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Introduction-1

IIIInnnnttttrrrroooodddduuuuccccttttiiiioooonnnn

It is now nearly 140 years since Riemann introduced [Rie-EDL]

the concept of a "local system" on @1 - {a finite set of points}. His
idea was that one could (and should) study the solutions of an n'th
order linear differential equation by studying the rank n local
system (of its local holomorphic solutions) to which it gave rise.

Riemann knew that a rank n local system on @1 - {m points} was
"nothing more" than a collection of m invertible matrices Ai in

GL(n, ^) which satisfy the matrix equation A1A2...Am = (idn), such

collections taken up to simultaneous conjugation by a single element
of GL(n, ^). He also knew each individual Ai was, up to GL(n, ^)

conjugacy, just the effect of analytic continuation along a small loop
encircling the i'th missing point.

His first application of these then revolutionary ideas was to
study the classical Gauss hypergeometric function [Rie-SG], which he

did by studying rank two local systems on @1 - {three points}. His
investigation was a stunning success, in large part because any such
(irreducible) local system is rrrriiiiggggiiiidddd in the sense that it is determined
up to isomorphism as soon as one knows separately the individual
conjugacy classes of all its local monodromies. By exploiting this
rigidity, Riemann was able to recover Kummer's transformation
theory of hypergeometric functions "almost without calculation"
[Rie-APM].

It soon became clear that Riemann had been "lucky", in the
sense that the most local systems are not rigid. For instance, rank

two irreducible local systems on @1 - {m points}, all of whose local
monodromies are non-scalar, are rigid precisely for m=3. And rank

n irreducible local systems on @1 - {three points}, each of whose
local monodromies has n distinct eigenvalues, are rigid precisely for
n=1 and n=2.

On the other hand, some of the best known classical functions
are solutions of differential equations whose local systems are rigid,
including both of the standard generalizations of the hypergeometric

function, namely nFn-1, which gives a rank n local system on @1 -

{0,1,‘}, and the Pochhammer hypergeometric functions, which give

rank n local systems on @1 - {n+1 points}.
In the classical literature, rigidity or its lack is expressed in
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terms of the vanishing or nonvanishing of the "number of accessory
parameters". But the object whose rigidity is classically in question

is not a rank n local system on @1 - {m points}, but rather an n'th
order linear differential equation with rational function coefficients
which has regular singularities at the m missing points, and no
other singularities. In practice, one assumes also that each of the
local monodromies has n distinct eigenvalues, expressed classically
by saying that no two exponents differ by integers. One then looks
for the most general n'th order linear differential equation with
rational function coefficients which has regular singularities at the
m missing points, no other singularities, and whose indicial
polynomial at each missing point is the same as for the equation we
started with. [This game with indicial polynomials makes sense for
any equation with regular singularities, but it is only a meaningful
game in the case where each of its local monodromies has n distinct
eigenvalues, for only then can we be sure that any equation with
the same indicial polynomials automatically has isomorphic local
monodromies.] The "number of parameters" upon which such an
equation depends is called the "number of accessory parameters", or
the "number of constants in excess" [Ince, 20.4]. For example, in the
classical literature one finds that for second order equations with m
regular singularities, the number of accessory parameters is m-3
[Ince, top of page 506].

From a modern point of view, what corresponds precisely to a

rank n local system on @1 - {m points} is an n≠n first order system
of differential equations with regular singularities at the named
points (i.e., an algebraic vector bundle with integrable connection on

@1 - {m points} with regular singularities at the m missing points)
[De-ED]. So what corresponds to rigidity for a local system is the
absence of deformations of the corresponding n≠n system which
preserve local monodromy. But in the classical literature, the
question of deforming such a system while preserving its local
monodromy does not seem to be addressed. Even, or perhaps
especially, if we start with an n'th order equation with regular
singularities, there is a priori a great difference between deforming
it as an equation and deforming it as a system (in both cases
preserving local monodromies).

For an irreducible local system Ï on @1 - {m points}, there is a
simple cohomological invariant, rig(Ï), the "index of rigidity", which
measures the rigidity or lack thereof of Ï, cf. Chapter 1. One denotes
by
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j: @1 - {m points} ¨ @1

the inclusion, one forms the sheaf j*End(Ï) on @1, and one then

defines rig(Ï) to be the Euler characteristic ç(@1, j*End(Ï)). Since

Ï is irreducible, we have

rig(Ï) := 2 - h1(@1, j*End(Ï)).

One proves (1.1.2) that the irreducible local system Ï is rigid if and

only if rig(Ï) = 2, i.e., if and only if h1(@1, j*End(Ï)) vanishes. So

the integer h1(@1, j*End(Ï)) appears as a cohomological analogue of

the number of accessory parameters, at least in the cases where
that number was defined classically. In terms of the corresponding

n≠n system, this h1 is the "number" of its deformations to systems
having the same local monodromies. So in case we start with an

n'th order equation, we should expect this h1 to be larger than the

number of accessory parameters, since the h1 allows deformations
as system, while in computing the number of accessory parameters
we allow only deformations as equation.

In the case of a rank n irreducible local system Ï which arises
from an n'th order equation, and each of whose local monodromies
has all distinct eigenvalues, one can separately compute both the
number, say ®, of accessory parameters, and the number

h1(@1, j*End(Ï)). One finds a doubling:

h1(@1, j*End(Ï)) = 2®.

[Both sides come out to be 2 - [(2-m)n2 + mn]), cf. [Forsythe, pp.
127-128] for the calculation of ®, and Chapter 1 for the calculation

of h1.] That the h1 turns out to be even is not a surprise, because

H1(@1, j*End(Ï)) carries a symplectic autoduality. But why the

underlying n'th order equation should have "twice as many"
system-deformations as equation-deformations seems entirely

mysterious. It is as though the group H1(@1, j*End(Ï)) carried a

weight one Hodge structure, in such a way that the "holomorphic

part" H1,0 corresponded to deformations as equation. But there is
almost nothing to back up such speculation.

Let us return to the consideration of a rank n local system on

@1 - {m points}, in its incarnation as a collection, taken up to
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simultaneous conjugation, of m elements Ai of GL(n, ^) whose

product is 1. Such a local system is said to be irreducible if the
subgroup of GL(n, ^) generated by all the Ai is irreducible, i.e., if

there exists no proper nonzero subspace of ^n which is respected by
all the Ai. Given a local system, we extract, at each of the m

missing points, the conjugacy class of its local monodromy at that
point (concretely, the Jordan normal form of each separate Ai), and

call this the numerical data of our local system. There is also the

notion of abstract numerical data of rank n on @1 - {m points}: one
specifies at each of the m missing points a conjugacy class in
GL(n, ^), i.e., a Jordan normal form.

Two basic problems in the subject are:

IIIIrrrrrrrreeeedddduuuucccciiiibbbblllleeee RRRReeeeccccooooggggnnnniiiittttiiiioooonnnn PPPPrrrroooobbbblllleeeemmmm Given abstract numerical data

of rank n on @1 - {m points}, determine if it is the numerical data

attached to an irreducible rank n local system on @1 - {m points}.

IIIIrrrrrrrreeeedddduuuucccciiiibbbblllleeee CCCCoooonnnnssssttttrrrruuuuccccttttiiiioooonnnn PPPPrrrroooobbbblllleeeemmmm Given abstract numerical

data of rank n on @1 - {m points} which one is told arises from an

irreducible local system on @1 - {m points}, construct explicitly at
least one such local system. Or construct all such local systems.

Because the index of rigidity rig(Ï) can be expressed in terms
of the underlying numerical data of Ï by universal formulas, one
can pose these two problems separately for each of the a priori
possible values 2, 0, -2, -4, ... of the index of rigidity. This book is
devoted to the solution of these two problems in the special case of
rigid local systems, rig(Ï) = 2.

The case of more general local systems remains entirely open.
Already the next simplest case, rig(Ï) = 0, seems out of reach. Also
the analogues of these problems for reducible local systems remain
entirely open.

Another problem which remains open is this. Suppose we are

given a rank n irreducible rigid local system Ï on @1 - {m points}.
We know [De-ED] that it is the local system attached to a (unique,

by rigidity) n≠n system on @1 - {m points}, with regular singular
points at the m missing points. Is this this n≠n system in fact (the
system attached to) an n'th order equation with regular singular
points only at the m missing points? By [Ka-CV], any system has,
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Zariski locally, cyclic vectors. So at the expense of allowing finitely
many additional "apparent singularities" in our n'th order equation,
we can always get one whose local system is Ï. The question is
whether there exists such an equation wwwwiiiitttthhhhoooouuuutttt apparent
singularities. It should be remarked that if we drop the word "rigid"
from this question, a "counting constants" argument of Poincarïe
[Poin, pp. 314-315 of Tome II, where he counts projective
representations] suggests that "in general" it should nnnnooootttt be possible
to avoid apparent singularities in this "strong form" of the
Riemann-Hilbert problem. Another heuristic argument that one
cannot avoid apparent singularities, pointed out to me by
Washnitzer, is this. Consider an irreducible n'th order equation with

regular singular points on @1 - {m points}, each of whose local
monodromies has n distinct eigenvalues. Suppose the underlying

local system, say Ï, is not rigid. Then the calculation h1 = 2®
discussed above suggests that Ï has a 2®-dimensional deformation
space of local systems with the same local monodromies, and that
only for deformations Ì in a ®-dimensional subspace will there be

an n'th order equation on @1 - {m points}, i.e, without apparent
singularities, with Ì as monodromy.

Let us now turn to a more detailed discussion of the contents of
this book. Although the Irreducible Recognition Problem is, on its
face, an elementary problem about multiplying complex matrices
which could be explained to a bright high school student, our
solution for rigids is, unfortunately, far from elementary.

We begin with the trivial observation that on @1 - {m points},
any rank one local system is both irreducible and rigid. Our basic
idea is to construct two sorts "operations" (which we call "middle
convolution" and "middle tensor product") on a suitable collection of
irreducible local systems which preserve the index of rigidity and
whose effect on local monodromy we can calculate. The "middle
tensor" operation offers no difficulty; all the work is in working out
the theory of middle convolution.

What does convolution have to do with rigid local systems? The
idea is simple. The earliest known, and still the best known, rigid
local system is the local system of solutions of the second order
differential equation

¬(1-¬)(d/d¬)2f + (c - (a+b+1)x)(d/d¬)f - abf = 0
satisfied by the Gauss hypergeometric function F(a, b, c, ¬). A
solution is given [WW, page 293] by the integral
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—(x)a-c(1-x)c-b-1(¬ - x)-adx.
Our key observation is that formally, this integral is the additive
convolution

—f(x)g(¬-x)dx

of f(x) := (x)a-c(1-x)c-b-1 and g(x) := x-a. We then view f(x) as
incarnating a rigid local system, and g(x) as incarnating a Kummer
sheaf on ´m, and think about forming the additive convolution of

two such objects. In some sense, our entire book consists of first
making sense of this, and then exploiting it.

In Chapter 2 we define the middle convolution operators, and
work out their basic properties. The theory of perverse sheaves is
the indispensable setting for this theory. The theory we need is that

of middle convolution on !1 as additive group. However, we also
devote some attention to the theory on ´m, where it ties in nicely

with our previous work [Ka-GKM] and [Ka-ESDE] on Kloosterman
and hypergeometric sheaves and differential equations.

Chapters 3 and 4 are devoted to the proof that our middle
convolution operators do in fact preserve the index of rigidity, and
to calculating their effect on local monodromy. Here the main
technical tool is the …-adic Fourier Transform in characteristic p > 0.
In Chapter 3, we show that Fourier Transform preserves the index
of rigidity in characteristic p. Because middle convolution in
characteristic p > 0 has a simple expression in terms of Fourier
Transform, we find that middle convolution in characteristic p also
preserves the index of rigidity. Because Laumon has worked out the
precise effect of Fourier Transform on local monodromy, we also get
the effect of middle convolution on local monodromy, still in
characteristic p > 0. In Chapter 4, we use a specialization argument
to show that these results on middle convolution still hold in
characteristic zero (despite the fact that the Fourier Transform no
longer exists).

The next step is to show, in Chapter 5, that any rigid
irreducible local system can be built up from a rank one local
system by applying a finite sequence of middle convolution and
middle tensor operations. The proof of this last step gives us an
algorithm to calculate, for any given irreducible rigid local system
Ï, exactly what sequence of operations to apply to what rank one
local system Ò in order to end up with Ï. This algorithm is thus a
solution to the Irreducible Construction Problem for rigids.

This algorithm depends only on the "numerical data" of Ï.
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Roughly speaking, we solve the Irreducible Recognition Problem (in
Chapter 6) by showing that if we are given some abstract numerical
data which is rigid, then it comes from an irreducible Ï if and only
if the algorithm, applied "formally", gives a meaningful answer.

In Chapter 7, we explore some of the diophantine aspects of
rigidity. In Chapter 8, we reinterpret our construction of rigids in
terms of "pieces" of the relative de Rham cohomology of suitable
families of varieties. In Chapter 9, we use this cohomological
expression, together with an easy but previously overlooked
generalization of our earlier work on Grothendieck's p-curvature
conjecture, to prove Grothendieck's p-curvature conjecture for all

those differential equations on @1 - {m points} with regular singular
points whose underlying local systems are rigid and irreducible.

Let us now discuss what is nnnnooootttt done in this book. One could try
to classify systematically all rigid irreducible local systems, since
one has an algorithm to recognize their numerical data. Even a
cursory glance at the kinds of local monodromy one can get by
starting with a rank one local system and applying a cleverly
chosen sequence of middle convolution and middle tensor operations
leaves one with the impression that there is a fascinating bestiary
waiting to be compiled.

One could also study the identities between special functions
which presumably result whenever a rigid irreducible Ï can be
built in two or more different ways out of rank one local systems by
successive middle convolution and middle tensor operations. Already
for the case of nFn-1, any n ≥ 2, there are in general a plethora of

such building paths. Do we get anything about nFn-1 which is not

already in the classical literature?
In characteristic zero, we have shown how to construct all

rigid irreducible local systems out of rank one local systems, by
using the operations of middle convolution and middle tensor. Our
arguments in fact begin in characteristic p > 0, where we prove the
same result for rigid irreducible local systems which are
everywhere tamely ramified. But in characteristic p, the
everywhere tame local systems are by far the least interesting ones.
What can be said about arbitrary rigid irreducible local systems in
characteristic p? Is it true that any rigid irreducible local system in

characteristic p on @1 - {m points} is built out of a rank one local
system by finitely iterating the operations Fourier Transform,
middle tensor with a rank one local system, and pullback by an

automorphism of @1? For example, all the irreducible …-adic
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hypergeometrics are rigid, and they are all obtained in this way
[Ka-ESDE, proof of 8.5.3].

In characteristic zero, the analogue of a not necessarily tame
local system is a differential equation which does not necessarily
have regular singular points. There is no difficulty in defining the
index of rigidity in the holonomic Î-module context, cf. [Ka-ESDE,
3.7.3 and 2.9.8.1]. One knows, for example, that the generalized
hypergeometric equations studied in [Ka-ESDE] are rigid. One also
has the Î-module Fourier Transform. It sssshhhhoooouuuulllldddd be true that
Fourier Transform preserves the index of rigidity in the Î-module
context, but this is unknown. The main stumbling block to proving
this is the absence of an Î-module analogue of Laumon's theory of
local Fourier Transform and his stationary phase theorem relating
the local and global Fourier Transforms: Laumon's theory in the …-
adic case was the main technical tool in our proof that Fourier
Transform preserves index of rigidity. If the Î-module analogue of
Laumon's local Fourier Transform exists aaaannnndddd satisfies stationary
phase, one can then use stationary phase to "compute" what the
local Fourier Transforms must be, in terms of slope decompositions
at ‘ of global Fourier Transforms of suitable "canonical extensions"
in the sense of [Ka-DGG, 2.4.11] of various completions of the input
Î-module. In this sense, one could say that the theory of local
Fourier Transform does already exist, and that "all" that one lacks is
the Î-module analogue of stationary phase.

If one could prove that the Î-module Fourier Transform
preserves index of rigidity, or even that it preserves rigid objects,
one could ask if any irreducible Î-module is built out of an
irreducible Î-module of generic rank one by finitely iterating the
operations Fourier Transform, middle tensor with an irreducible

object of generic rank one, and pullback by an automorphism of @1.
Another question we are unable to treat is the following. Given

a rigid irreducible local system, say Ï, of rank n, consider its
geometric monodromy group Ggeom, defined as the algebraic

subgroup of GL(n, ^) which is the Zariski closure of the monodromy
representation which Ï "is". This group Ggeom, and consequently its

Lie algebra, is determined up to GL(n, ^)-conjugacy by Ï, and hence
by the numerical data of Ï. How can we determine Ggeom, or even

its Lie algebra, as a function of the numerical data. Even in asking
when Ggeom is finite, which we prove is equivalent to (the

associated differential equation's) having p-curvature zero for
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almost all primes p, we do not know how to read this from the
numerical data.

There is also a nagging technical point that is not treated in
this book. In Chapter I, we show (1.1.2) that for complex irreducible

local systems on @1 - {m points} over ^, rigidity is equivalent to
having index of rigidity equal to 2. And we show (5.0.2) that in any
characteristic ±…, having index of rigidity equal to 2 is a sufficient
condition for an irreducible …-adic local system to be rigid. However,
we do not show, even over ^, that for irreducible …-adic local
systems, being rigid is in fact equivalent to having index of rigidity
equal to 2.

It is perhaps striking that although this book is concerned with
problems that go back to Riemann, it depends for its very existence
on a great deal of mathematics that did not exist until quite
recently: Grothendieck's etale cohomology theory [SGA], Deligne's
proof of his far-reaching generalization of the original Weil
Conjectures [De-Weil II], the theory of perverse sheaves [BBD],
Laumon's work on the …-adic Fourier Transform [Lau-TF], all these
are indispensable ingredients.

My interest in rigid local systems was first aroused by a
conversation with Ofer Gabber some years ago, who told me about
some lectures Deligne had given at I.H.E.S. on them. It was later re-
aroused by conversations with Carlos Simpson, who was pursuing
them from quite a different point of view than that used here. It is
a pleasure to acknowledge helpful discussions with Deligne, Gabber
and Simpson, and to thank Beilinson and Faltings for asking some
incisive questions. I would also like to thank the referee, whose
helpful comments and suggestions led to a number of corrections to
and clarifications of the original manuscript.

I gave a series of lectures on some of the material in this book
in January, 1991 at the University of Minnesota as an Ordway
Visitor. The material on middle convolution was presented in March
of 1993 at Johns Hopkins, at a Symposium in honor of Professor
Igusa. I also gave lectures on some of this book in May of 1993 in
Berkeley as a Miller Visiting Fellow. It is a pleasure to thank all of
those institutions for their support and hospitality.
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1111....0000 GGGGeeeennnneeeerrrraaaalllliiiittttiiiieeeessss ccccoooonnnncccceeeerrrrnnnniiiinnnngggg rrrriiiiggggiiiidddd llllooooccccaaaallll ssssyyyysssstttteeeemmmmssss oooovvvveeeerrrr ^̂̂̂
(1.0.1) Let X be a projective smooth connected curve over ^, of
genus g, S a nonempty finite subset of X(^), and U := X - S the open

complement. Suppose we are given on the complex manifold Uan a
local system Ï, i.e., a locally constant sheaf of finite-dimensional ^-
vector spaces. As on any connected complex manifold, if we fix a

base point u in Uan, the functor "fibre at u", Ïÿ Ïu, defines an

equivalence of categories

local systems on Uan § fin.-dim'l. ^-rep.'s of π1(U
an, u).

We say that the local system Ï is irreducible if the corresponding

representation ÚÏ of π1(U
an, u) is irreducible.

(1.0.2) For every "point at ‘" s in S := X - U, the punctured
neighborhood

D*(s) := Uan€(a small disc around s in Xan)
is a punctured disc, whose fundamental group

I(s) := π1(D
*(s), any base point)

is canonically #, with generator ©s := "turning once around s in the

counterclockwise direction", the "local monodromy transformation

at s". We say that two local systems Ï and Ì on Uan have
isomorphic local monodromy if for every "point at ‘" s in S := X -

U, there exists an isomorphism of local systems on D*(s)

Ï | D*(s) § Ì | D*(s).

(1.0.3) We say that a local system Ï on Uan is pppphhhhyyyyssssiiiiccccaaaallllllllyyyy rrrriiiiggggiiiidddd

if for every local system Ì on Uan such that Ï and Ì have
isomorphic local monodromy, there exists an isomorphism Ï § Ì of

local systems on Uan. Because we have assumed that S is
nonempty, if Ï and Ì have isomorphic local monodromy, they
necessarily have the same rank.
(1.0.4) This notion of physical rigidity is reasonable only for
genus zero. Indeed, if X has genus g ≥ 1, there exist local systems Ò

of rank one on Xan no tensor power of which is trivial. [A rank one

local system on Xan is a homomorphism from π1(X
an)ab § #2g

to ^≠.] Denote by j: Uan ¨ Xan the inclusion. Because the map

j* : π1(U
an, u) ¨ π1(X

an, u)

is surjective, no tensor power of j*Ò is trivial. But j*Ò has trivial
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local monodromy, so for any local system Ï on Uan, Ï and Ï‚j*Ò

has isomorphic local monodromy. But Ï and Ï‚j*Ò are not
isomorphic unless Ï = 0, since already their determinants, det(Ï)

and det(Ï)‚(j*Ò)ºrank(Ï) have a ratio which is nontrivial, indeed

of infinite order. Thus no non-zero local system Ï on Uan is
physically rigid when X has genus g ≥ 1.

1111....1111 TTTThhhheeee ccccaaaasssseeee ooooffff ggggeeeennnnuuuussss zzzzeeeerrrroooo
(1.1.1) Let us now explore in greater detail the situation when X

is @1. Even here, the situation is only understood for local systems Ï

on Uan which are irreducible. In this case, there is a numerical
criterion for physical rigidity.

TTTThhhheeeeoooorrrreeeemmmm 1111....1111....2222 Let S a nonempty finite subset of @1(^), and U :=

@1 - S the open complement, j : Uan ¨ (@1)an the inclusion, Ï an

irreducible local system on Uan of rank n ≥ 1. Then Ï is physically

rigid if and only if ç((@1)an, j*End(Ï)) = 2.

pppprrrrooooooooffff Suppose first that ç((@1)an, j*End(Ï)) = 2, and let Ì be a

local system on Uan such that Ï and Ì have isomorphic local
monodromy. We will show the existence of an isomorphism from Ï
to Ì.

For any local system Ó on Uan, the Euler-Poincarïe formula
states

ç((@1)an, j*Ó)= ç(Uan, ^)≠rank(Ó) + ‡s in S dim^ ÓI(s).

Therefore if Ó1 and Ó2 are two local systems Uan with isomorphic

local monodromy, we have ç((@1)an, j*Ó1) = ç((@1)an, j*Ó2).

We apply this to Ó1 = End(Ï) and to Ó2 = Hom(Ï, Ì), which have

isomorphic local monodromy. Thus we find

ç((@1)an, j*Hom(Ï, Ì)) =ç((@1)an, j*End(Ï)) = 2.

But on a curve, ç is h0 - h1 + h2 ≤ h0 + h2, so we find

h0((@1)an, j*Hom(Ï, Ì)) + h2((@1)an, j*Hom(Ï, Ì)) ≥ 2.

We rewrite this in terms of ordinary and compact cohomology on

Uan as
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h0(Uan, Hom(Ï, Ì)) + hc
2(Uan, Hom(Ï, Ì)) ≥ 2.

The Poincarïe dual of Hc
2(Uan, Hom(Ï, Ì)) is H0(Uan, Hom(Ì, Ï)), so

we obtain

h0(Uan, Hom(Ï, Ì)) + h0(Uan, Hom(Ì, Ï)) ≥ 2.
So at least one of the two groups

H0(Uan, Hom(Ï, Ì)) = Hom(Ï, Ì)
or

H0(Uan, Hom(Ì, Ï)) = Hom(Ì, Ï)
is nonzero. Since Ï is irreducible and both Ï and Ì have the same
rank, any nonzero element of either Hom(Ï, Ì) or or Hom(Ì, Ï) is
necessarily an isomorphism.

Now suppose that Ï is an irreducible local system of rank
n ≥ 1, which is physically rigid. We will show that

ç((@1)an, j*End(Ï)) = 2.

To do this, it suffices to show that for aaaannnnyyyy local system Ï of rank
n ≥ 1 which is physically rigid, we have

ç((@1)an, j*End(Ï)) ≥ 2.

[If Ï is irreducible, both H0((@1)an, j*End(Ï)) and its dual

H2((@1)an, j*End(Ï)) are one-dimensional, so for any nonzero

irreducible Ï, we have ç((@1)an, j*End(Ï)) ≤ 2].

We will resort to a transcendental argument. For a suitable

choice of base point u in Uan, a suitable numbering s1, ..., sk of the k

:= Card(S) points at ‘, and suitably chosen loops ©i which run from

u to D*(si), turn once counterclockwise around si, and then return

to u the same way they came, the fundamental group π1(U
an, u)

may be described in terms of generators and relations as the
abstract group Æk with k generators Ci subject to the one relation

°i Ci := C1C2...Ck = 1, via the isomorphism Ci ÿ ©i. Notice that the

conjugacy class of Ci in Æk is that of local monodromy ©(si) around

si.

From this point of view, a rank n local system Ï on Uan is a
collection of k elements Ai in GL(n, ^) which satisfy °i Ai = 1. Given

a second rank n local system Ì on Uan, corresponding to a collection
of k elements Di in GL(n, ^) which satisfy °i Di = 1, Ï and Ì have
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isomorphic local monodromy if and only if for each i, Ai and Di are

conjugate in GL(n, ^), i.e., if and only if for each i there exists an

element Bi in GL(n,^) such that Di = BiAiBi
-1. Ï and Ì are

isomorphic if and only if there exists a single element C in GL(n,^),

or equivalently in SL(n,^), such that CAiC
-1 = Di for all i.

So suppose that Ï is a rank n local system, corresponding to a
system of k elements Ai in GL(n, ^) which satisfy °i Ai = 1. Then Ï

is physically rigid if and only if given any system of k elements Bi in

GL(n,^) such that °i (BiAiBi
-1) = 1, there exists a single element C

in SL(n,^) such that CAiC
-1 = BiAiBi

-1 for all i.

Fix such an Ï. By the Euler-Poincarïe formula, we have

ç((@1)an, j*End(Ï)) = (2 - k)n2 + ‡i dim(Û(Ai)),

where Û(Ai) denotes the commuting algebra of Ai in M(n, ^).

Let us denote by Z(Ai) the subgroup of GL(n, ^) consisting of all

elements which commute with Ai. Then Z(Ai) is a nonempty, and

hence dense, open set of the linear space Û(Ai), namely it is the

open set where the determinant is invertible. Therefore Z(Ai) is

irreducible, of dim(Z(Ai)) = dim(Û(Ai)). Thus we may rewrite the

above formula as

ç((@1)an, j*End(Ï)) = (2 - k)n2 + ‡i dim(Z(Ai)),

Consider the k-fold self product of GL(n, ^) with itself,

X := (GL(n, ^))k

and the map
π: X ÿ SL(n, ^)

defined by

(B1, ..., Bk) ÿ °i (BiAiBi
-1).

[Since °i Ai = 1, this map π does indeed land in SL(n, ^).] Consider

the group
G := SL(n, ^) ≠ °i Z(Ai),

which acts on X by having an element (C, Z1, ..., Zk) in G act on X as

(B1, ..., Bk) ÿ (CB1Z1
-1, ..., CBkZk

-1).

The same group G acts on SL(n, ^), by having (C, Z1, ..., Zk) in G act

on SL(n, ^) as
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A ÿ CAC-1.
With respect to these actions of G, the map

π: X ÿ SL(n, ^)
is easily checked to be G-equivariant.

Since the point 1 in SL(n, ^) is a fixed point of the G-action, the

group G acts on the fibre π-1(1). The key tautology is that Ï is

physically rigid if and only if the group G acts transitively on π-1(1).
[Indeed, Ï is physically rigid if and only if given any point {Bi}i in

π-1(1), i.e., any system of k elements Bi in GL(n,^) such that

°i (BiAiBi
-1) = 1, there exists an element C in SL(n,^) such that for

each i, CAiC
-1 = BiAiBi

-1, i.e., such that C-1Bi is an element (Zi)
-1 in

Z(Ai), i.e, such that the point {Bi}i is the image of the point {1i}i
under the action of the element (C, {Zi}i) of G.]

Suppose now that Ï is physically rigid. Then G acts transitively

on π-1(1), so we must have the inequality

dim(G) ≥ dim(π-1(1)).

Since the point 1 in SL(n, ^) is defined in SL(n, ^) by n2 -1
equations (an element (Xi,j) in SL(n) is 1 if and only if Xi,j = ∂i,j for

each (i,j) ± (1,1)), π-1(1) is defined in X by n2 -1 equations.

Therefore every irreducible component W of π-1(1) has

dim(W) ≥ dim(X) - (n2 -1).

[To see this, recall that X = GL(n, ^)k is equidimensional of

dimension k≠n2: at every closed point x of X the local ring ØX,x has

dimension k≠n2. If a closed point x of X lies in π-1(1), then

Øπ-1(1),x = ØX,x/(an ideal generated by n2 -1 non-units)

has dimension

dim(Øπ-1(1),x) ≥ dim(ØX,x) - (n
2 - 1).]

Since the fibre π-1(1) is nnnnoooonnnneeeemmmmppppttttyyyy (it contains the point {1i}i), we

have

dim(G) ≥ dim(π-1(1)) = supirred compt's W dim(W) ≥

≥ dim(X) - (n2 -1)
for Ï physically rigid. Recalling the definitions of G and X,

G := SL(n, ^) ≠ °i Z(Ai),
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X := (GL(n, ^))k,
the above inequality

dim(G) ≥ dim(X) - (n2 -1)
says

(n2 - 1) + ‡i dim(Z(Ai)) ≥ k≠n2 -(n2 - 1),

i.e.,

(2 - k)n2 + ‡i dim(Z(Ai)) ≥ 2,

i.e.,

ç((@1)an, j*End(Ï)) ≥ 2. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 1111....1111....3333 Notations as in Theorem 1.1.2 above, let Ï be an

irreducible local system on Uan of rank n ≥ 1, and let Ò be a rank

one local system on Uan. Then the following conditions are
equivalent:
1) Ï is physically rigid.
2) Ï‚Ò is physically rigid.

3) the dual local system Ï£ := Hom(Ï, ^Uan) is physically rigid.

pppprrrrooooooooffff Indeed, all three local systems Ï, Ï‚Ò and Ï£ are

irreducible, and all have the same End sheaf on Uan, and hence the

same j*End sheaf on @1. QED

1111....2222 TTTThhhheeee ccccaaaasssseeee ooooffff hhhhiiiigggghhhheeeerrrr ggggeeeennnnuuuussss
(1.2.1) Using the same technique, we can analyse the situation in
higher genus. We return to the situation X a projective smooth
connected curve over ^, of genus g, S a nonempty finite subset of
X(^), U := X - S the open complement, j: U ¨ X the inclusion. We
have already seen that as soon as g ≥ 1, no nonzero local system on

Uan can be physically rigid, due to the possibility of tensoring with
rank one local systems Ò on X. So we introduce two weaker notions.

We say that a local system Ï on Uan is wwwweeeeaaaakkkkllllyyyy pppphhhhyyyyssssiiiiccccaaaallllllllyyyy sssseeeemmmmiiii----
rrrriiiiggggiiiidddd if there exists a finite collection of local systems Ï1, Ï2, ..., Ïd

on Uan with the following property: for any local system Ì on Uan

such that Ï and Ì have isomorphic local monodromy, there exists a
rank one local system Ò on X, an index 1 ≤ i ≤ d, and an
isomorphism

Ì § Ïi‚j*Ò
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of local systems on Uan. We say that a local system Ï on Uan is
wwwweeeeaaaakkkkllllyyyy pppphhhhyyyyssssiiiiccccaaaallllllllyyyy rrrriiiiggggiiiidddd if it is weakly physically semi-rigid and

we may take d=1, i.e., if for for any local system Ì on Uan such
that Ï and Ì have isomorphic local monodromy, there exists a rank

one local system Ò on X and an isomorphism Ì § Ï‚j*Ò

LLLLeeeemmmmmmmmaaaa 1111....2222....2222 Let X a projective smooth connected curve over ^, of
genus g, S a nonempty finite subset of X(^), U := X - S the open
complement.

(1) Any local system Ï on Uan of rank one is weakly physically
rigid.

(2) If Ïl is a rank one local system on Uan, then for any nonzero

local system Ì on Uan, Ì is weakly physically rigid if and only if
Ì‚Ï1 is weakly physically rigid.

(3) If Ï is a nonzero local system on Uan, T any finite subset of

Uan(^), and k : Uan - T ¨ Uan the inclusion, then Ï is weakly

physically rigid on Uan if and only if k*Ï is weakly physically rigid

on Uan - T.
pppprrrrooooooooffff (1) If Ï and Ì are any two local systems of rank one with
isomorphic local monodromy, then Hom(Ì, Ï) is a rank one local

system on Uan with trivial local monodromy, so of the form j*Ò for

a unique rank one local system Ò (namely j*Hom(Ì, Ï)) on Xan,

whence Ï § Ì‚j*Ò.
(2) It suffices to show that if Ì is weakly physically rigid then

Ì‚Ï1 is weakly physically rigid (since Ì is (Ì‚Ï1)‚(Ï1)
(º-1). If Ó

and Ì‚Ï1 have isomorphic local monodromy, then Ó‚(Ï1)
(º-1)

and Ì have isomorphic local monodromy, so by the weak physical

rigidity of Ì, there exists a rank one Ò on Xan and an isomorphism

Ì § (j*Ò)‚Ó‚(Ï1)
(º-1) on Uan. Tensoring with Ï1 gives the

required isomorphism Ì‚Ï1 § (j*Ò)‚Ó.

(3) Suppose first that Ï is weakly physically rigid on Uan, and that

Ì is a local system on Uan - T such that k*Ï and Ì have

isomorphic local monodromy on Uan - T. Because k*Ï has trivial
local monodromy at each point of T, so also does Ì, and therefore Ï
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(= k*k
*Ï) and k*Ì are two local systems on Uan with isomorphic

local monodromy. Since Ï is weakly physically rigid on Uan, there

exists a rank one local system Ò on Xan and an isomorphism

Ï § k*Ì‚j*Ò on Uan. Restricting this isomorphism to Uan - T.gives

k*Ï § Ì‚k*j*Ò, as required.

Conversely, suppose Ï is a nonzero local system on Uan, such

that k*Ï is weakly physically rigid on Uan - T. Let Ì be a local

system on Uan such that Ï and Ì have isomorphic local

monodromy. Then k*Ï and k*Ì have isomorphic local monodromy

on Uan - T, so there exists a rank one local system Ò on Xan and an

isomorphism k*Ï § k*Ì‚k*j
*
Ò = k*(Ì‚j*Ò). Applying k* gives

the required isomorphism Ï = k*k
*Ï § k*(k

*(Ì‚j*Ò)) = Ì‚j*Ò.

QED
In a more serious vein, we have:

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 1111....2222....3333 Let X a projective smooth connected curve over
^, of genus g, S a nonempty finite subset of X(^), U := X - S the open
complement, j: U ¨ X the inclusion. If a nonzero local system Ï on

Uan is weakly physically semi-rigid, then

ç(Xan, j*End(Ï)) ≥ 2 - 2g.

pppprrrrooooooooffff Once again we resort to a transcendental proof. With suitable

base point u in Uan, suitable numbering s1, ..., sk of the k := Card(S)

points at ‘, and suitable numbering of the g "handles", the

fundamental group π1(U
an, u) may be described in terms of

generators and relations as the abstract group Æg,k with 2g + k

generators E1, F1, ..., Eg, Fg, C1, ..., Ck subject to the single relation

(°j=1,...,g {Ej, Fj})(°i=1,...,k Ci) = 1,

where we write {a, b} for the commutator aba-1b-1. In this
presentation, the elements Ci are the local monodromies around the

points si at ‘, and π1(X
an, u) is the quotient of Æg,k by the normal

subgroup generated by the elements C1, ..., Ck.

In terms of this presentation of π1(U
an, u), a local system Ï on

Uan of rank n ≥ 1 is a collection 2g + k elements in GL(n, ^),
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M1, N1, ..., Mg, Ng, A1, ..., Ak
which satisfy (°j=1,...,g {Mj, Nj})(°i=1,...,k Ai) = 1.

Fix such an Ï. By the Euler-Poincarïe formula, we have

ç(Xan, j*End(Ï)) = (2 -2g - k)n2 + ‡i dim(Z(Ai)).

A rank one local system Ò on Xan corresponds to an arbitrary

system of 2g elements μ1, √1, ..., μg, √g in ^≠; Ï‚j*Ò then

corresponds to the collection
μ1M1, √1N1, ..., μgMg, √gNg, A1, ..., Ak

Consider a second local system Ì of the same rank n,
corresponding to is a collection 2g + k elements in GL(n, ^),

P1, Q1, ..., Pg, Qg, D1, ..., Dk
which satisfy (°j=1,...,g {Pj, Qj})(°i=1,...,k Di) = 1.

Then Ï and Ì have isomorphic local monodromy if and only if for
each 1 ≤ i ≤ k there exists an element Bi in GL(n,^) such that

Di = BiAiBi
-1 for each 1 ≤ i ≤ k.

Ï and Ì are isomorphic if and only if there exists a single element C
in GL(n,^), or equivalently in SL(n,^), such that

Pj = CMjC
-1 for j=1,...,g,

Qj = CNjC
-1 for j=1,...,g,

Di = CAiC
-1 for 1 ≤ i ≤ k.

Consider the 2g+k-fold self product of GL(n, ^) with itself,

X := (GL(n, ^))2g+k

and the map
π: X ÿ SL(n, ^)

defined by

(J1, K1, ..., Jg, Kg, B1, ..., Bk) ÿ (°j {Jj, Kj})(°i (BiAiBi
-1)).

[Since (°j {Mj, Nj})(°iAi) = 1, and commutators lie in SL(n, ^), this

map π does indeed land in SL(n, ^).] Consider the group

G := SL(n, ^) ≠ (^≠)2g ≠ °i Z(Ai).

It acts on X by having an element
(C, μ1, √1, ..., μg, √g, Z1, ..., Zk)

in G act on X as
(J1, K1, ..., Jg, Kg, B1, ..., Bk) ÿ

Cμ1J1C
-1, C√1K1C

-1,..., Cμ1J1C
-1, C√1K1C

-1, CB1Z1
-1, ..., CBkZk

-1).

The same group G acts on SL(n, ^), by having an element
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(C, μ1, √1, ..., μg, √g, Z1, ..., Zk)

in G act on SL(n, ^) as

A ÿ CAC-1.
With respect to these actions of G, the map

π: X ÿ SL(n, ^)
is easily checked to be G-equivariant. Since the point 1 in SL(n, ^) is

a fixed point of the G-action, the group G acts on the fibre π-1(1).
The key tautology is that Ï is weakly physically semi-rigid if and

only if under the action of G, π-1(1) is a finite union of G-orbits.
Just as above, if Ï is weakly physically semi-rigid, we infer

that

dim(G) ≥ dim(π-1(1)) ≥ dim(X) - (n2 - 1),
which is to say

(n2 - 1) + 2g + ‡i dim(Z(Ai) ≥ (2g + k)n2 - (n2 - 1),

i.e.,

(2 - 2g - k)n2 + ‡i dim(Z(Ai) ≥ 2 - 2g,

i.e.,

ç(Xan, j*End(Ï)) ≥ 2 - 2g. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 1111....2222....4444 Let X a projective smooth connected curve over ^,
of genus g, S a nonempty finite subset of X(^), k := Card(S), U := X -
S the open complement, j: U ¨ X the inclusion. If g ≥ 2, and Ï is a

local system on Uan of rank n ≥ 2, then Ï is not weakly physically
semi-rigid.

pppprrrrooooooooffff For Ï of rank n≥1 on Uan, the Euler-Poincarïe formula gives

ç(Xan, j*End(Ï)) - (2 - 2g)=

= (2 - 2g - k)n2 + ‡i dim(Z(Ai)) - (2 - 2g)

= (2 - 2g)(n2 - 1) + ‡i (dim(Z(Ai) - n
2).

Each term (dim(Z(Ai) - n
2) is ≤ 0, with equality if and only if Ai is

scalar. If g ≥ 2 and n ≥ 2 then the term (2 - 2g)(n2 - 1) is < 0, so

ç(Xan, j*End(Ï)) < (2 - 2g).

Therefore Ï is not weakly physically semi-rigid. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 1111....2222....5555 (mise pour memoire) Let S be a nonempty finite
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subset of @1(^), U := @1 - S the open complement, j: U ¨ @1 the

inclusion. Let Ï be an irreducible local system on Uan of rank n ≥ 1.
The following conditions are equivalent.

(1) Ï is physically rigid.
(2) Ï is weakly physically rigid.
(3) Ï is weakly physically semi-rigid.

(4) ç((@1)an, j*End(Ï)) ≥ 2.

(5) ç((@1)an, j*End(Ï)) =2.

pppprrrrooooooooffff The implications (1) à (2) à (3) are trivial, and we have
proven (3) à (4) in 1.2.3 above. For Ï irreducible, we have already
proven (4) à (5) and (5) à (1) in the proof of 1.1.2. QED

1111....3333 TTTThhhheeee ccccaaaasssseeee ooooffff ggggeeeennnnuuuussss oooonnnneeee

CCCCoooorrrroooollllllllaaaarrrryyyy 1111....3333....1111 Let X a projective smooth connected curve over ^,
of genus g=1, S a nonempty finite subset of X(^), U := X - S the open

complement, j: U ¨ X the inclusion. Let Ï be a local system on Uan

of rank n ≥ 1. Consider the following conditions:
(1) Ï is weakly physically rigid.
(2) Ï is weakly physically semi-rigid.

(3) ç(Xan, j*End(Ï)) ≥ 0 = (2 - 2g).

(4) ç(Xan, j*End(Ï)) =0 = (2 - 2g).

(5) Ï has all its local monodromies scalar.

(6) j*End(Ï) is a local system on Xan.

We have the implications
(1) à (2) à (3) à (4) à (5) à (6).

If in addition Ï is irreducible, these conditions are all equivalent.

pppprrrrooooooooffff The implication (1) à (2) is trivial, and (2) à (3) is the
content of Proposition 1.2.3 above. If g=1, the Euler Poincarïe
formula gives

ç(Xan, j*End(Ï)) - (2 - 2g)=

= (2 - 2g - k)n2 + ‡i dim(Z(Ai)) - (2 - 2g)

= ‡i (dim(Z(Ai) - n
2).

Thus ç(Xan, j*End(Ï)) ≤ (2 - 2g) = 0, with strict inequality unless

all the local monodromies Ai are scalar. Thus (3) à (4) and (4) à
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(5). If (5) holds, then End(Ï) has trivial local monodromy, so

j*End(Ï) is a local system on the elliptic curve Xan. Thus (5) à (6).

Suppose now that Ï is irreducible, and that (6) holds, i.e.,

j*End(Ï) is a local system on Xan. Let Ì be another local system on

Uan such that Ï and Ì have ismorphic local monodromy. Then
Hom(Ï, Ì) and End(Ï) have isomorphic local monodromy. Since.

j*End(Ï) is a local system on Xan, End(Ï) has trivial local

monodromy. Hence Hom(Ï, Ì) has trivial local monodromy, and

therefore j*Hom(Ï, Ì) is a local system on Xan. Because the π1 of

Xan is abelian, any local system on Xan is a successive extension of

rank one local systems Ò
k
on Xan. So there exists a rank one local

system Ò on Xan and a non-zero map of local systems on Xan

Ò ¨ j*Hom(Ï, Ì).

Tensoring this map with Ò‚-1 gives a nonzero map of local systems

^ ¨ j*Hom(Ï, Ì)‚Ò‚-1 = j*Hom(Ï‚j*Ò, Ì),

i.e., a nonzero element in

H0(Xan, j*Hom(Ï‚j*Ò, Ì)) = H0(Uan, Hom(Ï‚j*Ò, Ì))

= Hom(Ï‚j*Ò, Ì).

Because Ï (and hence Ï‚j*Ò) is irreducible and of the same rank
as Ì, any such non-zero map of local systems is an isomorphism.

Therefore we have Ï‚j*Ò § Ì. Thus Ï is weakly physically rigid,
and so (6) à (1) for Ï irreducible. QED

1111....4444 TTTThhhheeee ccccaaaasssseeee ooooffff ggggeeeennnnuuuussss oooonnnneeee:::: ddddeeeettttaaaaiiiilllleeeedddd aaaannnnaaaallllyyyyssssiiiissss
(1.4.1) We now analyze the case of genus one in greater detail.
The first step is to show that up to tensoring with rank one objects,
we may reduce to the case when there is only a single point at ‘.

LLLLeeeemmmmmmmmaaaa 1111....4444....2222 Let X a projective smooth connected curve over ^, of
genus g=1, S = {s1, s2, ..., sk} a finite subset of X(^) with k ≥ 2 points,

U := X - S the open complement,
j: U ¨ X,

and j1 : X - S ¨ X - {s1}

the inclusions. Let Ï be a local system on Uan of rank n ≥ 1 which is
weakly physically rigid. There exists a rank one local system Ò on



Chapter 1-First results on rigid local systems-13

Uan, and a weakly physically rigid local system Ï1 on (X - {s1})
an,

such that Ï § Ò‚j1
*Ï1.

pppprrrrooooooooffff If Ï on Uan of rank n ≥ 1 is weakly physically rigid, its local
monodromy at each point si in S is a scalar, say åi. Think of

π1(U
an, u) as the abstract group Æ1,k with 2 + k generators E, F, C1,

..., Ck subject to the single relation

{E, F}(°i=1,...,k Ci) = 1.

The required Ò is any character ç of this group which takes the
value åi at Ci for i > 1, e.g., one might take ç(E) = ç(F) = 1, and

ç(C1) := (°i=2,...,k åi)
-1. Then Ï‚Òº-1 has trivial local monodromy

at each of s2, ..., sk, so it is of the form j1
*Ï1.for some local system

Ï1 on (X - {s1})
an. By 1.2.2(2), Ï‚Òº-1 on Uan is weakly physically

rigid, and, by 1.2.2(3), Ï1 is weakly physically rigid on (X - {s1})
an.

QED

(1.4.3) We next analyze the irreducible local systems in genus
one when there is a single point at infinity.

LLLLeeeemmmmmmmmaaaa 1111....4444....4444 Let X a projective smooth connected curve over ^, of
genus g=1, x0 in X(^) a point, U := X - {x0} the open complement,

j: U ¨ X the inclusion. Let Ï be a local system on Uan of rank n ≥ 1.
Then the following conditions are equivalent:
(1) Ï is both irreducible and weakly physically rigid.
(2) The local monodromy of Ï around x0 is a scalar Ω which is a

primitive n'th root of unity.

pppprrrrooooooooffff Suppose first that (1) holds. By the weak physical rigidity of
Ï, and 1.3.1, (1) à (5), we know that the local monodromy of Ï
around x0 is a scalar Ω. We first show that Ω is necessarily an n'th

root of unity.

Think of π1(U
an, u) as the abstract group Æ1,1 with 2 + 1

generators E, F, C subject to the single relation
{E, F}C = 1, or C = {F, E},

C being the local monodromy around x0. Then Ï "is" an n-
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dimensional ^-representation of this group. So its local monodromy
around x0 lies in SL(n, ^), because it is the ccccoooommmmmmmmuuuuttttaaaattttoooorrrr of two

elements of GL(n, ^). Being a scalar, Ω is necessarily an n'th root of
unity.

Given an n'th root of unity Ω, we construct an explicit n-

dimensional ^-representation ®n,Ω on Vn,Ω of π1(U
an, u), which we

now think of as the free group on E and F, as follows:

Vn,Ω is the n-dimensional ^-algebra ^[T]/(Tn - 1),

®n,Ω(E) is the automorphism A: f(T) ÿ Tf(T),

®n,Ω(F) is the automorphism B: f(T) ÿ f(ΩT).

Clearly AB(f)(T) = Tf(ΩT), BA(f)(T) = ΩTf(ΩT), so BA =ΩAB, which is to
say {B, A} = Ω, or equivalently {A, B}Ω = 1.

Interpret the representation ®n,Ω as a local system Ïn,Ω on

Uan. Then its local monodromy around x0 is the scalar Ω.

We must show that if Ï is both irreducible and weakly
physically rigid, then Ω is a primitive n'th root of unity. We argue
by contradiction. Suppose that for some factorization of n = dm,
with both m and d integers ≥2, Ω were a d'th root of unity. Then Ï

and ·m copies Ïd,Ω are two local systems on Uan with isomorphic

local monodromy (namely Ω).

By the weak physical rigidity of Ï, there exists a rank one Ò on Xan

and an isomorphism Ï § ·m copies Ïd,Ω‚j*Ò. But this shows that

Ï is in fact reducible. Thus (1) implies (2).
Suppose now that (2) holds. By 1.3.1, it suffices to prove that Ï

is irreducible. Interpreting Ï as a representation, this results from
the following general lemma.

LLLLeeeemmmmmmmmaaaa 1111....4444....5555 Let K be an algebraically closed field, n ≥ 2 an
integer, V an n-dimensional K-vector space, A and B two elements
of GL(V), C the commutator {B, A}. Let ≈1, ≈2, ..., ≈n be the n (not

necessarily distinct) eigenvalues of C. Suppose that for any proper
nonempty subset S of {1,2, ..., n}, the product °i in S ≈i ± 1. Then

the subgroup of GL(V) generated by A and B acts irreducibly on V.
In particular, if C is scalar, equal to a primitive n'th root of unity,
then the subgroup of GL(V) generated by A and B acts irreducibly on
V.
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pppprrrrooooooooffff We restate the hypothesis in the following form: for any
monic polynomial f(T) of degree 1 ≤ d < n which divides detV(T - C),

we have °all roots ≈ of f ≈ ± 1.

We argue by contradiction. If W is a nontrivial proper subspace
of V which is mapped to itself by both A and B, then W is also
mapped to itself by their inverses, and so W is mapped to itself by C
= {B, A}. But

C | W = {B | W, A | W}
lies in SL(W) (being a commutator of two elements in GL(W)). Taking
f(T) := detW(T - C|W), we get a contradiction. QED

Using the local systems Ïn,Ω on (X - {x0})
an constructed in the

proof of 1.4.4 above, we get a complete description:

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 1111....4444....6666 Let X a projective smooth connected curve over
^, of genus g=1, x0 in X(^) a point, U := X - {x0} the open

complement, j: U ¨ X the inclusion, n ≥ 1 an integer. The local

systems Ï on Uan of rank n which are both irreducible and weakly

physically rigid are precisely those of the form Ïn,Ω‚j*Ò, with Ò of

rank one on Xan, and with Ω a primitive n'th root of unity.

pppprrrrooooooooffff By 1.4.4, we know if Ω is a primitive n'th root of unity, then

Ïn,Ω, and hence also Ïn,Ω‚j*Ò, is irreducible. Because Ïn,Ω, and

hence also Ïn,Ω‚j*Ò, have scalar local monodromy, [1.3.2,

(5) à (1)] shows that Ïn,Ω‚j*Ò is weakly physically rigid.

Conversely, given a rank n Ï which is irreducible and weakly
physically rigid, by 1.4.4 its local monodromy at x0 is a scalar Ω

which is a primitive n'th root of unity. So Ï and Ïn,Ω have

isomorphic local monodromy. By the weak physical rigidity of Ï,

there exists an Ò of rank one on Xan, and an isomorphism

Ï § Ïn,Ω‚j*Ò. QED

(1.4.7) We next compute the determinant of Ïn,Ω. To state the

result, we denote by Ò1/2 the rank one local system on (X - {x0})
an

corresponding to the character E ÿ -1, F ÿ -1, and by Ò0 the
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trivial rank one local system on (X - {x0})
an. [Of course, both of

these, like any rank one local system with only one point at ‘,

extend uniquely to local systems on the complete curve Xan.]

LLLLeeeemmmmmmmmaaaa 1111....4444....8888 Let X a projective smooth connected curve over ^, of
genus g=1, x0 in X(^) a point, U := X - {x0} the open complement,

j: U ¨ X the inclusion, n ≥ 1 an integer, Ω a primitive n'th root of
unity. Then

det(Ïn,Ω) = Ò1/2 if n is even,

det(Ïn,Ω) = Ò0 if n is odd.

pppprrrrooooooooffff As representation, Ïn,Ω is

Vn,Ω is the n-dimensional ^-algebra ^[T]/(Tn - 1),

®n,Ω(E) is the automorphism A: f(T) ÿ Tf(T),

®n,Ω(F) is the automorphism B: f(T) ÿ f(ΩT).

The assertion is that det(A) = det(B) = (Ω)n(n+1)/2 ( = (-1)n+1 ). To
see this for A, notice that the vectors

fi(T) := ‡j mod n Ω-ij Tj,

1 ≤ i ≤ n, are an eigenbasis for A, with eigenvalues Ωi. To see it for B,

notice that vectors Ti, 1 ≤ i ≤ n, are an eigenbasis for B, with

eigenvalues Ωi. QED

In fact, the local systems Ïn,Ω have a stronger rigidity

property.

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 1111....4444....9999 Let X a projective smooth connected curve over
^, of genus g=1, x0 in X(^) a point, U := X - {x0} the open

complement, n ≥ 1 an integer. Let Ï be a local system on Uan of
rank n which is both irreducible and weakly physically rigid. Denote
by Ω the primitive n'th root of unity which is the local monodromy
of Ï around x0. If det(Ï) § det(Ïn,Ω), then Ï § Ïn,Ω.

pppprrrrooooooooffff As representation, Ïn,Ω is

Vn,Ω is the n-dimensional ^-algebra ^[T]/(Tn - 1),

®n,Ω(E) is the automorphism A: f(T) ÿ Tf(T),

®n,Ω(F) is the automorphism B: f(T) ÿ f(ΩT).
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By 1.4.6, there exist nonzero scalars ¬, μ in ^≠ such that the
representation ÚÏ corresponding to Ï is realized on the same space

Vn,Ω, but with

ÚÏ(E) := ¬A,

ÚÏ(F) := μB.

Because det(Ï) § det(Ïn,Ω), the scalars ¬ and μ are n'th roots of

unity. Thus we must show that the automorphisms A and B of Vn,Ω
have the following property (*)

(*) for any n'th roots of unity ¬, μ, there exists an automorphism X

of Vn,Ω such that ¬A = XAX-1 and μB = XBX-1.

To prove (*), recall that BA = ΩAB. Thus

BAB-1 = ΩA, and ABA-1 = ΩB.

So if we write ¬ = Ωi and μ = Ωj, we may take X = AjBi. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 1111....4444....11110000 Let X a projective smooth connected curve over
^, of genus g=1, x0 in X(^) a point, U := X - {x0} the open

complement, n ≥ 1 an integer. Let Ï be a local system on Uan of
rank n which is both irreducible and weakly physically rigid. Denote
by Ω the primitive n'th root of unity which is the local monodromy
of Ï around x0. The isomorphism class of Ï is determined by the

isomorphism class of the data (n, Ω, det(Ï)).

pppprrrrooooooooffff The group (under ‚) of isomorphism classes of rank one local

systems on Uan is divisible (being ^≠ ≠ ^≠), so tensoring Ï with an

n'th root of det(Ïn,Ω)‚det(Ï)-1, we reduce to the proposition above.

QED

(1.4.11) We now investigate the situation in genus one when there
are k≥2 points at ‘.
PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 1111....4444....11112222 Let X a projective smooth connected curve
over ^, of genus g=1, S = {s1, s2, ..., sk} a finite subset of X(^) with k

≥ 2 points, U := X - S the open complement,
j: U ¨ X,

and j1 : X - S ¨ X - {s1}
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the inclusions. Fix an integer n ≥ 1. The local systems Ï on Uan of
rank n which are both irreducible and weakly physically rigid are

precisely those of the form (j1)
*(Ïn,Ω on (X - {s1})

an)‚Ò, with Ò of

rank one on Uan, and with Ω a primitive n'th root of unity.

proof Simply combine 1.4.2 and 1.4.6. QED

Here is an intrinsic characterization.

LLLLeeeemmmmmmmmaaaa 1111....4444....11113333 Let X a projective smooth connected curve over ^,
of genus g=1, S = {s1, ..., sk} a finite subset of X(^) with k ≥ 1 points,

U := X - S the open complement, j: U ¨ X the inclusion. Let Ï be a

local system on Uan of rank n ≥ 1. Then Ï is both irreducible and
weakly physically rigid if and only if the following two conditions
hold:
(1) Ï has scalar monodromy ≈i around each point si in S.

(2) °i in S ≈i is a primitive n'th root of unity.

pppprrrrooooooooffff The assertion is invariant under tensoring with an Ò of rank

one on Uan, so we are reduced, as in the proof of 1.4.2, to the case
when k = 1, where it is 1.4.4. QED

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 1111....4444....11114444 Let X a projective smooth connected curve
over ^, of genus g=1, S = {s1, s2, ..., sk} a finite subset of X(^) with k

≥ 1 points, U := X - S the open complement,
j: U ¨ X,

and j1 : X - S ¨ X - {s1}

the inclusions. Let Ï be a local system on Uan of rank n ≥ 1 which is
both irreducible and weakly physically rigid. Denote by ≈i the scalar

which is the local monodromy of Ï around si. The isomorphism class

of Ï is determined by the isomorphism class of the data (n, {≈i}i,

det(Ï)).

pppprrrrooooooooffff Given this data, first construct the rank one local system

Ò({≈i}i) on (X - {s1, ..., sk})
an given as character of π1 by

E ÿ 1, F ÿ 1, C1 ÿ °i≥2 ≈i, Ci ÿ (≈i)
-1 for i ≥ 2.

Tensoring with Ò({≈i}i), we reduce to the fact 1.4.10 that
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(j1)*(Ï‚Ò({≈i}i)) on X - {s1})
an is determined up to isomorphism by

the data (n, °i ≈i, det((j1)*(Ï‚Ò({≈i}i))). QED

(1.4.15) We now return to the case of a single point at ‘, and give
a structure theorem for irreducible, weakly physically rigid local
systems of rank n ≥ 1, which says they are all induced from rank
one local systems.
TTTThhhheeeeoooorrrreeeemmmm 1111....4444....11116666 Let X a projective smooth connected curve over ^,
of genus g=1, x0 in X(^) a point, U := X - {x0} the open complement,

j: U ¨ X the inclusion, n ≥ 1 an integer. Let Ï be a local system on

Uan of rank n which is both irreducible and weakly physically rigid.
Denote by Ω the primitive n'th root of unity which is the local
monodromy of Ï around x0. Let π : Y ¨ X be aaaannnnyyyy connected finite

etale covering of degree n (such coverings exist~). Denote by S fi Y(^)

the set π-1(x0), which has Card(S) = n. Then there exists a rank one

local system Ò on (Y - S)an for which the local monodromy around

each of the n points in S is Ω, and for which π*Ò § Ï on Uan.

pppprrrrooooooooffff Because X has genus one, π1(X
an) is abelian, § (#)2. So

connected finite etale coverings Y of X are in bijective

correspondence with the subgroups Æ of (#)2 of index n, and such Æ
clearly exist. By the Hurwitz formula, Y has genus one.

Consider the pullback π*Ï on (Y - S)an. Because π is finite

etale over all of X, the local monodromy of π*Ï around each point
of S is still the same scalar Ω.

Since S contains n points, and Ω is an n'th root of unity, there

exist rank one local systems Ò on (Y - S)an for which the local
monodromy around each of the n points in S is Ω. Pick any such Ò.
(We will "correct" it later.)

The local system Hom(Ò, π*Ï) on (Y - S)an has trivial local
monodromy at each point of S. So denoting by k: Y - S ¨ Y the

inclusion, k*Hom(Ò, π*Ï) is a local system on Yan, which is

(because Y has genus one) necessarily a successive extension of rank

one local systems on Yan. So there exists a rank one Ò0 on Yan, and

a nonzero element of
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HomYan(Ò0, k*Hom(Ò, π*Ï)) = Hom(Y-S)an(Ò‚k*Ò0, π
*Ï).

Because Ï is irreducible, and π corresponds to a normal subgroup of

finite index, π*Ï is semisimple. Therefore the group

Hom(Y-S)an(π
*Ï, Ò‚k*Ò0) = HomUan(Ï, π*(Ò‚k*Ò0))

is nonzero. Since Ï is irreducible, and has the same rank n as

π*(Ò‚k*Ò0), any nonzero map between them is an isomorphism.

