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Preface 

Preface to the first edition 

Computer Science has been, throughout its evolution, more an art than a sci
ence. My favourite example which illustrates this point is to compare a major 
software project (like the writing of a compiler) with any other major project 
(like the construction of the CN tower in Toronto). It would be absolutely 
unthinkable to let the tower fall down a few times while its design was being 
debugged: even worse would be to open it to the public before discovering 
some other fatal flaw. Yet this mode of operation is being used everyday by 
almost everybody in software production. 

Presently it is very difficult to 'stand on your predecessor's shoulders', 
most of the time we stand on our predecessor's toes, at best. This handbook 
was written with the intention of making available to the computer scien
tist, instructor or programmer the wealth of information which the field has 
generated in the last 20 years. 

Most of the results are extracted from the given references. In some cases 
the author has completed or generalized some of these results. Accuracy is 
certainly one of our goals, and consequently the author will cheerfully pay 
$2.00 for each first report of any type of error appearing in this handbook. 

Many people helped me directly or indirectly to complete this project. 
Firstly lowe my family hundreds of hours of attention. All my students 
and colleagues had some impact. In particular I would like to thank Maria 
Carolina Monard, Nivio Ziviani, J. Ian 1I.Iunro, Per-Ake Larson, Doron Rotem 
and Derick Wood. Very special thanks go to Frank W. Tompa who is also the 
coauthor of chapter 2. The source material for this chapter appears in a joint 
paper in the November 1983 issue of Communications of the A CM. 

Montevideo 
December 1983 

VII 

G.II. Gonnet 



viii PREFACE 

Preface to the second edition 

The first edition of this handbook has been very well received by the com
munity, and this has given us the necessary momentum for writing a second 
edition. In doing so, R. A. Baeza-Yates has joined me as a coauthor. Without 
his help this version would have never appeared. 

This second edition incorporates many new results and a new chapter on 
text searching. The area of text managing, in particular searching, has risen in 
importance and matured in recent times. The entire subject of the handbook 
has matured too; our citations section has more than doubled in size. Table 
searching algorithms account for a significant part of this growth. 

Finally we would like to thank the over one hundred readers who notified us 
about errors and misprints, they have helped us tremendously in correcting 
all sorts of blemishes. We are especially grateful for the meticulous, even 
amazing, work of Lynne Balfe, the proofreader. We will continue cheerfully 
to pay $4.00 (increased due to inflation) for each first report of an error. 

Ziirich 
December 1990 
Santiago de Chile 
December 1990 

G.B. Gonnet 

R.A. Baeza-Yates 
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Introduction 

This handbook is intended to contain most of the information available on 
algorithms and their data structures; thus it is designed to serve a wide spec
trum of users, from the programmer who wants to code efficiently to the 
student or researcher who needs information quickly. 

The main emphasis is placed on algorithms. For these we present their 
description, code in one or more languages, theoretical results and extensive 
lists of references. 

1.1 Structure of the chapters 

The handbook is organized by topics. Chapter 2 offers a formalization of the 
description of algorithms and data structures; Chapters 3 to 7 discuss search
ing, sorting, selection, arithmetic and text algorithms respectively. Appendix 
I describes some probability distributions encountered in data processing; Ap
pendix II contains a collection of asymptotic formulas related to the analysis 
of algorithms; Appendix III contains the main list of references and Appendix 
IV contains alternate code for some algorithms. 

The chapters describing algorithms are divided into sections and subsec
tions as needed. Each algorithm is described in its own subsection, and all 
have roughly the same format, though we may make slight deviations or omis
sions when information is unavailable or trivial. The general format includes: 

(1) Definition and explanation of the algorithm and its classification (if ap
plicable) according to the basic operations described in Chapter 2. 

(2) Theoretical results on the algorithm's complexity. We are mainly inter
ested in measurements which indicate an algorithm's running time and 

1 
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{ 

its space requirements. Useful quantities to measure for this information 
include the number of comparisons, data accesses, assignments, or ex
changes an algorithm might make. When looking at space requirements, 
we might consider the number of words, records, or pointers involved 
in an implementation. Time complexity covers a much broader range 
of measurements. For example, in our examination of searching algo
rithms, we might be able to attach meaningful interpretations to most 
of the combinations of the 

query 
average 

} n=wo( { 

comparisons 

} when_ 

add a record into 
variance accesses delete a record from 

minimum assignments modify a record of 
worstcase exchanges reorganize 

average w.c. function calls build 
read sequentially 

the structure. Other theoretical results may also be presented, such as 
enumerations, generating functions, or behaviour of the algorithm when 
the data elements are distributed according to special distributions. 

(3) The algorithm. We have selected Pascal and C to describe the algo
rithms. Algorithms that may be used in practice are described in one 
or both of these languages. For algorithms which are only of theoretical 
interest, we do not provide their code. Algorithms which are coded both 
in Pascal and in C will have one code in the main text and the other in 
Appendix IV. 

(4) Recommendations. Following the algorithm description we give several 
hints and tips on how to use it. We point out pitfalls to avoid in coding, 
suggest when to use the algorithm and when not to, say when to expect 
best and worst performances, and provide a variety of other comments. 

(5) Tables. Whenever possible, we present tables which show exact values 
of complexity measures in selected cases. These are intended to give 
a feeling for how the algorithm behaves. When precise theoretical 
results are not available we give simulation results, generally in the 
form xxx ± yy where the value yy is chosen so that the resulting interval 
has a confidence level of 95%. In other words, the actual value of the 
complexity measure falls out of the given interval only once every 20 
simulations. 

(6) Differences between internal and external storage. Some algorithms may 
perform better for internal storage than external, or vice versa. When 
this is true, we will give recommendations for applications in each case. 
Since most of our analysis up to this point will implicitly assume that 
internal memory is used, in this section we will look more closely at the 
external case (if appropriate). We analyze the algorithm's behaviour 
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when working with external storage, and discuss any significant practical 
considerations in using the algorithm externally. 

(7) With the description of each algorithm we include a list of relevant 
references. General references, surveys, or tutorials are collected at the 
end of chapters or sections. The third appendix contains an alphabetical 
list of all references with cross-references to the relevant algorithms. 

1.2 Naming of variables 

The naming of variables throughout this handbook is a compromise between 
uniformity of notation and accepted terminology in the specific areas. 

Except for very few exceptions, explicitly noted, we use: 

n for the number of objects or elements or components in a structure; 
m for the size of a structure; 
b for bucket sizes, or maximum number of elements in a physical block; 
d for the digital cardinality or size of the alphabet. 

The complexity measures are also named uniformly throughout the hand
book. Complexity measures are named X! and should be read as 'the number 
of XS performed or needed while doing Z onto a structure of size n'. Typical 
values for X are: 

A : accesses, probes or node inspections; 
C : comparisons or node inspections; 
E : external accesses; 
h : height of a recursive structure (typically a tree); 
I : iterations (or number of function calls); 
L : length (of path or longest probe sequence); 
M : moves or assignments (usually related to record or key movements); 
T : running time; 
S : space (bytes or words). 

Typical values for Z are: 

null (no superscript): successful search (or default operation, when there 
is only one possibility); 

, unsuccessful search; 
C : construction (building) of structure; 
D : deletion of an element; 
E : extraction of an element (mostly for priority queues); 
I : insertion of a new element; 
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M : merging of structures; 
Opt : optimal construction or optimal structure (the operation is usually 

implicit); 
M M : minimax, or minimum number of X's in the worst case: this is 

usually used to give upper and lower bounds on the complexity of a 
problem. 

Note that X~ means number of operations done to insert an element into a 
structure of size n or to insert the n + 1st element. 

Although these measures are random variables (as these depend on the 
particular structure on which they are measured), we will make exceptions 
for Cn and C~ which most of the literature considers to be expected values. 

1.3 Probabilities 

The probability of a given event is denoted by Pr{event}. Random vari
ables follow the convention described in the preceding section. The expected 
value of a random variable X is written E[X] and its variance is u 2(X). In 
particular, for discrete variables X 

E[X] = J-I~ = LiPr{X = i} 

We will always make explicit the probability universe on which expected 
values are computed. This is ambiguous in some cases, and is a ubiquitous 
problem with expected values. 

To illustrate the problem without trying to confuse the reader, suppose 
that we fill a hashing table with keys and then we want to know about the 
average number of accesses to retrieve one of the keys. We have two potential 
probability universes: the key selected for retrieval (the one inserted first, the 
one inserted second, ... ) and the actual values of the keys, or their probing 
sequence. We can compute expected values with respect to the first, the 
second, or both universes. In simpler terms, we can find the expected value 
of any key for a given file, or the expected value of a given key for any file, or 
the expected value of any key for any file. 

Unless otherwise stated, (1) the distribution of our elements is always 
random independent uniform U(O,1); (2) the selection of a given element 
is uniform discrete between all possible elements; (3) expected values which 
relate to multiple universes are computed with respect to all universes. In 
terms of the above example, we will compute expected values with respect to 
randomly selected variables drawn from a uniform U(O, 1) distribution. 
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1.4 Asymptotic notation 

Most of the complexity measures in this handbook are asymptotic in the size 
of the problem. The asymptotic notation we will use is fairly standard and is 
given below: 

f(n) = O(g(n)) 

implies that there exists k and no such that I f(n) 1< kg(n) for n > no. 

f(n) = o(g(n)) --+ lim f(n) = 0 
n_oo g(n) 

f(n) 9(g(n)) 

implies that there exists kl' k2' (kl Xk2 > 0) and no such that klg(n) < f(n) < 
k2g(n) for n > no, or equivalently that f(n) = O(g(n)) and g(n) = O(f(n)). 

f(n) ll(g(n)) --+ g(n) = O(f(n)) 

f(n) w(g(n)) --+ g(n) = o(f(n)) 

f(n) ~ g(n) --+ f(n) - g(n) = o(g(n)) 

We will freely use arithmetic operations with the order notation, for ex
ample, 

f(n) = h(n) + O(g(n)) 

means 

f(n) - h(n) = O(g(n)) 

Whenever we write f(n) = O(g(n)) it is with the understanding that we 
know of no better asymptotic bound, that is, we know of no h(n) = o(g(n)) 
such that f(n) = O(h(n)). 

1.5 About the programming languages 

We use two languages to code our algorithms: Pascal and C. After writing 
many algorithms we still find situations for which neither of these languages 
present a very 'clean' or understandable code. Therefore, whenever possible, 
we use the language which presents the shortest and most readable code. We 
intentionally allow our Pascal and C style of coding to resemble each other. 

A minimal number of Pascal programs contain goto statements. These 
statements are used in place of the equivalent C statements return and 
break, and are correspondingly so commented. Indeed we view their absence 
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from Pascal as a shortcoming of the language. Another irritant in coding 
some algorithms in Pascal is the lack of order in the evaluation of logical ex
pressions. This is unfortunate since such a feature makes algorithms easier to 
understand. The typical stumbling block is 

while (p <> nil) and (key <> pl.k) do ... 

Such a statement works in C if we use the sequential and operator (&&), 
but for Pascal we have to use instead: 

while p <> nil do begin 
if key = pl.k then goto 999 {*** break *** } ; 

999: 

Other minor objections are: the inability to compute addresses of non
heap objects in Pascal (which makes treatment of lists more difficult)j the 
lack of variable length strings in Pascalj the lack of a with statement in Cj 
and the lack of var parameters in C. (Although this is technically possible to 
overcome, it obscures the algorithms.) 

Our Pascal code conforms, as fully as possible, to the language described 
in the Pascal User Manual and Report by K. Jensen and N. Wirth. The C 
code conforms to the language described in The C Programming Language by 
B.W. Kernighan and D.M. Ritchie. 

1.6 On the code for the algorithms 

Except for very few algorithms which are obviously written in pseudo-code, 
the algorithms in this handbook were run and tested under two different 
compilers. Actually the same text which is printed is used for compiling, for 
testing, for running simulations and for obtaining timings. This was done in 
an attempt to eliminate (or at least drastically reduce!) errors. 

Each family of algorithms has a 'tester set' which not only checks for 
correct behaviour of the algorithm, but also checks proper handling of limiting 
conditions (will a sorting routine sort a null file? one with one element? one 
with all equal keys? ... ). 

In most cases the algorithms are described as a function or a procedure 
or a small set of functions or procedures. In a few cases, for very simple 
algorithms, the code is described as in-line code, which could be encapsulated 
in a procedure or could be inserted into some other piece of code. 

Some algorithms, most notably the searching algorithms, are building 
blocks or components of other algorithms or programs. Some standard actions 
should not be specified for the algorithm itself, but rather will be specified 
once that the algorithm is 'composed' with other parts (chapter 2 defines 
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composition in more detail). A typical example of a standard action is an 
error condition. The algorithms coded for this handbook always use the same 
names for these standard actions. 
Error detection of an unexpected condition during execution. Whenever 
Error is encountered it can be substituted by any block of statements. For 
example our testers print an appropriate message. 
/ound( record) function call that is executed upon completion of a successful 
search. Its argument is a record or a pointer to a record which contains the 
searched key. 
not/ound(key) function called upon an unsuccessful search. Its argument is 
the key which was not found. 
A special effort has been made to avoid duplication of these standard actions 
for identical conditions. This makes it easier to substitute blocks of code for 
them. 

1.7 Complexity measures and real timings 

For some families of algorithms we include a comparison of real timings. These 
timings are to be interpreted with caution as they reflect only one sample point 
in the many dimensions of hardwares, compilers, operating systems, and so 
on. Yet we have equally powerful reasons to present at least one set of real 
complexities. 

The main reasons for including real timing comparisons are that they take 
into account: 

(1) the actual cost of operations, 

(2) hidden costs, such as storage allocation, and indexing. 

The main objections, or the factors which may invalidate these real timing 
tables, are: 

(1) the results are compiler dependent: although the same compiler is used 
for each language, a compiler may favour one construct over others; 

(2) the results are hardware dependent; 

(3) in some cases, when large amounts of memory are used, the timings may 
be load dependent. 

The timings were done on a Sun 3 running the SunOS 4.1 operating system. 
Both C and Pascal compilers were run with the optimizer, or object code 
improver, to obtain the best implementation for the algorithms. 

There were no attempts made to compare timings across languages. All 
the timing results are computed relative to the fastest algorithm. To avoid the 
incidence of start up-costs, loading, and so on, the tests were run on problems 
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of significant size. Under these circumstances, some O(n2 ) algorithms appear 
to perform very poorly. 



~ Basic Concepts 

2.1 Data structure description 

The formal description of data structure implementations is similar to the 
formal description of programming languages. In defining a programming 
language, one typically begins by presenting a syntax for valid programs in 
the form of a grammar and then sets further validity restrictions (for example, 
usage rules for symbolic names) which give constraints that are not captured 
by the grammar. Similarly, a valid data structure implementation will be one 
that satisfies a syntactic grammar and also obeys certain constraints. For 
example, for a particular data structure to be a valid weight-balanced binary 
tree, it must satisfy the grammatical rules for binary trees and it must also 
satisfy a specific balancing constraint. 

2.1.1 Grammar for data objects 

A sequence of real numbers can be defined by the BNF production 
<S> ::= [ real, <S> ] I nil 

Thus a sequence of reals can have the form nil, [real,nil], [real,[real,nil]], and 
so on. Similarly, sequences of integers, characters, strings, boolean constants, 
... could be defined. However, this would result in a bulky collection of 
production rules which are all very much alike. One might first try to eliminate 
this repetitiveness by defining 

<S> ::= [ <D> , <S> ] I nil 
where <D> is given as the list of data types 

<D> ::= real I int I bool I string I char 

9 
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However, this pair of productions generates unwanted sequences such as 
[real,[int,nil]] 

as well as the homogeneous sequences desired. 
To overcome this problem, the syntax of a data object class can be defined 

using a W-grammar (also called a two-level or van Wijngaarden grammar). 
Actually the full capabilities of W-grammars will not be utilized; rather 

the syntax will be defined using the equivalent of standard BNF productions 
together with the uniform replacement rule as described below. 

A W-grammar generates a language in two steps (levels). In the first step, 
a collection of generalized rules is used to create more specific production 
rules. In the second step, the production rules generated in the first step are 
used to define the actual data structures. 

First, the problem oflisting repetitive production rules is solved by starting 
out with generalized rule-forms known as hyperrules, rather than the rules 
themselves. The generalized form of a sequence S is given by the hyperrule 

s - D : [D, s - D] ; nil 

The set of possible substitutions for D are now defined in a meta
production, as distinguished from a conventional BNF-type production. For 
example, if D is given as 

D :: real; inti bool; string; char; ... 

a sequence of real numbers is defined in two steps as follows. The first step 
consists of choosing a value to substitute for D from the list of possibilities 
given by the appropriate metaproduction; in this instance, D --+ real. Next 
invoke the uniform replacement rule to substitute the string real for D ev
erywhere it appears in the hyper rule that defines s - D. This substitution 
gives 

8 - real : [real, s - real] ; nil 

Thus the joint use of the metaproduction and the hyperrule generates an ordi
nary BNF-like production defining real sequences. The same two statements 
can generate a production rule for sequences of any other valid data type 
(integer, character, ... ). 

Figures 2.1 and 2.2 contain a W-grammar which will generate many con
ventional data objects. As further examples of the use of this grammar, 
consider the generation of a binary tree of real numbers. With D --+ real and 
LEAF --+ nil, HR[3] generates the production rule 

bt - real - nil : [real, bt - real - nil, bt - real - nil ] ; nil 

Since bt - real- nil is one of the legitimate values for D according to M[I] 
let D --+ bt - real- nil from which HR[I] indicates that such a binary tree 
is a legitimate data structure. 
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Metaproductions 

M[l] D·· real; int; bool; string; char; ... ; # atomic data types 
{D}~; # array 
REC; (REC); # record 
[D] ; # reference 
s-D; # sequence 
gt - D - LEAF; # general tree 
DICT; # dictionary structures 

# other structure classes 
such as graphs, sets, 
priority queues. 

M[2] DICT :: {KEY}~; s - KEY; # sequential search 
bt - KEY - LEAF; # binary tree 
mt - N - KEY - LEAF; # multiway tree 
tr-N-KEY. # digital tree 

M[3] REC:: D; D, REC. # record definition 

M[4] LEAF:: nil; D. 

M[S] N·· DIGIT; DIGIT N. 

M[6] DIGIT :: 0;1;2;3;4;5;6;7;8;9. 

M[7] KEY:: real; int;string; char; (KEY, REC). # search key 

Figure 2.1: Metaproductions for data objects. 

Secondly consider the specification for a hash table to be used with direct 
chaining. The production 

s - (string,int) : [(string,int), s - (string,int)] j nil 

and M[l] yield 

D _ {s-(string,int)}g6 

Thus HR[l] will yield a production for an array of sequences of string/integer 
pairs usable, for example, to record NAME/AGE entries using hashing. 

Finally consider a production rule for structures to contain B-trees (Section 
3.4.2) of strings using HR[4] and the appropriate metaproductions to yield 

mt - 10 - string - nil : 

[int, {string}lO, {mt - 10 - string - nil}bO] j nil 

11 
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Hyperrules 

HR[l] 
HR[2] 
HR[3] 

HR[4] 
HR[S] 

HR[6] 

D. 
[ D, s - D] ; nil. 

data structure : 
s-D 

bt - D - LEAF [D, bt - D - LEAF, bt - D - LEAF] ; LEAF. 
mt-N - D-LEAF 

gt-D-LEAF 
tr-N-D: 

[int, {D}~, {mt - N - D - LEAF}~] ; LEAF. 
[ D, s - gt - D - LEAF] ; LEAF. 
[{ tr - N - D }~] ; [D] ; nil. 

Figure 2.2: Hyperrules for data objects. 

In this multitree, each node contains 10 keys and has 11 descendants. Certain 
restrictions on B-trees, however, are not included in this description (that 
the number of actual keys is to be stored in the int field in each node, that 
this number must be between 5 and 10, that the actual keys will be stored 
contiguously in the keys-array starting at position 1, ... ); these will instead be 
defined as constraints (see below). 

The grammar rules that we are using are inherently ambiguous. This is 
not inconvenient; as a matter of fact it is even desirable. For example, consider 

D -+ {D}~ -+ {real}}O (2.1) 

and 

D -+ DIeT -+ {KEY}~ -+ {real}}O (2.2) 

Although both derivation trees produce the same object, the second one de
scribes an array used as a sequential implementation of a dictionary structure, 
while the first may just be a collection of real numbers. In other words, the 
derivation tree used to produce the data objects contains important semantic 
information and should not be ignored. 

2.1.2 Constraints for data objects 

Certain syntactic characteristics of data objects are difficult or cumbersome to 
define using formal grammars. A semantic rule or constraint may be regarded 
as a boolean function on data objects (S: D -+ bool) that indicates which are 
valid and which are not. Objects that are valid instances of a data structure 
implementation are those in the intersection of the set produced by the W
grammars and those that satisfy the constraints. 

Below are some examples of semantic rules which may be imposed on data 
structures. As phrased, these constraints are placed on data structures that 
have been legitimately produced by rules given in the previous section. 
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2.1.2.1 Sequential order 

Many data structures are kept in some fixed order (for example, the records 
in a file are often arranged alphabetically or numerically according to some 
key). Whatever work is done on such a file should not disrupt this order. This 

definition normally applies to s - D and {D}~. 

2.1.2.2 Uniqueness 

Often it is convenient to disallow duplicate values in a structure, for example 
in representing sets. At other times the property of uniqueness can be used 
to ensure that records are not referenced several times in a structure (for 
example, that a linear chain has no cycles or that every node in a tree has 
only one parent). 

2.1.2.3 Hierarchical order 

For all nodes, the value stored at any adjacent node is related to the value at 
the node according to the type of adjacency. This definition normally applies 
to bt - D - LEAF, mt - N - D - LEAF and gt - D - LEAF. 

Lexicographical trees 
A lexicographical tree is a tree that satisfies the following condition for every 
node 8: if 8 has n keys (keY1, keY2, ... , keYn) stored in it, 8 must have n + 1 
descendant subtrees to, tll' .. , tn. Furthermore, if do is any key in any node 
of to, d1 any key in any node of tll and so on, the inequality do ~ keY1 ~ 
d1 :5 ... :5 keYn :5 dn must hold. 

Priority queues 
A priority queue can be any kind of recursive structure in which an order 
relation has been established between each node and its descendants. One 
example of such an order relation would be to require that keyp :5 keYd, where 
keyp is any key in a parent node, and keYd is any key in any descendant of 
that node. 

2.1.2.4 Hierarchical balance 

Height balance 
Let 8 be any node of a tree (binary or multiway). Define h(8) as the height 
of the subtree rooted in 8, that is, the number of nodes in the tallest branch 
starting at 8. One structural quality that may be required is that the height of 
a tree along any pair of adjacent branches be approximately the same. More 
formally, the height balance constraint is I h(81) - h(82) I :5 6 where 81 and 
82 are any two subtrees of any node in the tree, and 6 is a constant giving 
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the maximum allowable height difference. In B-trees (see Section 3.4.2) for 
example, 8 = 0, while in AVL-trees 8 = 1 (see Section 3.4.1.3). 

Weight balance 
For any tree, the weight function w(s) is defined as the number of external 
nodes (leaves) in the subtree rooted at s. A weight balance condition requires 
that for any two nodes S1 and S2, if they are both subtrees of any other node 
in the tree, r $ w(sdlw(s2) $ l/r where r is a positive constant less than 1. 

2.1.2.5 Optimality 

Any condition on a data structure which minimizes a complexity measure 
(such as the expected number of accesses or the maximum number of com
parisons) is an optimality condition. If this minimized measure of complexity 
is based on a worst-case value, the value is called the minimax; when the 
minimized complexity measure is based on an average value, it is the minave. 

In summary, the W-grammars are used to define the general shape or 
pattern of the data objects. Once an object is generated, its validity is checked 
against the semantic rules or constraints that may apply to it. 

References: 
[Pooch, U.W. et al., 73], [Aho, A.V. et al., 74], [Rosenberg, A.L., 74], [Rosen
berg, A.L., 75], [Wirth, N., 76], [Claybrook, B.G., 77], [Hollander, C.R., 77], 
[Honig, W.L. et al., 77], [MacVeigh, D.T., 77], [Rosenberg, A.L. et al., 77], 
[Cremers, A.B. et al., 78], [GotIieb, C.C. et al., 78], [Rosenberg, A.L., 78], [Bo
brow, D.G. et al., 79], [Burton, F.W., 79], [Rosenberg, A.L. et al., 79], [Rosen
berg, A.L. et al., 80], [Vuillemin, J., 80], [Rosenberg, A.L., 81], [O'Dunlaing, 
C. et al., 82], [Gonnet, G.H. et al., 83], [Wirth, N., 86]. 

2.2 Algorithm descriptions 

Having defined the objects used to structure data, it is appropriate to de
scribe the algorithms that access them. Furthermore, because data objects 
are not static, it is equally important to describe data structure manipulation 
algorithms. 

An algorithm computes a function that operates on data structures. More 
formally, an algorithm describes a map S ~ R or S x P ~ R, where S, P, 
and R are all data structures; S is called the input structure, P contains 
parameters (for example, to specify a query), and R is the result. The two 
following examples illustrate these concepts: 

(1) Quicksort is an algorithm that takes an array and sorts it. Since there 
are no parameters, 
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Quicksort: array --+ sorted-array 

(2) B-tree insertion is an algorithm that inserts a new record P into a B-tree 
S, giving a new B-tree as a result. In functional notation, 

B-tree-insertion: B-tree x new-record --+ B-tree 

Algorithms compute functions over data structures. As always, different 
algorithms may compute the same functions; sin(2x) and 2 sin( x) cos( x) are 
two expressions that compute the same function. Since equivalent algorithms 
have different computational requirements however, it is not merely the func
tion computed by the algorithm that is of interest, but also the algorithm 
itself. 

In the following section, we describe a few basic operations informally in 
order to convey their flavour. 

References: 
[Aho, A.V. et al., 74], [Wirth, N., 76], [Bentley, J.L., 79], [Bentley, J.L., 79], 
[Saxe, J .B. et al., 79], [Bentley, J .L. et al., 80], [Bentley, J .L. et al., 80], [Remy, 
J.L., 80], [Mehlhorn, K. et al., 81], [Overmars, M.H. et al., 81], [Overmars, 
M.H. et al., 81], [Overmars, M.H. et al., 81], [Overmars, M.H. et al., 81], 
[Overmars, M.H., 81], [Rosenberg, A.L., 81], [Overmars, M.I1. et al., 82], 
[Gonnet, G.H. et al., 83], [Chazelle, B. et al., 86], [Wirth, N., 86], [Tarj an , 
R.E., 87], [Jacobs, D. et al., 88], [Manber, U., 88], [Rao, V.N.S. et al., 88], 
[Lan, K.K., 89], [Mehlhorn, K. et al., 90]. 

2.2.1 Basic (or atomic) operations 

A primary class of basic operations manipulate atomic values and are used to 
focus an algorithm's execution on the appropriate part(s) of a composite data 
object. The most common of these are as follows: 

Selector and constructor 
A selector is an operation that allows access to any of the elements corre
sponding to the right-hand side of a production rule from the corresponding 
left-hand side object. A constructor is an operation that allows us to assemble 
an element on the left-hand side of a production given all the corresponding 
elements on the right. For example, given a {st1'ing}~ and an integer, we 
can select the ith element, and given two bt - 1'cal- lUI and a rcal we can 
construct a new bt - real - nil. 

Replacement non-scalar x selector x value --+ non-scalar 
A replacement operator removes us from pure functions by introducing the 
assignment statements. This operator introduces the possibility of cyclic and 
shared structures. For example, given a bt-D-LEAF we can form a threaded 
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binary tree by replacing the nil values in the leaves by (tagged) references back 
to appropriate nodes in the tree. 

Ranking set of scalars x scalar -+ integer 
This operation is defined on a set of scalars Xl, X 2 , ••• , Xn and uses another 
scalar X as a parameter. Ranking determines how many of the Xj values are 
less than or equal to X, thus determining what rank X would have if it were 
ordered with the other values. More precisely, ranking is finding an integer 
i such that there is a subset A ~ {Xl, X 2 , ••• , Xn} for which I A I = i 
and Xj E A if and only if Xj ::; X. Ranking is used primarily in directing 
multiway decisions. For example, in a binary decision, n = 1, and i is zero if 
X < Xl, one otherwise. 

Hashing value x range -+ integer 
Hashing is an operation which normally makes use of a record key. Rather 
than using the actual key value however, an algorithm invokes hashing to 
transform the key into an integer in a prescribed range by means of a hashing 
function and then uses the generated integer value. 

Interpolation numeric-value x parameters -+ integer 
Similarly to hashing, this operation is typically used on record keys. Interpo
lation computes an integer value based on the input value, the desired range, 
the values of the smallest and largest of a set of values, and the probability 
distribution of the values in the set. Interpolation normally gives the statisti
cal mode of the location of a desired record in a random ordered file, that is, 
the most probable location of the record. 

Digitization scalar -+ sequence of scalars 
This operation transforms a scalar into a sequence of scalars. Numbering 
systems that allow the representation of integers as sequences of digits and 
strings as sequences of characters provide natural methods of digitization. 

Testing for equality value x value -+ boolean 
Rather than relying on multiway decisions to test two values for equality, a 
distinct operation is included in the basic set. Given two values of the same 
type (for example, two integers, two characters, two strings), this operation 
determines whether they are equal. Notice that the use of multi way branching 
plus equality testing closely matches the behaviour of most processors and 
programming languages which require two tests for a three-way branch (less 
than, equal, or greater than). 
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2.2.2 Building procedures 

Building procedures are used to combine basic operations and simple algo
rithms to produce more complicated ones. In this section, we will define four 
building procedures: composition, alternation, conformation and self
organization. 

General references: 
[Darlington, J., 78], [Barstow, D.R., 80], [Clark, K.L. et al., 80], [van Leeuwen, 
J. et al., 80], [Merritt, S.M., 85]. 

2.2.2.1 Composition 

Composition is the main procedure for producing algorithms from atomic op
erations. Typically, but not exclusively, the composition of FI : SxP -+ Rand 
F2 : Sx P -+ R can be expressed in a functional notation as F2(FI (S, Pd, P2). 

A more general and hierarchical description of composition is that the descrip
tion of F2 uses FI instead of a basic operation. 

Although this definition is enough to include all types of composition, 
there are several common forms of composition that deserve to be identified 
explicitly. 

Divide and conquer 
This form uses a composition involving two algorithms for any problems that 
are greater than a critical size. The first algorithm splits a problem into 
(usually two) smaller problems. The composed algorithm is then recursively 
applied to each non-empty component, using recursion termination (see be
low) when appropriate. Finally the second algorithm is used to assemble the 
components' results into one result. A typical example of divide and conquer 
is Quicksort (where the termination alternative may use a linear insertion 
sort). Diagrammatically: 

Divide and conquer 

solve-problem( A): 
if size(A) <= Critical-Size 

then End-Action 
else begin 

Split- problem; 
solve-problem( AI); 
solve-problem(A2 ); 

Assemble-Results 
end; 
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Special cases of divide and conquer, when applied to trees, are tree traver
sals. 

Iterative application 
This operates on an algorithm and a sequence of data structures. The algo
rithm is iteratively applied using successive elements of the sequence in place 
of the single element for which it was written. For example, insertion sort 
iteratively inserts an element into a sorted sequence. 

Iterative application 

solve-problem( S): 
while not empty(S) do begin 

Apply algorithm to next element of sequence S; 
Advance S 
end; 

End-Action 

Alternatively, if the sequence is in an array: 

Iterative application (arrays) 

solve-problem(A): 
for i:=1 to size(A) do 

Action on A[z]; 
End-Action 

Tail recursion 
This method is a composition involving one algorithm that specifies the crite
rion for splitting a problem into (usually two) components and selecting one 
of them to be solved recursively. A classical example is binary search. 

Tail recursion 

solve-problem( A): 
if size(A) <= Critical-Size 

then End-Action 
else begin 

Split and select subproblem i; 
solve-problem( Ai) 
end 
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Alternatively, we can unwind the recursion into a while loop: 

Tail recursion 

solve-problem( A): 
while size(A) > Critical-Size do begin 

Split and select subproblem i; 
A:= Ai 
end; 

End-Action 

It should be noted that tail recursion can be viewed as a variant of di
vide and conquer in which only one of the subproblems is solved recursively. 
Both divide and conquer and tail recursion split the original problem into sub
problems of the same type. This splitting applies naturally to recursive data 
structures such as binary trees, multiway trees, general trees, digital trees, or 
arrays. 

Inversion 
This is the composition of two search algorithms that are then used to search 
for sets of records based on values of secondary keys. The first algorithm is 
used to search for the selected attribute (for example, find the 'inverted list' 
for the attribute 'hair colour' as opposed to 'salary range') and the second 
algorithm is used to search for the set with the corresponding key value (for 
instance, 'blonde' as opposed to 'brown'). In general, inversion returns a set 
of records which may be further processed (for example, using intersection, 
union, or set difference). 

Inverted search 

inverted-search(S, A, V): 
{*** Search the value V of the attribute A in 

the structure S *** } 
search (search(S, A), V) 

The structure S on which the inverted search operates has to reflect these 
two searching steps. For the generation of S, the following metaproductions 
should be used: 

S _ D _ DICT _ ... (KEyattr, Dattr) ... 

Dattr _ DICT _ ... (KEyvalue, D value) ... 
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Dvalue -+ SET -+ ... 

Digital decomposition 
This is applied to a problem of size n by attacking preferred-size pieces (for 
example, pieces of size equal to a power of two). An algorithm is applied to 
all these pieces to produce the desired result. One typical example is binary 
decomposition. 

Digital decomposition 

Solve-problem(A, n) 

Merge 

{*** n has a digital decomposition n = n,.p,. + ... + n1P1 + no *** } 
Partition the problem into subsets 

A U,. un· Aj = i=O j::l i j 

{*** where size(A1) = Pi *** } 
for i:= 0 to k while not completed do 

simpler-solve(A!, A~, ... , A~;)j 

The merge technique applies an algorithm and a discarding rule to two or 
more sequences of data structures ordered on a common key. The algorithm 
is iteratively applied using successive elements of the sequences in place of 
the single elements for which it was written. The discarding rule controls the 
iteration process. For example, set union, intersection, merge sort, and the 
majority of business applications use merging. 

Merge 

Merge(Sl, S2, ... , S,.): 

Randomization 

while at least one Si is not empty do 
kmin := minimum value of keys in S1, ... , Sic j 
for i := 1 to k do 

if kmin = head(Si) 
then t[a] := head(Si) 
else t[l] := nil; 

processing-rule( t[ 1], t[ 2], ... , t[ k]) j 
End-Action 

This is used to improve a procedure or to transform a procedure into a proba-
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bilistic algorithm. This is appealing when the underlying procedure may fail, 
may not terminate, or may have a very bad worst case. 

Randomization 

solve-problem (A) 
repeat begin 

randomize(A)j 
solve(randomized(A), t(A) units-of-time)j 
end until Solve-Succeeds or Too-Many-Iterationsj 

if Too-Many-Iterations 
then return(No-Solution-Exists) 
else return(Solution)j 

The conclusion that there is no solution is reached with a certain proba
bility, hopefully very small, of being wrong. Primality testing using Fermat's 
little result is a typical example of this type of composition. 

References: 
[Bentley, J.L. et al., 76], [Yao, A.C-C., 77], [Bentley, J.L. et al., 78], [Dwyer, 
B., 81], [Chazelle, B., 83], [Lesuisse, R., 83], [Walah, T.R., 84], [Snir, M., 86], 
[Karlsson, R.G. et al., 87], [Veroy, B.S., 88]. 

2.2.2.2 Alternation 

The simplest building operation is alternation. Depending on the result of a 
test or on the value of a discriminator, one of several alternative algorithms 
is invoked. For example, based on the value of a command token in a batch 
updating interpreter, an insertion, modification, or deletion algorithm could 
be invokedj based on the success of a search in a table, the result could be 
processed or an error handler calledj or based on the size of the input set, an 
O(N2) or an O(N log N) sorting algorithm could be chosen. 

There are several forms of alternation that appear in many algorithmsj 
these are elaborated here. 

SuperiInposition 
This combines two or more algorithms, allowing them to operate on the same 
data structure more or less independently. Two algorithms Fl and F2 may be 
superimposed over a structure S if F1(S, Ql) and F2(S, Q2) can both operate 
together. A typical example of this situation is a file that can be searched by 
one attribute using Fl and by another attribute using F2. Unlike other forms 
of alternation, the alternative to be used cannot be determined from the state 
of the structure itselfj rather superimposition implies the capability of using 
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any alternative on any instance of the structure involved. Diagrammatically: 

Superimposition 

solve-problem(A): 
case 1: solve-probleml(A); 
case 2: solve-problem2(A); 

case n: solve-problemn(A) 

Interleaving 
This operation is a special case of alternation in which one algorithm does not 
need to wait for other algorithms to terminate before starting its execution. 
For example one algorithm might add records to a file while a second algorithm 
makes deletions; interleaving the two would give an algorithm that performs 
additions and deletions in a single pass through the file. 

Recursion termination 
This is an alternation that separates the majority of the structure manipu
lations from the end actions. For example, checking for end of file on input, 
for reaching a leaf in a search tree, or for reduction to a trivial sub list in a 
binary search are applications of recursion termination. It is important to 
realize that this form of alternation is as applicable to iterative processes as 
recursive ones. Several examples of recursion termination were presented in 
the previous section on composition (see, for example, divide and conquer). 

2.2.2.3 Conformation 

If an algorithm builds or changes a data structure, it is sometimes necessary 
to perform more work to ensure that semantic rules and constraints on the 
data structure are not violated. For example, when nodes are inserted into 
or deleted from a tree, the tree's height balance may be altered. As a result 
it may become necessary to perform some action to restore balance in the 
new tree. The process of combining an algorithm with a 'clean-up' operation 
on the data structure is called conformation (sometimes organization or 
reorganization). In effect, conformation is a composition of two algorithms: 
the original modification algorithm and the constraint satisfaction algorithm. 
Because this form of composition has an acknowledged meaning to the algo
rithm's users, it is convenient to list it as a separate class of building operation 
rather than as a variant of composition. Other examples of conformation in
clude reordering elements in a modified list to restore lexicographic order, 
percolating newly inserted elements to their appropriate locations in a prior
ity queue, and removing all dangling (formerly incident) edges from a graph 
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after a vertex is deleted. 

2.2.2.4 Self-organization 

This is a supplementary heuristic activity that an algorithm may often per
form in the course of querying a structure. Not only does the algorithm do 
its primary work, but it also reaccommodates the data structure in a way 
designed to improve the performance of future queries. For example, a search 
algorithm may relocate the desired element once it is found so that future 
searches through the file will locate the record more quickly. Similarly, a page 
management system may mark pages as they are accessed, in order that 'least 
recently used' pages may be identified for subsequent replacement. 

Once again, this building procedure may be viewed as a special case of 
composition (or of interleaving); however, its intent is not to build a func
tionally different algorithm, but rather to augment an algorithm to include 
improved performance characteristics. 

2.2.3 Interchangeability 

The framework described so far clearly satisfies two of its goals: it offers 
sufficient detail to allow effective encoding in any programming language, 
and it provides a uniformity of description to simplify teaching. It remains 
to be shown that the approach can be used to discover similarities among 
implementations as well as to design modifications that result in useful new 
algorithms. 

The primary vehicle for satisfying these goals is the application of inter
changeability. Having decomposed algorithms into basic operations used in 
simple combinations, one is quickly led to the idea of replacing any component 
of an algorithm by something similar. 

The simplest form of interchangeability is captured in the static objects' 
definition. The hyper rules emphasize similarities among the data structure 
implementations by indicating the universe of uniform substitutions that can 
be applied. For example, in any structure using a sequence of reals, the hyper
rule for s - D together with that for D indicates that the sequence of reals can 
be replaced by a sequence of integers, a sequence of binary trees, and so on. 
Algorithms that deal with such modified structures need, at most, superficial 
changes for manipulating the new sequences, although more extensive modi
fications may be necessary in parts that deal directly with the components of 
the sequence. 

The next level of interchangeability results from the observation that some 
data structure implementations can be used to simulate the behaviour of oth
ers. For example, wherever a bounded sequence is used in an algorithm, it 
may be replaced by an array, relying on the sequentiality of the integers to 
access the array's components in order. Sequences of unbounded length may 
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be replaced by sequences of arrays, a technique that may be applied to adapt 
an algorithm designed for a one-level store to operate in a two-level memory 
environment wherein each block will hold one array. This notion of inter
changeability is the one usually promoted by researchers using abstract data 
types; their claim is that the algorithms should have been originally specified 
in terms of abstract sequences. We feel that the approach presented here does 
not contradict those claims, but rather that many algorithms already exist for 
specific representations, and that an operational approach to specifying algo
rithms, together with the notion of interchangeability, is more likely to appeal 
to data structure practitioners. In cases where data abstraction has been ap
plied, this form of interchangeability can be captured in a meta-production, 
as was done for DIeT in Figure 2.1. 

One of the most common examples of this type of interchange is the im
plementation of linked lists and trees using arrays. For example, an s - D is 
implemented as an {D,int}~ and a bt - D - nil as an {D,int,int}~. In 
both cases the integers play the same role as the pointers: they select a record 
of the set. The only difference is syntactic, for example 

pl. next - > next[p] 
pl. right -> right[p]. 

Typically the value 0 is reserved to simulate a null pointer. 
The most advanced form of interchangeability has not been captured by 

previous approaches. There are classes of operations that have similar intent 
yet behave very differently. As a result, replacing some operations by others in 
the same class may produce startling new algorithms with desirable properties. 
Some of these equivalence classes are listed below. 

Basic algorithms {hashing; interpolation; direct addressing} 
{collision resolution methods } 
{binary partition; Fibonaccian partition; 

median partition; mode partition} 

Semantic rules {height balance; weight balance} 
{lexicographical order; priority queues} 
{ordered hashing; Brent's hashing; 

binary tree hashing } 
{minimax; min ave } 



Searching Algorithms 

3.1 Sequential search 

3.1.1 Basic sequential search 

This very basic algorithm is also known as the linear search or brute force 
search. It searches for a given element in an array or list by looking through 
the records sequentially until it finds the element or reaches the end of the 
structure. Let n denote the size of the array or list on which we search. 
Let An be a random variable representing the number of comparisons made 
between keys during a successful search and let A~ be a random variable for 
the number of comparisons in an unsuccessful search. We have 

Pr{An = i} = .!. 
n 

n+1 
E[Anl = 2 

A~ = n 

(I ~ i ~ n) 

Below we give code descriptions of the sequential search algorithm in sev
eral different situations. The first algorithm (two versions) searches an array 
r[z1 for the first occurrence of a record with the required key; this is known as 
primary key search. The second algorithm also searches through an array, 
but does not stop until it has found every occurrence of the desired key; this 
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is known as secondary key search. The third algorithm inserts a new key 
into the array without checking if the key already exists (this must be done 
for primary keys). The last two algorithms deal with the search for primary 
and secondary keys in linked lists. 

Sequential search in arrays (non-repeated keys) 

function search(key: typekey; var r: dataarray) : integer; 
var I : integer; 

begin 
i:= 1; 
while (i<n) and (key <> r(z].k) do i := i+l; 
if r(z].k=key then search := i {*** found(r(z]) ***} 

else search:= -1; {*** notfound(key) ***} 
end; 

For a faster inner loop, if we are allowed to modify location n + 1, then: 

Sequential search in arrays (non-repeated keys) 

function search(key: typekey; var r: dataarray) : integer; 
var z : integer; 

begin 
r(n+l].k := key; 
i := 1; 
while key <> r(z].k do i := i+l; 
if i <= n then search := i {*** found( r( z]) ***} 

else search := -1; {*** notfound( key) ***} 
end; 

Sequential search in arrays (secondary keys) 

for i:=1 to n do 
if key = r(z].k then found(r(z]); 
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Insertion of a new key in arrays (secondary keys) 

procedure insert(key : typekey; var r: dataarray); 

begin 
if n>=m then Error {*** Table is full ***} 
else begin 

n:= n+1; 
r[n].k:= key 
end 

end; 

Sequential search in lists (non-repeated keys) 

datarecord uearch( key, list) 
typekey key; datarecord *list; 

{ datarecord * p; 
for (p=list; p != NULL && key != p ->k; p = p ->next); 
return(p); 
} 

Sequential search in lists (secondary keys) 

p := list; 
while p <> nil do 

begin 
if key = pi.k then found(pj); 
p := pi .next 
end; 

The sequential search is the simplest search algorithm. Although it is not 
very efficient in terms of the average number of comparisons needed to find a 
record, we can justify its use when: 

(1) our files only contain a few records (say, n ~ 20); 

(2) the search will be performed only infrequently; 
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(3) we are looking for secondary keys and a large number of hits (O(n)) is 
expected; 

(4) testing extremely complicated conditions. 

The sequential search can also look for a given range of keys instead of 
one unique key, at no significant extra cost. Another advantage of this search 
algorithm is that it imposes no restrictions on the order in which records are 
stored in the list or array. 

The efficiency of the sequential search improves somewhat when we use it 
to examine external storage. Suppose each physical I/O operation retrieves b 
records; we say that b is the blocking factor of the file, and we refer to each 
block of b records as a bucket. Assume that there are a total of n records 
in the external file we wish to search and let k = l n / b J. If we use En as a 
random variable representing the number of external accesses needed to find 
a given record, we have 

E[En] = k+ 1- kb(~: 1) ~ k; 1 

(T2(En) = bk(k + 1) [2k + 1 _ kb(k + 1)] ~ k2 
n 6 4n 12 

References: 
[Knuth, D.E., 73], [Berman, G. et a/., 74], [Knuth, D.E., 74], [Clark, D.W., 
76], [Wise, D.S., 76], [Reingold, E.M. et a/., 77], [Gotlieb, C.C. et a/., 78], 
[Hansen, W.J., 78], [Flajolet, P. et a/., 79], [Flajolet, P. et a/., 79], [Kronsjo, 
L., 79], [Flajolet, P. et a/., 80], [Willard, D.E., 82], [Sedgewick, R., 88]. 

3.1.2 Self-organizing sequential search: move-to-front 
method 

This algorithm is basically the sequential search, enhanced with a simple 
heuristic method for improving the order of the list or array. Whenever 
a record is found, that record is moved to the front of the table and the 
other records are slid back to make room for it. (Note that we only need to 
move the elements which were ahead of the given record in the table; those 
elements further on in the table need not be touched.) The rationale behind 
this procedure is that if some records are accessed more often than others, 
moving those records to the front of the table will decrease the time for future 
searches. It is, in fact, very common for records in a table to have unequal 
probabilities of being accessed; thus, the move-to-front technique may often 
reduce the average access time needed for a successful search. 

We will assume that there exists a probability distribution in which 
Pr{ accessing key Ki} = Pi. Further we will assume that the keys are 
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numbered in such a way that P1 ~ P2 ~ ... ~ Pn > O. With this model 
we have 

= Cn = ~ + L: PiPj 
2 .. Pi + Pj 

I,J 

(2 - Cn)(Cn - 1) 

+4 L: PiPjPIc 
i<j<1c Pi + Pj + Pic 

(_1_ + 1 + _1_) 
Pi + Pj Pi + Pic Pj + Pic 

A' n n 

C ~cOpt 1r ""' • 1r I 

n ::5 2 n = 2 L...J api = 21'1 

where I'~ = C[?pt = E iPi is the first moment of the distribution. 
If we let T(z) = E?:1 ZPi then 

Cn = 11 Z[T' (Z)]2 dz 

Let Cn(t) be the average number of additional accesses required to find a 
record, given that t accesses have already been made. Starting at t = 0 with 
a randomly ordered table we have 

Below we give a code description of the move-to-front algorithm as it can 
be implemented to search linked lists. This technique is less suited to working 
with arrays. 

Self-organizing (move-to-front) sequential search (lists) 

function search( key: typekey; var head: list) : list; 
label 999; 
var p, q : list; 

begin 

if head = nil then search := nil 
else if key = head!.k then search := head 
else begin 

{*** Find record *** } 
p := head; 
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999: 

while pi. next <> nil do 
if pi. nexti . k = key then begin 

{*** Move to front of list ***} 
q := head; 
head := pi. next; 
pi· next := pi. nexti . next; 
headi . next := q; 
search := head; 
goto 999 {*** Break *** } 
end 

else p := pi. next; 
search := nil 
end; 

end; 

Insertion of a new key on a linked list 

function insert( key: typekey; head: list) : list; 
var p : list; 

begin 
n := n+l; 
new(p); 
pi.k:= key; 
pi. next := head; 
insert := p; 
end; 

There are more sophisticated heuristic methods of improving the order 
of a list than the move-to-front technique; however, this algorithm can be 
recommended as particularly appropriate when we have reasons to suspect 
that the accessing probabilities for individual records will change with time. 

Moreover, the move-to-front approach will quickly improve the organiza
tion of a list when the accessing probability distribution is very skewed. 

If we can guarantee that the search will be successful we can obtain an 
efficient array implementation by sliding elements back while doing the search. 

When searching a linked list, the move-to-front heuristic is preferable to 
the transpose heuristic (see Section 3.1.3). 

Below we give some efficiency measures for this algorithm when the ac
cessing probabilities follow a variety of distributions. 
Zipf's law (harmonic): Pi = (iHn)-l 



SEARCHING ALGORITHMS 31 

1 (2n + 1)H2n - 2(n + l)Hn 
Cn = 2 + Hn 

2In(2)n _ ~ +0(1) 
Hn 2 

Lotka's law: Pi = (i2 H~2))-1 

3 In n 
Cn = -In n - 0.00206339 ... + 0(-) 

~ n 

Exponential distribution: Pi = (1 - a)ai - 1 

c = _ 2ln 2 _ ~ _ In a _ In3 a 0(1 5 ) 
n In a 2 24 2880 + n a 

( 4n + 2 _ 1 ) H _ (2n + 1)(8n2 + 14n - 3) H2 
3 8n(n+1) n 12n(n+1) n 

4n + 4 13 
+ -3- - 12(n+ 1) 

4(1 - In 2) H 5(1 -In 2) Hn O( -1) 
3 n- n+ 3 +--;:;-+ n 

Generalized Zipf's: Pi ex i-A 

where J.l~ is the optimal cost (see Section 3.1.4). The above formula is maxi
mized for A = 2, and this is the worst-case possible probability distribution. 

Table 3.1 gives the relative efficiency of move-to-front compared to the op
timal arrangement of keys, when the list elements have accessing probabilities 
which follow several different 'folklore' distributions. 

References: 
[McCabe, J., 65], [Knuth, D.E., 73], [Hendricks, W.J., 76], [Rivest, R.L., 
76], [Bitner, J.R., 79], [Gonnet, G.H. et ai., 79], [Gonnet, G.H. et ai., 81], 
[Tenenbaum, A.M. et ai., 82], [Bentley, J.L. et ai., 85], [Hester, J.H. et ai., 
85], [Hester, J.H. et ai., 87], [Chung, F.R.K. et ai., 88], [Makinen, E., 88]. 

3.1.3 Self-organizing sequential search: 
method 

transpose 

This is another algorithm based on the basic sequential search and enhanced 
by a simple heuristic method of improving the order of the list or array. 
In this model, whenever a search succeeds in finding a record, that record is 
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Table 3.1: Relative efficiency of move-to-front. 

cn/c::pt 
n Zipf's law 800/0-20% Bradford's law Lotka's law 

rule (b = 3) 

5 1.1921 1.1614 1.1458 1.2125 
10 1.2580 1.2259 1.1697 1.2765 
50 1.3451 1.3163 1.1894 1.3707 

100 1.3623 1.3319 1.1919 1.3963 
500 1.3799 1.3451 1.1939 1.4370 

1000 1.3827 1.3468 1.1942 1.4493 
10000 1.3858 1.3483 1.1944 1.4778 

transposed with the record that immediately precedes it in the table (provided 
of course that the record being sought was not already in the first position). 
As with the move-to-front (see Section 3.1.2) technique, the object of this 
rearrangement process is to improve the average access time for future searches 
by moving the most frequently accessed records closer to the beginning of the 
table. We have 

where 1r denotes any permutation of the integers 1,2, ... ,n. 1r(j) is the location 
of the number j in the permutation 1r, and Prob(In) is given by 

Prob(In) = (E fIp~-"(i»)_1 
.. 1=1 

This expected value of the number of the accesses to find an element can be 
written in terms of permanents by 

where P is a matrix with elements Pi,j = pij and PA: is a matrix like P except 
that the kth row is PA:J = jp!-j. We can put a bound on this expected value 
by 

c < ~cOPt < 2 ' 
n - n + 1 n 1'1 

where I'~ is the optimal search time (see Section 3.1.4). 
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In general the transpose method gives better results than the move-to-front 
(MTF) technique for stable probabilities. In fact, for all record accessing 
probability distributions, we have 

c~ran,po,e :$ C:!T F 

When we look at the case of the unsuccessful search, however, both methods 
have the identical result 

A~ = n 

Below we give a code description of the transpose algorithm as it can be 
applied to arrays. The transpose method can also be implemented efficiently 
for lists, using an obvious adaptation of the array algorithm. 

Self-organizing (transpose) sequential search (arrays) 

function search(key: typekey; var r: dataarray) : integer; 
var i: integer; 

tempr: data record; 

begin 
i := 1; 
while (i<n) and (r[a].k <> key) do i := i+l; 

if key = r[a].kthen 
begin 
if i>1 then 

begin 
{*** Transpose with predecessor ***} 
tempr ::;:: r[z]; 
r[1] := r[i-l]; 
r[i-l] := tempr; 
i := i-I 
end; 

search := i {*** found( r[a]) ***} 
end 

else search:= -1; {*** notfound(key) ***} 
end; 

It is possible to develop a better self-organizing scheme by allocating extra 
storage for counters which record how often individual elements are accessed; 
however, it is conjectured that the transpose algorithm is the optimal heuristic 
organization scheme when allocating such extra storage is undesirable. 

It should be noted that the transpose algorithm may take quite some time 
to rearrange a randomly ordered table into close to optimal order. In fact, it 
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n 

5 
10 
50 

100 
500 

1000 

may take O(n2 ) accesses to come within a factor of 1 + f of the final steady 
state. 

Because of this slow adaptation ability, the transpose algorithm is not 
recommended for applications where accessing probabilities may change with 
time. 

For sequential searching of an array, the transpose heuristic is preferable 
over the move-to-front heuristic. 

Table 3.2 gives simulation results of the relative efficiency of the trans
pose method compared to the optimal arrangement of keys, when the list 
elements have accessing probabilities which follow several different 'folklore' 
distributions. It appears that for all smooth distributions, the ratio between 
transpose and the optimal converges to 1 as n -+ 00. 

Table 3.2: Simulation results on the relative efficiency of transpose. 

cn/c:;pt 
Zipf's law 80%-20% Bradford's law Lotka's law 

rule (b = 3) 

1.109897 1.071890 1.097718 1.110386 
1.08490±0.00003 1.06788±0.00004 1.07073 ±0.00002 1.10041±0.00005 
1.03213±0.00004 1.03001±0.00006 1.01949 ±0.00004 1.01790±0.00007 
1.01949±0.00004 1.01790±0.00007 1.011039±0.000009 1.0645±0.0003 
1.00546±0.00003 1.00458±0.00005 1.002411±0.000004 1.0503±0.0011 
1.00311±0.00004 1.00252±0.00005 1.001231±0.000003 1.0444±0.0021 

References: 
[Hendricks, W.J., 76], [Rivest, R.L., 76], [Tenenbaum, A.M., 78], [Bitner, J.R., 
79], [Gonnet, G.H. et al., 79], [Gonnet, G.H. et al., 81], [Bentley, J.L. et al., 
85], [Hester, J.H. et al., 85]. [Hester, J.H. et al., 87], [Makinen, E., 88]. 

3.1.4 Optimal sequential search 

When we know the accessing probabilities for a set of records in advance, 
and we also know that these probabilities will not change with time, we can 
minimize the average number of accesses in a sequential search by arranging 
the records in order of decreasing accessing probability (so that the most often 
required record is first in the table, and so on). With this preferred ordering 
of the records, the efficiency measures for the sequential search are 

n 

E[An] = I'~ = L iPi 
i=l 

n 

u 2(An) = L i 2pi - (1'~)2 
;=1 



A' - n n -

SEARCHING ALGORITHMS 35 

Naturally, these improved efficiencies can only be achieved when the ac
cessing probabilities are known in advance and do not change with time. In 
practice, this is often not the case. Further, this ordering requires the over
head of sorting all the keys initially according to access probability. Once the 
sorting is done, however, the records do not need reorganization during the 
actual search procedure. 

3.1.5 Jump search 

Jump search is a technique for searching a sequential ordered file. This tech
nique is applicable whenever it is possible to jump or skip a number of records 
at a cost that is substantially less than the sequential read of those records. 

Let a be the cost of a jump and b the cost of a sequential search. If the 
jumps have to be of a fixed size, then the optimum jump size is Jna/b, and 
consequently 

Cn = Jnab + 0(1) 

Doing uniform size jumps is not the best strategy. It is better to have 
larger jumps at the beginning and smaller jumps at the end, so that the 
average and worst-case searching times are minimized. 

For the optimal strategy the ithjump should be of J2an/b-ai/b records; 
then: 

Cn = J8a;n + 0(1) 

Jump search algorithm 

readJirstrecord; 
while key> r.k do Jump_records; 
while key < r.k do rea(previous_record; 
if key=r.k then founder) 

else notfound(key); 

This method can be extended to an arbitrary number of levels; at each 
level the size of the jump is different. Ultimately when we use log2 n levels 
this algorithm coincides with binary search (see Section 3.2.1). 

There are two situations in which this algorithm becomes an appealing 
alternative: 

(1) Tape reading where we can command to skip physical records almost 
without cost to the computer. 
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(2) Sequential files with compressed and/or encoded information when the 
cost of decompressing and/or decoding is very high. 

When binary search is possible there is no reason to use jump searching. 

References: 
[Six, H., 73], [Shneiderman, B., 78], [Janko, W., 81], [Leipala, T., 81], 
[Guntzer, U. et al., 87]. 

General references: 
[Shneiderman, B., 73], [Lodi, E. et al., 76], [Shneiderman, B. et al., 76], [Wirth, 
N., 76], [Nevalainen, O. et al., 77], [Allen, B. et al., 78], [Claybrook, B.G. et 
al., 78], [McKellar, A.C. et al., 78], [Standish, T.A., 80], [Mehlhorn, K., 84], 
[Manolopoulos, Y.P. et al., 86], [Wirth, N., 86], [Papadakis, T. et al., 90], 
[Pugh, W., 90]. 

3.2 Sorted array search 

The following algorithms are designed to search for a record in an array whose 
keys are arranged in order. Without loss of generality we will assume an 
increasing order. 

We will discuss only the searching algorithms. The insertion of new ele
ments or direct construction of a sorted array of size m is the same for all 
algorithms. These searching algorithms are not efficient when the table un
dergoes a lot of insertions and deletions. Both updating operations cost O( n) 
work each. It is then implicit that these tables are rather static. 

Insertion into an ordered array 

procedure insert(key : typekey; var r: dataarray); 
label 999; 
var ,: integer; 

begin 
1:= n; 
if n>=m then Error {*** Table full ***} 
else begin 

n:= n+1; 
while i>O do 

if r[ z]. k > key then begin 



r(i+l] := r(ll; 
i := i-I 
end 

else goto 999; {*** break *** } 

{*** Insert new record *** } 
999: 
r(i+l].k := key 
end 

end; 
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The above algorithm will not detect the insertion of duplicates, that is, 
elements already present in the table. If we have all the elements available 
at the same time, it is advantageous to sort them in order, as opposed to 
inserting them one by one. 

General references: 
[Peterson, W.W., 57], [Price, C.E., 71], [Overholt, K.J., 73], [Horowitz, E. et 
al., 76], [Guibas, L.J. et al., 77], [Flajolet, P. et al., 79], [Flajolet, P. et al., 
80], [Mehlhorn, K., 84], [Linial, N. et al., 85], [Manolopoulos, Y.P. et al., 86], 
[Yuba, T. et al., 87], [Pugh, W., 90]. 

3.2.1 Binary search 

This algorithm searches a sorted array using the tail recursion technique. 
At each step of the search, a comparison is made with the middle element of 
the array. Then the algorithm decides which half of the array should contain 
the required key, and discards the other half. The process is repeated, halving 
the number of records to be searched at each step until only one key is left. 
At this point one comparison is needed to decide whether the searched key is 
present in the file. If the array contains n elements and k = llog2 nJ then we 
have: 

If we use three-way comparisons and stop the search on equality, the number 
of comparisons for the successful search changes to: 

1 $ An $ k+ 1 
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21:+1 - k - 2 = Cn = k+l-----
n 

k+2 
~ log2 (n) - 1 + -

n 

3 X 21:+1 -n(k + 2)2 - 2 _ (21:+1 -n k - 2)2 
u 2(An) = 

~ 2.125 ± .125 + 0(1) 

Cn = (1 + ~) C: -1 
(The random variables An and A~ are as defined in Section 3.1; Cn and C: 
are the expected values of An and A~ respectively.) 

Binary search algorithm 

function search(key: typekey; var r: dataarray) : integer; 
var high, j, low : integer; 

begin 
low:= 0; 
high := n; 
while high-low> 1 do begin 

j := (high+low) div 2; 
if key <= rfJ].k then high := j 

else low := j 
end; 

if r{ high]. k = key then search := high {*** found( r{ high]) ***} 
else search := -1; {*** notfound( key) ***} 

end; 

There are more efficient search algorithms than the binary search but 
such methods must perform a number of special calculations: for example, 
the interpolation search (see Section 3.2.2) calculates a special interpolation 
function, while hashing algorithms (see Section 3.3) must compute one or 
more hashing functions. The binary search is an optimal search algorithm 
when we restrict our operations only to comparisons between keys. 

Binary search is a very stable algorithm: the range of search times stays 
very close to the average search time, and the variance of the search times 
is 0(1). Another advantage of the binary search is that it is well suited to 
searching for keys in a given range as well as searching for one unique key. 

One drawback of the binary search is that it requires a sorted array. Thus 
additions, deletions, and modifications to the records in the table can be 
expensive, requiring work on the scale of O(n). 
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Table 3.3 gives figures showing the performance of the three-way compar
ison binary search for various array sizes. 

Table 3.3: Exact results for binary search. 

n I Cn c' n 

5 2.2000 0.5600 2.6667 
10 2.9000 0.8900 3.5455 
50 4.8600 1.5204 5.7451 

100 5.8000 1.7400 6.7327 
500 7.9960 1.8600 8.9780 

1000 8.9870 1.9228 9.9770 
5000 11.3644 2.2004 12.3619 

10000 12.3631 2.2131 13.3618 

References: 
[Arora, S.R. et al., 69], [Flores, I. et al., 71], [Jones, P.R., 72], [Knuth, D.E., 
73], [Overholt, K.J., 73], [Aho, A.V. et al., 74], [Berman, G. et al., 74], [Bent
ley, J.L. et al., 76], [Reingold, E.M. et al., 77], [Gotlieb, C.C. et al., 78], 
[Flajolet, P. et al., 79], [Kronsjo, L., 79], [Leipala, T., 79], [Yao, A.C-C., 81], 
[Erkioe, H. et al., 83], [Lesuisse, R., 83], [Santoro, N. et al., 85], [Arazi, B., 
86], [Baase, S., 88], [Brassard, G. et al., 88], [Sedgewick, R., 88], [Manber, U., 
89]. 

3.2.2 Interpolation search 

This is also known as the estimated entry search. It is one of the most 
natural ways to search an ordered table which contains numerical keys. Like 
the binary search (see Section 3.2.1), it uses the 'tail recursion' approach, but 
in a more sophisticated way. At each step of the search, the algorithm makes 
a guess (or interpolation) of where the desired record is apt to be in the array, 
basing its guess on the value of the key being sought and the values of the 
first and last keys in the table. As with the binary search, we compare the 
desired key with the key in the calculated probe position; if there is no match, 
we discard the part of the file we know does not contain the desired key and 
probe the rest of the file using the same procedure recursively. 

Let us suppose we have normalized the keys in our table to be real numbers 
in the closed interval [0,1] and let a E [0,1] be the key we are looking for. For 
any integer k $ n, the probability of needing more than k probes to find a is 
given by 
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where e = lrnatl-a)· 

E[An] = log2 log2 n + 0(1) 

~ log2 log2 (n + 3) 

q2(An) = 0(log2 log2 n) 

E[A~] = log2 log2 n + 0(1) 

~ log2 log2 n + 0.58 

When implementing the interpolation search, we must make use of an 
interpolating formula. This is a function tIJ(a, n) which takes as input the 
desired key a(a E [0,1]) and the array of length n, and which yields an array 
index between 1 and n, essentially a guess at where the desired array element 
is. Two of the simplest linear interpolation formulas are tIJ( a, n) = rna 1 and 
tIJ( a, n) = L na + 1 J. Below we give a description of the interpolation search. 

Interpolation search algorithm 

function search(key: typekey; var r: dataarray) : integer; 
var high, i, low : integer; 

begin 
low := 1; 
high := n; 
while (r[high].k >= key) and (key> r[low].k) do 

begin 
i:= trunc«key-r[low].k) / (r[high].k-r[low].k) * 

(high-low» + low; 
if key> rIJ].k then low := i+l 
else if key < rIJ].k then high := i-I 

else low := i 
end; 

if r[low].k = key then search := low {*** /ound(r[low]) ***} 
else search := -1; {*** not/ound(key) ***} 

end; 

The interpolation search is asymptotically optimal among all algorithms 
which search arrays of numerical keys. However, it is very sensitive to a 
non-uniform [0,1] distribution of the keys. Simulations show that the interpo
lation search can lose its O(log log n) behaviour under some non-uniform key 
distributions. 
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While it is relatively simple in theory to adjust the algorithm to work 
suitably even when keys are not distributed uniformly, difficulties can arise in 
practice. First of all, it is necessary to know how the keys are distributed and 
this information may not be available. Furthermore, unless the keys follow a 
very simple probability distribution, the calculations required to adjust the 
algorithm for non-uniformities can become quite complex and hence imprac
tical. 

Interpolation search will not work if key values are repeated. 
Table 3.4 gives figures for the efficiency measures of the interpolation 

search for various array sizes. The most important cost in the algorithm is 
the computation of the interpolation formula. For this reason, we will count 
the number of times the body of the while loop is executed (An). The amount 
Ln is the average of the worst-case An for every file. 

Table 3.4: Simulation results for interpolation search. 

nJ E[A~] 
5 0.915600±0.000039 1.45301 ±0.00014 1.28029 ±O .00009 

10 1.25143±0.0001O 2.18449±0.00024 1.50459±0.00015 
50 1.91624±0.00029 3.83115±0.00083 2.02709 ±O .00032 

100 2.15273±0.00040 4.5588±0.0013 2.23968±0.00042 
500 2.60678±0.00075 6.1737±0.0029 2.67133±0.00073 

1000 2.7711±0.001O 6.8265±0.0040 2.83241±0.00094 
5000 3.0962±0.0018 8.2185±0.0084 3.1551±0.0017 

10000 3.2173±0.0023 8.749 ±0.012 3.2760±0.0022 
50000 3.4638±0.0043 9.937 ±0.025 3.5221±0.0043 

From the above results we can see that the value for E[An] is close to the 
value of log2 log2 n; in particular under the arbitrary assumption that 

for n ~ 500, then 

a = 1.0756 ± 0.0037 f3 -0.797 ± 0.012 

References: 
[Kruijer, I1.S.M., 74], [Waters, S.J., 75], [Whitt, J.D. et ai., 75], [Yao, A.C-C. 
et ai., 76], [Gonnet, G.I1., 77], [Perl, Y. et ai., 77], [Gotlieb, C.C. et ai., 78], 
[Perl, Y. et ai., 78], [Franklin, W.R., 79], [van der Nat, M., 79], [Burton, F.W. 
et ai., 80], [Gonnet, G.II. et ai., 80], [Ehrlich, G., 81], [Lewis, G.N. et ai., 
81]' [Burkhard, W.A., 83], [Mehlhorn, K. et ai., 85], [Santoro, N. et ai., 85], 
[Manolopoulos, Y.P. et ai., 87], [Carlsson, S. et ai., 88], [Manber, U., 89]. 
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3.2.3 Interpolation-sequential search 

This algorithm is a combination of the interpolation (see Section 3.2.2) and 
sequential search methods (see Section 3.1). An initial interpolation probe is 
made into the table, just as in the interpolation algorithm; if the given element 
is not found in the probed position, the algorithm then proceeds to search 
through the table sequentially, forwards or backwards depending on which 
direction is appropriate. Let An and A~ be random variables representing the 
number of array accesses for successful and unsuccessful searches respectively. 
We have 

2 ~ r(n) (I k( )n-k 
E[An] = 1 + n L...J r(k)r(n _ k) k n) 1 - kin 

k=l 

(n1r) 1/2 7 = 1+ 32 (1- 12n)+0(n-1 ) 

E[A~] 
2 n-1 (k 

--1 + 2 L -Ik/n(k + l,n - k) 
n + k=l n 

k+ 1 ) - n + 1 Ik/n(k + 2, n - k) 

= ( n1r) 1/2 
32 + 0(1) 

As with the standard interpolation search (see Section 3.2.2), this method 
requires an interpolation formula ¢ such as ¢( a, n) = rna 1 or ¢( a, n) = 
L na + 1 J; for the code below we use the latter. 

Interpolation--sequential search 

function search( key: typekey; var r: dataarray) : integer; 
var J : integer; 

begin 
if n > 1 then 

begin 
{*** initial probe location ***} 
j := trunc«key-r[I].k) I (r[n].k-r[I].k) * (n-l)) + 1; 
if key < rlJJ.k then 

while (j>I) and (key<rIJ].k) do j := j-l 
else while (j<n) and (key>rIJ].k) do j := j+l 

end 
else j := 1; 
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if rfJ].k = key then search := j {*** found( rfJn ***} 
else search := -1; {*** notfound( key) ***} 

end; 

Asymptotically, this algorithm behaves significantly worse than the pure 
interpolation search. Note however, that for n < 500 it is still more efficient 
than binary search. 

