all $q_{1}, \ldots, q_{i} \in$ $E(J) Q_{s}$ and $r_{i+1}, \ldots, r_{n} \in J$ but $g\left(p_{1}, \ldots, p_{i+1}, s_{i+2}, \ldots, s_{n}\right) \neq 0$ for some $p_{1}, \ldots, p_{i+1} \in E(J) Q_{s}$ and $s_{i+2}, \ldots, s_{n} \in J$. Setting $h(x)=g\left(p_{1}, \ldots, p_{i}, x, s_{i+2}, \ldots, s_{n}\right)$, we note that by the above result $\operatorname{deg}(h)<\operatorname{deg}(g)$. Further $(J, h, \theta) \in F$ (where θ is a support of h induced by σ) and we have:

$$
\begin{aligned}
h t(h)+\operatorname{deg}(h) & <h t(g)+\operatorname{deg}(g) \\
N_{J}(h) & \leq N_{J}(g) \quad \text { and } \\
M(h) & \leq M(g)
\end{aligned}
$$

a contradiction to the choice of $(J, g \sigma)$. Therefore $n=1$ and we can write $g=g(x)$.

We claim now that $N_{J}(g)>0$. Indeed, let $N_{J}(g)=0$. We write $g=g\left(x^{\Delta_{j} \alpha_{k}}\right)$ where $\left\{\Delta_{1}, \ldots, \Delta_{l}\right\} \subseteq \hat{U}$ and $A=$ $\left\{\alpha_{1}, \ldots, \alpha_{m}\right\} \subseteq \widehat{G}$ are all the elements of \widehat{U} and \widehat{G} appearing in g. Then fixing some $\beta \in A$, we conclude that

$$
v^{\beta}=v^{\alpha}
$$

for all $v \leq e=E(J), \alpha \in A$. We show that g is a \hat{T}^{\prime}-identity on $O(J)$. Let $r \in O(J)$. It is enough to show that g vanishes under the substitution $x \mapsto r$. To this end we recall from Proposition 3.1.14 that $r=\sum_{v \in V}^{\perp} r_{v} v$ where V is a dense orthogonal subset of B and $r_{v} \in J$ for all $v \in V$. Applying Remark 3.1.16 we obtain that

$$
r^{\Delta_{j} \alpha_{k}}=\sum_{v \in V}{ }^{\perp} r_{v}^{\Delta_{j} \alpha_{k}} v^{\alpha_{k}}=\sum_{v \in V}{ }^{\perp} r_{v}^{\Delta_{j} \alpha_{k}} v^{\beta}
$$

where $\alpha_{k} \in A$. (Since $\alpha_{k}=\alpha \beta, \alpha \in G, \beta=\sum_{u \in U}^{\perp} \beta_{u} u \in G_{f}$ one may apply Remark 3.1.16 to each β_{u} acting on $S u$). Setting $W=V^{\beta}$ and $r_{w}=r_{v}$ for $w=v^{\beta}$, we infer from Remark 3.1.8 and Remark 3.1.9 that

$$
g\left(r^{\Delta_{j} \alpha_{k}}\right)=\sum_{w \in W}{ }^{\perp} g\left(r_{w}^{\Delta_{j} \alpha_{k}}\right) w=0
$$

and hence g is a \widehat{T}^{\prime}-identity on $O(J)$. Setting

$$
\Delta_{j}^{\prime}=\beta^{-1} \Delta_{j} \beta, \quad \text { and } \quad \dot{\gamma}_{k}=\beta^{-1} \alpha_{k}
$$

we note that $\left(v^{\beta}\right)^{\gamma_{k}}=v^{\alpha_{k}}=v^{\beta}$ for all $v \leq E(J)$. Since $E\left(J^{\beta}\right)=$ $E(J)^{\beta}$, we conclude that $u^{\gamma_{k}}=u$ for all $u \leq E\left(J^{\beta}\right)$. Let

$$
h\left(x^{\Delta_{j}^{\prime} \gamma_{k}}\right)=g\left(x^{\beta^{-1} \Delta_{j} \alpha_{k}}\right) .
$$

Then h is a \widehat{T}^{\prime}-identity on $O(J)^{\beta}=O\left(J^{\beta}\right)$. Clearly g is a \widehat{T}^{\prime} identity on $E(J) Q_{s}$ if and only if h is a \widehat{T}^{\prime}-identity on $E\left(J^{\beta}\right) Q_{s}$. Therefore without loss of generality we can assume that $\beta=1$ and $v^{\alpha}=v$ for all $v \leq E(J)$ and $\alpha \in A$. It follows that

$$
g\left((E(J) x)^{\Delta_{j} \alpha_{k}}\right)=E(J) g\left(x^{\Delta_{j} \alpha_{k}}\right)
$$

Since $E(J) q=q$ for all $q \in E(J) Q_{s}$, we conclude that g is a \widehat{T}^{\prime}-identity on $E(J) Q_{s}$ if and only if $E(J) g$ is a \widehat{T}^{\prime}-identity on Q_{s}. Replacing g by $E(J) g$ we can assume that $E(J) g=g$.

Let $M \in \operatorname{Spec}(B)$ with $E(J) \notin M$. Then by Corollary 8.2.12, $M^{\alpha}=M$ for all $\alpha \in A$. According to Lemma 8.2.10 each $\alpha_{k} \in A$ induces an (anti)automorphism $\overline{\alpha_{k}}$ of $\bar{S}=S / M S$. Denote by $\overline{\Delta_{j}}$ the canonical image of Δ_{j} in $U(\bar{S})$ and by g^{\prime} the canonical image of g in $\mathcal{S}_{m}(\bar{S})$. Clearly $g^{\prime}=g^{\prime}\left(x^{\overline{\Delta_{j}} \overline{\alpha_{k}}}\right)$ is a T^{\prime}-identity on \bar{S}. It follows from Theorem 7.8 .6 that g^{\prime} is a T^{\prime}-identity on $Q_{s}(\bar{S})$. Since $\overline{Q_{s}} \subseteq Q_{s}(\bar{S})$, we conclude that g^{\prime} is a T^{\prime} identity on $\overline{Q_{s}}$. Therefore $\phi_{M}\left(g\left(q^{\Delta_{j} \alpha_{k}}\right)\right)=0$ for all $q \in Q_{s}$, $M \in \operatorname{Spec}(B)$ with $E(J) \notin M$. Suppose now that $E(J) \in M$. Then $g\left(q^{\Delta_{j} \alpha_{k}}\right)=E(J) g\left(q^{\Delta_{j} \alpha_{k}}\right) \in M Q$ and so $\phi_{M}\left(g\left(q^{\Delta_{j} \alpha_{k}}\right)\right)=0$ for all $q \in Q_{s}, M \in \operatorname{Spec}(B)$. It follows that g is a \hat{T}^{\prime}-identity on Q_{s}, a contradiction. Therefore $N_{J}(g)>0$.

Next we recall that g is called additive on $E(J) Q_{s}$ if for all $r, s \in E(J) Q_{s}$ we have

$$
g\left((r+s)^{\Delta_{j} \alpha_{k}}\right)=g\left(r^{\Delta_{j} \alpha_{k}}\right)+g\left(s^{\Delta_{j} \alpha_{k}}\right)
$$

Supposing that g is additive on $E(J) Q_{s}$, we show that g is a \hat{T}^{\prime} identity on $E(J) Q_{s}$. Since $N_{J}(g)>0$, after a suitable renumbering of $\alpha_{1}, \ldots, \alpha_{m}$ we may assume that $v^{\alpha_{1}} \neq v^{\alpha_{2}}$ for some $v \leq e=E(J)$ and $\alpha_{1}, \alpha_{2} \in A$. Applying Lemma 8.2.11 to $\alpha_{1} \alpha_{2}^{-1}$, we find pairwise orthogonal idempotents $e_{0}, e_{1}, e_{2}, e_{3} \in B$ such that $e_{0}+e_{1}+e_{2}+e_{3}=1, v^{\alpha_{1} \alpha_{2}^{-1}}=v$ for all $v \leq e_{0}$ and $e_{i}^{\alpha_{1} \alpha_{2}^{-1}} e_{i}=0$ for all $i=1,2,3$. Therefore

$$
\begin{align*}
v^{\alpha_{1}} & =v^{\alpha_{2}} \text { for all } v \leq e_{0} \tag{8.27}\\
e_{i}^{\alpha_{1}} e_{i}^{\alpha_{2}} & =0 \text { for all } i=1,2,3 \tag{8.28}
\end{align*}
$$

Now we set
$g_{1}=$ the sum of all τ-monomials of g which involve $x^{\Delta_{j} \alpha_{1}}$ but do not involve $x^{\Delta_{k} \alpha_{2}}, \Delta_{j}, \Delta_{k} \in \widehat{U}$;
$g_{2}=$ the sum of all τ-monomials of g which involve $x^{\Delta_{j} \alpha_{2}}$ but do not involve $x^{\Delta_{k} \alpha_{1}}, \Delta_{j}, \Delta_{k} \in \widehat{U}$;
$g_{3}=$ the sum of all τ-monomials of g which involve both $x^{\Delta_{j} \alpha_{1}}$ and $x^{\Delta_{k} \alpha_{2}}, \Delta_{j}, \Delta_{k} \in \hat{U}$;
$g_{4}=$ the sum of all τ-monomials of g which do not involve either $x^{\Delta_{j} \alpha_{1}}$ or $x^{\Delta_{k} \alpha_{2}}, \Delta_{j}, \Delta_{k} \in \hat{U}$.

Clearly $g=g_{1}+g_{2}+g_{3}+g_{4}$ and $M(g)=M\left(g_{1}\right)+M\left(g_{2}\right)+$ $M\left(g_{3}\right)+M\left(g_{4}\right)$. Now we choose a dense ideal K of R such that $e_{i} K \subseteq R$ for all $i=0,1,2,3$ and set $K_{i}=e_{i} K J$. Clearly K_{i} is an ideal of R and $K_{0} \oplus K_{1} \oplus K_{2} \oplus K_{3}=K J$. Therefore $E(K J)=E\left(K_{0}\right)+E\left(K_{1}\right)+E\left(K_{2}\right)+E\left(K_{3}\right)$. Since K is a dense ideal of R, one can easily show that $r_{C}(K J)=r_{C}(J)$ and so $E(K J)=E(J)$. In view of additivity of g on $E(J) Q_{s}$, it is enough to show that g is a \hat{T}^{\prime}-identity on $E\left(K_{i}\right) Q_{s}$ for all $i=0,1,2,3$. To this end we note that $E\left(K_{i}\right) \leq e_{i}$ for all $i=0,1,2,3$ by Theorem 2.3.9(ii) because $K_{i}=e_{i} K J$. Recalling that $v^{\alpha_{1}}=v^{\alpha_{2}}$ for all $v \leq e_{0}$, we obtain that $N_{K_{0}}(g) \leq N_{J}(g)-1$.

By the choice of (J, g, σ) we have that g is a \hat{T}^{\prime}-identity on $E\left(K_{0}\right) Q_{s}$. Further suppose that $g_{3} \neq 0$. Since $e_{i}^{\alpha_{1}} e_{i}^{\alpha_{2}}=0$ for all $i=1,2,3$, we conclude that g_{3} is a. \widehat{T}^{\prime}-identity on $e_{i} Q_{s}$ (and so $g-g_{3}$ is a \hat{T}^{\prime}-identity on K_{i}). On the other hand, since $M\left(g-g_{3}\right)<M(g)$, we infer from the choice of (J, g, σ) that $g-g_{3}$ is a \hat{T}^{\prime}-identity on $E\left(K_{i}\right) Q_{s}$. Then $g=g-g_{3}+g_{3}$ is a \widehat{T}^{\prime}-identity on $E\left(K_{i}\right) Q_{s}, i=1,2,3$. Hence g is a \widehat{T}^{\prime}-identity on $E(J) Q_{s}$ which contradicts the choice of (J, g, σ). Therefore $g_{3}=0$ and $g=g_{1}+g_{2}+g_{4}$. As $\alpha_{1}, \alpha_{2} \in A$, we see that $g_{1} \neq 0 \neq g_{2}$. Recalling that $e_{i} x=x$ for all $x \in K_{i}$ we infer that

$$
g_{1}(x)=g_{1}\left(e_{i} x\right)=e_{i}^{\alpha_{1}} g_{1}\left(e_{i} x\right)=e_{i}^{\alpha_{1}} g_{1}(x)
$$

for all $x \in K_{i}, i=1,2,3$. Analogously one can show that $g_{2}(x)=e_{i}^{\alpha_{2}} g_{2}(x)$ for all $x \in K_{i}, i=1,2,3$. Since $e_{i}^{\alpha_{1}} e_{i}^{\alpha_{2}}=0$ for $i=1,2,3$, we conclude that $e_{i}^{\alpha_{1}} g_{2}$ (and so $e_{i}^{\alpha_{1}} g_{1}+e_{i}^{\alpha_{1}} g_{4}$) is a is \widehat{T}^{\prime}-identity on $K_{i}, i=1,2,3$. Since $M\left(e_{i}^{\alpha_{1}} g_{2}\right)<M(g)$ and $M\left(e_{i}^{\alpha_{1}} g_{1}+e_{i}^{\alpha_{1}} g_{3}\right)<M(g)$, we conclude that they are \hat{T}^{\prime}-identities on $E\left(K_{i}\right) Q_{s}$. Therefore $e_{i}^{\alpha_{1}} g$ is a \widehat{T}^{\prime}-identity on $E\left(K_{i}\right) Q_{s}$. On the other hand $\left(1-e_{i}^{\alpha_{1}}\right) g_{1}$ (and hence $\left(1-e_{i}^{\alpha_{1}}\right) g_{2}+\left(1-e_{i}^{\alpha_{1}}\right) g_{3}$) is a \widehat{T}^{\prime}-identity on K_{i}. So they are \widehat{T}^{\prime}-identities on $E\left(K_{i}\right) Q_{s}$. Therefore $\left(1-e_{i}^{\alpha_{1}}\right) g$ is a \hat{T}^{\prime}-identity on $E\left(K_{i}\right) Q_{s}$. It is clear now that g is a \widehat{T}-identity on $E\left(K_{i}\right) Q_{s}$. Therefore g is a \widehat{T}^{\prime} identity on $E(K) Q_{s}=E(J) Q_{s}$ which contradicts the choice of (J, g, σ). Thus g is not additive on $E(J) Q_{s}$. In particular g is not multilinear and $h t(g)>0$.

Let $y \in X$ be any variable distinct from x. We consider $q(y)=g(x+y)-g(x)-g(y)$. Obviously q is a \widehat{T}^{\prime}-identity on J and $h t(q)<h t(g)$. Therefore q is a \widehat{T}^{\prime}-identity on $E(J) Q_{s}$ and so g is additive on $E(J) Q_{s}$, a contradiction. The proof is complete.

Analogously one can prove the following
Theorem 8.4.2 Let I be a nonzero ideal of R and let $f \in \widehat{\mathcal{S}}_{m}^{*}$ be a \widehat{T}^{*}-identity on I. Then f is a \widehat{T}^{*}-identity on $E(I) Q_{s}$.

The following technical lemma will be needed in the proofs of the remaining theorems.

Lemma 8.4.3 Let $A=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right\} \subseteq \widehat{G}, M \in \operatorname{Spec}(B)$, and $\left\{M_{1}, M_{2}, \ldots, M_{r}\right\}=\left\{M^{\alpha^{-1}} \mid \alpha \in A\right\}$ where $M_{i} \neq M_{j}$ for $1 \leq i \neq j \leq r$. Choose $\beta_{1}, \beta_{2}, \ldots, \beta_{r} \in A$ such that each $M_{i}=$ $M^{\beta_{i}^{-1}}$, let $\beta_{i_{k}}$ denote the unique β_{j} for which $M^{\alpha_{k}^{-1}}=M^{\beta_{i_{k}}^{-1}}$, and set $\alpha_{k}=\beta_{i_{k}} \gamma_{k}$. Furthermore let $\Delta \in \widehat{U}, h \in G_{f}, v \in B$, and let $z_{1}, z_{2}, \ldots, z_{r}$ be distinct variables in X. Then there exists $e \in B$ such that

$$
\begin{aligned}
e & \notin M \\
e^{\beta_{i}^{-1}} e^{\beta_{j}^{-1}} & =0 \quad \text { for all } 1 \leq i \neq j \leq r \\
e^{\gamma_{k}} & =e \text { for all } k=1,2, \ldots, m
\end{aligned}
$$

and, if $z=\sum_{i=1}^{r} z_{i} e^{\beta_{i}^{-1}}$ then

$$
e z^{\Delta \alpha_{k} h v}=e z_{i_{k}}^{\Delta \alpha_{k} h v}
$$

Proof. We first note that $M^{\gamma_{k}}=M$. According to Corollary 8.2.12 there exists an idempotent $w_{k} \in B$ such that $w_{k} \notin M$ and $v^{\gamma_{k}}=v$ for all $v \leq w_{k}$. We set $w=w_{1} w_{2} \ldots w_{k}$, and note that $w \notin M$ and $v^{\gamma_{k}}=v$ for all $v \leq w, k=1,2, \ldots, m$. Applying the Chinese Reminder Theorem to the Boolean ring B and distinct maximal ideals $M_{1}, M_{2}, \ldots, M_{r}$, we find idempotents $e_{1}, e_{2}, \ldots, e_{r} \in B$ such that $e_{i} \notin M_{i}$ and $e_{i} \in M_{s}$ for all i, s with $1 \leq i \neq s \leq r$. Replacing each e_{i} by $e_{i} \prod_{s \neq i}\left(1-e_{s}\right)$, we can also assume that $e_{i} e_{s}=0$ for all $i \neq s$. Since $M_{i}^{\beta_{i}}=M$, we see that $e_{i}^{\beta_{i}} \notin M$ and $e_{i}^{\beta_{s}} \in M$ for all $i \neq s$. Set $e=e_{1}^{\beta_{1}} e_{2}^{\beta_{2}} \ldots e_{r}^{\beta_{r}} w$. Then

$$
\begin{align*}
e & \notin M \tag{8.29}\\
e^{\beta_{i}^{-1}} e^{\beta_{s}^{-1}} & =0 \text { for all } i \neq s \tag{8.30}\\
e^{\gamma_{k}} & =e \text { for all } k=1,2, \ldots, m \tag{8.31}
\end{align*}
$$

because $e^{\beta_{i}^{-1}} e^{\beta_{s}^{-1}} \leq e_{i} e_{s}=0$ and $e \leq w_{k}$ for all $k=1,2, \ldots, m$. Finally, we see that

$$
\begin{aligned}
e z^{\Delta \alpha_{k} h v} & =z^{\Delta \alpha_{k} h v e}=z^{\Delta \alpha_{k} e h v} \\
& =z^{\Delta \beta_{i_{k}} \gamma_{k} e h v}=z^{\Delta e^{\beta_{i_{k}}} \beta_{i_{k}} \gamma_{k} h v} \\
& =\left(\sum_{i=1}^{r} z_{i} e^{\beta_{i}^{-1}}\right)^{e^{\beta_{i_{k}}^{-1} \Delta \beta_{i_{k}} \gamma_{k} h v}}=z_{i_{k}}^{\Delta e^{\beta_{i_{k}}} \beta_{i_{k}} \gamma_{k} h v} \\
& =z_{i_{k}}^{\Delta \alpha_{k} h v e}=e z_{i_{k}}^{\Delta \alpha_{k} h v}
\end{aligned}
$$

making use of (8.30) and (8.31). The proof is now complete.
Theorem 8.4.4 Let $0 \neq I \triangleleft R$ and let $f\left(x_{i}^{\Delta \alpha_{k} h_{1} v_{t}}\right)$ be a $G_{f^{-}}$ reduced \widehat{T}^{\prime}-identity on I. Set $u_{k t}=v_{t} E(I)^{\alpha_{k}}$ and choose distinct elements $y_{i j k} \in X$. Then $f\left(y_{i j k}^{h_{l}} u_{k t}\right)$ is a G_{f}-reduced \widehat{T}^{\prime}-identity on Q_{s}.

Proof. In what follows we shall consider G_{f}-reduced $\widehat{T}^{\prime}-$ identities. It will be understood that each identity is reduced with respect to some (attached) support and so we will simply write deg, $h t$ and so on in place of, respectively, ρ-deg, $\rho-h t$ and so on. We shall transform some of these identities into other ones. It will be also understood that the supports of resulting identities are induced by the supports of initial ones in a natural way.

It follows from Theorem 8.4.1 that f is a \widehat{T}^{\prime}-identity on $E(I) Q_{s}$. Hence without loss of generality we can assume that $R=Q_{s}$ and $I=e Q_{s}$ for some $e \in B$. Then $E(I)=e$. Recall that $e^{h_{1}}=e$ for all $e \in B$ (see Corollary 8.2.3). Clearly $f\left(\left(x_{i} e\right)^{\Delta_{j} \alpha_{k} h_{l} v_{t}}\right)$ is a \hat{T}^{\prime}-identity on Q_{s}. Now replacing f by $f\left(x_{i}^{\Delta_{j} \alpha_{k} h_{l} v_{t}} e^{\alpha_{k}}\right)$ we can assume that f is a G_{f}-reduced \widehat{T}^{\prime}-identity (with respect to some representation ρ) on Q_{s}. We show that $f\left(y_{i j k}^{h_{l}} v_{t}\right)$ is a \widehat{T}^{\prime}-identity on Q_{s}. Suppose that the theorem is not
true for f. Let F be the set of all the G_{f}-reduced \hat{T}^{\prime}-identities on Q_{s} for which the theorem does not hold. We set

$$
\begin{aligned}
& F_{1}=\{g \in F \mid \operatorname{deg}(g) \text { is minimal }\}, \text { and } \\
& F_{2}=\left\{g \in F_{1} \mid M(g) \text { is minimal }\right\},
\end{aligned}
$$

and note that $F_{2} \neq \emptyset$. Without loss of generality we can assume that $f \in F_{2}$.

Write $f=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ where $x_{1}, x_{2}, \ldots, x_{n} \in X$ are all the variables involved in f. We claim that g vanishes under the substitution $x_{p} \mapsto 0, x_{q} \mapsto x_{q}, q \neq p$, where $1 \leq p \leq n$ is fixed. Indeed, if g is the result of this substitution, then g and $f-g$ are G_{f}-reduced \widehat{T}^{\prime}-identities on Q_{s}. Clearly $M(g), M(f-g)<$ $M(f)$. Therefore our theorem is valid for g and $f-g$. Hence it is valid for $f=f-g+g$, a contradiction. Thus our claim is established. It follows that every τ-monomial of g involves all the variables $x_{1}, x_{2}, \ldots, x_{n}$.

Next we claim that $n=1$. Suppose that $n>1$. Choose the maximal integer r such that $0 \leq r \leq n$ and $f\left(y_{i j k}^{h_{1}} v_{t}\right)$ vanishes under all the substitutions of the form $y_{i j k} \mapsto q_{i j k}, i \leq r$, and $y_{i j k} \mapsto d_{i}^{\Delta \alpha_{k} h_{l}}, i>r$, where $d_{i}, q_{i j k} \in Q_{s}$. Since $f\left(y_{i j k}^{h_{l}} v_{t}\right)$ is not a \widehat{T}^{\prime}-identity on $Q_{s}, r<n$. Hence $f\left(y_{i j k}^{h_{l}} v_{t}\right)$ does not vanish for some substitution $y_{i j k} \mapsto q_{i j k}, i \leq r+1$, and $y_{i j k} \mapsto d_{i}^{\Delta_{j} \alpha_{k} h_{l}}$, $i>r+1$, where $d_{i}, q_{i j k} \in Q_{s}$. Denote by $h\left(x^{\Delta_{j} \alpha_{k} h_{l v}}\right)$ the element obtained from $f\left(y_{i j k}^{h} v_{t}\right)$ via the substitution $y_{i j k} \mapsto q_{i j k}, i \leq r$, $y_{(r+1) j k} \mapsto x^{\Delta_{j} \alpha_{k} h_{l}}$, and $y_{i j k} \mapsto d_{i}^{\Delta_{j} \alpha_{k} h_{l}}, i>r+1$. Clearly h is a G_{f}-reduced \widehat{T}^{\prime}-identity on Q_{s} and $h\left(q_{(r+1) j k}^{h_{l}} v_{t}\right) \neq 0$. On the other hand, $h\left(x^{\Delta_{j} \alpha_{k} h v_{t}}\right)$ is a G_{f}-reduced \hat{T}^{\prime}-identity on Q_{s} and $\operatorname{deg}(h)<\operatorname{deg}(f)$ because every τ-monomial of f involves each variable x_{i}. By the choice of $f, h\left(y_{j k}^{h_{1}} v_{t}\right)$ is a \widehat{T}^{\prime}-identity on Q_{s}, a contradiction to $h\left(q_{(r+1) j k}^{k_{l}} v_{t}\right) \neq 0$. Thus our claim is proved. We set $x=x_{1}$ and write $f=f\left(x^{\Delta_{j} \alpha_{k} h v_{v}}\right)$. Let $A=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right\}$ and $\left\{\Delta_{1}, \Delta_{2}, \ldots, \Delta_{m^{\prime}}\right\}$ be all the elements of $\widehat{G}(R)$ and $\widehat{U}(R)$ respectively involved in f.

Choose any $q_{j k} \in Q_{s}$. It is enough to show that $f\left(q_{j k}^{h_{l}} v_{t}\right)=0$. It follows from the definition of a Frobenius element and the fact that only a finite number of h_{l} 's are involved in f that there exists a dense orthogonal subset $V \subseteq B$ such that $h_{l} v$ is a Frobenius (anti)automorphism of $S v$ for all $v \in V$ and l. We claim that it is enough to show that $\phi_{M}\left(f\left(q_{j k}^{h_{l}} v_{t}\right)\right)=0$ for all $M \in$ $\operatorname{Spec}(B)$ with $V \nsubseteq M$. Indeed, suppose that $\phi_{M}\left(f\left(q_{j k}^{h_{l}} v_{t}\right)\right)=0$ for all $M \in \operatorname{Spec}(B)$ with $V \nsubseteq M$. Setting $e=E\left(f\left(q_{j k}^{h_{l}} v_{t}\right)\right)$, we infer from Corollary 3.2 .4 that $\phi_{M}\left(f\left(q_{j k}^{h_{1}} v_{t}\right)\right)=0$ if and only if $e \in M$. It follows that the condition $V \nsubseteq M$ implies that $e \in M$. Suppose that $e \neq 0$. Since V is dense, there exists $v \in V$ such that $v e \neq 0$. Choose $M \in \operatorname{Spec}(B)$ such that $v e \notin M$. Then $v, e \notin M$. It follows that $V \nsubseteq M$, but $e \notin M$, a contradiction. Hence $e=0$ and our claim is established.

