CLARKSON UNIVERSITY

COMBINATORIAL PROPERTIES OF HEAPSORT

A Dissertation

by
Ahmad Al-Jaber

Department of Mathematics and Computer Science

Submitted in partial fulfillment of the requirements
for the degree of
Doctor of Philosophy

Hathemétics

November 1984

Accepted by the Graduate School

JZZou»nAL;{p/?W%’ ‘1&Aéu‘é§§i/2142§11—

Date "

® 1985

AHMAD AUDA AL-JABER

All Rights Reserved

ACKNOWLEDGEMENTS

The author wishes to thank his advisor Dr. Ernst E. Doberkat for
his guidance, support and encouragement during this project. The
many discussions between Dr. Doberkat and myself have been invaluable
and are gratefully acknowledged. I wish to thank Drs. Eytan Barouch,
Susan Conry, Mark Goldberg and James Lynch, for their interest as well
as for their valuable time. Cindy Martin must be thanked for her typing
(and retyping); Faye Gates is thanked for her editing skills. Lasi but
not least, to my family, for the support, faith, confidence and patience -
thank you.

TABLE OF CONTENT
Abstract

Chapter 0
0.0 Historical introduction
0.1 Definitions
0.2 Generating functions
0.3 Asyﬁptotics
Chapter 1
I.0 Introduction
1.1 Properties of heaps
1.2 Algorithm to generate the set of all heaps
Chapter 11
11.0 Introduction
11.1 Combinatorial formulation of Williams® algorithm
- I11.2 Necessary and sufficient conditions for the second order tree
I11.3 Counting second order trees
I11.4 Generating functions
II.5 Solutions for some terms of the nonlinear differential
difference equation
11.6 Asymptotic expansion for a quantity related to the nonlinear
differential difference equation
11.7 Numerical computations
Chapter 111
I11.0 Introduction
I11.1 Computation of the upper bound
Chapter 1V
Summary and discussion

References

Coambhnle

-

w oo u;m

10
10
n
15
23
23
24

43

46

51

66
66

70

ABSTRACT

Several aspects related to the combinatorial properties of heap-
sort are discussed in this thesis. A recursion formula for the
number of heaps satisfying a given condition between any two offsprings
with the same parent is given and several properties of heaps are dis-
cussed including a new algorithm to generate the set of all heaps of
any size. Also in this work we define second order trees whic.h have
5 great importance in the study of the complexity of Williams' algor-
ithms to generate a heap. We discuss this kind of trees and we prove that
the generating function of the number of trees satisfies
3 nonlinear differential difference equation. The numerical computation
and the asymptotic expansion -'for a quantity related to this nonlinear
differential difference equation is gﬂen in this work . Finally, we
give an upper bound for the number of the second order trees generated
from the set of all heaps of size N where N has the form 2"-1 for any

positive integer k.

0. LiTRODUCTION

A heap is a data structure proposed to sort a sequence of elements; it
can also be used to implement priority queues (a priority queue, as defined in
Aho, Hopcroft and Ullman, i{s a data structure that supports finding the maximum or

minimum element from a given ordered set efficiently [AHU - p. 110]). Formally,

a li-heap can be described as an array x[1..N] of real numbers with
x[3] > x[13/2)] for2< i<

Two important operations are allowed on a heap. Insertion, the _first
one, allows a new element to be inserted into the heap. Thus one can create
a heap frcm a set by repeated insertions of the. set elements into an init..
ially empty heap. The second operation allows the smallest (or largest) element
to be deleted from the heap. In particular, the smallest/largest element can

be found efficiently.

Heaps have been useful in several areas such as sorting [KNU2,AHU] and oper-
ating systems [HAH] (specifically in scheduling). For example, we have a set
of jobs waiting for service from a processor and every job is assigned some
priority. The basic situation is that one has to decide which job should
get service next; usually one picks the next job from a structure that allows
to make this decisi.on based on the job's priority. There are several possi-
bilities for the implenentation of such a structure. One of the most effici-
ent in this case is a heap. Heaps are also useful in finding the minimum _
spanning tree and the shortest path in a given graph [AHU- p. 110]. Considerable
research has been done in this area; Floyd [FLQ] gave his algorithm for gener-
ating a H-heap from a given permutation of size N as follows:

Input: array x[1..H]

Output: x[1..H] orgénized as a heap.

llethod: 0. Procedure heapify (k);
If k is not a leaf and if a son of k has a smaller label
than k, then let j be the son with the smallest label;
interchange x[k] with x[j];
heapify(j);
End {If};
End {heapify)}
1. For k := (MN/2) downto 1 do

heapify(k);
End. {Algorithm}
Floyd's algoritim has an attractive randomness property [KHU2]. ¥illians [WIL]

gives another algorithm to generate a il-heap from a given pcrmutafion 6f

size N, but this algorithm does not satisfy the randomness property. (A

full description of Williams' algorithm is given in Section 0.2.2). 1In [PSI],
Porte: and Simon analyzed the average number of intercﬁanges generated

from inserting a random element into a random N-he&p; using Hilliams' algor-
ithm, in ogher words, they investigated the expected number of interchanges
required to generate an (li+1)-heap by inserting the (N+1)-element into the
given N-heap. They found that this average is bounded by a constant of

about 1.61. This analysis was refined and extended in [DOB1] by Doberkat. He
derived formulas for the expected numbers of comparisons and the higher

moment generated from inserting a random element into a random heap and gave
the asymptotic expansion for these formulas. In his paper [DOB4] Doberkat anal-
yzed Floyd's algorithm and gave formulas for the expected nuﬁber of inter-
changes and comparisons required to generate a heap of size H. All analyses
are based on Knuth [KNU2] who derfves a number of combinatorial characteristics

for Floyd's algorithm such as the number of interchanges and some relation-

3
ships between the left offspring and right offspring. Knuth [KhU2] also
derives 2 formula.for the number of heaps generated from the set of all per-

mutations of size i1 and proves this number to be —ﬁﬂl——— » vthere Si is.

ns N
ja1 1.H

the size of the subtree rdoted at node i, (see 0.2.1 for the tree repre-
sentation).

. A brief description of the results obtained in this thesis are in order
now. He will transform the analysis of Willjams' algorithm into a combin~- -
atorial problen by definiﬁg a new type of tree which we call a second order
tree (SOT). This type of tree is the main concept behind tne analysis of
William's algorithn. (For further details about second order trees,
see Chapter II, Section I1.1). From this transformation several questions
arise concerning the properties of SOT, viz., the combinatorial character-
ization of these trees, the cardinality of the set of the second order trees
generated from the set of all heaps of size !l and the weight of the given
tree generated from a heap of size N. We will show in Chapter II, Section 11.2
that this type of tree cannot be completely characterized by the number of
nodes, leaf or edges, the height of the tree or by other simple combinator-
fal properties. This will be demonstrated by two different examples in
Chapter II, Section 1I.2. Hhile one is a second order tree and the other
is not, both trees do have the same number of nodes, leaves, edges and the
same height.

One of the main results we prove in Chapter Il is Theorem II.3.5 which gives
us the number of the second order frees generated from the set of all heaps of siz
In 11.4 we use the exponential generating function to prove that the exponential gene
ing function of the number of second order tree satisfies a non-linear differentia
difference equation. Several properties of the second order tree are given in

Chapter 11, includ%ng coefficients for some terms, asymptotic expansions and

the number of the second order trees according to the number of offsprings
(maximum, minimum). Also in Chapter 11 we present some numberical computa-
tion for the number of the SOT. The main result in Chapter 111 is the set-
ting of an upper bound for the SUT, it is given in Corollary IIl.1.2.

In Chapter 1 of this work we prove some combinatorial properties of
heaps. The principal result of this chapter is Theorem 1.2 , where we give
a new algorithm to generate the set of all heaps of size N from a subset of

the heaps of size (i-1).

0.1 Definitions

0.1.1 - UEF: Let {(1,...,1} be represented as a binary tree as follows:

1 represents the root, and for any node i, 2 < i < l,L1/2] is the parent of
node i. If { is even, then i is the left offspring of {i/2}; if i is odd,
then 1 is the right offspring of Li/2). Given an array x[1..M] of real
nunbers, label each node 1 by x(1). This lateling constitutes a heap iff

every offspring has a greater label than its parent.

0.1.2 - Hilliams' algorithm [WIL].

In a very simple way, Williams®' algoritha is nothing but a straight in-
sertion sort in each path in the complete binary tree representation of a
given permutation. The algoritha can be written as follows:

Input:x[1..N] as a permutation

Output:x[1..H] organized as a heap

l—iethod:x(o) 3

For i :=1 to N do

Begin

p:=1i; q = Liz24; x = x(i);
While x{q) > x do
Begin
x(p) := x(a); P :=q; q := Lp/2);
End; {¥hile}
x(p) = x3
End {(For}
End. {Algorithm)

0.1.3 - DEF: Let x[1..N] be a heap of size N and define
t(N,0) := K;

tt,i41) := Lﬂ%ﬂj for 0< 1< Llogy) - 1.

(t(i,i)s 0 <1 < Llogyiy)

is cﬁl]ed the special path and t(N,i), for 0< i < Llogzllj. is called a
special node (Knuth [KNU2] - Section 5.2.3).