Thus Ï § π*(Ò‚k*Ò0). Since Ò0 was a rank one local system on all

of Yan, Ò and Ò‚k*Ò0 have the same local monodromy at each

point of S. So Ò‚k*Ò0 works as the required "Ò". QED

RRRReeeemmmmaaaarrrrkkkk 1111....4444....11117777 Here is a variant proof. Consider on (Y - S)an any
Ò for which the local monodromy around each of the n points in S

is Ω. Because π is finite etale over all of X, π*Ò on Uan is a rank n

local system which has its local monodromy around x0 given by the

primitive n'th root of unity Ω. By 1.4.4, π*Ò is irreducible and

weakly physically rigid. So by 1.4.6, π*Ò is Ï‚j*(Ò1)
º-1 for some

local system Ò1 on Xan, and so

Ï § (π*Ò)‚(j*Ò1) = π*(Ò‚π*j*Ò1) = π*(Ò‚k*π*Ò1),

and Ò‚k*π*Ò1 works as the "Ò".

(1.4.18) What about rrrreeeedddduuuucccciiiibbbblllleeee local systems which are weakly
physically rigid (or even semi-rigid)?
LLLLeeeemmmmmmmmaaaa 1111....4444....11119999 Let X a projective smooth connected curve over ^,
of genus g=1, S = {s1, s2, ..., sk} a finite subset of X(^) with k ≥ 1

points, U := X - S the open complement,
j: U ¨ X,

and j1 : X - S ¨ X - {s1}

the inclusions. Let Ï be a local system on Uan of rank n ≥ 1 which is
weakly physically semi-rigid. Then Ï is irreducible (and hence
weakly physically rigid, by 1.3.1).

pppprrrrooooooooffff We first reduce to the case of a single point at ‘. If k ≥ 2,
denote by ≈i the scalar which is the local monodromy of Ï around
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si, and by Ò({≈i}i) the rank one local system on (X - {s1, ..., sk})
an

constructed in the proof or 1.4.14 above. Then Ï‚Ò({≈i}i) extends to

a local system on (X - {s1})
an which is still weakly physically semi-

rigid, and it suffices to show that this local system is irreducible on

(X - {s1})
an. [Since the π1 of (X - {s1, ..., sk})

an maps onto the π1 of

(X - {s1})
an, a local system Ì on (X - {s1})

an is irreducible if and

only if its restriction (j1)
*Ì to (X - {s1, ..., sk})

an is irreducible.]

We now assume that k=1, S={s1}, and show that any weakly

physically semi-rigid local system Ï on (X - {s1})
an is irreducible.

Let Ï have rank n ≥ 1, and denote by Ω its local monodromy around
the unique point s1 at ‘. Then Ω is an n'th root of unity, and we

know by 1.4.4 that Ï is irreducible if and only if Ω is a primitive
n'th root of unity. So if Ω has exact order n, we are done.

So suppose that Ω has exact order d < n, and define m:= n/d, an

integer >1. Let Ó be any local system on Xan of rank m. Then Ï and

Ïd,Ω‚j*Ó are two local systems on (X - {s1})
an with isomorphic

local monodromy (namely Ω).
By the weak physical semi-rigidity of Ï, there exists a finite

collection of local systems Ï1, Ï2, ..., Ïr on (X - {s1})
an with the

following property: for any local system Ì on Uan such that Ï and
Ì have isomorphic local monodromy, there exists a rank one local
system Ò on X, an index 1 ≤ i ≤ r, and as isomorphism

Ì § Ïi‚j*Ò.

Applying this to Ì := Ïd,Ω‚j*Ó, as Ó runs over all rank m

local system on Xan, we see that up to tensoring with a rank one

local system on Xan, we obtain only finitely many isomorphism
classes.

We will show this is impossible if m>1. Pick a rank one Ò1 on

Xan of infinite order. For each integer k ≥ 1, define a rank m local

system Ó(k) on Xan,

Ó(k) := ·1 ≤ i ≤ m (Ò1)
ºki.

Then

Ïd,Ω‚j*Ó(k) = ·1 ≤ i ≤ m Ïd,Ω‚(j*Ò1)
ºki.
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We claim that even modulo tensoring with a rank one local

system on Xan, there are still an infinity of isomorphism classes

among the local systems Ïd,Ω‚j*Ó(k).

Notice that each Ïd,Ω‚j*Ó(k) is a direct sum of m pairwise

non-isomorphic irreducibles each of the same rank d( namely the

Ïd,Ω‚(j*Ò1)
ºki with 1≤i≤m, whose determinants,

det(Ïd,Ω)‚(j*Ò1)
ºdki, are already pairwise non-isomorphic, Ò1

being of infinite order).
To any direct sum Ì of m pairwise non-isomorphic irreducibles

Ìi, each of the same rank d, we may attach the following invariant:

the finite set consisting of the distinct isomorphism classes among
the m(m-1) rank one objects det(Ìi)/det(Ìj), for all i ± j. This

construction visibly attaches the same invariant to Ì and to

Ì‚j*Ò, for any rank one local system Ò on Xan.
So it suffices to see that the objects

Ïd,Ω‚j*Ó(k) = ·1 ≤ i ≤ m Ïd,Ω‚(j*Ò1)
ºki, k ≥1,

each give rise to distinct invariants. But this is obvious. The

invariant attached to Ïd,Ω‚j*Ó(k) consists visibly of the

isomorphism classes (j*Ò1)
ºkdp, -(m-1) ≤ p ≤ m-1. Because Ò1 has

infinite order, (j*Ò1)
ºkd(m-1), which occurs in the invariant of

Ïd,Ω‚j*Ó(k), does not occur in the invariant of Ïd,Ω‚j*Ó(N) for

any 1 ≤ N < k. QED



Chapter 2-The theory of middle convolution-1

2222....0000 TTTTrrrraaaannnnssssiiiittttiiiioooonnnn ffffrrrroooommmm iiiirrrrrrrreeeedddduuuucccciiiibbbblllleeee llllooooccccaaaallll ssssyyyysssstttteeeemmmmssss oooonnnn ooooppppeeeennnn sssseeeettttssss ooooffff

@@@@1111 ttttoooo iiiirrrrrrrreeeedddduuuucccciiiibbbblllleeee mmmmiiiiddddddddlllleeee eeeexxxxtttteeeennnnssssiiiioooonnnn sssshhhheeeeaaaavvvveeeessss oooonnnn !!!!1111....

(2.0.1) Let S a nonempty finite subset of @1(^), and U := @1 - S

the open complement, j : Uan ¨ (@1)an the inclusion, Ï an

irreducible ^-local system on Uan of rank n ≥ 1. We know by 1.1.2

that Ï is physically rigid if and only if ç((@1)an, j*End(Ï)) = 2.

Motivated by this fact, we define the iiiinnnnddddeeeexxxx ooooffff rrrriiiiggggiiiiddddiiiittttyyyy of Ï on U,
noted rig(Ï,U), to be the integer

rig(Ï, U) := ç((@1)an, j*End(Ï)).

LLLLeeeemmmmmmmmaaaa 2222....0000....2222 Let S a nonempty finite subset of @1(^), U := @1 - S

the open complement, j : Uan ¨ (@1)an the inclusion, Ï an

irreducible ^-local system on Uan of rank n ≥ 1.

(1) If Ò is any rank one local system on Uan, we have
rig(ÏºÒ, U) = rig(Ï, U).

(2) If T is any finite subset of Uan(^), and k : Uan - T ¨ Uan the
inclusion, we have

rig(k*Ï, U - T) = rig(Ï, U).

pppprrrrooooooooffff (1) holds because the local system End(Ï) on Uan does not
change if we replace Ï by Ï‚Ò. (2) holds because for any local

system Ì on Uan, we have Ì § k*k
*Ì. Applying this to End(Ï), we

get

j*End(Ï) = j*k*k
*End(Ï) = j*k*End(k

*Ï),

and applying ç((@1)an, ) gives the assertion. QED

(2.0.3) Recall [Ka-ESDE, 7.3.1] that on a connected smooth curve
U/^, an algebraically constructible sheaf Ï of ^-vector spaces on

Uan is called a mmmmiiiiddddddddlllleeee eeeexxxxtttteeeennnnssssiiiioooonnnn sssshhhheeeeaaaaffff if for some (or
equivalently for every) nonempty Zariski open set k: V ¨ U such

that k*Ï is a local system on Van, we have Ï § k*k
*Ï. A middle

extension sheaf Ï on U is called an iiiirrrrrrrreeeedddduuuucccciiiibbbblllleeee middle extension if
if for some (or equivalently for every) nonempty Zariski open set

k: V ¨ U such that k*Ï is a local system, k*Ï is an irreducible local
system.
(2.0.4) We now specialize to the case when U is a Zariski open set
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of @1, j: U ¨ @1 its inclusion. We will now define the index of

rigidity rig
U
(Ï) of an irreducible middle extension Ï on Uan. Given

such an Ï, pick a nonempty Zariski open set k: V ¨ U such that

k*Ï is an irreducible local system. The integer

rig(k*Ï, V) := ç((@1)an, j*k*End(k
*Ï))

is independent of the auxiliary choice of V, thanks to lemma 2.0.2
above. We call it rig

U
(Ï).

(2.0.5) The situation now is this. For any nonempty Zariski open

set U in @1, we have the category IrrME(U) of irreducible middle

extensions on Uan. Whenever V fi U, with inclusion k: V ¨ U, the
functors

k* : IrrME(U) ¨ IrrME(V) and k* : IrrME(V) ¨ IrrME(U)

are inverse equivalences. Given two nonempty Zariski open sets U1
and U2, pick any nonempty Zariski open V in U1€U2, with

inclusions ki : V ¨ Ui. Then we get an equivalence

ƒ1,2 := (k2)*(k1)
* : IrrME(U1) ¨ IrrME(U2)

which is independent of the auxiliary choice of V. Given three
nonempty Zariski open sets U1, U2, U3, we have

ƒ1,3 = ƒ2,3«ƒ1,2.

So we can canonically identify all of these categories.
(2.0.6) The #-valued functions Ï ÿ rigU(Ï) on these categories

respect these identifications, so we may speak of the single function
Ï ÿ rig(Ï).

(2.0.7) At first glance, it would seem most natural to work with

the single category IrrME(@1). However, it turns out to be better to

pick two points in @1(^), label them ‘ and 0, and work on the open

set !1 := @1 - {‘}. Because we have specified the origin 0, this !1

has an additive group structure. By embedding the category

IrrME(!1) in the slightly larger category IrrPerv(!1) of irreducible

perverse sheaves on !1, we can bring to bear the whole mechanism
of additive convolution.
2222....1111 TTTTrrrraaaannnnssssiiiittttiiiioooonnnn ffffrrrroooommmm iiiirrrrrrrreeeedddduuuucccciiiibbbblllleeee mmmmiiiiddddddddlllleeee eeeexxxxtttteeeennnnssssiiiioooonnnn sssshhhheeeeaaaavvvveeeessss oooonnnn

!!!!1111 ttttoooo iiiirrrrrrrreeeedddduuuucccciiiibbbblllleeee ppppeeeerrrrvvvveeeerrrrsssseeee sssshhhheeeeaaaavvvveeeessss oooonnnn !!!!1111

(2.1.1) On any separated ^-scheme X of finite type, a sheaf Ï of



Chapter 2-The theory of middle convolution-3

^-vector spaces on Xan is said to be algebraically constructible if

there exists a finite partition Xred = ‹i Yi as the disjoint union of

smooth connected subschemes Yi, such that on each Yi, Ï | Yi
an is a

local system on Yi
an. We denote by D(Xan, ^) the derived category

of the category of all ^-sheaves on Xan, and by Dbc(X
an, ^) the full

subcategory of D(Xan, ^) consisting of those objects K for which

1) each cohomology sheaf Ói(K) is algebraically constructible,

2) only finitely many of the sheaves Ói(K) are nonzero.

These Dbc support the full Grothendieck formalism of the "six

operations". In this formalism, the dualizing complex KX/^ is defined

as f~^, f: X ¨ Spec(^) denoting the structural morphism.

(2.1.2) Recall [BBD, Ch. 4] that an object K of Dbc(X
an, ^) is

called sssseeeemmmmiiiippppeeeerrrrvvvveeeerrrrsssseeee if its cohomology sheaves Ói(K) satisfy

dim Supp(Ói(K)) ≤ -i, for every integer i.
An object K is called ppppeeeerrrrvvvveeeerrrrsssseeee if both K and its Verdier dual

DX/^K := RHom(K, f~^), f: X ¨ Spec(^) denoting the structural

morphism, are semiperverse. The main facts about perversity,
semiperversity and duality we will use are the following [BBD, Ch.
4]:
(1) if f:X ¨ Y is an affine morphism, then K ÿ Rf*K preserves

semiperversity
(2) if f:X ¨ Y is a quasifinite morphism, then K ÿ Rf~K preserves

semiperversity
(3) if f:X ¨ Y is an arbitrary morphism whose geometric fibres all

have dimension ≤ d, then L ÿ f*L[d] preserves semiperversity
(4) Duality interchanges Rf~ and Rf*

(5) Duality interchanges f~ and f*

(6) if f:X ¨ Y is a smooth morphism everywhere of relative

dimension d, then f~ = f*[2d](d). Consequently f*[d](d/2) is self-dual,

and K ÿ f*K[d] preserves perversity
(7) If X is smooth over ^, purely of dimension d, then for any local

system Ï on X, Ï[d] is perverse, and DX/k(Ï[d]) = Ï£[d](d).

(2.1.3) In this discussion, the field ^ occurs in two ways, as the
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ground field over which our variable scheme X is given, and as the

coefficient field. Since we speak of Xan, the field ^ with its classical
topology is being used as as the ground field. But the coefficient field
^ enters in a purely algebraic way, and could be replaced by any
field to which it is isomorphic, for instance by ä$… (if we grant the

axiom of choice). So we might just as well work with Dbc(X
an, ä$…)

whenever it is convenient.

2222....2222 RRRReeeevvvviiiieeeewwww ooooffff DDDDbbbbcccc((((XXXX,,,, ääää$$$$…………))))

(2.2.1) Let k be a perfect field of characteristic p ± …. For variable

separated k-schemes of finite type X/k, we can speak of Dbc(X, ä$…). For

morphisms f: X ¨ Y between separated k-schemes of finite type, one
knows (cf. [De-Weil II] for the case when k is either algebraically closed

or finite, [Ek], [Ka-Lau], [SGA 4, XVIII, 3]) that these Dbc support the full

Grothendieck formalism of the "six operations". In this formalism, the

(relative to k) dualizing complex KX in Dbc(X, ä$…) is defined as π~ä$…,

where π denotes the structural morphism π: X ¨ Spec(k). In terms of

KX, the Verdier dual DDDD(L) of an object L of Dbc(X, ä$…) is defined as

RHom(L, KX). One knows that L § DDDDDDDD(L) by the natural map. The

duality theorem asserts that for f : X ¨ Y a morphism of finite type
between separated k-schemes of finite type, one has DDDD(Rf~L) § Rf*DDDD(L),

DDDD(Rf*L) § Rf~DDDD(L). If X/k is a smooth separated k-scheme of finite type

and everywhere of the same relative dimension, noted dimX, then KX
is ä$…[2dimX](ddddiiiimmmmXXXX), and so DDDD(L) is RHom(L, ä$…)[2dimX](ddddiiiimmmmXXXX).

(2.2.2) Given two separated k-schemes X/k and Y/k of finite type,
"external tensor product over ä$…" defines a bi-exact bilinear pairing,

Dbc(X, ä$…)≠D
b
c(Y, ä$…) ¨ Dbc(X≠kY, ä$…)

(K, L) ÿ K≠L := pr1
*K‚pr2

*L.

One knows that DDDD(K≠L) = DDDD(K)≠DDDD(L).
(2.2.3) If k happens to be ^, the comparison theorem gives an

exact, fully faithful "passage to the analytic" functor Dbc(X, ä$…) ¨

Dbc(X
an, ä$…) which is not, however, an equivalence of categories.

Everything recalled above about Dbc(X, ä$…) is true also of D
b
c(X

an, ä$…),

and all cohomological constructions above commute with the "passage

to the analytic" functor. Given any object in Dbc(X
an, ^), for all … >> 0
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there exists an isomorphism ^ ¶ ä$… such that the corresponding object

in Dbc(X
an, ä$…) lies in (the essential image of) Dbc(X, ä$…), cf. [BBD, 6.1].

In 5.9.2, we will give the elementary and down to earth proof of this

fact for local systems on open sets of !1, which will suffice for our
purposes.
2222....3333 RRRReeeevvvviiiieeeewwww ooooffff ppppeeeerrrrvvvveeeerrrrsssseeee sssshhhheeeeaaaavvvveeeessss
(2.3.1) We continue to work with X/k as in 2.2.1. An object K of

Dbc(X, ä$…) is called sssseeeemmmmiiiippppeeeerrrrvvvveeeerrrrsssseeee if its cohomology sheaves ÓiK satisfy

dim Supp(ÓiK) ≤ -i.

An object K of Dbc(X, ä$…) is called ppppeeeerrrrvvvveeeerrrrsssseeee if both K and its dual DDDD(K)

are semiperverse. If f : X ¨ Y is an aaaaffffffffiiiinnnneeee (respectively a qqqquuuuaaaassssiiiiffffiiiinnnniiiitttteeee)
morphism, then Rf* (respectively f~ = Rf~) preserves semiperversity. So

if f is both affine and quasifinite (e.g., finite, or an affine immersion),
then by duality both f~ = Rf~ and Rf* preserve perversity. If f : X ¨ Y

is a smooth morphism everywhere of relative dimension d, then f*[d]
preserves perversity. In particular, if K is perverse on X, then its
inverse image on Xºkäk is perverse on Xºkäk. One knows that the full

subcategory Perv(X, ä$…) of D
b
c(X, ä$…) consisting of perverse objects is

an aaaabbbbeeeelllliiiiaaaannnn category in which every object is of finite length. If … is
fixed, we will often denote Perv(X, ä$…) simply Perv(X). The objects of

Perv(X) are sometimes called "perverse sheaves" on X. However, we will
call them "perverse objects" to avoid confusion with "honest" sheaves.

(2.3.1.1) We now recall from [BBD, 1.3] the theory of the perverse

truncations p†≤i(K) and
p†≥i(K) and of the perverse cohomology

sheaves pÓi(K) attached to an object K in Dbc(X, ä$…). This will be

used (only) in section 2.12. Inside Dbc(X, ä$…), we denote by
pD≤0

(respectively pD≥0 ) the full subcategory consisting of those objects
K which are semiperverse (respectively, those objects K such that

DK is semiperverse). For each integer i, we define pD≤i (respectively
pD≥i) to be the full subcategory of Dbc(X, ä$…) consisting of those

objects K such that K[i] lies in pD≤0 (respectively pD≥0). Duality

interchanges pD≤i and pD≥-i By [BBD, 1.3.3], the inclusion of pD≤i

(respectively of pD≥i) into Dbc(X, ä$…) admits a right (respectively
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left) adjoint, noted p†≤i (respectively
p†≥i). It is tautological that

(p†≤i(K))[i] =
p†≤0(K[i]), (p†≥i(K))[i] =

p†≥0(K[i]).

For any i, and any K in Dbc(X, ä$…), we have a distinguished triangle

p†≤i(K) ¨ K ¨ p†≥i+1(K).

For any two integers a, b, there is a canonical isomorphism [BBD,
1.3.5] between the two composites

p†≥a « p†≤b ¶ p†≤b « p†≥a.

Unless a ≤ b, both of these composites are zero.
Now take the special case a=b=0. In this case, the composite

functor above has values in Perv(X, ä$…), the intersection of pD≤0

and of pD≥0. For K in Dbc(X, ä$…), we define

pÓ0(K) := p†≥0(
p†≤0(K)) ¶

p†≤0(
p†≥0(K)).

For each integer i, we define
pÓi(K) := pÓ0(K[i]),

or equivalently,
pÓi(K)[-i] := p†≥i(

p†≤i(K)) ¶
p†≤i(

p†≥i(K)).

One shows [BBD, 1.3.6] that pÓ0 is a cohomological functor from

Dbc(X, ä$…) to the abelian category Perv(X, ä$…): a distinguished

triangle in Dbc(X, ä$…) gives rise to a long exact sequence of perverse

cohomology sheaves. The functors p†≤0 and p†≥0 are interchanged

by duality, whence
pÓ0(DK) := D(pÓ0(K)),

and hence for every i, we have
pÓi(DK) := D(pÓ-i(K)).

Given any K in Dbc(X, ä$…), all but finitely many of its perverse

cohomology sheaves pÓi(K) vanish. [By duality, it suffices to show

that pÓi(K) vanishes for i sufficiently large. But K[i] is (trivially)
semiperverse for i sufficiently large, so it suffices to show that for K

semiperverse, pÓi(K) vanishes for i > 0. In fact, one knows [BBD,

1.3.7] that K in Dbc(X, ä$…) is semiperverse if and only if pÓi(K)

vanishes for i > 0. Therefore pÓi(K) = 0 for i outside [a, b] if and only

if K lies in pD[a, b] := pD≥a € pD≤b.] Moreover, any K in Dbc(X, ä$…) is
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a successive extension of its shifted perverse cohomology sheaves
pÓi(K)[-i], as one sees by induction on the length b-a of the shortest

interval [a, b] such that K lies in pD[a, b], using the distinguished

triangles p†≤i(K) ¨ K ¨ p†≥i+1(K).

(2.3.2) If X is smooth over k, everywhere of relative dimension
dimX, the simplest example of a perverse object on X is provided by
starting with a lisse sheaf Ï on X, and taking the object Ï[dimX] of

Dbc(X, ä$…) obtained by placing Ï in degree -dimX. The object Ï[dimX]

is trivially semiperverse, and its dual DDDD(Ï[dimX]) = (Ï£(ddddiiiimmmmXXXX))[dimX],
being of the same form, is also. If X is connected, and if Ï is irreducible
as a lisse sheaf, i.e., as a representation of π1(X, x), then Ï[dimX] is a

simple object of Perv(X).

LLLLeeeemmmmmmmmaaaa 2222....3333....2222....1111 For X smooth over k, everywhere of relative
dimension dimX, consider the following two (rather special)

properties of an object K in Dbc(X, ä$…):

a) each of the cohomology sheaves Ói(K) is lisse,

b) each of the perverse cohomology sheaves pÓi(K) is of the form (a
lisse sheaf on X)[dimX].
These properties are equivalent, and, if they hold, then the perverse
and ordinary cohomology sheaves of K are related by

c) pÓi(K) = Ói-dimX(K)[dimX].
pppprrrrooooooooffff Suppose first that a) holds. For the usual truncation functors
†≤n, we have distinguished triangles

†≤n-1K ¨ †≤nK ¨ Ón(K)[-n].

For n sufficiently negative, we have †≤nK = 0, and for n sufficiently

positive, we have †≤n-1K ¶ †≤nK ¶ K. Because pÓ0 is a

cohomological functor, we get a long exact sequence

¨ pÓi(†≤n-1K) ¨
pÓi(†≤nK) ¨

pÓi(Ón(K)[-n]) ¨pÓi+1(†≤n-1K) ¨

Since Ón(K) is lisse, Ón(K)[dimX] is perverse, and hence
pÓa(Ón(K)[-n]) = Ón(K)[dimX] for a=n+dimX

= 0 for a±n+dimX.
Using this fact, and the long exact sequences above, one shows by
induction on n that
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1)pÓa(†≤nK) = 0 for a > n+dimX,

2)the map †≤nK ¨ Ón(K)[-n] induces an isomorphism on pÓa for

a=n+dimX,

3)the map †≤n-1K ¨ †≤nK induces an isomorphism on pÓa for

a<n+dimX.
Once we have these facts, then for any a, we get

pÓa+dimX(†
≤a
K) ¶ pÓa+dimX(†

≤a+1
K) ¶ ... ¶ pÓa+dimX(K)

by successive application of 3), and then by 2) we get
pÓa+dimX(†

≤a
K) ¶ pÓa+dimX(Óa(K)[-a]) = Óa(K)[dimX].

Thus we obtain pÓa+dimX(K) ¶ Óa(K)[dimX], which proves c), and
consequently b).

Now suppose that b) holds. Repeat the above argument, with
usual truncation replaced by perverse truncation, with perverse
cohomology sheaves replaced by usual cohomology sheaves, and
with dimX replaced by -dimX. Again we find c), and consequently
a). QED

(2.3.3) Given a locally closed subscheme Y of X such that Y is affine,
the inclusion j: Y ¨ X is both affine and quasifinite (factor it as the
open immersion of Y into its closure äY, followed by the closed
immersion of äY into X). So for a perverse object K on Y, both j~K and

Rj*K are perverse on X, and as functors from Perv(Y) to Perv(X) both

j~ and Rj* are exact. There is a natural "forget supports" map from j~K

to Rj*K, and as Perv(X) is an abelian category it makes sense to form

j~*(K) := Image(j~K ¨ Rj*K) Ÿ Perv(X),

called the "middle extension" from Y to X of the perverse object K. The
functor j~* is end-exact (i.e., it preserves both injections and

surjections, cf. the appendix to this chapter) from Perv(Y) to Perv(X),
it carries simple objects to simple objects, and it commutes with
duality. Despite the erroneous assertion in [Ka-ESDE, 8.1.4], the functor
j~* is nnnnooootttt exact in general.

(2.3.3.1) For K and L perverse on Y as in 2.3.3 above, the functors

j~* and j*induce natural maps of Hom groups,

j~*
HomY(K, L) ¨ HomX(j~*K, j~*L)

and
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j*

HomX(j~*K, j~*L) ¨ HomY(K, L).

These maps are inverse isomorphisms. To see this, we argue as

follows. The composite functor K ÿ j*j~*K is the identity, so the

composite map
HomY(K, L) ¨ HomX(j~*K, j~*L)¨ HomY(K, L)

is the identity on HomY(K, L).

Because j~*L is a subobject of Rj*K in Perv(X), the restriction

map

j*

HomX(j~*K, j~*L) ¨ HomY(K, L).

is injective: we have
HomX(j~*K, j~*L) fi HomX(j~*K, Rj*L) =

= HomY(j
*j~*K, L) = HomY(K, L).

Now start with ƒ in HomX(j~*K, j~*L). Both ƒ and j~*j
*(ƒ) have the

same restriction, namely j*(ƒ), in HomY(K, L), hence ƒ = j~*j
*(ƒ) in

HomX(j~*K, j~*L).

(2.3.4) One knows that for any simple object S of Perv(X) there
exists an affine locally closed subscheme j: Y ¨ X such that Y is
smooth over k and irreducible, and an irreducible lisse sheaf Ï on Y
such that S is j~*(Ï[dimY]). Given the simple object S, we construct Y

and Ï as follows: the closure äY of Y is precisely the closure of the

support of ·iÓ
iS, Y is any smooth affine open set of äY on which all the

ÓiS are lisse, and Ï is Ó-dimY(S)|Y.
(2.3.5) An object S of Perv(X) is called geometrically simple if its
inverse image on Xºkäk is simple. Of course "geometrically simple" à

"simple".
(2.3.6) Consider the special case when X/k is a smooth,

geometrically connected curve. Then an object K of Dbc(X, ä$…) is

perverse if and only if

ÓiK = 0 for i ± -1, 0,

Ó-1K has no nonzero punctual sections,

Ó0K is punctual.
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We call a perverse object K punctual if K = Ó0(K), and we call K

"nonpunctual" if Ó0K = 0. If Ï is a lisse sheaf on an open nonempty
open set j: U ¨ X, then the middle extension j~*(Ï[1]) is none other

than (j*Ï)[1]. It is for this reason that we adapted the terminology

"middle extension" for sheaves of the type j*Ï with Ï lisse on U. The

dual DDDD(j~*(Ï[1])) of such a middle extension is given by

DDDD(j~*(Ï[1])) =DDDD(j*Ï[1]) = j~*(DDDD(Ï[1])) = j*(Ï
£)[1](1111).

Any perverse sheaf K on X has a natural two step filtration, whose
associated graded pieces are (punctual, middle extension, punctual).

To see this we first filter K by its subobject Ó-1(K)[1], which sits in
the short exact sequence of perverse sheaves

0 ¨ Ó-1(K)[1] ¨ K ¨ Ó0(K) ¨ 0.
Now denote by j: U ¨ X the inclusion of a nonempty affine open set

U on which Ó-1(K) is lisse. Since Ó-1(K) has no nonzero punctual
sections, we have a short exact sequence of usual sheaves on X

0 ¨ Ó-1(K) ¨ j*j
*Ó-1(K) ¨ pct'l ¨ 0.

Shifting by [1] and rotating the triangle, we get a distinguished
triangle

pct'l ¨ Ó-1(K)[1] ¨ (j*j
*Ó-1(K))[1],

i.e., a short exact sequence of perverse sheaves

0 ¨ pct'l ¨ Ó-1(K)[1] ¨ (j*j
*Ó-1(K))[1] ¨ 0.

The filtration in question is pct'l fi Ó-1(K)[1] fi K.

There are two types of simple perverse object on X:
(1) the punctual ones, whose Y is a single closed point x of X; the
corresponding simple objects are x*Ï, where Ï is an irreducible

representation of Gal(äk/k(x)) [so if k is algebraically closed, only the
delta sheaf ∂x :=x*ä$… supported at x].

(2) the nonpunctual ones, whose Y is a nonempty open set j: U ¨ X of
X; the corresponding simple objects are (j*Ï)[1], where Ï is an

"arithmetically irreducible" lisse sheaf on U, i.e., one whose
representation of π1(U, äu) is irreducible [so the nonpunctual simples

which are geometrically simple are precisely the Ï[1] where Ï is an
"irreducible middle extension sheaf" in the terminology of 2.0.3.
(2.3.7) If k is ^, then for any … the exact, fully faithful "passage to

the analytic" functor Dbc(X, ä$…) ¨ Dbc(X
an, ä$…) induces an exact fully
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faithful functor Perv(X, ä$…) ¨ Perv(Xan, ä$…). Everything said above

about Perv(X, ä$…) holds also for Perv(X
an, ä$…), and all cohomological

constructions, including middle extension j~*, commute with the

"passage to the analytic" functor 2.2.3.
2222....4444 RRRReeeevvvviiiieeeewwww ooooffff FFFFoooouuuurrrriiiieeeerrrr TTTTrrrraaaannnnssssffffoooorrrrmmmm

(2.4.1) Suppose X/k is !1/k, k a perfect field with char(k) := p > 0.

For each …±p, we fix a nontrivial additive character ¥: Ép ¨ ä$…
≠, and

its associated lisse, rank one Artin-Schreier sheaf Ò¥ on !1. The

derived category versions of Fourier Transform are defined by

FT¥,~(K) := R(pr2)~(pr1
*K‚Ò¥(xy))[1],

FT¥,*(K) := R(pr2)*(pr1
*K‚Ò¥(xy))[1].

Both are exact functors from Dbc(!
1, ä$…) to itself, which are

essentially interchanged by duality:

DDDD(FT¥,~K)= FT¥,*([-1]
*\DDDDK)((((1111)))).

It is easy to prove that FT¥,~ is essentially involutive:

FT¥,~\FT¥,~ § [-1]*(----1111);

by duality it follows that the same holds for FT¥,*.

(2.4.2) The "miracle" of Fourier Transform is that there is really
only one: the natural "forget supports" map FT¥,~ ¨ FT¥,* is an

isomorphism. We denote it FT¥. As FT¥ (viewed as FT¥,*) preserves

semiperversity, it follows from the miracle that FT¥ preserves

perversity, and so defines an exact autoequivalence of Perv(!1). In
particular, FT¥ sends perverse simple objects to perverse simple

objects.

2222....5555 RRRReeeevvvviiiieeeewwww ooooffff ccccoooonnnnvvvvoooolllluuuuttttiiiioooonnnn
(2.5.1) Suppose G is a smooth separated k-groupscheme of finite
type of relative dimension noted dimG, π: G≠kG ¨ G the multiplication

map, e: Spec(k) ¨ G the identity section. Given two objects K and L in

Dbc(G, ä$…), we define their "compact" or "~" convolution, denoted K*~L,

by

K*~L := Rπ~(K≠L) Ÿ Dbc(G, ä$…).

We define their "*" convolution, denoted K**L, by
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K**L := Rπ*(K≠L) Ÿ Dbc(G, ä$…).

Duality interchanges the two sorts of convolution:
DDDD(K*~L) § DDDD(K)**DDDD(L), DDDD(K**L) § DDDD(K)*~DDDD(L).

By the Leray spectral sequence and the Kunneth formula, we have
Gal(äk/k)-equivariant isomorphisms of cohomology algebras

Hc
*(Gºäk, K*~L) § Hc

*((G≠G)ºäk, K≠L) § Hc
*(Gºäk, K)‚Hc

*(Gºäk, L),

H*(Gºäk, K**L) § H*((G≠G)ºäk, K≠L) § H*(Gºäk, K)‚H*(Gºäk, L).

(2.5.2) If we start with two (usual or perverse) sheaves Ï and Ì on

G, viewed as objects of of Dbc(G, ä$…), their convolutions Ï*~Ì and Ï**Ì

are "really" objects of Dbc(G, ä$…), and nnnnooootttt simply single (usual or

perverse) sheaves placed in some degree. It is this "instability" of (usual
or perverse) sheaves themselves under convolution that makes

Dbc(G, ä$…) the natural setting for systematically discussing convolution.

(2.5.3) For the convenience of the reader, we collect from [Ka-ESDE,
8.1.9-10] the standard facts about convolution.
(0) If K and L are semiperverse (resp. perverse) objects on G, then
K≠L is semiperverse (resp. perverse) on G≠kG. Therefore if G is affine,

and if K and L are both semiperverse on G, then K**L is semiperverse

on G. If K and L are both perverse on G and if moreover the natural
"forget supports" map is an isomorphism K*~L § K**L, then

K*~L § K**L is perverse (its dual being DDDD(K)**DDDD(L)).

(1)Each sort of convolution is associative, and for each the ∂-sheaf
∂e := e*ä$…

supported at the identity of G is a two-sided identity object. If G is
commutative, then each sort of convolution is commutative as well.
(2a) If ƒ: G¨H is a homomorphism of smooth separated k-
groupschemes of finite type, then for K and L on G we have

Rƒ*(K**L) § (Rƒ*K)**(Rƒ*L),

Rƒ~(K*~L) § (Rƒ~K)*~(Rƒ~L).

(2b) If ƒ : G ¨ H is a homomorphism, then for K on G and L on H we
have

ƒ*((Rƒ~K)*~L) § K*~(ƒ
*L),

ƒ~((Rƒ*K)**L) § K**(ƒ
~L).
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(3) For g Ÿ G(k) denote by Tg : G ¨G the map x ÿ gx "left translation

by g", and by ∂g := (Tg)*(∂e) the delta sheaf supported at g. Then for

g Ÿ G(k), we have
(Tg)* = R(Tg)* = (Tg)~ = R(Tg)~
(Tg)*(K**L) § ((Tg)*K)**L,

(Tg)*(K*~L) § ((Tg)*K)*~L,

(Tg)*(L) § (∂g)*L.

Moreover, if G is commutative, then for g, h in G(k), we have
(Tgh)*(K**L) § ((Tg)*K)**((Th)*L),

(Tgh)*(K*~L) § ((Tg)*K)*~((Th)*L).

(4) If G is commutative, geometrically connected, and defined over a
finite subfield k0 of k, then for every ä$…-valued character ç of G(k0),

the associated lisse rank one Òç on G obtained from pushing out the

Lang torsor by ç satisfies π*Òç § Òç≠Òç, whence by the projection

formula
(K*~L)‚Òç § (K‚Òç)*~(L‚Òç),

(K**L)‚Òç § (K‚Òç)**(L‚Òç).

(2.5.4) If k is ^, then for any … the exact, fully faithful "passage

to the analytic" functor Dbc(X, ä$…) ¨ Dbc(X
an, ä$…) respects both

sorts of convolution.
2222....6666 CCCCoooonnnnvvvvoooolllluuuuttttiiiioooonnnn ooooppppeeeerrrraaaattttoooorrrrssss oooonnnn tttthhhheeee ccccaaaatttteeeeggggoooorrrryyyy ooooffff ppppeeeerrrrvvvveeeerrrrsssseeee
sssshhhheeeeaaaavvvveeeessss:::: mmmmiiiiddddddddlllleeee ccccoooonnnnvvvvoooolllluuuuttttiiiioooonnnn
(2.6.1) Let k be an algebraically closed field. Suppose G is a
connected smooth affine k-groupscheme of finite type of relative
dimension noted dimG, π: G≠kG ¨ G the multiplication map. A

perverse sheaf K on G is said to have property ∏~ [respectively
property ∏*] if for any perverse sheaf L on G, the ~ convolution L*~K

[respectively the * convolution L**K] is again perverse. If K has

property ∏~ [respectively property ∏*], the functor L ÿ L*~K

[respectively L ÿ L**K] is an exact functor from Perv(G) to itself.

Notice that since duality interchanges the two sorts of convolution,
D(L*~K) ¶ D(L)**D(K),

we have the equivalence.
K has ∏~ À DK has ∏*.

(2.6.2) A perverse sheaf K on G is said to have property ∏ if it
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has both properties ∏~ and ∏*. If K has property ∏, we define, for
any perverse L on G, the middle convolution L*midK to be the

perverse sheaf on G defined as the image, in the abelian category of
perverse sheaves on G, of the natural "forget supports" map

L*midK := image(L*~K ¨ L**K).

For fixed K in ∏, L ÿ L*midK is end-exact (cf. 2.17).

(2.6.3) By definition, the map
L*~K ¨ L*midK

is surjective in Perv, and the map
L*midK ¨ L**K

is injective in Perv.
(2.6.4) If K and L have ∏~ [respectively ∏*], so does K*~L

[respectively L**K], just by the associativity of convolution. What

about ∏ itself? We will see later that if K and L both have ∏, and if

G is either ´m or !1, then K*midL also has ∏, but we do not know

this for more general G. Returning to the general situation, we have
LLLLeeeemmmmmmmmaaaa 2222....6666....5555 In the situation 2.6.1, if Ï, K and L are perverse
sheaves on G which all have ∏, then

(Ï*midK)*midL = Ï*mid(K*midL).

pppprrrrooooooooffff We will show this equality by showing that both are the
image of Ï*~K*~L in Ï**K**L. Indeed, we may factor this "forget

supports" map as the composition of the two surjective maps
(Ï*~K)*~L ¨ (Ï*midK)*~L (surj. as *~L is exact on Perv)

(Ï*midK)*~L ¨ (Ï*midK)*midL

and the two injective maps
(Ï*midK)*midL ¨ (Ï*midK)**L

(Ï*midK)**L ¨ (Ï**)**L (inj. as**L is exact on Perv).

Thus (Ï*midK)*midL is the image of Ï*~K*~L in Ï**K**L.

Rearranging the parentheses shows that Ï*mid(K*midL) is also this

image. QED

RRRReeeemmmmaaaarrrrkkkk 2222....6666....6666 If we only assume that K and L have ∏, but not Ï,
then the right hand side Ï*mid(K*midL) isn't ddddeeeeffffiiiinnnneeeedddd,since we

don't know that K*midL has ∏. Later, we will know that K*midL

has ∏if both K and L do, at least on both !1 and ´m, but it will nnnnooootttt

be true that for any Ï in Perv, we have Ï*mid(K*midL) =
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(Ï*midK)*midL Indeed, it can be that K*midL = ∂e, so the left side

is Ï, but that already Ï*~K = 0, so a fortiori Ï*midK = 0. [example:

Ï = ä$…[1] on !1, K = Òç[1], L = Òäç[1].]

LLLLeeeemmmmmmmmaaaa 2222....6666....7777 Let k be an algebraically closed field. Suppose G is a
connected smooth affine k-groupscheme of finite type. Let K and L
be any perverse sheaves on G. Then K*~L is perverse if and only if it

is semiperverse.
pppprrrrooooooooffff By definition, K*~L is perverse if and only both it and its dual

are semiperverse. So it suffices to show that for K and L perverse,
the dual of K*~L is semiperverse. But this dual is D(K*~L) =

D(K)**D(L), the *convolution of the perverse sheaves D(K) and D(L),

hence is semiperverse because G is affine (cf. 2.5.3 (0)). QED

LLLLeeeemmmmmmmmaaaa 2222....6666....8888 Let k be an algebraically closed field. Suppose G is a
connected smooth affine k-groupscheme of finite type. Let K be
perverse on G. Then the following conditions are equivalent:
1) K has property ∏~.
2) K*~M is perverse for every perverse irreducible M on G.

pppprrrrooooooooffff That 1) implies 2) is trivial. Suppose now that 2) holds, and let
L be perverse on G. It is known [BBD, 1.3.6 and 4.3.1 (i)] that the
category of perverse sheaves on G is abelian, and every object is of
finite length. We proceed by induction on the length of L. If L is
irreducible, then K*~L is perverse. by 2). In general, pick a perverse

irreducible M in L, and consider the short exact sequence of
perverse sheaves

0 ¨ M ¨ L ¨ N ¨ 0.
By induction, both K*~M and K*~N are perverse, and hence both are

semiperverse. In the derived category Dbc(G, ä$…), the above exact

sequence of perverse sheaves is a distinguished triangle. Applying
the functor K*~( ) to it yields a distinguished triangle

0 ¨ K*~M ¨ K*~L ¨ K*~N ¨ 0

whose end terms are semiperverse. The long exact cohomology
sequence

¨ Ói(K*~M)¨ Ói(K*~L) ¨ Ói(K*~N) ¨

shows that K*~L is itself semiperverse, and hence (by the previous

lemma) perverse. Thus 2) implies 1). QED



Chapter 2-The theory of middle convolution-16

TTTThhhheeee ssssppppeeeecccciiiiaaaallll ccccaaaasssseeee ooooffff rrrreeeellllaaaattttiiiivvvveeee ddddiiiimmmmeeeennnnssssiiiioooonnnn oooonnnneeee
We now turn to the special case when G in 2.6.1 is further

assumed to be of relative dimension one. Although such a G is
isomorphic to either ´a or ´m, we will, to the extent possible, give a

unified treatment of the two cases.

LLLLeeeemmmmmmmmaaaa 2222....6666....9999 Let k be an algebraically closed field. Suppose G is a
connected smooth affine k-groupscheme of finite type, of relative
dimension one. Let K be any perverse irreducible on G whose
isomorphism class is not translation-invariant. Then K has property
∏~.

pppprrrrooooooooffff By the above two lemmas, it suffices to show that for any
perverse irreducible L on G, K*~L is semiperverse. Since G is one-

dimensional, K*~L is semiperverse if and only if

Ó0(K*~L) is punctual, and Ói(K*~L) = 0 for i > 0.

If K (respectively L) is punctual, then K*~L is a translate of L (resp.

K), and hence K*~L is certainly perverse. If neither K nor L is

punctual, then there exists a dense open set U in G, and irreducible
lisse sheaves Ï and Ì on U, such that, denoting by j : U ¨ G the
inclusion, K and L are j*Ï[1] and j*Ì[1] respectively. The stalk of

Ói(K*~L) at any geometric point g of G is the cohomology group

Hc
i+2(G, Transg

*(j*Ï)‚(inv)*(j*Ì)). Since G is one-dimensional, this

group vanishes for i > 0, and hence Ói(K*~L) = 0 for i > 0. It remains

to show that Ói(K*~L) is punctual, i.e., that for all but at most

finitely many g in G(k), we have

Hc
2(G, Transg

*(j*Ï)‚(inv)*(j*Ì)) = 0.

For fixed g in G(k), let us denote by Ug the dense open set

Ug := Transg
*U € (inv)*U

on which both Transg
*(j*Ï) and (inv)*(j*Ì) are lisse. Then

Hc
2(G, Transg

*(j*Ï)‚(inv)*(j*Ì))

= Hc
2(Ug, Transg

*(Ï)‚(inv)*(Ì)).

= H0(Ug, Transg*(Ï
£)‚(inv)*(Ì£))£(1)

= HomUg
(Transg

*(Ï), (inv)*(Ì£))£(1).
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Since both Ï and Ì are irreducible, this group vanishes unless

Transg
*(Ï) ¶ (inv)*(Ì£) as lisse sheaves on Ug,

i.e., unless

Transg
*(j*Ï[1]) ¶ (inv)*(j*Ì

£[1]) as perverse sheaves on G,

i.e., unless

Transg
*(K) ¶ (inv)*(D(L)) as perverse sheaves on G,

in which case the group is one-dimensional. By the constructibility

of Ó0(K*~L), either Ó
0(K*~L) is punctual, in which case K*~L is

semiperverse, or there is a dense open set V in G such that

Transg
*(K) ¶ (inv)*(D(L)) for all g in V.

In this last case, we argue as follows. Fix one such g0; then

Transg
*(K) ¶ Transg0

*(K) for all g inV. Then the isomorphism class

of Transg0
*(K) is invariant by translation by all g in V1 := g0

-1V.

But the set of g in G(k) such that Transg
* fixes any particular

isomorphism class (here that of Transg0
*(K)) is a ssssuuuubbbbggggrrrroooouuuupppp of G(k).

This subgroup, for Transg0
*(K), contains the open dense set V1, and

hence contains V1V1 = G. Thus the isomorphism class of

Transg0
*(K), and hence of K itself, is translation invariant. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 2222....6666....11110000 Let k be an algebraically closed field. Suppose G is
a connected smooth affine k-groupscheme of finite type, of relative
dimension one. Let K be any perverse irreducible on G whose
isomorphism class is not translation-invariant. Then K has property
∏.
pppprrrrooooooooffff By lemma 2.6.9, K has ∏~. But the isomorphism class of DK is
not translation-invariant, so DK also has ∏~, whence K has ∏*. QED

LLLLeeeemmmmmmmmaaaa 2222....6666....11111111 Let k be an algebraically closed field. Suppose G is a
connected smooth affine k-groupscheme of finite type, of relative
dimension one. For any perverse objects K and L on G, the not-

necessarily perverse object K*~L on G has Ói(K*~L) = 0 for i > 0.

pppprrrrooooooooffff By an obvious devissage, we reduce first to the case when K is
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perverse irreducible, and then further to the case where L is
perverse irreducible as well. If either K or L is punctual, i.e., a delta
function, then K*~L is a translate of either L or K, so is perverse,

and hence has Ói(K*~L) = 0 for i > 0. If not, then K ¶ Ï[1] and L ¶

Ì[1] for sheaves Ï and Ì on G. In this case, Ói(K*~L) =

Ri+2sum~(pr1
*Ï‚pr2

*Ì) vanishes for i ≥1 for dimension reasons: G

has relative dimension one, hence Risum~(any sheaf) = 0 for i ≥ 3.

QED
LLLLeeeemmmmmmmmaaaa 2222....6666....11112222 Let k be an algebraically closed field. Suppose G is a
connected smooth affine k-groupscheme of finite type, of relative
dimension one. Let K be perverse on G. Then K has property ∏~ if
and only if K*~L is perverse for every perverse irreducible L on G

whose isomorphism class is translation-invariant.
pppprrrrooooooooffff The "only if" is obvious. Suppose now that K*~L is perverse for

every perverse irreducible L on G whose isomorphism class is
translation-invariant. We wish to show that K has ∏~. For this, it
suffices (by 2.6.8) to show that K*~M is perverse for every perverse

irreducible M on G. If the isomorphism class of M is translation
invariant, we are given the perversity of K*~M by hypothesis. If the

isomorphism class of M is not translation invariant, then by 2.6.10,
M itself has ∏~, and hence K*~M = M*~K is perverse. QED

LLLLeeeemmmmmmmmaaaa 2222....6666....11113333 Let k be an algebraically closed field. Suppose G is a
connected smooth affine k-groupscheme of finite type, of relative
dimension one. Let L be a perverse irreducible on G whose
isomorphism class is translation-invariant. If G is ´m, then L is the

shifted Kummer sheaf Òç[1] for some character ç of π1
tame(´m).

If G is !1, and char(k) = 0, then L is ä$…[1], while if char(k) = p > 0,

then L is the shifted Artin-Schreier sheaf Ò¥(åx)[1] for some å in k.

pppprrrrooooooooffff Because L is translation invariant, it cannot be punctual, so it
must be of the form Ò[1] for an irreducible middle extension sheaf Ò
on G. By translation invariance, Ò must be lisse on all of G. Hence Ò
is a lisse irreducible sheaf on G.

If char(k) = 0, then π1(´m) = π1
tame(´m) is abelian, so Ò is

an Òç, while π1(!
1) = 0, so Ò is ä$….

If char(k) = p > 0, and G is ´m, the translation invariance of Ò
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forces it to have swan‘(Ò) = 0 and swan0(Ò) = 0 (cf. [Ver, 1.1], [Ka-

GKM, 4.1.6]), hence to be tame. As π1
tame(´m) is abelian, Ò is an

Òç, as required. Suppose now that G is !1. Then L is a perverse

irreducible whose isomorphism class is translation invariant. Its

Fourier transform FT¥(L) is a perverse irreducible, say M, on !1,

whose isomorphism class is invariant under M ÿ M‚Ò¥(∫x) for all

∫ in k. Look at the I(‘)-representation M(‘) of such an M. From the
fact that the Ò¥(∫x) give (one for each value of ∫ in k) an infinity of

distinct characters of I(‘), we see (cf. the appendix 2.18 to this
chapter) that M(‘) = 0. Therefore M is punctual. Being perverse
irreducible, M must be a single delta function ∂å for some å in k,

whence L is Ò¥(åx)[1], as required. QED

LLLLeeeemmmmmmmmaaaa 2222....6666....11114444 Let k be an algebraically closed field. Suppose G is a
connected smooth affine k-groupscheme of finite type, of relative
dimension one. Let K be perverse on G. Then K has property ∏~ if
and only if HomG(K, L) = 0 for every perverse irreducible L on G

whose isomorphism class is translation-invariant.
pppprrrrooooooooffff We have shown above that K has ∏~ if and only if K*~L is

semiperverse for every perverse irreducible L on G whose
isomorphism class is translation-invariant. Fix one such L. We know

by 2.6.11 that Ói(K*~L) = 0 for i > 0. Thus we must show that

Ó0(K*~L) is punctual if and only if HomG(K, L) = 0. Because the

isomorphism class of L is translation invariant, at any point g in

G(k), the stalk of Ó0(K*~L) is the same cohomology group

Hc
0(G, inv*L‚K). Thus

Ó0(K*~L) is punctual À Ó0(K*~L) = 0 À Hc
0(G, inv*L‚K) = 0.

By 2.6.13, L = Ò[1] with Ò lisse of rank one on G, and Ò£ ¶ inv*Ò.
Thus, ignoring Tate twists we find

Hc
0(G, inv*L‚K) = Hc

1(G, inv*Ò‚K) is dual (Ò being lisse) to

H-1(G, inv*Ò£‚D(K)) = H0(G, inv*Ò£[-1]‚D(K))

= Hom(ä$…,inv
*Ò£[-1]‚D(K))

= Hom(inv*Ò[1], D(K)) (because Ò is lisse of rank one)

= Hom(D(L), D(K)) (because inv*Ò ¶ Ò£)
¶ Hom(K, L).
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Thus we find that Ó0(K*~L) is punctual if and only if Hom(K, L) = 0.

QED

CCCCoooorrrroooollllllllaaaarrrryyyy 2222....6666....11115555 Let k be an algebraically closed field. Suppose G is
a connected smooth affine k-groupscheme of finite type, of relative
dimension one. Let K be perverse on G. Then K has property ∏* if
and only if HomG(L, K) = 0 for every perverse irreducible L on G

whose isomorphism class is translation-invariant.
pppprrrrooooooooffff Indeed, K has ∏* if and only if DK has ∏~, if and only if
Hom(DK, L) = 0 for every perverse irreducible L on G whose
isomorphism class is translation-invariant, if and only if Hom(DL, K)
= 0 for every such L. But the class of such L is stable by duality.
QED

CCCCoooorrrroooollllllllaaaarrrryyyy 2222....6666....11116666 Let k be an algebraically closed field. Suppose G is
a connected smooth affine k-groupscheme of finite type, of relative
dimension one. Let K be perverse on G. If K has ∏~, then every
quotient of K (as perverse sheaf) has ∏~. If K has ∏*, then every
subobject of K (as perverse sheaf) has ∏*.
pppprrrrooooooooffff Obvious from the Hom(K, L) = 0 and Hom(L, K) = 0 criteria
2.6.14 and 2.6.15 for K to have ∏~ and ∏* respectively. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 2222....6666....11116666....1111 Let k be an algebraically closed field. Suppose G
is a connected smooth affine k-groupscheme of finite type, of
relative dimension one. Suppose that

0 ¨ K1 ¨ K ¨ K2 ¨ 0

is a short exact sequence of perverse sheaves on G. If both K1 and

K2 have ∏~ (respectively ∏*, respectively ∏), then so does K.

pppprrrrooooooooffff Again obvious from the Hom(K, L) = 0 and Hom(L, K) = 0
criteria for K to have ∏~ and ∏* respectively. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 2222....6666....11116666....2222 Let k be an algebraically closed field. Suppose G
is a connected smooth affine k-groupscheme of finite type, of
relative dimension one. If K is perverse on G and has ∏~
(respectively ∏*) then any perverse irreducible quotient
(respectively subobject) M of K as perverse sheaf has ∏.
pppprrrrooooooooffff Indeed by 2.6.16, M has ∏~ (respectively ∏*).But M is itself
perverse irreducible, hence by (2.6.14) (respectively by (2.6.15), its
isomorphism class cannot be translation invariant. So by (2.6.10), M
has ∏. QED
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CCCCoooorrrroooollllllllaaaarrrryyyy 2222....6666....11116666....3333 Let k be an algebraically closed field. Suppose G
is a connected smooth affine k-groupscheme of finite type, of
relative dimension one. If K is perverse on G and has ∏, then every
perverse irreducible quotient and every perverse irreducible sub-
object of K as perverse sheaf has ∏.
pppprrrrooooooooffff Immediate from 2.6.16.2. QED

RRRReeeemmmmaaaarrrrkkkk 2222....6666....11116666....4444 It is nnnnooootttt necessarily the case that if K is perverse
and has ∏, then every subobject and every quotient of K as
perverse sheaf again has ∏. To give examples, we work over ^ (see
2.10.4 for examples in characteristic p > 0), and use Riemann-Hilbert
to work with holonomic RS Î-modules instead of perverse sheaves.

On ´a,^ := Spec(^[x]), we write Î for ^[x, ∂], where ∂ := d/dx.

Consider the left Î-module M := Î/Îx∂x. Because x∂x is minus its
own adjoint, M is self dual. The only irreducible holonomic Î-
modules whose isomorphism classes are translation invariant are
Î/Î(∂-å), for å in ^. Only for å=0 is Î/Î(∂-å) RS. Therefore M has
∏ if and only if

Homleft-Î-modules(M, Î/Î∂) = 0.

We will show that for any åin ^, we have
Homleft-Î-modules(M, Î/Î(∂-å)) = 0.

This Hom is, via the image of the class of 1 in Î/Îx∂x, just the set
of elements in Î/Î(∂-å) annihilated by x∂x. But Î/Î(∂-å) ¶

eåx^[x], via 1 ÿ eåx, and eåx^[x] fi ^[[x]]. But x∂x is obviously
(look at lowest degree terms) injective on ^[[x]], and hence M has ∏.
But M admits Î/Î∂x as quotient, which does not have ∏, because
Î/Î∂ fi Î/Î∂x via Right(x) . Similarly, M admits, via Right(x),
Î/Îx∂ as a subobject, which again does not have ∏, because Î/Îx∂
admits Î/Î∂ as a quotient.

On ´m,^ := Spec(^[x,x-1]), we write Î for ^[x, x-1, ∂], ∂ again

given by ∂ := d/dx. Consider the left Î-module N := Î/Î(x-1)∂(x-1).
Because (x-1)∂(x-1) is minus its own adjoint, N is self dual. The
irreducible holonomic Î-modules whose isomorphism classes are
translation invariant are those of the form Î/Î(x∂-å), for å in ^.
Thus N has ∏ if and only if, for every å in ^, we have

Homleft-Î-modules(N, Î/Î(x∂-å)) = 0.

Just as above, this Hom is the set of elements in Î/Î(x∂-å) ¶

xå^[x, x-1] which are annihilated by (x-1)∂(x-1). In terms of the

parameter t:= x-1, xå^[x, x-1] fi ^[[t]], and (x-1)∂(x-1) becomes the
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operator t(d/dt)t, which, just as above, is injective on ^[[t]].
Therefore N has ∏. But N admits Î/Î∂(x-1) as a quotient, which
does not have ∏; indeed, since x is invertible, we have Î/Îx∂ =
Î/Î∂, and Î/Î∂ fi Î/Î∂(x-1) via Right(x-1). Similarly, N admits,
via Right(x-1), Î/Î(x-1)∂ as a subobject, which does not have ∏,
since it in turn admits Î/Î∂ = Î/Îx∂ as a quotient.

((((KKKKeeeeyyyy)))) CCCCoooorrrroooollllllllaaaarrrryyyy 2222....6666....11117777 Let k be an algebraically closed field.
Suppose G is a connected smooth affine k-groupscheme of finite
type, of relative dimension one. Suppose that K and L are perverse
on G, and each has ∏. Then their middle convolution K*midL has ∏.

pppprrrrooooooooffff We have already noted that K*~L has ∏~, and that K**L has

∏*, in both cases simply by the associativity of ~ and * convolution.
But K*midL is a quotient of K*~L, and hence has ∏~. Similarly,

K*midL is a subobject of K**L, and hence has ∏*. QED

(2.6.18) By the above corollary, when G is either ´m or !1, the

full subcategory (∏) of the category Perv of all perverse sheaves on
G consisting of those with property ∏ is stable by middle convolution

*mid. This category for !1, with its middle convolution, will be the

essential player in all that follows.

2222....7777 IIIInnnntttteeeerrrrlllluuuuddddeeee:::: mmmmiiiiddddddddlllleeee ddddiiiirrrreeeecccctttt iiiimmmmaaaaggggeeeessss ((((rrrreeeellllaaaattttiiiivvvveeee ddddiiiimmmmeeeennnnssssiiiioooonnnn oooonnnneeee))))
(2.7.1) Here is the general setup for "middle direct image".
PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 2222....7777....2222 Over an arbitrary base S which is itself
separated and of finite type over a field k of characteristic p ± …,
consider a diagram

j i
U zc X vz D := X - U

f p däf t äf|D
S

in which j: U ¨ X is an affine open immersion, äf is proper, and
f|D : D ¨ S is affine (hence finite, since it is also proper). Suppose K

in Dbc(U, ä$…) is perverse, and that both Rf*K and Rf~K are perverse

on S. Then Räf*j~*K is perverse on S, and

Räf*j~*K = Image( Rf~K ¨ Rf*K )

in Perv(S).
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pppprrrrooooooooffff On X, we have two short exact sequences of perverse sheaves:

0 ¨ Ker ¨ j~K ¨ j~*K ¨ 0,

0 ¨ j~*K ¨ Rj*K ¨ Coker ¨0.

Notice that the objects Ker and Coker are supported on D, hence are
perverse on D.

In the derived category, these are distinguished triangles, so
applying the exact functor Räf* gives two distinguished triangles on

S,
¨ Räf*Ker ¨ Rf~K ¨ Räf*j~*K ¨ ,

¨ Räf*j~*K ¨ Rf*K ¨ Räf*Coker ¨.

The objects Räf*Ker and Räf*Coker are perverse on S, because they

are both of the form R(äf|D)*(perverse on D), and äf|D, being finite,

preserves perversity.
We first show that Räf*j~*K is perverse. The first distinguished

triangle above shows that Räf*j~*K is semiperverse: its Ó-i is caught

between the Ó-i of one perverse sheaf and the Ó-(i-1) of another, so
certainly has dimension of support ≤ i. The hypothesis that both
Rf*K and Rf~K are perverse gives, by duality, that also both Rf*DK

and Rf~DK are perverse. So repeating the argument we find that

Räf*j~*DK = D(Räf*j~*K) is also semiperverse, whence Räf*j~*K is

perverse.
Once we know that Räf*j~*K is perverse, the two distinguished

triangles above are actually short exact sequences in Perv(S)
0 ¨ Räf*Ker ¨ Rf~K ¨ Räf*j~*K ¨ 0,

0 ¨ Räf*j~*K ¨ Rf*K ¨ Räf*Coker ¨ 0,

which together show that Räf*j~*K = Image( Rf~K ¨ Rf*K ). QED

2222....8888 MMMMiiiiddddddddlllleeee aaaaddddddddiiiittttiiiivvvveeee ccccoooonnnnvvvvoooolllluuuuttttiiiioooonnnn vvvviiiiaaaa mmmmiiiiddddddddlllleeee ddddiiiirrrreeeecccctttt iiiimmmmaaaaggggeeee

(2.8.1) We return to !1 over an algebraically closed field k of
characteristic ±…. We will apply the idea of "middle direct image" to
computing the middle additive convolution with a perverse object L

on !1 which has property ∏.

