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Preface

This book is based on lectures given by the authors at an instruc-
tional conference on integrable systems held at the Mathematical In-
stitute in Oxford in September 1997. Most of the participants were
graduate students from the United Kingdom and other European
countries. The lectures emphasized geometric aspects of the theory
of integrable systems, particularly connections with algebraic geo-
metry, twistor theory, loop groups, and the Grassmannian picture.

We are grateful for support for the conference from the London
Mathematical Society, the Engineering and Physical Sciences Re-
search Council (contract No. 00985SCI96), the University of Oxford
Mathematical Prizes Fund, the Mathematical Institute, Wadham
College, and Oxford University Press.

N. M. J. Woodhouse
Oxford, February 1998
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Introduction

Nigel Hitchin

Integrable systems, what are they? It’s not easy to answer precisely.
The question can occupy a whole book (Zakharov 1991}, or be dis-
missed as Louis Armstrong is reputed to have done once when asked
what jazz was—If you gotta ask, you’ll never know!’

If we steer a course between these two extremes, we can say that
integrability of a system of differential equations should manifest
itself through some generally recognizable features:

e the existence of many conserved quantities;

e the presence of algebraic geometry;

e the ability to give explicit solutions.
These guidelines should be interpreted in a very broad sense: the
algebraic geometry is often transcendental in nature, and explicitness
doesn’t mean solvability in terms of sines, exponentials or rational
functions.

The most classical example of integrable systems shows all these
properties: the motion of a rigid body about its centre of mass. If 2

is the angular velocity vector in the body and I, I3, I3 the principal
moments of inertia, then these equations take the form

Ly = (- B)QQs
LQy = (I3- L)
LY = (I — L)hQs.
To analyse them it is easier to rescale and obtain the simpler equa-
tions
U] = uUgUa
'[Lg = Uusuy

us U Uy .
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So what do we look for first? Conserved quantities. Note that
differentiating u? —u2 gives 2u; (ugu3) — 2uz(usuy) = 0 and so u} —u3
is constant. We similarly get

ul-u? = A
w-u} = B.
So A and B are two conserved quantities as (uy,ug,u3) evolves.

What about algebraic geometry? Take the first equation 1, =
upuz and substitute for up and uz given by the expressions above,
then we obtain

4} = (uf ~ A)(uf ~ B).

Putting y = 4; and z = u;, we can rewrite this as
v’ = (z* - 4)(z* - B)

which is the equation of an algebraic curve, in fact an elliptic curve,
and
dt =dz/y

is a regular differential form on the curve.
Finally how about ezplicit solutions? Any elliptic curve can be
written in a standard form

y =41 — goz - g3

and there is a meromorphic function, the Weierstrass gp-function,
which is doubly periodic:

p(u + 2mw) + 2nwz) = p(u)
and satisfies
p(u)? = 4p(u)® — gap(u) - g3.
Using the p-function, the solution becomes

dt =dp/p' = du

This means not only that if we are prepared to use elliptic functions,
we can solve the equation, but also that time in the original equation
is linear in the natural parameter u: we have achieved in some sense
a linearization of the non-linear differential equation for the rigid
body.
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The study of integrable systems is not just about cunning meth-
ods of solving isolated special equations. Each equation is slightly
different, and indeed there are many of them: a trawl through a
couple of standard books on the subject gives at least the follow-
ing list of equations which are seriously considered to be related to
integrability:

Calogero-Moser system, Calogero-Sutherland system, Euler-Arnold
rigid body, Clebsch rigid body, Euler-Poinsot top, Garnier system,
Gaudin system, Goryachev-Chaplyagin top, Henon-Heiles system,
Kepler problem, Kirchoff rigid body, Kowalewski top, Lagrange top,
Neumann problem,Toda lattice, Ruijsenaars system, Steklov rigid
body, Nahm’s equation, Boussinesq equation, Burger’s equation,
Davey-Stewartson equation, Drinfeld-Sokolov construction, Ernst
equation, Painlevé equation, FEuler-Arnold-Manakov -equation,
Gelfand-Levitan-Marchenko equation, Heisenberg ferromagnet equa-
tion, Korteweg-de Vries equation, Kadomisev-Pietviashvili equation,
Krichever construction, Landau-Lifschitz equation, Hasimoto equa-
tion, Laz equation, Liouville equation, Manakov-Zakharov model,
modified KdV equation, nonlinear Schrodinger equation, Riccati
equation, Schlesinger equation, sine-Gordon equation, Zakharov-
Shabat equation, Benjamin-Ono equation, Calogero-Degasperis-
Fokas equation, Harry-Dym equation, Fermi-Pasta—-Ulam problem,
massive Thirring model, Melnikov equation, Benjamin-Bona-
Mahoney equation, Mazwell-Bloch equation ...,

Another task of the mathematician, apart from solving individual
equations, is to put some order into a universe like this. Is there
some overarching structure of which all these are special cases which
explains integrability?

The point where most discussions of integrability begin is with
the idea of a system of differential equations which can be put in Laz
pair form. Let’s begin with a finite-dimensional system

dA
S =45

where

A(z)=Ap+zA 1 +---+2"A,  B(z)=By+2zBj+---+2"Bp
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are polynomials of £ x k matrices. Because of the differential equa-
tion, we have

d

£ ir(ar
” tr(AP)

tr(p[A, B]AP~!)
ptr(ABAP~! — BAP)
ptr(BAP — BAP)
=0

Il

1

so all the coefficients of the polynomials tr A(z)? for all p are con-
served quantities. Since the components of the characteristic polyno-
mial are expressible in terms of these traces, it is the whole spectrum
of A(z) which is preserved. Clearly equations of Lax pair type sat-
isfy the first criterion for integrability that there should be many
conserved quantities. In fact, algebraic geometry appears again very
naturally.

The characteristic equation
det(y — A(z)) =0

defines an algebraic curve, called the spectral curve, which is pre-
served by the flow. For each point (y,z) on this curve we have a
one-dimensional space

Ly z) = ker (y — A(2))

and this varies with time—it forms a line bundle over the spectral
curve. To study equations of this type, then one must study the
algebraic geometry of algebraic curves and line bundles over them.

It is a well-known fact that the space of line bundles is a complex
torus—the quotient space of a vector space C? by a lattice subgroup,
and it is here that the final criterion of explicitness of solutions is
fulfilled. We regard the equation as integrable if the line bundle L
moves in a linear fashion with ¢ in this vector space. Under these
circumstances the solutions can in principle be written down in terms
of theta-functions. It requires a specific form for the matrix B(z) to
be able to do this, however. An arbitrary matrix B would give a
non-linear isospectral deformation of A(z).
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Many finite-dimensional integrable systems fit into this scheme,
and in particular the rigid body, where we can take

9 = (12 “5)oa(3 )

0 (u; — ug)
+Z2(—(U1+U2) 10 2).

Finite-dimensional integrable systems are rather special, but are
a good model for the general situation without having to worry too
much about analytical problems. In infinite dimensions we can still
make use of the Lax pair formalism, though. We have an equation

dA
E = [A» B]

but now A and B are differential operators instead of finite-dimen-
sional matrices. The most famous example here is that of the Korte-
weg—de Vries equation

ug — buug + Uggr =0

where

d? d? d d
-d—ﬁ-i-u B—4@—3UE—3d_:vu'
Here, as u(z,t) evolves, the spectrum of A remains fixed, but there
are different types of spectrum depending on the boundary con-
ditions, and the role of algebraic geometry, which in the finite-
dimensional situation manifests itself as the spectral curve, has to
be extended.

The most algebraic aspect is in the case of periodic boundary
conditions. The spectrum of the basic operator —d?/dz2isn?, n € Z,
and the multiplicity of each eigenvalue is two unless n = 0. In
general, the simple spectrum may be finite or infinite. For the finite
case, there is a close analogy with the finite-dimensional situation of
a 2 x 2 matrix A(z) of polynomials. In that case the spectral curve

det(y — A(z)) = y* + a1(z)y + a2(z) =0

can be described as a double covering of the line branched over the
zeros of a? — 4az. In the case that the differential operator 4 has
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a finite simple spectrum, the abstract curve, or Riemann surface,
formed by taking such a double covering branched over the simple
spectrum plays the same role, and indeed the same hyperelliptic
theta functions can be used to solve the KdV equation as in the
finite-dimensional case. This, however, is only a special case even
within the class of periodic boundary conditions. When the simple
spectrum is infinite, the algebraic geometry must be modified to
describe hyperelliptic Riemann surfaces of infinite genus.

The case where u(z,t) is a Schwartz function on the line involves
the consideration of both the discrete spectrum and the continuous
spectrum. The role of a line bundle on a spectral curve is now played
by the asymptotic behaviour of the eigenfunctions, the reflection
coefficients, and recovering the potential u(z,1) is part of a process
called the Gelfand-Levitan-Marchenko inverse scattering transform.
One defines a function

N | .
B(z) = E e~ 4 2_1r/ b(z)e**dz
n=1 —

based on the spectrum and reflection coefficients, solves an integral
equation

oo
B(z + 2) +/ K(z,y)B(y + 2)dy = —K(z, 2)
-00
and then finds the function u(z) by:
(z) = —211{ (z,2)
u(z) = -24- ,Z).
Now let’s move on to the situation where the operator A in the

Lax pair

dA
_d—t- = [A’ B]

is defined by a first-order matrix differential operator instead of a
higher-order scalar equation

Az) = £ +0ta),

depending on a parameter z, which is the analogue of the spectral
parameter for the scalar differential operator. We can again look
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at different boundary conditions and spectral problems, but we may
also reformulate the Lax pair equations in a different language: that
of differential geometry. Firstly, we write the equations as

7] 9
[-5; +C, 5-t' + B] =0
and then, putting
a a
Vo-—-'é;"f‘C, Vl—gt"-’rB,

we recognize the equation
[VO, VI] =0

as the equation for the vanishing of the curvature of a connection,
with covariant derivatives Vg, Vy, on a bundle over two-dimensional
space. More correctly, we have a family of connections parametrized
by z, all of which are flat.

Many standard equations fit into this zero curvature formalism,
for example the nonlinear Schrodinger equation:

i
g =—5(g + 2lq/%q)

where

—1 112 .
cor= (5 2). - ()

and the familiar KdV equation again

a = _%(quz + Gzzz)

ow = (7§ 1)

cous (4 55)+ (% L)

The zero curvature condition is a convenient entry into one of the
most promising unifying ideas in integrable systems: trying to view

e
O
|
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known systems as special cases of the anti-self-dual Yang-Mills equa-
tions (Mason and Woodhouse 1996). These gauge-theoretic equa-
tions in four dimensions have become of great importance in many
disciplines. For the purposes of studying integrable systems, one
starts with four-dimensional space with a flat metric of indefinite
signature:

ds? = 2(dtdu — dvdw)

and a connection on a bundle over this space with covariant deriv-
atives

a
V= 52 + Ay, etc.

The anti-self-dual Yang-Mills equations are then defined as
[Vt, Vv] =0 [Vm Vw] =0
[Vta Vu] - [Vv) V‘w] =0

and these can be encapsulated in a single equation with a parameter
z:

[Vy -2V, V, —2V,] =0.

Geometrically, this is a zero curvature condition: through each point
R* there are two families of totally null 2-planes, a-planes and (-
planes, and the anti-self-dual equations say that the connection has
zero curvature on each a-plane.

The integrable systems which arise from this approach are ob-
tained by dimensional reduction: looking at solutions invariant un-
der some group of conformal transformations. The anti-self-duality
condition then leads to equations on some lower-dimensional space.
The standard examples of evolution equations arise from considering
invariance under the additive group

(t,u,v,w) = (t,u+a,v+bw —b).

We have invariant functions v + w = z (=space) and ¢ (=time) and
the metric induces a degenerate metric dz? on this two-dimensional
space. After using gauge transformations and symmetries of dz?
(Galilean transformations), some remarkable features appear when
finding canonical forms. For example, for connection matrices which
are 2 x 2 and trace-free, there are effectively only two reduced forms:
one gives the nonlinear Schrodinger equation, the other the KdV
equation.
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The use of the formalism of connections, curvature and gauge
transformations effects a geometrization of problems concerning in-
tegrable systems. One can still usually detect the key ingredients,
but in a different language. For example, scattering data is usu-
ally seen as the holonomy of a flat connection, and the algebro-
geometrical content as a manifestation of Penrose’s twistor theory:
the well-known result of Ward and Penrose that the anti-self-dual
Yang-Mills equations can be encoded in the geometry of a holo-
morphic vector bundle over P3. .

While the use of the anti-self-dual Yang-Mills equations as a
unifying tool in integrable systems is impressive, there is no com-
plete agreement about whether these are truly universal equations.
The KP equation, for example, needs to be ruthlessly hacked and
stretched to fit the Procrustean bed of self-duality.

The equations which appear in integrable systems very often have
a specific mechanical or physical source: the shallow water waves of
the KdV equation, the exponential attraction of particles for the
Toda lattice, non-linear optics for the non-linear Schrodinger equa-
tion, and so forth. It is not profitable, however, to dwell too long
on any one particular physical source since the equations in some
sense go deeper. The physical problem can only be approximated by
the equations, but the equations are highly special and do not retain
their features after perturbation. Moreover, the same equations can
arise from many different sources. As an example, consider the non-
linear Schrodinger equation again. Far from non-linear optics and
gauge theory, it essentially arose in the study of vortex filaments in
the paper of Da Rios (1906). This can be experienced with some
elementary differential geometry.

Take a closed curve r(s) in R® (the ‘vortex’) and let it evolve in
time along its binormal according to the equation

— =kb

ot

where x is the curvature. This is tantalizingly close to the more
standard mean curvature flow, where b is replaced by n, the normal,
but the solutions are very different. Whereas the mean curvature
flow decreases the length as fast as possible, the length is preserved
under the binormal flow. This is but one of many conserved quant-



10 N. J. Hitchin

ities, and in fact Hasimoto showed in 1972 that putting

q(s) = K(s)exp (i /s K(u) du)

the function ¢ satisfies the non-linear Schrédinger equation. One
may then apply to this simple geometrical problem the full force
of the solution techniques for integrable systems to obtain explicit
solutions of the evolution of these curves. For examples and pictures
of this and other geometrical problems solved by integrable system
methods, the reader is referred to Melko and Sterling (1993).

In so many areas, from physics to geometry, one encounters
(sometimes in hidden form) the phenomenon of integrability. Recog-
nizing it, and becoming acquainted with the techniques for exploiting
it, has become a necessity for a broad band of mathematicians.
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Riemann surfaces and integrable systems

Nigel Hitchin

Notes by Justin Sawon

1 Riemann surfaces

In this chapter, we shall investigate the solution of certain types of
integrable systems by studying line bundles on Riemann surfaces.
In particular, we shall be interested in integrable systems of finite-
dimensional type given by Lax pair equations

dA
E - [A,B]

where
A=Ag+ A2+ + Ap2™

and
B=By+Byz+---+ Bp2"

are polynomial-valued matrices. Expanding out the time-evolution
equation in different powers of z we get a system of differential equa-
tions in the coefficients A; and B; of A and B.

It might seem that this gives an enormous number of equations
and the systems which occur in real life cannot possibly be of this
form, but in fact many of them are, but for very specific forms of
matrices. These include classical problems like the geodesic flow on
an ellipsoid, or the motion of a rigid body, but also more recently
studied ones like Nahm's equations, which are dimensional reduc-
tions of the self-dual Yang-Mills equations and occur in the ana-
lysis of magnetic monopoles. We shall cover these only in examples,
however, and focus on the solution of the general equation of the
above type.
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To do so requires using the basic language of Riemann surfaces
and the first two sections will be taken up with a rapid treatment of
the subject. In lectures three and four we shall look at the perhaps
less standard material of vector bundles on Riemann surfaces. The
fifth lecture is on Lax pairs and their relation to line bundles. In
the final lecture we shall look at algebraically completely integrable
Hamiltonian systems—a general context of which many of these Lax
pair equations form part.

General references for the theory of Riemann surfaces are Gun-
ning (1966, 1967, 1972), Farkas and Kra (1980), and Griffiths and
Harris (1978) for a more general account of algebraic geometry. The
material on Lax pairs is dealt with in various places in the math-
ematical literature, but an accessible introduction is Audin’s book
(Audin 1996).

Definition 1.1 A Riemann surface is a one-dimensional complex
manifold, i.e. a two-real-dimensional smooth manifold with a maz-
imal set of coordinate charts ¢o : Uy — R? = C such that ggogz’ is
an invertible holomorphic function from ¢o(UsNUg) to ¢pg(UsNUp)
for all a and .

Thus a neighbourhood of any point can be parametrized by a com-
plex number z and on an overlapping neighbourhood with parameter
w, w(z) is a holomorphic function of one variable.

Examples

(1) Let M = S2, the sphere. Stereographic projection from the
North pole (denoted N) to the tangent plane at the South pole S
defines a coordinate chart ¢9 : S?\{N} — C. Similarly, stereo-
graphic projection from the South pole defines a coordinate chart
#1 : S?\{S} = C. A calculation shows that, using the correct ori-
entations on the two tangent planes, ¢; o ¢g'(2) = 27!, which is
clearly holomorphic as a function from C* to C*.

With this complex structure, the two-sphere is known as the
Riemann sphere: the parameter z of the first chart runs through
C and then we can take N to be the point z = oco. It is also known
as the projective line P!, i.e. the space of one-dimensional subspaces
of C2. We shall keep this as the standard notation.

(2) Let M = C*/Z, where the integer n acts by z — A"z, with A a
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complex number with absolute value not equal to one. (Without loss
of generality, assume that |A{ > 1.) Topologically M is a torus, T2.
We can take overlapping annuli in C* as coordinate neighbourhoods.

Definition 1.2 A holomorphic map f : M — M is a continuous
map such that for each coordmate chart ¢o : Uy = C on M and
¢g Uﬁ S ConM, ¢gaofo ¢ﬂ is holomorphic.

Examples

(1) Let M = P! and M = P!. We shall use the coordinate z corres-
ponding to the coordinate chart #o. Then the rational function

p(z) ao+ 612+ - + ag2*

15 =410 a(z) ~ bo+biz+ - +b2d

defines a holomorphic map from P! to itself, where we have assumed
that p and q have no common zeros. The point is that where f(2) is
infinite, 1/f(z) is holomorphlc, so in either coordinate on the target
space ¢ © f 0 ¢0 is holomorphic. The same is true for ¢, since
f(1/2) is a rational function too. In fact, all holomorphic maps from
]Pl to itself are given by rational functions.
(2) In general, a meromorphic function on M can be interpreted as
a holomorphic map of Riemann surfaces f : M — P'. Where the
meromorphic function acquires a pole the point is mapped to the
North pole.
(3) Let M = C*/Z, and define f by the sum

z
Z (/\n/Zz_/\ n/2)2’

n=-—0o

for z € C*. This sum converges for 1 < [z < [A| and z # Ak, for
integers k. Furthermore,

A
f(/\z) = Z (,\n/z,\z ._z,\-n/z)z

z
Z (An+1)/25 — \—(n+1)/2)2

= f(2),

so f is invariant under the action of the integers. Therefore we have
a holomorphic map f : M — PL.
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Consider a holomorphic map f : M — C, usually referred to as
a holomorphic function on M.

Theorem 1.3 If M is connected and compact, the only holomor-
phic functions on M are the constants.

This follows from the maximum modulus principle: |f| has to have a
maximum on the compact space M, but in a coordinate neighbour-
hood of this point f o ¢! is a holomorphic function whose modulus
has an interior maximum. Despite the theorem, there are many
meromorphic functions on any compact Riemann surface as we shall
see. It is more useful to view this in the context of holomorphic line
bundles on Riemann surfaces.

Definition 1.4 A holomorphic line bundle L over ¢ Riemann sur-
face M is a two-dimensional complez manifold L with a holomorphic
projection w : L = M such that
(1) for each m € M, n=Y(m) has the structure of a one-dimen-
sional vector space,
(2) each point m € M has a neighbourhood U and a homeomorph-
ism py such that

pu
L) ~ UxC
T N\ v
U

s commautative,
(3) wv oy is of the form
(m,w) = (m, f(m)w),

where f is a non-vanishing holomorphic function.

We will denote f by gyy. These functions are known as the transition
functions of the line bundle and py is a local trivialization over U.

In straightforward language, a holomorphic line bundle is a family
of one-dimensional vector spaces parametrized by M.

Examples
(1) M x C is known as the trivial bundle over M.
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(2) Take a point p € M, and Uj a neighbourhood of p with coordin-
ate z such that 2(p) = 0. Let Uy = M\{p}. Then we can use z
as a transition function to define a line bundle on M since gg; = 2
is holomorphic and non-vanishing on Uy N U;. We patch together
Up x C and Uy x C over Uy N U, by using the function ¢ defined by

p(m,w) = (m,go1(m)w).
This gives us for each point p € M a line bundle which we denote
by L,.

Definition 1.5 A holomorphic section of a line bundle L over M
is a holomorphic map s : M — L such that mo s = idps.

In a local trivialization ¢y of the line bundle, the section gives
wu(s) =(d,sy) : U—>UxC

and is therefore just defined by a holomorphic function sy on U. On
the overlap U NV, these local functions are related by

SU = guvsy,

and we can think of a section s as a collection of local functions {sy}
that patch together in this way.
If s and ¢t are two holomorphic sections of L, then

Sy = guvsvy
and
ty = gyviv
together imply that
Su _ v
ty ty

on the overlap UNV. Therefore we can piece these local meromorphic
functions together to get a global meromorphic function on M. If
we find lots of sections of line bundles, we can then find lots of
meromorphic functions in this way.

We can also add sections pointwise

(s + t)(m) := s(m) + t(m)
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and multiply sections by scalars
(As)(m) := As(m),

so that the space of all sections of L is a vector space, which we
denote HO(M, L).

Theorem 1.6 If M is compact, HY(M, L) is finite-dimensional.

The proof of this result can be found in, for example, Gunning
(1966). From the point of view of analysis it is an example of the
fact that a linear elliptic differential operator on a compact manifold
has a finite-dimensional kernel.

Examples

(1) The line bundle L, has a canonical section sp: we just take the
two functions z on Up and 1 on U; and this constitutes a section
since

z=2z1=gpnl.

The section s, has a simple zero at p and only there. We shall use
this many times in forthcoming sections.

(2) The canonical bundle K is the cotangent bundle, or the bundle
of holomorphic 1-forms. Suppose we have local coordinates z and
w, with w(z) = ¢g o ¢5'(z) a function of z on the overlap. The
1-forms dz and dw give local trivializations of the canonical bundle,
and on the overlap dw = w'dz. Therefore the transition functions
are dw/dz, where w = ¢g o ¢3 .

(3) Consider M = P! with the usual coordinate patches Up and
Ui. The transition function go; = 2" on Uy N U; = C* defines a
line bundle which we usually denote by O(n). A section of this line
bundle is given by functions sy and s; on C related by

s0(2) = 2"s1(Z)

on the overlap C*. Expanding these functions as power series in their
respective local coordinates, and using the fact that Z = z~1, we get

[o o] o0
E A 2™ = 2" Z Gmz” ™.
0 0
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Equating coefficients, we find that &, = am =0 for m > n and
do = @n, 41 = Gn_1, etc. Thus the section is given by a polynomial

n
> e
0
of degree less than or equal to n, and hence the dimension of

H(P', O(n))

isn+1.

One of our aims in this chapter is to construct polynomial-valued
matrices
A=Ag+ Az +- -+ Ap2™

which occur in the Lax pair equations. Instead of thinking in terms
of polynomials we can now interpret A(z) more geometrically as a
matrix with values in the space of sections H(P', O(m)).

2 Line bundles and sheaves

Any natural operation that can be carried out on one-dimensional
vector spaces transfers to an operation on line bundles, and given
one or two we can construct many. Here are the essential ones, and
the corresponding operation on transition functions:

Properties of line bundles

(1) Given L we can form its dual bundle L*, also denoted L7l It
has transition functions gag(L*) = 9;5 (L).

(2) Given L and L we can form their tensor product L @ L. 1t has
transition functions gag(L ® L) = gap(L)9as(L)-

(3) We can also form the homomorphism bundle Hom(L, L) = L* ®
L. Holomorphic homomorphisms between line bundles are just holo-
morphic sections of this.

