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CHAPTER 1

Coherent Measures
of Risk into Everyday
Market Practice

Carlo Acerbi
Abaxbank, Milan, Italy
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References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1 MOTIVATIONS

This chapter presents a guided tour of the recent (sometimes very technical)
literature on coherent risk measures (CRMs). Our purpose is to overview the
theory of CRMs from the perspective of practical risk-management appli-
cations. We have tried to single out those results of the theory that help in
understanding which CRMs can be considered as realistic candidate alterna-
tives to value at risk (VaR) in the financial risk-management practice. This has
also been the spirit of the author’s research line in recent years [1, 4–6] (see
Acerbi [2] for a review).

1
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1.2 COHERENCY AXIOMS AND THE SHORTCOMINGS
OF VAR

In 1997, a seminal paper by Artzner et al. [7, 8] introduced the concept of
coherent measure of risk by imposing, via an axiomatic framework, specific
mathematical conditions that enforce some basic principles that a sensible
risk measure should always satisfy. This cornerstone of financial mathematics
was welcomed by many as the first serious attempt to give a precise definition
of financial risk itself, via a deductive approach. Among the four celebrated
axioms of coherency, a special role has always been played by the so-called
subadditivity axiom

ρ(X + Y ) ≤ ρ(X) + ρ(Y ) (1.2.1)

whereρ(·) represents a measure of risk acting on portfolios’ profit-loss random
variable (r.v.s) (X, Y ) on a chosen time horizon. The reason why this condition
has been long debated is probably due to the fact that VaR—the most popular
risk measure for capital adequacy purposes—turned out to be not subadditive
and consequently not coherent. As a matter of fact, since inception, the devel-
opment of the theory of CRMs has run in parallel with the debate on whether
and how VaR should be abandoned by the risk-management community.

The subadditivity axiom encodes the risk-diversification principle. The
quantity

H(X, Y ; ρ) = ρ(X) + ρ(Y ) − ρ(X + Y ) (1.2.2)

is the hedging benefit or, in capital adequacy terms, the capital relief associated
with the merging of portfolios X and Y . This quantity will be larger when
the two portfolios contain many bets on the same risk driver, but of opposite
direction, which therefore hedge each other in the merging. It will be zero in
the limiting case when the two portfolios bet on the same directional move
of every common risk factor. However, the problem with nonsubadditive risk
measures such as VaR is that there happen to be cases in which the hedging
benefit turns out to be negative, which is simply nonsensical from a risk-
theoretical perspective.

Specific examples of subadditivity violations of VaR are available in the
literature [5, 8], although these may appear to be fictitious and unrealistic. It
may be surprising to learn, however, that examples of subadditivity violations
of VaR can also be be built with very inoffensive distribution functions. An
example is known [3] where the two marginal distributions of X and Y are
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both standard normals, leading to the conclusion that it is never sufficient to
study the marginals to ward off a VaR violation of subadditivity, because the
trigger of such events is a copula property.

Other examples of subadditivity violation of VaR (see Acerbi [2], examples
2.15 and 4.4) allow us to display the connection between the coherence of a
risk measure and the convexity of risk surfaces. By risk surface, we mean the
function �w �→ ρ(�( �w)), which maps the vector of weights �w of the portfolio
�( �w) = ∑

i wi Xi onto the risk ρ(�( �w)) of the portfolio. The problem of
ρ-portfolio optimization amounts to the global search of minima on the
surface. An elementary consequence of coherency is the convexity of risk
surfaces

ρ coherent ⇒ ρ(�( �w)) convex. (1.2.3)

This immediate result tells us that risk optimization—if we carefully define
our variables—is an intrinsically convex problem. This bears enormous prac-
tical consequences, because the border between convex and nonconvex opti-
mization delimits solvable and unsolvable problems when things are complex
enough, whatever supercomputer you may have. In the examples (see Acerbi
[2]), VaR exhibits nonconvex risk surfaces, infested with local minima, that
can easily be recognized to be just artifacts of the chosen (noncoherent) risk
measure. In the same examples, thanks to convexity, a CRM displays, on the
contrary, a single global minimum, which can be immediately recognized as
the correct optimal portfolio, from symmetry arguments.

The lesson we learn is that, by adopting a noncoherent measure as a
decision-making tool for asset allocation, we are choosing to face formidable
(and often unsolvable) computational problems related to the minimization
of risk surfaces plagued by a plethora of risk-nonsensical local minima. As a
matter of fact, we are persuaded that no bank in the world has actually ever
performed a true VaR minimization in its portfolios, if we exclude multivariate
Gaussian frameworks à la Riskmetrics, where VaR is actually just a disguised
version of standard deviation and hence convex.

Nowadays, sacrificing the huge computational advantage of convex opti-
mization for the sake of VaR fanaticism is pure masochism.

1.3 THE OBJECTIVIST PARADIGM

The general representation of CRMs is well known [8, 9]. Any CRM ρF is
in one-to-one correspondence with a family F of probability measures P.
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The formula is strikingly simple

ρF (X) = sup
P∈F

EP[−X]. (1.3.1)

But this representation is of little help for a risk manager, as it provides too
much freedom. More importantly, it generates a sort of philosophical impasse,
as it assumes an intrinsically subjectivist point of view that is opposite to the
typical risk manager’s philosophy, which is objectivist. The formula defines
the CRM ρF as the worst case expected loss of the portfolio in a family F of
“parallel universes” P.

Objectivists are statisticians who believe that a unique, real probability
measure of future events must necessarily exist somewhere, and their prin-
cipal aim is to try to estimate it empirically. Subjectivists, in contrast are
intransigent statisticians who posit that even if this real probability measure
existed, it would be unknowable. They simply reject this concept and think of
probability measures as mere mathematical instruments. Equation (1.3.1) is
manifestly subjectivist, as it is based on families of probability measures.

Risk managers are objectivists, and the algorithm they use to assess the
capital adequacy via VaR is intrinsically objectivist. We can in fact split this
process into two clearly distinct steps:

1. Model the probability distribution of your portfolio
2. Compute VaR on this distribution

An overwhelmingly larger part of the computational effort (data mining, mul-
tivariate risk-factors distribution modeling, asset pricing, etc.) is done in step 1,
which has no relation with VaR and is just an objectivist project. The compu-
tation of VaR, given the distribution, is typically a single last code line. Hence,
in this scheme, replacing VaR with any other CRM is immediate, but it is
clear that, for this purpose, it is necessary to identify those CRMs that fit the
objectivist paradigm.

If we look for something better than VaR, we cannot forget that, despite
its shortcomings, this risk measure brought into risk management practice a
real revolution thanks to some features that were innovative at the time of its
advent and that nobody today would be willing to give up.

� Universality (VaR applies to risks of any nature)
� Globality (VaR condenses multiple risks to a single figure)
� Probability (VaR contains probabilistic information on the measured

risks)
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� Right units of measure (VaR is simply expressed in terms of “lost
money”)

The last two features explain why VaR is worshipped by any firm’s boss, whose
daily refrain is: “How much money do we risk and with what probability?”
Remember that risk sensitivities (aka “greeks,” namely partial derivatives of the
portfolio value to a specific risk factor) do not share any of the above features,
and you will immediately understand why VaR became so popular. As a matter
of fact, a bank’s greeks-based risk report is immensely more cumbersome and
less communicative than a VaR-based one.

If we look more closely at the features that made the success of VaR, we
notice that they have nothing to do with VaR itself in particular, but rather
with the objectivist paradigm above. In other words, if in step 2 above, we
replace VaR with any sensible risk measure defined as a monetary statistic of
the portfolio distribution, we automatically preserve these features. That is
why looking for CRMs that fit the objectivist paradigm is so crucial.

In our opinion, the real lasting heritage of VaR in the development of
the theory and practice of risk management is precisely the very fact that it
served to introduce, for the first time, the objectivist paradigm into the market
practice. Risk managers started to plot the distribution of their portfolios and
learned to fear its left tail thanks to the lesson of VaR.

1.4 ESTIMABILITY

The property that characterizes the subset of those CRMs that fit the objectivist
paradigm is law invariance, first studied in this context by Kusuoka [11]. A
measure of risk ρ is said to be law invariant (LI) if it is a functional of the
portfolio’s distribution function FX (·) only. The concept of law invariance
therefore can be defined only with reference to a single chosen probability
space

ρ law invariant ⇔ ρ(X) = ρ[FX (·)] (1.4.1)

or equivalently

ρ law invariant ⇔ [FX (·) = FY (·) ⇒ ρ(X) = ρ(Y )]. (1.4.2)

It is easy to realize that law invariance means estimability from empirical data.
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THEOREM 1.4.1

ρ law invariant ⇔ ρ estimable (1.4.3)

PROOF (⇐): suppose ρ to be estimable and let X and Y be r.v.s with iden-
tical probability distribution (i.i.d.) function. Consider N i.i.d. realizations
{xi }i=1,... ,N and {yi }i=1,... ,N and an estimator ρ̂. We will have

ρ̂({xi }) N→∞−→ ρ(X)

ρ̂({yi }) N→∞−→ ρ(Y ).

But for large N, the samples {xi } and {yi } are indistinguishable, hence ρ(X) =
ρ(Y )

PROOF (⇒): suppose ρ to be LI. Then a (canonical) estimator is defined by

ρ̂({xi }) ≡ ρ(F̂X ({xi })) (1.4.4)

where F̂X ({xi }) represents an empirical distribution estimated from the
data {xi }.

It is then clear that for a CRM to be measurable on a single given probability
distribution, it must be also LI. That is why, unless an unlikely subjectivistic
revolution takes place in the market, risk managers will always turn their atten-
tion just to the subset of LI CRMs for any practical application. Law invariance,
in other words, is a sort of unavoidable “fifth axiom” for practitioners.

Popular examples of LI CRMs include, for instance, α-expected shortfall
(E Sα) (aka CVaR, AVaR, etc.) [5, 13]

E Sα(X) = − 1

α

∫ α

0
F ←

X (p) dp α ∈ (0%, 100%) (1.4.5)

namely the “average loss of the portfolio in the worst α cases” or the family
of CRMs based on one-sided moments [10]

ρp,a(X) = −E[X] + a‖(X − X)−‖p a ∈ [0, 1], p ≥ 1
(1.4.6)

among which we recognize semivariance (when a = 1, p = 2).
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1.5 THE DIVERSIFICATION PRINCIPLE REVISITED

There is one aspect of the diversification principle that subadditivity does not
capture. It is related to the limiting case when we sum two portfolios X and Y
that are comonotonic. This means that we can write X = f (Z) and Y = g (Z),
where f and g are monotonic functions driven by the same random risk
factor Z. Such portfolios always go up and down together in all cases, and
hence they provide no mutual hedge at all, namely no diversification. For
comonotonic random variables, people speak also of “perfect dependence”
because it turns out that the dependence structure of such variables is in fact
the same (copula maxima) that links any random variable X to itself.

The diversification principle tells us that, for a measure of risk ρ, the hedg-
ing benefit H(X, Y ; ρ) should be exactly zero when X and Y are comonotonic.
This property of ρ is termed comonotonic additivity (CA)

ρ comonotonic additive ⇔ [X, Y comonotonic

⇒ ρ(X + Y ) = ρ(X) + ρ(Y )]. (1.5.1)

Subadditivity does not imply CA. There are in fact CRMs that are not comono-
tonic additive, such as equation (1.4.6), for instance.

We think that the diversification principle is well embodied only in the
combination of both subadditivity and CA. Each one separately is not enough.
To understand this fact, the clearest explanation we know is to show that, in
the absence of each of these conditions, there exists a specific cheating strategy
(CS) allowing a risk manager to reduce the capital requirement of a portfolio
without reducing at all the potential risks.

CS1, lack of subadditivity: split your portfolio into suitable subportfolios
and compute capital adequacy on each one

CS2, lack of comonotonic additivity: merge your portfolio with the one
of new comonotonic partners and compute capital adequacy on the
global portfolio

CA is therefore a natural further condition to the list of properties of a
good risk measure. It becomes a sort of “sixth axiom,” because it is a distinct
condition from LI when imposed on a CRM. There exist CRMs that satisfy LI
and not CA and vice versa.

The above arguments support the interest to describe the class of CRMs
that also satisfy both LI and CA (LI CA CRMs).
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1.6 SPECTRAL MEASURES OF RISK

The class of LI CA CRMs was first described exhaustively by Kusuoka [11]. It
has a general representation

ρμ(X) =
∫ 1

0
dμ(p) E Sp(X) dμ any measure on [0, 1]. (1.6.1)

The same class was defined as spectral measures of risk independently by Acerbi
[1] with an equivalent representation

ρφ(X) = −
∫ 1

0
φ( p) F ←

X (p) dp (1.6.2)

where the function φ : [0, 1] �→ R, named the risk spectrum, satisfies the
coherence conditions

1. φ(p) ≥ 0
2.

∫ 1
0 φ(p) dp = 1

3. φ(p1) ≥ φ(p2) if p1 ≤ p2

Despite the complicated formula, a spectral measure ρφ is nothing but the
φ-weighted average of all outcomes of the portfolio, from the worst (p = 0)
to the best ( p = 1). This is the most general form that a LI CA CRM can
assume. The only residual freedom is in the choice of the weighting function
φ within the above conditions.

Condition 3 is related to subadditivity. It just says that, in general, worse
cases must be given a larger weight when we measure risk, and this seems
actually very reasonable. This is also where VaR fails, as it measures the severity
of the loss associated with the quantile threshold, forgetting to give a weight to
the losses in the tail beyond it. Expected shortfall E Sα is a special case of spectral
measure of risk whose risk spectrum is a constant function with domain [0, α].

Spectral measures of risk turned out to be strictly related to the class of
distortion risk measures introduced in actuarial math in 1996 in a different
language by Wang [15].

1.7 ESTIMATORS OF SPECTRAL MEASURES

It is easy to provide estimators of spectral measures. Given N i.i.d. scenario
outcomes {x(k)

i }i=1,... ,N for the vector of the market’s variables (possibly assets)
�X = X (k), and given any portfolio function of them Y = Y ( �X), we can
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just exploit law invariance and use the ⇐ proof of theorem 1.4.1 to obtain
canonical estimators.

ρ̂
(N)
φ (Y ) = ρφ[F̂ (N)

Y ({�xi })] (1.7.1)

where we have defined the empirical marginal distribution function of Y

F̂ (N)
Y ({�xi })(�t) ≡ 1

N

N∑
i=1

θ (t − yi ) (1.7.2)

which is nothing but the cumulative empirical histogram of the outcomes
yi ≡ Y (�xi ). Equation (1.7.1) can in fact be solved to give simply

ρ̂
(N)
φ (Y ) = −

N∑
i=1

yi :N φ̄i (1.7.3)

where we have adopted the notation of the ordered statistics yi :N (i.e., the sorted
version of the vector yi ) and defined the weights

φ̄i ≡
∫ i/N

(i−1)/N
φ(p) dp. (1.7.4)

In equation (1.7.3), we see in a very transparent language that a spectral
measure is nothing but a weighted average of all the cases of a portfolio sorted
from the worst to the best.

In the case of E Sα , the estimator in equation (1.7.3) specializes to

Ê S
(N)

α (Y ) = − 1

[Nα]

(
[Nα]∑
i=1

yi :N + (Nα − [Nα]) y[Nα]+1:N

)
. (1.7.5)

All of these estimators can be easily implemented in a simple spreadsheet or
in any programming language.

We note that these estimators not only converge for large N to the estimated
measure, but also preserve coherency at every finite N by construction.

1.8 OPTIMIZATION OF CRMS: EXPLOITING CONVEXITY

As we have already stressed, CRM surfaces are convex. Nonetheless, setting up
an optimization program using, say, the estimator of ES in equation (1.7.5)
requires some clever trick. In fact, suppose you want to minimize the E Sα(Y �w )
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of a portfolio Y �w = ∑
k wk X (k) choosing the optimal weights wk under some

given constraints. A naive minimization procedure using equation (1.7.5) will
simply fail, because the ordered statistics yi :N = {sort j=1,... ,N[

∑
k wk x(k)

j ]}i

reshuffle discretely when the parameters �w change continuously. In other

words, Ê S
(N)

α (Y �w ) is not analytical in the weights �w , and this creates big trou-
bles for any standard minimization routine. Moreover, the sort algorithm is
very slow and memory consuming on large samples.

The problem of finding efficient optimization routines for E Sα was
elegantly solved by Pflug [12] and Uryasev and Rockafellar [13, 14], who
mapped it onto the equivalent problem of finding the minima of the functional

�(N)
α (Y �w , ψ) = −ψ + 1

Nα

N∑
i=1

(ψ − yi )
+ (1.8.1)

with yi = ∑
k wk x(k)

i . Despite the presence of an additional parameter ψ ,
� is a much simpler objective function to minimize, thanks to the manifest
analyticity and convexity with regard to the weights �w . Notice, in particular,
that equation (1.8.1) is free from ordered statistics.

The main result of [13] is that Ê Sα(Y �w ) (as a function of �w) and�(N)
α (Y �w , ψ)

(as a function of both �w and ψ) attain their minima on the same argument
weights �w . So, we can find E Sα-optimal portfolios by minimizing �α instead,
which is dramatically easier. Furthermore, it can be shown [13] that this convex
nonlinear program can be mapped onto an equivalent linear program, at the
price of introducing further additional parameters. It is in this linearized ver-
sion that the most efficient routines are obtained, making it possible to set up
an optimization procedure for portfolios of essentially any size and complexity.

It is difficult to overestimate the importance of this result. It allows us to
fully exploit the advantages of convex optimization with E Sα and opens the
way to efficient routines for large and complex portfolios, under any distribu-
tional assumptions. With this E Sα methodology, risk managers finally have
the ability to solve problems that they could only dream of solving using VaR.

This methodology was extended from E Sα to any spectral measure ρφ (i.e.,
any LI CA CRM) by Acerbi [4]. Also, in the general case, the main problem
to tackle is the presence of sorting routines induced in equation (1.7.3) by the
ordered statistics. In parallel to the above result, one introduces the functional

�
(N)
φ (Y �w , �ψ) =

N−1∑
j=1

(φ̄ j+1 − φ̄ j )

{
j ψ j −

N∑
i=1

(ψ j − yi )
+
}

− φ̄N

N∑
i=1

yi

(1.8.2)
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whose minimum (as a function of both �w and �ψ) can be shown to occur
at the same argument �w that minimizes ρ̂

(N)
φ (Y �w ). Therefore, we see that in

generalizing from E Sα to any spectral measure ρφ , the only difference is that
the additional parameter ψ has become a vector of additional parameters �ψ .
For this extended methodology, it is also possible to map the nonlinear convex
problem onto an equivalent linear one. This also extends the efficiency of the
available E Sα optimization routines to any other LI CA CRMs. See Acerbi
[2, 4] for more details.

1.9 CONCLUSIONS

We have discussed why, in our opinion, the class of CRMs is too large under
the perspective of practical risk-management applications. If the practice of
risk management remains intrinsically objectivistic, the additional constraint
of law invariance will always be implicitly assumed by the market. A further
restriction is provided by a closer look at the risk-diversification principle,
which naturally introduces the condition of comonotonic additivity.

The subset of CRMs that possess both LI and CA coincides with the class
of spectral measures. This class lends itself to immediate transparent repre-
sentation, to straightforward estimation, and—adopting nontrivial tricks—
to powerful optimization techniques that exploit the convexity of the risk
minimization programs and allow risk managers, probably for the first time,
to face the problem of finding optimal portfolios with virtually no restrictions
of size, complexity, and distributional assumptions.
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Abstract: We investigate a new method for pricing high-dimensional American
options. The method is of finite difference type, in that we obtain solutions
on a constant grid of representative states through time. We alleviate the
well-known problems associated with applying standard finite difference tech-
niques in high-dimensional spaces by using an irregular grid, as can be gen-
erated for example by a Monte Carlo or quasi–Monte Carlo method. The use
of such a grid calls for an alternative method for discretizing the convection-
diffusion operator in the pricing partial differential equation; this is done by
considering the grid points as states of an approximating continuous-time
Markov chain, and constructing transition intensities by appealing to local
consistency conditions in the spirit of Kushner and Dupuis [22]. The actual
computation of the transition intensities is done by means of linear pro-
gramming, which is a time-consuming process but one that can be easily
parallelized. Once the transition matrix has been constructed, prices can be
computed quickly. The method is tested on geometric average options in up to
ten dimensions. Accurate results are obtained, in particular when use is made
of a simple bias control technique.

Keywords: American options, high-dimensional problems, free boundary
problems, optimal stopping, variational inequalities, numerical methods, un-
structured mesh, Markov chain approximation

2.1 INTRODUCTION

The pricing of American options has been extensively discussed in recent years
(cf. Detemple [12] for a survey), and in particular much attention has been
paid to the computational challenges that arise in the high-dimensional case.
The term “high dimensional” in this context refers to situations in which the
number of stochastic factors to be taken into account is at least three or four.
State–space dimensions in this range occur quite frequently, in particular in
models that involve multiple assets, interest rates, and inflation rates.
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Standard finite-difference methods that work well in low-dimensional
problems quickly become unmanageable in high-dimensional cases; on the
other hand, standard Monte Carlo methods cannot be applied as such, due
to the optimization problem that is embedded in American options. Many
recent papers have been devoted to finding ways of adapting the Monte
Carlo method for American and Bermudan option pricing; see for instance
[6, 7, 16, 20, 23, 26, 28, 30, 31]. A survey of Monte Carlo methods for American
option pricing is provided by Glasserman [14, chap. 8].

As has been pointed out by Glasserman [14], a unifying framework for
simulation-based approaches to American option pricing is provided by the
stochastic mesh method that was developed by Broadie and Glasserman [6].
The scope of this framework is extended even more if the term “stochastic”
in “stochastic mesh” is interpreted broadly to include also quasi–Monte Carlo
approaches, as proposed by Boyle et al. [4, 5]. The stochastic mesh method
has as its main ingredients: firstly, a time-indexed family of meshes (i.e., col-
lections of points in the state space that have been generated to match a given
distribution), and secondly, for each pair of adjacent meshes, a collection of
mesh weights. The mesh weights are used in a backward recursion to compute
conditional expectations E [ fi+1(xi+1) | xi ]. Broadie and Glasserman [6] have
advocated the use of independent sample paths to generate the meshes, com-
bined with likelihood-ratio weights corresponding to the average conditional
density associated with the mesh points at time ti . They also show that other
choices of the mesh weights can result in large variances. The least-squares
Monte Carlo method [23] can be interpreted as a stochastic mesh method
with implicitly defined mesh weights [14, chap. 8]. The weights implied by the
least-squares method do not coincide with the likelihood-ratio weights; still,
the method converges, as both the number of sample paths and the number of
basis functions tend to infinity in appropriate proportions [8, 28]. This shows
that alternatives to likelihood-ratio weights can be feasible.

The dynamic programming problem that arises in American option pric-
ing can be written in terms of a partial differential equation, and especially
in dimensions one and two, the finite-difference method (FDM) is an effec-
tive way of computing solutions. The FDM employs a grid at each time step
and computes conditional expectations by applying suitable weights; in that
sense, it can be viewed as a member of the family of stochastic mesh methods,
interpreted in the wide sense. The mesh is typically a regular grid on a certain
finite region; interpreted stochastically, such a mesh would correspond to a
uniform distribution on the truncated state space. The mesh weights are usu-
ally derived from Taylor expansions up to a certain order. The actual weights



P1: Naresh

July 31, 2007 18:59 C925X C925X˙C002

16 � CHAPTER 2

depend on the chosen order as well as on the form of time discretization that
is being used, such as explicit, fully implicit, or Crank–Nicolson. They are
not constructed as likelihood-ratio weights, nor can they necessarily be in-
terpreted as such at a given level of time discretization. The finite-difference
method is well known to converge if both the space-discretization step and the
time-discretization step tend to zero in appropriate proportions, depending
on the degree of implicitness [19]. While the convergence result holds true
in any state–space dimension, the computational feasibility of the standard
finite-difference method is very strongly affected by the fact that the number
of grid points (for a fixed number of grid points per dimension) is exponen-
tial in the dimension parameter. This is a well-known problem in dynamic
programming, usually referred to as the “curse of dimensionality.”

The method that we propose in this chapter is based on a blend of finite-
difference and Monte Carlo techniques. From the Monte Carlo method, and in
particular from its realization as the stochastic mesh method, we take the idea
of employing an irregular mesh (produced by a Monte Carlo or quasi–Monte
Carlo technique) that is, to a certain extent, representative of the densities
corresponding to a given process. In this way we gain flexibility and avoid the
unnatural sharp cutoff of the usual regular finite-difference grids. We stay in
line with basic finite-difference methods, in that we use the same grid at every
time step. This is in contrast with the methods based on forward generation of
Monte Carlo paths starting from a given initial state, which produce meshes
that are different at different points in time. Although the method that we
propose allows the use of different grids at different time points, we use only
a single grid in this chapter, both to simplify the presentation and to provide
the sharpest possible test of the applicability of the proposed method.

We use the term “irregular” here in the sense of “nonuniform,” and in this
way there may be a superficial similarity between the method we propose and
local mesh-refinement techniques in the context of the finite-element method.
The use of nonuniform meshes can be very effective in finite-element com-
putations, but the construction of such meshes in high-dimensional spaces
is unwieldy. Our approach in this chapter is closer to the finite-difference
method than to the finite-element method, even though we do not use finite
differences in the strict sense of the word, and the irregularity of the grid
is guided by general importance-sampling considerations rather than by the
specific form of a payoff function.

By using irregular grids we gain flexibility, but there is a price to pay. In
the standard finite-difference method based on regular grids, simple formulas
for weights can be derived from Taylor expansions. Such simple rules are no
longer available if we use irregular grids, and so we must look for alternatives
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to the classical finite-difference formulas. We propose here a method based
on Markov chain approximations. In a discrete-time context, transformations
from a continuous-state (vector autoregressive) model to a Markov chain
model have been constructed, for instance by Tauchen [29]. Financial models
are often formulated in continuous time, typically by means of stochastic
differential equations (SDE). In this chapter we construct continuous-time
Markov chain approximations starting from a given SDE. Even though time
will eventually have to be discretized in the numerical procedure, we find it
convenient to build a continuous-time-approximating Markov chain, because
in this way we preserve freedom in choosing a time-stepping method and, in
particular, we are able to use implicit methods. When implicit time stepping
is used, the mesh weights are defined implicitly rather than explicitly, as is also
the case in the Longstaff–Schwartz method [23].

The benefit of using a single mesh is that we have natural candidates for
the discrete states in an approximating Markov chain, namely the grid points
in this mesh. To define transition intensities between these points, we work in
the spirit of Kushner and Dupuis [22] by matching the first two moments of
the conditional densities given by the original SDE. This leads to a collection of
linear programming (LP) problems, one for each grid point. Implementation
details are given in section 2.3, where we also discuss the interpretation and
treatment of grid points whose associated LP problems are infeasible. The
idea of using the local consistency criterion is an innovation with respect to an
earlier paper [2] that used irregular grids in combination with a root extraction
method for determining transition intensities. An important advantage of the
local consistency method is that it has certain guaranteed stability properties,
as discussed in section 2.4. Moreover, we propose an implementation that
guarantees that we obtain a sparse generator matrix.

The proposal of this chapter can be viewed essentially as an attempt to
make the finite-difference method work in high dimensions by incorporating
some Monte Carlo elements. As in the standard finite-difference method, the
result of the computation is the option price as a function of the value of the
underlying, as opposed to the standard Monte Carlo method, which focuses
just on the option price for a single given value of the underlying. We can
therefore obtain partial derivatives at virtually no extra computational cost.
An important advantage of the method that we propose is that the number
of tuning parameters is small. The popular Longstaff–Schwartz method [23]
is often sensitive to the choice of basis functions, and it seems difficult to
give general guidelines on the selection of these functions. In contrast, the
method proposed here is based on two main parameters, namely the number
of mesh points used (replacing the space-discretization step in the standard
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finite-difference method) and the time-discretization step. The method does
not require much specific knowledge about the option to be priced, in contrast
to methods that optimize over a parametric collection of exercise boundaries
or hedging strategies to find upper or lower bounds; of course this may be
an advantage or a disadvantage, depending on whether or not such specific
knowledge is available. Our proposed computational procedure is such that
essentially the same code can be used for problems in different dimensions,
in stark contrast to the standard finite-difference method. The computational
results presented below suggest that this freedom of dimension is achieved at
the price of a fairly small deterioration of convergence speed.

The chapter continues in section 2.2 with a formulation of the problem of
interest. Section 2.3 presents the proposed methodology. A stability analysis
is presented in section 2.4. We discuss grid specification and boundary con-
ditions in section 2.5, and the results of experiments are described in section
2.6. Finally, section 2.7 concludes the chapter.

2.2 FORMULATION

We consider an arbitrage-free market described in terms of a state variable
X(s ) ∈ Rd for s ∈ [t, T], which under the risk-neutral measure follows a
Markov diffusion process

d X(s ) = μ(X(s ), s ) ds + σ (X(s ), s ) dW(s ) (2.2.1)

with initial condition X(t) = xt . For simplicity, we assume a constant interest
rate r . In this market we consider a derivative product on X(s ) with immediate
exercise value ψ(X(s ), s ) at time s and value V(s ) = v(X(s ), s ) for some
pricing function v(x , s ). The process V(s ) satisfies

dV(s ) = μV (X(s ), s ) ds + σV (X(s ), s ) dW(s ) (2.2.2)

where μV and σV can be expressed in terms of μ and σ by means of Itô’s
lemma. The terminal value is given by V(·, T) = ψ(·, T), and intermediate
values satisfy V(·, s ) ≥ ψ(·, s ), s ∈ [t, T].

The value of the derivative product can be expressed as a supremum over
stopping times

v(xt , t) = sup
τ∈T

EQ
t (e−r (τ−t)ψ(X(τ ))) (2.2.3)

where T is the set of stopping times on [t, T] with respect to the natural
filtration; the expectation is taken with respect to the risk-neutral measure Q;
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and the initial value is X(t) = xt . Standard dynamic programming arguments
(see for instance Jaillet et al. [19]) allow reformulation of the problem in terms
of the Black–Scholes operator

L = 1

2
tr σσ ′ ∂2

∂x2
+ μ

∂

∂x
− r. (2.2.4)

The option value can be found by solving the differential complementarity
problem ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂v

∂t
+ Lv ≤ 0

v − ψ ≥ 0(
∂v

∂t
+ Lv

)
(v − ψ) = 0

(2.2.5)

for (x , s ) ∈ Rd × [t, T] with the terminal condition v(·, T) ≡ ψ(·, T). The
solution of this problem divides the time–state space into two complementary
regions: the continuation region, where it is optimal to hold the option, and
the stopping region, where it is optimal to exercise. In the continuation region,
the first line of equation (2.2.5) is satisfied with equality, and the option is not
exercised. In the stopping region, the second line of equation (2.2.5) is active,
and the stopping rule calls for the option to be exercised.

We assume below that the risk-neutral process, equation (2.2.1), is time
homogeneous, i.e., the drift and volatility parameters μ and σ do not depend
on time explicitly. Our basic state process is therefore given by a stochastic
differential equation of the form

d X(s ) = μ(X(s )) ds + σ (X(s )) dW(s ) (2.2.6)

where X(s ) is d-dimensional, and W(s ) is a k-dimensional standard Wiener
process. The time-homogeneity assumption is in principle not necessary for
the proposed method, but it does simplify both the analysis and the imple-
mentation of the method considerably.

2.3 OUTLINE OF THE METHOD

The proposed method essentially consists of the following steps:

1. Construction of an irregular grid in the state space
2. Construction of a continuous-time Markov chain, using the grid points

as states
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3. Discretization of time by selecting a time-stepping method
4. Resolution of the resulting sequence of linear complementarity

problems

We discuss these steps now in more detail.

2.3.1 Step 1: State–Space Discretization

As noted before, the method discussed in this chapter calls for the selection of
a single grid in the state space Rd . The main issues are: how to choose the grid
density, and how to construct a grid that is representative of the selected density.

Importance-sampling considerations tell us that the most efficient grid
density is given by the density of the process itself. The process density, how-
ever, is time dependent as well as state dependent, and so a compromise has
to be made if one is to work with a single grid. As outlined in Evans and
Swartz [13], the rate of convergence for importance sampling of normal den-
sities using normal importance-sampling functions is most damaged when
the variance of the importance-sampling function is less than that of the true
density. Conversely, convergence rates are not greatly affected when the vari-
ance of the importance-sampling function is greater than that of the true
density. The situation we should try to avoid is that the process has a sig-
nificant probability of lying in the “tails” of the grid density. Berridge and
Schumacher [2] used a root method to construct transition probabilities, and
the process considered was a five-dimensional Brownian motion with drift;
a grid covariance of 1.5 times the process covariance at expiry was found to
give the best convergence rate when tested against grids with covariances of
1.0 and 2.0 times the covariance at expiry.

A grid with a given density can be formed by crude Monte Carlo in combi-
nation with a suitable grid transformation. However, the literature on Monte
Carlo (MC) and quasi–Monte Carlo (QMC) integration indicates that better
results can be obtained by using low-discrepancy (Niederreiter [24]) or low-
distortion (Pagès [25]) methods. Two-dimensional plots, as shown in Figure
2.3.1, do indeed suggest that the latter methods provide nicer samplings. In
the numerical experiments, we have used both low-discrepancy (Sobol) grids
and low-distortion grids.

2.3.2 Step 2: Markov Chain Approximation

Suppose now that a grid

X = {x1, . . . , xn} ⊂ Rn (2.3.1)
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FIGURE 2.3.1 Grids with 500 points adapted to the normal density.
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is given. The next step is to construct a continuous-time Markov chain approx-
imation to the process given by equation (2.2.6), with states that correspond to
the points in a given irregular grid. First, consider the more standard discrete-
time approximation. Let δt denote a time step. A Markov transition matrix
P is said to be locally consistent with the given process [22] if for each state
i = 1, . . . , n we have1

�(xi )δt = ∑n
j=1(x j − xi − μ(xi )δt)(x j − xi − μ(xi )δt)′ pi j (2.3.2a)

μ(xi )δt = ∑n
j=1(x j − xi )pi j (2.3.2b)

1 = ∑n
j=1 pi j (2.3.2c)

pi j ≥ 0 (2.3.2d)

where pi j is the (i, j )th entry of P . For each state i , the above problem is a
linear programming feasibility problem with n variables pi1, . . . , pin, which
are subject to 1

2 d(d + 3) + 1 equality constraints and n inequality constraints.
In a typical application, the number of equality constraints is much smaller
than the number of variables.

To arrive at a continuous-time approximation method, we note that tran-
sition intensities relate to transition probabilities via

ai j = lim
δt↓0

1

δt
( pi j (δt) − δi j ) (2.3.3)

where δi j is the Kronecker delta. The numbers ai j can be collected into a
matrix A, which is known as the transition intensity matrix or the infinitesimal
generator matrix. Taking limits in equation (2.3.2) leads to the conditions

�(xi ) = ∑
j 	=i (x j − xi )(x j − xi )′ai j (2.3.4a)

μ(xi ) = ∑
j 	=i (x j − xi )ai j (2.3.4b)

aii = −
n∑

j 	=i

ai j (2.3.4c)

ai j ≥ 0 ( j 	= i). (2.3.4d)

1 The formulation in Kushner and Dupuis [22] is more general in that it allows o(δt) terms to be
added on the right-hand side of the first two conditions.
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Again we have a linear-programming feasibility problem at each grid point
xi ; the number of variables and the number of equality constraints are both
reduced by 1 with respect to the discrete-time formulation. In particular, the
number of equality constraints is

ηd = 1

2
d(d + 3). (2.3.5)

In applications, the number of grid points n is typically on the order
104 or 105. In the actual implementation, we drastically reduced the number
of variables by taking into consideration only variables ai j , such that the
corresponding grid points x j are close to the given point xi . In this way, we
simplify the feasibility problem and moreover obtain a sparse infinitesimal
generator matrix.

To obtain specific solutions, it is useful to convert the feasibility problem
to an optimization problem by adding an objective function. The objective
function that we have used in experiments is

∑
j 	=i f j ai j , where f j is equal to k3

if x j is the kth nearest neighbor of xi . Minimization of this objective function
expresses a preference for using points close to xi to satisfy the conditions of
equation (2.3.4).

It follows from results in linear programming (see, for instance, Schrijver
[27, Cor. 7.11]) that the solution of the linear program described above is in
general a corner solution using as many zero variables as possible. The number
of nonzero transition intensities per point is then the minimum number,
namely ηd . These points are not necessarily the ηd nearest neighbors of xi , as
these may not satisfy the feasibility conditions; they rather form the closest
possible feasible set, as measured by the objective function.

There is clearly a similarity between the method that we propose here and
the method of lines as discussed for instance by Hundsdorfer and Verwer [18].
We cannot use the standard finite-difference formulas in the space direction,
however, due to the fact that we have an irregular grid. Instead, we use transi-
tion intensities obtained from local consistency conditions. The resulting sign
constraints are sufficient for stability, as discussed in section 2.4 below, but are
not necessary. The use of a regular grid in the method of lines brings alternative
ways of ensuring stability, but it also restricts the method to low-dimensional
applications. In the case of an irregular grid, we do not know of any systematic
way to ensure stability other than via the sign constraints resulting from the
Markov chain approximation.
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2.3.3 Step 3: Time Discretization

In the previous step, we have discretized in space but not in time. In this way we
have obtained a finite-dimensional differential variational inequality instead
of the partial differential variational inequality shown in equation (2.2.5). The
finite-dimensional version can be written in the form

0 ≤ v(t) − ψ(t) ⊥ −dv

dt
(t) + (r I − A)v(t) ≥ 0 (2.3.6)

where A denotes the infinitesimal generator matrix, and the “perp” symbol
is used to express the complementarity relations. This follows a notation that
is standard in the theory of linear complementarity problems [9]. We abuse
notation to some extent in that we keep the notation v for the pricing function,
although this is now a vector-valued function of continuous time providing a
space-discretized version of the actual pricing function v(x , t).

The usual time stepping methods for linear ordinary differential equations
(ODEs) can all be used, but the complementarity conditions have to be taken
into account. From equation (2.3.6), a general θ-scheme is given by

0 ≤ vk − ψk ⊥ vk − vk+1

δt
+ (r I − A)(θvk + (1 − θ)vk+1) ≥ 0 (2.3.7)

for k = K − 1, . . . , 0, with terminal condition VK = ψK . The choice θ = 0
corresponds to the explicit scheme; the fully implicit scheme is obtained by
taking θ = 1, and the Crank–Nicolson scheme by taking θ = 1

2 . Each scheme
leads to a series of problems of the form

0 ≤ vk − ψk ⊥ ML vk − MRvk+1 ≥ 0. (2.3.8)

The final step consists of solving this sequence of linear complementarity
problems (LCPs).

2.3.4 Step 4: Solving the Sequence of LCPs

There are many methods available for solving LCPs, including the projected
successive overrelaxation (PSOR) method proposed in Cryer [10]. Another
possible candidate is linear programming, which is used for example by
Dempster and Hutton [11] to solve the one-dimensional American option
pricing problem. Several possible approaches are discussed and compared by
Huang and Pang [17]. The solution is particularly simple when the explicit
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method is used, since in this case the matrix ML multiplying the unknown at
the right hand side of equation (2.3.8) is the identity and we can immediately
write down the solution:

vk = max(ψk , (I + δt(r I − A))vk+1). (2.3.9)

Nevertheless, as in the European case, one may prefer the Crank–Nicolson
method because of its better convergence properties with respect to the time
step, or the implicit method because of its unconditional stability, as discussed
below.

2.4 STABILITY ANALYSIS

In the theory of the numerical solution of convection-diffusion equations, it
is well known that, under certain conditions, time-stepping algorithms can
be unstable and produce solutions that are very far from the truth. Similar
effects may arise in the context of differential variational inequalities of the
convection–diffusion type. In this case, the problem that is solved at each step
is a linear complementarity problem (LCP) rather than a linear system; thus
the stability problem is more difficult to analyze and in particular cannot be
formulated in terms of eigenvalues. We present a stability analysis here that
makes essential use of the fact that our proposed numerical scheme is based on
a continuous-time Markov chain interpretation. The payoff function (value
of immediate exercise) is allowed to be time dependent and is assumed to be
bounded.

It should be noted that stability is necessary for convergence to the true
solution, but this alone is not generally sufficient. Conditions for convergence
of the method proposed here are discussed by Berridge [3, Chap. 6].

We remind the reader of some matrix classes that will be used in the
following analysis. For a full treatment of matrix classes, we refer the reader
to Berman and Plemmons [1] or Cottle, Pang, and Stone [9].

DEFINITION 2.4.1
A real square matrix is said to be a Z-matrix if its off-diagonal entries are nonpositive.

DEFINITION 2.4.2
A real square matrix is said to be a P-matrix if all of its principal minors are positive.
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2.4.1 The Explicit Method

The explicit version of the complementarity problems presented in equation
(2.3.7) is

0 ≤ vk − ψk ⊥ vk − MRvk+1 ≥ 0 (2.4.1)

for k = K − 1, . . . , 0, where the matrix MR is given by

MR = (1 − r δt)I + Aδt. (2.4.2)

In the explicit case, the complementarity problems presented in equation
(2.4.1) are readily solved. The solution is given by

vk = max (ψk , MRvk+1) (2.4.3)

where max denotes the componentwise maximum. A stability condition for
the sequence of vectors generated in this way is given below.

LEMMA 2.4.1
Suppose that the matrix A satisfies equations (2.3.4c) and (2.3.4d). Let r ≥ 0, and let
MR be defined by equation (2.4.2). Under the stability condition

δt ≤ 1

‖A − r I‖	

(2.4.4)

where ‖A‖	 = maxi |aii |, the solution at k = 0 of the explicit system of complementarity
problems, shown in equation (2.4.1), with MR defined by equation (2.4.2), satisfies

‖v0‖∞ ≤ max
k=0,...,K

(1 − r δt)k‖ψk‖∞. (2.4.5)

PROOF The conditions in equations (2.3.4c), (2.3.4d), and (2.4.4) imply that
MR is elementwise nonnegative, so that for any two vectors x and y with
x ≤ y (componentwise inequality) we have MR x ≤ MR y. Furthermore, the
row sums of MR are equal to 1 − r δt. Therefore, writing 11 for the vector all of
whose entries are equal to 1, we have MRv ≤ MR‖v‖∞11 = (1 − r δt)‖v‖∞11
for any vector v . It follows that ‖MRv‖∞(1 − r δt) ≤ ‖v‖∞ for all v . From
equation (2.4.3) we have

‖vk‖∞ ≤ max (‖ψk‖∞, ‖MRvk+1‖∞)

≤ max (‖ψk‖∞, (1 − r δt)‖vk+1‖∞) .
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Applying this inequality recursively with vK ≡ ψK produces the required
result.

The stability bound on δt is presented in terms of the maximum absolute
value of the entries of the diagonal of the matrix A, which under the conditions
of equations (2.3.4c) and (2.3.4d) is the same as the maximum absolute value
of all entries of A. It is shown below that the bound can be estimated in terms
of a ratio between the time step and the square of a “space step.”

LEMMA 2.4.2
Suppose that A satisfies the conditions described in equations (2.3.4a), (2.3.4c), and
(2.3.4d). Let ε be such that

‖xi − x j ‖2 ≥ ε2 ∀i, j s .t. j 	= i, ai j 	= 0. (2.4.6)

Then the norm appearing in lemma 2.4.1 is bounded as follows:

‖A − r I‖	 ≤ 1

ε2
max

i
tr �(xi ) + r. (2.4.7)

PROOF Applying the trace operator to both sides of equation (2.3.4a), we
find

tr �(xi ) =
∑
j 	=i

ai j tr (x j − xi )(x j − xi )
′

=
∑
j 	=i

ai j ‖x j − xi‖2

≥ ε2
∑
j 	=i

ai j .

It follows that maxi |aii | ≤ ε−2 maxi tr �(xi ), and this immediately implies
the inequality (2.4.7).

Lemmas 2.4.2 and 2.4.1 can be combined to give a stability condition in terms
of the ratio between the time step and the minimum point separation.

LEMMA 2.4.3
Under the conditions of lemma 2.4.2, the stability condition in lemma 2.4.1 holds pro-
vided that

δt

ε2
≤ 1 − r δt

maxi tr �(xi )
. (2.4.8)
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The lemma indicates that, if the number of grid points is increased so that
the distances between grid points are reduced by a factor c , then for stability
reasons, the number of time steps should be increased by a factor c 2. This
quadratic relation is typical for the explicit method.

2.4.2 The Fully Implicit Method

The stability condition in the explicit case can be rather restrictive, especially
in a low dimension where the point separation decreases more rapidly with
grid size. Because implicit methods often exhibit greater stability, we now
investigate their properties.

The complementarity problems shown in equation (2.3.7) for the fully
implicit case are rewritten as

0 ≤ vk − ψk ⊥ ML vk − vk+1 ≥ 0 (2.4.9)

for k = K − 1, . . . , 0, where the matrix ML is given by

ML = (1 + r δt)I − Aδt. (2.4.10)

LEMMA 2.4.4
Suppose that A satisfies equations (2.3.4c) and (2.3.4d). Let r ≥ 0, and let ML be defined
by equation (2.4.10). Under these conditions, the complementarity problems in equation
(2.4.9) have unique solutions for all k = K − 1, . . . , 0, and the solution at time index
k = 0 of the sequence of problems in equation (2.4.9) satisfies

‖v0‖∞ ≤ max
k=0,...,K

(1 + r δt)k‖ψk‖∞. (2.4.11)

PROOF Under the condition of equation (2.3.4d), the matrix ML defined in
equation (2.4.10) is a Z-matrix. By equation (2.3.4c), we also have ML 11 =
(1 + r δt)11, which shows, moreover, that ML is semipositive,2 and so we can
conclude that ML is a P-matrix [1, Thm. 6.2.3]. It follows that the comple-
mentarity problems in equation (2.4.9) all have unique solutions.

By the fact that ML is a Z-matrix, the unique solution of equation (2.4.9) can
be characterized as the least element (in the sense of componentwise inequal-
ity) of the set of “feasible vectors” of the problem, i.e., the vectors that satisfy
the inequality constraints in equation (2.4.9) but not necessarily the comple-
mentarity conditions (cf. for instance [9, Thm. 3.11.6] or [1, Thm. 10.4.11]).

2 A square real matrix M is said to be semipositive if there exists a vector x such that xi > 0 and
(Mx)i > 0 for all i .
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Now consider the vector

v = max((1 + r δt)−1‖vk+1‖, ‖ψk‖∞)11.

We claim that v is feasible for equation (2.4.9). Concerning the first inequality
in equation (2.4.9), this is obvious. For the second, recalling that A has zero
row sums, we have,

ML v − vk+1 = (1 + r δt)v − vk+1

= max (‖vk+1‖, (1 + r δt)‖ψk‖∞) 11 − vk+1

≥ 0.

Therefore, the true solution vk satisfies vk ≤ v , and consequently we have

‖vk‖∞ ≤ ‖v‖∞

= max((1 + r δt)−1‖vk+1‖, ‖ψk‖∞).

Applying this inequality recursively with vK ≡ ψK produces the desired result.

The lemma indicates that the fully implicit method is unconditionally stable;
again, this is a familiar result.

2.4.3 The θ Method

The θ case lies “between” the explicit and implicit problems. The comple-
mentarity problems shown in equation (2.3.7) for the θ case are rewritten
as

0 ≤ vk − ψk ⊥ ML vk − MRvk+1 ≥ 0 (2.4.12)

for k = K − 1, . . . , 0, where the matrices ML and MR are given by

ML = (1 + r θδt)I − Aθδt (2.4.13a)

MR = (1 − r (1 − θ)δt)I + A(1 − θ)δt. (2.4.13b)

By combining the arguments used for the explicit and for the implicit case, we
obtain the following results.
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LEMMA 2.4.5
Suppose A satisfies equations (2.3.4c) and (2.3.4d). Let r ≥ 0 and let ML and MR be
given by equation (2.4.13a). Under the stability condition

δt ≤ 1

(1 − θ)‖A − r I‖	

(2.4.14)

where ‖A‖	 = maxi |aii |, the solution at time index k = 0 of the θ-case sequence of
complementarity problems in equation (2.4.12), satisfies

‖v0‖∞ ≤ max
k=0,...,K

(
1 − r (1 − θ)δt

1 + r θδt

)k

‖ψk‖∞. (2.4.15)

LEMMA 2.4.6
Under the conditions of lemma 2.4.2, the stability condition in lemma 2.4.5 holds pro-
vided that

δt

ε2
≤ 1 − r (1 − θ)δt

(1 − θ) maxi tr �(xi )
. (2.4.16)

We do get a stability condition for any θ < 1, be it that the condition for
positive θ is weaker than the one in the explicit case. This is in line with
the conditions found in the literature [15, 19] for finite-difference methods
applied to American options.

2.5 BOUNDARY POINTS

It is clear that the problem expressed in equation (2.3.4) may be infeasible for
some i . In such a case, we say that xi is an implied boundary point; otherwise we
call xi an implied interior point. Given nondegenerate � and a well-adapted
grid, one expects that the implied boundary points are indeed found at the
extremities of the grid, and that the implied interior points lie away from the
extremities. The location of infeasible points is illustrated in Figure 2.5.1 for
a 500-point low-distortion grid in two dimensions. In this case the number
of infeasible points is 21, about 4% of the total, and these points are indeed
farthest from the grid center.

The partial differential equations of option pricing are typically formulated
on infinite domains, so that truncation is necessary for the application of finite-
difference methods. An artificial boundary is thus created. It can be seen as
an advantage of the irregular grid method that the transition to the boundary
is smoother than in the case of standard finite-difference methods based on
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FIGURE 2.5.1 Interior points (small) and boundary points (large) on a normal low-distortion
grid for d = 2, n = 500.

regular grids. It is important for the accuracy of our method that the criterion
that we use for identification of boundary points, namely infeasibility of the
linear program shown in equation (2.3.4), is correct in the sense that infeasible
points are indeed located in regions where the process of interest has a low
density. A formal proof of such a property does not seem easy to give, however,
in view of the intricate interplay that exists in general between grid generation,
process parameters, and feasibility determination. In the experiments that we
carried out, as reported below in section 2.6, we did find that infeasible points
occur only at a sufficiently large distance from the grid center. We call this
distance the boundary radius.

To get an impression of the way in which the boundary radius depends on
grid size and state–space dimension, one can reason as follows. Consider a grid
of n points derived from a d-variate standard normal distribution. Let x0 be
a given point in d-dimensional space. The expected number of grid points in
the shifted half-space tangent at x0 to the ball with radius ‖x0‖ (i.e., the region
of points x in the state space that satisfy xT x0 ≥ ‖x0‖2) is �(‖x0‖)n, where
� is the cumulative normal distribution function. The minimum number of
neighbors needed to satisfy the consistency conditions is ηd , given by equation
(2.3.5). If we assume (rather optimistically, perhaps) that boundary points
only start to appear when the expected number of grid points in the shifted
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FIGURE 2.5.2 Coarse estimate of the radius of the boundary and the proportion of points
that are in the boundary region for a standard normal grid.

half-space drops below 1
2ηd , then the boundary radius is given by

r = �−1
(

1 − 1

2n
ηd

)
. (2.5.1)

In view of the fact that the squared norm of a standard normal variable in d
dimensions is a chi-square random variable with d degrees of freedom, the
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corresponding expected number of boundary points is

ENb = n(1 − �(r 2, d)) (2.5.2)

where�(·, d) is the chi-square cumulative distribution function with d degrees
of freedom. Plots of the radius and expected number of boundary points
according to this reasoning are presented in Figure 2.5.2 for d = 3, 5, 10 and n
up to 300,000. For instance, for d = 10 and n = 105, the estimated proportion
of boundary points is about 30%. Experimentally we find that equation (2.5.1)
underestimates the implied radius for lower dimensions and overestimates it
for higher dimensions. The numerical results are discussed in subsection 2.6.7.

2.6 EXPERIMENTS

A major hurdle in testing algorithms for pricing high-dimensional American
options is the difficulty of verifying results. One method is using out-of-sample
paths to estimate the value of the exercise and hedging strategies implied by the
model. Another, which we use here, is to use benchmark results from a special
case that can be solved accurately. In the following we introduce benchmark
results and then test the proposed method against those results.

2.6.1 Geometric Average Options

We choose to focus on geometric average options in a multivariate Black–
Scholes framework, since the pricing problem for these options can be reduced
to a one-dimensional problem. The one-dimensional problem can be solved to
a high degree of accuracy, thus providing benchmark results for the algorithm.

A geometric average put option written on d assets has payoff function

ψ(S) =
(

K −
(∏

Si

)1/d
)+

(2.6.1)

where S is the asset value and K is the strike price of the option. Assuming
a complete and arbitrage-free market with log asset prices following a mul-
tivariate Brownian motion with constant covariance �, we have a constant
risk-neutral drift

μ = r 11 − 1

2
diag �. (2.6.2)
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2.6.2 Benchmarks

Defining Y = 1
d

∑d
i=1 Xi , where the state variables Xi represent log asset prices,

we find that Y satisfies

dY (s ) = μ̃ ds + σ̃ dW(s ) (2.6.3)

where the parameters of the diffusion are given by

μ̃ = r − 1

2d

d∑
i=1

σ 2
i (2.6.4)

σ̃ 2 = 1

d2

d∑
i=1

(
d∑

j=1

ρi j

)2

. (2.6.5)

The option is thus equivalent to a standard put option on an asset with starting
value exp{X0}, strike price K , risk-free rate r , and continuous dividend stream

δ = 1

2

(
1

d

∑
σ 2

i − σ̃ 2
)

. (2.6.6)

In Table 2.6.1 we provide benchmark results for geometric put options written
on up to ten assets, with starting asset values Si = 40 for all i , and strike
price 40. The risk-free rate is taken as 0.06, the volatilities σi = 0.2 for all i ,
and correlations ρi j = 0.25 for i 	= j .