Example: - HN:= 10;
{1,2,5,10} represents
the special path 2

0.1.4 - DEF:

Define b(N,i) to be the brother of t(N,i) for 0 < i < Llog,tiy. If K
is odd, b(4,0) is defined too;‘othenvise. let b(N,0) = ». To create a heap
of size N from a heap of size N-1, the set of all possible interchanges
after inserting the key of the node N depends on the relation betvween
special nodes and their brothers. Given a heap x[1..1], we define the skew-
ness of x (i.e., the set of all possible interchanges from inserting the key
of N) by

skewnress (x) := max{r;x{t(N,i)}<x{b(N,i)) for all i, 0< i< r),

x = (1,2,3,..., 10) =

9 10

Skewness of x = 2, since x(10) < =, x(5) < x(4) and x(2) > x(3).

0.2 Generating functions

One of the important subjects in the area of the analysis of algor-
ithms is finding a recursion formula which reflects the mathematical solution
to a given problem. Several techniques have been proposed to solve re-
cursion formula One of these techniques uses generating func-
tion, see [GKu, KNU2, LIU, LOU, McB, MOO]. There is more than one type of gener-
ating function; for example, ordinary generating function, exponential generating f
tion, Lambert series,... . For convenience we will define the exponential

and the ordinary generating function, respectively.

0.2.1 - DEF:

Let {an}ngp be a sequence of real numbers. Then

n
ol t

a) L
n0
is called the exponential generating function of {an}n>0 .

b) L ant"
n>0

is called the ordinary generating function of {an}n>0 .

0.3 Asvmptotics

0.3.1 0EF: Suppose the function f has a singularity at a. The sinjularity
is called algebraic if f(z) can be written as analytic function near a plus

a finite sum of terms of the form

(1 - z/a)™g(z) (0.3.1)
where
g is a function which is analytic near a and

w is a complex number not equal to 0, -1, -2,...

0.3.2 - Theoren:(Darboux; Greene and Knuth [GKu]):

a 2" is analytic near O and has only algebraic

Suppose A(z) = n

L
n>0
sinqularities on its circle of convergence. Let w be the maximum of the
weighE; at these singularities. Denote by ay. Wy and g, the values of a,

w and g for those terms of the form (0.3.1) of weight w. Then

vhere r = I“kl' is the radius of convergence of A(z), and I'(s) is the gamma

function.

0.3.3 - Theorem:(Stirling formula [BEN, OLV[):

xt = (2mx) /220 + o)) .

For real x as x -+ =,

10

CRAFTER I

1.0 Introduction

In this chapter we will study some of the properties of heap sort,
viz, the number of heaps with waximum and minimum skewness. We will develop a ne
recursion formula which gives us the number of heaps satisfying a cer-
tain order relation between two offsprings and, finally,
we will give a new algorithm to generate the set of all heaps of size
i from a proper subset of all heaps of size HN-1.
One of the major differences between our algorithm and the two
known algorithms by Floyd and Willjams is that we are using
a proper subset of the set of all heaps of size H-1 to generate the
set of all heaps of size N. In contrast, in the other two aigorithms
one_has to use at least the set of all heaps of size N-1 to generate
the set of all heaps of size N. The advantage to our algorithm is that clearly

a great amount of time and space can be saved in comparison with the

two known algorithms.

11

I.1 Properties of heap

Let l\.I be the set of 411 permutations over {1,...,il}. Define H" over A“ as

H, := {x; x¢ AW‘ and x has the heap property)

H

Then ve have the following properties:

I1.1.1 - Lemma: Let hsf?x) 1= (x(max); x(max) is a heap of size

(I+1) with maximal skewness} then there exists a one-to-one corre-

spondence between HN and Héﬂ?x).

Proof: “>" - Let x ¢ Hx; increase each label in x by 1, Thén every
label in x is greater than 1; insert 1, wé get a new heap x of size
##1. X has maximal skewness since the labels on the special path in
" are produced by increasing the label of the same path in x by 1 and
the labels on that path are sifted down one level by inserting 1 as in

fig. 1.

1 2

H=4
5
% 4 = increase = *3

3 (a) 1 4 (b)

=> insert 1

2 5
4 3

[P [oF PR b]

12

< Ifxe Hﬁg?x)' deleting the root always gives us °
a heap of size N; hence this inequality follows. 0O

For the sequel we will fix N as the size of the heap, H {s the size
of x, and N-M-1 is the size of Xs and v(y) is the number of heaps of

size y.

1.1.2 - Lesma: Let x ¢ H" and'xz(xR) be the left (right) subheap of

x, respectively, as in Fig. 2. Then the number of heaps that satisfy

x(2) > x(3) (*)

is
(M) - w(i-n-1) (7).

Figure 2

13

Proof: - If x(2) > x(3), we must have x(3) = 2 and x(1) = 1. These
two elenents are fixed, and so we have (“;,2) possible choices for tne
elenents of the left subheap and the right subheap; and, for each choice

we have v(!l) left subheaps and v(M-H-1) right subheaps, therefore, we have

("2)v () i-it=1)

heaps satisfying condition (*). O

Lemma 1.1.2. can be generalized to any two nodes i, i + 1 with the

same parent. This is done in the next lemma.

1.1.3- Lemma: Let xeHy, let § be a node in x such that 1#2Z and toth 1 and {+}
have the same parent; assusic v'(ll) is the number of heaps of size M

where j has the same position in the binary tree corresponding to {1,...,M}as i
the given tree as in fig. 3. Then the number of heap with x(i)>x(i+1) is

- (";')v'(n)v(x-a-l).
Example: -

If i = 4, hence i +1 =5,

let x(4) < x(5) in x which is equivalent to x,_(2) < :&(3)

x(1)

x(2) x(3)

binary tree
representation x(
of xy x/(s\ x{6) x(7)

Figure 3

X(B) X(9)

14

Proof of Lamma I.1.3 - The proof for this lemma follows by induction
from lemma I.1.2. U
These two lemmas (1.1.2 - 1.1.3) can be used to study the properties

of heaps and in particular to investigate the relation between the

elements of a heap.
One can use these lemmas to give a very easy proof for Knuth's

formula

for the size of H:-I' liere S1 i is the size of the subtree of (1,...,H}

rooted at node i.

15

[.2 An alqorithm to generate the set of all heaps

In order to verify the algoritha given below we have to provide two

simple leumas.

1.2.1 - Lemma: Let il,J be a natural number which satisfy the following

conditions:
i) ji"'];
ii) j is even and 2j > il.

Hence, j ic a leaf and a left offspring in
the tree representation.

Let B be some predicate over "ﬂ such that B is independent of

x(j) < x(3+1) and define the following sets:

B = (x e Kys B(x) holds and x(3) < x(§+1));

>Ha = {x e Hy} B(x) holds and x(j) > x(j+1)};
HS = {x ¢ W5 B(x) holds}, then
B By _ 1 B
| Kyl = LHgl =z 1yl .

Proof: -

It is clear that

B . B B
|Hy| since My o Hy = 6.

B B

|<HN| + | Ryl

He have to show that there exists a one-to-one correspondence be-
tween <Hg and Ha . This may be easily seen by interchanging x(j) and

>
x(i11). O

16

1.2.2-0EF : Fix !l and definem := n(N) := {j; J satisfies condition
i) and i) in Lesma 1.2.1}.

[.2.3-lerma: let ¢ £ m' cm and let Bm. be some predicate over H:l
such that Bm' is independent of x(j) < x(j+1) for all j e m'. Define

My = {x e Hyi B_u(x) holds and

x(j) < x(j¥1) for all j e m'};

B .

>H"m = {x ¢ Hn; Bm.(x) holds and

x(j) > x(j¥1) for all j e m');

By ={xe HN; Bm.(x) holds} then

B, B

my . 1 m
I Hyl = 2T Iy 1 -
Proof: by induction

[m'| =1 by Leama I.2.1.

Assume the statement is correct for all m" % m'. Let m'=m"u(j)} with jem'
and j £ m"; thus

'] = Jm*] +1.
But with

B,
]
<H‘l

‘ B
= {xe <H“ H Bm..(x) holds and

- Bt] B
x(J) < x(341)} this implies | Hy' | = 5 | Hy" |

hence the conclusion follows. 0O

Using lemma 1.2.3 we can construct the following algoritha to
generate the set of all heaps of size il by making use of some subset

of hyy -

17

18

1.2.4 - Alqoritha:

Input : heap of size H-1.
Output : sequence of heaps of size N.
ilethod : 0. define

-g— if N is even

N-1 if N is odd.

{8 is the counter index}.

m(N-1) if N is odd or

His evenwitht ¢ m
S'(N-1) :=

m(::-1)-£, if £ € a(N-1) and N is even

(m(N-1) is defined in 1.2.2).

B..
1. For each x ¢ <HNS do the following

(*) For I :=x(2) +1 to N do-
If I =N put x(N) = 1
Else
increase each label in x greater than or equal to
I by 1-and put x(H) := I3
End (If};

End {For};

(**) 2. For any y € <“"s' generate all possible heaps by
making use of all possible interchanges between
y(i) and y(i+1) for all i e s”.

where

s'(), if il is even

s'(N-1)u{N-1}, if H is odd

Remarks:
(*) This loop generates il - x(2) heaps; each heap is of
size N and belongs to <HRS. .