(4) The bundle of endomorphisms Hom(L, L) & L*®L is canonically
trivial because the only endomorphisms of a one-dimensional vector
space are the scalars. This explains why we write L* also as L1,

(5) If 5 is a section of L and § a section of L, then the product s3 is
a section of I ® L, usually denoted by just LL.
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(6) If f : M — M is a holomorphic map, then we define the pull-
back of line bundle L on M by

f'L:={(z,9) € L x M : n(z) = f(q)}.

Its transition functions are g,g0 f. A section of f*L is a holomorphic
map s: M — L such that ros = f.
Let us consider a little closer now the canonical bundle K. Any

Riemann surface has a canonical bundle, and its vector space of
sections is an important invariant.

Definition 2.1 If M is compact, its genus g is defined to be the
dimension of HO(M, K).

Examples

(1) Let M = P!. A section of the canonical bundle looks like fo(z) dz
on Up and f;(2) dz on U; where fp and f; are holomorphic functions
on C. These 1-forms must agree on the overlap Up N U;. Here we
have z = 27!, and therefore

di = —272dz.
It follows that we must have
fo(z)dz = =272 f1(27") de,

and expanding fp and f, as power series shows that they both must
vanish. Therefore there are no non-zero global sections of the ca-
nonical bundle, and the genus of P! is zero. Note that dZ and —dz
are related by the transition function z=2, so on P! we have an iso-
morphism K = O(-2).
(2) Let M =C*/Z. Then dz/z defines a 1-form on C*, and since
d(Az) _dz
(A2) =z
it is invariant under the action of the integers. Therefore this 1-form

defines a non-vanishing section of K. In general, if a line bundle L
has a non-vanishing section s, then

MxC —» L
(m,u) +— us(m)
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is an isomorphism between L and the trivial bundle. Thus for
M = C*'/Z the canonical bundle is trivial. Sections of the trivial
bundle are just functions and since the only holomorphic functions
are constants, the genus of C*/Z is one.

One of the consequences of using concepts which are locally stan-
dard, like coordinates on a manifold, or local trivializations of a line
bundle, is that we end up with familiar objects defined on open
sets and their intersections. Thus sections of line bundles are given
by functions f, on U, and line bundles themselves by transition
functions g3 on Uy N Up. The technology to handle globally such
notions is encapsulated in sheaf theory and its cohomology. The
definition of a sheaf seeks to formalize the properties of restricting
functions from open sets:

Definition 2.2 A sheaf S on a topological space X associates to
each open set U C X an abelian group S(U) (sections over U) and
to U C V a restriction map Ty, : S(V) = S(U) such that
(2) if 0 € S(U) and 7 € S(V), and ry;qp(0) = Tyyay(T) then
there ezists p € S(U U V) such that ry,,y(p) = o and
ryovv(P) =7;
(3) if 0 € S(UUYV) is such that ry,,y(0) = 0 and Ty py (o) =0
then o = 0.

Examples

(1) S(U) = O(U) = holomorphic functions on U.

(2) S(U) = O(L)(U) = sections of the holomorphic line bundle L
over U.

(3) S(U) = locally constant functions on U with values in C or Z.
(4) S(U) = O0*(U) = non-vanishing holomorphic functions on U,
with the group operation being multiplication.

If S is a sheaf, we can construct the cohomology groups HP(M, S)
with coefficients in S in the following way. Take a (locally finite)
covering {Uas}aca of M by open sets. Let

5 = PSa),
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St = @PSW.nUp),
a#f

P SWan---NUy,).
ao#-Fap

sP

and let CP be the alternating elements in S?. In other words, for a

permutation of the indices ay, ..., ap, the open set is unchanged but

we multiply the section on that set by the sign of the permutation.
Define the homomorphism of abelian groups § : C? — CP*! by

(6f)ao...a,,+| = Z(—l)ifaom&;...apulU.,on,..nU.,pH .
i

It is known as the boundary operator, and satisfies §2 = 0. Thus we
can define the following quotient groups.

Definition 2.3 The p-th cohomology group of S, relative to this
covering, 1s
ker$ : C? — CP¥!

WM. S) =5 ermisor

Remark The dependence of these cohomology groups on the cover-
ing might be a cause for the reader’s concern. The standard method
to make a cohomology group independent of the covering is to take
a limit over all coverings partially ordered by refinement. What one
gets then is clearly independent but is not calculable. The way out
is to use a ‘good’ covering: one for which the cohomology of all
the intersections vanishes for p > 0. For such a covering the sheaf
cohomology is the same as the limit.

Examples

(1) Let L be a holomorphic line bundle over M and S the sheaf of
holomorphic sections. If f € CY, then (§f)op = fa — f5. Thus éf
vanishes if and only if the local sections f, piece together to give a
global section, i.e.

H°(M, L) = ker é

is the space of global holomorphic sections of L (which agrees with
our earlier notation).
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(2) Suppose the line bundle L has transition functions g,g defined by
Yo © (pEl, where o : 771 (Uy) = Uy % C are the local trivializations

of the bundle. Then go5 = 95; and so lies in C! for the sheaf O* of
non-vanishing holomorphic functions, and
(69)apy = gaﬁgﬂ“rg;:

Paz 0805 (Papy!) !
= id,

i.e. 49 = 1 (note that the group operation is multiplicative in this
example). The ¢, are not unique. If we change the local trivializa-
tion 4 to hata, then g changes to g(dh). By the same token, the
transition functions of two isomorphic bundles differ by éh for some
h € C! and it follows that the isomorphism classes of holomorphic
line bundles on a Riemann surface (or complex manifold in general)
are given by elements of the sheaf cohomology group H}(M, 0*).

Although the definition of sheaf cohomology groups may seem
very complicated, in fact for Riemann surfaces, we only need p = 0,1
and occasionally p = 2, so that we can be very concrete in describing
classes. In particular, we have the following theorem (see Gunning
1966 for a proof).

Theorem 2.4 Let M be a Riemann surface. If S = O(L), the sheaf
of holomorphic sections of the line bundle L, then H?(M,S) = 0 for
p>1. If § =C or Z, then H?(M,S) =0 forp > 2.

It is also true that H!(M,O(L)) (which we shall now write simply
as HY(M, L)) can be defined in terms of the more familiar space of
holomorphic sections of a line bundle. This is

Theorem 2.5. (Serre duality) If L is a line bundle on a compact
Riemann surface M, then

HY(M,L) = H'(M,K ® L*)*.

Again, see Gunning (1966) for a proof.

With sheaves, we can define subsheaves and quotient sheaves.
(The latter is a little subtle to define in general but will be obvious
in all our examples.) In particular if S is a subsheaf of 7 with
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quotient U/ then there is a highly important relationship between
their cohomology groups which we shall use over and over again:

Theorem 2.6 If
02S8S—->T->U-0

is a short eract sequence of sheaves on M, then there is a long ezact
sequence of cohomology groups

0 - HY(M, S) » HO(M,T) = HO(M,U) B H' (M, 8) = --- .
<o HP(M, 8) - HP(M, T) - HP(M,U) B 0P+ (M, ) - -

We can describe the coboundary operator § in the following
way. Suppose that {us} € HY(M,U); then it satisfies uy — ug = 0.
There exists {t,} € C°(T), not necessarily uniquely defined, such
that t, = ug. Now {to —tg} € C(T) maps to uy — ug = 0,
so by exactness of the short exact sequence there exists a unique
Sap € C'(S) such that sqp — to — tg. It is easily shown that §s = 0,
and hence s € H!(M,S). Then we define fyu := s.

Example Let L be a line bundle on M, and L, the line bundle
associated to a point p € M. Recall that L, has a section s, which
vanishes only at p. There is a short exact sequence

0 — O(LL;*) 38 O(L) = Op(L) = 0,

where Op(L)(U) can be interpreted as the sections of L over U N{p}.
It has a one-dimensional space of global sections which is simply the
vector space 7~ 1(p). This gives rise to the long exact sequence

0 — HY(M, LL;') - HO(M, L) » C 3 H{(M,LL;!) — --- .
’ P

If § is non-zero, then the map from H®(M, L) to C must be zero, and
by exactness we have an isomorphism

H(M, LL;') = HY(M, L)

given by multiplication by the section s,. However, s, vanishes at
p, and so it follows that if é is non-zero then all global sections of L
must vanish at p.
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3 Vector bundles

Ultimately, we are going to produce matrix polynomials A(z) from
line bundles, and consider time evolution of such matrices. Since
these describe paths in the space of equivalence classes of line bundles
we would like to understand that space, namely H'(M, ©O*), better.
It is a good opportunity to learn the use of the sheaf cohomological
results of the last section.

We begin by considering the short exact sequence of sheaves

0->Z— Oex@—”)m o' ->1.
This gives rise to a long exact sequence
02— C-C —H(M,2) - H (M, 0) - H(M,0*) -
— H3(M,Z) - H3(M,0) - -- - .

The first part of this sequence comes from the fact that holomorphic
functions on compact Riemann surfaces are constants. Since expo-
nentiation is surjective onto C* then from exactness H!(M, Z) injects
into H'(M,0). We also know that H2(M, ©) must vanish, so this
sequence reduces to

H'(M,0)

0~ Wi,z

- HY(M,0%) 5 HY(M,Z) - 0.

Topological considerations (M is compact of real dimension two) tell
us that H*(M, Z) = Z.

Definition 3.1 The degree of a line bundle L is §([L]). It is denoted
deg L (or c1(L), as it is also the first Chern class).

Properties
(1) If L and L are two line bundles, then

deg(L ® L) =degL +degkL.

This is just the fact that § is a homomorphism.

(2) If L, is the line bundle corresponding to the point p, then
deg L, = 1. This is essentially a normalization. In topological terms
it comes from the fact that the generator of H*(M,Z) = Z comes
from the generator of H'(S!,Z) = Z in a Mayer-Vietoris sequence.
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(3) If a section s € H’(M, L) vanishes at the points py,...,p, with
multiplicities m1, ..., my then degL = 3", my
To prove the last of these properties, we notice that ss; glves a

section of LL‘ which vanishes at p; with multiplicity m,; — 1 Thus

ssp ™ ... ;"‘" gives a non-vanishing section of LL,™ ... Lo ™", and

hence LL;™ ... L, ™ is trivial. The trivial bundle clearly has de-
gree zero, and thus using properties 1 and 2, we see that deg L =
Y= mi. An obvious corollary is:

Corollary If degL < 0, then L has no non-trivial holomorphic
sections.

We return now to our investigation of H! (M, 0*). By Serre '('luality,
H'(M,0) = H'(M, K)*
and so is g-dimensional. Consider the short exact sequence
05 C— 03 0OK) =0,

where d is the derivative of functions. This gives rise to a long exact
sequence

0 - C 3 C - H'(M,0(K)) - H'(M,C) » H'(M,0)
- HY(M,O(K)) = H(M,C) = 0.
By Serre duality,
H'(M,O(K)) = H'(M,0)* = C,

and topological considerations tell us that H*(M,C) = C also. Thus
the map from H!(M,O(K)) to H3(M,C) is an isomorphism, and
hence the map from H!(M, O) to H'(M, O(K)) must be zero. Both
HO(M,O(K)) and H'(M,O) are g-dimensional, and it follows by
exactness that

dimH!(M,C) =

We can also say that
H'(M,Z) = Z%,
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as there is no torsion in H'. Therefore our exact sequence for
HY(M, O*) becomes
C 1 *
0422;—>H (M,0*) 5Z - 0.
The group H!(M, ©0*) is known as the Picard group of M. The first
term in the sequence is simply a quotient of C? by a lattice, which
is topologically a 2¢-dimensional torus.

Thus each line bundle has an integer invariant, its degree, and
the space of equivalence classes of line bundles of given degree d
(which we shall denote by J?) is a complex torus. These tori are
all isomorphic to the Jacobian of the Riemann surface, and we shall
use this word henceforth. We call a straight line in the Jacobian
the image of a straight line in 9. Later we will exploit this when
we look at integrable systems; time evolution will become evolution
of the line bundle, which will be a straight line evolution, thereby
linearizing the non-linear problem.

If the classification of line bundles on Riemann surfaces is essen-
tially linear the same is not true of vector bundles, which also play
a role in integrable systems.

Definition 3.2 A rank m vector bundle over a Riemann surface M
is a complex manifold E with a holomorphic projection w : E -+ M
such that

(1) for each z € M, 7~1(2) is an m-dimensional complez vector
space,

{(2) each point z € M has ¢ neighbourhood U and ¢ homeomorph-
ism py such that

Yu
=~ 1(U) = UxCn
LN Ve
U

is commutative,
3) pyo (pl_,l is of the form
(z,w) = (2, A(2)w),

where A : UNV — GL(m,C) is a holomorphic map to the
space of invertible m x m matrices.
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Remark As with line bundles, we denote A by g,,;;. These trans-
ition functions still satisfy g,y 9yw = gyw. However, they are
matrix-valued, and so do not commute in general. This means, for
example, that sheaf theory cannot be used to classify vector bundles
in the same way as for line bundles—it is very difficult to try and
adapt sheaf theory to non-abelian groups.

General constructions

(1) Given two vector bundles E and E, we can form their direct sum
E®F, and rk(E @ F) = rkE + rkE (we use rkE to denote the rank
of E).

(2) We can also form their tensor product, E ® E.

(3) We can take the dual bundle, E*.

(4) The highest exterior power forms a line bundle det(E) = A™ E.
More concretely, this is the line bundle with transition functions

det(gqg)-

Definition 3.3 If E is o vector bundle, we define its degree by
deg(E) := deg(det(E)).
This is the same as the first Chern class of E, c1(E).

Let O(E) be the sheaf of holomorphic sections of the vector bundle
E (defined in the same way as for a line bundle). Then just as for

line bundles,
HP(M,O(E)) =0

for p > 1. Moreover, Serre duality also holds for vector bundles.

For vector bundles, as with line bundles, the vector spaces
HP(M, O(E))
are important objects. There is a fundamental theorem, which we
shall prove next, which relates their dimensions:
Theorem 3.4. (Riemann—Roch) If F is a vector bundle on a

compact Riemann surface of genus g, then

dimH°(M, E) — dimH'(M,E) =deg E+tkE(1 - g).
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Proof We shall prove this result by induction on the rank of E.
(1) Assume the rank of E is one, i.e. E =L is a line bundle.
(a) If L is the trivial bundle then O(L) = O, and
dimH(M, 0) - dimHY(M,0) =1—g4
and
degO +1kO(1-g) =0+1(1 — g),
so the formula holds.

(b) We claim that if the formula holds for a line bundle L, then it will
also hold for LL,' and LL,. First consider the short exact sequence

0 = O(L) 2 O(LL,) - Op(LLy) = 0.

The corresponding long exact sequence is
0 — H°(M, L) » H%(M, LL,) » C - H'(M, L) » H'(M, LL,) - 0.

Exactness tells us that the alternating sum of the dimensions in this
series must be zero, and therefore

dimH°(M, LL,) — dimH' (M, LL,)
= dimH%(M,L) - dimH'(M,L) +1
= degL+(1—g)+1
= deg(LLy) + (1 —g).

This proves the formula for LLy; the proof for LL; ! js similar.

(c) We now show that every line bundle L is isomorphic to some
product
Lp ... Ly, Lyt .. L}

Consider the short exact sequence

0 - O(L) B OLLY) » S -0,

where the quotient sheaf S is described locally as the quotient space
of f(z) » 2z"f(z) where z is a coordinate vanishing at p. This
quotient thus captures the first n coefficients of the Taylor expansion
of f(z) at p. The corresponding long exact sequence is
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0 - H°(M, L) = H°(M, LL}) = C* — H'(M, L) - H'(M, LL}) 0.

Using the fact that the alternating sum of the dimensions of the
terms in a long exact sequence must vanish, we find that

dim H°(M, LL})
= n+dimHY(M, LL}) + dimH(M, L) — dimH'(M, L)
> n+dimHY(M, L) - dimH'(M, L).

Choosing n sufficiently large, the right-hand side is positive, which
means there exists a holomorphic section s of LL}. Suppose this
section vanishes at p1,...,p, with multiplicities m,,...,mg. Then
885" ... s, is a non-vanishing section which trivializes the bundle
LLpL,™ ... L, ™. Therefore we get an isomorphism

L=Lp. . LpkL.",
as required, and it follows that the formula holds for all line bundles.

(2) Suppose that E is a vector bundle of rank m, and we assume in-
ductively that the theorem holds for bundles of lower rank. We shall
find a line bundle as a subbundle of E. Note that a line subbundle
L C FE is the same as a non-vanishing section of Hom(L, F) = L*®E.
Consider the short exact sequence

0 O(E) 30(E®L:) =+ 8 - 0.
As before, we get
dimH%(M, E ® Ly) > mn + dimH%(M, E) — dimH!(M, E),

so for large enough n we can find a section s of E ® Ly. Suppose
that s vanishes at p;,...,px with multiplicities m,;,...,m;. Then
§s5" ... 8, is a non-vanishing section of £ ® L*, where L* =
LyL;™ ... L, ™. Thus we have an inclusion L C E. Now consider
the short exact sequence

0—- O(L) = O(F) - O(Q) = 0,
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where Q is the rank m — 1 quotient bundle. Using the fact that the
alternating sum of the dimensions in the corresponding long exact
sequence is zero, and using our inductive hypothesis, we get

dimH%(M, E) — dimH!(M, E)

= dimH%(M, L) - dimH*(M, L) + dimH%(M, Q)
~dimHY(M, Q)
degL+ (1-g)+degQ+ (m—-1)(1—g)
deg E + m(1 —g),

I

I

as deg E = deg L + deg Q. This follows from the fact that det E =
L ®det @. Thus the formula holds for E, which concludes the proof.
(m]

4 Direct images of line bundles

In the previous sections we have looked at line bundles and vector
bundles over arbitrary Riemann surfaces M. Now we specialize to
the Riemann sphere M = P!, which has genus 0, and ask: what are
the holomorphic vector bundles on P!?

First begin with line bundles. Recall that we constructed O(n) on
P! by using the transition function 2" on UyNU;, where P! = Uy UU,
is the standard covering. We also saw that line bundles are classified
up to isomorphism by the Picard group H!(M,O*), which fits into
the exact sequence

HY(M,0) 1 .y de

The first term has the structure of a ¢ complex-dimensional torus.
Since g = 0 in this case, this term must vanish. Thus the Picard
group is isomorphic to the integers, and so the degree classifies line
bundles on P! up to holomorphic isomorphism. For example, if p €
P! then L, has degree one, and so must be isomorphic to O(1),
which is Ly as the transition function z vanishes at z = 0. Similarly,
Ly, ... Ly, = 0O(m).

The classification of holomorphic vector bundles is equally simple
to state:
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Theorem 4.1. (Birkhoff-Grothendieck) If E is a rank m holo-
morphic vector bundle over P!, then

E=0(a)® - & 0(anm)

for some a; € Z.

Proof We will prove this theorem by induction on the rank of E.
We have already seen that it is true for line bundles, so suppose
E is a rank m vector bundle. We have seen previously that for n
sufficiently large, E(n) = E ® O(n) will have holomorphic sections.
Consider the short exact sequence

0> OE(n—-1) 3 0EMn) - S -0,

where S is the quotient sheaf. We can deduce from the corresponding
long exact sequence that the induced map

H(P', E(n — 1)) 3 HY(P!, E(n))

is injective. Suppose these groups have the same dimension; then the
above map must be an isomorphism, which implies that all sections
of E(n) must vanish at p. Since this is true for all points pEP, we
have a contradiction. Therefore

dimH(P', E(n — 1)) < dimH'(P', E(n)),
and so there exists an integer n such that
HY(PL, E(n-1) =0

and
H(P!, E(n)) #0.

The long exact sequence now looks like
0 — 0 — H(P', E(n)) - H*(P',S) - H\(P', E(n — 1)) — - - .

If 5 is a non-trivial section of E(n), then the map to HO(P!,S) is given
by evaluation at the point p. By exactness, this map is injective, and
hence s(p) # 0. Since this is true for all p € P!, s is a non-vanishing
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section. Therefore it defines an inclusion of the trivial line bundle O
in E(n) by
O= MxC - E(n)
(m,)) — As(m).

So we have an exact sequence
00— E(n)3Q-0,

where Q is the quotient bundle. For O to split off from E(n) in a
direct sum decomposition, we require a copy of Q inside £ (n) which
is complementary to O. This is a splitting of the exact sequence,
i.e. a homomorphism Q — E(n) which gives the identity on Q when
composed with a. To show that one exists, consider the short exact
sequence obtained from the above by tensoring with Q*

0 —» Q* = Hom(Q, 0) - Hom(Q, E(n)) - Hom(Q,Q) — 0,
and the corresponding long exact sequence
0 - HO(P!,Q*) —» H° (P!, Hom(Q, E(n))) =

- H(P!, Hom(Q, Q)) » H'(P, Q") = --- -

Clearly there is a non-vanishing section of Hom(Q, Q) given by the
identity map / from Q to Q. We would like to show that I maps
to zero in H!(P!,Q*), as this would mean it lifts to a section of
Hom(Q, E(n)), which is what we want.

By our inductive hypothesis, @ splits into a direct sum of line
bundles

Q=00) @ ®O(brm-1).

Consider the short exact sequence

0 O(-1) 5 OE(n—1) - 0Q(-1) =+ 0
and the corresponding long exact sequence

0 - HY(P!, O(-1)) » H'(P}, E(n — 1)) =

- H(P',Q(-1)) = H' (P, O(-1)) - -+
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The first of these groups vanishes as O(—1) has negative degree, the
second vanishes due to the way we chose n. By the Riemann-Roch
theorem applied to O(—1), we see that

dimH'(P',0(-1)) = dimH(P',O0(~1)) — deg O(-1) - (1 — g)
0-(-1)-(1-0

= 0,

and so the fourth group vanishes also. Therefore

H(P',Q(-1)) = D H (P!, 0(b: - 1)) =0,

and it follows that b; — 1 must be negative for all 4, since for n > 0,
O(n) has an (n+ 1)-dimensional space of sections. Thus b; < 0. Now
applying the Riemann-Roch theorem to O(—b;), we see that

dimHY(P',0(-b;)) = dimH(P*, O(-b;)) — deg O(=b;)
-(1-9)
= (=bi+1)-(=b)-(1-0)
= 0,

as the sections of O(—b;) are polynomials of degree —b;. It follows
that
HI(P', Q") = DH!(P,0(-5:)) =0.
i

Therefore [ lifts to HY(P', Hom(Q, E(n))), or in other words, there
exists a section of Hom(Q, E(n)), which means that E(n) splits as
O® Q. Thus

E=20(-n)@ 00 —n)& - & O(bp-1 —n),
which concludes the proof. |

Corollary Let E be a holomorphic vector bundle over P'. Then E
is trivial if and only if deg E = 0 and HY(P!, E(—1)) = 0.

Proof The only if statement is obvious. Conversely, suppose E
has degree zero and satisfies H'(P!, E(~1)) = 0. By the Birkhoff-
Grothendieck theorem, we can assume

E=0(a)& - 80(am)
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for some a; € Z. Then

degE = Zai =0,
i

and
H'(P', E(-1)) = DH°(P!, O(a; - 1)) = 0

implies that a; — 1 is negative for all 7, i.e. a; < 0. It follows that
a; = 0 for all ¢, and hence F is trivial. o

We are now going to produce vector bundles on M from line
bundles on a covering in a natural way. Suppose we have a holo-
morphic map f : M — M between compact Riemann surfaces. The
degree of f is defined to be

degf := deg(f*Ly),

for p € M. Since L, has a holomorphic section that vanishes at p,
its pull-back vanishes with total multiplicity deg f and this, if p is a
regular value, is just the number of points in f~!(p).

Given a sheaf § on M, we define in a canonical way the direct
image sheaf f.S on M by

(f:S)U) = S(fHU)).
Proposition 4.2 Take S = O(L) for some line bundle L on M.
Then
(1) H(M, £.0(L)) = H'(M,O(L)),
(2) f.O(L) = O(E) on M, for E a rank m holomorphic vector

bundle, where m = degf,
(3) if V is a holomorphic vector bundle on M, then

LOLBfV)ZOERV).
Proof (See Gunning 1967). Parts 1 and 3 are tautological from the

construction. For Part 2 we essentially need to show that each point
p € M has a neighbourhood U for which we have an isomorphism

LOL)U) = OU) - @ OU) .

m
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If p is a regular value of f this is obvious, because f~!(p) consists
of m distinct points and since f’ # 0 at all of these, there are m
disjoint open sets U; C M on each of which f is a holomorphic
diffeomorphism to the same open set U C M, so here

£OL)U) = O@)(fH (V) = Pow).