When we use this search technique with external storage, we have a signif
icant improvement over the internal case. Suppose we have storage buckets of 
size b (that is, each physical I/O operation reads in a block of b records); then 
the number of external accesses the algorithm must make to find a record is 
given by 

E[En] = 1 + } (;;) 1/2 + O(n-1/2) 

In addition to this reduction the accessed buckets are contiguous and hence 
the seek time may be reduced. 

Table 3.5 lists the expected number of accesses required for both successful 
and unsuccessful searches for various table sizes. 

Table 3.5: Exact results for interpolation-sequential search. 

n I E[An] I E[A~] I 
5 1.5939 1.9613 

10 1.9207 2.3776 
50 3.1873 3.7084 

100 4.1138 
500 7.9978 

1000 10.9024 
5000 23.1531 

10000 32.3310 

References: 
[Gonnet, G.H. et al., 77]. 

3.3 Hashing 

Hashing or scatter storage algorithms are distinguished by the use of a hash
ing function. This is a function which takes a key as input and yields an 
integer in a prescribed range (for example, [0, m-1]) as a result. The function 
is designed so that the integer values it produces are uniformly distributed 
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throughout the range. These integer values are then used as indices for an 
array of size m called the hashing table. Records are both inserted into 
and retrieved from the table by using the hashing function to calculate the 
required indices from the record keys. 

When the hashing function yields the same index value for two different 
keys, we have a collision. Keys which collide are usually called synonyms. 
A complete hashing algorithm consists of a hashing function and a method 
for handling the problem of collisions. Such a method is called a collision 
resolution scheme. 

There are two distinct classes of collision resolution schemes. The first 
class is called open-addressing. Schemes in this class resolve collisions by 
computing new indices based on the value of the key; in other words, they 
'rehash' into the table. In the second class of resolution schemes, all elements 
which 'hash' to the same table location are linked together in a chain. 

To insert a key using open-addressing we follow a sequence of probes in the 
table. This sequence of probe positions is called a path. In open-addressing 
a key will be inserted in the first empty location of its path. There are at 
most m! different paths through a hashing table and most open-addressing 
methods use far less paths than m! Several keys may share a common path or 
portions of a path. The portion of a path which is fully occupied with keys 
will be called a chain. 

The undesirable effect of having chains longer than expected is called clus
tering. There are two possible definitions of clustering. 

(1) Let p = 6(ml:) be the maximum number of different paths. We say that 
a collision resolution scheme has k + 1 clustering if it allows p different 
circular paths. A circular path is the set of all paths that are obtained 
from circular permutations of a given path. In other words, all the paths 
in a circular path share the same order of table probing except for their 
starting position. 

(2) If the path depends exclusively on the first k initial probes we say that 
we have k-clustering. 

It is generally agreed that linear probing suffers from primary clustering, 
quadratic and double hashing from secondary clustering, and uniform and 
random probing from no clustering. 

Assume our hashing table of size m has n records stored in it. The quantity 
a = n/m is called the load factor of the table. We will let An be a random 
variable which represents the number of times a given algorithm must access 
the hashing table to locate any of the n elements stored there. It is expected 
that some records will be found on the first try, while for others we may have 
to either rehash several times or follow a chain of other records before we 
locate the record we want. We will use Ln to denote the length of the longest 
probe sequence needed to find any of the n records stored in the table. Thus 
our random variable An will have the range 
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Its actual value will depend on which of the n records we are looking for. 
In the same way, we will let A~ be a random variable which represents the 

number of accesses required to insert an n + lth element into a table already 
containing n records. We have 

l$A~$n+l 

The search for a record in the hashing table starts at an initial probe 
location calculated by the hashing function, and from there follows some pre
scribed sequence of accesses determined by the algorithm. If we find an empty 
location in the table while following this path, we may conclude that the de
sired record is not in the file. Thus it is important that an open-addressing 
scheme be able to tell the difference between an empty table position (one 
that has not yet been allocated) and a table position which has had its record 
deleted. The probe sequence may very well continue past a deleted position, 
but an empty position marks the end of any search. When we are inserting 
a record into the hashing table rather than searching for one, we use the first 
empty or deleted location we find. 

Let 

and 

C~ = E[A~]. 

Cn denotes the expected number of accesses needed to locate any individual 
record in the hashing table while C~ denotes the expected number of accesses 
needed to insert a record. Thus 

Below we give code for several hash table algorithms. In all cases we will 
search in an array of records of size m, named r, with the definition in Pascal 
being 

Search array definition 

type datarecord = record ... k: typekey; ... end; 
dataarray = al'ray [O .. m-l] of datarec01-d; 

var n: integer; {*** Number of keys in Ilash table ***} 
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procedure insert( new: typekey; var r: dataarray); 
function search(key: typekey; var r: dataarray) : -1 .. m-l; 

{*** auxiliary functions ***} 
function deleted( r( a] : datarecord) : boolean; 
function empty( r( ,] : datarecord) : boolean; 
function hashfunction(key : typekey) : 0 .. m-l; 
function increment(key: typekey) : 1 .. m-l; 

and in C being 

Search array definition 

typedef struct { ... typekey k; ... } datarecord, dataarray[]; 
typedef int boolean; 

int n; /*** Number of keys in hash table ***/ 

void insert( new, r) typekey new; dataarray r; 
int search(key, r) typekey key; dataarray r; 

/*** auxiliary functions ***/ 
boolean deleted( ri) datarecord *ri; 
boolean empty( ri) datarecord *ri; 
int hashfunction(key) typekey key; 
int increment(key) typekey key; 

The key value being searched is stored in the variable key. There ex
ist functions (or default values) that indicate whether an entry is empty 
(empty(r[z1» or indicate whether a value has been deleted (deleted(r[i])). 
The hashing functions yield values between 0 and m - 1. The increment func
tions, used for several double-hashing algorithms, yield values between 1 and 
m-1. 

General references: 
[Peterson, W.W., 57], [Schay, G. et al., 63], [Batson, A., 65], [Chapin, N., 69], 
[Chapin, N., 69], [Bloom, B.H., 70], [Coffman, E.G. et al., 70], [Collmeyer, A.J. 
et al., 70], [Knott, G.D., 71], [Nijssen, G.M., 71], [Nijssen, G.M., 71], [Price, 
C.E., 71], [Williams, J.G., 71], [Webb, D.A., 72], [Bays, C., 73], [Knuth, D.E., 
73], [Aho, A.V. et al., 74], [Bayer, R., 74], [Montgomery, A.Y., 74], [Roth
nie, J.B. et al., 74], [Bobrow, D.G., 75], [Deutscher, R.F. et al., 75], [Ghosh, 
S.P. et al., 75], [Maurer, W.D. et al., 75], [Goto, E. et al., 76], [Guibas, L.J., 
76], [Horowitz, E. et al., 76], [Sassa, M. et al., 76], [Severance, D.G. et al., 
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76], [Clapson, P., 77], [Reingold, E.M. et al., 77], [Rosenberg, A.L. et al., 77], 
[Gotlieb, C.C. et al., 78], [Guibas, L.J., 78], [Halatsis, C. et al., 78], [Kollias, 
J.G., 78], [Kronsjo, L., 79], [Mendelson, H. et al., 79], [Pippenger, N., 79], [R0-
mani, F. et al., 79], [Scheurmann, P., 79], [Larson, P., 80], [Lipton, R.J. et al., 
80], [Standish, T.A., 80], [Tai, K.C. et al., 80], [Bolour, A., 81], [Litwin, W., 
81], [Tsi, K.T. et al., 81], [Aho, A.V. et al., 83], [Nishihara, S. et al., 83], [Rein
gold, E.M. et al., 83], [Larson, P., 84], [Mehlhorn, K., 84], [Torn, A.A., 84], 
[Devroye, L., 85], [Szymanski, T.G., 85], [Badley, J., 86], [Jacobs, M.C.T. et 
al., 86], [van Wyk, C.J. et al., 86], [Felician, L., 87], [Ramakrishna, M.V., 87], 
[Ramakrishna, M.V. et al., 88], [Ramakrishna, M.V., 88], [Christodoulakis, S. 
et al., 89], [Manber, U., 89], [Broder, A.Z. et al., 90], [Cormen, T.H. et al., 
90], [Gil, J. et al., 90]. 

3.3.1 Practical hashing functions 

For all the hashing algorithms we assume that we have a hashing function 
which is 'good', in the sense that it distributes the values uniformly over the 
table size range m. In probabilistic terms for random keys k1 and k2 this is 
expressed as 

Pr{h(kt) = h(k2)} ~ ~ 
m 

A universal class of hashing functions is a class with the property that 
given any input, the average performance of all the functions is good. The 
formal definition is equivalent to the above if we consider h as a function 
chosen at random from the class. For example, h(k) = (ak + b) mod m with 
integers a i= 0 and b is a universal class of hash functions. 

Keys which are integers or can be represented as integers, are best hashed 
by computing their residue with respect to m. If this is done, m should be 
chosen to be a prime number. 

Keys which are strings or sequences of words (including those which are 
of variable length) are best treated by considering them as a number base b. 
Let the string s be composed of k characters Sl S2 ... Sk. Then 

h(s) = (~BiSk_i) mod m 

To obtain a more efficient version of this function we can compute 

h(s) = ((~BiSk_i) mod 2W) mod m 

where w is the number of bits in a computer word, and the mod 2Woperation 
is done by the hardware. For this function the value B = 131 is recommended, 
as Bi has a maximum cycle mod 2k for 8 ~ k ~ 64. 
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Hashing function for strings 

int hashfunction(s) 
char *8; 

{ int i; 

} 

for(i=O; *8; s++) i = 13hi + *8; 
return ( i % m); 

References: 
[Maurer, W.D., 68], [Bjork, H., 71], [Lum, V.Y. et ai., 71], [Forbes, K., 72], 
[Lum, V.Y. et ai., 72], [Ullman, J.D., 72], [Gurski, A., 73], [Knuth, D.E., 73], 
[Lum, V.Y., 73], [Knott, G.D., 75], [Sorenson, P.G. et ai., 78], [Bolour, A., 
79], [Carter, J.L. et ai., 79], [Devillers, R. et ai., 79], [Wegman, M.N. et ai., 
79], [Papadimitriou, C.H. et ai., 80], [Sarwate, D.V., 80], [Mehlhorn, K., 82], 
[Ajtai, M. et ai., 84], [Wirth, N., 86], [Brassard, G. et ai., 88], [Fiat, A. et ai., 
88], [Ramakrishna, M.V., 88], [Sedgewick, R., 88], [Fiat, A. et ai., 89], [Naor, 
M. et ai., 89], [Schmidt, J.P. et ai., 89], [Siegel, A., 89], [Mansour, Y. et ai., 
90], [Pearson, P.K., 90], [Schmidt, J.P. et ai., 90]. 

3.3.2 Uniform probing hashing 

Uniform probing hashing is an open-addressing scheme which resolves colli
sions by probing the table according to a permutation of the integers [I,m]. 
The permutation used depends only on the key of the record in question. Thus 
for each key, the order in which the table is probed is a random permutation of 
all table locations. This method will equally likely use any of the m! possible 
paths. 

Uniform probing is a theoretical hashing model which has the advantage 
of being relatively simple to analyze. The following list summarizes some of 
the pertinent facts about this scheme: 

I nAt 
Pr{An > k} = k 

Tn='-

where nAt denotes the descending factorial, that is, nAt = n(n-1) ... (n-k+1). 

m+1 
E[An] = Cn = --(Hm+1 - Hm-n+t) ~ -a-lIn (1- a) 

n 

_2(-,-m_+_l",,=") _ C (C 1) 
+2 n n+ m-n 

~ _2_ + a-lIn (1- a) _ a- 2 In2(1- a) 
I-a 
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m+1 
Cm = --(Hm+l - 1) = In m + 'Y - 1 + 0(1) 

m 

cwor.t file n+1 
= n 2 

E[A~l C' m+1 1 
= = ~ n m-n+1 I-a 

(m + l)n(m - n) a 
(m-n+1)2(m-n+2) ~ (1-a)2 

C:,. = m 

C~ wor,t file = C~ = m+1 
m-n+1 

E[Lnl = -log,. m + log,. (-log,. m) + 0(1) 

E[Lml = 0.631587 ... X m + 0(1) 

E[k ... 1 n!. (m - n)i + m + 1) 
eys reqmrmg , accesses = mi. i( i + 1) 

Table 3.6 gives figures for some of the quantities we have been discussing 
in the cases m = 100 and m = 00. 

Table 3.6: Exact results for uniform probing hashing. 

m= 100 m=oo 
d n d n 

50% 1.3705 0.6358 1.9804 1.3863 0.6919 2.0 
80% 1.9593 3.3837 4.8095 2.0118 3.9409 5.0 
90% 2.4435 8.4190 9.1818 2.5584 10.8960 10.0 
95% 2.9208 17.4053 16.8333 3.1534 26.9027 20.0 
99% 3.7720 44.7151 50.0 4.6517 173.7101 100.0 

It does not seem practical to implement a clustering-free hashing function. 

Double hashing (see Section 3.3.5) behaves very similarly to uniform prob
ing. For all practical purposes they are indistinguishable. 
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References: 
[Furukawa, K., 73], [Knuth, D.E., 73], [Ajtai, M. et al., 78], [Gonnet, G.H., 80], 
[Gonnet, G.H., 81], [Greene, D.H. et al., 82], [Larson, P., 83], [Yao, A.C-C., 
85], [Ramakrishna, M.V., 88], [Schmidt, J.P. et al., 90). 

3.3.3 Random probing hashing 

This is an open-addressing hashing scheme in which collisions are resolved by 
additional probes into the table. The sequence of these probes is considered 
to be random and depends only on the value of the key. The difference 
between this scheme and uniform probing is that here some positions may 
be repeated in the probe sequence, whereas in uniform probing no position 
is examined more than once. Random probing is another theoretical model 
which is relatively simple to analyze. 

The pertinent formulas for this scheme are given by: 

Pr{A~ > k} = ok 

= '!!!..(Hm - Hm - n ) = -a-lIn (1- a) + 0 (_1_) 
n m-n 

2m2 (H(2) - H(2) ) - C (C + 1) n m m-n n n 

_2_ + a-lIn (1- a) _ a-2 In2(1- a) + 0 (_1_) 
1-0 m-n = 

= 2m H(2) - H - H2 m m m 

11"3 
3" - In2 711 - (1 + 2,) In m + 0(1) 

cwor• t file - 00 
n -

E[A~] = C~ 
1 

1-0 

All collision resolution schemes that do not take into account the future probe 
sequences of the colliding records have the same expected successful search 
time under random probing. 
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Table 3.7: Exact results for random probing hashing. 

m = 100 I m=oo 
c' n 

50% 1.3763 0.6698 2.0 1.3863 0.6919 2.0 
80% 1.9870 3.7698 5.0 2.0118 3.9409 5.0 
90% 2.5093 10.1308 10.0 2.5584 10.8960 10.0 
95% 3.0569 23.6770 20.0 3.1534 26.9027 20.0 
99% 4.2297 106.1598 100.0 4.6517 173.7101 100.0 

Table 3.7 gives figures for some of the basic complexity measures in the 
case of m = 100 and m = 00. 

Notice that the asymptotic results (m -+ 00; a fixed) coincide with uniform 
probing, while for finite values of m, uniform probing gives better results. 

Random probing could be implemented using pseudo-random probe lo
cations; it does not seem, however, to be a good alternative to the double 
hashing algorithm described in Section 3.3.5. 

References: 
[Morris, R., 68], [Furukawa, K., 73], [Larson, P., 82], [Celis, P. et al., 85], 
[Celis, P., 85], [Celis, P., 86], [Poblete, P.V. et al., 89], [Ramakrishna, M.V., 
89]. 

3.3.4 Linear probing hashing 

Linear probing is an open-addressing hashing algorithm that resolves colli
sions by probing to the next table location modulo m. In other words, it 
probes sequentially through the table starting at the initial hash index, pos
sibly running until it reaches the end of the table, rolling to the beginning of 
the table if necessary, and continuing the probe sequence from there. This 
method resolves collisions using only one circular path. For this model: 

~ (1 + L (n -Ie!)!£.) 
2 Ie~O m 

1 ( 1) 1 ( -2) 2 1 + 1 _ a - 2( 1 _ a )3m + 0 m 
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= 
a(a2 - 3a + 6) 

12(1- a)3 
3a + 1 2 

2(1- a)5m + O(m- ) 

c(wor't file) = 
n 

n+1 
2 

1 V1rm/ 8 + - + O(m- 1/ 2 ) 
3 

E[A~] = C~ ~ (1 + L: (k :~)n!.) 
A:~O 

1 ( 1) 3a -2 2 1 + (1 _ a)2 - 2(1- a)4m + O(m ) 

u2(An') = ! " (k + 1)(k2 + 3k + 5) n!. _ (C')2 
6 + L..J 12 mAl n 

A:~O 

3(1- a)-4 
4 

2(1 - a)-3 1 a(8a + 9) + O(m-2) 
3 - 12 - 2(1 - a)6m 

Ln = O(logn) (a < 1) 

C'(wor,t file) _ 1 + n(n + 1) 
n - 2m 

We denote the hashing table as an array r, with each element r[i] having 
a key k. 

Linear probing hashing: search 

function search(key: typekey; var r: dataarray) : integer; 
var i, last: integer; 

begin 
i := hashJundion( key) ; 
last := (i+n-1) mod m; 
while (i<>last) and (not empty(r[z])) and (r[z].k<>key) do 

i := (i+1) mod m; 
if r[z].k=key then search:= i {*** Jound(r[z]) ***} 

else search:= -1; {*** notJound(key) ***} 
end; 
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Linear probing hashing: insertion 

procedure insert(key : typekey; var r: dataarray); 
var i, last: integer, 

begin 
i := hashfunction(key) 
last := (i+m-l) mod m; 
while (i<>last) and (not empty(r(z))) 

and (not deleted(r(z))) and (r(z].k<>key) do 
i := (i+l) mod m; 

if empty( r( z]) or deleted( r( z]) then 
begin 
{*** insert here ***} 
r(z].k:= key; 
n := n+l 
end 

else Error {*** table full, or key already in table ***}; 
end; 

Linear probing hashing uses one of the simplest collision resolution tech
niques available, requiring a single evaluation of the hashing function. It 
suffers, however, from a piling-up phenomenon called primary clustering. 
The longer a contiguous sequence of keys grows, the more likely it is that 
collisions with this sequence will occur when new keys are added to the table. 
Thus the longer sequences grow faster than the shorter ones. Furthermore, 
there is a greater probability that longer chains will coalesce with other chains, 
causing even more clustering. This problem makes the linear probing scheme 
undesirable with a high load factor O!. 

It should be noted that the number of accesses in a successful or unsuc
cessful search has a very large variance. Thus it is possible that there will be a 
sizable difference in the number of accesses needed to find different elements. 

It should also be noted that given any set of keys, the order in which the 
keys are inserted has no effect on the total number of accesses needed to install 
the set. 

An obvious variation on the linear probing scheme is to move backward 
through the table instead offorward, when resolving collisions. Linear probing 
can also be used with an increment q > 1 such that q is co-prime with m. 
More generally, we could move through a unique permutation of the table 
entries, which would be the same for all the table; only the starting point 
of the permutation would depend on the key in question. Clearly, all these 
variations would exhibit exactly the same behaviour as the standard linear 
probing model. 
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As noted previously, deletions from the table must be marked as such for 
the algorithm to work correctly. The presence of deleted records in the table is 
called contamination, a condition which clearly interferes with the efficiency 
of an unsuccessful search. When new keys are inserted after deletions, the 
successful search is also deteriorated. 

Up until now, we have been considering the shortcomings of linear prob
ing when it is used to access internal storage. With external storage, the 
performance of the scheme improves significantly, even for fairly small stor
age buckets. Let b be the blocking factor, that is, the number of records per 
storage bucket. We find that the number of external accesses (En) is 

E - 1 An-1 
n - + b 

while the number of accesses required to insert an n + lth record is 

A' -1 
E~ = 1+ \ 

Furthermore, for external storage, we may change the form of the algo
rithm so that we scan each bucket completely before examining the next 
bucket. This improves the efficiency somewhat over the simplest form of the 
linear probing algorithm. 

Table 3.8 gives figures for the efficiency of the linear probing scheme with 
m = 100, and m = 00. 

Table 3.8: Exact results for linear probing hashing. 

C' n 

I m-oo m = 100 

50% 1.4635 1.2638 2.3952 1.5 1.5833 2.5 
80% 2.5984 14.5877 9.1046 3.0 35.3333 13.0 
90% 3.7471 45.0215 19.6987 5.5 308.25 50.5 
95% 4.8140 87.1993 32.1068 10.5 2566.58 200.5 
99% 6.1616 156.583 50.5 50.5 330833.0 5000.5 

References: 
[Schay, G. et al., 62], [Buchholz, W., 63], [Tainiter, M., 63], [Konheim, A.G. 
et al., 66], [Morris, R., 68], [Kral, J., 71], [Knuth, D.E., 73], [van der Pool, 
J.A., 73], [Bandyopadhyay, S.K., 77], [Blake,I.F. et al., 77], [Lyon, G.E., 78], 
[Devillers, R. et al., 79], [Larson, P., 79], [Mendelson, H. et at., 80], [Quittner, 
P. et at., 81], [Samson, W.B., 81], [Larson, P., 82], [Mendelson, H., 83], [Pflug, 
G.C. et at., 87], [Pittel, B., 87], [Poblete, P.V., 87], [Aldous, D., 88], [Knott, 
G.D., 88], [Sedgewick, R., 88], [Schmidt, J.P. et al., 90]. 
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3.3.5 Double hashing 

Double hashing is an open-addressing hashing algorithm which resolves colli
sions by means of a second hashing function. This second function is used to 
calculate an increment less than m which is added on to the index to make 
successive probes into the table. Each different increment gives a different 
path, hence this method uses m - 1 circular paths. We have 

E[An] = Cn = -a-lIn (1 - a) + 0(1) 

E[A~] = C' = n (1- 0')-1 + 0(1) 

lim Pr{Ln = O(log n)} = 1 
n-oo 

(a < 0.319 ... ) 

(a < 0.319 ... ) 

Actually, double hashing is not identical to uniform probing (see Sec
tion 3.3.2). For example, if m = 13 then 

CPa0ub. ha.h. _ cfaniJ. prob. = 0.0009763 ... 

Below we give descriptions of search and insertion algorithms which im
plement the double hashing scheme. Both algorithms require the table size 
m to be a prime numberj otherwise there is the possibility that the probe 
sequence, for some keys, will not cover the entire table. 

Double hashing: search 

function search(key: typekeYj var r: dataarray) : integer; 
var i, inc, last : integer; 

begin 
i := hash/unction( key) j 

inc := increment( key) j 

last := (i+(n-1)*inc) mod mj 
while (i<>last) and (not empty(r[z])) and (r[a].k<>key) do 

i := (i+inc) mod mj 
if r[a].k=key then search:= i {*** /ound(r[a]) ***} 

else search := -1 j {*** not/ound( key) ***} 
endj 
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Double hashing: insertion 

procedure insert(key : typekey; var r: dataarray); 
var i, inc, last: integer; 

begin 
i := hashfunction(key) 
inc := increment(key); 
last := (i+(m-l)*inc) mod m; 
while (i<>last) and (not empty(r(a])) 

and (not deleted(r(a])) and (r(a].k<>key) do 
i := (i+inc) mod m; 

if empty( r( a]) or deleted( r( a]) then 
begin 
{*** insert here ***} 
r(z].k := key; 
n := n+l 
end 

else Error {*** table full, or key already in table ***}; 
end; 

Double hashing is a practical and efficient hashing algorithm. Since the 
increment we use to step through the table depends on the key we are searching 
for, double hashing does not suffer from primary clustering. This also implies 
that changing the order of insertion of a set of keys may change the average 
number of accesses required to do the inserting. Thus several reorganization 
schemes have been developed to reorder insertion of keys in ways which make 
double hashing more efficient. 

If the initial position and the increment are not independent, the resulting 
search path cannot be considered random. For example if the initial position 
and the increment have the same parity, the i + inc, i + 3 * inc, i + 5 * inc, etc. 
will all be even. This is called the parity problem in hashing. This problem 
is solved by insisting that hashfunction(k) and increment(k) behave like 
independent random variables. 

As with linear probing (see Section 3.3.4), deletion of records leads to 
contamination and decreases the efficiency of the unsuccessful search. When 
new keys are inserted after deletions, the successful search is also deteriorated. 
The unsuccessful search can be improved by keeping in a counter the length 
of the longest probe sequence (lips) in the file. Thus the search algorithm is 
the same as before, except that the variable last is computed as 

last := (i+(lIps-l)*inc) mod m; 

Whenever we insert a new key we may need to update this counter. 
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Extensive simulations show that it is practically impossible to establish 
statistically whether double hashing behaves differently from uniform probing 
(see Section 3.3.2). For example we would need a sample of 3.4 x 107 files 
of size 13 to show statistically with 95% confidence that double hashing is 
different from uniform probing. Table 3.9 list some sample results. 

Table 3.9: Simulation results for double hashing. 

m = 101 
c' n 

51 I.37679±0.00009 0.6557 ±O .0003 4.5823±0.0012 2.00159±0.000I2 
81 1.96907 ±0.00021 3.4867±0.0020 11.049±0.004 4.87225±0.00088 
91 2.45611±0.00036 8.6689±0.0062 18.159±0.009 9.2966±0.0028 
96 2.93478±0.00058 17.849±0.016 27.115±0.017 17.0148±0.0073 

100 3.7856±0.0013 50.292±0.069 48.759±0.045 51.0 
n m = 4999 

2500 1.386I7±0.0001O 0.6914±0.0003 9.340±0.01O 1.99997 ±0.00012 
3999 2.01054±0.00022 3.9285±0.0025 25.612±0.041 4.9952±0.0010 
4499 2.55599±0.00039 10.845±0.009 48.78±0.10 9.9806±0.0039 
4749 3.14830±0.00073 26.650±0.036 88.59±0.25 19.941±0.015 
4949 4.6249±0.0032 166.73±0.75 318.8±2.2 97.93±0.3I 

References: 
[Bell, J.R. et al., 70], [Bookstein, A., 72], [Luccio, F., 72], [Knuth, D.E., 73], 
[Guibas, L.J., 76], [Guibas, L.J. et al., 78], [Samson, W.B., 81], [Yao, A.C-C., 
85], [Lueker, G.s. et al., 88], [Sedgewick, R., 88], [Schmidt, J.P. et al., 90]. 

3.3.6 Quadratic hashing 

Quadratic hashing is an open-addressing algorithm that resolves collisions by 
probing the table in increasing increments modulo the table size, that is, h(k), 
h(k)+I, h(k)+4, h(k)+9, .... If the increments are considered to be a random 
permutation of the integers 1, ... , m, we obtain the following results 

n + 1 n_l 
E[An] = Cn -n-(Hm+l - Hm-n+d + 1- 2(m + 1) + O(n ) 

a 
~ 1-ln(l-a)-2 

E[A~] = C~ m+l n 1 
----:-1 - --1 + H m +1 - H m - n+1 + O(m- ) 
m-n+ m+ 

~ (1 - a)-1 - a -In (1 - a) 
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Quadratic hashing: search 

function search(key: typekey; var r: dataarray) : integer, 
var i, inc: integer, 

begin 
i := hashfunction( key) ; 
inc := 0; 
while (inc<m) and (not empty(r(z])) and (r(z].k<>key) do 

begin 
i := (i+inc+l) mod m; 
inc := inc + 2 
end; 

if r(z].k=key then search:= i {*** found(r(a]) ***} 
else search:= -1; {*** notfound(key) ***} 

end; 

Quadratic hashing: insertion 

procedure insert(key : typekey; var r: dataarray); 
var i, inc : integer, 

begin 
i := hashfunction(key); 
inc := 0; 
while (inc<m) and (not empty(r(z])) and 

(not deleted(r(z])) and (r(z].k<>key) do begin 
i := (i+inc+l) mod m; 
inc := inc + 2; 
end; 

if empty( r( a)) or deleted( r( a)) then 
begin 
{*** insert here ***} 
r(z].k := key; 
n:= n+l 
end 

else Error {*** table full, or key already in table ***}; 
end; 

Quadratic hashing requires a single hashing function evaluation per search. 
It suffers, however, from a slight piling-up phenomenon called secondary 
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clustering. 
This algorithm may fail to insert a key after the table is half full. This is 

due to the fact that the ith probe coincides with the m - ith probe. This can 
be solved by the use of the probe sequence h(k), h(k) + 1, h(k) - 1, h(k) + 4, 
h(k) - 4, ... whenever m is a prime of the form 4k + l. 

Table 3.10 show some simulation results for quadratic hashing. Fn indi
cates the average number of times that the algorithm failed during insertion. 
These simulation results are not in close agreement with the proposed formu
las for secondary clustering. 

Table 3.10: Simulation results for quadratic hashing. 

m = 101 
c' n 

51 l.4141O±0.00011 4.9875±0.0013 2.11837 ±0.00008 < 10.0 

81 2.06278±0.00025 11.5711±0.0043 5.12986±0.00031 < 10-6 

91 2.56693±0.00040 18.5212±0.0090 9.52385±0.00062 < 10-5 

96 3.03603±0.00061 26.569±0.015 16.9118±0.0012 < 0.00026 
100 3.69406±0.00098 37.217±0.020 38.871287 0.5709±0.0019 

m = 4999 
2499 l.42869±0.00012 1O.380±0.011 2.13732±0.00010 < 0.000027 
3999 2.15350±0.00032 28.165±0.043 5.6080±0.0009 < 0.000055 
4499 2.77974±0.00064 51.98±0.11 1l.2084±0.0038 < 0.000089 
4749 3.4385±0.0012 91.85±0.27 2l.6824±0.0094 < 0.00014 
4949 4.9699±0.0040 317.3±2.2 99.261±0.027 < 0.00048 

References: 
[Maurer, W.D., 68], [Bell, J .R., 70], [Day, A.C., 70], [Radke, C.E., 70], [Hop
good, F.R.A. et a/., 72], [Knuth, D.E., 73], [Ackerman, A.F., 74], [Ecker, 
A., 74], [Nishihara, S. et a/., 74], [Batagelj, V., 75], [Burkhard, W.A., 75], 
[Santoro, N., 76], [Wirth, N., 76], [Samson, W.B. et a/., 78], [Wirth, N., 86], 
[Wogulis, J., 89]. 

3.3.7 Ordered and split-sequence hashing 

It is easy to verify that the average access time for uniform probing (see 
Section 3.3.2), double hashing (see Section 3.3.5), and quadratic hashing (see 
Section 3.3.6) depends not only on the keys, but also on the order in which 
these keys are inserted. Although the absolute order of insertion is difficult to 
alter, the algorithms described in this and the following sections will simulate 
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altering the order of insertion. That is, if convenient, keys already in the table 
are moved to make room for newly inserted keys. 

In this section we present two techniques that assume we can define an 
order relation on the keys in the table. 

Ordered hashing is a composition of a hashing step, followed by double 
hashing collision resolution. Furthermore, ordered hashing reorders keys to 
simulate the effect of having inserted all the keys in increasing order. To 
achieve this effect, during insertion, smaller value keys will cause relocation 
of larger value keys found in their paths. 

For the analysis of ordered hashing we assume, as for uniform probing (see 
Section 3.3.2), that the hashing function produces probing sequences without 
clustering. Let x be the probability that a randomly selected key in the file 
is less than the searched key. Then 

a = n/m 

Pr{A~(x) > k} 
n&. k 
-x 
m!. 

E[A' (x)] = '" n&. Xk = _1 __ 0'(1 - a)x2 + O(n-2) 
n L...J m!. 1 - ax (1 - ax)3m 

k~O 

n k 

= E[A~] = ~ m!.(~-+ 1) c' n 

= -a-11n(1-a)-.!. (30'-2 _l-a ln(l_a») +O(n-2) 
n 2(1-0') a 

c:,. = E[A:n] = Hm+1 

The values for An and Cn are the same as those for double hashing (see 
Section 3.3.5). 

Ordered hashing: search 

function search(key: typekey; var r: dataarray) : integer; 
var i, inc, last: integer; 

begin 
i := hashfunction( key) ; 
inc := increment(key) ; 
last := (i+(n-1)*inc) mod m; 
while (i<>last) and (not empty(r[z])) and (r[z1.k<key) do 

i := (i+inc) mod m; 
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if r(z].k=key then search:= i {*** found(r(z]) ***} 
else search := -1; {*** notfound( key) ***} 

end; 

Ordered hashing: insertion 

procedure insert(key : typekey; var r: dataarray); 
var i: integer; 

temp: typekey; 

begin 
if n>=m then Error {*** table is full ***} 
else begin 

i := hashfunction(key) ; 
while (not empty( r( zm and (not deleted( r[ 1m 

and (r(a].k<>key) do begin 
if r(z].k > key then begin 

{*** Exchange key and continue ***} 
temp := key; key:= r(a].k; r(a].k := temp 
end; 

i := (i+increment( key)) mod m 
end; 

if empty( r( a]) or deleted( r( z]) then begin 
{*** do insertion ***} 
r(zlk := key; 
n := n+1 
end 

else Error 
end 

end; 

{*** key already in table ***} 

This variation of double hashing (see Section 3.3.5) reduces the complexity 
of the unsuccessful search to roughly that of the successful search at a small 
cost during insertion. 

Table 3.11 shows simulation results for ordered hashing. We present the 
values for C~ since the values for Cn and Ln are expected to be the same as 
those for double hashing. 

Split-sequence hashing chooses one of two possible collision resolution 
sequences depending on the value of the key located at the initial probe posi
tion. When we search for a key k, we first compare k with the key k' stored 
in position h(k). If k = k' or h(k) is empty, the search ends. Otherwise we 
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Table 3.11: Simulation results on unsuccessful searches for ordered hashing. 

c' n 

m = 101 n m = 4999 

51 1.38888±0.00008 2500 1.38639 ±0.00007 
81 2.00449±0.00022 3999 2.01137±0.00022 
91 2.53016±0.00039 4499 2.55787 ±0.00041 
96 3.07959±0.00063 4749 3.15161±0.00071 

100 4.2530±0.0014 4949 4.6415±0.0021 

follow one of two possible probe sequences depending on k < k' or k > k'. 
For example, split linear probing uses an increment ql if k < k', or q2 if 

k > k', where ql and q2 are both co-prime with m. Similarly, we can define 
split quadratic hashing, split double hashing, and so on. 

Simulations show that split linear probing hashing can improve the average 
search time of linear probing by more than 50% for values of a near 1, for 
random keys. 

References: 
[Amble, O. et al., 74], [Lodi, E. et al., 85]. 

3.3.8 Reorganization schemes 

3.3.8.1 Brent's algorithm 

Brent's reorganization scheme is based on double hashing (see Section 3.3.5). 
This scheme will place a new key by moving forward at most one other key. 
The placement is done such that the total number of accesses (new key and 
old keys moved forward) is minimized. This is achieved by searching for the 
first empty location in the probing path of the new key or the paths of any of 
the keys in the path of the new key. 

Considering uniform probing, and a = n/m (the load factor), then 

a a 3 a 4 a 5 2a6 9a7 293a8 319a9 

Cn ~ 1 + "2 + "4 + 15 - 18 + 15 + 80 - 5670 - 5600 + ... 
Cm ~ 2.4941... 

Table 3.12 shows some values for Ca. 

lt has been conjectured and verified by simulation that 

Lm = O(..;m) 
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Table 3.12: Exact values for COl' 

0.50 1.2865 
0.80 1.5994 
0.90 1.8023 
0.95 1.9724 
0.99 2.2421 
1.00 2.4941 

The values for the unsuccessful search are identical to those for double 
hashing (see Section 3.3.5). 

Brent's reorganization hashing: insertion 

procedure insert(key : typekey; var r: dataarray); 
label 999; 
var i, ii, inc, init, j, jj: integer; 

begin 
init := hashfunction(key); 
inc := increment(key); 
for i:=O to n do 

for j:=i downto 0 do begin 
jj := (init + inc*J) mod m; 
ii := (jj + increment(r[jJ].k) * (i-J)) mod m; 
if empty( r( izl) or deleted( r( ill) then begin 

{*** move record forward *** } 
r(iz] := r[jJ]; 
{*** insert new in r[jJ] ***} 
r[jJ].k := key; 
n:= n+l; 
goto 999 {*** return ***} 
end 

end; 
Error {*** table full *** } ; 
999: 
end; 

The above algorithm will not detect the insertion of duplicates, that is, 
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elements already present in the table. 
The searching algorithm is identical to double hashing (see Section 3.3.5). 
This method improves the successful search at the cost of additional work 

during the insertion of new keys. This reorganization scheme allows us to 
completely fill a hashing table, while still keeping the average number of ac
cesses bounded by 2.5. The length of the longest probe sequence, which is the 
actual worst case for a random file, is also significantly reduced. 

For a stable table where its elements will be searched several times after 
insertion, this reorganization will prove very efficient. 

Table 3.13 summarizes simulation results for Brent's reorganization 
scheme. The columns headed by In count the number of elements accessed 
to insert a new key in the table. In gives an accurate idea of the cost of 
the reorganization. Note that the variance on the number of accesses is also 
greatly reduced. The simulation results are in excellent agreement with the 
predicted theoretical results. 

Table 3.13: Simulation results for Brent's hashing. 

m = 101 
nl 

51 1.27590±.00005 0.28021±.00007 2.9782±.0004 1.48412±.00012 
81 1.57687±.00009 0.76473±.00020 4.8400±.0010 2.49529±.00035 
91 1.76674±.0001l 1.25604±.00038 6.2819±.0015 3.50016±.00063 
96 1.91961±.00014 1.82723±.00062 7.7398±.0021 4.6333±.0010 

100 2.13671±.00018 3.1374±.0014 10.7624±.0040 7.1536±.0023 
101 2.24103±.00022 4.1982±.0024 13.0843±.0060 9.1732±.0038 

m = 4999 
2499 1.28628±.00005 0.29164±.00007 4.5115±.0030 1.49637±.00012 
3999 1.60044±.00009 0.80739±.00021 7.7687±.0064 2.55468±.00036 
4499 1.80448±.00012 1.35682±.00041 10.587±.010 3.64497±.00067 
4749 1.97535±.00014 2.03962±.00071 13.876±.015 4.9424±.001l 
4949 2.24480±.00021 3.9949±.0021 24.240±.037 8.4245±.0032 
4999 2.47060±.00030 10.195±.018 85.72±.29 18.468±.027 

References: 
[Brent, R.P., 73], [Feldman, J.A. et a/., 73], [Knuth, D.E., 73], [Tharp, A.L., 
79]. 

3.3.8.2 Binary tree hashing 

Binary tree hashing is based on double hashing (see Section 3.3.5). This 
scheme will insert a new key in the table by moving forward, if necessary, 
other keys. The placement is done such that the total number of accesses 
(new key and old keys moved forward) is minimized. This is achieved by 
searching for empty locations in the probing path of the new key or the paths 
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of the keys in its path or the paths of any keys in the path of the path, and 
so on. The name 'binary tree' comes from the fact that the algorithm probes 
locations following a binary tree pattern. 

Considering uniform probing, and a = nlm (the load factor), then 

a a 3 a 4 as 2a6 83a 7 613a8 69a9 

Cn ~ 1 + "2 + 4 + 15 - 18 + 105 + 720 + 5760 - 1120 + ... 
Cm ~ 2.13414 ... 

If Mn is the number of keys that are moved forward for an insertion, then 

a 2 a 3 2a4 as 8a6 101a7 506a8 
Mn ~ ---+-+-+-------- ... 

3 4 15 9 105 720 2835 

Mm ~ 0.38521... 

Table 3.14 shows exact values for these complexity measures. 

Table 3.14: Exact values for comparisons and moves. 

I a 

0.50 1.28517 0.06379 
0.80 1.57886 0.17255 
0.90 1.75084 0.24042 
0.95 1.88038 0.29200 
0.99 2.04938 0.35819 
1.00 2.13414 0.38521 

It is conjectured, and supported by simulation, that 

Lm = log2 m + 0(1) 

Binary tree reorganization hashing: insertion 

procedure insert(key : typekey; var r: dataarray); 
var i, inc, init, j: integer; 

function SearchM ove (init, inc, level: integer) : integer; 
{*** Find the first hole (empty location) at the given depth 

in the binary tree spanned by a key ***} 
label 999; 
var i, incl, j, k: integer; 
begin 
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i := (init + inc*/evel) mod m; 
if empty( r( aD or deleted( r( aD then SearchM ove := i 
else begin 

for j:=/evel-l downto 0 do begin 
i := (init + inc*J) mod m; 
incl := increment( r(a] .k); 
k := SearchMove«i+incl) mod m, incl, level-j-l); 
if k>-1 then begin 

{*** A hole was found, move forward ***} 
r(k] := r(J]; 
SearchM ove := i; 
goto 999 {*** return ***} 
end 

end; 
{*** Could not find hole ***} 
SearchMove := -1; 
end; 

999: 
end; 

begin 
in it := hashfunction(key); 
inc := increment(key); 
i:=O; j:=-I; 
while (i<=n) and (j<0) and (n<m) do begin 

j := SearchM ove( init, inc, i); 
i := i+l 
end; 

if j>-1 then begin 
{*** A hole was found, insert key ***} 
rL1lk := key; 
n := n+l 
end 

else Error {*** table is full *** }; 
end; 

Binary tree reorganization hashing: movement of entries 

function SearchM ove (init, inc, level: integer) : integer; 
{*** Find the first hole (empty location) at the given depth 

in the binary tree spanned by a key ***} 
label 999; 



var i, inc1, j, k : integer; 
begin 
i := (init + inc*/evel) mod m; 
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if empty( r[ I]) or deleted( r[ I]) then SearchM ove := i 
else begin 

for j:=/eve/-1 down to 0 do begin 
i := (init + inc*j) mod m; 
inc1 := increment(r[,J.k); 
k := SearchMove((i+inc1) mod m, incl, level-j-1); 
if k> -1 thell begin 

{*** A hole was found, move forward *** } 
r[k] := r[z]; 
SearchM ove := i; 
goto 999 {*** return ***} 
end 

end; 
{*** Could not find hole ***} 
SearchMove := -1; 
end; 

999: 
end; 

The above algorithm will not detect the insertion of duplicates, that is, 
elements already present in the table. 

This reorganization scheme significantly reduces the number of accesses for 
a successful search at the cost of some additional effort during the insertion 
of new keys. This algorithm is very suitable for building static tables, which 
will be searched often. 

Table 3.15 summarizes simulation results for the binary tree hashing reor
ganization scheme. The column headed by In counts the average number of 
elements accessed to insert a new key in the table. In gives an accurate idea 
of the cost of the reorganization. Note that the expected length of the longest 
probe sequence (Ln) is very short. On the other hand, the cost of inserting 
new elements is particularly high for full or nearly full tables. The simulation 
results are in excellent agreement with the predicted theoretical results. 

References: 
[Gonnet, G.H. et al., 77], [Mallach, E.G., 77], [Rivest, R.L., 7S], [Gonnet, G.II. 
et ai., 79], [Lyon, G.E., 79], [Madison, J .A.T., SO]. 

3.3.8.3 Last-come-first-scrved hashiug 

In open-addressing hashing, a new element is usually inserted in the first 
empty location found in its probe sequence (or first-come-first-served). The 
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Table 3.15: Simulation results for binary tree hashing. 

m = 101 
nl Ln I 

51 1.27475±.00005 2.9310±.0004 1.48633±.00011 0.061774±.000023 
81 1.55882±.00008 4.3938±.0007 2.56876±.00038 0.165760±.000039 
91 1.72359±.OOO10 5.2899±.0010 3.83135±.00085 0.228119±.000049 
96 1.84624±.00011 6.0181±.0013 5.6329±.0019 0.273611±.000058 

100 1.99963±.00017 7.0822±.0022 12.837±.014 0.327670±.000082 
101 2.06167±.00023 7.6791±.0034 31.54±.29 0.34760±.00011 

m = 4999 
2499 1.28485±.00005 4.3213±.0026 1.49835±.00012 0.063668±.000024 
3999 1.57955±.00008 6.6825±.OO51 2.62862±.00040 0.171101±.000041 
4499 1. 75396±.00010 8.1678±.0071 3.98929±.00092 0.236601±.000052 
4749 1.88698±.00013 9.4163±.0094 6.0202±.0021 0.285576±.000063 
4949 2.06221±.00019 11.403±.016 15.729±.017 O.347749±.000093 
4999 2.14844±.00067 13.344±.069 495±49 0.37645±.00032 

last-come-first-served (LCFS) technique exchanges the new element with the 
first element in its probe sequence, if there is a collision. The displaced key 
is then considered the new element, and the insertion continues in the same 
fashion. Therefore, an element stored in a table location is always the last 
one to have probed there. 

Assuming random probing, we have 

m 
E[An] = en = -(Hm - Hm- n) 

n 

(T2(An) = (m - 1 - Cn(m - n + I))Cn + m2 (H(2) _ H(2) ) 
m + 1 n( m + 1) m m-n 

:::::: _In(l-a) _1-a ln(l-a)+O(l/m) 
a a 2 

E[Ln] < 1 + r-l(am) (1 + Inln(I/(I- a)) + 0 ( 1 )) 
- lnr-l(am) In2r-l(am) 

where a = nlm. In comparison with random probing, the successful search 
time is the same, but the variance is logarithmic instead of linear. 

We can take advantage of this small variance by doing a centred search. 
That is, instead of searching the probe sequence hl, h2' ... , we search the 
probe sequence in decreasing probability order, according to the probability 
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of finding the key in the ith location of the sequence. For LCFS hashing, 
the probability distribution is a positive Poisson distribution with parameter 
A = -In(1 - a). Instead offollowing the optimal order, it is simpler to use a 
mode-centred search. In this case the mode is d = max(l, LAJ). Thus, we 
search the probe sequence in the order d, d + 1, d - 1, d + 2, d - 2, ... , 2d-
1, 1, 2d, 2d + 1,.... For a < 1 - e2 ~ 0.86466, mode-centred search is 
equivalent to the standard search. For a ~ 1 - e2 , we have 

Cn < 1- 2(I-a)L_ln(l_a)J + 2(IO:;+I)J-ln(1-a) 
a 3a 

This bound is not tight, but shows that Cn'for mode-centred search is roughly 
the square root of that of the standard algorithm when the table becomes full. 

A generalization of LCFS hashing is to probe s times before displacing a 
stored key. In this case, the optimal s is s = L-a-1ln(1- a)J. However, the 
variance only decreases by a constant smaller than 1.473, for anya. 

A disadvantage of LCFS, is that the number of data movements is larger 
than in random probing. 

References: 
[Cunto, W. et al., 88], [Poblete, P.V. et al., 89]. 

3.3.8.4 Robin Hood hashing 

Robin Hood hashing is another technique used to reduce the variance of the 
expected successful search time. During an insertion, when two keys collide, 
the key that has probed the most number of locations stays in that position, 
and the other continues probing. The name of this method reflects the fact 
that the key with the longer probe sequence (the poor) wins over the other 
key (the rich). Under random probing, we have the following results 

m 
E[An] = Cn = -(Hm - Hm- n) 

n 

q2(An) < q2(Am) :5 1.883 

E[Ln] < 3Cn + fln(m - 2)1 for n:5 m 

As for LCFS, we can replace the standard search by a centred search. For 
the optimal order we have en :5 2.57. Using a mean-centred search we 
have Cn :5 2.84. 

A disadvantage of Robin Hood hashing is that during an insertion we have 
to compute the length of the probe sequence for one of the keys. This can be 
done by traversing the probe sequence of that key until the current location is 
found. For double hashing, this can also be obtained by performing a division 
over a finite field. 



70 HANDBOOK OF ALGORITHMS AND DATA STRUCTURES 

References: 
[Celis, P. et ai., 85], [Celis, P., 85], [Celis, P., 86]. 

3.3.8.5 Self-adjusting hashing 

This family of algorithms applies the ideas of self-organizing lists (Sections 
3.1.2 and 3.1.3) to hashing. In any form of hashing with chaining, we can 
directly apply the move-to-front or transpose methods to every chain during a 
successful search (see Sections 3.3.10 to 3.3.12). This is a form of composition, 
as described in Section 2.2.2. 

In the case of open-addressing techniques, during a successful search, we 
can exchange elements with the same hashing value in the probe sequence of 
the search key (using either the move-to-front or the transpose method). In 
the particular case of linear probing (Section 3.3.4), the condition of having 
the same hashing value is not needed because the probe sequence for all keys 
follows the same pattern. Although the move-to-front technique may work 
well for some cases, it is better to use the transpose technique. For the latter 
case, simulations show that the average search time improves for the Zipf and 
800/0-20% probability distributions, using either linear probing (Section 3.3.4) 
or random probing (Section 3.3.3). 

This technique can also be combined with split-sequence hashing (Sec
tion 3.3.7). However, the improvements are modest compared with the com
plexity of the code. 

References: 
[Pagli, L., 85], [Wogulis, J., 89]. 

3.3.9 Optimal hashing 

Optimal hashing based on double hashing (see Section 3.3.5) or uniform prob
ing (see Section 3.3.2) is the logical conclusion of the previous reorganization 
algorithms. Two complexity measures can be minimized: the average number 
of probes (C:?pt), or the number of accesses in the longest probe sequence 
(L~Pt). 

The insertion algorithm is translated into an assignment problem (assign
ment of keys into table locations) and the cost of each assignment of /(i to 
location j is the number of probes necessary to locate the key Ki into location 
j. 
For the minimax arrangement for random probing (see Section 3.3.3) we have 

1 
In m + 'Y + 2 + 0(1) $ E[Lm] 

lim Pr{Lm $ 4ln m} = 1 
n)~oo 
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For the minimax arrangement for uniform probing (see Section 3.3.2), we have 
the lower bound 

E(-l)m-i-l ("!) ~ (i~)m ~ E[Lm] 
i=O ' k~O Tn!!. 

r-a- 1 ln(1-a)l ~ E[Ln] 

E[Ln] < 1 + r-1(n) (1 + Inln(l/(l- a» + 0 ( 1 )) 
- In r-1(n) In2 r-1(n) 

For the minimum-average arrangement for random probing (see Section 3.3.3) 
and for uniform probing (see Section 3.3.2) we have: 

1.688382 ... ~ Cm = 0(1) 

These optimal algorithms are mostly of theoretical interest. The algo
rithms to produce these optimal arrangements may require O(m) additional 
space during the insertion of new elements. 

Tables 3.16 and 3.17 show some simulation results on optimal arrange
ments. 

Table 3.16: Simulation results for optimal hashing (minave). 

n I m I a COpt 
n 

798 997 80% 1.4890±0.0041 4.40±0.1l 
897 997 90% 1.6104±0.0043 5.147±0.089 
947 997 95% 1.6892±0 .0059 5.68±0.12 
987 997 99% 1.7851±0.0058 6.77±0.13 

19 19 100% 1.729±0.01l 4.385±0.071 
41 41 100% 1.783±0.01l 5.29±0.1l 

101 101 100% 1.798±0.01l 6.30±0.18 
499 499 100% 1.824±0.011 7.92±0.36 
997 997 100% 1.8279±0.0064 8.98±0.38 

References: 
[Gonnet, G.H. et al., 77], [Gonnet, G.H., 77], [Lyon, G.E., 78], [Gonnet, 
G.H. et al., 79], [Gonnet, G.H., 81], [Krichersky, R.E., 84], [Yao, A.C-C., 
85], [Poblete, P.V. et al., 89]. 

3.3.10 Direct chaining hashing 

This method makes use of both hashing functions and sequential lists (chains) 
in the following way. The hashing function first computes an index into the 
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Table 3.17: Simulation results for optimal hashing (minimax). 

n I m I Q 

399 499 80% 1.4938±0.0067 3.000±0.030 
449 499 90% 1.6483±0.0079 3.050±0.043 
474 499 95% 1.6995±0.0070 3.990±0.020 
494 499 99% 1.7882±0.0077 5.120±0.089 

19 19 100% 1.749±0.01l 3.929±0.062 
41 41 100% 1.796±0.010 4.665±0.088 

101 101 100% 1.807±0.010 5.53±0.14 
499 499 100% 1.8300±0 .0081 7.38±0.29 

hashing table using the record key. This table location does not hold an actual 
record, but a pointer to a linked list of all records which hash to that location. 
This is a composition of hashing with linked lists. The data structure used 
by this algorithm is described by 

{s- D}~ 

where s - D represents a linked list of data elements D. Let Pn and P~ 
be random variables which represent the number of pointers (chain links) 
inspected for the successful and unsuccessful searches respectively. Thus 

Pn = An, P~ = A~ + 1 . 

The pertinent facts about this algorithm are listed below: 

(n) (m - l)n-i 
Pr{ chain with length i} = . 

, mn 

n-1 Q 
E[Anl = Cn = 1 + -- ~ 1 +-2 2m 

2 (n-1)(n-5) n-1 
(T (An) = 12m2 + 2m 

E[A~l = c' = ~ 
n m 

2(A') _ n(m-1) 
(T n - 2 ~ Q 

m 

-1 ( In Q (1)) 
E[Lnl = r (m) 1 + In r- 1 (m) + 0 In2 r- 1(m) 
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-1 3 'Y - 1 ( 1 ) E[Lm]=r (m)-2"+lnr- 1(m)+O Inm +Q(lnlnm) 

where Q(x) is a periodic function of x and very small in magnitude. 
Let Sr and Sp be the size of a record and the size of a pointer, then the 

expected storage used, E[Sn], is 

E[Sn] = (m + n)Sp + nSr 

Whenever 

s 
p < (l-l/m)n Rj e-a , 

Sr +Sp 

this algorithm uses less storage than separate chaining hashing (see Sec
tion 3.3.11). 

Descriptions of the search and insert algorithms are given below. For this 
algorithm, we will not use r, the array of records, but ptrs an array of heads 
of linked lists. The nodes of the linked list are the ones which contain the 
keys. 

Direct chaining hashing: search 

datarecord uearch(key, ptrs) 
typekey key; datarecord *ptrs[]; 

{ int i, last; 
datarecord *p; 

p = ptrs[hash/unction(key)]; 
while (p!=NULL && key!=p ->k) p = p ->next; 
return(p); 
} 

Direct chaining hashing: insertion 

void insert(key, ptrs) 
typekey key; datarecord *ptrs[ ]; 

{ extern in t n; 
int i; 

i = hash/unction(key); 
ptrs[!] = NewNode(key, ptrs[!]); 
n++; 
} 
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The above algorithm will not detect the insertion of duplicates, that is, 
elements already present in the table. 

The direct chaining method has several advantages over open-addressing 
schemes. It is very efficient in terms of the average number of accesses for 
both successful and unsuccessful searches, and in both cases the variance of 
the number of accesses is small. Ln grows very slowly with respect to n. 

Unlike the case with open-addressing schemes, contamination of the table 
because of deletions does not occur; to delete a record all that is required is 
an adjustment in the pointers of the linked list involved. 

Another important advantage of direct chaining is that the load factor a 
can be greater than 1; that is, we can have n > m. This makes the algorithm 
a good choice for dealing with files which may grow beyond expectations. 

There are two slight drawbacks to the direct chaining method. The first is 
that it requires additional storage for the (m+n) pointers used in linking the 
lists of records. The second is that the method requires some kind of memory 
management capability to handle allocation and deallocation of list elements. 

This method is very well suited for external search. In this case we will 
likely keep the array of pointers in main memory. Let E~ be the expected 
number of buckets accessed when direct chaining hashing is used in external 
storage with bucket size b. Then 

a = n/m 

= 

= 

n - 1 + m( b + 1) + _m....;.( b_2-:--_1-"-) 
2bm 12bn 

m Wj m+wj-1 b-1 ( )n 
+ bnf;(I-Wj)2 . m 

a+ b+ 1 b2 -1 O(k-O!) 
2b + 12ab + 

where Wj = e¥ is a root of unity. 

E2 - n - 1 + ~ + !!:(1 _ (1 _ 2/m)n) 
n - 4m 4 8n 

References: 

(k > 1) 

[Morris, R., 68], [Tai, K.C. et al., 80], [Gonnet, G.B., 81], [Knott, G.D., 84], 
[Vitter, J .S. et al., 85], [Graham, R.L. et al., 88], [Knott, G.D. et aI., 89]. 

3.3.11 Separate chaining hashing 

This method uses a hashing function to probe into an array of keys and 
pointers. Collisions are resolved by a linked list starting at the table entry. 

The data structure used is described by {l- D}~ where 
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1- D : (0, [1- OJ); (O,nil). 

Let An and A~ denote the number of accesses to records 1 - D. The pertinent 
facts about this algorithm are 

0'2(A~) = n(m - 1) + m - 2n (1- 1/m)n _ (1 _ 1/m)2n 
m 2 m 

~ a + (1- 2a)e- a - e-2a 

The values for An, Ln and Lm coincide with those for direct chaining hashing 
(see Section 3.3.10). 

Let Sr and Sp be the size of a record and the size of a pointer, then the 
expected storage used, E[Sn], is 

Whenever 

Sp > (1 _ 1/m)n ~ e-a 
Sp +Sr 

this algorithm uses less storage than direct chaining hashing (see Sec
tion 3.3.10). 

Descriptions of the search and insert algorithms are given below. 

Separate chaining hashing: search 

datarecord uearch(key, r) 
typekey key; dataarray r; 

{ datarecord *p; 
p = &r[hashfunction(key)]; 
while (p!=NULL && key!=p ->k) p = p ->next; 
return(p); 
} 

Separate chaining hashing: insertion 

void insert( key, r) 
typekey key; dataarray r; 
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{ extern int nj 
int ij 

i = hashfunction(keY)j 
if (empty( r[aJ» /*** insert in main array ***/ 

r[z1.k = keYj 
else /*** insert in new node ***/ 

r[z1.next = NewNode(key, r[z1.next)j 
n++j 
} 

The above algorithm will not detect the insertion of duplicates, that is, 
elements already present in the table. 

This method has several advantages over open-addressing schemes. It is 
very efficient in terms of the average number of accesses for both successful 
and unsuccessful searches, and in both cases the variance of the number of 
accesses is small. The length of the longest probe sequence, that is to say, the 
actual worst-case, grows very slowly with respect to n. 

Unlike open-addressing schemes, contamination of the table because of 
deletions does not occur. 

The load factor can go beyond 1 which makes the algorithm a good choice 
for tables that may grow unexpectedly. 

This method requires some extra storage to allocate space for pointers. 
It also requires a storage allocation scheme to allocate and return space for 
records. 

As mentioned in Section 3.3.8.5, it is possible to use self-organizing tech
niques on every chain. For separate chaining, using the transpose technique, 
we have 

E[An]=Cn~ (1+i)/lna 

where a = n/m > l. 
Similarly, the split-sequence technique mentioned in Section 3.3.7 can be 

applied to separate chaining. That is, when we search for a key k, we first 
compare it with the key k' stored in location h(k). If k = k' or h(k) is empty, 
the search terminates. Otherwise, we follow one of two lists, depending on 
whether k > k' or k < k'. For this we have 

~ (n7~1 +4-: (1- (1- !)n)) 

E[A~] = C~ 
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References: 
[Johnson, L.R., 61], [Morris, R., 68], [Olson, C.A., 69], [Bookstein, A., 72], 
[van der Pool, J .A., 72], [Bays, C., 73], [Gwatking, J .C., 73], [Knuth, D.E., 
73], [van der Pool, J.A., 73], [Behymer, J.A. et al., 74], [Devillers, R. et 
al., 79], [Quittner, P. et al., 81], [Larson, P., 82], [Norton, R.M. et al., 85], 
[Ramakrishna, M.V., 88], [Sedgewick, R., 88]. 

3.3.12 Coalesced hashing 

Coalesced hashing is a hashing algorithm which resolves collisions by chaining. 
The chain pointers point to elements of the hashing array itself. The data 
structure used by this algorithm is described by {D, int}~ where the int 
is taken to be a 'pointer' to the next element in the chain (an index into 
the array). The name 'coalesced hashing' comes from the fact that colliding 
records are stored in the main table, and keys hashing to other locations may 
share part of a chain. 

The complexity measures for this algorithm are: 

1 + m (1 + 2/m)n _ 1 _ 2n) + n - 1 
8n m 4m 

1 +~(e2Q -1-2a) +~ +O(m-1) 
8a 4 

E[A~] = C~ = 1 + ~ ((1 + 21m)" - 1 - ~) 
1 + ~ (e2Q - 1 - 2a) + O(m-1) 

2( ') 35 a a 2 2a - 5 2~ 4 3~ e4Q (1) 
U An = - - - - + --e ~ + -e ~ - - + 0 m-

144 12 4 8 9 16 

Descriptions of the search and insert algorithms are given below. The 
insertion algorithm uses the variable next/ree to avoid a repetitive search of 
the table for empty locations. This variable should be initialized to m - 1 
before starting to fill the table. 
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Coalesced hashing: search 

int search(key, r) 
typekey key; dataarray r; 

{ int i; 
i = hash/unction(key); 
while (i!=(-I) && !empty(r(z]) && r(a].k!=key) i = r(1].next; 
if (i==(-I) II empty(r(z])) return(-1); 

else return ( i); 
} 

Coalesced hashing: insertion 

void insert( key, r) 
typekey key; dataarray r; 

{ extern int n, next/ree; 
int i; 

i = hash/unction(key); 
if ( empty( r( I]) { 

r(z].k = key; 
r(1].next = (-1); 
n++; 
} 

else { /*** Find end 0/ chain ***/ 

} 

while (r(z].next!=(-I) && r(z]'k!=key) i = r(1].next; 
if (r(z].k==key) Error /*** key already in table ***/; 
else { 

} 

/*** Find next free location ***/ 
while (!empty(r(next/ree]) && next/ree>=O) next/ree--; 
if (next/ree<O) Error /*** Table is /ull ***/; 
else { 

} 

r( z]. next = next/ree; 
r(next/ree].k = key; 
r[ next/ree]. next = (-1); 
n++; 
} 
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Coalesced hashing is an efficient internal hashing algorithm at the cost of 
one integer (pointer to an array) per entry. Average and variance values for 
the successful and unsuccessful cases are very low. 

This algorithm has some of the advantages of chaining methods without 
the need for dynamic storage allocation. 

Owing to the use of the variable next/ree the first collisions will fill the top 
of the table more quickly than the rest. This observation leads to a variation 
of the algorithm called coalesced hashing with cellar. In this variation 
we leave the top part of the table (called the 'cellar') to be filled only by 
collisions. The hashing function is now restricted to generate addresses in the 
lower part ('address region') of the table. The algorithms to perform searching 
and insertion with cellars are identical to the above; the only difference lies 
in the hash/unction which now generates integers over a restricted range. 

Let us call m' the total size of the table (m 'address' entries and m' - m 
'cellar' entries). Let 

a n/m 

f3 = m/m' 

and A be defined as the positive solution of e->' + A = 1/ f3. Then the 
complexity measures become: 

= 

= 

otherwise; 

a 
Cn = 1 + 2' if a ~ A 

1 + 8~ (e2(a->.) - 1 -2(a-A)) (3-2/f3+2A) 

a + 2A - A2 /a 0 (log m') 
+ 4 + .;m; 

E[A;~] = C~ = a + e- a if a ~ A 

= ~ +~(e2(a->.) -1) (3-2/f3+2A) 

_ a -A + 0 (log m') 
2 .;m; 

otherwise. 
For every value of a we could select an optimal value for f3 which minimizes 

either the successful or unsuccessful case. The value f3 = 0.853 ... minimizes 
the successful case for a full table while f3 = 0.782 ... does similarly for the 
unsuccessful case. The value f3 = 0.86 appears to be a good compromise for 
both cases and a wide range of values for a. 
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3.3.13 Extendible hashing 

Extendible hashing is a scheme which allows the hashing table to grow and 
guarantees a maximum of two external accesses per record retrieved. This 
scheme is best understood in terms of external storage searching. The struc
ture is composed of a directory and leaf-pages. 

directory: (N, {[1eafpage]}~N-l). 

leafpage : (int, {KEy}r). 

where the directory consists of a set of pointers to leaf-pages and the leaf
pages are buckets of size b with an additional depth indicator. Both directory 
and leaf depth indicators show how many bits of the hashing address are 
being considered; that is, at depth d the hashing function returns a value 
in 0, ... , 2d - 1. The depth of the leaf-pages is always less than or equal to 
the depth of the directory. Several directory entries may point to the same 
leaf-page. 

Basically this algorithm uses a composition of a hashing step with se
quential search in buckets. Every key resides in the bucket pointed by the 
directory entry indexed by the hashing value of the key. Collisions (overflow 
in the buckets) are handled by duplicating the directory. 

Let Db(n) be the expected depth of the directory, md be the number of 
entries in the directory, and mb be the number ofleaf-pages (buckets). We will 
assume that the number of keys is random, Poisson distributed with expected 
value n, then 

d(n) (1 + l/b) log2 n 

n,(n) = ~ {I (t,e-n ,-' (n2j~'Y f} 
d(n) + l' -l~ ~~b: 1)!) + Ql(d(n)) + 0(1) 
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( r(1 - l/b) ( ( ») 1+1/ b( 
In 2((b + l)!)1/b + Q2 d n n 1 + 0(1» 

3.92 l+l/b 
-b-n 

and 

= 

The functions Qi(Z) are complicated periodic functions with period 1 and 
average value 0 (that is, Jo1 Qi(Z) dz = 0). 

Extendible hashing search 

i := hashfunction( key) mod mdj 
read-directory-entry( i) into npagej 
read-/eaf-page( npage) into r; 
i:= 1; 
while (i<6) and (r(z].k <> key) do i := i+1; 
if r(z].k = key then found(r(z]) 

else notfound( key); 

The insertions are straightforward if the corresponding bucket is not full. 
When an insertion causes a bucket to overflow, this bucket will be split into 
two and its depth increased by one. All the records in the bucket are then 
rehashed with the new depth. Some of the pointers in the directory pointing to 
the splitting bucket may have to be redirected to the new bucket. If the depth 
of the bucket exceeds the depth of the directory, the directory is duplicated 
and its depth increased by one. Duplicating the directory implies a simple 
copy of its contentsj no buckets are split. Certainly most buckets will be 
pointed to by two or more directory entries after the directory duplicates. 

Assuming the existence of a fixed hash function h/(I<), which returns an 
integer in a sufficiently large interval, the hashing function for level d can be 
implemented as 

This method allows graceful growth and shrinkage of an external hashing 
table. Assuming that the directory cannot be kept in internal storage, this 
method guarantees access to any record in two external accesses. This makes 
it a very good choice for organizing external files. 
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In case the directory can be kept in main memory, we can access records 
with a single external access, which is optimal. 

The directory is O(b- 1n1+1/b) in size. This means that for very large n 
or for relatively small bucket sizes, the directory may become too large. It is 
not likely that such a directory can be stored in main memory. 

Insertions may be direct or may require the splitting of a leaf-page or may 
even require the duplication of the directory. This gives a bad worst-case 
complexity for insertion of new records. 

Deletions can be done easily by marking or even by 'folding' split buckets. 
Shrinking of the directory, on the other hand, is very expensive and may 
require O(n) overhead to every deletion is some cases. 

Table 3.18 gives numerical values for several measures in extendible hash
ing with Poisson distributed keys, for two different bucket sizes. 

Table 3.18: Exact values for extendible hashing. 

b = 10 b = 50 
n Db(n) E[md] E[mb] Db(n) E[md] E[mb] 

100 4.60040 25.8177 14.4954 1.71109 3.42221 2.92498 
1000 8.45970 374.563 144.022 5.02284 32.7309 31.0519 

10000 12.1860 4860.14 1438.01 8.99995 511.988 265.644 
100000 16.0418 68281.7 14492.6 12.0072 4125.43 2860.62 

References: 
[Fagin, R. et a/., 79], [Yao, A.C-C., 80], [Regnier, M., 81], [Scholl, M., 81], 
[Tamminen, M., 81], [Flajolet, P. et a/., 82], [Lloyd, J.W. et a/., 82], [Tam
minen, M., 82], [Burkhard, W.A., 83], [Flajolet, P., 83], [Lomet, D.B., 83], 
[Lomet, D.B., 83], [Bechtald, U. et a/., 84], [Mullen, J., 84], [Kawagoe, K., 
85], [Mullin, J.K., 85], [Ouksel, M., 85], [Tamminen, M., 85], [Veklerov, E., 
85], [Enbody, R.J. et a/., 88], [Salzberg, B., 88], [Sedgewick, R., 88], [Weems, 
B.P., 88], [Henrich, A. et a/., 89]. 

3.3.14 Linear hashing 

Linear hashing is a scheme which allows the hashing table to grow or shrink 
as records are inserted or deleted. This growth or shrinkage is continuous, 
one entry at a time, as opposed to extendible hashing (see Section 3.3.13) 
where the directory may duplicate due to a single insertion. 

This scheme is best understood in terms of external representations. An 
external bucket is a physical record, convenient for performing input/output 
operations which may contain up to b records. 



linear - hash - file: {bucket}O-l. 

bucket : ({KEy}r, overflow). 

overflow : [{KEY}~O, overflow]; nil. 
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A bucket may receive more than b records, in which case the excess records 
are placed in a list of overflow buckets. 

A file undergoes a full expansion when it grows from mo to 2mo. The 
process of growing from 2mo to 4mo, and so on, is an exact replica of the first 
full expansion. 