(2.8.2) Given a perverse sheaf K on !1, we have the perverse

sheaf Kx‚Lt-x on !2, with coordinates x,t. In these coordinates, the
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original "sum" map is the projection onto the t-line. By the very
definition of additive convolution, we have

K*~+L = R(pr2)~(Kx‚Lt-x),

K**+L = R(pr2)*(Kx‚Lt-x).

Since L lies in (∏), both of these objects are perverse.
(2.8.3) We compactify the map pr2 by compactifying the affine

x-line into the projective x-line, all over the !1 of t's:

j: !1x≠!
1
t Ú @1x≠!

1
t.

Then we are in the set-up to which the above middle direct image
proposition 2.7.2 applies. Thus we find
PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 2222....8888....4444 Hypotheses and notations as in 2.8.1, for K

perverse on !1, and L perverse on !1 with ∏, the middle additive
convolution K*mid+L is

R(pr2)*(the perverse sheaf j~*(Kx‚Lt-x) on @1≠!1).

Using this, we get a fibre-by-fibre recipe for K*mid+L over a

dense open set.
CCCCoooorrrroooollllllllaaaarrrryyyy 2222....8888....5555 Hypotheses as in proposition 2.8.4 above, suppose in

addition that K = Ï[1] and L = Ì[1] for sheaves Ï and Ì on !1. Then

1) there exists a dense open set U fi !1 over which

a) the formation of Rj*(Ïx‚Ìt-x) | @
1≠U commutes with

arbitrary change of base on U,
b) Rj*(Ïx‚Ìt-x) | ‘≠U is lisse on U, of formation compatible

with arbitrary change of base on U.

2) Over @1≠U, we have
a) an isomorphism

j~*(Kx‚Lt-x) | @
1≠U = j*(Ïx‚Ìt-x)[2] | @

1≠U,

b) a short exact sequence of perverse sheaves

0 ¨ j*(Ïx‚Ìt-x)[1] | ‘≠U ¨ j~(Ïx‚Ìt-x)[2] | @
1≠U

¨ j*(Ïx‚Ìt-x)[2] | @
1≠U ¨ 0.

which, as a distinguished triangle, is of formation compatible with
arbitrary change of base on U.

3) For E/k any separably closed extension field of k, and any point t
in U(E), we have

(K*midL)t = RÆ(@1‚kE, (j: !
1 ¨ @1)*(the sheaf x ÿ Ïx‚Ìt-x))[2],
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and a "short exact sequence" (really a distinguished triangle)
0 ¨ (the I(‘)-invariants in the sheaf x ÿ Ïx‚Ìt-x)[1] ¨

¨(K*~L)t ¨ (K*midL)t ¨0

which is the fibre at t of a short exact sequence of perverse sheaves
on U
0 ¨ (the lisse sheaf j*(Ïx‚Ìt-x) | ‘≠U)[1] ¨K*~+L ¨ K*mid+L ¨0.

4) If both Ï and Ì are tame at ‘, then we may take U to be !1,

and the sheaf j*(Ïx‚Ìt-x) | ‘≠!1 is lisse, of formation compatible

with arbitrary change of base on !1.

5) If char(k) = 0, then the sheaf j*(Ïx‚Ìt-x) | ‘≠!1 is

geometrically constant, of formation compatible with arbitrary

change of base on !1.

pppprrrrooooooooffff 1) The base-changing statements over a dense open U1 are a

special case of Deligne's generic base change theorem [De-Th.Fin, Cor.
2.9]. The lisseness in 1b) results from the constructibility of
Rj*(Ïx‚Ìt-x), but may require passing to a smaller dense open U

in U1. Once we have 1), 2a) follows from the "successive partial

truncation" description [BBD, 2.2.4], and 2b) follows from 1). Once we
have 2), 3) results from (proper base change and) the fact that, by

1), the formation of j*(Ïx‚Ìt-x) | @
1≠U commutes with arbitrary

change of base on U. To prove 4), notice that the sheaf (Ïx‚Ìt-x)

on @1≠!1 - ‘≠!1 is lisse in a Zariski open neighborhood of ‘≠!1:
indeed, if f(x) and g(x) are monic polynomials such that Ï (resp. Ì)
is lisse where f (resp. g) is invertible, then Ïx‚Ìt-x is lisse where

the (_)monic-in-x polynomial f(x)g(t-x) is invertible. Moreover, this

sheaf is fibre-by-fibre tamely ramified along ‘≠!1. The result 4)
then follows from the relative Abhyankar lemma, cf. [Ka-SE, 4.7.2].
If char(k) = 0, then Ï and Ì are automatically tame at ‘, so by 4)

the sheaf j*(Ïx‚Ìt-x) | ‘≠!1 is lisse; because we are in

characteristic zero, any lisse sheaf on !1 is geometrically constant.
QED

2222....9999 MMMMiiiiddddddddlllleeee aaaaddddddddiiiittttiiiivvvveeee ccccoooonnnnvvvvoooolllluuuuttttiiiioooonnnn wwwwiiiitttthhhh KKKKuuuummmmmmmmeeeerrrr sssshhhheeeeaaaavvvveeeessss
(2.9.1) We continue to work over an algebraically closed field of
characteristic ±…. We now apply 2.8.4 to the special case of
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computing the middle additive convolution with j~Òç[1] = j*Òç[1]

on !1, for Òç a nnnnoooonnnnttttrrrriiiivvvviiiiaaaallll Kummer sheaf on ´m, and

j : ´m ¨ !1 the inclusion. We know that j*Òç[1] on !1 is perverse

irreducible, and its isomorphism class is not translation invariant (it

has a unique point where it is not lisse). So j*Òç[1] on !1 has

property ∏.
Exactly as in 2.8.4 we find

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 2222....9999....2222 Hypotheses and notations as in 2.9.1, for K

perverse on !1, and any nontrivial Kummer sheaf Òç, the middle

additive convolution K*mid+j*Òç[1] is

R(pr2)*(the perverse sheaf j~*(Kx‚Òç(t - x)[1]) on @1≠!1).

(2.9.3) In order to go further, we need to see what the perverse

sheaf j~*(Kx‚Òç(t - x)[1]) on @1≠!1 looks like. To lighten the

notational burden in the following lemma, we will sometimes write

Òç on !1 to mean j*Òç on !1.

LLLLeeeemmmmmmmmaaaa 2222....9999....4444 Hypotheses and notations as in 2.9.2 above:

1) For any t0 in !1(k), the restriction of j~*(Kx‚Òç(t - x)[1]) to

@1 ≠ {t0} is (jt0
: !1x ≠ {t0} ¨ @1x ≠ {t0})~*(Kx‚Òç(t0 - x))[1].

2) Denoting by i: ‘≠!1 ¨ @1≠!1 the inclusion, the perverse sheaf

j~*(Kx‚Òç(t - x)[1]) on @1≠!1 sits in a short exact sequence of

perverse sheaves on @1≠!1

0 ¨i*(the constant sheaf (Ó
-1(K)‚Òç)

I(‘) on ‘≠!1t)[1] ¨

¨ j~(Kx‚Òç(t - x)[1]) ¨ j~*(Kx‚Òç(t - x)[1]) ¨ 0.

3) The middle and ~ additive convolutions of K with j*Òç[1] sit in an

exact sequence of perverse sheaves on !1

0 ¨(the constant sheaf (Ó-1(K)‚Òç)
I(‘)) [1] on !1t ¨

¨ K*+~Òç[1]¨ K*mid+Òç[1] ¨ 0.

pppprrrrooooooooffff An affine open neighborhood of ‘≠!1 is the !2 with

coordinates z and t, z=1/x. In these coordinates, ‘≠!1 is defined by
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z=0, and so the function 1-zt takes the value 1 along ‘≠!1. Let us

denote by U the open in !2 where 1-tz is invertible. On this open
set, we have the lisse, rank one sheaf Òç(1-tz ). Thanks to the

identity
t - x = (-1/z)(1 - zt), we have

Òç(t - x) = Òç(1-tz))‚Òç(-1/z).

In terms of the inclusion

j: U - ‘≠!1 ¨ U,
we have

Kx‚Òç(t - x)[1] | U - ‘≠!1 =

(j*Òç(1-tz))‚(K1/z‚Òç(-1/z))[1] on ´m,z≠!
1
t, | U - ‘≠!1.

The key point here is that Òç(1-tz) is lisse on all of U. So taking

middle extension across ‘≠!1, which we may compute Zariski

locally along ‘≠!1, we see that on U we will get

Òç(1-tz))‚(M.E. of (K1/z‚Òç(-1/z))[1] on ´m,z≠!
1
t, across z=0).

Since formation of middle extension is compatible with external
products (this being true separately for duality, for j~ and (so) for its

dual Rj*), we see that, on U, our middle extension is

Òç(1-tz))‚the restriction to U of the external tensor product sheaf

(M.E. of (K1/z‚Òç(-1/z))|´m,z across z=0)‚(ä$…[1] on !1t).

on the !2 with coordinates z,t. In particular, this shows that 1)
holds. If we go back to the original x,t coordinates, we find that the

middle extension across ‘≠!1 is, along ‘≠!1, the constant

perverse sheaf[1] on !1t which is

(K‚Òç))
I(‘)[1] = (Ó-1(K)‚Òç)

I(‘)[2].

So on @1x≠!
1
t, we have, denoting by i: ‘≠!1 ¨ @1≠!1 the

inclusion, the short exact sequence of perverse sheaves

0 ¨i*(the constant sheaf (Ó
-1(K)‚Òç)

I(‘) on ‘≠!1t)[1] ¨

¨j~(Kx‚Òç(t - x)[1]) ¨ j~*(Kx‚Òç(t - x)[1]) ¨ 0

asserted in 2). Taking the total direct image onto the t line, we get
the exact sequence

0 ¨(the constant sheaf (Ó-1(K)‚Òç)
I(‘)) [1] on !1t ¨

¨ K*+~Òç[1]¨ K*+midÒç[1] ¨ 0
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of perverse sheaves on !1 asserted in 3). QED

CCCCoooorrrroooollllllllaaaarrrryyyy 2222....9999....5555 For K perverse on !1, and any nontrivial Kummer

sheaf Òç, the stalk at any point t in !1(k) of K*mid+j*Òç[1] is

RÆ(@1, j~*(the perverse sheaf x ÿ Kx‚Òç(t - x) on !1)[1]).

pppprrrrooooooooffff This results from the preceding Proposition 2.9.2, via proper
base change and part 1) of the above lemma 2.9.4. QED

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 2222....9999....6666 Let k be an algebraically closed field k. Given any
two nontrivial Kummer sheaves Ò® and Òç on ´m,k, their middle

additive convolution j*Ò®[1]*mid+j*Òç[1] on !1 is given

(geometrically)

j*Ò®[1]*mid+j*Òç[1] ¶ j*Ò®ç[1] if ®ç ± ú,

¶ ∂0 if ç® = ú.

pppprrrrooooooooffff Suppose first that ç® ± ú. Then by part 3) of the lemma 2.9.4
above, applied with K := j*Ò®[1], we see that

(j*Ò®[1])*~+(j*Òç[1]) ¶ j*Ò®[1]*mid+j*Òç[1],

because (Ó-1(K)‚Òç)
I(‘) = (Ò®ç)

I(‘) = 0. Thus our middle

convolution is given by

R(pr2)~(the perverse sheaf Ò®(x)‚Òç(t - x)[2]) on !1≠!1).

Over t=0, the (geometric) stalk is RÆc(´m, Ò®ç[2]) = 0. Therefore

our middle convolution on !1 is the extension by zero of its
restriction to ´m. So it suffices to show that over ´m, our middle

convolution is (geometrically) isomorphic to Ò®ç[1].

Over the open set ´m where t is invertible, we make the

change of variable
(x, t) ÿ (tx, t),

and we find
j*Ò®[1]*mid+j*Òç[1] | ´m ¶

¶ R(pr2)~(Ò®(tx)‚Òç(t - tx)[2]) on !1≠´m).

= R(pr2)~(Ò®(x)‚Òç(1 - x)[1]‚Ò®ç(t)[1]) on !1≠´m)

= Ò®ç[1]‚RÆc(!
1 - {1,0}, Ò®(x)‚Òç(1 - x)[1]).
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Because ®ç ±ú, we have H2c(!
1 - {1,0}, Ò®(x)‚Òç(1 - x)) = 0, by

considering the local monodromy at ‘ of Ò®(x)‚Òç(1 - x); because

Ò®(x)‚Òç(1 - x) is tame, and lisse of rank one, we have

çc(!
1 - {1,0}, Ò®(x)‚Òç(1 - x)) = -1,

and the only possibly nonvanishing groups are the Hic for i=1,2.

Thus RÆc(!
1 - {1,0}, Ò®(x)‚Òç(1 - x)[1]) is a one-dimensional ä$…-

vector space, placed in degree zero, as required.
Suppose now that ç® = ú. In this case, the corollary 2.9.5 above

will give the required assertion. For the stalk of our middle

convolution at t in !1(k) is given by

RÆ(@1, j~*(the perverse sheaf x ÿ Òç(x)‚Ò®(t - x)[1] on !1)[1]).

By definition, the sheaf Òç(x)‚Ò®(t - x)[1] on !1 is lisse outside of

{t,0}, and is extended by zero across {t,0}. So if we denote by

kt,0 : !1 - {t,0} ¨ !1

the inclusion, this stalk is

RÆ(@1, j~*(kt,0)~(Òç(x)‚Ò®(t - x)[1] on !1x - {t,0})[1]).

Since ç® = ú, this stalk is

RÆ(@1, j~*(kt,0)~(Òç(x/(t-x))[1] on !1x - {t,0})[1]).

For any t, this coefficient sheaf is lisse of rank one at ‘, so it is lisse

of rank one on @1x - {t,0}) and everywhere tame.

For t ± 0, the sheaf Òç(x/(t-x)) is not geometrically constant

(it has nontrivial monodromy at both 0 and t), and has no nonzero
punctual sections, so

Hi(@1, j~*(kt,0)~(Òç(x/(t-x))[1] on !1x - {t,0})[1]) = 0 if i=0, -2.

But the Euler characteristic also vanishes, so we find

RÆ(@1, j~*(kt,0)~(Òç(x/(t-x))[1] on !1x - {t,0})[1]) = 0 for t ± 0,

and hence
j*Ò®[1]*mid+j*Òç[1] is supported at t=0 if ®ç = ú.

So it remains only to compute the stalk at zero. This stalk is

RÆ(@1, j~*(k0,0)~(Òç(x/(-x))[1] on !1x - {0})[1]).

But the perverse sheaf j~*(k0,0)~(Òç(x/(-x))[1]) is (geometrically)

just the constant sheaf ä$…[1] on @1 - {0}, extended by zero.

So our stalk at zero is
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RÆc(@
1 - {0}, ä$…[2]) = RÆc(!

1, ä$…[2]),

the one-dimensional vector space H2c(!
1, ä$…) placed in degree zero.

QED

TTTThhhheeeeoooorrrreeeemmmm 2222....9999....7777 Let k be an algebraically closed field, Òç a

nontrivial Kummer sheaf on ´m, j: ´m ¨!1 the inclusion.

1)On !1, the operators K ÿ K*mid+j*Òç[1] and K ÿ

K*mid+j*Òäç[1] on ∏ are automorphisms of ∏, which are inverses

of each other (where we write äç for the character ç-1).

2) On !1, the operator K ÿ K*mid+j*Òç[1] induces an

automorphism of the perverse irreducible objects in ∏, with inverse
the operator K ÿ K*mid+j*Òäç[1].

pppprrrrooooooooffff We know that j*Òç[1] is perverse irreducible on !1, and

that it lies in ∏ on !1 (because it is not translation invariant). In
view of the preceding result 2.9.6, 2.9.7 is a special case of the
following result.

TTTThhhheeeeoooorrrreeeemmmm 2222....9999....8888 On !1 over an algebraically closed field k, let K and
L be perverse objects in ∏ with K*mid+L = ∂0 =L*mid+K.

1)On !1, the operators X ÿ X*mid+K and X ÿ X*mid+L on ∏ are

automorphisms of ∏, which are inverses of each other.
2) The operator X ÿ X*mid+K induces an automorphism of the

perverse irreducible objects in ∏, with inverse the operator
X ÿ X*mid+L.

pppprrrrooooooooffff For 1), just use the fact that middle convolution is
associative, and that ∂0 is the identity for middle convolution.

For 2), Let X be perverse irreducible in ∏. We must show that the
perverse sheaf X*mid+K is perverse irreducible. By 1), it is nonzero,

so it contains a subobject Y which is perverse irreducible. Since
X*mid+K lies in ∏, Y itself lies in ∏ (by 2.6.16.3). Since W ÿ

W*mid+L is end-exact, it preserves injections, so Y*mid+L is a

subobject of X*mid+K*mid+L = X. This subobject is nonzero by 1), so

by the irreducibility of X, we have X = Y*mid+L. Applying W ÿ

W*mid+K, we find X*mid+K = Y*mid+L*mid+K = Y is irreducible, as
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required. QED

For later use, we record the following corollary.

CCCCoooorrrroooollllllllaaaarrrryyyy 2222....9999....9999 On !1 over an algebraically closed field k, let K and
L be perverse objects in ∏ with K*mid+L = ∂0 =L*mid+K. Then L

and K are perverse irreducible.
pppprrrrooooooooffff Indeed, by 2), the functors X ÿ X*mid+K and X ÿ X*mid+L

carry irreducibles in ∏ to irreducibles in ∏. Take X to be ∂0. QED

2222....11110000 IIIInnnntttteeeerrrrpppprrrreeeettttaaaattttiiiioooonnnn ooooffff mmmmiiiiddddddddlllleeee aaaaddddddddiiiittttiiiivvvveeee ccccoooonnnnvvvvoooolllluuuuttttiiiioooonnnn vvvviiiiaaaa
FFFFoooouuuurrrriiiieeeerrrr TTTTrrrraaaannnnssssffffoooorrrrmmmm

(2.10.1) In this section, we work on !1 over an algebraically
closed field k of characteristic p > 0, p±…. Recall [Br, Cor. 9.6] that
Fourier Transform interchanges ~ convolution and tensor product:

more precisely, for K and L in Dbc(!
1, ä$…), we have

FT¥,~(K*~L) =FT¥,~(K)‚FT¥,~(L)[-1],

FT¥,~(K‚L)[-1] = FT¥,~(K)*~FT¥,~(L)(-1).

LLLLeeeemmmmmmmmaaaa 2222....11110000....2222 In the situation of 2.10.1, let K be perverse on !1.
The following conditions are equivalent.
1) K has ∏~.
2) K has no quotient Ò¥(åx)[1] for any å in k.

3) FT(K) has no nonzero punctual quotient.

4) Ó0(FT(K)) =0,

5) FT(K) is of the form Ï[1] for some sheaf Ï on !1 which has no
nonzero punctual sections.
pppprrrrooooooooffff 1) À 2) by 2.6.13 and 2.6.14.
2) À 3) since FT carries Ò¥(åx)[1] to ∂-å.

3) à 4): For any perverse N on !1, the short exact sequence of
perverse sheaves

0 ¨ Ó-1(N)[1] ¨ N ¨ Ó0(N) ¨ 0

expresses Ó0(N) as a punctual quotient of N. Applying this to FT(K)

gives Ó0(FT(K)) = 0.
4) À 5) by the concrete description of perverse sheaves in
dimension one.

5) à 1): If FT(K) is Ï[1] for some sheaf Ï on !1, then
L ÿ FT(K)[-1]‚L = ÏºL

preserves semiperversity. By Fourier inversion, L ÿ K*~L preserves
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semiperversity. By Lemma 2.6.7, K has ∏~. QED

LLLLeeeemmmmmmmmaaaa 2222....11110000....3333 In the situation 2.10.1, for K perverse on !1, K has
∏ if and only if FT(K) := N is a middle extension.
pppprrrrooooooooffff If K has ∏, then both K and DK have ∏~. By the above
lemma, both N := FT¥,~K and and DN = FTä¥,~(DK) have no nonzero

punctual quotient. Thus (by duality) N has no nonzero punctual
subobject. By the same lemma, we know N is Ï[1] for some sheaf Ï

on !1 which has no nonzero punctual sections. This forces N to be a

middle extension. For if N is Ï[1], with Ï fi j*j
*Ï for j: U ¨ !1 an

open where Ï is lisse, then if Ï ± j*j
*Ï, the short exact sequence of

perverse sheaves

0 ¨ (j*j
*Ï)/Ï¨ Ï[1] = N¨ j*j

*Ï[1] ¨ 0

exhibits a nonzero punctual subobject of N.
Conversely, suppose that N := FT¥,~(K) is a middle extension.

Then so is DN = FTä¥,~(DK). By the previous proposition, both K and

DK have ∏~, so K has ∏. QED
RRRReeeemmmmaaaarrrrkkkkssss 2222....11110000....4444
1) Here is an slightly variant proof of the above result. We know
that a perverse K lies in ∏ if and only if as a perverse sheaf it has
no subobject and no quotient of the form Ò¥(åx)[1] for any å in k.

By Fourier Transform, this becomes the condition that FT(K) as
perverse sheaf have no subobject and no quotient which is
punctual. But this last condition is equivalent to being a middle
extension (compare [Ka-ESDE, 2.9.1]), as one sees using the natural
filtration (cf. 2.3.6) of the perverse sheaf FT(K) with associated
graded (punctual, middle extension, punctual).
2) Using 2.10.3, we can give a characteristic p > 0 example (compare

2.6.16.4) of a perverse K on !1 which has ∏, such that K admits a
quotient as perverse sheaf which does not have ∏. Thanks to 2.10.3,

it is the same to give an example of a perverse N on !1 which is a
middle extension, but which admits a quotient as perverse sheaf
which is not a middle extension. On ´m over our algebraically closed

field k of characteristic p ± …, there exists a lisse rank two ä$…-sheaf

Ï which is a nontrivial extension of the constant sheaf ä$… by itself,

because H1(´m, ä$…) = ä$…. This sheaf is automatically tame, its

global monodromy being unipotent, and hence its local monodromy
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at zero is a single Jordan block, of dimension two. Denote by j: ´m

¨ !1 the inclusion. Applying j* to the tautological short exact

sequence of sheaves on ´m
0 ¨ ä$… ¨ Ï ¨ ä$… ¨ 0,

we get an exact sequence of sheaves on !1,
0 ¨ ä$…,!1 ¨ j*Ï ¨ ä$…,!1.

The last arrow is not surjective on the stalk at zero, since j*Ï has

only a one-dimensional stalk at zero, so we have a short exact

sequence of sheaves on !1

0 ¨ ä$…,!1 ¨ j*Ï ¨ j~ä$…,´m
¨ 0.

Shifting by [1], we get a short exact sequence of perverse sheaves on

!1 which exhibits j~ä$…,´m
[1], which is visibly not a middle

extension, as a quotient of the middle extension (j*Ï)[1] = j~*(Ï[1]).

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 2222....11110000....5555 Let K be perverse on !1, and suppose K has ∏.

Let Òç be a nontrivial Kummer sheaf on ´m, j: ´m ¨ !1 the

inclusion. Write FT(K) = Ï[1], with Ï a middle extension sheaf on !1.
Then

FT(K*mid+j*Òç[1]) = j*(j
*FT(K)‚Òäç) = j*(j

*Ï‚Òäç)[1].

pppprrrrooooooooffff We have already seen in 2.9.4 that we have a short exact

sequence of perverse sheaves on !1

0 ¨ (constant sheaf)[1] ¨ K*~+Òç[1] ¨ K*mid+Òç[1] ¨ 0.

Under Fourier Transform, this gives a short exact sequence
0¨(pct. sheaf, supp. at 0)¨FT(K*~j*Òç[1])¨FT(K*mid+j*Òç[1]) ¨0.

Using the general identity
FT(K*~L) =FT(K)‚FT(L)[-1],

together with the standard geometric isomorphism
FT(j*Òç[1]) ¶ j*Òäç[1],

we rewrite this short exact sequence as
0¨(pct. sheaf, supp. at 0) ¨ FT(K)‚j*Òäç ¨ FT(K*mid+j*Òç[1])¨0.

Restricting to ´m, the above exact sequence gives an isomorphism:

j*FT(K)‚Òäç ¶ j*FT(K*mid+j*Òç[1]).

Since we know a priori that FT(K*mid+j*Òç[1]) is a middle
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extension, being FT(an object in (∏)), we have

FT(K*mid+j*Òç[1]) ¶ j*j
*FT(K*mid+j*Òç[1])

= j*(j
*FT(K)‚Òäç), as required. QED

RRRReeeemmmmaaaarrrrkkkk 2222....11110000....6666 This proposition gives us, in positive characteristic,
a second proof of Proposition 2.9.6 (take K = j*Ò®[1]).

(2.10.7) In fact, more is true. Under Fourier Transform, the
operation *mid+ corresponds to the obvious tensor product operation

on middle extensions.
TTTThhhheeeeoooorrrreeeemmmm 2222....11110000....8888 In the situation 2.10.1, let K and L be perverse on

!1, both K and L having ∏. Pick a common open set j U ¨ !1

where both N :=FT(K) and M := FT(L) are lisse, and write N = j*Ï[1],

M = j*Ì[1], with Ï and Ì lisse sheaves on U. Then

FT(K*mid+L) = j*(Ï‚Ì)[1].

pppprrrrooooooooffff. The key point is to show that there exists a dense open set

j: U ¨ !1 such that when we apply FT to the "forget supports" map
K*~+L ¨ K**+L, the map we obtain,

FT(K*~+L) ¨ FT(K**+L),

is an isomorphism on U:

j*FT(K*~+L) ¶ j*FT(K**+L).

If this is so, then from
FT(K*mid+L) = Image(FT(K*~+L) ¨ FT(K**+L)),

we get

j*FT(K*mid+L) ¶ j*FT(K*~+L) ¶j
*FT(K**+L)).

Since we know a priori that FT(K*mid+L) is a middle extension, we

know that

FT(K*mid+L) ¶ j*j
*FT(K*mid+L) ¶j*j

*FT(K*~L).

Using FT(K*~+L) = FT(K)‚FT(L)[-1] = Ï‚Ì[1] gives the assertion.

It remains to prove that the map
FT(K*~+L) ¨ FT(K**+L)

is an isomorphism on a dense open set of !1.
LLLLeeeemmmmmmmmaaaa 2222....11110000....9999 In the situation 2.10.1, For any two objects K and L

in Dbc(!
1, ä$…), the natural map

FT("forget supports") : FT(K*~+L) ¨ FT(K**+L)

is an isomorphism on a dense open set.
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pppprrrrooooooooffff The idea of the proof is to exploit the basic miracle of Fourier
Transform, that FT~,¥ ¶ FT*,¥. By Deligne's generic base change

theorem [De-Th.Fin, Cor. 2.9], there exists a dense open set U in !1

over which the formation of each of FT*,¥(K), FT*,¥(L), and

FT*,¥(K**+L) commutes with arbitrary change of base. By proper

base change, the formation of each FT~,¥(K), FT~,¥(L), and

FT~,¥(K*~+L) commutes with arbitrary change of base over all of !1.

Choose any point å in !1(k). The stalk at å of FT(K*~+L),

viewed as an FT~,¥, is

RÆc(!
1,(K*~+L)‚Ò¥(åx)[1]).

If å lies in U, the stalk at å of FT(K**+L), viewed as an FT*,¥, is

RÆ(!1,(K**+L)‚Ò¥(åx)[1]),

and the map between them is induced by the "forget supports" map
K*~+L ¨K**+L on coefficients, followed by the "forget supports" map

RÆc ¨ RÆ.

The source is

RÆc(!
1,(K*~L)‚Ò¥(åx))[1] =

= RÆc(!
1,(R(sum)~(pr1

*(K)‚pr2
*(L))‚Ò¥(åx))[1]

= RÆc(!
1, R(sum)~(pr1

*(K‚Ò¥(åx))‚pr2
*(L‚Ò¥(åx))))[1],

(by the projection formula, and the additivity of Ò¥)

= RÆc(!
2,pr1

*(K‚Ò¥(åx))‚pr2
*(L‚Ò¥(åx)))[1] (by Leray)

= RÆc(!
1, K‚Ò¥(åx))‚RÆc(!

1, L‚Ò¥(åx))[1] (by Kunneth).

In completely analogous fashion, the target, for å in U, is

RÆ(!1, K‚Ò¥(åx))‚RÆ(!1, L‚Ò¥(åx))[1],

and, with these identifications, the map between them is
("forget supports")‚("forget supports").

Because å lies in U, over which the formation of both FT*,¥(K) and

FT*,¥(L) commutes with base change, these "forget supports" maps

RÆc(!
1, K‚Ò¥(åx)) ¨ RÆ(!1, K‚Ò¥(åx)),

RÆc(!
1, L‚Ò¥(åx)) ¨ RÆ(!1, L‚Ò¥(åx)),

are just the identity maps of FT(K)å[-1] and of FT(L)å[-1]

respectively.



Chapter 2-The theory of middle convolution-36

Thus the map FT(K*~+L) ¨ FT(K**+L) is an isomorphism over

U, as required. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 2222....11110000....11110000 In the situation 2.10.1, for any two objects K

and L in Dbc(!
1, ä$…), the mapping cone object [K*~+L ¨ K**+L] in

Dbc(!
1, ä$…) is a direct sum of shifted Ò¥(åx) sheaves, for various å

in k.
PPPPrrrrooooooooffff This is the Fourier Transform of the statement that the
mapping cone [FT(K*~+L) ¨ FT(K**+L)] is punctual. QED

RRRReeeemmmmaaaarrrrkkkk 2222....11110000....11111111 In terms of a relative compactification of pr2, say

j i

!1≠!1 ¨ @1≠!1 v ‘≠!1

dpr2

!1,

the object [K*~+L ¨ K**+L] is i
*Rj*(Kx‚Lt-x). So the above

corollary 2.10.10 says that, over an algebraically closed field of

characteristic p > 0, i*Rj*(Kx‚Lt-x) has all of its cohomology

sheaves direct sums of Ò¥(åx). This does not seem obvious a priori,

and we do not know a "direct" proof of it.

(2.10.12) Here is a slight reformulation of the results of this section.

Denote by GalRep(!1/k, ä$…) the category of those continuous finite-

dimensional ä$…-representations V of Gal(k(x)sep/k(x)), the galois

group of the function field of !1/k, with the following two
properties:

1) V is definable over a finite extension of $…,

2) V is unramified outside a finite set of places of k(x).

If we denote by ˙ the generic point of !1, the functor

(perverse middle extension sheaves on !1) ¨ GalRep(!1/k, ä$…)

N = j*Ï[1]ÿ Ï˙ = (N[-1])˙

is an equivalence of categories. [Indeed, for each nonempty open U

in !1, this functor induces an equivalence between the full (by
2.3.3.1) subcategory of its source,
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(perverse middle extensions on !1 which are lisse on U),
and the full subcategory of its target

(objects in GalRep(!1/k, ä$…) which are unramified on U).]

Using this fact, 2.10.3 and 2.10.8 say that the composite functor

(perverse sheaves on !1 with ∏) ¨ GalRep(!1/k, ä$…)

K ÿ (FT(K)[-1])˙

is an equivalence of categories, under which middle additive
convolution goes over to tensor product, and under which the

functor K ÿ D-K := [x ÿ -x]*DK = D([x ÿ -x]*K) goes over into the

functor V ÿ V£ := the contragredient representation to V.
(2.10.13) Using this description, we can easily analyze the

invertible objects. We say that a perverse sheaf K on !1 with ∏ is
invertible for the operation of middle convolution if there exists a
perverse L with ∏ such that K*mid+L ¶ ∂0. [If such an L exists, it is

unique, by the associativity of middle convolution.]

TTTThhhheeeeoooorrrreeeemmmm 2222....11110000....11114444 On !1 over an algebraically closed field of

characteristic p > 0, a perverse sheaf K on !1 with ∏ is invertible
for the operation of middle convolution if and only if FT(K)[-1] has
generic rank one. In this case, K*mid+D-K = ∂0.

pppprrrrooooooooffff Obvious by Fourier Transform, where it becomes the question
of looking for ‚-invertible objects in GalRep: these are obviously
those of dimension one, and for these, the contragredient is the ‚-
inverse. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 2222....11110000....11115555 On !1 over an algebraically closed field k of

characteristic p > 0, the perverse sheaves K on !1 with ∏ which are
both invertible for middle convolution and tame at ‘ are precisely
the translated ∂-functions ∂å for å in k, and the translated

nontrivial Kummer sheaves j*Òç(x-å)[1] for å in k.

pppprrrrooooooooffff The objects listed are obviously invertible, and tame at ‘. We
must show there are no more. First of all, any invertible object K is
irreducible as a perverse sheaf: indeed, from the Fourier Transform
description, such a K has no proper subobject in ∏, while, as already
noted in the proof of 2.9.8, any irreducible subobject of a perverse K
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with ∏ itself has ∏.
Among perverse irreducible K's, the punctual ones are already

on our list. So we must look for irreducible middle extensions j*Ï[1]

with Ï tame at ‘, for which FT(j*Ï) has generic rank one. For Ï

tame at ‘, and å±0 in k, the stalk FT(j*Ï)å is

Hc
1(!1, j*Ï‚Ò¥(åx)); both the Hc

2 and Hc0 vanish (j*Ï‚Ò¥(åx)
is totally wild at ‘, and has no nonzero punctual sections). So for
å±0, the rank of stalk FT(j*Ï)å is

-çc(!
1, j*Ï‚Ò¥(åx)) =

= - generic rank(j*Ï‚Ò¥(åx)) + Swan‘(j*Ï‚Ò¥(åx)) +

+ ‡finite sing s [Swans(j*Ï‚Ò¥(åx)) + drops(j*Ï‚Ò¥(åx))].

Since Ï is tame at ‘, and Ò¥(åx) has slope one at ‘, the first two

terms cancel. Since Ò¥(åx) is lisse on !1, at each finite singularity s

of Ï, the Ò¥(åx) might as well be absent: we find

rank FT(j*Ï)å = ‡finite sing s [Swans(j*Ï) + drops(j*Ï)].

Each of the terms [Swans(j*Ï) + drops(j*Ï)] is strictly positive (the

drop is nonzero), and each term where Ï is not tame is at least two.
So if this rank is to be one, there is at precisely one finite
singularity, Ï is tame there, and has a drop of one. Translating the
singularity to the origin, we get an Ï which is lisse and tame on
´m, irreducible, and nontrivially ramified at zero. Since it is lisse,

tame and irreducible, it must be rank one (π1
tame(´m) is abelian),

so a Kummer sheaf Òç on ´m. Since it is ramified at zero, ç is

nontrivial. QED

2222....11111111 IIIInnnnvvvveeeerrrrttttiiiibbbblllleeee oooobbbbjjjjeeeeccccttttssss oooonnnn !!!!1111 iiiinnnn cccchhhhaaaarrrraaaacccctttteeeerrrriiiissssttttiiiicccc zzzzeeeerrrroooo

TTTThhhheeeeoooorrrreeeemmmm 2222....11111111....1111 On !1 over an algebraically closed field k of

characteristic zero, the perverse sheaves K on !1 with ∏ which are
invertible for middle convolution are precisely the translated ∂-
functions ∂å for å in k, and the translated nontrivial Kummer

sheaves j*Òç(x-å)[1] for å in k.

pppprrrrooooooooffff The listed objects are visibly invertible. We must show there
are no more. By 2.9.9, any invertible object K is perverse
irreducible. If K is punctual, it is already on our list. So suppose that
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K is an irreducible middle extension j*Ï[1], with Ï nonconstant.

Such a K lies in ∏.
step 1) We show that for aaaannnnyyyy irreducible middle extension K =
j*Ï[1], with K in ∏, there exists a surjective map of perverse

sheaves K*mid+D-(K) n ∂0. [This is obvious in characteristic p, by

looking on the Fourier Transform side.] For this, we argue as follows.

For any perverse sheaf N on !1, we have a short exact sequence of
perverse sheaves

0 ¨ Ó-1(N)[1] ¨ N ¨ Ó0(N) ¨ 0,

in which the sheaf Ó0(N) is punctual. So for any å in !1, we have a

surjective map Ó0(N) n Ó0(N)å‚∂å, so all in all N n Ó0(N)å‚∂å.

Applying this to N = K*mid+D-(K), it suffices to show that

Ó0(K*mid+D-(K))0
is one-dimensional. Because we are in characteristic zero, we can
compute eeeevvvveeeerrrryyyy fibre of K*mid+D-(K) (by 2.8.5, (3) and (4)). Recall

that K is j*Ï[1], j: U ¨ !1 a dense open set on which Ï is lisse,

irreducible, and nonconstant. In terms of k: !1 ¨ @1 the inclusion,
we have

(K*mid+D-(K))0 = RÆ(@1, k*(j*Ï‚j*(Ï
£)))[2].

Thus

Ó0(K*mid+D-(K))0 = H2(@1, k*(j*Ï‚j*(Ï
£)))

= Hc
2(U,Ï‚Ï£) = ä$…(-1),

the last equality because Ï is irreducible. [In fact, for such K, one

can show that Ó0(K*mid+D-(K))å = 0 for å ± 0, provided we are in

characteristic zero. In other words, Ó0(K*mid+D-(K)) is the required

∂0 quotient.]

step 2). We show that if K*mid+L = ∂0 = L*mid+K, then L is D-(K).

Indeed, applying the end-exact functor X ÿL*mid+X to the

surjection K*mid+D-(K) n ∂0. produced in step 1, we get

L*mid+K*mid+D-(K) n L*mid+∂0, i.e., D-(K) n L.

Since K is irreducible, so is D-(K), and hence D-(K) = L.

step 3) We show that if K*mid+D-(K) = ∂0 with K an irreducible

middle extension j*Ï[1], then Ï is a translate of a nontrivial
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Kummer sheaf Òç. Because we are in characteristic zero, we have,

by 2.8.5, (3) and (4), a short exact sequence of perverse sheaves on

!1

0 ¨ (constant sheaf)[1] ¨ K*~+D-(K) ¨ K*mid+D-(K) ¨ 0,

which, if K*mid+D-(K) = ∂0, reads

0 ¨ (constant sheaf)[1] ¨ K*~+D-(K) ¨ ∂0 ¨ 0.

We exploit this last exact sequence by computing the difference in
the virtual ranks of stalks: for any t ± 0, we have

1 = rank (K*~+D-(K))0 - rank (K*~+D-(K))t,

i.e.,

1 = çc(!
1, j*(Ï)‚j*(Ï

£)) - çc(!
1, j*(Ï)‚[x ÿ x+t]*j*(Ï

£)).

Denote by n the rank of Ï (also that of Ï£), and denote by S the set

of finite singularities of Ï (also that of Ï£). At any s in S, both j*(Ï)

and j*(Ï
£) have the same dimensional fibre, say of dimension rs

(the same because rs is the common number of unipotent Jordan

blocks in the local monodromies of Ï and of Ï£ at the point s, cf.
3.1.2). Since we are in characteristic zero, the Euler-Poincarïe
formula gives

çc(!
1, j*(Ï)‚j*(Ï

£)) = n2 - ‡s in S (n2 - (rs)
2).

For t sufficiently general (not in the finite set S - S), the two finite
sets S and S+t are disjoint. So for such t,

çc(!
1, j*(Ï)‚[x ÿ x+t]*j*(Ï

£)) =

= n2 - ‡s in S (n2 - (rs)n) - ‡s in S+t (n
2 - n(rs))

=n2 - 2‡s in S (n2 - (rs)n)

= n2 - ‡s in S (2n)(n - rs)

= n2 - ‡s in S ((n + rs) + (n - rs))(n - rs)

= n2 - ‡s in S (n2 - (rs)
2) - ‡s in S (n - rs)

2.

Subtracting, we find

1 =‡s in S (n - rs)
2.

Since each term (n - rs)
2 is a strictly positive integer, we conclude

that S consists of a single point. Translating that point to the origin,
Ï becomes a lisse sheaf on ´m which is irreducible and nonconstant,

so necessarily a nontrivial Kummer sheaf Òç. QED
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2222....11112222 MMMMuuuussssiiiinnnnggggssss oooonnnn ****mmmmiiiidddd≠≠≠≠ ----iiiinnnnvvvveeeerrrrttttiiiibbbblllleeee oooobbbbjjjjeeeeccccttttssss iiiinnnn ∏∏∏∏ iiiinnnn tttthhhheeee ´́́́mmmm
ccccaaaasssseeee
(2.12.1) In this section, we work on ´m over an algebraically

closed field k of characteristic ± ….
LLLLeeeemmmmmmmmaaaa 2222....11112222....2222 On ´m over an algebraically closed field k of

characteristic ± …, let K in Dbc(´m, ä$…). The following conditions are

equivalent:
1) RÆc(´m, K‚Òç) = 0 for some Kummer sheaf Òç.

2) RÆ(´m, K‚Òç) = 0 for some Kummer sheaf Òç.

3a) each of the cohomology sheaves Ói(K) is a successive extension of
Kummer sheaves Òç.

3b) each of the perverse cohomology sheaves pÓi(K) is a successive
extension of Kummer sheaves Òç[1].

4) RÆc(´m, K‚Òç) = 0 for all but at most finitely many Kummer

sheaves Òç.

5) RÆ(´m, K‚Òç) = 0 for all but at most finitely many Kummer

sheaves Òç.

pppprrrrooooooooffff By (2.3.2.1), 3a) À 3b). The implications 3a) à 4) and 3a) à
5) are obvious, because RÆc(´m, Òç) = RÆ(´m, Òç) = 0 for any

nontrivial Kummer sheaf. The implications 4) à 1) and 5) à 2) are
trivial. We will prove below that 2) à 3a). Admitting this, we have
2) À 3a) À 3b) À 5). As noted in 2.3.1.1, we have

pÓi(DK) := D(pÓ-i(K)).
Therefore 3b) holds for K if and only if 3b) holds for DK. Therefore
the equivalences 2) À 3b) À 5) hold for DK, which by duality
means that the equivalences 1) À 3b) À 4) hold for K.

It remains to show that 2) à 3a). For this, we argue as follows,
cf. [Ka-ACT, 2.5.3]. Replacing K by K‚Òç, we may assume that

RÆ(´m, K) = 0. Consider the spectral sequence

E2
p,q = Hp(´m, Óq(K)) à Hp+q(´m, K).

It has E2
p,q = 0 unless p is 0 or 1 (cohomological dimension of an

affine curve), so degenerates at E2. Therefore for each ç, we have

RÆ(´m, K) = 0 À RÆ(´m, Ói(K)) = 0 for all i.

So to prove 2) à 3), it suffices to do so in the case when K is a single
sheaf Ï. In this case, we are reduced to the following sublemma.



Chapter 2-The theory of middle convolution-42

SSSSuuuubbbblllleeeemmmmmmmmaaaa 2222....11112222....3333 On ´m over an algebraically closed field k of

characteristic ± …, let Ï be a constructible ä$…-sheaf such that

H*(´m, Ï) = 0. Then Ï is lisse on ´m and everywhere tame, hence

a successive extension of Kummer sheaves Òç.

pppprrrrooooooooffff. Let j : U ¨ ´m be a dense open set where Ï is lisse. Consider

the canonical map Ï ¨ j*j
*Ï, whose (punctual) kernel we denote

Ïpct. The inclusion Ïpct fi Ï induces an inclusion

H0(´m, Ïpct) fi H0(´m, Ï) = 0,

whence H0(´m, Ïpct) = 0, and consequently Ïpct = 0. Thus Ï has

no nonzero punctual sections. For such an Ï, the Euler Poincarïe
formula

ç(´m, Ï) = -Swan0(Ï) -Swan‘(Ï)

-‡ x in ´m
[dropx(Ï) + Swanx(Ï)]

is a sum of terms which are each nonpositive. Since ç(´m, Ï) = 0,

we see that Ï is lisse on ´m, and everywhere tame. Because

π1
tame(´m) is abelian, any such Ï is a successive extension of

Kummer sheaves Òç, these being the characters of π1
tame(´m).

QED

For ease of later reference, we record here the well-known
LLLLeeeemmmmmmmmaaaa 2222....11112222....3333....1111 On ´m over an algebraically closed field k of

characteristic ± …, let K in Dbc(´m, ä$…) be perverse. Then

1) ç(´m, K) ≥ 0,

2) ç(´m, K) =0 if and only if K is a successive extension of Kummer

sheaves Òç[1].

pppprrrrooooooooffff For 1), use the short exact sequence

0 ¨ Ó-1(K)[1] ¨ K ¨ Ó0(K) ¨ 0
to reduce to the case when K is either punctual, in which case the
assertion is obvious, or is of the form Ï[1], with Ï a sheaf on ´m
with no nonzero punctual sections. In this case the Euler-Poincarïe
formula shows, as above, that ç(´m, Ï) ≤ 0, i.e., ç(´m, Ï[1]) ≥ 0.

For 2), the vanishing of

ç(´m, K) = ç(´m, Ó-1(K)[1]) + ç(´m, Ó0(K))
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together with the non-negativity of each summand shows that

Ó0(K) = 0, and that ç(´m, Ó-1(K)[1]) = 0. But Ó-1(K) has no

nonzero punctual sections, so again as in the proof of 2.12.3 the

Euler-Poincarïe formula shows that Ó-1(K) is a successive extension
of Kummer sheaves Òç. QED

LLLLeeeemmmmmmmmaaaa 2222....11112222....4444 On ´m over an algebraically closed field k of

characteristic ± …, let K in Dbc(´m, ä$…). For all but at most finitely

many Kummer sheaves Òç, the "forget supports" map

RÆc(´m, K‚Òç) ¨ RÆ(´m, K‚Òç)

is an isomorphism.
pppprrrrooooooooffff By the spectral sequences

E2
p,q = Hc

p(´m, Óq(K)‚Òç) à Hc
p+q(´m, K‚Òç)

and

E2
p,q = Hp(´m, Óq(K)‚Òç) à Hp+q(´m, K‚Òç),

we reduce immediately to the case where Ï is a single sheaf. In that
case, we need only avoid the ç whose inverses occur either in Ï(0)
or Ï(‘), the I(0) and I(‘)-representations attached Ï. QED

LLLLeeeemmmmmmmmaaaa 2222....11112222....5555 (Gabber-Loeser) On ´m over an algebraically closed

field k of characteristic ± …, let K and L be two objects in

Dbc(´m, ä$…). Then the mapping cone object formed from the "forget

supports" map between ~ and * multiplicative convolutions,
K*~≠L ¨ K**≠L,

has all of its ordinary and perverse cohomology sheaves successive
extensions of Kummer sheaves.
pppprrrrooooooooffff (compare the proof of [Ga-Loe, page 28]) Choose a Kummer
sheaf Òç such that the "forget supports" map is an isomorphism

RÆc(´m, N‚Òç) ¶ RÆ(´m, N‚Òç) for N any of the three objects

K, L, K*~≠L. This is possible by the preceding lemma. For this ç, we

claim the "forget supports" map
RÆ(´m, (K*~≠L)‚Òç) ¨ RÆ(´m,(K**≠L)‚Òç)

is an isomorphism. Since ç has been chosen so that
RÆc(´m, (K*~≠L)‚Òç) ¶ RÆ(´m, (K*~≠L)‚Òç),

it suffices to show that the "forget supports twice" map
RÆc(´m, (K*~≠L)‚Òç) ¨ RÆ(´m,(K**≠L)‚Òç)
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is an isomorphism. Using the definition of multiplicative convolution,
the multiplicativity of Òç, the Leray spectral sequence for both ~

and * direct image, and the Kunneth formula for both RÆc and RÆ,

this map becomes the map "forget supports"‚"forget supports"
RÆc(´m,K‚Òç)‚RÆc(´m,L‚Òç)¨RÆ(´m,K‚Òç)‚RÆ(´m,L‚Ò),

which is an isomorphism by our choice of ç. The lemma now follows
from 2.12.2, applied to K := the mapping cone of K*~≠L ¨ K**≠L.

QED

CCCCoooorrrroooollllllllaaaarrrryyyy 2222....11112222....6666 On ´m over an algebraically closed field k of

characteristic ± …, let K and L be two objects in Dbc(´m, ä$…) which

are perverse. Suppose that K satisfies ∏ for multiplicative
convolution. Then the kernel and cokernel of the "forget supports"
map between the perverse sheaves

K*~≠L ¨ K**≠L

are perverse sheaves which are successive extensions of Kummer
sheaves Òç[1].

pppprrrrooooooooffff The kernel and cokernel are the perverse cohomology sheaves
of the mapping cone. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 2222....11112222....7777 On ´m over an algebraically closed field k of

characteristic ± …, let K and L be two objects in Dbc(´m, ä$…) which

are perverse. Suppose that K satisfies ∏ for multiplicative
convolution. Then we have the product formula for middle
multiplicative convolution

ç(´m, K*mid≠L) = ç(´m, K)ç(´m, L).

pppprrrrooooooooffff We have a short exact sequence of perverse sheaves
0 ¨ ker ¨ K*mid≠L ¨ K*~≠L ¨ 0

on ´m. We know that ç(´m, ker) = 0 because ker is a successive

extension of Òç[1]'s. Thus we find

ç(´m, K*mid≠L) = ç(´m, K*~≠L).

By the ~ Kunneth formula we know that
çc(´m, K*~≠L) = çc(´m, K)çc(´m, L).

Finally, we know that çc(´m, N) = ç(´m, N) for any derived

category object N. QED
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CCCCoooorrrroooollllllllaaaarrrryyyy 2222....11112222....8888 On ´m over an algebraically closed field k of

characteristic ± …, let K and L be two objects in Dbc(´m, ä$…) which

are perverse and which both satisfy ∏ for multiplicative
convolution. Suppose that K*mid≠L = ∂1, i.e., suppose that K in ∏ is

invertible for multiplicative middle convolution, with inverse L.
Then

ç(´m, K) = ç(´m, L) = 1.

pppprrrrooooooooffff Indeed, ç(´m, ∂1) = 1, and ç(´m, K) is a nonnegative integer

for any perverse K on ´m, by 2.12.3.1. QED

TTTThhhheeeeoooorrrreeeemmmm 2222....11112222....9999 On ´m over an algebraically closed field k of

characteristic ± …, let K and L in Dbc(´m, ä$…) be perverse and

satisfy ∏ for multiplicative convolution. Suppose that K*mid≠L = ∂1.

1)On ´m , the operators X ÿ X*mid≠K and X ÿ X*mid≠L on ∏ are

automorphisms of ∏, which are inverses of each other.
2) The operator X ÿ X*mid≠K induces an automorphism of the

perverse irreducible objects in ∏, with inverse the operator X ÿ
X*mid≠L.

3) L and K are perverse irreducible on ´m.

pppprrrrooooooooffff This is entirely analogous to the additive case, cf. 2.9.7 and
2.9.9. QED

TTTThhhheeeeoooorrrreeeemmmm 2222....11112222....11110000 On ´m over an algebraically closed field k of

characteristic ± …, let K in Dbc(´m, ä$…) be perverse. The following

conditions are equivalent.
1) K lies in ∏ and ç(´m, K) = 1.

2) K is perverse irreducible and ç(´m, K) = 1.

3) K is an irreducible hypergeometric (cf. [Ka-ESDE, 3.5.4 and 8.5.3]).
4) K lies in ∏, and there exists a geometric isomorphism

K*mid≠D(inv
*K) ¶ ∂1.

5) K lies in ∏, and is invertible for multiplicative middle convolution.

pppprrrrooooooooffff For 1) à 2), let L fi K be nonzero perverse irreducible. If L=K,
stop. If K/L is nonzero, we get a contradiction as follows. Since K lies
in ∏, L is not any Òç[1], so ç(´m, L) > 0, by 2.12.3.1, 2). But by

2.12.3.1, 1),
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ç(´m, any perverse) ≥ 0,

so from the exact sequence
0 ¨ L ¨ K ¨ K/L ¨ 0

we get ç(´m, L) = 1, and ç(´m, K/L) = 0. Thus K/L is a successive

extension of Òç[1]'s, and so K has an Òç[1] quotient. But this is

impossible, because K lies in ∏.
That 2) à 3) is proven in [Ka-ESDE, 3.5.4 and 8.5.3]. That 4) à

5) is trivial, and 5) à 1) is proven in 2.12.8 above .
It remains only to prove 3) à 4). Suppose first that we are in

characteristic p > 0. By the structure theorem [Ka-ESDE, 8.5.3] for
hypergeometrics, we know that every irreducible hypergeometric is
either a ∂ or is Ï[1] for Ï a hypergeometric sheaf Ó¬(~, ¥, ç's, ®'s)

with disjoint ç's and ®'s. Such a hypergeometric is a successive
*mid≠ convolution (because with disjoint ç's and ®'s, each *~≠ §

**≠ in the constructive definition of hypergeometric objects cf. [Ka-

ESDE, 8.4.2 (5)]) of sheaves Òç‚Ò¥[1], their multiplicative

translates (this only changes the ¥) and their multiplicative

inverses. So we are reduced to showing that K*mid≠D(inv
*K) ¶ ∂1

for K =Òç‚Ò¥[1]. Now for all the convolutions on ´m, we have

(Òç‚A)*any,≠(Òç‚B) = Òç‚(A*any,≠B).

So it remains to show that K*mid≠D(inv
*K) ¶ ∂1. for K =Ò¥[1]. This

will be proven in 2.13.4 below.
If we are in characteristic zero, then by classification every

irreducible hypergeometric. is either a ∂ or is Ï[1] for Ï a
hypergeometric sheaf Ó¬(ç's, ®'s) of type (n,n) with disjoint ç's and

®'s. Such an Ï[1] is a successive multiplicative middle convolution
(with disjoint ç's and ®'s, each *~≠ § **≠) of hypergeometrics of

type (1,1), Ó¬(ç, ®)[1] with ç ± ® (compare [Ka-ESDE, 5.3.1] for the

Î-module analogue). So we are reduced to the case when K is
j*Òç(x)(®/ç)(¬-x)[1]. Just as in characteristic p, we may replace K

by K‚Òäç, and multiplicatively translate ¬ to 1. This reduces us to

treating universally the case when K = j*Òç(1-x)[1], with ç

nontrivial. This will be proven in 2.13.3 below.



Chapter 2-The theory of middle convolution-47

2222....11113333 IIIInnnntttteeeerrrrlllluuuuddddeeee:::: ssssuuuurrrrpppprrrriiiissssiiiinnnngggg rrrreeeellllaaaattttiiiioooonnnnssss bbbbeeeettttwwwweeeeeeeennnn ****mmmmiiiidddd oooonnnn !!!!1111

aaaannnndddd oooonnnn ´́́́mmmm

LLLLeeeemmmmmmmmaaaa 2222....11113333....1111 On ´m over an algebraically closed field k of

characteristic ± …, let K in Dbc(´m, ä$…) be perverse, and let Òç be

any nontrivial Kummer sheaf on ´m. Let j: ´m ¨ !1 be the

inclusion, and denote j*Òç on !1 simply as Òç. We have

K*~≠Òç(x-1)[1] = j*( j~(K‚Òäç)*~+Òç[1] )

K**≠Òç(x-1)[1] =j
*( Rj*(K‚Òäç)**+Òç[1] ).

K*mid ≠Òç(x-1)[1] = j*( j~*(K‚Òäç)*mid+Òç[1] ).

pppprrrrooooooooffff Let's start with K on ´m any derived category object. For ç

nontrivial, we have, for π : ´m≠´m ¨ ´m the map (x,t) ÿ t, and

j: ´m ¨ !1 the inclusion,

K*~≠Òç(x-1) := Rπ~(Kx‚Òç((t/x) - 1)) =

= Rπ~((K‚Òäç)x‚Òç(t - x))

=j*( j~(K‚Òäç)*~+Òç ).

Dualizing this, we get

DK**≠Òäç(x-1) = j*( Rj*(DK‚Òç)**+Òäç ).

Replacing K by DK and ç by äç, this gives

K**≠Òç(x-1) =j
*( Rj*(K‚Òäç)**+Òç ).

Suppose now that K is perverse on ´m. Then so is K‚Òäç, and we

have equalities on perverse sheaves (perverse because Òç(x-1)[1] is

∏ on ´m, and because Òç[1] is ∏ on !1) on ´m:

K*~≠Òç(x-1)[1] = j*( j~(K‚Òäç)*~+Òç[1] )

K**≠Òç(x-1)[1] =j
*( Rj*(K‚Òäç)**+Òç[1] ).

Take the image of the first in the second. On the left side, the map is
the "forget supports" map, and we get K*mid ≠Òç(x-1)[1] as image.

On the right side, the map is the pullback to ´m of the map "forget

supports twice" of perverse sheaves on !1

j~(K‚Òäç)*~+Òç[1] ¨ Rj*(K‚Òäç)**+Òç[1].
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This map we may factor into two surjections followed by two
injections, as follows:
j~(K‚Òäç)*~+Òç[1] ¨ j~*(K‚Òäç)*~+Òç[1] (exactness of *~+Òç[1])

j~*(K‚Òäç)*~+Òç[1] ¨ j~*(K‚Òäç)*mid+Òç[1] (def'n of *mid)

j~*(K‚Òäç)*mid+Òç[1]¨j~*(K‚Òäç)**+Òç[1] (def'n of *mid)

j~*(K‚Òäç)**+Òç[1]¨Rj*(K‚Òäç)**+Òç[1] (exactness of **+Òç[1])

so the image of this composite map is j~*(K‚Òäç)*mid+Òç[1]. QED

In analogous but simpler fashion, we have
LLLLeeeemmmmmmmmaaaa 2222....11113333....2222 On ´m over an algebraically closed field k of

characteristic p ± …, p > 0, let K in Dbc(´m, ä$…) be perverse. Then

for j: ´m ¨ !1 the inclusion, we have

inv*K*~≠j
*Ò¥[1] = j*FT(j~K),

inv*K**≠j
*Ò¥[1] = j*FT(Rj*K),

inv*K*mid≠j
*Ò¥[1] = j*FT(j~*K).

pppprrrrooooooooffff The first assertion results formally from the definitions, cf
[Ka-ESDE, p264, or GKM 8.6.1], and the second is the dual of the first.

Since j*Ò¥[1] on ´m is in ∏, being perverse irreducible and not an

Òç[1], all the objects in the first two assertions are perverse. The

third assertion is the image of the first in the second by the "forget
supports" map, where on the right we think of the source as

j*FT~(j~K) and the target as j*FT*(Rj*K). QED

As a nice application of these last two results, we can now complete
the proof of 2.12.10, 3) à 4).

CCCCoooorrrroooollllllllaaaarrrryyyy 2222....11113333....3333 On ´m over an algebraically closed field k of

characteristic ± …, let Òç be any nontrivial Kummer sheaf. Then K

= Òç[1] satisfies K*mid≠D(inv
*K) = ∂1.

pppprrrrooooooooffff For any perverse L on ´m, we have

L*mid ≠Òç(x-1)[1] = j*( j~*(L‚Òäç)*mid+Òç[1] ).

We take
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L := D(inv*Òç(x-1)[1]) = Òäç((1/x) - 1)[1] = Òäç((1 - x)/x)[1].

Then
j~*(L‚Òäç) = Òäç(1 - x)[1],

and the formula becomes

D(inv*Òç(x-1)[1])*mid ≠Òç(x-1)[1] =j
*( Òäç(1 - x)[1]*mid+Òç[1]).

This last object Òäç(1 - x)[1]*mid+Òç[1] on !1 is (geometrically) the

additive translation by 1 of Òäç[1]*mid+Òç[1], which we have

already seen to be ∂0. So we obtain

D(inv*Òç(x-1)[1])*mid ≠Òç(x-1)[1] = ∂1, as required. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 2222....11113333....4444 On ´m over an algebraically closed field k of

characteristic p ± …, p > 0, K = Ò¥[1] satisfies K*mid≠D(inv
*K) = ∂1.

pppprrrrooooooooffff For any perverse L on ´m, we have, by 2.13.2 above,

inv*L*mid≠j
*Ò¥[1] = j*FT(j~*L).

For L =j*Òä¥[1] on ´m, we have j~*L = Òä¥[1] on !1, and so FT(j~*L)

= ∂1. Since L = DK, the above formula says precisely

inv*DK*mid≠K = ∂1 for.K =j*Ò¥[1] on ´m.

