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FOREWORD

Variational principles were introduced into quantum scattering theory
by L. Hulthén, W. Kohn, and J. Schwinger during the 1940s, and it
soon became clear that the application of these principles provided an
effective method of obtaining approximate numerical solutions of the
scattering problems encountered in atomic, molecular, and nuclear
physics. In the half century since their inception, variational approx-
imations have been the subject of intense theoretical analysis, impor-
tant new variants have been discovered, and many successful
applications have demonstrated their utility. Despite the importance
of the subject, no monograph on variational methods has been
published for nearly two decades, and the new advances are contained
in research articles scattered over several journals, making it difficult
for students to obtain an overview of the present position. The decision
of Professor Adhikari to remedy this lacuna in the literature is greatly
welcomed.

Professor Adhikari has published many important papers on quan-
tum scattering theory and its applications, and his book, with K. L.
Kowalski, titled Dynamical Collision Theory and Its Applications is one
of the best introductions to modern theoretical developments. His
present monograph, written with the authority to be expected from his
experience, provides a lucid account of all the main variational
methods together with examples of their application. Students wishing
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Xii FOREWORD

to learn the foundations of the subject are well served and, in addition,
much is discussed that will interest more senior researchers. This book
deserves to be read widely by all those concerned with scattering theory
and its applications, and I wish it every success.

B.H. BRANSDEN

Professor of Physics
University of Durham
Durham, UK



PREFACE

In recent years there has been considerable progress in the develop-
ment of sophisticated numerical methods for treating nuclear, atomic,
and molecular scattering problems involving many, but finite, active
degrees of freedom. After certain approximations, most of these
problems are modeled by a single (or a set of coupled) effective
differential or integrodifferential Schrédinger equation(s). Unfortu-
nately, in many problems of physical interest the number of the
coupled equations could be very large, which prohibits a direct
solution. Hence, further approximations are needed for their numer-
ical solutions.

Imposition of scattering boundary conditions is numerically the
most difficult task in obtaining a solution of the differential or
integrodifferential Schrédinger equation for scattering problems in
the presence of many open channels. In such cases, momentum-space
scattering integral equations developed by Lippmann and Schwinger
confer a great advantage in incorporating them automatically. For
simple problems of scattering, either the differential Schrodinger
equation or integral Lippmann-—Schwinger equation can be solved
numerically.

However, the need for intelligent solution schemes for realistic
scattering problems can hardly be overemphasized. Variational prin-
ciples have proved to be very valuable for the numerical solution of

xiii



xiv PREFACE

scattering problems. They have frequently been used in the numerical
solution of collision models in atomic, molecular, and nuclear physics.
The availability of modern supercomputers have facilitated solution of
these models. Nevertheless, descriptions of this progress and its logical
development are available only in some review articles, which have
emphasized primarily the contributions and achievements of the
authors of these articles. They do not contain a comprehensive and
coherent development of this progress in nuclear, atomic, and mole-
cular scattering problems. There have been many advances since
publication of the early monographs on variational methods by
Arthurs (1970), Demkov (1963), Mercier (1963), and Michlin (1964).
A more recent monograph by Nesbet (1980) deals with a special class of
variational principles and their applications to electron—atom scatter-
ing. Most of the major benchmark calculations with variational
methods were performed following publication of Nesbet’s mono-
graph.

Thus, in this rapidly growing field, the present book aims to fill the
gap between these older monographs and the present state of affairs.
The objective is to present a coherent treatment of most of these
variational and some nonvariational methods for solving scattering
problems. We also describe the considerable progress made in recent
years in the numerical solution of realistic collision problems. The
principal aim is to emphasize the role of variational principles in this
development. However, general numerical solution procedures to be
used in applications of the variational principles are also described for
the sake of completeness. This includes, for example, discretization of
infinite integrals, development of nonsingular scattering equations for
dealing with the troublesome principal-value prescription, and itera-
tive solution of scattering equations. In addition to an account of the
formal development of the numerical methods and variational princi-
ples, we present a complete description of their applications to model
test problems and realistic benchmark calculations in nuclear, atomic,
and molecular physics. The formal development presented in this book
is based primarily on the momentum-space scattering integral equa-
tions of Lippmann—-Schwinger type. However, most numerical appli-
cations can be made in either configuration or momentum space.

Most of the book is at a level accessible to graduate students and
nonspecialists and could be used as a graduate text for students who
have had a two-semester quantum mechanics course including a couple
of chapters on scattering theory. A formal course in scattering theory is
not a prerequisite. A self-contained discussion of scattering theory
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appropriate for the present development is given in Chapter 1. The
present discussion of scattering theory and variational principles is
directed toward numerical applications. Hence, many formal and
mathematical aspects of the subject are omitted. The book would
also be useful to research workers in nuclear, atomic, and molecular
physics interested in performing numerical scattering calculations.
Chapters 1 to 4 and Sections 6.1 to 6.4 are written in a pedagogic
style appropriate for second-year graduate students. The remaining
parts of the book are intended for research workers. In Chapter 5 we
present an extension of variational principles to various realistic
multichannel problems. In Sections 6.5 to 6.11 we present an account
of numerical applications to realistic scattering problems of the
methods presented in this book with up-to-date references. However,
the book should not be considered as a comprehensive review of all the
topics discussed, such as electron—atom, electron—molecule, atom—
diatom scattering, and molecular photodissociation. Our aim is to
cover only the underlying numerical methods.

The author is pleased to extend thanks and gratitude to his
friends and collaborators R. D. Amado, A. C. Fonseca, E. Gerjuoy,
W. Glockle, M. A. F. Gomes, M. S. Hussein, K. L. Kowalski,
G. Krein, L. Tomio, and D. G. Truhlar for encouragement, support,
and assistance.

Most of the research reported in this book involving the author was
funded by Conselho Nacional de Desenvolvimento—Cientifico e Tec-
nologico of Brazil over the last two decades. The author gratefully
acknowledges a John Simon Guggenheim Memorial Foundation
Fellowship during the course of writing this book.

SADHAN K. ADHIKARI
Sdo Paulo, 1998



CHAPTER 1

SCATTERING THEORY

1.1 INTRODUCTION

Scattering processes are very common in many areas of physical
science, such as in particle, nuclear, atomic, molecular, and chemical,
physics, and in chemistry just to mention a few. Usually, these
processes are formulated by use of the nonrelativistic quantum-
mechanical Schrodinger equation for a fixed number of constituents
as its dynamical basis. The fundamental interactions between the
constituents are often represented by simple potentials. The potentials
are in many cases taken to be model ones that can be handled easily.
There have also been attempts to derive these potentials from
fundamental many-body theory after making approximations.
In this second category are the meson-exchange field-theoretic
potentials among hadrons and energy-dependent cluster—cluster
potentials of nuclear, atomic, and molecular physics derived from
multiparticle Schrédinger equations. Once the potentials among the
constituents are decided upon, the Schrodinger equation for the
constituents is solved consistent with the boundary conditions of the
problem [1].

This last task of the numerical solution of the problem is a
nontrivial but nevertheless important one. Only after numerical
solution of the scattering model can physical observables be deter-
mined. However, there are many ways of finding the solution. The
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2 SCATTERING THEORY

purpose of this book is to make some of the solution procedures
understandable to nonspecialists. The emphasis is on the use of
momentum-space methods and variational principles.

Scattering refers to an interaction between two classes of objects,
frequently referred to as particles. They are not necessarily structure-
less fundamental particles such as photons or electrons, but could be
composite quantum objects such as nucleons, nuclei, atoms, or
molecules. Usually, in a typical scattering experiment in the labora-
tory, a target composed of essentially noninteracting objects is
bombarded with a (collimated and/or monoenergetic) beam of pro-
jectiles. In high-energy particle physics, there could be a colliding
beam experiment where two (collimated and monoenergetic) beams of
objects are allowed to interact in a small region in space. The colliding
beam experiment has the advantage of increasing the center of mass
energy without increasing the energy of particles in each beam. In both
cases, after interaction of the initial objects, a collection of final
objects may emerge, and some of these noninteracting objects are
detected in a region far away from the region of interaction. In a
scattering experiment, a careful study is made of the angular distri-
bution or of the spectrum of final-state particles. The experimental
results are then explained using a nonrelativistic quantum-
mechanical model with an interaction potential. If the interaction
potential among the two types of objects is not precisely known, a
scattering study gives us the opportunity to extract information
about the interaction potential. Although the Coulomb interaction
among charged particles is well known, the interaction potential
between two atoms or between an electron and an atom is not
precisely known.

Interaction between the noninteracting fragments in the initial and
final states is localized in space and time (e.g., it operates during a
short interval of time and in a small region in space when the
noninteracting fragments are close to each other). (Even a long-
range Coulomb interaction may be shielded at large distances in a
scattering experiment and hence is operative throughout a small
region in space.) In nature, one could have scattering involving
more than two objects in the initial state, which is difficult to study
in the laboratory. For example, in a chemical or stellar process, three
free objects in the initial state may undergo a chemical or nuclear
reaction. In the present book we confine the discussion to two objects
in the initial state. Each such object is assumed to have a very large
lifetime compared to the interaction time and is usually termed a
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particle with internal structure. The complete process of interaction
among these particles 1s termed a collision [2].

Scattering may involve redistribution or rearrangement of the
constituents of the two initial objects. In atomic physics the constitu-
ents are nuclei and electrons, in molecular physics they are atoms, and
in nuclear physics they are nucleons. The freely moving asymptotic
components in the final state could be either the constituents or
composites formed from them. Evidently, scattering encompasses
the entire history of a process, from the infinite past to the infinite
future. The physical process is explicitly time dependent and calls for
treatment in terms of wave packets satisfying a time-dependent
Schrodinger equation. However, a steady-state description of the
problem based on the nonrelativistic time-independent Schrédinger
equation with appropriate asymptotic boundary conditions is possible
and is usually employed in a theoretical analysis of scattering [1].

The simplest example of scattering is that of a single particle that
interacts with a finite-range fixed center of force. Prior to the interac-
tion or the collision, as well as following it, the particle generally
moves with a constant velocity in different directions. This is usually
known as potential scattering and the interaction can be represented
by a one-body potential. Potential scattering can also describe the
simplest case of scattering between two objects in the center-of-mass
frame, where there is no change in the structures of the objects as a
result of collision. This means that the objects are the same in
the infinite past and the future. Such a process is usually called
elastic scattering. The initial and final configurations in elastic
scattering differ at most in the velocities and spin orientations of
each particle [2].

In more complicated situations, the noninteracting objects before
and after collision need not be the same. For example, two molecules
might scatter into a final configuration consisting of their dissociated
atoms or excited states. They could even form two new molecules.
Usually, each such process is known by a specific name. When the final
objects are the excited states of the initial objects, the process is termed
inelastic scattering. When more than two objects are formed in the
final state, the process is termed reaction or breakup scattering. When
two new final objects, with internal structures distinct from those of
the initial objects, are formed, the process is termed rearrangement
scattering.

All the situations described above can be illustrated by a system
comprised of three particles. If we label the particles 4, B, and C, the
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various scattering possibilities are

A+ BC — A+ BC, celastic scattering, (1.1)
— A+ (BC)*, inelastic scattering, (1.2)
— B+ CA, rearrangement scattering, (1.3)
— A+ B+ C, breakup. (1.4)

Here BC denotes the ground state of particles B and C and (BC)*
denotes an excited state. The time-reversed processes corresponding to
(1.1), (1.2), and (1.3) are also termed elastic, inelastic, and rearrange-
ment scattering, respectively. The time reversed breakup process is
called recombination. In chemistry and chemical physics, the term
nonreactive scattering is often used to specify inelastic scattering of the
type (1.2), and the term reactive scattering is then used to specify
rearrangement scattering of the type (1.3). In reactive or rearrange-
ment scattering, the cluster C4 may appear in either a ground or
excited state. In chemical, atomic, and molecular physics a special type
of breakup, where a bound electron is removed from an atom or
molecule, is of interest. Such a process is often called ionization.

Elastic scattering (1.1) takes place at any positive center-of-mass
(CM) energy. Inelastic (1.2) and breakup scattering (1.3) are allowed
if the incident CM energies are greater than certain positive values
called threshold of inelastic or breakup scattering, respectively. For
CM energies above (below) these thresholds, these channels are called
open (closed). The threshold for elastic scattering is at zero energy in
both the laboratory and CM frames. The thresholds for different
inelastic and breakup reactions are at different positive energies. The
threshold for rearrangement scattering could be above or below the
threshold for elastic scattering depending on the binding-energy
difference between clusters BC and CA, which could be either positive
or negative.

In process (1.3), the convenient coordinates for studying the frag-
ments in the initial (final) state are the relative coordinates between
particles B (C) and C (4) and between particle 4 (B) and the bound
state BC (CA). Thus it is not possible to use a single set of these
coordinates for both boundary conditions. This change in coordinates
from the initial to the final state makes rearrangement scattering
extremely difficult to handle by conventional means, and special care
must be needed.
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There are several ways to circumvent this problem [3]. One can use a
hyperspherical system that treats different coordinates more demo-
cratically than the usual Euclidean system. Then the boundary con-
dition becomes quite complicated. Another possibility is to expand the
wave function in basis functions defined in more than one arrange-
ment, but this leads to coupled integrodifferential equations in con-
figuration space for the radial wave function with nonlocal exchange
potential. Compared to the usual coupled differential equations in the
case of local potentials, these equations with nonlocal potentials are
difficult to treat numerically. However, using the Green’s function
technique, they can be transformed into coupled integral equations in
momentum space for scattering amplitudes which are no more difficult
to treat numerically than similar equations for local potentials. It is
these momentum-space equations that are often solved numerically
for realistic scattering processes. Several variational principles are
found to exist for these amplitudes. These amplitudes can then be
expanded in terms of square-integrable or £ basis functions, which
reduces these variational principles to a set of algebraic equations and
minimizes the computational effort by a large factor. A large part of
the book is dedicated to studying these numerical methods.

Each of the initial and final configurations of the processes
described above corresponds to what we call a physical channel or
simply a channel. Channels are associated with the partitions of the
particles into clusters, but there could be more than one channel for
each partition. For example, in the example above, let the breakup of
ABC into clusters 4 and BC be termed partition a. Let the asymptotic
states composed of 4 and BC define channel «;, and of 4 and (BC)”
define channel «,. Then channels «; and «, both correspond to
partition a. Similar definitions of channels and partitions apply to
more complex situations involving four-, five-, and N-particle systems.

It is often convenient to work in the CM frame and break up the full
Hamiltonian H, defined by

H:ZHi+ZV,-J-, (1.5)

i<j

into parts corresponding to different partitions. Here H; is the kinetic
energy of particle ; and ¥V is the potential among particles i and j.
Corresponding to partition a, the Hamiltonian can conveniently be
broken into a part H, internal to partition a and a part V“ external to
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partition a, so that
H=H,+V° (1.6)

where H, includes all the kinetic energy and interaction potentials
internal to partition a, and 7“ only includes the interaction potentials
between clusters of partition a. For example, for partition
aE[ijaklm]’ a:Vik+Vil+ Vim+ij+ le+ij and Ha:HO+
Vii+ Via+ Vien + Vim, with Hy the total kinetic energy. Asymptoti-
cally, free movement of clusters §j and klm is governed by the
Hamiltonian H,, and the short-range interaction potential V* is
effective only during collisions. Often, channel indices (e.g., o) are
used, and will be used in the following, to label partitions, such as in
Eq. (1.6). This is correct if there is one channel in each partition, but
when there is more than one channel (e.g., «, 3...) corresponding to a
single partition, quantities such as H,, or V' could be the same for two
different channels.

Two-cluster channels play a distinct role in scattering theory
because of the space-time localization of two-cluster collisions. The
two-cluster channels are often denoted by lowercase Greek indices:
a,B3,7v,.... We use, with some exceptions, lower case Latin letters
beginning with i to refer to individual particles or to expansion
functions. The Lowercase Latin letters beginning with a refer to
distinct partitions of N particles into clusters.

Once the interaction potential among the interacting objects is
known, use of quantum mechanics allows one to calculate the physical
observables. Numerically, there are various ways to find a solution.
The Schrodinger equation together with asymptotic boundary condi-
tions i1s enough to implement a solution algorithm. For two-body
problems this is achieved by direct numerical integration of the time-
independent Schrédinger differential equation in configuration space
with the interactions expressed in terms of local potentials. This
elementary approach is not convenient when the potentials are more
complicated or when the scattering process involves more than one
channel, which is often the case in realistic situations. Direct numerical
integration of differential equations is a delicate task in realistic
situations, and constant attention must be paid to step size, error
propagation, and similar factors.

Imposition of scattering boundary conditions is numerically the
most difficult task in obtaining a solution to the differential Schro-
dinger equation for scattering problems in the presence of many open
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channels. In such cases, momentum-space scattering integral equa-
tions developed by Lippmann and Schwinger provide a great advan-
tage. Such equations incorporate scattering boundary conditions
automatically [4]. Lippmann and Schwinger expressed the scattering
problem in momentum space in terms of a Fredholm integral equation
of the second kind [1]. The original development of this strategy was
strictly correct only for single-channel potential scattering. Later,
Lippmann extended this work to include multichannel scattering [4].
The majority of treatments presented in this book are based on
momentum-space scattering integral equations of the Lippmann-—
Schwinger type.

For the single-channel two-body problem, after discretization of
the momentum integral, the original Lippmann—Schwinger equation
is transformed into a set of linear algebraic equations that can be
solved by the technique of matrix inversion or another method. In the
process of discretization, one must handle a principal-value integral,
which requires a certain amount of care. Many ways of handling such
integrals are currently known. The matrix-inversion procedure that
one encounters in solution of the Lippmann—Schwinger equations
may involve an accumulation of numerical errors, which may make it
difficult to obtain accurate results.

The need for intelligent solution schemes for realistic scattering
problems can hardly be overemphasized. Among these schemes are
the variational and iterative Neumann series approaches [1,2]. Varia-
tional principles have proved to be very valuable for the numerical
solution of scattering problems. Specific solution algorithms based on
these general schemes have oftent been used for the numerical solution
of collision models in atomic, molecular, and nuclear physics.

There are broadly two types of variational approaches for the
solution of scattering problems. The first type, discussed in Chapter 3,
is based on the Schrodinger equation and exploits stationary expres-
sions for some observables, such as scattering phase shifts. The second
type, described in Chapter 4, is based on the operator nature of the
transition matrix and exploits stationary expressions for this operator.
The observables are finally related to a matrix element of this
operator. In both cases the solution is expanded in terms of certain
known basis functions, and the expansion coefficients are then deter-
mined variationally by solving a set of linear algebraic equations
whose dimensions are much smaller than those of the set of algebraic
equations encountered in the direct solution. For rigorous application
of the variational methods, the basis functions are taken as a complete
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set of orthonormal functions. But in practical implementation it is
seldom clear how such a basis set is to be formulated, and often,
linearly dependent basis functions are used. In these methods the
numerical task involves the calculation of some integrals in either
configuration or momentum space and subsequent solution of alge-
braic equations.

The variational approach also poses difficulties, however. The
success of any variational calculation depends on a correct initial
guess as to the solution. Unless the initial guess is appropriate and one
finds an accurate result with a small number of basis functions, the
convergence could be slow. As the number of basis functions
increases, there is competition between increased accuracy and the
accumulation of numerical error. Under many situations, the latter
dominates and makes it very difficult to arrive at an accurate result. In
practice, a linear set of equations may become nearly singular when
the number of (linearly dependent) expansion functions is increased,
and this also puts a limit on the final accuracy. Also, since continuum
wave functions of scattering are not square integrable, integrals may
be encountered in the variational approach with non-£? functions,
which are more complicated to evaluate than those encountered in
bound-state calculations. Despite these difficulties, the variational
approach has emerged in the last two decades as one of the most
powerful tools for solving scattering problems, and most of the
present book is dedicated to this topic.

The advantage of using the iterative Neumann series solution
(Section 2.5) of the Lippmann—Schwinger equation [1,2] is that it
involves only successive matrix vector multiplications, where the
accumulation of numerical error is small. Hence, if the Neumann
series converges satisfactorily, it may lead to high-precision results.
Unfortunately, in most problems of scattering, the Neumann series
diverges except at very high energies. In these cases, by introducing a
subtraction term in the original Lippmann—Schwinger equation, one
can write an auxiliary nonsingular scattering integral equation, called
the I'-matrix equation (Section 2.4), which permits a rapidly conver-
gent iterative solution for the scattering problem at low energies. If
convergence of the iterative solution of the I'-matrix equation is not
satisfactory, a solution can be obtained by other means. For example,
one can use variational or similar methods for its solution. One
advantage of dealing with the real I"-matrix equation is that there is
no principal-value integral in this equation as in the original Lipp-
mann—Schwinger equation. However, after obtaining the I" matrix,
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one needs to evaluate a single principal-value integral over the
elements of the I" matrix, which can easily be done. Solution of the
scattering problem employing an auxiliary nonsingular equation such
as the I'-matrix equation, is another powerful approach to obtaining
accurate results.

The situation is far more complicated in the many-particle multi-
channel case, and most problems of physical interest fall into this
category. In this case there are a host of Lippmann—Schwinger
equations, and the solution of anything less than a minimum
number of Lippmann—Schwinger equations is nonunique [2, 5].
Although this set of Lippmann—Schwinger equations handles the
scattering solution, it is impossible to extract a numerical solution
because of the decoupled and ill-defined nature of this set of equa-
tions. Rigorously, for short-range potentials, these multichannel
scattering problems can be reformulated in terms of Faddeev—Yaku-
bovskii scattering integral equations [6] with unique solutions. The
three- and four-particle versions of these equations have been solved
for several nuclear scattering problems. When the number of particles
1s greater than four, these equations become too complicated to be of
practical numerical use, and for coulombic long-range potentials (of
atomic or molecular physics), these equations become ill defined. In
the latter case, approximate multichannel scattering models with
unique solutions have been proposed and used with great success in
nuclear, atomic, and molecular physics. They are the coupled reac-
tions channel [7,8] and resonating group equations [9] of nuclear
physics and close-coupling equations [7,8] of atomic and molecular
physics. All these approximate equations can be cast into the form of a
set of coupled integral equations with unique solutions. This coupled
set of equations can be solved numerically as in the case of a single-
channel Lippmann—Schwinger equation. In Chapter 5 we deal with
several realistic scattering problems of the multichannel type and
show how the variational principles developed in Chapters 3 and 4 can
be applied to these problems. Finally, in Chapter 6 we present
numerical results obtained by various methods for model few-channel
and realistic multichannel problems.

In the remainder of this chapter we give a brief summary of
quantum-mechanical scattering theory relevant for future develop-
ment. No attempt is made to present a mathematically rigorous theory
of scattering. We present a plausible description of scattering, that will
be useful for future development. For a more complete account the
reader is referred to a number of excellent texts in scattering theory
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[10]. In Section 1.2 we discuss how time-independent treatment is
possible for apparently time-dependent scattering process. In Sections
1.3, 1.4, and 1.5 we describe the usual wave-function, z-matrix, and K-
matrix formulations of scattering, respectively. Finally, in Section 1.6
we describe a multichannel formulation of scattering.

1.2  TIME-INDEPENDENT DESCRIPTION OF SCATTERING

The scattering process is explicitly time dependent. However, in
numerical treatment of scattering and bound states, a time-indepen-
dent formulation is generally used. We would like to demonstrate how
a time-independent description of scattering is possible. Both bound-
state and scattering problems are governed by the time-dependent
Schrédinger equation

. 0
ho (1) = HY(0)), (1.7)

where ‘H is the total Hamiltonian of the system: H = Hy + U. Here H,
is the total kinetic energy, also known as the free Hamiltonian, and U
is the interaction potential. For a time-independent potential, the time
dependence of the bound-state problem is given by the trivial phase
factor exp(—i€,t/h), where &, is the bound-state energy. Hence, all
expectation values and probabilities involve |(7)|?, are time-indepen-
dent and do not change with time. Such a bound state is absolutely
stable and does not change with time.

Although the scattering process is explicitly time dependent, a time-
independent description is plausible [1,2]. Suppose that the scattering
center is at the origin and the scattering takes place at t = 0. The
incident particle can be described by a wave packet |¢(¢)), satisfying
the Schrodinger equation

ih o 18(0)) = Holo (1), (1.8

with the normalization condition
@10} = [ dx 8" (x,Do(x,0) = 1. (1.9)

Here ¢(x, t) = (x|¢(?)) is the configuration-space representation of the
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wave function. The motion of the incident particle is described by the
free-particle state ¢(¢) in the infinite past, far away from the scattering
center. This state evolves with time in a complicated fashion as the
particle interacts with the force center for ¢t~ 0, and finally, the
particle is detected in the infinite future away from the scattering
center.

Any solution to Eq. (1.8) can be written as

Ext

d(x, 1) = (27r)‘3/2/d3ka(k) exp [i(k X —7”, (1.10)

where &, = h2k2/2m, with m the reduced mass. Equation (1.10)
represents a superposition of plane waves of wave vector k and
energy &;. The normalization condition (1.9) imposes the following
constraint on the weight function a(k):

/d3k|a(k)|2= 1, (1.11)

where |a(k)|? is the probability that the free particle has momentum k.
If the free-particle state closely approximates particle of definite
momentum kg, |a(k)| should be sharply peaked about k = ky. The
ideal case of a wave-packet representation of a particle of fixed
momentum kg is given by a(k) = 6(k — kg). However, as the wave
packets are solutions of the Schrodinger equation, they spread in
space with time. Hence, for a realistic treatment of scattering, it is
useful to know if the wave-packet description of scattering is mean-
ingful.

The dynamical scattering problem is governed by the Schrédinger
equation (1.7). As in the infinite past, the scattering state is essentially
the free-particle state, we have the asymptotic boundary condition

lim {160 ~ lo(o)] =0, (112

The + superscript in this equation corresponds to this specific
boundary condition. The time limits in Eq. (1.12) and below are
strong limits, as discussed by Newton [1].

As only the asymptotic limit (1.12) is used to define a mathematical
formulation of the scattering process, it is reasonable that for time-
independent potentials it should be possible to develop a time-
independent scattering theory. For such potentials, time evolution
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of the scattering state is given by

Ht
) =exp (-5 )0 (113)
The time-evolution of the free particle state is given by
690 = exp (= T2 ) 160 (114)

From Egs. (1.12), (1.13), and (1.14), we find the mapping

#90) =0 lo(o) =| fim {exp (%) exp (-2 }] 6(0),
(1.15)

where ) is the time-independent Méller operator, which maps a
free state at time ¢ to the scattering state at time . A sufficient
condition for the existence of the limit in Eq. (1.15) is that the potential
should have a finite norm [1]. For a local potential this condition is
expressed by Eq. (1.72) in Section 1.3, which excludes potentials with a
Coulomb tail and other singular behaviors. The full evolution of
scattering can be determined by the Moller operator, Q) of Eq.
(1.15). This operator does not depend on details of the underlying
wave packets. As this operator is time independent, it seems plausible
to develop a time-independent formulation of scattering for usual
time-independent nonsingular short-range potentials. One can for-
mulate the scattering theory in terms of the Moller operator, Q).
However, in this book we consider an alternative approach in close
analogy with the bound-state problem.

A time-independent formulation of scattering is possible if in the
wave-packet description one considers idealized states of well-defined
energy and momentum. Corresponding to the wave packet (1.10), we
assume the representation-independent form

o) = [ dhaexn (- )i, (119

where |¢y) is an idealized (plane-wave) state of well-defined momen-
tum k and satisfies the free-particle Schrodinger equation

(& — Ho)lox) = 0. (1.17)
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The configuration-space representation of ¢, is defined by
Si(r) = (rlgw) = (2m) 2 exp(ik - ). (1.18)

If the limit of Eq. (1.12) holds and if a time-independent Moller
operator exists, it is reasonable to take the scattering wave function to

be
:/d3ka(k)exp( lgkt>|¢k ), (1.19)

where |¢1((+)> is an idealized scattering state of well-defined momentum
k and satisfies the Schrédinger equation

(& — M)y = 0. (1.20)

Time-independent mapping (1.15) between the free and scattering
states implies that for time-independent potentials, the time depen-
dence of both the free and scattering states are governed by the trivial
phase factor exp(—i&t/h), as in Egs. (1.16) and (I. 19) Hence, a
determination of the time-independent state vector |¢k ) consistent
with scattering boundary conditions is enough for a time-dependent
description of scattering. The interesting aspect of the time-indepen-
dent realization of scattering implicit in Egs. (1.17) and (1.20) is that in
the scattering process, the direction of the momentum vector k can
change, maintaining &, constant. Hence, |¢k ) can represent all of the
scattering possibilities from an initial state |¢y ). In the next section we
formulate scattering theory in terms of this state vector.

1.3  WAVE-FUNCTION DESCRIPTION

Let us first consider the simplest case of single-channel scattering of a
particle interacting with a center of force via a local short-range
potential U(r). This treatment is also valid for the scattering of two
particles in the CM frame. This is possible because one can separate
the uninteresting motion of the CM from the relative motion of the
particles. This relative motion with a reduced mass is responsible for
scattering and can be treated in the same fashlon as the movement ofa
particle in a central field. The wave function zpk ( ) = (r|¢k ) satisfies
the configuration-space Schrodinger equation

(& — M) (1) =0, (1.21)
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Here the interaction potential U is assumed to decrease faster than 1/r
at co and be nonsingular elsewhere, k is the incident wave vector, and
&, is the total energy of the system in the CM frame, so that
k2h2/2m = &, with m the (reduced) mass. The subscript ) on Y
denotes that we are looking for a scattering solution with in outgoing-
wave boundary condition (1.23).

For bound-state problems, Eq. (1.21) permits solution only at
specific discrete negative energies consistent with the exponentially
decaying asymptotic boundary condition. These energies are bound-
state energies. The correct physical boundary condition excludes
solution of Eq. (1.21) at all other negative energies.

For the scattering problem, the total energy &, is given and the
solution of Eq. (1.21) gives the asymptotic boundary condition for the
wave function. Usually, it is convenient to rewrite Eq. (1.21) as

(E - H)[p) = [V2+ K2 = v(o)lul () =0, (1.22)

where V(r) =2mU(r)/h> and E = k* = 2m&,/h>. Unless explicitly
noted to the contrary, in the remainder of the book, V (E, H, H,)
denotes potential (CM energy, full Hamiltonian, free Hamiltonian) in
units of #? /2m. The asymptotic boundary condition satisfied by this
wave function is

. , k
fim 67(6) = i |exp(iks) +/(0) S| )

corresponding to the incident plane wave in the z direction and a
scattered spherical outgoing wave. Here 6 is the angle between the
direction of the scattered wave (k') and the original direction (k), and
f(0) is the amplitude of the spherical outgoing wave. The quantity f(6)
is called the scattering amplitude. The azimuthal angle ¢ does not
appear because of the spherical symmetry of the potential. Equation
(1.23) represents the steady-state boundary condition. This means that
one has a monoenergetic collimated parallel beam of incident particles
that can be approximated by the incident plane wave. The target is
composed of well-separated isolated scattering centers. Most of the
incident particles of the monoenergetic beam are not scattered and
move in the forward direction. Only a small number of particles from
the incident beam are scattered and form the outgoing spherical wave
of Eq. (1.23). The amplitude /() of this spherical wave is a measure of
scattering and hence is called the scattering amplitude.
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The probability current density for the scattered spherical wave is
given by 7 = v|f(0)|*/r?, where v = fik/m, and the number of parti-
cles detected per unit tlme in a solid angle dQ2 =sinfdfdg¢ is
N = Jr2dS). The differential cross section is the number of particles
scattered into unit solid angle per a unit time per unit incident flux and
is given by

o= /O, (1.24)

and the total cross section by

_ / (0)) do. (1.25)

Total cross section 1s the total number of particles scattered per unit
time per unit incident flux and gives the total probability of scattering
taking place at energy E = k°.

To find a numerical solution of the scattering problem, a partial-
wave expansion is useful. The plane wave is expanded by

exp(ikz) = ZZL (2L + 1) j (kr)Pr(cos 8), (1.26)
=0

where P;(cos6) is the usual Legendre polynomial, § the azimuthal
angle of k, and j; (kr) the spherical Bessel function, which satisfies the
partial-wave free-particle Schrédinger equation

2
N j’rz * L(L;L U kz] {krj(kr)} = 0. (1.27)

r

and the boundary conditions

k L+1
lim krj; (kr) — (k)

L
lim krj; (kr) — sin (kr — —W), (1.29)

r—00 2
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where 2L+ 1)!! = 2L+ 1)(2L —1)---(5)(3)(1). As r — 0, the k*
term in Eq. (1.27) can be neglected and Eq. (1.28) is obtained. The
free-particle Schrodinger equation (1.27) is also satisfied by the
spherical Neumann and Hankel functions, #n;(kr) and
h Ll)(kr) = jr(kr) + in; (kr), respectively. These functions satisfy the
boundary conditions

lim krny (kr) — —(kr)y~t (2L — D1, (1.30)
lim krn;(kr) — — cos (kr—%), (1.31)
lim krh\ (kr) — (=i)*" exp(ikr). (1.32)

The scattering wave function is also expanded in partial waves:

G L w0
(o (r)—(zﬁ)yzLZ:OlL Lkr (2L + 1) P (cosb), (1.33)

where the k& dependence of the wave-function components, ¢(L+)(r), is
suppressed. These components satisfy

2
- Z;z T L(Lrj D, Vi(r) — kz] i (r) =0, (1.34)

and the boundary conditions

lim ;" (r) ~ (k)™ (1.35)
lim 4\ (r) — exp(ié; ) sin (kr - %” + 6L> , (1.36)

. (kr—L ,
Esm( ’ > W) + [exp(i6, ) siné, )i F exp(ikr),  (1.37)

(@l -5}

— exp(2i6L)exp{i<kr—%>H, (1.37a)
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where 0, is the partial-wave phase shift and is the change in the phase
of the solution in the asymptotic region in relation to the incident
plane wave of Eq. (1.29). In approximate solution of the scattering
problem, condition (1.35) is often not taken into consideration and is
replaced by the simple condition

P (0) = 0. (1.38)

Equation (1.34), satisfied by components ¢(L+)(r), is essentially the
same as a one-dimensional Schrédinger equation, and one can develop
scattering theory as in one dimension. However, we shall maintain the
three-dimensional phase space and work with components
¢(L+) (r)/(kr) and j; (kr) of scattered and plane waves, respectively.
Equation (1.34) is also satisfied by the bound-state wave function

¥ p(r) of binding energy o?, k* = —a?, with boundary conditions
(1.35) and
lim 9, g(r) — exp(—ar). (1.39)

In the asymptotic region, r — oo, the potential term can be neglected
in Eq. (1.34), which reduces to the free-particle equation (1.27), and
Eq. (1.39) is obtained.

The general solution of Eq. (1.34), at positive energies, can be
written as a linear combination of spherical Bessel and Neumann
functions, j;(kr) and n;(kr), respectively. The specific combination
(1.36) leads to a simple and useful parametrization for the scattering
amplitude £ (6) and is also consistent with the partial-wave form of the
asymptotic boundary condition (1.23). The first term on the right-
hand side of Eq. (1.37) is the partial-wave asymptotic form of the
plane wave in Eq. (1.23). The last term in Eq. (1.37) is the outgoing
spherical wave, provided that the partial-wave scattering amplitude is
exp(id;) sin 6y /k.

In Eq. (1.34), for large L and at low energies, only the centrifugal
barrier term L(L + 1)/r* should dominate, and this equation essen-
tially reduces to a free-particle equation. This means that in higher
partial waves, there is no scattering at low energies, and for all
practical purpose, infinite expansions (1.26) and (1.33) can be trun-
cated at a small value of L. This is a great advantage when dealing
with a few one-dimensional scattering equations (1.34) rather than the
single three-dimensional scattering equation (1.22).
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If we use the partial-wave projections given by Eqgs. (1.26) and
(1.33) in Eq. (1.23) and the asymptotic properties (1.29) and (1.36), we
obtain the following partial-wave expansion for the scattering ampli-
tude:

1 oo
_ —kLZ: (2L + 1)[exp(2i6;) — 1]P,(cos b). (1.40)

Further use of Eq. (1.40) in Egs. (1.24) and (1.25) leads to

i 2L + 1 E
L=0

where o; are the partial-wave cross sections. The following optical
theorem provides a measure of flux conservation and relates the
imaginary part of the forward scattering amplitude to the total cross
section, and is derived from the foregoing expressions for /() and o:

T E

Z (2L + 1) sin® 6, (1.41)
L=0

SUA0)] =70 (1.42)
where & denotes the imaginary part.

The scattering amplitude f(6) and the total cross section o(E) can

conveniently be written in terms of the unitary S-matrix elements
defined by

Sy (k) = exp(2i6,). (1.43)

In terms of this S matrix we have

1 oo
z—k; (2L+1 — 1]P; (cos b), (1.44)

i 2L + 1|1 = S, (k)] (1.45)

For a real Hermitian potential, the phase shifts are real and one has
SL(k)] =1, (1.46)

which is the condition of unitarity or probability conservation.
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It is often useful to define the t-matrix elements by

exp(idy) sinéy

(k) =— 2

(1.47)

In terms of the ¢ matrix the scattering amplitude can be written as
== (2L + 1), (k)Pr(cosb). (1.48)
L=0

For potential scattering with real Hermitian potential, the phase
shifts have to be real. From Eq. (1.36) we find that an imaginary part
in 6; leads to an exponentially growing or decaying part in the wave
function or to probability or flux nonconservation in the scattering
process. An imaginary part of §; leading to an exponentially decaying
part in the wave function corresponds to absorption. For example, if
inelastic channels are energetically open, incident flux of particles will
not be conserved unless these channels are explicitly taken into
account. Isolated elastic scattering in such a case can be modeled by
a complex potential and complex phase shifts leading to absorption.

For a complex phase shift in Eq. (1.43), expressions (1.44) and
(1.45) for the scattering amplitude and elastic scattering cross section,
respectively, remain valid. Now the S matrix is not unitary and Eq.
(1.46) does not hold, as some of the incident flux is lost to inelastic
channels. The difference in scattering by a real and a complex
potential is explicit in Eq. (1.37a), where the asymptotic form is
written as a linear combination of spherically incoming and outgoing
waves. For a real potential the difference in intensities of these two
waves is zero. For a complex potential some incident flux is trans-
ferred to inelastic channels. From Eq. (1.37a) the loss of flux is
proportional to (1 — |S; (k))|?). For a real potential Eq. (1.46) holds
and the loss of flux is zero. For a complex potential this part of
scattering is expressed by the reaction cross section, defined by

0o (E i‘ 2L+ 1)(1 =[S, (k). (1.49)

For a real phase shift, o, = 0. The total cross section is now the sum
of elastic and reaction cross sections given by Egs. (1.45) and (1.49)
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and is given by

T ,
Toi(E) =z > QL+~ ISt +]1 = 85:0F) - (1.50)
L=0

Z (2L +1 R[S (k)]), (1.51)

where R denotes the real part. From Eqs. (1.44) and (1.51) we find that
the optical theorem (1.42) holds with ¢ replaced by o, of (1.51).

In a straightforward approach to a numerical solution of the
scattering problem, one integrates Eq. (1.34) consistent with boundary
conditions (1.35) and (1.36). This procedure results in the scattering
phase shifts §; in each partial wave. The phase shifts can then be used
to calculate all scattering observables. For a simple local potential,
this is a relatively easy task. The task may become far from routine
when either the potential becomes nonlocal or the problem involves
many physical channels or both. In the presence of a nonlocal
potential, the ordinary differential equation (1.34) becomes the inte-
grodifferential equation

2
d*> L(L+1) kz] S

)+ [ @ Vi) o,

(1.52)

——+
dr? r2

In the presence of many physical channels, such a model equation
becomes a set of coupled integrodifferential equations. Under such
situations, use of momentum-space integral equations and intelligent
solution methods provides an advantage.

Instead of solving the differential equation (1.34) or (1.52), one
could formulate the scattering theory in terms of integral equations. In
solving the differential equations, we have to impose boundary
conditions (1.35) and (1.36) on the solution. Any solution of Eq.
(1.34) does not automatically satisfy these physical scattering bound-
ary conditions. The scattering integral equations automatically incor-
porate these boundary conditions. They are equivalent to the
differential equations of scattering and the correct boundary condi-
tion. To derive the integral equations of scattering, Eq. (1.22) is
rewritten as

(E — Ho)yi" (r) = V() (r). (1.53)
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To transform this equation into an integral equation, the operator

(E — Hy) needs to be inverted. The inverse of this operator is written
as

Go(K?)

e Ho /d3 |¢" , (1.54)

where the momentum eigenstate |¢,) satisfies

(E — Hp)|gg) = (k* + Vi) gy (r) = 0 (1.55)

and is defined by Eq. (1.18). In writing Eq. (1.54) we have used E = k°
and the completeness relation of momentum eigenstates,

/ Pyl (b =1, (1.56)

where 7 is the identity operator. In the scattering region, the kinetic
energy operator is positive definite. Hence, operator (1.54) is singular.
The singular integral on the right-hand side of this equation is mean-
ingful only if a definite integration prescription is provided at the
singular point ¢ = k. From the theory of complex variables, one
knows that the inverse operator in Eq. (1.54) becomes meaningful if
the principal-value part of the integral in Eq. (1.54) is considered or if
an infinitesimally small imaginary part is included in the denominator.
This is a known trick in mathematical physics. Lippmann and
Schwinger [4] were the first to use it in scattering theory to determine
the appropriate inverse consistent with the asymptotic boundary
condition (1.23). Two poss1b111t1es for this inverse operator, known
as the Green’s function, G (kz), are obtained if we consider the
configuration-space matrix elements of Eq. (1.54):

3 : /
+) 0 @ [ 4°q expliq-(r —1)]
G5 er k) = G0 = [ TR s

1 exp(Fik|r’ —r|)
4r r/ —r| '

(1.58)

The quantity +i0 in the denominator of Eq. (1.57) means a limiting
lim__,, procedure with a infinitely small imaginary part tie included in
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the denominator. A Green’s function with a + (—) superscript is called
an outgoing-wave (incoming-wave) Green’s function. The third possi-
bility of taking only the real principal-value part of the integral in Eq.
(1.54), is considered in Section 1.5 in relation to the K-matrix
description of scattering. To derive (1.58), first the angular integrals
in Eq. (1.57) are evaluated, leading to

1 qsin(q|r' — 1)
G\ K2 = —/ di : 1.59
0 (ryr b ) 4 2|r/ l.| oo q k2 qz :I: lO ( )

The remaining integral is then performed by Cauchy’s theorem to
obtain Eq. (1.58). The Green’s function (1.57) is complex above the
scattering threshold at k? = 0 and possesses a branch cut along the
entire real-energy axis known as the unitarity cut.

The Green’s function is symmetric — G(()i)(r', rk’) = G(()i) (r,r' k%)
— and satisfies the differential equation

(V2 + k)G (e, K2 =6 (r — 1), (1.60)

Equation (1.60) is obtained by operating £ — Hy = k* +V: on Egs.
(1.54) and (1.57). The asymptotic behavior of the Green’s function
(1.58) as r — o is given by

: 1 +ik
1mcﬁ@ﬂﬁya__§ﬂiﬁmMWWMy (1.61)
r—o0 4 r
where the limit is taken in the direction of the outgoing wave vector,

, r
k' = k;. (1.62)

If we impose boundary condition (1.61) on the solution of the
differential equation (1.60), the Green’s function (1.58) is obtained
[1]. If we formulate the scattering theory in terms of well-defined
Green’s functions, the scattering boundary conditions will be incor-
porated automatically.

The Green’s function G (k?) has a spherical outgoing wave in the
asymptotic region as can be seen in Eq. (1.61), and this Green’s
function can be used to construct the %)hysical scattering wave func-
tion. The other Green’s function, G- (kz), has, asymptotically, an
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1ncom1n spherical wave. Applying the outgoing-wave Green’s func-
tion G (kz) to Eq. (1.53), one obtains the following Lippmann—
Schwinger scattering equation for the outgoing-wave physical scatter-
ing wave function, ¢1((+) (r),

B () = i (r) + / PG RV EO ). (1.63)

If we operate on the left of Eq. (1.63) by (E — H,), equivalence of
this equation with the Schrodinger equation is established. An integral
equation of type (1.63) is often written in formal operator form,

Y = i) + G5 (KRB V), (1.64)

with
GSE (k%) = (K2 — Hy +i0) 7!, (1.65)

where both the explicit configuration-space representation and the
1ntermed1ate state integration have been suppressed. The quantity
K= G (kz)V is called the kernel of the integral equation (1.64).
Slmllar formal operator forms for scattering equations are often
written. The same operator equation can be expressed in either
configuration or momentum representation. The observables are
related to certain (configuration or momentum-space) matrix ele-
ments of some of the operators. If the incoming-wave Green’s func-
tion G (kz) 1s used, rather than the outgoing- wave Green s function,
one obtalns the incoming-wave wave function, |¢k ) which satisfies
the following Lippmann-Schwinger equation:

) = low) + G5 (R V ). (1.66)

Asymptotically, the wave function zpl((_)(r) has a plane wave and a
spherical incoming wave. The conjugate wave functions satisfy

WG| = (e + W VGSP (k) (1.67)
W] = (] + WDV (k). (1.68)
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We have the normalization conditions

(WP W) = (pldpr) = 6(p — ). (1.69)

For short-range nonsingular potentials, the Lippmann—Schwinger
equations (1.63) and (1.66) have compact or Fredholm kernels [1]. A
sufficient condition for compactness of the kernel X is to possess a
finite Hilbert—Schmidt norm:

K|4s = Tr[KK'] < 0. (1.70)

This norm can be calculated [1,6] for X = G(()+) (2%

|m%=/ﬁ%/f#wﬁufkw%ﬁﬂ

— lim d3r/d3r’

e—0

xp(iq.(t' = 1)) | ,
L

: 1 312
ll_l,%gﬁ\/g/d rV<(r) (1.71)

The condition of compactness is given by the following condition on
the potential:

Vs = /d3r V2(r) < oo, (1.72)

as long as € # 0. When the condition of compactness is satisfied, the
scattering integral equation is called Fredholm or compact [1]. This
condition requires that the potential decay faster than the Coulomb
potential at infinity and not possess other singularities at short
distances, which could make the Lippmann—Schwinger equation
non-Fredholm. We shall assume that this condition of compactness
is always satisfied. An integral equation with a Fredholm kernel has a
unique and well-defined numerical solution [1]. For compact poten-
tials, the homogeneous version of Egs. (1.63) and (1.66) does not have
a solution in the scattering region, and the solutions to Egs. (1.64) and
(1.66) are unique. For local Hermitian potentials, the solution of the
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homogeneous equation

[¥8) = Gy (k) V]ips) (1.73)

corresponds to a bound-state wave function at negative energies.

Using the asymptotic behavior (1.61) of the outgoing-wave Green’s
function, it can be verified that the asymptotic behavior of the out-
going-wave, or physical, solution of the Lippmann—Schwinger equa-
tion (1.63) is the same as that given by Eq. (1.23). If we take the r — oo
limit in the Lippmann-Schwinger equation (1.63) and use Eq. (1.61),
we obtain the desired asymptotic behavior (1.23), provided that

) =222 [ ProvOVOU" () = -2 V). (174)

This is a consistency condition relating the scattering wave function
and the scattering amplitude. Equation (1.74) implies that unlike the
case of solution of the Schrodinger equation, where the asymptotic
boundary condition has to be imposed in order to extract the scatter-
ing solution, solution of the Lippmann—Schwinger equation (1.63)
automatically includes the scattering boundary condition. For usual
short-range nonsingular potentials, Eq. (1.63) is Fredholm and hence
is amenable to standard numerical techniques.

The asymptotic behavior of the solution to Eq. (1.73) at positive
energies will not have an incoming plane wave, hence does not lead to
an accegtable scattering solution. However, at negative energy

—a“, by using Eq. (1.61) we find that the asymptotic behavior
of the solutlon to Eq. (1.73) is consistent with that for the bound state
given by Eq. (1.39). Hence, Eq. (1.73) has only bound-state solutions.

For numerical treatment, one often employs the partial-wave
projection technique. Then the partial-wave scattering integral equa-
tion for the wave function also satisfies the required boundary
condition (1.37). The partial-wave expansion for the Green’s function
in configuration space is given by
ii(zL+ NG (r, ¥ k) PL(cos b

1 (o 1(cos ), (1.75)

TTI20

Gy (e, k%) =

where 6 is the angle between vectors r and r’. The partial-wave
components of the Green’s function are given by

G (r, ¥, K2) —27r/ dxPL ()G (e KD, (176)
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where x = cos f. Using the Green’s function (1.58), integration of Eq.
(1.76) leads to

G (r.r' k2) = —ikjy (kr ) (kr), (1.77)
for k> > 0 and
GUP (r,r' k%) = kji (ikr B (ikr), (1.78)

for k2 < 0. Here < (>) denotes the smaller (larger) of the variables r
and ', and j, h(L) are the usual spherical Bessel and Hankel functions,
respectlvely Using Eqgs. (1.26), (1.33), and (1.75), the partial-wave
projection of Eq. (1.63) is given by

(+) (.
¢Lk 1 (kr) + / dr'r (r, ¥ KDV (r )¢Lkr(’r)' (1.79)

As r — 00, the outgoing-wave Green’s function (1.77) has the asymp-
totic behavior

lim GO (r, ¢ 1) = —i L PR, (1.80)

r—00 r

In deriving this limit, we have used Eq. (1.32). In the asymptotic
region, using the limiting expression (1.80) for the Green’s function,
Eq. (1.79) can be written as

(+) () (.
YL () = jr(kr) — i_lkexp [/ dr'r%j, (kr')V (¥ )¢L (r) :

kr kr’
(1.81)

If the quantity in brackets in Eq. (1.81) is identified as the partial-
wave ¢ matrix #; (k) of Eq. (1.47).

exp(ié; ) sin by
k ?

iﬁwWanwvwwﬁmﬂz— (1.82)

then using the asymptotic form (1.29) of the Bessel function, the large
r limit of Eq. (1.81) becomes

(+) : B _
lim ¥y (r) . sin(kr — Lm/2) Lk exp(ikr)
r—o0 kr kr kr

exp(id;)sind;.  (1.83)
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Equation (1.82) is the partial-wave form of Eq. (1.74), as we shall see
explicitly in Section 1.4. Equation (1.83) is identical to the initial
boundary condition (1.37). Hence, solution of the partial-wave Lipp-
mann-—Schwinger equation (1.79) satisfies the asymptotic boundary
condition (1.37). Also, as r — 0, one can see using Eq. (1.77) in Eq.
(1.79) that ¥\ (r) satisfies Eq. (1.35).

The partial-wave integral equation for the wave-function compo-
nent (1.79) is one with a compact kernel and can be solved numeri-
cally. The scattering cross section or phase shifts are related to its
asymptotic behavior via Eqgs. (1.36), (1.40), and (1.41). However, for
numerical computation it is often convenient to use the transition-
matrix description of scattering, which we describe in the following
section.

1.4 TRANSITION-MATRIX DESCRIPTION

The transition matrix is the momentum-space matrix element of the
operator 1(k?), called the transition operator, often called the ¢ matrix.
Unlike in the wave-function description of scattering, where the
scattering observables are extracted from the asymptotic behavior of
the numerically computed wave function, the ¢ matrix is directly
related to scattering observables: phase shifts and cross sections. In
realistic scattering problems, especially, the transition-matrix
approach offers a considerable advantage over the wave-function
description of scattering.
The transition matrix is defined by

(|17 i) = (Dl VIUET) = (i V). (1.84)
From Egs. (1.74) and (1.84) we have
f(6) = =21 (¢ |t(k*) | ). (1.85)

In terms of this ¢ matrix, the differential cross section (1.24) becomes

dO'_ 2\2

(2m)*

(7)? (el (k) ) (1.86)

2
= (2n)* 25 (e 1) (1.87)
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In Eqgs. (1.86) and (1.87) all the factors of reduced mass m and 7 have
been restored. Hence, the ¢ matrix is closely related to the physical
scattering amplitude f(6) and the cross section do/d). Formal
solutions of the Lippmann—Schwinger equations (1.64) and (1.66)
can be written as

By = =GOV ) = o) + CEED VIdw),  (1.88)
where
GH (k) = (kK* — H £ i0)™! (1.89)

is the full Green’s function and satisfies the outgoing-wave (+) and
incoming-wave (—) boundary conditions. Equation (1.88) can be
established by using the following identity satisfied by the Green’s
functions:

GH (k%) = G (k) + GP (k) VG (k2
= Gk + G (1A VGH) (k). (1.90)

It can be seen from definition (1.84) and Eq. (1.88) that the transition
operator is defined by

1% =V + VeI (kKA. (1.91)

The t-matrix elements of Eq. (1.84) are the momentum-space matrix
elements of the transition operator 7(k?). One has the useful identities

G AW =GV Ak, VG kP = 1(k3)GLP (k). (1.92)

From Eqgs. (1.91) and (1.92) we find that the ¢ matrix satisfies the
following formal Lippmann—Schwinger integral equations:

t(k?) = V + VGSP (kD) 1(k?), (1.93)
1(k?) = V + (k)G (kY. (1.94)

If we use the completeness relation for the bound and scattering
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eigenstates |i5) and |¢((li)>, respectively, of the Hamiltonian H,
> sl + [ daluf) =1 (1.95)
B

the spectral representation of the full Green’s function G (kz) of Eq.
(1.89) can be written as

(+) (+)
D) = ZWB (Vp| / 7 qltfq_ Z]<2¢: ,'(|)' (1.96)

The sum is over the discrete bound states |15) and the integral is over
the continuum scattering states |¢q ) both satisfying the Schrodinger
equation.

From (1.96) we see that the matrix elements of the Green’s function
are analytic functions of energy in the entire complex energy plane
except for some simple poles at real energies £z and a cut across the
positive real energy axis. Using Eq. (1.96) in Eq. (1.91) for the ¢ matrix,
the following expression is obtained:

P)"/3(p)
— Ep

(Bplt (k)| dpr) = (Sp|V1dp) +Zf3

/d3 d)p |¢q><¢q| ( 2)|¢p’>*. (1‘97)
—g*+i0

In Eq. (1.97) the momentum-space matrix element of a local Hermi-
tian potential V'(r) is given by

@lVidw) = [ dr@yln Vo) rldh) (1.98)
rexp(iQ - r)V(r) (1.99)
= 70 [)Oordrsin(Qr) V(r), (1.100)

where Q = p’ — p. When the potential term of Eq. (1.98) is substituted
for the t matrix in Eq. (1.85), we obtain the Born approximation or first
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Born approximation for the scattering amplitude, given by

1 2m

£4(6) = —Z;?/aﬂrexp(iQ DU, (1.101)

where we have restored the factors of reduced mass. Here Q = k — k'’
and 0 is the angle between k and k'

In the complex energy plane, the -matrix elements also have simple
poles at the bound states and a branch cut along the real energy axis.
Consequently, the t-matrix elements are complex for all real energies
above the scattering threshold. This branch cut is a consequence of the
branch cut in the free Green’s function (1.57) at positive energies and
is called the unitarity cut. The quantity

f(p) = (dp|V[t5) (1.102)

is the bound-state form factor or vertex function. An important
feature of Eq. (1.97) is that the residues of the bound-state poles of
the ¢ matrix factorize in p’ and p. For real Hermitian potentials and at
real positive energies the branch cut implied by Eq. (1.97) can be
shown more explicitly as

(6, l[1(K2) — 11 (k)| 1) =
~ni / B (6,65 — )bt (Péy).  (1.103)

In deriving Eq. (1.103), use has been made of the following identity:

1 P

. 2 2
i gt Mk ), (1.104)

where the symbol P denotes that a principal-value prescription is to be
used in evaluating the singular integral over the momentum-space
Green’s function. Equation (1.104) separates the free Green’s function
in its real and imaginary parts. The ¢ matrix is neither Hermitian nor
unitary, but satisfies the Hermitian analyticity property

1 (k* 4 i0) = 1(k* — i0) (1.105)
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with #(k?) = t(k* + i0). The quantity 7(k*> — i0) satisfies Eqs. (1.93)
and (1.94), with the outgoing-wave Green’ s functlon G( )(kz) replaced
by the incoming-wave Green’s function G (kz) Equatlon (1.103) is
the unitarity relation for the full # matrix.

In explicit notation, using the completeness relation (1.56) for the
momentum eigenstates, the momentum-space representation of the -
matrix Lippmann—Schwinger equation (1.93) is given by

¢,,|V|¢q><¢q| (k%) |bp)

(Bpl1(k*)|6pr) = (Sp]V 1 p) /d3 (k? — ¢ +i0)

(1.106)

where we have inserted a complete set of momentum eigenstates in the
intermediate state.

Solutions of the Lippmann—Schwinger equations (1.63), or equiva-
lently, (1.106), satisfy the Schrodinger equation and the correct
asymptotic boundary conditions. So these equations generate
unique scattering solutions. The uniqueness of the solution is guar-
anteed by the Fredholm nature of the kernel, or equivalently, by the
absence of the solution of the homogeneous Lippmann—Schwinger
equation in the scattering region. The homogeneous version of the -
matrix equation is given by

(k) ) = VG5 () 1(K*) |.).- (1.107)

Comparing Egs. (1.73) and (1.107), we see that these two equations
are equivalent with the identification |¢5) = G (kz) (k%)|¢x). Hence,
both equations have solutions at the same discrete energies, the
bound-state energies. For the usual short-range local Hermitian
potentials, these equations do not have a solution in the scattering
region.

Often, it is convenient to define an operator, called the S matrix,
closely related to the ¢ matrix, by

(Dol SItpr) = (85105 (1.108)

Using definitions (1.88) of the outgoing- and incoming-wave wave
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functions, the S-matrix element can be rewritten as

(Bl SIgpr) = (Bpltrl) + (plV (0* — H +i0) ' |yl)  (1.109)

= (pldp) + (7 — ™ +i0) " (V1)
+(p" = P+ 10) oy V1wl r) (1.110)

=8 (p—p') = 2im8(0” — p)(Splt(P7)|y).  (L.111)

From Egs. (1.69) and (1.108), the completeness relation (1.95) of the
orthonormal functions [i¢z) and |¢q ) and the property

(BolST18) = (W$ 1Py = (P, (1.112)

it follows that the S matrix is unitary:
[ ¢ alsoenlsiy) -
/d3q W e Ve ) =8 -p), (1113
or
SST=S's=1. (1.114)

The partial-wave projection for the ¢ matrix is defined by

(9 1(K")|y) :_1—2§ : (2L + 1)1.(p,p", k*) P (cos 6) (1.115)
L:
—L S 1.0 ) Yoae ) Viael®),  (1116)
L 0 M=—-L

where 4 is the angle between vectors p’ and p, Y, are the spherical
harmonics, and p = p/p. A similar partial-wave projection exists for
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the potential

(@17 167 ——lfi 2L+ 1)V, (p,p')P1(cos6) (1.117)
25 S V) V@Y. (L1
L=0M=-L

so that the partial-wave components are defined by

Vilp,p') = 7r2/_1 dx Pr(x){(¢p| V|dp), (1.119)

where x = cos 6. The partial-wave momentum-space expression of a
local potential V' (r) is given by

Vip.q) = [) " Lo V(Ajular)P (1.120)

Equation (1.120) is the partial-wave projection of Eq. (1.98).

Using partial-wave projections (1.116) and (1.118) in the ¢-matrix
equation (1.106), the following one-dimensional momentum-space
partial-wave Lippmann—Schwinger f-matrix equation is obtained:

2 4 t k?
zL(p,p’,kz)zVL(p,p’H?—r[) q*dq L(izq);(ﬁo ). (1.121)

The ¢ matrix ¢, (k) of Eq. (1.47) is a special element of the %eneral
partial-wave f-matrix elements of Eq. (1.116): ¢, (k) = t; (k, k,k”). The
quantlty tL (k) is the on-shell t-matrix element. The general element
t; (p,p' k%), w1th p' # k + p, is off-shell and the elements ¢, (k, p’, k?)
and t; (p, k, k?) are referred to as either half-on-shell or half-off-shell.
All physical observables are given by the on-shell -matrix elements.
The solution of the momentum-space partial-wave equation (1.121)
for the physical scattering observables given by the on-shell f-matrix
elements yields as a by-product the off-shell -matrix elements.

The partial-wave Lippmann—Schwinger -matrix equation couples
the on-shell and off-shell z-matrix elements. The partial-wave projec-
tion of Eq. (1.84), with |kK'| = p,|k| =k, leads to the following
expression relating half-shell -matrix elements and the wave function
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in partial waves :

tL(p,k,kz)=/)oor2der(pr)V(r) 7, (1.122)

If we take p = k in this equation, the on-shell partial-wave ¢ matrix,
t; (k) = t,(k, k, k), is given by

exp(idy)sind;

1, (k) = — L [)oorzder(kr)V(r) i)

where we have used Eq. (1.147). The on-shell partial-wave ¢t matrix of
Eq. (1.123) is identical with previous identification (1.82). The Born—
Neumann series (Section 2.5) for ¢; can be obtained by using the
following iterative solution of Eq. (1.79) in Eq. (1.123) [1]:

¢(+)(r) > 112 ~(+) ' 12 / /
L :hmn+A dr'r G (v, YV (Vi (k') + - (1.124)

If n iterative terms are included in Eq. (1.124), the approximation is
termed the nth Born approximation. A similar Born—Neumann series
solution is possible for all scattering equations. For weak potentials,
V' — 0, and at high energies, G(LJr — 0, this procedure leads to a
convergent iterative scheme.

The partial-wave form of Eq. (1.97) is given by

te(p.p' k) =Vi(p.p') + ZfBL(kl;)_f%:p )
B

[) qqu L(p7q7q ) L(p 4,4 ) (1125)

+— )
T k? — ¢ +i0
where the summation now includes the bound states in the Lth partial
wave. The residue at the bound-state pole is related to the bound-state
wave function g, (g) via

foulp) == [ Pdgvilpum@, (1129

where 15, (q) satisfies the homogeneous version (1.73) of the Lipp-
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mann—Schwinger equation (1.63) or (1.66). Explicitly, the bound-state
problem is given by

Uor(p) = ———r )/wf@VAAWWAm, (1.127)
0

m(a? + p?

where o? is the binding energy. The consideration above shows that
the partial-wave r-matrix elements have the same unitarity cut and
pole structure of the full # matrix (1.97).

If we take p = p’ = k in Eq. (1.125), the following on-shell partial-
wave unitarity condition is obtained:

A 2\
Sl ko ) = LI ORIy ek iy,

(1.128)
which is often written as

S[ec ()] = ~Klt K = — oo, (1.129)

where the partial-wave cross section o; is defined by Eq. (1.41).
Equation (1.128) is the on-shell partial-wave form of the unitarity
relation (1.103). Equation (1.129) is the partial-wave projection of Eq.
(1.42) and is the partial-wave optical theorem. The exact partial-wave
t-matrix elements as well as any parametrization (1.47) with real phase
shifts satisfy unitarity relation (1.128). If this condition is violated, the
phase shifts are to be complex in general. An imaginary part of the
phase shift would imply probability nonconservation, for example, by
Eq. (1.36), which means that the number of particles is not conserved
in the scattering process. This should be considered a serious fault of
the theory, and we should try to preserve unitarity condition (1.128) in
finding approximations to the ¢ matrix.

From Eq. (1.125) we find that in the complex energy plane, the
element 1, (p,p’, k%) has the bound-state poles of Lth partial wave.
From Eq. (1.128) we see that the partial-wave on-shell ¢ matrix #; (k)
has a square-root branch cut in the complex energy plane along the
entire real energy axis. Hence, in this plane the on-shell ¢ matrix is
defined on two sheets, the first of which is called the physical sheet.
Although for calculating physical observables—cross sections, phase
shifts, and bound states—one needs the 7 matrix on the first sheet of
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the complex energy plane, the ¢ matrix can be continued analytically to
the second sheet and can have poles on the second sheet. The poles on
the real energy axis on the second sheet at £ = —E, correspond to
virtual or quasi-bound states. With the increase in potential strength,
they move along the real negative energy axis, come to the origin, then
move to the first sheet of the complex energy plane and continue
moving along the real negative energy axis [1]. The poles in the
complex energy plane on the second sheet correspond to resonances
and appear for complex-conjugate energies £ = a + ib. Although such
poles are not of direct consequence in the study of scattering and
bound states, they may have a strong effect on the physical f matrix in
the first sheet when E, — 0 or b — 0. In the first case, the zero-energy ¢
matrix tends to infinity, an effect known as threshold enhancement. In
the second case, the ¢t matrix at energy £ = a tends to infinity, which is
known as a resonance at energy a and of width 4. There is no unitarity
cut in the complex k = v/E plane. In the transformation from the
complex energy to the complex momentum plane, the entire first
(second) sheet of the complex energy plane gets mapped onto the
upper (lower)-half complex momentum plane. The resonances appear
at pairs of k values k = +k, — ik in the lower-half complex-k plane,
and virtual (bound) states appear on the negative imaginary axis
k = —ik, (k = +ik;) of the same plane. The ¢ matrix develops poles at
these positions. In Section 2.8 we discuss numerical methods for
determining the virtual states and resonances.

1.5 K-MATRIX DESCRIPTION

The t-matrix description of Section 1.4 involves a delicate treatment of
a limiting +i0 prescription, which leads to complex algebra and could
be inconvenient for numerical purposes. Also, in approximate treat-
ments for the ¢ matrix, such as the Born-Neumann series based on Eq.
(1.123), optical theorem (1.42) and unitarity relation (1.128) are not
expected to be satisfied.

An equivalent description of scattering could be made in terms of
the K matrix. The K matrix is real and hence is numerically more
convenient to deal with than the ¢t matrix. Also, any real approxima-
tion to it preserves unitarity automatically or leads to real phase shifts.
It is because of these two advantages that the K-matrix description is
frequently used in realistic scattering problems.
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Previously, we have included an infinitesimal imaginary part in the
denominator of Eq. (1.54) so as to generate a meaningful Green’s
function. To introduce the K-matrix description, we consider the
standing-wave free Green’s function by taking the principal-value
integral in Eq. (1.54), so that

d’ -
GP(r,v' k) = P/ 9 CXP[’qu _(rq r) (1.130)

1 cos(k|r’ —r|)

= (1.131)
The standing-wave Green s function G2 (r,r’, k?) is the real part of the
Green’s functions G( (r,r’ kz) of Eq. (1.58) because of Eq. (1.104).
The standing-wave free Green’s function is real and does not possess a
unitarity branch cut along the real energy axis.

The outgoing-wave free Green’s function (1.58) leads directly to the
physical scattering boundary condition (1.23), as we have seen. The -
matrix elements derived with this Green’s function are closely related
to the physical scattering amplitude via Eq. (1.85). Green’s function
(1.131) also satisfies differential equation (1.60), but now correspond-
ing to a standing-wave boundary condition at positive energies. In this
case, the boundary condition, such as given by Eq. (1.61) for the
outgoing-wave Green’s function, is more complicated and is not
directly related to the physical boundary condition (1.23) of the
outgoing-wave wave function. Hence, we do not derive this asympto-
tic limit of the principal-value Green’s function. The principal-value
Green’s function (1.131) does not lead directly to the scattering
boundary condition (1.23), nor are the K-matrix elements derived
with the principal-value Green’s function related directly to the
physical scattering amplitude. However, the K-matrix elements so
derived can be used to calculate the -matrix elements and/or scatter-
ing observables.

For numerical treatment one again employs a partial-wave projec-
tion, as in the outgoing-wave case. Using the partial-wave expansion
for the Green’s function in configuration space given by Eqgs. (1.75)
and (1.76), one obtains the following partial-wave standing-wave
Green’s function:

GT(r,#' ) = kejp (kr g (kr) (1.132)
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for k2 > 0. Here < (>) denotes the smaller (larger) of the variables r
and r’, and j;, and n; are the usual spherical Bessel and Neumann
functions. As expected, the standing-wave Green’s function (1.132) is
the real part of the outgoing-wave Green’s function (1.77). As r — oo
the standing-wave Green’s function (1.132) has the following asymp-
totic behavior:

lim GP(r. ' k%) — —kj, (k') S5 = £7/2). (1.133)

F—00 r

In close analogy with the outgoing-wave case, one can now define
the standing-wave wave function and its partial-wave projection. The
standing-wave scattering wave function again has the partial-wave
projection (1.33) and satisfies the partial-wave Schrodinger differential
equation (1.34). The complete wave function and its partial-wave
projection satisfy the following Lippmann—Schwinger equations:

T (1) = dur) + / PG R VEWEE),  (1134)

P ’ 00 P 1 1.2 AN
@bzi ) :jL(kr)+[] drlrl2GL(r7r ,kk):l/(r )¢L(’), (1.135)
respectively.