This algorithm requires a control function m = g(z), which regulates 
the growth of the array based on the number of records per storage used. We 
will use a control function that guarantees a constant storage utilization. For 
the storage utilization we will also consider the overflow buckets, that is, we 
want to guarantee that 

n n 
b(m + mov) 

a or m = ba - mov 

where mov is the number of overflow buckets. 
The following formulas indicate the limiting behaviour of linear hashing, 

that is, the limit when n, m - 00 while n/m remains constant. 

Cn = ..!..12z
O (g(z)8(z/2) + (1 - g(Z»8(Z» dz 

Zo Zo 

C' = ..!..12z
O (g(z)u(z/2) + (1 - g(z»u(z» dz 

n Zo Zo 

1 12zO 
E[mov ] = 6b 2 (2g(z)t(z/2) + (1 - g(z»t(z» dz 

Zo Zo 

where 

8(Z) = 1 + z1bL:(k+1)t(k~o +i)P(b+kbo+i,Z) 
k~O 3=1 

is the expected number of accesses for a successful search in a single chain 
with relative load z and similarly 

60 

u(z) = 1 + L:(k+1)L:P(b+kbo+i,z) 
k~O ;=1 

for the unsuccessful search and 
60 

t(z) = boL(k+1)LP(b+kbo+i,z) bo(u(z) - 1) 
k~O ;=1 
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is the expected space taken by the overflow records of a single chain. P(i, z) 
is a Poisson probability distribution with parameter zb: 

PC. ) _ e-Zb(zb)i 
I,Z - ., 

I. 

and finally g( z) is the control function resulting from the policy of constant 
total storage utilization: 

zb/a - t(z) - b 
g(z) = 2t(z/2) _ t(z) + b 

The hashing function for this algorithm depends on m and on mo as well as 
on t.he key. Each time that m increases by one, the hashing function changes, 
but this change is minimal in the following sense: 

h (K) = { hm(I<) 
m+l m or m - mo 

iff hm(K) '# m - mo 
otherwise 

A common implementation of this function, assuming that we have avail
able a basic hash function hI(K) which transforms the key into an integer in 
a sufficiently large interval, is: 

Hashing function for linear hashing 

i := hICkey); 
if (i mod mO) < m-mO then hashfunction := i mod (2*mO); 

else hash/unction := i mod mO; 

The algorithm, as described, suffers from a discontinuity. At the beginning 
of a full expansion most chains are of the same expected length, while at the 
end of an expansion, the last chains to be expanded will have an expected 
length about twice the average. This problem may be remedied by splitting 
the full expansion into partial expansions. For example, we can expand first 
from mo to 3mo/2 using the entries from 0 to mo/2 - 1 and from mo/2 to 
mo-l and secondly from 3mo/2 to 2mo using the entries from 0 to (mo/2)-1, 
mo/2 to mo - 1 and mo to (3mo/2) - 1. By doing partial expansions the 
discontinuities are much less pronounced. 

Linear hashing is a descendant of virtual hashing. In virtual hashing 
the main difference is that the file is duplicated in size in a single step, when 
appropriate, rather than entry by entry. 

Dynamic hashing is a term used to describe these type of algorithms 
which will grow/shrink the file while keeping roughly the same access cost. 
Dynamic hashing is also the name of another predecessor of linear hashing, 
an algorithm using the following data structure: 

directory : {bucketbinarytl'ie }O-l 
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bucketbinarytrie : [{key }~]; [{bucketbinarytrie }~] 

where hashing is done at the directory level, and overflow in buckets produce a 
new internal node in the binary trie (see Section 3.4.4) with the corresponding 
bucket split. 

These methods are supposed to be excellent methods for storing large 
tables which require quick access in external storage. 

References: 
[Larson, P., 78], [Litwin, W., 78], [Litwin, W., 79], [Larson, P., 80], [Litwin, 
W., 80], [Mullin, J.K., 81], [Scholl, M., 81], [Larson, P., 82], [Larson, P., 82], 
[Lloyd, J .W. et at., 82], [Ramamohanarao, K. et at., 82], [Ouksel, M. et at., 
83], [Kjellberg, P. et at., 84], [Mullen, J., 84], [Ramamohanarao, K. et at., 
84], [Kawagoe, K., 85], [Larson, P., 85], [Larson, P., 85], [Ramamohanarao, 
K. et at., 85], [Tamminen, M., 85], [Veklerov, E., 85], [Litwin, W. et at., 86], 
[Robinson, J.T., 86], [Litwin, W. et at., 87], [Enbody, R.J. et at., 88], [Larson, 
P., 88], [Larson, P., 88], [Lomet, D.B., 88], [Ouksel, M. et at., 88], [Salzberg, 
B., 88], [Baeza-Yates, R.A., 89]. 

3.3.15 External hashing using minimal internal storage 

These algorithms are designed to work for external files. Under this assump
tion, all internal computations are viewed as insignificant when compared to 
an external access to the file. The goal is to minimize the number of external 
accesses, at the cost of maintaining some additional 'indexing' information in 
main memory. 

The algorithms described in this section act as 'filters' on the external 
accesses of most other hashing algorithms (uniform probing, random probing, 
double hashing, ... ). In other words, the searching is conducted as in the basic 
hashing algorithms, except that instead of accessing the external table directly, 
we first 'consult' the internal information. When an access to external storage 
is allowed, it is either guaranteed to succeed, or has a very high probability 
of succeeding. 

These algorithms will use the signature of a key. A signature function 
is a hashing function that returns a sequence of bits. It can be viewed as 
returning a uniformly distributed real number in [0,1) and the sequence of 
bits is given by its binary representation. 

The minimization of resources can be approached in two distinct ways: 

(1) guarantee exactly one external access (optimal) for each key while min
imizing the additional internal storage required; or 

(2) given a fixed amount of internal storage, minimize the number of exter
nal accesses. 
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Let us call k-prefix the first k bits of the signature of a key. To solve the 
first problem we will construct the following table. For each table location 
we will code the following information: (1) the location is empty or (2) the 
location is occupied and the key stored in this location has a prefix of length 
k. The prefix stored is the shortest possible required to distinguish the stored 
key from all other keys that probe this location. Note that on average, only 
Cn - 1 other keys probe an occupied location. This algorithm requires build
ing a table of variable length prefixes, hence we will call it variable-length 
signatures. 

Let mb(n) be the average number of internal bits required by these algo
rithms; if the main hashing algorithm is uniform probing (see Section 3.3.2) 
or random probing (see Section 3.3.3) we have the following lower and upper 
bounds (the upper bounds represent the behaviour of the above algorithm): 

a = n/m 

mb(n) ~ 1:2 (a + (1 - a) In (1- a) -la ~ l~; dX) + 0(1) 

mb(n) :::; log2(-ln(l-a» + 0(1) 

A better lower bound is obtained for memoryless hashing algorithms. Let us 
call an algorithm memoryless if it does not store any information gained from 
previous probes, except the implicit fact that they failed. All the hashing 
algorithms in this section are memory less. 

log2 {3 + In12 (2~ + 12~2 + 0({3-3») + 0 (m ~ n) 
where {3 = -In (1 - a) and 

1 
log2 Hm + 0(-1 -) :::; mb(m) 

nm 

For the second problem we now restrict ourselves to using a fixed, small 
number, d, of bits per location. The goal is now to reduce the number of 
external accesses. If we store in each location the d-prefix of the stored key, 
we reduce the unnecessary accesses by a factor of 2d. For this algorithm 

C~ = 1 - 2-d(ln (1- a)/a + 1) + 0 (_1_) 
m-n 

This algorithm can be extended for external buckets containing b records 
each. For this extension, we cannot keep a signature of all the records in 
the bucket, but instead we keep a separator. A separator is a prefix long 
enough to distinguish between the signatures of the records which are stored 
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in the bucket (lower prefixes) and those of the records which overflowed to 
other buckets (larger prefixes). This algorithm may displace records with high 
prefixes as records with smaller prefixes are inserted. 

Finally, by selecting a fixed length separator and by moving forward 
records that would force a larger separator, an optimal and very economi
cal algorithm is obtained. In this last case, there is a limit on the load of the 
external file. In other words, an insertion may fail although there is still room 
in the table (this happens when all the buckets are full or their separators are 
fully utilized). 

Although these algorithms require internal tables, the actual sizes for real 
situations are affordable by almost any system. The reduction in the number 
of external accesses is very attractive. These methods are more economical in 
internal storage than extendible hashing (see Section 3.3.13) with an internally 
stored directory. 

References: 
[Larson, P. et al., 84], [Gonnet, G.H. et al., 88], [Larson, P., 88]. 

3.3.16 Perfect hashing 

A perfect hashing function is a function which yields no collisions. Hence a 
single table probe is required, and all keys require exactly the same accessing 
time. Normally, the hashing function has to be tailored to the keys and 
consequently this algorithm is practical only for static sets of keys (such as 
keywords for a compiler). A minimal perfect hashing function is a perfect 
hashing function in which the number of keys is equal to the number of table 
entries (n = m). 

For an arbitrary set of n keys, single-probe perfect hashing functions re
quire Bn,m bits of information (in the form of subtables or selected parameters 
of the function) 

Bn,m = log2 (::.) = nlog2e + (m - n)log2(1- n/m) + 0(1) 

Bm,m = mlog2e + O(logm) 

Table 3.19 shows different functions that have been proposed for perfect hash
ing, where k is the key, assumed to be an integer and a, b, c, ... are parameters 
to be chosen appropriately. 

To construct a minimal perfect hashing function efficiently we will use 
an auxiliary integer array (A) of size m2 which will store parameters of the 
hashing function. 

The hashing function is (A[k mod m2] k) mod m where m2 ~ m and 
gcd(m, m2) = 1. This function uses a particular multiplicative factor for each 
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Table 3.19: Perfect hashing functions. 

Hash junction Comments Reference 

L(ak + b)/cJ 
Depends too much on key [Sprugnoli, 77] 
distri bu tion 

l«ak + b) mod c)/dJ 
Good and practical for less 

[Sprugnoli, 77] 
than 100 keys 

Exponential time to com-
Ikl + a[k1 ] + a[kl,ut] pute the a table, may not [Cichelli, 80] 

work for some set of keys 

Exponential time to com-
L(a/(bk + c)J mod d pute a, and a may be of [Jaeschke, 81] 

O(n) size 

(ak mod b) mod m 0(n3 10g n) to build, m ~ [Fredman et al., 84] 
6n 

(k mod 2a + 100m + 1) Uses an extra header [Cormack et al., 85] 
mod m table 

(ho(k) + g(hl(k)) + g(h2(k))) Polynomial time for [Sager, 85] 
mod m minimal function 

(A[k mod a] k) mod m 0(m2) building time, uses Section 3.3.16 
extra array of size a 

cluster of keys (all keys having the same k mod m2 value form a cluster). The 
algorithm will use at most m2 clusters (dimension of the array A). 

Perfect hashing search 

int search(key, r, A) 
int key; dataarray r; int *A; 



{ int i; 

} 

extern int m, m2; 
i = hash/unction(A[key%m2], key); 
if(r[z].k == key) return(i); 
else return ( -I); 
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The insertion algorithm has to insert all keys at once. The building is 
done by inserting the largest clusters first and the smaller later. The insertion 
algorithm returns true or false depending on whether it could build the table 
for the given keys, and the integers m and m2. If it could not, another m2 
can be tried. The probability of failure is O(I/m). 

Perfect hashing insertion 

int insert( input, n, r, A) 
dataarray input, r; int n, *A; 

{ extern int m, m2; 
int d, i, ia, ib, iup, j; 
datarecord tempr; 

if( m < n) return(O); 
for(i=O; i<m2; i++) A[z] = 0; 
for(i=O; i<n; i++) A[input[z].k % m2]++; 
/* Shellsort input array based on collision counts */ 
for (d=n; d>I;) { 

if(d<5) d= I; 
else d = (5*d-I)/11; 

for (i=n-I-d; i>=O; i--) { 
tempr = input[z]; 

} 

ia = tempr.k % m2; 
for {j=i+d; j<n && (A[ia] < A[ib=input[1J.k % m2] II 

A[ia] == A[ib] && ia > ib); j+=t/) 
inputfj-d] = input[1]; 

inputfj-d] = tempr; 
} 

for(i=O; i<n; i=iup) { 
ia = input[z].k % m2; 
iup = i + A[ia]; 
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} 

for(A[ia]=ib=lj ib < 9*mj A[ia] += i6++) { 
for(j= ij j< iup && empty( r[ hashfu ndion( A [ia], input[)]. k)]) j 

j++) r[hash/unction(A[ia],input[)].k)] = input[)]j 
if(j >= iup) breakj 
for(j--j j >= ij j--) 

r[hashfunction(A[ia],input[)].k)].k = NOKEYj 
} 

if( ib >= 9*m) 

} 

/* Cannot build optimal hashing table with m and m2 */ 
return(O)j 

return(l)j 

References: 
[Sprugnoli, R., 77], [Anderson, M.R. et al., 79], [Tarjan, R.E. et al., 79], 
[Cichelli, R.J., 80], [Jaeschke, G. et al., 80], [Jaeschke, G., 81], [Yao, A.C-C., 
81], [Mehlhorn, K., 82], [Bell, R.C. et al., 83], [Du, M.W. et al., 83], [Mairson, 
H.G., 83], [Chang, C.C., 84], [Fredman, M.L. et al., 84], [Fredman, M.L. et 
al., 84], [yang, W.P. et al., 84], [Cercone, N. et al., 85], [Cormack, G.V. et al., 
85], [Larson, P. et al., 85], [Sager, T.J., 85], [Yang, W.P. et al., 85], [Aho, A.V. 
et al., 86], [Berman, F. et al., 86], [Chang, C.C. et al., 86], [Dietzfelbinger, M. 
et al., 88], [Gori, M. et al., 89], [Ramakrishna, M.V. et al., 89], [Schmidt, J.P. 
et al., 89], [Brain, M.D. et al., 90], [Pearson, P.K., 90], [Winters, V.G., 90]. 

3.3.17 Summary 

Table 3.20 shows the relative total times for inserting 10007 random keys 
and performing 50035 searches (five times each key). We also include other 
searching algorithms, to compare them with hashing. 
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Table 3.20: Relative total times for searching algorithms. 

I Algorithm I C I Pascali 

Sequential search in arrays 149 
Sequential search in arrays (with sentinel) 90 
Self-organizing (transpose) 182 153 
Binary search 32 26 
Interpolation search 26 
Interpolation-sequential search 26 
Linear probing hashing 2.4 1.4 
Double hashing 2.3 1.4 
Quadratic hashing 1 
Ordered hashing 1.4 
Brent's hashing 2.3 1.4 
Binary tree hashing 1.5 
Direct chaining hashing 1.2 
Separate chaining hashing 1 
Coalesced hashing 1.3 
Perfect hashing 47 

3.4 Recursive structures search 

3.4.1 Binary tree search 

The binary tree search is an algorithm for searching a lexicographically ordered 
binary tree. Without loss of generality we may assume that the left descendant 
nodes of any node contain keys whose values are less than or equal to the root, 
and that the right descendant nodes contain keys whose values are greater 
than the root. 

Let An be the number of accesses (or node inspections) made in the course 
of a successful search for a given key in a binary tree of size n, and let A~ be 
the number of accesses made in the course of an unsuccessful search of size n. 

The symbol h( n) denotes the height of a tree of size n, that is, the number 
of nodes in the longest path through the tree. With this definition, a null tree 
has height 0, a single node tree has height 1. The depth of a node in a tree 
is the distance from the root to that node; thus the depth of the root is 0. 

Several variations on the basic binary tree structure arise with the in
troduction of semantic rules or constraints such as height balance, weight 
balance, or heuristic organization schemes. The Pascal data definition and 
search algorithm for all binary search trees are given below. 
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Tree definition 

type tree = t nodej 
node = record 

k: typekeYj 
left, right: tree 
endj 

Binary tree search 

procedure search(key: typekeYj t : tree)j 
begin 
if t=nil then {*** Not Found ***} 

notfound(key) 
else if tt.k = key then {*** Found ***} 

found(tt) 
else if tt.k < key then search( key, tt. right) 

else search( key, tt .left) 
endj 

The number of different binary trees with n nodes is 

tn = _1 (2n) 
n+ 1 n 

and the associated generating function is: 

n~O 

The internal path length, In, of a tree with n nodes is defined as the sum 
of the depths of all its nodes. The external path length, En, of a tree is the 
sum of the depths of all its external nodes. For any binary tree 

En = In + 2n . 

We have 

8 n(n+1) 
n(log2 n + 1 + 0 - 2 ) $ En $ 2 - 1 

where 0 = rlog2 n 1 - log2 n (0 $ 0 $ 1). If.6. is the maximal path length 
difference in the tree (that is, the number of levels between the deepest and 
shallowest external node), then 
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where 

W(d) = log2 e -log2log2 e - 0(1) ~ 0.6622 . 

This bound is tight to an O(n) term for d ~ .,fii. 
Let ak be the expected number of nodes at depth k and let bk be the 

expected number of external nodes at depth k in a binary tree with n nodes. 
Then we have the associated generating functions 

A(z) L ak zk 
k 

B(z) (2z - l)A(z) + 1 

and 

A(l) = B(l) - 1 n 

A' (1) E[In] 

B' (1) E[En] 

For a successful search we have 

Cn = E[An] = E[In] + 1 = A'(l) + 1 = (1 + l/n)C~-l 
n n 

1 ~ An ~ h(n) 

and for an unsuccessful search 

c' = E[A'] = E[En] 
n n n + 1 

B' (1) 
n+1 

2(c') - B'(l) C'(l-c') 
(J' n - n+ 1 + n n 

1 ~ A~ ~ h(n) 

The ordered binary tree is a structure which allows us to perform many 
operations efficiently: inserting takes a time of O(h(n)); deleting a record 
also takes O(h(n)); finding the maximum or minimum key requires O(h(n)) 
comparisons; and retrieving all the elements in ascending or descending order 
can be done in a time of O(n). With small changes, it permits the retrieval 
of the kth ordered record in the tree in O(h(n)). 
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et ai., 80], [Lee, K.P., 80], [Proskurowski, A., 80], [Solomon, M. et at., 80], 
[Standish, T.A., 80], [Stephenson, C.J., 80], [Fisher, M.T.R., 81], [Cesarini, 
F. et at., 82], rOttmann, T. et at., 82], [Aho, A.V. et ai., 83], [Andersson, A. 
et ai., 83], [Kirschenhofer, P., 83], [Lescarne, P. et ai., 83], [Munro, J.I. et at., 
83], [Reingold, E.M. et at., 83], [Sleator, D.D. et at., 83], [van Leeuwen, J. et 
at., 83], [Brown, G.G. et at., 84], [Mehlhorn, K., 84], [Munro, J.1. et at., 84], 
rOttmann, T. et ai., 84], [Brinck, K., 85], rOttmann, T. et ai., 85], [Pittel, 
B., 85], [Zerling, D., 85], [Brinck, K., 86], [Culberson, J .C., 86], [Gordon, D., 
86], [Langen hop , C.E. et ai., 86], [Lee, C.C. et at., 86], [Stout, Q.F. et at., 
86], [Wirth, N., 86], [Burgdorff, H.A. et ai., 87], [Levcopoulos, C. et at., 88], 
[Sedgewick, R., 88], [Andersson, A., 89], [Aragon, C. et at., 89], [Klein, R. et 
ai., 89], [Lentfert, P. et at., 89], [Makinen, E., 89], [Manber, U., 89], [Slough, 
W. et at., 89], [Andersson, A. et ai., 90], [Cormen, T.H. et at., 90], [Francon, 
J. et ai., 90], [Fredman, M.L. et ai., 90], rOttmann, T. et at., 90], [Papadakis, 
T. et at., 90], [Pugh, W., 90]. 

3.4.1.1 Randomly generated binary trees 

These structures are also known as random search trees. Such trees are gener
ated by taking elements in a random order and inserting them into an empty 
tree using the algorithm described below. Ordered binary search trees are 
normally considered to be created in this way. The efficiency measures for 
searching such trees are 

B(z) = IT i - 1.+ 2z 
;=1 z 

A(z) = B(z) - 1 
2z -1 

n-1 

Cn = 1 + n- 1 L C; 
;=0 

E[An] = Cn = 2(1 + 1/n)Hn - 3 ~ 1.3863 log2 n - 1.8456 
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(T2(An) (2 + 10/n)Hn - 4(1 + l/n)(H~/n + H~2» + 4 

~ 1.38631og2 n - 1.4253 

E[A~] = C~ = 2Hn+l - 2 ~ 1.3863 log2 n - 0.8456 

(T2(A~) = 2Hn+l - 4H~~1 + 2 ~ 1.3863 log2 n - 3.4253 

where Hn = E?=11/i is the nth harmonic number, and H~2) = E?:11/i2 is 
the nth biharmonic number. 

E[h(n)"] 

E[h(n)] 

= (4.31107 ... )"ln"n + o(ln"n) 

4.31107 ... In n + O( -Jr.-Io-g-n-=-Io-g-=-Io-g-n) 

< 4.31107 ... In n - 2.80654 ... In In n + 0(1) 

for any positive k, where the constant 4.31107 ... is a solution of the equation 
cln(2e/c) = 1. 

Binary tree insertion 

procedure insert(key: typekeYj var t : tree)j 
begin 
if t = nil then 

t := NewNode(key, nil, nil) 
else if tl.k = key then 

Error { *** Key already in table ***} 
else if tl.k < key then insert( key, tl. right) 

else insert( key, tl.left) 
endj 

At the cost of two extra pointers per element, randomly generated binary 
trees display excellent behaviour in searches. Unfortunately, the worst case 
can be generated when the elements are sorted before they are put into the 
tree. In particular, if any subset of the input records is sorted, it will cause 
the tree to degenerate badly. Compared to the random binary trees of the 
next section, however, ordered binary trees generated from random input are 
exceptionally well behaved. 

Table 3.21 gives numerical values for several efficiency measures in trees 
of various sizes. 

References: 
[Knuth, D.E., 73], [Knuth, D.E., 74], [Palmer, E.M. et al., 74], [Guibas, L.J., 
75], [Wilson, L.B., 76], [Francon, J., 77], [Reingold, E.M. et al., 77], [Meir, 
A. et al., 78], [Robson, J.M., 79], [Brinck, K. et al., 81], [Sprugnoli, R., 81], 
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Table 3.21: Exact complexity measures for binary search trees. 

nl c' n 

5 2.4800 1.1029 2.900 0.9344 3.8000 
10 3.4437 2.1932 4.0398 1.8076 5.6411 
50 6.1784 5.6159 7.0376 4.5356 10.8103 

100 7.4785 7.2010 8.3946 5.8542 13.2858 
500 10.6128 10.7667 11.5896 9.0179 19.3359 

1000 11.9859 12.2391 12.9729 10.3972 22.0362 
5000 15.1927 15.5608 16.1894 13.6105 28.4283 

10000 16.5772 16.9667 17.5754 14.9961 31.2216 

[Wright, W.E., 81], [Bagchi, A. et al., 82], [Knott, G.D., 82], [Robson, J.M., 
82], [Ziviani, N., 82], [Eppinger, J.L., 83], [Devroye, L., 84], [Mahmoud, H.M. 
et al., 84], [Pittel, B., 84], [Flajolet, P. et al., 85], [Devroye, L., 86], [Mahmoud, 
H.M., 86], [Cunto, W. et al., 87], [Devroye, L., 87], [Devroye, L., 88]. 

3.4.1.2 Random binary trees 

When discussing random binary trees, we consider the situation where all 
possible trees with the same number of nodes are equally likely to occur. In 
this case, 

4n - 3ntl en) (9 17 ) 1 
E[An] = ~(in) n =.;:;m 1 + 8n + 128n2 + 0(n-3 ) - 3 - ;;: 

n+1 n 

I 4n - ~+~ e:) _ ( 1 1 -3 ) n - 1 
E[An] = ....!L en) -.;:;m 1 + 8n + 128n2 + O(n ) - n + 1 

n+1 n 

E[h(n)] = 2.;:;m + 0(n1/4+6) (for any 6 > 0) 

2(1 ) - (10 ) 3 n2.;:;m 9(1 /4) 2 25nFn O() 
U n - '3 - 7r n - 2 + - 7r n - 16 + n 

If tn,h is the number of trees of height h and size n, then the associated 
generating function is 

00 

Bh(Z) = ~::)n,hZn = zBL1(Z) + 1 
n=O 

When all trees of height h are considered equally likely to occur, then 

E[nodes] = (0.62896 ... )2h - 1 + 0(6- 2h ) (6) 1) 
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This situation is primarily a theoretical model. In practice, very few situ
ations give rise to random trees. 

References: 
[Knuth, D.E., 73], [Kemp, R., 79], [Flajolet, P. et al., 80], [Kemp, R., 80], 
[Flajolet, P. et al., 82], [Flajolet, P. et al., 84], [Kirschenhofer, P. et al., 87], 
[Kemp, R., 89]. 

3.4.1.3 Height-balanced trees 

These are also known as AVL trees. Height-balanced trees have the property 
that any two subtrees at a common node differ in height by 1 at the most. This 
balance property can be efficiently maintained by means of a counter in each 
node, indicating the difference in height between the right and left subtrees, 
h(right) - h(left). The data structure used by an AVL tree is defined by bt-( 
int, KEY)-LEAF. 

Because of the height balancing, the total height of a tree with n nodes is 
bounded by 

fiog2 n + 11 ~ h(n) ~ 1.44042 ... log2 (n + 2) - 0.32772 ... 

There are AVL trees for which 

Cn ~ 1.4404 ... (log2 n -log2log2 n) + 0(1) 

and this is also an upper bound. 
Let Rn indicate the average number of rotations per insertion required 

during the insertion of n keys into a random AVL tree. Then 

0.3784 ... ~ Rn ~ 0.7261... 

Let En be the average number of AVL nodes that are completely height 
balanced. Then 

0.5637 ... n + o(n) ~ En ~ 0.7799 ... n + o(n) 

Let tn,h be the number of height-balanced trees of height h and size n. 
The associated generating function is 

Th(Z) = L tn,h Zn = ZTh_l(Z)(2Th_2(Z) + Th_l(Z)) 
n;?:D 

If we assume that all trees of height h are equally likely to occur, the average 
number of nodes in a balanced tree of height h is 

E[nodes] = (0.70118 ... )2h 

Below we give the description of the AVL insertion algorithm. The inser
tion algorithm uses an additional balance counter in each node of the tree, bal. 



98 HANDBOOK OF ALGORITHMS AND DATA STRUCTURES 

The range of this balance field is -2 ... 2 . The procedures rrotO and IrotO 
which perform right and left rotations are common to several algorithms and 
are described in Section 3.4.1.8. 

Height-balanced tree (AVL) insertion 

function insert( key : typekey; var t : tree) : integer; 
var incr: integer; 
begin 
insert := 0; 
if t = nil then begin 

t := NewNode(key, nil, nil); 
tt .bal:= 0; 
insert := 1 
end 

else if tl.k = key then 
Error {*** ]( ey already in table ***} 

else with tt do begin 

end; 

if k < key then incr:= insert( key, right) 
else incr:= -insert( key, left); 

bal:= bal + incr; 
if (incr <> 0) and (bal <> 0) tben 

if bal < -1 then 

end 

{*** left subtree too tall: right rotation needed ***} 
if leftt. bal < 0 then rrot( t) 

else begin Irot( left); rrot( t) end 
else if bal > 1 then 

{*** right subtree too tall: left rotation needed *** } 
if rightt. bal > 0 then Irot( t) 

else begin rrot( right); lrot( t) end 
else insert:= 1; 

AVL trees are of practical and theoretical importance as they allow 
searches, insertions and deletions in O(log n) time in the worst case. 

The balance information in an A VL tree needs to represent three cases 
(five cases for some particular implementations). This requires two (or three) 
bits per node. It is not likely that this unit of storage is available, and a 
larger amount will be allocated for this purpose. Although a lot of emphasis 
has been placed on reducing the amount of extra storage used, the storage 
required by balance information is of little practical significance. If enough 
space is available it is best to store the height of the subtree, which contains 
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more useful information and leads to simpler algorithms. Note that using six 
bits for height information we could store trees with up to 0.66 X 1013 nodes. 

The constraint on the height balance can be strengthened to require that 
either both subtrees be of the same height or the right-side one be taller by 
one. These trees are called one-sided height balanced (OSHB), trees. In 
this case only one bit per node is required to store the balance information. In
sertions in OSHBs become more complicated though; in particular, insertions 
in O(log n) time are extremely complicated. 

Similarly, the constraint on the balance may be relaxed. One option is 
to allow the height of subtrees to differ at most by k. These trees are called 
k-height balanced, H B[k], trees. 

Table 3.22 shows some simulation results for AVL trees. Cn indicates 
the average number of comparisons required in a successful search, Rn is the 
average number of rotations (single or double) required by an insertion, and 
E[h(n)] indicates the average height of a tree of size n. 

Table 3.22: Exact and simulation results for AVL trees. 

nl E[h(n)] 
5 2.2 3.0 0.21333 

10 2.907143 4 0.318095 
50 4.930346±0.000033 6.94667 ±0.00017 0.42731 ±0.00005 

100 5.888611 ±0.000042 7.998905 ±O .000043 0.44439 ±O .00005 
500 8.192021±0.000087 10.92515±0.00073 0.46103±0.00006 

1000 9.20056 ±O .000 12 11.99842±0.00020 0.46329 ±O .00006 
5000 11.55409±0.00028 14.9213±0.0026 0.46529±0.00007 

10000 12.57009±0.00041 15.99885±0.00072 0.46552 ±O .00007 
50000 14.92963±0.00094 18.9165±0.0096 0.46573 ±O .00007 

The values for C~ can be calculated from the above, for example, for all 
binary trees C~ = (Cn + 1)/(1 + lin). 

From the above results we can see that the value for Cn is close to the 
value of log2 n; in particular, under the arbitrary assumption that 

Cn = a log2 n + {3 

for n ~ 500, then 

a = 1.01228 ± 0.00006; and {3 = -0.8850 ± 0.0006 . 

References: 
[Adel'son-Vel'skii, G.M. et al., 62], [Foster, C.C., 65], [Knott, G.D., 71], 
[Tan, K.C., 72], [Foster, C.C., 73], [Knuth, D.E., 73], [Aho, A.V. et al., 74], 
[Hirschberg, D.S., 76], [Karlton, P.L. et al., 76], [Luccio, F. et al., 76], [Baer, 
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J .L. et al., 77], [Reingold, E.M. et al., 77], [Brown, M.R., 78], [Guibas, L.J. 
et al., 78], [Kosaraju, S.R., 78], [Luccio, F. et al., 78], [Luccio, F. et al., 
78], [Ottmann, T. et al., 78], [Zweben, S.H. et al., 78], [Brown, M.R., 79], 
[Ottmann, T. et al., 79], [Ottmann, T. et al., 79], [Pagli, L., 79], [Raiha, K.J. 
et al., 79], [Luccio, F. et al., 80], [Ottmann, T. et al., 80], [Wright, W.E., 81]' 
[Mehlhorn, K., 82], [Ziviani, N. et al., 82], [Ziviani, N., 82], [Gonnet, G.H. et 
ai., 83], [Richards, R.C., 83], [Zaki, A.S., 83], [Tsakalidis, A.K., 85], [Chen, 
L., 86], [Li, L., 86], [Mehlhorn, K. et al., 86], [Klein, R. et al., 87], [Wood, D., 
88], [Manber, U., 89], [Baeza-Yates, R.A. et al., 90], [Klein, R. et al., 90]. 

3.4.1.4 Weight-balanced trees 

These are also known as BB(a) trees. Weight-balanced trees are binary search 
trees which obey a balance criterion on the subtrees of every node. Each node 
of the tree has a weight attached to it. A tree is said to be of weighted 
balance a or of bounded balance a, or in the set BB[a], for 0 ~ a ~ 1/2, 
if every node in the tree has balance, p(t), between a and 1 - a. The balance 
of a node is defined as 

(t) = number of leaves in t 1 .left 
p number of leaves in t 

The empty binary tree is in BB[a] by convention. 
The set BB[a] becomes more restricted as a goes from 0 to 1/2. BB[O] 

is the class of all binary search trees, and BB[I/2] is the class of completely 
balanced binary search trees of n = 2h - 1 nodes. Interesting BB[a] trees 
are the ones with 2/11 ~ a ~ 1- ../2/2. For these a, a balanced tree which 
is updated by an insertion or a deletion can be rebalanced with at most one 
rotation per level. 

For any value of a, 

log2 n + 0(1) 
log2 (1 - a) 

c < _ log2 n _ 2 . 
n - a log2 a + (1 - a) log2 (1 - a) 

For any sequence of n updates (insertions and/or deletions), the worst-case 
average number of rotations is bounded by a constant which depends only on 
a: 

Rn ~ c(a) 

For the class of trees BB[1 - ../2/2] 

pog2(n+l)1 ~ h(n) < 2Iog2(n+l) 

< 2Iog2(n+3) - 2.44549 ... 
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Cn ~ 1.14622 ... log2 n + 0(1) 

Let Rn be the average number ofrotations per insertion in a BB[I-v'2/2] 
tree after the random insertion of n keys into the empty tree. Let 1(f3) be the 
fraction of internal nodes with weight balance factor exactly f3 or 1 - f3 in a 
random BB[1 - v'2/2] tree with n keys. Then 

Rn ~ 0.40238 ... 

0.54291... ~ 1(1/2) ~ 0.72593 ... 

0.17231... < 1(1/3) < 0.34801... 

0.05405 ... < 1(2/5) < 0.22915 ... 

Below we give a description of the insertion algorithm for weight-balanced 
trees with Q = 1- v'2/2 = 0.292893 ... The procedures rrotO and IrotO which 
perform right and left rotations, are common to several algorithms and are 
described in Section 3.4.1.8. The insertion algorithm uses a weight counter 
in each node of the tree, weight. For any node t, t t .weight contains the 
number of external nodes in the subtree rooted at t. We use for convenience 
the function wt(t) which returns 1 if the tree t is nil or t t .weight otherwise. 

Weight-balanced tree insertion 

procedure insert(key : typekey; var t : tree); 
begin 
if t = nil then begin 

t := NewNode(key, nil, nil); 
n. weight := 2 
end 

else if n.k = key then 
Error {*** Key already in table ***} 

else with tt do begin 
if k < key then insert(key, right) 

else insert( key, left); 
weight := wt(left) + wt( right); 
checkrots( t) 
end 

end; 

Although the insertion algorithm is coded using real arithmetic, this is not 
really needed. For example, v'2/2 can be approximated by its convergents 2/3, 
5/7,12/17,29/41,70/99, .... In case integer arithmetic must be used, the first 
test can be rewritten, for example, as 
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if 99* wt( tf./eft) > 70* wt( t) then ... 

Table 3.23 shows some simulation results on weight-balanced trees for 
Cl' = 1 - .;2/2. Cn indicates the average number of comparisons required in 
a successful search, R,. is the average number of rotations (single or double) 
required by an insertion and E[h(n)] indicates the average height of a tree of 
SIze n. 

Table 3.23: Exact and simulation results for weight-balanced trees. 

nl E[h(n)] 
5 2.2 3 0.21333 

10 2.9 4 0.3252381 
50 4.944142±0.000046 7.02363±0.00027 0.40861±0.00006 

100 5.908038±0.000067 8.20895±0.00063 0.42139±0.00007 
500 8.23015±0.00017 l1.2552±0.0018 0.43204±0.00008 

1000 9.24698±0.00025 12.6081±0.0031 0.43343±0.00009 
5000 l1.62148±0.00061 15.6991 ±0.0076 0.43455±0.0001O 

10000 12.64656±0.00091 17.0366±0.0089 0.43470±0.0001O 
50000 15.0300±0.0022 20.110±0.022 0.43476±0.0001l 

From the above results we can see that the value for Cn is close to the 
value of log2 n; in particular, under the arbitrary assumption that 

Cn = Cl' log2 n + /3 

for n ~ 500, then 

Cl' = 1.02107 ± 0.00013; and /3 

References: 

-0.9256 ± 0.0012 . 

[Knuth, D.E., 73], [Nievergelt, J. et al., 73], [Baer, J.L. et al., 77], [Reingold, 
E.M. et al., 77], [Unterauer, K., 79], [Blum, N. et al., 80], [Bagchi, A. et al., 
82]. 

3.4.1.5 Balancing by internal path reduction 

These are also known as weight-balanced or path-balanced trees. These 
trees are similar to the trees described in the previous section, except that 
rotations are made only when they can reduce the total internal path of the 
tree. For this reason these trees are also known as path trees. In summary, 
a single left rotation is performed whenever 

wt( tf./eft) < wt( tf. rightf. right) 
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and a double left rotation when 

wt( tt .left) < wt( if. rightt . left) 

and right rotations for the symmetric cases. For these balance conditions we 
have: 

rlog2 (n + 1)1 $ h(n) $ 1.44042 ... log2 n - 0.32772 ... 

5log3 2 
Cn $ 3 log2 n + 0(1) = 1.05155 ... log2 n + 0(1) 

The amortized worst-case number of rotations per insertion is bounded by 

Rn $ 0.44042 ... log2 n + 0(1) 

The amortized worst-case number of rotations per deletion is bounded by 

Rn $ 0.42062 ... log2 n + 0(1) 

In the worst case, for a single insertion or deletion, 

Rn = O(n) 

Below we give a description of the insertion algorithm. The insertion code 
uses the procedure checkrot which checks the balancing, performs any nec
essary rotation and checks whether further rotations may be needed. The 
procedures rrotO and IrotO, which perform right and left rotations, are com
mon to several algorithms and are described in Section 3.4.1.8. For any node 
t, t t .weight contains the number of external nodes in the subtree rooted at 
t. We use for convenience the function wt(t) which returns 1 if the tree t is 
nil or t t .weight otherwise. 

Internal path reduction trees: insertion 

procedure checkrots(var t : tree); 
{*** check need for rotations *** } 
var wi, wll, wr, wrr: integer; 
begin 
if t < > nil then with tt do begin 

wi := wt(left); 
wr := wt( right); 
if wr > wi then begin 

{*** left rotation needed ***} 
wrr := wt( rightt . right); 
if (wrr > w~ and (2*wrr >= wr) then 

begin Irot(t); checkrots(left) end 
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else if wr- wrr > wi then begin 
rrot( right); Irot( t); 
Rots := Rots-I; 
checkrots( left); checkrots( righ t) 
end 

end 
else if wi > wr then begin 

{*** right rotation needed ***} 
wll := wt(leftt . left); 
if (wll > wr) and (2*wll >= wT) then 

begin rrot( t); checkrots( right) end 
else if wl-wll > wr then begin 

Irot( left); rrot( t); 
Rots := Rots-I; 
checkrots( left); checkrots( right) 
end 

end 
end 

end; 

procedure insert(key : typekey; var t : tree); 
begin 
if t = nil then begin 

t := NewNode(key, nil, nil); 
tt . weight := 2 
end 

else if tt . k = key then 
i:=i-l 

else with tt do begin 
if k < key then insert( key, right) 

else insert(key, left); 
weight := wt( left) + wt( right); 
checkrots( t) 
end 

end; 

Although these trees are in the class BB(I/3), there are some important 
restrictions on the rotations. This makes their performance superior to the 
BB(I/3) trees. 

A natural extension of this algorithm is to perform rotations only when 
the difference in weights is k or larger. This extension is called k-balancing. 
For these trees the main complexity measures remain of the same order, while 
the number of rotations is expected to be reduced by a factor of k. 

hk(n) ~ 1.44042 ... log2 (n - k + 2) + k - 1.32772 ... 
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C~ $ 1.05155 ... log2 n + 0(1) 

Table 3.24 shows simulation results for these trees. Cn indicates the aver
age number of comparisons required in a successful search, Rn is the average 
number of rotations (single or double) required by an insertion and E[h(n)] 
indicates the average height of a tree of size n. 

Table 3.24: Exact and simulation results for path-trees. 

nl E[h(n)] 
5 2.2 3 0.213333 

10 2.9 4 0.33 
50 4.904496±0.000027 6.93788±0.00026 0.469722±0.000078 

100 5.857259 ±0.000038 8.00408±0.00015 o .494494±0 .000090 
500 8.151860±0.000090 10.9169±0.0012 0.51836±0.0001l 

1000 9.15670±0.00013 12.0191±0.001O 0.52177 ±0.00012 
5000 11.50285±0 .00032 14.9529±0.0039 0.52476±0.00014 

10000 12.51640±0.00048 16.0477 ±0.0052 0.52521±0.00014 
50000 14.8702±0.001l 18.995±0.011 0.52564±0.00016 

From the above results we can see that the value for Cn is close to the 
value of log2 n; in particular, under the arbitrary assumption that 

Cn = a log2 n + f3 

for n ~ 500, then 

a = 1.00892 ± 0.00007; and f3 

References: 

-0.8963 ± 0.0007 . 

[Baer, J.L., 75], [Robson, J.M., 80], [Gonnet, G.H., 83], [Gerash, T.E., 88]. 

3.4.1.6 Heuristic organization schemes on binary trees 

When the keys in a binary tree have different accessing probabilities, a ran
domly generated tree or a balanced tree may not be fully satisfactory. The 
following heuristic organization schemes offer ways to build better trees when 
the accessing probabilities are known. 

For all these heuristics we will denote by Pi the accessing probability of 
the ith key. We will denote by qi the probability of an unsuccessful access, 
searching for a key with value in between the ith and i + 1st keys. In all cases, 
Li Pi + Li qi = 1. The entropy, or uncertainty of the set of PiS (or PiS and 
qiS), is 
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H(i) = - LPi log2 Pi 

H(p,i) = - Lpdog2 Pi - Lqdog2 qi 
i i 

Heuristics for known probabilities 
The first four algorithms allow a top-down construction, and share the com
mon pseudo-code construction: 

Top-down binary tree construction 

BuildTree(SetO/Keys) : tree; 
begin 

K := select(SetO/Keys); 
A1 := Keys in SetO/Keys < K; 
A2 := Keys in SetO/Keys > K; 
return(NewNode(K, BuildTree(A1), BuildTree(A2))) 

end; 

(1) Insert in decreasing probability order In this way, the keys most 
likely to be sought are closer to the root and have shorter search paths. 
This method requires either a reordering of the keys before they are 
put into the tree or the selection of the maximum probability at each 
step. For this analysis, we will assume that the keys are numbered in 
decreasing probability order, that is, (Pi ~ P2 ~ ... ~ Pn). Then for a 
random tree 

n 

Cn = LPiHi - 1 
i=i 

where Hi = E~=ll/j is the ith harmonic number. 

(2) Median split In this scheme we choose the root so that the total 
accessing probabilities of both the left and right subtrees are as close 
as possible to 1/2. This is repeated recursively on both subtrees. This 
arrangement gives the information theoretic optimum. For this heuristic 

c~Pt ~ c~s ~ 2 + 1.44042 ... H(p, i) 

(3) It is possible to mix approaches (1) and (2). We allow a tolerance 0, 
and examine the elements for which the accessing probabilities of the 
left and right subtrees fall into the range 1/2 ± o. From these elements, 
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we choose the one with the highest accessing probability to be the root. 
This selection procedure is repeated recursively for the nodes in each 
subtree. Experimental results indicate that these trees are within 2% to 
3% from optimal. 

(4) Another way of combining approaches (1) and (2) produces trees which 
are also called median split trees. At every node we store two keys; 
the first one, the 'owner' of the node, is the one with higher probability 
in the subtree, and the second one is the median of all the values in 
the subtree. The searching algorithm is almost identical to the normal 
algorithm: 

Median split trees: search 

procedure search(key : typekey; t : tree); 
begin 
if t=nil then {*** Not Found *** } 

notfound( key) 
else if tl. OwnerK ey = key then {*** Found *** } 

found(t 1 ) 
else if tl.SplitKey < key then search(key, tl.right) 

else search( key, tl.left) 
end; 

Using this approach we benefit from the advantages of both (1) and (2) 
above, at the cost of one extra key per node. The 'median split' may 
be interpreted as the statistical median (a key which splits the tree into 
two subtrees in such a way that both halves are the closest possible to 
equiprobable) or as the counting median (a key which splits the tree in 
equal size halves). Known algorithms to construct optimal median split 
trees are not very efficient (at least O(n4 )). 

(5) Greedy trees This is a heuristic which constructs trees bottom-up. 
The construction resembles the Huffman encoding algorithm. At each 
step we select the three consecutive external/internal/external nodes 
which add to the lowest accessing probability. A node is constructed 
with the two external nodes as direct descendants and the triplet is 
replaced by a single external node with the sum of the accessing prob
abilities. Under this heuristic 

C~T ~ 2 + 1.81335 ... H(p, q) 
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Self-organizing heuristics 
When we do not know the accessing probabilities we may try heuristic or
ganization schemes similar to the transpose and move-to-front techniques in 
sequential searching. 

(6) Exchauge with parent or simple exchange The transpose 
method can be adapted for trees by exchanging a node with its par
ent each time the node is accessed. This is achieved by performing a 
single rotation on the parent node (a left rotation if the searched node 
is at its right, a right rotation otherwise). This is not a good heuristic, 
however, as it tends to be very unstable in some cases. For example, 
if the probability of accessing any key is uniform, Pi = l/n, then this 
exchange-with-parent technique produces a random binary tree and 

(7) Move-to-root Corresponding to the move-to-front scheme in linear 
searching, we have the technique of moving an accessed element to the 
root. This is achieved, while maintaining the lexicographical order of 
the tree, by several single rotations on the ancestors of the accessed 
element. With this move-to-root approach we have 

C!fR = 1 + 2 L: . PiPj . ~ 21n (2)H(P) + 1 
lSi<jSn P. + ... + PJ 

(8) Dyuamic trees (or D-trees) Dynamic trees use a self-organizing 
technique based on estimating the accessing probabilities by keeping 
counters for the number of successful/unsuccessful searches at each in
ternal/external node. The tree is balanced with respect to these coun
ters, like the balance done for BB[a] trees (see Section 3.4.1.4). If Ii 
denotes the relative accessing frequency of node i, then the number of 
access needed to locate node i is O(log (1/ Ii))' 

(9) Splay trees This scheme is similar to the move-ta-root technique 
(7). Splay trees are reorganized whenever they are accessed or updated. 
The basic reorganizing operation (splaying) moves the accessed node 
towards the root by a sequence of rotations. Therefore, frequently ac
cessed keys tend to be near the root. For the worst sequence of splayings, 
the number of operations is O(log n) per node in the tree, where n is 
the number of nodes. 
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Shape heuristics 

(10) Fringe reorganization This type of heuristics guarantees that any 
subtree with size k or smaller is of minimal height (or, equivalently, 
of minimal internal path). The simplest heuristic is for k = 3 which 
reorganizes any subtree with three nodes which is not in perfect balance. 
Under random insertions, a tree constructed using k = 3 will have 

,12 75 
Cn = THn+1 - 49 ~ 1.18825 ... log2 n - 0.54109... for n ~ 6 

(T2(An') = 300 H 144 H(2) 5056 2304 
343 n+1 - 49 n+1 + 2401 + 343(n + l)n··· (n - 5) 

for n ~ 13. 

In general, if k = 2t - 1 (t ~ 1) then 

C' - Hn + 0(1) 
n - H2t - Ht 

References: 
[Gotlieb, C.c. et a/., 72], [Martin, W.A. et a/., 72], [Knuth, D.E., 73], [Fred
man, M.L., 75], [Mehlhorn, K., 75], [Walker, W.A. et a/., 76], [Baer, J .L. et 
a/., 77], [Mehlhorn, K., 77], [Allen, B. et a/., 78], [Sheil, B.A., 78], [Horibe, Y. 
et a/., 79], [Mehlhorn, K., 79], [Comer, D., 80], [Eades, P. et a/., 81], [Korsh, 
J.F., 81], [Allen, B., 82], [Korsh, J.F., 82], [Poblete, P.V., 82], [Greene, D.H., 
83], [Huang, S-H.S. et a/., 83], [Chang, H. et a/., 84], [Huang, S-H.S. et a/., 
84], [Huang, S-H.S. et a/., 84], [Huang, S-H.S. et al., 84], [Perl, Y., 84], [Bent, 
S.W. et al., 85], [Hermosilla, L. et al., 85], [Poblete, P.V. et al., 85], [Sleator, 
D.D. et al., 85], [Hester, J.H. et a/., 86], [Huang, S-H.S., 87], [Levcopoulos, C. 
et al., 87], [Makinen, E., 87], [Hester, J.H. et al., 88], [Moffat, A. et al., 89], 
[Sherk, M., 89], [Cole, R., 90]. 

3.4.1.7 Optimal binary tree search 

When we want to minimize the average case search and all the nodes in the tree 
are equally probable, or when we want to minimize the worst case, it is easy 
to see that the optimal tree is the one with minimum height. Equivalently, 
such an optimal tree has all its leaves at a maximum of two consecutive levels. 

When the nodes in the tree have different accessing probabilities, and these 
probabilities are known, we can construct an optimal (minave) search tree. 
For these optimal trees, 
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H(i) -log2 (eH(i» + 1 ~ c~Pt ~ H(i) + 1 

H (V ~ c~Pt ~ 2 + H (V 

if Pi = 0. 
The following algorithm constructs an optimal tree given the probabilities 

of successful searches (Pi) and the probabilities of unsuccessful searches (qi). 
This algorithm due to Knuth uses a dynamic programming approach, comput
ing the cost and root of every tree composed of contiguous keys. To store this 
information, the algorithm uses two upper triangular matrices dimensioned 
n x n. Both its storage and time requirements are O(n2 ). 

Optimal binary tree construction (Knuth) 

function OptTree(keys: ArrayKeysj p : ArrayCostj q: ArrayCost) : treej 

var wk, wki, min : cost; 
i, ik, indxmin, j, k: integer; 
{*** r[i,JJ indicates the root of the optimal tree formed 

with keys from i to j ***} 
r: array[O .. n,O .. n] of integer; 
{*** c[i,JJ indicates the optimal cost of the tree with 

keys from i to j ***} 
c : array[O .. n,O .. n] of cost; 

function CreateTree(i, j: integer) : tree; 
{*** Create optimal tree from information in r[i,JJ ***} 
var t: tree; 
begin 
if i=j then CreateTree:= nil 
else begin 

end; 

begin 

new(t); 
tf·k := keys[r[i,JJ]; 
tf./eft:= CreateTree(i, r[i,JJ-1); 
tt·right:= Create Tree(r[iJJ , J); 
Create Tree := t 
end 

{*** Initializations ***} 
c[O,O] := q[O]; 
for ;:=1 to n do begin 

c[i,z] := q[z]; 



c[ i-I ,z] := 2*( q[ i-I] + q[ z]) + p[z]; 
r[i-l,z] := i 
end; 

{ *** Main loop to compute r[ i,l] ***} 
wk := q[O]; 
for k:=2 to n do begin 

wk := wk + q[k-l] + p[k-l]; 
wki:= wk; 
for i:=O to n- k do begin 

ik := i+k; 
wki := wki + q[ik] + p[ik]; 
min := maxint; 
{*** Select root with lowest cost ***} 
for j:=r[i,ik-l] to r[i+l,ik] do 
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if c[i,j-l]+c[j,ik] < min then begin 
min := c[i,j-l]+c[j,ik]; 

end; 

indxmin := j 
end; 

c[i,ik] := min + wki; 
r[ i, ik] := indxmin; 
wki := wki - q[z] - p[i+l]; 
end 

OptTree := CreateTree(O, n); 
end; 

If we are interested in the unsuccessful probabilities alone (Pi = 0), the 
Hu-Tucker algorithm algorithm will construct an optimal tree in O(n log n) 
time and O( n) space. 

References: 
[Bruno, J. et al., 71], [Hu, T.C. et al., 71], [Knuth, D.E., 71], [Hu, T.C. et al., 
72], [Kennedy, S., 72], [Hu, T.C., 73], [Knuth, D.E., 73], [Garey, M.R., 74], 
[Hosken, W.H., 75], [Itai, A., 76], [Wessner, R.L., 76], [Choy, D.M. et al., 77], 
[Garsia, A.M. et al., 77], [Horibe, Y., 77], [Reingold, E.M. et al., 77], [Choy, 
D.M. et al., 78], [Bagchi, A. et al., 79], [Horibe, Y., 79], [Hu, T.C. et al., 79], 
[Wikstrom, A., 79], [Kleitman, D.J. et al., 81], [Allen, B., 82], [Hu, T.C., 82], 
[Akdag, H., 83], [Shirg, M., 83], [Bender, E.A. et al., 87], [Larmore, 1.1., 87], 
[Levcopoulos, C. et al., 87], [Baase, S., 88], [Brassard, G. et al., 88], [Kingston, 
J .H., 88], [Sedgewick, R., 88], [Levcopoulos, C. et al., 89]. 
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3.4.1.8 Rotations in binary trees 

Rotations in binary trees are operations that modify the structure (shape) 
of the tree without altering the lexicographical ordering in the tree. These 
transformations are very useful in keeping the tree structure balanced. 

The simplest rotation, which is usually called single rotation, is illus
trated by Figure 3.1. 

Figure 3.1: Single left rotation. 

There are two possible such situations, the one shown in Figure 3.1 and 
its symmetric which are called left and right single rotations respectively. 
The procedures to perform these rotations are 

Single left rotation 

procedure lrot(var t : tree); 
var temp: tree; 
begin 

end; 

temp := t; 
t := tl. right; 
tempt. right := tt.left; 
tt.left := temp; 

Single right rotation 

procedure rrot(var t : tree); 



val' temp: tree; 
begin 

end; 

temp:= t; 
t := tl.left; 
templ.left := tl. right; 
tl. right := temp; 
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Figure 3.2: Double left rotation. 

A double rotation is a more complicated transformation. Figure 3.2 
illustrates a transformation called double left rotation. Its symmetric is called 
a double right rotation. Both rotations can be described in terms of two 
single rotations, for example a double left rotation at the node pointed by t 
is achieved by 

Double left rotation 

rrot( tl. right); Irot( t); 

In many cases the nodes carry some information about the balance of 
their subtrees. For example, in AVL trees (see Section 3.4.1.3), each node 
contains the difference in height of its subtrees; in weight-balanced trees (see 
Section 3.4.1.4) each node contains the total number of nodes in its sub
tree. This information should be reconstructed by the single rotation, and 
consequently double rotations or more complicated rotations based on single 
rotations do not need to reconstruct any information. 

Let bal contain the difference in height between the right subtree and the 
left subtree (h(t 1 .right) - h(t 1 .left)), as in AVL trees (see Section 3.4.1.3). 

For example, after a single left rotation, the new balance of the nodes A 
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and B (Figure 3.1) is given by: 

NewBal(A) = OldBal(A) - 1 - max(OldBal(B),O) 

NewBal(B) = min(OldBal(A) - 2, OldBal(A) + OldBal(B) - 2, 

OldBal(B) - 1) 

The complete code for a single left rotation becomes 

Single left rotation 

procedure Irot(var t : tree); 
val' temp: tree; 

a : integer; 
begill 

elld; 

References: 

temp := t; 
t := t1. right; 
temp1. right := tl.left; 
t1.left := temp; 
{*** adjust balance ***} 
a := temp1.bal; 
temp1.bal:= a - 1 - max(tl.bal, 0); 
t1.bal:= min(a-2, a+tl.bal-2, t1.bal-1); 

[Tarjan, R.E., 83], [Zerling, D., 85], [Sleator, D.D. et al., 86], [Stout, Q.F. et 
al., 86], [Wilber, R., 86], [Bent, S.W., 90], [Cormen, T.H. et al., 90], [Ottmann, 
T. et al., 90]. 

3.4.1.9 Deletiolls ill biuary trees 

The operation of deleting a node in a binary tree is relatively simple if the 
node to be deleted has a null descendant. In this case the node is replaced 
by the other descendant. If both descendants are non-null the node has to be 
moved down the tree until it has a non-null descendant. 

One way of moving the node to the fringe of the tree is to swap it with 
one of its lexicographically ordered neighbours. Experimental and theoretical 
evidence suggests that always choosing the successor (or the predecessor) may 
degenerate to a tree of O( y'n) height after a big number of updates, for a 
random tree containing n keys (after the updates). On the other hand, using 
a random choice (or alternating) seems to maintain the height of the tree 
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logarithmic. Another strategy, better suited for balanced trees, is to gradually 
move the node towards the fringe by the use of rotations. 

The following procedure performs deletions on weight-balanced (see Sec
tion 3.4.1.4) or path-balanced trees (see Section 3.4.1.5). 

Deletions on weight-balanced trees 

procedure delete(key : typekey; var t : tree); 

begin 
if t = nil then Error {*** key not found ***} 
else begin 

{*** search for key to be deleted ***} 
if t1.k < key then de/ete(key, t1.right) 
else if t1.k > key then delete( key, t1.left) 

{*** key found, delete if a descendant is nil ***} 
else if t1./eft = nil then t := t1.right 
else if t1 . right = nil then t := t1./eft 

{*** no descendant is null, rotate on heavier side ***} 
else if wt( t1 . left) > wt( t1 . right) then 

begin rrot( t); de/ete( key, t1. right) end 
else begin Irot( t); de/ete( key, t1.left) end; 

{*** reconstruct weight information ***} 
if t <> nil then begin 

t1.weight:= wt(tf./eft) + wt(t1.right); 
checkrots( t) 
end 

end 
end; 

For height balanced (AVL) trees (see Section 3.4.1.3) we simply replace 
the function wtO by the height of the subtree. 

References: 
[Knuth, D.E., 73], [Knott, G.D., 75], [Knuth, D.E., 77], [Jonassen, A.T. et 
al., 78], [Brinck, K., 86], [Baeza-Yates, R.A., 89], [Culberson, J.C. et al., 89], 
[Cormen, T.H. et al., 90], [Culberson, J .C. et al., 90]. 
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3.4.1.10 m-ary search trees 

An m-ary search tree is a multiway tree where: 

(1) every internal node has m - 1 keys and m descendants; 

(2) every external node has between 0 and m - 2 keys. 

The lexicographical order is given by the fact that, in each internal node, all 
the keys stored in the ith descendant are greater than the i - lth key and less 
than the ith key of the node. The relation between the internal path length, 
In, and the external path length, En, on a tree with n internal nodes, is 

En = In +mn 

The average internal path length of an m-ary search tree built from n 
random insertions is: 

(n + I)H n (m 1 ) 
E[In]= Hm- 1 - m-l + Hm- 1 +0(1) n+o(n) 

with variance: 

2(1)= 1 (m+l)H~)-2 _ 11"2) 2 ( 2) 
U n (Hm _ 1)2 m _ 1 6 n + 0 n 

For the expected height, we have the following limit (in probability) 

lim h(n) = 1 
m_oo Inn Hm - 1 

The average space utilization of an m-ary search tree is 

n 
2(Hm _ 1) + o(n) 

A surprising result is that the variance of the above complexity measure is 
linear in n for 3 ~ m ~ 26, but super linear for m> 26 (almost quadratic for 
large m). 

There exist several variations that improve the storage utilization of these 
trees, making them suitable for use as external data structures. 

References: 
[Ruskey, F., 78], [Szwarcfiter, J.L. et al., 78], [Pagli, L., 79], [Vaishnavi, V.K. 
et al., 80], [Culik II, K. et al., 81], [Arnow, D. et al., 84], [Szwarcfiter, J.L., 84], 
[Mahmoud, H.M., 86], [Baeza-Yates, R.A., 87], [Huang, S-H.S., 87], [Cunto, 
W. et al., 88], [Mahmoud, H.M. et al., 89], [Sherk, M., 89]. 
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3.4.2 B-trees 

A B-tree is a balanced multiway tree with the following properties: 

(1) Every node has at most 2m + 1 descendants. 

(2) Every internal node except the root has at least m + 1 descendants, the 
root either being a leaf or having at least two descendants. 

(3) The leaves are null nodes which all appear at the same depth. 

B-trees are usually named after their allowable branching factors, that is, 
m + I-2m + 1. For example, 2-3 trees are B-trees with m = 1; 6-11 trees are 
B-trees with m = 5. B-trees are used mainly as a primary key access method 
for large databases which cannot be stored in internal memory. Recall the 
definition of multiway trees: 

mt - N - D - LEAF: [int, {D}~, {mt - N - D - LEAF}1t]; LEAF. 

Then the data structure for a general B-tree is mt - 2m - D - nil. For our 
C algorithms we will use the definition: 

B-tree data structure 

typedef struct btnode { /*** B- Tree Definition ***/ 
int d; /*** number of active entries ***/ 
typekey k[2*M]; /*** Keys ***/ 
struct btnode *p[2*M+l]; /*** Pointers to subtrees ***/ 
} node, *btree; 

Note that, in C, arrays always start with index 0, consequently the array 
containing the keys runs from 0 to 2M - 1. The lexicographical order is given 
by the fact that all the keys in the subtree pointed by p[i] are greater than 
k[i - 1] and less than k[i]. 

Let En and E~ represent the number of nodes accessed in successful and 
unsuccessful searches respectively. Let h(n) be the height of a B-tree with n 
keys. Then 

1 :::; En :::; h(n) 

E~ = h(n) 

E[En] = h(n) - 2m~n 2 + O(m-2) 

Pog2m+1(n+l)1 :::; h:::; l+llogm+1((n+l)/2)J 
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Let tn be the number of different B-trees with n leaves. We have 
00 

B(z) = L tnzn = B(P(z)) + z 
n=O 

where 

P(z) 
zm+1(zm+l - 1) 

= z-1 

and 

tn = ,p;.n Q(log n)(1 + O(n-l)) 
n 

where 0 < ,pm < 1 and,pm is a root of P(z) = z and Q(z) is a periodic function 
in z with average value ,pm/In p'(,pm) and period In P (,pm). Table 3.25 shows 
some exact values. 

Table 3.25: Parameters for counting different B-trees. 

1 0.61803 ... 0.86792 ... 0.71208 ... 
2 0.68232 ... 1.01572 ... 0.67176 ... 
5 0.77808 ... 1.21563 ... 0.64006 ... 

10 0.84439 ... 1.34229 ... 0.62907 ... 

,pm = 1 _ w(m) + w(m) + 2 (w(m))2 + O«w(m)/m?) 
m 2w(m)+2 m 

where w(m)ew(m) = m, and 

( eW(m)n/m) 
tn = 0 

n 

Let Nn be the expected number of nodes in a randomly generated B-tree 
with n keys. Then 

2m+ 1 < Nn < 1 
4m(m + 1)(H2m+2 - Hm+d n 2m(H2m+2 - Hm+d 

Nn 1 ( -2) 
~ = 2mln 2 +0 m 

Let Sn be the average number of node-splits produced by an insertion into 
a randomly generated B-tree with n keys. 
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Below we present a description of the algorithm for searching B-trees. 
Note that in this case we can convert the 'tail recursion' into an iteration very 
easily. 

B-tree search 

search(key, t) 
typekey key; 
btree t; 

{ int i; 
while (t != NULL) { 

for (i=O; i<t ->d && key>t ->k[I]; i++); 
if (key == t ->k[l]) 

{ found(t, i); return; } 
t = t ->p[I]; 
} 

notfound(key); 
}; 

B-tree insertion 

btree insert( key, t) 
typekey key; 
btree t; 

{ 
typekey ins; 
extern btree NewTree; 
typekey InternalInsertO; 

}; 

ins = Internallnsert( key, t); 

/*** check for growth at the root ***/ 
if (ins != NoKey) return (NewNode(ins, t, New Tree»; 
return(t); 

typekey Internallnsert( key, t) 
typekey key; 
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}; 

btree t; 
{int i, j; 
typekey ins; 
btree tempr; 
extern btree Newrree; 
if (t == NULL) { /*** the bottom of the tree has been reached: 

indicate insertion to be done ***/ 
NewTree = NULL; 
return(key); 
} 

else { 
for (i=O; i<t ->d && key>t ->k[J]; i++); 
if (i<t ->d && key == t ->k[a]) 

Error; /*** Key already in table ***/ 
else { 
ins = Internallnsert(key, t ->p[a]); 
if (ins != NoKey) 
/*** the key in "ins" has to be inserted in present node ***/ 

if (t ->d < 2*M) InslnNode(t, ins, New Tree); 

} 

else /*** present node has to be split ***/ 
{/*** create new node ***/ 
if (i<=M) { 

tempr = NewNode(t ->k[2*M-l], NULL, t ->p[2*M]); 
t ->d--; 
InslnNode(t, ins, New Tree); 
} 

else tempr = NewNode(ins, NULL, New Tree); 
/*** move keys and pointers ***/ 
for (j=M+2; j<=2*M; i++) 

InslnNode(tempr, t ->k[j-l], t ->p[j]); 
t->d = M; 
tempr->p[O] = t ->p[M+l]; 
NewTree = tempr; 
return(t ->k[M]); 
} 

return(NoKey); 
} 

The above algorithm is structured as a main function insert and a sub
ordinate function Internallnsert. The main function handles the growth at 
the root, while the internal one handles the recursive insertion in the tree. 

The insertion function returns a pointer to the resulting tree. This pointer 
may point to a new node when the B-tree grows at the root. 



SEARCHING ALGORITHMS 121 

The insertion algorithm uses the global variable N ewN ode to keep track of 
newly allocated nodes in the case of node splitting. The function InslnNode 
inserts a key and its associated pointer in lexicographical order in a given 
node. The function CreateN ode allocates storage for a new node and inserts 
one key and its left and right descendant pointers. The value NoKey is an 
impossible value for a key and it is used to signal that there is no propagation 
of splittings during an insertion. 

Although B-trees can be used for internal memory dictionaries, this struc
ture is most suitable for external searching. For external dictionaries, each 
node can be made large enough to fit exactly into a physical record, thus 
yielding, in general, high branching factors. This produces trees with very 
small height. 

B-trees are well suited to searches which look for a range of keys rather 
than a unique key. Furthermore, since the B-tree structure is kept balanced 
during insertions and deletions, there is no need for periodic reorganizations. 

Several variations have been proposed for general B-trees with the inten
tion of improving the utilization factor of the internal nodes. Note that a 
better storage utilization will result in a higher effective branching factor, 
shorter height and less complexity. The variations can be loosely grouped in 
three different classes. 

Overflow techniques 
There are several overflow techniques for B-trees. The most important 

are B*-trees and solutions based on multiple bucket sizes. Both cases are 
variations which try to prevent the splitting of nodes. 

In B*-trees, when an overflow occurs during an insertion, instead of split
ting the node we can: 

(1) scan a right or left brother of the node to see if there is any room, and, if 
there is, we can transfer one key-pointer pair (the leftmost or rightmost 
respectively) to make room in the overflowed node; 

(2) scan both left and right siblings of a node; 

(3) scan all the descendants of the parent of the node. 

If splitting is still necessary, the new nodes may take some keys from their 
siblings to achieve a more even distribution of keys in nodes. In the worst
case a 67% node storage utilization is achieved, with an average value of 
approximately 81 %. 

When we have multiple bucket sizes, instead of splitting the node, we 
expand it. This is called a partial expansion. When the bucket reaches the 
maximum size, we split it into two buckets of minimum size. The simplest 
case is having two bucket sizes of relative size ratio 2/3. This also gives a 
67% worst-case storage utilization and around 80% average storage utilization 
(including external fragmentation owing to two bucket sizes). There are also 
adaptive overflow techniques that perform well for sorted or non-uniformly 
distributed inputs based on multiple bucket sizes. 
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Variable-length array implementations 
These variations replace the arrays used to store keys and pointers at every 
node for some other structure which allows variable length, and may save 
space when the node is not full. For example, we could use a linked list where 
each node in the list contains a key and a pointer to the subtree at its left and 
the last pointer of the list points to the rightmost subtree. The sequence, in 
this case, is defined by: 

s - D : [KEY, [D], s - D] ; [D] 

Each node in the B-tree contains one of these sequences. These sequences can 
be viewed as restricted binary trees, with two types of pointers: vertical point
ers (those which point to nodes down the tree) and horizontal pointers (those 
pointing at the next link of the list). This type of tree is called symmetric 
binary tree (see Section 3.4.2.2). 

When the keys are themselves of variable length, we can slightly relax the 
conditions on B-trees and require that each node be between 50% and 100% 
full, without any explicit reference to the actual number of keys stored. 

Let m be the total number of characters that can be stored in a node, and 
let k be the maximum size of a key. Then we can guarantee that the number 
of characters per node will be between l(m + 1)/2J - k and m. 

Iudex D-trees, D+-trees or D*-trees 
The idea behind these trees is to move all the data which is normally associated 
with a record to the leaves of the tree. The internal nodes contain only 
keys which are used to direct the searching; the complete records reside at 
the leaves. The keys in the internal nodes may not even belong to the file. 
Typically the leaves are pointers to external buckets of uniform size b. The 
data structure is now represented as: 

mt - N - D - LEAF -+ mt - 2m - KEY - [Dr]. 

The above variations are somewhat orthogonal, in the sense that these 
can be applied simultaneously to achieve varying degrees of optimization. 
Note that the limits of the range for any gain in efficiency are from about 
70% occupation (for randomly generated trees) to 100% occupation (optimal 
trees). The coding complexity of some of these implementations may not 
justify the gains. 

Table 3.26 presents simulation results of 6-11 trees for several sizes, and 
Table 3.27 shows simulation results for various branching factors and a con
stant size. In both cases, En indicates the number of nodes accessed, h(n) 
indicates the height of the tree, Nn is the average number of nodes in the tree, 
and Sn is the average number of splits that the n + lth insertion will require. 