Fix any $M \in \operatorname{Spec}(B)$ such that $V \nsubseteq M$ and $\phi_{M}\left(f\left(q_{j k}^{h_{l}} v_{t}\right)\right) \neq$ 0 . Suppose first that $M^{\alpha_{i}^{-1}}=M^{\alpha_{j}^{-1}}$ for all $\alpha_{i}, \alpha_{j} \in A$. Then fixing some $\beta \in A$, we see that $M^{\beta^{-1}}=M^{\alpha^{-1}}$ for all $\alpha \in A$. Setting

$$
\Delta_{j}^{\prime}=\beta^{-1} \Delta_{j} \beta, \quad \gamma_{k}=\beta^{-1} \alpha_{k}
$$

we note that $\alpha_{k}=\beta \gamma_{k}$ and

$$
\Delta_{j}^{\prime} \gamma_{k} h_{l} v_{t}=\beta^{-1} \Delta_{j} \alpha_{k} h_{l} v_{t}
$$

Therefore

$$
h\left(x^{\Delta_{j}^{\prime} \gamma_{k} h_{l} v_{t}}\right)=f\left(x^{\beta-1 \Delta_{j} \alpha_{k} h_{l} v_{t}}\right)
$$

is a \hat{T}^{\prime}-identity on Q_{s}. Clearly h is a G_{f}-reduced \hat{T}^{\prime}-identity on Q_{s}. Next we note that $M^{\gamma_{k}}=M$ for all γ_{k}. Therefore γ_{k} induces an (anti)automorphism $\overline{\gamma_{k}}$ of \bar{S} (see Lemma 8.2.10). We now let h^{\prime} be the element of $\widehat{\mathcal{S}}_{m}$ obtained from h by deleting all τ monomials in which some v_{t} with $v_{t} \in M$ appears. We see that h^{\prime} remains a G_{f}-reduced element of $\widehat{\mathcal{S}}_{m}$ (here we note that h^{\prime} is not a \widehat{T}^{\prime}-identity in general). Letting $A^{\prime}=\left\{\gamma_{k} \mid \gamma_{k}\right.$ appears in $\left.h^{\prime}\right\}$, we claim that $\overline{\gamma_{k}} \not \equiv \overline{\gamma_{l}}\left(\bmod G_{f}(\bar{S})\right)$ for all $\gamma_{k} \neq \gamma_{l} \in A^{\prime}$. Indeed,
setting $\gamma=\gamma_{k}^{-1} \gamma_{l}$, suppose $\bar{\gamma} \in G_{i}(\bar{S})$. By Lemma 8.2.16 there is an idempotent $e \in M$ such that $\gamma e=\sigma e$ for some $\sigma \in G_{f}$. But $v_{t^{\prime}}$ and $v_{t^{\prime \prime}}$ (which appear respectively with γ_{k} and γ_{l}) do not belong to M by the definition of h^{\prime} and A^{\prime}, and so $w=$ $e v_{t^{\prime}} v_{t^{\prime \prime}} \notin M$. In particular $w \neq 0$. Thus $\gamma_{k}^{-1} \gamma_{l} w=\sigma w$, or, $\gamma_{l} w=\gamma_{k} \sigma w$, a contradiction to γ_{k}, γ_{l} being completely distinct on $v_{t^{\prime}} v_{t^{\prime \prime}}$ modulo G_{f}. Next, according to Corollary 8.2.3, $e^{h_{l}}=e$ for all $e \in B$ and h_{l} appearing in h. In particular $M^{h_{l}}=M$ and so h_{l} induces an (anti)automorphism $\overline{h_{l}}$ of \bar{S}. Since $V \nsubseteq M, \overline{h_{l}}$ is a Frobenius (anti)automorphism of \bar{S}. We claim that $\overline{h_{l}} \not \equiv$ $\overline{h_{s}}\left(\bmod G_{i}(\bar{S})\right)$ for all $h_{l} \neq h_{s}$ appearing in h^{\prime}. Indeed, letting $g=h_{l}^{-1} h_{s} \in G_{f}$, suppose that $\bar{g}=\operatorname{inn}(b) \in G_{i}(\bar{S})$. Hence $0 \neq b \in M_{\bar{g}}$. By Corollary 8.2.15 ge= ρe for some $\rho \in G_{i}$. Now, from $w=e v_{t^{\prime}} v_{t^{\prime \prime}} \notin M$ we have $h_{l} w=h_{s} \rho w$, in contradiction to h_{l}, h_{s} being completely distinct on $v_{t^{\prime}} v_{t^{\prime \prime}}$ modulo G_{i}. Next we denote by ${\overline{\Delta_{j}}}^{\prime}$ the canonical image of Δ_{j}^{\prime} in $U(D(\bar{S}))$ and by \bar{h}^{\prime} the canonical image of h^{\prime} in $\mathcal{S}_{m}(\bar{S})$. It follows from the definition of h^{\prime} that $\bar{h}^{\prime}=\bar{h}$. Applying Lemma 8.1.7 (i) to $\left\{{\overline{\Delta_{j}}}^{\prime}\right\}$ we see that \bar{h}^{\prime} is a reduced T^{\prime}-identity of \bar{S} (since $\bar{h}^{\prime}=\bar{h}$). It follows from Theorem 7.8.5 that

$$
\phi_{M}\left(f\left(q_{j k}^{h_{l}} v_{t}\right)\right)=\phi_{M}\left(h^{\prime}\left(\left(q_{j k}^{\beta}\right)^{h_{l}} v_{t}\right)\right)=0
$$

a contradiction.
Now let $\left\{M_{1}, M_{2}, \ldots, M_{r}\right\}=\left\{M^{\alpha^{-1}} \mid \alpha \in A\right\}$ where $M_{i} \neq$ M_{j} for $1 \leq i \neq j \leq r$. By the above result $r>1$. With reference to Lemma 8.4.3 (and its notations) we set $z=\sum_{i=1}^{r} z_{i} e^{\beta_{i}^{-1}}$ (z_{i} 's are distinct elements of X) and $g=e f\left(z_{i_{k}}^{\Delta_{j} \alpha_{k} h_{l} v_{t}}\right)$. By Lemma 8.4.3 e $\notin M$ and g is a G_{f}-reduced \widehat{T}^{\prime}-identity on Q_{s}. Clearly $M(g) \leq M(f)$ and $\operatorname{deg}(g) \leq \operatorname{deg}(f)$. Suppose that our theorem is valid for g, that is $e \bar{f}\left(y_{i_{k} j k}^{h_{l}} v_{t}\right)$ is a \widehat{T}^{\prime}-identity on Q_{s}. Then making use of the substitution $y_{i_{k} j k} \mapsto q_{j k}$ we see that ef $\left(q_{j k}^{h_{1}} v_{t}\right)=0$. Since $e \notin M, \phi_{M}(e)=1$ and so $\phi_{M}\left(f\left(q_{j k}^{h} v_{t}\right)\right)=\phi_{M}\left(e f\left(q_{j k}^{h} v_{t}\right)\right)=0$, a contradiction. Hence our
theorem is not valid for g and so $g \in F$. As $M(g) \leq M(f)$ and $\operatorname{deg}(g) \leq \operatorname{deg}(f)$, we conclude that $g \in F_{2}$. Then by the above result $z_{i}=z_{j}$ for all $i, j=1,2, \ldots, r$, a contradiction to $r>1$. The proof is now complete.

There is an analogue of Theorem 8.4.4 for reduced \hat{T}^{\prime}-identities.
Theorem 8.4.5 Let I be a nonzero ideal of R and let $f\left(x_{i}^{\Delta_{j} \alpha_{k} v_{t}}\right)$ be a reduced \widehat{T}^{\prime}-identity on I. Set $u_{k t}=v_{t} E(I)^{\alpha_{k}}$ and choose distinct elements $y_{i j} \in X$. Then $f\left(y_{i j}^{\alpha_{k}} u_{k t}\right)$ is a reduced \hat{T}^{\prime} identity on Q_{s}. Furthermore if f is a strict \widehat{T}^{\prime}-identity on R, then $f\left(y_{i j}^{\alpha_{k}} v_{t}\right)$ is a strict \hat{T}^{\prime}-identity on Q_{s}.

Proof. The proof essentially follows the same series of steps as in the proof of Theorem 8.4.4 but is simpler because only G_{i} (rather than both G_{i} and G_{f}) is involved. Because of this we omit the details and merely indicate any adjustments and simplifications are to be made. We first make an observation in case R is prime. We write $\alpha_{k}=\beta_{k} h_{k}$ where $h_{k} \in G_{f}$ and for all k, r either $\beta_{k}=\beta_{r}$ or $\beta_{k} \notin \beta_{r} G_{f}$. Choose distinct $z_{i j \beta_{k}} \in X$. Then applying Theorem 7.8.6 to the reduced T^{\prime}-identity $f\left(x_{i}^{\Delta_{j} \beta_{k} h_{k}}\right)$, we conclude that $f\left(z_{i j \beta_{k}}^{h_{k}}\right)$ is a T^{\prime}-identity on Q_{s}. Making use of the substitution $z_{i j \beta_{k}} \mapsto y_{i j}^{\beta_{k}}$, we see that $f\left(y_{i j}^{\alpha_{k}}\right)$ is a T^{\prime}-identity on Q_{s}.

To outline the proof one may assume f is a reduced \widehat{T}^{\prime} identity on Q_{s} such that $f \in F_{2}$ and consequently of the form $f\left(x^{\Delta_{j} \alpha_{k} \nu_{t}}\right)$. Choose any $q_{j} \in Q_{s}$, fix $M \in \operatorname{Spec}(B)$ and suppose $\phi_{M}\left(f\left(q_{j}^{\alpha_{k}} v_{t}\right)\right) \neq 0$. Suppose first (the case $r=1$) that $M^{\alpha_{k}^{-1}}=M^{\beta^{-1}}$ for some fixed β and all α_{k}. Setting $\Delta_{j}^{\prime}=\beta^{-1} \Delta_{j} \beta$ and $\gamma_{k}=\beta^{-1} \alpha_{k}$, we have $h\left(x^{\Delta_{j}^{\prime} \gamma_{k} v_{t}}\right)=f\left(x^{\beta^{-1} \Delta_{j} \alpha_{k} v_{t}}\right)$ is a reduced \widehat{T}^{\prime}-identity on Q_{s}. Using Corollary 8.2.15, one shows that $\overline{\gamma_{l}} \not \equiv \overline{\gamma_{s}}$ modulo $G_{i}(\bar{S})$ for all $\gamma_{l} \neq \gamma_{s}$. Thus $\bar{h}=\bar{h}\left(x^{\overline{\Delta_{j}}} \overline{\bar{\gamma}_{\bar{k}}} \overline{v_{t}}\right)$ is a reduced T^{\prime}-identity on $\overline{Q_{s}}$ whence by the above observation one reaches

434 CHAPTER 8. \widehat{T}-IDENTITIES OF SEMIPRIME RINGS

case $r>1$ with the assistance of Lemma 8.4.3 leads to $g=$ $e f\left(z_{i_{k}}^{\Delta_{j} \alpha_{k} v_{t}}\right)$ being a reduced \widehat{T}^{\prime}-identity on Q_{s}, and a contradiction is reached in the same manner as at the end of the proof of Theorem 8.4.4.

Suppose now that f is strict. Since $E(R)=1$, we conclude that $f\left(y_{i j}^{\alpha_{k}} v_{t}\right)$ is a \widehat{T}^{\prime}-identity on Q_{s}. Since $f\left(x_{i}^{\Delta_{j} \alpha_{k} v_{t}}\right)$ can be obtained from $f\left(y_{i j}^{\alpha_{k}} v_{t}\right)$ via the substitution $x_{i}^{\Delta_{j}}$ for $y_{i j}$, we see that $r_{C}\left(f\left(y_{i j}^{\alpha_{k}} v_{t}\right)\right)=r_{C}\left(f\left(x_{i}^{\Delta_{j} \alpha_{k} v_{t}}\right)\right)=0$. The proof is complete.

The same arguments as in the proof of Theorem 8.4.4 yield the following

Theorem 8.4.6 Let $0 \neq I \triangleleft R$ and let $f\left(x_{i}^{\Delta_{j} \alpha_{k} h_{l} v_{t}}\right)$ be a G_{f}^{*} reduced \widehat{T}^{*}-identity on I. Set $u_{k t}=v_{t} E(I)^{\alpha_{k}}$ and choose distinct elements $y_{i j k} \in X$. Then $f\left(y_{i j k}^{h_{l}} u_{k t}\right)$ is a \widehat{T}^{*}-identity on Q.

Theorem 8.4.7 Let $f\left(x_{i}^{\Delta_{j} \alpha_{k} v_{t}}\right)$ be a strict reduced \widehat{T}^{\prime}-identity on R. Then R has a strict $G P I g \in Q_{C}<X>$.

Proof. Let $A=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}$ be all the elements of $\widehat{G}(R)$ involved in f. Next let $\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ be all the variables involved in f. By Theorem 8.4.1 f is a \widehat{T}^{\prime}-identity on S. In view of Theorem 8.4.5 we can assume that $f=f\left(x_{j}^{\alpha_{k} v_{t}}\right)$. According to Corollary 6.3.10 it is enough to show that $\phi_{M}(S)$ is GPI for all $M \in \operatorname{Spec}(B)$. Fix any $M \in \operatorname{Spec}(B)$ and assume that $\bar{S}=\phi_{M}(S)$ is not $G P I$.

Let $\left\{M_{1}, M_{2}, \ldots, M_{r}\right\}=\left\{M^{\alpha^{-1}} \mid \alpha \in A\right\}$ where $M_{i} \neq M_{j}$ for all $i, j=1,2, \ldots, r$ and $r \geq 1$. Choose $\beta_{1}, \ldots, \beta_{k} \in A$ such that $M^{\beta_{i}^{-1}}=M_{i}$ for $i=1,2, \ldots, r$. It follows from Lemma 8.4.3 applied to each variable x_{j} that there exist $e \notin M$ and $z_{j i_{k}} \in X$ such that ef $\left(z_{j i_{k}}^{\alpha_{k} v_{t}}\right)$ is a \widehat{T}^{\prime}-identity on S and $z_{j i_{k}}=z_{l i_{s}}$ if and only if $j=l$ and $i_{k}=i_{s}$. Note that i_{k} is given by the condition $M^{\alpha_{k}^{-1}}=M^{\beta_{i_{k}}^{-1}}$. Making use of the substitution $z_{j i_{k}} \mapsto z_{j i_{k}}^{\beta_{i_{k}}^{-1}}$, we
obtain that ef $\left(z_{j i_{k}}^{\beta_{i k}^{-1} \alpha_{k} v_{l}}\right)$ is a \widehat{T}^{\prime}-identity on S. Set $\gamma_{i_{k} k}=\beta_{i_{k}}^{-1} \alpha_{k}$. Then $e f\left(z_{j i_{k}}^{\gamma_{i} v_{t}}\right)$ is a \widehat{T}^{\prime}-identity on S. Clearly $M^{\gamma_{i} k}=M$ for all $\gamma_{i_{k} k}$. It follows from Corollary 8.2.12 that there exists an idempotent $w \in B \backslash M$ such that $u^{\gamma_{i} k}=u$ for all $u \leq w$ and $\gamma_{i_{k} k}$. As ew $\notin M, \phi_{M}(e w S)=\phi_{M}(S)$. Therefore replacing S by ewS we may assume that $e w=1$ and so $f\left(z_{j i_{k}}^{\gamma_{i_{k}} v_{t}}\right)$ is a $\widehat{T}^{\prime}-$ identity on S. Furthermore we may assume that $u^{\gamma_{i_{k}}}=u$ for all $u \leq w$ and $\gamma_{i_{k} k}$. Since $f\left(x_{j}^{\alpha_{k} v_{t}}\right)$ can be obtained from $f\left(z_{j i_{k}}^{\gamma_{i} k v_{t}}\right)$ under the substitution $z_{j i_{k}} \mapsto x_{j}^{\beta_{i_{k}}}$,

$$
r_{C}\left(f\left(z_{j i_{k}}^{\gamma_{i_{k}} v_{t}}\right)\right) \subseteq r_{C}\left(f\left(x_{j}^{\alpha_{k} v_{t}}\right)\right)=0
$$

and so $f\left(z_{j i_{k}}^{\gamma_{i k} \nu_{t}}\right)$ is a strict \hat{T}^{\prime}-identity on S. Next, it follows from Lemma 8.2.10(ii) that each $\gamma_{i_{k} k}$ induces an (anti)automorphism $\overline{\gamma_{i_{k} k}}$ of $\bar{S}=\phi_{M}(S)$. Therefore $f\left(z_{j_{i k}}^{\gamma_{i k^{k}} v_{t}}\right)$ induces a nonzero T^{\prime}-identity $\bar{f}\left(z_{j i_{k}}^{\overline{\gamma_{i k} k}} \overline{v_{t}}\right)$ of \bar{S}. Choose any variable $z_{j i_{k}}$ appearing in \bar{f}. First assume that there exist elements $q_{j^{\prime} i_{k^{\prime}}} \in \bar{S}$, $\left(j^{\prime}, i_{k^{\prime}}\right) \neq\left(j, i_{k}\right)$, such that the element $g\left(z_{j i_{k}}^{\overline{\gamma_{k^{\prime} k^{\prime}}}} \overline{v_{t^{\prime}}}\right)$ obtained from $\bar{f}\left(z_{l i_{r}}^{\overline{\gamma_{i r} r}} \overline{v_{t}}\right)$ under the substitution $z_{j^{\prime} i_{k^{\prime}}} \mapsto q_{j^{\prime} i_{k^{\prime}}},\left(j^{\prime}, i_{k^{\prime}}\right) \neq\left(j, i_{k}\right)$, is nonzero. Here we note that the appearance of $z_{j i_{k}}^{\gamma_{k^{\prime} k^{\prime}}}$ in g means that $i_{k^{\prime}}=i_{k}$, i.e., $\gamma_{i_{k^{\prime}} k^{\prime}}=\beta_{i_{k}}^{-1} \alpha_{k^{\prime}}$. Clearly g is a T^{\prime} identity on \bar{S}. We claim that g is a reduced T^{\prime}-identity. Indeed, suppose that both $z_{j i_{k}}^{\overline{\gamma_{k^{\prime} k^{\prime}}}}$ and $z_{j i_{k}}^{\overline{\gamma_{i k} k^{\prime \prime}}}$ are involved in g with $\gamma_{i_{k^{\prime}} k^{\prime}} \neq \gamma_{i_{k^{\prime \prime}} k^{\prime \prime}}$. Then their accompanying idempotents $v_{t^{\prime}}$ and $v_{t^{\prime \prime}}$ do not belong to M and so $v_{t^{\prime}} v_{t^{\prime \prime}} \notin M$. By $\left(R_{3}\right) \alpha_{k^{\prime}}$ and $\alpha_{k^{\prime \prime}}$ are completely distinct on $v_{t^{\prime}} v_{t^{\prime \prime}}$ modulo G_{i}. Hence $\gamma_{i_{k^{\prime}} k^{\prime}}=\beta_{i_{k}}^{-1} \alpha_{k^{\prime}}$ and $\gamma_{i_{k^{\prime \prime}} k^{\prime \prime}}=\beta_{i_{k}}^{-1} \alpha_{k^{\prime \prime}}$ are completely distinct on $v_{t^{\prime}} v_{t^{\prime \prime}}$ modulo G_{i}. Therefore $\gamma_{i_{k^{\prime \prime}} k^{\prime \prime}}^{-1} \gamma_{i_{k^{\prime}} k^{\prime}} u \notin G_{i} u$ for all $u \leq v_{t^{\prime}} v_{t^{\prime \prime}}$. It follows from Corollary 8.2.15 that $\overline{\gamma_{i_{k^{\prime \prime}} k^{\prime \prime}}}-1 \overline{\gamma_{i^{\prime}} k^{\prime}} \notin G_{i}(\bar{S})$ which proves our claim. We conclude now from Theorem 7.8.4 that \bar{S} is $G P I$, a contradiction to our assumption.

By the above result $\bar{f}\left(z_{l_{l_{r}} \overline{\bar{q}_{r}}}^{\overline{v_{t}}}\right)$ vanishes under substitutions $z_{j^{\prime} i_{k^{\prime}}} \mapsto q_{j^{\prime} k_{k^{\prime}}}\left(j^{\prime}, i_{k^{\prime}}\right) \neq\left(j, i_{k}\right)$, where $q_{j^{\prime} k_{k^{\prime}}} \in \bar{S}$. We replace each appearance of $z_{j i_{k}}^{\overline{i_{s}}}\left(\right.$ where $\left.i_{s}=i_{k}\right)$ in \bar{f} by $z_{j i_{k}}$ and denote by g the resulting element. Clearly g is a strict T^{\prime}-identity on \bar{S}. Continuing in this fashion we obtain that $\bar{f}\left(z_{l_{r}} \overline{v_{t}}\right)$ is a nonzero $G P I$ on \bar{S}, a contradiction to our assumption. The proof is complete.

A variant of Theorem 8.4.4 for \widehat{T}^{\prime}-identities of semiprime rings involving no (anti)automorphisms was discovered by Kharchenko in [147, Theorem 2]. Further a version of Theorem 8.4.5 for multilinear \hat{T}^{*}-identities was proved by him in [147, Theorem 4]. To the best our knowledge all the results of this section are new. They were proved by Beidar.

Chapter 9

Applications to Lie Theory

The main goal of this chapter is to present the solution of a long-standing question of Herstein [113] on Lie isomorphisms: if R, R^{\prime} are simple rings with involution with respective skew elements K, K^{\prime} and $\alpha: K \rightarrow K^{\prime}$ is a Lie isomorphism, then can α be extended to an isomorphism $\sigma: R \rightarrow R^{\prime}$? This we accomplish in section 9.4, restricting our attention to involutions of the first kind (to be defined presently) but on the other hand widening the context to prime rings. The reason for including this topic in this book is that, although it would appear on the surface to have no special connection with GPI theory, GPI theory in fact plays a crucial role in key parts of the proof. In preparation for this, and also another application of GPI theory, we redo in section 9.1 some of Herstein's Lie theory for the important case of prime rings with involution of the first kind. In section 9.2 we determine the Lie extended centroid of K. It is not our intent to give a complete treatment of these matters but rather to show how GPI theory is used. In section 9.3, again using $G P I$ theory in a crucial way, we prove a result on commuting traces of trilinear mappings which is crucial for the solution
of the Lie isomorphism problem in section 9.4. This work was inspired by Bresar's study of commuting traces of bilinear mappings [63] which he used to settle Herstein's conjecture on Lie isomorphisms of prime rings (without involution).

9.1 The Structure of K

An associative ring R becomes a Jordan ring $R^{(+)}$under $x \circ y=$ $x y+y x$ and a Lie ring $R^{(-)}$under $[x, y]=x y-y x$. In case R has an involution $*$ the set of symmetric elements

$$
S=S(R)=\left\{s \in R \mid s^{*}=s\right\}
$$

is a Jordan subring of $R^{(+)}$and the set of skew elements

$$
K=K(R)=\left\{k \in R \mid k^{*}=-k\right\}
$$

is a Lie subring of $R^{(-)}$. In the early 1950's Herstein initiated a study of the Jordan and Lie ideals of R, S, and K in case that R was a simple associative ring (either without or with an involution). In the ensuing years his work was generalized in various directions, on the one hand to the setting of prime and semiprime rings, and, on the other hand to invariance conditions other than that given by ideals. Besides Herstein himself we mention Lanski as having been a major force in this program. Other important contributions were made by Baxter, Chacron, Erickson, Montgomery, Osborn, and others. Of particular interest to us because of the theme of this book, the GPI and PI theory for prime rings with involution has witnessed results of Amitsur [6], [7], Herstein [114], Lanski [159], [163], Martindale [207], [208], Rowen [257] and others. In fact, to pinpoint the key result in GPI theory from which all applications in this chapter are based, we recall from section 6.2 Corollary 6.2.5.

Corollary 9.1.1 If R is a prime ring of $\operatorname{char}(R) \neq 2$ with involution and K is $G P I$, then R is GPI.

Let R be a prime ring of $\operatorname{char}(R) \neq 2$ with involution $*$, let Ω be the centroid of R and let C be the extended centroid of R. For simplicity we shall assume that $1 / 2 \in \Omega$, whence we may write $R=S+K$. It is a straightforward exercise to directly lift * to an involution of $R C$. However, this is virtually a special case of Proposition 2.5 .4 which says (in its proof) that $*$ can be lifted to an antiautomorphism * of the symmetric ring of quotients $Q=Q_{s}(R)$ such that $q^{*} u^{*}=(u q)^{*}$, where $0 \neq U \triangleleft R$ is such that $q U+U q \subseteq R$. Thus $q^{* *} u=\left(u^{*} q^{*}\right)^{*}=(q u)^{* *}=q u$ and so $q^{* *}=q$ and $*$ is an involution of Q. Since C is the center of $Q, *$ induces an involution on C and hence on the central closure $R C$. We shall say that * is of the first kind if it induces the identity mapping on C. Otherwise it is of the second kind, which is equivalent to saying that C contains a nonzero skew element. An example of Kaplansky shows that an involution of the second kind may well act as the identity on the center: R is the set of all countably infinite matrices of the form $A+\lambda I, A$ is $n \times n$ matrix over the complexes \mathcal{C}, n varies, $\lambda \in \mathcal{R}$ where \mathcal{R} is the real number field, and $*$ is conjugate transpose (one notes that $C=\mathcal{C}$ and $Z=\mathcal{R}$).

In this section we shall (with the exception of Lemma 9.1.5 and Theorem 9.1.10) confine our attention to the study of prime rings with involution of the first kind, mainly because this is the framework in which sections 9.3 and 9.4 reside. It is generally regarded as the more difficult case, since (roughly speaking) many problems arising with an involution of the second kind may be reduced to problems in $R^{(-)}$(where the connection with associative theory is much easier). For a complete account of Lie theory of prime rings (with or without involution), especially from the point of view of GPI theory, we refer the reader to [219].

For the remainder of this section, then, R will denote a prime ring with involution $*$ of the first kind. A Lie ideal U of K is generally defined to be an additive subgroup of K such that $[u, x] \in U$ for all $u \in U, x \in K$. To avoid some minor techni-
calities we shall also require that U be an Ω-submodule of K, where Ω is the centroid of R. We will use the notation $U \triangleleft K$ to signify that U is a Lie ideal of $K . K$ is called a simple Lie ring if it has no Lie ideals other than 0 and K and $[K, K] \neq 0$ (hence $K=[K, K]$). If I is any $*$-ideal of R (i.e., an ideal invariant under $*$), then $[I \cap K, K]$ is always a Lie ideal of K, which we shall call a standard Lie ideal of K. We shall call a subset X of R trivial (notationally, $X \equiv 0$) if $[X, K]=0$. Our major aim in this section is, given a nontrivial Lie ideal U of K, to produce a nontrivial standard Lie ideal $\left[I_{U} \cap K, K\right]$ lying inside K. We shall see that with the exception of two isolated "low-dimensional" cases this is possible.

For an additive subgroup W of a ring T we let $\langle W\rangle$ denote the subring of T generated by W. We will also use the following notation for higher commutators:

$$
W^{(1)}=[W, W], \quad W^{(i+1)}=\left[W^{(i)}, W^{(i)}\right]
$$

We begin with an easy but useful general lemma.

Lemma 9.1.2 If W is an additive subgroup of a ring T, then $[\langle W\rangle, T]=[W, T]$.

Proof. For $x, y \in W$ and $t \in T$ we note that

$$
[x y, t]=[x, y t]+[y, t x] \in[W, T] .
$$

An easy induction then completes the proof.
We apply this result to the ring R.
Lemma 9.1.3 If $U \triangleleft K$, then:
(a) $\langle U\rangle \cap K \triangleleft K$;
(b) $[\langle U\rangle \cap K, K] \subseteq U$.

Proof. (a) follows from the observation that for $k \in K$ and $u_{1}, u_{2}, \ldots, u_{n} \in U$,

$$
\left[u_{1} u_{2} \ldots u_{n}, k\right]=\sum_{i} u_{1} u_{2} \ldots\left[u_{i}, k\right] \ldots u_{n} \in\langle U\rangle
$$

Using Lemma 9.1.2 one notes that

$$
[\langle U\rangle \cap K, K] \subseteq[\langle U\rangle, R] \subseteq[U, R] \subseteq[U, K]+[U, S] \subseteq U \oplus S
$$

Therefore $[\langle U\rangle \cap K, K] \subseteq U$.
It will be useful to produce a nonzero ideal inside $\langle K\rangle$ and towards this goal we define $L(K)=R^{\#}[K, K]^{2} R^{\#}$ (here $R^{\#}$ denotes the ring R with 1 adjoined if necessary).

Lemma 9.1.4 $L(K) \subseteq\langle K\rangle$.
Proof. Let $a, b \in K, s \in S$. Then

$$
(a b-b a) s=a(b s+s b)-(a s+s a) b+(s a b-b a s) \in\langle K\rangle
$$

It follows that $[K, K] R^{\#} \subseteq\langle K\rangle$ (using $R=S+K$). Similarly $R^{\#}[K, K] \subseteq\langle K\rangle$ and the result is immediate.

It will also be useful to have the following description of $\langle K\rangle$ (valid for $*$ of either kind).