=1

In the general case, f~(p) contains branch points, where f(z)
looks like 2¥g(2). In fact a change of coordinate means we can take
neighbourhoods U and U such that the map f is

U » U
z 2k

and a local coordinate on U is given by w = zF. A section of L over
U will now look like

h(z) = ho(w) + zhy(w) + -+ + 2" he_y (w),

so the space of sections is the direct sum of k copies of the holo-
morphic functions on U. The total multiplicity of the branch points

still satisfies
Z kg=degf=m
qef~Yp)

so in both cases, local sections of f,O(L) look like m local holo-
morphic functions. It follows that f.O(L) is the sheaf of sections of
a rank m holomorphic vector bundle F on M. Q

Using the above construction, let us work out the basic topolo-
gical invariant of E, its degree:

Proposition 4.3 With L and E as above,
deg E =degL + (1 — g) — deg f(1 —g),
where g is the genus of M, and g is the genus of M.

Proof (1) For a vector bundle V' over M, an argument we have
used before shows that

HO(M,VL;™) =0
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for large enough n. We simply use the exact sequence of cohomology
groups: if HO(M,V) and HY(M,VL;') have the same dimension
then all sections of V' vanish at p, but a given section can only vanish
with some finite multiplicity, so eventually V'L, ™ has less sections,
and the dimension goes down. Repeating the process, it must finally
be zero.

(2) Using Serre duality, it follows that
HY(M,VLE)* 2 H(M,V*KL;") =0,

for large enough n.

(3) Thus we have

HY(M,Lf*L}) =0
and

HY(M,EL}) =0,

for sufficiently large n. Applying the Riemann-Roch theorem to
these bundles, and using the above vanishing results, we find

dim HO(M, Lf*L?) = deg L + mn + (1 - §)

and
dimHY(M, EL?) = deg E + mn + m(1 - g).

By parts 1 and 3 of Proposition 4.2, these dimensions must be the
same, which gives us the required result. a

Suppose now that M = P!, so we are considering a holomorphic
map f : M — P!, Since g = 0, it follows from Proposition 4.3
that deg E = 0 if and only if deg L = m + (§ — 1). If the degree is
zero, then E is topologically trivial but may not be holomorphically
trivial. The following proposition tells us when the latter is true.

Proposition 4.4 Suppose deg E = 0; then E is trivial if and only
if
L(-1)=L® frO(-1)

has no non-trivial holomorphic sections.
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Proof By the corollary to Theorem 4.1, E is trivial if and only if
H(P! E(-1)) =0.
However, this space of sections is canonically isomorphic to
HO(M, L(-1))
by Proposition 4.2, parts 1 and 3. ]

Note that if deg L = m + (§ — 1), then deg L(—1) = § — 1, since
the degree of f*O(1) is m. So, from Propositions 4.3 and 4.4, if
L(-1) is of degree (§ — 1) and has no non-zero holomorphic sections,
then the holomorphic vector bundle E is trivial. Let us consider this
condition more generally.

Recall that on any Riemann surface M of genus g, J97! is the
space of equivalence classes of line bundles of degree ¢ — 1 and this
is a g-dimensional complex torus, the Jacobian:

HY(M, 0)
HY(M,Z)

There is a holomorphic map from M x --- x M to J97! given by
e e

J9 1l

g-1
(P1y -+ Pg-1) > Lpy - Ly,

The image is called the theta-divisor ©. If a line bundle L has a non-
vanishing section with zeros py,...,pg—1 then L = L, ... Ly, _,, so
L belongs to the theta-divisor. The image of the (g — 1)-dimensional
product is of codimension one in the g-dimensional Jacobian J9~1.

In the specific situation of f : M — P!, it follows that for a
generic line bundle L(—1) € J9~1, f,O(L) will be the trivial bundle
over P*. If L(~1) € © then the a; in the Birkhoff decomposition
of E will be non-zero. So in particular, in a continuous family the
a; will jump from zero to non-zero values as one passes through the
theta-divisor.

5 Matrix polynomials and Lax pairs
We have seen in the last section that a degree m map

f:M P
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and a line bundle L(—1) € J97'\O give us a trivial bundle E on P!,
On its own, this is not much information, but we now introduce a
new ingredient. We take a section w € HO(M, f*O(n)).

Let U C P!; then multiplication by w defines a linear map

w: H(f71(U), L) = H(f"(U), L(n)).
By the definition of E this is a homomorphism
W : H(U, E) - H(U, E(ﬁ)) )
Since W is globally defined, and F is trivial,
W :HY(P', E) 2 C™ - HY(P!, E(n)) = C™ @ HY(P!,O(n)).

In other words, we have an m xm matrix-valued holomorphic section
of O(n). We have seen that all sections of O(n) are polynomials in
z of degree < n, so

W =A(z) = Ao+ A1z +---+ Ap2".

What we have here is a construction of a matrix polynomial from
a line bundle on a Riemann surface. We may ask how to go the other
way: what is the role of the Riemann surface M in this picture?

Recall that if p is a regular value of f, then the inverse image
f~Y(U) of a small neighbourhood U of p in P! will consist of m
neighbourhoods Uy, . .., Uy,. In particular,

H(U,E) = H(U;, L).

We can choose a local basis {s,, ..., sm} of sections of E over U which
correspond to sections {01,...,0m} of L over f~1(U) which satisfy
oily; = 0 for i # j. Since E is trivial, the s; are local vector-valued
functions. But w acts on the sections o; by scalar multiplication,
and so

A(2)si = w|y;si,

thus the m locally defined functions w|y, o f~!| are eigenvalues of
A(z). In particular, by continuity, at every point of M, the value
of w satisfies the characteristic equation det(w — A(z)) = 0. This
is an algebraic relation between sections of line bundles on M and
describes M as an algebraic curve as follows.
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The section w of f*O(n) defines the following commutative dia-

“’/l

M—>1F’1

We denote by S the total space of the line bundle O(n): S is a two-
dimensional complex manifold. Then the image of M in S is given
by the equation

det(w — A(2)) = w™ + a1 (2)w™ - + ap(2) =

and is called the spectral curve of A(z).

Let us assume for simplicity now that w(M) embeds M as a
one-dimensional submanifold of S.

If M C S determines the spectrum of A(z), what, we may ask,
has the line bundle which enters into the construction got to do with
A(z)?

The matrix A(z) acts on H'(M, L) = C™ and evaluating a section
of L at a point gives a surjective homomorphism of vector bundles

MxC'—=L

which is preserved by w. Taking duals, L* C¢ M x (C™)* is the
eigenspace of A*(z) corresponding to the eigenvalue w.

Remark The point about this construction is that the eigenvalues
of the polynomial matrix A(z) are not single-valued functions of z:
for each z there are m solutions to det(w — A(2)) = 0. This means
there is an m-fold covering of P! on which we do have a single-
valued eigenvalue w. This covering is the spectral curve S, and if
A(z) is generic the eigenspace is just one-dimensional and defines
the line bundle L. In Galois theory terms this is like producing a
field extension in which the algebraic equation det(w — A(z)) = 0
has a root: in fact the field of meromorphic functions on the spectral
curve is a finite extension of the field of rational functions in 2z which
fulfils precisely that role.

We thus have the following correspondence:
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o the spectrum of A(z) is a Riemann surface M
e the eigenspace of A%(z) is a line bundle on M

and the direct image construction relates one viewpoint to the other.
We can put this more formally as a proposition:

Proposition 5.1 Let X be the space of all m x m matriz poly-
nomials A(z) with smooth spectral curve . Then PGL(m,C) acts
freely on X by conjugation and the quotient can be identified with
JI"H(EZ)\O.

We are now in a position to discuss the origin of Lax pair equa-
tions and the role of Riemann surfaces and line bundles in their
solution. Recall that we consider equations of the form

dA
d—t - [A: B]

where A(z) and B(z) are matrix polynomials. It is easy to see that
the spectrum of A(z) is preserved if A satisfies an equation of this
form. From our point of view it means that as ¢ varies, the eigenspace
bundle varies in a complex torus. We shall now show that if a line
bundle follows a straight line motion in the torus, there is a basis for
which A(z) evolves as a Lax pair equation, where B(z) has a specific
form.

We begin then with f : M — P! and Ly;(—1) € J9"!\© vary-
ing linearly in t. To go further, we need a good description of line
bundles on M. Recall that M sits inside the total space S of the
line bundle O(n) over P! given by the transition function 2". We
can use the standard coordinate patches on §, and then restrict to
M. In particular, we can write S = U UU, where U and U are both
isomorphic to C? with coordinates (z,w) and (Z, w) respectively. On
the overlap C* x C, these coordinates will be related by

z—l

N

-n

&

wz

Furthermore, U and U are good open sets in the sense that we can
use this covering to calculate cohomology of sheaves of sections of
line bundles on S.
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Recall that w(M) C S is given by
det(w — A(z)) = w™ + a;(2)w™ ' + .- + am(z) =0,

thus it is the zero set of a holomorphic section of 7*@(mn) on §
(where 7 is the projection 7 : § — P'). Therefore there is a short
exact sequence

0 = Og(—mn) 4O o0 0, 0.
Taking the corresponding long exact sequence we get

det(w_—)A(z))

H'(S, O(-mn)) H'(S,0) - HY (M, 0) - H(S, O(-mn)).

The last of these groups vanishes, because we covered S with only
two open sets, so there are no three-fold intersections. This means
that H'(M, O) can be described as H'(S,0) modulo the image of
det(w — A(z)). Now H!(S,O) is given by holomorphic functions on
UNU = C x C modulo functions which extend to U and U. So
overall, H'(M, O) can be described as functions

0© oo
Z Zak,wkz’

l=—o0 k=0

on C* x C modulo functions

0 00
Z Z aklwkzl

=0 k=0
on U, functions
[o < BN o} [o <IN o] [ <o o]
andtE =) ag(wz (e = DY apnwka k-t
=0 k=0 =0 k=0 =0 k=0

on U, and modulo the equation
det(w — A(z)) = w™ + a1 (2)w™ 4+ - 4 ap(2) =0.
Thus we find that we can represent any class in H'(M, O) by
moly

flw,z) = Y 2

=1
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where N is some positive integer and the b;(z)’s are polynomials.

Now exp B(w, z) will give us a class in H (M, O*) corresponding
to a degree zero line bundle. Therefore using M NU and M NU as
an open cover for M, we find we can express any line bundle L of
degree d as a bundle with transition function exp B(w, z)c, where c is
the transition function for some fixed line bundle of degree d. Then
to make a linear variation in L we merely need to vary our element
of H!(M, O) linearly. Thus we get a family of line bundles L, corres-
ponding to the transition functions exp(t8)c where c is independent
of t.

Suppose we have a family of sections varying with ¢, each section
in

HO(Mth) = HO(IPlaEt) =C".

These will be given by functions s(t) and 3(t) on U and U respect-
ively, which are related on the overlap U N U by

s(t) = exp(tB(w, z))ci(t).
So take a holomorphically varying basis of global sections
ai(t),...,om(t)
of L;, then this is represented by functions s;, 5; for 1 <1 < m, with
3i(t) = exp(tB(w, z))csi(t)-

Differentiating this equation with respect to ¢t we get

33, 03
5t = Bs; + exp(tﬁ)

Now by the definition of A(z),
we; = Z Ajisj,
J

where A;; is the matrix of A(2) in this basis. Since B(w, 2) is poly-
nomial in w, we can then write the above equation as

2 Eﬁ(A )ity +exp(tB)e
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Now split the finite matrix Laurent series 8(A(z), z) into polynomials
Bt in z and B~ in 27! (put the constant term in *):

BA(z),2) = B + B

We then have

3, _ 0s;
i~ P = Y By +expltBlesy

J

exp(th)c (33' Zﬂ;s})

and so since one side is holomorphic in z and the other in 271, this
defines a global section u;(t) of L¢. But o1,...,0, were chosen to
be a basis, so there is a matrix C(t) depending holomorphically on

t alone such that
u; = Z CjiO’j
J

and we have

as, Z ﬂ]x sj = Z CJ’ 85+

Recall the relation

ws; = ZAji(z)sj.
j

Differentiating this, and noting that the spectrum does not vary with
t, we get

0s; 0s;
o5 - DT T
J
0A
= Z (—5) 8j+ZAji(ﬂ:} + Ckj)sk -
] ik

On the other hand, the left-hand side can be written

w Z .B_u + Cji)sj = Z( ;4 Cji) Axjsk
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and equating these two expressions we find

8A "
= = C(t
This is in general a time-dependent equation, but we derived it by

making an arbitrary choice of moving basis for HO(M, L,). If A =
P~1AP, then

dA . -
’&' = [Av ﬁ+(A; Z)]

if 4P
T -CP.

Thus solving this linear equation gives a natural moving frame in
which the equation is of autonomous Lax form

dA
=148

We conclude that if L, varies linearly in ¢, then there exists a
basis for the trivial bundle on P! such that A(z) satisfies a Lax pair
equation

dA4

a- = [A, B] .
This solution becomes singular when the linear flow hits the theta-
divisor in J971.
The procedure we have adopted here gives a concrete way of
interpreting linear flows on the space of line bundles as solutions

to Lax pair equations. We represent the direction of the flow by a
cohomology class

m-1 i
Bz, w) = Z bt_(zzj%liv
i=1

then take B as the polynomial part
B = f(A(2),2)" .

Note that B is not unique: that is in the nature of cohomology, which
is a space of equivalence classes. In particular, we can add onto B
any multiple of a power of A. Let us look at a couple of examples.
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Examples

(1) We take a dimensional reduction of the self-dual Yang-Mills
equations. The full equations are

Vo, V1] = [V2,V3]
Vo, V2] = [V3,V]
[Vo,V3] = [V1,V2],

where 5
V= 2 + A;

are covariant derivatives corresponding to a connection A; in co-
ordinates (o, z1, T2, z3). We shall look for solutions depending only
on t = zg, i.e. A; = T;(t). These are solutions invariant under trans-
lation in the z;, 79, z3-directions. We can make a gauge transforma-
tion such that Vy becomes simply d/dt. Then the SDYM equations
become

dTy
Fralie (T2, T
dTy
dt - [T31Tl]
dT;
T = (T, T2),

which are known as Nahm’s equations. Let
A(z) = (T} +iD) + 2Tz — (Ty — iT2)22.

Then

dA
dt

l
I

[Ty - iTh, T3] + 2[Th, T2z — [T2 + iTh, Ts)2°
[A, —iT3 + i(Tl - iTg)Z]

oty

We recognize here the form we have discussed above. The matrix
A(z) is quadratic in z so n = 2 and the direction of the linear flow
is given by

1l

LW
Blz,w) = ~i=.
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A special case is when the T; are of the form

i 0 0 i 0 -
T1==u1((l) —i)’ T2="2(i (l)), T3=ﬂ3(1 01)-

Then Nahm’s equations become

’l..ll = 2112113
112 = 2113111
ila = 2’(1.1112 .

These are equivalent to the equations of a rigid body pivoted about
its centre of mass. In this example, the Riemann surface M has genus
1, and our construction is compatible with the classical solution of
these equations using elliptic functions.

(2) A well-known classical integrable system is the equation for
geodesics on an ellipsoid

Zﬁix?=l.
i

This can be approached as follows (Adler and van Moerbeke 1980):
let 8 be the matrix with diagonal entries f31,...,8n. Then if A(z) is
of the form

AR)=-z@z+2(z®y-y®z)+ 267",
the equations for the geodesic flow can be put in Lax form with
B = (za A—l)+

using the Cayley-Hamilton theorem to express A~! as a polynomial
in A.

6 Completely integrable Hamiltonian
systems

The geometrical way of solving Lax pair equations outlined above
naturally presents us with two sets of variables: the coefficients of
the equation of the spectral curve, which are conserved quantities for
the flow, and the coordinates of a complex torus, on which the flow
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is linear. This structure can be seen as part of the more traditional
idea of integrable systems, based on the integrability of mechanical
systems using Hamiltonian methods. This point of view also leads
us to uncharted territory: integrable systems where it becomes very
difficult to write down the equations explicitly even though the geo-
metry is quite clear. We begin with a resumé of symplectic geometry.
A symplectic manifold X?" is a manifold with a non-degenerate
closed 2-form w. We can adopt this definition for complex manifolds
if we assume that w is holomorphic. This skew-form gives us an
isomorphism between the tangent bundle and cotangent bundle of
X, so that given a function H : X — C (known as a Hamiltonian)
we obtain a vector field Xy (known as a Hamiltonian vector field)
characterized by w(Xy,Y) = Y(H) for a vector field Y. Given two
functions f and g on X, their Poisson bracket is defined as

{f,g} == Xs(9) = —Xo(f),

and
Xir.gy = (X5, Xq].

Apart from the cotangent bundle of any manifold, the most nat-
ural example of a symplectic manifold is any coadjoint orbit of a
Lie group G. If £ € g*, the dual of the Lie algebra of G, then the
symplectic structure at £ is given by

we(X,Y) = {([X, Y])7

where X and Y € g define tangent vectors to the orbit at £. This
is a symplectic manifold with an action of a Lie group preserving
the symplectic structure. The fact that it sits inside g* is part of a
general property of symplectic manifolds X with group actions: the
momentum map is an equivariant map

u:M-og*

and in general u~1(0)/G is another symplectic manifold, the sym-
plectic quotient.

We begin now with G = SL;,(C) and identify the Lie algebra
with its dual using the bilinear form tr(AB). Take a product of
orbits

Oy x -+ X O
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of elements of g with distinct eigenvalues. The dimensions of each
of these orbits is

dimO; = (m?2—1) — (m - 1) = m(m — 1)

since dimSL,,(C) = m? — 1 and the diagonal matrices with trace
zero have dimension m — 1. We now perform a symplectic reduction
on this product. The moment map for the action of G is given by

Oy X+ X0 — g
(Rl"-'7Rk) = ElR't

The symplectic quotient is then

X ={(Ry,...,Re): Y_ Ri = 0}/SLn(C),

and this is a symplectic manifold of dimension
2N = k(m? = m) —2(m? - 1). (6.1)

We are going to relate this symplectic picture to matrix polyno-
mials A(z). Let p(z) = (2 — ay)...(z — o) and

k .
AR =p(2) Y
i=1

— (2~ )

Then A(z) is a matrix-valued polynomial of degree (k — 2), as the
leading term )_; R; vanishes. Now

det(w — A(2)) = w™ + aqw™ 2 + a3w™ 3 + .- + ayy = P(z,w)

(note that a3 = trA = 0, since we are dealing with matrices in
sl (C), i.e. matrices that have zero trace).

Each a; is a polynomial in 2, but not arbitrary, since R; €
O;. Thus the eigenvalues ); of A(q;) are fixed in advance and
P(ay, /\EJ )) = 0. Subject to these constraints, the coefficients are inde-
pendent functions on X. If we fix them to be a constant (i.e. fix the
spectral curve of A(2)) then we know from Proposition 5.1 that the
subspace of X so defined can be identified with J9-1\@, so Jacobians
of Riemann surfaces are appearing inside this symplectic manifold.
We shall see that the Hamiltonian vector fields of the functions on X
which are coefficients of the characteristic polynomial actually give
us Lax pair equations, linearized on these Jacobians. We shall only
do the calculation for the simplest case, but the picture holds in
general (Adams, Harnad, and Hurtubise 1993).
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Consider
R(2) = —A(2) =
()= A0 = Z(z &’
and the function H defined by the residue at z = oy of tr(R(z))?,
i.e.
H = Z H(_RJR_k) .
ja (e =)

Now take a tangent vector Y on the product of orbits, representing
a tangent in the quotient. This is defined by R; = vi, R,] forY; € g.
Next differentiate H in the direction of Y. We obtain

_ - (Y5 RijR) tr (R;{Ys, Ry])
Y (H) ; (ak — ;) +#Zk (ok —ay)

If Xy is the Hamiltonian vector field of H, it is defined by X; € g
with R; = [X;, Ri], and by the definition of the symplectic form on
products of coadjoint orbits,

Y(H) = w(Xu,Y) =Y (R X;, Yy)) = Y tx((5, Ry] X;).
J J
By comparing with the formula for Y (H) above, we see that

Ry . R;
X = = i
lP— (7 # k), Xk 12 p—

so that the Hamiltonian flow gives the differential equation

g_@ _ [Rln R] [Rj’Rk]
dt 2 (z— a,) ay ~ ag) E < (2 = o)k — o)

J#k
s (2 - ak)(z - aj)
J
"z — oy

and this is in Lax form. To see that it is linear on the Jacobian,
choose the coordinate z such that ax = 0. Then the Lax equation is

@[3 G - G )
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As in the previous section, we see that the Hamiltonian flow of the
function H is tangential to the Jacobians in X and is moreover lin-
ear. In other words the vector field has constant coefficients with
respect to the flat coordinates on the torus. We have k such func-
tions Hy,..., Hy and since they correspond to constant vector fields
on the torus, they commute, or equivalently the functions H;, H; on
X Poisson-commute: {H;, H;} = 0. If we perform the calculations
above for the coefficients of tr(R(z)?) for all p then one can show
similarly that the corresponding functions Poisson-commute. This
brings us face to face with the notion of complete integrability in a
Hamiltonian setting.

Definition 6.1 A completely integrable Hamiltonian system is a
symplectic manifold X2V with N Hamiltonian functions Hy,...,Hy
such that {H;, H;} =0 and dH, A... AdHN #0.

We shall have shown that our example is a (complex) completely
integrable Hamiltonian system if the number of independent coeffi-
cients of the characteristic polynomial

det(w — A(2)) = w™ + aaw™ 2 + a3w™ 3 + - + oy = P(2,w)

is precisely N. In fact a numerical coincidence shows this to be true.
Note that each a;(z) is of degree i(k—2) since A(z) is of degree (k—2).
If we chose them arbitrarily, the number of degrees of freedom would
be

Zm:(i(k-z)+1)= (-m(—mz-l“i)q) k=2 +(m-1).
i=2
But we have the constraints
P(e;, ) =0
and so the actual number of degrees of freedom is

m(m —1)

<___m(m2+1)_1) (k=2)+(m=1)—(m—1)k = k———"—(m*-1).

But this is indeed precisely half the dimension of the symplectic
reduction (see eqn 6.1)!
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This result is part of a bigger picture, which involves the study
of the moduli space of filtered Higgs bundles (Hitchin 1987; Simpson
1990, 1992). In the above situation we should write more invariantly

so that the R; are the residues of a meromorphic matrix-valued dif-
ferential on P!. Moreover the fact that the sum of the residues
is zero is the vanishing of the moment map for the symplectic re-
duction. The generalization consists of replacing R(z), which is a
meromorphic form on P! with values in the endomorphisms of the
trivial bundle, with a 1-form on an arbitrary Riemann surface M
with values in End E for an arbitrary holomorphic vector bundle E.
The numerical miracle is repeated and we get many completely in-
tegrable systems this way. To illustrate it, let us go to the opposite
extreme from the above example: we shall use an arbitrary compact
Riemann surface M of genus ¢ > 1 and a holomorphic form with
values in End E—no poles at all.

We need to consider the space of equivalence classes of holo-
morphic rank m vector bundles on M. This is not such a good
object unless we make the supposition that the bundle is what is
called stable. This is a generic condition and one of its consequences
is that the only global endomorphisms of the bundle are the scal-
ars. There is, for stable bundles, a good space of equivalence classes,
which is a complex manifold M™.

The dimension of M" can be calculated by looking at infinites-
imal deformations of the holomorphic structure. If gog is a set of
transition matrices in a 1-parameter family of holomorphic bundles
then

g;}}gaﬁ
defines a class in the sheaf cohomology group H!(M,End E). This
space is then naturally identified with the tangent space to M" at

[E]. We can calculate its dimension from the Riemann-Roch the-
orem:

dim H(M, End E) — dimH! (M, End E)
= degEndE +rkEnd E(1 —g).
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By stability dimH%(M,End E) = 1, just the constant scalars, and
since End E has a nondegenerate holomorphic bilinear form on it
degEnd E = 0. Thus

dimM = dimH'(M,End E) = 1 - m?(1 — g). (6.2)

Now M itself is not a symplectic manifold, but we take its co-
tangent bundle T* M with its canonical symplectic structure. Since
the tangent space to M at [E] is H!(M, End E), Serre duality gives
us the cotangent space as

H(M,EndE® K).

A point in the cotangent bundle is thus (up to equivalence) a vector
bundle E and a holomorphic section A of End E @ K. Locally, A is
just an m X m matrix with values in the canonical bundle, and we
can take its characteristic polynomial

det(w — A) =w™ + ™ '+ + oy

where now instead of each coefficient a; being a polynomial, it is
a global holomorphic section of the line bundle K*. We need to
calculate the dimension of H*(M, K?).