But inv*DK = D(inv*K), so the commutativity of middle convolution
gives

K*mid≠D(inv
*K) = ∂1, as required. QED

2222....11114444 IIIInnnntttteeeerrrrpppprrrreeeettttiiiivvvveeee rrrreeeemmmmaaaarrrrkkkk:::: FFFFoooouuuurrrriiiieeeerrrr----BBBBeeeesssssssseeeellll TTTTrrrraaaannnnssssffffoooorrrrmmmm We
continue to work on ´m over an algebraically closed field of

characteristic p > 0, p±…. For any irreducible hypergeometric sheaf
Ó, and in particular for any Kloosterman sheaf , Ó[1] lies in ∏ and
is invertible for middle multiplicative convolution. Thus *mid(Ó[1])

is an automorphism of ∏, with inverse *midDinv
*(Ó[1]). In

particular, if we take Ó to be the "classical" rank two Kloosterman
sheaf Kl2, we find the …-adic analogue of the classical Fourier-Bessel

Transform.
In characteristic 0, we can only form such a transform with

hypergeometrics of type (n,n). But already in the case n=2, where
we have the Gauss hypergeometric function, we have a transform
which should have received a classical name, and some classical
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attention.

2222....11115555 QQQQuuuueeeessssttttiiiioooonnnnssss aaaabbbboooouuuutttt tttthhhheeee ssssiiiittttuuuuaaaattttiiiioooonnnn iiiinnnn sssseeeevvvveeeerrrraaaallll vvvvaaaarrrriiiiaaaabbbblllleeeessss

LLLLeeeemmmmmmmmaaaa 2222....11115555....1111 On !n over an algebraically closed field of

characteristic p ± …, p > 0, a perverse K in Dbc(!
n, ä$…) has ∏~ if and

only if FT(K) is of the form Ï[n] for some sheaf Ï.
pppprrrrooooooooffff First of all, we already know that for M and K perverse, the
dual of K*~M is semiperverse, so K is in ∏~ if and only if K*~M is

semiperverse for every perverse M. On the FT side, we are asking
when L:= FT(K) has the property that N ÿ N‚L[-n] maps perverses
to semiperverses. As soon as L[-n] has some nonzero cohomology
sheaf in strictly positive degree, we can take N to be ∂å for some

point å where the offending cohomology sheaf lives, and get a non-
semiperverse answer. So the condition is necessary, and it is
trivially sufficient, since when it holds, N ÿ N‚L[-n] = N‚Ï only

decreases the supports of the Ó-i. QED

(2.15.2) As an application of this lemma, ∂'s on !n and external

products of perverse objects with ∏~ on each !1 factor will satisfy

∏~ on !n. What about condition ∏ on !n? On the Fourier

Transform side, we are looking for the sheaves Ï on !n such that
Ï[n] is perverse and such that D(Ï[n]) = Ì[n] for some sheaf Ì.
What is the classification of such sheaves?

(2.15.3) Since K on !n has ∏ iff both K and DK have ∏~, external

products of perverse objects with ∏ on each !1 factor will satisfy ∏

on !n. What is the intrinsic characterization of ∏ on !n? What if
any is the analogue of the one-variable criterion

Hom(Ò¥[1], K) = Hom(K, Ò¥[1]) = 0

which we had on !1? There are presumably lots of objects in ∏ on

!n other than external products of objects in ∏ on the factors, and
∂'s. What are they? How can analyze the situation without FT?
What happens in characteristic zero?

(2.15.4) Already on higher dimensional tori (´m)n we don't seem

to know even that external products of perverse objects with ∏ on

each ´m factor will satisfy ∏ on (´m)n

2222....11116666 QQQQuuuueeeessssttttiiiioooonnnnssss aaaabbbboooouuuutttt tttthhhheeee ssssiiiittttuuuuaaaattttiiiioooonnnn oooonnnn eeeelllllllliiiippppttttiiiicccc ccccuuuurrrrvvvveeeessss
(2.16.1) What about the situation on an elliptic curve E over an
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algebraically closed field of characteristic ±…, where again we may
speak of ∏ (here ∏~ and ∏* are both ∏)? Any perverse irreducible
whose isomorphism class, under translation, has only a finite
stabilizer, is automatically in ∏. We know the stability under *
trivially for ∏ (just as we knew it trivially for ∏~ in the
noncompact case).
(2.16.2) If we are over äÉp, there is a kind of FT defined using the

Lang torsors over finite subfields k0 over which E is defined,

E ¨ E by 1 - Frobk0
, with structural group E(k0),

and pushing out by characters ≈ of the group E(k0) to get rank one

lisse sheaves Ò≈ on E against which we can form

(K, ≈) ÿ RÆ(E, K‚Ò≈).

The Euler characteristic ç(E, K‚Ò≈) is independent of ≈. In any

case, if K is say perverse irreducible, and not itself any Ò≈, then

RÆ(E, K‚Ò≈) has only its middle cohomology group possibly nonzero.

Just as in the !1 and ´m cases, we have

LLLLeeeemmmmmmmmaaaa 2222....11116666....3333 On an elliptic curve E over an algebraically closed
field of characteristic ±…, the necessary and condition that a
perverse K on E have ∏ is that for each lisse rank one Ò on E
(automatically translation invariant), we have

Hom(Ò[1], K) = Hom(K, Ò[1]) = 0.

(2.16.4) What are the invertible objects on an elliptic curve E

over an algebraically closed field of characteristic ±…? Since

ç(E, K*L) = ç(E, K)ç(E, L),

only those objects in ∏ whose Euler characteristic ç = 1 can

possibly be invertible. Notice that any object in ∏ with ç=1 is

irreducible (since by the Euler Poincarïe formula on E, ç(E, K) ≥ 0

for any perverse K, with equality if and only if K is Ï[1] with Ï lisse

on E, so a successive extension of lisse Ò's of rank one, cf. below). Do

we know any non-∂ examples of invertible objects? Indeed, do we

know any non-∂ examples of irreducible perverse sheaves K on E

with ç(E, K) = 1?

(2.16.5) On E the Euler Poincarïe formula for j*Ï[1] gives
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ç(E, j*Ï[1]) = - ç(E, j*Ï) = ‡x in E (dropx(Ï) + swanx(Ï)).

So if ç(E, j*Ï[1]) =1, then there is only one point x with a nonzero

contribution. At that point, (which by translation we may as well
take to be the origin 0E) Ï's local monodromy is tame (since

swan > 0 forces drop > 0) and a pseudoreflection. In fact this
pseudoreflection must be unipotent, since det(Ï) is lisse of rank one
on E - {0}, with tame local monodromy at 0; because E and E-{0}

have the same tame (π1)
ab, det(Ï) is also lisse at zero. In

particular, ç(E, j*Ï[1]) = 1 implies rank(Ï) ≥ 2.

(2.16.6) In characteristic zero, such an Ï on E - {0} is a pair A, B
in GL(n, ^), n:= rank(Ï), with commutator {A,B} a unipotent
pseudoreflection. If such a j*Ï[1] is in ∏, then, as noted above, Ï

must be irreducible on E - {0}.
(2.16.7) This brings us to the following question, which we are at
present unable to answer, except by explicit calculation, in rank
n=2, where the answer is nnnneeeeggggaaaattttiiiivvvveeee. Given n ≥ 2, do there exist
elements A, B in GL(n, ^) with commutator {A,B} a unipotent
pseudoreflection, such that the group <A, B> generated by A and B is
an irreducible subgroup of GL(n, ^)? [As we have seen above, this is
equivalent to the question of whether there exist perverse
irreducibles K on E with ç(E, K) = 1 of the form Ï[1] with Ï of
generic rank n.] We may scale both A and B, and require that A and
B lie in SL(n, ^) if we like.
(2.16.8) Let us briefly explain the negative answer to the n=2 case
of this question. Here the "trick" is that an element X in SL(2, ^) is
unipotent if and only if trace(X) = 2. So we first want to find two
elements A and B in SL(2, ^) whose commutator has trace 2, then
check to see if A and B generate an irreducible subgroup of SL(2, ^).
We may conjugate by SL(2, ^) to reduce to the case when A is
upper triangular. If A has distinct eigenvalues, then by further
conjugation we may assume it is diag(x,y), with x±y, xy=1. If A has
repeated eigenvalues, they must be both _1, so either A = _1, or A
= _(the standard upper unipotent).
(2.16.9) If A is diagonal and nonscalar, we compute {A,B}, set its
trace =2, and find that B is either upper or lower triangular, so
<A,B> can't be irreducible in this case. If A is scalar, <A,B> is not
irreducible. If A is _(unipotent), we find that B is upper triangular,
and again <A,B> is not irreducible. So it seems that no such
irreducibles exist~
(2.16.10) This seems to put a damper on our elliptic hopes, and
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makes it likely, or at least plausible, there are no ç=1 irreducibles
of any rank > 1. It would be interesting to clarify this point.
(2.16.11) Another point one should clarify is this: the rigid objects
Ïn,Ω on E - {0E} constructed in the last chapter give perverse

irreducibles j*Ïn,Ω[1] on E, which have ç(E, j*Ïn,Ω[1]) = n, hence

lie in ∏. What happens when we convolve them with each other?

2222....11117777 AAAAppppppppeeeennnnddddiiiixxxx 1111:::: tttthhhheeee bbbbaaaassssiiiicccc lllleeeemmmmmmmmaaaa oooonnnn eeeennnndddd----eeeexxxxaaaacccctttt ffffuuuunnnnccccttttoooorrrrssss
LLLLeeeemmmmmmmmaaaa 2222....11117777....1111 We are given two abelian categories Å and ı, two
exact functors S, T from Å to ı, and a morphism of functors
ƒ: S ¨ T. Then the functor Im(ƒ) from Å to ı defined by

Im(ƒ)(A) := Image (ƒA: S(A) ¨ T(A))

is end-exact, i.e., it carries injections to injections, and it carries
surjections to surjections.
pppprrrrooooooooffff Let us begin with a short exact sequence in Å,

0 ¨ A ¨ B ¨ C ¨ 0.
Applying the functors S and T, we get a commutative diagram in ı

0 ¨ SA ¨ SB ¨ SC ¨ 0.
dƒA dƒB dƒC

0 ¨ TA ¨ TB ¨ TC ¨ 0.
with exact rows. Applying the snake lemma, we get a six term
exact sequence

∂
0 ¨ Ker(ƒA) ¨ Ker(ƒB) ¨ Ker(ƒC) ¨ Coker(ƒA)¨ Coker(ƒB)¨

¨ Coker(ƒC) ¨ 0.

We denote by Ker(ƒC)[∂] fi Ker(ƒC) the kernel of the coboundary

map ∂, and extract the short exact sequence

0 ¨ Ker(ƒA) ¨ Ker(ƒB) ¨ Ker(ƒC)[∂] ¨ 0.

Then we have a commutative diagram in ı

0 ¨ Ker(ƒA) ¨ Ker(ƒB) ¨ Ker(ƒC)[∂] ¨ 0.

Ò Ò Ò
0 ¨ SA ¨ SB ¨ SC ¨ 0.

with exact rows and with all vertical arrows injective. Applying the
snake to this diagram gives a short exact sequence

0 ¨ SA/Ker(ƒA) ¨ SB/Ker(ƒB) ¨ SC/Ker(ƒC)[∂] ¨ 0,

which we may rewrite as
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0 ¨ Im(ƒA) ¨ Im(ƒB) ¨ SC/Ker(ƒC)[∂] ¨ 0.

Thus the map Im(ƒA) ¨ Im(ƒB) is injective. The third term

SC/Ker(ƒC)[∂] of this exact sequence surjects onto SC/Ker(ƒC) ¶

Im(ƒC), and hence the map Im(ƒB) ¨ Im(ƒC) is surjective, being

the composition of the two surjections

Im(ƒB) n SC/Ker(ƒC)[∂] n SC/Ker(ƒC) ¶ Im(ƒC). QED

2222....11118888 AAAAppppppppeeeennnnddddiiiixxxx 2222:::: ttttwwwwiiiissssttttiiiinnnngggg rrrreeeepppprrrreeeesssseeeennnnttttaaaattttiiiioooonnnnssss bbbbyyyy cccchhhhaaaarrrraaaacccctttteeeerrrrssss
(2.18.1) In analyzing the translation-invariant perverse

irreducibles on !1 over an algebraically closed field k of
characteristic p > 0, cf. the proof of 2.6.13, we made use of the
following lemma, with Æ the group I(‘), K the field ä$…, and

characters all the Ò¥(∫x), ∫ in k.

LLLLeeeemmmmmmmmaaaa 2222....11118888....2222 Let Æ be a group, K an algebraically closed field of
characteristic zero, and M a finite-dimensional K-representation of
Æ. Suppose that for an infinity of one-dimensional K-valued
characters ç of Æ, there exists an isomorphism M ¶ M‚ç (as K-
representation of Æ). Then M = 0.

We will prove this in the following equivalent form.

LLLLeeeemmmmmmmmaaaa 2222....11118888....2222 bbbbiiiissss Let Æ be a group, K an algebraically closed field
K of characteristic zero, and M a non-zero finite-dimensional K-
representation of Æ. Denote by Stab(M,Æ) the subgroup of the

character group Hom(Æ, K≠) consisting of those characters ç of Æ for
which there exists an isomorphism M ¶ M‚ç (as K-representation
of Æ). Then Stab(M,Æ) is finite.

pppprrrrooooooooffff
Step 1.We first reduce to the case where M is a faithful
representation of Æ. Denote by Ker(M) fi Æ the kernel of the
representation M of Æ. Then for any ç in Stab(M,Æ), ç|Ker(M) lies in
Stab(M|Ker(M), Ker(M)) = Stab( dim(M) copies of ú, Ker(M)).
Comparing characteristic polynomials, we see that ç|Ker(M) is
trivial. Thus we find

Stab(M, Æ) = Stab(M, Æ/Ker(M)).
Step 2. We henceforth suppose that M is a faithful representation,
i.e. that Æ fi GL(M). We denote by G the Zariski closure of Æ in GL(M).
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We claim that every character ç in Stab(M, Æ) extends uniquely to
an algebro-geometric character êç in Hom(G, ´m).

Indeed, given ç in Stab(M, Æ), there exists by definition an
element A in GL(M) such that, for every © in Æ, we have

A©A-1 = ©ç(©).
We rewrite this as

A©A-1©-1 = ç(©),
and remember only

A©A-1©-1 = scalar.
For fixed A in GL(M), the map of GL(M) to itself defined by

B ÿ ABA-1B-1

is an algebro-geometric morphism. In the target GL(M), the set of
scalar matrices is Zariski closed (equations Xi,j = 0 for i±j, Xi,i =

X1,1 for 1≤i≤dim(M)). So for fixed A, the set of B in GL(M) for which

ABA-1B-1 = scalar
is Zariski closed. It is also a group, as one sees in rewriting this
equation as

ABA-1 = (scalar)B.
Thus the set of such B's is a Zariski closed subgroup of GL(M), which
contains Æ. Therefore it contains G. Thus for every g in G, there
exists a scalar, say å(g), such that

å(g) := AgA-1g-1.
Clearly the function g ÿ å(g) is an algebro-geometric morphism to
´m (it is an algebro-geometric morphism to GL(M) which lands in

the subgroup consisting of scalars). This function is multiplicative in
g, as one sees by rewriting the defining equation as

AgA-1 = å(g)g.
For if g and h are elements of G, we have

å(hg)hg = AhgA-1 = AhA-1AgA-1 = å(h)hå(g)g = å(h)å(g)hg,

and multiplying both sides by (hg)-1 gives å(hg) = å(h)å(g). Thus
g ÿ å(g) is an algebro-geometric character of G which agrees with
ç on Æ. Since Æ is Zariski dense in G, there is at most one such,
which we denote êç. Thus

êç(g) := å(g).
Step 3. For every ç in Stab(M, Æ), êç lies in Stab(M, G), as is clear
from the equation

AgA-1 = å(g)g := êç(g)g.
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Thus we have
Stab(M, G) ¶ Stab(M, Æ),

the isomorphism that of restriction to Æ.
Step 4. For any êç in Stab(M, G), by taking determinants in the
equation

AgA-1 = êç(g)g,

we see that êç(g)dim(M) = 1. Thus ëç has finite order, and hence is a

character of the finite group G/G0 of components of G. Therefore

Stab(M, G) lies in the finite group Hom(G/G0, K≠), hence is finite.
Therefore the isomorphic group Stab(M, Æ) is finite, as required. QED
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3333....0000 FFFFoooouuuurrrriiiieeeerrrr TTTTrrrraaaannnnssssffffoooorrrrmmmm aaaannnndddd iiiinnnnddddeeeexxxx ooooffff rrrriiiiggggiiiiddddiiiittttyyyy

(3.0.1) Let … be a prime number. On !1 over an algebraically

closed field of characteristic ±…, denote by k: !1 ¨ @1 the inclusion.

Let K in Dbc(!
1, ä$…) be a perverse sheaf which is a middle

extension, i.e., K is j*Ï[1] for a nonempty open set j: U ¨ !1, and a

lisse ä$…-sheaf Ï on U. We define the iiiinnnnddddeeeexxxx ooooffff rrrriiiiggggiiiiddddiiiittttyyyy of K, rig(K),

to be the integer (compare 2.0.3-6)

rig(K) := ç(@1, k*j*End(Ï)).

TTTThhhheeeeoooorrrreeeemmmm 3333....0000....2222 Let p and … be prime numbers, …±p. On !1 over an

algebraically closed field of characteristic p, let K in Dbc(!
1, ä$…) be a

perverse irreducible such that neither K nor FT(K) is punctual (i.e., K
is neither a ∂å nor an Ò¥å

[1]). Then K and FT(K) have the same

index of rigidity:
rig(K) = rig(FT(K)).

This is a special case of the slightly more general

TTTThhhheeeeoooorrrreeeemmmm 3333....0000....3333 Let p and … be prime numbers, …±p. On !1 over an

algebraically closed field of characteristic p, let K in Dbc(!
1, ä$…) be a

perverse sheaf on !1 such that both K and FT(K) are middle

extensions from any nonempty open set of !1. Then
rig(K) = rig(FT(K)).

pppprrrrooooooooffff ooooffff TTTThhhheeeeoooorrrreeeemmmm 3333....0000....3333 Write K = j*Ï[1] and FT(K) = j*Ì[1], for

some dense open j: U ¨ !1, and lisse sheaves Ï and Ì on U. Denote

by k: !1 ¨ @1 the inclusion. By definition,

rig(K) := ç(@1, k*j*End(Ï)) =

= dim End(Ï)I(‘) + ç(!1, j*End(Ï)).

The sheaf j*End(Ï) on !1 contains the subsheaf j*(Ï)‚j*(Ï
£); the

quotient j*End(Ï)/j*(Ï)‚j*(Ï
£) is punctual, supported in !1 - U:

j*End(Ï)/j*(Ï)‚j*(Ï
£) = ·x in !1 ∂xºEnd(Ï)

I(x)/(ÏI(x)‚(Ï£)I(x)).

so
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rig(K) := ç(!1, j*(Ï)‚j*(Ï
£)) + dim[End(Ï)I(‘)] +

+ ‡x in !1 dim[End(Ï)I(x)/(ÏI(x)‚(Ï£)I(x))].

Since K = j*Ï[1], DK = j*Ï
£[1], and we have

j*(Ï)‚j*(Ï
£) = DK‚K[-2].

Thus

rig(K) := ç(!1, DK‚K) + dim[End(Ï)I(‘)] +

+ ‡x in !1 dim[End(Ï)I(x)/(ÏI(x)‚(Ï£)I(x))].

Now we break up the I(‘)-representation Ï(‘) of Ï according to
whether slopes are ≤1 or >1:

Ï(‘) = Ï(‘)(≤1) · Ï(‘)(>1).
Because there are no nonzero I(‘)-equivariant maps between I(‘)-
representations with disjoint slopes, we have

End(Ï)I(‘) := EndI(‘)(Ï(‘)) =

= EndI(‘)(Ï(‘)(≤1)) + EndI(‘)(Ï(‘)(>1)).

Using this, we rewrite the formula for rig(K) as the sum of four
terms

rig(K) = 1(K) + 2(K) + 3(K) + 4(K)

1(K) := ç(!1, DK‚K),
2(K) := dim[EndI(‘)(Ï(‘)(>1))],

3(K) := dim[EndI(‘)(Ï(‘)(≤1))],

4(K) := ‡x in !1 dim[End(Ï)I(x)/(ÏI(x)‚(Ï£)I(x))].

With this breakup, the equality
rig(K) = rig(FT(K)).

results from the

TTTThhhheeeeoooorrrreeeemmmm 3333....0000....4444 Let p and … be prime numbers, …±p. On !1 over an

algebraically closed field of characteristic p, let K in Dbc(!
1, ä$…) be a

perverse sheaf on !1 such that both K and FT(K) are middle

extensions from any nonempty open set of !1. Then
1(K) = 1(FT(K)), 2(K) = 2(FT(K)), 3(K) = 4(FT(K)), 4(K) = 3(FT(K)).

pppprrrrooooooooffff We begin with 1), a form of Parseval's formula which is valid

for any object K in Dbc. We denote by D-K the object [x ÿ -x]*(DK).

We have



Chapter 3-Fourier Transform and rigidity-3

1(K) := ç(!1, DK‚K) = çc(!
1, DK‚K) = rank0(D-K*~+K),

the last equality by using proper base change to calculate the stalk
at zero of D-K*~+K.

Applying this to FTK gives
1(FTK) = rank0(D-FTK*~+FTK) = rank0(FTDK*~+FTK)

(using D-«FT = FT«D)

= rank0(FT(DK‚K)[-1])

(FT interchanges ‚ and *~+)

= ç(!1, DK‚K)
(using the ~ form of FT, and proper base change)

:= 1(K), as required.
Assertion 2) follows from taking dimensions in the more precise

equality
EndI(‘)(Ï(‘)(>1)) = EndI(‘)(Ì(‘)(>1)).

This holds because, in terms of Laumon's local Fourier Transform
FTloc(‘,‘), we have

Ì(‘)(>1) = FTloc(‘,‘)(Ï(‘)(>1)),
and one knows (cf. [Lau-TF], [Ka-TL], [Ka-ESDE, 7.4.1]) that
FTloc(‘,‘) is an autoequivalence of the category of I(‘)-
representations with all slopes >1.

The last two assertions,
3(K) = 4(FT(K)), 4(K) = 3(FT(K)),

are in fact equivalent. [They are obtained from each other by

replacing K by FTK, and noting that FT(FTK) § [x ÿ -x]*K up to a

Tate twist, while visibly 4(K) = 4([x ÿ -x]*K).] We will prove that
4(K) = 3(FT(K)).

For this, we recall the theory of Laumon's local Fourier

Transforms FTloc(x,‘), for x in !1. Each of these is an equivalence
of categories

I(x)-representations § I(‘)-representations with all slopes <1.
By Laumon's theory of stationary phase [Ka-ESDE, 7.4], we know
that

Ì(‘)(≤1) = ·x in !1 Ò¥x
‚FTloc(x,‘)(Ï(x)/Ï(x)I(x)).

[In [Ka-ESDE, 7.4.1], the functor M ÿÒ¥x
‚FTloc(x,‘)(M) was called

FTloc(x,‘)]
There are no nonzero I(‘)-equivariant maps between the

distinct summands. [If M and N are any two I(‘)-representations
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all of whose slopes are <1, then for x ±y, HomI(‘)(Ò¥x
‚M, Ò¥y

‚N)

= HomI(‘)(M, Ò¥y-x
‚N) = 0, since Ò¥y-x

‚N has all slopes =1,

while M has all slopes <1.] Therefore

EndI(‘)(Ì(‘)(≤1)) = ·x in !1 EndI(‘)(FTloc(x,‘)(Ï(x)/Ï(x)I(x)).

Because FTloc(x,‘) is an equivalence of categories
I(x)-representations § I(‘)-representations with all slopes <1,

we have

EndI(‘)(FTloc(x,‘)(Ï(x)/Ï(x)I(x)) = EndI(x)(Ï(x)/Ï(x)
I(x)).

Thus we obtain

EndI(‘)(Ì(‘)(≤1)) = ·x in !1 EndI(x)(Ï(x)/Ï(x)
I(x)).

To complete the proof, it remains only to check that

dim[EndI(x)(Ï(x)/(Ï
I(x)‚(Ï£)I(x)))] = dim[EndI(x)(Ï(x)/Ï(x)

I(x))].

This is proven in the following section, Proposition 3.1.8. QED
3333....1111 LLLLeeeemmmmmmmmaaaassss oooonnnn rrrreeeepppprrrreeeesssseeeennnnttttaaaattttiiiioooonnnnssss ooooffff iiiinnnneeeerrrrttttiiiiaaaa ggggrrrroooouuuuppppssss
(3.1.1) Throughout this section, we fix a complete discrete
valuation ring R with algebraically closed residue field k and with
fraction field K. We denote by I the galois group

I := Gal(Ksep/K).
If char(k) = p > 0, we denote by P fi I the unique p-Sylow subgroup.
If char(k) = 0, we define P = {e}. The quotient I/P is (noncanonically)
the pro-cyclic group °…±p #….

(3.1.2) We also fix a prime number …±char(k). By an …-adic
representation of I, we mean a continuous ä$…-representation ® of I

on a finite-dimensional ä$…-vector space V, with the property that

there exists a finite extension E¬ of $… with ring of integers Ø¬, a

free Ø¬-module V0, and a continuous Ø¬-representation ®0 of I on

V0 such that (®0, V0)‚ä$… § (®, V).

(3.1.3) An …-adic representation of I is said to be tame if it is
trivial on P. It is said to be unipotent if it is a successive extension of
trivial representations of I. Because the upper unipotent subgroup of
GL(n, Ø¬) is pro-…, any unipotent representation of I is tame. If we

fix a topological generator © of I/P, then isomorphism classes of n-
dimensional unipotent representations of I are in bijective
correspondence with conjugacy classes of unipotent elements in
GL(n, ä$…). By the theory of Jordan normal form, there is, up to

isomorphism, a unique indecomposable unipotent representation of I
of each dimension n ≥ 1, which we denote Unip(n). We sometimes
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refer to Unip(n) as the "standard Jordan block of size n".

LLLLeeeemmmmmmmmaaaa 3333....1111....4444 If M and N are inequivalent irreducible …-adic

representations of I, then ExtI
i(M, N) = 0 for all i. In particular,

HomI(M, N) = ExtI
1(M, N) = 0.

pppprrrrooooooooffff ExtI
i(M, N) = Hi(I, M£‚N) = Hi(I/P, (M£‚N)P). In terms of a

topological generator © of I/P, we have

Hi(I/P, (M£‚N)P) = Ker(1-© | (M£‚N)P) if i = 0,

= Coker(1-© | (M£‚N)P) if i = 1,
= 0 for i ≥ 2.

This explicit description shows that ç(I, M£‚N) = 0. Therefore we

have h0(I, M£‚N) = h1(I, M£‚N), i.e.,

dim ExtI
1(M, N) = dim HomI(M, N).

Since M and N are irreducible and inequivalent, HomI(M, N) = 0.

QED

LLLLeeeemmmmmmmmaaaa 3333....1111....5555 If N is an irreducible nontrivial …-adic representation

of I, then Hi(I, N) = 0 for all i.

pppprrrrooooooooffff Take M to be the trivial representation in Lemma 3.1.4. QED

LLLLeeeemmmmmmmmaaaa 3333....1111....6666 Any …-adic representation M of I has a canonical
direct sum "isotypical" decomposition, indexed by the equivalence
classes Å of irreducible representations of I, as ·å in Å Må, where

Må is a successive extension of irreducible representations all of

type å.

pppprrrrooooooooffff This is immediate from Lemma 3.1.4. QED

LLLLeeeemmmmmmmmaaaa 3333....1111....7777 Let N be an irreducible …-adic representation of I.
1) Given any two unipotent representations U1 and U2 of I, the

natural map
"‚N" defines isomorphisms

HomI(U1, U2) § HomI(N‚U1, N‚U2),

ExtI(U1, U2) § ExtI(N‚U1, N‚U2).

2) Given any …-adic representation M of I which is a successive
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extension of N by itself, there exists a unipotent representation U of
I and an isomorphism M § N‚U of I-representations. We can

recover U intrinsically as the "ú-isotypical" component of N£‚M.
3) Let M be an indecomposable …-adic representation M of I which is
a successive extension of N by itself. If M has length m as ä$…[I]-

module, then M § N‚Unip(m), where Unip(m) is the standard
Jordan block of size m.
pppprrrrooooooooffff 1) Given U1 and U2 unipotent,

ExtiI(N‚U1, N‚U2) = Hi(I, N£‚N‚(U1
£‚U2)).

Because N is irreducible, N£‚N is semisimple, and

N£‚N §ú · R, with R § · of nontrivial irreducibles.

Because U1
£‚U2 is unipotent,R‚(U1

£‚U2) is a successive

extension of nontrivial irreducibles, and hence Hi(I, R‚(U1
£‚U2)) =

0 for all i, by Lemma 3.1.5. Therefore the inclusion of ú into N£‚N
induces isomorphisms

Hi(I, U1
£‚U2) § Hi(I, N£‚N‚(U1

£‚U2)) for all i.

If we view these groups as Ext groups, then this isomorphism is that
induced by "‚N"

ExtiI(U1, U2) ¨ ExtiI(N‚U1, N‚U2) for all i.

2) Once we have 1), the first assertion of 2) is proven by induction
on the length of M. Once M § N‚U, we have, just as above,

N£‚M = N£‚N‚U = (ú · R)‚U = U · R‚U,
with R‚U a successive extension of nontrivial irreducibles.
3) If N‚U is indecomposable of length m, then U is indecomposable
of length m, hence is Unip(m). QED

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 3333....1111....8888 Let M be an …-adic representation of I. Then

dim[EndI(M)/(MI‚(M£)I)] = dim[EndI(M/MI)].

This will be proven in a series of Lemmas.

LLLLeeeemmmmmmmmaaaa 3333....1111....9999 If Proposition 3.1.8 holds for all unipotent …-adic
representations of I, then it holds for all …-adic representations of I.
pppprrrrooooooooffff Let M be an …-adic representations of I. In terms of the
"isotypical" decomposition of M as ·å in Å Må, we have
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EndI(M) = ·å in Å EndI(Må).

Moreover, if we denote by ú the trivial representation of I, and by
Mú the corresponding "isotypical" summand (thus Mú is the

maximal unipotent subrepresentation of M), then clearly

MI = (Mú)
I
, and (M£)I = ((M£)ú)

I = (Mú)
£)I.

Thus the "isotypical" decomposition of M/MI is

M/MI = ·å±ú in Å Må · Mú/(Mú)
I
,

and hence

EndI(M/MI) = ·å±ú in Å EndI(Må) · EndI(Mú/(Mú)
I
).

On the other hand,

MI‚(M£)I= (Mú)
I‚((M£)ú)

I = (Mú)
I‚((Mú)

£)I,.

and hence

EndI(M)/(MI‚(M£)I) = ·å±ú in Å EndI(Må) ·

· EndI(Mú)/((Mú)
I‚((Mú)

£)I).

Thus we see that Proposition 3.1.8 holds for M if and only if it holds
for Mú. QED

(3.1.10) We now study the case in which M is a uuuunnnniiiippppooootttteeeennnntttt …-adic
representation U of I, so a direct sum of standard Jordan blocks
·Unip(ni) of varying sizes ni ≥ 1. Given a unipotent representation

U of I, we define a sequence of non=negative integers ei =ei(U),

e1 ≥ e2 ≥ e3 ≥ e4 ≥..., er = 0 for r >> 0,

by
ei := the number of Jordan blocks of dimension ≥ i.

It is obvious from this definition that given two unipotent
representations U1 and U2 of I, we have

ei(U1·U2) = ei(U1) + ei(U2).

For a single unipotent block Unip(n), we have
ei = 1 for i ≤ n,

ei = 0 for i > n.

So for M = ·Unip(ni), the ei(M) are the partition of dim(M), written

in decreasing order, which is dual to the partition of dim(M) given
by the block sizes ni. We call the sequence (e1, e2, e3,...) attached to

a unipotent M its "dual partition".
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(3.1.11) Clearly if M is unipotent, with dual partition (e1, e2, e3,

e4,...), then M/MI has dual partition (e2, e3,.e4,...) formed from that

of M by discarding the leading term. [Indeed, if M = Unip(n), then

M/MI is 0 if n=1, and is Unip(n-1) if n > 1.]

(3.1.12) Notice that if M is a single Jordan block Unip(n), then M£

is also a single Jordan block Unip(n). So if M § ·Unip(ni), then also

M£ § ·Unip(ni). From this we see that

dim(MI) = the number of Jordan blocks in M := e1(M),

dim((M£)I) = e1(M
£) = e1(M).

RRRReeeemmmmaaaarrrrkkkk 3333....1111....11113333 One could ddddeeeeffffiiiinnnneeee the dual partition inductively by
the properties

e1(M) = dim(MI), ei+1(M) = ei(M/MI), for i ≥1.

LLLLeeeemmmmmmmmaaaa 3333....1111....11114444 If M and N are unipotent …-adic representations of
I, with dual partitions (e1, e2, e3, e4,...) and (f1, f2, f3, f4,...), then

dim[HomI(M, N)] = ‡i eifi.

pppprrrrooooooooffff Both sides are additive over direct sums, so it suffices to
check in the case when M is Unip(m) and N is Unip(n). In this case
the assertion is that

dim[HomI(Unip(m), Unip(n))] = min(m,n).

In terms of the action of
T := (a topological generator of I/P) -1,

this is the assertion that over any field E, we have

dimE HomE[T](E[T]/(T
m), E[T]/(Tn)) = min(m,n).

But by the map ƒ ÿ ƒ(1),

HomE[T](E[T]/(T
m), E[T]/(Tn)) § kernel of Tm in E[T]/(Tn).

= E[T]/(Tn), if m ≥ n,

= Tn-mE[T]/(Tn) § E[T]/(Tm) if n ≥ m. QED

LLLLeeeemmmmmmmmaaaa 3333....1111....11115555 If M is a unipotent …-adic representation of I, with
dual partition (e1, e2, e3, e4,...), then

dim[EndI(M)] = ‡i (ei)
2.

pppprrrrooooooooffff Take N=M above. QED
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LLLLeeeemmmmmmmmaaaa 3333....1111....11116666 If M is a unipotent …-adic representation of I,

dim[EndI(M/MI)] =dim[EndI(M)/(MI‚(M£)I)].

pppprrrrooooooooffff If M has dual partition (e1, e2, e3, e4,...), then M/MI has dual

partition (e2, e3, e4,...), and dim(MI‚(M£)I) = (e1)
2, so both sides

are equal to ‡i≥2 (ei)
2. QED

In view of Lemma 3.1.9, this completes the proof of Proposition
3.1.8.

3333....2222 IIIInnnntttteeeerrrrlllluuuuddddeeee:::: tttthhhheeee ooooppppeeeerrrraaaattttiiiioooonnnn ‚‚‚‚mmmmiiiidddd
(3.2.1) Let k be a field, X a separated k-scheme of finite type which
is irreducible and smooth, everywhere of relative dimension n. Let …
be a prime number ±char(k). We look at the full subcategory ME(X)
of (…-adic) Perv(X) consisting of those objects which are middle
extensions from every nonempty affine open set, i.e., those perverse
objects K on X such that for every nonempty affine open set

j:U ¨ X, we have K ¶ j~*j
*K. Given K in ME, we say that K has

ggggeeeennnneeeerrrriiiicccc rrrraaaannnnkkkk r if for some (or equivalently, for any) nonempty

affine open set j: U ¨ X on which it is lisse, j*K is Ï[n], with Ï a
lisse sheaf on U of rank r.
(3.2.2) We define an operation

‚mid : ME(X) ≠ ME(X) ¨ ME(X)

as follows. Given any two objects K and L in ME, pick a common
nonempty affine open set j: U ¨ X on which both K and L are lisse.

Thus j*K = Ï[n] and j*L = Ì[n] for lisse sheaves Ï and Ì on U. We
define

K‚midL := j~*((Ï‚Ì)[n]) = j~*((j
*K‚j*L)[-n]).

This is easily seen to be independent of the auxiliary choice of U,
using 2.3.3.1.

LLLLeeeemmmmmmmmaaaa 3333....2222....3333 Let k be a field, X a separated k-scheme of finite type
which is irreducible and smooth, everywhere of relative dimension
n. Let … be a prime number ±char(k).
1) An object K in ME is perverse irreducible if and only if it is
irreducible in ME.
2) Let L in ME have generic rank one. Then
2a)The operation K ÿ K‚midL is an autoequivalence of ME with
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itself, whose inverse is K ¨ K‚midDL.

2b) The operation K ÿ K‚midL induces an automorphism of the

family of all irreducible perverse sheaves in ME, whose inverse is
K ¨ K‚midDL.

pppprrrrooooooooffff 1) Since ME is a full subcategory of Perv, any perverse
irreducible is an irreducible object of ME. Conversely, suppose that K
in ME is not perverse irreducible. Then there exists a perverse
irreducible L, and a nonzero element in HomX(L, K). If L is in ME, K

is not irreducible in ME. If not, then L is supported on a proper
closed subvariety Y of X. So there exists an affine open j :U ¨ X

with j*L = 0. But in Perv(X), we have K = j~*j
*K fi Rj*j

*K, so

HomX(L, K) fi HomX(L, Rj*j
*K) =HomU(j

*L, j*K) = 0,

contradiction.
2a) is obvious by 2.3.3.1, and by 1) it implies 2b). QED

LLLLeeeemmmmmmmmaaaa 3333....2222....4444 Let … be a prime number. On !1 over an

algebraically closed field of characteristic ±…, let L in Dbc(!
1, ä$…) be

a perverse sheaf on !1 which lies in ME. Suppose that L has generic
rank one. Then
1)If K in ME is perverse irreducible, so is K‚midL.

2) For any K in ME, rig(K) = rig(K‚midL).

pppprrrrooooooooffff Assertion 1) is part 2b) of the preceding lemma. Assertion 2)

is obvious from the definitions: if j: U ¨ !1 is any nonempty open

set on which both K and L are lisse, say j*K = Ï[1] and j*L = Ò[1],
with Ï lisse of some rank r, and Ò lisse of rank one, then on U the
sheaves End(Ï) and End(Ï‚Ò) coincide. QED

3333....3333 AAAApppppppplllliiiiccccaaaattttiiiioooonnnnssss ttttoooo mmmmiiiiddddddddlllleeee aaaaddddddddiiiittttiiiivvvveeee ccccoooonnnnvvvvoooolllluuuuttttiiiioooonnnn

LLLLeeeemmmmmmmmaaaa 3333....3333....1111 Let p and … be prime numbers, …±p. On !1 over an
algebraically closed field of characteristic p, let K and L in

Dbc(!
1, ä$…) be perverse sheaves. Then

1) K is in ∏ if and only if FTK is in ME.
2) If K and L are both in ∏, then

FT(K*mid+L) = FTK‚midFTL.

pppprrrrooooooooffff This was proven in 2.10.3 and 2.10.5 above. QED
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LLLLeeeemmmmmmmmaaaa 3333....3333....2222 Let p and … be prime numbers, …±p. On ´m over an

algebraically closed field of characteristic p >0, let ç be any

continuous nontrivial ä$…
≠-valued character of π1(´m)tame, Òç

the corresponding Kummer sheaf on ´m, and j*Òç its extension by

direct image to !1. Then FT(j*Òç[1]) = j*Òäç[1] (geometrically).

pppprrrrooooooooffff Direct calculation. QED

TTTThhhheeeeoooorrrreeeemmmm 3333....3333....3333 Let p and … be prime numbers, …±p. Over an
algebraically closed field of characteristic p, let ç be any continuous

nontrivial ä$…
≠-valued character of π1(´m)tame. Let K in

Dbc(!
1, ä$…) be perverse irreducible on !1.

1) If K is not in ∏, then
1a) If K is ä$…[1], then K*mid+j*Òç[1] = 0.

1b) If K is Ò¥å
[1] with å±0, then K*mid+j*Òç[1] = Ò¥å

[1].

2) If K is in ∏, then
2a) If K is punctual, say ∂å, K*mid+j*Òç[1] = j*Òç(x-å)[1].

2b) If K is j*Òäç(x-å)[1] for some å, then K*mid+j*Òç[1] = ∂å.

2c) If K is j*Ò®(x-å)[1] for some å and some ®±äç, then

K*mid+j*Òç[1] = j*Ò®ç(x-å)[1]

2d) If K is a perverse irreducible in ∏ which is not of type 2a, 2b, or
2c, then K*mid+j*Òç[1] is a perverse irreducible in ∏ which is not

of type 2a, 2b, or 2c.
3) If K is in ∏ and of type 2d), then

rig(K) = rig(K*mid+j*Òç[1]).

pppprrrrooooooooffff Assertion 1) is proven by direct calculation. Assertion 2a) is
proven by direct calculation. We know that middle convolution
*mid+j*Òç[1] with j*Òç[1] is an automorphism of the irreducibles

in ∏, with inverse *mid+j*Òäç[1]. Using this, 2b) follows from 2a).

We also know also that
j*Òç[1]*mid+j*Ò®[1] =j*Òç®[1] if ç®±ú,

= ∂0 if ç®=ú.

Using the associativity of middle convolution, and 2a), we get 2c).
To prove 2d), observe first that for each å, the family of all

those irreducibles in ∏ which are either ∂å or j*Ò®(x-å)[1] for
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some ®±ú is simply the oooorrrrbbbbiiiitttt of ∂å under the group of operators

given by middle convolution with ∂0 and with any j*Òç[1], for any

ç±ú. Since the family of all irreducibles in ∏ is also stable by this
group of operators, the complement of a union of orbits is also
stable.

To prove 3), we note that by 2d, both sides are middle
extensions. Since both sides are also in ∏, their Fourier Transforms
are middle extensions. So by Theorem 3.0.2, we have

rig(K) = rig(FTK),
and

rig(K*mid+j*Òç[1]) = rig(FT(K*mid+j*Òç[1]))

= rig(FTK‚midFT(j*Òç[1])), by 3.3.1.2

= rig(FTK‚midj*Òäç[1])), by 3.3.2

= rig(FTK), by 3.2.4.2. QED

(3.3.4) We now turn to a discussion of the monodromy of middle
convolution with a j*Òç[1]. For the convenience of the reader, we

recall some of the basic facts about Laumon's local Fourier
Transforms.

TTTThhhheeeeoooorrrreeeemmmm 3333....3333....5555 Hypotheses and notations as in the theorem 3.3.3
above, suppose that K is a perverse irreducible in ∏ of type 2d). Pick

a nonempty open set j: U ¨ !1 on which both K and
K*mid+j*Òç[1] are lisse, say

K = j~*Ï[1], K*mid+j*Òç[1] = j~*Ì[1]

with Ï and Ì lisse sheaves on U. Then the local monodromies of Ï
and of Ì are related as follows:

1) at s in !1 - U:

FT¥loc(s, ‘)(Ï(s)/Ï(s)I(s))‚Òäç = FT¥loc(s, ‘)(Ì(s)/Ì(s)I(s)).

1a) In particular, Ï is lisse at s if and only if Ì is lisse at s.
2) at ‘:

decompose Ï(‘) = Ï(‘)(slopes > 1) · (·s in !1 Ò¥s
‚Ï(‘,s))

with Ï(‘,s) an I(‘)-representation with all slopes < 1, and similarly
for Ì. Then
2a) We have the formula
FT¥loc(‘, ‘)(Ï(‘)(slopes > 1))‚Òäç = FT¥loc(‘, ‘)(Ì(‘)(slopes > 1)).

2b) For each s±0 in !1,
Ï(‘,s) § Ì(‘,s).
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2c) There exists an I(0)- representation M(0) with

Ï(‘,0) = FTä¥loc(0, ‘)(M(0)/M(0)I(0))

Ì(‘,0) = FTä¥loc(0, ‘)(M(0)‚Òäç/(M(0)‚Òäç)
I(0)).

2d) In particular, cf. [Ka-ESDE, 7.4.4], Ï is tame at ‘ if and only if Ì
is tame at ‘.
pppprrrrooooooooffff This is just the spelling out of identities

FT¥(K*mid+L) = FT¥K‚midFT¥L,

FTä¥(FT¥K‚midFT¥L) = K*mid+L,

FTä¥(FT¥K) = K.

with L = j*Òç[1], together with the effect of FT upon local

monodromies, as expressed via Laumon's FTloc(s, ‘) and
FTloc(‘, ‘) functors.

Concretely, let us write FT¥K = j~*(Å[1]), for some sufficiently

small nonempty open set j: V ¨ !1 and some lisse sheaf Å on V.

Then FT¥(K*mid+L) = j~*(ı[1]), with ı = Å‚j*Òäç. Their

I(‘)=representations are related by ı(‘) = Å(‘)‚Òäç, so

decomposing them we find
ı(‘)(slope > 1) = Å(‘)(slope > 1)‚Òäç,

and

ı(‘, s) = Å(‘, s)‚Òäç, for every s in !1.

By Laumon (cf. [Ka-ESDE, 7.4.2]) we know that

FT¥loc(s, ‘)(Ï(s)/Ï(s)I(s)) = Å(‘, s),

FT¥loc(s, ‘)(Ì(s)/Ì(s)I(s)) = ı(‘, s) = Å(‘, s)‚Òäç,

whence

FT¥loc(s, ‘)(Ï(s)/Ï(s)I(s))‚Òäç = FT¥loc(s, ‘)(Ì(s)/Ì(s)I(s)).

By Laumon, we also know
FT¥loc(‘, ‘)(Ï(‘)(slope > 1)) = Å(‘)(slope > 1),

FT¥loc(‘, ‘)(Ì(‘)(slope > 1)) = ı(‘)(slope > 1).

= Å(‘)(slope > 1)‚Òäç,

whence
FT¥loc(‘, ‘)(Ï(‘)(slopes > 1))‚Òäç = FT¥loc(‘, ‘)(Ì(‘)(slopes > 1)).

To prove the remaining assertions, we use the inversion
formulas

FTä¥(FT¥K‚midFT¥L) = K*mid+L,
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FTä¥(FT¥K) = K.

Since our FTL is lisse of rank one on ´m, FTK and FTK‚midFTL

give isomorphic representations of I(s) for each s±0 in !1:

Å(s) § ı(s) for s ± 0 in !1.
By stationary phase,

Ï(‘,s) = FTä¥loc(s, ‘)(Å(s)/Å(s)I(s)), and

Ì(‘,s) = FTä¥loc(s, ‘)(ı(s)/ı(s)I(s)), for every s in !1.

But Å(s) § ı(s) for s ± 0 in !1, so Ï(‘,s) = Ì(‘,s) for s ± 0 in !1.
For s=0,

Å(0)‚Òäç § ı(0),

so with M(0) := Å(0) we get

Ï(‘,0) = FTä¥loc(0, ‘)(M(0)/M(0)I(0))

Ì(‘,0) = FTä¥loc(0, ‘)(M(0)‚Òäç/(M(0)‚Òäç)
I(0)).

QED

CCCCoooorrrroooollllllllaaaarrrryyyy 3333....3333....6666 Hypotheses and notations as in 3.3.3 above, suppose
in addition that K is tamely ramified everywhere. Then so is
K*mid+j*Òç[1], and their local monodromies are related as follows:

1) at s in !1 - U:

(Ï(s)/Ï(s)I(s))‚Òç(x-s) § Ì(s)/Ì(s)I(s).

2) at ‘: there exists a tame I(‘)-representation M(‘) with

Ï(‘) = M(‘)/M(‘)I(‘),

Ì(‘) = M(‘)‚Òç/(M(‘)‚Òç)
I(‘).

Moreover,
3) M(‘) is the unique I(‘)-representation with these properties.
4) We have the formulas

rank M(‘) = ‡s in !1-U rank (Ï(s)/Ï(s)I(s)),

rank M(‘) = ‡s in !1-U rank (Ì(s)/Ì(s)I(s)).

pppprrrrooooooooffff At s in !1 - U, we have

FT¥loc(s, ‘)(Ï(s)/Ï(s)I(s))‚Òäç = FT¥loc(s, ‘)(Ì(s)/Ì(s)I(s)).

Since Ï(s) is tame, and FT¥loc(s, ‘) and its quasi-inverse both

carry tames to tames, we see that Ì(s)/Ì(s)I(s) is tame, whence Ì(s)
itself is tame. Moreover, for M a tame I(s)-representation, we have
[Ka-ESDE, 7.4.1.3]
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FT¥loc(s, ‘)(M)‚Òäç = FT¥loc(s, ‘)(M‚Òç(x-s)).

Indeed, for M tame, we have [Ka-ESDE, 7.4.1.3 and 7.4.4.3]

FT¥loc(s, ‘)(M) = [x-s ÿ 1/(x-s)]*M as I(‘) representation.

So from the above isomorphism of I(‘)-representations we infer

(Ï(s)/Ï(s)I(s))‚Òç(x-s) = Ì(s)/Ì(s)I(s).

We now turn to the situation at ‘. Since K is tame at ‘, we have
Ï(‘)(slopes > 1) =0. Therefore FT¥loc(‘, ‘)(Ì(‘)(slopes > 1)) = 0,

and hence Ì(‘)(slopes > 1) = 0. For s±0, Ï(‘,s) = 0, hence Ì(‘,s)=0.
For s=0, any I(0)- representation M(0) with

Ï(‘,0) = FTä¥loc(0, ‘)(M(0)/M(0)I(0))

must be tame [Ka-ESDE, 7.4.4.4]. Moreover, for tame I(0)-
representations, we have [Ka-ESDE, 7.4.4.3]

FTä¥loc(0, ‘)(M(0)) = [x ÿ 1/x]*M(0)

as I(‘)-representations. We take our M(‘) to be [x ÿ 1/x]*M(0) for
M(0) appearing in the previous theorem (i.e., if FT¥K = j~*Å[1], for a

sufficiently small nonempty open set j: V ¨ !1 and a lisse sheaf Å
on V, then M(0) is Å(0).

To show that M(‘) is uniquely determined as I(‘)-
representation by the two conditions:

Ï(‘) = M(‘)/M(‘)I(‘),

Ì(‘) = M(‘)‚Òç/(M(‘)‚Òç)
I(‘),

write the "isotypical decomposition" of M(‘), (cf. Lemma 3.1.6), say
M(‘) = ·å in Å M(‘)å.

By the first condition,
M(‘)å § Ï(‘)å for å ± ú.

By the second,
(M(‘)‚Òç)å § Ì(‘)å for å ± ú,

which we rewrite as
(M(‘)‚Òç)åºç § Ì(‘)åºç for åºç ± ú,

i.e.,
M(‘)å § (Ì(‘)‚Òäç)å for å ± äç.

In particular,
M(‘)ú § (Ì(‘)‚Òäç)ú.

Thus
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M(‘) = ·å±ú Ï(‘)å · (Ì(‘)‚Òäç)ú.

To compute the rank of M(‘), recall that if we write FT¥K =

j~*(Å[1]), for a sufficiently small nonempty open set j: V ¨ !1 and a

lisse sheaf Å on V, then M(‘) is [x ÿ 1/x]*Å(0). By stationary phase,

Å(‘)(≤1) = ·x in !1 Ò¥x
‚FTloc(x,‘)(Ï(x)/Ï(x)I(x)).

Å(‘)(>1) = FTloc(‘,‘)(Ï(‘)(> 1)) = 0, (since Ï(‘) is tame).
Since each Ï(x) is tame, we have

rank FTloc(x,‘)(Ï(x)/Ï(x)I(x)) = rank(Ï(x)/Ï(x)I(x)).
Thus

rank M(‘) = rank Å(0) = rank Å = rank Å(‘) =

= ‡x in !1 rank(Ï(x)/Ï(x)
I(x))= ‡s in !1-U rank (Ï(s)/Ï(s)I(s)).

The second formula for rank M(‘) is term by term equal to this
one: equate ranks in the isomorphism of I(s)-representations

(Ï(s)/Ï(s)I(s))‚Òç(x-s) § Ì(s)/Ì(s)I(s). QED

CCCCoooorrrroooollllllllaaaarrrryyyy 3333....3333....7777 ((((rrrraaaannnnkkkk ffffoooorrrrmmmmuuuullllaaaa)))) Hypotheses and notations as in
3.3.3 above, suppose in addition that K is tamely ramified
everywhere. Then so is K*mid+j*Òç[1], and their ranks and local

monodromies are related by the formulas

rank Ï = ‡s in !1-U rank (Ì(s)/Ì(s)I(s)) - rank((Ì(‘)‚Òäç)
I(‘)),

rank Ì = ‡s in !1-U rank (Ï(s)/Ï(s)I(s)) - rank((Ï(‘)‚Òç)
I(‘)).

pppprrrrooooooooffff These follow immediately from the formulas

Ï(‘) = M(‘)/M(‘)I(‘),

Ì(‘) = M(‘)‚Òç/(M(‘)‚Òç)
I(‘),

and

rank M(‘) = ‡s in !1-U rank (Ï(s)/Ï(s)I(s)),

rank M(‘) = ‡s in !1-U rank (Ì(s)/Ì(s)I(s)). QED

3333....4444 SSSSoooommmmeeee ooooppppeeeennnn qqqquuuueeeessssttttiiiioooonnnnssss aaaabbbboooouuuutttt llllooooccccaaaallll FFFFoooouuuurrrriiiieeeerrrr TTTTrrrraaaannnnssssffffoooorrrrmmmm
(3.4.1) We know that if M is an irreducible I(0)-representation
with all slopes a/b, and dimension b, then FTloc(0,‘)M is an
irreducible I(‘)-representation with all slopes a/(a+b), and
dimension a+b. We also know that FTloc(0,‘) is an equivalence of
categories

I(0)-representations § I(‘)-representations with all slopes <1.
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Denote by (FTloc(0,‘))-1 a quasi-inverse. Then for every nontrivial
Kummer sheaf Òç, we get an autoequivalence of the category of

I(0)-representations, defined by

(3.4.1.1) M ÿ (FTloc(0,‘))-1(Òäç‚FTloc(0,‘)(M)).

This autoequivalence preserves slopes and dimensions, and on tame
M is given (cf. [Ka-ESDE, 7.4.4.3]) by M ÿ Òç‚M. What is it? Is

there a simple formula for it?
(3.4.2) The most naive hope is that this autoequivalence be given
by M ÿ Òç‚M on all I(0)-representations, or equivalently that

FTloc(0,‘)(M‚Òç) § Òäç‚FTloc(0,‘)(M) as I(‘)-rep'ns.

This hope is ffffaaaallllsssseeee. Here is a simple sequence of counterexamples. For
each integer n ≥ 1, take for Mn the I(0)-representation attached to

inv*(Kln(¥; ®1, ..., ®n)), where Kln(¥; ®1, ..., ®n) is any of the rank n

Kloosterman sheaves discussed in [Ka-GKM, 7.4.1]. By [Ka-GKM,
8.6.1], we have a geometric isomorphism

j*FT¥(j~
inv*(Kln(¥; ®1, ..., ®n))) § Kln+1(¥; ú, ®1, ..., ®n).

Becuause Kln+1(¥; ú, ®1, ..., ®n) has all its ‘-slopes < 1 (they are all

equal to 1/(n+1)), stationary phase shows that
FTloc(0,‘)(Mn) = Kln+1(¥; ú, ®1, ..., ®n)(‘).

If we replace Mn by Mn‚Òç, we are looking at

Mn‚Òç := inv*(Kln(¥; äç®1, ..., äç®n)) as I(0)-representation,

so by the above FT fornmula we have
FTloc(0,‘)(Mn‚Òç) = Kln+1(¥; ú, äç®1, ..., äç®n)(‘).

We claim that
FTloc(0,‘)(Mn‚Òç) ± Òäç‚FTloc(0,‘)(Mn) as I(‘)-rep'n.

This amounts to the statement that, as I(‘)-representations,
Kln+1(¥; ú, äç®1, ..., äç®n) ± Òäç‚Kln+1(¥; ú, ®1, ..., ®n).

Indeed, the two sides have non-isomorphic determinants. To see
this, use the geometric isomorphism ([Ka-7.4.1])

det(Kln(¥; ®1, ..., ®n) ¶ Ò®1...®n+1
,

valid for n ≥ 2. The ratio of the two determinants is thus Òç, which

is nontrivial on I(‘) so long as ç is nontrivial.

(3.4.3) There is a somewhat unsatisfactory "fomula" for the
autoequivalence 3.4.1.1, in terms of middle convolution and the
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canonical extension. Let M be an irreducible nontame representation
of I(0). By the theory of the canonical extension [Ka-LG], there exists
a lisse sheaf ÏM on ´m which is tame at ‘, and whose I(0)-

representation is M. This sheaf ÏM is certainly irreducible on ´m,

since already its I(0)-representation is irreducible. Denoting by j: ´m

¨ !1 the inclusion, the object KM := j*ÏM[1] is a perverse

irreducible on !1 which (being wild at 0) is visibly of type 2d, i.e.,
neither punctual nor an Ò¥å

[1] nor a translate of a j*Òç[1]. Since

KM is tame at ‘ and lisse on ´m, Laumon's stationary phase tells

us that FTKM is lisse on ´m, say j*FTKM = Å[1] with Å a lisse sheaf

on ´m, and

Å(‘) = FTloc(0, ‘)(M) = FTloc(0, ‘)(ÏM(0)).

Now consider the object L :=KM*mid+j*Òç[1], whose FT is also lisse

on ´m, with j*FTL = Å‚Òäç[1]. The object L is lisse on ´m, and

tame at ‘ (by 3.3.5, 2d), since KM is lisse on ´m, and tame at ‘).

Say j*L = ˆ[1], with ˆ a lisse sheaf on ´m. Then by stationary

phase,
(Å‚Òäç)(‘) = FTloc(0, ‘)(ˆ(0)).

Thus the autoequivalence

M ÿ (FTloc(0,‘))-1(Òäç‚FTloc(0,‘)(M)).

is given on nontame irreducibles M by
M ÿ the I(0)-rep'n of (j*ÏM[1])*mid+(j*Òç[1]).

(3.4.4) We can also pose a similar question about FTloc(‘,‘). If
M is an irreducible I(‘)-representation with all slopes (a+b)/b > 1
and dimension b, then FTloc(‘,‘)(M) is an irreducible I(‘)-
representation with all slopes (a+b)/a > 1 and dimension a. We know
that FTloc(‘,‘) is an autoequivalence of

{I(‘)-representations with all slopes >1 },

with quasi-inverse [x ÿ -x]*FTloc(‘,‘). For every nontrivial
Kummer sheaf Òç, we get another autoequivalence by

(3.4.4.1) M ÿ [x ÿ -x]*FTloc(‘,‘)(Òäç‚FTloc(‘,‘)(M)).

This autoequivalence preserves slopes and dimensions. What is it? Is
there a simple formula for it?
(3.4.5) The most naive hope is that the autoequivalence 3.4.4.1 be
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given by M ÿ Òäç‚M on all I(‘)-representations with all slopes >1,

or equivalently that
FTloc(‘,‘)(M‚Òç) § Òç‚FTloc(‘,‘)(M) as I(‘)-rep'ns.

This hope is ffffaaaallllsssseeee. Here is a simple sequence of counterexamples. For
each n ≥ 3 which is prime to p, take for Mn the I(‘)-representation

attached to Ò¥(xn). For any Kummer sheaf Òç,

FTloc(‘,‘)(Mn‚Òç) has rank n-1, and all slopes n/(n-1). We claim

that
(3.4.5.1) det(FTloc(‘,‘)(Mn‚Òç)) = Òç as I(‘) representation.

Admit this for a moment. Then FTloc(‘,‘)(Mn) has rank n-1 and

trivial determinant for n ≥ 3 prime to p, so our naive hope would
force FTloc(‘,‘)(Mn‚Òç) to have determinant Òçn-1 rather than

Òç. To show that 3.4.5.1 holds, consider first the case of trivial ç.