TABLE 2.6.1 Benchmark Results for Geometric Average Options in
Dimensions 1–10. Also Displayed are the Variance σ̃ 2 and Continuous
Dividend δ for the Equivalent One-Dimensional Problem

d σ̃ 2 × 102 δ × 102 European Bermudan American

1 4.000 0.000 2.0664 2.2930 2.3196
2 2.500 0.750 1.5553 1.7557 1.7787
3 2.000 1.000 1.3468 1.5380 1.5597
4 1.750 1.125 1.2318 1.4193 1.4392
5 1.600 1.200 1.1585 1.3421 1.3625
6 1.500 1.250 1.1077 1.2893 1.3094
7 1.429 1.286 1.0703 1.2504 1.2703
8 1.375 1.313 1.0416 1.2207 1.2404
9 1.333 1.333 1.0189 1.1971 1.2167

10 1.300 1.350 1.0004 1.1779 1.1974
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2.6.3 Experimental Details

Using the methodology proposed in section 2.3, we conducted experiments
to find the value of the geometric average put options given above.

We used six different grid sizes ranging from 50,000 to 300,000, and two
types of grids consisting of normal Sobol points and normal low distortion
points. The grid covariance was taken to correspond to 1.5 times the process
covariance at expiry, following the discussion in section 2.3. The transition
matrices were generated using distributed computing software in a Matlab
environment. A maximum of 20ηd nearest neighbors were considered when
trying to satisfy the local consistency conditions, whereηd is as defined in equa-
tion (2.3.5). Implied boundary points were treated as absorbing states in the
approximating Markov chain.

We consider the pricing problem for European options, for Bermudan
options with ten exercise opportunities, and for true American options that
can be exercised at any time up to expiry. For the European and Bermudan
problems we used the Crank–Nicolson method with 100 time steps. For solv-
ing the linear systems, we used the conjugate gradient squared (CGS) and
generalized minimum residual (GMRES) methods, the latter being slower
but more robust. For the American problems we used projected successive
overrelaxation (PSOR) to solve the linear complementarity problems, with
1000 time steps. While it is not necessary to use such a large number of time
steps in practice, we wanted to focus on the error with respect to the space
discretization. Having a small enough δt causes the error resulting from time
discretization to be negligible in comparison, and thus allows a more accurate
assessment of the error resulting from space discretization.

To achieve an improved level of precision, we also appeal to a simple bias
control technique. As the bias control variable, we use the European option
price because it is in itself a much easier problem to solve, and its solution using
the irregular grid technique is highly correlated to the corresponding Amer-
ican option price, where the correlation is seen in respect to our grid choice.
The method simply involves using the irregular-grid technique to solve both
the American and European problems, and then adding the difference (i.e., the
estimated early exercise premium) to the accurately calculated European price.

2.6.4 Experimental Results

We present results in Tables 2.6.2–2.6.4 for prices obtained using normal Sobol
grids for the Bermudan, American, and European cases, respectively. The cor-
responding results for low-distortion grids are presented in Tables 2.6.7–2.6.9.
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TABLE 2.6.2 Results for Bermudan Geometric Average Put Options
in Dimensions 3–10 Using Normal Sobol Grids

d 5 × 104 10 × 104 15 × 104 20 × 104 25 × 104 30 × 104

3 1.5370 1.5375 1.5376 1.5376 1.5377 1.5377
4 1.4135 1.4147 1.4155 1.4161 1.4163 1.4166
5 1.3300 1.3329 1.3345 1.3360 1.3365 1.3371
6 1.2532 1.2630 1.2667 1.2757 1.2766 1.2780
7 1.1981 1.2133 1.2137 1.2305 1.2311 1.2313
8 1.1489 1.1664 1.1672 1.1891 1.1938 1.1807
9 1.1116 1.1255 1.1351 1.1530 1.1514 1.1612

10 1.0901 1.1080 1.1078 1.1129 1.1242 1.1218

TABLE 2.6.3 Results for American Geometric Average Put Options in
Dimensions 3–10 on Normal Sobol Grids

d 5 × 104 10 × 104 15 × 104 20 × 104 25 × 104 30 × 104

3 1.5584 1.5588 1.5590 1.5591 1.5592 1.5592
4 1.4332 1.4347 1.4357 1.4362 1.4365 1.4369
5 1.3489 1.3522 1.3537 1.3551 1.3557 1.3563
6 1.2721 1.2818 1.2858 1.2940 1.2951 1.2965
7 1.2182 1.2325 1.2331 1.2482 1.2491 1.2492
8 1.1693 1.1864 1.1870 1.2071 1.2114 1.1993
9 1.1316 1.1460 1.1549 1.1715 1.1700 1.1802

10 1.1102 1.1281 1.1267 1.1324 1.1433 1.1414

TABLE 2.6.4 Results for European Geometric Average Put Options in
Dimensions 3–10 on Normal Sobol Grids

d 5 × 104 10 × 104 15 × 104 20 × 104 25 × 104 30 × 104

3 1.3461 1.3463 1.3465 1.3465 1.3465 1.3465
4 1.2274 1.2286 1.2293 1.2302 1.2304 1.2304
5 1.1482 1.1505 1.1520 1.1541 1.1545 1.1549
6 1.0716 1.0813 1.0849 1.0977 1.0984 1.0993
7 1.0156 1.0275 1.0318 1.0527 1.0541 1.0545
8 0.9624 0.9792 0.9848 1.0123 1.0151 0.9943
9 0.9231 0.9406 0.9507 0.9735 0.9755 0.9802

10 0.8966 0.9203 0.9277 0.9340 0.9418 0.9424

Tables 2.6.5 and 2.6.6 show the results on normal Sobol grids for Bermudan
and American options when the European is used as the bias control variable.
Tables 2.6.10 and 2.6.11 show the same for low-distortion grids.

Figures 2.6.1 and 2.6.2 present the results graphically for normal Sobol
grids. The results for low-distortion grids are shown in Figures 2.6.3 and
2.6.4. We see that the error increases with dimension to about 5–10% for
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TABLE 2.6.5 Results for Bermudan Geometric Average Put Options
in Dimensions 3–10 on Normal Sobol Grids, Using the European Price
as a Bias Control

d 5 × 104 10 × 104 15 × 104 20 × 104 25 × 104 30 × 104

3 1.5382 1.5382 1.5382 1.5379 1.5379 1.5379
4 1.4179 1.4178 1.4180 1.4177 1.4177 1.4179
5 1.3403 1.3409 1.3410 1.3404 1.3405 1.3407
6 1.2892 1.2893 1.2894 1.2857 1.2858 1.2863
7 1.2527 1.2560 1.2521 1.2481 1.2473 1.2470
8 1.2281 1.2288 1.2240 1.2184 1.2203 1.2279
9 1.2074 1.2038 1.2033 1.1984 1.1947 1.1999

10 1.1940 1.1881 1.1805 1.1793 1.1829 1.1799

TABLE 2.6.6 Results for American Geometric Average Put Options in
Dimensions 3–10 on Normal Sobol Grids, Using the European Price as
a Bias Control

d 5 × 104 10 × 104 15 × 104 20 × 104 25 × 104 30 × 104

3 1.5595 1.5596 1.5596 1.5594 1.5594 1.5594
4 1.4376 1.4378 1.4382 1.4378 1.4379 1.4382
5 1.3592 1.3602 1.3603 1.3595 1.3597 1.3599
6 1.3082 1.3082 1.3085 1.3041 1.3044 1.3048
7 1.2728 1.2752 1.2716 1.2658 1.2653 1.2649
8 1.2484 1.2487 1.2437 1.2364 1.2379 1.2465
9 1.2274 1.2242 1.2231 1.2169 1.2133 1.2189

10 1.2141 1.2082 1.1994 1.1988 1.2020 1.1994

TABLE 2.6.7 Results for Bermudan Geometric Average Put Options
in Dimensions 3–10 Using Low-Distortion Grids

d 5 × 104 10 × 104 15 × 104 20 × 104 25 × 104 30 × 104

3 1.5372 1.5375 1.5376 1.5377 1.5377 1.5378
4 1.4141 1.4155 1.4160 1.4163 1.4165 1.4166
5 1.3309 1.3338 1.3360 1.3364 1.3370 1.3371
6 1.2695 1.2729 1.2751 1.2777 1.2779 1.2796
7 1.2139 1.2249 1.2255 1.2292 1.2319 1.2321
8 1.1628 1.1773 1.1850 1.1898 1.1899 1.1863
9 1.1234 1.1397 1.1428 1.1548 1.1514 1.1588

10 1.1177 1.1008 1.1131 1.1103 1.1170 1.1242

d = 10. The bias control is very effective, reducing the error for d = 10 to less
than 1%.

When using the European option to reduce the bias, we see that the
results are biased upward, whereas the raw results are biased downward.
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TABLE 2.6.8 Results for American Geometric Average Put Options in
Dimensions 3–10 on Low-Distortion Grids

d 5 × 104 10 × 104 15 × 104 20 × 104 25 × 104 30 × 104

3 1.5583 1.5587 1.5589 1.5590 1.5590 1.5591
4 1.4341 1.4355 1.4361 1.4364 1.4367 1.4369
5 1.3500 1.3528 1.3550 1.3554 1.3561 1.3564
6 1.2875 1.2912 1.2935 1.2961 1.2965 1.2981
7 1.2319 1.2432 1.2433 1.2474 1.2496 1.2502
8 1.1813 1.1952 1.2032 1.2082 1.2080 1.2042
9 1.1412 1.1580 1.1615 1.1730 1.1689 1.1774

10 1.1390 1.1206 1.1315 1.1288 1.1365 1.1434

TABLE 2.6.9 Results for European Geometric Average Put Options in
Dimensions 3–10 Using Low-Distortion Grids

d 5 × 104 10 × 104 15 × 104 20 × 104 25 × 104 30 × 104

3 1.3460 1.3463 1.3464 1.3465 1.3465 1.3466
4 1.2287 1.2295 1.2299 1.2301 1.2304 1.2305
5 1.1501 1.1520 1.1535 1.1540 1.1544 1.1546
6 1.0904 1.0947 1.0965 1.0982 1.0987 1.0994
7 1.0394 1.0474 1.0497 1.0523 1.0545 1.0553
8 0.9877 1.0015 1.0078 1.0122 1.0137 1.0131
9 0.9405 0.9605 0.9654 0.9726 0.9729 0.9779

10 0.9080 0.9100 0.9247 0.9291 0.9322 0.9393

TABLE 2.6.10 Results for Bermudan Geometric Average Put Options
in Dimensions 3–10 Using Low-Distortion Grids, Using the European
Price as a Bias Control

d 5 × 104 10 × 104 15 × 104 20 × 104 25 × 104 30 × 104

3 1.5379 1.5379 1.5379 1.5379 1.5380 1.5380
4 1.4172 1.4178 1.4179 1.4179 1.4179 1.4179
5 1.3393 1.3403 1.3410 1.3409 1.3410 1.3410
6 1.2867 1.2859 1.2863 1.2871 1.2868 1.2878
7 1.2448 1.2478 1.2461 1.2472 1.2477 1.2471
8 1.2167 1.2174 1.2187 1.2191 1.2178 1.2147
9 1.2017 1.1980 1.1964 1.2011 1.1974 1.1998

10 1.2101 1.1913 1.1888 1.1817 1.1853 1.1853

This is probably due to the upward bias introduced by the convexity of the
max operator that appears in the Bermudan and American problems, but not
in the European problem.

In one and two dimensions, the generator matrix became numerically
unstable for the grid sizes we consider; we have thus not presented results
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TABLE 2.6.11 Results for American Geometric Average Put Options in
Dimensions 3–10 on Low-Distortion Grids, Using the European Price
as a Bias Control

d 5 × 104 10 × 104 15 × 104 20 × 104 25 × 104 30 × 104

3 1.5590 1.5592 1.5592 1.5592 1.5593 1.5593
4 1.4372 1.4378 1.4380 1.4380 1.4381 1.4381
5 1.3584 1.3593 1.3601 1.3599 1.3602 1.3603
6 1.3048 1.3042 1.3047 1.3056 1.3054 1.3064
7 1.2628 1.2661 1.2639 1.2654 1.2654 1.2652
8 1.2352 1.2353 1.2369 1.2376 1.2359 1.2327
9 1.2196 1.2164 1.2150 1.2193 1.2149 1.2184

10 1.2315 1.2111 1.2072 1.2002 1.2048 1.2045

for these low dimensions here. This lack of convergence is due to the finite
precision arithmetic, and not to instability in the sense that the generator
matrix has unstable eigenvalues (i.e., eigenvalues having a positive real part).
The method has been found to work very well in one and two dimensions,
but for smaller grid sizes.

2.6.5 Error Behavior

Drawing a parallel with regular grid methods, we expect the error to be related
to δx , the distance between grid points with positive weights in A. In a regular
grid with the same number of points N in each dimension, we have n = Nd

points in total, and the distance to the nearest point is simply n−1/d . The error
when using a standard finite difference method is on the order of δx2, or n−2/d .

We thus propose modeling irregular grid errors as in the regular grid case,
allowing for a constant term in the exponent as well as a multiplicative factor:

log |ε| = c1 + c2
log n

d
. (2.6.7)

In Figures 2.6.5 and 2.6.6 we present plots of the log absolute error versus
(log n)/d , and Tables 2.6.12 and 2.6.13 show the regression results. Referring
to our assumption of error behavior in equation (2.6.7), we find that the
complexity is accurately modeled by the given relationship in all three cases (for
suitable c1, c2). The possibility of modeling error accurately may suggest the
application of Richardson extrapolation in cases where monotonic behavior
of errors for successive grid sizes is observed.

The linear relationships seen in the log-transformed data strongly sug-
gest that the proposed algorithm has exponential complexity. There is little
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FIGURE 2.6.1 Bermudan pricing results for normal Sobol grids presented raw (top) and using
European price as bias control (bottom).

difference in error behavior between the Sobol and low distortion cases. The
European and Bermudan prices show about the same asymptotic relationship,
while American errors exhibit a slightly faster rate in the Sobol case, although
this is barely significant.

The convergence rate for finite-difference methods used to solve partial
differential equation (PDE) problems on regular grids is 1/δx2 or n−2/d , which



P1: Naresh

July 31, 2007 18:59 C925X C925X˙C002

PRICING HIGH-DIMENSIONAL AMERICAN OPTIONS � 41

2 3 4 5 6 7 8 9 10
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

d

v
Benchmark

1 × 104 Points 

1 × 105 Points

3 × 105 Points

2 3 4 5 6 7 8 9 10
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

d

v

Benchmark

1 × 104 Points 

1 × 105 Points

3 × 105 Points

FIGURE 2.6.2 American pricing results for normal Sobol grids presented raw (top) and using
European price as bias control (bottom).

here translates to c2 = −2. From this point of view, our method seems to be
slightly slower in convergence than the regular grid method. It may be taken
into account here that the average δx is larger as a function of the grid size in
the irregular grid case.
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FIGURE 2.6.3 Bermudan pricing results for low-distortion grids presented raw (top) and
using European price as bias control (bottom).

The given model for errors implies that the amount of work required to
obtain solutions to a certain accuracy increases exponentially with dimension.
The algorithm therefore does not break the curse of dimensionality, and in
fact the standard finite-difference method appears to do better asymptotically
as the number of grid points tends to infinity. However, in high dimensions,
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FIGURE 2.6.4 American pricing results for low-distortion grids presented raw (top) and using
European price as bias control (bottom).

the advantages of the standard method appear only for impractically large
numbers of grid points. The irregular method provides flexibility and freedom
in choosing grid sizes. Also, irregular grids do much better than regular grids
in terms of the proportion of boundary points for moderate grid sizes; this is
discussed in Subsection 2.6.7 below.
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FIGURE 2.6.5 Log of absolute errors for European, Bermudan, and American geometric av-
erage options plotted against (log n)/d for d = 3, . . . , 10 for normal Sobol grids. The points
lie in a nearly straight line in all three cases, giving a clear indication of complexity. See Table
2.6.12 for regression results.
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FIGURE 2.6.6 Log of absolute errors for European, Bermudan, and American geometric av-
erage options plotted against (log n)/d for d = 3, . . . , 10 for low-distortion grids. The points
lie in a nearly straight line in all three cases, giving a clear indication of complexity. See Table
2.6.13 for regression results.
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TABLE 2.6.12 Regression Coefficients for the Error Behavior
on Normal Sobol Grids (95% CI in Parentheses)

Option Type c1 c2 R2

European −0.35(±0.23) −1.91(±0.10) 0.971
Bermudan −0.42(±0.14) −1.85(±0.06) 0.988
American −0.55(±0.13) −1.74(±0.05) 0.989

2.6.6 Timings

The irregular grid method presented in this chapter can be divided into two
computationally intensive stages: obtaining the generator matrix and per-
forming the time stepping. Computing transition matrices is not considered
here, but it is very similar to computing generator matrices.

Here we provide indications of the timings involved; as usual this depends
heavily on the hardware and software used. The software aspect is emphasized
here, as there is a huge difference in the performance of different algorithms
for solving the linear programming problem and for solving linear systems
of equations. The experiments were carried out in Matlab on an 866-MHz
Pentium III under Windows 2000.

2.6.6.1 Generator Matrix

In dimension d we are interested in solving a large number of linear pro-
gramming problems with ηd = d(d + 3)/2 equality constraints and where
all variables are nonnegative. The number of variables that should be made
potentially active is not known a priori, but it has been found that 5ηd is suf-
ficient for points close to the center of the grid, and an increased number of
20ηd is needed closer to the boundary. The strategy is thus to order the points
according to their norm and try 5ηd neighbors until a certain failure rate is
reached, then to switch to 20ηd neighbors on the remaining points.

TABLE 2.6.13 Regression Coefficients for the Error Behavior
on Low Distortion Grids (95% CI in Parentheses)

Option Type c1 c2 R2

European −0.49(±0.12) −1.94(±0.05) 0.992
Bermudan −0.59(±0.08) −1.84(±0.03) 0.997
American −0.83(±0.08) −1.65(±0.03) 0.995
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In two dimensions, a single problem takes about 0.06 s and is not sensitive to
the number of variables changing from 5ηd to 20ηd . This is probably due to the
relatively large overhead involved in the Matlab routines. In five dimensions
we see an increase from 0.07 s for 5ηd neighbors to 0.10 s for 20ηd . In ten
dimensions we see a corresponding increase from 0.31 s to 1.90 s per problem.
Given that the number of problems to be solved is in principle equal to the
number of grid points,3 it is clear that the computation of the generator
matrix is a time-consuming task. However, the linear programming problems
associated with different grid points are independent of each other, so that
parallelization can be trivially achieved. The computation of the generator
matrix is essentially a model transformation and is not tied to a specific payoff
function; different options within the same model can therefore be priced using
the same generator matrix. To some extent, it is even possible to reuse generator
matrices for different models; several options are discussed by Berridge [3].

2.6.6.2 Time Stepping

In dimension d and with n grid points, we use a generator matrix with n rows,
each with ηd + 1 nonzero entries. The complexity of implicit time stepping
should thus be quadratic with dimension and linear with grid size.

For 300,000 points in five dimensions, explicit time steps take about 1.5 s
and implicit about 29 s with CGS. For ten dimensions, explicit time steps take
about 3.0 s and implicit about 21 s with CGS. The fact that implicit solutions
can be faster in a higher dimension is due to the conditioning of the matrix,
making it more amenable to solution even though it is more dense.

One can thus perform about 10–20 times more explicit than implicit time
steps for the same running time. However there is a tradeoff, as the latter
generally give much better precision.

2.6.7 Boundary Points

We now compare the observed boundaries presented in Figures 2.6.7 and 2.6.8
with the coarse estimates in section 2.5 and Figure 2.5.2. The proportion of
boundary points goes up quickly with dimension, as predicted in section 2.5.
A simple calculation reveals that the proportion of boundary points for a
regular grid with n1/d steps per dimension is 1 − (1 − 2n−1/d )d . For example,

3 Some savings may be achieved by assuming that all points beyond a certain radius are boundary
points.
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FIGURE 2.6.7 Smallest norms in normal Sobol grids for which local consistency could
not be satisfied and proportion of points in the boundary region with 20ηd nearest neigh-
bors (cf. Figure 2.5.2).

for d = 10, one requires a grid size of about 5 × 1014 to bring the proportion
of boundary points down to 50%. Using the irregular-grid method, one needs
about 3 × 105, as seen in Figures 2.6.7 and 2.6.8.

The reasoning of section 2.5 turns out to deliver usable but rough estimates
of the actual proportions of boundary points. A factor that plays a role here
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FIGURE 2.6.8 Norms of the smallest points in low-distortion grids for which local consistency
could not be satisfied and proportion of points in the boundary region with 20ηd nearest
neighbors (cf. Figure 2.5.2).

is that in the algorithm we used a maximum of 20ηd neighbors when trying
to satisfy local consistency, rather than all grid points. The estimate of the
boundary radius on which the reasoning in section 2.5 is based could be more
refined.
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2.7 CONCLUSIONS

We proposed a method for pricing American and Bermudan options with
several underlying assets and an arbitrary payoff structure. The method was
tested for geometric average options, which can be easily benchmarked, in
dimensions three to ten with very accurate results.

An analysis of the error indicates that the method has complexity that is
exponential in the dimension variable. Thus we do not break the curse of
dimensionality; rather we extend the range of problems for which computa-
tions are still feasible. It was shown that the combination of irregular grids
with a bias control technique is effective. We expect that extrapolation can
contribute to the accuracy of the method as well, although this was not tested
in the present work. In practical terms, the computation of generator matri-
ces is expensive, but this can be easily parallelized. Further computations are
cheap for typical grid sizes on the order of 104–105.

The idea of an irregular grid was previously used by Berridge and Schu-
macher [2] in combination with a root extraction method to determine the
generator matrix, but with that method it appears that stability is difficult to
guarantee. Here it was shown that the method of generator matrix construc-
tion based on local consistency conditions allows the formulation of simple
sufficient conditions for stability.

We found evidence suggesting that the accuracy of the irregular-grid
method, as a function of the number of grid points, asymptotically lies some-
what below the accuracy of the regular-grid method. The advantage of the
irregular method however is that there is much more freedom in choosing
the number of grid points, and that even in fairly high dimensions the ratio
between boundary points and interior points is reasonable for typical grid
sizes. As an example, suppose that one wants to do a computation in ten di-
mensions and that one wants to limit the number of grid points to about 105.
Because 210 ≈ 103 and 410 ≈ 106, the only option using regular grids is to use
three points per dimension. In the resulting grid, all points except the one in
the middle are boundary points. When an irregular grid is used, the number
of grid points can be chosen arbitrarily, and in the case of 105 points in ten
dimensions, about one-half are found to be interior (see Figure 2.6.7).

Concerning grid point generation, we tested both Sobol and low-distortion
grids. Little difference between the performance of the resulting grids was
found. This may suggest that Sobol grids are to be preferred, as these can be
obtained with less computational effort. An interesting alternative, which has
not been tested in the present work, may be the use of lattice rules [21].
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Adverse Interrisk
Diversification Effects
for FX Forwards
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PPE Research Centre, FH Vorarlberg, Dornbirn, Austria
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Abstract: We describe the phenomenon of negative interrisk diversification
effects between credit and market risk. For portfolios of FX forwards, inte-
grated market and credit risk may be larger than the sum of both by a factor
of 200 to 400. This phenomenon occurs for portfolios hedged against market
risk. The result implies that measuring market and credit risk in an integrated
way spots risks of adverse interaction between credit and market events that
are hidden to a simple addition of pure market and credit risk numbers.

3.1 INTRODUCTION

Interactions of market and credit risk can give rise to risks above and beyond
the sum of market plus credit risk, as the following case indicates. During
the Russian ruble (RUR) crisis of August 1998, some Western banks incurred

53
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severe losses when Russian banks defaulted on their FX forward contracts.1 On
August 17, 1998, Russia announced a devaluation of the RUR and a morato-
rium on servicing official short-term debt. Subsequently, the RUR depreciated
more than 70% against the U.S. dollar (USD), the government imposed con-
ditions on most of its foreign and domestic debt, and several Russian financial
institutions became insolvent.

Some Western banks had USD/RUR forwards with Russian banks and
matching RUR/USD forwards with mostly Western companies and banks
hedging their exchange rate risk. These positions were fully hedged against
moves in the USD/RUR exchange rate. Furthermore, default risk was irrelevant
to the banks as long as the exchange rate did not move; if a counterparty
defaulted, it was always possible to get the currency deliverable to the other
counterparty on the market at no loss if the exchange rate did not move. And
a move of exchange rates was very improbable in those times of the managed
RUR exchange rate regime. So from both a pure market risk and a pure credit
risk point of view, the risk of the portfolio was close to zero.

For this reason, banks considered the narrow spread between the matching
forwards as an almost riskless profit.2 However, during the crisis, adverse credit
events and market moves occured simultaneously. The Russian counterparties
defaulted and at the same time the value of the RUR dropped dramatically.
The USD deliverable to the Western companies and banks had to be purchased
on the market, and the RUR they got in return were not much worth. This led
to enormous losses for the banks involved.3 How could it happen that banks
suffered such heavy losses on portfolios that were almost perfectly hedged

1 Bank Austria, for example, suffered a loss of ATS 4.7 billion, which amounts to EUR 341 million,
according to its official Annual Report for 1998 [2, p.63].

2 Alejandro Eduardoff, in charge of the Moscow dependency of Bank Austria, was quoted by the
Austrian weekly Profil [11, p. 40] on September 28, 1999: “Why call this ‘betting,’ why call this
‘speculation’? These terms do not apply here. After all, one could assume justifiedly even the
day before the RUR devaluation of August 17 that the RUR exchange rate would remain in its
narrow corridor. And under this assumption our derivative was a quite acceptable product” [our
translation].

3 Losses would have been much higher had the RUR exchange rate not peaked around September 15.
On September 17, 1998, The Economist [13] wrote: “And the banks have been helped by some
extraordinary manipulation of the RUR exchange rate. Having fallen by more than two-thirds in
the first three weeks after mid-August, from six to 22 RURs to the USD, it rocketed to 7.5 on
September 15 only to crash to 13.5 the next day. The explanation for this lies in $2 billion or
so outstanding in non-deliverable forward contracts, taken out by investors in short-term RUR
debt in order to hedge their currency risk, which came due on no prizes for guessing September
15. Although no RURs actually change hands (hence the tag non-deliverable), the value of these
contracts depends on the exchange rate. Russian banks would have been faced with huge losses at a
rate of 22 RURs to the USD. They suffered almost none at the more favorable exchange rate which
was so mysteriously but conveniently reached on Tuesday of this week.”
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against both credit risk and market risk? The work presented in this chapter
suggests that one answer to this question might be due to adverse interactions
between market and credit risk.

The rest of the chapter is structured as follows. The relevant literature on the
size of the interrisk diversification between market and credit risk is reviewed
in section 3.2. Sections 3.3 and 3.4 describe the portfolio, the valuation model,
and the data. In section 3.5 we give the main results. Section 3.6 concludes the
chapter.

3.2 RELATED RESEARCH

The integration of market and credit risk has been a subject of intense research
over the past decade. Some of the most important topics are the introduction of
market risk factors in credit risk models, in particular the development of credit
risk models with stochastic interest rates; the dependence between default
frequencies, macroeconomic variables, and recovery rates; and modeling the
joint distribution of market and credit risk factors at a common time horizon.

However, there are relatively few papers quantifying the risk effects of
simultaneous moves of market and credit risk factors. Duffie and Singleton
[6, chap. 13], reporting on Duffie and Pan [5], compared value at risk (VaR)
numbers in the absence of credit risk to VaR numbers when default intensities
are correlated weakly or strongly to some market event. This comparison was
done for a loan portfolio and an option portfolio. For the loan portfolio, they
found that VaR numbers in the case of high correlation are roughly five times
higher than in the case of low correlation, which in turn are 12 times higher
than risk numbers if no credit risk at all is present. For the option portfolio,
VaR numbers in the cases of high and low correlation are very similar to the
numbers where no credit risk is present. Duffie and Pan [5] compared pure
market risk (in the absence of credit risk) with integrated risk and found—
for the loan portfolio—that integrated risk is higher. In contrast, this chapter
compares integrated risk with the sum of pure market risk and pure credit
risk.

Dimakos and Aas [4] decomposed the joint distribution of market, credit,
and operational risk factors into a set of conditional probabilities and required
conditional independence to write total risk as a sum of conditional marginals
plus unconditional credit risk. They found that integrated risk is 10–20%
smaller than the sum of individual risks, depending on the quantile.

Kuritzkes et al. [8] assumed joint normality of risks and arrived at closed-
form solutions. According to their results, the integrated risk is about 15%
smaller than the sum of individual risks of typical banks.
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Walder [14] used a framework based on the mark-to-future approach [7]
of algorithmics to analyze the contribution of market and credit risk to portfo-
lio risk. He found that the integration of market and credit risk makes interrisk
diversification benefits possible. Walder says his result is valid for every portfo-
lio type analyzed, but portfolios with an equilibrated exposure to market and
credit risk have the highest potential for integration benefits. Consequently,
according to Walder [14, p. 33], the determination of capital requirements by
adding market and credit risk overestimates true integrated risk.

Rosenberg and Schuermann [12] modeled the joint risk distribution of
market, credit, and operational risk factors using the method of copulas. On
the basis of regulatory reports, they designed their portfolio to resemble large,
internationally active banks. For these banks, they explore the impact of busi-
ness mix and interrisk correlations on total risk, whether measured by VaR or
expected shortfall. For the portfolios and models Rosenberg and Schuermann
consider, total integrated risk is 40–60% smaller than the sum of market and
credit risk (see section 6 in Rosenberg and Schuermann [12]).

All the studies mentioned above find integrated risk to be smaller than the
sum of credit and market risk. While these results are highly plausible, they are
not universally valid. In particular, all of the above references [4–6, 8, 12, 14]
restrict attention to portfolios without short positions. Short positions are
essential for the hedged portfolios we consider in this chapter. We point to
a portfolio where integrated risk is much larger than the sum of credit and
market risk. This negative interrisk diversification effect seems to occur only
for portfolios well hedged against market risk.

3.3 THE MODEL

In this chapter, we analyze integrated market and credit risk of an FX for-
ward portfolio. We start from a valuation function specifying the value of the
portfolio as a function of various market and credit risk factors. As credit risk
factors, we take default probabilities (PDs). Alternatively, any specific credit
risk model could be used to determine the PDs from other risk factors. To
arrive at a parsimonious model, we do not model recovery rates stochastically
but assume them to be constant.

The next step is to model the joint distribution of market risk factors
and PD by determining the marginals and the copula. The marginal distri-
butions are modeled with an AR (1) term (autoregressive), a GARCH (1,1)
term (generalized autoregressive conditional hateroscedastic), and a residual
distribution with historic returns as 80% body and Pareto-fitted tails, as in
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McNeil et al. [10]. The details of the model for the marginals are described by
Breuer et al. [3]. The model was chosen on the basis of out-of-sample density
forecast tests, which are also described by Breuer et al. [3]. For the copula we
chose the student copula.

We measure risk by expected shortfall (ES) rather than by value at risk
(VaR). The main reason for this is that VaR is not subadditive. Therefore
it might occur that VaR for some portfolio is larger than the sum of VaR
numbers of its subportfolios. This can happen if the risk factor changes are
not distributed elliptically, or if the portfolio value is not a linear function of
the risk factors. To exclude nonsubadditivity of the risk measure as a possible
explanation for the negative interrisk diversification effect, we use ES as a
risk measure. The literature provides several definitions of ES or of related
concepts, such as worst conditional expectation, tail conditional expectation,
conditional value at risk (CVaR), and tail mean. We use the definition of Acerbi
and Tasche [1, Def. 2.6]:

E Sα : = − α−1(E [X1{X<xα}] + xα(α − P [X ≤ xα])), (3.3.1)

where xα is theα-quantile of the distribution X . Expected shortfall is a coherent
risk measure [1, Prop. 3.1].

Our goal is to analyze the difference between summing up separate risk
numbers for market and credit risk as opposed to the risk number for inte-
grated market and credit risk. Summing up separate risk numbers for credit
and market risks will be done for a bank with independent credit and market
risk-management units, each modeling the distributions of their respective
risk factors, generating scenarios, and calculating risk measures independently.
These results are presented in Table 3.5.1. We calculated the expected shortfall
of the portfolio from three profit–loss distributions:

Distribution (0) reflects the portfolio value changes due to pure market
risk, assuming default probabilities to be zero. Because the benchmark
portfolio is perfectly hedged to market risk, ES is equal to zero.

Distribution (1) reflects the profit and losses due to pure credit risk, with
market risk factors assumed constant.

Distribution (2) reflects the profits and losses from joint moves in the
market risk factor and in the default frequency.

The results in Table 3.5.1 display the ES numbers for distributions (0), (1),
and (2) along with the 95% confidence intervals for the ES numbers. Confi-
dence intervals were calculated using the method of Manistre and Hancock [9].
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The last column gives the interrisk diversification effect indicator

I = E S(integrated)

E S(market) + E S(credit)
.

If I is greater than 1, integrated risk is higher than the sum of pure market and
pure credit risk, which amounts to the negative interrisk diversification-effect.
If it is smaller than 1, integrated risk is smaller than the sum of separate risks.

We use the term “negative interrisk diversification” between credit risk and
market risk to denote the fact that integrated risk is greater than the sum of
credit risk and market risk. This use of the term “diversification” is nonstandard
because the effect is not about adding up risks of different portfolios, but about
“adding up” different kinds of risk for the same portfolio.

3.4 PORTFOLIO AND DATA

To understand the effect hitting banks during the Russian crisis, we consider
a similar portfolio of FX forwards today. Instead of RUR/USD forwards, we
look at EUR/USD forwards. Although the moves in the USD/EUR exchange
rate are much less dramatic than the 70% plunge in the USD/RUR rate of
August 1998, the effects of the interaction of market and credit risk will still
be astonishing.

The portfolio consists of 1000 long and 1000 short USD/EUR forwards,
each with a different counterparty. The holder agrees with long counterparties
to buy 1 dollar for K euros in 3 months, and the holder agrees with the short
counterparties to sell 1 dollar for K euros at the same date. (Actually there
is a small spread between the buy and sell prices. It is this spread that makes
the portfolio profitable, independent of the future exchange rate, as long as
no counterparty defaults. But we do not model this spread here because it is
irrelevant for risk-management purposes.) At the time of the agreement, the
strike K is set to

K = S0[(100 + rEUR)/(100 + rUSD)]1/4,

where S0 is the USD/EUR spot rate, rUSD is the USD 3-month interest rate, and
rUSD is the EUR 3-month interest rate, all at the time of the agreement. With
this strike K , the value of all the forwards is zero at the time of the agreement.

At maturity, after 3 months, the USD/EUR spot rate will have moved to a
new value S, a certain number d1 of counterparties with long contracts will
have defaulted, and a number d2 of short counterparties will have defaulted.
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Then the value of the 1000−d1 long contracts with nondefaulted counterpar-
ties will be (1000−d1)(S − K ). The value of the 1000−d2 short contracts with
nondefaulted counterparties will be −(1000 − d2)(S − K ). We assume that
the value of long contracts with defaulted counterparties is (a) zero if S > K ,
as the counterparty cannot pay, and (b) K − S if S < K , as we have to pay our
dues to the counterparty, even if it has defaulted. Thus the contracts with the
defaulted d1 counterparties with long contracts are worth d1 min(S − K , 0).
Similarly, the value of the contracts with the defaulted d2 counterparties with
the short contracts is d2 min(K − S, 0), which equals −d2 max(S − K , 0). In
total, the value of the portfolio at maturity is

(d2 − d1)(S − K ) + d1 min(S − K , 0) − d2 max(S − K , 0).

We make the calculation as of December 31, 2004. Contracts are due at
the end of December 2004. Market data for the exchange rate and the interest
rates in the period 1987–2004 were taken from Datastream. The PD data were
computed from quarterly transition matrices provided by Standard & Poor’s
CreditPro Corporate Ratings (http://creditpro.sandp.com) starting Q1/1987
and ending Q4/2004.

3.5 RESULTS

Table 3.5.1 shows the ES numbers for market risk, credit risk, and integrated
risk of the FX forward portfolio. Column (0) represents the pure market-risk
perspective. The ES numbers arise from moves in the market-risk factor only,
which in this case is the USD/EUR exchange rate. Default probabilities are
assumed to be zero. Because the portfolio is perfectly hedged against exchange
rate moves, ES numbers in the pure market-risk perspective are equal to zero.
Column (1) shows the pure credit-risk perspective. The exchange rate S is
assumed to be constant at the level S0 that was in force at the time of the
agreement of contracts. The default probabilities are stochastic, and the default
numbers d1, d2 are Bernoulli distributed from 1000 draws, with success rate
equal to the default probabilities. Pure credit-risk numbers are small but not
zero, although the contracts have value zero at the time of agreement. This
is because the strike K is not equal to S0 due to the interest-rate differential
between the USD and the EUR. Therefore the contracts have a small nonzero
value if the exchange rate at maturity is S0.

The main result of Table 3.5.1 is in the last column. Integrated risk is
greater than the sum of separate risks by a factor of 209 to 385, depending on
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the quantile α. The dramatic negative interrisk diversification effect of Table
3.5.1 cannot be due to a failure of subadditivity of our risk measure, because
ES is subadditive. In this example, the sum of market and credit risk gives no
indication at all about the size of integrated risk. It was integrated risk that hit
banks in the Russian crisis.

3.6 CONCLUSIONS

The key contribution of this chapter is a description of negative interrisk
diversification effects between credit and market risk. Specifically, integrated
market and credit risk may be larger than the sum of market risk and credit
risk. This phenomenon occurs for portfolios hedged almost perfectly against
market risk. The result implies that measuring market and credit risk in an
integrated way spots risks that are hidden to a simple addition of pure market-
and credit-risk numbers.

Our integrated market- and credit-risk model is strongly simplified in at
least two ways. First, defaults of different counterparties are assumed to be
independent, although probabilities of default vary stochastically, one cause
of which may be default correlation dyamics. A better model of dependent
defaults is needed. Second, recovery rates are assumed to be constant. This
neglects the dependence between recovery rates and default probabilities. It
remains to be seen whether the negative interrisk-diversification effect also
persists for such integrated models of market and credit risk. It also remains
to be seen whether similar negative interrisk diversification effects occur not
only for derivatives portfolios, but also for plain bond portfolios.

3.7 ACKNOWLEDGMENT

M. J. is supported by the Internationale Bodenseehochschule. We are grateful
to Clemens Thym of Standard and Poor’s for providing us with the transition
matrices S&P’s Credit Pro Corporate Ratings.

REFERENCES

1. Acerbi C., Tasche D.: On the coherence of expected shortfall. Journal of
Banking and Finance, 26(7): 1487–1503, 2002.

2. Bank Austria: Annual Report for 1998. Bank Austria Aktiengesellschaft,
Vienna, 1999.
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Abstract: We consider counterparty risk for interest rate payoffs in the pres-
ence of correlation between the default event and interest rates. The previ-
ous analysis of Brigo and Masetti (2006), assuming independence, is further
extended to interest-rate payoffs different from simple swap portfolios. A
stochastic intensity model is adopted for the default event. We find that corre-
lation between interest rates and default has a relevant impact on the positive
adjustment to be subtracted from the default-free price to take into account
counterparty risk. We analyze the pattern of such impacts as product character-
istics and tenor structures change through some relevant numerical examples.
We find the counterparty risk adjustment to decrease with the correlation for
receiver payoffs, while the analogous adjustment for payer payoffs increases.
The impact of correlation decreases when the default probability increases.

Keywords: counterparty risk, interest-rate default correlation, risk neutral
valuation, default risk, interest rate models, default intensity models

4.1 INTRODUCTION

In this chapter we consider counterparty risk for interest-rate payoffs in the
presence of correlation between the default event and interest rates. In particu-
lar we analyze in detail counterparty-risk (or default-risk) interest-rate swaps
(IRS), continuing the work of Sorensen and Bollier (1994) and of Brigo and
Masetti (2006), where no correlation is taken into account. We also analyze
option payoffs under counterparty risk. In general, the reason to introduce
counterparty risk when evaluating a contract is linked to the fact that many
financial contracts are traded over the counter, so that the credit quality of the
counterparty can be relevant. This is particularly appropriate when thinking
of the different defaults experienced by some important companies in recent
years. Regulatory issues related to the IAS 39 framework also encourage the
inclusion of counterparty risk into valuation.

We are looking at the problem from the viewpoint of a safe (default-free)
counterparty entering a financial contract with another counterparty having
a positive probability of defaulting before the final maturity. We formalize
the general and reasonable fact that the value of a generic claim subject to
counterparty risk is always smaller than the value of a similar claim hav-
ing a null default probability, expressing the discrepancy in precise quantita-
tive terms.

When evaluating default-risky assets, one has to introduce the default
probabilities in the pricing models. We consider credit default swaps (CDS)
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as liquid sources of market default probabilities. Different models can be used
to calibrate CDS data and obtain default probabilities. In Brigo and Morini
(2006), for example, firm value models (or structural models) are used, whereas
in Brigo and Alfonsi (2005), a stochastic intensity model is used. In this work
we adopt the second framework, as this lends itself more naturally to interact
with interest rate modeling and allows for a very natural way to correlate the
default event to interest rates.

In this chapter we find that counterparty risk has a relevant impact on
the prices of products and that, in turn, correlation between interest rates
and default has a relevant impact on the adjustment due to counterparty risk
on an otherwise default-free interest-rate payout. We analyze the pattern of
such impacts as product characteristics and tenor structures change through
some relevant numerical examples and find stable and financially reasonable
patterns.

In particular, we find the (positive) counterparty risk adjustment to be
subtracted from the default free price to decrease with correlation for receiver
payoffs. The analogous adjustment for payer payoffs increases with correlation.
We analyze products such as standard swaps, swap portfolios, and European
and Bermudan swaptions, mostly of the receiver type. We also consider CMS
spread options and ratchets, which being based on interest rate spreads are
out of our “payer/receiver” classification.

In general, our results confirm the counterparty risk adjustment to be
relevant and the impact of correlation on counterparty risk to be relevant
in turn. We comment on our findings in more detail in the conclusion in
section 4.6.

The chapter is structured as follows: in section 4.2 we introduce the
general counterparty risk formula result, both exact and with discrete default-
monitoring approximations. In section 4.3 we introduce the stochastic inter-
est rate and default (intensity) models, explaining in detail the calibration of
the default model to counterparty CDS data and the way to induce corre-
lation between interest rates and default intensity. In section 4.4 we hint at
the Monte Carlo and discretization techniques used in the chapter, and in
section 4.5 we introduce the list of products we are considering as counter-
party risky interest-rate payoffs, explaining in which tables of the appendix
we present the related outputs. In section 4.6 we comment on the results,
explaining the main observed risk and correlation patterns across products
and why they are financially significant. Finally, the appendix contains the
detailed outputs. An earlier and reduced version of this chapter is in Brigo and
Pallavicini (2006).
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4.2 GENERAL VALUATION OF COUNTERPARTY RISK

We denote by τ the default time of the counterparty, and we assume the
investor who is considering a transaction with the counterparty to be default
free. We place ourselves in a probability space (�,G,Gt , Q). The filtration (Gt)t

models the flow of information of the whole market, including credit. Q is the
risk-neutral measure. This space is endowed also with a right-continuous and
complete subfiltration Ft representing all the observable market quantities
but the default event. (Hence Ft ⊆ Gt := Ft ∨ Ht where Ht = σ ({τ ≤ u} :
u ≤ t) is the right-continuous filtration generated by the default event.) We
set Et(·) := E(·|Gt), the risk-neutral expectation leading to prices.

Let us call T the final maturity of the payoff we need to evaluate. If τ > T
there is no default of the counterparty during the life of the product, and
the counterparty has no problems in repaying the investors. On the con-
trary, if τ ≤ T the counterparty cannot fulfill its obligations and the follow-
ing happens. At τ the net present value (NPV) of the residual payoff until
maturity is computed. If this NPV is negative (respectively positive) for the
investor (defaulted counterparty), it is completely paid (received) by the in-
vestor (counterparty) itself. If the NPV is positive (negative) for the investor
(counterparty), only a recovery fraction REC of the NPV is exchanged.

Let us call �D(t, T) (sometimes abbreviated as �D(t)) the discounted pay-
off of a generic defaultable claim at t, and let CASHFLOWS(u, s ) be the net cash flows
of the claim without default between time u and time s , discounted back at u,
with all payoffs seen from the point of view of the “investor” (i.e., the company
facing counterparty risk). Then we have NPV(τ ) = Eτ {CASHFLOWS(τ, T)} and

�D(t) = 1{τ>T}CASHFLOWS(t, T)

+ 1{t<τ≤T}[CASHFLOWS(t, τ ) + D(t, τ )(REC(NPV(τ ))+ − (−NPV(τ ))+)]

(4.2.1)

with D(u, v) being the stochastic discount factor at time u for maturity v .
This last expression is the general price of the payoff under counterparty risk.
Indeed, if there is no early default, this expression reduces to risk neutral
valuation of the payoff (first term on the right-hand side); in case of early
default, the payments due before default occurs are received (second term),
and then, if the residual net present value is positive, only a recovery of it is
received (third term), whereas if it is negative it is paid in full (fourth term).

Calling �(t) the discounted payoff for an equivalent claim with a default-
free counterparty, i.e.,�(t) = CASHFLOWS(t, T), it is possible to prove the following
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PROPOSITION 4.2.1 (GENERAL COUNTERPARTY RISK PRICING FORMULA)
At valuation time t, and on {τ > t}, the price of our payoff under counterparty risk is

Et{�D(t)} = Et{�(t)}− LGD Et{1{t<τ≤T} D(t, τ ) (NPV(τ ))+︸ ︷︷ ︸
Positive counterparty-risk adjustment

} (4.2.2)

where LGD = 1 − REC is the loss given default and the recovery fraction REC is assumed to

be deterministic.

For a proof, see for example Brigo and Masetti (2006). It is clear that the
value of a defaultable claim is the value of the corresponding default-free
claim minus an option part, specifically a call option (with zero strike) on the
residual NPV giving nonzero contribution only in scenarios where τ ≤ T .
Counterparty risk adds an optionality level to the original payoff.

Notice finally that the previous formula can be approximated as follows.
Take t = 0 for simplicity and write, on a discretization time grid, T0, T1, . . . ,
Tb = T ,

E[�D(0, Tb)] = E[�(0, Tb)]− LGD

∑b
j=1 E[1{Tj−1<τ≤Tj } D(0, τ )(Eτ�(τ, Tb))+]

≈ E[�(0, Tb)]− LGD

b∑
j=1

E[1{Tj−1<τ≤Tj } D(0, Tj )(ETj �(Tj , Tb))+]︸ ︷︷ ︸
approximated (positive) adjustment

(4.2.3)

where the approximation consists in postponing the default time to the first
Ti following τ . From this last expression, under independence between � and
τ , one can factor the outer expectation inside the summation in products of
default probabilities times the option prices. This way we would not need a
default model but only survival probabilities and an option model for the un-
derlying market of �. This is only possible, in our case, if the default/interest-
rate correlation is zero. This is what led to earlier results on swaps with coun-
terparty risk in Brigo and Masetti (2006). In this chapter we do not assume
zero correlation, so that in general we need to compute the counterparty risk
without factoring the expectations. To do so we need a default model, to be
correlated with the basic interest-rate market.
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4.3 MODELING ASSUMPTIONS

In this section we consider a model that is stochastic both in the interest rates
(underlying market) and in the default intensity (counterparty). Joint stochas-
ticity is needed to introduce correlation. The interest-rate sector is modeled
according to a short-rate Gaussian shifted two-factor process (hereinafter
G2++), and the default-intensity sector is modeled according to a square-
root process (hereinafter CIR++). Details for both models can be found, for
example, in Brigo and Mercurio (2001, 2006). The two models are coupled by
correlating their Brownian shocks.

4.3.1 G2++ Interest Rate Model

We assume that the dynamics of the instantaneous-short-rate process under
the risk-neutral measure is given by

r (t) = x(t) + z(t) + ϕ(t; α), r (0) = r0, (4.3.1)

where α is a set of parameters and the processes x and z are Ft adapted and
satisfy

dx(t) = −ax(t)dt + σd Z1(t), x(0) = 0,

dz(t) = −bz(t)dt + ηd Z2(t), z(0) = 0,
(4.3.2)

where (Z1, Z2) is a two-dimensional Brownian motion with instantaneous
correlation ρ1,2 described by

d〈Z1, Z2〉t = ρ1,2dt,

where r0, a , b, σ , η are positive constants, and where −1 ≤ ρ1,2 ≤ 1. These are
the parameters entering ϕ, in that α = [r0, a , b, σ, η, ρ1,2]. The function ϕ(·; α)
is deterministic and well defined in the time interval [0, T∗], with T∗ being a
given time horizon, typically 10, 30, or 50 (years). In particular, ϕ(0; α) = r0.
This function can be set to a value automatically calibrating the initial zero-
coupon curve observed in the market. In our numerical tests we use the market
inputs listed in Tables 4.6.1 and 4.6.2 corresponding to parameters α given by

a = 0.0558, b = 0.5493, σ = 0.0093, η = 0.0138, ρ1,2 = −0.7

4.3.2 CIR++ Stochastic Intensity Model

For the stochastic intensity model we set

λt = yt + ψ(t; β), t ≥ 0, (4.3.3)
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where ψ is a deterministic function, depending on the parameter vector β

(which includes y0), that is integrable on closed intervals. The initial condition
y0 is one more parameter at our disposal; we are free to select its value as long as

ψ(0; β) = λ0 − y0.

We take y to be a Cox-Ingersoll-Ross (CIR) process (see for example Brigo
and Mercurio [2001, 2006]):

dyt = κ(μ − yt)dt + ν
√

ytd Z3(t),

where the parameter vector is β = (κ, μ, ν, y0), with κ , μ, ν, y0 being positive
deterministic constants. As usual, Z is a standard Brownian motion pro-
cess under the risk neutral measure, representing the stochastic shock in our
dynamics. We assume the origin to be inaccessible, i.e.,

2κμ > ν2.

We will often use the integrated quantities

�(t) =
∫ t

0
λs ds , Y (t) =

∫ t

0
ys ds , and �(t, β) =

∫ t

0
ψ(s , β)ds.

4.3.3 CIR++ Model: CDS Calibration

Assume that the intensity λ, and the cumulated intensity �, are independent
of the short rate, r , and of interest rates in general. Because in our Cox process
we set τ = �−1(ξ), with ξ being exponential and independent of interest
rates, in this zero-correlation case the default time τ and interest rate quan-
tities r, D(s , t), ... are independent. It follows that (approximated no-accrual
receiver) CDS valuation becomes model independent and is given by the
formula

CDSa ,b(0, R) = R
b∑

i=a+1

P (0, Ti )αi Q(τ ≥ Ti )

−LGD

b∑
i=a+1

P (0, Ti )Q(τ ∈ [Ti−1, Ti ]) (4.3.4)

(see for example the “credit” chapters in Brigo and Mercurio [2006] for the
details). Here R is the periodic premium rate (or “spread”) received by the
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protection seller from the premium leg, until final maturity or until the first
Ti following default, whereas LGD = 1 − REC is the loss given default protection
payment to be paid to the protection buyer in the default (or protection) leg
in case of early default, at the first Ti following default.

This formula implies that if we strip survival probabilities from CDS in
a model-independent way, to calibrate the market CDS quotes we just need
to make sure that the survival probabilities we strip from CDS are correctly
reproduced by the CIR++ model. Because the survival probabilities in the
CIR++ model are given by

Q(τ > t)model = E(e−�(t)) = E exp(−�(t, β) − Y (t)), (4.3.5)

we just need to make sure that

E exp (−�(t, β) − Y (t)) = Q(τ > t)market ,

from which

�(t, β) = ln

(
E(e−Y (t))

Q(τ > t)market

)
= ln

(
P CIR(0, t, y0; β)

Q(τ > t)market

)
. (4.3.6)

We choose the parameters β in order to have a positive function ψ (i.e.,
an increasing �), and P CIR is the closed form expression for bond prices in the
time-homogeneous CIR model with initial condition y0 and parameters β (see
for example Brigo and Mercurio [2001, 2006]). Thus, if ψ is selected according
to this last formula, as we will assume from now on, the model is easily and
automatically calibrated to the market survival probabilities (possibly stripped
from CDS data).

This CDS calibration procedure assumes zero correlation between default
and interest rates, so in principle when taking nonzero correlation we cannot
adopt it. However, we have seen in Brigo and Alfonsi (2005) and further in
Brigo and Mercurio (2006) that the impact of interest-rate/default correlation
is typically negligible on CDSs, so that we can retain this calibration procedure
even under nonzero correlation, and we will do so in this chapter.

Once we have done this and calibrated CDS data through ψ(·, β), we are
left with the parameters β, which can be used to calibrate further products.
However, this will be interesting when single name option data on the credit
derivatives market become more liquid. Currently the bid-ask spreads for
single-name CDS options are large, suggesting the need to consider these
quotes with caution. At the moment, we content ourselves to calibrate only
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CDSs for the credit part. To help in specifying β without further data, we set
some values of the parameters by implying possibly reasonable values for the
implied volatility of hypothetical CDS options on the counterparty.

In our tests we take stylized flat CDS curves for the counterparty, assum-
ing they imply initial survival probabilities at time zero consistent with the
following hazard function formulation,

Q(τ > t)market = exp(−γ t),

for a constant deterministic value of γ . This is to be interpreted as a quoting
mechanism for survival probabilities and not as a model. Assuming our coun-
terparty CDSs at time zero for different maturities to imply a given value of γ ,
we will value counterparty risk under different values of γ . This assumption
on CDS spreads is stylized, but our aim is checking impacts rather than having
an extremely precise valuation.

In our numerical examples, the intensity volatility parameters are assigned
the following values:

y0 = 0.0165, κ = 0.4, μ = 0.026, ν = 0.14.

Paired with stylized CDS data consistent with survivals Q(τ > t)market =
exp(−γ t) for several possible values of γ , these parameters imply the CDS
volatilities1 listed in Table 4.6.3.

4.3.4 Interest-Rate/Credit-Spread Correlation

We take the short interest-rate factors x and z and the intensity process y to
be correlated, by assuming the driving Brownian motions Z1, Z2, and Z3 to
be instantaneously correlated according to

d〈Zi , Z3〉t = ρi,3dt, i ∈ {1, 2}.