As the standing-wave wave function ¢f(r) is not easily related to
the physical wave function ¢l((+)(r), it is not convenient to study its
asymptotic behavior. The asymptotic behavior of the partial-wave
wave function ¢} (r) /kr is directly related to the scattering phase shifts
and we study it in the following. This wave function also satisfies
condition (1.35), satisfied by other wave functions. Using the asymp-
totic behavior (1.133) of the standing-wave Green’s function
G7Z(r, r',kz) in Eq. (1.135), we obtain the following boundary condi-
tion for the wave function:

L

rlim Y7 (r) — sin (kr — é;) + tan o, cos (kr ——2—> (1.136)

. sm(kr—L7r/2+6L), (1.137)
cos oy
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provided that

tand;

A CICTACE (1.138)

The boundary conditions (1.36) and (1.37) are very similar and the
phase shifts can be calculated from the asymptotic forms of both the
outgoing- and standing-wave wave functions.

Partial-wave integral equation (1.135) has a compact kernel. How-
ever, for numerical computation, it is often convenient to use the K-
matrix description of scattering. Equation (1.138) should be compared
with Eq. (1.82) in the case of ¢t matrix. Equation (1.82) defines the on-
shell -matrix element. We shall see in the following that Eq. (1.138)
defines the on-shell K-matrix elements introduced below.

Using the standing-wave Green’s function, one can define a real
reactance or K matrix, in the same way as the ¢ matrix, by

(b |K (k%) ow) = (I VI9) = (Wi |V |- (1.139)

Using the following formal integral equation satisfied by the wave
function,

k) = ) + Go' (k) V1), (1.140)
the following K-matrix Lippmann—Schwinger equations are obtained:
K(k*) = V + VGY () K (kY), (1.141)
K(k*) =V + K(K)GY (kKA. (1.142)

The derivation of Egs. (1.141) and (1.142) follows steps similar to
those of z-matrix equations (1.93) and (1.94), where the outgoing-wave
free Green’s function has to be substituted by the principal-value free
Green’s function.

The standing-wave Green’s function is the real part of the outgoing-
wave Green’s function. But the K matrix is not the real part of the ¢
matrix and the following inequality should be noted:

K(K?) £ R[1(k*)] = V + VGP(K*)V # K(kY), (1.143)

where G” (k%) is the full Green’s function with the principal-value
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prescription. However, the K-matrix Lippmann—Schwinger equation
can be solved numerically to yield the scattering observables.

In explicit notation, the momentum-space K-matrix Lippmann—
Schwinger equation is given by

ol VIdq) (Bl K(K7) ¢p7)
k2 _ q2

(GlK )10y = V16 + P [ e
(1.144)

Again, Eq. (1.144) is essentially the -matrix equation (1.106) with the
principal-value free Green’s function. A partial-wave projection of the
K matrix 1s defined in the same way as in the case of the ¢t matrix
through Eqgs. (1.116), (1.118), and (1.123). The partial-wave form of
the K-matrix Lippmann—Schwinger equation is

2 [ V. (p,9)K;(q,p', Kk
KL(pupl)kz) = VL(papl) +7_TP[) qz dq L(p qk)2 f(qqu )

(1.145)

In contrast to the t-matrix elements, both the total and partial-wave
K-matrix elements of (1.144) and (1.145) are real for real positive
energies above the scattering threshold at k> = 0 and do not possess
the unitarity cut. For real Hermitian potentials the K-matrix elements
are real and Hermitian:

K(k*) = KT (k?), (1.146)
S[K (k,k,k*)] = 0. (1.147)

These equations should be contrasted with the unitarity conditions
(1.105) and (1.128) for the ¢ matrix.

Next we would like to relate the partial-wave K-matrix elements
with the partial-wave f-matrix elements. The partial-wave t-matrix
Lippmann—Schwinger equation (1.121) can be rewritten as

2 [ Vi(p,9tr(q,p Kk
wo' ) = Vilpp) + 2P [ g P ALEL

- ikVL(pak)tL(kaplakz)a (1148)
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where we have broken up the outgoing-wave Green’s function into the
following real principal-value and imaginary § function parts accord-
ing to Eq. (1.104). Using Eqgs. (1.145) and (1.148), the following
relation between the partial-wave K- and f-matrix elements are
obtained:

t(p,p' k%) = K (p,p' k) — ikKy(p,k, k)i, (e, p' k). (1.149)

For calculating the scattering observables, only the on-shell -matrix
elements are required. The on-shell partial-wave z-matrix elements

t; (k) are related to the on-shell partial-wave K-matrix elements
K (k) = Ky (k, k; k) by

K (k)
1+ kK (k)

t1.(k) (1.150)

In terms of the wave function, the on-shell partial-wave K-matrix
elements are given by

K, (k%) = [)oo P2 ar L) Vk(r’)‘I’P(’). (1.151)

Equation (1.151) is the partial-wave projection of Eq. (1.139).
Using parametrization (1.47) for the ¢ matrix in Eq. (1.150), one
obtains the following parametrization for the K matrix:

tand;

K (k') = ———.

(1.152)

This equation relates the partial-wave on-shell K-matrix elements to
phase shifts, which are in turn related to the scattering observables
such as cross section. Now we realize that requirement (1.138) is
equivalent to Eqs. (1.151) and (1.152), and the quantity in Eq. (1.138)
is related directly to the partial-wave on-shell K matrix. The advan-
tage of using the K matrix for making approximate calculation is that
any real approximation to it always leads to real phase shifts via Eq.
(1.152) and to S and ¢ matrices obeying conditions of unitarity (1.46)
and (1.129). The implementation of unitarity on an approximation to
the ¢ matrix is less trivial.

The on-shell K matrix of (1.152) is a real analytic function of k% in
the neighborhood of the scattering threshold, and for L = 0 one can
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make the following alternative Taylor series expansions [11]:

1 1
kcot&oz——+§r1k2+0(k4), (1.153)
a
1
k™' tan 6y = —a+gr3k2+0(k4). (1.154)
In these expansions the quantity a = — lim2 k~!tan 8, called the

scattering length, plays a fundamental role in low-energy scattering. At
low energies the scattering occurs predominantly in the S wave, and
the scattering length gives a measure of scattering. The expansion
(1.153) is commonly used in the analysis of scattering. This is valid for
large |a|. For |a| — O this expansion breaks down, as the first term on
the right-hand side of Eq. (1.153) tends to diverge. Then one should
consider expansion (1.154), which breaks down when |a| — oc.
Depending on whether one is near the |a| — 0 or |a] — oo limit, one
should use expansion (1.153), or (1.154), respectively. Expansion
(1.153) [(1.154)] is exact for S-wave scattering, with a square-well
potential with range R = r; [r,] in the limit |a| — 0 [oc]. This is why the
parameters r; and r, are called effective ranges under the two condi-
tions.

The S-matrix elements defined by (1.43) are the on-shell partial-
wave projections of the S operator defined by (1.108). The relation of
these S-matrix elements to the t- and K-matrix elements are given by

Sy (k) = 1 — 2ikt, (k) (1.155)

1 - kK (k)
14 kK (k%)

(1.156)

1.6  MULTICHANNEL SCATTERING

Scattering between two composite objects, which we call 4 and B,
generally produce a multiplicity of final states involving many parti-
cles. In such cases, a mere description of the asymptotic boundary
conditions, especially in the presence of multicluster final states, is a
nontrivial task. The problem comes under control somewhat, when
multicluster final states are altogether neglected. At low energies the
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multicluster final states are not energetically open, and this procedure
seems to be reasonable. Even after neglecting the multicluster final
states, an exact solution of most of these problems is out of the
question and one has to rely on approximation techniques for solu-
tion. If only the two-cluster final states, corresponding to the possi-
bilities

A+B— A+ B, (1.157)
— A+ B, (1.158)
— C+D, (1.159)

of elastic (including spin-flip transitions), inelastic excitation, and
rearrangement collisions, respectively, are considered, one can
derive multiparticle Lippmann—Schwinger equations in close analogy
with single-channel potential scattering. However, these equations do
not have Fredholm kernels and cannot be used for numerical pur-
posed [5].

Approximate multichannel Fredholm scattering models can be
derived from these multiparticle Lippmann—Schwinger equations.
There are many ways of deriving such approximate equations. Essen-
tially, by projecting the multiparticle Lippmann—Schwinger equations
to two-cluster channel states, one can derive coupled reaction channel
equations of nuclear physics or close-coupling (CC) equations of
atomic physics [7,8]. For identical fermions this approach yields the
resonating group method [9]. These multichannel models are usually
applied for numerical studies.

1.6.1 Inadequacy of Multiparticle Lippmann—Schwinger Equations

The inadequacy of the multiparticle Lippmann-Schwinger equation is
already explicit in the three-particle problem, which we discuss below.
Suppose that the two-cluster scattering is initiated by projectile 1 and
target 23, which is the bound state of particles 2 and 3. The full
Hamiltonian H in this case, can be written as

3
H=Hy+ ) V, (1.160)
i=1

:H1+V1, (1.161)
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where H, is the total kinetic energy of the system and V; is the
potential between particles j and k, so that i#j # k # i, with
i,j,k=1,2,3. Here H, = Hy+ V; is the internal Hamiltonian for
the initial channel state of particle 1 and bound state 23, and
V! = ¥, + v, is the potential between projectile 1 and target 23.
The partition (1.161) of the Hamiltonian is very similar to that in
potential scattering. Here H; is some kind of generalized kinetic
energy responsible for a correct description of the target wave func-
tion and the free relative motion between the target and the projectile.
The potential V' is solely responsible for scattering.

Now one can develop the three-particle Lippmann—Schwinger
equation in close analogy with potential scattering. The incident
scattering state satisfies

where |®y ) = |pp 1Pk, ). Here |¢pp,) represents the target bound state
23 and |¢y,) is the usual plane wave of relative motion between the
target and the projectile. As in potential scattering, the Lippmann—
Schwinger equation now becomes

W) = 12k,) + GEV T, (1.163)
where G(1+)(E) = (E— H, +i0)"! is the outgoing-wave free Green’s
function.

The Lippmann—Schwinger equation (1.163) is formally very similar
to the equation for potential scattering (1.63). But there are concep-
tual differences between the two. Equation (1.163) is in three-particle
space, and the intermediate states in this equation are also in that
space. Disconnected pieces in the following momentum-space matrix
element of potential V, in three-particle space in the form of a 6
function of infinite norm are responsible for the divergence of the
Hilbert—Schmidt norm of the kernel of Eq. (1.163):

(P2, 42| V2|P2, 42) = (42| V2|42)6(P2 — P2)- (1.164)

The potential ¥, of Eq. (1.164) is just a part of the potential V' of Eq.
(1.163). In Eq. (1.164), q,, and q, are the relative momenta between
particles 1 and 3, and p, and p, are the relative momenta between
particle 2 and the center of mass of particles 1 and 3. The é function
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appears because the potential V, between particles 1 and 3 cannot
change the relative momentum between particle 2 and the center of
mass of particles 1 and 3.

The Hilbert—Schmidt norm of the kernel in three-particle space is
infinite even if the two-particle potential }, between particles 1 and 3
satisfies Eq. (1.72) in two-particle space. For example, in three-particle
space the Hilbert—Schmidt norm of V, will contain, among other
things,

IVz\%zsfv/d3pzd3p’262(pz—p’z) — 00, (1.165)

because one gets a 6 function from one potential term of the norm.
Obviously, the norm in Eq. (1.165) is undefined. The inclusion of the
Green’s function G§+) of Eq. (1.163) in the norm of Eq. (1.165) does
not save the situation. Hence, Eq. (1.163) has a kernel of infinite norm
and is 1ll defined, so the kernel of the Lippmann—Schwinger equation
(1.163) is not compact or Fredholm. Consequently, this equation does
not possess a unique scattering solution. Related to this are the
existence of homogeneous equations of scattering, which we describe
below in the multiparticle case. Any numerical solution algorithm
based on Eq. (1.163) must fail above the lowest scattering threshold
[1].

The situation can only worsen in the real multiparticle problem.
Nevertheless, we derive and discuss the multiparticle Lippmann—
Schwinger equation below in order to exhibit the deficiencies more
clearly and to show how such an equation can lead to a well-defined
and meaningful solution if certain approximations are made to the
multiparticle dynamics. Many of the multiparticle models actually in
use are based on definite approximations to Lippmann—Schwinger
equations.

Suppose that the scattering in a multiparticle system is initiated by
objects A and B in partition a and in two-cluster channel a. It is
natural to consider the partition (1.6) H = H, + V“ of the Hamilto-
nian. Here, V* is the sum of pair potentials between the constituents
of A and B and H, is the sum of the kinetic energy and intracluster
interactions of 4 and B. Consequently, H, is responsible for the
binding of 4 and B and for their free relative motion, and V, is
responsible for scattering. It is technically correct to label the Hamil-
tonian by partition index as in Eq. (1.6), as there can be many channels
in a single partition. However, we assume only one channel in each
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partition in the following and use Greek letters o, 3, ... to label both
the channel and the partition to which the channel belongs.

In this case, the channel Green function and the incident state are
defined, respectively, by

G.V(E) = (E - H, +i0)™", (1.166)
(E - H,)|®,,) =0, (1.167)
where E, H,, V%, ... are expressed in units of # /2m,, with m, the

reduced mass in channel a. Here |®, ) represents the initial plane wave
composed of the bound states, |¢p,), of the clusters in channel o and a
plane wave of relative motion between them:

[Px,) = |P5a) Pk, )- (1.168)

If both initial clusters have internal structure, the function |¢g,) is the
product of the bound states of these two clusters. The wave function
|\IJI(Q:)> for scattering initiated in channel o at energy E satisfies the
following Lippmann—Schwinger equations [4,5]:

07) = 19y,) + G (B Vo |w) (1.169)
=GBV T)), (1.170)

where 3 is a two-cluster channel in partition b. The appearance of the
homogeneous Lippmann—Schwinger scattering equation (1.170) in
the multiparticle case has no analogy in potential scattering. By
multiplying Eqgs. (1.169) and (1.170) by E — H, and E — Hj, respec-
tively, equivalence of these scattering equations and the Schrodinger
equation can be established.

The scattering wave function I\Df(j)) should possess asymptotically
the incoming wave |® ) in channel o and spherically outgoing wave
in all open channels. It is this asymptotic boundary condition that
determines that Eq. (1.170) for |\IJ£?> should not have any incoming
wave. [The equivalence of Eq. (1.170) with the Schrédinger equation
requires that the only possible incoming wave in this equation be
|Py,). But this incoming wave is not physically acceptable.] A partial
configuration representation of Eqgs. (1.169) and (1.170) can be written



1.6  MULTICHANNEL SCATTERING 47

as

W (r,) = By (r) + / Prl, " G (Esra,rh)

13

X Va(r;,rg)\lfl((t)(rg), (L.171)
T (rg) = /d3r'g &ry G (Eseg, v VO i) 07 (e),  (1172)

where r; (r,) is the asymptotic separation between the fragments in
channel g ().

At infinity, one can generate asymptotic configuration for different
channels by taking the appropriate channel separation to tend to
infinity. This leads to the following asymptotic behavior in the
presence of two-cluster open channels 3:

’ | . . exp(ikgrs)
\Ifl((j:) (r) — Z (27:;?/2 bap exp(ik, - 1o) +f5a(kﬂ’ka)Tw |
B

(1.173)

The quantity f, ga(f(g, k,) is the amplitude for transition from channel o

to 0

foakg ko) = =27 (o, [V 9))), (1.174)
and k,, .. . are unit vectors in the direction of k,. Equations (1.173)

and (1.174) are generalizations of single-channel equations (1.23) and
(1.74) to the multichannel case. Only in two-cluster channel « is there
an incoming plane wave in addition to an outgoing spherical wave. In
all other open two-cluster channels 3 # «, one has only spherical
outgoing waves. As energy increases, more and more two-cluster
channels are open, and one has more outgoing waves in Eq. (1.173).
In writing the boundary condition (1.173), we have assumed the
absence of multicluster breakup channels, where more than two
fragments may appear in the final state. In the presence of such
channels the boundary condition (1.173) becomes more complex
and one should have appropriate outgoing waves in each of the
open breakup channels.

Equation (1.170) suggests the following equation with channel
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indices o and 8 changed:
o) =GP EVIRY),  B#a, (1.175)

where |\IJI((;)> is the wave function for scattering initiated in channel 3.
The scattering equations are homogeneous when the channel labels of
the wave function and the Green’s function are different.

From Egs. (1.169) and (1.175) we find that the homogeneous
version of Eq. (1.169) is satisfied by a scattering wave function in
other channels at any energy E above the scattering threshold [5]. As
the general solution of an inhomogeneous equation may include an
arbitrary admixture of nontrivial solution of its homogeneous version,
the solution of Eq. (1.169) need not be unique. This is in contrast to
the two-particle case, where the only nonuniqueness is associated with
the appearance of a two-particle bound state, which is usually not
realized in the scattering region. Hence, unlike in potential scattering,
Eq. (1.169) alone does not constrain the physics sufficiently so as to
incorporate the correct boundary condition (1.173) in the solution and
does not have a unique solution.

The implication of this result, although not always emphasized, is
of concern. It implies that any attempt to calculate the exact scattering
state from a direct solution of Eq. (1.169) alone should fail, because
this equation does not constrain the solution correctly. There are two
alternatives to pursue. (1) One could completely abandon the
multiparticle Lippmann—Schwinger equation and formulate compact
scattering equations with unique solutions. These are the multi-
particle connected-kernel scattering equations of the Faddeev—Yaku-
bovskii type [6]. (2) The other possibility is to approximate the
dynamics to such a degree in solving Eq. (1.169) that the resultant
equation yields a unique prediction. The simplest example of this is
the first Born approximation, |\IJI(Q:)> ~ |®y ), or the second Born
approximation,

1TL) ~ @y, ) + G (E) V@), (1.176)

to Eq. (1.169). Other approaches involve approximations that, in
effect, reduce Eq. (1.169) to an integral equation or a coupled system
of integral equations with the degrees of freedom and uniqueness
properties of the two-body case. Many widely used calculational
techniques fall in this category. We describe below a commonly
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used approximation scheme, known as the close-coupling (CC)

scheme, based on the multiparticle Lippmann—Schwinger equations
(1.169) and (1.170).

1.6.2 Close-Coupling Equations

In many problems of interest there could be an infinite number of two-
cluster channels. This is true in electron hydrogen atom scattering,
where each excited state of the hydrogen atom forms a two-cluster
channel. The CC equations with Fredholm kernel couple a finite
number of preselected two-cluster channels, and the remaining chan-
nels are neglected.

Let us consider the asymptotic boundary condition for the
wave function I\Dl((ﬂ). As the relative separation r, in channel «
tends to infinity, IQ\IJI(Q:)> tends to an incident plane wave and an
outgoing spherical wave. However, as the relative separation in
another two-fragment channel § tends to infinity, |\IJI(Q:)> tends to an
outgoing spherical wave in that channel with no incident plane wave.
It is convenient to break up wave function |‘I’1((:)> into components so
as to distribute these asymptotic behaviors.

Suppose that we select N channels denoted by v = «, 3, 0, . .. in the
model. The Schrédinger equation for scattering initiated in channel «
is approximated as

N
(E-H)I0) ~ (E-H))_|¥)) =0, (1.177)
y=1

where the full wave function is broken into components l‘I’l(Q:b The
complete asymptotic behavior of the full wave function is distributed
over these components, each component carrying a specific behavior.
The component I\D,(ng) tends to an incident plane wave and an
outgoing spherical wave as the relative separation in channel o tends
to infinity; it does not carry the outgoing spherical waves, as the
relative separations in other channels tend to infinity. The component
I\Dl((j:@ tends to an outgoing spherical wave with no incident plane
wave, as the relative separation in channel 3 (# «) tends to infinity.

Equation (1.177) can be rewritten as the following set of N coupled
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equations

(E-H.,) Z ol (1.178)

with
Uyg = V7 — (E— H,)8,4], (1.179)

where 5,-]- = 1 — §;; is the anti-Kronecker 6 function. The passage from
Eq. (1.177) to Eq. (1.178) is quite arbitrary. There are other ways of
defining wave-function components and introducing coupling
between them. The coupling scheme of Eq. (1.178) is called the Fock
coupling scheme. By operating on Eq. (1.178) with v = a (y = ¢ # «),
by Green’s functions G." (G.")), respectively, we obtain the following
set of equations:

N

D) =12y ) + GSO(E) Y UnglBLD), (1.180)
p=1

[Thy) = ZUagl‘If W)y oFa (1.181)

The 1n01dent plane wave has been included explicitly in the equation
for |\IJk a) as this component should contain the incident plane wave
and the outgoing spherical wave in channel a. The component |\IJ )
(0 # a) asymptotically has the outgoing spherical wave in channel
o and no incident plane wave. Equations (1.180) and (1.181) still have
momentum 4 functions in the kernel and hence are not of Fredholm
type.

Fredholm integral equations can be written by considering bound-
state approximation for Green’s function(s) and wave function(s). In
this approximation, the Green’s function is taken as

(+) ~ 3 l¢Ba><¢Ba‘
Gt (E)N/d ] (1.182)

Here e,, the total binding energy of the clusters, and the energy
variables in the denominator of Eq. (1.182) are expressed in units of
hz/ 2m, with m_ the reduced mass in channel o. The on-shell value of
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the channel wave vector is
k, = (E +e,)"/?, (1.183)

whether or not the channel is actually open. The last possibility is
realized only if

E+e, >0 (open channel). (1.184)

Then approximation (1.182) to the Green’s function can be rewritten
as

GS(E) ~ |¢po)gs” (ko) (Dol (1.185)

where
g5 (k3) = (ko — by +i0) 7", (1.186)
where 4, 1s the Hamiltonian for relative motion in channel ¢ in units of

2 /2m,. The bound-state approximation for the wave function implies
taking

ZI\Dkﬂ Z|¢Bﬂ |¢kag (1.187)
where
Wb = (6msl Ty ). (1.188)

If these approximations for the Green’s function and the wave
function are introduced in Egs. (1.180) and (1.181), the following
equations are obtained:

N
L) = 16k,) + 857 Y (Smal Unsl a5, (1.189)
B=1

|¢k ol — Z d)BO'IUO'ﬂId)Bﬂ |¢k ﬂ> g 7é Q. (1190)

N
A=1
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After introducing approximations (1.185) and (1.187) to non-Fred-
holm Equations (1.180) and (1.181), well-defined Fredholm equations
(1.189) and (1.190) have been obtained. There are no infinities in the
norm of the kernels of the set of equations (1.189) and (1.190).
Because of the projection onto the cluster bound states, the Green’s
functions g\") are of the two-cluster or two-particle type and the
effective potentials (¢p,|U,5|¢ps) appearing in Egs. (1.189) and
(1.190) are compact. Approximations (1.185) and (1.187) have, in
effect, destroyed the multiparticle nature of the dynamics and have
essentially led to a coupled set of two-particle equations (1.189) and
(1.190). These equations are known as the CC equations for wave-
function components.

For momentum-space treatment it is convenient to derive a coupled
set of CC integral equations with Fredholm kernel for the -matrix
elements for transition from channel o to channel 3, defined by

(Pr,| Tal B,) = (i, | V7] TL) (1.191)
= ()| 77 ®y ). (1.192)

Equations (1.191) and (1.192) are generalizations of potential scatter-
ing ¢ matrix (1.84). Because of the asymmetry between initial and final
channels a and 3, we have two possibilities, (1.191) and (1.192). The
first (second) is called the post (prior) t matrix, as it involves the
interaction potential in the final (initial) or post (prior) channel. If
exact wave functions are used in Eqgs. (1.191) and (1.192), both yield
the same ¢ matrix. However, if approximate wave functions are used,
each leads to a distinct ¢ matrix.

If we operate on Eq. (1.189) with (¢g,|U,,|#5,) and on Eq. (1.190),
for all o, with (¢g,|U,,|¢5,) and add all N equations, we get

N
> (885l Upolmo) i) = (08| Uyl b5a) 1)

o=1

Z

+ Z<¢Bp|Um|¢BJ> (1193)

o=1

x ga d)BO'I Uaﬂld)Bﬂ l¢kaﬂ>

N
5=1
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Let us introduce the two-cluster effective potential V,, and the ¢
matrix 7 ,, connecting the channels p and «, respectively, by

<¢Bp|Upa|¢Ba> = Vpaa (1194)

N
Z d)BpI 0’|¢BO’ |¢k 0'> - pa|¢ka>' (1195)

o=1

Consistent with present approximation (1.187), the on-shell elements
of the ¢t matrix of Eq. (1.195) are identical with the on-shell elements of
the ¢ matrix defined in (1.191) and (1.192):

(Pr;| Tpa| Px,) = (Pay| T gl Pi, )- (1.196)

The on-shell momenta for different channels are defined by Eq.
(1.183). These two ¢ matrices of Eq. (1.196) are identical on shell, as
the effective potential appearing on the left-hand side of Eq. (1.195)
has the energy-dependent term (E — H )6pa, which vanishes on shell.
In terms of the effective potential and ¢ matrices of Egs. (1.194) and

(1.195), Eq. (1.193) can be rewritten as

N
Tpo=Vot Y V8T s (1.197)

o=1

Equation (1.197) is the multichannel two-cluster Lippmann—Schwin-
ger equation with compact kernel and unique solution. This equation
i1s commonly known as the CC equation for the t matrix.

The effective CC potential (1.194) is called the post form of the CC
potential, as the two-particle potentials in V' of U, refer to the final
or the post channel p. The CC potential is not symmetric in channel
indices p and a. The potential

Voo = (08, [V — (E — Hy)b0,]|30), (1.198)

is known as the prior form of the CC potential, as the two-particle
potentials in it refer to the initial or prior channel. Starting from the
time-reversed multiparticle Lippmann—Schwinger equation, one can
derive Eq. (1.197), but with the post CC potential replaced by the prior
CC potential. Both the prior and post CC potentials carry an energy-
dependent off-shell part. If exact cluster bound states are used, the on-
shell matrix element of both prior and post potentials are the same and
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energy independent:

(D1, | VpalPr,) = <¢kp|Vpa|¢ka> (1.199)
= <¢kp|<¢3p|Vp|¢Ba>|¢ka> (1-200)
= (o, (80| V| PBa) | D1, )- (1.201)

In practice, in most cases the function |¢p,) is taken to be
approximate bound-state wave function in channel a. As a small
finite number of bound-state functions |¢z,) with the complete neglect
of scattering state functions is far from forming a complete set, actual
convergence of the CC calculational scheme is slow [8,12].

1.6.3 Partial-Wave Multichannel K and S Matrices

As in potential scattering, for obtaining a numerical solution of the
CC scattering equation (1.197), the technique of partial-wave projec-
tion is useful. After partial-wave expansion of the CC equation
(1.197), one constructs equations with conserved total angular
momentum J and parity P. If the scattering wave function is expanded
in terms of cluster s-wave bound states, the number of coupled
equations equals the number of expansion functions for all partial
waves J. Also, in all cases, the number of coupled equations for total
angular momentum J =0 is equal to the number of expansion
functions employed. However, if cluster states with higher partial
waves are used in the expansion, for J # 0 the number of equations
and number of expansion functions are different in general, governed
by the angular momenta sum rule. For each p-wave (d-wave) expan-
sion function, the number of coupled equations for J > 0 is greater
than the number of expansion functions by one (two), and so on.

If partial-wave projections, in conserved total angular momentum
J, of the ¢t matrix and the potential operators are taken exactly as in
the case of potential scattering, namely, by Eqgs. (1.116) and (1.118),
the partial-wave CC equations have the following form:

2L [
(ha(P ko B) =Vhalppska) +2 [
o=1

2
9o 44,
Vel 40) T 2 g e o K B)- - (1202)
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The partial-wave projection is straightforward when in the expansion
of the wave function only s-wave cluster states are used [8]. However,
if excited non-s-wave cluster states are used, the partial-wave projec-
tion is more involved [8]. In both cases a partial-wave CC equation of
type (1.202) results. Often, it is convenient to work in terms of a
dimensionless ¢ matrix f defined by

Zéa(pﬂaqaaE) = \/pﬂqatéa(pﬂaqaaE)°

This ¢t matrix satisfies

;Ba(pﬂakaaE) Vﬂa(pﬂ, /
> qadqa ~J
VY ko, E 1.203
ﬂa(pﬂaqa)kg_qg_*_ i0 aa(qm a ) ( )

where V is defined in a similar fashion.

As in potential scattering, the desired asymptotic limit for the wave
function is obtained with the ¢ matrices of Egs. (1.192) and (1.197),
provided that

fﬂa(f(ﬂaf(a) = _27T2<¢k5|75a|¢ka>a (1204)

where the scattering amplitude f4, is defined by Eq. (1.174).
For s-wave cluster states the full # matrix is given by

(D1, T galtn,) = 22 (27 +1 tha(kg, ko, E)P;(cos6).

\/k ks

(1.205)

In the presence of cluster states in non-s waves, one has the slightly
more involved relation (1.217), given below.

The ¢ matrix of Eq. (1.202) possesses scattering unitarity cuts for all
open channels included in the CC model. A real K matrix involving
principal-value integrals can be introduced as in the case of potential
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scattering. A real Hermitian dimensionless K matrix is introduced by

- 2 00
Kpa(Pp, koo E) =Vpa(Ps ko) +2) P[)
o=1

7 45 dqa
Vﬂa(pﬂaqa)k—quEKaa(quaaE)a (1206)

where the integration over the outgoing-wave Green’s functions are
replaced by principal-value integrals. Now, exactly as in the case of
potential scattering, the K matrix can be related to the ¢t matrix. The
generalization of Eq. (1.149) to the multichannel case is given by

fﬂa(kﬂakaaE) Kﬂa kﬂakaaE ZZKQJ kﬂa Ja(kaakaaE)
(1.207)

where we have considered only the on-shell version. This relation can
be rewritten as

N
Z 650 ZKBJ kﬂak 7E)];Ja(k07kaaE) = Kﬂa(kﬂakaaE)‘a (1208)
o=1

where 05 is the Kronecker delta function: é45 = 1(0) for 8 = 6(# 6).
Hence, one has to invert a complex matrix to find the multichannel ¢
matrix from the multichannel K matrix. The complex cut structure of
the ¢t matrix appears from this matrix inversion. This procedure yields
t-matrix elements obeying conditions of unitarity for any real approx-
imation to the K-matrix elements and is useful for a numerical
treatment. In operator form the relation between the multichannel ¢
and K matrices is given by

K
I+iK’

~
I

(1.209)

and the S matrix is given by

I—iK
I+iK

S=1-2ikt=1-2if= (1.210)
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Equation (1.208) is the explicit matrix element of Eq. (1.209) in
channel space.
The multichannel S matrix is symmetric and unitary:

Sus = Sgas D ShS0s = bag, (1.211)

or, in operator form,
s=sT, SSt=Ss=1. (1.212)

The multichannel S, ¢, and K matrices are related to each other by
Egs. (1.209) and (1.210) and determine the observables.

In the presence of many open channels, the S matrix in the open-
channel space i1s not diagonal. Nor does the parametrization

Soa = €Xp(2ibyq) (1.213)

of the diagonal elements lead to real phase shifts 6,,. However, the S
matrix in the open-channel space can be diagonalized by an unitarity
transformation U to lead to a diagonal unitary matrix S’ = USU'.
Then each of the diagonal elements of S’ must have the form

S’ = exp(2i6l,), (1.214)

where 6., are real and are called the eigenphases. Although S’ does
not determine the physical observables directly, the eigenphases
behave like phase shifts in potential scattering.

1.6.4 Observables

One can define the Born approximation in the CC multichannel case
in close analogy with the single-channel potential scattering Born
approximation given by Eq. (1.101). If we use the effective post
potential of Eq. (1.194), the Born approximation to the scattering
amplitude is given by

~ . 1 2m
B (kp k) = — 278 / Prexp(—iky - 15) 63 Usadpa XD(—ike - 7).

4 K2
(1.215)
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Here d°r represents integration over coordinates of all the constitu-
ents of the target and projectile, the two exponentials denote the free
relative motion in the incident and final channels, and the variables of
the partition bound states in the initial and final channels are not
explicitly shown. The complex conjugate on the bound state is shown
explicitly because for non-s-wave bound states the angular part is
usually complex.

In the presence of nonzero spins, this transition amplitude is related
to the asymptotic behavior of the reaction amplitude for transition
asmg; — [Btm, by [8,13]

k
\IjreaC(ﬂt) - ¢Bt WZ fﬂtm,;asms(aqb)X(ta mt)‘ (1216)

The spin and angular momentum states of the initial (final) channel
are taken to be s, m;, [ (t,m,,1"), so that the conserved total angular
momentum state is J, M in each channel, x(¢,m,) is the spin function
in final channel 8, ¢, is the final bound cluster state, and v, and v are
relative velocities in these channels. The detector selects particles
traveling in directions § and ¢ with spin ¢ and m,. The reaction
amplitude is related to the scattering S matrix by

fﬂtm,;asms (ed)) —

o0 J+s J+t !

PP P IS

J=0 M=~J |=|J—s| I'=|J~t| p=-1
i 200 4 1)V2Y,,(69) (1.217)

X (IsOmy|JM ) (1" tpim | TM) (8506611 = S fupr st) -

The vector addition coefficients vanish unless M =m, and =
M —m, =m; —m,.

The differential cross section for transition from asm, — Btm, for a
collision in which the final objects emerge within the solid angle 42 in
the direction ¢ with respect to the incident beam in the CM system is
given by

A0 gim,;sm, kgm, 2
d—%_k_a',;?fﬂa(kﬂ’ka” : (1.218)
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where m,, and my are reduced masses in channels a and 3, respectively.
The ratio of masses is relevant in rearrangement channels and drops
out in elastic and inelastic channels. In the following we consider the
usual case of inelastic scattering with m, = m;. The cross section for
the as — Gt collision with an unpolarized beam is obtained by
averaging over the incident spin directions m, and summing over the
final spin directions m,:

dUﬂt;as - 2S +1 Z dUﬂtm, sosmg ) (1219)

mg,m,

where (25 + 1) is the spin degeneracy.

Finally, the differential cross section for the a — (3 collision with-
out regard to the channel spins s and ¢ is obtained by averaging over
initial spin s and summing over final spin ¢,

I+i I'+i’

2s + 1
1730 = dog, 1.220
e s:|§-,‘| t=|IZ—-i’| (21 + 1)(21 + 1) 0 Btiass ( )

where 7 (I") and i (i) are the spins of the fragments in the initial (final)
channel a (3), and the fraction represents the statistical weight of the
channel spin s.

The total cross section for transition from channel a to 3 is given by

kg m

Uﬂa (k ) ka mﬂ

A% fao kg, ko) (1.221)

For the time-reversed process, the total cross section is given by

kmg

k)2 1.222
kﬂ m,, anlfaﬂ(kaa B)I ) ( )

oap(Kg) =

so that, for m, = mg, the cross sections for the direct and time-
reversed processes are related by

kio-ﬂa(ka) = kéo-aﬂ(kﬂ)' (1223)

Relation (1.223) is known as the principle of detailed balance. The
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cross sections averaged over all possible incident (k,) is given by
Opa = (4m) 7" / dQ40 50 (Ky)- (1.224)

This averaged quantity is measured in laboratory when the target is a
volume of atomic gas with random orientations.
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CHAPTER 2

NUMERICAL METHODS

2.1 INTRODUCTION

In Chapter 1 we presented a mathematical formulation of the quan-
tum theory of scattering. This mathematical framework for the
problem incorporates different virtues, such as asymptotic condition
and unitarity, in terms of the S, ¢, and K matrices. Specifically, one has
a formulation in terms of well-defined integral equations for both the
scattering wave function and for the ¢ or K-matrix elements. Next
comes the task of finding efficient means for obtaining numerical
solutions. Most of the remaining parts of the book are devoted to this
topic, with illustrations from nuclear, atomic, and molecular physics
and physical chemistry.

The general approaches to finding a complete numerical solution of
Fredholm scattering equations [1,2] are relatively straightforward for
single-channel potential scattering or for simple two-particle scatter-
ing with a real Hermitian central short-range potential. We describe
these approaches in some detail first. For these problems one must
select a specific computational method and find the numerical solu-
tion. Virtually, all solution procedures convert the Fredholm integral
equation to a well-defined set of linear algebraic equations with
relatively small dimensions, which is solved numerically.

In realistic scattering problems, due to the presence of one or more
of the following features, the situation could be far more complicated
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than the ideal scattering model noted above.

1.

There is the limiting prescription lim,_,, and/or the evaluation of
a principal-value integral in the momentum-space Green’s func-
tion in order to incorporate the correct boundary condition.
This calls for certain care.

. Also, in atomic and molecular physics and physical chemistry,

there could be a large number of open two-body scattering
channels in addition to the open three- and multiparticle
channels at low to medium energies. Even if the three- and
multiparticle channels are neglected and the actual problem is
modeled as a two-cluster multichannel process, the existence of
many two-body channels may increase the dimensions of the
problem beyond control. In addition, the effective interaction
could be quite complicated and the coupling between different
channels could be strong.

. As we shall see in the following, some formulations, such as the

I matrix, are not time-reversal symmetric.

. In some cases, for example, in close-coupling (CC) approxima-

tion employing p-wave basis functions, the potentials are purely
absorptive or imaginary.

. In molecular scattering problems the solution depends on the

orientation of the target molecules and a tedious averaging has
to be performed over various orientations of the target. In the
presence of many of these complications, the numerical task
could be quite intricate and a brute-force computing may not
lead to satisfactory convergent results. An intelligent method of
solution or a variational principle for solution has proved to be
an asset in these cases.

The time-independent scattering integral equations with some short-
range well-behaved potentials could be solved numerically. The well-
behaved short-range nature of the interaction allows the development
of a convergent partial-wave projection scheme and subsequent
truncation in angular momentum. This procedure always leads to a
single (or a set of coupled) one-dimensional Fredholm integral
equation(s) of the generic form

YE(x,y) = BE(x,y) +Z/ dz K5 (x,2) Y (2, y), (2.1)
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where x,y, and z are continuum momentum variables, E is the
parametric energy, and i,j, and [/ are the discrete channel variables.
The channel variables specify the different initial and final states, their
angular momenta, and other quantum numbers. The variable x has an
active role 1n the solution process [i.e., the functional dependence of
the unknown Y on x is exploited in Eq. (2.1)]. Both the parametric
energy E and the variable y play a passive role in the solution process,
which means that fixed values of these parameters are preselected
before solving the scattering problem. Nevertheless, the functional
dependencies of the Born term B, the kernel X, and the solution Y on
energy E or momentum y could be singular. Usually, in scattering
problems, Y,f (x,y) also satisfies a set of integral equations that have
the following conjugate form:

YE( ,¥) = Bfi(x,) +Z/ dz Y3 (x, zIClj(z ¥). (2.2)

In Eq. (2.2), y now assumes an active role.

In the case of single-channel potential scattering, after suppressing
the passive variables, one has the following standard form of scatter-
ing integral equation:

Y(x) = B(x) + ‘Aoo dzK(x,z)Y(z), (2.3)

which is recognized as a standard textbook Fredholm integral equa-
tion [1,2].

Equations of types (2.1) and (2.3) appear in many multiparticle
collision problems besides simple potential scattering [3]. Many of the
models are approximate and involve the reduction of the multiparticle
problems to a set of coupled effective two-body problems. A fre-
quently used model is based on the CC equations of Section 1.6.2.
These equations may have highly complicated Born terms and kernels,
in addition to having a large number of coupled channels, which
invariably lead to numerical complications. However, these difficulties
are much less than those encountered in the proper treatment of
multiparticle dynamics. Below the multiparticle thresholds, multi-
particle dynamics plays a passive role in a collision process, and
two-cluster models yield reliable results. Above the multiparticle
thresholds the multiparticle dynamics plays an active role in the
scattering process, and their neglect may lead to serious theoretical
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defects in the solution, such as flux nonconservation or loss of
unitarity due to open multiparticle channels. However, in the absence
of tractable multichannel models, effective two-body models have
been used successfully at higher energies.

The formal Fredholm solution to Eq. (2.3) ceases to exist when its
homogeneous version, with B = 0, permits a solution. This means that
the operator (I — K) does not have an inverse. The eigenfunction—
eigenvalue problem

Y(x)= /dzIC(x, 2)Y(z) (2.4)

corresponds to normalizable localized states in potential scattering.
Below the lowest scattering threshold, these states are the bound
states. They do not exist for potential scattering with local Hermitian
potential. For potential scattering with nonlocal potentials, they may
appear as continuum bound states at certain discrete energies [4]. The
homogeneous version of disconnected-kernel multiparticle scattering
equations allows scattering solutions at all energies for rearrangement
channels [3]. Then Eq. (2.3) ceases to be of the Fredholm type and
cannot be solved numerically.

Next, it remains to establish that the scattering integral equations
we derived in Chapter 1 are really of the Fredholm type, so that they
may yield unique solutions. The kernel X of these equations has to be
L, or compact, or Hilbert—Schmidt for these equations to be of the
Fredholm type. In the scattering region in the f-matrix Lippmann—
Schwinger equation there exists a limiting ¢ — 0 procedure to be
performed in the parametric energy in the kernel over the scattering
cut so that the kernel K is complex in the scattering region. Also, if € is
set equal to zero in the parametric energy, the norm of the kernel does
not exist. Hence, it is not obvious that the kernel is £ or compact in
the scattering region. However, Weinberg has demonstrated that a
sufficient condition for compactness for such scattering equations is to
have Tr(KK") < oo [1,2]. This condition is satisfied by short-range
pair potentials with only two-cluster channels. This is the case for
most of the scattering problems that we consider. Usually, more
analytical work 1s needed to establish compactness of the scattering
integral equations in the presence of multicluster channels [3]. In the
two-particle attractive Coulomb problem, an infinite number of
bound states are present, which is a sufficient condition for making
the kernel of the scattering equation noncompact.
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One of the various equivalent definitions of compactness is that
such operators can be approximated uniformly by operators of finite
ranks. These finite-rank approximations of the kernel (and the Born
term) of the scattering integral equation will be of great help numeri-
cally. They will be shown to lead to different nunierical methods for
the solution of the scattering integral equation, such as the degenerate
kernel scheme, separable expansion scheme, and many types of
variational principles [3].

In Section 2.2 a general solution strategy for solving Lippmann—
Schwinger scattering integral equations for the ¢ or K matrix is given.
In Section 2.3 we specialize to the case of the K matrix and related
principal-value treatment. In Section 2.4 we describe a solution
procedure in terms of an auxiliary nonsingular real integral equation
that does not involve any principal-value treatment. The principal-
value treatment appears at a later stage in the form of a single integral
over solution of the nonsingular equation. This approach has certain
advantages over the conventional #- or K-matrix approaches. In
Section 2.5 we describe approximate iterative solution methods for
the scattering integral equations. In Section 2.6 we describe the
solution procedure for scattering with a complex potential. In Section
2.7 we describe a multi-channel generalization of the nonsingular
equations presented in Section 2.4. Finally, in Section 2.8 we describe
a method for calculating bound states and resonances which uses
momentum-space integral equations similar to those used for scatter-
ing.

2.2 SOLUTION STRATEGY

It should be noted that there is a preferred momentum k in the
scattering integral equation, the on-shell momentum, which is related
to the parametric energy F by E = k2. The physical or on-shell
amplitude is related to observables, such as the phase shift or cross
section, and corresponds to taking both the initial and final momenta
equal to the on-shell momentum. However, the scattering integral
equation couples the on-shell amplitude with infinitely many off-shell
amplitudes defined for all continuous momenta between 0 and co.
This coupling makes solution of the scattering equation more com-
plicated.

Any numerical procedure to solve the continuous Fredholm inte-
gral equation (2.3) starts by approximating it by a set of discrete linear
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algebraic equations by means of a quadrature rule. The original
Fredholm equation is termed continuous, as the momentum variables
are continuous functions. On the other hand, the set of linear algebraic
equations are defined on some discrete momentum mesh. The solution
is then effected on this mesh. If needed, the solution for other values of
momentum can be found by some interpolation technique or by using
the integral equation once again. This last observation is relevant, as
the on-shell momentum is not allowed to be one of the discrete
momenta, and the on-shell amplitude is not one of the unknowns of
the set of algebraic equations. Additional use of the integral equation
or some interpolation of the solution is needed to get the on-shell
amplitude.

If the domain of integration is subdivided into N mesh points
{x;,i=1,...,N}, then Eq. (2.3) reduces to the following set:

N
Y, =B+ K;AY, (2.5)
i=1

where Y; = Y(x;), B, = B(x;), Kj = K(x;,x;), and A; = dx;. If we
have an efficient quadrature rule for discretization, the solution of Eq.
(2.5) approaches Y (x) uniformly as N — co. An account of different
quadrature rules, such as Gauss, Laguerre, Hermite, and so on, are
given in Abramowitz and Stegan [5]. Evidently, a finite value of N is
used in calculations. The magnitude of N depends on the complexity
of the scattering equation, the quadrature rule employed, and the
desired degree of precision. Equation (2.5) can be rewritten in the form

of the following algebraic set of equations:

N
Y MY, =B, (2.6)
j=1

with

where §;; is the Kronecker delta function: 6; = 1 (0) fori = j (+# j). The
discrete solution Y; of Eq. (2.6) can be obtained by inverting the
matrix M. Hence, the discretization procedure leads to the solution at
the discretization points. Once these solutions are obtained, a con-
venient interpolation, using Eq. (2.5) again, yields the unknown
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function Y at any point not a discretization point. In such an iterative
interpolation one uses Eq. (2.5) with x; as the point where one needs
the unknown function.

As most of the scattering problems have the usual Lippmann—
Schwinger form, it is worthwhile to consider the single-channel form
(1.121) of this equation. It is assumed that both the potential and the ¢
matrix are time-reversal symmetric [e.g., V(p,p') =V (p',p)], in
addition, the potential is assumed to be real. However, the condition
of real potential can be removed. Also, the kernel of Eq. (1.121) is
assumed compact, and this equation is Fredholm.

We recall that i0 in the denominator of Eq. (1.121) implies a
limiting procedure ¢ — 0. As the kernel of this equation is singular
at g =k once € is set equal to zero, special care is needed in
discretization. This singularity can be handled by decomposing
(k2 — ¢+ z'O)_1 into its real principal-value and imaginary é-function
parts according to Eq. (1.104). Because of the complex nature of the
outgoing-wave Green’s function, even for a real potential, the kernel
of Eq. (1.121) is complex in the scattering region.

A straightforward but not the most efficient or especially intelligent
way to find the solution of Eq. (1.121) starts by discretizing it directly.
This procedure generates a set of complex linear algebraic equations
which is then solved by matrix inversion or otherwise. One procedure
to avoid complex algebra is to use Eq. (1.104) and break up Eq. (1.121)
into its real and imaginary parts as follows [6]:

0o 2
Rlp, i) = V(pp) +2P |~ AV (. Rinta.' )] 28)

+VEV(p, K)Slt(k, p', k)],

2 S
Sltp,p k) =P | L2 v(p,g)S(i(q,p' k)]
0o k°—g¢q

T

o \/EV(p7k)§R[t(k7plak2)]7 (29)

where the potential has been assumed to be real and Hermitian. In
Egs. (2.8) and (2.9) and in the following we have suppressed the
angular momentum label. In this way one has real algebra, but the
dimension is increased by a factor of 2. Numerical treatment of real
matrices is often convenient and leads to more precise results than
those obtained with complex algebra.
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Another procedure of avoiding complex algebra without increasing
the dimension of the equation is to deal with the K matrix, which
satisfies Eq. (1.145), where the integral over the outgoing-wave Green’s
function (k2 — ¢+ i0)~! is replaced by its principal-value part. Then
the phase shifts are obtained directly from the on-shell K-matrix
elements; or one can also construct the f-matrix elements by using
Eq. (1.149), with a knowledge of the K-matrix elements. These solution
procedures, however, has to deal with principal-value integrals, and
this requires special care which we describe in the next section.

The singularity problem can be avoided by the contour deforma-
tion technique [3]. Then instead of integrating along the positive real
momentum axis in Eq. (1.121), one integrates along a deformed
contour C in the lower-half complex momentum plane. One possible
contour is a slightly rotated straight line beginning at the origin and
going to oo in the lower-half complex momentum plane. The result of
integration remains unchanged provided that no singularities of
V(p,q)t(g,p', k*) are crossed in rotating the line (0,00) to C. This
method involves complex algebra and is not particularly advanta-
geous for simple potential scattering. However, it is very suitable for
multiparticle collisions with moving singularities in the complex
potential that depend on both p and p’ [3].

A better and simpler way of handling the fixed-point singularity in
Eq. (1.121) is to express its solution #(p, p’, kz) in terms of the solution
of an auxiliary real nonsingular integral equation of the same dimen-
sion as the original one, but without having to deal with the principal-
value prescription. In the end one has to perform a principal-value
integral over the solution of the nonsingular equation while calculat-
ing the observables. We describe this approach in Section 2.4. The
application of this technique to collision integral equations has proved
to be extremely useful. However, there are an infinite number of ways
of performing this nonsingular reduction, with each way leading to a
distinct nonsingular equation to solve [3]. Other criteria must be used
to prefer a particular reduction scheme.

Once a method for handling a fixed-point singularity has been
chosen, there remains the problem of solving the Fredholm integral
equation. One can write the formal solution of such an equation as an
infinite series involving the traces of different powers of the kernel
[1,2]. But such a formal solution is hardly of any use from a numerical
point of view. The simplest practical procedure is to solve the set of
(real or complex) linear algebraic equations (2.5) exactly without
further approximation.
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An entirely different strategy is to seek controllable approximations
while solving Eq. (2.5). This will be of great help in realistic problems
when there are many coupled channels. One such method is to
consider the iterative Born—Neumann series (Section 2.5) of Eq.
(2.1) written schematically as

Y=B+KB+K’B+K’B+--- (2.10)

The quantity B is called the first Born term or simply the Born term,
B + KB is the second Born term, and so on. Such a series converges
when the kernel is sufficiently weak. This happens when the energy is
reasonably high or the interaction potential is weak enough. Then one
can use only a small number of terms in Eq. (2.10) for calculating the ¢
matrix. In many problems of atomic and molecular physics a small
number of terms of the Born—Neumann series have been used with
great success at medium energies for the past 40 or so years. Even the
first Born approximation may lead to reasonable result. If the Born—
Neumann series diverges, the information contained in the first few
terms of the Born—Neumann series can be summed effectively by
means of the Padé or other techniques to produce the solution [7].

Variational approaches have proved to be very useful for obtaining
a successively convergent approximation scheme for realistic scatter-
ing problems in nuclear, atomic, and molecular physics. They are
applicable at all energies for both weak and strong interactions and
generate a variety of approximation schemes for a general Fredholm
integral equation, such as the method of separable expansion, the
degenerate kernel scheme, the method of moments, and so on. Of
these the separable expansion scheme is specially useful for represent-
ing the two- and three-particle amplitudes that appear in the kernel of
few-particle scattering integral equations. This procedure simplifies
certain types of few-particle scattering equations by reducing their
dimensionality and has frequently been used in nuclear few-particle
problems [3]. Variational approaches have also been used with great
success in problems of atomic and molecular physics over the last
three decades. The problems studied include the scattering of atoms
and molecules by photons, electrons, positrons, and diatoms. In
most of these problems the use of variational principles has been
fundamental in dealing with the mathematical complexity. We devote
a significant portion of this book to describing these variational
methods.
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In practice, a solution strategy is selected depending on the com-
plexity of the problem, available computing power, and ultimate use
of the -matrix elements. In a realistic problem of molecular dynamics,
the number of coupled channels could be several hundreds, and with
the computing power available, an approximate variational calcula-
tion is welcome. The effort needed to improve on the variational
solution by attempting direct solution of the set of algebraic equations
may be prohibitive and not worthwhile. On the other hand, if one is
interested in calculating nucleon—nucleon scattering observables, a
direct precise solution of the scattering integral equation is called for.
However, if one is interested in using the two- and three-nucleon -
matrix elements in a four-nucleon scattering calculation, it might be
advantageous to use the approximate variational separable expansion
scheme, because of the ultimate simplification of the four-nucleon
scattering equations [8].

The range of momentum integration in Eq. (1.121) covers the entire
phase space (e.g., 0 to c0), so one encounters an infinite integral. The
Fredholm nature of the problem guarantees that the kernel decays
rapidly to zero as the momentum variables tend to infinity. It is often
useful from a practical point of view to transform the infinite integral
to a finite integral. As the usual Gauss quadrature points often used to
discretize the integrals are given between 0 and 1 or between —1 and
+1, it is convenient to transform the infinite integral to a finite
integral between 0 and 1 or between —1 and + 1. In principle, any
transformation can be used. Two trivial transformations mapping
0<g<oointol < x <1 are

1
q=6<ln1f§>, (2.11)

X
g=c7—> (2.12)

where the images of points x = 0, 1 are ¢ = 0, 0o. The transformation

1 4+x
1 —x

g=c (2.13)

maps 0 < g <oo into —1 < x < 1, where the images of points
x=—1,0,1 are ¢ =0,c,00. The differential dg in Eq. (1.121) is
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obtained directly from the transformation and is given by

dg = Ecxz (2.14)
- ﬁ (2.15)
- icx)z | (2.16)

in the case of transformations (2.11), (2.12), and (2.13), respectively.
One can have an infinite class of such transformations, each distribut-
ing the integration points in a different fashion. It is not a priori clear
which distribution is most convenient for one particular integral.
Actually, that is decided by trial. These mappings imply a maximum
value of g in momentum space which is efficiently controlled by the
parameter ¢. This corresponds to a cutoff in the infinite integral.
Otherwise, the choice of parameter c¢ is entirely arbitrary. Generally,
the form of the transformation function and its parameters, such as c,
are dictated by special features of the kernel and should be chosen to
get the most accurate numerical result with a given number of mesh
points. Once the numerical value of ¢ is decided upon, the number of
quadrature points should be increased to achieve the desired precision.

2.3 K MATRIX AND PRINCIPAL-VALUE TREATMENT

The K-matrix approach has often been used in solving scattering
problems. For real Hermitian potentials this solution procedure then
deals with real algebra and hence implies less memory and processing
time and a more stable result in computation. This approach has been
used with great success in scattering problems of nuclear, atomic, and
molecular physics. However, this approach involves an integral
equation with a principal-value prescription in the kernel. This
requires special care, which we discuss in this section.

The principal-value treatment is also required in a f-matrix descrip-
tion of scattering. The implied ¢ — 0 limit in the Green’s function and
the kernel of the r-matrix integral equation (1.121) is numerically
troublesome and needs special care. If one puts the imaginary part in
this outgoing-wave Green’s function equal to zero, the integral
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diverges due to a pole singularity at ¢ = k. However, the integration
appearing in Eq. (1.121) is perfectly well defined in the limit € — 0,
consistent with the outgoing-wave nature of the Green’s function.
One possible numerical way of discretization is to use the following
decomposition of an integral Z over the outgoing-wave Green’s
function into its real principal-value and imaginary é-function parts:

2 [ gdqf(q) 2. [®q’daf(q) .
= — = — == 2 ikflk 2.17

where f(g) is a smooth integrable function of ¢. Equation (2.17)
follows with the use of Eq. (1.104). There are many ways of dealing
with the principal-value part. In a numerical treatment, if the integra-
tion points around the singularity at ¢ = k are symmetrically chosen
on both sides of the pole of the integrand, one obtains the principal-
value part. Sloan [9] pointed out that if one employs mapping (2.13)
with ¢ = k in order to transform the infinite g integral in (2.17) to a
finite integral in x between —1 to 1 and chooses the integration
quadrature points symmetrically about x = 0, the result immediately
yields the principal-value integral. The usual Gauss quadrature points
between —1 and 1 are symmetrical about 0 and can be used directly for
this purpose.
Then the discretized version of Eq. (1.121) is written as

2 -~ Vinp%An .

where, for example, t; = t(p;,p;), Vi = V(pi,p;), Ay = dp,, po =k,
and p,,i =1,2,...,N are the discretization mesh points. Then the
momentum points between 0 and oo are transformed to x points
between —1 and +1 using mapping (2.13) with ¢ = k. Once the
integration mesh points exclude x = 0 and are chosen symmetrically
about x = 0, as in mapping (2.13), consistency with principal-value
prescription is achieved. The resultant complex matrix equation (2.18)
is then solved numerically by matrix inversion or otherwise. However,
there are numerical problems with very large complex matrices, and
this procedure may not yield particularly stable and precise results.
It might be worthwhile to use a set of real linear equations. This can
be achieved by working with the K-matrix integral equation (1.145) in

place of the t-matrix equation (1.121). The discretized version of this
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require special care, which may limit the numerical accuracy under
many situations. A more efficient way of dealing with the fixed-point
singularity is to express the ¢ or K matrix in terms of the solution of an
auxiliary nonsingular Fredholm integral equation which does not
involve the /0 prescription or principal-value integral. The principal-
value prescription reappears in some algebraic relation in the form of
an integral over known functions that relates the ¢ or K matrices with
the solution of the real auxiliary nonsingular equation. In such an
integral the principal-value prescription can be handled reliably, for
example, via Eq. (2.20) [12].

The Fredholm reduction of the singular equation is performed by
introducing a real subtraction function v(k, ¢), such that v(k, k) = 1.
Then the Lippmann—Schwinger equation (1.121) can be rewritten as

2 o [ qdgy(k,q) )
t(p,p k> =V(p,p) +=V(p,k 1 4(q,p' k
(PP, k) = V(pp) +V(p.K) | 2 P10 (g,p", k%)
2 oo
+2 [ PdgAp.a )itap' ) (225)
where
, 1
A(p,q. k) =V(p,4) 15— 7 (2.26)
with
V(p,q) = [V(p,q) — V(p, k)v(k,q)). (2.27)

The subtraction function + is supposed to be a smooth function of the
momentum variables. The k dependencies of operators 4 and V are
not explicitly shown. The kernel 4 is nonsingular at positive energies
provided that k = k. Then the fixed-point singularity at g =k is
canceled by the zero of the potential V(p, ¢). It will be assumed that
at positive energies, k = k. All the equations of this section are also
valid at complex and negative energies, where there is no fixed-point
singularity for real momenta and there is no reason to stick to k = k.
We shall see that negative-energy equations of are special interest for
calculating binding energies and bound-state wave functions. This is
why we keep the provision k # k in the present equations. At negative
energies both k = (|E])'/? and = ¢, where ¢ is an energy-independent



76 NUMERICAL METHODS

constant, can be used. The i0 limit in the Green function of Eq. (2.26)
is irrelevant and has been dropped.

The ¢ matrix can be expressed in terms of the solution, called the I'
matrix, of the following real auxiliary nonsingular Fredholm integral
equation:

2 o0
F(p,p’,k2)=V(p,p')+7—rA ¢ dg A(p, ¢, K")T(q,p' k).  (2.28)

The I matrix is not time-reversal symmetric: I'( p, p’, kz) +T(p',p, kz).
However, this is not a problem in numerical calculation. The I" matrix
can easily be related to scattering and bound-state solutions.

The formal manipulation needed to relate the ¢ matrix with the T’
matrix becomes very transparent in operator form. In operator form
Egs. (2.25) and (2.28) are written as

t=V + VGt + At, (2.29)
I'=V 4 AT, (2.30)

with V(p,q) =V(p,k), and Gy(p,q) =8(q—p)(k* — ¢* +i0)"
v(k,q). Eliminating the potential } between Egs. (2.29) and (2.30),
the ¢ matrix can be expressed in terms of the I' matrix by

t =T + T'Gyt, (2.31)

with T'(p, q, k2) L(p,k, k2) The kernel F(_JO of Eq. (2.31) is separ-
able: (p|T'Gylq) = T'(p, k, K*)(k* — ¢* + i0)~'y(k, ), which means that
functional dependence on the momenta p and ¢ are separated. An
integral equation such as (2.31) with a separable kernel has an analytic
solution (Section 3.1.2). The momentum-space matrix element of Eq.
(2.31) is given by

t(p,p',k*) =T(p,p',k*) + T(p, k, K*)I (k,p’, k), (2.32)
with
I(k,p' k) = (2/m) Aoo ¢ dg(k* — ¢* + i0)"'y(k, @)1(q,p', k%) (2.33)
(2/7) [5° ¢ dg(k> — ¢ +i0) 'y (k, )T (g, p", k?)
-1

T 1= (/) [ gk — @ + i0) (K, q)T (g, k, K2)
(2.34)
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In deriving Eq. (2.34) we have multiplied Eq. (2.32) from the left by G,
integrated over the appropriate momentum variables, and solved the
resultant equation for Z(k, p',kz). The preceding equations of this
section are also valid for the K matrix provided that we replace the
limiting {0 prescription by the principal-value prescription in appro-
priate integrals. The limiting i0 prescription of the f-matrix equation
or the principal-value prescription of the K-matrix equation does not
appear in the real I'-matrix equation. However, it appears in Eq. (2.34)
in integrals over known functions, where it can be handled by Egs.
(1.104) and/or (2.21).

If the system has a bound state, the t matrix develops a pole at the
corresponding energy. This bound-state pole of the ¢ matrix is given
by the vanishing of the denominator in Eq. (2.34) at a negative bound-
state energy — —az, so that

2 [ 5 ~y(k,q)T(gk k%)
1=-2 d . 2.35
W,A 744 a2 + q2 ( )

This gives the condition of the bound state. We shall see in Section 2.8
that this condition could be used for producing a practical method for
determining the bound-state energy(ies) and wave function(s). The
approach could be modified for the determination of virtual states and
resonances.

Although the formulation is valid for a general k, in the following
we assume explicitly that k = k; this removes the fixed-point singu-
larity of the scattering equation and makes the I' matrix real at
positive energies. From Eq. (2.32) one has the following two half-
shell ~-matrix elements:

2
t(p, k, k) = %z(m, (2.36)
with
t(k) = t(k, k, k%)
T(k,k, k%)

- 2.37
= @) o Pl — ¢+ 0) gk kD )

t(k,p',k*) =T(k,p’,k*) + T(k,k, k)T (k,p').  (2.38)
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A(k,q,k*) = V(k,q)/(k* — ¢*) = 0 and consequently, T'(k,p’ k*) =
V(k,p'). The residual term R now satisfies the Lippmann—Schwinger
equation (2.47) with the subtracted potential (2.48). Because of the
subtracted potential, no /0 limit or principal-value prescription is
required in the Green’s function. As this equation has the form of a
Lippmann—Schwinger equation, successive subtractions can be intro-
duced in this equation as in the I"-matrix formulation in order to lead
to an efficient iterative calculational scheme [3,13].

The integral equations (2.45) and (2.47) can be solved exactly for a
square-well potential in terms of spherical Bessel functions [16]. These
solutions are useful for studying analytical behavior. The technique
used in the I'-matrix formulation is a particular version of a general
class of subtraction schemes [3].

2.5 SOLUTION BY ITERATION

There are several alternatives to solving either the singular or non-
singular integral equation of scattering by matrix inversion. Apart
from the use of different variational methods for the solution of these
equations, which we describe in detail in later chapters, high-precision
numerical results can be obtained via solution by iteration with
comparatively little numerical effort.

The iterative solution of Lippmann—Schwinger equations (1.93)
and (1.94) yields the Born—Neumann series

t=V+ VGOV + (VG2 V + (V6D Y + - (2.49)

Equation (2.49) is a special case of the general iterative Neumann
series solution (2.10) of a Fredholm equation. The first term of this
series is the Born or first Born term, and the sum of first # terms is the
nth Born term. Calculation of the ¢ matrix using Eq. (2.49) requires
only successive matrix vector multiplications. The advantage of the
iterative method lies in the small accumulation of numerical error,
called round-off error. Such errors are usually large in other methods,
which limits the final precision. If the iterative series (2.49) converges,
precision of the final result can be increased by increasing the number
of iterations and the number of mesh points in discretizing the
scattering integral equation. For a given scattering problem, the
iterative method can thus be used to vield nimerical reenlte cnineriar
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2 > 2 ’7(157 q)F(qa IE, kz)
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scattering integral equation. For a given scattering problem, the
itera‘rive method can thiic he nced to vield ninmerical reanilte crimnariar
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in precision to that obtained in other methods by several orders of
magnitude.

A solution scheme based on the iterative Born—Neumann series has
been used successfully in conjunction with close-coupling equation
(1.197) in problems of atomic and molecular physics [17]. The first
term of Eq. (1.197) or the Born term in this approach is given by Eq.
(1.215). The problems studied by this approach include those dealing
with electron—atom and electron—molecule scattering. At medium
energies, the Born approximation (1.215) often yields reasonable
result. At very low energies, however, scattering depends on the details
of the dynamics, and the lowest-order terms of the iterative Born—
Neumann series do not lead to satisfactory results. Calculation of
higher-order Born terms becomes increasingly complicated and is not
as useful in atomic and molecular scattering problems because of
coupling to other channels.

Despite the above-mentioned advantages, the iterative Born—Neu-
mann series is not frequently used in the numerical solution of
scattering problems in nuclear and particle physics. There the poten-
tial is sufficiently strong that the scattering equation converges only at
very high energies. At such energies the validity of the physical model
breaks down, due to the significant role played by many neglected
dynamical effects, such as meson and quark degrees of freedom, and
relativistic effects.

Actually, for many scattering problems, the iterative series diverges
at low energies. It converges only for very weak potentials or at very
high energies. However, divergence of the iterative Born—Neumann
series (2.49) does not mean that the Lippmann—Schwinger equation
does not have a solution. It only reflects the failure of the Born—
Neumann iterative series to find this solution. This is similar to the fact
that the sum of a divergent geometric progression cannot be found by
naively summing the terms of the series.

Following Weinberg [1], we present next a description of the criteria
of convergence of the iterative Born—Neumann series. The condition
of divergence of this series is related to the existence of an eigenvalue
of the kernel of the Lippmann—Schwinger equation greater than 1 in
magnitude. Let us consider the following eigenfunction—eigenvalue
problem for the kernel C(E) of the Lippmann—Schwinger equation:

K(E)|x) = VG5 (E)x) = n(E)lx), (2.50)

where 7)(E) is the complex eigenvalue at a specific energy E above the
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scattering threshold. At negative energies, both the kernel and the
eigenvalues are real. The Born—Neumann series converges if all the
eigenvalues are less than unity in magnitude. Weinberg made a careful
study of these eigenvalues and we present an account of his study. For
an attractive potential at large negative energies, all the eigenvalues
are smaller than unity and each becomes larger monotonically as the
energy approaches zero from a large negative value. As the energy
becomes equal to the ground-state energy, E = —B;, the largest
eigenvalue becomes unity. At the energy of the nth excited bound
state, £ = —B,,, the nth eigenvalue becomes unity, and (» — 1) eigen-
values corresponding to the other bound states are larger than unity.
The existence of 7 bound states of a system guarantees z eigenvalues of
the kernel greater than 1 at the lowest scattering threshold, and
consequently, the Born—Neumann series diverges [1,2]. This series
also diverges for strongly repulsive potentials. In these cases the
divergence of the Born—Neumann series is related to the existence
of an eigenvalue(s) smaller than —1 at the lowest scattering threshold.
Such an eigenvalue(s) does (do) not correspond to a bound state(s) of
the original potential J but to the sign-changed potential — V. The
latter possibility is realized for realistic nucleon—nucleon potentials
and for interatomic potentials due to a strongly repulsive core at short
distances. These potentials may also have added convergence diffi-
culty, due to the actual bound states of these systems.

At the lowest scattering threshold, the Green’s function is real and
so is 7. Typically, if the largest (in magnitude) eigenvalue 7 of the
kernel of the Lippmann—Schwinger equation at the lowest scattering
threshold satisfies [1,18]

Il > 1, (2.51)

the Born—Neumann series diverges at this energy. In the presence of
bound states with a partly attractive and partly repulsive potential,
several eigenvalues of the kernel may satisfy (2.51) at the lowest
scattering threshold. At small positive energies the eigenvalues
become complex. However, Weinberg [1] showed that Eq. (2.51) is
still satisfied and the Born—Neumann series diverges. As energy is
increased past a sufficiently large energy E = E_, all the eigenvalues
satisfy

| <1, (2.52)

and the Born—Neumann series converges.
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One way to circumvent these difficulties with the iterative solution is
to separate the divergent feature in a auxiliary problem that can be
solved analytically. Then the iteration technique can be applied to the
remainder of the problem. In this approach we decompose the kernel
K of the Lippmann—Schwinger equation (1.93) into a separable part
Ks and a nonseparable remainder Ky:

K(E) =Kg(E) + Kr(E). (2.53)
Then the Lippmann—Schwinger equation (1.93) can be rewritten as

t =TrV +T'rKs(E)t, (2.54)
where

Since Ky is separable, if 'y is known, Eq. (2.54) can be solved
analytically. Any integral equation with a separable kernel is analy-
tically solvable, as has been demonstrated in Section 3.1.2. The
objective is to choose K¢ as such a good approximation to K that
ICg is small and the iterative series for I'; converges, even when the
iterative series for the original Lippmann—Schwinger equation
diverges. For a compact K, it is always possible, in principle, to find
a Kg such that the eigenvalues of Ky are all less than 1. In practice,
however, the criteria for such a choice are not always obvious [3].