Now when i = 1, by definition dim H*(M, K) = g and by Serre
duality dimH!(M, K) = 1. So by Riemann-Roch,

deg K =29 — 2.
If g > 1 this is positive. Now by Serre duality,
H'(M, K')* =~ H'(M, K'7)

sofori > 1, the line bundle K'~* has negative degree and no sections.
Riemann-Roch for the line bundle K* then gives

dimH(M, K') = deg K* + (1 — g) = (2i — 1)(g — 1).

The number of degrees of freedom in choosing the characteristic poly-
nomial of A is thus

g+ Qi-1)(g-)=ml-1)(g-1)+g=1-m*(1-yg)

=2

and this is exactly the dimension of M or half the dimension of the
symplectic manifold T* M (see eqn 6.2).
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In this case, the equation det(w — A) = 0 defines a spectral
curve M in the total space of the line bundle K of M, and A is
determined by choosing a line bundle on M and making the direct
image construction of Section 4. Here again the fibre is an open set
in a complex torus and the Hamiltonian flows are linear.

In this general framework, we see integrable systems associated
to Riemann surfaces but it seems impossible to attempt to write
them down explicitly. Only the geometry remains.
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Integrable systems and inverse scattering

Graeme Segal

1 Solitons and the KdV equation

The original soliton, or ‘solitary wave’, was the bow-wave of a canal-
barge observed in 1834 near Edinburgh by the marine engineer John
Scott Russell. The barge was stopped suddenly, and Scott Russell,
galloping alongside on his horse, saw the bow-wave travel for miles
along the canal without changing its shape, size, or speed.!

Only in 1895, Korteweg and de Vries found the equation

du Bu Ou
Et- = ‘553 + 61‘& (1.1)

describing waves in a shallow canal. One does not expect a non-
linear equation like this to describe a non-dispersing wave. For if
one neglects the non-linear term and looks for a solution of

ou_
ot~ 0x3

of the form cos(kz — wt) one finds that w = k®, so that Four-
ier components of different frequency w travel with different speeds
w/k = w?3, and so spread out. Taking account of the non-linearity
ought to make the behaviour more complicated. Nevertheless, some-
how the non-linearity exactly compensates for the dispersion, and the
KdV equation (1.1) has the solution

-4

u(z,t) = 2k%sech® (kx — k3t),

describing a lump moving with a constant speed k? which is propor-
tional to its amplitude.

!For a history of the subject, see Newell (1983).
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There matters stood until the 1960s, when it was discovered by
numerical integration that if one starts with an initial configuration
u(z) = u(z,0) which is close to a sum

> 20} sech’(pi(z — ay))

of solitons of different sizes centred at widely separated points a; of
the line, then after a long time t the solution u(z,t) is very nearly of
the same form, as if the individual solitons had sailed through each
other without interacting, except that when a bigger one overtakes a
smaller one it suffers a certain delay. Moreover, if we start with any
initial function u which decays rapidly at infinity, and let it evolve
for a long time, then what we obtain looks roughly like a collection
of widely separated solitons.

Once again, this behaviour is unexpected, as one cannot usually
superpose solutions of a non-linear equation. The survival of the
individual lumps suggests that the equation must lead to a large
number of conservation laws, and that is indeed the case. In 1967
the whole picture was beautifully explained by reformulating the
KdV equation as a Laz equation, and using the methods of ‘inverse-
scattering’ theory. I shall first say a little about inverse-scattering,
and then about its application to the KdV equation.

Inverse scattering

Waves on a string are described by the wave equation ¢ — ¢” = 0.
(Here ¢ = 0yp/dt, and ¢’ = dp/0z.) If we constrain the string in a
certain region —A < z < A the equation of motion will become

¢—¢" +up=0,

where u : R — R is a smooth function with support in [~ A, A] which
describes the constraint or ‘obstacle’.

Let us consider a wave-packet travelling towards the obstacle, i.e.
suppose that for ¢ <« 0 we have

o(, t) = f(z - t)a

where f has compact support. For a genuine obstacle, with u > 0
everywhere, the solution for ¢ 3> 0 will be the sum of a ‘reflected’
and a ‘transmitted’ wave:

o(z,t) = falz +1) + fr(e - 1), (1.2)
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where fr and fr have compact support. ‘Inverse scattering theory’
is the art of reconstructing the obstacle from the reflected waves, i.e.
of determining the function u from the map f — fgr. It becomes a
little more complicated if we do not have u > 0 everywhere, for then
the obstacle can ‘capture’ part of the incoming wave, and (1.2) must
be replaced by

¢(z,1) = fa(z + ) + fr(z = 1) + ) () cosh(wit + &)
for t > 0, where the 1 are solutions of the equation
~¢" +up = —wiy

which decay rapidly as |z] = oo. Such solutions, called ‘bound
states’, exist for only finitely many values of wx. When bound states
exist one needs more information than just the map f — fg in order
to reconstruct the function u, but not very much more, in fact only
the numbers wy and, for each k, a number px such that

ewkT forr <0
pre Y *  forz >0.

Ye(z) = {

It is possible, however, to have ‘reflectionless potentials’ u for
which fr is zero for all f. These turn out to be the ‘pure multi-
solitons’ of the KdV equation, parametrized by (wk, px).

In practice, scattering is treated in a time-independent way. We
are really studying the operator

L,=- (;;)2 +u (1.3)

which acts on functions on the line. We look for eigenfunctions, i.e.
solutions of

Lupx = Mgy
(for A € R), which are of the form

(z) = e? + Rye = for z < 0,
PAET= The= for z> 0.

The functions R, and T), are called the reflection and transmis-
sion coefficients respectively. It turns out that A — R, is a smooth
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function of rapid decrease on the line, and it determines the map
f — fr. (See Section 5.) It is a kind of non-linear Fourier transform
of u: in fact for small u we have (cf. Proposition 6.5)

RA=/u(:c)e"i’\‘ dz + O(u?).
R

Example If u is the ‘soliton’ —2k? sech? kz already mentioned,
then

__ alAT ik
pa(z) =¢ {1 + ST ik(l + tanhkz)} .

For this eigenfunction we have

iz

e forz <0
) ~ T
ea(=) A—+{—ke"" forz > 0.
A —ik

Lax equations
If L, is the operator (1.3) and?

dy)? d
=4(—] —6u— 30 X
P, (da:) Gudx 3u (1.4)
then it turns out that the commutator [P, Ly}, which would be
expected to be a differential operator, actually reduces to the zero-
order operator of multiplication by

u" — 6uy’.

The KdV equation, which is an evolution equation for u, can there-
fore be expressed as an evolution equation
d

a-t-Lu = [P,, L] (1.5)
for the operator L. An equation of this form is called a Laz equation.
Its significance is that it describes an isospectral evolution of the
operator Ly. For if u depends on a parameter t, and we find g; so
that go = 1 and

d
d—ty¢=Puy¢,

2Where P, comes from will be explained in Section 4.
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then (1.5) is equivalent to

d _
d—t {gt lLu gt} =0,

so that
L.(t) =9 Lu(o) 9;1 .

The significance of the Lax form for solving the KdV equation is
that if we let the eigenfunction @) evolve in time according to
2N
‘%’ = Lupx
then it will remain an eigenfunction for L, when u evolves according

to the KdV equation. Furthermore, because P, reduces simply to
4(d/dz)3 when |z] is large, the evolving ¢, will have the form

b eAz—4iN | B e-idz+4iN%t forz <0
ea(z,t) = Ty eihe—4ix%t forz> 0.

This means that the transmission coefficient T remains constant
in time, while the reflection coefficient Ry evolves according to the
simple law

R(t) = e¥¥°tR,(0).

Similarly, when there are solitons present, parametrized by (wg, o),
then wy remains constant, and px evolves by

pi(t) = e™8ktp(0) .

If we have a way of recovering the function u from its scattering
data, therefore, we have a complete solution to the KdV equation,
precisely analogous to the solution of a linear evolution equation by
means of the spatial Fourier transform.

Two other aspects of the situation should be mentioned in this
introduction. For each ) the transmission coefficient T remains con-
stant under the KdV flow, and so we have an uncountable collection
of conservation laws. But T depends in a complicated global way
on the function u, and we should like to have local conservation laws,
i.e. we should like the conserved quantity to be of the form

/F(u,u',u”,...) dz,
R
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where F is a polynomial in u and its z-derivatives. Such a function
F is called a conserved density. Two obvious conserved quantities of
this form are

/Ruda: and /R{%(u’)2 -u®} dz.

A complete sequence of local conservation laws can be obtained from
the asymptotic expansion of log Ty as A — co. We have

I
logT)‘ ~ E W
k>0

as A — oo, where each I is the integral of a local conserved density
of the above form. The reason for this localization will be discussed
in Section 10.

The second point to be made is that T can be regarded as the
‘characteristic polynomial’ det(A? — L,) of the operator L,. In iso-
spectral flows the characteristic polynomial is always the natural
invariant to look at. The relation between T and det(\? — L,) is
the subject of Section 9.

2 Classical dynamical systems and
integrability

A state of a dynamical system was described classically by n ‘position
variables’ z,,...,z,, and n ‘momentum variables’ p;,...,pn. Its
evolution was determined by a single function

H(z1,...,Zn; P1y--1Pn)s

called the Hamiltonian, by means of Hamilton’s equations

dz; OH dp;  _0OH (2.1)
dt - 6p.~’ de¢ oz; ) )

Thus the smooth function H, defined, say, in an open set U of
R?", gives us a vector field

OH 0 OH 0
=Y oo~ 2 omim @2
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on U according to which the system evolves.

If F: U — R is another function, we can define a vector field £
by replacing H by F in (2.1) or (2.2). The rate of change of F along
a trajectory of (2.1) is given by the Poisson bracket

{H,F} =D, F=—-De.H. (2.3)

(Here D¢, is the directional derivative along the vector field £y .)
In particular, F is ‘conserved’, i.e. constant, on trajectories of
(2.1) if and only if H is constant on trajectories of {F.

Example For a particle of unit mass moving in R® under the force
produced by a gravitational potential V : R — R we have n = 3,
and

H =3} +95+793) + V(z1,22,23),
leading to the equations of motion

. , av
i =pPi, DPi= —a— . (24)
1

If F = z9p3 — T3p2 the vector field

e =530 5y 2
F= 23:173 33:1:2

describes rotation of R® about the z;-axis, and £ H = 0 if V is
unchanged by this rotation. Thus F, which is the angular momentum
about the z;-axis, is conserved by the motion (2.4) if and only if V
is axially symmetric.

Obviously the simplest dynamical system would be one for which
H depends only on p,...,pn, for then Hamilton’s equations tell us
that the p; are constants of the motion, while the z; evolve linearly
in time with speed
g = 0H
toop”

Traditionally, a system is called integrable if it takes this form
when ‘written in suitable coordinates’. But what kind of coordinate
changes are allowed? It is hard to make sense of this question in
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a single coordinate patch. Hamilton’s equations can be expressed a
little more intrinsically

£n(u) = Ky - dH(u)

where {5 (u) is the value at u € U of the vector field £5 associated
to H, while
dH(u) € T;U

is the gradient of H at u, and
K,:T;U - T,U

is a skew linear map taking cotangent vectors to tangent vectors at
u, which in terms of the bases

8 a
{dl‘iadpi}a {527,, a—Pa}

is given by the 2n x 2n matrix

k=(54) (2.5)

We can think of K, as an element of AT,U. Thus the formalism
of classical mechanics makes sense whenever we have a manifold U
with a skew tensor field K, i.e. a section of A2TU.

Definition 2.6 A Poisson manifold is a manifold U equipped with
a skew tensor field K such that the associated Poisson bracket on
functions on U satisfies the Jacobi identity

{£{g,p}} + {g,{h, }} + {h,{f,9}} =0.
A symplectic manifold is a Poisson manifold for which K, is invert-

ible at each point u e U.

Remark On a symplectic manifold K~! is a 2-form w, and the
Jacobi identity holds if and only if w is closed.

For a symplectic manifold, Darbouz’s theorem tells us that locally
one can always find a coordinate system {zi,...,z.; py,... ,Pn} in
which K takes the standard form (2.5), i.e.

w=K'1=de,- A dz;.
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Such coordinates are called canonical. Furthermore, it is easy to
show that if py,...,p, : U = R are functions on a 2n-dimensional
symplectic manifold which are independent near u € U and ‘in invol-
ution’, i.e. such that the Poisson brackets {p;, p;} all vanish, then one
can find functions z,,...,z, defined near u such that {z;,...,ps}
is a canonical coordinate system. In this situation the functions p;
and z; are called ‘action’ and ‘angle’ variables respectively.

We can now attempt a definition.

Definition 2.7 A 2n-dimensional symplectic manifold U with a
Hamiltonian H : U — R is integrable if there ezist n conserved func-
tions p; : U = R which are in involution and are independent at
almost all points of U.

The Hamiltonian will then be a function only of the p;, for if
we introduce canonical coordinates in the neighbourhood of a point
where the p; are independent we shall have

OH

5'1:_1_ = _{Pi,H} =0

as p; is conserved.
When we have an integrable system the subsets

U, =p"'(n) = {u € U : p;(u) = m;}

are manifolds for almost all € R®, and they are the orbits of the
action of the additive group R” generated by the vector fields £,,. An
important case is when the surfaces of constant H are compact. Then
each submanifold U; is compact, and must necessarily be a torus
R" /L, where L = Z" is a lattice in R*. This is why the coordinates
z; on U, are called ‘angle’ variables. Generically, a trajectory of the
system will wind densely around one of the tori U,.

An integrable system is the opposite of a chaotic system. To see
the difference, consider geodesic motion on a compact surface  with
a Riemannian metric. Then U is the tangent bundle TX, and the
Hamiltonian is H(z, %) = }||22. If £ is an ellipsoid in R® the system
is integrable (see Section 3), and each trajectory winds round a two-
dimensional torus in T'E. These tori project to ‘belts’ on the ellipsoid
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L, and if z belongs to the belt of a geodesic then the geodesic will
continually pass close to z, and each time will be going in the same
direction. If ¥ is a surface of genus > 1 with a metric of negative
curvature, on the other hand, then the geodesic motion is chaotic,
and a generic trajectory is dense in the three-dimensional compact
manifold ||||2 = constant. A generic geodesic will continually pass
close to any given point £ € X, but is equally likely to be going in
any direction when it does so.

A feature of many integrable systems is that each torus U, on
which the system evolves is the Jacobian torus of an algebraic curve
M,, which depends on the value of 5 of the action variables. One way
in which that comes about is as follows. For the systems we study
the phase-space U is often a space of ‘operators’ L of some kind,
and the ‘action variables’ are the coefficients of the characteristic
polynomial of L. If there is another operator Q, which commutes
with all L in U, then we can consider the joint spectrum of L and
Qy, i.e. the set of pairs (A, ) such that

LYy =Xy (2.8)
Qn'{b =l“»[’

for some non-zero . Such pairs (A, u) commonly form an algebraic
curve My, and for each L € U, the solutions ¢ of (2.8) form a line
Ep;),, ie. a point of the Jacobian of M.

Example A beautiful infinite-dimensional example of the arche-
typal situation has been worked out by McKean and Trubowitz
(1976). In the case of the KAV flow on periodic functions u on the
line—say with period 2r—we have L, as in Section 1, and can take
Q to be the operation of translation by 2r. Then @Q acts on each two-
dimensional space V) of solutions of L% = A%y with characteristic
polynomial

det(p —Qx) = p’=F\)u+1,

where @) = Q|Vi, and F()A) = tr(Q,). The function F()) is essen-
tially the characteristic polynomial of L, on periodic functions (see
Section 9). If F were a polynomial then

det(np —Qx) =0
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would be the equation of a hyperelliptic curve M. In McKean and
Trubowitz (1976) it is shown that in any case M is a ‘hyperelliptic
curve of possibly infinite genus’.

A line bundle E on M is given concretely by the sets of zeros and
poles of a holomorphic section 9 of E. We choose a definite section
¥ by prescribing ¥(0) = 1. This never vanishes, but blows up when
(2.8) implies that ¥(0) = ¥(27) = 0, i.e. when ) is an eigenvalue of
the Dirichlet problem for L, on [0,2x]. Thus the ‘angle variables’ are
the spectrum of the Dirichlet problem. In McKean and Trubowitz
(1976) it is shown that the set of L, with given periodic spectrum (i.e.
a given function F())) is a torus, generically of infinite dimension,
and that the space U of periodic functions u is foliated by these tori.

3 Some classical integrable systems

In 1838 Jacobi proved that the equations of geodesic motion on an
ellipsoid ¥ in R®*! were integrable. The theory of this system is very
attractively presented by Moser (1979). It is a little too complicated
to describe here, so I shall just say that the equations can be written
in Lax form L = [P, L], describing isospectral deformations of a
matrix L; and the n conserved quantities in involution which provide
the integrability are the coefficients of the characteristic polynomial
det(A — L). To give the Lax form, we write the equation of the
ellipsoid ¥ as

rtAz =1, (3.1)

where A is a positive definite symmetric (n+ 1) X (n + 1) matrix. A
possible velocity of a particle on ¥ is then a pair (z,p = &) satisfying
(3.1) and also z*Ap = 0. To (z,p) we associate the matrix

L=T,A"" - 22",

where IT, = 1 — ||p||~2pp* is the matrix representing orthogonal pro-
jection on to the hyperplane orthogonal to p.

A rather similar system which is simpler to treat is the finite
Toda lattice. Here we have n numbered particles of unit mass on a
line, with positions z,,...,z,, moving under the action of a force
derived from the potential

'

n=1

Viz1,...s zn) :F E eZk(Zi=zit),

R .’!Ji.'.' s i=1
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where £ is a given positive constant. The Hamiltonian is
H=13p} +V(z1,...,2a),

where p; = ;. As k — oo this becomes the problem of n elastic
billiard balls at positions z; < T2 < -+ < Z,, moving freely except
for collisions in which the colliding balls exchange velocities. For the
billiard balls the elementary symmetric functions oy,...,0, of the
velocities py,...,p, are conserved quantities in involution, and the
Hamiltonian is

— 1.2
35p; = 301 —02.

For any value of k we define the symmetric tri-diagonal matrix

mn b 0 0
bh p2 b O

0 b p3 b3

bn—2 Pn-1 bn-1
0 bp-1  pn

where by = e*(@x=Zk+1) and the skew matrix

0 b O 0
bh 0 =b 0
0 b 0 0
P =
0 0 =by
0 bn1 0

Then the equations of motion are L= [P, L}, and the conserved
quantities in involution are the coefficients of the characteristic poly-
nomial det(A — L). The Hamiltonian is %tr(L’). If the particles are
widely separated then the b; are very small, and det(\ — L) is very
close to [J(A — p;), i.e. the conserved quantities are very nearly the
elementary symmetric functions of the p;, just as in the case of elastic
balls. This system is described in detail in Moser (1975).
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Euler equations

One of the earliest systems kndwn to be integrable was the free
motion of a rigid body pivoted at its centre of mass. The positions
of the body form the group manifold G = SOs, and the Hamiltonian
is the quadratic form H : TG — R on tangent vectors given by a left-
invariant Riemannian metric on G. (This quadratic form, which is
determined by its value on the tangent space at the identity-element
of G, ie. on the Lie algebra g of G, is called the inertia tensor of
the rigid body.) A typical geodesic for a left-invariant metric on
S0; winds densely around a two-dimensional rather than a three-
dimensional torus. A more typical integrable system is the motion
of a ‘top’ with an axis of symmetry which is pivoted at a point on its
axis—not the centre of mass—and moves under gravity. Then the
generic orbit is dense on a three-dimensional torus, for the top spins
about its axis, while the axis ‘precesses’ steadily around the vertical,
and at the same time ‘nutates’—i.e. the angle between the axis and
the vertical oscillates.

Geodesic motion for a left-invariant metric on an arbitrary Lie
group is known to be integrable for a certain class of metrics, but
not all. I shall not discuss that, but shall describe a general method
of constructing conserved quantities in involution for such systems.

The angular velocity of a rigid body whose position is g € G is
the element w = g~ of the Lie algebra g. Its angular momentum
is @ = H(w) in the dual space g*, where H is now regarded as
an isomorphism H : g — g*. The equations for a geodesic can be
written as a Lax equation for a € g*, namely

< a=(w.al = [H(a),a]. (3.2

This is called Fuler’s equation. (If a is known, then so is w, and
then g can be found, in principle, by integration.) The equation
describes geodesic motion for an arbitrary left-invariant metric on
any group.

Euler’s equation is a vector field on g* associated to the quadratic
form H~! on g*. The manifold g* is, in fact, a Poisson manifold (cf.
Definition 2.6): for any smooth F : g* — R we have a vector field
Dp on g* whose action DpG = {F,G} on a function G : g* =+ R is
given by o

{F,G}a) = of[dF(a),dG(a))),
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for a € g*. (Here dF(a) and dG(a) are elements in (g*)* = g, and
[ , ]is the bracket in g.)

There is a standard way to produce a family of Poisson-commu-
ting functions on g*. If F : g* —» R is any G-invariant function,
and B € g is an arbitrary fixed element, then for any A € R let
F : g* = R be defined by

Fy(o) = Fla - Af).
Proposition 3.3 We have {F),F,} =0 for any A, p.

Proof The G-invariance of F is expressed by
(£ - a)(dF(a)) =0,
for every a € g* and £ € g, or equivalently
a([¢,dF(a)] =0.
If in this we replace a by a — uf and £ by dF(a — A\g3), we get
(a = pB)([dF (o — AB), dF(a - pp)]) =0.
Similarly
(a = AB)([dF(a — AB), dF(a - up)]) = 0.
But these two equations imply
a([dF(a - AB), dF(a — pB)]) =0,

which is what we want to prove.

4 Formal pseudo-differential operators

The Lax form dL/dt = [P, L] of the KdV equation depends upon the
existence of a third-order differential operator P whose commutator

with AN
()

is a multiplication-operator. The most practical way to find such
operators P is by the calculus of formal pseudo-differential operat-
ors. Pseudo-differential operators are the smallest class of operators
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which includes both differential operators and their inverses. Their
definition is rather complicated, and need not concern us, for in the
one-dimensional case a formal algebraic treatment is all we need.
What follows is due to Gelfand and Dikii (1976), but the present
elegant treatment is taken from Wilson (1979).

Let us consider formal power series
ann + fn—an_l +--+ fot f—lD-l + f—2D-2 +-- (4-1)

in an indeterminate D (to be thought of as —id/dz), whose coeffi-
cients f; belong to a commutative ring F (thought of as the scalar-
valued functions on some interval in R). We assume F is equipped
with a derivation, written f — f’. We multiply such formal series
using the rule

Df=fD+f’a

which implies
D' = fD7 — D+ f'D7 -,

and, in general,
k
ke _ (r) pk—r
=3 () oot
r2>0
where

(1:) _—_%k(k—l)'“(k"’*‘l)'

This gives us a non-commutative ring D containing F.

If P denotes the operator (4.1) we write P, for its ‘differential
operator part’
Py= D"+ + fiD+ o,

and
P_=f D 4foD%+...,

so that
P=P++P_.

The element f_; € F will be called the residue res(P) of P.

3But see the remarks on page 70.
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For any u € F the element D? + u of D has a unique square-root
1
L2 of the form

L¥ =D+ uD' = 1u/D2 4 L —u®)D3 + ... .

For any other positive integer k we can therefore define the ‘fractional
power’

k
L? =D*+ guDk‘2 + %k(k -2u'DF 3 4.

Our task of finding Lax pairs is now solved by
Proposition 4.2 For every k > 0 the commutator
E
(L2)+,L)

is a multiplication operator, i.e. an element of F.

Proof Evidently [(L%)+ , L] involves only positive powers of D.
On the other hand, L% commutes with L = (L%)Z, 80

k k
[(Lz)+ )L] = —[(Lz)_ 1L]‘
The right-hand side is of the form
—[fD7 '+, D* + u] = 2f' + ( lower terms).

So we must have [(L§)+ L] = 2f'. a

In view of this proposition we can define a flow 9 on the operat-
ors L for each k > 1 by 6L = [P, L), where P = (L*/2),. (When
k is even the flow is zero, as P,;+ is a power of L.)

Proposition 4.3 The flows 8y and 8, commute for all k,m. Fur-
thermore, the residue res(P;t) is a conserved density of the flow 0.