Then FT¥(Ò¥(xn)) is lisse on !1 of rank n-1, and has all ‘-slopes

n/(n-1). As explained in [Ka-GKM, 9.2], its restriction to ´m descends

through the n'th power map, to a Kloosterman sheaf of rank n-1 on
´m. The determinant of this Kloosterman sheaf is tame on ´m,

because n-1 ≥ 2, and hence FT¥(Ò¥(xn)) itself has a determinant

which is tame on ´m. But as FT¥(Ò¥(xn)) is lisse on !1, so is its

determinant, and hence det(FT¥(Ò¥(xn))) = ú (being both tame on

´m and trivial at zero). As FT¥(Ò¥(xn)) has all its ‘-slopes > 1,

FTloc(‘,‘)(Mn) = FT¥(Ò¥(xn))(‘) as I(‘)-representation, and hence

FTloc(‘,‘)(Mn) has trivial determinant, as asserted. Now consider

the case when ç is nontrivial. In this case, FT¥(Ò¥(xn)‚Òç) is lisse

on !1 of rank n, and its ‘-slopes are 0 once and n/(n-1) repeated
n-1 times. As explained in [Ka-GKM, 9.2.2], the restriction to ´m of

FT¥(Ò¥(xn)‚Òç) descends through the n'th power map to a

hypergeometric sheaf of type (n, 1). The determinant of such a
hypergeometric sheaf is necessarily tame on ´m (because n ≥ 3),

and hence FT¥(Ò¥(xn)‚Òç) has trivial determinant (because this

determinant is simultaneously lisse on !1 and tame on ´m). By

stationary phase, the I(‘)-representation of FT¥(Ò¥(xn)‚Òç) is a

direct sum
FT¥(Ò¥(xn)‚Òç)(‘) = Òäç · FTloc(‘,‘)(Mn‚Òç).
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Taking determinants, we find 3.4.5.1, as required.
(3.4.6) Just as in 3.4.3 above, we can give a somewhat
unsatisfactory "formula" for the autoequivalence 3.4.4.1 in terms of
canonical extensions. In terms of the canonical extension of an I(‘)-
representation M with all ‘-slopes > 1 to a lisse sheaf ÌM on ´m
which is tame at zero, we get a description of the autoequivalence
3.4.4.1 as

M ÿ the slope > 1 part of the I(‘)-rep'n of
(j*ÌM[1])*mid+(j*Òç[1]).
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4444....0000 GGGGoooooooodddd sssscccchhhheeeemmmmeeeessss
(4.0.1) Recall that a "good scheme" is one which admits a map f
of finite type to a scheme T which is regular of dimension at most
one. For variable good schemes X, and … any fixed prime number,

we can speak of the triangulated categories Dbc(X[1/…], ä$…), which

admit the full Grothendieck formalism of the "six operations" (cf.
[De-Th.Fin], [De-Weil II], [Ek], [Me-SO]).

4444....1111 TTTThhhheeee bbbbaaaassssiiiicccc sssseeeettttttttiiiinnnngggg
(4.1.1) Throughout this section, we fix a prime number …, and
work over a ground-ring R which is a normal noetherian integral
domain in which … is invertible, and such that Spec(R) is a good

scheme. We work on !1R := Spec(R[x]). We fix a monic polynomial

D(x) in R[x] of some degree d ≥ 1 whose discriminant » is a unit in

R, and denote by D fi !1R the divisor defined by the vanishing of

D(x). We further assume that the polynomial D(x) factors

completely in R[x], say D(x) = °1 ≤ i ≤ d (x - ai) with ai - aj in R≠

for all i±j. [This "further assumption" always holds after replacing
Spec(R) by a connected, finite etale covering of itself.] Then D =
‹i Di is the disjoint union of the sections Di defined by the

vanishing of x - ai.

(4.1.2) We say that an object K in Dbc(!
1
R, ä$…) is adapted to the

stratification (!1R - D, D = ‹i Di) of !
1
R, if each of its cohomology

sheaves is lisse when restricted either to !1R - D or to any Di.

(4.1.3) We say that an object K in Dbc(!
1
R, ä$…) is fibrewise

perverse if its restriction to each geometric fibre of !1R over

Spec(R) is perverse, i.e. if for any algebraically closed field k, and
any ring homomorphism ƒ: R ¨ k, the inverse image Kƒ of K in

Dbc(!
1
k, ä$…) is perverse on !1k.

(4.1.4) We say that an object K in Dbc(!
1
R, ä$…) is fibrewise

tame if for any algebraically closed field k, and any ring

homomorphism ƒ: R ¨ k, the inverse image Kƒ of K in Dbc(!
1
k, ä$…)

is tame on !1k in the sense that for any dense open set U fi !1k on
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which Kƒ is lisse, each of the cohomology sheaves Ói(Kƒ) | U is

tamely ramified at each point of @1k - U.

4444....2222 BBBBaaaassssiiiicccc rrrreeeessssuuuullllttttssss iiiinnnn tttthhhheeee bbbbaaaassssiiiicccc sssseeeettttttttiiiinnnngggg

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 4444....2222....1111 Hypotheses and notations as in 4.1.1 above, let K

in Dbc(!
1
R, ä$…) be adapted to (!1R - D, D = ‹i Di). If the fraction

field of R has characteristic zero, then K is fibrewise tame.

pppprrrrooooooooffff [Ka-SE, 4.7.1 and Remarque (ii), SGA 1, Expose XIII, 5.5]. QED

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 4444....2222....2222 Hypotheses and notations as in 4.1 above,

suppose K in Dbc(!
1
R, ä$…) is adapted to (!1R - D, D = ‹i Di) and is

fibrewise tame. Then the following conditions are equivalent:
1) K is fibrewise perverse.
2) There exists a geometric fibre on which K is perverse.
3) Each of the following three conditions holds.

i) Ói(K) vanishes for i outside {0, -1},

ii) Ó0(K) | !1R - D vanishes, and,

iii) denoting by j: !1R - D ¨ !1R the inclusion, the natural

adjunction map Ó-1(K) ¨ j*j
*Ó-1(K) is injective.

pppprrrrooooooooffff Fix an algebraically closed field k, and a ring homomorphism

ƒ: R ¨ k. The inverse image Kƒ of K on !1k is perverse if the

conditions of 3) above hold aaaafffftttteeeerrrr the base change ƒ: R ¨ k; let us
call these conditions 3ƒ).

For each integer i, each of the sheaves Ói(K) | !1R - D and

Ói(K) | D is lisse. So for any ƒ: R ¨ k as above, 3i) À 3ƒi), and 3ii)
À 3ƒii). It is in showing 3iii) À 3ƒiii) that we make essential use of
the fibrewise tameness.

The key point [Ka-SE, 4.7.2 and 4.7.3] is that for Ï a ä$…-sheaf

on !1R which is adapted to (!1R - D, D = ‹i Di) and fibrewise

tame, we have:

a) formation of j*j
*Ï commutes with arbitrary change of base on

Spec(R), and



Chapter 4-Middle convolution: dependence on parameters-3

b) the sheaf

Ïpct := Ker(Ï ¨ j*j
*Ï)

is concentrated on D, lisse on D (i.e., lisse on each Di), and of

formation compatible with arbitrary change of base on Spec(R).

Applying this to Ó-1(K), we see that 3iii) À 3ƒiii).
Fixing a single ƒ, we get 2) à 3). Varying ƒ, we get 3) à 1).

And 1) à 2) is trivial. QED

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 4444....2222....3333 Hypotheses and notations as in 4.1.1 above, let K

in Dbc(!
1
R, ä$…) be adapted to (!1R - D, D = ‹i Di), fibrewise

perverse and fibrewise tame. Then the following conditions are
equivalent:

1) on each geometric fibre, K is the middle extension of its

restriction to !1k - Dk.

2) there exists a geometric fibre on which K is the middle extension

of its restriction to !1k - Dk.

3) Ó0(K) = 0, and denoting by j: !1R - D ¨ !1R the inclusion, the

adjunction map is an isomorphism Ó-1(K) ¶ j*j
*Ó-1(K).

pppprrrrooooooooffff The kernel and cokernel of the adjunction map

Ó-1(K) ¨ j*j
*Ó-1(K)

are concentrated on D, lisse on D, and of formation compatible with
arbitrary change of base on Spec(R), cf. [Ka-SE, 4.7.2-3]. Fixing a
single ƒ, we get 2) à 3). Varying ƒ, we get 3) à 1). And 1) à 2) is
trivial. QED

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 4444....2222....4444 Hypotheses and notations as in 4.1.1 above, let K

in Dbc(!
1
R, ä$…) be adapted to (!1R - D, D = ‹i Di), fibrewise

perverse and fibrewise tame. Denote by n the rank of the lisse sheaf

Ó-1(K) | !1R - D. Fix a subgroup Æ of GL(n, ä$…). Then the following

conditions are equivalent:

1) on each geometric fibre, K is the middle extension of its
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restriction to !1k - Dk, and the image of π1(!
1
k - Dk, base point) in

GL(n, ä$…) under the monodromy representation of Ó-1(K) | !1k - Dk
is conjugate to Æ.
2) On some geometric fibre, K is the middle extension of its

restriction to !1k - Dk, and the image of π1(!
1
k - Dk, base point) in

GL(n, ä$…) under the monodromy representation of Ó-1(K) | !1k - Dk
is conjugate to Æ.

pppprrrrooooooooffff In view of the preceding result, this results from the fact that

for a lisse ä$…-sheaf Ï on !1R - D (namely Ó-1(K) | !1R - D) of rank

denoted n which is fibrewise tame, the function on geometric points
of Spec(R) given by

(ƒ: R ¨ k) ÿ the conjugacy class in GL(n, ä$…) of the image of

π1(!
1
k - Dk), any base point)

is constant (cf. [Ka-ESDE, 8.17.13]). QED

CCCCoooorrrroooollllllllaaaarrrryyyy 4444....2222....5555 Hypotheses and notations as in 4.1.1 above, let K in

Dbc(!
1
R, ä$…) be adapted to (!1R - D, D = ‹i Di), fibrewise perverse

and fibrewise tame. Then the following conditions are equivalent:

1) on each geometric fibre, K §ä$…[1].

2) there exists a geometric. fibre on which K §ä$…[1].

pppprrrrooooooooffff This is the case n=1, Æ = {1} of the previous result. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 4444....2222....6666 Hypotheses and notations as in 4.1.1 above, let K in

Dbc(!
1
R, ä$…) be adapted to (!1R - D, D = ‹i Di), fibrewise perverse

and fibrewise tame. Then the following conditions are equivalent:
1) on each geometric fibre, K is perverse irreducible and is the

middle extension of its restriction to !1k - Dk.

2) there exists a geometric fibre on K is perverse irreducible and is

the middle extension of its restriction to !1k - Dk.

pppprrrrooooooooffff This is the case "Æ an irreducible subgroup of GL(n, ä$…)" of the

previous Proposition, for all such Æ. QED

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 4444....2222....7777 Hypotheses and notations as in 4.1.1 above, let K
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in Dbc(!
1
R, ä$…) be adapted to (!1R - D, D = ‹i Di), fibrewise

perverse and fibrewise tame. Denote by j: !1R - D ¨ !1R the

inclusion. Then the following conditions are equivalent:

1) on each geometric fibre, K § j*Òç(x-å)[1] for some nontrivial

Kummer sheaf Òç and some å.

2) there exists a geometric fibre on which K § j*Òç(x-å)[1] for

some nontrivial Kummer sheaf and some å.
3) Each of the following conditions holds:

i) Ó0(K) = 0,

ii) Ó-1(K) | !1R - D is lisse of rank one,

iii) Ó-1(K) ¶ j*j
*Ó-1(K),

iiii) Ó-1(K) | Di is lisse of rank one for all but exactly one value

i0 of i, and for this value Ó-1(K) | Di0
= 0.

pppprrrrooooooooffff It is clear that 1) à 2) and 2) à 3). To see that 3) à 1), we

may reduce by an additive translation on !1R to the case where

the divisor Di0
is the divisor x=0. In this case, we must show that

for any geometric point ƒ: R ¨ k, the only lisse rank one ä$…-sheaf

on ´m,k which is ramified at 0 and which is tame at both 0 and ‘

is a nontrivial Kummer sheaf Òç. But this is a tautology. QED

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 4444....2222....8888 Hypotheses and notations as in 4.1.1 above, let K

in Dbc(!
1
R, ä$…) be adapted to (!1R - D, D = ‹i Di), fibrewise

perverse and fibrewise tame. Then the following conditions are
equivalent:
1) on each geometric fibre, K § ∂å for some å.

2) there exists a geometric. fibre on which K § ∂å for some å.

3) Ó-1(K)= 0, and Ó0(K) | Di = 0 for all but exactly one value i0 of i,

and for this value Ó-1(K) | Di0
is lisse of rank one.

pppprrrrooooooooffff It is clear that 1) à 2) and 2) à 3), and 3) à 1) is obvious as
well. QED
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4444....3333 MMMMiiiiddddddddlllleeee ccccoooonnnnvvvvoooolllluuuuttttiiiioooonnnn iiiinnnn tttthhhheeee bbbbaaaassssiiiicccc sssseeeettttttttiiiinnnngggg
(4.3.1) We continue to work in the basic setting 4.1.1. Fix a
nontrivial character ç of the group

π1
tame(´m,R) = °… inv in R #…(1).

(4.3.2) Denote by Ç(R, D) the full subcategory of Dbc(!
1
R, ä$…)

consisting of all objects K which are adapted to (!1R - D, D = ‹i Di),

fibrewise perverse and fibrewise tame. We will now define a middle
convolution functor from Ç(R, D) to itself,

K ÿ K*mid+j*Òç[1],

whose formation commutes with arbitrary change of base on R, and
which for R a field of characteristic ±… coincides with its namesake
2.6.2. It is defined via the relative compactification of the map pr2
as in 2.8.3-4,

j: !1x≠!
1
t Ú @1x≠!

1
t,

by extending Kx‚(j*Òç[1])t-x across Z:=‘!1 by †Z≤-2Rj*, [BBD,

1.4.13] and then taking Rpr2* as in the earlier discussion. The key

point is that Rj*(Kx‚(j*Òç[1])t-x) | Z is lisse, and of formation

compatible with change of base on R (by the general lemma 4.3.8

below). Therefore the object †Z≤-2Rj*(Kx‚(j*Òç[1])t-x) | Z is lisse,

and of formation compatible with change of base on R.
(4.3.3) Since the formation of Rpr2* commute with passage to

fibres, by proper base change, we know that K*mid+j*Òç[1] is

fibrewise perverse, of formation compatible with arbitrary change
of base on R, and fibre by fibre equal to its namesake.
(4.3.4) We also have an explicit triangle relating this middle

convolution to the ~ convolution and to a lisse sheaf on !1R. On

@1R≠!
1
R we have a distinguished triangle

†Z≤-3Rj*(Kx‚(j*Òç[1])t-x) ¨ †Z≤-2Rj*(Kx‚(j*Òç[1])t-x) ¨

¨ j*(Ó
-2(Kx‚(j*Òç[1])t-x)[2] | Z.

(4.3.5) But †Z≤-3Rj*(Kx‚(j*Òç[1])t-x) is j~(Kx‚(j*Òç[1])t-x), so

rotating this triangle gives a distinguished triangle
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j*(Ó
-2(Kx‚(j*Òç[1])t-x)[1] | Z ¨ j~(Kx‚(j*Òç[1])t-x) ¨

¨ †Z≤-2Rj*(Kx‚(j*Òç[1])t-x)

in which the first term is (a lisse sheaf on Z)[1].

(4.3.6) Applying Rpr2* gives a distinguished triangle on !1R

(a lisse sheaf on !1R)[1] ¨ K*~+j*Òç[1] ¨ K*mid+j*Òç[1].

Using this triangle, we see the adaptedness of K*mid+j*Òç[1] to the

same stratification (!1R - D, D = ‹i Di) to which K was adapted.

(4.3.7) We know fibre by fibre that tameness is preserved: this is
automatic for characteristic zero fibres, and for characteristic p > 0
fibres it was proven in 3.3.6.

LLLLeeeemmmmmmmmaaaa 4444....3333....8888 Let S an irreducible noetherian scheme, X/S smooth,
and D in X a smooth/S divisor. For Ï lisse on X - D and tame along
D, j: X-S ¨ X and i: D ¨X the inclusions, we have
1) formation of j*Ï and of Rj*Ï on X commutes with arbitrary

change of base on S,

2) the sheaf i*j*Ï on D is lisse, and formation of i*j*Ï on D

commutes with arbitrary change of base on S.
pppprrrrooooooooffff [Ka-SE, 4.7.2 and 4.7.3]. QED

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 4444....3333....9999 Hypotheses and notations as in 4.1.1 above, let K

in Dbc(!
1
R, ä$…) be adapted to (!1R - D, D = ‹i Di), fibrewise

perverse and fibrewise tame. If K is fibrewise a middle extension,
then its fibrewise index of rigidity is constant.

pppprrrrooooooooffff Consider the lisse tame sheaf on @1R -{D‹‘},

Ï := End(Ó-1 | @1R - {D ‹ ‘}).

Its j*Ï on @1R is adapted to (@1R - {D ‹ ‘}, {D ‹ ‘}), fibrewise

tame, and of formation compatible with arbitrary change of base on
Spec(R), by the general lemma above. By the Euler-Poincarïe
formula, the fibrewise ç of j*Ï is constant. Indeed, if

n := rank of Ï on @1R - {D ‹ ‘},

n‘ := rank of j*Ï | ‘R,

ni := rank of j*Ï | Di, for each of the d sections Di,

then the fibrewise ç of j*Ï, i.e., the fibrewise index of rigidity, is
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(1 - d)n + n‘ + ‡i ni. QED

TTTThhhheeeeoooorrrreeeemmmm 4444....3333....11110000 Hypotheses and notations as in 4.1.1 above, let K in

Dbc(!
1
R, ä$…) be adapted to (!1R - D, D = ‹i Di), fibrewise perverse

and fibrewise tame. Suppose K is fibrewise perverse irreducible of
type 2d) in the sense of 3.3.3. Then both K and K*mid+j*Òç[1] are

fibrewise perverse irreducible of type 2d) and have the same index
of rigidity.
pppprrrrooooooooffff Suppose first that R is not a $-algebra. Then Spec(R) has
points with finite residue characteristic p. Once we know that
K ÿ K*mid+j*Òç[1] is stable on fibrewise perverses which are

fibrewise tame and adapted to D, we just look fibrewise (legitimate
by the earlier fibrewise results) and take a fibre in characteristic
p > 0, where we can use 3.3.3.3.

How do we get this result if we don't assume R has points in
some positive characteristic? By passing to fibres, we first reduce to
the case when R is itself an algebraically closed field of
characteristic zero. Since π1 of open curves in characteristic zero

doesn't "see" extensions of algebraically closed fields, we may assume
that our field R is "just" an algebraic closure of the finitely
generated field $(coef's of D(x)), and try working over the ring R0 :=

#[coef's of D(x), 1/»]. This ring R0 is way too big, but it does have

points of characteristic p for all p >> 0. Our Ó-1 | !1R - D has a

GL(n, Ø¬) form, Ø¬ denoting the ring of integers in a finite extension

E¬ of $…, with finite residue field É¬. The key point is that for p >> 0

the group GL(n, Ø¬) is prime to p, because it is an extension of the

finite group GL(n, É¬) by the pro-… group 1 + ¬Mn(Ø¬). For any

p >>0, we can, by applying 5.9.3 and then extending the residue field,
embed our R0 inside a complete discrete valuation ring R1 with

algebraically closed residue field of characteristic p.
When we do this, D stays a good D. By the specialization

theorem for the prime to p fundamental group of the open curve

!1R1
- D, we see that the sheaf Ó-1 | !1R - D extends to a lisse

sheaf on !1R1
- D, which will be irreducible if and only if our

original Ó-1 | !1R - D was geometrically irreducible. Denoting by
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j : !1R1
- D ¨ !1R1

the inclusion, j*(Ó
-1 | !1R1

- D) is adapted, fibrewise perverse,

fibrewise tame, and fibrewise a middle extension. By 4.2.6, 4.2.7, and
4.2.5, the fibrewise "type 2d irreducible" condition is still satisfied by
our extended K over R1. Now we apply the already known case of

the result over the mixed characteristic R1 to get the index of

rigidity on the general fibre. QED

TTTThhhheeeeoooorrrreeeemmmm 4444....3333....11111111 Hypotheses and notations as in 4.1.1 above, let K in

Dbc(!
1
R, ä$…) be adapted to (!1R - D, D = ‹i Di), fibrewise perverse

and fibrewise tame. Suppose K is fibrewise perverse irreducible of

type 2d) in the sense of 3.3.3. For j : !1R - D ¨ !1R the inclusion,

write

j*K = Ï[1], j*(K*mid+j*Òç[1]) = Ì[1],

with Ï and Ì lisse sheaves on !1R - D. Then on every geometric

fibre, the local monodromies of Ï and of Ì are related as in 3.3.6
and 3.3.7....

pppprrrrooooooooffff Denote by L the set of those prime numbers which are

invertible on R. Because Ïis lisse on !1R - ‹Di = @1R - {‘R, ‹Di}

and tame along each of the "missing" sections Z := ‘R or Di, its local

monodromy along each of these sections "is" a pair
(a lisse ä$…-sheaf Ï[Z] on Z, an action of #L(1) on Ï[Z])

whose formation is compatible with arbitrary change of base on
Spec(R) (cf. [De-Weil II, 1.7.8], also [Ka-SE, 4.7.2]). Similarly for Ì. So
in order the verify the asserted relations between the fibrewise local
monodromies of Ï and Ì, it suffices to do so on a single geometric
fibre.

If Spec(R) has a point of residue characteristic p, we are done
by 3.3.6 and 3.3.7. If not, we reduce first to the case when R is an
algebraically closed field of characteristic zero, and then we
specialize both Ï and Òç into characteristic p >> 0 by the argument

of the previous theorem, which reduces us to the case when R is a
mixed characteristic discrete valuation ring. QED
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5555....0000 CCCCoooohhhhoooommmmoooollllooooggggiiiiccccaaaallll rrrriiiiggggiiiiddddiiiittttyyyy
(5.0.1) Let … be a prime number, k an algebraically closed field of

characteristic ±…. On !1 over k, denote by k: !1 ¨ @1 the inclusion.

Let K in Dbc(!
1, ä$…) be a perverse irreducible sheaf which is

nonpunctual, i.e., K is j*Ï[1] for a nonempty open set j: U ¨ !1,

and a lisse irreducible ä$…-sheaf Ï on U. In 3.0.1, we defined the

iiiinnnnddddeeeexxxx ooooffff rrrriiiiggggiiiiddddiiiittttyyyy of K, rig(K), to be the integer

rig(K) := ç(@1, k*j*End(Ï)).

We say that K, or Ï, is ccccoooohhhhoooommmmoooollllooooggggiiiiccccaaaallllllllyyyy rrrriiiiggggiiiidddd, if rig(K) = 2.

TTTThhhheeeeoooorrrreeeemmmm 5555....0000....2222 Let … be a prime number, k an algebraically closed

field of characteristic ±…. In !1 over k, let j: U ¨ !1 be a nonempty
open set, Ï a lisse irreducible ä$…-sheaf Ï on U. Suppose that Ï is

cohomologically rigid. Let Ì be any lisse ä$…-sheaf on U which is

locally isomorphic to Ï in the sense that for each point s of @1 - U,
there exists an isomorphism between the representations Ï(s) and
Ì(s) of the inertia group I(s) afforded by Ï and Ì respectively. Then
there exists an isomorphism Ï ¶ Ì of lisse ä$…-sheaf on U.

pppprrrrooooooooffff. This is a trivial modification of the easy half of 1.1.2. Denote

by k: !1 ¨ @1 the inclusion. Since Ï and Ì are locally isomorphic,
so are the two local systems End(Ï) and Hom(Ï, Ì). So from the
shape of the Euler-Poincarïe formula, which depends only on ranks
and on local data at the ramification points and at infinity, we see
that

2 = ç(@1, k*j*End(Ï)) = ç(@1, k*j*Hom(Ï, Ì)).

Once we have the inequality ç(@1, k*j*Hom(Ï, Ì)) ≥ 2, we

conclude exactly as we did in 1.1.2. QED

5555....1111 TTTThhhheeee ccccaaaatttteeeeggggoooorrrryyyy ÊÊÊÊ…………,,,, aaaannnndddd tttthhhheeee ffffuuuunnnnccccttttoooorrrrssss MMMMCCCCçççç aaaannnndddd MMMMTTTTÒÒÒÒ

(5.1.1) In this section, we work on !1 over an algebraically
closed field k. We fix a prime number …±char(k). We are interested
in the full subcategory Ê

…
of the category of constructible ä$…-

sheaves Ï on !1 consisting of those which satisfy the following
three conditions:
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Ê1) Ï is an irreducible middle extension: there exists a dense open

set j: U ¨ !1 such that j*Ï is lisse and irreducible on U, and such

that Ï ¶ j*j
*Ï.

Ê2) Ï is tame: j*Ï is tamely ramified at every point of @1 - U.

Ê3) Ï has at least two finite singularities: there are at least two

distinct points of !1 at which Ï fails to be lisse.

LLLLeeeemmmmmmmmaaaa 5555....1111....2222 In the situation 5.0.1, suppose Ï satisfies conditions
Ê1) and Ê2) above. If Ï has generic rank ≥ 2, then Ï satisfies Ê3).
pppprrrrooooooooffff Indeed, if Ï is tame and irreducible with at most one finite

singularity, say å, then j*Ï is an irreducible representation of the

abelian group π1
tame(!1 - {å}), so has rank ≤1 QED

LLLLeeeemmmmmmmmaaaa 5555....1111....3333 In the situation 5.0.1, the perverse irreducibles K in

Dbc(!
1, ä$…) which are tame, and of type 2d) in the sense of 3.3.3

are precisely those of the form Ï[1], with Ï in Ê….

pppprrrrooooooooffff A nonpunctual perverse irreducible K is precisely an Ï[1] for

Ï satisfying condition Ê1) above [and we recover Ï as Ó-1(K)]. Such
a perverse irreducible K is tame if and only if Ï is tame. Requiring
in addition that K have property ∏ forces Ï to be nonconstant (and
not to be an Ò¥å

, but that case was already eliminated by the

tameness requirement). Requiring K to be of type 2d) eliminates the
possibility that Ï be any j*Òç(x-å). But these last two

eliminations, of ä$… and of any j*Òç(x-å), amount precisely to

condition Ê3) above. Indeed, of tame iiiirrrrrrrreeeedddduuuucccciiiibbbblllleeee middle extensions,
those with at most one finite singularity are either ä$… (if there is no

finite singularity, because π1
tame(!1)=0) or they are j*Òç(x-å)

for å the unique finite singularity (because π1
tame(´m) is abelian).

QED

(5.1.4) For any nontrivial continuous character

ç: π1
tame(´m,k) ¨ ä$…

≠,

we denote by Òç the corresponding lisse sheaf of rank one on ´m,
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and by j*Òç its direct image to !1. We may restate 4.3.11 in terms

of Ê… as follows. Given a finite subset D in !1(k), and an Ï in Ê…

which is lisse on !1 - D, the middle convolution
Ï[1]*mid+j*Òç[1]

is of the form Ì[1], with Ì in Ê…, and Ì lisse on the same !1 - D.

We can recover Ï from Ì by the inversion formula
Ï[1] = Ì[1]*mid+j*Òäç[1].

Moreover, the local monodromies of Ï and of Ì are related by 3.3.6
and 3.3.7. According to 4.3.10, the indices of rigidity of Ï and Ì
(strictly speaking, of the perverse objects Ï[1] and of Ì[1]) are equal:

rig(Ï) = rig(Ì).
(5.1.5) We define, for ç a nontrivial character as above, the
functor

MCç: Ê… ¨ Ê…
by

MCç(Ï) := Ì := (Ï[1]*mid+j*Òç[1])[-1].

These functors have the composition laws
MCç«MC® = MC®«MCç = MCçp if ç® is nontrivial

MCç«MCäç = id.

(5.1.6) Here is a relatively concrete description of MCç(Ï). Let Ï

in Ê…. Denote by D the set of finite singularities of Ï, and by

j: !1 - D ¨ !1

the inclusion. Consider the projection

pr2: !
2 ¨ !1, (x,t) ÿ t.

On !2, we have the sheaf Ïx‚Òç(t-x) (extended by zero across the

diagonal t=x). Because Ï is lisse on !1 - D, and in Ê…, the higher

direct images Ripr2~(Ïx‚Òç(t-x)) and Ripr2*(Ïx‚Òç(t-x)) are

both lisse on !1 - D, and both vanish for i±1. Moreover, both are of

formation compatible with arbitrary change of base on !1 - D (by

2.8.5). Thus we may form the lisse sheaf on !1 - D which is

Image(j*R1pr2~(Ïx‚Òç(t-x)) ¨ j*R1pr2*(Ïx‚Òç(t-x))).

It is tautological that this is none other than j*MCç(Ï). But
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MCç(Ï) is a middle extension, so we get the

EEEExxxxpppplllliiiicccciiiitttt RRRReeeecccciiiippppeeeessss 5555....1111....7777 In the situation 5.1.1, we have:

(1) For Ï in Ê…, and j: !1 - D ¨!1 the inclusion of a dense open set

on which j*Ï is lisse,

MCç(Ï) = j*j
*MCç(Ï) =

=j*Image(j*R1pr2~(Ïx‚Òç(t-x)) ¨ j*R1pr2*(Ïx‚Òç(t-x))).

(2) At any geometric point † in !1 - D, the stalk at † of MCç(Ï) is

given by

(MCç(Ï))† = Image(H1c(!
1,Ï‚Òç(†-x)) ¨ H1(!1,Ï‚Òç(†-x))).

(3) In terms of the inclusion k: !1 ¨ @1, this image is just the

"parabolic" group H1(@1,k*(Ï‚Òç(†-x))), so

(MCç(Ï))† = H1(@1,k*(Ï‚Òç(†-x))), for † in !1 - D.

(4) In terms of the inclusion k1 : !1 - D -{†} ¨ @1, we may rewrite

this as

(MCç(Ï))† = H1(@1,k1*((Ï‚Òç(†-x) | !
1 - D -{†})) =

= Image of the "forget supports" map

H1c(!
1 - D -{†},Ï‚Òç(†-x)) ¨ H1(!1 - D -{†},Ï‚Òç(†-x)).

(5.1.8) Let Ò be a middle extension sheaf on !1 which is
generically of rank one, and which is tame. We wish to define an
operation of "middle tensor product with Ò" for objects of Ê…

[compare 3.2]. The naive idea is this: given Ï in Ê…, pick j: U ¨!1 a

dense open on which both Ï and Ò are lisse, and form

j*((j
*Ï)‚(j*Ò)). This sheaf, which is independent of the auxiliary

choice of U, visibly satisfies both Ê1) and Ê2). As it has the same
generic rank as Ï, it will satisfy Ê3) if Ï has generic rank at least
2, thanks to Lemma 5.1.2.

(5.1.9) However, for Ï of generic rank one, j*((j
*Ï)‚(j*Ò)) may

very well ffffaaaaiiiillll to satisfy Ê3): for example, it might be the constant
sheaf. In order to deal with this problem, we define

Ê…, rk ≥2 := the full subcategory of Ê… consisting of those

objects of generic rank ≥2.
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On this full subcategoryÊ…, rk ≥2, we can define the above "middle

tensor product with Ò", which we denote
MTÒ: Ê…, rk ≥2 ¨ Ê…, rk ≥2,

MTÒ(Ï) := j*((j
*Ï)‚(j*Ò)),

for j: U ¨!1 any dense open on which both Ï and Ò are lisse.
It is clear from the definitions that MTÒ preserves index of rigidity:

rig(MTÒ(Ï)) = rig(Ï).

If we are given a lisse, rank one Ò on a dense open j:U ¨ !1, we
will often write MTÒ instead of the literally correct MTj*Ò

.

5555....2222 TTTThhhheeee mmmmaaaaiiiinnnn tttthhhheeeeoooorrrreeeemmmm oooonnnn tttthhhheeee ssssttttrrrruuuuccccttttuuuurrrreeee ooooffff rrrriiiiggggiiiidddd llllooooccccaaaallll
ssssyyyysssstttteeeemmmmssss

(5.2.0) Given an everywhere tame lisse ä$…-sheaf on !1 - D, we

denote by LocMono(Ï) the subgroup of the group of all continuous
characters

ç: I(0)tame ¶ π1
tame(´m,k) ¨ ä$…

≠

generated by those which "occur" in the local monodromies of Ï at

all the points of @1 [i.e., canonically identify the tame inertia groups

I(å)tame at points å in @1 to I(0)tame via automorphisms of @1

which carry å to 0 (the resulting identifications are independent of
the choice)].
MMMMaaaaiiiinnnn TTTThhhheeeeoooorrrreeeemmmm 5555....2222....1111 In the situation 5.1.1, suppose Ï in Ê… has

generic rank r(Ï) ≥ 2, and is lisse on !1 - D. Suppose further that Ï
is cohomologically rigid. Then
1) There exists a lisse, everywhere tame, rank one ä$…-sheaf Ò on

!1 - D, and a nontrivial character ç, such that the (necessarily
cohomologically rigid) object Ì in Ê… defined by

Ì := MCçMTÒ(Ï)

has strictly lower generic rank: r(Ì) < r(Ï).
2) In 1) above, we may choose both Òç and Ò to have all of their

local monodromies in the group LocMono(Ï), and, if we so choose
them, then Ì := MCçMTÒ(Ï)has LocMono(Ì) fi LocMono(Ï).

3) If for some integer N≥1 all the eigenvalues of all the local
monodromies of Ï are N'th roots of unity, then in 1) above we may
choose ç of order dividing N, and we may choose Ò to have each of
its local monodromies of order dividing N, and if we so choose them,
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all the eigenvalues of all the local monodromies of Ì will be N'th
roots of unity.

(5.2.2) pppprrrrooooooooffff We will prove the theorem by giving an algorithm for
how to choose both Ò and ç.
(5.2.2.1) In order to eliminate any ambiguity in the algorithm, for

each point å in @1(k), we will choose a total ordering of the
underlying set of the group of all continuous characters

ç: I(å)tame ¨ ä$…
≠.

One way to do this is as follows. If we pick a topological generator,

say ©tame, of the group I(å)tame (which is canonically the group
°…±char(k) #…(1)), and a field embedding of ä$… into ^, then

"evaluation at ©tame" embeds the continuous characters into the

group ^≠. So we are reduced to exhibiting a total ordering of ^≠. The
simplest way to do this is to use polar coordinates, writing nonzero

complex numbers as reiø with r and ø real, r > 0 and 0 ≤ ø <2π.

Then we say reiø < r'eiø' if either r < r' or if r=r' and ø < ø'.
(5.2.2.2) FFFFiiiirrrrsssstttt SSSStttteeeepppp.We now explain how to choose Ò. Because Ï is

lisse on !1 - D, and everywhere tame, at each point å in D‹{‘},
the local monodromy of Ï defines an r(Ï)-dimensional

representation of I(å)tame. We first describe a shorthand to describe

this representation of I(å)tame. We write it as a direct sum of
(character)‚(unipotent rep'n.):

Ï as I(å)tame -rep'n. = ·ç Òç(x-å)‚Unip(å,ç,Ï), å finite,

Ï as I(‘)tame -rep'n. = ·ç Òç‚Unip(‘,ç,Ï), for å=‘.

We write Unip(å,ç,Ï) as a direct sum of Jordan blocks, of
dimensions {ni(å,ç,Ï)}i, and then pass to its "dual partition"

[compare 3.1.10], the decreasing sequence of non-negative integers
e1(å,ç,Ï) ≥ e2(å,ç,Ï) ≥ ... ≥ ek(å,ç,Ï) = 0 for k >> 0

defined by
ej(å,ç,Ï) := the number of Jordan blocks in Unip(å,ç,Ï)

whose dimension is ≥j.
Thus e1(å,ç,Ï) is the multiplicity

dimHomI(å)({Òç(x-å) if åfinite, Òç if å=‘}, Ï(å))

of ç as simple eigenvalue in Ï(å) := Ï as I(å)tame-representation
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(and ej(å,ç,Ï)=0 for all j if the character ç does not occur in the

local monodromy of Ï at å).
Given Ï and a point å in D, pick a character ç whose

e1(å,ç,Ï) is maximal among all the characters which occur in the

local monodromy of Ï at å. There may not be a unique such ç, but
in case of a tie we choose the one which comes first in the chosen

total ordering of the set of all characters of I(å)tame. [The proof
works just as well if whenever we are confronted with a tie we
make an arbitrary choice, rather than consult some pre-chosen
total ordering.] This character we denote çå,Ï.

(5.2.2.3) We now have chosen, at each point å in the finite set

D fi !1, a continuous character çå,Ï of I(å)tame. By the known

structure of the prime-to-p fundamental group of !1 - D (the
maximal prime-to-p quotient of the profinite completion of the free
group with one generator for each point å in D), there is a unique
(up to isomorphism) lisse, everywhere tame, rank one ä$…-sheaf Ò

on !1 - D with the property that, for every å in D,

Ò as I(å)tame-representation = (çå,Ï)
-1.

Concretely, Ò is the tensor product, over å in D, of the inverses of
the translated Kummer sheaves Òçå,Ï(x-å)

.

(5.2.2.4) With this choice of Ò, the sheaf MTÒ(Ï), which has the

same generic rank as Ï and the same index of rigidity as Ï, has the
additional property that, at each å in D, the trivial character ú has
maximal "simple multiplicity": for each åin D, we have

e1(å,ú,MTÒ(Ï)) ≥ e1(å,ç,MTÒ(Ï)) for all ç.

(5.2.2.5) Notice that the local monodromies of Ò were all drawn
from the group LocMono(Ï), and that, consequently,
LocMono(MTÒ(Ï)) lies in LocMono(Ï).

(5.2.2.6) SSSSeeeeccccoooonnnndddd SSSStttteeeepppp In order to complete the proof of the theorem,
it suffices to apply the following result to MTÒ(Ï).

MMMMaaaaiiiinnnn TTTThhhheeeeoooorrrreeeemmmm 5555....2222....3333(((( ==== 5555....2222....1111 bbbbiiiissss)))) In the situation 5.1.1, suppose

Ï in Ê… has generic rank r(Ï) ≥ 2, and is lisse on !1 - D. Suppose

that Ï satisfies the following condition:
(*) At every point å in D, we have

e1(å,ú,Ï) ≥ e1(å,ç,Ï) for all ç.

If Ï is in addition cohomologically rigid, there exists a nontrivial
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character ç in LocMono(Ï), such that the (necessarily
cohomologically rigid) object Ì in Ê… defined by

Ì := MCç(Ï)

has strictly lower generic rank: r(Ì) < r(Ï). Moreover, LocMono(Ì) is
contained in LocMono(Ï).
(5.2.4) pppprrrrooooooooffff The "moreover" follows from the explicit recipes of
3.3.6.
(5.2.4.1) We choose the character ç so as to maximize the

dimension of the I(‘)tame invariants in Òç‚Ï. [If there is more

than one ç which works, we choose the first of them in the chosen
total ordering, though any choice would work for the proof.]
(5.2.4.2) We claim that aaaannnnyyyy ç which maximize the dimension of

the I(‘)tame invariants in Òç‚Ï is nontrivial. If not, we would

have
e1(‘,ú,Ï) ≥ e1(‘,ç,Ï) for all ç.

Recall that already at all finite singularities å in D, Ï has
e1(å,ú,Ï) ≥ e1(å,ç,Ï) for all ç.

(5.2.4.3) We will show this is impossible if Ï in Ê… is

cohomologically rigid. First, we remark that on !1 - D, Ï is both
irreducible and nontrivial (just because it lies in Ê…). Therefore,

denoting by

j: !1 - D ¨ @1

the inclusion, we have

H0(@1, j*(Ï|!
1 - D)) = 0 = H2(@1, j*(Ï|!

1 - D)),

and hence we have the inequality

ç(@1, j*(Ï|!
1 - D)) ≤ 0.

(5.2.4.4) On the other hand, we are given that Ï is cohomologically
rigid, i.e.,

ç(@1, j*End(Ï|!
1 - D)) = 2

(5.2.4.5) The idea now is to use the Euler-Poincarïe formula to
make explicit both of these Euler characteristics. Consider any Ï in

Ê… which is lisse on !1 - D. Because Ï is tame,

ç(@1, j*End(Ï|!
1 - D)) =

=ç(!1 - D, End(Ï)) + ‡å in D‹{‘} dim(End(Ï)I(å))

=(1 - Card(D))r(Ï)2 + ‡å in D‹{‘} ‡ç ‡i (ei(å,ç,Ï))
2,
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the last equality thanks to 3.1.15.
(5.2.4.6) Now at each å in D‹{‘}, denote by çå,Ï a choice of

character for which e1(å,ç,Ï) is maximal. Since the ei are a

decreasing sequence, we have
e1(å,çå,Ï,Ï) ≥ ei(å,®,Ï) for all ® and for all i.

Therefore we have the inequality

‡ç ‡i (ei(å,ç,Ï))
2 ≤‡ç ‡i e1(å,çå,Ï,Ï)ei(å,ç,Ï).

But
‡ç ‡i e1(å,çå,Ï,Ï)ei(å,ç,Ï) = e1(å,çå,Ï,Ï)‡ç ‡i ei(å,ç,Ï)

= e1(å,çå,Ï,Ï)r(Ï),

so we get

ç(@1, j*End(Ï|!
1 - D)) ≤

≤ (1 - Card(D))r(Ï)2 + ‡å in D‹{‘} e1(å,çå,Ï,Ï)r(Ï).

This we record as

BBBBaaaassssiiiicccc IIIInnnneeeeqqqquuuuaaaalllliiiittttyyyy 5555....2222....4444....7777 For any Ï in Ê… which is lisse on !1 - D,

we have

ç(@1, j*End(Ï|!
1 - D)) ≤

≤r(Ï)[(1 - Card(D))r(Ï) + ‡å in D‹{‘} e1(å,çå,Ï,Ï)]

(5.2.4.8) Now suppose that
(**) for every å in D‹{‘}, we have

e1(å,ú,Ï) ≥ e1(å,ç,Ï) for all ç.

Then e1(å,çå,Ï,Ï) is just e1(å,ú,Ï), and we find

(1/r(Ï))ç(@1, j*End(Ï|!
1 - D)) ≤

≤ (1 - Card(D))r(Ï) + ‡å in D‹{‘} e1(å,ú,Ï).

But the Euler Poincarïe formula for j*Ï gives

ç(@1, j*(Ï|!
1 - D)) = (1 - Card(D))r(Ï) + ‡å in D‹{‘} e1(å,ú,Ï).

Thus for Ï in Ê… satisfying (**), we get the inequality

ç(@1, j*End(Ï|!
1 - D)) ≤ r(Ï)ç(@1, j*(Ï|!

1 - D)).

But ç(@1, j*(Ï|!
1 - D)) ≤ 0 for any Ï in Ê…, so we get

ç(@1, j*End(Ï|!
1 - D)) ≤ 0,

which is impossible if Ï is cohomologically rigid, i.e., if

ç(@1, j*End(Ï|!
1 - D)) = 2.
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(5.2.4.9) This shows that if we choose a character ç so as to

maximize the dimension of the I(‘)tame invariants in Òç‚Ï, then

any such ç is nontrivial, provided Ï is cohomologically rigid and
satisfies the hypothesis (*) of 5.2.3.
(5.2.4.10) We must now show that for any such choice of ç, the
sheaf Ì := MCç(Ï) has strictly lower generic rank: r(Ì) < r(Ï). For

this, we use the rank formula 3.3.7, according to which, for any Ï
in Ê…,

r(Ì) = ‡å in D rank(Ï(å)/Ï(å)I(å)) - rank((Ï(‘)‚Òç)
I(‘))

= card(D)r(Ï) -‡å in D rank(Ï(å)I(å))- rank((Ï(‘)‚Òç)
I(‘)).

=card(D)r(Ï) -‡å in D e1(å,ú,Ï)- rank((Ï(‘)‚Òç)
I(‘)).

(5.2.4.11) The Euler-Poincarïe formula for Ï says

ç(@1, j*(Ï|!
1 - D)) = (1 - Card(D))r(Ï) + ‡å in D‹{‘} e1(å,ú,Ï),

= -[card(D)r(Ï) -‡å in D e1(å,ú,Ï)] + r(Ï) +e1(‘,ú,Ï).

(5.2.4.12) Thus in our formula for r(Ì) we get, for any Ï in Ê…,

r(Ì) =r(Ï) +e1(‘,ú,Ï) - ç(@1, j*(Ï|!
1 - D)) - rank((Ï(‘)‚Òç)

I(‘)).

(5.2.4.13) We rewrite this as
r(Ï) - r(Ì) =

= ç(@1, j*(Ï|!
1 - D)) +rank((Ï(‘)‚Òç)

I(‘)) - e1(‘,ú,Ï).

(5.2.4.14) So we need to show that, for our Ï, we have

ç(@1, j*(Ï|!
1 - D)) +rank((Ï(‘)‚Òç)

I(‘)) - e1(‘,ú,Ï) > 0.

(5.2.4.15) To show this, recall that for any Ï in Ê… we had the

Basic Inequality 5.2.2.7

ç(@1, j*End(Ï|!
1 - D)) ≤

≤r(Ï)[(1 - Card(D))r(Ï) + ‡å in D‹{‘} e1(å,çå,Ï,Ï)].

For Ï cohomologically rigid and satisfying the hypothesis (*) of 5.2.3,
the left hand side is 2 (Ï is cohomologically rigid) and on the right
each term e1(å,çå,Ï,Ï) for å in D is equal to e1(å,ú,Ï). Thus the

Basic Inequality gives
2/r(Ï) ≤ (1 - Card(D))r(Ï) + e1(‘,ç‘,Ï,Ï) + ‡å in D e1(å,ú,Ï)

= ç(@1, j*(Ï|!
1 - D)) + e1(‘,ç‘,Ï,Ï) - e1(‘,ú,Ï).

Since the left hand side (namely 2/r(Ï)) is strictly positive, we get

0 < ç(@1, j*(Ï|!
1 - D)) + e1(‘,ç‘,Ï,Ï) - e1(‘,ú,Ï).

This is precisely the required inequality 5.2.4.14, for by the very
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choice of the character ç we have

e1(‘,ç‘,Ï,Ï) = rank((Ï(‘)‚Òç)
I(‘)). QED

5555....3333 AAAApppppppplllliiiiccccaaaattttiiiioooonnnnssss aaaannnndddd iiiinnnntttteeeerrrrpppprrrreeeettttaaaattttiiiioooonnnnssss ooooffff tttthhhheeee mmmmaaaaiiiinnnn tttthhhheeeeoooorrrreeeemmmm
(5.3.1) We continue to work in the situation 5.1.1. Fix a dense

open set !1 - D in !1, and a subgroup Æ of the group of all

continuous ä$…
≠-valued characters of I(0)tame. Let us denote by

Ê…(!
1 - D, Æ) the full subcategory of Ê… consisting of the objects Ï

which are lisse on !1 - D and for which LocMono(Ï) fi Æ.
(5.3.2) We can construct a graph whose vertices are the objects

of Ê…(!
1 - D, Æ), and in which there is an edge joining two objects

Ï and Ì if either of the following conditions a) or b) holds:
a) Ï and Ì both have generic rank >1, and there is a lisse tame

rank one Ò on !1 -D, all of whose local monodromies are in Æ, such
that Ï ¶ MTÒ(Ì), or equivalently Ì ¶ MTÒ-1(Ï).

b) there exists a nontrivial character ç in Æ such that Ï ¶ MCç(Ì),

or equivalently Ì ¶ MCç-1(Ï).

In terms of this graph, the Main Theorem says precisely

MMMMaaaaiiiinnnn TTTThhhheeeeoooorrrreeeemmmm 5555....3333....3333 ((((==== 5555....2222....1111 bbbbiiiissss)))).... If Ï in Ê…(!
1 - D, Æ) is

cohomologically rigid, then Ï (as vertex of the graph 5.3.2) is

connected to an object of rank one in Ê…(!
1 - D, Æ), and its distance

to such an object is at most 2(r(Ï) -1).
5555....4444 SSSSoooommmmeeee ooooppppeeeennnn qqqquuuueeeessssttttiiiioooonnnnssss
(5.4.1) In this graph, any two objects which are connected have

the same index of rigidity ç(@1,j*End(Ï|!
1 - D)), by 4.3.10. Let us

say that an object Ï of Ê…(!
1 - D, Æ) is mmmmiiiinnnniiiimmmmaaaallll if for any object

Ì to which it is connected, r(Ï) ≤ r(Ì). Obviously every object is
connected to a minimal object which has the same index of rigidity.
The Main Theorem 5.3.3 states that the minimal cohomologically
rigid objects are exactly those of generic rank one.
(5.4.2) But the index of rigidity, a priori even and ≤2, can be

aaaannnnyyyy even integer ≤ 2. [For instance, the pullback by x ÿ xn of the

rank two local system on @1 - {0,1,‘} attached to the differential
equation for the Gauss hypergeometric function F(1/2,1/2,1;x) has
index of rigidity 4 - 2n.] What are the minimal objects Ï whose
index of rigidity is some given even integer ≤ 0 Already the simplest
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case of this question, index of rigidity =0, is far from understood. For
instance, is it true that if an object is not minimal, then it is at
distance at most two from an object of strictly lower rank? Are
there minimal objects with index of rigidity =0 of arbitrarily large
rank?
(5.4.3) Here is a "candidate" for a construction of minimal objects

with index of rigidity =0 of arbitrarily large rank on !1 - {3 points}.

Over ^ take an elliptic curve y2 = (x-e1)(x-e2)(x-e3), an integer

n ≥ 1, and a primitive n'th root of unity Ω. Denote by Ïn,Ω the

(extension by zero to E of the) rank n local system on E - {0} with
local monodromy around 0 given by the scalar Ω constructed in the

proof of 1.4.4. For a rank one local system Ò on E for which Òº2n is
nontrivial, there exists no isomorphism (of local systems on E - {0})

Ò‚Ïn,Ω ¶[-1]*(Ò‚Ïn,Ω) [compare determinants]. Let π: E ¨ @1 be

the map "x". Then Ì :=π*(Ò‚Ïn,Ω), for Ò as above, is an irreducible

middle extension sheaf on @1 which on !1 - {e1, e2, e3}

is a rank 2n local system with index of rigidity 0. Its local
monodromies at the four missing points are semisimple, with
eigenvalues

at ‘: each of the two square roots of Ω, repeated n times
at ei: each of _1, repeated n times.

It is easy to show that any object of distance at most two from Ì
has rank at least that of Ì. Is Ì minimal? If so, Ì provides an

example of a minimal object of rank 2n, lisse on !1 - {e1, e2, e3},

with index of rigidity =0.

5555....5555 EEEExxxxiiiisssstttteeeennnncccceeee ooooffff uuuunnnniiiivvvveeeerrrrssssaaaallll ffffaaaammmmiiiilllliiiieeeessss ooooffff rrrriiiiggggiiiiddddssss wwwwiiiitttthhhh ggggiiiivvvveeeennnn llllooooccccaaaallll
mmmmoooonnnnooooddddrrrroooommmmyyyy
(5.5.1) Let k be an algebraically closed field, n ≥ 2 an integer,

å1, å2, ... ån a set of n distinct points of !1(k), … a prime number

invertible in k, N≥1 an integer which is invertible in k, and Ω a
primitive N'th root of unity in k. Let Ï be an object of Ê… which is

lisse on !1 - {å1, å2, ... ån}, cohomologically rigid, and such that all

eigenvalues of all local monodromies of Ï are N'th roots of unity.
(5.5.2) Given the data (n, N, …), we form the ring
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RN,… := #[ΩN, 1/N…], ΩN := a primitive N'th root of unity

(i.e., RN,… is #[1/N…][X]/(”N(X)), with ”N(X) in #[X] the N'th

cyclotomic polynomial). We denote by E = EN the fraction field of

RN,…: thus E is the cyclotomic field $(ΩN). We fix an embedding

RN,… ¨ ä$…,

i.e., we fix a primitive N'th root of unity in ä$…. We denote by ¬ the

induced place of the "abstract" field E, and by E¬ the ¬-adic

completion of E.
(5.5.3) Denote by SN,n,… the ring

SN,n,… := RN,…[T1, ... , Tn][1/»], » := °i±j(Ti - Tj).

There is a unique ring homomorphism
ƒ : SN,n,… ¨ k

for which ƒ(ΩN) = Ω and for which ƒ(Ti) = åi for 1 ≤ i ≤ n.

Over SN,n,…, we have !
1, with its n disjoint sections {T1, ... , Tn}. We

denote by

j: (!1- {T1, ... , Tn})SN,n,…
¨ (!1)SN,n,…

the inclusion.

TTTThhhheeeeoooorrrreeeemmmm 5555....5555....4444 In the situation 5.5.1, we have
1) There exists a lisse E¬-sheaf

ÏÏÏÏ on (!1- {T1, ... , Tn})SN,n,…
which, after the base change ƒ : SN,n,… ¨ k and the extension of

scalars E¬ ¨ ä$… becomes (the restriction to !1 - {å1, å2, ... ån} of)

Ï.
2) ("mise pour memoire", cf. 4.2.3, 4.3.8, and 4.3.9) The object j*ÏÏÏÏ on

(!1)SN,n,…
is of formation compatible with arbitrary change of base

on SN,n,…, and is adapted to the stratification

((!1- {T1, ... , Tn})SN,n,…
, {T1, ... , Tn}SN,n,…

) of (!1)SN,n,…
.

The restriction of j*ÏÏÏÏ to every geometric fibre of (!1)SN,n,…
is

(after extension of scalars E¬ ¨ ä$… ) a cohomologically rigid object

of Ê…, all of whose local monodromies have all their eigenvalues N'th

roots of unity.
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3) The lisse E¬-sheaf ÏÏÏÏ on (!1- {T1, ... , Tn})SN,n,…
is pure of some

integer weight w, 0 ≤ w ≤ rank(ÏÏÏÏ) - 1, and all its characteristic
polynomials of Frobenius at all finite field-valued points have
coefficients in the subring #[ΩN] of E¬ (a subring via the given

embedding of RN,… into ä$…).

4) For any prime number …1, and any embedding

¬1: #[ΩN] ¨ ä$…1
,

there exists on (!1- {T1, ... , Tn})SN,n,…1
a lisse E¬1

-sheaf ÏÏÏÏ¬1
which

satisfies 2) above with … replaced by …1, which is pure of the same

weight w, which at every finite field-valued point has characteristic
polynomial of Frobenius with coefficients in the subring #[ΩN] of E¬1

.

Moreover, at any such finite field valued point where … is invertible,
the characteristic polynomial of ÏÏÏÏ¬1

is equal to that of ÏÏÏÏ (equality

in the common subring #[ΩN]).

5555....5555....5555 ccccoooonnnnssssttttrrrruuuuccccttttiiiioooonnnn----pppprrrrooooooooffff ooooffff 5555....5555....4444
(5.5.5.1) We proceed by induction on the generic rank r(Ï) of Ï.

Suppose first that r(Ï) = 1. Then on !1 - {å1, å2, ... ån}, Ï is a lisse

sheaf of rank one, all of whose local monodromies have order
dividing N. Denote by çi the character of order dividing N of

I(åi)
tame given by Ï at åi. Thus çi is a E¬

≠-valued character of

I(åi)
tame/NI(åi)

tame ¶ μμμμN(k), the isomorphism given by the action

of μμμμN(k) as galois group of the finite etale galois connected covering

of !1 - {åi} of equation yN = x - åi, on which Ω in μμμμN(k) acts by

(x,y) ÿ (x,Ωy). Thus the translated Kummer sheaf Òçi(x - åi)
on

!1 - {åi} is a lisse rank one E¬-sheaf on !1 - {åi}, and it has the

same local monodromy at åi that Ï does.

(5.5.5.2) Consider the lisse, rank one E¬-sheaf

‚i Òçi(x - åi)
on !1 - {å1, å2, ... ån}.

It has the same local monodromy as Ï at each point åi, and both it

and Ï are tame at ‘. Therefore

Ï ¶ ‚i Òçi(x - åi)
on !1 - {å1, å2, ... ån},
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because their ratio is lisse and tame on !1, but π1
tame(!1) = 0.

(5.5.5.3) By means of the fixed choices of primitive N'th roots of
unity ΩN in RN,… fiSN,n,… and Ω in k, we may identify the groups

μμμμN(RN,…) = μμμμN(SN,n,…) and μμμμN(k). This allows us to view çi as a

character of the group μμμμN(SN,n,…) which is the galois group of the

finite etale galois connected covering of (!1 - {Ti})SN,n,…
of equation

yN = x - Ti, on which Ω in μμμμN(SN,n,…) acts by (x,y) ÿ (x,Ωy). Thus

we may speak of the translated Kummer sheaf Òçi(x - Ti)
as a lisse

E¬-sheaf of rank one on (!1 - {Ti})SN,n,…
.

(5.5.5.4) We now define ÏÏÏÏ to be

ÏÏÏÏ := ‚i Òçi(x - Ti)
on (!1- {T1, ... , Tn})SN,n,…

.

It is obvious that 1) (and hence 2) also) and 3) are satisfied, with the
weight w=0. Since the characters çi have values in the subgroup

μ
N
(#[ΩN]) of ä$…

≠, for any prime number …1, and any embedding

¬1: #[ΩN] ¨ ä$…1
,

we can view the çi as E¬1
≠-valued characters, and define ÏÏÏÏ¬1

by

the same recipe as above, viewing now each Òçi(x - Ti)
as a lisse

rank one E¬1
-sheaf on (!1- {Ti})SN,n,…1

. It is obvious that 4) is now

satisfied. [One should remark that, fibre by fibre, this ÏÏÏÏ¬1
does

indeed have at least two finite singularities, since along the section
Ti its local monodromy is of exactly the same order as was the local

monodromy of the original Ï at åi, namely the order of the

character çi, and the assumption that Ï is in Ê… guarantees that

çi is nontrivial for at least two distinct values of i.] This concludes

the construction-proof in the case of generic rank one.
(5.5.5.5) We now explain how to pass to the general case. Thus let

Ï in Ê… be lisse on !1 - {å1, å2, ... ån}, cohomologically rigid, with

all all local monodromy eigenvalues N'th roots of unity, and with
generic rank r(Ï) ≥ 2.
(5.5.5.6) According to the main theorem 5.2.1, there exist

1) an object Ì in Ê…, lisse on !1 - {å1, å2, ... ån}, with all local
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monodromy eigenvalues N'th roots of unity, with r(Ì) < r(Ï),

2) a lisse rank one ä$…-sheaf Ò on !1 - {å1, å2, ... ån}, with all

local monodromies of order dividing N,

3) a nontrivial ä$…-valued character ç of π1(´m)tame of order

dividing N,
4) an isomorphism

Ï ¶ MTÒ(MCç(Ì)).

(5.5.5.7) By applying the argument given in the rank one case to

Ò on !1 - {å1, å2, ... ån}, and to Òç on ´m = !1 - {0}, we

construct lisse rank one E¬-sheaves ÒÒÒÒ on (!1- {T1, ... , Tn})SN,n,…

and ÒÒÒÒçççç on (!1- {0})SN,n,…
which after the base change ƒ : SN,n,…

¨ k and the extension of scalars E¬ ¨ ä$… become Ò and Òç
respectively. The conclusions 2), 3) and 4) of the theorem hold for ÒÒÒÒ

on (!1- {T1, ... , Tn})SN,n,…
. These same conclusions hold also for ÒÒÒÒçççç

on (!1- {0})SN,n,…
provided we delete the phrase "in Ê…" from 2).

(5.5.5.8) By induction, we may assume there exists a lisse E¬-sheaf

ÌÌÌÌ on (!1- {T1, ... , Tn})SN,n,…
for which after the base change ƒ :

SN,n,… ¨ k and the extension of scalars E¬ ¨ ä$… becomes Ì, and for

which 2), 3), and 4) hold. We define ÏÏÏÏon (!1- {T1, ... , Tn})SN,n,…
by

ÏÏÏÏ[1] := ÒÒÒÒ‚j*(j*ÌÌÌÌ[1]*mid+j0*ÒÒÒÒçççç[1]),

where

j: (!1- {T1, ... , Tn})SN,n,…
¨ (!1)SN,n,…

,

and j0: (!
1- {0})SN,n,…

¨ (!1)SN,n,…
denote the inclusions.
(5.5.5.9) That 1) holds results from 4.3.2, 4.3.3, and 4.3.10. As
already remarked, 2) for ÏÏÏÏ is automatic once we have 1) [Use 4.3.10

to see that (after extension of scalars E¬ ¨ ä$…) ÏÏÏÏººººÒÒÒÒ
-1, and hence

ÏÏÏÏ, whose generic rank is ≥ 2, is fibre-by-fibre in Ê….] To prove 3) for

ÏÏÏÏ, it suffices to do so for (j*ÌÌÌÌ[1]*mid+j0*ÒÒÒÒçççç[1])[-1], because we

already know that 3) holds for ÒÒÒÒ itself, with weight w=0.
(5.5.5.10) We begin the proof of 3). Let É be a finite field in which
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N… is invertible, and ® : SN,n,… ¨ É a ring homomorphism. Pick a

point † in !1(É)- {®(T1), ... , ®(Tn)}. Denote by U the open set

U := (!1- {®(T1), ... , ®(Tn), †})É

of !1É. According to 5.1.7, the stalk of (j*ÌÌÌÌ[1]*mid+j0*ÒÒÒÒçççç[1])[-1] at

the geometric point (®,†,äÉ) is the image of the "forget supports" map

H1c(U‚äÉ, ÌÌÌÌ‚ÒÒÒÒçççç(†-x)) ¨ H1(U‚äÉ, ÌÌÌÌ‚ÒÒÒÒçççç(†-x)).