One method for determining an appropriate Kg is provided by the
[-matrix formulation of Section 2.4. This formulation essentially
corresponds to the choice

2 V(p,k)y(k,p')p'"?
K "k)y=Z= 2.56
S(p7p7 ) T kz_p,2+i0 ) ( )
so that
’CR(papl’k) = A(p,pl’kz)’ (2'57)

where Ky corresponds to a difference between two terms (K — Ky),
with A(p,p’, kz) defined by (2.26). With these choices for K and Kg,
Egs. (2.54) and (2.55) become very similar to the I'-matrix equations
(2.29) and (2.30). Hence, as in the ['-matrix method, the residual
kernel Ky is weaker than the original one and Eq. (2.55) should have
better convergence properties than the original Lippmann—Schwinger
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equation (1.93). One cannot assure in general that the iteration
solution corresponding to the Kg of Eq. (2.57) really converges. The
criteria of convergence depend on the potential, the energy under
consideration, and choice of the function . The answer is always
affirmative for a local potential with the choice (2.43), independent of
the strength of the potential and energy under consideration. In the
case of nonlocal potentials the choice (2.43) also leads to good
convergence under many situations. However, for a given local or
nonlocal potential, it is possible to find other choices for « that lead to
faster convergence than choice (2.43) [3].

The subtraction procedure using the I'-matrix formulation relates
the solution of the original Lippmann—Schwinger #- or K-matrix
equation to that of the nonsingular I"-matrix equation. This amounts
to a ‘“‘weakening” of the Lippmann—Schwinger kernel and ensures
that the iteration series for the I' matrix either converges or at best
diverges slower than the original equation (1.93) or (1.94). If addi-
tional subtractions are made to weaken kernel(s) of successive aux-
iliary equations, the corresponding rates of convergence progressively
increase. This last approach has been used in the solution of realistic
scattering problems in nuclear physics [19,20].

Even when the Born—Neumann series diverges, the successive terms
of this series contain information about exact solution of the problem.
Similarly, the first few terms of a divergent geometric series can be
used to sum this series. However, a general procedure for extracting
this solution is not known. There are advantages in finding the
solution of a scattering problem with a divergent Born—Neumann
series (2.49) for the Lippmann—Schwinger equation via the convergent
iterative series for the physically motivated I'-matrix equation. This
procedure utilizes the first few terms of the original iterative series for
finding the solution. The technique of Padé approximants is also a
mathematical procedure for approximating the sum of a divergent
series utilizing the first few terms of this series [4]. This technique is
specially suited for scattering problems and uses the first few terms of
the Born—Neumann series of a scattering equation to construct its
solution numerically irrespective of whether the series is slowly
convergent or even divergent. The technique of Padé approximants
can be applied either to the integral equation for the ¢ matrix or the T’
matrix. This method has been used exhaustively for this purpose in a
variety of scattering problems, and we refer the interested readers to
appropriate places [7].
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2.6 SCATTERING WITH COMPLEX POTENTIALS

In most of the discussions presented so far, we assumed that the
potential is real and Hermitian. However, in an actual scattering
problem, one often encounters a complex potential. Such potentials
account for absorption in scattering. Transition of the incident flux
from the elastic to other channels, not included in the scattering
model, makes the effective potential for scattering complex. The
elastic scattering phase shifts obtained by solving a dynamical set of
equations in the presence of many channels, for example, close-
coupling (CC) equations (1.202), are real (complex) below (above)
the lowest inelastic threshold with real effective potentials in this
equation. Hence, if one studies the elastic scattering of the same
system as the foregoing multichannel CC model via a model potential,
this potential has to be complex above the lowest inelastic threshold in
order to generate the complex phase shifts of the CC model and
incorporate correctly the loss of flux to inelastic channels. Also, if
higher angular-momentum cluster states are included in the CC
model, the coupling potentials in the CC model could be complex.

In the presence of a complex potential, the partial-wave wave
function ¢(L+) of Eq. (1.34) becomes intrinsically complex with a
complex phase shift ;. Then, because of asymptotic property
(1.36), the probability amplitude |¢(L+)|2 acquires an exponentially
decaying part at infinity, due to absorption of flux. For this to happen,
the phase shift §; should have a positive imaginary part. A negative
imaginary part will correspond to a exponentially growing solution at
infinity.

The partial-wave Lippmann—Schwinger equation for the ¢ matrix
(1.121) and its phase-shift parametrization (1.47) continue the same in
the presence of the complex potential and complex phase shift. Once
the complex phase shifts are obtained, the scattering amplitude and
cross sections can be calculated with the help of Eqgs. (1.49), (1.51) and
so on. In the following we present an account of the solution of Eq.
(1.121) in the presence of complex potentials.

The complex z-matrix equation can now be discretized as in Eq.
(2.18), which can be solved directly . With a real potential the first two
terms on the right-hand side of Eq. (2.18) are real. For a complex
potential, both these terms are complex and the Lippmann—Schwin-
ger equation is intrinsically complex. However, in Egs. (1.121) and
(2.18) we need the principal-value prescription in the integration over
the outgoing-wave Green’s function. The principal-value integral
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should be evaluated as in the case of real potentials. As the potential is
intrinsically complex, it is not possible to write real auxiliary scattering
equations such as the K- or I'-matrix equation. However, one can
formally write the K- and the I'-matrix equations for complex
potentials as in the case of real potentials. There is no advantage in
using the K-matrix approach in this case, and the K matrix is complex
in this case. However, there could be some advantage in using the I'-
matrix equation for complex potentials. Although complex algebra
cannot be avoided in the I'-matrix approach, there is no principal-
value prescription in this approach. Also, as by construction the I'-
matrix equation has a weaker kernel, it may lead to a convergent
Born—Neumann series solution.

One way to avoid complex algebra in the presence of complex
potentials is to break up the Lippmann—Schwinger equation into its
real and imaginary parts, as in Egs. (2.8) and (2.9). For a complex
potential, the real and imaginary parts of the ¢ matrix satisfy [6]

§R[t(puvlakz)] —
RV (2,2")] + VKRV (p, )IS[t(k, p', k)] + SV (p, K)IR[1(k, p', K°)]}

N E/“’ ¢ dg{RV (P, q)IR[1(q. 0", k7)) = SV (p, @)ISt(g, 0", K*)]}
T Jo k2 _ q2 )
(2.58)

Stlp,p', k)] =

C‘\S[V(pupl)] - \/E{%[V(l% k)]%[t(lﬂpl’kz)] - %[V(p7 k)]%[t(lgpl’kz)]}

2P / g’ dg{RV (P, q)1S[t(g 0", k)] + STV (p, K)IR[1(k, ", K]}
T Jo k2 - q2 )

(2.59)

By solving the set of real equations (2.58) and (2.59), one can find the
complex ¢ matrix. This set of real equations for the ¢ matrix in the
presence of complex potential is no more difficult to solve than the
corresponding equations (2.8) and (2.9) for real potentials. The
principal-value integrals in Egs. (2.58) and (2.59) are to be dealt
with exactly in the same fashion as those in the case of real potentials:
for example, by the Sloan prescription [9].
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In the next two chapters we develop variational methods for the
solution of scattering problems. These methods use an approximate
trial wave function or form factor for calculating an improved
variational estimate of these quantities. The phase shifts are calculated
from this improved result. The variational methods of Chapter 3 need
to incorporate the asymptotic property (1.36) of the scattering wave
function in the trial wave function. As the asymptotic properties of the
wave function gets completely altered in the presence of complex
potentials, the methods of Chapter 3 are not appropriate for complex
potentials. Most of the variational methods presented in Chapter 4
involve the free outgoing-wave Green’s function and does not need to
incorporate the asymptotic property (1.36) of the scattering wave
function or the form factors in the trial quantities. The potentials and
the Green’s function of these variational methods construct the
correct asymptotic properties of the wave function with a £* basis
set. These variational methods of Chapter 4 can be applied to
scattering problems with complex potential.

2.7 MULTICHANNEL I'-MATRIX FORMULATION

We have seen that the I'-matrix formulation of Section 2.4 is an
advantage in the case of potential scattering. Realistic scattering
problems are formulated in terms of multichannel scattering equa-
tions: for example, the CC equations (1.202). These multichannel
scattering equations have the usual Lippmann—Schwinger form, but
now the various variables have the channel indices over and above the
momentum labels.

The I'-matrix formulation can be generalized for multichannel
scattering. One possible multichannel generalization of the partial-
wave Lippmann—Schwinger equation (1.121) is the coupled set of CC
equations (1.202) [19]. We shall use the following off-shell continua-
tion of this set of equations for developing the multichannel I'-matrix
formulation

2, [
tsa(PpsPas E) = Va(Dps Do) +;ZA 9244,V 5:(Pg, 45)
o=1

1
X
k2 —q2 +i0

toa(Gor P E). (2.60)

Here o, 3, 0 and so on, denote N distinct channels, k, is the on-shell
momentum for channel o defined by (1.183), and the o-channel
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Green’s function (kcz, — ¢+ 10)“l now contains the fixed-point sin-
gularity of the o channel.

Equation (2.60) involves N different multichannel Green’s func-
tions via coupling of the dynamics to other channels. Each of these
Green’s functions contributes to a different branch cut. It would be of
advantage if we could eliminate these singularities corresponding to
different channels and introduce a nonsingular equation of scattering
in the multichannel case, and in the following we do the same.

In close analogy with the single-channel I'-matrix equation (2.28),
the multichannel I'-matrix elements now satisfy the following auxili-
ary set of coupled equations:

F,Ba(pﬂaplaaE) = Vﬂa(pﬂ7pla)
2L [, :
+;Z 0 qadqu,Ba(pﬂaqu)taa(qmpaaE)a (261)
o=1

with the nonsingular kernel 44,(pg,q,, E) defined by
A,Ba(pﬂa 90 E) = [Vﬂa(pﬂ7 qa) - Vﬂa(pﬂa ka)q/a(km qa)](kg - qg)_l7
(2.62)

where the diagonal function ~,(k,, q,) satisfies
Volkor ko) = 1. (2.63)

At the on-shell points g, = k,, the multichannel kernel 44,(pg, 9,, E)
of Eq. (2.62) is nonsingular, and hence the I" matrix of Eq. (2.61) is real
and nonsingular. It remains to relate the solution of the nonsingular
[-matrix equation (2.61) with that of the -matrix equation (2.60).

Using the nonsingular kernel As,(pgs,4,,E), Eq. (2.60) can be
rewritten as

t60(PprP o E) = VoD Pa)

2L [
+;ZA ququUAﬂU(pﬂ’qmE)taa(qmplaaE)
o=1

N 2
2 S s dqg WU(kU, qa) ,
V kY= |
+; 50(Pg> U)WA 221 0 too(Gor Py E)

(2.64)
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As in the single-channel case, the ¢- and I'-matrix equations can be
written in operator forms (2.29) and (2.30), respectively. The relation
between the - and the I'-matrix equations is given again by Eq. (2.31).
In operator forms (2.29), (2.30), and (2.31), both the momentum labels
and channel indices have been dropped. When the proper momentum
labels and channel indices are introduced in Eq. (2.31), the -matrix
elements are expressed in terms of the auxiliary I'-matrix elements via

N
tﬂa(pﬂaplaaE) - Fﬂa(pﬂaplaaE) + ZF,@a(p,@7kaaE)Iaa(kaaplozaE)7

o=1
(2.65)
with
2 [ -
Lo(ky P, E) = ;A 5 dq, (k5 — @5 +0) "' 75 (ke, 45) s do, Pas E).-
(2.66)
From Eqs. (2.65) and (2.66), it can be seen that I, are solutions of
N
I,Ba(kﬂaplaa E) = d,@a(kﬂaplaa E) + Z dﬂa(kﬂ7 km E)Iaa(kaaplaa E))
o=1
(2.67)
with
2 [ o
dyo(ky, Py E) = ;A q5 dq, (k5 — @5 +i0) "' 7, (key 45)Coa (G, Py E).-
(2.68)

Using the solution Ty, (¢,, pa, E) of the I'-matrix equation (2.61), the
matrices dpo(kg,po, E) and Ig,(kg,p ., E) are first calculated, which
when substituted in Eq. (2.65) yields the ¢ matrix.

As in the single-channel case, the final result given by Eq. (2.65) can
again be written in a symmetric form. The two half-on-shell and on-
shell versions of this equation are written as

N
t90(Por ke E) =Y Tao(Pg ko E)boa + Ioa(ko ks E)],  (2.69)

o=1

N
tﬂa(kﬂaplonE) = F,Ba(kﬂ7plaaE) + Zrﬂa(kﬂakmE)Iaa(ka)plonE%

o=1

(2.70)
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N
tﬂa(kﬂakaaE) = Zrﬂa(kﬂakaaE)[éaa + Iaa(kaaka)E)]' (271)

o=1

Eliminating I,, between Egs. (2.69) and (2.71), one gets

N
tﬂa(pﬂakaaE) = Z Fﬂa(pﬂakmE)@ap(km paE)tpa(k kaaE)a

o,p=1

(2.72)

where © is a matrix whose momentum variables take only the on-shell
values and is defined by

N N
> Tgolkp kg, E)Opp(ky kpy E) =D - Opykp, koy E)Tgp(kys kpy E) = 8,

o=1 o=1

(2.73)

Equations (2.70) and (2.73) yield the following formal solution for 1 :

Lo(ky P, E) = Z@ap ko kp E)tpa(kpy Ptvy E) — T po(Kpy Py E)].

) (2.74)

Now recalling that tpa(kp,p;,E) = t,,(Park,, E) and using Egs.
(2.69) and (2.74), the following symmetric form for the z-matrix
elements is obtained:

tﬂa(pﬂaplaa E) =

N
[ S T (952K E)Oup (ko kps ENT (Pl s E)O, (ks K E)

0,p,1,v=1

;Lp(k;n P ):| {Fﬂa(pﬂaplonE)

N
~ 3 TP ko EYO ks kpy ENT (K, p;,E)}. (2.75)

o,p=1

Equation (2.75) is the desired multichannel generalization of the
single-channel equation (2.40). The quantity in brackets in Eq.
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(2.75) is exact half-on-shell. The last term in the braces is the fully off-
shell real residual term and is zero half-on-shell.

2.8 SCATTERING APPROACH TO BOUND STATE AND RESONANCE

There are numerous methods in configuration and momentum spaces
for solving the bound-state problem. The usual configuration space
methods are suitable for local potentials and become cumbersome for
nonlocal potentials. Yet most of the realistic physical problems
involve nonlocal potentials. Both in scattering and bound-state pro-
blems, most of the momentum-space numerical techniques do not
require much modification to treat nonlocal potentials. Instead of
describing them all, we consider some that are closely related to the
momentum-space methods of this chapter for solving scattering
integral equations. One of them is very useful for virtual states and
resonances. Essentially, the same numerical program with minor
modification can be used for the calculation of scattering, bound
state, virtual state, and resonance.

After a partial-wave projection, the bound-state wave function
Ypr(p) satisfies the homogeneous integral equation (1.127), where
B = o is the binding energy. This can be considered as the E = —a?
case of the general homogeneous integral equation

2
VB =~ [V oauaE), Q76

which has a nontrivial solution only at the bound-state energies. We
have suppressed the angular momentum label in Eq. (2.76), which is
the partial-wave momentum-space form of Eq. (1.173). The bound-
state energies are presumably negative and there is no singularity in
the Green’s function (E — p?)™' of Eq. (2.76) at negative energies.

Let us consider a practical method [21] for solving Eq. (2.76) for the
ground state of a purely attractive potential. Schematically, Eq. (2.76)
can be written as

Y(E) = K(EYW(E), (2.77)

where K is the kernel of integral equation (2.76). Let us consider the
eigenfunction-eigenvalue problem (2.50) at negative energies. For a
purely attractive potential and at negative energies, all the eigenvalues
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n(E) of the kernel of Eq. (2.50) are real and positive. When the largest
of these positive eigenvalues equals unity, Eq. (2.50) becomes identical
with Eq. (2.77) and one has the ground state. If the kernel X has only
one eigenvalue 7 equal to or slightly greater than unity at specific
negative energy E, a consideration of the iterative Neumann series

=Y ¥, =Y K'(E)go, (2.78)
where ¢, is any function, shows that [21]
lim w;“ =7 (2.79)

Equation (2.79) follows straightforwardly in the diagonal representa-
tion of the matrix X and is valid in general. At the bound-state energy,

= 1. Hence, one should vary the energy and see at what energy the
condition n = 1 is satisfied to a desired accuracy. Then this energy
corresponds to the bound-state energy, and lim,_, . ¢, is the bound-
state wave function.

The method above can be extended to calculate the ground state of
a partly attractive and partly repulsive potential, where the kernel has
negative (repulsive) eigenvalues larger than 1 in magnitude. These
repulsive eigenvalues correspond to bound states of the sign-changed
potential — V. Then the ground state corresponds to unit eigenvalue,
but at this energy there are other states with eigenvalues greater than
unity in magnitude. Hence, direct use of the iterative scheme above
will pick up the largest (in modulus) eigenvalue 7 of the kernel C, not
the unit eigenvalue corresponding to the ground state. Eigenvalue(s)
greater than 1 in magnitude could be eliminated in some situations by
subtracting the largest negative eigenvalue(s) from the kernel [1§]
before iteration. For example, if the kernel has a single repulsive
eigenvalue —n;(n; > 1), then in the kernel X + I'n, the largest (in
modulus) eigenvalue will correspond to the ground state. So the
iteration of this modified kernel will select the ground state via Eq.
(2.79). However, one then has to apply the method before and after
each such subtraction, which makes the method less attractive.

An alternative approach, free of the above-mentioned difficulties,
valid for ground and excited states and also for partly attractive and
repulsive potentials, is next described using the subtraction procedure
used in the I'-matrix approach [22]. The potential is decomposed into
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a separable part and a weak nonseparable part V%

V(p,q) =fi(p) fr(q) + VE(p,q). (2.80)

It is assumed that the separable term f1(p) f>(¢q) is a good approxima-
tion of the potential, so that the residual term V®(p g)=
V(p,q) — fi1(p) f2(q) is weak. Next the wave-function normalization
is chosen to be

%/ dq °f,(q)¥(q, E) = 1. (2.81)

Substituting Eq. (2.80) into Eq. (2.76) and using the normalization
condition (2.81), we can transform the homogeneous bound-state
equation (2.76) into the following inhomogeneous equation:

Alp) 2 2) [aa@vipawan. @8

w(p7E):E_p2 7T(E—p

If the potential V% (p, g) does not support a bound state and is weak
enough, the integral equation (2.82) should permit iterative solution.

The homogeneous Schrodinger equation (2.76) has a solution for
certain negative energies corresponding to the finite number of bound
states of the system. However, the inhomogeneous equation (2.82) has
a unique solution for all energies except those for which its homo-
geneous form admits a nontrivial solution. This corresponds to a
bound state of potential ¥ ®. It is assumed that the bound states of V'%,
if they exist, are not in the same energy region as the bound states of
the full potential V. By construction, any solution of Eq. (2.82) that
satisfies the normalization condition (2.81) 1s also a solution to the
Schrodinger equation (2.76). The strategy is to guess an energy, solve
Eq. (2.82), and see if normalization condition (2.81) is satisfied to
desired precision. If the answer is aflirmative, the trial energy is the
bound-state energy and the solution of Eq. (2.82) is the bound-state
wave function. If the answer is negative, the process is repeated for a
new trial energy. One of the advantages of this method is that it is
applicable to both ground and excited states.

Before performing a numerical calculation one has to make a choice
for the separable term f; (p) f>(q) and the residual potential V®in Eq.
(2.80). From a discussion of Section 2.4 related to the I' matrix we see
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that a good choice is

VR(p,q)=V(p,q) - V(p,k)v(k,q), (2.83)

where k is some arbitrary positive momentum. Then Egs. (2.81) and
(2.82) become

> [ et awia, By =1, (2.84)

Vip, k) 2

w(p7E):E_p2 (E —p

) / dq g’ V=(p,q)¥(q,E), (2.85)

respectively. Comparing the bound-state conditions (2.35) and (2.84),
we have the following relation between the bound-state wave function
and the negative-energy I' matrix:

W(p, B) = — T(p, k, k). (2.86)

B+ p?

The T" matrix satisfies an inhomogeneous integral equation and
contains full information about the solution of the Schrédinger
equation at all energies and can be used for a determination of
bound-state energies and wave functions. Thus for bound states,
one avoids the solution of usual homogeneous momentum space
integral equations corresponding to the diagonalization of a matrix
and solving an eigenfunction-eigenvalue problem. Numerically, it is
easier to solve an inhomogeneous integral equation than an eigenfunc-
tion-eigenvalue problem.

We recall from Section 1.4 that the 7 matrix has a square-root
unitarity cut along the real positive energy axis, in addition to discrete
bound-state poles at negative energies. In the complex energy plane,
the ¢ matrix is defined on two sheets. The physical scattering energies
and bound-state poles lie on the first sheet of energy. For a local
Hermitian potential, the resonance and virtual state appear as poles of
the ¢+ matrix at complex and negative energies, respectively, on the
second sheet of the complex energy plane. For finding these poles, one
needs to continue the ¢ matrix analytically through the unitarity cut of
the complex energy plane onto the second sheet [2].

Essentially, the I' (K) matrix can be used for finding the resonances
and virtual states [23]. For this purpose, one needs to calculate the T’
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(K) matrix at complex and negative energies and then calculate the ¢
matrix at these energies on the second sheet of the complex energy
plane. The I" (K) matrix is a real function of energy and does not have
the unitarity cut. Hence, it has the same value on both sheets of the ¢
matrix in the complex energy plane.

The analytic continuation can be performed via the I" or K
matrices. First, we describe this using the I'-matrix approach of
Section 2.4. To have an analytic I" at all energies, the appropriate
value of k is the on-shell wave number k, and we stick to this choice in
the analytic continuation. This cut and the two-sheet structure of the ¢
matrix appears via integral 7 (k) appearing in Eq. (2.37), having the
following structure:

2 [ F(¢%)
T(k)=2 2d. 2.87

where the function

F(q) = ~(k, q)T'(q, k, k) (2.88)

is assumed to be analytic and does not possess the unitarity cut. We
have assumed that in addition to the I' matrix, the ~ function is also
real. The suffix I denotes the first sheet of energy. In Eq. (2.87), the ¢
integration path is along the positive momentum axis, and integral
Z,(k) has a square-root branch point at zero energy in the complex
energy plane and a branch cut along the positive real energy axis.
Integral (2.87) can be rewritten as

2 [  FPF() - KFE) |
T,(k) == A dg? (qkl_qz ( )—zk,F(kz), (2.89)

where the real principal-value and the imaginary parts of the integral
have been separated by using Eq. (1.104). In Eq. (2.89), k; is the k
value on the first sheet of energy (e.g., with a positive imaginary part).
The principal-value part of the integral in Eq. (2.89) has been
rewritten using Eq. (2.21), and the principal-value prescription has
been dispensed with. Thus we have separated the part analytic in k?
from the part that generates the branch cut. The branch cut is
generated by the ik term in Eq. (2.89). In expression (2.89), the explicit
k dependence has been separated and its real and imaginary parts are
separately analytic in k. If one wants to calculate the function Z (k) on
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the second sheet of energy, one should substitute the appropriate k
value in the ik term of this expression corresponding to the second
sheet. The remaining integral term is to be calculated on the first sheet.
The appropriate k value on the second sheet of energy should be of the
form k = +k, — ik; with a negative imaginary part. The first (second)
sheet of the complex energy plane is defined by k values with positive
(negative) imaginary part. For a resonance, k, is nonzero and k&

small, and for a virtual state k, = 0 and kg positive. The quantity &,

is called the energy and k the width of the resonance. The bound state
appears on the first sheet for which k, = 0 and kg negative. Suppose
that we are looking for a resonance or virtual-state pole of the r matrix

on the second energy sheet. On the second sheet of energy the integral
I (k) of Eq. (2.89) becomes

(k) :% A i F (qkl_kzF ) e, F ) (2.90)

where we have to use an appropriate k value on the second sheet in
place of kj;. If there is a bound or virtual state at energy k* = —a?, for
the determination of these states one should use k; = i in Eq. (2.89)
(bound state) and k; = —ia in Eq. (2.90) (virtual state), respectively.
For a resonance at k;; = k, — ik one should use this k;; in Eq. (2.90).
Using this 7 of Eq. (2.90), one should calculate the ¢ matrix on the
second sheet via Eq. (2.37). The zero of the denominator in Eq. (2.37)
on the second sheet of energy corresponds to a resonance or virtual
state. The last term of Eq. (2.89) or (2.90), in general, requires the
knowledge of I'(q, &, kz) for complex momentum k. Once I'(q, k, kz) is
known for real momentum variables, one can calculate it for complex
momentum variables g by using the I'-matrix equation (2.28) again
and evaluating the right-hand side by quadrature.

Similar continuation of the # matrix to the second sheet of energy
can be made via the use of the K matrix. On the first sheet of energy
the partial-wave on-shell ¢ matrix is related to the partial-wave on-
shell K matrix via

K(k?)
1 + ik K(k?)’

ty(k) = (2.91)

where on the right-hand side K (k?) is analytic in k%, and only the ik
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term has to be continued to the second sheet. On the second sheet

K(kK?)
1 + ik K(k?)

ty(k) = (2.92)

Equations (2.91) and (2.92) can be used for determining bound and

virtual states and resonances. For a bound [virtual] state at k&> = —c?,

k; = ia |k = —ia] and the denominator of Eq. (2.91) [(2.92)]
should vanish. A resonance corresponds to a vanishing of the denomi-
nator of (2.92) at a complex energy on the second sheet, so that
k(= £k, — ikg) has a negative imaginary part.
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CHAPTER 3

VARIATIONAL PRINCIPLES FOR
ON-SHELL AMPLITUDES

3.1 GENERAL VARIATIONAL PRINCIPLES

3.1.1 What s a Variational Principle?

A variational principle is a certain algebraic stationary expression for
the unknown solution(s) of a problem in terms of some unknown
quantities. If exact solutions are used for these unknown quantities,
the variational principle is an identity. Using approximations for these
unknowns leads to an improved result. If these approximations have
small errors, the variational principle leads to deviations that are
second order in errors. A variational principle is extremely powerful
for successive improvement in the solution of a problem when an
approximate solution is known. A variational principle can be formed
for the solution of an algebraic problem, for finding an inverse, for
solving a quantum-mechanical eigenvalue problem, or for solving an
integral equation. We illustrate it first for two algebraic problems [1].

Inverse of a Number. A variational principle for the calculation of the
inverse of a number ¢ can be written from the following identity, valid
for arbitrary numbers (¢'),; and (¢7'),:

=N+ (e N = (€ Naele N+ = (¢ Dalde™ = (¢l

(3.1)

99

Variational Principles and the Numerical Solution of Scattering Problems. Sadhan K. Adhikari
Copyright © 1998 by John Wiley & Sons, Inc. ISBN: 0-471-18193-5



100 VARIATIONAL PRINCIPLES FOR ON-SHELL AMPLITUDES

If one takes the arbitrary numbers (¢™'),; and (¢, to be approxima-
tions to ¢, the last term in Eq. (3.1) is second order in the differences
¢! = (¢, and ¢! = (¢!),,, so that one can write the following
variational principle for the inverse of ¢, omitting this last term:

[Cnl] = (Cal)tl + (Cal)tz - (C—l)tlc(cal)tz- (3.2)

The square brackets in Eq. (3.2) and below indicate that the expres-
sion is stationary. If the exact value for ¢! is used in place of trial
estimates (¢~ '),; and (¢™'),,, the three terms on the right-hand side of
Eq. (3.2) are equal and this equation is an identity. Most of the
variational principles we discuss in scattering theory are based on
trilinear relations such as (3.2) with a similar stationary property. The
stationary property of Eq. (3.2) could be verified by considering the
independent estimates (¢ '),; = (¢ g+ A, and (¢ V), = (¢ e+
A,, where (c‘l) g 1s the exact inverse and A; and A, are small
independent deviations. With these trial estimates the inverse of Eq.
(3.2) is given by

[ = (e — (A)e(Ay). (3.3)

The deviation in Eq. (3.3) is quadratic in A’s. The linear terms in A
have canceled out.

Equation (3.2) is the desired variational principle, which is based on
identity (3.1). In the following we consider many variational princi-
ples. Usually, these variational expressions will be based on identities,
such as Eq. (3.1). However, these identities will not be written down
explicitly in most cases.

As an application of the variational principle (3.2), calculation of
the inverse of 3 could be considered; the result is 0.3333333333.... The
approximate guesses (¢ '), = (¢”'),2, = 0.3 in Eq. (3.2) lead to the
improved result 0.33, which when introduced in the two guesses of this
equation leads to an even more improved result, 0.3333. When the
result 0.3333 is substituted for two approximate guesses, we obtain
0.33333333. This procedure can be continued indefinitely until the
exact result or a result up to desired precision is obtained. A small
error in the result is reduced quadratically after each iteration.

Solution of a Linear Algebraic Equation. The solution x of a linear
algebraic equation

Ax =B (3.4)
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can be expressed in the form of the following variational principle:
[x] = x, + (A_l)tB - (A“I),Axt, (3.5)

where x, and (47'), are trial estimates. The example with 4 = 3 and
B =2 leads to the exact result x = 0.666666... and may be used to
illustrate the advantage of using the variational principle. When used
in the variational principle (3.5), the guesses x, = 0.6 and (4~'), = 0.3
lead to the improved result x = 0.66. An improved estimate for 4™
could be found from A~ = x/ B or by the use of variational principle
(3.2). In either case, use of these improved results leads to a more
precise estimate for x.

3.1.2 Variational Principles for Fredholm Integral Equations

The variational principles have proved to be extremely useful for
solving a variety of mathematical problems in physics, including the
scattering integral equations. Different types of variational principles
have been considered for quantum scattering problems. Formulation
of these variational principles is best understood in the context of the
general Fredholm equation (2.3), and here some useful variational
principles are considered. This equation has the following form:

F(x) = B(x) + KF(x), (3.6)

where F(x) is the unknown, B(x) is the known Born term, and the
kernel K satisfies

KF(x) = A " dy K (x,p)F (). (3.7)

The formal solution of Eq. (3.6) is given by

F(x) = JB(x) = [ dnd(x,3)B0), (38)

with
J=(I-K)" (3.9)
The straightforward numerical attempt to solve Eq. (3.6) proceeds via
construction of the operator J of Eq. (3.9). If there is a certain error in

this construction, the same error will propagate to the solution (3.8).
The expression (3.8) is not variational.
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A variational expression for the solution can be developed from the
following operator identity:

F=F +JB—J(I-K)F,+(—-J)I-K)F—F), (3.10)

where J, and F, are independent trial estimates of J and F. Neglecting
the last term in this identity, which is second order in the differences, a
simple variational expression for the solution can be written as

[F(x)] = F(x) + JB(x) — J(I — K)F(x), (3.11)

where the subscript ¢ on the trial functions has been dropped.
Expression (3.11) is stationary with respect to small variations of J
and F(x) around their exact values. With the use of Eqs. (3.8) and
(3.9), the variational property of Eq. (3.11) can be verified. With the
trial quantities

F,(x) = Fp(x) + AF(x), (3.12)
Jo=Jg + AJ, (3.13)
the expression (3.11) becomes
[F(x)] = Fg(x) + AF(x) + JzB(x) + AJB(x)
— (Jg + AN — K)[Fg(x) + AF(x)]
= Fe(x) — AJUI — K) AF(x), (3.14)

where in deriving Eq. (3.14), Egs. (3.8) and (3.9) have been used. The
subscript E denotes exact and ¢ denotes trial. In Eq. (3.14) the linear
terms in errors A have canceled out and only the quadratic term
survives.

The variational property above can be exploited to develop a
successive improvement scheme for numerical calculation in the
following fashion. For this purpose the trial functions are chosen as

Fx) = aul), 3.15)

1(5,) = 3 B0, 3.16)
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where u;(x) and v;(y) are two sets of arbitrarily chosen functions. With
these trial functions the expression (3.11) becomes

FE) = amx) + Y b(x))5)

=250 Y allylu) - @lkw),  (3.17)
where

(A|B) = Aw dx A(x)B(x). (3.18)

Now by demanding that expression (3.17) be stationary with respect
to small variations of a; and b;(x) around their exact values, the
following solutions for the coefficients are obtained:

n

a; =Y D} (y]B), (3.19)
bi(x) = Z u,(x)DY", (3.20)

with
(D7) = (vlw) — (v Kuy). (3.21)

It is to be noted that after inversion of Eq. (3.21), the D matrix is n-
dependent, shown explicitly by the label # in Egs. (3.19) and (3.20).
These results for a; and b;(x) when substituted into Eq. (3.17) leads to
the following variational estimate:

Fo)] = 3 w(x)DY (1)1B). (3.22)

ij=1

This result can also be obtained nonvariationally just by substituting
Eq. (3.19) into Eq. (3.15). Equation (3.22) is closely related to the
Schwinger variational principle of scattering, as we shall see later [2].
This is also the well-known result of the method of moments [3].
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The method of moments of rank » usually postulates a solution to
Eq. (3.6) of the form (3.15) and finds a4; by demanding that this
solution is exact in the space spanned by the functions v;(x), or that

(v|F,) = (v1B) + (v;|KF) (3.23)

be satisfied. This requirement leads to solution (3.19) for the coeffi-
cient a;. When this solution is substituted in Eq. (3.15), the variational
result (3.22) is obtained. If the trial functions #;(x) are chosen to be
orthonormal in a suitable space of £ functions, the variational nature
of the result guarantees successive improvement as the number of
functions # is increased.

Equation (3.22) can also be derived if one considers the following
operator form of Eq. (3.6):

F =B+ KF. (3.24)

Equation (3.6) should be understood as the x-space projection of Eq.
(3.24), so that F(x) = (x|F), and so on. The formal solution of this
equation could be written as

1

F—1
“T-K

X B, (3.25)

where [ is the identity operator. If we introduce the presumably
complete set of states » 2 |u;)(w;] and > 2, |v;)(v;| in places
marked by the two x’s, respectively, the variational result (3.22) is
obtained provided that only a finite number of functions » are
included in the expansion.

Variational principle (3.11) can also be written in an equivalent
fractional form:

F(x)JB(x)

FO =50 " orm

(3.26)

The variational nature of Eq. (3.26) can be verified using the trial
functions (3.12) and (3.13).

In fact, an infinite number of such variational expressions can be
written down for the solution F(x) of Eq. (3.6). Another variational
expression can be developed from the following operator identity:

F=B+ QB+ KF, -0l -K)F,+(Q0-0)({-K)(F-F)
(3.27)
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where the subscript ¢ denotes trial estimates and Q = K(I — K)™'.
Neglecting the last term in this expression, which is second order in
differences, the following variational principle is obtained:

[F(x)] = B(x) + OB(x) + KF(x) — Q(I — K)F(x). (3.28)

Explicitly,

Q(x,y) = Aoo dz K(x,z)J(z,y). (3.29)

In Eq. (3.28) the quantities Q and F(x) are considered unknowns.
Equation (3.28) is a stationary expression for the difference (F — B),
and should yield good results when this difference is small compared
to the full solution F.

The stationary property of Eq. (3.28) can be verified by considering
the trial functions Q, = Qg + AQ and F,(x) = Fg(x) + AF(x). Then
Eq. (3.28) becomes

[F(x)] = B(x) + Qg B(x) + AQB(x) + KFg(x) + K AF(x)
—(Qr + AQ)(I — K)[Fg(x) + AF(x)] (3.30)
= Frg(x) — (AQ)(I — K)AF(x), (3.31)

which is quadratic in error, consistent with the stationary property.
Again the stationary property can be turned to good advantage by
taking the trial function F,(x) of Eq. (3.15) and

0.(5,3) = 3B, 0) (3.32)

Substituting these trial functions in Eq. (3.28) and requiring that the
resultant expression be stationary with respect to small variations of a;
and b;(x) around their exact values, the following expressions for the
coeflicients result:

a;, = ZI:DS.;” (v)| B), (3.33)
J:

bi(x) = Z Ku(x)D. (3.34)
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When these expressions for g; and b;(x) are substituted into Egs. (3.32)
and (3.15) and the results substituted into Eq. (3.28), the following
variational estimate is obtained:

F,(x) = B(x) + Z Ku,(x)D\" (v,| B). (3.35)

Equation (3.35) is closely related to Kohn [4] and Newton [5] varia-
tional principles of scattering, as we shall see later. Also, when
substituted into Eq. (3.15), Eq. (3.33) leads to the following nonvaria-
tional estimate:

n

Fy(x) =) wi(x)D; (v|B). (3:36)

i,j=1

The present nonvariational expression (3.36) is now recognized to be
the variational expression (3.22) and hence may also be termed
variational.

Expression (3.35) is the well-known result of the degenerate kernel
method [3]. This method proceeds through construction of a degen-
erate kernel K, of rank » using functions wu;(x),i=1,2,...,n, and
finding an approximate solution F,(x) satisfying

F,(x) = B(x) + K, F,(x). (3.37)

For a specific choice of C, a specific solution is obtained. For example,
let us choose

K, = Z Ky (x)CP, (v), (3.38)

i, j=1

where (C'); = (vj|lu;). With this choice, Eq. (3.37) leads to the
solution (3.35). For a different choice of X, one can have a different
result.

Variational result (3.35) can also be derived if we consider the
following formal solution of Eq. (3.24):

F =B+ K X

1
X B 3.39
I-K (3.39)
and introduce the presumably complete set of states > . |u;)(»;| and
> ji=1|v;) (v;| in place of the two x’s, respectively. This particular
derivation of the solution of the Fredholm equations works in all
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situations. However, from this derivation the variational property of
the result is usually not realized. The variational property of the
solutions in the case of the usual derivation of the method of moments
and the degenerate kernel method [3] is also never explicit.

Variational principle (3.28) can also be written in the equivalent
fractional form:

QB(x)KF(x)
QI — K)F(x)

The variational nature of Eq. (3.40) can be verified directly.
Finally, it is instructive to write the following variational principle:

[F(x)] = B(x) +

(3.40)

[F(x)] = B(x) + KB(x) + RB(x) + K*F(x) — R(I — K)F(x), (3.41)

where R = K*(I — K)™'. In Eq. (3.41) R and F(x) are unknown and
should be approximated in calculations.
Employing the trial functions (3.15) and

R(x.) = 3 b 0)u0) (3.42)

in Eq. (3.41) and demanding that the resultant expression be station-
ary with respect to small variations of a; and b;(x), these constants can
be found as before, and the following variational estimate is obtained:

[Fn(x)] = B(x) + KB(x) + Zn: ICzul-(x)Dl(.;)(vj\B), (3.43)

ij=1

where D is defined by Eq. (3.21). This result is closely related to the
similar consideration by Takatsuka and McKoy in relation to the
Lippmann—Schwinger equation [6].

3.2 KOHN VARIATIONAL PRINCIPLES

The Rayleigh—Ritz variational method for bound states is based on a
variational functional in terms of the unknown wave function and the
energy. The trial wave function in this variational functional is
expanded in terms of a set of £? functions, and the variational
property then reduces the original eigenfunction—eigenvalue problem
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in the full Hilbert space to one in the limited space spanned by the
basis functions. This procedure yields both the binding energy and the
eigenfunction via solution of an algebraic set of homogeneous equa-
tions of small dimension.

The observables for potential scattering by a central potential are
determined by the phase shifts. These parameters could be determined
by solving either a differential or an integral equation. For multi-
channel problems involving noncentral potentials or composite par-
ticles, the exact solution is much more difficult, as one encounters a set
of coupled differential or integrodifferential equations, which can also
be cast in the form of a set of coupled integral equations. Algebraic
variational methods of the type discussed in Section 3.1 provides g.eat
advantage for solving these scattering problems not only for potential
scattering but also for multichannel problems.

The Rayleigh—Ritz variational functional can be extended to
scattering processes. One can write a stationary expression for this
functional at positive energies. By expanding the trial scattering wave
function in a basis set with appropriate boundary conditions and by
making use of the stationary property, one reduces the original
scattering problem to an inhomogeneous algebraic set of equations
of small dimension. The solution of this set of equations yields the
scattering observables. This particular implementation of the varia-
tional principle is known as the variational basis-set method. For
collision, the energy is known, and the trial wave function should
have a non-£? oscillating part at infinity as in Eq. (1.36). Once some of
the basis functions are taken consistent with this boundary condition
and others as £ functions, the algebraic basis-set methods yield the
scattering observables.

The first of these methods for the single-channel problem, due to
Hulthén in 1944 [7], involved the solution of a quadratic equation.
This method can lead to unphysical (complex) phase shifts. In 1948,
independently, Hulthén and Kohn suggested a method that does not
have the drawback of the original Hulthén method [4,8]. The second
Hulthén method is also known as the Rubinow or inverse Kohn method.
These methods could be generalized to multichannel problems. After
some preliminary applications, these methods were studied critically
by Schwartz in 1961 [9]. He found that the phase shift of the Kohn
variational method often exhibits spurious resonancelike behavior
where the phase shift rapidly increases (resonance) or decreases
(antiresonance) by 7 as the energy is varied. The exact solution did
not have these resonances. Later it has been found that most of the
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algebraic variational methods exhibit such spurious behavior. These
behaviors are referred to below as anomalous behaviors or anomalies.
Similar behavior can also appear in the Rubinow method. This
unpleasant feature of the Kohn and Rubinow methods induced
people to find other alternatives.

In 1967 Harris suggested another algebraic method, which
increased interest in these variational approaches [10]. In a critical
study of these methods, Nesbet in 1968 showed the origin of the
anomalies in these methods, and several anomaly-free methods were
suggested [11,12]. He also showed the relation among various methods
and generalized them to multichannel problems. The works of Nesbet
increased interest in the algebraic variational methods, and since then
they have been applied to many physical problems of interest. Several
new algebraic variational methods having certain advantages were
suggested later.

In the remaining part of this section we present a general formalism
for deriving Kohn, Rubinow and Hulthén variational principles which
is used later for deriving different basis-set methods. In Section 3.3 we
derive different algebraic basis-set methods based on these variational
principles to be used in actual numerical calculations. We also present
the variational R-matrix method, which has often been used for
solving scattering problems. In Section 3.4 we describe the closely
related Harris methods for scattering calculations. These methods are
not based on a variational principle but are aimed to reduce the error
in Kohn methods. In Section 3.5 we discuss the appearance of
spurious singularities or anomalies in these calculations. Some ways
of avoiding these anomalies are suggested. A generalization of the
Kohn, Rubinow, and Hulthén basis-set methods as well as the
variational R-matrix method to multichannel scattering is given in
Section 3.6. Finally, in Sections 3.7 and 3.8, several anomaly-free
methods for multichannel scattering are discussed.

3.2.1 Formulation

For the discrete (bound) states of the Schrodinger equation, the
Rayleigh—Ritz variational principle makes use of the stationary
property of the following functional:

1) = (WL |(H — E)w}) = ﬁ TUL()(H - EWL(r)dr,  (3.44)
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where 1) (r) is an approximation to the exact bound-state solution
Y, (r) of the following Schrodinger equation in the Lth partial wave:

d* L(L+1

(H = E)|ipr) =
The sub- or superscript ¢ on functions in Egs. (3.44) and (3.45) and in
the remainder of the book denotes a trial estimate. The variational
functional (3.44) can also be used for scattering. In the following we
study the properties of this functional for both scattering and bound
states. If the exact wave functions i, (r) are used in the functional
(3.44), the result is identically zero by use of the Schrédinger equation
(3.45).

Let us first study the condition of the stationary property of the
functional (3.44) for the following trial function 7 (r):

Wi (r) — o (r) + Ay (r), (3.46)

where the trial function is assumed to satisfy boundary condition
(1.36) of scattering or (1.39) for bound states. Here we consider the
scattering solution i; with standing-wave boundary condition though
the superfix P on the wave function is suppressed. In both scattering
and bound-state problems, the first-order variation of the functional
I; of (3.44) 1s given by

AlL = A " AL () (H — EYg,(r) dr
+ AOO Vi (r)(H — E)Avy(r) dr (3.47)

=2 A Ay (r) (H — Eypy (1) dr

dipy (r)

B dAy(r)
dr '

dr

bL(r) (3.48)

+ lim [AwL(r)
r—oo

Unlike in the space spanned by £* functions, in the space of
unnormalizable scattering functions, the differential kinetic energy
operator in the Hamiltonian is not Hermitian. Hence, care must be
taken if the differential operator in the kinetic energy of the Hamilto-
nian operates to the left. An integration by parts over the second
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derivative of the kinetic energy term (3.47) has been performed to
obtain Eq. (3.48) from Eq. (3.47). In the space of £* functions, the
Hamiltonian operator is Hermitian and the last term on the right-
hand side of Eq. (3.48) is zero for any bound-state £ trial function
satisfying condition (1.35) or (1.38). The condition (1.39) is not
necessary for the vanishing of this term, which contributes only for
scattering functions.

First, let us consider the bound-state problem. In the bound-state
problem, if both trial ¥} (r) and A, (r) satisfy boundary condition
(1.35), the first-order variation (proportional to A) of the functional
I; is zero:

Al =0. (3.49)

Only the second-order variation (proportional to A?) survives. The
variational property (3.49) follows from (3.48) by using the Hermitian
nature of the Hamiltonian in the space of £* functions.

In application of the Rayleigh—Ritz variational principle for bound
states, a variational trial function is constructed in the form

W) = Y Bl (3.50

where v labels the eigenvalue. The basis functions yx;(r) are £* and
satisfy Eq. (1.35). The use of Eq. (3.50) in Egs. (3.44) and (3.49) leads
to the following eigenfunction—eigenvalue problem

S M =0, i=12,..n, (3.51)
j=1

where
My = Oal(H - E)lx) = A T )H - E)xy(dr. (3.52)

The solution, x;(r), of this eigenfunction—eigenvalue problem in the
space of £* functions yields both the binding energy and the wave
function.

The variational functional (3.44) can also be used for the scattering
problem. Calculational schemes based on this functional were
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initiated with the studies of Hulthén and Kohn about 50 years ago and
proved to be very useful for the calculation of scattering phase shifts in
potential scattering, although the idea behind these studies can be
extended to multichannel scattering. The exact scattering wave func-
tion satisfies Eq. (1.35) and the asymptotic boundary condition
(1.136). The use of different approximate trial wave functions in
Egs. (3.44) and (3.48) leads to different variational principles. Several
possibilities are considered in the following.

Kohn considered trial function (3.46), satisfying boundary condi-
tions (1.35) [or (1.38)] and (1.136), where 6, 1s the approximate phase
shift. The trial function (3.46), consequently, satisfies

r—00 2

lim Ay (r) — A(tané; ) cos (kr — E) (3.53)

In this case, the following first-order variation of the functional
(3.44) is obtained from (3.48):

Al = lim | At (r) d%(r)

— PL(r)

d A%(r)] (3.54)

If we use asymptotic properties (1.136) and (3.53), this limit can be
evaluated, so that Eq. (3.54) becomes

Al; = kA(tané;). (3.55)

For the exact wave function, with the exact phase shift, I; = 0. Hence,
Eq. (3.55) leads to the Kohn variational principle

IL(tan 6L)

[tané;|x = tané; — 2

(3.56)

The quantity Al; of Eq. (3.55) is only the first-order change in ;.
The total change in I; is the sum of the first-order change given by
(3.55) and the second-order change and is written as

I, — I, = kA(tané;) + A " AUL((H = E) Ay (1) dr. (3.57)

The exact functional I; of Eq. (3.57) is zero. Hence, Eq. (3.57) leads to



3.2 KOHN VARIATIONAL PRINCIPLES 113
the following identity:

L) skt [ a0 - By s () .

(3.58)

[tan&L]K = tan5L —

Equation (3.58) is the Kato [13] identity, from which the Kohn
variational principle can be derived. For example, if we ignore the
last term in this identity, we obtain the Kohn variational principle
(3.56).

If we use trial wave functions with different asymptotic properties,
alternative variational principles can be derived. For example, let us
consider trial function (3.46), satisfying the following asymptotic
properties:

L
Yy (r) — cos (kr — —7T> + cot §; sin (kr — ﬂ) , (3.59)

2 2
. L
Ay (r) — A(coté;) sin (kr — 7), (3.60)

where §; is the approximate phase shift. Condition (3.59) is consistent
with (1.136). The first-order variation of the functional (3.44) is given
by Eq. (3.54). If we use asymptotic properties (3.59) and (3.60), the
limit in Eq. (3.54) can be evaluated, so that the first-order variation of
the functional I; is given by

Al = — =L (3.61)

For the exact wave function with exact phase shift, /;, = 0, and Eq.
(3.61) reduces to the Rubinow variational principle [8]:

Iy (cotéy)

[cotéy]x = cotéy + X

(3.62)

As the variational function cot §; of the Rubinow variational principle
is the inverse of the variational function tan §; of the Kohn variational
principle, the Rubinow variational principle (3.62) is usually known as
the inverse Kohn variational principle.

Next let us consider the trial function (3.46) with the asymptotic
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property

L
Py (r) — sin (kr — TTF + 6L> , (3.63)
where §; is the approximate phase shift. The asymptotic property
(3.63) is essentially the same as (1.137). If we take 6; = 67 + Ady,
where 67 is the exact phase shift, the asymptotic behavior (3.63) can be
expanded for small Aé; and one obtains

AwL(r) — COS (kr — %"{' 6L> A6L (364)

Using these asymptotic properties, the limit in the first-order variation
of the functional I; given by Eq. (3.54) can be evaluated, so that this
first-order variation is given by

For the exact phase shift, I; = 0. Hence, Eq. (3.65) reduces to

1
[6r]lm =61 +%- (3.66)

This is the Hulthén variational principle [7,8]. In the original work,
Hulthén imposed a further condition that I;, = 0 for the approximate
wave function and approximate phase shift, so that

[6L]H — 6L; ILz =0. (367)

We have written an explicit Kato identity (3.58) for the Kohn
variational principle. However, we could write similar identities for
the Hulthén and inverse Kohn variational principles. The second-order
correction term in these identities are not of any particular sign, and this
term is neglected in the variational principles. So the errors in these
variational calculations are not of any definite sign. Hence, the Kohn,
Rubinow, and Hulthén variational principles do not provide any
bound on the phase shift. Recalling that as k — 0, kcotéy; — —a’,
where ais the S-wave scattering length, Eq. (3.62) at zero energy gives a
variational principle for a. This variational principle also does not
provide any bound. Rosenberg, et al. suggested a calculational scheme
for the scattering length which provides bounds on the result [14].
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3.3 VARIATIONAL BASIS-SET METHODS

3.3.1 Kohn Method

The variational principles of Section 3.2 can be used to develop
practical calculational schemes for the solution of scattering problems.
Schwartz and Nesbet [9,12] suggested simple basis-set calculational
schemes for Kohn variational principles, which we describe in the
following. They expanded the unknown trial functions of these meth-
ods in appropriate basis sets and used the variational principles to
reduce the scattering problem to the solution of a set of algebraic
equations.

For the Kohn variational principle (3.56), it is convenient to work
with the trial function

Yi(r) = [0°(r) + S(r)] + A (r) + C(r)], (3.68)

where A = tan ¢ is the tangent of the approximate phase shift, and the
explicit dependencies of the functions on angular momentum L have
been suppressed in Eq. (3.68), and unless there is a chance of
confusion they will be suppressed in the following. The functions
v (r) and vc(r) are £* and are taken to satisfy Eq. (1.35) or (1.38). The
functions S(r) and C(r) are known functions with the following
asymptotic behaviors:

lim S(r) — sin (kr — L—;), (3.69)
L
lim C(r) — cos (kr — ;) (3.70)

Then the trial wave function of Eq. (3.68) has the asymptotic behavior
(1.136), as required in the Kohn variational principle. The functions
v> and ¢ are expanded in terms of the set of £* functions Y,
i=1,..n

) = 3Bl (3.71)

’UC(I‘) = Zn: bicxi(r), (3.72)
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where the expansion coefficients 57 and b are to be determined from
the stationary property of Eq. (3.56).
The oscillating functions S(r) and C(r) are usually taken as

C(r) = f1(r) = [1 — exp(—0r)] cos (kr — %), (3.73)

S() = fy(r) = sin (kr - %) (3.74)

where 3 is an arbitrary parameter.
Two common choices for the £ functions x,(r) are

xi(r) = fi(r) = pli+D) exp(—ar), i=12, .. n (3.75)
or
xi(r) = filr) = 'F D expl—iar], i=12,..,n (3.76)

In Egs. (3.75) and (3.76), a is an arbitrary parameter. The parameters
B and « of Egs. (3.73), (3.75), and (3.76) are to be chosen by trial, to
obtain the best convergence.

Use of the trial function (3.68) in the Kohn variational principle
(3.56) leads to

I(\
Me=r- T (3.77)
where
I(\) = By + AB, + M°By, + Wy + AW, + AW, (3.78)
with
Wo= > BB M;+2> B'R?, (3.79)
i, j=1 i=1
Wi =2 bbfM;+2) BIRE +2) bERY, (3.80)
i, j=1 i=1 i=1
Wy= > biby M;+2Y bR{, (3.81)
i, j=1 i=1
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My =My = [ i) (H - Epg(o) d, (3.82)

R} = A ” x:(r)(H — E)S(r) dr = A h S(r\(H — E)x;(r)dr, (3.83)

o0

RS — A () (H — E)C(r) dr — A C()(H = E)x:(r)dr, (3.84)
By = Aoo S(r)(H — E)S(r) dr, (3.85)
B, = Aoo S(r)(H — E)C(r)dr + Aoo C(r)(H — E)S(r)dr, (3.86)

B, = AOO C(r)(H — E)C(r) dr. (3.87)

The elements (integrals) M, where two £? functions appear, are
called bound—bound elements (integrals). The quantities R} and RY,
where £ and unrenormalizable functions appear, are referred to as
bound—free, and the quantities B;, where two unrenormalizable
functions appear, are referred to as free—free. The free—free elements
involve infinite integrals over oscillating functions and are the most
difficult to evaluate numerically.

The expression (3.77) is stationary with respect to independent
variations of the trial phase shift and trial wave function, for example,

0Nk _ 0Nk _ 9Nk _
55¢ = ons ~ on =" (3.88)

The stationary properties with respect to variations of b¢ and b° for
all X lead to

> Mb} = —R?, (3.89)
j=1
> Mbi = Ry (3.90)
j=1

As variations of the coefficients b7 and 57 and )\ are independent in the
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derivative with respect to b¢ and b7, coefficients of each power of ) are
separately zero. Equations (3.89) and (3.90) involve the same matrix as
in the standard Rayleigh—Ritz variational method for the bound-state
problem defined by Eq. (3.52). These equations can be solved for b}
and b¢ unless the matrix M becomes accidentally singular at some
energy. We shall see later that the appearance of this accidental
singularity is not fatal for the variational calculation of the phase
shift, and a finite phase shift exists in this case. However, when this
happens, numerical care might be needed. When 47 and ¢ are known,
the £2 functions v° and v are determined from Egs. (3.71) and (3.72).
Then one needs to find the optimum A in expression (3.77) consistent
with the stationary property.

The stationary property of Eqs. (3.77) and (3.78) with respect to
variations of ) is still to be implemented. If we use Eqgs. (3.89) and
(3.90), the functional of Eq. (3.78) becomes

I(\) = My + (Mg, + M)A+ M N2, (3.91)
where
My, = (S|(H — E)|v° + S), (3.92)
My, = (S|(H — E)|v© + C), (3.93)
M, = (C|(H — E)|v° + S), (3.94)
M, = (C|(H — E)]v° + C). (3.95)

In Egs. (3.92) to (3.95) and in the following, we are using notations
such as

(S|(H — E)|C) = / S(ry(H — EYC(r) dr. (3.96)
0
The solution of Eqgs. (3.89) and (3.90) can be written as

b =-> (D)"RS, (3.97)
i=1

n

bf =~ (D);"RY, (3.98)

i=1
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respectively, where
-1
(D) = My (3.99)

If we use Eqgs. (3.71), (3.72), (3.97), and (3.98), Egs. (3.92), (3.93),
(3.94), and (3.95) can be rewritten as

My, = (S|(H — E)|S) — Z R¥ (D) (3.100)
My, = (S|(H — E)|C) — Z RS(D (3.101)
M, = (C|(H — E)|S) — Z RE(D)Y (3.102)
M, = (C|(H — E)|C) — ZRC(D (3.103)

Equations (3.100) to (3.103) provide a calculational scheme for the
matrix elements M;. This is done in two steps. First the bound—bound
problem is solved by inverting the n x n matrix M, then certain
bound—free and free—free matrix elements are calculated in order to
evaluate the matrix elements Mj;, i, j = 0, 1. The variational result A
for the tangent of the phase shift is then expressed in terms of these
matrix elements.
Noting that v and +° are £* functions, we have

MOI — M10+k. (3104)
As the kinetic energy operator is not Hermitian in the space of non-L*

functions, we have M, # M,,. Equation (3.104) follows from the
following identity:

A‘” S(r)<_572> C(r) dr = k+/oo C(r)(—;—2>5(r) (3.105)

This equation can be established by integration by parts and using the
boundary conditions satisfied by the functions S(r) and C(r). The



120 VARIATIONAL PRINCIPLES FOR ON-SHELL AMPLITUDES

stationary property of Egs. (3.77) and (3.91) with respect to variations
of A leads to

Mo+ My 20My,

: k k

= 0. (3.106)

Equations (3.104) and (3.106) yield the following optimum or zero-
order estimate of A\ in the Kohn method:

A= ——. (3.107)
When we use Eq. (3.107) in Egs. (3.77) and (3.91), we get the Kohn

variational result:
I(\r)

Mg = ——¢ (3.108)
- (Moo - MIOLM10> (3.109)
k My,
= —ﬁi‘l’ - k;l” det M, (3.110)
where
det M = MoaM,, — My My, (3.111)

The equivalence between Eqgs. (3.109) and (3.110) follows with the use
of Eqs. (3.104) and (3.111). If trial X represents the exact solution, so
does )\;; consequently, det M = 0. However, det M =0 does not
necessarily guarantee that the exact solution has been obtained.
Equations (3.108) to (3.110) are the fundamental equations for an
algebraic basis-set calculational scheme based on the Kohn varia-
tional principle.

To summarize the Kohn variational basis-set method, first one has
to solve the inhomogeneous bound-bound problem (3.89) and (3.90).
This determines the £ functions v° and v via Egs. (3.71) and (3.72).
The basis functions y; of these equations are supposed to contain a
variational parameter. Then the four matrix elements M, i, j = 0,1,
are calculated via Eqgs. (3.100) to (3.103). The phase shift is finally
obtained from these elements with the use of Egs. (3.107), (3.109), and
(3.110). The ideal value of the parameter in the £® functions is
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determined by experimentation so as to yield well-converged result
with a small basis set.

3.3.2 Inverse Kohn Method

A basis-set calculational scheme for the Rubinow or inverse Kohn
variational principle (3.62) can be obtained in a similar fashion. For
obtaining such a scheme it is convenient to employ the following trial
function:

Y (r) = )\_l[vs(r) + S(r)] + [vc(r) + C(r)], (3.112)

where A = tan ¢ and the functions have the same meaning as in Eq.
(3.68). If we use this trial function, with v® and v© given by Egs. (3.71)
and (3.72), respectively, in the inverse Kohn variational principle
(3.62), we get

I(A)

A =27 = (3.113)

where
IO =By, + X7'By + A 72By+ Wo + X' W 272w, (3.114)

The parameters of this expression are the same as those in Eq. (3.78).
Expression (3.113) is stationary with respect to independent variations
of b, b7, and \. The stationary properties with respect to variations of
b¢ and b7 again lead to Eqgs. (3.89) and (3.90). If we use Egs. (3.89) and
(3.90), the functional 7()\) of Eq. (3.114) is given by

I(\) = My + (Mg + M)A~ + MgoA ™2 (3.115)

The elements M; are defined by Eqs. (3.100) to (3.103). The stationary
property of (3.113) and (3.115) with respect to variations of A™' leads
to

My, + M, _I_ZMOO/\_I B

1+ X X

0. (3.116)

Equations (3.116) and (3.104) lead to the following optimum or zero-
order estimate ) of the inverse Kohn variational method:
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When Eq. (3.117) is used in Egs. (3.113) and (3.115), we get the
following inverse Kohn variational result:

I(\
Nk =g+ (kH) (3.118)
1 1
=2 (Mn —MmM—OOMm (3.119)
My 1
= — M. 12
My + KMo det (3.120)

The equivalence between Eqgs. (3.119) and (3.120) follows with the use
of Eqgs. (3.104) and (3.111). Equations (3.118) to (3.120) provide a
basis-set calculational scheme based on the Rubinow or inverse Kohn
variational principle.

The Kohn and inverse Kohn variational results (3.110) and (3.120)
can be expressed as

det M
=X\ — 12
(Mg =X KM, (3.121)
det M
N =N+ o (3.122)

kMy,
The corrections on the optimum results A\; and )\; in these cases

involve det M, which would be small with a good trial wave function
and phase shift. For an exact solution det M = 0 and

Mg =)™ =M = (3.123)

For a small det M a power series expansion of ([\™'];x)”' of Eq.
(3.120) in powers of det M reveals that

iyl L (detM)® (/1 My
Mg — (N lx) = M2, kM11+k2M01 +---,  (3.124)

so that tangents of the phase shift of the Kohn and inverse Kohn
variational methods are equal to terms of the order of det M.
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3.3.3 Hulthén Method

The Hulthén variational principle can also be used to develop a basis
set calculational scheme. In this case the trial function is taken to have
the general form

Yi(r) = kolv” (r) + S(r)] + w0 (r) + C(r)], (3.125)

where the functions have the same meaning as in Eq. (3.68). Equation
(3.125) is a generalization of the forms (3.68) and (3.112). For the
Kohn variational method k) =1 and x;, = A =tané; and for the
inverse Kohn variational method x; =1 and ko= A\™' =coté. In
the Hulthén method we use xy =cosé and x; =siné. This trial
function, with +° and v¢ given by Egs. (3.71) and (3.72), is then
used to calculate the functional I of Eq. (3.44). This functional is now
given by

I(X) = cos® §[Myo + (Moy + Mig) A + M1 MY, (3.126)
= sin® §[MooA ™% + (M, + M)A~ + My, (3.127)

If we use the definition A\ = tané, equivalence between (3.126) and
(3.127) follows. The phase shifts in Eqs. (3.126) and (3.127) are
approximate and implementation of the Hulthén variational principle,
I = 0 of Eq. (3.67), can be done via either of these equations.

With I()\) given by (3.126), the phase shift of the Hulthén varia-
tional method (3.67) is given by

I(g) = My + (Mg, + Mig)hg + My 05 =0, (3.128)

so that

MIO k \/k2 —4detM

Nyg=———— +
Alu M, 2M,, 2M,,

(3.129)

There could be a + sign in front of the square root in Eq. (3.129). In
the exact solution limit, det M = 0, and [A\]; should reduce to [A]g of
Eq. (3.123). This condition rules out the negative sign in the square-
root term in Eq. (3.129), and the positive sign is chosen. Also, if
4det M > E, the solutions of Eq. (3.129) are complex and the method
fails. This means that the trial solution is “so much’ away from the
exact result that the variational method fails to improve it.



124 VARIATIONAL PRINCIPLES FOR ON-SHELL AMPLITUDES

With I()\) given by (3.127), the phase shift of the Hulthén varia-
tional method (3.67) is given, equivalently, by

I(Ag) =My + (Mg + M) \g + M)\ =0, (3.130)

so that

MOI k \/kz —4detM

ANy =—-7F+ —
A lu My  2My 2My

(3.131)

Only the physically acceptable sign in front of the square root has been
shown in Eq. (3.131).

The Kohn variational result (3.110) is the linear term in the power
series expansion of the Hulthén result (3.129) in powers of (det M), so
that

=Pk~ 3 (3132

Similarly, the inverse Kohn result (3.120) is the linear term in the
power series expansion of the Hulthén result (3.131) in powers of
det M. In Eq. (3.124) we have seen that the tangents of the Kohn and
inverse Kohn variational phase shifts agree with each other to terms
on the order of det M. Hence, for small det M, the Kohn, inverse
Kohn, and Hulthén results agree to terms on the order of det M.

Equations (3.109) and (3.110), (3.119) and (3.120), and (3.129) and
(3.131) provide calculational schemes of the Kohn, inverse Kohn, and
Hulthén variational principles, respectively, in terms of the matrix
elements M, which are calculated using Eqs. (3.100) to (3.103). The
essential calculational scheme of these three methods are the same.
Firstsolve for the £ functions via Egs. (3.89) and (3.90). Then calculate
the four elements My;, i, j = 0,1, via Egs. (3.100) to (3.103). The phase
shifts of the three methods are obtained from these M;’s. The calcula-
tion of the free—free matrix elements B, B|, and B, is numerically the
most troublesome part of these methods. These elements involve
infinite integrals over oscillatory functions at infinity.

3.3.4 Variational R-Matrix Method

Rayleigh Ritz and Kohn methods provide two applications of the
variational functional (3.44). There are other applications of this
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functional in solving the scattering problem. It can be used to find the
phase shift via the R-matrix method. For potential scattering, the R
matrix is defined by [15]

R

w(r) dr

L_ [ ’ dw(r)]r_m, (3.133)

where ry is presumably larger than the range of the interaction
potential, so that the solution of the Schrodinger equation at this
point is a linear combination of free-particle solutions. Hence, at
r = rp, the asymptotic region implicit in Eq. (1.136) has been attained
and the R matrix is given by

R = (kro)_l tan (ki‘() —%4—6[1) (3134)
As L, k, and ry are assumed known, knowledge of the R matrix leads
to the scattering phase shifts ;.

Using variational functional (3.44), we describe below a method [4]
for calculating the R matrix. The entire configuration space is first
divided into two parts: r > rg and r < ry. In Eq. (3.44) we introduce a
trial wave function, ,(r), which is assumed to be exact for r > r,.
Consequently, troublesome infinite integrals over the oscillating func-
tions as encountered in Kohn methods can be avoided. With this trial
function, the functional (3.44) is written as

1) = A " ) (H — Eypy(r) dr (3.135)
- [’ [(d"ﬁi”)+ (v +HEH - e) mmf] i
(3.136)
where
. 1 . 1 7%(")
K = Rro Lbz(") 0 ]r:ro. (3.137)

An integration by parts over the kinetic energy term has been
performed to obtain Eq. (3.136). As the trial wave function is exact
for r > ry, a truncation of the integral in the functional (3.135) has
taken place.
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Let us first study the condition of the stationary property of the
functional (3.135) for variations ,(r) — ¥(r) + Ay(r). The first-
order variation of the functional I of (3.135) is given by

Al = A * AW(r)(H — EYo(r) dr + A " () (H — EYAY(R)dr  (3.138)

dip(r) dAg(r)

dr r=ry

=2 / AY(r)(H — EY(r) dr + [Aw() —Y(r)

(3.139)

In order to derive (3.139), an integration by parts has been performed
in the last term of Eq. (3.138). Equation (3.139) should be compared
with Eq. (3.48), where there is no restriction on the range of the
integral of the functional (3.44). The first term on the right-hand side
of Eq. (3.139) is zero by using the Schroédinger equation. The func-
tional of Eq. (3.136) is stationary if the last term on the right-hand side
of Eq. (3.139) 1s also zero. This happens when

[Ai(r)dAdf(r)]rzf [ﬁ) dﬁfr)] RN CAL0

From Eqs. (3.137) and (3.140) we find that for the functional 7 of Eq.
(3.136) to be stationary, the trial wave function should have the same
logarithmic derivative at r = ry as the exact wave function. However,
it 1s difficult to implement this condition.

Next, ¢,(r) 1s expanded in a linearly independent basis set

) = 3 i), 3.141)

where y; are the basis functions and b; are the expansion coefficients.
This expansion is then substituted into the variational expression
(3.136) and the resultant expression is stationary with respect to small
variations of the coefficients b;. Using this stationary property, we
obtain

ZMU i = kXi(ro)¥i(ro), (3.142)
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where

My = [[*[OL 1 () + HEED )t ar

(3.143)

Equation (3.142) can be solved for the coefficients b; to yield
b; = “Z i (ro) (ro)- (3.144)
From Eqgs. (3.141) and (3.144) we obtain
Y (ro) = Zlel(rO =K Z Xi(ro) My (ro) (ro). (3.145)

Equation (3.145) gives the condition of existence of a solution to Eq.
(3.142). Canceling 1,(rq) from both sides of this equation, we obtain
for the R matrix

:_:—'ZX1("0 ij(rO) (3146)

l]—

Equation (3.146) 1s the desired expression for the R matrix. From a
knowledge of this R matrix, the phase shifts can be calculated using
Eq. (3.134).

In the derivation of the R matrix above, we have imposed no
condition on the linearly independent basis functions y;. We have seen
that for the functional of (3.136) to be stationary, Eq. (3.140) must be
satisfied. This means that the trial wave function should have the same
logarithmic derivative as the exact wave function at r =ry. The
logarithmic derivative of the exact wave function is not known.
However, we can choose a fixed approximate logarithmic derivative
for all the expansion functions:

K, = [%r) d’;gr)] N (3.147)

Then the resultant R matrix of (3.146) leads to a logarithmic derivative
x of the wave function at r = ry, which is different from the imposed
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logarithmic derivative , of Eq. (3.147). This will result in a different
slope of wave function than that implied by Eq. (3.147). This
discontinuity of slope of the wave function at r = ry leads to a slow
convergence of the R-matrix variational basis-set method. The situa-
tion can be improved by considering alternative methods [16].