The last statement means that Okres(P}) = f;, where fy, € F
is a polynomial in u,u’,u",... . This is a local substitute for

6k/res(P,',t)dx =0,
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which follows from it when apprgpriate boundary conditions are sat-
isfied (e.g. if u has compact support on R, or else is periodic and the
integral is over a period).

To give the proof it is best to go one step further in the direction
of algebraization. So far we have made no assumptions about the
differential algebra F which contains the coefficient u of the operator
L = D? + u, but from now on we shall take F to be the polynomial
algebra Cfu,',u",...] on a sequence of formal indeterminates—i.e.
to be the free differential algebra generated by u. Then the formula

Opu= 0L =[P} Ll eF

defines a unique derivation 8y : F — F such that 0x(f') = (Ocf)'".
We extend J; coefficient-wise to a derivation 8, : D = D, i.e. so

that 9y D = 0.
Then we have
OxOmL = Ok[P},L)
= [BkP,;';,L] + [P,',';,[P,;*,L]] .
So
[ak) am]L = [kaa L] )
where

Fy, = 3kP;—amP:_[P:1Pr:]'

But
&Pt = (0L™?)4
= [P,;*,L"‘/z]+
= —[P;,L™?),
—[P;’Pnt]+ .
So
ka = —[Pk-vpr_rt]-f'_ [P:,P;h— [P:7P1-7t]

[Pk—’Pr;]+
0.
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In this calculation we have used only the obvious fact that L¥/2 =
P} + P[ commutes with L™? = P} + P, and in addition the
formula

akLm/2 = [P:’LM/Z]’

which—as both 8, and [P, ] are derivations—needs to be proved
only when m = 1. But 8;L = [P}, L], so

akL1/2 _ [P’:-’Ll/2]

must anticommute with L/2 = D + .- -, from which it is easily seen
to vanish.
The conservation of the residue is an even easier calculation.
Ok res(Py) = res(0xPr)
res|Pt, Pp).

But in the algebra D the residue of every commutator is a derivative,
for

res [fD?,gD9) = (P+z+ 1) (fg®tatV) — (=1)Pratl fprat) gy

and

fg(n) _ (—1)"f(")g - {Z(_l)if(i)g(n—i—l)}l‘
Genuine operators

It is natural to ask what the formal algebra D has to do with genuine
pseudo-differential operators. In fact D is the algebra of symbols of
pseudo-differential operators: every operator has a symbol, which
determines it up to a smoothing operator, i.e. an integral operator
whose kernel is smooth in both variables. The pseudo-differential
operators form an algebra P which operates on the ring of smooth
functions with compact support on the interval I. There is a ring-
homomorphism P — D whose kernel (in the other sense!) is the
ideal of smoothing operators. An operator has the symbol

fa DM+ f D74

if it is an integral operator with a kernel K (z, y) with proper support
(i.e. k(z, )and k( ,y) have compact support for each z,y) which
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is smooth except for a jump discontinuity on the diagonal z = y,
where (—id/0z)™k(z,y) jumps by f_m_;.

Actually, even this is an overstatement: the true algebra of
pseudo-differential operators on I is P + 0P, where 0 = D/|D| is a
singular integral operator whose kernel looks like (z —y)~! on the di-
agonal. We have 02 = 1 and 0D = Do modulo smoothing operators.

5 Scattering theory

We shall now consider in a little more detail the scattering theory
associated with the operator

d 2
Lu—‘_(a) +u,

where u is a smooth real-valued. function with compact support on
the line. A good reference for the following material is Faddeev and
Takhtajan (1987).

For any A the equation Ly = A%y has a two-dimensional solution
space Vj. Let ¢} and ¢} be the solutions such that

t;’i\l\(g):ei‘_’\’ }‘ when z < 0,

and let ¢ be the two solutlons such tha.t

gai(a:) = e*‘*”’ "when z>0.

These two bases for Vj, must be related A

¢)‘ ) 1"' aA‘P,\ + bA‘P,\
by = CA‘/’,\ + drpy

[

where the 2 x 2 matrix

oyl AT aA bA
) Vo d
Cx G)
4Of course, ¢} and @¥ are not bases when A = 0, and g as I have defined it
has a pole at A =0, whxch can be'retnoved by using the basis {cos Az, A~! sin Az}
instead of e*'**. In the following discussion I shall ignore what happens when

A =0, as it does not affect ‘the €ssential argument. In fact scattering for L, is
related to a ‘twisted’ form:of the loop group of SL,. But cf. Section 6.
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is invertible and independent of . In fact g, belongs to SL,C,
because the Wronskian W(p,¥) = @y’ — ¢'¢p of two solutions of
Ly = M is constant. (We also have dy = a_, = @5 and ¢ =
b-x = bs.) The transmission and reflection coefficients of Section 1
are given by

Th=a;' and R)=a]'bs.

As A = oo along the real axis the matrix g, tends rapidly
to 1: intuitively, a very high-frequency wave barely notices a small
obstacle. Thus the scattering caused by u gives us a smooth based
loop in the group SL,C. (‘Based’ means that gy = 1 when A\ = +00.)
I shall call this the holonomy loop of u. This is where loop groups
enter the theory.

If u has compact support then <pf,¢f, and g, are all defined
and holomorphic in A for all A € C. But unless u = 0 we do not
expect g to tend to 1 when A — oo in complex directions: it has
an essential singularity at A = 0o. In any case the holomorphicity of
gx is misleading. If we assume only that u is rapidly decreasing as
T — £oo then for Im()) > 0 we can define ¢ as the unique solution
of Lyp = A%p which tends to zero like e** as z —+ —o0, and @}
as the unique solution which tends to zero like €** as £ — +o0. It
does not make sense, however, to try to characterize a solution <p}"
by ¢ ~ €!** as z = —o0, for adding any multiple of ¢} would not
affect that asymptotic behaviour. In fact ¢} and @} are defined
and holomorphic in A when Im()) > 0, while ¢} and @) are defined
and holomorphic when Im(A) < 0. Only when ) is real are all four
solutions defined, and so g, is defined only for A € R It is still a
smooth loop in SL;C, just as when u has compact support.

The holomorphicity properties just described—in fact the stron-
ger assertion that for each z the functions

pE(@)e™* and FF(zx)e™A®

are holomorphic and bounded in their respective half-planes—are the
link between the time-independent behaviour of the operator L, and
the scattering for the equation

¢+Lu(ﬂ=0. (5.1)

To understand this we repeatedly use the basic fact that if f is
a smooth function of rapid decrease on R then f(z) =0 for > 0 if
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and only if the Fourier transform

= iﬂ_ / f(z)e P de

extends to a bounded holomorphic function in the upper ha.lf-pla.ne
It follows from this that f has support in [-R, R)] if and only if fis
entire and

|f(N)] < CeBitmI, (5.2)

The standard way to write a solution of (5.1) is

o(z, 1) = [R oa@)E™ dA, (5.3)

where ¢, belongs to the eigenspace V) of L,. Using the basis
{¢t, @5} of Vi we have

Proposition 5.4 If fi and f, have compact support on R, and
w(z,t) is defined by (5.3) with
ea(z) = LiNe} (@) + LN (2),
then
o(z,t) = fi(t +z) + f2t — 2)

for t €0, i.e. p consists of two incoming wave-packets approaching
the obstacle.

Proof We have
olet) = [lot@e A ax
+ [ L= a.

Because @) ¥ (x)e~** is holomorphic and bounded for Im()) < 0 the
first mtegra.l vanishes unless t + z > —R for some R, i.e. unless
z > —t— R, while the second integral vanishes unless z < t+ R. But
if t < 0 we have ¢} = ¢e** and ¢} = e~i*% in these regions, giving
us the result. o

Sqf’ by applying Cauchy’s theorem to a large semicircle around the upper
half-plane, and ‘only if’ by the Fourier inversion theorem.
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To see what happens to the wave-packets for t 3> 0 we change
basis in each V) to {¢}, ¢} }. The matrix that does this is the scat-
tering matriz Sy, which is a rearrangement of the holonomy matrix

gx:
g1 1 b,\ — TA RA
Sh=dy (—CA 1)‘(—3;\ TA)'

The scattering matrix is a loop in GL,C. (For real A we have
d,\ = a), = a_), and C)\ = b)‘, as well as Iaxl2 - Ib,\|2 =1. So
det(S)) = ay/ay has modulus 1, and S) is unitary.)

Proposition 5.5 If u has compact support, then for t > 0 the
solution ¢(x,t) given by 5.3 and Proposition (5.4) is

o(z,t) = f3(t + z) + fa(t — ) + (bound states),

()-+()
fa f2
Proof By the argument of Proposition 5.4 this would be true,
without any bound states, if the entries of the matrix S were holo-
morphic in the upper half-plane and satisfied an estimate of the form
(5.2). Now S), is formed from g, whose entries are entire functions
if u has compact support. Furthermore, by and c) satisfy estimates
of type (5.2), while ay = d_y — 1 as A — 0o. Thus the entries of
S have the desired behaviour except for poles at the zeros of ay in
the lower half-plane. These occur when ¢} is a multiple of gbj\', ie.
when i) is the frequency of a bound state. X
Reviewing the proof that f has support in (—o0,0] if f is holo-
morphic and bounded in the upper half-plane, we see that if f is
allowed to have a finite number of poles at points A\; in the upper
half-plane, with residues pi, then

f(z) =) pre™*

for £ > 0. Modifying accordingly the argument of Proposition 5.4
now gives us Proposition 5.5. O

where

The last two propositions are best understood in terms of the
spectral decomposition of the unbounded operator L,, acting on the
Hilbert space H of L? functions on the line.
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The spectrum of L,, consists of the positive real axis together with
a finite number of points —w? on the negative real axis corresponding
to ‘bound states’ ¢ € H such that Lyx = —wlyr. There is an
orthogonal decomposition of H into L,-invariant subspaces

H=Ho® M1,

where H; is the finite-dimensional space spanned by the ¥, and Hg
corresponds to the continuous spectrum Ry, which has multiplicity
2, being spanned by o3 and ¢} for A € Ry, in the following sense.

Proposition 5.6 For any smooth function f with compact support
on R we have

* . " dX
1@ = 5= [ Am. 0 ex@) + @0 S @
where (ip, f) denotes [ p(z)f(z)dz.

Thus Hg is the ‘direct integral’ of the A\2-eigenspaces V) = V_,
for A € Ry, even though V) is not contained in H.

In the proposition we can replace ¢, and zfaj\' by the ‘incoming’
basis {¢}, @} }. In fact we have two isomorphisms

Sy : Ho = LA(R,; C?)

such that
SyLyS;' = S_L,S!

is multiplication by A2 on L?(R,;C?). The scattering operator S =
5,5~ is multiplication by the scattering loop {Sx} on L?(Ry;C?).

We shall return to this description of scattering, in a more general
setting, at the end of Section 13.

We shall now give the proof of Proposition 5.6.

Proof If u € C does not belong to the spectrum of L,, we can define
the resolvent R, = (u — Ly)™!. This is a bounded operator, and a
holomorphic function of ¢ in the complex plane cut along the positive
real axis, except for poles at y = dw,f. We obtain Proposition 5.6 by
integrating R, f around a large ‘keyhole’ contour consisting of the
punctured circle )

C={Re’?:0<0<2r}
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together with paths from R to 0 and 0 to R along the lips of the cut.
On the circular part C we have

R# - IJ’_! = /-‘_IR#L‘U. )

and p 'R, Ly f is O (u™2) as p — 00, so that

/CRufd,u:ffC%’f:zwif.

So, by Cauchy’s theorem,
1 o . .
f= 3 /0 R,fdy + Z( residues of R, f) ,

where R,, is the jump in R, across the real axis.
Now R, is an integral operator with kernel

_ | o5 @)etw)/w fr<y
R““”‘{¢ﬂ@EWVW§ o>y,

where A2 = u, with ) in the upper half-plane, and W), = 2i)a, is the
Wronskian W (p5,$1). The poles of R, occur at points pg = A2 =
—wi where a) = 0 and ¢;' and @) are proportional. Normalizing
the eigenfunction ¢, appropriately, we can write the residue of R, f
at _wz as (wkaf)wk-

Finally, after a little manipulation we find that the jump in R,
is given by

Ru(z,y) = {ox @)X )™ + &5 ()85 () }liarl* .

The holonomy loop in the periodic case

The role of the loop groups in spectral theory is not a matter of
particular boundary conditions. If we are interested in functions u on
the circle—thought of as functions on the line satisfying u(z +27) =
u(z)—then we still have a two-dimensional space V) of solutions of
Lyp = A%p for all A € C. The elements of V) are functions on the
line, not necessarily periodic, and translation by 27 gives us a map
Q> : Vi = V). Identifying Vi with C? by v — (¢(0),¢'(0)), we have
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Qx € SLyC. As A — oo the solutions of Lup = A2y will resemble
et 50 @ ~ Q3 as A — oo, where

o 1 1 e21rb\ 0
Q= (21ri —21ri) ( 0 e‘2”i") '

In this situation the holonomy loop is A — (Q3)~'Qx, which
tends to 1 as A — Foo.

6 The non-linear Schrodinger equation and
its scattering

In the last section we saw that scattering theory for the operator Ly
was slightly complicated by the symmetry A ¢ —A, and the resulting
singularity at A = 0. The theory is more attractive and geometrical
for the closely related operator

d

Au=J3-+A4, (6.1)

acting on vector-valued functions ¢ : R — C?, where

i 0 _ (0 -a
J‘(o —i) and A‘(u o)

for some smooth function u : R = C with compact support, or at
least rapidly decreasing at infinity.

The non-linear Schrodinger (NLS) equation is an evolution equa-
tion closely analogous to the KAV equation which describes an iso-
spectral deformation of the operator A,. It is

.Ou %u

i— = —=— + 2|u|?u,

ot Oz2

and can be written in the Lax form
d

aAu = [PusAu] y (62)

where

p=J(d 2+Ai+l(A'-JA2)
v 7% \dz dz 2 '



78 G. B. Segal

The vector space U of rapidly decreasing smooth functions u :
R — C has (when regarded as a real vector space) a symplectic
bilinear form w : U x U — R given by

w(uy,ug) = Im/ u g dz .
R

The NLS equation is the vector field on the symplectic manifold
U generated by the Hamiltonian function H : U — R, where

Hu) =} / (2 + ) dz,
R
for

0H

Re {/ (—u" + 2Ju)?u)da dm}
R
= Im{/ i(—u"+2|u|2u)6ﬁda:}
R

w(i(—u" + 2Ju|?u), su).

Scattering theory produces a sequence of functions I : U — R
which are in involution for the symplectic structure and are conserved
by the NLS flow. Essentially, they are a complete set of ‘action’
variables for the system. The first three conserved quantities are

L = / Pz,

L = Im/ﬂ‘u’dax = w(u,u),
I, = H.

The flows generated by Iy and I are multiplication of u by elt,
and translation of u by ¢, respectively.

To investigate the scattering for A, let us rewrite the eigenvalue
equation A,y = Ay
dy
3 = ("AJ+JA) = By, say. (6.3)
As such, we think of it as describing the parallel transport of the
vector-valued function 1 along the line by means of the connection
d

iz B
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in the trivial two-dimensional vector bundle on R. If ) is real then B)
is skew-hermitian with trace zero, i.e. it belongs to the Lie algebra
of § Uz.
Solutions of an equation of the form

dy

— =58 .

5 = Bl (6.4)
are best described in terms of a 2 x 2 solution matriz M(z) =
(¥1(z) y2(z)), where 91 and 9 are linearly independent solutions
of (6.4). The most general solution is then ¢(z) = M(z)¢, where
¢ € C? is a constant vector; and for any solution 1 we have

P(y) = M(y)M () y(z)

for any z,y € R. Any other solution matrix M for (6.4) is of the
form M = MC, where C is a constant invertible matrix.
Applying this to equation (6.3), we have a solution matrix M)

such that
e~ Mz forz <0

Mi(z) = { e~M2g, for z > 0,

where gy € SU; when A € R

As was the case in the preceding section, gy — 1 rapidly as
A = +o0 along R, even for rapidly decreasing u, and A — g, extends
to a holomorphic map C — SL,C providing u has compact support.
(There is now no problem with A = 0.)

The based loop gy in SUs will be called the holonomy loop of
the potential u : R - C. As SU; is three dimensional, while u
has only two real components, we cannot expect u — g, to be a
1—1 correspondence. Let us map SU; to the Riemann sphere S? =
CU {oo} by the slightly surprising map

(5 7)) oelecuieal,

a
and write o : R — 52 for the composite
R‘ —; gUz - 32 .
Then o is a smooth loop in S2 based at 0, i.e.

o(A\) =0 as A = +oo.
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We shall call o the dispersive scattering of u.
The map u — o is a kind of non-linear Fourier transform, and it
is a local diffeomorphism

{rapidly decreasing functions u} — {based smooth loops in 5%}

in the neighbourhood of u = 0. In fact its derivative at u = 0 is
precisely the Fourier transform, as we see from

Proposition 6.5 For small u we have

(1 —bx
to first order in u, where

by = / u(x)e?dz .
R
This follows at once from

Proposition 6.6 The change dgy produced by a small change du
in u ts given by

95 6g) = / M;1J6AM,dz,
R

0 -du
whereJA—(Ju 0 )

~idz
Indeed, when u = 0 we have M)(z) = e~ M= = (e 0 ei(')\’)’
so that the integrand in Proposition 6.6 is

0 ide? =
ifue?irz 0 ’
Proposition 6.6, in turn, amounts simply to the fact that if M is

a solution matrix of ¥’ = B then the first-order change M in M
produced by changing B to B + b is given by

M (z) = M(a) | w M)~ ") M(y)dy,

as one sees by direct differentiation.
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In Section 12 I shall explain how to define a local inverse for the
scattering transform u — o. But now I shall describe the global
situation in general terms.

On one side we have the vector space U of rapidly decreasing
potentials u. It maps to the space 252 of based loops on the Riemann
sphere by the scattering map, which for the moment I shall denote
by

2:U - 082,

In a neighbourhood of 0 in U the map X is a symplectic diffeomorph-
ism, when Q52 is given its natural symplectic structure coming from
that of S2. (For a proof, see Faddeev and Takhtajan 1987, Chap.
I11.)

The loop space 252 has a quite complicated topology. Its fun-
damental group is Z, generated by a loop in the loop space which
‘lassoes’ the sphere S2. For a given 0 € (5% the inverse-image
U, = £7!(0) consists of the potentials u with a given ‘dispersive’
component. The loops o which do not pass through oo in $? form
an open subset ¥ of 252, and for all o € (¥ the spaces U, are diffeo-
morphic to each other, and each is the disjoint union of a sequence
of connected components Uy, for k& > 0, where U,y is an algeb-
raic variety of complex dimension 2k consisting of potentials with &
‘solitons’ on top of the dispersive part. In fact, £~1(U) is isomorphic
as a symplectic manifold to ' x Up. But the map ¥ cannot be a
fibration, for when o travels around a generator of the fundamental
group of Q52 the ‘holonomy’ U, — U, increases the soliton number
by 1.

7 Families of flat connections and harmonic
maps
The non-linear Schrodinger equation has been written in the Lax
form A = [P, A), where
d
A=J P A.

To apply the inverse-scattering method we introduced a solution
matrix M) satisfying
AM, = \M,, (7.1)
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and we let M), evolve in time according to

ng—’\ = PM,. (7.2)

The equation (7.1) can be rewritten as
%\- = J(A - XMy = B\M,, say, (7.3)

and this can be substituted in (7.2) to give
B_éllt_,\ = P\M,, (7.4)

where P, is a matrix depending polynomially on A, but no longer
involving d—dz-. The existence of a simultaneous solution My of (7.3)
and (7.4) entails
0B, 0P,
——— - ——=+([P\,B\]=0 .5
ot 9z + [ A /\] (7 )
for all A (as 02M,/0z 3t = 8> M, /ot Oz), ie. that the \-dependent
connection with components
g g
3 By, 5~ P (7.6)
in the trivial two-dimensional vector bundle on R?, is flat. The left-
hand side of (7.5) is, of course, the curvature of this connection.

In fact the Lax equation A = [P, A] is exactly equivalent to the
flatness of the family of connections (7.6). Surprisingly, perhaps, it
seems to be a general principle that any Lax equation can be re-
written as the condition that a 1-parameter family of connections
are simultaneously flat. The ‘flat connection’ formulation is rather
more geometrical than the Lax equation, and makes clearer the ori-
gin of the conservation laws. For example, if A, and hence B,, is
periodic in z with period 2z, then the flatness of (7.6) implies that
the holonomy of the connection around the rectangle with vertices
(0,20), (2m,t0), (2m,¢1), (0,¢) is the identity. This means that

g, = hg,h™'.

where g; is the holonomy from (0, t) to (2, t), and h is the holonomy
from (0, tg) to (0, ¢t;).
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All the same, it is hard to see any special geometric significance
in the 1-parameter family of connections related to the NLS equa-
tion. There are other problems where the geometry is much more
appealing. The most striking, for me, is the problem of harmonic
maps from a surface to a compact Lie group G with a bi-invariant
Riemannian metric. I shall describe it briefly.

Suppose that g : £ — G is a smooth map from a surface L to G.
Then g is harmonic if
d(x¢'dg) =0, (7.7)

where g~1dg is a 1-form on I with values in the Lie algebra g of G,
and

+: Q(T;9) - (i 0)
is the Hodge *-operator which rotates each tangent space to ¥
through 90°. For a connection from 4 € Q(Z; g) we have A = g~ldg
if and only if A is flat, i.e.

dA+1(4,4]=0,
so the harmonic map equation is equivalent to the pair of equations

dA + 4[4, A] 0 (7.8)
d+*A = 0.

These, in turn, are equivalent to the flatness of a 1-parameter family
of connections, for the *-operator is just one element of a natural ac-
tion of C* on ! (Z; g) which is induced by the complex structure on
each tangent space to L. If we write, in terms of a local holomorphic
parameter z,

A= Aidz+ Aqxdz,

then
*A = —iA;dz + 1A2dZ,

and we can define
Apy = A1 Ardz + A Apdz
for any A € C*. The equations (7.8) are equivalent to the flatness of
LA-Ap) = 3U-2NMAdz+L(1-NAdz  (79)

for all )\, and so we have written the harmonic map equations in the
desired form.
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We have now left the domain of ‘integral systems’ in the sense
described in Section 2. On the other hand, the reformulation of the
harmonic map equations does enable one to solve them completely
in many situations. For if the connection (7.9) is flat for all A then
we can write it as g;ldg;\ for some map g) : ¥ = G. (We should
really assume |A| = 1 here, to ensure that (7.9) takes values in the
real Lie algebra g.)

Letting XA traverse the circle |]A\| = 1, and observing that we can
take g, = 1, we have thus factorized a harmonic map g : £ — G
canonically as

s o g,
where QG is the space of based loops in G, and G — G takes a loop
to its value at A = —1. But we can say much more. In Section 13

we shall see that the loop space G is naturally a complex manifold
in virtue of an isomorphism

QG = LGc/L*Gc, (7.10)

and the form of the connection (7.9) shows that the map ¥ — QG is
holomorphic. 1 shall refer to Uhlenbeck (1989) and Segal (1989) for
an account of how this holomorphicity can be exploited to describe
the harmonic maps from a surface to a group or symmetric space
quite explicitly. I should mention, however, that it is at this point
that the path followed in those lectures makes contact with the ‘twis-
torial’ approach presented by Richard Ward. The loop space G has
yet another description as the space of holomorphic G¢-bundles on
the Riemann sphere S? trivialized in a neighbourhood of oo, so we
have arrived at a correspondence between harmonic maps ¥ — G
and holomorphic bundles on T x X2.

8 The KdV equation as an Euler equation

When we consider the operator L, = —(d/dx)? + u, where u is a
smooth function defined, say, in an interval I of R, we are, of course,
making use of a chosen parameter z on I. If we change the parameter
by a diffeomorphism z — £ then L,, will not transform to an operator
of the same form. We can rectify this situation by regarding L, as
an operator

L, : Q=131 5 B2, (8.1)
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where Q(9)(I) denotes the a-densities on I, i.e. expressions t(z)(dz)®
which transform to 1(Z)(d%)®, where

P (E) = va).