Lemma 9.1.5 $\langle K\rangle=K+K \circ K$.
Proof. For $a, b \in K$ we see from $2 a b=[a, b]+a \circ b$ that $K^{2} \subseteq K+K \circ K$. We note next that $K \circ K$ coincides with the additive subgroup generated by $\left\{a^{2} \mid a \in K\right\}$. We now claim that $(K \circ K) K \subseteq K+K \circ K$. Indeed, for $a, b \in K$ we have $a^{2} b+b a^{2} \in K, a^{2} b-b a^{2}=a[a, b]+[a, b] a \in K \circ K$, whence $a^{2} b \in K+K \circ K$. From this we see that

$$
K^{3}=K^{2} K \subseteq(K+K \circ K) K \subseteq K^{2}+(K \circ K) K \subseteq K+K \circ K
$$

and, continuing in this fashion, we conclude that $K^{n} \subseteq K+K \circ K$ for any n. Since $\langle K\rangle=\sum K^{n}$, the lemma is proved.

We now define: for $U \triangleleft K, I_{U}=R^{\#}[U \circ U, U]^{2} R^{\#}$. We shall call a Lie ideal U of K exceptional if $I_{U}=0$.

Lemma 9.1.6 If $U \triangleleft K$, then:
(a) $I_{U} \subseteq\langle U\rangle$;
(b) $\left[I_{U} \cap K, K\right] \subseteq U$.

Proof. From

$$
[a \circ b, x]=[a, x \circ b]+[b, a \circ x]=a \circ[b, x]+[a, x] \circ b
$$

we infer that $[U \circ U, S] \subseteq U$ and $[U \circ U, K] \subseteq U \circ U$, whence $[U \circ U, R] \subseteq\langle U\rangle$. We then have

$$
[U \circ U, U] R^{\#} \subseteq\left[U \circ U, U R^{\#}\right]+U\left[U \circ U, R^{\#}\right] \subseteq\langle U\rangle
$$

Similarly $R^{\#}[U \circ U, U] \subseteq\langle U\rangle$. Therefore $R^{\#}[U \circ U, U]^{2} R^{\#} \subseteq\langle U\rangle$ and the result follows from Lemma 9.1.3 (b).

Lemma 9.1.6 produces a standard Lie ideal I_{U} inside a Lie ideal U of K but the main problem arises when one tries to show (under appropriate circumstances) that $I_{U} \neq 0$. We shall deal with this problem by giving a complete description of what happens in the case $R=M_{n}(F), F$ an algebraically closed field, and then using GPI theory (i.e., Corollary 9.1.1) and the $*$-Litoff Theorem to reduce the general question to this very special case.

Theorem 9.1.7 Let $R=M_{n}(F), n \geq 2, F$ an algebraically closed field of $\operatorname{char}(F) \neq 2$, and let $*$ be an involution of the first kind on R. Then there is a set of matrix units in R relatively to which $*$ is either the transpose or symplectic involution, and K is a simple Lie algebra over F unless one of the following holds:
(i) $n=2$, * is transpose (here K is 1-dimensional);
(ii) $n=4$, * is transpose (here K is the Lie direct sum $K_{1} \oplus$ K_{2} where $K_{i}, i=1,2$, is a 3 -dimensional simple Lie algebra).

Proof. By Corollary 4.6.13 * is either the transpose involution or the symplectic involution relative to a suitable set of matrix units $\left\{e_{i j}\right\}$.

We first discuss the transpose case. We set $E_{i j}=e_{i j}-e_{j i}, i \neq$ j, and note that $\left\{E_{i j} \mid i<j\right\}$ is a basis for K. For convenience if $x=\sum_{i<j} \alpha_{i j} E_{i j} \in K$ the "length" of x is the number of nonzero $\alpha_{i j}$'s. The $E_{i j}$ satisfy $E_{i j}=-E_{j i},\left[E_{i j}, E_{j k}\right]=E_{i k}, i \neq k$, and the consequences thereof. Clearly $[K, K]=0$ if and only if $n=2$, and so we may assume that $n>2$. Suppose $0 \neq U \triangleleft K$ and pick $0 \neq u=\sum \alpha_{i j} E_{i j} \in U$ of smallest length. If u is of the length 1 , then it is easy to show that any basis element $E_{k l}$ lies in U, whence $U=K$. If $E_{i j}, E_{i k}$ appear in u for $j \neq k$, then $0 \neq\left[u, E_{i j}\right] \in U$ is of smaller length than u. Therefore we may assume that the $E_{i j}$'s appearing in u are "disjoint" and thus we may write u (say) as $\alpha E_{12}+\beta E_{34}+\gamma E_{56}+\ldots$. If the length of $u \geq 3$, then $\left[u, E_{45}\right] \neq 0$ is of smaller length than u, and so we may assume that the length of u is 2 . This forces $n \geq 4$. If $n>4$, then $\left[u, E_{45}\right] \neq 0$ has length 1 , whence $U=K$. Therefore we are left with $n=4$. Here it is well-known (and easy to show directly) that $K=K_{1} \oplus K_{2}$, where K_{1} and K_{2} are both 3 -dimensional simple Lie algebras with respective bases

$$
\left\{E_{12}+E_{34}, E_{13}+E_{42}, E_{14}+E_{23}\right\},\left\{E_{12}-E_{34}, E_{13}-E_{42}, E_{14}-E_{23}\right\} .
$$

This completes the proof in the transpose case.
In the symplectic case $n=2 m$ is even and it is easily seen that K contains of all matrices of the form

$$
\left(\begin{array}{cc}
A & S \\
T & -{ }^{t} A
\end{array}\right)
$$

where $A, S, T \in M_{m}(F),{ }^{t} A$ the transpose of A, and S, T belong the set H of symmetric elements of $M_{m}(F)$. Letting $\left\{e_{i j}\right\}$ be matrix units for $M_{m}(F)$ we note that $\left\{e_{i i}, e_{i j}+e_{j i}\right\}, i \neq j$, is a basis for H. The reader may verify (by easy matrix calculations)
that H is a simple Jordan algebra. Now let $0 \neq U \triangleleft K$ and pick a nonzero element $u=\left(\begin{array}{cc}A & S \\ T & -{ }^{t} A\end{array}\right) \in U$. If both $S \neq 0$ and $T \neq 0$ we may replace u by

$$
\left[u,\left(\begin{array}{ll}
0 & I \\
0 & 0
\end{array}\right)\right]=\left(\begin{array}{cc}
-T & A+{ }^{t} A \\
0 & T
\end{array}\right) .
$$

Thus we may assume $u=\left(\begin{array}{cc}A & S \\ 0 & -{ }^{t} A\end{array}\right)$ to begin with and, if $A \neq 0$, we choose $P \in H$ such that $A P+P^{t} A \neq 0$ and note that

$$
\left[u,\left(\begin{array}{ll}
0 & P \\
0 & 0
\end{array}\right)\right]=\left(\begin{array}{cc}
0 & A P+P^{t} A \\
0 & 0
\end{array}\right) \neq 0 .
$$

Thus we may assume that $u=\left(\begin{array}{cc}0 & S \\ 0 & 0\end{array}\right)$ for some $S \neq 0$. From

$$
\left[\left(\begin{array}{cc}
T & 0 \\
0 & -T
\end{array}\right),\left(\begin{array}{ll}
0 & S \\
0 & 0
\end{array}\right)\right]=\left(\begin{array}{cc}
0 & T S+S T \\
0 & 0
\end{array}\right),
$$

$T \in H$, it follows that $\left\{S \in H \left\lvert\,\left(\begin{array}{cc}0 & S \\ 0 & 0\end{array}\right)\right.\right\}$ is a nonzero Jordan ideal of H and hence equal to H. Therefore U contains all matrices of the form $\left(\begin{array}{cc}0 & S \\ 0 & 0\end{array}\right), S \in H$, and, by commutation with $\left(\begin{array}{ll}0 & 0 \\ I & 0\end{array}\right)$, all matrices of the form $\left(\begin{array}{cc}0 & 0 \\ T & 0\end{array}\right), T \in H$. The calculation

$$
\left[\left(\begin{array}{cc}
0 & e_{i j}+e_{j i} \\
0 & 0
\end{array}\right),\left(\begin{array}{cc}
0 & 0 \\
e_{j i} & 0
\end{array}\right)\right]=\left(\begin{array}{cc}
e_{i j} & 0 \\
0 & -e_{j i}
\end{array}\right)
$$

then shows that U contains all matrices of the form $\left(\begin{array}{cc}A & 0 \\ 0 & -{ }^{t} A\end{array}\right)$, and the proof of the theorem is complete.

We now compile a set of remarks which follows almost immediately (with the help of an occasional matrix calculation) from Theorem 9.1.7.

Corollary 9.1.8 Let $R=M_{n}(F)$ be as in Theorem 9.1.7 and let U, V denote Lie ideals of K. Then:
(a) $U=0$ or $U=K$ unless $n=4$, * is transpose, in which case U may also be K_{1} or K_{2}.
(b) The following are equivalent:
(b1) U is trivial;
(b2) $U=0$ or $n=2$, * is transpose, in which case $U=K$ is 1-dimensional;
(b3) $[U, U]^{2}=0$;
(c) The following are equivalent:
(c1) U is exceptional;
(c2) $U \circ U$ is central;
(c3) U is trivial, $U=K_{1}$ or $U=K_{2}(n=4, *$ is transpose) or $U=K(n=2, *$ is transpose or symplectic);
(d) $[U, V] \equiv 0$ if and only if $U \equiv 0, V \equiv 0$, or (say) $U=K_{1}$ and $V=K_{2}(n=4, *$ is transpose $)$.

Now let R be an arbitrary prime ring with involution of the first kind, and let F be the algebraic closure of C. We form the extension $\widetilde{R}=R C \otimes_{C} F$ which by Theorem 2.3.5 is a prime ring. We claim that \widetilde{R} is centrally closed over F. Indeed, letting \widetilde{C} denote the extended centroid of \tilde{R}, we note that the inclusion $F \subseteq \tilde{C}$ is obvious where F is identified with $1 \otimes F \subseteq Q_{s}(R) \otimes_{C} F$. Let $\alpha \in \widetilde{C}$. By Theorem 2.3.5 there exist nonzero elements $a \in$ R and $f \in F$ such that $u=\alpha \cdot(a \otimes f) \in \tilde{R}$. Let $u=\sum_{i=1}^{n} a_{i} \otimes f_{i}$, $a_{i} \in R, f_{i} \in F$. Without loss of generality we can assume that a_{1}, \ldots, a_{n} and f_{1}, \ldots, f_{n} are two sets of C-independent elements. Then $u(x \otimes 1)(a \otimes f)=(a \otimes f)(x \otimes 1) u$ for every $x \in R$ and so $a_{i} x a=a x a_{i}$ for all $i=1,2, \ldots, n$. By Theorem 2.3.4 there exist $c_{1}, c_{2}, \ldots, c_{n} \in C$ such that $a_{i}=c_{i} a, i=1,2, \ldots, n$ and
taking into account the C-independence of $a_{1}, a_{2}, \ldots, a_{n}$ we see that $n=1$ and $\alpha \cdot(a \otimes c)=a_{1} \otimes f_{1}=(a \otimes f)\left(1 \otimes f^{-1} c_{i} f_{i}\right.$ which proves our claim. Next the involution $*$ on R can clearly be lifted to an involution $*$ of the first kind on \tilde{R} according to the rule $(r c \otimes \lambda)^{*}=r^{*} c \otimes \lambda$. The skew elements \widetilde{K} of \widetilde{R} coincide with $K F=K C \otimes F$ and any Lie ideal U of K lifts to a Lie ideal $\tilde{U}=U C \otimes F=U F$ in \widetilde{K}. In case R is $P I$ we can draw the following conclusion.

Theorem 9.1.9 Let R be a prime PI-ring with involution * of the first kind. Then:
(a) $R C$ is finite dimensional central simple over C and $\widetilde{R}=$ $M_{n}(F), F$ the algebraic closure of C;
(b) $K C$ is a simple lie ring unless $n=2$ ($*$ is transpose) or $n=4$ ($*$ is transpose);
(c) If U is a nonzero exceptional Lie ideal of K then one of the following hold:

$$
\begin{aligned}
& \text { (c1) } n=2, * \text { is transpose, } \tilde{U}=\widetilde{K} ; \\
& \text { (c2) } n=2, * \text { is symplectic, } \tilde{U}=\widetilde{K} \\
& \text { (c3) } n=4, * \text { is transpose, } \widetilde{U}=\widetilde{K}_{1} \text { or } \tilde{U}=\widetilde{K}_{2} \text {. }
\end{aligned}
$$

Proof. (a) is a consequence of Posner's Theorem. To prove (b) let $0 \neq U \triangleleft K C$. By Theorem 9.1.7 $\widetilde{U}=\widetilde{K}$ unless $n=2$ ($*$ is transpose) or $n=4$ ($*$ is transpose). Let $a \in K$. Then $a \otimes 1=\sum_{i=1}^{m} u_{i} \otimes \lambda_{i}, u_{i} \in U, \lambda_{i} \in F$ with $\left\{\lambda_{i}\right\} C$-independent and $\lambda_{1}=1$. It follows that $a=u_{1} \in U$ and so $U=K C$, thus proving (b). Part (c) is an immediate application of Corollary 9.1.8 (c).

As promised at the end of section 6.2 we are now in a position to deal with a conjecture made by Herstein in 1955: if R is a ring with involution and K is $P I$ then R is $P I$. Herstein verified his own conjecture in 1967 [114] for R simple, and this was shortly thereafter extended to semiprime rings by Martindale [206] and then to arbitrary rings with involution by Amitsur
[6]. We present here an alternate proof for the case where R is prime.

Theorem 9.1.10 Let R be a prime ring with involution * (of either kind) and suppose K is PI (over C). Then R is PI.

Proof. Without loss of generality we may assume that K satisfies a multilinear $P I \phi\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in C<X>$ of degree n. If $*$ is of the second kind we choose a nonzero skew element λ in C and with it a nonzero $*$-ideal I such that $\lambda I \subseteq R$. Note that $I=I \cap S \oplus I \cap K$ and $\lambda(I \cap S) \subseteq K$. Therefore $\phi\left(r_{1}, \ldots, r_{n}\right)=0$ where each r_{i} belongs to either $I \cap K$ or $\lambda(I \cap S)$. Since ϕ is multilinear it follows that $\phi\left(r_{1}, \ldots, r_{n}\right)=0$ where each r_{i} belongs to either $I \cap K$ or $I \cap S$ and so ϕ is a $P I$ on I. By Theorem 6.4.4 ϕ is then a $P I$ on R.

We may therefore assume that $*$ is of the first kind, and furthermore, without loss of generality, we may suppose that $R=\widetilde{R}$ (since ϕ lifts to \widetilde{K}). By Corollary 9.1.1 R is a centrally closed GPI algebra over an algebraically closed field F, whence R has nonzero socle H and associated division ring F. If R is not $P I$ the dimension of the underlying vector space over F is infinite and so by the $*$-Litoff Theorem R contains $e R e \cong$ $M_{k}(F)$, e a symmetric idempotent of finite rank $k \geq 2 n$. By Corollary 4.6.13 the involution $*$ induced on $M_{k}(F)$ is either the transpose or symplectic involution. If $*$ is transpose then

$$
\phi\left(e_{12}-e_{21}, e_{23}-e_{32}, \ldots, e_{n, n+1}-e_{n+1, n}\right)=\alpha e_{1, n+1}+\beta e_{n+1,1}
$$

produces a contradiction. If $*$ is symplectic, then writing $k=2 m$ and letting $\left\{e_{i j}\right\}$ denote the matrix units in $M_{m}(F)$, we write

$$
\begin{aligned}
a_{i} & =\left(\begin{array}{cc}
e_{i, i+1} & 0 \\
0 & -e_{i+1, i}
\end{array}\right), \quad i=1,2, \ldots, n-1 \\
a_{n} & =\left(\begin{array}{cc}
e_{n, 1} & 0 \\
0 & -e_{1, n}
\end{array}\right)
\end{aligned}
$$

$$
b_{i}=\left(\begin{array}{cc}
e_{i i} & 0 \\
0 & -e_{i i}
\end{array}\right), \quad i=1,2, \ldots, n .
$$

We then arrive at the contradiction

$$
0=\phi\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\sum \alpha_{i} b_{i}, \quad \alpha_{i} \in C
$$

some $\alpha_{i} \neq 0$. Therefore R must be $P I$ and the theorem is proved.

Returning to the assumption that R is prime with involution * of the first kind, we now approach the heart of this section. First, however, we need

Lemma 9.1.11 If $0 \neq I$ is $a *$ ideal of R and $0 \not \equiv U \triangleleft K$, then $[I \cap K, U] \not \equiv 0$.

Proof. Suppose $[I \cap K, U] \equiv 0$. Then, writing $[I \cap K, I \cap K]=$ $(I \cap K)^{(1)}$ and using the Jacobi identity, we have $\left[(I \cap K)^{(1)}, U\right]=$ 0 , whence $\left[\left\langle(I \cap K)^{(1)}\right\rangle, U\right]=0$. Thus $\left\langle(I \cap K)^{(1)}\right\rangle$ cannot contain a nonzero ideal of R and so by Lemma 9.1.6(a)

$$
\left[(I \cap K)^{(1)} \circ(I \cap K)^{(1)}, I \cap K\right]^{2}=0 .
$$

By Theorem 9.1.10 (applied to the prime ring I) we conclude that I is $P I$, whence by Theorem 6.4.4 R is $P I$. In this situation we know that $\widetilde{R}=M_{n}(F)$. It follows that $\tilde{I}=\widetilde{R}$ and accordingly $\widetilde{\cap} K=\widetilde{K}$. Therefore our original supposition forces $[\widetilde{K}, \widetilde{U}] \equiv$ 0 , a contradiction to Corollary 9.1.8(d).

Theorem 9.1.12 If R is a prime ring with involution of the first kind and $0 \neq U$ is an exceptional Lie ideal of K, then R is PI (whence the conclusion of theorem 9.1.9 holds).

Proof. We suppose R is not $P I$. Since $0 \neq \widetilde{U}$ is clearly an exceptional Lie ideal of \widetilde{K} we may assume without loss of
generality that $R=\tilde{R}$. Assume first that R has nonzero socle H. If $[H \cap K, H \cap K]^{2}=0$, then by Theorem 9.1.10 (applied to H) H, and hence R, is $P I$. Therefore we can suppose that $[H \cap K, H \cap K]^{2} \neq 0$. Then $J=H[H \cap K, H \cap K]^{2} H$ is a nonzero ideal of H (and hence of R) which by Lemma 9.1.4 is contained in $\langle H \cap K\rangle$. It follows that $0 \neq[U, H \cap K] \subseteq U \cap H$. Choosing $0 \neq u \in U \cap H$ we apply the $*$-Litoff Theorem to find a symmetric idempotent $e \in H$ such that $u \in e R e \cong M_{m}(F)$ where $m>4$. Thus $U \cap e R e$ is a nonzero exceptional ideal of $e K e$ is $e R e$, a contradiction to theorem 9.1.9.

We now suppose R has zero socle. If for all $u \in U, 1, u, u^{2}$ are F-dependent, it follows that $u^{2}=\beta \in F$. Pick $0 \neq a \in U$ (necessarily $a \notin F$). For all $k, l \in K$ we have $\left[[a, k]^{2}, l\right]=0$ and so $\phi\left(x_{1}, x_{2}\right)=\left[\left[a, x_{1}\right]^{2}, x_{2}\right]$ is a nontrivial GPI for K over F. But by Corollary 6.2 .5 this forces R to be GPI and hence have nonzero socle. Therefore we must conclude that there exists $a \in$ U such that $1, a, a^{2}$ are F-independent. Since U is exceptional, we see from $[U \circ U, U]^{2}=0$ that

$$
\left[\left[a, k_{1}\right]^{2},\left[a, k_{2}\right]\right]\left[\left[a, k_{3}\right]^{2},\left[a, k_{4}\right]\right]=0 \quad \text { for all } k_{1}, k_{2}, k_{3}, k_{4} \in K .
$$

Since 1, a, a^{2} are F-independent, one sees that

$$
f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left[\left[a, x_{1}\right]^{2},\left[a, x_{2}\right]\right]\left[\left[a, x_{3}\right]^{2},\left[a, x_{4}\right]\right]
$$

is a nontrivial GPI for K over F, again forcing the contradiction that the socle of R is nonzero in view of Corollary 6.2.5. The proof of the theorem is now complete.

We come now to the main result of this section.
Theorem 9.1.13 Let R be a prime ring with involution $*$ of the first kind and let U, V be Lie ideals of K. Then:
(a) If $U \equiv 0$, then $U=0$ or $\tilde{R}=M_{2}(F)(*$ is transpose, $\tilde{U}=\widetilde{K}$ is 1-dimensional);
(b) If U is exceptional, then $U \equiv 0, \widetilde{R}=M_{2}(F)$ (* is symplectic, $\widetilde{U}=\widetilde{K}$), or $\widetilde{R}=M_{4}(F)$ ($*$ is transpose, $\widetilde{U}=\widetilde{K}_{1}$ or $\widetilde{U}=\widetilde{K}_{2}$);
(c) If U is not exceptional, then $0 \neq I_{U} \subseteq\langle U\rangle$ and $0 \not \equiv$ $\left[I_{U} \cap K, K\right] \subseteq U$;
(d) If $[U, U]^{2}=0$, then $U \equiv 0$;
(e) If $[U, V] \equiv 0$, then $U \equiv 0, V \equiv 0$, or $\widetilde{R}=M_{4}(F)$ (* is transpose and (say) $\widetilde{U}=\widetilde{K}_{1}, \widetilde{V}=\widetilde{K}_{2}$).

Proof. to prove (a) and (b) we see from Theorem 9.1.12 that R is $P I$, whence the conclusions follow from Corollary 9.1.8 ((b) and (c)). Part (c) is an immediate consequence of the definition of I_{U} and Lemma 9.1.6. To prove (d) and (e), in view of Corollary 9.1.8 ((b) and (d)) it suffices to show that R is PI. BY Theorem 9.1 .12 we may assume that neither U nor V is exceptional. Then from part (c) together with Theorem 9.1.10 we see that I_{U} and $I_{U} \cap I_{V}$ are prime $P I$ rings, whence R is $P I$.

The import of Theorem 9.1.13 is that except for a couple of low-dimensional cases every Lie ideal of K contains a nontrivial standard Lie ideal, $\langle K\rangle$ is "large" in the sense that it contains a nonzero ideal of R, and K itself is a "prime" Lie ring in the sense that the Lie product of any two nonzero Lie ideals cannot be 0 .

The Jordan theory of prime rings (without and with involution) is a considerably easier affair than the Lie structure (see, e.g. [116] and [118]), but we shall forego these matter with the exception of one isolated result (not presented in its full generality) which will be needed in section 9.4 .

Lemma 9.1.14 Let R be a prime ring with involution of the first kind such that $\operatorname{dim}_{C}(R C)>16$, and let S denote the set of symmetric elements of R. Then $\langle S\rangle$ contains a nonzero ideal of R, namely, $R^{\#}[S, S] R^{\#}$.

Proof. From $[[s, t], k]=[[s, k], t]+[s,[t, k]]$ and $[s, k],[t, k] \in$ S for all $s, t \in S, k \in K$, it is clear that $[S, S]$ is a Lie ideal of K. If $[S, S]=0$, then K is $P I$ (it satisfies $\left[x^{2}, y^{2}\right]=0$) and by Theorem 9.1.10 R is $P I$. In this situation it is easy to see that \widetilde{R} must be $M_{2}(F)$ under symplectic involution since $[\widetilde{S}, \tilde{S}]=0$. Since this case is ruled out by the hypothesis, we conclude that $[S, S] \neq 0$. Since $\operatorname{dim}_{C}(R C)>16$, we see by Theorem 9.1.13(c) there is an ideal $I \neq 0$ such that $I \subseteq\langle[S, S]\rangle \subseteq\langle S\rangle$.

9.2 The Lie Extended Centroid of K

We continue with our assumption that R is a prime ring with involution of the first kind. Our aim here is to show that, with the exception of certain low dimensional cases, the Lie extended centroid of K (which we shall presently define) coincides with the extended centroid C of R. Theorem 9.1.13(e) shows that K is (usually) a "prime" Lie ring and thus suggests that we make a brief digression into general nonassociative rings (see [101] for complete discussion).

Let A be an arbitrary nonassociative ring (i.e., all the ring axioms except for the associative law) with composition denoted by $a \cdot b, a, b \in A$. We say that A is prime in case $U \cdot V=$ implies $U=0$ or $V=0$ for any ideals U, V of A. The centroid Φ of A is by definition the set of all endomorphisms of $(A,+)$ which commute with all the left and right multiplications of A. It is a straightforward exercise ([101, Theorem $1.1(\mathrm{a})]$) to show that Φ is a commutative integral domain with 1 and that A is Φ-torsion free provided A is prime. In the remainder of this digression we shall assume that A is a prime nonassociative ring and shall restrict ourselves to ideals which are Φ-invariant (i.e., A is a prime Φ-algebra). The multiplication ring $M(A)$ of A is the subring of $E n d_{\mathcal{Z}}(A)$ generated by all the left and
right multiplications of A, where \mathcal{Z} is the ring of integers. We proceed to define the extended centroid of A. We begin by noting that the set \mathcal{F} of all nonzero ideals of A is closed under finite intersections. For $U \in \mathcal{F}$ a Φ-map $f: U \rightarrow A$ is called permissible if f commutes with the elements of $M(A)$. Such an element will be denoted by $(f, U) . \operatorname{ker}(f)=\{u \in U \mid f(u)=0\}$ and $\operatorname{Im}(f)=\{f(u) \mid u \in U\}$ are ideals of A and we note that $(\operatorname{ker}(f)) \cdot(\operatorname{Im}(f))=0$. Hence by the primeness of A either $f=0$ or f is an injection. We define $(f, U) \sim(g, V)$ if there exists $W \in \mathcal{F}$ such that $W \subseteq U \cap V$ and $f=g$ on W. This is easily shown to be an equivalence relation. We remark that $(f, U) \sim(g, V)$ if and only if there exists $0 \neq x \in U \cap V$ such that $f(x)=g(x)$. We denote by $[f, U]$ the equivalence class determined by (f, U) and let $C(A)$ be the set of all equivalence classes. Addition in $C(A)$ is defined by

$$
[f, U]+[g, V]=[f+g, U \cap V]
$$

and it is easy to check that this definition is independent of the representatives.

For (g, V) permissible and $U \in \mathcal{F}$, let $g^{-1}(U)=\{v \in V \mid$ $g(v) \in U\}$. Clearly $g^{-1}(U)$ is an ideal of A and we show that it is nonzero. If $g(V)=0$, then $0 \neq V \subseteq g^{-1}(U)$. If $g(V) \neq 0$, then $g(V) \cap U \neq 0$. Pick $v \in V$ such that $0 \neq g(v) \in U$. Hence $v \neq 0$ and $v \in g^{-1}(U)$. Now define multiplication in $C(A)$ by

$$
[f, U][g, V]=\left[f g, g^{-1}(U)\right]
$$

To see that multiplication is well-defined, suppose $\left(f_{1}, U_{1}\right) \sim$ $\left(f_{2}, U_{2}\right)$ and $\left(g_{1}, V_{1}\right) \sim\left(g_{2}, V_{2}\right)$. Then $f_{1}=f_{2}$ on $W_{1} \subseteq U_{1} \cap U_{2}$ and $g_{1}=g_{2}$ on $W_{2} \subseteq V_{1} \cap V_{2}$. Set $W=W_{2} \cap g^{-1}\left(W_{1}\right)$. For all $x \in W$,

$$
f_{1}\left(g_{1}(x)\right)=f_{1}\left(g_{2}(x)\right)=f_{2}\left(g_{2}(x)\right)
$$

and so multiplication is well-defined. It is then straightforward to check that $C(A)$ is an associative ring with 1 . We shall call $C(A)$ the extended centroid of A.

Theorem 9.2.1 The extended centroid $C(A)$ of a prime nonassociative ring is a field.