3.4 HARRIS METHODS

Kohn variational methods are arbitrary in the sense that they are a few
of a presumably infinite set of prescriptions leading to phase shifts
whose errors are of second order. Harris and Michels suggested
alternative nonvariational basis-set methods [10,11] that have some
advantages over the Kohn, inverse Kohn, and Hulthén methods.

Instead of considering the trial wave functions with correct asymp-
totic behaviors, such as in Eq. (1.136), the positive-energy Schrodinger
equation is first solved, in partial wave L with normalizable £* wave
function, just as in the negative-energy Rayleigh—Ritz variational
method. The Schrodinger equation permits mathematically correct
L? solutions at positive energies. These solutions are eliminated by the
physical boundary conditions. The variational function for a specific
L is taken of the form (3.50)

b,(r) = Zb xi(r), (3.148)

where the £° functions y; are supposed to contain an arbitrary
parameter. The function (3.148) represents a mathematical solution
to the problem. The Rayleigh—Ritz variational equation (3.51) is then
solved at a discrete positive energy E,, where one is interested to
calculate the scattering phase shift. First, the free parameter in the £
functions is varied so that one of the energy eigenvalues of the
homogeneous algebraic equation (3.51), E,, becomes the energy at
which the phase shift is to be calculated. There are n such discrete
eigenvalues E,. At each of these discrete energies the bound—bound
matrix My, i, j=1,....n, of Eq. (3.52) is singular. Solution of the
e1genfunct10n—elgenvalue problem (3.51) yields the coefficients b of
Eq. (3.148).
The physical scattering wave function is then taken to be

Y (r) = v,(r) + S(r) + AC(r), (3.149)
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where the £ functions v,(r) is given by (3.148) and where the vth
eigenvalue E,, is the energy under consideration. The non-£? functions
S(r) and C(r) have the asymptotic form as in Eqgs. (3.69) and (3.70),
respectively. At the discrete energy E,, and in the space spanned by the
L? functions, x;, the Hamiltonian has two mathematically correct
eigenfunctions ,(r) and v, (r). Of these, only 1,(r) satisfies the proper
boundary conditions and is physically acceptable. These two eigen-
functions should, however, be orthogonal to each other. The phase
shift is calculated from the orthogonality condition

(w|(H — E,)|[4%,) =0, (3.150)
or
(v,|(H — E,)|S 4+ XC) =0, (3.151)
so that

 (WIH=E)IS)
M= T (H=E,)[C) (3-152)

Here we have used the property (v, |(H — E,)|v,) = 0. Equation
(3.152) yields phase shifts of the Harris method [10].
Use of the alternative function

(1) = v, (r) + X'S(r) + C(r), (3.153)

in place of (3.149) also leads to the same result (3.152). In the Harris
method one needs to evaluate only the bound—free integrals. The
Harris method has the advantage over Kohn methods that it avoids
the troublesome free—free integrals.

However, there is one trouble with the Harris method. If, by this
method, one is to calculate the phase shift using a finite £ basis set
(3.148) at two neighboring energies, a discontinuous result could be
obtained because of the discrete and discontinuous nature of the
Rayleigh—Ritz eigenfunction—eigenvalue problem. This is not of great
concern, as the converged phase shift becomes continuous in the exact
solution limit of infinite basis functions. Also, as the number of L?
functions is increased, the variational parameter has to be varied to
keep the test energy as one of the eigenvalues E,. Hence, it is not
possible to use any extrapolation procedure to predict the converged
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result from calculations with a finite number of £ functions ;,
i=1,2,..n

It is instructive to relate the Harris result (3.152) with the results of
the Kohn, inverse Kohn, and Hulthén variational methods [12]. In this
discussion the Kohn, inverse Kohn, and Hulthén methods apply but
with a singular M;; of Eq. (3.82). The Harris method corresponds to a
singular M ;. Multiplying both sides of Eq. (3.89) by bl@ and summing
over i and j, we get

(v,|(H = E)o”) = —(u,|(H — E)|S), (3.154)

where v, is the £? function (3.148) of the Harris method and where v°
is the same as in the Kohn method in Eqgs. (3.68) and (3.71). In the
space spanned by the £ functions y;, from Eq. (3.51) we find that v, is
an eigenfunction of H with an eigenvalue E,. Hence,

— E)|S
(0, |05) = — <vy|((£1 = E;' ) (3.155)
Similarly, from Eq. (3.90), one obtains
— E)|C
(0, [v€) = — <"’V'((£I - Eg' ) (3.156)

The functions v, are assumed to be orthonormal, hence, My, given by
Eq. (3.92), can be rewritten as

My = Mss + Z<S|(H — E)v,) (v, |v°). (3.157)
Using Eq. (3.155), Eq. (3.157) becomes

Moy = Mss+ >  Ms,(E—E,)"' M, (3.158)

where Mgs = (S|(H — E)|S) and Mg, =M,5 = (v,|(H — E)|S).
Analogously, from Egs. (3.93), (3.94), and (3.95) we get

My, :MSC+ZMSU(E_EU)_1MUC7 (3.159)
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Myy=Mcs+ Y Mc,(E—E,) My, (3.160)
My =Mcc+ ) Mc,(E—-E) M, (3.161)

where  Mgc = (S|(H — E)|C), Mcs=(C|(H - E)|S), Mcc=
<C|(H - E)|C>7 and M¢c, = M,c = <UV|(H - E)|C>

The analysis presented above provides alternative calculational
schemes for different Kohn algebraic variational methods. The
Kohn, inverse Kohn, and Hulthén variational methods require the
quantities M, i, j = 0, 1. This can be done via Egs. (3.158), (3.159),
(3.160), and (3.161) provided that the functions v, are precalculated
by solving an eigenfunction—eigenvalue problem. The calculational
scheme of Section 3.3 requires solution of inhomogeneous bound—
bound problems (3.89) and (3.90) at each energy where the phase shift
is needed. The present calculational scheme, on the other hand,
requires the solution of a single homogeneous bound—bound problem
(3.51), which provides several energies where the scattering problem
can be solved.

As E approaches an eigenvalue E, of Eq. (3.51), the elements M,
My, Mo, and M;; diverge. However, one has from Egs. (3.158),
(3.159), (3.160), and (3.161),

My HZZSZ—AE:Q, (3.162)
My, H% (3.163)
Mo HAéC_—A]éS (3.164)
M, H%, (3.165)

as £ — E,. In this notation the result for the Harris method of Eq.
(3.152) at E = E, is given by

(3.166)
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Using Eqgs. (3.162) to (3.165) we find that as £ — E,, the zero-order
estimates of the Kohn and inverse-Kohn variational methods given by
Egs. (3.107) and (3.117) can be rewritten as

Ml/S

)\IZAII:—MC.

(3.167)

Next we relate these results with the result of the Hulthén varia-
tional phase shift given by (3.129). The determinant det M of Eq.
(3.111) is quadratic in M;, and each M;; has a simple pole in energy at
E = E,. However, one of these poles cancels and the determinant
develops a simple pole in energy. From Eqgs. (3.162) to (3.165) we find
that, as £ — E,, this determinant has the behavior

D,

det M
M T ECE)

(3.168)

where D, is smoothly varying. Using Eqgs. (3.162) to (3.165) and
noting that both M, and det M have simple poles in energy at
E = E,, the Hulthén variational result (3.129) at this energy becomes

M,
= — . 3.1

From Eqs. (3.166), (3.167), and (3.169) we find that the Hulthén,
Harris, and zero-order estimates of the Kohn and inverse Kohn
variational results are all identical. The Kohn and inverse Kohn
results given by Eqgs. (3.110) and (3.120) are variational improvements
on this zero-order result and are different. Formally, a serious
difficulty with the Harris method is that unlike in the case of Kohn
and inverse Kohn methods, there is no variational principle to
improve on the Harris result. There is one difficulty with the Hulthén
method also. As det M passes through oo at E = E,, the square root
term in Eq. (3.129) changes from real to imaginary. So in the vicinity
of E = E, the Hulthén method does not behave smoothly.

3.4.1 Minimum-Norm Kohn and Inverse Kohn Methods

Later, Harris and Michels [11] suggested another method, which has
certain advantages over other commonly used approaches. For the
exact wave function one has (H — E)y = 0. Harris and Michels
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suggested minimization of the norm of (H — E)i,, where 1), is a trial
wave function, a method known as the minimum-norm method. After
this minimization, the result can be used in the Kohn or inverse-Kohn
variational principle. This approach is also very useful for multi-
channel problems.

In the single-channel version of this approach, the approximate
wave function is given by Eq. (3.125). In the present approach, as in
the Kohn and inverse Kohn variational methods, the bound—bound
problem is first solved via Eqgs. (3.89) and (3.90). Once this is done, the
functions v° and v“ of Eq. (3.125) are known via Egs. (3.71) and
(3.72). Instead of determining the phase shift variationally as in the
Kohn methods, it is obtained by minimizing certain norms.

In the space of oscillating functions S and C, the projection of
(H — E)Y, # 0. With ¢, given by Eq. (3.125), this projection is given
by

> Mk #0, (3.170)

j=0,1

i =0,1, where M;; are defined by Egs. (3.92) to (3.95). For the exact
solution, the right-hand side of Eq. (3.170) is zero. The best set of
solutions, given the trial function (3.125), can be obtained by mini-
mizing the norm

( > Mi,m) T( > MI.J-@) (3.171)

1=0,1 j=0,1

of the left-hand side of Eq. (3.170), where 7 denotes the transpose.
This procedure determines x, and «;. The quantity A\; = k;/ky
provides an estimate of tané in the minimum-norm method. This
estimate can be used in the Kohn variational result (3.108) for further
ad hoc improvement. This procedure is the minimum-norm Kohn
method. Similarly, \j;' = /k1 provides an estimate for coté in the
minimum-norm method which can be used in the inverse Kohn
variational result (3.118) for further ad hoc improvement. This
procedure is known as the minimum-norm inverse Kohn method.
The minimum-norm method does not provide a unique prescrip-
tion for defining the quantities x, and ;. Also, use of the results of the
minimum-norm method in the Kohn and inverse Kohn variational
principles are quite ad hoc, as determination of A in the minimum-
norm method is not performed from the stationary property of a
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functional. Nevertheless, the present determination of X is intuitively
reasonable. In the multichannel case, we consider several other
approaches based on the present idea of minimizing the norm.

3.5 ANOMALOUS BEHAVIOR

Schwartz [9] made a careful study of the physically interesting single-
channel electron-hydrogen scattering using the Kohn variational
method. His calculation for the S wave phase shift not only provided
numerical solution of an important physical problem by the Kohn
method, but presented some numerical problems with this approach.
In the numerical calculation, several sets of £* functions y; were
employed. These functions had a free variational parameter that was
supposed to be varied to obtain ideal convergence with an increase in
the number of functions. It was found in both spin singlet and triplet
states that results for the S-wave phase shift for fixed energy and a
fixed number of £ functions could vary rapidly with a variation in the
free parameter. This phase shift could also vary rapidly for a fixed
value of the parameter with a variation in energy. In fact, the
calculated tangent of the phase shift A = tané could be singular at
any energy for some value of the parameter. When this happens the
phase shift increases (resonance) or decreases (antiresonance) by 7 as
the energy is varied, and the cross section derived from this phase shift
exhibits a resonancelike behavior. Such behavior could occur for both
the zero-order phase shift (3.107) end the variational result (3.108).
Exact solution of the Schrodinger or Lippmann—Schwinger equation
with the same potential does not exhibit these resonances or anti-
resonances. Hence, these resonances are spurious and with an increase
of the number of £? functions or with a change in the variational
parameter, such resonances disappear from this specific energy but
may reappear at some other energy. A similar resonance can also
appear in the inverse Kohn variational method. These behaviors are
referred to as anomalous behaviors or anomalies.

If one makes a study of the function X\ versus the free variational
parameter, it is possible to identify the range of numerical values of
the parameter for which A remains reasonably stable at a fixed energy
for a fixed number of basis functions. Then the calculation should be
performed with a parameter in this range. For calculations performed
at another energy or with a different number of basis functions, the
same procedure has to be repeated.
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In addition to the above-mentioned anomalies, there could also be
true resonance in a scattering problem. They are common in S-wave
positron—atom and electron—atom scattering [18]. The spurious reso-
nances encountered above are artifacts of the variational methods.
True resonance will tend to remain at the same energy as the number
of £* functions is increased or the variational parameter varied.
Hence, the spurious resonances could be identified and avoided by
varying the variational parameter or by increasing the number of
functions in a presumably converged calculation. However, this
makes the calculational scheme unnecessarily tedious and lengthy,
as each such resonance has to be tested to be false or true by changing
the number of £ functions or the free parameter.

Since Schwartz identified these anomalies, their origin has been a
subject of investigation. A detailed account of these investigations has
been given by Truhlar et al. [19]. In the beginning it was thought that
the anomaly at a specific energy appears when the bound—bound
matrix M of Egs. (3.89) or (3.90) accidentally becomes singular.
However, we have seen in the discussion related to the Harris
method that at the accidental singularity of M, both the Kohn and
inverse—Kohn variational methods yield well-defined results with
smooth behavior. Later, Nesbet [12] pointed out that the anomaly
of the Kohn method is related to the appearance of an accidental zero
of the matrix element M, of Eq. (3.95). This can be realized from the
expression (3.110) for the Kohn variational result. From Eq. (3.210) it
follows that similar anomalies will also appear in the inverse—Kohn
method as the denominator M, of Eq. (3.92) vanishes accidentally.
Also, it is realized that the particular electron-scattering problem
studied by Schwartz has nothing to do with the appearance of the
anomalies; similar anomalies could appear in the numerical solution
of any other scattering problem using the Kohn variational method.

Such anomalies may appear as the results of the Kohn or inverse
Kohn method with finite basis sets are not bounds on the phase shifts
at arbitrary energies. In general, A may vary between +o0 and —oo.
These anomalies not only appear in the unconverged approximate
solution but may also appear in the limit when these variational
principles yield the almost converged solution. In the exact solution
limit, det M = 0 must be satisfied. This means that in application of
the Kohn variational method, if M, = 0, at a specific energy, from
Egs. (3.107), (3.110), and (3.111) we find that M, =0, too. Hence,
det M = 0 and the Kohn variational [A]g is finite. Similarly, if My, =0
at some energy, M, = 0 also. For an almost converged solution,
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det M ~ 0 and M, and M, will not vanish at a specific energy but at
nearby energies. Hence, [A]g of Eq. (3.110) will be infinity when
M,; = 0 and will be almost zero when M, = 0. This will lead to a
resonancelike behavior of the Kohn variational phase shift with a
rapid variation of [A]x with energy. Similarly, anomalies may appear
in the almost converged phase shift of the inverse Kohn variational
method. However, Nuttall [20] showed that as the number of £?
functions are increased, the anomalies have such a small width that
they are unobservable in practice and the phase shifts actually
converge to the correct value.

3.5.1 Anomaly-Free Methods

It is quite plausible that the element M, or M, of Eqgs. (3.92) and
(3.995), respectively, could vanish accidentally, so that both Kohn and
inverse Kohn methods may exhibit these anomalies. However, the
elements My, and M, cannot vanish simultaneously at the same
energy in a variational calculation with identical trial functions. This
means that Kohn and inverse Kohn variational methods do not
exhibit anomalies under identical conditions. Using this point,
Nesbet [12] suggested the anomaly-free Kohn and inverse
Kohn methods. He advocated using the Kohn method when
|Myi|/|Myp| >1 and the inverse Kohn method when
|M,|/|My| < 1. This simple prescription avoids all difficulties with
anomalies. However, there are a few cautionary remarks. First, as the
Kohn and inverse Kohn variational methods lead to different results
for a model problem, the Nesbet [12] prescription to avoid anomaly
will lead to discontinuous results for phase shifts as energy (or the
variational parameter) is varied. Second, a physical resonance may
appear in a Kohn calculation in the same fashion as an anomaly,
M, =0, My #0. In this case the use of Nesbet criteria will erro-
neously eliminate the physical resonance and hence lead to an inferior
result. A similar problem appears in the inverse Kohn variational
method when My, = 0 yields the physically correct result. The use of
Nesbet criteria will again lead to an inferior result.

Rudge [21] suggested a procedure for tackling the anomalies. By
varying the arbitrary parameter in the £> functions, he always
imposed the condition det M = 0. Then, by Eqgs. (3.123) and (3.132),
the phase shifts calculated by the Kohn, inverse Kohn, and Hulthén
methods are identical to each other. The anomalies of the Kohn and
inverse Kohn methods correspond to zeros of M|, and M, respec-
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tively. Then if My, = 0, one must have M, = 0 also, so that the Kohn
and inverse Kohn phase shifts calculated from (3.110) and (3.120),
respectively, could be identical. Similarly, if M;; = 0, then M, =0,
too, as the phase shifts obtained by the Kohn and inverse Kohn
methods should agree with each other. However, one could have
M, = My, = 0 also, which by Eqgs. (3.110) and (3.120) should denote
resonance in both the Kohn and inverse Kohn methods and hence
should be a true resonance. The last nontrivial possibility,
My, = M,y = 0, should imply, by Eqgs. (3.107) and (3.117), that the
phase shift is zero. Thus the Rudge method not only avoids a spurious
resonance but can also identify a true resonance.

3.6 MULTICHANNEL SCATTERING

So far we have discussed applications of different on-shell variational
principles to the study of potential scattering. In most physical
scattering processes, many scattering channels are open. Such a
realistic scattering process can be described by multichannel scattering
equations. In this section we generalize the variational principles of
potential scattering to the case of two-cluster multichannel scattering
[12]. Multicluster channels are mathematically difficult to treat and are
not considered here.

There are different ways of formulating two-cluster multichannel
scattering. We consider the two-cluster multichannel close-coupling
(CC) equations developed in Section 1.6.2 [12]. These two-cluster
multichannel Schrédinger equations can be written as

(H - E)) = 3 (Hop — ES,p)lig) =0, (3.172)
g=1

where the indices «, 3, 7, p, and so on, denote the different channels
that run from 1 to N. It is assumed that a partial-wave projection has
already been carried out and an on-shell wave number k,, is associated
with a channel, a. The idea of channels can be extended to the case
where both the target and projectile are composite, and where
rearrangement can occur.

3.6.1 Kohn Methods

The wave function |1),,) for scattering initiated in channel « has the
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asymptotic form

Hm v, (ra) ~ KoaSa(ra) + K1aCalra)- (3.173)

Fo—00

Here S,(r,) and C,(r,) are appropriate sine and cosine functions in
the asymptotic region

L

lim S,(r,) ~ sin (kara — gﬂ>, (3.174)
L

lim C,(r,) ~ cos (kara — gﬂ>, (3.175)

where 7, is the relative separation between clusters in channel o, k,, is
the on-shell wave number, and L, is the angular momentum variable.
For small r,, the wave function should vanish as ri*™'. These
conditions should be compared with Eqs. (1.35) and (1.136) of
potential scattering. The coefficients « determine the probability of
transition from one channel to another and are in general complex in
the presence of other open channels. In potential scattering they are
related to phase shifts.

A numerical attempt to solve Eq. (3.172) with a K-matrix boundary
condition will lead to N degenerate solutions, [¢"), at a particular
energy, labeled by the index 7, which runs from 1 to N. If the
coeflicients of one of the solutions |[¢)") of Eqs. (3.172) satisfy

Koa = Oars a=1,..,N, (3.176)

for each 7 =1, ..., N, the computed values of k[, = )\, are related to
the dimensionless K-matrix elements of Eq. (1.206) by

K.y = M. (3.177)

This definition of X is useful for writing the multichannel Kohn
variational principle.

An alternative set of definitions leads directly to the matrix K™
suitable for writing the multichannel inverse Kohn variational prin-
ciple. If the coefficients of one of the solutions |1)") of Egs. (3.172)
satisfy

Kig :6017'7 o = 1,...,N (3178)
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for each 7, the elements of the dimensionless K ~! matrix are given in
terms of the computed values of ky, = \,, by

(K_I)Ta = Ara- (3179)

The quantity X will be used in the formulation of the multichannel
inverse Kohn variational principle.

The algebraic formulation and numerical analysis proceeds in a
way analogous to that in potential scattering. We consider the trial
function

N

Yalra) = D 50 5a(ra) + K107, (ra)]

~v=1

— Z{K’O’y vSa + 6 S (ra)] + KT’}’[,U%Q("Q) + 6'yaCa(ra)]}7
(3.180)

where 7=1,..., N labels the N solutions of the coupled set of
equations (3.172) and « denotes the initial physical channel. In Eq.
(3.180), v}, and v}, are £* functions and the oscillating functions S,
and C, are included in appropriate physical channels. Equation
(3.180) is the appropriate multichannel generalization of potential
scattering function (3.125) [12].

The functions v}, and v}, are next expanded in a set of L* basis
functions as in single-channel expansions (3.71) and (3.72):

ve, (F szgx? ), (3.181)

vge,, (7 Z bYE X2 (ry) (3.182)

The additional explicit index « on the functions allows us to employ
different basis functions for different channels and also permits us to
develop a consistent matrix notation in channel and function space.

In the multichannel case, the generalization of the variational
functional I of Eq. (3.44) is given by
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N

ITp - Z <w;|(Haﬂ T Eéaﬂ)lwg>

a,0=1
N -
= Z [K’z)—’Y’iga(é’YaBgﬂéaﬂ + Wg'ea)
a,3,y,0=1

+ Ky Ky (646 B 85 + W(f,yﬂa)

(3.183)

(3.184)

+ KJT,YKJSU((S,YQBgﬂ(Saﬂ + Wy 4 fﬁ:f,yfﬁz‘l’a(&mBgﬂ(Saﬂ + W%ﬂa)],

3yo

where

n n n
B _ § : a B ol E : Yo pof § : Bpb
i, j=1 i=1 i=1

n n h
g _ g g B pb
Wla'ya - Z b?.gMg bJUCIB + Z b?;R?C 60ﬂ + Zb;fc Ri.S?[(SOﬂ”
i,j=1 i=1 i=l

n

h h
af _ a 01,00 B p B apaf
Wie = Z b?cMg bfs + Zng‘RiC ay + Zb;'YCR% Ogers
i j=1 i=1 i=1

h h h
afl o 8100 Yo paf B b
Wie = Z bic MG b + ZbiCRiC bpo + Z bic Ri¢barys
=1 i—1 P

MP = MI* = (x¥|(Hap — Eb,p)Ix7),
R::S'ﬂ = <X;—|(HT,3 - E6T,3)|S,3>7
RiZ = (X[ |(Hyp — Eb,5)|Cy),
BE? = (Sa|(Hag — Eb4g)|Sp),
B = (S,|(Hyp — Eb,p)|Cp),
B3’ = (Col(Hag — E6,5)|Cp),

Bgﬂ = <Ca|(Haﬂ - Eéaﬂ)|Sﬂ>'

(3.185)

(3.186)

(3.187)

(3.188)

(3.189)
(3.190)
(3.191)
(3.192)
(3.193)
(3.194)

(3.195)
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The multichannel variational principles are written in terms of the
functional (3.184). The multichannel generalization of the Kohn
variational principle is given by

. ITp()‘pT)

el = Aor k,

(3.196)

with I, given by Eq. (3.184). As in the single-channel case, this
functional should be stationary with respect to variations of expansion
coefficients b) and b} as well as quantities \,,. The stationary
property with respect to variations of coefficients b’ and ). for
any ). leads to the following equations satisfied by the coefficients of
the £° functions of Eqs. (3.181) and (3.182):

N n
SN M = -RY, (3.197)
B=1 j=1
N n
>N MPb = —RY. (3.198)
B=1 j=1

Equations (3.197) and (3.198) should be compared with single-channel
equations (3.89) and (3.90), respectively. The matrix M is of dimen-
sion 2N + N; 2N is the total number of oscillating functions used in N
channels, and N is the total number of £? functions used in N
channels. If an equal number n of £? functions are used in each of
the N channels, then N/ = nN. Unless the matrix M is accidentally
singular, the coefficients bfg and bJ‘.’Cﬂ can be determined, from
Egs. (3.197) and (3.198) so that the £* functions v}, and v}, of
Eqgs. (3.180), (3.181), and (3.182) are known.

If we use Eqgs. (3.197) and (3.198), the variational functional I, of
Eq. (3.184) can be simplified and rewritten as

1 N
I,= Z Z KM Y KL, (3.199)
i,j=0~,0=1
where
N
Mgg = Z<S7|(H’yﬂ - Eé’yﬂ)hbgﬂ)a (3.200)

4=1
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N

M = (S,/(Hyg — ES,p)1ii5), (3.201)
p=1
N

MYy = (C,[(Hyg — ESyp)1155), (3.202)
p=1
N

MY = (C,|(H5 — E8,5)[y75). (3.203)
p=1

As the functions 975, i = 0, 1, are known, the matrix elements Mg-”,
i, j=0,1, can be calculated. In the matrix elements M}’ there are
free—free matrix elements involving the kinetic energy operator. In
these elements, if the direction of the derivative in the kinetic energy
operator is changed, there could be an extra contribution, as in Eq.
(3.104). Consequently, these matrix elements satisfy

Mg = My + kg, (3.204)

af Ba
M =M;", a # [ (3.205)
fora,6=1,...,N,i,j=0,1.

In the case of the Kohn variational principle (3.196), the coefficients
x of Eq. (3.180) are taken to be ki, = \.,, kg, = 6,,, so that the
multichannel functional 7 is given by

N N N
Lpy= M+ Mi Ao+ A MIT+ > A MTA,,.  (3.206)
o=I =1 v,0=1

With this choice of the coefficients «, the K matrix is defined by Eq.
(3.177). The stationary property of Egs. (3.196) and (3.206), with
respect to variations of A ., yields the following zeroth-order ), in the
multichannel Kohn method:

N
> MM, =M. (3.207)
o=1

For each channel index p, this is a set of N inhomogeneous equations
for N unknowns )\f,a. This system of equations has the well-defined
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solution

N
Mo ==Y (M )M, (3.208)

v=1

unless, accidentally, det M, = 0. The use of Eq. (3.208) in Eq. (3.196)
leads to the following improved Kohn formula for the multichannel
problem:

g
Porlx = o7 — P (Mog + ZMmﬂ/\{)ﬂ> (3.209)
T B=1
N
a=]
1 N N |
— o | M= D MGy (M, )ﬂ“M‘f‘é’) (3.210)
T B=1 a=1
1 N |
= (MG = Do Mgy Mg (3.211)
T B8,a=1

Equations (3.204) and (3.205) has been used in deriving Eq. (3.211).
The multichannel generalization of the inverse Kohn variational
principle 1s given by

Lo
[)‘pT]IK:)‘pT+ pkm

(3.212)

Expression (3.212) is stationary with respect to variations of the
expansion coefficients b5 and b)F as well as quantities \,,. The
stationary property with respect to variations of )" and b} for any
A, leads to Eqs. (3.197) and (3.198). In this case, the coeflicients « of
Eq. (3.180) are taken to be Ky, = Mg Kla = 074, SO that the multi-
channel functional 7 is given by

N N N
Ly=MU+> MU+ XMl + ) MaMixs (3.213)
G=1 a=1 w,B=1

With this choice of the coefficients x the K matrix is defined by Eq.
(3.179). The stationary property of Eqs. (3.212) and (3.213), with
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respect to variations of )\, leads to the following zeroth-order Xpa in
the multichannel inverse Kohn method:

ZM SN = —M. (3.214)

This system of equations, for N unknowns Xf,{x, has the zeroth-order
multichannel inverse Kohn result

N
Moo == (M) "M, (3.215)

unless accidentally, det M, = 0. When substituted into Egs. (3.212)
and (3.213), the zeroth-order result (3.215) leads to the following
improved inverse Kohn formula for the multichannel problem:

Npalik = Mo + ( +ZM"‘ﬂ>\ ) (3.216)

N
—I\ar T
== (Mg)* "My}

T=]

( Z MS Z(MOO ﬂTM”’) (3.217)

N
= (M‘f‘f’ -2 Mé’?(Mool)ﬂTMaf)- (3:218)
@ g,7=1

In deriving Eq. (3.218), Eqgs. (3.204) and (3.205) have been used. It is
realized that for the converged solutions of Eqgs. (3.211) and (3.218),
the matrices A and ) are related by A = A",

In the present generalization, most of the functions of the single-
channel formulation have been replaced by matrices in the channel
space. In the single-channel case, anomalies appear in the Kohn and
inverse Kohn variational methods due to the vanishing of AM;; and
M, respectively. In the present multichannel formulation, the func-
tions M, and M, are matrices and the anomalies correspond to
det My =0 and det My, = 0, respectively. One can use Nesbet’s
anomaly-free approach as in the single-channel case. He suggested
using the Kohn method when |det M, |/| det M| > 1 and the inverse
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Kohn method when | det M, |/|det My,| < 1. As in the single-channel
case, this procedure may lead to a discontinuous result as energy or
the variational parameter of the basis set is changed. The Hulthén
variational principle has not been generalized to the multichannel case
because of the difficulty in finding the solution of /,, = 0 in this case.

3.6.2 Variational R-Matrix Method

The variational R-matrix method of Section 3.3.4 can also be general-
1zed to the multichannel case. In this case there are different channels,
and in each two-cluster channel «, there is a variable r, denoting
separation between clusters. The multichannel R matrix is defined by

N du®
v =rod Ry 720 (3219
=1 r=ry

where r = r; is outside the range of interaction. In definition (3.219)
we have used the same r, for all channels. This condition simplifies the
algebra and can in principle be removed. The method is based on the
stationary property of the functional (3.183), which is a multichannel
generalization of the functional of Eq. (3.44). In Eq. (3.183) we
introduce a trial wave function that is assumed to be exact for
r > ro. With this trial function, the integral in Eq. (3.183) is from 0
to ry, and consequently, troublesome infinite integrals over the
oscillating functions as encountered in the Kohn method can be
avoided. The functional (3.183) is written as

=Y A " L) (Hap — Ebaghpf(r) dr,  (3.220)

a,f=1

where the operator H,s = (Hp)aabag + Vep, and H, is the kinetic
energy. Then by an integration by parts, as in the single-channel case,
this functional can be written as

N ro T(r dv " (r
-3 A dec;( ) 6 w;r( )) P51 [Vag(r) — Ebug| () | dr

a,f=1

— ) Yi(ro)bag [d—w#} : (3.221)
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If we use definition (3.219) for the multichannel R matrix, Eq. (3.221)
can be rewritten as

/ dea 6 dg(r)) + 9L (Vap(r) — ESag)t(r) | dr
aﬂ 1

/2

Z rl a(ro) (R )agf(ro). (3.222)

aﬂlo

In operator form Eq. (3.222) becomes
1 _
I=y 4y — r—OwT(mR "(ro), (3.223)

where the explicit matrix representation of the operator 4 appears in
the first term on the right-hand side of Eq. (3.222).

As in the single-channel case, we make an expansion of the trial
function in a linearly independent set of basis functions y;,

Yo (r) = Zb “xi(r). (3.224)

In this expansion the same basis functions have been used in all
channels. However, as in the case of Kohn methods discussed above,
one can also use a different set of functions in different channels. If we
substitute Eq. (3.224) in Eq. (3.223), the functional 7, becomes

I, - ﬂzz” [Aaﬂ——xl(ro)(R o (o) |67, (3.225)

where A;ﬂ is the matrix element of the operator 4.

As in the single-channel case, the functional 7., is supposed to be
stationary with respect to variations of the tr1a1 functions or with
respect to the coefficients bp This condition leads to the equation

N

ZZ[AW _—Xz(rO)(R Yagx;(ro) |67 = (3.226)

p=1 j=1
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If we use Eq. (3.224), the solution of Eq. (3.226) can be written as

N n 1 o0
b =) Z%(A‘I)E-ﬂ X;(r0) D (R 3,95 (ro). (3.227)
=1 j=1 7=1

Equations (3.224) and (3.227) lead to

Yalr)) = > Zr—l()Xi(ro)(A_l);ﬂXj(ro)i(Rﬁl)mwfyl(ro)- (3.228)
i,j=1p=1 7=1

The multichannel equations of this section have a simple matrix
structure in channel and function space. Although explicit forms of
these equations are needed for performing a numerical calculation,
operator forms are often convenient for algebraic manipulation. For
example, in operator form Eq. (3.228) can be written as

B(ro) = }Oxﬂro)A—‘x(m)Rw(m), (3.229)

with the following solution for the R matrix:

1 _
R =" ()4 'x(ro), (3.230)

which has the following explicit representation:
1 —~1I\7p
RT'D:;{)—I-JZ:I Xi(rO)(A )zj Xj(rO)‘ (3231)

Bv construction, the operator 4 and hence the R matrix of the present
formulation are symmetric in channel space.

As in the single-channel case, the trial function of the R-matrix
method should have the correct logarithmic derivative at the bound-
ary, and it is difficult to satisfy this condition. Usually, an approximate
logarithmic derivative is chosen for the basis functions. The resultant
R matrix leads to a different logarithmic derivative at r = ry. This is
unavoidable and makes the numerical convergence of the multichan-
nel R-matrix method slow [22].
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3.7 OPTIMIZED MINIMUM-NORM AND ANOMALY-FREE METHODS

Using the idea of Harris and Michels of Section 3.4.1 [11], Nesbet and
Oberoi [17] suggested a minimum-norm method for multichannel
processes, which has been generalized to yield the optimized mini-
mum-norm and optimized anomaly-free methods for multichannel
scattering. In the following, we often use compact operator notation
instead of exhibiting the explicit channel indices [11,17,18]. For the
exact wave function, the functional I of Eq. (3.199) is zero, and we
have

Eiz Kl =0. (3.232)

This equation is a system of 2N homogeneous equations for 2N
unknown coefficients K,J‘.’ﬂ,j:O,l and B=1,...,N for a fixed p.
However, by the usual asymptotic boundary condition, not all these
coefficients are independent In Section 3.6.1 we have employed two
common choices: (1) kg, = 6,5 and k75 = A5 or (2) k75 = 6,5 and
Kog = 5= A 0B In cither case there are only N independent coefficients and
the remaining N coefficients are known. Hence, with the exact wave
function, Eq (3.232) should produce N independent solutions for the
quantities x? 6 This implies that for the exact solution, the 2N x 2N
matrix M has only N nontrivial eigenvalues. In an approximate
calculation, this problem does not appear, as Eq. (3.232) is not
satisfied. Hence, a reasonable approach for finding the optimal
solution, with a trial basis set, is to minimize the norm

(Mr)T(ME) = kT (MT M)k, (3.233)

as in the single-channel case. This norm is minimized with a trial x,. As
in the multichannel Kohn method, a trial matrix A\’ can be obtained
from this k, in the form

M=k k0. (3.234)

To obtain an improved result, this estimate could be used in the Kohn
variational formula (3.209). Alternatively, as in the multichannel
inverse Kohn method, from this &, a trial matrix \? can be obtained
in the form

M= korq'. (3.235)
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The use of this estimate in the inverse Kohn variational formula
(3.216) should yield an improved result.

In general, it is difficult to minimize norm (3.233). As the norm of a
matrix is independent of representation, one can find it in any
representation. The optimized minimum-norm method works in a
different representation and has advantages. The diagonal representa-
tion is advantageous for calculating the norm. However, it is difficult
to find the diagonal representation of the nonsymmetric matrix M.

The 2x2 matrix M with four submatrices can be written as

My, My

M = ,
M,y M

(3.236)

where the My, i, j = 0, 1, defined by Eqgs. (3.200) to (3.203),are N x N
matrices. The matrix M is not symmetric and satisfies

0 I
M—MT_k( ; 0)’ (3.237)

where 7 1s the N x N unit matrix. Equation (3.237) is equivalent to
Eqgs. (3.204) and (3.205).

Let us consider the difficulties with an arbitrary norm-preserving
orthogonal transformation in this 2NV-dimensional linear space of the
form

ay By

U= {uauﬂ} = a /81 ,

(3.238)

where u, and ug are both 2N x N matrices. Each of these matrices
represent N orthonormal column vectors, so that the condition of
orthogonality of matrix U yields

ulu, = uguﬂ =1, uguﬂ = ugua = 0. (3.239)

The transformed matrix M’ can be written as

/ / T T
MOO MOI uaMua uaMuﬂ

M =UTMU = =

. (3.240
My MY, ( )

ugMua ugMuﬂ
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Unfortunately, since M is not symmetric, neither M’ nor any of its
submatrices can be diagonal. Moreover, Eq. (3.237) is not valid for the
transformed matrices. Equation (3.237) is crucial in deriving the Kohn
variational principle (3.211) in the multichannel case. Hence, any
transformation of the form (3.238) can not be used to minimize the
norm and also preserve the Kohn variational principle (3.211). The
optimized minimum-norm method provides a way to minimize the
norm (3.233) and also maintain the stationary property.

3.7.1 Optimized Minimum-Norm Method

In the limit of an exact solution, the matrix \; of Eq. (3.234) is a real
symmetric matrix in channel space. The optimized minimum-norm
method uses the symmetric part of this matrix to define an orthogonal
transformation that preserves Eq. (3.237) and the Kohn variational
principle [17].

A real symmetric A\ matrix, called tan §, 1s constructed via

1 _ _
A =tand = E{qufizol + (Karg )"} (3.241)

The real symmetric matrices cosé and siné are constructed by
diagonalizing the matrix tan é and then recombining the appropriate
functions of the eigenvalues with the corresponding eigenvectors. In
the single-channel case, 6 is the phase shift. The transformation matrix
U is now taken as the orthogonal matrix,

cosd —sind
U = 3.242
sind  cosé ) ’ ( )

with the following properties satisfied by the submatrices:

(cos §)* + (siné)? =1, (3.243)

cosdsind — sindcos 6. (3.244)
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The transformed matrix M’ is defined explicitly by

My My
! __
M = v A
10 11
coséd sind My, My cosd —sinéd
=1 . | (3.245)
—sind coséd M, M sin § cos

If we use Eqs. (3.243) and (3.244), by straightforward algebra one can
show that submatrices M (, and M|, are symmetrical [17]. Also, if Eq.
(3.237) holds for the original matrix M, it also holds for the trans-
formed matrix M'. Equation (3.237) is essential in deriving the Kohn
and inverse Kohn variational principles (3.211) and (3.218). As Eq.
(3.237) is valid in the transformed system, the Kohn and inverse Kohn
variational principles are also valid and are explicitly given, respec-
tively, by

[)‘;)a]K — ( /ap Z M/ﬂa ﬂTM'Tg) (3.246)

g,r=1
T = ( oSS Ao ﬂTM’S‘f) (3.247)
a 8,m=1

First, let us consider the Kohn form (3.246). In the primed
coordinate system, the asymptotic form of the wave function is
specified by kg = I, ] = )\'. In the unprimed system we have

Ko = cos & — (sin &) (), (3.248)
ki = siné + (cos §) (). (3.249)

Then using Eq. (3.234) the untransformed Kohn formula becomes
(Mg = [sin 6 + (cos 8)(N)][cos 6 — (sin &) (X)] . (3.250)

This is the expression for ) in the optimized minimum-norm Kohn
method.
Similarly, the inverse Kohn condition is specified by ] =1,
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kp = A’. Then the untransformed inverse Kohn formula becomes
(X = [(cos 6)(X’) — sin 8][(sin §)(X) + cos 8] " (3.251)

This is the expression for A in the optimized minimum-norm inverse
Kohn method.

The optimum-norm method using the Kohn and inverse Kohn
approaches fails when the matrices M|, and M, are singular,
respectively; or when det M|, = 0 and det M g, = 0, respectively. As
in the Kohn and inverse Kohn methods, without minimum-norm
transformation, one could choose between Kohn and inverse Kohn
methods using the ratio |det M g|/| det M, |. This procedure, due to
Nesbet, avoids anomalies in the transformed system but gives dis-
continuous results as energy E or the variational parameters are
varied. This difficulty could be removed in the optimized anomaly-
free method.

3.7.2 Optimized Anomaly-Free Method

Let us again consider the matrix M. As M is not symmetric, this
matrix usually cannot be diagonalized by an orthogonal transforma-
tion. When all the eigenvalues of this matrix are real, this matrix could
be reduced to a real upper triangular form by an orthogonal trans-
formation [17]. After transformation, the M matrix will have 2 x 2
diagonal blocks and the remaining portion below the principal
diagonal will be zero.

Let us assume that the matrix M has real eigenvalues only and is
transformed to a real upper triangular form. Consequently,

M'yy ~ ufMu, =0, (3.252)

where the transformation U is defined as U = {u,uz}. The details of
the triangularization procedure of the M matrix are given by Nesbet
and Oberoi [17]. If this transformation maintains Eq. (3.237), the
Kohn variational principle (3.246) remains valid after transformation.
If Eq. (3.252) is satisfied, the last term in the Kohn variational
principle (3.246) vanishes and no anomalies can appear in this
approach. In general, after transformation, Eq. (3.237) is not valid.
However, one can develop an anomaly-free method based on Eq.
(3.252).
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The variational functional I of Eq. (3.199) remains unchanged
under this transformation provided that we also effect the same
transformation on the coefficients of this equation. The transformed
inverse Kohn functional of Eq. (3.213) can be written as

N N
Ly=M'++3 XM+ S X MEX,  (3253)
a=1 a,8=1

where we have used Eq. (3.252). The stationary property of Eq. (3.212)
in the transformed system now leads to an equation similar to (3.215):

N
Npg==> (M'5)"M', (3.254)
=1

which can be inverted to yield

N
Npa = N pa==3 (M) MY (3.255)

T=1

The original matrix M is not symmetric and has 2x2 block structure.
After transformation, M , is diagonal. However, as M}, is identically
zero, the submatrix My, is expected to be nonsingular, so that
det MG, # 0. Hence, the anomalous behavior of the result related to
a singular M, can be avoided. Once X' is known in the transformed
system via Eq. (3.255), one can consider the inverse transformation to
find X in the original system. The quantity A’ of Eq. (3.255) is the K
matrix via Eq. (3.177). If the transformation matrix U is given by Eq.
(3.238), in the unprimed system we have

Ko = o + (Bo)(N), (3.256)
k1= oy + (B)(X). (3.257)

In the unprimed system A is now given by

A== [oy + BiX][og + BoX] (3.258)

K1
Ko
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This is the result for X\ in the optimized anomaly-free method. This
matrix X is not manifestly symmetric. This undesirable feature is not
present in other methods described previously, where ) is symmetric.
Moreover, if M has complex eigenvalues, the A matrix of Eq. (3.258)
could be complex, which requires special care [17].

3.8 VARIATIONAL LEAST SQUARES METHOD

The minimum-norm method of Harris and Michels has been used by
several authors to develop the variational least squares method
[18,19,23]. As in the minimum-norm method, this method develops
an expression for the zero-order K-matrix elements which can be
improved upon by using a Kohn variational principle.

For the multichannel problem, the effective Schrédinger equation is
given by Eq. (3.172). However, for an approximate trial function 1,
(H — E)Y, # 0. The quantity (H — E)1, represents a measure of the
error in the trial wave function. The variational least squares method
minimizes |(H — E)i,|* in such a way that a zeroth-order estimate of A
is found, which is, subsequently, improved by the Kohn or inverse
Kohn variational principles.

In this method one uses the following trial function

Wh(rg) = vp(rg) + k4Ss(rg) + KigCpa(r)- (3.259)

This expression is consistent with the general form (3.180) of the
multichannel wave function. The function vj is then expanded in
terms of a set of £ functions:

n

vh(rg) = D b7 X7 (rp)- (3.260)

i=1

The total number of expansion functions — £2 or not — used in all
channels is 2N + N, where N/ =nN is the total number of L2
functions in all channels and N the number of channels. The three
projections of the Schrédinger equation on sin, cos, and £ functions
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can be written as

(Sal(Hag — Eap)|¥h) = 0, (3.261)

M= M=

<Ca|(Haﬂ - Eaﬂ)th) = O, (3262)
a,0=1
N
> XF(Hap — Eap)l9h) = 0. (3.263)
a,0=1

In compact operator form these equations can be written as

Mss Msc Mgy Ko

Mes Mcc Mae || 51 | =0. (3.264)
Mps  Mpc My b

The label b stands for A’ £? functions in all channels, and the label S
(C) stands for the N sin (cos) functions in all channels. Explicitly,

My, = M;ﬂ = <X1T|(HT;3 - E5Tﬂ)|XJ[~3>, (3.265)
MSS = Bgﬂ - <ST|(HTﬂ T E(STﬂ)|Sﬂ>7 (3266)
MbS = R::S? - <X;|(H7'ﬂ - E(STﬂ)|Sﬂ>7 (3267)

and so on [see Egs. (3.189) to (3.195)]. Equation (3.264) can be written
in the form of the matrix equation

MX =0, (3.268)

where M is a square matrix of dimension 2N + A and X is a column
vector.

For a finite basis set, Eq. (3.268) cannot be satisfied exactly and there
will be a small error matrix D on the right-hand side of this equation,
so that one should have

MX = D. (3.269)
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In the variational least squares method, it is required that DTD be
stationary, or

§(DTD) =0, (3.270)
so that

SXTMTMX) = [(X2)T MTMA] + [(6X)" MTMX])T = 0.
(3.271)

In order that Eq. (3.271) is valid for arbitrary variations 6 X, we should
have

(MIM)X = 0. (3.272)
Condition (3.272) should lead to the optimal solution. This equation

should be solved subject to ky = I and k; = A. Then Eq. (3.272) can be
written as

M T M)sc (M M)g \ (M M)ss
(MTM)CC (MTM)Cb <b>=— (MTM)CS . (3-273)
(MTM)pe  (MT M)y, (M M)s

As we have defined N of the unknowns via xy, =1, Eq. (3.273)
constitutes 2N + N equations for N + AN unknowns. So this set of
equations cannot be solved. One way out is to discard N of these
equations arbitrarily. Wladawski, and Abdallah and Truhlar, sug-
gested discarding the first row of this equation arbitrarily [18,23].
Consequently, one is left with

(M TM)ce (MTM)g A B (MTM) s 3974
(M M)pe (M7 M), (b)“((MTM)bS)' 3214)

Equation (3.274) constitute N + A equations for N + A unknowns,
which can be solved and the matrix A determined. The matrix ) is the
required zeroth-order solution. This A can be used in the Kohn
variational principle (3.209) for further improvement.
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Another possibility is to take x, = A and x; = I, as in the inverse
Kohn variational principle, and find X. Once the zero-order A = A\~ ! is
obtained, an improved result could be found by using these results in
the inverse-Kohn method.

Anomalies of the Kohn or inverse Kohn methods arise from the
singularities of matrices M,; and M,,. The variational least squares
procedure is supposed to be free of such difficulties. The only matrix
inversion in this method is inversion of the matrix in Eq. (3.274).
Anomalies of this method, if any, should arise when the determinant
of this matrix is zero. This smaller matrix is denoted by (M” M)’  Itis
demonstrated below that the matrix (M’ M)’ is singular when the
matrix M itself is singular. As the matrix M is assumed to be
nonsingular, this possibility is never realized.

The matrix M7 M is positive definite for any vector X:

XTMTMX > 0. (3.275)
Now consider the vector
0
X=1X]. (3.276)
b
With this vector
XTMI M = YT (MTM)Y >0, (3.277)

where

_(* 3.278)
()

Hence, in the 2x 2 matrix space of Eq. (3.274), the matrix (M7 M) is
positive definite as long as the matrix M is nonsingular. Vanishing of
the determinant of M is a necessary (but not sufficient) condition for
the existence of the singularity of (M’ M)’. consequently, the present
method is not supposed to lead to anomalies, as the determinant of M
is taken to be nonzero.
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CHAPTER 4

VARIATIONAL PRINCIPLES FOR
OFF-SHELL AMPLITUDES

4.1 INTRODUCTION

The variational principles for on-shell K-matrix elements discussed in
Chapter 3 are related to phase shifts, cross sections, and to on-shell S-
and 7-matrix elements. However, the K and ¢ matrices are operators
with an infinite number of matrix elements for infinite possibilities in
incoming and outgoing momentum variables, such as K(p',p, kz),
where k is the on-shell wave number and in general p’ # k # p.
Physical observables for the two-particle system are related to the
on-shell quantity K (k, k, k*). The off-shell elements K(p’, p, k*) corre-
spond to unphysical or virtual transitions, which occur in the presence
of other particles. For example, nucleon—nucleon off-shell scattering
is realized when the nucleon—nucleon system is embedded in a multi-
nucleon system: for example, in a trinucleon system or in nuclear
matter. The nonconservation of energy in the intermediate states
allows the possibility of off-shell scattering.

In this chapter we discuss variational principles based on the
operator nature of the K or ¢ matrices and not for their on-shell
elements only. Consequently, in addition to yielding the physical on-
shell quantities, these variational principles yield the off-shell
quantities, which could be useful in solving multiparticle problems
in which the present system is a subsystem. The present variational
principles are for the off-shell partial-wave quantities 7, (p’, p,k?) or
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K. (p',p, kz). However, if one is not interested in off-shell scattering,
the present variational principles yield the on-shell observables, as in
Chapter 3, provided that one considers the special case p’ = p = k.

All these variational principles are suitable for numerical applica-
tion with a finite basis set. When this procedure is adopted, as in
Chapter 3, the numerical task is reduced to simple linear algebra:
inversion of a matrix of relatively small dimension and matrix-vector
multiplication. Then, numerically, the present variational principles
lead to algebraic variational basis-set methods for scattering pro-
blems.

Apart from permitting the above-mentioned off-shell extension,
most of the variational principles of the present chapter involve the
free outgoing-wave or standing-wave Green’s function explicitly,
which builds in the correct outgoing-wave or standing-wave scattering
boundary condition. These Green’s functions build in the appropriate
asymptotic boundary condition. When standing-wave boundary con-
ditions are used, the variational principle leads to the K matrix, and
when outgoing-wave boundary conditions are employed, it yields the ¢
matrix. This approach can also be used to derive variational principles
for the nonsingular I" matrix.

The first of these variational principles was suggested by Schwinger
in 1947 [1] for the ¢ or K matrix. Then, in 1966, Newton [2] suggested a
variational principle for t — J or K — V. In the usual form of the
Schwinger (Newton) variational principle, the unknown function is a
non-£? (£?) function. Hence, for obtaining optimal convergence, one
should use non-£? (£?) functions in the case of the Schwinger
(Newton) variational principle. However, as the free Green’s function
appears in these variational principles, there is no need to include non-
L£? functions in these variational principles. Numerically, it is easier to
deal with £? functions and one does not have to perform integrations
over non-£? oscillating functions as in Kohn-type variational princi-
ples. This is a great advantage over the methods of Chapter 3, where
some non-£? functions must be included.

It is possible to extend this progression and write a variational
principle for ¢t —V — VG(()+) V' [3], which deals with the first two
terms of the Born—Neumann series exactly, and the presumably
small difference between the exact ¢ matrix and the truncated Born—
Neumann series is treated variationally. This procedure can be
continued in treating more terms of the Born—Neumann series exactly
and the difference terms variationally. These variational principles can
be written in two equivalent forms. The first form involves a trilinear
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combination of different terms, and the second form, often known as
the fractional form, is an appropriate ratio of different terms.

The utility and power of the Schwinger variational principle were
fully appreciated only some 25 years later, when a practical finite-rank
form for performing numerical calculations using the Schwinger
variational principle was suggested and used in several numerical
calculations in 1974 by Sloan and the author [4]. Similar finite-rank
form for the Newton variational principle was suggested and studied
by Sloan and Brady [5]. Since then numerous applications of these
variational principles have been made in nuclear, atomic, molecular,
and chemical physics.

Most of the variational principles described in this chapter involve a
(multiple) integral involving the free Green’s function, which could be
cumbersome in practice. To avoid such integrals and the anomalies of
the usual Kohn variational principle of Chapter 3, Miller and Jansen
op de Haar suggested in 1987 [6] the complex Kohn variational
principle for the 7- and S-matrix elements, which uses complex basis
functions in the Kohn variational principle compatible with the
outgoing-wave boundary condition for the ¢+ matrix. This last varia-
tional principle requires only the matrix elements of the Hamiltonian
operator. However, unlike the usual Kohn variational principle, the
complex Kohn variational principle is easily extended to the calcula-
tion of off-shell scattering elements. The use of real basis functions
compatible with the standing-wave boundary condition in the for-
mulation of Miller and Jansen op de Haar leads to a practical
variational method for calculating off-shell K-matrix elements. In
both cases, however, one needs to evaluate integrals over non-£>
oscillating functions as in the on-shell Kohn methods of Chapter 3.

Unlike the Kohn variational principles of Chapter 3, the variational
principles of this chapter were believed to possess no anomaly.
However, it has recently been demonstrated that for all variational
principles presented in this chapter, anomalies may occur in these
variational principles under exceptional choice of potential and
expansion functions [7—10]. Unlike in the Kohn variational principles
of Chapter 3, these anomalies are found to be rare and hence should
not be of great concern in actual numerical application.

The variational principles of this chapter are written for the #-
matrix elements, one of the exceptions being the variational principle
for the I matrix and the real Kohn variational principle. However,
most of the variational principle of this chapter can be reformulated
for the K-matrix elements by replacing the outgoing-wave free Green’s
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function in these variational principles by the standing-wave free
Green’s function. The complex Kohn variational principle for the ¢
matrix can be modified to yield the real K matrix by changing a
complex basis function of this approach to an appropriate real basis
function.

In Section 4.2 we develop the Schwinger variational principle and
derive several algebraic basis-set methods based on them. A discussion
on the choice of the basis functions and on the application to the
nuclear problems are presented. In Section 4.3 a description of the
Newton variational principle and related basis-set methods are given.
In Section 4.4 we describe an alternative approximate iterative method
for using the Schwinger and the Newton variational principles in
practical calculation with certain advantages over the usual algebraic
basis-set methods. In Section 4.5 variational principles are derived for
the higher-order terms of the Born—Neumann series. In Section 4.6 we
describe variational basis-set methods for the t and K matrices based
on a form of the Kohn variational principle. In Section 4.7 we describe
a class of variational principles employing distorted waves, which
facilitate the numerical task. In Section 4.8 we describe a technical
scheme for calculating the different matrix elements encountered in
these variational methods. A general scheme for deriving these varia-
tional principles is given in Section 4.9. In Section 4.10 we derive
variational principles for the I' matrix and develop algebraic basis-set
methods based on them. Finally, in Section 4.11 we discuss anomalous
behaviors of these basis-set methods. An anomaly-free Kohn method
is also suggested in this section.

4.2 SCHWINGER VARIATIONAL PRINCIPLE

4.2.1 Formulation

The algebraic basis-set methods developed from the Kohn variational
principles of Chapter 3 requires the evaluation of integrals over non-
£? functions. These integrals are often difficult to evaluate numeri-
cally. Basis-set methods based on most of the variational principles of
this chapter can use only £* functions. The Schwinger variational
principle is the first variational principle of this type [1], which we
describe below. It was originally suggested for calculating the scatter-
ing phase shifts. However, it can be readily modified for calculating
the off-shell #- or K-matrix elements and we present the modified
version in the following.
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The Schwinger variational principle for the f-matrix element is
based on the identity

(p'llp) = (P IVIESD") + (w5 p)
— @M = VG (4.1)
+<w§,7“ NV = VG V)it — )y,
where cxaci wave functions le(f)) and (@b[(,,_)l satisfy

U5 = |p) + GSIV D), (4.2)
<w§;>| = (p| + (W) |val?. (43)

Here |’¢p 4) and ( Yy | are supposed to be approximations to exact
scattering wave functions |w§, )) and( | respectively. Equation (4 1)
is an 1dent1ty independent of |’¢p )4y and (Y ; A| However, if |’¢p )
and( o |are good approximations to the exact wave functions |’¢ )
and (¢;T)|, respectively, the last term in Eq. (4.1) is second
order in deviation. Equations (4.1) to (4.2) and most of the equations
of this chapter are valid for the partial-wave observables. In these
equations, the energy dependence of the ¢ matrix and the Green’s
function and the angular momentum label have been suppressed and
Dirac bra-ket notation has been used for convenience:

(p'|tlp) = tL.(p',p. K). (4.4)

Keeping only first-order terms in deviation in Eq. (4.1) and suppres-
sing the index A from approximate wave functions, we obtain the
Schwinger variational principle,

(P11 = (P IV IS + ) 1V 1p) — 1V = vGSPm)lt).
(4.5)

Approximate trial wave functions are to be used in variational
principle (4.5). Equations (4.1) and (4.5) should be compared with
Egs. (3.1) and (3.2), respectively. There are three terms in Eq. (4.5). If
exact wave functions are used in this equation, each of these three
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terms becomes equal to the exact r matrix and Eq. (4.5) is an identity.
All the variational principles of this chapter are based on similar
trilinear forms. The present construction of the variational principle
should be compared to that of Eq. (3.11) in relation to a standard
Fredholm equation. Much of the discussion related to Eq. (3.11) also
holds in this case. In particular, as in Eq. (3.26), one has the following
equivalent fractional form for the Schwinger variational principle:

(P VIS <‘>|V|p>

[(p'ltp)] = <’¢( )|(V VG V)Wp >

This ¢ matrix is obtained if one solves the partial-wave Lippmann—
Schwinger equation (1.121) with the following potential:

(VIS V| p)
(p'|V|p) = SRS/ . (4.7)
(W Vs

For real trial functions, £2 or not, the potential of Eq. (4.7) is real and
Hermitian and hence the Schwinger variational forms (4.5) and (4.6)
satisfy the conditions of unitarity and time-reversal symmetry. The
separable form (4.6) for the ¢ matrix is particularly useful if one is
interested in solving the multiparticle problem.

In this section the t-matrix version of the Schwinger variational
principle is considered. The K-matrix version of this variational
principle is straightforwardly obtained by replacing the outgoing-
wave Green’s function by the standing-wave Green’s function. As
both these possibilities correspond to the same underlying separable
potential (4.7), the - and K-matrix Schwinger variational principles
based on Eqgs. (4.5) and (4.6), respectively, lead to the same phase shift.

The following alternative form of the Schwinger variational prin-
ciple can be obtained if the trial wave functions of Eq. (4.5) are
rewritten in terms of the f-matrix elements:

(p'lep)] = (' |VI +GS71) p) + (2| + 6,G57) V| p) (4.8)
— (U + G5V = VG VYT + G5 1)p).

In Eq. (4.8), t; and ¢, are two independent trial estimates for the exact ¢
matrix. The stationary property of Eq. (4.8) can be established if we
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use the Lippmann—Schwinger equation for the ¢ matrix. We shall see
in Section 4.4 how the fractional form of the stationary expression
(4.8) can be used iteratively in an approximate calculational scheme.
In Eqgs. (4.5) and (4.6) there is a multiple integral over the Green’s
function. The trouble associated with this multiple integral could be
reduced, for example, by considering the alternative form [11]

(P10 = (P 1xsP) + 01y = I = GE)IgD),  (4.9)

where we have introduced the form factors

X57) = Vi), (4.10)
O = W (4.11)

The Schwinger variational expression (4.9) is statlonary to ﬁrst
order with respect to variations of trial functions | Xp )y and <X o )|.
In Eq. (4.9) one has a simpler integral over the free Green’s function
than in Eq. (4.5). However, there is also an integral over the inverse
potential operator ¥ ! which deserves special care.

One can also rewrite the Schwinger variational principle (4.5) or
(4.9) in the following form:

(P 11p)] = (2 IVIED) + 0 1p) = 6710 = GEPm)lY), (4.12)

which is stat1onary to ﬁrst order, with respect to variations of trial
functions |’¢p ) and ( p_ . In form (4.12) there 1s a simpler integral
over the Green’s function than in Egs. (4.5) and (4.6), and no integral
over the inverse operator V'

Expressions (4.9) and (4.12) can also be written in the equivalent
fractional forms:

xS )
' = £ , 4.13)
pip 17 = G5 (

i |w,<f’>< Clp)
'|1|p)] = 4.14)
P = o G (

respectively. Variational principles (4.12) and (4.14) are not time-
reversal symmetric. However, this is not a bar for numerical applica-
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tions. Corresponding to variational principle (4.14), one has two
transposed variational principles

(P11 p)] = (w7 1VIp) + (P IxD) — W01 = VG, (415)
and

/IS WS V| p)
W1 = VGG

(P'|tlp)] = (4.16)

respectively.

A calculational scheme using the foregoing variational principles is
obtained by taking the trial functions as linear combinations of a
given set of basis functions. In the ideal situation, these basis functions
should be orthonormal and linearly independent. However, these
requirements are not usually realized in numerical calculation. The
coeflicients in the expansion of the trial function in terms of the basis
set are determined by considering the stationary property.

A practical calculational scheme can be developed from (4.5) with
the following choice of trial functions:

) =S a (ol @17)
Wl = Sl (), (4.18)

j=1

where a; and b; are coeflicients to be determined by the variational
requirement and | f;), i = 1, ..., n, form the basis set. We have used the
same set of states for both trial functions. This is not essential, but it
has the virtue of maintaining the result time-reversal symmetric.

To determine the coefficients a; and b;, we substitute Eqs. (4.17) and
(4.18) into the Schwinger variational principle (4.5) and require that
the resulting expression be stationary with respect to independent
variations of a; and b;. It then follows that

n

bi(p') =Y (P |VI) DY, (4.19)

i=1

a(p) = 3 DI IVIp) (420)
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where

(D Y= IV = VGO WIS,  ij=1,..,n (4.21)

Here D™ is an n X n matrix, constructed by inverting the presumably
nonsingular D~' matrix of Eq. (4.21). The 7 dependence of the D
matrix should be noted: for example, D11 #* D(“) With these expan-
sion coefficients the trial functions of Eqs. (4.17) and (4.18) become

5t Z|f VD), (4.22)
W =S IRDP . (4.23)
i,j=1

When these results are substituted into Eq. (4.5), we obtain the
Schwinger ¢ matrix in the rank-»n degenerate form:

n

(P |62 = D' IVIADE IV Ip). (4.24)

i,j=1

For n =1, Eq. (4.24) reduces to the rank-1 fractional form (4.6) for
the Schwinger variational principle, and hence it should be considered
as the multirank generalization of the rank-1 result (4.6). The result
(4.24) can now be recognized to be the one obtained with the well-
known method of moments for the solution of Fredholm integral
equations [i.e., Eq. (3.22)].

The rank-n ¢ matrix of Eq. (4.24) is obtained if one solves
Lippmann-Schwinger equation (1.121) with the following rank-n
degenerate potential:

PIn) = S IR BP VD), (4.25)

6,j=1

where the n x n B matrix is defined through its inverse elements

(B_l)ji = <f]|V|ﬁ>7 l).] = 17"'7"' (426)

For real expansion functions | f;) and real Hermitian potential ¥, the
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rank-n potential (p’|V,|p) is also real and Hermitian. Hence, the
variational ¢ matrix (4.24) satisfies unitarity automatically and the
resultant phase shifts are real. The rank-n potential V, of Eq. (4.25)
has the property of being exact when it operates on any linear
combination of the » functions |f;),i = 1,...,n, since

[ilVa =1V, J=1,..,n (4.27)
Vif) = VIf), i=1,..n (4.28)

Assuming that the set of functions | f;) becomes complete as n — oo, in
the same limit V,, — V and ¢, — ¢. Hence, as more and more functions
are introduced in the basis set, a more accurate ¢ matrix should result.

A calculational scheme could be developed from variational prin-
ciple (4.12) with the following choice of trial functions:

n

|’¢§;+)> = Z az(p)lfz>7 (429)
0= twlb o), (4.30)

where a; and b;,i = 1,...,n, are expansion coefficients and |f;) and
(vi],i=1,...,n, form the basis sets. As variational principle (4.12) is
not symmetric, there is no need to take the same basis set for two trial
functions. Next we substitute functions (4.29) and (4.30) into varia-
tional principle (4.12) and require that the resultant expression be
stationary with respect to independent variations of a; and ;. Then we
get

n

bi(p) =D (P IVICY, (4.31)
a,(p) = Z C (v p), (4.32)

where

(CNi= I =GIMf,  ij=1,..n (4.33)
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When these expansion coefficients are substituted into Eqs. (4.29),
(4.30), and (4.12), we obtain the following rank-x variational ¢ matrix:

n

('t = D (P VI CE ) p). (4.34)

ij=1

Equation (4.34) should be compared with Eq. (3.22) obtained by the
method of moments for a general Fredholm equation. This result
could have been derived from Eq. (4.24) by taking (v;| = (f;|V,
because var1at10na1 pr1nc1ples (4.5) and (4.12) are also related by
such a mapping: ( | = ( o |V

One could derlve several other forms of the Schwinger variational
method by taking appropriate forms of trial functlons We consider
two examples below. First, by taking |f;) = |gl) and a similar
equation for its transpose in Eq. (4.24), we obtam

n

(P [tlp)] = (P IVG g I (g]1GSP V| p), (4.35)

ij=1
with

= <gj|(G(()+) VG(()+) — G(()+) VG(()H VG(()+))|gi), Lji=1,..n
(4.36)

In this case, the implicit rank-# separable potential is not Hermitian at
positive energies, so this ¢, does not satisfy unitarity. A Hermitian V),
is obtained if we employ the principal-value Green’s function in Eq.
(4.35). Expansion (4.35) is numerically more complicated because of
the appearance of multiple integrals over Green’s functions. Never-
theless, this expansion has proved to be useful in situations where V'
has complicated singularity structures [12]. For example, the three-
particle scattering equation can be written in the Lippmann—Schwin-
ger form with an energy-dependent V' which is complex at positive
energies. Because of the explicit presence of VGE)H in the form factor,
the expansion (4.35) is better able to reproduce the singularity
structure of the # matrix in a low-rank calculation. Successful applica-
tion of this variational principle has been made to the three-nucleon
problem [12].

Finally, if we take V|f;) =|v;) and a similar equation for its
transpose in Eq. (4.24), we obtain the alternative form for the
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Schwinger variational method:

n

(P'llp] = 3 () U () (4.37)
with
(U= (V" =G D), =1, (4.38)

This result is time-reversal symmetric and unitary. Expansion (4.37)
could also be derived from the trilinear form (4.9) by making an
expansion of the form factors x of Egs. (4.10) and (4.11) in terms of
the basis functions v;, i = 1, ..., n. As these form factors are dressed by
the potential, they are £°.

4.2.2 Choice of Basis Functions

With this discussion about several forms of the Schwinger variational
principle, we now discuss how to choose the basis functions. A proper
choice of basis functions is fundamental for the success of a varia-
tional principle in numerical application. The trial functions of a
variational method should be chosen so as to satisfy certain asympto-
tic properties of the actual function they approximate. The choice
should also reflect the properties of the potential under consideration:
short-range or not, energy-dependent or not, Hermitian or not, and so
on.

The trial functions |’¢p )} and ( o | of the Schwmger variational
principles (4.5) or (4.6) can be taken to be £2. However, these
scattering wave functions are nonnormalizable, energy-dependent,
and have oscillating behavior at oo. If this asymptotic behavior is
included in the trial function, one can expect rapid convergence. The
following trial function incorporates proper asymptotic boundary
conditions (1.35) and (1.36) or (1.136) for L-wave scattering:

W(r) =1 S(r) + c,C(r) + i cir("+L) exp(—ar), (4.39)

where C(r) and S(r) are defined by Eqgs. (3.73) and (3.74), respectively
[13]. In actual calculation, this corresponds to taking f,(r) = S(r),
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f2(r) = C(r), and the following £ functions:
_f;(r) = r(L+i—2) exp[_ar], 1 = 3, 4, R, (440)

The alternative choice for the £? functions,
filry = " EVexp[—(i = 2ar],  i=3,4,...,n, (4.41)

can also be used in numerical calculation in place of Eq. (4.40).

The inclusion of proper asymptotic boundary condition in the
Schwinger variational method based on Eq. (4.5) or (4.6) is only
desirable for obtaining rapid convergence and is not necessary. Hence,
calculations based on only £? basis functions f;(r) of Eq. (3.75) or
(3.76) have produced good convergence. The inclusion of nonnorma-
lizable functions (3.73) and (3.74) in the basis set should improve
convergence. In Eq. (4.24) the trial functions are always multiplied by
the potential. Thus, for a very short-ranged potential, the long-range
asymptotic behavior of the trial function is suppressed, and only the
short-range behavior of the trial function is important. Therefore, for
very short-range potentials, there is no real advantage in using
oscillating trial functions.

For short-ranged potentials, the exact functions of Egs. (4.10) and
(4.11) are £2. Hence, in Eq. (4.37), the trial functions should be chosen
to be £2. There are two functions in variational principles (4.12) to
(4.16). The exact function 1 is nonnormalizable, whereas y is £2. For
a numerical calculation, both these functions can be taken to be £2.
However, for good convergence, approximate v should have oscillat-
ing behavior at oo, whereas approximate x should be taken to be £°.