Transforming L, as indicated by (8.1) changes L, to L;, where

<\ 2
a(Z(z)) (:—:—) + S(z,z) = u(z), (8.2)

and S(Z, z) is the Schwarzian derivative

. 152,” 3 (i” 2
sea =374 (7)

It would take us too far afield to explain fully the reasons for treating
L, as just described (see Segal 1991). But an important fact is that
to give the operator L, is exactly equivalent to giving a projective
coordinate on I, i.e. an immersion f, : I — P} of I in the real
projective line, up to a projective transformation of Py. (Given Ly,
we define fy,(z) = ¥1(x)/vo(z) € RU {o0}, where ¢g and ¢, are
independent solutions of L,y = 0.) Changing L, to L; by (8.2)
corresponds simply to

fal#()) = ful).

For an infinitesimal movement given by a vector field £ = £(z)d/dz
on I the change in u corresponding to (8.2) is

Deu=¢u' + 2¢'u + 3¢". (8.3)

In this notation the KdV equation is

% = 2D,u. (8.4)

We have still to explain in what sense equation (8.4) is an Euler
equation. If we omitted the term S(&,z) then (8.2) would say that
u transforms under diffeomorphisms as an element of Q(?)(I). The
affine transformation (8.2) of the operators L, is simplest treated as
a linear transformation of the vector space O of all operators of the
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form —k(d/dz)? + u, with k constant, on which diffeomorphisms act
by (k,u) — (k,4) where

=\ 2
i(Z(z)) (%) +kS(Z,z) = u(z).

Thus O fits into an exact sequence of representations of the group
Diff(I) of diffeomorphisms of I:

05 Q@) 50 aR-0. (8.5)

The quadratic densities Q(®)(I) are naturally in duality with
Vectcpi (1), the Lie algebra of vector fields with compact support
on I, for the pointwise product of a vector field and a quadratic
density is a 1-form, which can naturally be integrated over I. The
sequence (8.5) is therefore in duality with a sequence

0 — R — Vectc, (I) — Vectep(I) — 0 (8.6)

of representations of Diff(I). The action of the Lie algebra Vect(I) of
Diff(I) on Vecty, (1) is easily seen to induce a Lie algebra structure
on Vectg, (), with the image of R in its centre, so that (8.6) is an
exact sequence of Lie algebras.

It is true, but not so obvious (Segal 1981), that Vectgy, (I) is the
Lie algebra of an infinite dimensional Lie group G which is a central
extension of Diffcp,(I) by R The KdV equation is an Euler equation
for G of the standard form described in Section 3. Recall that to get
an Euler equation we choose a (non-invariant) quadratic form ¢ on
the dual of the Lie algebra of G. In the present case we take

q(k,u) = / uldz.
1

The diffeomorphism invariance is broken here by the choice of the
parameter z on I. (Unfortunately g is defined only on the subspace
of O where u has compact support.) As a map Ocpy — Vectgy, (1),
the form ¢ takes L, to 2‘uf;, and so the resulting Euler equation
(3.2) is the KdV equation (8.4).

To obtain a family of commuting conserved quantities for the
equation the method proposed in Section 3 was to take a G-invariant
function F : Ocpy — R, and then to define

FA . Ocpt _)R
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by Fa(Ly) = F(Ly — AB) for some fixed 5. It is simplest to un-
derstand the situation in the case of periodic functors u, in order
to avoid questions of boundary conditions. Then the only obvious
invariant function of an operator L, € O is the trace of its holonomy
matrix g. (If V is the two-dimensional space of solutions of L, = 0
on the line, then g : V — V is the operation of translating ¢ by
one period.) The obvious choice for 3 is the constant 1 (i.e., strictly
speaking, 8 = (d6)?). Then

Fy(L,) = trace(gy),
where g is the holonomy loop of L,,. These are the conserved quant-

ities of the KdV flow which we have already identified, and we now
know that they are in involution.

9 Determinants and holonomy

In Section 1 I mentioned that the transmission coefficient T of the

operator L, = — (d/dz)% +u was ‘essentially’ the characteristic poly-
nomial det(A\? — L,). A similar result holds for the operator
Ae=J3 14 (9.1)
R v )

discussed in Section 6. This section is devoted to elucidating these
assertions, and to the relation between such infinite dimensional de-
terminants and holonomy in general.

The clearest case to treat is that of operators on the circle, for
then the spectrum of L, or A, is discrete, as is the case for any
elliptic operator on a compact manifold. If u is periodic with period
27 then the two-dimensional space Vj, of solutions (on the line) of
Lyp = A2, or of Ay¥) = i, possesses a linear automorphism g
induced by translating ¢ or 9 by 2x. This is the holonomy of L,
or-A,. A solution of gxyp = ¢ or g\yp = ¢ is the same thing as a
periodic eigenfunction of L, or Ay, so det(gx — 1) vanishes precisely
when ) is an eigenvalue of the operator on the circle. That makes
the following result plausible.

Proposition 9.2 We have
det(N* — L) = det(g) — 1)
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and also
det(A — A,) = det(gy — 1).

Remark As det(gy) = 1 we have det(gy — 1) = 2 — trace (gx).

To make sense of Proposition 9.2 we must explain how to define
the infinite dimensional determinants. Let us begin very heuristic-
ally, with the case u = 0. Then the eigenfunctions of L, = —(d/dz)?
are e"? for n € Z, and the eigenvalues are n?, each except 0 being
of multiplicity two. The holonomy is

e21riA 0
gr = 0 e=2mix |

det(gr—1) = (& —1)(e7?* ~1)
= 4sin?7).

so that

Formally we have

det(Z? = L) = X J](A? - n?)?
n>0

e (a(-2)y

4 sin®m)
= H" ' 7
Vs
n>0

in view of the product expansion of sin ).
Similarly, the eigenvalues of A, are the positive and negative
integers, with multiplicity two, while g is the same as for L,. Thus

det(A — Ay) = J[[ (A= n)?,
neZ

which is formally the same as det(\2 — L,).

The divergent infinite products occurring here can be regularized
by the {-function method. If an operator T has eigenvalues {An} we
define

(r(s) = trace (T™*) = B\;*
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for all s € C with sufficiently large real part. For the operators T we
are concerned with, the function {7 can be continued analytically to
a function which is meromorphic in the whole complex plane, and
we can define
det (T) = v (@)
motivated by log A
Gls) = - Y 2
n
This procedure is very familiar when the operator T is positive,
but it works in any case, providing we choose a cut from 0 to oo in

the complex plane which does not pass through any A,, so that A;*
can be defined as a holomorphic function of s.

Example If \, =n —a, where a € Z, then

Gr(s) = Z:(n a)s

-8
= / (221riza) dz,
y €TF —1
where, in the complex plane cut from a to a — ioo, the contour 7y
goes from a — ico to a on one side of the cut, and back again on
the other. This formula is true because when Re(s) is large one can
complete vy to a closed contour by adding a very large circle with
centre a and then can calculate the integral by means of residues,
noting that (272 —1)~! has a pole of residue 1/2xi at each integer.
The integral formula, however, defines an entire function of s. By
differentiating under the integral sign we get

—¢'r(0) = /7 —'l:ffizz:oi) dz

o ®© ~idt
—<m ) e2mile—it)

21ria)
b

= ~—log(l—e

corresponding to the formula

€ N _ 1 _ o2nia
r::‘e'i(n- a) =1-eme (9.3)
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The method of ¢-function regularization has the property that if
{M\n} and {u,} are sequences such that [J(un/Mn) converges, then

H(C)An : H(ﬂn/kn) = H(Oﬂn y

where [J‘) denotes the regularized product. That justifies our heur-
istic calculations above, using

H(O n=2ni,
n#0

which can be obtained by letting a — 0 in (9.3).
Applied to an operator T which undergoes a small change 6T
this gives us

Proposition 9.4 If T716T is of trace class, then
§logdet()(T) = trace (T'6T).
We can use this to prove Proposition 9.2 by showing that both sides

have the same derivative with respect to u, for we have already
treated the case u = 0. Taking T' = A\? — L,, and 6T = —éu, we have

8 log det(()(A? — L) = —trace {(\2 — L,) " '6u}.

Now (A2—L,)~}, which is called the resolvent of L, is an integral
operator defined by a kernel G (z,y) which is continuous in both
variables. It is therefore of trace class, and

2m
dlog det(c)()\z —Ly)=- G (z, r)du(z)dz. (9.5)

o

For A, the position is slightly more complicated. The operator
(A= A,)7! is given by a (2 x 2)-matrix valued kernel, which I shall
again denote by G(z,y). It is a solution of

(Jd% + A) Gi(z,y) = é(z - y)1,

and so has a jump of —J on the diagonal. This means that the
resolvent is not quite of trace class, though the formula

Slogdet y(A — Ay) = — /0 - tr{Ga(z,7)0A(z)} dz.  (9.6)
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where G(z, ) denotes either of the two values, and tr denotes the
(2 x 2)-matrix trace, in fact gives the right answer.5 (The point here
is simply the difference between the convergent product

and the equal but slightly less convergent product
A
(-3)
n#0 n

To calculate (9.6) we need

and I shall ignore it.)

Lemma 9.7 The kernel of the resolvent of A, is given by
Ga(z,y) = Mx(z)(gr — 1) Ma(y) ™',

ify <z <y+2m, where M) is a solution matriz of AyM) = AM,.

Proof As a function of z for fixed y, Gx(z, y) must satisfy A G =

MG, when z # y, it must be periodic in z with period 2, and it
must jump by —J when z = y. So

G(z, y) = M(z)C,

for y < = < y+ 2m, where M(y + 27)C + (=J) = M(y)C. But
M(y + 27m) = M(y)gy, and this gives us Lemma 9.7. a

We now have

tr{(A — L,) 164}

| T (M) (92 — 1) My (@)~ TGA(2)} d
0

= tr {(g,\ - /M,\(a:)'lJJA(a:)M,\(a:) d:r}

= tr{(ox — 1)7'95 '0gr}
4 log det(g;l -1)
dlogdet(gy — 1),

6Notice that tr(J8A) is identically zero.
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where we have used the formula in Proposition 6.6 for g;lég;\, and,
in the last line, the fact that det(—g)) = 1.

That completes the proof of Proposition 9.2 for A,. The case of
L, is easier.

Let us now look briefly at operators on the line, rather than the
circle. Then the spectrum of L, is not discrete, and (A2 ~ L,)~° is
never of trace class, so we cannot define the determinant by means
of a {-function. On the other hand, as u varies in the space U of
rapidly decreasing functions on the line the operator (A — L)~ 16 L,
is of trace class. So

trace{(\? — L,)"'6L,}

is a 1-form on U, and is easily seen to be closed. It can be regarded
as
dlogdet(A\? — L,),

which is thereby defined up to a factor independent of u.
Proposition 9.8 We have
det(A\2 — L,) = ay

up to a factor independent of u. Here A is chosen in the upper half-
plane, and a), is the leading entry of the holonomy matric gy.

Proof The coefficient a) is defined by means of the solution ¢ of
L,¢ = \2¢ which becomes e7** as z - —o0. In fact
— 3 — iz
ay = :lifgo ¢y (z)e' ™.

The usual argument tells us that if u changes by du then ¢} changes
by d¢) , where

565 («) = / m Gl v)6u(y)é5 (v) dy,

and G is the Green’s function of A2— L,, which vanishes when = < y.
We have

Ga(z,9) = {5 ()85 (v) — 65 (@) by W)} /W (b5, 65



Integrable systems and inverse scattering 93

when z 2> y. Then

HE Gy W)

as T — 00, SO
aylday = limgy (z)7 ¢y (z)
~ _ o dy
| 3 wsutns; 55

_ /R G(y,v)duly) dy,

where G, is the kernel of the integral operator (A2 — L,)~! acting
on L?(R). Thus

ay'day = trace{(\2 — L) 'éu},

as we want. O

10 Local conservation laws

For the operator L, on the line we saw in Section 1 that for each A
the transmission coefficient T} is conserved by the KdV flows. As
A — oo we know that 7) — 1, and we even have an asymptotic
expansion

Iy I
lOgT,\ ~ T+-A—2+ (101)
I shall now discuss why the coefficients Iy are local functionals of
u in the sense of Section 1. This would not be true, for instance, for
the coefficients of the expansion of T} itself.

Asymptotic expansions can be integrated, so it is enough to show
that the expansion of d/dAlogT) is local. I shall begin with some
rather general remarks. In §9 we saw that 7 1 = g, is in some sense
the determinant of A2 — Ly, and we should have

d

o log det(A — L,) = 2\ trace (A2 — L,)™".
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The resolvent (A ~ L,)~! is an integral operator with kernel
Ga(z,y). The result we want is the existence of an asymptotic ex-
pansion

Fk(z
G,\(l‘,l‘) ~ Ak_'H), (102)
k>0
where Fj are polynomials in u(z),u’(z),.... This is a particular

case of one of the central facts in the analysis of elliptic operators.
It is perhaps more familiar as the ‘asymptotic expansion of the heat
kernel’. The heat kernel of L, is the kernel K,(z,y) of the integral
operator e tL«. Ast — 0 we have

Ki(z,2) ~ ) Fi(a)t*=D72, (10.3)
k>0
and 10.2 is simply the Laplace transform of this:
00
(A2 = L)' = _/ et\=Lu) gy
0

so that -
Gi(z,z) = / K, (z, z)e™ dt.
0

(Of course we need Re(\?) < 0 to make these integrals converge.)

Rather than pursuing this too schematic discussion I shall sketch
a direct argument for the localness. One well-known place in analysis
where an asymptotic expansion has local coefficients is the following.
If f is a smooth function with compact support on the line, and

F0 = [ 1@ ds,

then by integrating by parts repeatedly we find

fO)  fO , f(0)
F~ S+ 57+ 55+ (10.4)
as A = oco. Thus although F()\) depends on the whole function f its
expansion at oo depends only on the values of f and its derivatives
atz =0.
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The heuristic argument above suggests that

ay d/\a,\-—/.G,\ z,z)dz,
but that cannot be correct, as
Ga(z,z) = (2N~ +O(17?),
and the integral is divergent. The calculation of a;"l §/duay at the

end of Section 9 can, however, be adapted to give

Lemma 10.5 a3’ ad]a)‘ = /m {G,\(x,:z) % /\} dz.

Our task, therefore, is to justify (10.2), as the heuristic argu-
ment predicted. Thinking of the resolvent Ry = (A2 — L,)"! as a
perturbation of R} = (A2 — Ly)~!, we have a convergent expansion

Ry = R} + RQuR3 + RuRJuR} +--- . (10.6)
The kernel of RY is

Gz, y) = N,

2ine
so the contribution to Gy(z, ) of the second term in (10.6) is
1 .
0 = — 2iA|z,y|
[BenmBuway = g [wwey
1\
~ ZE <m> u“*(z)

k21
by 10.4. This is an asymptotic expansion of the type we want.

The general term in (10.6) contributes

- " MUz, 1) d
@y e

where Uy (z,t) is the integral of

u(yr)u(y2) . . - u(ye)
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over the compact polygon P(z,t) in R¥ defined by

[z —yl+n—vol+- - +|y—z[=t.

Expanding each u(y;) in a Taylor series at y; = z it is clear that we

have
U(z,t) = ) Um(a)t™,
m>0
where Ui, is a polynomial of degree k in u(z),u'(z),... . Applying

10.4 again gives us (10.2.

11 The classical moment problem

The analytic features of inverse-scattering theory are very much the
same as those that arise in the solution of a much simpler—purely
linear—classical problem (Akhiezer 1965), that of determining a
probability measure p on the line when its moments

M = /R Xdu())

are given for all n > 0. In this section I shall discuss the solution of
the moment problem, though it has no direct relation to integrable
systems, in the hope that it will illuminate the treatment of inverse-
scattering.

Let us first suppose that u is supported in the compact interval
[-R, R], and is given by a smooth positive density function

dp(X) = u(N)dX.
The sequence {mn} then satisfies the growth condition
|m,) < CR®

for some C, and also positivity conditions reflecting the positivity
of 4. A measure with compact support on R is the same thing as a
continuous linear map

C(R) — R,

where C(R) is the vector space of continuous functions on R with
the topology of uniform convergence on compact sets, and so the
problem can be formulated as that of extending a given linear map

RN = R
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on the polynomial ring in the indeterminate A (taking A" to m,) to
the vector space C(R), in which R[})] is a dense subspace. One can
prove the extendibility abstractly in that context without providing
any way of recovering the density u from the moments {m,}.

One explicit way of actually finding u, in principle, is to consider
the function F of a complex variable A defined by

) _ mo m, m
RA—1t A A3

The integral expression for F shows that it is defined and holo-
morphic in the complement of the segment [—R; R] of the real axis.
The series expansion, however, converges only for [\ > R. If 4 is
given by a smooth density u then we can recover u from F as its
‘jump’ across the cut [—R, R)] in the real axis:

F(\) = 24--. (11.1)

u(y) = lim %{F(A—ie)—F(A-i-ie)}.

This relation holds because the function of ¢

1 1 _ 1
2mi A=t —ie: A—t+4ie

tends to the delta-function at"t = X\ as ¢ — 0. The procedure—
not very practical—for finding 4 from the {m,} is to define a holo-
morphic function in |A\| > R by the series Zm,A"""1, continue it
analytically to the complement of the cut, and then measure the
jump. The crucial thmg is ‘that

(i) there is a umque functxon F holomorphic in the complement

at oo, and
(ii) F is completely determined by its series expansion at A = oo.

Example If 4 is the uniform distribution dX on [-1,1] then odd
moments vanish, while -, ;7

my = —— if n is even.
T m41

IR

We have

A+1 -1 |A+1

F(\) = log/\ og ,\_1|+i0,
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where § € (—m,n) is the angle subtended by {—1,1} at ), which
jumps by 2w when one crosses [—1,1].

The situation is more interesting if we consider a measure u which
decays rapidly at infinity but does not have compact support. Then
11.1 is an asymptotic expansion which does not converge anywhere.

Example If uis e~ 3% d) then odd moments vanish, and

mon = V21(2n — 1)(2n — 3)---3.1.

In this situation the integral in (11.1) defines a holomorphic func-
tion F, in the upper half-plane, and another holomorphic function
F_ in the lower half-plane. Both F and F_ tend to zero as A — oo,
and both have the same asymptotic expansion Zm, A"~ as A = oo.
Furthermore, the pair of holomorphic functions (Fy, F_) is determ-
ined by the jump F, — F_ on the real axis (providing Fy — 0 as
A — 00). However F are not necessarily determined by the asymp-
totic expansion at co.

Besides the integral formula (11.1) the functions Fy can be cal-
culated from u by Fourier transformation. For a rapidly decreasing
function f on the line is the boundary value of a bounded holo-
morphic function in the upper half-plane if and only if the Fourier
transform

fo) = 3 [ reerman
vanishes for p < 0. This means that we have
u(A) = Fy(A) - F-())
where o
P = [ emig)ep
0
and

F-(\)=- /_ ’ P i(p)dp.

As I said at the beginning, the moment problem is related to in-
verse scattering only by analogy. The function F' above is analogous
to the eigenfunction @) of L,, while the measure ¢ is analogous to
the reflection coefficient.



Integrable systems and inverse scattering 199

12 Inverse scattering

In Section 5 we saw that there are solutions ¢} and qu of the equa-
tion Lyp = M which are defined and holomorphic for A in the
upper half-plane, and such that, at any point z of the line,

o5 (z)e** +1  and @1 (z)e™ ™ - 1
as A = o0o. The corresponding statement for the equation

A = A9, (12.1)

where d
Ay=J—+A
dz

as in Section 6, is that there is a solution matrix Mt of (12.1) defined
and holomorphic for A in the upper half-plane, and such that, for
each z,

X} (z) = My (z)e*'*
tends to 1 as A — oo. In fact we can take M;‘+ to be the matrix
whose columns are z/)f\l), ngf), where

—iAz

z/)g‘l)(a:) ~ <e0> for z € 0,

{5&2)(2:) ~ <ei(’)\’> for £ >> 0.

Similarly, there is a solution matrix M 5 holomorphic for X in the
lower half-plane, with columns 1/35\1),1/)5\2), such that

i;(z):ﬁ{(x)e“’ - 1 asA—oo0.

There is some advantage, however, in replacing M y by My =
ay'Mjy, where ay = det(M;). When this is done My will only
be meromorphic for A in the lower half-plane, but we shall have the
unitarity property

(M7)" = (M) (12.2)

If A is real then both M;‘ and M, are defined, and are related

by
M (z) = My (z)5h,
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_ 1 1 by
Sx_laxl"’(—cx 1)

is the scattering loop obtained from the holonomy loop’

_ {ax by

in SUy, which is defined by

where

B, 69 = w{Vp?).

We have
X3 (@) = x5 (z) - e M8 (12.3)

This equation is the basis of inverse scattering theory. For each z
we have a based loop A — e 2/2§,e*/% in GL,C, which is known
if the scattering loop Sy is known. We want to solve (12.3) for the
matrix-valued functions Xf‘ From either of these we can calculate
the function u, as

X = Aadxit = —aJ - JA. (12.4)

In the next section we shall see that equation (12.3) always has
a solution with the matrices xf(z] invertible everywhere in their
respective half-planes. For the moment, the important thing is that
for such a solution the left-hand side of (12.4) is necessarily of the
form —\J ~ JA for some off-diagonal matrix A independent of A.
For (12.3) implies that for real A the left-hand side of (12.4) takes
the same value whether we use x) = x:\" or xa = X), and it is
therefore an entire matrix-valued function of A with a simple pole
with residue —J at A = co. This forces it to be —\J + (constant). I
shall not discuss why the constant matrix must tend rapidly to zero
as £ — +oo. For that, see Faddeev and Takhtajan (1987).

Concerning the uniqueness of the solution, if S('f\h is another solu-
tion of (12.3) we find

X 06) 7 =3 (12.5)

"I shall only consider the case when a, does not vanish for real A, so that Sy
is defined and invertible. In contrast to the situation of Section 5, this need not

ho trun
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for A € R. Now the left-hand side of (12.5) is a meromorphic matrix-
valued function in the lower half-plane, and tends to 1 as A — oo.
The right-hand side behaves similarly in the upper half-plane. Both
sides are therefore equal to a function which is meromorphic, and
hence rational, in the whole Riemann sphere. In other words, we
have

Proposition 12.6 The solution of (12.8), if it exzists, is unique
up to replacing xf by p,\xf\", where py is a rational matriz-valued
function which is unitary on the real azis and such that poo = 1. In
particular, if xf are invertible in their respective half-planes, then
they are uniquely determined by (12.3).

The unique solution of (12.3) with invertible xi corresponds to
a ‘purely dispersive’ choice of A. The others obtained from it by
means of rational functions py have ‘solitons’ on top of the dispersive
background. We shall study them in Section 14.

13 Loop groups and the restricted Grassm-
annian

We have seen that inverting the scattering transformation depends
on solving the following problem, sometimes called a Riemann-Hil-
bert problem:

Given a smooth map g : R = GL,C such that g(\) —» 1
rapidly as |\| = oo, to factorize it as g = g_g,, where
g9+ and g_ are the boundary values of holomorphic maps
9+ : Ux = GL,C defined in the upper and lower complex
half-planes U, and g4+ — 1 as A = oo in Us.

The factorization problem amounts to solving an integral equation.
For if we write g = 1+, (94+)"! =1+ 74, and g = 1+ ~_, then
g— = g(9+) 7! is equivalent to

T-=7+7+ 77+

Taking the Fourier transform of this, and observing that 4., and
4, defined by

’Ayi(:l:) = /'yi()\)e—"" d\
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vanish when z € 0 and z > 0 respectively, we have

?@%PL@%+Aw7w—yﬁ4wdy=0 (13.1)

for £ > 0. This is an integral equation for 4, when ¥ is given. In
its application to inverse scattering, it is called the Gelfand-Levitan-
Marchenko equation.®

It is more convenient to discuss loops g : §' =+ GL,C paramet-
rized by the unit circle

S'={z€C:|z| =1}

rather than the real axis in the Riemann sphere S$2. This is, of
course, only a notational change. We shall write Dy for the two
closed hemispheres of S? separated by S!, with

Dy={z€C:|z| <1}.

We shall now look for a factorization g = g_g4, where g+ : Dy —
GL,C are smooth, and holomorphic in the interiors of the discs. I
shall write L*GL,,C, or just L%, for the corresponding subgroups of
the group LGL,C of all smooth g : S' - GL,C.