By induction, ÌÌÌÌ is pure weight w, 0 ≤ w ≤ rank(ÌÌÌÌ) - 1, while ÒÒÒÒçççç is

pure of weight zero. By [De-Weil II, 3.2.3 and remark following its
statement] the image of the "forget supports" map is precisely the

weight = w+1 quotient of of the group H1c(U‚äÉ, ÌÌÌÌ‚ÒÒÒÒçççç(†-x)),

which is a priori of weight ≤ w+1. Now the cohomology groups

Hic(U‚äÉ, ÌÌÌÌ‚ÒÒÒÒçççç(†-x)) = 0 for i±1

(for i=0 because we are lisse on an open curve, for i=2 because in
addition we are geometrically irreducible and nontrivial). Therefore
the characteristic polynomial of Frobenius Frob®,†,É on

H1c(U‚äÉ, ÌÌÌÌ‚ÒÒÒÒçççç(†-x)) is, by the Lefschetz Trace Formula [Gro-FL],

equal to the L-function of the lisse sheaf ÌÌÌÌ‚ÒÒÒÒçççç(†-x) on U:

L(U,ÌÌÌÌ‚ÒÒÒÒçççç(†-x),T)=

=det(1 - TFrob®,†,É | H1c(U‚äÉ, ÌÌÌÌ‚ÒÒÒÒçççç(†-x))).

Therefore the characteristic polynomial of Frobenius Frob®,†,É on

(j*ÌÌÌÌ[1]*mid+j0*ÒÒÒÒçççç[1])[-1] is the "pure of weight w+1 part" of this

L-function.
(5.5.5.11) We now consider more closely this L function. Because
both ÌÌÌÌ and ÒÒÒÒçççç have all their characteristic polynomials of

Frobenius with coefficients in the subring #[ΩN] of ä$…, the Euler

product for this L function shows that the L-function itself lies in
1+T(#[ΩN][[T]]), hence (being a polynomial) in 1+T(#[ΩN][T]), and that

it is entirely determined by all the individual characteristic
polynomials of Frobenius of both ÌÌÌÌ and ÒÒÒÒçççç. If we factor L(T) as

L(T) = °j (1 - ∫jT),

the reciprocal roots ∫j are algebraic integers, which (as a set with

multiplicity) are stable under Aut(^/$(ΩN)). Taking the "part of

weight w+1" of L produces the intrinsic divisor of L(T) in which we
keep precisely those ∫j which, together with all their conjugates an
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algebraic integers, have complex absolute value sqrt((Card(É))w+1.
This intrinsic divisor is also stable under Aut(^/$(ΩN)), so has

coefficients in $(ΩN) € {algebraic integers} = #[ΩN]. Moreover, being

intrinsic, it too is entirely determined by all the individual
characteristic polynomials of Frobenius of both ÌÌÌÌ and ÒÒÒÒçççç.

(5.5.5.12) It remains to prove 4). Again by induction, all the objects
ÌÌÌÌ, ÒÒÒÒ and ÒÒÒÒçççç have ¬1-adic versions, say ÌÌÌÌ¬1

, ÒÒÒÒ¬1
and ÒÒÒÒçççç¬1

. Using

these, we define ÏÏÏÏ¬1
out of them in precisely the same way we

defined ÏÏÏÏ:

ÏÏÏÏ¬1
[1] := ÒÒÒÒ¬1

‚j*(j*ÌÌÌÌ¬1
[1]*mid+j0*ÒÒÒÒçççç¬1

[1]).

Now repeat for j*(j*ÌÌÌÌ¬1
[1]*mid+j0*ÒÒÒÒçççç¬1

[1])[-1] the above

discussion of characteristic polynomials of Frobenius. It will establish
that its characteristic polynomials of Frobenius have coefficients in
#[ΩN], and are entirely determined by all the individual

characteristic polynomials of Frobenius of both ÌÌÌÌ¬1
and ÒÒÒÒçççç¬1

by

exactly the same "part of weight w+1 of an L function" rules as the
characteristic polynomials of ÏÏÏÏ we determined by those of ÌÌÌÌ and

ÒÒÒÒçççç. This proves inductively that j*(j*ÌÌÌÌ¬1
[1]*mid+j0*ÒÒÒÒçççç¬1

[1])[-1]

is pure of weight w+1, has characteristic polynomials of Frobenius
with coefficients in #[ΩN], and that for any finite field-valued point

of (!1- {T1, ... , Tn})SN,n,…
where …1 is invertible,

j*(j*ÌÌÌÌ[1]*mid+j0*ÒÒÒÒçççç[1])[-1] and j*(j*ÌÌÌÌ¬1
[1]*mid+j0*ÒÒÒÒçççç¬1

[1])[-1]

have the "same" (comparison in the common subring #[ΩN] of ä$…
and ä$…1

) characteristic polynomial of Frobenius. Because we already

know that 4) holds for ÒÒÒÒ and its ¬1-partner ÒÒÒÒ¬¬¬¬1111
, we may tensor

by these to deduce that ÏÏÏÏ and ÏÏÏÏ¬1
also have the same

characteristic polynomials of Frobenius at any finite field-valued

point of (!1- {T1, ... , Tn})SN,n,…
where …1 is invertible.

(5.5.5.13) It remains only to show that j*ÏÏÏÏ¬1
satisfies 2). Using

4.3.8, we get most of 2): it remains only to show that j*ÏÏÏÏ¬1
is fibre-
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by -fibre in Ê…. But as rank(ÏÏÏÏ¬1
) ≥ 2, it is equivalent to show that

(j*ÌÌÌÌ¬1
[1]*mid+j0*ÒÒÒÒçççç¬1

[1])[-1] is fibre-by -fibre in Ê….This results

from 4.3.10 and 4.3.11. QED

(5.5.6) We now discuss the weight w of ÏÏÏÏ constructed in 5.5.4. If
Ï has rank one, then w=0. When Ï has rank r(Ï) ≥ 2, we can, by
5.3.3, connect Ï to a rank one object Ò0 through a finite number of

steps, each of which is either an MTÒ or an MCç, say

Ï = MTÒd
«MCçd

« ... «MTÒ1
«MCç1

(Ò0),

in such a way that
1) each application of an MCç strictly increases the rank,

2) we have (çi)
N = ú for i=1, ..., d, but each çi ± ú,

3) we have (Òi)
‚N ¶ ä$…, for i = 0, ..., d, but Òi is non-constant for

i=0, ..., d-1.
There may be more than one such expression for Ï, but each choice
of such an expression gives rise to an ÏÏÏÏ. Concretely, we "thicken"
each Òi to ÒÒÒÒiiii, each Òçi

to ÒÒÒÒççççiiii
, and inductively define ÏÏÏÏ0000 := ÒÒÒÒ0000,

ÏÏÏÏ1111, ..., ÏÏÏÏdddd := ÏÏÏÏ by (in the notations of 5.5.5.8)

ÏÏÏÏiiii++++1111[1] := ÒÒÒÒiiii‚j*(j*ÏÏÏÏiiii----1111[1]*mid+j0*ÒÒÒÒççççiiii
[1]),

for i=0, ...., d-1. The weight of the ÏÏÏÏ constructed this way is the
number d of steps of type MCç.

(5.5.7) We now examine the unicity of an ÏÏÏÏ given by 5.5.4.
Denote by

π : (!1- {T1, ... , Tn})SN,n,…
¨ SN,n,….

the projection. For any lisse E¬-sheaf ÒÒÒÒ on SN,n,…, ÏÏÏÏ‚π*(ÒÒÒÒ) works

just as well as ÏÏÏÏ in 5.5.4.1). This is the only ambiguity in ÏÏÏÏ.
LLLLeeeemmmmmmmmaaaa 5555....5555....7777....1111 Hypotheses and notations as in 5.5.4, suppose ÏÏÏÏ and
ÏÏÏÏ1111 both satisfy 5.5.4 1). Then there exists a lisse E¬-sheaf ÒÒÒÒ on

SN,n,…, and an isomorphism ÏÏÏÏ1111 ¶ ÏÏÏÏ‚π*(ÒÒÒÒ)

pppprrrrooooooooffff This follows from the Rigidity Corollary 5.5.7.3 below, applied

to S:= Spec(SN,n,…), and U := (!1- {T1, ... , Tn})SN,n,…
.

LLLLeeeemmmmmmmmaaaa 5555....5555....7777....2222 (mise pour memoire) Let … be a prime number, S a
normal connected noetherian #[1/…]-scheme whose generic point has



Chapter 5-Structure of rigid local systems-20

characteristic zero, X/S a proper smooth curve with geometrically
connected fibres, D fi X a closed subscheme which is finite etale over
S of degree d ≥ 0, U := X - D, and π : U ¨ S the structural map. For
any finite extension E¬ of $…, and and lisse E¬-sheaf Ï on U, the

sheaves Riπ~Ï and Riπ*Ï on S are lisse, and of formation

compatible with arbitrary change of base on S.

pppprrrrooooooooffff Because S has generic characteristic zero, Ï is automatically
tame on the geometric generic fibre, and the asserted result for

Riπ~Ï is well-known, cf. [Ka-SE, 4.7.1]. This result, applied to Ï£,

yields the result for the Riπ*Ï by duality. QED

RRRRiiiiggggiiiiddddiiiittttyyyy CCCCoooorrrroooollllllllaaaarrrryyyy 5555....5555....7777....3333 In the situation 5.5.7.1, let Ï and Ì be
lisse E¬-sheaves (respectively ä$…-sheaves) on U. The following

conditions are equivalent.
1) For some geometric point s of S, both Ï|Us and Ì|Us are

absolutely irreducible, and there exists an isomorphism Ï|Us ¶ Ì|Us

of lisse sheaves on Us
.

2) For every geometric point s of S, both Ï|Us and Ì|Us are

absolutely irreducible, and there exists an isomorphism Ï|Us ¶ Ì|Us

of lisse sheaves on Us
.

3) Condition 2) holds, and there exists a lisse, rank one E¬-sheaf

(respectively ä$…-sheaf) Ò on S, and an isomorphism Ì ¶ Ï‚π*(Ò)

of lisse sheaves on U.
pppprrrrooooooooffff It is trivial that 3) à 2) à 1). We now show that 1 à 3).
Consider the lisse sheaf Ó := Hom(Ï, Ì) on U. By 5.5.7.1 applied to Ó,
π*Hom(Ï, Ì) is lisse on S, of formation compatible with arbitrary

change of base on S. Taking the fibre at s, we see from 1) that
Ò:= π*Hom(Ï, Ì) is lisse of rank one. We have a canonical map of

lisse sheaves on U, Ï‚π*(Ò) ¨ Ì, which is is an isomorphism on Us.

But the kernel and cokernel are of this map are lisse sheaves on U,

so both must vanish. Therefore Ï‚π*(Ò) ¶ Ì. For every geometric
point s of S, we get Ï|Us ¶ Ì|Us by passing to fibres. That both Ï|Us
and Ì|Us are absolutely irreducible for every geometric point s

results from 4.2.6. QED
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(5.5.8) We now clarify the sense in which the ÏÏÏÏ constructed in
5.5.4 is a universal family of rigids with the same local monodromy
as Ï. We must first specify the precise meaning of "same local
monodromy as Ï". Thus let k1 be a second algebraically closed field

in which …N is invertible, Ω1 in k1 a primitive N'th root of unity,

and ∫1, ..., ∫n a set of n ≥ 2 distinct points of !1(k1). Let Ï1 be a

lisse ä$…-sheaf on !1k1
- {∫1, ..., ∫n} which is everywhere tame and

such that all eigenvalues of all local monodromies of Ï1 are N'th

roots of unity. At any point ∫ in {∫1, ..., ∫n, ‘}, we can describe the

local monodromy of Ï1 at ∫ as follows. The tame inertia group

I(∫)tame is canonically the pro-cyclic group °…±char(k) #…(1)(k1)

¶lim. inv. μμμμM(k1), the inverse limit taken over M's invertible in k1.

This group maps onto μμμμN(k1). By hypothesis, Ï1(∫) as I(∫)
tame-

representation is canonically the direct sum of representations of
the form

(a character of μμμμN(k1))‚(a unipotent rep'n. of I(∫)tame).

A unipotent representation of I(∫)tame factors through a unipotent
representation of #…(1)(k1), and its isomorphism class is the Jordan

normal form of the action of aaaannnnyyyy topological generator of #…(1)(k).

Therefore Ï1(∫) as I(∫)
tame-representation factors through the

quotient
lim. inv.√ μμμμ…√N(k1)

of I(∫)tame. Moreover, for any choice ©(∫, Ω1)
tame of a generator of

this last group which maps onto Ω1 in μμμμN(k1), the Jordan normal

form (i.e., conjugacy class in GL(rank(Ï1), ä$…)) of its action on Ï1(∫)

is independent of the choice. By "the local monodromy of Ï1 at ∫,

relative to Ω1", we mean the Jordan normal form of the action on

Ï1(∫) of any ©(∫, Ω1)
tame.

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 5555....5555....8888....1111 Consider the situation 5.5.1. Let k1 be a second

algebraically closed field in which …N is invertible, Ω1 in k1 a

primitive N'th root of unity, and ∫1, ..., ∫n a set of n ≥ 2 distinct
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points of !1(k1). Let Ï1 be an object of Ê… on !1k1
which is lisse on

!1k1
- {∫1, ..., ∫n}, cohomologically rigid, and such that all

eigenvalues of all local monodromies of Ï1 are N'th roots of unity.

Suppose that
a) for i=1, ..., n, the local monodromy of Ï1 at ∫i, relative to Ω1, is

isomorphic to the local monodromy of Ï at åi, relative to Ω,

b) the local monodromy of Ï1 at ‘, relative to Ω1, is isomorphic to

the local monodromy of Ï at ‘, relative to Ω.

Denote by ÏÏÏÏ and ÏÏÏÏ1111 on (!1- {T1, ... , Tn})SN,n,…
any choices of the

lisse E¬-sheaves given by 5.5.4, applied to Ï and to Ï1 respectively.

Denote by

π : (!1- {T1, ... , Tn})SN,n,…
¨ SN,n,….

the projection. Then
1) At any geometric point ƒ: SN,n,… ¨ k2 of SN,n,…, the restriction

ÏÏÏÏƒ of ÏÏÏÏ to the fibre over ƒ is a cohomologically rigid object of Ê…,

whose local monodromy at the point ƒ(Ti), i=1, ..., n, (resp. at ‘)

relative to ƒ(ΩN), is isomorphic to the local monodromy of Ï at åi,

i=1, ..., n (resp. at ‘), relative to Ω.
2) Denote by s1 the geometric point ƒ1: SN,n,… ¨ k1 with ƒ1(ΩN) =

Ω1 and ƒ1(Ti) = ∫i for i=1, ..., n. The restriction ÏÏÏÏs1
of ÏÏÏÏ to the fibre

over s1 is isomorphic to Ï1.

3) There exists a lisse E¬-sheaf ÒÒÒÒ on SN,n,… and an isomorphism

ÏÏÏÏ1111 ¶ ÏÏÏÏ‚π*(ÒÒÒÒ).

pppprrrrooooooooffff Statement 1) results from 5.5.4 2), together with [De-Weil II,
1.7.8] (cf. [Ka-SE, 4.7.2] and the proof of 4.3.11), which tells us that
the local monodromy of Ï along each section Ti and along the

section ‘ is "the same" on all geometric fibres. [Strictly speaking, we
should first extend scalars in the universal situation from
#[ΩN, 1/N…] to #[all Ω…√N, 1/N…], choose a toplogical generator of

lim. inv.√ μμμμ…√N(#[all Ω…√N, 1/N…]) which maps to ΩN, and use the

fact that fibre by fibre this generator gives a choice of ©(∫, Ω1)
tame.]

By 1), the restriction ÏÏÏÏs1
of ÏÏÏÏ to the fibre over s1 has the same
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local monodromy as Ï1, at each of the points {∫1, ..., ∫n, ‘}. Since

Ï1 is cohomologically rigid, Ï1 is isomorphic to ÏÏÏÏs1
. To get 3), apply

the rigidity corollary 5.5.7.3 to ÏÏÏÏ and to ÏÏÏÏ1111, and the geometric

point s1. QED

5555....6666 RRRReeeemmmmaaaarrrrkkkk oooonnnn bbbbrrrraaaaiiiidddd ggggrrrroooouuuuppppssss The space (!1- {T1, ... , Tn})SN,n,…
is

the spec of
#[ΩN, 1/N…][X, T1, ... , Tn][1/[°i±j(Ti - Tj))(°j (X - Tj))].

So if name the variables X as Tn+1, we can think of this as the ring

#[ΩN, 1/N…][T1, ... , Tn+1][1/(°i±j(Ti - Tj))].

Thought of this way, we see its fundamental group as an
arithmetic-geometrical version of the Artin braid group on n+1
letters. And so we can restate the first assertion of the theorem by

the catch-phrase "an irreducible local system on !1 minus n points
which is cohomologically rigid extends to a representation of the
braid group on n+1 letters".

5555....7777 UUUUnnnniiiivvvveeeerrrrssssaaaallll ffffaaaammmmiiiilllliiiieeeessss wwwwiiiitttthhhhoooouuuutttt qqqquuuuaaaassssiiiiuuuunnnniiiippppooootttteeeennnncccceeee
(5.7.1) We next explore the situation if we drop the hypothesis of
quasiunipotence. Thus, we let k be an algebraically closed field, n ≥ 2

an integer, å1, å2, ... ån a set of n distinct points of !1(k), and … a

prime number invertible in k. Let Ï be a cohomologically rigid

object of Ê… which is lisse on !1 - {å1, å2, ... ån}.

(5.7.2) We denote by p the characteristic of k. If p > 0, we denote
by äÉp the algebraic closure of Ép in k, and we denote by R the ring

W(äÉp) of Witt vectors over äÉp. If char(k) = 0, we denote by R the

subfield $(all roots of unity) of k. There is a canonical ring
homomorphism from R to k, which for p=0 is the inclusion, and
which for p>0 is the composite R ¨ R/pR = äÉp ¨ k of reduction

mod p and of the inclusion.
(5.7.3) We denote by Sn the ring

Sn := R[T1, ... , Tn][1/»], » := °i±j(Ti - Tj).

There is a unique ring homomorphism
ƒ : Sn ¨ k

which induces the canonical map on R, and for which ƒ(Ti) = åi for
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1 ≤ i ≤ n. Over Sn, we have !
1, with its n disjoint sections {T1, ... ,

Tn}. We denote by

j: (!1- {T1, ... , Tn})Sn
¨ (!1)Sn

the inclusion.
A straightforward modification of the proof of the previous

theorem 5.5.4 yields:
TTTThhhheeeeoooorrrreeeemmmm 5555....7777....4444 In the situation 5.7.1, we have
1) There exists a lisse ä$…-sheaf

ÏÏÏÏ on (!1- {T1, ... , Tn})Sn
which, after the base change ƒ : Sn ¨ k becomes (the restriction to

!1 - {å1, å2, ... ån} of Ï.

2) ("mise pour memoire", cf. 4.2.3, 4.3.8, 4.3.9) The object j*ÏÏÏÏ on

(!1)Sn
is of formation compatible with arbitrary change of base on

SN,n,…, and is adapted to the stratification

((!1- {T1, ... , Tn})Sn
, {T1, ... , Tn}Sn

) of (!1)Sn
.

At any geometric point ƒ: Sn ¨ k2 of Sn, the restriction of j*ÏÏÏÏ to

the fibre over ƒ is a cohomologically rigid object of Ê…, whose local

monodromy at each point ƒ(Ti) (resp. at ‘) is isomorphic to the

local monodromy of of Ï at åi (resp. at ‘).

5555....7777....5555 RRRReeeemmmmaaaarrrrkkkk The space (!1- {T1, ... , Tn})Sn
is the spec of

R[T1, ... , Tn+1][1/(°i±j(Ti - Tj))].

Its fundamental group is a (less arithmetic) version of the Artin
braid group on n+1 letters, and we can again restate the first
assertion of the theorem by the catch-phrase "an irreducible local

system on !1 minus n points which is cohomologically rigid extends
to a representation of the braid group on n+1 letters".

5555....8888 TTTThhhheeee ccccoooommmmpppplllleeeexxxx aaaannnnaaaallllyyyyttttiiiicccc ssssiiiittttuuuuaaaattttiiiioooonnnn
TTTThhhheeeeoooorrrreeeemmmm 5555....8888....1111 Over ^, suppose given n ≥ 2 an integer, å1, å2, ...

ån a set of n distinct points of !1(^), … a prime number, N≥1 an

integer, ΩN a primitive N'th root of unity in ^, and an embedding of

$(ΩN) into ä$…. Let Ï be a cohomologically rigid object of Ê… which is

lisse on
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U := !1 - {å1, å2, ... ån},

and such that all eigenvalues of all local monodromies of Ï are N'th

roots of unity. Then there exists on Uan a local system Ïcycl of

finite-dimensional $(ΩN)-vector spaces and an isomorphism of ä$…-

local systems on Uan, Ïan ¶ Ïcycl‚$(ΩN)
ä$….

pppprrrrooooooooffff Any lisse, rank one, ä$…-sheaf Ò on U whose local

monodromies all have order dividing N is a homomorphism from

π1(U) to μN(ä$…) = μN($(ΩN)). Now Òan is the same homomorphism,

restricted to π1(U
an), so it too has values in μN($(ΩN)), so may be

viewed as as a rank one $(ΩN)-local system Òcycl on Uan which sits

in an isomorphism Òan ¶ Òcycl‚$(ΩN)
ä$….

We proceed by induction on the generic rank r(Ï) of Ï. If
r(Ï)=1, we are done, by the above discussion. Suppose that r(Ï) ≥ 2.
By the Main Theorem, we know that there exists on U a rank one
lisse Ò of order dividing N, a nontrivial character ç of order
dividing N, a lisse cohomologically rigid Ì with r(Ì) < r(Ï) and with
all eigenvalues of all local monodromies N'th roots of unity, and an
isomorphism on U

Ï[1] := Ò‚j*(j*Ì[1]*mid+j0*Òç[1]).

By induction, the $(ΩN)-local system Ìcycl exists on Uan, as do

Òcycl and Òç,cycl. We define Ïcycl on Uan to be

Ïcycl[1] := Òcycl‚j*(j*Ìcycl[1]*mid+j0*Òç,cycl[1]).

By the comparison theorem, Ïcycl is a local system of finite-

dimensional $(ΩN)-vector spaces which sits in an isomorphism of

ä$…-local systems on Uan, Ïan ¶ Ïcycl‚$(ΩN)
ä$…. QED

(5.8.2) What happens if we drop the quasiunipotence hypothesis?
Over ^, I(‘) and each of the groups I(åi) are canonically the group

lim invN μμμμN~(^), a group which has a canonical generator, namely

{exp(2πi/N~)}N. Thus we may speak of "the eigenvalues of local

monodromy", meaning the eigenvalues of the action of this
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canonical generator, of a lisse ä$…-sheaf Ï on !1 - {å1, å2, ... ån} at

any of the points ‘ or åi where it possibly fails to be lisse.

Repeating the above proof yields:
TTTThhhheeeeoooorrrreeeemmmm 5555....8888....3333 Over ^, suppose given n ≥ 2 an integer, å1, å2, ...

ån a set of n distinct points of !1(^), … a prime number, Æ a

subgroup of ä$…
≠, K the subfield $(Æ) of ä$…. Let Ï be a

cohomologically rigid object of Ê… which is lisse on

U := !1 - {å1, å2, ... ån},

and such that all eigenvalues of all local monodromies of Ï lie in Æ.

Then there exists on Uan a local system ÏÆ of finite-dimensional K-

vector spaces and an isomorphism of ä$…-local systems on Uan, Ïan

¶ ÏÆ‚K
ä$….

5555....9999 RRRReeeettttuuuurrrrnnnn ttttoooo tttthhhheeee oooorrrriiiiggggiiiinnnnaaaallll qqqquuuueeeessssttttiiiioooonnnn
(5.9.1) We now return to the question with which we began:
what is the structure of irreducible local systems of finite-

dimensional ^-vector spaces on Uan which are physically rigid? We
know from 1.1.2 that for such local systems, physical rigidity is
equivalent to cohomological rigidity. Thus it "suffices" to understand
the structure of cohomologically rigid irreducible local systems of

finite-dimensional ^-vector spaces on Uan. Rather than deal with it
directly, we reduce it to the …-adic case on U. This reduction is made
possible by the following standard result, which we spell out for the
convenience of the reader.

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 5555....9999....2222 Over ^, suppose given n ≥ 2 an integer, å1, å2, ...

ån a set of n distinct points of !1(^),

U := !1 - {å1, å2, ... ån},

and Ï^,an a local system of finite-dimensional ^-vector spaces on

Uan. There exists an integer N ≥ 1 such that for all primes … not
dividing N, there exists an isomorphism of fields ^ ¶ ä$…, a lisse ä$…-

sheaf Ï… on U, and an isomorphism of ä$…-local systems on Uan,

(Ï…)
an ¶ Ï^,an‚^ä$….
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pppprrrrooooooooffff Let n := rank(Ï^,an) be the rank of Ï^,an. Once we pick a

base point in Uan := U(^), we may interpret Ï^,an as a

homomorphism of groups

®: π1(U
an) ¨ GL(n, ^).

We know that π1(U
an) is a finitely generated group, and that its

profinite completion is the profinite group π1(U).

Because π1(U
an) is finitely generated, ® takes values in GL(n,R)

for some subring R of ^ which is finitely generated as a #-algebra.
[For instance, if {©i}i is a finite set of generators, we may take for R

the ring #[entries of all ®(©i) and of all ®(©i
-1)].] Let us admit

temporarily the truth of the following lemma, which is certainly
well-known, cf. [BBD, 6.1.2 (A'')], but for which I do not know an
explicit reference:

LLLLeeeemmmmmmmmaaaa 5555....9999....3333 Let R be a subring of ^ which is finitely generated as
a #-algebra. Then there exists an integer N ≥ 1 such that for every
prime number … which does not divide N, there exists a finite
extension E¬ of $… with integer ring Ø¬, and an isomorphism of

fields “: ^ ¶ ä$… under which “(R) fi Ø¬.

(5.9.4) Granted the lemma, for any … prime to N we get that
Ï^,an has an Ø¬-form. As the group GL(n, Ø¬) is profinite, the

composite homomorphism

®¬ : π1(U
an) ¨ GL(n, R) fi GL(n, Ø¬)

extends to a continuous homomorphism of profinite completions
®¬,alg : π1(U) ¨ GL(n, Ø¬).

Corresponding to ®¬,alg, we have a lisse Ø¬-sheaf, say Ï¬, and in

terms of Ï¬ we define Ï… := Ï¬‚ø¬
ä$…. QED

5555....9999....5555 pppprrrrooooooooffff ooooffff 5555....9999....3333 Denote by R$ the $-subalgebra of ^ generated

by R. Thus R$ is a finitely generated $-algebra, to which we apply

Noether normalization [AK,2.5]: there exists a finite collection of
elements x1, ... ,xn in R$ which are algebraically independent over

$, and such that R$ is integral over $[x1, ... ,xn]. Notice that the

ring $[x1, ... ,xn] is unchanged if we replace each xi by a nonzero

integer multiple of itself. Since each xi is in R$, after so replacing it
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we may assume that each xi lies in R.

Now every element r in R is integral over $[x1, ... ,xn]. Writing

an equation of integral dependence for r over $[x1, ... ,xn], we see

that for some integer N(r) ≥ 1, r is integral over #[1/N(r)][x1, ... ,xn].

Because R is generated as a #-algebra by finitely many elements ri
in R, if we define N := °iN(ri), then each ri is integral over

#[1/N][x1, ... ,xn]. Since the integral closure of #[1/N][x1, ... ,xn] in

R$ is a #[1/N]-algebra, R[1/N] is integral over #[1/N][x1, ... ,xn].

Now pick any prime … not dividing N. Because $… is

uncountable, it has uncountable transcendence degree over $. In
particular, there exist n elements y1, y2, ... ,yn in $… which are

algebraically independent over $. Multiplying each yi by a power of

…, we may further suppose that each yi lies in #….

Using the axiom of choice, there exists an isomorphism
“: ^ ¶ ä$…

such that “(xi) = yi for i=1, ... ,n. Under this isomorphism,

“(#[1/N][x1, ... ,xn]) fi #…, and hence “(R[1/N]) is integral over #…. In

particular, every element of “(R[1/N]) lies in some finite extension of
$…. Since R[1/N] is finitely generated as a #-algebra, there exists a

single finite extension field E¬ of $… with “(R[1/N]) fi E¬. As

“(R[1/N]) is integral over #…, we have “(R) fi “(R[1/N]) fi Ø¬. QED

5555....11110000 TTTThhhheeee ccccaaaatttteeeeggggoooorrrryyyy ÊÊÊÊaaaannnn((((UUUU,,,,ÆÆÆÆ))))

(5.10.1) Over ^, suppose given n ≥ 2 an integer, å1, å2, ... ån a

set of n distinct points of !1(^),

U := !1 - {å1, å2, ... ån},

and Æ a subgroup of ^≠. We denote by Êan(U,Æ) the full subcategory

of the category of all local systems of finite-dimensional ^-vector

spaces on Uan whose objects are those which are irreducible, have
nontrivial local monodromy at two or more of the points åi, and for

which all of eigenvalues of all topological local monodromies lie in Æ.

TTTThhhheeeeoooorrrreeeemmmm 5555....11110000....2222 Let ç be any nontrivial ^≠-valued character with
values in the subgroup Æ, and Òç,an the corresponding Kummer
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sheaf on ´m,an. Then for Ïan in Êan(U,Æ),the object Ìan in

Dbc(U
an, ^) defined by

Ìan[1] := jan*(jan*Ïan[1]*mid+j0,an*Òç,an[1]),

lies in Êan(U,Æ), and its local monodromies are related to those of

Ïan by the rules of 3.3.6 and 3.3.7.

pppprrrrooooooooffff For any chosen … >> 0, there exists a field isomorphism “: ^ ¶
ä$… under which both Ïan and Òç,an come from lisse ä$…-sheaves Ï

on U and Òç on ´m respectively. If we now view Æ as a subgroup of

ä$…
≠, we may speak of the subgroup Ævalues of the group of

continuous ä$…
≠-valued characters of I(0) which on the canonical

(we are over ^) generator take values in Æ. Then Ï lies in
Ê…(U,Ævalues), and ç lies in Ævalues. By 4.3.11, the object Ì of

Dbc(U, ä$…) defined by

Ì[1] := j*(j*Ï[1]*mid+j0*Òç[1]),

lies in Ê…(U,Ævalues), and its local monodromies are related to those

of Ï by the rules of 3.3.6 and 3.3.7. Passing to Uan and applying the
inverse of the isomorphism “: ^ ¶ ä$…, we recover our assertions

about Ìan. QED

(5.10.3) We write
Ìan = MCç,an(Ïan).

(5.10.4) We can construct a graph whose vertices are the objects
of Êan(U,Æ), and in which there is an edge joining two objects Ïan
and Ìan if either of the following conditions )a or b) holds:

a) Ïan and Ìan both have rank >1, and there is a rank one ^-local

system Òan on U, all of whose local monodromy eigenvalues are in

Æ, such that Ïan ¶ Òan‚Ìan, or equivalently Ìan ¶ Òan
-1‚Ïan.

b) there exists a nontrivial character ç with values in Æ such that
Ïan ¶ MCç,an(Ìan), or equivalently Ìan ¶ MCçan

-1(Ïan).

MMMMaaaaiiiinnnn TTTThhhheeeeoooorrrreeeemmmm 5555....11110000....5555 ((((ccccoooommmmpppplllleeeexxxx aaaannnnaaaallllyyyyttttiiiicccc vvvveeeerrrrssssiiiioooonnnn ooooffff 5555....3333....3333)))).... If
Ïan is an object of Êan(U,Æ) which is rigid, in either of the

equivalent senses of being physically rigid or of being
cohomologically rigid, then Ïan (as vertex of the above graph) is

connected to an object of rank one in Êan(U,Æ), and its distance to
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such an object is at most 2(rank(Ïan) -1).

pppprrrrooooooooffff Once we have the previous result 5.10.2, we can repeat,
essentially verbatim, the proof already given in the …-adic case. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 5555....11110000....6666 In the situation 5.10.1, let N ≥ 2 be an integer,
and consider the case Æ = μN(^). Thus let Ï be a local system of

finite-dimensional ^-vector spaces on Uan which is irreducible, has
nontrivial local monodromy at two or more of the points åi, and for

which all of eigenvalues of topological local monodromy are N'th
roots of unity. Suppose that Ï is rigid. Then
1) Ï has a $(ΩN)-form, i.e., for any embedding of the abstract field

$(ΩN) into ^, there exists a local system Ïcycl of $(ΩN)-vector

spaces on Uan such that Ï ¶ Ïcycl‚$(ΩN)
^.

2) Fix a $(ΩN)-form Ïcycl of Ï. For every finite place ¬ of E :=

$(ΩN), with ¬-adic completion E¬ and integer ring Ø¬, there exists a

lisse E¬-sheaf Ï¬ on U and an isomorphism (Ï¬)
an ¶ Ïcycl‚EE¬.

3) Fix a $(ΩN)-form Ïcycl of Ï. For every finite place ¬ of E :=

$(ΩN), with ¬-adic completion E¬ and integer ring Ø¬, there exists a

local system ÏÏÏÏ¬ of free Ø¬-modules on U such

Ïcycl‚EE¬ ¶ (ÏÏÏÏ¬‚Ø¬
E¬)

an.

4) Fix a $(ΩN)-form Ïcycl of Ï. For every finite place ¬ of E :=

$(ΩN), with ¬-adic completion E¬ and integer ring Ø¬, there exists a

local system ÏÏÏÏ¬
an of free Ø¬-modules on Uan such

Ïcycl‚EE¬ ¶ ÏÏÏÏ¬
an‚Ø¬

E¬.

pppprrrrooooooooffff. First let us notice that 4) follows trivially from 3): one takes

the ÏÏÏÏ¬ of 3), and defines ÏÏÏÏ¬
an to be (ÏÏÏÏ¬)

an. Also, 3) follows trivially

from 2), since any lisse E¬-sheaf Ï¬ on U has an Ø¬-form.

So it remains to prove 1) and 2). We prove these by induction
on the generic rank of Ï. Both are obvious for rank one lisse sheaves

Ò on Uan all of whose local monodromies are N'th roots of unity,
and for Òç with ç nontrivial of order dividing N. Moreover, if 1)
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and 2) hold for Ìan, they hold for both Òan‚Ìan and MCç,an(Ìan)

[compare 5.5.5.5-9]. So by the connectedness properties 5.10.5 of the
set of rigid points in the graph on Êan(U,Æ), with Æ := μN(^), 1) and

2) hold for all Ï in Êan(U,Æ). QED
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6666....0000 NNNNuuuummmmeeeerrrriiiiccccaaaallll IIIInnnnvvvvaaaarrrriiiiaaaannnnttttssss
(6.0.1) To motivate this section, let us fix an algebraically closed
field k, and a prime number … ± char(k). Let us fix also a finite

subset D of !1(k) with Card(D) ≥ 2. Suppose we are given an object

Ï in Ê… which is lisse on !1 - D, of rank r(Ï). Then for any point s

in D‹{‘}, Ï gives rise to a representation Ï(s) of I(s)tame, which

we write as a direct sum, over characters ç of π1(´m)tame, of

representations of I(s)tame of the following form:

for s in D: Ï(s) = ·ç Òç(x - s)‚Unip(s, ç, Ï),

for s = ‘: Ï(‘) = ·ç Òç(x)‚Unip(‘, ç, Ï).

[With this naming convention for the characters, if we start with a
rank one object Ï, and denote by çs the unique character ® of

π1(´m)tame for which e1(s, ®, Ï) = 1, the characters çs are related

by the formula ç‘ = °s in D çs.]

(6.0.2) For each of the unipotent representations Unip(s, ç, Ï),
we denote by

e1(å,ç,Ï) ≥ e2(å,ç,Ï) ≥ ... ≥ ek(å,ç,Ï) = 0 for k >> 0

the sequence of integers defined by
ej(å,ç,Ï) := the number of Jordan blocks in Unip(å,ç,Ï)

whose dimension is ≥j.
(6.0.3) The fact that each Ï(s) is an r(Ï)-dimensional
representation gives the relations:

for each s in D‹{‘}, ‡i,ç ei(s,ç,Ï) = r(Ï).

(6.0.4) Recall (3.3.6 and 3.3.7) that there exists an I(‘)tame-
representation M(‘,Ï) attached to this situation, with the two
properties:

M(‘,Ï)/M(‘,Ï)I(‘) ¶ Ï(‘),
rank(M(‘,Ï)) = ‡s in D (r(Ï) - e1(s, ú, Ï)).

(6.0.5) These two properties allow us to calculate the invariants
attached to M(‘,Ï), which we will denote as Ei(‘, ç, Ï). The recipe

is
Ei(‘, ç, Ï) = ei(‘, ç, Ï) if ç ± ú,

Ei+1(‘, ú, Ï) = ei(‘, ú, Ï) for i ≥ 1,

E1(‘, ú, Ï) =rank(M(‘,Ï)) - r(Ï).
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(6.0.6) We introduce the notation
m(Ï) := ‡s in D (r(Ï) - e1(s, ú, Ï)).

Thus m(Ï) is simply the rank of M(‘,Ï), and we have the relations,
‡i,ç Ei(‘,ç,Ï) = m(Ï),

E1(‘, ú, Ï) =m(Ï) - r(Ï).

(6.0.7) Let us remark in passing that the inequality
E1(‘, ú, Ï) ≥ E2(‘, ú, Ï)

may be rewritten as
m(Ï) - r(Ï) ≥ e1(‘, ú, Ï).

(6.0.8) There are a priori linear dependences among these data. If
we are given the integer r(Ï) and all the integers ei(s, ç, Ï) for all s

in D‹{‘}, we may compute m(Ï) and all the integers Ei(‘,ç,Ï).

Conversely, if we are given the integers Ei(‘,ç,Ï) and all the

integers ei(s, ç, Ï) for s in D, we may compute both m(Ï) (namely

‡i,ç Ei(‘,ç,Ï)), r(Ï) (namely m(Ï) - E1(‘, ú, Ï)), and the

ei(‘,ç,Ï).

(6.0.9) The reason for presenting the data in both (r, all ei) and

(m, Ei at ‘, r, ei at points of D) formats will become clear when we

analyze the effects of the operations Ï ÿ MTÒ(Ï) and Ï ÿ MCç(Ï)

on this numerical data.
(6.0.10) We begin with the more straightforward of the two,
Ï ÿ MTÒ(Ï). For each s in D‹{‘}, we denote by çs,Ò the unique

character ® with e1(s, ®, Ò) = 1. Then we have

r(MTÒ(Ï)) = r(Ï),

ei(s, ®çs,Ò, MTÒ(Ï)) = ei(s, ®, Ï) for all s in D‹{‘}, i, ®.

(6.0.11) We now turn to the case of Ï ÿ MCç(Ï). According to

3.3.6 and 3.3.7, we have M(‘,MCç(Ï)) ¶ M(‘,Ï)‚Òç. This gives

the relations
m(MCç(Ï)) = m(Ï),

Ei(‘, ®ç, MCç(Ï)) = Ei(‘, ®, Ï) for all i and ®.

It allows us to compute all the integers Ei(‘, ®, MCç(Ï)), so in

particular to compute
r(MCç(Ï)) = m(MCç(Ï)) - E1(‘, ú, MCç(Ï)).

(6.0.12) We know that for s in D, the local monodromies of Ï and
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of MCç(Ï)are related by

MCç(Ï)(s)/MCç(Ï)(s)
I(s) ¶ (Ï(s)/Ï(s)I(s))‚Òç(x - s).

(6.0.13) Thus we may compute most of the invariants of
MCç(Ï)(s):

ei(s, ®ç, MCç(Ï)) = ei(s, ®, Ï) if ® ± ú and ®ç ± ú,

ei+1(s, ú, MCç(Ï)) = ei(s, ç
-1, Ï),

ei(s, ç, MCç(Ï)) = ei+1(s, ú, Ï).

(6.0.14) Only e1(s, ú, MCç(Ï)) now remains uncomputed, and it is

given by equating ranks in the above isomorphism 6.0.12 of

I(s)tame-representations:
r(MCç(Ï)) - e1(s, ú, MCç(Ï)) = r(Ï) - e1(s, ú, Ï).

(6.0.15) It will also be convenient to give two expressions for the

index of rigidity ç(@1, j*End(Ï| !
1 - D)) in terms of the numerical

data. The first expression is

ç(@1, j*End(Ï| !
1 - D)) =

= ç(!1 - D, End(Ï)) + ‡s in D‹{‘} dim(EndI(s)(Ï(s)))

= ç(!1 - D, End(Ï)) + ‡s in D‹{‘} ‡i,ç ei(s,ç, Ï)
2

= (1 - Card(D))r(Ï)2 + ‡s in D‹{‘} ‡i,ç ei(s,ç, Ï)
2.

This expression makes it numerically obvious (it is already
conceptually obvious ~) that MTÒ(Ï) has the same index of rigidity

as does Ï.
(6.0.16) The second expression for the index of rigidity is more
complicated-looking, but it has the merit that is a sum of terms,
indexed by the points of D‹{‘}, each of which is visibly the same
for Ï and for MCç(Ï). So this formula has the merit of making

numerically obvious the fact that Ï and MCç(Ï) have the same

index of rigidity.

LLLLeeeemmmmmmmmaaaa 6666....0000....11117777 In the situation 6.0.1, for Ï in Ê… lisse on !1 - D, its

index of rigidity is given by

ç(@1, j*End(Ï| !
1 - D)) =

{ -m(Ï)2 + ‡i,ç Ei(‘,ç,Ï)2} +

+ ‡s in D {(r(Ï) - e1(s,ú,Ï))
2 + ‡(i,ç) ± (1,ú) ei(s,ç,Ï)

2}.

pppprrrrooooooooffff We begin with the first expression for the index:
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ç(@1, j*End(Ï| !
1 - D)) =

= (1 - Card(D))r(Ï)2 + ‡s in D‹{‘} ‡i,ç ei(s,ç, Ï)
2

= (1 - Card(D))r(Ï)2 +

+ ‡i,ç ei(‘,ç, Ï)2 + ‡s in D ‡i,ç ei(s,ç, Ï)
2

= (1 - Card(D))r(Ï)2 +

-E1(‘,ú,Ï)2 + ‡i,ç Ei(‘,ç, Ï)2

+ ‡s in D {e1(s,ú,Ï)
2 + ‡(i,ç) ± (1,ú) ei(s,ç,Ï)

2}.

Comparing this with the asserted value, namely

{ -m(Ï)2 + ‡i,ç Ei(‘,ç,Ï)2} +

+ ‡s in D {(r(Ï) - e1(s,ú,Ï))
2 + ‡(i,ç) ± (1,ú) ei(s,ç,Ï)

2},

it remains to prove

(1 - Card(D))r(Ï)2 -E1(‘,ú,Ï)2 + ‡s in D e1(s,ú,Ï)
2

=-m(Ï)2 + ‡s in D (r(Ï) - e1(s,ú,Ï))
2.

We rewrite this as

r(Ï)2 -E1(‘,ú,Ï)2 + m(Ï)2 =

= ‡s in D {(r(Ï) - e1(s,ú,Ï))
2 +r(Ï)2 - e1(s,ú,Ï)

2}.

Using the identity
m(Ï) - r(Ï) = E1(‘,ú,Ï),

this reduces to

r(Ï)2 -(m(Ï) - r(Ï))2 + m(Ï)2 =

= ‡s in D {(r(Ï) - e1(s,ú,Ï))
2 +r(Ï)2 - e1(s,ú,Ï)

2},

which we rewrite

2r(Ï)m(Ï) = ‡s in D {2r(Ï)2 - 2r(Ï)e1(s,ú,Ï)}.

Factoring out 2r(Ï) from both sides, we find the definition of m(Ï),
m(Ï) = ‡s in D {r(Ï) - e1(s,ú,Ï)}. QED

6666....1111 NNNNuuuummmmeeeerrrriiiiccccaaaallll iiiinnnnccccaaaarrrrnnnnaaaattttiiiioooonnnn:::: tttthhhheeee ggggrrrroooouuuupppp NNNNuuuummmmDDDDaaaattttaaaa
(6.1.1) We now abstract the numerical data attached to an

object Ï in Ê… which is lisse on !1 - D, and for which all characters

occurring in all local monodromies of Ï lie in a fixed subgroup Æ of
the group of all characters of π1(´m).

(6.1.2) Thus we fix:
a finite set D with Card(D) ≥ 2,
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a set {‘} with one element,
an abelian group Æ, with identity element denoted ú.

We define the abelian group NumData(D,Æ) as follows: an element ˆ
of NumData(D,Æ) is a quadruple (r, m, e, E) consisting of
1) an integer r(ˆ),
2) an integer m(ˆ),
3) a #-valued function e on the product set (#≥1) ≠ (D‹{‘}) ≠ Æ,

which we also view as a collection of integers ei(s,ç,ˆ), one for

every integer i≥1, every ç in Æ, and every s in D‹{‘},
4) a #-valued function E on the product set (#≥1) ≠ ({‘}) ≠ Æ, which

we also view as a collection of integers Ei(‘,ç,ˆ) for every i≥1 and

every ç in Æ, and which satisfies the following conditions:

i) the function e has finite support, and for each s in D‹{‘}, we
have ‡i,ç ei(s,ç,ˆ) = r(ˆ),

ii) m(ˆ) = ‡s in D {r(ˆ) - e1(s,ú,ˆ)},

iii) E1(‘,ú,ˆ) = m(Ï) - r(ˆ),

iv) the integers Ei(‘,ç,ˆ) and ei(‘,ç,ˆ) are related by

Ei(‘,ç,ˆ) = ei(‘,ç,ˆ) if ç ± ú,

Ei+1(‘,ú,ˆ) = ei(‘,ú,ˆ) for all i≥1.

v) the function E has finite support, and ‡i,ç Ei(‘,ç,ˆ) = m(ˆ).

(6.1.3) Addition in NumData(D,Æ) is defined componentwise.
(6.1.4) There is a great deal of redundancy in this presentation of
an element ˆ in NumData(D,Æ). An element ˆ is determined by the
data (r(ˆ), e), which is subject only to condition i). [Then use ii) to
find m(ˆ), then iii) to find E1(‘,ú,ˆ), then iv) to define all

Ei(‘,ç,ˆ); v) will be automatic, as it is implied by ii), iii) and iv).]

(6.1.5) Alternatively, an element ˆ in NumData(D,Æ) is
determined by the data (r(ˆ), m(ˆ), e restricted to (#≥1) ≠ D ≠ Æ,

E), which is subject only to ii), iii), v) and to

i not ‘) the function e on (#≥1) ≠ D ≠ Æ has finite support, and for

each s in D, we have ‡i,ç ei(s,ç,ˆ) = r(ˆ).

(6.1.6) We define an even #-valued quadratic form, called the
index of rigidity, denoted "rig", on NumData(D,Æ) by either of the
following equivalent (cf. the proof of lemma. 6.0.17) formulas:
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rig(ˆ) := (1 - Card(D))r(ˆ)2 + ‡s in D‹{‘} ‡i,ç ei(s,ç, ˆ)
2,

or

rig(ˆ) := { -m(ˆ)2 + ‡i,ç Ei(‘,ç,ˆ)2} +

+ ‡s in D {(r(ˆ) - e1(s,ú,ˆ))
2 + ‡(i,ç) ± (1,ú) ei(s,ç,ˆ)

2}.

(6.1.7) Given an element ç± ú in Æ, we define an endomorphism
MCç of NumData(D,Æ) as follows: given ˆ in NumData(D,Æ), MCç(ˆ)

is given as follows:
å) m(MCç(ˆ)) := m(ˆ),

∫) Ei(‘, ®ç, MCç(ˆ)) := Ei(‘, ®, ˆ) for all i and ®,

©) r(MCç(ˆ)) := m(MCç(ˆ)) - E1(‘, ú, MCç(ˆ)),

∂) for s in D,
∂1) ei(s, ®ç, MCç(ˆ)) := ei(s, ®, ˆ) if ® ± ú and ®ç ± ú,

∂2) ei(s, ç, MCç(ˆ)) := ei+1(s, ú, ˆ),

∂3) ei+1(s, ú, MCç(ˆ)) := ei(s, ç
-1, ˆ),

∂4) e1(s, ú, MCç(ˆ)) := r(MCç(ˆ)) - r(ˆ) + e1(s, ú, ˆ).

It is useful to rewrite ∂4) in the more symmetric form
∂4bis) for s in D,

r(MCç(ˆ)) - e1(s, ú, MCç(ˆ)) = r(Ï) - e1(s, ú, ˆ),

and to rewrite ©) as well:

©bis) r(MCç(ˆ)) + E1(‘, ç-1, ˆ):= m(ˆ).

LLLLeeeemmmmmmmmaaaa 6666....1111....8888 For each ç±ú in Æ, the operator ˆ ÿ MCç(ˆ) is an

orthogonal automorphism of NumData(D,Æ), with inverse MCç-1.

Moreover, if also ®±ú in Æ, then
MC®«MCç = MC®ç, if ®ç±ú.

pppprrrrooooooooffff Given ˆ in NumData(D,Æ), the above formulas define all of
the quantities

(r, m, e restricted to (#≥1) ≠ D ≠ Æ, E)

needed to define MCç(ˆ), but we must show that MCç(ˆ) satisfies

the relations which characterize elements of NumData(D,Æ). That e
and E have finite support is obvious from the definitions (and the
fact that ˆ was in NumData(D,Æ)). Relation ii) holds, thanks to å)
and ∂4bis). Relation iii) holds by definition, and relation v) holds by
å) and ∫). To verify the rank formulas in "i) not ‘", rewrite

r(MCç(ˆ)) = ‡i,ç ei(s,ç,MCç(ˆ))
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as
r(MCç(ˆ)) - e1(s,ú,MCç(ˆ)) = ‡(i,®)±(1,ú) ei(s,®,MCç(ˆ)).

By ∂1-3), the right hand side is
‡(i,®)±(1,ú) ei(s,®,MCç(ˆ))

=‡i≥2 ei(s,ú,MCç(ˆ)) + ‡i≥1 ei(s,ç,MCç(ˆ)) + ‡i,®±ú,ç ei(s,®,MCç(ˆ))

= ‡i≥1 ei(s,ç
-1,ˆ) + ‡i≥2 ei(s,ú,ˆ) + ‡i,®±ú,ç-1 ei(s,®,ˆ)

=‡i,® ei(s,®,ˆ) - e1(s,ú,ˆ)

=r(ˆ) - e1(s,ú,ˆ)

=r(MCç(ˆ)) - e1(s,ú,MCç(ˆ)),

this last equality by ∂4bis).
This shows that MCç does in fact map NumData(D,Æ) to itself.

That MCç is orthogonal is obvious from the second formula for the

quadratic form,

rig(ˆ) := { -m(ˆ)2 + ‡i,ç Ei(‘,ç,ˆ)2} +

+ ‡s in D {(r(ˆ) - e1(s,ú,ˆ))
2 + ‡(i,ç) ± (1,ú) ei(s,ç,ˆ)

2}.

which writes it as a sum of terms each invariant by ˆ ÿ MCç(ˆ).

To show that (MCç-1)«MCç = id, we argue as follows. That this

is true for m and E is obvious from the definitions. That it is true for
r follows from ©),

r(MCç(ˆ)) = m(ˆ) - E1(‘, ç-1, ˆ),

which applied to MCç-1(MCç(ˆ)) gives

r(MCç-1(MCç(ˆ))) = m(MCç(ˆ)) - E1(‘, ç, MCç(ˆ))

=m(ˆ) -E1(‘, ú, ˆ), using å) and ∫),

=r(ˆ), by ©).
once we know this, then

e1(s, ú, MCç-1(MCç(ˆ))) = e1(s, ú, ˆ)

follows from a double application of ∂4bis). Similarly, from ∂3) and
∂2) we get

ei+1(s, ú, MCç-1(MCç(ˆ))) = ei(s, ç, MCç(ˆ)) = ei+1(s, ú, ˆ),

ei(s, ç
-1, MCç-1(MCç(ˆ))) = ei+1(s, ú, MCç(ˆ)) = ei(s, ç

-1,ˆ).

For ®±ú and ®ç-1 ±ú, ∂1) gives

ei(s, ®ç
-1, MCç-1(MCç(ˆ))) = ei(s, ®, MCç(ˆ)) = ei(s, ®ç

-1,ˆ).

This concludes the proof that MCç-1«MCç = id.
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That MC®«MCç = MC®ç if ®ç±ú is shown in an altogether

similar way: one first checks on m, then on E, then on r, then on
e1(s, ú, MC®(MCç(ˆ))), then on ei+1(s, ú, MC®(MCç(ˆ))), then on

ei(s, ®, MC®(MCç(ˆ))), and finally on ei(s, Ú, MC®(MCç(ˆ))) for any

Ú other than ú or ®. QED

(6.1.9) Suppose now we are given an element Ò in the group
Maps(D, Æ) of all maps of sets from D to Æ (the group structure by
pointwise multiplication of values). We write

s ÿ çs,Ò
for the map given by Ò, and we define

ç‘,Ò := °s in D çs,Ò.

We write the multiplication in Maps(D, Æ) as Ò1‚Ò2.

(6.1.10) Given an element Ò in Maps(D, Æ), we define an
endomorphism MTÒ of NumData(D, Æ) as follows. We work in the

(r, e) presentation of elements of NumData(D, Æ). Given ˆ in
NumData(D, Æ), we define

r(MTÒ(ˆ)) := r(ˆ),

ei(s, ®çs,Ò, MTÒ(ˆ)) := ei(s, ®, ˆ)

for any (i, s, ®) in (#≥1) ≠ (D‹{‘}) ≠ Æ.

LLLLeeeemmmmmmmmaaaa 6666....1111....11111111 Given Ò in Maps(D, Æ), the operator ˆ ÿ MTÒ(ˆ) is

an orthogonal automorphism of NumData(D,Æ), with inverse MTÒ-1.

Moreover, given Ò1 and Ò2 in Maps(D, Æ), we have

MTÒ2
«MTÒ1

= MTÒ1‚Ò2
.

pppprrrrooooooooffff Clear, using the first formula of 6.1.6 for the quadratic form.
QED

(6.1.12) We can construct a graph whose vertices are the
elements of NumData(D,Æ), and in which there is an edge joining
two elements ˜ and ˆ if either of the following conditions a) or b)
holds:
a) ˜ and ˆ each have r ≥ 2, and there is an Ò in Maps(D, Æ) such
that ˜ = MTÒ(ˆ), or equivalently ˆ = MTÒ-1(˜),

b) for some ç±ú in Æ, ˜ = MCç(ˆ), or equivalently ˆ = MCç-1(˜).

6666....2222 AAAA ccccoooommmmppppaaaattttiiiibbbbiiiilllliiiittttyyyy tttthhhheeeeoooorrrreeeemmmm
(6.2.1) Let k be an algebraically closed field, … ± char(k) a prime
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number, D a finite subset of !1(k) with Card(D) ≥ 2, and Æ a
subgroup of the group of all continuous ä$…-valued characters of

π1(´m)tame. Given an object Ï in Ê…(!
1 - D, Æ), denote by ND(Ï)

its numerical data, i.e., the element of NumData(D,Æ) given by
(r(Ï), m(Ï), Ei(‘,ç,Ï) for all (i,ç), ei(s,ç,Ï) for all (i,s,ç)).

To give a lisse, tame, rank one Ò on !1 - D with all its local
monodromies çs,Ò in Æ, is the same as to give the element in

Maps(D, Æ), still denoted Ò, which is s ÿ çs,Ò. We may summarize

the previous discussion in the following
CCCCoooommmmppppaaaattttiiiibbbbiiiilllliiiittttyyyy TTTThhhheeeeoooorrrreeeemmmm 6666....2222....2222 In the situation 6.2.1, we have:

1) For Ï in Ê…(!
1 - D, Æ), rig(Ï) = rig(ND(Ï)).

2) For Ï in Ê…(!
1 - D, Æ) and ç in Æ, MCç(ND(Ï)) = ND(MCç(Ï)).

3) For Ï in Ê…(!
1 - D, Æ) of rank r ≥ 2, and Ò lisse, tame, rank one

on !1 - D with all local monodromies in Æ, MTÒ(ND(Ï)) =

ND(MTÒ(Ï)).

4) Given two objects Ï and Ì in Ê…(!
1 - D, Æ), Ï and Ì are

connected (as vertices in the graph built on Ê…(!
1 - D, Æ)) if and

only if their numerical data ND(Ï) and ND(Ì) are connected (as
vertices in the graph built on NumData(D, Æ).

CCCCoooommmmppppaaaattttiiiibbbbiiiilllliiiittttyyyy TTTThhhheeeeoooorrrreeeemmmm 6666....2222....3333 ((((CCCCoooommmmpppplllleeeexxxx aaaannnnaaaallllyyyyttttiiiicccc vvvvaaaarrrriiiiaaaannnntttt)))) If k
is ^, the above theorem 6.2.2 remains valid with Æ any subgroup of

Hom(π1((´m,^)
an), ^≠) ¶ Hom(#, ^≠) = ^≠, and with Ê…(!

1 - D, Æ)

replaced by Êan(!
1 - D, Æ).

6666....3333 RRRReeeeaaaalllliiiizzzzaaaabbbblllleeee aaaannnndddd ppppllllaaaauuuussssiiiibbbblllleeee eeeelllleeeemmmmeeeennnnttttssss
(6.3.1) We continue to work over an algebraically closed field k of

characteristic ±…. As in 6.0.1, we fix a finite subset D of !1(k) with
Card(D) ≥ 2.We now consider the question of recognizing those
elements ˆ in NumData(D, Æ) which are of the form ND(Ï) for some

Ï in Ê…(!
1 - D, Æ) [or for some Ï in Êan(!

1 - D, Æ), if k = ^, and if

Æ is a subgroup of ^≠]. We call such such elements of NumData(D, Æ)
realizable.
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LLLLeeeemmmmmmmmaaaa 6666....3333....2222 In the situation 6.3.1, any realizable element ˆ
satisfies the following ten conditions:
1) r(ˆ) ≥ 1,
2) m(ˆ) ≥ r(ˆ),
3) for all ç in Æ and all i ≥ 1,

Ei(‘,ç,ˆ) ≥ 0, and Ei(‘,ç,ˆ) ≥ Ei+1(‘,ç,ˆ),

4) for all s in D‹{‘}, all ç in Æ and all i ≥ 1,
ei(s,ç,ˆ) ≥ 0, and ei(s,ç,ˆ) ≥ ei+1(s,ç,ˆ),

5)there exist at least two distinct s in D for which r(ˆ) > e1(s,ú,ˆ),

6) (1 - Card(D))r(ˆ) + ‡s in D‹{‘} e1(s,ú,ˆ) ≤ 0,

7) if r(ˆ) ≥ 2, then for any s0 in D‹{‘},

(1 - Card(D))r(ˆ) + ‡s±s0 in D‹{‘} Maxç{e1(s,ç,ˆ)} ≤ 0,

8) rig(ˆ) ≤ 2,
9) rig(ˆ)/r(ˆ) ≤ (1 - Card(D))r(ˆ) + ‡s in D‹{‘} Maxç{e1(s,ç,ˆ)},

10) in the group Æ written additively, we have
‡ç(‡i ei(‘,ç,ˆ))ç = ‡ç (‡s in D ‡i ei(s,ç,ˆ))ç.

pppprrrrooooooooffff If ˆ is ND(Ï) for Ï in Ê…(!
1 - D, Æ) [resp. Êan(!