Proof. We first show that $C(A)$ is commutative. Let $\lambda=$ $[f, U], \mu=[g, V] \in C(A)$. We set $W=g^{-1}(U) \cap f^{-1}(V)$ and pick $x, y \in W$. Then

$$
f g(x y)=f(g(x) y)=g(x) f(y)=g(x f(y))=g f(x y)
$$

It follows that $(f g-g f)(W) W=0$, and so $(f g-g f)(W)=0$, whence $\lambda \mu=\mu \lambda$. Next let $[f, U] \neq 0$ and note that $f(U) \neq 0$ but $\operatorname{ker}(f)=0$. Define $g: f(U) \rightarrow A$ by $g(f(u))=u$ for all $u \in U . g$ is well-defined since f is an injection and in fact $(g, f(U))$ is permissible. Clearly $[g, f(U)]$ is the inverse of $[f, U]$, and the theorem is proved.

This completes our digression and we return to our assumption that R is a prime (associative) ring with involution of the first kind. We will also make the assumption that $\operatorname{dim}_{C}(R C)>$ 16 (this will suffice for our purpose in section 9.4). We are therefore assured by Theorem 9.1.13(e) that K is a prime Lie ring, and so K has an extended centroid $\Gamma=C(K)$. Clearly $\Gamma \supseteq C=C(R)$. As a first step in showing that $\Gamma=C$ it will be useful to have the following

Lemma 9.2.2 Let R be a simple GPI ring with involution $*$ of the first kind such that $\operatorname{dim}_{C}(R C)>16$. Then K is a simple Lie ring.

Proof. By Theorem 6.1.6 R is its own socle, and by Theorem 9.1.9(b) we may assume without loss of generality that R is not $P I$. Let $a, b \in K$, with $a \neq 0$. By the $*$-Litoff Theorem there exists a symmetric idempotent e in R such that $\operatorname{dim}_{C}(e R e)>16$ and $a, b \in e R e$. Another application of Theorem 9.1.9(b), this time to the simple ring $e R e$, shows that $e K e$ is a simple Lie ring. In particular b lies in the Lie ideal generated by a, and so we may conclude that K is a simple Lie ring.

Lemma 9.2.3 If R is a centrally closed prime ring with involution * of the first kind and $\operatorname{dim}_{C}(R)>16$, then $\Gamma=C$.

Proof. We assume first that R is not GPI. Let $\lambda=[f, U] \in$ Γ, pick $0 \neq a \in U$, and set $b=f(a) \in K$. For $k \in K$ we see from the fact that (f, U) is permissible that

$$
\begin{aligned}
{[[b, k],[a, k]] } & =[[f(a), k],[a, k]]=[f[a, k],[a, k]] \\
& =f[[a, k],[a, k]]=f(0)=0 .
\end{aligned}
$$

Thus $\phi(x)=[[b, x],[a, x]] \in R_{C}\langle X\rangle$ is a GPI on K and so by Corollary $6.2 .5 \phi(x)$ must be the zero element of $R_{C}<X>$, forcing a and b to be C-dependent. Hence $b=\alpha a$ for some $\alpha \in C$. It follows that $\lambda=\alpha$ and so in the non-GPI case we have shown that $C=\Gamma$.

We now assume that R is GPI. In view of Theorem 6.1.6 R has nonzero socle H. We know that H is a simple GPI ring with involution of the first kind, centrally closed over C, and with $\operatorname{dim}_{C}(H)>16$. By Lemma 9.2.2 (applied to H) we see that $K_{H}=K \cap H$ is a simple Lie ring. Furthermore we claim that $\Gamma=C\left(K_{H}\right)$. Indeed, if $\lambda=[f, U] \in \Gamma$ we know from $\operatorname{dim}_{C}(H)>16$ and Theorem 9.1.13(c) that $[H \cap K, K] \subseteq U$ and hence $K_{H}=[H \cap K, K] \subseteq U$. Since $K_{H}=\left[K_{H}, K_{H}\right]$, we also see that $f\left(K_{H}\right) \subseteq K_{H}$. Our claim is therefore established, and it follows that $\lambda=[f, U]$ may be written $\lambda=\left[f, K_{H}\right]$. We now form the ring $S=H \otimes_{C} \Gamma$, which is a central simple GPI ring over Γ, with $\operatorname{dim}_{\Gamma}(S)>16$, and with involution given by $h \otimes \lambda \mapsto h^{*} \otimes \lambda$. By Lemma 9.2.2 again (applied to S) we see that $K_{H} \otimes_{C} \Gamma$ is a simple Lie ring. We now define a mapping of $K_{H} \otimes_{C} \Gamma$ into K_{H} according to the rule

$$
k \otimes \lambda \mapsto f(k), \quad k \in K_{H}, \lambda=\left[f, K_{H}\right] \in \Gamma
$$

In view of our previous remarks it is easily seen that this is a welldefined Lie homomorphism, and because of the Lie simplicity
of $K_{H} \otimes \Gamma$, it is actually a Lie isomorphism. Now pick $\lambda=$ $\left[f, K_{H}\right] \in \Gamma$ and $0 \neq a \in K_{H}$. Then $a \otimes \lambda-f(a) \otimes 1$ maps to $f(a)-f(a)=0$, and so $a \otimes \lambda=f(a) \otimes 1$. This forces $\lambda \in C$ and completes the proof that $\Gamma=C$.

We now remove the assumption that R is centrally closed.
Theorem 9.2.4 Let R be a prime ring with involution $*$ of the first kind such that $\operatorname{dim}_{C}(R C)>16$. Then $C(K)=C(R)$.

Proof. We have already pointed out that K is a prime Lie ring and that $C=C(R) \subseteq C(K)$. We claim that $C(K) \subseteq$ $C(K C)$ via the mapping $[f, U] \mapsto[g, U C]$, where $g\left(\sum u_{i} c_{i}\right)=$ $\sum f\left(u_{i}\right) c_{i}$. Indeed, the main thing to show is that g is welldefined. Suppose $\sum u_{i} c_{i}=0$. Pick $v \in U$ and note that

$$
\begin{aligned}
{\left[\sum f\left(u_{i}\right) c_{i}, v\right] } & =\sum\left[f\left(u_{i}\right), v\right] c_{i}=\sum\left[u_{i}, f(v)\right] c_{i} \\
& =\left[\sum u_{i} c_{i}, f(v)\right]=0
\end{aligned}
$$

By the primeness of $K C$ we infer that $\sum f\left(u_{i}\right) c_{i}=0$, and from this it follows easily that the claim is established. By Lemma 9.2.3 we see that $C(K C)=C(R C)$, and so from

$$
C(R) \subseteq C(K) \subseteq C(K C)=C(R C)=C(R)
$$

we conclude that $C(R)=C(K)$.

9.3 Trilinear Symmetric Mappings

Let R be an algebra over a commutative ring Φ, and let V be a Φ-subspace of R. We shall say that a mapping $B: V^{n} \rightarrow R$ is n-linear symmetric if
(i) $B\left(x_{1}, x_{2}, \ldots, x_{n}\right)=B\left(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(n)}\right) \quad$ for all $x_{1}, x_{2}, \ldots, x_{n} \in V$ and all permutations $\sigma \in S_{n}$;
(ii) $B\left(x_{1}, \ldots, x_{i}+y_{i}, \ldots, x_{n}\right)=B\left(x_{1}, \ldots, x_{i}, \ldots, x_{n}\right)$
$+B\left(x_{1}, \ldots, y_{i}, \ldots, x_{n}\right) \quad$ for all $i=1,2, \ldots, n, x_{1}, x_{2}, \ldots, x_{n}$, $y_{1}, y_{2}, \ldots, y_{n} \in V$;
(iii) $B\left(x_{1}, \ldots, c x_{i}, \ldots, x_{n}\right)=c B\left(x_{1}, \ldots, x_{i}, \ldots, x_{n}\right)$ for all $i=1,2, \ldots, n, x_{1}, x_{2}, \ldots, x_{n} \in V, c \in \Phi$.

In case Φ is the ring of integers we shall say that B is n additive symmetric. Consider then an n-linear symmetric mapping $B: V^{n} \rightarrow R$. The mapping $T: V \rightarrow R$ given by $T(x)=B(x, x, \ldots, x)$ is called the trace of $B ; T$ is said to be commuting if $[T(x), x]=0$ for all $x \in V$. This last condition shows that generalized identities arise quite naturally in the study of such mappings.

The simplest case, $V=R$ a prime ring and $n=1$, goes back to 1957 when Posner [241] showed that the existence of a nonzero commuting derivation in a prime ring implied that R was commutative. A variety of results on commuting mappings have since been obtained by a number of authors (e.g. [224], P. H. Lee and T. K. Lee [173], [164], [39], [69], etc.). Many of these isolated results were simultaneously generalized in 1993 by Bresar [62], and we now proceed to present the details of his result in a series of easy steps (we shall need this result at one place in section 9.4).

Let R be a ring. A biadditive map $B: R \times R \rightarrow R$ is called a biderivation if for every $x \in R$ the map $y \mapsto B(x, y)$ is a derivation of R and for every $y \in R$ the map $x \mapsto B(x, y)$ is a derivation of R. The notion of biderivation arises naturally in the study of additive commuting maps, namely, the linearization

$$
\begin{equation*}
[f(x), y]=[x, f(y)] \tag{9.1}
\end{equation*}
$$

of an additive commuting map f implies that the mapping $B: R \times R \rightarrow R$ given by $B(x, y)=[f(x), y]$ is a biderivation.

Lemma 9.3.1 Let R be a ring and $B: R \times R \rightarrow R$ a biderivation. Then

$$
B(x, y) z[u, v]=[x, y] z B(u, v) \quad \text { for all } x, y, z, u, v \in R .
$$

Proof. We compute $B(x u, y v)$ in two different ways. Using the fact that B is a derivation in the first argument, we get

$$
\begin{equation*}
B(x u, y v)=B(x, y v) u+x B(u, y v) \tag{9.2}
\end{equation*}
$$

Since B is a derivation in the second argument, it follows from (9.2) that

$$
B(x u, y v)=B(x, y) v u+y B(x, v) u+x B(u, y) v+x y B(u, v)
$$

Analogously, we obtain

$$
\begin{aligned}
B(x u, y v) & =B(x u, y) v+y B(x u, v) \\
& =B(x, y) u v+x B(u, y) v+y B(x, v) u+y x B(u, v)
\end{aligned}
$$

Comparing the relations so obtained for $B(x u, y v)$ we arrive at

$$
B(x, y)[u, v]=[x, y] B(u, v) \quad \text { for all } x, y, u, v \in R
$$

Replacing u by $z u$ and using the relations

$$
[z u, v]=[z, v] u+z[u, v], \quad B(z u, v)=B(z, v) u+z B(u, v)
$$

we obtain the assertion of the lemma.
We are now in a position to prove
Theorem 9.3.2 Let R be a noncommutative prime ring and let $B: R \times R \rightarrow R$ be a biderivation. Then there exists $\lambda \in C$ such that $B(x, y)=\lambda[x, y]$ for all $x, y \in R$.

Proof. Let $S=R \times R$ and define $A: S \rightarrow R$ by $A(x, y)=$ $[x, y] ; A \neq 0$ since R is noncommutative. By Lemma 9.3.1 the functions $A, B: S \rightarrow R$ satisfy all the requirements of Lemma 7.9.11. Hence the result follows.

As a consequence of Theorem 9.3.2 we obtain

Corollary 9.3.3 Let R be a prime ring. If $f: R \rightarrow R$ is an additive commuting map, then there exists $\lambda \in C$ and an additive map $\mu: R \rightarrow C$ such that $f(x)=\lambda x+\mu(x)$ for all $x \in R$.

Proof. Linearizing $[f(x), x]=0$ we see that the $\operatorname{map}(x, y) \mapsto$ $[f(x), y]$ is a biderivation. Clearly we may assume R is noncommutative. Therefore by Theorem 9.3.2 there exists $\lambda \in C$ such that $[f(x), y]=[\lambda x, y]$ for all $x, y \in R$. Hence we see that for any $x \in R$ the element $\mu(x)=f(x)-\lambda x \in C$, and the proof is complete.

Bresar's characterization of biadditive symmetric mappings with commuting traces for $V=R$ a prime ring of $\operatorname{char}(R) \neq 2$ [63] was a landmark achievement, for (along with a variety of applications) it enabled him to settle a long standing conjecture of Herstein ([113],) concerning Lie isomorphisms of prime rings. For us this work of Bresar served as the inspiration to attempt to characterize trilinear symmetric mappings with commuting traces for the situation where R is a prime ring with involution and $V=K$. It will be seen in section 9.4 how critical a role this characterization plays in the verification of Herstein's conjecture ([31, Theorem 3]) concerning Lie isomorphisms of the skew elements of a prime ring with involution. We now state the main result we wish to prove. The remainder of this section will be devoted to its proof.
Theorem 9.3.4 (Beidar, Martindale, Mikhalev [31]) Let R be a centrally closed prime ring over C with involution * of the first kind, and with char $(R) \neq 2,3$. Furthermore assume that R is not GPI. Let $B: K^{3} \rightarrow K$ be a trilinear symmetric mapping whose trace T is commuting. Then there exist $\lambda \in C$ and a bilinear mapping $\mu: K \times K \rightarrow C$ such that

$$
\begin{aligned}
6 B(x, y, z)= & \lambda(x y z+x z y+y x z+y z x+z x y+z y x) \\
& +\mu(y, z) x+\mu(x, z) y+\mu(x, y) z
\end{aligned}
$$

for all $x, y, z \in K$.

The Proof of Theorem 9.3 .4 will follow from a series of observations and lemmas. Throughout the conditions of the theorem will be assumed. We also caution the reader of a slight change of notation (both here and in section 9.4): small letters x, y, \ldots will be elements of R and capital letters X, Y, \ldots will denote variables.

We begin by linearizing our given condition

$$
\begin{equation*}
[B(x, x, x), x]=0 \quad x \in K \tag{9.3}
\end{equation*}
$$

through various stages. By replacing x by $x+y$ in (9.3) we are led to

$$
\begin{align*}
{[B(x, x, x), y] } & +3[B(x, x, y), x]+3[B(x, x, y), y] \\
& +3[B(x, y, y), x]+3[B(x, y, y), y] \\
& +[B(y, y, y), x]=0 \tag{9.4}
\end{align*}
$$

Replacing y by $-y$ and y by $2 y$ in (9.4) we obtain

$$
[B(x, x, x), y]+3[B(x, x, y), x]=0
$$

i.e.,

$$
\begin{equation*}
[B(x, x, y), x]=-\frac{1}{3}[B(x, x, x), y] \tag{9.5}
\end{equation*}
$$

and

$$
\begin{equation*}
[B(x, x, y), y]=-[B(x, y, y), x] \tag{9.6}
\end{equation*}
$$

Substitution of x by $x+z$ in (9.5) the results in

$$
\begin{equation*}
2[B(x, y, z), x]+[B(x, x, y), z]+[B(x, x, z), y]=0 \tag{9.7}
\end{equation*}
$$

and finally replacement of x by $x+u$ in (9.7) leads to

$$
\begin{align*}
{[B(x, y, z), u]+[B(x, y, u), z] } & +[B(x, z, u), y] \\
& +[B(y, z, u), x]=0 \tag{9.8}
\end{align*}
$$

for all $x, y, z, u \in K$.

Before proceeding to our first lemma it will be convenient to define

$$
\phi_{x, i}(y)=x^{i} y+x^{i-1} y x+\ldots+y x^{i}, \quad x, y \in R, i=0,1,2, \ldots
$$

(it is understood that $\phi_{x, 0}(y)=y$) and then to immediately note that

$$
\begin{equation*}
\phi_{x, i}[y, x]=\left[y, x^{i+1}\right] \tag{9.9}
\end{equation*}
$$

Lemma 9.3.5 If $x \in K$ is algebraic over C of degree $m+1$, then

$$
B(x, x, x)=\sum_{i=0}^{m} \beta_{i} x^{i}, \quad \beta_{i} \in C, i=0,1, \ldots, m
$$

Proof. We set $b=B(x, x, y), y \in K, a=B(x, x, x)$, noting from (9.5) that $[b, x]=-\frac{1}{3}[a, y]$. From (9.9) we have $\phi_{x, i}[b, x]=$ $\left[b, x^{i+1}\right], i=0,1,2, \ldots$ Writing $\sum_{i=0}^{m+1} \alpha_{i} x^{i}=0, \alpha_{i} \in C, \alpha_{m+1}=$ 1, we see that

$$
\sum_{i=0}^{m} \alpha_{i+1} \phi_{x, i}[b, x]=\left[b, \sum_{i=0}^{m} \alpha_{i+1} x^{i+1}\right]=\left[b, \sum_{j=0}^{m+1} \alpha_{j} x^{j}\right]=0
$$

whence $\sum_{i=0}^{m} \alpha_{i+1} \phi_{x, i}[a, y]=0$ for all $y \in K$. By Corollary 6.2.5 the element $f(Y)=\sum_{i=0}^{m} \alpha_{i+1} \phi_{x, i}[b, Y]$ must be the zero element of $R_{C}<X>$. This means in particular that

$$
\begin{equation*}
\sum_{i=0}^{m} \alpha_{i+1} \phi_{x, i}[a, y]=0 \tag{9.10}
\end{equation*}
$$

for all $y \in R$. With the help of Theorem 2.3.6, equation (9.10) may be translated into the tensor product equation

$$
\begin{equation*}
\sum_{i=0}^{m} \alpha_{i+1} \sum_{j=0}^{i}\left(x^{i-j} \otimes x^{j}\right)(a \otimes 1-1 \otimes a)=0 \tag{9.11}
\end{equation*}
$$

Reversing the summation and rewriting (9.11) we have

$$
\begin{equation*}
\sum_{j=0}^{m}\left\{\sum_{j \leq i \leq m} \alpha_{i+1} x^{i-j} a\right\} \otimes x^{j}-\sum_{j=0}^{m}\left\{\sum_{j \leq i \leq m} \alpha_{i+1} x^{i-j}\right\} \otimes a x^{j}=0 \tag{9.12}
\end{equation*}
$$

For each summand of the tensor product in (9.12) let us agree to call the factor to the left of the tensor sign the coefficient of the factor to the right of the tensor sign. From our assumption that x is algebraic of degree $m+1$ we know that $1, x, \ldots, x^{m}$ are C-independent. Suppose (to the contrary of what we are trying to prove) that $1, x, \ldots, x^{m}, a$ are C-independent. We make the important observation that the coefficient of a in (9.12) is $\sum_{i=0}^{m} \alpha_{i+1} x^{i}=x^{m}+\sum_{i=0}^{m-1} \alpha_{i+1} x^{i}$, a polynomial in x of degree m. For $j>0$, if $a x^{j}$ is a linear combination of $1, x, \ldots, x^{m}, a, a x, \ldots$, $a x^{j-1}$ we rewrite (9.12) accordingly and note that the coefficient of a in the rewritten form of (9.12) remains a polynomial in x of degree m. A contradiction to $1, x, \ldots, x^{m}, a$ being independent is thereby reached, and so we may finally conclude that $a=B(x, x, x)=\sum_{i=0}^{m} \beta_{i} x^{i}, \beta_{i} \in C$.

Lemma 9.3.6 If $z \in K$ is not algebraic of degree ≤ 6, then

$$
B(z, z, z)=\alpha z^{5}+\beta z^{3}+\gamma z, \quad \alpha, \beta, \gamma \in C
$$

Proof. Replacing x by z^{3} in (9.7) we have

$$
\begin{equation*}
2\left[B\left(z^{3}, y, z\right), z^{3}\right]+\left[B\left(z^{3}, z^{3}, y\right), z\right]+\left[B\left(z^{3}, z^{3}, z\right), y\right]=0 \tag{9.13}
\end{equation*}
$$

for all $y \in K$. Applying (9.9) to the first summand of (9.13) we obtain

$$
\phi_{z, 2} 2\left[B\left(z^{3}, y, z\right), z\right]+\left[B\left(z^{3}, z^{3}, y, z\right), z\right]+\left[B\left(z^{3}, z^{3}, z\right), y\right]=0
$$

which in view of (9.7) again may be rewritten as

$$
\begin{align*}
& -\phi_{z, 2}\left[B\left(z, z, z^{3}\right), y\right]-\phi_{z, 2}\left[B(z, z, y), z^{3}\right] \\
& +\left[B\left(z^{3}, z^{3}, y\right), z\right]+\left[B\left(z^{3}, z^{3}, z\right), y\right]=0 \tag{9.14}
\end{align*}
$$

Using (9.9) in connection with the second summand in (9.14) we then have

$$
\begin{align*}
& -\phi_{z, 2}\left[B\left(z, z, z^{3}\right), y\right]-\phi_{z, 2}^{2}[B(z, z, y), z] \\
& +\left[B\left(z^{3}, z^{3}, y\right), z\right]+\left[B\left(z^{3}, z^{3}, z\right), y\right]=0 \tag{9.15}
\end{align*}
$$

An application of (9.5) to the second summand of (9.15) results in

$$
\begin{align*}
& -\phi_{z, 2}\left[B\left(z, z, z^{3}\right), y\right]+\frac{1}{3} \phi_{z, 2}^{2}[B(z, z, z), y] \\
& +\left[B\left(z^{3}, z^{3}, y\right), z\right]+\left[B\left(z^{3}, z^{3}, z\right), y\right]=0 \tag{9.16}
\end{align*}
$$

We then apply $\phi_{z, 2}$ to (9.16) and use (9.9) to obtain

$$
\begin{align*}
& -\phi_{z, 2}^{2}\left[B\left(z, z, z^{3}\right), y\right]+\frac{1}{3} \phi_{z, 2}^{3}[B(z, z, z), y] \\
& +\left[B\left(z^{3}, z^{3}, y\right), z^{3}\right]+\phi_{z, 2}\left[B\left(z^{3}, z^{3}, z\right), y\right]=0 \tag{9.17}
\end{align*}
$$

Using (9.5) on the third summand of (9.17) we have

$$
\begin{align*}
& -\phi_{z, 2}^{2}\left[B\left(z, z, z^{3}\right), y\right]+\frac{1}{3} \phi_{z, 2}^{3}[B(z, z, z), y] \\
& -\frac{1}{3}\left[B\left(z^{3}, z^{3}, z^{3}\right), y\right]+\phi_{z, 2}\left[B\left(z^{3}, z^{3}, z\right), y\right]=0 \tag{9.18}
\end{align*}
$$

Multiplication of (9.18) by -3 and rearrangement of terms yields

$$
\begin{align*}
& {\left[B\left(z^{3}, z^{3}, z^{3}\right), y\right]-3 \phi_{z, 2}\left[B\left(z^{3}, z^{3}, z\right), y\right] } \\
+ & 3 \phi_{z, 2}^{2}\left[B\left(z, z, z^{3}\right), y\right]-\phi_{z, 2}^{3}[B(z, z, z), y]=0 \tag{9.19}
\end{align*}
$$

For simplification of notation we rewrite (9.19) as

$$
\begin{equation*}
[d, y]-3 \phi_{z, 2}[c, y]+3 \phi_{z, 2}^{2}[b, y]-\phi_{z, 2}^{3}[a, y]=0, \quad y \in K \tag{9.20}
\end{equation*}
$$

where $a=B(z, z, z), b=B\left(z^{3}, z, z\right), c=B\left(z^{3}, z^{3}, z\right)$, and $d=$ $B\left(z^{3}, z^{3}, z^{3}\right)$. By Corollary 6.2.5

$$
f(Y)=[d, Y]-3 \phi_{z, 2}[c, Y]+3 \phi_{z, 2}^{2}[b, Y]-\phi_{z, 2}^{3}[a, Y]
$$

must be the zero element of $R_{C}<X>$ and so in particular

$$
\begin{equation*}
[d, y]-3 \phi_{z, 2}[c, y]+3 \phi_{z, 2}^{2}[b, y]-\phi_{z, 2}^{3}[a, y]=0 \tag{9.21}
\end{equation*}
$$

for all $y \in R$. Using Theorem 2.3.6 we may translate (9.21) into the tensor product equation

$$
\begin{align*}
& d \otimes 1-1 \otimes d-3\left(z^{2} \otimes 1+z \otimes z+1 \otimes z^{2}\right)(c \otimes 1-1 \otimes c) \\
+ & 3\left(z^{2} \otimes 1+z \otimes z+1 \otimes z^{2}\right)^{2}(b \otimes 1-1 \otimes b) \\
- & \left(z^{2} \otimes 1+z \otimes z+1 \otimes z^{2}\right)^{3}(c \otimes 1-1 \otimes c) \tag{9.22}
\end{align*}
$$

Two side calculations yield

$$
\begin{align*}
\left(z^{2} \otimes 1+z \otimes z+1 \otimes z^{2}\right)^{2}= & z^{4} \otimes 1+2 z^{3} \otimes z+3 z^{2} \otimes z^{2} \\
& +2 z \otimes z^{3}+1 \otimes z^{4} \tag{9.23}\\
\left(z^{2} \otimes 1+z \otimes z+1 \otimes z^{2}\right)^{3}= & z^{6}+3 z^{5} \otimes z+6 z^{4} \otimes z^{2} \\
& +7 z^{3} \otimes z^{3}+6 z^{2} \otimes z^{4} \\
& +3 z \otimes z^{5}+1 \otimes z^{6} \tag{9.24}
\end{align*}
$$

Inserting (9.23) and (9.24) in (9.22) and then expanding in full we see that

$$
\begin{align*}
& d \otimes 1-1 \otimes d-3\left\{z^{2} c \otimes 1+z c \otimes+c \otimes z^{2}\right. \\
& \left.-z^{2} \otimes c-z \otimes c z-1 \otimes c z^{2}\right\} \\
& +3\left\{z^{4} b \otimes 1+2 z^{3} b \otimes z+3 z^{2} b \otimes z^{2}+2 z b \otimes z^{3}+b \otimes z^{4}\right. \\
& \left.-z^{4} \otimes b-2 z^{3} \otimes b z-3 z^{2} \otimes b z^{2}-2 z \otimes b z^{3}-1 \otimes b z^{4}\right\} \\
& -\left\{z^{6} a \otimes 1+3 z^{5} a \otimes z+6 z^{4} a \otimes z^{2}+7 z^{3} a \otimes z^{3}\right. \\
& +6 z^{2} a \otimes z^{4}+3 z a \otimes z^{5}+a \otimes z^{6} \\
& -z^{6} \otimes a-3 z^{5} \otimes a z-6 z^{4} \otimes a z^{2}-7 z^{3} \otimes a z^{3} \\
& \left.-6 z^{2} \otimes a z^{4}-3 z \otimes a z^{5}-1 \otimes a z^{6}\right\}=0 \tag{9.25}
\end{align*}
$$

Systematically rearranging the terms of (9.25) we have

$$
\left(d-3 z^{2} c+3 z^{4} b-z^{6} a\right) \otimes 1+\left(-3 z c+6 z^{3} b-3 z^{5} a\right) \otimes z
$$

$$
\begin{align*}
& +\left(-3 c+9 z^{2} b-6 z^{4} a\right) \otimes z^{2}+\left(6 z b-7 z^{3} a\right) \otimes z^{3} \\
& +\left(3 b-6 z^{2} a\right) \otimes z^{4}-3 z a \otimes z^{5}-a \otimes z^{6}+z^{6} \otimes a \\
& +3 z^{5} \otimes a z+6 z^{4} \otimes a z^{2}+7 z^{3} \otimes a z^{3} \\
& +6 z^{2} \otimes a z^{4}+3 z \otimes a z^{5}+1 \otimes a z^{6} \\
& -3 z^{4} \otimes b-6 z^{3} \otimes b z-9 z^{2} \otimes b z^{2}-6 z \otimes b z^{3}-3 \otimes b z^{4} \\
& +3 z^{2} \otimes c+3 z \otimes c z+3 \otimes c z^{2}-1 \otimes d=0 \tag{9.26}
\end{align*}
$$

Since z is not algebraic of degree ≤ 6, we may speak of the degree of polynomials in z whose powers of z do not exceed 6 . We know that $1, z, \ldots, z^{6}$ are C-independent. Suppose (contrary to what we are trying to prove) that $1, z, \ldots, z^{6}, a$ are C-independent. In a similar fashion to the proof of Lemma 9.3 .5 we note that the coefficient of a in (9.26) is z^{6} whereas the coefficients of

$$
a z, a z^{2}, \ldots, a z^{6}, b, b z, \ldots, b z^{4}, c, c z, c z^{2}, d
$$

in (9.26) are all polynomials in z of degree <6. Consequently, writing if necessary any of the above elements as a linear combination of preceding elements and then rewriting (9.26) accordingly, it follows that the coefficient of a in the rewritten form of (9.26) remains a polynomial in z of degree 6 . This a contradiction to $1, z, \ldots, z^{6}, a$ being assumed C-independent and so $a=B(z, z, z)=\sum_{i=0}^{6} \beta_{i} z^{i}$. Since $B(z, z, z)$ is skew we finally have $B(z, z, z)=\alpha z^{5}+\beta z^{3}+\gamma z, \alpha, \beta, \gamma \in C$, as desired.