The simulation results indicate that the variance on the number of nodes 
accessed is very small. Induced by the formula for the upper bound on the 
variance, and with the arbitrary assumption that 
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Table 3.26: Simulation results for 6-11 trees. 

nl E[h(n)] 

5 1 1 0.2 0 
10 1 1 0.1 1 
50 1.889599±0.000007 2±0.0000003 0.150401±0.000007 0.12718±0.00009 

100 2.83386±0.00016 2.9623±0.0002 0.158109±0.000009 0.13922±0.00013 
500 2.860087±0.000008 3±0.000003 0.145913±0.000008 0.13623±0.00012 

1000 3.857201±0.000009 4±0.000007 0.146799±0.000009 0.13972±0.00013 
5000 3.8792±0.001l 4.0243±0.0011 0.145827±0.00001l 0.14724±0.00015 

10000 4.854505±0.0000 11 5±0.000089 0.145995±0.000011 0.14704±0.00016 
50000 5.85293±0.00079 5.9990±0.0008 0.146199±0.000012 0.14651±0.00016 

Table 3.27: Simulation results for B-trees with 10000 keys. 

type E[h( n)] 

2-3 1O.25436±0.00032 10.9993±0.0003 0.746064±0.000039 0.74588±0.00029 
6-11 4.854505±0.000011 5.00000±0.00009 0.145995±0.000011 0.14704±0.00016 
11-21 3.927589±0.000008 4.00000±0.00009 0.072811±0.000008 0.07636±0.00016 
21-41 2.963877±0.000006 3.00000±0.00010 0.036423±0.000006 0.03806±0.00016 

51-101 2.986036±0.000005 3.00000±0.00016 0.014264±0.000005 0.01278±0.00016 

for n = 10000 we find that 

a = 0.6414 ± 0.0005; and f3 = 0.0053 ± 0.0005 . 

General references: 
[Bayer, R., 71], [Bayer, R. et al., 72], [Knuth, D.E., 73], [Wagner, R.E., 73], 
[Wong, C.K. et al., 73], [Bayer, R., 74], [Bayer, R. et al., 76], [Horowitz, E. et 
al., 76], [Samadi, B., 76], [Shneiderman, B. et al., 76], [Wirth, N., 76], [Bayer, 
R. et al., 77], [Guibas, L.J. et al., 77], [McCreight, E.M., 77], [Reingold, E.M. 
et al., 77], [Gotlieb, C.C. et al., 78], [Held, G. et al., 78], [Maly, K., 78], 
[Snyder, L., 78], [Comer, D., 79], [Frederickson, G.N., 79], [Strong, H.R. et 
al., 79], [Quitzow, K.H. et al., 80], [Standish, T.A., 80], [Wright, W.E., 80], 
[Batory, D.S., 81], [Culik II, K. et al., 81], [Gotlieb, L.R., 81], [Hansen, W.J., 
81], [Huddleston, S. et al., 81], [Ouksel, M. et al., 81], [Robinson, J .T., 81], 
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[Rosenberg, A.L. et al., 81], [Eisenbarth, B. et ai., 82], rOttmann, T. et al., 
82], [Ziviani, N., 82], [Aho, A.V. et al., 83], [Cesarini, F. et al., 83], [Gupta, 
V.I. et al., 83], [Kuspert, K., 83], [Tamminen, M., 83], [van Leeuwen, J. et 
al., 83], [Arnow, D. et al., 84], [Bell, D.A. et al., 84], [Diehr, G. et al., 84], 
[Leung, H.C., 84], [Mehlhorn, K., 84], [Bagchi, A. et al., 85], [Huang, S-H.S., 
85], [Langenhop, C.E. et al., 85], [Wright, W.E., 85], [Gupta, G.K. et al., 86], 
[Wirth, N., 86], [Driscoll, J.R. et al., 87], [Litwin, W. et al., 87], [Lomet, D.B., 
87], [Aldous, D. et al., 88], [Pramanik, S. et al., 88], [Ramakrishna, M.V. et 
al., 88], [Salzberg, B., 88], [Sedgewick, R., 88], [Veroy, B.S., 88], [Baeza-Yates, 
R.A. et al., 89], [Baeza-Yates, R.A., 89], [Baeza-Yates, R.A., 89], [Burton, 
F.W. et al., 89], [Johnson, T. et al., 89], [Langen hop , C.E. et al., 89], [Baeza
Yates, R.A. et al., 90], [Baeza-Yates, R.A., 90], [Cormen, T.H. et al., 90], 
[Huang, S-H.S. et al., 90], [Odlyzko, A.M., to app.]. 

3.4.2.1 2-3 trees 

2-3 trees are the special case of B-trees when m = 1. Each node has two or 
three descendants, and all the leaves are at the same depth. 

Let tn be the number of different 2-3 trees with n leaves. Then 

00 

B(z) = L::: tnzn = B(z2 + z3) + z 
n=O 

where ¢> = (1 + .../5)/2 is the 'golden ratio', and Q(x) is a periodic function 
with period In (4 - ¢» and mean value (¢> In ( 4 _ ¢> ))-1. 

Let Nn be the expected number of nodes in a 2-3 tree built by the insertion 
of a random permutation of n keys. Then 

0.7377... + O(I/n) $; :n $; 0.7543 ... + O(I/n) 

Let Sn be the number of node-splits produced by an insertion into a random 
2-3 tree with n keys, then 

0.7212 ... + O(I/n) $; Sn $; 0.5585 ... + 0.03308 ... log2(n + 1) + O(I/n) 

If Sn converges when n --> 00 then 

Soo $; 0.7543 ... 

If we assume all trees of height h are equally likely, then 

Nn = (0.48061. .. )3h 
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E[keys] = (0.72161...)3 h 

The algorithm for searching and performing insertions in 2-3 trees is the 
same as the general algorithm for B-trees with m = 1. 

As opposed to general B-trees, 2-3 trees are intended for use in main 
memory. 

In Table 3.28, we give figures showing the performance of 2-3 trees con
structed from random sets of keys. 

Table 3.28: Exact and simulation results for 2-3 trees. 

nl E[En] E[h{n)] 

5 1.68 2 0.72 0.40 
10 2.528571 3 0.771429 0.522078 
50 4.1871O±0.00023 4.84606±0.00025 0.755878±0.000032 0.71874±0.00021 

100 4. 71396±0.0004 7 5.40699±0.00049 0.747097±0.000035 0.75062±0.00023 
500 6.46226±0.00093 7.19371±0.00094 0.745831±0.000035 0.74726±0.00025 

1000 7.27715±0.00042 8.01493±0.00042 0.745800±0.000035 0.74550±0.00025 
5000 9.25824±0.00040 10.0023±0.0004 0.746027±0.000038 0.74591±0.00028 

10000 1O.25436±0.00032 10.9993±0.0003 0.746064±0.000039 0.74588±0.00029 
50000 12.2518±0.0014 12.9977±0.0014 0.746090±0.000043 0.74610±0.00031 

2-3 brother trees 
2-3 brother trees are 2-3 trees with the additional constraint that a binary 
node has to have ternary brothers. With this restriction it is still possible, 
albeit complicated, to update a tree in O(log n) time. Let Nt! be the number 
of nodes and hB(n) the height of a 2-3 brother tree with n keys. Then 

rlog3 (n + 1)1 ~ hB(n) ~ LO.78644 ... log2 n - 0.39321...J 

1 NB 1 
~ 

n < = 0.70710 ... 
2 n V2 

1 < E[N!!] < 1.4142 ... 
n 

References: 
[Aho, A.V. et at., 74], [Brown, M.R. et at., 78], [Brown, M.R., 78], [Kriegel, 
H.P. et at., 78], [Rosenberg, A.L. et at., 78], [Yao, A.C-C., 78], [Brown, M.R., 
79], [Larson, J.A. et at., 79], [Miller, R. et at., 79], [Reingold, E.M., 79], 
[Vaishnavi, V.K. et at., 79], [Bent, S.W. et at., 80], [Brown, M.R. et at., 80], 
[Olivie, H.J., 80], [Bitner, J.R. et at., 81]' [Kosaraju, S.R., 81], [Maier, D. et 
at., 81], [Eisenbarth, B. et at., 82], [Gupta, U.1. et at., 82], [Huddleston, S. et 
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al., 82], [Mehlhorn, K., 82], [Ziviani, N., 82], [Kriegel, H.P. et al., 83], [Murthy, 
Y.D. et al., 83], [Zaki, A.S., 83], [Zaki, A.S., 84], [Baeza-Yates, R.A. et al., 
85], [Bagchi, A. et al., 85], [Klein, R. et al., 87], [Aldous, D. et al., 88], [Wood, 
D., 88]. 

3.4.2.2 Symmetric binary B-trees 

Symmetric binary B-trees (SBB trees) are implementations of 2-3 trees. A 
2-3 tree node with a single key is mapped into a binary tree node directly; a 
2-3 node with two keys is mapped into two nodes as indicated in Figure 3.3. 

A c E A c E 

Figure 3.3: Transformation of 2-3 node into an SBB node. 

SBB trees are binary search trees in which the right and left pointers may 
be either vertical pointers (normal pointers) or horizontal pointers. In 
an SBB tree all paths have the same number of vertical pointers (as in a 
true B-tree). All nodes except the leaves have two descendants and there 
are no two consecutive horizontal pointers in any path. In order to maintain 
the SBB tree property one bit per node is needed to indicate whether the 
incoming pointer is horizontal or vertical. 

Random retrievals, insertions and deletions of keys in an SBB tree with n 
keys can be done in time of O(log n). If we let k( n) be the maximum number 
of keys in any path and h(n) be the height of the SBB tree (calculated by 
counting only vertical pointers plus one), we have 

h(n) ~ k(n) ~ 2h(n) 

flog2 (n + 1)1 ~ k(n) ~ 2 Llog2 (n + 2)J - 2 

Let Sn indicate the number of split transformations (a split transforma
tion for SBB trees is similar to a rotation for AVL trees, see Section 3.4.1.3) 
required during the insertion of the nth key into a random tree. Let H In 
indicate the number of local height increase transformations required during 
the insertion of the nth key into the tree. Then 

0.35921... + O(n- 5 ) ~ E[Sn] ~ 0.55672 ... + O(n-5 ) 

E[HIn] = !!+O(n-5 ) 



SEARCHING ALGORITHMS 127 

Let Vn be the number of nodes visited to process n random insertions/ 
deletions into the empty tree. Then 

Table 3.29 shows some simulation results for SBB trees. Cn is the average 
number of nodes visited during a successful search and Sn, Vn and h( n) have 
the meaning described earlier. 

Table 3.29: Simulation results for SBB trees. 

nl E[h(n)] 
5 2 .2000±0 .0003 0.213±0.023 1.213±0.023 3.000±0.020 

10 2.9057±0.0035 0.293±0.015 1.663±0.021 4.023±0.022 
50 4.9720±0.0051 0.3594±0.0050 2.1692±0.0073 7.009±0.016 

100 5.9307 ±0.0054 0.3733±0.0046 2.2757±0.0072 8.093±0.033 
500 8.2419±0.0059 0.3868±0.0027 2.3801±0.0047 11.027±0.026 

1000 9.2537 ±O .0062 0.3872±0.0023 2.3975±0.0042 12.140±0.068 
5000 11.6081±0.0073 0.3876±0.0013 2.4088±0.0023 15.014±0.028 

10000 12.6287 ±0.0083 0.3880±0.0011 2.4109±0.0019 16.180±0.108 

From the simulation results we can see that the value for Cn is close to 
the value of log2 n; in particular, under the arbitrary assumption that 

then 

a = 1.0186 ± 0.0010; and f3 = -0.909 ± 0.011 . 

While every AVL tree (see Section 3.4.1.3) can be transformed into an SBB 
tree, the converse is not true. Thus the class of AVL trees is a proper subclass 
of the SBB trees. Experimental results show that, on the average, SBB trees 
perform approximately as well as AVL trees. Indeed SBB trees require less 
work than AVL trees to maintain balance, but this is at the expense of search 
time. (The search time is only slightly longer and the maintenance time is in 
some areas significantly less.) As a practical structure SBB trees should be 
considered as an option for representing dictionaries. 

References: 
[Bayer, R., 72], [Olivie, H.J., 80], [Ziviani, N. et ai., 82]' [Ziviani, N., 82], 
[Tarjan, R.E., 83], [Ziviani, N. et ai., 85]. 
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3.4.2.3 1-2 trees 

1-2 trees are a special case of B-trees in which every node can have either one 
key or no keys. Consequently, every node has either two or one descendants. 
A node with no keys and one descendant is called a unary node. Since we 
allow nodes without keys, some additional restrictions are usually imposed so 
that a tree containing n keys is of bounded size (number of nodes). 

1-2 brother trees 
1-2 brother trees are 1-2 trees with the additional constraint that every unary 
node has a binary brother. 

There is a close correspondence between 1-2 brother trees and AVL trees 
(see Section 3.4.1.3), as any 1-2 brother tree can be easily converted into an 
AVL tree and vice versa. This correspondence is a very natural one and con
sists in deleting the unary nodes (brother--+avl) or inserting a unary node on 
the shorter subtree (avl--+brother) of every node. Moreover, for some methods 
of insertion and deletion, any sequence of operations (insertions/deletions) on 
AVL trees and 1-2 brother trees will produce equivalent trees. 

Let Nt! be the number of nodes in a 1-2 brother tree with n keys, then 
for a tree constructed from a set of random keys: 

n :::; N: :::; 1.61803 ... n 

40n - 5 :::; E[N:] :::; 156n - 19 
35 105 

for n ~ 6. 

1-2 son h-ees 
1-2 son trees are 1-2 trees with the additional constraint that in no parent
descendant pair are both nodes unary. There is a close correspondence be
tween 1-2 son trees and SBB trees (see Section 3.4.2.2) as any son tree can 
be converted to an SBB tree and vice versa. With this restriction, letting N! 
denote the number of nodes used by a tree with n keys 

n :::; N! < 3n+ 1 

48n + 13 < E[N;] < 72n - 33 
35 35 

for n ~ 6. 

1-2 neighbour trees 
Neighbour trees of order k are 1-2 trees with the additional constraint that 
every unary node has at least one right neighbour and its first k right neigh
bours, if these exist, are binary. For these trees the height is bounded by 

log2 n 
llog2 (n + l)J :::; h(n) :::; log2 (2 _ l/(k + 1)) + 1 
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References: 
[Maurer, H.A. et al., 76], [Ottmann, T. et al., 78], [Ottmann, T. et al., 79], 
[Olivie, H.J., 80], [Ottmann, T. et al., 80], [Ottmann, T. et al., 80], [Olivie, 
H.J., 81], [Ottmann, T. et al., 81], [Mehlhorn, K., 82], [Ottmann, T. et al., 
84], [Klein, R. et al., 87], [Wood, D., 88]. 

3.4.2.4 2-3-4 trees 

2-3-4 trees are similar to B-trees. We allow nodes having two, three, or four 
children. As for B-trees, all the leaves are at the same level, and this property 
is maintained through node splitting when we perform an insertion. 

It is possible to represent 2-3-4 trees as binary trees. These are called 
red-black trees. A red-black tree is a binary search tree where every node 
has a colour, which can be either red or black. The correspondence with 2-3-4 
trees is as follows: 

(1) A black node with two red children is equivalent to a four children node; 

(2) a black node with one red child (the other must be black) corresponds 
to a three children node; 

(3) a black node with no red children is a two-child node (both children are 
black). 

According to the above, the colouring of the nodes satisfies the following 
properties: 

(1) Every leaf (external node) is black. 

(2) A red node must have black children. 

(3) Every path from a node to a leaf contains the same number of black 
nodes. 

With these restrictions, we have 

Maintaining the colouring properties (that is, balancing the tree) of red
black trees, during an insertion or a deletion, is done through rotations (Sec
tion 3.4.1.8). 

References: 
[Guibas, L.J. et al., 78], [Sedgewick, R., 88], [Cormen, T.H. et al., 90]. 
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3.4.2.5 B-tree variations 

As the B-tree is one of the most popular external data structures, many 
variations have been devised. Of particular interest has been the combination 
of the fast access time of hashing, with the lexicographic order of B-trees. The 
most important variations are: 

(1) Prefix B-trees this is a B-tree oriented to store strings (or variable 
length keys). Every internal node has a variable number of keys, with 
each key being the minimal length string that satisfies the lexicograph
ical order condition of the B-tree. 

(2) Bounded disorder this is an index B-tree where each bucket is or
ganized as a multipage hashing table. Inside each page the keys are 
main tained in sorted order. 

(3) Digital B-trees in this case, the access to the buckets of an index B-tree 
is done using the digital decomposition of the keys. 

References: 
[Lomet, D.B., 81], [Scheurmann, P. et ai., 82], [Lomet, D.B., 83], [Litwin, W. 
et ai., 86], [Hsiao, Y-S. et ai., 88], [Baeza-Yates, R.A., 89], [Christodoulakis, 
S. et al., 89], [Lomet, D.B. et ai., 89], [Baeza-Yates, R.A., 90], [Lomet, D.B. 
et ai., 90]. 

3.4.3 Index and indexed sequential files 

An indexed file is a superimposition of a dictionary structure called the main 
file upon another dictionary structure called the index file. The index file 
is constructed on a subset of the keys of the main file. Using our notation for 
data structures, a single level index is defined by: 

main - file(KEY) : SET( bucket(KEY) ) 

index(KEY) : DICT1( KEY, [bucket(KEY)] ) 

bucket(KEY) : DICT2(KEY); 

In the above definition, DICTI stands for the organization of the index file 
and DICT2 for the organization of each individual bucket (both mapping to 
DICT), while the collection of all the bucket(KEY) forms the main file. 

Indexed files can be organized in several levels. By adding an index of the 
index we increase the number of levels by one. This is formally described by 
mapping the bucket(KEY) to 

bucket(KEY) : index(KEY) 
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instead. If the same DIeT structures for each level of indexing are chosen, 
the file has homogeneous indexing. In practice, the number of levels is 
very small and homogeneous (typically one or two levels). 

The typical choices for the DIeT structure in the index file are arrays and 
trees. The typical choice for the bucket is a sequential array. An indexed file 
can, however, be implemented using any selection for the DIeT structures 
in the index file and bucket and the SET representation for the main file. 
Normally the following constraints are imposed on the structure: 

(1) each index entry contains as key the maximum key appearing in the 
pointed bucket(KEY). 

(2) the index file structure should perform range searches, or nearest
neighbour searches efficiently, the type of search of most interest being 
'search the smallest key;::: X'. 

(3) the bucket(KEY) should allow some type of dynamic growth (overflow 
records, chaining, and so on), which should not be of bounded size. 

(4) it should be possible to scan all the components in a bucket sequentially 
and all the components of the set sequentially, or, in other words, it 
should be possible to scan all the main file sequentially. 

(5) the index contains an artificial key (00) which is larger than any other 
key in the file. 

Searching an array index 

function Searchlndex( key: typekey) : BucketAddressj 
var low, high, j : integer; 

begin 
low:= OJ 
high := nj {*** highest index entry ***} 
while high-low> 1 do begin 

j := (high+low) div 2j 
if key <= indexfJ].k then high := j 

else low := j 
end; 

Searchlndex := index[high].BuckAddr 
end; 
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Searching array buckets with overflow 

procedure SearchBucket(key: typekey; p : BucketAddress); 
label 999; 
var ,: integer; 

begin 
while p <> nil do begin 

ReadBucket(p) into bucket; 
i:= B; 

999: 

while (i>l) and (bucket.r[zlk>key) do i := i-I; 
ifbucket.r[zlk= key then goto999 {*** break***} 
else if i=B then p := bucket. next 

else p:= nil 
end; 

if p <> nil then /ound( bucket. r[ an 
else not/ound(key) 

end; 

The goal of indexed files is to have an index small enough to keep in main 
memory, and buckets small enough to read with a single access. In this ideal 
situation, only one external access per random request is needed. 

B*-trees (see Section 3.4.2) are a generalization of a special implementation 
of index files. 

Searching a single-level indexed file 

SearchBucket( key, Searchlndex( key»; 

Typically the index part of the file is considered to be a fixed structure 
and no updates are performed on it. In case the file grows or shrinks or alters 
its distribution significantly, it is easier to reconstruct the index entirely. 

3.4.3.1 Index sequential access method 

A particular implementation of indexed files are the index sequential access 
method (ISAM) files. For these files the index file and set are both arrays. 
The buckets are composed of an array of records of fixed maximum size and 
an additional pointer to 'overflow' buckets. Since the index file and main file 
are both arrays, there is no need to keep pointers in the index. The array 
index in the index file corresponds to the array index (bucket index) on the 



main file. 

index(KEY) : {KEY}~ 

main - file: {bucket(KEy)}f+W ; 

bucket(KEY) : ({KEY, D}p,int); 
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In the above definition, B is the bucket size, N denotes the number of buckets 
in the main file, and W denotes the number of buckets reserved for overflow. 
The integer in the bucket(KEY) is the index of the corresponding overflow 
bucket. 

The buckets are designed to match closely the physical characteristics of 
devices, for example, typically a bucket fully occupies a track in a disk. In 
some cases the index is organized as an indexed file itself, in which case the 
ISAM becomes a two-level index. For two-level indices the same array struc
tures are used. The top level index is made to match a physical characteristic 
of the device, for example, a cylinder in a disk. 

General references: 
[Chapin, N., 69], [Chapin, N., 69], [Ghosh, S.P. et al., 69], [Senko, M.E. et al., 
69], [Collmeyer, A.J. et al., 70], [Lum, V.Y., 70], [Mullin, J.K., 71], [Nijssen, 
G.M., 71], [Mullin, J.K., 72], [Cardenas, A.F., 73], [Casey, R.G., 73], [Wag
ner, R.E., 73], [Behymer, J.A. et al., 74], [Grimson, J.B. et al., 74], [Keehn, 
D.G. et al., 74], [Shneiderman, B., 74], [Schkolnick, M., 75], [Schkolnick, M., 
75], [Whitt, J.D. et al., 75], [Wong, K.F. et al., 75], [Yue, P.C. et al., 75], 
[Gairola, B.K. et al., 76], [Shneiderman, B. et al., 76], [Anderson, H.D. et al., 
77], [Cardenas, A.F. et al., 77], [Maruyama, K. et al., 77], [Schkolnick, M., 
77], [Senko, M.E., 77], [Severance, D.G. et al., 77], [Gotlieb, C.C. et al., 78], 
[Kollias, J.G., 78], [Nakamura, T. et al., 78], [Mizoguchi, T., 79], [Strong, B.R. 
et al., 79], [Zvegintzov, N., 80], [Batory, D.S., 81], [Larson, P., 81], [Leipala, 
T., 81], [Leipala, T., 82], [Willard, D.E., 82], [Burkhard, W.A., 83], [Cooper, 
R.B. et al., 84], [Manolopoulos, Y.P., 86], [Willard, D.E., 86], [Ramakrishna, 
M.V. et al., 88], [Rao, V.N.S. et al., 88]. 

3.4.4 Digital trees 

Digital trees or tries are recursive tree structures which use the characters, 
or digital decomposition of the key, to direct the branching. The name trie 
comes from the word retrieval. A node in a trie is either an external node and 
contains one record, or it is an internal node and contains an array of pointers 
to nodes or null pointers. The selection of the sub tries of a node (entries of 
the array) is done by the ordering of the ith character of each key, where i 
is the depth of the node. The root node uses the first character of the key, 
the direct descendants of the root use the second character, and so on. At 
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any level where the remaining subtrie has only one record, the branching is 
suspended. A trie of order M is defined by 

tr-M-D : [{tr-M-Dlr]; [D]; nil 

The basic trie tree, if the underlying alphabet is ordered, is a lexicograph
ically ordered tree. The character set is usually the alphabet or the decimal 
digits or both. Typically the character set has to include a string-terminator 
character (blank). If a string terminator character is available, tries can store 
variable length keys. In particular, as we use the smallest prefix of the key 
which makes the key unique, digital trees are well suited for handling un
bounded or semi-infinite keys. 

Let Cn and C~ denote the average number of internal nodes inspected 
during a successful search and an unsuccessful search respectively. Let Nn 

denote the number of internal nodes in a trie with n keys, and let h(n) denote 
its height. The digital cardinality will be denoted by m; this is the size of 
the alphabet and coincides with the dimension of the internal-node arrays. 

In all the following formulas, P(z) denotes complicated periodic (or con
vergent to periodic) functions with average value 0 and very small absolute 
value. These functions should be ignored for any practical purposes. Although 
we use P(z) for all such functions, these may be different. 

For tries built from random keys, uniformly distributed in U(O, 1) (or keys 
composed of random-uniform digits) we have: 

E[Nn ] = 1 + m l - n t (~) (m - l)n-i E[Ni] 
i=O 2 

C' 
n 

n 
-I -(1 + P(logm n)) + 0(1) 
nm = 

1 + m l - n ~ (7 ~:) (m - l)n-iCi , 

= ~n;;: + ~ + P(logm n) + O(n-l) 

= 

Hn -1 1 1 
= In m + 2 + P(logm n) + O( n - ) 

E[h(n)] = 210gm n + o(logn) 

(No = Nl = 0) 

(Co = C l = 0) 

(C~ = c~ 0) 

where Hn = E~l 1/i denote the harmonic numbers. Table 3.30 shows some 
exact values. 



Digital tree (trie) search 

search( key, t) 
typekey key; 
trie t; 

{ 
int depth; 
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for(depth=l; t!=NULL && !IsData(t); depth++) 
t = t ->p[charac(depth,key)]; 

if(t != NULL && key == t ->k) 
/ound(t); 

else not/ound(key); 
} 

Digital tree (trie) insertion 

trie insert( key, t, depth) 
typekey key; 
trie t; 
int depth; 

{ 
int j; 
trie tl; 
if (t==NULL) return(NewDataNode(key)); 
if (IsData( t)) 

if (t ->k == key) 
Error /*** Key already in table ***/; 

else { t1 = NewlntNodeO; 
tl ->p[charac(depth,t ->k)] = t; 
t = insert(key, tl, depth); 
} 

else {j = charac( depth,key); 
t ->pU) = insert(key, t ->pU), depth+1); 
} 

return(t); 
} 

The function charac(i, key) returns the ith character of a key. It is ex
pected that the result is an integer in the range 0 to m - 1. The function 
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insert uses the level indicator depth to facilitate the search. The user should 
call this function with depth 1; for example, insert(key, trie, 1). The function 
IsData(t) tests whether a pointer points to an internal node or to a data 
node. The functions NewlntNode and NewDataNode create new nodes of 
the corresponding types. 

In cases where there is no value associated with the key, we can avoid 
the data records completely with a special terminator (such as nil.) which 
indicates that a string key terminates there. The key, if desired, can be 
reconstructed from the path in the tree. 

There is a very close correspondence between a trie tree and top-down 
radix sort, as the trie structure reflects the execution pattern of the sort, each 
node corresponds to one call to the sorting routine. 

Table 3.30: Exact results for general tries. 

m=2 
n c' n E[h(n)] 

10 13.42660 4.58131 3.28307 6.92605±0.00068 
50 71.13458 6.96212 5.54827 l1.6105±0.0017 

100 143.26928 7.96937 6.54110 13.6108±0.0025 
500 720.34810 10.29709 8.85727 18.2517±0.0060 

1000 1441.69617 11.29781 9.85655 20.2566±0.0087 
5000 7212.47792 13.62031 12.17792 24.877±0.020 

10000 14425.95582 14.62039 13.17785 26.769±0.027 
50000 72133.67421 16.94237 15.49970 30.246±0.031 

m= 10 
10 4.11539 1.70903 1.26821 2.42065±0.00022 
50 20.92787 2.43643 2.05685 3.84110±0.00059 

100 42.60540 2.73549 2.26860 4.43724±0.00082 
500 210.60300 3.44059 3.05159 5.8418±0.O021 

1000 427.45740 3.73802 3.26849 6.4373±0.0029 
5000 2107.33593 4.44100 4.05106 7 .8286±0 .0071 

10000 4275.97176 4.73827 4.26847 8.3965±0.0091 
50000 21074.66351 5.44104 5.05100 9.494±0.020 

When the cardinality of the alphabet is large and consequently internal 
nodes are of significant size compared to a record, the trie becomes inefficient 
in its use of storage. For example, if only two keys reach a given internal 
node, we have to include a complete internal node which will be mostly under
utilized. In some sense, tries are efficient close to the root where the branching 
is dense, but inefficient close to the leaves. 
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General references: 
[de la Brandais, R., 59], [Fredkin, E., 60], [Sussenguth, E.H., 63], [Patt, 
Y.N., 69], [Knuth, D.E., 73], [Burkhard, W.A., 76], [Horowitz, E. et al., 76], 
[Maly, K., 76], [Stanfel, L., 76], [Burkhard, W.A., 77], [Comer, D. et al., 77], 
[Miyakawa, M. et al., 77], [Nicklas, B.M. et al., 77], [Reingold, E.M. et al., 
77], [Gotlieb, C.C. et al., 78], [Comer, D., 79], [Mehlhorn, K., 79], [Tarjan, 
R.E. et al., 79], [Comer, D., 81], [Litwin, W., 81], [Lomet, D.B., 81], [Reg
nier, M., 81], [Tamminen, M., 81], [Devroye, L., 82], [Flajolet, P. et al., 82], 
[Knott, G.D., 82], [Orenstein, J.A., 82], [Comer, D., 83], [Flajolet, P. et al., 
83], [Flajolet, P., 83], [Devroye, L., 84], [Mehlhorn, K., 84], [Flajolet, P. et 
ai., 85], [Flajolet, P. et al., 86], [Jacquet, P. et al., 86], [Kirschenhofer, P. et 
ai., 86], [Litwin, W. et ai., 86], [Pittel, B., 86], [Szpankowski, W., 87], [de la 
Torre, P., 87], [Kirschenhofer, P. et ai., 88], [Lomet, D.B., 88], [Sedgewick, 
R., 88], [Szpankowski, W., 88], [Szpankowski, W., 88], [Luccio, F. et ai., 89], 
[Szpankowski, W., 89], [Murphy, O.J., 90]. 

3.4.4.1 Hybrid tries 

It is for the above reason that tries are usually composed with some other 
structure to allow for their efficient behaviour at the root but to switch to 
some other data structure closer to the leaves. All these compositions have 
the common definition: 

tr-M-D : [{tr-M-Dlr]; [D]; DIeT(D); nil 

Common compositions are with external buckets (DIeT(D) - {Dl~), called 
bucket tries, and with binary search trees (DIeT(D) - bt - D - nil, see 
Section 3.4.1). 

For bucket tries, after the insertion of n random keys uniformly distributed 
in U(O, 1), we have 

n 
bin m (1 + P(logm n» + 0(1) 

Cn = Hn-Iln-mHb-1 + ~ + P(logm n) + O(n-l) 

I H - Hb 1 I 
Cn = ~n m + 2" + P(logm n) + O( n - ) 

The exact formulas for the above quantities are the same as the ones for 
general tries but with the extended initial condition: No = NI = ... = Nb = O. 
For bucket binary tries, that is, when m = 2 we have 

E[h(n)] = (1 + lib) log2 n + In1 2 - log2«b + I)!) 
+P«l + lib) log2 n) + 0(1) 
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Bucket binary tries are used as the collision resolution mechanism for dy
namic hashing (see Section 3.3.14). 

A different type of hybrid trie is obtained by implementing the array in 
the internal nodes with a structure which takes advantage of its possible spar
sity: for example, a linked list consisting of links only for non-empty subtries. 
Almost any technique of those used for economizing storage in B-tree nodes 
can be applied to the internal nodes in the tries (see Section 3.4.2). 

3.4.4.2 Tries for word-dictiollaries 

Digital trees seem very appropriate to implement language dictionaries. The 
most important reason, besides their efficiency, is that tries allow for efficient 
prefix searching. Prefix search is searching for any word which matches a 
given prefix, for example, searching for comput* where the asterisk can be 
matched by any string (see Section 7.2.2). 

There are some problems associated with this particular application 
though: long common prefixes tend to create unnecessary additional levels 
with very little (maybe unary) branching. For example, the words compu
tation, computational, computations will force 11 levels of branching before 
these words can be separated. If prefix searching is not needed, this problem 
can be remedied by organizing the scan of the characters of the key in reverse 
order (as suffixes are shorter and less common than prefixes). 

More generally and much better, if we are prepared to lose the lexicograph
ical ordering of the keys, is to consider the function charac( i, key) as a hashing 
function which operates on the key and returns an integer value with a rather 
uniform distribution. This option may be particularly appealing when the 
cardinality of the alphabet is large and the usage distribution is uneven (as 
would be the case for a full ASCII set under normal circumstances). In this 
latter case the hashing function can be applied to the characters individually. 

3.4.4.3 Digital search trees 

Digital search trees are a particular implementation of tries where a record is 
stored in each internal node. The hyper rule which defines these trees is 

dst - M - D : [D, {dst - M - D}tI]; llil 

The binary digital search trees use the same structure as the binary search 
trees (see Section 3.4.1); the only difference between them is that the selection 
of subtrees is not based on comparisons with the key in the node, but on bit 
inspec tions. 

Let Cn and C~ be the average number of nodes inspected during a suc
cessful and an unsuccessful search respectively. Then for digital search trees 
constructed from random uniform keys (or keys composed of random digits) 
we have: 
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(Co 0) 

C: (n + I)Cn +l - nCn - 1 

logm n + In'Ym + ~ - am + P(Iogm n) + O(n-l) 

(in probability) 

where 

a2 = 1.60669 ... 

Table 3.31 shows some exact values. 
The selection of which key is placed in each node is arbitrary among all the 

keys of its subtree. As the selected key does not affect the branching (other 
than by not being in the subtree), any choice will give almost equivalent sub
trees. This fact leaves room for optimizing the trees. The most common, and 
possibly the best, strategy is to choose the key with highest probability. This 
is equivalent to building the tree by inserting keys in descending probability 
order. 

Table 3.31: Exact results for digital search trees. 

m=2 m= 10 

I C~ I C~ 
10 3.04816 3.24647 2.19458 1.64068 
50 5.06061 5.41239 2.90096 2.32270 

100 6.00381 6.39134 3.19015 2.61841 
500 8.26909 8.69616 3.89782 3.31913 

1000 9.26011 9.69400 4.18865 3.61622 
5000 11.57373 12.01420 4.89731 4.31876 

10000 12.57250 13.01398 5.18840 4.61600 
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3.4.4.4 Compressed tries 

A compressed trie is a static tree for which the array of pointers at each 
internal node is represented by one base address and a bit array. Each bit 
indicates whether the corresponding entry points to a non-null subtrie or not. 
All non-null subtries are stored consecutively starting at the base address. 

The easiest way of guaranteeing contiguity is by storing the trie as an 
array of records. The base address is an integer used as an index into the 
array. The hyperrule which defines the compressed trie is: 

tr - M - 0 : tint, {boollr lr 

By convention the root of the trie is at location 1. Given an internal node, 
its ith descendant will be found by adding the base integer plus the count of 
'1' bits in the array at the left of location i. 

Compressed tries have the same complexity measures as the basic tries. 
Compressed tries achieve a good efficiency in searching and a very compact 
representation at the cost of being static structures. 

3.4.4.5 Patricia trees 

A Patricia tree is a particular implementation of a binary trie. The Patricia 
tree uses an index at each node to indicate the bit used for that node's branch
ing. By using this index, we can avoid empty subtrees and hence guarantee 
that every internal node will have non-null descendants, except for the totally 
empty tree. A Patricia tree is defined by 

pat - 0 : [int, pat - 0, pat - 0] ; [0] == bt - int - [0] 

As a binary tree, the Patricia tree stores all its data at the external nodes 
and keeps one integer, the bit index, in each internal node. 

Let Cn be the average number of internal node inspections during a suc
cessful search and C~ for an unsuccessful search. Then for trees constructed 
from n randomly distributed keys in U(O, 1) we have: 

Nn = n-l 

1 n-1 (n-l) 
Cn 1 + 2n - 1 _ 1 ~ i-I Ci (Co = C1 = 0) 

,=1 

= log2 n + In'Y 2 - ~ + P(log2 n) + 0(n-1) 

C' 
n = n-1 ( ) 

1 + 2n ~ 2 ~ 7 c; (C~ = c~ = 0) 

'Y -In 11' 1 
log2 n + 

In 2 
+ 2' + P(log2 n) + 0(n-1) 
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lim E[h(n)] = log2 n 
n .... oo 

Table 3.32 shows some exact values. 

Patricia tree search 

search( key, t) 
typekey key; 
patricia t; 

{ 
if (t==NULL) notfound(key); 
else { while (!IsData( t)) 

} 
}; 

t = bit(t ->leve1,key) ? t ->right: t ->left; 
if (key == t ->k) found(t)j 

else notfound( key); 

Patricia tree insertion 

patricia insert( key, t) 
typekey key; 
patricia t; 

{patricia p; 
patricia InsBetweenO; 

int ij 
if (t==NULL) return(NewDataNode(key)); 

for(p=t; !IsData(p);) 
p = bit(p ->leve1, key) ? p ->right : p ->left ; 

/* find first different bit */ 
for (i=l; i<=D && bit(i,key)==bit(i,p ->k); i++); 
if (i> D) { Error / * Key already in table * /; 

return ( t); } 
else return(InsBetween(key, t, i)); 
} 

patricia InsBetween(key, t, i) 

(in probability) 
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typekey key; 
patricia t; 
int i; 

{patricia p; 
if (IsData( t) " i < t ->Ievel) { 

/* create a new internal node */ 
p = NewDataNode(key); 
return(bit(i,key) 'I NewlntNode(i,t,p) : NewlntNode(i,p,t)); 
} 

if (bit(t ->level,key)==1) 
t ->right = InsBetween(key, t ->right, i); 

else t ->Ieft = InsBetween(key, t ->Ieft, i); 
return(t); 
}; 

The function bit(i, key) returns the ith bit ofa key. The functions IsData, 
N ewI ntN ode and N ewDataN ode have the same functionality as the ones for 
tries. 

Some implementations keep the number of bits skipped between the bit in
spected by a node and the bit inspected by its parent, instead of the bit index. 
This approach may save some space, but complicates the calling sequence and 
the algorithms. 

Patricia trees are a practical and efficient solution for handling variable 
length or very long keys; they are particularly well suited for text search
ing. Note that the problem generated by very long common prefixes virtually 
disappears for Patricia trees. 

The structure generated by building a Patricia tree over all the semi
infinite strings resulting from a base string (or base text) is called a PAT tree 
and has several important uses in text searching (see Section 7.2.2). 

Given a set of keys, the shape of the tree is determined, so there cannot 
be any conformation or reorganization algorithm. 

In summary, digital trees provide a convenient implementation for several 
database applications. The most important reasons are: 

(1) short searching time (successful or unsuccessful); 

(2) they allow searching on very long or unbounded keys very efficiently; 

(3) flexibility, as they allow composition with many other structures; 

(4) they allow search of interleaved keys and hence they are amenable to 
multidimensional search. 
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Table 3.32: Exact and simulation results for Patricia trees. 

nl c' n E[h(n)] 
10 3.58131 3.07425 4.63400±0.00023 
50 5.96212 5.33950 7.88927 ±O .00060 

100 6.96937 6.33232 9.21029±0.00080 
500 9.29709 8.64847 12.1681±0.0018 

1000 10.29781 9.64775 13.3669±0.0029 
5000 12.62031 11.96910 16.2120±0.0059 

10000 13.62039 12.96903 17 .382±0.0 10 
50000 15.94237 15.29091 20.147±0.018 

References: 
[Morrison, D.R., 68], [Knuth, D.E., 73], [Merrett, T.H. et ai., 85], [Sz
pankowski, W., 86], [Kirschenhofer, P. et ai., 88], [Sedgewick, R., 88], 
[Kirschenhofer, P. et ai., 89]. 

3.5 Multidimensional search 

The algorithms which allow non-atomic search keys, or keys composed of 
several subkeys, are called multidimensional searcb algorithms. 

Any searching algorithm could, in principle, deal with composite keys, 
just by considering the composed key as a single block. For this reason only 
those search algorithms which treat the subkeys individually are called multi
dimensional search algorithms. In particular, the most important property of 
multidimensional search is to allow searching when only some of the subkeys 
are specified. This problem is called partial-matcb searcbing or partial
matcb retrieval. Retrieval on ranges of subkeys also requires special multi
dimensional searching algorithms. 

Partial-match queries may have multiple answers, that is, more than one 
record may match part of the key. We will define two types of searches: 
positive search, when we search an element which is in the tree and we stop 
as soon as the record is found (denoted by Cn ); negative search, when we 
do not know how many matches there will be and we search all of them (the 
rsearch function searches for all possible matches), denoted by C~. 

Partial-match queries can be treated as a special case of range queries; 
for a specified subkey, the range is defined by a single value (upper bound = 
lower bound), and for an unspecified key the range is infinite (or sufficiently 
large to include all keys). 
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Partial-match query using range searching 

lowk[O] = uppk[O] = value; /*** specified value ***/ 
lowk[I] = -infinity; 
uppk[I] = infinity; /*** unspecified value ***/ 

rsearch(lowk, uppk, t); 

General references: 
[Lum, V.Y., 70], [Dobkin, D. et al., 74], [Rothnie, J.B. et al., 74], [Dobkin, 
D. et al., 76], [Raghavan, V.V. et al., 77], [Bentley, J .L. et al., 79], [Kosaraju, 
S.R.,79], [Ladi, E. et al., 79], [Lipski, Jr., W. et al., 79], [Bentley, J.L., 80], 
[Guting, R.H. et al., 80], [Hirschberg, D.S., 80], [Lee, D.T. et al., 80], [Guting, 
R.H. et al., 81], [Ouksel, M. et al., 81], [Eastman, C.M. et al., 82], [Orenstein, 
J .A., 82], [Scheurmann, P. et al., 82], [Willard, D.E., 82], [Guttman, A., 84], 
[Madhavan, C.E.V., 84], [Mehlhorn, K., 84], [Kent, P., 85], [Cole, R., 86], 
[Faloutsos, C. et al., 87], [Karlsson, R.G. et al., 87], [Munro, J.I., 87], [Sacks
Davis, R. et al., 87], [Sellis, T. et al., 87], [Willard, D.E., 87], [Fiat, A. et al., 
88], [Seeger, B. et al., 88], [Henrich, A. et al., 89], [Lomet, D.B. et al., 89]. 

3.5.1 Quad trees 

A quad search tree is an extension ofthe concept of binary tree search in which 
every node in the tree has 21: descendants. While searching for a k-dimensional 
key, the corresponding descendant is selected based on the result of k com
parisons. Each internal node of the quad tree contains one k-dimensional key 
and associated data. The hyperrule defining the quad trees is: 

qt-N-D : nil; [D,{qt_N_D}~N_l] 

The descendants of a quad tree node are numbered from 0 to 21: - 1. Let 
bob1 ... b1:-1 be the binary representation of a descendant number. If bi is 1 
then the ith subkeys in the descendant subtree are all larger than the ith key 
at the node; if bi = 0 the sub keys are less or equal. For example, in two 
dimensions, say z and y, descendant 2 = 102 contains the south-east sector 
of the plane. 

E~ = (21: - I)I! + 21: n 

C' 
n 

= (1 + 3~) Hn - n 6: 1 
n-I 

Hn -
6(n + 1) 

(for k = 2) 

(for k = 2) 
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Var[C~] = H(2) + H n + 5n 
n 2 9 (for k = 2) 

n-1 

1 + 42 L iCj «Hn - Hj)2 + H~2) - H?» 
n i=1 

(for k = 3) 

(~+ 2~n) Hn + 0.588226 ... + O(I/n) 

Cn = ~ In n + 'Yk + 0 CO! n + log n n- 2+2c08 \'<- ) (for any k) 

where 'Yk is independent of n. 
For partial matches, for k = 2 when only one key is specified, 

c' n 
f(20') a-1 1 (1) --n - + 0 
2f( 0')3 

1.595099 ... nO.561552 ... - 1 + 0(1) 

where 0' = 4-1 . 

Quad tree search 

search( key, t) 
typekey key[K]j 
tree tj 
{ 
int i, indx, noteqj 
while(t != NULL) { 

indx = noteq = OJ 
for (i=Oj i<Kj i++) { 

indx = indx « Ij 
if (key[z1 > t ->k[z]) indx++j 
if (key[z1 != t ->k[z]) noteq++j 
} 

if (noteq) t = t ->p[indx]j 
else { found(t)j returnj } 

} 
notfound(keY)j 
}j 
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Quad tree insertion 

tree insert( key, t) 
type key key[ ]; 
tree t; 
{ 
int i, indx, noteq; 
if (t==NULL) t = NewNode(key); 

else { indx = noteq = 0; 
for (i=O; i</(; i++) { 

indx = indx « 1; 
if (keY[2] > t ->k[z]) indx++; 
if(key[z] != t ->k[2]) noteq++; 
} 

if (noteq) t ->p[indx] = insert(key, t ->p[indx)); 
else Error; /*** /(ey already in table ***/ 
} 

return(t); 
}; 

There are no efficient or simple methods for performing 'rotations' in quad 
trees. Consequently it is difficult to maintain a quad tree balanced. 

There are no simple methods for performing deletions either. The best 
method for deletions is to mark the nodes as deleted, and reconstruct the tree 
whenever too many nodes have been deleted. 

Quad trees with dimension three or higher become excessively expensive 
in terms of storage used by pointers. A quad tree has (2" - l)n + 1 null 
pointers. 

Table 3.33 displays simulation results on randomly generated quad trees. 
Cn denotes the average successful search and E[h(n)] the average height of a 
quad tree with n nodes. 

3.5.1.1 Quad tries 

Quad tries are similar to quad trees, but instead of using comparisons to select 
the descendant, they use the bits of the keys, as in a digital trie or a Patricia 
tree. Quad tries are usually called quad trees. The quad trie has no data in 
the internal nodes, these are used just for branching, the record information 
is stored in the external nodes. 

Quad tries are generated by the hyper rule: 

qt-N-O : nil; [0]; [{qt-N-0}5N - 1] 

In all the following formulas, P(x) denotes complicated periodic (or con-
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Table 3.33: Exact and simulation results for quad trees of two and three 
dimensions. 

k=2 k=3 
E[h(n)] E[h(n)] 

5 2.23556 3.28455±0.00014 2.09307 2.97251 ±0.00013 
10 2.84327 4.41439±0.00025 2.53845 3.78007±0.00022 
50 4.35920 7.30033±0.00075 3.59019 5.81713±0.00058 

100 5.03634 8.6134±0.0011 4.04838 6.72123±0.00086 
500 6.63035 11.7547±0.0029 5.11746 8.8586±0.0021 

1000 7.32113 13.1337 ±0.0043 5.57895 9.7953±0.0031 
5000 8.92842 16.382±0.011 6.65135 11.9847 ±0.0076 

10000 9.62125 17.784±0.015 7.11336 12.942±0.011 
50000 11.2304 21.106±0.038 8.18624 15.140±0.027 

vergent to periodic) functions with average value 0 and very small absolute 
value. These functions should be ignored for any practical purposes. Although 
we use P(x) for all such functions, these may be different. The behaviour of 
quad tries is identical to those of digital tries of order 2k: 

E[Nn] = 1 + 2k(1-n)~ (7)(2k -l)n-iE[Ni] (No = N1 = 0) 

n 
= kin 2(1 + P«log2 n)/k)) + 0(1) 

Cn 1 + 2k(1-n) t (; ~ D (2k - l)n-iCi, (Co = C1 = 0) 
.=1 

:~n-; + ~ + P((log2 n)/k) + 0(n-1) 

C~ = 1 + 2- kn t (7)(2k -l)"-iC; (C~ = C~ = 0) 
.=2 

Hn -1 1 1 
= kin 2 + '2 + P((log2 n)/k) + O(n- ) 
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Quad trie search 

search( key, t) 
type key key[ li1; 
tree t; 

{int bn, i, indx; 
for (bn=l; t != NULL && !IsData(t); bn++) { 

indx = 0; 
for (i=O; i<K; i++) indx = 2*indx + bit(bn,key[z1); 
t = t ->p[indx]; 
} 

if (t != NULL) for (i=O; i<K && key[z]==t ->k[z]; i++); 
if (t==NULL II i < Ii) notfound(key); 

else found(t); 
}; 

Quad trie insertion 

tree insert(key, t) 
typekey key[ K]; 
tree t; 
{ tree Insertlndx(); 
return(Insertlndx(key,t,l»; 
} 

tree Insertlndx(key, t, lev) 
typekey key[li1; 
tree t; 
int lev; 

{ int i, indx; 
tree H; 

if (t == NULL) return(NewDataNode(key»; 
if (IsData(t» { 

for(i=O; i<K && key[z1 == t ->k[z1; i++); 
if (i >= Ii) { 

Error /*** Key already in table ***/; 
return(t); 
} 

else { t1 = NewlntNodeO; 



} 
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indx = OJ 
for (i=Oj i<Kj i++) indx= 2*indx+ bit(lev,t->k[aJ)j 
H ->p[indx] = tj 
t = Hj 
} 

indx = OJ 
for (i=Oj i<Kj i++) indx = 2*indx + bit(lev,key[z1}j 
t ->p[indx] = InsertIndx(key, t ->p[indx], leV+l)j 
return(t)j 
}j 

Quad tries have been successfully used to represent data associated with 
planar coordinates such as maps, graphics, and bit-map displays. For 
example, in describing a planar surface, if all the surface is homogeneous, then 
it can be described by an external node, if not, the surface is divided into four 
equal-size quadrants and the description process continues recursively. 

References: 
[Finkel, R.A. et al., 74], [Bentley, J.L. et al., 75], [Lee, D.T. et al., 77], [Over
mars, M.H. et al., 82], [Flajolet, P. et al., 83], [Beckley, D.A. et al., 85], [Fla
jolet, P. et al., 85], [Fabbrini, F. et al., 86], [Nelson, R.C. et al., 87], [Cunto, 
W. et al., 89], [Flajolet, P. et al., 91]. 

3.5.2 K-dimensional trees 

A k-d tree is a binary tree which stores k-dimensional keys in its nodes. The 
subkeys are used to direct the searching in the same way they are used in a 
binary search tree. The only difference is that the subkeys are used cyclically, 
one subkey per level. In our algorithm we use the first subkey at the root, the 
second sub key for the direct descendants of the root, and so on. 

For k-d trees built from random insertions, the complexity measures are 
the same as for binary search trees (see Section 3.4.1): 

E[An] = Cn = 2(1 + l/n)Hn - 3 ::::::: 1.3863 log2 n - 1.8456 

0'2(An) = (2 + 10/n)Hn - 4(1 + l/n)(H~/n + H~2» + 4 

::::::: 1.386310g2 n - 1.4253 

E[A~] = C~ = 2Hn+l - 2 ::::::: 1.3863 log2 n - 0.8456 

0'2(A~) = 2Hn+l - 4H~~1 + 2 ::::::: 1.3863 log2 n - 3.4253 
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K-d tree search 

search( key, t) 
typekey key[ E] j 
tree tj 
{ 
int lev, ij 
for (lev=Oj t != NULLj lev=(IeV+l)%.h') { 

for (i=Oj i<K && key[a]==t ->k[z]j i++)j 
if (i==K) { found(t)j returnj } 
if (key[/ev] > t ->k[/ev]) t = t ->rightj 

else t = t ->Ieftj 
} 

notfound( key)j 
}j 

K-d tree insertion 

tree insert( key, t, lev) 
typekey key[ ] j 
tree tj 
int levj 
{ 
int ij 
if (t==NULL) t = NewNode(key)j 

else { for (i=Oj i<K && key[.]==t ->k[']j i++)j 
if (i==.h') Error /*** Key already in table ***/j 
else if (key[/ev] > t ->k[/ev]) 

t ->right = insert(key, t ->right, (IeV+l)%.h')j 
else t ->Ieft = insert(key, t ->ieft, (IeV+l)%K)j 
} 

return(t)j 
}j 

For a k-d tree grown from random keys, a partial-match query which 
involves p of the k subkeys will require 

E[Cn ] = O(n~) 

where A is the only positive root of 

(2 + A)P(l + A)"-P = 2" 



We have 

A=I-~+O 
k 
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with 0 < 0 < 0.07. Table 3.34 shows some values for A. 
The constant which multiplies the n~ term depends on which subkeys are 

used in the partial-match query. This constant is lowest when the subkeys 
used for the search are the first subkeys of the key. 

Table 3.34: Order of magnitude of partial-match queries in k-d trees. 

Ikl p=1 I ~=2 I p=31 
2 0.56155 
3 0.71618 0.39485 
4 0.78995 0.56155 0.30555 

K-d trees allow range searches; the following algorithm searches a k-d tree 
for values contained between lowk and uppk. The function foundO is called 
for each value in the tree within the range. 

Range search in k-d trees 

rsearch( lowk, uppk, t, lev) 
typekey lowk[], uppk[ ]; 
tree t; 
int lev; 

{int j; 
if (t==NULL) return; 
if (lowk[lev] <= t->k[levD 

rsearch(lowk, uppk, t ->left, (leV+l)%I0; 

for (j=O; j<K && lowk[)]<=t ->k[)] && uppA:fJ]>=t ->k[)]; i++); 
if (j==K) found(t); 

if (uppk[lev] > t ->k[levD 
rsearch(lowk, uppk, t ->right, (leV+l)%I0; 

}; 

There are no efficient or simple methods for performing 'rotations' in k-d 
trees. Consequently it is difficult to maintain a k-d tree balanced. 
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There are no efficient or simple methods for performing deletions either. 
The best method for deletions is to mark the nodes as deleted, and reconstruct 
the tree whenever too many nodes have been deleted. 

It is possible to construct a perfectly balanced k-d tree in O(n log n) time. 
This is done by a divide-and-conquer approach: 

Construction of perfectly balanced k-d tree 

function MakeBaITree(S: SetO/Keysj lev: integer) : treej 
var med: typekeYj 

median: KDKeyj 
A : SetO/K eySj 
i, n : integer; 
SubKey: array [1..Max] of typekeYj 

begiu 
if S=[] then MakeBalTree := nil 
else begin 

n := Size OJ{S) j 
{*** Select subkeys to find median ***} 
for i:=1 to n do SubKeY[11 := e1ement(i,S)[/ev]j 
{*** find median 0/ subkeys ***} 
med := select(n div 2 + 1, SubKey, 1, n)j 
A := []j 
for i:=1 to n do 

if element(i,S)[/ev] > med then 
A := A + e1ement( i,S) 

else if e1ement( i,S)[/ev] = med then 
median := element( i,S)j 

MakeBalTree := NewNode(median, 
MakeBaITree(S-A-[median], (leV+l) mod K), 
MakeBaITree(A, (IeV+l) mod 1\')) 

end 
endj 

References: 
[Bentley, J .L., 75], [Friedman, J .H. et al., 77], [Lee, D.T. et al., 77], [Bentley, 
J.L., 79], [Silva-Filho, Y.V., 79], [Eastman, C.M., 81], [Robinson, J.T., 81], 
[Silva-Filho, Y.V., 81]' [Eastman, C.M. et al., 82], [Hoshi, M. et al., 82], 
[Overmars, M.H. et al., 82], [Flajolet, P. et al., 83], [Beckley, D.A. et al., 85], 
[Flajolet, P. et al., 86], [Murphy, O.J. et al., 86], [Lea, D., 88]. 



Sorting Algorithms 

4.1 Techniques for sorting arrays 

The typical definition for procedures to sort arrays in place is, in Pascal: 

Procedure definition for sorting arrays 

procedure sort(var r: ArrayToSort; 10, up : integer); 

and in C: 

Procedure definition for sorting arrays 

sort( r, 10, up) 
ArrayToSort r; 
int 10, up; 

where r is the array to be sorted between r[/o) and r[up). The sorting is done 
'in place', in other words, the array is modified by permuting its components 
into ascending order. 

153 
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4.1.1 Bubble sort 

The bubble sort algorithm sorts an array by interchanging adjacent records 
that are in the wrong order. The algorithm makes repeated passes through 
the array probing all adjacent pairs until the file is completely in order. Every 
complete pass sets at least one element into its final location (in an upward 
pass the maximum is settled, in a downward the minimum). In this way, every 
pass is at least one element shorter than the previous pass. 

Let Cn be the number of comparisons needed to sort a file of size n using 
the bubble sort, and let In be the number of interchanges performed in the 
process. Then 

n _ 1 < C < n(n - 1) 
n - 2 

E[Cn ] = n2 - nln n - ('Y + In 2 - l)n + O(nl/2) 
2 

n(n - 1) o ~ In ~ 2 

n(n - 1) 
E[In] = 4 

E[passes] = n- ..j7rn/2+5/3+0 (In) 
The simplest form of the bubble sort always makes its passes from the top of 
the array to the bottom. 

Bubble sort 

procedure sort(var r: ArrayToSortj 10, up : integer)j 

var i, j: integer; 
tempr: ArmyEntryj 

begin 
while up>lo do begin 

j:= 10j 
for i:=lo to up-1 do 

if r[z]'k > r[i+1].k then begin 
tempr := r[,]j 
r[z] := r[i+1]j 
r[i+l] := tempr; 
J := , 
endj 



up:= j 
end 

endj 
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A slightly more complicated algorithm passes from the bottom to the top, 
then makes a return pass from top to bottom. 

Bubble sort (double direction) 

sort( r, 10, up) 
ArrayToSort r; 
int 10, Upj 

{int i, jj 
while (up> 10) { 

j = 10j 

} 

for (i= 10j i< Upj i++) 
if (r[z].k > r[i+l].k) { 

exchange(r, i, i+l)j 
j = ij} 

up = jj 
for (i=upj i>loj i--) 

if (r[z].k < r[i-l].k) { 
exch ange( r, i, i-I) j 
j = ij} 

10 = jj 
} 

The bubble sort is a simple sorting algorithm, but it is inefficient. Its 
running time is O(n2 ), unacceptable even for medium-sized files. Perhaps for 
very small files its simplicity may justify its use, but the linear insertion sort 
(see Section 4.1.2) is just as simple to code and more efficient to run. 

For files with very few elements out of place, the double-direction bubble 
sort (or cocktail shaker sort) can be very efficient. If only k of the n elements 
are out of order, the running time of the double-direction sort is O(kn). One 
advantage of the bubble sort is that it is stable: records with equal keys remain 
in the same relative order after the sort as before. 

References: 
[Knuth, D.E., 73], [Reingold, E.M. et al., 77], [Dobosiewicz, W., 80], [Meijer, 
H. et al., 80], [Sedgewick, R., 88], [Weiss, M.A. et al., 88]. 
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4.1.2 Linear insertion sort 

The linear insertion sort is one of the simplest sorting algorithms. With a 
portion of the array already sorted, the remaining records are moved into 
their proper places one by one. This algorithm uses sequential search to find 
the final location of each element. Linear insertion sort can be viewed as the 
result of the iterative application of inserting an element in an ordered array. 
Let Cn be the number of comparisons needed to sort an array of size n using 
linear insertion sort. Then sorting a randomly ordered file requires 

E[Cn] = n(n 4+ 3) - Hn 

(T2(Cn ) = (2n - l~;(n + 7) + 2Hn _ H~2) 

Linear insertion sort 

80rt( r, 10, up) 
ArrayToSort r; 
int 10, Upj 

{int i, jj 
A rrayEntry tempr; 
for (i=up-lj i>=loj i--) { 

tempr = r[ I] j 

}j 

for (j=i+lj j<=up && (tempr.k>rfJ].k)j j++) 
r[j-l] = rfJ]j 

r[j-l] = tempr; 
} 

If the table can be extended to add one sentinel record at its end (a record 
with the largest possible key), linear insertion sort will improve its efficiency 
by having a simpler inner loop. 

Linear insertion sort with sentinel 

80rt(r, 10, up) 
ArrayToSort r; 
int 10, Upj 



{int i, j; 
ArrayEntry tempr; 

r(up+1].k = MaximumKey; 
for (i=up-1; i>=lo; i--) { 

tempr = r(2]; 

} 

for (j=i+1; tempr.k>rll]·k; 1++) 
rfj-1] = rll]; 

rfj-1] = tempr; 
} 
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The running time for sorting a file of size n with the linear insertion sort 
is O(n2 ). For this reason, the use of the algorithm is justifiable only for 
sorting very small files. For files of this size (say n < 10), however, the linear 
insertion sort may be more efficient than algorithms which perform better 
asymptotically. The main advantage of the algorithm is the simplicity of its 
code. 

Like the bubble sort (see Section 4.1.1), the linear insertion sort is stable: 
records with equal keys remain in the same relative order after the sort as 
before. 

A common variation of linear insertion sort is to do the searching of the 
final position of each key with binary search. This variation, called binary 
insertion sort, uses an almost optimal number of comparisons but does not 
reduce the number of interchanges needed to make space for the inserted key. 
The total running time still remains O(n2 ). 

Binary insertion sort 

/* Binary insertion sort */ 
sort( r, 10, up) 
ArrayToSort r; 
int 10, up; 

{int i, j, h, I; 
A rrayEntry tempr; 
for (i=lo+1; i<=up; i++) { 

tempr = r( 2]; 
for (1=/0-1, h=i; h-I > 1;) { 

j = (h+/)/2; 
if (tempr.k < rlllk) h = j; else 1 = j; 
} 

for (j=i; j>h; j--) rll] = rfj-1]; 
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r{ h] = tempr; 
} 

} 

References: 
[Knuth, D.E., 73], [Horowitz, E. et al., 76], [Janko, W., 76], [Reingold, E.M. 
et al., 77], [Gotlieb, C.C. et al., 78], [Melville, R. et al., 80], [Dijkstra, E.W. 
et al., 82], [Doberkat, E.E., 82], [Panny, W., 86], [Baase, S., 88], [Sedgewick, 
R.,88]. 

4.1.3 Quicksort 

Quicksort is a sorting algorithm which uses the divide-and-conquer technique. 
To begin each iteration an element is selected from the file .. The file is then 
split into two subfiles, those elements with keys smaller than the selected one 
and those elements whose keys are larger. In this way, the selected element 
is placed in its proper final location between the two resulting subfiles. This 
procedure is repeated recursively on the two subfiles and so on. 

Let Cn be the number of comparisons needed to sort a random array of 
size n, let In be the number of interchanges performed in the process (for the 
present algorithm In will be taken as the number of record assignments), and 
let k = llog2 nJ. Then 

(n+ 1)k-2k+l +2 $ Cn < n(n2-1) 

2 n-l 

E[Cn] = n -1 + - L E[Ck] = 2(n + l)Hn - 4n 
n k=l 

n+3 2 n - 1 

E[In] = -2- + n L E[Ik] = (n + l)(Hn - 2/3) 
k=l 

Table 4.1 shows some exact results. 

We now present the Pascal code for Quicksort. Note that one of the 
two recursions of the divide-and-conquer method has been transformed into 
a while loop, like the transformations for tail recursions. 
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Table 4.1: Exact average results for Quicksort. 

n I E[Cn] I E[In] I n I E[Cn] 
10 24.437 24.885 50 258.92 195.46 

100 647.85 456.59 500 4806.41 3069.20 
1000 10985.9 6825.6 5000 70963.3 42147.6 

10000 155771.7 91218.5 50000 939723.2 536527.6 

Quicksort algorithm 

procedure sort(var r: ArrayToSortj 10, up : integer)j 

var i, j: integerj 
tempr: A rrayEntryj 

begin 
while up>lo do begin 

i := 10j 
j:= Upj 
tempr := r(lo]j 
{*** Split file in two ***} 
while i<j do begin 

while rfJ].k > tempr.k do 
j := j-lj 

r(z] := rfJ]j 
while (i<j) and (r(zJ.k<=tempr.k) do 

i := i+1j 
rfJ] := r( I] 
endj 

r( I] := temprj 
{*** Sort recursively ***} 
sort( r,lo,i-l)j 
10 := i+l 
end 

end; 

The above algorithm uses the same technique even for very small files. As 
it turns out, very small subfiles can be sorted more efficiently with other tech
niques, such as, linear insertion sort or binary insertion sort (see Section 4.1.2). 
It is relatively simple to build a hybrid algorithm which uses Quicksort for 
large files and switches to a simpler, more efficient, algorithm for small files. 
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Composition of Quicksort 

begin 
while up-Io > M do begin 

. . . . body of quicksort; . 
end; 

if up > 10 then begin 

end 
end; 

. simpler-sort . 

Quicksort is a very popular sorting algorithm; although its worst case is 
O(n2), its average performance is excellent. 

Unfortunately, this worst case occurs when the given file is in order al
ready, a situation which may well happen in practice. Any portion of the file 
that is nearly in order will significantly deteriorate Quicksort's efficiency. To 
compensate for this, small tricks in the code of the algorithm can be used to 
ensure that these worst cases occur only with exponentially small probability. 

It should be noted that for the worst case, Quicksort may also use O(n) 
levels of recursion. This is undesirable, as it really implies O(n) additional 
storage. Moreover, most systems will have a limited stack capacity. The above 
algorithm can be protected to force it to use a O(log n) stack (see Appendix 
IV). In its present form, it will not use O(n) levels of recursion for a file in 
increasing order. 

Quicksort allows several variations, improvements, or mechanisms to pro
tect from its worst case. Most of these variations rely on different methods 
for selecting the 'splitting' element. 

(1) The standard (Quicksort, Quickersort) algorithms select the split
ting element from a fixed location (as in the algorithm above: the first 
element of the array). Selecting the element in the middle of the ar
ray does not deteriorate the random case and improves significantly for 
partially ordered files. 

(2) The variation called Samplesort selects a small sample (for example, 
size 3) and determines the median of this sample. The median of the 
sample is used as a splitting element. 

(3) The selection of the splitting element can be replaced by a pair of values 
which determine the range of the median. As the array is scanned, every 
time an element falls in between the pair, one of the values is updated to 
maintain the range as close to the median as possible. At the end of the 
splitting phase we have two elements in their final locations, dividing 
the interval. 
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(4) Arithmetic averages, or any other method which selects a value that is 
not part of the array, produce algorithms that may loop on equal keys. 
Arithmetic operations on keys significantly restrict the applicability of 
sorting algorithms. 

References: 
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4.1.4 Shellsort 

Shellsort (or diminishing increment sort) sorts a file by repetitive application 
of linear insertion sort (see Section 4.1.2). For these iterations the file is 
seen as a collection of d files interlaced, that is, the first file is the one in 
locations 1, d + 1, 2d + 1, ... , the second in locations 2, d + 2, 2d + 2, ... , and 
so on. Linear insertion sort is applied to each of these files for several values 
of d. For example d may take the values in the sequence {n/3, n/9, ... , I}. 
It is crucial that the sequence of increment values ends with 1 (simple linear 
insertion) to guarantee that the file is sorted. 

Different sequences of increments give different performances for the algo
rithm. 

Let en be the number of comparisons and In the number of interchanges 
used by Shellsort to sort n numbers. 

For d = {h, k, I} 

E[In] = -+- -----+- n/ +O(n) 
n 2 .,ji (hl/2 ch- 1/ 2 C - 1) 3 2 
4h 8 k k Vc 

where c = gcd(h, k). 
For d = {2k -1,2k - 1 -1, ... 7,3, I} 

E[In] = 0(n3 / 2 ) 

For d = {2k,2k- 1, ... ,8,4,2,1} and n = 2k, 

n log~ n f(2i-l) 2 i
- 1 r f(2i _ r + 1) 

E[In] 16 tr 2if(2i)?; r(r + 3)2 f(2i- 1 - r + 1) 

0.534885 ... ny'1i' - 0.4387...n - 0.097 ... y'1i' + 0(1) 
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3(n - 1) 
E[Cn] = E[In] + n log2 n - 2 

Ford = {4k+l+3.2j +1, ... ,77,23,8,1} 

E[In] = O(n4 / 3 ) 

For d = {2P3Q, ... ,9,8,6,4,3,2, I} 

E[In] = O(n(log n)2) 

For d = {aP(a -1)Q .... ,a,a-1} when a = 2Jlog2 n 

E[In] = O(n1+(2+l)/v'log2 n) 

for any f > O. There exist sequences of increments that achieve 

E[In] = O(n1+1/(e+1») and O(n1+l/Jlogn) 

for any c > 0 and f > O. 
The version we present here is closer to the original algorithm suggested by 

Shell; the increments are LnaJ, LLnaJaJ, .... Extensive experiments indicate 
that the sequence defined by a = 0.45454 < 5/11 performs significantly better 
than other sequences. The easiest way to compute L 0.45454n J is by (5 * n -
1)/11 using integer arithmetic. Note that if a < 1/2, some sequences will not 
terminate in 1, but in 0; this has to be corrected as a special case. 

Shellsort 

sorter, 10, up) 
ArrayToSort r; 
int 10, up; 

{int d, i, j; 
A rrayEntry tempr; 
for (d=up-Io+1; d>l;) { 

if (d<5) d = 1; 

} 

else d = (5*d-1)/11; 
/*** Do linear insertion sort in steps size d ***/ 
for (i=up-d; i>=lo; i--) { 

} 

tempr = r[rJ; 
for U=i+d; j<=up && (tempr.k>rfJJ·k); j+=d) 

r[j-dJ = rfJJ; 
r[j-dJ = tempr; 
} 
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Table 4.2 presents simulation results of the sequence of increments d = 
{3·2'1 ... , 40,13,4, I} (dk+1 = 3dk + 1) and for the sequence d = UnaJ, ... ,1} 
(a = 0.45454). 

Table 4.2: Exact and simulation results for Shellsort. 

dk+1 = 3dk + 1 a = 0.45454 
n E[Cn] E[Inl E[Cn] , E[Inl 
5 7.71667 4.0 8.86667 3.6 

10 25.5133 14.1333 25.5133 14.1333 
50 287.489±0.006 164.495±0.007 292.768 ±O .006 151.492±0.006 

100 731.950±0.017 432.625±0.018 738.589±0.013 365.939±0.013 
500 5862.64±0.24 3609.33±0.25 5674.38±0.11 2832.92±0.12 

1000 13916.92±0.88 8897.19±0.88 13231.61±0.30 6556.54±0.31 
5000 101080±16 68159±16 89350.7±3.4 46014.1±3.4 

10000 235619±56 164720±56 194063.8±6.7 97404.5±6.7 
50000 1671130±1163 1238247±1163 1203224±58 619996±58 

100000 3892524±4336 2966745±4336 2579761±113 1313319±113 

The simulation results indicate that the performance of both algorithms is 
rather discontinuous in the size of the file. Consequently, any approximation 
formula is applicable only in the computed range and will not reflect any 
discontinuities. For the above simulations, selecting the results with n ;::: 500 
we find the empirical formulas: 

E[In] ~ 0.41 n In (n) (In (In n) + 1/6) 

E[In] ~ 1.54n1.257 - 190 

(for a = 0.45454) 

(for dk+1 = 3dk + 1) 

Shellsort is not a stable sorting algorithm since equal keys may not preserve 
their relative ordering. 