The Schwinger variational method (4.37) has also been used
successfully in the numerical calculation for local potentials in con-
figuration space [11]. However, in this form there is an integral over
the inverse potential operator ¥ !, which may not be defined for all
momentum and configuration space variables. This may not be of
concern. What one needs i 1n this approach is not the operator V!, but
the matrix elements (v;| V™~ |ful) which could be finite for appropriate
trial functions even when the operator V' diverges. For example, for
d Yukawa potential (r) ~ exp(—ur)/r, and consequently,

~1(r) ~ rexp(ur), so that ¥~ (r) d1verges as r — oo. This divergence
can be tackled by the following £* functions: v;(r) = (rlvy) =
(vj]r) = exp( ]ar) j=1,2,..,n with a>pu/2. Then the matrix
element (v;| V"~ Ho,) is ﬁmte In this case the basis set v;(r) is supposed



172 VARIATIONAL PRINCIPLES FOR OFF-SHELL AMPLITUDES

to be a good representation of the function (| V|w,(€+)), which is £ for
short-range potentials. The use of £? basis functions (3.75) or (3.76) in
Eq. (4.37) should produce good convergence. Equation (4.37) has
rarely been used in numerical calculations. As this variational method
involves simpler integrals than the usual Schwinger variational
method (4.24), it should receive more attention in the future. How-
ever, most of the commonly used potentials in nuclear and atomic
physics are nonlocal and have a repulsive core at short distances and a
long-range attraction. For such potentials ¥/ ~! is singular at a finite r,
and special care in the choice of the basis functions is needed in using
(4.37) than was necessary in the simple application with Yukawa or
exponential potentials.

4.2.3 Application to Nuclear Problems

The Schwinger variational method has been used extensively in few-
nucleon problems for expressing the resultant ¢ matrix in finite-rank
forms. The use of a finite-rank two-nucleon ¢ matrix in the three-
nucleon problem reduces the latter to an effective two-body problem
[14,15]. The use of finite-rank two- and three-nucleon ¢ matrices in the
four-nucleon problem also reduces the latter to an effective two-body
problem. In the remaining of this section we describe the choices of
basis functions used for expressing the few-nucleon ¢ matrix in finite-
rank or separable forms. The two-nucleon ¢ matrix has a pole at
energy corresponding to a two-nucleon bound or virtual state. The
momenta and energy dependencies of the low-energy two-nucleon ¢-
matrix elements are usually dominated by the presence of this pole.
Once this pole is reproduced in an approximation to the two-nucleon ¢
matrix, this approximation becomes a good one at all energies. Similar
considerations apply to the three-nucleon ¢ matrix also. However, in
problems of atomic physics, one usually has several bound and/or
virtual states. In these problems a low-rank separable expansion has
not provided a faithful reproduction of the actual ¢ matrix. We
describe below several choices for the expansion functions that have

been used successfully in nuclear few-body scattering problems
[14,15].

Unitary Pole Expansion (UPE). One way of making the basis functions
linearly independent and orthonormal, as one should in a numerical
calculation, is to take them to be the eigenfunctions of an auxiliary
eigenfunction—eigenvalue problem. The UPE corresponds to the
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following energy-independent choice for basis functions [16]:

VI = [wi(—B)), (4.42)
(V= (§;(—B)], (4.43)

to be used in Eq. (4.24). Here, |¢;(—B)) and (¢;(—B)| are defined by
[%i(—B)) = \i(~B)VG" (—B)|ih:(—B)), (4.44)

(6;(—B)| = N(—B){%,(~B)|GS” (~B)V, (4.45)

and are normalized according to

(G(~B)|GS (~B)i(—B)) = 65,  i,j=1,.,n.  (4.46)

Typically, B is the ground-state binding energy. With this choice of the
expansion functions the UPE for the ¢ matrix can explicitly be written
as

0] = D [0 =By (=B)l, (4.47)

where

i = A(=B)&;i — (&;(—B)|GSV(E)[ibi(—B)). (4.48)

The function |¢;(—B)) with eigenvalue \;(—B) = 1 corresponds to the
bound state so that |¢;(—B)) is the bound-state wave function at
energy E = —B. If this function is included in UPE (4.47), the UPE ¢
matrix builds in the correct bound-state pole and the residue. If there
is no bound state, B could be taken to be zero. With the choice B = 0,
the UPE builds in the correct ¢ matrix at zero energy. The UPE uses
energy-independent functions, satisfies unitarity, and has been fre-
quently used in the solution of the two-, three-, and four-nucleon
problems.

Hilbert—Schmidt Expansion (HSE). The UPE is the special case of a
general expansion scheme called HSE, which also uses the eigen-
functions of a related eigenfunction—eigenvalue problem. The HSE
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corresponds to the energy-dependent choice for the basis functions [17]
VIf) = 16 E)), (4.49)
SV = @(E), (4.50)
to be used in Eq. (4.24). Here |¢;(E)) and (¢;(E)| are defined by
Wi E)) = ME)VGS (E)wi(E)), (4.51)
(W(E) = ME)WG(E)IGy (E)V, (4.52)
and are normalized according to
(G E)GSHE)G(E)) = 65, ij=1,..,n. (4.53)

With this choice of expansion functions, the HSE for the ¢ matrix can
be written as

|9:(E)) (¥:(E)|
) = Z ©N(E) — 1

(4.54)

At E = —B, the HSE [17] and UPE [16] are identical. The HSE uses
energy-dependent trial functions to be found by solving a eigenfunc-
tion—eigenvalue problem at each energy under consideration, and
hence is numerically more complicated than the UPE from a practical
point of view. The HSE has been used in the solution of the few-
nucleon problem [15].

Bateman Expansion. The Bateman expansion employs in Eq. (4.24) the
following set of basis functions:

|f5) = |pi), i=1,..,n, (4.55)

where | p;) are the momentum elgenfunc‘uons of the free Hamiltonian
and satisfy Hy|p;) = E;|p.)), E; = = p?. With this choice, the finite-rank
potential of Eq. (4.25) becomes exact at the n preselected momenta
pii=1,..,m

Valpi) = V|pi); (pilVa = (pilV. (4.56)
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If these momenta are cleverly chosen, the finite-rank potential should
be a good approximation to the exact potential, and a similar quality
is expected of the finite-rank ¢ matrix of Eq. (4.24). This choice is
simple to use, satisfies unitarity, has acceptable convergence proper-
ties, and has been employed in solving few-nucleon problems.

Ernst-Shakin-Thaler Expansion (ESTE). Here one takes the |f;)’s of Eq.
(4.24) to be the eigenstates (bound or continuum) of the full Hamil-
tonian [18]. For a system with a single bound state, typically, one takes
the first expansion function |f;) = |B), the ground-state wave func-
tion, and the remaining expansion functions to be scattering wave
function at several energies, E;: |f;) = |7 (E;)). The resultant ¢
matrix has the correct bound-state pole position and residue. In this
expansion scheme one has the interesting properties

HE) k) = tn(E;) ki) (ki|t(E;) = (kilt,(E)) E = k12 (4.57)

The ESTE ¢ matrix is exact half-on-shell at these preselected energies,
satisfies unitarity, and converges rapidly. This method has been used
successfully for solving the realistic three-nucleon problem employing
modern meson-theoretic potentials [15].

Analytic Separable Expansions (ASE). This method uses a set of analytic
or quasianalytic basis functions |f;)’s in Eq. (4.24) and has certain
advantages [4]. If these functions are cleverly chosen, the method
produces rapid convergence. One does not have to evaluate the
expansion functions numerically as in the UPE, HSE, and ESTE.
The use of such simple analytic functions facilitates the numerical task
further for the solution of three-particle scattering problem by the
method of contour rotation. In application of the ESTE, Plessas and
Haidenbauer [19] approximate the expansion functions by simple
analytic form factors. Thus, they combine the virtues of both the
ASE and ESTE.

Separable Expansion for Energy-Dependent Potentials. The foregoing
discussion for the implementation of the Schwinger variational prin-
ciple or the method of separable expansion is limited to energy-
independent Hermitian potentials. In many situations of physical
interest, the potential operator depends on the parametric energy, is
complex, and is not Hermitian. This happens when some energetically
open channels are suppressed in the process of deriving an effective
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interaction between composite objects. Some examples are meson-
theoretic nucleon—nucleon potentials with mesonic degrees of free-
dom suppressed above the meson production threshold, or neutron—
deuteron scattering above the deuteron breakup threshold.

In such cases it is not clear if it is possible to implement useful
methods, such as UPE or ESTE, with energy-independent form
factors [20]. However, it would be extremely useful if separable
expansion with energy-independent form factors could be derived
for energy-dependent complex potentials. This can actually be imple-
mented for a class of energy-dependent potentials. Generalizations of
the UPE and EST expansion techniques have been made to generate
separable expansions with energy-independent form factors for
energy-dependent potentials in the three-nucleon system [21].

4.3 NEWTON VARIATIONAL PRINCIPLE

Another class of variational principles for the ¢ or the K matrix
involving the Green’s function can be established as in Chapter 3.1.
One of them, the Newton variational principle, is based on the
operator identity [2,5]

t=V+ VGt + 6,67V - (Gl - 6§ vG(My,
+ (12 = 0(Gy” = Gy VGE) (1 — ), (4.58)

valid for arbitrary operators ¢; and ¢,. We shall be interested in taking
t; and ¢, to be independent approximations to the ¢ matrix. Then the
last term in Eq. (4.58) is of second order in deviations ¢, — tand t, — .
The Newton variational principle for the ¢ matrix is obtained by
omitting the last term in Eq. (4.58) and rewriting it as

(1= V] = V6"t + 6,67V — 1,(G” - GSPvG ). (4.59)

The quantity 7 has been taken to the left-hand side in Eq. (4.59) to
give this equation the same trilinear form as other variational princi-
ples. If exact ¢ matrices are used in place of #; and 1,, the three terms on
the right-hand side are each equal to r— V and Eq. (4.59) is an
identity. This is why the Newton variational principle is a variational
principle for ¢ — V' rather than for ¢. This variational principle is of
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special advantage when ¢ — V' is small compared to ¢ or ¥ or when the
Born approximation is a good approximation to the ¢ matrix.
The momentum-space matrix element of Eq. (4.59) is given by [2]

(P1tp)] = (P'|VIp) + (P'IVGS IxsT) + (x5 1G5V | p)
— (NG = GEIVGE) g, (4.60)

where for simplicity we have used ¢; = t, = t4. In Eq. (4.60), ampli-
tude densities | x}f)) = t4|p) and (x;T)| = (p'|t, are the trial functions.
The exact functions are defined in Eqgs. (4.10) and (4.11). For short-
range potentials, the exact functions are £2. Hence, the trial functions
of the Newton variational principle should also be £2. This is an
advantage of the Newton variational principle over the Schwinger and
Kohn variational principles in numerical application. In Kohn varia-
tional methods, the basis functions must be nonnormalizable, con-
sistent with the appropriate scattering boundary conditions. For
obtaining good convergence with the Schwinger variational method,
non-£? oscillating functions should also be included in the basis set.
Numerically, it is tedious to perform integrals over such functions.

Variational principle (4.60) possesses integrals over single and dual
Green’s functions. Such integrals are difficult to deal with in the
configuration space and are usually handled in the momentum space.
One can dispense with integrals over the Green’s function by con-
sidering the new trial functions

5™ = GOV IuED) = GEV D) = ) — 19, (461)
) = @6 = (G165 = Wl - (). (462)
Then variational principle (4.60) becomes
[(p'lt1p)] = (p'V1p) + (P V1) + (V1)
— (7 NE — Hy = V)n§P). (4.63)
The functions |n;,+)) and <n;,_)| are, respectively, the scattered waves
for outgoing- and incoming-wave boundary conditions. Variational

principle (4.63) does not possess any Green’s function and hence
requires oscillating trial functions satisfying outgoing-wave asympto-
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tic boundary conditions. This variational principle will be identified as
the complex Kohn variational principle for the ¢ matrix. If standing-
wave scattered waves are used in Eq. (4.63), the standing-wave real
Kohn variational principle for the K matrix will be obtained.

Variational principles (4.60) and (4.63), respectively, can also be
written in the following equivalent fractional forms:

P16 xS xS 16 Y p)

(P llp)] = (B'VIp) + Farcom s
VN O
(Pl = (o VIp) + P D TV o

(S 1(E = Hy = V)"

To transform variational principle (4.60) into finite-rank form, we
expand the trial function (4.30) and its conjugate into £ basis sets:

) =S alp)lh) (4.66)
0= 3B (4.67)

Next we substitute these expansions in Eq. (4.60) and require that the
resultant expression be stationary with respect to independent varia-
tions of a; and b;. Then we obtain

n

bi(p') = (P IVGP ) P, (4.68)
i=1

ai(p) = Py (1G5 V| p), (4.69)
=

where

(P Y= (G = GPVGSIN /), hi=1,,n  (4.70)

If we use expansion coefficients (4.68) and (4.69), the expansion
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functions defined by Eqgs. (4.66) and (4.67) become

x5) Z|f (5165 Y 1p), (4.71)
0| = D24 'IVGy L) P (472)

Finally, we substitute Eqgs. (4.71) and (4.72) into Eq. (4.60) to obtain

oxo

(P'ltlp)] = (P 1VIp) + D (P IVG | PP SIG VIp).  (4.73)

i,j=1

This result is equivalent to one of the degenerate-kernel schemes
mentioned in relation to the discussion of Fredholm integral equa-
tions [i.e., Eqs. (3.37), (3.38), and (3.35)]. For a numerical evaluation
of the ¢ matrix using Eqs. (4.73) and (4.70), it is of advantage to work
in momentum space and to calculate and store the elements
(p'| VG | f.). Then the calculation of the P~' matrix of (4.70) involves
a smgle integral and the evaluation of a double integral over the
Green’s function can be avoided.

The versions of the Newton variational principle discussed above
are time-reversal symmetric. Equivalent nonsymmetric forms of the
Newton variational principle can be formulated. In such nonsym-
metric forms, the matrix to be inverted is simpler and involves a single
Green’s function. The asymmetric form of Newton variational prin-
ciple (4.60) can be written as

(p'12)] = (' IVIp) + (P IVInS") + (:CIGE v p)
— 1T =GO ngh), (4.74)

where |n§,+)) = folx}f)}. The function |n§,+)) is not £, whereas the
function (x| is £. In a numerical implementation both these trial
functions can be taken as £? in (4.74). But for obtaining rapid
convergence the appropriate oscillating boundary condition should
be included in trial [n{").

Variational principle (4.74) can also be written in the following
degenerate kernel form in the usual fashion by expanding the trial



180 VARIATIONAL PRINCIPLES FOR OFF-SHELL AMPLITUDES

functions in appropriate basis sets:
[(p'l2lp)] = (P'|V|p) + Z "WIRCAIG VD),  (4.75)

where C™! is defined by Eq. (4.33) with v; = f;. As variational principle
(4.74) is nonsymmetric, two different basis sets have been used in the
expansion. A transposed form can also be used in place of (4.75).

We have considered several forms of the Newton variational
principle. These variational principles for the ¢ matrix—time-reversal
symmetric or not—do not satisfy unitarity. Even for real Hermitian
potentials they do not produce real phase shifts for real trial functions.
Distinct K-matrix versions of these variational principles are obtained
by replacing the outgoing-wave Green’s function by the standing-
wave Green’s function. If K-matrix versions of the Newton varia-
tional principle are considered, unitarity is automatically guaranteed
and the consequent phase shifts are real. The magnitude of the
imaginary parts of the phase shifts of a real Hermitian potential in a
numerical application of the r-matrix Newton variational method
should yield a measure on the rate of convergence.

4.4 ITERATIVE VARIATIONAL SCHEMES

In the usual implementation of variational principles, some unknown
trial function is expanded in a set of functions involving some
arbitrary parameter(s). This scheme reduces the variational principle
to a set of algebraic equations. The success of such a method depends
on an appropriate choice of the basis functions and the parameter(s)
involved. However, in practice, it is seldom known how to make the
ideal choice in a realistic problem. This is responsible for the slow
convergence obtained in many applications of variational methods.
We consider an iterative method that can improve the convergence
properties [22]. The method makes use of a variational principle for
the ¢ (K)-matrix elements, where the trial functions are also ¢ (K)-
matrix elements. We illustrate the method with two variational
principles for the ¢t matrix. However, a similar version exists for the
K matrix with the outgoing-wave free Green’s function replaced by
the standing-wave free Green’s function. A very simple trial function
(e.g., t = 0) can be used in the variational principle. The resultant z-
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matrix elements are then substituted in the variational principle again
for calculating an improved ¢ matrix. This procedure is repeated until
a numerical result of the desired precision is obtained. In this
approach there are no basis functions with free parameters, as in
other applications of variational methods. This scheme leads to quick
convergence and high-precision results for many potentials.

For the on-shell -matrix elements, the following variational prin-
ciples can be used in iterative study [22]:

<k|V(I+G t)|k><k|(1+tG )V|k)
K|+ G5OV — VGO VYT + G o) k)

[(kltk)] = (4.76)
| VG 1K) (ke GS V|k)

k|t|k)] = (k|V k) + '
[(klt|k)] = (k]| (k|1(GL — G VGED) k)

(4.77)

Equation (4.76) is the fractional form of the alternative Schwinger
variational principle (4.8), and Eq. (4.77) is the fractional form of the
Newton variational principle (4.59). The half-shell ¢ operators on the
right-hand side of Eqs. (4.76) and (4.77) are trial inputs for calculating
the on-shell -matrix elements. If trial  matrices with small errors on
the order of A are used in these variational principles, the resulting on-
shell 7 matrices have smaller errors, on the order of A%. Equations
(4.76) and (4.77) can be used as the starting point of an iterative
calculational scheme, which proceeds by substituting successively the
improved ¢ matrix on the right-hand side of these equations.

The ¢ matrices on the left-hand side of Eqgs. (4.76) and (4.77) are on-
shell -matrix elements, whereas the ¢ operators that appear on the
right-hand side are half-shell. For the iterative scheme to function,
estimates of half-shell # matrices are needed. Variational principles can
be written for the half-shell ~~matrix elements in terms of the off-shell
t-matrix elements. For example, a generalization of Eq. (4.76) to half-
shell +-matrix elements is given by

(pV (I + Gy’ t)|k><p|(1+ Gy )V|k>
(| + tGSYV = VG V)T + Gy

[(pltlk)] = (4.78)

This variational principle is quite involved in requiring the off-shell -
matrix elements as input for calculating the half-shell -matrix ele-
ments variationally.
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Instead of using the variational half-shell z-matrix elements of
(4.78), the following nonvariational half-shell extension of stationary
expressions (4.76) and (4.77) can be used:

<p|V(1+G t)|k><k|(1+tG )V|k>
|1 + 1G5V = VGOV + GSP k)

(plelk) = (4.79)
(p |mg+>,|k><k|t<;<+>mk>

(pltlk) = (p|V k) + (k|1(GSY — GSPVGST)k)

(4.80)

Expressions (4.79) and (4.80) are stationary for the on-shell -matrix
elements. However, the nonvariational half-shell # matrices obtained
from these expressions are expected to be good approximations to the
exact elements and can be used in an iterative study.

A useful iterative scheme for scattering problems can be developed
from Egs. (4.79) and (4.80). The iterative method could be started with
any initial guess for the ¢ matrix. For example, the lowest (zeroth)-
order ¢ matrix, ¢y, can be generated if on the right-hand side of Egs.
(4.79) and (4.80) one uses ¢t = 0. The first-order ¢ matrix, ¢;, is then
generated if on the right-hand side of these equations one uses ¢ = ¢,
and so on. This procedure should be repeated until a result of the
desired precision is obtained. This nonvariational iterative scheme is
expected to converge unless the potential is too strong. In numerical
application high-precision results have been obtained for several local
potentials with a bound state.

Usually, the inversion of a matrix as encountered in variational
basis-set methods involves accumulation of numerical errors. In the
present iterative scheme, inversion of a matrix is avoided and this
improves significantly both the precision and the rate of convergence.

Although there are multiple Green’s functions on the right-hand
sides of Eqgs. (4.79) and (4.80), evaluation of the numerators of the
fractions in these equations involves a matrix vector multiplication, or
equivalently, the calculation of N integrals, where NV is the number of
off-shell points. Once these integrals are stored, calculation of the
denominators of these fractions requires the evaluation of one more
integral. Thus, the numerical task for obtaining one iteration of the
variational principle is equivalent to calculating a single iteration of
the half-shell Lippmann—Schwinger equation. The procedure is much
more complicated if a fully variational iterative calculation using Eq.
(4.78) is performed.
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4.5 VARIATIONAL PRINCIPLES OF HIGHER ORDER

The Schwinger and the Kohn—Newton variational principles refer to
the matrix elements of ¢ and ¢t — V, or equivalently, of K and K — V,
respectively. Evidently, one can continue this progression and con-
struct variational principles for ¢ or K minus the first # terms of the
Born series, n = 2,3,.... The next possibility in this progression is the
variational principle for ¢t — V' — VG(()H V. 1t is of advantage to pursue
this procedure for weak potentials and at intermediate and higher
energies. In both cases the Born series presumably converges and the
first few terms of this series present a good approximation to the exact
solution. Then the difference of the type t — V' — VG(()+) V' is a small
quantity. Under such a situation the exact treatment of the first few
terms of the Born series and a variational treatment of the small
difference should lead to a good approximation to the ¢ or K matrix.

To derive a variational principle for the difference t — V' — VG(()+) V,
we introduce the functions

D5y = VGV i), (4.81)
W@ = w6, (4.82)

The iterated forms of Lippmann—Schwinger equations (1.93) and
(1.94) can be written as

t=V+V6\Pv+vG\"ve\Dt = v + v v + 1G\Vv6 Py,
(4.83)

In terms of functions (4.81) and (4.82), the following identities can be
obtained from the momentum-space matrix elements of Eq. (4.83):

(Pltlp) = (P'|(V + VGV V) p) + (o' [VGS 1) (4.84)
= (p|(V + VG V)p) + (451657 v | p) (4.85)
= (| + VGV p) + B = G (4.86)

Equation (4.86) follows from a definition of the quantities involved.
Combining the three expressions above for the ¢ matrix, the following
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trilinear expression is obtained in the usual fashion:

(p'ep)] = (P'|(V + VGSVV) p) + (0 [VGSD |95
+ (@165 V| p)
— @I = G ). (4.87)

Expression (4 87) is stat1onary with respect to variations of the
functions |¢p )} and (¥, ( | and is a variational principle for ¢t — V' —
Vi,

A variational basis-set method can be formulated from the varia-
t10na1 principle (4.87) by expandmg the trial funct1ons |¢ ) and
( Yy | in basis sets. The funct1ons |¢’p )} and ( | defined by (4.81)
and (4.82) are £2; hence £? basis functions s ould produce rapid
convergence. If the trial functions in Eq. (4.87) are expanded in a basis
set consisting of n £ functions lv;),i=1,2,...,n, and their transpose,
we obtain

(p'1t1p)] = (P'|(V + VG V)| p)
+ Z WGP ) UL ()| GSP Y p),  (4.88)
where U™ is defined by Eq. (4.38).
Another form of the variational pr1nc1p1e for the d1ﬁ'erence
— V- VG( )V can be obtained by using the scattered waves |np )

and ( Ty | of Egs. (4.61) and (4.62), respectively. In terms of functions
of Egs. (4.81) and (4.82), these functions can be expressed as

[5H) = VngHy, (4.89)
W5 = v (4.90)

Using Eqgs. (4.89) and (4.90), the variational principle (4.87) can be
rewritten as

(P11 p)] = (&' |(V + VGO V)p) + (o' |VGSI V)

+ VG V) = 1V = VG ISy, @91)
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In this case the exact scattered waves |n§,+)) and (n(,_)| are not L.
Variational principle (4.91) involves the free Green’s function, and
hence £? trial functions can be used in it. However, as the exact
functions are not £2, for obtaining rapid convergence non-£? sine and
cosine functions should be included in addition to the £ basis
functions.

Variational principle (4.91) is particularly useful for numerical
calculation. If we expand the trial functions |n§,+)} and (n;,_)l in basis
sets, variational principle (4.91) yields the following convenient
degenerate kernel form:

(2|t p)] = (P'[(V + VGV V)| p)

n
+ 3 WG VIR DY VG VP, (4.92)
i,j=1

where the matrix D! is defined by Eq. (4.21).
The procedure can be continued and the next variational principle
in this progression can be obtained in terms of the functions (4.81) and

(4.82). Using iterations for the -matrix Lippmann-Schwinger equa-
tions (1.93) and (1.94),

t=vV+ V6"V + V6P v v + va{PvGIvGaite  (4.93)
=V + VGOV + VeGP vG(PV + GO vG(P VG, (4.94)

and the functions (4.81) and (4.82), we obtain the following varia-
tional principle:

(P'lilp)] = (P|(V + VG5V + VGy VGy V)| p)
+ iy, 1Gy" VG V1 p)
+(p'1VGy" VGV
— @516 - GEPVGE) ). (4.95)
The stationary property of expression (4.95) with respect to variations

of trial functions (4.81) and (4.82) can be established by using the
definition of the functions involved. Variational principle (4.95) has
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the form of the usual trilinear combination and is a variational
principle for (p'|t — (V + VGV + VG P vG (P V)| p).

If trial functions in variational principle (4.95) are expanded in
terms of a basis set consisting of n £ functions |f),i=1,2,...,n,and
their transpose, this variational principle can be rewritten in the
following degenerate kernel form:

(D't p)] = (P'|(V + VG5V + VG VG V)| p)

+ Y VGV £ PP IGST VG V), (4.96)
ij=1

where P~ is defined by Eq. (4.70). The trial functions (4.81) and (4.82)
in this case are £* and the basis functions should also be £,

This procedure can be continued and one can write variational
principles for higher-order corrections to the Born—Neumann series.
In each order more than one variational principle can be written.
For example, distinct variational principles (4.87) and (4.91) refer to
the same quantity ¢ — V' — VG(()+ V.

The variational principles of this section can be reformulated for
the K-matrix elements by replacing the outgoing-wave Green’s func-
tion by the principal-value Green’s function. The phase shifts
obtained from the K-matrix version are real. The t-matrix version
of the variational principle does not satisfy unitarity and leads to
complex phase shifts even for real Hermitian potentials.

4.6 COMPLEX AND REAL KOHN VARIATIONAL PRINCIPLES

The usual Kohn variational basis-set method for calculating the on-
shell K-matrix elements has the remarkable advantage of dealing with
simple real integrals, but it is often plagued by the presence of spurious
singularities. Here we present a slightly modified version of this
method that can be used for calculating the off-shell amplitudes.
Such a method, employing boundary conditions for the outgoing-
wave (standing-wave) Green’s function can be used for calculating the
off-shell ¢ (K)-matrix elements, which maintains most of the simple
features of the usual Kohn variational principle [6]. In the modified
version for the ¢ matrix the spurious singularities become rare. The
modified ¢ (K)-matrix variational principle, called the complex (real)
Kohn variational principle, deals with complex (real) algebra.
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The Kohn variational principle is based on the stationary expres-
sion (4.63) for the 7 matrix or the following stationary expression for
the K matrix [6]:

[(p'[K|p)] = (PIVIp) + (P|VIny)
+ (| VIpy — (JI(E— Hy— V)In}),  (4.97)

where the function 1717,3 of Eq. (4.97) is the scattered wave with
standing-wave boundary condition. Like the Newton variational
principle, Kohn variational principle (4.97) can be considered to be
a variational principle for K — V.

In the usual fashion, from Eq. (4.63) or (4.97) the following rank-n
form for the difference t — V' or K — V could be arrived at by
expanding the trial functions |n,) and (| in basis sets and exploiting
the stationary property

100 = (P IV10) + SV IAZD (V1) (498)

i,j=1
with
(Z7Y = (FI(E — H)|f), i,j=1,..n, (4.99)

where O stands for either the 7 or the K matrix. From Eq. (4.97) an
identical rank-n expression results for the K matrix. But different basis
functions are to be used for the ¢- or the K-matrix elements. Although
the expansion functions of Eq. (4.73) can be £2, Eq. (4.98) cannot be
used in its most simple interpretation, namely, with a set of £ basis
functions. The Green’s function does not explicitly appear in Eq.
(4.98). Hence, if a finite £? basis set is used in this equation, the
asymptotic boundary condition of scattering will not be included. In
order that the approximate solution of Eq. (4.98) satisfy appropriate
boundary condition, nonnormalizable basis functions consistent with
proper asymptotic boundary condition are to be chosen. Conse-
quently, to calculate the ¢ (K) matrix, one of the f;’s of Eq. (4.98)
should be taken to satisfy the complex outgoing-wave (real standing-
wave) asymptotic boundary condition of the scattered wave, and the
other functions could be £2.

The Kohn variational principle (4.98) can also be derived from the
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following operator identity for the ¢ matrix:

1
= _— . 4.1
V+VXE—H+mXV (4.100)

If we introduce the presumably complete set of states > iy | ;) {fil
n — oo, which satisfies the appropriate boundary condition, in the
two places indicated by the x’s in expression (4.100), variational
principle (4.98) can be derived.

Equation (4.98) results if the following stationary rank-»n approx-
imation for the Green’s function (E — H + i0) "' is used in Eq. (4.100)

[6]:
=" 1Mz (4.101)
i,j=1

The stationary property of Eq. (4.101) can be seen if in Eq. (3.2) the
number c is taken to be the operator (E — H). Then the variational
estimate for an arbitrary matrix element of this operator between
states (| and |3) can be written as

(a|G|B) = (a|GP|8) + (]G5 18) — (|G (E — H)GLY ),

(4.102)
where G ) and G are two independent estimates of the Green’s
functlon If we redeﬁne the trial functions by |3) = |B) and
(&) = <a|G , the variational expression becomes

(]G16) = (ol ) + (416) — (&I(E — H)]B). (4.103)
If we consider the following expansions for the trial functions:
= _alfi), (4.104)
i=1
(&l => (filb;, (4.105)

J=1

in Eq. (4.103) and make use of the stationary property, Eq. (4.101) is
obtained.
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In the case of the 7 matrix, the configuration space-matrix element
of the outgoing-wave Green’s function (4.101) is given by

n

GOy = 3" MZP (). (4.106)

L,j=1

The asymptotic behavior (1.80) of the outgoing-wave Green’s func-
tion (1.77) can be expressed as

lim (|G 'y — EXPUAT)

r—o0 kr

x function(r’). (4.107)

This behavior can be reproduced by the rank-»n expression (4.106) if
one of the expansion functions f;(r) = (r|f;) = (r|f;) is taken to carry
the complex outgoing-wave asymptotic behavior of the Green’s
function. This is achieved if one of the following possible choices
for f,(r) is employed [6]:

Ni(r) = (rlfi) = {filr) = exp(ikr)[1 — exp(—pr)] (4.108)
= exp(ikr) — exp(—0r) (4.109)
= cos(kr)[1 — exp(—pr)] + isin(kr).  (4.110)

It should be recalled that the functions f; are used to expand the
scattered wave corresponding to ¥;(r) of Eq. (1.37). This scattered
wave is exp(ikr), and this asymptotic behavior is included in f;. In
order that expansion (4.106) satisfy the correct outgoing-wave bound-
ary condition, both (| f;) and (f;|r) should be equal and given by the
expressions above and should not be complex conjugates of each other
as is usually implied by the bra-ket notation of quantum mechanics.
The remaining functions could be taken to be £2. Two possible
choices for them, for partial wave L, are

fi(r) = " exp(—ar) (4.111)
— I exp[—(i — 1)ar], (4.112)
withi = 2,...,n[see Egs. (3.75) and (3.76)]. Choices (4.111) and (4.112)

are consistent with condition (1.35). Any of the three choices for f;
above could be used with any of the two choices for f;,i > 1.
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If a standing-wave boundary condition is used, one gets a calcula-
tional scheme for the K matrix. The asymptotic behavior of the
standing-wave Green’s function (1.133) can be reproduced by the
rank-n expression (4.106) if one of the expansion functions is chosen
to carry this asymptotic condition. This is achieved if we take f;, for
example, to be given by Eq. (3.73). The remaining functions are taken
to be £2, asin Eq. (4.111) or (4.112). Explicitly, in this approach the K
matrix is calculated via Egs (4.98) and (4.99), but with expansion
functions (3.73) and (4.111) or (4.112).

It is possible to demonstrate the formal equivalence between the
present on-shell standing-wave Kohn variational result (4.98) with Eq.
(3.109) in the case of orthonormalized functions. We assume that the
projection operator on the £ functions is termed P and that on
the non-£? cosine function of Eq. (3.73) is termed Q, so that
PQ = QP =0. The plane-wave j;(kr) = (r|k); is assumed to be
orthogonal to the cosine function (3.73). Hence, (k|VP = (k|HP =
(k|(H— E)P, QVP=QHP=Q(H— E)P. These conditions of
orthonormality are necessary for showing the equivalence, but they
are usually not satisfied in numerical calculations.

Then the Feshbach projection operator technique [23] leads to the
well-known identity for the K-matrix version of Eq. (4.98):

K=V +VGppV + (V+ VGppV)

1

x V 4+ VGppV), 4.113

where
Gpp = P(E — HPP)_IPa Hpg = PVQaHPQ = PVQ = P(H - E)Q,

and so on. Using the orthonormality properties above, the on-shell
plane-wave matrix element of this K matrix becomes

(k|K|k) = (k|(H + HGppH)|k) + (k|(H + HG ppH)|C)

1 A . A
X - — (C|(H + HGppH)|k), (4.114)
(E—H)gg — HypGppHpg

where H = (H — E) and C is the cosine function (3.73).
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If we compare Eq. (4.114) with Eq. (3.109), we identify

M
(k|[H + HG ppH||k) = kgo , (4.115)
M
<k|[H+HGPPH]|C) 2 (4.116)
A A M,

If we now use Eq. (1.152) and recall that A = tané, the equivalence
between Eqgs. (4.114) and Eq. (3.109) follows. Hence, the present off-
shell Kohn variational principle is equivalent to the on-shell version of
Chapter 3 provided that orthogonal functions are used. As over-
lapping nonorthogonal functions are usually employed, these two
forms may not be numerically equivalent. However, the present real
Kohn variational scheme for the K matrix is numerically simpler in
requiring the matrix inverse of a single real matrix involving several £°
and a single non-£? function. In the implementation of Chapter 3
these two types of functions are treated separately by a two-step
procedure. The present calculation scheme uses Eq. (4.98), whereas
the on-shell method of Chapter 3 uses the equivalent relation (4.113).

In application of the complex Kohn variational principle for the ¢
matrix, use of a decomposition of the type (4.114) is advantageous.
This procedure treats the £> and non-£> functions separately and
avoids the inversion of a complex matrix, as we see below. Miller and
Janson op de Haan [6] advocated a closely related S-matrix form of
the complex Kohn variational principle and showed how the result
could be expressed in terms of the inverse of a real matrix of dimension
n — 1, thus avoiding evaluation of the inverse of the complex matrix Z
in Eq. (4.98). The rank-n degenerate S matrix of the complex Kohn
variational principle is given by

[Sn(k) — 1] = — ik[(k|t,|k)] = —ik[{k|V|k)

+ Z KIVIRMZOSIVIK.  (4118)

Lj=

This S matrix is not explicitly unitary but can be used in practical
numerical calculations. It is useful to partition the n x n matrix Y
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(= Z™") defined by

Y; = (fil(E - H)|f;) (4.119)

into the 1x1 i=j=1 block and the real (n—1) x (n—1)
i,j=2,...,n, block and the coupling off-diagonal terms. Denoting
the former 1 x 1 block by the projection operator Q and the latter
(n—1)x (n—1) block by P, and assuming orthogonality
PO = QP =0, one has for the ¢ matrix the formal Feshbach identity
(4.113) [23]. Then the expression for the S matrix can be written as

[S(k)] =1 —ik[(k|VIK) + V- Y V+ V=V - Y7 0)

x Voo = V5 - Y Vo) ' Vo=V -V V), (4.120)

where Y is the (n — 1) x (n — 1) real block of the matrix (4.119), Y, is
the complex (n — 1) x 1 rectangular matrix (f;|E — H|f1),i=2,...,n,
V is the real (n—1) x 1 rectangular matrix (f;|V|k), i=2,...,n,
Vo = (f11V1K) = (k|V|fi) and Yoo = (fiI(E — H)\f;) are complex,
and the superscript 7 denotes a transpose (without complex conju-
gation). If one plans to carry out the calculation at many energies, it
may be useful to diagonalize the (n — 1) x (n — 1) real Hamiltonian
matrix (f;|H|f;), i,j =2,...,n, so as to simplify the task of matrix
inversion in Eq. (4.120). In this application of the complex Kohn
variational method, the inversion of a large complex matrix is
avoided.

The standing-wave Kohn variational principle of the present sec-
tion and the usual Kohn-type variational principles of Chapter 3 yield
unitary results. However, the 7-matrix elements obtained from the
complex Kohn variational principle do not automatically satisfy
unitarity. In the converged calculation such phase shifts should be
real, and the magnitude of the imaginary part of the phase shifts gives
an idea about the degree of convergence of the solution. Hence the S
matrix calculated from the complex Kohn variational principle (4.118)
1s distinct from the S matrix calculated from the real Kohn variational
principle, that is,

1 — k(K| K, k)
~ 1+ ik(k|K, k)’

S(k) (4.121)
where K, is calculated from Eq. (4.98) but with real basis functions

satisfying principal-value boundary conditions. The S matrix (4.118)
is unitary, whereas the S matrix (4.121) is not.
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Takatsuka and McKoy [3] pointed out that in the case of standing-
wave boundary conditions it is possible to use Egs. (4.98) and (4.99)
with only £ functions, provided that as in the R-matrix method, the
configuration space is partitioned into two regions—interior and
exterior—with a continuous log derivative of the wave function at
the boundary. Then they show how to construct the basis functions
that provide this continuity. This procedure leads to a practical
numerical method for calculation of the X matrix using only £°
basis functions.

McCurdy et al. [24] pointed out the relation of the complex Kohn
variational principle to the Kapur—Peierls form of R-matrix theory.
The Kapur—Peierls form of R-matrix theory [24], which imposes
outgoing-wave boundary conditions on the wave function at a finite
r, can be put in a form very similar to Eq. (4.100). Its usual version
involves surface integrals, which when converted into integrals over a
finite volume leads to the following expression for the  matrix with the
modified Hamiltonian H + L [25]:

1

(= VAV
TV X E T H _Lio”

v, (4.122)

where the Bloch operator

L=6U—@(%—mj (4.123)

is not Hermitian. Thus for a spectral representation of the operator
(E— H — L+i0)"" one needs a biorthogonal set of eigenfunctions.
This leads to a complex symmetric matrix representation of this
operator as in the complex Kohn variational principle, and the dual
eigenvector is the complex conjugate of the direct one. Equations
(4.100) and (4.122) are identical in the limit @ — 0 or if the potential
vanishes outside » = a. Hence, it is expected that if identical expansion
functions are used, both the complex Kohn variational principle and
R-matrix theory should yield results of similar precision.

4.7 VARIATIONAL PRINCIPLES WITH DISTORTED WAVES

The use of distorted waves has a long history in treating reactions in
nuclear, atomic, and molecular physics. The intercluster potential



194 VARIATIONAL PRINCIPLES FOR OFF-SHELL AMPLITUDES

between two objects could often be very strong, so that the Born—
Neumann series of scattering diverges strongly at medium to low
energies. In such a situation, any solution algorithm based on the
convergence properties of the Born—Neumann series is not very
attractive. It is then advantageous to break up the entire intercluster
interaction into two parts. In place of formulating the scattering
theory in terms of the momentum eigenstates of the free Hamiltonian,
it is of advantage to formulate it in terms of eigenstates of some other
reference Hamiltonian which includes a major part of the intercluster
potential and with which the reference problem can easily be solved.
The eigenstates of the reference Hamiltonian are called the distorted
waves. This reference potential is usually taken to be a simple model
potential such as a square-well potential. All the subtleties of the
original potential should remain in the residual potential. The purpose
of the separation is to make the residual potential weak. The scattering
theory is then formulated with the residual potential in terms of the
distorted eigenstates of the reference Hamiltonian. The first terms of
the Born—Neumann series with the residual potential in terms of a
distorted wave may give a good description of scattering when the
original Born—Neumann series diverges. One can employ distorted
waves in the formulation of various variational principles. Such a
treatment facilitates the numerical task.

Usually, the full Hamiltonian is divided into kinetic energy (H,)
and potential V' parts: H = Hy + V. The scattering problem is then
naturally formulated in terms of the reference Hamiltonian H,, which
has plane-wave solutions at positive energies. For approximate
numerical study, however, this approach has the disadvantage that
for many problems of physical interest, higher-order terms of the
Born—Neumann series play an essential (nonperturbative) role in the
scattering process. This has a consequence on the convergence of the
variational principles. For example, in complex-Kohn variational
method (4.98) or in the higher-order variational method (4.96), the
terms of the Born—Neumann series outside the sum is a poor
representation of the ¢ matrix, and the rank-n separable part is
responsible for generating most of the ¢ matrix. This possibly implies
that n should be large for an accurate description of scattering. If the
reference problem is formulated in terms of distorted waves, the
distorted-wave Born term could be made a good approximation to
the exact ¢t matrix, and the remaining terms of the Born—Neumann
series play an insignificant (perturbative) role in scattering process.
Consequently, the responsibility of the rank-»n separable term in the
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complex Kohn or higher-order variational principles will be some-
what reduced in producing the scattering observables, and a small
number of basis functions can be used in the variational method.

The distorted-wave approach depends on decomposition of the
Hamiltonian [2,26,27]:

H=H,+V"* (4.124)
with the reference Hamiltonian defined by
H,=H,+V, (4.125)

so that V' =V, + V? It is presumed that the reference Hamiltonian
permits an easy solution of the scattering problem, which is a good
approximation to the full scattering solution. The full scattering
solution is formulated using the known solution of the reference
Hamiltonian, and the presumably small residual interaction V* is
treated variationally.

The usual Lippmann—Schwinger equation is formulated in terms of
the free Green’s function G(()H (E) = (E — Hy + i0)"'. If we define the
distorted-wave Green’s function by

G N(E)=(E— H, +i0)™", (4.126)

then we have the identities

[+GPV =T+ vYy1+6Pv), (4.127)
I+ VG = (U + vV, + veG™h), (4.128)

where G™) is the full Green’s function G = (E — H + iO?‘l. Using
these identities the full # matrix defined by = ¥ + VGV can be
written as

t=t, + 1t (4.129)

where
ta=Vo+ VoGV, =V, + V.G, =V, + 1,67 v,  (4.130)
=1+ V,GNe I+ G5V, (4.131)
with
t =Vt VG, =V + 1,61V (4.132)
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The equations above can be verified by using definitions of the various
Green’s functions and identities of type (1.90) and (1.92). We would
like to formulate the scattering problem in terms of the outgoing and
incoming distorted waves, defined by

1) = (T +GSP7,) p), (4.133)
(P’ = (p|( + V.G, (4.134)

so that the on-shell * matrix becomes

(P'lt1p) = (P |Vl P + (0" OealptH). (4.135)

This is the Gell-Mann—Goldberger two-potential formula [27]. The
first term on the right-hand side of Eq. (4.135) is the distorted-wave ¢
matrix for the reference potential and is supposed to be known. The
presumably small last term in this equation is to be calculated
variationally.

Let us consider a couple of examples where this two-potential
formulation is useful. (1) If the interaction potential has a long-
range (repulsive) Coulomb tail, one can take the reference potential
V, to be the Coulomb potential, for which the solution is exactly
known. The remaining short-range potential V'* is to be treated
variationally. This procedure has been used to treat the proton—
proton scattering problem variationally [26]. (2) In the case of a
complicated short-range potential, one can take the reference poten-
tial V, to be a simple (say, a square-well) potential that approximates
the original potential well and for which the scattering solution is
presumably known or can easily be found. The remaining small
potential V“ is then treated variationally.

We can formulate all the variational principles of the present
chapter in terms of distorted waves, and we illustrate a couple of
them. To write the Schwinger variational principle for the last term of
Eq. (4.135), we note that the operator 7,4 of this equation satisfies a
formal Lippmann—Schwinger equation (4.132). We can define the
scattering states in terms of distorted waves by

[W5) = [py + GED vy, (4.136)

WS = ('O + (w16, (4.137)
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In terms of these scattering states, the 7-matrix element ( p'7 |z, p™))
can be written as

(p"Neal P = (PO elgD) = e pt)

= W)V~ G vy, (4.138)

Then the following Schwinger variational principle for the residual
term in Eq. (4.135) is obtained:

(P Oltalp) = POy + @77 o)

— @ = VG vy, (4.139)

In this equation the distorted Waves < | and | ) are supposed to
be known, and the functions < | and |¢p ) are the unknown trial
functions. The similarity of the dlstorted -wave Schwinger variational
principle (4.139), with the plain-wave version (4.5) is explicit. If we set
V, = 0, these two forms become identical.

To derive a finite-rank version of the distorted-wave Schwinger
variational principle, the trial functions are expanded in basis set
fi,i=1,2,...,n. Using the stationary property of Eq. (4.139) with
respect to variations of the expansion coefficients in the usual fashion,
one could obtain the rank-» form for the residual ¢ matrix:

Z VD fIVe, (4.140)

where
(D™ = ([I(V* = VG V)£, (4.141)

Equations (4.140) and (4.141) are very similar to the Schwinger
variational basis-set equations (4.24) and (4.21) for potential scatter-
ing.

In a similar fashion one can derive other variational principles in
the distorted-wave representation. The distorted-wave Newton varia-
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tional principle can be written as
(p"Otalp ] = ("™ + PO o6 IgY)
+ <X§,,_)|Gf,+) V“\p(+))
~ 0SNG - GV NGy, (4.142)

where the form factors <X§,,_)| and | X}f)) are now defined by

XSy = Ve, (4.143)
O = @l v (4.144)

The stationary property of Eq. (4.142) can be established in exactly the
same way as that of the Newton variational principle (4.60) of
potential scattering.

The form factors (4.143) and (4.144) are £2. To derive a variational
basis set method, one can expand these form factors into £ basis sets.
Then using the stationary property of the variational principle (4.142),
with respect to the coefficients of the expansion, one can obtain the
degenerate finite-rank version of the Newton variational principle, in
close analogy with analogous Egs. (4.73) and (4.70) of potential
scattering:

[t = Ve > VG H) POFIG Ve, (4.145)
i,j=1
where
(PN = ([IGSY = GSDVGD) ), (4.146)

respectively. These equations have been used successfully in scattering
calculations and with £ basis functions produce good convergence
properties. Similar expressions can be written for the (complex) Kohn
and higher-order variational principles.
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4.8 INSERTION TECHNIQUES

Numerical application of the variational methods is performed by
expanding the trial functions in appropriate basis sets. Then the
numerical task is reduced to the solution of a linear algebraic set of
equations of small dimension. Often, such algebraic treatment involves
the evaluation of a single or multiple (infinite) integral over the free
Green’s function(s) and/or oscillating plane-wave states. Such integra-
tions are easily performed in the case of potential scattering in both
momentum and configuration spaces. In more complex situations,
evaluation of these infinite integrals over oscillating functions could
be quite complicated. The technique we describe below is of advantage
in evaluating such integrals in configuration space. For example, in the
symmetrical form of the Schwinger variational principle (4.24), the
barrier to use of a straightforward calcuiational scheme in realistic
atomic and molecular problems is evaluation of the integral containing
the free Green’s function in matrix D' of Eq. (4.21). Usually, addi-
tional approximations may help its evaluation. It has been pointed out
that the calculation of such integrals becomes easier if a complete set of
£? basis functions is inserted in either side of the Green’s function [28].
The denominator function of Eq. (4.21) is readily evaluated if the same
£? basis functions as used in the Schwinger variational principle are
also used in both sides of the Green’s function. Other £ functions can
also be used on both sides of the Green’s function. Once these £
functions are introduced, the infinite integrals over the Green’s func-
tion can be cut off at some large distance, and this makes their
evaluation easier. Usually, the potential is of longer range than the
£? basis functions and a direct evaluation of D' of Eq. (4.21) involves
tedious integration over the Green’s function to larger distances. We
consider here several examples of such insertions.

Watson and McKoy [29] proposed an approximate form of the
Schwinger variational principle (4.24), where the matrix elements
(4.21) of D! are replaced by

(D™ = (FIVIf)
S KVl G VLY, ii=1,n,

m, =1

(4.147)

Here h,,,m = 1,...,n, are a presumably real, complete, and ortho-
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normal set of n £ functions with the closure relation

i i) (hil = 1. (4.148)

In actual implementation the set A; (as well as the original £? basis
functions) should to be complete, linearly independent, and orthogo-
nal or nearly so. In practice the functions 4; can be taken to be the
same as the £> basis functions f;. However, in actual numerical
application, these functions are usually taken to be linearly dependent
and nonorthogonal. Equation (4.147) involves two insertions, and its
use in the Schwinger variational method will be called a Schwinger
variational method with double insertions.

Sometimes, to simplify numerical calculation, similar insertions are
made in momentum-space matrix elements of the potential when the
potential is known in configuration space. Transformation of such a
potential to momentum space involves an integration over nonnor-
malizable momentum eigenstates. For a realistic problem such an
integration is a difficult numerical task. Insertion of a complete set of
£? functions facilitates the task. Rescigno et al. [30] suggested, in
addition to insertions of Eq. (4.147), two insertions in the potential
terms of the Schwinger variational method. They rewrote the Schwin-
ger variational principle (4.42) as

(P tal )] Zzpm Vbl VIAY DS LV IR (il p),  (4.149)

i,j=1 mi=1

where the D matrix 1s defined via (4.147). This approach involves four
insertions of the basis set and is referred to as the Schwinger varia-
tional method with quadrupole insertions. In the original study, the
K-matrix version of (4.149) was considered. In Eq. (4.149), matrix
elements of both the potential and Green’s function operators are
required between £ functions. No such matrix elements between non-
£? sine and cosine functions are required.

Similar insertions can also be made in other variational principles.
For example, Staszewska and Truhlar [28] suggested replacing the
function P~' of Eq. (4.70) in Newton variational principle (4.73) by

P = UGS — S AIGS o) o e} (I GED) 1)

m,l=1

(4.150)
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This procedure involves two insertions. The £ functions 4; are chosen
asin Eq. (4.147). After making these insertions we need to evaluate the
matrix element of the Green’s function only between £ functions. At
the same time, similar insertions can be made in the numerator
functions of (4.73).

Staszewska and Truhlar [28] also suggested insertions in the
simplest form of the Schwinger variational principle (4.34), which
1s rewritten as

Kp'ltz] )] Zzplh bl V13 €5 (051 ), (4.151)

i,j=1 m=1

where

(C = Wl =Y WIG ) VIS,  ij=1,.n.

m=1

(4.152)

After these insertions one needs to calculate matrix elements of the
potential and Green’s function only between £ functions. Equations
(4.151) and (4.152) correspond to insertions in the simplest version of
the method of moments applied to the Lippmann—Schwinger equa-
tion. In fact, such insertions can be introduced in all variational
principles. However, it is of great practical interest to find out how
such insertions affect the rate of convergence.

4.9 VARIATIONAL PRINCIPLES FOR GENERAL MATRIX ELEMENTS

Variational principles for the - or K-matrix elements have been very
useful for finding the approximate solution of Schréodinger dynamics.
Physical observables are then calculated from these ¢z or K matrix
elements. In some cases physical observables may be directly related to
some other matrix element of the wave function. Then it might be
convenient to write variational principles for these general matrix
elements rather than for the z- or K-matrix elements. Next we consider
variational principles for a general matrix element and show how to
derive different variational principles for a ¢ or K matrix as special
cases. We also write a variational principle for the difference between
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the exact matrix element and the variational result. Such a subsidiary
variational principle for the difference will help in finding the error in
the variational evaluation of the original matrix element and will thus
produce an improved result over the original variational calculation.
This approach has interesting applications in studies of molecular
photoionization cross sections where electronic transition matrix
elements are required. In general, variational principles can be written
down for many matrix elements of physical interest [31].

Let us consider the matrix elements for the scattering wave function
|¢(+)), with outgoing-wave boundary condition, which satisfies the
Lippmann—Schwinger equation

™)) = |y + K|y, (4.153)

where K = G(()+)V and |¢) is the incident plane wave. Let us also
consider the conjugate equation

7 = (Rl + (K, (4.154)

where (R| and (x{7)| are yet unknown quantities. In potential scatter-
ing we have seen that the conjugate equation is satisfied by (R| = (¢|,
the incident plane wave, and <X(_)\ = <¢(_)|, the scattering wave
function with incoming-wave boundary condition. In a general quan-
tum-mechanical problem, the unknown and inhomogeneous terms of
the conjugate equation may or may not be related to those of the
original equation. Using this flexibility in defining the conjugate
equation, one can formulate a class of useful variational principles
for calculating general matrix elements. We would like to establish
variational principles for the following matrix element of the wave
function ™)) [13]:

M(R,9) = (Rp™) = (x7Ig) = (ONUI - ). (4.155)

The identities (4.155) can be derived using the defining Lippmann—
Schwinger equations (4.153) and (4.154). With a different choice of R
one can obtain a different matrix element.

The following stationary expression for M(R, ) has the usual
trilinear relation

[M(R, 9)] = (RIB) + (i 7Jo) — (X1 = ) |wt™),  (4.156)
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where the variational functions are <X£_)| and |¢£+)). The suffix ¢
denotes trial and has been introduced for future convenience. The
stationary property of Eq. (4.156) can be established by using Eqs.
(4.153) and (4.154). Expression (4.156) can also be written in the
fractional and finite-rank forms.

To obtain the finite-rank form, we have to expand the trial
functions in a basis set, and after using the stationary property of
Eq. (4.156), we obtain in usual fashion

n

My=>_(Rlu)D;" (v)|¢), (4.157)

ij=1
where

(D_l)ji = <Uj|(1 — K)|uw;), (4.158)

and ; and v;, i,j = 1,2, ..., n, are two sets of basis functions. Expres-
sion (4.157) is the required finite-rank expansion. Here we are using a
subscript zero on M to denote that this finite-rank estimate is a zeroth-
order estimate and we shall find a correction to this zeroth-order
estimate in the following.

In addition to calculating the finite-rank approximation (4.157), it
is convenient to calculate the correction to this approximation. For
this purpose we define the finite-rank operator 7 by [13]

T= |u)D (v)l. (4.159)
ij=1

Then the finite-rank expansion (4.157) can be written as
M, = (R|T|¢). (4.160)

From Egs. (4. 156) (4.157), and (4.159), we find that the trial functions
") and (x| are given by

WYy =Tle), (7| =(RIT. (4.161)

Next we would like to calculate an estimate of the error in the finite-
rank approximation M, to M (R, ¢). This error is given by

M, = M(R,¢) — My = (Rlp'") — iy = (xO —x{V|g). (4.162)



204 VARIATIONAL PRINCIPLES FOR OFF-SHELL AMPLITUDES

To estimate this error, we consider the zeroth-order solutions of Egs.
(4.153) and (4.154):

My = 1) + Kty (4.163)
(xS = (Rl + (I, (4.164)

and express the exact wave functions in terms of these solutions. From
Eqgs. (4.153) and (4.163) we obtain

(I = )W) + Kl = ). (4.165)
Using Egs. (4.153) and (4.161), Eq. (4.165) can be rewritten as
(I +KT)(I = )™y = [u”). (4.166)

Equation (4.166) connects the zeroth-order and exact solutions |¢(()+))
and |¢(+)), respectively. If we introduce the finite-rank operator X by

X=Y |u)0 (v, (4.167)
ij=1
with
(07 = (v|uy), (4.168)

then this operator is related to the operator T of Eq. (4.159) by
T=X+TKX =X+ XKT. (4.169)
Equation (4.169) is formally similar to a Lippmann—Schwinger

equation, which will aid in formal manipulations. In terms of X,
Eq. (4.166) can be written as

I — (K +KTK)I — X)) = (I + KT)(I — K)[pD) = [y57).
(4.170)

In deriving Eq. (4.170), we have used Eq. (4.169).
In a similar fashion, one can obtain the following relation connect-
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ing the zeroth order and exact functions <X(_)| and <X(()_)|i

XN = I = X)(K + KTK)) = (NI = K)(I + TK) = (x§ .
(4.171)
Now the difference M, of Eq. (4.162) can be written as

M, = NI -0 - (O -K)Tle)  (4172)

= (xONU -K) = - K)TU = K)]").  (4.173)

In deriving Eq. (4.172), we have used Eqgs. (4.153), (4.154), and (4.161),
and in deriving Eq. (4.173), we have used Eq. (4.153). By using Egs.
(4.166), (4.169), and (4.170), we obtain from Eq. (4.173)

M, = XN - X)) (4.174)
In a similar fashion we can derive
M. = (x5 = X)), (4.175)

Using Egs. (4.170) and (4.171), we can rewrite Eqs. (4.174) and (4.175)
as

M, = x| - X)[I — (K+KTK)I - X)]]p'™1). (4.176)

Usmg the formal solutions of Egs. (4.170) and (4.171) for W ) and
< )|, in Eqs. (4.174) and (4.175), respectively, we obtain

M

¢

OGII — XK+ KTK) I - X)"[95y  (4.177)

e 10

OGN — X)(K+ KT - X)IgSY)  (4.178)

3
Il
o

We discuss two practical ways of computing M, both based on
Schwinger variational principles. The first is a variationally stable
method and the second is a iterative method. Because of the similarity
with the method of Padé approximants, the first method is also called
a variational Pad¢ approximant method.

In Eqs (4.174),(4.175), and (4.176), the zeroth-order estlmates (Xf) )|
and |¢ ) are considered known, whereas the exact functions < J]and
| ) are considered unknown. We consider the following variational
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principle for the quantity M, of (4.176):

M) = 6871 = 0RD) + N = X018
— NI - X) - (I = X)(K+KTK)(I — X)][9), (4.179)

where (x(7| and |} are new trial functions. This is a Schwinger
functional of the difference AM,. The stationary property of the
trilinear expression (4.179) follows from Egs. (4.170) and (4.171).

We have proposed variational principle (4.156) for the general
matrix element M (R, ¢) of Eq. (4.155). An approximate calculational
scheme of this quantity can be performed via finite-rank expression
(4.157). We have also proposed variational expression (4.179) for the
difference M, of Eq. (4.162). By using Eq. (4.179), we can obtain an
estimate of the error in the original variational calculation of M (R, ¢)
based on the finite-rank variational expression (4.157). With this
estimate of error, we can obtain an improved result for M(R, ¢).
Next we describe two ways of computing the correction term.

An estimate for the error 1n M (R, ®) of Eq (4.155) can be obtained
when the trial functions | ) and (x| of Eq. (4.179) are con-
structed as linear combinations of following basis functions, respec-
tively:

£ =IKC+KTOI = X)), i=0,1,..,  (4180)
(gl =0T - X)(K+KTK)),  j=0,1,..  (4.181)

The set of functions above are suggested by Eqs. (4.177) and (4.178).
When the complete set of functions (4.180) and (4.181) are used in the
stationary expression (4.179), the exact result for the difference M, is
obtained. If the trial functions (x{7)| and |/} are expanded in basis
functions (g;| and | f;), respectively, and the stationary property of Eq.
(4.179) is used, we obtain a finite-rank form for the difference AM,.
Then the variational approximation to M, obtained by using this
finite-rank approximation to M, is given by

Mp—Mo+Z x6 I = X) ACM gl - X)ls™),  (4.182)
i,j=0

(€D =gl = X)I = (K+KTK)I - X)]|f7)- (4.183)
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Instead of calculating M|, and the remainder term separately via Egs.
(4.157) and (4.182), the correction scheme can be incorporated in the
Schwinger expression (4.157). First, the initial Schwinger basis func-
tions are to be used in Eq. (4.157). Once these functions are exhausted,
the functions of basis sets | f;) and (g;| of Egs. (4.180) and (4.181) are
to be included in place of the basis sets |u;) and (v;| of Eq. (4.157),
respectively. The entire scheme then appears as a unified Schwinger
variational method. This method has also been called the variational
Padé method.

Another approach for obtaining approximation to M, is the
iterative Schwinger method, where the basis functions in Eq. (4.157)
are augmented from the following sets constructed iteratively:

[y} = 18) + D Klu) Dy (v e), (4.184)
Oav| = (RI+ D _(Rlui) Dy (vyIK, (4.185)

L

where |¢O ) and <Xo | are |¢O ) and <Xo )| of Egs. (4.163) and
(4.164). The functions |¢O )) and <X(() | are obtained if only the initial
basis functions |u;) and (v;| are used in Egs. (4.184) and (4.185),
respectively. If more functions are 1ncluded 1n the expansions of Egs.
(4.184) and (4.185), improved |¢ ) and < )| can be obtained. F rom
Eqgs. (4.163) and (4.164) we find that the inclusion of functions |¢0 )
and <X(() )| in the variational result (4.157) should lead to an iterative
im rovement The next functions to be included in Eq. (4.157) are
) *) ) and < | constructed from Eqgs. (4.184) and (4.185), where the
functions |, )) and <X0 | are included in addition to the original
functions on the right-hand side of these equations. This procedure
can be contlnued 1ndeﬁn1tely by including higher-order correction
functions |¢N ) and <X§v | in the Schwinger expression (4.157) when
the sum in Egs. (4.184) and (4 185) runs over all the initial functions
as well as the functions |¢( ) and < |, i=1,2,...,(N — 1), respec-
tively.

Both the iterative methods described above proceed indefinitely for
calculation of the correction term M,. But in practice few terms are
expected to lead to good improvement. The two methods are quite
similar in spirit. For N = 1 they yield identical results, but they are
different for a general N.

In the case of potential scattering, the foregoing methods have
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interesting consequences. In that case, in Eq. (4.154) one can identify
(R| = (o|V. (4.186)

Then consistency with the -matrix Lippmann—Schwinger equations
(1.93) and (1.94) leads to

X7 = (gl = (V. (4.187)

If we recall that C = G(()+) V, Eq. (4.154) 1s identified as the Lippmann—
Schwinger equation (1.94) and Eq. (4.156) as the Schwinger varia-
tional principle (4.12) or (4.5). The procedure described above then
provides definite prescriptions for improvement on the Schwinger
variational result.

The scheme above is appropriate to derive the Schwinger varia-
tional principle from a general variational principle and also to find
improvement over it. One can also derive Newton variational princi-
ple from a general scheme. Such a scheme can be obtained if we
partially expand the unknown function |¢ ) of Eq. (4.153) in an
iterative Neumann series and use it in expression (4.155) for M (R, ¢)
to obtain

MR, 6) = S (RIKHI6) + Ln(R,6), (4.188)
k=0
where
L,(R, ¢) = (RIK"|p). (4.189)

Equation (4.188) is an identity. The first term on the right-hand side of
this equation should be treated exactly, and the last term 7,,(R, ¢) of
this equation given by Eq. (4.189) is to be treated varlatlonally For
this purpose we introduce the function < | by

(Xl = K) = (RIK™. (4.190)
In terms of this function, the quantity 7,,(R, ¢) can be rewritten as

LR, @) = (X(,|8) = (X1 — K[, (4.191)
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By combining Eqs. (4.189) and (4.191), a trilinear variational relation
for I,,(R, ¢) can be written as

(R, )] = (RIC™[D) + (x{10) — (x| = K™y, (4.192)

In Eq. (4. 192) the functlons (R| and |¢) are considered known. The
functions |} and (x X(m) | are unknowns that are to be expanded in
basis sets. If we expand these unknown functions in basis sets and use
the stationary property of Eq. (4.192), the following finite-rank
expression 1s obtained:

1 (R, #)] = D (RIK"|u)) Dy {v)]9), (4.193)
ij=1

where Dﬁl is given by Eq. (4.158) and ; and v;, i, j = 1,2, ...,n, are
two sets of basis functions.

By redefining the expansion functions in Eq. (4.193), one can obtain
a class of variational expressions for 7,,( R, ¢). Let us illustrate this for
potential scattering with (R| defined by Eq. (4.186). The first term in
the sequence corresponds to taking m = 0. For m = 0, the first term on
the right-hand side of Eq. (4.188) is zero. Then Eq. (4.193) becomes
identical to Eq. (4.34) and the usual Schwinger variational principle is
obtained.

The next term in the progression corresponds to taking m = 1, with
(R| defined by Eq. (4.186). In this case if one defines V'|u;) = | f;) and
(] = (fGSTV, Eqs. (4.188) and (4.193) lead to

M(R,$) = ($|V|¢) +Z s|VGO I PP (FIGI V),  (4.194)

i,j=1

with P~! defined by Eq. (4.70). Equation (4.194) is now identified with
the Newton variational method of Eq. (4.73). For m = 2 it can be
shown that Eqs. (4.188) and (4.193) lead to the higher-order varia-
tional principle (4.92). In a similar fashion other higher-order varia-
tional principles for the ¢ matrix can be recovered for m > 2.

The matrix element M (R, ¢) considered above can also be used to
calculate quantities other than the ¢ matrix. If (R| is taken to be the
configuration space eigenfunction (e.g., (R| = (r|), M(R, ¢) is a varia-
tional functional for the configuration space representation for the
wave function. By considering different values of m and different basis
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functions, we obtain a class of variational principles for the scattering
wave function.

If we take (R| = (¢y|p, the quantity M(R, ¢) = (¢o|plt)) becomes
the dipole matrix element required to compute photoionization cross
sections. Here ¢, is a bound orbital of a molecular electronic wave
function. The function p is either r, which gives a dipole length matrix
element, or V, /e, with e the photon energy. The second choice gives a
dipole velocity matrix element, where ¢ is the photoelectron conti-
nuum orbital. For m = 0 one can define | f;) = [w;) and (f;|V = (v,
then Eqgs. (4.188) and (4.193) become [13]

n

[M(R, )] = > (¢olpGs" VI /) DS (£1V 9, (4.195)

ij=1

where D! is now defined by Eq. (4.21). This expression for M (R, ¢)
yields the required dipole matrix element. In a similar fashion, higher-
order variational expressions can be written down for m > 1.

4.10 VARIATIONAL PRINCIPLES FOR THE I' MATRIX

The variational principles for the r or K matrix with explicit depen-
dence on the Green’s function are usually transformed into algebraic
basis-set calculational schemes. The resulting numerical work in
momentum space involves dealing with complex algebra and/or prin-
cipal-value prescription in treatment of the Green’s function. Troubles
associated with complex algebra and/or principal-value treatment can
be avoided by dealing with the real but nonsymmetric I" matrix and
considering variational principles for the I" matrix.

One can write Schwinger- or Newton-type variational principles for
the I' matrix. The nonsymmetric aspect of this matrix does not cause
any practical problem. First, we derive a Schwinger-type variational
principle for the I matrix introduced in Section 2.4 with k = k. Let us
consider the quantities |r ,) and (7 |, defined by

Vip) = (V=VGoV)n ), (4.196)

(v -vGihy), (4.197)

<p,‘v — <ﬁk,p’
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respectively, where V is defined by Eq. (2.27). The explicit energy
dependence of various operators is suppressed for notational conve-
nience. The potential V of Eq. (2.27) is energy (k) dependent, which is
exhibited explicitly on the functions |7 ,) and (7 ,/|. The operator
VG, is real and does not require outgoing-wave or principal-value
prescription for its evaluation. Using the formal solution
I'= (I —VG,y) 'V of the I'matrix equation (2.28), one can derive
the following identities:

(P'ITIp) = (p'|(I = VGo)~'V|p)
= (p'|(I = VGy) ' (V = VGyV)|ni ) (4.198)
= (P’ p) = (Tl (V = VGoV) i p)
= (A | V1 D)- (4.199)

In deriving these identities, definitions (4.196) and (4.197) and the I'-
matrix equation (2.28) have been used.

Using identity (4.199), the Schwinger variational principle for the I'
matrix can be written as

Vip) — <ﬁk,p'|(V - VGOV)|77k,p>a
(4.200)

(P ITIP)] = (P WImkp) + (il

where |7 ,) and (7 | are the unknown trial functions. Using defini-
tion (2.28) of the I matrix and Egs. (4.196) and (4.197), the stationary
property of Eq. (4.200) can be established.

The trilinear form (4.200) for the variational principle for the
matrix I" can also be written in the following fractional form:

(D' VI, p) Tk, | V| D)
(T, pr | (V = VG V) |1k p)

[(P'IT|p)] = (4.201)

A rank-n version of the variational principle (4.200) can be derived
if one expands the unknown functions |7 ,) and (7 ,| in basis sets
and makes use of the stationary property. Then the following rank-n
form for the I matrix is derived in the usual fashion:

n

(PPl )] = Y (0 V) D ) V1), (4.202)
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where

(D7 = WV =VGoV)lw),  i,j=1,..m, (4.203)

and (w,| and |u;) are basis functions. For u; = w;, the matrix D,(-j”) is

symmetric and the asymmetry of the I matrix is manifested by the
asymmetric form factors (p'|V|u;) and (w,,|V|p).