Lemma 9.3.7 If $z \in K$ is not algebraic of degree 6, then there exist $\lambda, \mu \in C$ such that $B(z, z, z)=\lambda z^{3}+\mu z$.

Proof. If z is algebraic of degree ≤ 5, then by Lemma 9.3.5 $B(z, z, z)=\sum_{i=0}^{m} \beta_{i} z^{i}$ for some $m \leq 4$. But $B(z, z, z)$ is skew and so $B(z, z, z)=\beta_{3} z^{3}+\beta_{1} z$. Therefore we may assume that z is not algebraic of degree ≤ 6, because z is not algebraic of degree 6 by our assumption. In the free product $R_{C}<X>$ we consider the following sets of elements:
$\left\{M_{i}(z, Y) \mid i=1,2, \ldots, n\right\}$, the set of all monomials of the form $z^{j_{0}} Y^{k_{1}} z^{j_{1}} \ldots Y^{k_{s}} z^{j_{s}}$, where $j_{0}+j_{1}+\ldots+j_{s} \leq 6$ and $k_{1}+$ $k_{2}+\ldots+k_{s} \leq 6$,

$$
\begin{aligned}
& \left\{(Y+z)^{i} \mid i=0,1, \ldots, 6\right\} \\
& \left\{(Y-z)^{i} \mid i=0,1, \ldots, 6\right\}
\end{aligned}
$$

Since $1, z, \ldots, z^{6}$ are C-independent, each of the above three sets is a C-independent subset of $R_{C}<X>$. By Lemma 6.1.8 there exists $x \in K$ such that each of the sets $\left\{M_{i}(z, x)\right\},\left\{(x+z)^{i}\right\}$, and $\left\{(x-z)^{i}\right\}$ is a C-independent subset of R. We let V denote the C-span of the set $\left\{M_{i}(z, x)\right\}$. Since none of the elements $z, x, x+z, x-z$ are algebraic of degree ≤ 6, Lemma 9.3 .6 implies that the traces $T(z), T(x), T(x+z), T(x-z)$ are all elements of V and in fact are of "degree" ≤ 5 in x and "degree" ≤ 5 in z. It then follows from the equations

$$
\begin{aligned}
& T(x+z)=T(x)+T(z)+3 B(x, x, z)+3 B(x, z, z) \\
& T(x-z)=T(x)-T(z)-3 B(x, x, z)+3 B(x, z, z)
\end{aligned}
$$

that $B(x, x, z)$ and $B(x, z, z)$ are also elements of V of degree ≤ 5 in both x and z. Using (9.5), we may then conclude from

$$
[B(x, x, x), z]=-3[B(x, x, z), x]
$$

that $B(x, x, z)$ is of degree 1 in z. Next, using (9.6), from

$$
[B(x, x, z), z]=-[B(x, z, z), x]
$$

we see that $B(x, z, z)$ is of degree ≤ 2 in z. As a result it follows from

$$
B(x, z, z), z]=-\frac{1}{3}[B(z, z, z), x]
$$

that $B(z, z, z)$ has degree ≤ 3 in z. Since $B(z, z, z)$ is skew we then have $B(z, z, z)=\lambda z^{3}+\mu z, \lambda, \mu \in C$, as desired.

Lemma 9.3.8 Suppose that $z \in K$ is algebraic of degree 6. Then there exist $\lambda, \mu \in C$ such that $B(z, z, z)=\lambda z^{3}+\mu z$.

Proof. In the free product $R_{C}<X>$ we consider the following five sets:
$\left\{M_{i}(z, Y) \mid i=1,2, \ldots, n\right\}$, the set of all monomials of degree ≤ 6 in Y and of degree ≤ 5 in z,
$\left\{Y^{i} \mid i=0,1, \ldots, 6\right\}$ which is a subset of the first set,
$\left\{(Y-z)^{i} \mid i=0,1, \ldots, 6\right\}$,
$\left\{(Y+z)^{i} \mid i=0,1, \ldots, 6\right\}$,
$\left\{(Y+2 z)^{i} \mid i=0,1, \ldots, 6\right\}$.
Each of these sets is a C-independent subset of $R_{C}\langle X\rangle$, so by Lemma 6.1.8 there exists $x \in K$ such that each of the five sets $\left\{M_{i}(z, x)\right\},\left\{x^{i}\right\},\left\{(x-z)^{i}\right\},\left\{(x+z)^{i}\right\}$, and $\left\{(x+2 z)^{i}\right\}$ is an independent subset of R. We let W denote the C-span of the set $\left\{M_{i}(z, x)\right\}$ and let W^{\prime} denote the subspace of W whose elements are of degree ≤ 3 in x. Since none of the elements $x, x-z, x+z, x+2 z$ are algebraic of degree 6, Lemma 9.3.7 implies that the traces $T(x), T(x-z), T(x+z), T(x+2 z)$ all belong to W^{\prime}. By adding the equations

$$
\begin{aligned}
& T(x+z)=T(x)+T(z)+3 B(x, x, z)+3 B(x, z, z) \\
& T(x-z)=T(x)-T(z)-3 B(x, x, z)+3 B(x, z, z)
\end{aligned}
$$

we have $6 B(x, z, z)=T(x+z)+T(x-z)-2 T(x)$, and so $B(x, z, z) \in W^{\prime}$. Next, from the equations

$$
\begin{aligned}
& T(x+2 z)=T(x)+8 T(z)+6 B(x, x, z)+12 B(x, z, z) \\
& 8 T(x+z)=8 T(x)+8 T(z)+24 B(x, x, z)+24 B(x, z, z)
\end{aligned}
$$

we obtain

$$
8 T(x+z)-T(x+2 z)=7 T(x)+18 B(x, x, z)+12 B(x, z, z)
$$

and so $B(x, x, z) \in W^{\prime}$. In W we have the equation

$$
[B(x, x, x), z]=-3[B(x, x, z), x]
$$

from which we may conclude that $B(x, x, z)$ has degree 1 in z. We therefore see from

$$
[B(x, x, z), z]=-[B(x, z, z,), x]
$$

that $B(x, z, z)$ has degree ≤ 2 in z. Since z is algebraic of degree 6 , we know from Lemma 9.3.5 that $B(z, z, z)=\sum_{i=0}^{5} \gamma_{i} z^{i}$, $\gamma_{i} \in C$, and so $[B(z, z, z), x] \in W^{\prime}$. Therefore from the equation

$$
[B(z, z, z), x]=-3[B(x, z, z), z]
$$

we see that $B(z, z, z)$ is of degree ≤ 3 in z, and the proof of the lemma is complete.

Together Lemma 9.3.7 and Lemma 9.3.8 imply
Lemma 9.3.9 For all $z \in K$ there exist $\lambda, \mu \in C$ such that $B(z, z, z)=\lambda z^{3}+\mu z$.

We next show that λ is independent of z.
Lemma 9.3.10 There exists $\lambda \in C$ such that for all $z \in K$ $B(z, z, z)=\lambda z^{3}+\mu(z) z, \mu(z) \in C$.

Proof. Let a, b be any elements of K neither of which is algebraic of degree ≤ 3. In the free product $R_{C}<X>$ we consider two sets
$\left\{M_{i}(a, Y) \mid i=1,2, \ldots, n\right\}$, the set of all monomials of degree ≤ 6 in Y and of degree ≤ 3 in a,
$\left\{M_{i}(b, Y) \mid i=1,2, \ldots, n\right\}$, the set of all monomials of degree ≤ 6 in Y and of degree ≤ 3 in b
These are each C-independent subsets of $R_{C}\langle X\rangle$ and so by Lemma 6.1 .8 there exists $x \in K$ such that the sets $\left\{M_{i}(a, x)\right\}$ and $\left\{M_{i}(b, x)\right\}$ are both C-independent subsets of R. Let U denote the C-span of the set $\left\{M_{i}(a, x)\right\}$, and let U^{\prime} denote the subspace of U where elements are of degree ≤ 3 in x. By

Lemma 9.3.9 $T(x), T(a), T(x+a), T(x-a)$ all belong to U^{\prime} and so from the equations

$$
\begin{align*}
& T(x+a)=T(x)+T(a)+3 B(x, x, a)+3 B(x, a, a) \\
& T(x-a)=T(x)-T(a)-3 B(x, x, a)+3 B(x, a, a) \tag{9.27}
\end{align*}
$$

we conclude that $B(x, x, a)$ and $B(x, a, a)$ both lie in U^{\prime}. From

$$
[B(x, x, x), a]=-3[B(x, x, a), x]
$$

we see that $B(x, x, a)$ is of degree 1 in a, whence from

$$
[B(x, x, a), a]=-[B(x, a, a), x]
$$

we see that $B(x, a, a)$ has degree ≤ 2 in a. Next from

$$
[B(x, a, a), a]=-\frac{1}{3}[B(a, a, a), x]
$$

we see that $B(x, a, a)$ has degree 1 in x, whence from

$$
[B(x, x, x), a]=-[B(x, a, a), x]
$$

we see that $B(x, x, a)$ has degree ≤ 2 in x. Returning to equation (9.27) and using Lemma 9.3 .9 we write

$$
\begin{align*}
\lambda_{1}(a+x)^{3}+\mu_{1}(a+x)= & \lambda_{2} a^{3}+\mu_{2} a+\lambda_{3} x^{3} \\
& +\mu_{3} x+3 B(x, x, a) \\
& +B(x, a, a) \tag{9.28}
\end{align*}
$$

for suitable $\lambda_{i}, \mu_{i} \in C$. Since the degrees of $B(x, x, a)$ and $B(x, a, a)$ in either x or in a do not exceed 2 , we conclude from (9.28) that $\lambda_{1}=\lambda_{2}$ and $\lambda_{1}=\lambda_{3}$, whence $\lambda_{2}=\lambda_{3}$. In a similar fashion, writing $B(b, b, b)=\lambda_{2}^{\prime} b^{3}+\mu_{2}^{\prime} b$, our argument shows that $\lambda_{2}^{\prime}=\lambda_{3}$ and therefore $\lambda_{2}=\lambda_{2}^{\prime}=\lambda$. In case $y \in K$ is algebraic
of degree ≤ 3 we know by Lemma 9.3.5 that $B(y, y, y)=\mu y$, so, writing $y^{3}=\gamma y$, we have

$$
B(y, y, y)=\lambda y^{3}+\mu y-\lambda y^{3}=\lambda y^{3}+(\mu-\gamma \lambda) y
$$

The proof of Lemma 9.3.10 is now complete.
Proof of Theorem 9.3.4. By Lemma 9.3 .10 there exists $\lambda \in C$ such that

$$
\begin{equation*}
B(x, x, x)=\lambda x^{3}+\gamma(x) x, \quad \gamma(x) \in C \tag{9.29}
\end{equation*}
$$

for all $x \in K$. We proceed to linearize (9.29) in the usual fashion. Replacement of x by $x+y$ in (9.29) results in
$3 B(x, x, y)+3 B(x, y, y)=\lambda\left(x^{2} y+x y x+y x^{2}+x y^{2}+y x y+y^{2} x\right)+h_{1}$
for all $x, y \in K$, where h_{1} is a linear term in x and y. Replacement of y by $-y$ in (9.30) then quickly leads to

$$
\begin{equation*}
3 B(x, y, y)=\lambda\left(x y^{2}+y x y+y^{2} x\right)+h_{2} \tag{9.31}
\end{equation*}
$$

where h_{2} is linear in x and y. Replacement of y by $y+z$ in (9.31) then results in

$$
\begin{equation*}
6 B(x, y, z)=\lambda(x y z+x z y+y x z+y z x+z x y+z y x)+h \tag{9.32}
\end{equation*}
$$

for all $x, y, z \in K$, where

$$
\begin{equation*}
h(x, y, z)=\alpha(x, y, z) x+\beta(x, y, z) y+\gamma(x, y, z) z \tag{9.33}
\end{equation*}
$$

and $\alpha(x, y, z), \beta(x, y, z), \gamma(x, y, z) \in C$. We note from (9.32) that $h: K^{3} \rightarrow K$ is a trilinear mapping. We define a mapping $\mu: K \times K \rightarrow C$ in the following fashion. Given $(y, z) \in K \times K$ choose $x \in K$ such that x does not lie in the C-span of y and z (such x exists since K is infinite dimensional over C). Now write

$$
h(x, y, z)=\alpha x+\beta y+\gamma z
$$

and define $\mu(y, z)=\alpha$. To show that μ is well-defined let $u \in K$ such that $u \notin C y+C z$. Suppose first that $u=\tau_{1} x+\tau_{2} y+\tau_{3} z$ (necessarily $\tau_{1} \neq 0$). Then

$$
\begin{aligned}
h(u, y, z) & =\tau_{1} h(x, y, z)+\tau_{2}\left(h(y, y, z)+\tau_{3} h(z, y, z)\right. \\
& =\tau_{1}(\alpha x+\beta y+\gamma z)+\tau_{2}\left(\beta_{2} y+\gamma_{2} z\right)+\tau_{3}\left(\beta_{3} y+\gamma_{3} z\right) \\
& =\alpha\left(\tau_{1} x+\tau_{2} y+\tau_{3} z\right)+\beta_{4} y+\gamma_{4} z \\
& =\alpha u+\beta_{4} y+\gamma_{4} z
\end{aligned}
$$

We may thus assume that u, x are C-independent modulo $C y+$ $C z$. In this case we write

$$
h(x, y, z)+h(u, y, z)=h(x+u, y, z)
$$

whence

$$
\begin{equation*}
\alpha x+\beta y+\gamma z+\alpha_{1} u+\beta_{1} y+\gamma_{1} z=\alpha_{2}(x+u)+\beta_{2} y+\gamma_{3} z \tag{9.34}
\end{equation*}
$$

It follows from (9.34) that $\alpha=\alpha_{2}$ and $\alpha_{1}=\alpha_{2}$ and so $\alpha=\alpha_{1}$ as desired.

We next show that μ is bilinear. Let $y, y^{\prime}, z \in K, \tau \in C$, and choose $x \in K$ such that $x \notin C y+C y^{\prime}+C z$. The following equations

$$
\begin{aligned}
h(x, y, z) & =\alpha x+\beta y+\gamma z=h(x, z, y) \\
h\left(x, y+y^{\prime}, z\right) & =\mu\left(y+y^{\prime}, z\right) x+\beta_{1}\left(y+y^{\prime}\right)+\gamma_{1} z \\
& =h(x, y, z)+h\left(x, y^{\prime} z\right) \\
& =\mu(y, z) x+\beta_{2} y+\gamma_{2} z+\mu\left(y^{\prime}, z\right) x+\beta_{3} y^{\prime}+\gamma_{3} z \\
h(x, \tau y, z) & =\mu(\tau y, z) x+\beta_{4} \tau y+\gamma_{4} z \\
\tau h(x, y, z) & =\tau \mu(y, z) x+\tau \beta y+\tau \gamma z
\end{aligned}
$$

clearly imply that μ is bilinear.
Now let $x, y, z \in K$ be C-independent. From

$$
\begin{aligned}
& h(x, y, z) \\
&=\mu(y, z) x+\beta y+\gamma z \\
&=h(y, x, z)=\mu(x, z) y+\beta_{1} x+\gamma_{1} z \\
&= h(z, x, y)=\mu(x, y) z+\beta_{2} x+\gamma_{2} y
\end{aligned}
$$

we then conclude that

$$
h(x, y, z)=\mu(y, z) x+\mu(x, z) y+\mu(x, y) z .
$$

Next suppose that y, z are C-independent but $x \in C y+C z$. Choose $u \notin C y+C z$. Then $x+u \notin C y+C z$ and we have

$$
\begin{align*}
h(x, y, z)= & h(x+u, y, z)-h(u, y, z) \\
= & \mu(y, z)(x+u)+\mu(x+u, z) y+\mu(x+u) z \\
& -\mu(y, z) x-\mu(x, z) y-\mu(x, y) z \\
= & \mu(y, z) x+\mu(x, z) y+\mu(x, y) z \tag{9.35}
\end{align*}
$$

Finally, if $\operatorname{dim}_{C}(C x+C y+C z)=1$, we choose $u \notin C x+$ $C y+C z$ and making use of the preceding case together with equation (9.35) we complete the proof of Theorem 9.3.4.

9.4 Lie Isomorphisms

At his 1961 AMS Hour Talk, entitled "Lie and Jordan structures in simple, associative rings", Herstein posed several problems he deemed worthy of attention [113]. Among these were the following questions (which we indicate in a rather loose fashion):

Problem 1. Is every Lie automorphism ϕ of a simple associative ring R given by (or "almost" given by) an automorphism σ or negative of an antiautomorphism σ of R ?

Problem 2. If R is a simple ring with involution $*$ and K denotes the Lie ring of skew elements of R under $*$, is every Lie automorphism ϕ of K induced by (or "almost" induced by) an automorphism σ of R ?

The qualification "almost" refers to the possibility that ϕ and σ may differ by an additive mapping τ of R into the center which sends commutators to 0 .

The resolution of these problems in the classical case $R=$ $M_{n}(F), F$ a field, has been well-known for a long time ([132,

Chapter 10]). In 1951 Hua [130] solved Problem 1 for R a simple Artinian ring $M_{n}(D), D$ a division ring, $n \geq 3$. A more general situation for Problem 1 was subsequently considered by Martindale ([201], [203]) in which Lie isomorphisms $\phi: R \rightarrow R^{\prime}$ (R, R^{\prime} primitive in [201] and prime in [203]) were investigated and in which the matrix condition $n \geq 3$ was replaced by the condition that R contains three orthogonal idempotents whose sum is 1 (in [203] only two idempotents were required). A close look at the results of these papers reveals the fact that the image of σ in general requires a "larger" ring than R^{\prime} and that the image of τ requires a "larger" field than the center of R^{\prime}. We note that it was precisely this necessity to enlarge certain rings that was the motivation for developing the notions of extended centroid and central closure which proved so useful in characterizing prime GPI rings [205]. As mentioned in section 9.3, the final breakthrough on Problem 1 was made by Bresar [63]. Here, as a corollary to a general result on biadditive mappings in prime rings, he removed the assumption of orthogonal idempotents altogether and thereby settled Problem 1 in full generality.

Theorem 9.4.1 (Bresar [63, Theorem 3]) Let R and R^{\prime} be prime rings of characteristic $\neq 2$, neither of which satisfies the standard identity St $_{4}$. Then any Lie isomorphism ϕ of R onto R^{\prime} is of the form $\phi=\sigma+\tau$, where σ is either an isomorphism or negative of an antiisomorphism of R into the central closure of R^{\prime} and τ is an additive mapping of R into the extended centroid of R^{\prime} sending commutators to 0 .

The present section is concerned with Problem 2. Let R be a prime ring with involution $*$, of characteristic $\neq 2,3$, with K the skew elements of R, and C the extended centroid of R. Throughout this section all involutions will be of the first kind. (For involution of the second kind the feeling is that the solution of Problem 2 is inherently easier and should ultimately revert back to Theorem 9.4.1; partial results have been obtained by
M. P. Rosen [253]). As we have seen $*$ may be extended to an involution of the central closure $R C$ according to $r c \mapsto r^{*} c$, $r \in R, c \in C$. Up to 1994 (see [31]) the main result concerning Problem 2 was the following theorem of Martindale [212], which we now state carefully since it plays a crucial role in the general solution of Problem 2.

Theorem 9.4.2 (Martindale [212, Theorem 3.1]) Let R and R^{\prime} be centrally closed prime rings of characteristic $\neq 2$ with involutions of the first kind, with algebraically closed centroids C and C^{\prime} respectively, and with skew elements denoted respectively by K and K^{\prime}. We assume furthermore that
(a) $\operatorname{dim}_{C}(R) \neq 1,4,9,16,25,64$;
(b) R contains two nonzero symmetric idempotents e_{1} and e_{2} such that $e_{1}+e_{2} \neq 1$;
(c) For $i=1,2, e_{i} \in\left\langle e_{i} R e_{i} \cap[K, K]\right\rangle$, the associative subring generated by $e_{i} R e_{i} \cap[K, K]$.

Then any Lie isomorphism of $[K, K]$ onto $\left[K^{\prime}, K^{\prime}\right]$ can be extended uniquely to an associative isomorphism of $\langle[K, K]\rangle$ onto $\left\langle\left[K^{\prime}, K^{\prime}\right]\right\rangle$.

Our aim in this section is to eliminate the requirement of idempotents assumed in Theorem 9.4.2. We are now ready to state the main result of this section:

Theorem 9.4.3 (Beidar, Martindale, Mikhalev [31]) Let R and R^{\prime} be prime rings with involutions of the first kind and of characteristic $\neq 2,3$. Let K and K^{\prime} denote respectively the skew elements of R and R^{\prime} and let C and C^{\prime} denote the extended centroids of R and R^{\prime} respectively. Assume that $\operatorname{dim}_{C}(R C) \neq$ $1,4,9,16,25,64$. Then any Lie isomorphism α of K onto K^{\prime} can be extended uniquely to an associative isomorphism of $\langle K\rangle$ onto $\left\langle K^{\prime}\right\rangle$, the associative subrings generated by K and K^{\prime} respectively.

It is interesting to note that the possibility of the mapping τ : $R \rightarrow C^{\prime}$ appearing in the conclusion of Theorem 9.4.3 does not in fact occur. We also mention that counterexamples illustrating the dimension restrictions on $\operatorname{dim}_{C}(R C)$ may be found in [2\&2].

In view of Theorem 9.1.13 and Lemma 9.1.4 we have the following

Corollary 9.4.4 If in Theorem 9.4.3 R and R^{\prime} are simple rings, then α can be extended uniquely to an isomorphism of R onto R^{\prime}.

The proof of Theorem 9.4 .3 is self-contained with a single major exception. Theorem 9.4.2 is required and in fact plays a decisive role; we refer the reader to [212] for the details of its proof. For the remainder of this section we shall assume that the conditions of the Theorem 9.4.3 hold. 'Our plan of attack is to consider two cases: Case A in which R is GPI and Case B in which R is not $G P I$. In Case A we are able to make use of Theorem 9.4.2. In case B we set up a certain trilinear symmetric mapping $B: K^{3} \rightarrow K$ intimately related to α. Then, making repeated use of Lemma 6.1.8, we are able to show (Theorem 9.3.4) that B is of a particular useful form. The upshot is that both Theorem 9.4.2 in Case A and Theorem 9.3.4 in Case B enable us to prove that $\left(x^{3}\right)^{\alpha}=\left(x^{\alpha}\right)^{3}$ for all $x \in K$, which by Lemma 9.4.5 is precisely the criterion for lifting α to an isomorphism of $\langle K\rangle$ onto $\left\langle K^{\prime}\right\rangle$. Our main result, Theorem 9.4.3, will thereby be proved.

We begin by showing that without loss of generality R and R^{\prime} may be assumed to be centrally closed prime rings with C and C^{\prime} algebraically closed fields. Indeed, since $\operatorname{dim}_{C}(R C)>16$ we know from Theorem 9.1.13(e) that K is a prime Lie ring and from Theorem 9.2.4 that $C=C(K)$, where $C(K)$ is the Lie extended centroid of K. From the Lie isomorphism α we see that K^{\prime} is also a prime Lie ring, in which case it follows that $C^{\prime}=$ $C\left(K^{\prime}\right)$. The Lie isomorphism α then induces an isomorphism
$c \mapsto \bar{c}$ of C onto C^{\prime} according to the rule $[f, U] \mapsto\left[g, U^{\alpha}\right]$ where $g\left(u^{\alpha}\right)=f(u)^{\alpha}$. We claim that α may be extended to a Lie isomorphism $\phi: K C \rightarrow K^{\prime} C^{\prime}$ given by $\sum x_{i} c_{i} \mapsto \sum x_{i}^{\alpha} \bar{c}_{i}, x_{i} \in K$, $c_{i} \in C$. Indeed, the main point is to show that ϕ is well-defined. Suppose $\sum x_{i} c_{i}=0$ and choose a Lie ideal $U \neq 0$ of K such that $U c_{i} \subseteq K$ for all i. Then for all $u \in U$ we have

$$
\begin{equation*}
0=\sum\left[x_{i} c_{i}, u\right]=\sum\left[x_{i}, c_{i} u\right] \tag{9.36}
\end{equation*}
$$

Applying α to (9.36) we obtain

$$
\begin{equation*}
0=\sum\left[x_{i}^{\alpha},\left(c_{i} u\right)^{\alpha}\right] \tag{9.37}
\end{equation*}
$$

But

$$
\left(c_{i} u\right)^{\alpha}=f_{i}(u)^{\alpha}=g_{i}\left(u^{\alpha}\right)=\bar{c}_{i} u^{\alpha}
$$

(where $c_{i}=\left[f_{i}, U\right], \bar{c}_{i}=\left[g_{i}, U^{\alpha}\right]$) and so (9.37) becomes

$$
0=\sum\left[x_{i}^{\alpha}, \bar{c}_{i} u^{\alpha}\right]=\sum\left[x_{i}^{\alpha} \bar{c}_{i}, u^{\alpha}\right]
$$

for all $u \in U$. Therefore $\sum x_{i}^{\alpha} \bar{c}_{i}=0$ and ϕ is well-defined. Therefore without loss of generality we may assume that R and R^{\prime} are already centrally closed. Now let F be an algebraic closure of C and let F^{\prime} be an algebraic closure of C^{\prime} such that the isomorphism $c \mapsto \bar{c}$ is extended to an isomorphism $\lambda \mapsto \bar{\lambda}$ of F onto F^{\prime}. We then form $\widetilde{R}=R \otimes_{C} F, \tilde{R}^{\prime}=R^{\prime} \otimes_{C^{\prime}} F^{\prime}$, and extend α to a Lie isomorphism $\phi: K \otimes_{C} F \rightarrow K^{\prime} \otimes_{C^{\prime}} F^{\prime}$ via $x \otimes \lambda \mapsto x^{\alpha} \bar{\lambda}, x \in K, \lambda \in F$. This mapping is well-defined (the crucial observation being that $(x c)^{\alpha} \otimes \bar{\lambda}=x^{\alpha} \bar{c} \otimes \bar{\lambda}=x^{\alpha} \otimes \bar{c} \bar{\lambda}=$ $\left.x^{\alpha} \otimes \overline{(c \lambda)}, x \in K, \lambda \in C\right)$. We leave it for the reader to verify the straightforward details that ϕ is a Lie isomorphism. Clearly we have the condition that $\operatorname{dim}_{F}(\widetilde{R}) \neq 1,4,9,16,25,64$. Therefore we may assume to begin with that $R=\widetilde{R}$ and $R^{\prime}=\tilde{R}^{\prime}$ are closed prime rings with algebraically closed extended centroids.

We next present a criterion for extending α to an associative isomorphism of $\langle K\rangle$ to $\left\langle K^{\prime}\right\rangle$.

Lemma 9.4.5 α can be extended to an isomorphism $\beta:\langle K\rangle \rightarrow$ $\left\langle K^{\prime}\right\rangle$ if and only if $\left(x^{3}\right)^{\alpha}=\left(x^{\alpha}\right)^{3}$ for all $x \in K$.