Shellsort seems a very attractive algorithm for internal sorting. Its coding 
is straightforward and usually results in a very short program. It does not have 
a bad worst case and, furthermore, it does less work when the file is partially 
ordered. These arguments make it a good choice for a library sorting routine. 

References: 
[Shell, D.L., 59], [Boothroyd, J., 63], [Espelid, T.O., 73], [Knuth, D.E., 73], 
[Ghoshdastidar, D. et al., 75], [Erkio, H., 80], [Yao, A.C-C., 80], [Incerpi, J. et 
al., 85], [Sedgewick, R., 86], [Incerpi, J. et al., 87], [Baase, S., 88], [Sedgewick, 
R., 88], [Weiss, M.A. et al., 88], [Selmer, E.S., 89], [Weiss, M.A. et al., 90]. 
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4.1.5 Heapsort 

Heapsort (or Treesort III) is a sorting algorithm that sorts by building a 
priority queue and then repeatedly extracting the maximum of the queue 
until it is empty. The priority queue used is a heap (see Section 5.1.3) that 
shares the space in the array to be sorted. The heap is constructed using all 
the elements in the array and is located in the lower part of the array. The 
sorted array is constructed from top to bottom using the locations vacated by 
the heap as it shrinks. Consequently we organize the priority queue to extract 
the maximum element. 

Cn $ 2nllog2 nJ + 3n 

In $ nllog2 nJ + 2.5n 

The complexity results for the heap-creation phase can be found in Section 
5.1.3. 

Heapsort 

procedure sort(var r: ArrayToSort; 10, up : integer); 

var i: integer, 
tempr: A rrayEntry; 

begin 
{*** construct heap ***} 
for i := (up div 2) downto 2 do sijtup(r,i,up); 
{*** repeatedly extract maximum ***} 
for i := up downto 2 do begin 

sijtup( r,l, .); 
tempr:= r(l]; 
r(l] := r(z]; 
r( ,] := tempr 
end 

end; 

The above algorithm uses the function siJtup (defined in Section 5.1.3). 
A call to siJtup(r, i, n) constructs a subheap in the array r at location i not 
beyond location n assuming that there are subheaps rooted at 2i and 2i + 1. 
Although the above procedure accepts the parameter 10 for conformity with 
other sorting routines, Heapsort assumes that 10 = 1. 

Heapsort is not a stable sorting algorithm since equal keys may be trans
posed. 

Heapsort is guaranteed to execute in O( n log n) time even in the worst case. 
Heapsort does not benefit from a sorted array, nor is its efficiency significantly 



SORTING ALGORITHMS 165 

affected by any initial ordering. As indicated by simulation, its running time 
has a very small variance. 

This algorithm does not use any extra storage or require languages sup
porting recursion. Although its average performance is not as good as some 
other sorting algorithms, the advantages noted indicate that Heapsort is an 
excellent choice for an internal sorting algorithm. 

Heapsort can be modified to take advantage of a partially ordered table. 
This variation is called Smoothsort, and has an O( n) performance for an 
ordered table and an O(n log n) performance for the worst case. 

Table 4.3 shows simulation results on the total number of comparisons 
used by Heapsort (Cn) and the total number of interchanges (In). 

Table 4.3: Exact and simulation results for Heapsort. 

nl 
5 10.95 1.1475 8.86667 

10 38.6310 3.84698 26.6893 
50 414.7498±0.0027 36.664±0.023 241.9939±0.0022 

100 1027.6566±0.0060 81.281±0.077 581.5611 ±0.0049 
500 7426.236±0.034 431.7±1.0 4042.502±0.028 

1000 16852.652±0.070 876.3±3.0 9081.915±0.058 
5000 107686.13±0.38 4320±36 57105.41±0.31 

10000 235372.42±0.81 8624±106 124205.77±0.66 
50000 1409803.8±4.5 45628±1363 737476.2±3.7 

100000 3019621.8±9.5 94640±4175 1574953.6±7.6 

The following are approximate formulas computed from the simulation 
results. 

E[Cn ] :::::: 2n log2 n - 3.0233n 

E[In] :::::: n log2 n - 0.8602n 

References: 
[Floyd, R.W., 64), [Williams, J.W.J., 64], [Knuth, D.E., 73), [Aho, A.V. et al., 
74], [Horowitz, E. et al., 76], [Reingold, E.M. et al., 77), [Doberkat, E.E., 80], 
[Standish, T.A., 80), [Dijkstra, E.W. et al., 82], [Dijkstra, E.W., 82], [Hertel, 
S., 83], [Doberkat, E.E., 84), [Carlsson, S., 87], [Baase, S., 88], [Sedgewick, R., 
88], [Manber, U., 89], [Cormen, T.H. et al., 90), [Xunuang, G. et al., 90]. 
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4.1.6 Interpolation sort 

This sorting algorithm is similar in concept to the bucket sort (see Sec
tion 4.2.3). An interpolation function is used to estimate where records should 
appear in the file. Records with the same interpolation address are grouped 
together in contiguous locations in the array and later linear insertion sorted 
(see Section 4.1.2). The main difference between this algorithm and the bucket 
sort is that the interpolation sort is implemented in an array, using only one 
auxiliary index array and with no pointers. 

Let Cn be the number of comparisons needed to sort an array of size n 
using the interpolation sort, and let Fn be the total number of interpolation 
function evaluations made in the process. Then 

Fn = 2n 

n(n - 1) 
n -1 ~ Cn ~ 2 

E[Cn ] = 5(n - 1) 
4 

2(C) = (20n - 13)(n - 1) 
u n 72n 

The algorithm below uses the interpolation function phi(key, 10, up) to sort 
records of the array. A good interpolation formula for uniformly distributed 
keys is 

General interpolation formula 

phi( key, 10, up) 
typekey key; 
int 10, up; 

{int i; 
i = (key-MinKey) * (up-Io+1.0) / (MaxKey-MinKey) + 10; 
return ( i>up ? up : i<lo ? 10 : i); 
}; 

Note that if the above multiplication is done with integers, this operation 
is likely to cause overflow. 

The array iwk is an auxiliary array with the same dimensions as the array 
to be sorted and is used to store the indices to the working array. 

The array iwk does not need to be as big as the array to be sorted. If 
we make it smaller, the total number of comparisons during the final linear 
insertion phase will increase. In particular, if iwk has m entries and m ~ n 
then 



= 2n _ m _ 1 + n( n - 1) 
4m 

Interpolation sort 

sort( r, 10, up) 
ArrayToSort r; 
int 10, up; 

{A rraylndices iwk; 
ArrayToSort out; 
ArrayEntry tempr; 
int i, j; 

for (i=lo+l; i<=up; i++) iwk[,] = 0; 
iwk[lo] = 10-1; 
for (i=lo; i<=up; i++) iwk[phi(r[,].k,/o,up)]++; 
for (i=lo; i<up; i++) iwk[i+l] += iwk[z]; 
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for (i=up; i>=lo; i--) out[iwk[phi(r[,].k,/o,up)]--] = r[,]; 
for (i=lo; i<=up; i++) r[z] = out[z]; 
for (i=up-l; i>=lo; i--) { 

}; 

tempr = r[ I]; 
for (j=i+l; j<=up && (tempr.k>rfJ].k); j++) 

r[j-l] = rfJ]; 
r[j-l] = tempr; 
} 

The ahove implementation uses the array out to copy the sorted elements. 
This array can be avoided completely if we call add a flag to each location 
indicating whether the record has been moved or not. 

Because the standard deviation of en is ~ 0.53nl/2, the total number of 
comparisons used by the interpolation sort is very stable around its average. 

One of the restrictions of the interpolation sort is that it can only be used 
when records have numerical keys which can be handled by the interpolation 
function. Even in this case, if the distribution of the record key values departs 
significantly from the uniform distribution, it may mean a dramatic difference 
in running time. If, however, the key distribution is suitable and we can afford 
the extra storage required, the interpolation sort is remarkably fast, with a 
running time of O( n). 

The above implementation of interpolation sort is stable since equal keys 
are not transposed. 
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References: 
[Isaac, E.J. et ai., 56], [Flores, I., 60], [Kronmal, R.A. et ai., 65], [Tarter, M.E. 
et ai., 66], [Gamzon, E. et ai., 69], [Jones, B., 70], [Ducoin, F., 79], [Ehrlich, 
G., 81], [Gonnet, G.B., 84], [Lang, S.D., 90]. 

4.1.7 Linear probing sort 

This is an interpolation sort (see Section 4.1.6) based on a collision resolution 
technique similar to that of linear probing hashing. Each key is interpolated 
into one of the first m positions in an array. (Note that m will be taken to be 
greater than n unlike most other interpolation sort methods.) If a collision 
arises, then the smaller element takes the location in question and the larger 
element moves forward to the next location, and the process repeats until we 
find an empty location. (This may, ultimately, cause elements to overflow 
beyond position m.) After insertion of all elements, a single pass through 
the array compresses the file to the first n locations. The sorting process 
can be described as creating a table with linear probing hashing, using an 
interpolation function as a hashing function and using the technique of ordered 
hashing. 

Let the size of our table be m + Wj we will use the first m locations to 
interpolate the keys and the last W locations as an overflow area. We will let n 
denote the total number of keys to be sorted and a = n/m be the load factor. 
Let en be the number of comparisons needed to sort the n keys using the 
linear probing sort, and let Fn be the total number of interpolation function 
evaluations performed in the process. Then 

Fn = n 

Let Wn be the number of keys in the overflow section beyond the location 
m in the table. We have 

where ni = n(n - 1)··· (n - i + 1) denotes the descending factorial 

E[Wm ] = Jm1r/8 - 2/3 + O(m-l/2) 

u 2(Wn ) = 
6a2 - 2a3 - a4 1 

12(1 - aF + O(m- ) 

u 2(Wm ) = (4 - 1r)m ! _ ~ O( -1/2) 
8 + 9 48 + m 
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In (Pr{Wn > k}) ~ -2k(1- a) 

The expected value of the total number of table probes to sort n elements 
using linear probing sort is minimized when nlm = 2 - v'2 = 0.5857 .... At 
this point the expected number of probes is 

en + m + Wn = (2 + V2)n + 0(1) 

Below we describe the linear probing sort using the interpolation func
tion phi(key, 10, up). This sorting function depends on two additional global 
parameters: m, which is the size of the interpolation area, and UppBoundr, 
which is the upper bound of the input array (UppBoundr 2: m+w). Selecting 
m ~ vn x U ppBoundr minimizes the probability of failure due to exceeding 
the overflow area. 

Linear probing sort 

procedure sort(var r: ArrayToSort; 10, up : integer); 

var i, j: integer; 
rl : ArrayToSort; 

begin 
rl := r; 
for j:=lo to UppBo'Undr do rfJ].k := NoKey; 
for j:=lo to 'Up do begin 

i := phi(rl[J].k,/o,m); 
while r{z].k <> NoKey do begin 

if rl[J].k < r{z].k then begin 
rl[j-l] := r{1]; 
r{1] := rl[J]; 
rl[J] := rl[j-l] 
end; 

i := HI; 
if i > UppBo'Undr then Error 
end; 

r{ z] := rl [J] 
end; 

i := /0-1; 
for j:=lo to UppBo'Undr do 

if rfJ].k <> NoKey then begin 
i := i+l; 
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r[ z] := rfJ] 
end; 

for j:=i+1 to UppBo'Undr do rfJ].k:= NoKey; 
end; 

With a good interpolation formula, this algorithm can rank among the 
most efficient interpolation sort (see Section 4.1.6) algorithms. 

The application of this algorithm to external storage appears to be promis
ing; its performance, however, cannot be improved by using larger buckets. 
Letting En be the number of external accesses required to sort n records, we 
have 

Table 4.4 gives the efficiency measures for two table sizes with various load 
factors. In denotes the number of interchanges performed owing to collisions 
while building the table. 

Table 4.4: Exact and simulation results for linear probing sort. 

m = 100 m = 5000 
Q E[Cn] E[Wn] E[In] E[Cn] E[Wn] E[In] 

50% 72.908 .23173 13.785±0.003 3747.65 .24960 765.29±0.18 
80% 200.696 1.27870 84.795±0.019 11932.90 1.59014 5917.0±2.4 
90% 310.184 2.47237 164.387±0.039 24149.77 3.96477 16168±12 
95% 399.882 3.62330 234.827±0.056 45518.47 8.39737 35731±43 
99% 499.135 5.10998 315.823±0.074 118134.0 26.46562 105444±236 

100% 528.706 5.60498 340.260±0.080 169087.0 43.64542 154945±385 

References: 
[Melville, R. et al., 80], [Gonnet, G.B. et al., 81], [Gonnet, G.B. et al., 84], 
[Poblete, P.V., 87]. 

4.1.8 Summary 

Table 4.5 shows an example of real relative total times for sorting an array 
with 49998 random elements. 

There are algorithms specially adapted to partially sorted inputs. That 
is, they run faster if the input is in order or almost in order. Several measures 
of presortedness have been defined, as well as optimal algorithms for each 
measure. 
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Table 4.5: Relative total times for sorting algorithms. 

I Algorithm c I Pascal I 
Bubble sort 1254 
Shaker sort 2370 
Linear insertion sort 544 541 
Linear insertion sort with sentinel 450 366 
Binary insertion sort 443 
Quicksort 1.0 1.0 
Quicksort with bounded stack usage 1.0 
Shellsort 1.9 2.0 
Shellsort for fixed increments 1.9 
Heapsort 2.4 2.4 
Interpolation sort 2.5 2.1 
Interpolation sort (in-place, positive numbers) 2.6 
Linear probing sort 1.4 1.2 

References: 
[Warren, H.S., 73], [Meijer, H. et al., 80], [Gonzalez, T.F. et al., 82], [Mannila, 
H., 84], [Skiena, S.S., 88], [Estivill-Castro, V. et al., 89], [Levcopoulos, C. et 
al., 89], [Levcopoulos, C. et al., 90]. 

General references: 
[Friend, E.H., 56], [Flores, I., 61]' [Boothroyd, J., 63], [Hibbard, T.N., 63], 
[Flores, I., 69], [Martin, W.A., 71], [Nozaki, A., 73], [Knuth, D.E., 74], [Lorin, 
H., 75], [Pohl, I., 75], [Preparata, F.P., 75], [Fredman, M.L., 76], [Wirth, 
N., 76], [Trabb Pardo, L., 77], [Horvath, E.C., 78], [Borodin, A. et al., 79], 
[Kronsjo, L., 79], [Manacher, G.K., 79], [Mehlhorn, K., 79], [Cook, C.R. et al., 
80], [Erkio, H., 81], [Borodin, A. et al., 82], [Aho, A.V. et al., 83], [Reingold, 
E.M. et al., 83], [Mehlhorn, K., 84], [Bui, T.D. et al., 85], [Merritt, S.M., 85], 
[Wirth, N., 86], [Beck, I. et al., 88], [Richards, D. et al., 88], [Richards, D., 
88], [Huang, B. et al., 89], [Munro, J.1. et al., 89], [Douglas, C.C. et al., 90], 
[Fredman, M.L. et al., 90], [Munro, J.1. et al., 90]. 

4.2 Sorting other data structures 

The second most popular data structure used to store sorted data is the 
linked list, or linear list. The corresponding data structure is described by 
the production: 

s - KEY: [KEY, s - KEY]; uil 
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A typical Pascal definition of a linked list, containing a key field k, is: 

Linked list definition 

type 
list = tree; 
ree = record 

k: typekey; 
next: list 
end; 

Linked lists can be implemented in arrays; in this case a pointer to a 
record is an integer indexing into the array. The only non-trivial operation 
when implementing lists in arrays is to reorder the array according to the 
order given by the list. This is particularly useful for the case of sorting. The 
following algorithm reorders the array r based on the list rooted at root. 

Reordering of arrays 

i:= 1; 
while root < > 0 do begin 

tempr:= r[root]; 
r[root] := r[z1; 

end; 

r[z1 := tempr; 
r[z].next := root; 
root := tempr.next; 
i := ;+1; 
while (root<i) and (root>O) do root:= r[root].next; 
end; 

General references: 
[Friend, E.H., 56], [Flores, I., 69], [Tarjan, R.E., 72], [Harper, L.H. et al., 75], 
[Munro, J.I. et al., 76], [Wirth, N., 76], [Gotlieb, C.C. et al., 78], [Sedgewick, 
R., 7S], [Tanner, R.M., 7S], [Borodin, A. et al., 79], [Nozaki, A., 79], [Bentley, 
J.L. et al., 80], [Chin, F.Y. et al., SO], [Colin, A.J.T. et al., SO], [Power, L.R., 
80], [Borodin, A. et al., 82], [Aho, A.V. et al., 83], [Goodman, J.E. et al., 83], 
[Reingold, E.M. et al., 83], [Mehlhorn, K., 84], [Wirth, N., 86]. 
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4.2.1 Merge sort 

Merge sort is a natural way of sorting lists by repeated merging of sublists. 
By counting the total number ofrecords in the list, each merging step can be 
as balanced as possible. At the deepest level of the recursion, single element 
lists are merged together to form two element lists and so on. 

Let Cn be the total number of comparisons used by merge sort, then 

n-1 

L v( i) ~ Cn ~ kn - 21: + 1 
i=l 

where k = fiog2 n 1 and v( i) is the number of Is in the binary representation 
ofi. 

I: 4·2-1: 8·4-1: 16·8-1: I: 
E[C2,,]=(k-a)2 +2--3-+-7-- 15 +0(16-) 

(log2 n - a)n + 2 + 0(n-1) ~ E[Cn ] ~ (log2 n - ,8)n + 2 + 0(n-1) 

where a = 1.26449 ... = 2 - L:i~o 2'(2~+1) and ,8 = 1.24075 .... 

Merge sort 

function sort( var r: list; n : integer) : list; 
var temp: list; 

begin 
if r = nil tllen sort := nil 
else if n> 1 tllen 

sort := merge( sort( r, n div 2), 
sort(r, (n+l) div 2» 

else begin 

end; 

temp := r; 
r:= rt.next; 
tempt. next := nil; 
sort := temp 
end 

It is assumed that we know the number of elements in the list, which is 
given as the second parameter. If this number is not known, it can be overes
timated without deteriorating significantly the performance of the algorithm. 

The function merge merges two ordered lists into a single list and is de
scribed in Section 4.3.1. 
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If the merging routine is stable, that is, in the output of merge(a, b) equal 
keys are not transposed and those from the list a precede those from the list 
b, merge sort will be a stable sorting algorithm and equal keys will not be 
transposed. 

Merge sort uses extra storage: the pointers that are associated with the 
list. 

Merge sort can take advantage of partially ordered lists (Natural merge) 
as described in Appendix IV. For this variation, the algorithm will do a single 
pass on totally ordered (or reversely ordered) files and will have a smooth 
transition between O(n) and O(n log n) complexity for partially ordered files. 
Merge sort is guaranteed to execute in O( n log n) even in the worst case. 

In view of the above, merge sort is one of the best alternatives to sorting 
lists. 

Table 4.6 illustrates some exact counts of the number of comparisons for 
merge sort. The average values are computed for random permutations of the 
input file. 

Table 4.6: Number of comparisons used by merge sort. 

n I min Cn I E[Cn ] I max Cn I 
5 5 7.1667 8 

10 15 22.667 25 
50 133 221.901 237 

100 316 541.841 573 
500 2216 3854.58 3989 

1000 4932 8707.17 8977 
5000 29804 55226.3 56809 

10000 64608 120450.7 123617 
50000 382512 718184.3 734465 

References: 
[Jones, B., 70], [Bron, C., 72], [Knuth, D.E., 73], [Aho, A.V. et al., 74], [Dewar, 
R.B.K., 74], [Horowitz, E. et al., 76], [Peltola, E. et al., 78], [Todd, S., 78], 
[Erkio, II., 80], [Baase, S., 88], [Brassard, G. et al., 88], [Manber, U., 89]. 

4.2.2 Quicksort for lists 

A natural way of sorting a list is by the use of the divide-and-conquer tech
nique. This will produce an algorithm similar to Quicksort (see Section 4.1.3); 
that is, pick an element of the list (the head of the list), split the remaining 
list according to elements being smaller or larger than the selected one, sort 
the two resulting lists recursively, and finally concatenate the lists. 
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The execution pattern (sizes of subfiles, and so on) of this algorithm is the 
same as for Quicksort for arrays. Let In be the number of times the inner 
loop is executed to sort a file with n elements. The inner loop involves one 
or two comparisons and a fixed number of pointer manipulations. Let Cn be 
the number of comparisons and k = Llog2 nJ, then 

(n + l)k _ 2k+l + 2 :$ In < n( n - 1) 
2 

3In 

2 

0'2(Cn ) = nJ7-27r2/3 + o(n) 

Quicksort for lists 

function sort (r: list) : list; 

2(n + l)Hn - 4n 

var lowf,lowl, midI, midi, highf,highl: list; 

begin 
if r = nil then begin Last := nil; sort := rend 
else begin 

lowf:= nil; midf:= nil; highf:= nil; 
{*** First key becomes splitter *** } 
tailins( r, midI, mid~; 
r := rf. next; 
while r<>nil do begin 

if rf.k<midJl.k then tailins( r,lowf,low~ 
else if rf.k=midJl.k then tailins( r,midf,mid~ 

else tailins( r,highf,high~; 
r:= rf.next 
end; 

{*** Assemble resulting list ***} 
if lowf < > nil then begin 

lowlf.next:= nil; 
sort := sort( low!); 
Lastf. next := midf 
end 

else sort:= midI, 
if highf <> nil then highlf. next := nil; 
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end; 

midll. next := sort( high/); 
if Last = nil then Last := midi 
end 

This algorithm keeps track of lists by keeping a pair of pointers to each 
list: one to the head and one to the tail. This is particularly useful for 
concatenating lists together. The global variable Last is used to return a 
pointer to the last element of a sorted list. The procedure tailins inserts a 
record at the end of a list given by a pair of pointers. 

Insert a record at the end of a list 

procedure tailins (ree: list; var first, last: list); 
begin 
if first = nil tben first := ree 

else lastt. next := ree; 
last := ree 
end; 

The worst case, O(n2 ) comparisons, happens, among other cases, when we 
sort a totally ordered or reverse-ordered list. 

The above implemen tation of Quicksort keeps a list of all the elemen ts that 
are equal to the splitting record. By doing this, and by growing the lists at 
the tail, Quicksort for lists becomes a stable sorting algorithm, that is, equal 
keys are not transposed. 

When sorting lists with Quicksort we cannot easily prevent the worst case. 
Consequently, portions of the list that are already in order will deteriorate the 
algorithm's performance significantly. 

References: 
[Motzkin, D., 81], [Wegner, L.M., 82]. 

4.2.3 Bucket sort 

Bucket sort (or address-calculation sort) uses an interpolation formula on 
the keys to split the records between m buckets. The buckets are sets of 
records, which we implement using lists. After the splitting pass, the records 
in the first bucket will have smaller keys than the records in the second bucket 
and so on. The buckets are then sorted recursively and finally all the buckets 
are concatenated together. 

Let In denote the number of times that a key is placed into a bucket. 
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This measure counts the number of times the innermost loop is executed. In 
satisfies the recurrence equation: 

n-2 (n _ 2) (m _ 1)n-2-i 
In = n + ~ 2 m n - 2 «m - 2)Ii + 2Ii+d 

for fixed m, and m < n the solution of the above is 

1 
In = n logm n + nQ(logm n,m) - 21n m + O(n-l) 

where Q(x, m) is a periodic function in x. For m proportional to n, n = O'm, 
(m remains fixed for the recursive calls) then 

In = (2 - e-a)n + 0'2 - 2 + e-a(O'2/2 + 0' + 2) + O(n-l) 

For m = n, (and m is set equal to n for each recursive call) 

n-2 (n _ 2) (1 _ 1/n)n-2 
In = n + ~ 2 (n-1)i «n-2)Ii+ 2Ii+1) 

= 1.76108 ... n - 0.39125 ... + O(n-l) 

Bucket sort 

list sort( s, min, max) 
list s; 
typekey min, max; 

{ 
int i; 
typekey div, maxb[M) , minb[M); 
list head[ M), t; 
struct rec aux; 
extern list Last; 
if (s==NULL) return(s); 
if (max==min) { 

for (Last=s; Last ->next!=NULL; Last = Last ->next); 
return(s); 
} 

div = (max-min) / M; /* Find dividing factor */ 
if (div==O) div = 1; 
for (i=O; i<M; i++) head[z] = NULL; 
/* Place records in buckets */ 
while (s != NULL) { 
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i = (s ->k-min) / divj 
if(i<O) i = OJ else if (i>=M) i = M-lj 
t = Sj 

s = s ->nextj 
t ->next = head['1j 
if (head[z1==NULL) minb[z1 = maxb[z1 = t ->kj 
head['1 = tj 
if (t ->k > maxb[z1) maxb[z1 = t ->kj 
if (t ->k < minb[z1) minb[z1 = t ->kj 
} 

/* sort recursively */ 
t = &auxj 
for (i=Oj i<Mj i++) if (head[z]!=NULL) { 

t ->next = sort(head[,], minb[z1, maxb[z1)j 
t = Lastj 
} 

return ( aux.next)j 
} 

The above algorithm computes the maximum and minimum key for each 
bucket. This is necessary and convenient as it allows correct sorting of files 
containing repeated keys and reduces the execution time. Bucket sort requires 
two additional parameters, the maximum and minimum key. Since these are 
recomputed for each pass, any estimates are acceptablej in the worst case, it 
will force bucket sort into one additional pass. 

The above function sets the global variable Last to point to the last record 
of a sorted list. This allows easy concatenation of the resulting lists. 

Bucket sort can be combined with other sorting techniques. If the number 
of buckets is significant compared to the number of records, most of the sorting 
work is done during the first pass. Consequently we can use a simpler (but 
quicker for small files) algorithm to sort the buckets. 

Although the worst case for bucket sort is O(n2), this can only happen 
for particular sets of keys and only if the spread in values is nL This is 
very unlikely. If we can perform arithmetic operations on keys, bucket sort is 
probably the most efficient alternative to sorting lists. 

References: 
[Isaac, E.J. et al., 56], [Flores, I., 60], [Tarter, M.E. et al., 66], [Knuth, D.E., 
73], [Cooper, D. et al., 80], [Devroye, L. et al., 81], [Akl, S.G. et al., 82], 
[Kirkpatrick, D.G. et al., 84], [Suraweera, F. et al., 88], [Manber, U., 89], 
[Cormen, T.H. et al., 90]. 
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4.2.4 Radix sort 

Radix sort (or distributions sort), sorts records by examining the digital 
decomposition of the key. This algorithm does one pass of the file for each 
digit in the key. In each pass, the file is split according to the values of 
the corresponding digit. The sorting can be done top-down or bottom-up 
depending on the relative order of the splitting and recursive sorting of the 
subfiles. 

If we split, sort recursively and concatenate, the resulting algorithm, which 
we will call top-down radix sort, resembles bucket sort (see Section 4.2.3), 
where instead of computing a 'bucket address' the bucket is selected based on 
a digit of the key. 

The bottom-up radix sort, where we sort recursively, split and concate
nate, is the most common version of radix sort. This method was at one time 
very popular in the data-processing field as it is the best method for sorting 
punched cards. 

There is a close correspondence between the top-down radix sort and dig
ital trees or tries (see Section 3.4.4). The number of times a given record 
is analyzed corresponds to the depth of the record in an equivalent trie tree. 
The total complexity, that is, total number of records passed, coincides with 
the internal path in an equivalent trie. These results can be found in Section 
3.4.4. 

For the bottom-up algorithm, let m be the base of the numbering system, 
let D be the number of digits in the key and let In he the number of times 
the innermost loop is repeated (number of records passed through). Then 

In = nD 

It is possible to group several digits together, in which case D and m could 
vary as long as 

mD = ](1 

(where ](1 is a constant for a given file). Given this constraint, the tradeoffs 
are simple: the time complexity is linear in D and the additional storage is 
linear in m. 

Bottom-up radix sort 

function sort( r: list) : list; 
var head, tail: array[1..M) of list; 

i, j, h : integer; 

begin 
for i:=D downto 1 do begin 
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for j:=1 to M do headfJ] := nil; 
while r <> nil do begin 

h := charac( i, rf.k); 
if head[h]=nil then head[h] := r 
else tai~hll.next:= r, 
tai~h] := r; 
r := rf. next; 
end; 

{*** Concatenate lists ***} 
r:= nil; 
for j:=M downto 1 do 

if headfJ] <> nil then begin 
tailfJH . next := r, 
r:= headfJ] 
end 

end; 
sort := r 
end; 

The above sorting algorithm uses the function charac(i, key) which re
turns the ith digit from the key key. The top-down radix sorting function is 
described in Appendix IV. 

If D log m is larger than log n then bottom-up radix sort is not very effi
cient. On the other hand, if D log m < log n (some keys must be duplicated), 
radix sort is an excellent choice. 

References: 
[Hibbard, T.N., 63], [MacLaren, M.D., 66], [Knuth, D.E., 73], [Aho, A.V. et 
al., 74], [Reingold, E.M. et al., 77], [McCulloch, C.M., 82], [van der Nat, M., 
83], [Devroye, L., 84], [Baase, S., 88], [Sedgewick, R., 88], [Manber, U., 89], 
[Cormen, T.H. et al., 90]. 

4.2.5 Hybrid methods of sorting 

Most of the sorting algorithms described so far are basic in the sense that 
their building blocks are more primitive operations rather than other sorting 
algorithms. In this section we describe algorithms which combine two or more 
sorting algorithms. The basic sortings usually have different properties and 
advantages and are combined in a way to exploit their most advantageous 
properties. 
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4.2.5.1 Recursion termination 

This is a general technique which has been described for Quicksort (see Sec
tion 4.1.3) in particular. Many recursive sorting algorithms have good general 
performance, except that they may do an inordinate amount of work for a file 
with very few elements (such as Quicksort or bucket sort for two elements). 

On the other hand, being efficient for the tail of the recursion is very 
important for the total complexity of the algorithm. 

The general scheme for hybrid recursive sorts is then 

Hybrid termination 

function sort(keys); 
begin 
if size(keys) > M then 

< ... main sorting algorithm... > 
else simplersort( keys); 
end; 

The simplersortO part may be just an analysis of one, two, and three elements 
by brute force or another sorting algorithm which does well for small files. In 
the latter case, linear insertion sort (see Section 4.1.2) is a favourite candidate. 

4.2.5.2 Distributive partitioning 

Distributive partitioning sort is a composition of a balanced Quicksort with 
bucket sort (see Sections 4.1.3 and 4.2.3). The file is split by the median 
element (or an element chosen to be very close to the median, for example, 
median of medians) and then the lower and upper elements, separately, are 
bucket sorted. The procedure may be applied recursively, or we may use still 
another composition for sorting the individual buckets. 

The motive for this composition is to profit from the good average perfor
mance of bucket sort, while guaranteeing an O(n log n) time by splitting the 
file by the median at each step. 

en = O(n log n) 

If the median is too costly to compute we could split the file into two equal
size parts and apply bucket sort twice. We then sort the buckets recursively 
and finally merge the two halves. This has the same effect as computing the 
median for the worst case, but it is much more efficient. 
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4.2.5.3 Non-recUl'sive bucket sort 

When the number of buckets is relatively large, bucket sort achieves an excel
lent average performance (O(n». Not only is the time linear, but the constant 
in the linear term is reasonably small; the first pass does most of the sorting. 

However, the O( n2 ) worst case is clearly unwanted. A family of hybrid 
algorithms can be derived from compositions of a single pass of bucket sorting 
and a second algorithm. This second algorithm should: (a) sort small files 
efficiently, as this is what it will do most; (b) have an O(n log n) worst-case 
performance, in case bucket sort hits an 'unlucky' distribution. 

Again, we could have a double composition, one algorithm good for case 
(a) and one good for case (b). For example we could use linear insertion sort 
for less than 10 elements and Heapsort (see Section 4.1.5) otherwise. 

Another alternative is to use natural merge sort (see Section 4.2.1). The 
worst case for bucket sort (batches of equal keys) is almost the best case for 
natural merge sort. 

References: 
[Dobosiewicz, W., 78], [PeItola, E. et al., 78], [Dobosiewicz, W., 79], [Huits, 
M. et al., 79], (Jackowski, B.L. et al., 79], [Meijer, H. et al., 80], [van der Nat, 
M., 80], [Akl, S.G. et al., 82], [Allison, D.C.S. et al., 82], [Noga, M.T. et al., 
85], [Tamminen, M., 85], [Handley, C., 86]. 

4.2.6 Treesort 

A Treesort sorting algorithm sorts by constructing a lexicographical search 
tree with all the keys. Traversing the tree in an infix order, all the nodes 
can be output in the desired order. Treesort algorithms are a composition of 
search tree insertion with infix tree traversal. 

The number of comparisons required to sort n records is related to the 
specific type of search tree. Let Cn be the average number of comparisons in 
a successful search, then 

Almost any of the tree structures described in Section 3.4 can be used for 
this purpose. The following algorithm is based on binary trees. 

Binary treesort 

tree := nil; 
for i:=l to n do insert(tree, <ith-key»; 
outpuUnjix( tree); 



where the function outpuLinfix is 

Scan binary tree in infix order 

procedure outpuCinfix(t : tree); 
begin 
if t < > nil then begin 

outputinfix( t1·ieft); 
output( t1.key); 
outpuCinfix( t1. right); 
end 

end; 
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These algorithms require two pointers per record and consequently are sig
nificantly more expensive than other methods in terms of additional storage. 
There is one circumstance when this structure is desirable, and that is when 
the set of records may grow or shrink, and we want to be able to maintain it 
in order at low cost. 

To guarantee an O(n log n) performance it is best to select some form of 
balanced tree (such as AVL, weight-balanced or B-trees). 

References: 
[Frazer, W.D. et ai., 70], [Woodall, A.D., 71], [Aho, A.V. et ai., 74], [Szwarc
fiter, J.L. et ai., 78]. 

4.3 Merging 

A special case of sorting is to build a single sorted file from several sorted 
files. This process is called merging of files and it is treated separately, as it 
normally requires simpler algorithms. 

Merging a small number of files together is easily achieved by repeated 
use of a function which merges two files at a time. In most cases, an optimal 
strategy is to merge the two smallest files repeatedly until there is only one 
file left. For this reason, the merging of two ordered files is the main function 
which we will analyze in this section. Algorithms for merging large numbers 
of files are studied in conjunction with external sorting. In particular, the 
second phases of the merge sort algorithms are good merging strategies for 
many files. 

A stable merging algorithm is one which preserves the relative orderings 
of equal elements from each of the sequences. The concept of stability can 
be extended to enforce that equal elements between sequences will maintain 
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a consistent ordering; this is called full stability. 

General references: 
[Floyd, R.W. et al., 73], [Schlumberger, M. et al., 73], [Hyafil, L. et al., 74], 
[Harper, L.H. et al., 75], [Yao, A.C-C. et al., 76], [Fabri, J., 77], [Reingold, 
E.M. et al., 77], [Sedgewick, R., 78], [Tanner, R.M., 78], [Brown, M.R. et al., 
79], [van der Nat, M., 79], [Mehlhorn, K., 84], [Munro, J.I. et al., 87], [Salowe, 
J .S. et al., 87], [Huang, B. et al., 88], [Sedgewick, R., 88], [Huang, B. et al., 
89]. 

4.3.1 List merging 

Merging two ordered lists is achieved by repeatedly comparing the top ele
ments and moving the smallest key one to the output list. 

Assuming that all the possible orderings of the lists are equally likely, then: 

E[Cn"nb] = na + nb - ~1 _ nb 
, nb + na + 1 

nb(2nb + na) na(2na + nb) 
(na + l)(na + 2) + (nb + l)(nb + 2) 

- (nbn~ 1 + nan~ 1) 2 

List merging 

function merge (a, 6 : list) : list; 

var first, last, temp: list; 
begin 
first := nil; 
while 6 <> nil do 

if a = nil then begin a := 6; 6:= nil end 
else begin 

if 6t.k > at.k then 
begin temp := a; a := at. next end 

else begin temp := 6; 6 := 6t .next end; 
tempt. next := nil; 
tailins( temp, first, last) 
end; 



tailins( a, first, last); 
merge := first 
end; 
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The above function uses the procedure tailins which inserts a node into a 
list defined by its first and last pointers. Such a procedure is useful in general 
for working with lists and is described in Section 4.2. 

The above algorithm is stable but not fully stable. 

References: 
[Knuth, D.E., 73], [Horowitz, E. et al., 76], [Huang, B. et al., 88], [Huang, B. 
et al., 89]. 

4.3.2 Array merging 

Array merging is a simple operation if enough additional space is available. 
For example, merging two arrays with additional space amounting to the 
smallest of the arrays can be accomplished in no + nb - 1 comparisons. The 
next algorithm merges arrays a and b of size no and nb respectively into the 
arraya. 

Merging of arrays 

merge( a, b, na, nb) 
RecordA rray a, b; 
int na, nb; 

{ /*** Merge array b (O ... nb-l) into array a (O ... na-l) ***/ 
while (nb > 0) 

}; 

if (na<=O II a[na-l].k < b[nb-l].k) 
{ nb--; a[na+nb] = b[nb]; } 

else { na--; a[na+nb] = a[na]; } 

There are several algorithms to merge arrays with little or "no additional 
storage. However, these are quite complex. The problem can be slightly 
rephrased, and in that case is usually referred to as in-place merging: given 
an array a which contains two sequences of ordered elements, one in locations 
1 to no and the other in locations no + 1 to no + nb, merge them into one 
sequence using only m units of additional storage. 

Most of these algorithms, although asymptotically better, will not compete 
with an in-place sorting method for practical purposes. In particular, Shellsort 
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(see Section 4.1.4) will do less work for the merging of two sequences than for 
sorting a random array, and is thus recommended. 

Table 4.7: Characteristics of in-place merging algorithms. 

Comparisons Extra Stable Reference 
space 

O(n) 0(1) No [Kronrod, 69] 
O(n) O(log n) Yes [Horvarth, 74] 
O(n) 0(1) Yes [Trabb Pardo, 77] 

O(kn) O(nl/A:) Yes [Wong, 81] 
O(nh log (no/nh + 1» O(1og nh) Yes [Dudzinski & Dydek, 81] 

O(n) 0(1) No [Huang & Langston, 88] 
O(n) 0(1) Yes [Huang & Langston, 89] 

Table 4.7 lists the properties and references for some in-place merging 
algorithms, where no and nh denote the sizes of the two arrays to be merged, 
no + nh = n, and without loss of generality we assume no ~ nh. 

References: 
[Kronrod, M.A., 69], [Knuth, D.E., 73], [Horvath, E.C., 74], [Trabb Pardo, L., 
77], [Horvath, E.C., 78], [Murphy, P.E. et al., 79], [Dudzinski, K. et al., 81], 
[Wong, J.K., 81]' [Alagar, V.S. et al., 83], [Mannila, H. et al., 84], [Carlsson, 
S., 86], [Thanh, M. et al., 86], [Dvorak, S. et al., 87], [Salowe, J.S. et al., 87], 
[Dvorak, S. et al., 88], [Dvorak, S. et al., 88], [Huang, B. et al., 88], [Huang, 
B. et al., 89], [Sprugnoli, R., 89]. 

4.3.3 Minimal-comparison merging 

Let C~~. denote the minimum-maximum, or the minimum worst-case num
ber of comparisons required to merge two files of sizes no and nh. It is known 
that 

C MM - rl 7(n + 1)1 rl 7(n + 1)1 n,2 - og2 6 + og2 17 

CMM 
n,3 r 7n+131 r 7(n+2)1 r 7(n+2)1 log2 17 + log2 107 + log2 43 + 5 

(n ~ 9) 
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The Hwang and Lin merging algorithm, sometimes called binary merg
ing, merges two files with an almost optimal number of comparisons. This 
algorithm is optimal for merging a single element into a sequence, two equal 
sequences and other cases. Compared to the standard algorithm, it reduces 
the number of comparisons significantly for files with very different sizes, how
ever the number of movements will not be reduced, and hence this algorithm 
is mostly of theoretical interest. 

The basic idea of binary merging is to compare the first element of the 
shorter file with the 1st or 2nd or 4th or 8th... element of the longer file 
depending on the ratio of the file sizes. If no ~ n6 then we compare the first 
element of file b with the 2' element of a, where t = Llog2 no/n6J. If the 
key from file b comes first, then a binary search between 2' - 1 elements is 
required; otherwise 2' elements of file a are moved ahead. The procedure is 
repeated until one of the files is exhausted. 

In its worst case, Hwang and Lin's algorithm requires 

c:;'~n. = (t + 1)n6 + Ln6/2'J - 1 

where t = Llog2 no/n6J. 
Manacher introduced an improvement to the Hwang and Lin algorithm 

when no/nb ~ 8, which reduces the number of comparisons by n6/12 + 0(1). 

References: 
[Hwang, F.K. et al., 71], [Hwang, F.K. et al., 72], [Knuth, D.E., 73], [Christen, 
C., 78], [Manacher, G.K., 79], [Hwang, F.K., 80], [Stockmeyer, P.K. et al., 80], 
[Schulte Monting, J., 81], [Thanh, M. et al., 82], [Manacher, G.K. et al., 89]. 

4.4 External sorting 

Sorting files that do not fit in internal memory, and are therefore stored in 
external memory, requires algorithms which are significantly different from 
those used for sorting internal files. The main differences are: 

(1) the most expensive operation is accessing (or storing) a record; 

(2) the intermediate files may not support direct (or random) access of 
elements, and even if they do support direct accesses, sequential accesses 
are more efficient. 
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Our main measure of complexity is the number of times that the file has 
been copied, or read and written. A complete copy of the file is called a pass. 

The algorithms we will describe use the following interface with the file 
system: 

Interface with file system 

function ReadFile( i: integer) : record; 
procedure WriteFile( i: integer; r: record); 
procedure Open Write( i: integer); 
function OpenRead( i: integer); 
function EoJ( i : integer) : boolean; 
ReadDirect( i: integer) : record; 
WriteDirect(i: integer; r: record); 

In all cases the argument i refers to a unit number, an integer in the range 
L.max/iles. The function Eo/(i) returns the value 'true' when the last 
ReadFile issued failed. The functions Open Write and OpenRead set the 
corresponding indicator to the letters '0' (output unit) and 'i' (input unit) 
respectively in the global array FilStat. The direct access operations use 
an integer to select the record to be read/written. These operations use the 
input file only. Without loss of generality we will assume that the input file 
is in unit 1, which can be used later for the sorting process. Furthermore, the 
output file will be placed in any file whose index is returned by the sorting 
procedure. In the worst case, if this is not desired and cannot be predicted, a 
single copy is sufficient. 

The external merge sorting algorithms are the most common algo
rithms and use two phases: distribution phase and merging phase. During 
the distribution phase or dispersion phase the input file is read and sorted 
into sequences, each sequence as long as possible. These sequences, sometimes 
called strings or runs, are distributed among the output files. The merging 
phase merges the ordered sequences together until the entire file is a single 
sequence; at this point the sorting is completed. 

The options available for creating the initial sequences (runs), for dis
tributing them and organizing the merging phase (which files to merge with 
which, and so on) give rise to many variations of external merge sorting. 

The distribution phase's objective is to create as few sequences as possible, 
and at the same time distribute these sequences in a convenient way to start 
the merging phase. There are three main methods for constructing the ordered 
sequences: replacement selection, natural selection and alternating 
selection. 
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General references: 
[Friend, E.H., 56], [Gotlieb, C.C., 63], [Flores, I., 69], [Martin, W.A., 71], 
[Frazer, W.D. et al., 72], [Barnett, J.K.R., 73], [Schlumberger, M. et al., 73], 
[Hyafil, L. et al., 74], [Lorin, H., 75], [Kronsjo, L., 79], [Munro, J.1. et al., 
80], [McCulloch, C.M., 82], [Tan, K.C. et al., 82], [Reingold, E.M. et al., 83], 
[Mehlhorn, K., 84], [Six, H. et al., 84], [Aggarwal, A. et al., 88], [Baase, S., 
88], [Sedgewick, R., 88], [Salzberg, B., 89]. 

4.4.1 Selection phase techniques 

4.4.1.1 Replacement selection 

The replacement selection algorithm keeps records in an internal buffer of 
size M. When the buffer is full, the smallest key record is output and a new 
record is read. Subsequently, the smallest key record in the buffer, whose key 
is larger than or equal to the last written, is output, and a new record is read. 
When this is no longer possible, that is, when all keys in the buffer are smaller 
than the last output, a new sequence is initiated. 

The expected length of the ith run, denoted by ni, is 

E[ni] LiM = 2M + 0(8- i M) 

E[nd (e -l)M 

where the values Li are given by the generating function 

L . z(l- z) 
L(z) = LiZ' = - Z 

ez - 1 - Z 
i~O 

The simplest way to manage the buffers is to keep a priority queue with 
the elements larger than the last output key, and a pool with the others. The 
following code describes the function distribute which uses a heap as a priority 
queue. 

Replacement selection distribution 

distributeO 
{int i, hbot, s; 
typekey /astout; 

for (i=O; i<M; i++) { 
BuD[,] = ReadFile(I); 
if (EoJ{l)) break; 
} 
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i--; 

while (i>=O) { 

}; 

for (hbot=O; hbot<i;) insert( ++hbot, Buff); 
/*** Start a new sequence ***/ 
s = nextfileO; 
while (hbot >= 0) { 

} 

lastout = BuD[O].k; 
WriteFi/e(s, BuD[O]); 
BuD[O] = BuD[ hbot]; 
sijtup(BujJ, 0, hbot-l); 
if (!EoJ(l» BuD[hbot] = ReadFile(l); 
if (EoJ(l» BuD[hbot--] = BuD[i--]; 
else if (BuD[hbot].k < lastout) hbot--; 

else insert(hbot, Buff); 
} 

The function next/ile returns the file number on which the next sequence 
or run should be placed. The functions insert and si/tup are described in 
the priority queue Section 5.1.3. 

4.4.1.2 Natural selection 

Natural selection is a mechanism for producing runs, similar to replacement 
selection, which uses a reservoir of records to increase the efficiency of the 
internal buffer. Until the reservoir is full, new records with keys smaller than 
the last output record are written into the reservoir. Once the reservoir is full, 
the current sequence is completed as with replacement selection. When a new 
sequence is initiated, the records from the reservoir are read first. Table 4.8 
shows the average run length on function of the reservoir size. 

It is assumed that the reservoir is on secondary storage, as, if main memory 
is available, pure replacement selection with a bigger buffer is always better. If 
the reservoir is in secondary storage, there is a cost associated with its usage, 
and there is an interesting trade off: for a larger reservoir, more records will be 
passed through it, but longer sequences will result and fewer merging passes 
will be required. 

If the number of passes in the sorting algorithm is 

E[Pn ] = 10gb n + 0(1) 

then the optimal reservoir size is the value r which minimizes 

r 
-logbL(r) + L(r) 
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Table 4.8: Average run lengths for natural selection. 

Reservoir Average 
saze run length 

M/2 2.15553 ... M 
M 2.71828 ... M 

3M/2 3.16268 ... M 
2M 3.53487 ... M 

5M/2 3.86367 ... M 
3M 4.16220 ... M 

where L(r) is the average run length with reservoir size r. Table 4.9 shows 
some values for the optimal reservoir size. The above function is very 'flat' 
around its minimum, so large variations in the reservoir size do not depart 
significantly from the optimum. 

Table 4.9: Optimum reservoir sizes for various sorting orders. 

b Reservoir Average Passes 
run length saved 

2 6.55M 5.81M 1.409 
3 2.22M 3.68M 0.584 
4 1.29M 2.99M 0.358 

4.4.1.3 Alternating selection 

Some algorithms require that sequences be stored in ascending and descending 
order alternatively. The replacement selection algorithm can be used for this 
purpose with a single change: the last if statement should be 

if (BuD[hbot].k < lastout 1 direction == 'a') 

where direction is a global variable which contains the letter a or the letter 
d. The priority queue functions should also use this global indicator. 

The alternation between ascending and descending sequences should be 
commanded by the function neztfile. As a general rule, longer sequences are 
obtained when the direction is not changed, so the function neztfile should 
be designed to minimize the changes in direction. If the direction is changed 
for every run, the average length of run is 
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3M 
E[ni] = """"2 + 0(1) 

4.4.1.4 Merging phase 

During the merging phase, the only difference between the algorithms is the 
selection of the input and output units. The function merge merges one run 
from all the input units (files with the letter i in their corresponding FilStat[] 
entry) into the file given as parameter. This function will be used by all the 
external merge sorts. 

Merge one ordered sequence 

merge(out) 
int out; 

{ 
int i, isml; 
typekey last out; 
extern struct ree LastRee[]; 
extern char FilStat[ ]; 

lastout = MinimumK ey; 
LastRee[O].k = MaximumKey; 
while (TRUE) { 

}; 

isml = 0; 
for (i=1; i<=max.files; i++) 

if (FilStat[I]=='i' && !EoJ{i) && 
LastRee[z].k >= lastout && 
LastRee[z].k < LastRee[ismij.k) 
isml = i; 

if (isml==O) { 
for (i=1; i<=max.files; i++) 

if (FilStat[I]=='i' && !EoJ{i)) return(O); 
return ( 'done'); 
} 

Write File ( out, LastRee[ism~); 
lastout = LastRee[ism~.k; 
LastRee[ism~ = ReadFile( ism~; 
} 

Merge uses the global record array LastRee. This array contains the last 
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record read from every input file. When all the input files are exhausted 
simultaneously, this function returns the word done. 

References: 
[Goetz, M.A., 63], [Knuth, D.E., 63], [Dinsmore, R.J., 65], [Gassner, B.J., 
67], [Frazer, W.D. et al., 72], [McKellar, A.C. et al., 72], [Knuth, D.E., 73], 
[Espelid, T.O., 76], [Ting, T.C. et al., 77], [Dobosiewicz, W., 85]. 

4.4.2 Balanced merge sort 

Balanced merge sorting is perhaps the simplest scheme for sorting external 
files. The files are divided into two groups, and every pass merges the runs 
from one of the groups while distributing the output into the other group of 
files. 

Let T be the number of sequential files available and let p! denote the 
number of passes necessary to sort n runs or strings. Then we have: 

Balanced merge sort 

sortO 
{ 
int i, runs; 
extern int maxfiles, unit; 
extern char FilStat[ ]; 
extern struct ree LastRee[ ]; 

/*** Initialize input/output files ***/ 
OpenRead(I); 
for (i=2; i<=maxfiles; i++) 

if(i <= maxfiles/2) FiIStat[,] = '-'; 
else Open Write( i); 

distributeO; 

do { /*** re-assign files ***/ 
for (i=l; i<=maxfiles; i++) 

if (FiIStat[,] == '0') { 
OpenRead( i); 
LastRee[ IJ = ReadFile( i); 
} 

else Open Write(i); 
for (runs=l; merge(nexfJile())!= 'done'; runs++); 



194 HANDBOOK OF ALGORITHMS AND DATA STRUCTURES 

} while (runs>l); 
return ( unit); 
}; 

The function that performs the selection of the files to output the runs is 
very simple and just alternates between all possible output files. 

Selection of next file for balanced merge sort 

nextfileO 
{extern illt maxfiles, unit; 
extern char FilStat[ ]; 

do unit = unit%maxfiles + 1; 
while (FilStat[unit] != '0'); 

return ( unit); 
}; 

For simplicity, the current output unit number is kept in the global variable 
unit. 

For some particular values of nand T, the balanced merge may not be 
optimal, for example p~ = 5, but an unbalanced merge can do it in four 
passes. Also it is easy to see that p! = 2 for n ~ T - 1. The difference 
between the optimal and normal balanced merge is not significant. 

Table 4.10 shows the maximum number of runs that can be sorted in a 
given number of passes for the optimal arrangement of balanced merge sort. 

Table 4.10: Maximum number of runs sorted by balanced merge sort. 

Number of passes 

3 2 4 4 8 8 
4 4 9 16 32 64 
5 6 18 36 108 216 
6 9 32 81 256 729 
7 12 50 144 576 1728 
8 16 75 256 1125 4096 

10 25 147 625 3456 15625 

References: 
[Knuth, D.E., 73], [Horowitz, E. et al., 76]. 
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4.4.3 Cascade merge sort 

Cascade merge sort distributes the initial sequences or runs among the output 
files in such a way that during the merging phase the following pattern can 
be maintained: each merging pass consists of the merging of T - 1 files 
into one, until one of the input files is exhausted, then the merging of the 
T - 2 remaining files into the emptied one, and so on. The final pass finds 
one sequence in every file and merges them into a single file. 

A perfect distribution is a set of numbers of runs which allow this 
process to be carried to the end without ever having two files exhausted at 
the same time, except when the process is completed. Perfect distributions 
depend on the number of files, T, and the number of merging steps, k. For 
example {O, 3, 5, 6} is a perfect distribution for T = 4 and k = 3. 

Let {O, sl, s~, ... , SI-l} be a perfect distribution for k merging steps and 
T files, then 

i() "" i k 4 "" cos Q'k cos«T - i)Q'k) 
s Z = ~skz = 2T-1 ~ 1- z/(2 sin Q'k) 

k -T/2<k<LT/2J 

where Q' - (4Hl),.. 
k - 4T-2 

T-l 

st = L ~_lS~ =0 
j=T-i 

i 4 7r (T - i)7r ( 7r) -k 
Sk ~ 2T _ 1 cos 4T _ 2 x cos 4T _ 2 x 2sin 4T _ 2 

1 2T - 1 7r -3 

2sin 7r/(4T - 2) = -7r- + 24(2T -1) + O(T ) 

Let tk be the total number of runs sorted by a T-file cascade merge sort in k 
merging passes or the size of the kth perfect distribution. Then 

t(z) = Ltkzk 
k 

4 = 2T-1 L sin2TQ'kcosQ'k(2sinQ'k)-(Hl) 
-T/2<k<LT/2J 

4 . 2T7r 7r (. 7r) -(Hl) 
tk ~ 2T _ 1 sm 4T _ 2 cos 4T _ 2 2sm 4T - 2 

k = log2T/,.. n7r/4 (1 + 2Tln12T/7r) + O(T-210g n) 

Table 4.11 shows the maximum number of runs sorted by cascade merge sort 
for various values of T and k. 
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Table 4.11: Maximum number of runs sorted by cascade merge sort. 

Number of passes 

3 3 7 13 23 54 
4 6 14 32 97 261 
5 10 30 85 257 802 
6 15 55 190 677 2447 
7 21 91 371 1547 6495 
8 28 140 658 3164 15150 

10 45 285 1695 10137 62349 

References: 
[Knuth, D.E., 73], [Kritzinger, P.S. et ai., 74]. 

4.4.4 Polyphase merge sort 

Polyphase merge sort distributes the initial sequences or runs among the out
put files in such a way that during the merging phase all merges are done 
from T - 1 files into 1. Once the proper distribution has been obtained, the 
merge proceeds from T - 1 to 1 until one of the input files is exhausted. At 
this point the output file is rewound and the empty file is opened for output. 
The merging continues until the whole file is merged into a single sequence. 

A perfect distribution is a set of numbers of runs which allow this process 
to be carried to the end without ever having two files exhausted at the same 
time, except when the process is completed. Perfect distributions depend on 
the number of files, T, and the number of merging steps, k. Perfect numbers 
are a generalization of Fibonacci numbers. For example {O, 2, 3, 4} is a perfect 
distribution for T = 4 and k = 3. 

Let {O, sl, s~, ... , si- 1 } be a perfect distribution for k merging steps and 
T files, then 

. L: . L (zi - l)z 
s'(z) = s1:z" = ~-..,..-~= 2z -1- zT 

I: 

Si - si-1 + sT-1 s0 - 0 
I: - 1:-1 1:-1 1:-

1 -i st ~ - OtT (Ot)1: 
.. 2 - 2T + TOtT T 

where I/OtT is the smallest positive root of 2z - 1 - zT = 0 and 



SORTING ALGORITHMS 197 

_ 2 ( 2 -T) 
aT - 2 - 2T _ T + 1 + 0 T 8 

Let tk be the total number of runs sorted by a T-file polyphase merge in 
k merging steps, or the size of the kth perfect distribution, then 

" k (zT-Tz+T-1)z 
t(z) = 7 tkZ = (2z - 1 - zT)(z - 1) 

T-2 k 

tk::::::l 2-2T+TaT(aT ) 

The number of merging steps, M n , for a perfect distribution with n se
quences is then 

M I (n(2-2T+TaT ») (1) 
n ogQT T- 2 + 0 

::::::l (1 + 2T ~n 2) log2 n + 1 -log2(T - 2) + 0(T2-T + n- f ) 

for some positive f. 
Let rk be the total number of runs passed (read and written) in a k-step 

merge with a perfect distribution. Then 

" k (zT-Tz+T-1)z 
r(z) = 7 rk Z = (2z - 1 - zT)2 

rk ::::::l (T _ 2)k + (aT - 2)T(T2 - 2T + 2) + 2T) (aT - l)(aT )k 
2 - 2T + TaT (2 - 2T + TaT )2 

Let Pn be the total number of passes of the entire file required to sort n 
initial runs in k merging steps. Then 

aT -1 
Pn 2 _ 2T + TaT k + 0(1) 

::::::l 1 (1 T-2+1/ln2)1 2 log2(T-2) 2 + 2T og2 n + - 2 

+_1_ + 0(T22-T ) 
T-2 

When the actual number of sequences or runs is not a perfect distribution, 
the sequences can be increased by dummy sequences (empty sequences) 
arbitrarily inserted in the files. Since it is possible to predict how many times 
each sequence will be processed, we can insert the dummy sequences in those 
positions which are processed the largest number of times. Of course, the 
sequences are not literally 'inserted' in the files, since the files are assumed 
to be in sequential devices and no merging is done with these. The selection 
of the best placement of dummy sequences together with the selection of the 
best possible order (any number of merges larger or equal to the minimum 
required) gives rise to the optimal polyphase merge. 
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Polyphase merge sort 

sortO 
{ 
int i, j, some; 
extern int maxfiles, maxruns[], actruns[]; 
extern struct rec LastRec[ ]; 

/*** Initialize input/output files ***/ 
OpenRead(I); 
for (i=2; i<=maxfiles; i++) Open Write(i); 

/*** Initialize maximum and actual count of runs ***/ 
for (i=O; i<=maxfiles; i++) maxruns[z1 = actruns[z1 = 0; 
maxruns[O] = maxruns[ max files] = 1; 
distributeO; 

/*** Initialize merging phase ***/ 
for (i=2; i<=maxfiles; i++) 

{ OpenRead(z); LastRec[11 = ReadFile(i); } 
for (i=l; maxruns[O] >1; i = (i%maxfiles)+l) { 

Open Write( i); 
while (maxruns[(i%maxfiles)+I] > 0) { 

for (j=I; j<=maxfiles; j++) 
if (j!=i) { 

if (maxrunslJ] >actrunslJ]) 
FilStatl)] = • - • ; 

else { FilStatlJ] = • i'; 
actrunslJ]--; 
some = TRUE; 
} 

maxrunslJ]--; maxruns[O]--; 
} 

maxruns[z1++; maxruns[O]++; 
if (some) {merge(i); actruns[11++;} 
} 

OpenRead( i); LastRec[.] = ReadFile( i); 
}; 

return(i==1 ? maxfiles : i-I); 
}; 



Selection of next file for polyphase merge sort 

nextfileO 
{extern int maxfiles, maxruns[], actruns[]; 
int i, j, inc; 

actruns[O]++; 
if (actruns[O]>maxruns[O]) { 

/*** Find next perfect distribution ***/ 
inc = maxruns[maxfiles]; 
maxruns[O] += (maxfiles-2) * inc; 
for (i=maxfiles; i>l; i--) 

maxruns[z1 = maxruns[i-l] + inc; 
} 

j = 2; 
/*** select file farthest from perfect ***/ 
for (i=3; i<=maxfiles; i++) 
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if ( maxruns[ 11- actruns[ 11 > maxrunsL11- a ctrunsL1D j = i; 
actrunsL11 ++; 
return(J); 
}; 

Table 4.12 shows the maximum number ofruns sorted by polyphase merge 
sort for various numbers of files and passes. 

Table 4.12: Maximum number of runs sorted by polyphase merge sort. 

Number of passes 

3 3 7 13 26 54 
4 7 17 55 149 355 
5 11 40 118 378 1233 
6 15 57 209 737 2510 
7 19 74 291 1066 4109 
8 23 90 355 1400 5446 

10 31 122 487 1942 7737 

References: 
[Gilstad, R.L., 60], [Gilstad, R.L., 63], [Malcolm, W.D., 63], [Manker, H.H., 
63], [McAllester, R.L., 64], [Shell, D.L., 71], [Knuth, D.E., 73], [MacCallum, 
I.R., 73], [Kritzinger, P.S. et al., 74], [Horowitz, E. et al., 76], [Zave, D.A., 



200 HANDBOOK OF ALGORITHMS AND DATA STRUCTURES 

77], [Colin, A.J.T. et al., 80], [Er, M.C. et al., 82]. 

4.4.5 Oscillating merge sort 

Oscillating sort interleaves the distribution or dispersion phase together with 
the merging phase. To do this it is required that the input/output devices be 
able to: 

(1) read backwards; 

(2) switch from writing to reading backwards; 

(3) switch from reading backwards to writing, without rewinding and with
out destroying what is at the beginning of the file. 

Oscillating sort will always do the mergings reading backwards from T - 2 
units into one. Furthermore, the merging steps are done with balanced files, 
in the sense that their expected number of records in each is the same. A 
sequence, ascending (or descending), with (T - 2)n initial runs is constructed 
by a T - 2-way merge from T - 2 sequences (each containing n runs) In 

descending (or ascending) order. 
A perfect distribution for oscillating sort can be produced when n = 

(T - 2)k. The number of passes required to sort n initial runs is: 

Pn = pogT_l nl + 1 

Oscillating sort 

procedure sort( n, unit, direction: integer); 
var i, r: integer; 

begin 
if n=O then {*** Mark as dummy entry ***} 

FilStat[unit] := '-' 
else if n=1 then 

ReadOneRun( unit, direction) 

else for i:=1 to T-2 do begin 
r:= n div (T-i-1); 

end; 

n := n-r; 
sort(r, (uniHi-2) mod T + 2, -direction); 
MergeOneRunlnto( unit, - direction) 
end 
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Table 4.13 shows the maximum number of runs sorted by oscillating sort 
or any of its modified versions, for various numbers of files and passes. Note 
that since the input unit remains open during most of the sorting process, it 
is not possible to sort with less than four units. 

Table 4.13: Maximum number of runs sorted by oscillating merge sort. 

Number of passes 

3 - - - - -
4 4 8 16 32 64 
5 9 27 81 243 729 
6 16 64 256 1024 4096 
7 25 125 625 3125 15625 
8 36 216 1296 7776 46656 

10 64 512 4096 32768 262144 

References: 
[Sobel, S., 62], [Goetz, M.A. et al., 63], [Knuth, D.E., 73], [Lowden, B.G.T., 
77]. 

4.4.6 External Quicksort 

External Quicksort is a completely different type of procedure for external 
sorting. The basic algorithm is the same as the internal Quicksort: the file 
is split into two parts, the lower and the upper, and the procedure is applied 
to these recursively. Instead of keeping one single record to do the splitting, 
this procedure keeps an array of size M of splitting elements. This array of 
records is maintained dynamically as the splitting phase progresses. Its goal 
is to produce an even split and to place as many records as possible in their 
final position (all records in the buffer will be placed in their final location). 

For a file consisting of random records, assuming that each pass leaves the 
records in random order, 

E[Pn ] = In n + 0(1) 
H 2M-HM 
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External Quicksort 

sort(a, b) 
int a, bj 

tint i, j, rlow, rupp, wlow, wupp, InBuff, 
typekey MaxLower, MinUpper; 
struct rec LastReadj 
extern struct rec BuD[ ) j 

while (b>a) { 
rupp = wupp = bj 
rlow = wlow = aj 
InBuff= OJ 
MaxLower = MinimumKeyj 
Min Upper = MaximumKeyj 
i = a-lj 
j = b+lj 
/*** Partition the file ***/ 
while (rupp >= rlow) { 

if ( rlow- wlow < wupp- rupp) 
LastRead = ReadDirect( r1ow++)j 

else LastRead = ReadDirect( ruPP--)j 
if (InBuff < M) { 

BuD[InBuff++) = LastReadj 
intsort(BufJ, 0, InBuff-l)j 
} 

else { 
if (LastRead.k > BuD[M-l).k) { 

if (LastRead.k > Min Upper) j = WUppj 
else Min Upper = LastRead.kj 

WriteDirect( wUpp--, LastRead)j 
} 

else if (LastRead.k < BuD[O).k) { 
if (LastRead.k < MaxLower) i = wlowj 

else MaxLower = LastRead.kj 
WriteDirect( wlow++, LastRead)j 
} 

else if (wlow-a < b-wupp) { 
WriteDirect( wlow++, BuD[O])j 
M axLower = BuD[O). kj 
BuD[O) = LastReadj 
intsort(Buff, 0, M-l)j 
} 
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else { WriteDirect(wupp--, Bu.D[M-l]) ; 
Min Upper = Bu.D[M-l].k; 
Bu.D[M-l] = LastRead; 
intsort(Buff, 0, M-l); 
} 

} 
} 

while (InBuO>O) WriteDirect(wupp--, Bu.D[--InBuJ.Jj); 

/*** sort the shortest subfile first ***/ 
if (i-a < b-J) { sort(a,i); a = j; } 

else {sort(j,b); b = i; } 
} 

return(I); 
}; 

The most noticeable differences between internal and external quicksort 
are: 

(1) the records kept in the buffer are maintained as close to the centre as 
possible, that is, deletions are done on the left or on the right depending 
on how many records were already passed to the left or right. 

(2) the reading of records is also done as balanced as possible with respect 
to the writing positions. This is done to improve the performance when 
the file is not random, but slightly out of order. 

(3) two key values are carried during the splitting phase: M azLower and 
MinUpper. These are used to determine the largest interval which can 
be guaranteed to be in order. By this mechanism it is possible to sort a 
totally ordered or reversely ordered file in a single pass. 

The function intsort is any internal sorting function. Its complexity is not 
crucial as this function is called about M In n times per pass of size n. An 
internal sorting function which does little work when the file is almost totally 
sorted is preferred (for example, the linear insertion sort of Section 4.1.2). 

Table 4.14 shows simulation results on external Quicksort. From these 
results we find that the empirical formula 

E[Pn ] = log2(n/M) - 0.924 

gives an excellent approximation for files with 1000 or more elements. 

For very large internal buffers, a double-ended priority queue should be 
used, instead of the function intsort. 

External Quicksort requires an external device which supports direct ac
cess. This sorting procedure sorts records 'in-place', that is, no additional 
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Table 4.14: Simulation results (number of passes) for external Quicksort. 

nl M=5 M= 10 M =20 
100 3 .5272±0 .00 11 2.73194±0.00076 2.09869±0.00090 
500 5.7057±0.0015 4.74526±0.00077 3.88463±0.00057 

1000 6.6993±0.0021 5.69297 ±O .00095 4.77862±0.00059 
5000 9 .0555±0 .0051 7.9773±0.0016 6.99252±0.00063 

10000 1O.0792±0.0071 8.9793±0.0026 7.97913±0.00090 

files are required. External Quicksort seems to be an ideal sorting routine for 
direct access files. 

This version of Quicksort will have an improved efficiency when sorting 
partially ordered files. 

References: 
[Monard, M.C., 80], [Cunto, W. et al., to app.]. 
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5.1 Priority queues 

\Ve define priority queues as recursive data structures where an order re
lation is established between a node and its descendants. Without loss of 
generality this order relation will require that the keys in parent nodes be 
greater than or equal to keys in the descendant nodes. Consequently the root 
or head of the structure will hold the maximum element. 

The algorithms that operate on priority queues need to perform two basic 
operations: add an element into the queue; extract and delete the maximum 
element ofthe queue. Additionally we may require other operations: construct 
a priority queue from a set of elements; delete and insert a new element in a 
single operation; inspect (without deleting) the maximum element and merge 
two queues into a single priority queue. Certainly some of these operations 
may be built using others. For each algorithm we will describe the most 
efficient or basic ones. 

Typical calling sequence for these functions in Pascal 

procedure insert( new: typekey; var pq: queue); 
function extract(var pq: queue) : typekey; 
function inspect(pq: queue) : typeJ.:ey; 
procedure delete(var pq: queue); 
function merge( a, b : queue) : queue; 
procedure delinsert( new: typeJ.:ey; val' pq: queue); 

205 
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For the C implementation, the procedures which use var parameters are 
changed into functions which return the modified priority queue. 

For some applications we may superimpose priority queue operations with 
the ability to search for any particular element; search for the successor (or 
predecessor) of a given element; delete an arbitrary element, and so on. 

Searching structures which accept lexicographical ordering may be used 
as priority queues. For example, a binary search tree may be used as a pri
ority queue. To add an element we use the normal insertion algorithm; the 
minimum is in the leftmost node of the tree; the maximum is in the rightmost 
node. 

In all cases C~ will denote the number of comparisons required to insert 
an element into a priority queue of size n, C~ the number of comparisons to 
extract the maximum element and reconstruct the priority queue, and C~ the 
number of comparisons needed to construct a priority queue from n elements. 

5.1.1 Sorted/unsorted lists 

A sorted list is one of the simplest priority queues. The maximum element 
is the head of the list. Insertion is done after a sequential search finds the 
correct location. This structure may also be constructed using any list-sorting 
algorithm. 