Bs.

(**) This step is executed ZIS l times for each y e <HN .

19

20

1.2.4.1- Proof of the correctness of the alqoritim:

In order to prove the correctness of the algorithm we have to

show that each element in H" is generated at least once. But in our

proof we will prove every heap of size 1 is uniquely generated.

a)

b)

B "
Assume that there exists an x ¢ HN which is generated twice in H"
B '
- l
generate x and x(]) is different from x(z). Thus the counters

this implies there exists x(]). x(z) € H such that x(]), x(z)
of x(]) and x(z) are equal, hence there exists i, 1 < i < N,

such that x(])(i) # x(z)(i). But by step 1 we have to increase each
element greater than or equal to I by one; hence, x(i) # x({).

This is a contradiction.

In order to prove that every x e H" is generated by our algorithn

Bgu m(d)
- it is sufficient to show HN * . 1 since every heap in H

can be transformed into another heap in H.m(N) by 1.2.2. This
can be done in the following way: for every x ¢ H“ and for every

i e m(N) interchange x(i) and x(i+1) if x(i) < x(i#1). It is
sufficient to show m(ii) =

¢
a1)u{N-1}, if N is odd

“m(N) := m(N-1), if Llogzﬂ-lj = Llogzﬂj
and N is even

km(ﬂ-l) - {gi, otherwise

s' v {ii-1) if N is odd

s', if N is even

}

21

1.2.5-Cxample: Let N-1=7, £ = 4, n(il-1) ={4,6}), s' ={6}, s* =(6}).
x()

x(2) x(3)

the counter —-— x.(4) x(5) x(6) x(7)

].2-.6- Example: Let N-1 '9. 2= 5. l:l“l-])={6.8}. s' = {6.3}.
s" = {6,8}, m(l) = (6,8} .

].2.7- Examp]e: N-] 3]0, =]0. m("']) .{6'8}' S. = {6'8}.
s* = {6,8,10} , m(t) = {6,8,10}.

To generate the set of all heaps of size 6 by a.lgorithm 1.2.4 we will

consider the following examples:

1.2.8- Example: N = 6.
0. £ =3. s*(5) = (4}, s = {4}

B " .
H.S = {12435, 12345, 12534, 13245)

1. <5

x(]) = 12435 this implies from (*) we get
{124365, 124356}, (a)

2

x(2) = 12385 this implies from (*) we get
(123564, 123365, 123456}. ... (b)

x(3) =2 12534 this implies from (*) we get
{125346}. ... (c)

x(a) = 13245 this implies from (*) we get
(142563, 143564, 132465, 132456}. ... (d)
this implies
<nzs" = {124365, 124356, 123564, 123465, 123456, 125345,
142563, 132564, 132465, 132456} .

B
2. From every element in <H6s we can generate two different

heaps, for example, if y = 124365 we will have by (**) .

124365 and 124635

_ -
This implies |H6s |= 20 which is the number of heaps of size 6.

1.2.9 - Example: H = 7.

0. 2 =6
S'(G) = (4}, s* = (4,6}
B_, B_u '
5" in the previous example.

S .
sHG is the same as <H6

B w
By (*) if x = 125346 we will get y = 1253467 ¢ H,° and by (**)
we get from y the following heaps

1253467, 1254367, 1253476 and 1254376.
B..
He can repeat the same process for every y ¢ <“6$ we will get H7s. .

23

CHAPTER 11

11.0 Introduction

In this chapter we will study several topics related to the second
order tree, in particular the definition of the second order tree and
the cardinality of some classes of second order trees. Also we will give an
asymaptotic expansion for a quantity related to thenm; solutjons for some

teras and numerical computation are also provided in this chapter.

24

IT.1 Combinatorial formulation of Williams algorithm

In order to study some aspects of the expected number of inter-
changes in hillians algoriths (0.2.2), we will reforuulate the problem
'in a combinatorial manner, but tefore that we have to provide sone def-
jnitions and explanations.

Given x e Ky define the skewness of x by S(x) and for every j,

C < j < S(x); define the inverse y := Sj(x) of x by y(i1) = x(t(N,j))
and y(t(N,i)) = x(t(N,i-1)), 1 < i < j; hence, {Sj(x); 0< j < S(x)}

is exactly the set of all inverse imajes of x under the insertion pro-
cess and in Sj(x) the insertion will be exactly at node t(ii,J), requiring
exactly j interchanges.

iiow define for given x € H" the tree T"(x) corresponding to x re-

cursively by T](x) := @ {single node in case x ¢ Hy} and

- s —— e o —— -

Tu1 (Splx)) - Ty (Sy(x)) . Ti1 G) (6D

The root of the subtree T(Sj(x)) is labeled j (from left to right).

From now on let us call the tree Th(x) the second order tree (SOT)

associated with x.

Define
J“ .= {T"(X); X c "“} -
J“ is the set of all second order tree corresponding to fl.
Let
L(T“(x)) := the number of leaves for T"(x)
and '

L(J,) := I &(T.);
il [\ R
Thedy
hence, L(JH) is the number of leaves for all second order trees corresponding to
ti. '
Let "(TH) be the sum of the labels of T" € JH » counting the

root as 0 and

H(J") = L w(T").
Thedsi

Hence N(J") is the sum of all labels of all second order tree.

11.1.2 - Claim: Let u(T) := |{x € H", Tﬁ(x) = T| be the multiplicity

of T.e J“ »

then
£ w(Te(T) = e
Ted
N

Proof : ">" is clear since every'pennutation can Be transformed inta
a heap.

<" ﬁ(T)z(T) is the number of permutation of {1,...,N} that

generate the tree T. 8}

26

11.1.3 - Claim : The expected number of interchanges is

W)
v -

Proof : The number of interchanges for any perrwtation is the sum of
the labels of the tree associated to that permutation, i.a., w(TN). Thus

the total number of interchanges is L w(TN) = K(Jq) . J
T.ed)
] it {

11.1.4 - Example : ' 1

x = 1243 =

- 3
The skewness of x 1is 2 since 3 = x(t(4,0)) < x(b(4,0)) == and

2 = x(t(4,1)) < x(b(4,1)) = 4. Thus we have the following inverse

inages
1243

(9 = s (x)=1243 N =5 (x)13a2 «(2) - SZ(x)=éM1

(@) ()

b 4 » X y X

@ (M (2 45,

(2) € H3. but the skewness of x x

thus we have in each case exactly one inverse image
so(x(o)i = 1243 = y{0)

so(x(1) = 1382 = y(1)

0

s (x(2)) = 2341 = y(2)

0

The skewness of y(o). y(]) and y(z) is 1; thus, we have two inverse

images in each case

s = 1263 = 200, 5 (49 - 2143 = 2V
sort™) =322 2{0), 5,1 = 3142 = 2

and
_ s 22301 = 209, 5,41y - 32 = 2V

(0) 1243

Therefore 14 looks like

1243 (1) 91342 (2) 2341

(o) represents the
labels

1243 2143 1342 3142 2351 324)

Fig. I1-1

28

11.1.5 - Problems : From the above explanation, the following ques-

tions arise concerning second order trees:-

a) Given a rooted tree T” of height {l-1, derive necessary and
sufficient conditions for T" € JN'
b) ¥hat is the cardinality of J,?

c) hov many trees have a given weight?

29

11.2 ilecessary and sufficient conditions for the second order tree
Froa the definition of the second order tree it is immediate that

every second order tree satisfies the following conditions :

(1) Every node in the second lowest level is binary since the
skewness of any heap of size 2 is 1;

(2) A1l the leaves appear on the sanme level;

(3) For any second order tree T of neight .i-1 there is a heap x

of size Nl such that T is generated by x.

Actually (1) and (2) are special cases of (3), but to make a quick
decision one can check to see if (1) and (2) are satisfied; if they are we have to
check condition (3), otherwise the tree is not a second order trece.

Unfortunately the second orcer tree cannot be identified by the
number of edges and the nunber of nodes. In order to show that we will

give the following two examples.

11.2.1 - Example :

Fig. II-2

In this example the tree T is a second order tree generated by 1234 .

30

11.2.2 - Example :

Fig. II-3

This tree T is not a second order tree ;ince J4 contains only three
second order trees and T is not one of them.

One can easily see that the trees in (I11.2.2) and (11.2.1)
have the same height, the same number of nodes and the same number of
edges.

Given a tree T to check whether or not T is a second order tree,
assume the existence of a heap of size N if the height of T is N-1, and
compare .the given tree with the heap conditions (i.e., for any node {,
x(1) > x{Li/2)1)). If it matches it is a second order tree; other-
wise it is not.

By using [LOT], prop. 11.2.2, p. 217, TN_](SO(X)).....TN_](Ss(x)(x))
are uniquely Qetermining TN' We can construct the following recursive

procedure to check if T is a second order tree or not.