Proof. The "only if" part being obvious, we assume

$$
\begin{equation*}
\left(x^{3}\right)^{\alpha}=\left(x^{\alpha}\right)^{3} \tag{9.38}
\end{equation*}
$$

for all $x \in K$. By Lemma 9.1.5 $\langle K\rangle=K \oplus K \circ K$. Replacement of x by $x \pm y$ in (9.38) results in

$$
\begin{equation*}
2\left(x y^{2}+x y x+y^{2} x\right)^{\alpha}=2 x^{\alpha}\left(y^{\alpha}\right)^{2}+2 y^{\alpha} x^{\alpha} y^{\alpha}+2\left(y^{\alpha}\right)^{2} x^{\alpha} \tag{9.39}
\end{equation*}
$$

for all $x, y \in K$. Also we have

$$
\begin{align*}
\left(x y^{2}-2 x y x+y^{2} x\right)^{\alpha} & =[[x, y], y]^{\alpha}=\left[\left[x^{\alpha}, y^{\alpha}\right], y^{\alpha}\right] \\
& =x^{\alpha}\left(y^{\alpha}\right)^{2}-2 y^{\alpha} x^{\alpha} y^{\alpha}+\left(y^{\alpha}\right)^{2} x^{\alpha} \tag{9.40}
\end{align*}
$$

Adding (9.39) and (9.40), we see that

$$
\begin{equation*}
\left(x y^{2}+y^{2} x\right)^{\alpha}=x^{\alpha}\left(y^{\alpha}\right)^{2}+\left(y^{\alpha}\right)^{2} x^{\alpha} \tag{9.41}
\end{equation*}
$$

for all $x, y \in K$. We now define a mapping $\beta:\langle K\rangle \rightarrow\left\langle K^{\prime}\right\rangle$ according to

$$
x \oplus \sum y_{i}^{2} \mapsto x^{\alpha} \oplus \sum\left(y_{i}^{\alpha}\right)^{2}, \quad x_{i}, y_{i} \in K
$$

To show that β is well-defined it suffices to show that if $\Sigma y_{i}^{2}=0$, then $\Sigma\left(y_{i}^{\alpha}\right)^{2}=0$. Indeed, for $x \in K$ we have $\sum y_{i}^{2} x+\sum x y_{i}^{2}=0$ whence by (9.41) we see that $\sum\left(y_{i}^{\alpha}\right)^{2} x^{\alpha}+x^{\alpha} \sum\left(y_{i}^{\alpha}\right)^{2}=0$. Clearly $s=\sum\left(y_{i}^{\alpha}\right)^{2}$ is a symmetric element of $\left\langle K^{\prime}\right\rangle$ which anticommutes with all skew elements. Hence s commutes with all elements of the form $a b+b a, a, b \in K^{\prime}$ and so with all symmetric elements of $\left\langle K^{\prime}\right\rangle$. Since $\operatorname{dim}_{C^{\prime}}\left(R^{\prime}\right)>16$, by Theorem 9.1.13(c) $\left\langle K^{\prime}\right\rangle$ contains a nonzero $*$-ideal I of R^{\prime} and so s commutes with all symmetric elements $S(I)$ of I. One can easily shows that $\operatorname{dim}_{C^{\prime}}\left(C^{\prime} I\right)>16$
and hence $\langle S(I)\rangle$ contains a nonzero ideal J of the ring I by Lemma 9.1.14. From Andrunakievich's Lemma we conclude that J contains a nonzero ideal J^{\prime} of R^{\prime} (see [276]). Since s commutes with J^{\prime} and R^{\prime} is a prime ring, we see that s is a central element of R^{\prime}. Recalling that $s z=-z s$ for all $z \in K^{\prime}$ we infer that $s=0$ and thus β is a well-defined mapping of $\langle K\rangle$ onto $\left\langle K^{\prime}\right\rangle$.

From the identity $x y=\frac{1}{2}\left\{(x+y)^{2}-x^{2}-y^{2}+[x, y]\right\}$ and from the definition of β we see that for $x, y \in K$

$$
\begin{align*}
(x y)^{\beta} & =\frac{1}{2}\left\{\left[(x+y)^{2}\right]^{\beta}-\left(x^{2}\right)^{\beta}-\left(y^{2}\right)^{\beta}+[x, y]^{\beta}\right\} \\
& =\frac{1}{2}\left\{\left(x^{\alpha}+y^{\alpha}\right)^{2}-\left(x^{\alpha}\right)^{2}-\left(y^{\alpha}\right)^{2}+\left[x^{\alpha}, y^{\alpha}\right]\right\} \\
& =x^{\alpha} y^{\alpha}=x^{\beta} y^{\beta} \tag{9.4}
\end{align*}
$$

Next from the identity $x^{2} y=\frac{1}{2}\left\{x \circ[x, y]+x^{2} \circ y\right\}$ we obtain

$$
\begin{align*}
\left(x^{2} y\right)^{\beta} & =\frac{1}{2}\left\{(x \circ[x, y])^{\beta}+\left(x^{2} \circ y\right)^{\alpha}\right\} \\
& =\frac{1}{2}\left\{x^{\alpha} \circ\left[x^{\alpha}, y^{\alpha}\right]+\left(x^{\alpha}\right)^{2} \circ y^{\alpha}\right\} \\
& =\left(x^{\alpha}\right)^{2} y^{\alpha}=\left(x^{2}\right)^{\beta} y^{\beta} \tag{9.4}
\end{align*}
$$

making use of (9.41). Together (9.42) and (9.43) imply

$$
\begin{equation*}
(u x)^{\beta}=u^{\beta} x^{\beta}, \quad u \in\langle K\rangle, x \in K \tag{9.44}
\end{equation*}
$$

and, since $\langle K\rangle$ is generated by K, it follows from (9.44) that β is a homomorphism of $\langle K\rangle$ onto $\left\langle K^{\prime}\right\rangle$. By symmetry the Lie isomorphism $x^{\alpha} \mapsto x$ of K^{\prime} onto K can be extended to a homomorphism $\gamma:\left\langle K^{\prime}\right\rangle \rightarrow\langle K\rangle$. Since $\beta \gamma$ is the identity on K and $\gamma \beta$ is the identity on K^{\prime} it is clear that β is an isomorphism.

At this point we divide our analysis of α into two separate cases:

Case A: R is $G P I$.

Case B: R is not GPI.

Case A. By Theorem 6.1.6 R has nonzero socle H. Since $\operatorname{dim}_{C}(R)>36$ we know from the $*$-Litoff Theorem that H contains a symmetric idempotent e of rank $n \geq 6$. Then $e R e \cong$ $M_{n}(C)$ and by Corollary 4.6 .13 the involution $*$ on $e R e$ is either transpose or symplectic. In either of these cases it is well-known that $e R e$ contains orthogonal symmetric idempotents e_{1} and e_{2} each of rank 2. It is then easy to check that for $i=1,2 e_{i}$ lies in the subring generated by $[K, K] \cap e_{i} R e_{i}$. Finally α clearly induces a Lie isomorphism α_{0} from $[K, K]$ onto [K^{\prime}, K^{\prime}], and so the conditions of Theorem 9.4.2 have now been met. We may therefore conclude that α_{0} can be extended to an associative isomorphism $\sigma: T \rightarrow T^{\prime}$, where $T=\langle[K, K]\rangle$ and $T^{\prime}=\left\langle\left[K^{\prime}, K^{\prime}\right]\right\rangle$. It is easily seen that $(K \cap T)^{\sigma}=K^{\prime} \cap T^{\prime}$. Indeed, this follows from writing $x \in K \cap T$ as

$$
x=\sum\left(u_{1} u_{2} \ldots u_{n}+(-1)^{n+1} u_{n} \ldots u_{1}\right), \quad u_{i} \in[K, K]
$$

and then applying the isomorphism σ. Similarly $(S \cap T)^{\sigma}=$ $S^{\prime} \cap T^{\prime}$, where S and S^{\prime} are respectively the symmetric elements of R and R^{\prime}. We also claim that α agrees with σ on $K \cap T$. Indeed, for $x \in K \cap T, y \in[K, K]$ we have

$$
\left[x^{\alpha}, y^{\alpha}\right]=[x, y]^{\alpha}=[x, y]^{\sigma}=\left[x^{\sigma}, y^{\sigma}\right]=\left[x^{\sigma}, y^{\alpha}\right]
$$

whence $x^{\alpha}-x^{\sigma}$ commutes with $\left[K^{\prime}, K^{\prime}\right]$ and so $x^{\alpha}-x^{\sigma}$ is central by Theorem 9.1.13(c). But we have already seen that x^{σ} (as well x^{α}) must be skew, and so $x^{\alpha}-x^{\sigma}=0$ which proves our claim.

By Theorem 9.1.13(c) $H \subseteq T$. We note that H itself is a simple ring. If $I \neq 0$ is an ideal of T, then $I \cap H \neq 0$ is an ideal of H and so $I \cap H=H$, i.e., $I \supseteq H$. It follows that H is also the socle of T. It is easy to show via σ that R^{\prime} must be GPI with socle H^{σ}.

We now fix $t \in K$. We claim first of all that

$$
\begin{equation*}
[u, t]^{\sigma}=\left[u^{\sigma}, t^{\alpha}\right], \quad u \in H \tag{9.45}
\end{equation*}
$$

Indeed, since $\langle H \cap K\rangle=H$ by Lemma 9.1.4 and the simplicity of H, we may assume without loss of generality that $u=x_{1} x_{2} \ldots x_{n}, x_{i} \in H \cap K$. For $n=1$

$$
\left[x_{1}, t\right]^{\sigma}=\left[x_{1}, t\right]^{\alpha}=\left[x_{1}^{\alpha}, t^{\alpha}\right]=\left[x_{1}^{\sigma}, t^{\alpha}\right] .
$$

Inductively we have

$$
\begin{aligned}
{\left[x_{1} x_{2} \ldots x_{n}, t\right]^{\sigma} } & =\left\{x_{1}\left[x_{2} \ldots x_{n}, t\right]+\left[x_{1}, t\right] x_{2} \ldots x_{n}\right\}^{\sigma} \\
& =x_{1}^{\sigma}\left[x_{2} \ldots x_{n}, t\right]^{\sigma}+\left[x_{1}, t\right]^{\sigma}\left(x_{2} \ldots x_{n}\right)^{\sigma} \\
& =x_{1}^{\sigma}\left[\left(x_{2} \ldots x_{n}\right)^{\sigma}, t^{\alpha}\right]+\left[x_{1}^{\sigma}, t^{\alpha}\right]\left(x_{2} \ldots x_{n}\right)^{\sigma} \\
& =\left[x_{1}^{\sigma}\left(x_{2} \ldots x_{n}\right)^{\sigma}, t^{\alpha}\right]=\left[\left(x_{1} x_{2} \ldots x_{n}\right)^{\sigma}, t^{\alpha}\right]
\end{aligned}
$$

and so our claim is established.
From $[u \circ t, u]=[t, u] \circ u$ we see, making use of (9.45), that

$$
\left[(u \circ t)^{\sigma}, u^{\sigma}\right]=\left[t^{\alpha}, u^{\sigma}\right] \circ u^{\sigma}=\left[u^{\sigma} \circ t^{\alpha}, u^{\sigma}\right]
$$

for all $u \in H$. In other words $\psi_{t}: u^{\sigma} \mapsto(u \circ t)^{\sigma}-u^{\sigma} \circ t^{\alpha}$ is an additive commuting function on the ring H^{σ}. By Corollary 9.3.3 there exist $\lambda \in C^{\prime}$ and $\mu: H^{\sigma} \rightarrow C^{\prime}$ such that

$$
\begin{equation*}
(u \circ t)^{\sigma}-u^{\sigma} \circ t^{\alpha}=\lambda u^{\sigma}-\mu\left(u^{\sigma}\right), \quad u \in H \tag{9.46}
\end{equation*}
$$

Choosing $u \in H \cap K$ we see that $\lambda=0$ by comparing the skew and symmetric parts of (9.46). Next, choosing $u \in S \cap H$, we see from (9.46) that $\mu\left(u^{\sigma}\right)=0$, that is

$$
\begin{equation*}
(u \circ t)^{\sigma}=u^{\sigma} \circ t^{\alpha}, \quad u \in S \cap H \tag{9.47}
\end{equation*}
$$

Together (9.45) and (9.46) imply that

$$
(u t)^{\sigma}=u^{\sigma} t^{\alpha}, \quad u \in S \cap H
$$

whence

$$
\begin{equation*}
\left(u_{1} u_{2} \ldots u_{n} t\right)^{\sigma}=u_{1}^{\sigma} u_{2}^{\sigma} \ldots u_{n}^{\sigma} t^{\alpha}, \quad u_{i} \in S \cap H \tag{9.48}
\end{equation*}
$$

But $\langle S \cap H\rangle=H$ by Lemma 9.1.14 and so (9.48) implies

$$
(u t)^{\sigma}=u^{\sigma} t^{\alpha}, \quad u \in H, t \in K
$$

Similarly $(t v)^{\sigma}=t^{\alpha} v^{\sigma}, v \in H, t \in K$ and so

$$
\begin{aligned}
u^{\sigma}\left(t^{3}\right)^{\alpha} v^{\sigma} & =\left(u t^{3}\right)^{\sigma} v^{\sigma}=\left(u t^{3} v\right)^{\sigma}=\{(u t) t(t v)\}^{\sigma} \\
& =\{(u t) t\}^{\sigma}(t v)^{\sigma}=(u t)^{\sigma} t^{\alpha} t^{\alpha} v^{\sigma}=u^{\sigma}\left(t^{\alpha}\right)^{3} v^{\sigma}
\end{aligned}
$$

for all $u, v \in H, t \in K$. Therefore $H^{\sigma}\left[\left(t^{3}\right)^{\alpha}-\left(t^{\alpha}\right)^{3}\right] H^{\sigma}=0$ whence $\left(t^{3}\right)^{\alpha}=\left(t^{\alpha}\right)^{3}$ for all $t \in K$. Lemma 9.4 .5 is thereby applicable and so we have succeeded in showing in Case A that α can be extended to an isomorphism of $\langle K\rangle$ onto $\left\langle K^{\prime}\right\rangle$.

Case B. we begin by pointing out that necessarily R^{\prime} is not $G P I$. Indeed, since R is not $G P I$, it follows that $\operatorname{dim}_{C}(K)=\infty$, whence $\operatorname{dim}_{C^{\prime}}\left(K^{\prime}\right)=\infty$. If R^{\prime} is GPI we have already seen in our discussion of Case \mathbf{A} (with α^{-1} now playing the role of α) that α^{-1} may be lifted to an isomorphism σ^{\prime} of $\left\langle K^{\prime}\right\rangle$ onto $\langle K\rangle$. Using σ^{\prime} we easily reach the contradiction that R must be GPI.

We define a C^{\prime}-trilinear symmetric mapping $B:\left(K^{\prime}\right)^{3} \rightarrow K^{\prime}$ as follows:

$$
B\left(x^{\alpha}, y^{\alpha}, z^{\alpha}\right)=\frac{1}{6}(x y z+x z y+y x z+y z x+z x y+z y x)^{\alpha}
$$

for all $x, y, z \in K$. Its trace $B\left(x^{\alpha}, x^{\alpha}, x^{\alpha}\right)$ is obviously commuting since $B\left(x^{\alpha}, x^{\alpha}, x^{\alpha}\right)=\left(x^{3}\right)^{\alpha}$ and $\left[\left(x^{3}\right)^{\alpha}, x^{\alpha}\right]=\left[x^{3}, x\right]^{\alpha}=0$ for all $x \in K$. Thus by Theorem 9.3.4 there exist $\lambda \in C^{\prime}$ and a C^{\prime}-bilinear mapping $\mu: K^{\prime} \times K^{\prime} \rightarrow C^{\prime}$ such that

$$
\begin{align*}
(x y z & +x z y+y x z+y z x+z x y+z y x)^{\alpha} \\
& =\lambda\left(x^{\alpha} y^{\alpha} z^{\alpha}+x^{\alpha} z^{\alpha} y^{\alpha}+y^{\alpha} x^{\alpha} z^{\alpha}\right. \\
& \left.+y^{\alpha} z^{\alpha} x^{\alpha}+z^{\alpha} x^{\alpha} y^{\alpha}+z^{\alpha} y^{\alpha} x^{\alpha}\right) \\
& +\mu(y, z) x^{\alpha}+\mu(x, z) y^{\alpha}+\mu(x, y) z^{\alpha} \tag{9.49}
\end{align*}
$$

for all $x, y, z \in K$, where for notational ease we are simply writing $\mu(x, y)$ for $\mu\left(x^{\alpha}, y^{\alpha}\right)$. Our aim, of course, is to show that
$\lambda=1$ and that $\mu=0$, whence $\left(x^{3}\right)^{\alpha}=\left(x^{\alpha}\right)^{3}$ and Lemma 9.4.5 may accordingly be invoked to obtain the desired conclusion that α may be extended to an isomorphism of $\langle K\rangle$ onto $\left\langle K^{\prime}\right\rangle$.

We now proceed to draw some consequences from (9.49). First setting $x=z$ in (9.49) and dividing by 2 , we obtain

$$
\begin{align*}
\left(x^{2} y+x y x+y x^{2}\right)^{\alpha}= & \lambda\left\{\left(x^{\alpha}\right)^{2} y^{\alpha}+x^{\alpha} y^{\alpha} x^{\alpha}+y^{\alpha}\left(x^{\alpha}\right)^{2}\right\} \\
& +\mu(x, y) x^{\alpha}+\frac{1}{2} \mu(x, x) y^{\alpha} \tag{9.50}
\end{align*}
$$

Now, setting $x=y$ in (9.50), we have

$$
\begin{equation*}
\left(x^{3}\right)^{\alpha}=\lambda\left(x^{\alpha}\right)^{3}+\frac{1}{2} \mu(x, x) x^{\alpha} \tag{9.51}
\end{equation*}
$$

From $3 x y x=x^{2} y+x y x+y x^{2}-[[y, x], x]$ we conclude using (9.50) that

$$
\begin{aligned}
3(x y x)^{\alpha}= & \lambda\left\{\left(x^{\alpha}\right)^{2} y^{\alpha}+x^{\alpha} y^{\alpha} x^{\alpha}+y^{\alpha}\left(x^{\alpha}\right)^{2}\right\}+\mu(x, y) x^{\alpha} \\
& +\frac{1}{2} \mu(x, x) y^{\alpha}-\left\{\left(x^{\alpha}\right)^{2} y^{\alpha}-2 x^{\alpha} y^{\alpha} x^{\alpha}+y^{\alpha}\left(x^{\alpha}\right)^{2}\right\} \\
= & (\lambda+2) x^{\alpha} y^{\alpha} x^{\alpha}+(\lambda-1)\left\{\left(x^{\alpha}\right)^{2} y^{\alpha}+y^{\alpha}\left(x^{\alpha}\right)^{2}\right\} \\
& +\mu(x, y) x^{\alpha}+\frac{1}{2} \mu(x, x) y^{\alpha}
\end{aligned}
$$

whence

$$
\begin{align*}
(x y x)^{\alpha}= & \frac{\lambda+2}{3} x^{\alpha} y^{\alpha} x^{\alpha}+\frac{\lambda-1}{3}\left\{\left(x^{\alpha}\right)^{2} y^{\alpha}+y^{\alpha}\left(x^{\alpha}\right)^{2}\right\} \\
& +\frac{1}{3} \mu(x, y) x^{\alpha}+\frac{1}{6} \mu(x, x) y^{\alpha} \tag{9.52}
\end{align*}
$$

Lemma 9.4.6 $\lambda=1$, i.e.,

$$
(x y x)^{\alpha}=x^{\alpha} y^{\alpha} x^{\alpha}+\frac{1}{3} \mu(x, y) x^{\alpha}+\frac{1}{6} \mu(x, x) y^{\alpha} .
$$

Proof. Choose $x^{\alpha} \in K^{\prime}$ such that x^{α} is not algebraic of degree ≤ 6 (such x^{α} exists since otherwise K^{\prime} would be $P I$). In the free product $R^{\prime} C^{\prime}<Y>$ consider the C^{\prime}-independent subset $\left\{M_{i}\left(x^{\alpha}, Y\right) \mid i=1,2, \ldots, n\right\}$ of all monomials of the form $\left(x^{\alpha}\right)^{j_{0}} Y^{i_{1}}\left(x^{\alpha}\right)^{j_{1}} \ldots Y^{i_{k}}\left(x^{\alpha}\right)^{j_{k}}$ where $j_{0}+j_{1}+\ldots+j_{k} \leq 6$ and $i_{1}+i_{2}+\ldots+i_{k} \leq 6$. By Lemma 6.1 .8 there exists $y^{\alpha} \in K^{\prime}$ such that $\left\{M_{i}\left(x^{\alpha}, y^{\alpha}\right)\right\}$ is a C^{\prime}-independent subset of R^{\prime}. We compute $\left(x^{3} y x^{3}\right)^{\alpha}$ in two different ways and compare the results, being only interested in the coefficients of $\left(x^{\alpha}\right)^{6} y^{\alpha}$ and $\left(x^{\alpha}\right)^{5} y^{\alpha} x^{\alpha}$. On the one hand

$$
\begin{align*}
\left(x^{3} y x^{3}\right)^{\alpha}= & \frac{\lambda+2}{3} u y^{\alpha} u+\frac{\lambda-1}{3}\left\{u^{2} y^{\alpha}+y^{\alpha} u^{2}\right\} \\
& +\frac{1}{3} \mu\left(x^{3}, y\right) u+\frac{1}{6} \mu\left(x^{3}, x^{3}\right) y^{\alpha} \tag{9.53}
\end{align*}
$$

where $u=\lambda\left(x^{\alpha}\right)^{3}+\frac{1}{2} \mu(x, x) x^{\alpha}$ (see (9.51) and (9.52)). Using

$$
u^{2}=\lambda^{2}\left(x^{\alpha}\right)^{6}+\lambda \mu(x, x)\left(x^{\alpha}\right)^{4}+\frac{1}{4} \mu(x, x)^{2}\left(x^{\alpha}\right)^{2}
$$

we may write (9.53) as

$$
\begin{equation*}
\left(x^{3} y x^{3}\right)^{\alpha}=\frac{\lambda-1}{3} \lambda^{2}\left(x^{\alpha}\right)^{6} y^{\alpha}+0 \cdot\left(x^{\alpha}\right)^{5} y^{\alpha} x^{\alpha}+\ldots \tag{9.54}
\end{equation*}
$$

On the other hand

$$
\begin{align*}
\left(x^{3} y x^{3}\right)^{\alpha}= & \left\{x\left(x^{2} y x^{2}\right) x\right\}^{\alpha} \\
= & \frac{\lambda+2}{3} x^{\alpha} v x^{\alpha}+\frac{\lambda-1}{3}\left(x^{\alpha}\right)^{2} v+\frac{\lambda-1}{3} v\left(x^{\alpha}\right)^{2} \\
& +\frac{1}{3} \mu\left(x, x^{2} y x^{2}\right) x^{\alpha}+\frac{1}{6} \mu(x, x) v \tag{9.55}
\end{align*}
$$

where

$$
\begin{aligned}
v= & \left(x^{2} y x^{2}\right)^{\alpha}=\{x(x y x) x\}^{\alpha} \\
= & \frac{\lambda+2}{3} x^{\alpha} w x^{\alpha}+\frac{\lambda-1}{3}\left(x^{\alpha}\right)^{2} w+\frac{\lambda-1}{3} w\left(x^{\alpha}\right)^{2} \\
& +\frac{1}{3} \mu(x, x y x) x^{\alpha}+\frac{1}{6} \mu(x, x) w
\end{aligned}
$$

where in turn

$$
\begin{aligned}
w=(x y x)^{\alpha}= & \frac{\lambda+2}{3} x^{\alpha} y^{\alpha} x^{\alpha}+\frac{\lambda-1}{3}\left(x^{\alpha}\right)^{2} y^{\alpha}+\frac{\lambda-1}{3} y^{\alpha}\left(x^{\alpha}\right)^{2} \\
& +\frac{1}{3} \mu(x, y) x^{\alpha}+\frac{1}{6} \mu(x, x) y^{\alpha} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\left(x^{3} y x^{3}\right)^{\alpha}= & \left(\frac{\lambda-1}{3}\right)^{3}\left(x^{\alpha}\right)^{6} y^{\alpha} \\
& +\left[\frac{\lambda+2}{3}\left(\frac{\lambda-1}{3}\right)^{2}+\frac{\lambda-1}{3} \frac{\lambda+2}{3} \frac{\lambda-1}{3}\right. \\
& \left.+\left(\frac{\lambda-1}{3}\right)^{2} \frac{\lambda+2}{3}\right]\left(x^{\alpha}\right)^{5} y^{\alpha} x^{\alpha}+\ldots \\
= & \left(\frac{\lambda-1}{3}\right)^{3}+\frac{(\lambda+2)(\lambda-1)^{2}}{9}\left(x^{\alpha}\right)^{5} y^{\alpha} x^{\alpha}
\end{aligned}
$$

$$
\begin{equation*}
+\ldots \tag{9.56}
\end{equation*}
$$

Equating the coefficients of $\left(x^{\alpha}\right)^{6} y^{\alpha}$ and $\left(x^{\alpha}\right)^{5} y^{\alpha} x^{\alpha}$ in (9.54) and (9.56) we have

$$
\begin{align*}
& \left(\frac{\lambda-1}{3}\right)^{3}=\left(\frac{\lambda-1}{3}\right) \lambda^{2} \tag{9.57}\\
& \frac{(\lambda+2)(\lambda-1)^{2}}{9}=0 \tag{9.58}
\end{align*}
$$

From (9.57) we find that $\lambda=1$ or $\lambda^{2}=\left(\frac{\lambda-1}{3}\right)^{2}$, whence $\lambda=$ $1,-\frac{1}{2}$ or $\frac{1}{4}$. From (9.58) we have $\lambda=1$ or $\lambda=2$. It follows that $\lambda=1$ and the lemma is proved.

Lemma 9.4.7 $\mu=0$.

Proof. Let $x^{\alpha} \neq 0$ be arbitrary but fixed in K^{\prime}. In the free product $R_{C^{\prime}}^{\prime}<Y>$ we define the C^{\prime}-independent set $\left\{M_{i}\left(x^{\alpha}, Y\right) \mid\right.$ $i=1,2, \ldots, n\}$ to be the set of all monomials of the form $\left(x^{\alpha}\right)^{j_{0}} Y^{i_{1}}\left(x^{\alpha}\right)^{j_{1}} \ldots Y^{i_{k}}\left(x^{\alpha}\right)^{j_{k}}$ where $j_{0}+j_{1}+\ldots+j_{k} \leq 4, i_{1}+$ $i_{2}+\ldots+i_{k} \leq 3$ and

$$
\begin{array}{ll}
j_{q} \leq 3 & \text { if } x \text { is not algebraic of degree } \leq 3 \\
j_{q} \leq 2 & \text { if } x \text { is algebraic of degree } 3 \\
j_{q} \leq 1 & \text { if } x \text { is algebraic of degree } 2 \tag{9.61}
\end{array}
$$

for all $q=0,1, \ldots, k$. In case of (9.60) we can replace $\left(x^{\alpha}\right)^{3}$ by $\beta x^{\alpha}, \beta \in C^{\prime}$, and in case of (9.61) we can replace $\left(x^{\alpha}\right)^{2}$ by $\gamma \in C^{\prime}$ and hence $\left(x^{\alpha}\right)^{3}$ by γx^{α}. By Lemma 6.1 .8 there exists $y^{\alpha} \in K^{\prime}$ such that $\left\{M_{i}\left(x^{\alpha}, y^{\alpha}\right)\right\}$ is a C^{\prime}-independent subset of R^{\prime}. We compute ($x y x y x y x)^{\alpha}$ in two ways and compare the results, being only interested in coefficients of $\left(y^{\alpha}\right)^{2} x^{\alpha} y^{\alpha} x^{\alpha}$.