Notice that the instantaneous correlation between the resulting short rate
and the intensity, i.e., the instantaneous interest-rate/credit-spread correlation
is

ρ̄ = Corr(drt , dλt) = d〈r, λ〉t√
d〈r, r 〉t d〈λ, λ〉t

= σρ1,3 + ηρ2,3√
σ 2 + η2 + 2σηρ1,2

.

We find the limit values of −1, 0, and 1 according to Table 4.6.4.

1 See Brigo (2005, 2006) for a precise notion of CDS implied volatility.
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4.4 NUMERICAL METHODS

A Monte Carlo simulation is used to value all the payoffs considered in the
present chapter. We adopt the following prescriptions to effectively implement
the algorithm. The standard error of each Monte Carlo run is, at most, on the
last digit of the numbers reported in the tables.

4.4.1 Discretization Scheme

Payoff present values can be calculated with the joint interest-rate and credit
model by means of a Monte Carlo simulation of the three underlying variables
x , z, and y, whose joint transition density is needed. The transition density
for the G2++ model is known in closed form, but the CIR++ model requires
a discretization scheme, leading to a three-dimensional Gaussian local dis-
cretization. For CIR++ we adopt a discretization with a weekly step and we
find similar convergence results both with the full truncation scheme intro-
duced by Lord, Koekkoek, and Van Dijk (2006) and with the implied scheme
by Brigo and Alfonsi (2005). In the following, we adopt the former scheme.

4.4.2 Forward Expectations

The simulation algorithm allows the counterparty to default on the contract
payment dates, unless the time interval between two payment dates is longer
than 2 months. In such a case, additional checks on counterparty default
are added to ensure that the gap between allowed default times is at most
2 months. The calculation of the forward expectation, required by counter-
party risk evaluation, as given in equation (4.2.3) (inner expectation ETj ) is
taken by approximating the expectation at the effective default time Tj with
a polynomial series in the interest-rate model underlyings, x and z, valued at
the first-allowed default time after τ , i.e., at Tj . The coefficients of the series
expansion are calculated by means of a least-square regression, as is usually
done to price Bermudan options, by means of the algorithm by Longstaff and
Schwarz (2001).

4.4.3 Callable Payoffs

Counterparty risk for callable payoffs is calculated in two steps. First, given a
riskless version of the payoff, the payoff exercise boundary is calculated by a
Monte Carlo simulation with the Longstaff and Schwarz algorithm. Because
the default time is unpredictable from the point of view of the interest-rate
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sector of the model, the same exercise boundary, as a function of the underlying
processes at exercise date, is assumed to hold also for the default-risky payoff.
Then the risky payoff along with the exercise boundary is treated as a stan-
dard European default-risky option, given that the continuation value at any
relevant time is now a function of the underlying processes.

4.5 RESULTS AND DISCUSSION

We consider the pricing of different payoffs in the presence of counterparty risk
for three different default probability scenarios (as expressed by hazard rates
γ = 3%, 5%, and 7%) and for three different correlation scenarios (ρ̄ = −1,
0, and 1). For a detailed description of the payoffs, the reader is referred to
Brigo and Mercurio (2006).

4.5.1 Single Interest Rate Swaps (IRS)

In the following, we consider payoffs depending on at-the-money fix-receiver
forward interest-rate-swap (IRS) paying on the EUR market. These contracts
reset a given number of years from trade date and start accruing 2 business days
later. The IRS’s fixed legs pay annually a 30E/360 strike rate, and the floating
legs pay LIBOR twice per year. The first products we analyze are simple IRS of
this kind. We list in Table 4.6.5 the counterparty risk adjustment for the 10-year
IRS and the impact of correlation for different levels of default probabilities.

4.5.2 Netted Portfolios of IRS

After single IRS, we consider portfolios of at-the-money IRS either with dif-
ferent starting dates or with different maturities. In particular we focus on the
following two portfolios:

1. (�1) given a set of annually spaced dates {Ti : i = 0, . . . , N}, with
T0 at 2 business days from trade date, consider the portfolio of swaps
maturing at each Ti , with i > 0, and all starting at T0. The netting of the
portfolio is equal to an amortizing swap with decreasing outstanding.

2. (�2) given the same set of annually spaced dates, consider the portfolio
of swaps starting at each Ti , with i < N, and all maturing at TN . The
netting of the portfolio is equal to an amortizing swap with increasing
outstanding.

We list in Table 4.6.5 the counterparty risk adjustment for both portfolios.
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4.5.3 European Swaptions

We consider contracts giving the opportunity to enter a receiver IRS at an
IRS’s reset date. The strike rate in the swap to be entered is fixed at the at-the-
money forward swap level observed at option inception, i.e., at trade date. We
list in Table 4.6.6 the price of both the riskless and the risky contract. In Table
4.6.7, the same data are cast in terms of Black implied swaption volatility, i.e.,
we compute the Black swaption volatility that would match the counterparty
risk-adjusted swaption price when put in a default-free Black formula for
swaptions. In Table 4.6.8 we show an example with payer swaptions instead.

4.5.4 Bermudan Swaptions

We consider contracts giving the opportunity to enter a portfolio of IRS, as
defined in section 4.5.2, every 2 business days before the starting of each
accruing period of the swap’s fix leg. We list in Table 4.6.9 the price of entering
each portfolio, risky and riskless, along with the price of entering, at the same
exercise dates, the contained IRS of longest tenor.

4.5.5 CMS Spread Options

We consider a contract2 on the EUR market starting within 2 business days
that pays, quarterly on an ACT/360 basis and up to maturity tM , the following
exotic index:

(L (Sa(ti ) − Sb(ti )) − K )+

where L and K are positive constants, and Sk(ti ), with k ∈ {a , b} and
i = 0, . . . , M, is the constant maturity swap rate (hereinafter CMS) fixing
2 business days before each accruing period starting date ti , i.e., the at-the-
money rate for an IRS with tenor of k years fixing at ti . We list in Table 4.6.10
the option prices, both default risky and riskless.

4.5.6 CMS Spread Ratchets

We consider a contract on the EUR market starting within 2 business days
that pays, quarterly on an ACT/360 basis and up to maturity tM , the following
exotic index:

L (I (ti ) − K (ti ))+

2 See also Mercurio and Pallavicini (2005) for a detailed discussion of CMS spread option pricing.
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where

I (ti ) := Sa(ti ) − Sb(ti ) − C

K (ti+1) := min(K (ti ) + �, max(K (ti ) − �, I (ti )))

where L , �, and C are positive constants; the initial strike value is K (t0) = 0;
and Sk(ti ), with k ∈ {a , b} and i = 0, . . . , M, is the CMS rate fixing 2 business
days before each accruing period starting date ti . We list in Table 4.6.11 the
option prices, both default risky and riskless.

4.6 RESULTS INTERPRETATION AND CONCLUSIONS

In this chapter we have found that counterparty risk has a relevant impact
on interest-rate payoff prices and that, in turn, correlation between interest
rates and default (intensity) has a relevant impact on the adjustment due to
counterparty risk. We have analyzed the pattern of such impacts as changes
in product characteristics and tenor structures through some fundamental
numerical examples, and we have found stable and reasonable behaviors.
In particular, the (positive) counterparty risk adjustment to be subtracted
from the default-free price decreases with correlation for receiver payoffs (IRS,
IRS portfolios, European and Bermudan swaptions). This is to be expected.
If default intensities increase with high positive correlation, their correlated
interest rates will increase more than with low correlation. When interest rates
increase, a receiver swaption value decreases; thus we see that, ceteris paribus,
a higher correlation implies a lower value for the swaptions impacting the
adjustment, so that with higher correlation the adjustment absolute value
decreases. In contrast, the analogous adjustment for payer payoffs increases
with correlation, as is to be expected.

Our results, including the CMS spread options and ratchets, generally
confirm the relevance of counterparty risk adjustment as well as the impact
of correlation on counterparty risk. We have found the following further
stylized facts, which hold throughout all payoffs. As the default probability
implied by the counterparty CDS increases, the size of the adjustment due
to counterparty risk increases as well, but the impact of correlation on it
decreases. This is financially reasonable: given large default probabilities for
the counterparty, fine details on the dynamics, such as the correlation with
interest rates, become less relevant, as everything is being wiped out by massive
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defaults anyway. On the contrary, with smaller default probabilities, the fine
structure of the dynamics, and of correlation in particular, becomes more
important.

The conclusion is that we should take into account interest-rate/default
correlation in valuing counterparty-risky interest-rate payoffs, especially when
the default probabilities are not extremely high.

APPENDIX: DETAILED OUTPUT TABLES

TABLE 4.6.1 EUR Zero-Coupon Continuously Compounded Spot Rates (ACT/360)
Observed on June 23, 2006

Date Rate Date Rate Date Rate Date Rate

26-Jun-06 2.83% 20-Sep-07 3.46% 27-Jun-16 4.19% 27-Jun-28 4.51%
27-Jun-06 2.83% 19-Dec-07 3.52% 27-Jun-17 4.23% 27-Jun-29 4.51%
28-Jun-06 2.83% 19-Mar-08 3.57% 27-Jun-18 4.27% 27-Jun-30 4.52%
04-Jul-06 2.87% 19-Jun-08 3.61% 27-Jun-19 4.31% 27-Jun-31 4.52%
11-Jul-06 2.87% 18-Sep-08 3.65% 29-Jun-20 4.35% 28-Jun-32 4.52%
18-Jul-06 2.87% 29-Jun-09 3.75% 28-Jun-21 4.38% 27-Jun-33 4.52%
27-Jul-06 2.88% 28-Jun-10 3.84% 27-Jun-22 4.41% 27-Jun-34 4.52%

28-Aug-06 2.92% 27-Jun-11 3.91% 27-Jun-23 4.43% 27-Jun-35 4.52%
20-Sep-06 2.96% 27-Jun-12 3.98% 27-Jun-24 4.45% 27-Jun-36 4.52%
20-Dec-06 3.14% 27-Jun-13 4.03% 27-Jun-25 4.47% 27-Jun-46 4.49%
20-Mar-07 3.27% 27-Jun-14 4.09% 29-Jun-26 4.48% 27-Jun-56 4.46%
21-Jun-07 3.38% 29-Jun-15 4.14% 28-Jun-27 4.50%

TABLE 4.6.2 Market at-the-Money Swaption Volatilities Observed on June 23, 2006

Tenor

Expiry 1y 2y 5y 7y 10y 15y 20y

1y 17.51% 15.86% 14.63% 14.20% 13.41% 12.14% 11.16%
2y 16.05% 15.26% 14.55% 14.09% 13.29% 12.03% 11.09%
3y 15.58% 15.06% 14.43% 13.92% 13.10% 11.87% 10.96%
4y 15.29% 14.90% 14.20% 13.67% 12.85% 11.66% 10.79%
5y 15.05% 14.67% 13.90% 13.36% 12.55% 11.42% 10.60%
7y 14.39% 14.00% 13.22% 12.70% 11.96% 10.95% 10.20%

10y 13.25% 12.94% 12.23% 11.79% 11.17% 10.31% 9.65%
15y 11.87% 11.64% 11.11% 10.76% 10.26% 9.52% 8.89%
20y 11.09% 10.92% 10.45% 10.14% 9.67% 8.91% 8.27%
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TABLE 4.6.3 Black Volatilities for CDS Options Im-
plied by CIR++ Model (with Parameters y0 = 0.0165,
κ = 0.4, μ = 0.026, ν = 0.14) for Different Choices of
the Default-Probability Parameter γ . Interest Rates Are
Modeled According to Section 4.3.1 and ρ̄ = 0

σimpl

γ 1 × 1 1 × 4 4 × 1 1 × 9

3% 42% 25% 26% 15%
5% 25% 15% 15% 9%
7% 18% 11% 11% 7%

TABLE 4.6.4 Values of Model In-
stantaneous Correlations ρ1,3 and ρ2,3

Ensuring Special Interest-Rate/Credit-
Spread Instantaneous Correlations for
the Chosen Interest-Rate and Intensity
Dynamics Parameters

ρ̄ ρ1,3 ρ2,3

−1 4.05% −74.19%
0 0 0
1 −4.05% 74.19%

TABLE 4.6.5 Counterparty Risk Price for Receiver
IRS Portfolio Defined in Section 4.5.2 for a Maturity
of 10 Years, along with the Counterparty Risk Price for
a 10 Year Swap. Every IRS, Constituting the Portfolios,
Has Unitary Notional. Prices Are in Basis Points

γ ρ̄ �1 �2 IRS

3% −1 −140 −294 −36
0 −84 −190 −22
1 −47 −115 −13

5% −1 −181 −377 −46
0 −132 −290 −34
1 −99 −227 −26

7% −1 −218 −447 −54
0 −173 −369 −44
1 −143 −316 −37
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TABLE 4.6.6 Counterparty Risk Price for European
Receiver Swaptions Defined in Section 4.5.3 for
Different Expiries and Tenors. Riskless Prices Are
Listed Too. Contracts Have Unitary Notional. Prices
Are in Basis Points

γ ρ̄ 1 × 5 5 × 5 10 × 5 20 × 5

3% −1 −14 −37 −53 −56
0 −9 −27 −42 −48
1 −6 −19 −34 −41

5% −1 −19 −50 −71 −70
0 −14 −41 −61 −65
1 −11 −35 −55 −61

7% −1 −23 −61 −84 −79
0 −19 −53 −77 −75
1 −16 −47 −72 −73

riskless 106 205 215 157

γ ρ̄ 1 × 10 5 × 10 10 × 10 20 × 10

3% −1 −38 −78 −98 −98
0 −25 −56 −78 −83
1 −16 −43 −64 −72

riskless 184 342 353 256

γ ρ̄ 1 × 20 5 × 20 10 × 20 20 × 20

3% −1 −87 −140 −160 −150
0 −61 −107 −129 −131
1 −45 −83 −107 −114

riskless 261 474 486 354
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TABLE 4.6.7 Counterparty Risk Implied Volatilities for European
Receiver Swaptions Defined in Section 4.5.3 for Different Expiries
and Tenors. Riskless Implied Volatilities Are Listed Too. Contracts
Have a Unitary Notional

γ ρ̄ 1 × 5 5 × 5 10 × 5 20 × 5

3% −1 −1.96% −2.52% −3.06% −3.74%
0 −1.26% −1.82% −2.38% −3.20%
1 −0.77% −1.32% −1.93% −2.78%

5% −1 −2.60% −3.40% −4.06% −4.71%
0 −1.96% −2.78% −3.51% −4.37%
1 −1.54% −2.35% −3.16% −4.09%

7% −1 −3.19% −4.14% −4.81% −5.32%
0 −2.62% −3.60% −4.39% −5.06%
1 −2.22% −3.23% −4.11% −4.89%

riskless 14.63% 13.90% 12.23% 10.45%

γ ρ̄ 1 × 10 5 × 10 10 × 10 20 × 10

3% −1 −2.74% −2.86% −3.14% −3.72%
0 −1.84% −2.08% −2.50% −3.17%
1 −1.19% −1.59% −2.03% −2.75%

riskless 13.41% 12.55% 11.17% 9.67%

γ ρ̄ 1 × 20 5 × 20 10 × 20 20 × 20

3% −1 −3.71% −3.14% −3.19% −3.53%
0 −2.63% −2.40% −2.57% −3.09%
1 −1.95% −1.87% −2.14% −2.68%

riskless 11.16% 10.60% 9.65% 8.27%

TABLE 4.6.8 Counterparty Risk Price for European
Payer Swaptions Defined in Section 4.5.3 for Different
Expiries and Tenors. Riskless Prices Are Listed Too.
Contracts Have Unitary Notional. Prices Are in Basis
Points

γ ρ̄ 1 × 5 5 × 5 10 × 5 20 × 5

3% −1 −6 −20 −33 −40
0 −10 −28 −44 −50
1 −16 −39 −56 −58

riskless 106 205 215 157
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TABLE 4.6.9 Counterparty Risk Price for Callable Receiver IRS
Portfolio Defined in Section 4.5.4 for a Maturity of 10 years,
along with the Counterparty Risk Price for a Spot-Starting 10
Year Bermuda Swaption. Riskless Prices Are Listed Too. Every
IRS, Constituting the Portfolios, Has Unitary Notional. Prices
Are in Basis Points

γ ρ̄ �1 �2 IRS

3% −1 −197 −387 −47
0 −140 −289 −34
1 −101 −219 −25

5% −1 −272 −528 −65
0 −223 −446 −54
1 −188 −387 −46

7% −1 −340 −652 −80
0 −295 −578 −70
1 −266 −529 −63

riskless 1083 1917 240

TABLE 4.6.10 Counterparty Risk Price for CMS Spread
Options Defined in Section 4.5.5 with L = 15, K = 15%,
a = 10y, b = 2y, and Three Different Maturities tM ∈
{5y, 10y, 15y}. Riskless Prices Are Listed Too. Prices Are in
Basis Points

γ ρ̄ 5y 10y 20y

3% −1 −5 −16 −34
0 −4 −11 −24
1 −2 −8 −18

5% −1 −7 −22 −44
0 −6 −17 −37
1 −5 −15 −31

7% −1 −9 −26 −52
0 −7 −23 −46
1 −6 −20 −42

riskless 58 122 182
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TABLE 4.6.11 Counterparty Risk Price for CMS Spread Ratchets
Defined in Section 4.5.6 with L = 15, � = 1%, C = 1%, a =
10y, b = 2y, and Three Different Maturities tM ∈ {5y, 10y, 15y}.
Riskless Prices Are Listed Too. Prices Are in Basis Points

γ ρ̄ 5y 10y 20y

3% −1 −27 −86 −232
0 −27 −88 −239
1 −27 −90 −246

riskless 555 1049 1748

REFERENCES

Brigo, D. (2005). Market Models for CDS Options and Callable Floaters. Risk, January.
Also in: Derivatives Trading and Option Pricing, ed. Dunbar, N. Risk Books,
London, 89–94.

Brigo, D. (2006). Constant Maturity Credit Default Swap Valuation with Market
Models. Risk, June, 78–83.

Brigo, D., and Alfonsi, A. (2005). Credit Default Swaps Calibration and Derivatives
Pricing with the SSRD Stochastic Intensity Model. Finance and Stochastic,
9 (1).

Brigo, D., and Masetti, M. (2006). Risk Neutral Pricing of Counterparty Risk. In
Counterparty Credit Risk Modeling: Risk Management, Pricing and Regulation,
ed. Pykhtin, M. Risk Books, London.

Brigo, D., and Mercurio, F. (2001). Interest Rate Models: Theory and Practice. Springer-
Verlag, Heidelberg.

Brigo, D., and Mercurio, F. (2006). Interest Rate Models: Theory and Practice — with
Smile, Inflation and Credit, 2nd ed. Springer-Verlag, Heidelberg.

Brigo, D., and Morini, M. (2006). Structural Credit Calibration. Risk, April, 78–83.
Brigo, D., and Pallavicini, A. (2006). Counterparty Risk Valuation under Correlation

between Interest Rates and Default. Working paper, available at SSRN.com.
Cherubini, U. (2005). Counterparty Risk in Derivatives and Collateral Policies: The

Replicating Portfolio Approach. In: Proceedings of the Counterparty Credit Risk
2005 C.R.E.D.I.T. Conference. Venice, Sept. 22–23, Vol. 1.

Longstaff, F.A., and Schwarz, E.S. (2001). Valuing American Options by Simulation:
A Simple Least-Squares Approach. Review of Financial Studies, 14, 113–147.

Lord, R., Koekkoek, R., and Van Dijk, D.J.C. (2006). A Comparison of Biased Simu-
lation Schemes for Stochastic Volatility Models. Working paper. Located at
http://ssrn.com/abstract=903116.

Mercurio, F., and Pallavicini, A. (2005). Mixing Gaussian Models to Price CMS Deriva-
tives. Working paper, available at: http://ssrn.com/abstract=872708.

Sorensen, E.H., and Bollier, T.F. (1994). Pricing Swap Default Risk. Financial Analysts
Journal, 50, 23–33.



P1: Naresh

August 1, 2007 17:30 C925X C925X˙C004



P1: Naresh

July 31, 2007 19:27 C925X C925X˙C005

CHAPTER 5

Optimal Dynamic Asset
Allocation for Defined
Contribution Pension Plans

Andrew J.G. Cairns
Maxwell Institute, Edinburgh, and Heriot-Watt University,
Edinburgh, United Kingdom

David Blake
City University, London, United Kingdom

Kevin Dowd
Nottingham University Business School, Nottingham, United Kingdom

Contents
5.1 Summary of Cairns, Blake, and Dowd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.1 SUMMARY OF CAIRNS, BLAKE, AND DOWD

In this short chapter we summarize some of the results of Cairns, Blake, and
Dowd (2006). The chapter considers asset-allocation strategies that might be
adopted by members of defined-contribution pension plans. The underlying
model incorporates asset, salary, and interest-rate risk. We assume that the
member measures utility in terms of the replacement ratio at the time of
retirement: the ratio of pension to final salary. The plan member’s objective is
to maximize their expected terminal utility.

83
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In the general model we have the state variables:

Y (t) = salary or labor income
W(t) = accumulated pension wealth
r (t) = risk-free interest rate (one-factor model)

For the assets and salary risk we have N + 1 sources of risk: Z0(t), Z1(t), . . . ,
ZN(t). Within this we have a cash account, R0(t):

d R0(t) = r (t)R0(t)dt

where dr (t) = μr (r (t))dt +
N∑

j=1

σr j (r (t))d Z j (t).

For the risky assets, R1(t), . . . , RN(t) we have:

d Ri (t) = Ri (t)

⎡⎣⎛⎝r (t) +
N∑

j=1

σi j ξ j

⎞⎠ dt +
N∑

j=1

σi j d Z j (t)

⎤⎦
where C = (σi j ) = nonsingular volatility matrix (N×N), ξ = (ξ j ) = market
prices of risk (N × 1).

For the salary model we have:

dY (t) = Y (t)

⎡⎣(r (t) + μY (t)) dt +
N∑

j=1

σY j d Z j (t) + σY 0d Z0(t)

⎤⎦
where μY (t) is deterministic. Finally, for the plan member’s pension wealth,
W(t), we have:

p(t) = (p1(t), . . . , pN(t)) = proportion of wealth in risky assets

dW(t) = W(t)[(r (t) + p(t)′Cξ)dt + p(t)′Cd Z(t)] + πY (t)dt.

The form of the terminal utility isU (W(T), Y (T), r (T)) = f (W(T)/[a(r (T))
Y (T)]) where a(r (T)) is the price at T for a level annuity payable from T ,
which depends on interest rates at T . For example, f (·) might be a power
function. This form means that we are able to replace the state variables W(t)
and Y (t) with X(t) = W(t)/Y (t).

If σY 0 �= 0, then we have nonhedgeable salary risk, and its presence means
that the plan member’s wealth cannot be allowed to become negative: that
is, she cannot borrow against future contributions. From the computational
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FIGURE 5.1.1 Optimal amount in equities for different times to retirement.

point of view, this results in a singularity on the optimal value function,
V(t, x , r ), at x = 0. We develop a numerical solution to this by transforming
x to log x . By way of illustration, the optimal strategy in the case of one risky
asset and r (t) = r is presented in Figure 5.1.1.

In this figure we can see how the amount in equities, for a given value of x ,
increases the further she is from retirement. For smaller x , less is invested in
equities, and the amount in equities tends to zero as x tends to zero. This final
observation is a necessary condition for the wealth process to remain positive.
Closer investigation of the numerical solutions suggests that the amount in-
vested in equities is either O(

√
x) or o(

√
x). The latter would guarantee that

the process never hits 0, whereas the former would need additional conditions
on the parameter values. Further work remains to determine which rate of
convergence we have.

By completing the market with a fictitious asset, we can construct an upper
bound for the optimal value function. In general terms, this upper bound is
close to our numerical solution for V(t, x). However, it fails to enlighten us
on the nature of the solution as x → 0.
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Abstract: In this work we focus on the numerical issues involved in evalu-
ating an important class of financial derivatives: participating life insurance
contracts. We investigate the impact of different numerical methods on ac-
curacy and efficiency in the solution of main computational kernels gen-
erally arising from mathematical models describing the financial problem.
The main kernels involved in the evaluation of these financial derivatives
are multidimensional integrals and stochastic differential equations. For this
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reason we consider different Monte Carlo simulations and various stochastic-
differential-equation discretization schemes. We have established that a com-
bination of the Monte Carlo method with the antithetic variates (AV) variance-
reduction technique and the fully implicit Euler scheme developed by Brigo
and Alfonsi (2005) provides high efficiency and good accuracy.

Keywords: life insurance policies, multidimensional integrals, stochastic dif-
ferential equations

Mathematics Subject: 91B30, 65C20, 65C05 JEL: C15, C63, C88

6.1 INTRODUCTION

This work was carried out within a project focused on the numerical imple-
mentation of efficient and accurate methods for financial evaluation of partic-
ipating life insurance policies. Some preliminary results concerning previous
work by authors on this subject are shown in Corsaro et al. (2005). Our aim
in this framework is the analysis of numerical methods and algorithms for
the solution of the main computational kernels in the mathematical models
describing the problem, i.e., the evaluation of multidimensional integrals and
the solution of stochastic differential equations (SDEs). The former can rep-
resent expected values; the latter often models diffusion processes describing
the time evolution of interest-rate risk à la Cox, Ingersoll, and Ross (1985)
(CIR) as well as stock index à la Black and Scholes (1973). We discuss the
development of algorithms and software based on different numerical schemes,
and investigate their impact on accuracy and efficiency in the solution.

High-dimensional integrals are usually solved via the Monte Carlo (MC)
method. It becomes particularly attractive with respect to deterministic inte-
gration methods when the dimension is large, as its convergence rate does not
decrease dramatically as dimension increases. Evaluating financial derivatives
in many cases reduces to computing expectations that can be written as inte-
grals of large dimension. In this setting, Monte Carlo proves very promising.

On the other hand, the MC method suffers from the disadvantage that the
rate of convergence is quite low: this motivated the search for methods with
faster convergence. The expected error of the classical MC method depends
on the variance of the integrand; therefore, it decreases if the variance is
reduced. Different variance reduction techniques, to be used in combination
with the MC algorithm, are well known in the literature (see, for example,
Boyle, Broadie, and Glasserman [1998] and Glasserman [2004]), such as, for
instance, importance sampling, control variates, and antithetic variates. One of
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the simplest and most widely used techniques is the antithetic variates (AV),
and it is the first technique we consider to improve the MC method.

In an attempt to avoid the deficiencies of the MC algorithm, many deter-
ministic methods have been proposed as well. One class of such determin-
istic algorithms, the quasi–Monte Carlo methods (QMC), is based on low-
discrepancy sequences, i.e., deterministic sequences chosen to be more evenly
dispersed through the domain of integration than random ones. In this work
we test the sequences proposed by Faure (1992), using the implementation
reported in Glasserman (2004). Concerning the other main computational
kernel, that is, the solution of stochastic differential equations, the first method
we consider is the well-known explicit stochastic Euler scheme. One drawback
of the method is that stability requirements could impose stringent restrictions
on the step size, so we take into account the implicit Euler scheme. Further, to
improve the accuracy of the discrete solution, we consider a third, higher order
method that is a slightly different form of the method proposed by Milstein
(1978). Finally, we test a fully implicit positivity-preserving Euler scheme, pro-
posed recently by Brigo and Alfonsi (2005), that preserves the monotonicity
of the continuous CIR process.

The rest of this work is organized as follows: in section 6.2 we introduce
the financial problem with the aim of describing the main computational
kernels involved in the solution. In section 6.3 we present and analyze different
numerical methods to solve the kernels with the aim of finding the most
promising methods from the point of view of accuracy and efficiency. In
section 6.4 we present the mathematical model proposed in Pacati (2000)
that we use as a benchmark model for testing the efficiency and accuracy of
the considered numerical methods. In section 6.5 we report the numerical
experiments we performed using the considered numerical methods. The
obtained results lead to the selection of a combination of two methods that
show the best behavior in the solution of the model.

6.2 COMPUTATIONAL KERNELS IN PARTICIPATING
LIFE INSURANCE POLICIES

In this chapter we consider an important class of financial derivatives, partic-
ipating life insurance contracts. In particular, we analyze portfolios of level-
premium mixed life participating policies with benefits indexed to the annual
return of a specified investment portfolio. A level-premium mixed life partici-
pating policy is a typical example of a profit-sharing policy that has been widely
sold in past years by Italian companies, and it is still widespread nowadays.
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The basic idea of the participating rule is the following: the insurance com-
pany invests the mathematical reserve of the policy in a fund, the segregated
fund, whose yearly return is shared between the company and the insured.
A readjustment rate is contractually defined; it depends on the return and is
applied to raise, for the same year, the insured capital according to a rule that
depends on the policy type. Due to the participating rule, the benefits of the
policy are random variables with regard to both actuarial and financial uncer-
tainties. The former is connected with all the events influencing the duration
of the policies. Typical risk drivers are mortality/longevity risk and surrender
risk. For the latter, the most relevant types of risk are the interest-rate risk and
the stock-price risk. The policy is a derivative contract, in which the return
of the segregated fund is the underlying asset. Therefore, the simulation of
this financial instrument is highly complex and computationally intensive,
mainly due to the huge number of involved variables and conditions to take
into account for accurate forecasts. The literature on this topic is rich, and we
recall De Felice and Moriconi (2001, 2005), Bacinello (2003), Andreatta and
Corradin (2003), Ballotta and Haberman (2006), Grosen and Jørgensen (2000),
and Jensen, Jørgensen, and Grosen (2001). Much effort has been spent on
the development of mathematical models and related algorithms to perform
mark-to-market evaluation of this kind of contract that, in contrast to the
traditional valuation framework, would allow consideration of the financial
uncertainty affecting the benefits (see, for example, De Felice and Moriconi
[2001, 2005] and Pacati [2000]). The mark-to-market evaluation requires a
mathematical description model for the bond and stock markets. The val-
uation of the financial components is performed using a stochastic pricing
model based on the no-arbitrage principle. The model is calibrated on market
data to capture the current interest-rate levels, the interest-rate volatilities, the
stock-price volatilities, and correlations.

We consider a market model with two sources of uncertainty: interest-rate
risk and stock-market risk. We model interest-rate risk through the one-factor
CIR model (see Cox, Ingersoll, and Ross [1985]): if r (t) is the market spot rate
at time t, we assume that it follows a square-root mean-reverting diffusion
process

dr (t) = α[γ − r (t)] dt + ρ
√

r (t) d Zr (t) (6.2.1)

where Zr is a standard Brownian motion, and α, γ , and ρ are positive constant
parameters, with the condition 2αγ > ρ2, which ensures that the process r
remains positive. Furthermore, we assume that the market price of interest-rate
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risk is of the form

q(r (t), t) = π

√
r (t)

ρ
(6.2.2)

with π ∈ IR a constant parameter.
Stock market uncertainty is considered by modeling the stock index S(t)

as a Black–Scholes log-normal process with constant drift and volatility pa-
rameters μ > 0 and σ > 0

d S(t) = μS(t)dt + σ S(t) d ZS(t) (6.2.3)

where ZS is a standard Brownian motion.
It is well known that this model is complete and arbitrage-free, and the

risk-neutral dynamics of the state variables are

dr (t) = α̃[γ̃ − r (t)] dt + ρ
√

r (t) d Z̃r (t) (6.2.4)

d S(t) = r (t)S(t)dt + σ S(t) d Z̃ S(t) (6.2.5)

where Z̃r and Z̃ S are the risk-neutral Girsanov transformations of the two
Brownian motions Zr and ZS , α̃ = α −π , and γ̃ = αγ/α̃. We finally assume
that the two Brownian motions driving r (t) and S(t) are correlated by a
constant correlation factor.

In this framework, a standard no-arbitrage argument shows that the market
price at time t of a random payment X(r, S; v) at time v with t < v , subject
only to financial uncertainty, is given by:

V(t, X) = Ẽt

[
X(r, S; v) e−

∫ v

t
r (u) du

]
(6.2.6)

where Ẽt is the risk-neutral expectation implied by the risk-neutral version of
the model, conditional to the market information at time t.

6.3 NUMERICAL METHODS FOR THE COMPUTATIONAL
KERNELS

In this section we focus on numerical issues in the solution of the financial
problem. As pointed out in the previous section, the main computational
kernels are involved in the evaluation of multidimensional integrals repre-
senting expectation values according to equation (6.2.6) and the solution of
stochastic differential equations.
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6.3.1 Numerical Methods for High-Dimensional Integration

High-dimensional integrals are usually solved via the MC method. The main
idea underlying the Monte Carlo algorithm for multivariate integration is
to replace a continuous average with a discrete one over randomly selected
points. It is well known that the expected error in the Monte Carlo method is
proportional to the ratio σ f /

√
N, where σ 2

f is the variance of the integrand
function and N is the number of computed trajectories. In this formula,
the value σ f depends on the integrand function and thus on the dimension
of the integral, but the factor 1/

√
N does not. In particular, the O(1/

√
N)

convergence rate holds for every dimension. This shows why MC becomes
increasingly attractive as the dimension of the integral increases in comparison
with deterministic methods for numerical integration, which are conversely
characterized by a rate of convergence strongly decreasing with respect to the
dimension. On the other hand, the MC method presents two deficiencies: the
rate of convergence is only proportional to N−1/2, and special care has to be
taken in generating independent random points because we actually deal with
pseudo-random numbers. Since, as already pointed out, the expected error of
the MC method depends on the variance of the integrand, convergence can be
speeded up by decreasing the variance. One of the simplest and most widely
used variance-reduction techniques is the antithetic variates (AV), which we
use in our experiments in conjunction with the MC method. For brevity, in
the following, we refer to the AV reduction technique combined with the MC
method as the antithetic-variates method. This method attempts to reduce
variance by introducing negative dependence between pairs of replications; in
particular, in a simulation driven by independent standard normal variables
Zi , as in our case, this technique can be implemented by pairing the sequence
Zi with the sequence −Zi . If the Zi are used to simulate the increments of
a Brownian path, then the −Zi simulate the increments of the reflection
of the Brownian path about the origin; this suggests that it can result in a
smaller variance. We look to Glasserman (2004) for a deeper insight into the
matter. The use of the antithetic-variates method can approximately double the
computational complexity with respect to a classical Monte Carlo simulation
because, for each trajectory, two realizations of the Brownian path have to
be simulated. Therefore, its application is effective if we obtain an estimator
with a variance smaller than the one corresponding to a classical Monte Carlo
simulation performed with a double number of trajectories.

Another way to improve the convergence rate of the MC method is to
use deterministic sequences, called low-discrepancy sequences, that are chosen
to be more evenly dispersed through the region of integration than random
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sequences. Low-discrepancy sequences are sometimes referred to as quasi-
random sequences. Numerical integration methods based on them are named
low-discrepancy methods or quasi–Monte Carlo (QMC) methods. For a com-
plete description of these methods, we refer the reader to Niederreiter (1992).
QMC methods provide deterministic error bounds proportional to (log N)d/N
for suitably chosen deterministic sequences, where d is the dimension of the in-
tegral. Different low-discrepancy sequences are well known in literature; here
we confine ourselves to Faure sequences. Studies using these low-discrepancy
sequences in finance applications have found that the errors produced are
substantially smaller than the corresponding errors generated by crude Monte
Carlo (see, for example, Joy, Boyle, and Tan [1998], Papageorgiou and Traub
[1997], Paskov and Traub [1995], Perla [2003]). However, as pointed out in
Sloan and Wozniakowsky (1998), the existing theory of the worst-case error
bounds of QMC algorithms does not explain this phenomenon. All of these
considerations serve as a useful caution against assuming that QMC methods
will outperform MC methods in all situations.

6.3.2 Numerical Solution of Stochastic Differential Equations

In this section we discuss numerical schemes for the solution of the two linear
stochastic differential equations (6.2.4) and (6.2.5). In particular, we just focus
on equation (6.2.4), as all our considerations extend to equation (6.2.5) in a
natural way.

In the numerical solution of SDEs, the convergence and numerical stability
properties of the schemes play a fundamental role as well as in a deterministic
framework. Regarding the stability of a numerical method for SDEs, an im-
portant role is played by its region of absolute stability, as discussed in Kloeden
and Platen (1992), because it defines possible restrictions on the maximum
allowed step size, ensuring that errors will not propagate in successive itera-
tions. Generally, implicit methods reveal larger stability regions than explicit
ones, as the bounds imposed on the values of step size are less stringent than
for explicit methods.

We consider four numerical schemes for the solution of SDEs. Let [0, T]
be a time interval; we consider, for simplicity, a time grid 0 = t0 < t1 < · · · <

tN = T with fixed time step h > 0, that is, ti = ih, i = 0, . . . , N. Let
us furthermore denote by r a time-discrete approximation of function r in
equation (6.2.4) on the aforementioned time grid. In the following, we will
sometimes use the notation

r (ti ) = r (ih) = r i . (6.3.1)
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The first method we consider is the well-known explicit Euler stochastic
scheme. The explicit Euler approximation of equation (6.2.4) is defined by

r (ti+1) = r (ti ) + α̃[γ̃ − r (ti )](ti+1 − ti ) + ρ

√
(ti+1 − ti )r (ti )Z̃i+1 (6.3.2)

with r (0) = r (0), and Z̃1, Z̃2, . . . being independent, standard normal
random variables. Using equation (6.3.1), we can write

r i+1 = r i + α̃[γ̃ − r i ] h + ρ
√

hr i Z̃i+1. (6.3.3)

The explicit Euler scheme achieves order-one weak convergence if appro-
priate hypotheses on the coefficients of the equation, reported in Kloeden and
Platen (1992) and Glasserman (2004), are satisfied. Stability theory usually
takes into account a class of test functions for which the conditions to ensure
stability are stated. For the test equation corresponding to the parameters in
our model, the region of absolute stability is defined by the condition α̃h < 2.

As already pointed out, because implicit schemes can reveal better stability
properties, we have taken into account the implicit Euler scheme as reported
in Kloeden and Platen (1992, p. 396). This implicit scheme is obtained by
making implicit only the purely deterministic term of the equation, while at
each time step, the coefficients of the random part of the equation are retained
from the previous step. Using the same notations as in equation (6.3.3), we
have, at each time step,

r i+1 = r i + α̃[γ̃ − r i+1] h + ρ
√

hr i Z̃i+1. (6.3.4)

The implicit Euler scheme has the same weak order of convergence as the
corresponding explicit Euler scheme, but the step size can be chosen arbitrarily
large. From a computational point of view, it is not more expensive than
equation (6.3.3), but our numerical experiments revealed that it can provide
better accuracy, as shown in the next section.

Moreover, we consider a higher order method proposed by Milstein (1978),
having order-two weak convergence. More precisely, we consider a simplified
version of the scheme for practical implementation, as shown in Glasserman
(2004, p. 351) and in Kloeden and Platen (1992, p. 465), approximating the
diffusion process shown in equation (6.2.4) by the following expansion

r i+1 = r i + ah + b
√

h Z̃i+1 + 1

2

(
a ′b + ab′ + 1

2
b2b′′

)
h
√

h Z̃i+1

+ 1

2
bb′h

[
Z̃2

i+1 − 1
] +

(
aa ′ + 1

2
b2a ′′

)
1

2
h2 (6.3.5)
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where a = α [γ − r (t)] and b = ρ
√

r (t), and a , b and their derivatives are
all evaluated at time ti . This scheme is more accurate than the Euler method,
but it is computationally more expensive.

It is well known that the Euler scheme for the CIR process can lead to
negative values, as the Gaussian increment is not bounded from below. Then,
finally, we test a fully implicit, positivity-preserving Euler scheme introduced
by Brigo and Alfonsi (2005). According to this scheme, the discrete values of
r are obtained by means of the following recursion

r i+1 =
⎛⎝ρ

√
h Z̃i+1 +

√
ρ2h Z̃2

i+1 + 4(r i + δh)(1 + αh)

2(1 + αh)

⎞⎠2

(6.3.6)

with δ = αγ − ρ2/2.

6.4 A BENCHMARK MATHEMATICAL MODEL

In this section we introduce the mathematical model to describe participat-
ing life insurance policies studied in Pacati (2000), in which the revaluation
of the insured capital is proportional to the number of paid premiums. We
use this as a benchmark model to evaluate the impact of the various con-
sidered numerical methods on efficiency and accuracy in the solution of the
problem.

Let us consider, at time t, a level-premium mixed life participating policy,
with term n years for an insured of age x at the inception of the contract. Let P
be the net constant annual premium paid by the policyholder at the beginning
of the year, C0 be the sum that is initially insured, and i ≥ 0 the technical
interest rate. We denote with a the number of years between the inception
date of the contract and our valuation date t. We assume that a is an integer,
and therefore the policy starts exactly a years before the valuation date t. The
time to maturity is m = n − a . We consider the interest-crediting mechanism
proposed in Pacati (2000), supposing that benefit payments occur at integer
payments dates a + 1, a + 2, . . . , a + m. Let Ca be the sum insured at the
inception date t − a ; then the evaluation of the insured capital Ca+k at time
a + k, k = 1, . . . , m, is given by

Ca+k = Ca�(t, k) − C0

n
	(t, m, k) (6.4.1)
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where

�(t, k) =
k∏

l=1

(1 + ρt+l ) (6.4.2)

	(t, m, k) =
k−1∑
l=0

(m − k + l)ρt+k−l

k∏
j=k−l+1

(1 + ρt+ j ) (6.4.3)

and the product is equal to 1 if the index set is empty. The readjustment rate
at the end of the year just terminated, ρt , is defined as:

ρt = max
(

β Rt − i

1 + i
, smin

)
. (6.4.4)

Rt is the return of the segregated fund in the same year, β ∈ (0, 1] is the
so-called participation coefficient, and smin ≥ 0 is the yearly minimum guar-
anteed. The technical rate i , the coefficient smin, and the participation coef-
ficient β are contractually specified; thus their values are fixed at time zero.
The quantity β Rt in equation (6.4.4) represents the portion of the fund re-
turn that is credited to the policyholder (by increasing the insured sum); the
remaining portion, (1 − β)Rt , is retained by the insurer and determines its
investment gain.

An analysis of equation (6.4.1) shows that the insured capital appreciated
at year a + k is computed by subtracting from the full revaluation, Ca�(t, k),
a quantity that is proportional to C0/n and depends on future interest rates.
Obviously, for k > 1, �(t, k) and 	(t, m, k) are random at time t due to
the randomness of the future interest rates ρt+1, ρt+2, . . . , ρt+m. The statutory
technical reserve of the policy, that is, the level of funding that the company has
to maintain by law, is the net premium mathematical reserve and is defined in
a traditional actuarial setting. In Pacati (2000), two possible decompositions
of the insured capital in the case of survival Ca+m are described, namely the
put and call decompositions; in the same way, two analogous decompositions
of Ca+k are shown: the insured capital in the case of death at time t + k
corresponding to the time to expire a + k.

In contrast to the traditional framework, the mark-to-market approach
is able to consider the financial uncertainty affecting the benefits. This un-
certainty comes from the market where the fund’s manager invests the policy
reserve. Then we consider the mark-to-market reserve of the policy, also called
the stochastic reserve, to emphasize the fact that the evaluation is done in a
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mark-to-market setting while considering a stochastic evolution of interest
rates, in contrast to “traditional” constant-rate evaluation.

The stochastic reserve R(t) is defined as the difference between the mark-
to-market value of the future obligations of the company RY(t) and the mark-
to-market value of the future obligations of the insured RX(t). For the con-
sidered policies, we obtain:

RX(t) = P
m−1∑
k=1

k px+av(t, t + k) (6.4.5)

where k px+a is the expectation of life of an insured of age x + a years after k
years. On the other hand, taking into account that, at the term, the insured is
alive or not, we obtain:

RY(t) =
m∑

k=1

V(t, Ca+k)k−1|1qx+a + V(t, Cn)mpx+a (6.4.6)

where k−1|1qx+a is the probability that the insured of age x + a dies between
the year k − 1 and the year k, and V denotes the market price, as defined in
equation (6.2.6). Using the relation in equation (6.4.1) and the linear property
of the price for k = 1, 2, . . . , m we obtain:

V(t, Ca+k) = Ca V(t, �(t, k)) − C0

n
V(t, 	(t, m, k)) (6.4.7)

and then, defining

φ(t, k) = V(t, �(t, k)) (6.4.8a)

ψ(t, m, k) = V(t, 	(t, m, k)) (6.4.8b)

the relation in equation (6.4.6) can be rewritten as follows:

RY(t) =
m∑

k=1

k−1|1qx+a

[
Caφ(t, k) − C0

n
ψ(t, m, k)

]

+mpx+a

[
Caφ(t, m) − C0

n
ψ(t, m, m)

]
. (6.4.9)

Because functions φ and ψ depend neither on x nor on a , from equation
(6.4.9) we note that we can evaluate once the factors φ and ψ for any value m
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in the portfolio and for any value of k = 1, . . . , m, and successively substitute
them into equation (6.4.9). All our considerations can be extended to the
put and call decompositions of RY(t), obtained according to the put and call
decompositions of Ca+k . If, for k = 1, 2, . . . , m, we denote with

φbase(t, k) = V

(
t,

1

(1 + i)k

k∏
l=1

(1 + β Rt+l )

)
(6.4.10a)

ψbase(t, m, k) = V

⎛⎝t,
k−1∑
l=0

(m − k + l)
β Rt+k−l − i

(1 + i)l+1

k∏
j=k−l+1

(1 + β Rt+k)

⎞⎠
(6.4.10b)

φput(t, k) = φ(t, k) − φbase(t, k) (6.4.10c)

ψput(t, m, k) = ψ(t, m, k) − ψbase(t, m, k) (6.4.10d)

φguar(t, k) = V
(
t, (1 + smin)k) (6.4.10e)

ψguar(t, m, k) = V

(
t, smin

k−1∑
l=0

(m − k + l)(1 + smin)l

)
(6.4.10f)

φcall(t, k) = φ(t, k) − φguar(t, k) (6.4.10g)

ψ call(t, m, k) = ψ(t, m, k) − ψguar(t, m, k) (6.4.10h)

the basis, put, guaranteed, and call components of φ and ψ , by combining
them with equation (6.4.9), we can evaluate the basis, put, guaranteed, and
call components of RY(t), as described in Pacati (2000).

An analysis of equation (6.4.10) shows that, having computed the fac-
tors in equations (6.4.8a) and (6.4.8b), we only have to evaluate equations
(6.4.10a), (6.4.10b), (6.4.10e), and (6.4.10f), as all the others can be obtained
by difference.

From the computational point of view, the most important kernel for the
evaluation of RY(t), and then of R(t), is constituted by the evaluation of the
factors defined in equations (6.4.8a), (6.4.8b), (6.4.10a), and (6.4.10b), as they
depend on the future returns of the fund and are then affected by the market
uncertainty.
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6.5 NUMERICAL EXPERIMENTS

In this section we show some of the numerical experiments we performed.
The test case we use refers to a specific date of evaluation of the bond market:
January 4, 1999. The bond market data have been estimated following Pacati
(1999), and the parameters used for the CIR model are reported in Table
6.5.1. All the experiments refer to an n = 20 years term policy for a 30-year-
old insured. The residual maturity is a = 10; the technical interest rate is set
to 4%; and the yearly minimum guaranteed is supposed to be smin = 0% and
β = 0.8. The initial capital is set to C0 = 100. The values of the expectation
of life have been computed by the life tables SIM81. Finally, the correlation
factor between d Z̃ S(t), d Z̃r (t) in equation (6.2.4) and (6.2.5) is set to −0.1.

As already pointed out in the previous section, our main computational
kernels are multidimensional integrals and stochastic differential equations.
We focus on them separately. In the discussion about techniques for the numer-
ical computation of multidimensional integrals representing the mean values
to be estimated, we use the Euler scheme as a test method for the solution of
the involved SDEs.

We tested and compared performances of MC, antithetic variates, and
QMC methods. In our simulations, the routine snorm of the package ranlib,
written by Brown, Lovato, and Russell, available through the Netlib repository,
has been used to generate standard normally distributed values; these values
have afterwards been properly modified to obtain the fixed level of correlation.
In the QMC method, the values of the Faure sequences have been mapped
to values from standard normal random variables via the routine dinvnr of
the package dcdflib, written by Brown, Lovato, and Russell (1994), available
through the Netlib repository as well. The routine approximates the inverse
normal cumulative function via Newton’s method, as described in Glasserman
(2004).

First we show our results in the estimation of the obligations of the insur-
ance company RY given by equation (6.4.9), of functions φ , φbase, ψ and ψbase

TABLE 6.5.1 Parameters
for the CIR Model

t = 01/04/1999

r (t) 0.0261356909
α̃ 0.0488239077
γ̃ 0.1204548842
ρ 0.1056548588
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TABLE 6.5.2 Obligations of the Company, RY in Equation (6.4.9). N
Is the Number of Simulated Trajectories; in the Second Column the
Expected Value, That Is, the Sample Mean Computed Via AV with
N = 20 × 106, Is Reported

N Expected Value MC AV QMC

1,000 85.530725 85.330736 85.538849 103.593865
2,500 85.530725 85.446784 85.513984 94.824499
5,000 85.530725 85.490321 85.526349 94.824499

10,000 85.530725 85.515832 85.529525 89.144140
20,000 85.530725 85.556925 85.532012 87.049162
50,000 85.530725 85.531398 85.532053 85.537668

100,000 85.530725 85.535615 85.532456 85.317408

expressed by equation (6.4.10), and of the spot interest rates r satisfying equa-
tion (6.2.4). A monthly discretization step has been considered in the nu-
merical solution of the involved SDEs. The integral of function r in equation
(6.2.6) has been evaluated by means of the trapezoidal rule.

In Table 6.5.2 we report the values of the obligations of the company
estimated via the three integration methods for different values of the number
N of simulated trajectories.

To estimate the error, an “almost true” value is needed: we assumed as true
expected value the sample mean computed via the antithetic variates method
with a number of replications equal to 20 × 106. We observe that, with the
classical MC method, we obtain three significant digits for N ≥ 104; applying
the antithetic variates method, the same accuracy is reached for just N = 103.
Moreover, to obtain four significant digits with antithetic variates, we need
N = 2 × 104 simulations, but with MC we need N = 5 × 104 simulations.
Because the application of the antithetic variates technique at most doubles
the computational cost, we deduce that efficiency is strongly improved in these
cases. All the experiments we performed confirmed this.

On the other hand, the QMC method, with the Faure sequences, does not
perform well in this framework; to deliver two significant digits, QMC needs,
at least N = 5 × 104.

It is well known that special care has to be taken in generating pseudo-
random points. To show the sensitivity of the MC and antithetic variates
methods to the initial seed, in Table 6.5.3 we report the minimum and the max-
imum values of the obligations of the company estimated via the Monte Carlo
method and antithetic variates, repeating each MC and antithetic variates run
20 times. We observe that MC exhibits a sensitivity greater than the one shown
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TABLE 6.5.3 To Evaluate the Sensitivity of MC and AV to Initial
Seed, We Repeat Each Run 20 Times. The Second and Fourth
Columns Report the Minimum Resulting Values for Ry ; the Third
and Fifth Columns Report the Maximum Resulting Values That
Ry Assumes

MC AV

N Ry Min Ry Max Ry Min Ry Max

1,000 84.448579 86.314370 85.098095 85.880454
2,500 84.962291 86.099855 85.387740 85.704434

10,000 85.097654 86.042048 85.431023 85.605205

by antithetic variates to the seed of the pseudo-random number generator and
that both minimum and maximum estimations computed by antithetic vari-
ates deliver two significant digits for all considered values of N.

In Table 6.5.4 we show the CPU time spent by the Monte Carlo simulation
and antithetic variates methods combined with a Euler scheme. To evaluate
the overhead of antithetic variates with respect to the MC method, we also
reported the ratio between the two values. We observe that the execution time
of antithetic variates is never the double of execution time of the Monte Carlo
method, even though it requires the generation of a number of simulations
that is double with respect to MC. The ratio between the two execution times
is always about 1.2.

In Table 6.5.5 we deal with functions φ, φbase, ψ , and ψbase. A total of
N = 104 MC repetitions have been simulated, and the results have been
compared with the ones obtained with the antithetic variates method for
N = 1000, N = 2500, and N = 5000. Two different step sizes h in the
integration of the SDEs have now been considered, a monthly discretization
and a weekly one. In the first column the amplitudes of 95% confidence

TABLE 6.5.4 MC and AV CPU Times in Seconds for Different Values of
the Number N of Trajectories

N

1,000 2,500 5,000 10,000 20,000 50,000 100,000

MC 5.84 17.75 32.90 66.24 130.75 334.19 668.16
AV 7.87 19.73 39.53 79.01 157.13 393.59 786.06
AV
MC

1.34 1.11 1.2 1.19 1.2 1.18 1.18
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intervals are given; in the second one, the values of sample variances, denoted
with σ 2

N , of computed sample means are reported. In most of the cases, the
size order of the amplitude of 95% confidence intervals obtained by the MC
method for N = 104 is nearly the same as that estimated by the antithetic
variates method, even for N = 103; sometimes the antithetic variates method
gives an even more accurate result: for instance, it happens almost always
in the estimation of function φ. An analogous behavior is reflected in the
estimation of sample variances. It is worth noting the regular reduction by a
factor of about two for the amplitudes of the confidence intervals obtained
with the antithetic variates when the number of replications halves. Further,
we note that the values of the sample variances are nearly the same for all the
considered values of N, even for N = 103, that is, the method reveals better
stability properties.

All the experiments done until now show that the use of the antithetic
variates method provides the same accuracy as the MC method with a number
of replications that is reduced by a factor near to four. An important result
is that the use of antithetic variates provides good accuracy with a smaller
number of replications, resulting in a large advantage in terms of execution
time.

We now turn to the numerical solution of the SDEs in equations (6.2.4) and
(6.2.5). In particular, all the experiments described below refer to the evalua-
tion of equation (6.2.4). We tested the four SDE discretization schemes—Euler,
implicit Euler, Milstein, and Brigo–Alfonsi—described above. To estimate the
error, we refer to the deterministic solution obtained neglecting the stochastic
term in equation (6.2.4). Note that the Euler and implicit Euler schemes can
lead to negative values for the CIR process; when this happens, we set the
computed negative value to zero.