3
Input: TH(x) tree of height H-1
Output: TH(x) is a second order tree or not
{The file F is a global file containing the heap conditions
initially and each time we call the procedure check we either
have to terminate the algorithm or we have to add the
new conditions to F}.
Method: 0. F := [heap condition for each i:
label (i) > label ({i/2)), 2<i <l
and label (1) = 13;
Procedure check (T“(x))
degin
m := the number of offspring of TN;
For i := 0 to m-1 do
Begin
- . set label (t(N,i)) < label (b(N,i))
{condition (1) is the relation between an element of
the special path and its brother}
Conpare (1) with the contents of F

If it is compatible add condition (1) to F
Else

terminate the algorithm and write a message that this

tree 1s not a second order tree.

End; {If}

End; (For}

For j := 6 to m-1 do calculate Sj(x)

For j := 0 to m-1 do check (TH_](Sj(x)))

End {Procedure};

End. {Algorithm}. '
11.2.3- Example :- Let T = /”</AS>\: thus, assune there exists a heap

32

x(1)x(2)x(3) of size 3. This implies that the content of F initially is
x(1) < x(2) and x(1) < x(3).or m=2. This i=plies x(3) < x(2), but x(3) < x(2).

Conpatible with the constant of F then, F becomes

x(1) < x(2)
x(1) < x(3)

x(1) < x(2)
F o= | x(1) «<x{(3)] s
x(3) < x(2)

this implies So(x) = x(1)x(2), S](x) = x(3)x(2).
ilow we have to check T,(Sy(x)) and T,(S;(x)). Since they are bin-

ary they are compatible with F, and T is a second order tree.

i3

11.3 Counting second order trees

11.3.1-DEF: Let Jsl) be the set of all second order trees in which the

root has only one offspring.

II.3.2 - Lma:

|J§1%| = |9yl in case N is even.

Proof:
"<" Given a tree T" c.JH ve know that there exists a heap x ¢ H“
such that x generates T". but N+1 is greater than any element in x. Thus
by insertion of i+l into x we get a heap x' of size N+] and i+] becomes
a leaf in x' e H“+]. This implies that the second ordef tree generated by x'
has—fanout one since N+l is greater than x(N).

(1)

“>* Given a tree Tél% € Jy4js hence there exists a heap x ¢ H

(1)
Hi|

the element x(il+1) from x. We get a heap x' of sizé N, and since x(N+1)

H+)
such that x generates T and the skewness of x is zero. Nuw remove

is a leaf and x(H+1) > x(l), (it is even), this operation will give us a heap
of size N . But the second order tree generated by x' is the only sub-

tree of Tﬁl%. This implies for any Tﬁl% there exists TN' o

11.3.3.Lema: - Let Jﬁmax) := {Témax); Témax) is second order tree with

maximal fanout at the root}. Then

(The proof for this Lemma is given in the next section on page 41).

34

Given x ¢ H“ with associated second order tree T“(x). let
T“(x) have as labels for its nodes all permutations of size i{i that
generate Xx.

Suppose the latels on level i are xi.l""'xi.k [thus xi,j is a
permutation of (1,...,li} such that X; j(l).....xi j(l.'-i) forms a heap

and after i iterations, x.

i will become x under \!illiams' algoritinm for

1<3 <Kkl
vefine

Z, := {x{'j(u-i) :1 <3<kl
i

and
by Z'“(n.i-l) '

Thus Zn can be describted recursively as
|

(a) x(i*)) e Z,

1

(b) I .
M2(in)-1 ~ n,
and
(c) If for he im there exists y € im such that h < y’

2(i+1) 2(i+1)A1
then h ¢ im .
i

From im. define the following sequence
i

y . o= y "'y
l.mi 1 m;
as '

¥y = min Zmi then ¥y G x(i+l),

35

since the elements of 21 2re a subset of the subheap of x rooted at node
"4
(i41),
¥ 3= min(Zmi - {yl.....yj_]}). 2<jemy .

In order to explain the above definition,let us consider the following

exanple:

11.3.1 - Example:

x = 12435; hence, Ts(x) is

{

level 0 <-- .--12435

level 2<-- 0 12435 O13425 23415

level 3<-- 13425 23415

level 4
12435 21435 13425 31425 23415 32415

" ~

= (5), = {3}, Z. = {4}.
Z, %, 2,

4

Jo

~

ZmI = (2,3} and %“D = {1,2,3).

Fron the above example we notice the following:

a) From level 1: x(5) = 5 must not label node 2 in x since the skew-
ness is zero;

b) From level 3:in Ts(x) the set of possible labels for node 2 in x
is Em] since the skewness is twog

c) From level 4: in Ts(x) we notice that x(3) = 4 cannot label node 1
in x since in level 3 in Tb(x) none of the heaps of size 2 contain

4) SO Zmo = {]'2'3}-

ilow we uvefine the corresponiin; sequences

y_ = 123.
T

nS a more general case, consider the following examples:

[1.3.2 ~ Example: Let N := 6

x(1)

x(2) x(3)

x(4) | x(5) x(6)

37

then the sct of second order trees can be constructed in the following

way:

since x(6) < = , x(6) must label node 3, hence 2m2= {x(3),x(6)} and

we know for any heap that x(3)< x(6) implies ym2 = x(3)x(6).

Aso, we have two possibilities of im , viz,
1

or

in case x(5) > x(4), we have 2&1 = {x(2).x(4)}, y;] =

case

a) x(5) > x(4) .

b) x(3) < x(4)

x(5) < x(4),

x(2)x(4).

we have E;] = (x(2),x(4),x(5)) and y;] = x(2)x(5)x(4) .

Findlly, the set of all pcssible sequences which contain the set of

all possible labels for node 1 in x {s:

F={1.
3.
5.
7.
9.

1.
13.
15.

x(1)x(2)x(4),
x(1)x(2)x(3)x(6)x(4)
x(1)x(3)x(2)x(4).
x(1)x(3)x(6)x(2)x(5)x(4)
x(1)x(2)x(5)x(3)x(6)x(4)
x(1)x(3)x(2)x(5)x(6)x(4)
x(1)x(3)x(2)x(S)x(4)
x(1)x(2)x(5)x(3)x(4)

x(1)x(3)x(6)x(2)x(4),
x(1)x(3)x(2)x(6)x(4),
x{1)x(2)x(3)x(4),
x(1)x(2)x(3)x(6)x(5)x(4)

- x(1)x(3)x(2)x(6)x(5)x(4)
< x(1)x(2)x(3)x(5)x(6)x(4)
- x(1)x(2)x(3)x(5)x(4)

- x(1)x(2)x(5)x(4)}.

If we consider the atove set F we notice the following:’

In

38

a) The eleaents of ymz way not latel node 1 in x, this can be seen
from 1. x(1)x(2)x(4) in case x(3) > x(4);
b) Part of ymz may latel node 1 in x, for example 15. x(1)x{2)x({5)x(3)x(3)
in case x(o) > x(4); '
c) Part of 'y“lz may label node 1 in x, but may have different relation
with the labels of node 2, for example 14. x({1)x(2)x(3)x(5)x(4)
in case x(6) > x(4) and x(2) < x(3) < x(b). This means for any
sequence ym] and ym2 we have different sets of sequences which
label node 1 in x. [liote ’h] = {yé]. y;])];

d) vy

., Day label node 1 in x for example 2. x{1)x(3)x(6)x(2)x(4).
2

The above example motivates the following:

11.3.3~DEF: Llet h],n, Y1:n te any two sequences of positive integers

with h,<...<h_ and y,<...<y_wviere h,., is the enpty string. Define the
1 m 1 n 1:0 b

h 0 em .
operator A0 for h] a and Y1:n 35 follows h]:m P P (hoz]:’.jhm,

hg < y] and hg < h; and z]:zj is obtained from h,. and N:j by merging

these sequences into ascending order, 0 < j < n). Less formally the

atove set is the set of all possibilities tc insert some part of N:n

in between hy.n With the property that every element is greater than the

preceeding elcment.

11.3.4~DEF: Let L]. L2 be any two sets of sequences of positive integers

such that every element h ¢ L]. ye L2 can be written as h = hl nd

a

m
W W

Y =Y. with hl<"'<hm' Yy<---<¥s define Ll A L2 =(t:teh,y for

some h e Ly, y e L, with 0 < w<ninth,y,}].

39

This construction may be cxplained as follows:
Suppose w is the label for the root of the heap and L](Lz) repre-
sents the set of all sequences labeling the root of the left (rigint) sub-
heaps; then 11: L, represents all possible lakels for the root of the heap. MNote
that the sequences in L](Lz) vary in length since some of the labels
in a heap of size il may not label their fathers according to the construc-
tion of a second order tree. llote examples 1I.3.1 and I1.3.2.

liow define the following sets recursively.
Lﬁ‘) := (x(i); x¢e H.}, if 1 is a leaf w.r.t. i.
{x{Lia72))x(N); x € H“).if N is even,
th/ZJ .
{x{LN/723)x{8-1), x{Lh/23)x(il)x{n-1); x ¢ Ho}s
if il is odd,

and for any node { define
- (21) x(1) ; (2i+1) . .
L"UIIZJ. LN A LN with 2i+1 < Nand x € Il..‘ .
LN[NIZJ is a set containing one sequence if N is even, or a set
containing two sequences if N is odd.