On the one hand, making use of Lemma 9.4.6, we have

$$
\begin{align*}
& {[(x y x) y(x y x)]^{\alpha}} \\
& =(x y x)^{\alpha} y^{\alpha}(x y x)^{\alpha}+\frac{1}{3} \mu(y, x y x)(x y x)^{\alpha}+\frac{1}{6} \mu(x y x, x y x) y^{\alpha} \\
& =\left\{x^{\alpha} y^{\alpha} x^{\alpha}+\frac{1}{3} \mu(x, y) x^{\alpha}+\frac{1}{6} \mu(x, x) y^{\alpha}\right\} y^{\alpha} \\
& \cdot\left\{x^{\alpha} y^{\alpha} x^{\alpha}+\frac{1}{3} \mu(x, y) x^{\alpha}+\frac{1}{6} \mu(x, x) y^{\alpha}\right\} \\
& +\frac{1}{3} \mu(y, x y x)\left\{x^{\alpha} y^{\alpha} x^{\alpha}+\frac{1}{3} \mu(x, y) x^{\alpha}+\frac{1}{6} \mu(x, x) y^{\alpha}\right\} \\
& +\frac{1}{6} \mu(x y x, x y x) y^{\alpha} \\
& =x^{\alpha} y^{\alpha} x^{\alpha} y^{\alpha} x^{\alpha} y^{\alpha} x^{\alpha}+\frac{1}{6} \mu(x, x)\left(y^{\alpha}\right)^{2} x^{\alpha} y^{\alpha} x^{\alpha}+\ldots \tag{9.62}
\end{align*}
$$

On the other hand, again using Lemma 9.4.6, we have

$$
[x(y x y x y) x]^{\alpha}
$$

$$
\begin{align*}
= & x^{\alpha}(y x y x y)^{\alpha} x^{\alpha}+\frac{1}{3} \mu(x, y x y x y) x^{\alpha}+\frac{1}{6} \mu(x, x)(y x y x y)^{\alpha} \\
= & x^{\alpha}\left\{y^{\alpha}(x y x)^{\alpha} y^{\alpha}+\frac{1}{3} \mu(y, x y x) y^{\alpha}+\frac{1}{6} \mu(y, y)(x y x)^{\alpha}\right\} x^{\alpha} \\
& +\frac{1}{3} \mu(x, y x y x y) x^{\alpha} \\
+ & \frac{1}{6} \mu(x, x)\left\{y^{\alpha}(x y x)^{\alpha} y^{\alpha}+\frac{1}{3} \mu(y, x y x) y^{\alpha}+\frac{1}{6} \mu(y, y)(x y x)^{\alpha}\right\} \\
= & x^{\alpha} y^{\alpha}\left\{x^{\alpha} y^{\alpha} x^{\alpha}+\frac{1}{3} \mu(x, y) x^{\alpha}+\frac{1}{6} \mu(x, x) y^{\alpha}\right\} y^{\alpha} x^{\alpha} \\
+ & \frac{1}{3} \mu(y, x y x) x^{\alpha} y^{\alpha} x^{\alpha} \\
+ & \frac{1}{6} \mu(y, y) x^{\alpha}\left\{x^{\alpha} y^{\alpha} x^{\alpha}+\frac{1}{3} \mu(x, y) x^{\alpha}+\frac{1}{6} \mu(x, x) y^{\alpha}\right\} x^{\alpha} \\
+ & \frac{1}{3} \mu(x, y x y x y) x^{\alpha} \\
+ & \frac{1}{6} \mu(x, x) y^{\alpha}\left\{x^{\alpha} y^{\alpha} x^{\alpha}+\frac{1}{3} \mu(x, y) x^{\alpha}+\frac{1}{6} \mu(x, x) y^{\alpha}\right\} y^{\alpha} \\
+ & \frac{1}{18} \mu(x, x) \mu(y, x y x) y^{\alpha} \\
+ & \frac{1}{36} \mu(x, x) \mu(y, y)\left\{x^{\alpha} y^{\alpha} x^{\alpha}+\frac{1}{3} \mu(x, y) x^{\alpha}+\frac{1}{6} \mu(x, x) y^{\alpha}\right\}(9 \tag{9.63}
\end{align*}
$$

It is understood that (9.63) will be further rewritten by replacing $\left(x^{\alpha}\right)^{3}$ by βx in case (9.60) holds and replacing $\left(x^{\alpha}\right)^{2}$ by γ and $\left(x^{\alpha}\right)^{3}$ by γx^{α} in case (9.61) holds. Now, comparing the coefficients of $\left(y^{\alpha}\right)^{2} x^{\alpha} y^{\alpha} x^{\alpha}$ in (9.62) and (9.63) we see that $\mu(x, x)=\mu\left(x^{\alpha}, x^{\alpha}\right)=0$ for all $x^{\alpha} \in K^{\prime}$. Linearizing we have $\mu\left(x^{\alpha}, y^{\alpha}\right)=0$ for all $x^{\alpha}, y^{\alpha} \in K^{\prime}$ and the proof of Lemma 9.4.7 is complete.

Together Lemma 9.4.6 and Lemma 9.4.7 imply that $\left(x^{3}\right)^{\alpha}=$ $\left(x^{\alpha}\right)^{3}$ for all $x \in K$ and so by Lemma 9.4.5 we have succeeded in Case B that α can be extended uniquely to an isomorphism of $\langle K\rangle$ onto $\left\langle K^{\prime}\right\rangle$. Our analysis of Case A and Case B combine to immediately give us the proof of our main result. Theorem 9.4.3,
a complete statement of which is given near the beginning of this section.

As a closing note we make two remarks. The analogue of Theorem 9.4.3 for Lie derivations of K has been proved by Swain [269]. The condition in Theorem 9.4.1 that R not satisfy $S t_{4}$ has been removed by Blau [55].

List of Symbols

$\operatorname{End}(R) \quad$ Endomorphisms of R 2
$\operatorname{Der}(R)$ Derivations of R 2
ad(a) Inner derivation 2
Aut (R) Automorphisms of R 3
Antiaut $(R) \quad$ Antiautomorphisms of R 3
$G(R)$ $\operatorname{Aut}(R) \cup \operatorname{Antiaut}(R)$, 3
$Z(R)$ Center of R 3
$R \propto G$ Skew group ring 4
$V \otimes_{K} W$ Tensor product 8
$K\{V\}$ Tensor algebra 9
R^{0} Opposite ring 10
$S<X>$ Free semigroup with 1 11
$K<X>$ Free algebra 11
$R_{A \sigma B}$ Reduction 15
$\Phi<X>_{i r r}$ Irreducible elements 15
Λ Reduction system 15
$\Phi<X>_{\text {red }}$ Elements with unique normal form 16
$I(\Lambda)$ 16
\mathcal{Z} Integers 21
Q Rationals 21
$S t_{n}$ Standard polynomial 21
$M_{n}(R)$ $n \times n$ matrices 21
$A_{1} \amalg_{K} A_{2}$ Coproduct 26
\mathcal{N} Natural numbers 35
Ω_{F} 35
$W(\alpha)$ 35
\mathcal{T}_{Ω} 36
$\operatorname{Map}(X ; R)$ 36
$\wedge \quad$ Conjunction 38
V Disjunction 38
ᄀ Negation 38
\Rightarrow Implication 38
\forall For every 38
\exists There exists 38
\mathcal{P}_{Δ} Formal predicate symbols 38
$\operatorname{Compl}(\phi)$ Complexity 38
$R \models \phi$ 41
\mathcal{T}_{∞} 45
$\mathcal{T}_{i_{0}}$ Principal ultrafilter 45
$\prod_{i \in I} R_{i} / T$ Ultraproduct 47
$l_{R}(S)$ Left annihilator 51
$r_{R}(S)$ Right annihilator 51
$\mathcal{D}(R)$ Dense right ideals 51
$(S: J)_{R}$ 51
$f^{-1}(J)$ 52
$Q_{m r}$ Maximal right ring of quotients 56
$Z_{r}(R)$ Right singular ideal 60
$Q_{r}(R)$ Two-sided right ring of quotients 64
$Q_{s}(R)$ Symmetric ring of quotients 66
C Extended centroid 68
$R C$ Central closure 68
$R_{(l)}$ Left multiplications 69
$R_{(r)}$ Right multiplications 69
$E(V)$ 74
$D_{i}(R)$ X-inner derivations 88
$D(R)$ $\operatorname{Der}(R) C+D_{i}$ 89
$G_{i}(R)$ X-inner automorphisms 91
$N_{I, J}$ 91
N_{I} 91
List of Symbols 489
$x \cdot \beta$ 91
β^{ϵ} 91
$i n n(t)$ Inner automorphism 91
M_{σ} Conjugation module 92
$B(C)$ Central idempotents 99
$\sum_{u \in U}^{\perp} t_{u} u$ 100
M_{μ} 105
$O(T)$ Orthogonal completion 106
$\operatorname{Spec}(B)$ Spectrum 111
RM 111
R_{M} Pierce stalk 112
ϕ_{M} Canonical projection 112
$H(\Phi ; \vec{a})$ 114
$E(\Phi(\vec{a}))$ 114
$N(R)$ Commuting ring 129
(,) Bilinear form 139
a^{*} Adjoint 139
$\mathcal{L}_{W}(V)$ 140
$\mathcal{F}_{W}(V)$ 140
$\operatorname{Soc}(R)$ Socle 142
S^{\perp} 149
$\pi(x)$ Generalized pivotal monomial 151
\mathcal{F}_{V} 159
\mathcal{L}_{V} 159
$U(K)$ Universal enveloping algebra 175
$(K ; F ; \Lambda)$ Differential Lie algebra 187
\mathcal{B} C-basis of D 208\mathcal{B}_{i}
\mathcal{B}_{0} Well-ordered C-basis of $D \bmod D_{i}$ 209
W N $P B W$-basis of U 209Well-ordered C-basis of D_{i}209
\mathcal{W}_{0} 209
\mathcal{W}_{i} PBW-basis of U_{i} 209
$Q_{C}<X>$ 212
GPI Generalized polynomial identity 212

deg_{x}	x-degree	214
deg	degree	214
$h t_{x}$	x-height	214
$h t$	height	214
Φ_{P}		232
$\mathcal{G}(H ; R)$	\mathcal{T}-ideal of $G P I ' s$	259
$\mathcal{T}(H ; L)$	\mathcal{T}-ideal generated by L	259
$S T_{2}(e ; X)$		259
$L_{q}(e ; X)$		259
$S T_{2 n}(w, X)$		278
G_{0}	Representatives of G mod G_{i}	298
$A u t_{0}(R)$	$G_{0} \cap A u t(R)$,	298
$A n t i a u t_{0}(R)$	$G_{0} \cap A n t i a u t(R)$,	298
T	$U \propto G$,	301
$C\{V \otimes T\}$	Algebra of variables	301
$\mathcal{S}(R)$	Setting of R	301
T_{1}	$\mathcal{W} G$,	303
$\mathcal{S}_{0}(C)$	Setting of C	304
$\mathcal{S}_{1}(R)$	Extended setting	304
I_{0}	Trivial T-identities	305
\mathcal{B}^{h}		306
\mathcal{B}_{0}^{h}		306
\mathcal{B}_{i}^{h}		306
\mathcal{W}^{h}		306
\mathcal{W}_{0}^{h}		306
\mathcal{W}_{i}^{h}	$\mathcal{W}_{0} G_{0}$,	306
T_{0}	Reduced elements of \mathcal{S}	307
\mathcal{E}	$A u t(R)$,	307
G^{*}	$U \propto G^{*}$,	309
T^{*}	$G_{0} \cap G G^{*}$,	309
G_{0}^{*}	$\mathcal{W} G^{*}$,	309
T_{1}^{*}	$\mathcal{W}_{0} G_{0}^{*}$,	309
T_{0}^{*}		309
\mathcal{S}^{*}		310

List of Symbols 491
\mathcal{E}^{*} 310
I_{0}^{*} 310
$\sup (\phi)$ Support 317
$\Delta_{\phi, g}$ Leading g-term 317
G_{f} Frobenius automorphisms (fields) 332
$G_{0 f}$ Representatives of $G \bmod G_{f}$ (fields) 333
$I_{2}(C)$ F-trivial T-identities (fields) 334
N 334
\mathcal{N}_{p} 334
$V_{\alpha, s}$ 335
V_{s} 335
G_{f} Frobenius elements (general) 345
$G_{0 f}$ Representatives of $G \bmod G_{f}$ (general) 345
F-deg Frobenius degree 347
\mathcal{S}_{m} Maximal setting 360
\mathcal{S}_{m}^{*} *-Maximal setting 361
I_{0}^{\prime} Trivial T^{\prime}-identities 362
\mathcal{E}_{m}Reduced elements of \mathcal{S}_{m}362
S-deg (derivations) 365
S-deg (automorphisms) 371
\widehat{D}387
\widehat{U} Universal enveloping algebra (semiprime) 388
$u_{1}(g)$ 400
$u_{2}(g)$ 400
G_{f} Frobenius elements (semiprime) 402
$\widehat{G}(R)$ 403
$e(g)$ 405
α_{M} 408
$e_{0, \alpha}$ 409
$e_{1, \alpha}$ 409
$e_{2, \alpha}$ 409
$e_{3, \alpha}$ 409
$U(v)$ 410
\hat{T} $\hat{U} \propto \hat{G}$, 417

$\widehat{\mathcal{S}}_{m}$	Maximal setting (semiprime)	418
\widehat{I}_{0}		418
$M(f)$	(semiprime)	419
G^{*}		421
\widehat{T}^{*}		422
$N_{I}(f)$	Lie product	423
$[x, y]$	Jordan product	438
$x \circ y$		438
$W^{(i)}$		440
$X \equiv 0$	Subring generated by W	440
$\langle W\rangle$		440
$L(K)$	$R C \otimes_{C} F$	441
\widetilde{R}		445