To confirm our previous statements on the better performance of the
antithetic variates method over MC, we represent, in Figures 6.5.1 and 6.5.2,
the values of the absolute errors of the interest rates computed at each time with
the four different SDE methods and with both the MC and antithetics variates
methods, for N = 5 × 103 and for N = 5 × 104. A monthly discretization
step size is used. We observe that, as we expected, from an accuracy point of
view, the antithetic variates method also outperforms the MC method in the
estimation of spot interest rates. For example, for N = 5 × 103 (Figure 6.5.1),
the obtained errors using antithetic variates are never greater than 10−3; while
MC crosses this value.

In Figure 6.5.3, we plot the same variables obtained with N = 5 × 103

replications of MC and with N = 103 replications of the antithetic variates
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FIGURE 6.5.1 Absolute errors in the estimation of interest rates computed with MC and
antithetic variates vs. time. N = 5 × 103 trajectories have been simulated; the discretization
step size is monthly. At each time t the average over trajectories is represented.
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FIGURE 6.5.2 Absolute errors in the estimation of interest rates computed with MC and
antithetic variates vs. time. N = 5 × 104 trajectories have been simulated; the discretization
step size is monthly. At each time t the average over trajectories is represented.
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FIGURE 6.5.3 Absolute errors in the estimation of interest rates computed with MC for N =
5000 and with antithetic variates for N = 1000 vs. time; the discretization step size is monthly.
At each time t the average over trajectories is represented.
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TABLE 6.5.6 Execution Times (s) for the AV Method with Four Different SDE
Schemes for Different Values of N Trajectories the SDE

N

SDE Scheme 1,000 2,500 5,000 10,000 20,000 50,000 100,000

Euler 7.87 19.73 39.53 79.01 157.13 393.59 786.06
Implicit Euler 8.30 20.80 41.63 83.69 166.34 414.45 829.81
Brigo–Alfonsi 8.65 21.67 43.30 86.69 173.52 433.25 868.01
Milstein 9.98 25.04 49.89 99.77 199.39 498.56 1000.37

method; we observe that errors estimated via antithetic variates with N = 103

are almost always lower than those estimated via MC with N = 5 × 103.
Finally, looking to Figures 6.5.1 and 6.5.3, it is possible to observe that results
obtained via antithetic variates with N = 5 × 103 are more stable than those
with N = 103. Analyzing the behavior of the four different SDE methods, we
note that the absolute error for all the methods lies in the interval [10−6, 10−3].
In particular, for values of N equal to 1000 and 5000, the accuracy given by the
four methods is almost comparable. As the number of simulations increases
(Figure 6.5.2), the Euler method exhibits the worst behavior; implicit Euler is
comparable with the Milstein scheme, but the computational complexity of
the latter is higher; and the Brigo–Alfonsi method reaches the highest level of
accuracy.

In Table 6.5.6 we report the execution times for the antithetic variates
method using the four different schemes for the SDEs. The results show that
the Milstein scheme is more time-consuming than the others; the Brigo–
Alfonsi method is slightly more expensive than the implicit Euler one. Finally,
Figure 6.5.4 reports, for both the MC and antithetic variates methods, the
values of the root-mean-square (RMS) absolute error defined by

RMS =
√√√√ 1

M

M∑
i=1

(r i − rdet(ti ))2

where M is the number of time steps from t0 to tN , r i is the computed sample
mean at time ti , and rdet(ti ) is value at time ti of the deterministic solution.

Figure 6.5.4 shows that the RMS errors of all the considered methods are
significantly reduced by using the antithetic variates method, and the implicit
Euler and Milstein have comparable behavior. The Brigo–Alfonsi method
outperforms all the other ones, especially for high values of N.
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FIGURE 6.5.4 Top: RMS errors in the SDE solutions with MC method vs. N; bottom: RMS
errors in the SDE solutions with antithetic variates vs. N. The discretization step size is monthly.
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6.6 CONCLUSIONS

In this chapter we focused on the numerical issues involved in evaluating a
class of participating life insurance policies. More precisely, we analyzed the
impact of different Monte Carlo simulations and various SDE discretization
schemes on the solution of our problem.

The main purpose in the evaluation of most financial instruments focuses
on the ability to obtain a response in a “useful” time rather than to achieve
very high accuracy. Generally, rather low accuracy is sufficient. This motivated
our efforts to search for methods that provide a trade-off between accuracy
and efficiency.

We have shown that by selecting an appropriate numerical scheme, the
number of trajectories, and consequently the execution times, can be reduced
while preserving the requested level of accuracy. In particular, the experi-
ments we performed showed that the antithetic variates method allows us
to obtain good accuracy values with a small number of replications, thus re-
sulting in a reduction of the execution time compared with the classical MC
method.

Among the numerical methods used to solve the SDEs involved in our
financial problems, the fully implicit Brigo–Alfonsi method exhibits the best
values of accuracy, and it is only slightly more expensive than the implicit
Euler method, which is comparable with the Milstein method in terms of
accuracy. Thus, we can establish that the best trade-off is realized by a combi-
nation of the antithetic variates method and the fully implicit Brigo–Alfonsi
scheme.

Future research will deal with deeper analyses of (a) QMC methods to test
other deterministic sequences, for example, Sobol sequences (see Glasserman
[2004]), randomized sequences (see L’Ecuyer and Lemieux [2002]), and QMC
with dimension-reduction techniques (see Imai and Tan [2004]) that could
behave in a different way; and (b) other numerical methods for the solution
of SDEs that preserve the positivity of the CIR process, such as described in
Deelstra and Delbaen (1998) and in Kahl and Schurz (2006).
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Abstract: It is not possible to directly apply integral transform and fast Fourier
transform (FFT) theory to the problem of interest rate swaption pricing due
to the nonaffine model dynamics assumed for the swap rate and underlying
factor processes, defined under an equivalent swap measure. However, draw-
ing from a recent result in the fixed-income literature, approximate, affine
model dynamics are derived for a family of well-known affine models by
replacing identified low-variance martingales with their martingale values.
This allows the use of standard integral transform techniques in the pricing of
interest-rate swaption contracts. The contribution of this chapter is primarily
numerical, the main objective of which is to develop a computationally effi-
cient swaption-pricing technology using fast Fourier transform methods. The
pricing algorithms developed will greatly facilitate future empirical research
into testing the goodness of fit of underlying term-structure models and in
evaluating the dynamic hedging performance of various derivative-pricing
models—topics of considerable interest among academics and practitioners
alike.

Keywords: fast Fourier transform, interest rate swaption pricing, numerical
methods in finance

7.1 INTRODUCTION

The application of the futures option pricing methodology of Black (Black’s
model) [2] to swaptions is well established. Under Black’s model, the forward
swap rate is assumed to be given by a lognormal distribution and, hence, a
closed-form solution for the price of a swaption is derived. However, closed-
form solutions for swaption prices do not exist under more general model
dynamics, and so various approximate pricing methods have been devel-
oped in the literature. The focus of the literature review here will be on the
affine term-structure model literature, but much work has been done within
the LIBOR (London interbank offered rate) market model framework, and
the interested reader is referred to, for instance, Brace, Gatarek, and Musiela
[3] and Andersen and Andreasen [1]. Under the affine model framework,
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approximate swaption pricing methodologies have been proposed by Wei [23],
Munk [20], Collin-Dufresne and Goldstein [7], Singleton and Umantsev [22],
and Schrager and Pelsser [21].

Wei [23] and Munk [20], in one-factor and multifactor affine model set-
tings, respectively, show that the price of a European coupon bond option
is approximately proportional to the price of a European zero-coupon bond
option with a defined maturity equal to the stochastic duration of the coupon
bond. Collin-Dufresne and Goldstein [7] propose an approximation method-
ology that involves the implementation of an Edgeworth expansion of the
density of the coupon bond price. Singleton and Umanstev [22] propose a
swaption pricing methodology where, by approximating the exercise region
by means of line segments, the required probabilities in the swaption pric-
ing formula can be approximated by probabilities associated with events that
define an affine relation with the underlying state vector. The fundamental
outcome of this approximation is that standard Fourier transform techniques
can be used to provide approximate swaption prices.

However, of most importance to this discussion is the alternative approach
of Schrager and Pelsser [21], who propose a swaption-pricing methodology
where the dynamics of the forward swap rate and underlying factors, defined
under the swap measure, are approximated by means of replacing low-variance
martingales with their martingale values. The key advantage of this approach
is that the approximate dynamics derived remain within the affine framework.
Hence, the pricing of European-exercise swaptions contracts is possible using
the transform-based and extended transform-based pricing methodologies of
Duffie, Pan, and Singleton [15]. In fact, a key result likely to be of interest to
practitioners is that a “Black-like” option pricing formula can be derived to
price European-exercise swaptions.

The approximate swaption pricing methodology of Schrager and Pelsser
[21] is detailed in section 7.2. The implementation of the pricing methodol-
ogy is efficient up to the evaluation of numerical integrations. However, this
chapter outlines how the authors independently adapted the technology of
Carr and Madan [4] to develop a fast Fourier transform (FFT) implementa-
tion that offers a substantially more efficient swaption pricing methodology.1

Details of this methodology are provided in section 7.3. To illustrate the im-
plementation of this FFT-based swaption pricing methodology, section 7.4

1 The originality of this extension was independently confirmed by the external examiners at the
author’s (Dr. Mark Cummins) Ph.D. viva voce in 2006. It subsequently came to the notice of the
authors that a similar extension was proposed by Schrager and Pelsser in their August 2005 revised
version of the referenced paper.
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firstly provides the functional forms of the required transforms and extended
transforms under the Schrager and Pelsser [21] affine, approximate swap mea-
sure dynamics associated with a range of common affine interest rate mod-
els of the Vasicek, generalized Vasicek, and CIR type.2 It secondly proposes
an approximation to the time-dependent drift and innovation components
under the Schrager and Pelsser [21] affine approximation. The purpose of the
time-dependency approximation is to improve computational efficiency in
the evaluation of the associated transforms and extended transforms.

Section 7.4 then finally presents results from the implementation of the
FFT-based swaption pricing methodology proposed here. For this a com-
prehensive analysis of swaption prices and computational run times is given
based on the following alternative pricing methodologies: (a) the FFT-based
swaption pricing methodology, under which is assumed the Schrager and
Pelsser [21] affine approximation only; (b) the FFT-based swaption pricing
methodology, under which is assumed both the Schrager and Pelsser [21]
affine approximation and time-dependency approximation; (c) the transform-
based and extended transform-based swaption pricing methodology pro-
posed by Schrager and Pelsser [21], under which is assumed the Schrager
and Pelsser [21] affine approximation and time-dependency approximation;
and (d) the Monte Carlo simulation approach to swaption pricing, under
which is assumed the exact, nonaffine swap measure dynamics. The compu-
tational speeds of the alternative swaption pricing implementations are used
to highlight the computational efficiency offered by the FFT.

To conclude, section 7.5 presents an illustrative application of the FFT-
based swaption pricing methodology proposed by means of an empirical
exercise, which tests a range of the alternative affine interest models consid-
ered against an extensive EURIBOR swaptions data set. Specifically, an implied
parameter estimation of the candidate models is conducted using a nonlinear
ordinary least squares (NL-OLS) framework, where the evaluation of the can-
didate models is examined on the basis of in-sample pricing performance. By
way of completing the analysis, the out-of-sample pricing performance of the
estimated affine interest-rate models is also examined. Section 7.6 concludes
and discusses various relevant future research directions.

2 Schrager and Pelsser [21] report approximation errors and computational speed comparisons for
their swaption pricing methodology relative to the alternative methodologies of Munk [20], Collin-
Dufresne and Goldstein [7], and Singleton and Umantsev [22]. Among the models used for this,
the authors consider the one-factor Vasicek model and a two-factor CIR model. However, the
functional forms and the derivations of the required transforms and extended transforms are not
presented.
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7.2 PRICING SWAPTIONS USING INTEGRAL TRANSFORMS

In detailing the Schrager and Pelsser [21] swaption pricing methodology, it
is first necessary to provide a definition for the date-t value of a payer swap
contract, which commences at date Tl and terminates at date TL , with Tl < TL ,
and which makes payments at the dates Tj , j = l + 1, . . . , L . It is assumed
for convenience that the underlying principle of the swap contract is 1, and
that the associated fixed payments are made at the rate K . Let D(t, T) denote
the date-t value of a zero-coupon bond with maturity T, and so it follows that
the value of a payer swap V pay

l ,L (t) can be defined as follows:

V pay
l ,L (t) = V f lo

l ,L (t) − V f i x
l ,L (t) = {D(t, Tl ) − D(t, TL )}

− K
L∑

j=l+1

� j−1 D(t, Tj ),

where V f lo
l ,L (t) is the value of the floating side of the swap; V f i x

l ,L (t) is the value
of the fixed side of the swap; and � j−1 is the market convention for the day-
count fraction for the swap payment at date Tj . Now define the forward par
swap rate (FPSR) yl ,L (t) to be the fixed rate at which the value of the swap
contract is zero, i.e.,

yl ,L (t) = D(t, Tl ) − D(t, TL )∑L
j=l+1 � j−1 D(t, Tj )

= D(t, Tl ) − D(t, TL )

Pl+1,L (t)
,

where the notation Pl+1,L (t) is introduced to denote the present value of a
basis point (PVBP).

A payer swaption is an option that is written on a payer swap contract.
Let P STl denote the value of a payer swaption at the maturity date Tl of the
contract, and note that by definition P STl , is given by

P STl = max
(

V
pay

l ,L (Tl ), 0
)

= Pl+1,L (Tl ) max(yl ,L (Tl ) − K , 0).

Assume now a short rate process rt and define a money market account Mt =
exp(
∫ t

0 rs ds ). It follows that the value of the payer swaption at the current
date t is given by

P St = Mt E Q
t

[
Pl+1,L (Tl )

MTl

max(yl ,L (Tl ) − K , 0)

]
,
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where Q is an assumed equivalent martingale measure allowing for the risk-
neutral valuation of the swaption. Applying the standard change of numeraire
technique of Geman, El Karoui, and Rochet [16], the above valuation equation
can be rewritten as

P St = Pl+1,L (t)E
Ql+1,L
t [max(yl ,L (Tl ) − K , 0)], (7.2.1)

where Ql+1,L is the equivalent martingale measure associated with the choice
of Pl+1,L (t) as numeraire, herein referred to as the swap measure.

The pricing of such payer swaptions is considered by Schrager and Pelsser
[21] under the general affine term structure framework of Duffie and Kan [14],
where the short rate rt is assumed to have the following affine relation with an
underlying M-dimensional factor process Xt : rt = ω0 + ω′

X Xt , where ω0 is
scalar and ωX is an M-dimensional vector. The factor process Xt is assumed
to evolve according to the following mean-reverting affine diffusion process
under the risk-neutral measure Q:

d Xt = � (� − Xt) dt + �
√

VtdWQ
t ,

where � and � are M × M matrices; � is an M-dimensional vector; WQ
t is

an M-dimensional Brownian motion; and Vt is an M × M diagonal matrix
with diagonal elements

(Vt) j, j = η j + ς ′
j Xt , j = 1, . . . , M,

where η j is scalar and ς j is an M-dimensional vector. Under such an affine
term-structure model (ATSM), the price of a zero-coupon bond is given by
the following exponential affine function in the factor process Xt : D(t, T) =
exp (A(t, T) − B(t, T) · Xt) , where the functions A(t, T) and B(t, T) solve
the system of ordinary differential equations (ODEs) as described in Duffie
and Kan [14].

The key result of Schrager and Pelsser [21] involves firstly deriving the
diffusion dynamics associated with the swap rate yl ,L (t) and the underlying
factor process Xt under the swap measure Ql+1,L , and then providing an ap-
proximation to this using the technique of replacing low-variance martingales
with their martingale values. The significance of this approximation is that
the derived model dynamics of the swap rate and underlying factor processes
remain within the affine term-structure framework, and hence Schrager and
Pelsser [21] show that the swaption pricing problem can be addressed using
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the transform-based and extended transform-based contingent claim pricing
methodologies of Duffie, Pan, and Singleton [15].

From the developments of Schrager and Pelsser [21], note first that under
the swap measure Ql+1,L the factor process Xt is governed by the following
diffusion process:

d Xt =
⎡⎣� (� − Xt) − �Vt�

′

⎛⎝ L∑
j=l+1

� j−1 B(t, Tj )
D(t, Tj )

Pl+1,L (t)

⎞⎠⎤⎦ dt

+�
√

VtdW
Ql+1,L
t . (7.2.2)

For the swap rate it can be shown that yl ,L (t) is governed by the following
diffusion process:

dyl ,L (t) =
⎛⎝ L∑

j=l

q j (t)B(t, Tj )
′

⎞⎠�
√

VtdW
Ql+1,L
t , (7.2.3)

where ql (t) = − D(t,Tl )
Pl+1,L (t) , q j (t) = � j−1 yl ,L (t) D(t,Tj )

Pl+1,L (t) , j = l + 1, . . . , L − 1,

and qL (t) = (1 + �L−1 yl ,L (t)) D(t,TL )
Pl+1,L (t) .

From the context of its use, note that t is understood to represent the current
date or the passage of time. However, as in Schrager and Pelsser [21], to assist
the exposition here it is necessary to fix the current date t = 0, the time at which
swaption values are required, and to consider t specifically as running time.
Now note that, by definition, the general term D(t,Tj )

Pl+1,L (t) is a martingale under
the swap measure Ql+1,L given that it represents the bond price normalized
by the associated numeraire Pl+1,L (t). From this it follows that the terms
q j (t) are also martingales under the swap measure. It is argued by Schrager
and Pelsser [21] that these martingales, which appear in equations (7.2.2)
and (7.2.3), represent low-variance martingales within the affine framework,
in the same manner that such martingales are argued to be low-variance
within the LIBOR market model by, for instance, d’Aspremont [12]. Hence,
the following approximate dynamics are proposed for the swap rate and factor
processes, where the low-variance martingales D(t,Tj )

Pl+1,L (t) and q j (t) are replaced



P1: Naresh

August 1, 2007 17:33 C925X C925X˙C007

120 � CHAPTER 7

by the martingale values D(0,Tj )
Pl+1,L (0) and q j (0), respectively:3

dyl ,L (t) =
⎛⎝ L∑

j=l

q j (0)B(t, Tj )
′

⎞⎠�
√

VtdW
Ql+1,L
t

d Xt =
⎡⎣� (� − Xt) − �Vt�

′

⎛⎝ L∑
j=l+1

� j−1 B(t, Tj )
D(0, Tj )

Pl+1,L (0)

⎞⎠⎤⎦ dt

+�
√

VtdW
Ql+1,L
t . (7.2.4)

As noted earlier, given the above approximate affine diffusion dynamics for
the swap rate and factor processes, Schrager and Pelsser [21] propose the pric-
ing of swaptions according to the transform-based and extended transform-
based contingent claim pricing methodologies of Duffie, Pan, and Singleton
[15]. The following discussion provides the details of this pricing methodology.

Under the swap measure Ql+1,L consider firstly a general contingent claim
with time-Tl payoff function G q1,q0 (K ) = eq1·X̃Tl I{q0·X̃Tl >K}, where X̃ t defines
an (M + 1)-dimensional affine factor process; K ∈ R is some constant trigger
defined under the contingent claim contract details; and q0, q1 ∈ RM+1. It fol-
lows that the time-zero value of this contingent claim VG q1,q0

(K ) = Pl+1,L (0)

E
Ql+1,L

0 [eq1·X̃Tl I{q0·X̃Tl >K }] is given by

VG q1,q0
(K ) = Pl+1,L (0)

ψ̃Ql+1,L (q1, X̃ t , 0, Tl )

2

− Pl+1,L (0)

π

∫ ∞

0

imag [ψ̃Ql+1,L (q1 − iυq0, X̃ t , 0, Tl )eiυK ]

υ
dυ,

where ψ̃Ql+1,L (ũ, X̃ t , 0, Tl ) = E
Ql+1,L

0 [eũ·X̃Tl ], for ũ ∈ CM+1.
Consider now a general extended contingent claim defined with time-Tl

payoff function G q2,q1,q0 (K ) = (q2 · X̃Tl )eq1·X̃Tl I{q0·X̃Tl >K }, where q0, q1, q2 ∈
RM+1, and note that VG q2,q1,q0

(K ) = Pl+1,L (0)E
Ql+1,L

0 [(q2·X̃Tl )eq1·X̃Tl I{q0·X̃Tl >K }],

3 As noted by Schrager and Pelsser [21] this approximation is affine with time-dependent coefficients.
The drift change is assumed to be a deterministic function of time, which influences the restrictions
on �, �, �, and Vt as detailed by Duffie and Kan [14]. It is emphasized by Schrager and Pelsser [21]
that this drift change is small and unlikely to cause problems in practice.
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the value at time zero, is given by

VG q2,q1,q0
(K ) = Pl+1,L (0)

�̃Ql+1,L (q2, q1, X̃ t , 0, Tl )

2

− Pl+1,L (0)

π

∫ ∞

0

imag[�̃Ql+1,L (q2, q1 − iυq0, X̃ t , 0, Tl )eiυK]

υ
dυ,

where �̃Ql+1,L (w̃ , ũ, X̃t , 0, Tl ) = E
Ql+1,L

0 [(w̃ · X̃Tl )eũ·X̃Tl ], for w̃ , ũ ∈ CM+1.
With these general pricing formulations established, it now possible to

consider the specific problem of pricing swaption contracts. From equation
(7.2.1) note that the price of a payer swaption at time zero is given by the general
pricing equation P S0 = Pl+1,L (0)E

Ql+1,L

0 [max(yl ,L (Tl )−K , 0)].Defining now
the process vector X̃ t = [yl ,L (t) Xt]′, it follows from the above development
that

P S0 = VG
ε(1),0,ε(1) (K ) − K VG 0,ε(1) (K ), (7.2.5)

where ε(1) and 0 respectively denote the first basis vector and zero vector in
RM+1. Note that VG

ε(1),0,ε(1) (K ) is the time-zero value of a contingent claim that
pays off yl ,L (Tl ) at time Tl contingent on yl ,L (Tl ) > K , whereas VG 0,ε(1) (K )
represents the time-zero value of a contingent claim that pays off 1 at time Tl

if yl ,L (Tl ) > K .

7.3 PRICING SWAPTIONS USING THE FFT

The transform-based and extended transform-based swaption pricing formu-
lation proposed by Schrager and Pelsser [21] and detailed in equation (7.2.5)
provides an efficient methodology for the valuation of a swaptions contract,
the implementation of which in practice involves the application of two nu-
merical integrations. However, the FFT offers even greater computational
efficiency, allowing for the evaluation of swaption prices over a large range of
strike prices.

In order to apply FFT techniques, it is first necessary to enforce square
integrability on the two component values in equation (7.2.5), that is, to
define ṼG

ε(1),0,ε(1) (K ) ≡ eα∗ K VG
ε(1),0,ε(1) (K ) and ṼG 0,ε(1) (K ) ≡ eα∗ K VG 0,ε(1) (K ),

where α∗ > 0 ∈ R. With these modifications in place it is straightforward
to show that the component values can be evaluated by means of the follow-
ing Fourier inversion: VG

ε(1),0,ε(1) (K ) = e−α∗ K
∫∞

−∞ φG
ε(1),0,ε(1) (υ)ei2πυK dυ and
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VG 0,ε(1) (K ) = e−α∗ K
∫∞

−∞ φG 0,ε(1) (υ)ei2πυK dυ, where

φG
ε(1),0,ε(1) (υ) = Pl+1,L (0)�̃Ql+1,L (ε(1), i[w(υ)ε(1) − iα∗ε(1)], X̃ t , 0, Tl )

α∗ + iw(υ)

and

φG 0,ε(1) (υ) = Pl+1,L (0)ψ̃Ql+1,L (i[w(υ)ε(1) − iα∗ε(1)], X̃t , 0, Tl )

α∗ + iw(υ)
,

and where ε(1) is the first basis vector in RM+1 and w(υ) ≡ −2πυ. Approx-
imating each of the component inverse Fourier transforms above by means
of an appropriate N-point inverse discrete Fourier transform, and then ap-
plying an appropriate inverse FFT routine, gives an N-dimensional vector of
swaption prices defined as follows:

VG
ε(1),0,ε(1) (K) − K ◦ VG0,ε(1) (K) ,

where

VG
ε(1),0,ε(1) (K) ≡ (VG

ε(1),0,ε(1) (K0), VG
ε(1),0,ε(1) (K1), . . . , VG

ε(1),0,ε(1) (K N−1)
)′

and

VG0,ε(1) (K) ≡ (VG 0,ε(1) (K0), VG 0,ε(1) (K1), . . . , VG 0,ε(1) (K N−1)
)′

,

and where K ≡(K0, K1, . . . , K N−1)′ is the strike price vector and the symbol
“◦” represents the Hadamard product.

7.4 APPLICATION AND COMPUTATIONAL ANALYSIS

This section considers a number of common affine diffusion interest-rate
models studied in the literature and presents the associated transforms and
extended transforms under the appropriate specializations of the general
approximate, affine dynamics of equation (7.2.4). The interest-rate models
considered are of the Vasicek, the generalized Vasicek, and the CIR type. Specif-
ically, the following models are considered: the one- and two-factor Vasicek
models, see [24] and [17], respectively; the one-, two-, and three-factor gen-
eralized Vasicek models, see [8]; and the one- and two-factor CIR models,
see [10] and [5], respectively. The derivations of the transforms and extended
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transforms are easily derived and follow the general details of Duffie, Pan, and
Singleton [15].

With the transforms and extended transforms derived for these various
affine interest models, sample swaption prices are generated using the FFT-
based swaption pricing methodology proposed in the previous section. The
computational speeds of these FFT-based swaption pricing implementations
are also presented. For comparative purposes, sample swaption prices and
computational speeds are also presented using the swaption pricing method-
ology of Schrager and Pelsser [21].

7.4.1 Vasicek Models

7.4.1.1 One-Factor Vasicek Model

Under the equivalent martingale measure Q, the one-factor Vasicek (1FV)
model is given by

drt = �r (r̄ − rt) dt + σr dWQ
r,t .

Under this specification bond prices are defined by D(t, T) = exp(A(t, T)−
B(t, T)rt), where B(t, T) ≡ 1−e−�r τ

�r
,

A(t, T) ≡
(B(t, T) − τ )

(
�

2
r r̄ − σ 2

r

2

)
�2

r

− σ 2
r B2(t, T)

4�r
,

and, for notational convenience, τ ≡ T − t.
Let X̃ t ≡ [yl ,L (t) rt]′ and τl ≡ Tl , the term-to-maturity of the swaptions

contract to be priced. The associated transform of the state vector X̃t is given
by

ψ̃Ql+1,L (ũ ≡ (ũ 0)′, X̃ t , 0, Tl ) = exp[α(τl ) + ũyl ,L (0)],

where α(τl ) solves the ODE

α̇(τl ) = 1

2
(ũg (τl ; t)σr )2 ,

subject to the boundary conditionα(0) = 0,and g (τl ; t) ≡ ∑L
j=l q j (0)B(t, Tj).

The associated extended transform of X̃ t is given by

�̃Ql+1,L (w̃ ≡ (w̃ 0)′, ũ, X̃ t , 0, Tl ) = ψ̃Ql+1,L (ũ, X̃ t , 0, Tl )(Y (τl ) + w̃ yl ,L (0)),



P1: Naresh

August 1, 2007 17:33 C925X C925X˙C007

124 � CHAPTER 7

where Y (τl ) solves ODE

Ẏ (τl )=ũw̃ (g (τl ; t)σr )2 ,

subject to the boundary condition Y (0) = 0.

7.4.1.2 Two-Factor Vasicek Model

The two-factor Vasicek (2FV) model is given by

d

[
rt

r̄t

]
=
[
�r 0
0 �r̄

]([
r̄t

θ̄

]
−
[

rt

r̄t

])
dt

+
[

σr 0

σr̄ ρr,r̄ σr̄

√
1 − ρ2

r,r̄

]
d

[
WQ

r,t

WQ
r̄ ,t

]
.

Bond prices are defined by D(t, T) = exp (A(t, T) − B1(t, T)rt − B2(t, T)r̄t) ,

where B1(t, T) ≡ 1−e−�r τ

�r
, B2(t, T) ≡ �r

�r −�r̄

(
1−e−�r̄

�r̄
− 1−e−�r

�r

)
, and

A(t, T) ≡ (B1(t, T) − τ )

(
θ̄ − σ 2

r

2�2
r

)
+ B2(t, T)θ̄ − σ 2

r B2
1 (t, T)

4�r

+ σ 2
r̄

2

[
τ

�
2
r̄

− 2
B2(t, T) + B1(t, T)

�2
r̄

+ 1

(�r − �r̄ )2

1 − e2�2
r̄ τ

2�r

− 2�r

�r̄ (�r − �r̄ )2

1 − e−(�r +�r̄ )τ

�r + �r̄
+ �2

r

�2
r̄ (�r − �r̄ )2

1 − e−2�r̄ τ

2�r̄

]
.

Let X̃ t ≡ [yl ,L (t) rt r̄t]′ and note that the associated transform of X̃ t is
given by

ψ̃Ql+1,L (ũ ≡ (ũ 0 0)′, X̃ t , 0, Tl ) = exp[α(τl ) + ũyl ,L (0)],

where α(τl ) solves the ODE

α̇(τl ) = 1

2
ũ2
[

(g1(τl ; t)σr + g2(τl ; t)σr̄ ρr,r̄ )2 +
(

g2(τl ; t)σr̄

√
1 − ρ2

r,r̄

)2]
,

subject to the boundary condition α(0) = 0, and gi (τl ; t) ≡ ∑L
j=l q j (0)

Bi (t, Tj ), i = 1, 2.



P1: Naresh

August 1, 2007 17:33 C925X C925X˙C007

AN EFFICIENT NUMERICAL METHOD � 125

The associated extended transform of X̃ t is given by

�̃Ql+1,L (w̃ ≡ (w̃ 0)′, ũ, X̃ t , t, Tl ) = ψ̃Ql+1,L (ũ, X̃ t , 0, Tl )

× (Y (τl ) + w̃ yl ,L (0)),

where Y (τl ) solves the ODE

Ẏ (τl )=ũw̃
[

(g1(τl ; t)σr + g2(τl ; t)σr̄ ρr,r̄ )2 +
(

g2(τl ; t)σr̄

√
1 − ρ2

r,r̄

)2]
,

subject to Y (0) = 0.

7.4.1.3 Time-Dependency Approximation

Time-dependency approximations can be introduced by means of replacing
the time-dependent functions B(t, Tj ) and Bi (t, Tj ), i = 1, 2, by the date-
zero values B(0, Tj ) and Bi (0, Tj ) in the approximate, affine dynamics of
the swap rate and model variables as defined under the swap measure. The
motivation for the introduction of the time-dependency approximation in the
case of each model is to improve computational efficiency in the evaluation
of the associated transforms and extended transforms. The time-dependency
approximation allows for closed-form solutions to the transforms and ex-
tended transforms in the case of the Vasicek- and generalized Vasicek-type
models, and allows for closed-form solutions to the transforms in the case
of the CIR-type models. These computational efficiencies, and the computa-
tional error introduced as a result of the time-dependency approximations,
are discussed in section 7.4.4.

7.4.2 Generalized Vasicek Models

7.4.2.1 One-Factor Generalized Vasicek Model

The one-factor generalized Vasicek (1FGV) model defines the short rate rt =
δ + x1,t , where δ ∈ R is constant, and

dx1,t = −�1x1,tdt + σ1dWQ
1,t .

Bond prices are given by D(t, T) = exp(A(t, T) + B�1 (t, T)x1,t), where, in
general, B�(t, T) ≡ 1−e−�τ

�
and

A(t, T) ≡ −δτ + 1

2

σ 2
1

�2
1

[
τ − 2B�1 (t, T) + B2�1 (t, T)

]
.
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Let X̃ t ≡ [yl ,L (t) x1,t]′ and note that the associated transform of X̃ t is
given by

ψ̃Ql+1,L (ũ ≡ (ũ 0)′, X̃ t , 0, Tl ) = exp[α(τl ) + ũyl ,L (0)],

where α(τl ) solves the ODE

α̇(τl )=1

2
(ũg1(τl ; t)σ1)2 ,

subject to the boundary condition α(0) = 0, and g1(τl ; t) ≡ ∑L
j=l q j (0)

B�1 (t, Tj ).
From this it follows directly that the extended transform of X̃ t is given by

�̃Ql+1,L (w̃ ≡ (w̃ 0)′, ũ, X̃ t , 0, Tl ) = ψ̃Ql+1,L (ũ, X̃ t , 0, Tl )(Y (τl ) + w̃ yl ,L (0)),

where Y (τl ) solves the ODE

Ẏ (τl ) = ũw̃ (g1(τl ; t)σ1)2 ,

subject to the boundary condition Y (0) = 0.

7.4.2.2 Two-Factor Generalized Vasicek Model

The two-factor generalized Vasicek (2FGV) model defines the short rate rt =
δ + x1,t + x2,t , where

d

[
x1,t

x2,t

]
=
[−�1 0

0 −�2

] [
x1,t

x2,t

]
dt +

⎡⎣ σ1 0

σ2ρ1,2 σ2

√
1 − ρ2

1,2

⎤⎦ d

[
WQ

1,t

WQ
2,t

]
.

Bond prices are given by D(t, T) = exp(A(t, T)−∑2
i=1 B�i (t, T)xi,t), where,

in general, B�(t, T) ≡ 1−e−�τ

�
and

A(t, T) ≡ −δτ + 1

2

2∑
i=1

2∑
j=1

σiσ j ρi, j

�i� j

×[τ − B�i (t, T) − B� j (t, T) + B�i +� j (t, T)
]
.

Let X̃ t ≡ [yl ,L (t) x1,t x2,t]′ and note that the associated transform of X̃ t is
given by

ψ̃Ql+1,L (ũ ≡ [ũ 0 0]′, X̃ t , 0, Tl ) = exp[α(τl ) + ũyl ,L (0)],
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where α(τl ) solves the ODE

α̇(τl ) = 1

2
ũ2
[

(g1(τl ; t)σ1 + g2(τl ; t)σ2ρ1,2)2 +
(

g2(τl ; t)σ2

√
1 − ρ2

1,2

)2]
,

subject to the boundary condition α(0) = 0, and gi (τl ; t) ≡ ∑L
j=l q j (0)

B�i (t, Tj ), i = 1, 2.

It follows that the extended transform of X̃ t is given by

�̃Ql+1,L (w̃ ≡ (w̃ 0 0)′, ũ, X̃ t , 0, Tl ) = ψ̃Ql+1,L (ũ, X̃ t , 0, Tl )

× (Y (τl ) + w̃ yl ,L (0)),

where Y (0) solves the ODE

Ẏ (τl ) = ũw̃
[

(g1(τl ; t)σ1 + g2(τl ; t)σ2ρ1,2)2 +
(

g2(τl ; t)σ2

√
1 − ρ2

1,2

)2]
,

subject to the boundary condition Y (0) = 0.

7.4.2.3 Three-Factor Generalized Vasicek Model

The three-factor generalized Vasicek (3FGV) model defines the short rate
rt = δ + x1,t + x2,t + x3,t , where

d

⎡⎣x1,t

x2,t

x3,t

⎤⎦ =
⎡⎣−�1 0 0

0 −�2 0
0 0 −�3

⎤⎦⎡⎣x1,t

x2,t

x3,t

⎤⎦ dt + �d

⎡⎢⎢⎣
WQ

1,t

WQ
2,t

WQ
3,t

⎤⎥⎥⎦
and, for notational convenience,

� ≡

⎡⎢⎢⎢⎢⎢⎣
σ1 0 0

σ2ρ1,2 σ2

√
1 − ρ2

1,2 0

σ3ρ1,3 σ3

√
(ρ2,3−ρ1,3ρ1,2)2

1−ρ2
1,2

σ3

√
(1−ρ2

1,2)(1−ρ2
1,3)−(ρ2,3−ρ1,3ρ1,2)2

1−ρ2
1,2

⎤⎥⎥⎥⎥⎥⎦ .
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Bond prices are given by D(t, T) = exp(A(t, T)−∑3
i=1 B�i (t, T)xi,t), where,

in general, B�(t, T) ≡ 1−e−�τ

�
and

A(t, T) ≡ −δτ + 1

2

3∑
i=1

3∑
j=1

σiσ j ρi, j

�i� j

×[τ − B�i (t, T) − B� j (t, T) + B�i +� j (t, T)
]
.

Let X̃ t ≡ [yl ,L (t) x1,t x2,t x3,t]′ and note that the associated transform of
X̃ t is given by

ψ̃Ql+1,L (ũ ≡ (ũ 0 0 0)′, X̃ t , 0, Tl ) = exp[α(τl ) + ũyl ,L (0)],

where α(τl ) solves the ODE

α̇(τl ) = 1

2
ũ2{[�11g1(τl ; t) + �21g2(τl ; t) + �31g3(τl ; t)]2

+ [�22g2(τl ; t) + �32g3(τl ; t)]2 + [�33g3(τl ; t)]2},

subject to the boundary condition α(0) = 0, and gi (τl ; t) ≡ ∑L
j=l q j (0)

B�i (t, Tj ), i = 1, 2, 3.

From this it follows that the extended transform of X̃ t is given by

�̃Ql+1,L (w̃ ≡ (w̃ 0 0 0)′, ũ, X̃ t , 0, Tl )

= ψ̃Ql+1,L (ũ, X̃ t , 0, Tl )(Y (τl ) + w̃ yl ,L (0)),

where Y (τl ) solves the ODE

Ẏ (τl ) = ũw̃{[�11g1(τl ; t) + �21g2 (τl ; t) + �31g3(τl ; t)]2

+ [�22g2(τl ; t) + �32g3(τl ; t)]2 + [�33g3(τl ; t)]2},

subject to Y (0) = 0.

7.4.2.4 Time-Dependency Approximation

Similar to that done previously, time-dependency approximations can be
introduced by means of replacing the time-dependent functions Bκ(t, Tj )
by the date-zero values Bκ(0, Tj ) in the swap measure approximate, affine
dynamics of the swap rate and model variables. Computational efficiencies
and error are discussed in section 7.4.4.
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7.4.3 CIR Models

7.4.3.1 One-Factor CIR Model

Under the specification, of the one-factor CIR (1FCIR) model

drt = �r (r̄ − rt) dt + σr
√

rtdWQ
r,t ,

where bond prices are given by D(t, T) = exp (A(t, T) − B(t, T)rt) , where
B(t, T) ≡ 2(eδr τ −1)

(δr +�r )(eδr τ −1)+2δr
,

A(t, T) ≡ ln

[(
2δr e (δr +�r )τ/2

(δr + �r ) (eδr τ − 1) + 2δr

)2�r r̄/σ 2
r
]

,

and δr ≡√�2
r + 2σ 2

r .

Let X̃ t ≡ [yl ,L (t) rt]′ and note that the associated transform of X̃ t is given
by

ψ̃Ql+1,L (ũ ≡ (ũ 0)′, X̃ t , 0, Tl ) = exp[α(τl ) + ũyl ,L (0) + β(τl )r0],

where β(τl ) and α(τl ) solve the ODEs

β̇(τl ) = 1

2
σ 2

r β2(τl ) + (ũg (τl ; t)σ 2
r − �r − σ 2

r h(τl ; t)
)
β(τl ) + 1

2
(ũg (τl ; t)σr )2,

α̇(τl ) = �r r̄β(τl ),

subject to the boundary conditionsβ(0) = 0 andα(0) = 0,and where g (τl ; t) ≡
(
∑L

j=l q j (0)B(t, Tj )) and h(τl ; t) ≡ (
∑L

j=l+1 � j−1 B(t, Tj )
D(0,Tj )
Pl+1,L (0) ).

From this it follows that the extended transform of X̃ t is given by

�̃Ql+1,L (w̃ ≡ (w̃ 0)′, ũ, X̃ t , 0, Tl )

= ψ̃Ql+1,L (ũ, X̃ t , 0, Tl )(Y (τl ) + w̃ yl ,L (0) + Z2(τl )r0),

where Z2(τl ) and Y (τl ) solve the ODEs

Ż2(τl ) = [− (�r + σ 2
r h(τl ; t)

)+ ũg (τl ; t)σ 2
r + σ 2

r β(τl )
]

Z2(τl )

+ [ũ (g (τl ; t)σr )2 + g (τl ; t) σ 2
r β(τl )

]
w̃ ,

Ẏ (τl ) = �r r̄ Z2(τl ),

subject to the boundary conditions Z2(0) = 0 and Y (0) = 0.
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7.4.3.2 Two-Factor CIR Model

The two-factor CIR (2FCIR) model defines the short rate rt = x1,t + x2,t ,
where

d

[
x1,t

x2,t

]
=
[
�1 0

0 �2

]([
x̄1

x̄2

]
−
[

x1,t

x2,t

])
dt

+
[
σ1

√
x1,t 0

0 σ2
√

x2,t

]
d

[
WQ

1,t

WQ
2,t

]
.

Bond prices are given by D(t, T) = exp(A(t, T)− B1(t, T)x1,t − B2(t, T)x2,t),
where A(t, T) ≡ ln [A1(t, T)A2(t, T)] and, for i = 1, 2,

Ai (t, T) ≡
(

2δi e (δi +�i )τ/2

(δi + �i )(eδi τ − 1) + 2δi

)2�i x̄i /σ
2
i

and

Bi (t, T) ≡ 2(eδi τ − 1)

(δi + �i )(eδi τ − 1) + 2δi
.

Let X̃ t ≡ [yl ,L (t) x1,t x2,t]′ and note that the associated transform of X̃ t

is given by

ψ̃Ql+1,L (ũ ≡ (ũ 0 0)′, X̃ t , 0, Tl )

= exp[α(τl ) + ũyl ,L (0) + β1(τl )x1,0 + β2(τl )x2,0],

where the functions β1(τl ), β2(τl ), and α(τl ) solve the ODEs

β̇1(τl ) = 1

2
σ 2

1 β2
1 (τl ) + (ũg1 (τl ; t) σ 2

1 − �1 − σ 2
1 h1(τl ; t)

)
β1(τl )

+ 1

2
(ũg1(τl ; t)σ1)2 ,

β̇2(τl ) = 1

2
σ 2

2 β2
2 (τl ) + (ũg2 (τl ; t) σ 2

2 − �2 − σ 2
2 h2(τl ; t)

)
β2(τl )

+ 1

2
(ũg2(τl ; t)σ2)2 ,

α̇(τl ) = �1 x̄1β1(τl ) + �2 x̄2β2(τl ),
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subject to the boundary conditions β1(0) = β2(0) =α(0) = 0, and gi (τl ; t) ≡∑L
j=l q j (0)Bi (t, Tj ) and hi (τl ; t) ≡ ∑L

j=l+1 � j−1 Bi (t, Tj )
D(0,Tj )
Pl+1,L (0) , for i =

1, 2.

In a similar manner, the extended transform �̃Ql+1,L (w̃ , ũ, X̃ t , 0, Tl ) ≡
�̃Ql+1,L ((w̃ 0 0)′, (ũ 0 0)′, X̃ t , 0, Tl ) is given by the following general form:

�̃Ql+1,L (w̃ , ũ, X̃ t , 0, Tl ) = ψ̃Ql+1,L (ũ, X̃ t , 0, Tl )

×(Y (τl ) + w̃ yl ,L (0) + Z2(τl )x1,0 + Z3(τl )x2,0),

where Z2(τl ), Z3(τl ), and Y (τl ) solve the ODEs

Ż2(τl ) = [− (�1 + σ 2
1 h1(τl ; t)

)+ ũg1(τl ; t)σ 2
1 + σ 2

1 β1(τl )
]

Z2(τl )

+ [ũg 2
1(τl ; t)σ 2

1 + g1(τl ; t)σ 2
1 β1(τl )

]
w̃ ,

Ż3(τl ) = [− (�2 + σ 2
2 h2(τl ; t)

)+ ũg2(τl ; t)σ 2
2 + σ 2

2 β2(τl )
]

Z3(τl )

+ [ũg 2
2(τl ; t)σ 2

2 + g2(τl ; t)σ 2
2 β2(τl )

]
w̃ ,

Ẏ (τ ) = �1 x̄1 Z2(τl ) + �2 x̄2 Z3(τl ),

subject to the boundary conditions Z2(0) = 0, Z3(0) = 0, and Y (0) = 0.

7.4.3.3 Time-Dependency Approximation

Again, time-dependency approximations can be introduced by means of
replacing the time-dependent functions B(t, Tj ) and Bi (t, Tj ), i = 1, 2, by
the date-zero values B(0, Tj ) and Bi (0, Tj ) in the approximate, affine dynam-
ics of the swap rate and model variables as defined under the swap measure.
Computational efficiencies and error are discussed in the next section.

7.4.4 Computational Analysis

The purpose of this section is to provide a comprehensive discussion of the
computational results and speeds of the FFT-based swaption pricing method-
ology proposed here. For this a distinction is made between the following
alternative integral transform-based swaption pricing implementations: (a)
the FFT-based swaption pricing methodology, under which is assumed the
Schrager and Pelsser [21] affine approximation only, herein labeled the FFT-
SP methodology; (b) the FFT-based swaption pricing methodology, under
which is assumed the Schrager and Pelsser [21] affine approximation and
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time-dependency approximation, herein labeled the FFT-SP-TDA method-
ology; and (c) the transform-based and extended transform-based swaption
pricing methodology proposed by Schrager and Pelsser [21], under which
is assumed the Schrager and Pelsser [21] affine approximation and time-
dependency approximation, herein labeled the T-SP-TDA methodology. Com-
putational results are generated under each of the alternative swaption pricing
methodologies and under each of the alternative affine interest rate models
considered in the previous sections; see Tables 7.4.1–7.4.7. The swaption con-
tracts priced are assumed to be 1-year forward-payer swaptions written on
underlying 4-year swap contracts that pay annual fixed payments, i.e., 1 × 4
swaption contracts. Note that, for the FFT-based swaption pricing method-
ologies, a high resolution of N = 216 is used, along with a strike price spacing
of 39 basis points.

Note further that, to benchmark the pricing effect of the original Schrager
and Pelsser [21] approximation, swaption prices are also reported in Tables
7.4.1–7.4.7 that are generated using Monte Carlo simulations (MC-SIM) of the
nonaffine exact swap measure dynamics related to the alternative affine model
specifications considered, which represent specializations of the general exact
swap measure dynamics given in equations (7.2.2) and (7.2.3). For each of the
Monte Carlo simulation implementations, note that 200,000 simulations and
100 time steps per simulation are used in generating the results.

TABLE 7.4.1 Swaption Prices: 1FV Model

FFT-SP-TDA T-SP-TDA FFT-SP MC-SIM

Run Time: Avg. Run Time: Run Time: Run Time:

1.1720 s 0.0160 s 952.8 s 2516.4 s

Strikes Prices Prices Prices Prices

0.0134 0.0727 0.0727 0.0732 0.0730
0.0173 0.0605 0.0605 0.0612 0.0610
0.0212 0.0491 0.0491 0.0500 0.0498
0.0251 0.0388 0.0388 0.0399 0.0396
0.0290 0.0298 0.0298 0.0309 0.0307

ATMF: 0.0329 0.0221 0.0221 0.0232 0.0231
0.0368 0.0158 0.0158 0.0169 0.0169
0.0407 0.0109 0.0109 0.0119 0.0119
0.0446 0.0072 0.0072 0.0080 0.0081
0.0485 0.0045 0.0045 0.0052 0.0053
0.0524 0.0027 0.0027 0.0033 0.0033

Parameters: �r = 0.1; r̄ = 0.045; σr = 0.02; rt = 0.03.
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TABLE 7.4.2 Swaption Prices: 2FV Model

FFT-SP-TDA T-SP-TDA FFT-SP MC-SIM

Run Time: Avg. Run Time: Run Time: Run Time:

1.1880s 0.0329 s 1406.0 s 5939.8 s

Strikes Prices Prices Prices Prices

0.0014 0.0756 0.0756 0.0761 0.0762
0.0053 0.0628 0.0628 0.0635 0.0635
0.0092 0.0508 0.0508 0.0516 0.0517
0.0131 0.0399 0.0399 0.0409 0.0410
0.0171 0.0304 0.0304 0.0315 0.0316

ATMF: 0.0210 0.0223 0.0223 0.0235 0.0236
0.0249 0.0158 0.0158 0.0169 0.0171
0.0288 0.0107 0.0107 0.0117 0.0119
0.0327 0.0069 0.0069 0.0078 0.0080
0.0366 0.0043 0.0043 0.0050 0.0051
0.0405 0.0025 0.0025 0.0031 0.0032

Parameters: �r = 0.1; �r̄ = 0.25; θ̄ = 0.035; σr = 0.02; σ r̄ = 0.022; ρ = −0.2;
r t = 0.03; r̄ t = 0.05.

TABLE 7.4.3 Swaption Prices: 1FGV Model

FFT-SP-TDA T-SP-TDA FFT-SP MC-SIM

Run Time: Avg. Run Time: Run Time: Run Time:

1.2340 s 0.0470 s 935.8 s 2945.8 s

Strikes Prices Prices Prices Prices

0.0134 0.0727 0.0727 0.0732 0.0732
0.0173 0.0605 0.0605 0.0612 0.0612
0.0212 0.0491 0.0491 0.0500 0.0500
0.0251 0.0388 0.0388 0.0399 0.0399
0.0290 0.0298 0.0298 0.0309 0.0309

ATMF: 0.0329 0.0221 0.0221 0.0232 0.0233
0.0368 0.0158 0.0158 0.0169 0.0169
0.0407 0.0109 0.0109 0.0119 0.0119
0.0446 0.0072 0.0072 0.0080 0.0081
0.0485 0.0045 0.0045 0.0052 0.0053
0.0524 0.0027 0.0027 0.0033 0.0033

Parameters: �1 = 0.1; σ 1 = 0.02; r t = 0.03; x1,t = −0.015.
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TABLE 7.4.4 Swaption Prices: 2FGV Model

FFT-SP-TDA T-SP-TDA FFT-SP MC-SIM

Run Time: Avg. Run Time: Run Time: Run Time:

1.2500 s 0.0620 s 1193.0 s 5826.2 s

Strikes Prices Prices Prices Prices

0.0255 0.0663 0.0663 0.0663 0.0664
0.0294 0.0532 0.0532 0.0533 0.0534
0.0333 0.0405 0.0405 0.0407 0.0408
0.0372 0.0287 0.0287 0.0291 0.0291
0.0411 0.0185 0.0185 0.0190 0.0191

ATMF: 0.0450 0.0106 0.0106 0.0112 0.0112
0.0489 0.0053 0.0053 0.0058 0.0059
0.0528 0.0022 0.0022 0.0026 0.0026
0.0567 0.0008 0.0008 0.0010 0.0010
0.0606 0.0002 0.0002 0.0003 0.0003
0.0645 0.0001 0.0001 0.0001 0.0001

Parameters: �1 = 0.1; �2 = 0.2; σ 1 = 0.01; σ2 = 0.005; δ = 0.025; ρ1,2 = −0.2; x1,t

= 0.01; x2,t = 0.02.

TABLE 7.4.5 Swaption Prices: 3FGV Model

FFT-SP-TDA T-SP-TDA FFT-SP MC-SIM

Run Time: Avg. Run Time: Run Time: Run Time:

1.2660 s 0.0630 s 1857.6 s 8658.2 s

Strikes Prices Prices Prices Prices

0.0472 0.0630 0.0630 0.0630 0.0629
0.0511 0.0506 0.0506 0.0507 0.0506
0.0550 0.0386 0.0386 0.0388 0.0387
0.0589 0.0275 0.0275 0.0278 0.0277
0.0628 0.0179 0.0179 0.0183 0.0182

ATMF: 0.0667 0.0104 0.0104 0.0109 0.0108
0.0706 0.0053 0.0053 0.0057 0.0057
0.0745 0.0023 0.0023 0.0026 0.0026
0.0784 0.0008 0.0008 0.0010 0.0011
0.0823 0.0003 0.0003 0.0004 0.0004
0.0862 0.0001 0.0001 0.0001 0.0001

Parameters: �1 = 0.1; �2 = 0.2; �3 = 0.5; σ 1 = 0.01; σ2 = 0.005; σ3 = 0.002; δ = 0.06;
ρ1,2 = −0.2; ρ1,3 = −0.1; ρ2,3 = 0.3; x1,t = 0.01; x2,t = 0.005; x3,t = −0.02.
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TABLE 7.4.6 Swaption Prices: 1FCIR Model

FFT-SP-TDA T-SP-TDA FFT-SP MC-SIM

Run Time: Avg. Run Time: Run Time: Run Time:

495.1 s 2.0620 s 2073.3 s 3445.2 s

Strikes Prices Prices Prices Prices

0.0108 0.0699 0.0699 0.0727 0.0724
0.0147 0.0573 0.0573 0.0626 0.0625
0.0186 0.0472 0.0472 0.0541 0.0539
0.0225 0.0390 0.0390 0.0463 0.0465
0.0264 0.0322 0.0322 0.0399 0.0401

ATMF: 0.0303 0.0268 0.0268 0.0339 0.0345
0.0342 0.0223 0.0223 0.0292 0.0297
0.0381 0.0188 0.0188 0.0246 0.0255
0.0420 0.0158 0.0158 0.0212 0.0220
0.0459 0.0137 0.0137 0.0177 0.0189
0.0499 0.0117 0.0117 0.0152 0.0163

Parameters: �r = 0.1; r̄ = 0.045; σ r = 0.2; r t = 0.03.