11.3.5 ~ Theorem: - The number of the second order tree generated from H, is

N
ol = 1L§VL.
Proof: By induction on N.
For Nl = 2 |L£])| =1, N=3, |L§])| = 2. Now assume the assertion is corre
for all values of K < H and let x e Hy, xz(xR) be the ieft (right)
subheap of x, respectively. Assume size (xz) = M, then size (xR) = N-li-1.

By induction hypothesis |Jy| = ngz)l and

Bl = ’L£1%-1’ - 1.

40

This implies for any h € L§2) that the coaponents of h represent the possible
labels for node 2 qenerated frorm a subheap rooted at node 2, and that the
length of h.depend on how many elements from the subheap may label node

2 (ilote example [1.3.2 and 11.3.1). iloreover, for y e Lﬁ3),
h and y represent second order tree jenerated from the left or right subheap,i
respectively. But the element of y and h are a subsequence of (2,...,Hl)

which means y and h may have different values but still represent the

sane second order tree generated from the left or right subheap. [This implies tha
ve can get different sets of possibilities for the relation between h Snd y. More-
over, vwe knou from the construction of the second order tree that for every

x(2) ¢ h and x(r) € y there exists at least one inverse image on level

(-3) of the second order tree. This inverse image contains

exactly one heap of size 3; x(r) labels node 3, x(2) labels node 2, and this
is correct for all x(r) e y, x(2) € h. If for a given x(r) € y and for

every x(2) € h, x(r) > x(2) then the skewness for every inverse image con-
tains x(r) as a label for node 3 is zero. x(r) in turn will not label

node 1. But, if for some x(2) ¢ h, x(r) < x(2) then x(r) will label node
1, since the skewness for this inverse image at level (N-3) is 1. So

for every x(r) ¢ y we have to compare it with every x(2) ¢ h which gives us

h xil)y possibilities. But for every subheap X, we have v(N-H-]) possibil-

ities for xo and this number vw(N-M-1) generateleél&-]| =|Lé3)| second order

trees by induction. This means every y e L§3) must be compared with every

helf®. This inpfes \
(W= {2 x0) B30 g

One can see that the length of the sequences in Lél) is between
LlogZNJ+l and ll. For example {f the labels of the leftmost path for
some X e Hy are from an ascending chain l,...,[]ogzﬂj+], while we can get the

maximm length N if for some X ¢ H, every label in X Has chance to label

41

11.3.6- Lerma: Let C(ii,2) be the number of the sequences of length

2 in l&]); assume the left subheap has il elements, then we have the recur-
]

sive relation
Y - 2"2
c(,e) = T L c(it,j)C(-1-1,1) (
Je2-1 i=g-j-1
with

Cln,d) =0 if j> N or j< Llog.Nj .

Proof: Since C(N,2) represents the number of the sequence of length

L in L&l) and since wz know that x(1) {is the label of the root and that this ele
is the }cédin; element of every sequence fn L&lz vwe also know that

every label of node 2 must label node 1 and some of the labels of node 3 may
label node 1. e also know that from both sides we have to collect the sequences
length i and j such that 1 + j > 5 - 1 and (i < 2 -1 holds since every element
fro; the 1abel of the left node (2) must label node 1), for each i we

have to insert (2-j-1) elenents from the sequence of length j in between

the element of { to get 2-1 elements. Ve now have the label of the root x(1).
This gives us the sequence of length £. MNow assuie h ¢ Lﬁz) and

Ih| = i; 1.e..h = hy ;. Hence we have to insert £-j-1 elements from the se-
quence of length j say y=y. :j such that Y, “3-1 < h .. This insertion

can be done in (z ~3-]) a

Now we are ready for a proof of Lemma 1I.3.3 on page 33.
Proof of Lerma I1.3.3 on page 33:

By inductfon on H,N=3 hence:|Jg‘x| =1, N=4, |J§a*| =2= |L§])|,

Assume the statement is correct for all values of N' smaller than H. Without
loss of generality it is sufficient to show IJﬁaxI IL(])l since [J, ;|= IL(])l
Assume that the

42

insertion is done in the left subheap (i.e.,.! belongs to the left sub-

tree of x) and assume that tue size of X is . This inplies

: 1), . 11 (2)
lag"| = BT

and

1% 1= 1

g1
But x represents a heap the second order tree of which has a max-

imal number of offsprings. This implies x(2) < x(3) whicia further implies that for

any he Lgfg and y ¢ Lgég the leading element in h is x(2) and the

leading element ir y is x(3). But x(2) < x(3). This iaplies that x(2) is
smaller than any elenent in y; therefore the order relatfon between

x(2) and the elesent of y is fixed. The conclusion {s %inat if the length of h
fs m we have to consider only m-] elements of h and this {s true

for any h e ng%. This implies the number of the second order tree with

the maxinum offspringy is

d-1 a d-15-

i) x(1) , (3) e |L§1%|. C

43

11.4 Generating functions

11.4.1 In order to study the solution of II.3.6, we will study the
case [{ = 2k - 1 for some integer k.
Relation 11.3.6 can be transformed into
R LR

Cko2) = £ £ CeLiC(kelD(GD). 114
J=k-1 i=R-j-1

Define C{k,2) as zero if k > 2 or 2 > 2* -1, and (Lfgfl) is zero if
£-j-1 > 22 .
ilow let
Clt) := LE; Eiﬁi%lﬁf
be the exponential generating function of {C(k.z)}z > 0 - This inplies

=)ttt] c(k,)k, 1) (A2t
T r L L J-] 11.4.1(a)
=g & 520 jok-1 i=2-j-1 1l - LA

Taking the second derivatives of both sides of II.4.1(a) we get

S c(k,g)e(e-)tr2 = 2] C(k-1,1)C(k-1,j)¢*2
z ’-. - I z x j- z- -
220 : 220 j=k-1 i=g-j-1 J

- 2 261
I Z p>
220 j=k-1 i=2-j-1

cg(e)

k-1 .
o e 2" -] . +j-2
C(k-1,3)C(k-1,1)t*
P z - -
020 job-1 ioz-1 HToT (*)

. k‘]-]

-l e 2 1 iye2-]
N 1:*}t3 .3 3 C{:-lsilt :
j=k-1 : 220 i=2-1 :

&5

k<1
o 27 -] ~=1
=gyt oz o el
£=0 i:;.-] ~ -
= c o (t) 2l c{i)ie) 11.4.1(b)
k-1 - Lo B s

(here C£i)(t) fs, as usual, the ith uerivatives of Ck(t)). Let

-1
- i .
- .z C£)(t)g

g9
k 120

this implies relatfon 11.4.1(b) can bte transformed into the followin; relation;

% - %" (9 -)sk oo I.8.1{c)

(**) ([HcB], relation (13), p. 6).

11.4.2 - Corollary:

The nunber]Ju| of second order trees generated from the set of neaps of

size il is

I £ c(k-1,3)c{k-1,i)(1Hy,
it]

vhere § = 2k - 1.

Proof: Assume C(k-1,j) represents the number of -sequences of length j in
the set of possible labels for node 2 and C(k-1,i) represents the same

thing for node 3. The cardinality of the set of all sequences wemay

obtain from these two sequenceﬁ is

C(k-l.j)C(k-l.i)(i;j) .

and these sequences vary in length. Take the sum over all j and
over all { to obtain the cardinality of.Lﬁl). which is the number of

second order trees.

46

11.5 Solution for some terms of the nonlinear differential difference equatfion

Consider the case £=k in I11.4.1, which inplies tnat

c(k.k) = C(k-l.k-l)lazk_,]l
which in turn sujnests

C(kok) =09 3y |- 19 s | <= 93] - 1. 11.5.1
Also,if £ =k + 1 in 11.4.1 we get

clkake1) = KD (k). 1.5.2

If £ = 251 in 11.4.1 e get

K
C(k,2%-1) = C(k-l,Zk']-l)<§k:? j)
-2

(%3
(zk-i-l_])z‘(zk-i-l_z)

- = %3
I
i=0

ziir 11.5.3
From 11.5.3 and 11.4.) we get

c(k,2%-2) .=

k
=T h{k) (2 -4)! . 11.5.4(a)

. 1 1+ .
Jid (zk-l-]_])z (zk-i']_z)z (zl+2_3)
i=0

vhere

h(k) = h(k-1)(2%-3) + (2% 10)(2¥1-2)(2%22). .. 13-541
This implies

. k-2 .
() Tn (kg

§=0
nk) .= I 10
T §=2 (2x-3*2_3)

. 11.5.4(b)

From 11.5.4(a) and 11.5.4(b) we get

47 -

C(k,2%-2) = c(k.2*-1) : 23t I1.5.5
. 1 . j:Z 'zm':a- ede
K k-1 k-1 k
C(27-3) = ¢ f'(i+1)b(i)c(i) n cl(j) & f£4(j+1),
i=2 J=i J=i#l
vihere
Al
iy .= (2 -5
f'(i) Qi']-
kogkdtl, 2
k
- (2°-3)!
c(k) : , ,
k-3 . H . 1+]
n (zk-‘-]_])z (zk-“]_z)z
i=0
and
1 if j§ = k+l
() :=