C~ = 0 

n(n + 3) 
= 

2(n + 1) 
E[C~] 

n(n + 5) 
In = 6 

where In is the average number of records inspected for all sequences of n 
operations which start and finish with an empty queue. 

Sorted list insertion 

list insert( new, pq) 
list new, pq; 

{struct ree r; 
list p; 
r.next = pq; 
p = &r; 
while (p ->next != NULL && p ->next ->k > new ->k) 

p = p ->next; 



new ->next = p ->nextj 
p ->next = newj 
return ( r.next)j 
}j 

Sorted list deletion 

list delete(pq) 
list pqj 
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{if (pq==NULL) Error /*** Delete from empty PQ ***/j 
else return(pq -> next) j 
}j 

Sorted list inspection 

typekey inspect(pq) 
list pqj 
{if (pq==NULL) Error /* inspect an empty PQ */j 
else return(pq ->k)j 
}j 

A sorted list used as a priority queue is inefficient for insertions, because 
it requires O( n) operations. However it may be a good choice when there are 

(1) very few elements in the queuej 

(2) special distributions which will produce insertions near the head of the 
listj 

(3) no insertions at all (all elements are available and sorted before any 
extraction is done). 

An unsorted list, at the other extreme, provides very easy addition of 
elements, but a costly extraction or deletion. 

C: = n 

C~ 0 
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Unsorted list insertion 

list insert( new, pq) 
list new, pq; 

{new ->next = pq; 
return(new);} 

Unsorted list deletion 

list delete(pq) 
list pq; 

{struct rec r; 
list p, max; 
if (pq==NULL) Error /*** Deleting from empty PQ ***/; 
else { r. next = pq; 

}; 

max = &r; 
for (p=pq; p ->next != NULL; p=p ->next) 

if (max ->next ->k < p ->next ->k) max = p; 
max ->next = max ->next ->next; 
return ( r. next) ; 
} 

Unsorted list inspection 

typekey inspect(pq) 
list pq; 

{list p; 
typekey max; 
if (pq==NULL) Error /*** Empty Queue ***/; 
else {max = pq ->k; 

}; 

for (p=pq ->next; p!=NULL; p=p ->next) 
if (max < p ->k) max = p ->k; 

return ( max); 
} 
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An unsorted list may be a good choice when 

(1) the elements are already placed in a list by some other criteria; 

(2) there are very few deletions. 

Merging sorted lists is an O( n) process; merging unsorted lists is also an 
O( n) process unless we have direct access to the tail of one of the lists. 

References: 
[Nevalainen, O. et al., 79]. 

5.1.2 P-trees 

P-trees or priority trees are binary trees with a particular ordering con
straint which makes them suitable for priority queue implementations. This 
ordering can be best understood if we tilt the binary tree 45° clockwise and 
let the left pointers become horizontal pointers and the right pointers become 
vertical. For such a rotated tree the ordering is lexicographical. 

We also impose the condition that the maximum and minimum elements 
of the tree both be on the leftmost branch, and so on recursively. This implies 
that any leftmost node does not have right descendants. 

The top of the queue, the maximum in our examples, is kept at the leftmost 
node of the tree. The minimum is kept at the root. This requires some 
additional searching to retrieve the top of the queue. If we keep additional 
pointers and introduce pointers to the parent node in each node, the deletion 
and retrieval of the top element become direct operations. In any case, a 
deletion does not require any comparisons, only pointer manipulations. 

Let Ln be the length of the left path in a queue with n elements. For 
each node inspected a key comparison is done. Then for a queue built from 
n random keys: 

E[Ln] = 2Hn -1 

E[C~] H~+l IOHn+1 
H(2) 28 --+ ~ 

3 9 3 27 

n-1 
E[C~] 1+ l:E[C{j 

;=2 

where Hn = 2:7=1 Iii denotes harmonic numbers and H~2) 
denotes biharmonic numbers. 

(n ~ 2) 

(n ~ 2) 
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P-tree insertion 

tree insert( new, pq) 
tree new, pq; 

{ 
tree p; 
if (pq == NULL) return(new); 
else if (pq ->k >= new ->k) { 

/*** Insert above subtree ***/ 
new ->Ieft = pq; 
return ( new); 
} 

else { 
p = pq; 
while (p ->Ieft != NULL) 

if (p ->Ieft ->k >= new ->k) { 
/*** Insert in right subtree ***/ 
p ->right = insert(new, p ->right); 
return (pq); 
} 

else p = p ->Ieft; 

/*** Insert at bottom left ***/ 
p ->Ieft = new; 
}; 

return(pq); 
}; 

P-tree deletion of maximum 

tree delete(pq) 
tree pq; 
{ 
if (pq == NULL) Error /*** deletion on an empty queue ***/; 
else if (pq ->Ieft == NULL) return(NULL); 
else if (pq ->Ieft ->Ieft == NULL) { 

pq ->Ieft = pq ->right; 
pq ->right = NULL; 
} 

else pq ->Ieft = delete(pq ->Ieft); 
retul'n(pq); 
}; 



P-tree, retrieval of head of queue 

typekey inspect(pq) 
tree pq; 
{ 
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if (pq == NULL) Error /*** Inspecting an empty queue ***/; 
while (pq ->Ieft != NULL) pq = pq ->Ieft; 
return(pq ->k); 
}; 

With a relatively small change, P-trees allow the efficient extraction of the 
minimum as well as the maximum, so this structure is suitable for handling 
double-ended priority queues. 

This priority queue is stable; equal keys will be retrieved first-in first-out. 

Table 5.1 contains exact results (rounded to six digits). Simulation results 
are in excellent agreement with the theoretical ones. 

Table 5.1: Exact results for P-trees. 

5 7.66667 3.56667 
10 27.1935 4.85794 
50 347.372 7.99841 

100 939.017 9.37476 
500 8207.70 12.5856 

1000 20001.3 13.9709 
5000 147948.6 17.1890 

10000 342569.2 18.5752 

References: 
[Jonassen, A.T. et al., 75], [Nevalainen, O. et al., 78]. 

5.1.3 Heaps 

A heap is a perfect binary tree represented implicitly in an array. This binary 
tree has priority queue ordering: the key in the parent node is greater than or 
equal to any descendant key. The tree is represented in an array without the 
use of pointers. The root is located in position 1. The direct descendants of 
the node located in position i are those located in 2i and 2i + 1. The parent of 
node i is located at Li/2J. The tree is 'perfect' in the sense that a tree with n 
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nodes fits into locations 1 to n. This forces a breadth-first, left-to-right filling 
of the binary tree. 

For Williams' insertion algorithm, let C~ denote the number of compar
isons and Mn the number of interchanges needed to insert the n + lth element, 
then 

1 ~ C~ ~ Llog2 n J 

E[Mn] = E[C~] _ n - 1 
n 

For an insertion into a random heap (all possible heaps being equally likely), 
when n is in the range 2k - 1 - 1 ~ n < 2k - 1 we have: 

E[C£L2] ~ E[C~] ~ E[C£k-'_l] 

E[C~n] < E[C~n_d 

E[C£L2] = 2 + O(k2- k ) 

E[C£k-'_l] = 2.60669 ... + O(k2- k ) 

(n> 1) 

A heap built by random insertions using Williams' insertion algorithm is not 
a random heap. 

Williams' heap-insertion algorithm 

procedure insert(new: ArrayEntry; val' r: RecordArray); 
var i, j: integer; 

flag: boolean; 

begin 
n := n+l; 
J:= n; 
flag := true; 
while flag and U>l) do begin 

i := j div 2; 
if r[1].k >= new.k then flag := false 

else begin r[;] := r[ I]; j:= i end 
end; 

r[;] := new 
end; 

If all the elements are available at the same time, we can construct a heap 
more efficiently using Floyd's method. In this case 
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n - 1 ~ C; ~ 2n - 2v( n) - ¢( n) 

c ( ) Ie k 6k + 5 (-Ie) E[C2k _ 1] = al + 2a2 - 2 2 - 2 - 1 - 9'2'k + 0 k4 

E[C;] = 1.88137 ... n + O(Iog n) 

where al = EIe~l 2li~1 = 1.60669 ... and a2 = E1:~l ~ = 1.13733 ... 

o ~ M; ~ n - v(n) 

[ C) ( ) 1: 3k + 4 (-1:) E M2k _ 1 = al + a2 - 2 2 - k - 9'2'k + 0 k4 

E[M;] = 0.74403 ... n + O(log n) 

where v( n) is the number of Is in the binary representation of nand ¢( n) is 
the number of trailing Os of the binary representation of n. 

Floyd's heap-construction algorithm 

procedure si/tup(var r: RecordArray; i,n : integer); 

var j: integer; 
tempr: A rrayEntry; 

begin 

end; 

while 2*i<=n do begin 
j := 2*i; 
if j<n then 

if rfJ].k < rf.i+1].k then j := j+1; 
if r[a].k < rfJ].k then begin 

tempr := rfJJ; 
rfJJ := r[aJ; 
r[z] := tempr; 
i:= j 
end 

else i:= n+1 
end 

for i := (n div 2) downto 1 do si/tup(r,i,n); 

Worst-case lower and upper bounds: 

C~ llog2 (llog2 n J + l)J + 1 

C! llog2 nJ + g(n) + 0(1) 
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where g(O) = 0 and g(n) = 1 + g(llog2 nJ). 
13 

C~ = Sn + O(log n) 

Average lower and upper bound: 

l.36443 ... n + O(log n) < C~ < l.52128 ... n + o(n) 

Extraction and reorganization: 

C! ~ 2llog2 (n - 1)J - p(n - 1) 

where p(n) is 1 if n is a power of 2, 0 otherwise. 

Heap extraction and reorganization 

function extract(var r: RecordArray) : typekeYj 
begin 
if n< 1 then Error {*** extracting from an empty Heap *** } 
else begin 

endj 

extract := r(l].kj 
r(1] := r(n]j 
n := n-1; 
siftup( r, 1, n) 
end 

For a random delete-insert operation into a random heap we have: 

2 ~ C! ~ 2llog2 nJ - p(n) 

E[C!] = 2((n + 1)k - In/2J - 2k) 
n 

where k = llog2 n J + l. 
(2k - 3)2k + 2 

E[Cf,._d = 2k - 1 

Heap delete-insert algorithm 

procedure delinsert( new: RecordEntryj var r: RecordA rraY)j 
begin 
r(l] := neWj 



siftup(r, 1, n) 
end; 
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The heap does not require any extra storage besides the elements them
selves. These queues can be implemented just by using arrays and there are 
no requirements for recursion. 

The insertion and extraction operations are guaranteed to be O(log n). 
Whenever we can allocate vectors to store the records, the heap seems to 

be an ideal priority queue. 
Merging two disjoint heaps is an O(n) operation. 
\Ve can generalize the heap to any branch factor b other than two; in this 

case the parent of node i is located at Hi - 2)/bJ + 1 and the descendants are 
located at rb(i-l) +21, ... , rbi+ 11. This provides a tradeoff between insertion 
and extraction times: the larger b, the shorter the insertion time and longer 
the extraction time. 

Table 5.2 gives figures for the number comparisons, C~, required to build 
a heap by repetitive insertions, the number of comparisons required to insert 
the n + lth element, C~ and the number of comparisons required to extract 
all the elements from a heap constructed in this manner, C!? 

Table 5.2: Complexity of heaps created by insertions. 

nl E[C~] E[C~] E[C~] 
5 5.133333 1.583333 5.8 

10 13.95278 1.667027 25.54239 
50 96.60725 1.983653 330.165±0.029 

100 206.0169 2.135882 850.722±0.062 
500 1103.952 2.116126 6501.21±0.26 

1000 2237.752 2.253290 14989.06±0.53 
5000 11348.8±3.2 2.330±0.015 98310.6±3.2 

10000 22749.8±6.6 2.401±0.022 216592.0±6.2 

References: 
[Floyd, R.W., 64], [Williams, J.W.J., 64], [Knuth, D.E., 73], [Porter, T. et al., 
75], [Gonnet, G.H., 76], [Kahaner, D.K., 80], [Doberkat, E.E., 81], [Doberkat, 
E.E., 82], [Carlsson, S., 84], [Doberkat, E.E., 84], [Bollobas, B. et al., 85], 
[Sack, J.R. et al., 85], [Atkinson, M.D. et al., 86], [Fredman, M.L. et al., 
86], [Gajewska, H. et al., 86], [Gonnet, G.H. et al., 86], [Sleator, D.D. et al., 
86], [Carlsson, S., 87], [Fredman, M.L. et al., 87], [Fredman, M.L. et al., 87], 
[Hasham, A. et al., 87], [Stasko, J.T. et al., 87], [Brassard, G. et al., 88], 
[Draws, L. et al., 88], [Driscoll, J .R. et al., 88], [Frieze, A.M., 88], [Sedgewick, 
R., 88], [Carlsson, S. et al., 89], [Manber, V., 89], [McDiarmid, C.J.H. et al., 
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89], [Strothotte, T. et al., 89], [Weiss, M.A. et al., 89], [Cormen, T.H. et al., 
90], [Frederickson, G.N., 90], [Sack, J.R. et al., 90]. 

5.1.4 Van Emde-Boas priority queues 

Van Emde-Boas priority queues are queues which perform the operations in
sert, delete, extract maximum or minimum and find predecessor or successor 
in O(log log N) operations. For these queues, N represents the size of the 
universe of keys and n the actual size of the subset of keys we include in the 
queue. It makes sense to use these queues when the keys are subsets of the 
integers 1 to N. 

These queues are represented by one of various possible data structures. 
A queue is either 

(1) empty, in which case it is represented by nil; 

(2) a single element, in which case it is represented by the integer element 
itself; 

(3) a boolean array of size N, if the universe is small (N $ m); 

(4) a structure composed of a queue of queues. The queue of queues is called 
the top part, and the element queues, which are arranged as an array, 
are called the bottom queues. Additionally we keep the maximum and 
minimum value occurring in the queue. The sizes of the top and bottom 
queues are as close to the square root of the cardinality of the universe 
as possible. 

As a hyperrule, these priority queues have the definition: 

vEB - N : lint, int, vEB - s(N), {vEB - s(N)}~(N)]j {bool}r j intj nil 

where s(N) = r VNl. The top queue is a queue on the indices of the bottom 
array. The index of every non-empty queue in the bottom is a key in the top 
queue. 

Van Emde-Boas priority queue insertion 

insert( new: integer; var pq); 
case pq is nil: 

pq := NewSingleNode(new); 
case pq is boolean array: 

turn on corresponding entry; 
case pq is single element: 

expand entry to full node; 



seep into next case; 
case pq is full node: 

compute index based on "new" 
if bottom[index] <> nil then 

insert in bottom[index] 
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else bottom[index] := NewSingleNode( new); 
insert index in top queue; 

adjust max and min if necessary; 
end; 

Van Emde-Boas priority queue extraction 

extract(var pq) : integer; 
case pq is nil: 

Error; 
case pq is boolean array: 

Find last true entry; 
if only one entry remains then transform to SingleEntry; 

case pq is single element: 
return element; 
pq:= nil; 

case pq is full node: 

end; 

return maximum; 
if bottom queue corresponding to maximum is single element 

then extract from top queue; 
max := max of bottom[ max of top]; 

else extract from bottom; 
max := max of bottom; 

Let S;: be the storage utilized by a queue with n elements from a universe 
of size N. Then 

The functions extract minimum, test membership, find successor and find 
predecessor can also be implemented in the same time and space. 

References: 
[van Emde-Boas, P. et al., 77], [van Emde-Boas, P., 77]. 
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5.1.5 Pagodas 

The pagoda is an implementation of a priority queue in a binary tree. The 
binary tree is constrained to have priority queue ordering (parent larger than 
descendants). The structure of the pointers in the pagoda is peculiar; we have 
the following organization: 

(1) the root pointers point to the leftmost and to the rightmost nodes; 

(2) the right link of a right descendant points to its parent and its left link 
to its leftmost descendant; 

(3) the left link of a left descendant points to its parent and its right link 
to its rightmost descendant. 

The basic operation in a pagoda is merging two disjoint pagodas, which 
can be done very efficiently. An insertion is achieved by merging a single 
element with the main structure; an extraction is done by merging the two 
descendants of the root. 

Merging pagodas is done bottom-up, merging the leftmost path of one 
with the rightmost path of the other. 

Let C!;!n be the number of comparisons needed to merge two pagodas of 
sizes m and n respectively. Then for pagodas built from random input we 
have 

1 :::; C~ :::; n 

E[C~] = 2 _ 2 
n+l 

o < CE < n - 2 _ n 

n - 1 :::; C~ :::; 2n - 3 

E[C~] = 2n - 2Hn 



Merging two pagodas 

function merge( a, b : tree) : tree; 
var bota, botb, r, temp : tree; 

begin 
if a=nil then merge := b 
else if b=nil then merge := a 
else begin 
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{*** find bottom of a's rightmost edge ***} 
bota := al. right; al. right := nil; 
{*** bottom of b's leftmost edge ***} 
botb := bl.left; bl.left:= nil; 
r:= nil; 
{*** merging loop ***} 
while (bota<>nil) and (botk>nil) do 

if botal.k < botbl.kthen begin 
temp := botal. right; 
if r=nil then botal. right := bota 

else begin 
botal. right := rl. right; 
rl. right := bot a 
end; 

r:= bot a; 
bota := temp 
end 

else begin 
temp := botbl.left; 
if r=nil then botbl.left:= botb 

else begin 
botbl·left := d·left; 
rl.left := botb 
end; 

r := botb; 
botb := temp 
end; 

{*** one edge is exhausted, finish merge ***} 
if botb=nil then begin 

al. right := rl. right; 
rl. right := bota; 
merge := a 
end 

else begin 
bl·left := rl.left; 
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elld 
elld; 

rf.left := hoth; 
merge := h 
elld 

Insertion in a pagoda 

procedure insert(new: tree; var pq : tree); 
begill 
newl.left := new; newf. right := new; 
pq := merge(pq, new) 
elld; 

Deletion of head in a pagoda 

procedure delete(var pq: tree); 
val' Ie, ri: tree; 

begill 
if pq=llil thell Error {*** deletion on empty queue ***} 
else begill 

elld; 

{*** find left descendant of root *** } 
if pqf.left = pq thell Ie := llil 

else begill 
Ie := pqf.left; 
while lef.left <> pq do Ie := lef.left; 
lel.left := pql·left 
elld; 

{*** find right descendant of root ***} 
if pql. right = pq tbell ri := llil 

else begill 
ri := pqf. rig/&t; 
wbile ril. righl < > pq do ri := rif. right; 
ril. right := pql. righl 
elld; 

{*** merge descendants ***} 
pq := merge( Ie, ri) 
elld 
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Pagodas are remarkably efficient in their average behaviour with respect 
to the number of comparisons. 

References: 
[Francon, J. et al., 78]. 

5.1.6 Binary trees used as priority queues 

5.1.6.1 Leftist trees 

A leftist tree is a binary tree with a priority queue ordering, which uses a 
count field at every node. This count field indicates the height (or distance) 
to the closest leaf. Leftist trees are arranged so that the subtree with the 
shortest path to a leaf is 011 the right descendant. 

These trees are called leftist as their left branches are usually taller than 
their right ones. 

An insertion can be done in the path to any leaf, so it is best to do it 
towards the rightmost leaf which is the closest to the root. A deletion is done 
through merging the two immediate descendants for the root. Leftist trees 
allow efficient, O(log n), merging of different trees. 

Leftist tree insertion 

procedure insert (new: tree; var pq : tree); 

begin 
if pq = nil then pq := new 
else if pqt.k > newt.k then begin 

insert( new, pqt. right); 
fixdist(pq) 
end 

else begin 

end; 

newt . left := pq; 
pq:= new 
end 
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Leftist tree deletion 

function merge( a, b : tree) : tree; 
begin 
if a = nil then merge := b 
else if b = nil then merge := a 
else if aj.k > bj.k then begin 

aj . right := merge( aj . right, b); 
fixdist( a); 
merge:= a 
end 

else begin 

end; 

bj . right := merge( a, bj. right); 
fixdist( b); 
merge := b 
end 

procedure delete (var pq: tree); 
begin 
if pq = nil then Error {*** delete on an empty queue ***} 
else pq:= merge(pqj . left, pqj. right) 
end; 

Leftist tree distance 

function distance(pq: tree) : integer; 
begin 
if pq=nil then distance := 0 

else distance:= pqj. dist 
end; 

procedure fixdist(pq : tree); 
var temp: tree; 
begin 
if distance(pqj . left) < distance(pqj. right) then begin 

temp := pqj. right; 
pqj . right := pqf.left; 
pqj .left := temp 
end; 

pqj. dist := distance(pqj. right) + 1 
end; 
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The function fixdist recomputes the distance to the closest leaf by inspect
ing at the right descendant, if any. 

All operations on the leftist trees require O(1og n) time even in the worst 
case. 

Table 5.3 summarizes simulation results on leftist trees. cR indicates 
the number of comparisons required to build a leftist tree, dist indicates the 
distance from the root to the closest leaf and C!? the number of comparisons 
required to extract all the elements from the tree. 

Table 5.3: Simulation results for leftist trees. 

n E[C,f] E[dist] E[C~] 
10 14.5955±0.0099 2,4314±0.0029 11.992±0.010 
50 131.44±0.14 3.6807 ±0.0097 176.056±0.081 
100 317.11±0,41 4.211±0.015 469.35±0.18 
500 2233.6±4.7 5,497±0.041 3779.2±1.0 
1000 5036±14 6.071±0.063 8817.3±2.2 
5000 31845±155 7,45±0.16 58797±13 
10000 69500±395 7.97±0.23 130312±22 

5.1.6.2 Binary priority queues 

We can construct a binary tree with a priority queue ordering instead of a 
lexicographical ordering. By doing this, most of the algorithms for binary 
trees can also be used for priority queues. There is a contradiction of goals 
however. While the best binary tree for searching is a tree as height balanced 
as possible, the best tree for a priority queue is one which is as thin or as tall 
as possible. With this in mind we can devise an algorithm to produce rather 
tall trees. 

For simplicity of the algorithms we will impose the following conditions: 

(1) the key in the node is larger than any other key in the descendant 
subtrees; 

(2) if a subtree is non-null, then the left subtree is non-null; 

(3) the key in the direct left descendant (if any) is larger than the key in 
the direct right descendant. 
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Binary priority queue insertion 

procedure insert (new: tree; var pq : tree); 

begin 
if pq = nil then pq := new 
else if pql.k <= newl.k then begin 

newl·left := pq; 
pq:= new 
end 

else if pql.left = nil then 
pql.left := new 

else if pql.leftl.k <= newl.k then 
insert( new, pql.left) 

else insert( new, pql. right) 
end; 

Binary priority queue deletion 

procedure delete (var pq: tree); 
var temp: tree; 
begin 
if pq = nil then Error {*** deletion on an empty queue ***} 
else if pql. right = nil then 

pq := pql.left 
else begin 

end; 

{*** promote left descendant up ***} 
pql.k := pql·leftl.k; 
delete(pql·left); 
{*** rearrange according to constraints *** } 
if pql.left = nil then begin 

pql.left := pql. right; pql. right := nil end; 
if pql. right < > nil tben 

end 

if pql.leftl.k < pql. rightl.k then begin 
{*** descendants in wrong order *** } 
temp := pql. right; 
pql.right := pql.left; 
pql.left := temp 
end 
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Table 504 summarizes the simulation results for binary priority queues. In 
indicates the number of iterations performed by the insertion procedure, C~ 
the number of comparisons to construct the queue and C!? the number of 
comparisons to extract all the elements from the queue. 

Table 5.4: Simulation results for binary tree priority queues. 

nl E[C~] E[C~] 
10 18.3524±0.0079 23.384±0.016 7.1906±0.0071 
50 148.56±0.13 232.65±0.26 139.80±0.12 

100 353.51±OAO 578.59±0.80 396.03±OAO 
500 2463.6±4.9 4287.1±9.8 3472.2±6.0 

1000 5536±14 9793±28 8276±18 
5000 34827±161 63258±322 56995±204 

10000 75931±407 139071±814 127878±569 

5.1.6.3 Binary search trees as priority queues 

Binary search trees, in any of their variations, can be used as priority queues. 
The maximum is located at the rightmost node and the minimum is located at 
the leftmost node. The insertion algorithm is almost the same as for binary 
search trees, except that we are not concerned about duplicated keys. An 
extraction is done by deleting the rightmost node which is one of the easy 
cases of deletion. 

The complexity measures for random insertions are the same as those for 
binary search trees (see Section 304.1). 

Binary search tree insertion 

procedure insert(new: tree; val' t: tree); 
begin 
if t = nil theu t := new 
else if tt.k < newt.k then insert( new, tt. right) 

else insert( new, tt . left) 
end; 



226 HANDBOOK OF ALGORITHMS AND DATA STRUCTURES 

Binary search tree, extraction of maximum 

function extract(var pq: tree) : typekey; 
begin 
if pq=nil then Error {*** extraction from empty queue ***} 
else if pqj . right = nil then begin 

extract := pqj .k; 
pq := pqj . left 
end 

else extract:= extract(pqj. right) 
end; 

Binary search trees used as queues behave as double-ended priority queues, 
since we can extract both the maximum and the minimum element. Binary 
search trees are not easy to merge as they require linear time in their total 
SIze. 

This priority queue is stable; equal keys will be retrieved first-in first-out. 
When used for insertions intermixed with extractions, this type of queue 

tends to degenerate into a skewed tree. For this reason it appears to be much 
safer to use any type of balanced binary tree. 

References: 
[Knuth, D.E., 73], [Aho, A.V. et al., 74], [McCreight, E.M., 85], [Sleator, D.D. 
et al., 85], [Atkinson, M.D. et al., 86]. 

5.1.7 Binomial queues 

Binomial queues use binary decomposition to represent sets of values with 
special structures of sizes 1, 2, 4, ... 21.. A structure of size 21. is called a Bk 
tree and has the following properties: 

(1) the maximum element of the set is the root; 

(2) the root has k descendants; one Bo, one B 1 , ..• , one B k - 1 tree. 

Bk trees are the natural structure that arises from a tournament between 
21. players. 

Two Bk trees can be joined into a single Bk+1 tree with one single com
parison. Consequently a Bk tree can be constructed using 21. -1 comparisons. 
This construction is optimal. 

A binomial queue of size n is represented as a forest of Bk trees where 
there is at most one Bk tree for each k. This corresponds to the binary 
decomposition of n. For example, n = 13 = 11012 is represented by B 3 , B 2 , Bo 
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The maximum element of a binomial queue can be found by inspecting 
the head of all of its Bk trees which requires v( n) - 1 $ Llog2 n J comparisons 
(where v(n) is the number of '1' digits in the binary representation of n). 

Two binomial queues can be merged into a single queue by joining all 
equal-size Bk trees in a process which is identical to binary addition. Merging 
two queues with sizes m and n requires 

C~n = v(n) + v(m) - v(m + n) 

An insertion of a single element into a queue with n elements is treated as a 
merge and hence requires 

C~ = v(n) + 1 - v(n+ 1) 

Constructing a binomial queue by repetitive insertions requires 

C; = n - v(n) 

A deletion of an extraction is accomplished by removing the largest root 
of the Bk trees and merging all its descendants with the original queue. This 
operation requires 

v(n) - 1 $ C~ $ 2V(71) + Llog2 nJ - v(n - 1) - 1 

Binomial queues can be implemented using binary trees. These imple
mentations are simplified if we include the size of each Bk tree in the root 
node. 

Binomial queues give excellent worst-case behaviour for insertions, con
structions by insertions, deletions and merging of queues at the cost of two 
pointers per entry. 

References: 
[Brown, M.R., 77], [Brown, M.R., 78], [Vuillemin, J., 78], [Carlsson, S. et a1., 
88], [Cormen, T.H. et a1., 90]. 

5.1.8 Summary 

Table 5.5 shows an example of real relative total times for constructing a 
priority queue with 10007 elements by repetitive insertions and then extracting 
all its elements. 

General references: 
[Johnson, D.B., 75], [Pohl, I., 75], [Brown, M.R. et a1., 79], [Flajolet, P. et a1., 
79], [Flajolet, P. et a1., 80], [Standish, T.A., 80], [!tai, A. et a1., 81], [Ajtai, M. 
et a1., 84], [Fischer, M.J. et a1., 84], [Mehlhorn, K., 84], [Mairson, H.G., 85], 
[Huang, S-H.S., 86], [Jones, D.W., 86], [Lentfert, P. et a1., 89], [Sundar, R., 
89]. 
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Table 5.5: Relative total times for priority queue algorithms. 

Algorithm c I Pascali 

Sorted lists 55.1 52.9 
Unsorted lists 240.2 146.7 

P-trees 3.4 3.4 
Heaps 1.0 1.0 

Pagodas 1.5 1.6 
Leftist trees 4.3 4.2 

Binary priority queues 2.1 2.3 
B.S.T as priority queues 1.7 

5.2 Selection of kth element 

The selection of the kth element is defined as searching for an element X in 
an unordered set such that k - 1 elements from the set are less than or equal 
to X and the rest are greater than or equal to X. 

Finding the first or last (minimum or maximum) is the most important 
special case and was treated in the first section of this chapter. Finding the 
median (or closest to the median) is another special case of selection. 

Let C",n denote the number of comparisons needed to find the kth element 
in a set containing n unordered elements. Let CrnM denote the minimum max
imum or minimum worst-case number of comp~risons for the same problem. 
For the Floyd and Rivest algorithm we have: 

E[C",n] = n + min(k,n-k) + 0(Vn) 

For small k, 

E[C",n] ~ n + O(k Inln n) 

For any selection algorithm we have the following average-case lower bound: 

E[C",n] ~ n = min(k, n - k) - 0(1) 

Table 5.6 summarizes the worst-case upper and lower bounds on the prob
lem. 

In the following algorithms, we assume that all the records are stored in 
an array. This array can be shuffled if necessary. 

General references: 
[Hoare, C.A.R., 61], [Blum, N. et al., 73], [Knuth, D.E., 73], [Nozaki, A., 73], 
[Pratt, V. et al., 73], [Aho, A.V. et al., 74], [Noshita, K., 74], [Floyd, R.W. et 
al., 75], [Fussenegger, F. et al., 76], [Hyafil, L., 76], [Schonhage, A. et al., 76], 
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Table 5.6: Upper and lower bounds for kth selection. 

I Lower bounds 

k=1 n-l 

k=2 n - 2 + pog2 n1 

for any j 

k = 3, n = 2i + 1 n - 3 + 2pog2(n - 1)1 

k = 3, 3 x 2i < n ~ 4 x 2i n - 4 + 2rlog2(n - 1)1 

k = 3, 2 x 2i + 1 < n ~ 3 x 2i n - 5 + 2rlog2(n - 1)1 

2k - 1 ~ n < 3k l3n±2k- 5 J 

3k ~ n n + k - 3 + r::;~ log2 rni!j21 

2k= n 2n + o(n) 

Upper bounds 

k=1 n-l 

k=2 n - 2 + rlog2 n 1 

k~1 n - k + (k - l)pog2 (n - k + 2)1 

26 (2 rlogl k1 + j) < n - k + 2 and 
n-k+(k-l)pog2(n-k+2)1-

n - k + 2 ~ 26(2rtoglk1 + j + 1) 

and olk/2J > irlog2 k1 
l(k - 1)/2J + irlog2 k1 

2k = n + 1 3n + O«n log n)3/4) 

5k ~ n ~ n(1 + 21-rtogl(n/5k)1) + 5krlog2(n/5k)1 

[Wirth, N., 76], [yap, C.K., 76], [Reingold, E.M. et al., 77], [Johnson, D.B. et 
al., 78], [Reiser, A., 78], [Eberlein, P.J., 79], [Fussenegger, F. et al., 79], [Galil, 
Z. et al., 79], [Kronsjo, L., 79], [Allison, D.C.S. et al., 80], [Frederickson, G.N. 
et al., 80], [Munro, J.1. et al., 80], [Dobkin, D. et al., 81], [K;irkpatrick, D.G., 
81], [Motoki, T., 82], [Yao, A.C-C. et al., 82], [Cunto, W., 83], [Postmus, J.T. 
et al., 83], [Devroye, L., 84], [Mehlhorn, K., 84], [Ramanan, P.V. et al., 84], 
[Bent, S.W. et al., 85], [Wirth, N., 86], [Baase, S., 88], [Brassard, G. et al., 
88], [Lai, T.W. et al., 88], [Sedgewick, R., 88], [Cunto, W. et al., 89], [Manber, 
V., 89], [Yao, A.C-C., 89], [Cormen, T.R. et al., 90], [Frederickson, G.N., 90]. 
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5.2.1 Selection by sorting 

One of the simplest strategies for selection is to sort all the array and then 
directly select the desired element. 

Selection by sorting 

function se/ect( i: integer; var r: RecordArray; 
10, up : integer) : typekey; 

begin 
i := i+lo-1; 
if (i<lo) or (i>up) tben Error {*** selection out of bounds ***} 
else begin 

sort( r, 10, up); 
select := r[ zlk 
end 

end; 

This method is expensive for selecting a single element but should be 
preferred whenever several successive selections are performed. 

5.2.2 Selection by tail recursion 

This function uses a tail recursion technique. Each iteration starts by select
ing a splitter element from the file. The file is then split into two subfiles: 
those elements with keys smaller than the selected one, and those elements 
with larger keys. In this way, the splitting element is placed in its proper 
final location between the two resulting subfiles. This procedure is repeated 
recursively on the subfile which contains the element to be selected. 

For a randomly ordered file, the first selection of the kth element will 
require 

E[Cl:,n] = 2«n + l)Hn - (n + 3 - k)Hn+1-l: - (n + 2)Hl: + n + 3) 

E[Cn/ 2,n] ~ 3.38629 ... n 

Selection by tail recursion 

function se/ect(s: integer; var r: RecordArray; 
10, up : integer) : typekey; 



var i, j: integer; 
tempr: ArrayEntry; 

begin 
s := s+lo-l; 
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if (s<lo) or (s>up) then Error {*** selection out of bounds ***} 
else begin 

end; 

while (up>=s) and (s>=lo) do begin 
i := 10; 
J:= up; 
tempr := r(s]; r(s]:= r(lo]; r(lo]:= tempr; 
{*** split file in two ***} 
while i<j do begin 

while rIJ].k > tempr.k do 
j:= j-l; 

r(1] := rIJ]; 
while (i<J) and (r(I].k<=tempr.k) do 

i := i+l; 
rIJ] := r( I] 
end; 

r(1] := tempr; 
{*** select subfile ***} 
if s<i then up := i-I 

else 10 := HI 
end; 

select := r(s].k 
end 

The above algorithm uses as a splitting element the one located at the se
lected position. For a random file, any location would provide an equivalently 
good splitter. However, if the procedure is applied more than once, any other 
element (for example, the first) may produce an almost worst-case behaviour. 

As selections are done, the array is sorted into order. It is expected that 
later selections will cost less, although these will always use O(n) comparisons. 

Strategies which select, in place, a smaller sample to improve the splittings, 
cause an almost worst-case situation and should be avoided. Sampling, if done, 
should not alter the order of elements in the array. 

Any of the distributive methods of sorting, for example, such as bucket 
sort (see Section 4.2.3) or top-down radix sort (see Section 4.2.4), can be 
modified to do selection. In all cases the strategy is the same: the sorting 
algorithms split the file into several subfiles and are applied recursively on to 
each subfile (divide and conquer). For selection, we do the same first step, 
but then we select only the subfile that will contain the desired element (by 
counting the sizes of the subfiles) and apply recursion only on one subfile (tail 
recursion) . 
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5.2.3 Selection of the mode 

The mode of a set is defined as the key value which occurs most frequently in 
a set. The number of times a key value is repeated is called the multiplicity. 
The mode is the key with largest multiplicity. 

The selection of the mode is almost trivial when the set is ordered, as 
a single pass through the set is enough to determine it. The complexity of 
determining the mode is lower than the complexity of sorting; in fact if nm is 
the multiplicity of the mode, then we have the upper and lower bound 

C:rode ~ n log2(n/nm) - n log2(log2 n - P) 

where P = Li n;/n log2 ni and ni is the multiplicity of the ith different key 
value. 

The following algorithm uses a divide-and-conquer technique to find the 
mode. 

Determining the mode 

function mode(S: SetO/Keys) : SetO/Keys; 
var A, AI, A2, A3 : SetO/Keys; 

Homog, Heter: set of SetO/Keys; 
begin 
Homog := []; 
Heter := [$I; 
while LargestCardinality(Heter) > LargestCardinality(Homog) do 

begin 
A := LargestSet(Heter); 
med := median(A); 
split A into AI, A2, A3 

{ with elements <med; =med; >med } 
Heter:= (Heter - A) + Al + A3; 
Homog:= Homog + A2 
end; 

LargestSet( H omog); 
end; 

This algorithm requires 

C:rode ~ kn log2(n/nm) 

comparisons, where kn is the number of comparisons required to find the 
median among n elements. For example, using the Schonhage, Paterson and 
Pippenger median algorithm (see Section 5.2), k = 3 and 

C:rode ~ 3n log2(n/nm) 
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in the worst case. 
Dobkin and Munro describe an optimal (within lower order terms) algo

rithm to find the mode. Their optimal algorithm is rather complicated, and 
mostly of theoretical interest. 

References: 
[Dobkin, D. et al., 80]. 





Arithmetic Algorithms 

6.1 Basic operations, mUltiplication/division 

In this section we will discuss arithmetic algorithms to perform the basic op
erations. Given that addition and subtraction are relatively straightforward, 
we will concentrate on multiplication/division and other operations. 

Our model of computation can be called multiple-precision, as we are 
interested in describing arithmetic operations in terms of operations in a much 
smaller domain. For example, some algorithms may implement decimal 
operations using ASCII characters as basic symbols, or we may implement 
extended precision using basic integer arithmetic, or integer arithmetic using 
bits, and so on. Without loss of generality we will call the basic unit of 
implementation a digit, and a logical collection of digits a number. Our 
complexity measures will be given in number of operations on digits as a 
function of the number of digits involved. 

Let M(n) denote the complexity of multiplying two n-digit numbers and 
let Q/(z)(n) denote the complexity of computing the function /(x) with n
digit precision. (Qx(n) = M(n». Then we have the following results: 

Q+(n) = Q_(n) = Qh(n) = O(n) 

for an integer constant k. The classical method of multiplication gives 

M(n) = O(n2 ) 

By splitting the factors in two (n/2)-digit numbers and using 

a = a 1B n / 2 + a2, b = b1B n / 2 + b2 

235 
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ab = PIBn + (P3 - P2 - Pl)Bn/ 2 + P2 

where B is the base of the numbering system, we obtain 

M(n) = 3M(n/2) + O(n) = O(n1.58496 ... ) 

Similarly, by splitting the numbers in k (n/k)-digit components, 

M(kn) = (2k - I)M(n) + O(n) = O(n1og" (2k-l» 

By the application of a technique resembling the fast Fourier transform 
and modular arithmetic, 

M(n) = O(n log (n) log (log n» 

Note that the complexity of multiplication is bounded above by the com
plexity of squaring and by the complexity of computing inverses. That is to 
say 

sInce 

and 

since 

Qx(n) :$; 2Q",~(n) + O(n) 

ab = (a + b)2 - (a - b)2 
4 

1 
1 1 +Z 

",-1 -:;; 

For the next complexity results we will assume that we use an asymptoti
cally fast multiplication algorithm, that is, one for which 

M(n) = O(n(log n)k) 

In such circumstances, 

L: M(nak) = 7~n2 (1 + O(l/(log n))) 
k~O 

Inverses (z = l/a) can be computed using variable-precision steps with 
the second-order iterative formula: 

Zi+l = zi(2 - aZi) 

Each step requires two multiplications and one addition. Since this Newton
type iteration converges quadratically, the last iteration is done with n digits, 
the previous to the last with r n/21, the previous with r n/4l, and so on. 

Ql/",(n) = L:2MUn/2il) + O(n/2i) 

~ 3M(n) 

If we use a third-order method: 
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then Ql/:t:(n) ~ 3M(n) also. Consequently divisions can be computed in 

Q/(n) ~ 4M(n) 

To evaluate z = a-1/ 2 we can use the third-order iteration: 

for which 

Consequently 

~ 
llM(n) 

2 

Derivatives can be computed from the formula 

l(z) = fez + h) ~f(z - h) + 0(h3) 

by making h = O(l (z)B-n/3). For this method 

QJI(:t:)(n) = 2QJ(:t:)(3n/2) + O(n) 

The inverse of a function can be computed by using any iterative zero-finder 
with variable precision. By using the secant method: 

then 

QJ-l(:t:)(n) ~ 15M(n) + QJ(:t:)(n) + E QJ(:t:)(2np-i) 
i~2 

where p = (1 + .;5)/2 is the golden ratio. 
For the purpose of describing the algorithms we will use a common rep

resentation, based on arrays of digits. The digits may take values from 0 to 
BASE - 1 in their normalized form, although a digit may hold a maximum 
value MAX D. For example, for eight-bit characters on which we want to 
represent decimal numbers, BASE = 10 and MAX D = 255. The bound 
MAX D may be any value including BASE - 1. For our algorithms we will 
assume that MAX D ~ 2BASE2. With this assumption we do not have to 
use temporary variables for the handling of digits. 

The data definition for our C algorithms is 
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typedef digit mp[ ] j 

mp[O] will be called the beader and will be used to store control informa
tion about the number. Typical control information is sign, length, exponent 
(for floating-point implementations), and so on. We are not concerned about 
the organization of bits in the header, as long as we can store and retrieve 
its values. The lowest order digit is stored in mp[I]j the highest order digit is 
stored in mp[/ength(mp) -1]. This organization, although not very common, 
is quite convenient. 

The following procedure normalizes a multiple-precision number, adjusts 
its length, propagates carries and adjusts sign if needed. 

Normalization of a multiple-precision number 

normalize( a) 
mp aj 

{int cy, i, laj 
la = length( a)j 
start: 
cy = OJ 
for (i=Ij i<laj i++) { 

cy = (a[ I] += cy) / BASEj 
a[l] -= cy*BASEj 
if(a[I]<O) {a[l] += BASEj cY--j} 
} 

wbile (cy>O) { 
a[i++] = cy%BASEj 
cy /= BASEj} 

if (cy<O) { 
a[/a-I] += cy*BASEj 
for (i=Ij i<laj i++) a[a] = -a[a]j 
storesign(a, sign(a)==POS ? NEG: POS)j 
goto startj 
} 

wbile (a[i-I]==O && i>2) i--j 
store/ength( a, i)j 
if (i==2 && a[I]==O) storesign(a, POS)j 
}j 

The following procedure computes a linear combination of two multiple
precision numbers. The integer coefficients should be in the range -BASE 
to BASE. The result is computed, destructively, on the first argument. 



Linear combination of two numbers 

linear( a, ka, b, kb) 
mp a, b; 
int ka, kb; 

/*** compute a*ka + b*kb - -> a ***/ 
{int i, la, lb; 
la = length( a); lb = length( b); 
for (i=l; i<la; i++) a[z] *= ka; 
if (sign(a)!=sign(b)) kb = -kb; 
if (lb>la) { 

storelength( a, lb); 
for (i=la; i<lb; i++) a[z] = 0; 
} 

for (i=l; i<lb; i++) a[z] += kb*b[z]; 
normalize( a); 
}; 

Multiple-precision multiplication 

mulint( a, b, c) 
mp a, b, c; 

/*** multiply two integers. a*b- ->c ***/ 

{int i, j, la, lb; 
/*** band c may coincide ***/ 
la = length(a); lb = length(b); 
for (i=O; i<la-2; i++) c[lb+z] = 0; 
for (i=lb-1; i>O; i--) { 

for (j=2; j<la; i++) 
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if «c[i+j-1] += b[z]*a[JJ) > 
MAXD-(BASE-1)*(BASE-1)-MAXD/ BASE) { 
c[i+j-1] -= (MAXD/ BA SE) * BA SE; 
c[i+J] += MAXD/ BASE; 
} 

c[z] = b[z]*a[l]; 
} 

storelength( c, la+lb-2); 
storesign( c, sign( a )==sign( b) ? POS : NEG); 
normalize( c); 
}; 
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References: 
[Knuth, D.E., 69], [Aho, A.V. et ai., 74], [Borodin, A. et ai., 75], [Floyd, R.W., 
75], [Artzy, E. et ai., 76], [Brent, R.P., 76], [Brent, R.P., 76], [Collins, G.E. et 
ai., 77], [Dhawan, A.K. et ai., 77], [Knuth, D.E., 78], [Morris, R., 78], [Ja'Ja', 
J., 79], [Alt, H., 80], [Bruss, A.R. et ai., 80], [Head, A.K., 80], [Linnainmaa, 
S., 81], [Alt, H., 83], [Stockmeyer, L.J., 83], [Regener, E., 84], [Flajolet, P. et 
ai., 85], [Flajolet, P., 85], [Kaminski, M., 87], [Alt, H., 88], [Robertazzi, T.G. 
et ai., 88]. 

6.2 Other arithmetic functions 

6.2.1 Binary powering 

Binary powering is a tail recursion technique for powering a number. To 
compute a given power, we first compute the power to half the exponent and 
then square the result. If the exponent is odd, we additionally multiply the 
result by the base. Let Qbp(n) denote the number of multiplications required 
to compute the nth power of a number using binary powering. Then 

Qbp(n) = Llog2 nJ + lI(n) - 1 

where lI(n) is the number of 'one' digits in the binary representation of n. 
Let Qopt(n) be the number of multiplications required by the optimal 

method of powering, that is, the method which minimizes the number of 
multiplications. Then 

1 < Qopt(n) < 1 + 1 + 0 (log2 log2 log2 n) 
- Llog2 nJ log2 log2 n (log2 log2 n)2 

and 

The first inequality is tight, but the latter is not. n = 15 is the smallest 
example for which they differ: we can compute :c15 by computing :c2 , :c3 , :c6 , 

:c12 and :c15 giving Qopt(15) = 5 while Qbp(15) = 6. Similarly, the smallest 
exponent for which the difference is 2 is 63, Qopt(63) = 8 while Qbp(63) = 10. 
(One of the optimal sequences of powers is 2,4,5,9,18,27,45,63.) 

The problem of computing the optimal strategy for powering is related 
to the addition chain problem, which is how to construct an increasing 
sequence ai, a2, ... , ak for which every element is the sum of two previous 
elements and al = 1 and ak = n for a minimal k. 

Using the fact that (aX)1I = aXil, if the power is a composite number, then 
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This inequality is not tight. For example, Qopt(33) = 6 but Qopt(3) = 2 and 
Qopt(11) = 5. 

It is always possible to do a squaring as the last step, which gives 

Qopt(2n) :5 Qopt(n) + 1 

but this bound is not tight either since Qopt(191) = 11 and Qopt(382) = 11. 
For binary powering we can define an average value of the complexity, as 

if the bits of the power were randomly selected. For this definition 

where k = llog2 nJ. 
When powering integers, as the powers grow in size, it is important to 

know the complexity of the multiplication method used. Let n denote the 
exponent and N the number of digits in the base number to be powered. If 
we use the classical algorithm, M(N) = O(N2) then 

Qbp(n) = (n; + O(n») M(N) 

The iterative version of the powering algorithm runs in the order 

n(n - 1) 
Qiter(n) = 2 M(N) 

If we use an asymptotically fast multiplication algorithm, (M(N) = 
O(N(log N)k», then binary powering is definitely better than iterative pow
ering: 

Qbp(n) ~ 2M(Nn) 

as opposed to 

In the above cases it is assumed that the size of the result of powering an 
N-digit number to the nth power is an Nn-digit number. This may be too 
pessimistic sometimes. 

Binary powering 

function power( b: number; e : integer) : number; 
begin 
if e<O then power:= l/power(b,-e) 
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else if e=O then power:= 1 
else if e=1 then power:= b 
else if (e mod 2) = 0 then 

power := sqr(power( b, e div 2)) 
else power := sqr(power( b, e div 2)) * b 
end; 

6.2.2 Arithmetic-geometric mean 

The arithmetic-geometric mean (AG mean) constructs two sequences of num
bers ai and bi from starting values ao and bo and the iteration formulas: 

ai + bi 
2 

For 0 < ao ~ 1 and 0 < bo ~ 1 the sequences converge quadratically to their 
common limit denoted by AG(ao, bo). Computing one step of the iteration 
requires one multiplication and one square root plus other O(n) operations. 
Consequently the complexity of the AG computation is 

where n is the number of digits in the answer. The AG mean is related to the 
complete elliptic integrals as 

7r rl2 dO 
2AG(I, cos¢) = Jo VI - sin2 ¢ sin20 

The Brent-Salamin method for computing 7r which uses the AG mean 
and a Legendre's identity requires 

15 
Q".(n) r:::: TM(n) log2 n 

Fast computation of 7r 

function pi: number; 
var a, b, t, x, tempa : number; 

begin 
a := 1; 



b := sqrt(0.5); 
t := 0.25; 
x:= 1; 
while a-b>epsilon do begin 

tempa:= a; 
a := (a+b) / 2; 
b := sqrt( tempa*b); 
t := t - xuqr( a-tempa); 
x:= 2*x 
end; 

pi := sqr(a+b) / (4*t) 
end; 
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Other classical methods for evaluating 1r are based on identities of the type 

1r = 16 arctan(I/5) - 4 arctan(I/239) 

The function arctan(l/i) for integer i can be evaluated in time proportional to 
O(n2 / log i) using the Maclaurin expansion of arctan(,'I;) = ,'I; - ,'1;3/3 +,'1;5/5-

6.2.3 Transcendental functions 

Assuming that 1r and In (BASE) are precomputed to the desired accuracy, 
we can compute In (,'I;) using the formula 

If ,'I; is not large enough, we can simply scale it by multiplying by a suitable 
power of the BASE (just a shift). For this method 

Qln(~)(n) ~ 13M(n) log2 n 

Computation of natural logarithms by AG means 

function In (x : number) : number; 
var a, b, temp: number; 

shift, logbase: integer; 

begin 
logbase := crude_estimate_of)n( x)/ In( BASE); 
if 2*logbase<Digits then begin 

shift := Digits div 2 - logbase + 1; 
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In := In(x * BASE*uhift) - shift*LNBASE 
end 

else begin 

end; 

a := 1.0; b:= 4/x; 
while a-b>sqrteps do begin 

temp := a; 
a := (a+b) / 2; 
b := sqrt(temp*b) 
end; 

In := Pi / (a+b) 
end 

The above algorithm uses two pre-computed constants: Pi and LN BASE, 
with their obvious meanings. LN BASE can be computed with the above 
function by computing the logarithm of BASEDigit. and then dividing the 
result by Digits. The global variable Digits indicates the precision of the 
computation, or how many significant digits in base BASE are kept. epsilon 
is a bound on the desired error and sqrteps is the square root of epsilon. 

By computing inverses with a method of high order of convergence (in this 
case all the derivatives are easy to compute) we obtain 

By doing all the arithmetic operations with complex numbers, or by com
puting the arctan( z) as below, we can compute all the trigonometric functions 
and their inverses. For example, 

sin z = 
2i 

then 

Q8in~(n) ~ Qcou(n) ~ ... ~ Qarcsinx(n) ~ ... ~ 34M(n) loga n 

Computation of arctan(z) by AG means 

function arctan (x: number) : number; 
var q, s, v, w: number; 

begin 
s := sqrteps; 
v := x / (1 + sqri(l+x*x»; 
q:= 1; 
while l-s > epsilon do begin 



q := 2*q / (l+s); 
w := 2u*v / (l+v.v); 
w := w / (1 + sqrt(l-W*w»; 
w:= (v+w) / (l-v*w); 
v := w / (1 + sqrt(l+w*w»; 
s := 2uqrt(s) / (l+s) 
end; 

arctan := q * In«l+v)/(l-v» 
end; 

References: 
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[Knuth, D.E., 69], [Horowitz, E., 73], [Kedem, Z.M., 74], [Borodin, A. et al., 
75], [Winograd, S., 75], [Brent, R.P., 76], [Brent, R.P., 76], [Yao, A.C-C., 76], 
[Pippenger, N., 79], [Pippenger, N., 80], [Downey, P. et al., 81], [Borwein, J .M. 
et al., 84], [Brassard, G. et al., 88], [Tang, P.T.P., 89]. 

6.3 Matrix multiplication 

For any matrices 

a : array [l..m, l..p] of basetype; 
b : array [l..p, l..n] of basetype; 
c : array [l..m, l..n] of basetype; 

we define the matrix product c = a x b by 
P 

Cij = L ai/"bkj 

k=1 

The classical algorithm for matrix multiplication requires mnp multiplications 
and mn(p-1) additions. Let Mx (n) be the number of multiplications used to 
multiply two n x n matrices. Then Mx(n) = n3 for the classical algorithm. 

Classical algorithm 

for i:=l to m do 
for j:= 1 to n do begin 

c[i,Jl := 0; 
for k:=l to p do 

c[i,Jl := c[i,Jl + a[i,k]*b[k,J] 
end; 
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Winograd's method of general matrix multiplication reduces the number 
of multiplications to about half with the formula: 

pI2 

Cij = L(ai,21: + b21:-1,j)(ai,21:-1 + b21:,j) - di - ej + aipbpnt 

1:=1 

where 

pl2 

di L ai,21:a i,21:-1 
1:=1 

pl2 

ej = L b21:-1,jb21:,j 

1:=1 

and the last term (t) is present only if p is odd. Winograd's matrix multipli
cation uses 

Mx(m,p, n) = mnrp/21 + (m + n)lP/2J 

multiplications and 

Ax(m,p,n) = mn(p+2) + (mn+m+n)(lP/2J-l) 

additions/subtractions. 

6.3.1 Strassen's matrix multiplication 

When m = n = p = 2, the product can be computed using 7 multiplications 
instead of 8 but using 15 additions instead of 4. 

81 a21 + a22 P1 8286 8S = 86 - b21 

82 = 81 - all P2 = allbll 89 = P1 + P2 

83 = all - a21 P3 = a12b21 810 = 89 +P4 

84 a12 - 82 P4 8387 Cll P2 +P3 

8S b12 - bll Ps = 81 8S C12 89 + Ps + P6 

86 = b22 - 8S P6 = 84 b22 C21 = 810 - P7 

87 = b22 - b12 P7 = a228S C22 = 810 + Ps 

This can be applied not only to 2 x 2 matrices, but to any n x n matrix, 
partitioned into 4 (n/2) x (n/2) matrices (with proper 0 padding if necessary). 
The number of multiplications required by a recursive application of Strassen 's 
algorithm to multiply two 21: x 21: matrices is 

Mx(21:) = 71: 

and in general 
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Mx(n) = 7MxUn/21) = 0(n2.80735 ... ) 

Let Ax(n) be the number of additions used to multiply two n x n matrices, 
then 

For the implementation of this algorithm we are interested in the total 
number of additions/ multiplications. Noticing that when n is odd, one of the 
recursive matrix multiplications can be done on Ln/2J x Ln/2J matrices and 
by shifting to the classical algorithm whenever it is more efficient, we obtain 
that the total number of operations is 

Mx(n) min(Mx(ln/2J) + 6MxUn/21) + 15fn/2p, n2(2n -1)) 
~ 3.73177 ... n2.80735 ... 

Even for this optimized implementation, n has to be larger than 1580 to save 
50% or more of the operations with respect to the classical method. 

6.3.2 Further asymptotic improvements 

The following methods present asymptotic improvements to the number of op
erations necessary to do matrix multiplication. These improvements are only 
of theoretical interest, as their complexity for normal size problems is much 
worse than the classical algorithm. Furthermore, their numerical properties 
are unknown. 

Pan devised a general multiplication scheme using trilinear forms which 
requires n3 /3 + 6n2 - 4n/3 multiplications to multiply two n x n matrices. 
His method does not rely on product commutativity and can be composed in 
the same way as Strassen's. By selecting as a base 70 x 70 matrices we obtain 

Mx(n) = O(nW) 

where w = In 143640/ In 70 = 2.79512 .... 
Bini etal. use an approximate (arbitrary precision approximating) method 

to multiply 12 x 12 matrices with 1000 multiplications and hence, extending 
their method gives 

In 1000 
w = In 12 = 2.77988 ... 

Schonhage generalized the above method to obtain 

w = 2.54799 ... 

where 16w / 3 + 9w/ 3 = 17. Pan further improved this with a construction 
that achieves 



248 HANDBOOI( OF ALGORITlIMS AND DATA STRUCTURES 

3ln 52 
w = In 110 = 2.52181... 

Coppersmith and Winograd describe the construction of a faster matrix 
multiplication algorithm based on arithmetical progressions. Using the above 
idea they construct a method for which w < 2.376 .... 

A non-trivial lower bound in the number of additions and multiplications 
IS 

3 
2n2 + 46 n + 0(1) 

Matrix inversion, computation of determinants, solution of simultaneous 
equations and lower-upper triangular factoring can be done in terms of ma
trix multiplications and hence can be done in time proportional to matrix 
multiplication. 

References: 
[Winograd, S., 68], [Knuth, D.E., 69], [Strassen, V., 69], [Dobkin, D., 73], 
[Aho, A.V. et al., 74], [Pratt, V., 74], [Savage, J.E., 74], [Borodin, A. et al., 
75], [Brockett, R.W. et al., 76], [Cohen, J. et al., 76], [Dobkin, D. et al., 76], 
[Probert, R.L., 76], [Probert, R.L., 76], [Probert, R.L., 76], [Adleman, L. et 
al., 78], [Pan, V.Y., 78], [Probert, R.L., 78], [Schachtel, G., 78], [Yuval, G., 
78], [Bini, D. et al., 79], [Ja'Ja', J., 79], [Kronsjo, L., 79], [Pan, V.Y., 79], 
[Ja'Ja', J., 80], [Lotti, G. et al., 80], [Pan, V.Y., 80], [Santoro, N., 80], [Feig, 
E., 81], [Makarov, O.M., 81], [Pan, V.Y., 81], [Pan, V.Y., 81], [Schonhage, 
A., 81], [Coppersmith, D. et al., 82], [Coppersmith, D., 82], [Hu, T.C. et al., 
82], [Hu, T.C., 82], [Romani, F., 82], [Schoor, A., 82], [Cohen, J., 83], [Feig, 
E., 83], [Ja'Ja', J., 83], [Pan, V.Y., 83], [Pan, V.Y., 84], [Santoro, N., 84], 
[Alekseyed, V.B., 85], [Ja'Ja', J. et al., 85], [Strassen, V., 86], [Wilf, H., 86], 
[Alagar, V.S. et al., 87], [Coppersmith, D. et al., 87], [Atkinson, M.D. et al., 
88], [Baase, S., 88], [Manber, U., 89], [Cormen, T.H. et al., 90]. 

6.4 Polynomial evaluation 

The simplest method of evaluating a polynomial is with Horner's rule. Let 

P(x) = ao + alx + a2x2 + ... + anxn 

then, P(x) can be expressed as 

P(x) = ao + x(al + x(a2 + x(·· ·xan)···)) 

Let 

a : array [O .. n] of basetype; 

be the array containing the coefficients of an nth degree polynomial. Then 



Horner's polynomial evaluation 

result := a[ n]; 
for i:=n-l downto 0 do 

result := result * x + a[z]; 
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For evaluating a polynomial at a single point, Horner's rule is optimal 
with respect to the number of additions and multiplications. In general this 
method has very good numerical properties too. 

If the same polynomial is evaluated at several points, then it is possible 
to do some set-up work to save time during the evaluation. This initial task 
is called preconditioning. It is normally assumed that the cost of precon
ditioning is not significant, that is, the polynomial will be evaluated so many 
times that the fixed initial cost can be discarded. 

Table 6.1 shows upper bounds for evaluating polynomials over the real 
and over the complex numbers. The bounds are shown as pairs (m, a), where 
m indicates the number of multiplications and a indicates the number of 
additions. 

Table 6.1: Upper bounds for polynomial evaluation with preconditioning. 

Degree Reals Complex References 

4,6 «n + 2)/2, n + 1) same [Motzkin,65], [Knuth,62] 
any <r(n+3)/21, n) same [Eve,64]' [Knuth,62] 

even, n ~ 8 «n + 2)/2, n + 30r ) 
n+ It 

«n + 2)/2, n) [Pan,79], [Eve,74] 

odd, n ~ 11 «n + 1)/2, n + 4t) «n + 1)/2, n + 2) [Pan,79] 
9 «n + 1)/2, n + 3) [Revah,75] 

t indicates an additional shifting operation. Shifting the radix point can 
be considered as being of the same complexity as addition. 

Table 6.2 shows lower bounds on the number of additions and multiplica
tions for polynomial evaluation with preconditioning. Unless one of the values 
is missing, these bounds are simultaneous lower bounds; that is, no algorithm 
can perform polynomial evaluation with less than m multiplications and less 
than a additions. 

References: 
[Belaga, E.G., 58], [Knuth, D.E., 62], [Motzkin, T.S., 65], [Mesztenyi, C. et 
al., 67], [Knuth, D.E., 69], [Moenk, R. et al., 72], [Horowitz, E., 73], [Kung, 
H.T., 73], [Aho, A.V. et al., 74], [Eve, J., 74], [Horowitz, E., 74], [Savage, J.E., 
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Table 6.2: Lower bounds for polynomial evaluation with preconditioning. 

Degree (x, +) References 

n~2 U(n + 1)/21, ... ) [Motzkin,65] 
odd, n ~ 7 «n+3)/2, ... ) [Motzkin,65], [Knuth,81]' [Revah,75] 

any ( ... , n) [Belaga,58] 
4,6,8 «n + 2)/2, n + 1) [Knuth,81], [Pan,79] 

odd, n ~ 11 «n + 1)/2, n + 2) [Knuth,62]' [Revah,75] 
odd, n> 3 «n + 3)/3, n) [Belaga,58]' [Revah,75] 

74], [Shaw, M. et al., 74], [Strassen, V., 74], [Aho, A.V. et al., 75], [Borodin, 
A. et al., 75], [Hyafil, L. et al., 75], [Lipton, R.J. et al., 75], [Revah, L., 75], 
[Borodin, A. et al., 76], [Chin, F.Y., 76], [Lipton, R.J. et al., 76], [Schonhage, 
A., 77], [Shaw, M. et al., 77], [Lipton, R.J., 78], [Pan, V.Y., 78], [van de Wiele, 
J.P., 78], [Kronsjo, 1., 79], [Nozaki, A., 79], [Rivest, R.L. et al., 79], [Brown, 
M.R. et al., 80], [Dobkin, D. et al., 80], [Heintz, J. et al., 80], [Heintz, J. et al., 
80], [Mescheder, B., 80], [Schnorr, C.P. et al., 80], [Pan, V.Y., 81], [Schnorr, 
C.P., 81], [Baase, S., 88], [Sedgewick, R., 88], [Hansen, E.R. et al., 90]. 



Text Algorithms 

Text searching is the process of finding a pattern within a string of charac
ters. The answer may be (1) whether a match exists or not, (2) the place of 
(the first) match, (3) the total number of matches or (4) the total number of 
matches and where they occur. 

We will divide the algorithms between those which search the text as given, 
those which require preprocessing of the text and other text algorithms. Text 
preprocessing is preferred for large static text databases (such as bibliographic 
databases, dictionaries or corpora), while smaller dynamic text (such as text 
editing or casual browsing) will benefit from direct text searching. 

In this chapter, n will denote the length of the text to be searched, m 
will denote the length of the pattern being searched, k the number of errors 
allowed, and lEI> 1 the size of the underlying alphabet. A random string is 
a sequence of symbols chosen with uniform probability from the alphabet E. 
The average results are computed for searching random patterns over random 
strings. 

7.1 Text searching without preprocessing 

Direct text searching algorithms accept a pattern and a string of text, and 
will locate an exact match of the pattern in the given string. The pattern is 
itself a string. When successful the search function returns a pointer p to the 
matching text in C (p[O], p[l], ... is the first occurrence of the pattern in the 
text) or an offset i into the given text in Pascal (text[i], text[i + 1], ... is the 
first match). When the pattern is not present in the text, search returns the 
null pointer in C and -1 in Pascal. 

For each algorithm we will describe the most efficient or basic variations. 

251 
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The typical calling sequence for these functions in Cis: 

char uearch(pat, tezt) char *pat, *teztj 
void preprocpat(pat, .... ) char * patj 

and in Pascal: 

function search(pat: PATTERNj tezt: TEX1) : integer; 
procedure preprocpat(pat: PATTERNj ... )j 

The Pascal compiler must support variable length strings to have the pro
grams given here working. 

These functions can be composed to search 011 external text files: 

Composition to search external text files 

int eztsearch(pat, filedesc) 
char *patj 
int filedescj 

{ int offs, i, m, nb, nr; 
char buDf.BUFSIZJ, *Pj 

m = strlen(pat)j 
if( m == 0) return(O)j 
if(m >= BUFSIZ) 

return ( -2)j /*** Buffer is too small ***/ 

/*** Assume that the file is open and positioned ***/ 
offs = OJ /*** number of characters already read ***/ 
nb = OJ /*** number of characters in buffer ***/ 
while(TRUE) { 

if(nb >= m) { 
/*** try to match ***/ 
p = search(pat, buff) j 
if(p != NULL) 

retunl(p-buff+offs)j /*** found ***/ 
for(i=Oj i < mj i++) buDf.z] = buDf.i+nb-m+l]j 
offs += nb-m+lj 



} 

nb = m-l; 
} 

/*** read more text ***/ 
nr = read(filedesc, buff+nb, BUFSIZ-l-nb); 
if(nr<= 0) return(-I); /*** notfound***/ 
nb += nr; 
bu.D[nb] = EOS; 
} 
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Any preprocessing of the pattern should be done only once, at the begin
ning. Especially, if the buffer size is small. Also, the knowledge of the length 
of the buffer (text) should be used (for example, see Section 7.1.3). 

Similarly, these functions can be adapted or composed to count the total 
number of matches. \Ve use two special constants: MAX PAT LEN which 
is an upper bound on the size of the pattern, and MAX CHAR which is the 
size of the alphabet (a power of 2). 

Let An be the number of comparisons performed by an algorithm, then in 
the worst case we have the following lower and upper bounds 

4 1 
n - m + 1 < An < -n - -m - - 3 3 

For infinitely many n's, Il:l > 2, and odd m ~ 3 we have 

An ~ n+ l2:J 
For random text 

General references: 
[Karp, R.M. et al., 72], [Slisenko, A., 73], [Fischer, l\J.J. et al., 74], [Sellers, 
P., 74], [Galil, Z., 76], [Rivest, R.L., 77], [Seiferas, J. et al., 77], [Galil, Z. et 
al., 78], [Yao, A.C-C., 79], [Aho, A.V., 80], [Galil, Z. et al., 80], [Main, M. et 
al., 80], [Sellers, P., 80], [Slisenko, A., 80], [Crochemore, M., 81], [Galil, Z. et 
al., 81], [Galil, Z., 81], [Galil, Z. et al., 83], [Galil, Z., 85], [Pinter, R., 85], [Li, 
M. et al., 86], [Abrahamson, K., 87], [Baeza-Yates, R.A., 89], [Baeza-Yates, 
R.A., 89], [Vishkin, U., 90]. 

7.1.1 Brute force text searching 

Brute force text searching scans the text from left to right and tries to match 
the pattern at every text position. 
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n $ An $ m(n - m + 2) - 1 

E[A ] = (n - m + 1)IEI (1 __ 1_) < nlEI 
n lEI - 1 IElm IEI- 1 

Brute force text searching 

function search(pat: PATTERN; text: TEXT): integer; 

var i, j, m, n: integer; 
found: boolean; 

begin 
m := length(pat); 
if m = 0 then search := 1 
else begin 

end; 

n := length(text); search:= 0; 
j:= 1; i:= 1; found:= FALSE; 
while not found and (i <= n-m+l) do begin 

if pat = substr(text, i, m) then begin 
search:= i; found:= TRUE; end; 

i:= i + 1; 
end; 

end; 

It is easy to force this algorithm into its O(nm) worst-case by searching a 
pattern of all a's ended by a b in a text which is all a's. This function may 
inspect text characters more than once and may backtrack to inspect previous 
characters. 

References: 
[Barth, G., 84], [Wirth, N., 86], [Baase, S., 88], [Sedgewick, R., 88], [Baeza
Yates, R.A., 89], [Baeza-Yates, R.A., 89], [Manber, U., 89], [Cormen, T.H. et 
al., 90]. 

7.1.2 Knuth-Morris-Pratt text searching 

This algorithm scans the text from right to left. It uses knowledge of the 
previous characters compared to determine the next position of the pattern 
to use. A table of size m is computed preprocessing the pattern before the 
search. This table is used to decide which character of the pattern should be 
used. For this algorithm we have 



n ~ An ~ 2n + O(m) 

Knuth-Morris-Pratt text searching 

void preprocpat(pat, next) 
char *pat; 
int next[ ]; 

{ int i, j; 
i = 0; 

} 

j = next[O] = -1; 
do { if(j==(-I) II pat[z]==patlj)) { 

i++; 
i++; 
next[z] = (patlj]==pat[z)) '? nextlj] : j; 

} 
else j = nextlj]; } 

while(pat[z] != EOS); 

char *search(pat, text) 
char *pat, *text; 

{ int next[MAXPATLEN], j; 

} 

if(*pat == EOS) return(text); 
preprocpat(pat, next); 

for(j=O; *text != EOS;) { 
if(j==(-I) II patlj] == *text) { 

text++; j++; 
if(patlj] == EOS) return( text-j); 

} 
else j = nextlj]; 

} 
return(NULL); 
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This function may inspect some characters more than once, but will never 
backtrack to inspect previous characters. It is an on-line algorithm, that 
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is, characters are inspected (may be more than once) strictly left to right. 