In a similar way, the Newton variational principle for the I" matrix
can also be obtained. The Newton variational principle is a variational
principle for I — V. To obtain this variational principle, we define

Vip) = (I — A)|&,p), (4.204)
(p'14 = (€p|(I — A4), (4.205)
where 4 = VG, is defined by Eq. (2.26).
Using the following formal solution of the I'-matrix equation
(2.30):
(P|(T = V)Ip) = (p'l(I = VGo)~ VGV |p) (4.206)

and definitions (4.204) and (4.205), one can derive the following
identities:

(P'|(C = V)p) = (P'|(I = VGy) VG (I — A)&.,)  (4.207)
= (P41 ) (4.208)
= <£k,p’|(l - A)|§k,p> = <£k,p’|V|p>' (4'209)

In deriving these identities, definitions (4.204) and (4.205) and the I'-
matrix equation (2.30) have been used. Using these identities, the
Newton variational principle for the I' matrix can be written as

[(p'|F|p)] = <p,|V|p> + <p,|A|§k,p> + <£k,p’|V|p> _ <£k,p’|(l - A)|§k,p>a
(4.210)

where |¢; ,) and (& /| are unknown trial functions. Allowing small
variations of the functions |§, ,) and (& |, the stationary property of
Eq. (4.210) can be verified.
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The variational principle (4.210) can also be written in the following
equivalent fractional form:

<p,|A|§k,p><£k,p’| Vip)

(P ITIp)) = {p1VIp) + (| (1 — A€k, )

. (4.211)

A finite-rank version of variational principle (4.210) can be derived by
expanding the unknown functions [ ,) and <£k | in a finite basis set
and using the stationary property. The resultant degenerate kernel
form of the I' matrix can be written as

(0l = (21V17) + S0 Al D Vg, (4212)

where
(D™= Wl = A)lw), i j=1,.m, (4.213)

and (w;| and |u;) are basis functions.

One of the ideas behind constructing the I' matrix was to make the
kernel 4 of the real nonsingular integral equation (2.28) weak with a
proper choice of the function ~, so that this equation has a convergent
iterative Neumann series solution. When this happens, V is supposed
to be small and so should be the last term in Eq. (4.212). As the
potential term is explicitly included in the stationary form (4.212) for
the I matrix and the last term of this equation is constructed in terms
of the potential V, this form is supposed to converge rapidly.

The procedure above can be continued further by including more
and more terms of the Neumann series exactly in the variational
expression. For example, one can consider the following formal
solution to the I'-matrix equation (2.30):

T=V+AV+ (I —A) 4V (4.214)

for constructing a variational principle for I' — V' — AV. For this
purpose we introduce the functions |xy ,) and (X |, defined by

AV|p) = (I = A)[Xk.p)> (4.125)

(P4 = (o p|(T = A). (4.216)
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Using these functions we have the following identities:

(Pl =V —AV|p) = KuplAVIP) = (P'|A|xk p)
= (Xie,p' | (I — A)| Xk, p)- (4.217)

With the use of this identity, the variational principle for the matrix
element of I' — V' — AV becomes

(P'ITIp)] = (P'|(V + AV)|p) + (P'|AlIxk p) + (X, |4V | P)

— (Xepr | (T = DXk p) (4.218)

where |xx ,) and (X, | are the unknown trial functions. Allowing
small variations of the functions (X | and |xy ,) around their exact
values, the stationary property of Eq. (4.218) can be verified. Varia-
tional principle (4.218) can also be written in the following fractional
form:

<p,|A|Xk,p><>_<k,p’|A Vip)
Xk, | (T — A)| Xk, p)

[(P'ITIp)) = (P'|(V + AV)|p) + (4.219)

From Eq. (4.218) we could obtain a practical basis-set method.
Expanding the unknown functions in this equation in basis sets and
using the stationary property, variational principle (4.218) can be
written in the following rank-» form:

(P01 p)] = (P1(V + AV)|p) + 3 (9| Alu) D) (w,al AV | p),

im=1

(4.220)

where the matrix D is defined by (4.213) and (w,| and |u;) are basis
functions. The expression (4.220) seems to be particularly suitable for
numerical calculation. If the I" matrix is properly constructed so that
the kernel A4 is weak, the first term on the right-hand side of Eq. (4.220)
is a good approximation to the I' matrix, and the last term is the
variational expression for the remainder. As the variational principle
is built on a zeroth-order term which is already a good approximation
to the I' matrix, the inclusion of the variational expression for the
remainder should lead to good convergence.
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The degenerate kernel results (4.212) and (4.220) can also be
derived from the following formal solutions for the I' matrix:

1

F=Vaid
TAX T

XV, (4.221)

'=V+4+ AV + A4 x X AV

I —A4 ’

(4.222)

respectively, by introducing a complete set of states > ;|u;)(w;| and
> j|w;){w;| at places marked by x’s. However, such a derivation does
not exhibit the variational nature of the solution. This was noted in
connection with Eqgs. (3.24) and (3.39) for solution of the general
Fredholm equation (3.6).

All the variational principles considered in this section involves the
free Green’s function explicitly, and hence the basis functions can be
taken to be of the £ type and the trouble associated with non-£>
functions can be avoided.

411 ANOMALOUS BEHAVIOR

Until very recently it was believed that all variational principles
presented in this chapter do not possess anomalous behavior. The
numerical basis-set implementation of these methods involves inver-
sion of a matrix. The anomalous behavior refers to the appearance of
spurious poles in the matrix inversion at specific energies that should
produce a discontinuous jump in the phase shift. Such behavior is
absent in the exact solution. In the usual Kohn variational principles
of Chapter 3, similar anomalous behaviors were observed.

The situation under which an anomaly appears becomes clear when
the variational principles are written in fractional forms or in forms
that require the inversion of a single matrix element. The spurious zero
of the matrix element to be inverted corresponds to an anomaly. In the
basis-set method this corresponds to a spurious zero of a determinant.
For example, let us consider the fractional form of the Schwinger
variational principle [e.g., Eq. (4.6)]. As this form is completely
equivalent to the trilinear form (4.5) and the finite-rank form (4.24),
consideration of this does not imply any specialization. Anomalies
may appear when the function ¢ is approximated by a trial function.
There is no reason why for arbitrary trial functions ¥ = 1,, the
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denominator (y,|(V — VG(()+) V)|v,) should not vanish at specific
positive energies that should lead to anomalies.

Apagyi et al. [7] were the first to find anomalies in any of the
variational principles of this chapter. In their study of electron—
hydrogen—atom scattering in singlet and triplet states, they noted
that certain spurious behavior appears in the phase shifts computed by
the Schwinger variational method in the momentum space. The
anomaly implies a sudden extra drop of the phase shift through = as
energy is increased, so that the phase-shift difference between 0 and oo
energies [6(0) — §(oco)] increases by m in the presence of a single
anomaly [8]. In a different context, in their study of nucleon—nucleon
scattering using the method of separable expansion (or the Schwinger
variational method), Haidenbauer and Plessas [32] found that the
phase shift suddenly increases by w with energy, representing a
resonancelike behavior. These anomalies correspond to vanishing or
nearly vanishing of the denominator of Eq. (4.6) or of the determinant
of the D! matrix of (4.21) in the rank-» form (4.24) of the Schwinger
variational method.

The ¢ matrices (4.6) and (4.24) are solutions of the Lippmann—
Schwinger equation with the finite-rank nonlocal Hermitian poten-
tials (4.7) and (4.25), respectively. For local Hermitian potentials the
domain of energies for which bound and scattering states may appear
is completely distinct; there cannot be any square-integrable bound
state in the continuum above the threshold for scattering. However,
this is not true, in general, for nonlocal finite-rank potentials of type
(4.7) or (4.25). Such a finite-rank potential can sustain square-integr-
able continuum bound states at positive energies, where the homo-
geneous version of the Lippmann—Schwinger equation permits a
nontrivial solution, so that there is no unique scattering solution [§].
When the denominator function of Eq. (4.6) or the determinant of the
D! matrix of (4.21) vanishes, the anomalies of the Schwinger varia-
tional principle correspond to these continuum bound states of the
finite-rank potentials (4.7) and (4.25) in approximate (unconverged)
calculation [8]. They are spurious resonances with zero widths. The
converged calculation in the Schwinger variational method corre-
sponds to taking the trial function equal to the exact scattering
function with the outgoing-wave boundary condition. Once this
choice of trial function is made, the Schwinger variational principle
becomes an identity and there are no anomalies.

At the anomalies of the Schwinger method, the phase shift increases
abruptly (or discontinuously) by = [8]. However, if a continuous curve
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for the phase shift versus energy is made, the difference 6(0) — 6(00)
shows an additional jump of =, reflecting the presence of the
continuum bound state consistent with the modified Levinson’s
theorem [8]:

§(0) — §(c0) = N, (4.223)

where N is the total number of bound and continuum bound states.
For a slightly different trial function, there are no zeros in the
denominator, which, however, remains very small. Then the conti-
nuum bound state or the zero-width resonance move into the complex
energy plane as a resonance of finite width and the phase shift
increases rapidly (but not discontinuously) by =« at the resonance
energy [8]. In such situations the resulting ¢ or K matrices are not
really infinite but very large, and the resultant phase shift exhibits
anomalous behavior. Such behavior was observed by Heidenbauer
and Plessas [32] in coupled-channel nucleon—nucleon scattering.

Let us next see why the appearance of anomalies in the Schwinger
method is plausible. To illustrate this, we consider the simplest
fractional form (4.14) of the Schwinger variational principle involving
the Green’s function. The condition for a zero of the denominator of
(4.14) for an arbitrary trial function |¢,) was originally thought to be

(I = GOV ,) = 0. (4.224)

For a real Hermitian local potential this equation does not permit
solution in the scattering region and is satisfied only at the bound-state
poles at negative energies. However, the anomalies do not correspond
to Eq. (4.224) but rather to

Wl = G V)y) = 0. (4.225)

For arbitrary trial functions, Eq. (4.225) can be satisfied without
satisfying (4.224). A similar argument holds in the case of all the
variational principles involving the Green’s function in the form
factors.

If both the potential V" and the trial function ¢, are of definite sign,
the matrix element, such as in Eq. (4.225), has not been found to
vanish [7,8]. Actually, in numerical application, simple (exponential)
trial functions of definite (positive) sign are used. If, in addition, the
potential is also taken to be of definite sign (purely attractive or purely
repulsive), no zero of the matrix element (4.225) has been found and
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hence no anomalies. Anomalies have been found for trial functions of
definite sign if the potential is not of definite sign (e.g., if it is partly
attractive and partly repulsive). In both nuclear and atomic physics
there are potentials with a soft core or with short-range repulsive and
long-range attractive parts. As the use of such potentials generates a
positive and a negative part in the matrix element of Eq. (4.225),
cancellation between them leads to anomalies. In all the variational
principles presented in this chapter, anomalies have been observed in
basis-set calculation with basis functions of definite sign only for
potentials with partly attractive and partly repulsive parts.

All variational principles in this chapter can be written either in ¢-
matrix form or in K-matrix form. In the case of the Schwinger
variational principle, these two forms yield identical results (phase
shifts). Hence, the K-matrix form of the Schwinger variational
principle shows the same anomalies as those in the f-matrix form of
the Schwinger variational principle.

Other variational principles of this chapter can also exhibit anoma-
lies [9]. There are two types of variational principles: one type
involving the free Green’s function and the Kohn type involving the
Hamiltonian. Let us consider first the type involving the Green’s
function. This type includes the Newton variational principle and
variational principles of higher orders. In both cases there are a ¢-
matrix form and a K-matrix form. Unlike in the case of the Schwinger
variational principle, these two forms yield distinct phase shifts.
Anomalies appear in these cases due to the vanishing of a denomi-
nator function. In the basis-set method it corresponds to the vanishing
of a determinant. As in the Schwinger variational principle, such a
denominator or determinant can vanish for a particular trial function
at a specific energy. In the case of the r-matrix form of the Newton
variational principle, such a denominator is a complex number and
one has to have simultaneous vanishing of its real and imaginary parts
[9,10]. In the case of the K-matrix form, there is no imaginary part and
vanishing of the real part alone of such denominators leads to
anomalies [9]. As the anomalies are accidental in nature, it will be
rarer to have such denominators vanish in -matrix form than in K-
matrix form, as the former requires simultaneous vanishing of the
uncorrelated real and imaginary parts of a matrix element at the same
energy. In practice, they have been seen to be rare in both cases and
can be distinguished from real resonances. Once a more complete set
of expansion functions is employed, such anomalies should disappear,
whereas a real resonance should establish itself at a specific energy.
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As the denominator of the complex Kohn variational principle does
not involve the Green’s function, the appearance of anomalies in this
case deserves some comment [9,10]. The anomalies of the complex
Kohn variational principle correspond to the vanishing of the denomi-
nator (n,|(E — Hy — V')|n,) of Eq. (4.65) for an arbitrary complex trial
function |n;). For a complex function, the eigenfunction-eigenvalue
problem

(E—Hy—V)n)y =0 (4.226)

cannot be satisfied for real Hermitian potentials at positive energies.
However, there is no reason why the matrix element appearing in the
denominator of Eq. (4.63) could not vanish at positive energies, thus
leading to anomalies of the Kohn variational principle. Actually, one
could have

(| (E — Hy = V)In) =0 (4.227)

even if Eq. (4.226) is not satisfied.

Unlike the case of the Schwinger variational method, the anomalies
of other methods do not correspond to a specific behavior of phase
shifts near the anomaly. In these other variational methods, the phase
shift does not show a jump of 7 as in the Schwinger method. In each
case they show a peculiar singular behavior [9]. It has been demon-
strated numerically that such anomalies, though rare, could appear in
all these variational methods for potentials with partly attractive and
partly repulsive parts. No anomalies have been found for potentials
with a definite sign.

Anomalies may appear in all the variational principles presented in
this chapter. All claims to date that they do not exist in these
variational principles are false. However, they may not be of concern
in actual numerical calculations. They should become narrower and
finally are supposed to disappear as the number of basis functions is
increased to span the whole space.

4.11.1 Anomaly-Free Kohn Method

Of the different variational principles the real Kohn variational
principle of Section 4.6 does not require integration over Green’s
functions and is simple and advantageous. However, anomalies
appear more frequently in this method.
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A closely related basis-set method for the K matrix, which avoids
spurious singularities but maintains all the advantages and simplicities
of the real Kohn method, has been proposed by Takatsuka and
McKoy. We consider an on-shell version of the method below,
although it can be modified for off-shell elements. The method uses
the fractional form of the stationary expression (4.65) for the stand-
ing-wave boundary condition [13]:

K|V [nE) (mE |V |k)
(F|(E — Hy — V)|nf)’

[(k|K|k)] = (k|V]k) + (4.228)

where the superscript P denotes that a principal-value prescription has
been used in the calculation of the scattered waves. The denominator
of the last term of Eq. (4.228) leads to spurious singularities. Let us
consider the following on-shell functional F

(k|Flk) = (k|V|c) = (7 |V |k) = (FF|(E — Ho — V — dX)|i;),
(4.229)

where d is an arbitrary parameter, |7.) = x|n}), x is a nonzero
constant, and

X = V|k)(k|V. (4.230)

Then one can formulate the following stationary expression for
(k| F|k):

(kI V i) e | V)
(X I(E = Ho = V — dX)|i7)

[(kIFIR)] = (4.231)

The stationary property of this expression follows from the definition
of the quantities involved. The functional F of (4.231) reduces to the
last term of Eq. (4.228) when d = 0. As the matrix elements of E, Hy,
and V in the denominator of Eq. (4.231) are all finite, and the term
involving d is of definite sign, for a large enough d it is possible to
avoid all poles—true and spurious—in (k|F|k). The two parameters d
and x of Eq. (4.231) are to be adjusted in such a fashion that the
functional F remains stationary with variations of (7. | and |7}).
The stationary property of F of Eq. (4.231) leads to

(E - H - dX)|7%) = V|k) (4.232)
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or
(E = H)|7E) = 1+ d(k| V[T VIK). (4.233)
Recalling that
) = GO VIvk) = [vk) — k), (4.234)
we find that the Schrédinger equation is written as
(E — H)|ng) = VIk). (4.235)

Demanding the equivalence of Eq. (4.233) with (4.235), we see that
i) = x|n ) with

x=[1—dk|VinD)]™" (4.236)

Therefore, the new function |1”7’f) is proportional to |17,7:). However, the
constant factor x cancels out from the functional (4.231). Hence,
functional (4.231) is equivalent to the last term of the Kohn varia-
tional principle (4.228) provided that Eq. (4.236) holds.

The resultant F' can be written as

P
P = >{V i) = e @)
or
KV Ik} = 5 f’jﬁ!& 5 (4.238)

where we have used Eq. (4.236). Then the on-shell K matrix is
calculated through

(k| F|k)

(kIKIK) = (kY IR) + (IVInE) = KV IR) + 7 g

(4.239)

All resonances are avoided by this procedure because the denominator
of Eq. (4.231) does not have zero for large d. However, the true
resonance poles must appear in the result. The true resonances are
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given by a zero of the denominator in Eq. (4.239):
14 d{k|F|k) =0 (4.240)

and not by the zeros in the denominator of Eq. (4.231).

A basis-set calculational scheme can be developed in this approach.
If we expand the unknown functions |77 in the stationary expression
(4.231) in terms of the functions u;, i = 1,...,n, we get the following
rank-n expression:

KIERY] = S (kYT A0 | VIR), (4.241)

ij
with
(A" = (W|E — H — dX|u,). (4.242)

For d = 0 the present formulation reduces to the usual Kohn method.
In the present approach X is a positive semidefinite operator, hence
for large d all the poles—true and spurious—of the operator 4 above
can be removed. The true resonances correspond to Eq. (4.240).
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CHAPTER 5

VARIATIONAL METHODS FOR
REALISTIC PROBLEMS

5.1 INTRODUCTION

So far we have seen developments and applications of variational
methods in potential scattering. Most of the realistic scattering
processes in nuclear, atomic, and molecular physics can hardly be
modeled as potential scattering. In these problems there could be a
large number of two-cluster channels even after neglecting the multi-
cluster channels. Tractable two-cluster multichannel models are
required before applying variational methods to these problems. In
the present chapter we consider a few multichannel reductions of these
scattering processes and the use of variational principles for their
solution.

The close-coupling (CC) approximation scheme of Section 1.6
provides a theoretical framework for deriving multichannel equations.
This scheme has proved to be very useful for electron—light—atom and
positron—light—atom scattering at low energies where the target wave
function has a simple form [1]. One can use the CC equations directly
in the application of different variational methods. In Section 5.2.1 we
derive multichannel Schwinger variational principle based on the CC
equations. The CC equations also have limitations. Although one can
get a reasonable description of scattering using the CC approach at
low and medium energies, the final convergence could be slow. Also,
in most complex problems, such as electron—molecule scattering,
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atom—diatom scattering, and photoionization of molecules, the rele-
vant wave functions are unknown. Under these situations one needs,
in addition, useful models for relevant bound-state wave functions,
and the CC formulation turns out to be complicated. Consequently,
the CC scheme may be less attractive under many situations.

Several new calculational schemes have been formulated by differ-
ent workers. These schemes reduce the actual physical problem to a set
of coupled momentum-space scattering equations which can be solved
by the use of variational principles or other methods. Hence, these
schemes lead to multichannel scattering equations for different pro-
cesses and variational methods for their solution.

Three major variational principles were considered in Chapter 4:
the Schwinger, Newton, and complex kohn variational methods. Each
of these approaches can be used in the study of realistic scattering
problems, reducing them to practical basis-set methods. McKoy and
collaborators [2] used the Feshbach projection operator technique to
derive an expression for the multichannel Schwinger variational
functional. Then they made a basis-set expansion of the scattering
function and reduced their Schwinger variational expression to a set of
algebraic equations. They also showed how to formulate their calcula-
tional scheme in terms of distorted waves and applied their approach
to different realistic problems in atomic and molecular physics. We
describe this effort in Section 5.2.2.

Using the Fock coupling scheme and distorted-wave representa-
tion, Kouri, Truhlar and collaborators [3] derived the multi-channel
Newton variational principle for both inelastic and rearrangement
collisions. They also made a basis-set expansion of the wave functions
and reduced the Newton variational principle to a set of algebraic
equations. They applied this method to realistic problems in molecular
physics. Their approach is described in Section 5.3. This approach is
closely related to the CC equations of Chapter 1.6. Miller and
collaborators [4] extended the complex Kohn variational method to
multichannel problems and applied their approach successfully to
realistic problems in atomic and molecular physics. This formulation
is described in Section 5.4. In formulating the multichannel models
one often requires model wave functions for the target and projectiles.
Hartree—Fock orbitals have often been used for this purpose. We
present a brief account of these orbitals in Section 5.5.

Numerical studies have been made of different scattering processes
by using these multichannel formulations. The solution scheme of
these formulations takes advantage of methods and techniques based
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on, or related to, different variational principles developed in
Chapter 4. In the following we describe these formulations and their
eventual use in the solution of scattering problems.

5.2 SCHWINGER VARIATIONAL METHOD

The Schwinger variational principle can be generalized to the case of
multichannel scattering. There are many ways of deriving two-cluster
multichannel scattering equations. For example, such a model could
be derived employing the CC approach, Feshbach projection operator
approach, or from a multiparticle description of scattering, just to
name a few. In the following we present two useful ways of formulat-
ing the multichannel Schwinger variational principle.

5.2.1 Close-Coupling Equations

We develop the Schwinger variational principle using the multi-
channel CC equations of Section 1.6.3. The CC equations have the
same formal structure as the potential scattering equations. In the
multichannel CC equations, all operators have channel indices in
addition to the momentum variables. Hence, the variational principles
for the CC equations can be written in close analogy with the
variational principles of potential scattering. For example, the
Schwinger variational principle in this case can be written as

(pbl1lpa)] = (PHIVgaltss?)
N
+ (W Val Pa) = (U |V = D Vi Goy Vo) 1E5),
=1
(5.1)

where the subscripts 3 and o on the plane waves and the scattering
states refer to channels. The exact scattering states obey the formulas

N
U5 = [pa) + D GO Vi [T (52)
=1

(o |— Pﬁ|+z V.,4Gob. (5.3)



228 VARIATIONAL METHODS FOR REALISTIC PROBLEMS

The stationary property of Eq. (5.1) follows when approximate wave
functions are employed. In fractional form, variational principle (5.1)
becomes

(P51 Vol Yy Vol Po)
(65 | (Voo = XAt Vi Gy Vo) | 957)

[(psltlpa)] = (5.4)

To perform a numerical calculation one needs to expand each of the
scattering states in a basis set:

|¢1(71—)> - Zaai(pa)|fai>a (55)
i=1

(W1 =D (flby(Ph), (5.6)
Jj=1

where a,; and bg; are coefficients to be determined by the variational
requirement and |f,,) 1S a set of expansion states for channel a.

To determine the coefficients a,; and bs; we substitute Egs. (5.5) and
(5.6) into the Schwinger variational principle (5.1) and require that the
resulting expression be stationary with respect to independent varia-
tions of a,; and bg. Then in the usual fashion one obtains the
following finite-rank version of the multichannel Schwinger varia-
tional principle:

n N
[<p,ﬁ|tn|pa>] = Z Z <p,ﬁ|Vﬁ7|f7i>Df(yr;)7j<faj|Vaa|pa>a (57)
i,j=1y,0=1

where

(D )O’]’ﬂ - <fa] ay Z VO’KZGOK .vy)|f'yl> la] - la "'an'
(5.8)

These results are very similar to those of the single-channel case [e.g.,
Egs. (4.24) and (4.21)]. However, the dimension of the space is
increased in the multichannel case. The scattering wave function for
each channel is expanded in terms of several functions. The total
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number of expansion functions in all channels define the dimension of
the matrix D above. If an equal number # of functions is used in each
N channel, the dimension of the D matrix is ' = nN. In Eq. (5.8),
explicitly, we have

fa oK V.‘c fi
<f0j|Vm-e K’y|f’yl> _—/ q< ]|k2 |q>ng—|+_ l(;| 7>.

(5.9)

Equations (5.7) and (5.8) form a useful basis-set calculational method
for multichannel scattering based on the Schwinger variational prin-
ciple.

5.2.2 Feshbach Projection Operator Technique

Next, we describe an approach utilizing Feshbach projection opera-
tors [5] for deriving multichannel scattering equations from a many-
body problem [2]. Once a multichannel scattering equation is
obtained, it can be solved with the use of the Schwinger variational
principle.

In the CC equations, the same multichannel form exists even when
some of the channels are energetically closed. Consequently, in
applications of the variational methods, similar mathematical and
numerical difficulties appear independent of whether or not some of
the channels are closed. The Feshbach projection operator technique
provides one way of simplifying the calculation when some of the
channels are closed. In this approach the number of the channels of
the model include only some (or all) of the open channels. Closed
channels are not included. Let us consider scattering of a light
elementary particle (electron) by a target composed of N electrons.
The Hamiltonian for this problem is

where Hy is the target Hamiltonian, T, the kinetic energy of the
projectile, V' the interaction potential, and N the number of target

electrons. For the electron—molecule system, the potential V' is given
by

V= f: ¢ —Zze (5.11)

=1 Ti,N+1 Fa,N+1
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where the first term represents the repulsion between N target
electrons at r=r;,i=1,2,...,N, and the incident electron at
r =ry,;, and the second term represents the attraction between
the incident electron and the nuclei at r =r,, with ¢ the electronic
charge and Z,e the nuclear charge. In Eq. (5.11), r; y,1 = [1; — Ty 4],
FaN+1 = [To — Inpal-

We introduce Feshbach projection operators P and Q for open and
closed channels defined in the Hilbert space of N + 1 particles,
respectively. The operators P and Q satisfy P+ Q =1,
PO = QP =0. The Schrédinger equation for the open-channel
space is then given by [5]

[PHP + PHQ(QHQ) ' QHP||¥)) =0, (5.12)

with H = (E — H). These P space equations have been used in
applications of the multichannel Kohn and Schwinger variational
methods [2,6]. However, there is one nontrivial problem with this
approach. The elastic optical potential PHQ(QI;IQ)“1 QOHP may
have singularities at real positive energies. These singularities may
be related to physical resonances of the system; they could also be
spurious. The spurious resonances are an added difficulty to potential
scattering.

Lucchese et al. [2,7] suggested a useful and practical method that
avoids the above-mentioned singularities. They take P as the projector
onto the target eigenstates ¢, for open channels only:

P=7 |l (5.13)

With this operator, a projected Lippmann—Schwinger equation for
scattering initiated in the target state ny can be written as

POy = |®,) + GYv|wihy, (5.14)
where

|Q)n0> = |¢)n0> exp(ikno 'rN+1)a (515)

is the usual incident plane wave and

G\) = P(E — PH,P + i0)"' P (5.16)
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is the projected Green’s function on the target states. The Hamilto-
nians, potentials, and energies are all expressed in units of #° /24,
where p is the reduced mass of the system.

Now operating by the potential } on Eq. (5.14), we obtain

(VP = VG V)W) = V®,). (5.17)

Equation (5.17) is an open-channel projected equation and does not
contain closed-channel information. Because of the presence of the
projection operator P, the quantity VP — VGppV of Eq. (5.17) is not
time-reversal symmetric, as the closed-channel contributions are
projected out of this equation in a nonsymmetrical fashion. To restore
symmetry, we consider the following projected Schrédinger equation:

[H — a(PH + HP)]| Uy = a(VP — PV)|LD), (5.18)

with a an arbitrary parameter. Equation (5.18) can be verified using
the Schrodinger equation H |\I’£,0+)) = 0 and the fact that the projection
operator P commutes with the target Hamiltonian: PH, = HyP. A
linear combination of Eqs. (5.17) and (5.18) leads to the following
integrodifferential equation with symmetric operators:

PV + VP H — a(PH + HP)

B 7 (+)
2 GrpV + 2a

U = V|®,,). (5.19)

By construction Eq. (5.19) determines the full multichannel scattering
wave function. For Fermion collisions, the constant a can be deter-
mined from the condition that the problem leads to a unique solution.
Let us generalize the outgoing-wave equation (5.19) for both outgoing
and incoming waves:

PV + VP H— a(PH + HP
AB|TD) = [—; VP _yeipy 4 oA > i )} 15
(5.20)

= V|®,). (5.21)

The amplitude for transition from the target state ny to state n is
defined by

Tnno - <\I’£l_)|V|q)no> - <q)n|V|\I’£lj_)> (522)
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Because of Eq. (5.21), this amplitude can also be written as

S|PV + VP H — a(PH + HP)
Ton, = (0§ )‘ [#— VGppV + 5 ”\pg)).

(5.23)

From Eqgs. (5.22) and (5.23), a symmetrized multichannel Schwinger
variational functional for the transition operator can be written as

(B[ VD, ) (2, V] TLD)
(WN(PV + VP) /2 — VGppV + {H — a(PH + HP)}/(2a)]|T5)
(5.24)

[Tnno] =

where (¥{7)| and |\I’£,0+)) are the unknown trial functions. The sta-
tionary property of Eq. (5.24) follows with the use of Eq. (5.21). For
obtaining a unique solution from this functional, one should have
(TN AD T = (AT )8 Lucchese et al. showed that for
electrons, the choice a = (N + 1)/2 is required to satisfy this condition
[2,7].

For numerical applications, one makes an expansion of the
unknown scattering function in terms of some known £’ basis set
|g;). Consequently, as in the case of potential scattering, the multi-
channel Schwinger variational principle can be reduced to solution of
the following set of linear equations:

[Tnno] = Z<®n|V|gi>Cl’j<gj|V|q>no>a (525)

where (C_l)ji = <gj|A(+)|gi>'

Simplifications arise in the case of elastic scattering when one makes
a static exchange approximation to this formulation. The total wave
function is taken as

105y = Aggr™), (5.26)

where the zero subscript denotes the target ground state, ¢ its
(Hartree—Fock) wave function (see Section 5.5), ) the scattering
orbital, and A the antisymmetrizer. Then integration over the target
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coordinates yields

WV lk ) (Rl Vi)
WOV, = VS V) )y

where V, i1s the static exchange potential and g(()+) i1s the Green’s
function in this space. As expected, the result is analogous to that of
potential scattering.

Technical complications arise in the case of electron—molecule
collisions and in molecular photoionization. In these cases the physi-
cal scattering potential has parts corresponding to completely differ-
ent ranges. The direct molecular Hartree—Fock potential is of long
range, whereas the exchange and polarization potentials are of much
shorter range. These two types of potentials can be treated by a two-
potential formalism of Section 4.7. Such a two-potential approach has
been used in studies of electron—molecule collisions employing the
Kohn variational principle [8]. This approach has also been extended
to the case of multichannel Schwinger variational principle and is
useful in studies of electronic excitation of dipole-allowed states [2].

The present approach can be generalized to yield a distorted wave
formulation (see Section 4.7). First the scattering problem is solved
with the direct potential. The solutions are called the distorted waves
for the problem. The residual potential is then treated in the distorted-
wave basis and the Schwinger variational principle is applied to the
residual problem. The direct problem for the construction of distorted
waves 1s defined by the following Hamiltonian:

[ Toany) = (5.27)

Hy=Hy+ Ty, + PVP, (5.28)

where the potential, Hamiltonian, and projection operators are
defined as in Eqgs. (5.10) and (5.13). The potential V' of Eq. (5.28)
may include, in addition to a direct local part, a model local exchange
and a local polarization part. As the Hamiltonian H, contains only
local potentials, solution of the scattering problem with this Hamilto-
nian can be obtained routinely.

The projected wave function satisfies an equation similar to (5.14):

PIOSY) = x5y + G Ve w (), (5.29)
where Vg =V — PVP and

GY) = P(E— PHyP + i0)'P (5.30)
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is the projected Green’s function for the Hamiltonian H, of Eq. (5.28).
The states Xﬁ,j) are the distorted waves. The multichannel Schwinger
variational principle can now be constructed in terms of the distorted
waves as in Section 4.7. In the distorted-wave basis, the amplitude for
transition from state ny to n is now given by

Ta = (U VRlIxiPy = | VRl EL) (5.31)
P P H—a(PH+ HP
_ | |EREYRE gy, H T APH Y EP) )
2 2a 0
(5.32)

Then one can construct the following Schwinger variational func-
tional for the transition amplitude due to the nonlocal short-range
potential Vg:

U VRIS O V[ EED)
(US(PV R+ VRP)/2 = VRG Vi + {H — a(PH + AP)}/(2a)]| 05
(5.33)

[Tnno]s =

with a = (N + 1)/2. Here (¥}”| and |\I’£,0+)) are the unknown trial
functions. The derivation of Eq. (5.33) follows exactly the same steps
as the derivation of Eq. (5.24). For a numerical application of
Eq. (5.33), the trial functions are then expanded in a set of £
functions and this problem is reduced to a set of algebraic equations
as in Eq. (5.25).

5.3 NEWTON VARIATIONAL METHOD

Here we present a formalism (3], due to Kouri, Truhlar, and colla-
borators, for treating (chemical) reactions with general basis func-
tions, including electronically excited states. The approach is
especially well suited for atom—diatom scattering. The scattering
observables are calculated by the use of a generalized Newton varia-
tional principle on a distorted-wave basis.

5.3.1 Inelastic Scattering

First, we consider the simple case of inelastic and nonreactive scatter-
ing of atom A with diatomic molecule BC, where only excitations of
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target and projectile are allowed. In the present notation this corre-
sponds to partition @ = 1. In this case the Hamiltonian can be
partitioned as

H=H'+V™=(Hy+ V") 4+ pint (5.34)

where Hj is the kinetic energy, ¥ = (V'"'° + V™) the full potential of
the system, V' *"° the long- -range potential responsible for binding of
the clusters, and V'™ the remaining interaction potential. The asymp-
totic Hamiltonian H* responsible for binding satisfies H Ap = EP,
where @, is the product of the bound states of the target and the
projectile and a plane wave of relative motion between them and »
labels the different states of the projectile and the target.

In the next stage the interaction potential is broken up into a
distortion (¥”) and a coupling (V) potential: ¥'™ = ¥? + V. The
distortion potential ¥'” is usually a simple potential that takes most of
the scattering into account. Then the distorted-wave Hamiltonian H”
is defined by

H=H"+Vv = (Hy+ V" 4+ V2 +p° (5.35)

The distorted-wave states |(I> ) satlsfy (E — HD)|<I> Y =0 and
have the structure|® +) |¢>,,0)|¢> )}, where [ represents the
bound states of the clusters in channel ny and |¢)) is the
distorted wave in this channel. Here n; 1s the incident channel,
and the energies and Hamiltonians have been expressed in units of
hz/ 24, where p 1s the appro riate reduced mass.

The scattering states |\I’n0 ) satisfy the Lippmann—Schwinger equa-
tions

[0y = L) + GPH Y w(hy, (5.36)

where G?) = (E — H? + i0)~!. Equation (5.36) is the usual multi-
particle Lippmann—Schwinger equation with a noncompact kernel
and has a nonunlque solution. By projecting this equation on channel
states |(I> )y, Fredholm equations with a unique solution can be
obtained.

In applying a variational principle to solve (5.36), one could
proceed differently. First, formal variational principles are written.
Then by expanding the unknown function in £? basis functions, a
well-defined set of linear equations are derived. The appropriate
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matrix element of the transition operator, given by
T, = (957 TI5) = (817 |V 100, (5.37)
satisfies the following generalized Newton variational principle:
[Tong) = (@1VE1857) + (@717 ) + 0716 €lef))
= 067G = GV ), (5.38)

where the first term on the right-hand side of Eq. (5.38) is the
distorted-wave Born amplitude and

IX$E) = Vet (5.39)

is the amplitude density. In Eq. (5.38) (x| and |Xﬁ,§)) are the
unknown trial functions. The stationary property of Eq. (5.38) follows
as in the case of potential scattering.

Closely related to the generalized Newton variational principle
above, one can write an outgoing-wave variational principle for the
transition-matrix element by introducing the outgoing/incoming
waves as

nsE)y = GPH )y, (5.40)

Using these waves, the generalized Newton variational principle can
be rewritten in the form of the following Kohn-type outgoing-wave
variational principle:

[Tn,) = (@7 [VE1@LD) + (@)W C (D) + ()|l
— (O UE — H)niH). (5.41)

The stationary property of the generalized outgoing-wave variational
principle (5.41) follows as in the case of potential scattering. Out-
going-wave variational principle (5.41) should be compared to single-
channel equation (4.63). There are no Green’s functions in variational
principle (5.41). To use it one must employ basis functions with proper
boundary conditions. If outgoing-wave boundary conditions are
employed, this method is a generalization of the complex Kohn
variational principle of Section 4.6 and becomes identical to the
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multichannel complex Kohn variational principle of Section 5.4,
which can be used to calculate the multichannel 7-matrix elements.
We shall come to a detailed discussion of this method in Section 5.4.
However, if standing-wave boundary conditions are employed, this
method yields multichannel K-matrix elements.

5.3.2 Reactive Scattering

We now turn to a description of reactive scattering of atom A with
diatomic molecule BC, where rearrangement transitions are explicitly
taken into account. Now in place of Eq. (5.34), the following three
partitions of the Hamiltonian are allowed for three values of partition
a

H=H!+Vv™=(Hy+ V) ® + v (5.42)

The three allowed values of a correspond to three arrangements of the
atoms: a = 1 for arrangement A + BC, a = 2 for B+ CA, and a = 3
for C + AB. Each of these partitions is appropriate for more than one
channel, corresponding to excited states of fragments.

The asymptotic Hamiltonian responsible for the binding of the
clusters in partition a, HZ is defined in Eq. (5.42) and satisfies the
eigenfunction—eigenvalue problem HZ®_, = E®,, where nis now the
channel index in partition a. Each partition may correspond to more
than one channel. For example, n varies from 1 to n; for a = 1, from
(n; + 1) to n, for a = 2, and so on. In the following material we shall,
however, carry the dummy partition index a with the channel index to
denote that channel » belongs to partition a. The cluster states |®,,)
are the product of the bound states of the two fragments of channel
o = an and the plane wave of relative motion between them.

Then, as in the inelastic case, the interaction potential in partition a
is broken up into a distortion (V?) and a coupling (V°) potential by
yint — D | pa The distorted-wave Hamiltonian H, is defined by
the partition

H=H,+V*=(Hy+ VJ,°+ V2 + v~ (5.43)

The partitions of the Hamiltonian by Eq. (5.43) is the generalization
of Eq. (5.35) in the absence of rearrangement

The distorted-wave states |<I>a a,) for an initial channel n, in parti-
tion aqq satisfy (E — Ha0)|<I>a0,,0) = 0, where ng is the initial channel
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belonging to partition ay. The full outgoing-wave scattering states
| oo +)) satisfy the following set of decoupled Lippmann—Schwinger
equations:

|\I,a0n0(+)> _ 6aa0|q)£1j)_r20> + fo) Va|\paon0(+)>, (544)

where fo) =(E-H,+ iO)‘l. Equations (5.44) are the usual multi-
channel Lippmann—-Schwinger equations of Section 1.6.1 and have
noncompact kernel and nonunique solution. Compactness can be
obtained by projecting them on appropriate channel states.

A variational calculational scheme can be developed by expanding
the full wave function in components:

|\I,a0”0(+)> — Z |\I,Zo”0(+)>_ (5_45)

a

The wave-function components satisfy the following coupled set of
generalized Lippmann—Schwinger equations:

DAy = 8,0 [ @60 ) + GE) S U | W™, (5.46)
where
U, = ye — (E — Ha)gaa’ (547)

are the usual Fock coupling potentials. Equation (5.46) is a general-
ization of Egs. (1.180) and (1.181) to the case where there could be
more than one channel in a given partition. However, Egs. (1.180) and
(1.181) are written in terms of the incident plane wave, whereas in Eq.
(5.46) a distorted-wave incident state is employed.

For developing the generalized Newton variational principle, we
introduce a reactive amplitude density in partition g, for initial
channel ny by

™) =3 U T3"). (5.48)

The transition matrix connecting an initial state #, in partition g to a
final state » in partition a is defined as

(@) | Trd|B5) = (@5 [xm M)y = 3 (@)U 0 [¥2™ M) (5.49)
o

Then by multiplying Eq. (5.46) from the left by appropriate elements
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of potential U and using Eq. (5.49), one can derive the following
Lippmann—Schwinger equations for the transition operators:

T = aa0+ZUaa'G DT, (5.50)

In close analogy with potential scattering, in this case a generalized
Newton variational principle can be written as

K®$Wfﬁﬂ®g&n—-<anua%M%wo+-§j BG) | U G120y

_ Z an 6a’a" . GE/ ) a’a”G(/'))| a(’),no(+)>,

(5.51)

where (x| and [x%™*")) are unknown trial functions.

It is possible to write the final result in terms of the partition
potentials, V', of Eq. (5.43). With U, defined by Eq. (5.47), we have
for both a = a’ and # d/,

Uar|®5)) = (H — Hp)|@5)) = v jal), (5.52)
UGS = (H— Hy)G) — 8,0 = VG — 5, (5.53)

Then a symmetrized version of the generalized on-shell Newton
variational principle (5.51) for reactive scattering can be written as

- aa _ - a (
[<q)£1n)|Tnng|q)£zj_r20>] - <q)§m)|V 0|q)aj_r20>

= >0 NGE - 67 v G Ixg )

alall

+ 2 (@6, )

a
a'

+ (OGS v ) Y. (5.54)
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Equation (5.54) 1s a formal expression of the multichannel Newton
variational principle with distorted wave in terms of (physical)
channel potentials (5.11). As in the case of reactive scattering, one
can also derive a multichannel Kohn variational principle in this case.
If an outgoing-wave boundary condition is used, one obtains a
different derivation of the multichannel complex-Kohn variational
principle with rearrangement, which we discuss in the next section.
To develop an algebraic calculational scheme based on Eq (5.38) or
(5.54), we expand the amplitude densities It ) and < 7| in terms of
£? basis functions |g;). Let us illustrate this in the case of Eq. (5.38).
The index i includes complete specification of the indices for transla-
tional, vibrational, and rotational basis functions. Using these expan-
sions in (5.38) and demanding that the result remain stationary with
respect to the coefficients, we obtain the degenerate expression

[ nno] - < |VC|(I)n0 + Z |VCGD |g]> ]l<gl|GD VC|(I)£’:_)>’

(5.55)

where

(€N = (& (GPH) — GPHYCGEPH)y|g). (5.56)

A similar degenerate kernel expression can be obtained from Eq.
(5.54). In that case one will have a summation over channel index and
variational functions as in Eq. (5.7). The final result Eq. (5.55), is a
generalization of the potential scattering result discussed in Section
4.3. A similar expansion can be derived for the Kohn-type multi-
channel variational principle (5.41). The success of a calculational
scheme using an algebraic basis-set equation such as Eq. (5.55)
depends on an appropriate choice of of the basis functions, for a
discussion of which we refer the interested reader to review articles [3].

5.3.3 Photodissociation of Triatomic Molecule

Photodissociation with initial state selection for studying atom-—
diatom molecular dynamics may probe a single total angular momen-
tum state of the target triatomic molecule. However, the computa-
tional task for this problem continues to be challenging, especially
when there are multiple dissociation channels, whether or not they are
energetically open.
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We consider an application of the Newton variational principle for
studying photodissociation [9] in the weak-photon field limit in the
ground or a single excited electronic state for a single breakup
channel. The Schrodinger equation for the state vector on the
electronically excited surface is nonhomogeneous and is given by

(E — Hyp)| 0y = p[wltro) 4 x|g™), (5.57)

where [£") is the initial state for the system on the lower electronic
surface, X the dipole coupling responsible for the excitation to the
dissociative excited electronic state, H, the Hamiltonian for the
asymptotic photodlslntegratlon fragments and V the interaction
between the fragments. Here |\I’ ™) is the scattering state produced
by photodissociation. The quantum index #n, is a collective index for
all the quantum numbers of the initial bound state |£™).

In the usual Lippmann—Schwinger equation there is an inhomoge-
neous term corresponding to the initial plane-wave state. In the case of
photodissociation there is no such term, and one can convert Eq.
(5.57) to the integral form

[pHmy = 6P x|em) + G v o ) (5.58)

where the free outgomg wave Green’s function G is defined by
GV = (E— Hy+ i0)™!

The transition amphtude for dissociating into a final two-cluster
state (®,| is

Ty = (Bl [X]€7) 4 VTI™Y] = (@, %), (5.59)

Here Xﬁ,j) is an amplitude density. The state |®,) satisfies
(E — Hy)|®,) =0 and 1s the product of bound states of the final
clusters and the relat1ve plane Wave between them If we define the
amplitude density |X,,0 ) via |\I’ ") =G, |X,,0 ), then from Egs.
(5.58) and (5.59) we get the following 1nhomogeneous integral equa-
tion for the amplitude density:

X5y = X1g™) + VST X)) (5.60)

Using this amplitude density, the transition amplitude given by Eq.
(5.59) can be rewritten as

Ty = (Bal X[€%) + (@, VGG 0. (5.61)
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The scattering wave function <\I'(—)”| with incoming-wave boundary
conditions satisfies the following Lippmann—Schwinger equation:

(T = (®,] + (T V6D, (5.62)

Thus all states involving the time-reversed boundary condition origi-
nate from eigenstates of H,. Then from Eq. (5.62) we have

(T X = (®,|X + (¥ vG6{Dx. (5.63)

If we introduce the amplitude density <X£,—)| via <X£,—)| = <\I'(—)”| V, the
transition amplitude can be written as

T, = (PO X )€Y = (@, X|¢") + (|G X|€™).  (5.64)
From Eqgs. (5.60) and (5.64) we obtain
Ton, = (PulX1€") + OSTNGSY — GSOVEING). (5.65)

Equations (5.61), (5.64), and (5.65) are three identities for the r matrix.
From these equations we obtain the following generalized Newton
variational principle for the present problem:

[Tom,) = (@, X[€") + (XSG X |€m) + (@, VG ()

— (NG = G VG X, (5.66)

where (X,,‘ | and | Xno ) are the unknown trial functions.

A Kohn variational principle can be written in the present case in
terms of the scattered waves The scattered wave |17,, )Y associated with
photodissociation and |17,, ) associated with normal incoming-wave
boundary condition are given, respectively, by

i) = (W) = GEI X, (5.67)
()| = (B — (@,] = (x{716G5T. (5.68)

In terms of these scattered waves, the generalized Kohn variational
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functional for the ¢ matrix (5.66) is given by

[Tn,) = (@] X1€7) + (7| X[€™) + (@, V]ntH)
— (NE — H)|ni)y, (5.69)

where (r{”)| and |17,(,0+)) are the unknown trial functions.

To perform a variational calculation using Newton and Kohn
variational principles (5.66) and (5.69), respectively, one can expand
the unknown trial functions in terms of a known set of functions. In
the case of the Newton variational principle (5.66), all basis functions
can be taken to be £? in nature. In the case of the Kohn variational
principle (5.69), a few of these functions are to be taken as non-£? type
so as to provide the correct boundary conditions.

The formulation above can be generalized to the case where more
than one asymptotic clustering or fragmentation channel is allowed in
the photodissociation process. Then the full Hamiltonian can be
partitioned as in Eq. (5.43), where H, is the Hamiltonian for the
clusters, possibly including some distortion potential, and V* is the
interaction among clusters in partition a. In this case we label the
channel and partition indices as in Section 5.3.2. Then we decompose
the full wave function into components according to an as in Eq.
(5.45), so that Lippmann—Schwinger equation (5.58) can now be
written as the following coupled set of equations:

@) = GEIXIE) + G D U] 2™, (5.70)

where G{) = (E—H,+ iO)—1 and the Fock coupling potentials, U,
are defined by (5.47). The wave-function components, |\I’f,+)“°”°), are as
defined in Eq. (5.45).

Now the generalized amplitude density for photodissociation is
defined by

XED™Y = X1gm) + 3 Uy [T0™), (5.71)

so that [T{Hm) = G{H|x (™) Then one has the following integral
equation for the amplitude density:

|X£1+)n0> = X|¢™) + Z Uaa’ij)|szr+)n0>' (5.72)
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Equation (5.72) is a generalization of Eq. (5.61) to this case. The
transition amplitude for going from an initial bound state [£™) to the
nth scattering state in partition a is given by

T,y = (@5 xS = (@)1 X1E™) + D (05| U G IxS™).

(5.73)

Here (Q)f,;)| is the adjoint of the scattering solution of the distorted
Hamiltonian with the incoming-wave boundary condition
(E— H,)|®()) =0. In the single partition case, an undistorted
Hamiltonian was used; consequently, one had the plane wave |®,)
in place of the distorted wave |<I>f,;)). Equation (5.73) should be
compared with Eq. (5.61) in the absence of rearrangement channels.

The usual scattering solution | &) of the full Hamiltonian with
the incoming-wave boundary condition can also be decomposed into
components:

[y = e, (5.74)
which satisfy the following Lippmann—Schwinger equations:

[T = 610 ®5)) + L) 3T U 8™, (5.75)

in close analogy with Eq. (5.46). The amplitude density |Xf;)an) 1S
defined by

XS =D U B0 = Uprd @) + > U G5 X5,

(5.76)

In terms of the incoming-wave scattering solutions the transition
amplitude can also be written as

Ty = (| X]E™) =3 (0™ x|gm). (5.77)

al

Using Eq. (5.75), this equation can be rewritten as

Ty, = (B5)1X1E™) + 3 (U 1U 4 G X 7). (5.78)

" 7
,a
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Next, by Eq. (5.76), this becomes

Ty, = (®5)|X|€™) +Z xlem). (5.79)

Equations (5.73) and (5.79) are two identities for the ¢ matrix.
Using Eq. (5.72) in the last term in Eq. (5.79), we get

nno :< an |X|§no +Z Gc(z”)Ua”a’G( ))| o )n0>'

(5.80)

Then the following stationary expression for the r matrix can be
written in the usual fashion by adding Egs. (5.73) and (5.79) to it and
subtracting Eq. (5.80):

[Tony) = (05)1X1€) = 3OS — G Uprg GUH X S™)

a
a”,al

+ ) "GO XEY + D (@G U G XY, (5.81)

This 1s the generalized Newton variational principle for the r matrix
for photod155001at10n w1th multiple fragmentation pathways. In
Eq. (5.81), <X 2™ and X (1) are the unknown trial functions. The
stationary property of Eq. (5.81) follows from the definition of these
functions. A basis-set calculational scheme can be developed 1n this
case by expanding the amplitude densities in basis sets and exploiting
the stationary property as in the single-channel case.

54 COMPLEX KOHN VARIATIONAL METHOD

The complex Kohn variational principle of Section 4.6 can be general-
ized for solving multichannel scattering problems. Following Miller
[4], we show how this generalization can be made for nonreactive and
reactive scattering problems.

First, we consider nonreactive scattering of the type (1.2). We
present a z-matrix description of the method, and an S-matrix
description can be made straightforwardly. The method is applicable
for any nonreactive process, such as e + H — ¢ + H", where e stands
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for the electron and H the hydrogen atom. We also consider the
following atom-diatom scattering 4 + BC — 4 + (BC)* and allow
for vibrational excitation of the cluster (BC) in the final state. Then
the Hamiltonian can be written as

W d°
__na 82
H 2MR2+h+ V(r,R), (5.82)

where 4 is the vibrational Hamiltonian for diatom BC, r the vibra-
tional coordinate (relative separation between atoms B and C), and R
is the translational coordinate (of atom A). The incoming plane-wave
states are taken as

®,(r, R) = ¢,(r)sin(k,R), (5.83)

where ¢, (r) is the nth vibrational state of BC and k, i1s the channel
wave vector, as in Eq. (1.183). Then the ¢ matrix for the n; — n,
transition is

tym = (@, [V, ) + (&, | VG (E)V|®, ). (5.84)

Next we use the following finite-rank expansion for the full Green’s
function G™) in the product space (r, R) [see Eq. (4.101)]:

G =S "1z, (5.85)
i,j

where (Z“l)j,- = (n;|(E — H)|n;). Now 7, is a function of r and R.

In the case of single-channel potential scattering the pure plane-
wave states are to be replaced by products of plane waves and the
vibrational states ¢, (r). Consequently, the variational expansion
functions 7n(r, R) should be products of the vibrational states ¢,(r)
and single-channel basis functions f;,(R) given by Egs. (4.108) to
(4.112):

10 B) = 37 Cady (Vi R), (5.36)

where C;, are the expansion coefficients. The index i refers to expan-
sion functions. However, now one needs a subscript # to denote the
different vibrational states and the corresponding wave number k,,.
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Specifically, the states f;,(R),i = 1, 2, ..., are taken as in Egs. (4.108) to
(4.112), with k replaced by k,. The i = 1 function f;, is chosen to
impose boundary conditions as in the single-channel case. The »
dependence of the functions f;, for i > 1 1s dummy. Using these
expansion functions, an expression for the complex Kohn variational
¢ matrix can be written as

[tnznl] = <q)n2| V|q)n1> + Z Z<q)n2| V|fin¢)n>Dinjn’ (fjn’¢n’| V|q)n1>a

in jn'

(5.87)

with

(D—l)jn’in = <fjn’¢’n’|(E - H)|fin¢’n>a (588)

where the inverse denotes a matrix inverse in channel and function
space. For i =1, the sum over n needs to include only the open
vibrational states, but for i > 1 both open and closed channels must be
included. Also, for i > 1 the functions ¢,(r) need not be the vibra-
tional eigenfunctions; any complete set of functions in variable r can
be used. Once the multichannel ¢ matrix has been calculated, one can
calculate the multichannel S matrix using, for example, Eq. (1.210).

A distorted-wave version of this method can easily be formulated,
and this makes the method more efficient. Then the first term on the
right-hand side of Eq. (5.87) i1s a better approximation to the multi-
channel r matrix. To achieve this, one writes

V(r,R) = Vo(R) + Vi (r, R), (5.89)

where the distortion potential ¥, is responsible for elastic scattering.
The functions ®&,(r, R) are now defined as

(1, R) = 6u(r)un(R), (5.90)

where 1,(R) is the elastic scattering function for the distortion
potential V,(R) for wave number k, with asymptotic behavior

lim ,(R) ~ sin(k,R + 6,), (5.91)

R—o0

where 6, is the elastic scattering phase shift in channel n with
distortion potential V. The distorted-wave expression for the ¢
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matrix is again given by an expression similar to that of Eq. (5.87),
with the distorted-wave functions now defined by Eq. (5.90) and V
replaced by V. Hence, the formal modification needed for developing
the distorted wave function i1s quite straightforward. The idea is to
take a distortion potential ¥}, for which the scattering problem could
be solved essentially exactly, and the remaining potential V;(r, R) is to
be treated variationally. This procedure i1s of advantage when the
lowest-order term given by the distorted-wave Born approximation is
in reasonable agreement with the exact result.

Also, for either the plane- or distorted-wave version, the inverse of
the matrix of E — H in combined channel and function space can be
carried out as in the single-channel case by partitioning the i = 1 block
from the i > 1 block as described in Section 4.6. This facilitates the
computational work for the inversion of a complex matrix, where the
i > 1 block in each channel is real. This procedure replaces the inverse
of a complex matrix by that of a smaller real matrix and simple
algebraic manipulations.

One can also formulate reactive scattering in conjunction with the
complex Kohn variational principle. One can consider a rearrange-
ment reaction of the type 4 + BC — C + AB. The plane-wave repre-
sentation for the reactive ¢ matrix is generalized from Eq. (5.84) by
employing the partition index v = a for A + BC, b for B+ CA, and ¢
for C + AB. Then in addition to a channel index one has a partition
index for the functions involved and the ¢ matrix can be written as

t’anzmnl - <(I)72”2| V’h |q)’71”1> + <(I)’an2| V%G(H (E) Vm |(I)’71”1>’ (5'92)

where
., (ry, Ry) = Pyn(ry) sin(k,,R,). (5.93)

Here (r,, R,) are the vibrational and translational coordinates for
partition +, V7 is the interaction potential for partition -y, and ¢.,, is
the nth vibrational state in partition ~.

The formal development is similar to the nonreactive case. In this
case we have a partition index v on all variables. The function of Eq.
(5.86) 1s now expanded as

77(V, R) = Z Ci7n¢)'7n(r)fi'yn(R)a (594)

i,y,h
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where C;,, are the expansion coefficients. The expansion functions
fixn(R) are taken as in Eqgs. (4.108) to (4.112). Then the degenerate
complex Kohn variational form of the 7 matrix is given by

[t’hnz’hnl] - <q)’72n2| V|q)’71”1> + Z Z <q)’72n2| V|f’71¢)’7n>

Lym UV A7 !
X Dpyn oy St @n |V @y, ) (5.95)
where
(D™ iamirnmt = {Sri®nl (E = H)| fyr1: @) (5.96)

An equivalent expression for the S matrix can also be written down.
This prescription can be used for the multichannel description of
reactive scattering involving molecules.

5.5 HARTREE-FOCK CONTINUUM ORBITALS

Most of the variational calculations require approximate wave func-
tions for atoms and molecules. The Hartree—Fock equations have
often been used to describe the bound-state atomic and molecular
orbitals. Such equations can also be formulated for scattering states.
The orbitals so calculated can be used in the application of variational
principles. Also, a version of the Schwinger variational method has
been formulated by McKoy and collaborators [2] in the application of
Hartree—Fock equations for photoionization and electron—molecule
scattering studies. The formulation becomes somewhat simple when
the molecular system is initially in a closed-shell state. We shall only
consider this simple case here, although generalization to open-shell
systems is possible [10].

In the simplest form of the Hartree—Fock theory, called the
Hartree theory, a central-field approximation is made for each atom
of the molecule. The spin of the electrons are neglected except insofar
as they influence the filling of the orbitals. In the case of a neutral atom
of nuclear charge Ze, the Hartree wave function is postulated to be

= ¢1(r1)p2(r2) -+ - Pu(Tn), (5.97)

where each orbital ¢; is an eigenfunction of the single-particle
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Hamiltonian

Hl-:— hz v?__Zez
2me r;

+ Vi(ri)a (5'98)

where # is the number of atomic orbitals, m, the electronic mass, e the
electronic charge, and r; the position of the ith electron. The term
Vi(r;) is the effective central potential felt by electron i due to the
presence of other electrons. The full wave function i satisfies

Zn:H,-zp = 0. (5.99)
i=1

One needs to find a central potential V;(r;) to be used in H; and
hence calculate the orbitals ¢;. In the Hartree method the central
potential is taken to be

n 82
Vilr;) = Z )/¢;(rj)|n_—_lﬂ¢)i(ri)d3rj' (5.100)

J=10#i

The orbitals and hence the energies are then found by solving the
following Hartree equations self-consistently:

Hi¢>i(ri) = Ei¢>i(ri), i = 1,2, P (B (5101)

Once the Hartree equations are solved, the atomic wave function is the
product of the individual orbitals. The expectation value of the full
Hamiltonian ) /_; H; with respect to the atomic wave function is the
approximate energy.

A more complete description of the atomic states is given by the
Hartree— Fock theory, which treats the spin of the electron explicitly.
The atomic wave function must explicitly be antisymmetric in electron
coordinates. This is achieved by replacing the product form of the
wave function by a Slater determinant,

Y =[p1(r)a - @1(r))B - da(rr)a - da(12) B+ du(rn)x - Pu(r,) Bl
(5.102)

where « () 1s the spin-up (spin-down) spin function. In Eq. (5.102), in
each orbital there are two electrons: one spin-up, another spin-down.
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The Hartree—Fock wave functions and energies are determined by
solving a coupled set of differential equations. The coupling between
various atomic orbitals is introduced through an explicit account of
the Pauli principle.

The foregoing treatment can be extended to the case of closed-shell
molecules, where in the Hamiltonian H; of Eq. (5.98), the second term
on the right-hand side 1s to be replaced by a sum with contributions
from different nuclear charge centers Z.,e of different atoms. The
Hartree— Fock wave function for a closed-shell molecule is taken in the
form (5.102) and that for scattering of an electron off this molecule is
taken as

Y = |p1(r1)a- d1(r)B - da(To)a - da(r2) B - Pu(ry)x - B,(r,) B - di(ri) ],
(5.103)

where the incident electron has been labeled &k in Eq. (5.103). The new
continuum orbital ¢, (r;) is now determined variationally by [2]

(6Yr|(H — E)|thx) = 0, (5.104)

where the variations are defined by

S = |p1(r)a - d1(r)B - da(ra) - ¢o(12) B -+ (X))o - Dp(ry) B - 6y (ri )|
(5.105)

The Hamiltonian for the electron—molecule system can be written
as

N 2 2 2
H:;<—ZE—WV?—;Zf€)+Z ¢ (5.106)

io i<j |ri - l'j| ,

where Z,e are the nuclear charges, N(= 2n + 1) the total number of
electrons, and r,, the distance of the ith electron from nucleus a. In
this case a Hartree—Fock Hamiltonian H™F can be introduced which
defines the HF orbitals ¢, and the energies ¢; via the following
equation in a self-consistent manner:

HT . = ¢, i=12 ..n. (5.107)

The procedure for calculation of the exact H"" is beyond the scope of
this book. In general, it is difficult to calculate the exact HYF and
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approximations are made in its evaluation. For closed-shell molecules,
if exact H'F is employed, the solutions of Eq. (5.107) with ¢; > 0 are
the scattering solutions, and those with ¢; < 0 define the bound
orbitals. These two types of solutions are orthogonal to each other.

If the orbitals ¢, and 6¢, are taken to be orthogonal to each other
or to the orthonormal set of occupied target orbitals, Eq. (5.104) leads
to

(PS¢)|(H™" — €)|Pgy) = 0, (5.108)

where

P=1-3I8)(0l, (5.109)

and € = E — ENF, where ENF is the energy of the Hartree— Fock wave
function (5.102). In case of scattering by a closed-shell system, if we
take P = 1, Eq. (5.108) becomes the Hartree—Fock equation (5.107).
Thus for scattering from a closed-shell system, it is not necessary to
introduce the orthogonality constraints via projection operator P as
above. However, when an approximate Hartree—Fock potential is
employed, it is of advantage to enforce orthogonality.

Let us consider the problem of photoionization from a closed-shell
molecule in the frozen-core Hartree—Fock (FCHF) approximation,
which leads to similar equations. In this approximation the core does
not take active part in the reaction and the outside electron is removed
by photoionization. If an electron is removed from the orbital ¢,, the
final-state wave function is taken to be [2]

1
V= |l 918 bra Gy 48]
+lpra- 918 oo GaBdna-6,8].  (5.110)

The continuum orbital ¢, is then obtained by solving Eq. (5.104) with
Eq. (5.110) and

1
O = s D10 610~ 6200 628y 56

g1 @18 daa- o8- dBl].  (S.111)
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With the imposition of the orthogonality constraint, using the projec-
tion operator P of Eq. (5.109) and taking é¢; = ¢, the FCHF
equation can be written as

(P8 )|(HTMT — €)|Pgy) = 0, (5.112)

where HF“HF is the FCHF Hamiltonian. Again we do not give an
exact expression for this Hamiltonian [2]. Unlike the case of electron
scattering off a closed-shell molecule, the orthogonality constraint is
needed to obtain the correct FCHF solution.

The straightforward procedure to transform the HF and FCHF
equations into the form of a Lippmann—Schwinger equation is
through the use of a pseudopotential. Then a one-electron Schrodin-
ger equation of the form (5.108) or (5.112) is rewritten as [2]

(I — Q)L - Q)¢ =0, (5.113)
with Q =1 — P and
2

h
L=Hy+V—-—e=—

2
_ 114
. ViV =6 (5.114)

where V is the self-consistent HF or FCHF one-particle potential. The
effective Schrodinger equation (5.113) can be rewritten as

(e — Ho)pp = (V — LQ — QL + QLQO) ¢, (5.115)

which can be transformed to yield the following Lippmann—Schwin-
ger equation:

O = dr + GoVodu, (5.116)

with Vo=V —LO — QL+ QLQ, ¢ the free-particle solution, and
Gy=(e— Hy+ i0)~'. Once this Lippmann—Schwinger equation is
obtained, variational principles can be constructed and used in the
usual fashion [2].
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CHAPTER 6

NUMERICAL STUDIES

6.1 INTRODUCTION

We now present an account of the numerical applications of the
methods presented so far. These applications are large in number,
include a wide class of interesting problems in different areas, and
extend in time over the last three decades. Hence, it is not possible to
present an account of all of them. We describe only representative
examples of each type. We classify this presentation in several cate-
gories. First, we present numerical applications in simple models, such
as single-channel Yukawa and exponential potentials for electron—
atom [1-3] and nucleon—nucleon [4] scattering. These models do not
present a good description of physical observables but are used to test
the numerical feasibility and accuracy obtained in various methods.
Then we present applications to the numerical solution of some simple
coupled-channel theoretical models. Finally, we present an application
of the methods to realistic problems in nuclear [4,5], atomic [1-3] and
molecular [6-9] physics. For the realistic problems, we shall be limited
primarily to a discussion of applications of the numerical methods
presented in this book and related methods, rather than presenting a
comprehensive review of the subject under consideration. However, we
present adequate references so that one can have easy access to reviews
and original works on these topics [1-9].

All these methods involve the solution of a linear set of algebraic
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(matrix) equations. Basically, there are two types of methods. The first
type [10] is designed to provide an accurate solution of a mathemati-
cally simple problem, for example, a two-particle scattering problem
involving a small number of channels and angular momentum states. In
this approach an accurate solution of the scattering equation is
attempted via matrix inversion, iteration, or otherwise. These methods
deal directly with the 7-, K-, or I'-matrix equations presented in Chapter
1. Independent of how the solution is obtained, after discretization of
the integrals, these methods require the use of a relatively large number
of integration mesh points per channel. If the number of coupled
channels in the original problem is large, the resultant matrix equation
could be of such a large dimension that these methods become
unattractive. Under such a situation, methods of the second type
(e.g., the algebraic variational basis-set methods [1—-4]) are of interest.
However, the purpose behind the use of the variational basis-set
methods is not always to compete with the methods of the first type
in numerical accuracy, but rather, to obtain a reasonably accurate
result with relatively little numerical effort and/or to obtain convenient
finite-rank expansions. Although the variational basis-set methods
yield approximate solutions easily, convergence to the exact result
could be slow. The reason for this could be manyfold. In some cases the
use of inappropriate basis functions (e.g., £? basis functions for
expanding a non-£> trial function) could be responsible for slow
convergence. In other cases the complicated medium-range nature of
the (coupling) potential could be responsible for slow convergence.
The first type of method mentioned above is efficient for obtaining
high-precision numerical results for the solution of scattering pro-
blems. For obtaining accurate solutions, the iterative Neumann series
method is often preferred to a direct solution, by matrix inversion or
otherwise, of a large set of algebraic equations. If a convergent solution
could be obtained with a small number of terms in the Neumann series,
the accumulated error is expected to be small. If the Neumann series
solution diverges or does not converge satisfactorily, the Padé techni-
que [11,12] can be used to construct a solution of the problem from the
divergent Neumann series solution. However, if a very large number of
terms of a slowly convergent or divergent Neumann series (as in the
Padé technique) are used, one expects low accuracy. Direct solutionof a
large set of matrix equation also leads to a large round-off error. In such
cases a convergent Neumann series for the I' matrix [10] of Section 2.4
can be used. In most problems the I'-matrix equation leads to a
convergent Neumann series when the Neumann series of the original
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Lippmann—Schwinger equation is divergent. If convergence of the I'-
matrix equation is unsatisfactory, one can use the Padé technique to
improve the convergence of the Neumann series of the I'-matrix
equation. All these iterative methods will have slower convergence if
the original Born—Neumann series diverges very strongly, and this may
set a limitation on the use of these methods. However, in practice this
problem has not been of practical concern.

In nuclear physics, expansion methods [4,5], as obtained from the
Schwinger variational principle, have been applied widely to nucleon—
nucleon scattering involving short-range potential. This is because a
separable expansion to the nucleon—nucleon ¢ matrix greatly facil-
itates the task of solving the three- and four-nucleon scattering
problem by reducing the dimensionality of the momentum-space
scattering integral equations by one. The use of separable expansion
on a two-body ¢ matrix reduces the three-body problem to an effective
two-body problem. Similarly, the use of separable expansion on both
two- and three-body ¢ matrices reduces the four-body problem to an
effective two-body problem [5]. These simplifications have been
exploited successfully in solving three- and four-nucleon problems.

The Schwinger basis-set method has also been used with great
success to solve real-world multichannel atomic and molecular physics
problems. Benchmark calculations of various physical processes in
atomic and molecular physics that would otherwise be impossible to
solve have been performed using Schwinger and Newton basis-set
methods. The purpose behind use of a degenerate-kernel scheme
(Kohn or Newton variational principles) or of a separable expansion
scheme (a Schwinger-type variational principle) in two-, three-, and
four-nucleon scattering is to find an approximate solution with the
least effort. This is also the motivation behind use of these methods in
atomic or molecular physics or chemistry. In the latter situations, an
accurate numerical solution is neither called for, because of the drastic
approximations made in formulating the scattering model, nor easily
obtainable, because of the extreme dimensions of the problem.

In atomic/molecular physics, numerous applications of variational
methods deserve special mention. Of these we shall focus on those
scattering processes that have a simple target structure within each
class. For example, in atomic physics we emphasize scattering
involving hydrogen and helium atoms, and in molecular physics we
emphasize scattering involving hydrogen molecule. In atomic/mole-
cular physics the simplest projectiles are electrons, positrons, and
photons. In addition, in molecular physics one could have an atomic
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projectile for studying atom-diatom scattering. All these problems
have been studied by the present variational methods. If the target
wave functions are reasonably well known, it is likely that simple
realistic models can be formulated for these scattering processes,
which can be solved by one (some) of the standard numerical methods,
and the accuracy and usefulness of the (these) method(s) can be
assessed. Problems in atomic physics are easier to handle than
problems in molecular physics. Simple atomic physics problems
were studied exhaustively by various workers in the 1960s and 1970s
by using the on-shell variational methods [1-3]. The off-shell varia-
tional methods were popularized later and after adequate tests in
simple model problems, they have been mostly applied to the scatter-
ing problems in molecular physics in the last 15 years [6-9]. In the
following we present an account of these numerical applications.