TABLE 7.4.7 Swaption Prices: 2FCIR Model

FFT-SP-TDA T-SP-TDA FFT-SP MC-SIM

Run Time: Avg. Run Time: Run Time: Run Time:

583.6 s 1.8590 s 4090.3 s 6977.4 s

Strikes Prices Prices Prices Prices

0.0272 0.0617 0.0617 0.0663 0.0692
0.0311 0.0475 0.0475 0.0597 0.0585
0.0350 0.0350 0.0350 0.0538 0.0491
0.0389 0.0248 0.0248 0.0422 0.0408
0.0428 0.0167 0.0167 0.0372 0.0340

ATMF: 0.0467 0.0108 0.0108 0.0285 0.0277
0.0506 0.0066 0.0066 0.0240 0.0226
0.0545 0.0037 0.0037 0.0180 0.0185
0.0584 0.0019 0.0019 0.0149 0.0150
0.0623 0.0009 0.0009 0.0108 0.0119
0.0662 0.0003 0.0003 0.0090 0.0098

Parameters: �1 = 0.2; �2 = 0.1; x̄1 = 0.025; x̄2 = 0.03; σ 1 = 0.2; σ2 = 0.1; x1,t

= 0.02; x2,t = 0.025.
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In the comparison of the FFT-SP and Monte Carlo simulation swaption
prices reported, it is first noted that the former methodology effectively prices
for all contracts under the various Vasicek and generalized Vasicek models
considered. In particular, it is noted for the in-the-money-forward (ITMF) and
at-the-money-forward (ATMF) swaptions that the approximation introduced
by Schrager and Pelsser [21] is excellent, with pricing errors relative to the
corresponding Monte Carlo simulation prices of less than 1%. For the case
of the 1FCIR model, the effect of the approximation introduced by Schrager
and Pelsser [21] is again noted to be quite effective. For the case of the ITMF
and ATMF swaption contracts, pricing errors relative to the corresponding
Monte Carlo simulation prices are observed to be less than 2%. However,
for the out-of-the-money-forward (OTMF) swaption contracts, it is noted
that the approximation is not as effective compared with the Vasicek and
generalized Vasicek models, with pricing errors relative to the corresponding
Monte Carlo simulation prices in the range 1.7–6.7%. However, for the 2FCIR
model, it is noted that the Schrager and Pelsser [21] approximation is much
less effective for all moneyness-category swaptions, with pricing errors relative
to the corresponding Monte Carlo simulation prices in the range 2.1–9.5%.

With the pricing results of the FFT-SP and Monte Carlo simulation method-
ologies compared, focus is now turned to the computational run times of the
alternative methodologies. It is first noted for the 1FV and 2FV models that
the computational run time of the FFT-SP methodology is significantly lower
than the Monte Carlo simulation approach, with reductions on the order
of, approximately, 62% and 76%, respectively. Likewise, for the generalized
Vasicek models, the FFT-SP pricing methodology results in significantly lower
computational run times relative to the Monte Carlo simulation approach,
with reductions on the order of, approximately, 68, 80, and 79% for the 1FGV,
2FGV, and 3FGV models, respectively. Finally, it is similarly observed that the
FFT-SP swaption pricing methodology results in significant computational
run-time efficiencies for the 1FCIR and 2FCIR models, with reductions on
the order of, approximately, 40% for both models.

Now, comparing the computational results and speeds under the alter-
native FFT-SP-TDA and T-SP-TDA methodologies for all models, it is noted
that the former methodology generates equivalent results to the latter while
offering substantial computational efficiencies, particularly given the high res-
olution used for the FFT implementations. To better understand the pricing
error introduced by the time-dependency approximation under both swap-
tion pricing methodologies, swaption prices are compared with the results
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generated by the FFT-SP methodology. It is most notable that, for the vari-
ous Vasicek and generalized Vasicek models considered, the time-dependency
approximations made are quite effective in the pricing of ITMF and ATMF
swaption contracts. In particular, for these swaption contracts, it can be ob-
served that pricing errors relative to the corresponding FFT-SP prices are all
less than 5.5%, with the level of relative pricing error decreasing as the ITMF
swaption contracts become more in-the-money. However, for the OTMF con-
tracts, the effectiveness of the time-dependency approximations made is not as
good, with pricing errors relative to the corresponding FFT-SP prices observed
in the range 6.5–33%. In fact, it is generally observed that the level of relative
pricing error increases as the OTMF swaption contracts become more out-
the-money. Hence, from a pricing perspective, the time-dependency approx-
imations made are quite effective in the pricing of ITMF and ATMF swaption
contracts for all the Vasicek and generalized Vasicek models considered.

From the perspective of computational run time, it is notable that, for
the various Vasicek and generalized Vasicek models, the FFT-SP-TDA pric-
ing methodology results in highly significant reductions in run time com-
pared with the FFT-SP methodology, with reductions on the order of over
99%. Such dramatic reductions in run time reflect the fact that, under the
time-dependency approximations made for the various Vasicek and gener-
alized Vasicek models, the required transforms and extended transforms for
the implementations are derived in analytic form, eliminating the need for
any numerical evaluations. Hence, in summary of the above discussions, it is
concluded that the FFT-SP-TDA swaption-pricing methodology quite effec-
tively prices ITMF and ATMF swaption contracts, but does so at much greater
computational speeds when compared with the FFT-SP pricing methodology.

Turning now to the CIR-type models, it is first noted for the 1FCIR model
that the time-dependency approximation made in the implementation of the
FFT-SP-TDA and T-SP-TDA pricing methodologies is actually quite ineffec-
tive in the pricing of all swaption contracts, showing consistent evidence of
significant underpricing relative to the corresponding FFT-SP prices. In par-
ticular, it is noted for the ATMF swaptions contract that the relative pricing
error is approximately 21%, with pricing errors decreasing from this as the
ITMF swaption contracts become more in-the-money. In the case of the 2FCIR
model, it is noted that the ineffectiveness of the time-dependency approxima-
tion is even more pronounced, with the FFT-SP-TDA and T-SP-TDA pricing
methodologies significantly underpricing relative to the FFT-SP methodology,
particularly in the case of the OTMF swaption contracts.
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7.5 MODEL TESTING USING EURIBOR SWAPTIONS DATA

7.5.1 Implied Estimation and In-Sample Pricing Performance

Using an extensive EURIBOR payer-swaptions data set, this section presents an
implied parameter estimation of the 1FV, 2FV, 1FGV, 2FGV, 3FGV, and 1FCIR
models and evaluates the performance of these alternative models on the basis
of in-sample pricing performance. The data set comprises swaption quotes
on a selection of weekly observations over the period 1/1/2001–12/31/2004,
obtained from Datastream and equating to 209 trade dates. The swaption
quotes represent at-the-money-forward (ATMF) quotes for 44 different con-
tract types,4 and are given with the typical market convention of Black-implied
volatilities. Hence, the entire data set consists of a total of 9196 swaption quotes.
Note also that, by market convention, the swaptions are written on swap con-
tracts that pay six-month EURIBOR against a fixed annual payment; see, for
instance, Muck [19].

The associated structural parameters and latent-state variables, as defined
under each of the competing model specifications, are estimated according to
the following daily nonlinear ordinary least squares (NL-OLS) specification:

min
{θ}

Nt∑
i=1

[Ci,t − Ĉi,t(θ)]2,

where θ ≡ {θ , ϑ} and where θ and ϑ are, respectively, the date-t vectors of
structural parameters and latent state variables; Ci,t is the market price corre-
sponding to swaption quote i on date t; Ĉi,t (θ) is the theoretical model-based
price of the swaption with the same contract details as swaption quote i on
date t; and Nt is the total number of swaptions observed on date t, which in
this case is equal to 44 for each trade date. The theoretical swaption prices
are generated using the FFT-SP-TDA swaption pricing methodology, as de-
tailed and discussed in the previous section. However, this swaption pricing
methodology is effective in the pricing of ATMF swaption contracts for the
Vasicek and generalized Vasicek models. The second motivation for this choice
of pricing methodology is the dramatic computational run-time efficiencies
it offers over the FFT-SP pricing methodology, which in turn naturally reduce
the computational intensity of the required optimization under the NL-OLS

4 The EURIBOR swaptions data set comprises 6-month, 1-year, 2-year, 3-year, 4-year, and 5-year
forward contracts written on underlying swap contracts with a variety of maturities. Quotes are
provided for nine 6-month forward, nine 1-year forward, eight 2-year forward, seven 3-year forward,
six 4-year forward, and five 5-year forward contracts.
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TABLE 7.5.1 Minimized Loss Function
Values of Candidate Models

Model Minimized Loss Function Value

1FV 0.00243
2FV 0.00093
1FGV 0.00715
2FGV 0.00572
3FGV 0.00135
1FCIR 0.00156

parameter estimation process. However, it is important to point out that,
although the FFT-SP-TDA pricing methodology is not particularly effective
for the pricing of ATMF swaption contracts under the 1FCIR model, the de-
cision is made here to trade off this pricing error for the significant computa-
tional efficiencies it offers. Note also for this implementation that the 1-month
EURIBOR rate observed on date t is used as a proxy for the unobservable short
rate rt .5

Table 7.5.1 provides the average of the daily minimized loss function values
obtained for each model over the sample period. It is notable from Table
7.5.1 that, according to the average minimized loss function values, the 2FV
model provides the best overall fit to the EURIBOR swaptions data set under
consideration, followed in order by the 3FGV, 1FCIR, 1FV, 2FGV, and 1FGV
models. The results obtained suggest that the 2FV model outperforms the
higher dimensional 3FGV model, and the 1FV model similarly outperforms
the higher dimensional 2FGV model. However, within the Vasicek type, it is
interesting to note that the higher dimensional 2FV model, which extends
the 1FV model by allowing the long-run mean short-rate level to follow a
correlated mean-reverting Gaussian process, improves considerably on the
in-sample fit of the 1FV model. In a similar manner, it is noted that, for the
generalized Vasicek model type, the in-sample fit also improves with increased
dimensionality. Furthermore, of the one-factor models, the results indicate
that the 1FCIR model offers the best in-sample fit relative to the 1FV and
1FGV model specifications.

In addition to the above observations, note that, despite the equivalence of
the 1FV and 1FGV models as established in section 7.4.2.1, it is the 1FV model
representation, which specifies the short rate as an observable state variable,

5 Note that, under the specifications of the one-, two-, and three-factor generalized Vasicek models,
the parameter δ is not estimated, given that it is bound by the model constraint δ = rt −∑i xi,t .



P1: Naresh

August 1, 2007 17:33 C925X C925X˙C007

140 � CHAPTER 7

that is reported to provide a better fit relative to the alternative 1FGV model
representation. In a similar way, despite the equivalence of the 2FV and 2FGV
models the results report that the 2FV model representation, which again
specifies the short rate as an observable state variable, is the one that provides
a better fit over the 2FGV model representation. Hence, the evidence suggests
that even within the same affine-model equivalence class, as made formal by
Dai and Singleton [11], the specific representation of an assumed model is
an important factor in optimizing in-sample pricing performance. Indeed, it
appears that those models that specify the short rate as an observable state
variable offer a superior fit relative to those equivalent models that define the
short rate by an affine relation of latent state variables.

In using the NL-OLS parameter estimation framework, no formal
goodness-of-fit tests can be used to compare alternative model specifications.
The following discussion therefore provides an informal discussion of the over-
all in-sample pricing performance of the alternative affine interest rate models
based on average absolute swaption pricing errors. Note first that high absolute
pricing errors are reported for each of the affine interest-rate models, which
provides clear evidence of significant misspecification in each case. Despite
this important qualification, the 2FV model reports the lowest absolute errors
for the majority of swaption contracts and hence provides the best in-sample
fit. This is in line with the overall pricing performance of the 2FV model, as
reported by the minimized loss function values in Table 7.5.1. It is also interest-
ing to note that, for the majority of swaption contracts in the sample data, the
2FV model significantly outperforms the 1FV model. Hence, for the Vasicek-
type models, it is clear that, for the most part, in-sample pricing performance
improves with increased dimension. A similar observation is also made for
the generalized Vasicek-type models, with the in-sample pricing performance
again improving with increased dimension. In particular, it is notable that the
3FGV model considerably improves on the in-sample pricing performance of
the 2FGV and 1FGV models for the majority of swaption contracts.

In addition to the above observations, it is noted that, of the one-factor
models, the 1FGV model is reported to consistently outperform the 1FV and
1FCIR models for swaptions written on 1-year swap contracts. For swap-
tions written on the longer-term 6-, 7-, 8-, and 9-year swap contracts, the
1FCIR model is shown to outperform both the 1FV and 1FGV models. Mixed
results are observed for the remaining swaptions written on 2-year up to
5-year swap contracts. Furthermore, of the two-factor models, the 2FV model
outperforms the equivalent 2FGV model for the majority of swaption con-
tracts. It is only for the swaptions written on 1-year swap contracts that the
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TABLE 7.5.2 Implied Estimates : 1FV and 2FV Models

1FV 2FV

θ �r 0.217 (0.7) �r 0.210 (2.4)
r̄ 0.074 (7.7) �r̄ 0.259 (2.7)
σr 0.014 (0.8) θ̄ 0.075 (0.2)

σr 0.025 (0.03)
σr̄ 0.018 (0.2)
ρr,r̄ −0.074 (3.2)

ϑ r̄ t 0.020 (0.2)

2FGV model is reported to outperform the 2FV model. In fact, as can be ob-
served from the reported absolute pricing errors, the 2FV model consistently
outperforms the higher dimensional 3FGV model for all swaptions written
on swap contracts with a maturity greater than 3 years. This observation is
consistent with the overall pricing performance of these models, as reported
in Table 7.5.1.

7.5.1.1 Analysis of Implied Estimates

Tables 7.5.2, 7.5.3, and 7.5.4, respectively, report the average of the daily esti-
mates obtained for the Vasicek, the generalized Vasicek, and the CIR models.

From the results for the Vasicek-type models reported in Table 7.5.2, it is
first noted that the speed of mean reversion of the short rate in the case of the
1FV model is 0.217, which corresponds to a half-life of interest-rate shocks
of approximately 38 months. The constant long-run mean level to which the

TABLE 7.5.3 Implied Estimates : GV Models

1FGV 2FGV 3FGV

θ �1 0.451 (1.2) �1 0.572 (3.6) �1 0.884 (2.2)
σ1 0.003 (1.0) �2 0.510 (3.4) �2 0.524 (1.6)

σ1 0.015 (0.2) �3 0.455 (2.1)
σ2 0.015 (0.2) σ1 0.017 (0.5)
ρ1,2 −0.754 (2.1) σ2 0.017 (0.7)

σ3 0.031 (0.5)
ρ1,2 0.286 (3.3)
ρ1,3 −0.140 (3.2)
ρ2,3 0.560 (4.0)

ϑ x1,t 0.013 (0.01) x1,t 0.017 (1.6) x1,t 0.031 (1.9)
x2,t −0.009 (1.1) x2,t −0.059 (1.6)

x3,t −0.021 (3.8)
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TABLE 7.5.4 Implied
Estimates : 1FCIR Model

1FCIR

θ �r 0.221 (0.04)
r̄ 0.088 (2.16)
σr 0.098 (0.03)

short rate reverts is estimated to be 7.4%, which is considerably higher than
the average 1-month EURIBOR rate of 2.65%. For the 2FV model, the speed
of mean reversion of the short rate is almost identical to the case of the 1FV
model at 0.210 (corresponding to a half-life of approximately 40 months), with
the speed of mean reversion of the stochastic long-run mean short rate re-
ported at a similar value of 0.259 (corresponding to a half-life of approximately
32 months). Interestingly, the average daily estimate of the latent long-run
mean short rate in the 2FV model is reported to be 2%, with the level to which
it reverts reported at a much higher rate of 7.5%. Also of importance in this
analysis of the 2FV model is the weak negative correlation reported between
the short-rate and long-run mean short-rate processes. Note finally from the
results of Table 7.5.2 that the volatility coefficient of the short-rate process σr is
estimated to be 1.7% under the 1FV model, which is lower than that estimated
under the 2FV model at 2.5%.

For the generalized Vasicek models considered in the study, note first from
Table 7.5.3 that, for the 1FGV model, the speed of mean reversion associated
with the latent-state variable x1,t is estimated at 0.451 (corresponding to a
half-life of 18 months). The average estimate of x1,t over the sample period
is 1.3%. Recall from the definition of the 1FGV model that rt = δ + x1,t , for
constant δ, and as noted by Cortazar, Schwartz, and Naranjo [8], δ represents
the long-run mean short rate to which the short rate reverts. Calculating an
estimate of δ for each trade date in the sample period leads to an average figure
for the entire sample period of 1.7%. Further, it is noted that the volatility
parameter σ1 is reported at a very low level of 0.3%.

Under the equivalence of the 1FV and 1FGV model specifications as estab-
lished in section 7.4.2.1, the speeds of mean-reversion and volatility param-
eters are equivalent. It is interesting to note from the above results, however,
that the 1FGV-model estimates of the speeds of mean reversion and volatility
parameters are significantly different from the equivalent parameters under
the 1FV-model specification. It is first noted that the speed of mean reversion
under the 1FGV is reported to be less than half that estimated for the 1FV
model. This implies that, relative to the 1FV model, the 1FGV reports a much
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lower half-life of interest-rate shocks, indicating that interest-rate shocks are
far less persistent. It is next noted that the volatility parameter under the 1FGV
model is estimated to be over five times lower than that reported for the case
of the 1FV model. Hence, this indicates a much less volatile stochastic process
relative to the 1FV model.

In a similar way, an estimate of the long-run mean level of the short-rate
parameter δ under the 1FGV model is reported at 1.7%. This result is signifi-
cantly less than the equivalent long-run mean level of the short rate r̄ of 7.4%
as estimated under the 1FV model. Hence, this and the above observations
provide evidence that, despite the equivalence of the 1FV and 1FGV models,
the parameter-estimation process does not result in similar findings for the
two model specifications.

In the case of the 2FGV model, the mean-reversion rates associated with
the two factors x1,t and x2,t are reported to be 0.572 and 0.510, respectively
(corresponding to half-lives of approximately 15 and 16 months, respectively).
Therefore, it is clear that the two factors in the 2FGV model revert to the
long-run mean level of the factors of 0% at similar rates. Also of note is that
the average estimates of the two factors x1,t and x2,t are 1.7% and −0.9%,
respectively. Similar to previously stated results, note from the definition of
the 2FGV model that the short rate rt = δ + x1,t + x2,t , and so over the entire
sample period the average estimate of the long-run mean level of the short rate
δ works out to be 2.14%. Also of note is that the results report a very strong
negative correlation between the two underlying factors x1,t and x2,t .

For the 3FGV model, the three underlying factors x1,t , x2,t , and x3,t have
associated mean-reversion rates of 0.884, 0.524, and 0.455, respectively (corre-
sponding to half-lives of 9, 16, and 18 months, respectively). Note also that the
estimates obtained for the latent-state variables x1,t , x2,t , and x3,t are, respec-
tively, 3.1%, −5.9%, and −2.1%. Under the structure of the 3FGV model,
the short rate is given by rt = δ + x1,t + x2,t + x3,t , and so the average
estimate of δ over the sample period gives a long-run mean level of the short
rate of 7.9%, which is considerably higher than the corresponding estimates
for δ obtained under the 1FGV and 2FGV models. Finally, note from the
correlation-parameter estimates that there is a considerable positive correla-
tion between the underlying factors x1,t and x2,t and between x2,t and x3,t .

However, the results suggest a moderately negative correlation between the
underlying factors x1,t and x3,t .

Turning now to the parameter estimates under the 1FCIR model, it is first
noted from Table 7.5.4 that the speed of mean reversion �r , the long-run
mean level of the short rate r̄ , and the volatility coefficient σr are reported
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to be 0.221, 8.8%, and 9.8%, respectively. Comparing these results with the
parameter counterparts under the 1FV model, it is noted that the speed of
mean reversion and long-run mean short-rate estimates are quite similar under
both models. However, it is notable that the volatility coefficient parameter is
estimated to be seven times higher under the 1FCIR model.

To conclude the discussion, the focus is now turned to the time-series prop-
erties of the implied structural parameter and latent-state variable estimates.6

For all of the affine interest-rate models tested, the majority of structural-
parameter and, where applicable, latent-state variable estimates exhibit sub-
stantial instability over the sample period. When viewed over the entire sample
period or over identifiable subperiods of the sample period, this parameter
instability manifests itself in the form of considerable oscillatory behavior in
the weekly estimates or shifts in the level of parameter estimates. Such obser-
vations can be interpreted as providing evidence of model misspecification.
However, another possible explanation for the observation of shifts in the level
of parameter estimates is that the optimization process is alternating between
local minima.

7.5.2 Out-of-Sample Pricing Performance

The candidate models are now examined to evaluate the out-of-sample pric-
ing performance of each. An out-of-sample pricing evaluation is conducted
for each affine interest-rate model according to the following loss-function
specification:

Nt∑
i=1

[Ci,t − Ĉi,t(θlag )]2,

where θlag = {θlag , ϑlag }, and θlag and ϑlag are, respectively, the vectors of
structural parameters and latent-state variables as estimated on the last trade
date previous to date t. Table 7.5.5 reports the average of the daily loss-function
values calculated. It is interesting to note that the ranking of the candidate
models based on out-of-sample pricing performance is not entirely consistent
with the ranking established in the previous section for the in-sample fit of the
models. In particular, the 3FGV model is shown to provide the best out-of-
sample pricing performance, followed in order by the 2FV and 1FCIR models.

6 An extensive range of time-series graphs for the implied structural parameter and latent-state
variable estimates exists. To conserve on space, these graphs are not presented here but are readily
available upon request.
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TABLE 7.5.5 Out-of-Sample Loss
Function Values of Candidate Models

Out-of-Sample

Model Loss Function Value

1FV 0.00103
2FV 0.00088
1FGV 0.00711
2FGV 0.00707
3FGV 0.00052
1FCIR 0.00096

However, it is noted from the results that the 2FV model outperforms the
3FGV model, and the 1FV model outperforms the 2FGV model, which is in
line with the observations on in-sample fit made in the previous section.

7.6 CONCLUSIONS AND FUTURE RESEARCH

This chapter outlines how the transform-inversion approach of Carr and
Madan [4] has been independently adapted by the authors to allow the use of
FFT technology to price European-exercise interest-rate swaptions. Under a
range of modeling assumptions, the FFT is shown to be a superfast and accurate
engine to price a range of swaption contracts around forward-at-the-money
strikes. Future research should investigate extensions that will ensure (a) term-
structure consistency for the class of approximate-affine models investigated
in this chapter and (b) the validity of replacing low-variance martingales with
their time-zero conditional expected values under an affine jump-diffusion
framework. Finally, it is proposed to investigate the potential of a recursive
quadrature-based FFT routine in pricing swaption contracts with exotic or
early-exercise features (e.g., Bermudan swaptions) under multifactor affine
model dynamics for the term structure.
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CHAPTER 8

Empirical Testing
of Local Cross Entropy
as a Method for Recovering
Asset’s Risk-Neutral PDF
from Option Prices
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Abstract: In this chapter we test the performance of the local cross entropy as a
method for extracting the underlying asset price distribution implied by option
prices. The fast Fourier transform algorithm is used to generate the “true” risk-
neutral distribution as well as theoretical option prices consistent with several
known models, and the local cross-entropy criterion is applied to recover this
distribution given a small number of option prices. The resulting distribution
is compared with the “true” distribution in terms of entropy pseudodistance
and error between the theoretical and implied option prices. We also investigate
the effect of noise added to the theoretical option prices. Finally, the local cross
entropy is applied to market data, and the risk-neutral distribution underlying
the S&P 500 and NASDAQ 100 index options is obtained at various maturities.

8.1 INTRODUCTION

One of the most interesting pieces of information one can gain from derivative
markets is the expected distribution of asset prices of a risk-neutral agent.1

It may be useful to policy makers for pricing other (exotic) derivatives or for
checking that a no-arbitrage condition holds across different derivative mar-
kets. In recent years several methods for extracting the risk-neutral probability
distribution function (RN-PDF) have been suggested. Jackwerth [1] provides
a good classification of these methods. We focus on one promising branch
of nonparametric methods that draws insight from information theory and
employs the concept of entropy. We need to address the issue of incomplete
markets because, in reality, we are dealing with a situation where there are
more states of nature than linearly independent securities. For this reason an
extra condition is needed to represent the missing information.

One possibility is the maximum entropy approach (ME) pioneered by
Edelman and Buchen [2] and Buchen and Kelly [3], which solves this problem
by maximizing the randomness of the RN-PDF. Such a distribution would be
the least prejudiced with respect to the missing information. Unfortunately,
this method is numerically unstable. The practical drawbacks of ME could

1 We are concentrating exclusively on a risk-neutral distribution. To obtain a real-world distribution,
one must assume a particular utility function. Alternatively, we can assume that the risk aversion
of market participants does not change over time, and then we could infer the evolution of the
real-world distribution based on the evolution of the risk-neutral counterpart.
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be overcome by minimizing the Kullback-Leibler pseudodistance to some ref-
erence (prior) distribution minimizing Kullback-Leibler (MKL). However, the
resulting solution suffers from arbitrariness in the choice of the prior distri-
bution. Finally, as the latest development, Edelman [4] proposed a minimum
local cross-entropy (MLCE) criterion that minimizes the entropy pseudodis-
tance of the distribution to a slightly smoothed version of itself and thus
effectively removes the subjectivity imposed by the reference distribution.

An empirical testing of the MLCE method on both simulated and market
data is the main focus of this work. The chapter is organized in the following
way: in section 8.2 the methodology for a simulated experiment is described.
Section 8.3 presents the results of the MLCE method on option prices generated
from various models as well as on market data using S&P 500 and NASDAQ
100 index options. Section 8.4 concludes the chapter.

8.2 METHODOLOGY

This section outlines the methodology used in the simulated experiment. First
we examine the theoretical background of the recovery of the implied distri-
butions, with special emphasis on local cross entropy as one of the methods
for extracting the “true” distribution in an incomplete market setting. Then
we shift focus to the selection of models and ways to generate data, namely the
terminal distribution and option prices. Lastly, we describe the performance
of the MLCE method.

8.2.1 Recovery of the Implied RN-PDF

The goal is to recover a risk-neutral distribution q(ST ) that would be consis-
tent with a set of M linearly independent assets: M − 2 options, an under-
lying asset (or a forward contract), and a riskless bond. In other words, the
market prices {C ∗

j=1,2,...,M−2;t , S∗
t , B∗

t } should coincide with theoretical prices
{C j=1,2,...,M−2;t , St , Bt} that are implied by the terminal distribution q(ST ) as
given by the risk-neutral pricing formula:

V(St) = e−r (T−t)
∫

R
payoff(ST ) q(ST ) dST . (8.2.1)

Consider a discrete setting where there are N states of nature {Si,T }i=1,2,...,N ,
that are equally spaced with a step size δST . Equation (8.2.1) can be approxi-
mated for a particular payoff function as follows:
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� For (call) options:

C j ;t(St) = e−r (T−t)
N∑

i=1

max(Si,T − X j , 0) q(Si,T ) δST (8.2.2)

� For underlying asset (or forward):

St = e−r (T−t)
N∑

i=1

Si,T q(Si,T ) δST

⇒ Ft(St) =
N∑

i=1

Si,T q(Si,T ) δST = St er (T−t)

(8.2.3)

� For riskless bond with face value 1:

Bt = e−r (T−t)
N∑

i=1

q(Si,T ) δST = e−r (T−t) (8.2.4)

Put differently, the discrete probabilities q
′
(Si,T ) = q(Si,T ) δST must

sum to 1.

Essentially there are two possibilities:

1. Complete markets setting (N = M): the number of securities equals
the number of unknown variables q(Si,T ). To ensure that for each state
of nature in the future there exists an Arrow-Debreu security, the option
strike prices X j , j = 1, 2, . . . , M − 2 must coincide with the states of
nature Si,T , i = 2, . . . , N − 1. Then all we need to do to get a unique
solution is to solve a system of linear equations (see Figure 8.2.1a):

e−r (T−t)

⎡⎢⎢⎢⎢⎢⎣
max(S1,T − X1, 0) . . . max(ST,N − X1, 0)

. . . . . . . . .

max(S1,T − XM−2) . . . max(ST,N − XM−2)
S1,T . . . ST,N

1 . . . 1

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣

q ′(S1,T )
q ′(S2,T )

. . .

q ′(SN,T )

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

C ∗
1,t

C ∗
2,t

. . .

C ∗
M−2,t

S∗
t

B∗
t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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FIGURE 8.2.1 (a) Complete markets and (b) incomplete markets with no smoothing condi-
tion (solution in the least squares sense).

2. Incomplete markets setting (N > M): we have more unknowns than
securities (and thus equations), which means that we are dealing with
an underdetermined system. We could solve the system in the least-
square sense (Figure 8.2.1b), but it is more theoretically sound to add
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an extra condition (the MLCE criterion) that accounts for the lack of
information and effectively serves as a smoothing condition. Equations
(8.2.2), (8.2.3), and (8.2.4) define a region of feasible solutions, and they
serve as constraints in an optimization problem. The MLCE criterion
ensures uniqueness of the solution.

The optimization problem that enables the true distribution to be recov-
ered from the set of option prices is defined as follows [4]:

(MLCE) min
q(Si,T )

L[q(ST )] =
N∑

i=1

(q(Si,T )′′)2

q(Si,T )
(8.2.5)

subject to:

� Nonnegativity of probabilities: q(Si,T ) ≥ 0
� M − 2 option price constraints—equation (8.2.2)
� Underlying asset constraint—equation (8.2.3)
� Riskless bond constraint (normalization condition)—equation (8.2.4)

8.2.2 Model Selection

Four models with different risk-neutral asset-price dynamics will be used to
test the performance of the MLCE method.

8.2.2.1 Black--Scholes--Merton Model

The risk-neutral process for the stock price is the lognormal process [9]:

dSt

St
= r dt + σ dWt .

Parameter r is a risk-neutral drift,σ a volatility of the diffusion, and Wt denotes
a standard Wiener process.

8.2.2.2 Variance Gamma Model

The variance gamma model is based on a time-changed arithmetic Brownian
motion Xt , where the random time change is given by a gamma process γt

[10–12]:

Xt(σ, ν, θ) = θ γt + σ W(γt).

The stock price is modeled as follows:

St = S0 e (r+ω)t+Xt (σ,ν,θ).
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The drift is modified by a compensator term ω, which is chosen such that
the discounted stock price is a martingale. Parameter σ refers to a volatility
of Brownian motion, ν to a variance of the gamma time change (kurtosis
parameter), and θ to a drift of Brownian motion (skewness parameter).

8.2.2.3 Stochastic Volatility Model

The stochastic volatility is a generalization of the lognormal process, where
volatility is modeled by a mean-reverting process [13]:

dSt

St
= r dt + √

Vt dW(1)
t ,

dVt = κ (θ − Vt) dt + σ
√

Vt dW(2)
t ,

dW(1)
t dW(2)

t = ρ dt,

where κ is the rate of mean reversion of the variance process, θ is the long-
run variance, σ is the instantaneous volatility of the variance, and ρ is the
correlation between the asset and variance processes.

8.2.2.4 Jump Diffusion Model

The stock price is modeled with a mixed jump diffusion process [14]:

dSt

St
= (r + ω) dt + σ dWt + (e J − 1) dNt .

The arrival of jumps is assumed to be driven by a Poisson process Nt with
constant frequency of jumps per year λ. When the jump occurs, the logarithm
of the jump size J is assumed to be normally distributed with mean jump size
μj and jump volatility σ j . Again, parameter ω refers to the compensator term
and σ to the volatility of the diffusion part.

8.2.3 Data Generation

In this section we show how to generate the terminal distribution of asset
prices that we will eventually try to recover as well as theoretical option prices
that will carry information about the “true” distribution.

We rely on a one-to-one relationship between characteristic function (CF)
and probability distribution function, where the link is a continuous Fourier
transform:

q(x) = 1

2π

∫
R

e−iθx φ(θ) dθ (8.2.6)
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and an inverse continuous Fourier transform, respectively:

φ(θ) = E[eiθx] =
∫

R
eiθx q(x) dx , (8.2.7)

where q(x) refers to the probability distribution function of a random vari-
able x (usually log-asset price), and φ(θ) is the corresponding characteristic
function.

Theoretically, both transforms are possible, but in terms of practical useful-
ness, the forward transform of equation (8.2.6) is more interesting because the
CF is readily available in closed form for a large number of popular models for
which the PDF is not available in closed form. Models for which a closed-form
CF exist include all of the above-mentioned models; mixed jump-diffusion
stochastic volatility models, see Bates [18] and Duffie, Pan, and Singleton
[19]; and a large number of Lévy processes, see Schoutens [20] and references
therein for more information.

To derive the “true” terminal distribution, we will work in a discrete set-
ting where the continuous Fourier transform is approximated by a discrete
Fourier transform. Specifically, we evaluate the integral of equation (8.2.6)
only at a finite number of points {θ j } j=0,1,...,N−1 and thus calculate the value
of the PDF at a particular point xk . We can harness the fast Fourier transform
(FFT) algorithm developed by Cooley and Tukey [5] to substantially boost the
computational efficiency.

To generate theoretical option prices from the model distributions, we
follow Carr and Madan [6]. They show that the vanilla call option price can
be computed as:

CT (x) = e−αx

2π

∫
R

e−i xθ �(θ) dθ , (8.2.8)

where x is the log-strike price, α > 0 is a damping parameter that enforces
square integrability, and

�(θ) = e−r (T−t) φ(θ − (α + 1) i)

α2 + α − θ2 + (2α + 1)θ i
. (8.2.9)

Again, this integral can be discretized and quickly evaluated using the FFT
algorithm. We obtain option prices for a variety of strike prices at the same
time.
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8.2.4 Performance Measurement

To measure the performance of the MLCE method in recovering the “true”
distribution, the following criteria will be used:

1. The entropy pseudodistance to the true distribution—measured by
Kullback–Leibler distance (KL):

K[q(ST ), q∗(ST )] =
N∑

i=1

q(Si,T ) log
(

q(Si,T )

q∗(Si,T )

)
,

where q(ST ) is the recovered risk-neutral distribution, and q∗(ST ) is
the true risk-neutral distribution.

2. The ability of the implied distribution to replicate the theoretical option
prices—measured by root mean-squared error (RMSE):

RMSE =
√√√√ 1

N

N∑
i=1

(Ctheoretical − Cimplied)2.

Call option prices Cimplied are calculated via risk-netural pricing formula
in equation (8.2.1), where q(ST ) is the recovered distribution. The
integral is evaluated numerically using Simpson’s rule.

3. The difference between descriptive statistics (mean, variance, skewness,
and excess kurtosis) of log( ST

S0
) of the implied and the true distribution.

8.3 RESULTS

This section explores the empirical performance of the MLCE method in three
settings: on clean model data, on model data perturbed with noise, and finally
on market data.

8.3.1 Simulated Data

First, using equation (8.2.6) and an FFT algorithm, we generate the terminal
distribution of the four models described in section 8.2.2 for risk-free interest
rate r = 0.05, initial asset price S0 = 1300, time horizon T = 6 months, and
parameters typical for the S&P 500 index [7, 8] (see Figure 8.3.1a):
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FIGURE 8.3.1 (a) Distribution of S&P 500 stock index generated by four different models;
(b) Shimko’s approach for recovering RN-PDF.
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TABLE 8.3.1

Model Parameter Value

Black–Scholes–Merton volatility σ = 0.14437

Variance gamma volatility of Brownian motion σ = 0.13503
variance of the time change ν = 0.39608
drift of Brownian motion θ = −0.16798

Stochastic volatility mean reversion rate κ = 1.15
long-run variance θ = 0.04
volatility of variance σ = 0.39
correlation ρ = −0.64

Jump diffusion volatility σ = 0.09544
frequency of jumps λ = 0.77742
mean jump size μj = −0.14899
jump volatility σ j = 0.09411

On each distribution we will perform three tests that vary in the amount
of input information they utilize. The input information is represented by
option prices at various strike prices. The three scenarios are:

1. One option with strike price X = 1333 (at-the-money-forward option)
2. Three options with strike prices X1 = 1300, X2 = 1325, and X3 = 1350
3. Five options with strike prices X1 = 1100, X2 = 1200, X3 = 1300, X4 =

1400, and X5 = 1500

The calculation of theoretical option prices is based on equation (8.2.8).
Next, we solve the MLCE optimization problem specified in equation

(8.2.5). In practical implementation, the best performance was achieved with
primal-dual interior point optimizers (KNITRO [15], IPOPT [16]) where,
besides call options, we also include put counterparts calculated by the put-
call parity. Another slightly less effective way would be to translate only
out-of-the-money calls into in-the-money puts. Figure 8.3.2 summarizes all
the possibilities of using the put-call parity: (a) translating all calls to puts,
(b) translating only out-of-the-money calls, or (c) including puts while keep-
ing all the calls. The graph indicates that call options tend to explain well the
right side of the distribution, whereas puts influence the left side. The reason
lies in the Jacobian of the option price constraint, which (for calls) is zero for
stock prices below the strike price. This in turn gives little guidance to the
optimization engine for the search direction in the left tail. Thus including
put options yields great benefit, especially if we have only a small number of
options. The opposite argument applies to put options and the right side of
the distribution.
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FIGURE 8.3.2 Benefits of including puts via put-call parity.
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Any additional constraint is computationally expensive, so we can speed up
the optimization if we omit the normalization condition of equation (8.2.4)
and let the optimizer produce relative values that we subsequently renormalize
to make sure that the integral of the PDF is equal to 1.

In the next step we visually compare the recovered distribution with the
true one (Figures. 8.3.3–8.3.6). Clearly, the more information we input, the
more closely the recovered distribution tracks the original one. The results are
even more pronounced in the (σ, X) space, where σ refers to implied volatility
and X to strike price.

Finally, analyzing the performance measures described in section 8.2.4 (see
appendix A), we conclude that:

� In all four cases, the more options we include, the closer is the implied
distribution to the true one as measured by KL distance.

� Comparing the error in call option prices across different models points
out that the MLCE method works best for the Black–Scholes–Merton
model, followed by stochastic volatility, variance gamma, and jump
diffusion. It confirms the expected result that the more complicated
the shape of the distribution is, the harder it is to discover.

� The distribution characteristics (mean, variance, skewness, excess kur-
tosis) converge to the true values as we add more options, though not
necessarily in a monotone fashion.

8.3.2 Noisy Prices

We carry out a comparison test inspired by Buchen and Kelly [3]. They tested
the performance of the maximum entropy criterion on two distributions—a
discrete test distribution and a log-normal distribution. For the first distribu-
tion they also perturb the option prices with 7.5% white noise. Unfortunately,
they do not apply the noise to the lognormal distribution. We will fill this gap
and see if the MKL and (more importantly) the MLCE criterion succeeds even
in this setting.

The lognormal distribution has the following parameters: initial stock price
St = 50, volatility σ = 25%, time to expiration T − t = 60 days, risk-free
interest rate r = 10%, and strike prices X1 = 45, X2 = 50, and X3 = 55.
The prior distribution for MKL is lognormal with volatility σ = 35%. Before
adding the noise, the recovered distribution using the MKL approach is a
piecewise exponential function (Figure 8.3.7). The MLCE solution is smooth.
After applying the noise, the situation does not change much (see Figure 8.3.8).
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FIGURE 8.3.3 Recovered risk-neutral PDF and implied volatility for Black–Scholes–Merton
(the circle, squares, and stars represent the strike prices of the option constraints).
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FIGURE 8.3.4 Recovered risk-neutral PDF and implied volatility for variance gamma.

If the perturbed option constraints still allow solution, the MKL would provide
distribution with spikes at the strike prices, whereas MLCE yields a smooth
distribution. The optimization fails if the call option violates the arbitrage
constraint S − Xe−r (T−t) (parity puts would have negative values).

The characteristics of the two distributions resulting from MKL and MLCE
are very similar, but as we have mentioned before, the MLCE method is
superior to the MKL because it does not need the specification of the prior
distribution, as this distribution is built into the method itself.
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FIGURE 8.3.5 Recovered risk-neutral PDF and implied volatility for stochastic volatility.

8.3.3 Market Data

We can easily apply the same method to traded option prices. The only change
is that each option equality constraint is now replaced with two inequality
constraints. This ensures that the implied option price lies within the bid–ask
spread.
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FIGURE 8.3.6 Recovered risk-neutral PDF and implied volatility for jump diffusion.

The resulting distributions for seven maturities of S&P 500 options (SPX)
are shown in Figure 8.3.9a. The option data were downloaded from the CBOE
Web site, and only the quotes at which a trade was made were used. The number
of available strike prices varies quite substantially across different maturities,
with a maximum of 45 and a minimum of 2 options. Nevertheless, as long
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FIGURE 8.3.7 Buchen–Kelly test without noise.

as we have at least 2 options2 it does not cause any problems for the MLCE
method. The IPOPT optimizer converges to an acceptable solution (tolerance

2 As we have alluded to before, it would be even sufficient to have one option, but then we would
need to use put/call parity to obtain the corresponding put/call price, which would have to be
included in the optimization problem as well.
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FIGURE 8.3.8 Buchen–Kelly test with noise for five random perturbations: (a) MKL,
(b) MLCE.

level 10−16) within 60 iterations, which takes less than 2 s on a computer with
a Pentium 4 2.80 GHz running Debian Linux.

Figure 8.3.9b graphs distributions that were obtained for six maturities of
NASDAQ 100 options (NDX). Because these options are less liquid and for
the last three maturities we only have one option at which a trade was made,
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FIGURE 8.3.9 Risk-neutral distribution for (a) S&P 500 for seven maturities (May, June, July,
September, December 2006, March and June 2007); (b) NASDAQ 100 for six maturities (May,
June, July, September, December 2006, and December 2007) as expected on May, 9 2006.

we decided to take a different approach than in the S&P 500 options and to
use all available quotes.

In some cases the optimization engine would report unfeasibility of the
solution or would not converge. The perpetrators are deep out-of-the-money
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options that would be quoted at prices 0.05 or 0.10, even though the model
price would be much smaller. It is caused by the unwillingness of market makers
to sell any contract below these amounts. After removing one or two of these
prices, the convergence is successful again. Moreover, the loss of information
is small because the other type of option (call/put) at the same strike price
usually remains part of the optimization.

8.4 CONCLUSION

We have tested the minimum local cross-entropy method for recovering the
risk-neutral probability distribution function on a wide variety of simulated
models—ranging from the usual benchmark Black–Scholes–Merton model,
through variance gamma from the infinite activity Lévy-process family, to
Merton’s jump diffusion and Heston’s stochastic volatility model. The MLCE
method is successful in all four models. It quickly converges to the true distri-
bution as we add more and more options. It even copes with more complicated
distributions such as those produced by variance gamma and jump diffusion
models.

Comparing the MLCE method with the classic implied volatility smoothing
approach developed by Shimko [17], we can see that MLCE is superior in two
aspects:

1. MLCE works for a small number of option prices, even for one option.
Depending on the interpolation scheme, Shimko’s approach needs a
higher number of option prices to achieve satisfactory results.

2. MLCE provides the distribution for the whole range of stock prices,
including the tails. Shimko’s method provides the distribution only
within the interval of available strike prices (see Figure 8.3.1b) and has
to deal with the tails by extrapolation, e.g., by grafting-in lognormal
tails. It contrasts with tails produced by MLCE that are not arbitrary
but are based on a theoretical concept inspired by information theory.

The speed of convergence is fast. Industrial-strength optimizers find the
solution within several seconds on a standard PC. For noisy data, if the option
constraints do not violate the no-arbitrage conditions, the MLCE method
still provides a smooth distribution. Moving away from simulated data, we
tested MLCE on real market prices. The optimization is slightly different in
the sense that we have a large number of inequality constraints (bid and
ask prices). Nevertheless, the MLCE again quickly converges to a smooth
distribution.
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APPENDIX A

Tables in this section summarize the ability of the MLCE method to recover
the true distribution in terms of Kullback–Leibler pseudodistance (KL), the
error between theoretical and implied option prices (RMSE), and descriptive
statistics of both distributions. Moreover, we include information about the
local cross entropy (LCE), the number of iterations and elapsed time needed
for the KNITRO optimizer to converge to a satisfactory solution given that we
use 300 discrete points and the tolerance level is set to 10−16.
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TABLE 8.4.1 Black–Scholes–Merton

True Implied Distribution Using MLCE

Distribution (1 option) (3 options) (5 options)

KL — 0.01811 0.00302 0.00011
LCE 7.330E − 9 5.049E − 9 6.130E − 9 7.149E − 9
RMSE — 0.1776 0.19211 0.41267
Mean 0.01979 0.01941 0.01967 0.01976
Variance 0.01042 0.01142 0.01077 0.01054
Skewness 0 −0.42218 −0.10207 −0.00272
Kurtosis −0.00157 0.99805 0.30551 −0.03352
Iterations — 77 101 106
Time — 0.15 s 0.25 s 0.32 s

TABLE 8.4.2 Variance Gamma

True Implied Distribution Using MLCE

Distribution (1 option) (3 options) (5 options)

KL — 0.05681 0.00410 0.00384
LCE 5.373E − 08 3.983E − 9 1.289E − 8 1.380E − 8
RMSE — 0.1881 0.20606 0.43031
Mean 0.01804 0.01870 0.01823 0.01790
Variance 0.01471 0.01288 0.01433 0.01525
Skewness −1.43671 −0.45180 −1.28855 −1.59633
Kurtosis 3.83464 1.06703 2.79155 4.97809
Iterations — 78 106 105
Time — 0.15 s 0.27 s 0.33 s
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TABLE 8.4.3 Stochastic Volatility

True Implied Distribution Using MLCE

Distribution (1 option) (3 options) (5 options)

KL — 0.04139 0.00105 0.00044
LCE 1.20E − 8 4.834E − 9 1.117E − 8 1.156E − 8
RMSE — 0.1795 0.19737 0.42600
Mean 0.01864 0.01928 0.018547 0.018576
Variance 0.01348 0.01168 0.013734 0.013642
Skewness −1.36414 −0.42744 −1.47102 −1.4123
Kurtosis 3.63782 1.01055 4.18778 3.9586
Iterations — 77 88 92
Time — 0.15 s 0.21 s 0.29 s

TABLE 8.4.4 Jump Diffusion

True Implied Distribution Using MLCE

Distribution (1 option) (3 options) (5 options)

KL — 0.06562 0.01016 0.00055
LCE 8.958E − 9 3.065E − 9 7.732E − 9 8.674E − 9
RMSE — 0.2004 0.21820 0.43690
Mean 0.01714 0.01782 0.01621 0.01716
Variance 0.01663 0.01470 0.01914 0.01660
Skewness −1.31029 −0.48743 −1.81389 −1.22364
Kurtosis 2.66095 1.14291 5.5502 2.08009
Iterations — 76 77 114
Time — 0.15 s 0.19 s 0.35 s
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Abstract: Despite significant advances in volatility forecasting over the last
20 years, since the first introduction of ARCH and GARCH models, com-
paratively little attention has been paid to issues such as the sensitivity of
out-of-sample volatility forecasts to changes in structural components of
the models. We propose and estimate a hybrid GARCH model where the
parameters are Kalman filtered, and the model is assessed and compared with
standard GARCH methods, using several measures of efficacy. The frame-
work is then extended to cope with intraday data, and we investigate whether
working with intraday summaries brings any informative advantage in com-
parison to working with daily data only. As this chapter does not concern itself
with intraday volatility forecasting, but focuses on daily volatility forecasting,
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daily summaries are developed that allow for intraday microstructure. These
summaries are then calibrated and used for the daily forecasting problem.
Kalman-filtering methods are then applied to these, and the results are then
shown to compare favorably with the methods of the earlier section.

9.1 INTRODUCTION

The first part of this chapter aims to provide a description of the framework
employed, essentially, the evaluation of whether there is some out-of-sample
performance advantage in pairing two approaches such as Kalman filtering
and GARCH (generalized autoregressive conditional heteroscedastic) to fore-
cast daily volatility. The origin of what later came to be the GARCH model
dates back to 1982, when Robert Engle [9] proposed the famous ARCH (au-
toregressive conditional heteroscedastic) formulation to provide a solution to
the heterosfedasticity problem that seems to affect the vast majority of finan-
cial time series. The idea of increasing the estimation efficiency of the linear
regression model by adding a second equation in which the conditional vari-
ance of the process is modeled as a linear function of squared returns was then
improved in 1986 by Bollerslev [5], who proposed a new, more parsimonious
process, autoregressive in the conditional variance; the new GARCH frame-
work was born. With great synthesis and using a very general formulation, the
GARCH framework can be represented as follows:

yt = β0 + xT
t β + εt (9.1.1)

εt | �t−1 = N(0, ht) (9.1.2)

ht = α0 +
q∑

i=1

αiε
2
t−i +

p∑
j=1

β j ht− j . (9.1.3)

It should be noted that for p = 0 the GARCH(p, q) model is also called
an ARCH(q) model. It is worthwhile to stress that one of the key require-
ments of the model is a zero-mean series of observed returns. A degree of
filtering is hence required, and the first equation aims to achieve this goal. In
what follows, we propose a filtering routine, exogenous to the GARCH model,
based on the Kalman filter. All the analysis has been performed using a p = 5,
q = 5 specification. Results are rather robust with respect to the choice of a
different specification. The idea behind the Kalman filter (from the contri-
bution of Kalman) is to express a dynamic system in a particular form called
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state–space representation. The Kalman filter (KF) is an algorithm for sequen-
tially updating a linear projection of the system. Following the KF schema in
Johnson and Sakoulis [14] (slightly simplified), the observation equation is
given by

rt+1 = f ′βt+1 + ut+1, (9.1.4)

where r is the observable, β a (slowly) time-varying parameter, u a mean-zero
random error, and f a data input vector, and where typically

ut ∼ N(0, σ 2). (9.1.5)

Next, we have the process equation

βt = βt−1 + υt , (9.1.6)

where υ refers to the (mean-zero) “process” innovation, and where typi-
cally

υt ∼ N(0, Q) (9.1.7)

Pt = Pt−1 + Q,

where P denotes the variance-covariance matrix of the current β estimate.
This summarizes the specification of the filter, whereas the prediction part

(“Kalman update” step) of the filter can be schematized as follows:

βt,t−1 = β(t−1)|(t−1), (9.1.8)

where “|” refers to the convention in Kalman filtering of conditioning on
information at the previous time step

Pt|(t−1) = P(t−1)|(t−1) + Q (9.1.9)

ηt|(t−1) = rt − f
′

t−1βt|(t−1) (9.1.10)

ξt|(t−1) = ft−1 Pt|(t−1) ft−1 + σ 2. (9.1.11)

The update happens in the state–space framework, and in particular

βt|(t) = βt|(t−1) + Ktηt|(t−1) (9.1.12)

Pt|(t) = Pt|(t−1) − Kt f
′

t−1 Pt|(t−1). (9.1.13)
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K is the so-called Kalman gain, and its formulation is as follows:

Kt = Pt|(t−1) ft−1ξ
−1
t|(t−1). (9.1.14)

This Kalman filtering routine is paired to the GARCH model in an iterative
fashion and thereby provides a different input to the model, the motivation
being that if a GARCH-type relationship exists, the nature of the relationship
(and hence the parameters) is likely to change somewhat over time.

The next section presents the specifics of combining Kalman filtering with
GARCH, followed by a range of tests that assess the benefits of this approach.
The succeeding section extends these results using daily summaries of intraday
data.

9.2 THE HYBRID FRAMEWORK

The introduction to this chapter presented an overview of the two main com-
ponents of out-of-sample back-testing. Some readers may find the following
conceptual characterization of the previously described process helpful. To de-
scribe in words what will be presented graphically in the flow diagram below
(Figure 9.2.1), one can imagine the system at time t.

The Kalman filter performs a linear filtering on the past returns available
until time t − 1. The forecast for the return at time rt | �t−1 is then compared
with the realized FTSE daily return at time t. In a mathematical formulation,
εt = rt − r K F

t|�t−1
. This forecasting residual is then stored in an array called


, and this array is used as an input for the GARCH estimation, using a

Kalman Filtration of

Returns

True Market Return

Past Errors Array

GARCH Layer

Error

Kalman Update
Conditional

Variance Forecast

FIGURE 9.2.1 Interaction between the GARCH layer and the Kalman filter.
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maximum-likelihood approach as follows. Given a parameterized family Dθ

of probability distributions associated with either a known probability mass
function (a discrete distribution) denoted by fθ , we assume that we draw a
sample, x1, . . . , xn, of random variables from this distribution, and then using
fθ we can compute the probability density associated with our observed data

fθ (x1, . . . , xn|θ). (9.2.1)

As a function of θ with x1, . . . , xn, this is the likelihood function

L θ = fθ (x1, . . . , xn|θ) (9.2.2)

When, as in this case for volatility, θ is not observable, the method of
maximum likelihood searches for the value of θ , here the volatility h2

t , that
maximizes L (θ) as an estimate of h2

t . The maximum likelihood estimator
may not be unique, or indeed may not even exist. In the framework we set
up, we shall use a continuous probability distribution, which is the Gaussian
distribution

f (x|μ, σ 2) = 1√
2πσ 2

e− (x−μ)2

2σ2 (9.2.3)

f (x1, . . . , xn|μ, σ 2) =
(

1√
2πσ 2

)n

e−
∑ (xi −μ)2

2σ2 . (9.2.4)

The GARCH model produces a forecast for conditional volatility by search-
ing in the parameter space for the level of h2

t in which k, the vector of past
iteration errors (which have a mean equal to zero), is as “Gaussian” as possible.
Obviously, the maximum-likelihood procedure does not work in the μ space;
in other words, it assumes that the past iteration errors are already centered
around a zero mean. This forecast for h2

t is then used via the Kalman update
to provide a forecast for returns at time t + 1. This is a description of how the
two methods interact to provide an out-of-sample strip of volatility forecasts.
In Figure 9.2.2, we show the out-of-sample volatility forecast performed with
KGARCH and GARCH.

As expected, the difference between the two volatility forecasts is very
small, as seen in Figure 9.2.2, which also shows the difference between the two
annualized standard deviations. Figures 9.2.3(a) and 9.2.3(b) concentrate on
the details, extracting from the dataset some subperiods affected by surpris-
ingly high returns in a low-volatility environment. When there is a surprise in
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terms of squared returns, the KF hybrid GARCH seems to react much more
quickly, and then the reversion rate looks faster.

We now try to perform several more formal tests with a much larger data
set. Using daily returns from Standard and Poor’s 500 stock index starting from
1960 (more than 11,500 daily returns), the framework described above will be
used to understand whether the hybrid between GARCH and Kalman filtering
brings any advantage in forecasting daily volatility out of sample. Conditional
volatility in financial time series is the most popular method for explaining
why returns have thicker tails than those defined in the following equation:

fθ (x1, . . . , xn|θ). (9.2.5)

The underlying philosophy in the GARCH class of models is that they repro-
duce (explain) the random variation in h and thus reverse this tail thickening.
The fundamental question is what criteria one should use to judge the superior-
ity of a volatility forecast. The literature describes different testing approaches,
ranging from statistical-based evaluation, to utility (interval)-based evalua-
tion, to profit-based (preference free) evaluation. See Knight and Satchell [16]
for a detailed review of existing testing methodologies.