A loop g can be taken as the attaching map for a holomorphic
vector bundle E on §? with fibre C*: we attach D~ xC* to D* xC*
by

(2,6) ~ (2,9(2)€)

when |z| = 1. (If g is real analytic, so that it extends to a holo-
morphic map defined in a neighbourhood of ! in S2, this construc-
tion obviously gives us a holomorphic vector bundle. It is true, but
not obvious, that it does so for any smooth g.) A factorization
g- = g(g4+)~! is then the same thing as a holomorphic isomorphism
S§2 x C* - E, i.e. a holomorphic trivialization of E. Not every
bundle is trivial, and therefore the factorization is not always pos-
sible. In the accompanying lectures by Nigel Hitchin it was proved
that any holomorphic bundle on §2 breaks up as a sum

ExlMg.. 9L,

8This is an oversimplification. See Section I1.4 of Faddeev and Takhtajan
(1987).
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where L* is the kth tensor power of a basic line bundle L on S2. The
attaching function for L is simply z, so for L¥' @ ... @ Lk~ it is the

diagonal loop
P

zk2

In other words, we have

Theorem 13.2. (Birkhoff’s theorem) Any loop g in GL, can
be factorized

9=9-2g4
for some multi-indez k, where g1 belongs to L*GL,C.

The multi-index k which occurs here is uniquely determined up to
reordering. A loop g has a winding number deg(g), which is defined
as the winding number of det(g) : S! — C*. We have

deg(g) = deg(z*) = Tk;,

for loops which extend over D4 are null-homotopic. The connec-
ted component of the identity in LGL,C consists of the loops with
winding number zero. It is stratified by subspaces Ly corresponding
to the multi-indices with &y 2 k2 2 -+ 2> k,, and Zk; = 0, and Ly
has complex codimension

Y max(ki — kj ~ 1, 0).
i<j

Thus factorization g = g_g+ is possible if deg(g) = 0 and g does not
lie in a certain complex hypersurface in LGL,C.

To prove Theorem 13.2 it is helpful to understand its relationship
to a trivial factorization theorem for an element g of the group GL,C.

Proposition 13.3 We can write

_fa b _( 1 0\/[1 b
9= c d/ T \ca? 1/\0 d —ca b

where the matrices are partitioned (k + (N —k)) x (k + (N — k)), ¢f
and only if det(a) # 0.



104 G. B. Segal

To view this result geometrically, consider the action of GLxC on
the Grassmanian manifold Gri(CV) of all k-dimensional subspaces
of CV. Let us write C¥ = P®Q, where P and Q are spanned by the
first k and last N ~ k standard basis vectors of C". The stabilizer of

P € Gri(CV) is the subgroup Gt of matrices of the form 6 *
But for any g € GLNC, if gP is transversal to Q (i.e. gPNQ =0)
then gP is the graph of amap w: P —+ Q. So

1 0
gP—(w 1)P.

Thus g~! (; (1)) stabilizes P, and therefore belongs to G, giving

us the factorization.

To adapt this argument to the loop group, we let LGL,C act in
the obvious way on the Hilbert space # of L? functions S - C*.
We then consider the restricted Grassmannian Gres consisting of all
closed subspaces of H which are ‘close’, in a certain sense, to the
subspace H 4 consisting of the boundary values of all holomorphic
maps D, — C*. (If {e;} is the usual basis of C*, then the elements
e;z¥ for k > 0 form an orthonormal basis for H,.) A subspace W
is said to be ‘close’ to H, if the operator of orthogonal projection
on to W differs from projection on to %4 by an integral operator
with smooth kernel. The loop group LG L,C acts on Gryes, and the
stabilizer of H is plainly £L*. The key to obtaining theorems about
loop groups from the restricted Grassmannian is

Proposition 13.4 A subspace W € Gres is of the form gH, for
some g € LGL,C if and only if 2zW C W. In that case, W/zW has
dimension n, and if w,,...,w, 1s an orthonormal basis of W © zW
then the matriz w with columns (w « - - wy,) belongs to LUy, and W =
wH .

In proving Proposition 13.4 the main step is to show that if
wy,-.., Wy is an orthonormal basis of W © zW then the vectors
wi(¢), ..., wn(¢) are an orthonormal basis of C* at each point ¢ of
the circle. That follows from the formula

@i(Q),wi(¢)) = Y ("wi, wj) ¢

nez
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relating the inner product in C* to that in . This argument gives
us at the same time another factorization theorem.

Proposition 13.5 Any loop g € LGL,C can be written g = wyg,,
with w € LU, and g4 € LT.

Because the intersection LU, N LY consists of constant loops (by the
maximum modulus principle applied to g*g and (9*9)~!) we have
LGL,C/L* = LU, |U, = QU,, the based loops in Uy, giving

Corollary QU, = {W € Gryes: zW C W}.

Returning to the Birkhoff Theorem 13.2, let #_ be the closed
subspace of H spanned by {e;z*} for k < 0, so that H = H, & H_.
To factorize 9 € LGL,C in the form g = g_g; it is enough to
show that gH = g-H 4, where g_ is a loop whose columns belong
to zH_. This is true if and only if gH, is transversal to H_ (i.e.
if gH+ ® H- = H, though the sum is not orthogonal), for then
V = gH NzH_ has dimension n, and a basis for V will serve as the
columns of g_.

A generic space W € Gryes of virtual dimension zero will be
transversal to H_, and so a generic loop g of winding number zero
can be expressed g = g—g4+. That is all I shall say here about the
proof of Theorem 13.2, as the non-generic case is not relevant to
inverse scattering. It is more important to mention that the map
g — g- is a meromorphic function on the loop group, with a pole
along the hypersurface of non-factorizable loops: the behaviour is
precisely analogous to that of the map

(¢ &) (e 1)

There are many variants of Proposition 13.4. One which we shall
need in the next section concerns the group GL,(C(z)) of invertible
matrices with entries in the field C(z) of rational functions of z.
This group acts on the vector space F of all meromorphic C*-valued
functions on C with at most finitely many poles. Any ¢ € F can
be written ¢ = p~!f for some polynomial p € C[z] and f in the
space F, of holomorphic maps C — C*. Associated with F is the

of Proposition 13.3.
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rational Grassmannian G"m consisting of subspaces W € F such
that zW € W and
pFr CW C q ' Fy (13.6)

for some polynomials p,q. This Grassmannian would not change if
we replaced F by C(z)", i.e. it is the space of all C[z]-submodules
of rank n in C(z)®. That makes the following result fairly obvious.

Proposition 13.7 We have

Gr™ = GL,(C(2))/GLn(Clz])
GL™)(C(2)),

1R

where GLS,w)(C(z)) consists of the elements which take the value 1
when z = o0o.

Note This is a purely algebraic statement, with no topologies in-
volved: indeed the whole group GL,(C(z)) has no sensible topology.
But for our purposes the subgroup GL(C(z)) should be given the
topology coming from the Taylor series expansion at z = oo. This
corresponds to the topology on Gr,(;'2 for which the finite dimen-
sional Grassmannian Gr(p,q) of all spaces W satisfying (13.6) has
its usual compact topology, and depends continuously on the monic
polynomials p, g.

There is a hermitian form F x F — C defined by

(r.00) = 5 [(01(3), e e, (13.8)

where ( , ) is the usual hermitian form on C*, and the integral is
taken around a large circle containing all the poles of ¢ and 5. The
subspace F is maximal isotropic for this form, and so is W = ¥ if
v € GLZ(C(z)) is unitary on the real axis. In fact W — W+ defines
an antiholomorphic involution on Gr™ for which (yF,)* = 3~1F,,

where (z) = 7(z). We have

Proposition 13.9 The subgroup T of GL(°°)(C(2)) consisting of
elements which are unitary on the real azis can be identified with

weaerh . wt=w}.
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A space W € Gr&) has a support, which is the smallest finite
subset S of C such that (13.6) is true for some polynomials p,q
whose roots lie in S. I shall write Grg for the set of W with support
contained in S. It corresponds to the subgroup of v € Gr(w)(C(z))
such that both v and y~! have their poles in S. By the Chinese
remainder theorem we have

Tes
Grg? = H Gr¢
¢eC
as sets, where []™® means that the product is restricted to families
{W¢} for which W, = F, for all but finitely many (. Each space
Gr¢ can be identified with the Laurent polynomial loop group of
U,. The correspondence in Proposxtlon 13.7 does not respect the
topology, for the topology of Grr allows the support of a pomt w
to move continuously with W. The correct picture of Grm is as
a ‘labelled configuration space’: a point consists of a finite subset
(1,---,C of distinct points of C, each point {; being ‘labelled’ with
a point of Gr;. The points {; can ‘collide’, and then the labels are
appropriately amalgamated.
Ifwe Grg't) has support S then W+ has support S. It follows
that (as sets again)

res
H GT(.

Im(¢)>0

In the next section we shall be interested in the sub-semigroup
[t of T consisting of elements which have no poles in the upper
half-plane. The elements of I't with support {¢,(}, where Im(¢) >
0, form a semigroup I‘"‘ w]nch 13 descrlbed very explicitly in Segal

(1981). It is the union of a sequence of connected components '} y
each of which is a compact complex algebralc variety of compiex
dimension k(n —1). The.component I‘(;,l can be identified with

IPE’I: it consists of elements -z, of the form

n(z), ) , = 4"('1‘,— Pry+ (z—_—g) Py, (13.10)

where Py, is orthogonal prOJectxon on to a line L in C*. The com-
ponent 'Y ¢ consists of all k-fold products

YLy YLa ***VLg »
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and the semigroup is free except that

YLYL = YLeL

depends only on L& L' if L and L' are orthogonal. (The element vz,
is traditionally called a Blaschke factor.)

Abstract scattering theory

We can define a restricted Grassmannian whenever we have a Hil-
bert space H and a closed subspace H, of infinite dimension and
codimension.

Suppose that u : H — H is a unitary operator. If H_ is any closed
subspace such that u(H+) C H, then the Hilbert space 12(Z; V) of
sequences {£n}nez in V = H © u(H) can be embedded in H by the

isometry
{&a} » ) un(&n).
If H, satisfies the additional conditions
n u*(H4) =0
n20
and
U u™(H4) isdensein H
ng0
then

Z;V) > H

is an isomorphism, and makes the action of u on H correspond to the
shift map on [%(Z;V), and makes H4 correspond to the sequences
{€2} such that &, = 0 when n < 0. In this case # is called an
outgoing subspace.

Because 12(Z; V) = L*(T; V), with the shift map on {? becoming
the operation M, of multiplication by z = € on T, the existence
of an outgoing subspace means that the spectrum of u is precisely
T C C with uniform multiplicity dim(V'). In other words, the exist-
ence of H, together with the dimension of H/u(H,) completely
determines u up to conjugation.

Given H, we can define the restricted Grassmannian Gryes, and
we have
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Proposition 13.11 {W € Gris : w(W) CW} =  QU(V).

If, in addition to an outgoing subspace H, we are given an n-
coming subspace H_, i.e. one which would be outgoing when u is
replaced by u~!, then HL is a second outgoing subspace, and we
have two isomorphisms

Sy : LXT; VY- H,

each making u correspond to M,. We call § = (S_)7'S, the scat-
tering operator. The commutant of M, is the group of measurable
maps T — U(V), so

S € LmeasU(V).

Evidently we have S(#H4) = HL. The significance of the restric-
ted Grassmannian Gy, defined in terms of A, is that HL € Grres
if and only if the loop S is smooth.

If we have a one-parameter unitary group

{Ut : H = H}eer

instead of a single operator u : H — H we can define incoming
and outgoing subspaces as before. We can write U, = it/ for some
unbounded self-adjoint operator A. A subspace H, is outgoing for
{U:} if and only if it is outgoing for the unitary operator

u=(1+id)(1-i4)7,

for o
u= / U, —1)e~tdt.
0 .

The existence of H4 now means fhat the spectrum of A is R with
uniform multiplicity V = H4 © u(H.4), and

Y / Uc(ﬁ(t) dt
R
defines a canonical isomorphism
T IRV) o H

relating U, to multiplication by e'*=.
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This is essentially the situation we described in Section 5, where
the space of solutions of the wave equation—or, more precisely, the
subspace orthogonal to the finite dimensional subspace of bound
states—was decomposed by means of an incoming and an outgoing
subspace. The abstract formulation just presented is due to Lax and
Phillips (1967).

14 Integrable systems and the restricted
Grassmannian

Up to this point we have, except in Section 4, always studied the
KdV equation with specific boundary conditions in ‘space’—i.e. we
have considered either rapidly decreasing functions on the line, or
else functions on the circle. We shall now adopt a quite different
approach which is local in the space variable.

Suppose then that we have an operator L, = —(d/dz)?+u where
u is defined just in some open interval I of R. Let us look for a
solution of Lypx = Ay which is of the form

cp,\(x)=ei’\“{1+gl—/(\—ﬁ+a2—/\(:—)+~-}. (14.1)

We find that the functions a can be calculated iteratively from
2ia] = u,

2ial,, = Lyar fork>1. (14.2)

Thus we can always find a formal power series (14.1) which is an
eigenfunction of L,. Each equation (14.2) involves a new constant
of integration, and so ¢, is unique only up to multiplication by a
formal power series in A~! which is independent of z. For most
choices of u the series (14.1) will diverge for all A, as we shall see.
Suppose, however, that for some u we have a formal Baker function
o which converges for |A\| > R We shall assign to ) a point W of
the restricted Grassmanian of the Hilbert space # of L? functions
Sgr — C, where
Sr={ e€C:|\=R}.

To do this, first fix a point z € I, and consider the closed subspace
W. of H spanned by the sequence of functions of A\ € Sg

ea(z), i(2), AA(2), @3 (2), - (14.3)
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or, equally well, by A%, (z) and A%y, (z) for k > 0. Ishall omit the
proof that W, does belong to Gries, which follows from the second
description (see Segal and Wilson 1985, p. 34). From the first de-
scription of W the z-derivative of any generator of W; is contained
in Wz, giving us

Proposition 14.4 The space Wy is independent of z.

Notice, however, that W = W, depends on the choice of the conver-
gent Baker function @), and not just on L,. Changing the choice
of ©) changes W to YW, where 7 = 3,5 ckA~* is a holomorphic
map Dp = C*.

The space W clearly satisfies A’W C W. Conversely,

Proposition 14.5 If W € Grs satisfies \*W C W then for all
z € C such that e **W {s transversal to H_ there is a unique ele-
ment @x(z) of W of the form 14.1. Furthermore py(z) ts mero-
morphic in z for all z € C, and satisfies Lypy = My, where
u = 2ia}.

Here, of course, we are writing H = H ®H_, were #; and H_ are
spanned by A\¥ for k > 0 and k < 0 respectively. The proof of the
existence of ¢y (z) is obvious: if e”**W is transversal to H_ then
e~ »2W and 1+ H_- meet in a single point. To see that Ly = A2y
we simply observe that for each z the function

e 3 (Lypy — X))

of A belongs to e~ **W but also to H_. Finally, the meromorphicity
follows from the remark after the Corollary to Proposition 13.5 (see
Segal and Wilson 1985, page 51).

We now see that a convergent Baker function cannot exist unless
u extends to a meromorphic function on all of C. If, for example, u
is rapidly decreasing on the line then we know from Section 5 that
there are unique eigenfunctions &} and ¢} of the form (14.1) which
are holomorphic for ) in the upper and lower half-planes respectively,
while on the real axis ¢} — ¢y is the reflection coefficient Ry. In this
case, therefore, a convergent Baker function can exist for |A\| > R
only if the reflection coefficient has compact support. The reflection
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coefficient is a ‘non-linear Fourier transform’ of u, and the Fourier
transform of a function with compact support is entire, so it is per-
haps not surprising that u is meromorphic when R) has compact
support.

The next point to understand is that points W of Gryes such
that AW C W encode not only operators Ly, but in fact complete
solutions to the KAV equation and the whole system of commuting
flows associated with it. For, just as we associated pa(z) to W
in Proposition 14.5, we can show that for a generic sequence X =
(z1,22,23,...) there is a unique element ©a(x) of W of the form

ox(x) = eiZTrAk {1 4 ﬂ% " 02/\(2’() .. } ‘

(Of course, we need f = Tzx\* to converge for Al = R) If we
observe that

90x _ ifpink -1
S22 = ¢/ {ixk+ 00,

while

I™OA _ ifrrivam m-2
B = LGN+ OO ),

we can easily show that there are unique ordinary differential oper-
ators P of the form

9 k 9 k-2
(=) —ike ([ Z
B = (82:) ikaj (81) +---,

where z = 1, such that

a
%(:—)=Pf¢,\(x)-

In particular, if we take z3 = ¢ we find that P; is the P occurring
in the Lax form of the KdV equation, so that u = 2ia (z,t,0,...) is
a solution of the KdV equation. But, more generally, we easily see

that P} is the ‘fractional power’ (Lﬁ/ 2)+ discussed in Section 4.

If we write

Grid) = {W € Gries: W C W},
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what we have now proved is that there is a map
Gr{3/L~C* — {meromorphic functions u}

such that the action of the abelian group L¥C* on the left corres-
ponds to the hierarchy of commuting KdV flows on the right—to be
precise, ¥ = eSaX* in LHCX corresponds to flowing for ‘time’ z
along the kth flow. (Because A\2W C W, the space yW is independ-
ent of the z; with k even, so only the odd flows are non-trivial.)
The space Grgg can itself be identified with the based loop-group
QU; of U;. This follows from the discussion at the end of Section
13, for H = L*(Sg;C) is a Hilbert space equipped with a unitary
transformation f — A%f such that A2}, C H, with codimension 2.
We can also say

Gr{d) = LGL,C/L*GL.C.

The action of LC* on Grgg comes from the inclusion of LC* in

LGL,C by
a A%
v A2 a )

where a = 3(7(M/2) + 4(A"/2)) and b = J(y(A}/2) — y(A"1/2)). If
we examine this construction we find that the space of meromorphic
solutions of the KdV hierarchy we have found is parametrized pre-
cisely by the based loop space Q.52.

The NLS equation

The local theory of the KAV equation has a precise parallel for the
NLS equation. I shall carry it a little further to show how it can be
applied to study the rapidly decreasing solutions on the line.

The equation

d
(J-(E + A) Y =Ap
has formal solution matrices M) (z) = xx(z)e *'%, where
xa(z) ~1+ 2 lay(z) + A %az(z) + - (14.6)

This solution is unique up to multiplication on the right by a diag-
onal matrix-valued function of )\, independent of z.



114 G. B. Segal

If the series (14.6) converges for {A| > R then for each z the
rows of the 2 x 2 matrix M,(z) are elements of the Hilbert space
H of L? functions on [A| = R with values in C2. These rows and
their successive z-derivatives span a subspace W; belonging to the
restricted Grassmannian of H, just as in 14.3. Once again W = W,
is independent of z, and it satisfies AW C W. Everything proceeds
as for the KdV equation.

Now suppose that A is rapidly decreasing. We have the solutions
M f for A in the two half-planes, related by

M;=M;’S)\

when ) is real, as well as by the unitarity relation (12.2). If there is
no dispersive scattering then S) = 1, and Mf fit together to define
a meromorphic function in all of C, and the space W corresponds to
the rational loop px = x(0) in GL2(C), and belongs to the Grass-
mannian denoted Grgz in Section 13. We also know that po = 1,
and that p) has no poles in the upper half-planes, and is unitary
on the real axis. Such rational loops form a semigroup I't, whose
connected components I} correspond to the number n of zeros of
a) = det(M)) in the upper half-plane. They correspond to a sub-
space Gr* of the rational Grassmannian. The component I'} is a
compact complex algebraic variety of complex dimension 2n. As z
traverses the line R the rational loop x(z) evolves in correspondence
with the subspace We*/* € Grt, in other words according to the
flow of Gr* induced by the flow {e*/*} on F. We can decompose
the isotropic Grassmannian as

Il o

Im(¢)>0

as in §13. The flow {e*/*} leaves the support of each element of Gr*
fixed, and acts independently on each Gr&". The same applies to the

flow generated by {e*’’t}, which corresponds to letting the solution
evolve for time ¢ according to the NLS equation. So the space of
solutions breaks up into a product of pieces labelled by numbers ¢
in the upper half-plane which determine the velocity and frequency
of oscillation of the soliton.
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The fixed points of e*/% on GrgL are the discrete set Wy ,, for
k,m > 0, where Wy ;, corresponds to the loop

k —
(fO fen)’ with F=§—_—_—g—-.

These all correspond to the trivial potential A = 0. (Recall
that the solutions Mf(z) were determined by A only up to right
multiplication by a diagonal function of A.) For a general point
W of Gr&F the trajectory We’® goes from Wi m, to Wiyy m—r as
~00 < £ < 00, for some integer r > 0. These trajectories sweep
out a space X[ which is clearly independent of (k,m), and precisely
parametrize the r-fold multisolitons of type ¢. This gives us a rather
complete picture of the space of dispersionless potentials A.

If there is dispersive scattering, then the loop Sy is, as we saw
in Section 12, the attaching function for a holomorphic bundle E
on the Riemann sphere S? = C U {c0}, and the rows of M (z) are
meromorphic sections of E|C. Because S) is hermitian the bundle E
has a hermitian structure in the sense that the fibre Ej is dual to Ej.
Let us write Fg for the space of meromorphic sections of E|C, and
Grg for the associated rational Grassmannian of subspaces W C Fg
such that AW C W and

pFg C W c qlFg

for some polynomials p, g € C[)\}, where F£ denotes the holomorphic
sections of E|C. Inside Grg there is a subspace Gri consisting of
those W such that WL = W and W C FZHP| where FJHP is the
sections which are holomorphic in the upper half-plane.

We now have a precise analogue of the theory described above
for dispersionless potentials. The subspace W, of Grg spanned by
the rows of A/{éh(z) and their z-derivatives is independent of z, and
belongs to Gry,. Conversely, for any W € Grf, we can find a potential
A for which M f generate W. In fact we shall have

ME(X) = px(z) M (2),

where Mf is the purely dispersive solution with scattering loop S
described in Section 12, and p)(z) belongs to the subsemigroup I'*
of GI2(C())), and becomes diagonal as £ — +oo. All of this is
described very fully and explicitly in Chapter II of Faddeev and
Takhtajan (1987).
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15 Algebraic curves and the Grassmannian

The construction just described of meromorphic solutions to the
KdV equation from the Grassmannian is not directly practical. A
source of explicit spaces W € Gr; is provided by algebraic curves.

Let £ be an algebraic curve or compact Riemann surface equip-
ped with

(i) a distinguished point P and a local parameter A at P which
identifies a closed neighbourhood Dy, of P with the disc

D_={\eC:|\ 2R}

in the Riemann sphere, so that A(P) = oo,

(ii) a holomorphic line bundle L on ¥ with a given trivialization
of L|Ds.
Then we define W as the space of boundary values of holomorphic
sections of L defined outside Dg, i.e. W = I(L|Z;), where g =
¥ — (interior of Dyg). Here sections of L over the boundary of £y
are identified with complex-valued functions on the circle Sg by the
given trivialization of L|Dg. I shall omit the proof that W does be-
long to Gres (see Pressley and Segal 1986, p. 159). Notice that chan-
ging the trivialization of L|Ds changes W by multiplication by an
element of L~C*, exactly the same ambiguity that we encountered
in §14 in associating a space W € Gres to an operator L,,.
The choice of the curve T and the local parameter A gives us a
surjective homomorphism

jp: LC* = Jac (Z)

from the loop group to the Jacobian variety of the line bundles on T
(which is a group under ®): for to a loop v we can associate a line
bundle L, got by attaching the trivial bundles £y xC and Dy x C by
means of y. Any holomorphic line bundle L on ¥ can be constructed
in this way, for L|X¢ and L|Ds, are necessarily trivial.

Proposition 15.1 If W arises as described from the line bundle L
then YW arises from L ® L, with its trivialization over Dy induced
from that of L.

For W to correspond to an operator L, as in Section 14 we need,
among other things, that AW C W. This is true if (and in fact only
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if) A2 : Dy — S? extends to a holomorphic f : £ — S2? such that
f~Y(D4) = Ty, i.e. if T is a ramified double cover of §2, with oo € §?
as one of the branch points. In particular, ¥ must be hyperelliptic.

We need two additional conditions on W. First, if W is trans-
versal to H_ it must have virtual dimension 0. Using the Riemann-
Roch theorem for £ we readily find

Proposition 15.2 The virtual dimension of W is deg(L)—g, where
g is the genus of L.

Thus we need deg(L) = g. Then W is transversal to H_ if
WnNnH_ = 0. Now WnN H_ is the space of sections over £ of
L ® L,-1. This bundle is conventionally denoted L(—1)—for L,-1
is the bundle whose sections are the sheaf of holomorphic functions
which vanish at P € £—so the condition we need is

HY(Z;L(-1)) =0,

just as in Hitchin’s lectures.