In Section 6.2 we describe how to calculate explicitly the matrix
elements of a basis-set method. In Section 6.3 we present numerical
results for single-channel electron scattering with atomic Yukawa and
exponential potentials. In Section 6.4 an account of multichannel
model studies is presented. In Section 6.5 numerical applications of
the variational methods to few-nucleon scattering problems are
described. In Section 6.6 we describe calculations of electron and
positron scattering with a hydrogen atom. In Section 6.7 calculations
of scattering of electrons and positrons with a helium atom are
described. In Section 6.8 electron scattering by heavier atoms is
described. Results for molecular photoionization are described in
Section 6.9. Finally, in Sections 6.10 and 6.11, we describe results of
electron—molecule and atom—diatom collisions, respectively.

6.2 EXPLICIT MATRIX ELEMENTS

The formulations presented in earlier chapters can be used for
practical calculation of scattering observables. All these methods
finally reduce the original scattering problem to a set of linear
algebraic equations. Several matrix elements need to be calculated
to construct this set of equations. This calculation can be performed in
either momentum space or configuration space. In the following we
present explicit forms of these matrix elements.

In this section and the following we work explicitly in three
dimensions. The basis functions are usually taken as linear combina-
tions of the scattering wave function, as in Egs. (4.39), (4.40), and
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(4.41). The present wave function is %+ (r)/kr of Section 1.3. Hence
the basis functions of Eqgs. (4.40) and (4.41) are to be divided by r
before using the equations in this chapter. The relations between the
momentum- and configuration-space representations of the basis
function | f;) are given by

0L =fal) =2 [ orve@td, (6
(PLIf}) = wa(p) = / i onf () dr. (6.2)

First we present the explicit matrix elements of the Schwinger
variational method for the ¢ matrix given by Eqs. (4.24) and (4.21).
If we assume a local potential V7 (r) in the Lth partial wave, the matrix
elements in configuration space are given by

PIVLlfy) = / T e VL ()P, (6.3)

(D_])ﬁ = AoofiL(r) VL(r)f,-L(r)r?‘dr—{— ikAOO Aoor'z dr' r* dr

x i (r YWV (r Vi (kr RS (s )W (P)fin (1), (6.4)

where the outgoing-wave Green’s function (1.77) has been used. For
calculating the K matrix the standing-wave Green’s function (1.32)
should be used. In configuration space, the double integral of Eq. (6.4)
involving non-£* functions is tedious to evaluate, and momentum-
space treatment provides some advantage. In momentum space these
matrix elements are given by

vl == [ Valpawa@dda (63

~ o) 2 poo poo
(D l)jz': (;) ﬁ A PlzdplpzdPWjL(P)WiL(Pl)

2 [°Vi(p,q9)Vi(g,p'
>{Vdnp3—;[; L(ngﬁ )

qzd4, (6.6)

=2 ["ra [w,-L(p><p|VL|f,-> -

mJo

<fj| Vilp){p| VL|fi>]
k2 _p2 ’
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where the outgoing-wave [0 (or standing-wave principal-value) pre-
scription for the ¢ (K) matrix should be used in the energy denomi-
nator. Equation (6.7) is particularly convenient for numerical
calculation. Once the matrix elements (p|V;|f;) of Eq. (6.5) are
calculated and stored, expression (6.7) can be calculated without
ever requiring direct evaluation of a double integral.

Next we present the matrix elements encountered in numerical
application of the Newton variational method via Eqs. (4.73) and
(4.70). This method requires evaluation of a double integral involving
two Green’s functions which is efficiently handled in momentum
space. This is why we present the matrix elements of this method
only in momentum space. In this case

2 /OO Vi(p, @)wir(q)

14 V== 2d 6.8
<p| LGO|f1> 7 Jo kz_qz q 44, ( )

(6.9)

(P ), = iﬁmpzdp[wﬂ(p)wl(p) ~ wi(p){ Vi Golfi) .

- k2—p2 k2—p2

In this case outgoing-wave /0 (or standing-wave principal value)
prescription for the ¢ (K) matrix should be used in the energy
denominator. By storing the matrix elements of Eq. (6.8), direct
evaluation of double integrals involving two Green’s functions is
avoided in Eq. (6.9).

Finally, we present the matrix elements of the Kohn variational
method of Eqgs. (4.98) and (4.99). In this case there are no Green’s
function and the configuration-space treatment is usually employed.
The elements { p|V;|f;) of Eq. (4.98) are evaluated via Eq. (6.3). The
matrix element of Eq. (4.99) is then given by

L(L+1)

00 2
= [ a0 @ + 55— v -HE o). 610

r

Usually, one uses analytical expansion functions, so that the second
derivative in Eq. (6.10) can also be evaluated analytically. Here f; of
Eq. (6.10) is the function in three dimensions. Asymptotically, f
have the three-dimensional scattered waves exp(tkr)/kr and
cos(kr — Lz /2) /kr for complex Kohn and Kohn variational princi-
ples, respectively. Functions f; of Eqs. (4.108) to (4.110) have one-
dimensional scattered waves exp(ikr) and cos(kr — Lxr/2) for complex
Kohn and Kohn variational principles, respectively. Functions f; of
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Eqs. (4.108) to (4.110) are to be divided by r before being used in
equations of this chapter.

We do not present explicit matrix elements of all the methods. The
matrix elements encountered in other methods can be written down in
a similar fashion.

6.3 SINGLE-CHANNEL MODEL STUDIES

In this section we present single-channel model studies of the various
methods presented so far. Two of the potentials commonly used for
this purpose are the following atomic exponential and Yukawa
potentials for electron scattering:

V(r):——hz—zexp(—i), (6.11)

vy — T ep(r/a)

mai  r/ag

, (6.12)
where ag is the Bohr radius of the hydrogen atom. These potentials
have been used in numerous tests of various computational methods
in atomic physics. Most of the tests considered S-wave scattering in
momentum and configuration space. After factorization of #*/2m, the
S-wave momentum-space matrix elements of the foregoing potentials
are given in atomic units (a.u.) by

Vo(prg) =—41+(p+9) ] ' 1 +(p—9)*"",  (6.13)

Lt p+a)”
2pq 1+ (p—q)*

Vo(p,q) = (6.14)

In atomic units the length is measured in units of ay, as are the
momentum-space matrix elements of the ¢, V/, and K matrices. The
wave number is given in units of ag .

The Bohr radius of the hydrogen atom is given by ay = i /me2 =
0.5292 A, where m is the electronic mass and e the charge. The binding
energy of the ground state of hydrogen atom is W /2ma(?5 = ¢ /2ay
=13.6 eV. The atomic unit of energy is ¢*/a; = 27.2 eV. Another
frequently used energy unit is the rydberg (Ry): 1 Ry = ¢* [2ay = 13.6
eV. Often, the electron/positron energy is expressed in terms of the
wave number k, expressed in units of gy or a.u. Then the energy is k*Ry.
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6.3.1 Variational Basis-Set Methods

Schwartz [13,14] calculated S-wave elastic scattering phase shifts for
the atomic Yukawa potential (6.12) with the on-shell Kohn method
given by Egs. (3.110) and (3.111) and the (off-shell) Schwinger
variational method given by Egs. (4.37) and (4.38) for the K matrix.
The results are compared with those obtained from the off-shell
principal-value Kohn method of (4.98) and (4.99) for the K matrix
[15]. Although for phase shifts the on- and off-shell Kohn methods
yield identical results for orthonormal basis functions, the use of
linearly dependent nonorthogonal basis functions may lead to differ-
ent results in practice.

In applications of the Schwinger method given by Eqgs. (4.37) and
(4.38), Schwartz [14] used the following set of functions in momentum
space for L = 0:

wi(p) = (P +02)7, =12, (6.15)

which in configuration space is equivalent to the following set of
functions:

fi(r) = " exp(—ar), i=12..,n (6.16)

If one transforms configuration-space functions (6.16) to momentum
space, there is no one-to-one correspondence between each w;(p) and
fi(r) for a fixed i, but after transformation to momentum space, f;(r)
can be expressed as a linear combination of functions w;(p),
i=1,..,j. For L(# 0) wave scattering, one could use

fi(r) = piL=2) exp(—ar), i=1,2,..,n. (6.17)

These simple expansion functions facilitate calculation of the integrals
and are often used in numerical application of variational methods.
In the Schwinger variational method (SVM) of Egs. (4.37) and
(4.38), the multiple integral involving the Green’s function has a
simple structure which is handled efficiently in momentum space.
This approach requires the calculation of an integral involving the
inverse potential operator, which is evaluated in configuration space
for an everywhere attractive (or repulsive) potential. Here all integrals
are single integrals without requiring evaluation of multiple integrals.
Also, the unknown function is a £ form factor, and the use of £°
basis functions has led to good convergence. Schwartz also used the
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on-shell version of the Kohn variational method (KVON) of Egs.
(3.110) and (3.111) with trial functions (3.73), (3.74), and (3.75) (see
Section 3.31) for calculating phase shifts. For comparison we present
the phase shifts obtained from the off-shell Kohn variational method
(KVOF) for the K matrix of Eqs. (4.98) and (4.99) with basis functions
(3.73) and (4.111) [15]. Although the on- and off-shell Kohn methods
are formally equivalent for calculating phase shifts, numerically, the
off-shell method is simpler, as noted in Section 4.6.

In these three methods the £ basis functions have similar func-
tional form. The Schwinger variational method (SVM) uses only £°
basis functions. The Kohn methods, KVON and KVOF, use, in
addition, real non-£? functions. The rate of convergence of a given
method should be improved by varying the parameters « and 3 of the
expansion functions. For the best convergence these parameters could
be different and could depend on energy. However, in Table 1 the
energy-independent choice o = 8 = 1.8 a.u. has been used at all
energies.

In Table 1 we present the numerical results for S-wave elastic
scattering, phase shifts for electron scattering with the atomic
Yukawa potential as calculated by various basis-set methods. A large

TABLE 1. S-Wave Scattering Length and Tangent of S-Wave Phase Shifts
for the Yukawa Potential (6.12) for Different Values of n”

KVON  SVM KVOF KVOF KVOF
n (k=0°" (k=0) (k=0  (k=0.15au)" (k=0.5au)
1 — 1.023067 1.0031559918  1.0022295713  0.9926326659
2 1.001285 1.012292 1.0012853635 1.0012824833  0.9986054340
3 1.000005 1.000114 1.0000050358  1.0000254684  0.9958296795
4 1.000000 1.000051 1.0000006054 1.0000004830 0.9999654332
6 1.000000 1.000011 1.0000000032  1.0000000067 0.9999999133
8 1.000000 1.000001 1.0000000001  1.0000000000 0.9999999792
10 1.000000 1.000000 1.0000000000 1.0000000000  1.0000000001

“ 1 is the total number of £? and non-£? basis functions. The ratio of the calculated
result to the converged result is shown in each case. The present calculation is
performed with variational parameters 5 = a = 1.8 a.u. Converged scattering length
in this case is 7.911380206 a.u. The converged result at k= 0.15 a.u. 1s tané =
~1.386339121, and at k=0.55 a.u. istané = 5.797211392.

b From Schwartz [14].

“ From Adhikari [15].
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number of studies in the literature have compared the rates of con-
vergence of various basis-set methods [16]. In these studies, phase shifts
obtained with a fixed number of £ functions by different methods are
compared. The non-£* functions used in some of the methods, in
addition to the £ functions, are not counted, for the sake of compar-
ison. For example, the results of the Kohn method with one real non-£*
function and »n £ functions are compared with those of the Schwinger
method with only n £% functions. We believe that this comparison is not
fair. So in this chapter we always compare the results obtained with
different methods for a fixed total number n of £> and non-£>
expansion functions. In accordance with this, in Table 1 and in the
following, n denotes the total number of £2 and non-£? functions.

At zero energy (k = 0), the calculated quantities are the S-wave
scattering lengths. At other energies they are the tangents of the S-
wave phase shifts. The entries in Table 1 (and later in Tables 2 to 5) are
the ratios of the quantities calculated for a fixed n to the converged
results. So the closer these entries are to unity, the more converged are
the results. From Table 1 we see that the Kohn methods produce
better convergence than the present version of the Schwinger method
at k = 0. At other energies (k = 0.15,0.55 a.u.) the KVOF method
produces equally good convergence.

In the early 1970s, basis-set methods based on off-shell Schwinger
and Newton variational principles were advocated and studied in
detail by Brady, Sloan, and the author [17,18]. The equivalence of the
Schwinger basis-set method with a separable expansion scheme and of
the Newton basis-set method with a particular form of the degenerate
kernel method were emphasized in these works. Although separable
expansion and degenerate kernel methods were in use for the numer-
ical solution of scattering problems prior to these studies, their
connection with the variational basis-set methods was not realized.
Such numerical studies gained renewed importance and credibility
after their connection with variational methods was established. Here
we present an account of these later numerical calculations. Calcula-
tions were performed by Brady, Sloan, and the author in nuclear two-
and three-body problems. Brady and Sloan [17] made numerical
studies of the Newton variational method. Later, Sloan and the
author [18] made extensive numerical studies of nucleon—nucleon
scattering employing the Newton and the Schwinger basis-set methods
using £? basis functions and confirmed good convergence properties
for both. Later, these variational methods were used extensively in
many realistic scattering problems in atomic and molecular physics.
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Next we compare the results for S-wave phase shifts with different
basis-set methods for the atomic exponential potential (6.11) in
Table 2. In this comparison we employ the following methods: the
anomaly-free Kohn variational method (AF) of Section 3.5.1, the
optimized anomaly-free method (OAF) of Section 3.7.2, minimum-
norm Kohn (MNK) and inverse Kohn methods (MNR) of Section
3.4.1, the optimized minimum norm method (OMN) of Section 3.7.1,
the Schwinger variational method with £* functions (L2SV) of Eq.
(4.24), and the KVOF method for the K matrix of Egs. (4.98) and
(4.99) with basis functions (3.73) and (4.111). Most of these results are
taken from Ref. 19. Again, » is the total number of £* and non-£>
basis functions.

Of these methods, all are on-shell variational methods for the
tangents of phase shifts or their inverse, except the L2SV and
KVOF methods, which may also yield off-shell K matrices. In
Table 2 the calculations were performed using trial function (4.39)
with ¢ =2.5 au. and 8=1.0 a.u. The KVOF calculation was
performed with = 1.5 a.u. and 8= 1.0 a.u. In the L2SV method
only the £* part of function (4.39) is considered with o = 2.5 a.u. at
k =0.15 a.u. and with a = 0.5 a.u. at k = 0.55 a.u. All the on-shell
methods yield good and comparable rates of convergence with this set
of parameters, except the L2SV method, which yields inferior con-
vergence for o = 2.5 a.u. The rate of convergence of the L2SV method
improves with a smaller o (= 1.5a.u. or 0.5 a.u.). For a = 0.5 a.u. the
convergence of the L2SV method is comparable to or better than the
on-shell methods, as can be seen from the result at £ = 0.55 a.u. This
was the scenario until 1980.

There have been extensive studies of the Schwinger variational
method (L2SV) (4.24) in realistic and model atomic scattering pro-
blems [7] using only £ basis functions. However, inclusion of the
appropriate asymptotic behavior of the scattering wave function in the
basis functions should enhance the convergence rate. In the usual
Schwinger variational principle (4.24) the basis function is multiplied
by the potential. If the potential is of short range, the basis functions
up to the range of the potential enters into the calculation and the
necessity of including the correct asymptotic behavior is not severe. It
has been demonstrated [20] numerically that for very short-range
potentials, the L2SV method leads to good convergence. But as the
range of the potential increases, the convergence rate of the L2SV
method deteroriates. For potentials with longer range, if sine and
cosine functions with the same asymptotic property as the scattering
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wave function are included in the basis set of the Schwinger method,
excellent convergence is obtained [20].

Since 1980 there have been new tests on the rate of convergence of
various variational methods, and alternative methods based on varia-
tional principles have been suggested. Among these studies three are
worth mentioning. Takatsuka et al. performed numerical calculations
using the Schwinger method (SV) of Eq. (4.24) with trial function
(4.39) by including two non-£? functions and the usual £ functions in
the basis set and found excellent convergence properties [20]. In the
Newton variational method (NV) the unknown function is an £ form
factor, so one should use an £ basis set. Staszewska and Truhlar [21]
demonstrated the excellent convergence of the Newton variational
method in electron scattering with atomic exponential potential using
£? basis functions. Finally, Miller and collaborators [22] demon-
strated the very good convergence of the complex Kohn variational
method (CK).

In Table 3 we exhibit the results for CK, L2SV, SV, NV, and KVOF
methods for electron scattering with exponential potential (6.11). In

TABLE 3. Tangents of S-Wave Phase Shifts for the Exponential Potential
for Different n”

k(@au) n  CK° L2SV¢ Sv¢ NV* KVOF*

0.15 2 — 1.5974 1.0124  1.0006  1.0046934513
3 — 1.0565 — 1.0000  1.0006096943
4 1.0006  1.0068 1.0000  1.0000  1.0000079769
6 1.0003  1.0016 1.0000  1.0000  1.0000000461
8  1.0000  1.0009 1.0000  1.0000  1.0000000003
10 1.0000  1.0002 1.0000  1.0000  1.0000000001

0.55 2 — 0.9015 0.9972  0.9795  1.0671641249
3 — 0.9112 — 1.0000  0.9989808081
4 09795  0.9351 0.9999  1.0000  0.9999580511

1.0000 0.9935 1.0000 1.0000 0.9999999349
1.0000 0.9995 1.0000 1.0000 0.9999999957
1.0000 0.9997 1.0000 1.0000 0.9999999999

[E—
o 00 N

“Same as in Table 2. The KVOF calculation is performed with variational parameters
B=10au. and o =1.5a.u.

b From Miller and Jansen op de Haar [22].

“From Staszewska and Truhlar [21].

4 From Takatsuka et al. [20].

¢ From Adhikari [15].
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all these calculations the £* functions are taken from Eq. (4.39) in
addition to appropriate non-£> functions. In Table 3, n denotes the
total number of basis functions, including both £? and non-£°
functions. In the CK method, although only one non-£* function is
used, as it is complex with real and imaginary parts, the numerical
complication is similar to the inclusion of two real non-£? functions in
the basis set. Hence, the complex non-L? function of this method has
been counted as two real functions in Table 3, and in this case n = 4,
for example, indicates two £? functions in addition to the single
complex outgoing wave composed of both cosine and sine functions.
In Table 3, when more than one calculation are available in the
literature performed with different choices of the parameters, we
exhibit the one with the best convergence. In a related work on the
CK method, Zhang et al. [22] advocated using two complex functions
and claimed convergence superior to that shown in Table 3 with one
complex function. The inclusion of this new complex function in the
basis set is equivalent to including two more real functions as
commented before. Once the total number of functions # is increased
accordingly, the convergence obtained by Zhang et al. is slightly
inferior to that of Miller and Jansen op de Haar [22].

From Tables 1 to 3, and considering other calculations available in
the literature, we conclude that in general the off-shell methods of
Chapter 4 have better convergence properties than the on-shell
methods of Chapter 3. Among the various on-shell methods, there
is none that is systematically better than others for all problems. All
on-shell methods have similar rates of convergence. Among the off-
shell methods the best convergence is of the NV method, with the SV
and KVOF methods maintaining a close second position. From
Table 3 we find that the NV method converges to four significant
figures for n = 3. The same convergence is obtained in the CK (L2SV,
SV, KVOF) method for n = 6 (10,4,4). The SV and the NV methods
are more difficult in practice in involving more complicated integrals
than the KVOF method. The KVOF method is numerically the
simplest of the three off-shell methods of Table 3, produces very
competitive convergence, and hence is attractive for the numerical
solution of scattering problems.

There are certain numerical difficulties with the basis-set variational
methods discussed in this section. For obtaining accurate numerical
results, the number of basis functions could be large, and subse-
quently, one may need to invert a large matrix involving large round-
off error. In an ideal situation the basis functions should be ortho-
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TABLE 4. S-Wave Scattering Lengths and Tangents of Phase Shifts”

Yukawa Exponential Yukawa Exponential  Exponential
N (k=0) (k=0) (k =0.15) (k=0.15) (k= 0.55)
0 04550407017 0.5889624075 2.4070888958 1.9537093230 0.6875213332
1 1.0628835422 1.1094969597 0.9508377182 0.8898028226 0.9543748521
2 1.0009906100 1.0013279806 0.9991722408 0.9972672993 1.0035508106
3 1.0000400237 0.9999635234 0.9999916475 1.0000133976 1.0001518592
4 1.0000019050 0.9999946001 1.0000023971 1.0000067319 1.0000019555
6 1.0000000013 0.9999999926 1.0000000709 1.0000000150 0.9999999776
8 1.0000000000 1.0000000000 1.0000000014 1.0000000001 0.9999999999
>10  1.0000000000 1.0000000000 1.0000000001 1.0000000002 0.9999999999

“ Results are obtained from iterative solution of the I'-matrix equation (2.28) for the
exponential and Yukawa potentials for k=0, 0.15 a.u. and 0.55 a.u., with v(k, q)
given by Egs. (6.18) and (6.19) [24]. At kK = 0 the converged scattering lengths are
8.693254331840347 a.u. (exponential) and 7.911380206 a.u. (Yukawa).

normal and linearly independent. But in practice they are neither
orthogonal nor linearly independent, and for large n they tend to be
similar. If two of the functions are identical, one encounters a singular
matrix to be inverted, leading to a breakdown of the calculational
scheme. In practice the use of linearly dependent basis functions for
large n results in the inversion of a nearly singular matrix. Hence, as n
increases this procedure leads to poor numerical results. If the integrals
are evaluated numerically, this problem is more severe. One can use
approximately orthogonalized basis functions as in Refs. 17 and 18.
These problems can be avoided in the nonvariational iterative methods
of Section 6.3.2, which do not require the inversion of a matrix.

6.3.2 Iterative Methods

Born—Neumann iterative solution of Fredholm integral equations
leads to rapidly convergent results for weak kernels. The iterative
solutions of Lippmann—Schwinger equations involve only matrix
vector multiplications and converge for a sufficiently weak potential
or at sufficiently high energies. Successive matrix vector multiplica-
tions required in iterative methods are numerically much more
economical and accurate than a matrix inversion encountered in
most other methods. However, for most scattering energies the
iterative solution of a realistic scattering problem is either divergent
or slowly convergent to be of practical use.
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TABLE 5. Scattering Lengths and Tangents of Phase Shifts”

Exponential Yukawa Exponential Yukawa

N (k=0) (k =0) (k=0.15a.u.) (k=0.15a.u.)

1 1.055908698645270  1.2126812508  1.079071594402372  1.2609085936

2 1.003410010969849  1.0204190349  1.004242112709321  1.0230669313

3 1.000168451686852  1.0017009398  1.000193507341894  1.0018485113

4 1.000008094837622  1.0001334233  1.000008718250539  1.0001410945

6 1.000000018488864  1.0000007919  1.000000017575058  1.0000007968

8 1.000000000042132  1.0000000047  1.000000000035371  1.0000000043

10  1.000000000000096  1.0000000000  1.000000000000071  1.0000000000
>12  1.000000000000000  1.0000000000  1.000000000000000  1.0000000000

“ Results are obtained from iterative solution of Eq. (4.79) for the exponential and the
Yukawa potentials [25].

There are several iterative schemes for the solution of Lippmann—
Schwinger equations, when the Born—Neumann series diverges. The
best known of these methods is the Padé method [11], which has been
used successfully in many problems of physics, including scattering
theory. Details of the Padé method have appeared in numerous
monographs and review articles [11,12]. Instead of presenting an
account of the Padé and all other methods for the iterative solution
of scattering problems, in this section we present two physically
motivated iterative methods. The first is based on a convergent
Born—Neumann series of the I'-matrix equation (2.28) [10,23], and
the second is based on the off-shell variational principles of
Section 4.4. Both methods have been applied for calculation of the
K matrix.

The kernel of the I'-matrix equation is real and weak compared to
that of the original equation and may permit a convergent Born—
Neumann series solution. To increase the flexibility of the I'-matrix
equation, a function ~v(k,g) with an arbitrary parameter is usually
introduced. By adjusting this free parameter, this kernel can be made
sufficiently weak to yield a rapidly convergent iterative Born—Neu-
mann series for a wide class of scattering problems. The K- or the ¢-
matrix elements are then obtained by performing an integral over
known elements of the I' matrix. This method was first suggested [23]
for nuclear scattering problems and has recently been demonstrated to
produce excellent convergence [24] in electron scattering with expo-
nential and Yukawa potentials.

In this method the flexibility in the choice of the function ~ of Eq.
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(2.27) can be turned to good advantage in producing a rapidly
convergent iterative Born-Neumann series. In numerical application
we considered k£ = k in Section 2.4 and [24]

4 a?\2
vk, q) =(q2 - a2) (6.18)
for the exponential potential, and
k2 + a2
1) = s (6.19)

for the Yukawa potential. The arbitrary parameter o was varied to
obtain rapid convergence. With these choices, the leading asymptotic
behavior for p, g — oo of the two terms in kernel 4 of Eq. (2.26) of the
['-matrix equation cancels. In addition, numerical calculations were
performed with the simplest choice, y(k, g) = 1, which also produced
very good convergence. In the case of electron scattering with
exponential (Yukawa) potential, 128 (400) Gauss points were used
for numerical integration, and this yielded results accurate to 1in 10"
in both cases after some 10 iterations. The parameter o was taken to
be 3.0 a.u. (3.5 a.u.) for the exponential (Yukawa) potential. The
results of calculation are exhibited in Table 4 for the « functions given
by Egs. (6.18) and (6.19) for different iteration N. The first entry,
N =0, corresponds to I' = V. The convergence is good in all cases.
The small deviation from unity of some of the converged results does
not indicate a defect of the iterative scheme but means that the number
or the distribution of mesh points is not enough to obtain the accuracy
desired.

Next we present results for the variational iterative method of
Section 4.4 for a different iteration N. Variational iterative methods
for the K matrix based on Eqgs. (4.79) and (4.80) were used in
numerical calculation with 400 Gauss mesh points for electron
scattering with exponential and Yukawa potentials [25]. In the case
of the exponential (Yukawa) potential, results with an estimated error
of less than 1 in 10" (1010) were obtained after some 13 (10) iterations.
There seems to be very little round-off error in the method, and the
precision is increased by augmenting the number of mesh points and
order of iteration. The calculations are performed for the K matrix
and the iteration is initiated with K = 0. This lowest-order calculation
corresponds to N = 0. The results for the Schwinger iterative scheme
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(4.79) are exhibited in Table 5. The iterative scheme (4.80), based on
the Newton variational principle, leads to a similar convergence [25].
We find that the iterative methods based on the Neumann series
solution of the I'-matrix equation and on the iterative variational
method of Section 4.4 produce excellent convergence and should be
considered as good options for solving scattering problems. However,
any such iterative method, including the Padé method [11], constructs
the final solution from the (divergent) iterative Born—Neumann series
solution of the original Lippmann—Schwinger equation. If this origi-
nal Born—Neumann series diverges strongly, the present iterative
methods may lead to unacceptable/poor convergence properties.

6.4 MULTICHANNEL MODEL STUDIES

There are several two- and three-channel models that were extensively
used for numerous numerical tests of different variational basis-set
methods. The iterative (nonvariational) methods have not undergone
such rigorous and extensive tests in multichannel scattering problems.

Multichannel studies of the different on-shell variational methods
were undertaken first by Nesbet, Harris, Michels, and collaborators
[26]. Multichannel calculations employing various off-shell methods,
such as the Schwinger and Newton methods, were performed later.
After equivalence was established between the (Schwinger and
Newton) variational principles and appropriate basis-set methods,
two-channel scattering calculations were performed in nuclear two-
and three-body problems by Brady, Sloan, and the author [17,18,27].

First, we consider tests of the basis-set methods for the model two-
channel problem due to Huck [28]. This model is analytically soluble
and couples two S-wave channels. The total Hamiltonian
H = H, + V for this model is given by

nd wod
Ho = ) (= g ) bl + bea) (= 32+ Al (620)

2
V=3 xaVilxl, (6.21)
i#i=1
with V), = V5 = C/2(0), for r < (>) B. InEq. (6.20), #*/m = 1. The
form factors are orthonormalized, so that (x|x;) =§;, and the
parameter B = 1. In numerical tests the following values of the
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parameters were employed: energy E =0.5, AFE =0.375, and
C? =10. The £* basis functions in both channels were taken to be
given by Eq. (3.75), and the oscillating functions for these two
channels were taken to be C(r) and S(r) of Egs. (3.73) and (3.74),
with k = k; and k,, respectively.

In the comparison, anomaly-free (AF, Section 3.5.1), minimum-
norm (MN, Section 3.4.1), and optimized anomaly-free (OAF, Sec-
tion 3.7.2) methods and the Schwinger method (4.24) with £ func-
tions (L2SV) as well as an anomaly-free Kohn method with only £°
functions due to Takatsuka and McKoy (TMKYV) were employed
[26,29]. In the TMKYV method [29] the asymptotic boundary condition
is incorporated by dividing the configuration space in the interior and
exterior regions and fixing the log derivative of the wave function at
the boundary by choosing the £ basis functions appropriately, as in
the R-matrix approach. They also modified the denominator as in
Eqs. (4.231) to avoid anomalies.

The convergence of the K-matrix elements is slow with all the
methods, especially for small basis sets. Comparisons were made for
the on-shell K matrix elements, and it was found that the L2SV and
the TMKYV methods have better convergence properties. Both these
methods yielded results significantly better than AF, MN, and OAF
methods. The results obtained with the L2SV and TMKYV methods
using six basis functions were essentially exact and more precise than
those obtained with on-shell methods with 25 basis functions. Con-
vergence of the K-matrix elements is particularly slow for on-shell
methods. However, convergence of the cross section is more rapid.
Convergence of the on-shell methods was similar, and in Table 6 we
exhibit the deviation of cross sections from exact values for AF, MN,
L2SV, and TMKY methods [29,30]. The closer the entries are to zero,
the better is the convergence.

From Table 6 we find that the L2SV and TMKYV methods exhibit
convergence properties superior to those of on-shell methods. Of the
two methods, TMKYV is numerically simpler in not involving double
integral over the Green’s function. The TMKV method should be
compared with the KVOF method of Section 4.6 discussed in Section
6.3. Both are based on the Kohn variational principle, use an equation
of the form (4.98), do not explicitly use the Green’s function, yield
very precise numerical results, and can be used in the modified form
(4.231) so that spurious poles can be avoided. The KVOF method uses
a single non-£? function, whereas in the TMKV method the real L?
basis functions are chosen as in the R-matrix method, to include the
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TABLE 6. Convergence of the Cross Sections with Different Methods for
the Huck Model [28,30]"

n AF MN L2SV TMKV
Aoy 1 ~0.271 —0.264 —0.04145 —0.04333
2 —0.014 —0.013 —0.00516 —0.00011
3 —0.050 —0.026 0.00049 —0.00003
4 ~0.008 0.001 0.00000 0.00000
Ady, 1 0.086 0.081 0.01342 0.02254
2 0.005 —0.013 0.00215 0.00014
3 0.007 0.014 0.00003 0.00002
4 0.005 0.002 0.00000 0.00000
Aoy, 1 0.005 —0.123 —0.04418 —0.01809
2 0.036 0.189 —0.00262 0.00035
3 0.160 —0.025 —0.00005 —0.00003
4 —0.002 0.003 —0.00001 0.00000

Deviations from the exact values are presented in each case. The exact results are
o = 2.16791, o, = 0.76746, and 0,, = 2.55844. The results for the time reversed
channel 21 are related to that of channel 12 by Eq. (1.223).

“Results are from Takatsuka and McKoy [29]. Reprinted with permission of the
American Physical Society. Copyright © 1981.

proper boundary condition. Both involve similar numerical complica-
tions and should be considered as useful alternatives for precise
solution of scattering problems. As in the single-channel models, the
present coupled-channel study indicates that the off-shell methods
have better convergence properties than the on-shell methods.

Callaway [31] made an extensive comparative numerical study of
different on-shell methods in a three-state close-coupling (CC) model
of electron—hydrogen scattering. The three states are the 1s, 25, and 2p
states of the hydrogen atom. For L = 0 (> 0), the model leads to three
(four) coupled equations. Accurate calculations for this model have
been performed by various authors, which can be taken as essentially
exact [32]. Callaway et al. solved this three-state CC model using
different variational on-shell basis-set methods and compared the
results with the accurate exact calculation. Calculations were carried
out using Slater-type orbitals (6.17) together with the usual long-range
sine and cosine functions, where L is the angular momentum of
scattering electrons in a specific channel and different values of o
were taken for different functions.
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For the three-state CC electron—hydrogen model, calculations were
performed with Kohn (Section 3.3.1), inverse Kohn (Section 3.3.2),
optimized minimum-norm Kohn and inverse Kohn (Section 3.7.1),
optimized anomaly-free (Section 3.7.2), and variational least squares
(Section 3.8) methods, among others [31]. After calculations with a
large number of basis sets (15 for each channel) at a specific energy,
reasonably good agreement between various basis-set methods was
obtained. The standard deviation of the K-matrix element was 0.1%
(2%) in the spin-singlet (triplet) state. These methods yield good
convergence for small n (6 to 8). However, the final convergence is
usually slow and nonmonotonic in nature. Also, all these on-shell
methods have comparable convergence properties.

In these simple model scattering problems the numerical result is
usually known, at least approximately, beforehand. But when one
starts a new (complicated) problem this is not the case, and special
judgment is needed regarding the acceptability of the numerical result
of a particular method. Care should be taken to conclude, especially,
(1) how far a particular result is from the converged result, and (2) if
the energy under consideration is near a spurious resonance and
consequently, if a particular result is grossly in error. Usually,
calculations using more than one method for several n should be
performed before deciding on these issues.

6.5 NUCLEAR FEW-BODY PROBLEMS

After the initial applications of on-shell variational methods to
various model scattering problems, the deficiency of these methods
was detected while calculating high-precision results. Despite calcula-
tional simplicity, there were problems with slow convergence and
spurious resonances. Calculation of scattering soon began with off-
shell variational methods, and their convergence was studied in detail.
The first applications of the off-shell variational methods were made
to the problem of nucleon—nucleon scattering for potentials with soft
core. The nucleon—nucleon system, although it involves at most only
two coupled channels, is not numerically trivial because of a soft
repulsive core in the interaction. Because of the presence of the soft
core, this problem presents convergence difficulties in both momen-
tum- and configuration-space treatments. The very large momentum
components of the interaction contributes to low-energy results.
Consequently, a large number of momentum mesh points extending
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over a wide range of momenta are needed for obtaining high-precision
results. Hence, this is a welcome test problem. The off-shell variational
methods passed this test with honors. Then there were applications of
these methods to model three-nucleon scattering problems. The I'-
matrix approach was also used in solving these problems.

Different types of degenerate kernel methods and methods of
moments were used in solving nucleon—nucleon scattering problems
in the late 1960s and early 1970s [33]. In these studies the variational
nature of the calculations was not realized. The Schwinger variational
method is a special type of the method of moments, and the Newton
variational method is a special type of the degenerate kernel method.
This connection between off-shell variational methods and these
earlier calculations was not known to a general audience at that
time. Brady, Sloan, and the author emphasized this connection
[17,18] and did numerous tests of these methods in both two- and
three-nucleon scattering. After these initial applications these methods
were applied to problems in atomic and molecular physics. Here we
describe only those calculations that were performed after establishing
the above-mentioned connection. Although these authors were aware
of the variational nature of their calculations, the variational aspect of
the calculations was not always emphasized.

Brady and Sloan [17] formulated the Newton variational principle
as a variational basis-set method and applied this method to the
solution of two- and three-nucleon scattering problems. In their
application of the Newton variational method to nucleon—nucleon
scattering via the Reid 'S, soft-core potential, Brady and Sloan
established very good convergence for both on- and off-shell ¢-
matrix elements. In their study of the three-nucleon scattering pro-
blem with nucleon—nucleon separable potential they also found good
convergence for on- and off-shell ~-matrix elements. The three-nucleon
scattering problem for the spin-doublet system involves two physical
channels, and hence this is the first application of the Newton basis-set
method to a multichannel problem. Sloan and the author [18] applied
the Newton variational basis-set method to the nucleon—nucleon
scattering problem and established good convergence. At the three-
particle level they applied this method to a three-boson decay problem
as well as to the neutron—deuteron scattering problem and obtained
excellent convergence in both cases [18]. The more recent studies of
Rawitscher [34] and collaborators also use a special form of the
Newton variational method in the study of nucleon—nucleon
scattering.
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In their application to nucleon—nucleon scattering with a Malfliet—
Tjon soft-core potential using the Schwinger basis-set method with £2
functions, Sloan and the author established good convergence proper-
ties. However, the convergence obtained by Brady and Sloan using the
Newton method for a similar potential was slightly better. They also
applied the Schwinger basis-set method to nucleon—nucleon scattering
in S;—>D, channels [18] employing the Reid soft-core potential. In
this case orbital angular momentum is not conserved. This two-
channel problem is particularly difficult because it couples S- and
D-wave channels with total angular momentum J =1 employing
phenomenological potentials with a soft repulsive core, which usually
leads to slow convergence. This is the first application of the Schwin-
ger basis-set method to a nontrivial multichannel problem.

The author also applied the Schwinger £* basis-set method to a
model proton—proton scattering problem in the presence of a nuclear
Malfliet—Tjon soft-core potential and a repulsive Coulomb potential
[35]. Using a two-potential formulation, the Coulomb potential was
treated as a distorted wave, as in Section 4.7. He obtained rapid
convergence in this study.

There is one advantage of writing the ¢ matrix in the form of
separable expansion, as one obtains in the Schwinger basis-set
method. Use of the two-body (three-body) 7 matrix in separable
form in the three-body (four-body) problem simplifies the latter by
reducing its dimensionality [4,5]. With this intention there have been
many applications of the Schwinger basis-set method to solution of
two- and three-nucleon problems. The three-nucleon problem is a
difficult problem, as the singularity of the kernel depends on both
momentum variables and is not easy to subtract out. The Schwinger
basis-set method yields good convergence for three-nucleon scatter-
ing. In some cases, special energy-dependent basis functions were
used [5].

Numerical activity in the construction of separable nucleon—
nucleon 7-matrix expansions increased after the theoretical work of
Sloan and the author and of Ernst, Shakin, and Thaler (EST) [18,36].
In the EST approach the rank-n EST ¢ matrix is made to be exact half-
on-shell at n preselected energies. If these energies are chosen care-
fully, the method provides a good interpolation at other energies.
Sloan and the author (AS) advocated the use of analytic expansion
functions so that the final result for the separable r matrix has a simple
structure, which facilitates the use of this # matrix in three- and four-
body problems. Plessas and co-workers [4] combined the virtues of the
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AS and EST methods to construct separable expansions for realistic
Paris and Bonn two-nucleon ¢ matrices, which they used successfully
in solving the three-nucleon problem with realistic potentials. Baldo et
al. [37] have constructed rapidly convergent separable expansions for
Reid and Argonne V,, nucleon—nucleon potentials using Gamow
functions in the AS method. Bund, Canton, Hartt, Oryu, and their
collaborators [38] also obtained separable expansions for the f matrix.
At the three-nucleon level, Sofianos et al. [38] using the AS method,
constructed separable expansion of the neutron—deuteron ¢ matrix to
be used in the four-nucleon problem, and obtained good convergence.
Such expansions have been used with great success by Fonseca [5] for
solution of the four-nucleon problem.

All these studies of the Schwinger method in nuclear physics used
only £ basis functions. Consequently, in many applications final slow
convergence has been observed. Large oscillations in the nucleon—
nucleon phase shift obtained with this method in some numerical
applications have later been identified with the occurrence of a
spurious resonance [39].

There have been applications of the complex Kohn variational
method to the solution of nucleon—nucleon scattering employing the
Reid soft-core potential in 'Sy and *S;-*D; channels [40]. Rapid
convergence was obtained in both cases for phase shifts and mixing
parameters with a small number of basis functions. The convergence
was faster than that obtained by the Schwinger method with the same
potential. Recently, Kievsky [40] made an interesting application of
the complex Kohn variational method to neutron—deuteron scattering
below the breakup threshold using realistic local nucleon—nucleon
potentials and three-nucleon forces. He obtained very precise and
stable numerical results for scattering length, phase shifts, and mixing
parameters with an error of less than 0.1%. Kievsky et al. also
extended the method to energies above the deuteron breakup thresh-
old [40].

The I'-matrix method of Section 2.4 was also first applied to the
solution of few-nucleon problems. Many of these applications use the
iterative Neumann series solution of a manifestly nonsingular equa-
tion. In practical cases, the dimension of the discretized matrix
equation could be large, so direct matrix inversion may lead to large
round-off error. A convergent iterative Neumann series leads to low
round-off error and involves much less computing time. The iterative
[ matrix method has been used for the numerical solution of both
two- and three-nucleon scattering problems [23]. In the two-channel
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three-nucleon scattering problem, very satisfactory convergence was
found from the iterative solution of the I'-matrix equation. However,
in general, the mathematical criteria for convergence of the Neumann
series for the I'-matrix equations are seldom clear. The best choice of
the arbitrary function ~ is achieved only by trial.

If the original Lippmann—Schwinger equation diverges very
strongly or involves many coupled channels, convergence of the
Neumann series solution of the I'-matrix equation could be slow.
When the iterative Neumann series does not converge satisfactorily,
there are several alternatives. First, one can introduce further sub-
tractions in the kernel to improve convergence. This has led to two
alternative methods, known as the continued fraction method and the
iteration subtraction methods [41]. These alternative methods have
been found to accelerate the convergence rate of the Neumann series
solution when the iterative solution of the original I"-matrix equation
is not attractive. Compared to the Padé method [11,12], these alter-
native methods have been found to lead to very competitive conver-
gence behavior in solving few-nucleon scattering problems. Second,
one can also directly solve the I'-matrix equation by inversion or
otherwise. This second possibility also offers advantages, as, unlike
the K- and f-matrix Lippmann—Schwinger equations, the ['-matrix
equation is a real Fredholm equation. The K-matrix equation involves
a principal-value prescription in the kernel, which makes its numerical
application complicated. The I'-matrix method has not seen wide-
spread application in solving realistic collision problems and perhaps
deserves more attention in the future.

6.6 SCATTERING BY HYDROGEN ATOM

There have been many numerical tests of the variational on-shell
basis-set methods of Chapter 3 to physical scattering problems of
interest in atomic and molecular physics, and we present a brief
account of them in the following. In atomic physics we mostly
consider the following simple problems: electron-hydrogen atom,
positron-hydrogen atom, electron-helium atom, and positron-
helium atom scattering. In these cases the idea is to perform a
variational calculation based on essentially the exact Hamiltonian of
the system. However, in most cases one needs the atomic wave
functions. In the case of hydrogen, these atomic wave functions are
known exactly. In other cases, model wave functions are used. The
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nuclear calculations of Section 6.5 are based on model Hamiltonians.
So apart from numerical errors and lack of convergence due to the use
of a finite basis set, numerical solutions of this problem can be taken to
be essentially exact.

In the case of simpler atoms, for example alkali atoms, where the
last valance electron can be considered to be the only active electron,
the exact Hamiltonian is first approximated by a model Hamiltonian
and the variational calculation is performed with this Hamiltonian.
One can perform essentially exact calculations with these simplified
models which can be compared with different approximation schemes.
This gives an estimate of the usefulness of the models and approxima-
tions. Such a comparison cannot be made for atoms with more
complex structure. In this section we deal with hydrogen atom
scattering, and we consider helium scattering in the next section. We
do not present an exhaustive review of the scattering processes but
present mostly an account of the application of various numerical
methods to these problems.

6.6.1 Electron—Hydrogen Scattering

There are two major studies of scattering by hydrogen atom at low
and intermediate energies: electron—hydrogen and positron-hydro-
gen scattering. These are reasonably simple systems where one can
hope to find reliable converged results by variational methods or
otherwise so that relative accuracy of different methods and approx-
imation schemes could be tested. An excellent account of these
calculations can be found in the review article by Callaway and in
the monograph by Nesbet [1,3]. Among these studies are those of
Schwartz [13,14] and Armstead, Shimamura, Rudge, Register, Call-
away, and collaborators [42—45]. As most of these calculations were
based on the exact Hamiltonian of the problem and not on the few-
state close-coupling (CC) model Hamiltonians, they can produce
results superior to those of the few-state CC model.

In electron—hydrogen atom scattering there are two total spin
states: § = 0, 1. The total differential cross section for elastic scatter-
ing is given by [1,3]

1
Z 28 + 1)| f5)?, (6.22)
S:

where fg is the scattering amplitude in spin state S. In this case one
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obtains a distinct partial-wave phase shift for spin singlet and triplet
states. The need for higher partial waves in reproducing differential
cross sections at small scattering angles and for energies as low as 8—
10 eV was realized. In atomic physics, instead of calculating all the
higher phase shifts, it is common to use the following partial-wave

Born formula for the scattering phase shift in higher partial waves
[1,3]:

fan§, — ragk? { 3(y — qu)k2
LT RL+3)2L+1D)(R2L-1) (2L + 5)(2L + 3)ayy |’

(6.23)

where a4 (o) is the dipole (quadrupole) polarizability and + is the
leading term in the nonadiabatic correction to a;. For hydrogen atom,
oy = 4.5a3 and (v — a,)/ag = 23/6. Good agreement with experi-
ment was obtained by calculating the lower (higher) partial-wave
phase shifts variationally (from the Born formula above).

An adequate representation of the electric-dipole polarization
potential is essential in electron—hydrogen scattering. However, the
use of few exact atomic states in the CC scheme makes it impossible to
describe the polarization of the target correctly. A correct description
of atomic p-wave states is needed for this purpose. Castillejo et al. [46]
gave the following estimates for generation of the polarization poten-
tial in the CC approximation. Inclusion of the 2p state (all bound p-
wave states) produces 66% (81%) of the full polarization potential.
The remaining 19% comes from the continuum p-wave states of
hydrogen. The effect of all the p-wave states can be incorporated by
including a p-wave pseudostate in both a variational and a CC
treatment of electron—hydrogen scattering. A pseudostate is a math-
ematically constructed state which is orthogonal to other atomic states
and simulates the effect of the continuum and the neglected atomic
bound states in a CC calculation. After including the pseudostate(s),
the CC model can reproduce the correct value of the polarizability,
and this improves the result significantly.

In the pioneering study of electron—hydrogen scattering at low
energies below the lowest inelastic threshold at 10.2 eV, Schwartz
[13,14] employed the Kohn method for calculating the S-wave phase
shifts. By varying the parameter in the basis set, he calculated accurate
values of phase shifts. His trial functions incorporated the exact
atomic bound states in the physical channel(s). A similar calculation
was repeated by Shimamura [42], who used not only the Kohn method
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but also the Harris method. For both 'S and *S scattering states, with
about 50 basis functions, a converged result was obtained for both the
Kohn and Harris methods. The Kohn method produced better
convergence. By studying the convergence of the result with a finite
basis set, it was possible to extrapolate the result to an infinite basis
set. Oberoi and Callaway [47] obtained very similar results from a
crude basis set suggested by the polarized orbital method [1]. Abdel-
Raouf and Belschner [48] calculated S-wave phase shifts by the
minimum-norm method. Callaway [44] calculated D- and F-wave
phase shifts using different trial functions and pseudostate expansions.
Results of Callaway from five variational basis-set methods (Kohn,
inverse Kohn, optimized minimum-norm, inverse optimized mini-
mum-norm, and optimized anomaly-free) were found to be in satis-
factory agreement. Rudge [43] repeated the calculations for the S-
wave phase shifts using the anomaly-free method of Section 3.5.1 with
slightly more flexible functions, and his calculations are in agreement
with those of Schwartz and Shimamura. Armstead extended the Kohn
variational calculations of Schwartz to P waves, and the results were
later confirmed by Das and Rudge, who used the anomaly-free
method suggested by Rudge in Section 3.5.1 [43]. Register and Poe
extended these variational studies to D waves using the Kohn and the
inverse Kohn methods [43].

Independent variational calculations have been carried out and the
results compared for each of the phase shifts up to D wave. Except
where the result is in doubt because of the presence of a nearby
anomaly, the convergence was monotonic in many cases. Hence it was
possible to extrapolate the result of a finite basis calculation to find the
converged result with an infinite basis [1,3].

As one approaches the lowest inelastic threshold, several reso-
nances were found in numerical calculations. Shimamura [42] deter-
mined the positions (widths) of the lowest |.S and *S resonances to be
0.702452 Ry and 0.745923 Ry (0.00347 Ry and 0.0000026 Ry),
respectively. Narrow P- and D-wave resonances were also found in
elastic electron—hydrogen scattering at energies close to the S-wave
resonances near the lowest inelastic threshold. Das and Rudge [43]
determined the position (width) of the lowest *P resonance to be
0.715735 Ry (0.00043 Ry). Callaway [1] determined the position
(width) of the lowest 'P resonance to be 0.747901 Ry (0.0000027
Ry). Register and Poe [43] determined the position (width) of the
lowest ' D resonance to be 0.743924 Ry (0.00066 Ry).

Callaway [1,44] used pseudostates in his basis for calculating phase
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shifts for L = 2 and 3. For large L, short-range correlations become
less important and long-range correlations dominate. The dipole and
quadrupole polarizabilities are represented accurately by his basis set.
His calculated phase shifts with Kohn, inverse Kohn, optimized
minimum-norm, inverse optimized minimum-norm, and optimized
anomaly-free methods were in good agreement with each other. In
Table 7 we present the low-energy phase shifts at various energies
taken from different references. Although some of these phase shifts
were given up to four significant figures after the decimal point, we
have rounded the results in Table 7 up to three significant figures after
the decimal. The ' F and >F phase shifts are essentially identical within
this precision and are shown in a single column.

Callaway and collaborators [1,45] performed electron—hydrogen
atom scattering calculations at intermediate energies using on-shell
variational basis-set methods above the excitation and ionization
thresholds for incident energies from 10.2 to 54.4 eV using pseudo-
states. At these energies, because of the presence of an effective static
dipole potential, the asymptotic form of the continuum basis function
used in variational methods needs to be modified to obtain good
convergence. Callaway et al. used energy-dependent £? basis func-

TABLE 7. Phase Shifts (in radians) for Elastic Electron—Hydrogen
Scattering at Different Energies in a.u.”

k(au) lsb 3sb IPC 3P(: ]Dd 3Dd ],3Fe
0 5.965 1.769
0.1 2.553 2.939 0.007  0.011 0.001  0.001 0

0.2 2.067 2.717 0.015 0.045 0.005  0.005 0.002
0.3 1.696 2.500 0.017 0.106 0.011  0.011 0.004
0.4 1.415 2.294 0.010 0.187 0.018  0.020 0.007
0.5 1.202 2.105 —0.001 0.271 0.027  0.030 0.010
0.6 1.041 1.933 —0.009 0.341 0.038  0.042 0.015
0.7 0.930 1.780 —0.013 0.393 0.052  0.056 0.020
0.8 0.886 1.643 —0.004 0.427 0.075  0.070 0.026

“The entries at zero energy are the scattering lengths in a.u. The results at k = 0 are
from Schwartz (1961a) [13].

b From Shimamura (1971a) [42].

“ From Armstead [43].

¢ From Register and Poe [43].

¢ From Callaway [44].
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tions for this purpose. An algebraic CC scheme was used for the
variational calculation. The 1s, 25, 2p channels were treated as open
channels with appropriate non-£? functions and the usual exponential
£? functions were used for both open and closed channels. Several
types of on-shell methods were used in the calculation for partial
waves L < 3 and complemented by the Born formula (6.23) for higher
partial waves.

Callaway et al. [1,45] found reasonably well-converged results for
elastic and excitation cross sections to the lowest excited state(s) of the
hydrogen atom. They obtained 1 to 2% accuracy in elastic scattering
and 5 to 10% accuracy in excitation. Compared to these variational
calculations, convergence of the CC calculation could be extremely
slow and exact calculations impossible to perform in many cases. In
this problem, many simpler calculations, such as Born or few-state CC
approximation, perform rather poorly, especially at low energies.

A series of resonances in different partial waves were confirmed as a
new threshold was crossed. Just above the n = 2 threshold and below
the n = 3 threshold several resonances were found. These resonances
have been studied by different authors [1]. Above the n = 3 threshold,
the pseudostate expansion used by Callaway et al. [1] cannot ade-
quately represent the hydrogen atom, and it becomes increasingly
difficult to locate the resonances.

McKoy and collaborators [7] used the off-shell multichannel
Schwinger basis-set method for the calculation of '* S elastic electron—
hydrogen scattering phase shifts at low energies below the inelastic
threshold employing the exact Hamiltonian. Their basis functions
were antisymmetrized products of single-electron wave functions. In
the basis they included the product of:

1. Two hydrogen 1s functions (one basis function)

2. A hydrogen 1s function and long-range sine and cosine functions
(two basis functions)

3. A hydrogen 1s function and Slater scattering orbital functions
rexp(—ar)Y,,,i=1,2,..., M (M functions)
4. Hydrogen atom exact or pseudostates for closed channels and

Slater scattering orbital functions with i = 1,2, ..., M, (M,, func-
tions)

First they studied the convergence of the variational calculation
with respect to both M and M, for a 1s—2p calculation. The total
number of basis functions n =3+ M + M,. They found that the



6.6 SCATTERING BY HYDROGEN ATOM 285

convergence is good with respect to the number of scattering orbitals
for a given closed channel. Next they considered the problem using a
1s—25—2p expansion and also found good convergence properties.
Compared with the converged variational results of Table 7, McKoy
et al. results differ by up to 5% for the 'S phase shifts. However, it is
pleasing to find that these variational calculations produce very
reliable results with comparatively little numerical effort, which
agree well with experiment [49].

6.6.2 Positron—Hydrogen Scattering

At low energies, positron—hydrogen elastic scattering is apparently
easier to handle than electron—hydrogen scattering because in the
former case one does not need to antisymmetrize the model with
respect to the incident positron and the target electron. At low
energies the effect of antisymmetrization in electron—hydrogen scat-
tering is important. At higher energies the effect of antisymmetrization
in electron—atom scattering is not important and results for electron—
atom and positron—atom scattering tend to be similar. But this
advantage of the positron—hydrogen system is more than compen-
sated due to the appearance of open rearrangement positronium
formation channels above 0.5 Ry, which are difficult to handle. The
appearance of these channels brings in most complications of a three-
body problem. However, even at very low energies, the presence of the
closed positronium channel provides additional attractive interaction,
which causes convergence difficulties in variational calculations of
positron—hydrogen scattering, as noted by Schwartz [13] in calculat-
ing of S-wave phase shifts using the Kohn method. Shimamura [42]
repeated this calculation, and his results are in close agreement with
that of Schwartz.

Bhatia et al. [50] suggested a different variational approach to
positron—hydrogen scattering. They were able to construct an approx-
imate optical potential for the system which is everywhere more
repulsive than the true optical potential. Then the phase shift calcu-
lated with this potential gives a bound on the exact result. They
improved this optical potential systematically so that it converges to
the exact optical potential. The resultant phase shifts also converge to
the exact result. By this procedure they calculated essentially con-
verged phase shifts at low energies below the excitation and rearran-
gement thresholds for low partial waves.

Roy and Mandal [50] made a useful and practical application of the
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Schwinger variational method to positron—hydrogen—atom collisions
for both the direct and positronium-formation channels. They gave
accurate results for S, P, D and higher-partial-wave phase shifts. They
also calculated low-energy differential scattering cross sections. Kar
and Mandal [51] studied the effect of correlated basis functions for
studies on positron collisions using the Schwinger method.

First, we consider the S-wave phase shifts. The S-wave phase shifts
of Schwartz [13], Shimamura [42], Roy and Mandal [50], and Bhatia
et al. [50] are in good agreement with each other. Using a complex
energy extrapolation method, Doolen et al. [51] also calculated S-
wave phase shifts using 120 trial functions and obtained results in
excellent agreement with Bhatia et al. Humberston, using the Kohn
method, and Stein and Sternlicht, using the anomaly-free method,
also found good results [52]. Houston and Drachman [53] performed
variational calculations of S-wave phase shifts using the Kohn and
Harris methods.

The most accurate P-wave phase shifts were calculated by Arm-
stead [43] using the Kohn variational method and by Roy and Mandal
[50] using the Schwinger method. Bhatia et al. [50] also calculated P-
wave phase shifts later using their variational approach, and their
results are in excellent agreement with those of Armstead. These
results stand as a benchmark. Variational D-wave phase shifts have
been calculated by Register and Poe [43] using the Harris method and
by Roy and Mandal [50] using the Schwinger Method. We tabulate
some of these results in Table 8. At low energies scattering occurs
predominantly in the S wave, and from Table 8 we find a zero in the S-
wave phase shift at k> ~ 0.4 a.u. Consequently, the total cross section
has a Ramsauer—Townsend minimum at this energy.

Above the positronium formation and other inelastic thresholds,
the conventional variational calculations become increasingly com-
plicated and the convergence slow. In this energy region the CC
method is appropriate for an approximate study of positron—hydro-
gen scattering. The CC method leads to slow convergence but is much
simpler to implement than the variational methods and reveals
interesting features of the scattering process, as in electron—hydrogen
scattering. As in the case of electron—hydrogen scattering, CC calcu-
lations have produced a series of narrow resonances in positron—
hydrogen scattering as one approaches the n =2 threshold of the
hydrogen atom. In their algebraic (1s, 2s, 2p) CC calculation, Seiler et
al. [32] established five resonances in the positron—hydrogen system.
The positions (widths) of three S-wave resonances found by them are
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0.7195 Ry, 0.7484 Ry, and 0.7502 Ry (0.0011 eV, 0.000065 eV, and
0.00000035 eV). The positions (widths) of two P-wave resonances
found by them are 0.7346 Ry and 0.7502 Ry (0.00027 ¢V and 0.000016
eV). The resonances have been studied by a number of workers using
different methods, including Mitroy and Stelbovics, Archer et al., Ho
and Greene, Pelikan and Klar, and Ho [54,55]. Due to a small
discrepancy in the positions of the resonances with the various
groups, it is sometimes difficult to determine the exact number of
resonances. From the CC study of Mitroy and Stelbovics, it is possible
to identify several more distinct resonances. The positions (widths) of
two more S-wave resonances are 0.8577 Ry and 0.8707 Ry (5.5 * Ry
and 1.767* Ry). The positions (widths) of two more P-wave reso-
nances are 0.8598 Ry and 0.8714 Ry (4.1 Ry and 1.26° Ry). The
positions (widths) of three D-wave resonances are 0.7499 Ry, 0.8639
Ry, and 0.8727 Ry (1.17® Ry, 1.737* Ry, and 4.57° Ry).

In addition to resonances, the CC calculations have yielded elastic
and different transition cross sections. We refer the interested reader
to the recent studies of Mitroy and Stelbovics and of Walters et al. [54]
for a detailed description of these calculations.

6.7 SCATTERING BY HELIUM ATOM

After hydrogen, the next most complex atom is helium, which deserves
special mention. The wave function of helium is not known analyti-
cally and one has to use a theoretical model. However, because of the
relatively small number of electrons in helium, one can perform
accurate variational calculation of helium scattering by electrons
and positrons which can be compared with various approximation
schemes and also with experiment. Experimentally, being an inert gas,
a helium atom target is easily available, whereas nascent hydrogen
(atom) easily forms a hydrogen molecule, which makes experiments
with hydrogen atom more difficult to perform.

6.7.1 Electron—Helium Scattering

Variational calculations for electron—helium scattering have been
reported by several groups. Most of these calculations considered
only elastic scattering. Some considered low-energy inelastic scatter-
ing also. Usually, independent orbitals for the two electrons with no
correlation has been used to describe the helium wave function. This
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provides an excellent description of excited states with large principal
quantum number #, and a good description of low-lying states. Unlike
in hydrogen, for a fixed small », the different / orbitals are not
degenerate.

The first variational basis-set calculation of electron—helium elastic
phase shifts at low energies is due to Michels et al. [57] using the Harris
method of Section 3.4. This calculation was improved by Sinfailam
and Nesbet [1,3,57], who employed a practically complete basis set
within the Bethe—Goldstone approximation of level [1s] of helium.
Nesbet derived general Bethe—Goldstone equations for electron—
atom scattering [3]. This method includes the important effect of
polarization. Sinfailam and Nesbet used Hartree—Fock wave func-
tions for the helium states and solved these equations by the optimized
anomaly-free method of Section 3.7.2. They calculated phase shifts for
partial waves L < 3. The phase shifts are in good agreement with
those calculated by Michels et al. [57] by the Harris method and by
Duxler et al. [58] using the polarized orbital method. In Table 9 we
exhibit the low-energy phase shifts of Sinfailam and Nesbet and
Duxler et al. and the scattering length of Michels et al. There have
been other calculations of electron—helium scattering. Using a method

TABLE 9. Phase Shifts (in radians) for Elastic Electron—Helium Scattering
at Different Energies in a.u.”

k(@au) S° S¢ p? P¢ D? D¢ F¢

0 1.145

0.1 3.016  3.020 0.0032  0.0033

0.2 2.882 0.0129 0.0016 0.0003
0.3 2704 2755 0.0297  0.0327  0.0036 0.0040 0.0005
0.4 2614  2.622  0.0539 0.0594 0.0064 0.0073 0.0009
0.5 2.484  2.494  0.0847 0.0926 0.0097 0.0115 0.0015
0.6 2364 2372 0.1200 0.1362 0.0141  0.0167 0.0023
0.7 2252 2256 0.1567 0.1696 0.0197 0.0228 0.0032
0.8 2.134  2.147  0.1947 02081 0.0258  0.0298 0.0043
0.9 2.043 0.2311 0.0322 0.0057
1.0 1.955 1.953 02646 02749 0.0393 0.0458 0.0076
1.1 1.877 1.8662 0.2927 0.3016 0.0473  0.0544 0.0098

? The zero-energy entry is the scattering length from Michels et al. [57].
b From Sinfailam and Nesbet [57].
¢ From Duxler et al. [58].
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of Drachman, Houston calculated the scattering length to be 1.159 g
[59]. Using the R-matrix method, Berrington et al. calculated a
scattering length of 1.189q, in close agreement with experimental
data of Crompton et al. [1,60]. A later analysis yielded a scattering
length of 1.145a,, in agreement with Sinfailam and Nesbet and
Michels et al. [1,57,60].

Wichmann and Heiss [61] performed electron—helium scattering
calculation employing the five-state CC model. They considered the
usual expansion in terms of the target states. By including some
correlation functions in their expansion, they found the effect to be
insignificant. They calculated the K matrix using both Kohn and
inverse-Kohn methods and obtained good convergence within their
model. For absolute convergence (with experimental results) the CC
model should include some pseudostates, which are essential for
representing the polarizability in a finite basis calculation. For
helium, 52.4% of the polarizability comes from the scattering states
[1,3], which can be taken into account only through pseudostates. For
large principal quantum number #, levels of different / become nearly
degenerate, and oscillatory energy-dependent functions need to be
included in the basis for obtaining good convergence [1,3].

As in electron— and positron—hydrogen scattering, close-coupling
methods predict the position of the resonances quite well. Close-
coupling calculation also yields different transition cross sections at no
extra cost at all energies [1]. An electron—helium system has a single S-
wave resonance below the 152s threshold. Wichmann and Heiss found
the S-wave elastic scattering resonance to be 19.2 eV. Previously,
using the CC model, Burke et al. found the same resonance at 19.3 eV
[56]. Temkin et al. put the resonance at 19.363 eV, with width 0.0144
eV while Sinfailam and Nesbet put it at 19.42 eV with width 0.015 eV
[62]. Experimentally, this resonance has been observed by various
groups. Brunt et al. [56] confirmed the position (width) of this
resonance at 19.366 eV (0.009 eV). This resonance has also been
observed experimentally by Gibson and Dolder and by Golden and
Zecca [63].

O’Malley et al. performed an R-matrix calculation including both
target atom correlation and polarization effects consistently [64]. They
included pseudostates to represent both dipole and quadrupole polar-
izabilities. Andrick and Bitsch [64] showed that up to about 20 eV, the
D- and higher-wave phase shifts could be estimated from the lowest-
order Born formula (6.23) with experimental polarizability «, =
1.384138a3 and ~ = a,. Hence, O’Malley et al. calculated only S-
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and P-wave phase shifts. Nesbet [3] refined these calculations by the
matrix variational method using a correlated helium target wave
function. S- and P-wave phase shifts were computed in this way
below the first inelastic threshold. Nesbet obtained good convergence
in his calculation. O’Malley et al. used a modified effective range
expansion and found the scattering length to be 1.177a,, whereas
Nesbet found 1.1835¢4, [1,3].

Using the Born formula for L > 2, the scattering amplitude is given
by [1,3]

2
f(0) = k") (2L + 1) exp(ié; ) sin b, Py (cos 0)
L=0

1_1Sm0_ 2 1
3 2772 ‘(2L +3)(2L— 1)

+ Wadk[ P;(cosh)|, (6.24)

and the total elastic and momentum transfer cross sections are given
by [1,3]

2
4m 2
_ZLEZ (2L + 1)sin* 6, + 2450" Yol k?, (6.25)
4 & 2 )
_ZLE: )sin®(8, — 6,.,1) + 33075 " Yagk?, (6.26)

respectively, both in units of . These cross sections were calculated
with phase shifts of Nesbet, O’Malley et al., Sinfailam and Nesbet
[3,57,64], and compared with the experimental results of Kaupila et
al., Stein et al., Crompton et al., and Kennerly and Bonham [65]. The
agreement between theory and experiment is good.

Oberoi and Nesbet extended the Bethe—Goldstone variational cal-
culations of Sinfailam and Nesbet above the n = 2 threshold [3,57,66].
For energies between # = 2 and n = 3 thresholds, multichannel varia-
tional equations were solved including all significant effects of virtual
excitations of reference configuration 1s2s. Scattering states with open-
channel orbitals up to / = 3 were included in these calculations. The
experimental n = 2 thresholds are 2°S at 19.818 eV, 2! S at 20.614 eV,
23P%at20.964eV,and2' P? at 21.218 eV. Several resonances have been
detected in this energy region in the lowest partial waves [3,57,66].
Nesbet made a careful study of scattering between then = 2and n = 3
thresholds. The calculations of Burke et al. (using the CC approach),
Berrington et al. (using the R-matrix approach), and Nesbet et al.
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(using the Bethe-Goldstone method) are in good qualitative agreement
[3,66,67]. Total cross sections for 1'S - 2'S and 1'S — 2°S transi-
tions reported by Berrington et al. and by Nesbet and Oberoi are in
good agreement with each other. Oberoi and Nesbet used the optimized
anomaly-free method of Section 3.6.2. Thomas and Nesbet reported
results in the ionization region [3]. Differential elastic and excitation
cross sections have also been reported in this energy region in good
agreement with experiment.

6.7.2 Positron—Helium Scattering

Because of both calculational and experimental difficulties, positron—
helium scattering has been explored much less than has electron—
helium scattering. However, at low energies there have been many
applications of variational methods to positron—helium scattering [68].
In general, there have been convergence difficulties in this problem and
the result seems to be very sensitive to the helium wave function
employed. Convergence difficulties can be avoided in the variational
methods by using a suitable model, as suggested by Drachman [69].
Houston and Drachman, and Campeanu and Humberston [70] used
this approach to calculate low-energy phase shifts. Houston and
Drachman used the Kohn method to calculate the scattering length
and the Harris method to calculate the phase shifts. Campeanu and
Humberston used Kohn method for both. Aulenkamp et al. [71]
performed variational elastic scattering calculation using the Kohn
method for partial waves L < 3 using distorted wave functions, taking
into account virtual positronium formation. Amusia et al. [71] also
calculated accurate phase shifts for partial waves L < 3. They used a
simplified version of the random-phase approximation with exchange
and with the virtual positronium formation effect taken into account.
The phase shifts are shown in Table 10.

Of the phase shifts shown in Table 10, results for the HS and H14
models of Humberston and Campeanu are probably the most accu-
rate. For higher partial waves these phase shifts are not available in
tabulated forms and we exhibit the results of Amusia et al., which are
in good agreement with those of Humberston and Campeanu. Ho and
Fraser [72] performed accurate calculation using both correlated and
uncorrelated wave functions. They found that the helium wave
function should have correct dipole polarizability for producing
good phase shifts. Drachmann’s variational S-, P-, and D-wave
phase shifts are in good agreement with other results [72].
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TABLE 10. Phase Shifts (in radians) for Elastic Positron—Helium
Scattering at Different Energies in a.u.”

k(au) S° S¢ S S¢ P? D¢ F°
0 —0.472 —048  —0.524
0.1 0.032  0.033  0.035  0.026 0.0026 0.0006 0.0002
0.2 0.041  0.042  0.049
0.3 0.030  0.031  0.039  0.016 0.020  0.0051 0.0016
0.4 0.007  0.009  0.020
0.5 —0.022 —0.020 —0.003 —0.032 0.039  0.0116 0.0043
0.6 ~0.056 —0.053 —0.034
0.7 —0.093 —0.090 —0.069 —0.091 0.053  0.0215 0.0085
0.8 —0.127 —0.124 —0.106
0.9 —0.162 —0.159 —0.143 —0.152 0.057 0.032 0.014
1.0 —0.193 —0.190 —0.177

? The zero-energy entry is the scattering length in a.u.
b From Humberston (1973) [70].