From the traditional statistical point of view, we wish to pick up the forecast
that incorporates the maximum possible information or the minimum pos-
sible noise. The common feature in most of the papers—Cooper and Nelson
[6], Diebold and Nason [8], and Hsieh and Tauchen [13]—is that the perfor-
mance of the model is assessed on the basis of a traditional MSE (mean squared
errors). This result relies on the used of squared returns as a proxy to the true,
unobservable volatility. As Knight and Satchell [16] show, statistical measures
probably underestimate the forecasting capability of GARCH models, espe-
cially when assessed out of sample. The approximation of the true volatility
by the squared returns introduces substantial noise, which effectively inflates
the estimated error statistics and removes any explanatory power of GARCH
volatility forecasts with respect to the “true” volatility. See Knight and Satchell
[16] for a formal proof and a quantification of the bias in a GARCH frame-
work. A second class of measures concentrates on the forecast’s unbiasedness
by adapting the approach of Mincer and Zarnowitz [15]. The forecast for the
volatility will be unbiased if the following regression:

ht+s = α + βĥt+s + εt+s (9.2.6)

returns a value for α = 0, β = 1, and E (εt+s ) = 0. We apply this framework
both to the FTSE and to the Standard and Poor’s 500 data set.
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TABLE 9.2.1 Results from Out-of-Sample Regression of Square FTSE Returns
Against GARCH Forecast Variance (600 Out-of-Sample Points Used in the
Regression)

Coefficient Alpha 0 Beta 0 Residual Sum of Squares

Parameter value 1.94 × 10−6 9.273 × 10−1 0.433
Standard error 5.71 × 10−6 9.9 × 10−2 —

From Tables 9.2.1 and 9.2.2, can be seen that the β value in the KF-
GARCH regression is closer to 1. Both of the regressions broadly accept the null
hypothesis that the alpha coefficient is equal to zero; still, the hybrid approach
provides a better parameter value. The R2s of the two regressions were very
similar.

A second testing framework was also implemented to check for omitted
information, or, in other words, to understand whether a piece of information
is captured by a model and not by the alternative specification. In the manner
of Fair and Schiller [11], a first OLS (ordinary least squares) regression similar
to the one introduced above was run. Next, the residuals from a regression
between the volatility, as measured by the squared returns, and a model (here,
GARCH) are saved, and then a second regression between the residuals and
the variance, as forecast by the competing model, is run to assess if the latter
contains some information not included by the former (if so, both regression
coefficients should be different from zero). The out-of-sample regression on
600 returns from the FTSE stock index does not provide any clear indication in
this sense. Both the regressions gave strong evidence for β = 0 and a negligible
level of R2. The same analysis performed on a broader data set of 4500 data
points from Standard and Poor’s 500 returns the same evidence.

Using the latter S&P data set, an alternative testing framework was applied
to assess the superiority of one model to the other from a “coverage” point of
view. In this setting, prediction intervals are produced from volatility forecasts,
and coverage rates can be compared. The desired interval-coverage probability
in this setting is a result of a utility theory analysis (obviously, there is a trade-off

TABLE 9.2.2 Results from Out-of-Sample Regression of Square FTSE
Returns Against KF-GARCH Forecast Variance (600 Out-of-Sample
Points Used in the Regression)

Coefficient Alpha 0 Beta 0 Residual Sum of Squares

Parameter value 3.02 × 10−7 0.9753 4.35 × 10−6

Standard error 5.95 × 10−6 0.1068 —



P1: Naresh

August 21, 2007 12:9 C925X C925X˙C009

USING INTRADAY DATA TO FORECAST DAILY VOLATILITY � 181

99% VaR Confidence Interval (GARCH Out of Sample)
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FIGURE 9.2.4 Out-of-sample confidence VaR intervals, 99 % probability on 4500 Standard
and Poor’s data points.

between interval width and coverage probability), but the analysis below will
focus on several common values.

Figure 9.2.4 displays the value at risk (VaR) obtained by applying the
out-of-sample daily volatility forecast to calculate, for every point, the maxi-
mum loss at 99 % probability. Here we assume that the only asset we hold in
our portfolio is the Standard and Poor’s 500 stock index. The problem setup
obviously grows in complexity if more than one asset class is considered. This
setup is important to count breaches of these VaR intervals and eventually to
calculate the average or aggregated width of the intervals (the budget of risk
that is allocated). The question we want to answer is whether the KF GARCH
model is able to provide any improvement in this sense (i.e., superior cover-
age or narrower intervals). We repeat the procedure over different probability
levels to gather evidence of this.

Table 9.2.3 shows the results obtained by changing the confidence level.
The evidence found over the Standard and Poor’s data set is quite encour-

aging. The KF GARCH model is successful in managing the heavy tailedness
that seems to affect financial-returns time series as compared with a traditional
GARCH model. This conclusion is drawn using out-of-sample back-testing.
The histogram in Figure 9.2.5 shows the distribution of the standardized vari-
ables as obtained by the two models. More-extreme events are localized on
the GARCH distribution tags than in the KF version of the GARCH; the mean
and standard deviation of the KF version are closer to 0 and 1, respectively.
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TABLE 9.2.3 Coverage-Based Test Showing the
Number of Breaches at Different Confidence Levels
(Random Sample, 1960–1978 Standard and Poor’s 500)

Model

Confidence Level (%) KF GARCH GARCH

90 0.209 0.211
91 0.1876 0.1923
92 0.1703 0.1732
93 0.1514 0.1547
94 0.1336 0.1355
95 0.1116 0.1161
96 0.0937 0.0954
97 0.0714 0.0720
98 0.0520 0.0528
99 0.0302 0.0321

A better approximation to a Gaussian distribution is visible in Figure 9.2.5.
From the random sample we selected, it is also possible to look at this from a
testing point of view.

The KF GARCH framework produces a distribution of standardized
returns that is closer to Gaussian over the sample period. All of the statistics
(Table 9.2.4) are better for KF than for GARCH; the Jarque–Bera test rejects
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TABLE 9.2.4 Normality Test on Standardized
Returns under the Two Competing Model
Specifications (Random Sample, 1960–1978
Standard and Poor’s 500)

Model

KF GARCH GARCH

Mean −0.028 −0.10
Standard deviation 1.031 1.048
Skewness −0.14 −0.15
Kurtosis 3.58 3.75
Jarque–Bera 79.73 124.49

the normality (Gaussian) assumption less strongly than for the GARCH spec-
ification. The Jarque–Bera test is a goodness-of-fit measure of departure from
normality, based on the sample kurtosis and skewness

J B = n − k

6

(
S2 + (K − 3)2

4

)
, (9.2.7)

where S is the skewness, K is the kurtosis, n is the number of available observa-
tions, and k is the number of coefficients used to create the series. The statistic
has an asymptotic chi-squared distribution with two degrees of freedom and
can be used to test the null hypothesis that the data are from a Gaussian dis-
tribution, as samples from a Gaussian distribution have an expected skewness
of zero and an expected kurtosis of 3. As the equation shows, any deviation
from this increases the JB statistic.

Figure 9.2.6 shows the tendency of the KF version of the model to react
more quickly than the GARCH (out of sample) after big moves as measured
by squared returns.

Thus it seems that, in a univariate environment and using daily data, the
combination of a Kalman filter and the usage of a cumulative array of errors
produces better results when assessed from an out-of-sample perspective.

9.3 ADDING INTRADAY DATA TO THE FRAMEWORK

The natural extension of this analysis is to understand whether this approach,
which seems to be quite flexible, can be applied to forecasting daily volatility
using intraday data. We used FTSE intraday data from December 2002 (Figure
9.3.1). The increasing availability of high-frequency data has made possible
the detailed study of intraday statistics. We sampled data every half-hour from
FTSE. Taking historical standard deviation on the intraday returns, we spot



P1: Naresh

August 21, 2007 12:9 C925X C925X˙C009

184 � CHAPTER 9

0.100%

0.090%

0.080%

0.070%

0.060%

0.050%

0.040%

0.030%

0.020%

0.010%

0.000%

0.00001

0.000008

0.000006

0.000004

0.000002

–0.000002

–0.000004

0

D
iff

er
en

ce
 i

n
 C

o
n

d
it

io
n

al
 V

o
l 

(K
G

A
-G

A
)

D
ai

ly
 S

q
u

ar
ed

 R
et

u
rn

October 1987: Detail

14/0
9/1

987

16/0
9/1

987

18/0
9/1

987

20/0
9/1

987

22/0
9/1

987

24/0
9/1

987

26/0
9/1

987

28/0
9/1

987

30/0
9/1

987

02/1
0/1

987

04/1
0/1

987

06/1
0/1

987

08/1
0/1

987

10/1
0/1

987

12/1
0/1

987

14/1
0/1

987

(a) Data sample US Equity Returns (Details of October 1987: Black Friday)
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the presence of a U-shaped pattern; a more-refined analysis based on the use
of dummy variables to separate daily from intraday effect gave similar results.

This is quite consistent with findings from a rather wide portion of the
existing literature. A recent literature review by Daigler [7] shows the existence
of intraday U-shaped curves in volatility (more precisely, over certain markets,
a reverse J can be observed) as well as in volumes and bid-ask spreads. A stream
of empirical research and several different theories try to explain these patterns.

For example, if we consider trading activity, we observe that trading often
occurs at the opening because information flows in over the closed period.
Moreover, it is pointed out by Acar and Petitdidier [1] (again, an accurate
review of this stream of literature can be found in Knight and Satchell [16]) that
traders might have different opinions at the opening stage, creating possibly
high volatility and high trading volumes. The existence of these patterns can
be easily observed in different markets, from New York to London and from
Tokyo to Chicago. High-frequency data are subject to measurement errors,
and very long time series cannot be easily found and, when available, are often
not homogeneous from the point of view of opening and closing times of the
underlying markets. Collectors of intraday data include Reuters, Telerates, etc.

In contrast, this chapter attempts to make a distinct and possibly more
practical use of intraday data than in the prevailing literature so far; intraday
price-change dynamics in the FTSE are investigated in an effort to achieve the
ultimate goal, which is forecasting daily returns or using a generalization of
volatility on lower frequencies.

Following this, and extension to the type of analysis explained in the pre-
vious chapter to intraday frequency (in particular to half-hourly FTSE price
sampling), the goal is to understand whether a dynamic analysis of the volatility
of prices within every time bucket (for example from 11 a.m. to 11:30 a.m.)
can bring some information when properly aggregated at daily frequency.

From a technical point of view, what we perform is an out-of-sample
back-testing (see Table 9.3.1) where, in two consecutive stages, we try to ex-
amine the available data sample (intradaily and daily) to extrapolate a volatility
forecast at daily frequency. This is achieved by pairing the methodology pre-
sented above (at intraday level) with a second likelihood calibration using
daily returns, in a rather nested way.

ht = αh +
n∑

i=1

βh,i ht,i + εt . (9.3.1)

Here n is the number of intraday time buckets (in the analysis performed,
every half hour), and i is the index identifying the bucket. The purpose of the
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TABLE 9.3.1 Results from Out-of-Sample Regression of Square FTSE
Returns Against Intraday KF-GARCH Forecast Variance (600 Out-of-
Sample Points Used in the Regression)

Coefficient Alpha 0 Beta 0 Residuals Sum of Squares

Parameter value 3.27 × 10−7 1.32 4.21 × 10−6

Standard error 5.4 × 10−6 0.130 —

analysis that follows is to compare the performance of this nested intraday
hybrid model with the corresponding daily hybrid model that we presented
in the previous section of this chapter, in order to understand whether there
is an improvement in performance by using a broader data set. Figure 9.3.2
illustrates the use of the KF GARCH methodology at the time-bucket level, and
in particular we display the difference in the forecast volatility levels at 15.00,
when the U.S. equity market is opening and new information is flowing into
the system, and at 12.00, when the number of trades is traditionally very low.

It is possible to see that, even in a low-volatility environment such as
the available intraday data set for the FTSE 100, the presence of spikes or
innovations is more evident in the 2 p.m. pattern (Figure 9.3.2[b]) than in the
12 a.m. one (Figure 9.3.2.[a]). This is explainable and consistent with the
reverse J shape theory discussed previously. Figure 9.3.3 shows the compar-
ison among different daily volatility forecasts (out of sample on FTSE 100),
adding to the previous picture of the intraday GARCH model filtered with
the previously described Kalman-filtering technique. It is possible to see that
it produces a steadily lower level of volatility in a low-volatility environment,
such as the one used to evaluate the models.

We performed some tests, in the same fashion used before, to understand
whether this procedure leads to some benefits in terms of daily volatility
forecast.

From a first set of diagnostics, we observe a value for the β parameter that
is not so close to 1, in exchange for a gain of R2 of around 25% from a value
around 11.3 for the two models at daily frequency to a value of 14. Again,
establishing whether one model is better than another is far from easy. To
further investigate this view, a simple test for omitted information was run
(the same test that did not give significant evidence in assessing KF GARCH
against GARCH at daily frequency). In the manner of Fair and Schiller [11],
first an OLS regression between squared returns and GARCH conditional
volatility is run out of sample. After saving residuals, a second regression
performed between the residuals from the first OLS regression and the variance
as forecast by the competing model (in this case the intraday KF GARCH) to
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FIGURE 9.3.2 Two volatility forecasts (out of sample) at the time-bucket level.

assess whether it introduces any new, useful explanatory information; if so,
both the regression coefficients should be different from zero (see Table 9.3.2).

The test returns an R2 that is different from zero and a value for β that is
also significantly different from zero. This did not happen when we performed
the same test using two different specifications but the same data set (daily,
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FIGURE 9.3.3 Different daily volatility out-of-sample forecasts, including the intraday model.

KF GARCH against GARCH). There is information not captured by a daily
parametric model that is captured in this intraday framework. We think it
could be interesting to compare the two out-of-sample forecasts with a mea-
sure of implied volatility. In financial mathematics, the implied volatility of a
financial instrument is the volatility implied by the market price of a derivative
based on a theoretical pricing model. We cannot invert the function (see, for
example, the Black–Scholes equation) analytically; however we can find the
unique value of the volatility that makes the Black–Scholes equation hold by
using a root finding algorithm such as Newton’s method.

C(S, T) = S N(d1) − K e−r T N(d2) (9.3.2)

d1 = ln(S/K ) + (r + σ 2/2)T

σ
√

T
(9.3.3)

d2 = d1 − σ
√

T . (9.3.4)

TABLE 9.3.2 Test for Omitted Information

Coefficient Alpha 0 Beta 0 Residuals Sum of Squares

Parameter value −1.22 × 10−5 0.36 4.28 × 10−6

Standard error 5.45 × 10−6 0.120 —
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Interestingly, the implied volatility of options rarely corresponds to the his-
torical volatility (i.e., the volatility of a historical time series). This is because
implied volatility includes future expectations of price movement, which are
not reflected in historical volatility. The Chicago Board Options Exchange
Volatility Index (VIX), measures how much of a premium investors are will-
ing to pay for options as insurance to hedge their equity positions. The VIX is
calculated using a weighted average of implied volatility of at-the-money and
near-the-money striked in options on the Standard and Poor’s 500 index fu-
tures. Because intraday data on the German Stock Market (DAX) are available,
we choose to repeat the comparison we did for FTSE using the DAX index. The
VDAX index represents the implied volatility of the German stock exchange
assuming 45 days remaining until expiration of the DAX index options. Eight
subindices are also calculated, each corresponding to the lifetime of the current
DAX options.

A check was run for the correlations between the out-of-sample volatil-
ity forecast from GARCH, KF GARCH, and IKF GARCH, with the implied
volatility measure plotted in Figure 9.3.4. The correlation between GARCH
and the implied variance is very high, around 0.72. A similar number comes
from the Kalman-filtered GARCH model. The correlation between the implied
measure and the out-of-sample intraday forecast is lower, around 0.62. The
Kalman-filtered GARCH estimated on daily data produces a slightly better
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performance in forecasting implied volatility. In particular, we get a higher
R2 of 0.515 against 0.503 from the GARCH, and a β coefficient slightly closer
to 1, 0.665 against 0.653 from the GARCH. Although this may seem a rather
marginal gain, it deserves pointing out that the overall structure of the model
is very similar, the only change being in the way the available information
was filtered. When we consider the intraday data, however, Kalman-filtered
GARCH results begin to show a distinct difference, a much better β equal
to 0.9, but traded off against a lower R2 of 0.435. The testing for omitted
information in this case was inconclusive.

When squared returns were regressed on the out-of-sample volatility fore-
casts from GARCH or KF GARCH and then the residuals were regressed on the
DAX options implied variance, it was found that no additional information
appeared to be captured by the implied volatility measure (the relevant regres-
sion parameter in particular was not statistically different from zero). What
one concludes from this is that the implied volatility (obtained by reversing the
Black–Scholes formula starting from option prices) is more correlated with
GARCH models estimated using only daily data. This leads us to believe that
this approach, GARCH, is the one most broadly available to the financial com-
munity, and it is the one probably more used by dealers when pricing options
for trading. If it is true that implied volatility includes more forward-looking
information than an unconditional variance estimated over a long time series
of past returns, it appears equally true that this does not hold when we replace
the unconditional variance with a conditional one estimated with a GARCH
model.

A slightly different framework is necessary to ascertain whether there is
any marginal value in intraday data in forecasting daily volatility. Required is
the specification of a less variable (and, ideally, unbiased) measure for daily
volatility (we know that using squared returns involves a bias, see Knight
and Satchell [16]). We feel that intraday data can be used to provide both a
new measure to assess the performance of competing models and an input
for different model specifications. Therefore, a framework for adjusting for
microstructures will be developed here, making use of some constructs from
numerical analysis, such as sparse matrices, to come to a summary of the
information that can be useful in this sense.

Note first that if daily volatility consisted of a number t of equal intraday
periods and the volatility through the day was constant, we could use the
following formula:

σday = √
tσintradaytimebucket. (9.3.5)
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From the analysis we performed, we showed how this does not match empirical
evidence due to microstructure issues and opening adjustments. So it is not
possible to use the following estimator:

√
t

√∑n
i=1(yi − ȳ)2

n − 1
. (9.3.6)

Instead, we propose a log ANOVA method as an alternative model for cali-
brating daily volatility. Notionally, we can write the relation existing between
intraday and daily volatility as

log
(
σ 2

i, j

) = −γ + log
(
σ 2

i

) + a j (9.3.7)

σ 2
i, j = σ 2

i ea j +εi, j (9.3.8)

for the day i and for the intraday bucket j . The result we want to achieve is
a general index level for daily volatility, the square of which is proportional
to the square of realized daily volatility. The calibration constant is computed
using moments:

1

n

N∑
i=1

r 2
i

σ̄ 2
i

= 1. (9.3.9)

Let ri denote mean-adjusted (filtered) logarithmic returns. Then z̄i = ri/σ̄
2
i

should have the following properties: (a) interval breaches at different confi-
dence levels unbiased, (b) z̄i and interval breaches uncorrelated, (c) histogram
looks Gaussian and (d) 1

n

∑N
i=1(z̄i )m(m = 1, 2, 3, 4).

The proposed ANOVA filtration returns a time series of daily realized
volatilities. This time series is slightly more correlated with the out-of-sample
unconditional variances, as obtained using the set of models presented so
far. This is quite evident looking at Table 9.3.3. Moreover, it is an unbiased
estimator of the volatility of the data-generating process, in contrast to r 2. The
approximation of the data-generating process volatility or “true” volatility by
squared returns inflates the error statistics, hence reducing the explanatory
power of GARCH specifications.

We use this vector of realized volatilities both as an input (possibly unbi-
ased) to evaluate whether a superior performance in forecasting daily volatility
can be achieved and as a measure to determine relative performance between
competing models, in place of s 2. Figure 9.3.5 compares the realized daily
volatility with the squared daily returns of the FTSE 100 stock index.
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TABLE 9.3.3 Model Correlation with the Volatility Measure

Model Corr. with Squared Ret. 0 Corr. with the New Realized Vol.

GARCH 0.47 0.48
KF GARCH 0.46 0.49

Intraday KF GARCH 0.37 0.48

With this new measure, we came to a new way to assess the performance
of the models. What we obtained is a new benchmark that can be used in the
same testing setup as before. We run simple linear regressions (OLS) using
squared returns and the newly realized filtered measure to understand the
performance of the model using intraday data.

The newly realized volatility measure, being slightly more correlated with
the out-of-sample volatility forecasts, delivers not only a higher R2, but does
not change the conclusions that were obtained under the s 2 testing framework,
which, as we recall, was a biased measure of volatility. Thus, it is clear that there
is substantial advantage to be obtained by using the same model but with a
different data set, or, in other words by moving from daily to intraday data
as input. The evidence shown in Table 9.3.4 confirms that the use of intraday
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TABLE 9.3.4 Reassessing Model Performance under the Newly Realized Volatility
Measure

Model R2 Using Squared Ret. R2 Under New Realized Vol.

GARCH 0.12 0.18
KF GARCH 0.123 0.182

Intraday KF GARCH 0.142 0.192

data allows access to a richer information set than the traditional framework
when forecasting volatility at the daily level.

9.4 CONCLUSION

The collection of studies presented here suggests a framework for testing the
sensitivity of the out-of-sample performance of GARCH (and other volatil-
ity forecasting) models to some of their components such as, for example, a
filtering procedure. It has been shown here that in pairing the GARCH econo-
metric framework with Kalman-filtering techniques, results were obtained
that appear to be quite convincing even though, in the absence of a unique
framework to assess model out-of-sample performance, not all diagnostics
were able to demonstrate clear superiority of the approach without further
innovations (specifically, the inclusion of calibrated intraday summaries).

A much clearer picture was obtained by enhancing the model, first by
adding intraday data to the proposed framework at the input, and then sub-
sequently at the output level, thereby demonstrating that these measures can
be used either way to boost the forecast of lower-frequency data (here, daily)
or to provide newly realized volatility measures that can be used as an addi-
tional benchmark to assess the performance of competing models. The results
presented here seem to suggest that intraday summaries may soon be used rou-
tinely in the analysis of daily data, both in forecasting and post hoc assessment
of volatility forecasting methodology.
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10.1 EXTENDED ABSTRACT

A defaults cluster is illustrated in Figure 10.1.1, which shows the default history
among Moody’s rated U.S. issuers between 1970 and 2005. The clustering is
driven by firm sensitivity to common economic factors, but it can also come
from the feedback of an individual firm event to the aggregate level. A single
default often results in the widening of credit spreads across the board. This
phenomenon is empirically documented in Jorion and Zhang (2006) and
exemplified in Figure 10.1.2, which shows the impact of Delphi’s default and
GM’s announcement of a huge quarterly loss on the spread of the Dow Jones
CDX North America Crossover Index swap.

In this chapter we develop a new affine point process framework to price
and hedge a portfolio credit derivative such as the CDX index swap or an index
tranche. In this top-down approach, a credit derivative is a path-dependent
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contingent claim on portfolio loss, which is modeled with a point process that
records financial loss due to default. The magnitude of each loss is random.
Default times are governed by an intensity driven by marketwide risk factors
that follow an affine jump diffusion. The loss process itself is a risk factor, so
that both the timing of past defaults and their recovery rates influence the
future evolution of the portfolio loss. This self-affecting specification captures
the feedback effects of events seen in the index spread (Figure 10.1.2). It
also incorporates the negative correlation between default and recovery rates
that is empirically documented in Altman et al. (2005) and many others. A
straightforward extension of our specification includes a stochastic interest
rate that is driven by the underlying risk factors. This extension accounts for
the flight-to-quality effects often observed after a significant credit event.

An affine point process model leads to computationally tractable valuation,
hedging, and calibration of credit derivatives. Based on the results of Duffie et
al. (2000), we show that the conditional transform of an affine point process is
an exponentially affine function of the risk factors with coefficients that satisfy
ordinary differential equations. The transform determines the conditional
distribution of future portfolio loss and the price of a contingent claim on
portfolio loss. We implement a pricing calculator for affine point processes
and provide numerical examples of term structures of index and tranche
spreads implied by the Hawkes process (Hawkes, 1971). The Hawkes process
is a self-affecting affine point process whose intensity increases at an event
as a function of the realized loss. Between events, the intensity reverts to a
time-varying level.

A portfolio credit derivative is sensitive to changes in the credit spread of
the underlying names. The hedging of this exposure is important in practice.
To price an instrument referenced on a constituent name and estimate hedge
deltas, we use random thinning as proposed in Giesecke and Goldberg (2005).
Here a fraction of the intensity is allocated to a given name. The resulting
single-name intensities reflect the dependence structure in the portfolio. The
prices of single-name instruments are exponentially affine functions of the
risk factors, with coefficients determined by ordinary differential equations.

Model calibration is a two-step procedure. First an affine point process
model is fit to standard index and tranche spreads. The resulting model can
be used to consistently price tranches with nonstandard attachment points
and maturities, and derivatives that depend on the loss dynamics such as
forward starting tranches and options on indexes and tranches. Subsequently,
a parametric thinning function is calibrated to each single-name swap curve.
The parameters of the portfolio intensity are not affected, so the fit to the
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multiname market remains intact. The thinning function is used to estimate
the delta hedge ratio for a portfolio constituent.

10.2 RELATED LITERATURE

Our contribution is to introduce a class of self-affecting models for portfolio
loss that incorporate event feedback and the negative dependence between
default and recovery rates. These dynamic models lead to computationally
tractable valuation and hedging problems for portfolio credit derivatives.
We follow the intensity-based top-down approach described in Giesecke and
Goldberg (2005). Here the portfolio loss process is specified in terms of a
default rate and a distribution for loss given default, and random thinning is
used to estimate hedge ratios. Extant intensity specifications typically neglect
the dependence between default and recovery rates. Examples include Davis
and Lo (2001), who consider a homogeneous portfolio in which an event ramps
up the intensity by a fixed factor for an exponential time. Ordinary differen-
tial equations govern the distribution of the default process. A more recent
example is Giesecke and Tomecek (2005), where a stochastic time change is
applied to a Poisson process to generate both affine and nonaffine self-affecting
models of portfolio loss. As in this chapter, the price of a credit derivative is
determined by the transform of the loss process. Ding et al. (2006) propose a
class of self-affecting loss processes that are obtained by time-changing a birth
process. The price of a credit derivative is given in terms of the Laplace trans-
form of the time change. In Longstaff and Rajan (2006), defaults are driven
by independent doubly stochastic processes that model idiosyncratic, sector-
specific, and economy-wide events. Brigo et al. (2006) describe event arrivals
by a mixed compound Poisson process and its doubly stochastic generaliza-
tions. Because they imply conditionally independent interarrival times, doubly
stochastic models neglect the feedback from defaults. Failure to account for
event feedback or the dependence between default and recovery rates may
lead to a misrepresentation of the value and risk of a credit derivative position,
since both these phenomena typically increase the likelihood of a large loss.

Some intensity-based top-down models have bottom-up counterparts. In
a bottom-up model, the intensity of each portfolio constituent is the primi-
tives. The dependence among firms must be built into the single-name models.
An example is a doubly stochastic setting in which firm intensities are driven
by common factors, as in Duffie and Garleanu (2001), Mortensen (2005),
di Graziano and Rogers (2006), and Hurd and Kuznetsov (2006). Conditional
on the factors, interarrival times are independent, so credit derivatives
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valuation is computationally convenient, but event feedback is ruled out. A
second example is a setting with interaction, in which a default triggers a
response in the intensities of the surviving firms. In Jarrow and Yu (2001)
and Frey and Backhaus (2004), this response is exogenous. In the “frailty”
models of Collin–Dufresne et al. (2003), Duffie et al. (2006), Giesecke (2004),
Giesecke and Goldberg (2004), and Schonbucher (2004), the response is the
result of learning from default. While these models are empirically plausible,
they do not focus on the portfolio loss and so require substantial further steps
to price credit derivatives. A third example is the static-copula approach that
is popular in the industry. Here deterministic constituent intensities are fit to
the single-name swap market and a fixed copula governs firm dependence.
Although computationally convenient, a calibrated copula model does not
generate a consistent set of tranche spreads across different attachment points
and maturities. Thanks to specifying the time evolution of portfolio loss, our
approach determines the term structure of tranche spreads for all attachment
points simultaneously. This is a significant improvement, since the interpola-
tion methods often used for copula models may generate arbitrage.

Affine point processes also have potential applications in the risk manage-
ment of corporate debt portfolios, for which event feedback and the depen-
dence between default and recovery rates are significant issues. For example,
Das et al. (2005) test a bottom-up doubly stochastic model whose features are
similar to those of the models endorsed by the regulatory authorities to esti-
mate portfolio credit risk. They find evidence of historical default clustering
in excess of that implied by the model they tested. This suggests that doubly
stochastic models tend to underestimate risk capital. An affine point process
model extends the doubly stochastic model to incorporate event feedback,
which implies a more realistic degree of default clustering. It also accounts
for the dependence between default and recovery rates, whose importance is
emphasized in Basel II’s pillar I guidelines, as seen in Basel Commission on
Bank Regulation (2004). This body of rules and regulations requires banks
to implement a “downturn” loss given default model, reflecting the fact that
recovery rates vary with systematic risk factors.
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Abstract: In this chapter, we introduce performance-dependent options as
the appropriate financial instrument for a company to hedge the risk arising
from the obligation to purchase shares as part of a bonus scheme for their
executives. We determine the fair price of such options in a multidimensional
Black–Scholes model that results in the computation of a multidimensional
integral whose dimension equals the dimension of the underlying Brownian
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motion. The integrand is typically discontinuous, though, which makes accu-
rate solutions difficult to achieve by numerical approaches. As a remedy, we
derive a pricing formula that only involves the evaluation of smooth multi-
variate normal distributions. This way, performance-dependent options can
efficiently be priced as it is shown by numerical results.

Keywords: option pricing, multivariate integration, Black–Scholes model

11.1 INTRODUCTION

Today, long-term incentive and bonus schemes often form a major part of the
wages of the executives of companies. One widespread form of such schemes
consists in giving the participants a conditional award of shares. More precisely,
if the participant stays with the company for at least a prescribed time period,
he or she will receive a certain number of shares of the company at the end of
the period. The exact amount of shares is usually linked to the success of the
company measured via a performance criterion such as the company’s gain
over the period or its ranking among comparable firms.

It is now a huge risk for a company to leave the resulting positions
unhedged. As the purchase of vanilla call options on the maximum number
of possibly needed shares binds too much capital, the appropriate financial
instruments in this situation are so-called performance-dependent options.
These options are financial derivatives whose payoff depends on the perfor-
mance of one asset in comparison to a set of benchmark assets. Thereby, we
assume that the performance of an asset is determined by the relative increase
of the asset price over the considered period of time. The performance of the
asset is then compared with the performances of the benchmark assets. For
each possible outcome of this comparison, a different payoff of the derivative
can be realized.

We use a multidimensional Black–Scholes model, see, for example, Karatzas
[5] or Korn and Korn [7], for the dynamics of all asset prices required for the
performance ranking. The martingale approach then yields a fair price of the
performance-dependent option as a multidimensional integral whose dimen-
sion equals the dimension of the underlying Brownian motion. The integrand
is typically discontinuous, however, which makes accurate numerical solutions
difficult to achieve.

The main aim of this chapter is to demonstrate that the combination
of a closed-form solution to the pricing problem for performance-dependent
options with suitable numerical integration methods clearly outperforms stan-
dard numerical approaches. The derived formula only involves the evaluation
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of smooth multivariate normal distributions that can be computed quickly and
robustly by numerical integration. In various numerical results, we illustrate
the efficiency of this approach and its possibility to evaluate high-dimensional
normal distributions in a superior way.

11.2 PERFORMANCE-DEPENDENT OPTIONS

Bonus schemes whose payoff depends on certain success criteria are a way
to provide additional incentives for the executives of a company. Often, the
executives obtain a conditional amount of shares of the company. The exact
number depends on the ranking of the company’s stock price increase in com-
parison with other (benchmark) companies. Such schemes induce uncertain
future costs for the company, though. The appropriate way to hedge these risks
are options that include the performance criteria in the definition of their pay-
off function, so-called performance-dependent options. In the following, we
aim to derive pricing formulas for the fair price of these options.

We assume that there are n assets involved in total. The asset of the con-
sidered company gets assigned label 1, and the n − 1 benchmark assets are
labeled from 2 to n. The price of the i th asset varying with time t is denoted
by Si (t), 1 ≤ i ≤ n. All stock prices at time t are collected in the vector
S(t) = (S1(t), . . . , Sn(t)).

11.2.1 Payoff Profile

First, we need to define the payoff of a performance-dependent option at time
T . To this end, we denote the relative price increase of stock i over the time
interval [0, T] by

�Si = Si (T)/Si (0).

We save the performance of the first asset in comparison to a given strike price
K (typically, K = S1(0)) and in comparison to the benchmark assets at time
T in a ranking vector Rank(S(T)) ∈ {+, −}n that is defined by

Rank1(S(T)) =
{
+ if S1(T) ≥ K ,
− else

and Ranki (S(T)) =
{
+ if �S1 ≥ �Si ,
− else

for i = 2, . . . , n. For each possible ranking R ∈ {+, −}n, a bonus factor
aR ∈ IR+ defines the payoff of the performance-dependent option. For explicit
examples of such bonus factors, see Section 11.3. In all cases we define aR = 0
if R1 = −.
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The payoff of the performance-dependent option at time T is then defined
by

V(S(T), T) = aRank(S(T)) (S1(T) − K ). (11.2.1)

In the following, we aim to determine the fair price V(S(0), 0) of such an
option at the current time t = 0.

11.2.2 Multivariate Black–Scholes Model

We assume that the stock price dynamics are given by

d Si (t) = Si (t)

⎛⎝μi dt +
n∑

j=1

σi j dWj (t)

⎞⎠ (11.2.2)

for i = 1, . . . , n, where μi denotes the drift of the i th stock, σ the n × n
volatility matrix of the stock price movements, and Wj (t), 1 ≤ j ≤ n, an
n-dimensional Brownian motion. The matrix σσ T is assumed to be positive
definite.

The explicit solution of the stochastic differential equation (11.2.2) is then
given by

Si (T) = Si (X) = Si (0) exp (μi T − σ̄i + Xi ) (11.2.3)

for i = 1, . . . , n with

σ̄i := 1

2

n∑
j=1

σ 2
i j T

and

Xi :=
n∑

j=1

σi j Wj (T).

Hence, X = (X1, . . . , Xn) is a N(0, Σ)-normally distributed random vector
with Σ = σσ T T .

11.2.3 Martingale Approach

In the above multidimensional Black–Scholes setting, the option price
V(S(0), 0) is given by the discounted expectation

V(S(0), 0) = e−r T E [V(S(T), T)] (11.2.4)
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of the payoff under the unique equivalent martingale measure, i.e., the drift μi

in equation (11.2.3) is replaced by the riskless interest rate r for each stock i .
Plugging in the density function ϕ0,� of the random vector X, we get that the
fair price of a performance-dependent option with payoff, shown in equation
(11.2.1), is given by the n-dimensional integral

V(S(0), 0) = e−r T
∫

Rn

∑
R∈{+,−}n

aR(S1(T) − K ) χR(S(T))ϕ0,Σ(x) dx.

(11.2.5)
Thereby, the expectation runs over all possible rankings R, and the character-
istic function χR(S(T)) is defined by

χR(S(T)) =
{

1 if Rank(S(T)) = R

0 else
.

11.2.4 Pricing Formula

We will now derive an analytical expression for the solution of equation
(11.2.5) in terms of smooth functions. We denote the Gauss kernel by

ϕμ,Σ(x) := 1

(2π)n/2(det Σ)1/2
e− 1

2 (x−μ)T Σ−1(x−μ)

and denote the multivariate normal distribution corresponding to ϕ0,Σ with
mean zero and covariance matrix Σ and the integral limits

ci =
{

bi if Ri = +
−∞ else

and di =
{∞ if Ri = +

bi else
for i = 1, . . . , n

which are depending on the ranking R ∈ {+, −}n by

�R(Σ, b) :=
∫ d1

c1

. . .

∫ dn

cn

ϕ0,Σ(x)dx.

Furthermore, we define the comparison relation x ≥ R y for two vectors x, y ∈
IRn with respect to the ranking R by

x ≥ Ry :⇔ Ri (xi − yi ) ≥ 0 for 1 ≤ i ≤ n.

To prove our main theorem we need the following two lemmas.
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LEMMA 11.2.1
Let b, q ∈ IRn, A ∈ IRn×n with full rank, and Σ ∈ IRn×n symmetric and positive definite.
Then ∫

Ax≥Rb
eqT xϕ0,Σ(x)dx = e

1
2 qT Σq�R(AΣAT , b − AΣq).

PROOF A simple computation shows

eqT xϕ0,Σ(x) = e
1
2 qT ΣqϕΣq,Σ(x)

for all x ∈ IRn. Using the substitution x = A−1y + Σq we obtain

∫
Ax≥Rb eqT xϕ0,Σ(x)dx = e

1
2 qT Σq

∫
Ax≥Rb ϕΣq,Σ(x)dx

= e
1
2 qT Σq

∫
y≥Rb−AΣq ϕ0,AΣAT (y)dy

(11.2.6)

and thus the assertion.

LEMMA 11.2.2
We have Rank(S(T)) = R exactly if AX ≥R b with

A :=

⎛⎜⎜⎜⎜⎜⎝
1 0 . . . 0

1 −1
. . .

...

... 0
. . . 0

1 0 0 −1

⎞⎟⎟⎟⎟⎟⎠ and b :=

⎛⎜⎜⎜⎜⎜⎜⎝
ln K

S1(0) − r T + σ̄1

σ̄1 − σ̄2

...

σ̄1 − σ̄n

⎞⎟⎟⎟⎟⎟⎟⎠
where A ∈ IRn×n and b ∈ IRn.

PROOF Using equation (11.2.3) we see that Rank1 = + is equivalent to

S1(T) ≥ K ⇐⇒ X1 ≥ ln
K

S1(0)
− r T + σ̄1

which yields the first row of the system AX ≥R b. Moreover, for i = 2, . . . , n
the outperformance criterion Ranki = + can be written as

S1(T)

S1(0)
≥ Si (T)

Si (0)
⇐⇒ X1 − Xi ≥ σ̄1 − σ̄i

which yields rows 2 to n of the system.
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Now we can state the following pricing formula which, in a slightly more
special setting, can be found in Korn [6].

THEOREM 11.2.1
In our market setting determined by the price model shown in equation (11.2.2), the price
of a performance-dependent option with payoff, as shown in equation (11.2.1), is given
by

V(S(0), 0) =
∑

R∈{+,−}n

aR(S1(0) �R(C, d) − e−r T K �R(C, b))

where C := AΣAT and d := b − AΣe1, with A and b defined as in lemma 11.2.2 and

with e1 being the first unit vector.

PROOF The characteristic function χR(S(T)) in the integral given in equation
(11.2.5) can be eliminated using lemma 11.2.2, and we get

V(S(0), 0) = e−r T
∑

R∈{+,−}n

aR

∫
Ax≥Rb

(S1(T) − K )ϕ0,�(x)dx. (11.2.7)

By equation (11.2.3), the integral term can be written as

S1(0)er T−σ̄1

∫
Ax≥Rb

e x1 ϕ0,�(x)dx − K
∫

Ax≥Rb
ϕ0,�(x)dx.

Application of lemma 11.2.1 with q = e1 shows that the first integral equals

e
1
2 eT

1 Σe1�R(AΣAT , b − AΣe1) = e σ̄1�R(C, d).

By a further application of lemma 11.2.1 with q = 0, we obtain that the second
integral equals K �R(C, b), and thus the assertion holds.

Note that the price of a performance-dependent option does not depend
on the stock prices S2(0), . . . , Sn(0) of the benchmark companies, but only on
the joint volatility matrix �. The pricing formula of theorem 11.2.1 allows an
efficient valuation of performance-dependent options in the case of moderate-
sized benchmarks. It requires the computation of up to 2n many n-dimensional
normal distributions. The actual number of integrals equals twice the number
of nonzero bonus factors aR. In the case of large benchmarks, the complexity
and dimensionality of the pricing formula can prevent its efficient applica-
tion, though. These problems can be circumvented by using a reduced Black–
Scholes model and suitable tools from computational geometry; for details
see Gerstner and Holtz [3].
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11.3 NUMERICAL RESULTS

In this section, we present numerical examples to illustrate the use of the pric-
ing formula of theorem 11.2.1. In particular, we compare the efficiency of our
algorithm to the standard pricing approach (denoted by STD) of quasi-Monte
Carlo simulation of the expected payoff, shown in equation (11.2.4), based
on Sobol point sets; see, for example, Glasserman [4]. Monte Carlo instead of
quasi-Monte Carlo simulation led to significantly less accurate results in all
our experiments. We systematically compare the use of our pricing formula
with

� Quasi-Monte Carlo integration based on Sobol point sets (QMC)
� Product integration based on the Clenshaw–Curtis rule (P)
� Sparse-grid integration based on the Clenshaw–Curtis rule (SG)

for the evaluation of the multivariate cumulative normal distributions (see
Genz [1]). The sparse-grid approach is based on the work of Gerstner and
Griebel [2]. All computations were performed on a dual Intel® Xeon™ CPU
3.06-GHz processor.

We consider a Black–Scholes market with n = 5 assets. Thereby, we inves-
tigate the following three choices of bonus factors aR in the payoff function
shown in equation (11.2.1):

EXAMPLE 11.1
Linear ranking-dependent option:

aR =
{

m/(n − 1) if R1 = +
0 else.

Here, m denotes the number of outperformed benchmark assets. The payoff depends

on the rank of our company among the benchmark assets. If the company ranks first,

there is a full payoff (S1(T) − K )+. If it ranks last, the payoff is zero. In between, the

payoff increases linearly with the number of outperformed benchmark assets.

EXAMPLE 11.2
Outperformance option:

aR =
{

1 if R = (+, . . . , +)
0 else.

A payoff only occurs if S1(T) ≥ K and if all benchmark assets are outperformed.
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EXAMPLE 11.3
Linear ranking-dependent option combined with an outperformance condition:

aR =
{

m/(n − 1) if R1 = + and R2 = +
0 else.

The bonus depends linearly on the number m of outperformed benchmark companies,

as in Example 11.1. However, the bonus is only paid if company two is outperformed.

Company two could, for example be the main competitor of our company.

In all cases, we use the model parameters K = 100, S1(0) = 100, T = 1,
r = 5%, and as volatility matrix

σ =

⎛⎜⎜⎜⎜⎜⎝
0.1515 0.0581 0.0373 0.0389 0.0278
0.0581 0.2079 0.0376 0.0454 0.0393
0.0373 0.0376 0.1637 0.0597 0.0635
0.0389 0.0454 0.0597 0.1929 0.0540
0.0278 0.0393 0.0635 0.0540 0.2007

⎞⎟⎟⎟⎟⎟⎠ .

The computed option prices and discounts compared with the price of the
corresponding plain vanilla option given by 9.4499 are displayed in the second
and third column of Table 11.3.1. The number of normal distributions (No.
Int) that have to be computed is shown in the last column.

The convergence behavior of the four different approaches (STD, QMC, P,
SG) to price the performance-dependent options from Examples 11.1 to 11.3
are shown in Figure 11.3.1, which displays the time that is needed to obtain a
given accuracy. One can see that the standard approach (STD) and the product
integration approach (P) perform worst for all accuracies. The convergence
rates are clearly lower than 1 in all examples. The integration scheme STD
suffers under the irregularity of the integrand, which is highly discontinuous
and not of bounded variation. The product-integration approach suffers under

TABLE 11.3.1 Option Prices and Discounts
Compared with the Corresponding Plain
Vanilla Option and Number of Computed
Normal Distributions

Example V(S1, 0) Discount No. Int

11.1 6.2354 34.02% 30
11.2 3.0183 68.06% 2
11.3 4.5612 51.73% 16
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FIGURE 11.3.1 Errors and timings of the different numerical approaches to price the
performance-dependent options of Examples 11.1 (top), 11.2 (bottom), and 11.3 (following
page).
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FIGURE 11.3.1 (Continued).

the curse of dimension. The use of the pricing formula from Theorem 11.2.1
combined with QMC or SG integration clearly outperforms the STD approach
in terms of efficiency in all considered examples. The QMC scheme exhibits a
convergence rate of about 1 independent of the problem. The combination of
sparse-grid integration with our pricing formula (SG) leads to the best overall
accuracies and convergence rates in all cases. Even very high accuracy demands
can be fulfilled in less than a few seconds.
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Abstract: In this chapter we show that when estimating an expected value
arising from a stochastic differential equation using Monte Carlo path simu-
lations, the computational cost to achieve an accuracy of O(ε) can be reduced
from O(ε−3) to O(ε−2(log ε)2) through the use of a multilevel approach. The
analysis is supported by numerical results showing significant computational
savings.

12.1 INTRODUCTION

In financial Monte Carlo path simulations, one is interested in the expected
value of a quantity arising from the solution of a stochastic differential equa-
tion. To be specific, consider the vector stochastic differential equation (SDE)

215
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with general drift and volatility terms,

dS(t) = a(S, t) dt + b(S, t) dW(t), 0 < t < T, (12.1.1)

and given initial data S0. Suppose we want to compute the expected value of
f (S(T)), where f (S) is a scalar function with a uniform Lipschitz bound, i.e.,
there exists a constant c such that

| f (U ) − f (V)| ≤ c ‖U − V‖ , ∀ U, V. (12.1.2)

A simple Euler discretization of this SDE with time step h is

Ŝn+1 = Ŝn + a(Ŝn, tn) h + b(Ŝn, tn) �Wn,

and the simplest estimate for E [ f (ST )] is the mean of the payoff values
f (ŜT/h) from N independent path simulations,

Ŷ = N−1
N∑

i=1

f
(

Ŝ(i)
T/h

)
.

It is well established that, provided a(S, t) and b(S, t) satisfy certain condi-
tions [1, 7, 10], the expected mean square error (MSE) in the estimate Ŷ is
asymptotically of the form

MSE ≈ c1 N−1 + c2h2,

where c1, c2 are positive constants. To make this O(ε2), so that the r.m.s. error is
O(ε), requires that N = O(ε−2) and h = O(ε), and hence the computational
complexity (cost) is O(ε−3) [2].

In this chapter we show that the cost can be reduced to O(ε−2(log ε)2)
through the use of a multilevel method that reduces the variance for a given
cost. Unlike the recent work of Kebaier [6], who used just two levels, with
time steps h and O(h1/2), to reduce the cost to O(ε−2.5), our technique uses
a geometric sequence of time steps hl = M−l , l = 0, 1, . . . , L , for integer
M ≥ 2, with the smallest time step hL corresponding to the original h that
determines the size of the Euler discretization bias.

This chapter gives a condensed presentation of the multilevel approach.
Further details, the proof of the main theorem, and additional numerical
results are available from a recent working paper [3].
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12.2 MULTILEVEL MONTE CARLO METHOD

Consider Monte Carlo path simulations with different time steps hl = M−l T ,
l = 0, 1, . . . , L . For a given Brownian path W(t), let P denote the payoff
f (S(T)), and let Ŝl ,Ml and P̂l denote the approximations to S(T) and P
using a numerical discretization with time step hl . It is clearly true that

E [ P̂L ] = E [ P̂0] +
L∑

l=1

E [ P̂l − P̂l−1].

The multilevel method independently estimates each of the expectations on
the right-hand side in a way that minimizes the overall variance for a given
cost.

Let Ŷ0 be an estimator for E [ P̂0] using N0 samples, and let Ŷl for l > 0
be an estimator for E [ P̂l − P̂l−1] using Nl paths. The simplest estimator is a
mean of Nl independent samples, which for l > 0 is

Ŷl = N−1
l

Nl∑
i=1

(
P̂ (i)

l − P̂ (i)
l−1

)
. (12.2.1)

The key point here is that the quantity P̂ (i)
l − P̂ (i)

l−1 comes from two discrete
approximations with different time steps but the same Brownian path. The
variance of this simple estimator is V[Ŷl ] = N−1

l Vl , where Vl is the variance
of a single sample. Combining this with independent estimators for each of

the other levels, the variance of the combined estimator Ŷ =
L∑

l=0

Ŷl is

V[Ŷ ] =
L∑

l=0

N−1
l Vl .

The computational cost is proportional to

L∑
l=0

Nl h−1
l .

Treating the Nl as continuous variables, the variance is minimized for a fixed
computational cost by choosing Nl to be proportional to

√
Vl hl .

In the particular case of the Euler discretization and the Lipschitz payoff
function, provided that a(S, t) and b(S, t) satisfy certain conditions [1, 7, 10],
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there is O(h) weak convergence, so that

E [ P̂l − P ] = O(hl ),

and O(h1/2) strong convergence, so that

E [ ‖Ŝl ,Ml − S(T)‖2 ] = O(hl ).

From the latter, together with the Lipschitz property shown in equation
(12.1.2), it follows that

V[ P̂l − P ] ≤ E [( P̂l − P )2] ≤ c 2 E [‖Ŝl ,Ml − S(T)‖2],

and therefore V[ P̂l − P ] = O(hl ). Hence for the simple estimator shown
in equation (12.2.1), the single-sample variance Vl is O(hl ), and the optimal
choice for Nl is asymptotically proportional to hl . Setting Nl = O(ε−2 L hl ),
the variance of the combined estimator Ŷ is O(ε2). If L is chosen such that

L = log ε−1

log M
+ O(1),

as ε → 0, then hl = M−L = O(ε), and so the bias error E [ P̂l − P ] is
O(ε). Consequently, we obtain a MSE that is O(ε2), with a computational
complexity that is O(ε−2 L 2) = O(ε−2(log ε)2).

This analysis is generalized in the following theorem:

THEOREM 12.2.1
Let P denote a functional of the solution of stochastic differential equation (12.1.1) for a
given Brownian path W(t), and let P̂l denote the corresponding approximation using a
numerical discretization with time step hl = M−l T .

If there exist independent estimators Ŷl based on Nl Monte Carlo samples, and positive
constants α ≥ 1

2 , β, c1, c2, c3 such that

1. E [ P̂l − P ] ≤ c1 hα
l

2. E [Ŷl ] =
⎧⎨⎩ E [ P̂0], l = 0

E [ P̂l − P̂l−1], l > 0

3. V[Ŷl ] ≤ c2 N−1
l hβ

l

4. Cl , the computational complexity of Ŷl , is bounded by

Cl ≤ c3 Nl h−1
l ,
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then there exists a positive constant c4 such that for any ε < e−1 there are values L and
Nl for which the multilevel estimator

Ŷ =
L∑

l=0

Ŷl ,

has a mean square error with bound

MSE ≡ E [(Ŷ − E [P ])2] < ε2

with a computational complexity C with bound

C ≤

⎧⎪⎪⎨⎪⎪⎩
c4 ε−2, β > 1,

c4 ε−2(log ε)2, β = 1,

c4 ε−2−(1−β)/α , 0 < β < 1.

PROOF See [3].

12.3 NUMERICAL RESULTS

The multilevel algorithm used for the numerical tests is as follows:

1. Start with L = 0.
2. Estimate VL using an initial NL = 104 samples.
3. Calculate optimal Nl , l = 0, . . . , L for target variance.
4. Evaluate extra samples at each level as needed for new Nl .
5. Test for convergence by estimating remaining bias.
6. If not converged, set L := L + 1 and go to 2.

The numerical results are all obtained using M = 4; further analysis [3]
suggests that this is close to optimal.

12.3.1 Geometric Brownian Motion

Figure 12.3.1 presents results for a European call option with discounted payoff

P = exp(−r ) max(0, S(1) − 1),
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FIGURE 12.3.1 Geometric Brownian motion with European option.

with S(t) based on simple geometric Brownian motion,

dS = r S dt + σ S dW, 0 < t < 1,

with S(0) = 1, r = 0.05, and σ = 0.2.
The top left plot shows the behavior of the variance of both P̂l and P̂l − P̂l−1.

The slope of the latter is approximately −1, showing that Vl = V[ P̂l − P̂l−1] =
O(h). For l = 4, Vl is more than 1000 times smaller than the variance V[ P̂l ]
of the standard Monte Carlo method with the same time step. The top right
plot shows the O(h) convergence of E [ P̂l − P̂l−1]. Even at l = 3, the relative
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error E [P − P̂l ]/E [P ] is less than 10−3. These two plots are both based on
results from 106 paths for each value of the time step.

The bottom two plots have results from five multilevel calculations for
different values of ε. Each line in the bottom left plot shows the values for
Nl , l = 0, . . . , L , with the values decreasing with l because of the decrease in
both Vl and hl . It can also be seen that the value for L , the maximum level of
time-step refinement, increases as the value for ε decreases. The bottom right
plot shows the variation with ε of ε2 C , where the computational complexity
C is defined as

C =
∑

l

Nl h
−1
l .

One line shows the results for the multilevel calculation, and the other shows
the corresponding cost of a standard Monte Carlo simulation of the same
accuracy, i.e., the same bias error corresponding to the same value for L , and
the same variance. It can be seen that ε2C is a very slowly increasing function of
ε−1 for the multilevel method, in agreement with the theory that predicts it to
be proportional to (log ε)2, whereas for the standard Monte Carlo method it is
approximately proportional to ε−1. For the most accurate case, ε = 5 × 10−5,
the multilevel method is more than 60 times more efficient than the standard
method.

12.3.2 Heston Stochastic Volatility Model

Figure 12.3.2 presents results for the European call based on the Heston
stochastic volatility model [5],

dS = r S dt +
√

V S dW1, 0 < t < 1

dV = λ (σ 2 − V) dt + ξ
√

V dW2,

with S(0) = 1, V(0) = 0.04, r = 0.05, σ = 0.2, λ = 5, ξ = 0.25, and correlation
ρ = −0.5.