1 - D, Æ) if

k=^], then 5) and 1) hold because Ï fails to be lisse at two or more
points of D, and so in particular is nonzero. Since Ï(‘) is a quotient
of M(‘,Ï), we get 2). Since the Ei and the ei are the numerical

invariants of actual representations M(‘,Ï) and Ï(s) respectively,

we get 3) and 4). Since Ï is irreducible nontrivial, ç(@1, j*Ï) ≤ 0,

and ç(@1, j*End(Ï)) ≤ 2, which give 6) and 8). If Ï has rank 2 or

more, we choose a rank one Ò so that MTÒ(Ï) satisfies

Maxç{e1(s,ç,MTÒ(Ï))} = e1(s,ú,MTÒ(Ï))

for each s±s0 in D‹{‘}. Then we get 7) by writing out

ç(@1, j*MTÒ(Ï) ≤ 0

and dropping the term e1(s0,ú,MTÒ(Ï)). The Basic Inequality 5.2.4.7

gives 9). Because det(Ï) is lisse on !1 - D, tame of rank one, we get
10). QED

DDDDeeeeffffiiiinnnniiiittttiiiioooonnnn 6666....3333....3333 An element ˆ in NumData(D, Æ) is called
ppppllllaaaauuuussssiiiibbbblllleeee if it satisfies the ten conditions of the above lemma 6.3.2.
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(6.3.4) The above lemma 6.3.2 states that every realizable
element is plausible. It is nnnnooootttt true that every plausible element is
realizable. We will give an example, due to Deligne, in 6.4 below.

LLLLeeeemmmmmmmmaaaa 6666....3333....5555 In the situation 6.3.1, if ˆ in NumData(D, Æ) is
realizable, then every element ˜ of NumData(D, Æ) to which ˆ is
connected (as vertex of the graph) is also realizable.
pppprrrrooooooooffff By induction on the length of a path which ˜ to ˆ, it suffices
to show that each nearest neighbor of ˆ is realizable. But such a
nearest neighbor is either MCç(ˆ), for some ç±ú in Æ, or, in case

r(ˆ) ≥2, is possibly MTÒ(ˆ), for some Ò in Maps(D. Æ). If ˆ is ND(Ï),

these neighbors are ND(MCç(Ï)) and ND(MTÒ(Ï)) respectively. QED

LLLLeeeemmmmmmmmaaaa 6666....3333....6666 In the situation 6.3.1, if ˆ in NumData(D, Æ) is
plausible and if r(ˆ)=1, then ˆ is realizable.

pppprrrrooooooooffff ˆ is ND(Ò) for the unique rank one Ò in Ê…(!
1 - D, Æ)

[respectively in Êan(!
1 - D, Æ)] whose local monodromy at s in

D‹{‘} is the unique character çs for which e1(s,ç,ˆ) ± 0. [This Ò

exists by condition (10) in the definition of plausibility.] QED

LLLLeeeemmmmmmmmaaaa 6666....3333....7777 In the situation 6.3.1, Suppose that ˆ in
NumData(D, Æ) is plausible, has r(ˆ) ≥ 2, and has rig(ˆ) = 2. For
each s in D, denote by çs any character such that

e1(s,çs,ˆ) = Maxç{e1(s,ç,ˆ)},

and denote by Ò the unique rank one Ò in Ê…(!
1 - D, Æ)

[respectively in Êan(!
1 - D, Æ)] whose local monodromy at s in D is

(çs)
-1. Consider the element MTÒ(ˆ) of NumData(D, Æ). Then either

MTÒ(ˆ) is not plausible, or we are in the following situation:

1) MTÒ(ˆ) is plausible,

2) e1(‘,ú,MTÒ(ˆ)) < Maxç{e1(‘,ç,MTÒ(ˆ))},

3) for any character ç±ú such that

e1(‘,ç-1,MTÒ(ˆ)) = Maxç{e1(‘,ç,MTÒ(ˆ))},

the element MCç(MTÒ(ˆ)) has r(MCç(MTÒ(ˆ))) < r(ˆ).

pppprrrrooooooooffff If MTÒ(ˆ) is not plausible, we are done. If MTÒ(ˆ) is

plausible, we know rig(MTÒ(ˆ)) = 2, and by construction we have

e1(s,ú,ˆ) = Maxç{e1(s,ç,ˆ)} for each s in D,
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so 2) results from the plausibility relations 6) and 8). To prove 3),
notice that

r(MCç(MTÒ(ˆ))) = m(MCç(MTÒ(ˆ))) - E1(‘,ú,MCç(MTÒ(ˆ)))

= m(MTÒ(ˆ)) - e1(‘,ç-1,MTÒ(ˆ))

= - e1(‘,ç-1,MTÒ(ˆ)) + ‡s in D{r(MTÒ(ˆ)) - e1(s,ú,MTÒ(ˆ))}

= - e1(‘,ç-1,MTÒ(ˆ)) + ‡s in D{r(ˆ) - e1(s,ú,MTÒ(ˆ))}

= - e1(‘,ç-1,MTÒ(ˆ)) + Card(D)r(ˆ) - ‡s in D e1(s,ú,MTÒ(ˆ))

= Card(D)r(ˆ) - ‡s in D‹{‘} Maxç{e1(s,ç,ˆ)}.

Thus
r(ˆ) - r(MTç(MTÒ(ˆ))) =

= (1 - Card(D))r(ˆ) + ‡s in D‹{‘} Maxç{e1(s,ç,ˆ)}

≥ rig(ˆ)/r(ˆ) = 2/r(ˆ) >0,
the penultimate inequality from plausibility condition 8). QED

6666....4444 EEEExxxxiiiisssstttteeeennnncccceeee aaaallllggggoooorrrriiiitttthhhhmmmm ffffoooorrrr rrrriiiiggggiiiiddddssss
(6.4.1) In the situation 6.3.1, suppose that ˆ in NumData(D, Æ)
has rig(ˆ) = 2. Here is an algorithm to determine if ˆ is realizable.
SSSStttteeeepppp IIII X := ˆ.
SSSStttteeeepppp IIIIIIII Is X plausible? If not, ˆ is not realizable. Stop.
SSSStttteeeepppp IIIIIIIIIIII Is r(X) = 1? If so, ˆ is realizable. Stop.
SSSStttteeeepppp IIIIVVVV For each s in D, choose a character çs such that

e1(s,çs,X) = Maxç{e1(s,ç,X)}.

Denote by Ò the unique rank one Ò in Ê…(!
1 - D, Æ) [respectively

Êan(!
1 - D, Æ)] whose local monodromy at s in D is (çs)

-1.

X:= MTÒ(X).

SSSStttteeeepppp VVVV Is X plausible? If not, ˆ is not realizable. Stop.
SSSStttteeeepppp VVVVIIII Choose a character ç±ú such that

e1(‘,ç-1,X) = Maxç{e1(‘,ç,X)}

(such ç exist, by 6.3.7 (2) above). X:= MCç(X). Go to Step II.

(6.4.2) Since Step VI lowers the rank by at least one, we only
need iterate the algorithm at most r(ˆ) - 1 times to determine
whether or not ˆ is realizable.
(6.4.3) To see that the algorithm gives the correct answer,
assume first that ˆ is realizable. Then by 5.2.1 the algorithm will
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correctly tell us that ˆis realizable. Suppose that we start with an
ˆ which the algorithm tells us is realizable. Then the algorithm
provides us with a path which connects ˆ to a plausible object of
rank one. But any such object is realizable (by 6.3.6), and so our ˆ
is connected to a realizable object, so is itself realizable (by 6.3.5).

6666....5555 AAAAnnnn eeeexxxxaaaammmmpppplllleeee
(6.5.1) Here is an example, due to Deligne, of an element ˆ in
NumData(D, Æ) which has rig(ˆ)=2, and which is plausible, but
which is not realizable, because it has a nearest neighbor which is
not plausible. Suppose first that we are not in characteristic 2, and
suppose that Æ contains the unique nontrivial character ç2 of

π1(´m) of order 2. We take D = {0,1},

r(ˆ) = 7,
e1(‘,ç2,ˆ) = 3, e2(‘,ç2,ˆ) = 1, ei(‘,ú,ˆ) = 1 for 1 ≤ i ≤ 3,

e1(0,ú,ˆ) = e2(0,ú,ˆ) = 3, e3(0,ú,ˆ) = 1,

e1(1,ú,ˆ) = e2(1,ú,ˆ) = 3, e3(1,ú,ˆ) = 1,

and all other ei(s,ç,ˆ) = 0. One checks easily that rig(ˆ) = 2, and

that ˆ is plausible. However, ˜ := MCç2
(ˆ) is readily computed. It

turns out to have
r(˜) = 5,
e1(‘,ú,˜) = 1, ei(‘,ç2,˜) = 1 for 1 ≤ i ≤ 4,

e1(0,ú,˜) = 1, e1(0,ç2,˜) = 3, e2(0,ç2,˜) = 1,

e1(1,ú,˜) = 1, e1(1,ç2,˜) = 3, e2(1,ç2,˜) = 1,

but this ˜ is not plausible, since it fails plausibility test 7) with s0
taken as ‘.
(6.5.2) If we are in characteristic 2, or indeed in any
characteristic not 3, suppose that Æ contains a nontrivial element
ç3 of order 3. We take D = {0,1},

r(ˆ) = 7,
e1(‘,ç3,ˆ) = 3, ei(‘,ú,ˆ) = 1 for 1 ≤ i ≤ 4,

e1(0,ú,ˆ) = e2(0,ú,ˆ) = 3, e3(0,ú,ˆ) = 1,

e1(1,ú,ˆ) = e2(1,ú,ˆ) = 3, e3(1,ú,ˆ) = 1,

and all other ei(s,ç,ˆ) = 0. In this case, ˜ := MCäç3
(ˆ) has

r(˜) = 5,
ei(‘,äç3,˜) = 1 for 1 ≤ i ≤ 5,

e1(0,ú,˜) = 1, e1(0,äç3,˜) = 3, e2(0,äç3,˜) = 1,
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e1(1,ú,˜) = 1, e1(1,äç3,˜) = 3, e2(1,äç3,˜) = 1,

and again fails to be plausible, for exactly the same reason.

6666....6666 OOOOppppeeeennnn qqqquuuueeeessssttttiiiioooonnnnssss How can one determine the realizabilty of
elements of ˆ in NumData(D, Æ) whose index of rigidity is some
integer other than 2? A necessary condition for ˆ to be realizable is
that every ˜ to which ˆ is connected (in the graph on
NumData(D, Æ)) is itself plausible. Can this condition be decided by
an algorithm with finite running time? Is this condition sufficient?
[It is sufficient for elements ˆ with rig(ˆ) = 2, as is clear from the
algorithm.] Much remains to be done.

6666....7777 AAAAccccttttiiiioooonnnn ooooffff aaaauuuuttttoooommmmoooorrrrpppphhhhiiiissssmmmmssss

(6.7.1) Let ß: ç ÿ ç(ß) be an automorphism of Æ as abstract

group. Given ˆ in NumData(D, Æ), define ˆ(ß) in NumData(D, Æ) by

r(ˆ(ß)) := r(ˆ),

m(ˆ(ß)) := m(ˆ),

Ei(‘,ç(ß),ˆ(ß)) := Ei(‘,ç,ˆ), for all i≥1, all ç,

ei(s,ç
(ß),ˆ(ß)) := ei(s,ç,ˆ), for all i≥1, all s in D‹{‘}, all ç.

This defines an orthogonal left action of of the group Aut(Æ) on
NumData(D, Æ).
LLLLeeeemmmmmmmmaaaa 6666....7777....2222 In the situation 5.3.1, we have

(1) If ˆ in NumData(D, Æ) is plausible, then ˆ(ß) is plausible for
every ß in Aut(Æ)
(2) If ˆ and ˜ in NumData(D, Æ) are adjacent in the graph, then

ˆ(ß) and ˜(ß) are adjacent for every ß in Aut(Æ).
pppprrrrooooooooffff (1) is obvious from the definitions. For (2), suppose first that

˜ = MCç(ˆ). Then ˜(ß) = MCç(ß)(ˆ
(ß)). If ˜ and ˆ have

common rank ≥ 2 and ˜ = MTÒ(ˆ), then ˜(ß) = MTÒ(ß)(ˆ
(ß)),

where Ò(ß) is the element ß«Ò of Maps(D, Æ). QED

TTTThhhheeeeoooorrrreeeemmmm 6666....7777....3333 ((((iiiinnnnvvvvaaaarrrriiiiaaaannnncccceeee bbbbyyyy aaaauuuuttttoooommmmoooorrrrpppphhhhiiiissssmmmmssss)))) In the situation
6.3.1, if ˆ in NumData(D, Æ) is realizable, and has rig(ˆ) = 2, then

for any ß in Aut(Æ), ˆ(ß) is realizable.
pppprrrrooooooooffff If r(ˆ)=1, then "realizable" is the same as "plausible", so the
result follows from part (1) of the previous lemma. If r(ˆ) ≥2, ˆ is
realizable if and only if ˆ is connected, in the graph, to a plausible
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element of rank one. Take a connecting sequence and apply ß. By
parts (1) and (2) of the previous lemma, this is a sequence which

connects ˆ(ß) to a plausible element of rank one. QED

6666....8888 AAAA rrrreeeemmmmaaaarrrrkkkk aaaannnndddd aaaa qqqquuuueeeessssttttiiiioooonnnn
(6.8.1) Notice that if an ˆ in NumData(D, Æ) with rig(ˆ) = 2 is

realizable, then the object Ï in Ê…(!
1 - D, Æ) with ND(Ï) = ˆ is

already determined up to isomorphism by ˆ; this is precisely the

meaning of rigidity. So given Ï in Ê…(!
1 - D, Æ) which is rigid, we

may speak of the rigid object Ï(ß) in Ê…(!
1 - D, Æ) for every ß in

Aut(Æ). If ß is the automorphism -1 of Æ, then Ï(-1) is the dual of

Ï. This description of Ï(-1) as the dual of Ï makes sense for any Ï,
not just rigid ones, and so -1 preserves the set of realizable elements
in NumData(D, Æ).

(6.8.2) In the complex analytic case, with Æ a subgroup of ^≠, if
ß in Aut(Æ) is induced by an automorphism ëß of the field ^, then

Ï(ß) has a down to earth interpretation: view Ï in Êan(!
1 - D, Æ)

as a homomorphism Ú : π1((!
1 - D)an) ¨ GL(r, ^), then Ï(ß) is the

composite homomorphism ëß«Ú, where ëß acts on GL(r, ^) by

conjugating every entry. This description of Ï(ß) makes sense for
any Ï, not just rigid ones, and shows that Aut(^) preserves the set
of realizable elements of NumData(D, Æ). [If ß is complex

conjugation, and if Æ fi ^≠ lies in the circle S1, then ß induces -1 on

Æ, and Ï(ß) is the dual of Ï.]

(6.8.3) However, there are many subgroups Æ of ^≠ on which
Aut(^) acts trivially, but for which Aut(Æ) is nontrivial. A typical
example of such a Æ is the multiplicative subgroup generated by 2
and 3, which as abstract group is free abelian on the elements 2 and
3. Thus Aut(Æ) is GL(2,#), with the standard upper unipotent
element T acting as (2 ÿ 6, 3 ÿ 3), the standard involution S acting
as (2 ÿ 3, 3 ÿ 1/2), and -id acting as (2 ÿ 1/2, 3 ÿ 1/3). It is far
from clear whether or not, for this Æ, Aut(Æ) preserves the set of
realizable elements in NumData(D, Æ). It seems almost miraculous
that Aut(Æ) preserves the set of realizable elements which are rigid.
(6.8.4) In the …-adic case, over any algebraically closed field of
characteristic zero, once we fix a topological generator © of
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π1(´m)tame, we may identify, via evaluation at ©, the groups

Homcontin(π1(´m)tame, ä$…
≠) ¶ (Øä$…

)≠.

We may take for Æ the multiplicative group of #…
≠ fi (Øä$…

)≠

generated by any two distinct primes both different from …, e.g. by
2 and 3 if … ≥ 5, and repeat the same question. [If we are over an
algebraically closed field of positive characteristic p±…, we must

replace (Øä$…
)≠ by its subgroup (Øä$…

)≠(not p) consisting of those

elements whose image in äÉ…
≠ has order prime to p, and we may

take for Æ the multiplicative group of (Øä$…
)≠(not p) generated by

any two distinct primes q1 and q2 which both have order prime to

p in É…
≠ (e.g., take both qi • 1 mod …).
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7777....0000 DDDDiiiioooopppphhhhaaaannnnttttiiiinnnneeee ccccrrrriiiitttteeeerrrriiiioooonnnn ffffoooorrrr iiiirrrrrrrreeeedddduuuucccciiiibbbbiiiilllliiiittttyyyy
(7.0.1) Fix a prime number …, and an embedding “: ä$… ¨ ^. For

x in ä$… denote by |x| the usual complex absolute value of “(x).

Let F be a finite field of characteristic ±…, äF an algebraic

closure of F. On !1 over F, denote by k: !1 ¨ @1 the inclusion, and

by j: U ¨ !1 the inclusion of a nonempty open set.
(7.0.2) To motivate this section, recall the well known
diophantine criterion for a pure sheaf to be geometrically irreducible
(cf. [Ka-MFC, sections II and III]).
LLLLeeeemmmmmmmmaaaa 7777....0000....3333 In the situation 7.0.1, let Ï be a lisse ä$…-sheaf on U,

which is “-pure of weight zero. Then Ï is geometrically irreducible,
i.e., irreducible on U‚FäF, if and only if there exists a constant C

such that for all finite extensions E of F, of cardinality denoted qE,

we have:

(*) |‡x in U(E) |Trace(Frobx,E | Ï)|2 - qE | ≤ C(qE)
1/2.

pppprrrrooooooooffff Because Ï is pure of weight zero, we have

|Trace(Frobx,E | Ï)|2 = Trace(Frobx,E | End(Ï)),

so we may rewrite (*) as

|‡x in U(E) Trace(Frobx,E | End(Ï)) - qE | ≤ C(qE)
1/2.

By the Lefschetz Trace Formula, applied to the lisse sheaf End(Ï) on
U, we know that

‡x in U(E) Trace(Frobx,E | End(Ï)) =

= ‡ i=1,2 (-1)iTrace(FrobE | Hic(U‚FäF, End(Ï)).

This we may rewrite (*) as
(**)

|‡ i=1,2 (-1)iTrace(FrobE | Hic(U‚FäF, End(Ï)) - qE | ≤ C(qE)
1/2.

Because End(Ï) is “-pure of weight zero, we know from [De-Weil II,

3.3.1] that Hic(U‚FäF, End(Ï)) is mixed of weight ≤i, for i=1,2, and
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the H2c is pure of weight 2. Again by purity, we also know [De-Weil

II, 3.4.1(iii)] that both Ï and End(Ï) are geometrically semisimple,
and hence

H2c(U‚FäF, End(Ï)) =

= (the coinvariants of π1(U‚FäF) in End(Ï))(-1)

= (the invariants of π1(U‚FäF) in End(Ï))(-1).

Suppose first that Ï is geometrically irreducible. Then by

Schur's Lemma we have H2c(U‚FäF, End(Ï)) = ä$…(-1), and hence

Trace(FrobE | H2c(U‚FäF, End(Ï)) = qE.

Since the H1c is mixed of weight ≤1, taking C := h1c(U‚FäF, End(Ï))

gives

| Trace(FrobE | H1c(U‚FäF, End(Ï)) | ≤ C(qE)
1/2,

and (**) is now obvious.
Suppose now that (**) holds. Then at the expense of enlarging

C, for every finite extension E of F we have

|Trace(FrobE | H2c(U‚FäF, End(Ï)) - qE | ≤ C(qE)
1/2.

Since H2c(U‚FäF, End(Ï)) is pure of weight 2, the usual compactness

argument (cf. [Ka-SE, 2.2.2.1]) shows that h2c(U‚FäF, End(Ï)) = 1.

Because Ï is geometrically semisimple (being pure), this one-
dimensionality means precisely that Ï is geometrically irreducible.
QED

7777....1111 DDDDiiiioooopppphhhhaaaannnnttttiiiinnnneeee ccccrrrriiiitttteeeerrrriiiioooonnnn ffffoooorrrr rrrriiiiggggiiiiddddiiiittttyyyy
TTTThhhheeeeoooorrrreeeemmmm 7777....1111....1111 In the situation 7.0.1, let Ï be a lisse ä$…-sheaf on U,

which is “-pure of weight zero. The the following conditions are
equivalent.

1) Ï is geometrically irreducible, i.e., irreducible on U‚FäF, and

cohomologically rigid, i.e., ç(@1‚FäF, k*j*End(Ï)) = 2

2) There exists a constant C such that for all finite extensions E of F,
of cardinality denoted qE, we have:

|‡x in U(E) |Trace(Frobx,E | Ï)|2 - qE | ≤ C.
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pppprrrrooooooooffff Because End(Ï) is pure of weight zero, we know by Weil II

[De-Weil II, 3.2.3] that for all i, Hi(@1‚FäF, k*j*End(Ï)) is pure of

weight i. From the long exact sequence of cohomology attached to

the short exact (excision) sequence of sheaves on @1,
0 ¨ k~j~End(Ï) ¨ k*j*End(Ï) ¨ (punctual, wt. ≤ 0) ¨ 0,

we see that

H2c(U‚FäF, End(Ï)) ¶ H2(@1‚FäF, k*j*End(Ï)),

and that we have a short exact sequence

0¨ (wt. ≤ 0) ¨ H1c(U‚FäF, End(Ï)) ¨ H1(@1‚FäF, k*j*End(Ï)) ¨ 0.

Suppose first that Ï is geometrically irreducible and
cohomologically rigid. Then

H2(@1‚FäF, k*j*End(Ï)) = ä$…(-1),

H1(@1‚FäF, k*j*End(Ï)) = 0,

H0(@1‚FäF, k*j*End(Ï)) = ä$….

Therefore we find

H2c(U‚FäF, End(Ï)) = ä$…(-1),

H1c(U‚FäF, End(Ï)) is mixed of weight ≤ 0.

Thus 2) holds, taking C := h1c(U‚FäF, End(Ï)).

Conversely, suppose that 2) holds. By the previous lemma, Ï is
geometrically irreducible, and hence

H2c(U‚FäF, End(Ï)) = ä$…(-1).

Exactly as in the proof the proof of the previous lemma, the
Lefschetz Trace Formula allow us to rewrite 2) as

| ‡i=1,2 (-1)iTrace(FrobE | Hic(U‚FäF, End(Ï)) - qE | ≤ C.

But as H2c(U‚FäF, End(Ï)) = ä$…(-1), this says precisely that for all

finite extensions E of F,

| Trace(FrobE | H1c(U‚FäF, End(Ï)) | ≤ C.
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From this, the standard "radius of convergence" argument (cf. [Ka-

SE, 2.2.1.1]) shows that H1c(U‚FäF, End(Ï)) is mixed of weight ≤ 0.

Therefore H1(@1‚FäF, k*j*End(Ï)), being a quotient of this H1c, is

itself mixed of weight ≤ 0. But it is also pure of weight one, hence it

vanishes: H1(@1‚FäF, k*j*End(Ï)) = 0. Finally, the geometric

irreducibility of Ï gives

H0(@1‚FäF, k*j*End(Ï)) = H0(U‚FäF, End(Ï)) = ä$….

Thus we find ç(@1‚FäF, k*j*End(Ï)) = 2, as required. QED

VVVVaaaarrrriiiiaaaannnntttt TTTThhhheeeeoooorrrreeeemmmm 7777....1111....2222 In the situation 7.0.1, let Ï be a lisse ä$…-

sheaf on U, which is “-pure of weight zero, and let A ≥ 0 be a non-
negative integer. The the following conditions are equivalent.

1) Ï is geometrically irreducible, i.e., irreducible on U‚FäF, and

h1(@1‚FäF, k*j*End(Ï)) ≤ A, i.e., ç(@1‚FäF, k*j*End(Ï)) ≥ 2 - A.

2) There exists a constant C such that for all finite extensions E of F,
of cardinality denoted qE, we have:

|‡x in U(E) |Trace(Frobx,E | Ï)|2 - qE | ≤ A(qE)
1/2 + C.

3) There exists a constant C such that for all finite extensions E of F,
of cardinality denoted qE, we have:

|‡x in !1(E) |Trace(Frobx,E | j*Ï)|
2 - qE | ≤ A(qE)

1/2 + C.

pppprrrrooooooooffff We first remark that 2) and 3) are trivially equivalent, since

at each of the finitely many points of !1 - U, j*Ï is mixed of

weight ≤ 0.
To show that 2) implies 1), we argue as follows. If 2) holds, then

by the first lemma 7.0.3, Ï is geometrically irreducible, and

H2c(U‚FäF,End(Ï)) = ä$…(-1), so 2) says that for all finite extensions E

of F,

| Trace(FrobE | H1c(U‚FäF, End(Ï)) | ≤ A(qE)
1/2 + C.

From this it follows (cf. [Ka-SE, 2.2.1.1]) that H1c(U‚FäF, End(Ï)) is
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mixed of weight ≤ 1, with at most A eigenvalues of weight 1. From
the short exact sequence

0¨ (wt. ≤ 0) ¨ H1c(U‚FäF, End(Ï)) ¨ H1(@1‚FäF, k*j*End(Ï)) ¨ 0.

and the fact that H1(@1‚FäF, k*j*End(Ï)) is pure of weight 1, we

see that h1(@1‚FäF, k*j*End(Ï)) is precisely the number of

eigenvalues of weight one in H1c(U‚FäF, End(Ï)). Thus we find

h1(@1‚FäF, k*j*End(Ï)) ≤ A, as required.

Conversely, suppose that 1) holds. By the first lemma, Ï is

geometrically irreducible, H2c(U‚FäF, End(Ï)) = ä$…(-1), and 2) is the

assertion that there exists a constant C such that for all finite
extensions E of F,

| Trace(FrobE | H1c(U‚FäF, End(Ï)) | ≤ A(qE)
1/2 + C.

Since by 1) we have h1(@1‚FäF, k*j*End(Ï)) ≤ A, it suffices to show

the existence of a constant C such that for all finite extensions E of
F,

| Trace(FrobE | H1c(U‚FäF, End(Ï)) | ≤

≤ h1(@1‚FäF, k*j*End(Ï))(qE)
1/2 + C.

But this is obvious from the short exact sequence

0¨ (wt. ≤ 0) ¨ H1c(U‚FäF, End(Ï)) ¨ H1(@1‚FäF, k*j*End(Ï)) ¨ 0

and the fact that H1(@1‚FäF, k*j*End(Ï)) is pure of weight one. QED

(7.1.3) This result allows us to give a quite short proof of the fact
that Fourier Transform preserves the index of rigidity in the special
case of ppppuuuurrrreeee objects. It was only after first proving this "special
case" that we found the proof of the general case given in 3.0.2.

TTTThhhheeeeoooorrrreeeemmmm 7777....1111....4444 Let F be a finite field of characteristic ± …, ¥ a
nontrivial ä$…-valued character of the additive group of F. Over F,

let K be a perverse sheaf on !1 which is of the form j*Ï[1] for Ï a

lisse ä$…-sheaf on U, which is “-pure of weight zero, and
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geometrically irreducible. Suppose that Ï is not geometrically
isomorphic to Ò¥(ax) for any a in F. Consider the (Tate-twisted)

Fourier Transform FT¥(K)(1/2), which is known (cf. [Ka-GKM, 6.2.5

and 8.4.1]) to be of the form j'*Ì[1] for j': U' ¨ !1 the inclusion a

nonempty open set, and Ì a lisse ä$…-sheaf on U', which is “-pure of

weight zero, geometrically irreducible, and not geometrically
isomorphic to Ò¥(ax) for any a in F. Then Ï and Ì have the same

index of rigidity: ç(@1, k*j*End(Ï)). = ç(@1, k*j'*End(Ì)), or

equivalently,

h1(@1, k*j*End(Ï)). = h1(@1, k*j'*End(Ì)).

pppprrrrooooooooffff For every finite extension E of F, the trace functions of j*Ï

and of j'*Ì as functions on !1(E) = E are, up to sign, normalized

Fourier Transforms of each other: for y in E, we have
Trace(Froby,E | j'*Ì) =

= (-1/(qE)
1/2)‡x in E ¥E(yx)Trace(Frobx,E | j*Ï),

where we have written ¥E for ¥«TraceE/F.

By the Plancherel formula, we have, for every finite extension E of
F, the equality

‡x in !1(E) |Trace(Frobx,E | j*Ï)|
2 =

= ‡x in !1(E) |Trace(Frobx,E | j'*Ì)|
2

Now apply the equivalence of 1) and 3) in the Variant Theorem 7.1.2

above. By 1) à 3) for Ï, with A taken as h1(@1, k*j*End(Ï)),

followed by 3) à 1) for Ì, with the same A. We see that

h1(@1, k*j*End(Ï)). ≥ h1(@1, k*j'*End(Ì)).

Reversing the roles of Ï and Ì, we get the opposite inequality. QED

7777....2222 AAAAppppppppeeeennnnddddiiiixxxx:::: aaaa ccccoooouuuunnnntttteeeerrrreeeexxxxaaaammmmpppplllleeee
(7.2.1) What happens if, in Theorem 7.1.1, we assume only that
the lisse ä$…-sheaf Ï on U is “-mixed of weight ≤ 0 (rather than

pure of weight zero). By [De-Weil II, 3.4.9], any lisse ä$…-sheaf Ï on U

which is “-mixed admits a filtration, indexed by real numbers w,
by lisse subsheaves

Ï<w fi Ï≤w fi Ïw+œ ... fi Ï,
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such that Ï<w (resp. Ï≤w) is “-mixed of weight <w (resp. ≤w), and

such that Grw(Ï) := (Ï≤w)/(Ï<w) is “-pure of weight w. For Ï

which is “-mixed of weight ≤0, the pieces Grw(Ï) = 0 for w > 0.

(7.2.2) Let Ï be a lisse ä$…-sheaf Ï on U is “-mixed of weight ≤ 0,

and suppose that there exists a constant C such that for all finite
extensions E of F, of cardinality denoted qE, we have:

(*) |‡x in U(E) |Trace(Frobx,E | Ï)|2 - qE | ≤ C.

(7.2.3) This estimate ddddooooeeeessss imply that Gr0(Ï) is geometrically

irreducible. [Indeed the geometric irreducibility of Gr0(Ï) for a lisse

ä$…-sheaf Ï on U which is “-mixed of weight ≤ 0 is equivalent to the

existence of a real constant C and of a real å < 1, such that for all
finite extensions E of F, we have

|‡x in U(E) |Trace(Frobx,E | Ï)|2 - qE | ≤ C(qE)
å.]

(7.2.4) However, the estimate (*) above does nnnnooootttt imply that
Gr0(Ï) is cohomologically rigid. Here is an example.

(7.2.5) We begin over #, with a @1 with homogeneous

coordinates (μ,√), and a @2 with homogeneous coordinates (X, Y, Z).

Over the open set of @1 where √(μ3 - 27√3) is invertible, the closed

subscheme of @2≠@1 defined by the single equation

√(X3 + Y3 + Z3) = μXYZ

is an elliptic curve, say π : ‰ ¨ @1[1/(√(μ3 - 27√3))]. This curve,
with say (1,-1,0) as origin, carries an arithmetic level three
structure

μμμμ3 ≠ #/3# ¶ ‰[3]

in the sense of [Ka-RA,2.0.4], and in fact this is the universal elliptic
curve with arithmetic level three structure.
(7.2.6) If we extend scalars from # to #[1/3, Ω3], we may view

this same curve as the universal elliptic curve with usual level 3
structure of determinant Ω3 over #[1/3, Ω3]-algebras.

(7.2.7) Fix a prime number …. The sheaf

Ì… := R1π*ä$… on @1[1/(…√(μ3 - 27√3))]

is lisse of rank 2, pure of weight one, and det(Ì…) ¶ ä$…(-1).

(7.2.8) We next invert the prime 3, i.e., we work over
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@1[1/(3…√(μ3 - 27√3))].
The advantage of doing this is that over #[1/3], the divisor in

@1[1/3] of equation √(μ3 - 27√3) = 0, is finite etale of degree 4:
indeed over #[1/3, Ω3] it is the disjoint union of four sections. It is

well known (cf. [KM, 14.3.3]) that the local monodromy of Ì… along

each of these four sections is unipotent and nontrivial.
(7.2.9) In particular, for any prime p other than 3 or …, the
restriction

Ì…,p := Ì… | @
1[1/(√(μ3 - 27√3))]‚Ép

is lisse of rank 2, pure of weight 1, with nontrivial unipotent local
monodromy at each of the four cusps. Since any pure lisse sheaf is
geometrically semisimple [De-Weil II, 3.4(iii)], it follows that Ì…,p is

geometrically irreducible (since already under local monodromy at
any cusp it is indecomposable). Indeed, the geometric monodromy
group of Ì must be SL(2), since it is a semisimple subgroup of SL(2)
which contains a nontrivial unipotent element.
(7.2.10) Since we know the local monodromy, we can easily
compute the index of rigidity of Ì…,p. Denoting by

j : @1[1/(√(μ3 - 27√3))]‚äÉp ¨ @1‚äÉp
the inclusion, we find

ç(@1‚äÉp, j*End(Ì…,p)) = (2-4)4 + 4≠2 = 0,

or equivalently, Ì…,p being geometrically irreducible,

h1(@1‚äÉp, j*End(Ì…,p)) = 2.

In particular, Ì…,p is nnnnooootttt cohomologically rigid.

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 7777....2222....11111111 Hypotheses and notations as in 7.2.5-9 above,
fix a prime p • 2 mod 3, and a prime …±p. Denote by Ï the lisse

ä$…-sheaf on U := @1[1/(√(μ3 - 27√3))]‚Ép4

Ï := Ì…,p(1/2) · Ì…,p(1),

where the half Tate twist is defined using p2 as sqrt(p4). There
exists a constant C such that for any finite extension E of Ép4,

we have

(*) |‡x in U(E) |Trace(Frobx,E | Ï)|2 - qE | ≤ C.

pppprrrrooooooooffff Let us denote Ì…,p simply as Ì. The traces of Ï and Ì are

related as follows: for any finite extension E of Ép4, and any x in E,
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Trace(Frobx,E | Ï) = Trace(Frobx,E | Ì)(1/sqrt(qE))(1 + 1/sqrt(qE)).

In this formula, qE is a power of p4, say qE = p4n, and sqrt(qE) is

the same power p2n of p2. Thus

|Trace(Frobx,E | Ï)|2 =

= |Trace(Frobx,E | Ì)|2(1/qE)(1 + 1/sqrt(qE))
2.

From its genesis via elliptic curves, we see that the trace function of
Ì has values in #. Therefore we may omit the absolute value:

|Trace(Frobx,E | Ï)|2 =

= (Trace(Frobx,E | Ì))2(1/qE)(1 + 1/sqrt(qE))
2.

We must prove the existence of a constant C such that for any any
finite extension E of Ép4,

(*) |‡x in U(E) |Trace(Frobx,E | Ï)|2 - qE | ≤ C.

Multiplying through by qE, and substituting in terms of Ì, this

amounts to

(**)|‡x in U(E) (Trace(Frobx,E | Ì))2(1 + 1/sqrt(qE))
2 - (qE)

2| ≤ CqE.

Notice that

(Trace(Frobx,E | Ì))2 = Trace(Frobx,E | Ì‚Ì).

Because Ì‚Ì is pure of weight 2 on U, j*(Ì‚Ì) is punctually mixed

of weight ≤2 at the cusps. So (**) is equivalent to the existence of a
constant C such that for all finite extensions E of Ép4, we have

|‡x in @1(E) (Tr(Frobx,E | j*(Ì‚Ì))(1 + 1/sqrt(qE))
2 - (qE)

2| ≤ CqE.

We will show that this holds with C=2. Indeed, we will show that

(***) ‡x in @1(E) (Tr(Frobx,E | j*(Ì‚Ì))(1 + 1/sqrt(qE))
2 = (qE -1)2,

which makes this estimate obvious. Writing

(qE -1)2 = (qE)
2(1 - 1/qE)

2 = (1 + 1/sqrt(qE))
2(1 - 1/sqrt(qE))

2,

we see that (***) is given by the following
LLLLeeeemmmmmmmmaaaa 7777....2222....11112222 If p is congruent to 2 mod 3, then for all finite
extensions E of Ép4, we have
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‡x in @1(E) (Tr(Frobx,E | j*(Ì‚Ì)) = (qE)
2(1 - 1/sqrt(qE))

2

= qE(qE + 1) -2(qE)
3/2.

pppprrrrooooooooffff Decompose Ì‚Ì as

Ú2(Ì) · Sym2(Ì) = det(Ì)· Sym2(Ì) = ä$…(-1)· Sym2(Ì).

Thus on @1 we have

j*(Ì‚Ì) = ä$…(-1) · j*(Sym
2(Ì)),

and so
‡x in @1(E) (Tr(Frobx,E | j*(Ì‚Ì)) =

= qE(qE + 1) + ‡x in @1(E) (Tr(Frobx,E | j*(Sym
2(Ì))).

Thus we are reduced to showing that

‡x in @1(E) (Tr(Frobx,E | j*(Sym
2(Ì))) = -2(qE)

3/2.

By the Lefschetz Trace Formula, we may rewrite this as

‡ (-1)iTr(FrobE | Hi(@1‚äÉp, j*(Sym
2(Ì))) = -2(qE)

3/2.

We claim that the only possibly nonvanishing cohomology

group is the H1. For this, it suffices that Sym2(Ì) be geometrically

irreducible and nontrivial. But Sym2(Ì) is geometrically semisimple,
because pure, and is indecomposable under each local mondromy,

which acts as a single unipotent Jordan block. Therefore Sym2(Ì) is
geometrically irreducible and nontrivial. Moreover, at each cusp the
local monodromy is tame with a one-dimensional fixed space
(because a single unipotent Jordan block).

Thus we are reduced to showing that H1(@1‚äÉp, j*(Sym
2(Ì)))

has dimension 2, and that for all finite extensions E of Ép4, both

eigenvalues of FrobE on this space are (qE)
3/2. For this, it suffices to

show that the two eigenvalues of FrobÉp
on this space are _i(p)3/2.

That H1(@1‚äÉp, j*(Sym
2(Ì))) has dimension 2 is immediate

from the Euler Poincarïe formula, which gives

ç(@1‚äÉp, j*(Sym
2(Ì))) = (2-4)3 + 4*1 = -2,

and the vanishing of Hi for i±1.

Now Ì(1/2) is symplectically self-dual, so Sym2(Ì)(1) is
orthogonally self dual, so by Poincarïe duality the two eigenvalues of

FrobÉp
on H1(@1‚äÉp, j*(Sym

2(Ì))) have product equal to p3.

Therefore it suffices to show that
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Trace(FrobÉp
| H1(@1‚äÉp, j*(Sym

2(Ì))) = 0,

for any prime p±… which is congruent to 2 mod 3.
Implicit in Deligne's proof that "Weil implies Ramanujan" [De-

FMR…, 4.8-4.9, for n=3] is the following identity of traces: for any
prime p not 3 or …, and for any integer k≥0,

trace(FrobÉp
| H1(@1‚äÉp, j*(Sym

k(Ì))) =

= trace(Tp | cusp forms of weight k+2 on Æ(3)).

Unfortunately, this identity, which is certainly "well-known" to the
specialists, does not seem to appear, at least in so explicit a form,
anywhere in the literature. For the sake of completeness, we will
give a (somewhat clumsy and convoluted) proof of it in the special
case k=2, by making use of results of Scholl [Sch].

The space of weight 4 cusp forms on Æ(3) is one-dimensional.
Since f:= the cube root of » is known [Lang-EF, page 254] to be a
weight 4 cusp form on Æ(3), f provides a basis of this one
dimensional space, and is automatically an eigenfunction of all
Hecke operators Tp for all primes p±3. The q-expansion of this f at

any cusp of Æ(3) is

q°n≥1(1 - q3n)8.

If we knew the asserted identity of traces, we would argue as

follows. We write this q expansion as ‡a(n)qn. By Hecke theory we
know that for primes p not 3 we have Tp(f) = a(p)f. Therefore for

any prime p not 3 or … we have

trace(FrobÉp
| H1(@1‚äÉp, j*(Sym

2(Ì))) =

= trace(Tp | cusp forms of weight 4 on Æ(3)) = a(p).

From the q-expansion of f above, it is visible that a(n) = 0 unless n
is congruent to 1 mod 3.

We now indicate an alternate proof, valid for primes p ≥ 5,
p±…, that

trace(FrobÉp
| H1(@1‚äÉp, j*(Sym

k(Ì))) = a(p).

Because f has even weight, the element -1 in SL(2, #/3#) fixes
f. Therefore f is in fact invariant under _Æ(3), the group denoted
Æ0(3,3) in Atkin-Lehner [AL,page 134] consisting of all elements in

SL(2,#) which reduce mod 3 to diagonal matrices. [In general _Æ(N)
is a proper subgroup of Æ0(N,N): they coincide precisely when _1 are

the only units in #/N#,i.e., precisely for N ≤4.] Now quite generally,
f(†) ÿ f(N†) is a bijection between cusp forms of any given weight k
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on Æ0(N,N) and cusp forms of weight k on Æ0(N
2). Returning to the

case at hand, we conclude that the space of weight 4 cusp forms on
Æ0(9) is one-dimensional, spanned by a form whose q-expansion at

the standard cusp is

q°n≥1(1 - q3n)8.

By the one-dimensionality, this form is automatically an
eigenfunction of all Hecke operators Tp for all primes p±3. If we

write this q expansion as ‡a(n)qn, then by Hecke theory we know
that for primes p not 3 we have Tp(f) = a(p)f. Because we are now

on Æ0(9), Tp(f) = a(p)f translates into the following identity on

coefficients:

a(np) -a(p)a(n) + p3a(n/p) = 0,
with the standard convention that a(x) = 0 if x is a non-integer.

For each prime p not 3 or …, let us define

A(p) := trace(FrobÉp
| H1(@1‚äÉp, j*(Sym

2(Ì))).

By the Lefschetz Trace Formula, and the fact that j*(Sym
2(Ì)) has

a #-valued trace function (even at the cusps, where its trace is 1)
which is independent of the auxiliary choice of …, we see that A(p)
lies in #, and is independent of the auxiliary …. For any prime p not
3 or … we have

det(T - FrobÉp
| H1(@1‚äÉp, j*(Sym

2(Ì))) = T2 - A(p)T +p3.

According to Scholl [Sch, Theorem 5.4, applied to k=2 and Æ:= Æ(3):
the "M" of Prop. 5.2 is then 3], the q-expansion coefficients a(n) of f
satisfy, for each prime p not 3, p > 3, the ccccoooonnnnggggrrrruuuueeeennnncccceeeessss

a(np) -A(p)a(n) + p3a(n/p) • 0 mod (pn)3,
for every integer n. But we recall that they also satisfy the
identities

a(np) -a(p)a(n) + p3a(n/p) = 0.
Subtracting, we find

(a(p) - A(p))a(n) • 0 mod (pn)3.
We wish to infer from this that in fact A(p) = a(p). We take

n=1. Because a(1)=1, we get a(p) - A(p)• 0 mod p3. But both a(p)
and A(p) are usual integers, whose absolute values are at most

2p3/2. So a(p) - A(p) is an integer of absolute value at most 4p3/2.

But a(p) - A(p) is divisible by p3, so if nonzero its absolute value is
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at least p3. But p3 > 4p3/2 for p ≥ 3. Therefore A(p) = a(p) for p > 3,
p±….

For the sake of completeness, let us show that for p=2, …±2,

trace(FrobÉ2
| H1(@1‚äÉ2, j*(Sym

2(Ì))) = 0.

Because the cohomology groups Hi(@1‚äÉ2, j*(Sym
2(Ì)) vanish for

i±1,the Lefschetz Trace Formula gives

trace(FrobÉ2
| H1(@1‚äÉ2, j*(Sym

2(Ì))) =

- ‡x in @1(É2)
Trace(Frobx,É2

| j*(Sym
2(Ì))).

There are sufficiently few É2-rational points in @1 that this

computation is quite feasible. The points x=1 and x=‘ are both
cusps, at each of which the trace of Frobenius is 1 ( indeed the

restriction to the cusps of j*(Sym
k(Ì)) for any k≥0 is the constant

sheaf). At the point x=0, Sym2(Ì) is the Sym2 of the H1 of the
elliptic curve E of homogeneous equation

X3 + Y3 + Z3 = 0
over É2. This curve has 3 É2 rational points (the three É2-points

where exactly one of X,Y or Z vanishes): as this number of rational
points is given by

1 + 2 - Trace(FrobÉ2
| H1(E‚äÉ2, ä$…),

we see that Trace(FrobÉ2
| H1(E‚äÉ2, ä$…) = 0. Therefore the two

eigenvalues of FrobÉ2
on H1(E‚äÉ2, ä$…) are _i(2)

1/2. Therefore the

three eigenvalues of FrobÉ2
on Sym2(H1(E‚äÉ2, ä$…)) are -2, -2, 2.

Hence for the point x=0 we have

Trace(Frobx,É2
| j*(Sym

2(Ì))) = (-2) + (-2) + 2 = -2.

Thus we find that

‡x in @1(É2)
Trace(Frobx,É2

| j*(Sym
2(Ì))) = 1 + 1 + (-2) = 0,

as required.
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8888....0000 TTTThhhheeee bbbbaaaassssiiiicccc sssseeeettttttttiiiinnnngggg
(8.0.1) To motivate this chapter, start with an algebraically
closed field k, n ≥ 2 an integer, å1, å2, ... ån a set of n distinct

points of !1(k), … a prime number invertible in k, N≥1 an integer
which is invertible in k, and Ω a primitive N'th root of unity in k.
We are interested in "describing" all objects of Ê… which are lisse on

!1 - {å1, å2, ... ån}, cohomologically rigid, and such that all

eigenvalues of all local monodromies of Ï are N'th roots of unity. We
wish to do this describing in as universal a way as possible.
(8.0.2) Thus we fix an integer N ≥ 1. As in 5.5.2-3, we have the
rings

RN,… := #[ΩN, 1/N…], ΩN := a primitive N'th root of unity

and
SN,n,… := RN,…[T1, ... , Tn][1/»], » := °i±j(Ti - Tj).

We fix an embedding
RN,… ¨ ä$…,

i.e., we fix a primitive N'th root of unity in ä$…. We denote by E = EN
the fraction field of RN,…. We denote by ¬ the induced place of the

"abstract" field E, and by E¬ the ¬-adic completion of E. We denote

by ƒ the unique ring homomorphism
ƒ : SN,n,… ¨ k

for which ƒ(ΩN) = Ω and for which ƒ(Ti) = åi for 1 ≤ i ≤ n.

(8.0.3) Over SN,n,…, we have !
1, with its n disjoint sections

{T1, ... , Tn}, and coordinate X1. This space

(!1- {T1, ... , Tn})SN,n,…
is the spec of the ring SN,n+1,…, in which n+1 variables are denoted

T1, ... , Tn, X1. More generally, for each integer r ≥ 0, we will have

occasion to consider the space
!(n, r+1)RN,…

:= Spec(RN,…[T1, ... , Tn, X1, ... ,Xr+1][1/»n,r],

where
»n,r := (°i±j(Ti - Tj))(°a,j(Xa - Tj))(°k(Xk+1 - Xk)).

[The indices i and j run in {1,2,...,n}, the index a in {1,...,r+1}, the
index k in {1,...,r}; when r=0 the empty product °k(Xk+1 - Xk) is

understood to be 1.]
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(8.0.4) A more illuminating way to think of !(n, r+1)RN,…
is as

lying in the r+1 fold fibre product of (!1- {T1, ... , Tn})SN,n,…
with

itself over SN,n,…, as the open set where the function °k(Xk+1 - Xk)

is invertible. Thought of this way, we see r+1 projection maps

pri : !(n, r+1)RN,…
¨ (!1- {T1, ... , Tn})SN,n,…

(T1, ... , Tn, X1, ... , Xr+1) ÿ (T1, ... , Tn, Xi).

(8.0.5) Strictly speaking, !(n, r+1)RN,…
depends on the integer n

and on the oooorrrrddddeeeerrrreeeedddd sssseeeetttt {1,2,... , r+1} (because °k(Xk+1 - Xk)

depends on the order). For each nonempty subinterval
[i,j]:= {i, i+1, ... , j} fi {1,2,... , r+1},

we may form the space !(n, [i,j])RN,…
, by forming the j+1-i fold

fibre product of of (!1- {T1, ... , Tn})SN,n,…
with itself over SN,n,…,

and then passing to the open set where °k=i,...,j-1(Xk+1 - Xk) is

invertible. We have natural projections
pr[i,j],[å,∫] : !(n, [i,j])RN,…

¨ !(n, [å,∫])RN,…
,

(T1, ... , Tn, Xi, ... , Xj) ÿ (T1, ... , Tn, Xå, ... , X∫),

whenever [å,∫] fi [i,j]. In this notation, the projection pri above is

pr[1,r+1],[i,i].

8888....1111 IIIInnnntttteeeerrrrlllluuuuddddeeee:::: KKKKuuuummmmmmmmeeeerrrr sssshhhheeeeaaaavvvveeeessss
(8.1.1) We work in the setting 8.0. On (´m)RN,…

with coordinate

Z, we have the Kummer covering of degree N, of equation YN = Z.
This is a connected μμμμN(RN,…)-torsor, whose existence defines a

surjective homomorphism
π1((´m)RN,…

) n μμμμN(RN,…)

The chosen embedding RN,… ¨ ä$… gives an embedding μμμμN(RN,…) ¨

ä$…
≠, which we can think of as a faithful ä$…-valued character çN of

the structural group μμμμN(RN,…). The composite homomorphism

π1((´m)RN,…
) n μμμμN(RN,…) ¨ ä$…

≠

defines the Kummer sheaf ÒçN
on (´m)RN,…

.

(8.1.2) More generally, any character

® : μμμμN(RN,…) ¨ ä$…
≠
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defines in this way a Kummer sheaf Ò® on (´m)RN,…
. Any such

character ® is some power of çN, say ® = (çN)
a for some integer a

(which is unique mod N).
(8.1.3) For any scheme W and any map

f: W ¨ (´m)RN,…
,

the Kummer sheaves f*Ò® := Ò®(f) and f*ÒçN
:= ÒçN(f)

on W are

related by

Ò®(f) = ÒçN(f
a) = (ÒçN(f)

)ºa.

(8.1.4) An alternative description of the Kummer sheaf Ò®(f) on

W is this. One considers the covering of W of equation yN = f, with
structural map

π: (yN = f) ¨ W.
The zeroeth direct image sheaf π*ä$… has a μμμμN(RN,…) action, and its

®-component is the sheaf Ò®(f) on W.

8888....2222 NNNNaaaaiiiivvvveeee ccccoooonnnnvvvvoooolllluuuuttttiiiioooonnnn oooonnnn ((((!!!!1111---- {{{{TTTT1111,,,, ............ ,,,, TTTTnnnn}}}}))))SSSSNNNN,,,,nnnn,,,,…………
....

(8.2.1) We continue in the setting 8.0. Denote by Lisse(N,n,…) the
category of lisse ä$…-sheaves on

!(n, 1)RN,…
, := (!1- {T1, ... , Tn})SN,n,…

.

For each nontrivial ä$…
≠-valued character ç of the group μμμμN(RN,…),

we define an exact functor, "naive convolution with Òç", denoted

NCç, from Lisse(N,n,…) to itself, as follows. Consider the space

!(n,2)RN,…
, with its two projections to !(n,1)RN,…

. We define

NCç(Ï) := R1(pr2)~(pr1
*(Ï)‚Òç(X2 - X1)

).

LLLLeeeemmmmmmmmaaaa 8888....2222....2222 In the setting 8.2.1, let Ï in Lisse(N,n,…), and ç an

arbitrary ä$…
≠-valued character of μμμμN(RN,…).

1) The sheaves Ri(pr2)~(pr1
*(Ï)‚Òç(X2 - X1)

) are all in Lisse(N,n,…).

2) If ç is nontrivial, they vanish for i±1.
3) If ç is nontrivial, the functor NCç is exact.

4) If ç is nontrivial, and if Ï is mixed of weight ≤w, then NCç(Ï) is

mixed of weight ≤ w+1.



Chapter 8-Motivic description of rigids-4

pppprrrrooooooooffff 1) Over the target !(n,1)RN,…
, the total space is a relative !1

with coordinate X1, minus the n+1 disjoint sections {T1, ... , Tn, X2}.

The sheaf pr1
*(Ï)‚Òç(X2 - X1)

is lisse on this space. Because the

base is normal and connected with generic point of characteristic
zero, any lisse sheaf is automatically tamely ramified along each of
these missing sections, as well as along ‘. The lisseness of the

Ri(pr2)~(pr1
*(Ï)‚Òç(X2 - X1)

) now results from the standard

specialization theorems, cf. [Ka-SE, 4.7.1].
2) Since Ï is lisse, and our morphism is affine and lisse of relative
dimension one, proper base change shows that the only possibly
nonvanishing cohomology sheaves are those with i=1 or i=2. As Ï is
lisse outside the n disjoint sections {T1, ... , Tn}, it is lisse along the

section X2. If ç is nontrivial, the sheaf pr1
*(Ï)‚Òç(X2 - X1)

is

totally ramified along the section X2, and this remains true after

passage to any geometric fibre. On a geometric fibre, say (Ti ÿ åi,

X2 ÿ ∫), the H2c must vanish: already the inertia group I(∫) at ∫

acts as a scalar Ω±1, so has no nonzero co-invariants, and a fortiori
the entire π1 of the geometric fibre has none either. By proper

change, the sheaf R2(pr2)~(pr1
*(Ï)‚Òç(X2 - X1)

) vanishes.

3) This results formally from 2), by the long exact cohomology
sequence.
4) This is Weil II [De-Weil II, 3.3.1]. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 8888....2222....3333 In the setting 8.2.1, let r≥1 be a positive integer,

Ï1, ..., Ïr+1 objects in Lisse(N,n,…), and ç1, ..., çr nontrivial ä$…
≠-

valued characters of μμμμN(RN,…). Consider the objects Ì0, Ì1,..., Ìr in

Lisse(N,n,…) defined inductively by
Ì0 := Ï1,

Ì1 := Ï2‚NCç1
(Ì0),

.

.
Ìr := Ïr+1‚NCçr

(Ìr).

On !(n, r+1)RN,…
, consider the lisse sheaf

Ï1(X1)‚(‚k=1,...,r(Òçk(Xk+1 - Xk)‚
Ïk+1(Xk+1)))
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and the projection

prr+1 : !(n, r+1)RN,…
¨ (!1- {T1, ... , Tn})SN,n,…

.

We have

Ìr = Rr(prr+1)~(Ï1(X1)‚(‚k=1,...,r(Òçk(Xk+1 - Xk)‚
Ïk+1(Xk+1)))),

and for i±r we have

Ri(prr+1)~(Ï1(X1)‚(‚k=1,...,r(Òçk(Xk+1 - Xk)‚
Ïk+1(Xk+1)))) = 0.

pppprrrrooooooooffff This follows from parts 1) and 2) of the previous lemma 8.2.2.
Factor the map prr+1 as the composition of successive "one-variable

at a time" projections
πi := pr[i,r+1],[i+1,r+1] : !(n, [i,r+1])RN,…

¨ !(n, [i+1,r+1])RN,…
,

(T1, ... , Tn, Xi, ... , Xr+1) ÿ (T1, ... , Tn, Xi+1, ... , Xr+1).

It suffices to show that for each i=1, ..., r, we have

R1(πi)~(Ìi-1(Xi)‚(‚k=i,...,r(Òçk(Xk+1 - Xk)‚
Ïk+1(Xk+1))))

= Ìi(Xi+1)‚(‚k=i+1,...,r(Òçk(Xk+1 - Xk)‚
Ïk+1(Xk+1))),

and that the other Rj vanish for j±1. For this we argue as follows.
For each i, denote by Ói the lisse sheaf on !(n, [i,r+1])RN,…

Ói := ‚k=i,...,r(Òçk(Xk+1 - Xk)‚
Ïk+1(Xk+1))).

The map πi sits in a cartesian diagram

pr[i,r+1],[i,i+1]

!(n, [i,r+1])RN,… ¨ !(n, [i,i+1])RN,…

πid dpr[i,i+1],[i+1,i+1]
!(n, [i+1,r+1])RN,… ¨ !(n, [i+1,i+1])RN,…

.

pr[i+1,r+1],[i+1,i+1]

The sheaf
Ìi-1(Xi)‚(‚k=i,...,r(Òçk(Xk+1 - Xk)‚

Ïk+1(Xk+1)))

on the source is the tensor product

(πi)
*(Ïi+1(Xi+1)‚Ói+1)‚(pr[i,r+1],[i,i+1])

*(Ìi-1(Xi)‚Òçi(Xi+1 - Xi)
)

of a pullback from the base, namely (πi)
*(Ïi+1(Xi+1)‚Ói+1), which

the projection formula takes care of, and of a pullback
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(pr[i,r+1],[i,i+1])
*(Ìi-1(Xi)‚Òçi(Xi+1 - Xi)

) from the situation of the

previous lemma. QED

8888....3333 MMMMiiiiddddddddlllleeee ccccoooonnnnvvvvoooolllluuuuttttiiiioooonnnn oooonnnn ((((!!!!1111---- {{{{TTTT1111,,,, ............ ,,,, TTTTnnnn}}}}))))SSSSNNNN,,,,nnnn,,,,…………
....

(8.3.1) We continue in the setting 8.2.1. For each nontrivial ä$…
≠-

valued character ç of the group μμμμN(RN,…), we now define a left

exact functor, "middle convolution with Òç", denoted MCç, from

Lisse(N,n,…) to itself, as follows. We view the space !(n,2)RN,…
, with

its second projection pr2 to !(n,1)RN,…
, as a relative !1 with

coordinate X1, minus the n+1 disjoint sections {T1, ... , Tn, X2}. We

then compactify the morphism pr2 into the relative @1

äpr2 : @1≠!(n,1)RN,…
¨ !(n,1)RN,…

,

by "putting back" the n+2 disjoint sections {T1, ... , Tn, X2, ‘}:

j

!(n,2)RN,…
c @1≠!(n,1)RN,…

pr2Ó Í äpr2
!(n,1)RN,…

.

We then define

MCç(Ï) := R1(äpr2)~(j*(pr1
*(Ï)‚Òç(X2 - X1)

)).

LLLLeeeemmmmmmmmaaaa 8888....3333....2222 In the situation 8.3.1, let Ï in Lisse(N,n,…), and ç an

arbitrary ä$…
≠-valued character of μμμμN(RN,…).

1) The sheaves Ri(äpr2)*(j*(pr1
*(Ï)‚Òç(X2 - X1)

)) are all in

Lisse(N,n,…).
2) If ç is nontrivial, the above sheaves vanish for i±1.
3) If ç is nontrivial, and if Ï is pure of weight w, then MCç(Ï) is

pure of weight w+1, and we have a short exact sequence of lisse
sheaves on !(n,1)RN,…

,

0 ¨ (lisse, mixed of weight ≤w) ¨ NCç(Ï) ¨ MCç(Ï) ¨ 0.

4) If ç is nontrivial, then MCç(Ï) is related to the middle

convolution of 4.3 as follows. In the notations of chapter 4, take R to
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be the ring SN,n,…, D to be the n disjoint sections {T1, ... , Tn} of !
1

over SN,n,…,

k: (!1 - D)SN,n,…
¨ (!1)SN,n,…

the inclusion, and K := k*Ï[1]. We know that K*mid+j*Òç[1] on

(!1)SN,n,…
is adapted to the stratification (!1 - D, D), so its

restriction to !1 - D is of the form (a lisse sheaf)[1]. This lisse sheaf
is MCç(Ï):

MCç(Ï)[1] = k*(K*mid+j*Òç[1]).

pppprrrrooooooooffff of 1). Denote by D the divisor {T1, ... , Tn, X2, ‘} in

@1≠!(n,1)RN,…
, a disjoint union of sections. The key point is that the

sheaf

j*(pr1
*(Ï)‚Òç(X2 - X1)

)

is adapted to the stratification (@1≠!(n,1)RN,…
- D, D) (cf. 4.3), and

of formation compatible with all change of base. Let us make this

explicit. In the exact sequence of sheaves on @1≠!(n,1)RN,…

0 ¨ j~(pr1
*(Ï)‚Òç(X2 - X1)

) ¨ j*(pr1
*(Ï)‚Òç(X2 - X1)

) ¨

¨Quot ¨0,
the sheaf Quot is the direct sum of sheaves Quot(Ti), concentrated

along the section Ti, a sheaf Quot(X2) concentrated along the section

X2, and of a sheaf Quot(‘) concentrated along the section ‘. The

adaptedness means that each of these sheaves, viewed (via the
section on which it is concentrated) as a sheaf on the base, is a lisse
sheaf on the base. Therefore R(äpr2)*Quot is a lisse sheaf on the base,

concentrated in degree zero. By the previous lemma 8.2.2,

R(äpr2)*(j~(pr1
*(Ï)‚Òç(X2 - X1)

)) has lisse cohomology sheaves,

and thus 1) is obvious from the long exact cohomology sequence.

pppprrrrooooooooffff of 2). If ç is nontrivial, use the fact that formation of

j*(pr1
*(Ï)‚Òç(X2 - X1)

) commutes with passage to fibres. Then

fibre by fibre we have a sheaf on @1 with no nonzero punctual
sections and whose stalk at some point ∫ vanishes. Such a sheaf has

vanishing Hi for i±1. By proper base change, we get 2).
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pppprrrrooooooooffff of 3). If ç is nontrivial, the long exact cohomology sequence
appealed to in the proof of 1) above reads

0 ¨ (äpr2)*Quot ¨ ¨ NCç(Ï) ¨ MCç(Ï).