“ From Campeanu and Humberston (1977) [70].

4 From Houston and Drachman [70].

¢ From Amusia et al. [71].

Atlow energies the total cross section can be calculated by using the
phase shifts above together with a Born estimate (6.23). The interest-
ing feature of the low-energy total cross sections is the appearance of a
Ramsauer—Townsend minimum at 2 eV. This is related to the change
in sign of the S-wave elastic phase shift near this energy, as can be seen
from Table 10. The variational calculations above have reproduced
the Ramsauer—Townsend minimum in the cross section. However, the
experimental value of the cross section at this minimum (0.047aj) is
lower than the theoretical estimate (0.066ma3). At slightly higher
energies (> 6 eV) the experimental cross section is in close agreement
with theory [68].

Above the lowest excitation threshold, the variational calculations
of positron—helium scattering becomes very difficult to perform, due
to convergence difficulties and the existence of an open positronium
formation channel. In this region the CC calculation, including a few
positron formation channels, describes well the experimental situa-
tion. Ghosh and the author [73] performed such a calculation with five
helium states and three positronium states. As no pseudostates were
included, the low-energy phase shifts of this model are not realistic. At
low energies the cross sections are much too large compared with
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experiment; a correct description of polarization is needed for obtain-
ing smaller cross sections. However, they calculated elastic, excitation,
and positronium formation cross sections at medium and high
energies, in good agreement with experiment. They also found a
very narrow S-wave resonance just below the n = 2 excitation of the
helium atom at 19.27 eV. It should be recalled that there was a similar
resonance below the n = 2 threshold in electron—helium scattering
[56]. The appearance of the resonance at essentially the same energies
in both systems suggest that same long-range polarization potential is
responsible for both.

6.8 ELECTRON SCATTERING BY HEAVIER ATOMS

There have been applications of variational methods to the study of
electron scattering by heavier atoms. The simplest of these systems are
the alkali atoms (Li, Na, K, Rb, etc). Alkali atoms have one electron
outside the closed shell, and in approximate treatment this bears some
resemblance to the hydrogen atom. Only the outermost electron is
assumed to take active part in electron scattering. Electric-dipole
polarizability is important in alkali atoms. Sinfailam and Nesbet
[74] have performed variational elastic electron scattering calculations
at low energies by lithium, sodium, and potassium below the first
excitation threshold. They used the optimized anomaly free method
employing the Bethe—Goldstone model [3], which they used success-
fully for the hydrogen atom, and calculated phase shifts for spin
singlet and triplet states for partial waves L < 3. The results were in
fair agreement with calculations of the close-coupling type by others
[1,3]. Several resonances were observed in P and D waves, both by
Sinfailam and Nesbet and by other workers.

Nesbet and collaborators [3] also applied variational methods for
the calculation of electron scattering by carbon, nitrogen and oxygen
atoms. These atoms have a much more complex structure than that of
hydrogen and alkali atoms. Dipole polarizability of these atoms is
small compared to that of alkali atoms, but polarization potential still
dominates low-energy scattering. A low-energy scattering calculation
for these atoms must incorporate enough configuration interaction to
give a good description of the low-lying states, negative-ion energies,
and polarizability. Nesbet et al. achieve this through their Bethe-
Goldstone approach.

Thomas and Nesbet [75] reported several types of calculations for
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each of carbon, nitrogen, and oxygen atoms. They considered first an
uncorrelated wave function equivalent to a three-state CC calculation,
which does not specially build in the atomic polarizability. Then they
included some atomic configurations that build in both correlation
and polarizability and obtained good agreement with an experimental
total cross section at low energies. From these calculations one finds
that the total cross section becomes smaller as more contributions to
polarizability are included in the wave function. This is also true in
electron and positron scattering by helium, where the inclusion of
atomic polarizability in the model reduces the total cross section at
low energies.

In Thomas—Nesbet variational Bethe—Goldstone calculations, the
effects of 2s — np virtual excitations in electron—oxygen scattering
beyond n =2 were found to be small and were neglected. Basis
orbitals and partial waves for / < 3 were included in the calculation.
Important virtual polarization effects due to 2s — 2p, 2p — ns, and
2p — nd were included in all the states of oxygen and short-range
correlation between the incident electron and oxygen. This was
necessary for obtaining agreement with experiment and with the
polarized orbital calculation of Henry [75].

In electron—nitrogen scattering, variational Bethe—Goldstone cal-
culation by Thomas and Nesbet [3,75] of an elastic differential cross
section was found to be in good agreement with other calculations.
They included the 25°2p>, 252p*, and 2p° configurations of nitrogen.
Electron affinities of various atoms, including nitrogen, were com-
puted by Moser and Nesbet using a variational method [3,76]. The
energy calculated for C~ (O7) relative to the ground states of the
neutral atoms was —1.29 eV (—1.43 eV), in agreement with experi-
ment. The energy computed for N~ (°p) was 0.12 eV, which indicates
that this state should either be a very weakly bound state or a
resonance. This state of nitrogen appears as a sharp peak in the
total cross section at a fraction of 1 eV. It is difficult to produce this
resonance at the correct position. Nesbet et al. [3,75] introduced a
parameter in their model to produce this resonance.

Thomas and Nesbet also calculated the cross sections for the
electron—carbon system and compared them with the polarized orbital
calculations of Henry [3,75]. At low energies these two calculations are
not in agreement. There were no reliable experimental results to
resolve the discrepancy. Thomas—Nesbet calculation shows a peak
in the cross section at a fraction of 1 eV, whereas the calculation of
Henry does not exhibit this peak.
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6.9 MOLECULAR PHOTOIONIZATION

The simplest of all scattering processes in molecular physics is
molecular photoionization. This problem can be solved essentially
using the Schwinger variational method with a good knowledge of the
target wave function. The amplitude can be calculated as indicated in
Section 4.9, with the molecular Hartree—Fock wave function con-
structed as in Section 5.5. McKoy et al. [7] made an extensive study of
molecular photoionization using the iterative Schwinger methods [11]
of Section 4.9 employing H,, N,, CO,, C,H,, and other molecules.
For H, [7,77], a small basis set gave rapid convergence in the iterative
Schwinger method. With a basis of s- and z-type Cartesian Gaussian
functions of exponents 0.3 and 1.0 on each nuclei and a z-type
Cartesian Gaussian function of exponent 1.0 at the center of mass,
the photoionization cross section in the 10, — ko, channel converged
within one iteration. For calculating the cross section they used
frozen-core Hartree—Fock approximation for the final ionized-state
wave function, which presents a simplified picture of the actual state of
affairs. For photon energies above 18 eV, their cross-section results
agreed well with experiment.

The iterative Schwinger method has been applied to the case of N,
[7,78]. In this case there is a shape resonance in the cross section in the
30, — ko, channel, leading to the X°%] state of N3. For the initial
state they used the usual Hartree—Fock wave functions of Section 5.5
and also a configuration interaction wave function constructed from
386 spatial configurations and considered the effect of initial state
correlation on the cross section. The initial basis set contained 18
Gaussian functions in the o, symmetry and eight Gaussian functions in
the 7, symmetry. One iteration gave good convergence in this case. The
shape resonance at about 30 eV was well reproduced by the theoretical
calculation. The total photoionization cross section was obtained by
averaging over all orientations of the molecule and summing over all
directions of the emitted photoelectron. They also calculated the cross
section in the 17, — ké, channel, which exhibits a broad peak in the
total cross section. But an analysis of the eigenphase sum has revealed
that there is no resonance in the latter channel. The shape of cross
section in this channel was determined by the energy dependence of the
dipole matrix element. They calculated the total cross section leading to
the 4%T1,, and B’ states of N5~ and compared their results with the
Stieltjes— Tchebycheff moment theory approach and the continuum
multiple scattering theory method.
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Luchesse et al. [79] also studied the photoionization cross sections
of CO, using the iterative Schwinger method. They used 32 spherical
Gaussian basis functions in the 1m, — ké, channel and 14 in the
lm, — ké, channel. Again, the cross section converged after one
iteration. As in the case of N,, they also studied the effects of
initial-state correlation on the photoionization cross sections. The
interesting feature in this case is the appearance of a shape resonance
in the cross section in the 17, — ko, 40, — ko,, 1o, — ko, photo-
ionization channels at a photoelectron kinetic energy of 15 to 20 eV.
Their results for cross section leading to the CZE; state of CO, were in
reasonable agreement with experiment.

There has also been a study of photoionization of C,H, by the
Schwinger method [80]. In this case there is a double-peaked structure
in the cross section leading to the XTI, state of C,H; . Basis sets with
12 to 22 spherical Gaussian functions were used. Satisfactory con-
vergence was achieved after two iterations of the Schwinger method.
However, the calculation exhibits a single broad peak in place of the
double-peaked structure mentioned above.

In the case of CO, Luchesse et al. [81] compared the results for cross
section and eigenphase sums obtained by the iterative Schwinger and
Pade methods of Section 4.9. They used 28 and 20 spherical Gaussian
functions for the o and =n continuum photoionization channels,
respectively. Comparing the two methods, they find that the conver-
gence of the Padé method is slightly better than that of the iterative
Schwinger method in general.

6.10 ELECTRON-MOLECULE SCATTERING

There have been many numerical studies of electron—molecule scat-
tering using complex Kohn, Schwinger, and R-matrix methods [9].
Most of these studies involve calculation of only elastic scattering by
the static exchange approximation. Static exchange approximation
makes the calculation possible, but usually leads to unrealistic results
at low energies where polarization effect is important. The static
exchange cross sections predict shape resonances at higher energies,
with larger widths compared to experiment. The typical discrepancy in
the position of resonances is on the order of 2 to 4 eV. Moreover,
many of these systems exhibit Ramsauer—Townsend minima in cross
section at very low energies. The static-exchange calculation cannot
predict these minima. Using the Schwinger multichannel approach,
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McKoy et al. [9] studied elastic electron scattering with alkanes from
CH, to n-C4H,,, the C;H isomer cyclopropane, the hydride series
CH,4, SiH,, GeH4, NH;, PH;, and the fluorides CF,, and SikF,.
Although these large-molecule calculations are encouraging, we do
not discuss them here and refer the interested readers to a review
article [9]. For simpler molecules, such as H,, N,, CO, and so on, there
have been extensive studies of inelastic scattering with electrons, which
we describe briefly in the following. In all these studies, the multi-
channel Schwinger variational method yielded the most realistic
results.

As hydrogen is the simplest diatomic molecule, there have been
many theoretical calculations and experimental investigations of
inelastic e” —H, scattering. McKoy et al. [9] applied the iterative
Schwinger method of Section 4.9 to several electron—molecule scatter-
ing processes, including H, and CO,. In electron—hydrogen—molecule
scattering, the convergence properties of this method was studied
carefully. In calculations of the excitation cross section for the 5°S;
state, convergence of the computed K-matrix elements by the iterative
Schwinger method was found to be good. This problem was also
studied by linear algebraic (Baluja et al.), R-matrix (Schneider and
Collins), Schwinger multichannel (Lima et al.), and complex Kohn
(Rescigno and Schneider) methods [82]. The results of these different
computations are in agreement with each other and with experiment.
The complex Kohn method has been used to calculate cross sections
for the #°}, @’ , and ¢’Tl,, states in a five-channel coupling scheme.
The R-matrix method has been used to calculate cross sections for the
Pl @, 1, B'YS), C'T}, and E,F'S} states, employing
coupling between all channels. McKoy et al. [9,82] made a Schwinger
multichannel calculation for the a, b, and ¢ states in a five-channel
coupling scheme.

For the »°S;} (lo, — lo,) channel of hydrogen, both for total and
differential cross sections, calculations employing the complex Kohn
and Schwinger methods are in reasonable agreement with each other
and with experiment. R-matrix calculation deviates to some extent
from variational calculations and experiment. For the o’ E;
(lo, — 20,) channel, the two-channel Schwinger calculation is in
qualitative agreement with experiment and complex Kohn calcula-
tion. Theoretical calculations of differential cross sections agree with
experimental results at medium angles where measurements are
available. Hence, the discrepancy between theory and experiment in
the integrated cross section may imply that the differential cross
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sections calculated at very small and large angles are not correct. For
the ¢TI, channel, both variational and R-matrix calculations are in
rough agreement with each other but in disagreement with experi-
ment. The reason for this discrepancy is not clear.

Because of its technological importance, the electron—nitrogen
system is the most studied following the electron—hydrogen system
[9]. Theoretically, there have been studies by the Schwinger (Mu-Tao
and McKoy) and R-matrix (Gillan et al.) methods [83]. These studies
have been confined to the lowest-order approximation There have
been a two-state CC study of the X'S} — a'll, (30, — Im,)
excitation and a R-matrix study of exc1tat1ons A Ei(lwu — lm,),
B1I I,(30, — 1m,), and w3iA,(1m, — 1x .) [9]. The convergence

btalned 1n Schwinger multlchannel calculatlons with A°S) B? 11,
W3A,, w'A,, B'*Y,, and a’'S; excitations was sat1sfactory There
have been theoretical calculat1ons of electronic excitation to the A°%;
state of nitrogen using the Schwinger method [9]. Above 15 eV,
experiments and theories are in agreement. At lower energies there
are discrepancies between different theoretical predictions of total cross
sections and experimental findings. The reason for these discrepancies
is not clear. There have been experimental studies for excitation to the
lHg state of nitrogen. Both the Schwinger multichannel and two-state
calculations are in reasonable agreement with experiment. There have
also been encouraging theoretical studies of a' II, and B’ [T, excitation
cross sections. In the former case, agreement between Schwinger
differential cross section and experiment is generally good, although
there are quantitative differences in the forward direction, where the
various experiments also tend to disagree with each other. In the latter
case, the integrated and differential Schwinger multichannel excitation
cross sections are in agreement with experiment.

The CO molecule has been studied less than H, or N,. Satisfactory
results have been obtained by the Schwinger multichannel method,
employing a five-channel coupling scheme for the a’IT and A'11 states
that arise from the 50 — 27 excitation and a nine-channel scheme for
the a2, €27, d3A, I'S™, and D'A states that arise from the
17 — 2 excitation [9,84]. Of these states, a’IT is the lowest excited
state with the largest excitation cross section. For an integrated cross
section, the agreement between theory and experiment is good. For a
differential cross section, theory and experiment have similar trends
with somewhat different magnitudes. There are discrepancies between
theory and experiment for the a’IT cross section. The total excitation
cross section for all states agrees with measurements and empirical
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estimates below 13 eV. At higher energies, experimental values are
much higher, indicating a large contribution from the excitation of
Rydberg states, which are not considered in Schwinger multichannel
formulation.

The iterative Schwinger method of Section 4.9 has also been
successfully used for the calculation of differential and total scattering
cross sections for electron—CO, scattering [9]. In these studies,
spherical Gaussian basis sets with some 20 to 30 basis functions for
various scattering symmetries were used. The total elastic scattering
cross section of e —CO, scattering exhibits a shape resonance experi-
mentally at about 3.8 eV. The calculated static exchange elastic cross
section using the iterative Schwinger method predicts a resonance at
5.39 eV. Considering the simplicity of the model, the static exchange
elastic differential cross section for e —CO, scattering at 10 eV is in
good agreement with experiment.

Inelastic scattering of electrons with complex molecules such as
formaldehyde, ethylene, and propellane has also been treated by the
Schwinger method [9]. Although these preliminary studies clearly
demonstrate the usefulness of the multichannel Schwinger method
in dealing with these complex scattering processes, much remains to be
done is settling the discrepancy between theory and experiment.
Assuming that the discrepancy is due to the deficiency of the multi-
channel model used and not due to convergence difficulties, it remains
to be seen if the model can be enriched within present computational
limitations to obtain agreement with experiment.

6.11 REACTIVE ATOM-DIATOM COLLISIONS

Reactive atom—diatom collision is a challenging problem theoreti-
cally. The possibility of rearrangement makes this problem extremely
difficult from both a theoretical and a computational point of view.
The simplest system in this category is H+ H,. The accurate solution
of H+ H, scattering was obtained about 20 years ago at low energies
and for total angular momentum zero. In the beginning, model one-
and two-dimensional problems [85] were solved before the actual
three-dimensional problem was solved [86]. Later, accurate results
have been obtained for heavier atoms, at higher energies, and for
nonzero total angular momentum [4].

Recently, using the generalized Newton variational method
(GNVM) of Section 5.3, Truhlar et al. performed [87] full three-
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dimensional quantum mechanical solution for such systems as
D+H,, O+H,, H+OH, H+HBr, F+H,, and O+HD. They
employed both real and complex boundary conditions. The use of
complex boundary conditions in GNVM reduces it essentially to the
complex Kohn method. They extended their calculation of (full) cross
sections to higher energies and nonzero total angular momentum.
They calculated state-to-state reaction cross sections for an atomic
beam colliding with a diatomic molecular target. Miller et al. [88] also
studied many of these reactive processes using the complex Kohn
variational method. Below we give an account of these variational
calculations, with reference to other works whenever necessary.

To take advantage of symmetries to simplify the calculation,
Truhler et al. used an angular momentum representation where the
problem decouples into blocks for fixed total angular momentum J
and parity P. For J = 0 there is only one parity block. At low energies
the small J components dominate. Hence, the J = 0 solution is
especially interesting. For calculating cross section and related obser-
vables, one has to sum over all J, P components.

Sun et al. [8] expanded the radial scattering wave function in terms
of the sum of basis functions in more than one arrangement, thus
reducing the Schrodinger equation to coupled integrodifferential
equations with a nonlocal kernel, which were then converted to a
set of coupled integral equations. Then they applied the GNVM in
solving these equations. By expanding the scattering amplitudes in a
set of £? basis functions, the Newton variational principle was
implemented in terms of the solution of a set of algebraic equations.
They used the direct product of translational basis functions in the
form of distributed Gaussians and internal basis functions in the form
of diatom vibrational functions and analytic angular functions. In test
calculations of the GNVM in realistic scattering problems, they found
better convergence properties than with some methods of moments
and other variational methods. Also, with the GNVM they could
obtain stable converged results to more significant figures. The cost of
these advantages is evaluation of multiple integrals over Green’s
functions. They reached the conclusion that the advantages obtained
using GNVM are well worth the price.

Sun et al. [8] used a model Hamiltonian with a nonreactive zero-
order part and reactive coupling employing a coupled-channel
Green’s function. As rotational orbital coupling is stronger than
vibrational and reactive coupling, quantum states with different
vibrational and reactive quantum states are decoupled in the zeroth
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order. The basis function expansion was not used to solve the full
problem, only the problem of coupling to the zeroth-order problem.
The zeroth-order potential differs from the full potential only in a
fairly small region of space, and the basis functions have to work less
in finding an accurate solution to this problem. Solution of the zeroth-
order problem is the equivalent of a distorted-wave Born approxima-
tion. When this approximation is good, very few basis functions are
required to obtain the converged solution.

The Green’s functions involve products of a function of the position
of one of the atoms, which is regular at the origin, times a function
that goes to infinity there. To avoid numerical difficulties with the
irregular part, Truhlar et al. reformulated the variational principle in
terms of what they call half-integrated Green’s functions, which can be
calculated without knowledge of the irregular solution. Then they
computed the regular solution of the zero-order problem and the half-
integrated Green’s functions and evaluated integrals numerically over
these functions and the coupling potentials. Finally, a set of linear
equations was solved to obtain the scattering matrix. These steps were
repeated for each total energy and JP block. For obtaining observa-
bles, the sum over JP was calculated.

These reactions had been treated successfully in the past with the use
of semiclassical theories [87]. It is interesting to see the limitations of
these theories in comparison to an exact quantum description. Appli-
cation of the approach to O+ H, — OH + H illustrates the motivation
behind the use of a quantum theory. This reaction proceeds on two
similar potential energy surfaces. By using analytic potential energy
surfaces, the reaction rates for thermal and vibrationally excited
molecules have been calculated by variational transition-state theory
with semiclassical transmission coefficients, and good agreement with
experiment has been obtained. The calculations were performed with
real and complex boundary conditions using the GNVM. Satisfactory
convergence was obtained with both boundary conditions at total
energy 0.65 eV and JP = 0" and even exchange symmetry.

The scenario corresponding to the semiclassical approach is worth
mentioning. At the threshold for a chemical reaction, the energies of
motions orthogonal to the reaction coordinate, s, can be computed to
a good approximation assuming that the vibrations are adiabatic with
respect to s. Then an effective potential barrier is calculated semi-
classically by adding a zero-point vibrational energy to the energy
along the minimum-energy path at each point s along this path. At
energies above this barrier, the reaction proceeds naturally. At
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energies below this, for the reaction to take place the system must
tunnel through a multidimensional barrier. When one considers the
reaction of a molecule with a high-frequency excited vibration, one
can calculate a new effective potential assuming that this vibration is
adiabatic as well. The semiclassical calculation also provides a picture
of tunneling at low energies in agreement with experiment. However,
it is not clear whether these models are realistic or whether the
agreement with experiment is accidental. Very careful comparison
with quantum models may answer these questions.

Truhlar et al. [87] performed semiclassical and accurate quantum
calculations for the reaction probability for the same potential energy
surface of the reaction O + H, — OH + H. They find good agreement
between the quantum and semiclassical calculations. For the O + HD
system, semiclassical theories are in good agreement with experiment
for kinetic isotope effects. Accurate quantum calculations are also in
agreement with semiclassical theory. In this case they considered
reactive processes O+HD —-H+OD and — D+OH at a total
energy of 15 kcal/mol for JP = 2. They obtained good convergence
with both real and complex boundary conditions of the GNVM.

Truhlar et al. also studied the D+ H, — HD + H reaction. This
reaction also has a high effective barrier for vibrationally adiabatic
reaction when the initial vibration is excited. Again the semiclassical
result is in good agreement with accurate quantum calculation. At
that time (1986), there was a large discrepancy between the calculated
threshold reaction probability and experiment. However, the experi-
ments were later found to be in error. There is good agreement
between new experimental results and both semiclassical and quantum
calculations. Later they extended the calculations to very high total
energy, 1.8 eV for the state-to-state cross sections D+H,
(v=1,j=1)— H+HD (v' =1, =0 to 13) and compared the
results with semiclassical calculation as well as experiment. Both
agreements are satisfactory. Zhang and Miller [89] applied the com-
plex Kohn variational method for calculating the differential and
integral cross sections for this process. For a wide range of energy (0.4
to 1.35 V), they used 32 partial waves for the total angular momen-
tum to obtain convergence.

The reaction H+H, (para) — H+ H, (ortho) is possibly the most
studied atom—diatom reaction [90]. For H+ H,, Sun et al. [8,84,90]
used the double many-body expansion potential energy surface. They
found that calculations with complex and real boundary conditions
using the GNVM converged to the same result. They performed two
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sets of calculations. The first was at a total energy of 0.6 eV and a total
angular momentumJ = 0, and the second was at a total energy of 1.369
eV and J = 3. In both cases they obtained satisfactory convergence.
This process was also studied by Zhao et al. [91], who performed state-
to-state H+p-H, (v=0,j=0,2,J =0to4) - H+o0-H, (' =0,1)
calculations and compared the results with semiclassical theory. The
error in the semiclassical calculation was by a factor of 1.5 to 2, which
calls for full quantum treatment for this system. Zhang and Miller [89]
reported state-to-state fully converged integral cross sections for this
last process for a wide range of energy using the complex K ohn method.
They included up to 19 partial waves, and the converged calculations
for the energy range 0.9 to 1.4 eV were in disagreement with the
experimental results. It was then found that these experimental results
were wrong. Later, Zhang and Miller [88] calculated differential cross
sections for state-to-state H+H, (v =j = 0) - H+H, (v/, odd ;") for
a total energy of 0.9 to 1.35 eV. Twenty-five partial waves were used in
this case to obtain convergence.

Next we consider exothermic reactions. One interesting aspect of
these reactions 1s their tendency to produce inverted population
distributions of the vibrational energy levels of the newly formed
bond. Full quantum calculations provide a useful way to study the
extent of population inversion. Truhlar et al. [87] studied the reaction
H+ HBr — H, + Br quantum mechanically. They -calculated the
population ratio to different vibrational states of H, and found that
reactions to higher-energy excited states were suppressed, whereas
higher-momentum states were enhanced. It would be interesting to see
if semiclassical calculation could reproduce this result. Both Truhlar et
al. and Zhang and Miller also studied the F+ H, — HF + H reaction
carefully for both zero and nonzero total angular momentum.

From these calculations it becomes increasingly clear that a full
quantum-mechanical description of atom—diatom reactions is called
for. Low-energy light—molecular reactions are really governed by
quantum mechanics, and both the complex Kohn method and the
GNVM provide useful mechanisms for studying atom—diatom reac-
tions.

6.12 NOTES AND REFERENCES

[1] For a review, see, for example, Callaway (1978a) and Nesbet (1978).
[2] Truhlar et al. (1974), Nesbet (1969b).



[3]
[4]

[5]
[6]
[7]
[8]
[9]

[10]

[11]
[12]
[13]
[14]
[15]
[16]

[17]

[18]
[19]
[20]
[21]
[22]

[23]
[24]
[25]
[26]
[27]

[28]
[29]

6.12 NOTES AND REFERENCES 305

Nesbet (1980).

For a review, see, for example, Adhikari and Tomio (1987), Adhikari
and Kowalski (1991), Plessas (1986), Plessas and Haidenbauer (1987),
and Ferreira (1986).

Fonseca (1986a,b), Oryu (1986).

Miller (1990, 1992, 1994).

Lucchese et al. (1986).

Sun et al. (1990), Kouri et al. (1988), Tawa et al. (1994).

For a review of multichannel Schwinger calculation, see Winstead and
McKoy (1994).

Adhikari and Tomio (1986, 1987), Adhikari and Kowalski (1991),
Adhikari (1996), Tomio and Adhikari (1980a,b, 1981, 1995).

See, for example, Baker, and Gammel, (1970), Glockle (1983).
Adhikari and Kowalski (1991).

Schwartz (1961a,b).

Schwartz (1966).

Adhikari, unpublished.

Smith and Truhlar (1972), Callaway (1980), Thirumalai and Truhlar
(1980), Takatsuka et al. (1981), Staszewska and Truhlar (1986, 1987),
Rescigno and Schneider (1987), Miller and Jansen op de Haar (1987).

Sloan and Brady (1972), Brady and Sloan (1972, 1974), Sloan and
Adhikari (1974).

Adhikari and Sloan (1975a-d).
Thirumalai and Truhlar (1980).
Takatsuka et al. (1981).

Staszewska and Truhlar (1986).

Miller (1990), Miller and Janson op de Haar (1987), Rescigno and
Schneider (1987), Zhang et al. (1988).

Tomio and Adhikari (1980a,b, 1981), Adhikari, (1991), Kowalski and
Feldman (1961, 1963a,b), Kowalski (1965, 1972).

Tomio and Adhikari (1995).
Adhikari (1996).

Nesbet (1969a), Nesbet and Oberoi (1972), Harris (1967), Harris and
Michels (1969a,b, 1971).

The first applications of the multichannel Newton and Schwinger
variational principles seems to be in Brady and Sloan (1974) and
Adhikari and Sloan(1975b,c).

Huck (1957).
Takatsuka and McKoy (1981b).



306

[30]
[31]
[32]

[33]
[34]
[35]

[36]
[37]
[38]

[39]
[40]
[41]
[42]
[43]

[44]
[43]

[46]
[47]
[48]
[49]
[50]
[51]
[52]
(53]
[54]
[55]

[56]
[57]
[58]
[59]
[60]
[61]
[62]

NUMERICAL STUDIES

Nesbet (1969a), Nesbet and Oberoi (1972), Harris and Michels (1969a).
Callaway (1978a).

Burke and Schey (1962), Burke et al. (1963), Seiler et al. (1971), Smith
and Truhlar (1972), Smith and Henry (1973).

Levinger (1974).
Rawitscher (1987, 1989).

Adhikari (1976), This seems to be the first derivation and application of
the Schwinger basis-set method using distorted waves.

Ernst et al. (1973a,b).
Baldo (1985, 1987).

Oryu (1986), Hartt and Yidana (1987), Bund (1985), Canton et al.
(1988), Sofianos et al. (1979).

Adhikari (1990).

de Araujo et al. (1995), Kievsky (1997), Kievsky et al. (1998).

Tomio and Adhikari (1981), Horacek and Sasakawa (1983, 1984).
Shimamura (1971a—c).

Rudge (1973, 1975), Register and Poe (1975), Armstead (1968), Das and
Rudge (1976).

Callaway (1978b).

Callaway and Wooten (1974, 1975), Callaway and Williams (1975),
Callaway et al. (1976), Morgan et al. (1977).

Castillejo et al. (1960).

Oberoi and Callaway (1969).

Abdel-Raouf and Belschner (1978).

Williams and Willis (1974).

Bhatia et al. (1971), Roy and Mandal (1993a,b).
Doolen et al. (1971), Kar and Mandal (1997).
Humberston (1984), Stein and Sternlicht (1972).
Houston and Drachman (1971).

Mitroy and Stelbovics (1994a), Kernoghan et al. (1995).

Mitroy and Stelbovics (1994b), Archer et al. (1990), Ho and Greene
(1987), Ho (1950), Pelikan and Klar (1983).

Brunt et al. (1977), Burke et al. (1969).

Michels et al. (1969), Sinfailam and Nesbet (1972, 1973).
Duxler et al. (1971).

Drachman (1972), Houston (1973).

Crompton et al. (1970), Berrington et al. (1975).
Wichmann and Heiss (1974).

Temkin et al. (1972), Nesbet (1978).



[63]
[64]
[65]

[66]
[67]
[68]
[69]
[70]

[71]
[72]
[73]
[74]
[73]

[76]
[77]
[78]
[79]
[80]
[81]
[82]

[83]
[84]
[85]

[86]
[87]
[88]
[89]
[90]
[91]

6.12 NOTES AND REFERENCES 307

Gibson and Dolder (1969), Golden and Zecca (1971).
O’Malley et al. (1979), Andrick and Bitsch (1975).

Crompton et al. (1970), Kauppila et al. (1977), Stein et al. (1978),
Kennerly and Bonham (1978).

Oberoi and Nesbet (1973a,b).

Burke et al. (1969), Berrington et al. (1975).
For a review, see Ghosh et al. (1982).
Drachman (1966, 1968).

Houston and Drachman (1971), Humberston (1973, 1974), Campeanu
and Humberstron (1975, 1977).

Aulenkamp et al. (1974), Amusia et al. (1976).
Drachman (1968), Ho and Fraser (1976).
Adhikari and Ghosh (1996).

Sinfailam and Nesbet (1973), Nesbet (1967).

Thomas et al. (1974), Thomas and Nesbet (1975a—d), Henry (1967,
1968).

Moser and Nesbet (1971).

Lucchese and McKoy (1981a).

Lucchese and McKoy (1981b), Lucchese et al. (1982).
Lucchese and McKoy (1981c, 1982).

Lynch et al. (1984), Lucchese et al. (1986).

Lucchese and McKoy (1983).

Baluja et al. (1985), Schneider and Collins (1985), Lima et al. (1985),
Reseigno and Schneider (1988).

Mu-Tao and McKoy (1983), Gillan et al. (1990).
Sun et al. (1992).

Mortensen and Gucwa (1969), Truhlar and Kuppermann (1970, 1972),
Kuppermann et al. (1974).

Schatz and Kuppermann (1975), Elkowitz and Wyatt (1975).
For a review, see Tawa et al. (1994) and Truhlar et al. (1990).
For a review, see Miller (1990, 1992, 1994).

Miller and Zhang (1221), Zhang and Miller (1990).

Sun et al. (1989).

Zhao et al. (1989).



BIBLIOGRAPHY

Abdallah, J., and D. G. Truhlar (1974). J. Chem. Phys. 60, 4670.
Abdel-Raouf, M. A., and D. Belschner (1978). J. Phys. B 11, 3677.

Abramowitz, M., and 1. A. Stegun, Eds. (1965). Handbook of Mathematical
Functions, Dover, New York.

Adhikari, S. K. (1976). Phys. Rev. C 14, 782.

Adhikari, S. K. (1979). Phys. Rev. C 19, 1729.

Adhikari, S. K. (1985). Phys. Lett. A 113, 1.

Adhikari, S. K. (1990). Phys. Rev. A 42, 6.

Adhikari, S. K. (1991). Chem. Phys. Lett. 181, 435.

Adhikari, S. K. (1992a). Chem. Phys. Lett. 189, 340.

Adhikari, S. K. (1992b). J. Comput. Phys. 103, 415

Adhikari, S. K. (1996). Chem. Phys. Lett. 258, 595.

Adhikari, S. K. and A. S. Ghosh (1996). Chem. Phys. Lett. 262, 460.

Adhikari, S. K., and K. L. Kowalski (1991). Dynamical Collision Theory and
Its Applications, Academic Press, San Diego, Calif.

Adhikari, S. K., and 1. H. Sloan (1975a). Nucl. Phys. A 241, 429.
Adhikari, S. K., and I. H. Sloan (1975b). Nucl. Phys. A 251, 297.
Adhikari, S. K., and I. H. Sloan (1975¢c). Phys. Rev. C 11, 1133.
Adhikari, S. K., and I. H. Sloan (1975d). Phys. Rev. C 12, 1152.
Adhikari, S. K., and L. Tomio (1981). Phys. Rev. C 24, 1186.
Adhikari, S. K., and L. Tomio (1982). Phys. Rev. C 26, 83.
Adhikari, S. K., and L. Tomio (1986). Phys. Rev. C 33, 467.

309

Variational Principles and the Numerical Solution of Scattering Problems. Sadhan K. Adhikari
Copyright © 1998 by John Wiley & Sons, Inc. ISBN: 0-471-18193-5



310 BIBLIOGRAPHY

Adhikari, S. K., and L. Tomio (1987). Phys. Rev. C 36, 1275.

Adhikari, S. K., A. C. Fonseca, and L. Tomio (1982). Phys. Rev. C 26, 77.
Amado, R. D. (1963). Phys. Rev. 132, 485.

Amado, R. D. (1969). Annu. Rev. Nucl. Sci. 19, 61.

Amusia, M. Y., N. A. Cherepkov, L. V. Chernysheva, and S. G. Shapiro
(1976). J. Phys. B 9, L531.

Andrick, D., and A. Bitsch (1975). J. Phys. B 8, 393.

Apagyi, B., P. Lévai, and K. Ladanyi (1988). Phys. Rev. A 37, 4577.
Archer, B. J., G. A. Parker, and R. T. Pack (1990). Phys. Rev. A 41, 1303.
Armstead, R. L. (1968). Phys. Rev. 171, 91.

Arthurs, A. M. (1970). Complementary Variational Principles, Clarendon
Press, Oxford.

Aulenkamp, H., P. Heiss, and E. Wichmann (1974). Z. Phys. 268, 213.
Bagchi, B., T. O. Krause, and B. Mulligan (1977). Phys. Rev. C 15, 1623.
Bagchi, B., and B. Mulligan (1979). Phys. Rev. C 20, 1973.

Baker, G. A., Jr., and J. L. Gammel, Eds. (1970). The Padé Approximants in
Theoretical Physics, Academic Press, San Diego, Calif.

Baldo, M., L. S. Ferreira, and L. Streit (1985). Phys. Rev. C 32, 685.
Baldo, M., L. S. Ferreira, and L. Streit (1987). Phys. Rev. C 36, 1783.
Baluja, K. L., C. J. Noble, and J. Tennyson (1985). J. Phys. B 18, L851.
Bardsley, J. N., E. Gerjuoy, and C. V. Sukumar (1972). Phys. Rev. A 6, 1813.

Berrington, K. A., P. G. Burke, and A. L. Sinfailam (1975). J. Phys. B 8,
1459.

Bhatia, A. K., A. Temkin, R. J. Drachman, and H. Eiserike (1971). Phys.
Rev. A 3, 1328.

Blasczak, D., and M. G. Fuda (1973). Phys. Rev. C &8, 1665.

Blatt, J. M., and L. C. Biedenharn (1952). Rev. Mod. Phys. 24, 258.
Brady, T. J., and I. H. Sloan (1972). Phys. Lett. B 40, 55.

Brady, T. J., and I. H. Sloan (1974). Phys. Rev. C 9, 4.

Bransden, B. H. (1983). Atomic Collision Theory, 2nd ed., W.A. Benjamin,
New York.

Brown, G. E., and A. D. Jackson (1976). The Nucleon—Nucleon Interaction,
North-Holland, Amsterdam.

Brunt, J. N. H., G. C. King, and F. H. Read (1977). J. Phys. B 10, 1289.
Bund, G. W. (1985). Phys. Rev. C 31, 2022.

Burke, P. G. (1965). Adv. Phys. 14, 521.

Burke, P. G. (1968). Adv. At. Mol. Phys. 4, 173.

Burke, P. G. (1977). Potential Scattering in Atomic Physics, Plenum Press,
New York.



BIBLIOGRAPHY 311

Burke, P. G., and W. D. Robb (1975). Adv. At. Mol. Phys. 11, 143,
Burke, P. G., and H. M. Schey (1962). Phys. Rev. 126, 147.

Burke, P. G., and M. J. Seaton (1971). Methods Comput. Phys. 10, 1.
Burke, P. G., H. M. Schey, and K. Smith (1963). Phys. Rev. 129 A4, 1258.
Burke, P. G., J. W. Cooper, and S. Ormonde (1969). Phys. Rev. 183, 245.
Buttle, P. J. A. (1967). Phys. Rev. 160, 719.

Callaway, J. (1978a). Phys. Rep. 45, 89.

Callaway, J. (1978b). Phys. Lett. 654, 199.

Callaway, J. (1980). Phys. Lett. 774, 137.

Callaway, J., and J. W. Wooten (1974). Phys. Rev. A 9, 1924.

Callaway, J., and J. W. Wooten (1975). Phys. Rev. A 11, 1118.

Callaway, J., and J. F. Williams (1975). Phys. Rev. A 12, 2312.

Callaway, J., M. R. C. McDowell, and L. A. Morgan (1976). J. Phys. B 9,
2181.

Campeanu, R. I, and J. W. Humberston (1975). J. Phys. B 8, L244.
Campeanu, R. I., and J. W. Humberston (1977). J. Phys. B 10, L153.
Canton, L., G. Cattapan, and G. Pisent (1988). Nucl. Phys. A 487, 333.

Castillejo, L., I. C. Percival, and M. J. Seaton (1960). Proc. R. Soc. London
Ser. A 254, 259.

Coester, F. (1971). Phys. Rev. C 3, 525.

Crompton, R. W., M. T. Elford, and A. G. Robertson (1970). Austr. J. Phys.
23, 667.

Das, J. N., and M. R. H. Rudge (1976). J. Phys. B 9, L131.

de Araujo, C. F., S. K. Adhikari, and L. Tomio (1995). J. Comput. Phys. 118,
200.

Demkov, Yu. N. (1963). Variational Principles in the Theory of Collisions,
Macmillan, New York.

Doolen, G., G. McCartor, F. A. McDonald, and J. Nuttal (1971). Phys. Rev.
A 4,108.

Drachman, R. J. (1966). Phys. Rev. 144, 25.

Drachman, R. J. (1968). Phys. Rev. 173, 191.

Drachman, R. J. (1972). J. Phys. B 5, L30.

Duxler, W. M., R. T. Poe, and R. W. La Bahn (1971). Phys. Rev. A 4, 1935.
Elkowitz, A. B., and R. E. Wyatt (1975). J. Chem. Phys. 62, 2504.

Epstein, S. T. (1957). Phys. Rev. 106, 598.

Ernst, D. J., C. M. Shakin, and R. M. Thaler (1973a). Phys. Rev. C 8, 46.

Ernst, D.J., C. M. Shakin, R. M. Thaler, and D. Weiss (1973b). Phys. Rev. C
8, 2056.



312 BIBLIOGRAPHY

Faddeev, L. D. (1965). Mathematical Aspects of the Three-Body Problem in
Quantum Scattering Theory, Davey, New York.

Fano, U., and C. M. Lee (1973). Phys. Rev. Lett. 31, 1573.

Ferreira, L. S. (1986). Lecture Notes in Physics, Vol. 273, Springer-Verlag,
Berlin, p. 100.

Feshbach, H. (1958). Ann. Phys. (N.Y.) 5, 357.

Feshbach, H. (1962). Ann. Phys. (N.Y.) 19, 287.

Foldy, L. L., and W. Tobocman (1957). Phys. Rev. 105, 1099.
Fonseca, A. C., and T. K. Lim (1985). Phys. Rev. Lett. 55, 1285.

Fonseca, A. C. (1986a). Lecture Notes in Physics, Vol. 273, Springer-Verlag,
Berlin, p. 161.

Fonseca A. C. (1986b). In T. K. Lim, C.-G. Bao, D. -P. Hou, and S. Huber,
Few-Body Methods: Principles and Applications, Eds., World Scientific,
Singapore, p. 111.

Gell-Mann, M., and M. L. Goldberger (1953). Phys. Rev. 91, 398.

Geltman, S. (1969). Topics in Atomic Collision Theory, Academic Press, San
Diego, Calif.

Gerjuoy, E. (1958). Phys. Rev. 109, 1806.

Gerjuoy, E. (1971). Philos. Trans. R. Soc. London 270, 197.

Gerjuoy, E., A. R. P. Rau, and L. Spruch (1983). Rev. Mod. Phys. 55, 725.

Ghosh, A. S., N. C. Sil, and P. Mandal (1982). Phys. Rep. 87, 313.

Ghosh, A. S. (1992). Private communication.

Gibson, R. J., and K. T. Dolder (1969). J. Phys. B 2, 741.

Gillan, C. J., C. J. Noble, and P. G. Burke (1990). J. Phys. B 23, L407.

Glockle, W. (1970a). Nucl. Phys. A 141, 620.

Glockle, W. (1970b). Nucl. Phys. A 158, 257.

Glockle, W. (1983). The Quantum Mechanical Few-Body Problem, Springer-
Verlag, New York.

Goldberger, M. L., and K. M. Watson (1964). Collision Theory, Wiley, New
York.

Golden, D. E., and A. Zecca (1971). Rev. Sci. Instrum. 42, 210.

Halftel, M. 1., and F. Tabakin (1970). Nucl. Phys. A 158, 1.
Haidenbauer, J., and W. Plessas (1983). Phys. Rev. C 27, 63.

Harms, E. (1970). Phys. Rev. C 1, 1667.

Harris, F. E. (1967). Phys. Rev. Lett. 19, 173.

Harris, F. E., and H. H. Michels (1969a). Phys. Rev. Lett. 22, 1036.
Harris, F. E., and H. H. Michels (1969b). J. Comput. Phys. 6, 237.
Harris, F. E., and H. H. Michels (1971). Methods Comput. Phys. 10, 143.
Hartt, K., and P. V. A. Yidana (1987). Phys. Rev. C 36, 475.



BIBLIOGRAPHY 313

Henry, R. J. W. (1967). Phys. Rev. 162, 56.

Henry, R. J. W. (1968). Phys. Rev. 172, 99.

Ho, Y. K. (1990). J. Phys. B 23 L419.

Ho, Y. K., and P. A. Fraser (1976). J. Phys. B 9, 3213.

Ho, Y. K., and C. H. Greene (1987). Phys. Rev. A 35 3169.
Hochstadt, H. (1973). Integral Equations, Wiley, New York.
Horacek, J., and T. Sasakawa (1983). Phys. Rev. A 28, 2151.
Horacek, J., and T. Sasakawa (1984). Phys. Rev. A 30, 2274.
Houston, S. K. (1973). J. Phys. B 6, 131.

Houston, S. K., and R. J. Drachman (1971). Phys. Rev. A 3, 1335.
Huck, R. J. (1957). Proc. Phys. Soc. London Sec. A 70, 369.
Hulthén, L. (1948). Ark. Mat. Astron. Fys. A 35, No. 25.
Hulthén, L. (1944). K. Fysiogr. Saellsk. Lund. Foerh. 14, 257.
Humberston, J. W. (1973). J. Phys. B 6, L305.

Humberston, J. W. (1974). J. Phys. B 7, L286.

Humberston, J. W. (1984). J. Phys. B 17, 2353.

Ishikawa, S. (1987). Nucl. Phys. A 463, 145c.

Jackson, J. (1951). Phys. Rev. 83, 301.

Joachain, C. K. (1975). Quantum Collision Theory, North-Holland, Amster-
dam.

Kapur, P. L., and R. E. Peierls (1938). Proc. R. Soc. London Ser. A 166, 277.
Kar, S., and P. Mandal (1997). J. Phys. B 30, L627.

Kato, T. (1950). Phys. Rev. 80, 475.

Kauppila, W. E., et al. (1977). Rev. Sci. Instrum. 48, 322.

Kennerly, R. E., and R. A. Bonham (1978). Phys. Rev. A 17, 1844.

Kernoghan, A. A., M. T. McAlinden, and H. R. J. Walters (1995). J. Phys. B
28, 1079.

Kievsky, A. (1997). Nucl. Phys. Axx, xxx.

Kievsky, A., M. Viviani, and S. Rosati (1998). Phys. Rev. C, submitted.
Kohn, W. (1948). Phys. Rev. 74, 1763.

Kouri, D. J., and D. G. Truhlar (1989). J. Chem. Phys. 91, 6919.

Kouri, D.J., Y. Sun, R. C. Mowrey, J. Z. H. Zhang, D. G. Truhlar, K. Haug,
and D. W. Schwenke (1988). In Mathematical Frontiers in Computational
Chemical Physics, D. G. Truhlar, Ed., Springer-Verlag, New York, p. 207.

Kowalski, K. L. (1965). Phys. Rev. Lett. 15, 798.

Kowalski, K. L. (1972). Nucl. Phys. A190, 645.

Kowalski, K. L., and D. Feldman (1961). J. Math. Phys. 2, 499.
Kowalski, K. L., and D. Feldman (1963a). Phys. Rev. 130, 276.



314 BIBLIOGRAPHY

Kowalski, K. L., and D. Feldman (1963b). J. Math. Phys. 4, 507.

Kuppermann, A., G. C. Schatz, and M. J. Baer (1974). J. Chem. Phys. 61,
4362.

Lane, A. M., and D. Robson (1966). Phys. Rev. 151, 774.
Lane, A. M., and D. Robson (1969). Phys. Rev. 178, 1715.
Lane, A. M., and R. G. Thomas (1958). Rev. Mod. Phys. 30, 257.

Levinger, J. S. (1974). Springer Tracts in Modern Physics, Vol. 71, Springer-
Verlag, Berlin, 88.

Lima, M. A. P., and V. McKoy (1988). Phys. Rev. A 38, 501.

Lima, M. A. P, T. L. Gibson, W. M. Huo, and V. McKoy (1985). J. Phys. B
18, L865.

Lippmann, B. A. (1956). Phys. Rev. 102, 264.
Lippmann, B. A., and J. Schwinger (1950). Phys. Rev. 79, 469.
Lovelace, C. (1964a). Phys. Rev. 135, B1225.

Lovelace, C. (1964b). In R. G. Moorhouse, Ed., Strong Interaction and High
Energy Physics, Oliver & Boyd, London, p. 437.

Lucchese, R. R. (1989). Phys. Rev. A 40, 6879.

Lucchese, R. R., and V. McKoy (1980). Phys. Rev. A 21, 112.

Lucchese, R. R., and V. McKoy (1981a). Phys. Rev. A 24, 770.

Lucchese, R. R., and V. McKoy (1981b). J. Phys. B 14, 1629.

Lucchese, R. R., and V. McKoy (1981c). J. Chem. Phys. 85, 2166.
Lucchese, R. R., and V. McKoy (1982). Phys. Rev. A 26, 1406 and 1992.
Lucchese, R. R., and V. McKoy (1983). Phys. Rev. A 28, 1382.

Lucchese, R. R., K. Takatsuka, and V. McKoy (1986). Phys. Rep. 131, 147.
Lucchese, R. R., G. Raseev, and V. McKoy (1982). Phys. Rev. A 25, 2572.

Lynch, D., M. T. Lee, R. R. Lucchese, and V. McKoy (1984). J. Chem. Phys.
80, 1907.

Malfliet, R. A., and J. A. Tjon (1968). Nucl. Phys. A 127, 161.
Malfliet, R. A., and J. A. Tjon (1970). Ann. Phys. (N.Y.) 61, 425.

McCurdy, C. W., T. N. Rescigno, and B. I. Schneider (1987). Phys. Rev. A
36, 2061.

Mercier, A. (1963). Variational Principles of Physics, Dover, New York.
Michels, H. H., F. E. Harris, and R. N. Scolsky (1969). Phys. Lett. A 28, 467.

Michlin, S. G. (1964). Variational Methods in Mathematical Physics, Inter-
science, New York.

Miller, W. H. (1990). Annu. Rev. Phys. Chem. 41, 245.

Miller, W. H. (1992). In Eds., S. Wilson and G. H. F. Diercksen, Methods in
Computational Molecular Physics, Plenum Press, New York, p. 519.



BIBLIOGRAPHY 315

Miller, W. H. (1994). Advances in Molecular Vibration and Collision
Dynamics, Vol. 2A, 1, JAI Press, Greenwich, Conn., p. 1.

Miller, W. H., and B. M. D. D. Jansen op de Haar (1987). J. Chem. Phys. 86,
6213.

Miller, W. H., and J. Z. H. Zhang (1991). J. Phys. Chem. 95, 12,
Mito, Y., and M. Kamimura (1976). Prog. Theor. Phys. 56, 583.
Mitroy, J., and A. T. Stelbovics (1994a). J. Phys. B 27, 3257.
Mitroy, J., and A. T. Stelbovics (1994b). J. Phys. B 27, L55.

Morgan, L. A., M. R. C. McDowell, and J. Callaway (1977). J. Phys. B 10,
3297.

Mortensen, E. M., and L. D. Gucwa (1969). J. Chem. Phys. 51, 5695.
Moser, C. M., and R. K. Nesbet (1971). Phys. Rev. A 4, 1366.
Mu-Tao, L., and V. McKoy (1983). Phys. Rev. A 28, 697.

Nesbet, R. K. (1967). Phys. Rev. 156, 99.

Nesbet, R. K. (1968). Phys. Rev. 175, 134.

Nesbet, R. K. (1969a). Phys. Rev. 179, 60.

Nesbet, R. K. (1969b). Adv. Chem. Phys. 14, 1.

Nesbet, R. K. (1975). Advance in Quantum Chemistry, Vol. 9, Academic
Press, San Diego, Calif., p. 215.

Nesbet, R. K. (1978). Advance in Atomic and Molecular Physics, Vol. 13,
Academic Press, Calif., p. 315.

Nesbet, R. K. (1980). Variational Methods in Electron—Atom Scattering
Theory, Plenum Press, New York.

Nesbet, R. K., and R. S. Oberoi (1972). Phys. Rev. A 6, 1855.

Newton, R. G. (1982). Scattering Theory of Particles and Waves, 2nd ed.,
Springer-Verlag, Berlin.

Nuttall, J. (1969). Ann. Phys. (N.Y.) 52, 428.

Oberoi, R. S., and J. Callaway (1969). Phys. Lett. A 30, 419.
Oberoi, R. S., and R. K. Nesbet (1973a). Phys. Rev. 4 8, 215.
Oberoi, R. S., and R. K. Nesbet (1973b). Phys. Rev. A 8, 2969.

O’Malley, T. F., P. G. Burke, and K. A. Berrington (1979). J. Phys. B 12,
953.

Oryu, S. (1986). Lecture Notes in Physics, Vol. 273, Springer-Verlag, Berlin,
p. 123.

Pearce, B. C. (1987). Phys. Rev. C 36, 471.
Pelikan, E., and H. Klar (1983). Z. Phys. A 310, 153.

Plessas, W. (1986). Lecture Notes in Physics, Vol. 273, Springer-Verlag,
Berlin, p. 137.

Plessas, W., and J. Haidenbauer (1987). Few-Body Syst. Suppl. 2, 185.



316 BIBLIOGRAPHY

Rawitscher, G. H. (1987). Nucl. Phys. A 475, 519.

Rawitscher, G. H. (1989). Phys. Rev. C 39, 440.

Redish, E. F., and K. Stricker-Bauer (1987). Phys. Rev. C 36, 513.
Register, D., and R. T. Poe (1975). Phys. Lett. A 51, 431.

Rescigno, T. N., C. W. McCurdy, and V. McKoy (1976). Phys. Rev. A 11,
2240.

Rescigno, T. N., and B. I. Schneider (1987). Phys. Rev. A 36, 2061.
Rescigno, T. N., and B. 1. Schneider (1988). J. Phys. B 21, L691.
Rosenberg, L., L. Spruch, and T. F. O’Malley (1960). Phys. Rev. 118, 184.
Rountree, S. P., and G. Parnell (1977). Phys. Rev. Lett. 39, 853.

Roy, U., and P. Mandal (1993a). Phys. Rev. A 48, 233.

Roy, U., and P. Mandal (1993b). Phys. Rev. A 48, 2952.

Rubinow, S. 1. (1955). Phys. Rev. 98, 183.

Rudge, M. R. H. (1973). J. Phys. B 6, 1788.

Rudge, M. R. H. (1975). J. Phys. B &8, 940.

Schatz, G. C., and A. Kuppermann (1975). Phys. Rev. Lett. 35, 1266.
Schneider, B. 1., and L. A. Collins (1985). J. Phys. B 18, L857.
Schwartz, C. (1961a). Phys. Rev. 124, 1468.

Schwartz, C. (1961b). Ann. Phys. (N.Y.) 16, 36.

Schwartz, C. (1966). Phys. Rev. 141, 1468.

Schwinger, J. (1947a). Phys. Rev. 72, 742.

Schwinger, J. (1947b). Lecture Notes, Harvard University, unpublished.
Seaton, M. J. (1953). Philos. Trans. R. Soc. London Ser. A 245, 469.
Seaton, M. J. (1973). Comput. Phys. Commun. 6, 247.

Seiler, G. J., R. S. Oberoi, and J. Callaway (1971). Phys. Rev. A 3, 2006.
Shimamura, I. (1971a). J. Phys. Soc. Japan 30, 1702.

Shimamura, I. (1971b). J. Phys. Soc. Japan 31, 217.

Shimamura, I. (1971c). J. Phys. Soc. Japan 31, 852.

Sinfailam, A. L., and R. K. Nesbet (1972). Phys. Rev. A 6, 2118.
Sinfailam, A. L., and R. K. Nesbet (1973). Phys. Rev. A 7, 1987.
Sloan, I. H. (1968). J. Comput. Phys. 3, 332.

Sloan, I. H., and T. J. Brady (1972). Phys. Rev. C 6, 701.

Sloan, I. H., and S. K. Adhikari (1974). Nucl. Phys. A 235, 352
Smith, E. R., and R. J. W. Henry (1973). Phys. Rev. A 8, 572.

Smith, R. L., and D. G. Truhlar (1972). Phys. Lett. A 39, 35.
Sofianos, S., N. J. McGurk, and H. Fiedeldey (1979). Nucl. Phys. A 318, 295.
Staszewska, G., and D. G. Truhlar (1986). Chem. Phys. Lett. 130, 341.
Staszewska, G., and D. G. Truhlar (1987). J. Chem. Phys. 86, 2793.



BIBLIOGRAPHY 317

Stein, J., and R. Sternlicht (1972). Phys. Rev. A 6, 2162.
Stein, T. S., et al. (1978). Phys. Rev. A 17, 1600.

Sun, Y., C.H. Yu, D. J. Kouri, D. W. Schwenke, P. Halvick, M. Mladenovic,
and D. G. Truhlar (1989). J. Chem. Phys. 91, 1643.

Sun, Y., D. J. Kouri and D. G. Truhlar (1990). Nucl. Phys. A 508, 41c.
Sun, Q., C. Winstead, and V. McKoy (1992). Phys. Rev. A 46, 6987.
Takatsuka, K., and V. McKoy (1981a). Phys. Rev. A 23, 2352.

Takatsuka, K., and V. McKoy (1981b). Phys. Rev. A 23, 2358.

Takatsuka, K., R. R. Lucchese, and V. McKoy (1981). Phys. Rev. A 24, 1812.
Tang, Y. C., M. LeMere, and D. R. Thompson (1978). Phys. Rep. 47, 167.

Tawa, G. J., S. L. Mielke, D. G. Truhlar, and D. W. Schwenke (1994).
Advances in Molecular Vibration and Collision Dynamics, Vol. 2B, JAI
Press, Greenwich Conn., p. 45.

Temkin, A., A. K. Bhatia, and J. N. Bardsley (1972). Phys. Rev. A 5, 1663.
Thirumalai, D., and D. G. Truhlar (1980). Chem. Phys. Lett. 70, 330.
Thomas, L. D., and R. K. Nesbet (1975a). Phys. Rev. A 11, 170.

Thomas, L. D., and R. K. Nesbet (1975b). Phys. Rev. A 12, 1729,
Thomas, L. D., and R. K. Nesbet (1975¢). Phys. Rev. A 12, 2369.
Thomas, L. D., and R. K. Nesbet (1975d). Phys. Rev. A 12, 2378.
Thomas, L. D., R. S. Oberoi, and R. K. Nesbet (1974). Phys. Rev. A 10, 1605.
Tomio, L., and S. K. Adhikari (1980a). Phys. Rev. C 22, 28.

Tomio, L., and S. K. Adhikari (1980b). Phys. Rev. C 22, 2359.

Tomio, L., and S. K. Adhikari (1981). Phys. Rev. C 24, 43

Tomio, L., and S. K. Adhikari (1995). Chem. Phys. Lett. 241, 477.
Truhlar, D. G., and A. Kuppermann (1970). J. Chem. Phys. 52, 3841.
Truhlar, D. G., and A. Kuppermann (1972). J. Chem. Phys. 56, 2232.

Truhlar, D. G., J. Abdallah, Jr., and R. L. Smith (1974). Advances in
Chemical Physics, Vol. 25, Wiley, New York, p. 211.

Truhlar, D. G., D. W. Schwenke, and D. J. Kouri (1990). J. Phys. Chem. 94,
7346.

Vorobyev, Yu. V. (1965). Method of Moments in Applied Mathematics,
Gordon and Breach, New York.

Watson, D., and V. McKoy (1979). Phys. Rev. A 20, 1474.
Weinberg, S. (1963). Phys. Rev. 131, 440.

Weinberg, S. (1964). Phys. Rev. 133, B232.

Whiting, J. S., and M. G. Fuda (1976). Phys. Rev. C 14, 18.
Wichmann, E., and P. Heiss (1974). J. Phys. B 7, 1042.
Wigner, E. P., and L. Eisenbud (1947). Phys. Rev. 72, 29.



318 BIBLIOGRAPHY

Wildermuth, K., and Y. C. Tang (1977). A Unified Theory of the Nucleus,
Vieweg, Wiesbaden, Germany.

Williams, J. F., and B. A. Willis (1974). J. Phys. B 7, L61.

Winstead, C., and V. McKoy (1994). In Ed. D. Yarkony, Modern Electronic
Structure Theory, World Scientific, Singapore.

Wladawsky, 1. (1973). J. Chem. Phys. 58, 1826.

Yakubovskii, O. A. (1967). Yad. Fiz. 5, 1312 [Sov. J. Nucl. Phys. 5, 937
(1967)].

Zhang, J. Z. H., and W. H. Miller (1990). J. Phys. Chem. 94, 7785.
Zhang, J. Z. H., S.-I. Chu, and W. H. Miller (1988). J. Chem. Phys. 88, 6233.
Zhao, M., et al. (1989). J. Am. Chem. Soc. 111, 852.



INDEX

Anomalous behavior, 134-136, 215-219
in complex Kohn method, 219
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Basis functions:
Kohn method, 115116, 138
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Schwinger method, 170-171
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approximation, 29-30, 57, 80
for bound state, 92
for distorted wave, 194
for I' matrix, 79, 83, 213, 269-271
for scattering, 69, 80-84, 160, 256
for wave function, 34
Bound-state:
approximation, 51
scattering approach, for, 91-94

Channel, 5-6
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Close-coupling (CC) equations, 9, 43,
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electron-helium scattering, 290
electron-hydrogen scattering, 284
for K matrix, 56
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for wave function, 52
partial-wave, 54-56
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Contour deformation technique, 68
Cross section:
electron-hydrogen scattering, 280
electron-helium scattering, 291
multichannel, 59-60
partial-wave, 18-20
reaction, 19
total, 20

Effective range, 42
Electron-helium scattering, 288-292
Bethe-Goldstone method, 289
Born formula, 291
close-coupling (CC) method, 290
Harris method, 289
optimized anomaly-free method, 289
polarizability, 290-291
polarized-orbital method, 289
R-matrix method, 290
resonance, 290-291
Electron-hydrogen scattering, 280-285
Born formula for phase shift, 281

close-coupling (CC) approach, 281, 284

Harris method, 282
Kohn method, 281-282
numerical results, 280-285
phase shift, 283
polarizability, 281, 283
polarized orbital method, 282
resonances, 282283
Electron-molecule scattering, 297-300
CO, CO,, 299-300
complex Kohn method, 298
hydrogen (H,), 297-298
iterative Schwinger method, 298, 300
Kohn method, 297
nitrogen (N,), 298
R-matrix method, 297-299
Schwinger (multichannel) method,
297-300
Electron volt, 261

Faddeev-Yakubovskii equation, 9, 40

Feshbach projection operator technique:

Kohn method, 190
Schwinger multichannel method,
229-234
Fock coupling scheme, 50

I' matrix, 8-9, 74-80
for resonance, 95-97
multichannel, 87-90
variational principle, 210-215

Green’s function:
incoming-wave, 22-23
outgoing-wave, 22-23
principal-value, 37-38, 73

Hartree-Fock:
wave function, 249-250
continuum orbitals, 249253
Huck model, 272

Integral equation, 7
degenerate-kernel method, 106, 179
Fredholm, 7, 62-69, 76, 79
method of moments, 103—-104
nonsingular, 74—-80
variational principles, 101-107
Integration quadratures, 66, 72
Ionization, 4

K matrix, 3642, 68
half-shell, 77-78
off-shell, 159
principal-value treatment, 68, 71-74,
86
unitarity, 41
Kernel:
compact, 24, 64
Fredholm, 24, 43, 50, 63-69, 76
Hilbert-Schmidt, 24, 44-45, 64

Lippmann-Schwinger equation, 7, 21
asymptotic behavior, 25-27
for K matrix, 39-40
for ¢t matrix, 28, 31
for wave function, 23
(iterative) Born-Neumann series

solution, 7-8, 34, 80

multiparticle, 4349
nonuniqueness of solution, 44-45
numerical solution, 65-74

Moller operator, 12

Neumann series, see Born series
Numerical solution of integral equation:



atom-diatom (reactive) scattering,
300-304

complex Kohn method, 267-268, 278,
301, 304

degenerate-kernel scheme, 69

electron-atom scattering, 294295

electron-helium scattering, 288—-292

electron-hydrogen scattering, 280-285

electron-molecule scattering, 297-300

explicit matrix elements, 258-261

four-nucleon scattering, 278

I' matrix (iterative), 269-271, 278-279

inverse Kohn (minimum-norm) method,
265-266, 282-283

Kohn (anomaly-free) method, 265-266,
282-283

Kohn (minimum-norm) method,
265-266, 282-283

Kohn (oft-shell) method, 263, 265-267

Kohn (on-shell) method, 263, 281-283

molecular photoionization, 296-297

multichannel model, 272-275, 284-285

neutron-deuteron scattering, 278

Newton method, 267-268, 276-277,
300-304

nucleon-nucleon scattering, 275-278

optimized anomaly-free method,
265-266, 282-283

optimized minimum-norm method,
265-266, 282-283

positron-helium scattering, 292-294

positron-hydrogen scattering, 285-288

principal-value treatment, 71-74

Schwinger basis-set method, 263-267,
276-279

Schwinger (iterative) method, 269-271

Schwinger (£?) method, 265-266

separable expansion, 69, 276-279

single-channel study, 261-272

variational (basis-set) method, 69,
263-269

Padé approximation, 69, 84, 256, 279
Partial-wave (expansion):
Born phase shift formula, 281, 291
Green’s function, 25
K matrix, 4041
multichannel, 54-56
scattering amplitude, 18

INDEX 321

scattering cross section, 18
¢t matrix, 32-35
wave function, 15-16, 38
Partition, 5-6
Photodisintegration of triatomic molecule,
240-245
Photoionization, 202, 210
frozen-core Hartree-Fock method,
252-253
Positron-helium scattering, 292-294
close-coupling (CC) method, 293
Kohn method, 292
polarizability, 292
resonance, 294
Positron-hydrogen scattering, 285-288
close-coupling (CC) method, 286
complex-energy extrapolation, 286
Harris method, 286287
Kohn method, 285-287
resonance, 288
Schwinger method, 285-287
Potential:
exponential, 261, 265, 267, 269-271
Yukawa, 261, 263, 269-271

Reaction cross section, 19
Resonance, 36, 77, 91-96
Rydberg, 261

S matrix, 18, 31-32, 192
unitarity, 32, 57

Scattering:
amplitude, 14, 18, 27
breakup, 34
complex potential, 85-87
cross section, 15, 18, 27
distorted wave, 193-196
eigenphase, 57
elastic, 34
electron-atom, 255, 294-295
electron-helium, 288-292
electron-hydrogen, 280285
few-particle, 69-70,
four-nucleon, 70, 278
Green’s function, 21-23
helium atom, 288-294
hydrogen atom, 279288
inelastic, 4
length, 42
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Scattering (continued)
multichannel, 7, 42—-60, 272-275,
284-285
nonsingular equation, 74-80
nucleon-nucleon, 255, 276-278
off-shell, 65, 159
on-shell, 65, 159
phase shift, 1617, 34, 41
positron-hydrogen, 285-288
potential, 3
reactive (rearrangement), 3—4, 237-240,
300-304
threshold, 4
time-independent description, 10-13
wave-function description, 1327
wave-packet description, 11
Separable expansion, 257, 277-278
analytic, 175
Bateman, 174-175
energy-dependent, 175-176
Ernst-Shakin-Thaler, 175
Hilbert-Schmidt, 173-174
unitary pole, 172—-173
Spherical Bessel and Neumann functions,
15-16

t (transition) matrix, 18, 27
half-shell, 77-78, 159
hermitian analyticity, 30
post, 52-54
prior, 52-54

Two-potential formula, 196

Unitarity cut, 30, 35

Variational principle (method), off-shell,

8, 159-162

anomalous behavior, 215-219

anomaly-free Kohn, 219-222

complex Kohn multichannel, 245-249,
301, 304

complex Kohn (rearrangement),
248-249

complex Kohn (¢ matrix), 161-162,
186-192, 267-268, 276-278

distorted wave, 193-198

fractional, 160, 162, 164, 165, 178

I’ matrix, 161, 210-215

general matrix element, 201-210

Green’s function, 188-189

higher-order, 183-186

insertion technique, 199-201

iterative scheme, 180182

Kohn (K matrix), 106, 161-162,
186187, 263, 265-268

Newton, 106, 160, 176180, 257,
267-268, 276-278

Newton basis-set, 178—180

Newton (distorted wave), 197-198

Newton, iterative, 180—182

Newton, multichannel inelastic,
234-237

Newton, multichannel reactive,
237-240, 300-304

Newton, photodisintegration of
triatomic molecule, 240-245

Newton, with insertion, 200-201

Schwinger, 103, 160, 162-176, 257,
262-267,276-278, 285-287

Schwinger (distorted wave), 197

Schwinger, iterative, 180-182,
207-208, 269-271

Schwinger (K matrix), 162, 164,
262-267

Schwinger, multichannel, 227-234,
273-275, 284--285

Schwinger, with insertion, 199-201

trilinear, 160

Variational principle (method), on-shell, 8,

99

anomaly, 109, 134—-136

anomaly-free, 136137

basis-set, 108, 115-134

Harris, 109, 128-132, 282, 286-287,
289

Hulthén, 108, 112, 114, 123-124,
130-132

integral equation, 101-107

inverse Kohn, 108-109, 113, 121-122,
124, 130-132

Kato identity, 113

Kohn, 107-122, 124, 130-132, 263,
281-283, 285-287, 292

Kohn (anomaly-free), 136—137,
265--266, 273-275

least squares, 154—157

minimum-norm inverse Kohn,
132-134, 265-266, 282283



minimum-norm Kohn, 132—134,
265-266, 273-275, 282-283

multichannel inverse Kohn, 143—-145

multichannel Kohn, 137-143, 273-275

multichannel R-matrix, 145-147

optimized anomaly-free, 148-150,
152-154, 265-266, 282283, 289

optimized minimum-norm, 148-152,
265-266, 282-283
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R matrix, 109, 124-128, 145-147, 193,
290
Rayleigh-Ritz, 107, 109-111, 128-129
Rubinow, see Inverse Kohn
Virtual states, 36, 96-97

Wave function:
incoming-wave, 23
outgoing-wave, 23