In the discretization,
√

V is replaced by
√

max(V, 0), but as h → 0 the
probability of the discrete approximation to the volatility becoming nega-
tive approaches zero for the chosen values of λ, σ, ξ . Consequently, the Euler
discretization has the same order of weak and strong convergence as for the
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FIGURE 12.3.2 Heston model with European option.

geometric Brownian motion, and the multilevel method again yields compu-
tational savings that increase rapidly with the desired accuracy.

12.4 CONCLUDING REMARKS

In this chapter we have shown that a multilevel approach, using a geometric
sequence of time steps, can reduce the order of complexity of Monte Carlo
path simulations. Although the initial results look very promising, further
work is needed. In particular, current research is directed toward:

� Use of the Milstein scheme with first-order strong convergence [4] to
reduce the complexity to O(ε−2)
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� Adaptive sampling to treat discontinuous payoffs and pathwise deriva-
tives for Greeks

� Use of quasi–Monte Carlo methods [8, 9]
� Additional variance-reduction techniques

Once these features are added to the basic multilevel approach, it is hoped that
this method could offer significant benefits over current Monte Carlo pricing
engines.
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Abstract: The concept of value at risk (VaR) measures the “risk” of a portfolio
and is a statement of the following form: With probability q , the potential
loss will not exceed the value-at-risk figure. It is in widespread use within the
banking industry.

It is common to derive the VaR figure of d days from that of 1 day by
multiplying with

√
d . Obviously, this formula is right if the changes in the value

of the portfolio are normally distributed with stationary and independent
increments. However, this formula is no longer valid if arbitrary distributions
are assumed. For example, if the distributions of the changes in the value of
the portfolio are self-similar with Hurst coefficient H , the VaR figure of 1 day
has to be multiplied by d H to get the VaR at Risk figure for d days.

This chapter investigates to what extent this formula (of multiplying by√
d) can be applied for all financial time series. Moreover, it will be studied

how much the risk can be over- or underestimated if the above formula is
used. The scaling-law coefficient and the Hurst exponent are calculated for
various financial time series for several quantiles.

JEL classification: C13, C14, G10, G21.

Keywords: square-root-of-time rule, time-scaling of risk, scaling law, value at
risk, self-similarity, order statistics, Hurst exponent estimation in the quantiles

13.1 INTRODUCTION

There are several methods of estimating the risk of an investment in capital
markets. A method in widespread use is the value-at-risk approach. The con-
cept of value at risk (VaR) measures the “risk” of a portfolio. More precisely,
it is a statement of the following form: With probability q , the potential loss
will not exceed the VaR figure.

Although this concept has several disadvantages (e.g., it is not subadditive
and thus not a so-called coherent risk measure; see Artzner et al. [1] and see
also Danı́elsson et al. [4]), it is in widespread use within the banking industry. It
is common to derive the VaR figure of d days from that of 1 day by multiplying
the VaR figure of 1 day with

√
d . Even banking supervisors recommend this

procedure (see the Basel Committee on Banking Supervision [2]).
Obviously, this formula is right if the changes in the value of the portfolio

are normally distributed with stationary and independent increments (namely
a Brownian motion). However, this formula is no longer valid if arbitrary
distributions are assumed. For example, if the distributions of the changes in
the value of the portfolio are self-similar with Hurst coefficient H , the VaR
figure of 1 day has to be multiplied by d H to get the VaR figure for d days.
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In the following, it will be investigated to determine to what extent this
scaling law (of multiplying with

√
d) can be applied for financial time series.

Moreover, it will be studied how much the risk can be over- or underestimated
if the above formula is used. The relationship between the scaling law of the
VaR and the self-similarity of the underlying process will be scrutinized.

The outline of this chapter is as follows: the considered problem will be
set up in a mathematical framework in Section 13.2. In section 13.3, it will be
investigated how much the risk can be over- or underestimated if the formula
in equation (13.2.2) is used. Section 13.4 deals with the estimation of the
Hurst coefficient via quantiles, and section 13.5 describes the used techniques.
Section 13.6 considers the scaling law for some DAX stocks and for the DJI
and its 30 stocks. In section 13.7 the Hurst exponents are estimated for the
above financial time series. Possible interpretations in finance of the Hurst
exponent are given in section 13.8. Section 13.9 concludes the chapter and
gives an outlook.

13.2 THE SETUP

Speaking in mathematical terms, the VaR is simply the q-quantile of the dis-
tribution of the change of value for a given portfolio P. More specifically,

VaR1−q (P d ) = −F −1
P d (q), (13.2.1)

where P d is the change of value for a given portfolio over d days (the d-day
return) and F P d is the distribution function of P d . With this definition, this
chapter considers the commercial return

P d
c (t) := P (t) − P (t − d)

P (t − d)

as well as the logarithmic return

P d
l (t) := ln(P (t)) − ln(P (t − d)),

where P (t) is the value of the portfolio at time t. Moreover, the quantile
function F −1 is a “generalized inverse” function

F −1(q) = inf{x : F (x) ≥ q}, for 0 < q < 1.

Notice also that it is common in the financial sector to speak of the q-
quantile as the 1 − q VaR figure. Furthermore, it is common in practice to
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calculate the overnight VaR figure and derive from this the dth day VaR figure
with the following formula

VaR1−q (P d ) =
√

d · VaR1−q (P 1). (13.2.2)

This is true if the changes of value of the considered portfolio for d days P d are
normally distributed with stationary and independent increments and with
standard deviation

√
d (i.e., P d ∼ N (0, d)). To simplify the notation, the

variance σ 2 · d has been set to d , meaning σ 2 = 1. However, the following
calculation is also valid for P d ∼ N (0, σ 2 · d).

F P d (x) =
x∫

−∞

1√
2πd

exp

(
− z2

2d

)
dz

=
x√
d∫

−∞

1√
2πd

exp

(
−w 2

2

) √
d dw

=
x√
d∫

−∞

1√
2π

exp

(
−w 2

2

)
dw

= F P 1

(
d− 1

2 x
)

,

where the substitution z = √
d · w was used. Applying this to F −1

P d yields

F −1
P d (q) = inf{x : F P d (x) ≥ q}

= inf{x : F P 1 (d− 1
2 x) ≥ q}

= inf{
√

d · w : F P 1 (w) ≥ q}

=
√

d · F −1
P 1 (q).

On the other hand, if the changes of the value of the portfolio P are self-
similar with Hurst coefficient H , equation (13.2.2) has to be modified in the
following way:

VaR1−q (P d ) = d H · VaR1−q (P 1). (13.2.3)
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To verify this equation, let us first recall the definition of self-similarity (see, for
example, Samorodnitsky and Taqqu [16], p. 311; compare also with Embrechts
and Maejima [10]).

DEFINITION 13.2.1
A real-valued process (X(t))t∈R is self-similar with index H > 0 (H-ss) if, for all a > 0,
the finite-dimensional distributions of (X(at))t∈R are identical to the finite-dimensional
distributions of (a H X(t))t∈R, i.e., if for any a > 0

(X(at))t∈R
d= (a H X(t))t∈R.

This implies

FX(at)(x) = Fa H X(t)(x) for all a > 0 and t ∈ R

= P (a H X(t) < x)

= P (X(t) < a−H x)

= FX(t)(a−H x).

Thus, the assertion in equation (13.2.3) has been verified. So far, there are just
three papers known to the author that also deal with the scaling behavior of VaR
(see Diebold et al. [7] or [6], Dowd et al. [8], and Danı́elsson and Zigrand [5]).

For calculating the VaR figure, there exist several possibilities, such as
the historical simulation, the variance–covariance approach, and the Monte
Carlo simulation. Most recently, the extreme-value theory has also been con-
sidered in estimating the VaR figure. In the variance–covariance approach,
the assumption is made that the time series (P d ) of an underlying financial
asset is normally distributed with independent increments and with drift μ

and variance σ 2, which are estimated from the time series. Because this case
assumes a normal distribution with stationary and independent increments,
equation (13.2.2) obviously holds. Therefore, this case will not be consid-
ered here. Furthermore, the Monte Carlo simulation will not be considered
either, as a particular stochastic model is chosen for the simulation. Thus
the self-similarity holds for the Monte Carlo simulation if the chosen un-
derlying stochastic model is self-similar. The extreme-value-theory approach
is a semiparametric model, where the tail thickness is estimated by empir-
ical methods (see, for example, Danı́elsson and de Vries [3] or Embrechts
et al. [9]). However, this tail-index estimator already determines the scaling-
law coefficient.
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There exists a great deal of literature on VaR that covers both the variance–
covariance approach and the Monte Carlo simulation. Just to name the most
popular, see for example Jorion [14] or Wilmott [20]. For further references,
see also the references therein.

However, in practice banks often estimate the VaR via order statistics, which
is the focus of this chapter. Let G j :n(x) be the distribution function of the j th
order statistics. Because the probability that exactly j observations (of a total
of n observations) are less than or equal to x is given by (see for example Reiss
[15] or Stuart and Ord [19])

n!

j ! · (n − j )!
F (x) j (1 − F (x))n− j ,

it can be verified that

G j :n(x) =
n∑

k= j

n!

k! · (n − k)!
F (x)k (1 − F (x))n−k . (13.2.4)

This is the probability that at least j observations are less than or equal to x
given a total of n observations.

Equation (13.2.4) implies that the self-similarity holds also for the distri-
bution function of the j th-order statistics of a self-similar random variable.
In this case, one has

G j :n,P d (x) = G j :n,P 1 (d−H · x).

It is important that one has n observations for (P 1) as well as for (P d );
otherwise the equation does not hold. This shows that the j th-order statistics
preserves—and therefore shows—the self-similarity of a self-similar process.
Thus the j th-order statistics can be used to estimate the Hurst exponent, as
will be done in this chapter.

13.3 RISK ESTIMATION FOR DIFFERENT HURST
COEFFICIENTS

This section investigates how much the risk is over- or underestimated if
equation (13.2.2) is used, although equation (13.2.3) is actually the right
equation for H �= 1

2 . In this case, the difference d H − √
d determines how

much the risk will be underestimated (or overestimated if the difference is
negative). For example, for d = 10 days and H = 0.6, the underestimation
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TABLE 13.3.1 Value at Risk and Self-Similarity—I

H = 0.55 H = 0.6

Relative Relative

Days Difference Difference

(d) d0.55 d0.55 − d
1
2 in Percent d0.6 d0.6 − d

1
2 in Percent

5 2.42 0.19 8.38 2.63 0.39 17.46
10 3.55 0.39 12.2 3.98 0.82 25.89
30 6.49 1.02 18.54 7.7 2.22 40.51

250 20.84 5.03 31.79 27.46 11.65 73.7

This table shows d H , the difference between d H and
√

d , and the relative difference d H −√
d√

d
for various

days d and for H = 0.55 and H = 0.6.

will be of the size 0.82 or 25.89% (see Table 13.3.1). This underestimation
will even extend to 73.7% if the 1-year VaR is considered (which is the case
for d = 250). Here, the relative difference has been taken with respect to the
value (namely

√
d) that is used by the banking industry.

Most important is the case d = 10 days, as banks are required to calculate
not only the 1-day VaR, but also the 10-day VaR. However, the banks are
allowed to derive the 10-day VaR by multiplying the 1-day VaR with

√
10 (see

the Basel Committee on Banking Supervision [2]). Table 13.3.2 shows how
much the 10-day VaR is underestimated (or overestimated) if the considered
time series are self-similar with Hurst coefficient H .

TABLE 13.3.2 Value at Risk and Self-Similarity—II

Relative Relative

Difference Difference

H 10H 10H − 10
1
2 in Percent H 10H 10H − 10

1
2 in Percent

0.35 2.24 −0.92 −29.21 0.4 2.51 −0.65 −20.57
0.45 2.82 −0.34 −10.87 0.46 2.88 −0.28 −8.8
0.47 2.95 −0.21 −6.67 0.48 3.02 −0.14 −4.5
0.49 3.09 −0.07 −2.28 0.5 3.16 0 0
0.51 3.24 0.07 2.33 0.52 3.31 0.15 4.71
0.53 3.39 0.23 7.15 0.54 3.47 0.31 9.65
0.55 3.55 0.39 12.2 0.56 3.63 0.47 14.82
0.57 3.72 0.55 17.49 0.58 3.8 0.64 20.23
0.59 3.89 0.73 23.03 0.6 3.98 0.82 25.89
0.61 4.07 0.91 28.82 0.62 4.17 1.01 31.83
0.63 4.27 1.1 34.9 0.64 4.37 1.2 38.04
0.65 4.47 1.3 41.25 0.66 4.57 1.41 44.54

This table shows 10H , the difference between 10H and
√

10, and the relative difference 10H −√
10√

10
for

various Hurst exponents H .
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13.4 ESTIMATION OF THE HURST EXPONENT
VIA QUANTILES

The Hurst exponent is often estimated via the pth moment with p ∈ N. This
can be justified with the following

PROPOSITION 13.4.1
Suppose Y (k) = m(k)+X(k) with a deterministic function m(k) and X(k) is a stochastic
process with all moments E [|X(k)|p] existing for k ∈ N and distributions Fk(x) :=
P r ob({ω ∈ � : X(k, ω) ≤ x}) symmetric to the origin. Then the following are
equivalent:

1. For each p ∈ N it holds:

E
[|Y (k) − E [Y (k)] |p

] = c(p) · σ p|k|p H (13.4.1)

2. For each k the following functional scaling law holds on SymC 0
0

(
R

)
:

Fk(x) = F1(k−H x), (13.4.2)

where SymC 0
0

(
R

)
is the set of symmetric (with respect to the y-axis) continuous

functions with compact support.

This has basically been shown by Singer et al. [18].

EXAMPLE 13.1
Let Y be a normal distributed random variable with variance σ . It is well known that

E
[(

Y − E [Y ]
)p] =

{
0 if p is odd.

σ p (p − 1) ( p − 3) · . . . · 3 · 1 else

}
.

Hence, in this case proposition 13.4.1 holds with H = 1
2 and

c( p) =
{

0 if p is odd.

(p − 1) (p − 3) · . . . · 3 · 1 else

}
.

Proposition 13.4.1 states that the pth moment obeys a scaling law for each
p given by equation (13.4.1) if a process is self-similar with Hurst coefficient
H and the pth moment exists for each p ∈ N. To check whether a process
is actually self-similar with Hurst exponent H , it is most important that H
be independent of p. However, often the Hurst exponent will be estimated
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just from one moment (mostly p = 1 or 2) (see Evertsz et al. [11] and, for
more references on the Hurst coefficient, see also the references therein). This is
because the higher moments might not exist (see, for example, Samorodnitsky
and Taqqu [16], p. 18 and p. 316). Anyway, it is not sufficient to estimate the
Hurst exponent just for one moment, because the important point is that the
Hurst exponent H = H(p) is equal for all moments, as the statement is for
each p ∈ N in the proposition. Thus equation (13.4.1) is a necessary condition
but not a sufficient one, if it is verified only for some p ∈ N but not for all
p ∈ N.

However, even if one has shown that equation (13.4.1) holds for each p,
one has just proved that the one-dimensional marginal distribution obeys
a functional scaling law. Even worse is the fact that this proves only that
this functional scaling law holds just for symmetric functions. To be a self-
similar process, a functional scaling law must hold for the finite-dimensional
distribution of the process (see definition 13.2.1).

The following approach for estimating the Hurst coefficient is more promis-
ing, as it is possible to estimate the Hurst coefficient for various quantiles.
Therefore, it is possible to observe the evolution of the estimation of the Hurst
coefficient along the various quantiles. To derive an estimation of the Hurst
exponent, let us recall, that

VaR1−q (P d ) = d H · VaR1−q (P 1),

if (P d ) is H-ss. Given this, it is easy to derive that

log
(
VaR1−q (P d )

) = H · log(d) + log
(
VaR1−q (P 1)

)
. (13.4.3)

Thus the Hurst exponent can be derived from the gradient of a linear regression
in a log–log plot.

13.4.1 Error of the Quantile Estimation

Obviously, equation (13.4.3) can only be applied if VaR1−q (P d ) �= 0. More-
over, close to zero, a possible error in the quantile estimation will lead to an
error in equation (13.4.3), which is much larger than the original error from
the quantile estimation.

Let l be the number that represents the q th quantile of the order statistics
with n observations. With this, xl is the q th quantile of an ordered time series
X , which consists of n observations with q = l

n . Let X be a stochastic process
with a differentiable density function f > 0. Then Stuart and Ord [19] showed
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that the variance of xl is

σ 2
xl

= q · (1 − q)

n · ( f (xl ))2
,

where f is the density function of X , and f must be strictly greater than zero.
The propagation of errors is calculated by the total differential. Thus, the

propagation of this error in equation (13.4.3) is given by

σlog(xl ) = 1

xl
·
(

q · (1 − q)

n · ( f (xl ))2

) 1
2

=
√

q · (1 − q)

n
· 1

xl · f (xl )
.

For example, if X ∼ N (0, σ 2), the propagation of the error can be written as

σlog(x) =
√

q · (1 − q)

n
·

√
2π · σ

x · exp
(
− x2

2σ 2

)

=
√

q · (1 − q)

n
·

√
2π

y · exp
(
− y2

2

) ,

where the substitution σ · y = x has been used. This shows that the error
is independent of the variance of the underlying process if this underlying
process is normally distributed (see also Figure 13.4.1).

Similarly, if X is Cauchy with mean zero, the propagation of the error can
be shown to be

σlog(x) =
√

q · (1 − q)

n
· π · (x2 + σ 2)

σ · x

=
√

q · (1 − q)

n
· π · (y2 + 1)

y
,

where the substitution σ · y = x has also been used. Once again, the error
is independent of the scaling coefficient σ of the underlying Cauchy process.
Because, for Levy processes with Hurst coefficient 1

2 < H < 1, closed forms
for the density functions do not exist, the error cannot be calculated explicitly
as in the normal and in the Cauchy case.
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FIGURE 13.4.1 Error function for the normal distribution, left quantile.

Figure 13.4.1 shows that the error is minimal around the 5% quantile in the
case of a normal distribution, but for a Cauchy distribution, the error is min-
imal around the 20% quantile (see Figure 13.4.2). Furthermore, the minimal
error in the normal case is even less than half as large as in the Cauchy case.

This error analysis shows already the major drawback of estimating the
Hurst exponent via quantiles. Because of the size of the error, it is not possible
to estimate the Hurst exponent around the 50% quantile. However, it is still
possible to estimate the Hurst coefficient in the (semi-) tails. Moreover, it is
possible to check whether the Hurst exponent remains constant for various
quantiles.

Hartung et al. [13] state that the 1 − α confidence interval for the q th
quantile of an order statistic, which is based on n points, is given approximately
by [xr ; xs ]. Here r and s are the next higher natural numbers of

r ∗ = n · q − u1−α/2

√
n · q(1 − q)

and

s ∗ = n · q + u1−α/2

√
n · q(1 − q), respectively.

The notation uα has been used for the α-quantile of the N(0, 1) distribution.
Moreover, Hartung et al. [13] say that this approximation can be used if
q · (1 − q) · n > 9. Therefore this approximation can be used up to q = 0.01
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FIGURE 13.4.2 Error function for the normal and the Cauchy distribution, a zoom-in.

(which denotes the 1% quantile and will be the lowest quantile to be considered
in this chapter) if n > 910, which will be the case in this discussion.

Obviously, these confidence intervals are not symmetric, meaning that
the distribution of the error of the quantile estimation is not symmetric and
therefore is not normally distributed. However, the error of the quantile esti-
mation is asymptotically normally distributed (see, for example, Stuard and
Ord [19]). Thus, for large n, the error is approximately normally distributed.
Bearing this in mind, an error σxl for the q th quantile estimation will be
estimated by setting uα = 1 and making the approximation

σxl ≈ xs − xr

2
with l = n · q.

13.5 USED TECHNIQUES

Because the given financial time series do not have enough sample points
to consider independent 2 j -day returns for j = 1, . . . , 4, this chapter uses
overlapping data to get more sample points.
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13.5.1 Detrending

Generally, it is assumed that financial time series have an exponential trend.
This drift has been removed from a given financial time series X in the fol-
lowing way.

dXt = exp
(

log (Xt) − t

T
(log (XT ) − log (X0))

)
, (13.5.1)

where dX will be called the detrended financial time series associated with the
original financial time series X . This expression for dX will be abbreviated by
the phrase detrended financial time series. To understand the meaning of this
detrending method, let us consider Yt := log (Xt), which is the cumulative
logarithmic return of the financial time series (Xt). Assume that Yt has a drift;
this means that the drift in Y has been removed in dl Y and thus that the
exponential drift in X has been removed in dXt = exp(dl Yt). Observe that dXt

is a bridge from X0 to X0. Correspondingly, dl Yt is a bridge from Y0 to Y0.
Observe that this method of detrending is not simply subtracting the expo-

nential drift from the given financial time series, rather it is dividing the given
financial time series by the exponential of the drift of the underlying logarith-
mic returns, as can be seen from the formula. By subtracting the drift, one
could get negative stock prices, which is avoided with the previously described
method of detrending.

It is easy to derive that building a bridge in this way is the same as subtracting
its mean from the 1-day logarithmic return. To verify this, let us denote with
P 1

l (t) the 1-day logarithmic return of the given time series X (as it has been
defined in section 13.1). Therefore, one has P 1

l (t) = Yt − Yt−1. Keeping this
in mind, one gets

dl Yt − dl Yt−1 = Yt − Yt−1 − t

T
(YT − Y0) + t − 1

T
(YT − Y0)

= P 1
l (t) − 1

T
(YT − Y0)

= P 1
l (t) − 1

T

T∑
n=1

(Yn − Yn−1)

= P 1
l (t) − 1

T

T∑
n=1

P 1
l (n).
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13.5.2 Considering Autocorrelation

To calculate the autocorrelation accurately, no overlapping data have been
used. The major result is that the autocorrelation function of returns of the
considered financial time series is around zero. The hypothesis that the 1-day
returns are white noise can be rejected for most of the time series considered
in this chapter to both the 0.95 confidence interval and the 0.99 confidence
interval. Considering the 10-day returns, however, this is no longer true. This
indicates that the distributions of the 1-day returns are likely to be different
from the distributions of the 10-day returns. Hence, it is not likely to find a
scaling coefficient for the above distributions. However, it is still possible to
calculate the scaling coefficients for certain quantiles, as will be done in the
following discussion.

13.5.3 Test of Self-Similarity

To be self-similar, the Hurst exponent has to be constant for the different
quantiles. Two different tests are introduced in the following subsections.

13.5.3.1 A First Simple Test

This first simple test tries to fit a constant for the given estimation of the Hurst
coefficient on the different quantiles. The test will reject the hypothesis (that
the Hurst coefficient is constant, and thus that the time series is self-similar) if
the goodness of fit is rejected. Fitting a constant to a given sample is a special
case of the linear regression by setting b = 0. Apply the goodness-of-fit test
to decide if the linear regression is believable and thus if the time series might
be self-similar.

However, for the goodness-of-fit test, it is of utmost importance that the
estimations of the Hurst coefficient for the different quantiles be independent
of each other. Obviously, this is not the case for the quantile estimation, which
the estimation of the Hurst coefficient is based on.

13.5.3.2 A Second Test

The second test tries to make a second linear regression for the given estimation
for the Hurst coefficient on the different quantiles. The variable yi is the
estimation of the Hurst coefficient for the given quantile, which will be xi .
Moreover, σi is the error of the Hurst coefficient estimation, and N is the
number of considered quantiles.
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The null hypothesis is then that b = 0. The alternative hypothesis is b �= 0.
Thus the hypothesis will be rejected to the error level γ if∣∣∣∣ b

σb

∣∣∣∣ > tN−2, 1− γ

2
,

where tν,γ is the γ -quantile of the tν distribution (see Hartung [13]).
If the hypothesis is not rejected, a is the estimation of the Hurst exponent,

andσa is the error of this estimation. Again, this test is based on the assumption
that the estimations of the Hurst coefficient for the different quantiles are
independent of each other.

Both tests lead to the same phenomenon, which has been described by
Granger and Newbold [12]. That is, both tests mostly reject the hypothesis of
self-similarity, not only for the underlying processes of the financial time series,
but also for generated self-similar processes such as the Brownian motion or
Levy processes.

It remains for future research to develop some test on self-similarity on the
quantiles that overcome these obstacles.

13.6 ESTIMATING THE SCALING LAW FOR SOME STOCKS

A self-similar process with Hurst exponent H cannot have a drift. Because it is
recognized that financial time series do have a drift, they cannot be self-similar.
Because of this, the wording scaling law instead of Hurst exponent will be used
when talking about financial time series that have not been detrended.

Because the scaling law is more relevant in practice than in theory, only
those figures are depicted that are based on commercial returns.

13.6.1 Results for Some DAX Stocks

The underlying price processes of the DAX stocks are the daily closing prices
from January 2, 1979, to January 13, 2000. Each time series consists of 5434
points.

Figure 13.6.1 shows the estimated scaling laws of 24 DAX stocks in the lower
quantiles. Because this figure is not that easy to analyze, Figure 13.6.2 combines
the results in Figure 13.6.1 by showing the mean, the mean plus/minus the
standard deviation, and the minimal and maximal estimated scaling law of the
24 DAX stocks over the various quantiles. Moreover, Figures 13.6.2 to 13.6.5
show only the quantitative characteristics of the estimation of the scaling laws
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FIGURE 13.6.1 Estimation of the scaling law for 24 DAX stocks, lower (left) quantiles.

for 24 DAX stocks for the various quantiles, as these are considered to be more
meaningful.

However, it is important to recognize that the 24 financial time series are
not several realizations of one stochastic process. Therefore, one has to be very
careful with the interpretation of the graphics in the case of financial time
series. The interpretation here is that the graphics show the overall tendencies
of the financial time series. Furthermore, the mean of the estimation of the
scaling law is relevant for a well-diversified portfolio of these 24 stocks. The
maximum of the estimation of the scaling law is the worst case possible for
the considered stocks.

The estimation of the scaling law on the lower (left) quantile for 24 DAX
stocks, which is based on commercial returns, shows that the shape of the
mean is curved and below 0.5 (see Figure 13.6.2). The interpretation of this
is that a portfolio of these 24 DAX stocks that is well diversified has a scaling
law below 0.5. However, a poorly diversified portfolio of these 24 DAX-stocks
can obey a scaling law as high as 0.55. This would imply an underestimation
of 12.2% for the 10-day VaR.

On the upper (right) quantile, the mean curve is sloped, ranging from a
scaling law of 0.66 for the 70% quantile to 0.48 for the 99% quantile (see
Figure 13.6.3). The shape of the mean curve of the right quantile is totally
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The solid line is the mean, the dash-dotted lines are the mean plus/minus the standard deviation, the 

triangles are the minimum, and the upside down triangles are the maximum of the estimation 

for the scaling law, which are based on 24 DAX-stocks. The underlying time series is a commercial

return. Shown are the lower (left) quantiles.

FIGURE 13.6.2 Estimation of the scaling law for 24 DAX Stocks, lower (left) quantile.

different from the one of the left quantile, which might be due to a drift or
to asymmetric distribution of the underlying process (compare Figure 13.6.2
with Figure 13.6.3). In particular, the mean is only in the 0.99 quantile slightly
below 0.5. For all other upper quantiles, the mean is above 0.5.

Obviously, the right quantile is only relevant for short positions. For ex-
ample, the VaR for the 0.95 quantile will be underestimated by approximately
9.6% for a well-diversified portfolio of short positions in these 24 DAX stocks
and can be underestimated by up to 23% for some specific stocks.

The curves of the error of the estimation are also interesting (see Figures
13.6.4 and 13.6.5). First notice that the minimum of the mean of the error
curves is in both cases below 0.1, which is substantially below the minimal
error in the case of a normal distribution (compare with Figure 13.4.1) and
in the case of a Cauchy distribution (see Figure 13.4.2).

However, the shape of the mean of the error curves of the left quantile is
like the shape of the error curve of a normal distribution. Only the minimum
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FIGURE 13.6.3 Estimation of the scaling law for 24 DAX stocks, upper (right) quantiles.

of the mean is in the 0.3 quantile and is thus even more to the left than in the
case of a normal distribution. The shape of the mean of the error curves of the
right quantile looks like some combination of the error curves of the normal
distribution and the Cauchy distribution.

Assuming that the shape of the error curve is closely related to the Hurst
exponent of the underlying process, this would imply that the scaling law for
the left quantile is less than or equal to 0.5 and for the right quantile is between
0.5 and 1, as has been observed. However, the relationship between the shape
of the error curve and the Hurst exponent of the underlying process still has
to be verified.

The situation does not change much if logarithmic returns are considered.
The mean on the lower quantile is not as curved as in the case of the commercial
returns. However, it is still curved. Moreover, in both cases (of the logarithmic
and the commercial returns) the mean is below 0.5 on the lower quantile. On
the upper quantile, the mean curve in the case of the logarithmic returns is
somewhat below that of the commercial returns, but otherwise has the same
shape. Therefore, the concluding results are the same as in the case of the
commercial returns.
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FIGURE 13.6.4 Error of the estimation of the scaling law for 24 DAX stocks, lower (left)
quantiles.

13.6.2 Results for the Dow Jones Industrial Average Index
and Its Stocks

The estimation of the scaling law for the Dow Jones Industrial Average Index
(DJI) and its 30 stocks is based on 2241 points of the underlying price process,
which dates from March 1, 1991, to January 12, 2000. As in the case of the 24
DAX stocks, the underlying price processes are the closing prices.

The results for the DJI and its 30 stocks are surprising because the mean
of the estimated scaling law is substantially lower than in the case of the 24
DAX stocks for both the logarithmic returns as well as for the commercial
returns. The mean of the estimation of the scaling law is also below 0.5 and
has a curvature on the lower quantile (see Figure 13.6.6).

The mean of the estimation of the scaling law for the upper quantile (Figure
13.6.7) is sloped (as in the case of the 24 DAX stocks) and is below 0.5 in the
quantiles that are greater than or equal to 0.95.

On the left quantile, the shape of the mean of the error curves in the case
of commercial and logarithmic returns is comparable with the shape of the
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FIGURE 13.6.5 Error of the estimation of the scaling law for 24 DAX stocks, upper (right)
quantiles.

mean of the error curve for the DAX stocks and therefore is comparable with
the shape of the mean error curve of the normal distribution. The shape of the
mean of the error curves on the right quantile is again like a combination of
the error curve of the normal distribution and the error curve of the Cauchy
distribution. However, the level of the mean of the error curves is the same
height as the level of the error curve of the normal distribution and thus is
substantially higher than the mean of the error curves of the corresponding
24 DAX stocks.

13.7 DETERMINING THE HURST EXPONENT
FOR SOME STOCKS

It has already been stated, that the financial time series cannot be self-similar.
However, it is possible that the detrended financial time series are self-similar
with Hurst exponent H . This will be scrutinized in the following, where the
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FIGURE 13.6.6 Estimation of the scaling law for 30 DJI stocks, lower (left) quantiles.

financial time series have been detrended according to the method described
in section 13.5.1. Because the Hurst exponent is more relevant in theory than
in practice, only those figures are shown that are based on logarithmic returns.

13.7.1 Results for Some DAX Stocks

The results are shown in Figure 13.7.1 and 13.7.2. The mean of the estimation of
the Hurst exponent on the left quantile is considerably higher for the detrended
time series than for the time series that have not been detrended. However, the
mean shows a slope for both the logarithmic as well as the commercial returns
(see Figure 13.7.1). On the right quantile, the mean curve for the detrended
time series has the same shape as in the case of the nondetrended time series
for both the commercial return and the logarithmic return. The slope for the
detrended time series is not as high as for the nondetrended time series, and
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FIGURE 13.6.7 Estimation of the scaling law for 30 DJI stocks, upper (right) quantiles.

the mean curve of the detrended time series lies below the mean curve of the
corresponding nondetrended time series.

The shape of the mean curve of the upper quantiles is comparable with that
of the lower quantiles. This is valid for both the commercial and the logarithmic
returns. However, for example in the case of the commercial return, the slope
is much stronger (the mean Hurst exponent starts at about 0.6 for the 70%
quantile and ends at about 0.47 for the 99% quantile compared with 0.55
for the 30% quantile and 0.48 for the 1% quantile). This indicates that the
distribution of the underlying process might not be symmetric. Moreover,
the wide spread of the mean Hurst exponent over the quantiles indicates, that
the detrended time series are not self-similar as well.

The mean of the error curves is not much affected by the detrending. The
shape of the mean of the error curves on the left quantiles are in both cases
similar to the shape of the theoretical error of the normal distribution. The
shape of the error curves on the upper quantiles is totally different from the
ones on the lower quantiles and looks like a combination of the error curve of
a normal distribution and a Cauchy distribution.

Altogether, these results indicate that the considered financial time series
are not self-similar. However, the tests on self-similarity introduced in section
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The solid line is the mean, the dash-dotted lines are the mean plus/minus the standard 
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FIGURE 13.7.1 Hurst exponent estimation for 24 DAX stocks, lower (left) quantiles.

13.5.3 are not sensitive enough to verify these findings. To verify these results,
it is necessary to develop a test for self-similarity that is sufficiently sensitive.

13.7.2 Results for the Dow Jones Industrial Average Index
and Its Stocks

The mean of the estimation of the Hurst exponent on the left quantile is
considerably higher for the detrended time series than for the time series that
have not been detrended. However, the mean shows, for both the logarithmic
as well as the commercial returns, a curvature on the lowest quantiles (see
Figure 13.7.3). The shape of the mean curve of the detrended time series is
similar to the mean curve of the corresponding nondetrended time series.

On the right quantile, the mean curve for the detrended time series has the
same shape as in the case of the nondetrended time series for both the com-
mercial return and the logarithmic return. The slope for the detrended time
series is not as high as for the nondetrended time series, and the mean curve
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FIGURE 13.7.2 Hurst exponent estimation for 24 DAX stocks, upper (right) quantiles.

of the detrended time series lies below the mean curve of the corresponding
nondetrended time series.

The shape of the mean curve of the upper quantiles is comparable with that
of the lower quantiles only on the outer quantiles. This is valid for both the
commercial and the logarithmic returns. Moreover, for example in the case of
the commercial return, the mean Hurst exponent ranges from about 0.52 for
the 70% quantile to about 0.45 for the 99% quantile compared with the range
of 0.48 for the 30% quantile and 0.44 for the 1% quantile. This indicates that the
distribution of the underlying process might not be symmetric. Moreover, the
spread of the mean Hurst exponent over the quantiles might indicate that
the detrended time series are not self-similar as well.

The mean of the error curves is not much affected by the detrending for
the right quantiles. However, the mean of the error curves on the left quantiles
is in both cases, about constant up to the lowest quantiles, where the curves go
up. The shapes of the error curves on the upper quantiles are not as constant
as those on the lower quantiles and look like some combination of the error
curve of a normal distribution and a Cauchy distribution.

Altogether, these results indicate that the considered financial time
series are not self-similar. However, the tests on self-similarity introduced in
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FIGURE 13.7.3 Hurst exponent estimation for 30 DJI stocks, lower (left) quantiles.

section 13.5.3 are not sensitive enough to verify these findings, as has already
been stated.

13.8 INTERPRETATION OF THE HURST EXPONENT
FOR FINANCIAL TIME SERIES

First, let us recall the meaning of the Hurst exponent for different stochastic
processes. For example, for a fractional Brownian motion with Hurst coef-
ficient H , the Hurst exponent describes the persistence or antipersistence of
the process (see, for example, Shiryaev [17]). For 1 > H > 1

2 the fractional
Brownian motion is persistent. This means that the increments are positively
correlated. For example, if an increment is positive, it is more likely that the
succeeding increment is also positive than that it is negative. The higher H
is, the more likely it is that the successor has the same sign as the preceding
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FIGURE 13.7.4 Hurst exponent estimation for 30 DJI stocks, upper (right) quantiles.

increment. For 1
2 > H > 0 the fractional Brownian motion is antipersis-

tent, meaning that it is more likely that the successor has a different sign than
the preceding increment. The case H = 1

2 is the Brownian motion, which is
neither persistent nor antipersistent (see Shiryaev [17]).

This is, however, not true for Levy processes with H > 1
2 , where the in-

crements are independent of each other. Therefore, the Levy processes are,
like the Brownian motion, neither persistent nor antipersistent. In the case
of Levy processes, the Hurst exponent H tells how much the process is heavy
tailed.

Considering financial time series, the situation is not at all that clear. On
the one hand, the financial time series are neither fractional Brownian motions
nor Levy processes. On the other hand, the financial time series show signs of
persistence and heavy tails.

Assuming the financial time series are fractional Brownian motions, then
a Hurst exponent H > 1

2 would mean that the time series are persistent.
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The interpretation of the persistence could be that the financial markets are
either rather slow to incorporate the actual given information, or this could
indicate that insider trading is going on in the market. The first case would be
a contradiction of the efficient-market hypothesis, and the second case would
be interesting for the controlling institutions such as the SEC and the BaFin
(the German analog of the SEC). A Hurst exponent of H < 1

2 would mean
that the financial market is constantly overreacting.

For this interpretation, compare also the findings for the DJI stocks with the
results for the 24 DAX stocks. The average estimation of the Hurst coefficient of
the 24 detrended DAX stocks is substantially higher than that of the detrended
DJI stocks. Thus this interpretation would support the general belief that the
U.S. financial market is one of the most efficient markets in the world, while the
German market is not that efficient, which is often cited as the “Deutschland
AG” phenomena.

Given that this interpretation is right, one could check whether a market
(or an asset) has become more efficient. If its corresponding Hurst exponent
gets closer to 0.5 over time, then the market (or the asset) is becoming more
efficient.

Assuming, that the Hurst coefficient of a financial time series reflects per-
sistence, the results of the detrended financial time series can be interpreted
in the following way. Although the financial market is, in normal market sit-
uations, rather slow in incorporating the actual news, it tends to overreact in
extreme market situations.

Not much can be said if one assumes that the Hurst coefficient of a financial
time series reflects a heavy-tail property. It cannot be verified that large market
movements occur more often in the German financial market than in the U.S.
financial market. However, in both financial markets, big market movement
does occur much more often than in the case of a Brownian motion. Therefore
the financial time series are heavy tailed.

13.9 CONCLUSION AND OUTLOOK

The main results are that

� The scaling coefficient 0.5 has to be used very carefully for financial
time series.

� There are substantial doubts about the self-similarity of the underlying
processes of financial time series.
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Concerning the scaling law, it is better to use a scaling law of 0.55 for the left
quantile and a scaling law of 0.6 for the right quantile (the short positions), just
to be on the safe side. It is important to keep in mind that these figures are only
based on the (highly traded) DAX and Dow Jones Index stocks. Considering
that infrequently traded stocks might yield even higher maximal scaling laws,
these numbers should be set by market-supervision institutions such as the
SEC.

However, it is possible for banks to reduce their VaR figures if they use the
correct scaling law numbers. For instance, the VaR figure of a well-diversified
portfolio of Dow Jones Index stocks would be reduced in this way by about
12% because it would have a scaling law of approximately 0.44.

Regarding the self-similarity, estimating the Hurst exponent via the quan-
tiles might be a good alternative to modified R/S statistics, Q–Q plots, and
calculating the Hurst exponents via the moments. However, it remains to fu-
ture research to develop a test on self-similarity on the quantiles that overcomes
the phenomena described by Granger and Newbold [12].

Finally, Danı́elsson and Zigrand [5] mentioned that the square-root-of-
time rule is also used for calculating volatilities. The presented results indicate
that the appropriate scaling-law exponents for volatilities is most likely higher
than the estimated scaling-law exponents for the quantiles. However, deter-
mination of specific estimates for this situation is left for future research.
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9. Paul Embrechts, Claudia Klüppelberg, and Thomas Mikosch. Modelling Ex-
tremal Events, vol. 33 of Applications of Mathematics. Springer, Berlin, 3rd
ed., 1997.

10. Paul Embrechts and Makoto Maejima. An introduction to the theory of
self-similar stochastic processes. International Journal of Modern Physics B,
14(12/13): 1399–1420, 2000.

11. Carl Evertsz, Ralf Hendrych, Peter Singer, and Heinz-Otto Peitgen. Komplexe
Systeme und Nichtlineare Dynamik, chapter Zur fraktalen Geometrie von
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Abstract: The Cox, Ingersoll, and Ross (1985) CIR term structure model
describes the stochastic evolution of government-bond yield curves over time
using a square-root Orstein–Uhlenbeck diffusion process, while imposing
cross-sectional no-arbitrage restrictions between yields of different maturi-
ties. A Kalman-filter approach can be used to estimate the parameters of the
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CIR model from panel data consisting of a time series of bonds of different
maturities. The parameters are estimated by optimizing a quasi log-likelihood
function that results from the prediction-error decomposition of the Kalman
filter. The quasi log-likelihood function is usually optimized with a determin-
istic gradient-based optimization technique such as a quadratic hill-climbing
optimizer. This chapter uses an evolutionary optimizer known as differential
evolution (DE) to optimize over the parameter space. The DE optimizer is
more likely to find the global maximum than a deterministic optimizer in the
presence of a non-convex objective function, which may be the case in multi-
factor term-structure models with nonnegativity constraints and parameter
constraints. The method is applied to estimate parameters from a one- and
two-factor Cox, Ingersoll, and Ross (1985) model. It is shown that, in the
two-factor model, the problem of local maxima arises whereby a number of
different parameter vectors perform equally well in the estimation procedure.
Fixed-income derivative prices are particularly sensitive to term-structure
parameters such as the volatility, the rate of mean reversion, and the market
price of risk of each factor. The effect of different optimal parameter vectors
on fixed-income derivatives is examined and is found to be significant.

14.1 INTRODUCTION

Dynamic term-structure models describe the stochastic evolution of govern-
ment bond yield curves (or swap-market yield curves) over time while im-
posing cross-sectional no-arbitrage restrictions between yields of different
maturities. The classic dynamic term-structure models are usually assumed to
be driven by a small number of latent factors motivated by the empirical results
of Steeley (1990) and Litterman and Scheinkman (1991), who found that three
factors can explain up to 99% of the variability of the yield curve. However
modeling yield curves using a low-dimensional factor model leads to mea-
surement error between the theoretically implied yields (or bond prices) and
market yields (or bond prices). If the dynamic term-structure model (DTSM)
can be formulated into a state–space representation, a Kalman-filter approach
can be used, and this measurement error can be accounted for explicitly. In
the Kalman-filter approach, model parameters are estimated from panel data
consisting of a time series of bonds with different maturity dates. Parameter
estimation is carried out by optimizing a quasi log-likelihood function that
results from the prediction-error decomposition of the Kalman filter. The quasi
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log-likelihood function is usually optimized with a deterministic gradient-
based optimization technique such as a quadratic hill-climbing optimizer.
This chapter uses an evolutionary based optimizer known as differential evo-
lution (DE) to optimize over the parameter space. The DE optimizer is more
likely to find the global maximum than are the deterministic optimizers in the
presence of a nonconvex objective function, which may be the case in term-
structure models with nonnegativity constraints and parameter constraints
such as the Cox, Ingersoll, and Ross (hereinafter CIR) model (1985).

The term-structure models used in this study are restricted to the one-
and two-factor versions of the CIR (1985) model for simplicity.1 However, DE
could potentially be even more useful than deterministic optimizers in more-
complex DTSMs, such as those preferred by Dai and Singleton (2000). The
data set consists of Fama–Bliss U.S. government bond yields of 3-, 6-, 12-, and
60-months maturities sampled monthly from April 1964 to December 1997.
Duan and Simonato (1999) have used the same data to estimate a one-factor
Vasicek model and one- and two-factor CIR models using a deterministic
optimizer. We find that the optimal parameter vectors using the DE optimizer
agree with Duan and Simonato for the one-factor CIR case; however, for
the two-factor CIR case, we get a number of different parameter estimates
with the same maximum value for the log-likelihood function. The effect
of the different approximately optimal parameter vectors on fixed-income
derivatives is examined and is found to be more pronounced than on the
underlying bonds themselves. This leads to the conclusion that fixed-income
derivatives should also be considered or even included in the estimation of
multifactor term-structure models, as this may reduce the problem of local
maxima, whereby a number of different parameter vectors perform equally
well in the estimation procedure.

The remainder of this chapter is organized as follows: first we consider the
motivation for the study, and then we consider the related literature in term-
structure model estimation and evolutionary computational techniques in
finance. Section 14.2 introduces the one- and two-factor CIR term-structure
models to be estimated. This section then outlines the use of the Kalman
filter in terms of structure modeling. Section 14.3 contains a description of
differential evolution. Section 14.4 contains the results and compares them

1 The parameters for one- and two-factor Vasicek models were also estimated using DE. It was found
that they do not exhibit local maxima. Results are not reported but are available upon request.
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with the well-known paper of Duan and Simonato (1999). The effect of local
maxima on derivatives prices is also examined. Section 14.5 concludes the
chapter and discusses some possible future research avenues.

14.1.1 Motivation

As the models used in finance become less parsimonious and increasingly
complicated to better account for the complexities of financial markets, the
problem of estimating and calibrating these high-dimensional models is no
longer a straightforward step, as many of these models contain local maxima.
This means that a number of different parameter vectors that describe a model
can result in virtually identical estimation or calibration performance. We will
refer to these different parameter vectors as locally optimal parameter vectors.
If the prices and hedge ratios from these locally optimal parameter vectors are
virtually identical, then having a number of locally optimal parameter vectors
might not be a serious problem if these models are only used in the pricing
and hedging of securities similar to those used in the estimation or calibration.
However, in many cases, these models are used in a wider framework, such as
in the pricing of exotic securities or in asset-allocation decisions that involve
many other asset classes. In these cases, the locally optimal parameter vectors
may cause large differences in exotic prices or may result in a different decision-
making process. Recent literature contains some examples of the occurrence
of local maxima in financial models. For example, Ben Hamida and Cont
(2004) retrieved a local volatility surface from a finite set of option prices and
examined the multiplicity of solutions satisfing the constraints that model
and market prices must be within a certain tolerance level related to the bid–
ask spread. Ayache et al. (2004) calibrated a regime switching model to a set
of option prices and found many possible parameter vector solutions that
calibrate to the data equally well. They found that the introduction of exotic
options in the calibration step helps reduce this problem. Thus in estimating
or calibrating high-dimensional financial models, global optimizers may need
to be used to provide information as to whether the objective function is well
behaved or not, and if it is not well behaved, to reduce the probability of the
optimizer returning a parameter vector that is simply a local maximum of the
objective function.

Term-structure modeling is crucial in fixed-income modeling, and the
proprietary trading desks of many banks and hedge funds use two- and three-
factor dynamic term-structure models in their statistical arbitrage modeling of
fixed-income markets. However, estimating these models based on panel data
can be a difficult task for multifactor models, and these models can display
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locally optimal parameter vectors. The Kalman-filter approach to estimating
term-structure models is by now well known and very popular (see, for exam-
ple, Duan and Simonato [1999] and Babbs and Nowman [1999] among many
others). Parameters are estimated by maximizing the log-likelihood function,
which is usually optimized with regard to the parameter vector using a deter-
ministic gradient-based optimizer. It is recommended that the log-likelihood
function be optimized for a number of different parameter vector initializa-
tions, thereby reducing the chance of the deterministic optimizer converging to
a local maximum. However this is a rather ad hoc way to proceed, especially if
the model is complicated and high dimensional, such as Feldhutter and Lando’s
(2005) five-factor affine model with parameter constraints. The contribution
of this chapter is in the use of an optimizer known as differential evolution
(DE) (see Storn and Price [1997]), to estimate term-structure models. The
objective function used in this chapter is the quasi log-likelihood function
(CIR) resulting from the prediction-error decomposition of a Kalman filter.
The objective function is calculated from the prediction-error decomposition
that is obtained by running a Kalman filter on a data set based on a single choice
of the parameter vector. There is no guarantee that the maximization of the
objective function by appropriate choice of a parameter vector is a well-posed
problem, especially as the complexity of the term-structure model increases.
For example, in a two-factor CIR model the factors should always be positive.
For certain choices of parameters, the factors may become negative. For exam-
ple, if 2κθ < σ 2, where κ is the mean reversion rate, θ is the long-run mean,
and σ is the volatility of the factor, there is a positive probability that this factor
will reach zero. In continuous time, the process will be reflected away from
zero; however, in a discrete time setting, finite time steps are used, and the
factor can become negative. To prevent this, we can ensure that the factor does
not become negative by replacing a negative value of the factor with a value of
zero (the approach adopted in this chapter) or by applying a constraint on the
parameter space such that 2κθ ≥ σ 2. Both of these approaches can result in
a nonconvex objective function. As the term-structure model becomes more
complex, the number of such parameters and constraints increases; thus the
use of a global optimizer, such as DE, becomes even more crucial.

14.1.2 Related Literature

No-arbitrage dynamic term-structure modeling began with Vasicek (1977),
Dothan (1982), Courtadon (1982), and Cox, Ingersoll, and Ross (1985) (here-
inafter CIR). These models posit a diffusion process for the short rate of
interest under the physical probability measure, and combining this with an
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assumption on investors’ risk preferences results in a process for the short
rate under the equivalent martingale measure in which bond prices and yields
can be calculated. Vasicek and CIR are affine dynamic term-structure models
(DTSM), as bond yields are affine functions of the short rate, and as a result they
are tractable and widely used term-structure models. Recognizing the need
for the use of more than one factor to better explain the correlation struc-
ture of yields at different maturities, Brennan and Schwartz (1979), Schaefer
and Schwartz (1984), Longstaff and Schwartz (1992), and Chen and Scott
(1993), among others, began examining multifactor term-structure models.
This culminated in the Duffie and Kan (1996) paper, where a general affine
term-structure model was derived that encompasses multifactor versions of
the Vasicek and CIR models. More recently, Dai and Singleton (2000) have
examined maximally flexible canonical affine term-structure models. All other
affine term-structure models are specific examples of their maximally flexible
models, with certain parameters set to zero. These models allow for nonzero
correlation between the latent factors; however, in their most general form
they do not admit closed-form solutions for bond prices, so they must be
solved numerically using a system of ordinary differential equations. In this
chapter we focus on one- and two-factor CIR models for simplicity and clarity.
However, the methodology of this chapter is applicable to any term-structure
model that can be formulated into a state–space model.

Parameter estimation in DTSMs can be done using a number of different
methods, including the maximum-likelihood method of Lo (1986, 1988), the
generalized method of moments (GMM) of Hansen (1982), and the efficient
method of moments (EMM) of Gallant and Tauchen (1996). The Kalman filter
(KF) can also be used to estimate the parameters of a DTSM if it can be for-
mulated into a state–space model (see Pennachi [1991], Duan and Simonato
[1999], and Babbs and Nowman [1999], among many others). The KF is a
natural approach to use when the underlying state is unobserved and follows
a diffusion process. The KF allows for measurement error between the model
yield and market yield, which naturally arises when using a small number of
factors to model the yield curve. Thus the KF can account for model mis-
specification and market imperfections such as bid–ask spread and illiquidity.
Parameter estimates are obtained by optimizing a log-likelihood function in
Gaussian DTSMs or a quasi log-likelihood function in non-Gaussian DTSMs
that results from the prediction-error decomposition of the KF. Affine DTSMs
are particularly suited to estimation using the KF because of their tractability
and linear nature. However, outside the Gaussian class of affine TSMs, includ-
ing for example the affine CIR model, parameter estimates are inconsistent
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because the distribution of the shocks to the latent factors is non-Gaussian.
However, the degree of inconsistency is found to be of little importance in
practice according to Lund (1997), Duan and Simonato (1999), and De Jong
(2000), who conducted Monte Carlo experiments to check this. Chen and
Scott (2003) conducted similar Monte Carlo experiments on the multifactor
CIR model and found that, while some parameter estimates were biased, those
combinations of parameters that are important for asset pricing were unbi-
ased. Extended KFs or unscented KFs can be combined with quasi-maximum
likelihood to estimate models using data that are nonlinear functions of the
latent factors, such as swap data. Recently Duffee and Stanton (2004) sug-
gested that the KF is a robust method to use for parameter estimation in
dynamic term-structure models, and they recommend the use of the KF when
maximum-likelihood estimation is not feasible. However, many prefer the use
of KF even when maximum likelihood is feasible, as is the case for Vasicek and
CIR models. The KF method does not require the assumption that certain-
market observable rates be observed without error, as is done in ML methods.
The KF updates the first two moments of a system of latent variables, and
historical information about the unobserved system is embedded in these two
moments. The KF is the optimal filtering technique to use among the class of
linear filters. The KF is also well suited to out-of-sample tests, given that the
factors are updated in the filter with the arrival of each new observation date.

14.2 DYNAMIC TERM-STRUCTURE MODELS

In this section we introduce the two term-structure models used in this chapter
and describe the Kalman filter and how it can be used to estimate parameters
of dynamic term-structure models. We assume that there are n state variables,
denoted xt ≡ (x1t , . . . , xnt)

′ (in this chapter we only deal with n = 1, 2).
Uncertainty is generated by n independent Brownian motions, where we
assume independence for simplicity. The independence assumption can be
relaxed, and factor correlations can be crucial in modeling certain phenomena,
such as the term structure of volatility (see Dai and Singleton [2000]). Under
the equivalent martingale measure, these Brownian motions are denoted as
z̃t ≡ (z̃1t , . . . , z̃nt)′; the corresponding Brownian motions under the physi-
cal measure are denoted without the tildes. The instantaneous interest rate,
denoted rt , is affine in the state and given by

rt = 1′ · xt ,

where 1 is the unit vector with n elements.
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14.2.1 CIR Model

In the CIR model, the state dynamics under the physical measure are given by
a square-root diffusion process

dxit = κi (θi − xit) dt + σi
√

xitdzit .

The equivalent martingale dynamics determine bond prices. Assume that
the market price of risk of each factor λi is proportional to the factor. The
dynamics under the equivalent martingale measure are given by

dxit = (κiθi − (κi + λi ) xit) dt + σi
√

xitdz̃i t .

Zero-coupon bonds maturing at time t + τ have prices and yields given by

P (xt , τ ) = exp[A(τ ) − B(τ )′xt], (14.2.1)

Y (xt , τ ) = (1/τ )[−A(τ ) + B(τ )′xt], (14.2.2)

where functions A(τ ) and B(τ ) are given by

A(τ ) = A1(τ ) + A2(τ )

B(τ ) = [B1(τ ), B2(τ )]′

Ai (τ ) = 2κiθi

σ 2
i

ln

(
2γi e (κi +λi +γi ) τ

2

(κi + λi + γi ) (eγi τ − 1) + 2γi

)

Bi (τ ) = 2 (eγi τ − 1)

(κi + λi + γi ) (eγi τ − 1) + 2γi
,

γi =
√

(κi + λi )
2 + 2σ 2

i .