If Ï is pure of weight w, then each of the sheaves Quot(Ti),

Quot(X2), and Quot(‘) is mixed of weight ≤ w (cf. [Ka-SE, 4.7.4]). The

sheaf (äpr2)*Quot is just the direct sum of these sheaves, each

viewed on the base. Thus (äpr2)*Quot is lisse, and mixed of weight

≤w. That MCç(Ï) is pure of weight w+1 results from the fact that

the formation of j*(pr1
*(Ï)‚Òç(X2 - X1)

) on @1≠!(n,1)RN,…
commutes with arbitrary change of base on !(n,1)RN,…

, together

with Weil II [De-Weil II, 3.2.3] applied fibre by fibre.
pppprrrrooooooooffff of 4). This is a tautology, given the definitions of chapter
4.QED

CCCCoooorrrroooollllllllaaaarrrryyyy 8888....3333....3333 In the situation 8.3.1, let Ï in Lisse(N,n,…), and ç a

nontrivial ä$…
≠-valued character of μμμμN(RN,…). Suppose that Ï is

nonzero and geometrically irreducible on each geometric fibre of

(!1- {T1, ... , Tn})SN,n,…
1) If Ï is fibrewise in Ê…, so is MCç(Ï). In this case, Ï and MCç(Ï)

have the same fibrewise index of rigidity.
2) If on a single geometric fibre, Ï is constant, then Ï is fibrewise
constant, and MCç(Ï) = 0.

3) If on a single geometric fibre, Ï is isomorphic to Òäç(X1 - Ti)
for

some index i,then Ï is fibrewise isomorphic to Òäç(X1 - Ti)
, and

MCç(Ï) = 0.

4) If on a single geometric fibre, Ï is isomorphic to Ò®(X1 - Ti)
for

some index i, and some ä$…
≠-valued character ® of μμμμN(RN,…) with

® ± äç, then Ï is fibrewise isomorphic to Ò®(X1 - Ti)
, and MCç(Ï) is

fibrewise isomorphic to Ò®ç(X1 - Ti)
.

pppprrrrooooooooffff These all result, thanks to part 4) of the above lemma 8.3.2,
from what we have already proven about middle convolution with
parameters. Part 1) is just a restatement of 4.3.10.
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To prove parts 2), 3) and 4), we argue as follows. We first show
that if the condition envisioned holds on a single geometric fibre,
then it holds on ever fibre. For this, just apply 4.2.5 to k*(Ï),

k*(Ï‚Òç(X1 - Ti)
), and to k*(Ï‚Òä®(X1 - Ti)

) respectively, noting

that formation of k*(Ï) commutes with arbitrary change of base

(cf. [Ka-SE, 4.7.2 and 4.7.3]). Once we know that the conditions hold
fibrewise, it suffices to check on all geometric fibres in positive
characteristic. For parts 2) and 3), this is given in 3.3.3, 1a) and 2b).
For part 4), we use 3.3.3, 2b) to show that MCç(Ï) is isomorphic to

Ò®ç(X1 - Ti)
on every geometric fibre of positive characteristic,

hence in particular on a single geometric fibre. As above, we
consider k*(MCç(Ï)‚Òä®äç(X1 - Ti)

) and apply 4.2.5 to it, to

conclude that MCç(Ï) is fibrewise isomorphic to Ò®ç(X1 - Ti)
. QED

SSSSeeeeccccoooonnnndddd CCCCoooorrrroooollllllllaaaarrrryyyy 8888....3333....4444 In the situation 8.3.1, let r≥0 be a positive
integer, Ï1, ..., Ïr+1 objects in Lisse(N,n,…) which are all pure of

weight 0, and ç1, ..., çr nontrivial ä$…
≠-valued characters of

μμμμN(RN,…). Consider the objects Ì0, Ì1,..., Ìr in Lisse(N,n,…) defined

inductively by
Ì0 := Ï1,

Ì1 := Ï2‚NCç1
(Ì0),

.

.
Ìr := Ïr+1‚NCçr

(Ìr).

Consider also the objects Ó0, Ó1,..., Ór in Lisse(N,n,…) defined

inductively by
Ó0 := Ï1,

Ó1 := Ï2‚MCç1
(Ó0),

.

.
Ór := Ïr+1‚MCçr

(Ór).

For i=0,1,...,r each Ói is pure of weight i, each Ìi is mixed of weights

≤i, and we have a short exact sequence of lisse sheaves on
!(n,1)RN,…

,
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0 ¨ (mixed of weight ≤i-1) ¨ Ìi ¨ Ói ¨ 0.

pppprrrrooooooooffff For r=0, there is nothing to prove. If r≥1, this results by
induction from part 3) of the previous lemma 8.3.2. Indeed, suppose
we already have a short exact sequence of lisse sheaves on
!(n,1)RN,…

,

0 ¨ (mixed of weight ≤i-1) ¨ Ìi ¨ Ói ¨ 0,

and Ói is pure of weight i. Applying NCçi
, we get (by 8.3.2, parts 3)

and 4)) a short exact sequence of lisse sheaves on !(n,1)RN,…
,

0 ¨ (mixed of weight ≤i) ¨ NCçi
(Ìi) ¨ NCçi

(Ói) ¨ 0.

From part 3) of the previous lemma 8.3.2, we get a short exact
sequence of lisse sheaves on !(n,1)RN,…

,

0 ¨ (lisse, mixed of weight ≤i) ¨ NCçi
(Ói) ¨ MCçi

(Ói) ¨ 0,

and MCçi
(Ói) is pure of weight i+1. The composite map

NCçi
(Ìi) ¨ NCçi

(Ói)¨ MCçi
(Ói)

is surjective, and its kernel is lisse and mixed of weight ≤i. So we get
a short exact sequence of lisse sheaves on !(n,1)RN,…

,

0 ¨ (lisse, mixed of weight ≤i) ¨ NCçi
(Ìi) ¨ MCçi

(Ói) ¨ 0.

Tensoring this with Ïi+1 gives the required short exact sequence

0 ¨ (lisse, mixed of weight ≤i-1) ¨ Ìi+1 ¨ Ói+1 ¨ 0,

and shows that Ói+1 is pure of weight i+1. QED

TTTThhhheeeeoooorrrreeeemmmm 8888....3333....5555 In the situation 8.3.1, fix an integer r ≥ 0. Fix a
choice of (r+1)n arbitrary characters

ça,i : μμμμN(RN,…) ¨ ä$…
≠,

and a choice of r nnnnoooonnnnttttrrrriiiivvvviiiiaaaallll characters

®k: μμμμN(RN,…) ¨ ä$…
≠.

On !(n, r+1)RN,…
, consider the lisse of rank one, pure of weight zero

ä$…-sheaf

Ò:= (‚a,iÒça,i(Xa - Ti)
)(‚k=1,...,rÒ®k(Xk+1 - Xk)

).

Denote by

prr+1
: !(n, r+1)RN,…

¨ (!1- {T1, ... , Tn})SN,n,…
the map



Chapter 8-Motivic description of rigids-11

(T1, ... , Tn, X1, ... , Xr+1) ÿ (T1, ... , Tn, Xr+1).

1) The sheaves Ri(prr+1)~Ò on (!1- {T1, ... , Tn})SN,n,…
are lisse and

tame, and they vanish for i±r.

2) The sheaf  := Rr(prr+1)~Ò is mixed of integral weights in [0,r]. It

sits in a short exact sequence of lisse sheaves
0 ¨ ≤r-1 ¨  ¨ =r ¨ 0

where ≤r-1 is mixed of integral weights in [0,r-1], and where =r
is punctually pure of weight r.
3) If =r is nonzero, then its restriction to every geometric fibre of

(!1- {T1, ... , Tn})SN,n,…
over SN,n,… is geometrically irreducible and

cohomologically rigid, with all eigenvalues of all local monodromies
N'th roots of unity.
4) Fix a geometric point of SN,n,…, i.e., a ring homomorphism

ƒ : SN,n,… ¨ k

to an algebraically closed field k. Denote ƒ(Ti) := åi in k. On the

corresponding geometic fibre !1- {å1, ... , ån} over k, any tame,

geometrically irreducible lisse sheaf which is cohomologically rigid,
and such that all eigenvalues of all local monodromies are N'th roots
of unity, is isomorphic to (the restriction to that fibre of) a nonzero
=r for some integer r≥0, some choice of the characters ça,i and

some choice of the r nontrivial characters ®k.

pppprrrrooooooooffff For a=1, ..., r+1, define Ïa in Lisse(N,n,…) by

Ïa(Xa) := ‚i=1,...,nÒça,i(Xa - Ti).

Define Ì0, Ì1,..., Ìr in Lisse(N,n,…) inductively by

Ì0 := Ï1,

Ì1 := Ï2‚NC®1
(Ì0),

.

.
Ìr := Ïr+1‚NC®r

(Ìr).

Define Ó0, Ó1,..., Ór in Lisse(N,n,…) defined inductively by
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Ó0 := Ï1,

Ó1 := Ï2‚MC®1
(Ó0),

.

.
Ór := Ïr+1‚MC®r

(Ór).

Assertion 1) results from 8.2.3, which further tells us that  is the
sheaf Ìr. Thanks to 8.3.4, we get 2), with the further information

that =r is the sheaf Ór.

To prove 3), we successively apply 8.3.3 to the sheaves Ói.

To prove 4), we argue as follows. If the Ï in question is of rank
one, take r=0, and take Ï1 to be the unique sheaf of type

‚i=1,...,nÒç1,i(X1 - Ti).
whose restriction to the fibre in question is

Ï. If the Ï in question is of rank 2 or higher, the main theorem
5.2.1 gives us an explicit algorithm for choosing the ça,i and the ®k
so that with the resulting choice of

Ïa(Xa) := ‚i=1,...,nÒça,i(Xa - Ti)
,

our Ï is the restriction to its fibre of the object Ór defined as above.

QED

8888....4444 """"GGGGeeeeoooommmmeeeettttrrrriiiicccc"""" ddddeeeessssccccrrrriiiippppttttiiiioooonnnn ooooffff aaaallllllll ttttaaaammmmeeee rrrriiiiggggiiiiddddssss wwwwiiiitttthhhh qqqquuuuaaaassssiiii----
uuuunnnniiiippppooootttteeeennnntttt llllooooccccaaaallll mmmmoooonnnnooooddddrrrroooommmmyyyy

TTTThhhheeeeoooorrrreeeemmmm 8888....4444....1111 In the setting of 8.0, fix an integer r ≥ 0. Fix a
choice of (r+1)n arbitrary integers e(a,i), and a choice of r integers
f(k) such that no f(k) is divisible by N. In the product space ´m≠

!(n, r+1)RN,…
, consider the hypersurface Hyp(e's, f's) of equation

YN = (°a,i(Xa - Ti)
e(a,i))(°k=1,...,r(Xk+1 - Xk)

f(k)).

Denote by

π : Hyp(e's, f's) ¨ (!1- {T1, ... , Tn})SN,n,…
the map

(Y, T1, ... , Tn, X1, ... , Xr+1) ÿ (T1, ... , Tn, Xr+1).

[Thus we think of Hyp(e's, f's) as a family of hypersurfaces in the
r+1 variables (Y, X1, ... , Xr), parameterized by (T1, ... , Tn, Xr+1).]
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Fix a ffffaaaaiiiitttthhhhffffuuuullll ä$…
≠-valued character ç of the group μμμμN(RN,…),

which acts on Hyp(e's, f's) by moving Y alone.

1) The sheaves Riπ~ä$… on (!1- {T1, ... , Tn})SN,n,…
are lisse and tame.

2)The ç-component (Riπ~ä$…)
ç vanishes for i±r.

2) The sheaf  := (Rrπ~ä$…)
ç is mixed of integral weights in [0,r]. It

sits in a short exact sequence of lisse sheaves
0 ¨ ≤r-1 ¨  ¨ =r ¨ 0

where ≤r-1 is mixed of integral weights in [0,r-1], and where =r
is punctually pure of weight r.
3) If =r is nonzero, then its restriction to every geometric fibre of

(!1- {T1, ... , Tn})SN,n,…
over SN,n,… is geometrically irreducible and

cohomologically rigid, with all eigenvalues of all local monodromies
N'th roots of unity.
4) Fix a geometric point of SN,n,…, i.e., a ring homomorphism

ƒ : SN,n,… ¨ k.

Denote ƒ(Ti) := åi in k. On the corresponding geometric fibre !1-

{å1, ... , ån} over k, any tame, geometrically irreducible lisse sheaf

which is cohomologically rigid, and such that all eigenvalues of all
local monodromies are N'th roots of unity, is isomorphic to a
nonzero =r for some integer r≥0 and some choice of integers e(a,i)

and f(k) as in the theorem.

pppprrrrooooooooffff Denote by p2 the projection

p2 : Hyp(e's, f's) ¨ !(n, r+1)RN,…
.

This map is a μμμμN-torsor, and hence we have a direct sum

decomposition

(p2)*ä$… = ·® ((p2)*ä$… )
ç,

indexed by all characters ç: μμμμN(RN,…) ¨ ä$…
≠. The ç-component is

precisely

((p2)*ä$… )
ç = (‚a,iÒça,i(Xa - Ti)

)(‚k=1,...,rÒ®k(Xk+1 - Xk)
),

where the characters ça,i and ®k are given by the recipe

ça,i = çe(a,i), ®k = çf(k).

For each integer i and each character ç, we have
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(Riπ~ä$…)
ç = Ri(prr+1)~(((p2)*ä$… )

ç).

Thus we find

(Riπ~ä$…)
ç =

= Ri(prr+1)~((‚a,iÒça,i(Xa - Ti)
)(‚k=1,...,rÒ®k(Xk+1 - Xk)

)).

That all of these sheaves are in Lisse(N,n,…) follows from 8.2.2. For ç
faithful, the hypothesis that none of f(k) is divisible by N is
equivalent to the hypothesis that each ®k is nontrivial. Thus this

theorem is no more or less than a restatement of the previous one
8.3.5. QED

8888....5555 AAAA rrrreeeemmmmaaaarrrrkkkk aaaannnndddd aaaa qqqquuuueeeessssttttiiiioooonnnn
(8.5.1) In the case r=1 of the above theorem, we are looking at
the n+1 parameter family of curves in two variables (Y, X1), with

parameters (T1, ... , Tn, X2), defined by the equation

YN = (°i(X1 - Ti)
e(1,i))(°i(X2 - Ti)

e(2,i))(X2 - X1)
f(1).

The local systems =r
in this case are, over ^, the (…-adic

incarnations of the) Lauricella hypergeometric local systems whose
monodromy was studied extensively by Picard, Terada, and, most
recently, Deligne-Mostow, cf. the bibliography of [Del-Mo].

We should remark that because the factor (°i(X2 - Ti)
e(2,i))

comes from the base, omitting it simply twists =r
by the inverse

of ‚iÒç2,i(X2 - Ti)
). So essentially we are dealing with the n+1

parameter family of curves in two variables (Y, X1), with

parameters (T1, ... , Tn, X2), defined by the more familiar equation

YN = (°i(X1 - Ti)
e(1,i))(X2 - X1)

f(1).

(8.5.2) In the case of higher r, the local systems =r do not seem

to have been the object of much systematic study. One might ask
whether,over ^, the ("Betti realizations" of the) local systems =r
can have "interesting" monodromy groups also in the case r > 1?
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9999....0000 IIIInnnnttttrrrroooodddduuuuccccttttiiiioooonnnn
(9.0.1) In this chapter, we will prove (Theorem 9.4.1)
Grothendieck's p-curvature conjecture for the regular singular
differential equation corresponding, via Riemann-Hilbert, to any

irreducible rigid local system on an open set of @1 over ^: such a
differential equation has p-curvature zero for almost all p if and
only if it has finite monodromy.

9999....1111 RRRReeeevvvviiiieeeewwww ooooffff GGGGrrrrooootttthhhheeeennnnddddiiiieeeecccckkkk''''ssss pppp----ccccuuuurrrrvvvvaaaattttuuuurrrreeee ccccoooonnnnjjjjeeeeccccttttuuuurrrreeee
(9.1.1) Let S be any smooth connected quasi-projective ^-

scheme. On San, we have the category LocSys(San) of all local

systems of finite-dimensional ^-vector spaces on San. On San, we

also have the category DE(San) of "analytic differential equations on

San", i.e., the category of all pairs (M, »), with M a coherent ØSan-

module M and » an integrable connection »: M ¨ M‚¿1San/^ on

M. The functor "sheaf of germs of horizontal sections",

M ÿ M» := Ker(»: M ¨ M‚¿1San/^),

is an equivalence of categories

DE(San) ¶ LocSys(San).
(9.1.2) On S/^ itself, we have the category DE(S/^) of all
"algebraic differential equations on S/.^", i.e., the category of all
pairs (M, »), with M a coherent ØS-module M and » an integrable

connection »: M ¨ M‚¿1S/^ on M. Inside DE(S/^), we have the full

subcategory RSDE(S/^), consisting of those algebraic differential
equations with regular singular points "at ‘" in the sense of [De-ED].
Thanks to Deligne's solution of the Riemann-Hilbert problem, cf.
[De-ED] and [Ka-ODW23], we know that the functor "passage to the
analytic",

(M, ») ÿ (Man := M‚ØS
ØSan, »

an)

is an equivalence of categories

RSDE(S/^) ¶ DE(San).
Combining this equivalence with the previous one, we see that the
functor "sheaf of germs of holomorphic solutions",

M ÿ (Man)»
an

,
is an equivalence of categories

RSDE(S/^) ¶ LocSys(San).
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In words, any local system on San is the monodromy of a unique
algebraic differential equation on S with regular singular points.
(9.1.3) Let us next recall from [Ka-NCMT] and [Ka-ASDE, Intro.],
what it means for an algebraic differential equation (M, ») on S/^,
not a priori assumed to have regular singular points, to have "p-
curvature zero for almost all p". Given S/^, we can find a subring R
of ^ which, as a ring, is finitely generated over # and smooth over
R, and a smooth R-scheme Í/R whose ^-fibre (via the given
inclusion of R into ^ as a subring) is S/^. At the possible expense of
enlarging R, but still keeping it finitely generated over # and smooth
over #, we can find an affine open Ë in Í whose ^-fibre Ë^ is a

Zariski dense affine open U in S, and a pair (˜, ») consisting of a
locally free ØË-module of finite rank and an integrable Ë/R-

connection » : ˜ ¨ ˜‚¿1Ë/R whose complex fibre is the

restriction to U := Ë^ of the original (M, ») on S/^.

(9.1.4) Having made such choices (R, Ë, ˜, »), we can ask
whether there exists an affine open ◊ in Ë, whose ^-fibre ◊^ is

Zariski dense in Ë^, such that either of the following two equivalent

conditions holds:

1) for every maximal ideal m of R, with (necessarily finite) residue
field R/m of positive characteristic p, the restriction to ◊‚R(R/m)

of the differential equation (˜/m˜, ») on Ë‚R(R/m) has p-

curvature zero (meaning that »(D)p = »(Dp) for every R/m -linear
derivation D of the affine ring of ◊‚R(R/m) to itself).

1') for every prime number p, the restriction to ◊‚R(R/pR) of the

differential equation (˜/p˜, ») on Ë‚R(R/pR) has p-curvature

zero (meaning that »(D)p = »(Dp) for every R/pR -linear derivation
D of the affine ring of ◊‚R(R/pR) to itself).

(9.1.5) If there exists such a ◊ (i.e. a ◊ such that 1) and 1') hold)
for one set of choices (R, Ë, ˜, »), then there exists such a ◊ for
any other set of choices. The existence of such a ◊ is thus an
intrinsic property of the original differential equation (M, ») on S/^
(indeed an intrinsic property of the germ of (M, ») at the generic
point of S), which is called "having p-curvature zero for almost all
p".
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(9.1.6) It is known [Ka-NCMT, 13.0] that if (M, ») on S/^ has p-
curvature zero for almost all p, then (M, ») has regular singular
points, and its local monodromy around any smooth divisor Di at ‘

in any normal crossing compactification äS of S (i.e., S open dense in
a projective smooth äS/^ such that äS - S is a union of smooth
divisors Di with normal crossings) is of finite order.

(9.1.7) Grothendieck's p-curvature conjecture is that if (M, ») on
S/^ has p-curvature zero for almost all p, then (M, ») satisfies the
following equivalent (equivalent because (M, ») has regular singular
points) conditions:

1) (M, »)an has finite monodromy on San.

2) (M, »)an becomes trivial on a finite etale covering of San.
3) (M, ») becomes trivial on a finite etale covering of S.
4) (M, ») has a full set of algebraic solutions.
5) There exists a dense open U fi S such that (M, ») | U satisfies

the preceding conditions 1)-4) on U.

9999....2222 IIIInnnntttteeeerrrrlllluuuuddddeeee:::: PPPPiiiiccccaaaarrrrdddd----FFFFuuuucccchhhhssss eeeeqqqquuuuaaaattttiiiioooonnnnssss aaaannnndddd ssssoooommmmeeee vvvvaaaarrrriiiiaaaannnnttttssss
(9.2.1) Let us denote by K the function field of S. Thus K is a
finitely generated extension of ^. Given any smooth K-scheme U/K,
separated and of finite type, its algebraic de Rham cohomology

groups HiDR(U/K) are finite-dimensional K-spaces endowed with a

canonical integrable ^-connection », the Gauss-Manin connection.

The algebraic differential equations (HiDR(U/K), ») on K/^ are called

the Picard-Fuchs equations (in dimension i, for U/K).
(9.2.2) There are two variations on this theme which will be
essential in what follows. The first involves a finite group action.
Suppose we are given a finite group G which acts K-linearly on U/K.

Then G acts K-linearly and horizontally on each HiDR(U/K). For each

irreducible ^-representation ® of G, we denote by HiDR(U/K)(®) the

®-isotypical component of HiDR(U/K). This is a »-stable K-subspace

of HiDR(U/K), so corresponds to a subequation (HiDR(U/K)(®), ») of

(HiDR(U/K), »). In fact, this subequation is a direct factor, since

(HiDR(U/K), ») = ·® (HiDR(U/K)(®), »).

(9.2.3) Hironaka has announced, in the introduction to his paper
[Hir-IES] that given U/K and G as above, we can find a G-
equivariant normal crossing compactification X/K of U/K, i.e., a
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proper smooth X/K which contains U as a dense open set, such that
X-U is a union of smooth divisors Di with normal crossings, such

that G acts K-linearly on X/K and such that the inclusion of U into
X is G-equivariant. Youssin, in the introduction to [You], has
announced another proof of this same result. Unfortunately, neither
proof of this result has yet appeared (although Hironaka's proof of
equivariant resolution for the presumably much harder case of
complex analytic spaces has appeared, cf. the bibliography of [Hir-
IES]). Although this result was already used freely in [Ka-ASDE], and
its use in what follows would slightly simplify the exposition, we will
avoid using it here.
(9.2.4) Given U/K as above, by Nagata [Na] there exists a
compactification X0/K of U/K, i.e., a proper K-scheme X0 which

contains U as a dense open set [if U/K is quasiprojective, we may
take for X0 its closure in the ambient projective space]. Applying

Hironaka [Hir-RS, Cor 3 of Thm 2] to a compactification X0/K of U/K,

there exists a proper birational K-morphism π: X ¨ X0 which is an

isomorphism over U, and such that X/K is a normal crossings
compactification of U/K, i.e., a proper smooth X/K which contains U
as a dense open set, such that X-U is a union of smooth divisors Di
with normal crossings.
(9.2.5) Given a second smooth K-scheme V/K which is separated
and of finite type, and a K-morphism f: V ¨ U, we can find a
normal crossings compactification Y/K of V/K, and a K-morphism ƒ:
Y ¨X which "extends" f in the sense that the following diagram
commutes:

f
V ¨ U
€ €
Y ¨ X.
ƒ

[Recall the construction: one takes any compactification Y0 of Y,

and applies Hironaka [Hir-RS, Cor 3 of Thm 2] to the
compactification Y1 of V which is defined to be the closure in Y0≠X

of the graph of f.]
(9.2.6) Given finitely many K-morphisms fi : V ¨ U, i=1, ..., n,

we can find a single normal crossings compactification Y/K of V/K
and maps ƒi: Y ¨ X such that ƒi extends fi for each i; just apply
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the one map statement to the map f1≠...≠fn: V ¨ Un, and the

normal crossings compactification Xn of Un.
(9.2.7) By functoriality, the inclusion of U/K into X/K induces on
cohomology a horizontal restriction map

(HiDR(X/K), ») ¨ (HiDR(U/K), »).

The image of this map is thus a subequation of (HiDR(U/K), ») which

is denoted (WiH
i
DR(U/K), »), called the "weight i part" of (HiDR(U/K),

»). It was a fundamental insight of Grothendieck's [Gro-Brauer III,
9.1-4], later generalized by Deligne's mixed Hodge theory [De-Hodge
II, 3.2.17], and for us an easy consequence of the Weil conjectures

and resolution, cf. 9.4.3-5, that the "weight i part" of (HiDR(U/K), »)

is independent of the auxiliary choice of the normal crossing
compactification X/K used to define it.

(9.2.8) Because (WiH
i
DR(U/K), ») is an iiiinnnnttttrrrriiiinnnnssssiiiicccc subequation of

(HiDR(U/K), »), it must, by "pure thought", be stable under the

action of G. Here is an explicit geometric way to see this stability. We
can find a normal crossings compactification Y/K of U/K such that
each of the finitely many maps g: U ¨ U, one for each g in G,
extends to a map ƒg: Y ¨ X. Then from the commutative diagram

g
U ¨ U
€ €
Y ¨ X.
ƒg

we get a commutative diagram of de Rham cohomology groups

(ƒg)
*

HiDR(X/K) ¨ HiDR(Y/K)

drestr. drestr.

HiDR(U/K) ¨ HiDR(U/K)

g*.

But both HiDR(X/K) and HiDR(Y/K) have the ssssaaaammmmeeee image in

HiDR(U/K), namely WiH
i
DR(U/K). So this diagram shows that

WiH
i
DR(U/K) is G-stable.
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(9.2.9) So for each irreducible representation ® of G, we may

form the ®-isotypical component WiH
i
DR(U/K)(®); we call it the

weight i part of HiDR(U/K)(®). It is a subequation both of

(HiDR(U/K)(®), ») and of (WiH
i
DR(U/K), »). Moreover, we have

WiH
i
DR(U/K)(®) = (WiH

i
DR(U/K)) € (HiDR(U/K)(®)).

However, there is another way to describe WiH
i
DR(U/K)(®) which

will be useful later.
(9.2.10) Recall that for an irreducible representation ® of G, the
projector onto the ®-isotypical component is the central idempotent
P(®) in the group ring #[1/Card(G), ΩCard(G)][G] defined by

P(®) := (deg(®)/Card(G))‡g in G trace(®(g-1))g.

We denote by P(®;ƒ) the K-linear horizontal map

P(®;ƒ): HiDR(X/K) ¨ HiDR(Y/K)

defined by

P(®;ƒ) := (deg(®)/Card(G))‡g in G trace(®(g-1))(ƒg)
*.

We have a commutative diagram

P(®;ƒ)

HiDR(X/K) ¨ HiDR(Y/K)

drestrX drestrY

HiDR(U/K) ¨ HiDR(U/K)

P(®).

By definition, WiH
i
DR(U/K)(®) is the result of applying the projector

P(®) to the subequation WiH
i
DR(U/K) of H

i
DR(U/K). If we think of

WiH
i
DR(U/K) as the image of HiDR(X/K), we get

WiH
i
DR(U/K)(®) = Image( P(®)«restrX).

This corresponds to going around the diagram by the bottom. If
instead we go around by the top, we get the alternate description

WiH
i
DR(U/K)(®) = Image( restrY«P(®;ƒ)).

9999....3333 TTTThhhheeee mmmmaaaaiiiinnnn rrrreeeessssuuuulllltttt ooooffff [[[[KKKKaaaa----AAAASSSSDDDDEEEE]]]] aaaannnndddd aaaa ggggeeeennnneeeerrrraaaalllliiiizzzzaaaattttiiiioooonnnn
(9.3.1) For the reader's convenience, we recall the statement of
the main result of [Ka-ASDE]. Let S be a smooth connected quasi-
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projective ^-scheme, with function field K Let Let (M, ») in DE(S/^).
Consider the following condition (*):
(*) There exists a smooth K-scheme U/K, separated and of finite
type, a finite group G acting K-linearly on U/K, an irreducible ^-
representation ç of G, and an integer i ≥ 0, such that denoting by

{çß}ß the distinct Aut(^)-conjugates of ç, the restriction of (M, »)

to K is isomorphic to ·ß ((HiDR(U/K)(ç
ß), »).

TTTThhhheeeeoooorrrreeeemmmm 9999....3333....2222 [Ka-ASDE, 5.7] Let S be a smooth connected quasi-
projective ^-scheme. Let (M, ») in DE(S/^) satisfy the condition (*)
above. Then Grothendieck's p-curvature conjecture holds for (M, »):
if (M, ») has p-curvature zero for almost all p, then (M, ») has
finite monodromy.

(9.3.3) Consider now the following conditions (**) and (***):

(**) There exists a smooth K-scheme U/K, separated and of finite
type, a finite group G acting K-linearly on U/K, an irreducible ^-
representation ç of G, and an integer i ≥ 0, such that the restriction

of (M, ») to K is isomorphic to ((HiDR(U/K)(ç), »).

(***) There exists a smooth K-scheme U/K, separated and of finite
type, a finite group G acting K-linearly on U/K, an irreducible ^-
representation ç of G, and an integer i ≥ 0, such that the restriction

of (M, ») to K is isomorphic to ((WiH
i
DR(U/K)(ç), »).

(9.3.4) The following theorem generalizes and implies the
theorem [Ka-ASDE, 5.7] stated above. Its proof is essentially already
contained in [Ka-ASDE], but the author only recently understood
this fact.
TTTThhhheeeeoooorrrreeeemmmm 9999....3333....5555 Let S be a smooth connected quasi-projective ^-
scheme. Let (M, ») in DE(S/^) satisfy either of the conditions (**) or
(***) above. Then Grothendieck's p-curvature conjecture holds for
(M, »): if (M, ») has p-curvature zero for almost all p, then (M, »)
has finite monodromy.

pppprrrrooooooooffff The question is birational on S. So at the expense of shrinking
S, we may apply standard "spreading out" techniques to produce

1) a subring R of ^, which is finitely generated and smooth over #,
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and which contains the cyclotomic ring #[1/Card(G), ΩCard(G)],

2) a smooth affine Í/R, whose ^-fibre is S,
3) a smooth Ë/Í, whose restriction to the generic point of Í^ is U/K,

and an Í-linear action of the finite group G on Ë/Í which over the
generic point of Í^ is the given action of G on U/K,

4) a normal crossings compactification Ù/Í of Ë/Í, i.e., a proper

smooth Ù/Í containing Ë as a dense open set, such that (Ù - Í)red

:= Î is a union of finitely many smooth over Í divisors Îi in Ù

which have normal crossings relative to Í,
5) a normal crossings compactification Á/Í of Ë/Í, i.e., a proper

smooth Á/Í containing Ë as a dense open set, such that (Á - Í)red

:= ‰ is a union of finitely many smooth over Í divisors ‰i in Á

which have normal crossings relative to Í,
6) for each g in G, an Í-morphism ƒg : Á ¨ Ù which maps Ë to Ë

and induces g on Ë.

At the expense of further shrinking on Í, we may also assume that

1) for each pair of integers (a,b), each of the four Hodge cohomology
groups on Í

Hb(Ù, ¿aÙ/Í), H
b(Ù, ¿aÙ/Í(logÎ)),

Hb(Á, ¿aÁ/Í), H
b(Á, ¿aÁ/Í(log‰)),

is a locally free ØÍ-module of finite rank, whose formation

commutes with arbitrary change of base on Í.
2) each of the four Hodge-de Rham spectral sequences

(I) E1
a,b = Hb(Ù, ¿aÙ/Í) à Ha+b(Ù, ¿

\
Ù/Í),

(I log) E1
a,b = Hb(Ù, ¿aÙ/Í(logÎ)) à Ha+b(Ù, ¿

\
Ù/Í(logÎ)),

(II) E1
a,b = Hb(Á, ¿aÁ/Í) à Ha+b(Á, ¿

\
Á/Í),

(II log) E1
a,b = Hb(Á, ¿aÁ/Í(log‰)) à Ha+b(Á, ¿

\
Á/Í(log‰)),

degenerates at E1, and is of formation compatible with arbitrary

change of base on Í.
3) For each g in G, the Í-morphism ƒg : Á ¨ Ù induces an

isomorphism of spectral sequences (I log) ¶ (II log). If we identify
(I log) = (II log) via ƒid, then g ÿ ƒg defines an action of G on the

spectral sequences (I log) and (II log).
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4) For each i and j, the restriction maps

FiljHodgeH
i(Ù, ¿

\
Ù/Í) ¨ FiljHodgeH

i(Ù, ¿
\
Ù/Í(logÎ))

and

FiljHodgeH
i(Á, ¿

\
Á/Í) ¨ FiljHodgeH

i(Á, ¿
\
Á/Í(log‰)),

are maps of locally free ØÍ-modules of finite rank whose kernels,

images, and cokernels are locally free ØÍ-modules of finite rank

whose formation commutes with arbitrary change of base on Í.
Moreover, via the identification (I log) = (II log) via ƒid in 3) above,

these image coincide, and are G-stable subspaces of

Hi(Ù, ¿
\
Ù/Í(logÎ)) = Hi(Á, ¿

\
Á/Í(log‰)).

With all these preliminaries out of the way, we are ready to
proceed with the proof of the theorem.

Let us first treat the case (**). Thus we assume that

Hi(Ù, ¿
\
Ù/Í(logÎ))(ç), which "makes sense" thanks to our

preliminary assumption 3) above, has p-curvature zero for almost
all p. We must show that its complex fibre has finite monodromy on

Í^ = S. Denote by {çß}ß the distinct Aut(^)-conjugates of ç. It

suffices, by [Ka-ASDE, 4.2.2.3] to prove that the Hodge filtration on

·ß Hi(Ù, ¿
\
Ù/Í(logÎ))(ç

ß)

is horizontal, for over Í^ this is (the de Rham "realization" of) a

family of mixed Hodge structures whose associated graded family of
pure Hodge structures is polarizable. For this, it suffices to prove

that each individual term Hi(Ù, ¿
\
Ù/Í(logÎ))(ç

ß) has its Hodge

filtration horizontal (under the assumption that

Hi(Ù, ¿
\
Ù/Í(logÎ))(ç) has p-curvature zero for almost all p).

The key observation here is that every irreducible
representation ç of G is defined over the field $(ΩCard(G)). Therefore

all the Aut(^)-conjugates çß of ç are obtained as we let ß vary

over the Galois group Gal($(ΩCard(G))/$) = (#/Card(G)#)≠, with a in

(#/Card(G)#)≠ corresponding to the unique element ßa of this galois
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group with ßa(Ω) = Ωa for each Card(G)'th root of unity.

Fix an integer a which is invertible mod Card(G), and consider
the automorphism ß := ßa in Gal($(ΩCard(G))/$). In order to show

that Hi(Ù, ¿
\
Ù/Í(logÎ))(ç

ß) has its Hodge filtration horizontal, it

suffices to show that for an infinity of primes p,

Hi(Ù, ¿
\
Ù/Í(logÎ))(ç

ß)‚#(#/p#) has its Hodge filtration horizontal.

We will show that Hi(Ù, ¿
\
Ù/Í(logÎ))(ç

ß)‚#(#/p#) has its Hodge

filtration horizontal for almost all of the infinitely many (thanks to
Dirichlet) primes p which satisfy

p • 1/a mod Card(G).
If we were to admit the existence of G-equivariant normal

crossing compactifications, as we did in [Ka-ASDE], the desired
horizontality modulo almost any prime p • 1/a mod Card(G) would

be given by [Ka-ASDE, 3.3.2], applied not to ç but rather to çß (for

then (çß)(p) in characteristic p is just (the reduction mod p of) ç
itself).

Since we wish to avoid assuming the existence of G-equivariant
normal crossing compactifications, we must give a slightly more
involved, but not essentially different, argument.

To say that Hi(Ù, ¿
\
Ù/Í(logÎ))(ç

ß) has its Hodge filtration

horizontal means that for any derivation D of Í/R, acting via the
Gauss-Manin connection, the composite map

Hi(Ù, ¿
\
Ù/Í(log(Î))

d »(D)

Hi(Ù, ¿
\
Ù/Í(log(Î))

d P(çß;ƒ)

Hi(Á, ¿
\
Á/Í(log(‰))

maps FiljHodgeH
i(Ù, ¿

\
Ù/Í(log(Î)) to FiljHodgeH

i(Á, ¿
\
Á/Í(log(‰)) for

every integer j≥0. By Griffiths transversality [Ka-ASDE, 1.4.1.6],

»(D), maps FiljHodgeH
i to Filj-1HodgeH

i. The other map, P(çß;ƒ),

respects the Hodge filtration. Thus Hi(Ù, ¿
\
Ù/Í(logÎ))(ç

ß) has its

Hodge filtration horizontal if and only if for each j≥0 the composite
of the associated graded maps
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grjHodgeH
i(Ù, ¿

\
Ù/Í(log(Î))

d »(D)

grj-1HodgeH
i(Ù, ¿

\
Ù/Í(log(Î))

d P(çß;ƒ)

grj-1HodgeH
i(Á, ¿

\
Á/Í(log(‰))

vanishes.
Since Í is smooth over R and R is smooth over #, Í is smooth

over #, so Í‚Ép is smooth over #/p#, and hence Í‚Ép is reduced.

Therefore the absolute Frobenius Fabs on Í‚Ép is injective. So to

show this vanishing on Í‚Ép, it suffices to check after base change

by the absolute Frobenius Fabs of Í‚Ép. Thanks to the main

technical result [Ka-ASDE, 3.2], and its functoriality for the
mappings ƒg : Á ¨ Ù, this composite, after reduction mod p and

base change on Í‚Ép by absolute Frobenius, becomes (up to sign)

the composite of associated graded maps for the conjugate filtration
(see [Ka-ASDE, 2.3])

gri-jconH
i(Ù, ¿

\
Ù/Í(log(Î))‚#Ép

d ¥(D)

gr1+i-jconH
i(Ù, ¿

\
Ù/Í(log(Î))‚#Ép

d P((çß)(p);ƒ)

gr1+i-jconH
i(Á, ¿

\
Á/Í(log(‰))‚#Ép

where ¥(D) denotes the p-curvature. Thus we need to see that this
composite vanishes, for almost every prime p with

p • 1/a mod Card(G).

Now the map P((çß)(p);ƒ) respects the conjugate filtration, while

the p-curvature ¥(D) maps Fili-jcon to Fil
1+i-j

con. Thus we are

reduced to showing that the composite map
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Hi(Ù, ¿
\
Ù/Í(log(Î)))‚#Ép

d ¥(D)

Hi(Ù, ¿
\
Ù/Í(log(Î)))‚#Ép

d P((çß)(p);ƒ) = P(ç;ƒ)

Hi(Á, ¿
\
Á/Í(log(‰)))‚#Ép

maps

Fili-jconH
i(Ù, ¿

\
Ù/Í(log(Î)))‚#Ép

to

Fil2+i-jconH
i(Á, ¿

\
Á/Í(log(‰)))‚#Ép.

But this composite map is in fact the zero map for almost all primes
p • 1/a mod Card(G), precisely by the hypothesis that

Hi(Ù, ¿
\
Ù/Í(logÎ))(ç)

has p-curvature zero for almost all p, and hence in particular has
p-curvature zero for almost all primes p • 1/a mod Card(G). This
concludes the proof of case (**).

We now turn to the proof of the theorem in the case (***). The
proof is very similar to that of case (**), but for the sake of
completeness we will spell out all the details. Thus we assume that

WiH
i(Ù, ¿

\
Ù/Í(logÎ))(ç) :=

(Image(Hi(Ù, ¿
\
Ù/Í) ¨ Hi(Ù, ¿

\
Ù/Í(logÎ))))(ç)

has p-curvature zero for almost all p. We must show that its

complex fibre has finite monodromy on Í^ = S. Denote by {çß}ß
the distinct Aut(^)-conjugates of ç. It suffices, by [Ka-ASDE, 4.2.1.3]
to prove that the Hodge filtration on

·ß WiH
i(Ù, ¿

\
Ù/Í(logÎ))(ç

ß)

is horizontal, for over Í^ this is (the de Rham "realization" of) a

family of polarizable pure Hodge structures. For this, it suffices to

prove that each individual term WiH
i(Ù, ¿

\
Ù/Í(logÎ))(ç

ß) has its

Hodge filtration horizontal (under the assumption that

WiH
i(Ù, ¿

\
Ù/Í(logÎ))(ç) has p-curvature zero for almost all p).

To say that WiH
i(Ù, ¿

\
Ù/Í(logÎ))(ç

ß) has its Hodge filtration
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horizontal means that for any derivation D of Í/R, acting via the
Gauss-Manin connection, the composite map

Hi(Ù, ¿
\
Ù/Í)

d restr.

Hi(Ù, ¿
\
Ù/Í(log(Î))

d »(D)

Hi(Ù, ¿
\
Ù/Í(log(Î))

d P(çß;ƒ)

Hi(Á, ¿
\
Á/Í(log(‰))

maps FiljHodgeH
i(Ù, ¿

\
Ù/Í) to Fil

j
HodgeH

i(Á, ¿
\
Á/Í(log(‰)) for every

integer j≥0. By Griffiths transversality [Ka-ASDE, 1.4.1.6], »(D), maps

FiljHodgeH
i to Filj-1HodgeH

i. The other two maps, restriction and

P(çß;ƒ), respect the Hodge filtration. Thus

WiH
i(Ù, ¿

\
Ù/Í(logÎ))(ç

ß) has its Hodge filtration horizontal if and

only if for each j≥0 the composite of the associated graded maps

grjHodgeH
i(Ù, ¿

\
Ù/Í)

d restr.

grjHodgeH
i(Ù, ¿

\
Ù/Í(log(Î))

d »(D)

grj-1HodgeH
i(Ù, ¿

\
Ù/Í(log(Î))

d P(çß;ƒ)

grj-1HodgeH
i(Á, ¿

\
Á/Í(log(‰))

vanishes.
Fix an integer a which is invertible mod Card(G), and suppose

that ß := ßa in Gal($(ΩCard(G))/$). In order to show that this last

composite vanishes, it suffices to show that it vanishes mod p for an
infinity of primes p. We will show that it vanishes mod p for almost
all of the infinitely many (thanks to Dirichlet) primes p which
satisfy

p • 1/a mod Card(G).
Since Í is smooth over R and R is smooth over #, Í is smooth

over #, so Í‚Ép is smooth over #/p#, and hence Í‚Ép is reduced.
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Therefore the absolute Frobenius Fabs on Í‚Ép is injective. So to

show this vanishing on Í‚Ép, it suffices to check after base change

by the absolute Frobenius Fabs of Í‚Ép. Thanks to the main

technical result [Ka-ASDE, 3.2], and its functoriality for the
mappings ƒg : Á ¨ Ù, this composite, after reduction mod p and

base change on Í‚Ép by absolute Frobenius, becomes (up to sign)

the composite of associated graded maps for the conjugate filtration

gri-jconH
i(Ù, ¿

\
Ù/Í)‚#Ép

d restr.

gri-jconH
i(Ù, ¿

\
Ù/Í(log(Î))‚#Ép

d ¥(D)

gr1+i-jconH
i(Ù, ¿

\
Ù/Í(log(Î))‚#Ép

d P((çß)(p);ƒ) = P(ç;ƒ)

gr1+i-jconH
i(Á, ¿

\
Á/Í(log(‰))‚#Ép

where ¥(D) denotes the p-curvature. Thus we need to see that this
composite vanishes, for every prime p with p • 1/a mod Card(G).

Now both the restriction map and the map P((çß)(p);ƒ) respect the

conjugate filtration, while the p-curvature ¥(D(p)) maps Fili-jcon to

Fil1+i-jcon. Thus we are reduced to showing that the composite map

Hi(Ù, ¿
\
Ù/Í)‚#Ép

d restr.

Hi(Ù, ¿
\
Ù/Í(log(Î))‚#Ép

d ¥(D)

Hi(Ù, ¿
\
Ù/Í(log(Î))‚#Ép

d P((çß)(p);ƒ) = P(ç;ƒ)

Hi(Á, ¿
\
Á/Í(log(‰))‚#Ép

maps

Fili-jconH
i(Ù, ¿

\
Ù/Í)‚#Ép

to
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Fil2+i-jconH
i(Á, ¿

\
Á/Í(log(‰))‚#Ép.

But this composite map is in fact the zero map for almost all primes
p • 1/a mod Card(G), precisely by the hypothesis that

WiH
i(Ù, ¿

\
Ù/Í(logÎ))(ç)

has p-curvature zero for almost all p, and hence in particular has
p-curvature zero for almost all primes p • 1/a mod Card(G). QED

9999....4444 AAAApppppppplllliiiiccccaaaattttiiiioooonnnn ttttoooo rrrriiiiggggiiiidddd llllooooccccaaaallll ssssyyyysssstttteeeemmmmssss

TTTThhhheeeeoooorrrreeeemmmm 9999....4444....1111 The regular singular differential equation
corresponding, via Riemann-Hilbert, to any irreducible rigid local

system on an open set of @1 over ^ satisfies Grothendieck's p-
curvature conjecture: such a differential equation has p-curvature
zero for almost all p if and only if it has finite monodromy.

pppprrrrooooooooffff Let {å1, ... , ån} be n ≥ 2 distinct complex numbers. Suppose

that on (!1(^)- {å1, ... , ån})
an we are given an irreducible rigid

local system Ï^ of ^-vector spaces whose underlying regular

singular differential equation, say (M, »), has p-curvature zero for
almost all p. Thanks to the previous theorem 9.3.5, it suffices to
prove that (M, ») satisfies the condition (***) of 9.3.3.

To prove that (M, ») satisfies (***), we argue as follows. The p-
curvature hypothesis implies that Ï^ has local monodromy of finite

order around ‘ and around each of the points åi [Ka-NCMT,13.0.2].

So we are reduced to proving the following proposition, which may
be of independent interest.
PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 9999....4444....2222 Let {å1, ... , ån} be n ≥ 2 distinct complex

numbers. Suppose that on (!1(^)- {å1, ... , ån})
an we are given an

irreducible rigid local system Ï^ of ^-vector spaces whose local

monodromies are all quasiunipotent. Then the underlying regular
singular differential equation satisfies (***) of 9.3.3.
pppprrrrooooooooffff Fix an integer N such all the eigenvalues of all the local
monodromies of Ï^ have order dividing N. According to 5.10.6, Ï

has a $(ΩN)-form Ïcycl on (!1(^)- {å1, ... , ån})
an, and for every

finite place ¬ of E := $(ΩN), there exists a lisse E¬-sheaf Ï¬ on the

algebraic variety (!1 - {å1, ... , ån})^ with (Ï¬)
an ¶ (Ïcycl)‚EE¬.
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Fix one such finite place ¬, say of residue characteristic …, and
choose (~) an isomorphism of fields ä$… ¶ ^. Denote by Ï… the lisse

ä$…-sheaf Ï¬‚E¬
ä$… on (!1 - {å1, ... , ån})^. Then

(Ï…)
an

¶ Ï^‚^ä$…,

and Ï… is a tame, geometrically irreducible lisse sheaf which is

cohomologically rigid, such that all eigenvalues of all local
monodromies are N'th roots of unity. For technical reasons, it will be

convenient to consider the dual local system (Ï…)
£, which, like Ï…,

is a tame, geometrically irreducible lisse sheaf which is
cohomologically rigid, such that all eigenvalues of all local
monodromies are N'th roots of unity.

According to 8.4.1, (Ï…)
£ on (!1 - {å1, ... , ån})^ arises as

follows. For a suitable choice of an integer r ≥ 0, (r+1)n arbitrary
integers e(a,i), r integers f(k) such that no f(k) is divisible by N, and

a faithful ä$…
≠-valued character ç of the group μμμμN(#[1/N…, ΩN]),

there is a(n explicit) smooth affine hypersurface of relative
dimension r, on which the group μμμμN(#[1/N…, ΩN]) acts,

π : Hyp(e's, f's) ¨ (!1- {T1, ... , Tn})SN,n,…
,

with the following properties:

1) For all i, the sheaves Riπ~ä$… on (!1- {T1, ... , Tn})SN,n,…
are lisse

and tame (and mixed of integral weights in [0,i], by [De-Weil II]).
2)For any ffffaaaaiiiitttthhhhffffuuuullll character ® of the group μμμμN(#[1/N…, ΩN]), the ®-

component (Riπ~ä$…)
® vanishes for i±r, and the sheaf (Rrπ~ä$…)

® is

lisse and mixed of of integral weights in [0,r].

3) The weight r quotient ((Rrπ~ä$…)
ç)=r of (R

rπ~ä$…)
ç, restricted to

restricted to (!1- {å1, ... , ån})^, is isomorphic to (Ï…)
£.

We now apply Poincarïe duality to this situation. By 1), all of

the sheaves Riπ*ä$… on (!1- {T1, ... , Tn})SN,n,…
are lisse and tame,

mixed of integer weights ≥ i, and of formation compatible with

arbitrary change of base on (!1- {T1, ... , Tn})SN,n,…
. By 2), for any

ffffaaaaiiiitttthhhhffffuuuullll character ® of the group μμμμN(#[1/N…, ΩN]), the ®-component
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(Riπ*ä$…)
® vanishes for i±r, and the sheaf (Rrπ*$…)

® is lisse and

mixed of of integral weights ≥ r. By 3), the weight r subsheaf

Wr(R
rπ*$…)

äç of (Rrπ*$…)
äç, i.e., the äç-isotypical component of

Wr(R
rπ*$…), restricted to (!1- {å1, ... , ån})^, is isomorphic to Ï….

Denote by R0 the subring of ^ defined by

R0 := #[1/N…, ΩN, å1, ... , ån, 1/°i±j(åi - åj)].

The ring R0 is finitely generated over # as a ring, and there exists a

nonzero element ∂ in R0 such that R := R0[1/∂] is smooth over #.

We have a canonical ring homomorphism
SN,n,… ¨ R, Ti ÿ åi.

Via this base change, the open curve (!1- {T1, ... , Tn})SN,n,…
over

SN,n,… gives rise to an open curve (!1- {å1, ... , ån})R over R, whose

complex fibre (via the given inclusion of R into ^) is the complex

curve (!1- {å1, ... , ån})^.

Now consider the ppppuuuullllllllbbbbaaaacccckkkk πR to (!1- {å1, ... , ån})R of the

smooth hypersurface

π : Hyp(e's, f's) ¨ (!1- {T1, ... , Tn})SN,n,…
,

and of the various cohomology sheaves to which it gives rise.
Thanks to Hironaka [Hir-RS, Cor. 3 of Thm. 2], we can find a normal
crossings compactification of this pulled-back morphism, first over

the generic point of (!1- {å1, ... , ån})R, and then, by "spreading

out", over a dense open set, say Ë, of (!1- {å1, ... , ån})R, say

äπR: Ù ¨ (!1- {å1, ... , ån})R
It is standard (a proof is given in 9.4.3 below) that, for every i, we
have

Wi(R
iπ*$…) | Ë = Image(Ri(äπR)*ä$… ¨ Ri(πR)*ä$…).

Extending scalars from R to ^, we find that over a dense open set U

:= Ë^ of (!1- {å1, ... , ån})^, there exists a normal crossings

compactification äπ^ : X ¨ U of a smooth morphism π^ : Hyp ¨ U

on which μμμμN acts, and a faithful character ç of μμμμN such that

Ï… | U = (Image(Rr(äπ^)*ä$… ¨ Rr(π^)*ä$…)(äç).

Restricting to Uan, using the comparison theorem [SGA4, Exp. XVI,
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4.1] and the isomorphism ä$… ¶ ^, we find

Ï^ | Uan = (Image(Rr(äπ^)
an

*^ ¨ Rr(π^)
an

*^)(äç).

Because X/U is a normal crossing compactification of Hyp/U, the

relative de Rham cohomology sheaves on U, HiDR(X/U) and

HiDR(Hyp/U), are coherent ØU-modules with integrable connection,

of formation compatible with arbitrary change of base on U. They
are known [Ka-NCMT] to have regular singular points. Under the
Riemann-Hilbert correspondence, they correspond to the local

systems Ri(äπ^)
an

*^ and Ri(π^)
an

*^ on Uan.

Taking i=r, we see that, on U, the regular singular differential
equation corresponding to the local system Ï^ is

(Image(HrDR(X/U) ¨ HrDR(Hyp/U)))(äç).

Restricting to the generic point of U, we see that this differential
equation is indeed of type (***). This concludes the proof. QED
(9.4.3) It remains only to recall why

Wi(R
iπ*$…) | Ë = Image(Ri(äπR)*ä$… ¨ Ri(πR)*ä$…).

It suffices to check at all closed points. Since both sides commute
with arbitrary change of base, we are reduced to checking that if k
is a finite field of characteristic ± …, X/k is proper and smooth, and
D = ⁄Di is a union of smooth divisors in X with normal crossings,

then under the restriction map, we have

Image(Hi(X‚käk, ä$…) ¨ Hi((X-D)‚käk, ä$…)) = WiH
i((X-D)‚käk, ä$…).

To see this, consider the Leray spectral sequence

E2
p,q = Hp(X‚käk, R

qj*ä$…) à Hp+q((X-D)‚käk, ä$…)

for the inclusion map j: X-D ¨ X. We have j*ä$… = ä$…, and for each

q ≥ 1,we have

Rqj*ä$… = ·i1 < i2 <...< iq
ä$…(-q) | Di1

€Di2
€...€Diq

.

Thus E2
p,q is pure of weight p+2q, and hence Er

p,q is pure of weight

p+2q for every r ≥ 2. Since dr has bidegree (r, 1-r), we have dr = 0

for all r≥ 3. Looking at the weights of the E‘ = E3 terms, we see

that Hi((X-D)‚käk, ä$…) is mixed of weight ≥ i, and that

WiH
i((X-D)‚käk, ä$…) = E‘

i,0 = E3
i,0.
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Since this is a first quadrant spectral sequence, d2 kills E2
i,0, so we

have a surjective map E2
i,0 ¨ E3

i,0, i.e, a surjective map

Hi(X‚käk, ä$…) ¨ WiH
i((X-D)‚käk, ä$…),

as required.
(9.4.4) Here is an alternate proof of a stronger statement. Let X
be proper and smooth over a finite field k of characteristic ± …, and
Z in X any closed subscheme. Then for every i,

Image(Hi(X‚käk, ä$…) ¨ Hi((X-Z)‚käk, ä$…)) = WiH
i((X-Z)‚käk, ä$…).

To prove this, we argue as follows. Passing to connected components,
we may reduce to the case when X is connected, of some dimension

d. Now Hi((X-Z)‚käk, ä$…) and Hc
2d-i((X-Z)‚käk, ä$…) are Poincarïe

dual, with values in ä$…(-d). Looking at weights, we see that under

this pairing, the dual of WiH
i((X-Z)‚käk, ä$…) is the weight 2d-i

quotient of Hc
2d-i((X-Z)‚käk, ä$…). So our statement is dual to the

statement that

Image(Hc
2d-i((X-Z)‚käk, ä$…) ¨ H2d-i(X‚käk, ä$…))

is the weight 2d-i quotient of Hc
2d-i((X-Z)‚käk, ä$…), or what is the

same (since H2d-i(X‚käk, ä$…) is pure of weight 2d-i), that

Ker(Hc
2d-i((X-D)‚käk, ä$…) ¨ H2d-i(X‚käk, ä$…))

is mixed of weight < 2d-i. But this is clear from the excision
sequence

...H2d-i-1(D‚käk, ä$…)) ¨ Hc
2d-i((X-D)‚käk, ä$…) ¨ H2d-i(X‚käk, ä$…))...

and the fact that, Z being proper over k, H2d-i-1(D‚käk, ä$…)) is

mixed of weight ≤ 2d-i-1, by [De-Weil II, 3.3.1].
(9.4.5) As a minor variant on this argument, we could more

explicitly exploit the exactness of the functors grWi (:= associated

graded of weight i for the weight filtration) on the category of ä$…-

finite dimensional ä$…[Gal(äk/k)]-modules. Applying grW2d-i to the

excision sequence gives the injectivity of

grW2d-i(Hc
2d-i((X-D)‚käk, ä$…)) ¨ grW2d-i(H

2d-i(X‚käk, ä$…))).

The Poincarïe dual of this injectivity is the surjectivity of
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grWi(H
i(X‚käk, ä$…)) ¨ grWi(H

i((X-D)‚käk, ä$…)).

Since Hi(X‚käk, ä$…) is pure of weight i, while H
i((X-D)‚käk, ä$…) is

mixed of weight ≥ i, this is the required surjectivity of

Hi(X‚käk, ä$…) ¨ WiH
i((X-D)‚käk, ä$…).

9999....5555 CCCCoooommmmmmmmeeeennnnttttssss aaaannnndddd qqqquuuueeeessssttttiiiioooonnnnssss
(9.5.1) In addition to the general result [Ka-ASDE, 5.7],
Grothendieck's p-curvature conjecture has been proven for several

explicit families of differential equations on open sets of @1. It is
striking that in all of these cases, whenever the equation in question
is irreducible, it is in fact rigid (in the sense that its local system of
germs of holomorphic solutions is a rigid local system). These cases
were:

1) the (differential equation satisfied by the) Gauss hypergeomtric
function 2F1, cf. [Ka-ASDE, 6.2 and 6.9.4],

2) the (differential equation satisfied by the) generalized
hypergeometric function nFn-1, cf. [B-H,4.8 and 4.9],

3)the ("Pochhammer" differential equation, satisfied by) the
hypergeometric functions of Pochhammer type, cf. [Har, Theorems
1.2, 1.3, 2.1].

(9.5.2) In all three of these cases, an essential step is to compute,
in terms of the parameters of the equation (i.e., in terms of our
"numerical data" of chapter 6, which specifies all the local
monodromies) precisely what is the condition to have p-curvature
zero for almost all p. In each case, one gets an a posteriori
verification that, having begun with a differential equation
satisfying (**), one has a direct factor of a differential equation
satisfying (*). This was the method of proof in [Ka-ASDE, 6.2]. It was
also the method employed in the exposition of [B-H] given in [Ka-
ESDE, 5.5].
(9.5.3) However, it should be emphasized that both Beukers-
Heckmann and Haraoka prove their results wwwwiiiitttthhhhoooouuuutttt invoking
[ASDE, 5.7]. Rather, what they do, at least in the irreducible case
with quasiunipotent local monodromy, is to consider the unique (up
to scalars) hermitian form carried by the local system Ï^ in

question which expresses that the dual local system to Ï^ is just its
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complex conjugate. They calculate the signature of this hermitian
form in terms of the parameters of the equation, and then show
that the form is (positive or negative) definite provided the
parameters satisfy the conditions of p-curvature zero for almost all
p.
(9.5.4) In contrast, while we have proven that Grothendieck's p-
curvature conjecture holds for (the regular singular differential
equation underlying) any irreducible rigid local system on an open

set of @1, we do nnnnooootttt know how to tell, in terms of the numerical
data of chapter 6, or equivalently in terms of the data of all the
local monodromies, whether or not a particular such differential
equation has in fact p-curvature zero for almost all p. Presumably
there is a simple explicit algorithm for computing, in terms of the
numerical data, whether or not we have p-curvature zero for
almost all p. What is it? If one is more optimistic, one might ask
how to compute, in terms of the numerical data, the dimension of
the differential galois group (which for regular singular points is the
Zariski closure of the monodromy group), or even the isomorphism
class of its Lie algebra. Much remains to be done.
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