References: 
[Aho, A.V. et al., 74], [Knuth, D.E. et al., 77], [Barth, G., 81], [Salton, G. et 
al., 83], [Barth, G., 84], [Meyer, B., 85], [Takaoka, T., 86], [Wirth, N., 86], 
[Baase, S., 88], [Brassard, G. et al., 88], [Sedgewick, R., 88], [Baeza-Yates, 
R.A., 89], [Baeza-Yates, R.A., 89], [Manber, U., 89], [Cormen, T.lI. et al., 
90]. 

7.1.3 Boyer-Moore text searching 

This algorithm performs the comparisons with the pattern from the right to 
the left. After a mismatching position is found, it computes a shift, that is, 
an amount by which the pattern is moved to the right, before a new matching 
attempt is tried. This shift is computed using two heuristics, one based in 
the table used in the Knuth-Morris-Pratt algorithm (see Section 7.1.2), and 
the second based on matching the next character of the pattern that matches 
the character of the text that caused the mismatch. Both heuristic tables are 
built before the search using O( m + lEI) comparisons and extra space. 

Boyer-Moore preprocessing 

void preprocpat(pat, skip, d) 
char *pat; 
int skip[], d[ ]; 

{ int j, k, m, t, tl, q, q1; 
int .l[MAXPATLEN); 

m = strlen(pat); 

/*** auxiliary table ***/ 

for(k-O; k<MAXCHAR; k++) skip[k] = m; 
for(k=l; k<=m; k++) { 

} 

d[k-1] = (m « 1) - k; 
skip[pat[k-1]] = m-k; 

t = m + 1; 
for(j=m; j > 0; j--) { 

J[j-1] = t; 
wbile(t <= m && pat(j-1] != pat[t-1]) 
{ 

d[t-1] = min(d[t-1], m-J); 
t = .l[t-1]; 



} 
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} 
t--; 

} 
q = t; t = m + 1 - q; ql = 1; tl = 0; 
for(j=I; i<=t; i++) { 

} 

j[j-l] = tl; 
while(tl >= 1 && patLi-l] != pat[tl-l]) 

tl = .l[tl-l]; 
tl++; 

while(q < m) 
{ 

} 

for(k=ql; k<=q; k++) d[k-l] = min(d[k-l], m+q-k); 
ql = q + 1; q = q + t - .l[t-l]; t = .l[t-l]; 

There are several versions of this algorithm. The one presented here is the 
one given in Knuth-Morris-Pratt's paper. The running time is O(n + rm) 
where r is the number of occurrences found. For any version of this algorithm 
we have 

n 
An> --m 

Table 7.1 shows the best known upper bound for different variations of the 
Boyer-Moore algorithm when there are no occurrences of the pattern in the 
text. 

Table 7.1: Worst-case of Boyer-Moore type algorithms. 

I An I References 

3n [Boyer et al., 77], [Knuth et al., 77] 
14n [Galil, 79] 
2n [Apostolico et al., 86] 

3n/2 [Colussi et al., 90] 
4n/3 [Colussi et al., 90] 

For several variations of this algorithm 

which is optimal. For large patterns, the maximum shift will also depend on 
the alphabet size. 
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The idea of this algorithm can be extended to a Boyer-Moore automaton, 
a finite state machine that compares the pattern from right to left in the text. 
By keeping all the comparison information this automaton never inspects a 
character twice, and always shifts the pattern as much as possible. However, 
there are patterns such that the associated automaton needs O(m3 ) states 
(for any alphabet size bigger than 1). It is not known if this bound is tight (a 
trivial upper bound is 2m - 1). 

Boyer-Moore text searching 

char uearch(pat, text, n) 
char *pat, *textj 
int nj 

{ int j, k, m, skip[MAXCHAR) , d[MAXPATLEN]j 

} 

m = strlen(pat)j 
if(m == 0) return(text)j 
preprocpat(pat, skip, d)j 

fOl'(k-m-1j k<nj k += max(skip[text[k) &(MAXCHAR-1»),d[}1» { 
for(j=m-1j j >= 0 && text[k) == pat[}]j j--) k--j 
if(j ==(-1» return(text+k+1)j 
} 

return(NULL)j 

This function may inspect text characters more than once and may back
track to inspect previous characters. We receive the length of the text as a 
paremeter, such that we do not need to compute it. Otherwise, we lose the 
good average performance of this algorithm. This function works even if the 
text contains a character code that is not in the alphabet. If we can ensure 
that the text only has valid characters, the an ding with MAX CHAR - 1 can 
be eliminated. 

In practice, it is enough to use only the heuristic which always matches 
the character in the text corresponding to the mth character of the pattern. 
This version is called the Boyer-Moore-Horspool algorithm. For large m, 

n 
E[An) ? IEI- 1 



Boyer-Moore-llorspool text searching 

char *search(pat, text, n) 
char *pat, *text; 
int n; 

{ int i, j, k, m, skip[MAXCHAR]; 

m = strlen(pat); 
if(m==O) return(text); 
for(k=O; k<MAXCHAR; k++) skip[k] = m; 
for(k-O; k<m-I; k++) skip[pat[k]] = m-k-I; 
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for(k=m-Ij k < nj k += skip[text[k] & (MAXCHAR-I)]) { 
for(j=m-I, i=kj j>=O && text[z] == pat!)]; j--) i--; 
if(j== (-1» return(texHi+I)j 
} 

return ( NULL); 
} 

This algorithm may require O(nm) comparisons in the worst-case, but this 
happens with very low probability or for pathological cases. Recently it has 
been suggested that the first character in the text after the actual position of 
the pattern should be used. In practice, this is equivalent to having a pattern 
one character longer. 

References: 
[Boyer, R. et al., 77], [Galil, Z., 79], [Bailey, T.A. et al., 80], [Guibas, L.J. et 
al.,80], [Horspool, R.N.S., 80], [Rytter, W., 80], [Salton, G. et al., 83], [Moller
Nielsen, P. et al., 84], [Apostolico, A. et al., 86], [Wirth, N., 86], [Baase, S., 
88], [Brassard, G. et al., 88], [Schaback, R., 88], [Sedgewick, R., 88], [Baeza
Yates, R.A., 89], [Baeza-Yates, R.A., 89], [Baeza-Yates, R.A., 89], [Mallber, 
U., 89], [Baeza-Yates, R.A. el al., 90], [Cormen, T.II. et al., 90]. 

7.1.4 Searching sets of strings 

A natural extension of the Knuth-Morris-Pratt algorithm, without being as 
general as a deterministic finite automaton (DFA), is to define a pattern 
matching machine (PMM). Pattern matching machines search for any of 
several strings simultaneously. A pattern matching machine consists of a 
current state, a transition table ('go to' table) as in a finite automaton, 
a failure function to economize transitions and an output function to 
determine, upon reaching an accepting state, which string actually matched. 
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While searching, if the character read is one of the go to transitions, we 
change state accordingly, and we read the next character. Otherwise, we use 
the failure transition, and we compare the current character again in the new 
state. Let m be the total number of characters in the strings being searched. 
The size of the transition table is O(m), independent of the alphabet size. 
The number of character inspections is independent of m, 

n $ An $ 2n 

Pattern matching machine 

state := 1; 
for i := 1 to n do begin 

while trans(state, text[z]) = FAIL do 
state := fai/ure( state); 

state := trans(state, text[z]); 
if output(state) <> {} then 

{*** a match was found ***}; 
end; 

The advantage of the PMM over a DFA is that the transition table is 
smaller at the cost of sometimes inspecting characters more than once. This 
function will never backtrack to inspect previous characters. It is an on-line 
algorithm. 

The construction and optimizations of the table are beyond the scope of 
this handbook. More efficient automata are fully described in Section 7.1.6. 

There also exist pattern matching machines based on the Boyer-Moore 
algorithm (Section 7.1.3). In this case, the search is done from right to left in 
the set of strings. If a mismatch is found, the set of strings is shifted to the 
right. 

References: 
[Aho, A.V. et al., 74], [Aho, A.V. et al., 75], [Commentz-Walter, B., 79], 
[Bailey, T.A. et al., 80], [Meyer, B., 85], [Sedgewick, R., 88], [Baeza-Yates, 
R.A. et al., 90]. 

7.1.5 Karp-Rabin text searching 

This algorithm searches a string by computing a signature or a hashing value, 
of each m characters of the string to be searched. A signature is an integer 
value computed from a string, which is useful for quickly detecting inequality. 
This algorithm achieves its efficiency by computing the signature for position 
i from the signature in position i - 1. 
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The number of characters inspected is 

An = 2n 

Karp-Rabin text searching 

function search(pat: PATTERNj text: TEXT): integer; 

const B = 131j 
var hpat, htext, Bm, j, m, n: integer; 

found: booleanj 
begin 

found := FA LSEj search := OJ 
m := length(pat)j 
if m=O then begin 

search := 1j found:= TRUEj endj 

Bm:= 1j 
hpat := OJ htext:= OJ 
n := length( text)j 
if n >= m then {*** preprocessing *** } 

for j := 1 to m do begin 
Bm:= Bm*Bj 
hpat := hpat*B + ord(pat[1])j 
htext := htext*B + ord(text[1])j 
endj 

j := mj {*** search ***} 
while not found do begin 

endj 

if (hpat = htext) and (pat = substr(text,j-m+1,m)) then 
begin search := j-m+1j found:= TRUEj endj 

if j < n then begin 
j:= j+1j 
htext := htext*B - ord(text[j-m])*Bm + ord(textlJ])j 
end 

else found := TRUEj 
endj 

The above implementation avoids the computation of the mod function 
at every step, instead it uses the implicit modular arithmetic given by the 
hardware. The value of B is selected such that B" mod 2r has maximal cycle 
(cycle oflength 2r - 2 ) for r in the range 8 to 64. B = 131 has this property. 
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References: 
[Harrison, M.C., 71], [Karp, R.M. et al., 87], [Sedgewick, R., 88], [Baeza-Yates, 
R.A., 89], [Cormen, T.H. et al., 90], [Gonnet, G.H. et al., 90]. 

7.1.6 Searching text with automata 

Any regular language can be recognized by a DFA, hence it is interesting to 
construct and search with such automata. We will use the following definition 
of an automaton: 

Automata definition 

typedef struct automrec { 
short d; /*** size of the alphabet (0, ... , d-1) ***/ 
short st; /*** number of states (0, ... , st-1) ***/ 
short **nextst; / *** transition function: nextst[ st] [ch] *** / 
short *final; /*** state i is final if fina~a] != 0 ***/ 
} *automata; 

automata stringautom( str) char utr; 
automata starautom( aut) automata aut; 
automata unionautom( autl, aut2) automata autl, aut2; 
automata concatautom( autl, aut2) automata autl, aut2; 

In addition to the above definition, when automata are used for string 
matching, we will encode final states in the transition table as the complement 
of the state number. This allows a single quick check in a crucial part of the 
search loop. For an accepting state, final will encode the length of the match, 
whenever this is possible. 

With this definition, the searching function is: 

Deterministic-finite-automata text searching 

char uearch(pat, text) 
char *pat, *text; 

{ short st, *utates; 
automata a; 

if(pat[O] == EOS) return(text); 
a = stringautom(pat); 



states = a ->nextst; 
for(st=O; st < a ->st; st++) states[st][E051 = -1; 
st = 0; 
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while((st = states[st][*text++ & (MAXCHAR-1)]) >= 0); 
if(*(text-1) == EOS) 

return(NULL); 
else return(text - a ->fina(-st]); 

} 

This function will inspect each character once, and will never backtrack to 
inspect previous characters. This function works even if the text contains a 
character code that is not in the alphabet. If we can ensure that the text only 
has valid characters, the anding with MAX C H AR-1 can be eliminated. It is 
an on-line algorithm. The automata is modified to produce a false acceptance 
upon recognition of the end-of-string (E08) character. 

Regular expressions can be built from strings, concatenation, union, 
Kleene's closure or star (*) and complement. We will therefore give functions 
to perform the above operations, and consequently any regular expression can 
be built using them. 

To generate an automaton which recognizes a string we use the 
stringautom function. 

Build an automaton which recognizes a string 

automata stringautom(pat) 
char *pat; 

{ short back, i, st; 
char ch; 
automata a; 

a = (automata)malloc(sizeof(struct automrec»; 
a ->d = MAXCHAR; 
a ->st = str/en(pat)+1; 
a ->nextst = (short ** )calloc( a ->st, sizeof(short *»; 
a ->final = (short *)calloc(a ->st, sizeof(sbol't»; 

for(st=O; st < a->st; st++) { 
a ->nextst[st] = (short *)calloc(MAXCHAR, sizeof(shol't»; 
if(st < a ->st-2) a ->nextst[st][pat[st]] = st+1; 
} 

a ->nextst[a ->st-2][pat[a ->st-2]] = I-a ->st; 
/* set final state (with the match length) */ 
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} 

a ->jina~a ->st-1] = a ->st-1j 

/* Set backwards transitions */ 
for(st=lj st < a ->stj sH+) 

for(back=st-1j back >= OJ back--) { 
ch = pat[back]j 
if(a ->nextst[st][ch] == 0) 

for(i=lj i<=stj i++) 

} 

return(a)j 

if( (st==i II strncmp(pat,paHi,st-i)==O) 
&& ch == pat[st-a]) { 
a ->nextst[st][ch] = st-i+1j 
breakj 
} 

The next function produces the union of two automata. 

Build the union of two automata 

short mergestatesOj. 

automata unionautom( autl, aut2) 
automata autl, aut2j 

{ short utI, ut2, tSj 
automata aj 

if(autl ->d != aut2 ->d) 
return(NULL)j /*** different alphabets ***/ 

a = (automata)malloc(sizeof(struct automrec»j 
a ->d = autl ->dj 
a ->st = OJ 
ts = autl ->st + aut2 ->stj 
a ->nextst = (shorh*) malloc(ts * sizeof(shorh»j 
a ->jinal = (shorh) malloc(ts * sizeof(short»j 
stl = (shorh) calloc(ts, sizeof(short»j 
st2 = (shorh) calloc( ts, sizeof( short» j 
mergestates(O, 0, autl, aut2, a, stl, st2)j 
free( st1 ) j free( st2) j 
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return(a); 
} 

short mergestates(sl, s2, autl, aut2, newaut, stl, st2) 
short sl, s2, *stl, ut2j 
automata autl, aut2, newaut; 

{ short as1, as2, i, j; 

} 

/*** find if state is already stored ***/ 
for ( i=O; i < newaut ->st; i++) 

if(stl[I]==sl && st2[1]==s2) 
return(sl<O II s2<0 'I -i : i); 

/*** create new state ***/ 
StI[l] = sl; st2[1] = s2; 
newaut ->st++; 
as1 = sl < 0 'I -sl : sl; as2 = s2 < 0 'I -s2 : s2; 
newaut ->nextst[z] = (shorh) malloc(newaut->d * sizeof(short)); 
for(j=O; j<newaut ->d; j++) 

newaut ->nextst[z][)] = 
mergestates(aict! ->nextst[asl][)], aut2 ->nextst[as2][)], 

autI, aut2, newaut, stl, st2); 
if(sl < 0) { 

newaut ->fina~z] = 
(s2<0) 'I max(autl ->fina~-sl], aut2 ->fina~-s2]) 

: aut! ->fina~-sl]; 
return ( -i); 
} 

else if( s2 < 0) { 
newaut ->fina~l] = aut2 ->fina~-s2]; 
return ( -i); 
} 

return(i); 

References: 
[Thompson, K., 68], [Aho, A.V. et al., 74], [Hopcroft, J.E. et al., 79], [Salton, 
G. et al., 83], [Sedgewick, R., 88], [Myers, E. et al., 89], [Cormen, T.H. et al., 
90]. 
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7.1.7 Shift-or text searching 

This algorithm uses a word of m bits, one bit for every character in the pattern, 
to represent the state of the search. The ith bit is a zero if the first i characters 
of the pattern have matched the last i character of the text, otherwise it is a 
one. A match is detected when the mth bit is a zero. We have 

where w is the word size. 
To update the current state after a new character is read, we perform a bit 

shift of the state and a logical or with a precomputed table indexed on the new 
character. This table depends on the pattern and the alphabet. The following 
program uses the variable bits to keep track of the state of the search, and the 
table mask[MAXCHAR] to update the state after reading a new character. 
The value of mask[z] (z E I;) is such that it has a zero bit in the ith position 
if pat[i] = z, otherwise it is a one bit. For example, if z does not appear in 
the pattern, mask[z] is a sequence of Is. 

Shift-or text searching 

char *Search(pat, text) 
char *pat, *text; 

{ int B, bits, i, m, mask[MAXCHAR]; 

} 

if(pat[O]==EOS) return( text); 
B = 1; 
for(m=O; m<MAXCHAR; m++) mask[m] = -0; 
for(m=O; B!= 0 && pat[m] != EOS; m++) { 

mask[pat[m]] &= -B; 
B «= 1; 
} 

B = 1«(m-1); 
for ( bits= -0; *text != EOS; text++) { 

bits = bits«l I mask[*text & (MAXCHAR-1)]; 
if((bits&B) == 0) { 

} 

for(i=O; pat[m+z] != EOS && pat[m+.]==text[i+1]; i++); 
if(pat[m+z]==EOS) return(text-m+1); 
} 

return(NULL); 
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This function will inspect each character once, and will never backtrack to 
inspect previous characters. This function works even if the text contains a 
character code that is not in the alphabet. If we can ensure that the text only 
has valid characters, the anding with M AXCH AR - 1 can be eliminated. It 
is an on-line algorithm. 

This algorithm extends to classes of characters, by modifying the prepro
cessing of the table mask, such that every position in the pattern can be a 
class of characters, a complement of a class or a 'don't care' symbol. Similarly, 
we may allow 'don't care' symbols in the text, by defining a special symbol 
x such that mask[x] = O. This is the fastest algorithm to solve this gener
alization of string searching. There exist algorithms with better asymptotic 
complexity to solve this problem, but these are not practical. 

References: 
[Abrahamson, K., 87], [Baeza-Yates, R.A. et al., 89], [Baeza-Yates, R.A., 89], 
[Kosaraju, S.R., 89]. 

Table 7.2: Algorithms for string matching with mismatches. 

Worst-case An Extra space Reference 

kn + kmlogm kn+ kmlogm km [Landau et al., 85] 
kn +mlogm kn+mlogm m [Galil et al., 85] 

m(n+m-2k) a(m)(k + l)n m [Baeza-Yates, 89] 
(a(m) < 1) 

n log m + mk +1 lEI n log m + mk+1 1EI m k+1 lEI [Baeza-Yates, 89] 
mlogk(n + IEI)/w mlog k(n + IEI)/w IElmlogk/w [Baeza-Yates et al., 89] 

nlogm +rm nlogm+rm m [Grossi et al., 89] 
mn+klEI kn(k/IEI+ klEI [Tarhio et al., 90] 

1/(m - k» + klEI 

7.1.8 String similarity searching 

There are two main models of string similarity. The simplest one just counts 
characters which are unequal. That is, the distance, or the editing cost be
tween two strings of the same length m, is defined as the number of corre
sponding characters that mismatch (this is also called Hamming distance). 
The problem of string searching with k mismatches consists in finding the first 
substring of length m in the text, such that the Hamming distance between 
the pattern and the substring is at most k. When k = 0 the problem reduces 
to simple string searching. 

Table 7.2 shows the worst-case and expected-case complexity of algorithms 
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that solve this problem, where w denotes the computer word size and r the 
number of occurrences found. 

The brute force algorithm for this problem is presented below. We have 

(k + l)n :5 An :5 mn 

E[A ] < (k + l)IEln < 2(k + l)n 
n - IEI-l -

Brute force text searching with k mismatches 

char uearch( k, pat, text) 
int kj 
char *pat, *textj 

{ int j, m, countj 

} 

m = strlen(pat)j 
if(m <= k) return(text)j 

for(j *text != EOSj text++) { 
for ( count=j=Oj j < m && count <= kj j++) 

if(patljJ != textlj]) count++j 
if( count <= k) return ( text)j 
} 

return(NULL)j 

The second model is more general and considers that characters could be 
inserted, deleted, or replaced to produce the matching. Let AD be the cost 
of deleting a character from the pattern, AI the cost of inserting a character, 
and A~'!I the cost of replacing symbol x for symbol y. We define the distance, 
d( a, b), between two strings a and b as the minimal cost of transforming a into 
b. 

Let Ta,; be the minimal distance between the first i characters of the 
pattern and the substring of the text ending at j such that 

Ta,; = min(d(pl...i,tq ... ;)) 
q 

Clearly To,; = 0 (no errors because q = j) and Ta,o = iAD (i deletions). 
The problem of string searching with errors of cost k or less consists in 

finding all substrings of the text such that Tm ,; :5 k. The table Tm ,; can be 
computed using dynamic programming with the following formula: 
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7';,j = min(7';_1,j-1 + Apa,i"u:'j' 7';,j-1 + AI, 7';-1,j + AD) 

with the initial conditions indicated above. The starting position(s) of each 
occurrence must be computed by backtracking each of the T m,j . 

The most commonly used cost values are AD = AI = 1, and Ax,!! = 1 if 
x::/: y or 0 otherwise (this is called Levenshtein distance). In this case, the 
searching problem is called approximate string matching with k errors. 

The following function shows the dynamic programming algorithm for the 
Levenshtein distance. Instead of storing the complete T matrix of size n x m, 
the function uses just one column of it, needing only O(m) extra space. The 
total number of operations is O(nm). 

String matching with k errors 

char *Search(k, pat, text, n) /*** at most k errors ***/ 
int k, n; 
char *pat, *text; 

{ int T{MAXPATLEN+l]; 
int i, j, m, tj, tjl; 

} 

m = strlen(pat); 
if(m <= k) return(text + n); 
T{O] = 0; /*** initial values ***/ 
for(j=l; j<=m; j++) 1lJ] = j; 

for(i=l; i<=n; i++) { /*** search ***/ 
tjl = 0; 
for(j=l; j<=m; i++) { 

tj = 1lJ]; 
if(text[n-.] != pat[m-JD tjl++; 
if(tj+l < tjl) tjl = tj+l; 
if(1l.i-l]+l < tjl) tjl = 1l.i-I]+I; 
1lJ] = tjl; 
tjl = tj; 
} 

if(T{m] <= k) return(texHn-i); 
} 

return(NULL); 

Table 7.3 shows the worst-case and expected time complexity of several 
algorithms for solving the Levenshtein case (see also Section 7.3.1), where 
Q $ min(3m, 2k IElk mH1 ). 
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Table 7.3: Algorithms for string matching with errors. 

Worst-case An I Extra space I Reference 

mn mn m" Dynamic prog. 
mn kn m2 [Ukkonen, 85] 

n log m + mQ log Q n log m + mQ log Q mQ [Ukkonen, 85] 
k2n + mlogm k2n + mlogm km [Landau et al., 88] 

kn+m2 kn+m2 km [Galil et al., 89] 
kn+ m2 + lEI kn+m2 +IEI m2 +IEI [Ukkonen et al., 90] 

mn + (m + k)IEI kn(k/(IEI + 2k2)+ mlEI [Tarhio et al., 90] 
l/m) + (m + k)IEI 

nk+m 2(k + l)nlog" m/(m - k) m [Chang et al., 90] 
(k < m/(log" m + 0(1))) 

References: 
[Levenshtein, V., 65], [Levenshtein, V., 66], [Sellers, P., 74], [Wagner, R.E. et 
al., 74], [Wagner, R.E., 75], [Wong, C.K. et al., 76], [Hall, P.A.V. et al., 80], 
[Bradford, J., 83], [Johnson, J.H., 83], [Sank off, D. et al., 83], [Ukkonen, E., 
83], [Landau, G.M. et al., 85], [Ukkonen, E., 85], [Ukkonen, E., 85], [Galil, 
Z. et al., 86], [Landau, G.M. et al., 86], [Landau, G.M. et al., 86], [Landau, 
G.M., 86], [Krithivasan, K. et al., 87], [Baase, 5., 88], [Ehrenfeucht, A. et al., 
88], [Baeza-Yates, R.A. et al., 89], [Baeza-Yates, R.A., 89], [G alil , Z. et al., 
89], [Grossi, R. et al., 89], [Manber, U., 89], [Eppstein, D. et al., 90], [Tarhio, 
J. et al., 90], [Ukkonen, E. et al., 90]. 

7.1.9 Summary of direct text searching 

Table 7.4 shows relative total times of direct text searching algorithms written 
in C. These values were generated from searching the patterns 'to be or not 
to be' and 'data' in the whole text of The Oxford English Dictionary (2nd 
Edition), about 570 million characters in length. The timings consider the 
preprocessing and search time, and the reading of the file. 

7.2 Searching preprocessed text 

Large, static, text files may require faster searching methods than the ones 
described in the previous section, which are all basically linear in the length 
of the text. 

In this section we will describe algorithms which require preprocessing of 
the text, most often building an index or some other auxiliary structure, to 
speed up later searches. 



TEXT ALGORITHMS 271 

Table 7.4: Direct searching over The Oxford English Dictionary. 

I Algorithm I 'to be or not to be' I 'data' I 
Brute force 1.23 1.74 
Knuth-Morris-Pratt 2.16 2.93 
Boyer-Moore 1.33 1.16 
Boyer-Moore-Horspool 1.00 1.00 
Karp-Rabin 2.64 3.69 
Automaton 1.19 1.67 
Shift-or 1.41 2.10 
Brute force (k = 1) 2.81 4.03 
Dynamic programming (k = 1) 7.52 36.90 

Usually there are some restrictions imposed on the indices and conse
quently on the later searches. Examples of these restrictions are: a control 
dictionary is a collection of words which will be indexed. Words in the text 
which are not in the control dictionary will not be indexed, and hence are 
not searchable. Stop words are very common words (such as articles or 
prepositions) which for reasons of volume or precision of recall will not be 
included in the index, and hence are not searchable. An index point is the 
beginning of a word or a piece of text which is placed into the index and is 
searchable. Usually such points are preceded by space, punctuation marks or 
some standard prefixes. In large text databases, not all character sequences 
are indexed, just those which are likely to be interesting for searching. 

The most important complexity measures for preprocessed text files are: 
the extra space used by the index or auxiliary structures Sn, the time required 
to build such an index Tn and the time required to search for a particular 
query, An. As usual, n will indicate the size of the text database, either 
characters or number of index points. 

General references: 
[Gonnet, G.H., 83], [Larson, P., 83], [Faloutsos, C., 85], [Galil, Z., 85]. 

7.2.1 Inverted files 

Inversion is a composition (as described in Section 2.2.2.1) of two searching 
algorithms, where we first search for an attribute name, which returns an 
index and on this index we search for an attribute value. The result of a 
search on an inverted file is a set of records (or pointers to records). 

In text databases the records to be searched are variable-length portions of 
text, possibly subdivided in fields. For example, in a bibliographic database 
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each work is a record and fields can be title, abstract, authors, and so on. 
Every word in any of the fields, is considered an index point. 

The result of searching a term in an inverted index is a set of record num
bers. All these sets are typically stored sequentially together in an external 
file. The set can be identified by its first and last position in the external file. 

Let n be the total number of words indexed. The complexity of building 
the index is that of sorting n records, each one of length pog2 nfk 1 bits 
where k is the size of the control dictionary and f is the number of fields in 
any record. 

Sn = n pog2 nk 1 bits 

Tn = O(n log nrlog2 nfkl) 

An O(log2 k) 

The data structures defining an inverted index are: 

ControlDict : {[word]}f. 

FieldIndex : {FieldName, {first, last lfll . 

word : strulg. FieldName : string. 

first : into last : into 

Building inverted files can be done following these steps: 

(1) Assume that the control dictionary can be kept. in main memory. Assign 
a sequential number to each word, call this the word number (an 
integer between 1 and k). 

(2) Scan the text database and for each word, if in the control dictionary, 
output to a temporary file the record number, field number, and its 
word number. 

(3) Sort the temporary file by field number, word number, and record num
ber. 

(4) For each field, compact the sorted file to distinct record numbers alone. 
During this compaction, build the inverted list from the end points of 
each word. This compacted file becomes the main index for that field. 

(5) For certain applications the multiplicity of occurrences is also interest
ing. The multiplicities can be easily recorded during the compaction 
phase. 
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For a single term search, the location of the answer and the size of the 
answer are immediately known. Further operations on the answers, inter
sections, unions, and so on, will require time proportional to the size of the 
sets. 

The operations of union, intersection and set difference can be made over 
the set of pointers directly (all these sets will be in sorted order) without any 
need for reading the text. 

References: 
[Knuth, D.E., 73], [Grimson, J.B. et al., 74], [Stanfel, L., 76], [McDonell, 
K.J., 77], [Nicklas, B.M. et al., 77], (Jakobsson, M., 80], [Salton, G. et al., 83], 
[Sankoff, D. et al., 83], [Waterman, M.S., 84], [Blumer, A. et a/., 87], [Rao, 
V.N.S. et a/., 88], [Coulbourn, C.J. et al., 89]. 

7.2.2 Trees used for text searching 

A semi-infinite string (or sistring) is a substring of the text database, de
fined by a starting position and continuing to the right as far as necessary. 
(The database may be viewed as having an infinite number of null charac
ters at its right end.) Sistrings are compared lexicographically, character by 
character. For any database, no two sistrings in different positions compare 
equal. Since a sistring is defined by an offset and the text in the database, 
then assuming that the text is available, each sistring can be represented by 
an integer. An index of the text database will be any search structure based 
on the sistrings of all the index points. 

Any search structure which allows for range searches can be used to search 
on the set of all sistrings. In particular, most algorithms based on trees are 
good candidates. Note that hashing algorithms are not suitable, as these 
neither allow range searching, nor an easy way of computing a hashing value 
for a semi-infinite string. 

The most suitable trees to store this information are digital trees (Section 
3.4.4), in particular Patricia trees. A Patricia tree built on all the sistrings of 
a text database is called a PAT tree. The PAT structure has two advantages: 
(1) the search is done over the tree alone scanning bits of the string to be 
searched, but it does not need to compare the text during the search; (2) 
the whole set of sistrings answering a query is contained in a single subtree 
and hence the searching time is independent of the size of the answer. For a 
Patricia tree we have 

Sn = n EztNodes + (n - 1)IntNodes 

Tn = O(nlogn) 

Prefix searcbing Every subtree of the PAT tree contains all the sistrings 
with a given prefix, by construction. Hence prefix searching in a PAT tree 
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consists of searching the prefix in the tree up to the point where we exhaust 
the prefix or up to the point where we reach an external node. At this point we 
need to verify whether we could have skipped bits. This is done with a single 
comparison of any of the sistrings in the subtree (considering an external node 
as a subtree of size one). If this comparison is successful then all the sistrings 
in the subtree (which share the common prefix) are the answer, otherwise 
there are no sistrings in the answer. We have 

where m is the bit length of the prefix. 
The search ends when the prefix is exhausted or when we reach an external 

node and at that point all the answer is available (regardless of its size) in 
a single subtree. By keeping the size of each subtree in each internal node 
we can trivially find the size of any matched subtree (knowing the size of the 
answer is very appealing for information retrieval purposes.) 

Range searching Searching for all the strings within a certain range of 
values (lexicographical range) can be done equally efficiently. More precisely, 
range searching is defined as searching for all strings which lexicographically 
compare between two given strings. For example the range 'abc' .. 'ace' will 
contain strings like 'abracadabra', 'acacia', 'aboriginal' but not 'abacus' or 
'acrimonious' . 

To do range searching on a PAT tree we search each of the defining in
tervals and then collect all the subtrees between (and including) them. Only 
O(height) subtrees will be in the answer even in the worst-case (the worst
case is 2 height - 1) and hence only O(Iog n) time is necessary in total on the 
average. 

Longest repetition searching The longest repetition of a text is defined 
as the match between two different positions of a text where this match is the 
longest (the most number of characters) in the entire text. For a given text the 
longest repetition will be given by the tallest internal node in the PAT tree. 
Hence, the tallest internal node gives a pair of sistrings which match for the 
most number of characters. In this case tallest means considering not only 
the shape of the tree but also the skipped bits. For a given text the longest 
repetition can be found while building the tree and it is a constant, that is, 
it will not change unless we change the tree (that is, the text). 

It is also possible to search for the longest repetition not just for the entire 
tree/text, but for a subtree. This means searching for the longest repetition 
among all the strings which share a common prefix. This can be done in 
O(height) time by keeping one bit of information at each internal node, which 
will indicate on which side we have the tallest subtree. By keeping such a bit 
we can find one of the longest repetitions starting with an arbitrary prefix in 
O(log n) time. If we want to search for all of the longest repetitions we need 
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two bits per internal node (to indicate equal heights as well) and the search 
becomes logarithmic in height and linear in the number of matches. 

'Most significant' or 'most frequent' searching This type of search 
has great practical interest, but is slightly difficult to describe. By 'most 
significant' or 'most frequent' we mean the most frequently occurring strings 
within the text database. For example, finding the 'most frequent' trigram is 
finding a sequence of three letters which appears the greatest number of times 
within our text. 

In terms of the PAT tree, and for the example of the trigrams, the num
ber of occurrences of a trigram is given by the size of the subtree at distance 
three characters from the root. So finding the most frequent trigram is equiv
alent to finding the largest subtree at distance three characters from the root. 
This can be achieved by a simple traversal of the PAT tree which is at most 
O(n/average size of the answer) but usually much faster. 

Searching for trigrams (or n-grams) is simpler than searching, for example, 
for the 'most common' word. A word could be defined as any sequence of 
characters delimited by a blank space. This type of search will also require a 
traversal, but in this case the traversal is only done in a subtree (the subtree 
of all sistrings starting with a space) and does not have a constant depth; it 
traverses the tree at the place where the second blank appears. 

We may also apply this algorithm over any arbitrary subtree. This is 
equivalent to finding the most frequently occurring trigram, word, ... that 
follows some given prefix. 

In all cases, finding the most frequent string with a certain property re
quires a subtree selection and then a tree traversal which is at most O(n/k) 
but typically is much smaller. Here k is the average size of each group of 
strings of the given property. Techniques similar to alpha-beta pruning can 
be used to improve this search. 

References: 
[Fredkin, E., 60], [Morrison, D.R., 68], [Weiner, P., 73], [Aho, A.V. et at., 
74], [McDonell, K.J., 77], [Nicklas, B.M. et at., 77], [Majster, M. et at., 80], 
[Comer, D. et at., 82], [Orenstein, J.A., 82], [Gonnet, G.H., 83], [Salton, G. 
et at., 83], [Apostolico, A. et at., 85], [Apostolico, A., 85], [Chen, M.T. et 
at., 85], [Merrett, T.Il. et at., 85], [Kemp, M. et at., 87], [Gonnet, G.Il., 88], 
[Baeza-Yates, R.A., 89]. 

7.2.3 Searching text with automata 

In this section we present an algorithm which can search for arbitrary regular 
expressions in an indexed text of size n in time sublinear in n on the average. 
For this we simulate a DFA on a binary trie built from all the sistrings of a text 
(searching an arbitrary regular expression in O(n) is done in Section 7.1.6). 
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Automaton Trie 

Figure 7.1: Simulating the automaton on a binary digital tree. 

The main steps of the algorithm are: 

(1) Convert the query regular expression into a partial DFA (a partial DFA 
will not represent transitions which can never reach an accepting state). 

(2) Eliminate outgoing transitions from final states, eliminate all dead 
states, and minimize the DFA. This may require exponential space/time 
with respect to the query size but is independent of the size of the text. 

(3) Convert the character DFA into a binary DFA using the binary encoding 
of the input alphabet; each state will then have at most two outgoing 
transitions, one labelled 0 and one labelled 1. 

( 4) Simulate the binary D FA on the binary trie from all sistrings of text 
using the same binary encoding as in step (2). That is, associate the root 
of the tree with the initial state, and, for any internal node associated 
with state i, associate its left descendant with state j if i -+ j for a bit 
o on the DFA, and associate its right descendant with state k if i -+ k 
for a 1 (see Figure 7.1). 

(5) For every node of the index associated with a final state, accept the 
whole subtree and halt the search in that subtree. (For this reason, we 
do not need outgoing transitions in final states.) 

(6) On reaching an external node, run the remainder of the automaton on 
the single string determined by this external node. 
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A depth-first traversal to associate automaton states with trie nodes en
sures O(log n) space for the simulation in the case of random text. 

The expected number of internal nodes visited is 

where a = log2lAI, and A is the largest eigenvalue of the incidence matrix of 
the DFA with multiplicity m. For any binary DFA IAI < 2 and hence a < 1. 
The expected number of external nodes visited is proportional to Nn , and 
the expected number of comparisons needed in every external node is 0(1). 
Therefore, the total searching time is given by O(Nn ). 

References: 
[Gonnet, G.H., 88], [Baeza-Yates, R.A. et al., 89], [Baeza-Yates, R.A., 89], 
[Baeza-Yates, R.A. et al., 90]. 

7.2.4 Suffix arrays and PAT arrays 

A PAT array is a compact representation ofa PAT tree (Section 7.2.2), because 
it stores only the external nodes of the tree. Thus, we need only one pointer 
per indexing point. The definition for PAT arrays is 

([string]}~-l . 

Building a PAT array is similar to sorting variable-length records, thus 

Tn = O(n log n) 

Any Patricia tree operation can be simulated in a PAT array within a 
factor of O(log n) time (by doing a binary search on the next bit to determine 
the left and right subtrees). However, it turns out that it is not necessary to 
simulate the PAT tree for prefix and range searching and we obtain algorithms 
which are O(log n) instead of 0(log2 n) for these operations. Actually prefix 
searching and range searching become very similar operations. Both can be 
implemented by doing an indirect binary search over the array with the results 
of the comparisons being less than, equal (or included in the case of range 
searching) and greater than. In this way the searching takes at most 

An ~ m(2log2n -1) 
An ~ 4log2n 

(character comparisons) 

(disk accesses) 

where m is the length of given prefix (query). 



278 lIANDBOOK OF ALGORITlIMS AND DATA STRUCTURES 

Prefix searching in a PAT array 

int search(pat, index, n) 
char *pat, *index[ ]j 
int nj /* size of the PAT array */ 

{ int m, left, right, low, high, ij 

} 

m = strlen(pat)j 
/* search left end */ 
if(strncmp(pat, index[O], m) != 1) left = OJ 
else if(strncmp(pat, index[n-l]' m) == 1) left = nj 

else { /* binary search */ 

} 

for(low=O, high=nj high-low> Ij) { 
i = (high+low)/2j 
if(strncmp(pat, index[z], m) != 1) high = ij 
else low = ij 

} 
left = highj 

/* search right end */ 
if(strncmp(pat, index[O], m) == -1) right = -lj 
else if(strncmp(pat, index[n-l], m) != -1) right = n-lj 
else { /* binary search */ 

} 

for(low=O, high=nj high-low> Ij) { 
i = (high+low)/2j 
if(strncmp(pat, index[z], m) != -1) low = ij 
else high = ij 

} 
right = lowj 

return ( right-/eft+1 )j 

PAT arrays are also called suffix arrays. With additional information 
about the longest common prefixes of adjacent index points in the array, it is 
possible to speed up a prefix search to 

An = m + rlog2 n 1 
Searching for two strings S1 and S2 (ls11 $ m) such that S2 is at most k 

characters after S1 can be done in time O(n1/ 4 ) using a PAT array and extra 
information of size O«k + m)n). If we are interested only in the number of 
occurrences, the query time is reduced to O(log n). This kind of search is 
called proximity searching. 



TEXT ALGORITHMS 279 

References: 
[Gonnet, G.H., 86], [Manber, U. et al., 90], [Manber, U. et al., to app.]. 

7.2.5 DAWG 

The Directed Acyclic Word Graph (DAWG) is a deterministic finite automa
ton that recognizes all possible substrings of a text. All states in the DAWG 
are accepting (final) states. Transitions which are not defined are assumed to 
go to a non-accepting dead state. 

For any text of size n > 2 we have 

n + 1 ~ states ~ 2n - 1 

n ~ transitions ~ 3n - 4 

n 
E[states] = In(IEI} (lEI In IEI- (IEI- 1) In(IEI- 1» + nP(n) 

E[transitions] = _n_ {IEI2 -lEI + lIn (IEI2 -lEI + 1) 
In(IEI} lEI lEI 
-(IEI- 1) In(IEI- I)} + n(l + P(n» 

where P(n) is an oscillating function with an exponentially increasing period, 
small amplitude, and averages to zero. 

Building DAWGs for a fixed finite alphabet E requires 

Sn = O(n) 

Tn = O(n) 

To search a substring in the DAWG we simply run the string through the 
DFA as in the search function of Section 7.1.6. If the DAWG is implemented 
as DFAs like in Section 7.1.6, the running time is 

An =m 

transitions for a string of length m. 
Figure 7.2 shows the DAWG for the string sciences. 
A similar DFA can be defined for all possible subsequences in a text: 

the Directed Acyclic Subsequence Graph (DASG). The DASG has at most 
O( n log2 n) states and transitions. 

References: 
[Blumer, A. et al., 85], [Crochemore, M., 85], [Blumer, A. et al., 87], [Baeza
Yates, R.A., to app.]. 
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n 

Figure 7.2: DAWG for sciences. 

7.2.6 Hashing methods for text searching 

The main idea of hashing methods (signature encoding) is to build a signature 
from the set of all words associated with each record (usually a document) 
in the text. A signature file is a file with all the signatures of the records. 
The signature of a word is (usually) a fixed-length bit sequence, that has a 
prespecified number of bits set to 1. 

A signature file is basically a probabilistic membership tester. Using the 
signature file we can know if a word is not in the text. A positive answer 
does not necessarily mean that the word is in the record. The probability of 
error can be made arbitrarily small by adequately choosing the length of the 
signature, the number of bits set to 1, etc. 

Independently of the signature method used, a search works as follows. 
We scan the signature file sequentially searching for the signature value of the 
given query. Qualifying records are either checked (to verify that they are 
part of the answer) or they are accepted as is (in this case there may be a 
small number of incorrect answers, or false drops). The size of signature files 
can be set to be around 10% to 20% of the text size. Although the search is 
linear, it is much faster than the algorithms presented in Section 7.1 for most 
queries. An, Tn and Sn are all O(n). 

The simplest signature record is to hash every word in a document to a 
fixed-length signature, and then to concatenate all the signatures. To improve 
space and retrieve performance stop words are usually ignored. Let B be the 
size of each signature. Then 

Sn = n B bits. 
average word size 

A different signature technique is based on superimposed coding. The 
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signature for the record is the superimposition (logical or) of all the word 
signatures. For this method the signatures of the words should have fewer 1 
bits. This method is particularly attractive for searching queries with an 'and' 
condition, that is, all records which have two or more given words. An 'and' 
search is done by searching the 'or' of all the word signatures of the query. 

In this method we divide each document into sets of words of size W (log
ical blocks), and we hash every distinct word from each block in bit patterns 
of length B. The signature of a block is obtained by superimposing those bit 
patterns. Finally, the document signature is the concatenation of all block sig
natures. In this case, the optimal number of bits set to 1 (that is, to minimize 
false drops) is 

Bln2 
-W 

for single word queries. We have 

S - Bn bits. 
n - W x average word size 

These techniques can be extended to handle subword searches, and other 
boolean operations. Other variations include compression techniques. 

References: 
[Harrison, M.C., 71], [Bookstein, A., 73], [Knuth, D.E., 73], [Rivest, R.L., 74], 
[Rivest, R.L., 76], [Burkhard, W.A., 79], [Cowan, R. et ai., 79], [Comer, D. et 
ai., 82], [Tharp, A.L. et ai., 82], [Larson, P., 83], [Ramamohanarao, K. et ai., 
83], [Sacks-Davis, R. et ai., 83], [Salton, G. et ai., 83], [Faloutsos, C. et ai., 
84], [Faloutsos, C. et ai., 87], [Karp, R.M. et ai., 87], [Sacks-Davis, R. et ai., 
87], [Faloutsos, C., 88]. 

7.2.7 P-strings 

Text is sometimes used to describe highly structured information, such as, 
dictionaries, scientific papers, and books. Searching such a text requires 
not only string searching, but also consideration of the structure of the text. 
Large structured texts are often called text-dominated databases. A text
dominated database is best described by a schema expressed as a grammar. 

Just as numeric data is structured in a business database, string data 
must be structured in a text-dominated database. Rather than taking the 
form of tables, hierarchies, or networks, grammar-based data takes the form 
of parsed strings, or p-stl·ings. 

A p-string is the main data structure of a text-dominated database and it 
is formed from a text string and its parse tree (or derivation tree, see [Hopcroft 
et ai. 79, pages 82-87]). Notice that we do not require to have a parseable 
string (with the schema grammar) but instead we keep both the string and 
its parsing tree together. 
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Since p-strings represent database instances, they are subject to alteration 
via operations in a data manipulation language. It follows that as a result of 
data manipulation, the text in a p-string may not be unambiguously parseable 
by the associated grammar; thus it is necessary to implement p-strings con
taining both the text and the parse tree. 

A p-string is an abstract data type with three logical components: text, 
an implicit grammar, and parse structure. 

Example grammar: 

author := surname • • ( • • initial I • • name) + • 
surname := char + ; 
initial := char • • 
name := char + ; 

For the string Doe, John E. we have the p-string shown in Figure 7.3. 

author 

Parse /J~ tree 

surname name initial 

I I I 
String Doe John E. 

Figure 7.3: P-string example. 

Data conversion between strings and p-strings is fundamental to text pro
cessing. The operator string returns the complete text of the p-string passed 
as its argument. Conversely the operator parsed by takes a string and a non
terminal symbol and creates an instance associated with the string and having 
a parse tree constructed according to the schema and rooted by the nonter
minal. Thus, for example string('Jones' parsed by surname) yields 'Jones'. 

Other operators allow us to manipulate, construct and split p-strings as 
required. 

The operator in takes a non-terminal symbol and a p-string and returns 
the p-string whose root is the non-terminal that is first encountered when the 
argument parse tree is traversed by a pre-order search. For example, surname 
in E (or equivalently surname in author in E) thus returns the first p-string 
with root labelled surname in E. 

The every... in operator retrieves a vector of p-strings representing each 
subtree whose root is the non-terminal, in order of encounter in a pre-order 
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traversal. 
The above operators allow structured search within the text database. 

String searching algorithms can be composed with the above. For example, 

8earch('Doe' , 8tring( every surname in author in E»; 

References: 
[Gonnet, G.B. et al., 87], [Smith, J. et al., 87]. 

7.3 Other text searching problems 

Most of the problems in this section are on general sequences of symbols (for 
example, genetic sequences) or extensions of text searching to other dimen
sions (for example, 2-dimensional text searching). The problems with genetic 
sequences are heavily biased towards approximate matching, while the inter
est in 2-dimensional searching comes from picture searching where every pixel 
(or small groups of pixels) can be considered a character. 

General references: 
[Maier, D., 78], [Tzoreff, T. et al., 88], [Myers, E. et al., 89], [Amir, A. et al., 
90], [Manber, U. et al., to app.]. 

7.3.1 Searching longest common subsequences 

A subsequence of a string 8 is any sequence of characters from 8 obtained 
by deleting 0 or more characters from 8. The longest common subsequence 
(LCS) of two strings 81 and 82 is the longest string that is both a subsequence 
of 81 and 82. This problem can be solved by using dynamic programming (as 
in Section 7.1.8). The matching of two strings by their longest common sub
sequence is a subset of the alignment problem of the genetic/biochemical 
community. 

Consider two strings of the same length n. Let r be the number of matching 
points (that is, all pairs (i,j) such that 8t[z1 = 82[i]), and I. the length of the 
longest common subsequence. For every matching point (i, j), we say that its 
rank is k if the LCS of 81 [1..i] and 82[1..j] has length k. The matching'point 
(i,j) is k-dominant if it has rank k and for any other matching point (i',j') 
with the same rank either i' > i and j' $ j or i' $ i and j' > j. Let d be the 
total number of dominant points (all possible ranks). We have 

0$1. $ d $ r $ n2 

and I. $ n. 
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To compute the LCS of two strings it is enough to determine all dominant 
points. Table 7.5 shows the time and space complexities of several algorithms 
that find the length of the LCS (in general, more time and space is needed to 
find one LCS). 

Table 7.5: Complexity of algorithms for finding the length of a LCS. 

Worst-case time Space References 

n2 n2 or n [Hirschberg, 75] 

nl+ nlogn nl [Hirschberg, 77] 

(n + 1 - l)llog n (n+l-l)2+ n [Hirschberg, 77] 

(r+n)logn (r +n) [Hunt et al., 77] 

(n -l)n n2 [Nakatsu et al., 82]] 
(r+n)logn (r + n) [Mukhopadhay, 80] 

In + d(l + log(ln/d» d [Hsu et al., 84], [Apostolico, 87] 

(n -l)n (n -l)n or n [Myers, 86] 

n log n + (n - l)2 n [Myers, 86] 

nlog n + dlog(n2 /d) d+n [Apostolico, 86], [Apostolico et al., 87] 

n(n -l) n [Kumar et al., 87] 

The dynamic programming algorithm can be extended to find the longest 
common subsequence of a set of strings, also called the multiple alignment 
problem. The algorithm for this case has complexity O(nL) for L strings of 
length n. 

A related problem is to find the shortest common supersequence (SCS) of 
a set of strings. That is, the shortest string such that every string in the set 
is a subsequence of it. 

References: 
[Hirschberg, D.S., 75], [Aho, A.V. et ai., 76], [Hirschberg, D.S., 77], [Hunt, 
J. et ai., 77], [Hirschberg, D.S., 78], [Maier, D., 78], [Dromey, R.G., 79], 
[Mukhopadhay, A., 80], [Nakatsu, N. et ai., 82], [Hsu, W.J. et ai., 84], [Hsu, 
W.J. et ai., 84], [Apostolico, A., 86], [Crochemore, M., 86], [Myers, E., 86], 
[Apostolico, A. et ai., 87], [Apostolico, A., 87], [Kumar, S.K. et ai., 87], [Cor
men, T.II. et ai., 90], [Eppstein, D. et ai., 90], [Baeza-Yates, R.A., to app.], 
[Myers, E., to app.]. 

7.3.2 Two-dimensional searching 

The problem consists in finding a 2-dimensional pattern in a 2-dimensional 
text. Two-dimensional text will be defined as a rectangle nl x n2 consisting 
in nl lines, each one n2 characters long. For example, finding a small bit 
pattern in a bit-mapped screen. To simplify the formulas we use nl = n2 = n. 
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Note that now the size of the text is n2 instead of n. For this problem, the 
brute force algorithm may require O(n2m2) time, to search for a pattern of 
size m x m in a text of size n x n. 

Table 7.6 shows the time and space required by 2-dimensional pattern 
matching algorithms. Some of these algorithms can be extended to allow 
scaling of the pattern or approximate matching. However, there are no effi
cient algorithms that allow arbitrary rotations of the pattern. 

Table 7.6: Comparison of two-dimensional pattern matching algorithms. 

I Worst-case An I I Extra space I References 

m 2 n2 IEln" /(IEI- 1) 1 Brute force 
n2 +m2 n2 +m2 n+m2 [Bird, 77], [Baker, 78] 

K(n2 + m2) K(n2 +m2) m2 [Karp et al., 87] 
(K» 1) 

m2 min(m2, log n) n2 [Gonnet, 88] 
n2 +m2 n2 +m2 n2 [Zhu et al., 89] 
n2 +m2 n2log m/m + m2 n2 [Zhu et al., 89] 

mn2 n2/m + m2 m2 [Baeza-Yates et al., 90] 
n2 +m3 + lEI n(m)n2 /m + m3 + m2 +IEI [Baeza-Yates et al., 90] 

lEI (n(m) < 1) 

References: 
[Bird, R., 77], [Baker, T., 78], [Davis, L.S. et ai., 80], [Karp, R.M. et ai., 
87], [Krithivasan, K. et ai., 87], [Gonnet, G.H., 88], [Zhu, R.F. et ai., 89], 
[Baeza-Yates, R.A. et ai., 90]. 

Linear time algorithms The algorithms by Bird and Baker require 

n 2 :$ An :$ 4n2 • 

These algorithms decompose the pattern in a set of unique row-pattern strings, 
and search them in every row of the pattern using the pattern matching 
machine (see Section 7.1.4). The output of this machine is the index of the 
string (if any) which was matched. This index is used to search by column for 
the sequence of strings that compose the pattern. The vertical search is done 
with the Knuth-Morris-Pratt algorithm (see Section 7.1.2). For example, 
if the pattern is composed of the row-strings (P1.P2,P2,P3,PI), we search in 
every column for an output sequence R = (1,2,2,3,1) (see Figure 7.4). By 
performing the multiple string searching left to right, top to bottom, and the 
n KMP searches in parallel, top to bottom, only O( n) extra space (for the 
KMP states) is needed. 
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4 2 

Next character to read 

KMP states 

Pattern machine 
output 

Text 

Figure 7.4: Linear time 2-dimensional searching. 

Fast algorithm on average An algorithm using 

is obtained by searching the patterns only in rows m, 2m, ... , l~Jm of the 
text using any multiple-string searching algorithm (see Section 7.1.4). If a 
row-string is found, the algorithm checks above/below that row for the rest 
of the pattern (see Figure 7.5). On average we have 

n 2 
E[Anl = f(m)-

m 

with f(m) < 1. 
This algorithm can be improved to avoid repeating comparisons in the 

checking phase if we have overlapped occurrences. It can also be extended to 
non-rectangular pattern shapes, or higher dimensions. 

Algorithm with preprocessing of the text In this section we will de
scribe how PAT trees can be used to search in two dimensions, in particular 
search for subpictures (m x m text squares) inside a bigger picture (an nl x n2 

text rectangle), or among many bigger pictures. 
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r---------------------------------------, 
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Rowm I I 
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I - - -- I 
I I 

Pm 

Figure 7.5: Faster 2-dimensional pattern matching. 

Let a collection of disjoint pictures be an album. The size of an album is 
n, the total number of pixels of all its pictures. We will solve the problem of 
exact matching of a given subpicture into any of the pictures of an album in 
O(log n) time. To do this we will preprocess the album using at most O( n) 
storage and O( n log n) time. 

The crux of the algorithm is in devising the equivalent of semi-infinite 
strings for each of the pixels. The sistrings had the right context (linear to 
the right) for text, but for pictures, the context is two dimensional. Hence 
the equivalent of the sistring for a pixel is a semi-infinite spiral centred at 
the pixel. 

The comparing sequence for a semi-infinite spiral, sispiral is: 

... 17 
7 6 5 16 
8 1 4 15 
9 2 3 14 

10 11 12 13 

where the integers indicate the ordinal position of the comparison for the pixel 
marked as 1 (the sispiral comparing sequence). 

The main data structure for subpicture searching is a PAT tree (see Sec
tion 7.2.2 for the complexity measures) built on sispirals for each pixel. As 
with sistrings, every time that we step outside the picture we should use a 
'null' character which is not used inside any of the pictures. 

To search a square in the album, we just locate its centre, that is, a pixel 
that will develop a spiral which covers the square, and search the sispiral 
starting at this pixel in the PAT tree. The searching time is independent of 
the number of matches found. 
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There are many interesting extensions of this algorithm: 

(1) The sispiral PAT tree can be relativized to its grey scale, by computing 
the whole sispiral sequence relative to the value of the first pixel (instead 
of pixel values, difference between pixel values and initial pixel). Then 
off-grey (but consistent) searches can be done in time proportional to 
the height of the tree as before. 

(2) 900 , 1800 and 2700 rotations can be searched at the cost of one extra 
search per rotation and no extra memory. Similarly, mirror images can 
be searched at the cost of one extra search (by searching the mirror 
image of the sispiral on the searched square). 

(3) The concept of longest repetition in this case means the largest identical 
square that repeats in the album. 



APPENDIX I 

Distributions Derived 
from Empirical 
Observation 

In this appendix we will describe some probability distributions arising from 
empirical situations. The distributions described here may be used with other 
well-known distributions to test algorithms under various conditions. Some 
of these distributions are related directly to data processing. 

1.1 Zipf's law 

Zipf observed that the frequency of word usage (in written English) follows 
a simple pattern. When word frequencies are listed in decreasing order, we 
have the relation 

where Ii denotes the frequency of the ith most frequent word. Zipf observed 
that the population of cities in the USA also follows this relation closely. From 
this observation we can easily define a Zipfian probability distribution as 

1 
Pi = -.- 1 ~ i ~ n 

zHn 

The first moments and variance of this distribution are 
I n 

1'1 = -Hn 

289 
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I n(n + 1) 
1'2 = 

n(n+1 n) 
Hn -2-- Hn 

This distribution can be generalized in the two following ways. 

1.1.1 First generalization of a Zipfian distribution 

In this case the probabilities are defined by 

1 
Pi = a(i + b) (1 ~ i ~ n, b> -1) 

here a = .,p(n + b + 1) - .,p(b + 1). The first moments and variance are 
I ~-b 1'1 a 

I n(n + 1) - 2nb + 2ab2 
1'2 = 2a 

(1'2 
n 

= 2a (n + 1 + 2b - 2n/a) 

Choosing b to be an integer allows us to represent truncated Zipfian dis
tributions. Giving b a small non-integer value may provide a better fit for the 
first few frequencies. 

1.1.2 Second generalization of a Zipfian distribution 

This generalization introduces a parameter 0 so that we may define 

1 
Pi = .'H(') 

t n 

Zipf found that some word frequencies matched this distribution closely 
for values of 0 other than 1. In this case the first moments and variance are 

I H~'-l) n(1 - 0) O( 9) 
1'1 H~9) = 2 _ 0 + n 

n2 (1 - 0) ( 1+9) 
(3 _ 0)(2 _ 0)2 + 0 n 
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References: 
[Zipf, G.K., 49], [Johnson, N.L. et al., 69], [Knuth, D.E., 73]. 

1.2 Bradford '8 law 

Bradford's law was first observed in experiments dealing with the number 
of references made to a selection of books in search of information. This 
principle can be described in the following way. Assume that we have a 
collection of n books which treat a given topic, and that these books are 
placed on a shelf in decreasing order according to the number of times each 
book is referenced. Thus the most referenced book is first and so on. We then 
divide these books into k contiguous groups such that each group receives the 
same number of references. Bradford's law now states that the number of 
books in each successive division follows the ratio 1 : rn : rn2 : ... : rnA:-l for 
some constant rn. 

To translate this description into mathematical terms, we let ri be the 
expected value of the number of references to the ith most referenced book 
on our shelf. Thus we have rl ~ r2 ~ ... ~ rn. Let R(j) be the partial sum of 
the expected values of these references: 

and so 

j 

R(j) = Lri 
i=1 

R(n) = T 

where T is the total expected number of references. To divide the n books 
into k divisions satisfying the given ratio, the number of books in each division 

t b n(r;:-I) nm(m-l) nmk - 1(m_l) S' I d' . . . th mus e m -1' m'-1 , ... , m' 1 . IDce eac 1 IVlSlon receives e 
same number of references, this number must be T / k. Consequently the total 
expected number of references to the first division will be 

n(i- 1) 

~1 • _ R (n(rn - 1») _ T 
L.J r, - rnA: _ 1 - k 
i=1 

In general, for the first j divisions we have the equation 

R (rnj - 1)11) = jT 
rnA: -1 k 

(1.1) 

Now the quantities k and rn are related to one another, since for any valid 
k, Bradford's law predicts the existence of a unique rn. Examination of R(x) 
for different values of k and rn shows that in order for the law to be consistent, 
the quantity rnA: - 1 = b must be constant. This constant b defines the shape 
of the distribution. From equation 1.1 we can solve for R(x) and obtain 
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Let Pi be the probability that a random reference refers to the ith book. 
From the above discussion we have 

. _ R(i) - R(i - 1) _ I} (bi + n ) 
P. - T - k ogm b( i-I) + n 

Since rnA: - 1 = b, we have k}n rn = In (b + 1); this allows us to simplify the 
given probability to 

( bi + n ) 
Pi = logb+l b(i _ 1) + n 

The first moment of the above distribution is 

I ~ • (n(b + 1») (f(n(b + 1)/b») 
Pl = {;t 'Pi = n logb+l b -Iogb+l fen/b) (1.2) 

( 1 1) 1 b2 -3 
= n In(b+ 1) - b + 2 + 12n(b+ 1)ln(b+ 1) +O(n ) 

The second moment is given by 

I n 2 n 1 1 (n2(b - 2) 
1'2 = 62-6+3+ln(b+l) 2b +n 

b b2 ) 
- 6(b + 1) + 12(b + l)n + 0(n-2) (1.3) 

The variance is 

2 n2 (b+ 2 1) 
(T = In(b+l) 26"-ln(b+l) +0(1) (1.4) 

This distribution behaves very much like the generalized harmonic (or 
the first generalization of Zipf's distribution). When the parameter b -+ 0 
Bradford's distribution coincides with the discrete rectangular distribution. 

Although the process of accessing information from books is rarely au
tomated, there is a significant number of automatic processes in which the 
accessing of information is similar to the situation of referencing books. In 
these cases Bradford's law may provide a good model of the access probabili
ties. 

References: 
[Pope, A., 75]. 
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1.3 Lotka's law 

Lotka observed that the number of papers in a given journal written by the 
same author closely followed an inverse square distribution. In other words, 
if we were to choose an author at random from the list of contributors to 
the journal, the probability that he or she had contributed exactly i papers 
would be proportional to i- 2 • Later it was observed that for some journals an 
inverse cube law fit the data more precisely. We will generalize these two laws 
in the following way. Let n be the total number of authors who published at 
least one paper in a given journal. The probability that a randomly chosen 
author contributed exactly i papers will be given by 

1 
Pi = «(O)i' 

The first moment of this distribution corresponds to the average number of 
papers published by each author; it is given by 

I ~. «(0-1) 
J.ll = ~ IPi = «(0) 

.=1 

We immediately conclude that this law will be consistent only for 0 > 2, as 
has been noted by several other authors; otherwise this first moment will be 
unbounded, a situation which does not correspond with reality. Note that 
nJ.l~ denotes the expected number of papers published in a journal which has 
n contributors. 

For 0 ~ 3, the variance of the distribution under discussion diverges. For 
o > 3, the variance is given by 

2 = «(0 - 2) _ ((0 - 1»)2 
(T «(0) «(0) 

The median number of papers by the most prolix author can be approxi
mated by 

( )
1/(9-1) 

median ~ In (2)«(;)(0 - 1) 

References: 
[Lotka, A.J., 26], [Murphy, L.J., 73], [Radhakrishnan, T. et al., 79]. 

1.4 80%-20% rule 

The 80%-20% rule was proposed as a probabilistic model to explain certain 
data-processing phenomena. In computing folklore it is usually given as: 80% 
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of the transactions are on the most active 20% of the records, and so on 
recursively. Mathematically, let P1 ~ P2 ~ P3 ~ ... ~ Pn be the independent 
probabilities of performing a transaction on each of the n records. Let R(j) 
be the cumulative distribution of the Pi's, that is, 

j 

EPi = R(j) R(n) = 1 
i=l 

The 800/0-20% rule is expressed in terms of the function R(j) by 

R(n x 20%) = 80% 

This rule may be applied recursively by requiring that the relation hold 
for any contiguous subset of PiS that includes Pl. This requirement yields the 
necessary condition: 

R(0.2j) = 0.8R(j) 

More generally we may consider an a% - (1 - a)% rule given by 

R«1 - a)j) = aR(j), (1.5) 

The above functional equation defines infinitely many probability distribu
tions for each choice of a. One simple solution that is valid for all real j 
1S 

'8 
R(i) = ~ 

n 8 

where () = Inl({~~). Thus 0 < () ~ 1. This formula for R(i) implies 

i8 - (i - 1)8 
Pi = n 8 (1.6) 

Note that this probability distribution also possesses the required monotone 
behaviour, that is, Pi ~ Pi+1. 

The parameter () gives shape to the distribution. When () = 1 (a = 
!) the distribution coincides with the discrete rectangular distribution. The 
moments and variance of the distribution described by equation 1.6 are 

','1 = ~. (}n + 1 (-0) _ ~ + 0(n-3) 
,.. L..J api = 0 + 1 '2 - n8 12n 

i=l 

n 
I ~'2 

1'2 = L..J a Pi 
i=l 

On2 (}n 
(}+2 + (}+1 + 

+0(n-1) 

2-(} 
6 

2( -() - 1) + ( -()) 
n8 
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n 

Jl~ = L: i3pi = 
i=l 

n 

Jl~ = L: i"Pi = 
i=l 

On3 30n2 0(3 - O)n 0(1) 
0+3 + 2(0+2) + 4(0+1) + 

On" Okn"-l O(k - O)kn"-2 
0+ k + 2(0 + k - 1) + 12(0 + k - 2) 

+0(n"-3) + 0(n- 9 ) 

On2 ( 1 9) 
(0 + 1)2(0 + 2) + 0 n -

For large n, the tail of the distribution coincides asymptotically with Pi ~ 
ie-l. For the 80%-20% rule, 0 = 0.138646 ... ; consequently the distribution 
which arises from this rule behaves very similarly to the second generalization 
of Zipf's distribution. 

References: 
[Reising, W.P., 63], [Knuth, D.E., 73]. 





APPENDIX II 

Asymptotic Expansions 

This appendix contains a collection of asymptotic expansions of functions or 
expressions commonly used in the analysis of algorithms. The criterion used 
for the length of the expansion, that is order, is rather artificial and depends 
upon computability and number of terms in the numerator, and is at most 7. 

It is assumed that the expansions are for n - 00 unless otherwise specified. 
It is also assumed that a, b, c and z are all 0(1) when n - 00. 

In the following, ((z) is the classical Riemann zeta function, defined by 

00 

((z) = L n-z 

n=l 

r(z) denotes the gamma function, defined by 

r(z + 1) 

tjJ(z) denotes the psi function, defined by 

tjJ(z + 1) = r'(z + 1) = 
r(z + 1) 

and r will denote Euler's constant, 

1 
tjJ(z) + -

z 

r = lim lIn - In (II) = 0.5772156649 ... 
n .... oo 

297 
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11.1 Asymptotic expansions of sums 

~[k(n _ k)]-1/2 = 1r + n-1/2 (2«1/2) + «-1/2) + 3«-3/2) (ILl) 
L...J n 4n2 
1:=1 

5«-5/2) 35«-7/2) 63«-9/2) 231«-11/2) ) 
+ 8n3 + 64n4 + 128n5 + 512n6 + ... 

~[k(n - k)P/2 = n21r +..;n (2« -1/2) _ «-3/2) _ «-5/2) (11.2) 
L...J 8 n 4n2 
1:=1 

_ «-7/2) _ 5«-9/2) _ 7«-11/2) _ 21«-13/2) _ ... ) 
8n3 64n4 128n5 512n6 

n-1 

L[k(n - k)]-' = (n/2)1-2 • .ji r(1- s) + 2n-' ((s) + s«s - 1) (11.3) 
1:=1 r(3/2 - s) n 

s(s + 1)«s - 2) r(s + i)«s - i) ) 
+ 2n2 + ... + r(s)i!ni + ... [s :I 2,3,4, ... ] 

n (1 1 e + 2 7 e2 + 48e + 24 
n + ~ + -2e-2n-2 + --24-e-=-3n-=-3- (11.4) 

+ ge3 + 160e2 + 216e + 48 + 743e4 + 30720e3 + 84240e2 + 46080e + 5760 
48e4n4 5760e5n5 

1075e5 + 97792e4 + 486000e3 + 491520e2 + 144000e + 11520 ) 
+ 11520e6n6 + ... 

Ln kn _ n (_e_ _ e(e + 1) e(e + 5)(l1e2 + 2e - 1) ) 
- n () + ()5 2 + ... 

1:=1 e - 1 2 e - 1 3n 24 e - 1 n 
(11.5) 

_. (n 1 s r(s + 3) 
«s) + n (1 _ s) + '2 - 12n + 720r(s)n3 (11.6) 

r(s+5) r(s+7) ) 
- 30240r(s)n5 - 1209600r(s)n7'" [s:l 1] 
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~ Zkk = (z _1)-lZn+l zn+i(i - 1)!n! 
~ -In(l-z)+ (n+l) +"'+(z-l)i(n+i)!+'" 

Zn+l ( 1 z + 1 
= -In (1 - z) + (z _ l)n 1 + (z _ l)n + (z _ 1)2n2 

+ z2 + 4z + 1 + (z + 1)(z2 + 10z + 1) 
(z - 1)3n3 (z - 1)4n4 

Z4 + 26z3 + 66z2 + 26z + 1 ) 
+ (z _ 1)5n5 + ... [0 ~ z < 1] 

2n n 1 
-Enn. (.) 

0=0 0 

~(I-kz/n)k __ 
~ In (n/z) - El(Z) 
k=l 

-z (z + 1 3z3 + z2 + 2z + 2 z - 3 4 
+e ~ - 24n2 + 48n3Z 

15z7 - 135z6 + 230z5 - 2z4 - 8z3 - 24z2 - 48z - 48 ) 
- 5760n4 + ... 

where E1(z) = Jzoo e~t dt is the exponential integral. 

~ k2+ak _ z-a2/4~ a+l (2 1) (In z 
~z - -- -- - -- + a a - -
k=l 2 In z 2 12 

(11.7) 

(11.8) 

[z > 0] 

(11.9) 

(a2 + 1) In2 z (3a4 + 3a2 + 10) In3 z (a2 + 3)(a4 - 2a2 + 7) In4 z 
120 + 5040 - 30240 

(a8+a6+a4-21a2+210)In5z ) (I k) (l" k) 
+ 665280 + . . . + 0 11 Z lor any . 

00 k 

"" _z_ _ z-a (t/J(1 + a) - 'Y - In(l- z) - a(z -1) 
~a+k -
k=l 

(11.11) 
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_a(a-l)(z-I)2 _ _ a!.(Z-I)i) [O<z<l] 
4 ... i i! 

where a!. = a( a-l)( a - 2) ... (a - i + 1) denotes the descending factorial. 