A negative value for λi means that the risk premium for holding longer-term
bonds is positive.

14.2.2 Kalman Filter

The Kalman filter is a powerful linear filtering technique introduced by Kalman
(1960). In its original form, it is assumed that a system is driven by an unob-
servable state that experiences additive noise and that there are observables
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that are linear functions of this unobservable state. However, the observables
themselves are measured with noise. The KF is a filter method that allows the
estimation of the unobservable state and its covariance matrix at each point in
time using only knowledge of the noisy measurements. It operates iteratively
on the data, so only the current estimate of the state and its covariance matrix
are needed for the prediction of the future state; thus it is computationally
efficient. The reader is referred to Harvey (1989) for a thorough explanation
of KFs and to Duan and Simonato (1999) and various other papers cited in
the literature review for examples of KFs in interest-rate modeling. A brief
explanation is outlined here for completeness.

The state transition and measurement equations are as follows

xt = �0 + �1xt−h + ηt , var[ηt] = Qt , (14.2.3)

Yt = H0 + H1xt + et , var[et] = R, (14.2.4)

where Qt and R are the covariance matrices of the unobservable state innova-
tion and the measurement error, respectively. Initial conditions are x̂0 = E (x0)
and P̂0 = var(x0). The KF consists of three steps. The prediction step is
given by

x̂−
t = �0 + �1 x̂t−h

P −
t = �1 Pt−h�

′
1 + Qt .

The predicted measurement, the prediction error, and its covariance are
given by

Ŷ −
t = H0 + H1 x̂−

t

ut = Yt − Ŷ −
t

Pyy,t = H1 P −
t H ′

1 + R.

The filtered updates are given by

Kt = P −
t H ′

1 P −1
yy,t

x̂t = x̂−
t + Ktut

Pt = (I − Kt H1) P −
t .
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The log-likelihood function is derived from the prediction error decom-
position of the KF and is given by

ln L (
) = − Nm

2
ln 2π − 1

2

N∑
t=0

ln |Pyy,t | − 1

2

N∑
t=0

ut P −1
yy,tu

′
t ,

where N is the number of time steps with t = {h, 2h, . . . , T − h, T} , N =
T/h, m is the number of different maturity bonds used, and 
 is the parameter
vector.

To apply the KF in the one-factor CIR models, initialize the algorithm with
the unconditional mean and variance of the state

x̂0 = θ , P0 = θ
σ 2

2κ
,

and choose the elements of the KF as follows:

�0 = (1 − e−κh)θ , �1 = e−κh

Qt = θ
σ 2

2κ
(1 − e−κh)2 + x̂t−h

σ 2

κ
(e−κh − e−2κh)

H0 = − 1

τ
A(τ ), H1 = 1

τ
B(τ ), and R = diag

(
σ 2

ei

)
,

where σ 2
ei

is the variance of the i th measurement error, and diag(σ 2
ei

) is a diag-
onal matrix with diagonal elements σ 2

ei
. The measurement-error covariance

matrix can be nondiagonal; however, it is chosen to be diagonal in this chapter,
so the covariance structure of bond yields is represented only by the model
itself and not by the measurement-error covariance matrix. The application
of the KF in a multifactor model is a straightforward extension of the above
one-factor case.

14.3 DIFFERENTIAL EVOLUTION

Evolutionary computational techniques have been used in finance applications
for quite some time now. They first came to prominence in the form of genetic
algorithms and genetic programming and are used in forecasting, classifica-
tion, and trading applications. However, they are also used as a complementary
tool in optimization problems involving complicated high-dimensional and
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possibly nonconvex objective functions that may have many local maxima. Dif-
ferential evolution (see Storn and Price [1997]), is a population-based search
algorithm that draws inspiration from the field of evolutionary computation.
DE embeds concepts of mutation, recombination, and fitness-based selection
to evolve good solutions. There are a number of worthwhile gains associated
with the use of DE, including: it is more likely to reach the global optimum
than deterministic-based algorithms in the presence of nonconvex objective
functions; DE can easily accommodate nonnegativity constraints and param-
eter constraints that might result in a nonconvex objective function and cause
deterministic optimizers to converge to a local optimum; DE can return a
population of parameter vectors that are approximately optimal, thus giving
insight into parameter or model uncertainty that is perhaps more informative
than standard asymptotic diagnostic tests; DE can handle large-scale opti-
mization problems, thereby avoiding complicatious caused by the inclusion
of additional parameters; and DE does not require the gradient of the ob-
jective function, which can be cumbersome to calculate for certain models.
Of course in certain situations, such as the Vasicek term-structure model, DE
does not offer any more insight into the problem than a deterministic-based
optimizer. DE can also take longer to converge than a deterministic optimizer,
and one can only use informal diagnostics in determining the convergence of
the optimizer. That said, this chapter does not advocate the replacement of
deterministic gradient-based optimizers with global evolutionary optimizers,
but rather encourages using DE or other evolutionary optimizers in certain sit-
uations where deterministic optimizers may run into problems or even using
a combination of deterministic and evolutionary optimizers.

Although several DE algorithms exist, I will describe one version of the
algorithm. See Storn and Price (1997) for more detail on the various types
of algorithms, Brabazon and O’Neill (2006) for a complete analysis of evolu-
tionary algorithms in the context of financial modeling, and Ben Hamida and
Cont (2005) for an example of a derivative-pricing model calibration method
using evolutionary algorithms. The DE algorithm used in this chapter is based
on the DE/rand/1/bin scheme. The different variants of the DE algorithm are
described using the shorthand DE/x/y/z, where x specifies how the base vector
is chosen, (rand if it is randomly selected, and best if the best individual in the
population is selected), y is the number of difference vectors used, and z de-
notes the crossover scheme (bin for crossover based on independent binomial
experiments, and exp for exponential crossover).

At the start of the algorithm, a population of N d-dimensional parameter
vectors 
 j for j = 1, . . . , N is randomly initialized and evaluated using a
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fitness function. In this chapter, the fitness function is the quasi log-likelihood
function, and the parameter vector contains the structural parameters that
describe the term-structure model and the parameters from the Kalman filter,
namely the standard deviation of the measurement errors. For example, for a
one-factor CIR model using panel data with four bonds, the parameter vector
would have the following form, 
 j = (

θ , κ, σ, λ, σe1 , . . . , σe4

)
, where θ , κ, σ ,

and λ are the structural parameters of the term-structure model, and σei , for
i = 1, . . . , 4, are the four measurement-error standard deviations. During
the search process, each individual ( j ) is iteratively refined. The modification
process has three steps:

� Create a variant parameter vector using randomly selected members
of the population (mutation step).

� Create a trial parameter vector by combining the variant vector with j
(crossover step).

� Perform a selection process to determine whether the newly created
trial vector replaced j in the population.

Under the mutation operator, for each vector 
 j (t) a variant vector
Vj (t + 1) is obtained

Vj (t + 1) = 
m(t) + F (
k(t) − 
l (t)) ,

where k, l , m ∈ 1, . . . , N are mutually distinct, randomly selected indices, and
all the indices �= j · (
m(t) is referred to the base vector, and 
k(t) − 
l (t)
is referred to as a difference vector). F is a scaling parameter, and typically
F ∈ (0, 2). The scaling parameter controls the amplification of the differ-
ence between 
k and 
l , and is used to avoid stagnation of the search pro-
cess. Following the creation of the variant vector, a trial vector U j (t + 1) is
obtained

U j k(t + 1) =
{

Vj k(t + 1), if (rand ≤ CR) or ( j = rnbr(ind)) ;


 j k(t), if (rand ≥ CR) or ( j �= rnbr(ind)) .

where k = 1, 2, . . . , d , rand is a random number generated in the range (0, 1),
CR is the user-specified crossover constant in the range (0, 1), and rnbr(ind)
is a randomly chosen index chosen from the range (1, 2, . . . , d). The random
index is used to ensure that the trial solution differs by at least one component
from
 j (t). The resulting trial (child) solution replaces its parent if it has higher
fitness; otherwise the parent survives unchanged into the next generation.
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The DE algorithm has three key parameters: the population size (N), the
crossover rate (CR) and the scaling factor (F ). Higher values of CR tend to
produce faster convergence of the population of solutions. Typical values for
these parameters are in the ranges N = 50–100 or five to ten times the number
of dimensions in a solution vector, CR = 0.4–0.7, and F = 0.4–0.9.

14.4 RESULTS

In this chapter, the data set used is the same as that used by Duan and Simonato
(1999) (hereinafter DS), which is kindly posted on their Web site. It consists of
four monthly yield series for the U.S. Treasury debt securities with maturities of
3, 6, 12, and 60 months taken from the Fama–Bliss data file. All interest rates
are expressed on an annualized, continuously compounded basis. The data
cover the period from April 1964 to December 1997, totaling 405 time-series
observations. The data are out of date; however, given that DS have estimated
term-structure models on this same data set, it was thought appropriate to use
it for comparison purposes. As with DS, the unit of time is set to 1 year so that
in the Kalman filter h = 1

12 . The following subsections report the results for
one- and two-factor CIR models. The sensitivity of the DE optimizer solutions
to the relevant DE parameters is examined in the one-factor case.

14.4.1 One-Factor CIR Model

The one-factor CIR models were estimated using the DE optimizer, and the
results were very similar to those reported in DS. Table 14.4.1 reports the
results for the one-factor CIR model from 100 runs of the DE optimizer.
As with all stochastic optimizers, the algorithm should be run a number of

TABLE 14.4.1 Parameter Estimates for the One-Factor CIR Model

Parameter Mean Median Std Min Max Max LL DS

θ 0.0611 (0.0157) 0.0610 0.0011 0.0607 0.0717 0.0610 0.0613 (0.0123)
κ 0.2247 (0.0580) 0.2251 0.0035 0.1906 0.2267 0.2251 0.2249 (0.0457)
σ 0.0702 (0.0051) 0.0702 0.0000 0.0700 0.0703 0.0702 0.0700 (0.0045)
λ −0.1115 (0.0587) −0.1119 0.0034 −0.1131 −0.0785 −0.1119 −0.1110 (0.0454)
σe1 0.0028 (0.0002) 0.0028 0.0000 0.0028 0.0028 0.0028 0.0028 (0.0002)
σe2 0.0000 (0.2883) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 (7.6255)
σe3 0.0030 (0.0002) 0.0030 0.0000 0.0030 0.0030 0.0030 0.0030 (0.0002)
σe4 0.0099 (0.0003) 0.0099 0.0000 0.0099 0.0100 0.0099 0.0099 (0.0003)

Column 1 denotes the parameter. Column two is the mean parameter estimate and standard error, three
is the median, four is the standard deviation, and five and six are the minimum and maximum from the
100 DE optimal parameter vectors. Column seven is the parameter vector with maximum LL value, and
column eight contains DS parameter estimates and standard errors.
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TABLE 14.4.2 Parameter Estimates for the One-Factor CIR Model Using Best Parameter
Vectors

Parameter Mean Median Std Min Max Max LL

θ 0.0610 0.0610 0.0000 0.0608 0.0610 0.0610
κ 0.2252 0.2251 0.0001 0.2248 0.2258 0.2251
σ 0.0702 0.0702 0.0000 0.0701 0.0702 0.0702
λ −0.1119 −0.1119 0.0001 −0.1126 −0.1116 −0.1119
σe1 0.0028 0.0028 0.0000 0.0028 0.0028 0.0028
σe2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
σe3 0.0030 0.0030 0.0000 0.0030 0.0030 0.0030
σe4 0.0099 0.0099 0.0000 0.0099 0.0099 0.0099

The columns are the same as Table 14.4.1; however, only the 95 best-performing DE optimal parameter
vectors are used.

times to ensure it has converged. The DE optimizer was run with the fol-
lowing parameters for the optimizer: NP = 20, F = 0.8, CR = 0.8, and
setting the number of iterations to 300. The results are very similar to the
results in DS that are reported in the final column of Table 14.4.1. Sensi-
tivity analysis was conducted on the optimizer parameters. The optimizer
was run 100 times for each of the following parameter settings: {NP, F , CR} =
{20, 0.8, 0.8} , {20, 0.6, 0.8} , {20, 0.4, 0.8} , {20, 0.8, 0.6}, and {20, 0.8, 0.4}. The
parameter estimates2 and the parameter standard errors were not sensitive to
the different settings. The convergence speed of the algorithm is not sensi-
tive to the crossover rate, CR, but it does improve for smaller values of F .
However, this faster convergence is achieved at the expense of a less extensive
parameter space search. When the five worst-performing parameter vectors
(with the lowest log-likelihood, [LL] values) are dropped, the dispersion of
the remaining 95 runs reduces dramatically across all the different settings.
Table 14.4.2 contains results using the same optimizer parameters as Table
14.4.1 but with the five worst-performing parameter vectors removed from
the analysis. These results on the one-factor CIR model indicate that the DE
optimizer is a useful optimizer. However, it must be run a number of times to
ensure that it has not converged too quickly. The results also indicate that the
one-factor CIR model does not suffer from the problem of local maxima.

14.4.2 Two-Factor CIR Model

The two-factor CIR model was also estimated, and if a factor was negative, it
was replaced with zero in the optimization routine. Table 14.4.3 reports the

2 These results are not reported to save space but are available from the author upon request.
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TABLE 14.4.3 Parameter Estimates for the Two-Factor CIR Model

Duan and

Parameter Mean Median Std Min Max Max LL Simonato (SE)

θ1 0.0703 0.0294 0.1080 0.0257 0.6852 0.0271 0.0303 (0.0031)
κ1 0.9509 1.1413 0.4045 0.0412 1.3144 1.2689 1.1627 (0.1508)
σ1 0.1146 0.1146 0.0034 0.1070 0.1221 0.1178 0.1202 (0.0079)
λ1 −0.1632 −0.3320 0.3562 −0.4959 0.6371 −0.4395 −0.3139 (0.1222)
θ2 0.0001 0.0000 0.0001 0.0000 0.0011 0.0000 0.0000 (0.0000)
κ2 0.0314 0.0295 0.0171 0.0016 0.0946 0.0297 0.0007 (0.0614)
σ2 0.0618 0.0621 0.0018 0.0558 0.0653 0.0622 0.0681 (0.0035)
λ2 −0.0367 −0.0356 0.0176 −0.1038 −0.0075 −0.0362 −0.0266 (0.0636)
σe1 0.0026 0.0026 0.0000 0.0025 0.0027 0.0025 0.0027 (0.0001)
σe2 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000 (0.0985)
σe3 0.0021 0.0021 0.0000 0.0020 0.0022 0.0021 0.0021 (0.0001)
σe4 0.0018 0.0018 0.0001 0.0017 0.0020 0.0017 0.0012 (0.0001)

Column one denotes the parameter. Column two is the mean parameter estimate and standard error, three
is the median, four is the standard deviation, and five and six are the minimum and maximum from the
100 DE optimal parameter vectors. Column seven is the parameter vector with maximum LL value, and
column eight contains DS parameter estimates and standard errors.

results for the two-factor model from 100 runs of the DE optimizer. Most of the
parameters estimated in this study are not very different from the parameters
estimated by DS; however, the mean and median of the mean reversion for
the second factor, κ2, and the parameter estimate associated with the overall
maximum-likelihood value for κ2 are quite different from the value of 0.0007
that was estimated by DS. This suggests that the second factor might not be
as close to a nonstationary process as DS have suggested. However, this study
is not claiming that parameter estimates should be very different from those
of DS, but rather is emphasizing the local maxima problem that arises in the
estimation of the two-factor CIR term-structure model. Table 14.4.4 contains
the same results as Table 14.4.3, but with the 40 worst-performing parameter
vectors removed from the analysis. More parameter vectors were removed in
the two-factor case due to a higher proportion of parameters that converge
too quickly to suboptimal solutions.

When examined in more detail, the analysis seems to suggest that the
Kalman filter is a double-edged sword when used to estimate parameters.
The Kalman filter returns unobservable factors for each of the 100 optimal
parameters from the DE optimizer that are almost identical from one run
to another. This is quite a promising result, suggesting that the Kalman fil-
ter is capable of retrieving the underlying factors that are driving the term
structure for this particular data set. Figure 14.4.1(b) shows a plot of the
two factors for the 100 optimal DE parameter vectors. The factors from each
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TABLE 14.4.4 Parameter Estimates for the Two-Factor CIR Model Using Best Parameter
Vectors

Duan and

Parameter Mean Median Std Min Max Max LL Simonato (SE)

θ1 0.0284 0.0282 0.0014 0.0257 0.0318 0.0271 0.0303 (0.0031)
κ1 1.1993 1.2051 0.0675 1.0415 1.3144 1.2689 1.1627 (0.1508)
σ1 0.1156 0.1154 0.0025 0.1105 0.1196 0.1178 0.1202 (0.0079)
λ1 −0.3812 −0.3930 0.0606 −0.4959 −0.2436 −0.4395 −0.3139 (0.1222)
θ2 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 (0.0000)
κ2 0.0308 0.0297 0.0152 0.0016 0.0624 0.0297 0.0007 (0.0614)
σ2 0.0625 0.0624 0.0011 0.0610 0.0653 0.0622 0.0681 (0.0035)
λ2 −0.0368 −0.0367 0.0156 −0.0690 −0.0077 −0.0362 −0.0266 (0.0636)
σe1 0.0026 0.0026 0.0000 0.0025 0.0027 0.0025 0.0027 (0.0001)
σe2 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 (0.0985)
σe3 0.0021 0.0021 0.0000 0.0020 0.0021 0.0021 0.0021 (0.0001)
σe4 0.0017 0.0017 0.0000 0.0017 0.0018 0.0017 0.0012 (0.0001)

The columns are the same as Table 14.4.3; however, only the 60 best-performing DE optimal parameter
vectors are used.

parameter vector are close, making it hard to tell them apart on the graph. In
fact, the two unobservable factors from this analysis are > 99.9% correlated
with the corresponding unobservable factors from the other runs of the DE
optimizer.

However, any two parameter vectors 
i and 
 j , for i, j ∈ {1, . . . , 100}, are
capable of returning almost identical log-likelihood values and unobservable
factors, even though the parameter vectors themselves can differ substantially.
To examine this point further, Figures 14.4.2 and 14.4.3 contain plots of the
parameter values from the 100 DE optimal parameters for the first and second
factors, respectively, versus the negative log-likelihood value. Figure 14.4.2(a)
plots the long-run mean for factor 1, θ1, versus the negative log-likelihood
function, and it seems to be converging to its lower bound of zero. Figure
14.4.2(b) shows the mean reversion of the first factor, κ1, and it seems to
be converging to a global optimal value. Figure 14.4.2(c) suggests that there
are a number of different optimal parameter vectors whose value for σ1 can
differ (from 0.11 to 0.12) yet whose log-likelihood value is almost identical.
However, most of the values for σ1 are within one standard error of its mean
value. Figure 14.4.2(d) suggests that the market price of risk of the first factor,
λ1, also seems to be converging to a global optimal value. The situation for
the parameters of the second factor is different, as illustrated in Figure 14.4.3.
The long-run mean of the second factor, θ2, seems to be converging to its
lower limit of zero. However, there are a large number of different optimal
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FIGURE 14.4.1 (a) Fama–Bliss data set of four U.S. Treasury yields with maturities of 3, 6, 12,
and 60 months and (b) the two unobservable factors for the 100 runs of the DE optimizer.

parameter vectors whose value forκ2 can differ substantially, yet all have similar
log-likelihood values; and the same can be said for σ2 and λ2. This suggests
that the two-factor CIR model is misspecified, a conclusion that agrees with
that of DS. However, many firms still use misspecified term-structure models
due to their tractability and ability to explain certain statistical features of the
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FIGURE 14.4.2 Factor 1 parameter estimates versus the (negative) log-likelihood function.

term-structure. Thus the problem of locally optimal parameter vectors may be
relevant for many term structure models that are used extensively in academia
and industry today.

We now examine the effect of these different approximately optimal
parameter vectors on bond prices and bond derivatives. To do this we take



P1: Naresh

August 1, 2007 17:42 C925X C925X˙C014

PARAMETER UNCERTAINTY IN KALMAN-FILTER ESTIMATION � 273

−7130 −7120 −7110 −7100 −7090 −7080 −7070
0.106

0.108

0.11

0.112

0.114

0.116

0.118

0.12

0.122

0.124

−LL

S
ig

m
a 1

−7130 −7120 −7110 −7100 −7090 −7080 −7070
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−LL

L
am

b
d

a 1

FIGURE 14.4.2 (Continued).

each optimal parameter vector from the 100 DE runs and the correspond-
ing unobservable factors x1 and x2 on the last month of the time-series data.
We then use these to price a 3-year zero-coupon bond. For a bond of face
value $100, the mean, median, and standard deviation of the bond prices are
$84.4875, $84.4842, and $0.0144, respectively. The locally optimal parameter
vectors do not result in very different bond prices.
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FIGURE 14.4.3 Factor 2 parameter estimates versus the (negative) log-likelihood function.

Figure 14.4.4(a) depicts a histogram of the 100 different bond prices for
each parameter vector 
. The results show that the problem of the local
maxima is very minor when taken in the context of bond pricing. However,
if we price an option on the same bond using the 100 parameter vectors,
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FIGURE 14.4.3 (Continued).

the situation becomes more problematic. Taking the same bond as above, we
price an at-the-money-forward bond option with a strike price of $89.19 and
a maturity of 1 year using the two-factor CIR-option-pricing formula given
in Chen and Scott (1992). The mean, median, and standard deviation of the
bond option prices are $0.6403, $0.6371, and $0.0188, respectively.
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FIGURE 14.4.4 Histograms of bond and option prices for each optimal parameter vector 
.

Figure 14.4.4(b) depicts a histogram of the 100 option prices for each
parameter vector 
. As can be seen, the effect on the option prices is propor-
tionally much larger. The standard deviation of the bond prices is 0.017% of
the mean bond price, whereas the standard deviation of the option prices is
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approximately 3% of the mean option price. This problem does not disap-
pear as we cut out the parameter vectors with lower log likelihoods, i.e., those
parameter estimates for which the optimizer converged too quickly. If we con-
sider the 50 parameter vectors with the largest log-likelihoods, the problem
still persists, with the standard deviation being 2% of the mean bond price.
This is not surprising given the flatness of the log-likelihood plots, where
we can see that many different parameter vectors produce the same maxi-
mum log-likelihood value. These differences in option prices are magnified
when considering out-of-the money options and longer maturity options,
which are typical of the fixed-income market. All though a 2–3% difference
may not seem that large relative to the bid–ask spread in these markets,
when these options are combined to form a typical fixed-income instru-
ment such as a cap (given that a cap can be decomposed into a portfolio of
bond options), they will quickly accumulate and result in large option-price
differences.

The suggested remedies are to include more than four cross-sectional bond
maturities in the estimation and perhaps even include a very liquid benchmark
bond derivative in the estimation. If nonlinear securities such as derivatives
are used in the estimation, it means that nonlinear Kalman-filter techniques,
such as the extended or unscented Kalman filter, will to have to be used in place
of the standard Kalman filter. This research is currently being undertaken by
the author.

14.5 CONCLUSION

In this chapter, the problem of local maxima in the context of parameter
estimation for dynamic term-structure models was highlighted using an evo-
lutionary optimizer known as differential evolution. The effect of the local
maxima on bond pricing was shown to be relatively minor; however, the effect
on bond derivatives was shown to be a reasonable proportion of the deriva-
tive price. The suggested remedies are (a) to use a better-specified dynamic
term-structure model than the CIR for the data set in this study or (b) to use
more cross-sectional bond maturities and even a liquid benchmark derivative
in the estimation procedure. Future work should include simulation studies
to determine whether the local maxima are a result of the dynamic term-
structure model itself or a result of some specific structure in the data set, such
as near-unit root behavior or perhaps a combination of the two.
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The prices of the options and futures of a stock both reflect the market’s ex-
pectation of future trends of the stock’s price. Their prices normally align
with each other within a limited window. When they do not, arbitrage op-
portunities arise: an investor who spots the misalignment will be able to buy
(sell) options on one hand, and sell (buy) futures on the other and make
risk-free profits. In this chapter, we focus on put-call-futures parity arbitrage
opportunities. The upper bound of a futures bid price, denoted by Fbt , is
given by

Fbte
−r a(T−t) ≤ Cat − Pbt + Xer b(T−t) + TC . (15.0.1)

Here, T is the expiration date and t is today, i.e., T − t is the remaining time
to maturity; Cat is the option’s call premium at the ask; Pbt is the option’s put
premium at the bid; X is the exercise price for the option; TC is the transaction
cost; r a is the interest rate on the borrowing to finance the futures; and r b is
the interest rate to lend. If equation (15.0.1) is violated, then the arbitrageur
will be able to make a risk-free profit equal to

Fbte
r a(T−t) − [Cat Pbt + Xer b(T−t) + TC] > 0. (15.0.2)

281
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When equation (15.0.1) is violated, a short arbitrage profit can be realized
by shorting futures and then protecting it by a synthetic long futures position
by (a) buying a call option, (b) shorting a futures option, and (c) borrowing the
present discounted value of the futures price and lending the same for the exer-
cise price. Historical data suggest that option and futures prices on the LIFFE
market (London) occasionally do not satisfy equation (15.0.1). In the LIFFE
tick trade data from January 1991 to June 1998, we identified 8073 prof-
itable short arbitrage and 7410 profitable long arbitrage opportunities when
no transaction cost is considered. If we assume a transaction cost of £60 per
put-call-futures arbitrage operation, then 2345 (or 29%) of the 8037 triplets
would still be profitable. The profits in equation (15.0.2) are those that accrue
if the arbitrageur could have obtained as quoted the trade prices recorded at
these points in time. In reality, due to delay, the arbitrageur may not be able
to obtain the quoted prices. Therefore, an arbitrageur may not be able to ex-
ploit all the profitable arbitrage opportunities, especially if it reacts passively.
Besides, price misalignments are corrected rapidly by the market, so reacting
ahead of the others is crucial to securing the risk-free profits. Therefore, the
challenge is not only to spot such opportunities, but to discover them ahead
of other arbitrageurs. This motivated us to turn our attention to our previous
work on forecasting. EDDIE is a genetic programming tool for forecasting.
A specialization of EDDIE, which we called EDDIE-ARB, was implemented
for forecasting arbitrage opportunities. EDDIE uses constraints to focus its
search in promising areas of the space. The task that we gave EDDIE-ARB was
to predict arbitrage opportunities five minutes ahead of time.

As a tool, EDDIE enables economists and computer scientists to work
together to identify relevant independent variables. The usefulness of EDDIE-
ARB as a tool is fully demonstrated in this project. When data was first fed into
EDDIE-ARB, no patterns were found. The economists and computer scientists
in this project together noticed that certain subcomponents were repeatedly
generated by the program. In response to that, data was further prepared to
help EDDIE-ARB to succeed. For example, “moneyness” (spot price divided
by strike price) was introduced, as (a) it is meaningful in economics and (b)
this pattern was found by EDDIE-ARB repeatedly. Similarly, “basis” (futures
price minus spot price) was introduced to capture mispricing in the futures leg
of the arbitrage. Scaling was applied to certain variables to avoid the precision
problem (which computer scientists are more sensitive to than economists).

The above preparation alone was not enough to help EDDIE-ARB find
patterns reliably. The difficulty of this forecasting problem is that a large
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percentage of the cases were negative instances. Only about 3% of the in-
stances in the training data represented opportunities. This meant that a
program that made no positive recommendations (i.e., classifying all cases
to be nonprofitable) would achieve an accuracy of 97%, even though it had
0% recall. Such forecasts would not help us to spot any arbitrage opportuni-
ties, and therefore would have no commercial value. To tackle this problem,
we removed certain negative training instances to rebalance the database (we
removed those instances that showed no follow-up in the market). When the
data set contained around 25% positive instances, EDDIE-ARB started to pick
up repeated patterns.

We trained and tested EDDIE on intraday historical tick data on the FTSE-
100 European style index option traded on LIFFE from March 1, 1991, to June
18, 1998, and verified it on out-of-sample data from June 30, 1998, to March 30,
1999. The constraints in EDDIE-ARB enabled us to trade precision against
recall. For example, the final data set used (i.e., after heavy preprocessing)
allowed us to find rules with 99% precision and 53% recall.

Results by EDDIE-ARB were compared with those obtained by a naïve
ex ante rule, which only reacted when misalignments were detected. If we
assume an operational delay of one minute after opportunities are identified,
then expected profit may not be realized by the naïve rule (as explained above).
Under this assumption, EDDIE-ARB outperformed the naïve rule on average
profit per operation in the test data. However, EDDIE-ARB only picked up a
very small percentage of the profitable arbitrage opportunities. As a result, the
total amount of profit made by the naïve rule was comparable with EDDIE-
ARB’s. Our next challenge was therefore to improve EDDIE-ARB’s recall rate.
Two general methods, namely the scenario method and the repository method,
have been developed. Early results suggest that one can collect and combine
rules from multiple decision trees to improve precision and recall with these
methods.

This work falls into the research area of chance discovery, the discovery of
chances through innovation. In chance discovery, the innovation part often
involves human input. A “chance” here refers to an event or a situation with
significant impact on human decision making—a new event/situation that can
be conceived either as an opportunity (e.g., in business) or as a risk (such as
an earthquake). Chance discovery extends data mining, which is often limited
to pattern recognition in a given data set. For example, in the EDDIE-ARB
project, we identified new attributes that were not present in the original data
set. We have in this project established EDDIE-ARB as a promising tool for
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bringing human users and a computer program together to discover arbitrage
opportunities. We have also demonstrated how economists and computer
scientists could work together to achieve results that neither party alone was
capable of achieving.

REFERENCES

1. A. Abe and Y. Ohsawa (eds.), Special Issue on Chance Discovery. New Gener-
ation Computing, 21(1), Berlin: Springer and Tokyo: Ohmsha, 2003.

2. Chance Discovery Consortium, http://www.chancediscovery.com/english/.
3. A.L. Garcia-Almanza and E.P.K. Tsang, Simplifying Decision Trees Learned

by Genetic Algorithms, Proceedings, Congress on Evolutionary Computation
(CEC), 2006, 7906–7912.

4. A. Garcia and E.P.K. Tsang, The Repository Method for Chance Discov-
ery in Financial Forecasting, Proceedings, 10th International Conference
on Knowledge-Based & Intelligent Information & Engineering Systems
(KES2006), Bournemouth, UK, 9–11 October 2006.

5. J. Li, FGP: A Genetic Programming Based Tool for Financial Forecasting, Ph.D.
thesis, University of Essex, Colchester, U.K., 2001.

6. Y. Ohsawa and P. McBurney, Chance Discovery, Springer Publishers, Berlin,
2003.

7. E.P.K. Tsang, S. Markose, and H. Er, Chance discovery in stock index option and
future arbitrage, New Mathematics and Natural Computation, World Scientific,
1, (3), 2005, 435–447.

8. E.P.K. Tsang, P. Yung, and J. Li, EDDIE-Automation, a decision support tool
for financial forecasting, Journal of Decision Support Systems, Special issue on
data mining for financial decision making, 37, (4), 2004, 559–565.

9. A.L. Tucker, Financial Futures, Options and Swaps, West Publishing Co., St.
Paul, MN, 2001.



P1: Naresh

August 21, 2007 16:7 C925X C925X˙C016

Index

A

Aas K., 55
Acar, E., 185
Acerbi, C., 1, 3, 10, 57
Adverse interrisk diversification effects,

credit, market risk, 53–62
Affine point processes, pricing credit, top

down, 195–201
Alfonsi, A., 65, 70, 88–89, 95
Altman, Edward, 197
American Options, pricing

high-dimensional, local
consistency conditions, 13–52

Anderson, L., 114
Andreasen, J., 114
Andreatta, G., 90
Artzner, P., 2, 226
Autocorrelation, value at risk,

self-similarity, 238
Ayache, E., 258

B

Babbs, S. H., 259–260
Bacinello, A.R., 90
Backhaus, Jochen, 199
Ballotta, L., 90
Bates, D., 156
Berman, Abraham, 25
Bermudan swaptions, counterparty risk

pricing, 74
Berridge, S., 20, 25, 47
Black, F., 88, 114
Black-Scholes framework,

performance-dependent
options, 203–214

Black-Scholes-Merton model,
risk-neutral probability
distribution function, local
cross entropy, 154, 170

Blake, D., 83, 229

Bollerslev, T., 174
Bollier, T.F., 64
Boundary points, pricing

high-dimensional American
Options, 30–33, 47–49

Boyle, P., 15, 88, 93
Brabazon, A., 265
Brace, A., 114
Brady, Brooks, 197
Brennan, M. J., 260
Breuer T., 57
Brigo, D., 64–65, 67, 69–71, 73, 88–89,

95, 198
Broadie, M., 15, 88
Brown, B.W., 99
Buchen, P., 150, 161

C

Cairns, A., 83, 229
Callable payoffs, counterparty risk

pricing, 72–73
Carr, P., 145, 156
Chen, R.-R., 260–261, 275
CIR model

Kalman-Filter estimation, 262
one-factor, 267–268
two-factor, 268–277

pricing interest rate swaptions,
129–131

one-factor, 129
time-dependency approximation,

131
two-factor, 130–131

CMS spread
counterparty risk pricing, 74–75

Coherency axioms, risk measures, 2
Coherent risk measures, 1–12

coherency axioms, 2
convexity, 9–11
diversification principle, 7
estimability, 5–6

285



P1: Naresh

August 21, 2007 16:7 C925X C925X˙C016

286 � INDEX

motivations, 1
objectivist paradigm, 3
optimization of, 9–11
spectral measures estimators, 8–9
spectral measures of risk, 8
value at risk, shortcomings of, 2

Collin-Dufresne, P., 115, 199
Convexity, risk measures, 9–11
Cooley, J. W., 156
Cooper, J. P., 179
Corradin, S., 90
Corsaro, S., 88
Cortazar, G., 142
Cottle, Richard W., 25
Counterparty risk pricing, 64

default, interest rates correlation, 63–81
Bermudan swaptions, 74
CMS spread options, 74
CMS spread ratchets, 74–75
default intensity models, 64
default risk, 64, 73–75
European swaptions, 74
interest-rate default correlation, 64,

70, 76
interest rate models, 64–65, 68, 72
modeling assumptions, 68–71

CIR++ model, CDS calibration,
69–71

CIR++ stochastic intensity model,
68–69

G2++ interest rate model, 68
interest-rate/credit-spread

correlation, 71
numerical methods, 72–73

callable payoffs, 72–73
discretization scheme, 72
forward expectations, 72

output tables, 76–81
risk neutral valuation, 64, 66
risk pricing formula, 67
single interest rate swaps, 73

netted portfolios, 73
valuation, counterparty risk, 66–67

default intensity models, 64
default risk, 64, 73–75
interest-rate default correlation, 64, 70,

76
interest rate models, 64–65, 68, 72
risk neutral valuation, 64, 66

Courtadon, G., 259

Cox, J.C., 88, 90, 256–257, 259
CRMs. See Coherent risk measures
Cryer, Colin W., 24

D

Dai, Q., 257, 260–261
Daigler, R. T., 185
Danı́elsson, Jón, 226, 229, 252
Das, Sanjiv, 199
d’Aspremont, A., 119
Davis, Mark, 198
De Angelis, P.L., 88
De Felice, M., 90
de Graziano, Giuseppe, 198
De Jong, F., 261
de Vries, Casper G., 229
Default intensity models, counterparty

risk pricing, 64
Default risk, counterparty risk pricing,

64, 73–75
Defined contribution pension plans,

dynamic asset allocation, 83–85
Delbaen, F., 2, 109, 226
Dempster, M.A.H., 24
Detrending, value at risk, self-similarity,

237
Diebold, F., 179, 229
Dimakos, X. K., 55
Ding, Xiaowei, 198
Discretization scheme, counterparty risk

pricing, 72
Diversification principle, risk measures, 7
Dothan, M. U., 259
Dowd, K., 83, 229
Duan, J. C., 257, 259–261, 263, 267
Duffee, G. R., 261
Duffie, D., 55, 115, 118–120, 123, 197–199
Dupuis, Paul G., 14, 17, 22
Dynamic asset allocation, defined

contribution pension plans,
83–85

E

Eber, J.-M., 2
EDDIE-ARB, 282
EDDIE programming tool, forecasting

arbitrage opportunities,
281–284



P1: Naresh

August 21, 2007 16:7 C925X C925X˙C016

INDEX � 287

Edelman, D., 150–151
El Karoui, N., 118
Embrechts, Paul, 229
Engle, Robert, 174
Error behavior, pricing high-dimensional

American Options, 39–46
Estimability, risk measures, 5–6
EURIBOR swaptions data, model testing,

138–145
implied estimates analysis, 141–144
implied estimation, 138–144
in-sample pricing performance,

138–144
out-of-sample pricing performance,

144–145
European swaptions, counterparty risk

pricing, 74
Evans, M., 20
Evertsz, Carl, 232

F

Fair, R. C., 180, 186
Fama-Bliss data set, U.S. Treasury yields,

271
Fast Fourier transform, pricing swaptions

using, 121–122
Faure, H., 89
Feldhutter, P., 259
FFT. See Fast Fourier transform
Forecasting arbitrage opportunities,

EDDIE programming tool,
281–284

Forward expectations, counterparty risk
pricing, 72

Frey, Rudiger, 199
Frey R., 57

G

Gallant, A. R., 260
Garleanu, Nicolae, 198
Gatarek, M., 114
Geman, H., 118
Generalized Vasicek models, pricing

interest rate swaptions, 125–128
one-factor generalized Vasicek model,

125–126
three-factor generalized Vasicek model,

127–128

time-dependency approximation, 128
two-factor generalized Vasicek model,

126–127
Geometric average options, pricing

high-dimensional American
Options, 33

Gerstner, T., 209
Giesecke, Kay, 197–199
Glasserman, P., 15, 88–89, 92, 94, 99,

109, 210
Goldberg, Lisa, 197–199
Goldstein, R., 115, 199
Granger, Clive W. J., 239, 252
Grosen, A., 90

H

Haberman, S., 90
Hancock G.H., 57
Hansen, L. P., 260
Harvey, A., 263
Hawkes, Alan G., 197
Helwege, Jean, 199
Hendrych, Ralf, 232
Henrotte, P., 258
High-performance software

development, life insurance
policies, numerical simulation,
87–111

computational kernels, 89
high-dimensional integration,

numerical methods for, 92–93
numerical experiments, 99–108
numerical methods, computational

kernels, 91
stochastic differential equations,

numerical solution of, 93–95
Holtz, M., 209
Hsieh, D. A., 179
Huang, Jacqueline, 24
Hundsdorfer, Willem, 23
Hurd, Thomas, 198
Hurst exponent determination, value at

risk, self-similarity, 244–249
DAX stocks, results, 245–247
Dow Jones Industrial Average

Index/Stocks, results, 247–249
Hurst exponent estimation, via

quantities, value at risk,
self-similarity, 232–236



P1: Naresh

August 21, 2007 16:7 C925X C925X˙C016

288 � INDEX

Hurst exponent interpretation, value at
risk, self-similarity, financial
time series, 249–251

Hutton, J.P., 24

I

Imai, J., 109
Inear complementarity problem,

sequence solving, pricing
high-dimensional American
Options, 24–25

Ingersoll, J.E., 88, 90, 256–257, 259
Integral transforms, pricing interest rate

swaptions, 117–121
Interest-rate default correlation,

counterparty risk pricing, 64,
70, 76

Interest rate models, counterparty risk
pricing, 64–65, 68, 72

Intraday data, forecasting daily volatility,
hybrid approach, 173–194

J

Jackwerth, J. C., 150
Jaillet, Patrick, 19
Janda’ka M., 57
Jarrow, Robert A., 199
Jensen, B, 90
Johnson, L., 175
Jorgensen

B.N., 226
P.L., 90

Jorion, Philippe, 195, 230
Joy, C., 93
Jump diffusion model, risk-neutral

probability distribution
function, local cross entropy,
155, 171

K

Kalman, R. E., 262
Kalman-Filter estimation

CIR model, 262
one-factor, 267–268
two-factor, 268–277

differential evolution, 264–267

dynamic term-structure models,
261–264

Fama-Bliss data set, U.S. Treasury
yields, 271

Kalman filter, 262–264
parameter uncertainty, 255–279

Kan, R., 118, 120
Kapadia, Nikunj, 199
Karatzas, I., 204
Kelly, M. F., 150, 161
Kloeden, P. E., 93–94
Knight, J., 179, 190
Kolkiewicz, Adam W., 15
Korn

E., 204
R., 204, 209

Krenn G., 57
Kuritzkes A., 55
Kushner, Harold J., 14, 17, 22
Kusuoka, S., 5, 8
Kuznetsov, Alexey, 198

L

Lamberton, Damien, 19
Lando, D., 259
Lapeyre, Bernard, 19
L’Ecuyer, P., 109
Lemieux, C., 109
Life insurance policies

high-performance software
development, numerical
simulation, 87–111

computational kernels, 89
high-dimensional integration,

numerical methods for, 92–93
numerical experiments, 99–108
numerical methods, computational

kernels, 91
stochastic differential equations,

numerical solution of, 93–95
Litterman, R., 256
Lo

A.W., 260
Violet, 198

Local consistency conditions, pricing
high-dimensional American
Options, 13–52

benchmarks, 34
boundary points, 30–33, 47–49



P1: Naresh

August 21, 2007 16:7 C925X C925X˙C016

INDEX � 289

error behavior, 39–46
experiments, 33–49
geometric average options, 33
inear complementarity problem,

sequence solving, 24–25
Markov chain approximation, 20–23
stability analysis, 25–30

2 method, 29–30
explicit method, 26–28
fully implicit method, 28

state space discretization, 20
time discretization, 24
timings, 46

generator matrix, 46–47
time stepping, 47

Local cross entropy, risk-neutral
probability distribution
function, 149–172

Black-Scholes-Merton model, 154, 170
data generation, 155–156
jump diffusion model, 155, 171
market data, 164–169
models, 154–155
noisy prices, 161–164
performance measurement, 157
recovery, 151–154
simulated data, 157–161
stochastic volatility model, 155, 171
variance gamma model, 154–155, 170

Longstaff, F., 72, 198, 260
Lovato, J., 99
Lund, J., 261

M

Madan, D., 145, 156
Maejima, Makota, 229
Manistre B.J., 57
Marino, Z., 88
Markov chain approximation, pricing

high-dimensional American
Options, 20–23

Martingale approach,
performance-dependent
options, Black-Scholes
framework, 206–207

Masetti, M., 64, 67
McNeil A. J., 57
Mercurio, F., 69–70, 73–74
Milstein, G.N., 94

Mincer, J., 179
Monte Carlo path calculations, variance

reduction, 215–223
geometric Brownian motion, 219–221

with European option, 220
Heston stochastic volatility model,

221–222
with European option, 222

Moriconi, F., 90
Morini, M., 65
Mortensen, Allan, 198
Motivations, risk measures, 1
Muck, M., 138
Multilevel Monte Carlo path calculations,

variance reduction, 215–223
geometric Brownian motion, 219–221

with European option, 220
Heston stochastic volatility model,

221–222
with European option, 222

Multivariate Black-Scholes model,
performance-dependent
options, Black-Scholes
framework, 206

Munk, C., 115
Musiela, M., 114

N

Naranjo, L., 142
Nason, J. A., 179
Nassar, S., 258
Negative interrisk diversification effects,

credit, market risk, 53–62
Nelson, C. R., 179
Newbold, Paul, 239, 252
Niederreiter, H., 20, 93
Nowman, K. B., 259–260
Numerical methods, counterparty risk

pricing, 72–73

O

Objectivist paradigm, risk measures, 3
O’Neill, M., 265
Optimization, risk measures, 9–11
Ord, J. Keith, 230
Output tables, counterparty risk pricing,

76–81



P1: Naresh

August 21, 2007 16:7 C925X C925X˙C016

290 � INDEX

P

Pacati, C., 89–90, 95–96, 98–99
Pallavicini, A., 65, 74, 198
Pan, J., 55, 115, 119–120, 123
Pang, Jong-Shi, 24–25
Papageorgiou, A., 93
Paskov, S., 93
Pelsser, A.A.J., 115–121, 123, 131–132,

136
Pennacchi, G. G., 260
Performance-dependent options,

Black-Scholes framework,
203–214

Martingale approach, 206–207
multivariate Black-Scholes model, 206
multivariate integration, 204
option pricing, 204
payoff profile, 205–206
performance-dependent options,

205–209
pricing formula, 207–209

Perla, F., 93
Petitdidier, E., 185
Pflug, G., 10
Platen, E., 93–94
Plemmons, Robert J., 25
Price, K., 259, 265
Pricing credit, affine point processes, top

down, 195–201
Pricing high-dimensional American

Options, 13–52
benchmarks, 34
experiments, 33–49
local consistency conditions, 13–52

benchmarks, 34
boundary points, 30–33, 47–49
error behavior, 39–46
experiments, 33–49
geometric average options, 33
inear complementarity problem,

sequence solving, 24–25
Markov chain approximation, 20–23
stability analysis, 25–30

2 method, 29–30
explicit method, 26–28
fully implicit method, 28

state space discretization, 20

time discretization, 24
timings, 46

generator matrix, 46–47
time stepping, 47

Pricing interest rate swaptions, 113–147
integral transforms, 117–121
numerical method, 113–147

application, 122–137
CIR models, 129–131

one-factor, 129
time-dependency approximation,

131
two-factor, 130–131

computational analysis, 122–137
EURIBOR swaptions data, model

testing, 138–145
implied estimates analysis,

141–144
implied estimation, 138–144
in-sample pricing performance,

138–144
out-of-sample pricing

performance, 144–145
Fast Fourier transform, pricing

swaptions using, 121–122
future research, 145
generalized Vasicek models, 125–128

one-factor generalized Vasicek
model, 125–126

three-factor generalized Vasicek
model, 127–128

time-dependency approximation,
128

two-factor generalized Vasicek
model, 126–127

integral transforms, 117–121
Vasicek models, 123–125

one-factor Vasicek model,
123–124

time-dependency approximation,
125

two-factor Vasicek model,
124–125

Q

Quantile estimation error, value at risk,
self-similarity, 233–236



P1: Naresh

August 21, 2007 16:7 C925X C925X˙C016

INDEX � 291

R

Rajan, Arvind, 198
Real-valued process, defined, 229–230
Reiss, Rolf-Dieter, 230
Resti, Andrea, 197
Risk estimation for different Hurst

coefficients, 230–231
Risk measures, 1–12

coherency axioms, 2
convexity, 9–11
diversification principle, 7
estimability, 5–6
motivations, 1
objectivist paradigm, 3
optimization of, 9–11
spectral measures estimators, 8–9
spectral measures of risk, 8
value at risk, shortcomings of, 2

Risk-neutral probability distribution
function, local cross entropy,
149–172

Black-Scholes-Merton model, 154,
170

data generation, 155–156
jump diffusion model, 155, 171
market data, 164–169
models, 154–155
noisy prices, 161–164
performance measurement, 157
recovery, 151–154
simulated data, 157–161
stochastic volatility model, 155,

171
variance gamma model, 154–155,

170
Risk neutral valuation, counterparty risk

pricing, 64, 66
Risk pricing formula, counterparty risk

pricing, 67
RN-PDF. See Risk-neutral probability

distribution function
Rochet, J.C., 118
Rockafellar, R.T., 10
Rogers, Chris, 198
Rosenberg J. V., 56
Ross, S.A., 88, 90, 256–257, 259
Russell, K., 99

S

Sakoulis, G., 175
Samorodnitsky, Gennady, 226, 229, 233
Satchell, S., 179, 190
Scaling law, value at risk, self-similarity,

226–227, 232–233, 239–246,
252

Scaling law estimation, value at risk,
self-similarity, 239–244

DAX stocks, results, 239–243
DOW Jones Industrial Average

Index/Stocks, results, 243
Schaefer, S. M., 260
Scheinkman, J. A., 256
Schiller, R. J., 180, 186
Scholes, M., 88
Schonbucher, Philipp, 199
Schoutens, W., 156
Schrager, D.F., 115–121, 123, 131–132,

136
Schrijver, Alexander, 23
Schuermann T., 55–56
Schumacher, J.M., 20
Schwartz, E.S., 72, 142, 260
Scott, L., 260–261, 275
Self-similarity, value at risk, 225–253

autocorrelation, 238
Basel Committee on Banking

Supervision, 231
detrending, 237
future developments, 251–252
Hurst exponent determination,

244–249
DAX stocks, results, 245–247
Dow Jones Industrial Average

Index/Stocks, results, 247–249
Hurst exponent estimation, via

quantities, 232–236
Hurst exponent interpretation,

financial time series, 249–251
order statistics, 226, 230, 233,

240–250
quantile estimation error, 233–236
real-valued process, defined,

229–230
scaling law, 226–227, 232–233,

239–246, 252



P1: Naresh

August 21, 2007 16:7 C925X C925X˙C016

292 � INDEX

scaling law estimation, 239–244
DAX stocks, results, 239–243
DOW Jones Industrial Average

Index/Stocks, results, 243
self-similarity test, 238
square-root-of-time rule, 226
time-scaling of risk, 226, 253

Self-similarity test, value at risk,
self-similarity, 238

Seng Tan, Ken, 15
Shimko, D., 169
Shiryaev, Albert N., 249–251
Simonato, J. G., 257, 259–261, 263,

267
Singer, Albert, 232
Single interest rate swaps

counterparty risk pricing, 73
netted portfolios, counterparty risk

pricing, 73
Single IRS. See Single interest rate

swaps
Singleton, K.J., 55, 115–116, 119–120,

123, 257, 260–261
Sloan, I., 93
Sorensen, E.H., 64
Spectral measures estimators, 8–9
Spectral measures of risk, 8
Square-root-of-time rule, value at risk,

self-similarity, 226
Stability analysis, pricing

high-dimensional American
Options, 25–30

2 method, 29–30
explicit method, 26–28
fully implicit method, 28

Stanton, R. H., 261
State space discretization, pricing

high-dimensional American
Options, 20

Steeley, J. M., 256
Stochastic volatility model, risk-neutral

probability distribution
function, local cross entropy,
155

Stone, Richard E., 25
Storn, R., 259, 265
Stuart, Alan, 230
Swartz, T., 20

T

Tachen, G., 260
Tan, K., 93, 109
Taqqu, Murad S., 229, 233
Tasche, D., 57
Tauchen, G., 17, 179
Time discretization, pricing

high-dimensional American
Options, 24

Time-scaling of risk, value at risk,
self-similarity, 226, 253

Timings, pricing high-dimensional
American Options, 46

generator matrix, 46–47
time stepping, 47

Tomecek, Pascal, 198
Torresetti, Roberto, 198
Traub, J.F., 93
Tukey, J. W., 156

U

Umantsev, L., 115–116
Uryasev, S., 10

V

Valuation, counterparty risk,
counterparty risk pricing,
66–67

Value at risk
shortcomings of, 2

Value at risk, self-similarity, 225–253
autocorrelation, 238
Basel Committee on Banking

Supervision, 231
detrending, 237
future developments, 251–252
Hurst exponent determination,

244–249
DAX stocks, results, 245–247
Dow Jones Industrial Average

Index/Stocks, results,
247–249

Hurst exponent estimation, via
quantities, 232–236



P1: Naresh

August 21, 2007 16:7 C925X C925X˙C016

INDEX � 293

Hurst exponent interpretation,
financial time series, 249–251

order statistics, 226, 230, 233, 240–250
quantile estimation error, 233–236
real-valued process, defined,

229–230
scaling law, 226–227, 232–233,

239–246, 252
scaling law estimation, 239–244

DAX stocks, results, 239–243
DOW Jones Industrial Average

Index/Stocks, results, 243
self-similarity test, 238
square-root-of-time rule, 226
time-scaling of risk, 226, 253

VaR. See Value at risk
Variance gamma model, risk-neutral

probability distribution
function, local cross entropy,
154–155

Vasicek, O., 122, 259
Vasicek models, pricing interest rate

swaptions, 123–125

one-factor Vasicek model, 123–124
time-dependency approximation, 125
two-factor Vasicek model, 124–125

Verwer, Jan, 23

W

Walder R., 56
Wang, S., 8
Wei, J., 115
Weiner S.M., 55
Wilmott, Paul, 230
Wozniakowsky, H., 93

Y

Yu, Fan, 199

Z

Zarnowitz, V., 179
Zhang, Gaiyan, 195
Zigrand, Jean-Pierre, 229, 252



P1: Naresh

August 21, 2007 16:7 C925X C925X˙C016




	Contents
	Preface
	List of Contributors
	About the Editors
	Sponsors
	Chapter 1. Coherent Measures of Risk into Everyday Market Practice
	Chapter 2. Pricing High-Dimensional Americans Options Using Local Consistency Conditions
	Chapter 3. Adverse Interrisk Diversification Effects for FX Forwards
	Chapter 4. Counterparty Risk Pricing under Correlation between Default and Interest Rates
	Chapter 5. Optimal Dynamic Asset Allocation for Defined Contribution Pension Plans
	Chapter 6. On High-Performance Software Development for the Numerical Simulation of Life Insurance Policies
	Chapter 7. An Efficient Numerical Method for Pricing Interest Rate Swaptions
	Chapter 8. Empirical Testing of Local Cross Entropy as a Method for Recovering Asset's Risk-Neutral PDF from Option Prices
	Chapter 9. Using Intraday Data to Forecast Daily Volatility: A Hybrid Approach
	Chapter 10. Pricing Credit from the Top Down with Affine Point Processes
	Chapter 11. Valuation of Performance-Dependent Options in a Black-Scholes Framework
	Chapter 12. Variance Reduction through Multilevel Monte Carlo Path Calculations
	Chapter 13. Value at Risk and Self-Similarity
	Chapter 14. Parameter Uncertainty in Kalman-Filter Estimation of the CIR Term-Structure Model
	Chapter 15. EDDIE for Discovering Arbitrage Opportunities
	Index