45

11.6 Asymptotic expansion for a quantity related to the nanlinear differential

equation
Rewrite I1.5.3 in the following way:

k-3
tn C(k,2%-1) = en ((2-2)!) - z [2izn(2%1-10y)
]:

+ 202X 171 2)7 = en((n-2)1) -
k-3

r [2%37 en(2i%0) + 2% 4a (2120
j=0 € } T y Y
N . e . . " al
koo (a) (b)
= 2"-1 it iaplies
k-3 ,
(a) g gk-3-i zn(zi”-l) =
§20
k-3 e
" 5 "Li+2)2n 2 + 2n(1 - 27(1+2))5
l‘ ’
- k- 3 k-3
= ¢ X322+ £ 25371 enn-27(142))
1 0 i=0
k k=3 k-3-i -(i+2)
= tn 2[2"-%&} £ 2 en(1-2)s 11.6.1
i=0
but,
k-3 o k-3
k-3-1 -(i+2) _. k-3 1
2 en(1-27 =2 I I —
i=0 =1 =0 §2923957
-2k3 [Part 1 - Part 11], where

« -(k-2)(j+1) o
k-3 1-2 k-3 1
Part I = 2 T =2 L _ _ .
N j=1 szJ(l 2'(J$1)) j=1 jzzJ(]_é:IJ+l))
= ,-(k-2)(j+)
Part II = j=l 3223“ 2~ (1,

49

Ye can also show that part I is soze constant by taking partial fractions:

X] ; l{ L - }
391 5281270y 7 gy 3 3 T AT
- -t
=g ¢ (2) 11.6.2(a)
t2 2
o =(k-2)(j+ w ={k+1)(j+1)
Part (11): 3 L'l 2]

- - =4 .
=1 3280270y 7 55 5230

Let
@ 2'(k+])(j+])
a_ =% .
K 5a15(23%7)

Then the generating function for (ak} satisfies

* k 1
I az2 =1 v - H
k=0 X =1 j(@H-) 2.y

by Carboux's theorem,

t=2 2

o -k - |
ak s ——rT-3 4 ry + 0(4)- Ilosoz(b)
This implies
k-3 . .
t 25371 n(2¥*2.1) = gn 202%2 -
i=0
- -t
k-3 en(i-2"7) 1 -k
277[4 ¢ - 4 +0(4)]}
t=2 2t 3 gk
k-3
= 1 2(2%-2K) + da, 23+ 2 0(27h),
where
= n1-2Y)

50

® . k-3 - s
part (b) r X% ni*22) = ¢ X% (is2)n 2+ (1-2 (‘+]))]
i=0 i=0
-k+5
e (2k+]-4k)2n 2+ u]zk'z + 2_3__ + 0(2 k)'

vhere

- -t
ay = = en(1-2 ") .

=1 ket
This implies
(a)+(b) = tn 2(3-2% 6k) + (ay+2a,)2"" %8327 30(27%). 11.6.4
So that, in turn,

. k k
c(k,25-1) = (an(2-10) /2312 1. explan 2(3:2%-6K)

+ (a]+2a2)2"'2 +83.2'k'3] + 0(;%—;4. 3}

51

11.7 Luserical Computation Using Lemma I1.3.6 we obtain Tables 1, 2, and 3.

size 7 C's size 15 C's
€(3,3) 2 c(4,4) 92
€(3,4) 6 c(4,5) 552
c(3,5) 12 c(4,6) 2208
c(3,6) 16 c(4,7) 7176
€(3,7) 10 c(4,8) 19996
c(4,9) 48832
c(4,10) 1052£0
c(4,1) 193624
c(4,12) 318336
€(4,13) 407352
- ' c(4,14) 366960
. €(4,15) 171600
TOTAL 3 | 46 g 1647008

" Table 1: The number of the second order trees generated

from H7 and "]5 .

rize 31

c(5,5) 151524736

c(5.6) 1515247360

c(5.7) 4697583104

c(5,3) 50306212352

c(5,9) 229158105035
c(s5,10) | 950599839360
c(5,11) | 3661116119552
c(5,12) | 13239675520928
C(5,13) | 45261947438576
c(5.14) | 146365554155388
€(5,15) | 453234041796032
c(5,16) | 1332321328117504
c(5,17) | 3735397350436080
c(5,138) | 93865755061G01160
€(5,19) | 25436772333436912
¢(5,20) | 62122817930566€16
c(s5,21) | 144603599€23470089
c(5,22) | 320990758912925485
c(s5,23) | 677052654083328000
c(s.24) | 1347462403865374720
€(5,25) | 250G351977356585544
€(5,26) | 4245409076231541504
c(5,27) | 6410380385776979200
c(5.28) | 8246153711771712000
€(5,29) | 6526463181334272300
€(5,30) | 6065197045839360000
€(5,31) | 2283838679865600000

TOTAL J 38371737481952002304

31

Table 2: The number of the second order trees generated

from H3] .

53

] JN
111

211

312

413

517

6| 16

7] 46

8 | 130

9| 4

10 | 1314

11 | 4636

12 | 20790
13 | 84962
14 | 376826
15 | 1647008
31 | 38871737481952002304

Table 3: N represent the heap size and JN is the number of the

second order trees.

54
CHAPTER 111

UPPER BOUND FOR THE NUMBER OF THE SECOND ORDER TREE

I11.0 Introduction He have seen in Chapter Il that the exponential

generating function of the number of second order trees satisfy a non-

linear differential difference equation. In this chapter we will prove
that the number of the second order tree is bounded above by some func-
tfon related to the number of heaps and the height of heap. This upper

bound is given in the following theorem and its corollary.

111.1 _ Computation of the upper bound

111.1.1-Theorem: Let x ¢ HN.and assume TN is the second order tree

generated fron a; define iz as
n := {i; i satisfies the following conditions:

a) i<h, b) i is even and 2i > ii, c) i+l < N, and

d) x(i) < x(iH1)).
Let x, := {x(i); i ¢ m}, define Y és:

Y := (y] -yznnonylml)n

where
Y = ain Xn
¥, == minlx ~(y,})

j = min(xm-{y] .yz.... .yj--l})
for all §j, 2 < j < |a).

Then, the multiplicity of TN (i.e., u(Th)) is bounded from below as follows

55

1 ifm=9

“(TN) 2 (il-y)} (li=y,)! (H-y, !
max { 1 2 |ml 1, if af
S (7 D LA €7 LR CE W i L v -

Proof:

m= 9 is trivial since x generates TN.

m# & For simplicity, assume for the moment m=(i)}; hence, x(i)<x(i+1). Thi:
implies that if we look at level N-i-1 in TN' then the root of every sub-
tree rooted at that level {s unary, which in turn means T" is determined by an
order relation p on the conponents of x and that one of the relatfons {s
“x{i) < x(§+1)". Restrict p to the components of x without x(i+1) and
call this restrictfon p'. The reason for this restriction
follows:

Assume TN has the set of all permutations of size N which generate

x as labels for its nodes, and suppose the labels on level j are

xj.l""'xj,kj (0 < § < N-1)

[thus.xj'l is a permutation of {1,...,i} such that xj,z(])""'xj,:("'j)

fornn a heap and after j iterations, xj .
»

algorithm for 1 < ¢ g_kj]. Now we note the following:

vii1l become x under Killiams’

a) i+1 1{s odd and a leaf; this implies
i+1 ¢ (t(R-J,m), 0 < m < L1og(N-3) 1} v {b(N-J,m), 0 < m < [log(N-j).
for any j < N=- 1§ -1,

b)

1.
2.

or

3.

1.

56

which means x(i+1) does not affect the calculation of the skewness

of any x, 0<j<lhi-1-1 and 1 <2<k,

L J

Since x{i+l) > x(i), x(i+1) must not label its parent,

whicn neans x(i+1) is not one of the compunents of
xj.l(l).....xj.’-(::-j H-i<j<lhi-1, 1<2 <_kj.

But, x is a neap of size !; therefore, x(i+1) has three possibilities:

x(i+1) = x(i) + 1;

x(i+1) = N;

x(1)+2 < x{(141) < N5

If x(i+1) = x(i)+1. Define x(])asA x and and let x(z) be the permutation

gererated from interchanges of x(i+1) and x(i+1) + 1 in x(]?. In other

words, define x(z) as

xm(z). k = i+
<2 k):=x(Ni41), k=2
: x(])(k). otherwise

Claim:

a) x(Z) is a heap.

g) x(z) and x(]) qenerate the same second order tree.

Proof of this claim:

a)

It is c]e_ar that x(z)(1+l)> x(z)(L-i-lej) since

x(z)(iﬂ) = x(])(z) = x‘”(iﬂ) +1, also x(z)(z) > x(z)(LLIZJ) and becausé
we know from the construction of x(z) that the difference between
x(])(iﬂ) and x(])(z) is 1. MNow, every component in the subheap of

x(Z) rooted at £ has a greater label than x(z)(:.).