Bibliography

[1] S. A. Amitsur, Derivations in simple rings. London Math. Soc. 7 (1957), 87-112.
[2] S. A. Amitsur, Rings with a pivotal monomial. Proc. Amer. Math. Soc. 9 (1958), 635-642.
[3] S. A. Amitsur, Generalized polynomial identities and pivotal monomials. Trans. Amer. Math. Soc. 114 (1965), 210-226.
[4] S. A. Amitsur, Nil semi-groups of rings with a polynomial identity. Nagoya Math. J. 27 (1966), 103-111.
[5] S. A. Amitsur, Rational identities and applications to algebra and geometry. J. Algebra 3 (1966), 304-359.
[6] S. A. Amitsur, Rings with involution. Israel J. Math. 6 (1968), 99-106.
[7] S. A. Amitsur, Identities in rings with involution. Israel J. Math. 7 (1969), 63-68.
[8] S. A. Amitsur, On rings of quotients. Symposia Mathematica 8 (1972), 149-164.
[9] S. A. Amitsur and Levitzki, Minimal identities for algebras. Proc. Amer. Math. Soc. 1 (1950), 449-463.
[10] P. N. Ánh and L. Márki, On Martindale's theorem. Rocky Mountain J. Math., to appear.
[11] P. N. Ánh and L. Márki, Orders in primitive rings with non-zero socle and Posner's theorem. Comm. Algebra, to appear.
[12] V. I. Arnautov, K. I. Beidar, S. T. Glavatsky, and A. V. Mikhalev, Intersection property in the radical theory of topological algebras. Contemporary Math. 131 (1992), 205-225.
[13] R. Awtar, Lie and Jordan structure in prime rings with derivations. Proc. Amer. Math. Soc. 41 (1973), 67-74.
[14] R. Baer, Algebraische theorie der differentierbaren funktionenkörper, I. Sitzungsberichte, Heidelberger Akademia (1927), 15-32.
[15] W. E. Baxter and W. S. Martindale 3rd, Rings with involution and polynomial identities. Canad. J. Math. 20 (1968), 465-473.
[16] W. E. Baxter and W. S. Martindale 3rd, Central closure of semiprime nonassociative rings. Comm. Algebra 7 (1979), 1103-1132.
[17] W. E. Baxter and W. S. Martindale 3rd, The extended centroid of $*$-prime rings. Comm. Algebra 10 (1982), 847874.
[18] W. E. Baxter and W. S. Martindale 3rd, The extended centroid in semiprime rings with involution. Comm. Algebra 13 (1985), 945-985.
[19] Y. A. Bahturin. Identical Relations in Lie Algebras. VNU Science Press, Utrecht, 1987.
[20] Yu. A. Bahturin, A. A. Mikhalev, M. V. Zaitsev, and V. M. Petrogradsky, Infinite Dimensional Lie Superalgebras. Walter de Gruyter Publ. Berlin - New York, 1992.
[21] K. I. Beidar, Rings with generalized identities, I. Moscow Univ. Math. Bull. 32 (1) (1977), 15-20.
[22] K. I. Beidar, Rings with generalized identities, II. Moscow Univ. Math. Bull. 32 (3) (1977), 27-33.
[23] K. I. Beidar, Semiprime rings with generalized identity. Russian Math. Surveys 32 (4) (1977), 249-250.
[24] K. I. Beidar, Rings with generalized identities, III. Moscow Univ. Math. Bull. 33 (4) (1978), 53-58.
[25] K. I. Beidar, Rings of quotients of semiprime rings. Moscow Univ. Math. Bull. 33 (5) (1978), 29-34.
[26] K. I. Beidar. Rings with generalized polynomial identities, PhD thesis, Moscow State Univ., 1978.
[27] K. I. Beidar, Rings with generalized identities, IV. Moscow Univ. Math. Bull. 35 (4) (1980), 1-4.
[28] K. I. Beidar, Y. Fong, U. Knauer, and A. V. Mikhalev, On semigroups with generalized identities. In Proceedings of the Tainan-Moscow Algebra Workshop, Walter de Gruyter, to appear.
[29] K. I. Beidar, Y. Fong, and X. K. Wang, Posner and Herstein theorems for derivations of 3-prime near-rings. Comm. Algebra, to appear.
[30] K. I. Beidar and P. Grzeszczuk, Actions of Lie algebras on rings without nilpotent elements. Algebra Colloq. 2 (2) (1995), 105-116.
[31] K. I. Beidar, W. S. Martindale 3rd, and A. V. Mikhalev, Lie isomorphisms in prime rings with involution. J. Algebra 169 (1994), 304-327.
[32] K. I. Beidar and A. V. Mikhalev, Homogeneous boundness almost everywhere for orthogonal complete algebraic systems. Vestnik Kievskogo Universiteta, Ser. Mat., Mekh. 27 (1985), 15-17 (Ukrainian).
[33] K. I. Beidar and A. V. Mikhalev, Orthogonal completeness and algebraic systems. Russian Math. Surveys 40 (6) (1985), 51-95.
[34] K. I. Beidar and A. V. Mikhalev, Generalized polynomial identities and rings which are sums of two subrings. Algebra i Logika 34 (1) (1995), 3-11 (Russian).
[35] K. I. Beidar and A. V. Mikhalev, The method of orthogonal completeness in structure theory of rings. Journal of Math. Sciences 73 (1) (1995), 1-44.
[36] K. I. Beidar, A. V. Mikhalev, and K. Salavova, Generalized identities and semiprime rings with involution. Russian Math. Surveys 35 (1) (1980), 222 (Russian).
[37] K. I. Beidar, A. V. Mikhalev, and K. Salavova, Generalized identities and semiprime rings with involution. Math. Z. 178 (1981), 37-62.
[38] K. I. Beidar, A. V. Mikhalev, and A. M. Slin'ko, A criterion for primeness of nondegenerate alternative and Jordan algebras. Trans. Moscow Math. Soc. 50 (1988), 129137.
[39] H. E. Bell and W. S. Martindale 3rd, Centralizing mappings of semiprime rings. Canad. Math. Bull. 30 (1987), 92-101.
[40] H. E. Bell and W. S. Martindale 3rd, Semiderivations and commutativity in prime rings. Canad. Math. Bull. 31 (1988), 500-508.
[41] H. E. Bell and G. Mason, On derivations in near-rings. In G. Betsch, editor, Near-Rings and Near-Fields, NorthHoland/American Elsevier, Amsterdam, 1987.
[42] L. P. Belluce and S. K. Jain, A remark on primitive rings and J-pivotal monomials. J. Math. Sci. 1 (1966), 49-51.
[43] L. P. Belluce and S. K. Jain, Prime rings with a one-sided ideal satisfying a polynomial identity. Pacif. J. Math. 24 (1968), 421-424.
[44] J. Bergen, Automorphisms with unipotent values. Rend. Circ. Mat. Palermo 31 (1982), 226-232.
[45] J. Bergen, Derivations in prime rings. Canad. Math. Bull. 26 (1983), 267-270.
[46] J. Bergen, Automorphic-differential identities in rings. Proc. Amer. Math. Soc. 106 (1989), 297-305.
[47] J. Bergen and I. N. Herstein, The algebraic hypercenter and some applications. J. Algebra 85 (1983), 217-242.
[48] J. Bergen, I. N. Herstein, and J. W. Kerr, Lie ideals and derivations of prime rings. J. Algebra 71 (1981), 259-267.
[49] G. M. Bergman, Modules over coproducts of rings. Trans. Amer. Math. Soc. 200 (1974), 1-32.
[50] G. M. Bergman, Rational identities in division rings, I. J. Algebra 43 (1976), 252-266.
[51] G. M. Bergman, Rational identities in division rings, II. J. Algebra 43 (1976), 267-297.
[52] G. M. Bergman, The diamond lemma. Adv. Math. 29 (2) (1978), 178-218.
[53] G. M. Bergman and I. M. Isaacs, Rings with fixed-pointfree group actions. Proc. London Math. Soc. 27 (1973), 69-87.
[54] W. D. Blair, Remarks on primitive rings with nonzero socles. Comm. Algebra 8 (1980), 623-634.
[55] P. Blau. Lie isomorphisms of prime rings satisfying S_{4}, PhD thesis, Univ. of Massachusetts, 1996.
[56] L. A. Bokut, Unsolvability of the equality problem and subalgebras of finitely presented Lie algebras. Math. USSR Izvestia 6 (6) (1972), 1153-1199.
[57] L. A. Bokut, Embedding into simple associative algebras. Algebra and Logic 15 (2) (1976), 117-142.
[58] L. A. Bokut, Grebner-Šhirshov bases of Lie algebras. In Proceedings of Int. Conf. "Algebra and Analysis", Kazan, 1994, 114-115.
[59] M. Brešar, A note on derivations. Math. J. Okayama Univ. 32 (1990), 83-88.
[60] M. Brešar, Semiderivations of prime rings. Proc. Amer. Math. Soc. 108 (1990), 859-860.
[61] M. Brešar, On a generalization of the notion of centralizing mappings. Proc. Amer. Math. Soc. 114 (1992), 641-649.
[62] M. Brešar, Centralizing mappings and derivations in prime rings. J. Algebra 156 (1993), 385-394.
[63] M. Brešar, Commuting traces of biadditive mappings, commutativity preserving mappings, and Lie mappings. Trans. Amer. Math. Soc. 335 (1993), 525-546.
[64] M. Brešar, On certain pairs of automorphisms of rings. J. Austral. Math. Soc. (Ser. A) 54 (1993), 29-38.
[65] M. Brešar, On skew-commuting mappings of rings. Bull. Austral. Math. Soc. 47 (1993), 291-296.
[66] M. Brešar, On certain pairs of functions of semiprime rings. Proc. Amer. Math. Soc. 120 (1994), 709-713.
[67] M. Brešar, Functional identities of degree two. J. Algebra 172 (1995), 690-720.
[68] M. Brešar, On generalized biderivations and related maps. J. Algebra 172 (1995), 764-786.
[69] M. Bres̆ar, W. S. Martindale 3rd, and C. R. Miers, Centralizing maps in prime rings with involution. J. Algebra 161 (1993), 342-357.
[70] M. Brešar, W. S. Martindale 3rd, and C. R. Miers, On some identities in prime rings with involution. Comm. Algebra 21 (1993), 4679-4697.
[71] M. Brešar and J. Vukman, On left derivations and related mappings. Proc. Amer. Math. Soc. 110 (1990), 7-16.
[72] L. Carini and A. Giambruno, Lie ideals and nil derivations. Bolletino U.M.I. 6 (1985), 497-503.
[73] J.-C. Chang, On semiderivations of prime rings. Chinese J. Math. 12 (1984), 255-262.
[74] J.-C. Chang, On fixed power central (α, β)-derivations. Bull. Inst. Math. Acad. Sinica 15 (1987), 163-178.
[75] J.-C. Chang, Lie ideals and derivations in prime rings. Bull. Inst. Math. Acad. Sinica 17 (1989), 109-114.
[76] J.-C. Chang, A note on (α, β)-derivations. Chinese J. Math. 19 (1991), 277-285.
[77] J.-C. Chang, On (α, β)-derivations of prime rings. Chinese J. Math. 22 (1994), 21-30.
[78] M. A. Chebotar, On a composition of derivations of prime rings. Moscow Univ. Math. Bull. 50 (2) (1995), 22-25.
[79] M. A. Chebotar, On certain subrings and ideals of prime rings. In Proceedings of the Tainan-Moscow Algebra Workshop, Walter de Gruyter, to appear.
[80] C.-L. Chuang, On invariant additive subgroups. Israel J. Math. 57 (1987), 116-128.
[81] C.-L. Chuang, GPI's having coefficients in Utumi quotient rings. Proc. Amer. Math. Soc. 103 (1988), 723-728.
[82] C.-L. Chuang, *-Differential identities of prime rings with involution. Trans. Amer. Math. Soc. 316 (1989), 251-279.
[83] C.-L. Chuang, On nilpotent derivations of prime rings. Proc. Amer. Math. Soc. 107 (1989), 67-71.
[84] C.-L. Chuang, On compositions of derivations of prime rings. Proc. Amer. Math. Soc. 180 (1990), 647-652.
[85] C.-L. Chuang, On the structure of semiderivations in prime rings. Proc. Amer. Math. Soc. 108 (1990), 867-869.
[86] C.-L. Chuang, Differential identities with automorphisms and antiautomorphisms, I. J. Algebra 149 (1992), 371404.
[87] C.-L. Chuang, A short proof of Martindale's theorem on GPIs. J. Algebra 151 (1992), 156-159.
[88] C.-L. Chuang, Differential identities with automorphisms and antiautomorphisms, II. J. Algebra 160 (1993), 130171.
[89] C.-L. Chuang, P. H. Lee, and T. C. Lee, Derivations with central values on powers of symmetric elements. J. Algebra 161 (1993), 237-244.
[90] L. O. Chung and J. Luh, On semicommuting automorphisms of rings. Canad. Math. Bull. 21 (1978), 13-16.
[91] L. O. Chung and J. Luh, Semiprime rings with nilpotent derivations. Canad. Math. Bull. 24 (1981), 415-421.
[92] L. O. Chung and J. Luh, Derivations of higher order and commutativity of rings. Pacif. J. Math. 99 (1982), 317326.
[93] L. O. Chung and J. Luh, Nilpotency of derivations on an ideal. Proc. Amer. Math. Soc. 90 (1984), 211-214.
[94] P. M. Cohn, On the free product of associative rings. Math. Z. 71 (1959), 380-398.
[95] P. M. Cohn, On the free product of associative rings, II. Math. Z. 73 (1960), 433-456.
[96] P. M. Cohn, On the free product of associative rings, III. J. Algebra 8 (1968), 376-383.
[97] P. C. Desmarais and W. S. Martindale 3rd, Primitive rings with involution and pivotal monomials. Israel J. Math. 22 (1975), 118-126.
[98] P. C. Desmarais and W. S. Martindale 3rd, Generalized rational identities and rings with involution. Israel J. Math. 36 (1980), 187-192.
[99] M. P. Drazin, A generalization of polynomial identities in rings. Proc. Amer. Math. Soc. 8 (1957), 352-361.
[100] T. S. Erickson, The Lie structure in prime rings with involution. J. Algebra 21 (1972), 523-534.
[101] T. S. Erickson, W. S. Martindale, and J. Osborn, Prime nonassociative algebras. Pacif. J. Math. 60 (1975), 49-63.
[102] B. Felzenswalb, Derivations in prime rings. Proc. Amer. Math. Soc. 84 (1982), 16-20.
[103] B. Felzenswalb and A. Giambruno, A commutativity theorem for rings with derivations. Pacif. J. Math. 102 (1982), 41-45.
[104] A. L. Fernándes, E. R. García, and E. C. Sánchez, Structure theorem for prime rings satisfying a generalized identity. Comm. Algebra 22 (1994), 1729-1740.
[105] E. Formanek, Central polynomials for matrix rings. J. Algebra 23 (1972), 129-132.
[106] G. M. Gabera and P. A. Rodrigues, A characterization of the center of a nondegenerate Jordan algebra. Comm. Algebra 21 (1993), 359-369.
[107] A. Giambruno and I. N. Herstein, Derivations with nilpotent values. Rend. Circ. Mat. Palermo 30 (1981), 199-206.
[108] I. Z. Golubchik and A. V. Mikhalev, Generalized group identities in classical groups. Russian Math. Surveys 35 (6) (1980), 155-156.
[109] I. Z. Golubchik and A. V. Mikhalev, Generalized group identities in classical groups. Zap. nauch. semin. LOMI AN SSSR 114 (1982), 96-119 (Russian).
[110] P. Grzeszczuk, On nilpotent derivations of semiprime rings. J. Algebra 149 (1992), 313-321.
[111] N. I. Guseva, Semiprime algebras with one-sided ideal that satisfies a polynomial identity. Russian Math. Surveys 32 (3) (1977), 155-156.
[112] N. I. Guseva, Semiprime algebras with one-sided ideal that satisfies a polynomial identity. Izvestia Vuz. Mat. 23 (4) (1979), 3-13.
[113] I. N. Herstein, Lie and Jordan structure in simple, associative rings. Bull. Amer. Math. Soc. 67 (1961), 517-531.
[114] I. N. Herstein, Special simple rings with involution. J. Algebra 6 (1967), 369-375.
[115] I. N. Herstein. Noncommutative rings, The Carus Math. Monographs, N 15. Math. Association of America, 1968.
[116] I. N. Herstein. Topics in ring theory. The University of Chicago Press, 1969.
[117] I. N. Herstein, On the Lie structure of an associative ring. J. Algebra 14 (1970), 561-571.
[118] I. N. Herstein. Rings with involution, Chicago Lectures in Math. The Universtity Chicago Press, 1976.
[119] I. N. Herstein, A note on derivations. Canad. Math. Bull. 21 (1978), 369-370.
[120] I. N. Herstein, Center-like elements in prime rings. J. Algebra 60 (1979), 567-574.
[121] I. N. Herstein, A note on derivations, II. Canad. Math. Bull. 4 (1979), 509-511.
[122] I. N. Herstein, A theorem on derivations of prime rings with involution. Canad. Math. Bull. 34 (1982), 356-369.
[123] I. N. Herstein and E. Kleinfeld, Lie mappings in characteristic 2. Pacif. J. Math. 10 (1960), 843-852.
[124] I. N. Herstein and S. Montgomery, Invertible and regular elements in rings with involution. J. Algebra 25 (1973), 390-400.
[125] I. N. Herstein and L. Small, Some comments on prime rings. J. Algebra 60 (1979), 223-228.
[126] Y. Hirano, A. Kaya, and H. Tominaga, On a theorem of Mayne. Math. J. Okayama Univ. 25 (1983), 125-132.
[127] Y. Hirano, H. Tominaga, and A. Trzepizur, On a theorem of Posner. Math. J. Okayama Univ. 27 (1985), 25-32.
[128] M. Hongan, A generalization of a theorem of Posner. Math. J. Okayama Univ. 33 (1991), 97-101.
[129] R. A. Howland, Lie isomorphisms of derived rings of simple rings. Trans. Amer. Math. Soc. 145 (1969), 383-396.
[130] L. Hua, A theorem on matrices over an sfield and its applications. J. Chinese Math. Soc. 1 (1951), 110-163.
[131] N. Jacobson, Abstract derivations and Lie algebras. Trans. Amer. Math. Soc. 42 (1937), 206-224.
[132] N. Jacobson. Lie Algebras. Dover, New York, 1962.
[133] N. Jacobson. Structure of Rings. Amer. Math. Soc. Colloquium Publ., Providence, 1964.
[134] S. K. Jain, Polynomial rings with pivotal monomial. Proc. Amer. Math. Soc. 17 (1966), 942-945.
[135] S. K. Jain, Prime rings having one-sided ideal with polynomial identity coincide with special Johnson rings. J. Algebra 19 (1971), 125-130.
[136] S. K. Jain and S. Singh, Rings having one-sided ideals satisfying a polynomial identity. Arch. Math. (Basel) 20 (1969), 17-23.
[137] I. Kaplansky, Rings with a polynomial identity. Bull. Amer. Math. Soc. 54 (1948), 575-580.
[138] A. Kaya, A theorem on semi-centralizing derivations of prime rings. Math. J. Okayama Univ. 27 (1985), 11-12.
[139] A. Kaya, Semi-centralizing derivations in prime rings. Doğa Mat. 11 (1987), 100-105.
[140] A. Kaya and C. Koc, Semicentralizing automorphisms of prime rings. Acta Math. Acad. Sci. Hungar. 38 (1981), 53-55.
[141] W. F. Ke, On derivations of prime rings of characteristic 2. Chinese J. Math. 13 (1985), 273-290.
[142] V. K. Khachenko. Automorphisms and Derivations of Associative Rings, Mathematics and Its Applications (Soviet Series). Kluwer Academic Publishers, Dordrecht / Boston / London, 1991.
[143] V. K. Kharchenko, Generalized identities with automorphisms. Algebra and Logic 14 (2) (1975), 132-148.
[144] V. K. Kharchenko, Generalized identities with automorphisms of associative rings with unity. Algebra i Logika 14 (6) (1975), 681-696 (Russian).
[145] V. K. Kharchenko, Ring identities with automorphisms. Siberian Math. J. 17 (2) (1976), 446-467 (Russian).
[146] V. K. Kharchenko, Differential identities of prime rings. Algebra and Logic 17 (2) (1978), 155-168.
[147] V. K. Kharchenko, Differential identities of semiprime rings. Algebra and Logic 18 (1) (1979), 58-80.
[148] V. K. Kharchenko, Actions of groups and Lie algebras on noncommutative rings. Russian Math. Surveys 35 (2) (1980), 77-104.
[149] V. K. Kharchenko, Skew derivations of semiprime rings. Siberian Math. J. 32 (1991), 1045-1051.
[150] V. K. Kharchenko and A. Z. Popov, Skew derivations of prime rings. Comm. Algebra 20 (1992), 3321-3345.
[151] A. Kovacs, The n-center of a ring. J. Algebra 40 (1976), 107-124.
[152] A. Kovacs, On derivations in prime rings and a question of Herstein. Canad. Math. Bull. 22 (1979), 339-344.
[153] J. Krempa and J. Matczuk, On the composition of derivations. Rend. Circ. Mat. Palermo 33 (1984), 441-455.
[154] L. A. Lagutina, On Lie automorphisms of simple associative algebras with involution. Russian Math. Surveys 47 (6) (1992), 219-220.
[155] J. Lambek. Lectures on Rings and Modules. Waltham, Mass.: Blaisdell, 1966.
[156] C. Lanski, Conjugates in prime rings. Trans. Amer. Math. Soc. 154 (1971), 185-192.
[157] C. Lanski, Lie ideals and derivations in rings with involution. Pacif. J. Math. 69 (1977), 449-460.
[158] C. Lanski, Invariant submodules in semi-prime rings. Comm. Algebra 6 (1978), 75-96.
[159] C. Lanski, Differential identities in prime rings with involution. Trans. Amer. Math. Soc. 291 (1985), 765-787.
[160] C. Lanski, Minimal differential identities in prime rings. Israel J. Math. 56 (1986), 231-246.
[161] C. Lanski, A note on GPI's and their coefficients. Proc. Amer. Math. Soc. 98 (1986), 17-19.
[162] C. Lanski, Derivations which are algebraic on subsets of prime rings. Comm. Algebra 15 (1987), 1255-1287.
[163] C. Lanski, Correction to "Differential identities in prime rings with involution". Trans. Amer. Math. Soc. 309 (1988), 857-859.
[164] C. Lanski, Differential identities, Lie ideals, and Posner's theorems. Pacif. J. Math. 134 (1988), 275-297.
[165] C. Lanski, Derivations with nilpotent values on Lie ideals. Proc. Amer. Math. Soc. 98 (1990), 17-19.
[166] C. Lanski, Minimal *-differential identities in prime rings. J. Algebra 133 (1990), 472-489.
[167] C. Lanski, Derivations nilpotent on subsets of primes rings. Comm. Algebra 20 (1992), 1427-1446.
[168] C. Lanski, Differential identities in prime rings, Kharchenko's theorem, and applications. Contemporary Math. 124 (1992), 111-128.
[169] C. Lanski, Lie ideals and central polynomials with derivations. Canad. J. Math. 44 (1992), 553-560.
[170] C. Lanski, Quadratic central polynomials with derivations and involution. Pacif. J. Math. 155 (1992), 111-127.
[171] C. Lanski, An Engel condition with derivation. Proc. Amer. Math. Soc. 118 (1993), 731-734.
[172] C. Lanski, Derivations with nilpotent values on left ideals. Comm. Algebra 22 (1994), 1305-1320.
[173] P. H. Lee and T. K. Lee, On derivations of prime rings. Chinese J. Math. 9 (1981), 107-110.
[174] P. H. Lee and T. K. Lee, Lie ideals of prime rings with derivations. Bull. Inst. Math. Acad. Sinica 11 (1983), 7580.
[175] P. H. Lee and T. K. Lee, Derivations centralizing symmetric or skew elements. Bull. Inst. Math. Acad. Sinica 14 (1986), 249-256.
[176] P. H. Lee and T. K. Lee, Note on nilpotent derivations. Proc. Amer. Math. Soc. 98 (1986), 31-32.
[177] T. K. Lee, Derivations of prime rings with involution, I. Chinese J. Math. 13 (1985), 179-186.
[178] T. K. Lee, Derivations of prime rings with involution, II. Bull. Inst. Math. Acad. Sinica 14 (1986), 365-375.
[179] T. K. Lee, On derivations. Bull. Inst. Math. Acad. Sinica 18 (1990), 307-320.
[180] T. K. Lee, Powers of skew and symmetric elements under a derivation. Bull. Inst. Math. Acad. Sinica 18 (1990), 307320.
[181] T. K. Lee, Semiprime rings with differential identities. Bull. Inst. Math. Acad. Sinica 20 (1992), 27-38.
[182] T. K. Lee, Derivations with invertible values on a multilinear polynomial. Proc. Amer. Math. Soc. 119 (1993), 1077-1083.
[183] T. K. Lee, Left annihilators characterized by GPI's. Proc. Amer. Math. Soc., to appear:
[184] T. K. Lee, Commuting additive mappings in semiprime rings. Bull. Inst. Math. Acad. Sinica, to appear.
[185] A. Leroy, Derivees logarithmiques pour une S-dérivation algébrique. Comm. Algebra 13 (1985), 85-100.
[186] A. Leroy, (S)-dérivation algébrique sur les corps gauches et sur les anneaux premiers. Comm. Algebra 14 (1986), 1473-1479.
[187] A. Leroy and J. Matzuk, Dérivations et automorphismes algébrique d'aneaux premiers. Comm. Algebra 13 (1985), 1245-1266.
[188] A. Leroy and J. Matzuk, Quelques remarques à propos des S-derivations. Comm. Algebra 13 (1985), 1229-1244.
[189] A. I. Lichtman, The primitivity of free products of associative algebras. J. Algebra 54 (1978), 153-158.
[190] A. I. Lichtman and W. S. Martindale 3rd, The normal closure of the coproduct of domains over a division ring. Comm. Algebra 13 (1985), 1643-1664.
[191] J. S. Lin, On derivations of prime rings with involution. Chinese J. Math. 14 (1986), 37-51.
[192] J. S. Lin, Derivations with invertible values in semiprime rings with involution. Chinese J. Math. 18 (1990), 175184.
[193] J. S. Lin and C. K. Wong, On the skew hypercenter of a ring. Chinese J. Math. 18 (1990), 257-271.
[194] D. E. Littlewood, Identical relations satisfied in an algebra. Proc. London Math. Soc. 32 (1931), 312-320.
[195] J. Luh, A note on commuting automorphisms of rings. Amer. Math. Monthly 77 (1970), 61-62.
[196] A. I. Maltsev. Algebraic systems. Springer-Verlag, BerlinNew York, 1973.
[197] A. Mansoor, Lie and Jordan ideals in prime rings with derivations. Proc. Amer. Math. Soc. 66 (1976), 275-278.
[198] A. Mansoor, On a theorem of Posner. Proc. Amer. Math. Soc. 66 (1977), 13-16.
[199] Z. Maoulaoui and A. Page, Automorphismes algébriques. Comm. Algebra 10 (1982), 1497-1515.
[200] W. S. Martindale 3rd, Primitive algebras with involution. Pacif. J. Math. 11 (1961), 1431-1441.
[201] W. S. Martindale 3rd, Lie isomorphisms of primitive rings. Proc. Amer. Math. Soc. 14 (1963), 909-916.
[202] W. S. Martindale 3rd, Lie derivations of primitive rings. Michigan Math. J. 11 (1964), 183-187.
[203] W. S. Martindale 3rd, Lie isomorphisms of prime rings. Trans. Amer. Math. Soc. 142 (1969), 437-455.
[204] W. S. Martindale 3rd, Lie isomorphisms of simple rings. J. London Math. Soc. 44 (1969), 213-221.
[205] W. S. Martindale 3rd, Prime rings satisfying a generalized polynomial identity. J. Algebra 12 (1969), 576-584.
[206] W. S. Martindale 3rd, Rings with involution and polynomial identities. J. Algebra 11 (1969), 186-194.
[207] W. S. Martindale 3rd, Primitive rings with involution whose symmetric elements satisfy a generalized polynomial identity. Proc. Amer. Math. Soc. 24 (1970), 508-511.
[208] W. S. Martindale 3rd, Prime rings with involution and generalized polynomial identities. J. Algebra 22 (1972), 502-516.
[209] W. S. Martindale 3rd, On semiprime PI rings. Proc. Amer. Math. Soc. 40 (1973), 365-369.
[210] W. S. Martindale 3rd, A note on Lie isomorphisms. Canad. Math. Bull. 17 (1974), 243-245.
[211] W. S. Martindale 3rd, Lie isomorphisms of the skew elements of a simple ring with involution. J. Algebra 36 (1975), 408-415.
[212] W. S. Martindale 3rd, Lie isomorphisms of the skew elements of a prime ring with involution. Comm. Algebra 4 (1976), 927-977.
[213] W. S. Martindale 3rd, Lie and Jordan mappings. Contemporary Math. 13 (1982), 173-177.
[214] W. S. Martindale 3rd, Lectures at Jilin University. Univ. of Massachusetts at Amherst, Department of Math. and Statistic (1986).
[215] W. S. Martindale 3rd, The normal closure of the coproduct of rings over a division ring. Trans. Amer. Math. Soc. 293 (1986), 303-317.
[216] W. S. Martindale 3rd, X-inner derivations of coproducts: Ring theory. in "Israel Math. Conf. Proc.", Weizmann (1989), 234-241.
[217] W. S. Martindale 3rd, The symmetric ring of quotients of the coproduct of rings. J. Algebra 143 (1991), 295-306.
[218] W. S. Martindale 3rd and C. R. Miers, On the iterates of derivations of prime rings. Pacif. J. Math. 104 (1983), 179-190.
[219] W. S. Martindale 3rd and C. R. Miers, Herstein's Lie theory revisited. J. Algebra 98 (1986), 14-37.
[220] W. S. Martindale 3rd and C. R. Miers, Nilpotency and generalized Lie ideals. J. Algebra 127 (1989), 244-254.
[221] W. S. Martindale 3rd and C. R. Miers, Nilpotent inner derivations of the skew elements of prime rings with involution. Canad. J. Math. 43 (1991), 1045-1054.
[222] W. S. Martindale 3rd and C. R. Miers, Generalized Lie ideals in *-prime rings. J. Algebra 152 (1992), 94-115.
[223] W. S. Martindale 3rd and S. Montgomery, The normal closure of coproducts of domains. J. Algebra 82 (1983), 1-17.
[224] J. H. Mayne, Centralizing automorphisms of prime rings. Canad. Math. Bull. 19 (1976), 113-115.
[225] J. H. Mayne, Ideals and centralizing mappings in prime rings. Proc. Amer. Math. Soc. 86 (1982), 211-212.
[226] J. H. Mayne, Centralizing mappings of prime rings. Canad. Math. Bull. 27 (1984), 122-126.
[227] J. H. Mayne, Centralizing automorphisms of Lie ideals in prime rings. Canad. Math. Bull. 35 (1992), 510-514.
[228] A. V. Mikhalev, Orthogonally complete many-sorted systems. Doklady Akad Nauk SSSR 289 (1986), 1304-1308 (Russian).
[229] A. Milinski, Actions of pointed Hopf algebras on prime algebras. Comm. Algebra 23 (1995), 313-333.
[230] S. Montgomery, A structure theorem and a positivedefiniteness condition in rings with involution. J. Algebra 43 (1976), 181-192.
[231] S. Montgomery. Fixed Rings of Finite Automorphism Groups of Associative Rings, Lecture Notes in Math., 818. Springer-Verlag, Berlin-New York, 1980.
[232] S. Montgomery. Hopf Algebras and Their Actions on Rings, Regional Conference Series in Math., 82. Amer. Math. Soc., Providence, Rhode Island, 1993.
[233] A. Ouarit, Identités auto-différentielles d'aneaux semipremiers. C. R. Acad. Sci. Paris, Serie I 314 (1992), 173176.
[234] J.-L. Pascaud, J. Valette, and J.-M. Goursaud. Sur les travaux de V. K. Kharchenko, volume 924 of Lecture Notes in Math., 322-355. Springer, Berlin-New York, 1982.
[235] D. S. Passman, Group rings satisfying a polynomial identity, II. Paicf. J. Math. 39 (1971), 425-438.
[236] D. S. Passman, Computing the symmetric ring of quotients. J. Algebra 105 (1987), 207-235.
[237] A. E. Pentus, An ideal of generalized identities with involution of an $n \times n$-matrix ring over a finite field. Russian Math. Surveys 47 (1992), 187-188.
[238] A. E. Pentus, A structure of a T-ideal of generalized identities of primitive algebras with involution over a field. Russian Math. Surveys 47 (1992), 227-228.
[239] A. E. Pentus, A T-ideal of generalized identities for a class of primitive algebras with involution. Fundamental and Applied Math. 1 (1995), 255-262 (Russian).
[240] A. Z. Popov, Derivations of prime rings. Algebra and Logic 22 (1) (1983), 58-36.
[241] E. Posner, Derivations in prime rings. Proc. Amer. Math. Soc. 8 (1957), 79-92.
[242] E. Posner, Prime rings satisfying a polynomial identity. Arch. Math. 11 (1960), 180-183.
[243] E. Posner and H. Schneider, Hyperplanes and prime rings. Arch. Math. 11 (1960), 322-326.
[244] C. Procesi. Rings with polynomial identities, Pure and Applied Math. Marcel Dekker, Inc. New York, 1973.
[245] A. Ram, Lie and Jordan structure in prime rings with derivations. Proc. Amer. Math. Soc. 41 (1973), 67-74.
[246] Y. P. Razmyslov, A certain problem of Kaplansky. Izv Acad. Nauk SSSR Ser. Mat. 37 (1973), 483-501.
[247] Y. P. Razmyslov. Identities of Algebras and Their Representations. Nauka, Moscow, 1989.
[248] A. R. Richardson, Equations over a division algebra. Messenger of Math. 57 (1928), 1-6.
[249] A. Richoux, A theorem for prime rings. Proc. Amer. Math. Soc. 77 (1979), 27-31.
[250] J. D. Rosen, *-Generalized polynomial identities of finite dimensional central simple algebras. Israel J. Math. 46 (1983), 97-101.
[251] J. D. Rosen, Generalized rational identities and rings with involution. J. Algebra 89 (1984), 416-436.
[252] J. D. Rosen and M. P. Rosen, Generalized rational identities of power series rings. J. Algebra 103 (1986), 520-526.
[253] M. P. Rosen, Lie isomorphisms of a certain class of prime rings. J. Algebra 89 (1984), 291-317.
[254] S. Rosset, A short proof of the Amitsur-Levitzki theorem. Israel J. Math. 23 (1976), 187-188.
[255] L. H. Rowen, On rings with central polynomials. J. Algebra 31 (1974), 393-426.
[256] L. H. Rowen, Generalized polynomial identities. J. Algebra 34 (1975), 458-480.
[257] L. H. Rowen, Structure of rings with involution applied to generalized polynomial identities. Canad. J. Math. 27 (1975), 573-584.
[258] L. H. Rowen, Generalized polynomial identities, II. J. Algebra 38 (1976), 380-392.
[259] L. H. Rowen, Monomial conditions on rings. Israel J. Math. 23 (1976), 19-30.
[260] L. H. Rowen, Generalized polynomial identities, III. J. Algebra 46 (1977), 305-314.
[261] L. H. Rowen, Monomial conditions on prime rings. Israel J. Math. 27 (1977), 131-149.
[262] L. H. Rowen, Correction to "monomial conditions on prime rings". Israel J. Math. 30 (1979), 279-286.
[263] L. H. Rowen. Polynomial identities in ring theory, Pure and Applied Math., 84. Harcout Brace Jovanovich, Publishers, 1980.
[264] R. Ruchti, Twisted Hopf algebras. Comment. Math. Helvetici 54 (1979), 659-682.
[265] J. B. Skinner. Generalized polynomial identities, PhD thesis, Univ. of Massachusetts, 1970.
[266] M. Slater, On simple rings satisfying a type of "restricted" polynomial identity. J. Algebra 1 (1964), 347-354.
[267] M. F. Smiley, Remarks on the commutativity of rings. Proc. Amer. Math. Soc. 10 (1959), 466-470.
[268] B. Stendström. Rings of quotients, Lecture Notes in Math., 237. Springer-Verlag, Berlin-New York, 1971.
[269] G. Swain. Lie derivations of the skew elements of prime rings with involution, PhD thesis, Univ. of Massachusetts, 1993.
[270] Y. Utumi, On quotient rings. Osaka J. Math. 8 (1956), 1-18.
[271] J. Valette, Automorphismes algébriques et algébre du groupe. Comm. Algebra 11 (1983), 461-468.
[272] A. I. Širšov, On Levitzki problem. Dokl. Akad. Nauk SSSR 120 (1958), 41-42.
[273] A. I. Širšov, Some algorithmic problems for Lie algebras. Siberian Math. J. 3 (2) (1962), 292-296.
[274] J. Vukman, Commuting and centralizing mappings in prime rings. Proc. Amer. Math. Soc. 109 (1990), 47-52.
[275] E. A. Whelan, The symmetric ring of quotients of a primitive ring is primitive. Comm. Algebra 18 (1990), 615-633.
[276] K. A. Zhevlakov, A. M. Slin'ko, I. P. Shestakov, and A. I. Shirshov. Rings That are Nearly Associative. Academic Press, 1982.

This Page Intentionally Left Blank

Index

Action of a group, 4
Algebra
centrally closed, 69
differential Lie, 187
enveloping, 175
free, 11
Lie, 175
p-Lie, 182
reduced universal enveloping, 390
restricted Lie, 182
tensor, 9
universal enveloping, 175
Ambiguity
inclusion, 16
overlap, 16
resolvable, 16
Antiautomorphism, 3
$\sigma-, 4$
Arity of operation, 34
Automorphism, 3
Frobenius, 332
left dependent, 93
left independent, 93
S-algebraic, 371
$\sigma-, 4$
X-inner, 91
Biderivation, 456
Central closure, 68

Complexity of formula, 38
Cover
of a Lie algebra, 175
of a restricted Lie algebra, 182

Degree
$F-, 334$
Frobenius, 347
ρ-, 419
Derivation, 2
inner, 2
of K-algebra, 3
$\mu-, 3$
S-algebraic, 365
strongly independent, 394
X-inner, 88
Dimension, 77
Dual spaces, 139
Dual sets of vectors, 140
Element
algebraic, 73
F-reduced, 337
Frobenius, 345, 401
G_{f}-reduced, 420
(i, j)-pure, 32
irreducible, 15
k-homogeneous, 214, 328
multilinear, 215
normalizing, 91
of finite D-rank, 130
reduced, 307, 420
skew, 156
symmetric, 156
τ-homogeneous, 215, 329
T-multilinear, 329
0 -pure, 32
Extended centroid, 68, 452
Filter, 45
principal, 45
Finite C-rank $n, 233$
Form
alternate, 158
\mathcal{A}-standard, 275
Hermitian, 158
Formula(s), 38
atomic, 38
equivalent, 41
false, 41
hereditary, 120
Horn, 43
multiplicatively stable, 43
strictly hereditary, 120
strictly multiplicatively stable, 43
true, 41
g-homogeneous component, 252
Height
$g-, 224$
of element, 32
ρ-, 419
H-endomorphism, 258
Homomorphism of Ω-rings, 35
Ideal
dense, 64
dense right, 51
essential right, 53
minimal left, 141
of an Ω-ring, 35
right singular, 60
*-; 156
\mathcal{T}-, 259
Idempotent
abelian, 234
faithful, 234
minimal, 143
Identity
F-trivial, 334
g-, 223
g-multilinear, 225
generalized polynomial, 212, 227
G_{f}-reduced, 420
Jacobi, 175
k-homogeneous, 214, 328
multilinear, 215
strict, 229
strict $\widehat{T}^{\prime}-, 418$
T-, 303, 304
τ-homogeneous, 215,329
T-multilinear, 329
$\widehat{T}^{\prime}-, 418$
T^{*}-, 361
$\bar{T}-, 299$
Involution, 3, 156
of the first kind, 165
symplectic, 164
transpose, 164

Logical symbols, 38

Map
adjoint map, 139
balanced, 7
differential Lie, 196
μ-semilinear, 3
n-linear symmetric, 455
permissable, 452
σ-semilinear, 3
Matrix of bilinear form, 164

Module
closed, 6
conjugation, 92
nonsingular, 98
Monomial
correct, 394
generalized pivotal, 151
pivotal, 151
τ-, 419
Normal form of element, 15
n-ary predicate, 34
Operation
n-ary, 34
p-, 182
0 -ary, 34
Ordering
compatible, 16
semigroup, 16
Orthogonal completion, 106
O-subgroup, 403
Pierce stalk, 112
Polynomial
additive, 338
G_{f}-reduced, 420
reduced, 259
standard, 21
Product
Cartesian, 37
Jordan, 156
Lie, 156
n-fold tensor, 8
tensor, 7
Reduction system, 15
Reductions, 15
Representation, 419
Ring
associated division, 129
centrally closed, 69
commuting, 129
$K-, 1$
Lie, 2
multiplication, 451
$\Omega-\Delta-, 37$
Ω-, 35
orthogonally complete, 110
prime, 1
primitive, 1,129
self-injective, 2
semiprime, 1
skew group, 4
von Neumann regular, 61
Ring of quotients
maximal right, 56
symmetric, 66
two-sided classical, 220
two-sided right, 64
S-context, 6
Sentence, 39
Set of transformation units, 163
Setting
extended, 304
maximal, 361, 418
of $R, 302$
*-maximal, 361, 422
Socle, 142
Standard basis, 275
Subset
dense, 99
orthogonal, 99
orthogonally complete, 100
total subset, 6
weakly dense, 6
Substitution, 37, 212
g-, 223
T-, 302, 304
T^{*}-, 361
$\widehat{T}^{\prime}-, 418$

Support, 419
Term, 36
leading g-, 317
Trace
commuting, 456
of n-linear mapping, 456
Type
symplectic, 157
transpose, 157

Ultrafilter, 45
Ultraproduct, 47

Variable
free, 38
$(x, g)-, 348$