In Section 14 we saw that the hlera.rchy of KdV flows correspon-
ded to moving W € Gryes by W — eS=X* W . So Proposition 15.1
shows that each orbit of the KdV flows on the space of meromorphic
functions u produced by a curve I is a copy of the degree g com-
ponent of the Jacobian of ¥, on which the flows are the action of the
identity component Jaco(Z). In fact every finite dimensional orbit
coming from the Grassmannian arises from an algebraic curve in this
way.

One further thing should be said to complete the dictionary
between the loop group picture and Hitchin’s. In his picture the
solutions are constructed from the direct image vector bundle f,L
on S2. Such a bundle can be constructed by means of an attaching
function in LG L,C, and the space

Gr® = LGL,C/LT GLC

can be identified with the set of holomorphic bundles of rank two on
5? which are trivialized over D_. In this correspondence the space
W corresponds to the bundle f,L, and the inclusion LC* — LGL,C
described in Section 14 takes the attaching map of L to that of f.L.
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4

Integrable Systems and Twistors

Richard Ward

Notes by Martin Speight

1 General comments on integrable systems

For the purpose of this chapter, integrable systems are special kinds
of non-linear differential equations (although one should note that
there are also integrable difference equations, and the study of these
is increasingly prominent). For essentially any system of differential
equations, one has local existence theorems, so existence of solutions
is not the issue. The question, rather, is what the solutions are like.
For a non-linear differential equation chosen at random, one has no
hope of writing down explicit solutions in terms of known functions.
The classification of a function as ‘known’ may seem artificial, having
more to do with what we’ve bothered to learn than the function itself;
but in fact there is more to it than that. The known functions (e.g.
trigonometric functions or elliptic functions) are known because they
have nice properties, and can be defined using only a finite amount of
information. The functions involved in the solutions of a generic non-
linear differential equation are so awful as to be literally indescribable
in any but a tautological way (that is, one can really only define them
as solutions of the differential equation). An extreme example of this
is chaotic systems. At the opposite end of the scale, some equations
can effectively be solved explicitly: there are dense families of explicit
solutions involving known functions. This gives a rough definition of
integrable systems (there are several definitions which are less vague,
but they tend to be too restrictive).

Integrable systems are extremely special (almost every non-linear
differential equation is not integrable). Nevertheless, they are im-
portant:
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e They are mathematically beautiful, with links to geometry, etc.

e Many of the nice properties of solutions of integrable systems
are more robust than integrability itself. For example, solit-
ary waves in a shallow water channel are approzimated by an
integrable system, the Korteweg-de Vries equation. The full
fluid-dynamical evolution equation of the system is not integ-
rable, yet it shares some of the nice properties (solitons, stabil-
ity) of its integrable approximation. The same is true of light
pulses in optical fibres, which are approximately solutions of
the non-linear Schrédinger equation.

e Even systems which are far from integrable may have an in-
tegrable ‘heart’ which tells one much about their behaviour.
For example, one can obtain a good picture of the solutions of
the time-dependent BPS monopole system (which is not integ-
rable), by understanding the static system (which is).

2 Some elementary geometry

Consider a m-dimensional manifold M with local coordinates

(for our purposes it suffices to take M = R™). A vector bundle of
rank p over M is a structure in which a p-dimensional vector space
Vz is attached to each point £ € M. A vector field is a smooth
allocation of a vector v{z) € V; to each point z. In concrete terms,
we can choose a basis for each V7, so that v(z) is a column p-vector of
functions of z®. The choice of basis is often called a choice of gauge.
A guiding principle is that all constructions should be independent of
the choice of basis, that is, gauge-invariant. A gauge transformation
(smooth pointwise change of basis) acts on the column vector v by

v(z) — v(z) = A{z)v(z), (2.1)

where A is a non-singular p X p matrix of functions of z.
How does one make sense of the idea that v(z) is constant in the
z! direction (say)? The naive answer

)
a_sz =0 (2.2)
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is not gauge-invariant. To get something which is, one has to intro-
duce a connection on the vector bundle. Let us use the shorthand
notation 8, = 8/8z*. The constancy condition is Dyv = 0, where

Dot = 8av + Agv (2.3)

is the covariant derivative of v. Here A, is a p x p matrix of functions
of z which transforms under gauge transformations as

Ag Ay = AN = (8,A)AL (24)

Then the covariant derivative transforms as D,v — ADgv (so D,v
transforms in the same way as v itself); the crucial point is that its
vanishing is gauge-invariant. If Dyv = 0, then one says that v is cov-
ariantly constant in the z;-direction. In physics, A, is called a gauge
potential. Generally, A takes values in a Lie group G, and A, takes
values in the corresponding Lie algebra g. Assuming that V, are real
vector spaces, the gauge group we’ve been using so far is GL(p, R).
Interesting examples often involve complex vector bundles, and com-
pact subgroups of the general linear group such as SU(p).

If we demand that v(z) be covariantly constant in both the z;
and z2 directions, then we get two equations

Dlv = 0,
Dy = 0. (2.5)

This is an overdetermined system: there are twice as many equations
as there are unknown functions. In general, there are no solutions
except v = 0. To have non-trivial solutions, the connection must
satisfy a consistency condition obtained by cross-differentiating (2.5):

DIDQU - Dng = F12'v = 0, (2.6)

where

Fop = [Dq, D] = 8, Ap ~ OpAq + [As, Ab) (2.7)

is a g-valued function of z called the curvature or gauge field. In order
for (2.5) to have non-trivial solutions it is necessary and sufficient to
have vanishing curvature F13 = 0.

So the linear system (2.5) is consistent if and only if Fi; = 0,
which is a non-linear partial differential equation for A,. But this
non-linear PDE is rather trivial: up to a gauge transformation, the
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solution of Fij3 = 0 is Ay = A = 0; or to put it differently, the
general solution is the pure gauge A, = A~'9,A, where A(z) is
arbitrary. How can one get something non-trivial? The crucial idea
is to introduce a parameter, sometimes called the spectral parameter.
In Nigel Hitchin’s lectures this is denoted z, in Graeme Segal’s it is
called M.

3 First example: self-dual Yang-Mills

Our aim is to define a linear system similar to {2.5), but involving
a parameter A\. A straightforward possibility for the parametric de-
pendence is that it be polynomial in A. In fact, to begin with, we
will concentrate on the case of linear dependence (generalizations of
this simplest case will be mentioned later). The basic structure we
work with is a rank p vector bundle over R*, and the linear sys-
tem is obtained from (2.5) by replacing D, by D; + AD3 and D, by
Dy + ADy:

il

(D, +AD3)v = 0,
(D +ADg)v = 0. (3.1)

Once again, (3.1) is an overdetermined linear system; and it is con-
sistent if and only if

(Dy + ADs, Dy + ADy] = 0. (3.2)

This curvature is a quadratic polynomial in A, so demanding con-
sistency for all A gives three (matrix) equations for the four (matrix)
functions A, (e = 1,2,3,4), namely

F12 = 0’
Fuu+F, = 0,
Fy = 0, (3.3)

which are called the self-dual Yang-Mills (SDYM) equations. This is
an underdetermined system (three equations for four functions), re-
flecting the gauge invariance of the system. Note that the curvature
transforms under a gauge change as

Fap > By = AF A2, (3.4)
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so that vanishing curvature is a gauge-invariant condition. Choosing
a gauge introduces an extra equation which makes up the deficit.

Why is it called self-dual Yang-Mills? Suppose that R* is equip-
ped with the pseudometric ds? = dz'dz* — dz2dz® = ngdz®dz?,
which has signature + + ——. Then there is an associated duality
operator (the Hodge dual) which maps k-forms to (4 — k)-forms, and
in particular 2-forms to 2-forms:

1
Wap > (¥w)ap = ‘i"lacﬂbdfeduwij’ (3.5)

where €247 is the totally antisymmetric tensor with €!234 = —1. The
SDYM equations then say that *xF = F; in other words, F is self-
dual. These equations are invariant under SO(2,2), that is, linear
transformations of R* which preserve the pseudometric ds? (in fact,
also under the conformal group in 2 + 2 dimensions).

This explains the ‘self-dual’ part of the name. The Yang-Mills
equation is the Euler-Lagrange equation of the Lagrangian density

L = tr(FapFea)n®n®, (3.6)

namely 7°D.F,, = 0. The action of the covariant derivative on the
curvature is defined as

DcFab = G Fap + [Aaa Fab]§ (3-7)

note that D.Fy;, transforms under gauge change in the same way
as Fyp. Since the Bianchi identity 7°® D, * F,p = 0 is automatically
true for any connection, it is clear that any connection with self-dual
curvature satisfies the Yang-Mills equation (of course, the converse
is false). While the Yang-Mills equations are not integrable (in fact,
they admit chaotic solutions), the SDYM equations are integrable,
and structures can be set up which enable one to generate lots of
solutions. These structures naturally lead to twistor space. Before
describing this, I want to make a few remarks, and describe a more
direct solution-generating method.

e One can similarly define the SDYM equations on Euclidean R?,
and these are invariant under SO(4). One needs a mixed metric
signature to introduce ‘time’ into dimensional reductions of the
system. In both 4 and 242 dimensions the Hodge dual satisfies
++ = identity, so that * has eigenvalues +1, and real self-
dual curvatures can’exist. In 3 + 1 dimensions, however, *x =
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—identity, so * has eigenvalues +i, and the SDYM equations
have no real solutions.

o We have 4p? functions on R* (the matrix components of each
A,), and they satisfy the coupled non-linear PDEs xF = F,
where Fyp = 8, Ap—0yAg+[Aq, Ap). If p = 1, then the equations
are linear; so to get something interesting we need to take
P2

e Many (in fact most) well-known integrable systems (for ex-
ample, the static monopoles referred to earlier, Korteweg-de
Vries, non-linear Schrodinger, sine-Gordon equation, etc.) are
reductions of SDYM: see Mason and Woodhouse (1996).

As an example of how one can generate solutions of SDYM, con-
sider the case where p = 2 and the gauge group is SU(2), so A,
takes values in su(2). Suppose we had two independent solutions v;
and v of the linear system (3.1); arrange these two column vectors
side-by-side to form a 2 x 2 invertible matrix ¥(z, \) satisfying

(Dy + AD3)y = 0,
(Do +ADg)y = O. (3.8)

Recalling that D,y = 8,9 + Aa, we see that these give

Al +X; = (1 + Ny,
A+ XAy = (B +A0)pY; (3.9)

so if we know 1), then we know the right-hand sides for all A, and we
can reconstruct A,. These will automatically be solutions of SDYM.

But this supposes that we know % in the first place. The trick
is to assume that 1 has an appropriate simple form, in particular
that the A-dependence is simple. For example, let us assume that 1
is rational in A, with simple poles at the constant complex numbers
L1, 42, - - -, b (constant meaning independent of z%). Since the gauge
group is SU(2), ¢ has determinant 1 (or at least det 1) is constant),
and 1 is unitary for real A. In fact, the unitarity condition for general
A is

it

Y(z, NY(z, X)‘ =1, (3.10)
where * denotes the complex conjugate transpose of the matrix. As-
sume that 1) has the form

z M (z)

p=I+)
k=1

. 3.11
Bvrm (3.11)
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Then impose unitarity: the vanishing of the residues at the poles on
the left hand side of (3.10) implies that M} hasrank 1: My = u®ug,
with a formula for u; in terms of v (or vice versa). One can then
substitute this into (3.9), and demand that the right-hand sides be
linear in A. This requirement is satisfied if vy, is an arbitrary function
of the combinations uxz! — z2 and prz? — z*.

In this way, we get large families of solutions in terms of rational
expressions involving arbitrary functions. Typically these solutions
represent n-soliton solutions. In the simplest case n = 1, we get

Vv
:L‘X) I+A_—;(v v‘). (3.12)

To end this section, and lead into the next, we note that the two
combinations above are the evaluation at A = py of

w! = Az! — 28, w? = Az? -zt (3.13)

Each of these w’ is annihilated by both the operators

3, = 01+ )5,
3 = Oy+ Moy, (3.14)

which are the derivative operators in the linear system (3.1). This
can be viewed as coming from the underlying twistor geometry.

4 Twistor space and holomorphic vector
bundles

For more details on the material of this section, see Ward and Wells
(1990). Think of the z* as being four complex variables, so that
M = C'. In addition, we will allow A to take all values in the
extended complex plane C U {00} = Pl ‘An object like v(z, )) is a
functionon F = M x P, a ﬁve-dxmensxona.l complex manifold. The
first order differential operators d; corr&spond to vector fields on F,
and these span complex planes in F, The space of these planes, i.e.
the quotient of F by the dlstnbutlon {8;, 3.}, is a three-dimensional
complex manifold called twistor space T. As local coordinates on T,
we can use combinations of ), z* ,32,23,:1:4 which a,re annihilated by
both 3, and 33, namely A, wl Az! — 2% and w? = Az? — z'. The
point in T corresponding to a plane Z will be denoted Z.
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The linear system (3.1), provided the connection is self-dual, gives
the condition for p-vector fields (sections of a rank p vector bundle) to
be covariantly constant in the 3; and 3, directions, that is, over the
planes spanned by J; and 3. So the space of covariantly constant p-
vector fields on one of these planes Z is a p-dimensional vector space.
This gives an allocation of a p-dimensional vector space Ez to each
point Z of twistor space, in other words, a rank p holomorphic vector
bundle over T'. The important fact is that this vector bundle contains
all the information of the original connection on M. On M one has
a trivial bundle V' (which contains no information apart from the
integer p), and a connection satisfying some non-linear PDEs; on
T, one has just a vector bundle (no connection), and no differential
equation at all (cf. the Fourier and inverse scattering transforms,
where the differential equation is transformed away). These two
structures are equivalent: one can transform back and forth between
them. The transformation from M to T is described above. To go
the other way requires a bit more work; we shall do this in the next
section for a special reduced case, where all dimensions are reduced
by 1. The reduction is obtained by demanding that all functions on
M are independent of z! +z*; or equivalently that they depend on z!
and z* only through the combination z! —z4. This effectively reduces
M to a three dimensional space-time with signature + + —. The
corresponding reduced twistor space is sometimes called ‘minitwistor
space’.

5 Yang—Mills-Higgs solitons and minitwistor
space

What happens to the SDYM equations when we reduce from R? to
R3 as described above? One still has four matrix-valued functions
Ag, but one of them (or rather the combination A; + A4) is not a
connection coefficient, since the corresponding dimension no longer
exists. It is now referred to as a Higgs field, and denoted &.

For the sake of neatness, let us rename the space-time coordin-
ates: we're on R® with coordinates X* = (X%, X!, X?) = (¢,z,v),
and pseudometric ds? = 7,,dX*d X", where

00
(wv) = 0 10]. (5.1)
0 01
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The Hodge duality operator * now maps 2-forms to 1-forms, and the
SDYM equations reduce to

D® = «F, (5.2)

where D, ® = 9,0+(A,, ®]. The system (5.2) is a set of coupled non-
linear PDEs for (A,,®). (The corresponding Euclidean equations
are called the Bogomol'nyi equations for static monopoles.) The
linear system which has (5.2) as its consistency condition is

(AD; =Dy — Dy + A®)v = 0,
(AD, = ADy — D; + ®)v = 0. (5.3)

We can generate solutions of (5.2) directly, by assuming that we
have two independent solutions of (5.3) forming a matrix ¢ of the
form

¢=1+Zn:M (5.4)

(details as in Section 3). Here Mj is determined in terms of a vector
v which depends on X* only through the combination

we = (E+y)pi + 2zp + (E—y)- (5.5)

Of most interest are the solutions which are smooth everywhere in
space-time, and localized in space. This requires that the v, be ra-
tional functions of wg. The picture that one gets is of n solitons
moving in the (z,y) plane. The k-th soliton moves with a constant
velocity determined by ug. Its shape is determined by the rational
function of v referred to above, and generically it looks like dj sep-
arate lumps (drifting along at the same velocity), where di is the
degree of the rational function.

The simplest example isn = 1, p = i, d = 1. Note that in this
case

w = —(t+y)+2z+(t-y)
= 2i(z.+iy); (5.6)
so w is independent of ¢ (4 = 1 give static solutions, all other values

of 4 do not). We must still choose a unit-degree rational function.
One simple possibility is to take v = (1,w). The corresponding
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soliton is a single lump centred at £ = y = 0. In order to get
a picture, it is useful to plot the positive gauge-invariant quantity
~tr(®?). In this case,

K

—tr(@z) = -—————-(1 T I? n y2)2,

(5.7)
where x is some constant.

If one allows 1) to have higher-order poles in A (order > 2), then
explicit solutions with more complicated behaviour can be found.
For example, taking 1 to have a double pole at A = i, and no other
poles, gives a solution in which the ‘centre of mass’ is static, but two
solitons collide head-on and emerge at right angles to their line of
approach. This type of scattering is familiar for topological solitons
(but there, by contrast, one does not have explicit solutions).

It is possible to relate all this to the algebraic geometry of holo-
morphic vector bundles over minitwistor space, as follows. Com-
plexify R® to C?, with complex metric as before. The twistor space
T is the space of null planes in C3 with respect to this metric. A
null plane is one of the form 7,,k* X" = w, where w is constant and
k* is a null vector:

nuw kR = —(K°) + (k')? + (k*)* = 0. (5.8)

One can parametrize such null vectors using a single complex para-
meter A, namely

ky = nuk’ = (A2 +1,23,A2 ~1). (5.9)

Since the direction of k, is of importance (not its léngth), one can
allow A to take the value oo in this formula, that is, A € P!. So (\,w)
are local coordinates on T. Note that the null plane ()\,w) is given
by
A+D)X°+ 22X+ (M -1)X2=w
= w=({t+y)A2+2TA+ (t~y), (5.10)
which when evaluated at A = pj is precisely the combination en-

countered earlier (5.5). Note also that the two vectors from the
linear system (5.3)

B, = Ao, —0~0,
By = Ah—A3, -0, (5.11)
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are the tangent vectors to the null planes labelled by A, since they
annihilate the linear combination k, X*. So, as before, one can inter-
pret T as the quotient space of C3 x P! by the distribution {3;,3,}.

Globally, T is a holomorphic line bundle over P!. In fact, it
is the line bundle whose global holomorphic sections are quadratic
polynomials as in (5.10); it follows that T has Chern class 2. By
definition, a point in T corresponds to a (null) plane in M. What
does a point in M correspond to in T? Fix p = (¢,z,y) € M.
Then (5.10) gives w as a function of A, or more precisely, a global
holomorphic section of the line bundle T. Geometrically, this is a
curve in T, and the curve corresponding to p € M will be denoted
p. In summary, there is a ‘duality’ between M and T

pointin M — curveinT
plane in M +— point in T.

Recall that if we start with a Yang-Mills-Higgs field (A,, @) sat-
isfying D® = +F, then (5.3) can be integrated: the space of vector
fields covariantly constant on a null plane Z is a vector space Vz,
the fibre of a holomorphic vector bundle over T'.

Theorem 5.1. (Ward 1990) There is a one-to-one correspond-
ence between:

(i) solutions (A, ®) of the equation D® = *F on M [with gauge
group SU(2)]; and

(i) holomorphic [SU(2)] vector bundles V over T satisfying the
triviality condition '

Vi is trivial Vp € M. (5.12)
[The SU(2) part is inessential, and we will ignore it.]

It is clear why we get the triviality property (5.12): any two
points Z,Y on P correspond to null planes Z,Y through the single
point p € M. This gives a natural identification of the fibres Vz =
Vv, namely a covariantly constant vector field on Z will be identified
with a covariantly constant vector field on Y if the two fields coincide
at the common point p. This defines a trivialization of Vs.

We have described previously how to get from (i) to (ii) (see Sec-
tion 4). It remains to describe how to get from (ii) to (i). Given V
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satisfying (5.12), the holomorphic sections of V|5 form a (2-dimen-
sional) vector space, which defines the fibre E, of a vector bundle
E over M (E is necessarily trivial, since M = C?). Note that com-
pactness of T in the A coordinate is essential for this: if T were a
line bundle over C rather than the compact Riemann surface P!,
then p would be non-compact and its holomorphic sections would
form an infinite-dimensional vector space. So allowing the spectral
parameter A to take the value oo is crucial. We now need to re-
construct (A,,®). If p and g are null-separated (lie on the same
null plane Z), then the curves 7 and § intersect at a single point Z.
This allows us to identify holomorphic sections of V|5 with those of
Vs (namely, two such sections are identified if they coincide at Z),
and hence define an identification of fibres E, and E; where p and
q are null-separated. So given a vector v € E, one can propagate it
‘constantly’ over any null plane Z through p, by defining its value
at ¢ € Z to be that holomorphic section of V|; whose value at Z
coincides with v. The coefficients appearing in the propagation law
are identified as (A4,, ®).

Since any solution of the Yang-Mills—Higgs equations corres-
ponds to a holomorphic vector bundle over T, one might ask whether
it is possible to parametrize the space of such bundles. If so, all
solutions of the equations would, in some sense, be ‘known’. In fact,
since T is non-compact (being the total space of a line bundle), it is
impossible to parametrize the moduli space of vector bundles over
T explicitly. However, for pure soliton solutions, such as those de-
scribed earlier, the vector bundle V extends to a compactification T
of minitwistor space: each fibre Ly of T is compactified from C to
P!. Now T is an algebraic variety, and bundles can be constructed
by specifying rational data (cf. the rational functions in the soliton
solutions described previously); see Ward (1990).

6 Generalizations

Recall that the SDYM equations arose from an overdetermined linear
system consisting of two equations, each polynomial of degree one in
one parameter A\. Each equation had the form

L3(N) (8, + As(z))v(z, X) = 0, (6.1)
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where the L% are four linear polynomials in A, and the A, are
matrices. How can one generalize this? There are some obvious
possibilities:

(A) one can allow the functions L#()) to depend on z;

(B) one can increase the values of any or all of the integers men-
tioned above: for example, by allowing more than one para-
meter, or polynomials of higher degree, or more than two linear
equations in the system:;

(C) one can use more general linear operators, for example L%())
could be matrices (this includes the possibility of higher-order
differential operators);

(D) one could replace the differential operators by difference, in-
tegral or pseudo-differential operators.

All of these lead to interesting integrable systems, some of which are
as follows.

(A) Put A,(z) =0, and allow L® to depend on z. Then the coeffi-
cients of L%(z,A) become the dynamical fields. There is no
longer a gauge field, but the underlying space M becomes
curved, and its metric satisfies the self-dual Einstein equations.
On the four-dimensional manifold M, we have two vector fields,
depending linearly on A,

G = Ni+A1;
32 = W+ AV, (6.2)

The consistency condition for the linear system 3,v = 0 = G2v
is that these two vector fields should commute. Then 3;, J;
span surfaces in M. The space of these surfaces forms a three-
dimensional complex manifold T, which is a deformed version
of the flat twistor space encountered before. Like the original
T, it is fibred over P'. The metric on M is defined (up to
conformal scale) by demanding that 3;, 3, are null vectors
for all \. The conformal curvature of this metric is self-dual,
and this leads to the self-dual Einstein equations (some extra
structure is required to fix the conformal scale). The crucial
point is that given T, we can reconstruct the geometry of M.
Namely, the sections 7 of T, thought of as a bundle over P!,
are by definition the points p of M. The set of all sections 7
through Z € T gives a surface Z in M. Defining such surfaces



134

(B)

(AB)

(©

(D)

R. S. Ward

to be totally null defines the conformal structure on M. For
more details, see Ward and Wells (1990).

Increasing the number of equations in the linear system from 2
to 2k gives a generalization of SDYM to 4k dimensions (Ward
1984).

The self-dual Einstein equations generalize to 4k-dimensional
hyperkahler geometry, of interest to geometers, and also oc-
curring in moduli spaces of topological solitons (and elsewhere
in mathematical physics).

Allowing L2(\) to be matrix-valued, one can obtain the Davey-
Stewartson and KP equations (well-known three-dimensional
PDEs in soliton theory).

Using difference operators leads to integrable lattice systems
and cellular automata.

To a geometer, generalizations (A) and (B) are natural, because
first-order scalar (i.e. not matrix) differential operators L%8, can be
interpreted as vector fields on M. Taking the quotient of M by these
vector fields leads to twistor space. By contrast, with generalizations
(C) and (D) one loses this nice geometry. There are current efforts
to find a generalized geometry which can include these latter two
cases, but whether these will be useful remains to be seen.
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