57

) Since the order is tne only important relation in constructing

second order trees, we have

2 i) > x(2)(4).
He also have originally ' = order relation on {Xx - {X(i+1)}} =
order relation on (x(]) - (x(])(i+l))}. This implies that if we decrease
each coaponent in (x(]) - {x(i+1)}} which is greater than x(l)(i+l) by one
and decrease every component in (X(Z) - (X(z)(i+l)}} which is greater than
x(z)(i+]) ty 1, we get the same sequence. This can be seen in the
following way:
Define

Y(]) from x(]) as
Y(]) = x(])(l)x(])(z) .es x(])(i)x(])(i+2) eee x(])(z) cee x(])(u)

-~ i.e. Y(]) is exactly x(]) after removing the (i+1)th component.
Define Y(z) from x(2) as

v (@) @@ eg) L B L B,
After decreasing every element in Y(]) greater than x(])(i+l).
assune we get Z(]). Then we have

My - -1 i M x M) and KM s 0 v

My 1 <M aMia) and XN s in v

and the same for x(Z); therefore, assume we get Z(Z). This implies
(2) 21 1¢ xP e B(i41) and (k) 15 1n ¥
2\“'(k) =
KA if B)@ (41) and K@ (K) s i ¥,
We have to show now that

2 _ L)

58

for all k such that

ke (N,...) - (i+1})

For every z(2)(k) ue have the following cases:

Case 1 1) < x((in1) and (k) # x(2) (1), which implies
2 (k) < x(MV(i41); this in turn impries 23 (k) = 2 (k).

case 11 x@ (k) < x(B(in) and x(P () = (D).

SE) = M ay: this dmpries 20(2) = <) (401 =

= x(z)(z) = Z(z)(k).

case 111 x () > {2V (in), which tmpries x(E) (k) > M (4n);

hence, this implies 2(2) (k) = z{1)(k), which in turn implies

A2 .,

A1l this implies that p' is satisfied over x(z)-{x(z)(i+1)}. Consequently,
p remains invarfant in x(z).

How, from x(z) construct x(3) by interchanging x(Z)(i+l) with
x(z)(i+l)+l and repeat the same process until x(")(i+1) = {|, where

na=il - x(i).
2.) If x(i+1) =N, define x(]) = x and x(z) from x(l) as
2 (i41) = D (41)-1 = XMW e); (@) = Mgy

and x(Z)(k) = x(‘)(k) for k £ {i+1,2}. Use the same proof in 1.) and repeat

the same process until x(")(i+l) z x(])(i) +1.

59

3.) can be partitioned into 1.) and 2.).
If |[m| > 1, we can use the sane techniques; but, if ImL = j, then we

-y
3)

have N-yj elements qreater than 75 This iaplies we have (j
possible choices for the brothers of the elements of m and for each

(N-y)t
choice we have j! arrangements. In other vords, we have at least Tq;y—gxyr
"3

possibilities of heaps generating the same second order trees. J

I11.1.2 - Corollary: Let N = 2K-1.

k-2 k-1 k-1
f(k) = 2K2. 22 "[(zk-k-z)(zk 1.>' (k-l)<z k -)]

-2 -
l 2k‘2[5' 32 ‘2 (zk-z-]) - 22
1

+ |H
Zk-l_

k-2 k-2
+ lH |2k‘2[(2k‘2-2)2 - (2 2%(2 3)] .
k‘] -]
Then the number [J | of second order trees generated from'i?zk :
2 -] -
(the set of heaps of size Zk-D is tounded from above by [H . ll - f(k);
2%

thus,

J < |k - f(k). *
19 £ Ty 1= 00 (*

Proof: The proof for the above relation (*) is a technical computation
depending on theoren 111.1.1 and the set of 31l possible labels for the
leaves in any heap of size Zk-l. For simplicity we will break up the

proof into some simpler steps.

1) In theorem III.1.1 1let |m| =1; hence, the calculation of the mul-
tiplicity of a given second order tree is done according to the tvo

leaves having the same parent.

2) It follows from the definition of heaps that the set of all possible

labels of the element of m must be taken from the set A, where A is

60

3) Partition A into the following three subsets:

a) :’\] 3 {k.....Zk-]);
b) A, = (2%n,....3.2%2);
c) Ay = (3-2%°2,...,2%1).

3): Computation according to A].

a.1) For every j ¢ A]. define the set A{j) as

A%j) .= (x(j); x(j) is a heap of size Zk-l
and

x(j) satisfy the following properties:

(1) j is the label of the elezent in m;
= (2) the label of the right offspring of the eleuent of u is
greater than j;

(3) each element of {1,...,j-1} labels some internal node of i(j).}
Clain 1: A{j) contains at legst
o o k=2
(i:g)zL 2 22" "-(y-5) heaps.

Proof: From theorea III.1.1 ve know that every second order tree gener-
ated from x(j)cAgj) has a rnultiplicity of at least ii-j. For every one

of these heaps, the path 1eading from the root to the node with label j
contains k nodes and the label for these nodes must be taken from the set
{1,...,3}, 1 is the root label and j is the label for the node in m.

Thus we have at least (i:g) possible choices for labeling this path.

61

For every choice we can rearrange the rest of the elements to satisfy the
conditions (1), (2), and (3) because we have 2k°]—] internal nodes. Also,
for any one of the above heaps we have 2"'1 leaves, for any two leaves having
the same parent {except the node in m and its brother). If we inter-

change tne label of the right offspring with the labels of the left off-
spring, we get a nex heap satisfying conditions (1), (2), and (3); since

ve have 2k°2-l pairs of leaves, we have the following number of heaps

k=2 -1 <:k -2 :> k-2

The index i in this surmation stands for the nuuber of pairs we have to

interchange. Finally, since m can take any node of the form 2k°]

+ 21,
0<i 5[2*'2-1. each tice we label the node in m by j and condition (1),
(2) and (3) is satisfied, we will get (i:g)zzk-2°] 2k°2(n-j) heaps.
Claim 2: If j]. j2 £ A]. then

) iy ,

A n A] =4 if j] 7 i, -

Proof: It is imediate frou condition (3) since if j, < j,, then j, is
(3;) () 172 ‘
a3 leaf inany x ¢ A] and j] is a latel for some internal node in

) Gig)

c i\]
Claim 3: There exists
({2 2 k=21 k-2
z 2) 2 2°7° (H-3)

heaps generating at most

second order trees.

62

Proof: Since !l-j is the rultiplicity of any second order tree generated

froa any x ¢ A]. the result follows.

b): Computation accordinn to A,.

T .

Define for every j ¢ Ay Aéj) as A%j) = {x(j). x(j) is a heap of
size Zk-l and x(j) satisfies the following conditioﬁs:
(1) the labe) of the node in n is j and the label of the brother
of this node is greater than j;
This definition is rather long, on the other hand right and left leaves are
somewhat obvious. Couldn't you
* make the box a foolnote

* omit 1t in tne text of the def?

(2) the 1abel of the internal nodes is an element of {1,....2*“-].};
- (3) each element of {2k°].....j-l} labels some right leaves'
in x(j). Then, the latels for the left leaves must be

chosen from the set {j+l.....2k-l).

Clain 4: The cardinality of Agj) is at least
k-2 k-2
. k-2 .32%"¢.5-1 f2K-2\ .,
'hz"“-1l 2" "2 C zk_D[.l-j] for every j € A,.

Proof: For every second order tree generated from x ¢ Agj) there exists
at least N-j heaps generating this tree. This follows from theorem I[I.1.1.
For every onc of these heaps the labels of the internal nodes are smaller
than the labels of the leaves. Since the number of the internal nodes is
2%1.1 and the number of heaps of size 25°1-1 is IH2k°]]|. we can inter-

——e——

hafina the loaf . Tfrom box1.

63

change the labels of the internal nodes to get at least (i-j)[li , | |
2

heaps satisfying condition (1), (2). and (3). Also, due to condition (3)

for every heap from above we have 2k-2

right leaves. One of
then is the right offsnoring for the node in m, so we have to label

3-2%77 of them by the set {2°71,...,5-1). Thus, we have

%2 |

(4 zk_]) possibilities for every heap froa above. If we interchange
i |

tetween the labels of the leaves having the same parent, except for those leaves

which satisfy conditions (1) and (3), we will get

K-2_ k-] '
2 .ﬂ‘z +])(2k-2‘(j‘2k-]+])) 323’2k-2‘j“]

i

heaps.
i

But m can be any one of the left leaveﬁ and the nunter of the left lcaves
is 22, For every value of m repoat the same steps; this will give
us the result .

Clainm 5: AZ n AZ = ¢ if j] # jz and s jz € Az.

Proof: It is immediate from condition (3) in b) since if 3y < 3o N

represents a label for one of the Eig?t lcaves for any x in Agjz) and
J
j] is a label for m for any x in Az 1 .

Claim 6: Agj) n Asi) = ¢ for any 1 ¢ Aj»Je A, -

Proof: This is clear from condition (3) in a and condition (3) in b.

Claim 7: There exists
2k2 50 Sk-2 k-2,
LRI Sl
JeA Vi
heaps generating at most
k‘z nkz
L H ., 2 z"‘()
Je AZ 20 -1

second order trees.