00 k 

L~2 = 
k=l 

11"2 
I(z) = "6 - In(1 - z) In (z) - 1(1 - z) 

= 11"2 -In(l-z)lnz _ (l-z) _ (l-z)2 
6 4 

(1 - z)3 
9 

(11.12) 

Inn -a (-I)mr<m)(I) 1 
-( ) '""' (11.13) W m!r(l- m - a) lnm n 

m~O 

__ 1_ ~ (-a)(_I)m r <m)(I)ln- a- m n 
(-a)! W m 

m=O 

+0 ( In-na n) [a = -1, -2, -3, ... ] 

11.2 Gamma-type expansions 

n 1 
L k = 11>( n + 1) +"y = H n = 1 1 

"y + In n + 2n - 12n2 
k=l 

n 

LIn k In r(n + 1) 
k=l 

111 +-----+-_ ... 
120n4 252n6 240n8 

In 211" = (n+l/2)lnn-n+-2-

1 1 1 1 
+ 12n - 360n3 + 1260n5 - 1680n7 ... 

(11.14) 

(11.15) 

(11.16) 
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n! = r(n+ 1) ( n)n ~( 1 1 139 = e v2wn 1 + 12n + 288n2 - 51840n3 (11.17) 

571 163879 ) 
- 2488320n4 + 209018880n5 + ... 

= nnv'211'(n + 1/6)e-n (1 + 14!n2 + 0(n-3») 

11.3 Exponential-type expansions 

(1 /)n _ z (1 _ ~ 3z + 8 3 _ (z + 2)(z + 6) 4 + z n - e 2n + 24n2 z 48n3 z (11.18) 

15z3 + 240z2 + 1040z + 1152 5 (z + 4)(Z3 + 68z2 + 408z + 480) 6 

+ 5760n4 z - 11520n5 z 

63z5 + 2520z4 + 35280z3 + 211456z2 + 526176z + 414720 7 ) 
+ 2903040n6 z _ ... 

(1 + l/n)n = ( 1 11 7 2447 
e 1 - 2n + 24n2 - 16n3 + 5760n4 (11.19) 

959 238043 ) 
- 2304n5 + 580608n6 - •.• 

(1- l/n)n = 1 ( 1 5 5 337 
e- 1 - 2n - 24n2 - 48n3 - 5760n4 

(11.20) 

137 67177 ) 
- 3840n5 - 2903040n6 - ••• 

(1 + :2) n = b b2 b - 3 2 b - 12 3 
1 + n + 2n2 + 6n3 b + 24n4 b (11.21) 

b2 - 30b + 40 b3 b2 - 60b + 330 b4 
+ 120n5 + 720n6 + ... 

(1 + :3f c c2 c2 c3 c3 
(11.22) = 1+-+---+--_··. 

n2 2n4 2n5 6n6 2n 7 
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11.4 Asymptotic expansions of sums and defi-
nite integrals containing e-z2 

100, rmr 1 1 1 (_I)i-1 
1 e-" Ind'" = V '61' 1 + + + (II 23) ... -2- - 3n - 10n2 42n3 - ... i!(2i + l)ni . 

100 e-.,'/n 
--dz = 

1 z' 

"f Inn 1 1 1 (_I)i-1 
-"2 + -2- + 2n - 8n2 + 36n3 - ••• + i! 2i ni 

e- 1/n 2 100 e-.,'/n 
--- --dz 
8 - 1 (8 - 1)n 1 z,-2 

(8) 1) 

.,ftiiIn (n/4) - "f _ ! + 1 + In n 
422 

V7r/ n In n + 5/3 - "f .Ji[n3 
+-2-- 6n - 6 

rOO n roo e-'" In 
Jo e-.,'/n In (1 + z)zdz = "2 Jo 1 + z dz [see 11.29] 

.j7m 
-2-

In n - "f . r:T::/ In n + 1 - "f 
2 + y7r,n - 2n 

2.Ji[n3 In n + 3/2 - "f 4~ 
- 3 + 4n2 + 15 - ... 

(11.24) 

(11.25) 

(11.26) 

(11.27) 

(11.28) 

(11.29) 

T(8) = _1_ + 2[T(8 - 2) - T(8 - 1)] 
8-1 n(1-s) 

[s> 1] (11.30) 

n¥r(lT) r() (s-t) (s-2t) = t + ':t S - n + 2n2 - ... 

[8 - mt :F 1 for m = 0, 1,2, ... J 

= (_n)~m (In n + t/J(m + 1)) + (s) _ (s - t) 
tm. n 

(11.31) 
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(s - 2t) (s - 3t) + 2n2 - 6n3 + ... [s - mt = 1, (m = 0, 1,2, ... ) 

and (s - mt) interpreted as 7] 

= nlTr(~)(ln(n)+\lf(~» -('(s) + ('(s-t) (11.32) 
t 2 n 

('(s - 2t) 
- 2n2 + . . . [s - mt =/; 1 for m = 0,1,2, ... ] 

= 
(_n)-m ("32 -\If'(m+ 1)+ (In(n) + \If(m+ 1»2) 

2t2m! 
"'() ('(s - t) ('(8 - 2t) 

- .. 8 + - 2 2 + .... n n 
[8 - mt = 1 and ('(8 - mt) interpreted as 71, 

where 71 = - !i~('(x) + (x ~ 1)2] 

II.5 Doubly exponential forms 

In the functions below, it is assumed that P(x) is some periodic function with 
period 1. 

( Z)2. (n - z) 1 7 E 1 - - = -log2 log2 -- + - + -
k?:O n n 2 In 2 

(11.33) 

( ( n - z)) z z2 4z3 41z4 136z5 

+P log2 log2 -n- + ;; + 3n2 + 21n3 + 315n4 + 1395n5 + ... 

I P(x) I :::; 0.00000316 ... 

(II.34) 

( ( n-z)) z f3z2 
+P log~ log~ -n- + (f3 _ l)n + 2(f32 _ l)n2 

f3(2 + f3 + 2(32)z3 f3(6 + f3 + 13f32 + f33 + 6(34)Z4 
+ 6(f3 + 1)(f33 - l)n3 + 24(f34 - 1)(f32 + f3 + l)n4 + ... 
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~ -. 1 2 L)1- e-ne ) = In n + 'Y + '2 + P(ln n) + e-n + e-ne + e-ne + ... (11.35) 
k~O 

I P(z) I :5 0.0001035 

__ In (In n) + 'Y P(I (I » -lr 1 

- In fJ + ogp n n + n (11.36) 

[fJ < 1] 

(11.37) 

e-2n e-4n 
+nP(log2 n) - -2- - -4- - ... 

I P(z) I :5 0.000000173 

(11.38) 

'Y 1 kl k2 
log n + - + - + - + - + ... + P(loga n) 

a Ina 2 n n2 

where 

11.6 Roots of polynomials 

For the following polynomials we find an asymptotic expression of the real root 
closest to 1. We use the transcendental function w(z) defined by 

w(z)eW(Z) = z 

It is known that w(z) = In z -In (In z) + 0(1) when z -+ 00. 

azn + bzn - 1 + f(n) = 0 (11.39) 



ASYMPTOTIC EXPANSIONS 305 

where y 

x = 1 + !!.. + (y + 2)y2 + (4y3 + 23y2 + 40y + 24)y3 + O(y4 n -4) 
n 2(y + 1 )n2 24(y + 1 )3n3 

where y = w( -nf(n» 

(a + n)xn + (b - n)xn- 1 + f(n) = 0 

x = 1+ y-a-b 
n 

(11.40) 

(11.41) 

+ 2a(a + b) + «a + b)2 - 4a - 2b)y + 2(1- a - b)y2 + y3 + O(~n-3) 
2(y + 1)n2 

where y = w( _eoH f( n» 

(a + n)xn + (b - cn)xn- 1 + f(n) = 0 [c ::/1] (11.42) 

x = 1+;+:2C~1+~) 
y (b+ac+c2 +C(C-1/2)Y y2) O( 4 -4) 

+ n3 (c _ 1)2 +"6 + y n 

where y = In ( f(n) ) 
(c-1)n-b-a 

II.7 Sums containing descending factorials 

For the following formulas we will denote 

g(x) = L f(x i ) 

i~O 
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or alternatively 

g(x) = L ai xi 
i;::O 

the sum being convergent in some region around 0, and 

gk(X) = L i~f(Xi) 
i;::O 

Descending factorials are denoted by i~ = i(i - 1)(i - 2) ... (i - k + 1). 
In all cases, a = n/m. 

g(a) + g'(a) - g~(a) 
2m 

(11.43) 

3a(g;(a) - g~(a) + g' (a)) - g;(a) - g~(a) + g' (a) 
+--~~~~~~~2~4-m-n~~--~~--~~ 

+ O(n-3 ) 

, 
ag (a) a . II 

= g(a) - ~ + 24m2 (3 a g'V(a) + 8g (a)) (11.44) 

L f(n~)=g(a) + (g'(a) - g~(a))(1-a) 
. m!. 2m .;::0 

(11.45) 

+ (1 - a)[3a(1 - a)(g; - g~ + g') - (7a + 1)g; + (5a - 1)(g~ - g')] + O(n-3 ) 

24mn 

() a(1 - a)g' (a) 
9 a - --.:....----:~:.-....:.....:.. 

2m 

+ a~~::) [3a(1 _ a)giv + 8(1 - 2a)g" - 12g'] 

a(1 - a) 2 . 
+ [-a 2 (1 - a) gV' - 8a(1- a)(1 - 2a)gV 

48m3 

(11.46) 

-12(1 - 6a + 6(2 )giv + 48(1- 2a)g" - 24/] + O(m-4) 
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"'/(n!) ( k-l I-P (k-l)2(k+l) 
~ = n - -2- + ~ - 48n2 (11.47) 

n 

where 

_ (k - 1)(k + 1)(73k2 - 240k + 143) + .. . )T l(n!.) 
~w~ -

_ I(n!.) + k(_I_ + k - 1 + 19(k - 1)(k - 2) + .. . )n!' t' (n!.) 
2 12n 24n2 720n3 

( 1- k2 _ (k -1)2(k + 1) _ (k - 1)2(k + 1)(7k - 17) ... ) T (n!.) 
+ 24n 48n2 576n3 + 1 

k2(k -1)(n!.)2/(n!') 
240n3 

k3(n!)3/' (n!.) 
720n3 

_ (k - 3)(k -1)(k + 1)(k + 3)T3(n!.) + ... 
640n3 

Xi/k J . n(x) = T I(x) x- l / k - 1 dx 

II.8 Summation formulas 

Euler-Maclaurin summation formula 

n-1 n ( 00 (i-I») ~=n 
{; I(k) = 1 I(x)dx + tt Bd i! (x) ~=1 (11.48) 

where Bi are the Bernoulli numbers Bo = 1, B1 = -1/2, B2 = 1/6, B4 = 
-1/30, B6 = 1/42, B8 = -1/30, .... 

r (/(X)' (x) " (x) 1(5)(x) 
= i1 I(x)dx + --2- + I 12 - I 720 + 30240 

1(7)(x) )~=n 
1209600 + . .. ~=1 
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If we write 

n-l n 00 (i-I) t; f(k) = 1 f(:c)d:c + cu, a) + t; Bd i! (n) 

then, if f(:c) = Ei ai:ci + Ei 6i In :c J;i + Ei Ci In2(:c):ci + ... (i varying over 
the reals), 

( 11"2 ) ao 5al a2 31a3 
6"" - 1 a_2 + '}'a_l + 2" + 12 + "3 + 120 

a4 41a5 60 (ln (211") - 2) 
+5 + 252 + ... + 2 + ... 

(11.49) 

where ¢(i) = «-i) + i~I' ¢(-l) = '}'; ¢'(-1) = -'}'1, and ifa_l = 0, 

CU,O) = E ai« -i) - E 6ic' (-i) + ... (11.50) 

ao al a3 a5 60 In 211" -- - - + - - - + ... + ... 
2 12 120 252 2 

General references: 
[de Bruijn, N.G., 70], [Abramowitz, M. et al., 72], [Knuth, D.E., 73], [Knuth, 
D.E., 73], [Bender, E.A., 74], [Gonnet, G.H., 78], [Greene, D.H. et al., 82], 
[Graham, R.L. et al., 88]. 
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APPENDIX IV 

Algorithms Coded in 
Pascal and C 

The following entries are selected algorithms which are coded in a language 
different from that used in the main entries. 

IV.1 Searching algorithms 

3.1.1: Insertion for arrays (C) 

void insert( key, r) 
typekey keYj dataarray rj 

{ extern int nj 

if (n>=m) Error /*** Table is full ***/j 
else r[n++J.k = keyj 

} 

375 
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3.1.2: Insertion for lists (C) 

data record * insert( new, list) 
typekey new; datarecord *Iist; 

{ extern int n; 
n++; 
return(NewNode(new, list)); 
} 

3.1.2: Self-organizing (Transpose) sequential search (C) 

int search( key, r) 
typekey key; dataarray I, 

{ extern int n; 
int i; 
datarecord tempr; 

for (i=O; i<n-1 && r(z].k!= key; i++); 
if (key == r(z].k) { 

if (i>O) { 
/*** Transpose with predecessor ***/ 
tempr = r[z]; 
r(z] = r[i-1]; 
r(--z] = tempI, 
}; 

return(i); /*** /ound(r(z]) ***/ 
} 

else l'eturn(-l); /*** not/ound(key) ***/ 
} 

3.2.1: Binary search for arrays (C) 

int search( key, r) 
typekey key; dataarray r; 

{ int high, i, low; 
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for (low=(-I), high=n; high-low> 1; ) 
{ 
i = (high+low) / 2; 
if (key <= r[l].k) high = i; 

else low = i; 
} 

if (key==r[high].k) return(high); 
else return ( -1 ); 

} 

3.2.1: Insertion in a sorted array (C) 

void insert( new, r) 
typekey new; dataarray r; 

{ extern int n; 
int i; 

} 

if (n>=m) Error /*** table is full ***/; 
else {for (i=n++; i>=O && r[z].k>new; i--) r[i+l] = r[z]; 

r[i+l].k = new; 
} 

3.3.4: Linear probing hashing: search (C) 

int search(key, r) 
typekey key; dataarray r; 

{ int i, last; 

i = hashfunction(key) ; 
last = (i+n-l) % m; 
while (i!=last && !empty(r[l]) && r[z].k!=key) 

i = (i+l) % m; 
if (r[l].k==key) return(i); 

else return( -1); 
} 
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3.3.4: Linear probing hashing: insertion (C) 

void insert( key, r) 
typekey key; dataarray r; 

{ extern int n; 
int i, last; 

i = hashfunction(key) ; 
last = (i+m-1) % m; 
while (i!=last && !empty(r[z]) && !deleted(r[z]) && r[z].k!=key) 

i = (i+1) % m; 
if ( empty( r[ z]) II deleted( r[ zm 

{ 
/*** insert here ***/ 
r[ z]. k = key; 
n++; 
} 

else Error /*** table full, or key already in table ***/; 
} 

3.3.5: Double hashing: search (C) 

illt search( key, r) 
typekey key; dataarray r; 

{ int i, inc, last; 

i = hash/unciion(key) ; 
inc = increment(key); 
last = (i+(n-1)*inc) % m; 
while (i!=last && !empty(r[z]) && r[z].k!=key) 

i = (i+inc) % m; 
if (r[z].k==key) return(i); 

else return ( -1 ); 
} 
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3.3.5: Double hashing: insertion (C) 

void insert( key, r) 
typekey keyj dataarray r; 

{ extern int nj 

int i, inc, lastj 

i = hashfunction(key) j 

inc = increment(key)j 
last = (i+(m-1)*inc) % mj 
while (i!=last && !empty(r(z]) && !deleted(r(I]) && r(1].k!=key) 

i = (i+inc) % mj 
if ( empty( r( z1) II deleted( r( I])) 

{ 
/*** insert here ***/ 
r(1].k = keyj 
n++j 
} 

else Error /*** table full, or key already in table ***/j 
} 

3.3.8.1: Brent's reorganization scheme: insertion (C) 

void insert( key, r) 
typekey keyj dataarray r; 

{ extern int nj 

int i, inc, ii, in it, j, jjj 

init = hashfunction(key)j 
inc = increment( key)j 
for (i=Oj i<=nj i++) 

for (j=ij j>=Oj j--) 
{ 
jj = (init + j*inc) % mj 
ii = (jj + (i-j)*increment(r[jJ].k» % mj 
if ( empty( r( it]) II deleted( r( it])) 

{ 
/*** move record forward ***/ 
r( it] = r[jJ] j 
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}; 

/*** insert new in rfJ)] ***/ 
rf.iJ].k = key; 
n++; 
return; 
} 

Error /*** table is full ***/; 
} 

3.4.1: Data structure definition for binary trees (C) 

typedef struct btnode { /*** binary tree definition ***/ 
typekey k; /*** key ***/ 
struct btnode * left, Hight; /*** pointers to subtrees ***/ 
} node, * tree; 

3.4.1.1: Binary tree search (C) 

search( key, t) 
typekey key; 
tree t; 
{ 
while(t != NULL) 

if (t ->k == key) 
{ found(t); return; } 

else if (t ->k < key) t = t ->right; 
else t = t ->/eft; 

notfound(key); 
} 

3.4.1.1: Binary tree insertion (C) 

tree insert( key, t) 
typekey key; 
tree t; 
{ 
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if(t==NULL) t = NewNode(key, NULL, NULL); 
else if(t ->k == key) 

Error; /*** key already in table ***/ 
else if(t ->k < key) t ->right = insert(key, t ->right); 

else t ->left = insert(key, t ->left); 
return(t); 
} 

Note that the insertion algorithm returns the new tree, as 'e' does not 
have var variables. 

3.4.1.3: Height balanced tree left rotation (e) 

tree lrot( t) 
tree t; 

{ tree temp; 
int a; 

} 

temp = t; 
t = t ->right; 
temp ->right = t ->left; 
t ->left = temp; 

/*** adjust balance ***/ 
a = temp ->bal; 
temp ->bal = a-I - max(t ->bal, 0); 
t ->bal = min(a-2, min(a+t ->bal-2, t ->bal-l)); 
return(t); 

3.4.1.4: Weight balanced tree insertion (e) 

tree insert(key, t) 
typekey key; 
tree t; 

{ if(t == NULL) { 

} 

t = NewNode(key, NULL, NULL); 
t ->weight = 2; 
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} 

else iC(t ->k == key) 
Error; /*** Key already in table ***/ 

else { iC(t ->k < key) t ->right = insert(key, t ->right)j 
else t ->left = insert(key, t ->left)j 

t ->weight = wt(t ->left) + wt(t ->right)j 
t = checkrots( t)j 

} 
return(t)j 

3.4.1.4: Weight balanced tree deletion (C) 

tree delete( key, t) 
typekey keyj 
tree tj 

{ if(t == NULL) Error; /*** key not found ***/ 

} 

else { 
/*** search for key to be deleted ***/ 
iC( t ->k < key) t ->right = delete(key, t ->right)j 
elseif(t->k> key) t->left = delete(key, t->left)j 

/*** key found, delete if a descendant is NULL ***/ 
else if(t ->left == NULL) t = t ->rightj 
else if(t ->right == NULL) t = t ->leftj 

/*** no descendant is null, rotate on heavier side ***/ 
else if( wt( t ->left) > wt( t ->right» 

{ t = rrot(t)j t ->right = delete(key, t -> right) j } 

else { t = lrot( t) j t - > left = delete( key, t - > left) j } 

/*** reconstruct weight information ***/ 
iC(t != NULL) { 

} 

t ->weight = wt(t ->left) + wt(t ->right)j 
t = checkrots(t)j 
} 

return(t)j 
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3.4.1.4: Weight balanced tree left rotation (C) 

tree lrot( t) 
tree tj 

{ tree temp; 

} 

temp = t; 
t = t ->rightj 
temp ->right = t ->leftj 
t ->left = temp; 
/*** adjust weight ***/ 
t ->weight = temp ->weightj 
temp ->weight = wt(temp ->left) + wt(temp ->right); 
return(t)j 

The Pascal data structure used to define B-trees is 

3.4.2: B-tree data structure (Pascal) 

btree = 1 nodej 
node = record 

d: O .. 2*Mj 
k : array [1..2*M] of typekeYj 
p : array [O .. 2*M] of btree 
endj 

Note that the lexicographical order is given by the fact that all the keys 
in the subtree pointed by p[l1 are greater than k[i] and less than k[i + 1]. 

3.4.2: B-tree search (Pascal) 

procedure search(key: typekeYj t : btree)j 

var i: integer; 
begin 
if t=nil tben { *** Not Found ***} 

notfound(key) 
else witb t1 do begin 
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i:= 1; 
while (i<d) and (key>k[a]) do i := i+l; 
if key = k['1 then {*** Found ***} 

found( tt, i) 
else if key < k[a1 then search(key, p[i-l]) 

else search(key, p[.]) 
end 

end; 

3.4.2: B-tree insertion (Pascal) 

function NewNode(kl : typekey; pO, pI : btree) : btree; 

var t: btree; 
begin 

new(t); 
tt .p[O] := pO; 
t1.p[l] := pI; 
tt .k[l] := k1; 
tt·d:=I; 
NewNode:= t 

end; 

procedure insert(key : typekey; var t: btree); 

var ins: typekey; 
NewTree : btree; 

function Inter1lallnsert(t : btree) : typekey; 
var i, j: integer; 

ins : typekey; 
tempr: btree; 

begin 
if t=nil then begin {*** The bottom of the tree has been reached: 

indicate insertion to be done ***} 
InternalInsert := key; 
NewTree := nil 

end 
else with tt do begin 

Internallnsert := No[(ey; 
i:= 1; 
while (i<d) and (key>k[t]) do i := i+l; 
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if key = k[ 11 then 
Error { *** Key already in table ***} 

else begin 
if key> k[.1 then i := i+1j 
ins := Internallnsert(p[i-1])j 
if ins <> NoKey then 
{*** the key in "ins" has to be inserted in present node ***} 

if d<2*M then InslnNode(t, ins, NewTree) 
else {*** Present node has to be split ***} 
begin 

{*** Create new node ***} 
if i<=M+1 then begin 

tempr := NewNode(k[2*M], nil, p[2*M])j 
d:= d-1j 
InslnNode(t, ins, NewTree) 

end 
else tempr:= NewNode(ins, nil, NewTree)j 
{*** move keys and pointers ***} 
for j:=M+2 to 2*M do 

InslnNode(tempr, kfJ1, pfJ])j 
d:= Mj 
temprl.p[O] := p[M+1]j 
Internallnsert := k[M+1]j 
NewTree := tempr 

end 
end 

end 
endj 

begin 
ins := Internallnsert( t) j 
{*** check for growth at the root *** } 
if ins <> NoKey then t := NewNode(ins, t, NewTree) 

endj 

The insertion code uses the function InsertlnNode, described below. 

3.4.2: Insert an entry in a B-tree node (Pascal) 

procedure InslnNode(t : btreej key: typekeYj ptr: btree)j 

label 999; 
var j: integer; 
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begin 
with tf do begin 

j:= d; 
while j >= I do 

if key < kfJ] then begin 
kfj+l] := kfJ]; 
pfj+l] := pfJ]; 
j := j-l 
end 

else go to 999; {*** break *** } 
999: 
kfj+l] := key; 
pfj+l] := ptr; 
d:= d+l 
end 

end; 

3.4.2: Auxiliary functions for B-tree insertion (C) 

btree NewNode(kl, pO, pI) 
typekey k1; 
btree pO, pI; 

{btree tempr; 

} 

tempr = (btree)malloc(sizeof( node)); 
tempr ->p[O] = pO; 
tempr ->p[l] = pI; 
tempr ->k[O] = kl; 
tempr ->d = 1; 
return( tempr); 

InsI71N ode( t, key, ptr) 
btree t, ptr; 
typekey key; 

{int j; 
for(j=t ->d; j>O && key<t ->kfj-l]; j--) { 

t ->kfJ] = t ->kfj-l]; 
t ->pfj+l] = t ->pfJ]; 
} 

t ->d++; 
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t ->kfJ] = key; 
t ->p[j+1] = ptr; 

} 

IV.2 Sorting algorithms 

4.1.2: Linear insertion sort (Pascal) 

procedure sort(var r: ArrayToSort; 10, up : integer); 

var i, j : integer; 
tempr: A rrayEntry; 
flag: boolean; 

begin 
for i:=up-1 downto 10 do begin 

tempr := r( I]; 
j:= i+1; 
flag := true; 
while (j<=up) and flag do 

if tempr.k > rfJ].k then begin 
r[j-1] := rfJ]; 
j:= j+1 
end 

else flag := false; 
r[j-1] := tempr 
end 

end; 

The above algorithm is slightly more complicated than the C version, as 
the internal loop cannot test for the double condition in a single statement. 
This forces the use of the boolean variable flag. 

4.1.2: Linear insertion sort with sentinel (Pascal) 

procedure sort(var r: ArrayToSort; 10, up : integer); 

var i, j: integer; 
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tempr: ArrayEntry; 
begin 
r(up+l].k:= MaximumKey; 
for i:=up-l downto 10 do begin 

tempr:= r(a]; 
j:= i+l; 
while tempr.k > rL1].k do begin 

r(j-l] := rL1]; 
j:= }+1 
end; 

r(j-l] := tempr 
end 

end; 

4.1.3: Quicksort (with bounded stack usage) (Pascal) 

procedure sort(var r: ArrayToSort; 10, up : integer); 

var i, j: integer, 
tempr: ArrayEntry; 

begin 
while up>lo do begin 

i := 10; 
j:= up; 
tempr := r(lo]; 
{*** Split file in two ***} 
wbile i<j do begin 

while rL1J.k > tempr.k do 
j:= j-l; 

r(.] := rL1]; 
while (i<J) and (r(.].k<=tempr.k) do 

i := i+l; 
rL1] := r(z] 
end; 

r(.] := tempr, 
{*** Sort recursively, the smallest first ***} 
if i-Io < up- i tben begin 

sort( r,/o,i-l); 
10 := i+l 
end 

else begin 
sort(r,i+l,up); 



end 
end; 

up := i-I 
end 
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4.1.3: Quicksort (with bounded stack usage) (C) 

sort( r, 10, up) 
ArrayToSort r; 
int 10, up; 

{int i, j; 
A rrayEntry tempr; 
while (up>lo) { 

} 

i = 10; 
j = up; 
tempr= r(lo]; 

/*** Split file in two ***/ 
while (i<}) { 

for (; rb].k > tempr.k; j--); 
for (r(z]=rb]; i<j && r(z].k<=tempr.k; i++); 
rb] = r(,]; 
} 

r( I] = tempr; 
/*** Sort recursively, the smallest first ***/ 
if (i-Io < up-i) {sort(r,lo,i-l); 10 = i+l; } 

else {sort(r,i+l,up); up = i-I; } 
} 

The above version of Quicksort is designed to prevent the growth of the re
cursion stack in the worst case (which could be O(n». This is achieved by 
changing the second recursive call into a while loop, and selecting the smallest 
array to be sorted recursively. 

4.1.4: Shellsort (Pascal) 

procedure sort(var r: ArrayToSort; 10, up : integer); 

label 999; 
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var d, i, j: integer; 
tempr: A rrayEntry; 

begin 
d := up-Io+l; 
while d>1 do begin 

if d<5 then d := 1 
else d := trunc(0.45454*d); 

{*** Do linear insertion sort in steps size d ***} 
for i:=up-d downto 10 do begin 

end 
end; 

tempr := r(,]; 
j:= i+d; 
while j <= up do 

if tempr.k > rfJ].k then begin 
r(j-dJ := rfJ]; 
j:= j+d 
end 

else goto 999; {*** break *** } 
999: 
r(j-dJ := tempr 
end 

As this algorithm is a composition using linear insertion sort (see Section 
4.1.2), the same comments can be applied. 

For a predetermined, not computable, sequence of increments, the Shell
sort algorithm becomes: 

4.1.4: Shellsort for fixed increments (C) 

int Increments[] = {34807,15823,7193,3271,1489, 
677 ,307,137,61,29,13,5,2,1,0}; 

sort( r, 10, up) 
ArrayToSort r; 
int 10, up; 

{int d, i, id, j; 
A rrayEntry tempr; 
for (id=O; (d=Increments[ idJ) > 0; id++) { 

/*** Do linear insertion sort in steps size d ***/ 
for (i=up-d; i>=lo; i--) { 

tempr = r(z]; 
for (j=i+d; j<=up && (tempr.k>rfJ].k); j+=d) 



} 
} 

r[j-clJ = rIJ]; 
r[j- clJ = tempr; 
} 

4.1.5: Heapsort (C) 

sort( r, 10, up) 
ArrayToSort r; 
int 10, up; 

{int i; 
/*** construct heap ***/ 

ALGORITIlMS CODED IN PASCAL AND C 391 

for (i=up/2; i>l; i--) siJtup(r,i, up); 
/*** repeatedly extract maximum ***/ 
for (i=up; i>l; i--) { 

siJtup( r,l, I); 
exch ange( r, 1, i); 
} 

}; 

4.1.6: Interpolation sort (Pascal) 

procedure sort(var r: ArrayToSort; 10, up : integer); 

var iwk: Arraylndices; 
out: A rrayToSort; 
tempr: ArrayEntry; 
i, j: integer; 
flag: boolean; 

begin 

.iwk[lo] := 10-1; 
for i:=lo+1 to up do iwk[z] := 0; 
for i:=lo to up do begin 

j := phi(r[I].k, 10, up); 
iwklJ] := iwklJ]+l 
end; 
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for i:=lo to up-l do iwk[i+l] := iwk[i+l] + iWk[a]; 
for i:=up downto 10 do begin 

j := phi(r[a].k, 10, up); 
out[ iwkU]] := r[ I]; 
iwkU] := iwkU]-1 
end; 

for i:=lo to up do r[z] := out[a]; 
{*** Linear-insertion sort phase ***} 
for i:=up-l downto 10 do begin 

tempr := r[a]; 
j:= i+l; 
flag := true; 
while (j<=up) and flag do 

if tempr.k > r[J].k then begin 
rfj-l] := r[J]; 
j:= j+l 
end 

else flag := false; 
rfj-l] := tempr 
end; 

end; 

4.1.6: Interpolation function (Pascal) 

function phi( key: typekey; 10, up : integer) : integer; 
var i: integer; 
begin 
i := trunc«key-MinJ(ey) * (up-Io+1.0) / (MaxJ(ey-MinJ(ey» + 10; 
phi := i; 
if i> up then phi := up 

else if i<lo then phi := 10 
end; 

4.1.6: Interpolation (in-place) sort (C) 

sort( r, 10, up) 
ArrayToSort r; 
int 10, up; 



{Arraylndices iwk; 
ArrayEntry tempr; 
int i, j; 
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for (i=lo; i<=up; i++) {iwk[z] = 0; r(.].k = -r(a].k;} 
iwk[ 10] = /0-1; 
for (i=lo; i<=up; i++) iwk(Phi(-r(.].k,lo,up)]++; 
for (i=lo; i<up; i++) iwk[i+l] += iwk[.]; 
for (i=up; i>=lo; i--) if(r(I].k<O) 

do { 
r(a].k = -r(.].k; 
j = iwk(Phi(r(.].k, 10, up)]--; 
tempr = r( I]; 
r(.] = r[J]; 
r[J] = tempr; 
} while (i != J); 

for (i=up-l; i>=lo; i--) { 
tempr = r( a]; 

}; 

for (j=i+l; j<=up && (tempr.k>r[J].k); i++) 
rfj-l] = r[J]; 

rfj-l] = tempr; 
} 

The above algorithm only works for positive keys. 

4.1.7: Linear probing sort (C) 

sort( r, 10, up) 
ArrayToSort r; 
int 10, up; 

{ArrayToSort rl; 
int i, j, uppr; 
uppr = up + (UppBoundr-up)*3/4; 
for (j=lo; j<=up; i++) rllJ] = r[J]; 
for (j=lo; j<= UppBoundr; j++) r[J].k = NoJ(ey; 
for (j=lo; j<=up; j++) { 

for (i=phi(rllJ].k,lo,uppr); r(a].k!= NoJ(ey; i++) { 
if (rllJ].k < r(z].k) { 

rl(j-l] = ria]; 
r[a] = rllJ]; 
rllJ] = rl(j-l]; 
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}; 
if (i > UppBoundr) Error; 
} 

r[al = r1fJl; 
}; 

for (j=i=lo; i<= UppBoundr, i++) 
if (rfJl.k!= NoJ(ey) 

r[i++] = rfJl; 
while (i <= UppBoundr) 

r[i++].k = NoJ(ey; 
}; 

4.2.1: Merge sort (Pascal) 

function sort( var r: list; n : integer) : list; 
label 999; 
var fi, la, temp: list; 

begin 
if r = nil then sort := llil 
else if n> 2 then 

sort := merge(sort(r, n div 2), sort(r, (n+1) div 2)) 
else begin 

999: 

fi := r; la := r; 
r:= ri.next; 
{*** Build list as long as possible ***} 
while r <> nil do 

if ri.k >= lai.k then begin 
lai . next := r; 
la := r; 
r := ri. next; 
end 

else if ri . k < = fii. k then begin 
temp := r; 
r := ri. next; 
tempi· next := fi; 
fi := temp 
elld 

else go to 999; 

lai. next := llil; 
sort := fi 



end 
end; 
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The above algorithm is similar to the one in the main entry, except that 
at the bottom level of recursion, it tries to construct the longest possible list 
of ordered elements. To achieve this, it compares the next element in the list 
against the head and the tail of the list being constructed. Consequently, this 
algorithm will improve significantly when used to sort partially ordered (or 
reverse-ordered) files. 

4.2.1: Merge sort (C) 

list sort( n) 
int.n; 

{ 
list ji, la, temp; 
extern list r; 
if (r == NULL) return(NULL); 
else if (n>1) 

return ( merge( sort( n/2), sort( (n+ 1 )/2))); 
else { 

}; 

ji = r; la = r; 
/*** Build list as long as possible ***/ 
for (r=r ->next; r!=NULL;) 

if(r->k>= la->k) { 
la ->next = r; 
la = r; 
r = r->next; 
} 

else if(r->k <= ji->k) { 
temp = r; 
r = r->next; 
temp ->next = ji; 
ji = temp; 
} 

else break; 
la ->next = NULL; 
return (ji) ; 
} 

Owing to the absence of var variables in C, the list to be sorted is stored 
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in a global variable named r. 

4.2.4: Radix sort (C) 

list sort( r) 
list r; 

{ 
list head[M], tai~M]j 
illt i, j, hj 
for (i=Dj i>Oj i--) { 

fOl' (j=Oj j<Alj j++) head[J] = NULLj 
while (r!= NULL) { 

h = charac( i, r ->k)j 
if (head[h]==NULL) head[h] = r; 
else tai~h] ->next = r; 
tai~h] = r; 
r = r->nextj 
}j 

/*** Concatenate lists ***/ 
r= NULLj 
for (j=M-lj j>=Oj j--) 

if (head[J] != NULL) { 
tai/[J] ->next = r; 
r = head[J]j 
} 

}j 
returu(r)j 
}j 

The above algorithm uses the function charac which returns the ith char
acter of the given key. The global constant M gives the range of the alphabet 
(or characters). The constant or variable D gives the number of characters 
used by the key. 

4.2.4: Top-down radix sort (C) 

list sort( s, j) 
list Sj 

illt jj 



{ 
int i; 
list head[M] , t; 
struct rec aux; 
extern list Last; 
if (s==NULL) return(s); 

ALGORITHMS CODED IN PASCAL AND C 397 

if (s ->next == NULL) {Last = s; return(s);} 
if (j>D) { 

for (Last=s; Last ->next!=NULL; Last = Last->next); 
return(s); 
} 

for (i=O; i<M; i++) head[zJ = NULL; 
/*** place records in buckets ***/ 
while (s != NULL) { 

i = charac(j, s ->k); 
t = s; 
s = s ->next; 
t ->next = head[zJ; 
head[zJ = t; 
} 

/*** sort recursively ***/ 
t = &aux; 
for (i=O; i<M; i++) 

if (head[z]!=NULL) { 

} 

t ->next = sort(head[z], i+1); 
t = Last; 

return ( a ux. next) ; 
} 

4.3.1: List merging (C) 

list merge(a, b) 
list a, b; 

{ 
list temp; 
struct rec aux; 
temp = &aux; 
while (b != NULL) 

if (a == NULL) { a = b; break;} 
else if (b ->k > a ->k) 
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{ temp = temp ->next = a; a = a ->next; } 
else {temp = temp ->next = b; b = b ->next; }; 

temp - > next = a; 
return ( aux. next); 
}; 

4.3.2: Array merging into same or third array (Pascal) 

procedure merge (a,b : RecordArrny; var c: RecordArrny; na,nb : integer); 
{ *** Merges the arrays a and b into c (increasing order assumed) 

a or b may coincide with c ***} 
begin 
while (na>=l) or (nb>=l) do 

if na<l then 

end; 

while nb>O do begin 
c[ nb] := b[ nb]; 
nb := nb-l 
end {while} 

else if nb< 1 then 
while na>O do begin 

c[na] := a[na]; 
na := na-l 
end {while} 

else if a[na].k < b[nb].k then begin 
c[na+nb] := b[nb]; 
nb := nb-l 
end {if. .. then} 

else begin 
c[na+nb] := a[na]; 
na := na-l 
eud; {else} 
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IV.3 Selection algorithms 

5.1.1: Sorted list extraction (Pascal) 

function extract(var pq: list) : typekey; 
begin 
if pq=nil then Error {*** Extracting from empty queue ***} 
else begin 

end; 

extract := pql.k; 
pq := pql. next 
end 

5.1.1: Sorted list insertion (Pascal) 

procedure insert( new: list; var pq : list); 
label 9999; 
var p: list; 

begin 
if pq=nil then pq := new 
else if pql.k < newl.k then begin 

newl. next := pq; 
pq:= new 
end 

else begin 
p:= pq; 

9999: 
end; 

while pl. next < > nil do begin 
if pl.nextl.k < newl.k then begin 

newl· next := pl. next; 
pl. next := new; 
goto 9999 
end; 

p := pl·next 
end; 

pl. next := new 
end; 
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5.1.1: Unsorted list extraction (Pascal) 

function extract(var pq: list) : typekey; 
var max, p : list; 

begin 
if pq=nil tllen Error {*** Extraction from an empty list ***} 
else if pql. next = nil tllen begin 

extract := pql.k; pq := nil end 
else begin 

end; 

max := pq; p := pq; 
while pl.next <> nil do begin 

if maxl.nextl.k < pl.nextl.k then max:= p; 
p := pl·next 
end; 

if maxl. nextl. k < pql. k then begin 
extract:= pql.k; pq:= pql.next end 

else begin 

end 

extract := maxl. nextl. k; 
maxl. next := maxl. nextl. next 
end 

5.1.1: Unsorted list insertion (Pascal) 

procedure insert( new: list; var pq : list); 
begin 
newl. next := pq; 
pq:= new 
end; 

5.1.2: P-trees deletion (Pascal) 

procedure delete (var pq: tree); 
begin 
if pq = nil then Error {*** deletion on an empty queue ***} 
else if pql.le/t = nil then pq := nil 
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else if pql.leftl.left = nil then begin 
pqt./eft := pql. right; 
pql. right := nil 
end 

else delete(pql.left) 
end; 

5.1.2: P-trees insertion (Pascal) 

procedure insert (new: tree; var pq : tree); 
label 9999; 
var p: tree; 

begin 
if pq = nil then pq := new 
else if pql.k >= newl.k then begin 

{*** Insert above subtree ***} 
newl·left := pq; 
pq:= new 
end 

else begin 
p:= pq; 

9999: 
end; 

while pl.left <> nil do 
if pt./eftl.k >= newl.k then begin 

{*** Insert in right subtree ***} 
insert( new, pt. right); 
goto 9999 
end 

else p:= pl· left; 
{*** Insert at bottom left ***} 
pl.left := new 
end; 

5.1.2: P-trees, inspection of top of queue (Pascal) 

function inspect (pq : tree) : typekey; 
begin 
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if pq = nil then Error {*** Inspecting an empty queue ***}; 
while pqt . left <> nil do pq := pqt . left; 
inspect := pqt.k 
end; 

5.1.3: Heap insertion (C) 

insert( new, r) 
RecordArray r; 
ArrayEntry new; 

{int i, j; 
extern in t n; 
n++; 
for (j=n; j>l; j=i) { 

i = jf2; 
if (r(.].k >= new.k) break; 
rfJ] = r(,]; 
} 

rfJ] = new; 
}; 
siftup( r, i, n) 
RecordA rray r; 
int i, n; 

{ArrayEntry tempr; 
int j; 

}; 

while ((j=2*i) <= n) { 
if (j<n && rfJ]·k < rfi+l].k) i++; 
if (r(I].k < rfJ].k) { 

tempr = rfJ]; 
rfJ] = r(z]; 
r( I] = tempr; 
i = j; 
} 

else break; 
} 
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5.1.3: Heap deletion (C) 

delete(r) 
RecordArray fj 

{ 
extern in t nj 
if (n<l) Error /*** extracting from an empty Heap ***/j 
else { 

}j 

r[I] = r(n]j 
siftup(r, 1, --n)j 
} 

5.1.5: Pagodas merging (C) 

tree merge( a, b) 
tree a, bj 

{ 
tree bota, botb, r, tempj 
if (a==NULL) return ( b)j 
else if (b==NULL) return ( a)j 
else { 

/*** Find bottom of a's rightmost edge ***/ 
bot a = a ->rightj a ->right = NULLj 
/*** bottom of b's leftmost edge ***/ 
botb = b ->/eftj b ->/eft = NULLj 
r= NULLj 

/*** Merging loop ***/ 
while (bota!=NULL && botb!=NULL) 

if (bota ->k < botb ->k) { 
temp = bot a ->rightj 
if (r==NULL) bota ->right = botaj 

else {bota ->right = r ->rightj 
r ->right = botaj 
}j 

r = botaj 
bot a = tempj 
} 

else {temp = botb ->/eftj 
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}j 

if (r==NULL) botb ->Ieft = botbj 
else {botb ->Ieft = r ->Ieftj 

r ->Ieft = botbj 
}j 

r = botbj 
botb = tempj 
}j 

/*** one edge is exhausted, finish merge ***/ 
if (botb==NULL) { 

a ->right = r ->rightj 
r ->right = botaj 
return(a)j 
} 

else {b ->Ieft = r ->Ieftj 
r ->Ieft = botbj 
return(b)j 
} 

} 

5.1.5: Pagodas insertion (C) 

tree insert( new, pq) 
tree new, pqj 
{ 
new ->Ieft = neWj new ->right = neWj 
return ( merge(pq, new))j 
}j 

5.1.5: Pagodas deletion (C) 

tree delete(pq) 
tree pqj 

{ 
tree Ie, rij 
if (pq==NULL) Error /*** Deletion on empty queue ***/j 
else { 

/*** Find left descendant of root ***/ 
if (pq ->Ieft == pq) Ie = NULLj 



}; 
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else { 
Ie = pq ->Ieft; 
while (Ie ->Ieft != pq) Ie = Ie ->Ieft; 
Ie ->Ieft = pq ->Ieft; 
}; 

/*** Find right descendant of root ***/ 
if (pq ->right == pq) ri = NULL; 

else { 
ri = pq ->right; 
while (ri ->right != pq) ri = ri ->right; 
ri ->right = pq ->right; 
}; 

/*** merge them ***/ 
return ( merge( Ie, ri»; 
} 

5.1.6.1: Leftist trees deletion (C) 

tree merge( a, b) 
tree a, b; 
{ 
if (a == NULL) return( b); 
else if (b == NULL) return(a); 
else if (a ->k > b ->k) { 

a ->right = merge(a ->right, b); 
fixdist( a); 
return(a); 
} 

else { 

}; 

b ->right = merge(a, b ->right); 
fixdist( b); 
return(b); 
} 

tree delete(pq) 
tree pq; 
{ 
if (pq == NULL) Error /*** delete on an empty queue ***/; 
else return( merge(pq ->Ieft, pq ->right»; 
}; 
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5.1.6.1: Leftist trees insertion (C) 

tree insert( new, pq) 
tree new, pq; 

{ 
if (pq==NULL) return ( new); 
else if (pq ->k > new ->k) { 

else { 

pq ->right = insert(new, pq ->right); 
fixdist(pq); 
return(pq); 
} 

new ->Ieft = pq; 
return( new); 
} 

}; 

5.1.6.1: Leftist trees distance (C) 

int distance(pq) 
tree pq; 
{ return(pq==NULL '? 0 : pq ->dist); }; 

fixdist(pq) 
tree pq; 
{ 
tree temp; 
if (distance(pq ->Ieft) < distance(pq -> right)) { 

temp = pq ->right; 
pq ->right = pq ->Ieft; 
pq ->Ieft = temp; 
}; 

pq ->dist = distance(pq ->right) + 1; 
}; 
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5.1.6.2: Binary priority queues deletion (C) 

tree delete(pq) 
tree pqj 

{tree tempj 
if (pq == NULL) Error /*** deletion on an empty queue ***/j 
else if (pq ->right == NULL) 

return(pq -> left) j 
else { 

}j 

/*** promote left descendant up ***/ 
pq ->k = pq ->left ->kj 
pq ->left = delete(pq ->left)j 
/*** rearrange according to constraints ***/ 
if (pq ->left == NULL) { 

pq ->left = pq ->rightj pq ->right = NULLj }j 
if(pq ->right != NULL) 

if (pq ->left ->k < pq ->right ->k) { 
/*** descendants in wrong order ***/ 
temp = pq ->rightj 
pq ->right = pq ->leftj 
pq ->left = tempj 
} 

return(pq)j 
} 

5.1.6.2: Binary priority queues insertion (C) 

tree insert( new, pq) 
tree new, pqj 

{ 
if (pq == NULL) return(new)j 
else if (pq ->k <= new ->k) { 

new ->left = pqj 
return ( new)j 
} 

else if (pq ->left == NULL) 
pq ->left = neWj 

else if (pq ->left ->k <= new ->k) 
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pq ->/eft = insert( new, pq ->/eft); 
else pq ->right = insert(new, pq ->right); 
return(pq); 
}; 

5.1.6.2: Merging of binary priority queues (C) 

function merge (a, b : tree) : tree; 
var temp : treej 
begin 
if a=nil then merge := b 
else if b=nil then merge := a 
else begin 

if al.k < bl.k then begin 
temp := aj a:= b; b:= temp end; 

al. right := merge( al. right, b)j 
if al.left <> nil then 

end 
endj 

if al./eftl. k < al. rightl. k then begin 
temp := al. right; 
al. right := al./eftj 
al.left := temp 
end 

IV.4 Text algorithms 

7.1: Composition to search external files (Pascal) 

function extsearch(pat: PATTERN): integer; 
var offs, i, m, nb, nr: integer; 

buff: TEXTj 
found: booleanj 

function fil/buff: integer; 
var j: integer; 
begin 

j:= n6+1; 
while (j <= BUFSIZ-nb) and not eoJ{input) do begin 



read( buDfJ]); 
j := j+l; 

end; 
fillbuff:= j-nb-l; 
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for i:=j to BUFSIZ do bu.D[z] := chr(O); 
end; 

begin 
found := FALSE; 
m := length(pat); 
if m = 0 then begin 

extsearch := 1; 
found := TRUE; 
end; 

if m >= BUFSIZ then begin {*** Buffer is too small ***} 
extsearch := -1; 
found := TRUE; 
end; 

{*** Assume that the file is open and positioned ***} 
offs := 0; {*** number of characters already read ***} 
nb := 0; {*** number of characters in buffer ***} 
while not found do begin 

end; 

if nb >= m then begin 
{*** try to match ***} 
i := search(pat,buJJ); 
if i <> 0 then begin 

extsearch := i+offs; {*** found ***} 
found:= TRUE; 
end; 

for i:=1 to m-l do bu.D[z] := bu.D[i+nb-m+2]; 
offs := offs + nb-m+l; 
nb := m-l; 
end; 

{*** read more text ***} 
if not found then begin 

nr := fillbuff, 
if nr <= 0 then begin 

extsearch := 0; {*** not found ***} 
found:= TRUE; 
end; 

nb := nb + nr; 
end; 

end; 
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7.1.1: Brute force string searching (C) 

char uearch(pat, text) 
char *pat, *textj 

{ int mj 

} 

if(*pat == EOS) retul'n(text)j 
m = strlen(pat)j 
for(j *text != EOSj text++) 

if(strncmp(pat, text, m) == 0) l'eturn(text)j 
return (NULL)j 

7.1.2: Knuth-Morris-Pratt string searching (Pascal) 

function search(pat: PATTERNj text: TEX1): integer; 

val' next: array [1..MAXPATLENj of integer; 
i, j, m, n: integer; 
found: booleanj 

procedure preprocpatj 

var k, I: integer; 
begin 

m := length(pat)j 
1:= Ij 
k := OJ next[I] := OJ 
l'epeat begin 

if (k=0) or (pat[~=pat[k]) then begin 
1:= I+lj k := k+lj 
if pat[k]=pat[~ then next[~ := next[k] 
else next[~ := kj 
end 

else k := next[k]j 
end 

until (I > m)j 
end; 

begin 
found := FALSE; search := 0; 
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m := length(pat); 
if m=O then begin 

search := 1; found:= TRUE; endj 
preprocpatj 

n := length(text)j 
j := 1; i := 1; 
while not found and (i <= n) do begin 

if (j=0) or (patU] = text[z)) then begin 
i := i+lj j := j+l; 

endj 

if j > m then begin 
search := ;-j+l; 
found:= TRUE; 
end; 

end 
else j := nextu] j 
end; 

7.1.3: Boyer-Moore-llorspool string searching (Pascal) 

function search(pat: PATTERN; text: TEXT): integer; 

var i, j, k, m, n: integerj 
skip: array [O .. MAXGHAR] of integer; 
found: booleanj 

begin 
found := FA LSEj search := OJ 
m := length(pat); 
if m=O then begin 

search := 1; found:= TRUEj end; 
for k:=O to MAXGHAR do skip[k] := m; {*** Preprocessing ***} 
for k:=1 to m-l do skip[ord(pat[k])] := m-kj 

k := m; n:= length( text) j {*** Search ***} 
while not found and (k <= n) do begill 

i:= k; j:= mj 
while (j >= 1) do 

if text[l] <> patU] then j := -1 
else begin 

j := j-l; i:= i-I; end; 
if j = 0 then begin 



412 HANDBOOK OF ALGORITHMS AND DATA STRUCTURES 

search := i+1; found:= TRUE; end; 
Ie := Ie + sleip[ ord( text[ Ie])]; 
end; 

end; 

7.1.5: Karp-Rabin string searching (C) 

#define B 131 

char *search(pat, text) 
char *pat, *text; 

{ int hpat, htext, Bm, j, m; 

} 

if(pat[O]==EOS) return( text); 
Bm = 1; 
hpat = htext = 0; 

for(m=O; text[m] != EOS && pat[m] != EOS; m++) { 
Bm *= B; 
hpat = hpat*B + pat[m]; 
htext = htext*B + text[m]; 
} 

if(text[m]==EOS && pat[m]!=EOS) return(NULL); 

for(j=m; TRUE; j++) { 
if(hpat==htext && strncmp(text+j-m,pat,m)==O) 

return( text+j-m); 
if(textlJ]==EOS) return(NULL); 
htext = htext*B - text[j-m]*Bm + textlJ]; 
} 

7.1.8: Brute force string searching with mismatches (Pascal) 

function search(le: integer; pat: PATTERN; text: TEXT): integer, 

var i, j, m, n, count: integer, 
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found: boolean; 
begin 

found := FALSE; search := 0; 
m := length(pat); 
if m=O then begin 

search := 1; found:= TRUE; end; 
n := length(text); 
j := 1; i := 1; 
while (i<=n-m+l) and not found do begin 

count := 0; j:= 1; 

end; 

while (j <= m) and (count <= k) do begin 
if text[i+j-l] <> patfJ] then count := count + 1; 
j := j + 1; 
end; 

if count <= k then begin 
search:= i; found:= TRUE; end; 

i := i + 1; 
end 
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circular paths, 44 
classical matrix multiplication, 245 
clustering, 44 
clustering free, 49 
coalesced hashing, 77 
coalesced hashing with cellar, 79 
coalescing chains, 53 
cocktail shaker sort, 155 
collision, 44 
collision resolution scheme, 44 
commutativity, products, 247 
complete binary trees, 211 
complex arithmetic, 244 
complexity measures, 2, 7 
complexity of multiplication, 235 
complexity of squaring, 236 
composite keys, 143 
composition, 17, 180 
composition of Quicksort, 159 
compressed files, 36 
compressed tries, 140 
computed entry search, 44 
computing 1r , 242 
computing inverses, complexity, 236 



computing logarithms, 243 
conformation, 22 
constraints for data objects, 12 
constructor, 15 
contamination, 54 
contamination, hashing, 54, 74 
continuous growth, 82 
control dictionary, 271, 272 
control function, 83 
conventional data structures, 10 
corpora, 251, 270 
counter heuristics, 33 
cyclic structures, 15 

d-prefix, 86 
D-trees, 108 
DASG,279 
data processing, 289 
data processing sorting, 179 
data structure description, 9 
data processing distribution, 293 
database searching, 117 
DAWG,279 
decimal operations, 235 
decreasing probability order, 34, 139, 

289 
deletions in binary trees, 114 
deletions, hashing, 45, 82 
depth, nodes, 91 
depth, trie, 136 
derivatives, 237 
descending factorials, 305 
determinants, 248 
deterministic finite automaton, see 

DFA 
DFA, 259, 262 
dichotomic search, 37 
dictionaries, 251, 270 

external, 121 
dictionary structures, 127 
digit, 235 
digital B-trees, 130 
digital cardinality, 134 
digital decomposition, 16, 20, 133, 

179 

digital indexing, 133 
digital search trees, 138 
digital tree, 10, 133, 179, 273 
digital trie, 146 
digitization, 16 
digits, 244 
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diminishing increment sort, 161 
direct chaining hashing, 70, 71 
directed acyclic subsequence graph, 

see DASG 
directed acyclic word graph, see DAWG 
directory, 80 

hashing, 80 
discrete rectangular distribution, 292 
disk cylinder, 133 
disk track, 133 
dispersion phase, 188 
distribution of authorship, 293 
distribution phase, 188 
distribution, probability, 4 
distributions derived from empiri-

cal observation, 289 
distributions sort, 179 
distributive partitioning, 181 
divide and conquer, 17, 152, 158, 

174,231 
division, 235, 237 

finite fields, 69 
double-direction bubblesort, 155 
double hashing, 55, 62 
double left rotation, 113 
double right rotation, 113 
double rotation, 113 
double-ended, 211 
double-ended priority queues, 203, 

211, 216, 226 
doubly exponential forms, 303 
dummy sequences, 197 
dynamic hashing, 84, 138 
dynamic programming, 110 
dynamic set sorting, 183 
dynamic size hashing, 81 
Dynamic trees, 108 

editing cost, 267 



418 INDEX 

empirical distributions, 289 
end-of-string, see EOS 
English, 289 
entropy, searching, 105 
EOS, 263 
equations, systems of, 248 
error conditions, 7 
estimated entry search, 39 
Euler's constant, 297 
Euler-Maclaurin summation formula, 

307 
exchange with parent, 108 
expansions, asymptotic, 297 
expectation, 4 
expected value, 4 
exponent, 238 
exponential function, 244 
exponential integral, 299 
exponential-type expansions, 301 
extended precision, 235 
extendible hashing, 80 
external accesses, 85 
external hashing, 54,74,80,82,86 

using minimal internal storage, 
85 

external merge sorting, 188 
external merging, 192 
external path, 92 
external Quicksort, 201 
external searching, 117 
external sorting, 170, 183, 187,272 
extract maximum, 205 

factorial function, 297, 300 
failure function, 259 
false drops, 280 
fast Fourier transform, 236 
fast multiplication, 236 
Fibonacci numbers, 196 
finite state machine, 262 
finite universe of keys, 216 
first generalization of a Zipfian dis

tribution, 290 
first-come-first-served, FCFS, 67 
Floyd's heap-construction, 213 

folklore distributions, 289 
for loops, 18 
forest, 226 
format of simulation results, 2 
format of tables, 2 
found,7 
frequency of references, 291 
frequency of words, 289 
fringe reorganization, 109 
full expansion, 83 
full stability, 184 

gamma function, 297, 300 
gamma-type expansions, 300 
general trees, 10 
generalized harmonic, 292 
generating function, 92, 118, 189 
go to table, 259 
goto, 5 
grammar for data objects, 9 
graphics, 149 
greedy trees, 107 
growth at root, B-trees, 120 
growth, continuous, 82 

Hamming distance, 267 
harmonic numbers, 95, 106, 134, 

297,300 
hashed increments, 55 
hashing, 16, 43 
hashing algorithms, 273 
hashing function, 16,43,47, 168 
hashing methods for text search-

ing, 280 
hashing table, 44 
hashing tries, 138 
hashing value, 260 
hashing, memory less, 86 
HB[k] trees, 99 
header, 238 
heap, 164, 189, 211 
Heapsort, 164 
height balance, 13 
height balancing, 97 
height increase transformation, 126 



height, trees, 91 
height-balanced trees, 97 
heuristic organization schemes on 

binary trees, 105 
heuristics, 28 

for known probabilities, 106 
hierarchical balance, 13 
hierarchical order, 13 
homogeneous indexing, 131 
horizontal pointers, 126 
Horner's rule, 248 
Hu-Tucker algorithm, 111 
Huffman encoding, 107 
H wang and Lin merging, 187 
hybrid algorithm, 247 
hybrid methods of sorting, 180 
hybrid Quicksort, 159 
hybrid sorting, 181 
hybrid tries, 137 
hyperrules, 10 

implementation of lists, 24 
implementation of trees, 24 
implementing lists in arrays, 172 
implicit data structures, 211 
in place sorting, 153 
in-place merging, 185 
increment sequences, 161 
index and indexed sequential files, 

130 
index B-trees, 122 
index file, 130 
index point, 271 
index sequential access method, see 

ISAM 
indexed file, 130 
indices, 130 
infix traversal, 18, 182 
input structure, 14 
insert in decreasing probability or-

der, 106 
insertion order, 60 
insertion sort, 156 
inspect queue, 205 
interchangeability, 23 

interleaving, 22 
internal path, 92 
internal/external differences, 2 
interpolation, 16 
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interpolation formula, 40, 166, 168, 
176 

interpolation search, 39 
interpolation sort, 166 
interpolation-sequential search, 42 
introduction, 1 
inverse of a function, 237 
inverse square distribution, 293 
inverse trigonometric functions, 244 
inversion, 19 
inverted file, 19, 271 
inverted search, 19 
ISAM,132 
iterative application, 18, 156 
iterative formula, 236 
iterative powering, 241 
iterative zero-finder, 237 

jump search, 35 

k-balancing, 104 
k-clustering, 44 
k-d tree, 149 
k-dimensional trees, 149 
k-height balanced, 99 
k-prefix, 86 
Karp-Rabin text searching, 260 
KMP algorithm, 254 
known probabilities, heuristics, 105 
Knuth-Morris-Pratt text searching, 

254 

language dictionaries, 138 
last-come-first-served hashing, 67 
LCFS hashing, 68 
LCS, 283 
leaf-pages, 80 
left single rotation, 112 
leftist trees, 221 
Legendre's identity, 242 
length, 238 
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of longest probe sequence, 44 
Levenshtein distance, 269 
lexicographical order, 13 
lexicographical trees, 91, 117, 182 
linear combinations, 238 
linear hashing, 82 
linear insertion sort, 18, 156, 161, 

166 
linear lists, 171 
linear probing, 62 
linear probing hashing, 51, 168 
linear probing sort, 168 
linear search, 25 
linked list, 171 

search,25 
list merging, 184 
lists, 71 

search,25 
load factor, 44 
logarithms, 243 
longest common subsequence, see 

LCS 
longest probe sequence, 44, 56 
Lotka's distribution, 31 
Lotka's law, 293 
lower bounds, selection, 228 
lower-upper triangular factoring, 248 

m-ary search trees, 116 
main file, 130 
matrix determinant, 248 
matrix inversion, 248 
matrix multiplication, 245 
matrix partitioning, 246 
maximum search, 205 
maximum-minimum search, 211 
mean-centred search, 69 
median, 181 
median selection, 228 
median split, 106 
median split trees, 107 
memory less, 86 
merge, 20 
merge sort, 173 

mergeable priority queues, 218, 221, 
227 

merging, 173, 183 
merging pass, 195 
merging phase, 188, 192 
meta-production, 10 
minave, 14, 71 
minimal perfect hashing function, 

87 
minimal-comparison merging, 186 
minimax, 14, 70 
minimum accesses, 70 
minimum height trees, 109 
minimum search, 205 
mod,261 
mode of a set, 232 
mode-centred search, 69 
modular arithmetic, 261 
move-to-front heuristic, 28, 108 
move-to-root, 108 
multidimensional search, 143 
multilevel indices, 130 
multiple alignment problem, 284 
multiple-precision multiplication, 239 
multiple-precision, 235 
multiplication, 235, 246 
multiplicity, 232 
multiway decisions, 16 
multiway merging, 183 
multiway trees, 10, 117 

naming of variables, 3 
natural merge, 174 
natural merge sort, 182 
natural selection, 188, 190 
nearest neighbour search, 131 
negative search, 143 
Newton's iteration, 236 
node inspections, 91 
node splittings, 118 
non-atomic keys, 143 
non-recursive bucket sort, 182 
normalization, 238 
notfound,7 
number, 235 



number of binary trees, 92 
numbering systems, 16 

on-line algorithm, 255, 260, 263, 
267 

one-sided height balanced, 99 
open-addressing, 44 
optimal binary tree search, 109 
optimal external hashing, 85 
optimal hashing, 70 
optimal merging, 187 
optimal polynomial evaluation, 249 
optimal polyphase merge, 197 
optimal powering, 240 
optimal sequential search, 34 
optimality, 14 
order relation, 60 
ordered arrays, 36 
ordered binary tree, 93 
ordered hashing, 60, 168 
ordering rules, 24 
organization, 22 
organization of handbook, 1 
oscillating merge sort, 200 
OSHB trees, 99 
other arithmetic functions, 240 
other text searching problems, 283 
output function, 259 
overflow, 83 
overflow area, 168 
overflow records, 131 
overflow techniques, 121 

P-strings, 281 
P-trees, 209 
pagodas, 218 
parameters, 14 
parsed strings, 281 
partial-match searching, 143, 151 
partially sorted, 170 
partition methods, 24 
partitioning matrices, 246 
Pascal,5 
pass, 188 
PAT,273 

PAT tree, 142 
path,44 
path trees, 102 
path-balanced trees, 102 
Patricia tree, 140, 146, 273 
pattern matching, 251 
pattern matching machine, 259 
perfect binary trees, 211 
perfect distribution, 195 
perfect hashing, 87 
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perfectly balanced k-d trees, 152 
permanents, 32 
physical record, 121 
planar coordinates, 149 
Poisson distribution, 69, 80, 82, 84 
polynomial evaluation, 248 
polynomial roots, 304 
polyphase merge sort, 196 
population of cities, 289 
positive search, 143 
postfix traversals, 18 
powering a number, 240 
practical hashing functions, 47 
practical recommendations, 2 
preconditioning, 249 
prefix B-trees, 130 
prefix search, 138 
prefix traversals, 18 
preprocessing text, 251, 270 
presortedness, 170 
primality testing, 21 
primary clustering, 44, 53 
primary key access, 117 
primary key search, 25 
prime table size, 55 
priority queue, 164, 189, 205 
priority queue order, 13 
priority trees, 209 
probabilistic algorithms, 21 
probabilities, 4 
probability distribution, 4, 289 
probability notation, 4 
probability universe, 4 
product commutativity, 247 
product, matrices, 245 
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programming languages, 5 
prolix author, 293 
proximity searching, 278 
pseudo-random probing, 51 
psi function, 297, 300 
punched cards, 179 

quad trees, 144 
quad tries, 146 
quadratic convergence, 242 
quadratic hashing, 57, 62 
Quickersort, 160 
Quicksort, 14, 17, 158,230 
Quicksort for lists, 174 

radix sort, 136, 179 
random binary trees, 96 
random heaps, 212 
random probing, 68 
random probing hashing, 50 
random search trees, 94 
random string, 251 
random variables, 4 
randomization, 20 
randomly generated binary trees, 

94 
range search, 28, 121, 131, 143, 151, 

273 
ranking, 16 
read backwards, 200 
real timings, 7, 170 
recommendations, 2 
recursion, 19 
recursion termination, 22, 181 
recursive matrix multiplication, 246 
recursive structures search, 91 
red-black trees, 129 
rehashing, 44 
reordering of arrays, 172 
reorganization schemes, 62 
reorganization, 22 
repeated selection, 230 
repetition, 18 
replacement, 15 
replacement selection, 189 

replacement selection, 188 
reservoir, 190 
resulting structure, 14 
return, 5 
Riemann zeta function, 297 
right single rotation, 112 
Robin Hood hashing, 69 
roots of polynomials, 304 
rotations, 97, 101 

in binary trees, 112 
runs, 188 

Samplesort, 160 
sampling, 231 
SBB trees, 126, 128 
scatter storage, 43 
searching algorithms, 25 
searching buckets with overflow, 132 
searching longest common subse-

quences,283 
searching preprocessed text, 270 
searching sets of strings, 259 
searching text with automata, 262, 

275 
secant method, 237 
second generalization of a Zipfian 

distribution, 290 
secondary clustering, 44, 55, 59 
secondary key search, 26 
selection Algorithms, 205 
selection by sampling, 231 
selection by sorting, 230 
selection by tail recursion, 230 
selection of kth element, 228 
selection of the mode, 232 
selection phase techniques, 189 
selection sorting, 164 
selector, 15 
self-adjusting hashing, 70 
self-organization, 23 
self-organizing heuristics, 108 
self-organizing search, 70 
self-organizing sequenti~l search, 

move-to-front method, 28 
transpose method, 31 



semantic rules, 9, 24 
semi-infinite spiral, 287 
semi-infinite string, 273 
sentinel, 156 
sentinel, sorting, 156 
separate chaining hashing, 70, 74 
separator, 86 
sequence of reals, 9 
sequence of scalars, 16 
sequences, 9, 10 
sequential lists, 71 
sequential order, 13 
sequential processing, 131 
sequential search, 25, 42, 206 
series, asymptotic, 297 
shape heuristics, 109 
shape parameter, 294 
shared structures, 15 
Shellsort, 161, 186 
shift-or text searching, 266 
shortest common supersequence, 284 
siftup, 164, 190 
sign, 238 
signature, 85, 260 
signature encoding, 280 
signature file, 280 
simple exchange, 108 
simulation results, format, 2 
single rotation, 112 
sispiral, 287 
sistring, 273 
Smoothsort, 165 
solution of simultaneous equations, 

248 
sorted array search, 36 
sorted list, 206 
sorted/unsorted lists, 206 
sorting Algorithms, 153 
sorting arrays, 230 
sorting by distribution, 231 
sorting other data structures, 171 
splay trees, 108 
splaying, 108 
split transformation, 126 
split-sequence hashing, 61, 76 
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splitting elements, Quicksort, 160 
square matrices, 246 
squaring, complexity, 236 
stable merging, 183 
stable priority queues, 211, 226 
stable sorting, 155, 176 
stable tables, 64 
standard matrix multiplication, 245 
static object definition, 9 
static tables, 67 
static tree, 140 
stop words, 271 
storage utilization, 121 
Strassen's matrix multiplication, 246 
string matching with errors, 269 
string matching with mismatches, 

267 
string searching, 251 
string similarity searching, 267 
strings, 188 
subtraction, 235 
suffix arrays, 278 
suffix arrays and PAT arrays, 277 
summary of direct text searching, 

270 
summation constant, 308 
summation formulas, 307 
summations, 298 
sums containing descending facto-

rials, 305 
superimposed coding, 280 
superimposition, 21 
symmetric binary B-trees, see SBB 

trees 
synonyms, 44 
syntactic rules, 9 
systems of equations, 248 

tables, format, 2 
tail of distribution, 295 
tail recursion, 18, 37, 119, 230, 240 
tape searching, 35 
techniques for sorting arrays, 153 
test for equality, 16 
testing algorithms, 289 
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text algorithms, 251 
text editing, 251 
text searching, 142, 251 

without preprocessing, 251 
text-dominated databases, 281 
third-order iteration, 237 
threaded binary tree, 16 
timings, real, 7 
top-down construction, 106 
top-down radix sort, 136, 179, 231 
tournament, 205, 226 
transcendental functions, 243 
transition table, 259 
transpose heuristic, 31 
transpose heuristic, trees, 108 
tree searching, 273 
tree traversals, 18, 182 
trees used for text searching, 273 
1}eesort, 164, 182 
tries, 133, 179 
tries for word-dictionaries, 138 
trigonometric functions, 244 
trilinear forms, 247 
truncated Zipfian distribution, 290 
two-dimensional search, 149,284 
two-dimensional,284 
two-level grammar, 10 

unary node, 128 
uncertainty, searching, 105 
uniform probing hashing, 48 
uniqueness, 13 
universal class of hashing functions, 

47 
unsorted list, 207 
unwinding recursion, 19 
upper bounds, selection, 228 

Van Emde-Boas priority queues, 216 
van Wijngaarden grammar, 10 
var, 6 
variable length keys, 134, 142 
variable names, 3 
variable-length array implementa

tions, 122 

variable-length keys, 122 
variable-length signatures, 86 
variance, 4, 69 
vertical pointers, 126 
virtual hashing, 84 

w(x) function, 304 
W-grammar, 10 
weight balance, 14 
weight-balanced trees, 100, 102, 183 
Williams' insertion algorithm, 212 
Winograd matrix multiplication, 245 
with, 6 
word dictionaries, 138 
word number, 272 
worst-case behaviour, 227 
worst-case minimum accesses, 70 

zero-finder, 237 
zeta function, 297 
Zipf's law, 70, 289 
Zipfian distribution, 30, 289, 295 
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