Proof:

The result follous since the multiplicity for any second order

tree qcnerated from any x in AZ is at least i-j.

c) Computation according to g

For any j ¢ Ry define A(j) as A(j) o {x(J). (i) is a heap with

size 1l and x13) satisfies the following conditions:

(1)

(2)
(3)

Claim 8:

Proof:

the 1abel of the node in m is j and its brother has a
greater label than j;
the labels of the internal nodes is the set (l.....2k°]-l):

all the leaves except the node in m and its brother satisfy
the condition that the label of the left leaves is greater than

the label of its brother.

[A] is at least | g]|2k°2(ll-j).

ie see from I11.1.1 that the multiplicity for any second order

tree generated from x ¢ Agj) is ll-j. For every one of these heaps inter-

change the l1abels of the internal nodes. Since the number of heaps of

65

k-1

size 2° -1 is |K [, we get at least (i-J)[K |, | heaps satisfy-
] 2" -1

zk-]-

ing conditions (1), (2), and (3). ow u takes any node of the form

Zk-l

+21, 0< i 5_2“‘2-1. Hence we have at least for any heap from the above,
k-2 "
2

possible values for m. But for every value of m we have (N-j)|H k-1 | '
2" -1

heaps satisfying conditions (1), (2) and (3), then we have

k-Z _: > r(J)
|H2k-l_]l2 (H-3) at least in A3”" .
] () (3,)] _ o
Clain 9: A3 n A3 = ¢ for any 3 7 AP and iys Jp € A3 .

Proof: Immediate from condition (3) and (1).

Clain 10:

@ ali)a Agi’ =g forany Jehy and i iy

(8) Agj) n Asi) =4 forany jehzand 1e4,.

Proof: The result follows from conbining conditions (3) in (a), (t) and

(c).
Claim 11: Therc exists

L | | (1-3)2%"2 heaps
. k-1
generating
£, 12%7
second order trees. Combining all these results from Claim 3, 7 and 11,

we obtain
H -fK)> 9, [. @
| z*-1| 2k

66

CHAPTER IV

Summary and Discussion

In this thesis we discussed several aspects related to the combina-
torial properties of heapsort and we found the number of heaps with the
max imum skewnes; of sfze N is equa, to the number of heaps of size HN-l
for any positive integer N. Also we proved in Chapter 1 that the number of
heaps of size N the minimum skewness and for odd N is equal to

TNI__ where S, . is the size of the subtree rooted at node i. Combining

21 s
R

these two relations with the relations given in Chapter II (11.3.2 and

11.3.3) , we found there exists —g/t— + _]("'”! heaps of size N

N N
2E St I Sina
generate 2|JN_]] second order trees of size N. TJhe rest of the
second order trees of size N are generated from Hi - Nﬁ‘-n!
Rl LRS!

Another relation we proved in Chapter 1 is the recursion formula (1.2.2).
This recursion formula {s valuable in calculating any number of heaps for
any size with fixed conditions between any two of fspring with the same
parent.
In 1.2 we proposed a new algorithm to generate the set of all heaps
of size il from a subset of all heaps of size N-1 . Comparing our algor-
ithm with Williams® algorithm and Floyd's algorithm we mentfoned that our
algorithm saves space and time over these two known algorithms. In our
algorithm, we construct a subset <H:'“. of HN. which serves as the base comparable

to that of a vector space and from this set we can generate the set H“. Therefore

67

in scheduling, if we use algorithm 1.2, we can restrict our self to some ele-
Bm
]
generated must be an element from HN’

ment from M while if we use the other two algorfthms, the heap
Second order trees have been introduced and discussed in the present
work. We proved that the exponential generating function of the number
of this type of tree satisfies a nonlinear differential difference equatfon.
The numerical computation using the recursion formula in Chapter 1I .3.6
which gave us the number of the second order tree agreed with the results
we got from the computer program which reflects the definition of the
second order tree. The numerical computations in I1.7 let us
suggest the following conjacture:
for every positive integer N, there exists a constant CN.
0.10 < G, < 0.1 such that the number of the second order trees of
size N is L(CN+I)"J. -
) " e prove in Chapterll] in I11.1.2 that nuaber of the second order
tree is smaller than IHNI - f(k), when N = 2.
From the above discussion, several interesting questions concerning _
the combinatorial properties are still open:
1. The complexity of our algorithm 1.3.

2. Solution to the non-linear differential difference equations.

3. The weight of the second order trees.

[Any]
[As1]
[8EN]

{CAR]

{ooB1]
[o0B2]
[0083]
[00B4]

[00B5]

[FLA]
[FLO]
[GKu]
[God]
[HEs]
LM)
[xNUZ)

[LIU]

68

REFERENCES

A.V. Aho, J.E. Hopcroft, J.D. Ullman - The design and analy-
sis of computer algorithms, Addison <esley, (1974).

A.V. Aho and N.J. Sloane - Some doubly exponential sequences,
Fibonacci Quarterly 11 (4), 1973, 429-437.

E.A. Bender - Asymptotic methods in enumeration, SIAM Review
16 (1974) 485-515.

L. Carlitz - Some generalization of a binomial identity
conjectured by Hogatt, The Fibonacci Quarterly, Vol. 19 #3,
1981, 200-208.

E.E. Doberkat - Inserting a new element into a heap. B8I17-21
(1981) 255-269.

E.E. Doberkat - Deleting the root of a heap. Acta Informat-
fca, 17 (1982) 245-265.

E.E. Doberkat - Some observation on the average perfonmance
of heapsort, 21st 1EEE FOCS, Syracuse, NY 229-237, (1980).

E.E. Doberkat - An average case analysis of Floyd's algorithm
to construct heaps. Information and Control (1984), in print.

E.E. Doberkat - Continuous models that are equivalent to
randomness for the analysis of many sorting algorithms,
Computing 31 (1983), 11-31.

P. Flajolet - Combinatorial aspects of continued fractions,
Discrete Math. 32 (1980) 125-161.

R. Floyd - Algorithm 245 : Treesort 3, Comm. ACM 7 (1964),
701.

D.H. Green and D.E. Knuth - Mathematics for analysis of
algorithms, Birkhouser, Boston, (1981).

I1an P. Goulden and David M. Jackson - Combfnatorial enumera-
tion, John Wiley and Sons (1983).

N. Habermann - Introduction to operating systems, Science Re-
search Associates, Chicago 1976. .

D.E. Xnuth - The art of computer programaing (Fundamental
algorithms) Vol. 1, Addison Wesley, {1973) 2nd ed.

D.E. Knuth - The art of computer programming (sorting and
searching), Vol. 111, Addison Wesley (1973).

C.L. Liu - Introduction to Combinatorial Mathematics, McGraw-
Hill (1968).

{Lot]
[Lov]
[Lou]
[McB]
[M00]

[ooL]

[oLv]
[psi]
[SED]

[vit]
[wIL]

[z1v]

€9

H. Lothaire - Combinatorices on words, Encyclopaedia of
Mathematics, Vol. 17, Addison Wesley, (1983).

L. Lovasz - Combinatorial préblems and exercises - North
Holland (1979).

Louis Comtet - Advanced Combinatorics, D. Reidel Publishing
Company (1974).

Elna B. HcBirde - Obtaining generating functions, Springer-
Verlag, Vol. I, (1971).

J.N. Moon - Counting labeled trees, Canadian Mathematical
Monograph, No. 1 (1970).

A.M. 0dlyzko - Perfodic oscillations of coefficients of power
series that satisfy functional equations, Bell Laboratories,
Murray Hill, New Jersey.

F.W.J. Olver - Asymptotics and special functions, Academic
Press (1974).

T. Porter, and I. Simon - Random insertion into a priority
queue structure, IEEE Trans. Softw. Eng., SE1 (1975) 292-298.

R. Sedgewick - Mathematical analysis of combinatorial algorithas,

Brown University, Technical report No. CS-82-09, Jan. (1982).

N. Ta. Vilenkin - Combinatorics, Academic Press (1971).

J.W.J. Williams - Algorithm 232 Heapsort, Comm. ACM 7, (1964)
347-348.

N. Ziviani - The fringe analysis of search trees, Dept. of
Comp. Sci., University of Waterloo, Canada, Research Report
CS-82-15, May 1982.

70

Symbols

A:; is the set ¢7 all perautation of (1,...,N].

B.Bm.Bs..BS“ is some predicate sets over the set of all heaps
of size il.

b{!.1) is the brother for t(N,1).

C{M.2) is the number of sequences of size £ in x ¢ H“.

Ck(t) is the exponential generating function of (C(k.z))l.

H" is the set of all heaps of size N.

Hémax) | the set of all heaps of size !l where the skewness
is maximal.

JN the set of all second order tree generated from

, HN’

Jﬁj) is the set of all second order trees generated
from Hy with fanout j at the root.

Ly~ . the set of all second order trees.

L&i) the set of all second order trees rooted at node

‘ 1 of x ¢ Hy.

u(T") multiplicity of T.

v(y) the number of heaps of size y.

SOT second order tree.

t(N,1) is the i-th special node.

TN tree generated from x HN.

LX) is the greatest integer value less than or equal
to x. .

x[1..N] array of real numbers represents a heap of size N.

x(1) is the label for node {.

